
Titre:
Title:

Techniques pour l'exploration de données structurées et pour la
découverte de connaissances en théorie des graphes

Auteur:
Author:

Christian Desrosiers

Date: 2008

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Desrosiers, C. (2008). Techniques pour l'exploration de données structurées et
pour la découverte de connaissances en théorie des graphes [Thèse de doctorat,
École Polytechnique de Montréal]. PolyPublie.
https://publications.polymtl.ca/8145/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/8145/

Directeurs de
recherche:

Advisors:
Alain Hertz, & Philippe Galinier

Programme:
Program:

Non spécifié

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/8145/
https://publications.polymtl.ca/8145/

UNIVERSITE DE MONTREAL

TECHNIQUES POUR L'EXPLORATION DE DONNEES STRUCTUREES ET

POUR LA DECOUVERTE DE CONNAISSANCES EN THEORIE DES GRAPHES

CHRISTIAN DESROSIERS

DEPARTEMENT DE MATHEMATIQUES ET DE GENIE INDUSTRIEL

ECOLE POLYTECHNIQUE DE MONTREAL

THESE PRESENTEE EN VUE DE L'OBTENTION

DU DIPLOME DE PHILOSOPHIC DOCTOR

(MATHEMATIQUES DE LTNGENIEUR)

JUIN 2008

© Christian Desrosiers, 2008.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-46096-2
Our file Notre reference
ISBN: 978-0-494-46096-2

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Cette these intitulee:

TECHNIQUES POUR L'EXPLORATION DE DONNEES STRUCTUREES ET

POUR LA DECOUVERTE DE CONNAISSANCES EN THEORIE DES GRAPHES

presentee par: DESROSIERS Christian

en vue de l'obtention du diplome de: Philosophise Doctor

a ete dument acceptee par le jury d'examen constitue de:

M. GAGNON Michel ing., Ph.D., president

M. HERTZ Alain, ing., Doct. es Sc, membre et directeur de recherche

M. GALINIER Philippe, Doct., membre et codirecteur de recherche

M. VALTCHEV Petko, Ph.D., membre

M. KARYPIS George, Ph.D., membre externe

IV

A mes parents

V

REMERCIEMENTS

Je tiens tout d'abord a remercier mon directeur, Alain Hertz, pour ses conseils, sa dis-

ponibilite et sa bonne humeur lors des reunions. Son devouement a sa profession a ete

une grande source d'inspiration et de motivation pour ma these. Je remercie egalement

mon codirecteur, Philippe Galinier, pour son esprit vif et ses remarques fort utiles qui

ont permis l'avancement de ma these. J'aimerais aussi remercier Pierre Hansen, qui a

agi comme second codirecteur durant ma these. Son immense savoir, ainsi que les dis­

cussions philosophiques que nous avons eues, m'ont aide a bien saisir l'essence de la

decouverte scientifique.

J'aimerais egalement remercier les professeurs Michel Gagnon, Petko Valtechev, George

Karypis et Ettore Merlo d'avoir accepte de faire partie de mon jury de these. Merci en

particulier au professeur Gagnon pour sa gentillesse lors de nos rencontres.

Je suis aussi tres reconnaissant envers le Fonds quebecois de la recherche sur la nature et

les technologies (FQRNT) pour m'avoir octroye une bourse de recherche, ainsi qu'en-

vers la compagnie Irosoft et son president Alain Lavoie pour leur contribution financiere.

Je remercie du meme coup mon directeur et codirecteur de recherche, les professeurs

Hertz et Galinier, ainsi que le professeur Hansen, pour leur aide financiere.

Je souhaite egalement remercier ma femme, June, pour son inspiration, ainsi que les

membres de ma famille, Marieve, Philippe, Louise et Berthold, pour leur bons conseils

et encouragements. Je remercie aussi tous mes amis, en particulier Jake, Amy, Anne-

Marie, Luc, Thuy-Ly et Martin, ainsi que mes collegues de travail, Sandrine, Rim, Jean,

Nizar, Imed, Daniel et Alain, pour les conseils precieux et tous les moments de detente.

Enfin, je remercie l'hiver quebecois et sa rigueur, sans lesquels la tentation de laisser ma

these au profit d'une activite de plein air aurait ete trop forte.

VI

RESUME

L'automatisation de la decouverte de nouvelles connaissances est un domaine fascinant

de recherche allant de pair avec le progres scientifique. Cette these porte sur deux dis­

ciplines de ce domaine ayant connu un vaste succes au cours des dernieres annees :

l'exploration de donnees et la generation automatisee de conjectures en mathematiques.

Nous presentons, dans un premier temps, des contributions a un probleme important de

l'exploration de donnees, connu sous le nom de la decouverte des patrons frequents.

Ce probleme, jouant un role cle dans plusieurs domaines tels que la bioinformatique,

la chimie computationnelle ainsi que le Web, consiste a trouver les patrons que Ton re-

trouve frequemment dans une base de donnees. Nous introduisons, dans cette these, des

techniques permettant d'ameliorer les methodes existantes pour ce probleme. En par-

ticulier, nous proposons un nouvel algorithme, appele S Y G M A , permettant de trouver

efficacement les sous-graphes frequents d'une base de graphes ayant peu d'etiquettes

differentes. Nous presentons egalement une nouvelle approche a l'exploration des pa­

trons frequents, utilisant des connaissances de fond sur les patrons frequents pour definir

la topologie de l'espace de recherche de sorte a limiter le nombre de calculs couteux.

Enfin, nous montrons, a l'aide d'experiences numeriques sur des instances generees et

provenant d'applications reelles, l'efficacite de nos methodes par rapport aux methodes

existantes.

Cette these presente, par ailleurs, des contributions significatives au probleme de la

generation de conjectures en theorie des graphes. Plus specifiquement, nous introduisons

des methodes innovatrices permettant d'obtenir de maniere automatique des conjectures

portant sur la caracterisation par sous-graphes interdits (CSI). Etant donne une classe de

graphes C, une CSI est un ensemble de graphes 7i tel qu'un graphe G appartient a C

si et seulement s'il ne contient aucun graphe de 7i comme sous-graphe induit. Les CSI

jouent un role essentiel en theorie des graphes, etant au coeur de plusieurs resultats fon-

damentaux dans ce domaine, et permettant aussi de developper des algorithmes efficaces

Vll

pour reconnaitre les graphes d'une classe donnee. Nous proposons, dans cette these, cinq

algorithmes pour ce probleme : deux algorithmes pour obtenir des conditions suffisantes

pour avoir une CSI, deux algorithmes generant des conditions necessaires pour une CSI

et, enfin, un dernier algorithme permettant d'obtenir de vraies CSI. Nous utilisons en-

suite ces algorithmes pour reproduire des resultats connus de la theorie des graphes, ainsi

que pour en trouver de nouveaux.

Vlll

ABSTRACT

The automation of the process of knowledge discovery is a fascinating field of research

that has a deep impact on the progress of science. This thesis focuses on two disciplines

of that field, which have enjoyed much success in the last few years : datamining and the

automated generation of conjectures in mathematics. We first present contributions to an

important problem in datamining, known as frequent pattern discovery. This problem,

which plays a key role in various fields such as bioinformatics, computational chemistry

and the Web, consists in finding the patterns that are frequently found in a database. We

introduce, in this thesis, techniques that improve existing methods for this problem. In

particular, we propose a new algorithm, called S Y G M A , that efficiently finds the frequent

subgraphs of a database containing graphs with a limited number of different labels. We

also present a novel approach to frequent pattern mining, that uses background know­

ledge on the frequent patterns to remap the search space in a way that minimizes the

number of time-expensive computations. Finally, we show, through numerical experi­

ments on generated and real-life instances, the efficiency of our methods compared to

existing ones.

This thesis also presents significant contributions to the problem of automated conjecture

generation in the field of graph theory. More precisely, we introduce innovative methods

that find, in an automated way, conjectures on a forbidden subgraph characterization

(FSC). Given a class of graphs C, an FSC is a set of graphs H such that a graph G belongs

to C if and only if it does not contain any graph of H as an induced subgraph. FSCs play

an essential role in graph theory, being at the centre of many famous results in that

field, and allowing also to develop efficient algorithms to recognize the graphs of a given

class. We propose, in this thesis, five algorithms for this problem : two algorithms to find

sufficient conditions to have an FSC, two algorithms generating necessary conditions

to have an FSC, and, finally, an algorithm that obtains actual FSCs. We then use these

algorithms to reproduce known results of graph theory, as well as to find new ones.

ix

TABLE DES MATIERES

DEDICACE iv

REMERCIEMENTS v

RESUME vi

ABSTRACT viii

TABLE DES MATIERES ix

LISTE DES FIGURES xii

LISTE DES NOTATIONS ET DES SYMBOLES xv

INTRODUCTION 1

1.1 La decouverte des patrons frequents 1

1.2 La generation de conjectures en theorie des graphes 7

1.3 Problematique et objectifs de recherche 11

CHAPITRE2 REVUE DE LA LITTERATURE 15

2.1 La decouverte des concepts interessants 15

2.2 La decouverte des requetes frequentes 22

2.3 La decouverte des sous-graphes frequents 27

2.3.1 L'algorithme AGM 31

2.3.2 L'algorithme FSG 36

2.3.3 L'algorithme GSPAN 40

2.3.4 LecodeDFS 42

2.3.5 Extensions de GSPAN 47

2.3.6 L'algorithme SUBDUE 49

X

2.4 La generation de conjectures en theorie des graphes 53

2.4.1 Le systeme GRAFFITI 54

2.4.2 Le systeme AUTOGRAPHIX 55

2.4.3 Le systeme GRAPHEDRON 59

CHAPITRE3 DEMARCHE ET ORGANISATION DU DOCUMENT . . . 61

CHAPTER 4 IMPROVING FREQUENT SUBGRAPH MINING IN THE PRES­

ENCE OF SYMMETRY 65

4.1 Introduction 65

4.2 The SYGMA Algorithm 68

4.2.1 Preliminary concepts 68

4.2.2 Subgraph Enumeration 70

4.2.3 Support calculation 78

4.3 Experimentation 81

4.3.1 Subgraph enumeration 82

4.3.2 Frequent subgraph mining 83

4.4 Conclusion 86

CHAPTER 5 USING BACKGROUND KNOWLEDGE TO IMPROVE STRUC­

TURED DATA MINING 87

5.1 Introduction 87

5.2 A general approach 89

5.3 Experimentation 92

5.3.1 Synthetic data 94

5.3.2 Real-life data 100

5.4 Conclusion 103

CHAPTER 6 AUTOMATED GENERATION OF CONJECTURES ON FOR­

BIDDEN SUBGRAPH CHARACTERIZATION 105

xi

6.1 Introduction 105

6.2 Preliminary concepts and definitions 106

6.3 Sufficient conditions 108

6.3.1 Single graph SFSC 110

6.3.2 Multiple graph SFSC I l l

6.4 Necessary conditions 113

6.4.1 Single graph NFSC 114

6.4.2 Multiple graph NFSC 116

6.5 Necessary and sufficient conditions 119

6.6 Automated conjecture generation 121

6.6.1 Enumerative approach 122

6.6.2 Heuristic approach 123

6.7 Experimental results 125

6.7.1 Conjectures on SFSC 126

6.7.2 Conjectures on NFSC 134

6.7.3 Conjectures on FSC 137

6.8 Conclusion 138

CHAPITRE7 DISCUSSION GENERALE 140

CONCLUSION 144

REFERENCES 147

Xll

LISTE DES FIGURES

Figure 1.1 Quelques exemples de graphes 3

Figure 1.2 Quelques exemples de graphes etiquetes 5

Figure 1.3 Une caracterisation par sous-graphes interdits des graphes de ligne. 10

Figure 2.1 Le graphe de specialisation des sous-ensembles d'items de l'en-

semble J ={,4, £,<?,£>} 18

Figure 2.2 L'algorithme APRIORI pour la decouverte d'ensembles frequents,

et sa procedure APRiORi-gen pour la generation d'ensembles

candidats 21

Figure 2.3 L'algorithme WARMR pour la decouverte des requetes frequentes,

et sa procedure WARMR-gen 26

Figure 2.4 L'espace de recherche contenant tous les sous-graphes connexes

d'au plus trois sommets et deux etiquettes de sommet 29

Figure 2.5 L'algorithme AGM pour la decouverte des sous-graphes frequents,

et sa procedure AGM-gen pour la generation des sous-graphes

candidats 32

Figure 2.6 La jonction de deux graphes diriges de 3 sommets par l'algo­

rithme AGM 34

Figure 2.7 Trois graphes etiquetes G\, G2 et G3, tels que G2 C G3 C G\. . 35

Figure 2.8 L' arbre de recherche correspondant la recherche d'un sous-graphe

du graphe Gi de la figure 2.7 isomorphe a G2 35

Figure 2.9 Trois raisons expliquant la creation de candidats differents dans

FSG 37

Figure 2.10 La procedure de generation de sous-graphes candidats de l'algo­

rithme FSG 39

Figure 2.11 Un exemple d'un espace hierarchique et d'elagage de noeuds

non canoniques 41

Xlll

Figure 2.12 L'algorithme GSPAN pour trouver les sous-graphes frequents d'un

ensemble de graphes etiquetes 43

Figure 2.13 Un graphe etiquete et plusieurs arbres DFS pour ce graphe. . . 44

Figure 2.14 Les codes provenantdes arbres DFS montres a figure 2.13. . . . 47

Figure 2.15 Quelques prolongements d'un graphe par l'algorithme GSPAN. . 48

Figure 2.16 L'algorithme SUBDUE pour trouver un sous-graphe minimisant

la longueur de description d'un graphe 52

Figure 2.17 Une illustration de l'approche geometrique de GRAPHEDRON. . 60

Figure 4.1 The SYGMA algorithm and its recursive procedure explore. . . 72

Figure 4.2 A procedure to find a refined vertex partition 74

Figure 4.3 The vertex partition of a graph at each step of the refinement

procedure 77

Figure 4.4 Results on subgraph enumeration of S Y G M A and GSPAN. . . . 83

Figure 4.5 Runtimes of GSPAN and S Y G M A on synthetic datasets 85

Figure 4.6 Runtimes of GSPAN and S Y G M A on two modifications of the

PTE dataset 86

Figure 5.1 Our approach to depth-first frequent pattern mining 93

Figure 5.2 Six probability distributions of vertex labels 95

Figure 5.3 Results of the four tested algorithms on the synthetic datasets

using label distributions Di, D^^Dj, 98

Figure 5.4 Results of the four tested algorithms on the synthetic datasets

using label distributions D4, D5, D6 99

Figure 5.5 A labeled graph and the number of database edges with given

vertex labels 101

Figure 5.6 Results of the four tested algorithms on the Predictive Toxicol­

ogy Evaluation (PTE) dataset 103

Figure 6.1 A forbidden subgraph characterization of line graphs 106

Figure 6.2 Algorithm to find an SFSC containing a single forbidden subgraph. 111

XIV

Figure 6.3 Algorithm to find an SFSC containing at most M forbidden sub­

graphs 112

Figure 6.4 Algorithm to find an NFSC containing a single forbidden subgraph. 115

Figure 6.5 Algorithm to find a set containing all single graphe NFSCs of at

most N vertices 118

Figure 6.6 Algorithm to find an FSC of at most M forbidden subgraphs. . 121

Figure 6.7 Graphs used in the SFSCs for graphs satisfying at equality some

relations of the domination chain 126

Figure 6.8 A SFSC for the class of graphs G such that ir(G) = -/(G). . . . 126

Figure 6.9 An illustration of the SFSC algorithm, for the class of graphs G

such that 7(G) = i(G) 127

Figure 6.10 Another illustration of the SFSC algorithm, for the class of graphs

G such that 7(G) = i(G) 127

Figure 6.11 An illustration of the SFSC algorithm, for the class of graphs G

such that ir(G) = 7(G) 128

Figure 6.12 Another illustration of the SFSC algorithm, for the class of graphs

G such that ir(G) = 7(G) 134

Figure 6.13 An illustration of the NFSC algorithm, for the class of graphs G

such that 7(G) < i(G) 135

Figure 6.14 An illustration of the NFSC algorithm, for the class of graphs G

suchthatir(G) < 7(G) 136

Figure 6.15 An illustration of the FSC algorithm for the class of split graphs. 138

XV

LISTE DES NOTATIONS ET DES SYMBOLES

AGM : Apriori Graph Mining

CSI: Caracterisation par Sous-graphes Interdits

DFS : Depth-First Search

DSPM : Diagonally Subgraph Pattern Mining

FFSM : Fast Frequent Subgraph Mining

FSC : Forbidden Subgraph Characterization

FSG : Frequent Sub-Graph mining

NFSC : Necessary conditions to a Forbidden Subgraph Characterization

PLI: Programmation Logique Inductive

PTE : Predictive Toxicology Evaluation

SFSC : Sufficient conditions to a Forbidden Subgraph Characterization

SYGMA : Symmetry-free Graph Mining Algorithm

VNS : Variable Neighborhood Search

sup(X, V) : support du patron X dans la base de donnees V

freq(X, V) : frequence du patron X dans la base de donnees V

maxCS(£) : sous-graphes communs maximaux de l'ensemble C

minCNS(£) :non sous-graphes communs minimaux de l'ensemble £

emb(/f, G) : nombre d'isomorphismes de G a un sous-graphe de H

Qn : graphes n'ayant aucun graphe de H comme sous-graphe induit

V(G) : ensemble des sommets du graphe G

E(G) : ensemble des aretes du graphe G

L(G) : ensemble des etiquettes du graphe G

lv(u) : etiquette du sommet u

le(u, v) : etiquette de 1'arete (u, v)

XVI

deg(v): degre du sommet v

D(G) : diametre du graphe G

ni(G) : nombre de sommets pendants du graphe G

a(G) : taille du plus grand ensemble stable du graphe G

r(G) : rayon du graphe G

i(G) : taille du plus petit ensemble stable maximal du graphe G

7(G) : taille du plus petit ensemble dominant du graphe G

T(G) : taille du plus grand ensemble dominant minimal du graphe G

IR(G): taille du plus grand ensemble irredondant du graphe G

ir(G) : taille du plus petit ensemble irredondant maximal du graphe G

p{G) : plus petit nombre de chatnes necessaires pour recouvrir le graphe G

Orb(v) : orbites du sommet v

Orb(u, v) : orbites de la paire de sommets (it, v)

Aut(G) : groupe d'automorphisme du graphe G

Pg(<p) '• generalisations du concept (p

ps(tp) : specialisations du concept ip

1

INTRODUCTION

La decouverte de connaissances est un processus complexe dont les fondements sont

etudies depuis fort longtemps. Recemment, l'arrivee de technologies permettant d'echan-

ger et de stocker de plus en plus d'information, ainsi que l'augmentation remarquable de

la puissance des ordinateurs, a permis l'apparition de systemes informatiques automati-

sant, completement ou en partie, le processus de decouverte. A ce titre, deux disciplines

ay ant connu beaucoup de succes sont 1'exploration de donnees et la generation auto­

matisee de concepts en mathematiques. Les contributions presentees dans cette these

portent sur deux problemes importants de ces disciplines, soit la decouverte des patrons

frequents et la generation automatisee de conjectures en theorie des graphes.

1.1 La decouverte des patrons frequents

L'exploration de donnees est une discipline situee au croisement de l'informatique et des

mathematiques, et dont le but est d'extraire, de maniere automatisee, des connaissances

utiles a partir d'une grande quantite de donnees. Un des problemes importants de cette

discipline est la decouverte des patrons frequents :

Definition 1 (Decouverte des patrons frequents). Soit V une base de donnees, le sup­

port d'un patron X dans V, note sup(X, V) est le nombre d'objets de V contenant X.

De meme, la frequence de X, notee freq(X, V), correspond au ratio des objets de V

contenant X, soit

Etant donne un seuil minimum de frequence, note fmin> le probleme de la decouverte

des patrons frequents correspond a trouver l'ensemble T contenant les patrons dont la

2

frequence dans T> est superieure ou egale a fmin, i.e.

F={XCl\ireq(X,V)>fmin}.

On appelle patron frequent tout patron de Vensemble T.

Un exemple bien connu de la decouverte des patrons frequents est la decouverte d'en-

sembles frequents d'items (Agrawal et al., 1993), pouvant etre definie comme suit. Soit

X un ensemble d'items, et soit V un ensemble de transactions, tel que chaque transaction

T € V est un ensemble d'items, i.e. T C X. On dit qu'une transaction T contient un

ensemble d'items X C X si X C T. Le support d'un ensemble d'items X correspond,

dans ce cas, au nombre de transactions de V contenant X. Le but est alors de trouver

tous les ensembles d'items X qui sont sous-ensembles d'un nombre suffisant de tran­

sactions, fixe par le seuil minimum de frequence. On retrouve souvent ce probleme dans

le domaine du marketing et de la vente, ou il est mieux connu sous le nom ft analyse de

panier de marche. Dans ce contexte, on cherche typiquement a determiner les habitudes

d'achat des clients d'une compagnie, afin de developper des strategies de vente. Ainsi,

chaque transaction de la base de donnees represente un ensemble de produits achetes

simultanement par un meme client, et le but est d'identifier les produits qui sont souvent

achetes ensemble. Ces ensembles frequents d'items servent ensuite a obtenir des regies

d'association du genre :

"les clients qui achetent les produits A et B achetent egalement les produits

C et £>".

Une autre specialisation importante de la decouverte des patrons frequents porte sur les

graphes.

Definition 2 (Graphe). Un graphe G = (V, E) se compose d'un ensemble de sommets

V et d'un ensemble d'aretes E CV xV reliant deux sommets. Defagon equivalente, on

dit que V(G) et E(G) sont des ensembles contenant respectivement les sommets et les

3

aretes du graphe G. Par ailleurs, on dit qu'un graphe est dirige ou oriente si ses aretes

possedent un sommet initial u et un sommet terminal v, i.e. (u,v) ^ (v,u). De plus,

un graphe dont deux mimes sommets sont relies par plusieurs arites est appele multi-

graphe, et on appelle pseudo-graphe un graphe ay ant une arite reliant un sommet a

lui-mime. Un graphe simple est un graphe qui n'est ni un multi-graphe, ni un pseudo-

graphe. Une chaine, ou chemin dans le contexte des graphes diriges, est une sequence

de sommets vi, V2, • • •, vn e V relies par des aretes, i.e. (Vi,vi+i) 6 E, 1 < i < n — 1.

Un cycle (circuit) est une chaine (chemin) dont les extremites coincident, i.e. v\ = vn.

Un graphe est connexe s'il existe, pour toute paire de sommets, une chaine ay ant pour

extremites ces deux sommets. Finalement, un arbre est un graphe connexe non-dirige

n 'ayant pas de cycle.

O

Q-

O O -O

(a) (b) (c)
o

-O

-o a
(d)

\

cx-
(g) (h)

Graphe

(a)
(b)
(c)
(d)

(e)

if)
(8)
(h)

Dirige Connexe Chaine Cycle Chemin Circuit Arbre

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 1.1 Quelques exemples de graphes.

Puisqu'il ne sera question dans cette these que de graphes simples, nous appellerons

graphe, a partir de maintenant, tout graphe simple. La figure 1.1 montre quelques exemples

de graphes. On constate que certains de ces graphes peuvent etre produits en retirant des

sommets et des aretes d'un autre graphe. On appelle sous-graphes de tels graphes.

4

Definition 3 (Sous-graphe). Soit G = (V, E) un graphe, le graphe G' = (V, E') est un

sous-graphe de G s'ilpeut etre produit en retirant des sommets et des aretes de G, i.e.

si

V C V et Vu, v e V, (u, v) e E' =» (u, v) € E.

On dit, par ailleurs, que G' est un sous-graphe induit de G s'il peut etre produit en

retirant uniquement des sommets de G ainsi que les aretes incidentes a ces sommets, i.e.

V C V et Vu,v e V, (u,v) EE=> (U,V) G E'.

Dans la figure 1.1, les graphes (b) a (e) sont tous des sous-graphes de (a), alors que les

graphes (g) et (h) sont des sous-graphes de if). Par contre, seul le graphe (c) est un sous-

graphe induit de (a), tandis les graphes (g) et (h) sont tous les deux des sous-graphes

induits de (f).

Alors qu'ils permettent de decrire la topologie d'une structure, les graphes ne permettent

pas de representer entierement des structures plus riches en information telles que les

molecules et les documents structures (e.g. documents XML). Les graphes etiquetes en-

richissent les graphes en donnant aux sommets et aux aretes un attribut appele etiquette.

Definition 4 (Graphe etiquete). Un graphe etiquete est un quintuplet G = (V, E, L, lv, le),

ou V est un ensemble de sommets, E un ensemble d'aretes, L est un ensemble d'etiquettes,

et les fonctions lv : V —> L et le : E —> L sont des injections associant respectivement

chaque sommet et chaque arete de G a une etiquette de L. Pour simplifier, on peut

supposer que les etiquettes sont des nombres entiers, et ecrire G = (V, E, lv, le), ou

lv : V —• N et le : E —> N. Un graphe etiquete G' = (V',E',l'v,l'e) est un sous-graphe

de G s'il peut etre produit en retirant des sommets et des aretes de G, i.e. si

1. V C V.

2. \/u e V, l'v(u) = lv{u).

3. Vu.v e V, (u,v) e E' => (u,v) e E.

4. Ve e E', l'e(e) = le{e).

De plus, G' est un sous-graphe induit de G s'ilpeut etre produit en retirant uniquement

des sommets de G, i.e. si

1. V C V.

2. Vu 6 V, l'v(u) = lv(u).

3. Vu,v € V, (u,v) eE^> (u,v) G E'.

4. Ve e E\ l'e(e) = le(e).

(a) (b)

y©—^-©*

(c)

©X

x©——©
(d)

Figure 1.2 Quelques exemples de graphes etiquetes.

On montre, a la figure 1.2, un graphe etiquete (a) ainsi que trois de ses sous-graphes

induits (b), (c) et (d). Les sommets de ces graphes ont 1'etiquette X ou Y, alors que les

aretes ont 1'etiquette s ou t. Bien qu'ils proviennent de sous-parties differentes du graphe

(a), on remarque que les trois sous-graphes sont topologiquement identiques. Dans les

termes de la theorie des graphes, ont dit que ces graphes sont isomorphes :

Definition 5 (Isomorphisme). Soit deux graphes etiquetes G = (V, E, lv, le) et G' =

(V, E',l'v, l'e), un isomorphisme de G aG' est une bijection ip : V —» V telle que

1. Vu e V, lv{u) = l'v (<p(u)).

2. Vu, v e V, (u, v) e E <̂> {(f(u), ip{v)) E E' et le(u, v) = l'e {ip(u): <p(v)).

6

On dit que G et G' sont isomorphes, note G ~ G', s'il existe un isomorphisms p de G

a G'. On remarque que cette relation est symetrique, i.e. G ~ G' •£$• G' — G et p~x

est un isomorphisme de G' a G. Par ailleurs, on dit qu'un graphe G contient un graphe

G', note G' C G, s'il existe un isomorphisme de G' a un sous-graphe de G. Enfin, un

automorphisme est un isomorphisme allant d'un graphe a lui-meme.

La tache de determiner s'il existe un isomorphisme entre deux graphes est un probleme

celebre, mieux connu sous le nom du probleme d'isomorphisme de graphe (Fortin,

1996; McKay, 1981). Egalement, le probleme d'isomorphisme de sous-graphe consiste a

determiner si un graphe est isomorphe a un sous-graphe d'un autre graphe. Alors que la

complexite du probleme d'isomorphisme de graphe n'est pas connue a ce jour, il existe

plusieurs algorithmes efficaces pour resoudre ce probleme, dont l'algorithme NAUTY

developpe par McKay (McKay, 1981). En revanche, le probleme d'isomorphisme de

sous-graphe a ete demontre iVP-complet (Garey et Johnson, 1990). Ce probleme etant

au coeur d'applications de differents domaines, dont celles traitees dans cette these, plu­

sieurs methodes exactes et heuristiques ont ete proposees pour le resoudre, voir e.g.

(Ullmann, 1976; Schmidt et Druffel, 1976; Cordelia et al., 2004).

Considerons a nouveau la figure 1.2, ou les graphes (b), (c) et (d) sont des sous-graphes

du graphe (a), et cherchons des isomorphismes allant de (b) a un sous-graphe de (a).

Ainsi, 1'isomorphisme trivial, associant chaque sommet de (b) a lui-meme est un tel

isomorphisme. De plus, le graphe (b) est isomorphe aux graphes (c) et (d), par les iso­

morphismes ipi et ip2 donnes par la table suivante :

i

1

2

3

<Pl(Vi)

Vb

V-2

V3

V2{vi)

Vb

V4

V3

Les bijections p\ et ip2 sont done aussi des isomorphismes de (b) vers un sous-graphe de

7

(a).

Vexploration des sous-graphes frequents est une specialisation de la decouverte des pa­

trons frequents ou Ton possede une base de donnees contenant des graphes etiquetes

et ou le but est de trouver tous les graphes qui sont isomorphes a un sous-graphe d'un

nombre suffisant de graphes de la base de donnees. Ce probleme, sur lequel porte cette

these, joue un role cle dans des applications provenant de divers domaines, en particu-

lier, dans la synthese de nouveaux medicaments (Borgelt et al., 2005; Sternberg et al.,

1995), la classification de composes chimiques (Deshpande et al., 2002), l'analyse et la

prediction de structures proteiques (Huan et al., 2004a; Zaki et al., 2004), l'indexation

de donnees sous forme de graphes (Yan et al., 2005), l'exploration de documents et de

requetes XML (Yang et al., 2003; Chen et al., 2004; Termier et al., 2002; Punin et al.,

2001), ainsi que l'exploration de reseaux biologiques (Koyuturk et al., 2004; Hu et al.,

2005) et sociaux (Wasserman et Faust, 1994; Carrington et al., 2005).

1.2 La generation de conjectures en theorie des graphes

Le processus de decouverte en sciences comporte essentiellement trois etapes : 1) 1'ob­

servation d'un nouveau phenomene, 2) remission d'hypotheses expliquant ce phenomene,

et 3) la verification des hypotheses par experimentation. En mathematiques, la decouverte

d'un nouveau theoreme opere de maniere similaire. On observe tout d'abord une relation

mathematique paraissant nouvelle et utile. On tente ensuite de trouver un cas particulier

du probleme pour lequel la relation n'est plus verifiee, i.e. un contre-exemple. Si un

tel exemple ne peut etre trouve, on emet alors l'hypothese que la relation decouverte est

vraie pour tous les cas. Une telle hypothese porte le nom de conjecture. La derniere etape

consiste a demontrer ou refuter la conjecture. Si on parvient a lui trouver une preuve, la

conjecture devient alors un theoreme.

8

Depuis son invention, l'ordinateur a joue un role grandissant dans la decouverte de nou-

veaux theoremes en mathematiques, particulierement, dans la generation automatisee

de nouveaux concepts (Lenat, 1984; Colton, 1999; Larson, 2002; Bailey, 2000) et la

demonstration automatisee de theoremes (McCune, 1997; Wos, 1996). Un domaine pour

lequel l'emploi de systemes informatiques a ete specialement fecond est la theorie des

graphes. Une illustration celebre de ceci est la conjecture des quatre couleurs, datant

de 1852, dont la preuve n'a ete obtenue que recemment a 1'aide d'ordinateurs (Appel

et al., 1977; Robertson et al., 1997). Aujourd'hui, l'ordinateur est devenu un outil indis­

pensable a la generation et la demonstration de conjectures dans ce domaine, comme le

montre le document en ligne Written-on-the-wall (Fajtlowicz, 2008; Fajtlowicz et De-

LaVina, 2008) contenant plus d'un millier de conjectures generees avec l'aide de l'ordi­

nateur.

De fagon generate, une conjecture est une relation entre plusieurs proprietes qui parait

vraie pour tous les elements d'un ensemble donne. Notons P et Q deux predicats repre-

sentant des proprietes portant sur les elements d'un ensemble X, tel que P(x) et Q(x)

sont vraies si x E X satisfait P et Q. Ces proprietes peuvent prendre diverses formes,

telles que la conjonctions ou la disjonction d'autres proprietes, ou peuvent meme verifier

l'appartenance d'un element a une certaine classe. Avec ces proprietes, on peut exprimer

trois types de relations :

1. Conditions suffisantes : Vx £ X, P(x) => Q(X).

2. Conditions necessaires : Vx € X, P(x) <= Q(X).

3. Conditions necessaires et suffisantes : V.x £ X, P(x) 4=> Q(X).

En theorie des graphes, on rencontre souvent des conjectures ayant la forme de relations

algebriques portant sur les invariants de graphe. Un invariant i est une fonction qui as-

socie a un graphe G une quantite i(G), la purpart du temps reelle, qui est insensible a

la numerotation des sommets. Par exemple, le diametre d'un graphe G, que Ton note

souvent D(G), est un invariant correspondant a la plus grande distance separant deux

9

sommets de G1. Soit C une classe graphes et I = {ii, i2,. • •, ip} un ensemble d'inva-

riants definis sur les graphes de C, une relation algebrique sur les invariants de J est de

la forme :

\/GeC, vrai => f(k(G)MG),--MG)) (z) °>

ou / est une fonction lineaire ou non-lineaire sur l'espace des invariants. Soit un graphe

G ayant m aretes, notons rii (G) le nombre de sommets de G adjacents a un seul autre

sommet, a(G) la taille du plus grand ensemble de sommets non-adjacents de G, appele

nombre de stabilite, et r(G) la plus petite distance entre un sommet v de G et le sommet

de G le plus eloigne de v, appele le rayon. Un exemple de conjecture ayant la forme

d'une relation algebrique lineaire, obtenue par Caporossi et Hansen avec l'aide de leur

systeme AGX (Caporossi et Hansen, 2004), est la suivante :

pour tout arbre T d'index minimum2, 2a(T) — m — ni(T) — D(T) = 0.

Cette conjecture est, a ce jour, encore ouverte. De meme, soit p(G) le plus petit nombre

de chaines disjointes necessaires pour recouvrir les sommets de G, appele le nombre de

recouvrement par chaines, la conjecture suivante, obtenue par DeLaVina, Fajtlowicz et

Waller a l'aide du systeme GRAFFITI (DeLaVina et al, 2005), est toujours ouverte :

pour tout graphe G, a{G) - r(G) - ln(p(G)) > 0.

Alors que les relations algebriques sur les invariants de graphe constituent le type de

conjectures le plus etudie, tel que souleve dans (Hansen et al., 2005), il existe bien

d'autres sortes de resultats interessants en theorie des graphes. Parmi ceux-ci se trouvent

les resultats portant sur la caracterisation par sous-graphes interdits, qui decrit une classe

de graphes en termes des sous-graphes que les graphes de cette classe ne peuvent pas

avoir.

Definition 6 (Caracterisation par sous-graphes interdits (CSI)). Soit Q l'ensemble conte-

'La distance entre deux sommets u, v est le plus petit nombre d'aretes que Ton doit emprunter pour
aller d e u a v

2L'index (ou rayon spectral) d'un graphe G est la plus petite valeur propre de la matrice d'adjacence
deG.

10

nant tous les graphes. Une classe oufamille de graphes C C Q est une ensemble pos-

siblement infini de graphes ayant une propriete commune. Etant donne un ensemble de

graphes H, on dit qu'un graphe G est sans H, s'il n'y a aucun graphe de 7i isomorphe

a un de ses sous-graphes induits, et ecrivons Qn I'ensemble de tous les graphes sans H.

Une caracterisation par sous-graphes interdits (CSI) d'une classe C est un ensemble de

graphes TC tel qu 'un graphe G appartient a la classe C si et seulement si G est sans H,

i.e. Gn = C.

Les CSI jouent un role cle en theorie des graphes, permettant notamment le develop-

pement d'algorithmes polynomiaux pour reconnaitre les graphes d'une classe donnee

(Faudree et al., 1997), ou de trouver des liens hierarchiques entre differentes classes de

graphes (Brandstadt et al., 2003). De plus, les CSI sont a la base de resultats celebres en

theorie des graphes, comme la caracterisation des graphes parfaits (Berge, 1963), trouvee

par Chudnovsky et al. (Chudnovsky et al., 2006), voulant qu'un graphe est parfait s'il

ne possede pas comme sous-graphe induit un cycle impair contenant cinq sommets ou

plus, ou son complement. Une autre CSI importante, venant de Beineke (Beineke, 1970),

caracterise les graphes de ligne (Brandstadt et al., 1999) avec neuf sous-graphes interdits,

montres a la figure 1.3.

> - H>~ ^ H

Figure 1.3 Une caracterisation par sous-graphes interdits des graphes de ligne.

Soit P le predicat verifiant qu'un graphe G est sans Ji, et Q le predicat verifiant que

G appartient a la classe de graphes C. Une CSI est une relation ayant la forme d'une

condition necessaire et suffisante : VG G Q, P(G) <̂> Q(G). Cependant, la plupart des

classes de graphes n'ont pas de CSI, et il est souvent interessant de trouver des conditions

suffisantes ou des conditions necessaires pour qu'un ensemble de sous-graphes interdits

11

caracterise C. Une condition suffisante est de la forme : si un graphe G est sans H, alors

il appartient a C. Selon la notation presentee precedemment, une condition suffisante

est done un ensemble de graphes H tel que Qn C C. On remarque qu'une condition

suffisante ne permet pas de decrire entierement la classe C. En effet, si G n'est pas

sans H, on ne peut pas determiner si G est dans C ou non. D'autre part, une condition

necessaire s'exprime de la maniere suivante : si un graphe G est dans C alors il est sans

K. Ceci implique que Q-H D C. Une fois de plus, une condition necessaire n'offre qu'une

description partielle de C : si G n'est pas dans C alors il peut etre sans H ou non.

1.3 Problematique et objectifs de recherche

De maniere generale, le probleme de trouver les patrons frequents dans une base de

donnees se resume a deux taches : 1) enumerer de maniere unique chaque patron, et

2) calculer le support de ces patrons dans la base de donnees. Lorsque les patrons

possedent une structure complexe, il est souvent possible de representer un meme patron

de differentes facons. Ainsi, un graphe possede un grand nombre de representations to-

pologiquement identiques, i.e. graphes isomorphes, obtenues en renumerotant ses som-

mets. On risque done, en faisant l'enumeration des patrons, d'explorer plusieurs patrons

equivalents. Une facon de contourner ce probleme consiste a trouver une representation

canonique d'un patron, i.e. une representation optimisant un critere donne, et d'explo­

rer un patron seulement si sa representation est canonique. Cependant, dans bien des cas,

trouver la representation canonique d'un patron est un probleme complexe. Par exemple,

trouver la representation canonique d'une paire de graphes est equivalent a resoudre le

probleme d'isomorphisme de graphe. De meme, calculer le support d'un patron dans la

base de donnees est, de facon generale, une operation couteuse. Ainsi, calculer le support

d'un graphe dans un ensemble de graphes revient a resoudre un grand nombre de fois le

probleme d'isomorphisme de sous-graphe qui est un probleme ./VP-complet.

12

Dans le cas de la decouverte des sous-graphes frequents, la difficulte de trouver la

representation canonique d'un graphe et de calculer son support dans la base de donnees

est grandement reduite lorsque les graphes de la base de donnees possedent un grand

nombre d'etiquettes de sommets et d'aretes differentes. On peut ainsi, a l'aide de ces

etiquettes, etablir un ordre partiel des sommets d'un graphe, et, dans le calcul de la

representation canonique de ce graphe, se limiter aux permutations des sommets respec-

tant cet ordre. Dans le cas extreme ou tous les sommets ont des etiquettes differentes,

on peut simplement ordonner les sommets en ordre croissant d'etiquette, et prendre la

representation canonique provenant de cet ordre. De meme, une quantite importante

d'etiquettes simplifie la tache de determiner si un graphe H de la base de donnees

contient un certain graphe G. Ainsi, lorsqu'on cherche un sommet de H pouvant corres-

pondre a un sommet v de G, on peut se limiter aux sommets qui ont la meme etiquette

que v et des aretes incidentes ayant les memes etiquettes que les aretes incidentes a v.

En somme, la complexity de la decouverte des sous-graphes frequents augmente lors­

qu'on travaille avec des graphes n'ayant pas ou ayant peu d'etiquettes differentes. Or, a

ce jour, tres peu d'attention a ete portee a ce type de donnees, et les algorithmes actuels

pour la decouverte des sous-graphes frequents sont d'une efficacite limitee pour de telles

donnees. Cependant, il existe plusieurs applications utilisant ce genre de donnees, entre

autres, dans le domaine de la vision par ordinateur ou l'information est representee par

des maillages 2D ou 3D (Wong, 1992; Kim et al., 2006; Nakatsuji et al., 2005; Page

et al., 2003), et dans les reseaux de transport et de communication, ou l'information est

essentiellement topologique (Zhu et al., 2003; Reittu et Norros, 2007). De plus, explo­

rer des graphes sans etiquette permettrait de trouver des relations de la base de donnees

qui sont a la fois plus generates et frequentes. Le premier objectif de cette these est

d'ameliorer les methodes existantes pour la decouverte des sous-graphes frequents, dans

le cas ou les graphes de la base de donnees ont peu d'etiquettes.

Lorsque la base de donnees comporte un grand nombre de structures, ce qui est sou-

13

vent le cas, le calcul du support des patrons est de loin 1'operation la plus couteuse de la

decouverte des patrons frequents. Pour reduire le cofit associe a cette tache, les methodes

actuelles emploient essentiellement deux approches. La premiere approche consiste a

calculer de maniere incremental les incorporations d'un patron dans la base de donnees,

e.g. isomorphismes de sous-graphe dans la decouverte des sous-graphes frequents. Cette

technique est generalement employee lors d'une exploration en profondeur de l'espace

de recherche. Supposons que Ton genere un patron Y en prolongeant un patron X dont

les incorporations dans la base de donnees ont deja ete calculees. Comme toute structure

contenant Y contient egalement X, on peut obtenir les incorporations de Y simple-

ment en prolongeant celles de X. Alors que cette technique fonctionne bien pour les

bases de donnees de taille reduite, elle est inefficace pour des bases de donnees plus

grosses ou lorsque les donnees presentent une importante symetrie, e.g. graphes non-

etiquetes. Dans ces cas, le calcul incremental du support demande une quantite enorme

de memoire, et la mise-a-jour des incorporations est tres longue. La seconde approche

pour reduire les couts engendres par la calcul du support se base sur le principe Apriori.

Puisque le support d'un patron n'est jamais superieur a celui de ses sous-patrons, un

patron est frequent seulement si tous ses sous-patrons le sont. Si on connait le support

de tous les sous-patrons d'un patron X, on peut eviter de calculer le support de X si

un de ses sous-patrons n'est pas frequent. Le probleme de cette approche est qu'elle de­

mande de visiter tous les sous-patrons d'un patron X avant de visiter X. Les deux tech­

niques generalement employees pour ce probleme est d'explorer l'espace de recherche

par niveau, i.e. explorer les patrons de taille k avant ceux de taille k+\, ou de coder les

patrons de sorte que l'exploration de l'espace des codes ne visite un patron qu'apres

ses sous-patrons. Or, ces techniques possedent egalement des desavantages. La premiere

souffre, en general, de la generation d'un grand nombre de patrons equivalents, et de­

mande beaucoup de memoire. De meme, il peut etre difficile de trouver un code pouvant

etre utilise pour la seconde technique. La seconde technique demande, par ailleurs, de

calculer la representation canonique de tous les sous-patrons d'un patron, ce qui peut

14

etre tres couteux. Le second objectif de cette recherche consiste a developper de nou-

velles techniques pour reduire le nombre de calculs de support, sans avoir recours a des

structures de donnees necessitant beaucoup de memoire.

Comme mentionne precedemment, les conjectures les plus etudiees en theorie des gra-

phes ont la forme de relations algebriques entre les invariants d'un graphe. En conse­

quence, la vaste majorite des systemes pour la generation automatisee de conjectures

dans ce domaine produisent des conjectures de ce type. Cependant, tel que souleve dans

(Hansen et al., 2005), il existe plusieurs autres formes de resultats en theorie des graphes

pour lesquels il serait interessant d'automatiser la generation, dont la caracterisation par

sous-graphes interdits (CSI). Or, tandis que certaines methodes ont ete proposees pour

trouver des CSI particuliers, e.g. la CSI de l'intersection de plusieurs classes de graphes

(Barrus, 2004), aucune de ces methodes ne permet la generation automatisee de conjec­

tures portant sur la CSI. Le troisieme objectif de cette these est de developper un tel

systeme. En plus de pouvoir generer des conjectures sur une CSI, ce systeme devra

egalement permettre de generer des conditions suffisantes et des conditions necessaires

pour avoir une CSI. Enfin, le quatrieme et dernier objectif de cette these est d'utiliser

ce systeme pour generer de nouvelles conjectures, et de valider ces conjectures en les

demontrant.

15

CHAPITRE 2

REVUE DE LA LITTERATURE

Ce chapitre fait un survol des principaux travaux et resultats de la litterature portant sur la

decouverte des patrons frequents et la generation automatisee de conjectures en theorie

des graphes.

2.1 La decouverte des concepts interessants

Le probleme de la decouverte des patrons frequents, sur lequel porte une partie de cette

these, s'inscrit a l'interieur d'un probleme plus general formule par Mannila et Toivonen

(Mannila et Toivonen, 1997). Ce probleme, connu sous le nom de la decouverte des

concepts interessants, peut etre formule comme suit.

Definition 7 (Decouverte de concepts interessants). Soit une base de donnees V, un lan-

gage £ exprimant des concepts ou hypotheses quelconques, et un predicat de selection

P, trouver une theorie de V selon £ et P, i.e. Vensemble

Th{V, £, P) = {ip € £ | P(V, <p) = vrai}.

Ainsi, Th(V, £, P) renferme tous les concepts ou hypotheses du langage £ qui sont

interessants selon le predicat P. En pratique, la richesse du langage £ peut induire un es-

pace de concepts enorme ou meme infini, rendant compliquee la recherche des concepts

interessants. II est souvent necessaire de limiter la richesse de £ a l'aide d' un ensemble

de contraintes, que Ton nomme biais declaratif. Ce biais specifie les proprietes que

doivent avoir les concepts interessants. Cependant, meme dans un espace restreint, la re-

16

cherche ne peut se faire efficacement sans la presence d'un ordre utile. Ainsi, la definition

de la relation de specialisation des concepts est a la base des algorithmes efficaces pour

la recherche des concepts interessants.

Definition 8 (Generalisation et specialisation des concepts). Une relation de speciali­

sation est un ordre partiel •< sur les concepts de C. On dit qu 'un concept p est aussi

general qu 'un autre concept 9 si p> ^ 9. De facon equivalente, on dit alors que 9 est

aussi specifique que p. On note p -< 9 la relation de specialisation telle que p < 9 et

non 9 •< (p.

La relation •< est une relation monotone de specialisation selon le predicat P si pour

chaque T> et p on a : si ip •< 9 et P(T>, <p) = vrai alors P(T>, 9) — vrai. A Vinverse, -<

est une relation anti-monotone de specialisation selon P si pour chaque V et p on a :

si p •< 9 et P(V, 9) = vrai alors P(T>, p) — vrai. Une relation monotone selon P est

anti-monotone selon -<P.

Definition 9 (Concept minimal et maximal). Soit une relation de specialisation •< sur

C, et soit II C C un ensemble de concepts, on definit min(II) comme Vensemble des

concepts les plus generaux de II, i.e.

min(n) = {peU\$9 EU t.q. 9 -< p},

et nous appelons minimal tout concept de cet ensemble. De meme, notons max(Il) Ven­

semble des concepts les plus specifiques de U, i.e.

max(n) = {peu\$e en t.q. p -< 9},

et nommons maximaux les concepts de cet ensemble.

La relation de specialisation induit ainsi une structure dans l'espace de recherche, ap-

pelee graphe de specialisation ou diagramme de Hasse . Cette structure, prenant souvent

17

la forme d'un treillis , peut se representer comme un graphe dirige acyclique dont les

noeuds sont les concepts de C, les arcs correspondent a des raffinements (i.e. specialisations)

de concepts, et la racine est le concept le plus general, note ±. Ce graphe peut etre par-

couru a l'aide d'operateurs permettant, a partir d'un noeud, d'explorer les noeuds cor-

respondant a des concepts plus specifiques ou plus generiques.

Definition 10 (Operateurs de specialisation et generalisation). Etant donne un langage

de concepts C, un operateur de specialisation ps associe a chaque concept <p un en­

semble ps(<p) contenant les concepts specialisant (p : ps(<p) = {0 G C | <p -< 8}.

Un operateur ps est dit direct ou immediat s 'il n 'associe a ip que les concepts plus

specifiques les plus generaux, i.e. ps((p) = min(ps(ip)). De mime, un operateur de

generalisation pg associe a chaque concept ip l'ensemble pg(<p) = {0 € C \ 6 -< cp}

qui contient les concepts generalisant ip. Un operateur p9 est direct ou immediat s 'il as­

socie a ip que les concepts plus generaux les plus specifiques, i.e. p9{<p>) = max(pg(<^)).

Pour illustrer ces notions, retournons au probleme de trouver les ensembles frequents

d'une base de donnees contenant des ensembles d'items. Dans ce contexte, le langage

des concepts correspond a tous les ensembles possibles d'items, i.e. £ = { T C X}. De

plus, la relation de specialisation sur deux ensembles d'items est la relation d'inclusion.

Soit ip — X et 6 = Y deux ensembles d'items, on a ip •< 9 si et seulement si X C Y.

Cette relation engendre un graphe de specialisation de la forme d'un treillis booleen

contenant tous les sous-ensembles {power set) de X. Enfin, un ensemble d'items est

interessant s'il est frequent. La figure 2.1 montre le graphe de specialisation pour X =

{A, B, C, D}. Au bas se trouve l'ensemble vide. La specialisation se fait vers le haut, en

ajoutant a chaque niveau un item de plus, jusqu'a l'ensemble X. Ainsi, l'operateur direct

de specialisation ps sur un ensemble d'items X consiste a ajouter a l u n item qu'il ne

'On parle de semi-treillis si on ne peut garantir 1'existence que d'un seul element parmi le supremum
et Yinfimum d'une paire de concepts.

possede pas, i.e.

p8(X) = {Y C J | X c Y et \Y\ = \X\ + 1},

alors que 1'operateur direct de generalisation enleve un element a X

pg(X) = {Y C1\Y cXet\Y\ = \X\ - 1}.

A,B,C,D

A B C D

^ ^
0

Figure 2.1 Le graphe de specialisation des sous-ensembles d'items de l'ensemble J =
{A,B,C,D}.

Les methodes de resolution pour la decouverte des concepts interessants peuvent etre

classees selon leur facon de parcourir le graphe de specialisation. Les methodes as-

cendantes debutent la recherche avec les concepts les plus generaux du langage, i.e.

tpg 6 min(£), et utilisent un operateur de specialisation pour ensuite explorer des

concepts de plus en plus specifiques. A l'inverse, les approches descendantes debutent

avec les concepts le plus specifiques du langage, i.e. ips e max(£), et explorent ensuite

des concepts de plus en plus generaux avec un operateur de generalisation. Finalement,

un troisieme type de methodes, base sur la recherche d'espaces de versions (Mitchell,

1982), combine les strategies de recherche ascendante et descendante. Ces methodes

definissent l'espace des concepts valides, appele espace de versions, a 1'aide de deux

19

ensembles, Q et S, contenant respectivement les concepts valides les plus generaux et

les plus specifiques. Cet espace est ensuite raffine en specialisant les concepts de Q et,

en parallele, generalisant les concepts de S, jusqu'a la convergence de ces deux en­

sembles. Par ailleurs, les methodes de resolution peuvent etre subdivisees plus finement

selon 1'ordre dans lequel sont explores les concepts du graphe de specialisation. Ainsi,

dans la recherche en largeur, tous les concepts ayant le meme niveau de generalite sont

explores avant les concepts plus specifiques, dans le cas des approches ascendantes, ou

avant les concepts plus generaux, dans le cas des approches descendantes. Comme la

recherche en largeur procede par niveau de generalite, on lui donne souvent le nom de

recherche par niveau. Contrairement a la recherche par niveau, la recherche en profon-

deur explore toutes les specialisations, dans le cas des approches ascendantes, ou toutes

les generalisations, dans le cas des approches descendantes, d'un concept avant d'ex­

plorer un autre concept du meme niveau de generalite. Les methodes de resolution sont

egalement divisees en methodes completes et heuristiques. Les methodes completes sont

celles qui garantissent de trouver tous les concepts interessants. En pratique, 1'espace de

recherche peut etre trop vaste pour une exploration complete, et seulement une fraction

de cet espace, composee typiquement des concepts qui paraissent les plus interessants,

est exploree. Ces methodes font generalement appel a des heuristiques pour choisir les

concepts a explorer.

Etant donne le nombre exponentiel de noeuds, typiquement observe dans les graphes

de specialisation, il est necessaire de fournir aux methodes de recherche un moyen

d'eliminer de leur exploration les noeuds qui n'ont aucune chance d'etre interessants, un

processus appele elagage. Une des principales techniques pour elaguer l'espace de re­

cherche, consiste a verifier la fermeture descendante d'un concept par rapport au predicat

P.

Definition 11 (Fermeture descendante). Soit un espace de recherche defini par la rela­

tion de specialisation •< et soit 0 un concept de cet espace. On dit que 0 est ferine vers le

20

bas, par rapport a P, si tout concept p -< 0 est interessant selon P.

Propriete 1. Soit T> une base de donnees et P un predicat de selection anti-monotone

selon la relation de specialisation •<. De plus, soient p> etO deux concepts tels que ip ^ 9.

Si ip n'est pas interessant, alors 9 ne peut pas etre interessant. Plus formellement, on a

Vp,9e£, <p^6A --P(X>, p) => -.P(2>, 0).

En d'autres termes, un concept 9 est interessant seulement si tous les concepts plus

generaux ip X 9 sont interessants. Ce principe, connu sous le nom du principe Apriori

permet done de filtrer certains concepts ininteressants sans avoir a evaluer directement le

predicat P, et d'elaguer tous les concepts plus specifiques qu'un concept ininteressant.

Illustrons une fois de plus ce principe dans le contexte de la decouverte d'ensembles

frequents d'items. Soit deux ensembles d'items X et Y tel que X c Y. Si X n'est pas

frequent, alors Y n'est pas frequent, puisque pour chaque occurrence de Y dans V, il y

a necessairement une occurrence de X, i.e. freq(X, V) > freq(F, V). II n'est done pas

necessaire de specialiser X lors de la recherche des ensembles frequents. De raeme, un

ensemble Y est infrequent si au moins un de ses sous-ensembles X C Y est infrequent.

On peut alors detecter facilement les ensembles infrequents, et eviter de calculer leur

support dans la base de donnees. Ces idees sont a la base de l'algorithme APRIORI,

propose par Agrawal et al. (Agrawal et al., 1993). Cet algorithme, dont une version de

base est montree a la figure 2.2, prend en entree une base de donnees V ainsi qu'un

seuil minimum de support smin, et obtient les sous-ensembles frequents d'items dans V

a l'aide d'une recherche par niveau. En debutant au premier niveau avec un ensemble

candidat C\ contenant tous les items de J , le support des ensembles candidats est obtenu

en traversant la base de donnees et en calculant le nombre de transactions les contenant.

Les ensembles candidats qui sont frequents, i.e. dont le support est au moins smin, sont

alors ajoutes a !Fk. Les ensembles candidats de k+l items, i.e. Ck+i, sont ensuite generes

21

Algorithme APRIORI
Entrees: Une base de donnees V et un seuil de support minimum s.
Sorties: Les sous-ensembles frequents d'items T.

T :=§\
C\ := l'ensemble des items J ;
k := 1 ;
tant que Ck 7̂ 0 faire

H •= 0 ;

pour chaque X € Ck faire
si \{Y e V I X C y } | > sm i n alors Ffc := ^fc U {X} ;

Cfc+i : = A P R i O R i - g e n (f f c) ;
k := k + 1 ;

retourner .F;

Procedure A P R I O R I - g e n (Fk)

Entrees: Les sous-ensembles frequents de k items Fk

Sorties: Les sous-ensembles candidats de k+\ items Ck+i

Ck+l := 0 ;
pour chaque X.Y <E Tk, t.q. \X C\Y\ = \X\ — 1 faire

Creer l'ensemble de k+\ items Z = X UY;
si chaque sous-ensemble de i items de Z est dans J-k alors

Cfc+i := Cfc+i U {Z} ;
retourner Cfc+i ;

Figure 2.2 L'algorithme APRIORI pour la decouverte d'ensembles frequents, et sa
procedure APRlORl-gen pour la generation d'ensembles candidats.

par la procedure APRlORl-gen en prenant l'union deux ensembles frequents X et Y de k

items, qui ne different que d'un seul item. L'ensemble genere Z = X UY possede alors

k+\ items. La procedure elimine ensuite tous les candidats contenant un sous-ensemble

de k items qui n'est pas frequent, i.e. qui n'est pas dans Tk. Enfin, l'algorithme parcourt

la base de donnees pour calculer le support des candidats de Ck+i, et ne conserve que

ceux dont le support est au moins smin. Ce processus se termine lorsqu'il n'y a plus de

candidats, i.e. lorsque Ck = 0.

22

2.2 La decouverte des requetes frequentes

Nous avons vu, a la section precedente, un exemple de la decouverte des concepts

interessants qui consiste a trouver les ensembles frequents d'items d'une base de donnees.

Une autre application importante de ce probleme, egalement basee sur la notion de

frequence, est la decouverte des requetes frequentes dans une base de donnees multi-

re] ationnelles (Dzeroski, 2003). Cette application, ayant des liens etroits avec la pro-

grammation logique inductive (PLI) (Dzeroski et Lavrac, 1994; Muggleton, 1992), trouve,

dans une base de donnees ayant typiquement la forme d'un programme logique (Bratko,

2001), des expressions en logique du premier ordre, appelees requetes.

Definition 1 (Requete en logique du premier ordre). Soit une clause C, une substitution

9 = {Xi/ai,..., Xm/am} est un ensemble de paires variable/terme, telle que I'appli­

cation de 9 a C, notee C9, correspond a la clause C dans laquelle chaque variable

Xi prend la valeur Oj. Soit un programme logique T>, une requete Q est une expression

logique de la forme

Q = 1-Al,A2,...,An

correspondant a la conjonction des atomes At. La reponse a la requete Q, notee

reponse(Q, T>), est Vensemble des substitutions qui verifient Q dans T>, i.e.

reponse(Q, £>) = {# | D ^ Q # } ,

ou t= est I 'implication logique qui est satisfaite si et seulement si toutes les substitutions

qui satisfont l'expression de gauche satisfont egalement I'expression de droite.

Comme verifier l'implication logique est un probleme ./Vf-complet, trouver les reponses

a une requete dans un programme logique, un processus base sur 1' inference logique

(Bratko, 2001), est NP-difncile.

23

Definition 2 (Decouverte de requetes frequentes). Soit V une base de donnees sous la

forme d'un programme logique et £ un langage d'hypotheses definissant les requetes

pouvant etre formulees. Soit Q G C une requete contenant un atome K appele cle, la

frequence de Q dans V selon K est

t (n u\ — l r e P o n s e (^ £*) n reponse(Q,P)|
|reponse(A,P)|

i.e. la fraction des substitutions verifiant K dans V qui verifient egalement Q. Etant

donne un seuil minimum de frequence fmin et une cle K, la decouverte des requetes

frequentes consiste a trouver I'ensemble T des requetes qui sont frequentes dans T>

selon K, soit Vensemble

F={Qe£\freq(Q)K)>fmin}.

Afin d'illustrer ces concepts, considerons une base de donnees renfermant la definition

des predicats etudiant, cours et inscrit, fournissant de 1'information sur des etudiants, des

cours disponibles, et 1'inscription des etudiants a ces cours. Supposons que Ton choisisse

etudiant(X) pour etre la cle, la requete

? — etudiant(X), inscrit(X, algebre), inscrit(X, physique).

est frequente si la proportion d'etudiants inscrits aux cours d'algebre et de physique est

superieure ou egale a fmin. Par contre, si on choisit cours(Y) comme cle, la requete

? — cours(Y), etudiant(X), inscrit(X,Y), inscrit(X, algebre).

est frequente si la proportion de cours ayant des etudiants egalement inscrits au cours

d'algebre est au moins fmin.

24

Comme nous avons vu, l'espace de recherche de la decouverte des concepts interessants

est defini a l'aide d'un ordre sur les concepts. Dans le contexte de la decouverte des

requetes frequentes, un ordre naturel, appele generalite semantique (Buntine, 1988),

repose sur l'implication logique. Cependant, comme verifier l'implication logique est

difficile, on utilise plutot la generalite syntaxique, basee sur la notion de subsomption

(Plotkin, 1969).

Definition 3 (Subsomption). Soit C et C deux clauses, on dit que C ^-subsume C si et

seulement s 'il existe une substitution 0 tel que CO C C'. Par ailleurs, si C 6-subsume C

alors C 1= C, tandis que Vinverse n 'est pas necessairement vrai.

La subsomption permet ainsi de definir la relation de specialisation telle que C ^ C si et

seulement si C 9-subsume C Cette relation induit un espace de recherche qui peut etre

represente sous la forme d'un graphe de specialisation qui a pour base la cle, et pouvant

etre parcouru a l'aide de l'operateur de specialisation

Pa(c) = {c'\30t.q. cecc'}.

Comme c'est le cas pour la plupart des concepts, on utilise en pratique un operateur

direct de specialisation, i.e. qui n'obtient que les concepts plus specifiques les plus

generaux. Dans le cas qui nous interesse, cet operateur specialise une requete en lui ajou-

tant un nouvel atome. Cependant, deux requetes differentes peuvent etre equivalentes

sous la subsomption. Par exemple, la requete

?-p(X,a), q(X), q(X), p(Y,a), q(Y), q(Y)

est equivalente a la requete plus simple ? — p(X,a), q(X) sous la substitution 9 —

{X/Y}. Ainsi, on exige normalement un operateur qui n'obtient que les specialisations

directes qui sont des representants minimaux des classes d'equivalence definies sous la

subsomption.

25

L'algorithme WARMR, propose par Dehaspe et Toivonen (Dehaspe et Toivonen, 1999),

est une extension de l'algorithme APRIORI pour la decouverte des requetes frequentes,

exploitant la structure de l'espace de recherche defini par la generalisation syntaxique.

Cet algorithme, montre a la figure 2.3, prend en parametres une base de donnees V

sous la forme d'un programme logique, un seuil minimum de support smin, ainsi qu'un

langage d'hypotheses C, appele WRMODE, limitant le type de requetes pouvant etre

explorees. Etant donne un atome K servant de cle, WARMR retourne l'ensemble T

des requetes frequentes. Tout comme l'algorithme APRIORI, WARMR alterne entre une

phase de generation de candidats a l'aide d'un operateur de specialisation, et une phase

devaluation des candidats selon leur frequence. L'algorithme commence avec des en­

sembles de requetes frequentes T et infrequentes X vides, et un ensemble de candidats ne

contenant que la cle. A chaque niveau k, WARMR obtient ensuite les candidats frequents

Tk, en comptant, pour chaque candidat, le nombre de substitutions verifiant la cle qui

verifient egalement le candidat. Les candidats frequents sont alors ajoutes a J7 et les

infrequents a J . L'ensemble de candidats du niveau suivant Ck+i est ensuite obtenu a

l'aide de la fonction WARMR-gen. Pour chaque requete Q € T&, on ajoute a Ck+i la

requete Q' specialisant Q, i.e. obtenue en lui ajoutant un atome, sauf si :

1. Q' est plus specifique qu'une requete infrequente de J, ou

2. Q' est equivalente a une requete frequente de T.

Comme pour l'algorithme APRIORI, WARMR se termine lorsqu'il n'y a plus de requetes

candidates, i.e. Ck = 0. Cependant, contrairement a l'algorithme APRIORI, WARMR

ne verifie pas directement la fermeture descendante d'une requete generee Q', car les

requetes generalisant Q' ne sont pas forcement valides selon le langage d'hypotheses.

Au lieu de cela, WARMR conserve la liste des requetes infrequentes, et verifie que Q' ne

generalise aucune de ces requetes.

Comme verifier de la #-subsomption est un probleme jW-complet, 1'algorithme WARMR

est limite par la taille de la base de donnees et par le seuil minimum de support. Dans

26

Algorithme W A R M R

Entrees: Un base de donnees T>, un langage d'hypotheses C, une cle K, et un seuil
minimum de support smin-

Sorties: Les requetes frequentes T.

d := {? - K} ;
T~X:=%;
k := 1 ;
tant que C^ ^ 0 faire

Fk '•= [Q € Cfc t.q. \reponse(K, V) n reporase(Q,£>)| > smin} ;

l : = I U (C k \ 7 | f c) ;
Cfc+i := WARMR-gen (£, J7, X, jFfc);
fc := i + 1 ;

retourner T;

Procedure WA RMR—gen {£,, J-, X, J~k)
Entrees: Le langage d'hypotheses £, les requetes frequentes T et infrequentes X, et les

requetes frequentes du niveau courant F^.
Sorties: Les requetes candidates Ck+i du niveau suivant.

Ck+i := 0 ;
pour chaque requite Q € J-~k faire

pour chaque requite Q' € ps(Q) faire
si \/Qi EX, Q' < Qi etVQF € T, Q' n'est pas Equivalent a QF alors

Cfe+i := Ck+i U {Q'} ;
retourner Ck+i ;

Figure 2.3 L'algorithme W A R M R pour la decouverte des requetes frequentes, et sa
procedure WARMR-gen.

27

le but de reduire la complexity de cette tache, Nijssen et Kok ont propose un algorithme

appele FARMER (Nijssen et Kok, 2001), qui evite la 6>-subsomption a l'aide de structures

de donnees avancees, au cout de generer des requetes equivalentes. Nijssen et Kok ont

illustre, a l'aide d'experiences, l'avantage de leur algorithme sur plusieurs jeux de tests,

et l'equivalence des requetes obtenues avec leur algorithme et WARMR pour un type

particulier de biais declaratif.

2.3 La decouverte des sous-graphes frequents

Une autre application de la decouverte des concepts interessants, basee sur la frequence,

est la decouverte des sous-graphes frequents. Comme nous l'avons vu dans l'introduc-

tion, ce probleme joue un role tres important dans plusieurs domaines, tels que la bioin-

formatique et la chimie computationnelle. Cette section donne une vue d'ensemble des

methodes pour resoudre ce probleme.

De facon generale, les methodes pour trouver les sous-graphes frequents d'un ensemble

de graphes peuvent etre categorisees selon trois elements : 1) l'espace de recherche,

2) la strategic d'exploration de cet espace, et 3) la fagon dont ces methodes gerent les

problemes d'isomorphisme de graphe et de sous-graphe. Comme vu precedemment, l'es­

pace de recherche se definit a l'aide d'un operateur de specialisation ps. Dans le cas de

la decouverte des sous-graphes frequents, l'ensemble des graphes specialisant un graphe

G selon ps contient, de facon generale, tous les graphes ayant un sous-graphe isomorphe

a G, i.e. ps(G) = {G' \ G C G'}. II est coutume d'appeler ces graphes les extensions ou

les prolongements de G. La figure 2.4 montre l'espace de recherche contenant tous les

sous-graphes connexes d'au plus trois sommets dont les etiquettes peuvent etre X ou Y.

On remarque qu'une extension d'un graphe G s'obtient en ajoutant une nouvelle arete

reliant deux sommets de G, ou un nouveau sommet et une arete le reliant a un sommet

deG.

28

L'espace de recherche depend egalement du type de graphes recherches. Ainsi, on peut

ne s'interesser qu'a trouver les chaines frequentes, comme les algorithmes MOLFEA

developpe par Kramer et al. (Kramer et al., 2001) et PREFIXSPAN propose par Pei et al.

(Pei et al., 2001), ou les arbres frequents, tels que les algorithmes TREEMINER de Zaki

(Zaki, 2002), FREQT de Asai et al. (Asai et al., 2002), et CHOPPER developpe par Wang

et al. (Wang et al., 2004a). Ces deux problemes sont beaucoup moins complexes que la

tache plus generate de trouver les sous-graphes frequents pouvant contenir des cycles, du

fait qu'il existe des techniques efficaces pour les problemes d'isomorphismes de graphe

et de sous-graphe pour ce type de donnees. Dans le cas general autorisant les cycles, on

s'interesse typiquement a n'obtenir que des sous-graphes connexes. Cependant, on peut

restreindre la recherche a certains types de sous-graphes. Par exemple, on peut se limiter

aux sous-graphes induits, comme le font les algorithmes AGM d'Inokuchi et al. (Inoku-

chi et al., 2000) et ADI-MlNE de Wang et al. (Wang et al., 2004b). De meme, on peut ne

s'interesser qu'aux sous-graphes frequents maximaux, comme les algorithmes SPIN de

Huan et al. (Huan et al., 2004b), CMTREEMINER de Xia et Yang (Xia et Yang, 2005), et

MARGIN de Thomas et al. Puisque tout sous-graphe d'un graphe frequent maximal est

lui-meme frequent, les graphes frequents maximaux offrent une representation compacte

de la solution. Par ailleurs, on peut chercher les sous-graphes qui sont frequents selon une

mesure differente du support, comme le nombre d'isomorphismes de sous-graphe d'un

petit graphe a un plus gros. Des exemples d'algorithmes pour ce probleme sont SUBDUE

de Cook et al. (Cook et Holder, 1994), DRYADE de Termier et al. (Termier et al., 2004),

et S IGRAM developpe par Kuramochi et Karypis (Kuramochi et Karypis, 2005). Notons,

enfin, que des systemes permettant d'imposer dynamiquement des contraintes sur le type

de sous-graphes recherches ont ete proposes recemment, e.g. (Wang et al., 2005a; Zhu

et al., 2007).

La strategie d'exploration de l'espace de recherche est surement l'element le plus impor­

tant d'un algorithme pour la decouverte des sous-graphes frequents. Tel que mentionne

29

T T f T T T
x\ x x\ Y x \Y X\ Y x \ Y Y I I

o—o o—o o—6 o—o o—6 o—6
"*, * * * * * * '

X X
X

\J

O
r..

Y

—o
r.%

"'• Y '''

o --T

Y

vj

y*

Y

\J

±

Figure 2.4 L'espace de recherche contenant tous les sous-graphes connexes d'au plus
trois sommets et deux etiquettes de sommet.

precedemment, on peut separer les strategies d'exploration en trois classes : les strategies

de recherche en largeur, les strategies de recherche en profondeur, et les strategies heu-

ristiques. Contrairement aux deux premieres classes, les strategies heuristiques se dis-

tinguent du fait qu'elles sacrifient l'exploration complete de l'espace de recherche au

profit de la rapidite. Ainsi, les strategies heuristiques tentent d'obtenir seulement les

concepts les plus interessants. Une telle approche heuristique est l'algorithme CLIP (YO-

shida et Motoda, 1995). L'algorithme SUBDUE, qui sera vu plus en detail, est une autre

approche heuristique qui utilise une mesure de la theorie de l'information, la longueur

de description minimale, pour trouver des sous-graphes interessants.

Les algorithmes utilisant la recherche en largeur, par ailleurs, explorent l'espace de re­

cherche niveau par niveau, ou chaque niveau renferme typiquement des sous-graphes

ayant un sommet ou une arete de plus que les sous-graphes du niveau precedent. Comme

le fait l'algorithme APRIORI pour les ensembles frequents d'items, les sous-graphes

frequents sont obtenus en trois etapes : 1) on genere 1'ensemble des sous-graphes can-

30

didats du niveau suivant en joignant des paires de sous-graphes frequents du niveau

courant, 2) on verifie la fermeture descendante des graphes candidats, i.e. on verifie que

tous leur sous-graphes du niveau precedent sont frequents, et 3) on calcule le support

des candidats verifiant la fermeture descendante, et on ne conserve que les candidats

frequents. Ces etapes sont repetees, jusqu'a ce qu'un niveau ne contienne aucun sous-

graphe frequent. L'algorithme AGM et l'algorithme FSG, propose par Kuramochi et

Karypis (Kuramochi et Karypis, 2001), sont des exemples d'algorithmes utilisant la re­

cherche en largeur. Cependant, les algorithmes de ce type souffrent typiquement de trois

problemes. Premierement, la jonction de deux sous-graphes frequents pour generer les

graphes candidats exige normalement de calculer le plus grand sous-graphe commun

de ces deux graphes, un probleme difficile. Ensuite, la generation des candidats produit

un grand nombre de graphes isomorphes. Enfin, cette technique demande de stocker les

sous-graphes frequents a chacun des niveaux, ce qui peut demander une quantite impor-

tante de memoire.

Le dernier type de strategic d'exploration utilise la recherche en profondeur. Contraire-

ment a la recherche en largeur, la recherche en profondeur travaille avec un seul sous-

graphe a la fois, dont tous les prolongements sont explores avant 1'exploration d'un autre

sous-graphe de la meme taille. Cette strategic de recherche a trois avantages par rapport

a la recherche en largeur. Tout d'abord, elle necessite beaucoup moins de memoire que

la recherche en largeur qui doit conserver tous les sous-graphes frequents du niveau

courant. Ensuite, elle permet d'elaguer implicitement un grand nombre de sous-graphes

non-frequents, selon l'idee suivante : comme tout prolongement d'un sous-graphe non-

frequent ne peut etre frequent, on peut eviter d'explorer les prolongements de sous-

graphes non-frequents sans risquer de manquer des frequents. Enfin, ce type de recherche

permet l'emploi de techniques incrementales pour le calcul du support. Des exemples

d'algorithmes utilisant une strategie de recherche en profondeur sont les algorithmes

GSPAN developpe par Yan et Han (Yan et Han, 2002), FFSM de Huan et al. (Huan et al.,

31

2003), et GASTON propose par Nijssen et Kok (Nijssen et Kok, 2004).

Dans les prochaines sections, nous presentons plus en detail certains algorithmes ca-

racterisant bien les methodes de resolution pour la decouverte des sous-graphes frequents.

2.3.1 L'algorithme AGM

L'algorithme AGM (Apriori Graph Mining), propose par Inokuchi et al. (Inokuchi et al.,

2000), est un des premiers algorithmes developpes pour la decouverte de sous-graphes

frequents. Cet algorithme emploie une strategic de recherche en largeur pour obtenir les

sous-graphes frequents dans la base de donnees, qui sont induits mais pas necessairement

connexes. Tout comme 1'algorithme APRIORI, l'algorithme AGM, detaille a la figure

2.5 procede niveau par niveau, en commencant avec les sous-graphes contenant un seul

sommet, et genere a chacun des niveaux suivants un ensemble de sous-graphes candidats

contenant un sommet de plus qu'au niveau precedent. Egalement comme l'algorithme

APRIORI, AGM verifie la fermeture descendante de ces candidats.

Generation des candidats

La generation des candidats dans AGM est semblable a celle de l'algorithme APRIORI

pour les ensembles frequents d'items. Dans le cas d'AGM, un sous-graphe candidat de

/c+1 sommets est cree a partir de deux sous-graphes frequents de k sommets, qui ne

different que d'un seul sommet et ses aretes incidentes. Soit deux graphes diriges de k

sommets, Gk et Hk, dont les matrices d'adjacence sont:

Ak-i ai \ I Bk_i 6j
Ak= \ \ et Bk= \

«2T akk I \ h bkk

32

Algorithme AGM
Entrees: Un base de donnees graphiques T> et un seuil minimum de support s.
Sorties: Les sous-graphes frequents T dans V.

^ : = 0 ;
C\ :— les sommets etiquetes de V ;
k := 1 ;
tant que Ck ^ 0 faire

pour chaque graphe G € Ck faire
si \{G' € V | G C G'}| > s m m alors ^fc := .Ffc U {G} ;

JP := .F U Tk ;
Cfc+i := AGM-gen <JFk);
/c := k + 1 ;

retourner T;

Procedure AGM-gen (JFfc)
Entrees: Les sous-graphes frequents du niveau courant Tk.
Sorties: Les sous-graphes candidats du niveau suivant Ck+i-

Ck+i := 0 ;
pour chaque paire de graphes Gk,Hk € Tk faire

SoitAfc=f AV ^ W = (* V ^ I
V a 2 afcfe / V °2 ofcfc y

les matrices d'adjacences de Gk et Hk ',
si 4̂̂ < Bk et Ak_i = Bk-i alors

pour chaque paire a"etiquettes li,l? G L faire
Creer le graphe Gk+i ayant pour matrice d'adjacences

/ Ak-i ax bx \
-Wfe+i = «2T akk h J ;

ajoute := vrai;

pour chaque sommet v de Gk+i faire
Soit Sk le graphe obtenu en retirant v de Gk+\ et ses aretes incidentes;
si $ Hk € Tk t.q. canon(Gfc) = canon(i7fc) alors ajoute :—faux ;

si ajoute = vrai alors Ck+i •= Cfc+i U {Gk+i} ;
retourner Cfc+i ;

Figure 2.5 L'algorithme AGM pour la decouverte des sous-graphes frequents, et sa
procedure AGM-gen pour la generation des sous-graphes candidats.

33

Si les matrices d'adjacence Ak et Bk sont identiques a l'exception des elements de la

fc-eme rangee et colonne, i.e. Ak-\ — Bk-i, elles sont jointes pour former la matrice

d'adjacence suivante :
/

M f e + i =

Ak-i a\ \

V

a-2

b2
T

T afcfc h

J h bkk

ou les elements l\ et li sont indetermines. En somme, Mk+i correspond a un graphe de

k+l sommets contenant Gk et Hk, et dont les deux sommets qui different dans ces deux

graphes, sont reliees ou non par une arete d'etiquette quelconque. Soit L(Gk) et L(Hk)

les ensembles contenant les etiquettes des aretes de Gk et Hk, il y a \L(Gk) U L(Hk) \ +1

valeurs possibles pour les elements Zx et l2 (la valeur supplementaire est pour le cas ou

les deux sommets ne sont pas relies). Par consequent, l'union de Gk et Hk entrainera la

creation de (\L(Gk) U L(Hk)\ + l)2 sous-graphes candidats differents. Par ailleurs, si

Gk et Hk sont des graphes non-diriges, l'union de leur matrices d'adjacence donnera la

matrice symetrique suivante :

Mk+1 =

(

\

Ak-i a \

dkk I

bT I %k J

Comme il n'y a plus qu'un seul element indetermine I, le nombre de sous-graphes can­

didats generes, dans ce cas, ne sera que \L(Gk) U L(Hk)\ + 1. La figure 2.6 montre la

generation d'un sous-graphe candidat a 4 sommets, a partir de deux sous-graphes diriges

de 3 sommets, ayant X, Y, Z comme etiquettes de sommets, et s, t comme etiquettes

d'aretes. Les lignes pointillees signifient que l'arete correspondante peut etre absente ou

presente, et dans le dernier cas, que son etiquette est indeterminee. Selon la valeur que

prennent ces aretes, on peut ainsi creer 9 sous-graphes candidats differents.

On remarque, par ailleurs, que la matrice d'adjacence, obtenue lors de l'union de Gk et

34

7*?
/ ?

<M

Vi

V2

V3

Vi

X
V2

S

Y

«3

t

Y

v\
v'.
v'3

v[
X

t

v'2

s
Y

^

Z

Ml

"2

"3

U\

U\

X

t

U'2

S

Y

«3

t

Y
?

U4

?
Z

(b)

Figure 2.6 (a) La jonction de deux graphes diriges de 3 sommets par l'algorithme AGM,
et (b) la jonction au niveau des matrices d'adjacence.

Hk, depend de l'ordre dans lequel on considere ces graphes, i.e. Ak + Bk ^ Bk + Ak.

Cependant, les matrices obtenues selon un ordre ou son inverse represented deux auto-

morphismes du meme graphe. Pour eviter d'engendrer deux fois le meme sous-graphe

candidat, AGM impose ainsi que Gk et Hk soient joints seulement si la chaine obtenue

en concatenant les elements de Ak est lexicographiquement inferieure a celle obtenue

pour Bk, note Ak < Bk. Enfin, pour verifier qu'un sous-graphe Sk du graphe Gk+\

est bel et bien frequent, on calcule son code canonique, note canonf^), en trouvant

la permutation des sommets pour laquelle la chaine obtenue de la matrice d'adjacences

permutee est minimale. On verifie ensuite qu'il existe un sous-graphe frequent de Tk

ayant le meme code canonique.

Calcul du support

Apres avoir genere les sous-graphes candidats, on doit determiner lesquels de ces candi-

dats sont frequents, en calculant leur support dans la base de donnees. La strategic uti-

lisee par AGM pour accelerer le test d'isomorphisme de sous-graphe consiste a reutiliser

certains des calculs faits aux etapes precedentes. Considerons, par exemple, la tache

35

de determiner si le graphe G2 de la figure 2.1(b) est isomorphe a un sous-graphe du

graphe G\ montre en (a). L'arbre de recherche associee a cette tache, ou chaque niveau

represents 1'association d'une paire de sommets, est presente a la figure 2.8. En suivant

la numerotation, le premier isomorphisme que Ton trouve associe ux a v3 et w2 a v\.

Supposons maintenant que Ton veuille determiner si le graphe G3, montre en (c), est

isomorphe a un sous-graphe de G\. Comme G2 C G3, on peut reutiliser le travail fait

pour G2. Ainsi, puisque la portion de l'arbre de recherche situee a gauche du chemin

v3-vx ne mene a aucun isomorphisme pour G2, elle ne menera a aucune solution pour

G3. On peut alors debuter la recherche d'un isomorphisme pour G3 a partir de ce che­

min. Utilisant cette strategic, on trouve un isomorphisme de G3 a un sous-graphe G\ qui

associe u\ a v$, «2 a v 1, et u$ a v2.

(a)Gi

€>-J~^Y X

(b)G2 (c) G3

Figure 2.7 Trois graphes etiquetes G\, G2 et G3, tels que G2 C G3 C G\.

x x ! ! x

Figure 2.8 L'arbre de recherche correspondant la recherche d'un sous-graphe du graphe
Gi de la figure 2.7 isomorphe a G2.

36

2.3.2 L'algorithme FSG

Developpe par Kuramochi et Karypis (Kuramochi et Karypis, 2001), l'algorithme FSG

(Frequent Sub-Graph mining), tout comme AGM, utilise la recherche en largeur et le

principe Apriori pour trouver les sous-graphes frequents de la base de donnees. Cepen-

dant, alors qu'AGM obtient des sous-graphes induits qui sont connexes ou non, FSG

obtient les sous-graphes connexes frequents pouvant etre induits ou non. Au plus haut

niveau, l'algorithme FSG est similaire a AGM. A partir d'un ensemble de sous-graphes

candidats initial, FSG alterne entre une phase devaluation des candidats, ou la base de

donnees est traversee pour calculer le support des candidats, et une phase de generation

de candidats. A la difference d'AGM qui specialise les graphes en leur ajoutant un som-

met, l'algorithme FSG genere a chaque niveau des sous-graphes candidats ayant une

arete de plus.

Generation des candidats

Comme dans AGM, la generation des sous-graphes candidats dans FSG se fait en combi-

nant deux sous-graphes frequents partageant une structure commune. Soit Gk et Hk deux

graphes de k aretes, un noyau pour Gk et Hk est un sous-graphe iVfc_i de k-\ aretes qui

est inclus dans ces deux graphes, i.e. Nk-i C Gk et Nk-i C Hk. Un sous-graphe candi-

dat Gk+i de k+\ aretes est genere de deux graphes Gk et Hk si ces graphes partagent un

noyau N^-i- Tout comme AGM, la jonction de deux sous-graphes Gk et Hk dans FSG

produit plusieurs sous-graphes candidats differents. La difference entre ces candidats

peut se produire pour trois raisons, illustrees a la figure 2.9. Premierement, la difference

entre le noyau et les deux graphes peut etre une paire de sommets u et v ayant la meme

etiquette dans les deux graphes, mais rattaches au noyau a des endroits differents. Ce cas,

montre en (a), entratne la creation de deux candidats, selon si on considere les sommets

uttv comme distincts ou non. Ensuite, le noyau peut avoir plusieurs automorphismes,

37

tel que montre en (b). II existe, dans ce cas, plusieurs facons d'associer les sommets

des sous-graphes correspondants au noyau de Gk et Hk, chacune donnant un candidat

different. Dans le pire cas, si le noyau est une clique ayant n sommets de meme etiquette,

le nombre de candidats differents generes sera n\. Finalement, il peut y avoir plus d'un

noyau commun entre Gk et Hk, tel que montre en (c). Dans ce cas, on doit traiter chaque

noyau separement. Comme chaque noyau a une arete de moins que Gk et Hk, il y aura

au plus A>1 noyaux partages par ces deux graphes.

x „z X ~V- ~z

x

x^^x

X + X X ^ *

x^ ~x 6—6

(a)

'I
x°—i>x

YQ QZ

x^?x
x°—<>x

i ' ^
| x<^~°

(b)

Noyau 1 Qx

Y x \x
o—o

oXI:+ - ^ -"
...-> Op-Oj-^x

Y X ~X Y X X

Noyau 2 Ox JfX YX

t\x' o—o

Y ^x ^x

Of^r^x

(c)

Figure 2.9 Trois raisons expliquant la creation de candidats differents dans FSG : (a) les
graphes ne different que par une paire de sommets de meme etiquette, rattaches au noyau
a des endroits differents, (b) le noyau possede plusieurs automorphismes, et (c) il existe
plusieurs noyaux communs aux deux graphes.

La figure 2.10 montre, avec plus de details, la procedure de l'algorithme FSG pour la

generation des sous-graphes candidats de h+\ aretes, a partir des sous-graphes frequents

de k aretes. Pour chaque paire de sous-graphes frequents Gk et Hk telle que code(Gk) <

38

code(Hk), oil le code est une fois de plus obtenu en concatenant les elements de la

matrice d'adjacences, et pour chaque noyau Nk_i commun a Gk et Hk, la procedure

genere l'ensemble des automorphismes de Nk_i. Ensuite, pour chacun de ces automor-

phismes, un candidat Gk+i ayant fc+1 aretes est genere tel qu'explique precedemment.

La procedure verifie ensuite que Gk+\ n'est pas isomorphe a un candidat deja genere en

calculant son code canonique, i.e. le code minimal pour toute permutation des sommets,

et en le comparant a celui des candidats presents dans Ck+±. S'il s'agit bien d'un nouveau

candidat, la procedure s'assure que Gk+\ satisfait la fermeture descendante. Cette etape

est faite en calculant le code canonique de chaque sous-graphe Sk, produit en retirant une

arete de Gk+i, et en le comparant avec ceux des graphes frequents de Tk. Finalement, si

Gk+\ satisfait la fermeture descendante, il est ajoute a l'ensemble des candidats Ck+1.

Par ailleurs, l'algorithme FSG emploie une technique particuliere pour identifier les

noyaux communs aux graphes Gk et Hk. Cette technique exploite le fait qu'on peut

conserver le code canonique de chacun des k sous-graphes de Gk et Hk crees en retirant

une arete. On peut alors comparer un a un les codes canoniques des sous-graphes de Gk

et Hk, et conserver les paires de representations identiques. Ces paires de representations

identiques correspondent aux noyaux. En supposant que les codes canoniques des sous-

graphes de Gk et Hk ont deja ete calcules a une etape precedente, cette technique necessite

en tout k2 comparaisons.

Calcul du support

La strategie employee par FSG pour le calcul du support consiste a conserver, pour

chaque sous-graphe frequent Gk e Tk, l'ensemble des graphes de V le supportant,

i.e. {G' € V | Gk C G'}. Lorsqu'on doit calculer le support d'un graphe Gk+i, on

identifie d'abord 1'intersection des ensembles de graphes supportant chacun des k+]

sous-graphes Sk de Gk+\, crees en lui retirant une arete. Puisque le nombre de graphes

39

Procedure F S G - g e n (Tk)
Entrees: Les sous-graphes frequents du niveau courant Fk-
Sorties: Les sous-graphes candidats du niveau suivant Ck+i-

Ck+i := 0 ;

pour chaque paire de graphes Gk.Hk <E Tk faire
si code(Gfc) < code(Hk) alors

M := {iVfc_i de k - 1 aretes | Nk_x c Gk et Nk^ c Hk} ;

pour chaque noyau Nk_i € AT faire
pour chaque automorphisme (j> de Nk-i faire

Creer un candidat G^+ 1a partir de Gk, Hk et <f>;
si $ G'k+l € Cfc+i ?.g. canon((?fc+i) = canon(Gf/

fc+1) alors
ajoute := vrai;

pour chaque arete e d<? Gfc+i faire
Soit Sk le graphe genere en retirant e de G^+i ;
si $ Hk € JFfc tg. canon(5fc) = canon(iffc) alors

ajoute :—faux;
si ajoute = vrai alors Cfc+i := Ck+i U {Gfc+i} ;

retourner C^+i ;

Figure 2.10 La procedure de generation de sous-graphes candidats de I'algorithme FSG.

40

dans 1'intersection est une borne superieure sur le support de Gk+i, on peut eviter de

calculer le support de Gk+i si ce nombre est en dessous du seuil minimum de support

2.3.3 L'algorithme GSPAN

Les algorithmes AGM et FSG, bases sur une recherche en largeur utilisant le principe

Apriori, souffrent d'importants problemes lies a cette approche. Ainsi, comme ces algo­

rithmes doivent generer et maintenir un tres grand nombre de candidats, pour la plupart

infrequents, l'espace necessaire pour conserver ces candidats, et l'effort requis pour tes­

ter si ces candidats sont frequents limitent la taille des bases de donnees pouvant etre

traitees. L'algorithme GSPAN (Graph-based Substructure PAtterN mining), propose par

Yan et Han (Yan et Han, 2002), elimine la generation de candidats a l'aide d'une re­

cherche en profondeur d'un espace hierarchique, ou chaque noeud correspond au code

d'un graphe. En associant a chaque graphe un code sous la forme d'une sequence dont la

nature sera precisee plus loin, la tache de trouver les sous-graphes frequents d'une base

de donnees equivaut alors a une exploration dans l'espace des sequences. De plus, si

cette exploration est faite selon l'ordre lexicographique des sequences, on peut elaguer

tous les noeuds qui n'ont pas un code canonique, puisque le noeud de code canonique

correspond a un graphe isomorphe deja explore.

La figure 2.11 illustre l'approche utilisee par GSPAN. Cette figure montre l'espace hie­

rarchique forme d'un arbre ou chaque noeud correspond au code d'un graphe, et chaque

branche au prolongement, avec une arete, du graphe correspondant. Ainsi, chaque niveau

de cet arbre contient le code de graphes ayant une arete de plus qu'au precedent, et la

racine '_!_' correspond au code d'un graphe sans sommet ni arete. Cet arbre contient les

41

codes de deux graphes isomorphes G\ et G2, tels que

canon(Gfi) = code(Gi) < code((?2).

Comme le code de G\ est inferieur a celui G2, le noeud correspondant a G\ sera neces-

sairement explore avant celui de G2- De plus, puisque G2 n'a pas un code canonique, le

noeud correspondant a ce graphe sera elague durant la recherche.

m aretes

2 arfites

1 arete

0 arete

_L

Figure 2.11 Un exemple d'un espace hierarchique et d'elagage de noeuds non cano-
niques.

L'algorithme GSPAN est montre plus en details a la figure 2.12. Cet algorithme, qui recoit

en parametres une base de donnees V ainsi qu'un seuil minimum de support smin, et

retourne 1'ensemble T des sous-graphes frequents dans V, commence par identifier les

ensembles d'aretes frequentes Ejr et infrequentes Ex dans V. Selon le principe Apriori,

un graphe contenant une arete infrequente est necessairement infrequent. Ainsi, GSPAN

peut retirer les aretes infrequentes Ex de tous les graphes de V, sans risque d'eliminer

un sous-graphe frequent. Ensuite, suivant un ordre croissant de code, chaque arete e G

EF est exploree avec la procedure explore. Cette procedure retourne 1'ensemble des

sous-graphes frequents qui sont les descendants de ce noeud, qui sont situes dans la

branche de l'arbre de recherche commencant a ce noeud. Ces sous-graphes frequents

sont alors ajoutes a T. Puisque tous les sous-graphes frequents contenant l'arete e ont

ete trouves, G5PAN peut retirer cette arete de tous les graphes de V. L'algorithme termine

42

en retournant T.

La procedure recursive explore, qui est responsable de l'exploration en profondeur de

l'arbre de recherche, re$oit en parametres V, smin, ainsi qu'un graphe Gk de k aretes, et

retourne les sous-graphes frequents Tk descendants de Gk- Cette procedure verifie tout

d'abord si le code de Gk est canonique. Si ce n'est pas le cas, le graphe isomorphe a Gk

de code canonique a deja ete explore, et il est inutile d'explorer Gfc. Par contre, si le code

de Gk est bien canonique, la procedure ajoute ce graphe a Tk, puis genere l'ensemble

Cfc+i des sous-graphes obtenus en prolongeant d'une arete Gk avec la procedure pro-

longe. En suivant l'ordre lexicographique croissant de leur code, le support de chaque

sous-graphe Gk+i € C/c+i dans V est calcule. Si ce support est au moins smin, le noeud

de ce graphe est explore avec un appel recursif a la procedure explore, et les sous-graphes

frequents retournes par cette procedure sont ajoutes a Tk- Sinon, le noeud est elague.

2.3.4 Le code DFS

La caracteristique la plus importante de 1'algorithme GSPAN est la maniere dont les

graphes sont codes. Ce code repose sur le concept d'arbre de recherche en profondeur,

appele arbre DFS:

Definition 4 (Arbre DFS). Soit G = (V, E, lv, le) un graphe etiquete simple ayant un

ordre sur ses sommets, i.e. vt < Vj, 1 < i < j < \V\, un arbre DFS pour Depth-First

Search, est un arbre produit par I 'exploration en profondeur de G en suivant I 'ordre

des sommets. Soit T un arbre DFS pour G, on nomme racine de T le premier sommet

explore, i.e. le sommet v\, et sommet extremal le sommet explore en dernier, i.e. le

sommet v\V\. De plus, on appelle chemin extremal la chaine de sommets et d'aretes

allant de la racine au sommet extremal.

La figure 2.13 montre un graphe etiquete (a), ainsi que trois arbres DFS, (b), (c) et

43

Algorithme GSPAN

Entrees: Un base de donnees graphiques V et un seuil minimum de support s.
Sorties: Les sous-graphes frequents T dans V.

Soit Ejr et Ex l'ensemble des aretes frequentes et infrequentes dans V ;

pour chaque graphe G G V faire
E{G) := E{G) \ Ex ;

T := 0 ;
pour chaque arete e € -ETF, en ordre croissant de code faire

Soit G\ le graphe contenant que V arete e ;
T := JT U e x p l o r e (£>, smin, d) ;

pour chaque graphe G £T> faire
£ (G) : = £ (G) \ { e } ;

retourner J*7;

Procedure e x p l o r e (V, smin, G)
Entrees: Une base de donnees graphiques V, un seuil minimum de support sm,n, et un

graphe Gk

Sorties: Les sous-graphes frequents Fk descendants de Gk

si code(Gfe) = canon(Gk) alors
Fk '•= Fk U {Gk} ;
Cfe+i := p r o l o n g e (V, Gk) ;

pour chaque enfant Gk+i € Cfc+i, *e/on Vordre croissant de leur code faire
si |{G € P | Gk+i C G}| > smi„ alors

Jib := Jfe U e x p l o r e (V, smin, Gk+i) ;
retourner ^ ;

Figure 2.12 L'algorithme GSPAN pour trouver les sous-graphes frequents d'un ensemble
de graphes etiquetes

44

(d), produit par une recherche en profondeur selon un ordre different des sommets de

(a). Les lignes pleines en (b), (c) et (d) correspondent aux aretes des arbres DFS. On

constate qu'un graphe peut avoir un nombre exponentiel d'arbres DFS. Par ailleurs, un

arbre DFS permet de definir un ordre sur les aretes d'un graphe.

z x

(a) (b) (c) (d)

Figure 2.13 (a) Un graphe etiquete et (b)-(d) plusieurs arbres DFS. Les aretes arriere
sont en pointille.

Definition 5 (Ordre sur les aretes). Soit G = (V, E, lv, le) un graphe etiquete simple et

T un arbre DFS pour G, Vensemble des aretes avant, note Ef^, contient les aretes de G

qui sont dans T, i.e. E C\T. De mime, I'ensemble des aretes arriere, note E^T, contient

les aretes de G qui ne sont pas dans T, i.e. E\T. Suivant la definition de T, on a

Ef,T = {(vuvj) eE\i<j}

Eb,T = {(vuVj) e E\i> j}

Dans les definitions qui suivent, on suppose que e\ = ivi^Vj^) et e% = {vi2,Vj2). On

peut definir, a I'aide de T, un ordre lineaire -<? sur les aretes de E selon trois cas :

1. e\ G Ef:T et e-2 G -E/,T •'

ei ^ T e2 <̂> ji < j 2 ,

i.e. e\ est inferieure a e2 ssi son sommet terminal est inferieur a celui de e2.

45

2. ei G EbtT et e2 G -E^.T •'

ei -<r e2 <=> ii < i2 ou ix - i2 et ji < j 2 .

i.e. t\ est inferieur a e2 ssi son sommet initial est inferieur a celui de e2 ou, en cas

d'egalite, le sommet terminal de e\ est inferieur a celui de e2.

3. ei G EffT, et e2 G E^T •'

ei <T e2 o ji < i2,

i.e. e\ est inferieur a e2 ssi le sommet terminal de e\ n 'estpas superieur au sommet

initial de e2.

En somme, l'ordre des aretes de G se determine de la maniere suivante. En commencant

avec la racine v\ de T comme sommet courant, on ajoute une arete avant du sommet

courant vers le prochain sommet dans la numerotation. On ajoute ensuite toutes les arStes

arriere connectant ce nouveau sommet aux sommets deja vi sites, et on repete avec le

nouveau sommet comme sommet courant. Lorsqu'il n'y a plus de nouveau sommet,

on fait un retour-arriere vers le sommet precedent de l'ordre et on essaie d'ajouter une

nouvelle arete avant. Le processus se termine lorsqu'on a ajoute toutes les aretes de G.

Illustrons ceci a l'aide d'un exemple. Soit G un graphe etiquete et T son arbre DFS, tels

que montres a la figure 2.\3{b). Les aretes avant de G selon T sont (vi,v2), {v2,vz),

(v2, v5), (v3, V4), alors que les aretes arriere sont (v3, v\) et (t>4, v2). Selon la definition

precedente, l'ordre des aretes de G est:

De meme, l'arbre de la figure 2.13(c) induit l'ordre suivant:

(vi,V2) -<T (V2,VS) <T (v3,Vi) -<T (V3,V4) ^T {vA,Vx) <T {vx,Vb).

46

Par ailleurs, l'ordre des aretes permet de definir un code pour un graphe etiquete.

Definition 6 (Code DFS). Soit G = (V, E, lv, le) un graphe et T un arbre DFS pour

G, on definit un code de recherche en profondeur ou code DFS pour G et T, note

code(G, T), comme une sequence

code(ei)code(e2)... code(e|£j_i)code(e|£;|),

telle que ej <T ^i+i, et ou le code d'une arete (vi, Vj) est

i.e. le quintuplet contenant les numeros des sommets initial et terminal, Vetiquette du

sommet initial, Vetiquette de Varete, etfinalement, Vetiquette du sommet terminal. L'ordre

lineaire -<T permet la definition d'un ordre lexicographique sur les codes. Soit deux

codes a et p tels que

a = code(Ga, Ta) = axa2 .. • an-ian

p = code(G^, Tp) = bxb2... 6m-i6m,

on a a < P ssi un des deux cas suivants est vrai :

1. afc = 6fc, 1 < k < n et n < m;

2. 3t, 1 < t < min{m, n} t.q. a^ = bk, 1 < k < t, et at < bt.

Finalement, le code canonique d'un graphe G est le plus petit code d'un graphe G,

selon I 'ordre lexicographique, pour tout arbre DFS de G.

La figure 2.14 montre les codes du graphe de la figure 2.13(a), generes en utilisant les

arbres DFS montres en (b), (c) et (d). Selon l'ordre lexicographique qui vient d'etre

defini, le code (d) est plus petit que le code (b), qui est plus petit que le code (c). En fait,

47

Arete

ei

e2
e3
e4

e5
ee

code(6)

(l,2,X,s,Y)
(2,3,Y,t,X)

(3,l,X,s,X)

(3,4,X,q,Z)

(4,2,Z,t,Y)

(2,5,Y,r,Z)

code (c)

(l,2,Y,s,X)
(2,3,X,s,X)

(3,l,X,t,Y)
(3,4,X,q,Z)

(4,l,Z,t,Y)

(l,5,Y,r,Z)

code (d)

(l,2,X,s,X)
(2,3,X,s,Y)

(3,l,Y,t,X)

(3,4,Y,t,Z)
(4,l,Z,q,X)

(3,5,Y,r,Z)

Figure 2.14 Les codes provenant des arbres DFS montres a figure 2.13.

on peut verifier que le code (d) est le code canonique de ce graphe.

Lors de 1'exploration de l'espace de recherche, un graphe est prolonge en lui ajoutant

une nouvelle arete reliant deux sommets de ce graphe, ou bien un nouveau sommet ainsi

qu'une arete le reliant a un sommet du graphe. Cependant, comme la sequence des aretes

ajoutees au graphe doit correspondre a un code DFS, une nouvelle arete ne peut pas etre

ajoutee n'importe ou. Ainsi, les aretes avant ne peuvent etre ajoutees que sur le chemin

extremal de l'arbre DFS. De meme, les aretes arriere ne peuvent relier que le sommet

extremal a un autre sommet du chemin extremal. Considerons, par exemple, le graphe

de la figure 2.15(a), dont les sommets du chemin extremal correspondent aux cercles

pleins, et le sommet extremal est identifie par "s.e.". Les prolongements valides a l'aide

d'une arete arriere partant du sommet extremal sont montres en (b) et (c). De meme,

les figures (d) a (g) montrent les prolongements valides a l'aide d'une arete avant allant

d'un sommet sur le chemin extremal vers un nouveau sommet.

2.3.5 Extensions de GSPAN

Le succes important qu'a connu l'algorithme GSPAN et sa strategie de recherche basee

sur le code DFS a encourage le developpement d'autres methodes basees sur cette strategie

Une de ces methodes, l'algorithme CLOSEGRAPH propose par Yan et Han (Yan et Han,

48

Sv. NNMkk
—o

—o

(a) (b) (c) (d) (e) (f) (g)

Figure 2.15 (a) Un graphe et (b)-(g) quelques uns des prolongements de ce graphe par
GSPAN. Les sommets noircis forment le chemin extremal se terminant par le sommet
extremal (s.e.). Les aretes en pointille represented les prolongements du graphe.

2003), se limite a obtenir les sous-graphes connexes frequents qui sont fermes. Dans le

contexte de cet algorithme, un sous-graphe G est dit ferme s'il n'existe aucun super-

graphe G' D G tel que swp(G',T>) = sup(G,T>). L'idee est qu'un sous-graphe G qui

n'est pas ferme est peu interessant, puisqu'il existe un sous-graphe ferme G' D G conte-

nant chacune des instances de G dans la base de donnees. En pratique, seulement une

fraction des sous-graphes sont fermes, ce qui permet de reduire la quantite de donnees

retournees a l'usager par l'algorithme. De plus, se limiter aux sous-graphes fermes per­

met, dans certains cas, d'accelerer la recherche en evitant d'explorer des branches de

l'espace de recherche ne menant a aucun sous-graphe ferme.

Un autre algorithme base sur GSPAN est l'algorithme GASTON (GrAph Sequence Tree

extractiON), propose par Nijssen et Kok (Nijssen et Kok, 2004). Comme nous l'avons

deja mentionne, les problemes d'isomorphisme de graphe et de sous-graphe sont moins

complexes pour les graphes ne contenant pas de cycle, tels que les chaines et les arbres,

du fait qu'il existe des methodes de resolution efficaces pour ce type de donnees. Or,

dans bien des cas, la plupart des sous-graphes frequents de la base de donnees sont

justement des chaines ou des arbres. GASTON s'inspire de ce principe pour accelerer

l'exploration de l'espace de recherche. Ainsi, les chaines frequentes sont tout d'abord

obtenues de maniere tres efficace. Ensuite, ces chaines sont prolongees pour trouver les

arbres frequents. Enfin, les arbres frequents sont a leur tour prolonges pour trouver les

49

graphes cycliques frequents.

Un dernier algorithme inspire de GSPAN est l'algorithme DSPM (Diagonally Subgraphs

Pattern Mining), developpe par Cohen et Gudes (Cohen et Gudes, 2004). Cet algo­

rithme explore l'espace de recherche a l'aide d'une variante de la strategic d'explora­

tion de GSPAN, appelee recherche a prefixe inverse. Alors que la recherche a prefixe

inverse utilise egalement le code DFS, cette strategic differe de celle employee par

GSPAN par le fait que les prolongements d'un graphe sont explores selon l'ordre in­

verse, i.e. decroissant, de leur code. Ceci garantit que tous les sous-graphes d'un graphe

seront explores avant ce graphe, ce qui permet de verifier la fermeture descendante de ce

graphe. Lors de l'exploration, les sous-graphes frequents rencontres sont conserves par

DSPM. Ensuite, lorsqu'un graphe est explore, cet algorithme calcule le code canonique

de chacun de ses sous-graphes connexes, selon la technique employee par GSPAN, et

verifie qu'il existe, pour chacun de ces sous-graphes, un graphe frequent ayant le meme

code canonique. En plus de cette strategic de recherche, 1'algorithme DSPM emploie

egalement la technique de generation de candidats de la recherche par niveau. Selon les

auteurs, cette strategie hybride de recherche permet d'elaguer un nombre superieur de

sous-graphes non-frequents.

2.3.6 L'algorithme SUBDUE

Les methodes presentees jusqu'a maintenant utilisent la frequence comme mesure pour

determiner si un sous-graphe est interessant ou non. L'algorithme SUBDUE, presente par

Cook et Holder (Cook et Holder, 1994), emploie une mesure differente, basee sur l'idee

que la meilleure theorie pour decrire un ensemble de donnees est la theorie minimisant

le nombre de bits requis pour decrire ces donnees, un principe connu sous le nom de

longueur de description minimale :

Definition 7 (Longueur de description minimale). Soit G un graphe etiquete, trouver un

50

sous-graphe Gm\n de G tel que

Gmin = argmin{/(G') + /(G'|G')},
G'CG

oil I(G') est le nombre de bits requis pour encoder G', et I(G\G') est le nombre de bits

necessaires pour encoder le graphe G dans lequel chaque instance de G' est remplace

par un sommet, ainsi que les liens permettant de reconstruire G a partir de ce nouveau

sommet.

Une facon naive de calculer le nombre de bits 1(G) pour encoder un graphe etiquete G =

(V, E, L, lv,e) est la suivante. En supposant que chaque etiquette de L est representee

par un entier, il faut 0(|V|log \L\) bits pour encoder les etiquettes des sommets. La

matrice d'adjacence peut ensuite etre utilisee pour encoder les aretes. Si le graphe est

dirige, il faut 0 (| y | 2 log |L|) bits pour encoder les aretes et leur etiquette, sinon il faut

0 (« log \L\) bits pour encoder celles-ci. Alors que la longueur de description mi-

nimale presente des avantages sur la mesure de frequence, cette mesure a le desavantage

de ne pas etre monotone ou anti-monotone selon la relation de specialisation. Ainsi,

plus Gmin a de sommets, plus le nombre de sommets reduits dans G, pour chaque ins­

tance de Gmin sera important, mais moins il sera frequent done moins d'instances seront

remplacees dans G. Par ailleurs, puisque cette mesure n'est pas monotone, il n'existe

pas de technique efficace pour elaguer l'espace de recherche, et on doit souvent avoir

recours a une approche heuristique. Pour surmonter ce probleme, SUBDUE explore l'es­

pace de recherche a l'aide d'une strategic de recherche heuristique parfaisceau, un type

de recherche arborescente dans laquelle on explore qu'un nombre reduit de branches a

chaque niveau, donne par la largeur dufaisceau. De meme, SUBDUE utilise une methode

heuristique de resolution pour le probleme d'isomorphisme de sous-graphe, permettant

de trouver en temps polynomial un sous-graphe maximisant le critere de longueur de

description minimale.

51

La figure 2.16 donne une description de haut niveau de l'algorithme SUBDUE. AU lieu

d'avoir en parametre une base de donnees renfermant plusieurs graphes, SUBDUE ne

recoit qu'un seul graphe etiquete G ainsi qu'une largeur de faisceau M, et retourne un

sous-graphe Gm;n C G qui minimise la longueur de description de G. En commencant

avec un ensemble C\ contenant tous le sommets etiquetes de G, et a chaque niveau k,

SUBDUE determine les sous-graphes candidats Gj € Cfc, 1 < j < M dont la valeur

heuristique, donnee par

f(Gj) = I(Gj) + I(G\Gj)1

est parmi les M plus faible. Pour chacun de ces sous-graphes Gj, SUBDUE verifie ensuite

si la valeur heuristique de Gj est inferieure a celle de Cmin. Si c'est le cas, Gj devient le

meilleur candidat. Par la suite, SUBDUE ajoute a l'ensemble initialement vide des can­

didats du prochain niveau, Ck+u tous les sous-graphes engendres par le prolongement

d'une instance de Gj dans G. Le prolongement consiste a ajouter une nouvelle arete al-

lant d'un sommet de Gj vers un autre sommet de Gj, ou vers un nouveau sommet de G.

Apres avoir genere tous les candidats du prochain niveau, SUBDUE partitionne ces can­

didats en classes a l'aide d'une methode heuristique pour le probleme d'isomorphisme

de sous-graphe. Ainsi, les sous-graphes dont la similarity, obtenue par cette methode,

est au dessus d'un seuil de tolerance sont mis dans une meme classe. Au niveau suivant,

i.e. k+\, les sous-graphes d'une classe sont considered comme des instances du meme

graphe. Le processus se termine lorsqu'il n'y a plus de nouveaux candidats.

L'algorithme SUBDUE permet egalement de biaiser la recherche afin d'obtenir un sous-

graphe Gmm ayant des caracteristiques particulieres. Ainsi, on peut utiliser une fonction

de cout modifiee
\n

/6(C) = /(C)xHregMGT",

ou TZ est un ensemble de regies retournant une valeur superieure ou egale a 1, et er est

un exposant determinant l'importance de la regie r. Ces regies permettent, entre autres,

52

Algorithme S U B D U E

Entrees: Un graphe etiquete G et une largeur de faisceau M.
Sorties: Un sous-graphe Gm\n minimisant la longueur de description de G.

/(Gmin) := oo ;
C\ := les sommets etiquetes de G;
k := 1;

tant que C& / 0 faire
Ck+i := 0;
Trier les graphes Gj € C/c tel que f(Gj) < f(Gj+\);

pour j allantde 1 a min{M, |Cfe|} faire
Evaluer /(Gj) = I{Gj) + I{G\Gj) ;
si / (Gj) < /(Gmin) alors Gmin := Gj- ;

pour chaque instance G' de Gj dans G faire
Cfc+i := Cfe+i U l'ensemble des prolongements de G' dans G ;

Partitionner les sous-graphes de Ck+i en classes a l'aide d'une methode heuristique ;
k := k + 1 ;

retourner Gmin ;

Figure 2.16 L'algorithme S U B D U E pour trouver un sous-graphe Gmin minimisant la lon­
gueur de description d'un graphe G.

53

de biaiser la recherche vers la decouverte d'une structure compacte, ou d'une structure

isolee, i.e. dont les instances sont le plus disjointes possibles.

2.4 La generation de conjectures en theorie des graphes

Un des premiers programmes crees dans le but d'automatiser la generation de conjec­

tures en mathematiques est le programme Automated Mathematician (AM), ecrit par

Douglas Lenat au milieu des annees 70 (Lenat, 1979). Ce programme, qui genere des

relations sur les nombres entiers, a permis, entre autres, de reproduire deux resultats

celebres : la conjecture de Goldbach voulant que tout entier superieur a 2 puisse s'ecrire

comme la somme de deux nombre premiers, ainsi que le theoreme fondamental de

l'arithmetique voulant que tout entier superieur a 1 s'ecrive de maniere unique comme le

produit de nombres premiers. Un autre programme permettant de generer des concepts

en mathematiques pures est le systeme HR (pour Hardy-Ramanujan), developpe par

l'equipe de Simon Colton a la fin des annees 90 (Colton et al., 1999; Colton, 1999).

Ce puissant programme, qui automatise egalement la demonstration des conjectures

generees, a reussi l'exploit de generer plusieurs nouveaux theoremes dans les domaines

de la theorie des groupes et la theorie des nombres.

Dans le domaine de la theorie des graphes, un programme precurseur est le systeme

GRAPH developpe par Cvetkovic et al., au debut des annees 80 (Cvetkovic et al., 1981;

Cvetkovic et Pevac, 1983a; Cvetkovic et Pevac, 1983b). Alors que GRAPH ne genere

pas directement de conjectures, il permet de manipuler et visualiser interactivement des

graphes, et d'obtenir la valeur de differents invariants pour ces graphes. Un autre systeme

permettant de calculer des relations sur les invariants d'un graphe est le programme

INGRID, developpe par Brigham et ses collegues durant les annees 80 (Brigham et Dut-

ton, 1983). Ce programme calcule des bornes sur la valeur d'un invariant en derivant

des relations sur cet invariant a partir de relations deja connues. Pour un sommaire des

54

resultats obtenus par INGRID, voir (Brigham et Dutton, 1985; Brigham et al., 1989; Bri-

gham et Dutton, 1991). Le systeme Graph Theorist, developpe par Epstein a la fin des

annees 80 (Epstein, 1988; Epstein et Sridharan, 1991), est un autre systeme permet-

tant de generer de nouveaux concepts a partir d'une base de concepts specifiques a la

theorie des graphes. Ce systeme est parvenu a deduire des proprietes elementaires de

certaines classes de graphe, e.g. la propriete que tous les arbres sont acycliques. Bien

qu'interessants, ces systemes n'ont pas permis, a eux seuls, de decouvrir des resultats

qui n'etaient pas connus en theorie des graphes. Les systemes presentes dans les trois

prochaines sections ont permis, en revanche, la decouverte d'un grand nombre de nou-

velles relations sur les invariants de graphe.

2.4.1 Le systeme GRAFFITI

Le systeme GRAFFITI, introduit par Fajtlowicz en 1986 (Fajtlowicz, 1987; Fajtlowicz,

1988a; Fajtlowicz, 1988b; Fajtlowicz, 1990; Fajtlowicz, 1995), a permis, a ce jour, de

generer plus d'un millier de conjectures sous la forme de relations algebriques entre

des invariants de graphe, dont une bonne portion est disponible publiquement dans un

document appele Written-on-the-wall (Fajtlowicz, 2008; Fajtlowicz et DeLaVina, 2008).

Pour chacune des conjectures s'y trouvant, le document donne egalement l'etat de cette

conjecture : ouverte, refutee ou demontree.

GRAFFITI emploie deux bases de donnees. La premiere contient un ensemble de graphes

particuliers, proposes par differents chercheurs ou ayant servi a refuter une conjec­

ture produite par le systeme, et la seconde un ensemble de conjectures generees par

le systeme, qui n'ont pu etre refutees. Le processus de generation de conjectures de

GRAFFITI comporte, en somme, six etapes:

1. L'usager choisit un invariant pour lequel il aimerait trouver des bornes.

2. Le systeme genere un grand nombre de conjectures sous la forme d'inegalites

55

dont le cote gauche est 1'invariant choisi a la premiere etape, et le cote droit est

une relation algebrique (lineaire ou non) sur d'autres invariants. II evalue ensuite

les deux cotes de chaque inegalite sur tous les graphes de sa base de donnees.

3. La conjecture est rejetee si elle n'est pas satisfaite pour un graphe de la base de

donnees.

4. Sinon, le systeme evalue si la relation est interessante : une relation est interessante

seulement si elle donne, pour au moins un graphe de la base de donnees, de stric-

tement meilleures bornes que les relations deja dans la base de relations.

5. Si la relation est jugee interessante, elle est ajoutee a la base de relations, sinon elle

est mise de cote jusqu'a ce qu'on ajoute a la base de donnees un nouveau graphe

pour lequel cette relation est plus forte que toutes les autres.

6. Le systeme verifie ensuite que, pour chaque graphe de la base de donnees, il existe

une relation de sa base de relations portant sur le meme invariant, et qui est satis­

faite a egalite pour ce graphe. Si c'est le cas, les nouvelles relations generees par

le systeme sont ajoutees a la liste des conjectures a demontrer. Sinon, le systeme

retourne a 1'etape 2.

2.4.2 Le systeme AUTOGRAPHIX

Un systeme plus recent mais egalement important est le systeme AUTOGRAPHIX (AGX),

developpe par Caporossi et Hansen (Caporossi et Hansen, 2000) a la toute fin des annees

90. Alors qu'AGX genere egalement des conjectures ayant la forme de relations alge-

briques sur des invariants de graphe, le probleme est aborde de facon differente : la

generation d'une conjecture est transformed en probleme d'optimisation dont la fonc-

tion objectif est une relation sur les invariants, et l'espace des solutions est une famille

de graphes. Soit C une classe de graphes, i1(G),z2(G'),.. .ii(G) un ensemble d'inva-

riants d'un graphe G G C, et pi,P2, • • -Pi les valeurs ciblees pour ces invariants. La

56

tache de trouver un graphe ayant ces valeurs d'invariants correspond ainsi au probleme

de trouver
i

G* E argmin/(G) = V \ik{G) - pk\.
fe=i

De meme, soit une conjecture h(G) < g(G), ou h(G) et g(G) sont des fonctions sur les

invariants de G, et soit le probleme suivant:

mm f(G) = g(G)-h(G).
Or £ C

Si on trouve un graphe G tel que f(G) < 0, la conjecture est refutee. La meme idee peut

etre utilisee pour suggerer des conjectures. Ainsi, soit h(G) et 12(G) deux invariants de

G, et soit le probleme suivant:

mm f(G)=i1(G)-i2(G).

Si on ne trouve aucun graphe G tel que f(G) < 0, cela suggere que i\(G) > 12(G) pour

tout graphe dans C. Par ailleurs, si tous les graphes minimisant / font partie d'une meme

classe, on peut utiliser cette information pour trouver une demonstration a la conjec­

ture. AGX permet egalement d'imposer certaines contraintes sur les graphes recherches,

e.g. les graphes recherches doivent faire partie d'une classe donnee, en incorporant ces

contraintes dans la fonction objectif. Ainsi, supposons que Ton cherche un arbre mini­

misant un certain invariant i(G), cette tache peut etre formulee comme le probleme de

trouver

G* E argmin i(G) + M (\n - m - 1\ + max{0, D(G) - m}),
G

ou n et m sont le nombre de sommets et d'aretes de G, D(G) represents le diametre du

graphe G, et M est une tres grande constante. Ainsi, max{0, D(G) — m} impose que

G soit connexe, car dans le cas contaire D(G) est infini. De meme, si G est connexe,

57

\n — m — 1| interdit a G d'avoir un cycle. Par consequent, ces deux contraintes font en

sorte que tout graphe minimisant la fonction objectif est un arbre.

Pour resoudre ces problemes d'optimisation, AGX emploie une metaheuristique a voi-

sinage variable appelee Variable Neighborhood Search (VNS) (Mladenovic et Hansen,

1997). Cette metaheuristique emploie une methode de descente a plusieurs voisinages

qui sont considered tour a tour jusqu'a ce qu'une solution ameliorant la solution cou-

rante soit trouvee. Les voisinages utilises pour les graphes proviennent de combinaisons

de mouvements simples, tels qu'ajouter un sommet ou une arete a un graphe, ou bien

echanger les aretes de quatre sommets de ce graphe (mouvement 2-opt). Pour sortir des

optimums locaux, VNS perturbe la solution courante avant d'appliquer la methode de

descente, en lui ajoutant ou retirant un certain nombre d'aretes. Cette perturbation est

augmentee jusqu'a ce que la solution courante soit amelioree, ou on atteigne une limite

fixee d'avance.

Alors que cette approche requiert a l'usager de fournir au systeme un probleme a opti-

miser, AGX possede egalement un mode de generation de conjectures totalement auto-

matise, appele approche numerique dans (Caporossi et Hansen, 2004). Soit un ensemble

de m graphes pour lesquels on possede la valeur de n invariants. On note X = [x,j]mxn

la matrice des observations dont chaque rangee renferme les valeurs d'invariants d'un

graphe. Le but est de trouver une base contenant toutes les relations affines de la forme

a\Xn + a2xi2 + . . . + anxin = b, satisfaites pour 1 < i < m. Soit p,j la valeur moyenne

des elements de la j-eme colonne de X, i.e. p,j — — Y1T=\ xiv n o t o n s X la matrice des

observations centrees obtenue en enlevant aux valeurs d'une colonne de X la moyenne

des valeurs de cette colonne, i.e. x^ = .T^ — p,j. Toute relation affine entre les colonnes

de X est une relation lineaire entre les colonnes de X : soit x^ = Yje=\ ck%ik + d une

58

relation entre les colonnes de X alors

Vi =

/ \

^2ckxik +d
fc=i

n 1 ro 1 TO n

k=\ ' i = l i = l fc=l fc=l

CkHk + d,
k=i

et ainsi

ij ij - Vj = Y^ °kXik ~c/c/xfc = ^2°k (x,ik ~ ^k) = 5^ C-k-Lik

fc=l

Mi
fc=l

Mi M i

II existe done une relation lineaire entre les variables centrees, ayant les memes coeffi­

cients. De plus, soit la matrice de covariance V = [vij]nxn = XTX, on a

/

vjk / J XiJXik — 2^ A^i
i = l

\

, ClXu

i = i \ i=i
Wi

n m

•&ik
= 1%2ci'YlXikXa = X]

i i=i i = i

= 7 , Q ^ -
/=1
¥ i

Si une relation lineaire existe entre les colonnes de X, cette relation s'applique egalement

aux colonnes de V. Enfin, puisque V est une matrice carree, toute relation entre ses co­

lonnes correspond a un vecteur de son noyau, i.e. un vecteur U tel que VU = 0. Une

base du noyau de V est done obtenue en resolvant ce systeme a l'aide de la methode

d'elimination de Gauss. Chaque vecteur de cette base donne les coefficients d'une rela­

tion affine entre les variables x;, 1 < i < n. Pour calculer le terme constant 6 de cette

relation, on utilise les donnees initiales. Enfin, pour obtenir d'autres types de relation

que des formes affines, on peut calculer, pour chaque graphe, de nouveaux invariants ob-

tenus a l'aide d'operations non-lineaires sur les n invariants deja connus. De nouvelles

relations peuvent alors etre obtenues en appliquant le procede venant d'etre decrit sur

la matrice augmentee de colonnes refermant les valeurs de ces nouveaux invariants, e.g.

%i,n+j == xij' Zi,2n+j = >'Og[Xij), e t C

Une autre approche automatisant la generation de conjectures, appelee approche algebri-

59

que dans (Caporossi et Hansen, 2004), ressemble a la technique employee par INGRID :

1. Trouver les graphes extremaux ou quasi-extremaux pour une formule donnee sur

des invariants, i.e. des graphes pour lesquels la valeur de la formule est maximum

ou minimum.

2. Reconnattre les classes des graphes extremaux obtenus (cycles, etoiles, cliques,

chemins, arbres, etc.).

3. Obtenir d'une base de relations connues, les relations entre les invariants pour cette

classe de graphes, e.g. relations simples sur le nombre de sommets et d'aretes d'un

graphe.

4. Combiner ces relations pour obtenir de nouvelles conjectures plus fortes que celles

deja connues.

En tout, AGX a permis de generer quelques centaines de conjectures sur les invariants

de graphe. Par exemple, ce systeme a ete employe pour obtenir des resultats portant sur

la plus grande valeur propre d'arbres a coloration contrainte (Cvetkovic et al., 2001).

De plus, dans le domaine de la chimie computationnelle, AGX a ete utilise pour obtenir

des bornes sur la connectivity d'arbres chimiques ainsi que sur l'energie d'un graphe

(Caporossi et al., 1999a; Caporossi et al., 1999b).

2.4.3 Le systeme G R A P H E D R O N

Un dernier systeme implemente recemment par Melot et al., appele GRAPHEDRON

{Graph Polyhedron) (Melot, 2007; Christophe et al., 2008), transforme la tache de trou­

ver les relations affines entre des invariants d'un graphe en celle d'obtenir les facettes

d'un polyedre dans l'espace des invariants. Cette approche, initialement presentee dans

(Caporossi et Hansen, 2004) comme Yapproche geometrique, procede de la maniere sui-

vante. Soit un ensemble de k observations, chacune correspondant a un graphe different

d'une classe donnee de graphes, et pour lesquelles on connait la valeur de p invariants.

60

On note xtj la valeur du j-eme invariant calculee sur le i-eme graphe. En considerant,

chaque (xn, xi2,..., xip) comme un point dans l'espace des invariants a p dimensions,

toute relation affine entre les p invariants, valide pour chaque observation, est un hyper-

plan dans l'espace des invariants pour lequel tous les points sont d'un meme cote. De

plus, etant donne aiXu + a2xi2 +... + anxip > b une inegalite satisfaite pour 1 < i < k,

on peut toujours trouver une autre relation de force egale ou superieure, satisfaite a

egalite pour au moins une observation. En supposant que Ton possede un point pour

chaque graphe de la classe observee, les relations de forces maximales sont done les

facettes du polyedre consituant l'enveloppe convexe des observations dans l'espace des

invariants. Une illustration de cette approche, dans le cas de deux invariants i\ et i2, est

montree a la figure 2.17.

Figure 2.17 Une illustration de 1'approche geometrique de GRAPHEDRON.

Pour que cette methode produise des relations valides, il n'est pas necessaire d'avoir

une observation pour chaque graphe de la classe observee. On doit cependant avoir une

observation correspondant a chaque sommet du polyedre, ce qui peut etre fait de deux

faeons. Premierement, comme les sommets du polyedre correspondent a des graphes

extremaux, on peut se limiter a chercher ce type de graphe. L'autre solution, employee

par GRAPHEDRON, consiste a produire une observation pour tous les graphes de la classe

ne depassant pas une certaine taille, e.g. 10 sommets ou moins.

61

CHAPITRE 3

DEMARCHE ET ORGANISATION DU DOCUMENT

Ce chapitre presente la demarche employee pour mener a bien les objectifs de cette these,

ainsi que la structure generate du document.

Comme mentionne dans 1'introduction, cette these comporte quatre buts de recherche.

Premierement, elle vise a developper de nouvelles techniques permettant d'ameliorer

la decouverte des sous-graphes frequents dans les cas oil les graphes possedent peu

d'etiquettes differentes. Le second but de la these, relie au premier, est d'ameliorer la

decouverte des patrons frequents en reduisant le nombre de calculs de support dans

la base de donnees, sans avoir recours a des structures complexes exigeant beaucoup

de memoire. Les troisieme et quatrieme buts portent sur la generation automatisee de

conjectures en theorie des graphes. II s'agit, dans un premier temps, d'implementer

des methodes permettant d'automatiser la generation de conjectures portant sur la ca-

racterisation par sous-graphes interdits, et, ensuite, d'utiliser ces methodes pour trouver

de nouveaux theoremes portant sur ce sujet. Les approches proposees pour atteindre ces

buts sont presentees sous la forme de trois articles, correspondant respectivement aux

chapitres 3, 4 et 5 de cette these.

Le premier article, portant le titre "Improving frequent subgraph mining in the presence

of symmetry" (voir (Desrosiers et al., 2007b)), a ete soumis pour publication a la re­

vue Journal of Machine Learning Research. Cet article propose un nouvel algorithme,

appele S Y G M A , permettant de trouver de maniere efficace les sous-graphes frequents

dans un ensemble de graphes possedant un nombre reduit d'etiquettes. L'algorithme

S Y G M A se distingue des autres algorithmes pour le merae probleme par sa technique

d'enumeration de graphes. En somme, S Y G M A transforme l'espace de recherche en

62

un arbre oriente, a 1'aide d'une fonction p associant a chaque graphe G un graphe pa­

rent unique p(G). L'avantage de cette technique est que Ton possede une grande li­

berie quant au choix de p, nous permettant ainsi de developper des strategies efficaces.

Par exemple, S Y G M A emploie dans cette fonction de puissants invariants de graphe,

permettant de briser la symetrie associee au nombre reduit d'etiquettes. De meme, un

choix judicieux de la fonction p nous permet de definir des tests rapides pour detecter

les graphes redondants et non-redondants durant l'exploration de 1'arbre de recherche.

Une autre caracteristique de S Y G M A est qu'il utilise l'information sur la symetrie d'un

graphe, sous la forme d'equivalences topologiques, i.e. orbites, entre les sommets et les

paires de sommets du graphe. Cette information est employee pour eliminer certains

calculs redondants, entre autres, pour eliminer les extensions equivalentes menant a des

graphes non-frequents. Dans le but d'evaluer l'efficacite de S Y G M A , l'article presente

une section experimentale ou Ton compare cet algorithme avec un des algorithmes les

plus populaires pour la decouverte des sous-graphes frequents, 1'algorithme GSPAN.

Les travaux presentes dans le second article, intitule "Using background knowledge to

improve structured data mining" (voir (Desrosiers et al., 2008)), generalisent les tech­

niques decrites dans le premier article. Egalement soumis a la revue Journal of Machine

Learning Research, cet article propose une nouvelle approche permettant d'ameliorer la

decouverte des patrons frequents, en reduisant le nombre de calculs de support dans la

base de donnees. Cette approche utilise des connaissances de fond sur les donnees, sous

la forme d'une heuristique, pour definir la topologie de l'espace de recherche, de sorte

a minimiser le nombre de calculs de support pour des patrons non-frequents. L'idee est

de definir le parent p(X) d'un patron X comme le sous-patron ayant le moins de chance

d'etre frequent, selon l'heuristique. Puisqu'un patron dont le parent est non-frequent

ne peut etre frequent, cette technique permet de minimiser le nombre de patrons non-

frequents explores. Pour evaluer son efficacite, cette approche est testee sur le probleme

de la decouverte des sous-graphes frequents, dont les resultats sont presentes dans la

63

section experimentale de 1'article.

Enfin, le troisieme et dernier article, dont le titre est "Automated generation of conjec­

tures on forbidden subgraph characterization" (voir (Desrosiers et al., 2007a)) porte sur

la generation de conjectures sur la caracterisation par sous-graphes interdits. Cet article,

soumis a la revue Discrete Mathematics, presente cinq nouvelles methodes dediees aux

taches suivantes :

1. Trouver des conditions suffisantes pour caracteriser une classe de graphes, sous la

forme d'un seul sous-graphe interdit.

2. Trouver des conditions suffisantes pour caracteriser une classe de graphes, sous la

forme d'un ensemble contenant plusieurs sous-graphes interdits.

3. Trouver des conditions necessaires pour caracteriser une classe de graphes, sous

la forme d'un seul sous-graphe interdit.

4. Trouver des conditions necessaires pour caracteriser une classe de graphes, sous

la forme d'un ensemble contenant plusieurs sous-graphes interdits.

5. Trouver des caracterisations par sous-graphes interdits pour une classe de graphes

(conditions necessaires et suffisantes).

La presentation de ces methodes est faite en deux etapes. On donne, en premier lieu, une

description theorique de ces methodes, et on demontre quelques unes de leur proprietes.

Puisque ces methodes necessitent l'exploration d'un espace infini de graphes, on donne,

dans un deuxieme temps, des techniques pratiques pour implementer ces methodes : une

premiere technique employant une metaheuristique, telle que la metaheuristique VNS

dans AGX, et une seconde technique faisant 1'enumeration complete des graphes ayant

un nombre limite de sommets. Enfin, pour repondre au dernier objectif de cette these,

1'article comporte une importante section experimentale dans laquelle on emploie ces

methodes pour generer de nouvelles conjectures sous la forme de conditions suffisantes

et/ou necessaires pour avoir une caracterisation par sous-graphes interdits. Les classes de

graphes que Ton cherche a caracteriser dans 1'article renferment des graphes satisfaisant

64

a egalite des relations sur les invariants d'irredondance, de domination et de stabilite (ou

independance), formant la chaine de domination (Haynes et al., 1998).

65

CHAPTER 4

IMPROVING FREQUENT SUBGRAPH MINING IN THE PRESENCE OF

SYMMETRY

4.1 Introduction

Graph mining is a recent discipline which aims to extract useful knowledge from a large

amount of structured data modeled as graphs. Already, this discipline plays a key role

in important fields like chemoinformatics and bioinformatics, especially in the process

of drug discovery. In the next decade, its importance will undoubtedly increase with the

emergence of new technologies dealing with a greater amount of structured information,

particularly in the Web domain. The discovery of frequent subgraphs is a fundamental

task of graph mining which consists in finding statistically significant sub-structures in

a database of graphs. Different variants of this task exist, depending on the type of

sub-structures we want to obtain. In this paper, we will consider the task of finding the

frequent connected edge induced subgraphs of a database. This problem, known as the

frequent subgraph mining problem, can be formulated as follows:

Definition 1 (Frequent subgraph mining). Given a graph database V, the support of

a graph G in V, written sup(G, V), is the number of graphs in V containing G as an

edge induced subgraph. Given a minimum support threshold smin, the frequent subgraph

mining problem consists in finding the connected graphs frequent in T>, i.e. the connected

graphs G for which sup(G, V) > sm,;n.

Several approaches have been proposed for this problem, which can be separated in two

groups: levelwise and depth-first approaches. As their name implies, levelwise mining

techniques, such as AGM developed by Inokuchi et al. (Inokuchi et al., 2000) and FSG

66

proposed by Kuramochi and Karypis (Kuramochi et Karypis, 2001), explore the graph

search space level by level, where each level contains graphs that have one more vertex

or edge than the previous one. The frequent graphs of the next level are found by first

generating candidate graphs with pairs of graphs of the current level, and then filtering

out infrequent ones. The main advantage of such techniques comes from the Apriori

principle by which a graph is frequent only if all its subgraphs are. Since a graph is

explored after its subgraphs, it is possible to eliminate infrequent graphs without having

to compute their support, by testing if their immediate subgraphs are frequent. How­

ever, levelwise approaches suffer from two problems: the generation of many redundant

candidate graphs, and the requirement to store the frequent graphs at each level. Depth-

first mining approaches, such as GSPAN proposed by Han and Yan (Yan et Han, 2002),

FFSM by Huan et al. (Huan et al., 2003), and GASTON by Nijssen and Kok (Nijssen

et Kok, 2004), overcome these problems by exploring the graph search space depth-

first. Starting with a graph containing a single frequent vertex or edge, these techniques

recursively extend a graph by adding a new edge between two existing vertices, or a

new vertex connected to an existing vertex. Since a graph is no more frequent than its

subgraphs, there is no need to extend infrequent graphs. Infrequent graphs can thus be

pruned implicitly, without the risk of pruning frequent ones. Various experimental stud­

ies, see (Yan et Han, 2002) for example, have shown depth-first mining approaches to

be superior, in most cases, to levelwise ones, both in terms of computation times and

memory requirements.

The difficulty of the frequent subgraph mining problem arises from two tasks: enumer­

ating all the possible subgraphs of database graphs, and calculating the support of these

subgraphs in the database. Since the vertices of a graph can be ordered in many ways,

a graph can have a great number of topologically equivalent copies, called isomorphic

graphs. To enumerate all subgraphs without redundancy, one must compute the canoni­

cal representation of a graph, which amounts to solving the graph isomorphism problem.

67

Furthermore, testing if a graph is contained in a database graph is a well known NP-hard

problem called subgraph isomorphism problem. In nearly all cases, support computa­

tion is the most costly operation of finding the frequent subgraphs of a database. Yet,

the complexity of these tasks is somewhat reduced when the database graphs have added

information in the form of vertex or edge labels. For instance, one can use labels to

limit the vertices that can be paired while testing for subgraph isomorphism. However,

if the database graphs are unlabeled or only have a few labels, then the complexity of

these problems greatly reduces the size of manageable datasets. Thus far, little atten­

tion has been given to such datasets, and current algorithms tend to do very poorly on

them. Still, there are many applications which deal with this type of data, mainly in

the fields of computer vision, where the information is represented as 2D or 3D meshes,

and communication/transportation networks, where the information is mostly topologi­

cal. Moreover, mining unlabeled subgraphs could yield relations in the database that are

both more general and frequent.

In this paper, we present a novel algorithm called SYGMA (Symmetry-free Graph Mining

Algorithm) that improves the task of finding the frequent edge induced connected sub­

graphs of a database containing graphs that have a few or no labels. This algorithm

uses various strategies that reduce the impact of symmetry, caused by the limited num­

ber of labels, on the tasks of enumerating subgraphs and computing their support in the

database. Unlike most algorithms for the same task, ours does not rely on memory-

expensive structures that store graph embeddings, since such a strategy is highly ineffi­

cient in these cases. To illustrate this, consider the embeddings of an unlabeled complete

graph H (i.e., a graph for which all pairs of vertices are connected by an edge) of m

vertices into an unlabeled complete graph G of n vertices. For m = 6 and n = 12,

which are realistic values for this problem, there are as much as (^}m\ = 665280 em­

beddings of H in G. Also, for the purpose of simplicity, we have limited our algorithm

to deal only with vertex labels. Yet, the techniques presented in this paper could easily

68

be extended to mine other types of subgraphs, such as subgraphs with edge labels, or

vertex induced subgraphs.

The rest of this paper is structured as follows. In section 2, we present the details of

our algorithm. In section 3, we give some experimental results that compare, on various

instances, S Y G M A to one of the most popular frequent subgraph mining algorithms,

GSPAN. Finally, we conclude this paper with a brief summary of contributions and

results.

4.2 The SYGMA Algorithm

4.2.1 Preliminary concepts

A labeled graph is a tuple G = (V, E, L, I), where V is a set of vertices, E C V2 a set

of edges, L a set of labels, and I : V —> L is a function that gives a unique label to each

vertex of G. Given two labeled graphs G = (V, E, L, I) and G' = (V, E', V, V), we

say that G is isomorphic to G', written G ~ G', iff there exists a bijection ip :V —>V,

called isomorphism, such that

1. {u,v) € £ « (ip(u),<p(v)) € E',

2. \/v e V, l(v) = I {<p(v)).

An automorphism is an isomorphism from a graph to itself. Furthermore, a subgraph

isomorphism from G to G' is an isomorphism from G to a subgraph of G'. If such an

isomorphism exists, we say that G' contains G and write G C G'.

Let T be the set of all permutations of V, and let if be a permutation of T. We write G^

the graph with vertex set V^ = V and edge set E^ = {(u, v) | 3(x,y) € E s.t. u =

69

ip(x) and v — ip(y)}. The automorphism group of G is the set containing the auto­

morphisms of G, i.e. the set Aut(G) = {tp e T \ G* = G}. The orbits of a vertex

v G V, written Orb(v) is the set of vertices u such that there exists an automorphism

mapping v to u, i.e., Orb(v) = {u e V \ 3p e Aut(G) s.t. u = <p(v)}. Simi­

larly, the orbit of a pair of vertices (u,v), written Orb(u,v) is the set of vertex pairs

(x,y) such that there exists an automorphism mapping u to x and v to y, i.e., the set

Orb(u,v) = {(x,y) e F 2 | 3</? € Aui(G) s.t. y?(it) = a; and <p(v) = y}. A vertex par­

tition of G is an ordered sequence of pairwise disjoint non-empty sets called cells, the

union of which is V. Given two vertex partitions -K\ and 7r2, we say that Hi is finer than

7T2 if each cell of TTI is a subset of a cell in 7r2. Furthermore, let 7r be a vertex partition of

G and u, v be two vertices of G. We denote ir(u) and 7r(w) the unique cells containing

vertices u and v, and write TT(U) < 7r(v) if the cell containing u comes befores the cell

containing v in IT. Likewise, we write ip(u) < (p(v) if u precedes v in a permutation ip.

Automorphisms can be used to solve the graph isomorphism problem. Indeed, we can

determine if two graphs G and G' are isomorphic by finding the canonical representation

of these graphs and verifying if these representations are identical.

Definition 2 (Canonical representation). Let G be a graph such that \V\ = n and A be

the symmetrical adjacency matrix ofG. We define a function code that uniquely maps G

to the string produced by concatenating the elements of the upper half of A:

code{G) = (ah2 alj3 a2,3 • • • aitj aid+1 ... an_i,n).

The canonical representation of G is thus the lexicographically smallest code produced

by any permutation ofG, i.e., min^ code(Gip), and we call canonical permutation ofG

any permutation leading to this representation.

70

4.2.2 Subgraph Enumeration

The subgraph enumeration strategy used by S Y G M A is similar to the one proposed by

Kuramochi and Karypis for their algorithm VSIGRAM (Kuramochi et Karypis, 2005),

although their algorithm is not made for the frequent subgraph mining problem. Like

VSIGRAM, our algorithm uses a partial edge ordering that orders the edges of a graph G

following the rank of their vertices in a canonical permutation of G:

Definition 3 (Canonical edge ordering). Let G be a graph, ip be a canonical permutation

ofG and t\ — (ui, v\), e2 = (u2, v2) be two edges of G such that p(ui) < </?(t>i) and

</?(w2) < vfa)- The canonical edge ordering, defined by precedence operator -<E, is

such that ei -<E £I iffOrb(e\) ^ Orbfa) and either one of the following is true

1. ip(ui) < p{u2)

2. Ui — «2 and ip(vi) < p{v2).

This ordering allows us to transform the search space into a rooted tree by mapping to

each graph G a parent graph p(G) produced by removing from G a non-disconnecting

edge1 that is minimum according to -<E- If a vertex incident to this edge becomes iso­

lated, i.e. adjacent to no vertex of G, this vertex is also removed from G. Thus, p(G)

is a connected graph that has exactly one less edge, and possibly one less vertex, than

G. The tree resulting from p is then explored depth-first, as shown in Figure 4.1. Start­

ing with a graph G containing a single edge, G is recursively extended until it becomes

infrequent. Let e be the last edge added to G, a canonical permutation ip of G is first

found using MacKay's NAUTY algorithm (McKay, 1981). In the process, the vertex and

vertex pair orbits of G are also obtained, with little added cost. Then, using ip, we find

a minimum non-disconnecting edge e*. If e is not topologically equivalent to e*, i.e. if

'An edge is disconnecting if its removal produces a graph that is not connected.

71

Orb(e) ^ Orb(e*), then we can prune G since another graph isomorphic to G will be

explored at a different point of the traversal. Note that this is different from the strategy

used by VSIGRAM, where G is pruned if G — {e} ~ G — {e*}, thus requiring one more

graph isomorphism test. Otherwise, we compute the support of G and extend this graph

if it is frequent. For the vertex extensions, we consider for each vertex orbit Oy of G a

single vertex v, and a possible label A. We then extend G into a graph G' obtained by

adding t o G a new vertex of label A and connect this vertex to v. Similarly, for edge

extensions, we consider all orbits of non-connected vertices 0E and a single vertex pair

(u, v) in this orbit. We then create a graph G' by adding to G an edge connecting u and

v.

Proposition 1. By traversing depth-first the rooted tree defined by function p, we can

explore every graph without redundancy.

Proof. To prove that every connected graph G is explored by the traversal, we must show

that there exists a path in the tree from G to the root of this tree. Since all possible vertex

and edge extensions are considered in the traversal, G will be explored if its parent is

explored. Furthermore, since the parent of a connected graph is also connected, by re­

cursion, G has for ancestor the root of the tree, and is therefore reachable. Next, consider

two isomorphic graphs G and G'. Since the canonical edge ordering is insensitive to ver­

tex permutations, a minimum non-disconnecting edge in G is topologically equivalent

to one in G'. Thus p(G) ~ p{G'), and since we only consider one extension per vertex

or vertex pair orbit, only one of G or G' will be explored. Therefore, the exploration is

not redundant. •

72

Algorithm SYGMA
Input: A graph database V and a support threshold sm jn .
Output: The frequent subgraphs T of V.
. F : = 0 ;

foreach vertex /abe/ Ai in V do
foreach vertex label A2 m Z>, Ai < A2 do

Let G be the graph with two vertices v\ and V2 of label Ai and A2, and edge
(•^1 ,^2);

F := T U e x p l o r e (T>, smin , G) ;

return J7;

Procedure e x p l o r e (V, smin, G)
Input: A graph database V, a support threshold smin and a graph G.
Output: The frequent extensions JF of G.

Let e be the last edge added to G ;
Compute the orbits of G and a canonical permutation 9? of G ;
Using </?, find a minimum non-disconnecting edge e* of G ;

if Orb(e) ^ Orb(e*) or sup(G, V) < smin then return 0 ;

T := {G} ;

% Vertex extensions
foreach vertex orbit Oy and label A in V do

Let v be a vertex in Oy ;
Let G' be the graph obtained by connecting a new vertex of label A to v ;
T := T \J e x p l o r e (P, smin, G') ;

% Edge extensions
foreach non-connected vertex pair orbit OE do

Let (u, v) be a vertex pair in O^ ;
Let G' be the graph obtained by connecting vertices u and v ;
J7 := J~ U e x p l o r e (7?, smin, G') ;

return .F ;

Figure 4.1 The SYGMA algorithm and its recursive procedure explore.

73

Redundant graph detection

While the main lines of our subgraph enumeration strategy are similar to those used

in VSIGRAM, our algorithm stands out with its efficient technique to prune redundant

graphs. This pruning technique uses a procedure that partitions the vertices of a graph

G, as shown in Figure 4.2. The vertices are first ordered by increasing label values and

grouped into cells of equal values, forming a partition 7r0. Then, at each iteration t, the

current partition 7rt is refined by considering pairs of cells V,Vj € -K and by splitting

Vj using Vi. Denote S(v, V) and 5(v, V), respectively, the number of non-disconnecting

and disconnecting edges incident to a vertex v and any vertex in Vi. The vertices v of

Vj are first ordered by decreasing values of 6(v, V) and then by decreasing values of

8(v, Vj). These vertices are then split into groups of equal values, forming a subpartition

7r'. If 7r' refines Vj, i.e. if \ir'\ > 1, Vj is replaced by ir' in the partition. This process

is repeated until no further refinement is possible. Finally, the partition irT, returned by

this refinement procedure, is used to obtain a canonical permutation of G: when looking

for a canonical permutation of G, we only consider the permutation of vertices within

the cells of -KT- A direct consequence of this is the following proposition:

Proposition 2. Let 7rt be the partition of the vertices of a graph G, at any step t of the

refinement procedure, and let ip be a canonical permutation of G. For any two vertices

u,v e V, ifnt(u) < TTt(v) then (p(u) < (p(v).

The pruning technique used by S Y G M A detects non-minimum extensions while refining

the vertex partition, as described in the following proposition.

Proposition 3. Let G be a graph, let nt be the partition of the vertices of G at any

step t of the refinement procedure, and consider any edge e\ = («i, V\) ofG, such that

7Tt(wi) < TTt{v\). Edge e\ is non-minimum in G, following -<E, if there exists a non-

disconnecting edge B2 = (^2,^2) such that TTt{u2) < 71 (̂t̂), and if either one of the

following applies

74

Refinement procedure
Input: A graph G.
Output: A refined partition of V.

Let 7To be the initial partition s.t. Vu, v G V, ir(u) < ir(v) iff l(u) < l(y);
t := 0;
repeat

7T*+I : = ^ t ;

t:=t + l;
foreach cell Vt £ irt do

foreach cell Vj £ irt s.t. \Vj\ > 1 do
Let IT' be the subpartition of Vj s.t. Vu, v € Vj,ir'(u) < 7r'(/u) iff
<J(u, V-) > <J(u, V-) or (6{u, Vi) = 6{v, V-) and 6{u, V-) > 6{v, Vi));
if |7r'| > 1 then replace cell Vj by 7r' ;

until 7Tt = TTt-i or \irt\ = |V

return 7r* ;

Figure 4.2 A procedure to find a refined vertex partition.

75

1. 7lt(u2) < 7Tt(ui)

2. 7Tt(u2) = 7rt(ui) andirt(v2) < 7Tt(vi).

Proof. We prove cases (1) and (2) separately.

1. Following Proposition 2, we have that (p(u2) < ^p{u{). Moreover, following Defi­

nition 3, we have e2 -<E £\ and thus ex is not minimum.

2. (a) If there is a vertex w e V such that (MI, U>) is a non-disconnecting edge and

7it(w) < nt(vi), then, following Proposition 2, we have that tp(w) < y>(vi). More­

over, following Definition 3, we have (ui, w) ~<E &\ and thus ex is not minimum.

(b) Else, assume there is no vertex x £ V such that (u2, x) is a non-disconnecting

edge and such that 7rt(x) < 7rt(v2), otherwise use x instead of v2 in what follows.

Let V{, i = TTt(v2), be the cell containing v2, and let Vj, j = 7rt(ui) — 7rt(u2), be

the cell containing vertices u\ and u2. We have that

S(u2, Vk) = S(ui, Vk) = 0 , for k < i

S(u2, Vk) > 1 > 0 = 6{Ul, Vk) , for k = i

Thus, the partition IT' produced by splitting Vj with V will be such that 7r'(iz2) <

TV'(UI) and, following Proposition 2, we have that <p(u2) < ip{u\). Moreover,

following Definition 3, we have e2 -<E £I and thus ex is not minimum.

•

Non-redundant graph detection

Like in most graph mining algorithms, the techniques used by S Y G M A to detect redun­

dant graphs help avoiding many costly isomorphism tests. These techniques, however,

76

are of no help when dealing with graphs that are not redundant. Unlike other graph min­

ing algorithms, S Y G M A can also detect non-redundant graphs without any isomorphism

test, as described in the next proposition. The proof of this proposition, related to the fact

that all the vertices within two separate cells are either connected or not, can be found in

(McKay, 1981).

Proposition 4. Let n? be the vertex partition returned by the refinement procedure for a

graph G, and let m be the number of cells ofwr that are trivial, i.e. that contain a single

vertex. If G is not pruned by Proposition 3, then G is not redundant if the following

conditions are satisfied:

1. \TTT\ -m< 2

2. \V\-m< 5,

i.e. 7VT should have at most 2 non-trivial cells and G should have at most 5 non-trivial

vertices. If these two conditions are met, then the vertex orbits ofG are simply the cells

ofiiT- Similarly, the vertex pair orbits can also be obtained directly from TTT- Consider

any two edges e\ — (iti, V\) and e^ — («2, v^) ofG. Suppose, without loss of generality,

that HT(U\) < ITT(VI) and TTT(U2) < Ttr^). The orbits of non-connected vertex pairs

are such that Orb(ei) = Orb(e2) ijfirT(u\) = 7PT(M2) and TTT(VI) = TTT{^2)-

Although it seems that the conditions of Proposition 4 only apply to very specific cases,

the reality is that most graphs satisfy these conditions, especially labeled graphs. In fact,

as we will see in the experimental section, no isomorphism test is needed for graphs of

five or less vertices, regardless the number of vertex labels of these graphs.

77

(a)

n
(1234567)

(456|3|2|17)
(45|6|3|2|7|1)

(b)

Figure 4.3 (a) A graph and (b) its vertex partition at step t of the refinement procedure.

An illustrative example

In this section, we illustrate the subgraph enumeration strategy of S Y G M A using a small

example. Consider the graph shown in Figure 4.3(a), and its vertex partition at each

step t of the refinement procedure, shown in (b). This graph, that we denote by G,

has only one disconnecting edge: (2,3). Since G is unlabeled, the first partition 7r0

groups all its vertices into a single cell. These vertices are then sorted by decreas­

ing number of non-disconnecting edges, and the result sorted by decreasing number

of disconnecting edges. Then, the vertices are grouped into cells of equal value, giv­

ing the partition wi — (456|3|2|17). At step t — 2, cell (17) is first split using cell

(456) into the subpartition (7|1). Cell (456) is then split using cell (3) into subparti­

tion (45|6), yielding 7r2 = (45|6|3|2|7|1). Finally, this partition cannot be refined any

further, and the refinement procedure returns 7r2. Since a canonical permutation <p only

permutes the vertices within the cells of this partition, the minimum non-disconnecting

edge, i.e. the first non-disconnecting edge encountered while following ip, will nec­

essarily be (4,5). Suppose that the last edge added to G is (3,4). At step t = 1,

we have 7Ti(4) = 7TI(5) = 1 < 2 = 7Ti(3) and, following case (2) of Proposition

3, (4,5) is a smaller non-disconnecting edge than (3,4), in any canonical permuta­

tion. Therefore, G is redundant and can be pruned. However, if the last edge added

to G is (4, 5), the refinement procedure will then go on without G being pruned. In

78

this case, the partition 7r2, returned by the refinement procedure, has one non-trivial

cell containing two vertices, cell (45). Thus, following Proposition 4, G is not re­

dundant. Furthermore, the first vertices of each cell of 7r2 can be used as the repre­

sentatives of the vertex orbits of G, i.e. the set {4,6,3,2,7,1}. Finally, we obtain

the representatives of the non-connected vertex pair orbits by taking, for each pair of

cells Vi,Vj E 7T2, a pair of non-connected vertices (u,v) where u 6 Vi and v e Vf

{(4, 2), (4, 7), (4,1), (6, 3), (6, 2), (6,1), (3, 7), (3,1), (2, 7), (7,1)}.

4.2.3 Support calculation

As mentioned previously, the important symmetry caused by the reduced number of

labels prohibits the use of complex structures to store subgraph embeddings. Instead

of relying on such structures, our algorithm solves the subgraph isomorphism problem

directly, using a simple subgraph matching method. However, since finding a subgraph

isomorphism is a rather complex task, and since our algorithm has to complete this task

quite often, we employ some further strategies to calculate the support of a subgraph as

efficiently as possible.

Matching constraints

The first strategy is used within the subgraph matching to prune the search space. Sup­

pose we need to determine if a graph G = (V, E, L, I) is a subgraph of G' = (V, E', L', I')

and let 7 be a possibly partial mapping of V to V, called matching. Let v € V be any

vertex, we define N(v) (resp. N'(v)) as the set of vertices adjacent to v in G (resp.

G'). Moreover, we define L{\) (resp. Z/(A)) as the vertices of G (resp. G') which have

label A. We also define M(j) and M{^) (resp. M'{^) and M (7)) as the vertices of G

(resp. G') matched and unmatched under 7. The following proposition gives necessary

79

conditions for two vertices to be matched.

Proposition 5. Let v E V, v' G V be two vertices. The pair (v, v') is a candidate to

extend a matching 7 if the following conditions are respected:

1. v <E M(7) andv' £ ~M'{-f).

2. l(v) = l'(v').

3. VM G N(v) n M(7), 7(u) G N'(v').

4. V A G L , \N(v)r\L(\)n~M{-Y)\<\N'(v')r)L'(\)nl4'(j)\.

The first two conditions are rather trivial, stating that vertices v and v' should not already

be matched under 7, and that they should have the same label. The third condition

imposes 7 to be a subgraph isomorphism, i.e., for all vertices of G adjacent to v and

matched under 7, the corresponding vertex in G' should be adjacent to v'. Finally, the

last condition verifies that the matching can be extended, i.e., that for every vertex label

A, there are at least the same number of unmatched vertices of label A adjacent to v' as

there are adjacent to v.

Avoiding redundant calculations

The next strategy exploits previous calculations to limit the search of a new subgraph

isomorphism, and is based on the fact that vertices are matched in a static order. Let

7 = {(ui, vi),..., (um, vm)} and 7' = {(i^, v[), ..., (u'n, v'n)} be two matchings such

that m < n, we define a lexicographic order on matchings -<M, such that 7 -<M l' iff

either one of the following applies

, Ui = u', and v* = vL i < k
1. 3fc, 1 < k<m, s.t. {

Ui < u\ or (itj = u\ and Vi < v[), i = k

80

2. Ui = u[and vi = v[, 1 < i < m, and m < n.

Proposition 6. Let 7 be the minimum subgraph matching of a graph G into a graph H

according to -<M, and let G' be the extension of G with edge e. Any matching 7' of G'

into H is such that 7 <M 7'.

Proof. We prove this by contradiction. Suppose that 7' -<M 7- If e is a vertex extension,

let 9 be the matching such that

9 = {K> *4)> (<4 v2), • • •, « - i , <-i)}>

i.e., 7' without the last pair. Otherwise, if e is an edge extension, then consider 9 = 7'.

Following the definition of an isomorphism, we know that 9 is also a matching of G

into iJ. Furthermore, according to -<M, we have that 9 -<M 7' -<M 7. However this

contradicts the minimality of 7 and, consequently, 7 ^ M 7'- •

Proposition 6 is used in the following way. Let G be any subgraph visited during the

exploration. We store the minimum matchings of G into all the database graphs contain­

ing G. Then, when G is extended, we only search for matchings superior or equal to

the previous ones, according to -<M- Let Nv be the maximum number of vertices of a

database graph, and NE be the maximum number of edges of a database graph, the total

memory requirement of this strategy is in C(|X>| • Nv • NE), which is much lower than

the memory required to store all the embeddings of G in the database.

Infrequent graph detection

The last strategy allows to detect extensions leading to infrequent graphs, based on the

following proposition.

81

Proposition 7. Let G' he the extension of a graph G with edge e, and consider any graph

H such that G C H. IfG' is not frequent then the extension H' of H with edge e is not

frequent.

Proof Since G C H C H' and because H' contains e, we have that G' C H'. Moreover,

since the support of a graph is no greater than the support of its subgraphs, we have

sup(G', V) > sup(H', V). Thus, if G' is not frequent, neither is H'. U

When the extension of a graph G with edge e is found infrequent, we store e and all

equivalent edges, i.e. the edges with the same vertex pair orbit, as invalid extensions.

Then, while exploring the descendants of G in the search tree, we do not consider these

invalid extensions since, by Proposition 7, they lead to infrequent graphs.

4.3 Experimentation

To evaluate the performance and validity of our algorithm S Y G M A , we have conducted

two numerical experiments. In the first one, we validate the subgraph enumeration strat­

egy of our algorithm by generating all graphs with a limited number of vertices and la­

bels. In the second one, we benchmark our algorithm on synthetic and real-life datasets.

In both experiments, we compare the results we obtained with those obtained with one

of the most popular frequent subgraph mining algorithms, GSPAN, developed by Yan

and Han (Yan et Han, 2002). We have selected this algorithm for two reasons. First,

like our algorithm, GSPAN does not use any memory-expensive structure to store the

embeddings of a graph in the database. Second, a recent investigation by Worlein et al.

(Worlein et al., 2005), comparing the principal algorithms for this problem, has shown

that algorithms storing embeddings offer no real advantage over GSPAN for large in­

stances. All experiments were carried out on a 2.0GHz Intel Pentium IV PC with 512Kb

82

cache and 1Gb RAM, running Linux CentOS release 4.2.

4.3.1 Subgraph enumeration

In the first experiment, we consider the task of exhaustively generating a large set of

graphs. More precisely, given integers N and L, we want to generate all connected

graphs that have at least one edge, at most N vertices, and at most L vertex labels. This

experiment serves two purposes: validating that the subgraph enumeration strategy is

sound and complete, and evaluating how well this strategy deals with graph isomor­

phism. As reference, we compare our algorithm with the subgraph enumeration em­

ployed by GSPAN. However, since the available version of GSPAN does not allow to

simply enumerate graphs, we had to implement our own version of GSPAN, optimiz­

ing as much as possible the algorithm. For the other experiment, though, we used the

original version of GSPAN.

Figure 4.4 summarizes the result of this experiment: (a) gives the average CPU time in

microseconds per non-redundant graph generated (the Y axis has a logarithmic scale),

and (b) the average number of full isomorphism tests per non-redundant graph. Since

GSPAN has no strategy to detect non-redundant graphs, without carrying out an isomor­

phism test, its average number of full isomorphism tests per non-redundant graph is 1.0,

for all values of L and N. From this figure, we make the following observations. While

GSPAN shows exponential scaling to the decrease of L and increase of N, our algorithm

is little affected by these changes. Thus, the average CPU time per non-redundant graph

found by GSPAN ranges from 3.6 //sec, for L = 5 and N = 5, to 761.3 //sec, for L — 1

and TV = 10, which corresponds to a 210-fold increase. By contrast, the average CPU

time of our algorithm ranges from 2.4 //sec to 9.9 /xsec, for the same values of L and

N, which corresponds to a 3-fold increase. Furthermore, S Y G M A outperforms GSPAN

for all values of L and N. In the most extreme case, for L = 1 and N = 10, the sub-

83

graph enumeration strategy used by S Y G M A is almost more than 75 times faster than

GSPAN'S. Finally, we can see that only a small fraction of non-redundant nodes required

S Y G M A to perform an isomorphism test, and that this fraction decreases as L and TV

increase. For cases where N < 5, no isomorphism tests were needed, regardless of the

value of L.

1000.00

Q.
ra

i gspan • sygma

100.00
01
Q.

8 10.00

1.00 khhkllt

0.25

.c
Q.
ID
TO 0.20
i -
<u
a.
„, 0.15

•C 0.10
Q.
o
I 0.05
in

I sygma

/ / / / / / / / / / / / # /

(a)

0.00 - L T - - " " - - ...II I 1
/ / # / / / / # / / / / / / /

(b)

Figure 4.4 Results on subgraph enumeration: (a) average CPU time (in microseconds)
per non-redundant graph generated, and (b) the number of full isomorphism tests per
non-redundant graph.

4.3.2 Frequent subgraph mining

In the second experiment, we compare the performance of our algorithm to the latest

version of GSPAN, on the task of finding the frequent subgraphs of synthetic and real-

life datasets.

Synthetic data

The synthetic datasets were generated with the random graph generator implemented by

Karypis and Kuramochi for their work in (Kuramochi et Karypis, 2001), using combina­

tions of values of 5 parameters, whose description and values are given in the following

84

table:

D

T

F

I

L

Description

Nb. of graphs in the database

Avg. size of the database graph

Avg. nb. of frequent subgraphs

Avg. size of the frequent subgraphs

Nb. of vertex labels in the database

Values

1000

{15,20,25}

25

15

{1,2,3}

The values used for these parameters were selected to give a good range of difficulty,

as well as a suitable balance between the time spent enumerating the subgraphs and

the time spent calculating the support of these subgraphs in the database. Since mining

graphs with a few labels requires more time, the databases we have generated for this

experiment contain less graphs than those commonly reported in the literature, which

usually contain around 10000 graphs. The values used for the other parameters, however,

are fairly standard for benchmarking graph mining algorithms.

Figure 4.5 summarizes the results. It shows, for each dataset, the CPU time in seconds

required by GSPAN and S Y G M A to find the frequent subgraphs, for decreasing support

thresholds (the Y axis has a logarithmic scale). As expected, the CPU time increases

exponentially as we lower the support threshold, because of the hard subgraph isomor­

phism task. Furthermore, for identical values of T and support threshold, the CPU time

increases as the number of vertex labels decreases, since there are more frequent sub­

graphs to discover. From these results, we see that S Y G M A is faster than GSPAN by up

to two orders of magnitude for unlabeled graphs. In the most extreme case, i.e. when

L = 1, T = 25 and the support threshold is 100%, S Y G M A is 110 times faster than

GSPAN. Our algorithm also outperforms GSPAN for datasets with 2 and 3 labels, al­

though this improvement is not as substantial.

85

L=l, T=15 L= l , T=20 L=1,T=25

95 90 85 80 75 70 65 60 55 50 45
Support threshold (%)

L=2, T=15

95 90 85 80 75 70 65 60 55 50 45

Support threshold (%)

100000 ,
L=2, T=20

100 95 90 85 75 7C

Support threshold (%)

L=2, T=25

45 40 35 30 25 20 15 10 7 5 4 3 2

Support threshold (%)

L=3, T=15

55 50 45 40 35 30 25 20 15 10 7 5 4

Support threshold (%)

L=3, T=20

65 60 55 50 45 40 35 30 25 20 15 10

Support threshold (%)

L=3, T=25

10 7 5 4 2
Support threshold (%)

20 15 10 7 5 4 3

Support threshold (%)
25 20 15 10 7 5 4 3

Support threshold (%)

Figure 4.5 Runtimes of GSPAN and S Y G M A on synthetic datasets.

Chemical compound data

The performance of S Y G M A and GSPAN was also measured on a real-life dataset of

chemical compounds, devised for the Predictive Toxicology Evaluation (PTE) challenge

(Srinivasan et al., 1997). Two experiments were carried out: in the first experiment,

the edge labels of the dataset were discarded, and in the second one, both vertex and

edge labels were removed. The results of these experiments are presented in Figure 4.6.

Once more, we notice that the runtimes increase exponentially as the support is reduced.

86

Also, for identical support values, the runtime is much greater on the dataset containing

no labels. Comparing both algorithms, we see that S Y G M A is 2 to 3 times faster than

GSPAN on the dataset with labels, and about 25 times faster the GSPAN on the unlabeled

dataset, showing once more the advantage of S Y G M A for mining unlabeled graphs.

10000

20 15 10 7 5

Support threshold (%)

(a)

70 60 50 40 30 25 20 15

Support threshold (%)

(b)

Figure 4.6 Runtimes of GSPAN and S Y G M A on the PTE dataset for which (a) edge
labels were discarded, and (b) both vertex and edge labels were removed.

4.4 Conclusion

We have presented in this paper a novel algorithm that improves mining the frequent sub­

graphs of a database that has a few or no labels. This improvement is achieved through

original strategies that reduce the number of costly graph and subgraph isomorphism

tests, without using memory-expensive structures to store embeddings. We have shown

experimentally that our algorithm significantly outperforms one of the most popular al­

gorithm for this task, GSPAN, on various synthetic and real-life datasets.

87

CHAPTER 5

USING BACKGROUND KNOWLEDGE TO IMPROVE STRUCTURED DATA

MINING

5.1 Introduction

Recently, applications dealing with structured information have appeared in various

fields. This enhanced information has a richer content that enables a more precise repre­

sentation of the environment to model. Structured data mining is a discipline that plays

a key role in important fields such as bioinformatics, in particular drug design, (Wang

et al., 2005b; Borgelt et al., 2005; Sternberg et al., 1995) and Web technologies (Liu,

2007; Chakrabarti, 2002), and which aims at extracting useful knowledge from a great

amount of structured information. At the centre of this discipline lies the problem of

finding the frequent patterns of a database, which can be defined as follows. Let V be

a database and denote sup(X, V) the support of the pattern X in V, i.e. the number of

patterns of V that have X as a subpattern. When the context is clear, we may write the

support of X in V simply as sup(X). Given an integer smin, called the minimum support

threshold, we say that X is frequent if sup(X, V) > smin. The frequent pattern mining

problem, for a given database V, consists in finding the patterns that are frequent in V.

A well-known specialization of this problem is the frequent subgraph mining problem,

where the database contains graphs and the goal is to find the graphs the are isomorphic

to a subgraph of at least smin graphs of the database.

The frequent pattern mining problem can be decomposed in two tasks: 1) uniquely enu­

merate all possible patterns and 2) calculate the support of these patterns in the database.

In most cases, computing the support of a pattern in the database is a complex oper-

88

ation, and the second task accounts for most of the time required to find the frequent

patterns. Thus, in the case of frequent subgraph mining, testing if a graph is contained in

another graph is known as the subgraph isomorphism problem which is AfP-hard. Fre­

quent pattern mining algorithms are distinguished by their enumeration strategy, which

can be horizontal or vertical. Horizontal mining algorithms, such as AGM developed by

Inokuchi et al. (Inokuchi et al., 2000) and FSG proposed by Kuramochi and Karypis

(Kuramochi et Karypis, 2001), traverse the pattern space level-by-level, where the level

k contains the patterns of size k, called fc-patterns. Most often, this traversal is done in a

bottom-up fashion, i.e. starting with the smallest patterns and successively enumerating

patterns of increasing size. This approach allows to prune infrequent patterns that do not

satisfy the downward closure property: since the support of a pattern is anti-monotone, a

A;-pattern is frequent only if all its (ft-l)-patterns are frequent. On the other hand, vertical

algorithms, like GSPAN proposed by Han and Yan (Yan et Han, 2002), FFSM by Huan

et al. (Huan et al., 2003), and GASTON by Nijssen and Kok (Nijssen et Kok, 2004),

explore the pattern space depth-first, recursively extending a fc-pattern before visiting

another pattern of the same size. This approach implicitly prunes infrequent patterns

by only extending frequent ones, and has the advantage of requiring much less memory

than the horizontal mining approach.

In order to have efficient frequent pattern mining algorithms, it is necessary to devise

strategies to improve support computation. The strategy employed by most vertical min­

ing algorithms consists in storing the embeddings of a pattern in the database, and updat­

ing these embeddings when the pattern is extended. Although this accelerates support

computation on smaller databases, it is not efficient on large databases or when patterns

can be embedded in many different ways due to pattern isomorphism. Another strategy

is to check the downward closure of patterns before calculating their support. This can be

done either by using horizontal mining algorithms or with a special traversal order that

ensures that every pattern is explored after its subpatterns, see, e.g., (Cohen et Gudes,

89

2004). Again, this strategy has some disadvantages. First, horizontal mining algorithms

are known to be much less efficient than vertical mining algorithms. Also, it may not be

possible to find an efficient depth-first traversal order that ensures visiting a pattern after

its subpatterns. Finally, checking the downward closure requires to store all the frequent

patterns and to perform an isomorphism test on all the {k-1)-subpatterns of a /c-pattern,

which can be very time consumming.

In this paper, we propose a simple strategy that can greatly improve frequent pattern

mining by avoiding some costly support computations. This strategy, which can be used

alone or in combination with another one, such as storing embeddings, uses background

information on the frequent patterns to avoid exploring infrequent ones. The rest of

the paper is as follows. In section 2, we present our approach. Then, in section 3, we

evaluate our approach on the problem of frequent subgraph mining. Finally, we close

this paper with a short summary of our contributions and results.

5.2 A general approach

As it is the case for graphs, the pattern space can often be represented in the form of

a lattice-like structure where the predecessors of a k-pattern are its (fc-O-subpatterns1.

However, since a A;-pattern can have many (A>l)-subpatterns, a depth-first traversal of

the pattern space might visit the same pattern more than once. To visit each pattern only

once, we need to transform the lattice into a rooted tree with a function p that assigns to

each pattern X a unique parent p(X). For frequent subgraph mining, the parent p(G)

of a graph G is typically a graph produced by removing a single vertex or edge from G.

The only requirement for p is that it is insensitive to isomorphism: let X and Y be two

isomorphic patterns, written X ~ Y, we must have p(X) ~ p(Y). Once the pattern

'The pattern space is usually a semilattice since it may be closed under either join or meet

90

space is transformed into a rooted tree, we can then uniquely enumerate each pattern by

traversing this tree, using either a depth-first or breadth-first traversal.

Proposition 1. Letp be a parent function such thatp(X) ~ p(Y) ifX ~ Y, and suppose

that each (k+l)-extension of a k-pattern is explored once. The traversal of the rooted

tree defined by function p explores every pattern exactly once.

Proof. We prove this by recursion. Consider any pattern X and suppose that the parent

p{X) of X is explored exactly once, i.e. either p(X) or a pattern isomorphic to p(X)

is explored. We will show that X is also explored once. Since every extension of p(X)

is explored, we know that X is explored if p(X) is. Furthermore, consider a pattern Y

isomorphic to X. By definition, we have thatp(X) ~ p(Y). However, since eitherp(X)

or p(Y) is explored and since every possible extension of p(X) and p(Y) is considered

exactly once, either X or Y will be explored. Finally, because the root of the search tree

is an ancestor of every other pattern in the tree, and since the root is explored exactly

once, by recursion, every pattern is explored only once. •

The main idea of our approach is to select the parent function in a way that minimizes

the number of infrequent patterns explored in the search. This is done as follows. Con­

sider any /c-pattern X and denote S(X) the (fc-l)-subpatterns of X. If X satisfies the

downward closure, also known as the Apriori principle, then it can be either frequent

or not, and we need to compute its support. Otherwise, we know that it is not frequent.

Since we only need to extend frequent patterns in the traversal, X will not be visited if

its parent is infrequent. Thus, to make the visit of an infrequent A;-pattern X as unlikely

as possible, we must select the parent of X as one of the (fc-1)-subpatterns of X that are

least likely to be frequent. This idea is formalized in the following propositions.

Proposition 2. Letp and p' be two parent functions such that sup(p(Z)) < sup(p'(Z)),

for all patterns Z. Every pattern X explored in the traversal of the search space defined

by p is also explored in the search space defined by p'.

91

Proof. Since a pattern is explored if and only if its parent is frequent, we have that

sup(p(X)) > smin. Furthermore, since sup(p(Z)) < sup(p'(Z)) for every pattern Z,

we have, in particular, sup(p'(X)) > sup(p(X)) > smin. Therefore, X is also explored

in the search space defined by p'. •

Proposition 3. Denote p* the parent function that maps, for any k-pattern X, a (k-

1)-subpattern of X with the lowest support, i.e. sup(p*(X)) — m.mY(zs(X) sup(Y). A

k-pattern is explored in the search space defined by p* if and only if it is downward

closed2, i.e. if all its (k-l)-subpatterns are frequent.

Proof. Let X be any A;-pattern explored in the search. We know that sup(p*(X)) > smin.

Furthermore, since p*(X) is a (fc-l)-subpattern of X with the lowest support, we have,

for every (fc-l)-subpattern Y G S(X), sup(Y) > sup(p*(X)) > smin. Thus, all (fc-1)-

subpatterns of X are frequent and X is downward closed. •

By selecting as the parent of a A;-pattern X the (/c-l)-subpattern with the lowest support,

we can thus minimize the number of explored patterns and, consequently, the number of

support computations. Finding the optimal parent function p*, however, is as difficult as

finding the frequent patterns. Yet, in many cases, the intrinsic nature of the data makes

some patterns more likely to be frequent than others. Our approach consists in using this

background information to select p, as follows. Suppose we have a function h, called

heuristic, that evaluates the likeliness of a pattern X to be frequent, i.e. if h(X) > h(Y)

then X is more likely to be frequent than Y. This function can be determined using some

general knowledge on the type of data used, by extracting information from the database

in a pre-processing step, or learned by any machine learning algorithm on a training

dataset. The only requirements are that h should be easy to compute, and should evaluate

to the same value for isomorphic patterns, i.e. X ~ Y => h(X) = h(Y), otherwise

2Not to be confused with a common use of term closed in the litterature, where a pattern X is closed
iff it is not contained in a pattern Y of equal support.

92

isomorphic patterns could be explored redundantly from different parents. Furthermore,

to avoid exploring patterns that are not downward closed, we must then choose the parent

of X as a (&:-l)-subpattern which minimizes h. However, since two non-isomorphic (k-

1)-subpatterns can have the same value of h, this heuristic may not be powerful enough

to guarantee that isomorphic patterns have the same parent. To insure this, we also need

to define a total order on the pattern space, given by a precedence operator -<P. The

parent of a fc-pattern X can then be uniquely defined as the (A>l)-subpattern, among

those with minimal value of h, that is also minimal with respect to -<P.

Figure 5.1 summarizes our approach for the depth-first traversal of the pattern space.

Starting with the root pattern _L, the algorithm launches the depth-first traversal by call­

ing the recursive procedure explore. This procedure takes as input a database T>, a mini­

mum support threshold smin and the current ft-pattern X, and returns a set T containing

the frequent patterns of the sub-space rooted at X. The procedure first calculates the

support of X. If its support is less than smin, the empty set is returned. Otherwise, X is

added to T and is extended as follows. For each possible (/c+l)-extensions Y of X, the

procedure computes the parent of Y as the first A>subpattern ZofY with minimal value

of h, following order -<p. If Z is isomorphic to X then X is the parent of Y. In this case,

the recursive procedure explore is called on Y, and set of frequent patterns it returns is

added to T. When all extensions have been tested, the procedure returns T.

5.3 Experimentation

In this section, we evaluate our approach on the frequent subgraph mining problem,

using two different types of data: synthetic and real-life.

93

Depth-first frequent pattern mining algorithm
Input: A database V and a minimum support threshold smj„.
Output: The frequent patterns T of V.
T := e x p l o r e (V, smin> -U ;

return F;

Procedure e x p l o r e (V, smin, X)
Input: A database V, a support threshold smin and a /c-pattern X.
Output: The frequent patterns J7 of the sub-space rooted at X.

if sup(X, V) < Smin then return T = 0 ;

•F := {X} ;

foreach {k-Y I)-extension 7 o /X do
P : = J . ;
foreach k-subpattern Z of Y, following -<p do

| if P = ± or h(Z) < h{P) then P := Z ;

if P ~ X then .F := ^ U e x p l o r e (V, smin, Y) ;

return T;

Figure 5.1 Our approach to depth-first frequent pattern mining.

94

5.3.1 Synthetic data

In the first experiment, we considered the task of finding the frequent connected3 sub­

graphs of synthetic datasets whose labels have different distributions. To generate this

data, we first produced 6 label probability distributions Dj, i = 1 , . . . , 6, as follows.

For each distribution Dh we created 8 classes Cj, j = 1 , . . . , 8, to which we randomly

assigned a unique label from the set {1, 2, 3,4, 5, 6, 7, 8}. Then, for each class Cj, we

obtained the probability p^ of a vertex in Dt having the label of Cj with the formula

using a = 5 as parameter. As shown in Figure 5.2, the probability distributions obtained

in this way are increasingly skewed. Thus, for the first distribution, all labels are equally

probable. However, in the last distribution, the label of class C8 has a 50% chance of

being on a vertex, while the probability of having a vertex with the label of class C\

is only 0.4%. For each of these 6 distributions, we then generated 3 datasets using the

random generator developed by Karypis and Kuramochi (Kuramochi et Karypis, 2001),

each dataset containing 10000 unlabeled graphs. As parameters, we used an average

size of the database graphs of 15, an average number of frequent subgraphs of 25, and

an average size of the frequent graphs of 15. These values are fairly standard for bench­

marking, and ensure that most of the CPU time is spent on support calculation. Finally,

we labelled the vertices of the generated datasets using their respective distribution. The

graph edges were all given the same label.

We then tested four frequent subgraph mining algorithms on these datasets. The first al­

gorithm, referred to as heuristic in the results, is based on an algorithm called S Y G M A ,

that we developed to find the frequent connected subgraphs of datasets having a lim-

3 A graph G is connected if there is a path connecting any two vertices of G.

95

Class

Cx

c2
c3
c4
Cn
c6
cv
c8

Di

12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5

D2

6.1
7.3
8.7

10.5
12.6
15.1
18.1
21.7

Distribution
D3

2.9
4.1
5.7
8.0

11.2
15.6
21.9
30.6

£>4
1.4
2.3
3.7
5.9
9.4

15.0
24.0
38.4

D5

0.7
1.3
2.4
4.3
7.7

13.8
24.9
44.9

D6

0.4
0.8
1.6
3.1
6.3

12.5
25.1
50.2

Figure 5.2 Probability (%) of having a vertex with the label of classes Cj, j
for distributions Dj, i = 1 , . . . , 6.

1,.. . ,8,

ited number of labels (Desrosiers et al., 2007b). Like S Y G M A , the heuristic algorithm

transforms the search space into a rooted tree using a parent function p, and explores

this tree depth-first. However, heuristic differs from S Y G M A in the fact that it uses

background knowledge to define p. In this case, the background knowledge used is the

number of edges, in the database, with incident vertices of given labels. This informa­

tion is obtained, with little added cost, while reading the database. Let G be a graph

explored in the search and let ip be a permutation of the vertices of G. The code of G,

under <p, is the string obtained by considering the elements of the adjacency matrix of a

graph G, following the order of the vertices in <p. Likewise, the canonical code of G is

the lexicographically minimal code, obtained under any permutation. This code can be

obtained efficiently using, for instance, McKay's NAUTY algorithm. Let ip* be a permu­

tation leading to the canonical code, and denote ip*(v) the position of a vertex v imp*.

We define a total order on the edges of G using the precedence operator -<E, defined as

follows. Let ei = (ui,vi) and e2 = (u2lv2) be two edges such that v?*(tti) < <p*{vi)

and <p*{u2) < ip{v2)*, we have ex -<E e2 iff either one of these two cases is true:

1. p*(ui) < (p*(u2)

2. ui = u2 and v3*('yi) < f*(v2)-

96

This order has the property that equivalent edges in two isomorphic graphs are ordered in

the same fashion. Since our depth-first search only explores connected graphs, a graph is

explored only if its parent is connected. Denote G — {e} the graph obtained by removing

from G an edge e and all the vertices that become isolated after this removal, i.e. the

vertices that are only incident to edge e. We say that e is a disconnecting edge if G — {e}

is unconnected. We then define the parent of G, in the heuristic algorithm, as the graph

produced by removing from G the first non-disconnecting edge, following -<E, whose

incident vertex labels are most common in the database, i.e. for which the number of

edges in the database having the same pair of labels is the greatest. Let t\ and e2 be any

two edges of G and denote N\ and N2, respectively, the number of edges of the database

that have the same label pair as e\ and e2. The heuristic function h, in this case, is such

that h(G — {ei}) < h(G — {e2}) if Ni > iV2. If e\ and e2 are topologically equivalent

edges, i.e. if there is an automorphism mapping the vertices of one edge to those of the

other, then G — {e\\ ~ G — {e2}. Since e\ and e2 necessarily have the same label pair,

we have h(G — {ei}) = h(G — {e2}). Thus, h satisfies the requirement to evaluate to

the same value for isomorphic graphs.

The second algorithm, called random, is another implementation of our approach for

which the parent of a graph is selected randomly. In order that isomorphic graphs have

the same parent, we re-initialize the random number generator for every visited graph

G, using the canonical code of G. We then enumerate the non-disconnecting edges of G

following -<£, and generate, for each of these edges, a random number. The parent of

G is then obtained by removing from G the first enumerated edge for which the random

number was highest.

The third algorithm, named prefix, is our own implementation of the depth-first search

(DFS) coding scheme of GSPAN (Yan et Han, 2002). Briefly, this scheme assigns to each

graph G a code obtained by concatenating the vertex indexes and labels of the edges of

G, following the order in which these edges where added to G. A depth-first search

97

exploration of the graph space is then made, in such a way that the graphs are visited in

ascending code values. Thus, when visiting a graph G, if the code of G is not minimal,

then a graph isomorphic to G has already been visited in the search and G is pruned. The

prefix algorithm uses the same support computation procedures as heuristic and random.

Finally, the last algorithm, called dw-closure, is a variation of prefix that explores the

search space so that the subgraphs of a graph G are explored before G, thus allowing to

check the downward closure of G. The search strategy employed by dw-closure, called

reverse prefix search (Cohen et Gudes, 2004), differs from the one used by prefix in

the fact that the extensions of a graph are explored in descending code values, and that

the frequent graphs found in the search are stored. Again, dw-closure uses the same

procedures to compute the support of a graph as the other three algorithms.

Figures 5.3 and 5.4 report, for each of the six distributions, the average results over

their three datasets. On the left side are shown the percentage of visited graphs that are

downward closed and that are frequent, as found by the dw-closure algorithm for de­

creasing support thresholds4. The smaller the ratio of downward closed graphs is, the

more graphs can be pruned by checking downward closure. Because it tends to avoid

exploring graphs that are not downward closed, this ratio also serves as an indication of

the potential benefits of the heuristic algorithm. The right side of these figures gives the

runtimes, in seconds, of the four tested algorithms, also for decreasing support values.

From these results, we can make several observations. First, we notice that the percent­

age of visited graphs that are frequent remains fairly constant (values range between 7%

and 13%), for all distributions and support thresholds. On the other hand, the ratio of vis­

ited graphs that are downward closed decreases as the label distribution becomes more

skewed, and as the support threshold is lowered. As a consequence, the efficiency of

the heuristic and dw-closure algorithm, compared to the random and prefix algorithms,

4The threshold values are given as a percentage of the dataset graphs.

98

100

80 •

s? 60 :
o
1 40

20

0

14

100

80

^ e o :•

W 4 0 ;••

0

14

100

80 :

- B - 6 0 '•••

1 40 :

20

0

16

Distribution 1
-B — —

"""dw. closed (%)

"**frequent(%)

12 10 8 6

support (%)

Distribution 2

"""dw. closed (%p ~ * —

"*"frequent(%)

12 10 8 6

support (%)

Distribution 3

* d w . closed (%)

"*" frequent (%)

14 12 10 8

support (%)

4

4

6

2

*
2

4

Figure 5.3 Ratio of downward closed and
the tested algorithms (right), for synthetic

160
Distribution 1

1 4 0 " p r e f i x
1 2 0 : •*-random

.—. 100 "T'dw-closure

• | 80 -^heuristic

I 60
40

20

0 -

14 12 10 8 6 4 2
support (%)

300
Distribution 2

250 ' * prefix J !

'""random P
200 ! •••_•• / / _

-jj- dw-closure //I

•§ 150] •heur ist ic //.ft

o
14 12 10 8 6 4 2

support (%)

300
Distributions

250 ; * prefix

"•"random *
200 : ••-._•; -:• *

-<T : dw-closure ' y
•2- 150 i *heurist ic L /

& 100 j ^ > 0 '

50 iptt&r***^
o

16 14 12 10 8 6 4
support (%)

frequent visited graphs (left) and runtimes of
datasets using label distributions Di, D2, D3.

increases in the same way. Thus, for the equiprobable distribution, D\, the runtimes of

all four algorithms are roughly the same. However, for the most skewed distribution,

DQ, both heuristic and dw-closure algorithms present a two-fold speedup over the other

two algorithms. We also observe that the random algorithm is somewhat faster than the

prefix algorithm (5% to 17% faster), due to the fact that the fixed lattice exploration order

of prefix is not well suited for the data. We finally notice that our heuristic approach is

faster (up to 22% faster) than the dw-closure algorithm, in all but one case (distribution

D±, support threshold 2%). Although one might think that checking the downward clo-

99

100
Distribution 4

•"dw. closed (%)

-frequent (%)

100

16 14 12 10 £

support (%)

Distribution 5

h dw. closed (%)

"frequent (%)

100

80

-s- 60

••S 40

Distributions

•"dw. closed (%)

"frequent.p/o)

18 16 14 12 10

support (%)

22 20 18 16 14 12 10

support (%)

Figure 5.4 Ratio of downward closed and
the tested algorithms (right), for synthetic

800
Distribution 4

7 0 0 : J prefix
6 0 0 •'random ,*

.- j . 500 '''dw-closure /

| - 400 •heuristic Q , / J

I 300 r, _^J* s >
200 . , « ' "
100 ,

0"

16 14 12 10 8 6 4
support (°/Q

800
Distribution 5 >•

700 ' ; • p r e) i x ; ; -
6 0 0 -random Y ' /

_ 500 : 'T'dw-closure g ^ /

1 4 0 0 • •heuristic P* - *

8-3oo ; , ^,9'^'

100 s " ' " "

o ' ;

18 16 14 12 10 8 6
support (°/4

700
Distribution 6 i-1

600 "* prefix ^

500 * random j ^ . *

f 400 '"^-closure
•2- "*" heuristic ,>* _.W

&300 J * " '
200 B . , . - - ¥ " "

100 j ia«=-"

0
22 20 18 16 14 12 10

support (%)

frequent visited graphs (left) and runtimes of
datasets using label distributions D4, D5, D6.

sure is what slows down the second algorithm, this is not the case since this operation

is negligible compared to support computation. In fact, the heuristic algorithm performs

less subgraph isomorphisms tests than dw-closure, eventhough dw-closure is the algo­

rithm that computes the support of the least number of graphs. This surprising result

can be explained as follows. Since a graph G is contained by a database graph only if

its parent is, the number of subgraph isomorphism tests required to compute the support

of G is bounded by the support of its parent. By selecting the parent of G as the graph

least likely to be frequent, the heuristic algorithm thus tends to reduce the number of

100

subgraph isomorphism tests required for G.

5.3.2 Real-life data

In the second experiment, we evaluated our approach on a real-life dataset from the field

of chemoinformatics. This dataset, which contains a set of 340 chemical compounds

modelled as labeled graphs, was devised as a benchmark for the Predictive Toxicology

Evaluation (PTE) challenge (Srinivasan et al., 1997). As we have done in the previous

experiment, we tested four algorithms, heuristic, random, prefix and dw-closure, on the

task of finding the frequent connected subgraphs of this dataset5.

For this experiment, we have modified our heuristic algorithm to exploit some common

characteristics of this type of data: the frequent subgraphs are mostly cycle-free con­

nected graphs, whose vertices have a low degree6. We illustrate how this information

was used in our algorithm with a small example. Consider the graph shown on the left

side of Figure 5.5, that we will denote G. The values shown beside each vertex of G are

the index (1,2,3,4 or 5) and the label (a or b) of this vertex. Since the edges of G are

non-disconnecting, they must either be part of a cycle (edges (3, 4), (3, 5), (4, 5) in this

example) or have a vertex incident to no other edge (here (1, 3), (2,4)). If we remove an

edge contained in a cycle, such as (3,4), this cycle will not be present in the resulting

graph. However, if we remove an edge of the second type, e.g. (1,3), the graph we

obtain will keep all its cycles. Because cycle-free graphs are more likely to be frequent,

and since we want as parent p(G) of G one of its least frequent subgraphs, p(G) should

thus be obtained by removing from G an edge incident to a vertex of lowest degree. This

approach also has the benefit that the parent graphs will have vertices of higher degree,

and thus, will have less chance of being frequent. In this example, vertices 1 and 2 are

5The edge labels of the dataset were discarded for this experiment.
6The degree of a vertex is the number of edges incident to this vertex.

101

the only ones with the lowest degree of 1. Thus the parent of G should be obtained by

removing an edge incident to one of these vertices, i.e. either (1,3) or (2,4). To make

our heuristic algorithm even more efficient, we also used background information on the

vertex labels. Let e\ = («l7 vi) and e2 = (1*2, v2) be two non-disconnecting edges of G

(suppose, without loss of generality, that deg(u\) < deg(vi) and deg(u2) < deg(v2)),

and denote JVi, N2, once more, the number of edges of the dataset that have incident

vertices with the same labels as e\ and e2. The heuristic function h used in our algorithm

is such that h(G — {ei}) < h(G — {e2}) if either one of the following cases is true:

1. deg{u\) < deg(u2)

2. deg(v,i) = deg(u2) and N\ > N2

3. deg(u\) = deg(u2) and Ni = N2 and deg{v\) < deg(v2).

Suppose that, in our example, the number of database edges whose incident vertices have

the corresponding pair of labels is as shown on the right-side of Figure 5.5. In this case,

since the label pair (a, a) of edge (2,4) is more frequent than the label pair (a, b) of edge

(1,3) (300 occurrences versus 200) the parent of G will be the graph G — {(2,4)}.

Label pair
(a, a)
(a, b)
(6,6)

Occurrences
300
200
150

Figure 5.5 A labeled graph (left) and the number of database edges having vertices with
the given labels (right).

Figure 5.6 summarizes the results of this experiment. On the top left are shown the

percentages of visited graphs that are frequent and downward closed, as found by dw-

closure, for decreasing values of support threshold. On the top right are presented the

percentage of graphs, visited by all four algorithms, that are cycle-free. The graphic

102

located at the bottom left gives the runtimes of the algorithms, again for decreasing sup­

port threshold values. Finally, at the bottom right are shown the number of subgraph

isomorphism tests performed by all four algorithms. As in the first experiment, we no­

tice that, while the ratio of frequent graphs is fairly constant for all support threshold

values, the ratio of downward closed graphs decreases as the support threshold lowers.

However, due to the particular nature of the data, the ratio of downward closed graphs

is much lower than it was for the synthetic datasets. Because of this, we can thus ex­

pect a greater performance increase for dw-closure and heuristic, compared to what we

observed for synthetic data. Also, from the ratio of visited graphs that are cycle-free,

we observe that both the prefix and dw-closure algorithms are well adapted to limit the

search to this type of graph (ratios ranging from 88% to 85%). Moreover, comparing the

random and heuristic algorithms, we can see that the heuristic function helps in avoiding

graphs with cycles. Thus, while the random and heuristic algorithms have similar ratios

for a support threshold of 24% (respectively 85% and 88%), the heuristic algorithm does

a much better job at avoiding such graphs (ratio of 92% versus 65% for random), for a

support threshold of 3%. Furthermore, as we expected, dw-closure and heuristic clearly

outperform prefix and random. Thus, heuristic is 8 to 15 times faster than prefix for

all support threshold values. Finally, as we did for the first experiment, we notice that

heuristic is somewhat faster than dw-closure (up to twice faster for a support thresh­

old of 3%), although, this time, the number of subgraphs isomorphism tests performed

by the two algorithms is very comparable. Since the dataset only contains 340 graphs

(versus 10000 for the synthetic datasets), the downward closure check of the dw-closure

algorithm accounts for a greater portion of the algorithm's runtime, and could, therefore,

explain this performance gap.

103

12

10 "

8

fi J

4

2

0
24

2500

2000

1500

1000

500

0

* d w . closed (%)

"*"frequent(%)

21 18 15 12 9
support (%)

"prefix

"*" random

'T'dw-closure

"*" heuristic

24 21 18 15 12 9
support (%)

7

JP

7

6

'j$f

6

'-*-

4

>

/

-~̂

3

B

i
i

£,
4 3

100

90 Ar-
„ • - . ,

} 8° u
1 70 -
8 'T

prefix • -

' random

' dw-closure

i ; *>0 •*" heuristic

50
24

10000

S- 8000
o

2. 6000

£ 4000
o

1 2 0 0 °
S 0 * ~

24

21 18 15 12 9
support (%)

r ' prefix

'*' random

•T'dw-closure

"*" heuristic

- t " ' " f " " "S r "~ i f •••*•

21 18 15 12 9
support (%)

^r

•••-.

7

•" LJ

7

L;

">•....,

6

•TS

6

* = 4

•'•-.,„ _

4 3

, # •

J*

_^fT*S^r

4 3

Figure 5.6 Ratio of downward closed and frequent visited graphs (top left), ratio of
visited graphs that are trees (top right), runtimes (bottom left) and number of subgraphs
isomorphism tests performed (bottom right), for the tested algorithms on the Predictive
Toxicology Evaluation (PTE) dataset.

5.4 Conclusion

We have presented, in this paper, a simple and general strategy that improves the task

of finding the frequent patterns of a database containing structured data. This novel ap­

proach uses background information on the frequent patterns, in the form of a heuristic

function that transforms the search space into a rooted tree such that the parent of a

pattern is as unlikely as possible to be frequent. This allows to avoid exploring a great

number of infrequent patterns and, consequently, to reduce the number of costly support

computations. To evaluate our approach, we have tested it on a well-known special­

ization of the frequent pattern mining problem, the frequent subgraph mining problem,

where the task is to find the connected graphs for which the support in the database is

greater than a given threshold. These tests were carried out on two types of data: syn-

104

thetic datasets that have a skewed distribution of vertex labels, and a real-life dataset

from the Predictive Toxicology Evaluation (PTE) challenge. The results obtained for

these tests have shown our approach to be more efficient than a specialized technique

using depth-first search (DFS) coding, and to be as powerful as the more complex strat­

egy of testing downward closure.

105

CHAPTER 6

AUTOMATED GENERATION OF CONJECTURES ON FORBIDDEN

SUBGRAPH CHARACTERIZATION

6.1 Introduction

Traditionally, the process of discovering new knowledge in graph theory was carried out

by mathematicians, with little assistance from computers. Yet, in recent years, mathe­

maticians in that field have turned to computers to find some very important results. A

famous illustration of this is the proof to the four color conjecture, which was done in

large part by computers (Appel et al., 1977; Robertson et al., 1997). Since then, comput­

ers have played an increasing role in the discovery of new knowledge in graph theory,

and many tools have been proposed for this task. One of the first computer programs

for this purpose is GRAFFITI, developed by Fajtlowicz (Fajtlowicz, 1988a), which has

generated over a thousand conjectures as algebraic equations involving graph invariants.

Another more recent and equally prolific tool to generate conjectures involving graph

invariants is AUTOGRAPHIX (AGX), proposed by Caporossi and Hansen (Caporossi et

Hansen, 2000). This last program, which applies the Variable Neighborhood Search

metaheuristic (Mladenovic et Hansen, 1997) to find extremal graphs, can also be used to

find graph satisfying various constraints, to find structural conjectures, to refute conjec­

tures and to suggest proofs.

Although automating the generation of conjectures has been the aim of many works,

almost all these focused on generating conjectures in the form of relations on graph

invariants. Yet, as recently suggested by Hansen et al. in (Hansen et al., 2005), there are

many interesting results in graph theory that take a different form. One of them, known

106

as forbidden subgraph characterization (FSC), describes a class of graphs in terms of

the subgraphs that these graphs are not allowed to have. A well known FSC, due to

Chudnovsky et al. (Chudnovsky et al., 2006), characterizes perfect graphs as the graphs

which do not have as induced subgraph any odd cycle containing five or more vertices, or

its complement. Another important FSC, due to Beineke (Beineke, 1970), characterizes

line graphs using nine forbidden graphs, shown in Figure 6.1.

> - H>- $1
Figure 6.1 A forbidden subgraph characterization of line graphs.

In this paper, we present some new methods to automatically generate conjectures on

FSCs. The rest of the paper is structured as follows. We first introduce some preliminary

concepts that will help to understand the rest of the paper. We then describe our methods,

by considering three problems: finding sufficient conditions for an FSC, finding neces­

sary conditions for an FSC, and finding actual FSCs. We then show how these methods

can be used in practice to generate conjectures, and illustrate this by reproducing some

known results, as well as generating new ones. Finally, we end this paper with a short

summary of our work.

6.2 Preliminary concepts and definitions

Let Q be the set containing all graphs. A class of graphs C C Q is a possibly infinite

set of graphs that share a common property. Let H be a set of graphs, we say that a

graph G is 7i-free if there is no graph of H isomorphic to one of its induced subgraphs,

and write QH the set of all such graphs. Using this terminology, an FSC of C is a set of

graphs H such that Qu = C. As we will see, not every class of graphs has FSCs. For

107

classes that do not have an FSC, we are often interested in finding some weaker rules

allowing to partially characterize the graphs of these classes. These rules come in two

forms: sufficient conditions (SFSC) and necessary conditions (NFSC). Let C be the class

of graphs to characterize and H be a set of forbidden subgraphs. Sufficient conditions

can be expressed as follows: if a graph G is "H-free, then it is part of C. Thus, a sufficient

condition is such that Qn C C. However, sufficient conditions do not fully describe C.

Indeed, if G is not H-irct, we cannot use this type of condition to determine if G is in C

or not. On the other hand, necessary conditions can be expressed as follows: if a graph

G is in C then it is 7i-free. This implies that Qn D C. Again, necessary conditions offer

a partial description of C: if G is not in C then it can either be 7Y-free or not.

Let G be a graph, and W — {^1,^2, . . . , t>9} be a subset of V(G). We write G[W] or,

when the context is clear, (v\, v2, • • •, vq) the subgraph of G induced by W. Furthermore,

let H be another graph, we write G ~ H when G is isomorphic to H, and H C G when

H is isomorphic to an induced subgraph of G. The following elementary properties will

be used later on to prove more complex results.

Property 1. Let G\, G2, G3 be three graphs, and Hi, H2 be two sets of forbidden

subgraphs.

(a). lfGx C G2 and G2 C G3 then Gx C G3.

(b). IfGi g G2 and G3 C G2 then Gx g G3.

(c). IfGi % G2 and Gx C G3 then G3 % G2.

(d). Ifd C G2 then G{Gl} C Q{G,y

(e)- Gniun2
 = QHI H QH2-

if)- If Hi C H2 then QHx 2 Qn2-

(g). Ifd C G2 then G{Gl} = G{GUG2}-

108

To lighten the presentation, we will, in the rest of this paper, refer to induced subgraphs

simply as subgraphs.

6.3 Sufficient conditions

Formally, we write an SFSC as G is 7i-free =4> G £ C. This expression is logically

equivalent to G € C => 3H e H s.t. H C G, where C = Q \ C is the complement of the

graph class C. The task of finding an SFSC can thus be defined as follows: find a set of

graphs TC such that

VG € C, 3H eH s.t. HCG.

While a graph class C can have many SFSCs, these may not be equally useful. For

instance, H = C is an SFSC of C, but is as complex as the class C itself. Moreover,

let H be the graph composed of a single vertex, H = {H} is an SFSC of C since H is

a subgraph of all graphs of C. However, H offers no real information on C, since each

graph of C also has H as subgraph, i.e. C n Gn = 0- To help us find useful SFSCs,

we need to introduce two measures: complexness and tightness. The complexness of an

SFSC roughly evaluates the amount of information needed by this SFSC to describe C.

Let n, W be two SFSCs of C. We say that H is more complex than W if \H\ > \H'\,

or in the case where H = {H} and W = {H'}, if \V(H)\ > \V(H')\. On the other

hand, the tightness of an SFSC evaluates how well it describes C. We say that an SFSC

H is tighter than another SFSC W if Gn> Q Gn- Thus, an SFSC H is maximally tight

if Qn — C. We see that the concepts of complexness and tightness are related: a tighter

SFSC can generally be obtained by increasing its complexness. Hence, the measure of

an SFSCs usefulness is a compromise between the minimization of its complexness and

the maximization of its tightness.

From the above definitions, we can impose an additional constraint on the selection of an

109

SFSC ft. Suppose ft contains two graphs H and H' such that H' C H. From Property

1 .(g), we know that ft' = H\ {H} is an SFSC of C as tight as ft. However, ft' is less

complex than ft since it contains one less graph. We can thus limit our search to the sets

of graphs ft such that

\/H e H, ffl' e ft s.t. H' c H.

In the rest of the paper, we will call minimal a set ft that satisfies the above property,

and denote min(TY) C ft the subset of ft that is minimal.

Proposition 1. Le/ C be a class of graphs and Hbe a minimal SFSC ofC with maximum

tightness, then ft = min(C).

Proof. Let ft = min(C). We first show that TL is an SFSC of C. Suppose it is not, then

there is a graph G eC\H such that flH 6 H, H c G. However, G would then be, by

definition, in H, which is a contradiction. We next show that H is the only SFSC with

maximum tightness. Let ft' be any minimal SFSC of C. For each H' e ft', if flG £ C

such that H' C G then, clearly, the tightness of ft' is not maximum since ft' \ {H1} is

an SFSC of greater tightness. Otherwise, if H' 6 C, let B denote the graphs of C which

have H' as subgraph. By definition, ft" = ft'\ {H'} U B is an SFSC of C. Furthermore,

from Properties \.{d) and \.{e), we have that G{H'} Q OB and that Qn> C Qn„. Finally,

since H' $ Qni and H' G ^ » , we conclude that Qw C Qn" and therefore that W is

tighter than ft'. The remaining case is H' € C. Suppose that H' $ ft, then by definition

there is a graph Heft such that H C // ' . Furthermore, since ft' is an SFSC of C, there

must be a graph # " e 7Y' such that H" C H C H', which contradicts the minimality

of ft'. Therefore, we have that H' e ft, and thus, either ft' does not have maximum

tightness or ft' = ft. •

110

6.3.1 Single graph SFSC

Before we tackle the general task of finding an SFSC having an arbitrary number of

graphs, we first consider the simpler case of finding an SFSC of a graph class C, con­

taining a single graph. In this case, the problem can be formulated as finding a set

TL = {H} such that \/G G C, H C G. Thus, if is a common subgraph of the graphs in

C. Furthermore, let H, H' be two graphs such that H C H'. From Property 1 .(d), we

have Q{H} C G{H'} and therefore that {H1} is tighter than {H}. Hence, if we want to

maximize the tightness, we should find a common subgraph H which is maximal w.r.t.

inclusion. This principle serves as the main idea of our first algorithm, detailed in Figure

6.2. Let £ be a finite set of graphs and denote maxCS(£) the set of common subgraphs

of L, the single graph SFSC algorithm searches for a graph Hk which is contained in

all graphs of C, in the following way. Starting with a graph H0 chosen in C and a set

L of representative graphs of C containing only H0, the algorithm searches, at every it­

eration k, for a graph Gk € C which does not contain Hk. If such a graph exists, the

algorithm then adds Gk to the representatives of C, i.e. Lk+1 := Ck U {Gk}, and finds a

new graph Hk+i, which is a maximal common subgraph of Lk+1. Otherwise, if no such

graph exists, we know that Hk is a subgraph of all graphs of C, and thus is an SFSC of

C.

Proposition 2. The single graph SFSC algorithm, shown in Figure 6.2, produces, in a

finite number of steps, a common subgraph ofC which is maximal w.r.t. inclusion.

Proof. We first prove that the algorithm terminates in a finite number of steps. Consider

any two graphs Hi, Hj such that i < j . Since Hj is a common subgraph of Cj, and

Gi G Cj, we have Hj C G{ (1). Moreover, since G, 6 Cfl G{Hi}, we know that

Hi % Gi (2). Combining (i) and (2), we get H ^ Hj. Furthermore, since Hi and

Hj are maximum common subgraphs of Li and Cj, and since Li c Lj, we have that

|^(#?) | < 1^(^)1- Finally, since there is a finite number of graphs of |V{Hi)\ or less

I l l

Single graph SFSC algorithm
Input: A graph class C.
Output: A single graph SFSC H of C.

Choose any Ho in C ;
Let £ 0 := {Ho}, and k := 0 ;

while 3Gk e C D £{#fc} do
Let £fc+1 := £fe U {Gk} ;
Choose i/fc+i in maxCS(£/c+i) ;
Let A; := k + 1 ;

return H = {Hk} ;

Figure 6.2 Algorithm to find an SFSC containing a single forbidden subgraph.

vertices, the algorithm will terminate in a finite number of steps. Next, we prove that

the graph Hk returned by the algorithm is a common subgraph of C. Suppose it is not.

Then, there exists a graph Gk £ C that does not have Hk as subgraph. However, this is

a contradiction since the algorithm terminates only when no such graph exists. Finally,

we show that Hk is maximal w.r.t. inclusion. Suppose this is not the case. Then, there

exists a common subgraph H' of C, such that Hk C H'. Since H' is a common subgraph

of C, it is also a common subgraph of Ck C C. However, this contradicts the fact that Hk

is a maximum common subgraph of Ck. •

6.3.2 Multiple graph SFSC

From Proposition 1, we know that if a graph H, obtained by the single graph SFSC al­

gorithm, is not in C, then we can find a tighter SFSC containing more than one forbidden

subgraph. Let M be the maximum number of graphs we want to have in the SFSC. If

|min(C)| < M, the algorithm should return min(C) since this SFSC has maximum tight­

ness. Otherwise, we search for an SFSC of C in the following way. We first find a set M.

containing M — \ of the smallest graphs of min(C). Since M = min(A/f) C min(C), by

112

definition, M is an SFSC of GM 3 C that has maximum tightness. We then find a com­

mon subgraph H of C n £M- Finally, since a graph of M may contain iJ, to minimize

the complexness, we return the SFSC H = min(M U {#}). Denote by fmdMin(C, L)

the procedure that returns the set min(C), if |min(C) | < L, or otherwise returns L of the

smallest graphs of min(C). The multiple graph SFSC algorithm, shown in Figure 6.3,

finds an SFSC for a graph class C, containing at most M graphs.

Multiple graph SFSC algorithm
Input: A graph class C and an integer M > 0.
Output: An SFSC H of C containing at most M graphs.

Let M := findMin(C, M - 1) and choose any H0 in CDGM',

Let £ 0 := {#o}, and k := 0 ;

while 3Gk e C n ^u{Hfc} do
Let Ck+1 := £fc U {Gfc} ;
Choose Hk+i in maxCS(£fc+i) ;
Let k := fc + 1 ;

return 7i = min(A^ U {Hk});

Procedure f indMin (C,L)
Input: A graph class C and an integer L > 0.
Output: At most L of the smallest graphs of min(C).

Let M 0 := 0 and I := 0 ;

whileC n GMI ^Qandl<L do
Choose Hi e C D £M (with minimum order ;
L e t M + i : = M U {Hi};
Let / := Z + 1 ;

return .M = Mi ;

Figure 6.3 Algorithm to find an SFSC containing at most M forbidden subgraphs.

Proposition 3. The multiple graph SFSC algorithm of Figure 6.3 produces, in a finite

number of steps, an SFSC ofC containing at most M graphs.

Proof. We first show that the algorithm terminates in a finite number of steps. Clearly,

113

the procedure that returns findMin(C, M — 1) will terminate in at most M — 1 iterations.

Furthermore, from Proposition 2, we know that finding the last graph can be done in a

finite number of steps. Thus, the algorithm is finite. We next prove that the set H =

vam{M U {Hk}) returned by the algorithm is an SFSC of at most M graphs. Consider

once again the procedure findMin. Since we have \Mi\ = I, at every iteration /, this

procedure will return a set M. containing at most M — 1 graphs. Furthermore, suppose

that M U {Hk} is not an SFSC. Then, there exists a graph G € C that does not have Hk

nor any graph of Mk as subgraph. However, this is a contradiction since the algorithm

terminates only when no such graph exists. Thus, Ml){Hk} is an SFSC of |A1| + 1 < M

graphs. Finally, since min(.M U {Hk}) C M U {Hk}, we have, by definition, that H is

an SFSC of at most M graphs. •

Proposition 4. Let H be a forbidden subgraph obtained by the single graph SFSC algo­

rithm, and H = M. U {Hk} be the multiple graph SFSC returned by the above algorithm.

IfHcHk then H is a tighter SFSC than {H}.

Proof. Since {H} is an SFSC and M C C, we know that H C H', for all H' e M,

and, from Properties \.{d) and \.{e), that Q{H) Q GM- Furthermore, since H c Hk, we

have Q{H} C &{Hk}, and thus that Q{H} C QM H 6{Hk} = Qn- Therefore H is a tighter

SFSC than {H}. D

6.4 Necessary conditions

Let C be a graph class, an NFSC is a set of graphs H such that all graphs in C are "W-free.

Finding an NFSC thus amounts to finding H such that

VGeC, flH ens.t. HCG.

114

This implies that H C C. As we did for SFSCs, we can use the criteria of complexness

and tightness to guide our search of an NFSC. However, since an NFSC H is such that

Qn 2 C, the definition of tightness differs from the one given for sufficient conditions.

Let H, V! be two NFSCs, we say that H is tighter than H' if Qn C Gn>. As we have

done for sufficient conditions, we first present a method that finds single graph NFSCs

and then generalize this method to multiple graph NFSCs.

6.4.1 Single graph NFSC

The task of finding a single graph NFSC of a graph class C corresponds to finding a

graph H such that, for all G G C, H $Z G. Thus, H is a "common non-subgraph"

of the graphs in C. Moreover, let H and H' be two graphs such that H C H'. From

Property \.{d), we have that Q{H} C Q{w} and, therefore, that {H} is tighter than {H1}.

Thus, to maximize the tightness, H should be a common non-subgraph which is minimal

w.r.t. inclusion. Our single graph NFSC algorithm, detailed in Figure 6.4, is based on

this idea. Let Qn = Q \ Qn be the set of graphs containing at least one graph of H, and

denote minCNS(£) the set of common non-subgraphs of a set C, which have a minimum

number of vertices. Starting with a graph H0 that has a single vertex and an empty set

£ 0 of representative graphs of C, at each iteration k, we try to find a graph Gk £ C which

contains Hk. If such a graph exists, then Hk is not an NFSC. We then improve Hk by

adding Gk to the set of representatives of C, i.e. Ck+i •= £k U {Gk}, and finding a graph

Hk+i that is not a subgraph of any graph of Ct+i- Finally, we repeat this process until

no graph of C contains Hk, i.e. when C C) G{Hky = 0, and return H — {Hk}. In the

case where C has no NFSC, we may always be able to find Gk E C containing Hk, and

thus, the algorithm may never stop. To avoid this problem, we impose a limit TV on the

number of vertices of our NFSC.

Proposition 5. The single graph NFSC algorithm of Figure 6.4 returns, in a finite num-

115

Single graph NFSC algorithm
Input: A graph class C and an integer N > 0.
Output: A single graph NFSC HofC having at most N vertices, or a graph of

more than N vertices.

Let H0 be a single vertex graph, Co := 0, and k := 0 ;

while 3Gk eCn Q{Hkx and \V(Hk)\ < N do
Let £k+i := Ck U {Gk} ;
Choose Hk+i in minCNS(£/c+i) ;
Let k:=k + l;

return H = {Hk} ;

Figure 6.4 Algorithm to find an NFSC containing a single forbidden subgraph.

ber of steps, a common non-subgraph ofC which is minimal w.r.t. inclusion and has at

most N vertices, if one exists. Otherwise, the algorithm returns a graph that has more

than N vertices.

Proof. We first prove that the algorithm terminates in a finite number of steps. Consider

any two graphs Hi and Hj such that i < j . Since Hj is a common non-subgraph of

Cj, and Gi G Cj, we have Hj % Gi (1). Moreover, since Gi e C n Q{Ht}, we know

that Hi C G{ (2). Combining (1) and (2), we get Hi ^ Hj. Furthermore, since Hi and

Hj are minimum common non-subgraphs of Li and Cj, and since £j C Cj, we have

that |V(//j)| > \V(Hi)\. Finally, since there is a finite number of graphs of N or less

vertices, the algorithm will terminate in a finite number of steps. Next, we prove that, if

the graph Hk returned by the algorithm is such that \V(Hk)\ < N, then it is a common

non-subgraph of C. Suppose it is not. Then, there exists a graph Gk <E C that has Hk

as subgraph. However, this is a contradiction since the algorithm terminates only when

no such graph exists, or if \V(Hk)\ > N. Finally, we show that Hk is minimal w.r.t.

inclusion. Suppose this is not the case. Then, there exists a common non-subgraph H'

of C such that H' C Hk. Since H' is a common non-subgraph of C, it is also a common

116

non-subgraph of Ck C C. However, this contradicts the fact that Hk is a minimum

common non-subgraph of £*,. •

Although the algorithm guarantees to find in a finite number of steps a single graph

NFSC, if one exists, we can accelerate its convergence using the fact that all NFSCs H

are such that H C C. Thus, instead of starting with a graph HQ composed of a single

vertex, we can start with H0 as the smallest graph of C. Furthermore, let minCNS(£, C)

be the set containing the smallest graph of a class C that are not contained in any graph

of £, we can choose Hk+i in minCNS(£, C) instead of minCNS(£).

6.4.2 Multiple graph NFSC

As it was the case for sufficient conditions, we can sometimes improve the tightness of

an NFSC by increasing its complexness.

Proposition 6. Let C be a given graph class and let N be the set of single graph NFSCs,

i.e. J\f — {H G C | /9G G C s.t. H C G}. IfH is a minimal NFSC of maximum

tightness then Ti = min(Ar).

Proof Let H = min(jV). We first show that H is an NFSC of C. Suppose it is not,

then there is a graph G G C \H such that 3H G H, H c G, which contradicts the

definition of H. We next show that 7i is the only NFSC with maximum tightness. Let

W be any minimal NFSC of C, and let H' be any graph of H'. By definition, we know

that H' G TV. Suppose that H' is not in Ti, since H — min(A^), there is a graph

H G H such that H c H'. Furthermore, from Properties \.{d) and \.{e), we have that

G{H} C G{H'}, and, thus, that the NFSC H" produced by substituting H' for H in Ti', i.e.

Ti" = (Ti' \ {#'}) U {H}, is tighter than Ti'. Therefore, Ti' is maximally tight only if

Ti' C Ti. Suppose finally that Ti' C Ti. Then, by Property \.(f), we have that QH, D Qn,

117

and, thus, that H is tighter than H'. Consequently, either H' does not have maximum

tightness or W = H. •

Following the above proposition, the NFSC of a class C with maximum tightness H is

simply the minimal set containing all individual graphs that are, by themselves, NFSCs.

To find H, we extend the previous algorithm such that it finds all the single graph NFSCs,

as shown in Figure 6.5. We start with an empty set Mo of forbidden subgraphs, an empty

set £0 of representative graphs of class C, and a graph H0 composed of a single vertex.

We can also select H0 as one of the smallest graph of C, to speed-up the convergence.

Then, at each iteration k, we look for a graph G ^ e C that contains Hk. If such a graph

exists, we add it to the set of representatives of C, i.e. we set Ck+i '•= C-k U {Gk}-

Otherwise, Hk is a single graph NFSC and we add it to the set of forbidden subgraphs,

i.e. we set Mk+i '•= Mk U {Hk}- Then, we find the smallest graph Hk+X that is

not contained in any graph of £k+i, nor contains any graph of Mk+i, i.e. Hk+i e

minCNS(£fc+i, £/xfc+1). Again, if we wish to speed-up the convergence of the algorithm,

we can restrict our search to C. We repeat this process until the order of Hk exceeds a

given limit N, and return H — Mk.

Proposition 7. The multiple graph NFSC algorithm of Figure 6.5 produces, in a finite

number of steps, a set H containing all single graph NFSCs of at most N vertices.

Proof. We first prove that the algorithm terminates in a finite number of steps. At every

iteration k, only one of the following three conditions is satisfied: (7) |y(i7fc)| > N,

(2) 3Gk G C n Q{Hk}, or (3) flGk G C n G{Hk}- If the condition (2) is verified, then,

since Hk C Gk and Hk+i <£. Gk, we have that Hk ^ Hk+i. Moreover, because Hk

and Hk+i are minimum common non-subgraphs of Ck and Ck+i, and since Ck C £k+i,

we have that \V(Hk+i)\ > \V(Hk)\. However, if condition (3) is verified, then we have

Hk £ Mk+i and Hk+\ E GMk+1> and therefore Hk+\ ^ Hk. Also, because Hk and Hk+i

are minimum common non-subgraphs of Ck and Ck+i, and since Ck = Ck+\, we have

118

Multiple graph NFSC algorithm
Input: A graph class C and an integer N > 0.
Output: A set H containing all single graph NFSCs of at most N vertices.

Let HQ be the graph containing a single vertex ;
Let Mo := 0, £ 0 := 0, and k := 0 ;

while \V{Hk)\ <Ndo
if 3Gk e C n G{Hk} then let Ck+l := £fe U {Gfc} and M f c+1 := A4fc ;
else let Ck+1 := £fc and X fc+i := -Mfe U {Hk} ;
Choose i7fc+i in minCNS(A+i, QMk+1) ;
Let & := ft + 1 ;

return H = Mk ;

Figure 6.5 Algorithm to find a set containing all single graphe NFSCs of at most iV
vertices.

\V(Hk+i)\ > \V(Hk)\. Finally, since there is a finite number of graphs with N or less

vertices, condition (i) will eventually be verified and the algorithm will terminate.

We next show that the algorithm is sound and complete. Since a graph H is only added

to H if C n G{H} = 0, we know that C C Q{H) and thus that {H} is an NFSC of C.

Furthermore, suppose there are two graphs Hi, Hj e H such that Hi C Hj. Since,

\V(Hi)\ < \V(Hj)\, we know that i < j . Moreover, since Hi e Mj and Hj e QMP

we know that Hi % Hj which is a contradiction. Therefore, the set H is minimal and

the algorithm is sound. Moreover, suppose there exists a NFSC {H} with V(H) < N,

that is not found by the algorithm. By definition, we know that H G minCNS(C, Qn).

Also, because minCNS finds the common non-subgraphs of minimum order, there must

be an iteration k such that H £ mmCNS(£k,GMk). However, since Ck C C and

Mk C H, for every iteration k, we have minCNS(C, Qn) C minCNS(£fc, QMJ*
 an(^

thus H £ minCNS(C, Qn), which contradicts our initial supposition. Therefore, the

algorithm is complete. •

119

6.5 Necessary and sufficient conditions

Before we present a method that finds FSCs, we need to answer some important ques­

tions. Firstly, we want to know under what conditions does a graph class have an FSC.

The following proposition gives a well known result on the existence of an FSC for a

given class of graphs, see e.g. (Greenwell et al., 1973).

Proposition 8. A graph class C has an FSC if and only if it is hereditary.

Proof. Let H be an FSC of C. For any G e C, we know that G contains no graph of

H. Furthermore, for any G' C G, from Property \.{b), we have that G' does not contain

any graph of H. Therefore, G' £ Qn = C and C is hereditary. Suppose conversely that

C is an hereditary class of graphs, and let G be a graph of C. Since every subgraph of

G belongs to C, we know that no subgraph of G belongs to C, and thus that G 6 Q-g.

Therefore, we have that C C Q^ (1). Moreover, let H be any graph of Q^. We know that

H g C, and therefore that H e C. Consequently, we have that Q^ C C (2). Combining

(1) and (2), we have C = 0?, and thus, C is an FSC of C. O

The next question is equally important: does a graph class C have a unique FSC and, if

so, what is it ? This question is answered by the following propositions.

Proposition 9. Let Tt and H! be two minimal forbidden subgraph characterizations,

then Qn = Qu1 if and only ifH = Ti'.

Proof. Since H. = H' => Qn = Gn> is trivial, we only show that Qn = Qn' => T~t = "ri!•

Suppose that H ^ W, then there exists H G H such that H g H', or H' e H' such

that H' 0 H. Without loss of generality, suppose the first case in true. If there is no

H' £ W such that H' C H then, for all H" € W, we know that H g Q{H} and that

H 6 Q{H"}- Finally, from Property \.{e), we have that H ^ Qn and H e Qn1, and

120

therefore that Gn 7̂ Qw- Otherwise, let H' be a graph in H' such that H' c H. There is

no H" £ H such that H" C # ' , otherwise we would have # " C H which contradicts

the minimality of H. Therefore, we have that H' $ G{H'} and that H' £ G{H"}, for

all H" £ H. Finally, from Property 1 .(e), we have that H' g Gn' and H' £ Gn and

therefore that Gn ^ Gn1 • •

Proposition 10. Let C be a class of graphs. IfC has an FSC, then the unique minimal

FSC ofC is min(C).

Proof. If C has an FSC, we know from Proposition 8 that it is hereditary and that C is an

FSC of C. Moreover, by definition, we know that min(C) is also an FSC of C that is min­

imal. Finally, we know from Proposition 9 that C has a single minimal characterization,

which can only be min(C). •

Consider an hereditary class of graphs C and let G be a graph in C. Furthermore, let

G' = G — {v} be a graph produced by removing from G any vertex v £ V(G) and

its incidents edges. If G' £ C, since C is hereditary, all subgraphs of G' are also in

C. Therefore, we know that a graph G is minimal in C if all its subgraph produced

by removing a vertex are in C. This is the main principle behind our algorithm to find

FSCs, shown in Figure 6.6. At each iteration k, we find a graph Gk £ C n GM^ where

.Mo — 0- Then, we search for a vertex v of Gk such that Gk — {v}, is still in C. If no

such vertex exists, then Gk is minimal and we add it to Mk- Otherwise, we remove v

from Gk and look for another vertex with the same properties. We repeat this process

until C n GMH — 0» a nd return the set H = Mk- However, since an FSC can have

an infinite number of graphs, we need to limit the size of the FSC to guarantee that the

algorithm terminates in a finite number of steps. This limit is given as the parameter M

of the algorithm.

Proposition 11. The FSC algorithm of Figure 6.6 returns, in a finite number of steps,

the set H — min(C), if |min(C) | < M, or a set H containing M graphs of min(C).

121

FSC algorithm
Input: A graph class C and an integer M > 0.
Output: An FSC H of C having at most M graphs, or a set containing more than

M graphs.

Let Mo := 0 and k := 0 ;

while 3Gk eCn QMk and k < M do
while 3v G V(Gk) s.t. Gk - {v} G C do Gk := Gk - {v} ;
Let Mk+1 := Mk U {Gk} ;
Let k:= k + 1;

return TC = Mk;

Figure 6.6 Algorithm to find an FSC of at most M forbidden subgraphs.

Proof. Let Gi and Gj be two graphs, such that i < j . Since G-h G Mj and Gj G ^ 3 ,

we have that Gi <2 Gj and therefore that G, 7̂ Gj. Moreover, since, at every iteration

k, we have \Mk\ = k, the algorithm will terminate in at most M steps. Furthermore, let

Gfc be any graph of 7i. Suppose that Gk is not minimal, then there is a vertex v £ V(Gk)

such that Gk — {v} G C, which is a contradiction since Gk is added to Ti only if no such

vertex exists. Therefore, H C min(C). Finally, we know that the algorithm terminates

only when CnQn = 0 or \H\ = M. In the first case, we know that H is an FSC of C, and

since it is minimal, we know from Proposition 9 that it is unique, and thus H = min(C).

Otherwise, H contains M graphs of min(C). •

6.6 Automated conjecture generation

In the last sections, we have presented some exact methods to find FSCs of a class of

graphs C, or conditions to have an FSC. Although these methods guarantee to find FSCs,

SFSCs or NFSCs of C, if they exist, this might be impossible in practice. Thus, in many

of our algorithms, we need to determine whether or not the sets Cf l^w and C n GH

122

are empty, where H is a non-empty set of graphs. Since C and C can be infinite, this

may very well be an undecidable problem. To overcome this problem, we impose some

restrictions on the graphs considered by our algorithms. Let Qn denote the graphs of

Q that have at most n vertices. We limit the graphs considered by our algorithms to

Qn, and use Qn n C and Qn C\C instead of C and C. Consequently, the guarantee that

the results obtained by our algorithm are FSCs or conditions to have an FSC no longer

holds. However, we can still use these algorithms to generate conjectures based on the

hypothesis that if these results are true for graphs of n or less vertices, then they must be

true for all graphs.

Limiting the order of graphs considered by our algorithms makes finding graphs of a

given class practicable. Yet, finding these graphs is still a difficult task. Let C be a given

class of graphs, and n be a given integer, we are interested in finding a graph of C that

has at most n vertices. In the next sections, we present two approaches for this task: an

enumerative approach and a heuristic one.

6.6.1 Enumerative approach

In the enumerative approach, we generate one by one the graphs of Qn until we find a

graph in C. While this approach might seem somewhat inefficient, it is practical for two

reasons. First, it guarantees to find a graph in Qn fi C, if one exists. Second, although

the number of unlabeled graphs increases exponentially with their maximum order, the

majority of results on forbidden subgraphs in the literature involve graphs having 10 or

less vertices, which can be exhaustively enumerated quite rapidly.

To enumerate the graphs of n or less vertices, we use the method proposed by McKay

(McKay, 1998). This method employs a canonical representation of a graph G, which

partially orders the vertices of G in a way that is independent of their label. This partial

123

ordering is then used to transform the lattice of graphs into a rooted tree with a function

p that uniquely maps a graph G to a parent graph p(G). The root of this tree is the graph

containing a single vertex, and the parent p(G) of G is obtained by removing from G

a minimum vertex according to the partial ordering. By traversing this tree in a depth-

first manner, we can thus enumerate the graphs without generating isomorphic copies.

An important advantage of this approach is that it allows to efficiently prune the search

space. To illustrate this, suppose we want to find a graph of C D Qn, and let G be any

graph. If G $ Qu, then there is a graph H EH such that H C G. Since all supergraphs1

of G will also contain H, we can avoid the exploration of the subtree rooted at G without

fear of missing any graphs of C n Gn-

6.6.2 Heuristic approach

It some cases, the FSCs and conditions to have an FSC for a graph class C may be out

of reach of the enumerative approach. We then need to trade the completeness of that

approach to gain the ability of finding graphs that have more vertices. This sacrifice is

a reasonable one, since we already limit the order of graphs, and thus, cannot do better

than find conjectures.

The heuristic approach we use is similar to the one employed by AGX to find extremal

graphs (Caporossi et Hansen, 2000). In this approach, the task of finding a graph of

C is modeled as an optimization problem where the objective function / determines

the membership of a graph G in C. For example, we can express this function such that

f(G) < 0 if and only if G belongs to C, and use any heuristic search method to minimize

/ until we find f(G) < 0. In AGX, the heuristic used is the Variable Neighborhood

Search (Mladenovic et Hansen, 1997). This heuristic starts with a random graph G €

Qn and explores the neighborhood containing the graphs that can be obtained from G

1A graph G is a supergraph of a graph H if and only if H is a subgraph of G.

124

by considering every possible group of 2 to 4 vertices, and then adding or removing

edges between vertices of this group. If no neighbor graph improving G is found, the

neighborhood is then widened by increasingly adding a random perturbation to G before

exploring its neighborhood, until a neighbor improving G is found, or until the maximum

neighborhood size is attained or a given time limit is reached. Furthermore, if a neighbor

improving G is found, the search is then recentered on this neighbor and the original

neighborhood is restored. Using this approach, AGX was able to find extremal graphs

of up to 50 vertices.

To illustrate this approach, consider a set of graphs invariants {71,72, • • •, 7M}> ar>d a

class containing graphs G such that

0171(C) + a2~j2{G) + . . . + aM-yM(G) < b,

where at <E R, 1 < i < M and b e R. Furthermore, let H = {Hi, H2,..., HN} be a set

of forbidden subgraphs, and denote emb(if, G) the number of different embeddings, i.e.

subgraph isomorphisms, of H in G. The task of finding G in C fl Qn can be formulated

as maximizing

M N

f(G) = -b + 5>7l(G) - i?5>mb(#„G),
i = l 3=1

where B is big constant chosen such that any non-zero value of the right sum dominates

the value of the left sum minus b. If we find G such that f(G) > 0, we know that G is in

cngH.

125

6.7 Experimental results

In this section, we use our algorithms to find results related to the concepts of indepen­

dence, domination and irredundance of graphs. Before presenting the results, we need

to define these concepts.

An independent (or stable) set S is a set of pairwise non-adjacent vertices. The indepen­

dence number of a graph G, written a(G), is the maximum cardinality of an independent

set of G, and the independent domination number of G, denoted i(G), is the minimum

cardinality of a maximal independent set of G. Furthermore, a dominating set T is a

set of vertices such that each vertex of V(G) \ T is adjacent to at least one vertex of T.

The domination number of G, written 7(G), is the minimum cardinality of a dominating

set of G, and we denote T(G) the maximum cardinality of a minimal dominating set of

G. Moreover, let X C V, a vertex x € X is irredundant in X if it is isolated in X or

if it has a private neighbor, i.e. a vertex y £ V \ X such that x is the only vertex of

X adjacent to y. The set X is irredundant if all its vertices are irredundant. We denote

IR(G) and ir(G), respectively, the maximum cardinality of an irredundant set of G and

the minimum cardinality of a maximal irredundant set of G. A famous result known as

the domination chain, e.g. (Haynes et al., 1998), states that the following relations hold

for all graphs G € Q:

ir(G) < 7(G) < i(G) < a(G) < T(G) < IR(G).

In the next two sections, we search for SFSCs and NFSCs on the classes of graphs that

satisfy or not some of these relations at equality. This is a two step process. First, we

use our algorithms to find conjectures. Working under the assumption that the forbidden

subgraphs have at most 10 vertices, we use the enumerative approach to find specific

graphs in these algorithms. We then demonstrate by hand the conjectures found by our

126

algorithms.

6.7.1 Conjectures on SFSC

As a first experiment, we set out to find SFSCs for the classes of graphs which satisfy at

equality the relations of the domination chain. This task has been the subject of previous

work by graph theorists. In (Allan et Laskar, 1978), Allan and Laskar have shown that

if a graph G does not contain the first graph of Figure 6.7, known as the "claw", as

subgraph, then 7(G) = i(G). Furthermore, in (Favaron, 1986), Favaron, based on some

earlier work by Bollobas and Cockayne (Bollobas et Cockayne, 1979), conjectured that

if G does not contain as subgraph any of the graphs of Figure 6.8, then ir(G) = 7(G).

This conjecture was later proved by Puech in (Puech, 1998), and by Volkmann and

Zverovich in (Volkmann et Zverovich, 2002). Favaron also showed in (Favaron, 1986)

that if G does not contain the first nor the second graph of Figure 6.7, known as the

"deer", then ir(G) = i(G), and that if G does not contain any graph of the same figure,

then T(G) = IR{G).

Figure 6.7 Graphs used in the SFSCs for graphs satisfying at equality some relations of
the domination chain.

Figure 6.8 A SFSC for the class of graphs G such that ir(G) = 7(G).

We first generated conjectures on SFSCs for the class of graphs G such that 7(G) =

i(G). Figure 6.9 shows a particular execution of our algorithm using N = 1 as maximum

127

number of graphs and Q10 as search space. At iteration k = 0, the algorithm finds a

graph H0 such that 'Y(HQ) < i(H0) and a graph Go that does not contain H0 and such

that 7(G0) < i{G0). The algorithm then finds a graph Hi that is a common subgraph

of both H0 and Go. Since the algorithm cannot find an Hi-free graph Gi such that

7(GX) < i(Gi), it return H — {Hi}, which is the SFSC proposed by Allan and Laskar

in (Allan et Laskar, 1978).

X
(a)ffo (Jo) G0

Figure 6.9 An illustration of the SFSC algorithm, for the class of graphs G such that
7(G) = i(G), using N = 1 as maximum number of graphs and G10 as search space.
Graph Hi is an SFSC that was originally found by Allan and Laskar in (Allan et Laskar,
1978).

Note that we can obtain the same SFSC for higher values of N, as shown in Figure

6.10. In this example, where N = 2 is used, the algorithm first finds a graph F € C

of minimum order, such that 7(F) < i(F), and then searches for a maximum common

subgraph of C fi G{F}- Since the algorithm cannot find a graph Gi that does not contain

F or Hi, and such that 7(Gi) < i(Gi), it stops with {F, Hi} as SFSC. However, since

Hi C F, the algorithm removes F from the SFSC and, once more, returns Ti = {Hi}.

(a) F (b) H0

A3\
(c) Go

Figure 6.10 Another illustration of the SFSC algorithm, for the class of graphs G such
that 7(G) = i(G), using iV = 2 as maximum number of graphs and Q10 as search space.
Graph Hi is an SFSC that was originally found by Allan and Laskar in (Allan et Laskar,
1978).

128

We have also used our algorithm to find conjectures on SFSCs for the class of graphs G

such that ir(G) = 7(G). In the execution shown in Figure 6.11, our algorithm generated

the conjecture that the graphs F and H% of Figure 6.11, known as the "fork" and the

"deer', form an SFSC for this class of graphs. As we now prove, this conjecture is a novel

result that strengthens Favaron's result, presented in (Favaron, 1986), that ir(G) = 7(G)

if G is "claw"-free and "deer"-free.

<b)H0

nn> na>
(c)Go

(g)G2

(d)ffi

>

OOH3

(e)Gi

> :

Figure 6.11 An illustration of the SFSC algorithm, for the class of graphs G such that
ir(G) = 7(G), using JV = 2 as maximum number of graphs and Gxo as search space.
Graphs F and Hz form a novel SFSC that strengthens a previous result proposed by
Favaron in (Favaron, 1986).

Theorem l.Ifa graph G does not contain the graph F or H3 of Figure 6.11, known

respectively as the "fork" and the "deer", then ir(G) — 7(G).

Proof. Let I be a maxmial irredundant set with |/ | = ir(G), and let A be the set of

vertices in V \ I that are not adjacent to any vertex of I. If A is empty then I is a

dominating set and we have 7(G) < ir(G). Thus, we assume that A ^ 0 and denote

Nx(v) the set of vertices in X that are adjacent to a vertex v. Furthermore, for a vertex

x € I, we denote P(x) the private neighbors of x, i.e. the vertices y E V \ I such that

Nj(y) = {x}. Since / is irredundant, P(x) ^ 0 for all x <G / such that Ni(x) ^ 0. Let

W C / be the subset of vertices in / which are redundant in / U A, and for any w e W,

denote A(w) the subset of vertices a e A such that w is redundant in I U {a}. Note

that \Jw€W A(w) = A and that A(w) ^ 0 for every w <E W. Also, for each w e W,

129

every vertex a G A(w) is adjacent to every vertex u G P(w), or else w would still be

irredundant in / U {a}, which contradicts the definition of A(w). Moreover, P{w) forms

a clique, otherwise there would be two non adjacent vertices ux and u2 in P(w) such that

/ U {ui} is irredundant (since any vertex in A(w) is a private neighbor of u\ while u2 is

a private neighbor of w), a contradiction.

We now prove that every connected component of the subgraph G[W] is a clique. This

is obviously true for connected components with at most 2 vertices. So consider any

connected component with at least three vertices, and assume it is not a clique. Then

there are three vertices wx, w2 and w3 in this component such that w2 is adjacent to

wx and w3 while wx and u>3 are not adjacent. But then (wx, w2l w3, u, a) ~ H3 for all

u G P(w2) and a G A(w2).

The next observation is that, for every w G W and u G P(w) the vertices in NA(u)

induce a clique. Indeed, suppose there are two non adjacent vertices ax and a2 in NA{u).

Then, since Ni(w) ^ 0, there is a vertex x £ I adjacent to w, which means that

(w,x,u,ax,a2) — H3, a contradiction. As a consequence, A(w) forms a clique for

all w e W.

Note also that if C is the vertex set of a connected component of G[W] with at least 3

vertices, then [jweC A{w) induces a clique in G. Indeed, suppose this is not the case

and consider two non adjacent vertices ax and a2 in A(wx) U A(w2). Moreover, consider

any wx G P(wx) and u2 G P(w2). If both ax and a2 are adjacent to ux or u2 then they

are adjacent to each other since NA(ux) and NA(u2) induce cliques, a contradiction.

Otherwise, suppose, without loss of generality, that ax is adjacent only to ux and a2 only

to u2. Then, vertices u\ and u2 are not adjacent, otherwise (wx,Ux,u2,ax,a2) ~ if3.

Furthermore, consider any vertex w3 e C \ {t^i, W2}. As shown above, {t^i, u>2, ^3}

forms a clique and, thus, (wx,w2, w3, ux,u2, ax,a2) ~ F, a contradiction.

130

In what follows, the connected component of G[W] with one vertex will be said to be

of type 1, while those with at least 3 vertices will be said to be of type 2. We split the

connected components with 2 vertices u^, w2 into three disjoint groups.

1. If there is a vertex in P(w\) U P(w2) adjacent to all vertices in A(w\) U A(w2),

then the component is said to be of type 3.

2. If every vertex in P{w{) U P{w2) has a non neighbor in A(wi) U A(w2), and there

exist two non adjacent vertices u G P(wi) and a G A(WJ) (j ^ i) such that a is

adjacent to all vertices in A(wi), then the component is said to be of type 4.

3. If every vertex in P(uii) U P(w2) has a non neighbor in A(w1) U A(w2), and for

all non adjacent vertices u G P{wi) and a G A(WJ) (j ^ i) there is a vertex

a' G A(wi) not adjacent to a, then the component is said to be of type 5.

We now create a set / ' from / as follows.

1. For every connected component C — {w} of type 1, we remove w from / and add

a vertex u G P{w).

2. For every connected component C of type 2, we remove a vertex w G C from /

and add a vertex a G A(w).

3. For every connected component C = {wi, w2} of type 3, one of the vertices in

C, say W\, has a private neighbor u G P(tfi) which is adjacent to all vertices in

A{w\) U A(w2). We remove wi, from / and replace it by u.

4. For every connected component C = {101,102} of type 4, there exist two non

adjacent vertices u G P(wi) and a G A(WJ) (j ^ i) such that a is adjacent to all

vertices in A(wi). We remove Wj from / and replace it by a.

5. For every connected component C = {wi,w2} of type 5, we remove w\ and w2

from / and replace them by a vertex u\ G P(w\) and a vertex M2 G P(W2).

131

Since \I'\ = |/ | it is now sufficient to prove that / ' is a dominating set. So let v be a

vertex that does not belong to / ' .

1. If v G / then v was removed from a connected component C of one of the above

five types. If C is of type 1 or 5, then v is adjacent to the neighbor u of v that was

added to / ' . Else, C contains at least one neighbor w of v that was not removed

from / .

2. If v e \JW&W P(w) then let w be the vertex in W such that v € P(w). If w E I',

then w is a neighbor of v in / ' . Otherwise, w was removed from a connected

component C. If C is of type 1, 3 or 5, then w was replaced by a vertex in P(w),

and v has a neighbor in / ' since P(w) is a clique. If C is of type 2 or 4, then w

was replaced by a vertex in A(w), and u has a neighbor in I' since v is adjacent to

all the vertices in A(w).

3. If v G A then let to be a vertex in W such that t; G A(w) and let C be the

connected component of G[W] containing w. If C is of type 1 or 3, then a vertex

w was replaced by a vertex it G P(w), and v has a neighbor in / ' since u is adjacent

to all vertices in {JxeC A{x). If C is of type 2 or 4, then a vertex in C was replaced

by a vertex a e LLec ^ (x) ' a n ^ ^ has a neighbor in / ' since a is adjacent to all

other vertices in \Jx£C A(x). Finally, if C is of type 5, then the vertices w\ and

W2 have been replaced by u\ G P{w\) and M2 G P{VO2), which means that v has a

neighbor in V since v G NA(UI) U ^ (^ 2) -

4. If v £ (/ u A U U^ew P(w)) m e n ^ is adjacent to at least two vertices in / .

Indeed, suppose it is not adjacent to any vertex of / . Then, / U {v} would be

irredundant, which contradicts the maximality of / . Also, v cannot be adjacent

to only one vertex of W, or else it would be a private neighbor of this vertex, a

contradiction. Thus, v is adjacent to at least two vertices of W. If one of these

neighbors belongs to I' then there is nothing to prove. Thus, assume v has no

132

neighbor in V and consider any neighbor w E I \ I' of v. Vertex w belongs to a

connected component C of G[W] and was removed from / .

(a) If C is of type 1 or 3, then w was replaced by a vertex u G P(w). Let a be

any vertex in A(w). Vertex v is not adjacent to a, or else / U {v} would be

irredundant, contradicting the maximality of / . Since Nj(w) ^ 0, there is a

vertex w' € I adjacent to w. Furthermore, we know that w' £ w, otherwise

it would be in C, which contradicts the type of C. Consequently, w' is in / ' ,

and v is not adjacent to w'. If v is adjacent to u, then v has a neighbor in V.

Otherwise, (v, w, w', u, a) ~ H3, a contradiction.

(b) If C is of type 2, then let x be any vertex in / \ {w} adjacent to v. Such a

vertex necessarily exists since v £ P(w). If x is in C \ {w}, then it is in / '

and v is adjacent to a vertex of / ' . Else, there exists a connected component

C y£ C of G[W] containing x. Consider any two vertices w' and w" in

C\{w}, and let u be any vertex in P(w') and a any vertex in A(w'). Vertex v

is not adjacent to u, otherwise (v, w, w", u, x) ~ H3. Also, v is not adjacent

to a, or else (v,w,w',x,a) ~ H3. Hence (v,w,w',w",x,u,a) ~ F , a

contradiction.

(c) If C is of type 5, then the vertices w\ and u>2 were replaced by u\ £ P(w{)

and w2 € P(w2). Since no vertex in P{w2) is adjacent to all vertices in

A(w\), consider a vertex a^ e A(w\) not adjacent to u?. Moreover, since

a\ is not adjacent to all vertices in A(ic2), consider any vertex a2 G A(w2)

not adjacent to a\. Vertex v is not adjacent to a\ nor to a2, or else / U {v}

would be irredundant. Also, we may assume that v is not adjacent to u\ nor

u2, otherwise v would have a neighbor in / ' . Furthermore, we know that u\

is not adjacent to a2, or else (wi, w2, ui, ai, a2) ~ i/3, and therefore that u\

is not adjacent to u2, otherwise {wi,Ui,U2, ai, a2) — -^3. Also, since tt; is

one of the two vertices u>i or w2, we know that v is adjacent to at least one of

133

them, say w\. But then (v, w\, u>2, u\, a{) ~ H$ (if v is not adjacent to iy2)

or (v, Wi,W2, Ui,v,2, ai, a2) ~ F, a contradiction.

(d) If C is of type 4, then let x be any vertex in / \ {w} adjacent to v, and

let C 7̂ C be the connected component of G[W] with x € C". We have

shown above that if C" is of type 1, 2, 3 or 5, then v has a neighbor in I'.

So assume C is also of type 4. Let w' be the second vertex in C, x' be the

second vertex in C, and u be any vertex in P(w). Since w is not in / ' and

because C is of type 4, we know that w' is in / ' . Moreover, assume that v is

not adjacent to w', or else v would be adjacent to a vertex in / ' . Likewise,

assume that x' is in / ' and is not adjacent to v, otherwise v would have a

neighbor in / ' . Furthermore, since C is of type 4, w was replaced by a vertex

a adjacent to all vertices in A(w'), and not adjacent to a vertex u' G P(w').

Since no vertex of P(w) is adjacent to all the vertices in A{w'), consider any

a' € A{w') not adjacent to u. If v is adjacent to a then v has a neighbor in

I', so assume v and a are not adjacent. Vertex v is then necessarily adjacent

to u, or else (v, w, w', u, a) ~ i73. Also, v is not adjacent to u', otherwise

{v, w, u', x, x1) ~ Hs, and u is not adjacent to u', or else (v, u, u', x, a) ~ i/3.

But then (f, w, w', x, x', u, u') ~ F, a contradiction.

D

If we combine the SFSCs we obtained for the classes ir(G) = 7(G) and 7(G) = i(G),

we get the SFSC proposed by Favaron: if a graph G is "claw"-free and "deer"-free then

ir(G) = i{G). However, if the SFSC algorithm randomly selects the maximum common

subgraphs, at each iteration, we can obtain a completely different SFSC. For instance, in

the execution shown in Figure 6.12, our algorithm found a path of 5 vertices, which was

shown by Puech in (Puech, 1998) to be an SFSC.

134

rn> n> ra>
(a)F (b)H0 (c)G 0

(g) G2 (h) tf3

(d)ffi

0)G3

> n>
(e)Gi (f)#2

Figure 6.12 Another illustration of the SFSC algorithm, for the class of graphs G such
that ir(G) = 7(G), using iV = 2 as maximum number of graphs and Q10 as search
space. Graph H4 was shown be an SFSC by Puech in (Puech, 1998).

6.7.2 Conjectures on NFSC

Following what we have done for SFSCs, we look in this section for NFSCs on the

classes of graphs satisfying at inequality some of the relations of the domination chain.

As a first experiment, we used our algorithm to find conjectures on NFSCs for the class

of graphs G such that 7(G) < i(G). Figure 6.13 shows a particular execution of the

algorithm for this task, using Q8 as search space. At iteration k = 0, the algorithm finds

a graph G0 such that 7(G0) < i(G0). Since L\ only contains Go, the algorithm then

finds a minimum order graph Hi not included in G0. At the next iteration, the algorithm

then finds a graph G\ containing Hy and such that 7(^1) < i{G\), and a graph H2 of

minimum order that is not a subgraph of GQ or G\. This process is repeated until the

algorithm reaches iteration k — 5, where it finds a 5 vertex clique H5, as the minimum

order graph not included in {Go, Gi, G2, G3, G4}. However, the algorithm does not find

a graph G5 containing H5 and such that 7(G5) < i(G5), and thus returns H = {H5}.

Repeating this experiment using Q9 and Q10 as search space, our algorithm has found

complete graphs of 6 and 7 vertices, suggesting the novel NFSC that a graph G of n

vertices is K(n_3)-free if 7(G) < i{G). We now demonstrate this result.

135

A A
(a) Go (b)tfi (c)G! (d)H2

(h) Hi (i) G4

<• M
(e) G2 (f) H3 (g) G3

Figure 6.13 An illustration of the NFSC algorithm, for the class of graphs G such that
7(G) < i(G), using Q8 as search space.

Theorem 2. Let G be any graph of order n. If~f{G) < i(G) then G is K(n_3yfree.

Proof. We will show that i(G) < 7(G), if G contains a K(n_3). This will be done by

showing that a minimum cardinality dominating set can be transformed into an indepen-

dant dominating set of the same cardinality.

Let D = {wi, u>2, • • •, wm} be a minimum cardinality dominating set of G, i.e. \D\ =

7(G). If E(G[D]) = 0, then D is an independent set, and we have i(G) < \D\ =

7(G). Otherwise, let (wi,w2) be any edge of E(G[D]), and let P(w) be the private

neighbors of w, i.e. the vertices y € V \ D such that ND(y) = {x}. We know that

P(wi) 7̂ 0, i = 1,2, otherwise D' — D\ {wi} would be a dominating set of one less

vertex than D, which contradicts the minimality of D. We next show that at least one

of P(wi) or P(w2) is a complete graph. Suppose this is not the case, then there are

four vertices u\ 6 P(wi), V\ £ P(wi), u2 G Piw^), v2 € P(w2) such that tt1? vi are

non-adjacent, and u2, v2 are non-adjacent. However, (ui, vi,wi, u2, v2, w2) contains no

triangle, and thus G contains no K(n_3), which is a contradiction. Therefore, P{wi) or

P(w2) forms a complete graph, without loss of generality, suppose it is P(wi). Let ux be

any vertex of P(wi). The set D' — (D\ {wi}) U {«i} is a dominating set of cardinality

136

\D'\ = |D| such that E(G[D'\) < E(G[D]). By repeating this process iteratively at

most n — 3 times, we will necessarily get an independant dominating set D", such that

^(G) < \D"\ = \D\ = 7(G). D

In the next experiment, we searched for NFSCs on the class of graphs G such that

ir(G) < 7(G). Figure 6.14 shows an execution of our NFSC algorithm, using Q8 as

search space, where a complete graph of 5 vertices is found. Again, when repeating this

experiment with G9 and G10, our algorithm found, although not systematically, complete

graphs of 6 and 7 vertices, which suggested a new theorem and corollary:

(a) Go (b) # i

> A ŝ> :: :H>
(C) G I (d)H2 (e)G 2

Figure 6.14 An illustration of the NFSC algorithm, for the class of graphs G such that
ir(G) < 7(G), using Qs as search space.

Theorem 3. Let G be any graph of order n. Ifir(G) < 7(G) then G is K(n^-free.

Proof. Similar to what was done for the last theorem, we will show that 7(G) < ir(G)

if G contains a iiT(n_3), by showing that a minimum cardinality maximal irredundant set

can be transformed into a dominating set of the same cardinality.

Let / be a minimum cardinality maximal irredundant set of G, i.e. |7| = ir(G), and

let A be the set of vertices not dominated by I. If A = 0, then / is a dominating set,

and we have 7 (G) < |7 | = ir(G). Otherwise, consider any vertex a € A. There is

a non-isolated vertex w e I which is redundant in / U {a}, otherwise I would not be

maximal. Let P(w) denote the private neighbors of w. We know that P(w) is not empty

since w is non-isolated in I. Furthermore, we know that a is adjacent to all the vertices

of P(w), otherwise w would be irredundant in / U {a}. We also know that P(w) forms

137

a complete graph, otherwise there are two vertices Ui, u2 in P(w) such that / U {«i} is

irredundant (since U\ has a as private neighbor and w the vertex u2, thus contradicting

the maximality of /) . Denote A(w) C A the vertices a such that w is redundant in

/ U {a}, and let W be the vertices of / that are redundant in / U A.

Consider any vertex wx € W such that ^ (u^) ! = max^ei^ |^4(w)|. We show that

A{w\) = A. Suppose this is not the case, then consider any vertex a2 e A \ A(w\),

and let w2 be any vertex redundant in / U {a2}. Since a2 belongs to A(w2) but not to

A(^i), and since |A(wi)| > |A(it;2)|, there is a vertex a\ e A(tui) that does not belong

to A(w2). Let «i be a vertex in P(wi) that is not adjacent to a2, and M2 be a vertex in

P(w2) that is not adjacent to a\. Then, (ai, «i, wi, a2, M2, W2) contains no triangle, and

thus G contains no if(ra_3), a contradiction. Therefore, ^4(t«i) = A and, since any vertex

of A(w\) is adjacent to every vertex of P(w\) and because P{w{) forms a complete

graph, the set / ' = (I \ (w j) U {ui} is a dominating set of G. Thus, we have that

l{G) < \If\ = |/| = ir(G). D

Corollary 1. Let G be any graph of order n. Ifir(G) < i(G) then G is K(n-3)-free.

6.7.3 Conjectures on FSC

Hereditary graph classes that can be characterized with a limited number of forbidden

subgraphs are not that common in graph theory. Furthermore, those that are known have

been studied in depth, and have already been characterized with forbidden subgraphs.

Thus, rather than searching for new FSCs, we will, in this section, try to reproduce some

known results.

A split graph is a graph in which the vertices can be partitioned into a clique and an

independent set. This class of graphs has some very interesting properties that have been

studied, among others, by Foldes, Hammer and Simeone (Foldes et Hammer, 1977;

138

Hammer et Simeone, 1981). One of these properties is that split graphs can be recog­

nized in linear time, using the sequence of degrees of each vertex. Let G be graph with

n vertices, we order the degrees of the vertices of G, by non-increasing value, to form a

sequence d\ > di > ... > dn. Let m be the largest value of i such that di > i — 1, then

G is a split graph if and only if

m n

m(m-l) - Yldi + ^ dj < 0.
i= l j=m+l

If this is the case, the m vertices with the largest degrees form a maximum clique in G,

and the remaining vertices an independent set.

Using the above test to determine whether or a graph is a split graph and Q8 as search

space, we have found the minimal FSC for this class, shown in Figure 6.15, containing

two cycles of 4 and 5 vertices, and a graph made of two disjoint edges. This FSC is a

well known result, first described by Foldes and Hammer in (Foldes et Hammer, 1977).

n : 0
(a) C4 (b) C4 (c) C5

Figure 6.15 An illustration of the FSC algorithm for the class of split graphs, using Q8

as search space.

6.8 Conclusion

We have presented, in this paper, some methods to automate the discovery of new con­

jectures on forbidden subgraph characterization. The first two algorithms that were de­

scribed allow to find sufficient conditions to have a characterization, in the form of a

139

set of graphs H such that a graph G is in a graph class C if G is H-free. While the

first of these algorithms returns a single forbidden subgraph, the second allows to find

sufficient conditions involving multiple subgraphs. Since a given graph class can have

a great number of sufficient conditions, we described two measures, complexness and

tightness, that were used to select the forbidden subgraphs. Furthermore, using these

same measures, we have developed two other algorithms to find necessary conditions in

the form of a set of graphs H such that all graphs of a given class C are 7i-free. Lastly,

we presented an algorithm that finds actual characterizations.

Although these algorithms find forbidden subgraph characterizations, or conditions to

have such characterizations, we have seen that this can be impossible in practice, due to

the infinite number of graphs. However, we have shown that, by bounding the order of

graphs under consideration, we could use our algorithms to find conjectures. Following

this idea, we have used our algorithms to reproduce some important results, as well

as to find new ones, on the domination, independence and irredundance of graphs. In

particular, our algorithms conjectured two new results which we proved were correct: a

n vertex graph G is such that ir(G) — 7(G) if it is "fork"-free and "deer"-free, and that

G is JfC(n_3)-free \fir(G) < i(G).

140

CHAPITRE 7

DISCUSSION GENERALE

Nous faisons, dans ce chapitre, un bref resume des resultats obtenus dans le contexte

de cette these, et comparons ces resultats avec les objectifs de recherche initialement

definis.

Nous avons presente, dans le premier article, un nouvel algorithme appele S Y G M A

ameliorant la decouverte des sous-graphes frequents d'un ensemble de graphes conte-

nant un nombre restreint d'etiquettes differentes. Cette amelioration a ete obtenue, en

partie, a l'aide d'une strategie efficace d'enumeration, faisant 1'usage d'invariants de

graphe. Cette strategie nous a permis de definir deux techniques permettant de detecter

rapidement les graphes redondants et non-redondants durant l'exploration. De plus, l'in-

formation sur la symetrie d'un graphe, obtenue par S Y G M A lors de l'exploration, a

permis de developper des techniques pouvant identifier certains graphes non-frequents,

evitant ainsi plusieurs calculs couteux. Par ailleurs, nous avons pu evaluer, dans la par-

tie experimentale de 1'article, la performance de notre algorithme en le comparant a un

des algorithmes le plus connus pour ce probleme, 1'algorithme GSPAN. Dans un pre­

mier temps, nous avons compare ces deux algorithmes sur la tache d'enumerer tous les

graphes ayant un nombre limite de sommets et d'etiquettes. Grace a cette experience,

nous avons pu constater que la strategie d'enumeration de S Y G M A est beaucoup plus

efficace que celle de GSPAN, en particulier pour les graphes sans etiquettes, ou notre al­

gorithme est jusqu'a 75 fois plus rapide que GSPAN. Par ailleurs, nous avons egalement

employe ces deux algorithmes pour trouver les sous-graphes frequents de plusieurs jeux

de donnees, generes aleatoirement et provenant d'une application reelle du domaine de

la chimie computationnelle. Encore une fois, les resultats de ces experiences ont montre

141

S Y G M A de loin superieur a GSPAN pour les jeux de donnees ne comportant aucune

etiquette (jusqu'a 110 fois plus rapide que GSPAN), et un gain non negligeable pour les

instances ayant peu d'etiquettes. En somme, nous avons atteint notre premier objectif de

developper une methode efficace pour trouver les sous-graphes frequents d'une base de

graphes ayant peu d'etiquettes.

Dans le deuxieme article, nous avons presente une strategic, a la fois generate et simple,

pour ameliorer la decouverte des patrons frequents. Cette strategic utilise de l'informa-

tion de fond sur les patrons frequents, sous la forme d'une fonction heuristique, permet-

tant de definir la topologie de l'espace de recherche de maniere a minimiser le nombre

de calculs de support dans la base de donnees lors de l'exploration. Afin d'evaluer notre

strategie, nous avons teste celle-ci sur le probleme de la decouverte des sous-graphes

frequents. Nous avons tout d'abord presente une technique pour appliquer notre strategie

au cas des sous-graphes frequents, similaire a celle employee par S Y G M A . Ensuite, nous

avons propose une simple heuristique utilisant la frequence des etiquettes dans la base

de donnees, et avons teste cette heuristique sur des jeux de tests aleatoires generes de

maniere a introduire un biais croissant dans la distribution des etiquettes. Lors de ces

tests, nous avons compare notre methode avec trois autres methodes : la premiere fai-

sant l'exploration d'un espace de recherche dont la topologie a ete definie de maniere

aleatoire, la seconde utilisant la technique d'exploration de l'algorithme GSPAN, et la

derniere employant une technique d'exploration complexe permettant de tester la fer-

meture descendante des graphes explores. Comme prevu, nous avons constate un gain

en vitesse de notre methode et de l'algorithme verifiant la fermeture descendante, par

rapport aux deux autres algorithmes, proportionnel au biais dans les donnees. Dans une

autre experience, nous avons teste les quatre memes algorithmes sur le meme jeu de

donnees reelles que celui utilise dans le premier article. Les graphes de ce jeu de donnees

representant des molecules, nous avons modifie legerement notre heuristique pour ex­

ploiter certaines caracteristiques de ce type de donnees. Encore une fois, les resultats ont

142

montre un net avantage de notre methode sur la methode explorant l'espace de topolo-

gie aleatoire ainsi que sur l'algorithme GSPAN (de 8 a 15 fois plus rapide). Nous avons

egalement observe un gain en vitesse de notre technique par rapport a la technique beau-

coup plus complexe de verifier la fermeture descendante. Somme toute, nous croyons

avoir atteint l'objectif de developper une nouvelle technique pour reduire le nombre de

calculs de support dans la decouverte des patrons frequents.

Finalement, dans le troisieme article, nous avons introduit de nouvelles methodes pour

automatiser la generation de conjectures sur la caracterisation par sous-graphes interdits

(CSI). Les deux premieres methodes decrites dans 1'article servent a generer des condi­

tions suffisantes pour avoir une CSI, la premiere produisant un seul sous-graphe interdit,

et la seconde un ensemble contenant un nombre de sous-graphes interdits fourni par

l'usager. De meme, nous avons decrit deux autres methodes pour obtenir des conditions

necessaires pour une avoir une CSI, sous la forme d'un ou de plusieurs sous-graphes in­

terdits. Enfin, nous avons presente une methode pour obtenir de vraies CSI. Par ailleurs,

nous avons vu que ces methodes necessitent l'exploration d'un espace infini de graphes,

et avons propose deux strategies pour les implementer : l'une transformant la recherche

d'un graphe en probleme d'optimisation et employant une metaheuristique pour resoudre

ce probleme, et l'autre faisant l'enumeration de tous les graphes de taille limitee. Dans la

section experimental de 1'article, nous avons utilise ces methodes pour reproduire des

resultats connus de la theorie des graphes, ainsi que pour trouver de nouveaux resultats

portant sur les notions d'irredondance, de stabilite et de domination d'un graphe. Entre

autres, notre programme a genere une conjecture sous la forme d'une condition suffi-

sante pour avoir une CSI, plus forte que celle proposee dans la litterature :

pour tout graphe G, la taille du plus petit ensemble irredondant de G, i.e.

ir(G) est egale a la taille de son plus petit ensemble dominant 7(G), si G ne

contient pas de cerf ni defourche comme sous-graphe induit.

Notre programme a egalement produit une nouvelle conjecture portant sur une condition

143

necessaire:

pour tout graphe G d'ordre n, G ne contient pas de clique a n-3 sommets

comme sous-graphe induit si ir(G) < i(G).

Nous avons valide ces conjectures en les demontrant formellement.

Avec ces resultats, nous pouvons conclure que l'objectif de developper des methodes

pour automatiser la generation de conjectures sur la CSI a ete atteint.

144

CONCLUSION

Bien que nous ayons atteint nos objectifs de recherche, il reste encore beaucoup a faire

dans la decouverte des patrons frequents. Alors que ce probleme a ete utilise avec grand

succes dans plusieurs applications de la bioinformatique et de la chimie computation-

nelle, son emploi dans des applications d'autres domaines, notamment le Web semantique,

semble tres prometteur. Un autre domaine ou la decouverte des patrons frequents semble

avoir beaucoup de potentiel est la vision par ordinateur. Comme les donnees traitees par

les applications de ce domaine ont souvent la forme de graphes sans etiquette, il serait

interessant de voir les benefices qu'aurait notre algorithme S Y G M A sur ces donnees.

Par ailleurs, le calcul du support d'un graphe dans la base de donnees etant l'operation

la plus couteuse de la decouverte des sous-graphes frequents, il serait benefique de

developper des methodes plus efficaces pour resoudre le probleme d'isomorphisme de

sous-graphe. Une autre approche interessante serait de relaxer la definition du support

d'un graphe pour etre le nombre de graphes de la base de donnees ayant un sous-graphe

similaire a ce graphe, ou la mesure de similarite pourrait etre parametrable. Cette ap­

proche permettrait d'employer des methodes heuristiques pour le probleme d'isomor­

phisme de sous-graphe, augmentant ainsi l'efficacite des algorithmes pour la decouverte

des sous-graphes frequents et, par consequent, la taille des bases de donnees pouvant

etre traitees. Dans le meme ordre d'idee, il serait desirable d'explorer d'autres metriques

que la frequence pour mesurer l'interet d'un graphe, ou de facon plus generate, un pa­

tron. Hormis l'algorithme SUBDUE de Cook et Holder (Cook et Holder, 1994), qui a

connu un succes appreciable dans le domaine, cette idee n'a pas reellement ete exploree

a ce jour. L'approche presentee au chapitre 5, ou Ton choisit le parent d'un patron a

l'aide d'une heuristique, se porterait sans doute bien a cette idee, vu sa grande flexibilite.

Enfin, il serait interessant d'employer la decouverte des patrons frequents sur d'autres

types de donnees plus complexes que les graphes, comme les hypergraphes ou les rela-

145

tions en logique du premier ordre. Etant generique, l'approche presentee au chapitre 5

serait egalement utile a ce probleme.

La generation automatisee de conjectures en mathematiques est egalement une disci­

pline ayant un avenir prometteur, particulierement en theorie des graphes ou la diversite

des relations observees, ainsi que la complexite des preuves recentes, exige un apport

considerable de l'ordinateur. Malgre le nombre impressionnant de theoremes obtenus

a l'aide de l'ordinateur, le nombre de resultats en theorie des graphes attendant d'etre

decouverts est presque infini. Afln de faciliter la decouverte de ces resultats, il serait bon

d'avoir un repertoire centralise des resultats deja connus de ce domaine. Cela permet-

trait a plusieurs systemes de beneficier de ces connaissances et eviterait la generation en

double d'un meme resultat. Des efforts dans cette direction ont deja faits, par exemple, le

document Written-on-the-wall (Fajtlowicz, 2008; Fajtlowicz et DeLaVina, 2008) conte-

nant un grand nombre de conjectures sur des relations entre invariants de graphe, et le

projet ISGCI (Brandstadt et al., 2003) qui catalogue une grande quantite de relations

d'inclusions de classes de graphes. De meme, il serait utile d'etablir des mesures quan-

titatives et qualitatives permettant d'evaluer l'interet d'une conjecture. La resolution de

ce probleme, aborde par Hansen dans (Hansen et al., 2005; Hansen, 2005) et par Larson

dans (Larson, 2002), permettrait de guider les efforts mis dans le processus de decouverte

vers des resultats utiles. Nous avons d'ailleurs ete confronted a ce probleme lors du

developpement de nos methodes generant des conditions suffisantes ou necessaires sur la

caracterisation d'une classe impliquant plus d'un sous-graphe interdit. A ce titre, il serait

interessant d'explorer plus a fond 1'aspect theorique du probleme, et de proposer d'autres

criteres evaluant la valeur d'une CSI a plusieurs sous-graphes interdits. Par ailleurs, pour

prolonger le travail fait dans cette these, nos methodes pourraient etre employees pour

generer des CSI ou des conditions pour avoir une CSI sur d'autre classes de graphes. Ce

processus pourrait meme etre automatise. Par exemple, si les classes pour lesquelles on

cherche des CSI contiennent des graphes satisfaisant a egalite certaines relations sur les

146

invariants de graphe, il suffirait de generer ces relations de maniere automatique et de

lancer, pour chacune d'elles, les methodes de generation de conjectures. Une autre ex­

tension possible de cette these serait d'utiliser nos methodes pour generer d'autres types

de conjectures. On pourrait, par exemple, trouver des relations entre differentes classes

de graphes pour lesquelles on possede des CSI ou des conditions pour avoir un CSI, en

observant les sous-graphes interdits de ces CSI. Enfin, dans le but d'automatiser au com-

plet la decouverte de resultats en theorie des graphes, il faudrait egalement automatiser la

demonstration des conjectures generees. Bien que la demonstration de conjectures soit,

a ce jour, un processus tres complexe que Ton doit faire a la main, des travaux recents,

voir e.g. (Colton, 2002; Colton, 1999), donnent espoir que ce processus sera un jour fait

par l'ordinateur.

147

REFERENCES

AGRAWAL, R., IMIELINSKI, T., et SWAMI, A. N. (1993). Mining association rules

between sets of items in large databases. Dans BUNEMAN, P. et JAJODIA, S., editeurs,

Proc. of the 1993 ACM SIGMOD Int. Conf. on Management of Data, Washington,

D.C., pages 207-216.

ALLAN, R. et LASKAR, R. (1978). On domination and independent domination num­

bers of a graph. Discrete Mathematics, 23, 73-76.

APPEL, K., HAKEN, W., et KOCH, J. (1977). Every planar map is four colorable.

Illinois : Journal of Mathematics, 21, 439-567.

ASAI, T., ABE, K., KAWASOE, S., ARIMURA, H., SAKAMOTO, H., et ARIKAWA, S.

(2002). Efficient substructure discovery from large semi-structured data. Dans Proc. of

the 2nd Annual SIAM Symposium on Data Mining, pages 158-174.

BAILEY, D. H. (2000). Integer relation detection. Computing in Science and Enginee­

ring, 2(1), 24-28.

BARRUS, M. D. (2004). A forbidden subgraph characterization problem and a

minimal-element subset of universal graph classes. These de Ph.D., Brigham Young

University.

BEINEKE, L. (1970). Characterizations of derived graphs. Journal of Combinatorial

Theory, 9, 129-135.

BERGE, C. (1963). Perfect graphs. Dans INSTITUTE, C. I. S., editeur, Six papers on

graph theory: 1-21.

148

BOLLOBAS, B. et COCKAYNE, E. (1979). Graph-theoric parameters concerning do­

mination, independence and irredundance. Graph Theory, 3, 241-249.

BORGELT, C , BERTHOLD, M. R., et PATTERSON, D. E. (2005). Molecular fragment

mining for drug discovery. Dans Proc. of Symbolic and Quantitative Approaches to

Reasoning with Uncertainty, 8th European Conference, volume 3571 de Lecture Notes

in Computer Science, Barcelona, Spain, pages 1002-1013. Springer.

BRANDSTADT, LE, V., SZYMCZAK, T., SIEGEMUND, F., et DE RIDDER, H.

(2003). Information system on graph class inclusions v2.0. h t t p : / / w w w t e o .

i n f o r m a t i k . u n i - r o s t o c k . d e / i s g c i / i n d e x . h t m l .

BRANDSTADT, A., LE, V. B., et SPINRAD, J. P. (1999). Graph classes : A survey.

Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

BRATKO, I. (2001). Prolog programming for artificial intelligence. Addison-Wesley,

3eme edition.

BRIGHAM, R. et DUTTON, R. (1983). Ingrid : A software tool for extremal graph

theory research. Congressus Numerantium, 39, 337-352.

BRIGHAM, R. et DUTTON, R. (1985). A compilation of relations between graph inva­

riants. Networks, 15, 73-107.

BRIGHAM, R. et DUTTON, R. (1991). A compilation of relations between graph inva­

riants, supplement 1. Networks, 21, 421-455.

BRIGHAM, R., DUTTON, R., et F., G. (1989). Ingrid : A graph invariant manipulator.

J. Symbolic Computation, 7, 163-177.

BUNTINE, W. (1988). Generalized subsumption and its applications to induction and

redundancy. Artificial Intelligence, 36(2), 149-176.

http://wwwteo

149

CAPOROSSI, G., CVETKOVIC, D., GUTMAN, I., et HANSEN, P. (1999a). Variable

neighborhood search for extremal graphs 2 : Finding graphs with extremal energy. Jour­

nal of Chemical Information and Computer Sciences, 39, 984-996.

CAPOROSSI, G., GUTMAN, I., et HANSEN, P. (1999b). Variable neighborhood search

for extremal graphs 4 : Chemical trees with extremal connectivity index. Computers

and Chemistry, 23, 469-477.

CAPOROSSI, G. et HANSEN, P. (2000). Variable neighborhood for extremal graphs 1 :

The system AutoGraphiX. Discrete Mathematics, 212, 29-44.

CAPOROSSI, G. et HANSEN, P. (2004). Variable neighborhood search for extremal

graphs 5 : Three ways to automate finding conjectures. Computational Intelligence,

276,81-94.

CARRINGTON, P. J., SCOTT, J., et WASSERMAN, S., editeurs (2005). Models and me­

thods in social network analysis. Structural Analysis in the Social Sciences. Cambridge

University Press.

CHAKRABARTI, S. (2002). Mining the Web : Discovering knowledge from hypertext

data. Morgan-Kauffman.

CHEN, Y., YANG, L. H., et WANG, Y. G. (2004). Incremental mining of frequent xml

query patterns. Dans Proc. of 4th IEEE Int. Conf. on Data Mining (ICDM'04), Los

Alamitos, CA, USA, pages 343-346. IEEE Computer Society.

CHRISTOPHE, J., DEWEZ, S., DOIGNON, J., ELLOUMI, S., FASBENDER, G.,

GREGOIRE, P., HUYGENS, D., LABBE, M., MELOT, H., et YAMAN, H. (2008). Linear

inequalities among graph invariants : Using GraPHedron to uncover optimal relation­

ships. Networks. Accepted for publication.

150

CHUDNOVSKY, M., ROBERTSON, N., SEYMOUR, P., et THOMAS, R. (2006). The

strong perfect graph theorem. Annals of Mathematics, 164, 51-229.

COHEN, M. et GUDES, E. (2004). Diagonally subgraphs pattern mining. Dans DMKD

'04 : Proc. of the 9th ACM SIGMOD workshop on Research issues in data mining and

knowledge discovery, pages 51-58. ACM.

COLTON, S. (1999). Refactorable numbers - a machine invention. Journal of Integer

Sequences, 2.

COLTON, S. (2002). The HR program for theorem generation. Dans Proc. of the

Eighteenth Conf. on Automated Deduction.

COLTON, S., BUNDY, A., et WALSH, T. (1999). Automatic concept formation in pure

mathematics. Dans Proc. ofUCAI 1999, pages 786-793.

COOK, D. J. et HOLDER, L. B. (1994). Substructure discovery using minimum des­

cription length and background knowledge. Journal of Artificial Intelligence Research,

1,231-255.

CORDELLA, L. P., FOGGIA, P., SANSONE, C , et VENTO, M. (2004). A (sub)graph

isomorphism algorithm for matching large graphs. IEEE Transactions on Pattern Ana­

lysis and Machine Intelligence, 26(10), 1367-1372.

CVETKOVIC, D., KRAUS, L., et SIMIC, S. (1981). Discussing graph theory with a

computer I : Implementation of graph theoretic algorithms. Rapport technique, Univ.

Beograd Publ. Eletrotehn. Fak.

CVETKOVIC, D. et PEVAC, I. (1983a). Discussing graph theory with a computer I I :

Theorems suggested by the computer. Publ. Inst. Math. (Beograd), 33(47), 29-33.

151

CVETKOVic, D. et PEVAC, I. (1983b). Discussing graph theory with a computer III:

Machine theorem proving. Pub]. Inst. Math. (Beograd), 34(48), 37-47.

CVETKOVIC, D., SIMIC, S., CAPOROSSI, G., et HANSEN, P. (2001). Variable neigh­

borhood search for extremal graphs 3 : On the largest eigenvalue of color-constrained

trees. Linear and Multilinear Algebra, 49(2), 143-160.

DEHASPE, L. et ToiVONEN, H. (1999). Discovery of frequent datalog patterns. Data

Mining and Knowledge Discovery, 3(1), 7-36.

DELAVINA, E., FAJTLOWICZ, S., et WALLER, B. (2005). On some conjectures of

Griggs and Graffiti. Graphs and Discovery DIMACS : Series in Discrete Mathematics

and Theoretical Computer Science, 69, 119-125.

DESHPANDE, M., KURAMOCHI, M., et KARYPIS, G. (2002). Automated approaches

for classifying structures. Dans Proc. of the 2002 Workshop on Data Mining in Bioin-

formatics (BIOKDD'02), Edmonton, Canada, pages 11-18.

DESROSIERS, C , GALINIER, P., HANSEN, P., et HERTZ, A. (2007a). Automated

generation of conjectures on forbidden subgraph characterization. Rapport technique

G-2007-48, Les Cahiers du GERAD.

DESROSIERS, C , GALINIER, P., HANSEN, P., et HERTZ, A. (2007b). Sygma : Re­

ducing symmetry in graph mining. Rapport technique G-2007-12, Les Cahiers du GE­

RAD.

DESROSIERS, C , GALINIER, P., HANSEN, P., et HERTZ, A. (2008). Using heuristics

to speed up frequent pattern mining. Rapport technique G-2008-13, Les Cahiers du

GERAD.

DZEROSKI, S. (2003). Multi-relational data mining : an introduction. SIGKDD Ex-

152

ploration Newsletter, 5(1), 1-16.

DZEROSKI, S. et LAVRAC, N. (1994). Inductive logic programming : Techniques and

applications. Ellis Horwood.

EPSTEIN, S. (1988). Learning and discovery : One system's search for mathematical

knowledge. Computational Intelligence, 4(1), 42-53.

EPSTEIN, S. et SRIDHARAN, N. (1991). Knowledge representation for mathematical

discovery : Three experiments in graph theory. Journal of Applied Intelligence, 1, 7-33.

FAJTLOWICZ, S. (1987). On conjectures of Graffiti, II. Congressus Numerantium, 60,

189-197.

FAJTLOWICZ, S. (1988a). On conjectures of Graffiti. Discrete Mathematics, 72, 113-

118.

FAJTLOWICZ, S. (1988b). On conjectures of Graffiti, III. Congressus Numerantium,

66, 23-32.

FAJTLOWICZ, S. (1990). On conjectures of Graffiti, IV. Congressus Numerantium,

70,231-240.

FAJTLOWICZ, S. (1995). On conjectures of Graffiti, V. Dans Proc. of the Quadrennial

Conf. on the Theory and Applications of Graphs, volume 1, pages 367-376.

FAJTLOWICZ, S. (2008). Written on the Wall. h t t p : / / m a t h . u h . e d u /

" c l a r s o n / w o w . z i p .

FAJTLOWICZ, S. et DELAVINA, E. (2008). Written on the Wall - II. h t t p : / /cms .

d t . u h . e d u / f a c u l t y / d e l a v i n a e / r e s e a r c h / w o w l l .

http://math.uh.edu/

153

FAUDREE, R., FLANDRIN, E., et RYJACEK, Z. (1997). Claw-free graphs - A survey.

Discrete Mathematics, Journal of graph theory, 169(4), 87-147.

FAVARON, O. (1986). Stability, domination and irredundance in a graph. Journal of

Graph Theory, 10, 429^438.

FOLDES, S. et HAMMER, P. L. (1977). Split graphs. Dans Proc. of the Eighth

Southeastern Conf. on Combinatorics, Graph Theory and Computing, pages 311-315.

Congressus Numerantium.

FORTIN, S. (1996). The graph isomorphism problem. Rapport technique 96-20, Uni­

versity of Alberta, Edomonton, Alberta, Canada.

GAREY, M. R. et JOHNSON, D. S. (1990). Computers and intractability : A guide to

the theory of NP-completeness. W. H. Freeman & Co., New York, NY, USA.

GREENWELL, D. L., HEMMINGER, R., et KLERLEIN, J. (1973). Forbidden sub­

graphs. Dans Proc. of the Fourth Southeastern Conf. on Combinatorics, Graph Theory

and Computing, pages 389-394. Congressus Numerantium.

HAMMER, P. L. et SIMEONE, B. (1981). The splittance of a graph. Combinatorica,

1(3), 275-284.

HANSEN, P. (2005). How far is, should and could be conjecture-making in graph

theory an automated process? Dans FAJTLOWICZ, S., FOWLER, P. W., HANSEN,

P., JANOWITZ, M. F., et ROBERTS, F. S., editeurs, Graphs and Discovery, volume 69

of DIMACS : Series in discrete mathematics and theoretical computer science, pages

180-230. American Mathematical Society, DIMACS.

HANSEN, P., AOUCHICHE, M., CAPOROSSI, G., MELOT, H., et STEVANOVIC, D.

(2005). What forms do interesting conjectures have in graph theory ? Graphs and Dis-

154

covery, DIMACS Series in Discrete Mathematics and Theoretical Computer Science,

69,231-252.

HAYNES, T. W., HEDETNIEMI, S., et SLATER, P. (1998). Fundamentals of domination

in graphs. Marcel Dekker.

Hu, H., YAN, X., Yu, H., HAN, J., et ZHOU, X. (2005). Mining coherent dense

subgraphs across massive biological networks for functional discovery. Dans Proc. of

2005 Int. Conf. Intelligent Systems for Molecular Biology (ISMB'05), Ann Arbor, MI,

pages 213-221.

HUAN, J., WANG, W., BANDYOPADHYAY, D., SNOEYINK, J., PRINS, J., et TROP-

SHA, A. (2004a). Mining spatial motifs from protein structure graphs. Dans Proc. of

8th Int. Conf. Research in Computational Molecular Biology (RECOMB), San Diego,

CA, pages 308-315.

HUAN, J., WANG, W., PRIN, J., et YANG, J. (2004b). Spin : mining maximal frequent

subgraphs from graph databases. Dans KDD '04: Proc. of the tenth ACM SIGKDD int.

conf. on Knowledge discovery and data mining, New York, NY, USA, pages 581-586.

ACM.

HUAN, J., WANG, W., et PRINS, J. (2003). Efficient mining of frequent subgraph in

the presence of isomorphism. Dans Proc. of the 3rd IEEE Int. Conf. on Data Mining

(ICDM), pages 549-552.

INOKUCHI, A., WASHIO, T., et MOTODA, H. (2000). An apriori-based algorithm for

mining frequent substructures from graph data. Dans Proc. of the 4th European Conf.

on Principles of Data Mining and Knowledge Discovery, pages 13-23. Springer-Verlag.

KIM, D. H., YUN, I. D., et LEE, S. U. (2006). Boundary-trimmed 3d triangular mesh

segmentation based on iterative merging strategy. Pattern Recognition, 39(5), 827-838.

155

KOYUTURK, M., GRAMA, A., et SZPANKOWSKI, W. (2004). An efficient algorithm

for detecting frequent subgraphs in biological networks. Bioinformatics, 2, 200-207.

KRAMER, S., D E RAEDT, L., et HELMA, C. (2001). Molecular feature mining in HIV

data. Dans Proc. of the seventh ACM SIGKDD int. conf. on Knowledge discovery and

data wining (KDD '01), New York, NY, USA, pages 136-143. ACM.

KURAMOCHI, M. et KARYPIS, G. (2001). Frequent subgraph discovery. Dans Proc.

of the First IEEE Conf. on Data Mining, pages 313-320.

KURAMOCHI, M. et KARYPIS, G. (2005). Finding frequent patterns in a large sparse

graph. Data Mining and Knowledge Discovery, 11(3), 243-271.

LARSON, C. (2002). Intelligent machinery and mathematical discovery. Dans Graph

Theory Notes of the New York Academy of Science, XLII, pages 8-17.

LENAT, D. (1979). On automated scientific theory formation : A case study using the

AM program. Machine Intelligence, 9, 251-283.

LENAT, D. (1984). Automated theory formation in mathematics. Dans BLEDSOE et

LOVELAND, D., editeurs, Automated Theorem Proving : After 25 Years, pages 287-

314. American Mathematical Society.

Liu, B. (2007). Web data mining : Exploring hyperlinks, contents, and usage data.

Data-Centric Systems and Applications. Springer.

MANNILA, H. et TOIVONEN, H. (1997). Levelwise search and borders of theories in

knowledge discovery. Data Mining and Knowledge Discovery, 1(3), 241-258.

McCUNE, W. (1997). Solution of the Robbins problem. Journal of Automated Reaso­

ning, 19(3), 263-276.

156

MCKAY, B. (1981). Practical graph isomorphism. CongressusNumeratium, 30,45-87.

MCKAY, B. (1998). Isomorph-free exhaustive generation. Journal of Algorithms, 26,

306-324.

MITCHELL, T. M. (1982). Generalization as search. Artificial Intelligence, 18(2),

203-226.

MLADENOVIC, N. et HANSEN, P. (1997). Variable neighborhood search. Computers

and Operations Research, 24(11), 1097-1100.

MUGGLETON, S. (1992). Inductive logic programming. Academic Press.

MELOT, H. (2007). Facet defining inequalities among graph invariants : the system

GraPHedron. Discrete Applied Mathematics. In press.

NAKATSUJI, A., SUGAYA, Y., et KANATANI, K. (2005). Optimizing a triangular mesh

for shape reconstruction from images. IEICE - Transactions on Information and Sys­

tems, E88-D(10), 2269-2276.

NlJSSEN, S. et KOK, J. N. (2001). Faster association rules for multiple relations. Dans

IJCAI, pages 891-896.

NlJSSEN, S. et KOK, J. N. (2004). The gaston tool for frequent subgraph mining.

Dans Proc. of the Int. Workshop on Graph-Based Tools (Grabats 2004), pages 281-

285. Elsevier.

PAGE, D. L., KOSCHAN, A., et ABIDI, M. A. (2003). Perception-based 3d triangle

mesh segmentation using fast marching watersheds. Dans Proc. of 2003 IEEE Compu­

ter Society Conf. on Computer Vision and Pattern Recognition (CVPR 2003), Madison,

WI, USA, pages 27-32.

157

PEI, J., HAN, J., MORTAZAVI-ASL, B., PINTO, H., CHEN, Q., DAYAL, U., et Hsu,

M. (2001). PrefixSpan : Mining sequential patterns efficiently by prefix-projected pat­

tern growth. Dans Proc. of the 17th Int. Conf. on Data Engineering (ICDE '01), Wa­

shington, DC, USA, pages 215-224. IEEE Computer Society.

PLOTKIN, G. (1969). A note on inductive generalization. Machine Intelligence, 5,

153-163.

PUECH, J. (1998). ^redundance perfection and p6-free graphs. Journal of Graph

Theory, 29, 239-255.

PUNIN, J., KRISHNAMOORTHY, M., et ZAKI, M. J. (2001). Web usage mining : lan­

guages and algorithms. Dans Studies in Classification, Data Analysis, and Knowledge

Organization. Springer-Verlag.

REITTU, H. et NORROS, I. (2007). Random graph models of communication network

topologies.

ROBERTSON, N., SANDERS, D., SEYMOUR, P., et THOMAS, R. (1997). The four-

colour theorem. Journal of Combinatorial Theory, 70(B 1), 2^14.

SCHMIDT, D. C. et DRUFFEL, L. E. (1976). A fast backtracking algorithm to test

directed graphs for isomorphism using distance matrices. Journal of the ACM, 23(3),

433-445.

SRINIVASAN, A., KING, R. D., MUGGLETON, S. H., et STERNBERG, M. (1997). The

predictive toxicology evaluation challenge. Dans Proc. of the Fifteenth Int. Joint Conf.

on Artificial Intelligence (IJCAI-97), pages 1-6. Morgan-Kaufmann.

STERNBERG, M. J. E., KING, R. D., SRINIVASAN, A., et MUGGLETON, S. (1995).

Drug design by machine learning. Dans Machine Intelligence 15, pages 328-338.

158

TERMIER, A., ROUSSET, M.-C, et SEBAG, M. (2002). Treefinder: a first step towards

xml data mining. Dans Proc. of Int. Conf. on Data Mining ICDM'02, Maebashi, Japan,

pages 450-457.

TERMIER, A., ROUSSET, M.-C, et SEBAG, M. (2004). Dryade : A new approach for

discovering closed frequent trees in heterogeneous tree databases. Dans Proceedings of

the 4th IEEE International Conference on Data Mining (ICDM 2004), pages 543-546.

IEEE Computer Society.

ULLMANN, J. (1976). An algorithm for subgraph isomorphism. J. ACM, 23(1), 31-42.

VOLKMANN, L. et ZVEROVICH, V. (2002). A proof of a conjecture on irredundance

perfect graphs. Journal of Graph Theory, 41, 292-306.

WANG, C , HONG, M.-S., WANG, W., et SHI, B.-L. (2004a). Chopper : efficient

algorithm for tree mining. Journal of Computer Science and Technology, 19(3), 309-

319.

WANG, C , WANG, W., PEI, J., ZHU, Y., et SHI, B. (2004b). Scalable mining of

large disk-based graph databases. Dans Proc. of the tenth ACM SIGKDD int. conf. on

Knowledge discovery and data mining (KDD '04), New York, NY, USA, pages 316—

325. ACM.

WANG, C , ZHU, Y., W U , T., WANG, W., et SHI, B. (2005a). Constraint-based graph

mining in large database. Dans Web Technologies Research and Development - APWeb

2005, pages 133-144.

WANG, J., ZAKI, M., TOIVONEN, H., et SHASHA, D., editeurs (2005b). Data mining

in bioinformatics. Springer.

WASSERMAN, S. etFAUST, K. (1994). Social network analysis. Cambridge University

159

Press, Cambridge.

WONG, E. (1992). Model matching in robot vision by subgraph isomorphism. Pattern

Recognition, 25(3), 287-303.

WORLEIN, M., MEINL, T., FISCHER, I., et PHILIPPSEN, M. (2005). A quantitative

comparison of the subgraph miners MoFa, gSpan, FFSM, and Gaston. Dans PKDD,

pages 392^103.

Wos, L. (1996). The automation of reasoning : An experimenter's notebook with

OTTER tutorial. Academic Press Professional, Inc., San Diego, CA, USA.

XlA, Y. et YANG, Y. (2005). Mining closed and maximal frequent subtrees from data­

bases of labeled rooted trees. IEEE Transactions on Knowledge and Data Engineering,

17(2), 190-202.

YAN, X. et HAN, J. (2002). gSpan : Graph-based substructure pattern mining. Dans

Proc. of the Int. Conf. on Machine Learning (ICML 2002), pages 721-724.

YAN, X. et HAN, J. (2003). CloseGraph : Mining closed frequent graph patterns. Dans

Proc. of Int. Conf. Knowledge Discovery and Data Mining (KDD'03), Washington,

DC, pages 286-295.

YAN, X., Yu, P., et HAN, J. (2005). Substructure similarity search in graph databases.

Dans Proc. of 2005 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'05),

Baltimore, MD, pages 766-777.

YANG, L. H., LEE, M. L., et Hsu, W. (2003). Efficient mining of xml query patterns

for caching. Dans Proc. of the 29th int. conf. on Very large data bases (VLDB'2003),

pages 69-80. VLDB Endowment.

160

YOSHIDA, K. et MOTODA, H. (1995). CLIP: concept learning from inference patterns.

Artificial Intelligence, 75(1), 63-92.

ZAKI, M. J. (2002). Efficiently mining frequent trees in a forest. Dans KDD '02 :

Proc. of the eighth ACM SIGKDD int. conf. on Knowledge discovery and data mining,

New York, NY, USA, pages 71-80. ACM.

ZAKI, M. J., NADIMPALLY, V., BARDHAN, D., et BYSTROFF, C. (2004). Predicting

protein folding pathways. Bioinformatics, 20(1), 386-393.

ZHU, R, YAN, X., HAN, J., et Yu, P. (2007). gPrune : A constraint pushing framework

for graph pattern mining. Dans Proc. 2007 Pacific-Asia Conf. on Knowledge Discovery

and Data Mining (PAKDD'07), Nanjing, China, pages 388-400.

ZHU, H., ZANG, H., ZHU, K., et MUKHERJEEM, B. (2003). A novel generic graph

model for traffic grooming in heterogeneous WDM mesh networks. IEEE/ACM Tran­

sactions on Networking, 11(2), 285-299.

