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RESUME

L’algorithme génétique est utilisé€ pour optimiser les dates d’intervention sur les conduites
d’eau d’un petit réseau de distribution. Pour cela, deux modeles sont étudiés : I’'un avec
contraintes budgétaires et ’autre sans contraintes budgétaires. L’objectif est de minimiser
le cofit total du systéme sur un horizon de temps détefminé. Cette étude met en ceuvre les
étapes de cet algorithme pour les deux modeles analysés. Les avantages et les
inconvénients de I’utilisation d’un tel outil pour optimiser les plans de renouvellement
d’un réseau d’aqueduc sont notés. Les variables de décision sont les dates d’intervention

sur les conduites d’eau et les types d’intervention — la réhabilitation et le remplacement.

Mots clés : aqueducs, réseau de distribution d’eau potable, réhabilitation, remplacement,

optimisation, cofits, algorithme génétique.
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ABSTRACT

This paper details how genetic algorithm has been used to optimize dates of intervention
of the water mains of a small network. Two models have been studied, one with budget
constraints and the other without. The goal is to minimize the total cost of the system
throughout the planning phase. This study elaborates the algorithm process used in the two
different models. The advantages and disadvantages of using such a tool in the
optimization plans of water distribution system renewal are also stated. The decision
variables used are: the dates of intervention on the water mains, and the types of

intervention — rehabilitation and replacement.

Keywords: aqueducts, water distribution system, rehabilitation, replacement,

optimization, costs, genetic algorithm.
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AVANT-PROPOS

Dans la Ville de Montréal comme dans la plupart des grandes métropoles, la majorité des
conduites des réseaux d’eau potable ont atteint, sinon dépassé leur durée de vie utile. La
dégradation de ces réseaux se manifeste par des interruptions de service, des bris de
conduites, un manque de pression au robinet des consommateurs, etc. Plus le réseau
vieillit; plus les colts de maintenance investis pour assurer un service minimal aux
consommateurs augmentent. En faisant une analyse des co(ts actualisés de maintenance et
ceux du remplacement de la conduite en fonction du temps depuis le moment de sa mise
en ceuvre, on peut se rendre compte qu’il arrive un moment ou il est plus économique de
remplacer la conduite que de la maintenir. Ainsi, pour assurer la pérennité des conduites
du réseau d’alimentation en eau, il est important de calculer le moment optimal pour

procéder a leur remplacement.

Par ailleurs, les fonds alloués a la réfection des conduites d’eau potable sont insuffisants
face a I’ampleur des conduites 2 restaurer. Les contraintes budgétaires ont d’ailleurs
poussé les gestionnaires municipaux a se tourner vers des techniques dites de
réhabilitation, autres que le remplacement conventionnel des conduites. De ce fait, la
réhabilitation, moins cofiteuse que le remplacement, devient de plus en plus privilégiée
comme solution d’intervention sur la conduite. Sachant que les budgets sont limités, il faut
étre en mesure de proposer un outil qui permet aux gestionnaires de trouver la date
optimale d’intervention (réhabilitation ou remplacement) des conduites en tenant compte

des fonds disponibles. Ce projet de recherche s’inscrit dans cette vision en proposant un
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modele d’optimisation des plans d’intervention des conduites d’aqueduc, qui permet une
planification des interventions a long terme sur le réseau en tenant compte des restrictions

budgétaires.
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INTRODUCTION

L’optimisation des plans d’intervention des réseaux d’aqueduc provient d’une volonté
des gestionnaires municipaux d’assurer la pérennité des conduites d’eau potable en

tenant compte des contraintes budgétaires.

L’optimisation appliquée aux réseaux de distribution d’eau potable porte sur quatre
grands axes : 1) les plans d’ensemble a long terme, 2) la conception du réseau, 3) la
configuration du réseau et 4) la réhabilitation. Les plans d’ensemble porte sur I’influence
bilatérale entre le réseau d’aqueduc et la collectivité a laquelle il est rattaché, par
exemple, la vérification de la nécessité d’installer un réservoir. La conception cible les
détails de design d’un réseau, par exemple, le choix judicieux des matériaux et de
I’emplacement des conduites. La configuration, qui est un cas particulier de la
conception, est principalement centrée sur la disposition de tous les éléments du réseau
qui sont essentiellement les conduites, les pompes, les vannes, les réservoirs, et les
chiteaux d’eau. Et enfin, la réhabilitation porte sur les plans d’amélioration du réseau
existant au travers d’interventions immédiates ou planifi€es sur une période de temps.
Dans ce rapport, on va se concentrer sur la réhabilitation des conduites d’eau potable,
c’est-a-dire, toute intervention sur la conduite pour améliorer ses capacités hydrauliques

et structurales afin de garantir un service minimal ininterrompu.

Au niveau de la réhabilitation, plusieurs critéres d’optimisation peuvent étre traités. On
les rassemble en trois grands critéres : 1) économique, 2) de fiabilité et 3) de qualité. Le

critere économique vise a réduire les colits imputés a la réhabilitation d’une partie ou de



I’ensemble du réseau. Le critere de fiabilit€ vise a fournir un service adéquat et
performant en tout temps, c’est-a-dire, un systeme qui fonctionne sous différentes
conditions d’opérations parfois exceptionnelles comme la fermeture brusque d’une
vanne. Le critere de qualité vise a diminuer I’effet nocif des réactions chimiques entre
’eau et la conduite qui se détériore, afin de fournir une eau saine aux consommateurs.
Dans ce rapport, on a mis de c6té les criteres de fiabilit€ et de qualité. Seul le critere
économique est abordé et le but de notre étude est de développer un outil d’identification
des stratégies d’intervention (sur le réseau de conduites d’eau potable) les moins

coliteuses.

L’objectif de ce projet est d’optimiser le cofit total des interventions sur le réseau de
conduites d’eau potable. Ce colt comprend: les colits de réparation, les cofits de
réhabilitation et les cofits de remplacement. L’outil envisagé cherche a minimiser le cofit
total actualis€ du systeéme sujet a des contraintes budgétaires, soit au niveau du budget
total alloué pour une période de temps fixée, soit au niveau des budgets annuelles

admissibles.

La méthodologie que 1’on a développée pour optimiser les interventions sur le réseau se
fait en deux étapes : 1) une programmation sans contraintes budgétaires (premier modele)
et 2) une programmation avec contraintes budgétaires (deuxiéme modele). Le premier
modele consiste a faire une programmation des interventions avec un budget illimité. I
sert a valider I’algorithme génétique en comparant les résultats obtenus avec ceux de
’analyse théorique. Une fois 1’étape de validation terminée, le modele va permettre d’une

part d’optimiser le cofit total du systéme en déterminant le moment optimal pour intervenir
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sur la conduite, et d’autre part d’évaluer le budget total requis pour le renouvellement du
réseau sur un horizon de temps choisi. Dans le deuxieéme modele, on impose des
contraintes budgétaires. Deux scénarios vont €tre étudiés: le premier porte sur une
contrainte au niveau du budget total alloué sur I’horizon de temps, et le second porte sur
les budgets annuels admissibles sur I’horizon de temps. On va étudier I’impact de ces
restrictions budgétaires sur le réseau. Pour cela, une premiére programmation des
interventions sera faite par le premier modele sans contraintes budgétaires, et le deuxiéme
modele proposera une nouvelle programmation en tenant compte des contraintes

budgétaires.

La méthode de calcul choisie pour optimiser le systeéme est 1’algorithme génétique. Cet
algorithme est utilisé environ depuis une dizaine d’année pour traiter certains problémes
d’optimisation dans les réseaux d’eau potable. Cette étude permettra d’une part de
maitriser les étapes de mise en ceuvre de I’algorithme génétique et d’autre part, de
déterminer les avantages et les inconvénients de I’utilisation d’un tel algorithme pour
optimiser le coit total des interventions sur les réseaux d’eau potable. Cet algorithme se
distingue des autres par quatre points spécifiques : 1) il utilise un codage des €léments de
I’espace de recherche et non les €léments eux-mémes, 2) il recherche la solution optimale
a partir d’une population de points et non a partir d’un seul point, 3) il n’a pas besoin des
notions de continuité, de dérivabilit€ ou de convexité des fonctions, et enfin 4) il utilise
des processus stochastique dans sa mise en ceuvre. Au début de chaque simulation, une

population de solutions potentielles couvrant un large espace de décision (espace de
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solutions) est générée. Celle-ci évoluera et convergera vers les meilleures solutions du

probleme (pas nécessairement optimales).

Ce rapport est organisé comme suit : le premier chapitre porte sur I’algorithme génétique
utilisé comme technique de calcul dans le modele d’optimisation développé. Le deuxieme
chapitre porte sur la formulation du probléme d’optimisation. Le troisi¢éme chapitre traite
du premier modele utilis€é pour valider les résultats de I’algorithme génétique. Le
quatrieme chapitre traite du deuxieme modele qui prend en compte les restrictions
budgétaires. Une premicre programmation des interventions sera faite avec le premier
modele sans contraintes budgétaires, et le deuxieéme modele proposera une deuxiéme
programmation pour respecter au mieux les restrictions budgétaires. Et enfin, on terminera

par une conclusion.



CHAPITRE 1

ALGORITHME GENETIQUE

1.1. INTRODUCTION

L’algorithme génétique est une méthode stochastique' de recherche d’optimum, qui
simule les processus biologiques de sélection naturelle darwinienne et de la reproduction
génétique, pour optimiser des fonctions non linéaires. Cette méthode a été développée par
le professeur John Holland (1975) et a été popularisée par I’'un de ses étudiants, David

Goldberg (1989).

La sélection naturelle de Charles Darwin (1802-82) repose sur la lutte pour la survie des
especes voulant s’étendre dans un environnement contraint par son espace et ses
ressources disponibles. De ce fait, les especes les mieux adaptées a I’environnement
tendent a survivre plus longtemps et a se reproduire plus facilement. Darwin remarqua
aussi des variations génétiques entre les especes, et il conclut que la sélection naturelle se
fait par une apparition aléatoire dans les geénes de variations transmissibles a la
progéniture. Les lois de variations (croisement et mutation) furent expliquées plus tard par

Mendel (1822-84), puis par la génétique moderne.
Ainsi, I’algorithme génétique est caractérisé par deux opérateurs principaux:

= Les opérateurs dits d’évolution : la sélection, qui imite les processus d’évolution

darwinienne pour créer des populations de génération en génération.

! Utilisant des processus aléatoires



®» Les opérateurs dits génétiques: le croisement et la mutation, qui imitent les
processus d’hérédité des genes expliqués par la génétique moderne, pour créer de
nouveaux geénes a chaque génération. Ils permettent de diversifier la population au

cours des générations.

Le vocabulaire utilisé est directement inspiré de celui de la théorie de I’évolution et de la

reproduction génétique.

Tableau 1.1 Correspondance entre le lexique génétique et le lexique mathématique

Lexique génétique Lexique mathématique
Population Ensemble de solutions potentielles
Individus Solutions potentielles
Génes Variables
Chromosome Partie d’une solution potentielle
Alleéle Bit
Phénotype d’un individu Valeur de la fonction d’évaluation
Génotype d’un individu Chaines de bit qui caractérisent la solution
Locus Position du bit
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1.2. MECANISMES

L’ algorithme génétique se fragmente simplement comme suit :

Adaptation au probléme posé

Initialisation de la population
> Evaluation
Sélection '
A Croisement >_ Opérateurs
Mutation
v
Remplacement
y
< Amét +—— FIN
Non Oui

Figure 1.1 Séquences de I'algorithme génétique

Dans les sections suivantes, nous allons exposer chaque étape du déroulement de

1’algorithme. Pour illustrer ce dernier, on I’applique au probléme suivant :

.. 2 . . .
Minimiser F(x;, x3) = x12 + X;°, sous les trois contraintes suivantes: x; € [0; 5],

x2€ [0; 7] et x1+x,<10.
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1.2.1. Adaptation au probleme posé

Tout d’abord, il faut définir : 1) le codage utilisé, 2) I’espace de recherche, 3) les fonctions

économique et d’évaluation, et 4) les paramétres de 1’algorithme génétique.
Codage

Une partie clé de 1’algorithme génétique est de savoir comment coder une solution du
probléme par un chromosome ou une série de chromosomes. Pour cela, il faut choisir la
représentation chromosomique (génotype) de chaque individu de la population. Les

codages les plus populaires sont :

= Le codage binaire : le chromosome est une suite de O et 1. Il existe le codage
binaire standard et le codage de Gray (ou deux codes d’entiers successifs ne

different que par un bit contrairement au codage binaire standard).

»  Le codage a caracteres multiples : le chromosome est une chaine de caractéres

différents. Le codage binaire est un cas simple de ce type de codage.
= Le codage flottant : le chromosome est représenté par un nombre flottant (réel).

® Le codage sous forme d’arbre : le chromosome est un nceud d’un arbre. Ce type
de codage permet de mieux visualiser les sélections et les mutations. Cependant
I’analyse de I’ensemble de ces arbres est complexe et ce codage n’est approprié

qu’aux probleémes de taille finie.



L’espace de codage contient I’ensemble des chromosomes tandis que 1’espace de solutions
contient I’ensemble des solutions du probléeme. La figure 1.2 illustre le passage de 1’espace

de codage a I’espace de solutions et vice versa.

Décodage

Codage

Figure 1.2 Correspondance entre I’espace de codage et I’espace de solutions

Dans le cas de notre exemple avec la fonction F(xi, X2), on définit I’espace de solutions
par I’ensemble de points (x;, Xx7) tels que 0 < x; <5 et 0 < x, < 7. Le codage binaire
standard est choisi pour coder cet ensemble de solutions. L’espace de codage est

I’ensemble de chromosomes codés sur 5 bits de la manic¢re expliquée dans le tableau

) - a, )
suivant. Posons Ax; = 2’ < 1’ ,avec a;<x;<b;pouri=1ou?2.

Tableau 1.2 : Correspondance entre I’espace de codage et I’espace de solution

Chromosome Valeur entiére Solution
00000 0 a
00001 1 a; + 1AX
00010 2 a + 2Ax;
11110 30 aa+.3'(.)AXi
1111 31 a;+31Ax; =b;

Une question importante concernant le codage et le décodage entre les chromosomes et les

solutions est de savoir si la solution décodée tombe dans une région de solutions faisables,
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surtout pour un probléme d’optimisation avec contraintes. La figure 1.3 illustre ce risque

lors du décodage du chromosome.

AN

Figure 1.3 Risque lors du décodage du chromosome

Dans le cas de notre exemple, lors du décodage, il y a des risques que la solution obtenue

ne soit pas faisable comme on peut 1’observer sur la figure 1.4.

10
9
8
7
6
=5 X, + X1 =10
4 RL
3
2
1
o
u] 2 4 5] 8 10
X1

Figure 1.4 : Domaine de faisabilité de la solution

L’espace coloré représente 1’espace de solutions. Cependant, les solutions faisables sont
contenues uniquement dans 1’espace coloré en jaune, ou elles respectent la contrainte

X1+X2< 10.
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Espace de recherche

Il correspond a I’espace de solutions faisables. La prise en compte des contraintes

permet de délimiter I’espace de recherche (voir Figure 1.4).
Fonctions économique et d’évaluation
» La fonction économique

Elle est utilisée pour mesurer la performance de chaque individu pour un probléme précis.
Dans un probléme de minimisation, les meilleurs individus ont les plus petites valeurs de

la fonction économique.

Dans le cas de notre exemple, la fonction économique est tout simplement la fonction a

e 2
minimiser F(xy, Xo) =x;" + xzz.
»  La fonction d’évaluation

Elle est utilisée pour transformer la valeur de la fonction économique en une mesure
relative adaptée au probleme. Par exemple, si la fonction économique est le coit total du
systeme, pour un probléme de minimisation, la fonction d’évaluation peut étre choisie
comme I’inverse de la fonction économique alors que pour un probléme de maximisation,

elle peut rester identique 2 la fonction économique.

La fonction d’évaluation doit aussi pouvoir tenir compte des solutions non faisables si le
probleme doit satisfaire des contraintes. Dans le cas d’une optimisation avec contraintes,

trois stratégies pour traiter ces contraintes sont proposées :



12

o Le rejet : On rejette tous les chromosomes non faisables. Cette stratégie est

populaire pour les algorithmes génétiques.

o Le remplacement: On prend le chromosome non faisable et on le
remplace. Cela implique 1’existence d’une procédure systématique qui
remplace un chromosome non faisable par un chromosome faisable. Cette

procédure est spécifique au probléme étudié.

o La pénalité : On considere les solutions non faisables en formulant une
fonction d’adaptation qui est €élaborée par 1’addition ou la multiplication
d’une fonction de pénalité (statique ou dynamique) a la fonction

économique.

Les deux premieres stratégies ont 1’avantage de ne pas générer des solutions infaisables
mais le désavantage de ne pas considérer les solutions a I’extérieur de la zone de
faisabilité. Si le probléme est hautement contraint, les solutions infaisables peuvent étre en

grande proportion dans la population.
Parameétres de ’'AG
* La taille de la population N

Elle affecte la performance et I’efficacité de 1’algorithme. Une taille N faible risque de
donner un échantillon insignifiant de la population et de faire converger rapidement
I’algorithme vers un optimum local. Une taille N élevée demande beaucoup
d’évaluations de la fonction d’adaptation par génération et peut entrainer une

convergence d’une lenteur inacceptable.
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®  Le taux de croisement p.

I détermine la proportion des individus produits a chaque génération. Le nombre attendu
d’individus est donc p, x N. Un taux p. fort permet une meilleure exploration de I’espace
et réduit les chances de stagner sur un optimum local; néanmoins un taux p. trop élevé
résulte en un gaspillage de temps de calcul dii a une exploration inutile des zones non

prometteuses dans 1’espace de recherche.
»  Le taux de mutation pm

Il permet de contrdler la fréquence a laquelle des mutations (voir section 1.2.6) sont
effectuées dans la population. Si pn, est trop faible, certains geénes intéressants ne seront
jamais essayé€s ou restitués (apres un croisement). Si pp est trop élevé, la recherche sera

fondamentalement aléatoire et la convergence est ainsi freinée.
1.2.2. Initialisation de la population

La premiére population est générée aléatoirement dans ’espace de codage et celle-ci est
appelée a évoluer au cours des générations. Cette population caractérise un ensemble de
solutions potentielles au probleéme. Chaque individu de la population est donc une solution

faisable ou non faisable.

Dans le cas de notre exemple, chaque individu est composé de deux chromosomes

représentant respectivement les points x; et x,. Par exemple, un individu est :

01000 10001

X1 X2
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Si la population comporte cinquante individus, nous allons générer deux séries de

cinquante chromosomes a 5 bits pour x; et X,.
1.2.3. Evaluation

Une fois la fonction d’adaptation définie (étape précédente), on calcule la valeur

d’adaptation de chaque individu de la population.

Dans le cas de notre exemple, la valeur de la fonction d’évaluation est donnée tout

simplement par F(x;, x2) = X 12+ x,°. Selon le tableau 1.2, on a le décodage suivant :

X1 =01000 > x; =0+ 8255_01z 1,29.
7-0
x2=10001 B x1 =0+ 17—=384.

D’ol la valeur d’adaptation de I’individu égale a F(x;, x2) ~ 1,29° + 3,84* ~ 16,41.
1.2.4. Sélection

Compte tenu de la fonction d’adaptation de chaque individu, la sélection s’effectue en
choisissant les individus qui vont s'apparier pour créer la génération suivante. Pour cela,
les individus sont classés en fonction de leur valeur de la fonction d’adaptation.
Habituellement, la probabilité de sé€lection d’un individu dépend du rang de ce dernier.

On distingue trois types principaux de sé€lection (stochastique, déterministe et mixte).
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La sélection stochastique

Elle favorise toujours les meilleurs individus mais de manicre stochastique. Ceci laisse une
chance aux individus moins performants d’étre sélectionnés. Il se peut méme que le
meilleur individu ne soit pas sélectionné et qu’aucun enfant ne soit trouvé meilleur que le

meilleur parent. Les techniques les plus connues sont :
®  La sélection par le tirage de la roulette

Chaque individu a une chance d’étre sé€lectionné en fonction de sa valeur de la fonction

d’adaptation. La probabilité de sélection p; de I’individu i avec une valeur d’adaptation F;

sur une population de taille N est p; =——

SE

i=1

Dans le cas de notre exemple, prenons quatre individus. Le tableau 1.3 présente le calcul

de la probabilité pour le tirage par roulette.

Tableau 1.3 : Calcul de la probabilité de sélection des individus par le tirage de la roulette

Espace de codage Espace mathématique  Espace de solutions Espace de solutions
Xq X2 X1 X2 X1 X2 F(x1, x2) p
10001 11101 17 29 2,74 6,55 50,40 0,60
00101 01011 5 11 0,81 2,48 6,82 0,08
01110 00011 14 3 2,26 0,68 5,56 0,07
11011 00110 27 6 4,35 1,35 20,80 0,25

Ensuite, un nombre aléatoire o est généré entre O et 1. Ce nombre représente le marqueur
tel qu’illustré a la figure 1.5. Pour utiliser 'image de la roulette, chaque individu a une

case dans la roulette dont la longueur est égale a la probabilité de sélection de I’individu.
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Ce dernier est sélectionné si le marqueur pointe sur sa case. Par exemple, si & = 0,40 alors

le premier individu sera sélectionné.

0,75

0,68

Figure 1.5 : Sélection par tirage de la roulette

Avec cette méthode, un individu faible a des chances d’étre choisi autant de fois qu’il y a

de place pour la génération suivante et le meilleur individu peut ne pas étre sélectionné.
»  La sélection stochastique universelle

Elle est construite comme la roulette, mais au lieu de posséder un seul marqueur, celle-ci
possede N marqueurs espacés de maniere équidistante, N étant la taille de la population.
La longueur de la case du chromosome est d; = N x p;. On sélectionne alors les individus
autant de fois qu’un marqueur pointe sur leur case. Un individu est alors siir d’étre

sélectionné un minimum de fois égal a la partie enti¢re de p; et un maximum de fois égal a



la partie entieére par excés de p;. Cette méthode permet de garder le nombre attendu de

copies de chaque chromosome.
Dans le cas de notre exemple, N = 4.

Tableau 1.4 : Calcul de la probabilité pour la sélection stochastique universelle

p d=Nxp Partie Partie
entiére entiére
par exces
0,60 2,40 2 3
0,08 0,32 0 1
0,07 0,28 0 1
0,25 1,00 1 1

Figure 1.6 : Sélection stochastique universelle

= La sélection par la roulette biaisée

Les individus sont classés en fonction de la valeur de la fonction d’évaluation en ordre

2 croissant. Soit r le rang de chaque individu, N la taille de la population et & un nombre



généré aléatoirement entre O et 1, on sélectionne I’'individu de rang r si & appartient a

r-1 r
Pintervalle A=[Y pe, Y pr ] avec p, =2xI=L |
DS NN

Dans le cas de notre exemple, les quatre individus du tableau 1.4 sont classés dans le

tableau suivant :

Tableau 1.5 : Calcul de la probabilité pour la sélection par la roulette biaisée

Individu  F(xy, X5) r o A
1 50,40 1 0,00 [0;0]
2 6,82 3 0,33 [0,17 ;0,5]
3 5,56 4 0,50 [0,5; 1]
4 20,80 2 0,17 [0;0,17]

L’individu le plus faible a une probabilité quasiment nulle d’étre sélectionné.
La sélection déterministe

Elle favorise toujours une sélection des meilleurs individus de maniére déterministe, ce qui
ne laisse quasiment aucune chance aux individus moins performants. Pour cela, il faut trier
I’ensemble de la population selon la valeur de la fonction d’adaptation et choisir les

meilleurs. Les techniques les plus connues sont :
»  La sélection par troncature ou par bloc

Les individus sont tri€s en fonction de leur valeur de fonction d’évaluation et les meilleurs
parents sont sélectionn€s pour créer la génération suivante. Dans la sélection par
troncature, un seuil T est défini de telle sorte que T % des meilleurs individus sont

e sélectionnés et chacun regoit environ 100/T copies. Dans la sélection par bloc, pour une
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taille de la population donnée N, on crée k copies des N/k meilleurs individus. Les deux

méthodes sont identiques si k = N/T.
= La sélection de Brindel

F,

i

N
>.F

i=1

, F étant la valeur de la

La probabilité de sélection de chaque individu i est p; =

fonction d’évaluation. Le nombre de fois que I’on sélectionne chaque individu est la partie
entiere de p; x N, N étant la taille de la population. Le reste des individus a compléter dans

la population est pris parmi les meilleurs de la liste triée.
La sélection mixte

Elle permet une sélection des individus 2 la fois de maniere déterministe et stochastique.

Les techniques les plus connues sont :
®  La sélection stochastique des restants de Brindel

Lorsqu’on a fait la sélection de Brindel de fagon déterministe, on sélectionne le reste des

individus de maniere aléatoire pour atteindre la taille de la population.
»  La sélection par tournoi

La sélection par roulette est utilisée pour choisir des paires successives d’individus et celui
qui a la plus grande valeur d’adaptation est sélectionné automatiquement. Le processus
continue jusqu’a ce que le nombre d’individus sélectionnés atteigne la taille de la
population. Dans le cas de notre exemple, a travers 1’opérateur de sélection, les individus

vont étre sélectionnés deux a deux.
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1.2.5. Croisement

Une fois les individus sélectionnés, ’opérateur de croisement favorise I’exploration de
I’espace de recherche, par le brassage des individus. Il combine les génotypes de deux
individus parents pour obtenir deux individus enfants. Plusieurs méthodes de croisement

peuvent étre utilisées, entre autres, le croisement multipoint et le croisement uniforme.
Le croisement en Kk points ou croisement multipoint

On choisit au hasard k points de croisement, avec k compris entre 1 et L — 1, ou L est la

longueur du génotype. Les fragments sont échangés de la maniere illustrée ci-dessous.

Le croisement en un point est un cas particulier. Les fragments situés apres le point de

croisement sont échangés pour donner deux nouveaux génotypes.

Parent 1: Enfant 1: §ifoo

Parent2: 11000 Enfant 2 : 11088
Le croisement uniforme

I s’agit d’un croisement multipoint dont le nombre de points de croisement n’est pas
connu a I’avance et est aléatoire pour chaque couple. Chaque position est un point de
croisement potentiel. On crée un masque de croisement de longueur égale & celle du
génotype de fagon aléatoire et la parit€ des bits dans le masque indique quel parent va

donner quel bit aux enfants.
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Parent 1 :

Parent2: 00011
Masque : 00110

Enfant1:

Enfant 2 :

L’enfant 1 est produit en prenant le bit du parent 1 si le bit correspondant du masque vaut
1 et le bit du parent 2 si le bit correspondant du masque vaut 0. L’enfant 2 est créé en

utilisant le masque inverse ou en échangeant les parents 1 et 2.
1.2.6. Mutation

L’ opérateur de mutation est utile pour une bonne exploration de 1’espace de recherche. En
effet, il permet d’éviter le phénomeéne de dérive génétique, ou certains génes favorisés par
le hasard peuvent se répandre au détriment des autres et €tre présents au méme endroit sur
tous les génotypes. Il permet aussi une meilleure recherche locale, car lorsque les
individus ont convergé autour de I’optimum global, le croisement devient inefficace du
fait que ces individus sont souvent identiques. La mutation donne alors une chance de
s’approcher de I’optimum global. De nombreuses méthodes existent pour réaliser

I’opérateur de mutation :
L’inversion
On choisit un bit au hasard dans une chaine binaire et on I’inverse.

Individu : 0§010 Individu muté : 0§010



La permutation

On permute deux bits dans une chaine binaire.

Individu muté : 0!01%

Individu : 001§
D’autres stratégies de mutations existent. Par exemple, on peut accentuer la mutation vers
les individus les plus faibles tout en conservant les geénes des meilleurs individus; ou

encore on peut paramétrer I’opérateur de mutation de telle sorte que celle-ci décroisse avec

la convergence de la population.
1.2.7. Remplacement

L’opérateur de remplacement sert a3 maintenir la taille originelle de la population, en
sélectionnant les enfants issus du croisement des parents s€lectionnés et de la mutation
pour créer la nouvelle population. Il existe plusieurs formes de remplacement, entre

autres :

= Le remplacement générationnel : on remplace I’ensemble des parents par leurs

enfants. Une autre version est le remplacement de j mauvais parents par j enfants.

= L’élitisme: on applique le remplacement générationnel mais les meilleurs
individus de la génération courante sont sélectionnés et passent automatiquement

dans la génération suivante. Il permet de toujours conserver la meilleure solution.
1.2.8. Arrét

Une fois la nouvelle population créée, les séquences d’évaluation, de sélection, de

croisement et de mutation, et enfin de remplacement recommencent successivement. Il
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faut alors définir un critere d’arrét. Si ce dernier n’est pas respecté, les séquences se
répetent indéfiniment, faisant ainsi évoluer la population. Ce critére peut étre un nombre
maximal de générations, un temps maximal de calcul, un nombre de fois significatif ou le
meilleur individu n’a plus changé au cours des générations, ou encore un test sur le
meilleur individu trouvé. Si aucune solution acceptable n’est trouvée, on relance la

recherche.

En conclusion, I’algorithme génétique commence par une initialisation de la population
(ensemble de solutions) de maniere aléatoire. Chaque individu de la population représente
une solution potentielle du probleme. L’individu est représenté par un vecteur de
symboles, dans la plupart des cas, il s’agit d’un vecteur binaire. Ces individus évoluent de
génération en génération. Durant chaque génération, les individus sont évalués par une
fonction d’évaluation (phénotype). Compte tenu de leur valeur de la fonction d’évaluation,
les individus parents sont sélectionnés par un processus de sélection (déterministe et/ou
stochastique), pour créer de nouveaux individus enfants a 1’aide des opérateurs de
croisement et de mutation. Une variante de mise en ceuvre de I’algorithme génétique est de
former la génération suivante en générant une nouvelle population & partir des individus
enfants créés et des individus parents choisis, tout en s’assurant de maintenir la taille de la
population constante. Le choix de conserver certains individus parents d’une génération
courante dans la gé€nération suivante vient du fait qu’il peut arriver qu’aucun des individus
enfants créés ne soient trouvés meilleurs que les meilleurs des individus parents. Apres
plusieurs générations (ou itérations), I’algorithme converge vers le meilleur individu qui

est considérée comme la solution optimale du probleme.
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CHAPITRE 2

FORMULATION DU PROBLEME

La réduction des colits totaux du systtme par une planification efficace des
investissements sur le réseau est I’une des problématiques courantes a laquelle font face
les ingénieurs, les praticiens et les gestionnaires municipaux dans le but d’apporter une
aide a la décision pour des interventions sur les conduites des réseaux d’eau potable.
Plusieurs chercheurs se sont penchés depuis les trente dernieéres années sur ce sujet et ont
proposé différents modeles d’optimisation pour minimiser les cofits du systeme. Les
modeles présentés dans la section suivante ont utilisé 1’algorithme génétique comme
méthode de calcul pour optimiser les coiits totaux du systeme. Ces modeles sont
pertinents dans la mesure ou ils permettent la mise en place d’un systé¢me solide et fiable

d’aide a la décision en matiére de renouvellement des conduites des réseaux d’eau.

2.1. REVUE DE LA LITTERATURE

L’optimisation des cofits de décision dans les réseaux de distribution d’eau potable a fait
I'objet de plusieurs travaux de recherche au cours des trente dernieres années. Les
méthodes de programmation linéaire, non linéaire, dynamique et les méthodes
énumératives ont beaucoup servi comme base de calcul dans la recherche de la solution
optimale. Cependant de nouvelles techniques, dites heuristiques, telles que le recuit

simulé et I’algorithme génétique, ont €t€ mises au point pour traiter des problémes
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combinatoires d’optimisation mettant en jeu une infinité de choix possibles sous une
large variété de contraintes. Dans ce mémoire, on s’intéresse uniquement a 1’algorithme

génétique, et on a sélectionné ci-apres quelques modeles intéressants.

Halhal et al. (1997) ont utilisé€ 1’algorithme génétique pour trouver la meilleure fagon
d’investir une partie ou la totalité du capital disponible pour améliorer la performance du
réseau. Cet algorithme est choisi car il est un outil efficace pour résoudre les problémes
mettant en jeu peu de variables de décision pour un grand nombre de possibilités. Le
double objectif était de minimiser les cofits des solutions trouvées tout en maximisant les
bénéfices résultant du choix de ces solutions. La minimisation des cofits consiste a
rechercher les solutions peu colteuses et satisfaisantes. La maximisation des bénéfices
portent sur le manque a gagner en termes de performance hydraulique, d’état structural
de la conduite, de conditions d’opération et de qualit¢ de 1’eau. Dans ce cas
d’optimisation multicritere, il n’existe pas une solution unique comme dans le cas
monocritére, mais un ensemble de solutions satisfaisantes connues sous le nom
d’ensemble d’optimum de Pareto ; ce sont des solutions de bon compromis entre les
colits et les bénéfices, car on ne peut alors améliorer un critere (colts) sans détériorer

I’autre critere (bénéfices).

Dandy et al. (2001) se sont aussi servi de I’algorithme génétique pour minimiser les
cofits totaux du systéme. Cet algorithme est choisi dans le but de montrer son efficacité a
trouver la date de remplacement optimale pour les conduites du réseau d’eau. A I’aide
d’un modele de défaillance des conduites et d’une analyse des cofits de maintenance et

de remplacement, la date optimale de remplacement est trouvée. Trois cas ont été ensuite



-

o

26

analysés : 1) le cas ou les conduites doivent €tre remplacées ou non a I’instant présent
(décision a court terme), 2) le cas oul les conduites peuvent étre remplacées ou non a des
intervalles de périodes fixes sur un horizon de temps (décision a long terme), et enfin 3)
le méme cas précédent mais avec une possibilité de changer le diametre des conduites.
Dans ce dernier cas, un modele hydraulique est nécessaire pour vérifier les performances
hydrauliques du systéme. Une contrainte est imposée sur le budget et les variables de

décision sont les conduites a remplacer.

Wu et al. (2001) ont utilisé 1’algorithme génétique pour minimiser les cofits de
dimensionnement et de réhabilitation dans le réseau. Cet algorithme est choisi dans le
but d’appliquer 1’optimisation a un réseau treés large. Pour une configuration donnée du
réseau, le but est de minimiser les cofits d’interventions a faire tout en s’assurant que les
contraintes de performance du réseau sont respectées. Pour cela, Wu et al. (2001) ont
développé un logiciel qui integre un programme de balancement de réseau (version
modifiée d’EPANET) et un modéle d’optimisation en C++ (algorithme génétique). La
version d’EPANET modifiée vérifie, pour chaque combinaison d’interventions sur les
conduites, si les contraintes hydrauliques sont satisfaites. Lorsque ces derniéres ne sont
pas satisfaites, un cofit de pénalité est ajouté au coflit du systeme. Ces travaux demandent
une implémentation efficace du logiciel pour accélérer les transferts de données entre
EPANET et le modele d’optimisation. Les interventions de réhabilitation sont le
nettoyage, le nettoyage et chemisage combinés, 1’augmentation du diametre et la
duplication de la conduite. Toutes ces interventions peuvent entrainer un changement de

diameétre. Ainsi, les variables de décision sont les diamétres des conduites en examen.
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Wilson et al. (2003), de m€me, ont utilisé 1’algorithme génétique pour minimiser les
cofits d’intervention dans la rénovation du réseau hydraulique. Cet algorithme est choisi
pour évaluer les plans de réhabilitation ou de remplacement des conduites du réseau
d’eau de San Diego. Les variables de décision sont les conduites sur lesquelles
intervenir, c’est-a-dire, réparer, réhabiliter, remplacer ou dupliquer. Pour chaque
conduite, il y a donc une variété d’interventions possibles. L’algorithme génétique a
permis de trouver, pour I’ensemble des conduites, la meilleure implémentation. Cet
ensemble de solutions trouvées pour chaque conduite satisfait au mieux les conditions
hydrauliques a un coit total minimum. Dans cette recherche, il n’y a pas de contraintes
sur le budget et lorsque les conditions hydrauliques ne sont pas respectées, un coit de

pénalité est affecté au coft total des solutions.

Plusieurs autres travaux intéressants (Afshar et al. 2005, Wu et Simpson 2001 et Wu et
Simpson 2002) sur le sujet ont aussi fait I’objet d’étude. Dans tous les cas, on peut
constater que l’analyse de coflits du systtme est une étape déterminante dans
I’optimisation des interventions. Dans ce rapport, on s’est inspiré de I’analyse des cofits

faite par Shamir et Howard (1979).

2.2. ANALYSE ECONOMIQUE DE SHAMIR ET HOWARD

Dans ce modele, Shamir et Howard (1979) ne retiennent que deux fagons de procéder pour

intervenir sur la conduite : 1) le remplacement et 2) la réparation (ou maintenance).
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Le but de cette analyse est de trouver la date optimale de remplacement d’une conduite.

On appellera cette date t*. Pour cela, il faut procéder en trois étapes :

= J’analyse de I’historique de bris pour déterminer I’évolution du nombre de bris au

cours du temps dans la conduite existante et dans la nouvelle conduite;

= ]’analyse des colits de réparation et de remplacement actualisés de la conduite

depuis sa mise en ceuvre en fonction du temps;
= ]adétermination de la date optimale de remplacement.

Chacune de ces €étapes est détaillée dans les sections suivantes. La figure 2.1 montre la

détermination de la date optimale a partir de I’analyse des coiits.

coiit

— —

date optimale hotizon de temps

Figure 2.1 Analyse des coiits de remplacement et de réparation actualisés pour
déterminer la date optimale de remplacement

2.2.1. Analyse de ’historique de bris

Les causes de bris sur la conduite sont diverses : le matériau et I’dge de la conduite,
I’environnement (corrosivité du sol, gel, surcharge externe), la qualité de la main d’ceuvre

utilisée pour installer la conduite et les conditions de service (pression, coup de bélier). La
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connaissance des causes de bris aide a la décision de sélection du matériau, revétement,
protection cathodique et des procédures de construction. Cependant, pour trouver la date
optimale de remplacement, les causes des bris ne sont pas nécessaires, il faut juste

déterminer I’évolution des bris dans le temps.

= Dans la conduite existante
Le taux de bris utilisé est le nombre de bris par unité€ de longueur et par année. L’équation
du taux de bris utilisée par Shamir et Howard est d’ordre exponentiel. Soit N(¢), le taux de
bris a I’année ¢ par unit€ de longueur, ¢,1’année de pose de la conduite ou la premiere

année ol les données sont disponibles et A le taux annuel de croissance :
N@) = N(t,)xe (E1)

= Dans la nouvelle conduite

La nouvelle conduite va elle aussi développer un historique de bris. Si elle est homogene a
la précédente, on s’attend & un méme historique de bris que I’ancienne et par conséquent,
la méme équation de régression est applicable. Si la conduite est différente, le nombre de

bris dans le futur va étre donné par une autre équation similaire.

L’hypotheése de Shamir et Howard (1979) est de considérer que la nouvelle conduite
n’aura pas de bris. En effet, les bris surviendront mais commenceront si loin dans le futur
que la valeur présente du coiit de réparation de bris dans la nouvelle conduite est

négligeable.
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2.2.2. Analyse des coiits

Pour effectuer cette analyse, on a besoin d’une prévision du nombre de bris dans le futur
pour la conduite existante, du cofit de réparation d’un bris Cj, du cofit de remplacement de

la conduite existante par la nouvelle conduite C,, et du taux d’actualisation R.
On peut représenter graphiquement les trois courbes suivantes :

= Ja valeur actualisée des coflits projetés de réparation en fonction de la date de

remplacement;

= Ja valeur actualisée des coiits de remplacement en fonction de la date de

remplacement;
= Ja somme des deux valeurs précédentes.
Le coft total minimum donne la date optimale de remplacement (voir Figure 2.1).
Coiits de réparation

On pose I’hypothése d’un cofit de réparation pour un bris C» constant au cours du temps.
Soit N(z) le taux de défaillance de la conduite a I’année ¢, le colit d’une réparation par unité

de longueur dans le futur pour I’année ¢ est :

Cnl(t)=CoxN () (E2)

Soit 7, ’année présente et R le taux d’actualisation, la valeur actualisée du cofit de

réparation est :

Cnlt)

(1+R )—tp (E3)



Soit t-la date de remplacement de la conduite, le cofit de réparation par unité de

longueur jusqu’a la date ¢, est donc

P,(t,) =ic’”—(t) (E4)

= (1+R)™

Coiits de remplacement

Le cofit d’un remplacement en valeur actualisée par unité de longueur est :

C
P(t) =—r—
) (1+R)"™ =

C, est le cofit de remplacement en dollars constant. Lorsque £ augmente ¢- diminue.

Coiits totaux

Les coflits totaux sont la somme des cofits de réparation et de remplacement :

“ C (¢) ,_C

P(t,) =R,,)+P(t,)= D —= r

= (1+R)™ (1+R)™

(E6)

2.2.3. Détermination de la date optimale

La date optimale est fr qui minimise Pr(tr). La formulation du probléme de Shamir et

Howard est la suivante :

Min Bt (E7)

On peut montrer que la fonction économique de 1’équation E7 est équivalente a :

P
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P,(t,)=_f C, Cn(1+R)

(1 + R)t—tp (1+ R),_,p dt+K (voir Annexe 1)

t=tp
t=tr

La dérivée de P; (t;) par rapport a t; est P'(t,), telle que P; (t,) = I P'; (t) dt + Constante.

t=tp
L’optimum de P; est trouvé par 1’équation P'(t;) = 0, ce qui équivaut a :

C,~C.In(1+R)=0 (E8)

La résolution de I’équation (E8) donne la date optimale théorique (voir Annexe 1) :

(=4 L CAER)) (E9)
A | N@)C, P
On peut aussi montrer que (voir Annexe 1) :
t,, =t,+—ln| SR (E10)
A | N(@,C,

Lorsqu’on égale les équations E9 et E10, nous pouvons conclure que la date optimale
théorique de Shamir et Howard est donc indépendante de la date t. Il est important de
préciser que la valeur toy trouvée n’est pas nécessairement supérieure a celle de t,, on peut

avoir tout aussi bien top < tp que top > tp.

On peut aussi choisir un taux de défaillance linéaire N(z)= N(t,)x Ax(t 1, ).
L’équation E3 donne C, (1) = C, x N(t,) x Ax(t —1,).

L’ optimum pour un taux de bris linéaire est trouvé par la résolution de 1’équation E8 :

1 In(1+R)C-

Lopt =10 AN 1) Co

(E11)
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En conclusion, la méthode d’analyse développée ci-dessus permet de calculer la date

optimale de remplacement d’une conduite.

Plusieurs simulations vont étre effectuées pour valider I’algorithme génétique. Pour cela,
on va affecter différentes valeurs a chaque paramétre, et on va vérifier les résultats donnés

par I’algorithme avec les résultats théoriques de 1’analyse de Shamir et Howard (1979).

La section suivante porte sur la formulation du probléme d’optimisation.

2.3. FORMULATION MATHEMATIQUE DU PROBLEME

La formulation du probléme part directement de la démarche de Shamir et Howard (1979).
On travaille avec un réseau constitué de N conduites. La date de départ de notre analyse
est I’année présente t, = 2007. Pour chaque conduite i du réseau de N conduites, nous
allons déterminer la date optimale de remplacement de la conduite t; par 1’algorithme
génétique. Pour cela, des conditions initiales sont attribuées a chaque conduite i afin de
pouvoir déterminer son taux de défaillance et par conséquent ses cofits de maintenance.
Les conditions initiales sont : 1) I’année de pose de la conduite i, ty;, 2) le taux annuel de
défaillance A;, 3) le coiit d’une réparation de bris sur la conduite en dollars constant Cyj,
4) le colit d’implémentation (remplacement ou réhabilitation) par 1000 pieds en dollars
constant C,j, 5) le taux de défaillance de la conduite a I’année de pose toi, Ni(to;). Les cofits

de maintenance de la conduite i sont obtenus par I’équation E3.
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2.3.1. Hypothéses retenues

Les hypothéses que nous allons prendre permettent de tenir compte de la réalité des

gestionnaires municipaux :

* La date optimale d’implémentation doit étre supérieure ou égale a date présente
de I’analyse. En effet, la date optimale théorique trouvée par Shamir et Howard
(1979) peut étre inférieure a la date présente t, de I’analyse. On impose la

condition suivante : quelle que soit la conduite i, t, < t5.

® Le colt d’une réparation de bris C, est constant sur la période T et ne dépend pas

des conditions de la conduite ou du sol.

= Jes colits des interventions de réhabilitation sont inférieurs aux cofits de
remplacement. A titre illustratif, le tableau 2.2 permet une comparaison des cofits
des interventions (remplacement, réhabilitation structurale, réhabilitation non

structurale).

Tableau 2.2 Coiits des interventions sur les conduites d’eau en dollars par métre linéaire

Diameétre | Remplacement | Réhabilitation structurale | Réhabilitation non structurale
150 1085 420 190
200 1180 600 200
250 1275 - 210
300 1370 - 220

Source : Ville de Montréal (octobre 2007).

= Toutes les conduites du réseau ont une méme longueur de 1000 pi (environ

300 m), quelle que soit la configuration du réseau.

= Les colits de réparation de la nouvelle conduite sont nuls.
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2.3.2. Premier modéle : sans contraintes budgétaires

Il s’agit de minimiser les cofits totaux du syst¢me sur une période T. On choisit une
période T = 32 ans, car la date des interventions sur les conduites sera codée par un
vecteur binaire a 5 bits (voir section 2.4). Par conséquent, il y a 2° (= 32) vecteurs ou
dates possibles. Etant donné que chaque date représente une année possible
d’intervention sur la conduite, ’horizon de temps qui couvre I’ensemble des possibilités

est de 32 ans.

Le probleme se formule de la mani¢re suivante :

C

Min Z [Z(HR”} 0 = (E12)

+R)"

Les variables de décision sont les dates de remplacement des conduites.
2.3.3. Deuxieme modeéle : avec contraintes budgétaires

Ce modele est inspiré de I’analyse faite par Karaa et al. (1987). Une fois les dates
optimales de remplacement des conduites données par le premier modele, les conduites
vont €tre classées en k groupe de conduites ayant les mémes caractéristiques (p.e. la

méme date optimale t). Soit ¢, , la proportion de conduites du groupe k a remplacer a la
date t et B, la proportion a réhabiliter a la date t, CX(#) le colit de maintenance a

’année t pour le groupe k, C* et C*

remp reh

les cofits respectifs de remplacement et de

réhabilitation en dollars constants pour le groupe k, le probléme se formule de la

maniére suivante :
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t'<t

ak,tcil‘cemp + ﬂk,t Cfeh + (1 - z (ak,t' + ﬂk,t' )jcrlrc: (t)
Min Y|y (E13)

~ 2 (1+R) ™

Les contraintes associées au probléme sont les suivantes :
» Positivité : Vk, V¢, a,, 20 et §,,20.

= Sur I’horizon de temps T, on intervient sur toutes les conduites du réseau :

vk, Z(ﬁm +a,,)=1.

Lorsqu’elles sont prises en compte, les contraintes budgétaires sont : soit sur le cofit total

du systeéme, soit sur les budgets annuels admissibles. Deux scénarios vont étre étudi€s :

= Scénario 1 : Contrainte sur le cofit total

On fixe un coit total seuil Cyip, en deca duquel on ne veut pas descendre.

ak,tcrkemp + ﬂk,tcfeh + (1 - z (ak,t' + ﬂk,t' ))C'l; (t)
1<t

2|2

t k (1 + R)t _tp

2Cin  (E14)

Scénario 2 : Contrainte sur les budgets annuels admissibles b, pour 1’année t

Vt, z ak,tcfemp + ﬂk,tcrkeh + (1 - z (ak,t' + ﬂk,t' ))C'I; (t) S bt

k t'<t

(E15)

Les variables de décision sont les proportions de conduites a remplacer et a réhabiliter

par groupe et date d’intervention.
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2.4. FORMULATION GENETIQUE DU PROBLEME

La solution est I’ensemble des conduites avec chacune leur date optimale de
remplacement. Elle est représentée par un vecteur binaire. Pour cela, on choisit un codage
binaire standard. Chaque solution (individu) est constituée de N conduites
(N chromosomes). Une conduite est caractérisée par K variables (K génes). Dans ce cas,
seule la date d’intervention est la variable de décision. Par conséquent, chaque
chromosome a un unique géne formé par une série de bits (0 ou 1 en binaire) représentant
la date de replacement et ’espace de codage couvre I’horizon de temps fixé. Cette

représentation est illustrée a la figure 2.2.

%WWWWWWWWW\W%\W\W\WWMNW 1 solution (individu) = {conduites}

‘®1 conduite (chromosgome) = {variables} Ké

v 1 variable (géne) = {bits} . A
®—® it (locus) = {0} ou {1} i=15
i=1

1 conduite

Position j du bit

Figure 2.2 Décomposition de la représentation chromosomique

Dans la figure 2.2, la solution est un réseau de 3 conduites dont chacune a une variable de
décision. Ainsi, la conduite et sa variable sont codées sur la méme longueur de bits. Si la
conduite avait deux variables de décision (par exemple, la date et le diametre), la somme
des longueurs de bits sur lesquelles les deux variables seront codées sera égale a la

longueur de bits de la conduite.
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Le nombre de bits Ny de la variable de décision est la partie enti¢re de%l\(]val), avec
log (b

N,a étant le nombre de valeurs possibles de la variable et b la base (en binaire b = 2).
Connaissant Ny,;; et N le nombre de conduites, il est alors possible de déterminer la taille

d’individu qui est de N X Np;.. Soit un nombre binaire anan.;...a;...a;a9, 1a conversion en

N
nombre décimal vaut Zaix2" . Prenons un exemple de 3 conduites a remplacer sur une
i=0

période de 20 ans. Le nombre de bits pour coder la variable temporelle est la partie entiére
de log(32)/log(2), soit 5. Chaque conduite sera codée sur 5 bits. Une solution est donc
générée aléatoirement par un vecteur de taille 15 = 3 (conduites) x 5 (bits). Soit le vecteur

d’une solution suivant :

01110 10101 10001

conduite 1 conduite 2  conduite 3

1 solution

Lorsqu’on convertit les nombres binaires en nombres décimaux, on obtient les dates de
remplacement t;(01110) = 14, 1,(10101) = 21 et t3(10001) = 17. Si la date de simulation
(t=0) est 2007, la conduite 1 doit étre remplacée en 2021, la conduite 2 en 2028 et la

conduite 3 en 2024.

Le tableau de correspondance du lexique utilis€ est le suivant :

Lexique génétique Lexique mathématique Lexique physique
Individu Vecteur ligne de la matrice ou Solution | Réseau ou ensemble de conduites
Chromosome Fraction du vecteur Conduite
Gene Fraction du vecteur Date d’implémentation




La figure 2.3 montre le déroulement de 1’algorithme.

OPERATEUR de
création du
meilleur des
meilleurs des

individus

Sauvegarde du
meilleur individu
(meilleur fitness)
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Génération de
la population
initiale

M solutions
N conduites

M individus
(2 N chromosomes)

Calcul du fitness de
chaque individu

Classement du
meilleur individu
au pire

Affectation a chaque
individu d’'une probabilité
d’étre sélectionnée en
fonction de leur rang

ELITISME
® Elimination d’'un enfant
pour le meilleur individu
= Efimination d'un enfant
pour le meilleur des
meilieurs individus

Calcul du colt
** total de chaque
solution

La probabilité est
élevée si la solution
. est meilleure

non
Arrét
Remplacement oui
¢eee générationnel
FIN

Figure 2.3 Déroulement de I’algorithme génétique



Tel qu’illustré a la figure 2.3, I’algorithme se déroule comme suit :

Génération de la population
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On génére une matrice constituée de O et de 1, avec M lignes et N X Ny colonnes. Cette

matrice représente la population 2 M individus et N conduites. Chaque individu est une

solution possible du probleme qui symbolise le réseau a N conduites, chacune ayant leur

date de remplacement.

Par exemple, pour un réseau a 3 conduites, on va générer une matrice 3x15 a 3 lignes

(solutions/individus) et 15 colonnes (3 conduites).

Evaluation

conduite 1

01110

00110

11111

conduite 2

10101

00101

10000

conduite 3

10001

00000

00001

solution 1

solution 2

solution 3

Pour chaque ligne de la matrice, c’est-a-dire, chaque individu, on décode le temps optimal

de chaque conduite.

21

16

17

solution 1

solution 2

solution 3
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En ramenant 2 la date présente 2007 qui correspond a O, on obtient :

2021 2028 2024 .
solution 1

2013 2012 2007 solution 2

2038 2023 2008 solution 3

Ensuite, on évalue le cofit total du systeéme pour chaque individu (c’est-a-dire solution) par
I’équation E12, avec t;; €tant les dates générées aléatoirement pour chaque conduite i. On a

donc :

Cq' =69 623 solution 1
Cg?=122390$ solution 2

CP=91822% solution 3

Une fois le travail précédent effectué pour chaque ligne (individu/solution), on classe les
individus par rapport a leur cofit total. Le rang de chaque individu (solution) sera utilisé

pour calculer la probabilité de sélection de I’individu.
Opérateurs

On définit les opérateurs de sélection, de croisement, de mutation et de création du

meilleur des meilleurs individus.
= Opérateur de sélection

La sélection se fait de fagon aléatoire. On choisit la sélection par la roulette biaisée (voir

section 1.2.4).
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Dans notre exemple : C¢! < C6? < €62 On calcule les intervalles de probabilité A.

Individu Cg r Pr A
1 69 623 3 0,67 (0,33 1]
2 122 390 1 0,00 [0;0]
3 01822 2 0,33 [0;0,33]

Avec 3 solutions, on va appliquer |’opérateur de sélection 2 x 3 fois pour sélectionner 3

couples de parents qui donneront un enfant unique.

1°° fois 2°™ fois 3°™ fois 4°™ fois 5°™ fois 6™ fois
o =0.95 6 =0.23 o =0.61 5 =048 o =0.89 8 =0.76
1 3 1 1 1 1
Couple 1 Couple 2 Couple 3

»  Opérateur de croisement

La probabilité de croisement p. qui définit le pourcentage d’enfants a générer est égale
al. Il y a donc autant de parents que d’enfants et la méme taille de la population est
ainsi conservée. Pour notre exemple, on a choisi un croisement en 2 points. Les points

de coupure k; et k; sont des entiers générés aléatoirement entre 1 et 14 :

k1=1 k2= 12

AR, solution |
Couple 1 14111 10000 00i001 solution 3
Enfant 1 150 g 0 0 1

solution 1

Couple 2 01110 1 0;1 01 10001 solution 1

Enfant 2 01110 10101 10001
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k=12 k;=14

solution 1

Couple 2 01110 10101 10i04d1

solution 1
Enfant 2 01110 10101 10001
D’ou la nouvelle population
11110 10101 10001 .
solution 1
01110 10101 10001 solution 2
01110 10101 10001 solution 3

Dans cette étude de cas, les nouveaux individus 2 et 3 sont identiques.

= Opérateur de mutation

On l’applique directement sur les enfants et non sur les parents. On définit une

probabilité de mutation py, qui est le pourcentage d’enfants a muter.

Dans notre exemple : pp = 0.33 (environ 1/3), soit 1 individu sur 3 & muter. L’individu 3
a été sélectionné aléatoirement pour la mutation, et la position du bit a muter est aussi

choisie de fagon aléatoire entre 1 et 15, soit ici 14.

01110 10000 00001 .
solution 1
11111 10101 10001 solution 2
v
01110 00101 10011 solution 3
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= Opérateur de création du meilleur des meilleurs individus

Cet opérateur a été congu pour accélérer la convergence de la solution. Il est parfaitement
adapté au probleme que 1’on étudie. En effet, on travaille sur un probléme de minimisation
d’une somme de colits. Pour minimiser la somme des coiits du réseau (ensemble des

conduites), il faut en réalité minimiser les cofits de chaque conduite :
Min (3; Y coiits ;) est équivalent a ; min (3 cofits ;)

Pour chaque population, cet opérateur trouve le meilleur colit; de chaque conduite 1 parmi
les M individus. Ce meilleur cofit; correspond a une date de remplacement t;. Cet
ensemble {t;} i=1, N correspond au cofit total minimum. De génération en génération, cet
ensemble évolue en conservant toujours pour chaque conduite les dates des plus petits

colits trouvés depuis la premiere génération.

Prenons notre cas d’exemple du départ, toutes les 3 conduites ont les mémes conditions

initiales résumées dans le tableau 3.1.

01110 10101 10001 sSolutionl
00110 00101 00000 Solution2
11111 10000 00001 solutiond

L’idée de concevoir cet opérateur provient de I’observation des premiers résultats ou, pour
des conditions initiales identiques de conduites, I’algorithme génétique convergeait vers la
solution optimale pour un trés petit nombre de conduites (environ 5), et ne convergeait

plus vers la solution optimale pour un nombre plus élevé de conduites (environ 50).



Le schéma suivant explique le fonctionnement de cet opérateur.

Population
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Prmmmm————————
1 Coiit total du i
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i
1
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'

P C2=122390
1

Coft total du
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(M solutions, 1 2 3 _
N conduites) v
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Nouvelle population

La nouvelle population est créée en remplagant les individus parents par les individus
enfants créés. Ensuite, la s€lection élitiste est appliquée en sauvegardant le meilleur
individu parent de la génération courante pour le placer automatiquement dans la
génération suivante afin de toujours conserver le meilleur individu. Pour cela, on élimine
un des enfants créés, choisi au hasard, et on le remplace par le meilleur parent. La méme
procédure est faite pour remplacer le meilleur des meilleurs individus par la suppression

d’un autre enfant créé.
Arrét

L’algorithme s’ arréte lorsqu’un nombre maximal de générations est atteint. La meilleure
solution est celle qui a le plus petit cofit total du systeme. En général, on choisit le
nombre maximal de générations en fonction de la convergence vers la solution optimale
trouvée. En effet, si celle-ci n’a plus évolué depuis un nombre considérable de
générations, on peut considérer que le nombre maximal de générations choisi est

acceptable.

2.5. METHODOLOGIE

Deux modeles vont &tre étudiés : le premier modele sans contraintes budgétaires est
inspiré de la démarche de Shamir et Howard (1979) et le deuxieme modele avec

contraintes budgétaires est inspiré de 1I’approche de Karaa et al. (1987).
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Le premier modele sans contraintes budgétaires va servir a valider 1’algorithme
génétique. Dans ce cas, toutes les conduites auront les mémes caractéristiques, a savoir
les mémes parametres A, N(to), to, Cp, C; et R. En faisant varier ces paramétres a tour de
role, les dates optimales obtenues par 1’algorithme génétique vont étre comparées aux
dates obtenues avec I’équation E11. Une fois D’algorithme validé, I’influence de
I’opérateur de création du meilleur des meilleurs individus sur la solution obtenue va
étre examinée. De plus, une comparaison entre deux stratégies de croisement (uniforme
et en 2-points) va é&tre faite. Et enfin, I’influence des parameétres de 1’algorithme
génétique, tels que le nombre d’individus N, la taille de la population M et le nombre

maximal de générations sur la convergence vers la solution optimale va étre observée.

Dans le deuxiéme modele, on impose des contraintes budgétaires. Dans ce cas, les
conduites vont &tre reparties en cinq groupes de conduites ayant les mémes
caractéristiques. Deux scénarios de contraintes budgétaires vont €tre analysés. Dans le
premier scénario, les contraintes sont appliquées au niveau des budgets annuels
admissibles, et le remplacement est la seule intervention possible. Dans le deuxi¢me
scénario, les contraintes sont appliquées sur le coft total du systtme, et deux options
d’interventions qui sont la réhabilitation et le remplacement vont €tre acceptées. Dans le
premier tout comme dans le deuxiéme scénario, le premier modele va étre utilisé pour
obtenir les dates optimales de remplacement sans contraintes budgé€taires. Ainsi
I’influence des contraintes budgétaires dans le deuxiéme modele pourra étre analysée a
partir des résultats du premier modele. Les dates optimales issues du deuxiéme modéle

peuvent €tre inférieures, égales ou supérieures aux dates du premier modele.
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Dans le deuxieéme modele, la conduite va également étre codée sur 5 bits. On aurait pu
choisir de coder la conduite par un vecteur de 6 bits & 2 genes : le premier geéne a 1 bit
pour la méthode d’intervention (0 pour la réhabilitation et 1 pour le remplacement), et le
deuxi€me geéne a 5 bits pour la date d’intervention. Par exemple, 0 00110 veut dire que
la conduite est réhabilitée en 2013. Cependant, afin d’éviter de changer la longueur de
bits de la conduite et donc du vecteur solution, a chaque génération, pour évaluer la
valeur d’adaptation de chaque solution, on génere aléatoirement un vecteur binaire de
taille 2 fois N (nombre de conduites) qui constitue les choix d’interventions sur la
conduite selon le décodage suivant :

00 : REHABILITATION 11 : REHABILITATION
01 : REMPLACEMENT 10 : REMPLACEMENT

Le choix de coder les interventions sur 2 bits plutdt que 1 provient du fait qu’on pourrait
essayer différents colits de réhabilitation et de remplacement. Toutefois, pour le premier

modele, on n’utilise pas cette nouvelle fonctionnalité.

Enfin, dans le deuxieme modele, la fonction d’optimisation reste le cofit total du
systeéme; néanmoins, la sé€lection du meilleur individu dans la génération courante est

faite a partir de la valeur d’adaptation telle que illustrée a la figure 4.8.

En conclusion, la formulation mathématique est une description analytique du probléme
a résoudre, a savoir, la minimisation des coiits totaux d’un réseau de conduites d’eau sur
un horizon de temps fixé. La formulation génétique quant a elle montre la procédure de
codage de la solution et la résolution du probleme par I’algorithme génétique. Les deux

prochains chapitres portent sur le premier et le deuxieme modg¢le.
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CHAPITRE 3

PREMIER MODELE

Il s’agit de valider la performance de I’algorithme génétique en comparant les dates
optimales trouvées par |’algorithme génétique et les dates trouvées de maniere

analytique par 1’analyse économique de Shamir et Howard (1979).

3.1. DONNEES D’ENTREES DU MODELE

Le réseau est constitué de 50 conduites ayant toute la méme longueur 1000 pi. On
travaille sur un horizon de temps de 32 ans. Selon notre formule, le nombre de bits est la
partie entiere de log(32)/10g(2), soit 5 bits. Chaque conduite est codée par un vecteur a 5
bits, allant de 0 a 2 = 31, avec O correspondant a 2007 et 31 correspondant a 2038. La
valeur de la date de remplacement la plus petite est la date d’analyse 2007 et la valeur la
plus tardive est 2038. Autrement dit, si la date optimale théorique est inférieure a 2007,
I’algorithme donnera automatiquement 2007 et si la date optimale est supérieure a 2038,
I’algorithme donnera 2038. Entre 2007 et 2038, la valeur de la date théorique doit

correspondre a celle trouvée par 1’algorithme.

On affecte les mémes conditions initiales a toutes les conduites. Le tableau 3.1 résume la

valeur de chaque paramétre d’entrée.



Tableau 3.1 Valeurs typiques des parameétres d’entrées

50

A

N (to)

G

Gy

to

0.05

0.1

50,000

1,000

0.1

1960

3.2. VALIDATION DE L’ALGORITHME GENETIQUE

La date de remplacement théorique est obtenue par 1’équation E9. Avec les valeurs du

tableau 3.1, tineorique = 1960 + 78 = 2038.

Pour la simulation, les paramétres de 1’algorithme génétique sont: N (le nombre de
conduites), M (le nombre d’individus de la population) et N, (le nombre maximal de
génération). Lorsqu’on lance les simulations, on obtient les résultats illustrés aux

figures 3.1.

On peut constater que la date obtenu par 1’algorithme génétique est la méme que la date
théorique. Et on observe que le coiit total du systéme diminue jusqu’a se stabiliser sur la

figure 3.1a.

On refait une autre simulation avec les valeurs du tableau 3.1, cette fois-ci avec
to=1950. La figure 3.1b montre que la date théorique attendue (2028) est celle donnée

par I’algorithme.
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3.2.1. Influence du coefficient A

Les dates de remplacement théoriques sont obtenues par 1’équation E9. Avec les valeurs
du tableau 3.1, tmeorique = 2037 pour A = 0.05064 €t tieorigue = 2025 pour A = 0.06. Les

résultats de la simulation sont illustrés aux figures 3.2.

La figure 3.2a montre que la date diminue de 1 an lorsque A croit de 0.00064.

La figure 3.2b montre que la date diminue de 13 ans lorsque A croit de 0.01. Cependant,
au bout de 500 générations, la valeur optimale est atteinte pour toutes les conduites,
excepté la premiere. On relance la simulation jusqu’a 1000 générations et la valeur
optimale est alors atteinte pour toutes les conduites sur la figure 3.2c. La figure 3.2d
montre qu’en augmentant la taille de la population et en conservant le nombre de

génération a 500, les conduites atteignent toutes leur valeur optimale.
3.2.2. Influence du coefficient R

Les dates de remplacement théoriques sont obtenues par I’équation E9. Avec les valeurs
du tableau 3.1, tmeorique = 2037 pour R = 0.095 et tingorique = 2036 pour R = 0.09. Les

résultats de la simulation sont illustrés aux figures 3.3.

On voit sur la figure 3.3a que la date théorique a diminué de 1 an lorsque R a diminué de
0.5%, et sur la figure 3.3b que la date théorique a diminué de 2 ans lorsque R a diminué

de 1%, ce que le modele analytique prévoit.
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3.2.3. Influence du taux N(ty)

Les dates de remplacement théoriques sont obtenues par I’équation E9. Avec les valeurs
du tableau 3.1, tmeorique = 2037 pour N(tp) = 0.095 et tingorique = 2033 pour N(tp) = 0.09.
Les résultats de la simulation sont illustrés aux figures 3.4.

On voit sur la figure 3.4a que la date théorique a diminué de 1 an lorsque N(ty) a
augmenté de 0.005, et sur la figure 3.4b que la date théorique a diminu€ de 5 ans lorsque

N(tp) a augmenté de 0.025, ce que le modele analytique prévoit.
3.2.4. Influence du coiit C,,

Les dates de remplacement théoriques sont obtenues par I’équation E9. Avec les valeurs
du tableau 3.1, tigorique = 2037 pour Cp, = 1050 et tiweorique = 2030 pour C, = 1500. Les
résultats de la simulation sont illustrés aux figures 3.5.

La figure 3.5a montre que la date théorique a diminué€ de 1 an lorsque C, a augmenté
de 50. Cependant, la premiere conduite donne une date de 2036. En augmentant le
nombre de génération a 700, comme c’est le cas sur la figure 3.5b, toutes les conduites
ont une date de 2037 (résultat attendu). La figure 3.5c montre que, pour le cas ou C,

augmente de 500, la date trouvée est de 2030. Ceci correspond aux valeurs théoriques.
3.2.5. Influence du coefficient C,

Les dates de remplacement théorique sont obtenues par 1’équation E9. Avec les valeurs
du tableau 3.1, tingorique = 2037 pour C; = 47500. Les résultats de la simulation sont

illustrés aux figures 3.6. Ils sont en accord avec 1’analyse théorique.
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3.2.6. Choix d’un taux de bris linéaire
Si le taux de bris est linéaire, alors la date optimale est donnée par 1’équation E11.
Le tableau 3.2 résume la valeur de chaque parametre d’entrée.

Tableau 3.2 Valeurs des parametres d’entrée pour un taux de bris linéaire

Paramétres A N(to) (oN Chb R to
Essai 1 0.15 0.2 40,000 2,000 0.1 1960
Essai 2 0.15 0.2 10,000 1,000 0.1 1980

Avec les valeurs de paramétres du tableau 3.2, la date de remplacement théorique

est égale a 2024 pour I’essai 1 et 2012 pour I’essai 2. Les résultats de la simulation sont

illustrés aux figures 3.7a et 3.7b. Sur la figure 3.7a, on peut constater que la date

optimale simulée est égale a 2026, et sur la figure 3.7b la date optimale simulée est égale

a2013.

On observe que dans le cas d’un taux de bris linéaire, I’algorithme ne converge pas vers

la solution optimale du probléme méme apres plusieurs autres simulations. On conclut

que 1’algorithme ne garantit pas I’atteinte de I’optimum.
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33. INFLUENCE DES OPERATEURS ET PARAMETRES DE
L’ALGORITHME

On va étudier les effets de 1’opérateur de création du meilleur des meilleurs individus et
des différents opérateurs de croisement (uniforme et 2-points). Le taux de bris est donné

par ’équation E2. Pour toutes les simulations, la date théorique optimale est 2028.

3.3.1. Opérateur de création du meilleur des meilleurs individus

Cet opérateur permet de faire converger la solution plus rapidement, en diminuant la
dispersion de la solution autour de la valeur attendue. Un cas illustratif de 1’apport de cet
opérateur est démontré. Pour cela, deux simulations vont E&tre faites, ’'une avec
I’opérateur et I’autre sans 1’opérateur, en partant de la méme matrice de population. Les

résultats de la simulation sont illustrés aux figures 3.8.

Les résultats des simulations montrent que I’opérateur de création du meilleur des
meilleurs individus permet d’accélérer la convergence vers la solution optimale. Les
figures 3.8a et 3.8b montrent que Datteinte de 1’optimum n’est pas garantic sans
opérateur. Les figures 3.8c et 3.8d montrent que ’augmentation du nombre de
générations permet de faire tendre le colit minimal simulé vers le coiit minimal
théorique. Cependant sur la figure 3.8d, les conduites ont des dates oscillantes autour de
la valeur optimale théorique lorsque I’opérateur est absent; et elles atteignent les dates

optimales théoriques plus rapidement lorsque 1’opérateur est présent.
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3.3.2. Opérateurs de croisement

Deux types de croisement ont été testés : le croisement 2-points et le croisement
uniforme. Les figures 3.9 a 3.11 montrent qu’il n’y a pas une stratégie de croisement

meilleure qu’une autre en terme de convergence.
3.3.3. Influence du nombre d’individus M

Les résultats des simulations sont présentés aux figures 3.9. On constate que
I’augmentation de la valeur de M fait converger la solution vers 1’optimum pour un

méme nombre maximal de génération Niep.
3.3.4. Influence du nombre de conduites N

Les résultats des simulations sont présentés aux figures 3.10. La valeur de N n’influence
pas la convergence vers ’optimum. En effet, I’augmentation de N n’a pas perturbé

I’atteinte de 1’optimum pour une méme valeur de M et Ngen.
3.3.5. Influence du nombre maximal de génération Ng.,

Les résultats des simulations sont présentés aux figures 3.11. On constate que lorsque

Ngen augmente, il y a plus de chance d’atteindre la solution optimale du probleme.

En somme, la convergence vers |’optimum va €étre plus efficace en augmentant soit le

nombre d’individus M, soit le nombre maximal de génération Ngen.
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En conclusion, la mise en ceuvre de 1’algorithme génétique dépend surtout du type de
probleme étudié. En effet, le codage des solutions est adapté au probléme posé. Les
opérateurs usuels de I’algorithme sont les opérateurs de sélection, croisement et
mutation. Bien qu’il existe des méthodes pour implémenter ces différents opérateurs, en
pratique, il y a toujours une possibilité d’ajouter des variantes a ces méthodes afin
d’améliorer la convergence vers la solution optimale. L’opérateur de croisement favorise
I’exploration de I’espace de recherche, tandis que la sélection permet de faire évoluer la
population vers les meilleurs individus. Cependant, lorsque la taille de la population est
petite, il peut arriver que certains individus favorisés par le hasard se répandent au
détriment des autres; ce phénomene s’appelle la dérive génétique. L’opérateur de
mutation prend alors tout son intérét car il permet de contrebalancer ce phénomene en

introduisant constamment dans la population de nouveaux individus.

Dans des problemes de maximisation ou minimisation des cofits, il est trés important de
toujours conserver dans la nouvelle population, le meilleur individu de I’ancienne
génération, car le brassage des individus parents peut créer des individus enfants dont

aucun ne soit trouvé meilleur que le meilleur des parents.

Enfin, les équations théoriques de Shamir et Howard confirment la justesse des résultats
obtenus par I’algorithme génétique. Cependant, comme on 1’a constaté pour un taux de

bris linéaire, I’atteinte de I’optimum n’est pas toujours garantie.
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CHAPITRE 4

DEUXIEME MODELE

Dans le premier modele, les variables de décision sont les dates optimales de
remplacement des conduites de 1’ensemble du réseau, obtenues pour un horizon de
temps fixe sans contraintes budgétaires. Ce modele permet une planification financiere
des interventions de remplacement, car le cofit total minimal du systeme et les budgets
annuels requis peuvent étre déterminés. Cependant, dans la pratique, les gestionnaires
n’ont pas toujours les fonds suffisants pour intervenir sur les conduites du réseau. D’ou
I'utilité du deuxidme modele qui permet de prendre en compte les restrictions
budgétaires afin d’évaluer I’impact de celles-ci sur la programmation des interventions

faite a I’aide du premier modele.

Ainsi, un premier scénario sans contraintes budgétaires va €tre retenu afin d’utiliser la
programmation obtenue comme base pour les scénarios avec contraintes budgétaires.
Ensuite deux scénarios avec contraintes budgétaires vont étre étudiés. Dans le premier
scénario, on va considérer uniquement le remplacement comme option d’intervention, et
on va imposer au systtme des contraintes budgétaires annuelles. Dans le second
scénario, on va considérer les deux options d’intervention qui sont la réhabilitation et le
remplacement, sans imposer des contraintes budgétaires annuelles. Pour éviter que le
systeme ne converge vers 100% de réhabilitation car celle-ci est moins dispendieuse, on

va imposer une contrainte budgétaire au niveau du cofit total du systeme.
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4.1. SCENARIO SANS CONTRAINTES

On va utiliser le premier modele pour analyser I’impact des stratégies de renouvellement
d’un réseau de 50 conduites. On subdivise le réseau en 5 groupes de 10 conduites,
chaque groupe ayant les mémes conditions initiales. Le cofit de remplacement est fix€ a
50000 $ pour toutes les conduites. Deux scénarios sont étudiés : le remplacement a
100% ou la réhabilitation a 100% du réseau. En effet, étant donné que le systéme est
sans contrainte budgétaire et que la fonction économique vise & minimiser le codt total
du systeme, lorsque les deux options de remplacer et de réhabiliter sont possibles pour
toutes les conduites, les simulations montrent que la solution converge toujours vers une
réhabilitation du réseau a 100%. Les cofits de réhabilitation étant inférieurs aux cofits de

remplacement expliquent cette convergence.

4.1.1. Choix de remplacer toutes les conduites du réseau

Chaque groupe de conduites a une date optimale de remplacement déterminée. En effet,
les conditions initiales sont les mémes dans chaque groupe. Le choix de procéder a cette
subdivision du réseau vient du fait qu’en pratique, il est toujours possible de rassembler
les conduites d’un réseau en groupes de conduites ayant la méme date optimale de
remplacement, méme si a ’intérieur du groupe les conditions initiales des conduites sont
différentes. Les résultats de la simulation sont présentés aux figures 4.1. Le cofit

minimal total est de 2 190 100 $.
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4.1.2. Choix de réhabiliter toutes les conduites du réseau

Un scénario envisageable est de réhabiliter systématiquement toutes les conduites au lieu
de les remplacer. Dans ce scénario, on fixe le colit d’une réhabilitation a 75 % du cofit de
remplacement, soit 37500 $ pour toutes les conduites, tout en conservant leurs
conditions initiales. Les résultats des simulations sont présentés aux figures 4.2. Le cofit
minimal total est de 1 851 900 $.

On constate que la réhabilitation demande une intervention anticipée sur les conduites
(voir tableau 4.1). En effet, il ne faut pas arriver 2 la fin de la durée de vie utile (date
optimale de remplacement) pour réhabiliter une conduite, mais il faut intervenir plus t6t
sur celle-ci. La réhabilitation permet également de réduire le colit minimal du systeme.
Cependant, il faut €tre conscient que la durée de vie d’une réhabilitation est moins
longue que celle d’un remplacement et par conséquent, elle est une solution qui permet
d’alléger les investissements 2 moyen terme tout en augmentant les niveaux de service
requis.

Les figures 4.1a et 4.1b montrent les répartitions des budgets annuels respectivement
pour chaque scénario. On a ainsi pour le réseau, la planification des interventions sur 32

ans ainsi que les budgets annuels en dollars actualisés requis pour la mettre en ceuvre.
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Tableau 4.1: Scénarios sans contraintes budgétaires

Lot 1 2 3 4 5 1 2 3 4 5

2007 - - - - - 100% | 100% - - -
2008 | 100% - - - - - - ; ; :
2009 - - - - - ; - ; : :
2010 - . - - - - N ; ; -
2011 - - - - - ; N - : -
2012 - - - - - - - 100% - -
2013 - 100% - - - ; - - N -
2014 - - - - - ; - - - X
2015 - - - - - ; ; - - -
2016 - - - - - - - . - -
2017 - - - - - - - - 100% -
2018 - - 100% - - - - - R -
2019 - - - - - ; - - - .
2020 - - - - - - R ; - ;
2021 - - - - - ; - - - 5
2022 - - - - - - - - - 100%
2023 - - - 100% - - - - ; -
2024 - - - - - N - ; - 3
2025 - - - - - - - - X .
2026 - . - - - - - - - -
2027 - - - - N - - - - -
2028 - - - - 100% - - - - -
2029 - . - - - - ; N - -
2030 - - - - - ; ; - . N
2031 - - - - - - ; : - -
2032 - - - - - ; ; - : -
2033 - - - - - - ; - - -
2034 - - - - - ; ; - : -
2035 N - - - ; - - - -
2036 - - - - - - ) - - -
2037 - - - - R - ; - . -
2038 - - - - R - ; - - -

On observe pour chaque lot de conduites les réponses du modéle face a un choix exclusif
de remplacement ou de réhabilitation. Pour cette derniére, toutes les interventions sont

anticipées.
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Dans le modéle 1 sans contraintes budgétaires, on peut calculer les budgets annuels
requis pour couvrir les investissements sur ’horizon de temps choisi. Connaissant les
enveloppes budgétaires annuelles pour intervenir sur le réseau, les gestionnaires ne
disposent pas toujours du capital nécessaire pour renouveler leurs conduites. Le
deuxi¢me modele, détaillé au chapitre suivant, prend alors en compte les restrictions

budgétaires.

4.2. PREMIER SCENARIO AVEC DES CONTRAINTES BUDGETAIRES

ANNUELLES

Le remplacement est l'unique option d’intervention. On impose au systtme des
contraintes budgétaires annuelles. Pour cela, on repartit le budget annuel disponible a

chaque année sur I’horizon de temps, de maniere homogene en dollars courants.

On travaille sur le méme réseau de 5 lots de 10 conduites, ayant chacun leur date de
remplacement. 1 effet des restrictions budgétaires va pouvoir étre quantifiés a partir des

variables de décision qui sont les proportions ¢«,, de chaque lot k de conduites a

remplacer a une date ¢ sur I’horizon de temps fixé.

Les résultats des simulations sont présentés aux figures 4.3 & 4.5. La premiere simulation
faite avec le modele 1 donne un colit minimal total de 2,19 M$ pour le remplacement
complet du réseau d’ici 32 ans. La répartition des coiits annuels requis est aussi donnée
par le modele 1. On observe des pics budgétaires aux dates de remplacement de chaque

lot k de conduites sur la figure 4.3, le budget annuel moyen étant de 68 440 §$.
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Sachant que 1’on ne dispose pas du budget annuel requis aux périodes de pic financier, a
I’aide du deuxiéme modele, on va imposer une répartition homogene du budget annuel
en dollars courants de 1,5 fois le coiit de 2,19 M$ sur 32 ans, soit environ 100 000 $ a
chaque année sur 32 année. Une seconde simulation faite avec le modele 2 et on peut
observer sur la figure 4.3 que des pics financiers sont absents et les budgets annuels
tendent a s’homogénéiser. Méme s’il faut plus investir pendant les 10 premicres années,

les budgets annuels requis sont moins divergents que ceux du premier modele.

Modéle 1
- m Modéle 2
— "

o

———,

1

Coiits ($)

R'i._.m
Année Rggg o
S 8

Figure 4.3 : Budgets annuels en dollars courants

La figure 4.4 montre I’effet des contraintes budgétaires sur les dates de remplacement.
On constate que les dates de remplacement des conduites sont avancées ou reculées dans
le temps afin de balancer le pourcentage des conduites remplacées chaque année pour

homogénéiser les budgets annuels.



Date optimale de remplacement

40 ; ; ; ; ; ; ; ; ;

; ; i : e ¢ ; ;

: | : ; | Lo 10 ; 05

i1 v i 5 s 2 : b

| ! 5 o e UUEI RN A A

; : @ : ; Otguosodooond 4 b

m : : : SO S : ; : !

;i o ! goocogoouey 0y 5 OU: 3

q 0F Lo . : , : 0

! Q000 T veoo ' : : : .

M PR j j P [ | i 1 i

Ea8500c0n0 0 | : : ! ; : :

0w i | l i | | \ | i J

0 5 0 15 1 % 1 ¥ 0 £ a
Condute

Figure 4.4 : Date de remplacement avec contraintes budgétaires annuelles
(M =50, N = 50, Ny, = 1000)

77

o Modéle 1

o Modele 2

Les proportions ¢, , de chaque lot k de conduites sont notées dans le tableau 4.2.

Tableau 4.2 : Proportions des lots de conduites 2 remplacer sur I’horizon de temps

skt §  Remplacement (modéle 2)
Lot | 1 2 3 4 5 1 | 2 3 4 5
2007 : 5 : : : 5 5 : : 5
2008 | 100% - ; 3 : } 10% - ; ;
2009 - 5 : - . 20% : - : 5
2010 - ; - : - 0% | 10% | 20% ; :
2011 : ; - - : 20% | 10% | 10% ; )
2012 : - : 5 5 ) - 5 ; 5
2013 } 100% _ } } 10% | 20% | 10% _ }
2014 : - : ) ; 10% - ; } 10%
2015 3 - : : 5 10% : 3 - :
2016 ; - ; ; ; 10% | 10% ; - 10%
2017 ; - ; ; ; - ; ; 10% ;
2018 5 : 100% 5 : 10% | 10% 5 10% ;
2019 ; - - : : ) 10% 5 - 10%
2020 ; ; - ; ; ; ; ) - ;
2021 5 n - n 5 n 10% 5 : »
2022 : : 3 ; _ ; ; 5 10% | 10%
2023 5 ; 3 100% 5 ; - : ; 10%
2024 5 ; } ; ; ; 10% | 10% - ;
2025 ; - - ; ; ; ; ; 10% ;
2026 : ; - ) 5 ; ) 10% | 10% 3
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. Remplacement (moddle 1)

- Remplacement (modéle 2)

2027

10% -

20%

2028

100%

10% -

2029

10%

2030

2031

- 20% -

2032

20%

2033

2034

10%

2035

2036

20%

2037

2038

On peut constater que la moyenne des pourcentages des conduites a remplacer tend a

s’harmoniser sur 1’horizon de temps. Par ailleurs, le coiit total du syst¢eme donné par le

modele 2 est de ’ordre de 2,29 MS$. La figure 4.5 montre 1’évolution du coft total du

systéme. Celui-ci ne diminue pas sans cesse a cause des restrictions budgétaires.
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En fonction des conditions initiales des conduites et des restrictions budgétaires, il est
possible qu’aucune solution respectant les budgets imposés ne soit trouvée. Par
conséquent, le modele 2 permet de trouver la solution qui respecte au mieux les

contraintes financieres imposées.

4.3. DEUXIEME SCENARIO AVEC UNE CONTRAINTE SUR LE

COUT TOTAL DU SYSTEME

On n’impose aucune contrainte sur les budgets annuels. Les options d’intervention sont
la réhabilitation et le remplacement. On impose que le colit total ne doit pas descendre
en deca d’une certaine valeur fixée. En effet, en 1’absence de cette contrainte, la solution
convergerait vers la réhabilitation syst€ématique de toutes les conduites. Le but de ce

scénario est d’étudier le comportement du modele en imposant un cofiit total.

La simulation est faite avec le modele 1 sans contrainte converge vers la solution de
réhabilitation 2 100% du réseau. Ce modele donne le colit minimal du systéme lorsque
toutes les conduites sont réhabilitées sur un horizon de temps donné. On choisit
d’imposer un coft total supérieur a ce dernier, mais inférieur au codt total qu’a donné le
modele 1 lorsque les conduites sont remplacées a 100%. Une seconde simulation avec ce

cofit total fixé a respecter est alors exécutée.
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Figure 4.6 : Coiit total du systéeme avec contrainte sur le coiit total
(M =50, N =50, N, = 1000)

La figure 4.6 montre 1’évolution du cofit total en fonction des générations. Et on constate
que ce colit converge vers le colt total fixé a 2 M$. La solution du modéle 2 au bout de
1 000 générations donne un coiit total de 2,13 M$. La figure 4.7 montre les dates des
interventions sur les conduites. Dans le tableau 4.3, on peut observer quelles proportions

de conduites sont remplacées ¢, ,ou réhabilitées g, , dans chaque lot k.
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Figure 4.7 : Date de remplacement ou de réhabilitation avec contrainte sur le coit total
(M =50, N =50, N, = 1000)
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En analysant les résultats du tableau 4.3, on peut observer que certaines conduites sont
réhabilitées a une date supérieure a la date optimale de remplacement. En réalité, il

aurait fallu imposer une contrainte au niveau des limites d’interventions telle que si la

date trouvée t est supérieure a la date optimale de remplacement, on ne peut plus

réhabiliter, autrement dit : V¢ >¢% . .. = 0.

remp *®

Tableau 4.3 : Proportions des lots de conduites a remplacer ou réhabiliter

Lot 1 2 3 4 1 3 4 5

2007 | 100% | 100% - - - 0-10% - 10-0% | 0-10% N
2008 X - - - N 10-0% - [1020% | - )
2009 - - R - - 0-10% | 0-10% - 20-0% ;
2010 N - - - - N 10-0% - - -
2011 - - - - - 0-10% - - 0-10% R
2012 - - 100% - N N 0-10% | 0-10% - N
2013 R X - R - 0-10% | 0-30% - 0-10% R
2014 R - - - - ; - 0-10% - 0-10%
2015 - - - - ; ; - - 0-20% N
2016 - - - - - ~ | 0-10% | 10-0% - -
2017 - - - 100% - 0-20% | 0-10% | 0-10% R N
2018 - - X - ; - - - ; -
2019 - : - R - - - - ; N
2020 - - - R - 0-10% | 0-10% R 0-10% N
2021 - - - - - N 0-10% R 0-10% | 0-10%
2022 - R - - 90% - - 0-10% | 0-10% | 0-10%
2023 - - - X 10% | 0-10% - - - 0-10%
2024 - - - - - - - - - -
2025 - - - - - - - - - -
2026 - R - - - - R . - -
2027 - - - R - - § 10-0% - 20-0%
2028 § - - - X - - - N -
2029 R - - R N 0-10% - ; N -
2030 - - - - - - - - - N
2031 R - R N N ; - - - N
2032 - N - - - ; - - - 0-10%
2033 - R - - - - - - - -
2034 - - - - - - - - R -
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2035 ; -

2036 - ) ; ; ; _ } - - | 0-20%
2037 ; - R - - - ; ; N -
2038 - ; _ ) ; } ; ; - 10-0%

Note : X = date optimale de remplacement

4.4. DISCUSSIONS SUR LES RESULTATS OBTENUS

La mise en ceuvre de la solution avec des contraintes budgétaires par I’algorithme

génétique est un processus qui s’est avéré complexe. Tout d’abord, la population finale

du premier modele a ét€ choisie comme la population initiale du deuxieme modele.

Ensuite, chaque individu (solution) est évalué a 1’aide d’une nouvelle fonction

d’évaluation. Pour cela, il y a plusieurs possibilités qui s’offrent :

garder une fonction d’évaluation qui minimise le cofit total du systtme et

rejeter les solutions qui ne rencontrent pas les contraintes budgétaires;

ajouter a la fonction d’évaluation qui minimise le colit total du systéme un
colt de pénalité¢ pour discriminer les solutions qui ne rencontrent pas les

contraintes budgétaires;

adapter la fonction d’évaluation a la contrainte.

La premiere solution a été rejetée car beaucoup d’individus risquent d’&tre €liminés et si

les contraintes sont séveres, il peut arriver que 1’algorithme ne trouve aucune solution.

Pourtant, I’objectif est autant la recherche d’une solution exacte que la recherche d’une

solution respectant au mieux les critéres.
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La deuxieme solution a été rejetée car la proportion des solutions trés insatisfaisantes

peut devenir trés grande par rapport au reste de la population.

La troisieme solution a été retenue. Soit A une année dans 1’horizon de temps choisi T,

la figure 4.8 illustre la nouvelle fonction d’évaluation.

Calcul de la fonction
d’évaluation par
pa=ba—cCa
(différence entre le budget
annuel imposé ba et le colit
annuel ca calculé par le modéle
pour une solution donnée)

y
A chaque
génération, pour

tous les individus
(solutions)
y v
Si la contrainte budgétaire Si les contraintes
est sur le colit total : budgétaires sont sur les

budgets annuels :
le meilleur individu est celui

le meilleur individu est celui

T
dont | Z pa| estla plus T
A=1 dont Z |pal est la plus
petite, voire nulle A=l
petite, voire nulle

Figure 4.8 Adaptation de la fonction d’évaluation avec les contraintes budgétaires

L’objectif reste la minimisation du cofit total du systtme. Cependant, la fonction
d’évaluation sert a sélectionner dans la génération courante, non pas la solution qui a le
plus petit cofit total du systeme, mais la solution qui respecte au mieux les contraintes
budgétaires. Elle permet ainsi de trouver une solution de "bon compromis” entre le

respect des contraintes budgétaires et la minimisation du cofit total du systeme.
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Connaissant les dates obtenues par le premier modele sans contraintes budgétaires, les
nouvelles dates et les choix d’intervention pour chaque conduite venant du deuxiéme
modele avec contraintes budgétaires, on détermine les proportions des conduites a

réhabiliter et a remplacer dans chaque groupe.

Avec un minimum de deux heures de temps de calcul pour simuler chaque scénario avec
contraintes budgétaires, on obtient une nouvelle programmation des interventions. Les
résultats sont quantifiables car ils donnent en fonction du budget disponible, les
proportions de conduites a remplacer et a réhabiliter a chaque année dans chaque
groupe. Et la décision revient aux gestionnaires de choisir dans chaque groupe les
conduites sur lesquelles ils veulent intervenir tout au long de I’horizon. La pertinence
des résultats est observable dans la figure 4.4 car, méme si les interventions sur les
conduites sont en général reportées dans le temps pour tous les groupes, on observe tout
de méme que, plus le groupe de conduites est critique, plus rapidement les interventions
sont faites sur I’ensemble des conduites de ce groupe par rapport au reste des conduites

du réseau.

Dans la mise en ceuvre de la solution, les solutions qui ne rencontrent pas les contraintes
fixées ne sont pas éliminées et aucun cofit de pénalité n’est affecté a ces solutions. Ainsi
la solution obtenue peut €tre la meilleure parmi des solutions ne respectant pas les

contraintes.
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CONCLUSION

A travers ce projet, 1’algorithme génétique a été appliqué a des modeles inspirés de la
démarche de Shamir et Howard (1979) en vue d’obtenir les dates optimales de
remplacement des conduites (premier modele), et de 1’approche de Karaa et al. (1987)
pour obtenir les proportions de conduites a remplacer ou réhabiliter sur I’horizon de
temps afin de répondre au mieux a des restrictions budgétaires imposés (deuxicme

modele).

Cette étude a permis d’évaluer les atouts et les limites de 1’algorithme génétique utilisé
comme méthode de calcul pour les deux problémes d’optimisation posés. L’un des
avantages majeurs observé de 1’algorithme génétique est qu’il s’adapte a des problémes
ou : soit la mise en ceuvre de la solution par des méthodes non linéaires est complexe,
soit il n’existe pas de méthode exacte de résolution. Comme on a pu le constater, aucun
bagage mathématique n’est requis pour la mise en ceuvre de 1’algorithme. De plus, on a
pu aussi observer que I’algorithme génétique est un outil robuste, dans la mesure ou il
peut fournir des solutions trés bonnes mais pas nécessairement optimales comme c’est le
cas dans I’utilisation d’un taux de bris linéaire. Cependant, la robustesse de 1’algorithme
génétique a un prix, dans la mesure ol un trés grand nombre de générations (ou de
calculs de la valeur d’adaptation) peut &tre nécessaire avant d’atteindre la solution
optimale. Ce nombre devient problématique lorsque le nombre d’individus augmente et

le cofit de calcul (en temps) de la valeur d’adaptation augmente. Par exemple, pour le
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premier modéle, le temps de réponse était de 1’ordre d’une dizaine (voir quinzaine) de

minutes, tandis que pour le modele, le temps de réponse était d’environ deux heures.

Cette étude a aussi permis de constater combien la vitesse de convergence est cruciale, et
pour tout type de probleme, il est important de trouver des méthodes alternatives pour
accélérer la convergence de I’algorithme. En I’occurrence, pour cette étude, 1’opérateur

de création du meilleur des meilleurs individus a été créé.

En somme, I’algorithme génétique est un outil qui suscite un engouement et 1’analyse
faite au travers de cet outil mérite d’étre poussée encore plus loin: d’une part, en
essayant cet outil sur un réseau de conduites plus large (d’environ 200 conduites) pour
observer la réaction d’un tel outil en terme d’efficacité de convergence et de temps de
calculs; et d’autre part, une comparaison des résultats obtenus avec ceux des autres
modeles peut étre faite pour mieux évaluer la robustesse de cet outil (c’est-a-dire son

efficacité a donner de "bonnes" solutions).

Par ailleurs, une analyse encore plus poussée peut &tre faite en rajoutant dans
I’algorithme des contraintes au niveau des techniques d’intervention en imposant un taux
d’utilisation pour chaque technique sur I’ensemble des conduites a D’intérieur de
I’horizon de temps fixé. Par exemple, la Politique nationale de 1’eau (engagement 45)

exige depuis 2005, un taux d’utilisation des techniques de réhabilitation des conduites de

25% par rapport au remplacement.

De méme, une recherche plus approfondie en introduisant plusieurs critéres de décision

peut étre étudiée. Dans ce projet, seul le crittre économique a été abordé, et des
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scénarios d’intervention sous des contraintes budgétaires ont pu é&tre €laborés.
Cependant, dans un réseau d’eau potable, la performance hydraulique et la qualité de
I’eau sont aussi des critéres importants. On pourrait alors évaluer la capacité de cet
algorithme a gérer par une formulation, monocritére ou multicritere, 1’ensemble de ces
objectifs dans le but d’introduire ces modules dans un syst¢me intégré d’aide a la

décision pour le renouvellement des réseaux d’eau potable.

De nos jours, les modeles d’optimisation sont des outils utiles pour une planification
long terme des interventions sur les conduites d’eau potable. En effet, ils permettent
d’une part d’élaborer différents scénarios d’interventions et d’autre part de mesurer
I’impact des investissements insuffisants sur le réseau de conduites soumis a différentes
autres contraintes. Bien que les modeles d’optimisation soient des outils puissants d’aide
a la décision, les interventions sur les conduites d’aqueduc ne dépendent pas uniquement
de I’état des conduites d’eau potable mais aussi des conditions des autres infrastructures
adjacentes telles que les réseaux d’égouts et les chaussées. Ainsi, un arbre de décision
prenant en compte les résultats du modele d’optimisation et les facteurs externes
(travaux sur les égouts et chaussées, choix politiques, problématiques particulieres)
viendra raffiner 1’optimisation des plans d’interventions sur les conduites d’eau potable.
En définitive, le modele d’optimisation est une tentative d’automatiser la décision.
Cependant, le choix revient toujours aux gestionnaires municipaux qui doivent se batir

un arbre de décision pour chacune des conduites traitées.
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ANNEXE 1

DEVELOPPEMENT MATHETIQUE POUR LE CALCUL DE LA DATE

OPTIMALE

3 Gl , ¢

o Plt) = .
Les colits totaux sont : z( r) < (l+ R)H” (1+ R)t’ﬁp .

On cherche !r qui minimise Pr(tr) : Mir{R(tr)]
tr

Nous savons que nous pouvons remplacer Z par _[ . Soit P; la fonction dépendant de
t dont nous recherchons le minimum. Soit P, la dérivée de la fonction P..

Mathématiquement le minimum de la fonction P; est une racine de sa dérivée. Par

tr
ailleurs, nous savons aussi que Pi(t;)) = I P’, (t) dt + Constante
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ANNEXE 2

CODES DE L’ALGORITHME GENETIQUE

Deux modeles ont été élaborés : Le modele 1 (sans contraintes budgétaires) et le modele
2 (avec des contraintes budgétaires). Ces deux modeles utilisent des fonctions
communes exceptées certaines fonctions telles la fonction d’évaluation (qui permet de
calculer le fitness de chaque individu), la fonction génération (qui permet d’exécuter
I’algorithme de génération en génération) et la fonction compil (qui est la fonction
principale d’exécution du programme). Les codes ont été écrits et compilés avec le

logiciel MATLAB.
Les fonctions utilisées sont :

Pour le calcul des coiits

1- budgets : elle permet de répartir le budget global de maniere homogene par année.

2- cout_maint et cout_rempla : elles permettent de calculer respectivement le colit de

maintenance et le coiit de remplacement d’une conduite a une année donnée.

3- cout_tot et cout_tot_lin : elles permettent de calculer les coiits totaux du systeme

selon un modele de dégradation exponentiel et selon un modele linéaire.
4- cout_annee : elle permet de déterminer le budget annuel d’une solution.

5- coef R : elle permet de définir le taux d’actualisation.
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Pour les conditions initiales des conduites

6- coef A, date_pose, taux_def, cout_rep, cout_remp et cond_init_stat : elles permettent

de définir les conditions initiales selon les différents types de réseau.

7- technique : elle permet de définir les techniques d’intervention qui sont la

réhabilitation et le remplacement et d’en fixer les coiits.

Pour le déroulement de I’algorithme

8- pop_init : elle permet de générer la population initiale.

9- conv_bin_dec et conv_dec_bin : elles permettent respectivement de convertir un

nombre binaire en décimal et un nombre décimal en binaire.

10- vecteur_fitness et vecteur_fitness_cas2 : elles permettent de calculer le cofit total du

systeme pour le modele 1 et le modele 2.

11- classement : elle permet de classer par rang les individus en fonction de leur cofit

total.
12- probabilite : elle permet de calculer la probabilité de sélection en fonction du rang.
13- choixAB : elle permet de sélectionner deux parents pour le croisement.

14- croisementAB et croisementABu: elles permettent de croiser les parents

respectivement selon un croisement en 2 points et un croisement uniforme.

15- mutation : elle permet de faire I’inversion d’un bit d’un individu.
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16- generation et generation_cas?2 : elles sont les fonctions d’exécution pour le modele 1

et le modele 2.

17- compill et compil2 : elles sont les fonctions principales pour le modele 1 et le

modele 2.
1- Définition de la fonction budgets
La fonction budgets est donnée par :

function an_hor = budgets(argent, periode, mode)

%an_hor = zeros(1,horizon);
val = argent / periode;
switch mode

% Premier modéle : mémes couts par annee
case 0
for i = 1:periode
an_hor(i) = val ;
end

% Deuxieme modéle : différents couts par annee
case 1
end

2- Définition des fonctions cout_maint et cout_rempla
Les fonctions cout_maint et cout_rempla sont données par :

%
% Cette fonction donne les couts de maintenance de chaque conduite
%

function cout_unit = cout_maint(id_cond, mat_cond_init, date)

x=[¥



S

x = mat_cond_init;

a = 0; % cout de maintenance actualisé

temp = x(6,id_cond)*x(2,id_cond)*exp(x(3,id_cond)*(date+2007-x(1,id_cond))):

a=a+ temp/(1 + x(4,id_cond))"(date); %i-2007);

cout_unit = a;

9
flo

% Cette fonction donne les couts de remplacement de chaque conduite
%

function cout_unit = cout_rempla(id_cond, mat_cond_init, date)

x=[1]

x = mat_cond_init;
b = x(5,id_cond) /(1 + x(4,id_cond))"(date): % cout de remplacement actualisé
cout_unit = b;

3- Définition des fonctions cout_tot et cout_tot_lin

Les fonctions cout_tot et cout_tot_lin sont données par :

.
% Cette fonction donne les couts de rehabilitation de chaque conduite
%

function cout_unit = cout_tot(id_cond, mat_cond_init, date)

x=[]

X = mat_cond_init;

a = 0; % cout de maintenance actualisé

for i = 2007:2007+date
temp = x(6,id_cond)*x(2,id_cond)*exp(x(3,id_cond)*(i-x(1,id_cond)));
a=a+ temp/(1 + x(4,id_cond))"(i-2007);

end
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b = x(5,id_cond)/(1 + x(4,id_cond))"(date); % cout de remplacement actualisé
cout_unit=a+b;

%

% Cette fonction donne les couts de rehabilitation de chaque conduite

%
function cout_unit = cout_tot_lin(id_cond, mat_cond_init, date)

x=[}

X = mat_cond_init;

a = 0; % cout de maintenance actualisé

for i = 2007:2007+date
temp = x(6,id_cond)*x(2,id_cond)*x(3,id_cond)*(i-x(1,id_cond));
a=a+ temp/(1 + x(4,id_cond))"(i-2007);

end

b = x(5,id_cond)/(1 + x(4,id_cond))"(date): % cout de remplacement actualisé
cout_unit =a +b;

4- Définition de la fonction cout _annee
La fonction cout_annee est donnée par :

function an_hor = budgets(argent, periode, mode)

%an_hor = zeros(1,horizon);
val = argent / periode;
switch mode

% Premier modéle : mémes couts par annee
case O
for i = l:periode
an_hor(i) = val ;
end

end
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5- Définition de la fonction coef R

La fonction coef_R est donnée par :

%
/o

% Cette fonction donne le taux d'actualisation

Y/
/o

function vecteur = coef_R (Nb_cond, taux)

for i =1 :Nb_cond
vecteur(i) = taux;
end

6- Définition des fonctions coef_A, date_pose, taux_def, cout_rep, cout_remp et

cond_init_stat
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Les fonctions coef A, date_pose, taux_def, cout_rep, cout_remp et cond_init_stat sont

données par :

%
/o

% Cette fonction donne les coefficients A de chaque conduite

%

function vecteur = coef__A(Nb_cond, min, max, mode)

switch mode

% Premier modéle : mémes coefficients A
case O
for i =1 :Nb_cond
vecteur(i) = 0.05;
end

% Deuxiéme modeéle : differents coefficients A

case 1
for i =1 :Nb_cond
vecteur(i) = min + (rand*(max-min));
end


http://cond_in.it

ST

% Troisieme modele : 5 lots de conduites

case 2
k = Nb_cond/5;
vecteur(l,l:k) = 0.05;
vecteur(l,1+k:2*k) = 0.06;
vecteur(l,1+42*k:3*k) = 0.07;
vecteur(l,1+3*k:4*k) = 0.08;
vecteur(l,1+4*k:5*k) = 0.9;

end

%

% Cette fonction donne les dates de pose de chaque conduite

O,
To

function vecteur = date_pose(Nb_cond, date, mode)

switch mode
% Premier modéle : méme date d'installation
case O
for i =1 :Nb_cond
vecteur(i) = date;
end

% Deuxiéme modéle : differente date de pose

case 1
for i =1 :Nb_cond

vecteur(i) = date + round(rand*(2007-date)):

end
% Troisieme modele : 5 lots de conduites

case 2
k = Nb_cond/5;
vecteur(l,1:k) = 1960;
vecteur(l,1+k:2*k) = 1945;
vecteur(l,142*k:3*k) = 1965;
vecteur(l,143*k:4*k) = 1970;
vecteur(l,1+4*k:5*k) = 2002;
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end

Y%
/lo

% Cette fonction donne les taux de défaillance de chaque conduite
%

function vecteur = taux_def(Nb_cond, min, max, mode)

switch mode

% Premier modéle : méme taux de defaillance

case O
for i =1:Nb_cond
vecteur(i) = 0.1;

end

% Deuxiéme modéle : differente date de pose

case 1
for i =1 :Nb_cond
vecteur(i) = min + (rand*(max-min));
end

% Troisieme modele : 5 lots de conduites

case 2
k = Nb_cond/5;
vecteur(l,1:k) = 0.1;
vecteur(l,1+k:2*k) = 0.04;
vecteur(l,1+2*k:3*k) = 0.03;
vecteur(l,1+3*k:4*k) = 0.02;
vecteur(l,1+4*k:5*k) = 0.01;

end
%o

% Cette fonction donne les couts de maintenance de chaque conduite
%

function vecteur = cout_rep(Nb_cond, min, max, mode)



switch mode

% Premier modéle : mémes couts de remplacement
case O
for i =1 :Nb_cond
vecteur(i) = 1000;
end

% Deuxieme mode¢le : differents couts de remplacement

case 1
for i =1 :Nb_cond
vecteur(i) = min + round(rand*(max-min));
end

% Troisieme modele : 5 lots de conduites

case 2
k = Nb_cond/5;
vecteur(1,1:k) = 1000;
vecteur(l,1+k:2*k) = 1250;
vecteur(l,1+2*k:3*k) = 1500;
vecteur(l,1+3*k:4*k) = 1750;
vecteur(l,1+4*k:5*k) = 2000;

end

%

% Cette fonction donne les couts de remplacement de chaque conduite

%

function vecteur = cout_remp(Nb_cond, min, max, mode)

switch mode

% Premier modéle : mémes couts de remplacement
case 0
for i =1 :Nb_cond
vecteur(i) = 50000;
end
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% Deuxiéme modele : differents couts de remplacement

case 1
for i =1 :Nb_cond
vecteur(i) = min + round(rand*(max-min));
end

% Troisieme modele : 5 lots de conduites

case 2
k = Nb_cond/5;
vecteur(l,1:k) = 50000;
vecteur(l,1+k:2*k) = 40000;
vecteur(l,1+2*k:3*k) = 30000;
vecteur(1,1+3*k:4*k) = 20000;
vecteur(l,1+4*k:5*k) = 10000;

end
function matrice = cond_init_stat(Nb_cond)

global date_theo;
matrice = [];

matrice(1,1:Nb_cond) = date_pose(Nb_cond, 1960, 1);
matrice(2,1:Nb_cond) = taux_def(Nb_cond, 0.01, 0.2, 1);
matrice(3,1:Nb_cond) = coef A(Nb_cond, 0.01, 0.15, 1);
matrice(4,1:Nb_cond) = coef R (Nb_cond, 0.1);
matrice(5,1:Nb_cond) = cout_remp(Nb_cond, 10000, 150000, 1);
matrice(6,1:Nb_cond) = cout_rep(Nb_cond, 500, 2000, 1);
matrice(7,1:Nb_cond) = cout_reh (Nb_cond, 2000, 10000, 1);

% calcul des dates theoriques de remplacement

fid=fopen('dates_sh_stat.txt','w');
fori=1:Nb_cond
date_theo(i) = matrice(1,i) + (1/matrice(3,i))*log( (matrice(5,i)*log(1+ matrice(4,i))) /
(matrice(6.,i)*matrice(2,i))):
if (date_theo(i) < 2007)
date_theo(i) = 2007;
fprintf(fid,' %d\n' ceil(date_theo(i)));
elseif (date_theo(i) > 2038)
date_theo(i) = 2038;



N

fprintf(fid,'%d\n' ceil(date_theo(i)));
else
date_theo(i) = ceil(date_theo(i));
fprintf(fid,' %d\n' ceil(date_theo(i)));
end
end
fclose(fid);

7- Définition de la fonction technique

La fonction technique est donnée par :
function tech = technique(N)

matrice = zeros(1,N);
cout_rempla = 50000;

alpha = 0.75;
beta = 1;
fori=1:N

decision = round(rand(1,2));

if (decision(1) == O & decision(2) == 0)
matrice(5,i) = cout_rempla*alpha;

elseif (decision(1) == O & decision(2) == 1)
matrice(5,i) = cout_rempla*beta;

elseif (decision(1) == 1 & decision(2) == 0)
matrice(5,i) = cout_rempla*beta;

else
matrice(5,i) = alpha*cout_rempla;

end

end
tech = matrice(5,:);

8- Définition de la fonction pop_init

La fonction pop_init est donnée par :

%

% Cette fonction génere une population initiale a M individus

%
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function matrice = pop_init(M,N)
matrice = round(rand(M ,N));

9- Définition des fonctions conv_bin_dec et conv_dec_bin

Les fonctions conv_bin_dec et conv_dec_bin sont données par :

function decimal = conv_bin_dec (binaire)

taille = size(binaire,2);
decimal = O;

for i=1:taille
decimal = decimal + binaire(i)*2" (taille-i);
end

function vecteur = conv_dec_bin(date)

global N
vecteur = [];
%N = size(date,2);

fori= 1N
binaire = zeros(1,5);

if (date(i) == 0)
vecteur(l,1+5*(i-1):5*i)= binaire;
else
for j = L:ifloor(log(date(i))/log(2))+1
binaire(5-j+1) = mod(date(i),2);
date(i) = floor(date(i)/2);
end
vecteur(l,1+.5*(i-1):5%i)=binaire;
end
end
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10- Définition de la fonction vecteur_fitness et vecteur_fitness_cas2

Les fonctions vecteur_fitness et vecteur_fitness_cas2 sont données par :

% Cette fonction renvoie le fitness de chaque individu de la population et
% vérifie si les contraintes budgétaires sont respectées

%
function [vecteur, championl] = vecteur_fitness(population, mat_cond_init)

global Bglobal
global budget
global M

global N

global faisabilite
global alpha

alpha = 5;

annee = [J;

cout_annee = [];

t=[

Ct=1[1

somme_Ct = [];
somme_Ct_penalite = [];
champion = [];

temp = [I;

for i=1:M
k = 1; % incrémentation pour le vecteur annee et cout_annee
individu = population(i,:); % sélection de la solution i
% on calcule pour la premiere conduite les valeurs
(i,1) = conv_bin_dec(individu(l:alpha)); % annee optimale
Ct(i,1) = cout_tot(l,mat_cond_init,1(i,1)); % cout total
annee(i k) = 1(i,1); % annee optimal
cout_annee(i k) = Ct(i,1); % cout de lannee

somme_Ct(i) = C1(i,1); % budget global trouve

if(i==1)
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champion(1,1) = +(1,1);
cout_cond_min(1,1) = C1(1,1);
else
if (C1(i,1) < cout_cond_min(1,1))
champion(1,i) = 1(i,1);
cout_cond_min(1,1) = C1(i,1);
end
end

% on travaille sur les conduites restantes de 2 a N
for j=2:N

1(i.j) = conv_bin_dec(individu(l + alpha*(j - 1):alpha + alpha*(j - 1))); % annee optimale
Ct(i,j) = cout_tot(j,mat_cond_init,1(i,j)); % cout total de la conduite concernee
somme_Ct(i) = somme_Ct(i) + Ct(i,j);

if (i == 1)
champion(1,j) = +(1,j);
cout_cond_min(1,j) = Ct(1,j);
else
if (C1(i.j) < cout_cond_min(1,j))
champion(1,j) = t(i,j):
cout_cond_min(1,j) = Ct(ij);
end
end

temp = k; % sauvegarde de la derniere position
for m =1:k

if (+(i.j) == annee(i,m))

cout_annee(i,m) = cout_annee(i,m) + Ct(i,j);
break

else
if (temp == m)

k=k+1

annee(i k) = 1(i,j);

cout_annee(i k) = Ct(i j);
end

end



end
end
end

vecteur = somme_Ct; %somme_Ct_penalite;
championl = champion;

%
% Cette fonction renvoie le fitness de chaque individu de la population et
% vérifie si les contraintes budgétaires aont respectées

%
function [vecteur, sup_i, sup_il, vect_int] = vecteur_fitness_cas2(population,
mat_cond_init budgetglo)

global Bglobal2
global budget
global M

global N

global faisabilite
global alpha
global horizon

alpha = 5;

annee = [];

cout_annee = [];

t={1

c_t=1[1

somme_Ct = [1;
somme_Ct_penalite = [];
vect_cout = [1,

temp = [

for i=1:M
individu = population(i,:); % sélection de la solution i
% on calcule pour la premiere conduite les valeurs
1(i,1) = conv_bin_dec(individu(1:alpha)); % annee optimale

% on change de cout par conduite a chaque individu---------
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mat_cond_init(5,1:N) = technique(N);
%%

C_1(i,1) = cout_tot(1,mat_cond_init,1(i,1)); % cout total

somme_Ct(i) = C_t(i,1); % budget global trouve

% on travaille sur les conduites restantes de 2a N

for j=2:N
1(i.j) = conv_bin_dec(individu(l + alpha*(j - 1):alpha + alpha*(j - 1))); % annee optimale
C_1(i,j) = cout_tot(jmat_cond_init,1(i,j)). % cout total de la conduite concernee

somme_Ct(i) = somme_Ct(i) + C_1(i,j)

end % end for

% end for
%
forr=1:N
vect_date(r) = t(i,r) + 2007;
end

9
10

[ct, cout_glo] = cout_annee(N,vect_date mat_cond_init, horizon);
cout_glo;
yA
%templ = find(t == max (1));
Zopas = t(templ);
budget_an_est = budgets(budgetglo, horizon, 0);
somme_templ = O;
for ind = 1:horizon
temp_an(ind) = budget_an_est(ind)- ct(ind);
somme_templ = somme_templ + abs(temp_an(ind});
end

% calcul de la difference entre le cout annuel estimé et le cout reel

o/
/o

%
% Budget annuel comme critere
%




if (i==1)
minimum = abs(cout_glo - budgetglo);
sup_i=1;
vect_remp_reh = mat_cond_init(5,1:N); % sauvegarde des couts de rehab/remp
else
if (abs(cout_glo - budgetglo) < minimum)
minimum = abs(cout_glo - budgetglo);
sup_i=i:
vect_remp_reh = mat_cond_init(5,1:N); % sauvegarde des couts de rehab/remp
end
end

%
/o

% Budget annuel comme critere
%

if (i==1)
minimuml = somme_templ;
sup_il=1
vect_remp_rehl = mat_cond_init(5,1:N); % sauvegarde des couts de rehab/remp
else
if (somme_templ < minimum1)
minimuml = somme_templ;
sup_il = i;
vect_remp_rehl = mat_cond_init(5,1:N). % sauvegarde des couts de rehab/remp
end
end

Y%
/o

end

vect_int = vect_remp_reh;
0/0********************************************

%ovect_int = vect_remp_rehl; % <=== ATTENTION
vecteur = somme_Ct;

11- Définition de la fonction classement

La fonction classement est donnée par :

%
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% fonction de classement : Cette fonction classe les M individus ou vecteurs
% ou points de la population en fonction de leur cout par ordre

% decroissant. Par ex.: ici on renvoie un vecteur de taille M, qui

% contient les positions de chaque point dans la matrice population.

%

function vecteur_indice_ordre = classement(vecteur_fitness)
taille = size(vecteur_fitness,2);
vecteur_indice_ordre = zeros(taille, 1);
% on cherche un mimimum de toutes les valeurs du fitness
val_min = min{vecteur_fitness) - 1;
i=1
pas = O;
while(i <= taille)
% on cherche le tableau d'indice de position du maximum
temp = find(vecteur_fitness == max(vecteur_fitness));

pas = pas + size(temp,1); % on incremente le pas de la taille du tableau

vecteur_indice_ordre(i:pas) = temp(l:pas - i + 1); % on sauvegarde les positions

vecteur_fitness(temp) = val_min; % on affecte le min pour ne pas resélectionner les

positions
i =pas+1;
end

12- Définition de la fonction probabilité

La fonction probabilité est donnée par :

L7
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% assignation de la probabilite : Cette fonction calcule la probabilité
% en fonction du rang (valeur decroissante) de leur fitness
%

function vecteur_proba = probabilite(vecteur)
tailleM = size(vecteur,2); % trouve la taille du vecteur de probabilité
vecteur_proba = zeros(tailleM,1);
pm = 2./tailleM;
for j = LitailleM
vecteur_proba(j) = pm *(j - 1)/(tailleM -1);
end

13- Définition de la fonction choixAB.
La fonction choixAB est donnée par :

% -
% selection de A et B en fonction de leur probabilite : cette fonction

% permet de sélectionner deux parents en fonction de leur rang de

% probabilité selon la méthode de sélection par la roulette biaisée. Par

% ex.: ici on renvoie les positions (dans le vecteur de probabilté) des individus
%

function [indiceA, indiceB] = choixAB(vecteur_proba)
taille = size(vecteur_proba,1);
roulette = zeros(taille,1);
somme_cumulative = O;
for i = L:taille % obtention de la roulette
somme_cumulative = somme_cumulative + vecteur_proba(i);

roulette(i) = somme_cumulative;



end
% choix des indices des deux points avec la roulette au hasard
temp = [];
for i = 1:2 % pour deux points
temp(i,1) = rand*1;
aiguille = 1; % premiere tranche dans la roulette
j= 1

while (temp(i,1) > roulette(j))

jzivt
aiguille = j;
end

temp(i,1) = aiguille; % tranche ou se situe le pointeur dans la roulette
end
indiceA = temp(1,1);
indiceB = temp(2,1);

14- Définition des fonctions croisementAB et crosiementABu

Les fonctions croisementAB et croisementABu sont données par :

k-7
Yo
0 . . . . . .
7% fonction de croisement : elle fait une croisement en deux points sur deux
% individus sélectionnés et donne un unique enfant

.
/o

function enfant = croisementAB(A, B, N) % N nest pas necessaire

taille = size(A,2);
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enfant = [1;
% choix des deux points de croisement aléatoires
ki=1;
k2=-1;
while (k1 == k2)
ki = 1 + round(rand*(taille - 1));
k2 = 1 + round(rand*(tdille - 1));
if (k1> k2)
temp = k1.
kl = k2:
k2 = temp;
end
end
% croisement des parents pour donner un enfant
enfant(1,1:k1 - 1) = B(1:k1 - 1);
enfant(l kl:k2 - 1) = A(kl:k2 - 1);
enfant(1 k2:taille) = B(k2:taille);

9
7% fonction de croisement : elle fait une croisement en deux points sur deux
% individus sélectionnés et donne un unique enfant

9
Q0

function enfant = croisementABu(A, B, N)

taille = size(A,2);



enfant = [

masque = round(rand(1,N));

for i =I:N
if (i==1)
enfant(i) = A(i);
else
enfant(i) = B(i);
end
end

15- Définition de la fonction mutation

La fonction mutation est donnée par :

o,
%
% fonction mutation : Cette fonction opere une mutation aléatoire sur un
% individu en inversant une valeur de bit

%
/o

function [individu_mute] = mutation (individu)
individu_mute = [];
longueur = size(individu,2);
point = 1 + round(rand*(longueur - 1));
% opération de mutation
if (individu(1,point) == 0)
individu(1,point) = 1;
else individu(l, point) = O;

end

individu_mute = individu;
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16- Définition des fonctions generation et generation_cas2
Les fonctions generation et generation_cas2 sont données par :

%
% Algorithme génétique

.
/o

function [tabl, tab2] = generation(f, matrice, mat_cond_init) % f est la technique de
croisement

global Bglobal budget M N Ngen horizon date_theo
budget = []; % cout total du systeme
nb_eval = [1; % nombre évaluation
pas = 1;
%pause = input(' Tapez ENTREE");
population = matrice;
%[M N] = size(population);
compteur = 1;
while (compteur <= Ngen) % on a '‘Ngen' generations
% recherche de |'indice du meilleur cout des solutions
[cout, champion] = vecteur_fitness(population, mat_cond_init);
temp = find(cout == min (cout));
indice_minimum = temp(1); % sauvegarde de la position du meilleur individu

%
% tracé de la fonction de cout total en fonction des générations

somme2 = 0;

if (compteur == 1)



115

temp_champion = champion;
sommel = O;
fori= LN
sommel = sommel + cout_tot(i,mat_cond_init,temp_champion(1,i));
end
budget(1) = sommel;
nb_eval(l)= 1;
else
fori= LN
if
(cout_tot(i,mat_cond_init,champion(l,i))<cout_tot(i,mat_cond_init,temp_champion(1,i)))
temp_champion(1,i) = champion(1,i);
end
somme?2 = somme2 + cout_tot(i,mat_cond_init,temp_champion(l,i)):
end
if (compteur == pas*floor(Ngen/50))
pas = pas + 1;
budget(pas) = somme2;
nb_eval(pas) = pas*floor(Ngen/50);
end
end
%

% tableaux des evaluations en fonction des generations
tableaul(compteur) = cout(indice_minimum); % minimum
% on travaille sur la valeur optimale
cout_horizon = O;
fori= LN

temp?2 = population(indice_minimum,:);

an(i) = conv_bin_dec(temp2(1 + 5*(i - 1):5 + 5*(i - 1)));

cout_horizon = cout_horizon + Cm(an(i)) + Cr(an(i));

end
tableau2(compteur) = cout_horizon;

% on classe dans un vecteur les indices de la plus grande valeur a la
% plus petite de la fonction objective

vecteur_indice_ordre = classement{cout);



% on calcule la probabilité de la plus grande valeur a la plus petite

vecteur_proba = probabilite(cout);

fori=1M
[indA, indB] = choixAB(vecteur_proba);
A = population(vecteur_indice_ordre(indA 1),:);
B = population(vecteur_indice_ordre(indB,1),:);
enfant = feval(f, A, B, 5*N);

nouvelle_population(i,:) = enfant;

end
%======== fin croisement ================================z=z======
Yo======z============ on effectue la mutation ==========z==========

% nombre d'individus a muter

nombre = round(0.01*N*10*M);

for i = L:nombre
id = 1 + round(rand*(M - 1)); % indice de I'individu qui mute
individu_mute = mutation(nouvelle_population(id,:));
nouvelle_population(id,:) = individu_mute;

end
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end

% on travaille sur la valeur optimale pour trouver les temps optimaux des

indicel = 1 + round(rand*(M - 1));
nouvelle_population(indicel,:) = population(indice_minimum,:);
indice2 = 1 + round(rand*(M - 1));
while (indice2 == indicel)

indice2 = 1 + round(rand*(M - 1));
end

nouvelle_population(indice2,:) = conv_dec_bin(temp_champion);

population = nouvelle_population;

% incrementation du compteur

compteur = compteur + 1;

% conduites

fori=1:N

temp = nouvelle_population(indicel,:);
an(i) = 2007 + conv_bin_dec(temp(l + 5*(i - 1):5 + 5*(i - 1)));

end

an

[cout_an, cout_global] = cout_annee(N,an,mat_cond_init,horizon);
cout_global

temp = find(an == max (an));

date_max = an(temp(1));

%calcul buget global

somme3 = O;
somme4 = O;
fori=1:N
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somme3 = somme3 + cout_tot(i,mat_cond_init date_theo(i)-2007);
somme4 = somme4 + cout_tot(i,mat_cond_init,an(i)-2007);

end

Bglobal_theo = somme3;

Bglobal = somme4; %<== attention

%
flo

subplot(3,1,2)

hold on

%plot(nb_eval budgetl,’c').
%plot(nb_eval budget,'q");

%plot(nb_eval Bglobal, 'g -')

plot(nb_eval,Bglobal_theo, ‘'r **)

tab1 = [nb_eval;budget];% couts

tab2 = an; % dates

title('Evolution du cout total en $', 'color’, ‘blue’, 'Linewidth', 2);
xlabel('Generation', 'color', 'blue’,'Linewidth', 2);

ylabel('Cout ($)', 'color’, 'blue’,'Linewidth’, 2);

subplot(3,1,3)
hold on

axes_bar = 2007:1:date_max;
bar(cout_an);
plot(cout_global);

%
% Algorithme génétique
%

function [tabl, tab2] = generation_cas2(f, matrice, mat_cond_init, budgetglo) % f est la
technique de croisement

global Bglobal2 Bglobal budget M N Ngen horizon date_theo
budget = [1; % cout total du systeme

nb_eval = []; % nombre évaluation

temp_cout_int = [];

%nouvelle_population = [M,5*NJ;

pas = L.

%pause = input(' Tapez ENTREE");



population = matrice;
7%[M N] = size(population);
compteur = L;
while (compteur <= Ngen) % on a 'Ngen' generations
% recherche de |'indice du meilleur cout des solutions

[cout, entierl, entier2, cout_int] = vecteur_fitness_cas2(population,
mat_cond_init budgetglo);

indice_minimuml = entierl; % sauvegarde de la position du meilleur individu
indice_minimum?2 = entier2; % sauvegarde de la position du meilleur individu

Yommaomemmmnaaan sauvegarde de la meilleure solution (budget global)
if (compteur == 1)
temp_indice_minimuml = entierl;
temp_cout_indice_minimuml = cout(temp_indice_minimuml);
temp_cout_int1 = cout_int;
7%budget(1) = cout(temp_indice_minimuml); % <=== ATTENTION
%*******************************************************
nb_eval(1) = 1;
else

if (abs(cout(entierl) - budgetglo) < abs( temp_cout_indice_minimum1 - budgetglo))

temp_indice_minimuml = entierl;
temp_cout_indice_minimuml = cout(temp_indice_minimum1)
temp_cout_int1 = cout_int;
end
end

Jom=mmmmmmmmmmmme sauvegarde de la meilleure solution (budget annuel)
if (compteur == 1)

temp_indice_minimum2 = entier2;

temp_cout_int2 = cout_int;

budget(1) = cout(temp_indice_minimum2);% <=== ATTENTION

0/0******************************************************************

tempor = population(entier2,:);
fori=1IN

vect_date(i) = 2007 + conv_bin_dec(tempor(l + 5*(i - 1):5 + 5*(i - 1)));
end
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mat_cond_init(5,1:N) = temp_cout_int2;
[ct, ct_glo] = cout_annee(N vect_date mat_cond_init,horizon);
somme_tempor = O;
budget_an_est = budgets(budgetglo, horizon, 0);
for i = 1:horizon
somme_tempor = somme_tempor + abs(ct(i)-budget_an_est(i)):
end
temp_somme_tempor = somme_tempor,;

else
tempor = population(entier2,:);
fori=1N

vect_date(i) = 2007 + conv_bin_dec(tempor(l + 5*(i - 1):5 + 5*(i - 1))):
end
mat_cond_init(5,1:N) = cout_int;
[ct, ct_glo] = cout_annee(N vect_date mat_cond_init,horizon);
somme_tempor = 0;
budget_an_est = budgets(budgetglo, horizon, 0);
for i = 1:horizon
somme_tempor = somme_tempor + abs(ct(i)-budget_an_est(i)):
end
if (somme_tempor < temp_somme_tempor)
temp_somme_tempor = somme_tempor;
temp_indice_minimum2 = entier2;
temp_cout_int2 = cout_int;
end

end
o/

fo

% tracé de la fonction de cout total en fonction des générations

if (compteur == pas*floor(Ngen/50))
pas = pas+ 1,
%budget(pas) = temp_cout_indice_minimuml;
0/0**********************************************************
budget(pas) = cout(temp_indice_minimum2); % <=== ATTENTION
nb_eval(pas) = pas*floor(Ngen/50);

end

%
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% on classe dans un vecteur les indices de la plus grande valeur a la
% plus petite de la fonction objective

vecteur_indice_ordre = classement(cout);
% on calcule la probabilité de la plus grande valeur a la plus petite
vecteur_proba = probabilite(cout);
fori=1M

[indA, indB] = choixAB(vecteur_proba);

A = population(vecteur_indice_ordre(indA,1),:);

B = population(vecteur_indice_ordre(indB,1),:);

enfant = feval(f, A, B, 5*N);

nouvelle_population(i,:) = enfant:

end
%:::::::: f|n C[‘Olsemenf b oo enuagacpenunguefunfufu oo
%::::::::::::::::::: on effec"'ue Ia mu'l'a'l'ion —moDEZEZoo==zZIZzIzZzZZzzZZZZ2

% nombre d'individus a muter

nombre = round(0.01*N*10*M);

for i = l:nombre
id = 1 + round(rand*(M - 1)); % indice de |'individu qui mute
individu_mute = mutation(nouvelle_population(id,:));
nouvelle_population(id,:) = individu_mute;

end
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indicel = 1 + round(rand*(M - 1));
%nouvelle_population(indicel,:) = population(temp_indice_minimuml,:);
%*****************************************************************

nouvelle_population(indicel,:) = population(temp_indice_minimum2,:); % <===
ATTENTION

population = nouvelle_population;

% incrementation du compteur
compteur = compteur + 1;
end

% on travaille sur la valeur optimale pour trouver les temps optimaux des
% conduites

fori=1:N
%temp = nouvelle_population(temp_indice_minimuml,:);

%********************************************************************

temp = nouvelle_population(temp_indice_minimum2,:); % <=== ATTENTION
an(i) = 2007 + conv_bin_dec(temp(1 + 5*(i - 1):5 + 5*(i - 1)));

end

% graphique du budget annuel
an

% temp_cout_intl % <=== ATTENTION

%******************************************

temp_cout_int2

%mat_cond_init(5,1:N) = temp_cout_int1;% <=== ATTENTION



%*****************************************************

mat_cond_init(5,1:N) = temp_cout_int2;

[cout_an, cout_global] = cout_annee(N,an,mat_cond_init horizon):
cout_an
cout_global

%calcul budget global
somme3 = O;
fori= LN

somme3 = somme3 + cout_tot(i,mat_cond_init,an(i)-2007);
end
Bglobal2 = somme3;

%
/o

tabl = budget; % couts
tab2 = an; % dates

subplot(3,1,2)
hold on

tabl = [nb_eval;budget]; % couts
%plot(nb_eval budget,'c'):
plot(nb_eval budgetglo, 'r +'):;

Tiﬂe('évoluﬂon du cout total en $', 'color’, 'blue’,'Linewidth’, 2);
xlabel('Generation', ‘color', 'blue’,'Linewidth’, 2);
ylabel('Cout ($)', 'color', 'blue’,'Linewidth’, 2);

subplot(3,1,3)
hold on

axes_bar = 2007:1:horizon-1+2007;
bar(cout_an,04,'c");
plot(cout_global);

grid on
title('Couts annuels ($) sur 32 ans’, 'color', 'blue’,'Linewidth’, 2);

xlabel(' Année’, 'color’, 'blue’,'Linewidth’, 2);
ylabel('Cout ($)’, 'color’, 'blue’,'Linewidth’, 2);
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17- Définition des fonctions compil et compil2
Les fonctions compill et compil2 sont données par :

function [val_pop, val_mat, Budgetglo] = compill()
% comparaison des croisements

close all;

clear all

% generation de la population initiale

global Bglobal budget M N Ngen horizon date_theo

M = input('Entrer le nombre d individus de la population :');
N = input('Entrer le nombre de conduites :');

Ngen = input('Entrer le nombre maximal de génération :');
horizon = 32;

population = pop_init(M,5*N);
mat_cond_init = cond_init_stat(N);

f1 = @croisementAB;

[tab10, tab11] = generation(f1,population, mat_cond_init);
%pause = input(‘ Tapez ENTREE');

%f2 = @croisementABu;

%[tab20, tab21] = generation(f2, population, mat_cond_init);
%pause = input(‘ Tapez ENTREE");

%f3 = @croisementAB;

%[tab30, tab31] = generation(f3, population, mat_cond_init);

subplot(3,1,1)

hold on

plot(tabll, ‘b o');
%plot(tab21, 'b*");

%plot(tab3l, 'b +');
plot(date_theo, 'r 0'); %<==



TN

grid on

title('Date optimale de remplacement’, 'color’, 'blue','Linewidth’, 2);

xlabel(' Conduite’, 'color', 'blue’,'Linewidth’, 2);
ylabel('Date’, 'color’, 'blue’,'Linewidth’, 2);

subplot(3,1,2)
hold on

tab100 = tab10(1,:);
tab101 = tab10(2,:);

plot(tab100,tab101, 'o-b");

%1ab200 = tab20(1,:);
%tab201 = 1ab20(2,:):
%plot(tab200,tab201, *-b");

grid on

Tiﬂe('évoluﬁon du cout totalen $', 'color', 'blue’,'Linewidth’, 2);
xlabel('Generation', 'color', 'blue’,'Linewidth’, 2);

ylabel('Cout ($)', ‘color’, 'blue’,'Linewidth’, 2);

%plot(tab30, '+-b');

val_pop = population;
val_mat = mat_cond_init;
Budgetglo = Bglobal;
%

% fonction maitresse compil2

close all;
clear all
% generation de la population initiale

global Bglobal2 budget M N Ngen horizon date_theo
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[population,mat_cond_init,Bglo] = compill;
disp(Bglo);

Bglobal2 = input('Entrer le budget global :');
pause = input(' Tapez ENTREE');
mat_cond_init(5,:)

f1 = @croisementABu;

[tab10, tab11] = generation_cas2(f1,population, mat_cond_init,Bglobal2);

%pause = input(' Tapez ENTREE');
7%f2 = @croisementAB;

%[tab20, tab21] = generation_cas2(f2, population, mat_cond_init,Bglobal2);

%pause = input(' Tapez ENTREE");
%f3 = @croisementABu;

%[tab30, tab31] = generation_cas2(f3, population, mat_cond_init,Bglobal2);

subplot(3,1,1)

hold on

plot(tabll, ‘g *'):

%plot(tab21, 'b *');

%plot(tab31, 'b +');

%plot(date_theo, 'r 0'); %<==

grid on

title('Date optimale de remplacement’, 'color’, 'blue’,'Linewidth’, 2);
xlabel(' Conduite', 'color’, 'blue’,'Linewidth’, 2);
ylabel('Date', 'color’, 'blue’, 'Linewidth’, 2);
subplot(3,1,2)

hold on

tabl00 = +ab10(1,:):
tab101 = tab10(2,:);

plot(tab100,tab101, '*-g');
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%tab200 = tab20(1,:);
%tab201 = tab20(2,:);
%plot(tab200,tab201, '"*-b");

grid on

title('Evolution du cout total en $', 'color’, 'blue’,'Linewidth', 2);

xlabel(' Generation', 'color’, 'blue’, 'Linewidth’, 2);
ylabel('Cout ($)’, 'color’, 'blue’,'Linewidth’, 2);

%tab300 = tab30(1,:);
%tab301 = 1ab30(2,:);
%plot(tab300,tab301, "*-b');

grid on

ﬂﬂe('évolufion du cout totalen $', 'color’, 'blue’,'Linewidth’, 2);

xlabel('Generation’, 'color’, 'blue’,'Linewidth’, 2);
ylabel('Cout ($)', 'color’, ‘blue’,'Linewidth’, 2);
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18- Exemple d’exécution du programme.

Les fichiers suivant sont crées lors du déroulement du programme : dates_sh_stat.txt

(qui enregistre les dates théoriques) et histo.txt (qui enregistre les coiits annuels).

Voici les courbes obtenues par les simulations :
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