POLYPUBLIE

PO'YtGChnique Montréal D'INGENIERIE

Titre:
Title:

Auteur:
Author:

Date:
Type:

Référence:
Citation:

POLYTECHNIQUE

A [
UNIVERSITE o

Détection d'ensembles irréductibles incohérents dans des
problemes de satisfaction de contraintes irréalisables

Christian Desrosiers

2004
Mémoire ou these / Dissertation or Thesis

Desrosiers, C. (2004). Détection d'ensembles irréductibles incohérents dans des
probléemes de satisfaction de contraintes irréalisables [Mémoire de maitrise, Ecole

Polytechnique de Montréall. PolyPublie. https://publications.polymtl.ca/8176/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . S
PolyPublie URL: https://publications.polymtl.ca/8176/

Directeurs de
recherche: Philippe Galinier

Programme:

Advisors:

Program: Non spécifié

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/8176/
https://publications.polymtl.ca/8176/

UNIVERSITE DE MONTREAL

DETECTION D’ENSEMBLES IRREDUCTIBLES INCOHERENTS DANS DES
PROBLEMES DE SATISFACTION DE CONTRAINTES IRREALISABLES

CHRISTIAN DESROSIERS
DEPARTEMENT DE GENIE INFORMATIQUE
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’'OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE INFORMATIQUE)

AVRIL 2004

(© Christian Desrosiers, 2004.

i~i

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91936-6
Our file Notre référence
ISBN: 0-612-91936-6

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé:

DETECTION D'ENSEMBLES IRREDUCTIBLES INCOHERENTS DANS DES
PROBLEMES DE SATISFACTION DE CONTRAINTES IRREALISABLES

présenté par: DESROSIERS Christian

en vue de 'obtention du diplome de: Maitrise és sciences appliquées

a été dliment accepté par le jury d'examen constitué de:

M. GAGNON Michel, Ph.D., président
M. GALINIER Philippe, Doct., membre et directeur de recherche

M. HERTZ Alain, Doct. és Sc., membre et codirecteur de recherche

M. PESANT Gilles, Ph.D., membre

REMERCIEMENTS

Je tiens tout d’abord & exprimer ma reconnaissance envers mon directeur de recherche,
M. Philippe Galinier, et mon codirecteur de recherche. M. Alain Hertz, pour les
conseils précieux qu’ils m’ont dounés, pour le soutien financier gqu’ils m’ont accordé,

ainsi que pour le temps qu’ils ont consacré a diriger ce mémoire.

Je remercie également les professeurs Michel Gagnon et Gilles Pesant d’avoir ac-

cepté d’examiner ce mémoire dans de si courts délais.

Je remercie enfin ma conjointe, ma famille et mes amis qui m’ont tous inspiré et

encouragé durant 'élaboration de ce mémoire.

RESUME

La satisfaction de contraintes est un paradigme qui permet de modéliser et résoudre
une variété de problemes d’optimisation combinatoire réels provenant de multiples
disciplines. Un probléme de satisfaction de contraintes (CSP) consiste a affecter a
chaque variable z d'un ensemble X une valeur de son domaine D, de telle sorte que
toutes les contraintes d'un ensemble C solent satisfaites. Un CSP est dit réalisable
si une telle affectation existe. Un sous-ensemble de contraintes est dit incohérent s’il
n’existe aucune affectation satisfaisant toutes les contraintes de ce sous-ensemble.
Un ensemble incohérent irréductible (I1IS) de contraintes est un ensemble incohérent
de contraintes qui devient cohérent lorsque n’importe laquelle de ses contraintes est
retirée. De méme, un sous-ensemble de variables est incohérent g'il n'existe aucune
affectation satisfaisant toutes les contraintes n’impliquant que des variables de ce
sous-ensemble. Un ensemble incohérent irréductible (IIS) de variables est donc un
ensemble incohérent de variables qui devient cohérent lorsque n'importe laquelle

de ses variables est retirée.

Ce mémoire présente des algorithmes pour obtenir des IIS de contraintes et de
rariables dans un CSP incohérent. Ces algorithmes ont été testés sur des instances
connues et générées aléatoirement du probleme de k-coloriage de graphe, qui con-
siste & déterminer g’il existe une coloration des sommets du graphe utilisant au plus
k couleurs et telle que deux sommets adjacents solent de couleurs différentes. La
plus petite valeur de k pour laquelle une telle coloration existe est le nombre chro-
matique du graphe. Les expériences présentées dans ce mémoire avaient comine
buts d’évaluer les algorithmes de détection d'TIS, ainsi que V'utilité des 1IS pour
démontrer 'incohérence d'un USP. Les résultats ont permis d’améliorer la borne
inférieure sur le nombre chromatique de certains graphes connus, et méme de fixer

le nombre chromatique de graphes pour lesquels cette valeur n’était pas connue.

vi

ABSTRACT

Constraint satisfaction is a paradigm that allows to model and solve a great variety
of real-life optimization problems from many disciplines. A constraint satisfaction
problem (CSP) consists in assigning to each variable z of a set A’ a value of its
domain D, such that all the constraints of a set C are satisfied. A CSP is solvable if
such an assignment exists. A subset of constraints is said to be inconsistent if there
is no assignment satisfying all the constraints of this subset. An irreducible incon-
sistent set (IIS) of constraints is an inconsistent set of constraints that becomes
consistent when any of its constraints is removed. Similarly, a subset of variables is
inconsistent, if there is no assignment that satisfies all the constraints involving only
variables of this subset. An irreducible inconsistent set (IIS) of variables is thus
an inconsistent set of variables that becomes consistent when any of its variables

is removed.

This thesis presents algorithms to find constraint and variable IIS in an inconsistent
CSP. These algorithms were tested on known and randomly generated instances of
the graph k-coloring problem. This problem consists in finding a coloring of the
vertices of a graph using at most & colors and such that no two vertices linked by
an edge have the same color. The smallest value of k& for which such a coloring
exists is the chromatic number of the graph. The experiments presented in this
thesis aim at evaluating the IIS detection algorithms, as well as the usefulness of
IISs in proving that a given CSP is inconsistent. Results of these experiments have
enabled to improve the lower bound on the chromatic number of certain graphs,

and even set the chromatic number of graphs for which this value was not known.

vii

TABLE DES MATIERES

REMERCIEMENTS iv
RESUME
ABSTRACT vi
TABLE DES MATIERES vil
LISTE DESFIGURES xi
LISTE DES NOTATIONS ET DES SYMBOLES xii
LISTE DES TABLEAUX xiii
LISTE DES ANNEXES e xiv
CHAPITRE 1 INTRODUCTION 1
1.1 Satisfaction de contraintes 1
1.1.1 Définition formelleo 1
1.1.2 Méthodes de résolution 7
1.2 Sous-systemes incohérents irréductibles 8
1.3 Lecoloriage de graphe 10
1.3.1 Quelques définitions 10

1.3.2 Modélisation du k-coloriage en CSP 1
1.3.3 Quelquesexempleso 12
1.4 Objectifs 13

1.5 Plan du mémoire s, 14

CHAPITRE 2 HISTORIQUEDESIIS 15
2.1 IIS et la programmation linéaire oL 15
2.1.1 Filtredeffacement 16

2.1.2 Algorithme additit 0000000 17
2.1.3 Filtrede sensibilitéo 18

2.1.4 Aspect qualitatif des IIS 19

2.1.5 Réparation de modeles irréalisables 20

2.2 ISetlesupportaladécision 23
2.3 TISet SAT 27
2.4 1IS et le coloriage de grapheo 29
2.5 1IS et le probleme de recouvrement d’ensembles 32

CHAPITRE 3 ALGORITHMES EXACTS DE DETECTION DIIS . . . 35

3.1 Notions préalables 35
3.2 Algorithmes de détection L 39
3.2.1 Algorithme de retrait 49
3.2.2 Algorithme d’'insertion 43
3.2.3 Algorithme de hitting set oL 47
3.3 Techniques complémentaires de détection 51
3.3.1 Algorithme hybride 51
3.3.2 Algorithme de retour-arriere 53
3.3.3 Algorithme de pré-filtrage 58
3.3.4 Heuristique de poids du voisinage 64
3.3.5 Borne inférieure sur la taille 'IIS minimam 67

CHAPITRE 4 ALGORITHMES HEURISTIQUES DE DETECTION D'IIS 71
4.1 Méta-heuristiques pour les problémes de satisfaction 71
411 Larecherchelocaleo 72

4.1.1.1 Algorithme pour le MWCSP 74

iX

4.1.1.2 Algorithme pour le MPWCSP 76

4.1.2 Larecherche Tabou 000 33
4.1.2.1 Algorithme pour le MWCSP 85

4.1.2.2 Algorithme pour le MPWCSP 88

4.1.3 Détails d'implantation des algorithmes 91

4.2 Algorithmes heuristiques de détection &'IIS 95
4.2.1 Algorithme heuristique de vetrait 95
4.2.2 Algorithme heuristique d'insertion 96
4.2.3 Algorithme heuristique de hitting set 98

4.3 Stratégies de récupération d’erreur 99
4.3.1 Algorithme de réduction 99
4.3.1.1 Implantation de retrait 101

4.3.1.2 Implantation d’insertion 105

4.3.1.3 Implantation de hitting set 106

4.3.2 Techniques complémentaires 107

4.4 Technigue d’accélération de détection 110

CHAPITRE 5 EXPERIMENTATION ET ANALYSE DES RESULTATS 113

5.1 Description des méthodes et parametres 113
5.2 Descriptiondesdonnées 0oL 120
5.3 Détection d'IIS de contraintes versus variables 122
5.4 Détection d’IIS avec l'algorithme de hitting set 124
5.5 Influence des heuristiques de détection 125
5.6 Bornes inférieures sur la taille d'TIS minimum 127
5.7 Détection d’'IIS sur les instances aléatoires 128
5.8 Détection d'1IS sur les instances de référence 134
5.9 Temps de calcul des algorithmes de détection 141

CHAPITRE 6 CONCLUSION. 143

Figure 1.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7

Figure 3.8

Figure 3.9

Figure 4.1
Figure 4.2

Figure 5.1

Figure 5.2

Figure 5.3

LISTE DES FIGURES

FExemples d’instance du k-coloriage de graphe .
& & &

Une instance de k-coloriage incohérente pour & < 2 .

Une instance ayant un IS minimum de contraintes pour k& = 2

Hlustration de Palgorithme de retour-arriere

Une instance ou 'algorithme de pré-filtrage n'isole pas d'1IS
minimum de contraintes pour k£ = 2 .

Une instance ol 'algorithme de pré-filirage isole plus dun
HSpour k=2 .

Une instance ou algorithme de pré-filtrage modifé isole plus
d'un IIS de variables pour k = 2

Exemples du poids de voisinage de contraintes et de variables
THustration de Palgorithme 12 .

Une instance ol 'algorithme 12 produit une borne inférieure
sous-optimale

Hyper-graphe d’'une instance de 3-SAT

Une instance dont les contraintes et variables forment un 1IS
pour k=2 .

Réduction de variables pour des instances (n,0.1) aléatoires
Versus n

Réduction de variables pour des instances {n,0.5) aléatoires

Versus n

xi

61

61

67

69

79

112

129

130

Réduction de retour-arrieres pour des instances (n, 0.1) aléatoires

versus n

130

CN
CSP
HS
HIN
LP
LSCP

MCH
MCSP

MHS
MLSCP

MPCSP

MPWCSP

MWCSP

MWES

MWHS

MWIC

PCSP

SAT

xi1

LISTE DES NOTATIONS ET DES SYMBOLES

: Réseau de contraintes (Constraint network)

: Probleme de satisfaction de contraintes (Constraint Satisfaction Problem)
: Hitting set (Hitting Set)

: Ensemble incohérent irréductible (Irreducible Inconsistent Set)

: Programme linéaire {Linear Program)

: Probléeme de recouvrement d’ensembles de grande taille

(Large Set Covering Problem)

: Heuristique de Moindre-conflit (Min-Conflict Heuristic)

: Probleme de satisfaction maximale de contraintes

(Mazimum Constraint Satisfaction Problem,)

: Hitting set de cardinalité minimum (Minimum Cardinality Hitting Set)
: Probléeme de recouvrement minimum d’ensembles de grande taille
(Minimum Large Set Covering Problem,)

: Probleme de satisfaction partielle maximum de contraintes
(Mazimum Partial Constraint Satisfaction Problem)

: Probleme de satisfaction partielle maximale de contraintes pondérées
(Mazimum Partial Weighted Constraint Satisfaction Problem)

. Probleme de satisfaction maximale de contraintes pondérées
(Mazimum Weighted Constraint Satisfaction Problem)

: Sous-systéme réalisable de poids maximum

(Mazimum Weight Feasible Subsystem)

: Hitting set de poids minimum (Minimum Weight Hitting Set)

: Hitting set d’IIS de poids minimum (Minimum Weight I1S Cover)

: Probleme de satisfaction partielle de contraintes

(Partial Constraint Satisfaction Problem)

: Probieme de satisfaction booléenne

Tableau 5.1
Tableau 5.2

Tableau 5.3

Tableau 5.4

Tableau 5.5

Tableau 5.6

Tableau 5.7

Tablean 5.8

Tableau 1.1

Tableau 1.2

xiii

LISTE DES TABLEAUX

Différents jeux de parametres pour procMWIC 115

Détection d’IIS de variables et de contraintes sur l'instance

L’algorithme de hifting set sur des instances aléatoires de

densité 0.5. 124
Détection d’'IIS de variables avec et sans heuristique 126
Bornes sur la taille d'IIS minimum de variables 128

Détection d’I1S de variables sur la premiére catégorie d’'instances

du challenge DIMACS 135
Détection d’IIS de variables la deuxieme catégoric d’instances

du challenge DIMACS 136
Détection d’IIS de variables sur la troisieme catégorie d’instances
du challenge DIMACS 138

Détection d’IIS de variables sur des instance aléatoires avec

Annexe I

LISTE DES ANNEXES

Tableaux de résultats

xiv

fu—Y

CHAPITRE 1

INTRODUCTION

1.1 Satisfaction de contraintes

La satisfaction de contraintes (CS) (Mackworth, 1987: Tsang, 1993) est un moyen
- efficace de modéliser et de résoudre une grande variété de probléemes, telle que
la. confection d’horaires (Fox et Sadeh-Koniepcol, 1990), la configuration de pro-
duits (Mittal et Falkenbainer, 1990), ainsi que la planification et I'allocation de
ressources (Choueiry, 1994). Chacun de ces problemes peut étre représenté comme
un ensemble de variables auxquelles il faut assigner une valeur, en respectant un
certain ensemble de contraintes spécifiques. La tache peut étre de montrer qu’il
existe une solution, de trouver une solution, de trouver toutes les solutions, ou,
finalement, de trouver une solution optimale selon un critére donné, pouvant étre
sous la forme d'une fonction objectif. La sous-section suivante offre une définition

formelle de la satisfaction de contraintes.

1.1.1 Définition formelle

Définition Un réseau de contraintes (CN) est un triplet (X, D.C), ot X = {z1,

.., Tjx;} est un ensemble fini de variables, D = {Dy,,..., Dy, } est un ensemble
tel que D, est le domaine fini de la variable 2 € X, et C = {c1..... ¢} est un

ensemble fini de contraintes sur les variables de X.

Définition Etant donné un CN (X, D,C), une affectation (instanciation) a de Y C

[\

X est une fonction qui associe & chaque variable y € Y une valeur a(y) € D,. Une
affectation est dite compléte si elle assigne une valeur a chaque variable de & {i.e.
Y = &), sinon elle est partielle. Soit un ensemble de variables Z C Y, la projection

m(a, Z) de a sur Z est une affectation o’ de Z telle que @'(2) = a(z) Vz € Z.

Définition Etant donnéun CN (X.D.(). la contrainte ¢ € C agissant sur 'ensemble

de variables X'(¢) est une fonction:

D — {0. 1}

r; € X{e)

qui, pour chaque affectation a possible de X (¢), associe la valeur 0 si ¢ est satisfaite
par a, ou la valeur 1 si ¢ est violée par a. On note R(c¢), I'ensemble des affectations
a de X{c) telles que ¢{a) = 0. On note, par ailleurs, C(x) Uensemble de contraintes

agissant sur une variable z € X

Définition Etant donné un CN (X,D.C) et une affectation ¢ de Y C X, la con-

trainte ¢ € C est satisfaite par a si:

c(n(a, X(c))) =0

Dans le cas ot une ou plusieurs variables de X(¢) ne sont pas instanciées (i.e.
X(c) € V), on dit que c est satisfaite s'il est possible de compléter I'affectation pour
I'ensemble de variables X(c)\Y de telle que sorte que ¢ soit satisfaite. L'affectation

a est dite légale si elle satisfait toutes les contraintes de C:

Z c(m{a, X(c))) =0

celC

Définition Etant donné un CN défini par (X.D,C), le probleme de satisfaction

de contraintes (CSP) consiste a trouver une affectation complete légale de X ou &

démontrer gu’il n'en existe aucune. Une instance de CSP est dite scluble, cohérente,
ou réalisable ¢i elle possede au moins une solution, sinon elle est insoluble, in-
coliérente ou irréalisable. Soit P un CSP donné, on note S ensemble des solutions

de P.

La définition classique du CSP est de déterminer si une affectation complete légale
existe. Il v a, cependant, plusieurs variantes de ce probleme. Ainsi. dans le cas
de CSP sclubles, il peut étre demandé de trouver une solution optimale selon
une certaine fonction objectif. Par ailleurs, pour les CSP insolubles. il peut étre
exigé de déterminer une affectation complete satisfaisant un nombre maximum de
contraintes. Ce dernier probléme, connu sous le nom de MCSP (ou MaxCSP)

(Freuder et Wallace, 1992), est défini comme suit:

Définition Etant donné un CN (X, D,), le probléme de satisfaction maximum
de contraintes (MCSP) consiste & trouver une affectation complete a telle que le
nombre de contraintes satisfaites est maximum. Une définition équivalente est de

trouver une affectation complete ¢ minimisant la fonction objectif f suivante:

fla) = 3 elr(a. X(c)))

cel

Le cadre du CSP classique ne permet de représenter que des problémes de satisfa-
ction. Dans cette optique, les contraintes du CN ont toutes le méme poids et peu-
vent uniguement étre completement satisfaites ou completement violées. Cepen-
dant, dans la plupart des problemes réels, les contraintes n'ont pas toutes la méme
importance dans le CN, et ont un degré de satisfaction pouvant prendre plusieurs
valeurs. Les réseaux de contraintes pondérées (de Givry et al., 2003) sont une ex-
tension des CN classiques, ot chaque contrainte possede un cofit correspondant a

son degré de satisfaction:

Définition Un réseau de contraintes pondérées est un triplet (X, D,C), ou X est
un ensemble fini de variables, D est un ensemble tel que D, € D est le domaine
fini de la variable z € X, et C est un ensemble fini de contraintes sur les variables
de X. Une contrainte pondérée ¢ € C, agissant sur 'ensemble de variables X(¢),

est une fonction:

D, — RT

r € X{c)
qui, pour chaque affectation possible a de X(c), associe une valeur réelle ¢(a)
correspondant au degré d'insatisfaction de ¢. Ainsi, ¢{a) = 0 si ¢ est complétement

satisfaite par a, et ¢(a) > 0 si ¢ est violée par a.

La notion de colt d'une contrainte ¢ peut étre illustrée a I'aide de la contrainte
“toutes différentes” (all-different) qui impose aux variables de X (¢) d’avoir toutes
des valeurs différentes dans une affectation a de X(c). Si toutes les variables de
X (c) ont des valeurs différentes dans a, la contrainte est complétement satisfaite.
Si, par contre, une ou plusieurs variables ont la méme valeur, le colt c(a) de
cette contrainte est, par exemple, donné par le nombre de variables ayant la méme
valeur qu'une autre variable dans 'ensemble. Une autre définition possible de
c(a) est |X(¢)] moins le nombre de valeurs différentes affectées aux variables de cet
ensemnble. En somme, il existe plusieurs facons de modéliser le degré de satisfaction

d’une contrainte.
Comme le MCSP pour les CN classiques, les CN pondérés ont également un

probléme associé de satisfaction maximum:

Définition Etant donné un CN pondéré (X, D,), le probléme de satisfaction

maximum de contraintes (MWCSP) consiste & trouver une affectation compléte a

minimisant la fonction objectif f suivante:

On remarque que le MWCSP ne differe du MCSP que par la définition des con-
traintes. et que la fonction objectif est la méme pour ces deux problemes. En fait,
le MWCSP est une généralisation du MCSP puisque n’importe quelle instance de
MCSP peut étre traduite en MWCSP simplement en définissant toute contrainte
¢ € C comme une fonction retournant une valeur réelle valant toujours 0 si ¢ est

satisfaite, et toujours 1 si ¢ est violée.

11 existe, finalement, un probléme de satisfaction général pour les CSP insolubles,
appelé le probléme de satisfaction partielle de contraintes (PCSP) (Freuder et
Wallace, 1992). Le PCSP permet d’optimiser la satisfaction d’'un CSP sur-contraint
en affaiblissant certaines de ses propriétés. En ce sens, le PCSP consiste & trouver
une solution pour un nouveau probléme créé en relaxant le CSP original, telle que

la relaxation est minimale selon un critére donné.

Définition Soit un quintuplet (H, <,d, P, 3), ot H est un ensemble de CSP, < un
ordre partiel sur les CSP de H tel que P, < F; si et seulement si S(F,) 2 S(F)),
d:H? — R" une fonction telle que d(7;, P;) est la distance entre P et P;, PeH
un CSP inscluble donné, et 3 € R une borne nécessaire sur la distance entre P et
n'importe quel CSP P’ € H. Le probléme de satisfaction partielle de contraintes

consiste & trouver un CSP soluble P € H tel que:
PCSP iste 3 CSP soluble P’ € H tel

d(P,P)y<p

Le probléme de satisfaction partielle maximum des contraintes (MPCSP) consiste

3 trouver une solution P’ au PCSP telle que d{ P, P') est minimum.
38

La fonction de distance d entre deux CSP P, et F; peut étre définie de plusieurs
facons. Une formulation possible est:

d = |(S(PYUSE)) \

Ay

(S(P)NS(P))]

soit le nombre de solutions n’étant pas partagées entre P; et P;. Cette formulation
mesure le nombre de solutions rajoutées & P’ par la relaxation. D’autres définitions
plus simples sont, par exemple. la différence du nombre de contraintes (i.e. |C|)
ou du nombre de variables (i.e. |X|) entre F; et P;. On remarque, par ailleurs,
que d respecte U'ordre < imposé sur H. Comme P est sur-contraint il ne possede
aucune solution (i.e. S(P) = (), et tout CSP P’ € H donne un ordre P’ < P
puisque S(P’) D S(P). Dans le cas ol P’ est lui aussi insoluble, on a d(P, P") = 0.
car ces deux CSP ont le méme nombre de solutions, soit 0. Par ailleurs, si P’ est
soluble, on a P’ < P et d(P, P') > 0. Ainsi, plus on relaxe P, plus le CSP relaxé
P’ posséde un nombre important de solutions, et conséquemment, plus la distance

d(P, P") augmente.

Il existe au moins quatre facons de relaxer P: élargir ensemble des tuples au-
torisés par une contrainte, élargir le domaine d'une variable, retirer une contrainte
et retirer une variable. On remarque que la deuxiéme et la troisieme relaxation
peuvent étre faites en élargissant 'ensemble des tuples autorisés par une contrainte
de C. On peut en effet considérer le domaine d’une variable » € X comme une
contrainte unaire qui impose & r de prendre une valeur dans 'ensemble D,. De
plus, retirer une contrainte ¢ peut étre fait en élargissant 'ensemble des tuples au-
torisés par la contrainte ¢ pour inclure le produit cartésien des domaines de X(c).
Finalement, retirer une variable x correspond a autoriser pour chaque contrainte

¢ € C(x) les tuples qui satisfont ¢ sans tenir compte de z. Par exemple, soit

une contrainte “toutes différentes™ ¢ agissant sur les variables xq. 7o et z3 dont
le domaine est {1,2.3}. Les tuples autorisés par ¢ sont (1,2.3). (1.3.2), (2,1,3).
(2,3,1), (3,1.2) et (3.2.1), soit les permutations des valeurs du domaine des va-
riables. Cependant, si on retire z; de ¢, I'ensemble des tuples autorisés devient
{(.1,2), (%, 1,3). (x,2.1),(%,2,3), (%,3,1). (*.3.2)}. ol “” peut étre n'importe
quelle valeur de {1,2, 3}. Il est & noter que retirer une variable d'un CSP correspond
a retirer les contraintes impliquant cette variable uniquement si ces contraintes sont
unaires ou binaires. Finalement. on constate que le MCSP et le MWCSP sont des
cas spéciaux du MPCSP ot le CSP sur-contraint original est rendu réalisable en

retirant un ensemble de contraintes dont la somme des colts est minimum.

1.1.2 Méthodes de résolution

La plupart des problémes de satisfaction de contraintes sont tres difficiles a résoudre.
Ainsi, le CSP est reconnu comme un probléeme NP-complet, alors que le MCSP,
le MWCSP et le PCSP sont des problemes NP-difficiles. Une grande variété de
méthodes ont été proposées pour résoudre ces problémes (Kondrak, 1994; Tsang,
1993), formant deux classes principales: les méthodes compleétes ou exactes. et les
méthodes incomplétes, inexactes ou approchées. Dans le cas du CSP. les méthodes
completes explorent généralement 'espace de recherche en entier afin de trouver
toutes les solutions au CSP ou détecter que le probléme est irréalisable. Par ailleurs,
dans le cas du MCSP, du MWUCSP, du PCSP, et des autres problémes de satisfa-
ction NP-difficiles, le but des méthodes exactes est de trouver une solution optimale
selon la fonction objectif. Ces méthodes de résolution, principalement basées sur
des techniques de retour-arriere, de branch-and-bound et de filtrage (Freuder et
Wallace, 1992; Larossa et Meseguer, 1995; Wallace, 1996). offrent une garantie de
complétude, dans le cas des méthodes completes, et d'optimalité, dans le cas des

méthodes exactes. Par contre, comme la complexité de ces problémes croit ex-

ponentiellement suivant leur taille, il est souvent impossible d'utiliser ce type de

méthodes sur de plus grosses instances.

La seconde catégorie de méthodes, appelées méta-heuristiques, utilise principale-
ment des heuristiques pour explorer certaines parties intéressantes de espace de
recherche afin d'y trouver des solutions. Contrairement aux méthodes complétes
ou exactes, ces méthodes ne permettent pas d'obtenir toutes les solutions, de
détecter I'incohérence d’un CSP. et ne garantissent pas Poptimalité d’une solution.
Généralement, les méta-heuristiques se basent sur des techniques de réparation, oix
une affectation initialement incohérente est itérativement modifiée afin de minimi-
ser le nombre de contraintes violées ou la somme du cofit de ces contraintes. Parmi
ces méthodes, on trouve l'algorithme du moindre-conflit (MCH) (Wallace, 1996)
pour résoudre le MCSP. 1l existe également plusieurs raffinements du MCH, tel
que le MCRW qui ajoute un déplacement aléatoire dans 'espace de recherche, et
le MCTS (Galinier et Hao, 1997) qui ajoute une mémoire interdisant d’appliquer
& nouveau une modification faite récemment a l'affectation. Ces raffinements ser-
vent a contourner le principal défaut du MCH, scit de se bloguer dans les minima

locaux.

1.2 Sous-systemes incohérents irréductibles

Une certaine forme d’incohérence survient fréquemment dans les problémes réels.
Cette incohérence peut provenir du modeéle qui est physiquement irréalisable ou
bien de 'ajout de contraintes supplémentaires qui ont rendu le probléme sur-
contraint. Lorsque cela se produit, il est souvent difficile d’expliquer les causes de
cette incohérence ou méme de la végler. D’ailleurs, simplement détecter 'incohérence
d’'un CSP est un probléeme NP-complet que les méta-heuristiques ne permettent pas

de résoudre. Cependant, dans la majorité des cas, I'incohérence est causée par des

]

contradictions locales du probleme. Ainsi. un probléme irréalisable contient sou-
vent une sous-partie elle-méme incohérente permettant de démontrer et d'expliquer
Uincohérence du probleme en entier. Suivant la terminologie dans (Carver, 1921;

Chinneck, 1997 (1); Van Loon, 1981), un sous-systéme incohérent irréductible (IIS)

oy

d’un probléme irréalisable est une sous-partie minimale {au sens de Iinclusion) de
ce probléeme, elle-méme irréalisable. Dans le cadre des problémes de satisfaction de

contraintes, un IIS peut étre lié & un sous-ensemble de contraintes ou de variables:

Définition Etant donné un CN (X, D,C) incohérent, un sous-ensemble de con-
traintes K C C est incohérent s'il n’existe aucune affectation de X satisfaisant
toutes les contraintes de K. Un sous-ensemble de variables W C X est incohérent

g’il n’existe aucune affectation de W satisfaisant toutes les contraintes de C.

Définition Etant donné un CN (X,D,C) incohérent, un sous-ensemble de con-
traintes A C C est un sous-ensemble incohérent irréductible (IIS) de contraintes
s'il est incohérent, et si chaque sous-ensemble K’ C K est cohérent. De méme, un
sous-ensemble de variables W C X est un 1IS de variables s’il est incohérent, mais

chague sous-ensemble W/ C W est cohérent.
q

Propriété 1.2.1 Tout CN incohérent (X, D,C) contient au moins un IIS de con-

traintes K C C. ainsi gu’au moins un I1S de variables W C X,

Propriété 1.2.2 Etant donné un CN incohérent (X,D.C) et un IIS de contraintes
K C C. le sous-ensemble des variables impliquées dans les contraintes de K for-
ment un IIS de variables. Par ailleurs, étant donné un I1S de variables W C X,
le sous-ensemble de coniraintes agissant sur les variables de W ne forme pas

nécessairement un IIS de contraintes (i.e est irréalisable, mais peut étre réductible).

1.3 Le coloriage de graphe

Le coloriage de graphe est un probléme avant un vaste ensemble d’applications, et
pour lequel une grande variété de techniques de résolution a été proposée. Cette
section présente le coloriage de graphe et le k-coloriage de graphe, ainsi que le lien
de ces problemes avec la satisfaction de contraintes et les 1IS. Ces problémes seront
ensuite utilisés, dans le reste du mémoire, pour illustrer les notions présentées et

tester les algorithmes dans la partie expérimentale.

1.3.1 Quelques définitions

Définition Etant donné un graphe G = (V. E), ot V est un ensemble de sommets
et E un ensemble d’arétes (4, 7) reliant les sommets v; et v;, et un entier k& > 0.
une k-coloration de G est une fonction r : V. — {1,...,k} qui associe & chaque
sommet v € V une couleur r(v). Une k-coloration est dite valide si r(v;) # r(v;)
pour chaque aréte (¢, j) € E. Le probléme de k-coloriage de graphe pour G consiste

a trouver une k-coloration valide des sommets de G ou a démontrer qu'une telle

coloration n’existe pas.

Ce probleme est directement relié au probleme de coloriage de graphe:

Définition Etant donné un graphe G, le probléme de coleriage de graphe pour &G
cousiste & trouver le plus petit entier k& > 0 tel gu'une k-coloration de G existe. La

valeur minimale de k pour G correspond a son nombre chromatique x(G).

Les problemes de k-coloriage et de coloriage de graphe sont des problemes respec-

tivement NP-complet et NP-difficile (Garey et Johnson, 1979). Il est done difficile

11

d’obtenir le nombre chromatique d'un graphe ayant un nombre élevé de sommets,
sauf si le graphe posséde une structure particuliére permettant de déduire x{G). De
maniére générale, le nombre chromatique d'un graphe augmente selon le nombre

de somuinets et sa densité. définie comme suit:

Définition Soit un graphe G = (V. E). la densité d de G vaut:

2 |E|

= VTvi-D

Ainsi, plus un graphe est gros et dense, plus son nombre chromatique risque d’étre
élevé. Inversement. un graphe ayant peu de sommets ou ayvant une faible densité
a un petit nombre chromatique. II est ainsi possible de diminuer le nombre chro-
matique d'un graphe en hui retirant des sommets ou des arétes. Un graphe est dit

critique gil est impossible de le réduire sans diminuer son nombre chromatigue:

Définition Etant donné un graphe G = (V. E), G est dit aréte-critique si n’importe
quel sous-graphe, produit en retirant une aréte, a un nombre chromatique stricte-
ment inférieur & x(G). De méme, G est dit sommet-critique si n'importe quel
sous-graphe, produit en retirant un sommet, a un nombre chromatique strictement

inférieur & x(G).

Propriété 1.3.1 Tout graphe aréte-critique est également sommet-critiqgue. Par

contre, un graphe sommet-critigue n’est pas nécessairernent aréte-critigue.

Propriété 1.3.2 Soit un graphe G = (V, E) et un entier k < x(G). G contient au
moins un sous-graphe aréte-critique et un sous-graphe sommet-critique de nombre

chromatique k.

X1 Xz

Xz X8

X X7 X4 X3

Figure 1.1 Exemples d'instance du k-coloriage de graphe

1.3.2 Modélisation du k-coloriage en CSP

Le probléme de k-coloriage d’un graphe G = (V. E) se modélise facilement en
CSP en associant chaque sommet v € V a une variable x € X de domaine
D, ={1,...,k}, et chaque aréte (¢, j) € E & une contrainte binaire ¢ € C satisfaite
uniquement lorsque a{z;) # a(z;). Une k-coloration de V correspond alors a une
affectation compléete de X'. Par ailleurs, si G est aréte-critique, le CSP correspon-
dant au probléme de k-coloriage de G forme un IIS de contraintes, si k = x(G)— 1.
De la méme maniere, le CSP correspondant au probleme de A-coloriage d’un graphe

sommet-critique forme un IIS de variables, également si k = x(G) — 1.

1.3.3 Quelgues exemples

Le figure 1.1 montre deux graphes de 7 sommets. Le graphe de gauche a 9 arétes
et un nombre chromatique de 3, car au moins trois couleurs sont nécessaires pour
colorier ses sommets sans conflits. Le probléeme de 2-coloriage de ce graphe est
donc irréalisable. On remarque que le CSP équivalent & ce probléme contient
quatre IIS de contraintes: {(1,2), (1,3), (2,3)}, {(5.6), (5. 7), (6,7)}, {(1,3). (1,7),
(3,4), (4.5), (5.7)}. et {(1,2), (1,7). (2,3). (3,4), (4,5). (5,6), (6,7)}. Ces IIS
de contraintes sont composés des arétes de quatre sous-graphes aréte-critiques de

nombre chromatique 3, ayant la forme de cycles impairs. De plus, le CSP ne

13

contient que trois 1IS de variables: {1, wq, 73}, {25, 2e, 27} et {x1, 73, 4. Ts,
x:}. formés des sommets de trois sous-graphes sommet-critiques pour x(G) = 3. Le
nombre d'1IS de contraintes est nécessairement supérieur ou égal a celui de variables
puisque chaque IIS de variables provient d’un IIS de contraintes. Dans cet exemple-
ci, il v a un IIS de contraintes de plus, celul formé de 7 contraintes. Les variables
impliquées dans ces contraintes ne peuvent pas étre un IIS de variables puisque cet
enseimnble correspond a A qui est réductible. Par ailleurs, le graphe de droite est
iégérement plus dense que celui de gauche (11 arétes au lieu de 9), et son nombre
chromatique est 4. On remarque, de plus, que ce graphe est sommet-critique,
car si on lui retire n'importe quel sommet, il devient coloriable en 3 couleurs.
Tel que mentionné dans la propriété 1.3.1, un graphe sommet-critique n'est pas
nécessairement aréte-critique. On peut ainsi retirer Uaréte (1, 2) de ce graphe sans

diminuer x(G).

1.4 Objectifs

Les sections précédentes ont permis d’introduire le cadre de la satisfaction de con-
traintes et la notion de sous-systéme irréalisable irréductible (IIS) d’'un probleme
insoluble. Cependant, on ne possede, a ce jour, qu'un cadre théorique vague sur les
IIS et leur relation avec la complexité de problemes comme la satisfaction de con-
traintes. Par contre, des travaux portant sur le probleme de satisfaction booléenne
(SAT) (Mazure et al., 1998) et sur le coloriage de graphe (Herrmann et Hertz, 2002)
ont montré que la recherche d’IIS dans un probléme insoluble permettait d’aider
la détection de son incohérence. De plus, des recherches dans les domaines de la
programmation linéaire (Amaldi et al., 2003; Chinneck, 1997 (1); Parker et Ryan,
1996) et de la configuration de produits (Amilhastre et al.,, 2002) ont également

moniré Vutilité des 118 pour trouver les causes de Uincohérence d'un probléeme et
i

14
faciliter son diagnostic.

Bien que plusieurs méthodes permettant de trouver des 1IS dans un probléme
insoluble aient été proposées, ces méthodes ne sont valides que pour un probleme
particulier. Le but de ce mémoire est de présenter des algorithmes efficaces pour
trouver des 1IS dans un cadre plus général, celui de la satisfaction de contraintes.

Ces algorithmes peuvent alors étre utilisés sur n'importe quel probleme spécifique

pouvant étre modélisé en probleme de satisfaction de contraintes.

1.5 Plan du mémoire

Ce mémoire renferme six chapitres. Suivant cette introduction, le chapitre 2 fait un
survol des travaux précédents portant sur la détection d’IIS et leurs applications.
Le chapitre 3 présente les algorithmes exacts de détection d’'IIS. Le chapitre 4
offre, ensuite, une solution heuristique & la détection d'IIS. Le chapitre 5 contient
Pexpérimentation faite pour évaluer les algorithmes de détection et vérifier 1'utilité
de détecter des IIS. Finalement, le chapitre 6 fait une syntheése des travaux réalisés

et propose de nouvelles voies de recherche.

CHAPITRE 2

HISTORIQUE DES 1IS

2.1 TIIS et la programmation linéaire

La notion de sous-systéme irréductible irréalisable (IIS) est d’abord apparue au
début du vingtieme siecle, dans le contexte de la programmation linéaire. La
programmation linéaire permet de résoudre efficacement une catégorie de problémes

pouvant étre traduits sous la forme d’un programme linéaire:

Définition Scit m et n deux entiers positifs, A € Z"*" une matrice de coefficients,
be ZM et ¢ € Z" deux vecteurs de coefficients, et x un vecteur de m variables. Un

programme linéaire (LP) est défini comme:

minimiser cx

sujet a Axr <b

ot cx est la fonction objectif et Az < b un systéme de contraintes d’inégalités
lindaires. Un LP est réalisable il existe un vecteur 7 satisfaisant toutes les con-

traintes d’inégalités, sinon il est irréalisable.

Dans (Carver, 1921). Carver définit un IIS comme un ensemble incohérent de con-
traintes d’'inégalités linéaires qui devient réalisable lorsque n’importe quelle con-
trainte est retirée. Une difficulté souvent rencontrée lors de la modélisation de
gros LPs est Uidentification d’erreurs et d’'incohérence dans le modele. Des travaux

subséquents (Van Loon, 1981; Greenberg, 1992; Chinneck, 1997 (1)) ont cependant

16

montré qu’il était possible d'utiliser les IIS pour faciliter le diagnostic d'un LP
irréalisable en isolant son incohérence. Dans (Van Loon. 1981). Van Loon propose
me approche basée sur la géométrie du probléme pour identifier des IIS, Cette tech-
nique a fourni une base pour le développement d’autres approches géométriques,
comme celle proposée par Gleeson et Ryan (Gleeson et Ryan, 1990). Cette derniere
méthode, sous certaines conditions (i.e. absence de dégénérescences dans le systéme
d’équations), permet d’énumérer tous les IIS d'un LP irréalisable. Plus récemment,
Chinneck a développé un ensemble d’algorithmes dont le but est d’identifier des
IIS ayant le moins de contraintes possible (Chinneck, 1997 (1); Chinneck, 1997
(2)). L’idée de Chinneck est que moins un IIS contient de contraintes, plus son
analyse est facile. Quelques uns de ces algorithmes sont décrits dans les trois
prochaines sous-sections. Pour une description complete des algorithmes proposés
par Chinneck, ainsi que pour obtenir les preuves aux propriétés énoncées, le lecteur

est invité & consulter les références mentionnées ci-haut.

2.1.1 Filtre d’effacement

Le filtre d’effacement est un algorithme qui recoit en parametre un ensemble in-
cohérent de contraintes linéaires € et qui retourne un IIS de contraintes K. Cet
algorithme procéde en retirant temporairement une contrainte choisie selon un or-
dre donné. Si Pensemble réduit devient réalisable. cette contrainte est ré-insérée

dans C, sinon elle est retirée de facon permanente.

Propriété 2.1.1 Le filtre d’effacement refourne un ensemble de contraintes liné-

aires K formant un II8.

On remarque que Pordre dans lequel les contraintes sont retirées détermine lequel

IIS est détecté par le filtre d’effacement. Ainsi, tant qu'il reste un IIS dans C, cet

17

Algorithme 1 Filtre d’effacement

Entrée: Un ensemble incohérent de contraintes linéaires
Sortie : Un IIS de contraintes linéaires K.

Choisir un ordonnancement ¢, ¢, ...,)| des contraintes de ('
pour ¢ — 1 & |C] faire
K — K\{a}
si A est réalisable alors
K «— KU{¢}
fin si
fin pour

ensemble est incohérent, et les contraintes retirées ne sont pas ré-insérées. L'IIS
obtenu par le filtre d’effacement correspond donc au dernier IIS a avoir une con-

trainte retirée.

2.1.2 Algorithme additif

Alors que le filtre d’effacement procede en retirant des contraintes, l'algorithme
additif proposé par Tamiz et al. (Tamiz et al., 1996) fait U'inverse. En commencant
avec un ensemble de contraintes K vide, cet algorithme inseére, selon un ordre
donné, des contraintes dans un ensemble T initialement égal a K, jusqu’a ce que
T devienne incohérent. L’ensemble 7' contient alors au moins un IIS dont fait
partie la derniére contrainte insérée. Cette contrainte est alors rajoutée a I'IIS en

construction K. Ce processus est répété jusqu'a ce que K devienne incohérent.

Propriété 2.1.2 L’algorithme additif retourne un ensemble de contrainies linéaires

K formant un IIS.

Comme pour le filtre d’effacement, 'IIS obtenu par l'algorithme additif dépend de

Pordre initial des contraintes de €. Ainsi, I'algorithme additif se termine lorsque

13

Algorithme 2 Algorithme additif

Entrée: Un ensemble incohérent de contralutes lnéaires (;
Sortie : Un IIS de contraintes lindaires KA.

K« @
Choisir un ordonnancement ¢, ¢y. ¢ des contraintes de C';
répéter
T — K
1 U5
tant que T est cohérent faire
T —TuU{ah
72— 14+ 1;
fin tant que
K — KU{g};
jugu’a ce que K soit incohérent

K forme un IIS, et la derniére contrainte ajoutée a K détermine quel IIS est
détecté. LIIS trouvé par Ualgorithme additif est donc le premier a avoir sa derniére

contrainte insérée dans K.

2.1.3 Filtre de sensibilité

Contrairement au filtre d’effacement et a Palgorithme additif, le filtre de sensibilité
ne permet pas d’obtenir directement un IIS. Cet algorithme sert plutot a accélérer
I'isolation d’un IIS en retirant les contraintes ne contribuant pas a la fonction ob-
jectif, et, conséquemment, a lincohérence du systeme. Ces contraintes peuvent
ainsi étre retirées car elles ne font pas partie de I'IlS étant isolé. Cette technique
permet d’éliminer rapidement un grand nombre de contraintes du systéme origi-
nal. Cependant, afin d'obtenir un I1S, il faut appliquer le filtre d'effacement ou

Ualgorithme additif au résultat du filtre de sensibilité.

19

2.1.4 Aspect gualitatif des IIS

Les algorithmes qui viennent d’étre présentés permettent d’identifier tous les 1IS
de contraintes d'un LP irréalisable. Cependant, lequel de ces 1IS est obtenu par
ces algorithmes a un impact important sur la rapidité du diagnostic fait sur le
systeme incohérent. Un LP possede deux types de contraintes: les contraintes de
rangée, aussi appelées contraintes fonctionnelles, et les contraintes de colonne. Les
contraintes de rangée sont des inéquations portant sur un ensemble de variables
alors que les contraintes de colonne portent sur une seule variable. Des travaux
réalisés par Greenberg (Greenberg, 1992) auprés d’usagers ont montré que les IIS
contenant le moins de contraintes de rangée sont les plus utiles au diagnostic. Par
exemple, soit un LP ayant deux IIS: le premier contenant 12 contraintes de rangée
et 68 contraintes de colonne, et le second contenant une seule contrainte de rangée
et 93 contraintes de colonnes. Bien que le premier IIS contienne. au total, moins
de contraintes, le second IIS est, selon Greenberg, plus facile a interpréter et diag-
nostiquer. L’avantage des IIS ayant peu de contraintes de rangée provient du fait
que les variables d'une contrainte de rangée sont presque toujours liées de maniére
complexe avec d’autres contraintes du systeme, ce qui rend leur interprétation dif-
ficile. De plus, minimiser le nombre de contraintes de rangée tend généralement 2

réduire le nombre de variables impliquées dans 'TIS obtenu.

Une approche triviale pour trouver I'l1S contenant le moins de contraintes de rangée
est d’utiliser une méthode comme le filtre d’effacement ou algorithme additif pour
énumérer tous les IIS du modele, et d’ensuite choisir celui possédant le moins de ces
contraintes. Cependant, il a été démontré par Chakravarti (Chakravarti, 1994) que
le nombre d’'TIS dans un LP irréalisable est, dans le pire cas, exponentiel. Cela signi-
fie qu’en général un IIS ayant le moins de contraintes de rangée ne peut étre obtenu

en temps polynomial par une simple méthode d'énumération. Chinneck propose

20

donc d'utiliser des méthodes heuristiques pour trouver des IIS contenant le moins
possible de ces contraintes, sans toutefois garantir U'optimalité., L'idée proposée par
Chinneck est simple: comme Uordre initial des contraintes de ' détermine quel I1S
est détecté dans le filtre d’effacement ou algorithme additif, il suffit d utiliser une
heuristique favorisant le retrait ou 'ajout de certaines contraintes du systéme. Par
exemple, dans le cas du filtre d’effacement, il est préférable de retirer d’abord les
contraintes de rangée de C. Par contre, dans lalgorithme additif, on ajoute a K les
contraintes de colonne en premier. Des expériences faites sur des LPs de référence
ont montré que les méthodes utilisant une telle heuristique permettent de trouver,
dans la plupart des cas, des IIS ayvant bien moins de contraintes de rangée que ceux

obtenus par les méthodes sans heuristique.

2.1.5 Réparation de modeles irréalisables

Alors que détecter des IIS permet de faciliter le diagnostic d'un modeéle de pro-
grammation linéaire irréalisable, rendre ce modele & nouveau cohérent reste une
tache complexe. Il est cependant possible d'utiliser I'information provenant de
plusieurs IIS pour automatiser cette tache. Dans (Parker et Ryan, 1996), Parker et
Ryan proposent d’'utiliser les IIS d'un LP incohérent pour identifier le sous-systéme

réalisable de poids maximum, dont suit la définition:

Définition Etant donné un systeme irréalisable d’inégalités linéaires (', et w :
C — R* une fonction qui associe un poids positif w(c) & chague contrainte ¢ € C,
le probléme du sous-systeme réalisable de poids maximum (MWFS) correspond a

trouver un sous-systéme F C (C réalisable qui maximise la fonction

[)
fomrk

correspondant a la somme des poids des contraintes de F.

Le MWFS est un probléme d’optimisation NP-difficile qui généralise le probleme
du sous-systéme réalisable maximum (MFS), ot les contraintes ont toutes le méme
poids. En permettant a l'usager d’affecter des poids différents aux contraintes
selon leur importance daus le systeme, le sous-systéme réalisable de poids maxi-
mum correspond a une version réalisable du modele la plus fidéle aux conditions
originales posées par l'usager. Par ailleurs, le MWFE'S est équivalent au probléme

de recouvrement d’'TIS de poids minimum:

Définition Etant donné un systeme irréalisable C' d’inégalités linéaires, une fonc-
tion w : C — RT qui associe un poids positif w(c) a chaque contrainte ¢ € C,
et T Vensemble des 1IS de ', le probleme de hitting set d'IIS de poids minimum
(MWIC) consiste a trouver un sous-ensemble d’inégalités H C C' qui interesecte

chaque 1IS de 7 et minimise la fonction

g(H) = Z w(c)

c € H

correspondant & la somme des poids de H.

Le MWIC est également un probléme d’optimisation NP-difficile qui généralise
le probléme NP-difficile du hitting set de cardinalité minimum (MHS) (Garey et

Johnson, 1979) ot tous les éléments ont le méme poids:

Définition Soit € = {Ey,. .., Ejg} une collection d’ensembles E; € 5,1 <1 < |&.
Un ensemble H C S est un hitting set (HS) de £ §'il intersecte chaque ensemble
B Eie). Le probleme de hitting set minimum (MHS) pour une collection £

consiste a déterminer un hitting set de cardinalité minimum de £.

[N
(W]

Une représentation équivalente du MWIC est de trouver un ensemble trangversal
de cardinalité minimum dans un hiyper-graphe ot chague hyper-aréte correspond
a un IIS de 7 et les sommets appartenant a cette hvper-aréte correspondent aux

countraintes de I'ilS:

Définition Soit un hyper-graphe G = (V, E). Un ensemble de sommets T C V

est transversal si chaque hyper-aréte e € E contient un somimet de 7.

Le MWIC est un probléme équivalent au MWES puisque, pour rendre réalisable un
probléme sur-contraint, il suffit de relaxer au moins une contrainte de chaque 1IS
de 7. Soit un hitting set H des 1IS de 7, U'ensemble complémentaire de contraintes

(i.e. C'\ H) est donc nécessairement cohérent. Par ailleurs, puisque

g wic) = E w(c) + E w(c)
ce O cE H c e C\H
minimiser la somme des poids des contraintes de H correspond a maximiser la
somme des poids des contraintes de 'ensemble complémentaire. Ainsi, étant donné
un ensemble de contraintes optimal & une instance de MWIC, I'ensemble complé-

mentaire est optimal au MWFS correspondant.

Résoudre une instance du MWIC suppose que l'on connaisse 'ensemble 7 des IIS
du probleme. Cependant, comme démontré dans (Chakravarti, 1994) un systéme
irréalisable de contraintes peut contenir un nombre exponentiel d'IIS. 11 est donc
impossible, en pratique, de résoudre le MWFS de maniére optimale en utilisant le
MWIC. Dans (Parker, 1995), Parker propose donc d’utiliser une approche itérative

pour résoudre le MWIC.

Cet algorithme débute avec un ensemble d’1IS 7 vide et un hitting set H vide. Par

ron

la suite, tant qu’il existe un IIS K non-couvert par H, cet IIS est ajouté a 7 et

Algorithme 3 Algorithme itératif pour le MWIC
Entrée: Un ensemble incohérent de contraintes linéaires '
Sortie : Un recouvrement optimal H des 1IS de C.

Z — 0
H
Continuer «— VRAL
tant que Continuer = VRAI faire
si 3 un IIS K C C non couvert par H alors
I~ TU{K};
H — procMWHS(Z):
sinon
Continuer « FAUX
fin si
fin tant que

un nouveau hitting set de poids minimmum (MWHS) est obtenu par la procédure
procMWHS. Ce processus est répété jusqu'a ce que tous les IIS de C se trouvent
dans 7. Il est également possible d’arréter 'algorithme & n'importe quelle étape.
auquel cas H est une solution approchée au MWIC. Par ailleurs, comme le MWHS
est un probléeme NP-difficile. procMW HS peut étre remplacée par une méthode
heuristique, au risque d’avoir un recouvrement H sous-optimal. Finalement. I'TIS
non-couvert par H peut étre obtenu & 'aide d'une approche géométrique, comme
celles proposées par Van Loon(Van Loon, 1981), par Gleeson et Ryan{Gleeson et

Ryan, 1990), ou grace & un algorithme de détection proposé par Chinneck.

2.2 1IS et le support a la décision

Dans (Amilhastre et al., 2002), on propose d’utiliser les IIS pour résoudre des
problémes de support a la décision interactive, ol la tache est d’assister 1'usager
dans le choix de valeurs pour les variables du systeme qui satisfont les contraintes

de ce systeme. Un exemple de ce type de probleme, la configuration de produits

24

(Stumptner. 1997), peut étre représenté par un CN (X, D.C) ol les variables X
sont les composantes ou les options d'un certain produit, et 'ensemble des con-
traintes C représente la compatibilité entre les composantes, leur disponibilité, ete.
L’ensemble des solutions du CSP correspondant représente le catalogue, c’est-a-
dire toutes les variantes offertes de ce produit. Durant la configuration du pro-
duit, 'usager spécifie de facon interactive un ensemble contraintes additionnelles
{e1.¢9, ...} représentant ses préférences. A une certaine itération p, Pajout d’'une
contrainte ¢, peut soudainement rendre incohérent 'ensemble des contraintes de
configuration (ie. C U {¢1....,¢,} est incohérent alors que CU {e1,...,¢p 1} ne
I'est pas). Dans ce cas, le systeme de support a la décision doit guider I'usager dans
le choix des contraintes a relaxer afin de rendre le modele & nouveau réalisable, et
fournir a 'usager une explication sur 'incohérence. Suivant la terminologie utilisée

dans (Amilhastre et al., 2002), voici quelques définitions importantes:

Définition Soit P = (X.D,C, H) un 4-tuple ot (X, D,C) est un CN représentant
un produit configurable, et H un ensemble fini de contraintes additionnelles sur
X, correspondant aux restrictions de 'usager. Un nogood de P est un ensemble
E C H de cardinalité minimale, tel que (X, D,C U E) est incohérent. De la méme
maniére, une inferprétation de P est un ensemble £ C H de cardinalité maximale,

tel que (X, D,C U E) est cohérent.
Un nogood est relié & une interprétation par la propriété suivante:

Propriété 2.2.1 Soit N l'ensemble des nogoods de P, I est une interprétation de

P si et seulement si H\ E est un hitting set de N de cardinalité minimale.

Les notions de nogood et d’interprétation sont directement reliées a celles de MWIC
et MWFS puisque qu'un nogood est en fait un IIS de contraintes et une in-

terprétation un sous-systeme réalisable de cardinalité maximale, dans le cas ou

[\
[

les contraintes ont toutes le méme poids. De plus. les problemes de recouvre-
ment d’ensemble et celui d'hitting sefs sont en fait des problémes équivalents.
Afin d’illustrer ces notions, prenons le probléme de configuration d’une automobile
ol les variables sont la couleur de certaines pieces de Uautomobile: X = {pare-
chocs, toit, roues, carrosserie, capot, portes}. Chacune de ces pieces doivent avoir
une des couleurs suivantes: {blanc. rose, rouge, noir}. Par ailleurs, ces pieces
sont soumises aux contraintes de configurations C = {cl, .. ,,c(;}a, chacune por-
tant sur les variables suivantes: X(¢;) = {carrosserie, portes}, X(cy) = {capot,
portes}. Xles) = {carrosserie, capot}, X(cy) = {pare-chocs, carrosseric}, X(cs)
= {toit, carrosserie}. X(cs) = {roues., carrosseric}. De plus, l'ensemble des
affectations autorisées des variables de ces contraintes sont: R(c;) = Ric) =
R(c3) = {(blanc, blanc), (rose, rose), (rouge, rouge), (noir, noir)}, R(cs) =
Rics) = Rlcg) = {(blanc, rose), (blanc, rouge). (blanc, noir), (rose, rouge),
(rose, noir). (rouge, noir)}. L’ensemble des restrictions de I'usager est: H =
{} Ipare-chocs: / Lioit » h'roues« hcarrosseries hcapot-, hportes}- Ces contraintes por tent sur une
seule piece de I'automobile (dont le nom est en indice), et imposent & ces piéces
Q’avoir les couleurs suivantes: R(Pparechoes) = R(Feoir) = {blanc, rose}, R(Proues)
= {rouge}, R{hcarrosserie) = {10se, rouge}, R{hpores) = {rouge, noir}, R(Fcapot)
= {rose, noir}. Cet exemple comporte deux nogoods: {lcarrosseries Peapots Pportes }
et {Myoues: Rearrosserie ;- Alnsi, le dernier ensemble est un nogood parce que Aroyes
impose d’avoir des roues rouges et foarrosserie d AVOIr UnNe carrosserie rouge ou rose,
alors que la contrainte cg n’autorise aucune de ces deux combinaisons. Par ailleurs,
I'exemple comporte trois interprétations: {fpare-chocs: Feoit: Frrouess Reapots Pportes |+

{’} bpare-chocs: I Yot » hcarrosserie; hportes} et {; Ipare-chocss h oit s I learrosseries hcapot}- Ces ensem-
bles sont ainsi cohérents avec les contraintes de C, mais 'ajout de n'importe quelle

autre contrainte de H rendrait cet ensemble incohérent avec C.

Lorsque 'ensemble H des restrictions de I'usager n'est pas cohérent avec I'ensembie
C des contraintes de configuration du produit, le systéme doit pouvoir fournir a

P'usager une explication sur U'incohérence:

Définition Soit P = (X, D,C. H) un 4-tuple. et ¢ une contrainte de H, une expli-
cation de ¢ sur P est un ensemble ' C H tel que (X, D,CU E) est cohérent tandis
que (X,D.CU FE U {c}) est incohérent. Une explication est minimale s’il n’existe
aucune autre explication £’ C E. Par ailleurs, une restauration de ¢ sur P est un
ensemble E C H tel que (X.D,CUE U{c}) est cohérent. Une restauration E est

maximale s'il n'existe aucune autre restauration £’ D E.

Une explication permet donc d’expliquer pourquoi la contrainte rajoutée ¢ rend le
modele irréalisable. alors qu’une restauration est un sous-ensemble de contraintes
permettant de rendre le modeéle a nouveau réalisable, tout en conservant ¢. En
revenant & l'exemple précédent de configuration d’une automobile, supposons que
I'ensemble des restrictions de 1'usager soit:

H = {hpare—chocs: h‘tOitv } Irouess i 2’(‘&130177 h‘portes}: avec R(hpare—chocs> = R(htoi‘f) = {bZGTLC,
rose}, R(Proves) = {rouge}, R{Aportes) = {blanc, rouge, noir}, Rihcapor) = {rose,
now}. Soit la contrainte supplémentaire ¢, telle que X(¢) = {carrosserie} et
R{c) = {rose}, imposant a la carrosserie d'étre rose. Cette contrainte a deux
explications minimales: {fyoues} €6 {fportes}. AINSL roues €5t une explication car
cette contrainte est cohérente avec C, mais devient incohérente lorsqu’on rajoute ¢
(i.e. cg n'autorise pas d’avoir & la fois les roues rouges et la carrosserie rose). Par
ailleurs, si on veut rendre ce probléie réalisable tout en conservant ¢, il faut relaxer
roues €t Apories. AINSL, {Aparechocs: ftoits Preapot | €5t Une restauration maximale de ¢

pour le modele.

v}
-J

2.3 1iIS et SAT

Les IIS peuvent également servir a4 prouver qu'un probléme est irréalisable. Ainsi,
un probléme localement incohérent contient une sous-partie de taille réduite qui
est elle-méme incohérente. Par ailleurs, pour démontrer de maniére exacte gue
le probleme est irréalisable, il suffit de prouver que la sous-partie est incohérente.
Cette technique a été utilisée par Mazure et al. (Mazure et al., 1998) sur le probleme

de satisfaction booléenne (SAT):

Définition Une formule booléenne de la forme normale conjonctive (FNC) est une
conjonction de clauses formées par une disjonction de littéraux. Un littéral est une

variable propositionnelle pouvant avoir une valeur de vérité positive ou négative.

Définition Etant donné une formule booléenne sous la forme FNC, le probleme
de satisfaction booléenne (SAT) consiste & déterminer s'il existe une affectation de

valeurs aux variables vérifiant 1a formule booléenne.

Une instance de SAT se traduit en CSP en associant chaque variable du SAT a une
variable de X, et chaque clause a4 une contrainte de C, en respectant la valeur de
vérité des variables dans les littéraux. Par ailleurs, SAT est reconnu pour étre NP-
complet (Cook, 1971). 1l existe ainsi plusieurs techniques efficaces pour résoudre
une instance de SAT de maniére exacte, tel que I'algorithme DP proposé par Davis
et Putnam (Davis et Putnam, 1960). Cependant, ces techniques ne permettent
pas, en général, de résoudre des instances incohérentes possédant un grand nombre
de variables et de clauses. Par contre, les méthodes heuristiques, principalement
basées sur le principe de recherche locale, permettent généralement de trouver une
solution aux grandes instances satisfaisables. L’algorithme GSAT. développé par

Selman et al. (Selman et al., 1992), est une telle méthode heuristique.

Dans (Mazure et al., 1998), Mazure et al. utilisent une méthode heuristique pour
aider une méthode exacte & démontrer qu'une instance de SAT est irréalisable en
concentrant la méthode exacte sur une sous-partie incohérente de Uinstance. A
chaque fois que Uheuristique est utilisée, une trace de 'exécution est enregistrée de
la facon suivante. Un compteur est associé a chaque clause et chaque littéral de
Vinstance. Ces compteurs sont d’abord initialisés & zéro. A chaque itération, la
valeur d’une des variables est inversée dans l'affectation. Ensuite, les compteurs des
clauses falsifiées par 1'affectation, ainsi que ceux des littéraux de ces clauses, sont
incrémentés de 1. Aprés un nombre donné d’itérations, la recherche se termine et la
valeur de chaque compteur est examinée. Sile nombre d’itérations est suffisamment
grand, les clauses de Uinstance devraient pouvoir étre séparées en deux ensembles:
les clauses qui n’ont jamais ou rarement été falsifiées, et celles qui ont été souvent
falsifiées. Intuitivement, le second ensemble renferme les clanses d’une ou plusieurs
sous-parties incohérentes de I'instance. Considérant le CSP équivalent a l'instance
SAT, les clauses du second ensemble sont un ensemble de contraintes approchant
la réunion des hitting sets minimum des IIS de contraintes du CSP. Dans le cas ol
les IIS sont tous disjoints, cet ensemble estime "union de tous les IIS du CSP. Par

ailleurs, si l'intersection de tous les IIS n’est pas vide, le second ensemble estime

cette intersection.

L’information des compteurs peut également étre utilisée pour guider la stratégie
de branchement de la méthode exacte, en sélectionnant d’abord les littéraux dont
le compteur contient la plus grande valeur. Cette stratégie est basée sur le principe
d’échec d’abord (fail first principle) qui permet d’éliminer rapidement de Parbre
de recherche les branches ne menant & aucune solution. Ainsi, les littéraux faisant
partie des clauses les plus souvent falsifiées risquent de mener plus rapidement & un
échec, éliminant le besoin d’explorer les sous-branches de U'affectation courante. Les

expériences faites par Mazure et al. ont démontré qu'une telle stratégie permettait

29

a la méthode exacte de résoudre certaines instances réalisables et irréalisables de
SAT plus rapidement (i.e. moins de branchements) gu’en utilisant une stratégie de

branchement différente.

2.4 1IIS et le coloriage de graphe

La section précédente présente une technigue utilisant les 1IS pour améliorer U'effi-
cacité d une méthode exacte pour le probleme SAT. Cette section présente une uti-
lisation différente des IIS pour résoudre de maniére exacte le probleme de coloriage
de graphe, correspondant a trouver le nombre chromatique x(G) d'un graphe G.
Ce probléme étant NP-difficile, les méthodes exactes ne parviennent qu’a trouver
le nombre chromatique de graphes possédant un petit nombre de sommets. Ainsi.
sur des graphes aléatoires dont la probabilité d’existence d'une aréte entre chaque
paire de sominets (i.e. la densité) est 0.5, les meilleures méthodes exactes, telles
que (Kubale et Jackowski, 1985; Mehotra et Trick, 1996; Peemoller, 1983), sont
généralement incapables de démontrer le nombre chromatique de graphes n’ayant
que 100 sommets. En revanche, il est possible d utiliser des méthodes heuristiques
(Fleurent et Ferland, 1996; Galinier et Hao, 1999) sur de plus grosses instances,

mais seulement pour obtenir une borne supérieure sur x(G).

Dans (Herrmann et Hertz, 2002), Herrmann et Hertz proposent un nouvel algo-
rithme qui utilise les graphes critiques pour résoudre de maniére exacte le probléme
de coloriage de graphe. Etant donné un graphe G, cet algorithme calcule d’abord
avec une méthode de coloration heuristique une borne k > x(G). L’algorithme
tente ensuite d’obtenir pour G un sous-graphe sommet-critique H de méme nom-
bre chromatique, et détermine x(H) & l'aide d'une méthode exacte. Puisque H
contient, en général, moins de sommets et d’arétes que &, la méthode exacte, de

complexité exponentielle, a plus de chances de pouvoir calculer, dans un temps

30

raisonnable, x(H) que x(G). Sachant que x(H) < x(G). x(G) est alors démontré
sik = y(H).

L'algorithme 4 donue les détails de cette stratégie. Cet algorithme prend en
parametre un graphe G et retourne x(G). De plus, l'algorithme utilise deux
procédures, hCol et zCol, qui sont, respectivement, des méthodes heuristiques et
exactes pour obtenir le nombre chromatique d'un graphe. Le calcul de x(G) se fait
en deux phases. La phase descendante obtient tout d’abord une borne k > x(G)
a 'aide de hCol Ensuite les sommets de H, initialement égal & GG, sont retirés
dans un certain ordre. Apreés chaque retrait, hCol calcule une borne supérieure
sur x(H). Si cette valeur est inférieure a k, le dernier sommet est remis dans H.
Lorsque tous les somumets ont été ainsi testés, k' = x(H) est obtenu a l'aide de
zCol. Si k' = k., Palgorithme vient de trouver un sous-graphe sommet-critique
H et de démontrer que x(H) = x(G). Par contre. si &' < k, il s’est produit au
moins une des erreurs suivantes: hCol a obtenu une borne k& > x(G), ou bien trop
de sommets ont été retirés de H, tel que x(H) < x(G). La phase augmentante
de Palgorithme, qui permet de traiter ces cas, obtient l'ensemble L des sommets
retirés qui augmenteraient x(H) ¢’ils étaient remis dans H. Si L est vide, cela
signifie que & > x(G), et que k' = x(G). L'algorithme se termine, et H n’est pas
un sous-graphe sommet-critique. Par contre, si L n’est pas vide, un sommet est
choisi de L et est remis dans H, tel que x(H) augmente de 1. Ce processus est
répété jusqu’'a ce que K = k, ou L soit vide. Dans le premier cas, 'algorithme vient

de trouver un sous-graphe sommet-critique H et démontrer y(H) = x(G).

Etant donné un graphe G, un sous-graphe sommnet-critique H de G, est un IIS de
variables dans le CSP correspondant au probléme de coloriage de G avec x(H) — 1
couleurs {voir section 1.8.2). L’algorithme proposé par Herrmann et Hertz permet
donc d'obtenir, si k = x(G), des IIS de variables du CSP équivalent au k-coloriage

de G. Par ailleurs, comme cet algorithme applique une méthode exacte pour

31

Algorithme 4 Algorithme de Herrmann et Hertz pour caleuler x(G)

Entrée: Un graphe G = (V, E);
Sortie : x(G).

Phase descendante
Générer un graphe H = (V' F') égal & G;

k +— hCol(G);

Choisir un ordonnancement v, vs. ..., vy des sommets de V;

pour i « 1 & |V| faire
Retirer v; de V',
si hCol(H) < k alors
Remettre v; dans V',
fin si
fin pour
k' «— xCol{(H);

Phase augmentante
si k' < k alors
répéter
L0
pour tout sommet v € V \ V' faire
Remettre v dans V';
si hCol(H) > %’ alors
si xCol(H) = k' + 1 alors
L — Lu{v};
fin si
fin si
Retirer v de V',
fin pour
si L # § alors
Choisir un sommet v € L;
Remettre v dans V7,

E—F+1,
sinon
STOP: k > K = x(G);
fin si
juqu’a ce que k' =k

fin si
x(G) =¥,

32

déterminer y(H), il est nécessaire d’obtenir un sous-graphe H contenant le moins de
sommets possible. Ainsi, les auteurs présentent une stratégie qui détermine l'ordre
de retrait des sommets afin d’obtenir de plus petits sous-graphes H: le somimet
ayant le plus faible degré (i.e. le moins de somnmets adjacents) dans le graphe restant
est d’abord retiré. Cette stratégie permet d'obtenir des sous-graphes H possédant
moins de sommets. Finalement, des expériences, faites sur des graphes aléatoires
et des instances provenant du second challenge DIMACS (Johnson et Trick, 1996),
ont montré que, dans la plupart des cas, une méthode exacte (Peemoller, 1983)
mettait moins de temps (i.e. moins de retour-arriéres) a déterminer le nombre

chromatique du sous-graphe critique que de U'instance originale.

2.5 1IS et le probléeme de recouvrement d’ensembles

Dans (Galinier et Hertz, 2003) Galinier et Hertz montrent que les problemes de
détection d’IIS de contraintes et de variables dans un CSP incohérent sont deux

cas spéciaux du probléme de recouvrement d’ensembles de grande taille (LSCP).

Définition Soit S un ensemble finiet £ = {E4,..., Eig }, une collection d’ensembles
E; C S dont I'union vaut S. Un sous-ensemble I C {1,....{&|} tel que {J,.; E; = S
est appelé recouvrement de S. Le probléme de recouvrement d’ensembles a cott
fixe (USCP) pour S correspond & trouver un recouvrement de cardinalité minimum

de 5.

Définition Soit S un ensemble finiet £ = {Ey, ..., Eig}. une collection d’ensembles
E; C S dont l'union vaut S. Soit également une fonction ¢ : S x & — {0,1} telle
que (e, F) vaut 1 si e € E, et 0 sinon. Finalement, soit une fonction w: & — RT

qui associe & chague E € £ un poids positif w(E), et une procédure MinWW (S, &, w)

33

qui retourne un élément ¢ € F minimisant la fonction suivante:

£ ;
fler =S le. B) w(B)
Ec¢
Le LSCP cousiste a déterminer, a l'aide de ¢ et MinW, un recouvrement minimal
de S. Par ailleurs, le probléme de recouvrement minimum d’ensembles de grande
taille (MLSCP) consiste & déterminer, a l'aide de ¢ et MinW, un recouvrement

minimum de 5.

Le LSCP est une variante de 'USCP pour laquelle 'ensemble § et les sous-
ensembles F € £ sont possiblement de trés grande taille, et ne peuvent pas étre
donnés en extension. Ces ensembles sont plutdt définis implicitement a l'aide de la
fonection ¢ qui permet de savoir si un élément e fait partie de £. De plus, le MLSCP
est une extension du LSCP pour laquelle le but est de trouver un recouvrement de

cardinalité minimum.

La détection d'TIS de contraintes et de variables dans un CSP incohérent peuvent
étre considérés comime des cas particuliers du LSCP. De méme, la détection d’1IS
minimum de contraintes et de variables sont des cas particuliers du MLSCP. Ainsi,
dans le cas de la détection d’TIS de contraintes, on considére S comme 'ensemble
de toutes les affectations complétes des variables de X, et un sous-ensemble £; € £
comme la contrainte ¢; € C. Un élément e appartient alors & E; si et seulement si
I'affectation compléte correspondant a e viole la contrainte ¢; associée a F;. Trouver
un recouvrement minimal de S correspond ainsi a détecter un 1IS de contraintes,
c’est-a-dire un ensemble minimal de contraintes interdisant toute affectation des
variables du CSP. De plus, dans le contexte des CSP (e, E;) vaut 1 si Paffectation
correspondant a e viole la contrainte ¢;, et vaut 0 sinon. Par ailleurs. w est une
fonction qui pondere les contraintes du CSP, et MinW est un algorithme qui trouve

une affectation compléte dont la somme des poids des contraintes violées est mini-

34

mumm. Par contre, dans le contexte de la détection d'IIS de variables, S représente
Pensemble des affectations partielles légales des variables de X, alors qu'un sous-
ensemble E; € £ est 'ensemble des affectations partielles 1égales pour lesquelles la
variable z; n’a pas de valeur (i.e. n’est pas instanciée). Ainsi, détecter un IIS de
variables dans un CSP incohérent correspond a trouver un ensemble minimal de
variables tel que chaque affectation partielle légale des variables du CSP interdise
au moins & une de ces variables d'étre instanciée. Dans cette optique, (e, F;)
aut 1 si et seulement si la variable x; n’est pas instanciée dans Uaffectation par-
tielle correspond a e, et vaut 0 sinon. De plus. w est une fonction qui associe un
poids a chaque variable du CSP, alors que MinW est un algorithme qui trouve une
affectation partielle 1égale telle que la somine des poids des variables n'étant pas

instanciées est minimum.

Galinier et Hertz présentent également dans (Galinier et Hertz, 2003) plusieurs
algorithmes pour résoudre le LSCP et le MLSCP, ainsi que pour calculer une borne
inférieure sur la taille d'un recouvrement minimum. Ces algorithmes peuvent étre
utilisés pour faire la détection d’IIS de contraintes et de variables dans un CSP
incohérent, ainsi que pour trouver des IIS minimum et une borne sur la taille de
ces 1IS. Le prochain chapitre présente une adaptation des algorithmes développés
par Galinier et Hertz a la détection d’IIS dans un CSP incohérent. Ces algorithmes
ont, par ailleurs, servi de base a I'élaboration d’autres techniques de détection qui

seront également présentées dans le chapitre suivant.

CHAPITRE 3

ALGORITHMES EXACTS DE DETECTION D’IIS

Ce chapitre présente diverses techniques pour trouver des IIS de contraintes et
de variables dans un CSP irréalisable, ainsi que pour obtenir des IIS de cardi-
nalité minimum et des bornes sur la taille de ces 1IS. Les algorithmes proposés par
Galinier et Hertz pour résoudre le LSCP et le MLSCP (Galinier et Hertz. 2003).
Ualgorithme de retrait, | algorithme dinsertion et I'algorithme par hitting set. sont
d’abord décrits dans le contexte des CSP. Alors que ces algorithmes permettent
tous d’'obtenir des IIS de contraintes et de variables, seul 'algorithme de hitting set
permet de trouver des IIS minimum. Cet algorithme sert également a obtenir une
borne inférieure sur la taille d’'un IIS minimum. Finalement. ce chapitre présente
des variantes originales de ces algorithmes, ainsi que des heuristiques, également
développées dans le cadre de ce mémoire, pour détecter des IIS possédant le moins

de contraintes et de variables possible.

3.1 Notions préalables

La section 1.1 de ce mémoire donne une définition générale de satisfaction de con-
traintes pour les CN pondérés. Dans cette définition, une contrainte ¢ € C est une
fonction qui associe, pour chaque affectation a des variables de X, un coit c(a).
Bien que flexible, cette définition est trop complexe pour la description des algo-
rithmes de détection d'IIS présentés dans ce mémoire. Cette section propose une
définition simplifiée de la satisfaction de contraintes pour les CN pondérés, utilisant

la définition classique d'une contrainte ¢ € C (i.e. fonction telle que c(a} vaut 0

36

si ¢ est satisfaite, et 1 sinon). Afin de pouvoir donner une importance différente
a chaque contrainte et variable du CN, cette définition introduit également deux

fonctions qui associent un poids a ces contraintes et variables.

Définition Soit un CN (X, D,C) et w: C — RT une fonction qui associe un poids
positif w(c) a chaque contrainte ¢ € C. on note Ug(a) Uensemble des contraintes
violées par a (i.e. ¢{a) = 1). Le probleme de satisfaction maximum de contraintes
(MWCSP) consiste & trouver une affectation compléte ¢ minimisant la somme des

poids des contraintes violées par a:

felw,a) = Z w(c)

¢ € Ucl(a)

Une définition de la satisfaction partielle de contraintes est également donnée dans
la section 1.1 de ce mémoire. Ftant donné un CSP irréalisable P, une fonction de
distance d et une borne 3, le MPCSP consiste a trouver un CSP réalisable P’ tel que
la distance d(P, P’) entre P et P’ soit minimale (et inférieure & 3). Par ailleurs,
plusieurs manieres de relaxer P ont été données. Parmi celles-ci, P peut étre
relaxé en permettant a certaines de ses variables de ne pas étre instanciées. 1l a été
montré que retirer une variable r permettait d’étendre 'ensemble des affectations
autorisées des variables X' (c¢) d’une contrainte ¢ agissant sur . En particulier,
retirer une variable correspond & retirer du CN toutes les contraintes unaires et
binaires agissant sur cette variables. En considérant P comme un CSP incohérent
dont les affectations doivent étre completes, la distance d{P, P') & minimiser est
alors le nombre de variables devant étre retirées de P (i.e. autorisées & ne pas étre
instanciées) afin d’avoir une affectation partielle égale pour P’. Cette définition
du MPCSP peut également étre étendue pour tenir compte des pondérations sur

les variables:

Définition Soit un CN (X, D.C) et w : X — RT une fonction qui associe un
poids positif w(r) & chaque variable z € X, on note Uy (a) U'ensemble des variables
n’étant pas instanciées dans a. Le probléme de satisfaction partielle maximum de
contraintes (MPWCSP) cousiste & trouver une affectation légale ¢ minimisant la

somime des poids des variables n'étant pas instanciées dans a:

frway= 3 wia)

z € Ux{a)

En somine, le MWCSP correspond a chercher une affectation compleéte telle que
la somme des poids des contraintes violées est minimum, alors que le MPWCSP
consiste a chercher une affectation partielle légale minimisant la somme des poids
des variables non-instanciées. Le MWCSP et le MPWCSP sont deux problemes
NP-difficiles. On peut ainsi transformer en MWCSP ou en MPWCSP un CSP, qui
est reconnu NP-complet, en donnant un poids w(c) > 0 & chaque contrainte ¢ € C
et un poids w(x) > 0 & chaque variable z € X. Le CSP est alors satisfaisable s'il
existe, pour le MWCSP correspondant, une affectation a telle que fe(w,a) = 0. De
méme, un CSP est satisfaisable 8’1l existe. pour le MPWCSP correspondant, une

affectation légale telle que fy(w,a) = 0.

Une des raisons pour laquelle des poids ont été ajoutés aux variables et aux con-
traintes du CN est que ces poids permettent de modifier dynamiquement le CN,
et conséquemment les problémes de satisfaction correspondants. Ainsi, donuer un
poids de 0 & une variable z du CN équivaut a retirer cette variable dans le cas du
MPWCSP, puisque la fonction objectif fy n’augmentera pas si z n’est pas instan-
cide dans une affectation quelconque. De méme, si le poids d’une contrainte vaut
0, il est alors possible de violer cette contrainte dans une affectation a du MWCSP
sans augmenter fe(w,a). Par ailleurs, il est également possible de forcer la satisfa-

ction d’une contrainte ou 'instanciation d’une variable en augmentant son poids,

38

¢'est-a-dire en rendant “dure” cette variable ou cette contrainte. Par exemple, sion
donne un poids de | X] & une variable x € X et un poids de 1 aux autres variables,
on s'assure que I sera instanciée dans toute affectation optimale au MPWCSP.
On peut aussi forcer la satisfaction d'une contrainte ¢ € C dans toute affectation
optimale au MWCSP, en donnant a ¢ un poids de |[C|. et un poids de 1 aux autres

contraintes de C.

Il est, par ailleurs. important de remarquer que, pour un CN donné. le MWCSP
et le MPWCSP sont des probléemes équivalents aux problemes de recouvrement de
poids minimum des IIS (MWIC) de contraintes et de variables du CN (wvoir section
2.1.5). Ainsi, dans le cas du MWCSP, toute affectation complete a doit violer une
contrainte de chaque IIS de contraintes. L’ensemble Ug(a) des contraintes violées
par a est donc un HS des IIS de contraintes du CN. En plus, si a est optimale,
Uc(a) correspond a un HS de poids minimum. De méme, dans le cas du PWCSP,
toute affectation partielle doit avoir une variable de chaque IIS de variables non-
instanciée. L'ensemble Uy (a) des variables non-instanciées est donc un HS des IIS
de variables du CN. Enfin, si a est optimale, Ux(a) correspond & un HS de poids

minimuim.

Il est nécessaire d’illustrer ces notions sur un exemple. La figure 3.1 représente
un graphe de six sommets et sept arétes, et dont le nombre chromatique est 3.
Le probleme de 2-coloriage de ce graphe correspond donc a un CSP irréalisable
possédant deux IIS de contraintes: {c1, ¢o, ¢4} qui est minimurn, et {3, ¢y, ¢5., Cq, C7}-
Ce CSP contient également deux IIS de variables: {xy, 29,26} qui est minimum,
et {xy, 3, 14, T5, Te}. En supposant que toutes les contraintes et les variables ont
le méme poids, 'ensemble Uc(a) pour une affectation a optimale au MWCSP est
un HS de cardinalité minimum des IIS de contraintes. Ainsi, comme ¢y est la seule
contrainte faisant partie des deux IIS de contraintes, une affectation optimale viole

uniquement ¢4, par exemple a = (1,2,1,2,1,2). De la méme maniere, ensemble

39

C3 C7

X3 Xs
Cs Cs

X4

Figure 3.1 Une instance de k-coloriage incohérente pour k < 2

Ux(a) pour une affectation a optimale au MPWCSP est un HS de cardinalité mini-
male des IIS de variables. Puisque les seules variables faisant partie des deux IS de
variables sont 745 et x4, une affectation optimale au MPWCSP doit avoir x5 ou x4
désinstanciée, par exemple a = (1, —,1,2,1,2) (“” signifie que la variable corres-
pondante n'est pas instanciée). Par ailleurs. en changeant le poids des contraintes
et des variables du CN, on obtient différentes affectations optimales au MWCSP
et au MPWCSP. Ainsi, si on donne un poids de 1 a ¢; et ¢z, et un poids de |[C| =7
aux autres contraintes, une affectation optimale au MWCSP viole nécessairement
¢, et c3 puisque ces contraintes forment un HS de poids minimum 2 des IIS de
contraintes. De plus, si on donne un poids de |X| = 6 & xq. et un poids de 1 aux
autres, une affectation optimale au MPWCSP doit avoir rg non-instanciée, puisque

cette variable correspond a un HS de poids minimum 1 des 1IS de variables.

3.2 Algorithmes de détection

Les algorithmes présentés dans cette section peuvent étre utilisés pour trouver aussi
bien des IIS de contraintes que des IIS de variables. Afin d’alléger leur description.
une seule version sera donnée pour chaque algorithme. pouvant s’appliquer a la

détection d'TIS de contraintes ou de variables. Ainsi. si le but est de trouver un IIS

40

de contraintes, £ correspond a l'ensemble de contraintes C, w est une fonction qui
pondére les contraintes de C, f est la fonction objectif du MWCSP f, Ula) est
Vensemble des contraintes violées par une affectation compléte a, et procMWIC est
une procédure qui retourne une affectation compléte minimisant fo. Par contre,
st la tache est de trouver un 1IS de variables. alors £ correspond a Uensemble de
variables &, w est une fonction qui pondere les variables de X, f est la fonction
objectif du MPWSCP fy, U(a) est 'ensemble des variables n’étant pas instanciées
dans une affectation partielle légale a. et procM WIC est une procédure qui retourne

une affectation partielle légale minimisant fa.

Puisque procMWIC résoud de maniere optimale le MWCSP (dans le cas de la
détection d’IIS de contraintes) et le MPWCSP (daus le cas de la détection d'IIS
de variables), deux problemes NP-difficiles, la complexité en temps de calcul des
algorithimes de détection est presque entierement attribuable & 'emploi de cette
procédure!. De maniére générale, cette procédure est appelée une seule fois par
itération d'un algorithme de détection, correspondant & une modification des poids
des contraintes ou variables du CN. Ainsi, pour chaque algorithme de détection,
une indication de la complexité en temps de calcul sera donnée sous la forme du
nombre d’itérations nécessaire, dans le pire cas, pour trouver un IIS. Lorsque cela

est possible, cette valeur sera exprimée en terme de |£] (i.e. |X| ou |C|) ou de | K.

3.2.1 Algorithme de retrait

L’algorithme de retrast est probablement le plus simple des algorithmes de détection
d’1IS. Des approches similaires ont déja été proposées pour la programmation

lindaire (Chinneck, 1997 (1); Chinneck, 1997 (2)) et le probléme de coloriage de

LA Pexception de Valgorithme de hitting set qui doit également résoudre le probléme NP-
difficile du hitting set minimum

41

graphe {(Herrmann et Hertz. 2002). Cet algorithme prend en parameétre un CN
incohérent P et retourne un IIS de contraintes ou de variables K. Tout d’abord,
le poids de chaqgue contrainte ou variable de £ est initialisé a 1. FEusuite, ces
contraintes ou variables sont temporairement retirées selon un ordre quelconque,
en leur donnant un poids de 0. Apreés chaque retrait, une affectation optimale a
est obtenue avec procMWIC. St f(w,a) = 0, P est alors devenu cohérent, et la
derniere contrainte ou variable retirée est remise dans P en lui donnant un poids

de 1. Lorsque toutes les contraintes ou les variables ont été testées, celles dont le

poids vaut 1 forment un IIS.

Algorithme 5 Algorithme de retrait

Entrée: Un CN incohérent P:
Sortie : Un IIS de contraintes ou de variables K.

Initialisation

pour tout e € £ faire
wle) «— 1;

fin pour

T ¢&:

Construction
tant que 7' +# { faire
Choisir un élément e € T;
T —T\{e};
w(e) — 0;
a +— procMWIC(P, w);
si f(w,a) =0 alors
w(e) + 1;
fin si
fin tant que

Euxtraction
K —{e|wle) =1}

Propriété 3.2.1 Soit P un CN incohérent. L’algorithme de retrait produit, en un

nombre fini d’itérations, un IIS de contraintes ou de variables K de P.

42

Preuve On remarque tout d’abord que chaque retrait rendant P cohérent est
suivi d’une ré-insertion rendant P & nouveau incohérent. L’ensemble A est donc
incohérent. De plus, soit e; n'importe quelle contrainte ou variable de A retirée a
I'itération 4, et soit K 'ensemble des contraintes ou variables ayant un poids de 1
a Uitération 7. Ou sait que K; \ {e;} est cohérent. Par aillews, comine K C K,

K\ {e;} est également cohérent. L'ensemble K est donc un IIS.

Afin d’illustrer 'algorithme de retrait, prenons le probleme de satisfaction cor-
respondant au 2-coloriage du graphe de la figure 3.1. Supposons que le but soit
d'obtenir un IIS de contraintes et que les contraintes soient retirées selon 'ordre
croissant de leur indice. Ainsi, ¢; est d’abord retirée en lui donnant un poids de
0. On remarque que le graphe résultant n’est toujours pas 2-coloriable. De plus,
comme ce retrait a détruit un des deux IIS (i.e. {c1,¢o.cq}), procMWIC obtient
une affectation optimale a; de cott f(w,a;) = 1, et ¢; n'est pas ré-insérée. La
contrainte ¢, est ensuite retivée. Comme ¢y ne fait pas partie de I'IIS restant,
on obtient encore une affectation optimale ay de colit f(w,as) = 1, et ¢y n'est
pas ré-insérée. Toutes les contraintes de poids 1 font alors partie de I'IIS restant.
Ainsi, en retirant cs, le graphe devient 2-coloriable (i.e. f(w,a3) = 0), et cette
contrainte est alors ré-insérée en lui redonnant un poids de 1. La méme chose se
produit pour les contraintes ¢y, ¢5, ¢g et o7, de sorte que algorithme produit U'IIS
K = {c3, ¢4, 05,5, 7} 1l est possible d’obtenir un IIS différent en modifiant Uordre
de retrait des contraintes. Ainsi, en considérant 'ordre inverse, ¢ est d’abord re-
tirée et un IIS différent est détruit. Conséquemment A sera nécessairement formé
par {c1, ¢, ¢4}, soit U'IIS minimum. Dans le cas de la détection d’'IIS de variables,
en retirant les variables selon 'ordre croissant de leur indice, 27 est d’abord retirée.
Comme le graphe résultant n’est toujours pas 2-coloriable, f{w,a;) = 1 et z; n'est
pas ré-insérée. Cependant, lorsque x5 est retirée, f(w,as) = 0 et cette variable

est ré-insérée en lui donnant un poids de 1. La méme chose se produit pour les

43

autres variables, qui font toutes partie du seul TIS restant. et 'algorithme retourne

K = {z9, 13,14,

r5. g}. Encore une fois, un IIS différent peut étre obtenu en mo-
difiant 'ordre de retrait. Ainsi, si on retire xs. x4 ou x5 avant z¢. I'IIS obtenu sera

<

{z1, w0, 26 }.

Puisque toutes les contraintes ou variables de |€] sont testées, I'algorithme de retrait
met, dans tous les cas, |€] itérations pour obtenir K. On remarque, par ailleurs,
que I'IIS obtenu par cet algorithme est celui ayant une premiere contrainte ou va-
riable retirée en dernier, puisque les autres IIS auront alors été détruits. De plus,
on constate que tous les IIS de ce probléme peuvent étre obtenus en variant 'ordre
de retrait, et que des ordres de retrait différents peuvent produire le méme IIS.
Cependant, comme le nombre d’ordres de retrait différents (i.e. |E|!) est supérieur
au nombre de sous-ensembles de £ (i.e. 2/!), il est nécessaire d’avoir des heuris-
tiques pour déterminer un ordre de retrait pouvant produire un IIS minimum ou
avant moins de contraintes ou de variables. Une telle heuristique sera présentée &

la fin de ce chapitre.

3.2.2 Algorithme d’insertion

Alors que Palgorithme de retrait obtient un IIS en retirant des contraintes ou des
variables, Ialgorithime d'insertion en produit un en les rajoutant & K. Comme
le précédent, cet algorithme prend en parametre un CN incohérent P et retourne
un IIS K. Au départ, le poids des contraintes ou variables de £ est initialisé a
1. Ensuite, pour chaque itération i, procMWIC retourne une affectation optimale
a; minimisant f. Cette affectation a un ensemble U{a;) de contraintes violées ou
de variables n'étant pas instanciées. Le poids d'une contrainte ou variable de cet
ensemble est fixé & |£], et celui des autres fixé & 0. Ainsi, puisque U{q;) contient

une contrainte ou variable de chaque IIS, tous les IIS contenant la contrainte ou

44

la variable dont le poids a été fixé a |£] seront conservés, et les autres détruits.
Ce processus est répété jusqu'a ce que les contraintes ou variables de poids |£]
forment un ensemble K incohérent. Alors, procMWIC obtient une affectation a tel
que U(a) contient une contrainte ou variable de cet ensemble (i.e. f(w.a) > |&]).

Finalement. 'algorithme retourne ensemble K qui forme un S,

Algorithme 6 Algorithme d’insertion

Entrée: Un CN incohérent P;
Sortie : Un IIS de contraintes ou de variables A

Initialisation

pour tout e € £ faire
w(e) « 1

fin pour

Construction
répéter
a « procMWIC(P, w);
si f(w,a) < |£] alors
Choisir un élément e € Ula) tel que w(e) = 1;
w(e) «— €l
pour tout ¢ € U(a), € # e faire
wle') — 0;
fin pour
fin si
juqu’a ce que f(w,a) > |&]

FExtraction
K« {elw(e) = €]}

Propriété 3.2.2 Soit P un CN incohérent. L’algorithme d’insertion produit, en

un nombre fini d’itérations, un II§ de contraintes ou de variables K de P.

Preuve On constate, tout d’abord, qu'une contrainte ou variable d’au moins un
IIS est conservée & chaque itération. Conséquemment, K est un ensemble in-
cohérent. Par ailleurs, soit a; 'affectation optimale obtenue & Vitération ¢, et

e; € Ula;) n’importe quelle contrainte ou variable de K conservée 3 cette itération.

On sait que E\U{a;) est un ensemble cohérent. De plus, comme A\{e;} C E\NU{a;).
i A £ \ Y

Vensemble A\ {¢;} est aussi cohérent. L’ensemble K est donc un IIS.

Dlustrons Palgorithme d’insertion sur le probléme irréalisable de 2-coloriage du
graphe de la figure 3.1. Dans le cas de la détection d’1IS de contraintes, procMWIC
retourne d’abord une affectation a; tel que Ulay) = {¢4}. Puisque ¢4 est la seule
contrainte violée, son poids est fixé a |C| = 7. L’affectation suivante ay doit alors
satisfaire ¢4 et violer une contrainte de chaque IIS, par exemple Ulas) = {¢;1. ca}.
Supposons que 'on fixe le poids de ¢; & U et celui de ¢3 & 7, il ne reste qu'un
seul 1IS: {¢3, ¢4, ¢5,¢6. 7). Done, les affectations as, a4 et a; vont fixer le poids
des contraintes cs, ¢, et ¢; 4 7. Comme les contraintes de poids 7 forment un
ensemble incohérent, Paffectation ag aura alors un cott f(w,as) = 7, et cet 1IS

est détecté. Une fois de plus, le choix de la contrainte de chaque U(a;) a laquelle

fixer un poids de |C| détermine quel IIS est obtenu. Ainsi, si on avait conservé ¢,
au lieu de ¢z, a itération 2, I'IIS contenant ¢z aurait été détruit et celui formé de
¢1. Co et ¢4, qui est minimum, aurait été obtenu. Dans le cas de la détection d’IIS
de variables, la premiere affectation a; donne un ensemble U(a) contenant x5 ou
Tg, par exemple, zg. Le poids de xg est alors fixé a |X| = 6. Ensuite, ay donne
Ulay) = {xo}. et on fixe le poids de zy & 6. L'affectation ag doit alors produire
un ensemble U{az) contenant z; et une autre variable de V'ensemble {3, x4, 25},
par exemple x3. Supposons que on fixe le poids de x5 & 6 et celui de z; 2 0, le
poids de x4 et x5 sera ensuite fixé & 6. et U'IIS obtenu sera {xq, r3. 74, 5, Tg}. Sl
par contre, on avait fixé le poids de z3 a 0 et celui de z; a 6. l'algorithme aurait

obtenu P'IIS minimum {z, xs, z¢}.

Comme le poids d’une contrainte ou variable de K est fixé & |€| & chaque itération,

et que l'algorithme se termine lorsque K est incohérent, le nombre d’itérations

46

Figure 3.2 Une instance ayant un IIS minimnum de contraintes pour k = 2

mis par Valgorithme d’insertion pour obtenir un IIS est done |K| + 1 2. Ainsi,
puisque |K| < |£], Palgorithme d’insertion est plus rapide que celui de retrait,
particulierement pour des CN contenant un petit IIS. Par exemple, Palgorithme
de retrait mettra 1000 itérations pour trouver un IIS de 10 variables dans un CN
contenant 1000 variables, alors que 'algorithme d’insertion n’en mettra que 11. Par
contre, contrairement a l'algorithme de retrait, 'algorithme d’insertion ne permet
pas de détecter tous les IIS d'un CN incohérent. Considérons, par exemple, la
détection d'un IIS de contraintes dans le probléme irréalisable de 2-coloriage du
graphe de la figure 3.2. La premiere affectation doit violer les trois contraintes du
centre®. Ces contraintes forment le seul IIS minimum. Comme le poids de deux de
ces contraintes doit étre fixé & 0, cet IIS sera alors détruit. Il est donc impossible

d’obtenir cet IIS minimum a 'aide de Palgorithme d’insertion.

Finalement, il n’est pas nécessaire de fixer a |£] le poids de la contrainte ou variable
conservée a chaque itération. Cette valeur est utilisée parce gqu’elle garantit qu'une
affectation satisfaisant toutes les contraintes dures ou instanciant toutes les varia-
bles dures ait un cout inférieur a toute affectation viclant une de ces contraintes
ou pour laquelle une de ces variables n'est pas instanciée. 1l suffit, en réalité, de
s’'assurer que cette valeur soit supérieure au plus grand nombre de contraintes ou

variables de poids 1, dans chaque ensemble U(a;). Ainsi, Iexemple de la figure 3.1

3En gras dans la figure.

47

contient seulement deux IIS de contraintes et de variables, tel que U(q;) < 2. On

Cl=Tet|X]|=6

peut alors utiliser 3 au lieu de

3.2.3 Algorithme de hitling set

Contrairement aux deux algorithmes de détection précédents, I'algorithme de hit-
ting set permet d’obtenir des IIS de cardinalité minimum. Cet algorithme se base
sur le principe que chaque affectation a;, retournée par procMWIC a VUitération
i, produit un ensemble U{a;) contenant une contrainte ou une variable de chaque
IIS. Un IIS est donc un HS de la collection U = {U(a1).....Ulapy)}. Par ailleurs,

comme cet algorithme utilise une procédure procMHS(U) qui retourne un HS mi-

nimum de U, I'IIS obtenu est lui aussi minimum.

Algorithme 7 Algorithme de hitting set

Entrée: Un CN incohérent P:
Sortie : Un 1IS de contraintes ou de variables K.

Initialisation

U — §;

Construction
répéter
K — procMHS(U);
pour tout ¢ € £ faire
sie € K alors

wle) — |E;
sinon
wle) — 1;
fin si
fin pour

a «— procMWIC(P, w):
si fw,a) < || alors
U—Uu{Ula)}
fin si
juqu’a ce que f(w,.a) > |£]

48

A chaque itération i, Ialgorithme de hitting set obtient un ensemble K, qui est un
HS d’une collection U initialement vide. Le poids des contraintes ou des variables
de £ est ensuite modifié de maniére a ce que celles faisant partie de K recoivent
un poids de |£], et les autres un poids de 1. Une affectation optimale a; est ensuite
obtenue de procMWIC et Vensemble Ula;) est ajouté a . Finalement, lorsqu'une
affectation optimale a; de colt flw,a) > |€] est trouvée, K; est un ensemble
incohérent et l'algorithme se termine. Cet ensemble est alors un IS minimum de

contraintes ou de variables.

Propriété 3.2.3 Soit P un CN incohérent. L’algorithme de hitting set produit,
en un nombre fini ditérations, un IIS de contraintes ou de wvariables K de P,
si procMHS retourne des HS minimaur au sens de Uinclusion. Par ailleurs, st

procMHS retourne des HS de cardinalité minimale, K est un 115 minimum.

Preuve 5Soit K; le HS obtenu a litération 7, et a; 'affectation optimale de cette
itération. Si f(w,a;) > |€|. Ialgorithme se termine, sinon on sait que U(a;) N K; =
. Soit K; le HS obtenu & une itération 7 > ¢, K doit contenir une contrainte
ou une variable de chaque ensemble {U({ay),...,U(a;-1)}, en particulier de U(a;).
L’ensemble K; contient donc une contrainte ou variable de U{a;) qui n’était pas
dans K;. Conséquemment K; # K;. De plus, comme le nombre de HS K possibles
n’est pas supérieur au nombre de sous-ensembles de £, I'algorithme de hitting set
doit se terminer en un nombre fini d'itérations. Par ailleurs, comme Palgorithme ne
se termine que lorsque K est un ensemble incohérent, et puisque procMHS retourne

des HS minimaux au sens de Vinclusion, K est donc un IIS. Finalement, si procMHS

retourne des HS de cardinalité minimale, K est nécessairement un IIS minimum.

Afin d’illustrer 'algorithme de hitting set, considérons, une fois de plus, le probleme

de 2-coloriage du graphe de la figure 3.1. Commencons d’abord par un mau-

49

vals scénario, ol le seul 1IS minimum de contraintes du probléme est seulement
trouvé aprés 7 itérations. Au départ, comme U est vide, K; = et le poids
de toutes les contraintes de &£ est fixé & 1. Ensuite, la premiére affectation ay
obtenue par procMWIC produit Uensemble Ulay) = {cs} qui est ajouté a U.
Conséquemnment, procMHS obtient un HS Ky = {cs}. tel que le poids de ¢4
est fixé & C = 7 et celul des autres contraintes & 1. L’ensemble U{a,) doit
alors contenir une contrainte de l'ensemble {¢1, o} et une autre de {cs, 5. ¢, 7},
par exemple U(as) = {c1,c3}. Cet ensemble est ajouté & U qui devient Y =
{{04}, {ey. ('3}}. Le HS suivant doit alors contenir ¢4 ainsi quune contrainte de
{c1. 3}, par exemple ¢1, ce qui donne K3 = {¢1,¢q}, tel que Ulas) contient ¢y
et une autre contrainte parmi {cs, s, cg, ¢7}, par exemple, c3. Cet ensemble est
alors ajouté a U qui devient U = {{04}q{c:1,c9,},{cz,cg}}, et le prochain HS
peut, par exemple, étre K, = {c3,c4}. L'ensemble U(ay) doit alors contenir
une contrainte de {cy, ¢} et une autre de {cs,cs, 7}, supposons ¢y et ¢, tel
que Y = {{(:4}, {c1, 03}, {ca, 3}, {01705}}. Le prochain HS obtenu par procMHS
peut alors étre Ky = {ci,c3.04}, tel que Ulas) doit contenir ¢ et une autre
contrainte de {cs,cq, ¢r}, par exemple, ¢s. Cet ensemble est ensuite ajouté a U
pour donner 'ensemble U = {{64},{01,(‘3},{(12,(‘3}, {c1.¢5}, {02.05}}, contenant
un seul HS minimum Ky = {c3, ¢4, ¢5}. Lensemble U(ag) contient alors une con-
trainte de {c1,co} et une autre de {cg,¢7}, par exemple, ¢; et ¢, et on obtient
U= {{04},{01?03}?{(22,03}{(:1905},{02“05},{01,(:6}}. Finalement. cet ensemble
ne contient qu'un seul HS minimum A7 = {c1, ¢, ¢4} qui est I'IIS minimum de
contraintes. Il est & noter que la détection de cet 1IS minimum aurait pu étre plus
rapide. Ainsi, & Uitération 5, procMHS aurait pu retourner le HS Ky = {c1, co, ¢4}

formant IS minimum.

Dans le cas de la détection d'IIS de variables, U(a;) doit contenir xs ou xg, par

exemple U{a;) = {z,}. Cet ensemble est ajouté a U pour donner U = {{z2}} qui

30

possede un HS minimum Ky = {z3}. Le poids de x4 est alors fixé & X = 6 et celui
des autres variables & 1, tel que ay donne Pensemble U{as) = {zg}. L’ensemble
U devient ensuite I = {{:EQ}, {:r@}} dont le HS minimum est K3 = {x9.76}. On
obtient alors un ensemble U(az) contenant xy et autre variable parmi {x3, 24, 75}.
par exemple x3. et U devient alors U = {{xg},{a“g},, {:1”1.1'3}}. Supposons que
procMHS retourne Ky = {xy. 13,76}, U(ay) peut alors étre {zy, 24} ou {xy, z5}.
Qu’il s'agisse de I'un ou de Uautre, le HS suivant sera Ky = {11, 29, 26} qui est I'TIS
minimum. Finalement, la détection aurait également pu étre plus courte. Ainsi, a
Vitération 4, le HS minimum obtenu par procMHS aurait pu étre Ky = {xy, 20, 25},

VTIS minimum.

Alors que 'algorithme de hitiing set obtient un IIS minimum, cette détection prend
un nombre exponentiel d'itérations. A chaque itération 7. procMHS produit un HS
K; différent de celui produit aux itérations précédentes. Un IIS minimum A sera
donc obtenu dans un nombre fini d’itérations. Cependant, comme le nombre de

sous-ensembles possibles de £ contenant |A'| éléments est donné par

. €]
DT e (e - KD

C(lel 1K

un nombre exponentiel de HS peut étre produit avant d’obtenir K.

Finalement, si procMHS obtient des HS de cardinalité minimum, on peut montrer
que la taille de l'ensemble K des contraintes ou des variables de poids |£]. &
n’importe quelle itération ¢, est une borne inférieure sur la taille d'un IIS minimum
K de P (ie. |K;| < |K|). Ainsi, méme si algorithme de hitting set ne parvient
pas & obtenir un IIS minimum A dans un temps raisonnable, on peut arréter a

une itération ¢ quelconque, et utiliser | K| comme borne sur la taille de K.

3.3 Techniques complémentaires de détection

Cette section présente des variantes des algorithmes décrits précédemment. ainsi
que des techniques permettant de faciliter la détection dun IIS. Ces variantes et

technigues ont été développées dans le cadre de ce mémoire.

3.3.1 Algorithme hybride

L algorithme de retrait, présenté au début de ce chapitre, permet de détecter un IIS
en retirant une a une les contraintes ou les variables de £. Cet algorithme obtient
donc un IIS apres |£] itérations, peu importe la taille de cet IIS. De son coté.
Palgorithme d’insertion, qui fixe les poids des contraintes ou variables & |£], obtient
un I1S K en | K| itérations. L'algorithme présenté dans cette section intégre certains
principes de 'algorithme d’insertion a Palgorithme de retrait. afin de permettre a

ce dernier d’obtenir un IIS plus rapidement.

Comme 'algorithme de retrait, I'algorithme hybride retire & chaque itération i une
contrainte ou une variable e € £ en fixant son poids a 0. Si f(w,a;) > 0, P est
toujours incohérent et e n'est pas ré-insérée. Par contre, si f(w,q;) = 0, e fait
nécessairement partie de Uintersection des IIS de P. Contrairement a U'algorithme
de retrait, Ualgorithme hybride ré-insére e en fixant son poids a |£]. Ainsi, lorsque
procMWIC retourne une affectation a; de cott f(w, a;) > |€], 'ensemble incohérent
formé des contraintes ou variables ayant un poids de £ est un IIS. En conséquence,
P'algorithme hybride peut obtenir un IIS X sans avoir & retirer toutes les contraintes
ou les variables. Finalement, sachant qu’a n’importe quelle itération, les contraintes
ou variables de poids £ font partie de I'TIS K, on peut utiliser une heuristique,
comime celle présentée a la fin de ce chapitre, pour choisir la prochaine contrainte

ou variable a retirer afin d’avoir K le plus petit possible.

o
(3]

Algorithme 8 Algorithme hybride
Entrée: Un ON incohérent P
Sortie : Un IIS de confraintes ou de variables K.

Indtialisation

pour tout ¢ € £ faire
wie) «— 1;

fin pour

Construction
répéter
Choisir un élément ¢ € £ tel que wie) = 1;
w(e) « 0;
a — procMWIC(P, w);
si f(w,a) = 0 alors
w(e) — &}
fin si
jugu’a ce que f(w,a) > |&|

FEaxtraction
K« {e|wle) =&}

Propriété 3.3.1 Soit P un CN incohérent. L’algorithme hybride produit, en un

nombre fint d’itérations, un IIS de contraintes ou de variables K de P.

Preuve On remarque tout d’abord que chaque retrait rendant P cohérent est
suivi d’une ré-insertion rendant P a nouveau incohérent. L’ensemble K est donc
incohérent. De plus, soit e; n'importe quelle contrainte ou variable de K retirée
a Ditération i, et soit K; V'ensemble des contraintes ou variables ayant un poids

supérieur & 0 a litération 7. On sait que K; \ {e;} est cohérent. Par ailleurs.

comme K C K, K\ {e;} est également cohérent. L'ensemble K est donc un IIS.

L’exemple suivant illustre Palgorithme hybride dans le cas de la détection d'IIS
de contraintes sur le probléme de 2-coloriage du graphe de la figure 3.1. Si les
coutraintes sont retirées selon ordre croissant de leur indice, algorithme hybride

mettra sept itérations pour détecter 'IIS K = {3, ¢y, ¢5, ¢5. €7}, exactement comme

<ot
(9™

Ualgorithme de retrait. Par contre, supposons que les contraintes soient retirées
selon Vordre suivant: {cy. ¢3,¢5.¢0, 5. ¢6. 7. Lorsque ¢y est retirée, P devieut
cohérent. Comme cette contrainte fait nécessaivement partie de K| on la ré-insére
en fixant son poids & C = 7. Ensuite, c¢3 est retirée, et puisque le CN ne devient
pas cohérent, cette contrainte n'est pas ré-insérée. Les retraits de ¢; et ¢y rendent
ensuite le CN cohérent, et le poids de ces contraintes est fixé a 7. L’affectation as a
alors un colit f(w.as) = 7 et algorithme retourne Uensemble K = {¢1, c3, ¢4} qui
est I'TIS minimum de contraintes. On remarque que la détection cet IIS a nécessité

cing itérations au lieu de sept.

Comme le montre 'exemple précédent, V'algorithme met, dans le pire cas, |£]
itérations a détecter un IIS. Cependant. aprés avoir fait plusieurs retraits, un seul
IIS devrait rester dans le CN. 1I suffit alors de retirer chaque contrainte ou variable
de cet IIS pour le détecter. Cette technique est surtout utile lorsque I'IIS restant

contient une petite proportion des contraintes ou variables du CN.

3.3.2 Algorithme de retour-arriere

Les algorithmes présentés jusqu’a maintenant se concentrent sur la détection d'un
seul IIS et se terminent lorsque cet IIS est obtenu. L’algorithme suivant utilise une

stratégie de retour-arriere pour obtenir le plus petit IIS possible.

On se rappelle que Valgorithme d’insertion obtient, & chaque itération 7, une affec-
tation a; telle que U(a;) contient au moins une contrainte ou une variable de chaque
IS du CN (i.e U(a;) est un HS des IS du CN). Le poids d'une contrainte ou d'une
variable e € U{a;) est ensuite fixé a |£] et celui des autres & 0. Parmi les IIS restant
a cette itération, tous ceux qui ne contiennent pas e sont alors détruits. Le choix

de quelle contrainte ou variable conserver 3 chaque itération détermine donc I'IIS

ot
W

obtenu K. On peut, par ailleurs. imaginer un arbre pour lequel chaque niveau,
correspondant & une itération 7, contient des noeuds U{qa;) dont les branches sont
les contraintes ou les variables de cet ensemble. Un IIS obtenu par U'algorithme
d’'insertion correspond alors & un parcours sans retour-arriere de 'arbre ou chaque
branche visitée est une contrainte ou variable de cet IIS. L’algorithme de retour-
arriere est une variante de 'algorithme d’insertion qui explore cet arbre en falsant
un retour-arriere lorsqu'un 1IS est obtenu, ou une borne rencontrée. Ainsi, cet algo-
rithme permet de trouver le plus court parcours de 'arbre menant a un IIS. Cet 1IS
correspond donc au plus petit IIS pouvant étre obtenu par 'algorithme d’insertion.
Finalement, on peut utiliser la taille du dernier IS trouvé comme borne supérieure
a la profondeur d’exploration de 'arbre. Ainsi, on évite d’explorer les branches

menant a un parcours de longueur égale ou supérieure au meilleur trouvé.

Soit d une profondeur dans arbre de recherche, correspondant au nombre de con-
traintes ou variables de poids |£|. On note B(d) le dernier noeund visité a cette
profondeur. Ce noeud contient un ensemble de branches associées aux contraintes
ou aux variables de 'ensemble U(a) obtenu a cette itération. On note, par ailleurs,
N(d) C B(d) I'ensemble des branches de B(d) qui n’ont pas encore été explorées.
Au départ, 'algorithme de retour-arriére initialise le poids des contraintes ou varia-
bles de £ & 1, la profondeur d & 0, et K 5 £. Alors que K n’est pas nécessairement
un IIS, |K| est utilisé comme borne supérieure pour d. Ainsi, & chaque itération
i, si d < |K| une affectation a; est obtenue avec procMWIC. Si flw,a;) < |E,
d est incrémentée de 1 et I'ensemble U(a;) est copié dans N(d) et B(d). Sinon,
Palgorithme a trouvé un plus petit IIS K. Par contre, si d = |K|, le parcours
courant dans 'arbre de recherche peut, dans le meilleur cas, donner un IIS de la
meéme taille que K. L'algorithme doit donc faire un retour-arriere et choisir une
nouvelle branche & explorer. Ainsi, le poids des contraintes ou variables de B(d)

est ré-initialisé a 1, pour effacer les changements faits a la profondeur d, et d est

[
o

Figure 3.3 Hlustration de 'algorithme de retour-arriére

décrémentée de 1. Ce processus est répété, jusqu’a ce que 'algorithme obtienne
une nouvelle profondeur d contenant une branche inexplorée (i.e. N(d) # §). ou
qu’aucune telle profondeur soit trouvée (i.e d = 0). Si Palgorithme a identifié une
profondeur d pour laguelle une branche n’a pas été explorée. le poids de la con-
trainte ou variable, correspondant & cette branche, est fixé a |£], et celui des autres
variables ou contraintes de B(d) est fixé a 0. Finalement, I'algorithme se termine

lorsque toutes les branches du premier niveau ont été explorées (i.e. d = 0).

La figure 3.3 illustre la détection dun 1IS de contraintes pour le probléme de 2-
coloriage du graphe de la figure 3.1. Cette figure montre Parbre de recherche d'une
détection possible. A la gauche de Parbre se trouve la profondeur des noeuds de
Parbre. De plus. a c6té de chaque noeud est inscrit les itérations pour lesquelles ce
noeud a été modifié. Finalement, & c6té de chaque branche se trouve la contrainte
gui a été conservée lors de I'exploration de cette branche. Ainsi, a la premieére
itération, l'affectation a; obtenue par proc MWIC donne Ulay) = {c¢4}, et le poids
de ¢4 est fixé 3 C = 7. L’ensemble Ul(ay) doit alors contenir une contrainte de
{e1, o} et une autre de {3, ¢s. ¢, ¢7}, par exemple U(as) == {1, ¢c3}. Si la branche
correspondant a ¢, est d’abord explorée, le poids de ¢y est fixé & 7 et celui de
¢3 & 0. A litération 3, Ulag) = {cy} et le poids de ¢y est fixé & 7. Ensuite,

procMWIC retourne une affectation a4 de poids f(w.as) = |€] et 'IIS minimum

Algorithme 9 Algorithme de retour-arriere

Entrée: Un CN incohérent P;
Sortie : Un 1IS de contraintes ou de variables K.

Initialisation

pour ¢ £ £ faire
w(e) — 1;

fin pour

d— 0

K« &

Construction
répéter
si d < |K| alors
a «— procMWIC(P, w);
si f(w,a) < |£] alors
d—d+1;
Bld) — N{d) — {e € U(a) | w(e) = 1}
sinon
K — {e|wle) = Ik
fin si
sinon
répéter
pour tout e € B(d) faire
w(e) « 1;
fin pour
d—d-1,
juquw’a ce que N(d) #foud=0
fin si
si 0 < d < |K| alors
Choisir un élément e € N(d);
N(d) — N(d)\ {e};
w(e) — (€]
pour tout ¢ € B(d), ¢ # e faire
w(e') — 0;
fin pour
fin si
jugu’a ce que d =0

o
-3

K = {cy. 9. ¢4} est détecté. La profondeur maximale de I'arbre & laquelle un IIS
peut étre trouvé devient alors |K| = 3. Puisque d > |K|, I'algorithme retourne a
la derniére branche inexplorée, se trouvant & d = 2, et ré-initialise le poids de ¢
a 1. L’algorithme explore alors la branche correspondant 2 ¢, en fixant son poids
3 7 et celul de ¢; & 0. L'affectation as donne ensuite Uensemible Ulas) = {cs5}.
Par ailleurs. puisqu’aucun IIS n’est trouvé a Pitération 6, 'algorithme retourne
en arriere & la recherche d'une branche inexplorée. Cependant, comme toutes les
branches ont été explorées, d tombe & 0 et I'algorithme retourne I'IIS minimum

K= {Ch Ca, 64}-

Propriété 3.3.2 Soit P un CN incohérent et T Uensemble des I1S de P pouvant
étre obtenus avec Ualgorithme d’insertion. L’algorithme de retour-arriéere produit,

en un nombre fini d’itérations, un IIS K € T de cardinalité minimum.

Propriété 3.3.3 Soit P un CN wncohérent et I l'ensemble des IIS de P pouvant
étre obtenus avec l'algorithme d’insertion. Le nombre mazimum d’itérations tma.
requis par Ualgorithme de retour-arriére pour obtenir un IIS minimum K € T est

borné par:

Izl
tmaz S Z !Ki[+1
=1

Preuve Onu constate que, pour chaque noeud N(d) & une profondeur d, algorithme
ne conserve un IS K; € 7 que si N{d) contient une seule contrainte ou variable
e € K;. Ainsi, K; est conservé si la branche de e est explorée, sinon K; est détruit.
Il existe donc un seul parcours menant a chaque K, et le nombre total de par-
cours de l'arbre est |Z]. Par ailleurs, la longueur du parcours menant & K; est au
plus | K| + 1, puisque qu'une contrainte ou variable de K; est conservée a chaque

itération, et qu'il faut une itération supplémentaire pour détecter I'TIS. Finalement,

le nombre maximum d'itérations pour obtenir n’importe quel IIS K € 7 est donc

inférieur ou égal a la somme de la longueur des |Z| parcours de l'arbre.

On remarque que, comme Ualgorithme d’insertion, 'algorithme de retour-arriere ne
permet pas d’obtenir tous les IIS de P. Considérons a nouveau la détection d'un
I1IS de contraintes pour le probleme de 2-coloriage de la figure 3.2. La premiere
affectation viole nécessairement les trois contraintes du centre?. formant 'unique
1S minimum de P. Le premier noeud de I'arbre contient donc trois branches,
correspondant a ces contraintes. Ainsi, peu importe la branche explorée a ce niveanu,
I'TIS minimum sera détruit. Par ailleurs. on constate que Palgorithme de retour-
arriere obtient un IIS minimum en un nombre exponentiel d’itérations, seulement si
P contient un nombre exponentiel d’1IS. Or, il arrive souvent qu'un CN incohérent
de grande taille ne contienne qu’'un nombre réduit d’IIS. Dans ce cas, 'algorithme
de retour-arriére trouve un IIS minimum tres rapidement. D’autre part, plus un
noeud B(d) contient de branches, plus il v aura d’'IIS détruits lors de exploration
de ce noeud. Ainsi, plus d augmente, moins les noeuds B(d) auront de branches. Ce
principe permet de limiter la taille d'un arbre dont les premiers noeuds contiennent

un grand nombre de branches.

3.3.3 Algorithme de pré-filtrage

Lors de la détection d’IIS dans un CN incohérent de grande taille, il est souvent
utile de rapidement éliminer le plus possible de contraintes et de variables, afin d’en
laisser moins pour 'algorithme de détection. L’algorithme de pré-filtrage, présenté
dans cette section, est une variante de l'algorithme d'insertion, utilisée comine

pré-traitement sur le CN avant de lui appliquer un des algorithmes de détection

4En gras dans la figure.

o
W

précédents.

A chaque itération i. procMWIC retourne une affectation a;. A la différence de
Valgorithme d'insertion, le poids de toutes les contraintes ou variables de U{aq;) est
ensuite fixé a |£]. On peut alors obtenir rapidement un ensemble incohérent K,
sur lequel est ensuite appliqué Dalgorithme de détection. Par ailleurs, comme le
poids d’au moins une contrainte ou variable de chaque IIS est fixé |£|, a chaque
itération. un petit IIS a plus de chance d'étre isolé, par cet algorithme, qu'un plus

gros. Ainsi, 'algorithme de pré-filirage agit également comme une heuristique pour

isoler de plus petits IIS.

Algorithme 10 Algorithme de pré-filtrage

Entrée: Un CN incohérent P;
Sortie : Un ensemble incohérent de contraintes ou de variables K.

Initialisation

pour tout e € £ faire
w(e) « 1;

fin pour

Construction
répéter
a «— procMWIC(P, w);
si f(w,a) < [£] alors
pour tout e € U(a) faire
w(e) — |E)
fin pour
fin si
juguw’a ce que f(w,a) > |£]

Extraction
K —{e|w(e) =&}

de contraintes pour le probleme de 2-coloriage du graphe de la figure 3.1. Apres
avoir initialisé le poids des contraintes de £ a 1, une affectation a; est obtenue

avec procMWIC, donnant U(a;) = {cs}. Le poids de ¢4 est alors fixé & C =

60

7. et Uensemble U{ay) doit contenir une contrainte de {ci.co} et une autre de
{¢3, ¢5, €. 07}, par exemple Ulaqg) = {c1.¢a}t. Le poids de ¢y et ¢ est ensuite fixé 2
7. et U(az) doit alors contenir ¢y et une autre contrainte de {¢s, ¢g, ¢7}, par exemple
c5. Le poids de ces deux contraintes est alors fixé & 7. et comume 'affectation
suivante a4 a un poids f{w, as) = |€], Valgorithme retourne K = {¢y, ¢9,¢5. ¢4, 05}

Alors que cet ensemble incohérent n'est pas un IS, on remarque qu’il ne contient

que UTIS minimum {¢y, co. ¢4}

Soit K un IIS minimum de P, il est facile de constater que Palgorithme de pré-
filtrage se termine, dans le pire cas, aprés |K| + 1 itérations. Par ailleurs, cet
algorithme iscle cet 1IS minimum si la détection de tout autre IIS de P nécessite
plus de | K| itérations. Ainsi, dans 'exemple précédent, I'IIS minimum a été isolé
en quatre itérations, alors qu’il aurait fallu cing itérations pour isoler 'autre 1IS.
11 existe, cependant, des cas ot I'algorithme de pré-filtrage ne parvient pas a isoler
I'IIS minimum. La détection d'un IIS de contraintes pour le probleme de 2-coloriage
du graphe de la figure 3.4 est un tel cas. La premiere affectation viole les cing
contraintes au centre du graphe®, formant un IIS qui n’est pas minimum. Le poids
de ces contraintes est alors fixé a C = 25, et cet ensemble incohérent de contraintes
est ensuite détecté a l'itération suivante. L’algorithme retourne ainsi un ensemble

K qui ne contenant pas un IIS minimum.

Pour tous les algorithmes de détection présentés dans ce chapitre, il est plus facile
d’obtenir un IIS de P, si P ne contient que cet IIS. Dans certains cas, 'algorithme
de pré-filtrage retourne cependant un ensemble K contenant plusieurs 1IS. Con-
sidérons, par exemple, la détection d’un IIS de variables dans le probleme de 2-
coloriage de la figure 3.5. A chaque itération i, U (a;) doit contenir une variable

de chacun des trois IIS minimum du probleme, correspondant aux triangles de

SEn gras dans la figure.

Figure 3.4 Une instance ou algorithme de pré-filtrage n’'isole pas d'IIS minimum
de contraintes pour & = 2

Xz Xs

X1 X3 X4 Xg

X3

K Xe

Figure 3.5 Une instance ol l'algorithme de pré-filtrage isole plus d'un IIS pour
k=2

la figure. Ainsi, & litération 1, on peut avoir U(aq) = {x1, 24,27}, et le poids
de ces trois variables est fixé & X = 9. Ensuite, a l'itération 2, as peut donner
Ulag) = {x2. 25,25}, et le poids de ces variables devient 9. Finalement, a Uitération
3, U(as) contient nécessairement les trois dernieres variables: Ulay) = {x3, 2, To}.
Cependant. lorsque le poids de ces variables est fixé 4 9, les trois IS minimum se

forment dans K.

On remarque, de 'exemple précédent, que les IIS contenus dans K sont formés
lorsque le poids des contraintes ou variables du dernier ensemble U(g;) est fixé a
|€l. Lialgorithme 11 modifie U'algorithme de pré-filtrage, afin d’éviter de former
plusieurs IIS lors de cette derniere modification des poids. Ainsi, a une itération 7,

ce nouvel algorithme conserve dans T les contraintes ou variables de U(a;). Ensuite,

si proc MWIC retourne une affectation a;q de cott f(w,a;11) > |£], le poids des

contraintes ou variables de T est ré-initialisé a 1. Finalement, les contraintes ou

62

variables de T recoivent, une a une, un poids de |£], jusqu’a ce qu'une nouvelle

affectation de cout supérieur ou égal & |£] soit obtenue.

Algorithme 11 Algorithme modifié de pré-filtrage
Entrée: Un CN incohérent P;
Sortie : Un ensemble incohérent de contraintes ou de variables K.

Initialisation

pour tout e € £ faire
w(e) « 1;

fin pour

Construction
répéter
a «— procMWIC(P, w);
si f(w,a) < |£] alors
T —Ula);
pour tout ¢ € T faire
w(e) — |€};
fin pour
fin si
juqu’a ce que f(w,a) > |£&]

Isolation
pour tout ¢ € T faire
w(e) «— 1;
fin pour
répéter
Choisir un élément e € T';
T —T\{e};
wle) — €}
a «— procMWIC(P, w);
juqu’a ce que f(w,a) > |€]

Extraction
K o {e | w(e) = €]k

En revenant a l'exemple précédent, l'algorithme modifié de pré-filtrage permet
d’isoler un seul IIS minimum, au lieu des trois. Ainsi, a Uitération 3, le contenu
de Ulaz) = {z3, 26,29} est conservé dans T, et lorsque procMWIC obtient une

affectation a4 de colit f{w, ays) > |€|, le poids des variables de T est ré-initialisé & 1.

63

Figure 3.6 Une instance ou l'algorithme de pré-filtrage modifé isole plus d'un IIS
de variables pour & = 2

Ensuite, le poids d'une variable de T est fixé a 9, par exemple x3. Une affectation
as de cotut f(w,as) > |€]| est alors obtenue, et 'algorithme retourne 'ensemble
K = {11,223, 23,74, 25, 27,25}, qui contient un seul IIS minimum. Il existe, par
contre, des cas pour lesquels algorithme modifié de pré-filtrage ne permet pas
d’isoler un seul IIS. Soit, par exemple, la détection d'un IIS de variables dans le
probléme de 2-coloriage du graphe de la figure 3.6. L’affectation a; donne, tout
d’abord, un ensemble U(ay) valant soit {xi,xz3} ou {xs,24}. Si par exemple,
Uay) = {xe. z4}, on aura U(as) = {x1.23}. Le poids de 77 et x3 est ensuite fixé
a |X| = 12, puis ré-initialisé a 1, lorsque une affectation az de cout f(w,az) > |€|
est obtenue. Le poids d'une de ces variables, par exemple 7. est ensuite a nouveau
fixé & 12. Finalement, lorsque le poids de x3 est également fixé & 12, deux IIS

minimum sont formés.

On remarque, de plus, que la modification faite a 'algorithme de pré-filtrage aug-
mente le nombre d'itérations, dans le pire cas, de |€] + 1. Cependant, comme les
ensembles U (a;) obtenus & chaque itération i contiennent généralement une faible
proportion des contraintes ou des variables de £, cette modification entraine, la plu-
part du temps, un petit nombre d'itérations supplémentaires. Finalement, sachant
que les TIS sont formés lorsqu'un dernier poids est fixé & |£], on peut utiliser une

heuristique, comme celle présentée a la section suivante, pour d’abord modifier le

64

poids de la contrainte ou variable située & proximité de celles ayant un poids de

|€]. On peut ainsi obtenir de plus petits 1I3.

3.3.4 Heuristigue de poids du voisinage

L’'importance de trouver des petits IIS a déja été établie par plusieurs travaux
antérieurs (voir chapitre 2). Par exemple (Greenberg, 1992) a montré que les IIS
contenant le moins de contraintes de rangée étaient les plus utiles au diagnostic de
programmes linéaires irréalisables. Ainsi, dans (Chinneck, 1997 (1)), on a utilisé
une heuristique favorisant le retrait des contraintes de rangées d’abord, ou 'ajout de
ces contraintes en dernier. Par ailleurs, dans (Herrmann et Hertz, 2002), Herrmann
et Hertz ont montré que la détection de sous-graphes critiques dans un graphe G,
contenant le moins possible de sommets, permettait d’aider une méthode exacte a
déterminer le nombre chromatique de G. Ces derniers ont également proposé une
heuristique qui retire de G, a chaque itération, le sommet ayant le plus petit degré
(i.e. nombre de sommets voising) dans G, afin d’obtenir un sous-graphe critique
le plus dense possible. Il a été vu, précédemment, que Valgorithme de hifting
set et I'algorithme de retour-arriére permettait d’obtenir des 1IS minimum®. Par
ailleurs, il a été montré que 'algorithme de pré-filtrage agit comme une heuristique
pour iscler de petits IIS. Cette section propose une autre heuristique qui utilise

Vinformation contenue dans les poids pour obtenir des 1IS les plus petits possible.

La plupart des algorithmes présentés dans ce chapitre doivent, durant la détection
d’un IIS, choisir une contrainte ou une variable d'un ensemble, afin de modifier son
poids. II a été montré, par ailleurs, que ce choix déterminait quel IIS est obtenu

par Valgorithme. L’heuristique de poids de voisinage utilise le poids de voisinage

61 algorithme de retour-arriére retourne un IIS minimum parmi ceux pouvant étre obtenus
par 1'algorithme d’insertion.

des contraintes et des variables pour faire un choix permettant d’obtenir un plus

petit 1IS:

Définition Soit un CN (X, D.C) et w une fonction qui associe un poids wic) &
chaque contrainte ¢ € C. Le poids de voisinage d'une contrainte ¢ € C est donné

par:

Définition Soit un CN (X, D,C) et w une fonction qui associe un poids w(x) a

chaque variable z € X. Le poids de voisinage d'une variable z € X" est donné par:

Un voisin d'une contrainte ¢ € C est donc défini comme une autre contrainte ¢ € C
agissant sur une méme variable que ¢ (i.e X(c) N X (') # 0). Ainsi, le poids du
voisinage de ¢ correspond a la somme. pour toutes les contraintes ¢’ voisines de ¢,
des poids w(¢'). De méme, un voisin d'une variable x € X est une autre variable
7' € X impliquée dans la méme contrainte que z (i.e. C(z) NC(z") # §). Le poids
du voisinage de x est alors la somme, pour les variables 2’ voisines de x, des poids
w(x'). Par ailleurs, dans le cas ol les poids des contraintes ou des variables valent
1 ou 0, le poids de voisinage permet d'estimer la densité des contraintes d'une
région de P. Le poids de voisinage d'une contrainte ou variable correspond alors
& son nombre de voisins. Ainsi, une contrainte ou variable, située dans une région
plus dense de P, aura généralement plus de voisins qu'une autre située dans une

région moins dense. De plus, lorsque certains poids ont été fixés a |£], le poids de

66

voisinage d une contrainte ou d'une variable est un indice de sa proximité d'un IIS
en construction. En effet., comme I'IIS en construction est formé des contraintes
ou variables ayant un poids de |£], la valeur du poids de voisinage est grandement

augmentée par la présence d'une telle contrainte ou variable dans le voisinage.

Le poids de voisinage peut alors étre utilisé comme suit. Lorsqu’on doit retiver
une contrainte ou une variable de P, on choisit normalement celle ayant le plus
petit poids de voisinage, afin de ne pas détruire les IIS les plus denses de P. Cette
stratégie se base sur le fait que, pour Valgorithme de retrait, I'lIS obtenu est celui
ayant une premiere contrainte ou variable retirée en dernier. L’heuristique de
poids de voisinage effectue donc des retraits dans les régions les moins denses de P
d’abord. Par ailleurs, lorsqu’on doit conserver une contrainte ou une variable (i.e.
fixer son poids a |€|), on doit faire l'inverse. L’heuristique de poids de voisinage
conserve d’abord la contrainte ou variable ayant le plus grand poids de voisinage,

afin de garder I'IIS en construction le plus dense possible.

Nlustrons 'heuristique de poids de voisinage & l'aide de deux exemples. Con-
sidérons, tout d’abord, le CN associé au probleme de 2-coloriage du graphe a la
gauche de la figure 3.7. Ce CN montre le poids de voisinage des contraintes, apres
que leur poids ait ét¢ initialisé a 1. Ainsi, la contrainte au centre du CN a un poids
de voisinage de 4 parce qu’elle partage une variable avec quatre autres contraintes
de poids 1. Supposons que on veuille obtenir un IS de contraintes a l'aide de
Palgorithme de retrait, 'heuristique de poids de voisinage choisit une contrainte c,
ayant la plus petite valeur pour We(c). La premiere contrainte retirée doit donc
étre une des deux contraintes avec Wi (¢) = 2. On remarque que ce retrait détruit
un des deux IIS du CN, conservant I'IIS minimum. Par ailleurs, la partie droite de
la figure 3.7 montre les poids de voisinage des variables du méme CN, apres deux
itérations de l'algorithme d’insertion. Les sommets noircis de la figure correspon-

dent aux variables dout le poids a été fixé & |X| = 6, et les autres aux variables

67

Figure 3.7 Exemples du poids de voisinage de contraintes et de variables

de poids 1. L’itération 3 de I'algorithme d’insertion doit alors donner un ensemble
Ul(as) contenant une variable de chacun des deux IIS du CN, par exemple la va-
riable de poids de voisinage 12 et une autre de poids de voisinage 7. L heuristique

de poids de voisinage choisit alors de conserver la variable z ayant la plus grande

valeur pour Wy (z). Le poids de la variable avec Wx(z) = 12 est donc fixé a
|X] = 6 et celui de l'autre variable & 0, et I'algorithme d’insertion obtient alors

TIIS minimum & Uitération suivante.

3.3.5 Borne inférieure sur la taille d’IIS minimum

Il a été montré a la section 7 qu'une borne inférieure sur la taille d'IIS minimum
d'un CN incohérent pouvait étre obtenue en arrvétant 'algorithme de hitting set a
n’importe quelle itération et utiliser la taille du dernier HS retourné par procMHS
comme borne. Cependant, cette borne est seulement valide dans le cas ot procMHS
obtient des HS de cardinalité minimum. Cette section présente un autre algorithme
permettant d’obtenir une borne inférieure sur la taille d’IIS minimum dun CN

incohérent.

L’algorithme 12 prend en parametre un CN incohérent P ainsi qu'un entier iy, > 0

correspondant au nombre maximum d’itérations allouées, et retourne une borne

68

Algorithme 12 Algorithme de borne inférieure sur la taille d'TIS minimum

Entrée: Un CN incohérent P et un entier iy, > 0
Sortie : Une borne inférieure b.

Initinlisation

pour tout e € £ faire
pu(e) < O;

fin pour

i

Calcul
tant que i < i faire
pour tout e € £ faire
w(e) « £
fin pour
a « procMWIC(P, w);
pour tout ¢ € U(a) faire
p(e) < ple) +1;
fin pour
b= max (b, g(p.1));
fin tant que

inférieure b sur la taille d’un IIS minimum de P. De plus. cet algorithme utilise
une fonction p : £ — NT qui associe & chaque contrainte ou variable e € £ le
nombre d'itérations p(e) pour lesquelles e a fait partie de I'ensemble U(a). A
chaque itération i. procMWIC retourne une affectation ¢; donnant un ensemble
Ula;) de contraintes ou de variables e pour lesquelles u(e) est incrémentée. Une
borne inférieure temporaire b’ est ensuite obtenue d’'une fonction g définie comme

suit:

Définition Soit £ un ensemble d’éléments. p une fonction qui associe un entier
ple) & chague élément e € £, et soit ¢; > ... > e un ordre de ces éléments tel
que p(er) > ... > ples). Etont donné un entier ¢, g(u. 1) est le plus petit entier {

tel que:

1
> uleg) =i
j=1

69

Wlep=! Wfe=2 wir)=3 ey

Figure 3.8 HMustration de I'algorithme 12

Enfin, comme la borne inférieure ' retournée par g peut décroitre a n'importe
quelle itération, la meilleure borne inférieure b est alors la plus grande valeur entre

betd.

Afin d’illustrer I'algorithme 12, considérons a nouveau la détection d’'un IIS de
contraintes dans le probléme de 2-coloriage du graphe de la figure 3.2 qui contient
un IIS minimum que 'algorithme d’insertion ne peut obtenir. La figure 3.8 montre
les détails des sept premiéres itérations de algorithme. Comme avant, la premiére
affectation a; donne un ensemble U(a,) contenant les trois contraintes, formant un
triangle au centre de la figure. Pour ces contraintes e, p(e) est incrémenté de 1,
tel que wle) = |£]. Comme seulement une de ces contraintes est nécessaire pour
totaliser ¢ = 1 dans ¢, la borne inférieure b est fixée a 1. Etant donné qu'une
contrainte de chaque IIS est violée & chaque itération, I'affectation suivante devrait
donner un ensemble U(ag) ayant une de ces trois mémes contraintes, aiusi que
quatre autres contraintes des IIS restants, comme le montre le second graphe de
la figure 3.8. Ainsi, pour la contrainte de gauche du triangle on a ule) = 2 et
puisque cette valeur suffit a totaliser 2 dans g, b reste 1. La méme chose se produit

a Uitération 3, & Pexception que la contrainte de droite du triangle est viclée, et

-
Lo

Figure 3.9 Une instance ol l'algorithme 12 produit une borne inférieure sous-
optimale

que deux contraintes sont nécessaires pour totaliser 3 dans g, tel que b = 2. A
Uitération 4, les trois contraintes du triangle ont p(e) = 2, et comme seulement
deux de ces contraintes sont requises pour totaliser 4, b reste 2. Les itérations 5
et 6 causent ensuite deux contraintes du triangle a avoir p(e) = 3, de telle sorte
que b vaut toujours 2. Cependant, a l'itération 7, les trois contraintes du triangle
ont p{e) = 3, et trois contraintes sont nécessaires pour totaliser 7 dans g (i.e.
deux contraintes avec u(e) = 3 et une autre avec p(e) > 1). La borne inférieure
b devient alors 3. Puisque D est alors égale a la taille de 'unique IIS minimum,
les itérations suivantes sont inutiles. Ainsi, in,.. = 7 est une valeur optimale du

nombre d’itérations pour cet exemple.

Il existe, cependant, des cas ol cet algorithme est incapable d’'obtenir une borne
inférieure b de la taille d’'un IIS minimum. Considérons, par exemple, la détection
d’IIS de variables dans le probléme de 2-coloriage du graphe de la figure 3.9, dont
le nombre chromatique est 4. On peut vérifier que 'algorithme retourne une borne

= 2, alors que n'importe quel triangle de ce graphe correspond a un IIS de trois

variables.

-3

j—

CHAPITRE 4

ALGORITHMES HEURISTIQUES DE DETECTION D’IIS

Les algorithmes présentés au chapitre précédent ne sont pas trés utiles en pra-
tique & cause de leur complexité. Ainsi, tous ces algorithmes utilisent la procédure
procMWIC pour résoudre de maniére exacte le MWCSP, dans le cas de la détection
d’IIS de contraintes, ou le MPWCSP, dans le cas de la détection d'IiS de variables.
Il a cependant été démontré que le MWCSP et MPWOCSP sont deux problemes
NP-difficiles. Par ailleurs, I'algorithme de hifting set utilise, en plus, la procédure
procMHS qui résoud de manieére exacte le MHS, un autre probleme NP-difficile.
Les algorithmes de détection sont donc plus complexes que ces procédures appelées
a chaque itération. La situation est encore pire dans le cas des algorithmes de hit-
ting set et de retour-arriére qui prennent un nombre exponentiel d’itérations pour
trouver un IIS. La section suivante porte sur 'utilisation de méta-heuristiques pour
résoudre les problemes NP-difficiles sous-jacents aux algorithmes de détection, afin

de réduire leur complexité.

4.1 Méta-heuristiques pour les probléemes de satisfaction

Le MWCSP et le MPWCSP, présentés au chapitre précédent, sont deux exemples

de problémes d’optimisation combinatoire (Papadimitriou et Steiglitz, 1982):

Définition Une instance d’un probléme d’optimisation combinatoire (OC) est une
paire (S, ¢) o1 § est une ensemble de configurations réalisables de cardinalité finie,

appelé 'espace de recherche, et f : & — R une fonction de colit qui associe une

valeur réelle a chaque configuration s € S. Le but est de trouver une configuration
s* € & telle que:

fs) < fls) VsES

Une telle configuration est appelé une solution globalemeni optimale de Uinstance.

Ainsi, pour le MWCSP, une configuration s € 8§ correspond a une affectation
complete a, et f & la somme fc(w,a) des poids des contraintes violées par a. Par
ailleurs, dans le cas du MPWCSP, une configuration s correspond a une affectation
légale a, et f & la somme fy{w,a) des poids des variables n'étant pas instanciées
par a. Comme il a été montré, la complexité de calculer une solution globalement
optimale n’est pas acceptable pour plusieurs probléemes d’optimisation combina-
toire, comme le MWCSP et le MPWCSP. 1l faut alors opter pour une méthode
de recherche heuristique qui n’offre aucune garantie sur optimalité de la solution
obtenue. Parmi les approches heuristiques, les méthodes de recherche locale (ou
recherche de voisinage) sont particulierement efficaces pour résoudre une grande

variété d'OCs.

4.1.1 La recherche locale

Le principe des méthodes de recherche locale est d’optimiser localement une con-

figuration en considérant uniquement le voisinage de cette configuration.

Définition Etant donné une instance (S, f) d'un OC, un voisinage est une fonction
N : 8§ — 2% qui associe & chaque configuration s € S un sous-ensemble de configu-
rations N{s} C & pres de s selon un critere donné. Le voisinage d’une configuration

s peut également étre considéré comme l'ensemble de configurations pouvant étre

73

obtenues en appliquant a s un ensemble M de mouvements élémentaires:

N(s)={s €S| =u(s). peM}

Définition Etant donné une instance (8, f) d'un OC et un voisinage N, une

configuration s € § est un optimum local, selon N, si:

f(s) < f(s') V& €N(s)

L’algorithme 13 illustre, de maniére simplifiée, le principe de la recherche locale. En
partant d'une configuration initiale quelconque, si une configuration s’ du voisinage
de la configuration courante s posséde un cofit inférieur a celui de s (ie. f(¢) <
f(s)), s' devient la configuration courante. Sinon, la configuration courante est un

minimum local.

Algorithme 13 Algorithme simplifié de recherche locale

Entrée: Un OC (8. f) et un voisinage N;
Sortie : Un minimum local s.

s « une configuration quelconque dans §;
tant que 3 ' € N(s) tel que f{s') < f(s) faire
!
g« s

fin tant que

Les méthodes de réparation constituent une approche de recherche locale pos-
sible pour résoudre le CSP. Ces méthodes réparent une affectation initialement
incohérente en diminuant itérativement le nombre de conflits. L’algorithme de
Moindre-conflit (MCH) est une méthode de réparation qui résoud le MCSP. Son
fonctionnement est simple. Une affectation initiale a est d’abord choisie, par exem-
ple de maniere aléatoire. L’algorithme choisit ensuite une variable impliquée dans

une contrainte violée par a, et lui assigne une nouvelle valeur de son domaine, telle

74

que affectation résultante o’ viole le moins possible de contraintes'. Si o’ viole
un nombre inférieur ou égal de contraintes & a. a' devient affectation courante
de la prochaine itération. Sinon, 'algorithme conserve a, et modifie une nouvelle
variable a I'itération suivante. L’algorithine se termine lorsqu'une affectation légale

est trouvée, ou aprés avoir fait un certain nombre d’itérations.

4.1.1.1 Algorithme pour le MWCSP

Dans le cas ot les contraintes du CN ont une pondération, il ne suffit plus de
minimiser le nombre de contraintes violées. La fonction de cott & minimiser est
alors la somme fe(w, a) des poids des contraintes violées par a. L’algorithme 14 est
une variante du MCH pour les CN pondérés. Cet algorithme prend en parameétres
un CN incohérent P, une fonction de pondération des contraintes de P, et un
entier in.y. correspondant au nombre maximum de mouvements autorisés pour la
recherche locale, et retourne une affectation a*. Cet algorithine initialise d’abord
Uitération courante ¢ & 1. De plus, une affectation compléte initiale o est générée
en agsignant a chaque variable une valeur de son domaine choisie avec procédure
random(S), qui retourne un élément s € S choisi de manieére équiprobable. Ensuite,
pour chaque variable x impliquée dans une contrainte violée par a et chaque nou-
velle valeur v du domaine de cette variable, une affectation voisine a’ est obtenue
en assignant v & x. Si le colt de o’ est inférieur & celui de tous les voisins évalués,
Pensemble des meilleures assignations B est modifié pour ne contenir que (x,v).
Si, par ailleurs, @’ est de cotit égal, (x,v) est ajouté a B. Apres avoir ainsi évalué
tous les voisins de a, Uaffectation de la prochaine itération est obtenue d'une assi-
gnation {z',v') choisie aléatoirement de I'ensemble B, et l'itération courante i est

incrémentée de 1. Finalement, 'algorithme se termine lorsque ¢ dépasse ?pax-

'En cas d’égalité, a’ est choisie au hasard parmi les meilleures trouvées.

-]

(o]

Algorithme 14 Algorithme de rechierche locale pour le MWCSP

Entrée: Un CN incohérent P = (X, D,C);

Une fonction de pondération w;
Un entier jyax > O
Sortie : Une affectation complete a*.

Initialisation

pour tout x € X faire
a(z) « random (D,);

fin pour

a* — a;

i 13

Recherche locale
tant que i < imax faire

T — 0
pour tout ¢ € Ug(a) faire
T —TUX(c):
fin pour
B« {;
{0
pour tout x € T faire
a «— a;
pour tout v € Dy, v # a(x) faire
a'(x) — v,

si fe(w,a') <lou B ={ alors
B {(z,0)};
[— fC(w; a‘l>;
sinon si fe(w,d’) = [alors
B~ BU{(z,v)};
fin si
fin pour
fin pour
(z'.v") + random(B);
a(z') — v
si fe(w,a) < fe(w,a*) alors
o’ — a;
fin si
i— 141
fin tant que

On remarque quelques différences entre cet algorithme et le MCH. Tout d’abord.
cet algorithme choisit 1a meilleure affectation voisine. méme si celle-ci vicle plus
de contraintes. Ensuite, alors que le MCH évalue I'affectation d'une valeur 4 une
seule variable des contraintes viclées, cet algorithme considere, a chaque itération,
chacune des variables impliquées dans une contrainte violée. Ainsi, le voisinage
considéré par cet algorithme est plus grand que celui du MCH. 11 faut donc plus
de temps pour calculer e meilleur mouvement de chaque itération. Cependant, ce
voisinage permet de trouver de meilleures affectations voisines, et ainsi, de con-

verger plus rapidement vers un minimum local.

4.1.1.2 Algorithme pour le MPWCSP

Contrairement au MWCSP, une solution au MPWCSP est une affectation légale
qui peut étre partielle. Ainsi, en plus d’avoir une valeur de leur domaine, les varia-
bles d'une affectation peuvent également n’avoir aucune valeur. Le voisinage d’une
affectation légale contient alors les affectations légales pour lesquelles une varia-
ble a une valeur différente, ou ayant une variable instanciée de plus ou de moins.
On remarque, cependant, que modifier la valeur d’une variable, ou instancier une
variable d'une affectation ne produit pas nécessairement une affectation légale.
Considérons, par exemple, le probléme de 2-coloriage du graphe de la figure 3.1.
Supposons que les variables ont toutes un poids de 1, et que affectation initiale
ne posséde aucune variable instanciée: a; = (—, —,—, —, —, —)2. Cette affecta-
tion, nécessairement cohérente, a un cofit de 6 qui correspond au nombre variables
n'étant pas instanciées. L'ensemble des affectations voisines contient alors les af-
fectations légales qui ont une seule variable instanciée. Comme les variables ont

toutes le méme poids, on peut choisir n'importe quelle assignation, par exemple

»

2Le symbole “-7 signifie que la variable correspondante n’est pas instanciée.

77

(x1,1), qui donne Vaffectation ay = (1, —, —, —, —, —) de cofit b. Suivant le méme
principe, la recherche locale peut, par exemple, visiter les affectations suivantes:
a3 = (1,—2.——.—), &g = {(L,—,2.— 1, —) et ax = (1,—,2,—.1,2). II west
cependant plus possible d'instancier une autre variable a a5, puisque cette affec-
tation deviendrait alors incohérente. Par ailleurs. as. qui a un coQit de 2, n'est
pas optimale. Ainsi, Vaffectation (1,2,1,2,1.—) a un colt inférieur de 1. On peut
toutefois choisir une assignation qui n’améliore pas la fonction de cofit, par exemple
(z3,1) qui donne ag = (1, —,1. —, 1, 2), et ensuite obtenir une affectation optimale

en instanciant x4 avec la valeur 2.

Le voisinage qui vient d’étre décrit consideére Uassignation d’une nouvelle valeur
& une seule variable qui peut étre instanciée ou non. Ce voisinage ne comporte
donc que des affectations de cotit inférieur ou égal a celui de 'affectation courante.
Cependant, le fait d’autoriser 'assignation d'une valeur & une variable déja in-
stanciée pose deux problémes importants. D’une part, ce voisinage est beaucoup
plus grand que celui tenant compte uniquement de 'assignation d’une valeur aux
variables non-instanciées, et conséquemment, évaluer le meilleur voisin & chaque
itération prend alors beaucoup plus temps. Ensuite, ce voisinage contient un grand
nombre d’affectations de méme cott que Paffectation courante, puisqu’aucune va-
riable supplémentaire n’est instanciée. En conséquence, la recherche locale mettra
plus de temps & trouver une région intéressante de l'espace de recherche défini
par ce voisinage. et encore pire, aura plus de chances de cycler. En revanche, le
voisinage autorisant uniguement 'instanciation d'une variable définit un espace de
recherche ayant de plus importantes variations de la fonction de cofit, permettant
de mieux guider la recherche locale vers une région intéressante. On remarque,
finalement, que ce voisinage est similaire & celui utilisé daus le cas du MWCSP, qui
ne considere que affectation d'une nouvelle valeur & une variable d’une contrainte

en conflit.

-3
(0.9

Revenant & exemple précédent, supposons que les affectations visitées aux quatre

premiéres itérations sont: a7 = (—, —. —. —, —, =), a2 = (1, —, —, —, —, =), a3 =

s

N

—),ag ={1.—,2,— 1, —) et a5 = {1,—,2,—,1,2). Ces affectations

5

(1.—.2,—,—,
ont été produites en instanciant, & chaque itération, une variable supplémentaire.
On remarque. par ailleurs, qu'instancier une variable supplémentaire de as rend
Paffectation suivante incohérente. On doit, dans ce cas. rendre Iaffectation a nou-
veau cohérente en désinstanciant une ou plusieurs autres variables. Ainsi, une

nouvelle affectation peut étre générée en deux étapes:

1. Instanciation: on assigne une valeur a une variable non-instanciée d’une

affectation légale;

2. Réparation: si'affectation devient incohérente, on la rend a nouveau légale
en désinstanciant une ou plusieurs autres variables impliquées dans les con-

traintes en conflit.

Le colit de ce mouvement est égal a la différence entre la somme des poids des va-
riables désinstanciées, si il y en a, et le poids de la variable nouvellement instanciée.
Par ailleurs, on remarque que, pour réparer I'affectation, il faut désinstancier au
moins une variable (différente de la variable nouvellement instanciée) de chaque
contrainte violée. Dans le cas du k-coloriage de graphe, une contrainte du CN cor-
respondant est satisfaite si aucune ou une seule de ses variables est instanciée. Par
contre, si on assigne, a une variable non-instanciée, la valeur de 'autre variable, il
faut désinstancier cette seconde variable. Dans les termes du coloriage de graphe,
si on colore un sommet avec une certaine couleur, il faut décolorer tous les sommets
adjacents (i.e. reliés par une aréte) qui ont cette méme couleur. Dans Paffectation
ar = (1,—,2,—.1,2) de l'exemple précédent, les variables 25 et x, ne sont pas
instanciées. Les assignations du voisinage de a4 sont donc: (9, 1), (22,2), (24,1)

et (x4.2). Ces assignations n’ont pas toutes le méme cofit. Ainsi, (22,1) a un

79

S c \ C: (X)’
0

Figure 4.1 Hyper-graphe d'une instance de 3-SAT

cott nul puisqu’elle rend I'affectation incohérente et force x; a étre désinstanciée.
Le nombre de variables instanciées reste donc le méme. Par contre, (12,2) a un
cout de +1 car il impose aux variables x3 et x4 d'étre désinstanciées. Finalement,
(24,1) et (x4,2) ont toutes les deux un colt nul puisque, dans les deux cas, une
seule variable doit étre désinstanciée. La recherche locale choisira donc une des

trois assignations de colit nul.

On constate, par ailleurs, que le probléme de choisir les variables & désinstancier,
lorsque Paffectation devient incohérente, n'est pas trivial. Dans le cas ou les con-
traintes sont binaires, par exemple le k-coloriage de graphe, il suffit de désinstancier
toutes les autres variables des contraintes violées. Cependant, lorsque les con-
traintes ne sont pas binaires, le probleme se complique. Considérons ainsi 'instance

de 3-SAT? suivante:

I = (TVas Ve N (2aVT3Vxy)

On remarque que les deux clauses de cette instance ont en commun les variables x4
et z4. La figure 4.1 montre 'hyper-graphe du CN correspondant a cette instance,

ol ¢y correspond & la premiere clause et ¢y 4 la deuxieme.

Supposons que affectation courante soit ag = (t,f,t, —), ot “f” correspond a la

3Un 3-SAT est un SAT dont les clauses ont toutes trois littéraux.

30

valeur de vérité négative et “t” A la valeur de vérité positive. Si on assigne & x4
la valeur “t”, toutes les clauses deviennent alors satisfaites. Cependant, s'il est
impossible, pour une raison quelconque, d'assigner cette valeur & x4, on doit lui
assigner la valeur “f" qui viole simultanément les deux clauses du 3-SAT. Il faut
alors désinstancier une variable de chaque contrainte. On peut ainsi désinstancier
les variables z; et 23 pour un colit total de +1. Toutefois, ce choix n’est pas optimal,
puisqu’on peut également désinstancier uniquement la variable 75, qui se trouve

r

dans les deux contraintes, pour un colit nul. Ainsi, il est pré

e

férable de désinstancier

des variables faisant partie du plus grand nombre possible de contraintes violées:

Propriété 4.1.1 Soit un CN (X, D,C), une affectation partielle légale a, et une
assignation (z,v) donnant une affectation incohérente a'. Soit, de plus, 'ensemble
Uc(a') des contraintes violées par a'. Si chacune des contraintes de C peut étre
satisfaite en désinstanciant n'importe laquelle de ses variables, l'ensemble des va-
riables o désinstancier dans a’ dont la somme est minimale consiste en un hitting

set minimum de la collection {X(c)\ {z} | ce Ucld)}.

Cette propriété tient pour tous les CN dont les contraintes sont toujours satisfaites
lorsque n’importe laquelle de leurs variables est désinstanciée (e.g. k-coloriage et
SAT). On se rappelle, par ailleurs, que déterminer un hitting set minimum est un
probleme NP-difficile. L'algorithme 15 est une procédure qui prend en parametre
un CON incohérent P, une fonction de pondération des contraintes W, une affec-
tation légale a et une assignation (z,v) et qui obtient, de maniére gloutonne, une
affectation légale o’ dans laquelle r est instanciée avec la valeur v. Cet algorithme
génére d’abord o’ en assignant la valeur v & z. Sida’ est légale (i.e. Ug(a’) = §), cette
affectation est retournée. Sinon, 'algorithme désinstancie la variable 2’ # z, parmi
celles impliquées dans une contrainte violée par o/, qui a le plus petit poids w(z').

Si plusieurs de ces variables ont le méme poids, la variable impliquée dans le plus

Q0
Yok

grand nombre de contraintes violées (Le. |[C(2) N Ue{(a')]) est choisie. Finalement,
s'il existe plusieurs de ces variables, contenues dans B. la variable a4 désinstancier
est choisie aléatoirement parmi celles-ci. Ce processus est répété jusqu’a ce que o

soit une affectation légale.

Dans l'exemple du 3-SAT précédent, U'application de (x4.1) & ag = (t.f,t. —) vicle
les deux clauses. Ainsi, 'ensemble des variables pouvant étre désinstanciées est
{z1,29.23}. Supposons que ces variables ont toutes un poids de 1, Palgorithme
désinstancie d’abord la variable impliquée dans le plus de contraintes violées, soit
xry. Comme Paffectation résultante est légale, 'algorithme se termine alors. On
remarque que, dans ce cas, 'algorithme a effectivement désinstancié 'ensemble de

poids minimum de variables rendant 'affectation a nouveau légale.

On possede maintenant tous les éléments nécessaires pour implanter une méta-
heuristique de recherche locale pour le MPWCSP. L’algorithme 16 est une telle
implantation, similaire a celle proposée pour le MWCSP. Cet algorithme prend
en parametre un CN incohérent P, un fonction de pondération des variables w.
et un entier iy,y, correspondant au nombre maximum de mouvements autorisés
pour la recherche locale, et retourne une affectation légale a*. Pour commencer,
Palgorithme génere une affectation @ dans laquelle aucune variable n’est instanciée,
et initialise Uitération courante i & 1. Ensuite, pour chaque variable non-instanciée
(i.e. z € Ux(a)) et chaque valeur v du domaine de cette variable, une procédure
procAssigne retourne une affectation légale ¢’ dans laquelle z est instanciée avec la
valeur v. L’algorithme 15, qui vient d’étre présenté, est une implantation de cette
procédure qui obtient de maniere gloutonne une affectation o’ dont le cout fa(w. d’)
est le plus faible possible. Si le colt de o’ est inférieur a celui de tous les voisins
évalués, 'ensemble des meilleures assignations B est modifié pour ne contenir que
(x,v). Si, ¢ est de colit égal, (., v) est ajouté & B. Aprés avoir ainsi évalué tous les

voisins de a, I'affectation de la prochaine itération est obtenue de procAssigne avec

Algorithme 15 Algorithme glouton d’assignation pour le MPWCSP

Entrée: Un CN incohérent P = (X, D,C);
Une fonction de pondération w;
Une affectation légale a;
Une assignation (r,v):

Sortie : Une affectation légale o’

Assignation
a' — a;
a'(x) — v

Réparation
tant gue Ug(d') # 0 faire
T —
pour tout ¢ € Ug(a') faire
T —TUX(e);
fin pour
B~
[— 0
m «— O
pour tout 2’ € T, 2’ # z faire
L [C(") N Ue(@);
si w(z') <l ou B ={ alors
B —{a'};
[— w(z');
m « I;
sinon si w(z') = | alors
si t > m alors
B — {2z}
m +— t;
sinon si ¢ = m alors
B— BU{z'};
fin si
fin si
fin pour
7'« random(B);
a/(z') « aucune valeur;
fin tant que

83

un assignation (z',2"), choisie aléatoirement de B. Finalement. l'itération courante

i est incrémentée de 1, et U'algorithme se termine lorsque ¢ dépasse iyax.

Algorithme 16 Algorithme de recherche locale pour le MPWCSP
Euntrée: Un CN incohérent P = (X, D.C):

Une fonction de pondération w;

Un entier ik > O:
Sortie : Une affectation légale a*.

Initialisation
a* — a = affectation vide;
7+ 1

Recherche locale
tant que 1 < iy, faire
B — 0
[— 0
pour tout r € Uy (a) faire
pour tout v € D, v # a(z) faire
a’ — procAssigne(P, w, a, (z,v)):
si fx(w.a') <!l ou B =0 alors
B~ {(z,v)};
L= faolw,a’);
sinon si fy(w,d') =1 alors
B — BU{(z,v)}
fin si
fin pour
fin pour
(2',v') « random(B);
a «— procAssigne(P, w, a, (z',0));
si fx(w,a) < fr(w,a”) alors
a* — a;
fin si
i1+ 1;

fin tant que

4.1.2 La recherche Tabou

Les algorithmes de recherche locale qui viennent d’étre présentés sont basés sur

le MCH. Tout comme cette stratégie, ils ont tendance & rester bloqués dans une

84

région entourant un optimum local (i.e. une configuration pour laquelle aucun
voisin n’améliore la fonction de colit). Aprés avoir visité un de ces voisins, la
recherche locale risque alors de revenir a cet optimum local de colit supérieur ou
égal. Afin d’éviter les cycles, il est alors nécessaire d'introduire un mécanisme

empéchant de revenir & une configuration récemment visitée.

La stratégie de recherche Tabou, introduite par Glover (Glover, 1989; Glover, 1990),
est une méta-heuristique de recherche locale dans laquelle une mémoire, appelée
liste Tabou, conserve quelques uns des mouvements récemment effectués. Afin
d’éviter les cycles, cette méthode interdit ensuite d’effectuer Uinverse d’'un de ces

mouvements, sauf si ce mouvement satisfait un certain critére d’aspiration.

Définition Etant donné une instance (S, f) d'un OC, et un voisinage défini par
un ensemble M de mouvements élémentaires, une mémoire Tabou est une fonction
A M — N qui associe & chaque mouvement g € M Uitération A(y) jusqu'a
laquelle p est interdit. Par ailleurs, une rétention Tabou est une fonction 6 : M —
N* qui associe & chaque mouvement p € M le nombre d'itérations §(u) durant
lequel le mouvement inverse u~! est interdit. Finalement, soit I'itération ¢ ol un

mouvement u est exécuté, on a Alp™') =i+ 5(u).

En général, un algorithme de recherche Tabou fonctionne comme suit. La mémoire
A est d’abord initialisée pour que chaque mouvement soit autorisé a ['itération
initiale. En commencant avec une configuration s, I'algorithme choisit, & chaque
itération ¢, un mouvement g autorisé (i.e. i > A(u)), minimisant la fonction de cotit
f. Si tous les mouvements du voisinage sont interdits, u est choisi aléatoirement.
La configuration suivante est ensuite générée en appliquant y a s, et la mémoire
Tabou mise jour pour interdire le mouvement inverse p* jusqu’a Pitération ¢-+6(u).

Par ailleurs, un mouvement interdit peut quand méme étre choisi si ce mouvement

satisfait le critére d’aspiration. Le critére d’aspiration permet a certains mou-

vements d’échapper & la restriction Tabou, si ces mouvements sont utiles a la
recherche locale. Ainsi. le critére d’aspiration le plus utilisé consiste a autoriser
un mouvement qui génere une configuration améliorant le meilleur cott obtenu
par la recherche. Finalement, 'algorithme se termine lorsqu'une solution (i.e. une
configuration que 'on sait optimale) est trouvée, ou aprés avoir effectué un cer-
tain nombre d’itérations. Par ailleurs, la rétention ¢ est un parametre critique
pour la recherche Tabou. Ce parameétre controle le caractére stochastique de la
recherche. Ainsi, si la rétention des mouvements est trop grande, tous les mou-
vements deviendront interdits apres un certain nombre d’itérations, et le parcours
de la recherche locale sera purement aléatoire. Par contre, si la rétention est trop
courte ou méme nulle, 'algorithme choisira toujours le meilleur mouvement, ce qui
induira des cycles dans la recherche. Cependant, il n’existe pas de parametre §
approprié & chaque instance d'un OC. La rétention doit donc étre ajustée pour

chaque instance particuliere.

4.1.2.1 Algorithme pour le MWCSP

L’algorithme 17 est une variante de I'algorithme 14 de recherche locale pour le
MWCSP, dans lequel un stratégie Tabou a été ajoutée. Cette stratégie consiste
a interdire, pendant un certain nombre d’itérations, de ré-assigner & une variable
d'une contrainte en conflit la derniére valeur que cette variable a perdue. On
remarque que cet algorithme prend un parameétre de plus, un entier positif 7 qui est
une constante de rétention Tabou pour tous les mouvements (l.e. §{u) =7, ¥V u €
M). Commie pour U'algorithme de recherche locale, cet algorithme initialise d’abord
Pitération courante 7 & 1 et génére une affectation compléte a en assignant a chaque
variable une valeur de son domaine choisie aléatoirement. Cependant, la mémoire
Tabou A est fixée & 0 pour chaque assignation, afin d’autoriser ces assignations

des la premiere itération. Ensuite, pour chague variable z impliquée dans une

36

contrainte viclée par a et chaque nouvelle valeur v du domaine de cette variable,
une affectation voisine o' est obtenue en assignant v a x, si cette assignation est
autorisée par la mémoire Tabou (i.e. i > A(z,v)) ou améliore le cotit de ¢* (i.e.
critére d’aspiration). Pour chaque affectation autorisée o/, si le coit de a’ est
inférieur A celui de tous les voising évalués, B est modifié pour ne confenir que
(z.v). Si, par ailleurs, @’ est de colit égal. (r,v) est ajouté a B. Aprés avoir ainsi
évalué tous les voisins de a, une assignation (2',v") est choisie aléatoirement dans
B, ou parmi toutes les assignation possibles, si B est vide. L’affectation de la
prochaine itération est ensuite obtenue en appliquant (2/,v') & @, et la mémoire
Tabou mise a jour pour interdire de ré-assigner & z’' sa valeur courante dans a
pendant 7 itérations (i.e. A(x’,a(x’)) « i+ 7). Finalement, l'itération courante 4

est incrémentée de 1, et U'algorithme se termine lorsque ¢ dépasse #pax-

Dustrons I'algorithme 17 sur le probléme de 2-coloriage du graphe de la figure 3.1.
Supposons que le nombre maximum d’itérations soit iy, = 5, que le parametre de
rétention Tabou vaille 7 = 4, et que I'affectation initiale générée par 'algorithme
soit a; = (1.1,2,2,1,1). L’affectation a, viole les contraintes c1, ¢y, ¢4, ¢5 et ¢r.
Comme aucune assignation n'est interdite, lassignation (zg,2) de colit —3, est
d’abord choisie. Cette assignation donne Uaffectation as = (1, 1,2, 2, 1. 2) qui viole
les contraintes ¢; et ¢5. De plus, U'assignation inverse (g, 1), qui remet a x4 la valeur
gu’elle vient de perdre, est ensuite interdite pour 7 = 4 itérations (ie. jusqu’a
Uitération 7 = 5). Les meilleures assignations de litération 2, (x1,2), (x3,1) et
(z4,1), ont alors un cofit nul. Une de ces assignations est ensuite choisie au hasard,
par exemple (21, 2) qui donne a3 = (2,1,2,2,1,2), et son inverse (z1, 1) est interdite
jusqu’a i = 6. Les meilleures assignations de I'itération 3, qui ont aussi un colit nul.
sont alors (x1,1), (73.1) et (x4, 1). Il n’est cependant pas permis de choisir (23, 1),
car cette assignation est interdite par la restriction Tabou. Sans cette restriction,

la recherche pourrait revenir a l'affectation précédente en choisissant (21, 1). Par

8

o

Algorithme 17 Algorithme de recherche Tabou pour le MWCSP

Entrée: Un CN incohérent P = (X, D,C);
Une fonction de pondération w;
Un entier imax > 0
Un entier 7 > 0

Sortie : Une affectation complete a”.

Initialisation

pour tout r € X faire
alz) « random{Dg);
pour tout v € D, faire

Ale,v) «— 0;

fin pour

fin pour

a* «— a;

i+ 1;

Recherche locale
tant que i < iy, faire

T —

pour tout ¢ € Ug(a) faire
T—TUX():

fin pour

B —

l— 0

pour tout x € 7 faire
a — a;
pour tout v € D,, v # a(z) faire

&) — v

si i > Alz,v) ou fe(u,a') < fe{w,a*) alors
si fe(w,a’) < lou B ={ alors
B — {(z,0)}:
L felw,a);
sinon si fe(w.d') =1 alors
B—BU{(z,v)}
fin si
fin st
fin pour
fin pour
si B+) alors
(z/,v") — random(B};
sinon
z' — random(Up(a));
v — random({ D, \ {a{z’)});
fin si
a{z’) +— v';
Al ala")) — i+ 7
si fe(w,a) < fe{w,a™) alors
a" — a;
fin si
i+ 4+ 1;
fin tant que

Qo
GO

ailleurs, supposons que (x3, 1) soit choisie. Vaffectation devient a4 = (2,1,1,2,1,2)
et (z3.2) est interdit jusqu'a ¢ = 7. Les meilleurs assignations de l'itération 4
sont ensuite (x1,1) et (z3.2), qui ont un cott nul. Comme ces assignations sont
toutes les deux interdites. il faut alors choisir une assignation de colit +1, par
exemple (zo,2) qui donne a5 = (2.2,1,2,1,2), et interdire {z,,2) jusqu'a i = &.
Finalement, & Vitération 5, la seule assignation de colit —1, (z1, 1), est interdite.
Cependant, cette assignation est quand méme choisie, car I'affectation optimale
résultante (1,2,1,2,1,2) est la meilleure trouvée depuis le début de la recherche?.

Finalement, comme 7 = iy, Valgorithme doit s’arréter & cette itération.

4.1.2.2 Algorithme pour le MPWCSP

L’algorithme 18 est une heuristique de recherche Tabou pour le MPWCSP, qui
interdit, pendant un certain nombre d’itérations 7, d'instancier une variable avec
la valeur que cette variable a perdue en dernier. Comme pour Palgorithme de
recherche locale sans restriction Tabou, cet algorithme génere une affectation a
dans laquelle aucune variable n’est instanciée, et initialise U'itération courante ¢
a 1. La mémoire Tabou est également initialisée, afin permettre 'application de
n'importe quelle assignation des la premiere itération. Ensuite, pour chaque varia-
ble non-instanciée et chaque valeur v du domaine de cette variable, procAssigne
retourne une affectation légale o' dans laguelle z est instanciée avec la valeur v, si
(x.v) est autorisée par la mémoire Tabou, ou améliore le colit de a*. Pour chaque
affectation autorisée a’, si le cott de @' est inférieur a celui de tous les voisins
évalués, B est modifié pour ne contenir que (x,v). Si, par ailleurs, o' est de cott
égal, (z.v) est ajouté & B. Apres avoir ainsi évalué tous les voising de a, une

assignation (z/,¢") est choisie aléatoirement de B, ou parmi toutes les assignation

4Cette affectation ne viole que la contrainte cq4.

89

possibles, si B est vide. L’affectation de la prochaine itération est ensuite obtenue
de procAssigne avec (z',7'), et la mémoire Tabou mise & jour pour interdire de ré-
instancier toutes les variables désinstanciées par procAssigne (le. Ux(a')\ Ux(a))

¢

avec leur valeur courante dans a pendant 7 itérations. Finalement, Uitération

courante i est incrémentée de 1, et Valgorithime se termine lorsque ¢ dépasse iiax-

IHustrons. une fois de plus, Ualgorithme 18 sur le probléme de 2-coloriage de la figure
3.1, avec comme parametres i,,, = 8 et 7 = 4. Supposons que les affectations des
quatre premieres itérations sont: ay = (—,—, —,—, —, —), a1 = (1, —, —, —, —, —),
ay = (1,—,2,—, —.—), a3 = (1,—.2,—. 1, —) et ag = (1,—.,2,—,1,2). Comme
aucune variable n'a dia étre désinstanciée, lors de ces itérations, toutes les assigna-
tions sont autorisées. On remarque que a4 posséde deux variables non-instanciées:
xy et xy. Les assignations possibles, & cette itération, sont donc (z2,1), (29,2),
(4.1) et (14.2). A Texception de (£9.2) qui a un colt de +1. ces assigna-
tions ont toutes un colt nul, puisque, pour chacune d’elle, une variable doit étre
désinstanciée. Si on choisit, par exemple, (x9,1), on doit alors désinstancier z,
car ¢; est violée, et interdire I'assignation inverse (x1,1) jusqu’a Vitération i = 8.
L’affectation résultante a; = (—.1,2,—,1,2) a x; et x4 non-instanciées, et les
meilleures assignations, qui ont un cott nul, sont (xq,1), (x1,2), (x4,1) et (24, 2).
Comme (71, 1) est interdite, on choisit une des autres assignations, par exemple
(24.1) gui donne une affectation violant c;. Il faut donc désinstancier z5 et in-
terdire (z5,1) jusqu'a ¢ = 9. Ensuite, 'affectation ag = (—,1,2,1,—.2) a quatre
assignations optimales de coit nul: (z1,1), (21,2). (25, 1) et (x5,2). Comme (23, 1)
et (xs5,1) sont interdites, on peut, par exemple, choisir (x;,2) qui donne une affec-
tation violant cp. Ainsi, il faut désinstancier xg et interdire (xg, 2) jusqu’a ¢ = 10.
L’affectation ar = (2,1,2,1. —, —) a alors une seule assignation de colit —1, (z5,2),
qui donne affectation optimale ag = (2.1,2,1,2,—). On remarque, par ailleurs.

que méme si cette derniére assignation était interdite par la mémoire Tabou, elle

90

Algorithme 18 Algorithme de recherche Tabou pour le MPWCSP

Entrée: Un CN incohérent P = (X, D.C):
Une fonction de pondération w:
Un entier iy, > 0;
Un entier 7 > O

Sortie : Une affectation compléte a”.

Initialisation

pour tout r ¢ A faire
a{z) «— aucune valeur;
pour tout v € D, faire

Alx,v) « 0;

fin pour

fin pour

a* « a = affectation vide;

i+ 1

Recherche locale
tant que i < iy, faire
B «—
O
pour tout r € Ux(a) faire
pour tout v € D, v # a{z) faire
a' « procAssigne(P,w, a, (z,v));
si 1> Alz,v) ou falw,a') < fy(w,a”) alors
8i fa{w,a/) <lou B = alors
B {(z,0)k
L falw, a)
sinon si fy{w,a’) = [alors
B — BU{(z.0)}
fin si
fin si
fin pour
fin pour
si B # () alors
(@', v") «— random(B);
sinon
7" random{Ux(a)):
v’ « random(D, \ {a(z)});
fin si
@' « procAssigne(P, w,a, (z',v"));
pour tout z € Ux(a')\ Ux{a) faire
Az, a(z)) —i+7;
fin pour
a+— a;
si fx(w,a) < fr{w, o™} alors
a’ +— a;
fin si
i — 1+ 1;
fin tant que

91

serait néanmoins valide puisqu'elle satisfait le critere d’aspiration en donnant la
meilleure affectation trouvée. Enfin, Palgorithme doit s’arréter 3 cette itération

car 1 = Zuax-

4.1.3 Détails d’'implantation des algorithmes

Un des avantages des CN provient de 'interaction des contraintes, faite au niveau
du domaine des variables. La programmation par contraintes est un paradigme de
résolution qui propage l'effet d'une contrainte a travers le domaine des variables,
afin de réduire celui-ci. Cette section propose une maniere efficace d'implanter
certaines parties critiques des algorithmes de recherche locale pour le MWCSP et

le MWPCSP.

Dans les algorithmes de recherche locale pour le MWCSP et le MPWCSP, 'étape
la plus critique est I'évaluation du colit des assignations a une itération. Ainsi, soit

a I'affectation de cette itération, le nombre d’assignations & évaluer est

>0 2 D=t

¢ € Uela) \o € X{c)

dans le cas du MWCSP et

dans le cas du MPWCSP. 11 est cependant possible d’évaluer le colit d'une assi-
gnation en temps coustant & l'aide d’une fonction T' : M — R qui associe un
cout positif I'(x,v) & chaque assignation {x,v) € M. Cette fonction s’implante
facilement a 'aide d'une simple table de dimensions |X| x max |D,|. Le coit d'une
assignation (x,v) correspond simplement & la différence entre le cotlit d’assigner v

a x et le cott de lui laisser sa valeur courante dans a (ie. I'(z,v) — [(z,a(x))).

Cette table doit, par ailleurs, &tre mise & jour aprés chague assignation.

L’algorithme 19 montre comment certaines structures de données sont mises a jour,
avant d’appliquer une assignation {x, v} a a. Cet algorithme prend le CN incohérent
P, la fonction de pondération w. affectation courante o, une assignation (z,v), une
fonction de cofit I'. Les autres paramétres sont la fonction € : X — NT qui associe
4 chaque variable 7 € X le nombre de contraintes violées Q(x) dans lesquelles
cette variable est impliquée, et 'ensemble () des contraintes violées en assignant
(z,v) & a. La fonction € sert & I'évaluation des variables & désinstancier dans
Valgorithme 15. Ainsi, lorsqu’une variable impliquée dans une confrainte violée
doit étre désinstanciée, on choisit, parmi celles de plus grand poids, une variable
x ayant la plus grande valeur 2(x). L’ensemble () est également important pour
les algorithmes de recherche locale. En particulier, () donne les contraintes violées,
dont V'assignation des variables forme le voisinage de l'itération suivante. dans le

cas du MWCSP.

Algorithme 19 Algorithme de mise-a-jour des structures de données

Entrée: Un CN incohérent P = (X, D,C);
Une fonction de pondération w;
L’affectation courante a;

Une assignation (z,v);
E/S : Une fonction de coat I';
Une fonction de conflit £2;
Un ensemble (¢ de contraintes.

pour tout ¢ € C(z) faire
procContrainte(c, P, w, a, (z.v), I, 2, @);
fin pour

Le fonctionnement de cet algorithine est simple. Pour chaque countrainte impli-
quant la variable modifiée par ['assignation, Palgorithme appelle une procédure
procContrainte qui met a jour I', {2 et (). Chacune de ces contraintes est donc

responsable de mettre en partie a jour I'information contenue dans ces structures.

93

Par ailleurs. la maniére dont cette mise-a-jour est faite dépend du type de con-
trainte, et du probléme & résoudre (i.e. MWCSP ou MPWCSP). L'algorithme 20
montre implantation de procContrainte pour une contrainte d'inégalité® dans le
cas du MWCSP. Dans cet algorithme, 2’ représente la variable de la contrainte
binaire qui n’'est pas dans assignation (i.e. 2’ € X{¢), 2’ 5 z). Comme ¢ impose
a x et 2’ d'avoir des valeurs différentes, et puisque la valeur de x vient de changer,
on enléve d'abord & T le colit w(c) d’assigner & &’ la valeur précédente de z. et on
lui ajoute le colit w(c) d’assigner & =’ la nouvelle valeur v de z. Finalement, si ¢
était en conflit, on décrémente le nombre de contraintes viclées dans lesquelles sont
impliquées r et &', et on retire ¢ de Uensemble). Si, par ailleurs, ¢ est violée suite

A I'assignation (x,v), on incrémente ((x) et Q(z’), et on ajoute ¢ & Q.

Algorithme 20 Mise-a-jour d’une contrainte d’inégalité pour le MWCSP

Entrée: La contrainte ¢;
Un CN incohérent P = (X, D,C);
Une fonction de pondération w;
L'affectation courante a;
Une assignation (x,v):

E/S : Une fonction de cout I';
Une fonction de conflit £);
Un ensemble ¢} de contraintes.

{2/} = X()\ {z}:
(2, a(z)) «— (2, a(x)) — w(e);
D v) « T2, v) + wlc);
si a(2’) = a(z) alors
Q") — Q') = 1:
Qz) — Q(x) - 1L
Q — Q\{ck
sinon si o(2’) = v alors
Q) — Q2"+ 1;
Q(z) — Q(x) + 1;
Q — QU{c}

fin si

L’algorithme 21 montre I'implantation pour les contraintes d’inégalité, dans le cas

1. type de contrainte utilisé dans la modélisation d’un probleme de k-coloriage de graphe.

94

du MPWCSP. Contrairement au MWCSP, il faut tenir compte de U'instanciation de
x et ', Il peut ainsi v avoir deux cas. Dans le premier cas, x n'est pas instanciée.
mais le devient avec assignation (z,v). L'instanciation de « entraine la possibilité
d'un conflit si on assigne a z' la méme valeur. Comine ce conflit entraine x a étre
désinstanciée, il faut donc ajouter a T le coat w(x) d’assigner a «’ la valeur v. Par
ailleurs, si « et 2’ ont, suite a assignation. la méme valeur, il faut incrémenter)
pour ces deux variables et rajouter ¢ a (. Dans Vautre cas, z est instanciée, mais
doit est désinstanciée suite a 'assignation. Comme x ne sera pas instanciée, on
peut assigner a x’ n'importe quelle valeur sans créer de conflit. Il faut alors enlever
de I' le cotit d’assigner & 2’ 'ancienne valeur de x. Finalement, si ¢ était en conflit,

il faut décrémenter) pour x et 2’ et retirer ¢ de Q.

Algorithme 21 Mise-a-jour d'une contrainte d’inégalité pour le MPWCSP

Entrée: La contrainte ¢;
Un CN incohérent P = (X, D,C);
Une fonction de pondération w;
L’affectation courante a;
Une assignation (r,v);

E/S : Une fonction de cofit T';
Une fonction de conflit €2:
Un ensemble ¢ de contraintes.

{2/} = X()\ {z}:
si v # “désinstancie x” alors
(2 v) — T, v) + wz);
si a(z’) = v alors
Qz) — Q)+ 1;
Qx) — z) + 15
Q — QU{ck;
fin si
sinon
(2 alx)) — T'(2, a(z)) — w(z);
si a(a’) = a(x) alors
Q') « Q") — 1;
Q(z) — Q(x) - 1;
Q— Q\{ch
fin si
fin si

95

4.2 Algorithmes heuristiques de détection d’IIS

Dans la premicére partie de ce chapitre. il a été montré comment des méta-heu-
ristiques pouvaient étre implautées pour le MWCSP et MPWCSP. Cette section
décrit comment une version heuristique des algorithmes de retrait, d'insertion et
de hitting sef, ainsi que d’autres techniques aidant a la détection d’1IS, peut étre

obtenue, a l'aide de ces méta-heuristiques.

4.2.1 Algorithme heuristique de retrait

L’algorithme de retrait, présenté & la section 3.2.1, utilise une procédure procM WIC
qui résoud de maniere exacte le MWCSP, dans le cas de la détection d’IIS de
contraintes, et le MPWCSP, dans le cas de la détection d'IIS de variables. On
peut, cependant, se demander ce qui se produirait si procMWIC était une méta-
heuristique, comme celles proposées dans les sections précédentes. Lorsque cet algo-
rithme retire une contrainte ou une variable de P, faisant partie de 'intersection des
IIS, P devient cohérent, et procM WIC obtient une affectation a de colit f(w,a) = 0.
Cette contrainte ou variable est alors ré-insérée. Toutefois, si procMWIC n'est pas
exacte, cette procédure peut retourner une affectation sous-optimale (i.e. f(w,a) >
0) de telle sorte que la contrainte ou variable n’est pas ré-insérée. En conséquence,
Palgorithme retourne un ensemble K qui est cohérent. Considérons, par exemple,
la détection d'un IIS de countraintes pour le probléme de 2-coloriage de la figure
3.1. Supposons que ¢4 soit d’abord retirée, le CN devient cohérent. Cependant, si
procMWIC retourne une affectation sous optimale, par exemple (1,2,1,2,1,1), ¢4
ne sera pas ré-insérée, et 'ensemble K sera nécessairement cohérent. L’algorithme

heuristique de retrait possede ainsi la propriété suivante:

Propriété 4.2.1 Soit P un CN incohérent. L’algorithme heuristigue de retrait

96

produit, en un nombre fini ditérations, un ensemble K de contraintes ou de varia-

bles qui est soit un I1S, ou est cohérent.

Preuve Supposons que K soit un ensemble incohérent. Soit e; n'importe quelle
contrainte ou variable de A retirée a litération ¢, et soit K; Uensemble des con-
traintes ou variables ayant un poids de 1 a Uitération i. On sait que K; \ {e;} est
cohérent. Par ailleurs, comme K C K, U'ensemble K\ {¢;} est également cohérent.

L'ensemble K est douc un I1S.

4.2.2 Algorithme heuristique d’insertion

11 est également possible d’obtenir un version heuristique de l'algorithme d’insertion
en utilisant une méta-heuristique pour procM WIC. Tout comme I'algorithme heuris-
tique de retrait, I'algorithme heuristique d’insertion ne garantit pas que 'ensemble
K de contraintes ou de variables obtenu soit un IIS. Ainsi, si procM WIC obtient
une affectation sous-optimale contenant une contrainte ou une variable faisant par-
tie de I'intersection des IIS, cette contrainte ou variable peut &tre retirée, rendant
K cohérent. Soit, par exemple, la détection d’IIS de contraintes dans le probléme
de 2-coloriage de la figure 3.1. Si procMWIC retourne V'affectation sous-optimale
(1,2,1,1,2,2) violant ¢4, ¢5 et ¢z, Ualgorithme conserve une de ces contraintes et
retire les autres. Si ¢y, qui fait partie de Uintersection des IIS, n'est pas conservée,
P sera alors cohérent. Dans un tel cas, 'algorithme peut ne jamais se terminer,

8’1l est impossible de former un ensemble K incohérent.

L'algorithme 28 illustre comment 'algorithme d’insertion peut étre modifié pour
tenter de déceler ce type d’erreur. Ainsi, apres avoir obtenu une affectation a de
procMWIC, on vérifie si P est cohérent. Sile cout de a est nul, P est cohérent et

lalgorithme retourne un échec. Sinon, 'algorithme poursuit sa détection d'un IIS.

97

Algorithme 22 Algorithme d'insertion (modifié)

si f(w,a) =0 alors
ECHEC. Interrompre algorithime;
sinon si f(w,a) > |£] alors

fin si

1l se peut, cependant, que méme avec cette modification, Palgorithme ne parvienne
pas a déceler Uerreur, si procMWIC est incapable d'obtenir une affectation op-
timale. Dans ce cas, l'algorithme produit un ensemble K de contraintes ou de
variables qui est cohérent. Par ailleurs, il est également possible que l'algorithme
s'arréte prématurément. si proc M WIC obtient une affectation sous-optimale a de
cotit f(w,a) > |€]. Alors que I'algorithme croit avoir un ensemble K incohérent, cet
ensemble peut, en réalité, étre cohérent. Enfin, I'algorithme heuristique d’insertion

posséde la propriété suivante:

Propriété 4.2.2 Soit P un CN incohérent. L’algorithme hewristique d’insertion
produit, en un nombre fini d’itérations, un ensemble K de contraintes ou de varia-

bles que est soit un IIS, ou est cohérent.

Preuve Supposons que K soit un ensemble incohérent, a; Uaffectation optimale
obtenue & Uitération ¢, et ¢; € U(a;) n’importe quelle contrainte ou variable de K
conservée a cette itération. On sait que £ \ U{g;) est un ensemble cohérent. De
plus, comme K\ {e;} C E\U(a;), Uensemble K\ {e;} est aussi cohérent. L’ensemble

K est donc un IIS.

98

4.2.3 Algorithme heuristique de hifiing set

Tout comme les algorithmes heuristiques de retrait et d'insertion, la version heuris-
tique de Palgorithme de hitting set n’offre aucune garantie que 'ensemble A obtenu
soit un 1IS. Ainsi. procMWIC peut obtenir une affectation sous-optimale a de cott
flw,a) > |€] et se terminer avec un ensemble K cohérent. Par ailleurs, si cet algo-
rithme retourne un ensemble K incohérent, K est un IIS uniquement si procMHS
obtient des HS minimaux au sens de l'inclusion. De méme, K est un IIS mini-
mum seulement si procMHS obtient des HS de cardinalité minimale. L’algorithme

heuristique de hitting set possede donc la propriété suivante:

Propriété 4.2.3 Soit P un CN incohérent. Si procMHS retourne des HS mini-
mauz au sens de [inclusion, Ualgorithme heuristique par hitting set produst, en un
nombre fini d’itérations, un ensemble K de contraintes ou de variables gui est soit
un IS, ou est cohérent. Par ailleurs, si procMHS retourne des HS de cardinalité

minimale, K est soit un I1S mintmum, ou est cohérent.

Preuve Supposons que Palgorithme se termine avec un ensemble K incohérent,
et soit e une contrainte ou une variable de K. Si procMHS retourne des HS mini-
maux au sens de I'inclusion, il existe nécessairement un ensemble U(a;), obtenu &
une itération ¢ quelconque, qui n'intersecte pas avec l'ensemble K\ {e}. Par ailleurs,
on sait que £\ U{a;) est un ensemble cohérent. Ainsi, comme K\ {e} C £\ U(a).
Pensemble K\ {e} est également cohérent. L'ensemble K est donc un IIS. Finale-
ment, si procMHS retourne des HS de cardinalité minimale, K est nécessairement

un 1IS minimum.

99

4.3 Stratégies de récupération d’erreur

Lorsque linstance a résoudre n'est pas trop grande, et si les parameétres de la
méta-heuristique procMWIC sont bien ajustés pour cette instance, les affectations
obtenues par procMWIC sont souvent optimales. 11 arrive, cependant, que ces
affectations soient sous-optimales pour certaines instances de taille movenne. Enfin,
pour des instances de plus grande taille, il est rare que procMWIC trouve des
affectations optimales. Par ailleurs, il a été montré que la capacité des algorithmes
heuristigues de détection a obtenir un 1IS dépendait justement de 'optimalité de
ces affectations®. Cette section présente quelques stratégies permettant de traiter

certaines erreurs de détection causées par U'obtention d’affectations sous-optimales.

4.3.1 Algorithme de réduction

Pour une instance oll la méta-heuristique est susceptible de ne pas trouver d’af-
fectations optimales, il est préférable d’obtenir un ensemble incohérent K réduit,
méme si K n’est pas un IIS, que d'avoir K cohérent (i.e. échec de détection). On
peut ainsi ré-appliquer un algorithme de détection sur le CN réduit, pour lequel
la méta-heuristique aura de meilleures chances de trouver des affectations opti-
males. L’algorithme 23 décrit une procédure générale pour réduire un CN. Cet
algorithme prend en entrée un CN possiblement incohérent P, une paire d’entiers

{1 {2) . . N . oL .
0< z,(m)m < iy ainsi qu’un entier positif 7, et retourne un ensemble possiblement

. p . . - . ({1 {2
incohérent de contraintes ou de variables A'. Les entiers zﬁngx et 'ngx correspondent

s o 2 95] s . . (2) +

a deux “réglages” de la méta-heuristique, tel que i, alloue un grand nombre égal
s . o, . A1 . . , o .

ou supérieur d’itérations que '451(11;/1)(. Ainsi, la méta-heuristique a plus de chances

N . . o . AN s A1)
d’obtenir une affectation optimale avec i;pax qu’avec ity De plus, 7 correspond au

51, "algorithme de hitting set doit également obtenir de procMHS des HS de cardinalité minimale
ou minimum.

100

4

paramétre de rétention de mémoire Tabou de la méta-heuristique. Cet algorithme
utilise, par ailleurs. quatre nouvelles procédures. Tout d’abord, procMWIC-2 est
une procédure similaire & procMWIC qui prend comme parametre supplémentaire
Paffectation initiale de la recherche. Ainsi, procMWIC-2 retourne une affectation
dont le colit est égal ou inférieur a celui de Uaffectation en entrée. Ensuite. procini-
tialise, procModifie et procRépare sont des procédures qui implantent les fonctions
d’initialisation, de modification. et de réparation d'un algorithme de détection quel-

conque.

Cet algorithme initialise d’abord le poids des contraintes ou variables de £ a 1, de
méme que 'ensemble K pour qu'il soit identique a £, et appelle procInitialise qui
initialise la détection. Ensuite, une affectation a est obtenue de procMWIC en ifézlx

itérations. Si f(w,a) > |€], les contraintes ou variables de poids

£| forment un
ensemble potentiellement incohérent qu’il faut valider. Cette validation détermine,
a elle seule, si K sera cohérent ou non. Ainsi, pour s'assurer qu’il n’existe aucune
affectation de colt inférieur & |£], deux techniques sont utilisées. La premiere
consiste a “extraire” K en utilisant une nouvelle pondération w' pour laquelle les
poids de |&] sont fixés a 1, et les autres a 0. Cette technique aide procMWIC en
réduisant le nombre de contraintes ou de variables de P, ainsi qu’en n'ayant qu’une
seule valeur non nulle pour les poids”. La seconde stratégie consiste & donner, lors
de la validation, plus de temps & la méta-heuristique pour obtenir une affectation
optimale, en lui passant is2, en parametre. Une affectation o' est ainsi obtenue
par procMWIC. Si le colit de o' est supérieur a 0, 'ensemble K des contraintes
ou variables de poids non nul est possiblement incohérent, et 'algorithme retourne
cet ensemble. Sinon, @' est une affectation telle f(w,a’) < |£] ®. On peut aiusi

utiliser @’ comme affectation initiale de la recherche donnant affectation a de

"Des expériences ont montré que la recherche locale était handicapée par P'utilisation de deux
valeurs non nulles de poids.
8 A noter qu’on utilise w et non w'.

101

I'itération suivante. L’étape de validation qui vient d'étre décrite correspond au cas
ot flw,a) > &l Si, par ailleurs. 0 < f{w,a) < |£], P est possiblement toujours
incohérent, et la procédure procModifie est appelée. Ensuite, aflectation a de
la prochaine itération est obtenue de procMWIC en éfﬁg,\- itérations. Finalement,
dans le deruier cas. si le colit f{w,a) = 0, P est devenu cohérent suite au retrait
de contraintes ou de variables’. L’algorithme appelle alors procRépare, qui selon
son implantation, rend P & nouveau incohérent en ré-insérant une ou plusieurs
contraintes ou variables. Par contre, si procRépare est incapable de rendre P &

nouveau incohérent, 'algorithme se termine et retourne 'ensemble £ initial.

4.3.1.1 Implantation de retrait

La détection d’un ensemble incohérent dans 'algorithme 23 dépend de I'implan-
tation des procédures procInitialise, procModifie et procRépare. Dans le cas de la
détection par retrait, 'implantation de ces procédures est basée sur l'algorithme
hybride, présenté a la section 3.3.1. En ce sens, 'ensemble K est représenté par
les contraintes ou variables de poids |£]|. L’implantation de proclnitialise vide
simplement un ensemble K. contenant I'ensemble des contraintes ou variables re-
tirées, ainsi qu'un ensemble L contenant la derniére contrainte ou variable retirée.
L'algorithme 25 montre U'implantation de procModifie. Comme pour 'algorithme
hybride, une contrainte ou variable e de poids 1 est retirée en fixant son poids a
0. Cependant, e est également ajoutée a R et l'ensemble L est modifié pour ne
contenir que e. Par ailleurs, 'algorithme 26 donne 'implantation de procRépare. Si
L contient une contrainte ou variable e retirée a la derniére itération, e fait proba-
blement partie de l'intersection des IIS, et son poids est fixé & |£]. De plus, comme

e a été ré-insérée, on la retire de L. Par contre, si L est vide, la derniére itération

911 est également possible que P était initialement cohérent.

Algorithme 23 Algorithme général de réduction

Entrée: Un CN incohérent P = (X, D,();
Une fonction de pondération w;
. . A1) (2)
Une paire d’entiers 0 < thax < finds;
Un entiers 7 > (;
Sortie : Un ensemble de contraintes ou de variables K.

Initialisation
pour tout e € £ faire
w(e) — 1;
fin pour
K—£&;
proclnitialise():
a — procMWIC(P, w, iebe, 7);
Continuer « VRAIL

Construction
tant gue Continuer = VRAI faire
si f(w,a) > |£]| alors
w — w;
pour tout e € £ faire
si w(e) = |&| alors
w'e) «— 1;
sinon
w'(e) — 0;
fin si
fin pour
a’ «— procMWIC(P, ', zﬁ,ﬁx, T
si f(w,a’) > 0 alors
Ke—{ejuw(e)=1}
Continuer + FAUX;

sinon
s o
a « procMWIC-2(P, w, z}fgx, T,a');
fin si

sinon si f(w,a) > 0 alors
procModifie(P, w, U(a)):
a — procMWIC(P, w, iﬁé&x, T);

sinon
Continuer « procRépare(P, w);
si Continuer = VRAI alors

a «— procMWIC(P, w, iggx, 7);

fin si

fin si

fin tant que

[
-
o)

a été passée a rendre P incohérent. Cependant, puisque P est toujours cohérent,
on sait qu'une erreur a été cominise & une itération antérieure {i.e. procMWIC
n'a pas obtenu d’affectation de cott nul, alors que P était cohérent). Il faut alors
ré-insérer une contrainte ou variable précédemment retirée. Ainsi. une contrainte
ou variable ¢’ est enlevée de R, et comime ¢ ne fait pas nécessairement partie de
Uintersection des IIS, son poids est fixé a 1. Finalement, si R est vide, P était

initialement cohérent, et il est impossible de récupérer.

Algorithme 24 Implantation de proclnitialise pour 'algorithine de retrait

R « 0;
L—

Algorithme 25 Tmplantation de procModifie pour I'algorithme de retrait

Entrée: Un CN incohérent P = (&, D,C);
E/S : Une fonction de pondération w.

Choisir e € € tel que wle) = 1;
w(e) «— 0;

R — Ru{e};

L {e};

On remarque que, malgré les erreurs potentielles, cette implantation permet a
Palgorithme 23 de se terminer en un nombre fini d'itérations. Ainsi, a chaque fois
qu'un appel 2 procModifie est suivi d’un appel a procRépare, le poids d'une con-
trainte ou d'une variable est fixé a ||, apres quoi il n’est plus possible de modifier
ce poids. Puisqu'il est impossible d’avoir une séquence infinie d’appel a procModifie
(car sinon toutes les contraintes ou variables de £ auraient un poids nul, et P serait
trivialement cohérent), ou d’avoir une séquence infinie d’appel & procRépare (car R
serait vide et l'algorithme se terminerait), le nombre de contraintes ou de variables
de poids |£] doit nécessairement augmenter. Par ailleurs. si K est incohérent, il
n’est pas forcément un IIS, comme le montre 'exemple suivant. Considérons la

détection d'un IIS de contraintes & 'aide de cet algorithme, sur le probleme de

104

Algorithme 26 Implantation de procRépare pour algorithme de retrait
Entrée: Un CN incohérent P = (X, D.C);

E/S : Une fouction de pondération w;

Sortie : Une valeur de succés (VRAT ou FAUX).

succes «— VRAL
si L # () alors
{e} — L
wle) — [E];
L — ¢,
R— R\ {e};
sinon
si R # {) alors
Choisir un élément ¢’ € R;
R« R\{'};
w(e) — 1;
sinon
succes +— FAUX:
fin si
fin si

2-coloriage de la figure 3.1. Supposons que ¢y soit retirée en premier, rendant P
cohérent. Si procMWIC retourne une affectation sous-optimale, une autre con-
trainte sera retirée, par exemple ¢y, au lieu de que ¢4 soit ré-insérée. Silalgorithme
se rend alors compte que P est cohérent, ¢ sera ré-insérée avec un poids de |£].
Encore une fois, il se peut que 'algorithme ne détecte pas que P soit cohérent, et
retire une nouvelle contrainte, qui sera ré-insérée a I'itération suivante. Ce proces-
sus peut se poursuivre jusqu’a ce que le poids de toutes les contraintes, sauf ¢4, soit
fixé a |£]. Enfin, aprés avoir testé toutes les contraintes, I'algorithme peut détecter
que P est cohérent, et se rendre compte qu’il 2 commis une erreur. La seule con-
trainte de R, ¢4, est alors ré-insérée avec un poids de 1, et celle-ci sera retirée puis
éventuellement ré-insérée avec un un poids de |£|. L'algorithme retournera, dans

ce cas, un ensemble A contenant toutes les contraintes de P.

4.3.1.2 Implantation d’insertion

La récupération d’erreur. dans le cas de l'algorithme d’insertion, est semblable
a celle de lalgorithme de retrait. L'implantation de procinitialise vide d’abord
I'ensemble R des contraintes ou variables retirées. L'algorithme 28 montre ensuite
Pimplantation de procModifie. A chaque itération ou P est incohérent, cet algo-
rithme choisit une contrainte ou variable de U et fixe son poids a |£]. De plus.
les autres contraintes ou variables de U sont retirées, en fixant leur poids a 0. puis
ajoutées & K. L’algorithme 29 montre ensuite 'implantation de procRépare, ap-
pelée lorsque P devient cohérent. Cet algorithme choisit une contrainte ou une
variable de R et la ré-insére en fixant son poids de 1, afin de rendre P a nouveau

incohérent.

Algorithme 27 Implantation de procInitialise pour 'algorithme d'insertion

R~

Algorithme 28 Implantation de procModifie pour Valgorithme d’insertion
Entrée: Un CN incohérent P = (X, D,C);

Entrée: Un ensemble de contraintes ou de variables U;

E/S : Une fonction de pondération w.

si U #) alors
Choisir un élément e € U;
wle) «— |&]:
pour tout € € U, ¢ # e faire
R« RU{e}:
wle) «— 0
fin pour
fin si

Cette implantation permet également a 'algorithme 23 de se terminer en un nom-
bre fini d’itérations. Ainsi, & chaque fois que procModifie est appelée, le poids
d'une contrainte ou une variable supplémentaire est fixé & [£]. Il est ensuite im-

possible de re-modifier ce poids. Finalement, puisqu’il est impossible d’avoir une

106

Algorithme 29 Implantation de procRépare pour l'algorithme d’insertion
Entrée: Un CN incohérent P = (X, D,C):

E/S : Une fonction de pondération w;

Sortie : Une valeur de succes (VRAT ou FAUX).

succes «— VRATL
si R +# { alors
Choisir une élément ¢ € R;
R« R\ {c'};
w(e) — 1
sinon
succés «— FAUX;
fin si

séquence infinie d'appel de procRépare, I'algorithme se terminera lorsque I'ensemble

des contraintes ou variables de poids |£€

sera incohérent. Par ailleurs, 'algorithme
n’offre aucune garantie que K soit un IIS. Ainsi, revenant & la détection d'IIS de
contraintes sur le probléme de 2-coloriage de la figure 3.1, si procM WIC' retourne,
par exemple, Uaffectation sous-optimale a7 = (1,1,2, 1,2, 1), les contraintes violées
seront ¢y, ¢z et ¢4. Le poids d'une contrainte, par exemple ¢, est alors fixé & |£],
par exemple ¢q, et celui des autres a 0, de telle sorte que P devienne cohérent.
Ensuite, supposons que procMWIC retourne une autre affectation sous-optimale
ay = (1,2,2,1,2,1), violant ¢3. Le poids de ¢ est alors fixé & |£]. On constate
alors que P est toujours cohérent. Cependant, comme ¢; et ¢z, chacune ayant un
poids de |£]. font partie de deux IIS différents, il est alors impossible que K soit

un 1IS, méme si les récupérations rendent P a nouveau incohérent.

4.3.1.3 Implantation de hitting setf

Contrairement aux algorithmes de retrait et d’insertion. I'algorithme par hitting
set ne posséde pas de stratégie de récupération d’erreur, puisque les contraintes ou

variables ne sont jamais retirées. Ainsi, le poids des contraintes ou des variables de £

107

vaut soit 1 ou |£], mais jamais 0. Tl est cependant possible d'implanter procInitialise
et procModifie pour cet algorithme. L’'implantation de proclnitialise vide tout
simplement la collection Y. Finalement, I'algorithme 31 montre Vimplantation de

procModifie.

Algorithme 30 Implantation de procinitialise pour I'algorithme de hitting set

U —

Algorithme 31 Implantation de procModifie pour I'algorithme de hitting set

Entrée: Un CN incohérent P = (X, D,C);
Entrée: Un ensemble de contraintes ou de variables U;
E/S : Une fonction de pondération w.

U—Uu {U};
H « procMHS(U);
pour tout e € £ faire
sie € H alors
w(e) — [E};
sinon
wie) «— 1;
fin si
fin pour

4.3.2 Technigues complémentaires

Les stratégies de récupération d’erreur permettent de déceler et corriger certaines
erreurs, provenant de l'utilisation d’algorithmes heuristiques pour le MWCSP et le
MPWCSP. Cependant, méme avec une stratégie de récupération d’erreur, I'ensemble
K peut étre cohérent. Il est donc important d’utiliser certaines technigues permet-
tant de minimiser le nombre d’erreurs lors de la détection. Une de ces techniques est
d’utiliser une heuristique qui détermine quelle contrainte ou variable est ré-insérée
durant une récupération (i.e. dans procRépare). Une possibilité est de d’abord ré-
insérer une contrainte ou variable ayant le plus grand poids de voisinage, car celle-ci

est probablement la plus pres de U'IIS en construction. Une autre possibilité, se

108

basant sur le fait qu'une erreur a plus de chances d'avoir été commise lors dune
itération récente a sa détection, est de ré-insérer les contraintes ou variables selon
Vordre inverse de leur retrait. D’autres techniques peuvent étre employées pour
minimiser les erreurs lors de la détection. Une premiere technique consiste a éviter
le retrait ou la ré-insertion répétitive de la méme contrainte ou variable, si cette
opération meéne plusieurs fois & une erreur. Enfin, une autre technique consiste 3
augmenter la robustesse de la méta-heuristique, par exemple d'utiliser 1(%2m au lieu

A1) , ;s T2 . .
de imax, lorsque le nombre d'erreurs consécutives dépasse un certain seuil, et la

diminuer si le nombre d’erreurs redescend en dessous de ce seuil.

Par ailleurs, si K est incohérent, cet ensemble n'est pas nécessairement un IIS.
Ainsi, une contrainte ou variable dont le poids a été fixé a || alors que P était
cohérent, ne fera pas forcément partie de I'IIS. On peut cependant utiliser des
techniques pour augmenter les chances que K soit un IIS. Une premiere tech-
nique consiste 4 d’abord appliquer 'algorithme 23 sur P, et ensuite lui appliquer
un algorithme exact de détection d'IIS. Le fondement de cette technique est que
lalgorithme 23 permet de simplifier P en lui réduisant le nombre de variables et
de contraintes. L’algorithme exact de détection, qui, vu sa complexité, ne pouvait
pas étre utilisé sur le CN original, a alors de meilleures chances d’obtenir un IIS
du probléme réduit. Une variante de cette technique est d’appliquer un algorithme

heuristique de détection qui garantit Uobtention d'un IIS K, si K est incohérent.

N

Encore une fois, cette technique repose sur l'idée que 'algorithme heuristique de
détection. qui aurait échoué sur le CN original. est plus apte a réussir sur le CN

réduit.

La seconde technique, qui garantit aussi I'obtention d’un IIS, se base sur le fait
que procMWIC retourne une affectation a dont le cofit f(w,a) est une borne
supérieure du colit d'une affectation optimale a*. Ainsi, si f(w,a) = 1, le colit

de a* est soit 1 ou 0. En supposant que P est incobérent (ie. f(w,a*) > 0),

109

a est alors nécessairement optimale. Par ailleurs, la contrainte ou variable de
Ula) fait forcément partie de lintersection des IIS de P. Ainsi, si on obtient,
avec procMWIC, |K| affectations dont l'ensemble U(a) contient une variable ou
contrainte différente pour chaque affectation, on sait que, si K est incohérent, il
forme un IIS. L’algorithme par insertion permet justement de trouver ces affecta-
tions. Ainsi, & chaque itération pour laquelle procMWIC retourne une affectation
a de cout 1, le poids de P'unique contrainte ou variable de U(a) est fixé a |€].
L’ensemble U(a) de Fitération suivante doit donc contenir une contrainte ou une
variable différente. En somme, il suffit de vérifier que les affectations obtenues a
chaque itération (sauf celles ot f(w,a) > |€]) ont un coit de 1. Si c’est le cas, et

si K est incohérent, cet ensemble est un IIS.

La derniere technique, par ailleurs. ne garantit pas d’obtenir un IIS. Il s’agit
d’appliquer itérativement l'algorithme de réduction 23 en utilisant en entrée le
résultat de la détection précédente, jusqu’a ce qu'il n'y ait pas de réduction pour
un certain nombre d’itérations. L’algorithme 32 illustre cette technique. Cet algo-
rithme prend comme parametre supplémentaire un entier positif 7., qui représente
le nombre maximum d’itérations consécutives autorisées sans réduction, et utilise
une procédure procRéduit correspondant a 'algorithme 23. Le principe de cet algo-
rithme est que, si on ne parvient pas a réduire K, alors cet ensemble est probable-
ment un IIS. On peut alors augmenter la probabilité que K soit un IIS en relangant
la détection a répétition, méme si cela n’apporte aucune réduction supplémentaire.
Soit o la probabilité que procRéduit ne réduise pas un ensemble K incohérent qui
n'est pas un IIS, la probabilité que K ne soit pas un IS, aprés ry,., itérations sans
réduction, est égal & (1 — «)™=>. On remarque que, si o < 1 (i.e. procRéduit n'est
pas entierement inefficace), cette probabilité tend vers 0 lorsque ry., augmente.
Cependant, comme chaque appel & procRéduit prend du temps, il est nécessaire

d’utiliser une valeur de 74, qui offre un bon compromis entre le temps de calcul

119

et la probabilité d'avoir un IIS.

Algorithme 32 Algorithine de réductions successives

Entrée: Un CN incohérent P = (X, D,(C);
Une fonction de pondération w;
. . . {1 (2)
Une paire d'entiers § < 'zgng‘x < zgnéx;
Un entiers 7 > {;
Un entier rpax > 0
Sortie : Un ensemble de contraintes ou de variables K.

K~ ¢&;
r— O
tant que 7 < ry,y faire
& «— procRéduit(P, w, d&;x iiﬁix,ﬂ;
si |€] < |K| alors
K~ £,
r— 0
sinon
re—7r+1;
fin si
fin tant que

4.4 Technique d’accélération de détection

Dans la section précédente, il a été montré que, lorsque procMWIC retourne une
affectation a de cout f(w,a) =1, P est soit cohérent, ou sinon 'unique contrainte
ou variable e de U{a) fait partie de l'intersection des IIS. En supposant que P soit
incohérent, on peut donc fixer le poids de e & |£] puisqu’elle fera nécessairement
partie de I'IIS contenu dans K. Il est possible d'utiliser ce principe pour accélérer la
détection A'IIS. Ainsi, a chaque fois que procMWIC, qui peut visiter un trés grand
nombre d’affectations en un temps trés court, visite une affectation a de cotit 1,
on ajoute I'unique contrainte ou variable de U{a) dans un ensernble T initialement
vide. Lorsque procMWIC se termine, Vensemble T contient des contraintes ou
des variables qui font forcément partie de K. L’algorithme 33 illustre comment

Valgorithme 23 peut étre modifié pour bénéficier de cette technique. On remarque

111

que procMWIC retourne en plus d'une affectation a, 'ensemble T de contraintes
ou de variables qui vient d’étre décrit. A chaque itération, le poids des contraintes

ou variables de T est fixé a |£].

Algorithme 33 Accélération de I'algorithme de réduction

(a,T) « procMWIC(P, w, i, T);
Continuer = VRAL

Construction.
tant gue Continuer = VRAI faire
pour tout ¢ € T faire
wie) — |E];
fin pour
si f(w,a) > |&] alors

si f(w,a’) > 0 alors
sinon
(a,T) «— procMWIC-2(P, w, 91(1113“ T,a');

fin si
sinon si f(w,a) > 0 alors

(a/" T) — pYOCI\IVVIC(P, w, Zl(égds 7'):,
sinon

si Continuer = VRAI alors
(a,T) «— procMWIC(P, w, 155),;{ T
fin si
fin si
fin tant que

L'exemple suivant montre un cas ot 'algorithme 33 obtient un IIS en une seule
itération. Considérons la détection d'un IIS de contraintes dans le probléme de
2-coloriage de la figure 4.2. On remarque que le CN de cette figure est lui-méme
un IIS de contraintes. Supposons, que le poids des contraintes soit initialisé a 1
et qu’on utilise les parameétres suivant pour procMWIC: iy = 5 et 7 = 5. On

peut vérifier que les affectations suivantes correspondent & une séquence valide

Figure 4.2 Une instance dont les contraintes et variables forment un IIS pour £ = 2

d’affectations visitées par procMWIC: ag = (1,1,2,1,2), a3 = (1.2,2,1,2), a3 =
(1,2,1,1,2), a3 = (1.2,1,2.2), ag = (1,2,1,2,1). Ces affectations violent chacune
une contrainte différente de C, respectivement ¢y, ¢, ¢3, ¢4 et ¢5. Puisque le poids
de toutes ces contraintes est ensuite fixé a |£|, celles-ci formeront un ensemble
incohérent qui sera retourné par Ualgorithme apres seulement une itération. Par
ailleurs, puisque la seule itération a produit une meilleure affectation de cotit 1, on

possede la garantie que K est un IIS (wvoir section précédente).

113

CHAPITRE 5

EXPERIMENTATION ET ANALYSE DES RESULTATS

Ce chapitre présente une série d’expériences numériques reliées aux algorithmes et
autres techniques de détection décrits dans les chapitres 2 et 3. Ces expériences, qui
ont été réalisées sur des instances générées aléatoirement et instances connues du
probléme de coloriage de graphe, ont deux buts. D'une part, ces expériences servent
& analyser les avantages et désavantages de chacune de ces méthodes. D’autre
part, ces expériences permettent d’évaluer les bénéfices de la détection d’IIS a
I'aide de ces méthodes, particulierement en ce qui a trait a démontrer de maniere
exacte 'incohérence d'un probleme. Ce chapitre est organisé comme suit. Dans un
premier temps, les méthodes utilisées et leur parametres seront décrits. Ensuite,
une description des instances testées sera donnée. Finalement, les expériences et

leurs résultats seront présentés.

5.1 Description des méthodes et parameétres

Les algorithmes présentés au chapitre 3 font appel & deux importantes procédures:
procMWIC et procMHS. La procédure procMWIC, utilisée par tous les algorithmes
de détection, résoud le MWCSP, dans le cas de la détection d'IIS de contraintes,
et le MPWCSP, dans le cas de la détection &’11IS de variables. Comme ces deux
problemes sont NP-difficiles, ces procédures ont été implantées sous la forme d'une
méta-heuristique de recherche locale. Ainsi, pour 'expérimentation, I'implantation
de ces procédures correspond aux méta-heuristiques de recherche Tabou, décrites

dans les sections 4.1.2.1 et 4.1.2.2. Par ailleurs, il a été vu que la méta-heuristique

114

de recherche locale pour le MPWCSP doit, lorsque affectation courante g devient
incohérente, désinstancier certaines variables, afin de rendre a & nouveau légale,
et qu’il était, en général, difficile de déterminer le meilleur ensemble de variables
5 désinstancier. Une implantation gloutonne, détaillée dans Palgorithme 15 de
la section 4.1.2.1, a donc été choisie pour ce probleme. Par ailleurs, la procédure
procMHS, utilisée uniquement par algorithme de hitting set. a pour but de résoudre
le probleme NP-difficile du hitting sef minimum. Encore une fois, cette procédure

a été implantée comme une méta-heuristique de rechierche Tabou.

En choisissant une implantation heuristique pour procMWIC, cette procédure peut
obtenir des affectations sous-optimales faisant échouer la détection d’IIS. Il a donc
fallu ajouter des stratégies de récupération d’erreur aux algorithmes de détection.
Afin d’éviter les échecs, l'algorithme 23 de réduction, présenté a la section 4.3.1,
a été utilisé lors de Iexpérimentation. La capacité de cet algorithme a éviter les
erreurs peut étre ajustée a l'aide des parametres i, A8 et 7. Les deux pre-
miers parametres sont le nombre maximum d’itérations allouées a procMWIC' lors
de la détection de 'ensemble incohérent K et lors de la validation de cet ensem-
ble. Logiquement, on doit avoir une plus grande valeur pour 71(5;,\ que pour 7:§§;§x,
puisque 'étape de validation est critique a 'obtention dun ensemble incohérent.
A ces parametres ont 6té ajoutés sl et sty qui représentent le nombre maxi-
mum de relances! consécutives de procMWIC sans amélioration de laffectation
obtenue. Puisque les chances d'obtenir une affectation optimale crolent avec le
nombre de relances, on fait normalement plus de relances lors de 'étape de vali-
dation (i.e. S > s(ﬁfm) Finalement, un compromis doit étre fait lors du choix
de ces parametres. Ainsi, plus grand est le nombre de mouvements alloués et

de relances faites, meilleures sont les chances d’avoir des affectations optimales et

d’éviter les erreurs, mais plus longue est la détection. Le tableau 5.1 présente trois

IChaque relance utilise une graine aléatoire différente pour random dans procM WIC.

ol
ok
Ut

Tableau 5.1 Différents jeux de parametres pour procMWIiC

{1}

f Instance | 4%« x| Staas | Stak i
facile 100000 | 100000 1 5
moyenne | 1000000 | 1000000 ; 1 3
difficile | 1000000 | 5000000 | 3 10

jeux de parametres pour procMWIC, que des expériences ont montré étre efficaces
pour des instances respectivement faciles, moyennes et difficiles & résoudre. La diffi-
culté d’une instance particuliére peut étre mesurée par le nombre moyen d’itération
requis pour obtenir une affectation optimale. Comme cette difficulté n’est pas con-
nue a priori, la stratégie suivante a été adoptée. Le premier jeu de paramétres (i.e.
facile) est d’abord utilisé pour la détection d’IIS de toutes les instances. Ensuite,
pour les instances ol la détection a échoué, une nouvelle tentative est faite avec le
second jeu de parametres (i.e. moyenne). Finalement, si la détection échoue avec
ce jeu, les détections suivantes sur ces instances seront faites avec le troisieme jeu

de parameétres (i.e. difficile).

Le réglage du parametre 7 est encore plus complexe. I a été vu que lefficacité
d’une méta-heuristique de recherche Tabou dépendait de 'ajustement du parametre
de rétention 7. Alors qu'une valeur appropriée de 7 peut &tre évaluée pour une
Vinstance originale, cette valeur est susceptible de devenir inadéquate lorsque les
poids des contraintes ou variables de cette instance sont modifiés par la détection.
Afin d’avoir, tout au long de la détection, une valeur de 7 ajustée aux poids,
une stratégie d’auto-ajustement de 7 a été implantée. L’algorithme 34 montre les
détails de cette stratégie. Cet algorithme regoit en paramétres Uitération courante
i, le cotit h de l'affectation courante, la rétention courante 7, un entier positif A7
correspondant a la période {i.e. nombre d'itérations) de Uajustement, ainsi qu'un

entier A7 > 0 et un nombre réel g > 0. A chaque itération de recherche locale,

116

Valgorithme met a jour le meilleur cout h, obtenu durant la période courante.
Ensuite, & la fin de chaque période (i.e. lorsque i est un multiple de A7), Ualgorithme
calcule la nouvelle rétention 7’ de la maniere suivante. Si fi, est aussi bon que
le meilleur cofit ¥ obtenu depuis la premiére itération, la rétention optimale 77
prendra, avec une probabilité de 0.5, la valeur de 7. Par la suite, si /i, améliore
le meilleur cott de la précédente période, 7 conserve la valeur de 7. Sinon, une
perturbation A7t est appliquée a 7. Par ailleurs, on utilise la régle suivante pour
déterminer si A7 doit étre ajoutée ou retranchée a 7. Plus 7 est éloignée de la
meilleure rétention 7%, plus il y a de chances que la perturbation rapproche ces deux
valeurs. Ainsi. g détermine Iattraction de 7 vers 7%. Si g vaut 0. la perturbation est
ajoutée ou retranchée selon la méme probabilité. Par ailleurs, si g est infiniment
grand, la perturbation rapprochant 7 a 7 est toujours choisie. Finalement, des
tests ont montré que 7 = 7, A7 = 1, g = 0.7 sont des valeurs, pour la rétention
initiale et les parametres de cette stratégie. qui fonctionnent raisonnablement bien

avec différentes instances.

L’'implantation de procMHS consiste a fixer une taille initiale. et ensuite a chercher
3 l'aide d’une méta-heuristique de recherche locale un HS de cette taille. Si un HS
est trouvé, la taille est réduite jusqu’a ce que la méta-heuristique soit incapable de
trouver un HS de cette taille. Par contre, si la méta-heuristique est incapable de
trouver un HS de la taille initiale. cette taille est augmentée jusqu’a ce qu'un HS
soit finalement obtenu. Le HS retourné par procMHS est celui obtenu pour la plus
petite taille. Par ailleurs, la stratégie Tabou consiste a interdire une variable ou une
contrainte & étre incluse dans le HS si celle-ci a été exclue du HS a une des dernieres
7. itérations. De méme, on interdit d’exclure une contrainte ou une variable qui a
été incluse dans le HS, & une des 7, dernieres itérations. Il v a ainsi deux parametres
de rétention Tabou a ajuster. Au cours de Uexpérimentation, ces parametres ont

été fixés & 7. = 5 et 7, = 2, aprés avoir constaté que ces valeurs donnaient de bons

[y
-1

Algorithme 34 Stratégie d’auto-ajustement de 7

Entrée: L'itération courante 4;
Le colit de Vaffectation courante h;
La rétention courante 7;
Un entier Ad > 0;
Un entier A7 > 0;
Un nombre réel g > 0;
Sortie : La nouvelle rétention 7’.

si h < h, alors
hy < h;
fin si
st i est un multiple de Ai alors
si hy < h* et random([0, 1]) < 0.5 alors
T — T}
fin si
si hy, > h;, alors
si7T < 7" alors
P — ((T* ~T)g + 1)/((7’* —7)g+ 2);
sinon
p=1/((r =79 +2);
fin si
si random([0, 1]) < p alors
77+ AT
sinon
-7 - AT
fin si
sinon
The— T
fin si
h, < hup:
hp + h;
fin si

118

résultats. Par ailleurs, le réglage des parametres iy, et Spax. QUi correspondent
an nombre d’itérations de recherche locale et au nombre de relances, a été fait
avec comme souci la rapidité. Ainsi, comme ['algorithme de hitting sef prend un
nombre exponentiel d’itérations pour obtenir un 1IS, il est important de passer le
moins de temps possible a chacune de ces itérations. De plus, 'optimalité de cette
procédure n'est pas aussi critique que procMWIC. En ce sens, si procMHS retourne
des HS qui ne sont pas minimaux. on peut quand méme obtenir un IIS, méme si
cet 1IS n’est pas minimum. Ainsi, ces parametres ont été fixés & 7., = 100000 et

Smax = 1.

Lialgorithme 23 de réduction requiert une implantation de la récupération d'erreur
particuliere a chaque méthode de détection. Ainsi, les algorithmes heuristiques
de retrait, d'insertion et de hitting set ont été implantés suivant les descriptions
données dans les sections 4.3.1.1, 4.3.1.2 et 4.3.1.3. Par ailleurs, comme les stratégies
de récupération d’erreurs peuvent causer 'obtention d’un ensemble incohérent qui
n’est pas un IIS, l'algorithme 32 de réductions successives a également été utilisé.
On doit fournir 3 cet algorithme le nombre maximum 7., de détections (i.e.
d'appels a procRéduit) consécutives sans réduction autorisées. Il a été coustaté
qu’aprés une deuxiéme détection sans réduction. l'ensemble K était, dans la plu-

part des cas, un IIS. Ainsi, ry. = 1 a été emplové lors de Uexpérimentation.

Dans le cadre de 'expérimentation, les seuls algorithmes de détection d’IIS qui ont
été retenus sont les algorithmes heuristiques de retrait, d’insertion, et de hitling set.
Ces algorithines ont été sélectionnés & cause de leur propriétés, de leur efficacité et
de leur robustesse (i.e. récupération d'erreur). Par ailleurs, d’autres techniques ont
également été retenues. Ainsi, dans certaines expériences, les algorithmes de retrait
et d’insertion ont été combinés avec 'heuristique de poids du voisinage, décrite
a la section 3.3.4, pour obtenir de plus petits IIS. La technique d’accélération

de la section 4.4 a également été intégrée a ces deux algorithmes, dans le but

119

d’obtenir un IIS le plus rapidement possible. De plus, une version heuristique de
I'algorithme de pré-filtrage. présenté a la section 3.3.3. a également été utilisée”.
L'algorithme servant & obtenir une borne inférieure sur la taille d'TIS minimum,
décrit & la section 3.3.5, a aussi été implanté en utilisant une méta-heuristique
pour procMWIC. Enfin, lors de la présentation des expériences. ces algorithies et

techniques seront dénotés comme suit:

Ret: I'algorithme heuristique de retrait;

Ret+h: Ret combiné avec I'heuristique de poids de voisinage:
Ins: Palgorithme heuristique d’insertion;

Ins+h: Ins combiné avec 'heuristique de poids de voisinage;
HS: Palgorithme heuristique de hitting set;

FI: l'algorithme de pré-filtrage suivi de Ins+h;

LB: l'algorithme de borne inférieure de la section 3.3.5;

Le but de certaines expériences est d’évaluer l'utilité de la détection d'1IS pouwr
résoudre des problémes complexes. Ainsi, des IIS sont obtenus pour des instances
du probléme de k-coloriage de graphe, dans le but de déterminer le nombre chroma-
tigue de ces graphes. Ces expériences nécessitent d’avoir une méthode exacte qui,
étant donné un graphe, retourne le nombre chromatique de ce graphe. La méthode
exacte utilisée pour ces expérknces est un algorithme de retour-arriere décrit dans
(Peemoller, 1983). Cet algorithme est une version corrigée de la modification ap-

portée par Brélaz a Ualgorithme de Brown (Brélaz, 1979; Brown, 1972).

’L’implantation de la version heuristique est similaire & celle de I'algorithme d’insertion.

120

et

Finalement, il est important de mentionner que toutes les expériences numériques,
présentées dans ce chapitre, ont été réalisées sur des ordinateurs ayant un processeur

AMD Athlon de 1.6Ghz et 512Mo de mémoire vive.

5.2 Description des données

Les expériences, portant sur le probleme de coloriage de graphes, ont été réalisées
sur deux jeux d’instances. Le premier jeu contient des instances générées aléatoi-
rement. Etant donné un entier positif 7 et un nombre réel p € [0, 1], un graphe
(n,p) aléatoire est tel que |V| = n et chacune des n{n — 1)/2 paires de sommets
a une probabilité p d’étre reliée par une aréte de £. Le parametre p est donc la
densité espérée d’aréte du graphe. Comme convention, on dénote “R{n).(p)” un

graphe (n.p) aléatoire particulier, généré dans I'expérimentation.

Le second jeu d’instances contient les graphes de références du deuxiéme challenge
DIMACS portant sur le coloriage de graphe (Johnson et Trick, 1996). Ces graphes,
qui proviennent de sources variées, ont des propriétés particulieres. Voici une bréve
description des différents types d'instances de ce jeu; pour plus d’informations. se

référer &4 http://mat.gsia.cmu.edu/COLORO4:

DSJ: Graphes aléatoires utilisés par Aragon et al. dans {Aragon et al., 1991);

DSJC: Graphes (n,p) aléatoires;
DSJR: Graphes géométriques;

DSJRc: Compléments de graphes géométriques;

REG: Graphes basés sur 'allocation de registres pour des variables dans le code

de programmes réels;

[y
[
frerh

LEI: Graphes de Leighton pour lesquels le nombre chromatique équivaut a la taille

de la plus grande clique;
SCH: Graphes d’horaires de cours:

SGB: Graphes provenant de (Knuth, 1993). Ces graphes peuvent étre divisés dans

les catégories suivantes:

Book: Etant donné une oeuvre littéraire, le graphe correspondant possede un
sommet par personnage, et une aréte pour chaque paire de personnages

qui se sont rencontrés dans 'oeuvre;

Game: Graphes représentant les parties disputées dans une saison de foot-
ball collégial. Ces graphes posseédent un sommet par équipe de la ligue,
et une aréte pour chaque paire d’équipes qui se sont affrontées durant

la saison;

Miles: Graphes représentant une carte routiére des Etats-Unis. Ces graphes
possédent un somimet par ville importante, et une aréte pour chaque

paire de villes suffisamment rapprochées;

Queen: Etant donné un échiquier m x n, le graphe correspondant possede
un sommet par case de Péchiquier et une aréte pour chaque paire de
cases situdes sur la méme rangée, colonne cu diagonale de I'échiquier.
Si m = n, on peut démontrer que le nombre chromatique du graphe est
toujours égal & n, dans les cas ou n est impair ott multiple de 3 (e.g.

n=135,6,7911..);

MYC : Graphes basés sur la transformation de Mycielski. Ces graphes sont
difficiles & résoudre car ils ne contiennent pas de triangles, mais leur nombre

chromatique augmente avec leur taille;

MIZ : Graphes possédant une clique de quatre sommets difficile a trouver;

HOS : Graphes obtenus d'un probléeme de partitionnement de matrices;

CAR : Graphes généralisant les graphes MYC avec P'ajout de somimets pour

accroitre leur taille sans changer leur densité;

5.3 Détection d’IIS de contraintes versus variables

La premiere expérience a pour but de comparer la détection d’'IIS de contraintes et
de variables sur un graphe (50, 0.5) aléatoire, R50.5, possédant 590 arétes de nombre
chromatique 9. Le tableau 5.2 montre les résultats de la détection sur R50.5 en
utilisant trois algorithmes: Ret+h, Ins+h et FI. Pour chacun de ces algorithmes,
10 IIS de variables et 10 de contraintes ont été obtenus pour le probléme de 8-
coloriage de R50.5, utilisant différentes graines aléatoires pour la procédure random.
Le nombre moyen de variables et de contraintes des CN résultant de ces IIS est
respectivement donné dans les colonnes |X’] et |C']. et la densité de contraintes
résultante dans la colonne /. Comme pour la densité d’aréte d'un graphe, p’ a été

calculée comme suit:
- 2 |C|
2T (20— 1)

D

Le nombre chromatique des graphes correspondant a ces IIS a ensuite été obtenu
avec la méthode exacte (voir section 5.1), aprés un nombre moyen de retour-arriéres
inscrit dans la colonne RA’. Ces résultats montrent que la détection fonctionne
différemment dans le cas d’'IIS de variables que pour des IIS de contraintes. Par
exemple, FI produit, en moyenne, les plus petits IIS de variables des trois al-
gorithmes, mais également les plus gros IIS de contraintes. A Topposé, Ret+h
donne, en moyenne, les plus gros 1IS de variables, alors que les plus petits 1IS
de contraintes ont aussi été obtenus par ce méme algorithme. Des différences ap-

paraissent également entre les IIS de variables et de contraintes trouvés par les

123

algorithmes de détection. Alors que les CN provenant des 1IS de contraintes ont
moins de contraintes que ceux des IIS de variables, les CN provenant des IIS de
variables ont moins de variables. En conséquence, la densité de contraintes des
CN d'IIS de contraintes est bien inférieure a celle des CN d’IIS de variables (0.44
en moyenne pour les IS de contraintes comparé a 0.54 pour les IIS de variables).
On remarque également que la densité de contraintes des CN d'TIS de variables
est supérieure a la densité p = 0.5 de R50.5. Cette angmentation de la densité
est probablement due & Uheuristique de poids de voisinage et a l'algorithme de
pré-filtrage qui trouvent des petits IIS dans des régions plus denses de V'instance.
Par ailleurs, un résultat moins prévisible est I'énorme différence dans le nombre de
retour-arrieres pour les IIS de variables et de contraintes (367 en moyenne pour les
IIS de variables comparé a 1670 pour les IIS de contraintes). Cet écart s’explique,
en majeure partie, par la différence dans la densité de contraintes des CN corres-
pondants. Tout d’abord, les CN d'IIS de variables ont moins de variables, donnant
un plus petit espace de recherche. Ensuite, le plus grand nombre de contraintes
dans ces CN permet d’éliminer plus de solutions de 'espace de recherche, réduisant

ainsi le nombre de retour-arrieres.

Lorsque le but est de trouver une borne inférieure au nombre chromatique dun
graphe, on constate qu’il est plus facile de le faire en cherchant des IIS de varia-
bles, que des IIS de contraintes. En plus de produire des IIS dont les graphes
correspondants sont plus faciles & résoudre par la méthode exacte, la détection
prend moins de temps pour des IIS de variables que des IIS de contraintes. Ainsi,
dans le cas de 'algorithme de retrait, le nombre d’itérations pour obtenir un IIS
est, dans le pire cas, égal & |V| pour un IIS de variable et & |E| pour un IIS de
contraintes. De plus, dans le cas de 'algorithme d’insertion, le nombre d’itérations
vaut, dans le pire cas, |X’| pour un IIS de variables et |’ pour un IIS de con-

traintes. Par exemple, la détection d’IIS de variables avec Ins+h a nécessité, en

124

moyenne, 37 itérations, alors que 345 itérations ont été requises pour la détection
d’'TIS de confraintes avec ce méme algorithme. Pour ces raisons, les expériences

suivantes se concentrent exclusivement sur la détection d’'ILS de variables.

Tableau 5.2 Détection d’IIS de variables et de contraintes sur Uinstance R50.5

IIS de variables IIS de contraintes

Détection | [X/] ¢’} p RA" | |&'] j¢'| P RA

Ret+h 382 3841 054 3804368 3275 0.50 10894
Ins+h 37.1 355.7 0.53 3485|412 3448 042 12954
F1 36.3 3447 054 371.8 1419 3444 040 25254

5.4 Détection d’IIS avec P'algorithme de hilting set

La prochaine expérience évalue algorithme de hitting set. Pour cette expérience
des graphes (n,0.5) aléatoires ont été générés pour chaque n € {15, 20, 25, 30,
35, 40, 45, 50}. L’algorithme de hitting set a ensuite été appliqué a la détection
de 10 IIS de variables pour le probléme de (k — 1)-coloriage de chacun de ces
graphes, utilisant & chaque fois une graine aléatoire différente pour random. Le
tableau 5.3 donne les résultats de cette expérience. Les trois premieres colonnes
fournissent le nombre de variables |X| et de contraintes |C| de l'instance originale,
ainsi que la valeur de k& utilisée pour le probléme. Cette valeur correspond au
nombre chromatique du graphe, obtenu avec la méthode exacte. Enfin, les deux
derniéres colonnes du tableau donnent le nombre moyen de variables |A”] des IIS
obtenus et le nombre moyen d’itérations mis par 'algorithme de hitting set pour

obtenir ces IIS.

7

Tableau 5.3 L’algorithme de hitting set sur des instances aléatoires de densité 0.5.

125

Instances 1IS de var.
(X el kX dter
15 46 4 4 10.8
26 95 5 5 16.6
25 137 6 g 40.4
30 211 7 7 22.2
B2t 7 7 41.7
40 369 8! 25 6415
45 473 9 42 164.8
50 590 9| 32 25544

On remarque, tout d’abord, que Valgorithme de Adtiing set a trouvé, pour chaque
instance, 10 IIS ayant le méme nombre de variables, ce qui indique que ces 1IS sont
fort probablement minimum. Par ailleurs, les résultats montrent également que
le nombre d’itérations de détection est, comme prévu, exponentiel par rapport a
|X]. On constate, cependant, que cette relation n’est pas strictement croissante,
puisque la valeur iter baisse temporairement lorsque k£ augmente. Ce phénomene

sera expliqué en détails lors d’une expérience subséquente (voir section 5.7).

5.5 Influence des heuristiques de détection

La prochaine expérience analyse 'influence des heuristiques sur la détection d’IIS de
variables sur un ensemble varié d’instances. Le tableau 5.4 présente les résultats de
cette expérience. Les cing premiéres colonnes donnent le nom, le type, le nombre de
variables et le nombre de contraintes de l'instance, ainsi que la valeur de k utilisée
pour le probléme. Cette valeur correspond au nombre chromatique du graphe,
obtenu avec la méthode exacte. Les colonnes suivantes contiennent le nombre

minimum, médian et maximum de variables de 10 IIS trouvés® par les algorithmes

3Une graine aléatoire différente a été utilisée pour chaque IIS.

126

Ret, Ret+h, Ins, Ins+h, et FI, pour le probleme de (k — 1)-coloriage de Pinstance

correspondante.

Tableau 5.4 Détection d'IIS de variables avec et sans heuristique

Instances 1IS de variables
Ret Ret-+h Ins Ins+h F1
nom type [X] [C] & 1] |x7] 1] X |X7]
R50.5 (n,p) 50 590 9| 364144 | 36,3841 | 37,41,44 | 34,37,39 1‘32,36,40j
R60.5 (n,p) 60 858 10 | 48,5153 | 44,4648 | 49,52,54 | 45,46,48 | 43,44,48

DSJC125.1 DSJC 125 736 5| 10,31,50 | 10,10,13 | 68,84,87 | 10,14,53 | 11,14,35
queenB_6 Queen 36 290 25,27,29 | 26,2727 | 27,28,30 | 24,2728 | 22,24,27
queen8.8 Queen 64 728 57,58,09 | 54,55,56 | 56,58,60 | 54,55,56 | 53,55,56
queeng. 9 Queen 81 2112 - | 73,74,74 - | 73,7475 | 73,75,76

-

I
oW

Ces résultats indiquent clairement que les algorithmes de retrait et d’insertion
donnent de plus petits IIS lorsqu’ils sont combinés avec 'heuristique de poids de
voisinage. Ainsi, dans tous les cas sauf un (i.e Ret sur queenf_6), les plus petits IIS
trouvés utilisant I'heuristique out un nombre inférieur ou égal de variables a ceux
obtenus sans heuristique. De plus, le nombre médian de variables des IIS obtenus
avec cette heuristique est strictement inférieur pour toutes les instances sauf une
(i.e. encore Ret sur queen6_6), tandis que les plus gros IIS trouvés avec Pheuristique
ont moins de variables pour toutes les instances. L’heuristique de poids de voisinage
permet donc de réduire la variance dans la taille des IIS obtenus. Un bon exemple
est l'instance DSJC125.1 qui contient des IIS minimum de seulement 10 variables.
Pour cette instance Ualgorithme de retrait sans heuristique a trouvé un tel IIS
minimum dans 2 des 10 cas, alors que le méme algorithme avec 'heuristique en a
trouvé un dans 6 cas. De méme, le plus gros IIS obtenu par Rei+h a 13 variables,

comparé & 50 pour Ret.

On constate, par ailleurs, que Palgorithme de pré-filtrage performe encore mieux
comme heuristique pour trouver de petits [IS. Ainsi, pour les instances R50.5,
R60.5, queen6.6 and queend.8, FI a trouvé des IIS contenant moins de variables
que ceux obtenus par n’importe quel autre algorithme de détection. De plus, pour
les instances R50.5 et queen6_6, ces IIS ont été montrés minimum par Palgorithme
de hitting set (voir Uezpérience suivante). En somme, considérant que I'algorithme
de pré-filtrage permet également d’accélérer la détection d’un IIS, cet algorithme

est probablement le meilleur choix pour obtenir de petits 1IS.

5.6 Bornes inférieures sur la taille 4’TIS minimum

Cette expérience a pour but de comparer les bornes inférieures sur la taille d’IIS
minimum obtenues par 'algorithme de hitting set et celui présenté a la section
3.3.5. Les résultats de cette expérience sont présentés dans le tableau 5.5. Les cing
premicres colonnes donnent le nom, le type, le nombre de variables et le nombre
de contraintes de I'instance, ainsi que la valeur de k utilisée pour le probléme,
correspondant au nombre chromatique du graphe, obtenu avec la méthode exacte.
Les deux derniéres colonnes donnent le nombre minimwm, médian et maximum
de variables de 10 IIS trouvés par HS pour le probleme de (k — 1)-coloriage de
Vinstance correspondante, et de 10 bornes inférieures obtenues par LB. Dans le cas
de HS, les valeurs précédées de “>” représentent des bornes inférieurcs obtenues
en arrétant algorithme aprés 3000 itérations sans obtenir d’TIIS*. Ces résultats
montrent que HS performe mieux que LB pour obtenir une borne inférieure. Ainsi,
pour toutes les instances testées avec HS, les bornes obtenues sont plus élevées que
celles trouvées pas LB. Par exemple, AS a trouvé une borne de 36 variables pour

Uinstance R60.5, alors que la meilleure borne obtenue par LB est de seulement 11

4Les bornes correspondent 3 la taille du dernier HS.

128

variables. De plus, AS a trouvé des bornes optimales pour les instances £50.5 and
queen6 6. Enfin, lorsque la taille de l'instance permet son utilisation, S produit

de meilleures bornes inférieures que LB

Tableau 5.5 Bornes sur la taille 4’IIS minimum de variables

Instances IS de variables

HS LB

nom tyoe X lCl k| X | i
R50.5 {n,p) 50 580 91 32,32,32 | 13,13,13
R60.5 (n,p) 60 858 10 > 36 | 10,10,11

DSJC125.1 DSJC 125 736 5 > 10 445
queent 6 Queen 36 290 7| 22,2222 77,7
queend_8 Queen 64 728 9 >29 | 11,11,12
queend 9 Queen 81 2112 10 - 112,12,13

5.7 Détection d’IIS sur les instances aléatoires

La prochaine expérience cherche & démontrer l'utilité de la détection d’IIS de va-
riables pour obtenir de maniére exacte une borne inférieure sur le nombre chro-
matique de graphes aléatoires. L’approche utilisée est similaire & celle proposée
par Herrmann et Hertz (voir section 2.4). Soit un graphe (n,p) aléatoire G. La
méthode exacte est d’abord appliquée sur ce graphe afin de déterminer son nom-
bre chromatique x(G). Dans les cas out la méthode exacte n'a pas trouvé x(G)
dans un temps alloué raisonnable, une borne supérieure sur x(G) est obtenue &
Vaide d’une méta-heuristique. Par exermple, on peut convertir le probleme de k-
coloriage du graphe en CN, et déterminer la plus petite valeur de % telle qu'une des
méta-heuristiques présentées a la section 4.1 obtienne une affectation de colit nul.
Ensuite, un algorithme de détection est appliqué au probléme de (k — 1)-coloriage

pour obtenir un IIS de variables. Finalement, la méthode exacte est appliquée au

129

T 7
070 4 £]
L1
!
g
- i
wl T /L
£
% 4 . i k=6
! i e k=6
i k=7
o 050 :
K] ;
3 i
3 i
Boso4 -4 - G e e
o 1 -
S -
Rd T
3 {
« 530 4
i
i
0.20 4
0.10 4
0.00
96 00 110 120 130 140 150 160 170 180 190 200 210 220 230

Nombre original de variables

Figure 5.1 Réduction de variables pour des instances (n, 0.1} aléatoires versus n

graphe G’ induit par les sommets correspondant aux variables de I'IIS. Comme
ce graphe possede possiblement moins de sommets et d’arétes que G, le nombre
de retour-arrieres nécessaires a la méthode exacte pour déterminer x{G') devrait
également étre réduit. Si la méthode exacte parvient & déterminer x(G’), cette
valeur correspond alors & x(G). Sinon, le méme processus est répété pour une plus
petite valeur de k, qui est alors une borne inférieure & x{G). Par ailleurs, puisqu’ils
ne possédent aucune structure particuliere, les graphes (n, p} aléatoires testés dans
cette expérience sont des instances qui se portent mal a la détection d’'IIS. Ainsi,
pour des valeurs de p plus élevées, de tels graphes peuvent contenir des IIS ayant

presque le méme nombre de variables.

Les tableaux 1.1 et 1.2 montrent les résultats de la détection d’I1IS de variables sur
des graphes aléatoires pour p valant 0.1 et 0.5. Ainsi, quatre graphes aléatoires ont

été générés pour chaque paire (n,0.1) avec n € {100,110, ..., 220}, et pour chaque

025 4 . P
!
0.20 4 //’5
@ /‘
2 #
5 015 -
> 5 ~~ k=13
3 e k=14
§ —— k=15
G
£
2
&

o

3
N

o

0.05

.-Ts{.
0.00 v T T

75 80 85 a0 95 100 105
Nombre original de variables

Figure 5.2 Réduction de variables pour des instances (n,0.5) aléatoires versus n

0.50 4

28.00

~0.50 4

~1.00

Réduction de retour-arrigres

~1.50

-2.00 5

3004 .- e e v e o e e e
Norbre original de varables

Figure 5.3 Réduction de retour-arrieres pour des instances (n, 0.1) aléatoires versus

[

131

paire (n,0.5) avecn € {80,90, 95, 100}. Les trois premiéres colonnes de ces tableaux
contiennent le nombre de variables et de contraintes, ainsi que la borne k£ > x(G)
utilisée pour le probléme de (k — 1}-coloriage de ces graphes. La quatrieme colonne
donne le nombre de retour-arrieres requis a la méthode exacte pour déterminer
x(G). Les valeurs données sans parenthéses indiguent que x{G) a pu étre calculé
sans dépasser la limite des 250 000 000 retour-arrieres permis. Dans ces cas, k =
x{(G). Par contre, les valeurs comprises entre parenthéses représentent le temps
de calcul (en secondes) qu’il a fallu & la méthode exacte pour atteindre la limite
de retour-arridres. Dans de tels cas, k est une borne supérieure de x(G), obtenue
& l'aide d’une méta-heuristique. Par ailleurs, les autres colonnes contiennent le
nombre de variables et de contraintes du CN provenant du plus petit 1IS de 10
1IS obtenus avec Ret+h, Ins+h et FI ainsi que le nombre de retour-arriéres requis
pour déterminer le nombre chromatique des graphes correspondants. Encore une
fois, les valeurs comprises gntre parentheéses représentent les temps de calcul de la

méthode exacte pour dépasser la limite de retour-arriéeres. Le nombre chromatique

de ces graphes réduits peut alors étre strictement inférieur & k.

Les figures 5.1 et 5.2 ont été produites avec les IIS de variables obtenus par FI°.
Chaque courbe contient des instances pour une valeur particuliere de &, et est
tracée de telle sorte que les valeurs en abscisse sont le nombre de variables |X| de
ces instances, et les valeurs en ordonnée sont les réductions minimum, moyenne et
maximum des variables pour les IIS correspondants. Etant donné un ITS de |X/]

variables, la réduction de variables est calculée comme suit:

Ces figures montrent, tout d’abord que la réduction de variables diminue lorsque p

5Les 1IS trouvés par Ret-+h et Ins+h donnent des courbes similaires.

132

augmente. Ainsi, la réduction maximum atteinte pour les instances de 100 variables
est de 62% lorsque p = 0.1, alors que la réduction maximum pour p = 0.5 est
seulement de 18%. Ce résultat n’est pas surprenant, puisque les instances ayant une
plus grande densité de contraintes ont généralement de plus gros IIS. De plus, ces
figures révelent deux tendances contradictoires, lorsqu’on les considere séparément.
D’un c6té, la réduction de variables décroft lorsque & augmente. Considérons, par
exemple, les valeur de réduction pour les courbes de la figure 5.1. Pour & = 5, la
réduction maximum de variables est de 73%, tandis que cette valeur baisse a 57%
pour k = 6, et 39% pour k£ = 7. De méme, pour les courbes de la figure 5.2, la
réduction maximum de variables est de 21% pour k& = 13, 18% pour k = 14, et
3% pour k = 15. D’un autre coté, la réduction de variables augmente avec n, pour
une valeur particuliere de k. Considérons a nouveau la figure 5.1. Pour £ = 5,
la réduction maximum de variables passe de 62%, lorsque n = 100, a 73%, pour
n = 130. De la méme maniére, pour k = 6 la réduction passe de 24%, pour n = 130
3 57% pour n = 170. La méme chose se produit pour k = 7, ol1 la réduction passe

de 7% & 38%, lorsque n varie de 180 & 220.

La figure 5.3 montre la réduction minimum, moyenne et maximum de retour-
arrieres de la méthode exacte pour les IIS obtenus avec une valeur particuliere de k.
Pour & = 5. la réduction maximum de retour-arrieres est de —33% lorsque n = 100
(i.e. le nombre de retour-arriéres est supérieur pour le graphe réduit). Cependant,
Ia réduction maximum augmente & une valeur raisonnable de 77% pour n = 110,
et presque 100% pour n = 120 et n = 130. Pour k = 6, la réduction maximum de
retour-arriéres commence a une valeur positive de 30% pour n = 130, mais tombe
3 —8% pour n = 140 et jusqu'a —40% pour n = 150. Heureusement, la réduction
maximum remonte ensuite & une valeur positive de 24% pour n = 160 et atteint
prés de 100% pour n = 170 et n = 180. Ces résultats suggérent que la détection

d'TIS est particulierement utile pour déterminer le nombre chromatique d’instances

133
ayant le plus possible de variables pour une valeur de k donnée.

Dans la plupart des problémes combinatoires, il existe une brusque transition dans
la taille des instances qui peuvent &tre résolues optimalement et celles qui ne peu-
vent pas ’étre. Dans le cas de graphes (n, 0.1) aléatoires, la méthode exacte utilisée
dans U'expérimentation résoud toutes les instances de 160 variables en moins de
200 000 retour-arriéres, alors que deux des quatre instances de 170 variables n'ont
pas été résolues apres 250 000 000 retour-arrieres, et aucune des instances de 180
variables n'ont été résolues dans cette méme limite. Cependant, comme ces ins-
tances possedent un nombre de variables situé & la limite supérieure pour p = 0.1
et k = 6 (le. toutes les instances de plus de 180 variables ont k = 7), elles sont
d’excellents candidats pour la détection d’IIS. Ainsi, les deux instances de 170
variables qui n’ont été résolues dans la limite de retour-arriéres ont produit des
1IS donnant des graphes facilement résolus en 167 544 et 7367 retour-arrieres. De
méme, pour l'instance de 180 variables pour & = 6, 'IIS obtenu a donné un graphe

qui a été résolu en seulement 10 347 retour-arriéres.

&

On constate, finalement, que les résultats de cette expérience révelent un phénomeéne
surprenant. En réduisant le nombre de variables d'une instance donnée, on pour-
rait s’attendre & ce que la méthode exacte, dont la complexité est exponentielle
au nombre de variables, résoud cette instance en un nombre inférieur ou égal de
retour-arrieres. Cependant, la figure 5.3 montre clairement que cela n’est pas tou-
jours le cas. Par exemple, pour les instances de 150 variables, tous les IIS trouvés
ont donné des graphes pour lesquels le nombre de retour-arrieres a augmenté, au
lieu de diminuer. Un exemple frappant est celui d’un IIS de 103 variables obtenu
par Ins+h pour une instance de 160 variables (i.e. réduction de variables de 36%).
Alors que la méthode exacte a mis 199 720 retour-arriéres pour résoudre Vinstance
originale, 7 955 344 retour-arrieres ont été nécessaires pour l'instance réduite (i.e.

augmentation de 3883% des retour-arritres). Ce phénomene. déjd observé par

134

Herrmann et Hertz dans (Herrmann et Hertz, 2002), pourrait s'expliquer par le
comportement de l'algorithme exact de coloriage utilisé. Ainsi, cet algorithme
utilise une heuristique qui colore d’abord le sommet ayant la plus grande valeur de
saturation (i.e. le nombre de couleurs différentes utilisées sur les sommets voisins).
Cette heuristique recherche, indirectement, un petit ensemble de sommets pour
lesquels aucune coloration n’existe. En trouvant un IIS dans une instance, les algo-
rithmes de détection se trouvent, en méme temps, a éliminer tous les autres IIS de
Dinstance. A Pexception de I'algorithme de hitting set qui trouve des IIS minimum,
les algorithmes de détection éliminent donc de plus petits IIS, augmentant ainsi le

nombre de retour-arriéres.

5.8 Détection d’IIS sur les instances de référence

La dernidre expérience consiste & obtenir des IIS afin de déterminer une borne
inférieure sur le nombre chromatique d’instances de référence du challenge DIMACS.
Les tableaux 5.6 5.7 et 5.8 présentent les résultats de cette expérience. ILes cing
premieres colonnes de ces tableaux contiennent le nom, le type, le nombre de varia-
bles et de contraintes, ainsi que le nombre de retour-arrieres requis par la méthode
exacte pour déterminer x(G). Les valeurs comprises entre parenthéses représentent
le nombre de retour-arrieres exécutés par la méthode exacte avant d’atteindre la
limite de 4 heures de temps de calcul. Dans ces cas, la méthode cxacte n’a pas
pu déterminer x(G). La colonne suivante donne une borne inférieure & < x(G).
Les valeurs de k précédées d'un astérisque “x” indiquent que x(G) est connu, et
gue k = x{(G). Les deux colonnes suivantes contiennent le nombre de variables

et de contraintes de CN provenant du plus petit IIS de variables obtenu en 5 es-

sais® pour le probléme de (k — 1)-coloriage de Uinstance correspondante. Ensuite,

8Utilisant chaque fois une graine aléatoire différente pour random.

13

(&2

Pavant-derniere colonne donne le nombre de retour-arrieres mis par la méthode
exacte pour déterminer le nombre chromatique de l'instance réduite. Une fois de
plus, les valeurs comprises entre parenthéses correspondent aux cas ofi ce nombre
chromatique n’a pu étre obtenu & lintérieur de la limite de 4 heures de temps
de calcul, et pour lesquels ce nombre chromatique peut étre strictement inférieur
3 k. Enfin, la derniere colonne contient des bornes inférieures sur la taille d'IIS

minimurm des instances testées, obtenues par LB.

Afin de faciliter la présentation les résultats de cette expérience, les instances seront
divisées en trois catégories. La premiere catégorie est composée d’instances dont
I'ensemble de variables X est probablement un IIS au probléme de (£ —1)-coloriage
de graphe (i.e. instances provenant de graphes sommet-critiques). Les instances de
type MYC, MIZ, ainsi que celles dont le nom contient Insertions sont dans cette
catégorie. Les résultats du tableau 5.6 montrent que pour toutes les instances de
cette catégorie, un IIS X' = X a été obtenu. De plus, pour les 12 instances ol
x(G) est connu, les expériences ont permis d’observer que ces instances proviennent
de graphes sommet-critiques. Pour les 6 autres instances, il a été démontré gue
k < x(@G) ou que ces instances proviennent également de graphes sommet-critiques.
Par ailleurs, comme la technique d’accélération de la section 4.4 est utilisée en
combinaison avec algorithme de détection, les IIS ont été obtenus rapidement,
méme pour les instances ayant un grand nombre de variables. Ainsi, dans le cas de
I'instance 3-Insertions_5 possédant 1406 variables, U'TIS a été obtenu en seulement
22 itérations’. La technique d’accélération est donc particulidrement utile pour
montrer que 'ensemble des variables ou des contraintes d’une instance est un IIS.
Quand aux bornes inférieures obtenues par LB, ces bornes sont généralement pres
de |X|. Par exemple, une borne optimale valant |X| a été obtenue pour toutes les

instances de type MY sauf une.

71152 variables de I'IIS ont été trouvées aprés la premiére itération, et 1372 aprés la seconde.

136

Tableau 5.6 Détection d’IIS de variables sur la premiére catégorie d’instances du

challenge DIMACS

Instances IS de variables

nom type || ICl RA k| 1x] J¢] RA|LB
mycield MYC 11 20 41 %4 11 20 - 11
mycield MYC 23 71 106 | *5 23 71 -] 23
myciels MYC 47 236 300998 | *6 47 236 -1 47
myciel6 MYC 95 755 (138446852) | *7 95 755 -1 95
myciel? MYC 191 2380 (77223695) | *8 | 191 2630 - 189
mug88_1 MIZ 88 146 2204467 | *4 88 146 -1 55
mugl8._25 MIZ 88 148 942061 | *4 88 146 -1 56
mugliD.1 MIZ 106 166 1406570 | *4 | 100 166 -1 67
mugl00_25 MIZ 100 166 974170 | *4 | 100 166 -1 68
i-Insertions. 4 CAR 67 232 104296036 | *5 67 232 - | 67
1-Insertions.5 CAR 202 1227 (133727661) | 6 | 202 1227 - § 202
1-Insertions.6 CAR 607 6337 (b0929137) | 7| 607 6337 - | 448
2-Insertions.3 CAR 37 72 3064 | *4 37 72 -1 37
2-Insertions.5 CAR 597 3936 (48458541) | 6| 597 3936 - 1208
3-Insertions.3 CAR 56 110 723616 | *4 56 110 - 56
3-Insertions 4 CAR 281 1046 (95076991) i 5| 281 1046 - | 220
3-Insertions.5 CAR 1406 9695 (13784327) | 6 | 1406 9695 -1 73
4-Insertions 4 CAR 475 1795 (T0891706) | 5| 475 1795 -1 232

La seconde catégorie renferme les instances pour lesquelles les IIS minimum sont les
sommets de cligues pour k = x(G). Les instances de type Book, REG, LEI, SCH,
Game et Miles sont toutes dans cette catégorie. Le tableau 5.7 présente les résultats
pour ces instances. Ces instances sont de bons candidats & la détection d’'IIS parce
qu'elles ont de trés petits 1IS (i.e. sommets de cliques) qui sont généralement
faciles a détecter. De plus, comme le nombre chromatique d’'une clique est égal
4 son nombre de sommets, la méthode exacte n'est pas du tout nécessaire. On
remargiue que ces 1IS minimaux ont été trouvés dans chacune des 39 instances
de cette catégorie, parmi lesquelles 17 n’avaient pas été résolues par la méthode
exacte. Une fois de plus, LB donne des bornes généralement voisines de la taille

des 1IS minimum.

137

Tableau 5.7 Détection d’IIS de variables la deuxiéme catégorie d'instances du chal-

lenge DIMACS

Instances 1IS de variables

nom type |X] (C] RA E k X' ¢l RAS S LB
fpsol2.1.1 REG 466 11654 (169107715) | *65 65 2080 0] 24
fpsol2.1.2 REG 451 8691 2 1 *30 30 435 0 24
fpsol2.4.3 REG 425 8688 2 1 *30 30 435 01 24
inithx.i.1 REG 864 18707 1] *54 54 1431 0 41
inithx.1.2 REG 645 13979 (139157853} | *31 31 465 g! 25
inithx.1.3 REG 621 13969 (141407783) | *31 31 465 g1 25
mulsol.i.1 REG 197 3925 1] *49 49 1176 0 44
mulsol.i.2 REG 188 3885 61 *31 31 465 0 24
mulsol.i.3 REG 184 3918 6| *31 31 465 Gl 25
mulsol.i.4 REG 185 3546 (161605284) | *31 31 465 0] 24
mulsol.i.b REG 186 3973 (161214648) | *31 31 485 0! 28
zeroin.i.l REG 211 4100 24 | *49 49 1176 0 44
zeroin.i.2 REG 211 3541 11472 | *30 30 435 01 27
geroin.i.3 REG 206 3540 11472 | *30 30 435 0] 27
le450.15a LEIL 450 8168 (54447597) | *15 15 105 0 7
1e450_15b LEI 450 8169 (49996287} | *15 15 105 0 7
le450_15¢ LEI 450 16680 (40481025) | *15 15 105 0 3
led450.15d LEI 450 16750 (35180270) | *15 15 105 0 3
le450.25a LEI 450 8260 14 | *25 25 300 g1l 20
led50.25b LEI 450 8263 12 | *25 25 300 04 19
led50_25¢ LEI 450 17343 {41188964) | *25 25 300 0 7
le450_25d LEI 450 17425 (42974825) | *25 25 300 0 7
1450 5a LEI 450 5714 {21467721) | *5 5 10 ¢ 2
1e450.5b LEI 450 5734 (28479480) | *5 5 10 0 2
le450.5¢ LEI 450 9803 541 *5 5 10 v 2
le450_5d LEI 450 9757 5754158 | *5 5 10 0 2
schooll SCH 385 19095 17 | *¥14 14 91 0 2
schooll.nsh SCH 352 14612 {59393984) 14 14 91 0 2
anna Book 138 493 8| *11 11 55 01 11
david Book 87 406 36 | *11 11 55 01 11
homer Book 561 1629 (244497375) | *13 13 78 01 13
huck Book T4 301 211680 | *11 11 55 0 11
jean Book 80 254 8645 | *10 10 45 01 10
games120 Game 120 638 (516246020) | *9 9 36 0 9
miles1000 Miles 128 3216 4583804 | *42 42 861 0] 41
... continué sur la page suivante

Instances IIS de variables
nom type Xl |C RA | B {|X]] RA|LB
miles1500 Miles 128 5193 1692256 | *73 73 2628 6 73
miles250 Miles 128 387 (136594896) *8 8 28 0 8
milesb00 Miles 128 1170 8| *20 20 190 0] 20
miles750 Miles 128 2113 434 | *31 31 465 0] 28

La derniere catégorie est composée des instances qui ne font pas partie des deux
premiéres catégories. Le tableau 5.8 présente les résultats pour ces instances. Parmi
ces instances sont celles de type DSJC. Provenant de graphes (n, p) aléatoires, ces
instances sont donc de mauvais candidats & la détection d’IIS et, contrairement 2
celles de la seconde catégorie, donnent généralement de gros IIS. A Pexception de
I'instance DSJC125.1, qui a un I1IS de 10 variables pour k = x(G), la détection d’TIS
doit donc se concentrer sur I'obtention de bornes inférieures sur x{G) (i.e. on doit
utiliser & < x(G)). Les expériences ont ainsi montré, pour Uinstance DSJC125.5,
que x(G) > 14, alors que la meilleure borne connue pour cette instance était
x(G) > 13. De plus, les expériences ont montré que x(G) > 6 pour P'instance
DSJC250.1. Cependant, les bornes inférieures k que 'on peut obtenir pour une
instance donnée sont limitées par la taille des 1IS trouvés pour cette valeur. Ainsi.
alors qu'un IIS a été trouvé pour instance DSJC250.9 avec k = 50, cet 1IS supposé
était trop gros (133 variables) pour que la méthode exacte puisse résoudre le graphe

correspondant.

Tableau 5.8 Détection 'IIS de variables sur la troisitme catégoric d’instances du

challenge DIMACS

Instances 118 de variables
nom type |AX1 ¢ RA | kX RA’ | LB
DSJCi25.1 DSJC 125 736 227 | *5 i0 26 1 4
DSJC125.5 DSJC 125 3891 (71844096) | 14 80 1674 37453055 -
DSJIC125.9 DSJC 125 6961 (88250955) | 40 78 2782 (205206643) -
DSJC250.1 DSJC 250 3218 {42398413) 8 70 410 3621 -

... continué sur la page suivante

Instances I1S de variables

nom type |X] ic| RA | & [lx] e RA” | LB
DSJC250.9 DSIC 250 27897 {33839645) 50 | 133 8052 (88911252) -
DSJR500.1 DSIR 500 3555 (141520342) 12 12 66 01 11
DSJR500.5 DSJR 500 58862 (73870922) 26 26 325 0 1
DSJR500.1¢ DSJRe 500 121275 {6401403) 63 63 1953 0 2
gueend.5 Queen 25 160 1] *5 5 10 0 5
queenB_§ Queen 26 280 410 | *7 25 148 45 7
queen?_7 Queen 49 476 2555 | *7 7 21 0 5
queend_12 Queen 96 1368 (139081460) | *12 12 66 04 11
queen8_8 Queen 64 728 597552 *9 54 538 188021 | 11
queen9.9 Queen 81 2112 80603809 | *10 T4 297 135083408 | 12
queenl(0.10 Queen 100 2940 {134401345) 10 10 45 0 -
*11| 89 1220 (424776367) | 11

queenll. 1l Queen 121 3960 (116006580) | *11 11 55 0 6
queeni2.12 Queen 144 5192 {101315208) | *12 12 56 0 -
queenl3.13 Queen 169 6656 (90800757) | *13 | 13 78 0| 6
queeni4d 14 Queen 196 8372 (B3679129) | *14 14 91 0 -
queenlb.15 Queen 225 10360 (69555352) 15 15 105 0 -
queenl6.16 Queen 256 12640 (72473005) | 16 16 120 0 -
ash331GPIA HOS 662 4185 14 *4 9 16 2 2
1-Fullins.3 CAR 30 100 7 *4 7 12 1 7
1-Fullins. 4 CAR 93 593 5567 *5 15 43 6 14
1-Fulllns 5 CAR 282 3247 (106523508) *5 31 144 2711 19
2-Fulllns_3 CAR 52 201 1850 *5 9 22 1 9
2-Fullins_4 CAR 212 1621 (209999176) *6 19 75 8119
2-Fulllns. 5 CAR 852 12201 (91922086) s 39 244 715 31
3-Fullins.3 CAR 80 346 366830 *5 5 10 0 5
3-Fulllns 4 CAR 405 3524 (164058937) *7 23 116 101 23
3-Fulllns.5 CAR 2030 33751 (34366333) *8 47 371 167 -
4-Fulllns.3 CAR 114 541 80247163 *7 13 51 113
4-Fulllns 4 CAR 690 6650 (126559559) *3 27 166 i2 1 25
5-Fullins_3 CAR 154 792 (448858523) *8 15 70 1 15

Les instances de type Queen sont également comprises dans la derniére catégorie.
Ces instances sont particulieres car les IIS minimum pour k = x(G) donnent un
CN qui est soit une cligue ou qui n’est presque pas réduit. En conséquence, des IS
minimum donnant des cliques ont été trouvés pour les instances gueend.5, queen7_7,
queen8_12, queenll 11, queenl2_12, queenl3 18 et queenl/_14). 1l a également été

possible de déterminer x(G) pour les instances queen6_ 6, gqueen§.8 et queend 9

140

aprés avoir trouvé des IIS suffisamment petits pour la méthode exacte. Enfin, des
bornes inférieure de k£ = 10, &k = 15 et k£ = 16 ont respectivement été obtenues

pour les instances queenl0 10, queeni5 15 and queenl6_16.

Le dernier ensemble d’instances de la troisieme catégorie est celui de type CAR
dont le nom contient Fulllns. Ces instances sont alors des candidats idéaux pour
la détection d’IIS. On remarque d’'abord que x(G) a été obtenu par la méthode
exacte pour seulement 5 de ces instances. Par ailleurs, selon les plus récentes pub-
lications portant sur le coloriage de graphe, le nombre chromatique des instances
2-Fulllns_4, 2-Fulllns_5, 3-Fulllns_4 et 4-Fulllns_{ n’a jamais été démontré par une
méthode exacte. Pour ces instances, des petits IIS ont été trouvés pour une borne
supérieure connue k > x(G). De plus, comme le nombre chromatique des graphes
correspondants, obtenu par la méthode exacte, est une borne inférieure k < x(G),
il a été montré que x(G) = k. Le nombre chromatique de ces instances a donc été

fixé & ’aide de la détection d'IIS.

Pour terminer, les bornes inférieures obtenues par LB pour cette catégorie d’instan-
ces sont beaucoup plus basses que le nombre de variables des IIS trouvés. Sachant
que ces instances ont probablement de gros IIS minimum, on en conclut que LB

donne de mauvais résultats pour cette catégorie d'instances.

5.9 Temps de calcul des algorithmes de détection

Puisque la procédure procM WIC représente la presque totalité de la complexité des
algorithmes de détection®, le temps de calcul de la détection dépend principalement
du nombre de fois que cette procédure est appelée (i.e. nombre d’itérations), ainsi

que du temps passé a chacun de ces appels. Il a été vu que le nombre d’itérations de

8 A Vexception de I'algorithme de hétting set qui utilise aussi procMHS.

141

détection dépendait de 'algorithme utilisé, de la taille de Pinstance, du type d'IIS
recherché (i.e contraintes ou variables), de la taille de ces [IS, et du nombre d’erreurs
rencontrées. Par ailleurs, le temaps passé dans chaque appel & procMWIC dépend
surtout de la difficulté & résoudre le MWCSP ou le MPWCSP correspondant. Ainsi,
si la méta-heuristique est arrétée trop t6t, I'affectation retournée est possiblement
sous-optimale, et des erreurs surviendront. Ces erreurs peuvent causer Péchec de la
détection. Par contre, si on laisse la méta-heuristique s’exécuter pendant longtemps
(i.e. grand nombre d’itérations de recherche locale et de relances), 'affectation
retournée aura plus de chances d’étre optimale, mais la détection sera également
plus longue. Voici quelques indications sur le temps de calcul total requis pour la

détection d’IIS lors de I'expérimentation.

Considérons la détection d'IIS pour les instances aléatoires, dont les résultats sont
donnés dans les tableaux [.1 et 1.2. Le jeu de parametres utilisé pour procMWIC
dépend de la difficulté de linstance (voir tableau 5.1). Pour p = 0.1 et n €
{100,110}, le jeu utilisé est celui des instances faciles, et la détection, & l'aide
de 'algorithme d’insertion, a pris moins de 5 minutes®. Par ailleurs, pour n €
{120,130, 140}, le jeu de paramétres utilisé est celul des instances moyennes, et
la détection a pris moins de 30 minutes. Par contre, pour n > 150, le jeu de
parameétres employé est celui des instances difficiles. La durée de la détection, pour
ces instances, a donc considérablement augmenté. De plus, la durée de la détection
a également augmenté avec la taille des instances. Ainsi, pour n = 150 la détection
a mis moins de 2 heures, alors que pour n = 220, la détection a pris jusqu'a 10
heures. Par ailleurs, pour toutes les instances avec p = 0.5, le jeu de paramétres
utilisé est celui des instances difficiles. La détection a donc mis, dans les pires cas,
plusieurs heures. Cependant, I'algorithme de pré-filtrage a permis de réduire la

durée de la détection. L’étape de pré-filtrage prend de quelques secondes, pour

®Environ le double du temps est requis pour 'algorithme de retrait.

,._A
N
b

les instances faciles, & quelques minutes pour les instances difficiles. Par contre,
suite a cette étape, la durée de la détection, faite avec I'algorithme de retrait ou

d’insertion, a &8, dans certains cas, réduite de moitié.

On note cependant que la détection a été moins longue pour les instances qui ne
sont pas aléatoires. Ainsi, en utilisant la technique d’accélération de la section 4.4,
la détection a pris moins de 10 minutes, pour toutes les instances du challenge
DIMACS provenant de graphes sommet-critiques. Ensuite, pour les instances con-
tenant un IIS minimum, correspondant aux sommets d’une clique, I'algorithme de
pré-filtrage a généralement isolé cet IIS en quelques minutes, de telle sorte que la
détection a mis au total moins d’une heure pour ces instances. Enfin, le temps re-
quis pour obtenir une borne inférieure par l'algorithme de hitiing set ou 'algorithme
de la section 3.3.5 dépend de la qualité recherchée de ces bornes. Ainsi, dans le cas
de Palgorithme de hitling sef, unc heure est généralement suffisante pour converger
vers une borne (i.e. les itérations suivantes sont, & toute fin pratique, inutiles),

alors que quelques minutes seulement sont nécessaires pour le second algorithme.

143

CHAPITRE 6

CONCLUSION

Dans ce mémoire ont été présentés des algorithmes pour trouver des IIS de con-
traintes et de variables dans un CSP incohérent. Ainsi, les algorithmes de re-
trait, d'insertion et de hitiing set garantissent l'obtention d'TIS en un nombre fini
d'itérations. Par ailleurs, il a été montré que Valgorithme de hitting set pouvait
obtenir des IIS de cardinalité minimum, si la procédure procMHS retournait des
HS de cardinalité minimum. De plus, il a été vu que cet algorithme prenait un
nombre exponentiel d'itérations pour trouver un tel IIS. Cependant, il est possible
d’obtenir, en tout temps, une borne inférieure! sur la taille d’TIS minimum avec la
taille du dernier HS retourné par procMHS. Une borne inférieure sur la taille d’TIS
minimum peut également étre obtenue a l'aide de l'algorithme décrit 4 la section

3.3.5.

Des techniques complémentaires de détection ont également été proposées. Parmi
ces techniques, 'algorithme hybride est une variante de 'algorithme de retrait qui
utilise les poids des contraintes ou des variables pour améliorer, dans certains cas,
1a détection. I a été montré que cet algorithme garantissait également la détection
d'un IIS dans un nombre fini d’itérations. De plus, Valgorithme de retour-arriére,
basé sur lalgorithme d’insertion, explore un arbre de recherche ol les noeuds
sont les contraintes violées ou les variables désinstanciées a chaque itération, et
les branches la contrainte ou la variable de cet ensemble qui est conservée. Il a

été montré que cet algorithme permettait, en un nombre exponentiel d’itérations,

YCette borne est exacte seulement si procMHS retourne des HS de cardinalité minimale, sinon
il g'agit d’'une borne sur la taille d™un IIS quelconque.

144

d’obtenir le plus petit 1IS pouvant étre obtenu par Palgorithme d’insertion. Des
heuristiques permettant d’obtenir de plus petits IIS ont également été décrites.
Ainsi, Palgorithme de pré-filtrage peut étre utilisé comme pré-traitement pour fil-
trer le plus possible de contraintes cu de variables, dans le but d'isoler un II5 de
petite taille, ensuite trouvé par un algorithme de détection. Enfin, Uheuristique de
poids de voisinage utilise le poids des contraintes ou des variables pour guider les

algorithimes de détection vers 'obtention d'un petit IIS.

1l a été vu que les procédures procMWIC et proc MHS utilisées par ces algorithmes
devaient respectivement résoudre le MWOCSP ainsi que le MPWCSP, et le MHS,
qui sont trois problémes NP-difficiles. La détection d’IIS, utilisant des algorithmes
exacts pour procMWIC et procMHS, est alors impraticable. Des méta-heuristiques
pour résoudre le MWCSP et le MPWOCSP, basées sur la recherche locale Tabou,
ont alors été décrites®’. Ainsi, une version heuristique des algorithmes de re-
trait, d’insertion et de hitting set, utilisant ces méta-heuristiques, a été proposée.
Cependant, il a été montré que les affectations sous-optimales retournées par ces
méta-heuristiques causaient des erreurs pouvant mener & 'obtention d'un ensem-
ble cohérent de contraintes ou de variables. Pour déceler et corriger ces erreurs,
des stratégies de récupération d’erreur ont alors été ajoutées & ces algorithmes de

détection.

Des expériences ont par ailleurs été menées sur des instances générées aléatoirerment
ou connues du probleme de coloriage de graphes. Ces expériences avaient pour but
d’évaluer les principaux algorithmes et techniques de détection, ainsi que de mon-
trer 'utilité des IIS pour prouver quun CSP est incohérent. Dans un premier
temps, la détection d’I1S de contraintes a été comparée avec la détection d'TIS de

variables. Cette expérience a d’abord montré que certains algorithmes et heuris-

21 implantation de procMHS a été bridvement abordée dans la section 5.1

145

tiques de détection étaient plus efficaces lors de la détection d'IIS de contraintes
que des IIS de variables. alors que d’autres donnaient de meilleurs résultats pour
la détection d'lIIS de variables. De plus, il a été constaté que la détection d'IIS
de variables était beaucoup plus rapide, et que les 1IS de variables donnaient
des problémes réduits plus faciles 4 résoudre que ceux obtenus avec les IIS de
contraintes. La deuxiéme expérience, qui portait sur 'algorithme de hitting set
a permis d’observer, pour les instances testées, que le nombre d’itérations mis
par cet algorithme pour obtenir un IIS de variables est exponentiel en la taille
de linstance. Ensuite, la troisieme expérience, qui comparait les heuristiques de
détection, a permis de constater que ces heuristiques permettent aux algorithmes de
retrait et d’insertion d’obtenir, de fagon constante, des IIS de variables plus petits.
Par ailleurs, 'expérience a également déterminé que l'utilisation de I'algorithme
de pré-filtrage donnait de plus petits IIS que 'heuristique de poids de voisinage.
L’expérience suivante, qui comparait les bornes inférieures sur la taille d'TIS mini-
mum obtenues par l'algorithme de Aitting set et 'algorithme de la section 3.3.5,
a montré que le premier algorithme donne de meilleures bornes pour des instan-
ces de petite ou moyenne taille. Les deux derniéres expériences avaient pour but
d'utiliser la détection d’IIS de variables pour déterminer le nombre chromatique
de graphes. La premiere de ces deux expériences était menée sur des instances
provenant de graphes générés aléatoirement. Cette expérience a permis de con-
stater que la réduction du nombre de variables de Vinstance diminue lorsque la
densité de contrainte p et le nombre chromatique k& de Uinstance augmentent. Par
contre, pour des valeurs données de p et &, cette réduction augmente lorsque la taille
de 'instance augmente. Il a ainsi été possible d’obtenir le nombre chromatique de
graphes réduits, alors que cette valeur n’avait pas été obtenue pour les graphes origi-
naux. La derniére expérience, qui portait sur des instances du challenge DIMACS,
a montré que la technique d’accélération de la section 4.4 pouvait identifier les

instances dont les variables forment un IIS en quelques itérations. Finalement,

146

les résultats de cette expérience ont permis d'améliorer la borne inférieure sur le
nombre chromatique d'instances connues, et meme de fixer le nombre chromatique

de quatre instances pour lesquelles cette valeur n'était pas connue.

Pour terminer, plusieurs améliorations pourraient étre apportées aux algorithmes
de détection présentés dans ce mémoire. Ainsi, il serait bien de rendre ces algo-
rithmes plus robustes, sans augmenter la durée de la détection. De plus, il serait
intéressant d’avoir, pour algorithme de hitting sef, une heuristique permettant
d’obtenir des IIS plus rapidement. Enfin, on note que ces algorithmes pourraient
étre testés sur des CSP modélisant d’autres problemes, comine par exemple, le

probleme SAT.

147

REFERENCES

AMALDI, E., PFETSCH, M.E.,, TROTTER, L.E., “On the Maximum Feasi-
ble Subsystem Problem, 1ISs, and 1IS-hypergraphs”, Math. Program., vol.95/3,
pp.533-554, 2003

AMILHASTRE, J., FRAGIER, H., MARQUIS, P., “Consistency Restoration and
Explanations in Dynamic CSPs - Application to Configuration”, Artificial Intel-

ligence, vol.135/2002, pp.199-234, 2002

ARAGON, C.R., JOHNSON, D.S., MCGEOCH, L.A., SCHEVON, C., “Opti-
mization by Simulated Annealing: an Experimental Evaluation. Part II, Graph
Coloring and Number Partitioning”, Operations Research. vol.39, pp.378-406,

1991

BRELAZt D., “New Methods to Color the Vertices of a Graph”, Communications
of the ACM, vol.22/4, pp.251-256, 1979

BROWN, J.R., “Chromatic Scheduling and the Chromatic Number Problem”,
Management Science, vol.19/4, pp.456-463, 1972

CARVER, W.B., “Systems of Linear Inequalities”, Annals of Mathematics, vol.23,
pp.212-220, 1921

CHAKRAVARTI, N., “Some Results Concerning Post-infeasibility Analysis”, Eu-

ropean Journal of Operational Research, vol.73, pp.139-143, 1994

CHINNECK, JJW., “Finding a Useful Subset of Constraints for Analysis in an
Infeasible Linear Program”, INFORMS Journal on Computing, vol.9/2. 1997

148

CHINNECK, J.W.. “Feasibility and Viability”, Advances in Sensitivity Analysis
and Parametric Programming, T. Gal and H.J. Greenberg (eds.), Kluwer Aca-
demic Publishers, International Series in Operations Research and Management

Science. vol.6, 1997

CHOUEIRY, B.Y., “Abstraction Methods for Resource Allocation”, These de

doctorat, Ecole Polytechnique Fédérale de Lausanne, 1964

COOK, 8., “The Complexity of Theorem Proving Procedures”, Proc. 3rd Ann.

ACM Symp on Theory of Computing, pp.151-158, 1971

DAVIS, M., PUTNAM, H., “A Computing Procedure for Quantification Theory”,
Journ. Of the ACM, vol.7, pp.201-215, 1960

FLEURENT, C., FERLAND, J.A., “Genetic and Hybrid Algorithms for Graph
Coloring”, Annals of Operations Research, vol.63, pp.437-461, 1996

FOX, M.S., SADEH-KONIECPOL, N.. “Why is Scheduling Difficuit? A CSP
Perspective”, Proc. of the Ninth FEuropean Conference on Artificial Intelligence

address: Stockholm Sweden month: August, pp.754-767, 1990

FREUDER, E.C., WALLACE, R.J., “Partial Constraint Satisfaction”, Artificial
Intelligence, vol.58/1, pp.21-70, 1992

GALINIER, P., HAO, J.K., “Tabu Search for Maximal Constraint Satisfaction
Problems”, Proc. of the Third International Conference Principles and Practice
of Constraint Programming, Lecture Notes in Computer Science, vol.1330, pp.196-

208, Springer Verlag, Berlin, 1997

GALINIER, P., HAO, J.K., “Hybrid evolutionary algorithms for graph coloring”.
Journal of Combinatorial Optimization, vol.3/4, pp.379-397, 1999

149

GALINIER, P., HERTZ, A., “Solution Techniques for the Large Set Covering
Problem”, Rapport technique G-2003-44, Les Cahiers du GERAD, Montréal,
Canada, 2003

GAREY. M.R.., JOHNSON, D.S., “Computers and Intractability : A Guide to

the Thoery of NP-Completeness”, W.H. Freman and Company, New York, 1879

DE GIVRY, S., LARROSA, J., MESEGUER, P., SCHIEX, T., “Solving Max-SAT
as Weighted CSP”, Proc. of CP’2003, Cork, Irlande, Octobre, 2003

GLESSON. J., RYAN, J., “Identifying Minimally Infeasible Subsystems of In-
equalities”, ORSA Journal on Computing, vol.2, pp.61-63. 1990

GREENBERG, H.J.., “An empirical Analysis of Infeasibility Diagnosis for Instan-
ces of Linear Programming Blending Models”, IMS Journal of Mathematics in

Business & Industry. vol.4, pp.163-210, 1992

HERRMANN, F., HERTZ, A., “Finding the Chromatic Number by Means of
Critical Graphs”, ACM Journal of Experimental Algorithmics, vol.7/10, pp.1-9,
2002

JOHNSON, D.S., TRICK, M.A., 1996, “Proceedings of the 2nd DIMACS Imple-
mentation Challenge”, DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, American Mathematical Society, vol.26. 1996

KNUTH, D.E., “The Stanford Graphbase: A Platform for Combinatorial Com-
puting”, ACM Press, 1993

GELATT, C.D., KIRKPATRICK, S., VECCHI, M.P., “Optimization by Simu-
lated Annealing”, Science, vol.220, pp.671-680. 1983

GLOVER, F.. “Tabu Search - Part I". ORSA Journal on Computing, vol.1/3,
pp.190-206, 1989

150

GLOVER. F., “Tabu Search - Part II", ORSA Journal on Computing, vol.2/1.
pp.4-32, 1989

KONDRAK, G.. “A Theoretical Evaluation of Selected Backtracking Algorithins”,
Rapport technique TR-94-10, Département de Sciences Informatiques, Université

de "Alberta, Edmonton, Alberta, Canada, 1994

KUBALE, M., JACKOWSKI, B.. “A Generalized Implicit Enumeration Algo-
rithm for Graph Coloring”, Communications of the ACM vol.28/4, pp.412-418,
1985

LAROSSA, J., MESEGUER, P., “Optimisation-based Heuristics for Maximal
Constraint Satisfaction”, Proc. Of CP-95, pp.190-194, Cassis, France, 1995

MACKWORTH. A.K., “Constraint Satisfaction”, S.C. Shapiro (Ed.) Encyclope-
dia on Artificial Intelligence, John Wiley & Sons, NY, 1987

MAZURE, B., SAIS, L., GREGOIRE, E., “Boosting complete techniques thanks
to local search methods”, Annals of Mathematics and Artificial Intelligence,

vol.22, pp.319-331, 1998

MEHROTRA, A., TRICK, M.A., “A Column Generation Approach for Exact
Graph Coloring”, INFORMS Journal on Computing, vol.8, pp.344-354, 1996

MITTAL, S., FALKENHAINER, B., “Dynamic Constraint Satisfaction Prob-
lems”, Proc. of AAAI-90, pp.25-32, Boston, Massachusetts, 1990

MORGENSTERN, C., “Distributed Coloration Neighborhood Search”, D.S.
Johnson and M.A. Trick, eds. Cliques, Coloring and Satisfiability: Second
DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, American Mathematical Society, vol.26,

pp.335-357, 1996

PAPADIMITRIOU, C.H.. STEIGLITZ, K., “Combinatorial Optimization”, En-
glewood Cliffs, Prentice-Hall, 1982

PARKER, M.R., “A Set Covering Approach to Infeagibilty Analysis of Linear
Programming Problems and Related Issues”, These de doctorat, Département de

Mathématiques, Université du Colorado, Denver, Colorado, 1995

PARKER, M.R., RYAN, J., “Finding the Maximum Weight Feasible Subsystem
of an Infeasible System of Inequalities”, Annals of Mathematics and Artificial

Intelligence, vol.17, pp.107-126, 1996

PEEMOLLER, J., “A Correction to Brélaz’s Modification of Brown's Coloring
Algorithm”, Communications of the ACM, vol.26/8, pp.593-597, 1983

SELMAN, B., LEVESQUE, H., MITCHELL, D., “A New Method for Solving
Hard Satisfiability Problems”, Proc. AAAI-92, pp.440-446, 1992

SMITH, L, FALTINGS, B., “Implementing Qualitative Reasoning for Structural
Design Using Constraint Propagation”, Computing in Civil Engineering, pp.1251-
1258, 1993

STUMPTNER, M., “An Overview of Knowledge-based Configuration”, Al Com-

munications, pp.111-125, 1997

TAMIZ. M., MARDLE., S.. JONES, D., “Detecting IIS in Infeasible Linear Pro-
grams Using Techniques from Goal Programming”, Computers and Operations

Research, vol.23/2, pp.113-119, 1996

TSANG. E., “Foundations of Constraint Satisiaction”, Academic Press, London,

1993

VAN LOON, J., “Irreducibily Inconsistent System of linear inequalities”, Euro-

pean Journal of Operational Research, vol.8, pp.283-288, 1981

152

WALLACE, R.J.. “Enhancements of Branch-and-bound Methods for the Maxi-
mal Constraint Satisfaction Problem”, Proc of AAAL-96, pp.188-196, Portland,
Oregon, 1996

WALLACE, R.J., “Analysis of Heuristics Methods for Patial Constraint Sa-
tisfaction Problems”, Proc. Of CP-96. vol.1118, pp.308-322. Cambridge, Mas-

sachusetts, 1996

ANNEXE I

TABLEAUX DE RESULTATS

Instances IIS de variables
Ret+h Ins+h FI

| X il k RA x| RA’ (X7 1eh RA’ X1 RA'
100 496 5 92 38 137 109 55 207 271 38 138 122
100 447 5 193 66 263 233 62 234 333 63 242 282
100 499 5 33 38 137 63 44 160 66 42 156 55
100 507 5 135 46 175 105 51 198 151 42 151 237
110 600 5 114 34 119 32 61 244 201 41 151 116
116 555 5 45 36 126 40 50 188 g8 36 123 97
110 592 5 131 33 116 58 46 170 330 33 113 30
110 610 5 T 43 162 117 51 188 57 43 157 7
120 715 5 7105 32 113 59 52 199 157 42 156 31
120 668 5 45 21 63 10 38 134 16 33 108 32
120 714 5 1172 31 109 67 50 195 38 36 126 121
120 706 5 186 27 88 71 61 239 693 43 157 102
130 795 5 173080 31 108 30 42 150 87 35 115 39
130 832 5 62743 34 120 47 46 171 59 42 154 41
130 828 6 1519301 | 113 712 1493884 | 112 702 1898057 | 113 710 2094563
130 &43 6 462073 | 100 617 415567 | 101 617 519210 99 605 323833
140 972 6 767916 99 625 1551179 | 102 637 1122434 99 615 970417
140 836 6 1130903 | 103 640 1610227 | 107 664 1439572 | 104 647 2775637
140 988 6 138308 83 499 137685 94 569 202552 /8 522 149205
140 068 6 906265 | 105 654 4436370 | 108 681 1621338 | 104 643 3149618
150 1103 6 820224 96 610 1289371 99 622 887587 97 606 1164246
150 1098 6 109821 93 579 247208 g5 581 148611 93 565 202147
150 1120 6 79497 81 481 133880 87 BIT 234917 88 531 274521
150 1128 6 194667 91 554 115757 98 606 112071 98 591 2098509
160 1261 6 187661 &7 B30 347890 | 103 642 407695 94 BR2Z 520562
1606 1251 6 101953 83 501 140258 95 B8O 128134 92 561 96861
160 1274 6 107938 79 474 71615 91 536 148744 83 497 81926
160 1279 6 199720 87 529 250846 | 103 647 7955344 93 564 257126
170 1430 6 (43603) 80 487 168991 97 B97 340743 89 550 167H44

.. continué sur la page suivante

154

Instances 1IS de variables
Ret+h Ins+h FI

X icl -k RA A0 RA’ P S RA (X RAS

170 1414 6 8320828 80 477 85597 96 581 480732 85 500 949095
170 1460 6 (45118) 69 405 7660 80 470 7367 73 421 10720
170 1440 6 70336660 &5 516 193161 96 B&1 61871 93 563 207388
18 1603 6 (46199) 78 467 10347 | 102 613 254620 &7 519 44426
180 1617 7 (44611} | 158 1386 (41491) | 159 1386 (42298) | 158 1389 (41474)
180 1584 7 (45600) | 168 1471 (45480) | 168 1467 (45627) | 168 1467 (45627)
180 1639 7 (43834) | 148 1278 (37592) | 148 1266 (39431) | 150 1286 (39265)
190 1799 7 (49624) | 147 1281 (39683) | 156 1359 (41245) | 152 1327 (41473)
190 1784 7 (47708) | 152 1327 (41621) | 157 1352 (43114) | 154 1337 (41929)
190 1826 7 (49295) | 140 1206 (38256) | 152 1307 (40572) | 141 1206 (38298)
180 1785 7 (49653) | 158 1389 (44149) | 160 1403 (43280) | 160 1405 (44872)
200 2036 7 (50830) | 139 1220 (46450) | 147 1201 (46855) | 148 1281 (45411)
200 1941 7 (48010) | 153 1343 (63880) | 155 1347 (64474) | 155 1347 (63452)
200 2026 7 (46221) | 130 1113 (44259) | 150 1288 (60526) | 148 1277 (47730)
200 1977 7 (47076) | 146 1278 (46846) | 147 1281 (47080) | 152 1324 (48111)
210 2221 7 (61537) | 134 1166 (34001) | 148 1289 (37564) | 144 1256 (37077
210 2123 7 (54287) | 146 1277 (38301) | 157 1367 (39882) | 154 1342 (40706)
210 2226 7 (64066) | 129 1109 (33831) | 143 1213 (35316) | 136 1161 (35703)
210 2175 7 (59757) | 138 1210 (36732) | 153 1331 (38900) | 145 1283 (38497)
220 2422 7 (62081) | 132 1145 (32986) | 148 1279 (37429) | 139 1208 (35358)
220 2348 7 (59384) | 137 1188 (34917) | 149 1290 (37488) | 148 1281 (36713)
220 2435 7 (56396) | 125 1070 (31717) | 146 1259 (37417) | 134 1144 (34620)
220 2387 7 (58686) | 135 1166 (34208) | 145 1241 (34873) | 144 1245 (35136)

Tableau 1.1 Détection d'TIS de variables sur des instance aléatoires avec p = 0.1

Instances 118 de variables
Ret+h Ins+h Fi
x| IC k RA (X e RA’ XN RA’ |1 RA'
80 1547 12 140209599 64 1051 1285350 66 1086 3887945 63 1007 726965
80 1528 12 12860058 59 911 293100 60 926 531284 58 B84 429381
80 1608 13 7255750 75 1440 21670437 73 1380 6590146 72 1343 G387R28
80 1582 13 58684771 75 1425 22694200 74 1389 14340999 73 1350 20529374
90 1924 13 128822599 74 1398 17898027 75 1402 30015939 71 1288 17201820
90 1984 13 133509732 72 1354 4320820 73 1374 7693584 72 1334 11737502
90 1978 14 (26310) 88 1808 (26010) 87 1870 (26268) 87 1870 (26253)
90 2003 14 (26271) 86 1858 (25914) 84 1783 {25912) 84 1783 {26381)
05 2223 14 (28823) 82 1723 (27079) 83 1754 {27116) 82 1703 (26512)
95 2149 14 {27836) 89 1931 (26961) 89 1935 (26994) 88 1896 (27510)

...continué sur la page suivante

Instances IIS de variables

Ret+h Ins-+h ¥l

X [¢| k RA | X7 [¢] RA X] RA [&7 ¢l RA

95 2223 14 (28861 83 1777 88 1906 (26981) 84 1797 (27024)

100 2465 99 2425 (25459

) () (
95 2208 14 (28553) | 85 1834 (26831) | 84 1780 (34@1@ 86 1841 (26097)
100 2381 14 (30027) | 83 1748 (25375) | 87 1869 (25959) | 83 1724 (26025)
100 2444 14 (30107) | 81 1690 (26861) | 85 1828 (256 3) 82 1711 (25304)
100 2469 15 (30328) | 97 2345 (28032) | 96 2207 (28505) | O7 2342 (28454)
) () ()

100 2465 15 (31121 99 2414 (29335)

Tableau 1.2 Détection d'TIS de variables sur des instance aléatoires avec p = 0.5

