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RESUME

L’automatisation de la découverte de nouvelles connaissances est un domaine fascinant
de recherche allant de pair avec le progres scientifique. Cette theése porte sur deux dis-
ciplines de ce domaine ayant connu un vaste succeés au cours des derniéres années :
’exploration de données et la génération automatisée de conjectures en mathématiques.
Nous présentons, dans un premier temps, des contributions a un probléme important de
I’exploration de données, connu sous le nom de la découverte des patrons fréquents.
Ce probleme, jouant un réle clé dans plusieurs domaines tels que la bioinformatique,
la chimie computationnelle ainsi que le Web, consiste a trouver les patrons que 1’on re-
trouve fréquemment dans une base de données. Nous introduisons, dans cette these, des
techniques permettant d’améliorer les méthodes existantes pour ce probléme. En par-
ticulier, nous proposons un nouvel algorithme, appelé SYGMA, permettant de trouver
efficacement les sous-graphes fréquents d’une base de graphes ayant peu d’étiquettes
différentes. Nous présentons également une nouvelle approche a 1’exploration des pa-
trons fréquents, utilisant des connaissances de fond sur les patrons fréquents pour définir
la topologie de I’espace de recherche de sorte a limiter le nombre de calculs cofiteux.
Enfin, nous montrons, a 1’aide d’expériences numériques sur des instances générées et
provenant d’applications réelles, 1’efficacité de nos méthodes par rapport aux méthodes

existantes.

Cette these présente, par ailleurs, des contributions significatives au probleme de la
génération de conjectures en théorie des graphes. Plus spécifiquement, nous introduisons
des méthodes innovatrices permettant d’obtenir de maniere automatique des conjectures
portant sur la caractérisation par sous-graphes interdits (CSI). Etant donné une classe de
graphes C, une CSI est un ensemble de graphes H tel qu’un graphe GG appartient a C
si et seulement s’il ne contient aucun graphe de  comme sous-graphe induit. Les CSI
jouent un role essentiel en théorie des graphes, étant au coeur de plusieurs résultats fon-

damentaux dans ce domaine, et permettant aussi de développer des algorithmes efficaces
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pour reconnaitre les graphes d’une classe donnée. Nous proposons, dans cette thése, cinq
algorithmes pour ce probleme : deux algorithmes pour obtenir des conditions suffisantes
pour avoir une CSI, deux algorithmes générant des conditions nécessaires pour une CSI
et, enfin, un dernier algorithme permettant d’obtenir de vraies CSI. Nous utilisons en-
suite ces algorithmes pour reproduire des résultats connus de la théorie des graphes, ainsi

que pour en trouver de nouveaux.



viil

ABSTRACT

The automation of the process of knowledge discovery is a fascinating field of research
that has a deep impact on the progress of science. This thesis focuses on two disciplines
of that field, which have enjoyed much success in the last few years : datamining and the
automated generation of conjectures in mathematics. We first present contributions to an
important problem in datamining, known as frequent pattern discovery. This problem,
which plays a key role in various fields such as bioinformatics, computational chemistry
and the Web, consists in finding the patterns that are frequently found in a database. We
introduce, in this thesis, techniques that improve existing methods for this problem. In
particular, we propose a new algorithm, called SYGMA, that efficiently finds the frequent
subgraphs of a database containing graphs with a limited number of different labels. We
also present a novel approach to frequent pattern mining, that uses background know-
ledge on the frequent patterns to remap the search space in a way that minimizes the
number of time-expensive computations. Finally, we show, through numerical experi-
ments on generated and real-life instances, the efficiency of our methods compared to

existing ones.

This thesis also presents significant contributions to the problem of automated conjecture
generation in the field of graph theory. More precisely, we introduce innovative methods
that find, in an automated way, conjectures on a forbidden subgraph characterization
(FSC). Given a class of graphs C, an FSC is a set of graphs H such that a graph G belongs
to C if and only if it does not contain any graph of H as an induced subgraph. FSCs play
an essential role in graph theory, being at the centre of many famous results in that
field, and allowing also to develop efficient algorithms to recognize the graphs of a given
class. We propose, in this thesis, five algorithms for this problem : two algorithms to find
sufficient conditions to have an FSC, two algorithms generating necessary conditions
to have an FSC, and, finally, an algorithm that obtains actual FSCs. We then use these

algorithms to reproduce known results of graph theory, as well as to find new ones.
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INTRODUCTION

La découverte de connaissances est un processus complexe dont les fondements sont
étudiés depuis fort longtemps. Récemment, I’arrivée de technologies permettant d’échan-
ger et de stocker de plus en plus d’information, ainsi que I’augmentation remarquable de
la puissance des ordinateurs, a permis 1’apparition de systemes informatiques automati-
sant, complétement ou en partie, le processus de découverte. A ce titre, deux disciplines
ayant connu beaucoup de succes sont I’exploration de données et la génération auto-
matisée de concepts en mathématiques. Les contributions présentées dans cette thése
portent sur deux problémes importants de ces disciplines, soit la découverte des patrons

fréquents et la génération automatisée de conjectures en théorie des graphes.

1.1 Ladécouverte des patrons fréquents

L’exploration de données est une discipline située au croisement de 1’informatique et des
mathématiques, et dont le but est d’extraire, de maniére automatisée, des connaissances
utiles a partir d’une grande quantité de données. Un des problemes importants de cette

discipline est la découverte des patrons fréquents :

Définition 1 (Découverte des patrons fréquents). Soit D une base de données, le sup-
port d’un patron X dans D, noté sup(X, D) est le nombre d’objets de D contenant X.
De méme, la fréquence de X, notée freq(X, D), correspond au ratio des objets de D

contenant X, soit
sup(X, D)

freq(X,D) = D]

Etant donné un seuil minimum de fréquence, noté f,.,;,, le probleme de la découverte

des patrons fréquents correspond a trouver ’ensemble J contenant les patrons dont la



[fréquence dans D est supérieure ou égale a f;y, i.e.

F={X CT|freq(X,D) > fiin}-

On appelle patron fréquent tout patron de I’ensemble F.

Un exemple bien connu de la découverte des patrons fréquents est la découverte d’en-
sembles fréquents d’items (Agrawal et al., 1993), pouvant &tre définie comme suit. Soit
7 un ensemble d’items, et soit D un ensemble de transactions, tel que chaque transaction
T € D est un ensemble d’items, i.e. 7 C Z. On dit qu’une transaction 7" contient un
ensemble d’items X C Z si X C T. Le support d’un ensemble d’items X correspond,
dans ce cas, au nombre de transactions de D contenant X . Le but est alors de trouver
tous les ensembles d’items X qui sont sous-ensembles d’un nombre suffisant de tran-
sactions, fixé par le seuil minimum de fréquence. On retrouve souvent ce probléme dans
le domaine du marketing et de la vente, ou il est mieux connu sous le nom d’analyse de
panier de marché. Dans ce contexte, on cherche typiquement a déterminer les habitudes
d’achat des clients d’une compagnie, afin de développer des stratégies de vente. Ainsi,
chaque transaction de la base de données représente un ensemble de produits achetés
simultanément par un méme client, et le but est d’identifier les produits qui sont souvent
achetés ensemble. Ces ensembles fréquents d’items servent ensuite a obtenir des reégles

d’association du genre :

“les clients qui achétent les produits A et B achétent également les produits

CetD”.

Une autre spécialisation importante de la découverte des patrons fréquents porte sur les

graphes.

Définition 2 (Graphe). Un graphe G = (V. E) se compose d’un ensemble de sommets
V et d’un ensemble d’arétes EE C V X V reliant deux sommets. De facon équivalente, on

dit que V (G) et E(G) sont des ensembles contenant respectivement les sommets et les



arétes du graphe G. Par ailleurs, on dit qu’un graphe est dirigé ou orienté si ses arétes
possédent un sommet initial u et un sommet terminal v, i.e. (u,v) # (v,u). De plus,
un graphe dont deux mémes sommets sont reliés par plusieurs arétes est appelé multi-
graphe, et on appelle pseudo-graphe un graphe ayant une aréte reliant un sommet a
lui-méme. Un graphe simple est un graphe qui n’est ni un multi-graphe, ni un pseudo-
graphe. Une chaine, ou chemin dans le contexte des graphes dirigés, est une séquence
de sommets vy, va, ...,V €V reliés par des arétes, i.e. (v;,v;41) € E,1 <i<n-—1.
Un cycle (circuit) est une chaine (chemin) dont les extrémités coincident, i.e. v; = v,.
Un graphe est connexe s’il existe, pour toute paire de sommets, une chaine ayant pour
extrémités ces deux sommets. Finalement, un arbre est un graphe connexe non-dirigé

n’ayant pas de cycle.

0D ACS G

Graphe | Dirigé Connexe Chaine Cycle Chemin Circuit Arbre

(h)

(@) X

(b) X X X
(0) X X

(d) X X
(e)

0 x x

(g) X X X

(h) X X X

Figure 1.1 Quelques exemples de graphes.

Puisqu’il ne sera question dans cette thése que de graphes simples, nous appellerons
graphe, a partir de maintenant, tout graphe simple. La figure 1.1 montre quelques exemples
de graphes. On constate que certains de ces graphes peuvent €tre produits en retirant des

sommets et des arétes d’un autre graphe. On appelle sous-graphes de tels graphes.



Définition 3 (Sous-graphe). Soit G = (V, E) un graphe, le graphe G' = (V', ') est un
sous-graphe de G s’il peut étre produit en retirant des sommets et des arétes de G, i.e.
si

VICV et VYuveV' (u,v) € E = (u,v) € E.

On dit, par ailleurs, que G' est un sous-graphe induit de G s’il peut étre produit en

retirant uniquement des sommets de G ainsi que les arétes incidentes a ces sommets, L.e.

VicV et VuveV’, (u,v) € E= (u,v) € E.

Dans la figure 1.1, les graphes (b) a (e) sont tous des sous-graphes de (a), alors que les
graphes (g) et (h) sont des sous-graphes de (f). Par contre, seul le graphe (c) est un sous-

graphe induit de (a), tandis les graphes (g) et (h) sont tous les deux des sous-graphes
induits de (f).

Alors qu’ils permettent de décrire la topologie d’une structure, les graphes ne permettent
pas de représenter entierement des structures plus riches en information telles que les
molécules et les documents structurés (e.g. documents XML). Les graphes étiquetés en-

richissent les graphes en donnant aux sommets et aux arétes un attribut appelé étiquette.

Définition 4 (Graphe étiqueté). Un graphe étiqueté est un quintuplet G = (V, E, L, 1,,1.),
oV est un ensemble de sommets, I/ un ensemble d’arétes, L est un ensemble d’étiquettes,
et les fonctions |, - V — Letl. : E — L sont des injections associant respectivement
chaque sommet et chaque aréte de G a une étiquette de L. Pour simplifier, on peut
supposer que les étiquettes sont des nombres entiers, et écrire G = (V, E, 1, 1.), oit
l, : V= Netl, : E — N. Un graphe étiqueté G' = (V', E' I 1) est un sous-graphe

de G s’il peut étre produit en retirant des sommets et des arétes de G, i.e. si
1. VI CV.

2. Yue V', U (u) = l,(u).



3. Yu,v e V', (u,v) € E' = (u,v) € E.
4. Ve e E', l(e) = l.(e).

De plus, G' est un sous-graphe induit de G s’il peut étre produit en retirant uniquement

des sommets de G, i.e. si
1. VICV.
2. Vue V', I (u) = l,(u).
3. Yu,v € V', (u,v) € E = (u,v) € E.

4. Ve E', l/(e) = l.(e).

X
s
X v YI—(QX jix
S
t t k)
’y x X X t Y
(©) (d)

(b)

Figure 1.2 Quelques exemples de graphes étiquetés.

On montre, a la figure 1.2, un graphe étiqueté (a) ainsi que trois de ses sous-graphes
induits (b), (c) et (d). Les sommets de ces graphes ont I’étiquette X ou Y, alors que les
arétes ont I’étiquette s ou t. Bien qu’ils proviennent de sous-parties différentes du graphe
(a), on remarque que les trois sous-graphes sont topologiquement identiques. Dans les

termes de la théorie des graphes, ont dit que ces graphes sont isomorphes :

Définition 5 (Isomorphisme). Soir deux graphes étiquetés G = (V, E,l,,l.) et G' =
(V',E'I,1.), un isomorphisme de G & G' est une bijection ¢ : V — V' telle que

1. Yu eV, l,(u) =1 (p(u)).

2. Yu,v eV, (u,v) € E< (p(u), p(v)) € E etl.(u,v) = I, (¢(u), p(v)).



On dit que G et G' sont isomorphes, noté G ~ G, s’il existe un isomorphisme  de G
a G'. On remarque que cette relation est symétrique, i.e. G ~ G' & G' ~ G et p~!
est un isomorphisme de G' & G. Par ailleurs, on dit qu’un graphe G contient un graphe
G, noté G' C G, s’il existe un isomorphisme de G' a un sous-graphe de G. Enfin, un

automorphisme est un isomorphisme allant d’un graphe a lui-méme.

La tache de déterminer s’il existe un isomorphisme entre deux graphes est un probléme
célebre, mieux connu sous le nom du probléeme d’isomorphisme de graphe (Fortin,
1996; McKay, 1981). Egalement, le probléme d’isomorphisme de sous-graphe consiste 2
déterminer si un graphe est isomorphe a un sous-graphe d’un autre graphe. Alors que la
complexité du probleme d’isomorphisme de graphe n’est pas connue a ce jour, il existe
plusieurs algorithmes efficaces pour résoudre ce probleme, dont 1’algorithme NAUTY
développé par McKay (McKay, 1981). En revanche, le probleme d’isomorphisme de
sous-graphe a été démontré NP-complet (Garey et Johnson, 1990). Ce probléme étant
au coeur d’applications de différents domaines, dont celles traitées dans cette theése, plu-
sieurs méthodes exactes et heuristiques ont été proposées pour le résoudre, voir e.g.

(Ullmann, 1976; Schmidt et Druffel, 1976; Cordella et al., 2004).

Considérons a nouveau la figure 1.2, ou les graphes (), (c) et (d) sont des sous-graphes
du graphe (a), et cherchons des isomorphismes allant de (b) a un sous-graphe de (a).
Ainsi, I’isomorphisme trivial, associant chaque sommet de (b) a lui-méme est un tel
isomorphisme. De plus, le graphe (b) est isomorphe aux graphes (c) et (d), par les iso-

morphismes ; et ¢, donnés par la table suivante :

w1(vi) | p2(v;)

o~

1 Vs Vs
2 Vg V4
3 3 V3

Les bijections ¢; et 9 sont donc aussi des isomorphismes de (b) vers un sous-graphe de



(a).

L'exploration des sous-graphes fréquents est une spécialisation de la découverte des pa-
trons fréquents ou I’on posséde une base de données contenant des graphes étiquetés
et ou le but est de trouver tous les graphes qui sont isomorphes & un sous-graphe d’un
nombre suffisant de graphes de la base de données. Ce probleme, sur lequel porte cette
these, joue un role clé dans des applications provenant de divers domaines, en particu-
lier, dans la synthése de nouveaux médicaments (Borgelt et al., 2005; Sternberg et al.,
1995), la classification de composés chimiques (Deshpande et al., 2002), ’analyse et la
prédiction de structures protéiques (Huan et al., 2004a; Zaki et al., 2004), I’indexation
de données sous forme de graphes (Yan et al., 2005), I’exploration de documents et de
requétes XML (Yang et al., 2003; Chen et al., 2004; Termier et al., 2002; Punin et al.,
2001), ainsi que I’exploration de réseaux biologiques (Koyuturk et al., 2004; Hu et al.,
2005) et sociaux (Wasserman et Faust, 1994; Carrington et al., 2005).

1.2 La génération de conjectures en théorie des graphes

Le processus de découverte en sciences comporte essentiellement trois étapes : 1) I’ob-
servation d’un nouveau phénomene, 2) I’émission d”hypotheses expliquant ce phénomene,
et 3) la vérification des hypothéses par expérimentation. En mathématiques, la découverte
d’un nouveau théoreme opere de maniere similaire. On observe tout d’abord une relation
mathématique paraissant nouvelle et utile. On tente ensuite de trouver un cas particulier
du probleme pour lequel la relation n’est plus vérifiée, i.e. un contre-exemple. Si un
tel exemple ne peut étre trouvé, on émet alors 1’hypothese que la relation découverte est
vraie pour tous les cas. Une telle hypothese porte le nom de conjecture. La derniere étape
consiste a démontrer ou réfuter la conjecture. Si on parvient a lui trouver une preuve, la

conjecture devient alors un théoreme.



Depuis son invention, I’ordinateur a joué un role grandissant dans la découverte de nou-
veaux théorémes en mathématiques, particulierement, dans la génération automatisée
de nouveaux concepts (Lenat, 1984; Colton, 1999; Larson, 2002; Bailey, 2000) et la
démonstration automatisée de théoremes (McCune, 1997; Wos, 1996). Un domaine pour
lequel I’emploi de systemes informatiques a été spécialement fécond est la théorie des
graphes. Une illustration célebre de ceci est la conjecture des quatre couleurs, datant
de 1852, dont la preuve n’a €ét€ obtenue que récemment a 1’aide d’ordinateurs (Appel
et al., 1977; Robertson et al., 1997). Aujourd’hui, I’ordinateur est devenu un outil indis-
pensable a la génération et la démonstration de conjectures dans ce domaine, comme le
montre le document en ligne Written-on-the-wall (Fajtlowicz, 2008; Fajtlowicz et De-

LaVina, 2008) contenant plus d’un millier de conjectures générées avec 1’aide de 1’ordi-

nateur.

De fagon générale, une conjecture est une relation entre plusieurs propriétés qui parait
vraie pour tous les éléments d’un ensemble donné. Notons P et () deux prédicats repré-
sentant des propriétés portant sur les éléments d’un ensemble X, tel que P(z) et Q(x)
sont vraies si x € X satisfait P et (). Ces propriétés peuvent prendre diverses formes,
telles que la conjonctions ou la disjonction d’autres propriétés, ou peuvent méme vérifier
I’appartenance d’un €lément a une certaine classe. Avec ces propriétés, on peut exprimer

trois types de relations :
1. Conditions suffisantes : Vz € X, P(x) = Q(X).
2. Conditions nécessaires : Vz € X, P(z) < Q(X).
3. Conditions nécessaires et suffisantes : Vz € X, P(z) & Q(X).

En théorie des graphes, on rencontre souvent des conjectures ayant la forme de relations
algébriques portant sur les invariants de graphe. Un invariant ¢ est une fonction qui as-
socie a un graphe G une quantité i(G), la plupart du temps réelle, qui est insensible a
la numérotation des sommets. Par exemple, le diametre d’un graphe G, que I’on note

souvent D(G), est un invariant correspondant & la plus grande distance séparant deux



sommets de G'. Soit C une classe graphes et 7 = {i,4y,...,%,} un ensemble d’inva-
riants définis sur les graphes de C, une relation algébrique sur les invariants de Z est de

la forme :

VG EeC, vrai = f(ir(G),is(G),...0(Q)) (2> 0,

ou f est une fonction linéaire ou non-linéaire sur 1’espace des invariants. Soit un graphe
G ayant m arétes, notons n;(G) le nombre de sommets de G adjacents a un seul autre
sommet, @(G) la taille du plus grand ensemble de sommets non-adjacents de G, appelé
nombre de stabilité, et 7(G) la plus petite distance entre un sommet v de G et le sommet
de G le plus éloigné de v, appelé le rayon. Un exemple de conjecture ayant la forme
d’une relation algébrique linéaire, obtenue par Caporossi et Hansen avec 1’aide de leur

systeme AGX (Caporossi et Hansen, 2004), est la suivante :

pour tout arbre 7' d’index minimum?, 2a(T) — m — ny(T) — D(T) = 0.
Cette conjecture est, a ce jour, encore ouverte. De méme, soit p(G) le plus petit nombre
de chaines disjointes nécessaires pour recouvrir les sommets de GG, appelé le nombre de

recouvrement par chaines, la conjecture suivante, obtenue par DeLLaVina, Fajtlowicz et

Waller a I’aide du syst¢me GRAFFITI (DeLaVina et al., 2005), est toujours ouverte :
pour tout graphe G, a(G) — r(G) — In(p(G)) > 0.

Alors que les relations algébriques sur les invariants de graphe constituent le type de

conjectures le plus étudié, tel que soulevé dans (Hansen et al., 2005), il existe bien

d’autres sortes de résultats intéressants en théorie des graphes. Parmi ceux-ci se trouvent

les résultats portant sur la caractérisation par sous-graphes interdits, qui décrit une classe

de graphes en termes des sous-graphes que les graphes de cette classe ne peuvent pas

avoir.

Définition 6 (Caractérisation par sous-graphes interdits (CSI)). Soit G I’ensemble conte-

"La distance entre deux sommets u, v est le plus petit nombre d’arétes que 1’on doit emprunter pour
allerdeuw av

2L’index (ou rayon spectral) d’un graphe G est la plus petite valeur propre de la matrice d’adjacence
de G.
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nant tous les graphes. Une classe ou famille de graphes C C G est une ensemble pos-
siblement infini de graphes ayant une propriété commune. Etant donné un ensemble de
graphes 'H, on dit qu’un graphe G est sans 'H, s’il n’y a aucun graphe de 'H isomorphe
a un de ses sous-graphes induits, et écrivons Gy I'ensemble de tous les graphes sans 'H.
Une caractérisation par sous-graphes interdits (CSI) d une classe C est un ensemble de

graphes 'H tel qu’un graphe G appartient a la classe C si et seulement si G est sans H,

ie. QH =C.

Les CSI jouent un rdle clé en théorie des graphes, permettant notamment le dévelop-
pement d’algorithmes polynomiaux pour reconnaitre les graphes d’une classe donnée
(Faudree et al., 1997), ou de trouver des liens hiérarchiques entre différentes classes de
graphes (Brandstidt et al., 2003). De plus, les CSI sont a 1a base de résultats célebres en
théorie des graphes, comme la caractérisation des graphes parfaits (Berge, 1963), trouvée
par Chudnovsky et al. (Chudnovsky et al., 2006), voulant qu’un graphe est parfait s’il
ne possede pas comme sous-graphe induit un cycle impair contenant cing sommets ou
plus, ou son complément. Une autre CSI importante, venant de Beineke (Beineke, 1970),
caractérise les graphes de ligne (Brandstédt et al., 1999) avec neuf sous-graphes interdits,

montrés a la figure 1.3.

e B e I TP R R W

Figure 1.3 Une caractérisation par sous-graphes interdits des graphes de ligne.

Soit P le prédicat vérifiant qu'un graphe G est sans H, et () le prédicat vérifiant que
G appartient a la classe de graphes C. Une CSI est une relation ayant la forme d’une
condition nécessaire et suffisante : VG € G, P(G) < Q(G). Cependant, la plupart des
classes de graphes n’ont pas de CSI, et il est souvent intéressant de trouver des conditions

suffisantes ou des conditions nécessaires pour qu’un ensemble de sous-graphes interdits
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caractérise C. Une condition suffisante est de la forme : si un graphe G est sans H, alors
il appartient a C. Selon la notation présentée précédemment, une condition suffisante
est donc un ensemble de graphes H tel que G;; C C. On remarque qu’une condition
suffisante ne permet pas de décrire enticrement la classe C. En effet, si G n’est pas
sans H, on ne peut pas déterminer si G est dans C ou non. D’autre part, une condition
nécessaire s’exprime de la maniere suivante : si un graphe G est dans C alors il est sans
‘H. Ceci implique que G5, O C. Une fois de plus, une condition nécessaire n’offre qu’une

description partielle de C : si G n’est pas dans C alors il peut étre sans H ou non.

1.3 Problématique et objectifs de recherche

De maniere générale, le probléme de trouver les patrons fréquents dans une base de
données se résume a deux taches : 1) énumérer de maniere unique chaque patron, et
2) calculer le support de ces patrons dans la base de données. Lorsque les patrons
possedent une structure complexe, il est souvent possible de représenter un méme patron
de différentes facons. Ainsi, un graphe possede un grand nombre de représentations to-
pologiquement identiques, i.e. graphes isomorphes, obtenues en renumérotant ses som-
mets. On risque donc, en faisant I’énumération des patrons, d’explorer plusieurs patrons
équivalents. Une facon de contourner ce probleme consiste a trouver une représentation
canonique d’un patron, i.e. une représentation optimisant un criteére donné, et d’explo-
rer un patron seulement si sa représentation est canonique. Cependant, dans bien des cas,
trouver la représentation canonique d’un patron est un probleme complexe. Par exemple,
trouver la représentation canonique d’une paire de graphes est équivalent a résoudre le
probléme d’isomorphisme de graphe. De mé€me, calculer le support d’un patron dans la
base de données est, de fagon générale, une opération coliteuse. Ainsi, calculer le support
d’un graphe dans un ensemble de graphes revient a résoudre un grand nombre de fois le

probléme d’isomorphisme de sous-graphe qui est un probleme NP-complet.
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Dans le cas de la découverte des sous-graphes fréquents, la difficulté¢ de trouver la
représentation canonique d’un graphe et de calculer son support dans la base de données
est grandement réduite lorsque les graphes de la base de données possédent un grand
nombre d’étiquettes de sommets et d’arétes différentes. On peut ainsi, a I’aide de ces
étiquettes, établir un ordre partiel des sommets d’un graphe, et, dans le calcul de la
représentation canonique de ce graphe, se limiter aux permutations des sommets respec-
tant cet ordre. Dans le cas extréme ou tous les sommets ont des étiquettes différentes,
on peut simplement ordonner les sommets en ordre croissant d’étiquette, et prendre la
représentation canonique provenant de cet ordre. De méme, une quantité importante
d’étiquettes simplifie la tiche de déterminer si un graphe H de la base de données
contient un certain graphe G. Ainsi, lorsqu’on cherche un sommet de H pouvant corres-
pondre a un sommet v de GG, on peut se limiter aux sommets qui ont la méme étiquette
que v et des arétes incidentes ayant les mémes étiquettes que les arétes incidentes a v.
En somme, la complexité de la découverte des sous-graphes fréquents augmente lors-
qu’on travaille avec des graphes n’ayant pas ou ayant peu d’étiquettes différentes. Or, a
ce jour, tres peu d’attention a été portée a ce type de données, et les algorithmes actuels
pour la découverte des sous-graphes fréquents sont d’une efficacité limitée pour de telles
données. Cependant, il existe plusieurs applications utilisant ce genre de données, entre
autres, dans le domaine de la vision par ordinateur ol I’information est représentée par
des maillages 2D ou 3D (Wong, 1992; Kim et al., 2006; Nakatsuji et al., 2005; Page
et al., 2003), et dans les réseaux de transport et de communication, ol I’information est
essentiellement topologique (Zhu et al., 2003; Reittu et Norros, 2007). De plus, explo-
rer des graphes sans étiquette permettrait de trouver des relations de la base de données
qui sont a la fois plus générales et fréquentes. Le premier objectif de cette thése est
d’améliorer les méthodes existantes pour la découverte des sous-graphes fréquents, dans

le cas ol les graphes de la base de données ont peu d’étiquettes.

Lorsque la base de données comporte un grand nombre de structures, ce qui est sou-
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vent le cas, le calcul du support des patrons est de loin I’opération la plus coiiteuse de la
découverte des patrons fréquents. Pour réduire le cofit associé a cette tiche, les méthodes
actuelles emploient essentiellement deux approches. La premiere approche consiste a
calculer de maniére incrémentale les incorporations d’un patron dans la base de données,
e.g. isomorphismes de sous-graphe dans la découverte des sous-graphes fréquents. Cette
technique est généralement employée lors d’une exploration en profondeur de I’espace
de recherche. Supposons que I’on génére un patron Y en prolongeant un patron X dont
les incorporations dans la base de données ont déja été calculées. Comme toute structure
contenant Y contient également X, on peut obtenir les incorporations de Y simple-
ment en prolongeant celles de X. Alors que cette technique fonctionne bien pour les
bases de données de taille réduite, elle est inefficace pour des bases de données plus
grosses ou lorsque les données présentent une importante symétrie, e.g. graphes non-
étiquetés. Dans ces cas, le calcul incrémental du support demande une quantité énorme
de mémoire, et la mise-a-jour des incorporations est trés longue. La seconde approche
pour réduire les cofits engendrés par la calcul du support se base sur le principe Apriori.
Puisque le support d’un patron n’est jamais supérieur a celui de ses sous-patrons, un
patron est fréquent seulement si tous ses sous-patrons le sont. Si on connait le support
de tous les sous-patrons d’un patron X, on peut éviter de calculer le support de X si
un de ses sous-patrons n’est pas fréquent. Le probleme de cette approche est qu’elle de-
mande de visiter tous les sous-patrons d’un patron X avant de visiter X . Les deux tech-
niques généralement employées pour ce probléme est d’explorer I’espace de recherche
par niveau, i.e. explorer les patrons de taille k£ avant ceux de taille k+1, ou de coder les
patrons de sorte que I’exploration de 1’espace des codes ne visite un patron qu’apres
ses sous-patrons. Or, ces techniques posseédent également des désavantages. La premiére
souffre, en général, de la génération d’un grand nombre de patrons équivalents, et de-
mande beaucoup de mémoire. De méme, il peut étre difficile de trouver un code pouvant
étre utilisé pour la seconde technique. La seconde technique demande, par ailleurs, de

calculer la représentation canonique de tous les sous-patrons d’un patron, ce qui peut
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étre tres coliteux. Le second objectif de cette recherche consiste & développer de nou-
velles techniques pour réduire le nombre de calculs de support, sans avoir recours a des

structures de données nécessitant beaucoup de mémoire.

Comme mentionné précédemment, les conjectures les plus étudiées en théorie des gra-
phes ont la forme de relations algébriques entre les invariants d’un graphe. En consé-
quence, la vaste majorité des systeémes pour la génération automatisée de conjectures
dans ce domaine produisent des conjectures de ce type. Cependant, tel que soulevé dans
(Hansen et al., 2005), il existe plusieurs autres formes de résultats en théorie des graphes
pour lesquels il serait intéressant d’automatiser la génération, dont la caractérisation par
sous-graphes interdits (CSI). Or, tandis que certaines méthodes ont été proposées pour
trouver des CSI particuliers, e.g. 1a CSI de I’intersection de plusieurs classes de graphes
(Barrus, 2004), aucune de ces méthodes ne permet la génération automatisée de conjec-
tures portant sur la CSI. Le troisieme objectif de cette theése est de développer un tel
systeme. En plus de pouvoir générer des conjectures sur une CSI, ce systeéme devra
également permettre de générer des conditions suffisantes et des conditions nécessaires
pour avoir une CSI. Enfin, le quatriéme et dernier objectif de cette thése est d’utiliser
ce systeme pour générer de nouvelles conjectures, et de valider ces conjectures en les

démontrant.



CHAPITRE 2

REVUE DE LA LITTERATURE

Ce chapitre fait un survol des principaux travaux et résultats de la littérature portant sur la
découverte des patrons fréquents et la génération automatisée de conjectures en théorie

des graphes.

2.1 La découverte des concepts intéressants

Le probleme de la découverte des patrons fréquents, sur lequel porte une partie de cette
these, s’inscrit a I’intérieur d’un probleme plus général formulé par Mannila et Toivonen
(Mannila et Toivonen, 1997). Ce probléme, connu sous le nom de la découverte des

concepts intéressants, peut étre formulé comme suit.

Définition 7 (Découverte de concepts intéressants). Soit une base de données D, un lan-
gage L exprimant des concepts ou hypothéses quelconques, et un prédicat de sélection

P, trouver une théorie de D selon L et P, i.e. [’ensemble

Th(D,L,P)={p € L| P(D,p) = vrai}.

Ainsi, Th(D, L, P) renferme tous les concepts ou hypothéses du langage £ qui sont
intéressants selon le prédicat . En pratique, larichesse du langage £ peut induire un es-
pace de concepts énorme ou méme infini, rendant compliquée la recherche des concepts
intéressants. Il est souvent nécessaire de limiter la richesse de £ a 1’aide d’ un ensemble
de contraintes, que 1’on nomme biais déclaratif. Ce biais spécifie les propriétés que

doivent avoir les concepts intéressants. Cependant, méme dans un espace restreint, la re-
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cherche ne peut se faire efficacement sans la présence d’un ordre utile. Ainsi, la définition
de la relation de spécialisation des concepts est a la base des algorithmes efficaces pour

la recherche des concepts intéressants.

Définition 8 (Généralisation et spécialisation des concepts). Une relation de spéciali-
sation est un ordre partiel <X sur les concepts de L. On dit qu’un concept ¢ est aussi
général qu’un autre concept 0 si 0 <X 6. De facon équivalente, on dit alors que 0 est
aussi spécifique que . On note ¢ < 0 la relation de spécialisation telle que o < 0 et

non 6 < .

La relation < est une relation monotone de spécialisation selon le prédicat P si pour
chaque D et pona : si p < 0 et P(D, p) = vrai alors P(D, ) = vrai. A I'inverse, <
est une relation anti-monotone de spécialisation selon P si pour chaque D et p on a :
sip = et P(D,0) = vrai alors P(D, ¢) = vrai. Une relation monotone selon P est

anti-monotone selon —P.

Définition 9 (Concept minimal et maximal). Soit une relation de spécialisation < sur
L, et soit II C L un ensemble de concepts, on définit min(Il) comme ’ensemble des

concepts les plus généraux de 1], i.e.
min(Tl) = {p € 11| P9 € M t.q. § < @},

et nous appelons minimal tout concept de cet ensemble. De méme, norons max(II) I’en-

semble des concepts les plus spécifiques de 11, i.e.
max(Il) = {@ € 1| P9 € T t.q. ¢ < 6},

et nommons maximaux les concepts de cet ensemble.

La relation de spécialisation induit ainsi une structure dans 1’espace de recherche, ap-

pelée graphe de spécialisation ou diagramme de Hasse . Cette structure, prenant souvent
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la forme d’un treillis', peut se représenter comme un graphe dirigé acyclique dont les
noeuds sont les concepts de L, les arcs correspondent a des raffinements (i.e. spécialisations)
de concepts, et la racine est le concept le plus général, noté L. Ce graphe peut étre par-
couru a I’aide d’opérateurs permettant, a partir d’un noeud, d’explorer les noeuds cor-

respondant a des concepts plus spécifiques ou plus génériques.

Définition 10 (Opérateurs de spécialisation et généralisation). Etant donné un langage
de concepts L, un opérateur de spécialisation p; associe a chaque concept p un en-
semble p,() contenant les concepts spécialisant ¢ : ps(p) = {8 € L | ¢ < 6}.
Un opérateur p; est dit direct ou immédiat s’il n’associe a ¢ que les concepts plus
spécifiques les plus généraux, i.e. p;(p) = min(ps(p)). De méme, un opérateur de
généralisation p, associe & chaque concept o 'ensemble p,(p) = {6 € L]0 < ¢}
qui contient les concepts généralisant . Un opérateur p, est direct ou immédiat s’il as-

socie a  que les concepts plus généraux les plus spécifiques, i.e. py(p) = max(pg(©)).

Pour illustrer ces notions, retournons au probléme de trouver les ensembles fréquents
d’une base de données contenant des ensembles d’items. Dans ce contexte, le langage
des concepts correspond a tous les ensembles possibles d’items, i.e. £ = {T' C Z}. De
plus, la relation de spécialisation sur deux ensembles d’items est la relation d’inclusion.
Soit ¢ = X et § = Y deux ensembles d’items, on a o = 6 si et seulementsi X C Y.
Cette relation engendre un graphe de spécialisation de la forme d’un treillis booléen
contenant tous les sous-ensembles (power set) de Z. Enfin, un ensemble d’items est
intéressant s’il est fréquent. La figure 2.1 montre le graphe de spécialisation pour Z =
{A, B,C, D}. Au bas se trouve I’ensemble vide. La spécialisation se fait vers le haut, en
ajoutant a chaque niveau un item de plus, jusqu’a I’ensemble Z. Ainsi, I’opérateur direct

de spécialisation p; sur un ensemble d’items X consiste a ajouter a2 X un item qu’il ne

!On parle de semi-treillis si on ne peut garantir I’existence que d’un seul élément parmi le suprémum
et I'infimum d’une paire de concepts.
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possede pas, i.€.
ps(X)={Y CT| X CcYet|Y]|=|X]|+1}
alors que I’opérateur direct de généralisation enleve un élément a X

p(X)={Y CZ|YCXet|Y]|=]|X|-1}

ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

Figure 2.1 Le graphe de spécialisation des sous-ensembles d’items de I’ensemble 7 =
{A, B,C, D}.

Les méthodes de résolution pour la découverte des concepts intéressants peuvent &tre
classées selon leur fagcon de parcourir le graphe de spécialisation. Les méthodes as-
cendantes débutent la recherche avec les concepts les plus généraux du langage, i.e.
vy € min(L), et utilisent un opérateur de spécialisation pour ensuite explorer des
concepts de plus en plus spécifiques. A I’inverse, les approches descendantes débutent
avec les concepts le plus spécifiques du langage, i.e. p; € max(L), et explorent ensuite
des concepts de plus en plus généraux avec un opérateur de généralisation. Finalement,
un troisieme type de méthodes, basé sur la recherche d’espaces de versions (Mitchell,
1982), combine les stratégies de recherche ascendante et descendante. Ces méthodes

définissent 1’espace des concepts valides, appelé espace de versions, a 1’aide de deux
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ensembles, G et S, contenant respectivement les concepts valides les plus généraux et
les plus spécifiques. Cet espace est ensuite raffiné en spécialisant les concepts de G et,
en parallele, généralisant les concepts de S, jusqu’a la convergence de ces deux en-
sembles. Par ailleurs, les méthodes de résolution peuvent étre subdivisées plus finement
selon I’ordre dans lequel sont explorés les concepts du graphe de spécialisation. Ainsi,
dans la recherche en largeur, tous les concepts ayant le méme niveau de généralité sont
explorés avant les concepts plus spécifiques, dans le cas des approches ascendantes, ou
avant les concepts plus généraux, dans le cas des approches descendantes. Comme la
recherche en largeur procéde par niveau de généralité, on lui donne souvent le nom de
recherche par niveau. Contrairement 2 la recherche par niveau, la recherche en profon-
deur explore toutes les spécialisations, dans le cas des approches ascendantes, ou toutes
les généralisations, dans le cas des approches descendantes, d’un concept avant d’ex-
plorer un autre concept du méme niveau de généralité. Les méthodes de résolution sont
également divisées en méthodes completes et heuristiques. Les méthodes completes sont
celles qui garantissent de trouver tous les concepts intéressants. En pratique, I’espace de
recherche peut €tre trop vaste pour une exploration compléte, et seulement une fraction
de cet espace, composée typiquement des concepts qui paraissent les plus intéressants,
est explorée. Ces méthodes font généralement appel a des heuristiques pour choisir les

concepts a explorer.

Etant donné le nombre exponentiel de noeuds, typiquement observé dans les graphes
de spécialisation, il est nécessaire de fournir aux méthodes de recherche un moyen
d’éliminer de leur exploration les noeuds qui n’ont aucune chance d’€tre intéressants, un
processus appelé élagage. Une des principales techniques pour élaguer 1’espace de re-

cherche, consiste a vérifier la fermeture descendante d’un concept par rapport au prédicat

P.

Définition 11 (Fermeture descendante). Soit un espace de recherche défini par la rela-

tion de spécialisation = et soit 0 un concept de cet espace. On dit que 8 est fermé vers le
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bas, par rapport a P, si tout concept o < 8 est intéressant selon P.

Propriété 1. Soit D une base de données et P un prédicat de sélection anti-monotone
selon la relation de spécialisation <. De plus, soient @ et 6 deux concepts tels que ¢ = 0.

Si @ n’est pas intéressant, alors 0 ne peut pas étre intéressant. Plus formellement, on a

Ve, 0elL, o <x0N-P(D,p) = -P(D,0).

En d’autres termes, un concept € est intéressant seulement si tous les concepts plus
généraux ¢ = 6 sont intéressants. Ce principe, connu sous le nom du principe Apriori
permet donc de filtrer certains concepts inintéressants sans avoir a évaluer directement le
prédicat P, et d’élaguer tous les concepts plus spécifiques qu’un concept inintéressant.
Illustrons une fois de plus ce principe dans le contexte de la découverte d’ensembles
fréquents d’items. Soit deux ensembles d’items X et Y tel que X C Y. Si X n’est pas
fréquent, alors Y n’est pas fréquent, puisque pour chaque occurrence de Y dans D, il y
a nécessairement une occurrence de X, i.e. freq(X, D) > freq(Y, D). Il n’est donc pas
nécessaire de spécialiser X lors de la recherche des ensembles fréquents. De méme, un
ensemble Y est infréquent si au moins un de ses sous-ensembles X C Y est infréquent.
On peut alors détecter facilement les ensembles infréquents, et éviter de calculer leur
support dans la base de données. Ces idées sont a la base de 1’algorithme APRIORI,
proposé par Agrawal et al. (Agrawal et al., 1993). Cet algorithme, dont une version de
base est montrée a la figure 2.2, prend en entrée une base de données D ainsi qu’un
seuil minimum de support S,,;,, €t obtient les sous-ensembles fréquents d’items dans D
a I’aide d’une recherche par niveau. En débutant au premier niveau avec un ensemble
candidat C; contenant tous les items de Z, le support des ensembles candidats est obtenu
en traversant la base de données et en calculant le nombre de transactions les contenant.
Les ensembles candidats qui sont fréquents, i.e. dont le support est au moins Sy,;,, sont

alors ajoutés a Fy. Les ensembles candidats de k+1 items, i.e. Ci41, sont ensuite générés
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Algorithme APRIORI
Entrées: Une base de données D et un seuil de support minimum $,y,.
Sorties: Les sous-ensembles fréquents d’items F.
F:i=10;
(1 := I’ensemble des items Z;
k=1,
tant que Cj, # () faire
Fr:=0;

pour chaque X € Cy, faire
si{Y € D| X CY}| > smin alors Fy := FLU{X};

Fi=FUF;
Ck+1 = APRIORI-gen (Fi) ;
k=k+1;

retourner F ;

Procedure ArrRI10RI—-gen (Fyi)

Entrées: Les sous-ensembles fréquents de & items F,

Sorties: Les sous-ensembles candidats de k+1 items Cg41

Ck;+1 = 0 N

pour chaque X.Y € Fi, t.q. | X NY| = |X| — 1 faire
Créer I’ensemble de k+1 items Z = X UY;

si chaque sous-ensemble de i items de Z est dans Fy, alors

Crr1 = Chp1 U{Z};
retourner Cy 1 ;

Figure 2.2 Ialgorithme APRIORI pour la découverte d’ensembles fréquents, et sa
procédure APRIORI-gen pour la génération d’ensembles candidats.

par la procédure APRIORI-gen en prenant I’union deux ensembles fréquents X et Y de k
items, qui ne différent que d’un seul item. L’ensemble généré Z = X UY possede alors
k+1 items. La procédure élimine ensuite tous les candidats contenant un sous-ensemble
de k items qui n’est pas fréquent, i.e. qui n’est pas dans F;. Enfin, I’algorithme parcourt
la base de données pour calculer le support des candidats de Ci1, et ne conserve que
ceux dont le support est au moins S,,;,. Ce processus se termine lorsqu’il n’y a plus de

candidats, i.e. lorsque Cy, = 0.
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2.2 La découverte des requétes fréquentes

Nous avons vu, a la section précédente, un exemple de la découverte des concepts
intéressants qui consiste a trouver les ensembles fréquents d’items d’une base de données.
Une autre application importante de ce probleme, €galement basée sur la notion de
fréquence, est la découverte des requétes fréquentes dans une base de données multi-
relationnelles (DZeroski, 2003). Cette application, ayant des liens étroits avec la pro-
grammation logique inductive (PLI) (Dzeroski et Lavrac, 1994; Muggleton, 1992), trouve,
dans une base de données ayant typiquement la forme d’un programime logique (Bratko,

2001), des expressions en logique du premier ordre, appelées requétes.

Définition 1 (Requéte en logique du premier ordre). Soit une clause C, une substitution
0 ={X1/a1,...,X\n/an} est un ensemble de paires variable/terme, telle que I’appli-
cation de 6 a C, notée CO, correspond a la clause C dans laquelle chaque variable
X prend la valeur a;. Soit un programme logique D, une requéte () est une expression
logique de la forme

Q:?—AlaAQ,'“vAn

correspondant a la conjonction des atomes A;. La réponse a la requéte (), notée

reponse(Q, D), est I’ensemble des substitutions qui vérifient () dans D, i.e.

reponse(Q, D) = {6 | D E Qb},

ou = est 'implication logique qui est satisfaite si et seulement si toutes les substitutions

qui satisfont I’expression de gauche satisfont également 1’expression de droite.

Comme vérifier I’implication logique est un probleme NP-complet, trouver les réponses
a une requéte dans un programme logique, un processus basé sur I'inférence logique

(Bratko, 2001), est NP-difficile.
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Définition 2 (Découverte de requétes fréquentes). Soit D une base de données sous la
forme d’un programme logique et L un langage d’hypothéses définissant les requétes
pouvant étre formulées. Soit () € L une requéte contenant un atome K appelé clé, la

fréquence de () dans D selon K est

[reponse(K, D) N reponse(Q, D)|
f K) =
req(Q, K) |reponse( K, D)|

i.e. la fraction des substitutions vérifiant K dans D qui vérifient également (). Etant
donné un seuil minimum de fréquence f;, et une clé K, la découverte des requétes
fréquentes consiste a trouver ’ensemble F des requétes qui sont fréquentes dans D

selon K, soit ’ensemble

F={Q € L] freq(Q,K) > fmin}-

Afin d’illustrer ces concepts, considérons une base de données renfermant la définition
des prédicats étudiant, cours et inscrit, fournissant de I’information sur des étudiants, des
cours disponibles, et I’inscription des étudiants a ces cours. Supposons que 1’on choisisse

étudiant(X) pour €étre la clé, 1a requéte

7 — etudiant(X), inscrit(X, algebre), inscrit(X, physique).

est fréquente si la proportion d’étudiants inscrits aux cours d’algebre et de physique est

supérieure ou égale a f,,,;,. Par contre, si on choisit cours(Y) comme clé, la requéte
? — cours(Y), etudiant(X), inscrit(X,Y), inscrit(X, algebre).

est fréquente si la proportion de cours ayant des étudiants €également inscrits au cours

d’algebre est au moins fi,in.
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Comme nous avons vu, I’espace de recherche de la découverte des concepts intéressants
est défini a 'aide d’un ordre sur les concepts. Dans le contexte de la découverte des
requétes fréquentes, un ordre naturel, appelé généralité sémantique (Buntine, 1988),
repose sur I’implication logique. Cependant, comme vérifier I’implication logique est

difficile, on utilise plutdt la généralité syntaxique, basée sur la notion de subsomption

(Plotkin, 1969).

Définition 3 (Subsomption). Soit C et C’ deux clauses, on dit que C §-subsume C’ si et
seulement s’il existe une substitution 0 tel que C§ C C'. Par ailleurs, si C 0-subsume C’

alors C £ C', tandis que ’inverse n’est pas nécessairement vrai.

La subsomption permet ainsi de définir la relation de spécialisation telle que C < ' siet
seulement si C' §-subsume C’. Cette relation induit un espace de recherche qui peut étre
représenté sous la forme d’un graphe de spécialisation qui a pour base la clé, et pouvant

étre parcouru a I’aide de I’opérateur de spécialisation

ps(C) = {C" | I t.q.COC C'}.

Comme c’est le cas pour la plupart des concepts, on utilise en pratique un opérateur
direct de spécialisation, i.e. qui n’obtient que les concepts plus spécifiques les plus
généraux. Dans le cas qui nous intéresse, cet opérateur spécialise une requéte en lui ajou-
tant un nouve] atome. Cependant, deux requétes différentes peuvent étre équivalentes

sous la subsomption. Par exemple, la requéte

?—p(X,a), ¢(X), ¢(X), p(Y,a), ¢(Y), q(Y)

est équivalente 2 la requéte plus simple ? — p(X,a), ¢(X) sous la substitution § =
{X/Y}. Ainsi, on exige normalement un opérateur qui n’obtient que les spécialisations
directes qui sont des représentants minimaux des classes d’équivalence définies sous la

subsomption.
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L’algorithme WARMR, proposé par Dehaspe et Toivonen (Dehaspe et Toivonen, 1999),
est une extension de I’algorithme APRIORI pour la découverte des requétes fréquentes,
exploitant la structure de 1’espace de recherche défini par la généralisation syntaxique.
Cet algorithme, montré a la figure 2.3, prend en parametres une base de données D
sous la forme d’un programme logique, un seuil minimum de support S, ainsi qu’un
langage d’hypotheses £, appelé WRMODE, limitant le type de requétes pouvant étre
explorées. Etant donné un atome K servant de clé, WARMR retourne I’ensemble F
des requétes fréquentes. Tout comme 1’algorithme APRIORI, WARMR alterne entre une
phase de génération de candidats a I’aide d’un opérateur de spécialisation, et une phase
d’évaluation des candidats selon leur fréquence. L’algorithme commence avec des en-
sembles de requétes fréquentes F et infréquentes Z vides, et un ensemble de candidats ne
contenant que la clé. A chaque niveau k£, WARMR obtient ensuite les candidats fréquents
F, en comptant, pour chaque candidat, le nombre de substitutions vérifiant la clé qui
vérifient également le candidat. Les candidats fréquents sont alors ajoutés a F et les
infréquents a 7. L’ensemble de candidats du niveau suivant C;,; est ensuite obtenu a
I’aide de la fonction WARMR-gen. Pour chaque requéte ) € Fi, on ajoute a Cy1 la

requéte (' spécialisant (), i.e. obtenue en lui ajoutant un atome, sauf si :
1. @' est plus spécifique qu’une requéte infréquente de Z, ou
2. @' est équivalente a une requéte fréquente de F.

Comme pour I’algorithme APRIORI, WARMR se termine lorsqu’il n’y a plus de requétes
candidates, i.e. C, = (. Cependant, contrairement 2 I’algorithme APRIORI, WARMR
ne vérifie pas directement la fermeture descendante d’une requéte générée (', car les
requétes généralisant Q' ne sont pas forcément valides selon le langage d’hypotheses.
Au lieu de cela, WARMR conserve la liste des requétes infréquentes, et vérifie que )’ ne

généralise aucune de ces requétes.

Comme vérifier de la §-subsomption est un probleme NP-complet, I’algorithme WARMR

est limité par la taille de la base de données et par le seuil minimum de support. Dans
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Algorithme WARMR
Entrées: Un base de données D, un langage d’hypotheses £, une clé K, et un seuil
minimum de support S,,iy,.
Sorties; Les requétes fréquentes F.

C] :'—‘{?——K};
F=T:=0:
k=1,

tant que C;, # () faire
Fr :={Q € Cy t.q. |reponse(K, D) Nreponse(Q, D)| > Smin} ;
Fi=FUF;
IT:=ZTU(Ci\ Fr);
Cit1 :=WarMrR-gen (L, F,Z, Fi);
k:=i+1;
retourner F ;

Procedure WarMr~-gen (L, F, T, Fi.)
Entrées: Le langage d’hypothéses L, les requétes fréquentes F et infréquentes Z, et les
requétes fréquentes du niveau courant Fy.
Sorties: Les requétes candidates Cy; du niveau suivant.

Cry1:=0;
pour chaque requéte () € F;, faire
pour chaque requéte Q' € p,(Q) faire
sSiVQr eI, Q' 2 QretVQr € F, Q n’est pas équivalent a Q  alors

Cry1:=Crp1 U{Q'}
retourner Cy 1 ;

Figure 2.3 L’algorithme WARMR pour la découverte des requétes fréquentes, et sa
procédure WARMR-gen.
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le but de réduire la complexité de cette tiche, Nijssen et Kok ont proposé un algorithme
appelé FARMER (Nijssen et Kok, 2001), qui évite la #-subsomption a I’aide de structures
de données avancées, au coiit de générer des requétes équivalentes. Nijssen et Kok ont
illustré, a I’aide d’expériences, I’avantage de leur algorithme sur plusieurs jeux de tests,
et ’équivalence des requétes obtenues avec leur algorithme et WARMR pour un type

particulier de biais déclaratif.

2.3 La découverte des sous-graphes fréquents

Une autre application de la découverte des concepts intéressants, basée sur la fréquence,
est la découverte des sous-graphes fréquents. Comme nous I’avons vu dans I’introduc-
tion, ce probleme joue un role tres important dans plusieurs domaines, tels que la bioin-
formatique et la chimie computationnelle. Cette section donne une vue d’ensemble des

méthodes pour résoudre ce probleme.

De fagon générale, les méthodes pour trouver les sous-graphes fréquents d’un ensemble
de graphes peuvent étre catégorisées selon trois éléments : 1) ’espace de recherche,
2) la stratégie d’exploration de cet espace, et 3) la fagon dont ces méthodes gerent les
problemes d’isomorphisme de graphe et de sous-graphe. Comme vu précédemment, 1’es-
pace de recherche se définit & I’aide d’un opérateur de spécialisation p,. Dans le cas de
la découverte des sous-graphes fréquents, I’ensemble des graphes spécialisant un graphe
G selon p, contient, de fagon générale, tous les graphes ayant un sous-graphe isomorphe
aG,ie p(G) ={G"| G C G'}. Il est coutume d’appeler ces graphes les extensions ou
les prolongements de GG. La figure 2.4 montre I’espace de recherche contenant tous les
sous-graphes connexes d’au plus trois sommets dont les étiquettes peuvent étre X ou Y.
On remarque qu’une extension d’un graphe GG s’obtient en ajoutant une nouvelle aréte

reliant deux sommets de (G, ou un nouveau sommet et une aréte le reliant a un sommet

de GG.
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L’espace de recherche dépend également du type de graphes recherchés. Ainsi, on peut
ne s’intéresser qu’a trouver les chaines fréquentes, comme les algorithmes MOLFEA
développé par Kramer et al. (Kramer et al., 2001) et PREFIXSPAN proposé par Pei et al.
(Pei et al., 2001), ou les arbres fréquents, tels que les algorithmes TREEMINER de Zaki
(Zaki, 2002), FREQT de Asai et al. (Asai et al., 2002), et CHOPPER développé par Wang
et al. (Wang et al., 2004a). Ces deux problémes sont beaucoup moins complexes que la
tache plus générale de trouver les sous-graphes fréquents pouvant contenir des cycles, du
fait qu’il existe des techniques efficaces pour les problemes d’isomorphismes de graphe
et de sous-graphe pour ce type de données. Dans le cas général autorisant les cycles, on
s’intéresse typiquement a n’obtenir que des sous-graphes connexes. Cependant, on peut
restreindre la recherche a certains types de sous-graphes. Par exemple, on peut se limiter
aux sous-graphes induits, comme le font les algorithmes AGM d’Inokuchi et al. (Inoku-
chi et al., 2000) et ADI-MINE de Wang et al. (Wang et al., 2004b). De méme, on peut ne
s’intéresser qu’aux sous-graphes fréquents maximaux, comme les algorithmes SPIN de
Huan et al. (Huan et al., 2004b), CMTREEMINER de Xia et Yang (Xia et Yang, 2005), et
MARGIN de Thomas et al. Puisque tout sous-graphe d’un graphe fréquent maximal est
lui-méme fréquent, les graphes fréquents maximaux offrent une représentation compacte
de la solution. Par ailleurs, on peut chercher les sous-graphes qui sont fréquents selon une
mesure différente du support, comme le nombre d’isomorphismes de sous-graphe d’un
petit graphe a un plus gros. Des exemples d’algorithmes pour ce probleme sont SUBDUE
de Cook et al. (Cook et Holder, 1994), DRYADE de Termier et al. (Termier et al., 2004),
et SIGRAM développé par Kuramochi et Karypis (Kuramochi et Karypis, 2005). Notons,
enfin, que des systemes permettant d’imposer dynamiquement des contraintes sur le type

de sous-graphes recherchés ont été proposés récemment, e.g. (Wang et al., 2005a; Zhu

et al., 2007).

La stratégie d’exploration de I’espace de recherche est slirement 1’é1ément le plus impor-

tant d’un algorithme pour la découverte des sous-graphes fréquents. Tel que mentionné
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Figure 2.4 L'espace de recherche contenant tous les sous-graphes connexes d’au plus
trois sommets et deux étiquettes de sommet.

précédemment, on peut séparer les stratégies d’exploration en trois classes : les stratégies
de recherche en largeur, les stratégies de recherche en profondeur, et les stratégies heu-
ristiques. Contrairement aux deux premieres classes, les stratégies heuristiques se dis-
tinguent du fait qu’elles sacrifient I’exploration complete de 1’espace de recherche au
profit de la rapidité. Ainsi, les stratégies heuristiques tentent d’obtenir seulement les
concepts les plus intéressants. Une telle approche heuristique est 1’algorithme CLIP (Yo-
shida et Motoda, 1995). L’algorithme SUBDUE, qui sera vu plus en détail, est une autre
approche heuristique qui utilise une mesure de la théorie de 1’information, la longueur

de description minimale, pour trouver des sous-graphes intéressants.

Les algorithmes utilisant la recherche en largeur, par ailleurs, explorent I’espace de re-
cherche niveau par niveau, ou chaque niveau renferme typiquement des sous-graphes
ayant un sommet ou une ar€te de plus que les sous-graphes du niveau précédent. Comme
le fait 1’algorithme APRIORI pour les ensembles fréquents d’items, les sous-graphes

fréquents sont obtenus en trois étapes : 1) on génére I’ensemble des sous-graphes can-
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didats du niveau suivant en joignant des paires de sous-graphes fréquents du niveau
courant, 2) on vérifie la fermeture descendante des graphes candidats, i.e. on vérifie que
tous leur sous-graphes du niveau précédent sont fréquents, et 3) on calcule le support
des candidats vérifiant 1a fermeture descendante, et on ne conserve que les candidats
fréquents. Ces étapes sont répétées, jusqu’a ce qu’un niveau ne contienne aucun sous-
graphe fréquent. L’algorithme AGM et I’algorithme FSG, proposé par Kuramochi et
Karypis (Kuramochi et Karypis, 2001), sont des exemples d’algorithmes utilisant la re-
cherche en largeur. Cependant, les algorithmes de ce type souffrent typiquement de trois
problémes. Premi¢rement, la jonction de deux sous-graphes fréquents pour générer les
graphes candidats exige normalement de calculer le plus grand sous-graphe commun
de ces deux graphes, un probleme difficile. Ensuite, la génération des candidats produit
un grand nombre de graphes isomorphes. Enfin, cette technique demande de stocker les
sous-graphes fréquents a chacun des niveaux, ce qui peut demander une quantité impor-

tante de mémoire.

Le dernier type de stratégie d’exploration utilise la recherche en profondeur. Contraire-
ment a la recherche en largeur, la recherche en profondeur travaille avec un seul sous-
graphe a la fois, dont tous les prolongements sont explorés avant I’exploration d’un autre
sous-graphe de la méme taille. Cette stratégie de recherche a trois avantages par rapport
a la recherche en largeur. Tout d’abord, elle nécessite beaucoup moins de mémoire que
la recherche en largeur qui doit conserver tous les sous-graphes fréquents du niveau
courant. Ensuite, elle permet d’élaguer implicitement un grand nombre de sous-graphes
non-fréquents, selon I’idée suivante : comme tout prolongement d’un sous-graphe non-
fréquent ne peut étre fréquent, on peut éviter d’explorer les prolongements de sous-
graphes non-fréquents sans risquer de manquer des fréquents. Enfin, ce type de recherche
permet I’emploi de techniques incrémentales pour le calcul du support. Des exemples
d’algorithmes utilisant une stratégie de recherche en profondeur sont les algorithmes

GSPAN développé par Yan et Han (Yan et Han, 2002), FFSM de Huan et al. (Huan et al.,
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2003), et GASTON proposé par Nijssen et Kok (Nijssen et Kok, 2004).

Dans les prochaines sections, nous présentons plus en détail certains algorithmes ca-

ractérisant bien les méthodes de résolution pour la découverte des sous-graphes fréquents.

2.3.1 DPalgorithme AGM

L’ algorithme AGM (Apriori Graph Mining), proposé par Inokuchi et al. (Inokuchi et al.,
2000), est un des premiers algorithmes développés pour la découverte de sous-graphes
fréquents. Cet algorithme emploie une stratégie de recherche en largeur pour obtenir les
sous-graphes fréquents dans la base de données, qui sont induits mais pas nécessairement
connexes. Tout comme 1’algorithme APRIORI, 1’algorithme AGM, détaillé a la figure
2.5 procede niveau par niveau, en commencgant avec les sous-graphes contenant un seul
sommet, et génére a chacun des niveaux suivants un ensemble de sous-graphes candidats
contenant un sommet de plus qu’au niveau précédent. Egalement comme 1’algorithme

APRIORI, AGM vérifie la fermeture descendante de ces candidats.

Génération des candidats

La génération des candidats dans AGM est semblable a celle de ’algorithme APRIORI
pour les ensembles fréquents d’items. Dans le cas d’AGM, un sous-graphe candidat de
k+1 sommets est créé a partir de deux sous-graphes fréquents de £ sommets, qui ne
different que d’un seul sommet et ses arétes incidentes. Soit deux graphes dirigés de &
sommets, Gy et Hy, dont les matrices d’adjacence sont :

A, = A1 @ et By = Bi-1 b

T T
az' Qg by
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Algorithme AGM

Entrées: Un base de données graphiques D et un seuil minimom de support $p,in.
Sorties: Les sous-graphes fréquents F dans D.

F:=10;
C1 := les sommets étiquetés de D ;
k==1;

tant que C;, # { faire

pour chaque graphe G € C,, faire
si | {G' € D| G C G} > smin alors Fy := F, U{G};

F=FUF;
Cr41 = AGM-gen (Fk) ;
k:=k+4+1;

retourner F ;

Procedure AGM~-gen (F3)
Entrées: Les sous-graphes fréquents du niveau courant Fy.
Sorties: Les sous-graphes candidats du niveau suivant Cy, 1.

Ck+1 =103
pour chaque paire de graphes Gy, Hj, € Fy, faire
. A1 o ) ( Bir_1 b )
Soit Ay = et By = ,
k ( as’  agk k bo' bk
les matrices d’adjacences de Gy, et Hy ;
si Ay < By et Ap_1 = By, alors

pour chaque paire d’étiquettes l1,lo € L faire
Créer le graphe G, ayant pour matrice d’adjacences

Ag1 a1 by
My =1 a2’ aw b |;
by ly bk
ajoute := vrai ;
pour chaque sommet v de Gy 1 faire
Soit Sj, le graphe obtenu en retirant v de G et ses arétes incidentes;
si B Hy, € Fy t.q. canon(Gy,) = canon(Hy,) alors ajoute := faux ;

si ajoute = vrai alors Cry1 := Cry1 U{Gry1}:
retourner Cy,1 ;

Figure 2.5 L’algorithme AGM pour la découverte des sous-graphes fréquents, et sa
procédure AGM-gen pour la génération des sous-graphes candidats.
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Si les matrices d’adjacence Ay et B; sont identiques a I’exception des éléments de la
k-éme rangée et colonne, i.e. A,_; = Bj_, elles sont jointes pour former la matrice

d’adjacence suivante :

My = as’ ap, L

ou les éléments [; et [ sont indéterminés. En somme, M., correspond a un graphe de
k+1 sommets contenant G, et Hy, et dont les deux sommets qui différent dans ces deux
graphes, sont reliées ou non par une aréte d’étiquette quelconque. Soit L(Gy) et L(Hy,)
les ensembles contenant les étiquettes des arétes de G, et Hy, ily a |L(Gy) U L(Hy)|+1
valeurs possibles pour les éléments [; et [, (la valeur supplémentaire est pour le cas otl
les deux sommets ne sont pas reliés). Par conséquent, I’'union de G, et H;, entrainera la
création de (|L(G}) U L(Hy)| + 1)? sous-graphes candidats différents. Par ailleurs, si
G, et Hy, sont des graphes non-dirigés, 1’union de leur matrices d’adjacence donnera la

matrice symétrique suivante :

Ak—l a b
Mk+1 = aT Ark {
b' I b

Comme il n’y a plus qu’un seul élément indéterminé [, le nombre de sous-graphes can-
didats générés, dans ce cas, ne sera que |L(Gy) U L(Hy)| + 1. La figure 2.6 montre la
génération d’un sous-graphe candidat a 4 sommets, a partir de deux sous-graphes dirigés
de 3 sommets, ayant X, Y, Z comme étiquettes de sommets, et s, £ comme étiquettes
d’arétes. Les lignes pointillées signifient que 1’aréte correspondante peut €tre absente ou
présente, et dans le dernier cas, que son €tiquette est indéterminée. Selon la valeur que

prennent ces arétes, on peut ainsi créer 9 sous-graphes candidats différents.

On remarque, par ailleurs, que la matrice d’adjacence, obtenue lors de I’union de G, et
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Figure 2.6 (a) La jonction de deux graphes dirigés de 3 sommets par I’algorithme AGM,
et (b) la jonction au niveau des matrices d’adjacence.

H,, dépend de I’ordre dans lequel on considere ces graphes, i.e. Ay + By # By + Ax.
Cependant, les matrices obtenues selon un ordre ou son inverse représentent deux auto-
morphismes du méme graphe. Pour éviter d’engendrer deux fois le méme sous-graphe
candidat, AGM impose ainsi que G, et H soient joints seulement si la chaine obtenue
en concaténant les éléments de Ay est lexicographiquement inférieure a celle obtenue
pour By, noté¢ A, < B. Enfin, pour vérifier qu’un sous-graphe S, du graphe Gy,
est bel et bien fréquent, on calcule son code canonique, noté canon(Sy), en trouvant
la permutation des sommets pour laquelle la chaine obtenue de la matrice d’adjacences
permutée est minimale. On vérifie ensuite qu’il existe un sous-graphe fréquent de Fy

ayant le méme code canonique.

Calcul du support

Apres avoir généré les sous-graphes candidats, on doit déterminer lesquels de ces candi-
dats sont fréquents, en calculant leur support dans la base de données. La stratégie uti-
lis€e par AGM pour accélérer le test d’isomorphisme de sous-graphe consiste a réutiliser

certains des calculs faits aux étapes précédentes. Considérons, par exemple, la tiche
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de déterminer si le graphe G5 de la figure 2.7(b) est isomorphe a un sous-graphe du
graphe G; montré en (a). L’arbre de recherche associée a cette tiche, ol chaque niveau
représente 1’association d’une paire de sommets, est présenté a la figure 2.8. En suivant
la numérotation, le premier isomorphisme que ’on trouve associe u; a vz €t ug a vy.
Supposons maintenant que 1’on veuille déterminer si le graphe (G5, montré en (c), est
isomorphe a un sous-graphe de GG;. Comme Gs C Gj3, on peut réutiliser le travail fait
pour G9. Ainsi, puisque la portion de 1’arbre de recherche située a gauche du chemin
v3-v; ne mene a aucun isomorphisme pour G5, elle ne ménera a aucune solution pour
Gj. On peut alors débuter la recherche d’un isomorphisme pour G5 a partir de ce che-
min. Utilisant cette stratégie, on trouve un isomorphisme de G a un sous-graphe G; qui

associe Uy a v, Uy A Uy, €t U3 A Vg

(©) G

Figure 2.8 L’arbre de recherche correspondant la recherche d’un sous-graphe du graphe
G de la figure 2.7 isomorphe a Gs.
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2.3.2 DP’algorithme FSG

Développé par Kuramochi et Karypis (Kuramochi et Karypis, 2001), I’algorithme FSG
(Frequent Sub-Graph mining), tout comme AGM, utilise la recherche en largeur et le
principe Apriori pour trouver les sous-graphes fréquents de la base de données. Cepen-
dant, alors qu’AGM obtient des sous-graphes induits qui sont connexes ou non, FSG
obtient les sous-graphes connexes fréquents pouvant étre induits ou non. Au plus haut
niveau, I’algorithme FSG est similaire # AGM. A partir d’un ensemble de sous-graphes
candidats initial, FSG alterne entre une phase d’évaluation des candidats, ol la base de
données est traversée pour calculer le support des candidats, et une phase de génération
de candidats. A la différence d’ AGM qui spécialise les graphes en leur ajoutant un som-
met, I’algorithme FSG génere a chaque niveau des sous-graphes candidats ayant une

aréte de plus.

Génération des candidats

Comme dans AGM, la génération des sous-graphes candidats dans FSG se fait en combi-
nant deux sous-graphes fréquents partageant une structure commune. Soit GG, et Hy, deux
graphes de £ arétes, un noyau pour Gy, et Hj, est un sous-graphe N;_; de k-1 arétes qui
est inclus dans ces deux graphes, i.e. Ny_; C G et Ny_; C Hy. Un sous-graphe candi-
dat G4, de k+1 arétes est généré de deux graphes Gy, et Hy, si ces graphes partagent un
noyau Ny_;. Tout comme AGM, la jonction de deux sous-graphes Gy et Hy dans FSG
produit plusieurs sous-graphes candidats différents. La différence entre ces candidats
peut se produire pour trois raisons, iltustrées a la figure 2.9. Premiérement, la différence
entre le noyau et les deux graphes peut étre une paire de sommets u et v ayant la méme
étiquette dans les deux graphes, mais rattachés au noyau a des endroits différents. Ce cas,
montré en (a), entraine la création de deux candidats, selon si on considére les sommets

u et v comme distincts ou non. Ensuite, le noyau peut avoir plusieurs automorphismes,
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tel que montré en (b). Il existe, dans ce cas, plusieurs fagcons d’associer les sommets
des sous-graphes correspondants au noyau de G et Hy, chacune donnant un candidat
différent. Dans le pire cas, si le noyau est une clique ayant n sommets de méme étiquette,
le nombre de candidats différents générés sera n!. Finalement, il peut y avoir plus d’un
noyau commun entre G, et Hy, tel que montré en (¢). Dans ce cas, on doit traiter chaque
noyau séparément. Comme chaque noyau a une aréte de moins que G, et Hy, il y aura

au plus k-1 noyaux partagés par ces deux graphes.

o
+
e
i:i\?
o T

I
S
e =
N
N
N

X X

(©)

Figure 2.9 Trois raisons expliquant la création de candidats différents dans FSG : (a) les
graphes ne différent que par une paire de sommets de méme étiquette, rattachés au noyau
a des endroits différents, (b) le noyau possede plusieurs automorphismes, et (c) il existe
plusieurs noyaux communs aux deux graphes.

La figure 2.10 montre, avec plus de détails, la procédure de I’algorithme FSG pour la
génération des sous-graphes candidats de k+1 arétes, a partir des sous-graphes fréquents

de k arétes. Pour chaque paire de sous-graphes fréquents Gy, et H, telle que code(Gy) <
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code(Hy), ot le code est une fois de plus obtenu en concaténant les éléments de la
matrice d’adjacences, et pour chaque noyau Ny_; commun a Gy et Hy, la procédure
génere I’ensemble des automorphismes de NV_;. Ensuite, pour chacun de ces automor-
phismes, un candidat G}, ayant k+1 arétes est généré tel qu’expliqué précédemment.
La procédure vérifie ensuite que G, 1 n’est pas isomorphe a un candidat déja généré en
calculant son code canonique, i.e. le code minimal pour toute permutation des sommets,
et en le comparant a celui des candidats présents dans C., ;. S’il s’agit bien d’un nouveau
candidat, la procédure s’assure que G satisfait la fermeture descendante. Cette étape
est faite en calculant le code canonique de chaque sous-graphe Sy, produit en retirant une
aréte de Gr11, et en le comparant avec ceux des graphes fréquents de F;. Finalement, si

G+ satisfait la fermeture descendante, il est ajouté a I’ensemble des candidats Cy, ;.

Par ailleurs, ’algorithme FSG emploie une technique particuliere pour identifier les
noyaux communs aux graphes Gy et Hj. Cette technique exploite le fait qu’on peut
conserver le code canonique de chacun des % sous-graphes de Gy, et Hy, créés en retirant
une aréte. On peut alors comparer un a un les codes canoniques des sous-graphes de G,
et Hy, et conserver les paires de représentations identiques. Ces paires de représentations
identiques correspondent aux noyaux. En supposant que les codes canoniques des sous-
graphes de G, et Hy ont déja été calculés a une étape précédente, cette technique nécessite

en tout k% comparaisons.

Calcul du support

La stratégie employée par FSG pour le calcul du support consiste a conserver, pour
chaque sous-graphe fréquent G, € Fy, ’ensemble des graphes de D le supportant,
ie. {G' € D| Gy C G'}. Lorsqu’on doit calculer le support d’un graphe G4, on
identifie d’abord I’intersection des ensembles de graphes supportant chacun des k+1

sous-graphes Si de G, créés en lui retirant une aréte. Puisque le nombre de graphes
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Procedure FSG-gen (Fy)

Entrées: Les sous-graphes fréquents du niveau courant F.
Sorties: Les sous-graphes candidats du niveau suivant C ;.

Ck+1 =0

pour chaque paire de graphes Gy, Hy, € Fy, faire
si code(Gy,) < code(Hy) alors
N :={Np_jdek—1arétes | Ny_; C Gy et Ny_1 C Hp};

pour chaque noyau N;_; € N faire
pour chaque automorphisme ¢ de Ny,_, faire
Créer un candidat G 1; a partirde Gy, Hy et ¢ ;
si P C?;CH € Ck+1. t.q. canon(Gyy1) = canon(Gy ) alors
ajoute := vrai ;

pour chaque aréte e de G4, faire
Soit S}, le graphe généré en retirant e de G4 1 ;
si § Hy € Fy, t.q. canon(Sy) = canon(Hjy,) alors
ajoute := faux ;
si ajoute = vrai alors Cpi1 := Cpyq U{Gra1}:
retourner Cy 1 ;

Figure 2.10 La procédure de génération de sous-graphes candidats de 1’algorithme FSG.
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dans Uintersection est une borne supérieure sur le support de Gy, on peut éviter de
calculer le support de GG si ce nombre est en dessous du seuil minimum de support

Smin-

2.3.3 L’algorithme GSPAN

Les algorithmes AGM et FSG, basés sur une recherche en largeur utilisant le principe
Apriori, souffrent d’importants problémes liés a cette approche. Ainsi, comme ces algo-
rithmes doivent générer et maintenir un trés grand nombre de candidats, pour la plupart
infréquents, I’espace nécessaire pour conserver ces candidats, et 1’effort requis pour tes-
ter si ces candidats sont fréquents limitent la taille des bases de données pouvant étre
traitées. L’algorithme GSPAN (Graph-based Substructure PAtterN mining), proposé par
Yan et Han (Yan et Han, 2002), élimine la génération de candidats & I’aide d’une re-
cherche en profondeur d’un espace hiérarchique, oli chaque noeud correspond au code
d’un graphe. En associant a chaque graphe un code sous la forme d’une séquence dont la
nature sera précisée plus loin, la tiche de trouver les sous-graphes fréquents d’une base
de données équivaut alors a une exploration dans 1’espace des séquences. De plus, si
cette exploration est faite selon I’ordre lexicographique des séquences, on peut élaguer
tous les noeuds qui n’ont pas un code canonique, puisque le noeud de code canonique

correspond & un graphe isomorphe déja exploré.

La figure 2.11 illustre I’approche utilisée par GSPAN. Cette figure montre I’espace hié-
rarchique formé d’un arbre ou chaque noeud correspond au code d’un graphe, et chaque
branche au prolongement, avec une aréte, du graphe correspondant. Ainsi, chaque niveau
de cet arbre contient le code de graphes ayant une aréte de plus qu’au précédent, et la

racine ‘L’ correspond au code d’un graphe sans sommet ni aréte. Cet arbre contient les
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codes de deux graphes isomorphes G, et G, tels que

canon(G, ) = code(Gy) < code(Gy).

Comme le code de GG, est inférieur a celui G5, le noeud correspondant a G, sera néces-
sairement exploré avant celui de G». De plus, puisque G5 n’a pas un code canonique, le

noeud correspondant a ce graphe sera élagué durant la recherche.

m arétes
2 arétes
1 aréte

0 aréte

4

Figure 2.11 Un exemple d’un espace hiérarchique et d’élagage de noeuds non cano-
niques.

L algorithme GSPAN est montré plus en détails a la figure 2.12. Cet algorithme, qui recoit
en parametres une base de données D ainsi qu’un seuil minimum de support $,,i,, €t
retourne I’ensemble F des sous-graphes fréquents dans D, commence par identifier les
ensembles d’arétes fréquentes Ex et infréquentes E7 dans D. Selon le principe Apriori,
un graphe contenant une aréte infréquente est nécessairement infréquent. Ainsi, GSPAN
peut retirer les arétes infréquentes E7 de tous les graphes de D, sans risque d’éliminer
un sous-graphe fréquent. Ensuite, suivant un ordre croissant de code, chaque aréte e €
Er est explorée avec la procédure explore. Cette procédure retourne 1’ensemble des
sous-graphes fréquents qui sont les descendants de ce noeud, qui sont situés dans la
branche de I’arbre de recherche commencgant a ce noeud. Ces sous-graphes fréquents
sont alors ajoutés a F. Puisque tous les sous-graphes fréquents contenant I’aréte e ont

été trouvés, GSPAN peut retirer cette aréte de tous les graphes de D. L’algorithme termine
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en retournant JF.

La procédure récursive explore, qui est responsable de I’exploration en profondeur de
’arbre de recherche, regoit en parametres D, s.,in, ainsi qu’un graphe Gy, de k arétes, et
retourne les sous-graphes fréquents F;, descendants de G. Cette procédure vérifie tout
d’abord si le code de Gy, est canonique. Si ce n’est pas le cas, le graphe isomorphe a G,
de code canonique a déja été exploré, et il est inutile d’explorer Gy. Par contre, si le code
de G|, est bien canonique, la procédure ajoute ce graphe a JFy, puis génere I’ensemble
Ci+1 des sous-graphes obtenus en prolongeant d’une aréte Gy avec la procédure pro-
longe. En suivant I’ordre lexicographique croissant de leur code, le support de chaque
sous-graphe Gy € Ciyq dans D est calculé. Si ce support est au moins $,;,,, le noeud
de ce graphe est exploré avec un appel récursif a la procédure explore, et les sous-graphes

fréquents retournés par cette procédure sont ajoutés a F;,. Sinon, le noeud est €lagué.

2.3.4 Le code DFS

La caractéristique la plus importante de 1’algorithme GSPAN est la maniere dont les
graphes sont codés. Ce code repose sur le concept d’arbre de recherche en profondeur,

appelé arbre DFS :

Définition 4 (Arbre DFS). Soit G = (V, E, l,,l.) un graphe étiqueté simple ayant un
ordre sur ses sommets, i.e. v; < v;, 1 <1 < j < |V, un arbre DFS pour Depth-First
Search, est un arbre produit par I'exploration en profondeur de G en suivant [’ordre
des sommets. Soit T' un arbre DFS pour G, on nomme racine de T' le premier sommet
exploré, i.e. le somiet vy, et sommet extrémal le sommet exploré en dernier, i.e. le
sommet vyv|. De plus, on appelle chemin extrémal la chaine de sommets et d’arétes

allant de la racine au sommet extrémal.

La figure 2.13 montre un graphe étiqueté (a), ainsi que trois arbres DFS, (b), (c) et
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Algorithme GSPAN

Entrées: Un base de données graphiques D et un seuil minimum de support Spy,.
Sorties: Les sous-graphes fréquents F dans D.

Soit Er et E7 I’ensemble des arétes fréquentes et infréquentes dans D ;

pour chaque graphe GG € D faire
E(G):= E(G)\ E1:

F:=0;

pour chaque aréte e € Er, en ordre croissant de code faire
Soit GG; le graphe contenant que ’aréte € ;
F :=F Uexplore (D, smin, G1) ;

pour chaque graphe G € D faire
E(G) := E(G) \{e};
retourner F ;

Procedure explore (D, Spin, G)

Entrées: Une base de données graphiques D, un seuil minimum de support $pn, €t un
graphe G,
Sorties: Les sous-graphes fréquents Fj, descendants de G,

Fr = /] ;

si code(Gy) = canon(Gy) alors
Fi = FrU{Gr};
Cry1 :=prolonge (D, Gy) ;

pour chaque enfant Gy1 € Ciy1, selon I'ordre croissant de leur code faire
si {G € D | Gry1 C G} > Smin alors
Fr = FrUexplore (D, smin, Grt1)
retourner Fy, ;

Figure 2.12 L’ algorithme GSPAN pour trouver les sous-graphes fréquents d’un ensemble
de graphes étiquetés
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(d), produit par une recherche en profondeur selon un ordre différent des sommets de
(a). Les lignes pleines en (b), (¢) et (d) correspondent aux arétes des arbres DFS. On
constate qu’un graphe peut avoir un nombre exponentiel d’arbres DFS. Par ailleurs, un

arbre DFS permet de définir un ordre sur les arétes d’un graphe.

Figure 2.13 (a) Un graphe étiqueté et (b)-(d) plusieurs arbres DFS. Les arétes arricre
sont en pointillé.

Définition 5 (Ordre sur les arétes). Soit G = (V, E,l,,l.) un graphe étiqueté simple et
T un arbre DFS pour G, I’ensemble des arétes avant, noté E r, contient les arétes de G
qui sontdans T, i.e. ENT. De méme, I’ensemble des arétes arriére, noté Ey, , contient

les arétes de G qui ne sont pas dans T, i.e. E\ T. Suivant la définition de T, on a

Ef’T = {(’Ui,’Uj) ek | 1 < ]}
Eb,T = {('Ui7vj) ek | 7 > ]}

Dans les définitions qui suivent, on suppose que e; = (v;,,v;,) et ea = (v;,,Vj,). On

peut définir, a I’aide de T, un ordre linéaire <1 sur les arétes de E selon trois cas :

1. e € Ef;_r et es & EfyT N

€1 <1 €3 < J1 < Jo,

i.e. ey est inférieure a e, ssi son sommet terminal est inférieur a celui de e,.
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2. e € Eb,T et ey € quT N

€1 <7 ey iy <o ou iy =1y el j1 < Jo.

i.e. eq est inférieur a ey ssi son sommet initial est inférieur a celui de e, ou, en cas

d’égalité, le sommet terminal de e, est inférieur a celui de e.

3. e € Ef’T, et ey € Eb,T N

€1 <7 € = J1 <o,

i.e. eq est inférieur a ey ssi le sommet terminal de e, n’est pas supérieur au sommet

initial de e.

En somme, I’ordre des arétes de GG se détermine de la maniere suivante. En commencant
avec la racine v; de T' comme sommet courant, on ajoute une aréte avant du sommet
courant vers le prochain sommet dans la numérotation. On ajoute ensuite toutes les arétes
arricre connectant ce nouveau sommet aux sommets déja visités, et on répete avec le
nouveau sommet comme sommet courant. Lorsqu’il n’y a plus de nouveau sommet,
on fait un retour-arriere vers le sommet précédent de I’ordre et on essaie d’ajouter une
nouvelle aréte avant. Le processus se termine lorsqu’on a ajouté toutes les arétes de G.
Iustrons ceci a I’aide d’un exemple. Soit G un graphe étiqueté et 7" son arbre DFS, tels
que montrés a la figure 2.13(b). Les arétes avant de G selon T sont (vy,v3), (va, v3),
(va, vs), (vs3,v4), alors que les arétes arriére sont (v, v1) et (vy, v2). Selon la définition

précédente, 1’ordre des arétes de G est :

(U1,’U2) =<7 (1’27’03) =<7 (1’3;?11) <7 (v3,v4) <7 (v4,02) <7 (V2,V5).

De méme, V’arbre de la figure 2.13(¢) induit I’ordre suivant :

(’U1,U2) <7 (vo,v3) <7 (v3,v1) <7 (v3,v4) <7 (Vg,01) <7 (V1,5).
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Par ailleurs, I’ordre des arétes permet de définir un code pour un graphe étiqueté.

Définition 6 (Code DFS). Soit G = (V, E,l,,l.) un graphe et T un arbre DFS pour
G, on définit un code de recherche en profondeur ou code DFS pour G et T, noté

code(G, T'), comme une séquence
code(e;)code(es) . .. code(eg—1)code(e k),
telle que e; <7 ey, et ont le code d’une aréte (v;,v;) est

(iaj, l’u(v’i)a le(via Uj)’ lU(,Uj)) ’

i.e. le quintuplet contenant les numéros des sommets initial et terminal, I’étiquette du
sommet initial, I’ étiquette de I’aréte, et finalement, I’ étiquette du sommet terminal. L’ordre
linéaire < permet la définition d’un ordre lexicographique sur les codes. Soit deux

codes « et [3 tels que

a = code(Gy,T,) = a1as...ap_10p

ﬂ = COdG(Gﬁ, Tﬁ) = ble e bm—lbma

onaa < 3 ssi un des deux cas suivants est vrai :
1L ap=b,1<k<netn<m;
2. 3t,1 <t <min{m,n} t.q. ap =b,1 <k <t, eta, <b.

Finalement, le code canonique d’un graphe G est le plus petit code d’un graphe G,

selon ’ordre lexicographique, pour tout arbre DFS de G.

La figure 2.14 montre les codes du graphe de la figure 2.13(a), générés en utilisant les
arbres DFS montrés en (b), (c) et (d). Selon I’ordre lexicographique qui vient d’étre

défini, le code (d) est plus petit que le code (b), qui est plus petit que le code (c). En fait,
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Aréte  code (b) code (¢) code (d)
el (1,2,X,8,Y) (1,2,Y,s,X) (1,2,X,8,X)
€9 2,3,9,t,X) (2,3.X5X) (2,3.X.5,Y)
e3 3,1,X,5,X) (3,1,XtY) (G, 1,YtX)
€4 3,4X,q2) (34X,q7Z) @G4YLZ)
es 4272tY) @,12Y) (4,1,2,9.X)
eg 2,5Yr72) (1,5YrZ) (35Yr7Z)

Figure 2.14 Les codes provenant des arbres DFS montrés a figure 2.13.
on peut vérifier que le code (d) est le code canonique de ce graphe.

Lors de I’exploration de ’espace de recherche, un graphe est prolongé en lui ajoutant
une nouvelle aréte reliant deux sommets de ce graphe, ou bien un nouveau sommet ainsi
qu’une aréte le reliant & un sommet du graphe. Cependant, comme la séquence des arétes
ajoutées au graphe doit correspondre a un code DFS, une nouvelle aréte ne peut pas €tre
ajoutée n’importe oll. Ainsi, les arétes avant ne peuvent étre ajoutées que sur le chemin
extrémal de I’arbre DFS. De méme, les arétes arriere ne peuvent relier que le sommet
extrémal 4 un autre sommet du chemin extrémal. Considérons, par exemple, le graphe
de la figure 2.15(a), dont les sommets du chemin extrémal correspondent aux cercles
pleins, et le sommet extrémal est identifi€ par “s.e.”. Les prolongements valides a I’aide
d’une aréte arriére partant du sommet extrémal sont montrés en (b) et (c). De méme,
les figures (d) a (g) montrent les prolongements valides a 1’aide d’une aréte avant allant

d’un sommet sur le chemin extrémal vers un nouveau sommet.

2.3.5 Extensions de GSPAN

Le succes important qu’a connu 1’algorithme GSPAN et sa stratégie de recherche basée
sur le code DFS a encouragé le développement d’ autres méthodes basées sur cette stratégie.

Une de ces méthodes, 1’algorithme CLOSEGRAPH proposé€ par Yan et Han (Yan et Han,
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S.C.

Figure 2.15 (a) Un graphe et (b)-(g) quelques uns des prolongements de ce graphe par
GSPAN. Les sommets noircis forment le chemin extrémal se terminant par le sommet
extrémal (s.e.). Les arétes en pointillé représentent les prolongements du graphe.

2003), se limite a obtenir les sous-graphes connexes fréquents qui sont fermés. Dans le
contexte de cet algorithme, un sous-graphe G est dit fermé s’il n’existe aucun super-
graphe G’ O G tel que sup(G’, D) = sup(G, D). L’idée est qu’un sous-graphe G qui
n’est pas fermé est peu intéressant, puisqu’il existe un sous-graphe fermé G’ O G conte-
nant chacune des instances de G dans la base de données. En pratique, seulement une
fraction des sous-graphes sont fermés, ce qui permet de réduire la quantité de données
retournées a I'usager par 1’algorithme. De plus, se limiter aux sous-graphes fermés per-
met, dans certains cas, d’accélérer la recherche en évitant d’explorer des branches de

I’espace de recherche ne menant a aucun sous-graphe fermé.

Un autre algorithme basé sur GSPAN est I’algorithme GASTON (GrAph Sequence Tree
extractiON), proposé par Nijssen et Kok (Nijssen et Kok, 2004). Comme nous 1’avons
déja mentionné, les problemes d’isomorphisme de graphe et de sous-graphe sont moins
complexes pour les graphes ne contenant pas de cycle, tels que les chalnes et les arbres,
du fait qu’il existe des méthodes de résolution efficaces pour ce type de données. Or,
dans bien des cas, la plupart des sous-graphes fréquents de la base de données sont
justement des chaines ou des arbres. GASTON s’inspire de ce principe pour accélérer
I’exploration de I’espace de recherche. Ainsi, les chaines fréquentes sont tout d’abord
obtenues de maniere treés efficace. Ensuite, ces chaines sont prolongées pour trouver les

arbres fréquents. Enfin, les arbres fréquents sont a leur tour prolongés pour trouver les
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graphes cycliques fréquents.

Un dernier algorithme inspiré de GSPAN est I’algorithme DSPM (Diagonally Subgraphs
Pattern Mining), développé par Cohen et Gudes (Cohen et Gudes, 2004). Cet algo-
rithme explore I’espace de recherche a 1’aide d’une variante de la stratégie d’explora-
tion de GSPAN, appelée recherche a préfixe inverse. Alors que la recherche a préfixe
inverse utilise également le code DFS, cette stratégie differe de celle employée par
GSPAN par le fait que les prolongements d’un graphe sont explorés selon 1’ordre in-
verse, i.e. décroissant, de leur code. Ceci garantit que tous les sous-graphes d’un graphe
seront explorés avant ce graphe, ce qui permet de vérifier la fermeture descendante de ce
graphe. Lors de I’exploration, les sous-graphes fréquents rencontrés sont conservés par
DSPM. Ensuite, lorsqu’un graphe est exploré, cet algorithme calcule le code canonique
de chacun de ses sous-graphes connexes, selon la technique employée par GSPAN, et
vérifie qu’il existe, pour chacun de ces sous-graphes, un graphe fréquent ayant le méme
code canonique. En plus de cette stratégie de recherche, 1’algorithme DSPM emploie
également la technique de génération de candidats de la recherche par niveau. Selon les
auteurs, cette stratégie hybride de recherche permet d’élaguer un nombre supérieur de

sous-graphes non-fréquents.

2.3.6 P’algorithme SUBDUE

Les méthodes présentées jusqu’a maintenant utilisent la fréquence comme mesure pour
déterminer si un sous-graphe est intéressant ou non. L’algorithme SUBDUE, présenté par
Cook et Holder (Cook et Holder, 1994), emploie une mesure différente, basée sur I’idée
que la meilleure théorie pour décrire un ensemble de données est la théorie minimisant
le nombre de bits requis pour décrire ces données, un principe connu sous le nom de

longueur de description minimale :

Définition 7 (Longueur de description minimale). Soit G un graphe étiqueté, trouver un



50

sous-graphe G, de G tel que

Guin = argmin{ I (G") + I(G|G")},
G'ca

o I(G") est le nombre de bits requis pour encoder G', et I(G|G") est le nombre de bits
nécessaires pour encoder le graphe G dans lequel chaque instance de G' est remplacé
par un sommet, ainsi que les liens permettant de reconstruire GG a partir de ce nouveau

sommet.

Une fagon naive de calculer le nombre de bits I (G) pour encoder un graphe étiqueté G =
(V,E, L,l,, ) est la suivante. En supposant que chaque étiquette de L est représentée
par un entier, il faut O(|V|log|L|) bits pour encoder les étiquettes des sommets. La
matrice d’adjacence peut ensuite étre utilisée pour encoder les arétes. Si le graphe est
dirigé, il faut O(|V|?log |L|) bits pour encoder les arétes et leur étiquette, sinon il faut
O(w log | L]) bits pour encoder celles-ci. Alors que la longueur de description mi-
nimale présente des avantages sur la mesure de fréquence, cette mesure a le désavantage
de ne pas €tre monotone ou anti-monotone selon la relation de spécialisation. Ainsi,
plus Gin a de sommets, plus le nombre de sommets réduits dans (7, pour chaque ins-
tance de G, sera important, mais moins il sera fréquent donc moins d’instances seront
remplacées dans G. Par ailleurs, puisque cette mesure n’est pas monotone, il n’existe
pas de technique efficace pour élaguer 1’espace de recherche, et on doit souvent avoir
recours a une approche heuristique. Pour surmonter ce probleme, SUBDUE explore ’es-
pace de recherche a I’aide d’une stratégie de recherche heuristique par faisceau, un type
de recherche arborescente dans laquelle on explore qu'un nombre réduit de branches a
chaque niveau, donné par la largeur du faisceau. De méme, SUBDUE utilise une méthode
heuristique de résolution pour le probleéme d’isomorphisme de sous-graphe, permettant
de trouver en temps polynomial un sous-graphe maximisant le critere de longueur de

description minimale.
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La figure 2.16 donne une description de haut niveau de I’algorithme SUBDUE. Au lieu
d’avoir en parameétre une base de données renfermant plusieurs graphes, SUBDUE ne
recoit qu’un seul graphe étiqueté GG ainsi qu’une largeur de faisceau M, et retourne un
sous-graphe G,;, € G qui minimise la longueur de description de G. En commengant
avec un ensemble C; contenant tous le sommets étiquetés de G, et a chaque niveau £,
SUBDUE détermine les sous-graphes candidats G; € C, 1 < 7 < M dont la valeur
heuristique, donnée par

f(Gy) = 1(Gy) + I(G|G;),

est parmi les M plus faible. Pour chacun de ces sous-graphes G;, SUBDUE vérifie ensuite
si la valeur heuristique de G est inférieure a celle de Gy, Si c’est le cas, G; devient le
meilleur candidat. Par la suite, SUBDUE ajoute a I’ensemble initialement vide des can-
didats du prochain niveau, Cr,1, tous les sous-graphes engendrés par le prolongement
d’une instance de G; dans G. Le prolongement consiste a ajouter une nouvelle aréte al-
lant d’un sommet de G vers un autre sommet de G, ou vers un nouveau sommet de G.
Apres avoir généré tous les candidats du prochain niveau, SUBDUE partitionne ces can-
didats en classes a I’aide d’une méthode heuristique pour le probléme d’isomorphisme
de sous-graphe. Ainsi, les sous-graphes dont la similarité, obtenue par cette méthode,
est au dessus d’un seuil de tolérance sont mis dans une méme classe. Au niveau suivant,
i.e. k+1, les sous-graphes d’une classe sont considérés comme des instances du méme

graphe. Le processus se termine lorsqu’il n’y a plus de nouveaux candidats.

L’ algorithme SUBDUE permet également de biaiser la recherche afin d’obtenir un sous-
graphe G,;, ayant des caractéristiques particulieres. Ainsi, on peut utiliser une fonction

de colit modifiée -
R

F(G) = F(G') x [ ] regle,(G')*,

r=1
ou R est un ensemble de regles retournant une valeur supérieure ou égale a 1, et e, est

un exposant déterminant I’importance de la regle r. Ces régles permettent, entre autres,
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Algorithme SUBDUE
Entrées: Un graphe étiqueté G et une largeur de faisceau M.
Sorties: Un sous-graphe Gpi, minimisant la longueur de description de G.
f(Gmin) =00
C; := les sommets étiquetés de G;
k=1,
tant que C;, # { faire
Ck—i—l =0 >
Trier les graphes G; € Cy. tel que f(G;) < f(Gj41)s

pour j allant de 1 a min{M, |C;|} faire
Evaluer f(G;) = I(G;) + I(G|G;) ;
si f(GJ) < f(Gmin) alors Gmin = G] )

pour chaque instance G’ de G; dans G faire
Ci+1 = Cky1 U’ensemble des prolongements de G’ dans G ;
Partitionner les sous-graphes de C ; en classes a I’aide d’une méthode heuristique ;
k:=k+1;
retourner G, ;

Figure 2.16 L’algorithme SUBDUE pour trouver un sous-graphe G,;, minimisant la lon-
gueur de description d’un graphe G.
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de biaiser la recherche vers la découverte d’une structure compacte, ou d’une structure

isolée, i.e. dont les instances sont le plus disjointes possibles.

2.4 La génération de conjectures en théorie des graphes

Un des premiers programmes créés dans le but d’automatiser la génération de conjec-
tures en mathématiques est le programme Automated Mathematician (AM), écrit par
Douglas Lenat au milieu des années 70 (Lenat, 1979). Ce programme, qui génére des
relations sur les nombres entiers, a permis, entre autres, de reproduire deux résultats
célebres : la conjecture de Goldbach voulant que tout entier supérieur a 2 puisse s’écrire
comme la somme de deux nombre premiers, ainsi que le théoreme fondamental de
I’arithmétique voulant que tout entier supérieur a 1 s’écrive de maniere unique comme le
produit de nombres premiers. Un autre programme permettant de générer des concepts
en mathématiques pures est le systtme HR (pour Hardy-Ramanujan), développé par
I’équipe de Simon Colton a la fin des années 90 (Colton et al., 1999; Colton, 1999).
Ce puissant programme, qui automatise également la démonstration des conjectures
générées, a réussi ’exploit de générer plusieurs nouveaux théorémes dans les domaines

de la théorie des groupes et la théorie des nombres.

Dans le domaine de la théorie des graphes, un programme précurseur est le systeme
GRAPH développé par Cvetkovic et al., au début des années 80 (Cvetkovic et al., 1981;
Cvetkovic et Pevac, 1983a; Cvetkovic et Pevac, 1983b). Alors que GRAPH ne génere
pas directement de conjectures, il permet de manipuler et visualiser interactivement des
graphes, et d’obtenir la valeur de différents invariants pour ces graphes. Un autre systéeme
permettant de calculer des relations sur les invariants d’un graphe est le programme
INGRID, développé par Brigham et ses collegues durant les années 80 (Brigham et Dut-
ton, 1983). Ce programme calcule des bornes sur la valeur d’un invariant en dérivant

des relations sur cet invariant a partir de relations déja connues. Pour un sommaire des
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résultats obtenus par INGRID, voir (Brigham et Dutton, 1985; Brigham et al., 1989; Bri-
gham et Dutton, 1991). Le systeme Graph Theorist, développé par Epstein a la fin des
années 80 (Epstein, 1988; Epstein et Sridharan, 1991), est un autre systéme permet-
tant de générer de nouveaux concepts a partir d’une base de concepts spécifiques a la
théorie des graphes. Ce systeme est parvenu a déduire des propriétés élémentaires de
certaines classes de graphe, e.g. 1a propriété que tous les arbres sont acycliques. Bien
qu’intéressants, ces systeémes n’ont pas permis, a eux seuls, de découvrir des résultats
qui n’étaient pas connus en théorie des graphes. Les syst¢mes présentés dans les trois
prochaines sections ont permis, en revanche, la découverte d’un grand nombre de nou-

velles relations sur les invariants de graphe.

2.4.1 Le systeme GRAFFITI

Le systeme GRAFFITI, introduit par Fajtlowicz en 1986 (Fajtlowicz, 1987; Fajtlowicz,
1988a; Fajtlowicz, 1988b; Fajtlowicz, 1990; Fajtlowicz, 1995), a permis, a ce jour, de
générer plus d’un millier de conjectures sous la forme de relations algébriques entre
des invariants de graphe, dont une bonne portion est disponible publiquement dans un
document appelé Written-on-the-wall (Fajtlowicz, 2008; Fajtlowicz et DeL.aVina, 2008).
Pour chacune des conjectures s’y trouvant, le document donne également I’état de cette

conjecture : ouverte, réfutée ou démontrée.

GRAFFITI emploie deux bases de données. La premiere contient un ensemble de graphes
particuliers, proposés par différents chercheurs ou ayant servi a réfuter une conjec-
ture produite par le systéme, et la seconde un ensemble de conjectures générées par
le systeme, qui n’ont pu &tre réfutées. Le processus de génération de conjectures de

GRAFFITI comporte, en somme, six étapes :
1. L’usager choisit un invariant pour lequel il aimerait trouver des bornes.

2. Le systéme génére un grand nombre de conjectures sous la forme d’inégalités
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dont le coté gauche est ’invariant choisi a la premiere étape, et le c6té droit est
une relation algébrique (linéaire ou non) sur d’autres invariants. Il évalue ensuite

les deux c6tés de chaque inégalit€ sur tous les graphes de sa base de données.

3. La conjecture est rejetée si elle n’est pas satisfaite pour un graphe de la base de

données.

4. Sinon, le systeme évalue si la relation est intéressante : une relation est intéressante
seulement si elle donne, pour au moins un graphe de la base de données, de stric-

tement meilleures bornes que les relations déja dans la base de relations.

5. Silarelation est jugée intéressante, elle est ajoutée a la base de relations, sinon elle
est mise de cdté jusqu’a ce qu’on ajoute a la base de données un nouveau graphe

pour lequel cette relation est plus forte que toutes les autres.

6. Le systeme vérifie ensuite que, pour chaque graphe de la base de données, il existe
une relation de sa base de relations portant sur le méme invariant, et qui est satis-
faite a égalit€ pour ce graphe. Si c’est le cas, les nouvelles relations générées par
le systeme sont ajoutées a la liste des conjectures 2 démontrer. Sinon, le systeme

retourne a I’étape 2.

2.4.2 Le systeme AUTOGRAPHIX

Un systeme plus récent mais également important est le syst¢tme AUTOGRAPHIX (AGX),
développé par Caporossi et Hansen (Caporossi et Hansen, 2000) a 1a toute fin des années
90. Alors qu’AGX génére également des conjectures ayant la forme de relations algé-
briques sur des invariants de graphe, le probleme est abordé de facon différente : la
génération d’une conjecture est transformée en probleme d’optimisation dont la fonc-
tion objectif est une relation sur les invariants, et 1’espace des solutions est une famille
de graphes. Soit C une classe de graphes, ¢;(G),i2(G),...4(G) un ensemble d’inva-

riants d’un graphe G € C, et py,po,...p; les valeurs ciblées pour ces invariants. La
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tache de trouver un graphe ayant ces valeurs d’invariants correspond ainsi au probléme

de trouver

I
G* € argmin f(@) = 3 |ix(G) — .
k=1

GecC

De méme, soit une conjecture h(G) < g(G), o h(G) et g(G) sont des fonctions sur les
invariants de G, et soit le probleme suivant :

min f(G) = g(G) - h(G).

G e

Si on trouve un graphe G tel que f(G) < 0, la conjecture est réfutée. La méme idée peut
étre utilisée pour suggérer des conjectures. Ainsi, soit i,(G) et i2(G) deux invariants de
G, et soit le probléme suivant :
min f(G) = i(G) - i2(G).

Si on ne trouve aucun graphe G tel que f(G) < 0, cela suggere que i, (G) > i2(G) pour
tout graphe dans C. Par ailleurs, si tous les graphes minimisant f font partie d’'une méme
classe, on peut utiliser cette information pour trouver une démonstration a la conjec-
ture. AGX permet également d’imposer certaines contraintes sur les graphes recherchés,
e.g. les graphes recherchés doivent faire partie d’une classe donnée, en incorporant ces
contraintes dans la fonction objectif. Ainsi, supposons que 1’on cherche un arbre mini-

misant un certain invariant ¢(G), cette tiche peut étre formulée comme le probleme de

frouver

G* € argmin i(G) + M (|n — m — 1| + max{0, D(G) — m}),

T

ol n et m sont le nombre de sommets et d’arétes de GG, D(G) représente le diamétre du
graphe G, et M est une trés grande constante. Ainsi, max{0, D(G) — m} impose que

G soit connexe, car dans le cas contaire D(G) est infini. De méme, si G est connexe,
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|n —m — 1] interdit & G d’avoir un cycle. Par conséquent, ces deux contraintes font en

sorte que tout graphe minimisant la fonction objectif est un arbre.

Pour résoudre ces problemes d’optimisation, AGX emploie une métaheuristique a voi-
sinage variable appelée Variable Neighborhood Search (VNS) (Mladenovic et Hansen,
1997). Cette métaheuristique emploie une méthode de descente a plusieurs voisinages
qui sont considérés tour a tour jusqu’a ce qu’une solution améliorant la solution cou-
rante soit trouvée. Les voisinages utilisés pour les graphes proviennent de combinaisons
de mouvements simples, tels qu’ajouter un sommet ou une aréte a un graphe, ou bien
échanger les arétes de quatre sommets de ce graphe (mouvement 2-opt). Pour sortir des
optimums locaux, VNS perturbe la solution courante avant d’appliquer la méthode de
descente, en lui ajoutant ou retirant un certain nombre d’arétes. Cette perturbation est
augmentée jusqu’a ce que la solution courante soit améliorée, ou on atteigne une limite

fixée d’avance.

Alors que cette approche requiert a 1’usager de fournir au systéme un probléme a opti-
miser, AGX possede également un mode de génération de conjectures totalement auto-
matisé, appelé approche numérique dans (Caporossi et Hansen, 2004). Soit un ensemble
de m graphes pour lesquels on possede la valeur de n invariants. On note X = [Z;;]mxn
la matrice des observations dont chaque rangée renferme les valeurs d’invariants d’un
graphe. Le but est de trouver une base contenant toutes les relations affines de la forme
a1T;1 + a9Tin + ... + apTiy = b, satisfaites pour 1 < ¢ < m. Soit y; la valeur moyenne
des €léments de la j-eme colonne de X, i.e. p; = ?lﬁ Z:’;l Z;j, notons X la matrice des
observations centrées obtenue en enlevant aux valeurs d’une colonne de X la moyenne
des valeurs de cette colonne, i.e. T;; = x;; — p;. Toute relation affine entre les colonnes

de X est une relation linéaire entre les colonnes de X : soit z;; = Y k=1 CxTi + d une
k]
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relation entre les colonnes de X alors

1 m n mn 1 m m mn
HJ_;;Z ZCszk +d ZZCk'Ezmzk+—Zd—ZCkML +d,
i=1 \ k=1 k=1 i=1 i=1 k=1
k] k#j k#j

et ainsi

n n n
Tij = Ty — Wy = E CkTig — Cpflk = E ck (Tik — i) = E Crix
k k

v=1 =1 k=1
k#j k) k#j

1l existe donc une relation linéaire entre les variables centrées, ayant les mémes coeffi-

cients. De plus, soit la matrice de covariance V = [v;]uxn = XX, 0na

m

m n n m mn
Vjp = E T;jZsp = E E Ty | Tix = E @] E TiTy = E CLU.
i=1 =1 1 =1

i=1 \ I= 1= =1

l#] l#5 l#]

Si une relation linéaire existe entre les colonnes de X, cette relation s’ applique également
aux colonnes de V. Enfin, puisque V est une matrice carrée, toute relation entre ses co-
lonnes correspond a un vecteur de son noyau, i.e. un vecteur U tel que VU = 0. Une
base du noyau de V' est donc obtenue en résolvant ce systeme a 1’aide de la méthode
d’élimination de Gauss. Chaque vecteur de cette base donne les coefficients d’une rela-
tion affine entre les variables z;, 1 < 7 < n. Pour calculer le terme constant b de cette
relation, on utilise les données initiales. Enfin, pour obtenir d’autres types de relation
que des formes affines, on peut calculer, pour chaque graphe, de nouveaux invariants ob-
tenus a 1’aide d’opérations non-linéaires sur les n invariants déja connus. De nouvelles
relations peuvent alors étre obtenues en appliquant le procédé venant d’€tre décrit sur

la matrice augmentée de colonnes refermant les valeurs de ces nouveaux invariants, e.g.

2 _
Tintj = T Tignts = l0g(Tij), etc.

Une autre approche automatisant la génération de conjectures, appelée approche algébri-
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que dans (Caporossi et Hansen, 2004), ressemble a la technique employée par INGRID :

1. Trouver les graphes extrémaux ou quasi-extrémaux pour une formule donnée sur

des invariants, i.e. des graphes pour lesquels la valeur de la formule est maximum

ou minimum.

2. Reconnaitre les classes des graphes extrémaux obtenus (cycles, étoiles, cliques,

chemins, arbres, etc.).

3. Obtenir d’une base de relations connues, les relations entre les invariants pour cette
classe de graphes, e.g. relations simples sur le nombre de sommets et d’arétes d’un

graphe.

4. Combiner ces relations pour obtenir de nouvelles conjectures plus fortes que celles

déja connues.

En tout, AGX a permis de générer quelques centaines de conjectures sur les invariants
de graphe. Par exemple, ce systeme a été employé pour obtenir des résultats portant sur
la plus grande valeur propre d’arbres a coloration contrainte (Cvetkovic et al., 2001).
De plus, dans le domaine de la chimie computationnelle, AGX a été utilisé pour obtenir
des bornes sur la connectivité d’arbres chimiques ainsi que sur ’énergie d’un graphe

(Caporossi et al., 1999a; Caporossi et al., 1999b).

2.4.3 Le systeme GRAPHEDRON

Un dernier syst¢tme implémenté récemment par Mélot et al., appelé GRAPHEDRON
(Graph Polyhedron) (Mélot, 2007; Christophe et al., 2008), transforme la tache de trou-
ver les relations affines entre des invariants d’un graphe en celle d’obtenir les facettes
d’un polyedre dans I’espace des invariants. Cette approche, initialement présentée dans
(Caporossi et Hansen, 2004) comme I’approche géométrique, procede de la maniere sui-
vante. Soit un ensemble de k observations, chacune correspondant a un graphe différent

d’une classe donnée de graphes, et pour lesquelles on connait la valeur de p invariants.
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On note z;; la valeur du j-€me invariant calculée sur le ¢-¢me graphe. En considérant,
chaque (1, Z;9, . . ., Z;p) comme un point dans I’espace des invariants a p dimensions,
toute relation affine entre les p invariants, valide pour chaque observation, est un hyper-
plan dans I’espace des invariants pour lequel tous les points sont d’un méme coté. De
plus, étant donné a ;1 + aszi2 +. . . +a,x;, > bune inégalité satisfaite pour 1 <3 < k,
on peut toujours trouver une autre relation de force égale ou supérieure, satisfaite a
égalité pour au moins une observation. En supposant que 1’on posseéde un point pour
chaque graphe de la classe observée, les relations de forces maximales sont donc les
facettes du polyedre consituant I’enveloppe convexe des observations dans 1’espace des
invariants. Une illustration de cette approche, dans le cas de deux invariants 7, et 4o, est

montrée a la figure 2.17.

Figure 2.17 Une illustration de I’approche géométrique de GRAPHEDRON.

Pour que cette méthode produise des relations valides, il n’est pas nécessaire d’avoir
une observation pour chaque graphe de la classe observée. On doit cependant avoir une
observation correspondant a chaque sommet du polyedre, ce qui peut étre fait de deux
fagons. Premiérement, comme les sommets du polyedre correspondent a des graphes
extrémaux, on peut se limiter a chercher ce type de graphe. L’autre solution, employée
par GRAPHEDRON, consiste a produire une observation pour tous les graphes de la classe

ne dépassant pas une certaine taille, e.g. 10 sommets ou moins.
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CHAPITRE 3

DEMARCHE ET ORGANISATION DU DOCUMENT

Ce chapitre présente la démarche employée pour mener a bien les objectifs de cette theése,

ainsi que la structure générale du document.

Comme mentionné dans I’introduction, cette thése comporte quatre buts de recherche.
Premiérement, elle vise a développer de nouvelles techniques permettant d’améliorer
la découverte des sous-graphes fréquents dans les cas ol les graphes possédent peu
d’étiquettes différentes. Le second but de la thése, relié au premier, est d’améliorer la
découverte des patrons fréquents en réduisant le nombre de calculs de support dans
la base de données, sans avoir recours a des structures complexes exigeant beaucoup
de mémoire. Les troisiéme et quatrieme buts portent sur la génération automatisée de
conjectures en théorie des graphes. Il s’agit, dans un premier temps, d’implémenter
des méthodes permettant d’automatiser la génération de conjectures portant sur la ca-
ractérisation par sous-graphes interdits, et, ensuite, d’utiliser ces méthodes pour trouver
de nouveaux théorémes portant sur ce sujet. Les approches proposées pour atteindre ces
buts sont présentées sous la forme de trois articles, correspondant respectivement aux

chapitres 3, 4 et 5 de cette these.

Le premier article, portant le titre “Improving frequent subgraph mining in the presence
of symmetry” (voir (Desrosiers et al., 2007b)), a été soumis pour publication a la re-
vue Journal of Machine Learning Research. Cet article propose un nouvel algorithme,
appelé SYGMA, permettant de trouver de maniére efficace les sous-graphes fréquents
dans un ensemble de graphes possédant un nombre réduit d’étiquettes. L’algorithme
SYGMA se distingue des autres algorithmes pour le méme probleéme par sa technique

d’énumération de graphes. En somme, SYGMA transforme 1’espace de recherche en
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un arbre orient€, a I’aide d’une fonction p associant a chaque graphe GG un graphe pa-
rent unique p(G). L’avantage de cette technique est que ’on posséde une grande li-
berté quant au choix de p, nous permettant ainsi de développer des stratégies efficaces.
Par exemple, SYGMA emploie dans cette fonction de puissants invariants de graphe,
permettant de briser la symétrie associée au nombre réduit d’étiquettes. De méme, un
choix judicieux de la fonction p nous permet de définir des tests rapides pour détecter
les graphes redondants et non-redondants durant I’exploration de 1’arbre de recherche.
Une autre caractéristique de SYGMA est qu’il utilise I’information sur la symétrie d’un
graphe, sous la forme d’équivalences topologiques, i.e. orbites, entre les sommets et les
paires de sommets du graphe. Cette information est employée pour éliminer certains
calculs redondants, entre autres, pour éliminer les extensions équivalentes menant a des
graphes non-fréquents. Dans le but d’évaluer I’efficacité de SYGMA, I’article présente
une section expérimentale ol I’on compare cet algorithme avec un des algorithmes les

plus populaires pour la découverte des sous-graphes fréquents, 1’algorithme GSPAN.

Les travaux présentés dans le second article, intitulé “Using background knowledge to
improve structured data mining” (voir (Desrosiers et al., 2008)), généralisent les tech-
niques décrites dans le premier article. Egalement soumis 2 la revue Journal of Machine
Learning Research, cet article propose une nouvelle approche permettant d’améliorer la
découverte des patrons fréquents, en réduisant le nombre de calculs de support dans la
base de données. Cette approche utilise des connaissances de fond sur les données, sous
la forme d’une heuristique, pour définir la topologie de I’espace de recherche, de sorte
a minimiser le nombre de calculs de support pour des patrons non-fréquents. L’idée est
de définir le parent p(X ) d’un patron X comme le sous-patron ayant le moins de chance
d’étre fréquent, selon I’heuristique. Puisqu’un patron dont le parent est non-fréquent
ne peut étre fréquent, cette technique permet de minimiser le nombre de patrons non-
fréquents explorés. Pour évaluer son efficacité, cette approche est testée sur le probléme

de la découverte des sous-graphes fréquents, dont les résultats sont présentés dans la
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section expérimentale de ’article.

Enfin, le troisieme et dernier article, dont le titre est “Automated generation of conjec-
tures on forbidden subgraph characterization” (voir (Desrosiers et al., 2007a)) porte sur
la génération de conjectures sur la caractérisation par sous-graphes interdits. Cet article,
soumis a la revue Discrete Mathematics, présente cinq nouvelles méthodes dédiées aux

taches suivantes :

1. Trouver des conditions suffisantes pour caractériser une classe de graphes, sous la

forme d’un seul sous-graphe interdit.

2. Trouver des conditions suffisantes pour caractériser une classe de graphes, sous la

forme d’un ensemble contenant plusieurs sous-graphes interdits.

3. Trouver des conditions nécessaires pour caractériser une classe de graphes, sous

la forme d’un seul sous-graphe interdit.

4. Trouver des conditions nécessaires pour caractériser une classe de graphes, sous

la forme d’un ensemble contenant plusieurs sous-graphes interdits.

5. Trouver des caractérisations par sous-graphes interdits pour une classe de graphes

(conditions nécessaires et suffisantes).

La présentation de ces méthodes est faite en deux étapes. On donne, en premier lieu, une
description théorique de ces méthodes, et on démontre quelques unes de leur propriétés.
Puisque ces méthodes nécessitent I’exploration d’un espace infini de graphes, on donne,
dans un deuxieme temps, des techniques pratiques pour implémenter ces méthodes : une
premiére technique employant une métaheuristique, telle que la métaheuristique VNS
dans AGX, et une seconde technique faisant I’énumération complete des graphes ayant
un nombre limité de sommets. Enfin, pour répondre au dernier objectif de cette these,
I’article comporte une importante section expérimentale dans laquelle on emploie ces
méthodes pour générer de nouvelles conjectures sous la forme de conditions suffisantes
et/ou nécessaires pour avoir une caractérisation par sous-graphes interdits. Les classes de

graphes que 1’on cherche a caractériser dans I’article renferment des graphes satisfaisant
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a égalité des relations sur les invariants d’irredondance, de domination et de stabilité (ou

indépendance), formant la chaine de domination (Haynes et al., 1998).
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CHAPTER 4

IMPROVING FREQUENT SUBGRAPH MINING IN THE PRESENCE OF
SYMMETRY

4.1 Introduction

Graph mining is a recent discipline which aims to extract useful knowledge from a large
amount of structured data modeled as graphs. Already, this discipline plays a key role
in important fields like chemoinformatics and bioinformatics, especially in the process
of drug discovery. In the next decade, its importance will undoubtedly increase with the
emergence of new technologies dealing with a greater amount of structured information,
particularly in the Web domain. The discovery of frequent subgraphs is a fundamental
task of graph mining which consists in finding statistically significant sub-structures in
a database of graphs. Different variants of this task exist, depending on the type of
sub-structures we want to obtain. In this paper, we will consider the task of finding the
frequent connected edge induced subgraphs of a database. This problem, known as the

frequent subgraph mining problem, can be formulated as follows:

Definition 1 (Frequent subgraph mining). Given a graph database D, the support of
a graph G in D, written sup(G, D), is the number of graphs in D containing G as an
edge induced subgraph. Given a minimum support threshold s, the frequent subgraph
mining problem consists in finding the connected graphs frequent in D, i.e. the connected

graphs G for which sup(G,D) > Smin.

Several approaches have been proposed for this problem, which can be separated in two
groups: levelwise and depth-first approaches. As their name implies, levelwise mining

techniques, such as AGM developed by Inokuchi et al. (Inokuchi et al., 2000) and FSG
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proposed by Kuramochi and Karypis (Kuramochi et Karypis, 2001), explore the graph
search space level by level, where each level contains graphs that have one more vertex
or edge than the previous one. The frequent graphs of the next level are found by first
generating candidate graphs with pairs of graphs of the current level, and then filtering
out infrequent ones. The main advantage of such techniques comes from the Apriori
principle by which a graph is frequent only if all its subgraphs are. Since a graph is
explored after its subgraphs, it is possible to eliminate infrequent graphs without having
to compute their support, by testing if their immediate subgraphs are frequent. How-
ever, levelwise approaches suffer from two problems: the generation of many redundant
candidate graphs, and the requirement to store the frequent graphs at each level. Depth-
first mining approaches, such as GSPAN proposed by Han and Yan (Yan et Han, 2002),
FFSM by Huan et al. (Huan et al., 2003), and GASTON by Nijssen and Kok (Nijssen
et Kok, 2004), overcome these problems by exploring the graph search space depth-
first. Starting with a graph containing a single frequent vertex or edge, these techniques
recursively extend a graph by adding a new edge between two existing vertices, or a
new vertex connected to an existing vertex. Since a graph is no more frequent than its
subgraphs, there is no need to extend infrequent graphs. Infrequent graphs can thus be
pruned implicitly, without the risk of pruning frequent ones. Various experimental stud-
ies, see (Yan et Han, 2002) for example, have shown depth-first mining approaches to
be superior, in most cases, to levelwise ones, both in terms of computation times and

memory requirements.

The difficulty of the frequent subgraph mining problem arises from two tasks: enumer-
ating all the possible subgraphs of database graphs, and calculating the support of these
subgraphs in the database. Since the vertices of a graph can be ordered in many ways,
a graph can have a great number of topologically equivalent copies, called isomorphic
graphs. To enumerate all subgraphs without redundancy, one must compute the canoni-

cal representation of a graph, which amounts to solving the graph isomorphism problem.
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Furthermore, testing if a graph is contained in a database graph is a well known NP-hard
problem called subgraph isomorphism problem. In nearly all cases, support computa-
tion is the most costly operation of finding the frequent subgraphs of a database. Yet,
the complexity of these tasks is somewhat reduced when the database graphs have added
information in the form of vertex or edge labels. For instance, one can use labels to
limit the vertices that can be paired while testing for subgraph isomorphism. However,
if the database graphs are unlabeled or only have a few labels, then the complexity of
these problems greatly reduces the size of manageable datasets. Thus far, little atten-
tion has been given to such datasets, and current algorithms tend to do very poorly on
them. Still, there are many applications which deal with this type of data, mainly in
the fields of computer vision, where the information is represented as 2D or 3D meshes,
and communication/transportation networks, where the information is mostly topologi-
cal. Moreover, mining unlabeled subgraphs could yield relations in the database that are

both more general and frequent.

In this paper, we present a novel algorithm called SYGMA (Symmetry-free Graph Mining
Algorithm) that improves the task of finding the frequent edge induced connected sub-
graphs of a database containing graphs that have a few or no labels. This algorithm
uses various strategies that reduce the impact of symmetry, caused by the limited num-
ber of labels, on the tasks of enumerating subgraphs and computing their support in the
database. Unlike most algorithms for the same task, ours does not rely on memory-
expensive structures that store graph embeddings, since such a strategy is highly ineffi-
cient in these cases. To illustrate this, consider the embeddings of an unlabeled complete
graph H (i.e., a graph for which all pairs of vertices are connected by an edge) of m
vertices into an unlabeled complete graph G of n vertices. Form = 6 and n = 12,
which are realistic values for this problem, there are as much as (")m! = 665280 em-
beddings of H in G. Also, for the purpose of simplicity, we have limited our algorithm

to deal only with vertex labels. Yet, the techniques presented in this paper could easily
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be extended to mine other types of subgraphs, such as subgraphs with edge labels, or

vertex induced subgraphs.

The rest of this paper is structured as follows. In section 2, we present the details of
our algorithm. In section 3, we give some experimental results that compare, on various
instances, SYGMA to one of the most popular frequent subgraph mining algorithms,
GSPAN. Finally, we conclude this paper with a brief summary of contributions and

results.

4.2 The SYGMA Algorithm

4.2.1 Preliminary concepts

A labeled graph is a tuple G = (V, E, L, 1), where V is a set of vertices, F C V2 a set
of edges, L a set of labels, and [ : V — L is a function that gives a unique label to each
vertex of G. Given two labeled graphs G = (V, E,L,l) and G' = (V',E', L") l'), we
say that G is isomorphic to G’, written G ~ G, iff there exists a bijection ¢ : V — V/,

called isomorphism, such that

1. (u,v) € E < (o(u),p(v)) € F,

2. Yo eV, l{v) = 1(p(v)).

An automorphism is an isomorphism from a graph to itself. Furthermore, a subgraph
isomorphism from G to GG’ is an isomorphism from G to a subgraph of G'. If such an

isomorphism exists, we say that G’ contains G and write G C G'.

Let I be the set of all permutations of V, and let ¢ be a permutation of I'. We write G¥

the graph with vertex set V¥ = V and edge set E¥ = {(u,v) | I(z,y) € Est.u =
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¢(x)andv = @(y)}. The automorphism group of G is the set containing the auto-
morphisms of G, i.e. the set Aut(G) = {¢ € I' | G¥ = G}. The orbits of a vertex
v € V, written Orb(v) is the set of vertices u such that there exists an automorphism
mapping v to u, i.e., Orb(v) = {u € V | Jp € Aut(G)st.u = p(v)}. Simi-
larly, the orbit of a pair of vertices (u,v), written Orb(u,v) is the set of vertex pairs
(@,y) such that there exists an automorphism mapping u to = and v to y, i.e., the set
Orb(u,v) = {(z,y) € V?| Jp € Aut(G) s.t. (u) = x and p(v) = y}. A vertex par-
tition of G is an ordered sequence of pairwise disjoint non-empty sets called cells, the
union of which is V. Given two vertex partitions 77, and 7o, we say that 7; is finer than
o 1f each cell of 7; is a subset of a cell in 79, Furthermore, let  be a vertex partition of
G and u, v be two vertices of G. We denote 7(u) and 7(v) the unique cells containing
vertices u and v, and write m(u) < m(v) if the cell containing « comes befores the cell

containing v in 7. Likewise, we write p(u) < ¢(v) if u precedes v in a permutation .

Automorphisms can be used to solve the graph isomorphism problem. Indeed, we can
determine if two graphs G and G’ are isomorphic by finding the canonical representation

of these graphs and verifying if these representations are identical.

Definition 2 (Canonical representation). Let G be a graph such that |V | = n and A be
the symmetrical adjacency matrix of G. We define a function code that uniquely maps G

to the string produced by concatenating the elements of the upper half of A:

code(G) = (al,g a13a23 ... (l@j Ai 41 - -- a,n~1,n) .

The canonical representation of G is thus the lexicographically smallest code produced
by any permutation of G, i.e., min, code(G¥), and we call canonical permutation of G

any permutation leading to this representation.
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4.2.2 Subgraph Enumeration

The subgraph enumeration strategy used by SYGMA is similar to the one proposed by
Kuramochi and Karypis for their algorithm VSIGRAM (Kuramochi et Karypis, 2005),
although their algorithm is not made for the frequent subgraph mining problem. Like
VSIGRAM, our algorithm uses a partial edge ordering that orders the edges of a graph G

following the rank of their vertices in a canonical permutation of G:

Definition 3 (Canonical edge ordering). Let G be a graph, ¢ be a canonical permutation
of G and e; = (u1,v1), ea = (ug,v9) be two edges of G such that p(u;) < p(vy) and
©(ug) < p(ve). The canonical edge ordering, defined by precedence operator <g, is

such that e; <g es iff Orb(e1) # Orb(eq) and either one of the following is true

L p(ur) < p(uz)

2. uy = ug and ¢(v1) < p(va).

This ordering allows us to transform the search space into a rooted tree by mapping to
each graph G a parent graph p(G) produced by removing from G a non-disconnecting
edge! that is minimum according to <g. If a vertex incident to this edge becomes iso-
lated, i.e. adjacent to no vertex of G, this vertex is also removed from G. Thus, p(G)
is a connected graph that has exactly one less edge, and possibly one less vertex, than
(. The tree resulting from p is then explored depth-first, as shown in Figure 4.1. Start-
ing with a graph G containing a single edge, G is recursively extended until it becomes
infrequent. Let e be the last edge added to (G, a canonical permutation ¢ of G is first
found using MacKay’s NAUTY algorithm (McKay, 1981). In the process, the vertex and
vertex pair orbits of GG are also obtained, with little added cost. Then, using ¢, we find

a minimum non-disconnecting edge e*. If e is not topologically equivalent to e*, i.e. if

'An edge is disconnecting if its removal produces a graph that is not connected.
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Orb(e) # Orb(e*), then we can prune G since another graph isomorphic to G' will be
explored at a different point of the traversal. Note that this is different from the strategy
used by VSIGRAM, where G is pruned if G — {e} ~ G — {e*}, thus requiring one more
graph isomorphism test. Otherwise, we compute the support of G and extend this graph
if it is frequent. For the vertex extensions, we consider for each vertex orbit Oy of G a
single vertex v, and a possible label A. We then extend G into a graph G’ obtained by
adding to G a new vertex of label A and connect this vertex to v. Similarly, for edge
extensions, we consider all orbits of non-connected vertices Og and a single vertex pair
(u,v) in this orbit. We then create a graph G’ by adding to G an edge connecting u and

v.

Proposition 1. By traversing depth-first the rooted tree defined by function p, we can

explore every graph without redundancy.

Proof. To prove that every connected graph G is explored by the traversal, we must show
that there exists a path in the tree from G to the root of this tree. Since all possible vertex
and edge extensions are considered in the traversal, G’ will be explored if its parent is
explored. Furthermore, since the parent of a connected graph is also connected, by re-
cursion, (G has for ancestor the root of the tree, and is therefore reachable. Next, consider
two isomorphic graphs G and GG’. Since the canonical edge ordering is insensitive to ver-
tex permutations, a minimum non-disconnecting edge in G is topologically equivalent
to one in G’. Thus p(G) ~ p(G’), and since we only consider one extension per vertex
or vertex pair orbit, only one of G or G’ will be explored. Therefore, the exploration is

not redundant. O



Algorithm SYGMA

Input: A graph database D and a support threshold ;..

Output: The frequent subgraphs F of D.

F:=0;

foreach vertex label M1 in D do

foreach vertex label Mo in D, \1 < Xy do

Let (G be the graph with two vertices v; and vo of label A; and Ag, and edge
(Ul, Uz) >
F:=FUexplore (D, spmin, G) ;

return F ;

Procedure explore (D, Syin, G)

Input: A graph database D, a support threshold sy, and a graph G.
Output: The frequent extensions F of G.

Let e be the last edge added to GG ;
Compute the orbits of G and a canonical permutation ¢ of G ;
Using ¢, find a minimum non-disconnecting edge e* of G ;

if Orb(e) # Orb(e*) or sup(G, D) < 8, then return () ;
F :={G};

% Vertex extensions

foreach vertex orbit Oy and label A in D do
Let v be a vertex in Oy ;

Let G’ be the graph obtained by connecting a new vertex of label A to v ;
F = FUexplore (D, smin. G') ;

% Edge extensions

foreach non-connected vertex pair orbit Og, do

Let (u,v) be a vertex pair in OF ;

Let G’ be the graph obtained by connecting vertices v and v ;
F = FUexplore (D, spmin, G') ;

return F ;

Figure 4.1 The SYGMA algorithm and its recursive procedure explore.
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Redundant graph detection

While the main lines of our subgraph enumeration strategy are similar to those used
in VSIGRAM, our algorithm stands out with its efficient technique to prune redundant
graphs. This pruning technique uses a procedure that partitions the vertices of a graph
G, as shown in Figure 4.2. The vertices are first ordered by increasing label values and
grouped into cells of equal values, forming a partition 7y. Then, at each iteration ¢, the
current partition 7, is refined by considering pairs of cells V;,V; € 7 and by splitting
Vj using V;. Denote §(v, V;) and 4(v, V;), respectively, the number of non-disconnecting
and disconnecting edges incident to a vertex v and any vertex in V;. The vertices v of
V; are first ordered by decreasing values of §(v, V;) and then by decreasing values of
(v, V;). These vertices are then split into groups of equal values, forming a subpartition
7. If 7’ refines V, i.e. if |7'| > 1, V; is replaced by 7’ in the partition. This process
is repeated until no further refinement is possible. Finally, the partition 7, returned by
this refinement procedure, is used to obtain a canonical permutation of G: when looking

for a canonical permutation of GG, we only consider the permutation of vertices within

the cells of 7. A direct consequence of this is the following proposition:

Proposition 2. Let 7; be the partition of the vertices of a graph G, at any step t of the
refinement procedure, and let p be a canonical permutation of G. For any two vertices

u,v €V, ifm(u) < m(v) then p(u) < p(v).

The pruning technique used by SYGMA detects non-minimum extensions while refining

the vertex partition, as described in the following proposition.

Proposition 3. Let G be a graph, let 7y be the partition of the vertices of G at any
step t of the refinement procedure, and consider any edge e; = (uy,v1) of G, such that
m(u1) < m(v1). Edge ey is non-minimum in G, following <g, if there exists a non-
disconnecting edge ey = (ug,v2) such that my(ug) < 7 (v2), and if either one of the

following applies
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Refinement procedure

Input: A graph G.

Output: A refined partition of V.

Let 7 be the initial partition s.t. Vu, v € V, w(u) < 7(v) iff I(u) < I(v);
t:=0;

repeat
T41 = Tt 5
t=t+1;

foreach cell V; € 7, do
foreach cell V; € m; s.t. |V;| > 1 do
Let 7’ be the subpartition of V; s.t. Vu, v € V;, 7'(u) < #'(v) iff

if 7’| > 1 then replace cell V; by 7’ ;

until 7, = w1 or |7 = |V ;

return 7; ;

8(u, V;) > 6(v, Vi) or (6(u, Vi) = (v, V) and §(u, Vi) > (v, Vi));

Figure 4.2 A procedure to find a refined vertex partition.
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1. m(ug) < my(uy)

2. m(ug) = m(uy) and m(vs) < m(vy).

Proof. We prove cases (1) and (2) separately.

1. Following Proposition 2, we have that ¢ (u2) < ¢(u1). Moreover, following Defi-

nition 3, we have e; <g e; and thus e; is not minimum.

2. (a) If there is a vertex w € V such that (u;, w) is a non-disconnecting edge and
7 (w) < my(v), then, following Proposition 2, we have that p(w) < ¢(v;). More-
over, following Definition 3, we have (u;, w) <g e; and thus e; is not minimum.
(b) Else, assume there is no vertex z € V such that (u, z) is a non-disconnecting
edge and such that m;(z) < 7;(v9), otherwise use x instead of v, in what follows.
Let V;, ¢ = m(vq), be the cell containing vy, and let V}, j = m(u;) = m(ug), be

the cell containing vertices u; and uy. We have that

O(ua, Vi) = 0(u, Vi) =0 , fork <1
S(up, Vi) > 1> 0=6(us, V) , fork =i

Thus, the partition 7’ produced by splitting V; with V; will be such that 7' (us) <
7'(u;) and, following Proposition 2, we have that ¢(uy) < ¢(u;). Moreover,

following Definition 3, we have e; <g e; and thus e; is not minimum.

Non-redundant graph detection

Like in most graph mining algorithms, the techniques used by SYGMA to detect redun-

dant graphs help avoiding many costly isomorphism tests. These techniques, however,
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are of no help when dealing with graphs that are not redundant. Unlike other graph min-
ing algorithms, SYGMA can also detect non-redundant graphs without any isomorphism
test, as described in the next proposition. The proof of this proposition, related to the fact

that all the vertices within two separate cells are either connected or not, can be found in

(McKay, 1981).

Proposition 4. Let wp be the vertex partition returned by the refinement procedure for a
graph G, and let m be the number of cells of T that are trivial, i.e. that contain a single
vertex. If G is not pruned by Proposition 3, then G is not redundant if the following

conditions are satisfied:

L |rr)—m <2

2. [V —=m <5,

i.e. wp should have at most 2 non-trivial cells and G should have at most 5 non-trivial
vertices. If these two conditions are met, then the vertex orbits of G are simply the cells
of mr. Similarly, the vertex pair orbits can also be obtained directly from wr. Consider
any two edges e¢1 = (u1,v1) and es = (U9, v9) of G. Suppose, without loss of generality,
that 7r(uq) < wr(v1) and 7p(us) < 7r(ve). The orbits of non-connected vertex pairs

are such that Orb(ey) = Orb(es) iff mr(ur) = wr(usz) and nr(vy) = 7p(ve).

Although it seems that the conditions of Proposition 4 only apply to very specific cases,
the reality is that most graphs satisfy these conditions, especially labeled graphs. In fact,
as we will see in the experimental section, no isomorphism test is needed for graphs of

five or less vertices, regardless the number of vertex labels of these graphs.
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0| (1234567)

1| (456]3[2/17)
2 | (45]6|3]2|7]1)

(b)

Figure 4.3 (a) A graph and (b) its vertex partition at step ¢ of the refinement procedure.

An illustrative example

In this section, we illustrate the subgraph enumeration strategy of SYGMA using a small
example. Consider the graph shown in Figure 4.3(a), and its vertex partition at each
step t of the refinement procedure, shown in (b). This graph, that we denote by G,
has only one disconnecting edge: (2,3). Since G is unlabeled, the first partition g
groups all its vertices into a single cell. These vertices are then sorted by decreas-
ing number of non-disconnecting edges, and the result sorted by decreasing number
of disconnecting edges. Then, the vertices are grouped into cells of equal value, giv-
ing the partition m; = (456|3|2[17). At step t = 2, cell (17) is first split using cell
(456) into the subpartition (7|1). Cell (456) is then split using cell (3) into subparti-
tion (45|6), yielding mo = (45|6|3|2|7|1). Finally, this partition cannot be refined any
further, and the refinement procedure returns 7,. Since a canonical permutation ¢ only
permutes the vertices within the cells of this partition, the minimum non-disconnecting
edge, i.e. the first non-disconnecting edge encountered while following ¢, will nec-
essarily be (4,5). Suppose that the last edge added to G is (3,4). Atstept = 1,
we have m(4) = m(5) = 1 < 2 = m(3) and, following case (2) of Proposition
3, (4,5) is a smaller non-disconnecting edge than (3,4), in any canonical permuta-
tion. Therefore, GG is redundant and can be pruned. However, if the last edge added

to G is (4,5), the refinement procedure will then go on without G being pruned. In
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this case, the partition 7o, returned by the refinement procedure, has one non-trivial
cell containing two vertices, cell (45). Thus, following Proposition 4, G is not re-
dundant. Furthermore, the first vertices of each cell of 7, can be used as the repre-
sentatives of the vertex orbits of G, i.e. the set {4,6,3,2,7,1}. Finally, we obtain
the representatives of the non-connected vertex pair orbits by taking, for each pair of
cells V;,V; € my, a pair of non-connected vertices (u,v) where u € V; and v € V:

{(47 2)’ (47 7)7 (4? 1)’ (6’ 3)a (6: 2)7 (6’ 1)’ (3’ 7)7 (3a 1)7 (25 7)a (7v 1)}

4.2.3 Support calculation

As mentioned previously, the important symmetry caused by the reduced number of
labels prohibits the use of complex structures to store subgraph embeddings. Instead
of relying on such structures, our algorithm solves the subgraph isomorphism problem
directly, using a simple subgraph matching method. However, since finding a subgraph
isomorphism is a rather complex task, and since our algorithm has to complete this task
quite often, we employ some further strategies to calculate the support of a subgraph as

efficiently as possible.

Matching constraints

The first strategy is used within the subgraph matching to prune the search space. Sup-
pose we need to determine if a graph G = (V, E, L, 1) isasubgraphof G’ = (V' E' L', 1)
and let v be a possibly partial mapping of V to V', called matching. Let v € V be any
vertex, we define N(v) (resp. N'(v)) as the set of vertices adjacent to v in G (resp.
G’). Moreover, we define L(A) (resp. L'(\)) as the vertices of G (resp. G') which have
label . We also define M (v) and M (v) (resp. M'(v) and M (7)) as the vertices of G

(resp. G’) matched and unmatched under ~. The following proposition gives necessary
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conditions for two vertices to be matched.

Proposition 5. Let v € V, v' € V' be two vertices. The pair (v,v') is a candidate to

extend a matching v if the following conditions are respected:

1. ve M(y)andv' € M/(v).
2. Yv) =U(".
3. Yu e Nw)NM(y), v(u) € N'(v').

4. VA€ L, INw) NI N()| < [N AL NI ()]

The first two conditions are rather trivial, stating that vertices v and v should not already
be matched under ~, and that they should have the same label. The third condition
imposes 7y to be a subgraph isomorphism, i.e., for all vertices of G adjacent to v and
matched under ~, the corresponding vertex in G’ should be adjacent to ¢’. Finally, the
last condition verifies that the matching can be extended, i.e., that for every vertex label
A, there are at least the same number of unmatched vertices of label X adjacent to v’ as

there are adjacent to v.

Avoiding redundant calculations

The next strategy exploits previous calculations to limit the search of a new subgraph
isomorphism, and is based on the fact that vertices are matched in a static order. Let
v = {(u,v1),. .., (Um,vm)} and v = {(uf,v)), ..., (ul,v),)} be two matchings such
that m < n, we define a lexicographic order on matchings <, such that v <,; ' iff

either one of the following applies

u; = wj and v; = v}, i<k
1. 3k, 1 <k<m, st
/

u; < uior (u; =u,andv; <o), i=k
1 T 1 1
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2. u; = ) and v; = ’U’-, 1<+ <m,andm < n.
i -
i 1 )

Proposition 6. Let v be the minimum subgraph matching of a graph G into a graph H
according to <, and let G' be the extension of G with edge e. Any matching ' of G’

into H is such that v <p; .

Proof. We prove this by contradiction. Suppose that 4" <, ~. If e is a vertex extension,
P y PP 8 Y

let 0 be the matching such that

0 = {(ullv 'Ui)v (u,27 vlz)v cee (U;L—lv 'U;L—l)}’

i.e., 7 without the last pair. Otherwise, if e is an edge extension, then consider § = ~'.
Following the definition of an isomorphism, we know that § is also a matching of G
into H. Furthermore, according to <,;, we have that 8 <;; v <, . However this

contradicts the minimality of + and, consequently, v <,; . U

Proposition 6 is used in the following way. Let GG be any subgraph visited during the
exploration. We store the minimum matchings of G into all the database graphs contain-
ing G. Then, when G is extended, we only search for matchings superior or equal to
the previous ones, according to <js. Let Ny be the maximum number of vertices of a
database graph, and Ny be the maximum number of edges of a database graph, the total
memory requirement of this strategy is in O(|D| - Ny - Ng), which is much lower than

the memory required to store all the embeddings of G in the database.

Infrequent graph detection

The last strategy allows to detect extensions leading to infrequent graphs, based on the

following proposition.
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Proposition 7. Let G’ be the extension of a graph G with edge e, and consider any graph
H such that G C H. If G' is not frequent then the extension H' of H with edge e is not

Jrequent.

Proof. Since G C H C H' and because H’ contains e, we have that G’ C H'. Moreover,
since the support of a graph is no greater than the support of its subgraphs, we have

sup(G', D) > sup(H', D). Thus, if G’ is not frequent, neither is H'. O

When the extension of a graph G with edge e is found infrequent, we store ¢ and all
equivalent edges, i.e. the edges with the same vertex pair orbit, as invalid extensions.
Then, while exploring the descendants of G in the search tree, we do not consider these

invalid extensions since, by Proposition 7, they lead to infrequent graphs.

4.3 Experimentation

To evaluate the performance and validity of our algorithm SYGMA, we have conducted
two numerical experiments. In the first one, we validate the subgraph enumeration strat-
egy of our algorithm by generating all graphs with a limited number of vertices and la-
bels. In the second one, we benchmark our algorithm on synthetic and real-life datasets.
In both experiments, we compare the results we obtained with those obtained with one
of the most popular frequent subgraph mining algorithms, GSPAN, developed by Yan
and Han (Yan et Han, 2002). We have selected this algorithm for two reasons. First,
like our algorithm, GSPAN does not use any memory-expensive structure to store the
embeddings of a graph in the database. Second, a recent investigation by Wérlein et al.
(Worlein et al., 2005), comparing the principal algorithms for this problem, has shown
that algorithms storing embeddings offer no real advantage over GSPAN for large in-

stances. All experiments were carried out on a 2.0GHz Intel Pentium IV PC with 512Kb
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cache and 1Gb RAM, running Linux CentOS release 4.2.

4.3.1 Subgraph enumeration

In the first experiment, we consider the task of exhaustively generating a large set of
graphs. More precisely, given integers N and L, we want to generate all connected
graphs that have at least one edge, at most NV vertices, and at most L vertex labels. This
experiment serves two purposes: validating that the subgraph enumeration strategy is
sound and complete, and evaluating how well this strategy deals with graph isomor-
phism. As reference, we compare our algorithm with the subgraph enumeration em-
ployed by GSPAN. However, since the available version of GSPAN does not allow to
simply enumerate graphs, we had to implement our own version of GSPAN, optimiz-
ing as much as possible the algorithm. For the other experiment, though, we used the

original version of GSPAN.

Figure 4.4 summarizes the result of this experiment: (a) gives the average CPU time in
microseconds per non-redundant graph generated (the Y axis has a logarithmic scale),
and (b) the average number of full isomorphism tests per non-redundant graph. Since
GSPAN has no strategy to detect non-redundant graphs, without carrying out an isomor-
phism test, its average number of full isomorphism tests per non-redundant graph is 1.0,
for all values of L and N. From this figure, we make the following observations. While
GSPAN shows exponential scaling to the decrease of L and increase of NV, our algorithm
is little affected by these changes. Thus, the average CPU time per non-redundant graph
found by GSPAN ranges from 3.6 usec, for L = 5 and V = 5, to 761.3 usec, for L =1
and N = 10, which corresponds to a 210-fold increase. By contrast, the average CPU
time of our algorithm ranges from 2.4 usec to 9.9 usec, for the same values of L and
N, which corresponds to a 3-fold increase. Furthermore, SYGMA outperforms GSPAN

for all values of L and N. In the most extreme case, for L = 1 and N = 10, the sub-
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graph enumeration strategy used by SYGMA is almost more than 75 times faster than
GSPAN’s. Finally, we can see that only a small fraction of non-redundant nodes required
SYGMA to perform an isomorphism test, and that this fraction decreases as L and N

increase. For cases where NV < 5, no isomorphism tests were needed, regardless of the

value of L.
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Figure 4.4 Results on subgraph enumeration: (a) average CPU time (in microseconds)
per non-redundant graph generated, and (b) the number of full isomorphism tests per
non-redundant graph.

4.3.2 Frequent subgraph mining

In the second experiment, we compare the performance of our algorithm to the latest
version of GSPAN, on the task of finding the frequent subgraphs of synthetic and real-

life datasets.

Synthetic data

The synthetic datasets were generated with the random graph generator implemented by
Karypis and Kuramochi for their work in (Kuramochi et Karypis, 2001), using combina-

tions of values of 5 parameters, whose description and values are given in the following
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table:

Description Values
D Nb. of graphs in the database 1000
T  Avg. size of the database graph {15,20,25}
F Avg. nb. of frequent subgraphs 25
I Avg. size of the frequent subgraphs 15
L Nb. of vertex labels in the database {1,2,3}

The values used for these parameters were selected to give a good range of difficulty,
as well as a suitable balance between the time spent enumerating the subgraphs and
the time spent calculating the support of these subgraphs in the database. Since mining
graphs with a few labels requires more time, the databases we have generated for this
experiment contain less graphs than those commonly reported in the literature, which
usually contain around 10000 graphs. The values used for the other parameters, however,

are fairly standard for benchmarking graph mining algorithms.

Figure 4.5 summarizes the results. It shows, for each dataset, the CPU time in seconds
required by GSPAN and SYGMA to find the frequent subgraphs, for decreasing support
thresholds (the Y axis has a logarithmic scale). As expected, the CPU time increases
exponentially as we lower the support threshold, because of the hard subgraph isomor-
phism task. Furthermore, for identical values of 7" and support threshold, the CPU time
increases as the number of vertex labels decreases, since there are more frequent sub-
graphs to discover. From these results, we see that SYGMA is faster than GSPAN by up
to two orders of magnitude for unlabeled graphs. In the most extreme case, i.e. when
L = 1, T = 25 and the support threshold is 100%, SYGMA is 110 times faster than
GSPAN. Our algorithm also outperforms GSPAN for datasets with 2 and 3 labels, al-

though this improvement is not as substantial.
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Figure 4.5 Runtimes of GSPAN and SYGMA on synthetic datasets.

Chemical compound data

The performance of SYGMA and GSPAN was also measured on a real-life dataset of
chemical compounds, devised for the Predictive Toxicology Evaluation (PTE) challenge
(Srinivasan et al., 1997). Two experiments were carried out: in the first experiment,
the edge labels of the dataset were discarded, and in the second one, both vertex and
edge labels were removed. The results of these experiments are presented in Figure 4.6.

Once more, we notice that the runtimes increase exponentially as the support is reduced.
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Also, for identical support values, the runtime is much greater on the dataset containing
no labels. Comparing both algorithms, we see that SYGMA is 2 to 3 times faster than
GSPAN on the dataset with labels, and about 25 times faster the GSPAN on the unlabeled

dataset, showing once more the advantage of SYGMA for mining unlabeled graphs.
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Figure 4.6 Runtimes of GSPAN and SYGMA on the PTE dataset for which (a) edge
labels were discarded, and (b) both vertex and edge labels were removed.

4.4 Conclusion

We have presented in this paper a novel algorithm that improves mining the frequent sub-
graphs of a database that has a few or no labels. This improvement is achieved through
original strategies that reduce the number of costly graph and subgraph isomorphism
tests, without using memory-expensive structures to store embeddings. We have shown
experimentally that our algorithm significantly outperforms one of the most popular al-

gorithm for this task, GSPAN, on various synthetic and real-life datasets.
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CHAPTER 5

USING BACKGROUND KNOWLEDGE TO IMPROVE STRUCTURED DATA
MINING

5.1 Introduction

Recently, applications dealing with structured information have appeared in various
fields. This enhanced information has a richer content that enables a more precise repre-
sentation of the environment to model. Structured data mining is a discipline that plays
a key role in important fields such as bioinformatics, in particular drug design, (Wang
et al.,, 2005b; Borgelt et al., 2005; Sternberg et al., 1995) and Web technologies (Liu,
2007; Chakrabarti, 2002), and which aims at extracting useful knowledge from a great
amount of structured information. At the centre of this discipline lies the problem of
finding the frequent patterns of a database, which can be defined as follows. Let D be
a database and denote sup(X, D) the support of the pattern X in D, i.e. the number of
patterns of D that have X as a subpattern. When the context is clear, we may write the
support of X in D simply as sup(X ). Given an integer s,,,, called the minimum support
threshold, we say that X is frequent if sup(X, D) > spi,. The frequent pattern mining
problem, for a given database D, consists in finding the patterns that are frequent in D.
A well-known specialization of this problem is the frequent subgraph mining problem,
where the database contains graphs and the goal is to find the graphs the are isomorphic

to a subgraph of at least s,,;, graphs of the database.

The frequent pattern mining problem can be decomposed in two tasks: 1) uniquely enu-
merate all possible patterns and 2) calculate the support of these patterns in the database.

In most cases, computing the support of a pattern in the database is a complex oper-
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ation, and the second task accounts for most of the time required to find the frequent
patterns. Thus, in the case of frequent subgraph mining, testing if a graph is contained in
another graph is known as the subgraph isomorphism problem which is NP-hard. Fre-
quent pattern mining algorithms are distinguished by their enumeration strategy, which
can be horizontal or vertical. Horizontal mining algorithms, such as AGM developed by
Inokuchi et al. (Inokuchi et al., 2000) and FSG proposed by Kuramochi and Karypis
(Kuramochi et Karypis, 2001), traverse the pattern space level-by-level, where the level
k contains the patterns of size k, called k-patterns. Most often, this traversal is done in a
bottom-up fashion, i.e. starting with the smallest patterns and successively enumerating
patterns of increasing size. This approach allows to prune infrequent patterns that do not
satisfy the downward closure property: since the support of a pattern is anti-monotone, a
k-pattern is frequent only if all its (k-1)-patterns are frequent. On the other hand, vertical
algorithms, like GSPAN proposed by Han and Yan (Yan et Han, 2002), FFSM by Huan
et al. (Huan et al., 2003), and GASTON by Nijssen and Kok (Nijssen et Kok, 2004),
explore the pattern space depth-first, recursively extending a k-pattern before visiting
another pattern of the same size. This approach implicitly prunes infrequent patterns
by only extending frequent ones, and has the advantage of requiring much less memory

than the horizontal mining approach.

In order to have efficient frequent pattern mining algorithms, it is necessary to devise
strategies to improve support computation. The strategy employed by most vertical min-
ing algorithms consists in storing the embeddings of a pattern in the database, and updat-
ing these embeddings when the pattern is extended. Although this accelerates support
computation on smaller databases, it is not efficient on large databases or when patterns
can be embedded in many different ways due to pattern isomorphism. Another strategy
is to check the downward closure of patterns before calculating their support. This can be
done either by using horizontal mining algorithms or with a special traversal order that

ensures that every pattern is explored after its subpatterns, see, e.g., (Cohen et Gudes,
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2004). Again, this strategy has some disadvantages. First, horizontal mining algorithms
are known to be much less efficient than vertical mining algorithms. Also, it may not be
possible to find an efficient depth-first traversal order that ensures visiting a pattern after
its subpatterns. Finally, checking the downward closure requires to store all the frequent
patterns and to perform an isomorphism test on all the (k-1)-subpatterns of a k-pattern,

which can be very time consumming.

In this paper, we propose a simple strategy that can greatly improve frequent pattern
mining by avoiding some costly support computations. This strategy, which can be used
alone or in combination with another one, such as storing embeddings, uses background
information on the frequent patterns to avoid exploring infrequent ones. The rest of
the paper is as follows. In section 2, we present our approach. Then, in section 3, we
evaluate our approach on the problem of frequent subgraph mining. Finally, we close

this paper with a short summary of our contributions and results.

5.2 A general approach

As it is the case for graphs, the pattern space can often be represented in the form of
a lattice-like structure where the predecessors of a k-pattern are its (k-1)-subpatterns'.
However, since a k-pattern can have many (%-1)-subpatterns, a depth-first traversal of
the pattern space might visit the same pattern more than once. To visit each pattern only
once, we need to transform the lattice into a rooted tree with a function p that assigns to
each pattern X a unique parent p(X). For frequent subgraph mining, the parent p(G)
of a graph G is typically a graph produced by removing a single vertex or edge from G.
The only requirement for p is that it is insensitive to isomorphism: let X and Y be two

isomorphic patterns, written X ~ Y, we must have p(X) ~ p(Y’). Once the pattern

!'The pattern space is usually a semilattice since it may be closed under either join or meet
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space is transformed into a rooted tree, we can then uniquely enumerate each pattern by

traversing this tree, using either a depth-first or breadth-first traversal.

Proposition 1. Let p be a parent function such that p(X) ~ p(Y) if X =Y, and suppose
that each (k+1)-extension of a k-pattern is explored once. The traversal of the rooted

tree defined by function p explores every pattern exactly once.

Proof. We prove this by recursion. Consider any pattern X and suppose that the parent
p(X) of X is explored exactly once, i.e. either p(X) or a pattern isomorphic to p(X)
is explored. We will show that X is also explored once. Since every extension of p(X)
is explored, we know that X is explored if p(X) is. Furthermore, consider a pattern Y’
isomorphic to X . By definition, we have that p(X ) ~ p(Y"). However, since either p(X)
or p(Y') is explored and since every possible extension of p(X) and p(Y') is considered
exactly once, either X or Y will be explored. Finally, because the root of the search tree
is an ancestor of every other pattern in the tree, and since the root is explored exactly

once, by recursion, every pattern is explored only once. ]

The main idea of our approach is to select the parent function in a way that minimizes
the number of infrequent patterns explored in the search. This is done as follows. Con-
sider any k-pattern X and denote S(X) the (k-1)-subpatterns of X. If X satisfies the
downward closure, also known as the Apriori principle, then it can be either frequent
or not, and we need to compute its support. Otherwise, we know that it is not frequent.
Since we only need to extend frequent patterns in the traversal, X will not be visited if
its parent is infrequent. Thus, to make the visit of an infrequent k-pattern X as unlikely
as possible, we must select the parent of X as one of the (k-1)-subpatterns of X that are

least likely to be frequent. This idea is formalized in the following propositions.

Proposition 2. Let p and p’ be two parent functions such that sup(p(Z)) < sup(p'(Z)),
for all patterns Z. Every pattern X explored in the traversal of the search space defined

by p is also explored in the search space defined by p'.
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Proof. Since a pattern is explored if and only if its parent is frequent, we have that
sup(p(X)) > Smin. Furthermore, since sup(p(Z)) < sup(p'(Z)) for every pattern Z,
we have, in particular, sup(p'(X)) > sup(p(X)) > Smin. Therefore, X is also explored

in the search space defined by p'. O

Proposition 3. Denote p* the parent function that maps, for any k-pattern X, a (k-
1)-subpattern of X with the lowest support, i.e. sup(p*(X)) = minycgx)sup(Y). A
k-pattern is explored in the search space defined by p* if and only if it is downward

closed®, i.e. if all its (k-1)-subpatterns are frequent.

Proof. Let X be any k-pattern explored in the search. We know that sup(p*(X)) > Smin-
Furthermore, since p*(X) is a (k-1)-subpattern of X with the lowest support, we have,
for every (k-1)-subpattern Y € S(X), sup(Y) > sup(p*(X)) > Smin. Thus, all (k-1)-

subpatterns of X are frequent and X is downward closed. U

By selecting as the parent of a k-pattern X the (k-1)-subpattern with the lowest support,
we can thus minimize the number of explored patterns and, consequently, the number of
support computations. Finding the optimal parent function p*, however, is as difficult as
finding the frequent patterns. Yet, in many cases, the intrinsic nature of the data makes
some patterns more likely to be frequent than others. Our approach consists in using this
background information to select p, as follows. Suppose we have a function h, called
heuristic, that evaluates the likeliness of a pattern X to be frequent, i.e. if h(X) > h(Y)
then X is more likely to be frequent than Y. This function can be determined using some
general knowledge on the type of data used, by extracting information from the database
in a pre-processing step, or learned by any machine learning algorithm on a training
dataset. The only requirements are that 4 should be easy to compute, and should evaluate

to the same value for isomorphic patterns, i.e. X ~ Y = h(X) = h(Y), otherwise

2Not to be confused with a common use of term closed in the litterature, where a pattern X is closed
iff it is not contained in a pattern'Y of equal support.
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isomorphic patterns could be explored redundantly from different parents. Furthermore,
to avoid exploring patterns that are not downward closed, we must then choose the parent
of X as a (k-1)-subpattern which minimizes h. However, since two non-isomorphic (k-
1)-subpatterns can have the same value of h, this heuristic may not be powerful enough
to guarantee that isomorphic patterns have the same parent. To insure this, we also need
to define a total order on the pattern space, given by a precedence operator <p. The
parent of a k-pattern X can then be uniquely defined as the (k-1)-subpattern, among

those with minimal value of A, that is also minimal with respect to <p.

Figure 5.1 summarizes our approach for the depth-first traversal of the pattern space.
Starting with the root pattern L, the algorithm launches the depth-first traversal by call-
ing the recursive procedure explore. This procedure takes as input a database D, a mini-
mum support threshold s,,,;, and the current k-pattern X, and returns a set F containing
the frequent patterns of the sub-space rooted at X. The procedure first calculates the
support of X. If its support is less than s,,;,, the empty set is returned. Otherwise, X is
added to F and is extended as follows. For each possible (k+1)-extensions Y of X, the
procedure computes the parent of Y as the first k-subpattern Z of Y with minimal value
of h, following order <,,. If Z is isomorphic to X then X is the parent of Y. In this case,
the recursive procedure explore is called on Y, and set of frequent patterns it returns is

added to F. When all extensions have been tested, the procedure returns JF.

5.3 Experimentation

In this section, we evaluate our approach on the frequent subgraph mining problem,

using two different types of data: synthetic and real-life.
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Depth-first frequent pattern mining algorithm

Input: A database D and a minimum support threshold .y, .
Output; The frequent patterns F of D.
F :=explore (D, Smin, L)

return F ;

Procedure explore (D, Smin, X)

Input: A database D, a support threshold s,,;, and a k-pattern X.

Output: The frequent patterns F of the sub-space rooted at X.
if sup(X, D) < $pmin then return F = () ;
F:={X};
foreach (k+1)-extension 'Y of X do
P.=1;
foreach k-subpattern Z of Y, following <p do
| fP=_Lorh(Z)<h(P)then P:=27;

if P~ X then F :=F Uexplore (D, spmin, Y) ;

return F ;

Figure 5.1 Our approach to depth-first frequent pattern mining.
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5.3.1 Synthetic data

In the first experiment, we considered the task of finding the frequent connected® sub-
graphs of synthetic datasets whose labels have different distributions. To generate this
data, we first produced 6 label probability distributions D;, i = 1,...,6, as follows.
For each distribution D;, we created 8 classes C;, j = 1,...,8, to which we randomly
assigned a unique label from the set {1,2,3,4,5,6,7,8}. Then, for each class Cj, we

obtained the probability p;; of a vertex in D; having the label of C; with the formula

using o = 9 as parameter. As shown in Figure 5.2, the probability distributions obtained
in this way are increasingly skewed. Thus, for the first distribution, all labels are equally
probable. However, in the last distribution, the label of class Cg has a 50% chance of
being on a vertex, while the probability of having a vertex with the label of class C}
is only 0.4%. For each of these 6 distributions, we then generated 3 datasets using the
random generator developed by Karypis and Kuramochi (Kuramochi et Karypis, 2001),
each dataset containing 10000 unlabeled graphs. As parameters, we used an average
size of the database graphs of 15, an average number of frequent subgraphs of 25, and
an average size of the frequent graphs of 15. These values are fairly standard for bench-
marking, and ensure that most of the CPU time is spent on support calculation. Finally,
we labelled the vertices of the generated datasets using their respective distribution. The

graph edges were all given the same label.

We then tested four frequent subgraph mining algorithms on these datasets. The first al-
gorithm, referred to as heuristic in the results, is based on an algorithm called SYGMA,

that we developed to find the frequent connected subgraphs of datasets having a lim-

3A graph G is connected if there is a path connecting any two vertices of G.
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Distribution

Class Dl D2 D3 D4 D5 D(;
Cp | 125 61 29 14 07 04
Co | 125 73 4.1 23 13 08
Cs | 125 87 57 37 24 16
Cy| 125 105 80 59 43 31
Cys | 125 126 112 94 77 63
Cs | 125 151 156 150 13.8 125
C7; 125 18.1 219 240 249 251
Cs | 12.5 21.7 306 384 449 50.2

Figure 5.2 Probability (%) of having a vertex with the label of classes C;, j = 1,...,8,
for distributions D;,7 =1, ...,6.

ited number of labels (Desroéiers et al., 2007b). Like SYGMA, the heuristic algorithm
transforms the search space into a rooted tree using a parent function p, and explores
this tree depth-first. However, heuristic differs from SYGMA in the fact that it uses
background knowledge to define p. In this case, the background knowledge used is the
number of edges, in the database, with incident vertices of given labels. This informa-
tion is obtained, with little added cost, while reading the database. Let G be a graph
explored in the search and let ¢ be a permutation of the vertices of G. The code of G,
under ¢, is the string obtained by considering the elements of the adjacency matrix of a
graph G, following the order of the vertices in ¢. Likewise, the canonical code of G is
the lexicographically minimal code, obtained under any permutation. This code can be
obtained efficiently using, for instance, McKay’s NAUTY algorithm. Let ¢* be a permu-
tation leading to the canonical code, and denote ¢*(v) the position of a vertex v in ¢*.
We define a total order on the edges of GG using the precedence operator < g, defined as
follows. Let e; = (uy,v;) and ey = (uq,v9) be two edges such that p*(u;) < ¢*(vy)

and ©*(uz) < p(ve)*, we have e; <p e iff either one of these two cases is true:

Lo (w) < ¢*(uz)

2. U = uUg and @*(Ul) < QO*(UQ).
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This order has the property that equivalent edges in two isomorphic graphs are ordered in
the same fashion. Since our depth-first search only explores connected graphs, a graph is
explored only if its parent is connected. Denote G — {e} the graph obtained by removing
from G an edge e and all the vertices that become isolated after this removal, i.e. the
vertices that are only incident to edge e. We say that e is a disconnecting edge if G — {e}
is unconnected. We then define the parent of G, in the heuristic algorithm, as the graph
produced by removing from G the first non-disconnecting edge, following <5, whose
incident vertex labels are most common in the database, i.e. for which the number of
edges in the database having the same pair of labels is the greatest. Let e; and e, be any
two edges of GG and denote N; and [V, respectively, the number of edges of the database
that have the same label pair as e; and e;. The heuristic function 4, in this case, is such
that (G — {e1}) < h(G — {eq}) if Ny > Ny. If e; and e, are topologically equivalent
edges, i.e. if there is an automorphism mapping the vertices of one edge to those of the
other, then G — {e1} ~ G — {e,}. Since e; and e, necessarily have the same label pair,
we have h(G — {e1}) = h(G — {e2}). Thus, h satisfies the requirement to evaluate to

the same value for isomorphic graphs.

The second algorithm, called random, is another implementation of our approach for
which the parent of a graph is selected randomly. In order that isomorphic graphs have
the same parent, we re-initialize the random number generator for every visited graph
G, using the canonical code of G. We then enumerate the non-disconnecting edges of G
following <, and generate, for each of these edges, a random number. The parent of
G is then obtained by removing from G the first enumerated edge for which the random

number was highest.

The third algorithm, named prefix, is our own implementation of the depth-first search
(DFS) coding scheme of GSPAN (Yan et Han, 2002). Briefly, this scheme assigns to each
graph G a code obtained by concatenating the vertex indexes and labels of the edges of

G, following the order in which these edges where added to G. A depth-first search
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exploration of the graph space is then made, in such a way that the graphs are visited in
ascending code values. Thus, when visiting a graph G, if the code of (G is not minimal,
then a graph isomorphic to G has already been visited in the search and G is pruned. The

prefix algorithm uses the same support computation procedures as heuristic and random.

Finally, the last algorithm, called dw-closure, is a variation of prefix that explores the
search space so that the subgraphs of a graph G are explored before G, thus allowing to
check the downward closure of (G. The search strategy employed by dw-closure, called
reverse prefix search (Cohen et Gudes, 2004), differs from the one used by prefix in
the fact that the extensions of a graph are explored in descending code values, and that
the frequent graphs found in the search are stored. Again, dw-closure uses the same

procedures to compute the support of a graph as the other three algorithms.

Figures 5.3 and 5.4 report, for each of the six distributions, the average results over
their three datasets. On the left side are shown the percentage of visited graphs that are
downward closed and that are frequent, as found by the dw-closure algorithm for de-
creasing support thresholds*. The smaller the ratio of downward closed graphs is, the
more graphs can be pruned by checking downward closure. Because it tends to avoid
exploring graphs that are not downward closed, this ratio also serves as an indication of
the potential benefits of the heuristic algorithm. The right side of these figures gives the
runtimes, in seconds, of the four tested algorithms, also for decreasing support values.
From these results, we can make several observations. First, we notice that the percent-
age of visited graphs that are frequent remains fairly constant (values range between 7%
and 13%), for all distributions and support thresholds. On the other hand, the ratio of vis-
ited graphs that are downward closed decreases as the label distribution becomes more
skewed, and as the support threshold is lowered. As a consequence, the efficiency of

the heuristic and dw-closure algorithm, compared to the random and prefix algorithms,

4The threshold values are given as a percentage of the dataset graphs.
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Figure 5.3 Ratio of downward closed and frequent visited graphs (left) and runtimes of
the tested algorithms (right), for synthetic datasets using label distributions D1, D5, Ds.

increases in the same way. Thus, for the equiprobable distribution, D, the runtimes of

all four algorithms are roughly the same. However, for the most skewed distribution,

D, both heuristic and dw-closure algorithms present a two-fold speedup over the other

two algorithms. We also observe that the random algorithm is somewhat faster than the

prefix algorithm (5% to 17% faster), due to the fact that the fixed lattice exploration order

of prefix is not well suited for the data. We finally notice that our heuristic approach is

faster (up to 22% faster) than the dw-closure algorithm, in all but one case (distribution

Dy, support threshold 2%). Although one might think that checking the downward clo-
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Figure 5.4 Ratio of downward closed and frequent visited graphs (left) and runtimes of
the tested algorithms (right), for synthetic datasets using label distributions Dy, Ds, Ds.

sure is what slows down the second algorithm, this is not the case since this operation
is negligible compared to support computation. In fact, the heuristic algorithm performs
less subgraph isomorphisms tests than dw-closure, eventhough dw-closure is the algo-
rithm that computes the support of the least number of graphs. This surprising result
can be explained as follows. Since a graph G is contained by a database graph only if
its parent is, the number of subgraph isomorphism tests required to compute the support
of GG is bounded by the support of its parent. By selecting the parent of G as the graph

least likely to be frequent, the heuristic algorithm thus tends to reduce the number of
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subgraph isomorphism tests required for G.

5.3.2 Real-life data

In the second experiment, we evaluated our approach on a real-life dataset from the field
of chemoinformatics. This dataset, which contains a set of 340 chemical compounds
modelled as labeled graphs, was devised as a benchmark for the Predictive Toxicology
Evaluation (PTE) challenge (Srinivasan et al., 1997). As we have done in the previous
experiment, we tested four algorithms, heuristic, random, prefix and dw-closure, on the

task of finding the frequent connected subgraphs of this dataset’.

For this experiment, we have modified our heuristic algorithm to exploit some common
characteristics of this type of data: the frequent subgraphs are mostly cycle-free con-
nected graphs, whose vertices have a low degree®. We illustrate how this information
was used in our algorithm with a small example. Consider the graph shown on the left
side of Figure 5.5, that we will denote GG. The values shown beside each vertex of GG are
the index (1,2,3,4 or 5) and the label (a or b) of this vertex. Since the edges of G are
non-disconnecting, they must either be part of a cycle (edges (3,4), (3,5), (4,5) in this
example) or have a vertex incident to no other edge (here (1, 3), (2, 4)). If we remove an
edge contained in a cycle, such as (3, 4), this cycle will not be present in the resulting
graph. However, if we remove an edge of the second type, e.g. (1,3), the graph we
obtain will keep all its cycles. Because cycle-free graphs are more likely to be frequent,
and since we want as parent p(G) of G one of its least frequent subgraphs, p(G) should
thus be obtained by removing from G an edge incident to a vertex of lowest degree. This
approach also has the benefit that the parent graphs will have vertices of higher degree,

and thus, will have less chance of being frequent. In this example, vertices 1 and 2 are

>The edge labels of the dataset were discarded for this experiment.
The degree of a vertex is the number of edges incident to this vertex.
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the only ones with the lowest degree of 1. Thus the parent of G should be obtained by
removing an edge incident to one of these vertices, i.e. either (1, 3) or (2,4). To make
our heuristic algorithm even more efficient, we also used background information on the
vertex labels. Let e; = (uy,v;) and e = (ug, v5) be two non-disconnecting edges of G
(suppose, without loss of generality, that deg(u;) < deg(vy) and deg(uy) < deg(vs)),
and denote N;, N, once more, the number of edges of the dataset that have incident
vertices with the same labels as e; and ey. The heuristic function & used in our algorithm

is such that h(G — {e1}) < h(G — {e>}) if either one of the following cases is true:

1. deg(uy) < deg(us)
2. deg(uy) = deg{us) and N1 > N,

3. deg(uy) = deg(uy) and Ny = N, and deg(vy) < deg(vs).

Suppose that, in our example, the number of database edges whose incident vertices have
the corresponding pair of labels is as shown on the right-side of Figure 5.5. In this case,
since the label pair (a, a) of edge (2, 4) is more frequent than the label pair (a, b) of edge

(1, 3) (300 occurrences versus 200) the parent of G will be the graph G — {(2,4)}.

1,a 2,a
Label pair l Occurrences
3,b 4,a (a,a) 300
(a,b) 200
(b,0) 150
5,a

Figure 5.5 A labeled graph (left) and the number of database edges having vertices with
the given labels (right).

Figure 5.6 summarizes the results of this experiment. On the top left are shown the
percentages of visited graphs that are frequent and downward closed, as found by dw-
closure, for decreasing values of support threshold. On the top right are presented the

percentage of graphs, visited by all four algorithms, that are cycle-free. The graphic



102

located at the bottom left gives the runtimes of the algorithms, again for decreasing sup-
port threshold values. Finally, at the bottom right are shown the number of subgraph
isomorphism tests performed by all four algorithms. As in the first experiment, we no-
tice that, while the ratio of frequent graphs is fairly constant for all support threshold
values, the ratio of downward closed graphs decreases as the support threshold lowers.
However, due to the particular nature of the data, the ratio of downward closed graphs
is much lower than it was for the synthetic datasets. Because of this, we can thus ex-
pect a greater performance increase for dw-closure and heuristic, compared to what we
observed for synthetic data. Also, from the ratio of visited graphs that are cycle-free,
we observe that both the prefix and dw-closure algorithms are well adapted to limit the
search to this type of graph (ratios ranging from 88% to 85%). Moreover, comparing the
random and heuristic algorithms, we can see that the heuristic function helps in avoiding
graphs with cycles. Thus, while the random and heuristic algorithms have similar ratios
for a support threshold of 24% (respectively 85% and 88%), the heuristic algorithm does
a much better job at avoidi‘ng such graphs (ratio of 92% versus 65% for random), for a
support threshold of 3%. Furthermore, as we expected, dw-closure and heuristic clearly
outperform prefix and random. Thus, heuristic is 8 to 15 times faster than prefix for
all support threshold values. Finally, as we did for the first experiment, we notice that
heuristic is somewhat faster than dw-closure (up to twice faster for a support thresh-
old of 3%), although, this time, the number of subgraphs isomorphism tests performed
by the two algorithms is very comparable. Since the dataset only contains 340 graphs
(versus 10000 for the synthetic datasets), the downward closure check of the dw-closure
algorithm accounts for a greater portion of the algorithm’s runtime, and could, therefore,

explain this performance gap.
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Figure 5.6 Ratio of downward closed and frequent visited graphs (top left), ratio of
visited graphs that are trees (top right), runtimes (bottom left) and number of subgraphs
isomorphism tests performed (bottom right), for the tested algorithms on the Predictive
Toxicology Evaluation (PTE) dataset.

5.4 Conclusion

We have presented, in this paper, a simple and general strategy that improves the task
of finding the frequent patterns of a database containing structured data. This novel ap-
proach uses background information on the frequent patterns, in the form of a heuristic
function that transforms the search space into a rooted tree such that the parent of a
pattern is as unlikely as possible to be frequent. This allows to avoid exploring a great
number of infrequent patterns and, consequently, to reduce the number of costly support
computations. To evaluate our approach, we have tested it on a well-known special-
ization of the frequent pattern mining problem, the frequent subgraph mining problem,
where the task is to find the connected graphs for which the support in the database is

greater than a given threshold. These tests were carried out on two types of data: syn-
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thetic datasets that have a skewed distribution of vertex labels, and a real-life dataset
from the Predictive Toxicology Evaluation (PTE) challenge. The results obtained for
these tests have shown our approach to be more efficient than a specialized technique

using depth-first search (DFS) coding, and to be as powerful as the more complex strat-

egy of testing downward closure.
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CHAPTER 6

AUTOMATED GENERATION OF CONJECTURES ON FORBIDDEN
SUBGRAPH CHARACTERIZATION

6.1 Introduction

Traditionally, the process of discovering new knowledge in graph theory was carried out
by mathematicians, with little assistance from computers. Yet, in recent years, mathe-
maticians in that field have turned to computers to find some very important results. A
famous illustration of this is the proof to the four color conjecture, which was done in
large part by computers (Appel et al., 1977; Robertson et al., 1997). Since then, comput-
ers have played an increasing role in the discovery of new knowledge in graph theory,
and many tools have been proposed for this task. One of the first computer programs
for this purpose is GRAFFITI, developed by Fajtlowicz (Fajtlowicz, 1988a), which has
generated over a thousand conjectures as algebraic equations involving graph invariants.
Another more recent and equally prolific tool to generate conjectures involving graph
invariants is AUTOGRAPHIX (AGX), proposed by Caporossi and Hansen (Caporossi et
Hansen, 2000). This last program, which applies the Variable Neighborhood Search
metaheuristic (Mladenovic et Hansen, 1997) to find extremal graphs, can also be used to
find graph satisfying various constraints, to find structural conjectures, to refute conjec-

tures and to suggest proofs.

Although automating the generation of conjectures has been the aim of many works,
almost all these focused on generating conjectures in the form of relations on graph
invariants. Yet, as recently suggested by Hansen et al. in (Hansen et al., 2005), there are

many interesting results in graph theory that take a different form. One of them, known
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as forbidden subgraph characterization (FSC), describes a class of graphs in terms of
the subgraphs that these graphs are not allowed to have. A well known FSC, due to
Chudnovsky et al. (Chudnovsky et al., 2006), characterizes perfect graphs as the graphs
which do not have as induced subgraph any odd cycle containing five or more vertices, or
its complement. Another important FSC, due to Beineke (Beineke, 1970), characterizes

line graphs using nine forbidden graphs, shown in Figure 6.1.

e 28 e <D D B <*

Figure 6.1 A forbidden subgraph characterization of line graphs.

In this paper, we present some new methods to automatically generate conjectures on
FSCs. The rest of the paper is structured as follows. We first introduce some preliminary
concepts that will help to understand the rest of the paper. We then describe our methods,
by considering three problems: finding sufficient conditions for an FSC, finding neces-
sary conditions for an FSC, and finding actual FSCs. We then show how these methods
can be used in practice to generate conjectures, and illustrate this by reproducing some
known results, as well as generating new ones. Finally, we end this paper with a short

summary of our work.

6.2 Preliminary concepts and definitions

Let G be the set containing all graphs. A class of graphs C C G is a possibly infinite
set of graphs that share a common property. Let H be a set of graphs, we say that a
graph G is H-free if there is no graph of H isomorphic to one of its induced subgraphs,
and write Gy the set of all such graphs. Using this terminology, an FSC of C is a set of

graphs H such that Gy, = C. As we will see, not every class of graphs has FSCs. For
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classes that do not have an FSC, we are often interested in finding some weaker rules
allowing to partially characterize the graphs of these classes. These rules come in two
forms: sufficient conditions (SFSC) and necessary conditions (NFSC). Let C be the class
of graphs to characterize and H be a set of forbidden subgraphs. Sufficient conditions
can be expressed as follows: if a graph G is H-free, then it is part of C. Thus, a sufficient
condition is such that Gy C C. However, sufficient conditions do not fully describe C.
Indeed, if G is not H-free, we cannot use this type of condition to determine if G is in C
or not. On the other hand, necessary conditions can be expressed as follows: if a graph
G is in C then it is H-free. This implies that G;; O C. Again, necessary conditions offer

a partial description of C: if G is not in C then it can either be H-free or not.

Let G be a graph, and W = {v;,vs,...,v,} be a subset of V(G). We write G[W] or,
when the context is clear, (vq, Vs, . . ., v,) the subgraph of G induced by W. Furthermore,
let H be another graph, we write G ~ H when G is isomorphic to H, and H C G when
H is isomorphic to an induced subgraph of GG. The following elementary properties will

be used later on to prove more complex results.
Property 1. Let G, Go, G3 be three graphs, and H,, Ho be two sets of forbidden
subgraphs.

(a). If Gy C Gy and Gy C G then Gy C Gs.

(b). If Gy € Gy and G3 € Gy then Gi € G.

(c). If Gy € Gy and G; C G5 then G3 € Gs.

(d). If Gy C Ga then Gic,y C Gyay)-

(€). Gryumy = Gy N Gty

(f). If Hi C Ho then Gy, 2 G,

(g). If G1 C Gy then Gy = Gi61.64)-
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To lighten the presentation, we will, in the rest of this paper, refer to induced subgraphs

simply as subgraphs.

6.3 Sufficient conditions

Formally, we write an SFSC as (i is H-free = (' € C. This expression is logically
equivalentto G € C = 3H € H st. H C G, where C = G \ C is the complement of the
graph class C. The task of finding an SFSC can thus be defined as follows: find a set of
graphs ‘H such that

VG eC,3H € Hst. HCG.

While a graph class C can have many SFSCs, these may not be equally useful. For
instance, H = C is an SFSC of C, but is as complex as the class C itself. Moreover,
let H be the graph composed of a single vertex, H = {H} is an SFSC of C since H is
a subgraph of all graphs of C. However, H offers no real information on C, since each
graph of C also has H as subgraph, i.e. C N Gy = . To help us find useful SFSCs,
we need to introduce two measures: complexness and tightness. The complexness of an
SFSC roughly evaluates the amount of information needed by this SFSC to describe C.
Let H, H' be two SFSCs of C. We say that H is more complex than H' if |H| > |H/|,
or in the case where H = {H} and H' = {H'}, if |V(H)| > |V(H’)|. On the other
hand, the tightness of an SFSC evaluates how well it describes C. We say that an SFSC
H is tighter than another SFSC H' if Gy C Gy Thus, an SFSC H is maximally tight
if Gy = C. We see that the concepts of complexness and tightness are related: a tighter
SFSC can generally be obtained by increasing its complexness. Hence, the measure of
an SFSC’s usefulness is a compromise between the minimization of its complexness and

the maximization of its tightness.

From the above definitions, we can impose an additional constraint on the selection of an
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SFSC 'H. Suppose H contains two graphs H and H’ such that H' C H. From Property
1.(g), we know that H' = H \ {H} is an SFSC of C as tight as H. However, H’ is less
complex than H since it contains one less graph. We can thus limit our search to the sets
of graphs H such that

VHeH, AH' e Hs.t. H C H.

In the rest of the paper, we will call minimal a set ‘H that satisfies the above property,

and denote min(H) C H the subset of H that is minimal.

Proposition 1. Let C be a class of graphs and 'H be a minimal SFSC of C with maximum

tightness, then H = min(C).

Proof. Let H = min(C). We first show that H is an SFSC of C. Suppose it is not, then
there is a graph G € C \ H such that AH € H, H C G. However, G would then be, by
definition, in ‘H, which is a contradiction. We next show that H is the only SFSC with
maximum tightness. Let H’ be any minimal SFSC of C. For each H' € H/, if AG € C
such that H' C G then, clearly, the tightness of H’ is not maximum since H' \ {H'} is
an SFSC of greater tightness. Otherwise, if H' € C, let B denote the graphs of C which
have H' as subgraph. By definition, H"” = H’'\ {H'} UB is an SFSC of C. Furthermore,
from Properties 1.(d) and 1.(e), we have that G, C Gp and that Gy» € Gy, Finally,
since H & Gy and H' € Gy, we conclude that Gz C Gy and therefore that H” is
tighter than ’. The remaining case is H' € C. Suppose that H' & H, then by definition
there is a graph H € H suchthat H C H’. Furthermore, since H’ is an SFSC of C, there
must be a graph H” € H’ such that H” C H C H’, which contradicts the minimality
of H'. Therefore, we have that H' € H, and thus, either H' does not have maximum

tightness or H' = H. J
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6.3.1 Single graph SFSC

Before we tackle the general task of finding an SFSC having an arbitrary number of
graphs, we first consider the simpler case of finding an SFSC of a graph class C, con-
taining a single graph. In this case, the problem can be formulated as finding a set
H = {H} such that VG € C, H C G. Thus, H is a common subgraph of the graphs in
C. Furthermore, let H, H' be two graphs such that H C H'. From Property 1.(d), we
have Gy C Gypvy and therefore that { H'} is tighter than {H}. Hence, if we want to
maximize the tightness, we should find a common subgraph H which is maximal w.r.t.
inclusion. This principle serves as the main idea of our first algorithm, detailed in Figure
6.2. Let £ be a finite set of graphs and denote maxCS(L) the set of common subgraphs
of L, the single graph SFSC algorithm searches for a graph H; which is contained in
all graphs of C, in the following way. Starting with a graph Hj chosen in C and a set
L of representative graphs of C containing only Hy, the algorithm searches, at every it-
eration k, for a graph G, € C which does not contain H,. If such a graph exists, the
algorithm then adds Gy, to the representatives of C, i.e. Ly11 := L, U {Gy}, and finds a
new graph Hy;, which is a maximal common subgraph of £;. Otherwise, if no such

graph exists, we know that H,, is a subgraph of all graphs of C, and thus is an SFSC of
C.

Proposition 2. The single graph SFSC algorithm, shown in Figure 6.2, produces, in a

finite number of steps, a common subgraph of C which is maximal w.r.t. inclusion.

Proof. We first prove that the algorithm terminates in a finite number of steps. Consider
any two graphs H;, H; such that + < j. Since H; is a common subgraph of £;, and
Gi; € L;, we have H; C G (I). Moreover, since G; € cn G(m,}» we know that
H; € G; (2). Combining (I) and (2), we get H; # H;. Furthermore, since H; and
H; are maximum common subgraphs of £; and £;, and since £; C L;, we have that

|V(H;)| < |V(H;)|. Finally, since there is a finite number of graphs of |V (H;)| or less
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Single graph SFSC algorithm
Input: A graph class C.
Output: A single graph SFSC H of C.

Choose any Hj in C;
Let Ly := {Ho},and k :=0;

while 3G, € CN Gy, do
Let Lyy1 = Ly U{Gi};
Choose Hy1 in maxCS(Ly41) 5
Letk:=k+1;

return H = {H;};

Figure 6.2 Algorithm to find an SFSC containing a single forbidden subgraph.

vertices, the algorithm will terminate in a finite number of steps. Next, we prove that
the graph H;, returned by the algorithm is a common subgraph of C. Suppose it is not.
Then, there exists a graph G}, € C that does not have Hj, as subgraph. However, this is
a contradiction since the algorithm terminates only when no such graph exists. Finally,
we show that Hj, is maximal w.r.t. inclusion. Suppose this is not the case. Then, there
exists a common subgraph H' of C, such that H;, C H'. Since H' is a common subgraph
of C, it is also a common subgraph of £, C C. However, this contradicts the fact that H

is a maximum common subgraph of L;. L

6.3.2 Multiple graph SFSC

From Proposition 1, we know that if a graph H, obtained by the single graph SFSC al-
gorithm, is not in C, then we can find a tighter SFSC containing more than one forbidden
subgraph. Let M be the maximum number of graphs we want to have in the SFSC. If
|min(C)| < M, the algorithm should return min(C) since this SFSC has maximum tight-
ness. Otherwise, we search for an SFSC of C in the following way. We first find a set M

containing M — 1 of the smallest graphs of min(C). Since M = min(M) C min(C), by
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definition, M is an SFSC of G4 D C that has maximum tightness. We then find a com-
mon subgraph H of C N G4. Finally, since a graph of M may contain H, to minimize
the complexness, we return the SFSC H = min(M U {H}). Denote by findMin(C, L)
the procedure that returns the set min(C), if |min(C)| < L, or otherwise returns L of the
smallest graphs of min(C). The multiple graph SFSC algorithm, shown in Figure 6.3,
finds an SFSC for a graph class C, containing at most M graphs.

Multiple graph SFSC algorithm
Input: A graph class C and an integer M > 0.
Output: An SFSC H of C containing at most A graphs.

Let M := findMin(C, M — 1) and choose any HyinC NGy ;
Let Lo :={Ho},and k :=0;

while 3Gy € C N Gru(n,) do
Let Ek—}-l =L U {Gk} )
Choose Hj11 in maxCS(Ly11) ;
Lethk:=k+1;

return H = min(M U {Hi});

Procedure findMin (C,L)
Input: A graph class C and an integer L > 0.
Output: At most L of the smallest graphs of min(C).
Let My:=0and!:=0;
whileC N Guy, #Dandl < L do
Choose H; € C N Gaq, With minimum order ;
Let My, == M U{H;};

Letl:=1+1;
return M = M, ;

Figure 6.3 Algorithm to find an SFSC containing at most M forbidden subgraphs.

Propeosition 3. The multiple graph SFSC algorithm of Figure 6.3 produces, in a finite

number of steps, an SFSC of C containing at most M graphs.

Proof. We first show that the algorithm terminates in a finite number of steps. Clearly,
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the procedure that returns findMin(C, M — 1) will terminate in at most M — 1 iterations.
Furthermore, from Proposition 2, we know that finding the last graph can be done in a
finite number of steps. Thus, the algorithm is finite. We next prove that the set H =
min(M U {H}}) returned by the algorithm is an SFSC of at most M graphs. Consider
once again the procedure findMin. Since we have |M;| = [, at every iteration [, this
procedure will return a set M containing at most M — 1 graphs. Furthermore, suppose
that M U { Hy} is not an SFSC. Then, there exists a graph G € C that does not have H;,
nor any graph of M, as subgraph. However, this is a contradiction since the algorithm
terminates only when no such graph exists. Thus, MU{H}.} isan SFSC of [M|+1 < M
graphs. Finally, since min(M U {H,}) € M U {H}, we have, by definition, that H is
an SFSC of at most M graphs. O

Proposition 4. Let H be a forbidden subgraph obtained by the single graph SFSC algo-
rithm, and H = MU{ Hy} be the multiple graph SFSC returned by the above algorithm.
If H C Hy then H is a tighter SFSC than {H }.

Proof. Since {H} is an SFSC and M C C, we know that H C H’, for all H' € M,
and, from Properties 1.(d) and 1.(e), that G{;;y € Guq. Furthermore, since H C Hy, we
have Gy C Gya,)» and thus that Gry C Gaq 0 G,y = Gn. Therefore H is a tighter
SFSC than {H}. O

6.4 Necessary conditions

Let C be a graph class, an NFSC is a set of graphs H such that all graphs in C are H-free.
Finding an NFSC thus amounts to finding H such that

VG €C, AH € Hst HCG.
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This implies that 7 C C. As we did for SFSCs, we can use the criteria of complexness
and tightness to guide our search of an NFSC. However, since an NFSC H is such that
Gn D C, the definition of tightness differs from the one given for sufficient conditions.
Let H, H' be two NFSCs, we say that H is tighter than H’ if G;; C Gyr. As we have
done for sufficient conditions, we first present a method that finds single graph NFSCs

and then generalize this method to multiple graph NFSCs.

6.4.1 Single graph NFSC

The task of finding a single graph NFSC of a graph class C corresponds to finding a
graph H such that, forall G € C, H € G. Thus, H is a “common non-subgraph”
of the graphs in C. Moreover, let H and H' be two graphs such that H € H’. From
Property 1.(d), we have that Gyzy C Gy and, therefore, that { H} is tighter than {H'}.
Thus, to maximize the tightness, H should be a common non-subgraph which is minimal
w.r.t. inclusion. Our single graph NFSC algorithm, detailed in Figure 6.4, is based on
this idea. Let G, = G \ G be the set of graphs containing at least one graph of H, and
denote minCNS( L) the set of common non-subgraphs of a set £, which have a minimum
number of vertices. Starting with a graph Hj that has a single vertex and an empty set
L, of representative graphs of C, at each iteration k, we try to find a graph G}, € C which
contains Hy. If such a graph exists, then H;, is not an NFSC. We then improve H;, by
adding G, to the set of representatives of C, i.e. L1 := L U{G}}, and finding a graph
H,. ., that is not a subgraph of any graph of £, ;. Finally, we repeat this process until
no graph of C contains Hy, i.e. when C N Gy,; = 0, and return H = {H;}. In the
case where C has no NFSC, we may always be able to find G, € C containing Hj, and
thus, the algorithm may never stop. To avoid this problem, we impose a limit N on the

number of vertices of our NFSC.

Propeosition 5. The single graph NFSC algorithm of Figure 6.4 returns, in a finite num-
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Single graph NFSC algorithm
Input: A graph class C and an integer N > 0.
Output: A single graph NFSC ‘H of C having at most N vertices, or a graph of
more than N vertices.

Let Hy be a single vertex graph, £y := @, and k := 0 ;

while 3G;, € C N Gp,y and |V (Hi)| < N do
Let Ek:+1 L= ﬁk U ‘f\Gk} ,
Choose Hy.1 in minCNS(Lr.1) ;
Letk:=k+1;

return H = {Hy} ;

Figure 6.4 Algorithm to find an NFSC containing a single forbidden subgraph.

ber of steps, a common non-subgraph of C which is minimal w.r.t. inclusion and has at
most N vertices, if one exists. Otherwise, the algorithm returns a graph that has more

than N vertices.

Proof. We first prove that the algorithm terminates in a finite number of steps. Consider
any two graphs H; and H; such that ¢ < j. Since H; is a common non-subgraph of
L;, and G; € L;, we have H; € G; (1). Moreover, since G; € C N E{Hi}’ we know
that H; C G; (2). Combining (1) and (2), we get H; # H;. Furthermore, since H; and
H; are minimum common non-subgraphs of £; and £;, and since £; C L;, we have
that |V (H;)| > |V(H;)|. Finally, since there is a finite number of graphs of N or less
vertices, the algorithm will terminate in a finite number of steps. Next, we prove that, if
the graph H,, returned by the algorithm is such that |V (H)| < N, then it is a common
non-subgraph of C. Suppose it is not. Then, there exists a graph G, € C that has Hj,
as subgraph. However, this is a contradiction since the algorithm terminates only when
no such graph exists, or if |V(H)| > N. Finally, we show that H; is minimal w.r.t.
inclusion. Suppose this is not the case. Then, there exists a common non-subgraph H’

of C such that H' C Hj,. Since H’ is a common non-subgraph of C, it is also a common
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non-subgraph of £, C C. However, this contradicts the fact that H; is a minimum

common non-subgraph of L. O]

Although the algorithm guarantees to find in a finite number of steps a single graph
NFSC, if one exists, we can accelerate its convergence using the fact that all NFSCs ‘H
are such that H C C. Thus, instead of starting with a graph H, composed of a single
vertex, we can start with Hy as the smallest graph of C. Furthermore, let minCNS(£L, C)
be the set containing the smallest graph of a class C that are not contained in any graph

of £, we can choose H, in minCNS(L, C) instead of minCNS(L).

6.4.2 Multiple graph NFSC

As it was the case for sufficient conditions, we can sometimes improve the tightness of

an NFSC by increasing its complexness.

Proposition 6. Let C be a given graph class and let N be the set of single graph NFSCs,
ie. N ={H ¢€C| AG e Cst. HC G}. If H is a minimal NFSC of maximum
tightness then H = min(N\).

Proof. Let H = min(N'). We first show that H is an NFSC of C. Suppose it is not,
then there is a graph G € C \ H such that 3H € H, H C G, which contradicts the
definition of H. We next show that H is the only NFSC with maximum tightness. Let
H' be any minimal NFSC of C, and let H' be any graph of H'. By definition, we know
that H' € N. Suppose that H' is not in H, since H = min(N), there is a graph
H € 'H such that H C H'. Furthermore, from Properties 1.(d) and 1.(e), we have that
Giwy C Gyury, and, thus, that the NFSC H"” produced by substituting H' for H in /', i.e.
H" = (H'\ {H'}) U {H}, is tighter than H'. Therefore, H’ is maximally tight only if
H' C 'H. Suppose finally that H’ C ‘H. Then, by Property 1.(f), we have that Gy D Gy,
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and, thus, that H is tighter than H'. Consequently, either H’ does not have maximum

tightness or H' = H. O

Following the above proposition, the NFSC of a class C with maximum tightness H is
simply the minimal set containing all individual graphs that are, by themselves, NFSCs.
To find 'H, we extend the previous algorithm such that it finds all the single graph NFSCs,
as shown in Figure 6.5. We start with an empty set M, of forbidden subgraphs, an empty
set L of representative graphs of class C, and a graph H, composed of a single vertex.
We can also select Hy as one of the smallest graph of C, to speed-up the convergence.
Then, at each iteration £, we look for a graph G, € C that contains Hj. If such a graph
exists, we add it to the set of representatives of C, i.e. we set Lpy1 = L U {Gr}.
Otherwise, H, is a single graph NFSC and we add it to the set of forbidden subgraphs,
ie. we set My, = M; U{Hy}. Then, we find the smallest graph Hj,, that is
not contained in any graph of £;;, nor contains any graph of M;,, i.e. Hy, €
minCNS(Ly41, G, ., )- Again, if we wish to speed-up the convergence of the algorithm,
we can restrict our search to C. We repeat this process until the order of Hj, exceeds a

given limit NV, and return H = M.

Proposition 7. The multiple graph NFSC algorithm of Figure 6.5 produces, in a finite

number of steps, a set 'H containing all single graph NFSCs of at most N vertices.

Proof. We first prove that the algorithm terminates in a finite number of steps. At every
iteration k, only one of the following three conditions is satisfied: (/) |V (Hy)| > N,
(2)3GL € CnN E{Hkb or (3) AG, € CN C{Hk}- If the condition (2) is verified, then,
since Hy C Gy and Hy; € Gy, we have that H, # Hy,.;. Moreover, because Hj
and Hj; are minimum common non-subgraphs of £y and L1, and since £;, C Liy1,
we have that |V (Hyy1)| > |V(Hy)|- However, if condition (3) is verified, then we have
Hy € Myyqand Heyy € Gy, ,, and therefore Hy,y # Hj. Also, because Hj and Hy )

are minimum common non-subgraphs of £, and L., and since £ = L1, we have
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Multiple graph NFSC algorithm
Input: A graph class C and an integer N > 0.
Output: A set H containing all single graph NFSCs of at most N vertices.

Let H, be the graph containing a single vertex ;
Let Mg:=0,Ly:=0,and k:=0;

while |V (H)| < N do
if 3G € C ﬂg{Hk} then let £y = L U {Gk} and Mk—H = My
else let ‘Ck—f-l := L and Mk+1 = M U {Hk} ;
Choose Hyy1 in minCNS(Ly 41, Gy, ) 5
Letk:=k+1;
return H = M, ;

Figure 6.5 Algorithm to find a set containing all single graphe NFSCs of at most N
vertices.

|V (Hg+1)! > |V (Hg)|. Finally, since there is a finite number of graphs with N or less

vertices, condition (/) will eventually be verified and the algorithm will terminate.

We next show that the algorithm is sound and complete. Since a graph H is only added
to H if C N Gyyy = 0, we know that C C Gypy and thus that {H} is an NFSC of C.
Furthermore, suppose there are two graphs H;, H; € ‘H such that H; C H;. Since,
|V(H;)| < |V(Hj)|, we know that ¢ < j. Moreover, since H; € M; and H; € Gy,
we know that H; € H; which is a contradiction. Therefore, the set H is minimal and
the algorithm is sound. Moreover, suppose there exists a NFSC {H} with V(H) < N,
that is not found by the algorithm. By definition, we know that H € minCNS(C, Gy).
Also, because minCNS finds the common non-subgraphs of minimum order, there must
be an iteration k£ such that H ¢ minCNS(Ly, Gy, ). However, since £; € C and
My C 'H, for every iteration k, we have minCNS(C, G) € minCNS(Ly, Gy, ), and
thus H ¢ minCNS(C, G3,), which contradicts our initial supposition. Therefore, the

algorithm is complete. U
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6.5 Necessary and sufficient conditions

Before we present a method that finds FSCs, we need to answer some important ques-
tions. Firstly, we want to know under what conditions does a graph class have an FSC.
The following proposition gives a well known result on the existence of an FSC for a

given class of graphs, see e.g. (Greenwell et al., 1973).

Proposition 8. A graph class C has an FSC if and only if it is hereditary.

Proof. Let 'H be an FSC of C. For any G € C, we know that G contains no graph of
‘H. Furthermore, for any G’ C G, from Property 1.(b), we have that G’ does not contain
any graph of H. Therefore, G’ € G, = C and C is hereditary. Suppose conversely that
C is an hereditary class of graphs, and let G be a graph of C. Since every subgraph of
G belongs to C, we know that no subgraph of G belongs to C, and thus that G € Gg.
Therefore, we have that C C Gz (I). Moreover, let H be any graph of Gz. We know that
H ¢ C, and therefore that H € C. Consequently, we have that Gz C C (2). Combining
(1) and (2), we have C = Gz, and thus, C is an FSC of C. O

The next question is equally important: does a graph class C have a unique FSC and, if

so, what is it ? This question is answered by the following propositions.

Proposition 9. Ler H and H' be two minimal forbidden subgraph characterizations,

then Gy = Gy ifand only if H = H'.

Proof. Since H = H' = Gy = Gy is trivial, we only show that Gy = Gy = H = H'.
Suppose that H # H’, then there exists H € H such that H ¢ H’, or H' € H’ such
that H' ¢ ‘H. Without loss of generality, suppose the first case in true. If there is no
H' € H' such that H' C H then, for all H” € H’, we know that H ¢ G and that
H € Ggny. Finally, from Property 1.(e), we have that H ¢ G, and H € Gy, and
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therefore that Gy # Gyy. Otherwise, let H' be a graph in H’ such that H' C H. There is
no H” € H such that H” C H’, otherwise we would have H” C H which contradicts
the minimality of H. Therefore, we have that H' ¢ Gy and that H' € Gy, for
all H” € ‘H. Finally, from Property 1.(e), we have that H' ¢ G;» and H' € Gy and
therefore that Gy, # Gy, O

Proposition 10. Let C be a class of graphs. If C has an FSC, then the unique minimal

FSC of C is min(C).

Proof. If C has an FSC, we know from Proposition 8 that it is hereditary and that C is an
FSC of C. Moreover, by definition, we know that min(-C_) is also an FSC of C that is min-
imal. Finally, we know from Proposition 9 that C has a single minimal characterization,

which can only be min(C). O

Consider an hereditary class of graphs C and let G be a graph in C. Furthermore, let
G' = G — {v} be a graph produced by removing from G any vertex v € V(G) and
its incidents edges. If G' € C, since C is hereditary, all subgraphs of G’ are also in
C. Therefore, we know that a graph G is minimal in C if all its subgraph produced
by removing a vertex are in C. This is the main principle behind our algorithm to find
FSCs, shown in Figure 6.6. At each iteration k, we find a graph G, € cn Gm,, where
My = . Then, we search for a vertex v of Gy, such that G, — {v}, is still in C. If no
such vertex exists, then (G5, is minimal and we add it to Mj,. Otherwise, we remove v
from G, and look for another vertex with the same properties. We repeat this process
until CN G M, = (), and return the set H = M. However, since an FSC can have
an infinite number of graphs, we need to limit the size of the FSC to guarantee that the
algorithm terminates in a finite number of steps. This limit is given as the parameter M

of the algorithm.

Proposition 11. The FSC algorithm of Figure 6.6 returns, in a finite number of steps,
the set H = min(C), if |min(C)| < M, or a set H containing M graphs of min(C).
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FSC algorithm
Input: A graph class C and an integer M > 0.
Output: An FSC 'H of C having at most M graphs, or a set containing more than
M graphs.

Let Mg:=@andk:=0;

while 3G, € CNGuy, and k < M do
while v € V(Gy) s.t. G, — {v} € Cdo Gy, := Gy — {v} ;
Let M1 == M, U {Gk} ;
Letk:=k+1;

return H = My ;

Figure 6.6 Algorithm to find an FSC of at most A/ forbidden subgraphs.

Proof. Let G; and G; be two graphs, such that ¢ < j. Since G; € M; and G € Gum;,,
we have that G; € G; and therefore that G; # G;. Moreover, since, at every iteration
k, we have | M| = k, the algorithm will terminate in at most M steps. Furthermore, let
Gy, be any graph of H. Suppose that Gy, is not minimal, then there is a vertex v € V(Gy,)
such that Gy, — {v} € C, which is a contradiction since G}, is added to H only if no such
vertex exists. Therefore, H C min(C). Finally, we know that the algorithm terminates
only when CNGy = Q or |H| = M. In the first case, we know that H is an FSC of C, and

since it is minimal, we know from Proposition 9 that it is unique, and thus H = min(C).

Otherwise, H contains M graphs of min(C). !

6.6 Automated conjecture generation

In the last sections, we have presented some exact methods to find FSCs of a class of
graphs C, or conditions to have an FSC. Although these methods guarantee to find FSCs,
SFSCs or NFSCs of C, if they exist, this might be impossible in practice. Thus, in many

of our algorithms, we need to determine whether or not the sets C N Gy and C N Gy
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are empty, where H is a non-empty set of graphs. Since C and C can be infinite, this
may very well be an undecidable problem. To overcome this problem, we impose some
restrictions on the graphs considered by our algorithms. Let G" denote the graphs of
G that have at most n vertices. We limit the graphs considered by our algorithms to
G, and use G" N C and G" N C instead of C and C. Consequently, the guarantee that
the results obtained by our algorithm are FSCs or conditions to have an FSC no longer
holds. However, we can still use these algorithms to generate conjectures based on the
hypothesis that if these results are true for graphs of n or less vertices, then they must be

true for all graphs.

Limiting the order of graphs considered by our algorithms makes finding graphs of a
given class practicable. Yet, finding these graphs is still a difficult task. Let C be a given
class of graphs, and n be a given integer, we are interested in finding a graph of C that
has at most n vertices. In the next sections, we present two approaches for this task: an

enumerative approach and a heuristic one.

6.6.1 Enumerative approach

In the enumerative approach, we generate one by one the graphs of G" until we find a
graph in C. While this approach might seem somewhat inefficient, it is practical for two
reasons. First, it guarantees to find a graph in G" N C, if one exists. Second, although
the number of unlabeled graphs increases exponentially with their maximum order, the
majority of results on forbidden subgraphs in the literature involve graphs having 10 or

less vertices, which can be exhaustively enumerated quite rapidly.

To enumerate the graphs of n or less vertices, we use the method proposed by McKay
(McKay, 1998). This method employs a canonical representation of a graph G, which

partially orders the vertices of GG in a way that is independent of their label. This partial
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ordering is then used to transform the lattice of graphs into a rooted tree with a function
p that uniquely maps a graph G to a parent graph p(G). The root of this tree is the graph
containing a single vertex, and the parent p(G) of G is obtained by removing from G
a minimum vertex according to the partial ordering. By traversing this tree in a depth-
first manner, we can thus enumerate the graphs without generating isomorphic copies.
An important advantage of this approach is that it allows to efficiently prune the search
space. To illustrate this, suppose we want to find a graph of C N Gy, and let G be any
graph. If G & Gy, then there is a graph H € H such that H C G. Since all supergraphs!
of G will also contain H, we can avoid the exploration of the subtree rooted at G without

fear of missing any graphs of C N Gy.

6.6.2 Heuristic approach

It some cases, the FSCs and conditions to have an FSC for a graph class C may be out
of reach of the enumerative approach. We then need to trade the completeness of that
approach to gain the ability of finding graphs that have more vertices. This sacrifice is
a reasonable one, since we already limit the order of graphs, and thus, cannot do better

than find conjectures.

The heuristic approach we use is similar to the one employed by AGX to find extremal
graphs (Caporossi et Hansen, 2000). In this approach, the task of finding a graph of
C is modeled as an optimization problem where the objective function f determines
the membership of a graph G in C. For example, we can express this function such that
f(G) < 0if and only if G belongs to C, and use any heuristic search method to minimize
f until we find f(G) < 0. In AGX, the heuristic used is the Variable Neighborhood
Search (Mladenovic et Hansen, 1997). This heuristic starts with a random graph G €

G" and explores the neighborhood containing the graphs that can be obtained from G

1A graph G is a supergraph of a graph H if and only if H is a subgraph of G.
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by considering every possible group of 2 to 4 vertices, and then adding or removing
edges between vertices of this group. If no neighbor graph improving G is found, the
neighborhood is then widened by increasingly adding a random perturbation to G before
exploring its neighborhood, until a neighbor improving G is found, or until the maximum
neighborhood size is attained or a given time limit is reached. Furthermore, if a neighbor
improving G is found, the search is then recentered on this neighbor and the original
neighborhood is restored. Using this approach, AGX was able to find extremal graphs

of up to 50 vertices.

To illustrate this approach, consider a set of graphs invariants {~i,7s,...,va}, and a
class containing graphs G such that

a,lfyl(G) + GQ’)/Q(G) 4+ ... + GA{’)/A,[(G) < b,

where a; € R, 1 < i < M and b € R. Furthermore, let H = {H,, Hs, ..., Hy} be a set
of forbidden subgraphs, and denote emb(H, G) the number of different embeddings, i.e.
subgraph isomorphisms, of H in G. The task of finding G in C N Gy can be formulated

as maximizing

where B is big constant chosen such that any non-zero value of the right sum dominates
the value of the left sum minus . If we find G such that f(G) > 0, we know that G is in
C NGy
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6.7 Experimental results

In this section, we use our algorithms to find results related to the concepts of indepen-
dence, domination and irredundance of graphs. Before presenting the results, we need

to define these concepts.

An independent (or stable) set S is a set of pairwise non-adjacent vertices. The indepen-
dence number of a graph G, written a(G), is the maximum cardinality of an independent
set of GG, and the independent domination number of G, denoted #(G), is the minimum
cardinality of a maximal independent set of (G. Furthermore, a dominating set T is a
set of vertices such that each vertex of V(G) \ T is adjacent to at least one vertex of T'.
The domination number of G, written (G), is the minimum cardinality of a dominating
set of GG, and we denote I'(G) the maximum cardinality of a minimal dominating set of
G. Moreover, let X C V, a vertex £ € X is irredundant in X if it is isolated in X or
if it has a private neighbor, i.e. a vertex y € V \ X such that z is the only vertex of
X adjacent to y. The set X is irredundant if all its vertices are irredundant. We denote
IR(G) and ir(G), respectively, the maximum cardinality of an irredundant set of G and
the minimum cardinality of a maximal irredundant set of G. A famous result known as
the domination chain, e.g. (Haynes et al., 1998), states that the following relations hold
for all graphs G € G:
ir(G) <v(G) <i(G) < a(G) <T(G) < IR(G).

In the next two sections, we search for SFSCs and NFSCs on the classes of graphs that
satisfy or not some of these relations at equality. This is a two step process. First, we
use our algorithms to find conjectures. Working under the assumption that the forbidden
subgraphs have at most 10 vertices, we use the enumerative approach to find specific

graphs in these algorithms. We then demonstrate by hand the conjectures found by our
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algorithms.

6.7.1 Conjectures on SFSC

As a first experiment, we set out to find SFSCs for the classes of graphs which satisfy at
equality the relations of the domination chain. This task has been the subject of previous
work by graph theorists. In (Allan et Laskar, 1978), Allan and Laskar have shown that
if a graph G does not contain the first graph of Figure 6.7, known as the “claw”, as
subgraph, then v(G) = i(G). Furthermore, in (Favaron, 1986), Favaron, based on some
earlier work by Bollobas and Cockayne (Bollobas et Cockayne, 1979), conjectured that
if G does not contain as subgraph any of the graphs of Figure 6.8, then ir(G) = v(G).
This conjecture was later proved by Puech in (Puech, 1998), and by Volkmann and
Zverovich in (Volkmann et Zverovich, 2002). Favaron also showed in (Favaron, 1986)
that if G does not contain the first nor the second graph of Figure 6.7, known as the
“deer”, then ir(G) = i(G), and that if G does not contain any graph of the same figure,
then I'(G) = I R(G).

o D =P

Figure 6.7 Graphs used in the SFSCs for graphs satisfying at equality some relations of
the domination chain.

Figure 6.8 A SFSC for the class of graphs G such that ir(G) = v(G).

We first generated conjectures on SFSCs for the class of graphs G such that v(G) =

i{G). Figure 6.9 shows a particular execution of our algorithm using N = 1 as maximum
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number of graphs and G'° as search space. At iteration k& = 0, the algorithm finds a
graph Hj such that y(Hy) < ¢(Hp) and a graph G, that does not contain Hy and such
that v(Go) < i(Gy). The algorithm then finds a graph H; that is a common subgraph
of both Hy and G,. Since the algorithm cannot find an H;-free graph G; such that
v(G1) < i(Gh), it return H = {H;}, which is the SFSC proposed by Allan and Laskar
in (Allan et Laskar, 1978).

>~<®>ﬂ

(a) Hy (b) Gy (c) Hy

Figure 6.9 An illustration of the SFSC algorithm, for the class of graphs GG such that
v(G) = i(G), using N = 1 as maximum number of graphs and G'° as search space.
Graph H; is an SFSC that was originally found by Allan and Laskar in (Allan et Laskar,
1978).

Note that we can obtain the same SFSC for higher values of N, as shown in Figure
6.10. In this example, where N = 2 is used, the algorithm first finds a graph F' € C
of minimum order, such that v(F') < i(F'), and then searches for a maximum common
subgraph of C N G (). Since the algorithm cannot find a graph G'; that does not contain
F or Hy, and such that v(G;) < i(Gy), it stops with {F, H;} as SFSC. However, since

H, C F, the algorithm removes F' from the SFSC and, once more, returns H = {H, }.

=1 BB —

(@) F (b) Ho (©) Go (d) Hy

Figure 6.10 Another illustration of the SFSC algorithm, for the class of graphs G such
that v(G) = i(G), using N = 2 as maximum number of graphs and G'° as search space.
Graph H, is an SFSC that was originally found by Allan and Laskar in (Allan et Laskar,
1978).
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We have also used our algorithm to find conjectures on SFSCs for the class of graphs G
such that i7(G) = v(G). In the execution shown in Figure 6.11, our algorithm generated
the conjecture that the graphs £’ and Hj of Figure 6.11, known as the “fork” and the
“deer’, form an SFSC for this class of graphs. As we now prove, this conjecture is a novel
result that strengthens Favaron’s result, presented in (Favaron, 1986), that i (G) = v(G)

if G is “claw”-free and “deer”-free.

T Spe e BRI

(a) F (b) Hy (c) Go d) Hy (e) Gy () Hy
(&) Go (h) Hj

Figure 6.11 An illustration of the SFSC algorithm, for the class of graphs G such that
ir(G) = v(G), using N = 2 as maximum number of graphs and G'° as search space.
Graphs £’ and H; form a novel SFSC that strengthens a previous result proposed by
Favaron in (Favaron, 1986).

Theorem 1. If a graph G does not contain the graph F or Hs of Figure 6.11, known
respectively as the “fork” and the “deer”, then ir(G) = v(G).

Proof. Let I be a maxmial irredundant set with |I| = ir(G), and let A be the set of
vertices in V' \ [ that are not adjacent to any vertex of I. If A is empty then [ is a
dominating set and we have 7(G) < ir(G). Thus, we assume that A # () and denote
Nx (v) the set of vertices in X that are adjacent to a vertex v. Furthermore, for a vertex
x € I, we denote P(z) the private neighbors of z, i.e. the vertices y € V' \ I such that
Ni(y) = {z}. Since I is irredundant, P(z) # @ for all z € I such that N;(z) # (. Let
W C I be the subset of vertices in I which are redundant in / U A, and for any w € W,
denote A(w) the subset of vertices a € A such that w is redundant in / U {a}. Note
that (o A(w) = A and that A(w) # () for every w € W. Also, for each w € W,
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every vertex a € A(w) is adjacent to every vertex u € P(w), or else w would still be
irredundant in 7 U {a}, which contradicts the definition of A(w). Moreover, P(w) forms
a clique, otherwise there would be two non adjacent vertices u; and uy in P(w) such that
I U{u,} is irredundant (since any vertex in A(w) is a private neighbor of u; while us is

a private neighbor of w), a contradiction.

We now prove that every connected component of the subgraph G[W] is a clique. This
is obviously true for connected components with at most 2 vertices. So consider any
connected component with at least three vertices, and assume it is not a clique. Then
there are three vertices wy, we and ws in this component such that w, is adjacent to
w; and w3 while w; and w; are not adjacent. But then (wy, we, w3, u,a) ~ Hj for all

u € P(w,) and a € A(ws).

The next observation is that, for every w € W and u € P(w) the vertices in N4 (u)
induce a clique. Indeed, suppose there are two non adjacent vertices a; and as in Na(u).
Then, since N;(w) # (), there is a vertex z € I adjacent to w, which means that

(w,x,u,a1,a2) ~ Hj, a contradiction. As a consequence, A(w) forms a clique for

allw e W.

Note also that if C is the vertex set of a connected component of G[W] with at least 3
vertices, then |J, .~ A(w) induces a clique in G. Indeed, suppose this is not the case
and consider two non adjacent vertices a; and a, in A(w;) U A(w,). Moreover, consider
any u; € P(w;) and uy € P(w,). If both a; and a, are adjacent to u; or uy then they
are adjacent to each other since N4(u1) and N4(us) induce cliques, a contradiction.
Otherwise, suppose, without loss of generality, that a; is adjacent only to u; and a, only
to uo. Then, vertices u; and uy are not adjacent, otherwise (wq, u1, ug, ay, az) ~ Hj.
Furthermore, consider any vertex w3z € C \ {w, w2}. As shown above, {w;, wo, w3}

forms a clique and, thus, (w1, we, w3, u1, ug, a1, az) =~ F, a contradiction.



130

In what follows, the connected component of G[W] with one vertex will be said to be
of type 1, while those with at least 3 vertices will be said to be of type 2. We split the

connected components with 2 vertices wy, ws into three disjoint groups.

1. If there is a vertex in P(w;) U P(w,) adjacent to all vertices in A(w;) U A(ws),

then the component is said to be of type 3.

2. If every vertex in P(w;) U P(w2) has a non neighbor in A(w;) U A(w,), and there
exist two non adjacent vertices u € P(w;) and a € A(w;) (j # %) such that a is

adjacent to all vertices in A(w; ), then the component is said to be of type 4.

3. If every vertex in P(w;) U P(ws) has a non neighbor in A(w;) U A(ws,), and for
all non adjacent vertices u € P(w;) and ¢ € A(w;) (j # ) there is a vertex

a' € A(w;) not adjacent to a, then the component is said to be of type 5.

We now create a set I’ from [ as follows.

1. For every connected component C' = {w} of type 1, we remove w from [ and add

avertex u € P(w).

2. For every connected component C of type 2, we remove a vertex w € C from [

and add a vertex a € A(w).

3. For every connected component C' = {wy, wy} of type 3, one of the vertices in
C, say wy, has a private neighbor © € P(w;) which is adjacent to all vertices in

A(wr) U A(ws). We remove wy, from I and replace it by u.

4. For every connected component C = {w;,wy} of type 4, there exist two non
adjacent vertices u € P(w;) and a € A(w;) (j # ) such that a is adjacent to all

vertices in A(w;). We remove w; from I and replace it by a.

5. For every connected component C' = {wy, wy} of type 5, we remove w; and ws

from I and replace them by a vertex u; € P(w;) and a vertex uy € P(ws).
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Since |I'| = |I| it is now sufficient to prove that I’ is a dominating set. So let v be a

vertex that does not belong to [’

1. If v € I then v was removed from a connected component C' of one of the above
five types. If C' is of type 1 or 5, then v is adjacent to the neighbor u of v that was
added to I'. Else, C contains at least one neighbor w of v that was not removed

from 1.

2. fv € U, cw P(w) then let w be the vertex in W such that v € P{w). If w € I',
then w is a neighbor of v in I'. Otherwise, w was removed from a connected
component C. If C is of type 1, 3 or 5, then w was replaced by a vertex in P(w),
and v has a neighbor in I’ since P(w) is a clique. If C is of type 2 or 4, then w
was replaced by a vertex in A(w), and v has a neighbor in I’ since v is adjacent to

all the vertices in A(w).

3. If v € A then let w be a vertex in W such that v € A(w) and let C be the
connected component of G[IW] containing w. If C is of type 1 or 3, then a vertex
w was replaced by a vertex u € P(w), and v has a neighbor in I’ since u is adjacent
to all vertices in | J, . A(z). If C is of type 2 or 4, then a vertex in C' was replaced
by a vertex a € |J,.- A(x), and v has a neighbor in I’ since a is adjacent to all
other vertices in | J,. A(x). Finally, if C is of type 5, then the vertices w; and
wy have been replaced by u; € P(w;) and us € P(ws), which means that v has a

neighbor in I’ since v € Na(uy) U Na(uo).

4. v ¢ (IUAU,ew P(w)) then v is adjacent to at least two vertices in 1.
Indeed, suppose it is not adjacent to any vertex of I. Then, I U {v} would be
irredundant, which contradicts the maximality of /. Also, v cannot be adjacent
to only one vertex of W, or else it would be a private neighbor of this vertex, a
contradiction. Thus, v is adjacent to at least two vertices of . If one of these

neighbors belongs to I’ then there is nothing to prove. Thus, assume v has no
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neighbor in I’ and consider any neighbor w € I \ I’ of v. Vertex w belongs to a

connected component C of G[IW] and was removed from I.

(a)

(b)

(c)

If C is of type 1 or 3, then w was replaced by a vertex u € P(w). Let a be
any vertex in A(w). Vertex v is not adjacent to a, or else I U {v} would be
irredundant, contradicting the maximality of /. Since Nj(w) # 0, there is a
vertex w’ € I adjacent to w. Furthermore, we know that w' ¢ W, otherwise
it would be in C, which contradicts the type of C. Consequently, w’ is in I’,
and v is not adjacent to w'. If v is adjacent to u, then v has a neighbor in I’.

Otherwise, (v, w,w',u, a) ~ Hj, a contradiction.

If C is of type 2, then let « be any vertex in I \ {w} adjacent to v. Such a
vertex necessarily exists since v ¢ P(w). If z isin C'\ {w}, then itis in I’
and v is adjacent to a vertex of I’. Else, there exists a connected component
C' # C of G[W] containing z. Consider any two vertices w’ and w” in
C\ {w}, and let u be any vertex in P(w') and a any vertex in A(w'). Vertex v
is not adjacent to u, otherwise (v, w, w", u,xz) ~ Hj. Also, v is not adjacent
to a, or else (v,w,w,z,a) ~ Hs. Hence (v,w,w ,w” r,u,a) ~ F, a

contradiction.

If C is of type 5, then the vertices w; and w, were replaced by u; € P(w;)
and us € P(ws). Since no vertex in P(w,) is adjacent to all vertices in
A(w, ), consider a vertex a; € A(w;) not adjacent to uz. Moreover, since
a; is not adjacent to all vertices in A(ws), consider any vertex a; € A(ws)
not adjacent to a;. Vertex v is not adjacent to a; nor to as, or else I U {v}
would be irredundant. Also, we may assume that v is not adjacent to u; nor
U9, otherwise v would have a neighbor in I’. Furthermore, we know that u,
is not adjacent to ay, or else (wq, woq, uy, ay, as) =~ Hs, and therefore that u;
is not adjacent to ug, otherwise (wq,uy, ug, aj, as) =~ Hj. Also, since w is

one of the two vertices w, or wy, we know that v is adjacent to at least one of
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them, say w;. But then (v, wi. we, u1, a1) =~ Hj (if v is not adjacent to w-)

or (v, W, Wa, U1, Ug, A1, o) =~ F, a contradiction.

(d) If C is of type 4, then let x be any vertex in [ \ {w} adjacent to v, and
let C' # C be the connected component of G[I¥] with x € C’. We have
shown above that if C" is of type 1, 2, 3 or 5, then v has a neighbor in I’.
So assume C’ is also of type 4. Let w’ be the second vertex in C, z’ be the
second vertex in C’, and u be any vertex in P(w). Since w is not in I’ and
because C' is of type 4, we know that w' is in I'. Moreover, assume that v is
not adjacent to w’, or else v would be adjacent to a vertex in I’. Likewise,
assume that z’ is in I’ and is not adjacent to v, otherwise v would have a
neighbor in I’. Furthermore, since C is of type 4, w was replaced by a vertex
a adjacent to all vertices in A(w’), and not adjacent to a vertex u’ € P(w').
Since no vertex of P(w) is adjacent to all the vertices in A(w’), consider any
a' € A(w') not adjacent to w. If v is adjacent to a then v has a neighbor in
I', so assume v and a are not adjacent. Vertex v is then necessarily adjacent
to u, or else (v, w,w’,u,a) ~ Hz. Also, v is not adjacent to ', otherwise
(v,w,u',z,x'y ~ Hj, and u is not adjacent to ', or else (v, u, u', x,a) ~ Hj.

But then (v, w, w', z, &', u,u') >~ F, a contradiction.

If we combine the SFSCs we obtained for the classes ir(G) = (G) and y(G) = i(G),
we get the SFSC proposed by Favaron: if a graph G is “claw”-free and “deer”-free then
ir(G) = i(G). However, if the SFSC algorithm randomly selects the maximum common
subgraphs, at each iteration, we can obtain a completely different SFSC. For instance, in
the execution shown in Figure 6.12, our algorithm found a path of 5 vertices, which was

shown by Puech in (Puech, 1998) to be an SFSC.
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(g) G (h) Hg (i) Gs () Hy

Figure 6.12 Another illustration of the SFSC algorithm, for the class of graphs GG such
that ir(G) = v(G), using N = 2 as maximum number of graphs and G'° as search
space. Graph H, was shown be an SFSC by Puech in (Puech, 1998).

6.7.2 Conjectures on NFSC

Following what we have done for SFSCs, we look in this section for NFSCs on the

classes of graphs satisfying at inequality some of the relations of the domination chain.

As a first experiment, we used our algorithm to find conjectures on NFSCs for the class
of graphs G such that v(G) < i(G). Figure 6.13 shows a particular execution of the
algorithm for this task, using G® as search space. At iteration k£ = 0, the algorithm finds
a graph Gy such that v(Gy) < i(Gp). Since L; only contains Gy, the algorithm then
finds a minimum order graph H; not included in GG;. At the next iteration, the algorithm
then finds a graph G, containing H; and such that 4(G;) < i(G,), and a graph H, of
minimum order that is not a subgraph of G, or GG;. This process is repeated until the
algorithm reaches iteration £ = 5, where it finds a 5 vertex clique Hj, as the minimum
order graph not included in {Gy, G1, G2, G3, G4}. However, the algorithm does not find
a graph G5 containing Hs and such that v(G5) < #(Gs), and thus returns H = {H;}.
Repeating this experiment using G° and G'° as search space, our algorithm has found
complete graphs of 6 and 7 vertices, suggesting the novel NFSC that a graph G of n

vertices is K(,_3)-free if v(G) < i(G). We now demonstrate this result.
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Figure 6.13 An illustration of the NFSC algorithm, for the class of graphs G such that
v(G) < i(QG), using G® as search space.

Theorem 2. Let G be any graph of order n. If v(G) < i(G) then G is K(,_3)-free.

Proof. We will show that i(G) < (G), if G contains a K(,_3). This will be done by
showing that a minimum cardinality dominating set can be transformed into an indepen-

dant dominating set of the same cardinality.

Let D = {wy,ws, ..., Wy} be a minimum cardinality dominating set of G, i.e. |D| =
¥(G). If E(G[D]) = 0, then D is an independent set, and we have i(G) < |D| =
v(G). Otherwise, let (wy, ws) be any edge of E(G[D]), and let P(w) be the private
neighbors of w, i.e. the vertices y € V' \ D such that Np(y) = {z}. We know that
P(w;) # 0,1 = 1,2, otherwise D' = D \ {w;} would be a dominating set of one less
vertex than D, which contradicts the minimality of D). We next show that at least one
of P(w;) or P(ws) is a complete graph. Suppose this is not the case, then there are
four vertices u; € P(wi), v1 € P(wy), us € P(ws), va € P(ws) such that u;, v; are
non-adjacent, and us, v, are non-adjacent. However, (u;, vy, wy, Uz, U2, W) contains no
triangle, and thus G' contains no K,_3), which is a contradiction. Therefore, P(w,) or
P(w-,) forms a complete graph, without loss of generality, suppose it is P(wy ). Let u; be

any vertex of P(wy). The set D' = (D \ {w1}) U{u;} is a dominating set of cardinality
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|D’| = |D| such that E(G[D’]) < E(G[D]). By repeating this process iteratively at
most n — 3 times, we will necessarily get an independant dominating set D", such that

i((G) < [D"] = |D| = ~(G). O

In the next experiment, we searched for NFSCs on the class of graphs G such that
ir(G) < 7(G). Figure 6.14 shows an execution of our NFSC algorithm, using G® as
search space, where a complete graph of 5 vertices is found. Again, when repeating this
experiment with G* and G, our algorithm found, although not systematically, complete

graphs of 6 and 7 vertices, which suggested a new theorem and corollary:

: A\ L Vo

(@) Go (b) H, (c) Gy (d) Hy (e) Gy () Hs

Figure 6.14 An illustration of the NFSC algorithm, for the class of graphs G such that
ir(G) < v(G), using G® as search space.

Theorem 3. Let G be any graph of order n. If ir(G) < ¥(G) then G is K(,,_3)-free.

Proof. Similar to what was done for the last theorem, we will show that v(G) < ir(G)
if G contains a K, _3), by showing that a minimum cardinality maximal irredundant set

can be transformed into a dominating set of the same cardinality.

Let / be a minimum cardinality maximal irredundant set of G, i.e. |I| = ir(G), and
let A be the set of vertices not dominated by I. If A = {), then I is a dominating set,
and we have 7(G) < |I| = ir(G). Otherwise, consider any vertex a € A. There is
a non-isolated vertex w € I which is redundant in I U {a}, otherwise / would not be
maximal. Let P{w) denote the private neighbors of w. We know that P(w) is not empty
since w is non-isolated in /. Furthermore, we know that a is adjacent to all the vertices

of P(w), otherwise w would be irredundant in I U {a}. We also know that P(w) forms
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a complete graph, otherwise there are two vertices w1, us in P(w) such that 7 U {u;} is
irredundant (since u; has a as private neighbor and w the vertex wu,, thus contradicting
the maximality of 7). Denote A(w) C A the vertices a such that w is redundant in

I'U{a}, and let W be the vertices of [ that are redundant in [ U A.

Consider any vertex w; € W such that |A(w;)| = maxyew |A(w)]. We show that
A{w,) = A. Suppose this is not the case, then consider any vertex a; € A\ A(w;),
and let wy be any vertex redundant in I U {ay}. Since ay belongs to A(w,) but not to
A(wy), and since |A(w,)| > |A(w,)], there is a vertex a; € A(w;) that does not belong
to A(wq). Let u; be a vertex in P(w,) that is not adjacent to a,, and u, be a vertex in
P(w,) that is not adjacent to a;. Then, (a, uy, wy, ag, ug, wy) contains no triangle, and
thus G contains no K,_3), a contradiction. Therefore, A(w;) = A and, since any vertex
of A(wy) is adjacent to every vertex of P(w,) and because P(w;) forms a complete
graph, the set I’ = (I \ {w1}) U {u1} is a dominating set of G. Thus, we have that
1(G) < ' = 1] = ir(G). O

Corollary 1. Let G be any graph of order n. If ir(G) < i(G) then G is K ,,_s)-free.

6.7.3 Conjectures on FSC

Hereditary graph classes that can be characterized with a limited number of forbidden
subgraphs are not that common in graph theory. Furthermore, those that are known have
been studied in depth, and have already been characterized with forbidden subgraphs.
Thus, rather than searching for new FSCs, we will, in this section, try to reproduce some

known results.

A split graph is a graph in which the vertices can be partitioned into a clique and an
independent set. This class of graphs has some very interesting properties that have been

studied, among others, by Foldes, Hammer and Simeone (Foldes et Hammer, 1977,
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Hammer et Simeone, 1981). One of these properties is that split graphs can be recog-
nized in linear time, using the sequence of degrees of each vertex. Let G be graph with
n vertices, we order the degrees of the vertices of G, by non-increasing value, to form a
sequence dy > dy > ... > d,. Let m be the largest value of ¢ such that d; > ¢ — 1, then

G is a split graph if and only if

m(m—1) — idi + 2”: dj < 0.
i=1

j=m+1

If this is the case, the m vertices with the largest degrees form a maximum clique in G,

and the remaining vertices an independent set.

Using the above test to determine whether or a graph is a split graph and G® as search
space, we have found the minimal FSC for this class, shown in Figure 6.15, containing
two cycles of 4 and 5 vertices, and a graph made of two disjoint edges. This FSC is a

well known result, first described by Foldes and Hammer in (Foldes et Hammer, 1977).

=Y

(@ Cs  (b) C4 © Cs

Figure 6.15 An illustration of the FSC algorithm for the class of split graphs, using G®
as search space.

6.8 Conclusion

We have presented, in this paper, some methods to automate the discovery of new con-
jectures on forbidden subgraph characterization. The first two algorithms that were de-

scribed allow to find sufficient conditions to have a characterization, in the form of a
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set of graphs H such that a graph G is in a graph class C if G is H-free. While the
first of these algorithms returns a single forbidden subgraph, the second allows to find
sufficient conditions involving multiple subgraphs. Since a given graph class can have
a great number of sufficient conditions, we described two measures, complexness and
tightness, that were used to select the forbidden subgraphs. Furthermore, using these
same measures, we have developed two other algorithms to find necessary conditions in
the form of a set of graphs H such that all graphs of a given class C are H-free. Lastly,

we presented an algorithm that finds actual characterizations.

Although these algorithms find forbidden subgraph characterizations, or conditions to
have such characterizations, we have seen that this can be impossible in practice, due to
the infinite number of graphs. However, we have shown that, by bounding the order of
graphs under consideration, we could use our algorithms to find conjectures. Following
this idea, we have used our algorithms to reproduce some important results, as well
as to find new ones, on the domination, independence and irredundance of graphs. In
particular, our algorithms conjectured two new results which we proved were correct: a
n vertex graph G is such that ir(G) = v(G) if it is “fork”-free and “deer”-free, and that
G is K(,_3)-free if ir(G) < i(G).
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CHAPITRE 7

DISCUSSION GENERALE

Nous faisons, dans ce chapitre, un bref résumé des résultats obtenus dans le contexte

de cette theése, et comparons ces résultats avec les objectifs de recherche initialement

définis.

Nous avons présenté, dans le premier article, un nouvel algorithme appelé SYGMA
améliorant la découverte des sous-graphes fréquents d’un ensemble de graphes conte-
nant un nombre restreint d’étiquettes différentes. Cette amélioration a été obtenue, en
partie, a I’aide d’une stratégie efficace d’énumération, faisant 1’usage d’invariants de
graphe. Cette stratégie nous a permis de définir deux techniques permettant de détecter
rapidement les graphes redondants et non-redondants durant I’exploration. De plus, I’in-
formation sur la symétrie d’un graphe, obtenue par SYGMA lors de I’exploration, a
permis de développer des techniques pouvant identifier certains graphes non-fréquents,
évitant ainsi plusieurs calculs coiiteux. Par ailleurs, nous avons pu évaluer, dans la par-
tie expérimentale de I’article, la performance de notre algorithme en le comparant a un
des algorithmes le plus connus pour ce probleme, I’algorithme GSPAN. Dans un pre-
mier temps, nous avons comparé ces deux algorithmes sur la tdche d’énumérer tous les
graphes ayant un nombre limité de sommets et d’étiquettes. Grace a cette expérience,
nous avons pu constater que la stratégie d’énumération de SYGMA est beaucoup plus
efficace que celle de GSPAN, en particulier pour les graphes sans €tiquettes, ou notre al-
gorithme est jusqu’a 75 fois plus rapide que GSPAN. Par ailleurs, nous avons également
employé ces deux algorithmes pour trouver les sous-graphes fréquents de plusieurs jeux
de données, générés aléatoirement et provenant d’une application réelle du domaine de

la chimie computationnelle. Encore une fois, les résultats de ces expériences ont montré
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SYGMA de loin supérieur & GSPAN pour les jeux de données ne comportant aucune
étiquette (Jusqu’a 110 fois plus rapide que GSPAN), et un gain non négligeable pour les
instances ayant peu d’étiquettes. En somme, nous avons atteint notre premier objectif de
développer une méthode efficace pour trouver les sous-graphes fréquents d’une base de

graphes ayant peu d’étiquettes.

Dans le deuxieéme article, nous avons présenté une stratégie, a la fois générale et simple,
pour améliorer la découverte des patrons fréquents. Cette stratégie utilise de I’informa-
tion de fond sur les patrons fréquents, sous la forme d’une fonction heuristique, permet-
tant de définir la topologie de I’espace de recherche de maniere a minimiser le nombre
de calculs de support dans la base de données lors de I’exploration. Afin d’évaluer notre
stratégie, nous avons testé celle-ci sur le probleme de la découverte des sous-graphes
fréquents. Nous avons tout d’abord présenté une technique pour appliquer notre stratégie
au cas des sous-graphes fréquents, similaire a celle employée par SYGMA. Ensuite, nous
avons proposé une simple heuristique utilisant la fréquence des étiquettes dans la base
de données, et avons testé cette heuristique sur des jeux de tests aléatoires générés de
maniere a introduire un biais croissant dans la distribution des étiquettes. Lors de ces
tests, nous avons comparé notre méthode avec trois autres méthodes : la premiere fai-
sant ’exploration d’un espace de recherche dont la topologie a été définie de manicre
aléatoire, la seconde utilisant la technique d’exploration de I’algorithme GSPAN, et la
dernicre employant une technique d’exploration complexe permettant de tester la fer-
meture descendante des graphes explorés. Comme prévu, nous avons constaté un gain
en vitesse de notre méthode et de ’algorithme vérifiant la fermeture descendante, par
rapport aux deux autres algorithmes, proportionnel au biais dans les données. Dans une
autre expérience, nous avons testé les quatre mémes algorithmes sur le méme jeu de
données réelles que celui utilisé dans le premier article. Les graphes de ce jeu de données
représentant des molécules, nous avons modifié légérement notre heuristique pour ex-

ploiter certaines caractéristiques de ce type de données. Encore une fois, les résultats ont
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montré un net avantage de notre méthode sur la méthode explorant I’espace de topolo-
gie al€atoire ainsi que sur I’algorithme GSPAN (de 8 a 15 fois plus rapide). Nous avons
également observé un gain en vitesse de notre technique par rapport a la technique beau-
coup plus complexe de vérifier la fermeture descendante. Somme toute, nous croyons
avoir atteint 1’objectif de développer une nouvelle technique pour réduire le nombre de

calculs de support dans la découverte des patrons fréquents.

Finalement, dans le troisi¢me article, nous avons introduit de nouvelles méthodes pour
automatiser la génération de conjectures sur la caractérisation par sous-graphes interdits
(CSI). Les deux premieres méthodes décrites dans I’article servent a générer des condi-
tions suffisantes pour avoir une CSI, la premiére produisant un seul sous-graphe interdit,
et la seconde un ensemble contenant un nombre de sous-graphes interdits fourni par
’usager. De méme, nous avons décrit deux autres méthodes pour obtenir des conditions
nécessaires pour une avoir une CSI, sous la forme d’un ou de plusieurs sous-graphes in-
terdits. Enfin, nous avons présenté une méthode pour obtenir de vraies CSI. Par ailleurs,
nous avons vu que ces méthodes nécessitent I’exploration d’un espace infini de graphes,
et avons proposé deux stratégies pour les implémenter : ’'une transformant la recherche
d’un graphe en probléme d’optimisation et employant une métaheuristique pour résoudre
ce probleme, et I’ autre faisant I’énumération de tous les graphes de taille limitée. Dans la
section expérimentale de I’article, nous avons utilisé ces méthodes pour reproduire des
résultats connus de la théorie des graphes, ainsi que pour trouver de nouveaux résultats
portant sur les notions d’irredondance, de stabilité et de domination d’un graphe. Entre
autres, notre programme a généré une conjecture sous la forme d’une condition suffi-

sante pour avoir une CSI, plus forte que celle proposée dans la littérature :

pour tout graphe G, la taille du plus petit ensemble irredondant de G, i.e.
ir(QG) est égale a la taille de son plus petit ensemble dominant v(G), si G ne

contient pas de cerf ni de fourche comme sous-graphe induit.

Notre programme a également produit une nouvelle conjecture portant sur une condition
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nécessaire :

pour tout graphe G d’ordre n, G ne contient pas de clique a n-3 sommets

comme sous-graphe induit si ir(G) < i(G).

Nous avons valid€ ces conjectures en les démontrant formellement.

Avec ces résultats, nous pouvons conclure que I’objectif de développer des méthodes

pour automatiser la génération de conjectures sur la CSI a été atteint.
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CONCLUSION

Bien que nous ayons atteint nos objectifs de recherche, il reste encore beaucoup a faire
dans la découverte des patrons fréquents. Alors que ce probléme a été utilisé avec grand
succes dans plusieurs applications de la bioinformatique et de la chimie computation-
nelle, son emploi dans des applications d’autres domaines, notamment le Web sémantique,
semble tres prometteur. Un autre domaine ou la découverte des patrons fréquents semble
avoir beaucoup de potentiel est la vision par ordinateur. Comme les données traitées par
les applications de ce domaine ont souvent la forme de graphes sans étiquette, il serait
intéressant de voir les bénéfices qu’aurait notre algorithme SYGMA sur ces données.
Par ailleurs, le calcul du support d’un graphe dans la base de données étant I’opération
la plus coliteuse de la découverte des sous-graphes fréquents, il serait bénéfique de
développer des méthodes plus efficaces pour résoudre le probleme d’isomorphisme de
sous-graphe. Une autre approche intéressante serait de relaxer la définition du support
d’un graphe pour étre le nombre de graphes de la base de données ayant un sous-graphe
similaire a ce graphe, ou la mesure de similarité pourrait €tre paramétrable. Cette ap-
proche permettrait d’employer des méthodes heuristiques pour le probleme d’isomor-
phisme de sous-graphe, augmentant ainsi I’efficacité des algorithmes pour la découverte
des sous-graphes fréquents et, par conséquent, la taille des bases de données pouvant
étre traitées. Dans le méme ordre d’idée, il serait désirable d’explorer d’autres métriques
que la fréquence pour mesurer 1’intérét d’un graphe, ou de fagon plus générale, un pa-
tron. Hormis 1’algorithme SUBDUE de Cook et Holder (Cook et Holder, 1994), qui a
connu un succes appréciable dans le domaine, cette idée n’a pas réellement été explorée
a ce jour. L’approche présentée au chapitre 5, ou ’on choisit le parent d’un patron a
I’aide d’une heuristique, se porterait sans doute bien a cette idée, vu sa grande flexibilité.
Enfin, il serait intéressant d’employer la découverte des patrons fréquents sur d’autres

types de données plus complexes que les graphes, comme les hypergraphes ou les rela-
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tions en logique du premier ordre. Etant générique, I’approche présentée au chapitre 5

serait également utile a ce probléme.

La génération automatisée de conjectures en mathématiques est également une disci-
pline ayant un avenir prometteur, particulierement en théorie des graphes ot la diversité
des relations observées, ainsi que la complexité des preuves récentes, exige un apport
considérable de 1’ordinateur. Malgré le nombre impressionnant de théorémes obtenus
a I’aide de I’ordinateur, le nombre de résultats en théorie des graphes attendant d’étre
découverts est presque infini. Afin de faciliter la découverte de ces résultats, il serait bon
d’avoir un répertoire centralisé des résultats déja connus de ce domaine. Cela permet-
trait a plusieurs systémes de bénéficier de ces connaissances et éviterait la génération en
double d’un méme résultat. Des efforts dans cette direction ont déja faits, par exemple, le
document Written-on-the-wall (Fajtlowicz, 2008; Fajtlowicz et DeLaVina, 2008) conte-
nant un grand nombre de conjectures sur des relations entre invariants de graphe, et le
projet ISGCI (Brandstédt et al., 2003) qui catalogue une grande quantité de relations
d’inclusions de classes de graphes. De méme, il serait utile d’établir des mesures quan-
titatives et qualitatives permettant d’évaluer I’intérét d’une conjecture. La résolution de
ce probleme, abordé par Hansen dans (Hansen et al., 2005; Hansen, 2005) et par Larson
dans (Larson, 2002), permettrait de guider les efforts mis dans le processus de découverte
vers des résultats utiles. Nous avons d’ailleurs été confrontés a ce probleme lors du
développement de nos méthodes générant des conditions suffisantes ou nécessaires sur la
caractérisation d’une classe impliquant plus d’un sous-graphe interdit. A ce titre, il serait
intéressant d’explorer plus a fond I’aspect théorique du probleme, et de proposer d’autres
criteres évaluant la valeur d’une CSI a plusieurs sous-graphes interdits. Par ailleurs, pour
prolonger le travail fait dans cette theése, nos méthodes pourraient €tre employées pour
générer des CSI ou des conditions pour avoir une CSI sur d’autre classes de graphes. Ce
processus pourrait méme €tre automatisé. Par exemple, si les classes pour lesquelles on

cherche des CSI contiennent des graphes satisfaisant a égalité certaines relations sur les
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invariants de graphe, il suffirait de générer ces relations de maniére automatique et de
lancer, pour chacune d’elles, les méthodes de génération de conjectures. Une autre ex-
tension possible de cette thése serait d’utiliser nos méthodes pour générer d’autres types
de conjectures. On pourrait, par exemple, trouver des relations entre différentes classes
de graphes pour lesquelles on possede des CSI ou des conditions pour avoir un CSI, en
observant les sous-graphes interdits de ces CSI. Enfin, dans le but d’automatiser au com-
plet 1a découverte de résultats en théorie des graphes, il faudrait également automatiser la
démonstration des conjectures générées. Bien que la démonstration de conjectures soit,
a ce jour, un processus trés complexe que I’on doit faire a la main, des travaux récents,
voir e.g. (Colton, 2002; Colton, 1999), donnent espoir que ce processus sera un jour fait

par I’ordinateur.
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