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RESUME 

L'algorithme genetique est utilise pour optimiser les dates d'intervention sur les conduites 

d'eau d'un petit reseau de distribution. Pour cela, deux modeles sont etudies : l'un avec 

contraintes budgetaires et l'autre sans contraintes budgetaires. L'objectif est de minimiser 

le cout total du systeme sur un horizon de temps determine. Cette etude met en oeuvre les 

etapes de cet algorithme pour les deux modeles analyses. Les avantages et les 

inconvenients de l'utilisation d'un tel outil pour optimiser les plans de renouvellement 

d'un reseau d'aqueduc sont notes. Les variables de decision sont les dates d'intervention 

sur les conduites d'eau et les types d'intervention - la rehabilitation et le remplacement. 

Mots cles : aqueducs, reseau de distribution d'eau potable, rehabilitation, remplacement, 

optimisation, couts, algorithme genetique. 



VII 

ABSTRACT 

This paper details how genetic algorithm has been used to optimize dates of intervention 

of the water mains of a small network. Two models have been studied, one with budget 

constraints and the other without. The goal is to minimize the total cost of the system 

throughout the planning phase. This study elaborates the algorithm process used in the two 

different models. The advantages and disadvantages of using such a tool in the 

optimization plans of water distribution system renewal are also stated. The decision 

variables used are: the dates of intervention on the water mains, and the types of 

intervention - rehabilitation and replacement. 

Keywords: aqueducts, water distribution system, rehabilitation, replacement, 

optimization, costs, genetic algorithm. 
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AVANT-PROPOS 

Dans la Ville de Montreal comme dans la plupart des grandes metropoles, la majorite des 

conduites des reseaux d'eau potable ont atteint, sinon depasse leur duree de vie utile. La 

degradation de ces reseaux se manifeste par des interruptions de service, des bris de 

conduites, un manque de pression au robinet des consommateurs, etc. Plus le reseau 

vieillit, plus les couts de maintenance investis pour assurer un service minimal aux 

consommateurs augmentent. En faisant une analyse des couts actualises de maintenance et 

ceux du remplacement de la conduite en fonction du temps depuis le moment de sa mise 

en oeuvre, on peut se rendre compte qu'il arrive un moment ou il est plus economique de 

remplacer la conduite que de la maintenir. Ainsi, pour assurer la perennite des conduites 

du reseau d'alimentation en eau, il est important de calculer le moment optimal pour 

proceder a leur remplacement. 

Par ailleurs, les fonds alloues a la refection des conduites d'eau potable sont insuffisants 

face a l'ampleur des conduites a restaurer. Les contraintes budgetaires ont d'ailleurs 

pousse les gestionnaires municipaux a se tourner vers des techniques dites de 

rehabilitation, autres que le remplacement conventionnel des conduites. De ce fait, la 

rehabilitation, moins couteuse que le remplacement, devient de plus en plus privilegiee 

comme solution d'intervention sur la conduite. Sachant que les budgets sont limites, il faut 

etre en mesure de proposer un outil qui permet aux gestionnaires de trouver la date 

optimale d'intervention (rehabilitation ou remplacement) des conduites en tenant compte 

des fonds disponibles. Ce projet de recherche s'inscrit dans cette vision en proposant un 
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modele d'optimisation des plans d'intervention des conduites d'aqueduc, qui permet une 

planification des interventions a long terme sur le reseau en tenant compte des restrictions 

budgetaires. 
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INTRODUCTION 

L'optimisation des plans d'intervention des reseaux d'aqueduc provient d'une volonte 

des gestionnaires municipaux d'assurer la perennite des conduites d'eau potable en 

tenant compte des contraintes budgetaires. 

L'optimisation appliquee aux reseaux de distribution d'eau potable porte sur quatre 

grands axes : 1) les plans d'ensemble a long terme, 2) la conception du reseau, 3) la 

configuration du reseau et 4) la rehabilitation. Les plans d'ensemble porte sur l'influence 

bilaterale entre le reseau d'aqueduc et la collectivite a laquelle il est rattache, par 

exemple, la verification de la necessite d'installer un reservoir. La conception cible les 

details de design d'un reseau, par exemple, le choix judicieux des materiaux et de 

l'emplacement des conduites. La configuration, qui est un cas particulier de la 

conception, est principalement centree sur la disposition de tous les elements du reseau 

qui sont essentiellement les conduites, les pompes, les vannes, les reservoirs, et les 

chateaux d'eau. Et enfin, la rehabilitation porte sur les plans d'amelioration du reseau 

existant au travers d'interventions immediates ou planifiees sur une periode de temps. 

Dans ce rapport, on va se concentrer sur la rehabilitation des conduites d'eau potable, 

c'est-a-dire, toute intervention sur la conduite pour ameliorer ses capacites hydrauliques 

et structurales afin de garantir un service minimal ininterrompu. 

Au niveau de la rehabilitation, plusieurs criteres d'optimisation peuvent etre traites. On 

les rassemble en trois grands criteres : 1) economique, 2) de fiabilite et 3) de qualite. Le 

critere economique vise a reduire les couts imputes a la rehabilitation d'une partie ou de 
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l'ensemble du reseau. Le critere de fiabilite vise a fournir un service adequat et 

performant en tout temps, c'est-a-dire, un systeme qui fonctionne sous differentes 

conditions d'operations parfois exceptionnelles comme la fermeture brusque d'une 

vanne. Le critere de qualite vise a diminuer l'effet nocif des reactions chimiques entre 

l'eau et la conduite qui se deteriore, afin de fournir une eau saine aux consommateurs. 

Dans ce rapport, on a mis de cote les criteres de fiabilite et de qualite. Seul le critere 

economique est aborde et le but de notre etude est de developper un outil d'identification 

des strategies d'intervention (sur le reseau de conduites d'eau potable) les moins 

couteuses. 

L'objectif de ce projet est d'optimiser le cout total des interventions sur le reseau de 

conduites d'eau potable. Ce cout comprend: les couts de reparation, les couts de 

rehabilitation et les couts de remplacement. L'outil envisage cherche a minimiser le cout 

total actualise du systeme sujet a des contraintes budgetaires, soit au niveau du budget 

total alloue pour une periode de temps fixee, soit au niveau des budgets annuelles 

admissibles. 

La methodologie que Ton a developpee pour optimiser les interventions sur le reseau se 

fait en deux etapes : 1) une programmation sans contraintes budgetaires (premier modele) 

et 2) une programmation avec contraintes budgetaires (deuxieme modele). Le premier 

modele consiste a faire une programmation des interventions avec un budget illimite. II 

sert a valider 1'algorithme genetique en comparant les resultats obtenus avec ceux de 

l'analyse theorique. Une fois l'etape de validation terminee, le modele va permettre d'une 

part d'optimiser le cout total du systeme en determinant le moment optimal pour intervenir 
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sur la conduite, et d'autre part d'evaluer le budget total requis pour le renouvellement du 

reseau sur un horizon de temps choisi. Dans le deuxieme modele, on impose des 

contraintes budgetaires. Deux scenarios vont etre etudies: le premier porte sur une 

contrainte au niveau du budget total alloue sur l'horizon de temps, et le second porte sur 

les budgets annuels admissibles sur l'horizon de temps. On va etudier l'impact de ces 

restrictions budgetaires sur le reseau. Pour cela, une premiere programmation des 

interventions sera faite par le premier modele sans contraintes budgetaires, et le deuxieme 

modele proposera une nouvelle programmation en tenant compte des contraintes 

budgetaires. 

La methode de calcul choisie pour optimiser le systeme est l'algorithme genetique. Cet 

algorithme est utilise environ depuis une dizaine d'annee pour traiter certains problemes 

d'optimisation dans les reseaux d'eau potable. Cette etude permettra d'une part de 

maitriser les etapes de mise en oeuvre de 1'algorithme genetique et d'autre part, de 

determiner les avantages et les inconvenients de l'utilisation d'un tel algorithme pour 

optimiser le cout total des interventions sur les reseaux d'eau potable. Cet algorithme se 

distingue des autres par quatre points specifiques : 1) il utilise un codage des elements de 

l'espace de recherche et non les elements eux-memes, 2) il recherche la solution optimale 

a partir d'une population de points et non a partir d'un seul point, 3) il n'a pas besoin des 

notions de continuity, de derivabilite ou de convexite des fonctions, et enfin 4) il utilise 

des processus stochastique dans sa mise en oeuvre. Au debut de chaque simulation, une 

population de solutions potentielles couvrant un large espace de decision (espace de 
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solutions) est generee. Celle-ci evoluera et convergera vers les meilleures solutions du 

probleme (pas necessairement optimales). 

Ce rapport est organise comme suit: le premier chapitre porte sur ralgorithme genetique 

utilise comme technique de calcul dans le modele d'optimisation developpe. Le deuxieme 

chapitre porte sur la formulation du probleme d'optimisation. Le troisieme chapitre traite 

du premier modele utilise pour valider les resultats de l'algorithme genetique. Le 

quatrieme chapitre traite du deuxieme modele qui prend en compte les restrictions 

budgetaires. Une premiere programmation des interventions sera faite avec le premier 

modele sans contraintes budgetaires, et le deuxieme modele proposera une deuxieme 

programmation pour respecter au mieux les restrictions budgetaires. Et enfin, on terminera 

par une conclusion. 
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CHAPITRE 1 

ALGORITHME GENETIQUE 

1.1. INTRODUCTION 

L'algorithme genetique est une methode stochastique1 de recherche d'optimum, qui 

simule les processus biologiques de selection naturelle darwinienne et de la reproduction 

genetique, pour optimiser des fonctions non lineaires. Cette methode a ete developpee par 

le professeur John Holland (1975) et a ete popularisee par l'un de ses etudiants, David 

Goldberg (1989). 

La selection naturelle de Charles Darwin (1802-82) repose sur la lutte pour la survie des 

especes voulant s'etendre dans un environnement contraint par son espace et ses 

ressources disponibles. De ce fait, les especes les mieux adaptees a 1'environnement 

tendent a survivre plus longtemps et a se reproduire plus facilement. Darwin remarqua 

aussi des variations genetiques entre les especes, et il conclut que la selection naturelle se 

fait par une apparition aleatoire dans les genes de variations transmissibles a la 

progeniture. Les lois de variations (croisement et mutation) furent expliquees plus tard par 

Mendel (1822-84), puis par la genetique moderne. 

Ainsi, Falgorithme genetique est caracterise par deux operateurs principaux: 

• Les operateurs dits d'evolution : la selection, qui imite les processus d'evolution 

darwinienne pour creer des populations de generation en generation. 

1 Utilisant des processus aleatoires 
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• Les operateurs dits genetiques: le croisement et la mutation, qui imitent les 

processus d'heredite des genes expliques par la genetique moderne, pour creer de 

nouveaux genes a chaque generation. Us permettent de diversifier la population au 

cours des generations. 

Le vocabulaire utilise est directement inspire de celui de la theorie de revolution et de la 

reproduction genetique. 

Tableau 1.1 Correspondence entre le lexique genetique et le lexique mathematique 

Lexique genetique 

Population 

Individus 

Genes 

Chromosome 

Allele 

Phenotype d'un individu 

Genotype d'un individu 

Locus 

Lexique mathematique 

Ensemble de solutions potentielles 

Solutions potentielles 

Variables 

Partie d'une solution potentielle 

Bit 

Valeur de la fonction d'evaluation 

Chaines de bit qui caracterisent la solution 

Position du bit 
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1.2. MECANISMES 

L'algorithme genetique se fragmente simplement comme suit 

Adaptation au probleme pose 

Initialisation de la population 

, * 
—i Evaluation 

Non 

.*. 
Selection 

.¥ 
Croisement 

.¥. 
Mutation 

! Remplacement 

I 
Arret 

> -
Operateurs 

Oui 
-> FIN 

Figure 1.1 Sequences de l'algorithme genetique 

Dans les sections suivantes, nous allons exposer chaque etape du deroulement de 

ralgorithme. Pour illustrer ce dernier, on l'applique au probleme suivant: 

Minimiser F(xi, X2) = xi2 + X22, sous les trois contraintes suivantes : xi e [0; 5], 

X2G [0;7]etxi + x2<10. 
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1.2.1. Adaptation au probleme pose 

Tout d'abord, il faut definir: 1) le codage utilise, 2) l'espace de recherche, 3) les fonctions 

economique et devaluation, et 4) les parametres de Falgorithme genetique. 

Codage 

Une partie cle de l'algorithme genetique est de savoir comment coder une solution du 

probleme par un chromosome ou une serie de chromosomes. Pour cela, il faut choisir la 

representation chromosomique (genotype) de chaque individu de la population. Les 

codages les plus populaires sont: 

• Le codage binaire : le chromosome est une suite de 0 et 1. H existe le codage 

binaire standard et le codage de Gray (oil deux codes d'entiers successifs ne 

different que par un bit contrairement au codage binaire standard). 

• Le codage a caracteres multiples: le chromosome est une chaine de caracteres 

differents. Le codage binaire est un cas simple de ce type de codage. 

• Le codage flottant: le chromosome est represents par un nombre flottant (reel). 

• Le codage sous forme d'arbre : le chromosome est un noeud d'un arbre. Ce type 

de codage permet de mieux visualiser les selections et les mutations. Cependant 

l'analyse de l'ensemble de ces arbres est complexe et ce codage n'est approprie 

qu'aux problemes de taille finie. 
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L'espace de codage contient l'ensemble des chromosomes tandis que l'espace de solutions 

contient l'ensemble des solutions du probleme. La figure 1.2 illustre le passage de l'espace 

de codage a l'espace de solutions et vice versa. 

Decodage 

Codage 

Figure 1.2 Correspondence entre l'espace de codage et l'espace de solutions 

Dans le cas de notre exemple avec la fonction F(xi, X2), on definit l'espace de solutions 

par l'ensemble de points (xi, X2) tels que 0 < xi < 5 et 0 < X2 < 7. Le codage binaire 

standard est choisi pour coder cet ensemble de solutions. L'espace de codage est 

l'ensemble de chromosomes codes sur 5 bits de la maniere expliquee dans le tableau 

2 5 - l 
suivant. Posons Ax;=-^—j-, avec a; < Xj < b; pour i = 1 ou 2. 

Tableau 1.2 : Correspondance entre l'espace de codage et l'espace de solution 

Chromosome Valeur entiere Solution 

00000 0 a; 

00001 1 aj + lAxi 
00010 2 ai + 2Axi 

11110 30 ai + 30Axi 
11111 31 a; + 3lAxi = bi 

Une question importante concernant le codage et le decodage entre les chromosomes et les 

solutions est de savoir si la solution decodee tombe dans une region de solutions faisables, 
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surtout pour un probleme d'optimisation avec contraintes. La figure 1.3 illustre ce risque 

lors du decodage du chromosome. 

Figure 1.3 Risque lors du decodage du chromosome 

Dans le cas de notre exemple, lors du decodage, il y a des risques que la solution obtenue 

ne soit pas faisable comme on peut 1'observer sur la figure 1.4. 

Figure 1.4 : Domaine de faisabilite de la solution 

L'espace colore represente l'espace de solutions. Cependant, les solutions faisables sont 

contenues uniquement dans l'espace colore en jaune, ou elles respectent la contrainte 

xi + x2< 10. 
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Espace de recherche 

II correspond a l'espace de solutions faisables. La prise en compte des contraintes 

permet de delimiter l'espace de recherche (voir Figure 1.4). 

Fonctions economique et devaluation 

• Lafonction economique 

Elle est utilisee pour mesurer la performance de chaque individu pour un probleme precis. 

Dans un probleme de minimisation, les meilleurs individus ont les plus petites valeurs de 

la fonction economique. 

Dans le cas de notre exemple, la fonction economique est tout simplement la fonction a 

minimiser F(xi, X2) = xi2 + X22. 

• Lafonction d'evaluation 

Elle est utilisee pour transformer la valeur de la fonction economique en une mesure 

relative adaptee au probleme. Par exemple, si la fonction economique est le cout total du 

systeme, pour un probleme de minimisation, la fonction d'evaluation peut etre choisie 

comme 1'inverse de la fonction economique alors que pour un probleme de maximisation, 

elle peut rester identique a la fonction economique. 

La fonction d'evaluation doit aussi pouvoir tenir compte des solutions non faisables si le 

probleme doit satisfaire des contraintes. Dans le cas d'une optimisation avec contraintes, 

trois strategies pour traiter ces contraintes sont proposees : 
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o Le rejet: On rejette tous les chromosomes non faisables. Cette strategic est 

populaire pour les algorithmes genetiques. 

o Le remplacement: On prend le chromosome non faisable et on le 

remplace. Cela implique l'existence d'une procedure systematique qui 

remplace un chromosome non faisable par un chromosome faisable. Cette 

procedure est specifique au probleme etudie. 

o La penalite: On considere les solutions non faisables en formulant une 

fonction d'adaptation qui est elaboree par 1'addition ou la multiplication 

d'une fonction de penalite (statique ou dynamique) a la fonction 

economique. 

Les deux premieres strategies ont l'avantage de ne pas generer des solutions infaisables 

mais le desavantage de ne pas considerer les solutions a l'exterieur de la zone de 

faisabilite. Si le probleme est hautement contraint, les solutions infaisables peuvent etre en 

grande proportion dans la population. 

Parametres de l'AG 

• La taille de la population N 

Elle affecte la performance et l'efficacite de l'algorithme. Une taille N faible risque de 

donner un echantillon insignifiant de la population et de faire converger rapidement 

l'algorithme vers un optimum local. Une taille N elevee demande beaucoup 

devaluations de la fonction d'adaptation par generation et peut entrainer une 

convergence d'une lenteur inacceptable. 
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• Le taux de croisement pc 

H determine la proportion des individus produits a chaque generation. Le nombre attendu 

d'individus est done pc x N. Un taux pc fort permet une meilleure exploration de l'espace 

et reduit les chances de stagner sur un optimum local; neanmoins un taux pc trop eleve 

resulte en un gaspillage de temps de calcul du a une exploration inutile des zones non 

prometteuses dans l'espace de recherche. 

• Le taux de mutation pm 

E permet de controler la frequence a laquelle des mutations (voir section 1.2.6) sont 

effectuees dans la population. Si pm est trop faible, certains genes interessants ne seront 

jamais essayes ou restitues (apres un croisement). Si pm est trop eleve, la recherche sera 

fondamentalement aleatoire et la convergence est ainsi freinee. 

1.2.2. Initialisation de la population 

La premiere population est generee aleatoirement dans l'espace de codage et celle-ci est 

appelee a evoluer au cours des generations. Cette population caracterise un ensemble de 

solutions potentielles au probleme. Chaque individu de la population est done une solution 

faisable ou non faisable. 

Dans le cas de notre exemple, chaque individu est compose de deux chromosomes 

representant respectivement les points xi et x2. Par exemple, un individu est: 

01000 10001 

xi x2 
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Si la population comporte cinquante individus, nous allons generer deux series de 

cinquante chromosomes a 5 bits pour xi et x2. 

1.2.3. Evaluation 

Une fois la fonction d'adaptation definie (etape precedente), on calcule la valeur 

d'adaptation de chaque individu de la population. 

Dans le cas de notre exemple, la valeur de la fonction devaluation est donnee tout 

9 9 

simplement par F(xi, x2) = xi + x 2 . Selon le tableau 1.2, on a le decodage suivant: 

xi = 01000 •> xi = 0 + 8 ^ ^ - ~ 1,29. 
2 5 - l 

x2 = 10001 •* xi = 0 + 1 7 - ^ - ~ 3,84. 

2 5 - l 

D'oii la valeur d'adaptation de l'individu egale a F(xi, x2) ~ 1,292 + 3,842 ~ 16,41. 

1.2.4. Selection 

Compte tenu de la fonction d'adaptation de chaque individu, la selection s'effectue en 

choisissant les individus qui vont s'apparier pour creer la generation suivante. Pour cela, 

les individus sont classes en fonction de leur valeur de la fonction d'adaptation. 

Habituellement, la probabilite de selection d'un individu depend du rang de ce dernier. 

On distingue trois types principaux de selection (stochastique, deterministe et mixte). 
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La selection stochastique 

Elle favorise toujours les meilleurs individus mais de maniere stochastique. Ceci laisse une 

chance aux individus moins performants d'etre selectionnes. H se peut meme que le 

meilleur individu ne soit pas selectionne et qu'aucun enfant ne soit trouve meilleur que le 

meilleur parent. Les techniques les plus connues sont: 

• La selection par le tirage de la roulette 

Chaque individu a une chance d'etre selectionne en fonction de sa valeur de la fonction 

d'adaptation. La probabilite de selection pi de l'individu i avec une valeur d'adaptation Fj 

F 
sur une population de taille N est p; =-^-i— • 

I*. 

Dans le cas de notre exemple, prenons quatre individus. Le tableau 1.3 presente le calcul 

de la probabilite pour le tirage par roulette. 

Tableau 1.3 : Calcul de la probabilite de selection des individus par le tirage de la roulette 

Espace de codage 

Xl X 2 

10001 11101 

00101 01011 

oino ooon 
11011 00110 

Espace mathematique 

Xl 

17 

5 

14 

27 

x2 

29 

11 

3 

6 

Espace de solutions 

Xl 

2,74 

0,81 

2,26 

4,35 

x2 

6,55 

2,48 

0,68 

1,35 

Espace de solutions 

F(xb x2) p 

50,40 0,60 

6,82 0,08 

5,56 0,07 

20,80 0,25 

Ensuite, un nombre aleatoire 8 est genere entre 0 et 1. Ce nombre represente le marqueur 

tel qu'illustre a la figure 1.5. Pour utiliser l'image de la roulette, chaque individu a une 

case dans la roulette dont la longueur est egale a la probabilite de selection de l'individu. 
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Ce dernier est selectionne si le marqueur pointe sur sa case. Par exemple, si 8 = 0,40 alors 

le premier individu sera selectionne. 

Figure 1.5 : Selection par tirage de la roulette 

Avec cette methode, un individu faible a des chances d'etre choisi autant de fois qu'il y a 

de place pour la generation suivante et le meilleur individu peut ne pas etre selectionne. 

• La selection stochastique universelle 

Elle est construite comme la roulette, mais au lieu de posseder un seul marqueur, celle-ci 

possede N marqueurs espaces de maniere equidistante, N etant la taille de la population. 

La longueur de la case du chromosome est d, = N x pj. On selectionne alors les individus 

autant de fois qu'un marqueur pointe sur leur case. Un individu est alors sur d'etre 

selectionne un minimum de fois egal a la partie entiere de pi et un maximum de fois egal a 
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la partie entiere par exces de p;. Cette methode permet de garder le nombre attendu de 

copies de chaque chromosome. 

Dans le cas de notre exemple, N = 4. 

Tableau 1.4 : Calcul de la probability pour la selection stochastique universelle 

p 

0,60 

0,08 

0,07 

0,25 

d = N x p 

2,40 

0,32 

0,28 

1,00 

Partie 
entiere 

2 

0 

0 

1 

Partie 
entiere 

par exces 

3 

1 

1 

1 

Figure 1.6 : Selection stochastique universelle 

• La selection par la roulette biaisee 

Les individus sont classes en fonction de la valeur de la fonction d'evaluation en ordre 

croissant. Soit r le rang de chaque individu, N la taille de la population et 8 un nombre 



18 

genere aleatoirement entre 0 et 1, on selectionne l'individu de rang r si 8 appartient a 

r-1 r _ 1 

l'intervalle A = [ ̂  pk, ]T/?* ] avec pr = MX~AT7 • 
k=\ k=\ " ^~L 

Dans le cas de notre exemple, les quatre individus du tableau 1.4 sont classes dans le 

tableau suivant: 

Tableau 1.5 : Calcul de la probability pour la selection par la roulette biaisee 

Individu 

1 

2 

3 

4 

F(xb x2) 

50,40 

6,82 

5,56 

20,80 

r 

1 

3 

4 

2 

Pr 

0,00 

0,33 

0,50 

0,17 

A 

[0;0] 

[0,17; 0,5] 

[0,5 ; 1] 

[0; 0,17] 

L'individu le plus faible a une probabilite quasiment nulle d'etre selectionne. 

La selection deterministe 

Elle favorise toujours une selection des meilleurs individus de maniere deterministe, ce qui 

ne laisse quasiment aucune chance aux individus moins performants. Pour cela, il faut trier 

l'ensemble de la population selon la valeur de la fonction d'adaptation et choisir les 

meilleurs. Les techniques les plus connues sont: 

• La selection par troncature ou par bloc 

Les individus sont tries en fonction de leur valeur de fonction d'evaluation et les meilleurs 

parents sont selectionnes pour creer la generation suivante. Dans la selection par 

troncature, un seuil T est defini de telle sorte que T % des meilleurs individus sont 

selectionnes et chacun regoit environ 100/T copies. Dans la selection par bloc, pour une 
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taille de la population donnee N, on cree k copies des N/k meilleurs individus. Les deux 

methodes sont identiques si k = N/T. 

• La selection de Brindel 

F 
La probability de selection de chaque individu i est p; = - j J — , F etant la valeur de la 

I.", 
fonction devaluation. Le nombre de fois que Ton selectionne chaque individu est la partie 

entiere de p; x N, N etant la taille de la population. Le reste des individus a completer dans 

la population est pris parmi les meilleurs de la liste triee. 

La selection mixte 

Elle permet une selection des individus a la fois de maniere deterministe et stochastique. 

Les techniques les plus connues sont: 

• La selection stochastique des restants de Brindel 

Lorsqu'on a fait la selection de Brindel de fa§on deterministe, on selectionne le reste des 

individus de maniere aleatoire pour atteindre la taille de la population. 

• La selection par tournoi 

La selection par roulette est utilisee pour choisir des paires successives d'individus et celui 

qui a la plus grande valeur d'adaptation est selectionne automatiquement. Le processus 

continue jusqu'a ce que le nombre d'individus selectionnes atteigne la taille de la 

population. Dans le cas de notre exemple, a travers l'operateur de selection, les individus 

vont etre selectionnes deux a deux. 
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1.2.5. Croisement 

Une fois les individus selectionnes, l'operateur de croisement favorise l'exploration de 

l'espace de recherche, par le brassage des individus. II combine les genotypes de deux 

individus parents pour obtenir deux individus enfants. Plusieurs methodes de croisement 

peuvent etre utilisees, entre autres, le croisement multipoint et le croisement uniforme. 

Le croisement en k points ou croisement multipoint 

On choisit au hasard k points de croisement, avec k compris entre 1 et L - 1, ou L est la 

longueur du genotype. Les fragments sont echanges de la maniere illustree ci-dessous. 

Le croisement en un point est un cas particulier. Les fragments situes apres le point de 

croisement sont echanges pour donner deux nouveaux genotypes. 

Parent 1: 101,11 Enfant 1: flOO 

Parent 2: 11000 Enfant 2: l loH 

Le croisement uniforme 

H s'agit d'un croisement multipoint dont le nombre de points de croisement n'est pas 

connu a l'avance et est aleatoire pour chaque couple. Chaque position est un point de 

croisement potentiel. On cree un masque de croisement de longueur egale a celle du 

genotype de facon aleatoire et la parite des bits dans le masque indique quel parent va 

donner quel bit aux enfants. 
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Parent 1: 101 Hi 

Parent 2: 00011 

Masque : 00110 

Enfant 1: 003^ 1 

Enfant 2: 100 iS 

L'enfant 1 est produit en prenant le bit du parent 1 si le bit correspondant du masque vaut 

1 et le bit du parent 2 si le bit correspondant du masque vaut 0. L'enfant 2 est cree en 

utilisant le masque inverse ou en echangeant les parents 1 et 2. 

1.2.6. Mutation 

L'operateur de mutation est utile pour une bonne exploration de l'espace de recherche. En 

effet, il permet d'eviter le phenomene de derive genetique, ou certains genes favorises par 

le hasard peuvent se repandre au detriment des autres et etre presents au meme endroit sur 

tous les genotypes. H permet aussi une meilleure recherche locale, car lorsque les 

individus ont converge autour de 1'optimum global, le croisement devient inefficace du 

fait que ces individus sont souvent identiques. La mutation donne alors une chance de 

s'approcher de 1'optimum global. De nombreuses methodes existent pour realiser 

l'operateur de mutation : 

L'inversion 

On choisit un bit au hasard dans une chaine binaire et on 1'inverse. 

Individu : # 1 0 Individu mute : 0'|() 10 



22 

La permutation 

On permute deux bits dans une chaine binaire. 

Individu : Og)l| Individu mute : # 1 1 

D'autres strategies de mutations existent. Par exemple, on peut accentuer la mutation vers 

les individus les plus faibles tout en conservant les genes des meilleurs individus; ou 

encore on peut parametrer l'operateur de mutation de telle sorte que celle-ci decroisse avec 

la convergence de la population. 

1.2.7. Remplacement 

L'operateur de remplacement sert a maintenir la taille originelle de la population, en 

selectionnant les enfants issus du croisement des parents selectionnes et de la mutation 

pour creer la nouvelle population. II existe plusieurs formes de remplacement, entre 

autres: 

• Le remplacement generationnel: on remplace 1'ensemble des parents par leurs 

enfants. Une autre version est le remplacement de j mauvais parents par j enfants. 

• L'elitisme: on applique le remplacement generationnel mais les meilleurs 

individus de la generation courante sont selectionnes et passent automatiquement 

dans la generation suivante. II permet de toujours conserver la meilleure solution. 

1.2.8. Arret 

Une fois la nouvelle population creee, les sequences devaluation, de selection, de 

croisement et de mutation, et enfin de remplacement recommencent successivement. H 
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faut alors definir un critere d'arret. Si ce dernier n'est pas respecte, les sequences se 

repetent indefiniment, faisant ainsi evoluer la population. Ce critere peut etre un nombre 

maximal de generations, un temps maximal de calcul, un nombre de fois significatif ou le 

meilleur individu n'a plus change au cours des generations, ou encore un test sur le 

meilleur individu trouve. Si aucune solution acceptable n'est trouvee, on relance la 

recherche. 

En conclusion, l'algorithme genetique commence par une initialisation de la population 

(ensemble de solutions) de maniere aleatoire. Chaque individu de la population represente 

une solution potentielle du probleme. L'individu est represente par un vecteur de 

symboles, dans la plupart des cas, il s'agit d'un vecteur binaire. Ces individus evoluent de 

generation en generation. Durant chaque generation, les individus sont evalues par une 

fonction d'evaluation (phenotype). Compte tenu de leur valeur de la fonction d'evaluation, 

les individus parents sont selectionnes par un processus de selection (deterministe et/ou 

stochastique), pour creer de nouveaux individus enfants a l'aide des operateurs de 

croisement et de mutation. Une variante de mise en oeuvre de 1'algorithme genetique est de 

former la generation suivante en generant une nouvelle population a partir des individus 

enfants crees et des individus parents choisis, tout en s'assurant de maintenir la taille de la 

population constante. Le choix de conserver certains individus parents d'une generation 

courante dans la gdndration suivante vient du fait qu'il peut arriver qu'aucun des individus 

enfants crees ne soient trouves meilleurs que les meilleurs des individus parents. Apres 

plusieurs generations (ou iterations), l'algorithme converge vers le meilleur individu qui 

est considered comme la solution optimale du probleme. 
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CHAPITRE 2 

FORMULATION DU PROBLEME 

La reduction des couts totaux du systeme par une planification efficace des 

investissements sur le reseau est l'une des problematiques courantes a laquelle font face 

les ingenieurs, les praticiens et les gestionnaires municipaux dans le but d'apporter une 

aide a la decision pour des interventions sur les conduites des reseaux d'eau potable. 

Plusieurs chercheurs se sont penches depuis les trente dernieres annees sur ce sujet et ont 

propose differents modeles d'optimisation pour minimiser les couts du systeme. Les 

modeles presentes dans la section suivante ont utilise Talgoritlime genetique comme 

methode de calcul pour optimiser les couts totaux du systeme. Ces modeles sont 

pertinents dans la mesure ou ils permettent la mise en place d'un systeme solide et fiable 

d'aide a la decision en matiere de renouvellement des conduites des reseaux d'eau. 

2.1. REVUE DE LA LITTERATURE 

L'optimisation des couts de decision dans les reseaux de distribution d'eau potable a fait 

l'objet de plusieurs travaux de recherche au cours des trente dernieres annees. Les 

methodes de programmation lineaire, non lineaire, dynamique et les methodes 

enumeratives ont beaucoup servi comme base de calcul dans la recherche de la solution 

optimale. Cependant de nouvelles techniques, dites heuristiques, telles que le recuit 

simule et l'algorithme genetique, ont ete mises au point pour traiter des problemes 
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combinatoires d'optimisation mettant en jeu une infinite de choix possibles sous une 

large variete de contraintes. Dans ce memoire, on s'interesse uniquement a ralgorithme 

genetique, et on a selectionne ci-apres quelques modeles interessants. 

Halhal et al. (1997) ont utilise l'algorithme genetique pour trouver la meilleure facon 

d'investir une partie ou la totalite du capital disponible pour ameliorer la performance du 

reseau. Cet algorithme est choisi car il est un outil efficace pour resoudre les problemes 

mettant en jeu peu de variables de decision pour un grand nombre de possibilites. Le 

double objectif etait de minimiser les couts des solutions trouvees tout en maximisant les 

benefices resultant du choix de ces solutions. La minimisation des couts consiste a 

rechercher les solutions peu couteuses et satisfaisantes. La maximisation des benefices 

portent sur le manque a gagner en termes de performance hydraulique, d'etat structural 

de la conduite, de conditions d'operation et de qualite de l'eau. Dans ce cas 

d'optimisation multicritere, il n'existe pas une solution unique comme dans le cas 

monocritere, mais un ensemble de solutions satisfaisantes connues sous le nom 

d'ensemble d'optimum de Pareto ; ce sont des solutions de bon compromis entre les 

couts et les benefices, car on ne peut alors ameliorer un critere (couts) sans deteriorer 

1'autre critere (benefices). 

Dandy et al. (2001) se sont aussi servi de l'algorithme genetique pour minimiser les 

couts totaux du systeme. Cet algorithme est choisi dans le but de montrer son efficacite a 

trouver la date de remplacement optimale pour les conduites du reseau d'eau. A l'aide 

d'un modele de defaillance des conduites et d'une analyse des couts de maintenance et 

de remplacement, la date optimale de remplacement est trouvee. Trois cas ont ete ensuite 
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analyses : 1) le cas ou les conduites doivent etre remplacees ou non a l'instant present 

(decision a court terme), 2) le cas ou les conduites peuvent etre remplacees ou non a des 

intervalles de periodes fixes sur un horizon de temps (decision a long terme), et enfin 3) 

le meme cas precedent mais avec une possibility de changer le diametre des conduites. 

Dans ce dernier cas, un modele hydraulique est necessaire pour verifier les performances 

hydrauliques du systeme. Une contrainte est imposee sur le budget et les variables de 

decision sont les conduites a remplacer. 

Wu et al. (2001) ont utilise l'algorithme genetique pour minimiser les couts de 

dimensionnement et de rehabilitation dans le reseau. Cet algorithme est choisi dans le 

but d'appliquer l'optimisation a un reseau tres large. Pour une configuration donnee du 

reseau, le but est de minimiser les couts d'interventions a faire tout en s'assurant que les 

contraintes de performance du reseau sont respectees. Pour cela, Wu et al. (2001) ont 

developpe un logiciel qui integre un programme de balancement de reseau (version 

modifiee d'EPANET) et un modele d'optimisation en C++ (algorithme genetique). La 

version d'EPANET modifiee verifie, pour chaque combinaison d'interventions sur les 

conduites, si les contraintes hydrauliques sont satisfaites. Lorsque ces dernieres ne sont 

pas satisfaites, un cout de penalite est ajoute au cout du systeme. Ces travaux demandent 

une implementation efficace du logiciel pour accelerer les transferts de donnees entre 

EPANET et le modele d'optimisation. Les interventions de rehabilitation sont le 

nettoyage, le nettoyage et chemisage combines, l'augmentation du diametre et la 

duplication de la conduite. Toutes ces interventions peuvent entrainer un changement de 

diametre. Ainsi, les variables de decision sont les diametres des conduites en examen. 
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Wilson et al. (2003), de meme, ont utilise l'algorithme genetique pour minimiser les 

couts d'intervention dans la renovation du reseau hydraulique. Cet algorithme est choisi 

pour evaluer les plans de rehabilitation ou de remplacement des conduites du reseau 

d'eau de San Diego. Les variables de decision sont les conduites sur lesquelles 

intervenir, c'est-a-dire, reparer, rehabiliter, remplacer ou dupliquer. Pour chaque 

conduite, il y a done une variete d'interventions possibles. L'algorithme genetique a 

permis de trouver, pour l'ensemble des conduites, la meilleure implementation. Cet 

ensemble de solutions trouvees pour chaque conduite satisfait au mieux les conditions 

hydrauliques a un cout total minimum. Dans cette recherche, il n'y a pas de contraintes 

sur le budget et lorsque les conditions hydrauliques ne sont pas respectees, un cout de 

penalite est affecte au cout total des solutions. 

Plusieurs autres travaux interessants (Afshar et al. 2005, Wu et Simpson 2001 et Wu et 

Simpson 2002) sur le sujet ont aussi fait l'objet d'etude. Dans tous les cas, on peut 

constater que l'analyse de couts du systeme est une etape determinante dans 

l'optimisation des interventions. Dans ce rapport, on s'est inspire de l'analyse des couts 

faite par Shamir et Howard (1979). 

2.2. ANALYSE ECONOMIQUE DE SHAMIR ET HOWARD 

Dans ce modele, Shamir et Howard (1979) ne retiennent que deux faeons de proceder pour 

intervenir sur la conduite : 1) le remplacement et 2) la reparation (ou maintenance). 
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Le but de cette analyse est de trouver la date optimale de remplacement d'une conduite. 

On appellera cette date t*. Pour cela, il faut proceder en trois etapes : 

• l'analyse de l'historique de bris pour determiner 1'evolution du nombre de bris au 

cours du temps dans la conduite existante et dans la nouvelle conduite; 

• l'analyse des couts de reparation et de remplacement actualises de la conduite 

depuis sa mise en oeuvre en fonction du temps; 

• la determination de la date optimale de remplacement. 

Chacune de ces etapes est detaillee dans les sections suivantes. La figure 2.1 montre la 

determination de la date optimale a partir de l'analyse des couts. 

cout 
min. 

couts de reparation 
"" couts de remplacement 

-^L 
date optimale horizon de temps 

Figure 2.1 Analyse des couts de remplacement et de reparation actualises pour 
determiner la date optimale de remplacement 

2.2.1. Analyse de l'historique de bris 

Les causes de bris sur la conduite sont diverses : le materiau et l'age de la conduite, 

l'environnement (corrosivite du sol, gel, surcharge externe), la qualite de la main d'oeuvre 

utilisee pour installer la conduite et les conditions de service (pression, coup de belier). La 
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connaissance des causes de bris aide a la decision de selection du materiau, revetement, 

protection cathodique et des procedures de construction. Cependant, pour trouver la date 

optimale de remplacement, les causes des bris ne sont pas necessaires, il faut juste 

determiner revolution des bris dans le temps. 

• Dans la conduite existante 

Le taux de bris utilise est le nombre de bris par unite de longueur et par annee. L'equation 

du taux de bris utilisee par Shamir et Howard est d'ordre exponentiel. Soit N(t), le taux de 

bris a Fannee t par unite de longueur, ?0l'annee de pose de la conduite ou la premiere 

annee ou les donnees sont disponibles et A le taux annuel de croissance : 

N(t)=N(t0)xeA{t^ (El) 

• Dans la nouvelle conduite 

La nouvelle conduite va elle aussi developper un historique de bris. Si elle est homogene a 

la precedente, on s'attend a un meme historique de bris que l'ancienne et par consequent, 

la meme equation de regression est applicable. Si la conduite est differente, le nombre de 

bris dans le futur va etre donne par une autre equation similaire. 

L'hypothese de Shamir et Howard (1979) est de considerer que la nouvelle conduite 

n'aura pas de bris. En effet, les bris surviendront mais commenceront si loin dans le futur 

que la valeur presente du cout de reparation de bris dans la nouvelle conduite est 

negligeable. 



30 

2.2.2. Analyse des couts 

Pour effectuer cette analyse, on a besoin d'une prevision du nombre de bris dans le futur 

pour la conduite existante, du cout de reparation d'un bris C&, du cout de remplacement de 

la conduite existante par la nouvelle conduite Cr, et du taux d'actualisation R. 

On peut representer graphiquement les trois courbes suivantes : 

• la valeur actualisee des couts projetes de reparation en fonction de la date de 

remplacement; 

• la valeur actualisee des couts de remplacement en fonction de la date de 

remplacement; 

• la somme des deux valeurs precedentes. 

Le cout total minimum donne la date optimale de remplacement (voir Figure 2.1). 

Couts de reparation 

On pose l'hypothese d'un cout de reparation pour un bris G> constant au cours du temps. 

Soit N(t) le taux de defaillance de la conduite a l'annee t, le cout d'une reparation par unite 

de longueur dans le futur pour l'annee t est: 

Cm(t)=CbXN(t) (E2) 

Soit tP l'annee presente et R le taux d'actualisation, la valeur actualisee du cout de 

reparation est: 

Cm(t) 

(URT •tp (E3) 
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Soit tr la date de remplacement de la conduite, le cout de reparation par unite de 

longueurjusqu'aladatefr est done 

Couts de remplacement 

Le cout d'un remplacement en valeur actualisee par unite de longueur est: 

PrM =(dffp (E5) 

Cr est le cout de remplacement en dollars constant. Lorsque B- augmente tr diminue. 

Couts totaux 

Les couts totaux sont la somme des couts de reparation et de remplacement: 

pk) -pJfrhPk)=%^k C (E6) 
t^il + RT'" {l + Rf~tp 

2.2.3. Determination de la date optimale 

La date optimale est tr qui minimise Pr{tr). La formulation du probleme de Shamir et 

Howard est la suivante : 

Min [Pk)\ (E7) 

On peut montrer que la fonction economique de 1'equation E7 est equivalente a: 
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Pit) 1 C" C- l n ( l + R ) in K , • A n 
•*'''X(l+lCr (l+*r <vo.r Annexe 1) 

t=tr 

La derivee de Pr (tr) par rapport a tr est P'r(tr), telle que Pr (tr) = J P'r (t) dt + Constante. 
t=tP 

L'optimum de Pr est trouve par 1'equation P'r(tr) = 0, ce qui equivaut a: 

C m - C > ( l + fl) = 0 (E8) 

La resolution de l'equation (E8) donne la date optimale theorique (voir Annexe 1): 

t = tn+ —In 0 A 

Crln(\ + R) 
= topt (E9) 

On peut aussi montrer que (voir Annexe 1) 

toPt=tp+jln Crln(l + J?) 
N(tp)C, 

(E10) 

Lorsqu'on egale les equations E9 et E10, nous pouvons conclure que la date optimale 

theorique de Shamir et Howard est done independante de la date t. D est important de 

preciser que la valeur topt trouvee n'est pas necessairement superieure a celle de tp, on peut 

avoir tout aussi bien topt < tp que topt > tp. 

On peut aussi choisir un taux de defaillance lineaireN(t) = N(t0)xAx(t-t0). 

L'equationE3 donneCm{t) = CbxN(t0)xAx(t-t0). 

L'optimum pour un taux de bris lineaire est trouve par la resolution de l'equation E8 : 

^' = t0+A N(to)Cb
 ( E 1 1 ) 
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En conclusion, la methode d'analyse developpee ci-dessus permet de calculer la date 

optimale de remplacement d'une conduite. 

Plusieurs simulations vont etre effectuees pour valider ralgorithme genetique. Pour cela, 

on va affecter differentes valeurs a chaque parametre, et on va verifier les resultats donnes 

par ralgorithme avec les resultats theoriques de l'analyse de Shamir et Howard (1979). 

La section suivante porte sur la formulation du probleme d'optimisation. 

2.3. FORMULATION MATHEMATIQUE DU PROBLEME 

La formulation du probleme part directement de la demarche de Shamir et Howard (1979). 

On travaille avec un reseau constitue de N conduites. La date de depart de notre analyse 

est l'annee presente tp = 2007. Pour chaque conduite i du reseau de N conduites, nous 

allons determiner la date optimale de remplacement de la conduite tn par ralgorithme 

genetique. Pour cela, des conditions initiales sont attributes a chaque conduite i afin de 

pouvoir determiner son taux de defaillance et par consequent ses couts de maintenance. 

Les conditions initiales sont: 1) l'annee de pose de la conduite i, to;, 2) le taux annuel de 

defaillance Aj, 3) le cout d'une reparation de bris sur la conduite en dollars constant Q,,i, 

4) le cout d'implementation (remplacement ou rehabilitation) par 1000 pieds en dollars 

constant Cr,i, 5) le taux de defaillance de la conduite a l'annee de pose toi, Nj(toj). Les couts 

de maintenance de la conduite i sont obtenus par 1'equation E3. 
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2.3.1. Hypotheses retenues 

Les hypotheses que nous allons prendre permettent de tenir compte de la realite des 

gestionnaires municipaux : 

• La date optimale d'implementation doit etre superieure ou egale a date presente 

de 1'analyse. En effet, la date optimale theorique trouvee par Shamir et Howard 

(1979) peut etre inferieure a la date presente tp de l'analyse. On impose la 

condition suivante : quelle que soit la conduite i, tp < tn. 

• Le cout d'une reparation de bris Cb est constant sur la periode T et ne depend pas 

des conditions de la conduite ou du sol. 

• Les couts des interventions de rehabilitation sont inferieurs aux couts de 

remplacement. A titre illustratif, le tableau 2.2 permet une comparaison des couts 

des interventions (remplacement, rehabilitation structurale, rehabilitation non 

structurale). 

Tableau 2.2 Couts des interventions sur les conduites d'eau en dollars par metre lineaire 

Diametre 

150 
200 
250 
300 

Remplacement 

1085 
1180 
1275 
1370 

Rehabilitation structurale 

420 
600 

-
-

Rehabilitation non structurale 

190 
200 
210 
220 

Source : Ville de Montreal (octobre 2007). 

• Toutes les conduites du reseau ont une meme longueur de 1000 pi (environ 

300 m), quelle que soit la configuration du reseau. 

• Les couts de reparation de la nouvelle conduite sont nuls. 



35 

2.3.2. Premier modele : sans contraintes budgetaires 

II s'agit de minimiser les couts totaux du systeme sur une periode T. On choisit une 

periode T = 32 ans, car la date des interventions sur les conduites sera codee par un 

vecteur binaire a 5 bits (voir section 2.4). Par consequent, il y a 25 (= 32) vecteurs ou 

dates possibles. Etant donne que chaque date represente une annee possible 

d'intervention sur la conduite, l'horizon de temps qui couvre l'ensemble des possibilites 

est de 32 ans. 

Le probleme se formule de la maniere suivante : 

'n r \ C I 

Les variables de decision sont les dates de remplacement des conduites. 

2.3.3. Deuxieme modele : avec contraintes budgetaires 

Ce modele est inspire de 1'analyse faite par Karaa et al. (1987). Une fois les dates 

optimales de remplacement des conduites donnees par le premier modele, les conduites 

vont etre classees en k groupe de conduites ayant les memes caracteristiques (p.e. la 

meme date optimale t). Soit aks la proportion de conduites du groupe k a remplacer a la 

date t et /?ftj,la proportion a rehabiliter a la date t, Ck
m(t) le cout de maintenance a 

1'annee t pour le groupe k, C* et Ck
reh les couts respectifs de remplacement et de 

rehabilitation en dollars constants pour le groupe k, le probleme se formule de la 

maniere suivante: 

Min 
( 
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Min V 
<**A, + PA + 1 - X (**,• + A/) ft (t) 

V «'« 

{X+R)'-'* 

(E13) 

Les contraintes associees au probleme sont les suivantes 

Positivite : VJfc, Vf, «rA, > 0 et fik<t > 0. 

Sur l'horizon de temps T, on intervient sur toutes les conduites du reseau 

v*. £(A,+* t,) = i. 

Lorsqu'elles sont prises en compte, les contraintes budgetaires sont: soit sur le cout total 

du systeme, soit sur les budgets annuels admissibles. Deux scenarios vont etre etudies : 

• Scenario 1 : Contrainte sur le cout total 

On fixe un cout total seuil Ci;m en deca duquel on ne veut pas descendre. 

<xk,tcLP +AA + i-2>t,.+Pj)ck
m{t) 

\ t'<t 

(I+*)'-'' >c, lim (E14) 

Scenario 2 : Contrainte sur les budgets annuels admissibles bt pour l'annee t 

Vf, 2 «X+A^+l-j;(aw+A,)k(/)^, 
V f<t 

(E15) 

Les variables de decision sont les proportions de conduites a remplacer et a rehabiliter 

par groupe et date d'intervention. 
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2.4. FORMULATION GENETIQUE DU PROBLEME 

La solution est 1'ensemble des conduites avec chacune leur date optimale de 

remplacement. Elle est representee par un vecteur binaire. Pour cela, on choisit un codage 

binaire standard. Chaque solution (individu) est constituee de N conduites 

(N chromosomes). Une conduite est caracterisee par K variables (K genes). Dans ce cas, 

seule la date d'intervention est la variable de decision. Par consequent, chaque 

chromosome a un unique gene forme par une serie de bits (0 ou 1 en binaire) representant 

la date de replacement et l'espace de codage couvre 1'horizon de temps fixe. Cette 

representation est illustree a la figure 2.2. 

'I.'^yyf^gj 
^™^P*<P^ii^^*^ll conduite (chromosome) = {variables} K

! 

^ T ^ ^ ' ^ ^ s ^ ' ' ^ ^ * l variable (gene) = {bits} L ^L 

*"~* 1 bit (locus) = {0} ou {1} j = 15 

1 conduite 
Position j du bit •—•—•—•—•—' 

solution (individu) = {conduites} N 

Figure 2.2 Decomposition de la representation chromosomique 

Dans la figure 2.2, la solution est un reseau de 3 conduites dont chacune a une variable de 

decision. Ainsi, la conduite et sa variable sont codees sur la meme longueur de bits. Si la 

conduite avait deux variables de decision (par exemple, la date et le diametre), la somme 

des longueurs de bits sur lesquelles les deux variables seront codees sera egale a la 

longueur de bits de la conduite. 
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Le nombre de bits Nwt de la variable de decision est la partie entiere de g^ val', avec 

log (&) 

Nvai etant le nombre de valeurs possibles de la variable et b la base (en binaire b = 2). 

Connaissant N^t et N le nombre de conduites, il est alors possible de determiner la taille 

d'individu qui est de N xNb;t. Soit un nombre binaire aNaN-i...aj...aiao, la conversion en 
N 

nombre decimal vaut^]a;x2! . Prenons un exemple de 3 conduites a remplacer sur une 

periode de 20 ans. Le nombre de bits pour coder la variable temporelle est la partie entiere 

de log(32)/log(2), soit 5. Chaque conduite sera codee sur 5 bits. Une solution est done 

generee aleatoirement par un vecteur de taille 15 = 3 (conduites) x 5 (bits). Soit le vecteur 

d'une solution suivant: 

OHIO 10101 10001 

conduite 1 conduite 2 conduite 3 
1 solution 

Lorsqu'on convertit les nombres binaires en nombres decimaux, on obtient les dates de 

remplacement ti(OlllO) = 14, t2(10101) = 21 et t3(10001) = 17. Si la date de simulation 

(t = 0) est 2007, la conduite 1 doit etre remplacee en 2021, la conduite 2 en 2028 et la 

conduite 3 en 2024. 

Le tableau de correspondance du lexique utilise est le suivant: 

Lexique genetique 

Individu 

Chromosome 

Gene 

Lexique mathematique 

Vecteur ligne de la matrice ou Solution 

Fraction du vecteur 

Fraction du vecteur 

Lexique physique 

Reseau ou ensemble de conduites 

Conduite 

Date d'implementation 
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La figure 2.3 montre le deroulement de l'algorithme. 

Generation de 
la population 

initiale 

OPERATEUR de 
creation du 
meilleur des 
meilleurs des 

individus 

Sauvegarde du 
meilleur individu 
(meilleur fitness) 

i 
M individus 

(a N chromosomes) 
M solutions 
N conduites 

Evaluation 

Calcul du fitness de I 
chaque individu * • • • • 

Classement du 
meilleur individu 

au pire 

Affectation a chaque 
individu d'une probabilite 
d'etre selectionnee en 
fonction de leur rang 

Calcul du cout 
total de chaque 

solution 

La probabilite est 
elevee si la solution 

est meilleure 

Selection 
des individus 

Croisement 
dos individus 

ELITISME 
1 Elimination d'un enfant 
pour le meilleur individu 

1 Elimination d'un enfant 
pour le meilleur des 
meilleurs individus 

* - * 

Mutation 
de quelques 

individus 
non 

Arret 

Nouvelle 
population 

Remplacement 
' *\ generationnel 

oui 

FIN 

Figure 2.3 Deroulement de l'algorithme genetique 
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Tel qu'illustre a la figure 2.3, l'algorithme se deroule comme suit: 

Generation de la population 

On genere une matrice constitute de 0 et de 1, avec M lignes et N x N^t colonnes. Cette 

matrice represente la population a M individus et N conduites. Chaque individu est une 

solution possible du probleme qui symbolise le reseau a N conduites, chacune ayant leur 

date de remplacement. 

Par exemple, pour un reseau a 3 conduites, on va generer une matrice 3x15 a 3 lignes 

(solutions/individus) et 15 colonnes (3 conduites). 

conduite 1 conduite 2 conduite 3 

0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 , , . . 
solution 1 

0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 solution 2 

1 1 1 1 1 I O O O O o o o o i solution 3 

Evaluation 

Pour chaque ligne de la matrice, c'est-a-dire, chaque individu, on decode le temps optimal 

de chaque conduite. 

14 21 17 solution 1 

_ solution 2 
6 5 0 

solution 3 
31 16 1 
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En ramenant a la date presente 2007 qui correspond a 0, on obtient: 

2021 2028 2024 . A. ., 
solution 1 

2013 2012 2007 solution 2 

2038 2023 2008 solution 3 

Ensuite, on evalue le cout total du systeme pour chaque individu (c'est-a-dire solution) par 

l'equation E12, avec tn etant les dates generees aleatoirement pour chaque conduite i. On a 

done: 

CG = 69 623$ solution 1 

CG
2 = 122 390$ solution 2 

C</ = 91822! 
solution 3 

Une fois le travail precedent effectue pour chaque ligne (individu/solution), on classe les 

individus par rapport a leur cout total. Le rang de chaque individu (solution) sera utilise 

pour calculer la probabilite de selection de l'individu. 

Operateurs 

On definit les operateurs de selection, de croisement, de mutation et de creation du 

meilleur des meilleurs individus. 

• Operateur de selection 

La selection se fait de fagon aleatoire. On choisit la selection par la roulette biaisee (voir 

section 1.2.4). 
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Dans notre exemple : CG1 < CG3 < CG2. On calcule les intervalles de probability A. 

Individu CG 

1 

2 

3 

69 623 

122 390 

91 822 

3 
1 

2 

0,67 

0,00 

0,33 

[0,33 ; 1] 

[0;0] 
[0; 0,33] 

Avec 3 solutions, on va appliquer l'operateur de selection 2 x 3 fois pour selectionner 3 

couples de parents qui donneront un enfant unique. 

lite fois 

5 =0.95 

1 

26me fois 

8 =0.23 

3 

Couple 1 

36me fois 

5 =0.61 

1 

4eme fois 

8 =0.48 

1 

Couple 2 

5eme fois 

8 =0.89 

1 

6eme fois 

8 =0.76 

1 

Couple 3 

• Operateur de croisement 

La probability de croisement pc qui definit le pourcentage d'enfants a generer est egale 

a 1. II y a done autant de parents que d'enfants et la meme taille de la population est 

ainsi conservee. Pour notre exemple, on a choisi un croisement en 2 points. Les points 

de coupure ki et k2 sont des entiers generes aleatoirement entre 1 et 14 : 

k1 = i k,= 12 

Couple 1 

Enfant 1 

Couple 2 

Enfant 2 

1 1 1 1 1 0 0 0 0 0 0 

kj = 7 k2 = 10 

0 0 1 

0 0 1 

0 1 1 1 0 

0 1 1 1 0 

i on o i ii o o o i 

1 0 1 0 1 1 0 0 0 1 

solution 1 

solution 3 

solution 1 

solution 1 
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k, = 12 k2 = 14 

Couple 2 

Enfant 2 

0 1 1 1 0 1 0 1 0 1 1 0 o q i 

0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 

solution 1 

solution 1 

D'ou la nouvelle population 

1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 

0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 

0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 

solution 1 

solution 2 

solution 3 

Dans cette etude de cas, les nouveaux individus 2 et 3 sont identiques. 

• Operateur de mutation 

On l'applique directement sur les enfants et non sur les parents. On definit une 

probabilite de mutation pm qui est le pourcentage d'enfants a muter. 

Dans notre exemple : pm = 0.33 (environ 1/3), soit 1 individu sur 3 a muter. L'individu 3 

a ete selectionne aleatoirement pour la mutation, et la position du bit a muter est aussi 

choisie de facon aleatoire entre 1 et 15, soit ici 14. 

0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 

1 1 1 1 1 1 0 1 0 1 1 0 0 0 1 

0 1 1 1 0 0 0 1 0 1 1 0 0 1 1 

solution 1 

solution 2 

solution 3 
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• Operateur de creation du meilleur des meilleurs individus 

Cet operateur a ete con£u pour accelerer la convergence de la solution. II est parfaitement 

adapte au probleme que Ton etudie. En effet, on travaille sur un probleme de minimisation 

d'une somme de couts. Pour minimiser la somme des couts du reseau (ensemble des 

conduites), il faut en realite minimiser les couts de chaque conduite : 

Min Qj Xcouts i) est equivalent a Xi niin (£couts j) 

Pour chaque population, cet operateur trouve le meilleur coutj de chaque conduite i parmi 

les M individus. Ce meilleur couti correspond a une date de remplacement tn. Cet 

ensemble {tn} ;=i; N correspond au cout total minimum. De generation en generation, cet 

ensemble evolue en conservant toujours pour chaque conduite les dates des plus petits 

couts trouves depuis la premiere generation. 

Prenons notre cas d'exemple du depart, toutes les 3 conduites ont les memes conditions 

initiales resumees dans le tableau 3.1. 

0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 solution 1 

o o i i o o o i o i o o o o o solution 2 

1 1 1 1 1 l o o o o o o o o i solution 3 

L'idee de concevoir cet operateur provient de 1'observation des premiers resultats ou, pour 

des conditions initiales identiques de conduites, 1'algorithme genetique convergeait vers la 

solution optimale pour un tres petit nombre de conduites (environ 5), et ne convergeait 

plus vers la solution optimale pour un nombre plus eleve de conduites (environ 50). 
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Le schema suivant explique le fonctionnement de cet operateur. 

Population 
(M solutions, 
N conduites) 

1 

2 

3 

i 

1 2 3 

' 

Coflt total de la 
conduite 1 pour la 

solution 1 
C \ = 24 841 

! Cout total de la ; 
1 conduite 2 pour la 1 
I solution 1 ! 
j C'2 = 21691 ! 

Cout total de la 
conduite 3 pour la 

solution 1 
C'3 = 23 091 

Cout total de la 
conduite 1 pour la 

solution 2 
C2i = 34 657 

1 Cout total de la j 
! conduite 2 pour la j 
i solution 2 ! 
1 C2

2 = 36 680 I 

Cout total de la 
conduite 3 pour la 

solution 2 
C2

3 = 51049 

Cout total de la 
conduite 1 pour la 

solution 3 
C3i = 20 722 

j Cout total de la j 
; conduite 2 pour la i 
! solution 3 j 
j C3

2 = 23 595 j 

Cout total de la 
conduite 3 pour la 

solution 3 
C3

3 = 47 505 

Coflt total du 
rdseau 

Cr,1 = 69 623 

Coflt total du 

CG =122 390 

Coflt total du 
rdseau 

Cc
3=91822 

Meilleur 
des 

meilleurs 
individus 

j Samegardedu i j Sun\(.'garde du i j Suuvegarde du • 
I meiHem cout j I meilleur cu l l | I meilleur coiil | 

pour hi eonduilc 1 I | pour Li conduite 2 I | pour la conduile 3 I 

I C i = 20 722 
I I 

. j L. 

V 2 = 21 691 I I 
. J L. 

(.'., = 23 091 
I 

j .1.111\i£:Liitiv. u i id j j .iiikivLLUiuk ui. H I j | tVIUMlZiirtlC Ut Id I 

I dale t ' i qui donne I I dale t*2 qui donne I I dale t" j qui don no I 
le coiil C"| I I 

I I 
- J L. 

le cofn C 2 I I 
I I 

. J L . 

le cout (.' •» 

l ' , . l M I L 1 :11 0 I 0 11 |—I I .11 0 0 0 1. 

OI'KK\TI I R l)K ( RFAI ION I>1 ME1II I'.I'K 
l)l> MKll.I.l.l K«iINDIMIH S 

t , (0 1 1 1 0 ) t2(i o i o i) H t3(i o o o i) 

Classement 
par ordre 
croissant 

La plus 
petite valeur 

donne la 
meilleure 
solution 
M = l 

J. 
Meilleur 
individu 
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Nouvelle population 

La nouvelle population est creee en remplacant les individus parents par les individus 

enfants crees. Ensuite, la selection elitiste est appliquee en sauvegardant le meilleur 

individu parent de la generation courante pour le placer automatiquement dans la 

generation suivante afin de toujours conserver le meilleur individu. Pour cela, on elimine 

un des enfants crees, choisi au hasard, et on le remplace par le meilleur parent. La meme 

procedure est faite pour remplacer le meilleur des meilleurs individus par la suppression 

d'un autre enfant cree. 

Arret 

L'algorithme s'arrete lorsqu'un nombre maximal de generations est atteint. La meilleure 

solution est celle qui a le plus petit cout total du systeme. En general, on choisit le 

nombre maximal de generations en fonction de la convergence vers la solution optimale 

trouvee. En effet, si celle-ci n'a plus evolue depuis un nombre considerable de 

generations, on peut considerer que le nombre maximal de generations choisi est 

acceptable. 

2.5. METHODOLOGIE 

Deux modeles vont etre etudies : le premier modele sans contraintes budgetaires est 

inspire de la demarche de Shamir et Howard (1979) et le deuxieme modele avec 

contraintes budgetaires est inspire de l'approche de Karaa et al. (1987). 
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Le premier modele sans contraintes budgetaires va servir a valider l'algorithme 

genetique. Dans ce cas, toutes les conduites auront les memes caracteristiques, a savoir 

les memes parametres A, N(to), to, Q,, Cr et R. En faisant varier ces parametres a tour de 

role, les dates optimales obtenues par l'algorithme genetique vont etre comparees aux 

dates obtenues avec l'equation E l l . Une fois 1'algorithme valide, l'influence de 

l'operateur de creation du meilleur des meilleurs individus sur la solution obtenue va 

etre examinee. De plus, une comparaison entre deux strategies de croisement (uniforme 

et en 2-points) va etre faite. Et enfin, l'influence des parametres de 1'algorithme 

genetique, tels que le nombre d'individus N, la taille de la population M et le nombre 

maximal de generations sur la convergence vers la solution optimale va etre observee. 

Dans le deuxieme modele, on impose des contraintes budgetaires. Dans ce cas, les 

conduites vont etre reparties en cinq groupes de conduites ayant les memes 

caracteristiques. Deux scenarios de contraintes budgetaires vont etre analyses. Dans le 

premier scenario, les contraintes sont appliquees au niveau des budgets annuels 

admissibles, et le remplacement est la seule intervention possible. Dans le deuxieme 

scenario, les contraintes sont appliquees sur le cout total du systeme, et deux options 

d'interventions qui sont la rehabilitation et le remplacement vont etre acceptees. Dans le 

premier tout comme dans le deuxieme scenario, le premier modele va etre utilise pour 

obtenir les dates optimales de remplacement sans contraintes budgetaires. Ainsi 

l'influence des contraintes budgetaires dans le deuxieme modele pourra etre analysee a 

partir des resultats du premier modele. Les dates optimales issues du deuxieme modele 

peuvent etre inferieures, egales ou superieures aux dates du premier modele. 
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Dans le deuxieme modele, la conduite va egalement etre codee sur 5 bits. On aurait pu 

choisir de coder la conduite par un vecteur de 6 bits a 2 genes : le premier gene a 1 bit 

pour la methode d'intervention (0 pour la rehabilitation et 1 pour le remplacement), et le 

deuxieme gene a 5 bits pour la date d'intervention. Par exemple, 0 00110 veut dire que 

la conduite est rehabilitee en 2013. Cependant, afin d'eviter de changer la longueur de 

bits de la conduite et done du vecteur solution, a chaque generation, pour evaluer la 

valeur d'adaptation de chaque solution, on genere aleatoirement un vecteur binaire de 

taille 2 fois N (nombre de conduites) qui constitue les choix d'interventions sur la 

conduite selon le decodage suivant: 

00 : REHABILITATION 11 : REHABILITATION 

01 : REMPLACEMENT 10 : REMPLACEMENT 

Le choix de coder les interventions sur 2 bits plutot que 1 provient du fait qu'on pourrait 

essayer differents couts de rehabilitation et de remplacement. Toutefois, pour le premier 

modele, on n'utilise pas cette nouvelle fonctionnalite. 

Enfin, dans le deuxieme modele, la fonction d'optimisation reste le cout total du 

systeme; neanmoins, la selection du meilleur individu dans la generation courante est 

faite a partir de la valeur d'adaptation telle que illustree a la figure 4.8. 

En conclusion, la formulation mathematique est une description analytique du probleme 

a resoudre, a savoir, la minimisation des couts totaux d'un reseau de conduites d'eau sur 

un horizon de temps fixe. La formulation genetique quant a elle montre la procedure de 

codage de la solution et la resolution du probleme par 1'algorithme genetique. Les deux 

prochains chapitres portent sur le premier et le deuxieme modele. 
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CHAPITRE 3 

PREMIER MODELE 

II s'agit de valider la performance de l'algorithme genetique en comparant les dates 

optimales trouvees par l'algorithme genetique et les dates trouvees de maniere 

analytique par 1'analyse economique de Shamir et Howard (1979). 

3.1. DONNEES D'ENTREES DU MODELE 

Le reseau est constitue de 50 conduites ayant toute la meme longueur 1000 pi. On 

travaille sur un horizon de temps de 32 ans. Selon notre formule, le nombre de bits est la 

partie entiere de log(32)/log(2), soit 5 bits. Chaque conduite est codee par un vecteur a 5 

bits, allant de 0 a 25 = 31, avec 0 correspondant a 2007 et 31 correspondant a 2038. La 

valeur de la date de remplacement la plus petite est la date d'analyse 2007 et la valeur la 

plus tardive est 2038. Autrement dit, si la date optimale theorique est inferieure a 2007, 

1'algorithme donnera automatiquement 2007 et si la date optimale est superieure a 2038, 

l'algorithme donnera 2038. Entre 2007 et 2038, la valeur de la date theorique doit 

correspondre a celle trouvee par l'algorithme. 

On affecte les memes conditions initiales a toutes les conduites. Le tableau 3.1 resume la 

valeur de chaque parametre d'entree. 
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Tableau 3.1 Valeurs typiques des parametres d'entrees 

A 

0.05 

N(to) 

0.1 

cr 

50,000 

cb 

1,000 

R 

0.1 

to 

1960 

3.2. VALIDATION DE L'ALGORITHME GENETIQUE 

La date de remplacement theorique est obtenue par l'equation E9. Avec les valeurs du 

tableau 3.1, tthiorique = 1960 + 78 = 2038. 

Pour la simulation, les parametres de l'algorithme genetique sont: N (le nombre de 

conduites), M (le nombre d'individus de la population) et Ngen (le nombre maximal de 

generation). Lorsqu'on lance les simulations, on obtient les resultats illustres aux 

figures 3.1. 

On peut constater que la date obtenu par 1'algorithme genetique est la meme que la date 

theorique. Et on observe que le cout total du systeme diminue jusqu'a se stabiliser sur la 

figure 3.1a. 

On refait une autre simulation avec les valeurs du tableau 3.1, cette fois-ci avec 

to= 1950. La figure 3.1b montre que la date theorique attendue (2028) est celle donnee 

par l'algorithme. 
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3.2.1. Influence du coefficient A 

Les dates de remplacement theoriques sont obtenues par l'equation E9. Avec les valeurs 

du tableau 3.1, ttheorique = 2037 pour A = 0.05064 et ttheorique = 2025 pour A = 0.06. Les 

resultats de la simulation sont illustres aux figures 3.2. 

La figure 3.2a montre que la date diminue de 1 an lorsque A croit de 0.00064. 

La figure 3.2b montre que la date diminue de 13 ans lorsque A croit de 0.01. Cependant, 

au bout de 500 generations, la valeur optimale est atteinte pour toutes les conduites, 

excepte la premiere. On relance la simulation jusqu'a 1000 generations et la valeur 

optimale est alors atteinte pour toutes les conduites sur la figure 3.2c. La figure 3.2d 

montre qu'en augmentant la taille de la population et en conservant le nombre de 

generation a 500, les conduites atteignent toutes leur valeur optimale. 

3.2.2. Influence du coefficient R 

Les dates de remplacement theoriques sont obtenues par l'equation E9. Avec les valeurs 

du tableau 3.1, ttheorique = 2037 pour R = 0.095 et ttheorique = 2036 pour R = 0.09. Les 

resultats de la simulation sont illustres aux figures 3.3. 

On voit sur la figure 3.3a que la date theorique a diminue de 1 an lorsque R a diminue de 

0.5%, et sur la figure 3.3b que la date theorique a diminue de 2 ans lorsque R a diminue 

de 1%, ce que le modele analytique pre voit. 
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3.2.3. Influence du taux N(to) 

Les dates de remplacement theoriques sont obtenues par 1'equation E9. Avec les valeurs 

du tableau 3.1, ttheorique = 2037 pour N(t0) = 0.095 et ttheorique = 2033 pour N(t0) = 0.09. 

Les resultats de la simulation sont illustres aux figures 3.4. 

On voit sur la figure 3.4a que la date theorique a diminue de 1 an lorsque N(to) a 

augmente de 0.005, et sur la figure 3.4b que la date theorique a diminue de 5 ans lorsque 

N(to) a augmente de 0.025, ce que le modele analytique prevoit. 

3.2.4. Influence du cofit Cb 

Les dates de remplacement theoriques sont obtenues par 1'equation E9. Avec les valeurs 

du tableau 3.1, ttheorique = 2037 pour Cb = 1050 et ttheorique = 2030 pour Cb = 1500. Les 

resultats de la simulation sont illustres aux figures 3.5. 

La figure 3.5a montre que la date theorique a diminue de 1 an lorsque Cb a augmente 

de 50. Cependant, la premiere conduite donne une date de 2036. En augmentant le 

nombre de generation a 700, comme c'est le cas sur la figure 3.5b, toutes les conduites 

ont une date de 2037 (resultat attendu). La figure 3.5c montre que, pour le cas ou Cb 

augmente de 500, la date trouvee est de 2030. Ceci correspond aux valeurs theoriques. 

3.2.5. Influence du coefficient Cr 

Les dates de remplacement theorique sont obtenues par Pequation E9. Avec les valeurs 

du tableau 3.1, ttheorique = 2037 pour Cr = 47500. Les resultats de la simulation sont 

illustres aux figures 3.6. lis sont en accord avec l'analyse theorique. 
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3.2.6. Choix d'un taux de bris lineaire 

Si le taux de bris est lineaire, alors la date optimale est donnee par l'equation E l l . 

Le tableau 3.2 resume la valeur de chaque parametre d'entree. 

Tableau 3.2 Valeurs des parametres d'entree pour un taux de bris lineaire 
Parametres 

Essai 1 

Essai 2 

A 

0.15 

0.15 

N(t0) 

0.2 

0.2 

Cr 

40,000 

10,000 

cb 

2,000 

1,000 

R 

0.1 

0.1 

to 

1960 

1980 

Avec les valeurs de parametres du tableau 3.2, la date de remplacement theorique 

est egale a 2024 pour l'essai 1 et 2012 pour l'essai 2. Les resultats de la simulation sont 

illustres aux figures 3.7a et 3.7b. Sur la figure 3.7a, on peut constater que la date 

optimale simulee est egale a 2026, et sur la figure 3.7b la date optimale simulee est egale 

a 2013. 

On observe que dans le cas d'un taux de bris lineaire, l'algorithme ne converge pas vers 

la solution optimale du probleme meme apres plusieurs autres simulations. On conclut 

que l'algorithme ne garantit pas l'atteinte de l'optimum. 
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3.3. INFLUENCE DES OPERATEURS ET PARAMETRES DE 

L'ALGORITHME 

On va etudier les effets de l'operateur de creation du meilleur des meilleurs individus et 

des differents operateurs de croisement (uniforme et 2-points). Le taux de bris est donne 

par l'equation E2. Pour toutes les simulations, la date theorique optimale est 2028. 

3.3.1. Operateur de creation du meilleur des meilleurs individus 

Cet operateur permet de faire converger la solution plus rapidement, en diminuant la 

dispersion de la solution autour de la valeur attendue. Un cas illustratif de l'apport de cet 

operateur est demontre. Pour cela, deux simulations vont etre faites, l'une avec 

l'operateur et l'autre sans l'operateur, en partant de la meme matrice de population. Les 

resultats de la simulation sont illustres aux figures 3.8. 

Les resultats des simulations montrent que l'operateur de creation du meilleur des 

meilleurs individus permet d'accelerer la convergence vers la solution optimale. Les 

figures 3.8a et 3.8b montrent que l'atteinte de 1'optimum n'est pas garantie sans 

operateur. Les figures 3.8c et 3.8d montrent que l'augmentation du nombre de 

generations permet de faire tendre le cout minimal simule vers le cout minimal 

theorique. Cependant sur la figure 3.8d, les conduites ont des dates oscillantes autour de 

la valeur optimale theorique lorsque l'operateur est absent; et elles atteignent les dates 

optimales theoriques plus rapidement lorsque l'operateur est present. 
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3.3.2. Operateurs de croisement 

Deux types de croisement ont ete testes : le croisement 2-points et le croisement 

uniforme. Les figures 3.9 a 3.11 montrent qu'il n'y a pas une strategie de croisement 

meilleure qu'une autre en terme de convergence. 

3.3.3. Influence du nombre d'individus M 

Les resultats des simulations sont presentes aux figures 3.9. On constate que 

l'augmentation de la valeur de M fait converger la solution vers l'optimum pour un 

meme nombre maximal de generation Ngen. 

3.3.4. Influence du nombre de conduites N 

Les resultats des simulations sont presentes aux figures 3.10. La valeur de N n'influence 

pas la convergence vers l'optimum. En effet, l'augmentation de N n'a pas perturbe 

l'atteinte de l'optimum pour une meme valeur de M et Ngen. 

3.3.5. Influence du nombre maximal de generation Ngen 

Les resultats des simulations sont presentes aux figures 3.11. On constate que lorsque 

Ngen augmente, il y a plus de chance d'atteindre la solution optimale du probleme. 

En somme, la convergence vers l'optimum va etre plus efficace en augmentant soit le 

nombre d'individus M, soit le nombre maximal de generation Ngen. 
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En conclusion, la mise en ceuvre de l'algorithme genetique depend surtout du type de 

probleme etudie. En effet, le codage des solutions est adapte au probleme pose. Les 

operateurs usuels de l'algorithme sont les operateurs de selection, croisement et 

mutation. Bien qu'il existe des methodes pour implementer ces differents operateurs, en 

pratique, il y a toujours une possibilite d'ajouter des variantes a ces methodes afin 

d'ameliorer la convergence vers la solution optimale. L'operateur de croisement favorise 

l'exploration de l'espace de recherche, tandis que la selection permet de faire evoluer la 

population vers les meilleurs individus. Cependant, lorsque la taille de la population est 

petite, il peut arriver que certains individus favorises par le hasard se repandent au 

detriment des autres; ce phenomene s'appelle la derive genetique. L'operateur de 

mutation prend alors tout son interet car il permet de contrebalancer ce phenomene en 

introduisant constamment dans la population de nouveaux individus. 

Dans des problemes de maximisation ou minimisation des couts, il est tres important de 

toujours conserver dans la nouvelle population, le meilleur individu de l'ancienne 

generation, car le brassage des individus parents peut creer des individus enfants dont 

aucun ne soit trouve meilleur que le meilleur des parents. 

Enfin, les equations theoriques de Shamir et Howard confirment la justesse des resultats 

obtenus par l'algorithme genetique. Cependant, comme on l'a constate pour un taux de 

bris lineaire, l'atteinte de l'optimum n'est pas toujours garantie. 
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CHAPITRE 4 

DEUXIEME MODELE 

Dans le premier modele, les variables de decision sont les dates optimales de 

remplacement des conduites de l'ensemble du reseau, obtenues pour un horizon de 

temps fixe sans contraintes budgetaires. Ce modele permet une planification financiere 

des interventions de remplacement, car le cout total minimal du systeme et les budgets 

annuels requis peuvent etre determines. Cependant, dans la pratique, les gestionnaires 

n'ont pas toujours les fonds suffisants pour intervenir sur les conduites du reseau. D'ou 

l'utilite du deuxieme modele qui permet de prendre en compte les restrictions 

budgetaires afin d'evaluer 1'impact de celles-ci sur la programmation des interventions 

faite a l'aide du premier modele. 

Ainsi, un premier scenario sans contraintes budgetaires va etre retenu afin d'utiliser la 

programmation obtenue comme base pour les scenarios avec contraintes budgetaires. 

Ensuite deux scenarios avec contraintes budgetaires vont etre etudies. Dans le premier 

scenario, on va considerer uniquement le remplacement comme option d'intervention, et 

on va imposer au systeme des contraintes budgetaires annuelles. Dans le second 

scenario, on va considerer les deux options d'intervention qui sont la rehabilitation et le 

remplacement, sans imposer des contraintes budgetaires annuelles. Pour eviter que le 

systeme ne converge vers 100% de rehabilitation car celle-ci est moins dispendieuse, on 

va imposer une contrainte budgetaire au niveau du cout total du systeme. 
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4.1. SCENARIO SANS CONTRAINTES 

On va utiliser le premier modele pour analyser l'impact des strategies de renouvellement 

d'un reseau de 50 conduites. On subdivise le reseau en 5 groupes de 10 conduites, 

chaque groupe ayant les memes conditions initiales. Le cout de remplacement est fixe a 

50 000 $ pour toutes les conduites. Deux scenarios sont etudies : le remplacement a 

100% ou la rehabilitation a 100% du reseau. En effet, etant donne que le systeme est 

sans contrainte budgetaire et que la fonction economique vise a minimiser le cout total 

du systeme, lorsque les deux options de remplacer et de rehabiliter sont possibles pour 

toutes les conduites, les simulations montrent que la solution converge toujours vers une 

rehabilitation du reseau a 100%. Les couts de rehabilitation etant inferieurs aux couts de 

remplacement expliquent cette convergence. 

4.1.1. Choix de remplacer toutes les conduites du reseau 

Chaque groupe de conduites a une date optimale de remplacement determinee. En effet, 

les conditions initiales sont les memes dans chaque groupe. Le choix de proceder a cette 

subdivision du reseau vient du fait qu'en pratique, il est toujours possible de rassembler 

les conduites d'un reseau en groupes de conduites ayant la meme date optimale de 

remplacement, meme si a l'interieur du groupe les conditions initiales des conduites sont 

differentes. Les resultats de la simulation sont presentes aux figures 4.1. Le cout 

minimal total est de 2 190 100 $. 
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4.1.2. Choix de rehabiliter toutes les conduites du reseau 

Un scenario envisageable est de rehabiliter systematiquement toutes les conduites au lieu 

de les remplacer. Dans ce scenario, on fixe le cout d'une rehabilitation a 75 % du cout de 

remplacement, soit 37 500 $ pour toutes les conduites, tout en conservant leurs 

conditions initiales. Les resultats des simulations sont presentes aux figures 4.2. Le cout 

minimal total est de 1 851 900 $. 

On constate que la rehabilitation demande une intervention anticipee sur les conduites 

(voir tableau 4.1). En effet, il ne faut pas arriver a la fin de la duree de vie utile (date 

optimale de remplacement) pour rehabiliter une conduite, mais il faut intervenir plus tot 

sur celle-ci. La rehabilitation permet egalement de reduire le cout minimal du systeme. 

Cependant, il faut etre conscient que la duree de vie d'une rehabilitation est moins 

longue que celle d'un remplacement et par consequent, elle est une solution qui permet 

d'alleger les investissements a moyen terme tout en augmentant les niveaux de service 

requis. 

Les figures 4.1a et 4.1b montrent les repartitions des budgets annuels respectivement 

pour chaque scenario. On a ainsi pour le reseau, la planification des interventions sur 32 

ans ainsi que les budgets annuels en dollars actualises requis pour la mettre en oeuvre. 
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Tableau 4.1: Scenarios sans contraintes budgetaires 

Lot 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

2015 

2016 

2017 

2018 

2019 

2020 

2021 

2022 

2023 

2024 

2025 

2026 

2027 

2028 

2029 

2030 

2031 

2032 

2033 

2034 

2035 

2036 

2037 

2038 

Reiiipliiit'iiient 

1 

-

100% 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2 

-

-

-

-

-

-

100% 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

3 

-

-

-

-

-

-

-

-

-

-

-

100% 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

4 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

100% 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

5 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

100% 

-

-

-

-

-

-

-

-

-

-

Rehabilitation 

1 

100% 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2 

100% 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

3 

-

-

-

-

-

100% 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

4 

-

-

-

-

-

-

-

-

-

-

100% 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

5 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

100% 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

On observe pour chaque lot de conduites les reponses du modele face a un choix exclusif 

de remplacement ou de rehabilitation. Pour cette derniere, toutes les interventions sont 

anticipees. 
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Dans le modele 1 sans contraintes budgetaires, on peut calculer les budgets annuels 

requis pour couvrir les investissements sur l'horizon de temps choisi. Connaissant les 

enveloppes budgetaires annuelles pour intervenir sur le reseau, les gestionnaires ne 

disposent pas toujours du capital necessaire pour renouveler leurs conduites. Le 

deuxieme modele, detaille au chapitre suivant, prend alors en compte les restrictions 

budgetaires. 

4.2. PREMIER SCENARIO AVEC DES CONTRAINTES BUDGETAIRES 

ANNUELLES 

Le remplacement est l'unique option d'intervention. On impose au systeme des 

contraintes budgetaires annuelles. Pour cela, on repartit le budget annuel disponible a 

chaque annee sur l'horizon de temps, de maniere homogene en dollars courants. 

On travaille sur le meme reseau de 5 lots de 10 conduites, ayant chacun leur date de 

remplacement. L'effet des restrictions budgetaires va pouvoir etre quantifies a partir des 

variables de decision qui sont les proportions cckt de chaque lot k de conduites a 

remplacer a une date t sur l'horizon de temps fixe. 

Les resultats des simulations sont presentes aux figures 4.3 a 4.5. La premiere simulation 

faite avec le modele 1 donne un cout minimal total de 2,19 M$ pour le remplacement 

complet du reseau d'ici 32 ans. La repartition des couts annuels requis est aussi donnee 

par le modele 1. On observe des pics budgetaires aux dates de remplacement de chaque 

lot k de conduites sur la figure 4.3, le budget annuel moyen etant de 68 440 $. 
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Sachant que Ton ne dispose pas du budget annuel requis aux periodes de pic financier, a 

l'aide du deuxieme modele, on va imposer une repartition homogene du budget annuel 

en dollars courants de 1,5 fois le cout de 2,19 M$ sur 32 ans, soit environ 100 000 $ a 

chaque annee sur 32 annee. Une seconde simulation faite avec le modele 2 et on peut 

observer sur la figure 4.3 que des pics financiers sont absents et les budgets annuels 

tendent a s'homogeneiser. Meme s'il faut plus investir pendant les 10 premieres annees, 

les budgets annuels requis sont moins divergents que ceux du premier modele. 

Figure 4.3 : Budgets annuels en dollars courants 

La figure 4.4 montre l'effet des contraintes budgetaires sur les dates de remplacement. 

On constate que les dates de remplacement des conduites sont avancees ou reculees dans 

le temps afin de balancer le pourcentage des conduites remplacees chaque annee pour 

homogeneiser les budgets annuels. 



Date optimal? i t remplscement 

2030 

i i 
S2020 
D 

2000 

j ; o.. 

j .0. ! _. 

1 0 ; ; D 9 0 0 C G 
0 o^ : : o : 
0 ; I J C O O C S O O O O O o 

- f f - - a ;..8-«--2..;..o. i s..( o 

I i i 1 

0 1 i 
: - o • o • o : 

.?. ;...°.....°. ; ' i \ i ! ! p, P o r i W rj a f) k 

< o : 0 : o ; * " J ^ v 
0 ; g 0 0 0 (? 0 0 0 0 ? 0 ; (? 

: 0 0 0 0 ? 0 l ; a ; 1 
v i o : 

: : : ; o : 

*-fl i : i i i 

i 

o Modele 1 
o Modele 2 

10 15 25 
Conduite 

45 50 

F i g u r e 4.4 : Date de remplacement avec con t ra in tes budge ta i r e s annuel les 
(M = 50, N = 50, Ng e n = 1000) 

Les proportions akt de chaque lot k de conduites sont notees dans le tableau 4.2. 

Tableau 4.2 : Proportions des lots de conduites a remplacer sur 

Lot 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

2015 

2016 

2017 

2018 

2019 

2020 

2021 

2022 

2023 

2024 

2025 

2026 

Remplacement (modele 1) 

1 

-

100% 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2 

-

-

-

-

-

-

100% 

-

-

-

-

-

-

-

-

-

-

-

-

-

3 

-

-

-

-

-

-

-

-

-

-

-

100% 

-

-

-

-

-

-

-

-

4 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

100% 

-

-

-

5 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

1'horizon de temps 

Remplacement (modele 2) 

1 

-

-

20% 

10% 

20% 

-

10% 

10% 

10% 

10% 

-

10% 

-

-

-

-

-

-

-

-

2 

-

10% 

-

10% 

10% 

-

20% 

-

-

10% 

-

10% 

10% 

-

10% 

-

-

10% 

-

-

3 

-

-

-

20% 

10% 

-

10% 

-

-

-

-

-

-

-

-

-

-

10% 

-

10% 

4 

-

-

-

-

-

-

-

-

-

-

10% 

10% 

-

-

-

10% 

-

-

10% 

10% 

5 

-

-

-

-

-

-

-

10% 

-

10% 

-

-

10% 

-

-

10% 

10% 

-

-

-
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2027 

2028 

2029 

2030 

2031 

2032 

2033 

2034 

2035 

2036 

2037 

2038 

Remplacement (modele 1) 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

100% 

-

-

-

-

-

-

-

-

-

-

Remplacement (modele 2) 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

10% 

10% 

-

-

20% 

-

-

-

-

-

-

-

-

-

-

-

-

20% 

-

10% 

-

20% 

-

-

20% 

-

10% 

-

-

-

-

20% 

-

-

-

-

On peut constater que la moyenne des pourcentages des conduites a remplacer tend a 

s'harmoniser sur l'horizon de temps. Par ailleurs, le cout total du systeme donne par le 

modele 2 est de l'ordre de 2,29 M$. La figure 4.5 montre revolution du cout total du 

systeme. Celui-ci ne diminue pas sans cesse a cause des restrictions budgetaires. 

lO* Evolution du cout total en S 

o Modele 1 
o Modele 2 

'0 200 4 0 EOD 800 1000 1200 
Generation 

Figure 4.5 : Cout total du systeme avec contraintes budgetaires annuelles 
(M = 50, N = 50, Ngen = 1000) 

' 2.s\-

• O O O O O O O O i S O C C O O O O O O S O O O O O O O O O S O O O O O O O C O i S O O O O O O O O O i S O 
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En fonction des conditions initiales des conduites et des restrictions budgetaires, il est 

possible qu'aucune solution respectant les budgets imposes ne soit trouvee. Par 

consequent, le modele 2 permet de trouver la solution qui respecte au mieux les 

contraintes financieres imposees. 

4.3. DEUXIEME SCENARIO AVEC UNE CONTRAINTE SUR LE 

COUT TOTAL DU SYSTEME 

On n'impose aucune contrainte sur les budgets annuels. Les options d'intervention sont 

la rehabilitation et le remplacement. On impose que le cout total ne doit pas descendre 

en deca d'une certaine valeur fixee. En effet, en l'absence de cette contrainte, la solution 

convergerait vers la rehabilitation systematique de toutes les conduites. Le but de ce 

scenario est d'etudier le comportement du modele en imposant un cout total. 

La simulation est faite avec le modele 1 sans contrainte converge vers la solution de 

rehabilitation a 100% du reseau. Ce modele donne le cout minimal du systeme lorsque 

toutes les conduites sont rehabilitees sur un horizon de temps donne. On choisit 

d'imposer un cout total superieur a ce dernier, mais inferieur au cout total qu'a donne le 

modele 1 lorsque les conduites sont remplacees a 100%. Une seconde simulation avec ce 

cout total fixe a respecter est alors executee. 
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Figure 4.6 : Cout total du systeme avec contrainte sur le cout total 
(M = 50,N = 50,Ngen=1000) 
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+ Cout total fixe 

La figure 4.6 montre revolution du cout total en fonction des generations. Et on constate 

que ce cout converge vers le cout total fixe a 2 M$. La solution du modele 2 au bout de 

1 000 generations donne un cout total de 2,13 M$. La figure 4.7 montre les dates des 

interventions sur les conduites. Dans le tableau 4.3, on peut observer quelles proportions 

de conduites sont remplacees akJ ou rehabilitees fik t dans chaque lot k. 

e opiimale de replacement ou de rehabilitation 

2030 

I p; 0 * 

•"0" 

0 0 0 0 

: o 
9 0 

0 

..a..;.. ••! Q..-&4--

: : o o 

o I o o 8 g ( | ! o o c o 
;o Modele 1 
i o Modele 2 

..0.. 
o o o o : 0 

O O O O g O O C O i " 

0 0 C 0 ?00 0 0 ? 
•: r - f f :-

? C 0 0 0 ? 0 0 0 0 ! 5 0 0 0 0 ( P 

J i j L 
o0o T'0" '(T 

I 0 

5 15 25 30 

Conduite 

Figure 4.7 : Date de remplacement ou de rehabilitation avec contrainte sur le cout total 
(M = 50, N = 50,Ngen=1000) 



81 

En analysant les resultats du tableau 4.3, on peut observer que certaines conduites sont 

rehabilitees a une date superieure a la date optimale de remplacement. En realite, il 

aurait fallu imposer une contrainte au niveau des limites d'interventions telle que si la 

date trouvee t est superieure a la date optimale de remplacement, on ne peut plus 

rehabiliter, autrement dit: \ft > t°r^p, f3kt = 0. 

Tableau 4.3 : Proportions des lots de conduites a remplacer ou rehabiliter 

Lot 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

2015 

2016 

2017 

2018 

2019 

2020 

2021 

2022 

2023 

2024 

2025 

2026 

2027 

2028 

2029 

2030 

2031 

2032 

2033 

2034 

Rehabilitation (modele 1) 

1 

100% 

X 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

2 

100% 

-

-

-

-

-

X 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

3 

-

-

-

-

-

100% 

-

-

-

-

-

X 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

4 

-

-

-

-

-

-

-

-

-

-

100% 

-

-

-

-

-

X 

-

-

-

-

-

-

-

-

-

-

-

5 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

90% 

10% 

-

-

-

-

X 

-

-

-

-

-

-

Remplacement nu rehabilitation (modele 2) 

1 

0-10% 

10-0% 

0-10% 

-

0-10% 

-

0-10% 

-

-

-

0-20% 

-

-

0-10% 

-

-

0-10% 

-

-

-

-

-

0-10% 

-

-

-

-

-

2 

-

-

0-10% 

10-0% 

-

0-10% 

0-30% 

-

-

0-10% 

0-10% 

-

-

0-10% 

0-10% 

-

-

-

-

-

-

-

-

-

-

-

-

-

3 

10-0% 

10-20% 

-

-

-

0-10% 

-

0-10% 

-

10-0% 

0-10% 

-

-

-

-

0-10% 

-

-

-

-

10-0% 

-

-

-

-

-

-

-

4 

0-10% 

-

20-0% 

-

0-10% 

-

0-10% 

-

0-20% 

-

-

-

-

0-10% 

0-10% 

0-10% 

-

-

-

-

-

-

-

-

-

-

-

-

5 

-

-

-

-

-

-

-

0-10% 

-

-

-

-

-

-

0-10% 

0-10% 

0-10% 

-

-

-

20-0% 

-

-

-

-

0-10% 

-

-
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2035 

2036 

2037 

2038 

Rehabilitation (modele 1) 

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

-
-
-
-

Rcmplacement ou rehabilitation (modele 2) 

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
0-20% 

-
10-0% 

Note : X = date optimale de remplacement 

4.4. DISCUSSIONS SUR LES RESULTATS OBTENUS 

La mise en oeuvre de la solution avec des contraintes budgetaires par l'algorithme 

genetique est un processus qui s'est avere complexe. Tout d'abord, la population finale 

du premier modele a ete choisie comme la population initiale du deuxieme modele. 

Ensuite, chaque individu (solution) est evalue a l'aide d'une nouvelle fonction 

d'evaluation. Pour cela, il y a plusieurs possibilites qui s'offrent: 

• garder une fonction d'evaluation qui minimise le cout total du systeme et 

rejeter les solutions qui ne rencontrent pas les contraintes budgetaires; 

• ajouter a la fonction d'evaluation qui minimise le cout total du systeme un 

cout de penalite pour discriminer les solutions qui ne rencontrent pas les 

contraintes budgetaires; 

• adapter la fonction d'evaluation a la contrainte. 

La premiere solution a ete rejetee car beaucoup d'individus risquent d'etre elimines et si 

les contraintes sont severes, il peut arriver que l'algorithme ne trouve aucune solution. 

Pourtant, l'objectif est autant la recherche d'une solution exacte que la recherche d'une 

solution respectant au mieux les criteres. 
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La deuxieme solution a ete rejetee car la proportion des solutions tres insatisfaisantes 

peut devenir tres grande par rapport au reste de la population. 

La troisieme solution a ete retenue. Soit A une annee dans l'horizon de temps choisi T, 

la figure 4.8 illustre la nouvelle fonction d'evaluation. 

Calcul de la fonction 
d'evaluation par 

PA = DA - CA 

(difference entre le budget 
annuel impose DA et le cout 

annuel CA calcule par le modele 
pour une solution donnee) 

^ 

A chaque 
generation, pour 
tous les individus 

(solutions) 

' 

Si la contrainte budgetaire 
est sur le cout total: 

le meilleur individu est celui 
T 

dont | y. PA 1 est la plus 

petite, voire nulle 

v 

Si les contraintes 
budgetaires sont sur les 

budgets annuels: 

le meilleur individu est celui 
T 

dont 2_, IPA| est la plus 
A=l 

petite, voire nulle 

Figure 4.8 Adaptation de la fonction d'evaluation avec les contraintes budgetaires 

L'objectif reste la minimisation du cout total du systeme. Cependant, la fonction 

d'evaluation sert a selectionner dans la generation courante, non pas la solution qui a le 

plus petit cout total du systeme, mais la solution qui respecte au mieux les contraintes 

budgetaires. Elle permet ainsi de trouver une solution de "bon compromis" entre le 

respect des contraintes budgetaires et la minimisation du cout total du systeme. 
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Connaissant les dates obtenues par le premier modele sans contraintes budgetaires, les 

nouvelles dates et les choix d'intervention pour chaque conduite venant du deuxieme 

modele avec contraintes budgetaires, on determine les proportions des conduites a 

rehabiliter et a remplacer dans chaque groupe. 

Avec un minimum de deux heures de temps de calcul pour simuler chaque scenario avec 

contraintes budgetaires, on obtient une nouvelle programmation des interventions. Les 

resultats sont quantifiables car ils donnent en fonction du budget disponible, les 

proportions de conduites a remplacer et a rehabiliter a chaque annee dans chaque 

groupe. Et la decision revient aux gestionnaires de choisir dans chaque groupe les 

conduites sur lesquelles ils veulent intervenir tout au long de 1'horizon. La pertinence 

des resultats est observable dans la figure 4.4 car, meme si les interventions sur les 

conduites sont en general reportees dans le temps pour tous les groupes, on observe tout 

de meme que, plus le groupe de conduites est critique, plus rapidement les interventions 

sont faites sur l'ensemble des conduites de ce groupe par rapport au reste des conduites 

du reseau. 

Dans la mise en oeuvre de la solution, les solutions qui ne rencontrent pas les contraintes 

fixees ne sont pas eliminees et aucun cout de penalite n'est affecte a ces solutions. Ainsi 

la solution obtenue peut etre la meilleure parmi des solutions ne respectant pas les 

contraintes. 
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CONCLUSION 

A travers ce projet, l'algorithme genetique a ete applique a des modeles inspires de la 

demarche de Shamir et Howard (1979) en vue d'obtenir les dates optimales de 

remplacement des conduites (premier modele), et de l'approche de Karaa et al. (1987) 

pour obtenir les proportions de conduites a remplacer ou rehabiliter sur 1'horizon de 

temps afin de repondre au mieux a des restrictions budgetaires imposes (deuxieme 

modele). 

Cette etude a permis d'evaluer les atouts et les limites de l'algorithme genetique utilise 

comme methode de calcul pour les deux problemes d'optimisation poses. L'un des 

avantages majeurs observe de 1'algorithme genetique est qu'il s'adapte a des problemes 

ou : soit la mise en oeuvre de la solution par des methodes non lineaires est complexe, 

soit il n'existe pas de methode exacte de resolution. Comme on a pu le constater, aucun 

bagage mathematique n'est requis pour la mise en oeuvre de l'algorithme. De plus, on a 

pu aussi observer que 1'algorithme genetique est un outil robuste, dans la mesure ou il 

peut fournir des solutions tres bonnes mais pas necessairement optimales comme c'est le 

cas dans l'utilisation d'un taux de bris lineaire. Cependant, la robustesse de l'algorithme 

genetique a un prix, dans la mesure ou un tres grand nombre de generations (ou de 

calculs de la valeur d'adaptation) peut etre necessaire avant d'atteindre la solution 

optimale. Ce nombre devient problematique lorsque le nombre d'individus augmente et 

le cout de calcul (en temps) de la valeur d'adaptation augmente. Par exemple, pour le 
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premier modele, le temps de reponse etait de l'ordre d'une dizaine (voir quinzaine) de 

minutes, tandis que pour le modele, le temps de reponse etait d'environ deux heures. 

Cette etude a aussi permis de constater combien la vitesse de convergence est cruciale, et 

pour tout type de probleme, il est important de trouver des methodes alternatives pour 

accelerer la convergence de 1'algorithme. En l'occurrence, pour cette etude, l'operateur 

de creation du meilleur des meilleurs individus a ete cree. 

En somme, 1'algorithme genetique est un outil qui suscite un engouement et 1'analyse 

faite au travers de cet outil merite d'etre poussee encore plus loin: d'une part, en 

essayant cet outil sur un reseau de conduites plus large (d'environ 200 conduites) pour 

observer la reaction d'un tel outil en terme d'efficacite de convergence et de temps de 

calculs; et d'autre part, une comparaison des resultats obtenus avec ceux des autres 

modeles peut etre faite pour mieux evaluer la robustesse de cet outil (c'est-a-dire son 

efficacite a donner de "bonnes" solutions). 

Par ailleurs, une analyse encore plus poussee peut etre faite en rajoutant dans 

1'algorithme des contraintes au niveau des techniques d'intervention en imposant un taux 

d'utilisation pour chaque technique sur l'ensemble des conduites a l'interieur de 

l'horizon de temps fixe. Par exemple, la Politique nationale de l'eau (engagement 45) 

exige depuis 2005, un taux d'utilisation des techniques de rehabilitation des conduites de 

25% par rapport au remplacement. 

De meme, une recherche plus approfondie en introduisant plusieurs criteres de decision 

peut etre etudiee. Dans ce projet, seul le critere economique a ete aborde, et des 
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scenarios d'intervention sous des contraintes budgetaires ont pu etre elabores. 

Cependant, dans un reseau d'eau potable, la performance hydraulique et la qualite de 

l'eau sont aussi des criteres importants. On pourrait alors evaluer la capacite de cet 

algorithme a gerer par une formulation, monocritere ou multicritere, 1'ensemble de ces 

objectifs dans le but d'introduire ces modules dans un systeme integre d'aide a la 

decision pour le renouvellement des reseaux d'eau potable. 

De nos jours, les modeles d'optimisation sont des outils utiles pour une planification a 

long terme des interventions sur les conduites d'eau potable. En effet, ils permettent 

d'une part d'elaborer differents scenarios d'interventions et d'autre part de mesurer 

l'impact des investissements insuffisants sur le reseau de conduites soumis a differentes 

autres contraintes. Bien que les modeles d'optimisation soient des outils puissants d'aide 

a la decision, les interventions sur les conduites d'aqueduc ne dependent pas uniquement 

de l'etat des conduites d'eau potable mais aussi des conditions des autres infrastructures 

adjacentes telles que les reseaux d'egouts et les chaussees. Ainsi, un arbre de decision 

prenant en compte les resultats du modele d'optimisation et les facteurs externes 

(travaux sur les egouts et chaussees, choix politiques, problematiques particulieres) 

viendra raffiner l'optimisation des plans d'interventions sur les conduites d'eau potable. 

En definitive, le modele d'optimisation est une tentative d'automatiser la decision. 

Cependant, le choix revient toujours aux gestionnaires municipaux qui doivent se batir 

un arbre de decision pour chacune des conduites traitees. 
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ANNEXE 1 

DEVELOPPEMENT MATHETIQUE POUR LE CALCUL DE LA DATE 

OPTIMALE 

Les couts totaux sont \rt\l
r> ~Z^u „y-» 

Oncherche tr qui minimise Pr{tr) : MitVrVrh 

Nous savons que nous pouvons remplacer ^ par J . Soit Pr la fonction dependant de 

tr dont nous recherchons le minimum. Soit P r la derivee de la fonction Pr. 

Mathematiquement le minimum de la fonction Pr est une racine de sa derivee. Par 

tr 

ailleurs, nous savons aussi que Pr(tr) = f P'r (t) dt + Constante 
ip 

y r£f,(l+RT" (l+R)-" 
t=tr 

P'{trY \ , C \ tndt + CrXe-itr-tpMl+R) 

JtP(l+RT 
pt{tr}= J Cm• dt+ \-CrXln(l+R)e-{t-tp)ln(l+R)dt + K , 

t=tp \ i " r ^ / t=tp 

avec K une constante 
t=tr 

^Jtp(i+RTtp 

Pt(!ry
=\—Q*^cM\+R)d 

v rJtp(i+RTtp
 (I+RTP 
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n(trhlCm:c'^R)*+K 
K rX (Y+R)-tp 

D'oil Pr'(tr) = 0 equivaut a Cm - Crln(l+R) = 0. 

Soit Cm = Cb x N(t) = Cr ln(l+R) 
,A(,-fr)_ Cr\n(l+R) 

N(t)= N(t0)e-
C, 

D'ou e 
A(Mo) = Cr\n(\+R) 

N(t0)Cb 

A(t-L) = \A 
rcrm+R)^ 

Wo)Ct •b J 

t = tn+ —In 
C r l n ( l + / Q 

N(t0)C 

\ 

— l , t* etant la date optimale theorique 
b J 

Parailleurs, N(tp) = N(t0)e
A(fp-k).Mors, N(t0) = A ^ ) ^ 4 ' " 0 

1 , 
Done, ** = * 0

+ T l n 
A 

r C rln(l + fl) Ao 

V Wp)Cb 

p~'0 <o) 
sachant que ln(a x b) = In a + In b 

1, 
t* = t +—In 

0 A 

crm+R) +—lne A('„-fo) 

1 
/ 

0 A 

Crln(l+ff) 

v WP)cb j 

1 1 
f* = f +—In 

p A 

f 

+-A(tp-t0) 
A 

\ Cr\n(l + R) 

V N(tp)Cb J 
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ANNEXE 2 

CODES DE L'ALGORITHME GENETIQUE 

Deux modeles ont ete elabores : Le modele 1 (sans contraintes budgetaires) et le modele 

2 (avec des contraintes budgetaires). Ces deux modeles utilisent des fonctions 

communes exceptees certaines fonctions telles la fonction d'evaluation (qui permet de 

calculer le fitness de chaque individu), la fonction generation (qui permet d'executer 

Palgorithme de generation en generation) et la fonction compil (qui est la fonction 

principale d'execution du programme). Les codes ont ete ecrits et compiles avec le 

logiciel MATLAB. 

Les fonctions utilisees sont: 

Pour le calcul des couts 

1- budgets : elle permet de repartir le budget global de maniere homogene par annee. 

2- cout_maint et coutjrempla : elles permettent de calculer respectivement le cout de 

maintenance et le cout de remplacement d'une conduite a une annee donnee. 

3- cout Jot et coutJotJtin : elles permettent de calculer les couts totaux du systeme 

selon un modele de degradation exponentiel et selon un modele lineaire. 

4- cout_annee : elle permet de determiner le budget annuel d'une solution. 

5- coef_R : elle permet de definir le taux d'actualisation. 
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Pour les conditions initiates des conduites 

6- coef_A, date_pose, taux_def, coutjrep, coutjremp et cond_initjstat: elles permettent 

de definir les conditions initiales selon les differents types de reseau. 

7- technique: elle permet de definir les techniques d'intervention qui sont la 

rehabilitation et le remplacement et d'en fixer les coiits. 

Pour le deroulement de Palgorithme 

8- popjnit: elle permet de generer la population initiale. 

9- conv_bin_dec et conv_dec_bin : elles permettent respectivement de convertir un 

nombre binaire en decimal et un nombre decimal en binaire. 

10- vecteurjitness et vecteur_fitness_cas2 : elles permettent de calculer le cout total du 

systeme pour le modele 1 et le modele 2. 

11- classement: elle permet de classer par rang les individus en fonction de leur cout 

total. 

12- probabilite : elle permet de calculer la probabilite de selection en fonction du rang. 

13- choixAB : elle permet de selectionner deux parents pour le croisement. 

14- croisementAB et croisementABu: elles permettent de croiser les parents 

respectivement selon un croisement en 2 points et un croisement uniforme. 

15- mutation : elle permet de faire l'inversion d'un bit d'un individu. 
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16- generation et generation_cas2 : elles sont les fonctions d'execution pour le modele 1 

et le modele 2. 

17- compill et compiU. : elles sont les fonctions principales pour le modele 1 et le 

modele 2. 

1- Definition de la fonction budgets 

La fonction budgets est donnee par : 

function an_hor = budgets(argent, periode, mode) 

%an_hor = zeros(l,horizon); 
val = argent / periode; 
switch mode 

% Premier modele : memes couts par annee 
case 0 

for i = l:periode 
an_hor(i) = val ; 

end 

% Deuxieme modele : dif ferents couts par annee 
case 1 

end 

2- Definition des fonctions coutjtnaint et cout_rempla 

Les fonctions coutjnaint et coutjrempla sont donnees par : 

°i 

% Cette fonction donne les couts de maintenance de chaque conduite 
% 

function cout_unit = cout_maint(id_cond, mat_cond_init, date) 

x = [ 1 
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x = mat_cond_init; 

a = 0; % cout de maintenance actualise 

temp = x(6,id_cond)*x(2/id_cond)*exp(x(3,id_cond)*(date+2007-x(l,id_cond))); 
a = a + temp/(l + x(4,id_cond))"(date); %i-2007); 

cout_unit = a; 

% -
% Cette f onction donne les couts de remplacement de chaque conduite 
% 

function cout_unit = cout_rempla(id_cond, mat_cond_init, date) 

x = [ ] ; 

x = mat_cond_init; 

b = x(5,id_cond) / ( l + x(4,id_cond))*(date); % cout de remplacement actualise 

cout_unit = b; 

3- Definition des fonctions cout Jot et cout Jot Jin 

Les fonctions cout Jot et cout Jot Jin sont donnees par : 

% — 
% Cette fonction donne les couts de rehabilitation de chaque conduite 
% 

function cout_unit = cout_tot(id_cond, mat_cond_init, date) 

x = [ ] ; 
x = mat_cond_init; 

a = 0; % cout de maintenance actualise 
for i = 2007:2007+date 

temp = x(6,id_cond)*x(2,id_cond)*exp(x(3,id_cond)*(i-x(l,id_cond))); 
a = a + temp/(l + x(4,id_cond))"(i-2007); 

end 



b = x(5(id_cond)/(l + x(4/id_cond))"(date); % cout de remplacement actualise 

cout_unit = a + b; 

% 

% Cctte fonction donne les couts de rehabilitation de chaque conduite 
% 

function cout_unit = cout_tot_lin(id_cond, mat_cond_init, date) 

x = [ ] ; 
x = mat_cond_init; 

a = 0; % cout de maintenance actualise 
for i = 2007:2007+date 

temp = x(6,id_cond)*x(2,id_cond)*x(3,id_cond)*(i-x(l,id_cond)); 
a = a + temp/( l + x(4,id_cond))"(i-2007); 

end 

b = x(5,id_cond)/(l + x(4,id_cond))A(date); % cout de remplacement actualise 

cout_unit = a + b; 

4- Definition de la fonction coutjxnnee 

La fonction coutjxnnee est donnee par : 

function an_hor = budgets(argent, periode, mode) 

%an_hor = zeros(l,horizon); 
val = argent / periode; 
switch mode 

% Premier modele : memes couts par annee 
case 0 

for i = l:periode 
an_hor(i) = val ; 

end 

end 
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5- Definition de la fonction coef_R 

La fonction coef_R est donnee par : 

% 
% Cette fonction donne le taux d'actualisation 
% 

function vecteur = coef_R (Nb_cond, taux) 

for i =1 :Nb_cond 
vecteur(i) = taux; 

end 

6- Definition des fonctions coef_A, datejpose, taux_def, cout_rep, coutjremp et 
cond_in.itjstat 

Les fonctions coef_A, date_pose, taux_def, coutjrep, coutjremp et cond_init_stat sont 
donnees par: 

% -
% Cette fonction donne les coefficients A de chaque conduite 
% — 

function vecteur = coef_A(Nb_cond, min, max, mode) 

switch mode 

% Premier modele : memes coefficients A 
case 0 

for i =1 :Nb_cond 
vecteur(i) = 0.05; 

end 

% Deuxieme modele : differents coefficients A 

case 1 
for i =1 :Nb_cond 

vecteur(i) = min + (rand*(max-min)); 
end 

http://cond_in.it


% Troisieme modele : 5 lots de conduites 

case 2 
k = Nb_cond/5; 
vecteur(l,l ;k) = 0.05; 
vecteur(l,l+k:2*k) = 0.06; 
vecteur(l,l+2*k:3*k) = 0.07; 
vecteur(l,l+3*k:4*k) = 0.08; 
vecteur(l,l+4*k:5*k) = 0.9; 

end 

% 
% Cctte fonction donne les dates de pose de chaque conduite 
% 

function vecteur = date_pose(Nb_cond, date, mode) 

switch mode 

% Premier modele : meme date d'installation 

case 0 
for i =1 :Nb_cond 

vecteur (i) = date; 
end 

% Deuxieme modele : differente date de pose 

case 1 
for i =1 :Nb_cond 

vecteur (i) = date + round(rand*(2007-date)); 
end 

% Troisieme modele : 5 lots de conduites 

case 2 
k = Nb_cond/5; 
vecteur(l,l:k) = 1960; 
vecteur(l 
vecteur(l 
vecteur(l 
vecteur(l 

l+k:2*k) = 1945; 
l+2*k:3*k) = 1965; 
l+3*k:4*k) = 1970; 
l+4*k:5*k) = 2002; 



end 

7 

% Cette fonction donne les taux de defaillance de chaque conduite 
% 

function vecteur = taux_def(Nb_cond, min, max, mode) 

switch mode 

% Premier modele : meme taux de defaillance 

case 0 
for i =1 :Nb_cond 

vecteur(i) = 0.1; 
end 

% beuxieme modele : differente date de pose 

case 1 
for i =1 :Nb_cond 

vecteur(i) = min + (rand*(max-min)); 
end 

% Troisieme modele : 5 lots de conduites 

case 2 
k = Nb_cond/5; 
vecteur(l,l:k) = 0.1; 
vecteur(U+k:2*k) = 0.04; 
vecteur(l,l+2*k:3*k) = 0.03; 
vecteur(l,l+3*k:4*k) = 0.02; 
vecteur(l,l+4*k:5*k) = 0.01; 

end 
°/_ 

% Cette fonction donne les couts de maintenance de chaque conduite 
<y 

function vecteur = cout_rep(Nb_cond, min, max, mode) 



switch mode 

% Premier modele : memes couts de remplacement 
caseO 

for i =1 :Nb_cond 
vecteur(i) = 1000; 

end 

% Deuxieme modele : d i f f erents couts de remplacement 

case 1 
for i =1 :Nb_cond 

vecteur(i) = min + round(rand*(max-min)); 
end 

% Troisieme modele : 5 lots de conduites 

case 2 
k = Nb_cond/5; 
vecteur(l,l:k) = 1000; 
vecteur(l,l+k:2*k) = 1250; 
vecteur(l,l+2*k:3*k) = 1500; 
vecteur(l,l+3*k:4*k) = 1750; 
vecteur(l,l+4*k:5*k) = 2000; 

end 

% 
% Cette fonction donne les couts de remplacement de chaque conduite 
% 

function vecteur = cout_remp(Nb_cond, min, max, mode) 

switch mode 

% Premier modele : memes couts de remplacement 
case 0 

for i =1 :Nb_cond 
vecteur (i) = 50000; 

end 
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% beuxieme modele : differents couts de remplacement 

case 1 
for i =1 :Nb_cond 

vecteur(i) = min + round(rand*(max-min)); 
end 

% Troisieme modele : 5 lots de conduites 

case 2 
k = Nb_cond/5; 
vecteur(l,l:k) = 50000; 
vecteur(l,l+k:2*k) = 40000; 
vecteur(l,l+2*k:3*k) = 30000; 
vecteur(l,l+3*k:4*k) = 20000; 
vecteur(l,l+4*k:5*k) = 10000; 

end 

function matrice = cond_init_stat(Nb_cond) 

global date_theo; 
matrice = []; 

matrice(l,l;Nb_cond) = date_pose(Nb_cond, 1960,1); 
matrice(2,l:Nb_cond) = taux_def(Nb_cond, 0.01, 0.2,1); 
matrice(3,l:Nb_cond) = coef_A(Nb_cond, 0.01, 0.15,1); 
matrice(4,l:Nb_cond) = coef_R (Nb_cond, 0.1); 
matrice(5,l:Nb_cond) = cout_remp(Nb_cond, 10000,150000,1); 
matrice(6,l:Nb_cond) = cout_rep(Nb_cond, 500, 2000,1); 
matrice(7,l:Nb_cond) = cout_reh (Nb_cond, 2000,10000,1); 

% calcul des dates theoriques de remplacement 

fid=fopen(' dates_sh_stat.txt',' w'); 
for i = 1 :Nb_cond 
date_theo(i) = matrice(l,i) + (l/matrice(3,i))*log( (matrice(5,i)*log(l+ matrice(4,i))) / 
(matrice(6,i)*matrice(2,i))); 
if (date_theo(i) < 2007) 

date_theo(i) = 2007; 
fprintf(fid,'%d\n',ceil(date_theo(i))); 

elseif (date_theo(i) > 2038) 
date_theo(i) = 2038; 



fprintf(fid,'%d\n',ceil(date_theo(i))); 
else 

date_theo(i) = ceil(date_theo(i)); 
fprintf(fid,'%d\n',ceil(date_theo(i))); 

end 
end 
fclose(fid); 

7- Definition de la fonction technique 

La fonction technique est donnee par : 

function tech = technique(N) 

matrice = zeros(l,N); 
cout_rempla = 50000; 
alpha = 0.75; 
beta = 1; 
f or i = 1 : N 

decision = round(rand(l,2)); 
if (decision(l) == 0 & decision(2) == 0) 

matrice(5,i) = cout_rempla*alpha; 
elseif (decision(l) == 0 & decision(2) == 1) 

matrice(5,i) = cout_rempla*beta; 
elseif (decision(l) == 1 & decision(2) == 0) 

matrice(5,i) = cout_rempla*beta; 
else 

matrice(5,i) = alpha*cout_rempla; 
end 

end 

tech = matrice(5,:); 

8- Definition de la fonction pop_init 

La fonction pop_init est donnee par : 

o/ 

% • 
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function mo/trice = pop_init(M,N) 

matrice = round(rand(M,N)); 

9- Definition des fonctions conv_bin_dec et conv_dec_bin 

Les fonctions conv_bin_dec et conv_dec_bin sont donnees par : 

function decimal = conv_bin_dec (binaire) 

faille = size(binaire,2); 
decimal = 0; 

for i=l:taille 
decimal = decimal + binaire(i)*2A(taille-i); 

end 

function vecteur = conv_dec_bin(date) 

global N 
vecteur = []; 
%N = size(date#2); 

for i = 1:N 
binaire = zeros(l,5); 

if (date(i) == 0) 
vecteur(l,l+5*(i-l):5*i)= binaire; 

else 
for j = l:f loor(log(date(i))/log(2))+l 

binaire(5-j+l) = mod(date(i),2); 
date(i) = f loor(date(i)/2); 

end 

vecteur(l,l+5*(i-l):5*i)=binaire; 
end 

end 
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10- Definition de la fonction vecteurjitness et vecteur_fitness_cas2 

Les fonctions vecteurjitness et vecteurjitness_cas2 sont donnees par : 

% Cette fonction renvoie Ie fitness de chaque individu de la population et 
% verif ie si les contraintes budgetaires sont respectees 
% 

function [vecteur, championl] = vecteur_fitness(population, mat_cond_init) 

global Bglobal 
global budget 
global M 
global N 
global faisabilite 
global alpha 

alpha = 5; 
annee = []; 
cout_annee = [ ] ; 

t = [] ; 
c t = [ ] ; 
somme_Ct = []; 
somme_Ct_penalite = []; 
champion = []; 
temp = []; 

for i=l:AA 

k = 1; 7o incrementation pour Ie vecteur annee et cout_annee 

individu = population(i,:); % selection de la solution i 

% on calcule pour la premiere conduite les valeurs 

t ( i , l ) = conv_bin_dec(individu(l:alpha)); % annee optimale 

Ct(i,l) = cout_tot(l,mat_cond_init,t(i,l)); % cout total 
annee(i,k) = t(i,l)-' % annee optimal 
cout_annee(i,k) = Ct(i,l); % cout de lannee 
somme_Ct(i) = Ct(i,l); % budget global trouve 

if (i == 1) 
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champion(U) = t ( l , l ) ; 
cout_cond_min(l,l) = Ct(l, l); 

else 

if (Ct(i,l) < cout_cond_min(l,l)) 
champion(l,i) = t(i,l)-' 
cout_cond_min(l,l) = Ct(i,l); 

end 
end 

% on travaille sur les conduites restantes de 2 a N 

for j=2:N 

t(i, j) = conv_bin_dec(individu(l + alpha*(j - l):alpha + alpha*(j - 1))); % annee optimale 
Ct(i,j) = cout_tot(j#mat_cond_init,t(i,j)); % cout total de la conduite concernee 
somme_Ct(i) = somme_Ct(i) + Ct(i,j); 

if (i == 1) 
champion(l,j) = t ( l , j ) ; 
cout_cond_min(l,j) = Ct(lJ); 

else 
•f (Ct(i,j) < cout_cond_min(l,j)) 

champion(l,j) = t(i, j); 
cout_cond_min(l,j) = Ct(i,j); 

end 
end 

temp = k; % sauvegarde de la derniere position 
for m =l:k 

if (+('-j) == annee(i,m)) 

cout_annee(i,m) = cout_annee(i,m) + Ct(i,j); 
break 

else 
if (temp == m) 

k = k + 1; 
annee(i,k) = t(i, j); 
cout_annee(i,k) = Ct(i,j); 

end 

end 



end 

end 

end 

vecteur = somme_Ct; %somme_Ct_penalite; 
championl = champion; 

% 
% Cette fonction renvoie le fitness de chaque individu de la population et 
% verif ie si les contraintes budgetaires aont respectees 
% 
function [vecteur, sup_i, sup_il, vect_int] = vecteur_f itness_cas2(population, 
mat_cond_init/budgetglo) 

global Bglobal2 
global budget 
global M 
global N 
global faisabilite 
global alpha 
global horizon 

alpha = 5; 
annee = [ ] ; 
cout_annee = []; 

t = [] ; 
c_t = [ ] ; 
somme_Ct = []; 
somme_Ct_penalite = []; 
vect_cout = [ ] ; 
temp = []; 

for i=l:AA 

individu = population(i,.); % selection de la solution i 

% on calcule pour la premiere conduite les valeurs 

t( i , l ) = conv_bin_dec(individu(l:alpha)); % arvnee optimale 

% on change de cout par conduite a chaque individu 
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mat_cond_init(5,l:N) = technique(N); 

% 

C_t(i,l) = cout_tot(l,mat_cond_init,t(i,l)); % cout total 

somme_Ct(i) = C_t(i,l); % budget global trouve 

% on travaille sur les conduites restantes de 2 a N 

for j=2:N 

t(i, j) = conv_bin_dcc(individu(l + alpha*(j - l):alpha + alpha*(j - 1))); % arvnee optimale 
C_t(i,j) = cout_tot(j,mat_cond_init,t(i,j)); % cout total de la conduite concernee 
somme_Ct(i) = somme_Ct(i) + C_t(i,j); 

end % end for 
% end for — 

% 

for r = 1:N 
vect_date(r) = t(i,r) + 2007; 

end 
% 

[ct, cout_glo] = cout_annee(N,vect_date,mat_cond_init, horizon); 
cout_glo; 
% 

%templ = f ind(t == max (t)); 
%pas = t(templ); 
budget_an_est = budgets(budgetglo, horizon, 0); 
somme_templ = 0; 
for ind = l:horizon 

temp_an(ind) = budget_an_est(ind)- ct(ind); 
somme_templ = somme_templ + abs(temp_an(ind)); 

end 

7o calcul de la difference entre le cout annuel estime et le cout reel 
% 

% 

% Budget annuel comme critere 
% 



if (i == 1) 
minimum = abs(cout_glo - budgetglo); 
sup_i = 1; 
vect_remp_reh = mat_cond_init(5,l:N); % sauvegarde des couts de rehab/remp 

else 
if (abs(cout_glo - budgetglo) < minimum) 

minimum = abs(cout_glo - budgetglo); 
sup_i = i; 
vect_remp_reh = mat_cond_init(5,l;N); % sauvegarde des couts de rehab/remp 

end 
end 

% 
% Budget annuel comme critere 
% 

if (i==l) 
minimuml = somme_templ; 
sup_il = 1; 
vect_remp_rehl = mat_cond_init(5,l;N); % sauvegarde des couts de rehab/remp 

else 
if (somme_templ < minimuml) 

minimuml = somme_templ; 
sup_il = i; 
vect_remp_rehl = mat_cond_init(5,l:N); % sauvegarde des couts de rehab/remp 

end 
end 
% 

end 

vect_int = vect_remp_reh; 
<y******************************************** 

%vect_int = vect_remp_rehl; % <=== ATTENTION 
vecteur = somme_Ct; 

11- Definition de la fonction classement 

La fonction classement est donnee par : 

%• 



% fonction de classemcnt : Cette fonction classe les M individus ou vecteurs 
% ou points de la population en fonction de leur cout par ordre 
% decroissant. Par ex.: ici on renvoie un vecteur de faille M, qui 
% contient les positions de chaque point dans la matrice population. 
% — 

function vecteur_indice_ordre = classement(vecteur_fitness) 

faille = size(vecteur_f itness,2); 

vecteur_indice_ordre = zeros(taille, 1); 

% on cherche un mimimum de toutes les valeurs du fitness 

val_min = min(vecteur_f itness) - 1 ; 

i = l; 

pas = 0; 

while(i <= faille) 

% on cherche le tableau d'indice de position du maximum 

temp = find(vecteur_f itness == max(vecteur_f itness)); 

pas = pas + size(temp,l); % on incremente le pas de la faille du tableau 

vecteur_indice_ordre(i:pas) = temp(l:pas - i + 1); % on sauvegarde les positions 

vecteur_fitness(temp) = val_min; % on affecte le min pour ne pas reselectionner les 
positions 

i = pas + 1; 

end 

12- Definition de la fonction probability 

La fonction probability est donnee par : 

% 
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% assignation de la probabilite : Cette fonction calcule la probability 
% en fonction du rang (valeur decroissante) de leur fitness 
% 

function vecteur_proba = probabilite(vecteur) 

tailleM = size(vecteur,2); % trouve la faille du vecteur de probabilite 

vecteur_proba = zeros(tailleM,l); 

pm = 2./tailleM; 

for j = l.tailleM 

vecteur_proba(j) = pm *(j - l)/(tailleAA -1); 

end 

13- Definition de la fonction choixAB. 

La fonction choixAB est donnee par : 

% 

% selection de A et B en fonction de leur probabilite : cette fonction 
% permet de selectionner deux parents en fonction de leur rang de 
% probabilite selon la methode de selection par la roulette biaisee. Par 
% ex.: ici on renvoie les positions (dans le vecteur de probabilte) des individus 
% 

function [indiceA, indiceB] = choixAB(vecteur_proba) 

toille = size(vecteur_proba,l); 

roulette = zeros(taille,l); 

somme_cumulative = 0; 

for i = l'.taille % obtention de la roulette 

somme_cumulative = somme_cumulative + vecteur_proba(i); 

roulette(i) = somme_cumulative; 



I l l 

end 

% choix des indices des deux points avec \a roulette au hasard 

temp = []; 

for i = 1:2 % pour deux points 

temp(i,l) = rand*l; 

aiguille = 1; % premiere tranche dans la roulette 

j = l: 

while (temp(i,l) > roulette(j)) 

j = j + f 

aiguille = j ; 

end 

temp(i,l) = aiguille; % tranche ou se situe le pointeur dans la roulette 

end 

indiceA = temp(l,l)-' 

indiceB = temp(2,l); 

14- Definition des fonctions croisementAB et crosiementABu 

Les fonctions croisementAB et croisementABu sont donnees par : 

% 
% fonction de croisement: elle fai t une croisement en deux points sur deux 
% individus selectionnes et donne un unique enfant 
% -

function enfant = croisementAB(A, B, N) % N nest pas necessaire 

taille = size(A,2); 



enfant = [] ; 

% choix des deux points de croisement aleatoires 

k l = l ; 

k2 = l; 

while (kl == k2) 

k l = 1 + round(rand*(taille - 1)); 

k2 = 1 + round(rand*(taille - 1)); 

if (kl > k2) 

temp = k l ; 

k l = k2; 

k2 = temp; 

end 

end 

% croisement des parents pour donner un enfant 

enfant(l, l :kl - 1) = B(l:kl - 1); 

enfant(l,kl:k2 - 1) = A(kl:k2 - 1); 

enfant(l,k2:taille) = B(k2:taille); 

% 

% fonction de croisement: elle fait une croisement en deux points sur deux 
% individus selectionnes et donne un unique enfant 
% 

function enfant = croisementABu(A, B, N) 

taille = size(A,2); 



enfant = [] ; 

masque = round(rand(l,N)); 

for i =1:N 

if (i == 1) 
enfant(i) = A(i); 

else 
enfant(i) = B(i); 

end 

end 

15- Definition de la fonction mutation 

La fonction mutation est donnee par : 

% 

% fonction mutation : Cette fonction opere une mutation aleatoire sur un 
% individu en inversant une valeur de bit 
% 

function [individu_mute] = mutation (individu) 

individu_mute = []; 

longueur = size(individu,2); 

point = 1 + round(rand*(longueur -1)); 

% operation de mutation 

if (individu(l,point) == 0) 
individu(l,point) = 1; 

else individu(l, point) = 0; 
end 

individu_mute = individu; 
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16- Definition des fonctions generation et generation_cas2 

Les fonctions generation et generation_cas2 sont donnees par : 

% _ — 

% Algorithme genetique 
% — 

function [ tabl , tab2] = generation(f, matrice, mat_cond_init) % f est la technique de 
croisement 

global Bglobal budget M N Ngen horizon date_theo 
budget = []; % cout total du systeme 
nb_eval = [] ; % nombre evaluation 

pas = 1; 

%pause = input('Tapez ENTREE'); 

population = matrice; 

%[M,N] = size(population); 

compteur = 1; 

while (compteur <= Ngen) % on a 'Ngen' generations 

% recherche de I'indice du meilleur cout des solutions 

[cout, champion] = vecteur_f itness(population, mat_cond_init); 

temp = f ind(cout == min (cout)); 

indice_minimum = temp(l); °k sauvegarde de la position du meilleur individu 

%-

% trace de la f onction de cout total en f onction des generations 

somme2 = 0; 

i f (compteur == 1) 
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temp_champion = champion; 
sommel = 0; 
for i = 1:N 

sommel = sommel + cout_tot(i,mat_cond_init/temp_champion(l,i)); 
end 

budget(l) = sommel; 
nb_eval(l) = 1; 

else 

for i = 1:N 
if 

(cout_tot(i,mat_cond_init#champion(l,i))<cout_tot(i,mat_cond_init,temp_champion(l,i))) 
temp_champion(l,i) = champion(l,i); 

end 

somme2 = somme2 + cout_tot(i,mat_cond_init,temp_champion(l,i)); 
end 
if (compteur == pas*f loor(Ngen/50)) 

pas = pas + 1; 
budget(pas) = somme2; 
nb_eval(pas) = pas*f loor(Ngen/50); 

end 
end 
% 

% tableaux des evaluations en fonction des generations 

tableaul(compteur) = cout(indice_minimum); % minimum 

% on travaille sur la valeur optimale 
cout_horizon = 0; 
for i = 1:N 

temp2 = population(indice_minimum,:); 
an(i) = conv_bin_dec(temp2(l + 5*(i - 1):5 + 5*(i -1))); 
cout_horizon = cout_horizon + Cm(an(i)) + Cr(an(i)); 

end 
tableau2(compteur) = cout_horizon; 

% on classe dans un vecteur les indices de la plus grande valeur a la 
% plus petite de la fonction objective 

vecteur_indice_ordre = classement(cout); 
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% on calcule la probability de la plus grande valeur a la plus petite 

vecteur_proba = probabilite(cout); 

%======== selection, croisement, population suivante =========== 

for i = 1:AA 

[indA, indB] = choixAB(vecteur_proba); 

A = population(vecteur_indice_ordre(indA,l),:); 

B = population(vecteur_indice_ordre(indB,l),:); 

enfant = feval(f, A, B, 5*N); 

nouvelle_population(i,:) = enfant; 

end 

%======== f in croisement ========================================= 

%=================== on effectue la mutation ===================== 

% nombre d'individus a muter 

nombre = round(0.01*N*10*M); 

for i = l:nombre 

id = 1 + round(rand*(M -1)); % indice de I'individu qui mute 

individu_mute = mutation(nouvelle_population(id,-.)); 

nouvelle_population(id,:) = individu_mute; 

end 

%============= f in mutation ===================================== 

%============ conservation du meilleur gene ou elitisme ===================== 



indicel = 1 + round(rand*(M - 1)); 

nouvelle_population(indicel,:) = population(indice_minimum,:); 

indice2 = 1 + round(rand*(M -1)); 

while (indice2 == indicel) 
indice2 = 1 + round(rand*(M - 1)); 

end 

nouvelle_population(indice2,:) = conv_dec_bin(temp_champion); 

population = nouvelle_population; 

%========= f in conservation ====================—=============: 

% incrementation du compteur 

compteur = compteur + 1; 

end 

% on travaille sur la valeur optimale pour trouver les temps optimaux des 
% conduites 

for i = 1:N 

temp = nouvelle_population(indicel,:); 

an(i) = 2007 + conv_bin_dec(temp(l + 5*(i -1):5 + 5*(i - 1))); 

end 

an 

[cout_an, cout_global] = cout_annee(N,an,mat_cond_init,horizon); 
cout_global 
temp = f ind(an == max (an)); 
date_max = an(temp(l)); 
%calcul buget global 
somme3 = 0; 
somme4 = 0; 
for i = 1:N 
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somme3 = somme3 + cout_tot(i,mat_cond_init,date_theo(i)-2007); 
somme4 = somme4 + cout_tot(i,mat_cond_init,an(i)-2007); 

end 
Bglobal_theo = sommc3; 

Bglobal = somme4; %<== attention 
% 

subplot(3,l,2) 
hold on 
%plot(nb_eval,budgetl,'c'); 
%plot(nb_eval,budget/'g'); 

%plot(nb_eval,Bglobal, 'g - ' ) 
plot(nb_eval,Bglobal_theo, ' r * ' ) 
tabl = [nb_eval;budget];% couts 
tab 2 = an; % dates 
title('Evolution du cout total en $ ' , 'color', 'blue'/Linewidth', 2); 
xlabel('Generation', 'color', 'blue'/Linewidth', 2); 
ylabel('Cout ($) ' , 'color', 'blue'/Linewidth', 2); 

subplot(3,l,3) 
hold on 

axes_bar = 2007:l:date_max; 
bar(cout_an); 
plot(cout_global); 

% — 
% Algorithme genetique 
% 

function [ tabl , tab2] = generation_cas2(f, matrice, mat_cond_init, budgetglo) % f est la 
technique de croisement 

global Bglobal2 Bglobal budget M N Ngen horizon date_theo 
budget = []; % cout total du systeme 
nb_eval = [] ; % nombre evaluation 
temp_cout_int = [] ; 
%nouvelle_j30pulation = [M,5*N]; 
pas = 1; 

%pause = input('Tapez ENTREE'); 
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population = matrice; 

%[M,N] = size(population); 

compteur = 1; 

while (compteur <= Ngen) % on a 'Ngen' generations 

% recherche de I'indice du meilleur cout des solutions 

[cout, entierl, entier2, cout_int] = vecteur_f itness_cas2(population, 
mat_cond_init,budgetglo); 

indice_minimuml = entierl; % sauvegarde de la position du meilleur individu 
indice_minimum2 = entier2; % sauvegarde de la position du meilleur individu 

% sauvegarde de la meilleure solution (budget global) 
if (compteur == 1) 

temp_indice_minimuml = entierl; 
temp_cout_indice_minimuml = cout(temp_indice_minimuml); 
temp_cout_intl = cout_int; 
%budget(l) = cout(temp_indice_minimuml); % <=== ATTENTION 
<y******************************************************* 

nb_eval(l) = 1; 
else 

if (abs(cout(entierl) - budgetglo) < abs( temp_cout_indice_minimuml - budgetglo)) 
temp_indice_minimuml = entierl; 
temp_cout_indice_minimuml = cout(temp_indice_minimuml); 
temp_cout_intl = cout_int; 

end 
end 

% sauvegarde de la meilleure solution (budget annuel) 

if (compteur == 1) 
temp_indice_minimum2 = entier2; 
temp_cout_int2 = cout_int; 
budget(l) = cout(temp_indice_minimum2);% <=== ATTENTION 
<y****************************************************************** 

tempor = population(entier2,:); 
for i = 1:N 

vect_date(i) = 2007 + conv_bin_dec(tempor(l + 5*(i - 1):5 + 5*(i - 1))); 
end 



mat_cond_init(5,l:N) = temp_cout_int2; 
[ct, ct_glo] = cout_annee(N,vect_date,mat_cond_init,horizon); 
somme_tempor = 0; 
budget_an_est = budgets(budgetglo, horizon, 0); 
for i = l:horizon 

somme_tempor = somme_tcmpor + abs(ct(i)-budget_an_est(i)); 
end 
temp_somme_tempor = somme_tempor; 

else 
tempor = population(entier2,:); 
for i = 1:N 

vect_date(i) = 2007 + conv_bin_dec(tempor(l + 5*(i - 1):5 + 5*(i -1))); 
end 
mat_cond_init(5,l:N) = cout_int; 
[ct, ct_glo] = cout_annee(N,vect_date,mat_cond_init,horizon); 
somme_tempor = 0; 
budget_an_est = budgets(budgetglo, horizon, 0); 
for i = l:horizon 

somme_tempor = somme_tempor + abs(ct(i)-budget_an_est(i)); 
end 
if (somme_tempor < temp_somme_tempor) 

temp_somme_tempor = somme_tempor; 
temp_indice_minimum2 = entier2; 
temp_cout_int2 = cout_int; 

end 

end 
% 

% trace de la f onction de cout total en f onction des generations 

if (compteur == pas*f loor(Ngen/50)) 
pas = pas + 1; 
%budget(pas) = temp_cout_indice_minimuml; 
<y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

budget(pas) = cout(temp_indice_minimum2); % <--- ATTENTION 
nb_eval(pas) = pas*f loor(Ngen/50); 

end 

% 



% on classe dans un vecteur les indices de la plus grande valeur a la 
% plus petite de la f onction objective 

vecteur_indice_ordre = classement(cout); 

% on calcule la probability de la plus grande valeur a la plus petite 

vecteur_proba = probabilite(cout); 

%======== selection, croisement, population suivante ==========: 

for i = 1:M 

[indA, indB] = choixAB(vecteur_proba); 

A = population(vecteur_indice_ordre(indA,l),:); 

B = population(vecteur_indice_ordre(indB,l),:); 

enfant = feval(f, A, B, 5*N); 

nouvelle_population(i,:) = enfant; 

end 

%====rr== f in croisement =================================== 

%=================== on effectue la mutation ================ 

% nombre d'individus a muter 

nombre = round(0.01*N*10*M); 

for i = l:nombre 

id = 1 + round(rand*(M - 1)); 7o indice de I'individu qui mute 

individu_mute = mutation(nouvelle_population(id,:)); 

nouvelle_population(id,:) = individu_mute; 

end 



%: f in mutation 

%============ conservation ===================== 

indicel = 1 + round(rand*(M - 1)); 

%nouvelle_population(indicel,:) = population(temp_indice_minimuml,'.)<* 

<y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
nouvelle_population(indicel,:) = population(tempJndice_minimum2,:);0/°<=== 

ATTENTION 

population = nouvelle_population; 

%========= f in conservation ===================================== 

% incrementation du compteur 

compteur = compteur + 1; 

end 

% on travaille sur la valeur optimale pour trouver les temps optimaux des 
% conduites 

for i = 1:N 

%temp = nouvelle_population(temp_indice_minimuml,:); 
<y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

temp = nouvelle_population(temp_indice_minimum2/:); % <=== ATTENTION 
an(i) = 2007 + conv_bin_dec(temp(l + 5*(i - 1):5 + 5*(i - 1))); 

end 

% graphique du budget annuel 
an 

% temp_cout_intl % <=== ATTENTION 
°l * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
temp_cout_int2 

%mat_cond_init(5,l:N) = temp_cout_intl;% <=== ATTENTION 
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<y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

mat_cond_init(5,l:N) = temp_cout_int2; 

[cout_an, cout_global] = cout_annee(N,an,mat_cond_init,horizon); 
cout_an 
cout_global 

%calcul budget global 
somme3 = 0; 
for i = 1:N 

somme3 = somme3 + cout_tot(i,mat_cond_init,an(i)-2007); 
end 
Bglobal2 = somme3; 
% 

tab l= budget; % couts 
tab2 = an; % dates 

subplot(3,l,2) 
hold on 

tabl = [nb_eval;budget];% couts 
%plot(nb_eval,budget,'c'); 
plot(nb_eval,budgetglo, V +'); 

title('Evolution du cout total en $ ' , 'color', 'blue'/Linewidth', 2); 
xlabel('6eneration', 'color', 'blue'/Linewidth', 2); 
ylabel('Cout ($) ' , 'color', 'blue'/Linewidth', 2); 

subplot(3,l,3) 
hold on 

axes_bar = 2007:l:horizon-l+2007; 
bar(cout_an,0.4,' c' ); 
plot(cout_global); 

grid on 

title('Couts annuels ($) sur 32 ar\s', 'color', 'blue'/Linewidth', 2); 
xlabel('Annee', 'color', 'blue'/Linewidth', 2); 
ylabel('Cout ($) ' , 'color', 'blue'/Linewidth', 2); 



17- Definition des fonctions compil et compil2 

Les fonctions compill et compil2 sont donnees par : 

function [val_pop, val_mat, Budgetglo] = compill() 

% comparaison des croisements 

close all; 

clear all 

% generation de la population initiale 

global Bglobal budget M N Ngen horizon date_theo 

M = input('Entrer le nombre d individus de la population '.'); 
N = input('Entrer le nombre de conduites : ') ; 
Ngen = input('Entrer le nombre maximal de generation : '); 
horizon = 32; 

population = pop_init(AA,5*N); 
mat_cond_init = cond_init_stat(N); 

f 1 = ©croisementAB; 
[tablO, tab l l ] = generation(f l.population, mat_cond_init); 
%pause = input('Tapez ENTREE'); 
%f 2 = ©croisementABu; 
%[tab20, tab21] = generation(f 2, population, mat_cond_init); 
%pause = input('Tapez ENTREE'); 
%f3 = ©croisementAB; 
%[tab30, tab31] = generation(f 3, population, mat_cond_init); 

subplot(3,l,l) 

hold on 

plot(tabll , 'bo ' ) ; 
%plot(tab21, ' b * ' ) ; 
%plot(tab31, 'b+ ' ) ; 
plot(date_theo, 'r o'); %<== 



grid on 
tit le('Date optimale de remplacement', 'color', 'blue'/Linewidth', 2); 
xlabelfConduite', 'color', 'blue'/Linewidth', 2); 
ylabel('bate', 'color', 'blue'/Linewidth', 2); 

subplot(3,l,2) 

hold on 

tablOO = tablO(l,:); 
tablOl = tabl0(2,:); 

plot(tabl00,tabl01, 'o-b'); 

%tab200 = tab20(l,:); 
%tab201 = tab20(2,:); 
%plot(tab200,tab201, '*-b ') ; 

grid on 
title('Evolution du cout total en $ ' , 'color', 'blue'/Linewidth', 2); 
xlabelCGeneration', 'color', 'blue'/Linewidth', 2); 
ylabel('Cout ($) ' , 'color', 'blue'/Linewidth', 2); 

%plot(tab30, '+-b'); 

% entrees 

val_pop = population; 
val_mat = mat_cond_init; 
Budgetglo = Bglobal; 
% -

% fonction maitresse compil2 

close all; 

clear all 

% generation de la population initiate 

global Bglobal2 budget M N Ngen horizon date_theo 



[population,mat_cond_init,Bglo] = compill; 
disp(Bglo); 

Bglobal2 = input('Entrer le budget global:'); 

pause = input('Tapez ENTREE'); 

mat_cond_init(5,:) 

f 1 = ©croisementABu; 
[tablO, t ab l l ] = generation_cas2(f l,population, mat_cond_init,Bglobal2); 

%pause = input('Tapez ENTREE'); 
%f 2 = ©croisementAB; 
%[tab20, tab21] = generation_cas2(f 2, population, mat_cond_init,Bglobal2); 

%pause = input('Tapez ENTREE'); 
%f 3 = ©croisementABu; 
%[tab30, tab31] = generation_cas2(f3, population, mat_cond_init,Bglobal2); 

subplot(3,l,l) 

hold on 

plot(tabll , ' g * ' ) ; 
%plo t ( tab21, 'b^-
Zplotfl-abSl, 'b+'); 
%plot(date_theo, Vo1) ; %<== 

grid on 
tit le('Date optimale de remplacement', 'color', 'blue'/Linewidth', 2); 
xlabel('Conduite', 'color', 'blue'/Linewidth', 2); 
ylabel('Date', 'color', 'blue'/Linewidth', 2); 

subplot(3,l,2) 

hold on 

tablOO = tablO(l,:); 
t a b i d = tabl0(2,:); 

plot(tabl00,tabl01, '*-g'); 
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%tab200 = tab20(l,:); 
%tab201 = tab20(2/.); 
%plot(tab200,tab201, '*-b ') ; 

grid on 
title('Evolution du cout total en $ ' , 'color', 'blue'/Linewidth', 2); 
xlabel('<5eneration', 'color', 'blue'/Linewidth', 2); 
ylabel('Cout ($) ' , 'color', 'blue'/Linewidth', 2); 

%tab300 = tab30(l,:); 
%tab301 = tab30(2,:); 
%plot(tab300,tab301, '*-b ') ; 

grid on 
title('Evolution du cout total en $ ' , 'color', 'blue'/Linewidth', 2); 
xlabel('Generation', 'color', 'blue'/Linewidth', 2); 
ylabel('Cout ($) ' , 'color', 'blue'/Linewidth', 2); 
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18- Exemple d'execution du programme. 

Les fichiers suivant sont crees lors du deroulement du programme : dates_sh_stat.txt 

(qui enregistre les dates theoriques) et histo.txt (qui enregistre les couts annuels). 

Voici les courbes obtenues par les simulations : 
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