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Resume 

L'objectif de cette etude a ete d'investiguer la correction de l'autoprotection de resonance 

pour les neutrons epithermiques pour tous les nuclides utilises dans 1'Analyse par 

Activation Neutronique (AAN). Des etudes recentes suggerent que les facteurs 

d'autoprotection thermiques et epithermiques peuvent etre exprimes par une fonction 

analytique, un sigmoi'de. En appliquant cette fonction en AAN pour des materiaux purs, 

la variable du sigmoi'de a ete exprimee comme le produit d'un facteur nucleaire, d'un 

facteur geometrique pour des echantillons cylindriques et de la quantite de l'element 

chimique present dans l'echantillon. Cette nouvelle approche dans 1'AAN a conduit a une 

methode nouvelle pour la correction de l'effet des neutrons thermiques et epithermiques 

sur l'autoprotection dans n'importe quel echantillon cylindrique irradie dans n'importe 

quel reacteur. Ainsi, tous les avantages de l'AAN, soient la precision sans preparation 

preliminaire de l'echantillon, la reproductibilite ainsi que la possibility de la parametriser 

et de l'appliquer a un travail de routine, sont maintenant disponibles pour des materiaux 

contenant des quantites significatives d'elements chimiques avec grandes sections 

efficaces d'absorption pour les neutrons thermiques et epithermiques. 

Cette etude a demarre par une verification de la theorie et par la mesure des facteurs 

nucleaires caracterisant l'autoprotection thermique et de resonance pour des dchantillons 

de 1 mL contenant les halogenes CI, Br et I. Ces echantillons ont ete irradies dans un 

spectre de neutrons mixte, thermique et epithermique. Pour des echantillons contenant un 

seul element, les deux facteurs de l'autoprotection, thermiques et de resonance, ont ete 
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bien estimes par des fonctions sigmoi'des. Ces experiences preliminaires ont indique que, 

pour corriger l'autoprotection par des neutrons thermiques, le sigmoide utilise un seul 

parametre, mr/„ qui peut etre calcule pour tout element a partir des dimensions de 

l'echantillon, la somme ponderee des sections efficaces d'absorption thermique des 

elements presents dans l'echantillon, oabs, et une constante kth„ caracteristique du site 

d'irradiation. Au contraire, pour corriger l'autoprotection de resonance, le parametre mep, 

aussi fonction de la geometrie et de la composition de l'echantillon, des conditions 

d'irradiation et des caracteristiques nucleaires de 1'element, doit etre mesure 

experimentalement pour chaque nuclide active. 

Etant donne que les tests preliminaires ont montre qu'une autoprotection de resonance 

atteignant 30% peut etre corrigee avec une precision d'environ 1%, exception faite des 

cas impliquant l'autoprotection de resonance mutuelle d'un element sur un autre element, 

1'etude a ete poussee vers l'etape suivante, soit la verification de deux autres aspects. 

Premierement, la dependance des parametres m,h et mep sur les proprietes du site 

d'irradiation a ete evaluee pour trois sites d'irradiation differents du reacteur 

SLOWPOKE, ce qui a permis de conclure que l'autoprotection thermique et 

l'autoprotection de resonance varient de moins de 10% d'un site a l'autre. 

Deuxiemement, la variation des parametres de l'autoprotection, m,/, et mep, avec les 

dimensions de l'echantillon cylindrique, variant en r(r+h), a ete testde pour des rapports 

h/r de 0.02 a 6.00, et cette variation a ete confirmee meme dans des champs neutroniques 

legerement non-isotropes. Ces resultats ont permis de separer du parametre de 

l'autoprotection mep la quantite de 1'element et le facteur geometrique. Le facteur 
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nucleaire restant, surnomme section efficace d'absorption epithermique, <7Ubs,ep, est estime 

comme etant le produit de caracteristiques nucleaires composites du nuclide active. Ce 

parametre nucleaire empirique, similaire a la section efficace d'absorption thermique, 

permettra d'evaluer l'autoprotection de resonance pour n'importe quelle geometrie 

cylindrique et n'importe quel site d'irradiation. 

Parmi les 76 nuclides utilises dans l'analyse par activation neutronique, 38 ont un rapport 

de l'integrale de resonance sur la section efficace d'absorption thermique, Qo, plus grand 

que 10, valeur qui revel e une activation par des neutrons epithermiques plus importante 

que 1'activation par des neutrons thermiques. De ces 38, l'etude a experimentalement 

analyse 13 reactions nucleaires: 79Br(n,y)80Br, 81Brfnjj82Br, 96Zr(n,y/7Zr, 

114Cd(«,y)U5Cd, n7l(n,y)ml, U5In(n,y)mmln, mSb(n,y)n2Sb, mSb(n,y)mSb, 

133Cs(n,y)134Cs, 152Sm(n,y)mSm, ls6W(n,y)mW, ]97Au(n,y)mAu et 238Ufn,yj239U. 

Pour les 13 cas etudies, le facteur d'autoprotection de resonance, Gep, a ete obtenu par 

soustraction du facteur d'autoprotection effectif experimental, Gejf, le facteur 

d'autoprotection thermique, G,h, calcule avec la formulation sigmoi'de. En utilisant la 

methode des moindres carres, une fonction sigmoi'de a ete utilisee pour estimer les Gep 

experimentaux exprimes comme fonction de la masse de l'element present dans 

l'echantillon. Cette approximation a genere le <Jabs,ep pour chaque nuclide active. De plus, 

pour tous les nuclides utilises couramment dans l'analyse par activation neutronique, 

Cabs.ep, a ete calcule par la formule de Salgado et al. qui utilise les valeurs de sections 

efficaces totales aux pics des resonances. La comparaison des valeurs calculees de <Tubs,ep 
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avec celles mesurees experimentalement indique des differences allant jusqu'a 20%. Ceci 

montre l'avantage de determiner experimentalement les valeurs de (Jabs,ep. 

Finalement, a partir de (Tabs.ep calcules ou mesures experimentalement, pour tous les 76 

nuclides utilises couramment dans l'AAN, un programme utilisant une feuille de calcul 

Excel a ete cree. Ce programme corrige iterativement l'autoprotection neutronique dans 

les concentrations mesurees par analyse par activation. L'utilisateur fournit les 

parametres/et adu spectre neutronique, la masse et les dimensions de 1'echantillon ainsi 

que les concentrations mesurees. Dans un cas typique avec 10% d'autoprotection 

thermique et 30% d'autoprotection de resonance, les concentrations corrigees ont une 

incertitude variant de 2% a 3%. 

Mots-cles: Analyse par Activation Neutronique Instrumentale, facteur d'autoprotection 

thermique, facteur d'autoprotection de resonance. 
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The purpose of this study was to investigate epithermal neutron self-shielding for all 

nuclides used in Neutron Activation Analysis, NAA. Recent studies suggested that both 

thermal and epithermal self-shielding factors could be expressed by a unique sigmoid 

function. Applying this function to NAA for pure materials, the sigmoid variable was 

expressed as product of a nuclear factor, a geometrical factor for cylindrical samples, and 

the amount of the element present in the sample. This new approach in NAA led to an 

easily usable method to correct both thermal and epithermal self-shielding for any 

cylindrical sample and any reactor irradiation site. Thus, all advantages of NAA, such as 

accuracy without sample preparation, reproducibility, and applicability to routine work 

by parameterization, are now available for materials containing large amounts of 

elements with high absorption cross sections for thermal and epithermal neutrons. 

The study started with testing the theory and measuring the nuclear factors characterizing 

thermal and epithermal self-shielding for 1 mL cylindrical samples containing the 

halogens CI, Br and I irradiated in a mixed thermal and epithermal neutron spectrum. For 

mono-element samples, both thermal and epithermal experimental self-shielding factors 

were well fitted by sigmoid functions. As a result, to correct thermal neutron self-

shielding, the sigmoid uses a single parameter, mth, which can be directly calculated for 

any element from the sample size, the weighted sum of the thermal absorption cross-

sections, (Tabs, of the elements in the sample and a constant k,h characteristic of the 

irradiation site. However, to correct epithermal self-shielding, the parameter mep, a 
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function of sample geometry and composition, irradiation conditions and nuclear 

characteristics, needs to be measured for each activated nuclide. 

Since the preliminary tests were positive and showed that self-shielding, as high as 30%, 

could be corrected with an accuracy of about 1%, except in cases with significant 

epithermal shielding of one element by another, we pursued the study with the 

verification of two additional aspects. First, the dependency of the self-shielding 

parameters mth and mep on the properties of the irradiation site was evaluated using three 

different irradiation sites of a SLOWPOKE reactor, and it was concluded that the amount 

of both thermal and epithermal self-shielding varied by less than 10% from one site to 

another. Second, the variation of the self-shielding parameters, mt\x and mep, with the size 

of the cylinder, as r(r+h), was tested for h/r ratios from 0.02 to 6.0, and this geometry 

dependence was confirmed even in slightly non-isotropic neutron fields. These results 

allowed separating from the mep parameter the amount of chemical element and the 

sample geometrical factor. Therefore, the remaining nuclear factor, considered as a 

product of nuclide composite nuclear characteristics and irradiation site characteristics, 

led to the introduction of a so-called epithermal neutron absorption cross-sections, (Tabs,eP-

This new nuclear parameter will allow the calculation of the epithermal self-shielding for 

all cylindrical samples activated in all types of irradiation sites. 

Among the 76 nuclides used in neutron activation analysis, epithermal neutron absorption 

7Q SO 

cross-sections were experimentally measured for 13 (n,y) reactions: Br(n,y) Br, 

81Bv(n,yf2Bv, 96Zr(n,y)97Zr, n4Cd(n,y)U5Cd, nil(n,yf\ U5Jn(n,y)n(,mJn, 121Sb(n,y/22Sb, 



Xll l 

123Sb(rc,y)124Sb, 133Cs(n,y),34Cs, 152Sm(n,y)153Sm, 186W(n,yV87W, l91Au(n,y)mAu and 

238U(n,y)239U. These nuclides were selected from the 38 nuclides having a resonance 

integral to thermal absorption cross section ratio, Qo, higher than 10, corresponding to a 

high importance of activation by epithermal neutrons relative to thermal activation. 

For the 13 cases studied, the epithermal self-shielding factor, Gep, was obtained from the 

experimental effective self-shielding factor, Geff, by extracting the thermal neutron self-

shielding factor, calculated with the sigmoid formulation. A least-squares fit of the 

experimental Gep values as a function of the mass of element yielded <JUbs,ep f° r each 

activated nuclide. In addition, for all nuclides commonly used in neutron activation 

analysis, <Jabs,ep was calculated with the Martinho, Salgado and Gongalves sigmoid 

formulation, which uses the total cross-section values at the peaks of the resonances. A 

comparison of the calculated <Jabs,ep with the 13 measured values reveals that the 

calculated values are accurate to about 20%. 

Finally, for all 76 nuclides commonly used in NAA, a spreadsheet program was written 

to use experimental or calculated Gabs,ep nuclear parameters to perform iterative self-

shielding corrections of concentrations measured by neutron activation analysis. The user 

provides the parameters / and a of the neutron spectrum, the sample mass and 

dimensions, and the measured concentrations. In a typical case with 10% thermal self-

shielding and 30% epithermal self-shielding, the corrected concentrations had 

uncertainties varying from 2% to 3%. 
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La majorite des laboratoires d'Analyse par Activation Neutronique (AAN) ont concentre 

leurs efforts vers l'amelioration de la sensibilite de la methode dans le but d'obtenir une 

analyse pertinente meme pour les elements a tres faibles concentrations. Pourtant, a tres 

faible concentration, il y a maintenant d'autres methodes d'analyse chimique aussi 

performantes. A l'oppose, pour l'analyse des substances solides ayant de fortes 

concentrations, souvent, la seule methode possible est l'AAN. Toutefois, dans certains 

cas de concentrations elevees, l'activite produite par activation neutronique n'est plus une 

fonction lineaire de la concentration de 1'element a determiner. Cette non-linearite est 

generee par l'autoprotection des atonies qui sont actives. 

L'objectif principal de ce projet a ete de caracteriser l'autoprotection des resonances pour 

les elements qui ont une section efficace elevee pour 1'absorption des neutrons 

epithermiques, afin d'etendre la methode d'analyse par activation aux echantillons qui 

contiennent ce type d'elements. Pour atteindre l'objectif de cette etude, la realisation du 

present projet de recherche s'est appuyee sur une demarche de recherche de type 

experimental, c'est-a-dire avec un controle des variables, le point de depart etant les 

equations de Salgado et al. proposees pour le calcul des facteurs d'autoprotection contre 

les neutrons thermiques et de resonance. Ces equations ont ete adaptees aux besoins de 

l'analyse par activation neutronique. Ainsi, de nouveaux parametres ont ete definis pour 

les courbes decrites par ces equations, courbes qui epousent tres bien les 

donnees experimentales. A partir des donnees experimentales, on a propose de nouvelles 
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equations capables de decrire l'autoprotection dans le cas des echantillons qui 

contiennent des elements fortement absorbants pour les neutrons epithermiques. 

La premiere hypothese qui appuie cette etude est: pour chaque element qui absorbe aux 

energies des neutrons epithermiques, l'autoprotection de resonance est decrite par une 

fonction sigmoi'de de type : Gep = 0,94 / (1 +(m /mepf'
S2) + 0,06. Dans 1'analyse des 

echantillons qui contiennent plusieurs elements absorbant des neutrons epithermiques, le 

point de depart est la deuxieme hypothese : chaque nuclide se protege lui-meme sans etre 

affecte par la presence des autres nuclides parce que les resonances d'absorption sont 

situees a des energies differentes. 

L'analyse par activation neutronique est une methode d'analyse chimique tres puissante, 

rapide et d'une grande sensibilite qui permet d'identifier et de quantifier chaque element 

independamment de sa forme chimique ou de son emplacement physique dans 

l'echantillon. Le principe de l'AAN est l'irradiation d'une substance avec les neutrons, 

provoquant des reactions nucleaires. Par ce processus, les noyaux atomiques de 

l'echantillon sont actives. L'activite de chaque element est mesuree en detectant les 

rayons y emis par le nuclide active. Cette radioactivite est specifique aux elements 

contenus dans l'echantillon, ce qui permet de determiner sa composition chimique. 

La methode k0, largement utilisee dans l'AAN pour les reacteurs de grandes dimensions, 

a ete standardisee pour les petits reacteurs, avec un flux stable, comme le SLOWPOKE. 

Dans le laboratoire d'activation neutronique de l'Ecole Polytechnique de Montreal, les 

etudes menees par Kennedy et St-Pierre ont permis d'etablir avec une grande precision 
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les parametres / et a des spectres de neutrons et les parametres ko et Qo des reactions de 

capture neutronique. De plus, ils ont investigue les effets des conditions d'irradiation et 

des caracteristiques de l'echantillon sur l'activite de l'echantillon. Ces effets sont induits 

par des substances moderatrices presentes dans l'echantillon, par les variations de 

temperature du caloporteur de reacteur SLOWPOKE, par l'anisotropie du flux 

neutronique dans les sites d'irradiation, ainsi que par la geometrie de detection 

etroitement reliee a celle de l'echantillon. Toutes ces etudes combinees avec l'outil 

puissant qu'est la methode d'analyse ko, ont permis d'oser franchir une nouvelle etape 

dans l'AAN : le calcul et la correction de l'autoprotection neutronique thermique et 

epithermique. 

L'autoprotection est l'absorption de neutrons par les couches successives d'un 

echantillon, ce qui implique que l'interieur de l'echantillon subit un flux neutronique plus 

petit que l'exterieur. C'est un phenomene complexe car les probabilites d'absorption 

varient avec l'energie des neutrons. Pour simplifier, la reduction du flux neutronique dans 

l'echantillon est caracterisee par le facteur d'autoprotection effectif Geg, defini comme 

etant le rapport: A/Ao, ou A est l'activite de l'echantillon reel avec autoprotection et Ao 

est l'activite du meme echantillon dans le cas ideal sans autoprotection. Cette reduction 

du flux est fonction de l'energie des neutrons. Dans cette etude, A et Ao ont ete exprimes 

en utilisant la convention de Hoghdahl. Dans le calcul du flux thermique cpth et du flux 

epithermique (pep, on suppose que, dans la region thermique, la densite neutronique a une 

distribution de type Maxwell-Boltzmann et que le flux epithermique en fonction de 

l'energie a une variation de type 1/E +a. Dans le cas de l'irradiation dans le reflecteur du 
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reacteur SLOWPOKE de l'Ecole Polytechnique de Montreal, a = -0.051. Pour les 

neutrons thermiques, la section efficace de capture neutronique a une variation de type 

l/El/2 , et pour la region epithermique, on utilise les formules Breit-Wigner pour 

representer la variation de la section efficace de capture neutronique aux resonances. Le 

flux neutronique est compose de neutrons thermiques, intermediaires epithermiques et 

rapides. Consequemment, l'autoprotection est la somme des deux effets: l'autoprotection 

contre les neutrons thermiques, Gth, et l'autoprotection contre les neutrons epithermiques, 

Gep, 1' activation avec neutrons rapides etant negligeable comparativement aux deux 

premieres contributions. Ensuite, on peut ecrire pour Geff la formule suivante : Gejf = (Gth 

+ GepQo/f) 1(1 + Qo/f), avec/= (pth/<pepet Qo = l(/oth oixlo est l'integrale de resonance et 

(7th la section efficace de capture neutronique a 2200m/s. 

Le premier effet, l'autoprotection contre les neutrons thermiques, peut se calculer a l'aide 

des equations bien connues. Pour les echantillons contenant un seul element qui capture 

des neutrons, la variation du facteur d'autoprotection thermique, Gth, avec la 

concentration et la geometrie de l'echantillon est assez bien connue ; la section efficace 

d'absorption pour les neutrons thermiques varie lentement avec l'energie, en general 

comme E1'2 et, consequemment, le facteur d'autoprotection thermique pour tous les 

elements peut etre exprime par la meme fonction de la quantite de l'element et de la 

section efficace d'absorption pour les neutrons thermiques a 2200 m/s, <Tabs. De plus, pour 

les echantillons cylindriques, Gth varie avec les dimensions de l'echantillon selon le 

facteur rh/(r+h), ou r est le rayon et h est la hauteur de l'echantillon. 
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Contrairement a 1'absorption thermique, le calcul du Gep en fonction de la concentration 

de l'element et de la geometric de l'echantillon est complexe puisque la section efficace 

d'absorption pour les neutrons de resonance en fonction de l'energie est differente d'un 

nuclide a 1'autre. Les diverses methodes numeriques utilisees pour evaluer 

l'autoprotection de resonance ne sont pas pratiques pour l'activation neutronique et 

difficiles a appliquer dans les analyses de routine dans lesquelles la composition et les 

concentrations des elements absorbants ne sont pas connues d'avance. 

La serie recente de publications de Salgado et al. sur l'autoprotection de resonance et, 

plus tard, sur l'autoprotection due aux neutrons thermiques dans le calcul des reacteurs 

nucleaires, suggere la possibilite de quantifier Gep et Gtit, en les exprimant sous la forme 

de fonctions sigmoi'des des masses des elements presentes dans l'echantillon. 

Consequemment, on a pu appliquer cette decouverte en AAN et on a developpe une 

methode de correction de l'autoprotection neutronique pour des echantillons cylindriques 

de composition a priori inconnue, irradies dans un flux mixte de neutrons thermiques et 

epi thermiques. Le facteur d'autoprotection pour les neutrons thermiques depend de tous 

les nuclides presents dans l'echantillon et il a la meme valeur pour chacun de ces 

nuclides. Contrairement a l'autoprotection thermique, le facteur d'autoprotection 

epithermique pour un nuclide est influence par la presence des autres elements dans 

l'echantillon, seulement quand ces elements absorberont des neutrons aux energies d'une 

resonance qui chevauche la resonance d'activation du nuclide considere. 
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A partir des donnees experimentales, cette etude a premierement verifie que les premices 

theoriques suggerees s'appliquent dans le cas de 1'analyse par activation neutronique. Des 

echantillons cylindriques de 1 ml contenant differentes quantites de l'element ont ete 

irradies dans le site interieur du reacteur SLOWPOKE de l'Ecole Polytechnique dans un 

flux de neutrons thermiques de 5,59 x lC^'cni'V1. L'activite des nuclides actives de 

chaque echantillon a ete mesuree en comptant les rayons gamma a une distance de 10 cm 

d'un detecteur de germanium. Pour chaque comptage, avant d'acquerir le spectre, on a 

attendu le temps de decroissance necessaire pour que l'analyseur ait un temps mort de 

moins de 20%. Les activites ont ete calculees en utilisant la surface du pic caracteristique 

du nuclide et corrigees pour le temps de decroissance et la variation du flux neutronique 

due aux effets moderateurs associes a la composition de 1'echantillon et pour les effets 

lies aux changements de temperature du caloporteur. 

Dans les experiences preliminaries, pour verifier 1'expression de l'autoprotection 

thermique, on a prepare des echantillons cylindriques qui contiennent differentes 

quantites de chlore. Le chlore a une grande section efficace d'absorption pour les 

neutrons thermiques, 33,5 b, et la reaction 37Clfn, yf8Cl a un bas rapport de l'integrale de 

resonance sur la section efficace d'activation thermique, Q0 = 0.85. Meme si le flux 

neutronique n'est pas bien thermalise dans ce site d'irradiation, a cause de la valeur 

reduite du Qo, 96% de l'activite de 38C1 est produite par les neutrons thermiques et la 

contribution a l'activite des neutrons de resonance a pu etre consideree comme etant 

constante a 4%. En utilisant la methode des moindres carres, les donnees experimentales 

ont ete estimees avec la fonction sigmoi'de. Ceci a permis de verifier la formule de Gth 
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avec une erreur de 2% comparable aux incertitudes experimentales. Pour corriger 

l'autoprotection thermique, les equations utilisent un seul parametre, mf/„ pouvant etre 

calcule pour chaque element a partir de la dimension de l'echantillon, de la section 

efficace d'absorption neutronique de l'element a 2200 m/s, aabs, et une constante reliee 

aux conditions d'irradiation, kth, determined ici comme etant 0,81. Dans le reste de 

l'etude, pour calculer Gth, la formule sigmo'ide a ete utilisee tout en negligeant le facteur 

relie a la diffusion. Ce facteur est d'habitude tres proche de l'unite, surtout pour les 

elements avec une tres grande section efficace d'absorption pour les neutrons thermiques. 

Comme precedemment pour le facteur d'autoprotection thermique, la formulation 

sigmo'ide pour le facteur d'autoprotection de resonance, Gep, a ete verifiee pour les 

1^7 7Q Rl 

reactions (n,f) des " I, Br et Br. Ces reactions ont des valeurs de Qo de 31.9, 14.4 et 

23.8, respectivement. Ainsi, avec/= 18.0 et en l'absence d'autoprotection, 63.6%, 44.0% 

et 56.5% des activites de 128I, 80Br and 82Br sont produites par des neutrons ayant des 

energies correspondant a la region des resonances. Des echantillons de 1 ml de ces 

solutions ont ete scelles dans des capsules de polyethylene puis irradies et comptes de la 

meme maniere que pour le chlore. Les activites specifiques des radionuclides mesurees 

ont ete comparees avec leurs Geff calcules avec les formules sigmoi'des de Gep et G,h- Ceci 

a permis de verifier l'expression theorique proposee pour Gep. De plus, separer la masse 

de l'element et le facteur geometrique rh/(r+h) a conduit a l'identification du facteur 

nucleaire caracterisant 1'activation par des neutrons de resonance. 
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Apres la validation de 1'expression de Gep, pour verifier la deuxieme hypofhese, des 

mesures ont ete effectuees avec des melanges d'elements qui presentent le phenomene de 

l'autoprotection de resonance. Premierement, les masses de chlore et d'iode mesurees 

dans un echantillon concentre, corrigees pour l'autoprotection par une procedure 

iterative, et comparees avec les masses reelles, ont indique une difference entre les 

valeurs calculees et les valeurs reelles de +1% pour le chlore et -1,6% pour l'iode, 

respectivement. Ce calcul iteratif conduit rapidement a une valeur convergente en 

prouvant la validite de la methode pour la correction de l'autoprotection pour des 

echantillons contenant des melanges d'absorbeurs de neutrons thermiques et de 

resonance. Deuxiemement, un echantillon de 1 ml de poudre, avec des concentrations 

elevees de Br et d'l, a ete irradie et compte, et les concentrations mesurees en comptant 

l'activite de Br, Br et I ont ete corrigees pour l'autoprotection. Pour determiner les 

vraies concentrations de Br et I, l'echantillon a ete dissout dans l'eau et 1 ml de cette 

solution diluee, equivalant a une autoprotection negligeable, a ete analysee. Pour les 

echantillons concentres en poudre, les masses finales corrigees pour l'autoprotection ont 

ete determinees par une procedure iterative dans laquelle Gejf a ete calcule a chaque etape 

en utilisant les parametres determines anterieurement. La comparaison de ces valeurs 

avec les valeurs reelles des masses utilisees dans la preparation de l'echantillon a montre 

une difference pouvant aller jusqu'a 6% entre les deux. Cette difference est expliquee 

par l'autoprotection mutuelle entre les resonances d'absorption neutronique de Br et I, ce 

qui suggere une limitation de la methode pour les echantillons contenant plusieurs 

elements en fortes concentrations qui absorbent des neutrons de resonance. 
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Les fonctions sigmoi'des proposees par Salgado et al. pour calculer les facteurs 

d'autoprotection neutronique thermique et de resonance ont ete determinees pour des 

echantillons cylindriques d'un seul element n'ayant qu'un seul nuclide avec quelques 

resonances isolees, echantillons irradies dans un flux neutronique isotrope. Ces 

suppositions sont loin des conditions experimentales reelles de l'activation neutronique. 

Consequemment, la deuxieme etape de 1'etude avait pour but de valider la formulation 

sigmoi'de des facteurs d'autoprotection thermique et de resonance pour les conditions 

d'irradiation specifiques du SLOWPOKE. Ceci implique la presence d'un flux 

neutronique anisotrope, des sites d'irradiation entoures de differents materiaux 

reflecteurs, et des echantillons ayant differentes geometries. La dependance de Gth en 

fonction de la geometrie de l'echantillon a ete verifiee en utilisant la reaction 

37Cl(n,^38Cl et des echantillons cylindriques de rayon de 5.0 mm et de 7.2 mm. Les 

donnees experimentales ont ete estimees par la courbe theorique avec une erreur variant 

de 2% jusqu'a 5%, ce qui montre une bonne concordance entre la theorie et l'experience. 

Ensuite, la dependance de Gep en fonction des dimensions de l'echantillon a ete verifiee 

avec des disques de zirconium, 96Zr(n, y) Zr, de rayon de 3.0 mm, 5.0 mm et 7.0 mm. De 

plus, des melanges d'oxyde de zirconium avec oxyde d'aluminium dans des echantillons 

de 1 ml ont ete ajoutes aux donnees experimentales. L'approximation des donnees 

experimentales avec la courbe sigmoi'de, avec une erreur de moins de 5%, prouve que Gep 

varie avec les dimensions de l'echantillon comme rh/(r+h). Les expressions analytiques 

de Gep et Gth ont ete verifiees aussi dans trois sites differents du reacteur SLOWPOKE, 

un site interieur situe dans le reflecteur de beryllium et deux sites exterieurs situes dans 
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l'eau. Pour Gep aussi bien que pour Gth, les resultats experimentaux indiquent que les 

facteurs d'autoprotection varient de moins de 10% d'un site a l'autre, meme si 

1'anisotropic du flux neutronique est plus prononcee dans les sites exterieurs et meme si 

l'importance des neutrons reflechis est differente d'un site a l'autre. 

Apres la quantification de l'autoprotection de resonance, il a ete possible de separer du 

Gep, le parametre nucleaire caracterisant 1'activation par neutrons epithermiques, nomme 

section efficace d'absorption neutronique epithermique, oau,eP- Ce nouveau parametre 

nucleaire est independant de la masse et de la geometrie de l'echantillon, ainsi que des 

conditions d'irradiation. 

La derniere etape de l'etude a identifie tous les elements chimiques qui peuvent presenter 

des sections efficaces macroscopiques elevees pour l'autoprotection de resonance. Parmi 

les 76 nuclides importants en AAN, 38 nuclides possedent un Q0> 10, et, avec le spectre 

neutronique du reacteur SLOWPOKE, plus de 35% de leur activite est produite par des 

neutrons epithermiques. Dans cette etude, des nuclides avec un Qo > 10, 13 ont ete 

7Q 80 81 89 

experimentalement analyses a l'aide des reactions nucleaires: Br(n,y) Br, Br(n,y) Br, 

96Zr(n,y)91Zr, U4Cd(n,y)n5Cd, nil(n,yf\ ns\D(n,y)u*mln, mSb(n,y)n2Sb, 

123Sbfn)7j
124Sb, 133Csfn)7j

,34Cs, 152Smfn)};)
153Sm, 186W(n,7/87W, mAu(n,y)mAu et 

238Ufn,y)239U. 

Pour chacun des 13 nuclides etudies experimentalement, des echantillons ayant la meme 

geometrie de 1 ml de volume, mais contenant des quantites controlees de l'element 

considere, ont ete prepares. Pour ces echantillons, l'autoprotection de resonance en 
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fonction de la masse a ete mesuree par activation neutronique. L'activation des 

echantillons a ete realisee en utilisant le site d'irradiation interieur du reacteur 

SLOWPOKE, site ou la composante epithermique du flux neutronique est plus 

importante, / = 18,0. Les activites induites par irradiation ont ete mesurees par 

spectrometrie gamma avec les installations du laboratoire d'activation neutronique de 

l'Ecole Polytechnique de Montreal. La partie de l'activite induite thermiquement a ete 

corrigee en utilisant la formulation sigmoi'de deja verifiee pour le facteur d'autoprotection 

thermique, Gth- En separant de Gep la masse de l'element et le facteur geometrique, les 

parametres (JabStep ont ete etablis pour chaque reaction nucleaire. 

Pour certains nuclides etudies, comme I27I, on remarque une difference de l'ordre de 20% 

entre les valeurs experimentales et theoriques de oabs,ep, difference qui peut s'expliquer 

par l'emploi de l'equation theorique proposee pour les nuclides ayant quelques 

resonances isolees, ce qui n'est pas le cas de l'iode. Meme pour les nuclides de la 

categorie « noyaux avec quelques resonances isolees », on observe des differences allant 

jusqu'a 50% entre les valeurs experimentales et theoriques. En plus de l'incertitude 

experimentale, de l'ordre de 10%, cette difference peut resulter de l'anisotropie du flux 

experimental, comparativement au flux theorique (considere isotrope). Elle pourrait aussi 

etre due aux limites de la formule ou aux imprecisions des donnees nucleaires utilisees 

dans le calcul theorique. 

Finalement, en utilisant les resultats anterieurs, on a developpe une methode iterative qui 

permet de corriger l'autoprotection thermique et de resonance pour tout echantillon 
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cylindrique et toutes conditions d'irradiations. A l'aide d'une feuille de calcul, cette 

methode evalue les Gth, Gep et Gejf pour les 76 nuclides utilises en activation neutronique. 

Elle utilise les sections efficaces thermiques d'absorption neutronique de 1'element, aaba 

trouvees dans le Tableau des Elements; pour les 13 nuclides etudies ici, la methode utilise 

les oabs,ep mesures, et pour les 63 autres nuclides, les aabs,eP calcules; la methode suppose 

que ces dernieres valeurs ont une incertitude de 20%. Puisqu'une expression analytique 

est utilisee, les incertitudes des concentrations corrigees peuvent etre calculees a partir 

des incertitudes de tous les parametres par propagation des erreurs. En supposant des 

mesures precises de concentrations, les incertitudes des concentrations corrigees 

dependront des incertitudes des Geg, qui sont de moins de 3% pour une incertitude de 

20% en (Jabs.ep- Finalement, cette fagon de corriger l'autoprotection pour un echantillon 

irradie dans un flux neutronique mixte est preferable aux calculs numeriques (Monte-

Carlo), inapplicables dans 1'analyse par activation neutronique de routine, car la 

composition de 1'echantillon n'est pas connue d'avance. 

Le seul point faible de la methode est le cas ou plusieurs elements sont actives par des 

neutrons epithermiques dans un echantillon qui contient un element fortement absorbant 

de neutrons epithermiques: il est alors necessaire de connaitre l'autoprotection de cet 

element sur les resonances des nuclides appartenant aux autres elements presents dans 

l'echantillon. Dans un tel cas, il faut effectuer de nombreuses mesures experimentales 

pour chaque paire de nuclides ou des calculs Monte-Carlo, suivis d'approximations par 

moindres carres pour etablir les parametres d'autoprotection de resonance mutuelle. 
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L'avenement des nouveaux materiaux ayant de fortes concentrations en elements 

exotiques, comme les convertisseurs catalytiques ou les piles a combustible, contenant 

platine, ruthenium, rhodium, impose le developpement d'une nouvelle methode d'analyse 

d'une grande precision et non destructive. Le modele developpe dans cette etude apporte 

la correction due a l'autoprotection des resonances aux energies des neutrons 

epithermiques. Consequemment, la nouvelle methode developpee permet d'analyser toute 

substance, sans preparation ni dilution de l'echantillon, tout en conservant son etat 

physique initial. Le modele est utilisable dans tous les reacteurs nucleaires, pour tous les 

spectres neutroniques et pour toute taille d'echantillon cylindrique. 
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Chapter 1 Introduction 

1.1. Research context 

Because of the complexity of the epithermal self-shielding corrections particular to each 

nuclide, in the past, few studies [Abrashkin 1984, Blaauw et al. 2003, De Corte 1987, 

Kenna and Van Domelen 1966, Scherbakov and Harada 2002, Reynolds and Mullins 

1963, Tomuro and Tomura 2002] tried to address this problem for some particular sample 

geometries or compositions. In NAA, to avoid correcting epithermal neutron self-

shielding, the general practice is to dilute the sample or to use chemical separations to 

isolate the nuclide of interest [De Corte 1987, De Soete et al. 1973, Kiraly et al. 2003, 

Kucera and Zeisler, 2004]. However, in some instances, preserving the sample integrity is 

a requirement. So having a universal correction formula for epithermal neutron self-

shielding in NAA alleviates the need for complex, time consuming, and expensive 

sample preparation, and introduces the possibility of routine analysis for all types of 

sample matrices. 

When irradiating a sample in a well-thermalized neutron spectrum, thermal neutron self-

shielding can be accurately corrected because it has been well understood for many years 

[Blaauw 1996, Crane and Doerner 1963, De Soete et al. 1973, Fleming 1982, Gilat and 

Gurfinkel 1963, Shakir and Jervis 2001, Tzika and Stamatelos 2004]. However, with the 

poorly thermalized neutron spectra common at many research reactors, accurate 

corrections are difficult because of the complexity of resonance neutron self-shielding. 
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The task is especially difficult for the analysis of materials with high concentrations of 

heavy elements, which often have relatively high resonance cross-sections. 

Recently, a series of studies [Goncalvesb et al. 2001, Martinho et al. 2003, Salgadoc et al. 

2004] of epithermal neutron self-shielding in reactor physics, propose an empirical 

correction formula for several different epithermal neutron absorbers in different types of 

geometries: slabs, wires and spheres, and irradiated in an ideal homogeneous epithermal 

neutron flux with a neutron spectrum varying with neutron energy as 1/E. The same 

authors extended this empirical approach to cylindrical geometries, formulation used 

further in this study [Goncalves et al. 2004, Martinho et al. 2004]. Adapting this 

discovery to instrumental neutron activation analysis led to a totally new neutron self-

shielding correction method, which has now been implemented for routine sample 

analysis in the Activation Analysis Laboratory of Ecole Polytechnique Montreal. 

At the Ecole Polytechnique Montreal Activation Analysis Laboratory, several previous 

studies investigated the effects of neutron flux anisotropy in the reactor irradiation sites, 

changes in coolant temperature and the amount of moderating hydrogenous material 

present in the sample [St-Pierre and Kennedy 1999, St-Pierre and Kennedy 2004]. In 

addition, another study resulted in a detector efficiency parameterization model [Kennedy 

and St-Pierre 1997] that was introduced later in the laboratory neutron activation analysis 

software EPAA [EPAA 2.2, User's Manual]. All these studies provided a solid base for 

an accurate epithermal neutron self-shielding factor determination, which allowed us to 
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develop this study's new method to correct thermal and epithermal neutron self-shielding 

in activation analysis. 

Chapter 2 of this thesis presents an overview of the literature and introduces some of the 

basic notions regarding the instrumental neutron activation analysis equations, thermal 

and epithermal neutron self-shielding, and the ko method and its fundamental equations. 

In Chapter 3, the SLOWPOKE reactor and its irradiation facilities are briefly described. 

In the same chapter, the characteristics of the experimental set-up, sample preparation 

and gamma ray detection techniques are presented. The end of Chapter 3 identifies and 

quantifies the sources of uncertainty in instrumental neutron activation analysis. The 

experimental results are then presented and discussed in Chapters 4, 5 and 6. The first set 

of experiments is introduced in Chapter 4, where the validity of the neutron self-shielding 

correction formula is studied and the accuracy of the proposed correction method is 

tested in two extreme cases: concentrated samples containing a mixture of strong thermal 

and epithermal neutron absorbers, and a mixture of strong epithermal neutron absorbers. 

Chapter 5 describes the second set of experiments, were the dependence of the thermal 

and epithermal neutron self-shielding factors on sample size and irradiation conditions is 

systematically investigated. Completing the first two steps of the study allow us to 

conceive an iterative method to correct neutron self-shielding for samples of unknown 

composition. Chapter 6 introduces this method by reporting the methods for calculating 

or experimentally determining all the necessary parameters. The differences among the 

experimental and calculated parameters are discussed, and the method uncertainties are 

discussed and evaluated. In the final chapter conclusions derived from this work are 
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presented and some new directions for future research are suggested. The core of this 

doctoral thesis is presented in the form of research articles in international journals with a 

peer-review system. Accordingly, the three chapters, 4,5 and 6, are such articles, two 

published, one in press. In appendices, we present the calculation of the epithermal 

absorption cross section and the neutron self-shielding correction method spreadsheet to 

which the author of this thesis has been an important contributor and co-author. 

1.2. Objectives 

The work presented in this thesis represents a completely new approach to correcting 

epithermal self-shielding in neutron activation analysis. The main objective followed 

throughout this work is to characterize the epithermal neutron self-shielding for nuclides 

having an important absorption cross section for epithermal neutrons, which will result in 

extending instrumental neutron activation analysis to samples containing this type of 

nuclides. 

In order to achieve our main goal, we have identified several specific objectives: adapting 

the reactor physics equations of Martinho, Salgado and Gon§alves for calculating the 

thermal and epithermal self-shielding factors in activation analysis; selecting judiciously 

the best experimental approach for measuring these factors; experimentally validating the 

theoretical equations for cylindrical mono-element samples irradiated in a slightly non-

isotropic neutron flux; identifying the nuclear parameters that characterize epithermal 

self-shielding; developing a new method to correct neutron self-shielding in activation 
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analysis; checking the applicability of this method for concentrated mixtures of 

epithermal and thermal neutron absorbers. 

These objectives required the following steps: 

1. Choosing suitable chemical elements having nuclides with various resonance 

patterns and epithermal absorption cross sections, elements in a chemical form 

that can be easily diluted in order to investigate the variation of epithermal self-

shielding factor with sample mass, and elements in a chemical form that will lead 

to significant neutron self-shielding, more than 30%, for 1 mL samples. In 

addition, the selection criteria for these elements included radiation safety aspects 

related to the manipulation of the samples, type of waste resulting after 

irradiation, and half-lives of the nuclides activated, short lived nuclides being 

preferred. 

2. Quantitatively estimating neutron flux variations caused by the amount of 

moderating materials present in the samples, and by the temperature variations of 

the reactor coolant. The latter values allow us to apply the necessary corrections 

of the neutron flux, corrections that led to an accurate measurement of the activity 

and indirectly to an accurate measurement of the effective self-shielding factor. 

3. For each selected element, preparing a set of 1 mL cylindrical samples of different 

concentrations, irradiating and detecting them in identical conditions. As a result, 

the effective self-shielding factors were plotted as a function of the mass of 
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element present in sample, and these values were fitted by the least squares 

method with the proposed sigmoid formulas. 

4. Measuring or calculating the nuclear parameters that characterize the self-

shielding and implementing these values in the spreadsheet that uses the iterative 

self-shielding correction method for all nuclides commonly used in neutron 

activation analysis. 

For the first time in the activation analysis field, a practical expression has been proposed 

to correct both thermal and epithermal neutron self-shielding in neutron activation 

analysis with cylindrical samples for all types of sample compositions and dimensions, 

and for all types of irradiation conditions. Based on this expression, a spreadsheet was 

developed and implemented in routine activation analysis that calculates the thermal and 

epithermal neutron self-shielding for any nuclide in a cylindrical sample irradiated in a 

reactor neutron spectrum. Element concentrations measured by neutron activation 

analysis are corrected for self-shielding with typical accuracy of 2%. 
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Chapter 2 Epithermal Self-Shielding in NAA 

This chapter is divided into four main sections. In the first part the NAA equations are 

briefly presented. The second introduces this study's approach in calculating the thermal 

self-shielding factor. The new calculation of the epithermal self-shielding factor by a 

sigmoid formula is introduced in the third section, and the limitations of this formulation 

are highlighted. Finally, the NAA ko method equations and the Neutron Activation 

Analysis Laboratory of Ecole Polytechnique Montreal implementation of the ko method 

are also presented. 

2.1. Instrumental Neutron Activation Analysis 

In a typical neutron spectrum, the neutron activity of a nuclide, A, induced in a sample by 

radiative neutron capture is usually expressed as the sum of the contributions from 

thermal and epithermal neutrons, that in the H0gdahl convention take the following form: 

A=N (Gth(7lh(plh+GepI0(pep)(l-e-^) (2.1) 

where: 

./V - number of a toms of the target nucl ide; 

Oih - (n, y) cross-section at 2200 m/s; 

Io - resonance integral measured in barn; 

<Pth, (Pep - average unperturbed thermal and epithermal fluxes inside the sample; 
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Gti„ Gep - thermal and epithermal self-shielding factors; 

A, - decay constant of the considered nuclide; 

ti - irradiation time of the sample. 

The thermal self-shielding factor is the same for all nuclides and it depends on the 

amounts of all elements in the sample absorbing thermal neutrons. The epithermal self-

shielding factor for a given nuclide will be influenced by other elements in the sample 

only if these elements absorb neutrons at resonance energies overlapping with the 

resonances that activate the nuclide in question. 

To calculate crlh, Io, (pth and (pep, we used the characteristics of o(E) and <p(E): 

1. In the thermal region, between 0.00 eV and 0.55 eV, o(E) has a 1/Em dependence 

and <pth(E) can be described by a Maxwell-Boltzmann distribution; 

2. In the epithermal region, between 0.55 eV and 100 keV, o(E) presents several 

resonances, all described by Breit-Wigner equation, and also the 1/E tail, and 

(pep(E) is a 1/E function. 

In actual reactor irradiation sites, we have a l/E1+a dependence, where a is a measure of 

the deviation of the epithermal fluence rate distribution from the 1/E shape and is an 

irradiation site characteristic considered independent of neutron energy. So I0 in Eq. 2.1 

will be replaced by Io(oc) defined as: 

I0(a)= f (j(E)dE/E1+a (2.2) 



Since o(E) becomes very small in the MeV-region, the contribution of the fast neutrons 

to the (n, Y) reaction rate can be neglected, also because in most NAA irradiation 

conditions the fast neutron flux component is relatively small. 

If we express the activity in Eq. 2.1 in terms of the amount, m, of the element in the 

sample, we obtain: 

A=n^T~ <?*<P*(Glh + Gel,Qo{a)/f)(l-e-*) (2.3) 
at 

where: 

Qo(oc) - is equal to Io(a)/oth\ 

f - thermal to epithermal flux ratio, equal to (pthltyep, 

9 - isotopic abundance of the element isotope that produces the studied (n, f) 

reaction; 

NAv - Avogadro's number; 

Mat - atomic weight; 

A - decay constant of the considered nuclide; 

ti - irradiation time. 

In neutron activation analysis, to determine the amount of the element in the sample, we 

compare its activity with that of a standard, which usually has negligible self-shielding. 

Thus, we need to know the activity the sample would have produced if the self-shielding 

had been negligible. This is obtained by dividing the sample-measured activity by its 

effective self-shielding factor, Gejf. The sample effective self-shielding factor is defined 
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as the ratio between the reaction rate per atom in the real sample and reaction rate per 

atom in a similar and infinitely diluted sample. Using this definition, we can determine 

theoretically the effective self-shielding factor by dividing the activity of Eq. 2.3 by the 

activity calculated when Gth =1 and Gep =1. Thus, G># is given by: 

Gth + GepQ0{a)/f 

1+QoW// 
G<ff = V J/V,/ (2-4) 

The variation of Gth with the sample geometry and the concentration of the neutron-

absorbing element is relatively well understood and, since the cross section for activation 

by thermal neutrons is a slowly varying function of neutron energy, usually 1/Ein, the 

thermal neutron self-shielding factor for any element can be expressed by the same 

function of the amount of the element and the element thermal neutron absorption cross-

section (Jabs-

The determination of Gep as a function of element concentration and sample geometry has 

always been a difficult task because the variation of absorption cross-section with neutron 

energy, over the range of the resonances is very different for each nuclide. The numerical 

methods employed to calculate epithermal neutron self-shielding are impractical for 

routine NAA work, and impossible to use in the usual case when the concentration of the 

absorbing element is not known in advance. 

All these fundamentals of neutron activation analysis are well-described in the classic 

text book "Neutron Activation Analysis" [de Soete et al. 1973]. 
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2.2. Thermal Self-Shielding 

In relation to Gf/„ several studies have been carried out to determine this factor for 

different elements in various geometries. In all of these studies, the thermal self-shielding 

factor was expressed as functions of a variable z- For example, in a given geometry and 

for elements with a high absorption cross-section compared to the scattering cross-

section, Shakir et al. [2001] propose the expression: z,=t-Zabs, were t represented the 

characteristic dimension of the sample. If the scattering cross-section is non-negligible, 

Tzika et al. [2004] propose another formula: z=t/L, where L is the diffusion length. Also, 

all the collisions can be considered as absorbing collisions and, consequently, in the 

calculation of the self-shielding factor one may use the total macroscopic cross-section 

instead of the macroscopic absorption cross-section [Gilat and Gurfinkel 1963]. In these 

papers, the function Gth takes different forms: from simple, like an exponential, to 

complex, like combinations of Bessel and modified Bessel, in the case of cylindrical 

geometry, for example. 

A recent paper of Gongalves et al. [2005] proposes a universal sigmoid function for 

thermal neutron self-shielding. Rewriting their expression for Gth as a function of the 

amount of the element in the sample gives: 

1.00 
1+ ( m/mth ) 

where: 
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mth - amount of the element that causes 50% thermal neutron self-shielding for a 

given sized cylinder. 

The work of Gongalves et al. [2005] suggests that mth varies with the radius and height of 

the cylinder as r(r+h). In the publications of Gonialves et al. we usually see the 

geometrical factor rh/(r+h). The reason for this different geometrical factor is that in their 

work they express the self-shielding as a function of the concentration of the element, 

while in the present work we express it as a function of the mass of the element; thus, the 

difference between the two approaches is the volume of the sample, which is proportional 

to r2h. If neutron scattering in the sample is considered, mth can be estimated from the 

thermal neutron total and absorption cross-section as follows: 

^T^-^W"'5 (2-6) 

mth r(r + h)Mat 

where: 

kth - dimensionless constant related to the geometry of the sample and to the 

irradiation site; 

Gabs, & - thermal absorption cross section and the total cross section of the element. 

If neutron scattering in the sample is neglected, for a sample containing several elements 

that absorb thermal neutrons, Gth can be calculated by replacing z = m/mth in Eq. 2.6 by 

the sum of the contributions of all the elements: 

KhNAv y m,GahxJ 
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The value of Gth thus calculated applies to the thermal neutron activation of all nuclides 

in the sample. 

2.3. Epithermal Self-Shielding for Mono-Element Samples 

Until recently, the only way to estimate reliably the epithermal neutron self-shielding has 

been to perform numerical calculations, such as Monte-Carlo, modelling the shape and 

density of the object irradiated in an isotropic 1/E neutron spectrum and using tabulated 

cross-sections. In a few specific cases, an analytical expression was developed, writing 

Gep as a function of a dimensionless parameter z = t-'Z(Eres)(Tr/r), where t is the typical 

dimension of the sample (for a cylindrical geometry t=r-h/(r+h)) and 2.(Eres)(rr/r) is the 

linear absorption coefficient at the resonance energy Eres [Scherbakov and Harada 2002]. 

In the literature [Abrashkin 1984, Blaauw et al. 2003, De Corte 1987, Kenna and Van 

Domelen 1966, Scherbakov and Harada 2002, Reynolds and Mullins 1963, Tomuro and 

Tomura 2002], the Gep function, always described by the same variable z, takes different 

forms from one paper to another, from one geometry to another, from one nuclide to 

another. 

However, for mono-nuclide samples, nuclides having only one important isolated 

resonance at the beginning of the epithermal region, and irradiated in an ideal 1/E 

epithermal flux, homogeneous and isotropic, in their most recent papers, Martinho and al. 

[2003] claimed that Gep can be expressed by a universal function, a sigmoid, with only 

one nuclide-dependent parameter. The Gep calculated with this function agreed with 
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Monte Carlo calculations for foils, wires and spheres, within 5%. Figure 2.1 give an 

example of a mono-isotopic element, 197Au, having only one important isolated 

resonance at the beginning of the epithermal region. 

XJ m3 

3 
< 

E(eV) 

197, 
Figure 2.1 Epithermal region of the Au total cross section 

The same authors [Gon^alves et al. 2004, Martinho et al. 2004] extended their sigmoid 

function to cylindrical samples of a pure mono-nuclide sample irradiated in an isotropic 

epithermal neutron field. To adapt their expression to neutron activation analysis, we 

rewrite it as a function of the amount m of the element in a cylindrical sample of fixed 

size: 

Gep — 
0.94 

l + (m/mei>) 0.82 
+ 0.06 (2.8) 
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According to the Martinho et al. 2004, for a homogeneous sample, containing only one 

mono-isotopic element, and irradiated in an isotropic neutron flux, where the epithermal 

absorption cross-section of the element has only one isolated resonance, mep has the 

following expression: 

mep r(r + h)Mat
 rt 

where: 

Otot{Eres) - peak value of the total cross section; 

r r , r - radiative and total resonance width. 

In the case of a nuclide having a few isolated resonances, Salgado0 et al. [2004] propose a 

formula similar to Eq. 2.9. For n resonances at the beginning of the epithermal region, 

mep became: 

1 0.195 0NAv 
I w^jE^Jr^/r,)05 

i=i 

K r(r + h)Mat j ^ 
(2.10) 

where: 

w, - weighting factor defined by the following formula: 

™,=-2 — (2-lD 
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with g being a statistical weighting factor: g = (2/+l)/2(2/+l), J is the resonance state 

spin, / is the target nucleus spin, and Y„j is scattering resonance width. With the 

weighting factors defined in this way, the weight w,- is the fraction of the resonance 

integral due to resonance i. 

Eqs. 2.9 and 2.10 may not be applicable in practical activation analysis conditions since 

the neutron flux is non-isotropic, and in the epithermal region varies as l/El+a. Also, the 

samples contain more than one element, each element having one or more isotopes. In 

addition, the activated isotope could have more than few isolated resonances at the 

beginning of the epithermal region, as is the case of complex total cross section of 238U, 

illustrated in the Figure 2.2. 

oo 
CO 

t> 101 L 

E(eV) 

238T Figure 2.2 Epithermal region of the ~ U total cross section 



17 

Consequently, from Martinho, Salgado and Goncalves studies, we conserved only the 

main idea: the epithermal self-shielding factor can be described by a sigmoid function 

that depends on the amount of the studied element in the sample and on a parameter mep, 

Eq. 2.8. The parameter mep contains the geometrical and nuclear factors, and can be 

thought of as the amount of the element that causes about 50% epithermal neutron self-

shielding for a given sized cylinder. From Eqs 2.9 and 2.10 it can be seen that mep varies 

with the radius and height of the cylinder as r(r+h). 

In this study, the epithermal neutron self-shielding factor is given by [Chilian13 et al. 

2006]: 

0.94 
Gep= , M , ^ + 0.06 (2-12) 

1 + 
Av ep abs,ep 

r(r + h)M V ' V ' "J*«at J 

kep - epithermal self-shielding constant 

<7ubs,ep - epithermal neutron absorption cross-section 

The epithermal self-shielding constant, kep, depends of the characteristics of the reactor 

irradiation site. The epithermal neutron absorption cross-section, <Jabs,ep, by definition, 

includes the absorption of neutrons by the resonances of all isotopes of the element which 

may overlap with the resonances of the nuclide being activated. Considering the 

complexity of the nuclide resonance pattern of the absorption cross section, and the 

practical irradiation conditions, (7abs,ep, was experimentally measured for several nuclides. 
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Eq. 2.12 ignores the possible shielding by other elements in the sample; this should 

usually be negligible if the resonances of nuclides from different elements will not 

overlap. At contrary, the mutual epithermal self-shielding became significant if the 

sample contains very high concentrations of certain elements with nuclides having 

resonances that overlap. Figure 2.3 shows the case of 127I, 79Br, which present a 

resonance overlapping between two important resonances of 127I and the first two 

resonances of 79Br. 

10J 

10' 

101 

10" 
101 

I i J ..,X..^..J>...t i 

102 
• ' 1 ,l,,.l,,.X. 

E(eV) 

Figure 2.3 Total cross section resonance overlapping for I and Br 



19 

Values of (Tab.s,ep were also calculated by a formula derived from Eqs 2.10 for capture 

reactions with several isolated resonances at the beginning of the resonance region: 

Zw»-
1=1 

^tot.iX^res.i A 

CTabs,ep,Salgaclo-Q-195 & ~ ( 2 . 1 3 ) 

1=1 

An example of Oabs,eP calculation is given at the end of this thesis, in Appendix A. 

2.4. NAA ko-method and its fundamental equations 

In order to experimentally determine the concentration of the analyte a in the sample, in 

this study we use the NAA ko-standardization [De Corte 1987]. According to this 

method, the concentration of an element in the sample is obtained as: 

PaiMS/g) = 
N. 

SDCW 

1 1 O-
th.Au p,Au 

a KM ko.Au (a) G,h,a f + GepMe0,„ («) ep,a 

106 (2.14) 

where: 

pa - concentration of analyte a; 

Au - coirradiated neutron fluence rate monitor, usually gold; 

Np - measured net peak area, corrected for pulse losses (dead time, random 

coincidence (pulse pile-up)); 

tc - counting time; 

S - saturation factor; =1- exp(-Af,-); 
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D - decay factor; = exp(-^); 

C - counting factor; =(1- exp(-Atc))/ X, correcting for decay during counting; 

W - sample mass (g); 

Axp - the specific count rate; = (Np)/SDCw, with w the mass of the monitor element 

(g); 

ko, Au(a) - experimentally determined ko factor of analyte a versus a monitor Au, defined 

as: 

£ ( M » = T7-^ (2-15) 

- with M the atomic mass, 6 the isotopic abundance, and y the absolute 

gamma intensity; 

£p - full-energy peak detection efficiency, including true coincidence effect. 

In Eqs. 2.14 and 2.15 the co-irradiated monitor is the gold comparator (197Au(n, y)198Au; 

Er= 411.8 keV), versus which the ko factors are expressed in the published tabulations 

[De Corte and Simonits 2003]. However, by making the necessary transformations, we 

can replace the gold comparator with any other monitor. Note that, with the SLOWPOKE 

reactor, the co-irradiated monitor does not need to be irradiated each time because the 

neutron flux is reproducible. 
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Based on the ko-standardization equations, in order to calculate the concentration of a 

given element in a sample to be analyzed, at SLOWPOKE laboratory of Ecole 

Polytechnique of Montreal, a homemade Java program EPAA (Ecole Polytechnique 

Activation Analysis) was developed [EPAA 2.2, User's Manual]. To simplify the form of 

the Eq. 2.14, a sensitivity factor BU,EPAA is introduced and we obtained: 

N l 
Pa,EPM{fl8/8) = - ' y n r w (2-16) 

Ba,EPAA 9th S D C W 

where (pt\r is the value of the flux indicated at the rector console and the sensitivity factor 

is taken from the EPAA library built by considering samples without self-shielding {Gth,a 

and Gep,a are equal to one). In this library, for analyte a, the sensitivity factor has the 

following form: 

KEPAA = const. kQAu{a) £paEPAA (l + Q0a(a)/f) (2.17) 

with the const, related to the monitor used in EPAA to build the library of experimentally 

determined sensitivity factors and £VM,EPAA calculated in the EPAA program as indicated 

in Section 3.4. 

Any neutron flux variations in the reactor, caused by the presence of moderating 

substances in the sample or temperature variations in the reactor, will modify Ba and <pth 

in Eq. 2.16. In addition, the detector efficiency £p,a for some samples having special 

geometry or special composition can differ from the value used in the EPAA program. 

So, to obtain the most accurate concentration for analyte a in a sample with self-shielding 
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(Gth,a and Gep,a are smaller than one), the necessary corrections related to those effects 

must be introduced. Thus, we obtained the following expression: 

£p,.EPAA^ + QM/f ) 
Pa,weij!hini! Pa,EPAA I , \it \\ \A-i*) 

£PAGlhM+G^aQM/(f CTCj CTCM 

where C? is the correction for reactor temperature variations and CM is the correction for 

flux moderating effects in the sample. Those corrections will be discussed in more detail 

in the Sections 3.1.3, 3.1.4, and 3.4 of this thesis. 

With the real concentration of the analyte a obtained by weighing the chemical 

substances used in sample preparation, and by replacing (1 + Qo{d)lf) with (1 + Qo(ot)/f 

CTCM) in Eq. 2.18, we can extract the Geg as is defined in Eq. 2.4: (Geff,a = (G,h,a + 

Gep,aQo(cc)/f CTCM)K 1 + Qo(o?)/f CTCM ); in the real sample the neutron flux being 

corrected for the temperature and moderating effects) and we obtain: 

^ Pa.EPAA £p,a-EPAA ,^ * m 

eJf'a=~o~ ~P—~r~r~ 

To experimentally determine Geff for the analyzed samples, the following work will use 

Eq. 2.19 with the appropriate Cj and CM corrections. 
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Chapter 3 Experimental Methodology 

The Ecole Polytechnique SLOWPOKE reactor and its irradiation facilities are descried in 

the beginning of this chapter. In the following sections, the sample preparation, the 

gamma detection system, detection efficiency calculation techniques, and the sources of 

uncertainties in NAA are presented. 

3.1. SLOWPOKE Reactor and its Irradiation Facilities 

SLOWPOKE, an acronym for Safe Low Power Critical Experiment, is a 20 kW pool type 

reactor designed and produced by Atomic Energy Canada Limited as a neutron source for 

activation analysis and the production of short-lived isotopes. The core of the reactor 

contains 198 low enriched uranium (20%) fuel elements based on the Zircaloy-4 clad 

U02 CANDU fuel element, but with a smaller diameter (5.25 mm) [El Hajjaji 1999, 

Townes and Hilborn 1985]. The general design specifications for the SLOWPOKE 

reactor are introduced in Table 3.1. 
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Table 3.1 SLOWPOKE Design Specifications 

Pool Diameter 2.5 m 

Pool depth 6.1m 

Container Diameter 0.6 m 

Container Height 5.3 m 

Core Diameter 22.0 cm 

Core Height 22.0 cm 

Maximum Fission Power 20.0 kW 

Fig. 3.1 presents the core of the SLOWPOKE reactor with the five inner irradiation sites 

in the annular beryllium reflector that surrounds the fuel and up to five outer irradiation 

sites in the surrounding water [Townes and Hilborn 1985]. Irradiation capsules are 

transferred to and from the reactor using a pneumatic system that extends from the 

loading station to the irradiation sites. 
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Figure 3.1 SLOWPOKE Critical Assembly 

Having negative fuel temperature coefficient and negative coolant temperature and void 

coefficients, the core of the reactor is designed so that the most severe reactivity 

transients are safely limited. The reactor has a single motor-driven cadmium control rod 

that moves along the central axis of the core through a hole in the top reflector. The total 

worth of the control rod is 5.1 mk. 
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In this third chapter, the characteristics of the Ecole Polytechnique SLOWPOKE reactor 

irradiation sites are presented together with the variation of neutron flux with the reactor 

temperature and with the amount of moderator in the irradiation vial. 

3.1.1. Characteristics of the irradiation sites 

The SLOWPOKE reactor is a small research reactor for which the neutron flux in a given 

irradiation site is reproducible to within 1% [Kennedy and St-Pierre 2003]. For NAA, 

using ko-standardization, the sensitivity constants (counts per microgram) are measured 

once for each element and used for subsequent analyzes over a long period of time. 

In this study the control console flux setting was 5*10n/cm2/s which corresponds to a 

reactor power of 10 kW. The samples were irradiated in the inner irradiation site no.l and 

in the outer sites no. 6 and 8. Table 3.2 gives some characteristics of these SLOWPOKE 

irradiation sites. 
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Table 3.2 Characteristics of the SLOWPOKE irradiation sites 

Irradiation 

Site No. 

1 - inner 

6 - outer 

8 - outer 

Reflector 

Material 

beryllium 

water 

water 

Inner 

Diam. (cm) 

1.58 

2.90 

1.58 

Outer 

Diam. (cm) 

2.56 

3.54 

2.22 

Radius from 

Core Axis (cm) 

15 

25 

25 

/ 

18.0 

48.6 

52.7 

a 

-0.051 

+0.016 

+0.018 

(=18.0 

Container 

60 cm 

Figure 3.2 SLOWPOKE reactor core with irradiation sites 
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Fig. 3.2 presents schematically the irradiation sites with their location in the reactor [St-

Pierre and Kennedy 1999]. Because the outer irradiations sites no. 6 and 8 are situated at 

the same radial distance from the core, the values of/and arare almost identical. 

3.1.2. Flux Anisotropy 

In the SLOWPOKE reactor both inner and outer irradiation sites are relatively close to 

the reactor core and are situated in beryllium or water reflectors. In these conditions, the 

thermal and epithermal fluxes are nearly isotropic; they become increasingly anisotropic 

with an increase in the radial distance from the core. 

Using grids of Cr and Zr wires, St-Pierre and Kennedy [2004] measured the flux 

gradients in the inner and outer irradiation sites of the Ecole Polytechnique SLOWPOKE 

reactor. Fig. 3.3 presents these gradients. 
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Thermal Neutrons 
inner site outer site 

1.04 1.00 0.96 

Epithermal Neutrons 
inner site outer site 

1.05 1.00 0.96 
7 cc vial 

, ; t : : - v : 

1.16 1.00 0.85 
25 cc via! 

Figure 3.3 Thermal and epithermal flux gradients across the vial in the inner and 

outer irradiations sites 
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Because the inner sites were purposely placed at the radius of maximum thermal flux in 

the annular beryllium reflector, in these sites the horizontal gradient of the thermal flux is 

less than 1% across the 14 mm diameter of the vial. Over the height of the vial the 

thermal flux decreases by only 5%. These very small gradients are indicative of a very 

isotropic thermal neutron flux. For the outer site, the thermal flux gradient was found to 

be 5% across the 14 mm diameter of a 7 cc vial, and about 2% over the height of the vial 

[St-Pierre and Kennedy 2004]. 

In the inner and outer sites, over the height of the vials, the variation of the epithermal 

flux is small. However, the horizontal epithermal flux gradients are larger than the 

horizontal thermal flux gradients. Across the 14 mm diameter of the vial in the radial 

direction, for the inner site, the epithermal gradient was found to be 9% and, for the outer 

site, 17% [St-Pierre and Kennedy 2004]. This indicates that the epithermal flux is less 

isotropic than the thermal flux. 

3.1.3. Flux Changes Caused by Temperature Variations 

In the SLOWPOKE reactor a variation of the temperature changes the properties of the 

moderator causing a variation of the neutron flux. In addition, the reactor is designed to 

automatically adjust the position of the control rod in order to maintain a constant 

U3Cd(n, y) reaction rate in the cadmium flux detector, reaction rate that corresponds to 

the thermal neutron flux value chosen by the operator at the reactor console. 
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For most elements, in the thermal region, the activation cross section varies as 1/v, where 

v is the neutron velocity. However, up to 0.5 eV neutron energy, the cross section for the 

113Cd(n, y) reaction is fairly independent of neutron velocity. Consequently, for a constant 

' Cd(n, Y) reaction rate, as the temperature increases, the reaction rate for the activated 

elements decreases. This is seen as an apparent decrease in the neutron flux. 

The thermal neutron flux measured as a function of the reactor temperature using a 1/v 

flux monitor indicates a decrease of thermal neutron flux by about 0.2% per degree 

Celsius. For the epithermal and fast fluxes no significant variation was observed [St-

Pierre and Kennedy 1999]. The variation of neutron flux with the temperature imposes a 

correction in the formula used for calculating Geff, Eq. 2.4, as follows: 

Glh+GepQ0(a)/f CT 

\ + Q0{a)/fCj 
eff ~ — : — ~ t \ , , ~ ^ - ' ) 

where: 

_ (r(°c)-45°c)-o.2 
T~ 100 K } 

and T(°C) is the temperature indicated at the reactor operating console, value that 

represents the temperature of the reactor coolant obtained from a thermocouple that 

measures the temperature of the water leaving the core. 

To be able to compare experimental results obtained from different sets of samples 

irradiated at different reactor temperatures, we arbitrarily choose the reference 
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temperature of 45°C and we use this value in all the flux corrections related to the 

temperature variation. 

3.1.4. Flux Changes in Hydrogenous Samples 

By using samples of different sizes, containing different types of moderating materials: 

water, polyethylene and SiC>2, and irradiated in the inner and outer irradiation sites of the 

SLOWPOKE reactor, the variation of the neutron flux with sample size was studied by 

St-Pierre and Kennedy [2004]. None of the materials used contained elements with high 

absorption cross section. The samples of silica or carbon were found to have a negligible 

effect and the results for polyethylene and water are similar. The experimental data 

indicate that the effect is zero for zero sample volume and tends toward a maximum as 

the samples increase in size. 

In the inner site of the SLOWPOKE reactor the flux is poorly thermalized, the thermal-

to-epithermal ratio being 18.0 and the thermal-to-fast neutron flux ratio being 4.0 

[Kennedy et al. 2000]. In outer site 6 the thermal-to-epithermal ratio is 48.6 and the 

thermal-to-fast neutron flux ratio is 15.8 [Kennedy et al. 2000]. For fast neutrons, the 

hydrogen reduces the average flux. 

The amount of hydrogen in the inner site has no effect on the epithermal neutron flux 

because it produces as many epithermal neutrons as it removes. On the contrary, in the 

outer site, there are relatively few fast neutrons to moderate; thus, the removal of 

epithermal neutrons dominates [St-Pierre and Kennedy 2004]. 
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For the thermal neutrons in the inner site there are fewer absorptions by hydrogen, which 

makes dominant the thermalization of the epithermal neutrons and the thermal neutron 

flux increases with the sample size. In the outer site, for thermal neutrons, adding 

moderator has no effect because absorption by hydrogen in the sample equals production 

by thermalization. 

In the present work, in order to obtain homogeneous samples having different 

concentrations of the studied element, water solution samples, powdered sugar mixtures 

or metallic oxides fixed in organic resin were prepared. All diluting materials used in this 

study, water, sugar and organic resin, are hydrogenous substances that will modify the 

neutron flux inside the irradiated sample. So the effect of the neutron flux moderation and 

absorption on the average neutron flux in the sample must be considered and Eq.3.1 

becomes: 

= Gth + GepQQ{a)/fCTCM 

* l + QM/fCTCM 

where: 

CM=l + M (3.4) 

and M is a fraction related to the volume and the type of the moderator present in the 

sample. For water and sugar moderators, the values of M were determined considering 

the results obtained by St-Pierre and Kennedy [2004]. Beside water and sugar, another 

diluting substance, organic resin, was used to prepare homogeneous metallic oxide 

samples having different concentrations. For this type of moderator M was 
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experimentally determined by comparing the activity of Zr monitors immersed in the 

same 6 mL volume of air, water, sugar or organic resin and irradiated in the same 

conditions. Table 3.3 shows the values of M used in this study for different volumes of 

water, sugar and resin moderator present in the sample for the inner and outer irradiation 

sites. 

Table 3.3 M values for different volumes of water, sugar and resin moderator in the 

inner and outer irradiation sites 

Water Sugar Organic Raisin 

Vol (cm3) r (cm) Min Mout Min Mout Min Mout 

1.0 0.5 0.030 -0.020 0.030 -0.020 0.030 -0.015 

3.0 0.7 0.060 -0.040 0.055 -0.030 0.050 -0.015 

4.4 0.7 0.070 -0.060 0.060 -0.030 0.055 -0.030 

6.0 0.7 0.075 -0.070 0.060 -0.050 0.055 -0.030 

Using the activation analysis technique, in the composition of the organic resin we 

detected the following elements: Si (1090 ± 83 |ig/g), Sn (97 ± 4 |ig/g), Ba (14.9 ± 0.7 

fxg/g), Br (15.6 ± 0.5 Jig/g), and traces of Na, CI, Al and Mn (less than 10 M-g/g). 
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3.2. Sample Preparation 

The chemical substances used in this study were: water solutions of KBr, 

Cd(N03)2:4H20, InCl3, KI, CsN03, Sm203, NaAuCl4:2H20, U02(C2H302):2H20; HCl 

solutions of K(SbO)C4H406; solid mixtures of W02 powder and K(SbO)C4H406 

powder; and Zr metal discs. 

38 nuclides were identified to have a resonance integral to thermal absorption cross 

section ratio, Qo, higher than 10, corresponding to a high importance of activation by 

epithermal neutrons relative to thermal activation. Among these 38 nuclides, we preferred 

the ones present in highly soluble chemical substances, which allow preparation of 

homogeneous, small volume samples of a wide range of concentrations. In addition, to 

reduce the irradiation time and decay time, and also to minimize the radioactive waste 

generated by activation, relatively short half-life activation resulting radionuclides (10 

minutes to 3 days, with an exception: 60.2 days for 124Sb) were selected. 

For each selected nuclide and it's chemical element, the epithermal neutron self-shielding 

was studied by preparing, irradiating and counting a set of 1 mL cylindrical standards, 

with r = 5.0 mm and h = 12.7 mm, containing different masses of the element. To vary 

the element concentration in the sample, water, sugar or organic resin were employed as 

diluting materials. For solid mixtures, during the irradiation and the counting, the powder 

sample geometry was conserved by using a wooden plug. 

To study the thermal neutron self-shielding factor, it's dependence on the amount of the 

element present in the sample, on the sample size and on the irradiation site, several 
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sample sets were prepared by mixing NH4C1 powder with powdered sugar and pressed 

into 10 mm or 14.4 mm diameter polyethylene irradiation vials. The height of the 

cylindrical sample was maintained at 12.7 mm or 30.7 mm with a wooden plug, to give 

volumes of 1 mL or 3 mL. Both sets were completed with more dilute samples, prepared 

by dissolving NH4CI in water and sealing 1 mL or 3 mL of solution in polyethylene vials. 

The dependence of the epithermal self-shielding factor on sample size and on irradiation 

site was studied by using various stacks of Zr metal disks with three different diameters, 

6 mm, 10 mm and 14 mm. The stacks of disks, with heights varying between 0.127 mm 

and 12.7 mm, In addition to the Zr disks, measurements were also done with several 1 

mL powder samples of different concentrations, up to 2.12 g Zr, obtained by mixing ZrC>2 

powder with A1203 powder. The powder samples, sealed in polyethylene vials of 10 mm 

diameter, six 4.4 mL samples, with diameter 14 mm and different Zr concentrations, were 

prepared by using different materials: zirconium plate, zirconium oxide powder, 

zirconium metal powder, zirconium nitrate, zirconium sulfate and zirconium nitrate 

diluted in organic resin. 

3.3. Gamma Detection Chain 

In this work, an intrinsic germanium detector (p-type) with efficiency of 14.6% relative 

to a 76 mm x 76 mm Nal(Tl) detector was used together with a model that parameterises 

the detector efficiency. 

The detector characteristics are introduced in the Table 3.4. 
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Table 3.4 Intrinsic germanium detector (p-type) with efficiency of 14.6 % relative to 

a 76 mm x 76 mm Nal(Tl) detector characteristics 

Resolution Peak/ Diameter Length Active Area Distance from 

(keV, FWHM) Compton (mm) (mm) Window (cm2) Window (mm) 

1.75 (1.33 Mev) 44.9:1 45 40 15.9 3 

The following section of chapter 4 will discuss the applicability of the detector efficiency 

model for our experimental conditions: samples having different cylindrical geometries, 

different compositions and densities, which may contain activated isotopes with ^lines at 

low energies. 

3.4. Detection Efficiency 

Detection efficiency is defined as the observed counts per unit of time divided by the 

absolute gamma-ray emission rate, and depends on the following: 

1. Intrinsic efficiency of the detector (probability that the gamma ray is totally 

absorbed in the detector crystal) 

2. Distance of source from the detector (for distances large relative to the 

detector, this goes as 1/r2, were r is the distance between the center of mass of 

the sample and the detector effective center). To first order, this is pure 
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geometry, although as the sample approaches the detector, edge effects can 

become significant. 

3. Gamma-ray absorption in the sample. The higher the gamma energy-ray 

energy, the smaller this effect is. Transmission decreases exponentially with 

absorber thickness and the half thickness depends strongly on the energy and 

less strongly on the density of the sample. 

In this work, to calculate the detector efficiency, we used the parameterisation of detector 

efficiency for the standardization of NAA with stable low flux reactors, developed by 

Kennedy and St-Pierre [1996]. The improved relative method uses standards activated 

once and the sensitivity factors determined are used for all subsequent analyses with the 

same counting geometry. This method is extended to any other counting geometry by 

parameterising the detection efficiency, taking into account y-ray energy, sample-detector 

distance, sample size and y-ray coincidence summing effects. The low activity produced 

in low flux reactors requires close counting geometries that imposes more precaution to 

be taken in order to reach accuracies of a few percent. 

The method employs the concept of effective interaction depth (EID), [Tian et al. 1993, 

Tian and Ni 1994]. At a point on the axis far from detector, the absolute efficiency as a 

function of y-ray energy is measured. At several energies, the efficiency as a function of 

distance along the axis is then measured. Coincidence summing is calculated using 

information from the decay schemes and total efficiencies are determined using measured 

peak-to-total ratios. 
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Working with the point sources, a model was developed that calculates efficiencies as a 

function of position of point sources on the detector axis [Kennedy and St-Pierre 1997]. 

For NAA samples, which may have a volume of several mL, the source position was 

taken as the geometrical centre of the sample. In the development of this model a very 

important part was the accurate calculation of the relative efficiencies because the model 

will be used to calculate sensitivity factors for a given geometry from those measured on 

another detector. 

This technique for estimating detection efficiencies was validated for this study specific 

experimental and detection conditions. Because samples of different densities, 

compositions and geometries were used, a particular attention was given to the sample 

gamma absorption correction term in the detection efficiency calculation. 

To estimate gamma self-absorption in the sample, the mass attenuation coefficients were 

used [De Soete et al. 1973]. For each element the mass attenuation coefficient was 

expressed as a second order polynomial function of energy. The polynomial function 

coefficients were determined by fitting the existing data. For the composite materials 

(like homogeneous mixtures of iron oxide with sugar samples), the total mass attenuation 

coefficient can be obtained by summing the products of the mass attenuation coefficient 

and the fraction of the composing elements. For missing Z values in the mass attenuation 

coefficients tables, interpolation was made. 

The parameterisation of detector efficiency method was experimentally verified for two 

types of standards in the same geometry as the samples prepared in this study: one set of 
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metallic zirconium samples having a density of 6.49 g/cm3 and various geometries and 

one set of iron oxide and sugar mixture samples having the same geometry but various 

iron concentrations. These standards were irradiated in the inner site of SLOWPOKE 

reactor and were counted at 10 cm from the HPGe detector. It was found that the method 

works well for the considered counting geometries and the analyzed small cylindrical 

homogeneous samples (1 ml to 7 mL samples with 0.5 cm to 0.7 cm radius). The 

standard uncertainty in relative detection efficiency for the actual 1 mL geometry was 

estimated to be 2% or less. 

3.5. NAA sources of uncertainties 

According to the individual steps of activation analysis, several sources of uncertainties 

are identified in NAA [Smodis and Bucar 2006]. 

In the first source of uncertainties, sample preparation, the most important contribution is 

the precision of the balance, ± 0.05 mg for the four digit balance and 0.5 mg for the three 

digit balance. Because the samples of hygroscopic substances were prepared in a glove 

box in an argon atmosphere with negative pressure applied, the moisture determination 

introduced negligible uncertainties. The uncertainties associated with the variation of the 

isotopic abundance are considered negligible since all the substances used in this study 

were bought from NIST certified suppliers. Also, the impurities of the irradiation vials or 

diluting materials: epoxy organic resin, water and sugar, are considered sources of 

negligible uncertainties. 
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In the second source of uncertainties, irradiation conditions, the irradiation geometry 

component related to the neutron flux gradient (usually very low) was minimized by 

irradiating a set of samples in the same irradiation site and in the same geometry. For 

relatively long irradiation times, above 10 min, the timing uncertainties are negligible. 

For short irradiation times, when possible, the samples of a given set all had the same 

irradiation time, which minimizes the related uncertainty. It should be mentioned that the 

short irradiation times, up to 10 min, were corrected for the transit time of the sample 

through the pneumatic system [Kassakov 2007]. Uncertainties due to nuclear 

interferences and neutron spectrum variation are considered negligible. 

The third step, detection by gamma spectrometry, has multiple sources of uncertainties. 

In this study, the uncertainty due to counting statistics is less than 0.5% considering that 

usually peaks of at least 50,000 counts were acquired. The counting dead time was 

always under 20%, so the related uncertainties are less than 1%. Since the standardization 

was performed in the same geometry, true coincidence uncertainty is negligible. Decay 

timing, counting time, gamma interferences and background corrections are considered 

negligible sources of uncertainties. The last detection sources of uncertainties, gamma 

self-absorption, counting geometry and intrinsic detector efficiency are included in the 

detection efficiency parameterisation, and result in less than 2% uncertainty. 

The last source of uncertainty in activation analysis is the ko method of standardization 

and its factors, ko, Qo, f and a. Among these factors the main components in the 
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uncertainty budget are ko and Qo, and their uncertainties are tabulated [De Corte and 

Simonits 2003]. 

In this study, the combined uncertainty (one standard deviation) of the experimental Gep 

is calculated according to the law of propagation of uncertainties, and the uncertainty in 

O'abs.ep results from fitting these experimental Gep with the theoretical curve by the least 

squares method. 
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Chapter 4 First Article: Extending NAA to Materials with High Concentrations 

of Neutron Absorbing Elements* 

C. Chilian, M. Kassakov, J. St-Pierre and G. Kennedy 

Ecole Polytechnique, P.O.Box 6079, Downtown, Montreal, Quebec, H3C 3A7, Canada 

Abstract 

The recently discovered universal functions for thermal and epithermal neutron self-

shielding were adapted to NAA of cylindrical samples, expressing the magnitude as the 

product of a nuclear factor, a geometrical factor and the amount of the neutron absorbing 

element. The theory was tested and the nuclear factors were measured for 1 mL samples 

containing the halogens CI, Br and I. Tests on samples containing these elements at a 

priori unknown concentrations, irradiated in a mixed thermal and epithermal neutron 

spectrum, showed that self-shielding as high as 30% could be corrected with an accuracy 

of about 1%, except in cases with significant epithermal shielding of one element by 

another. 

* Journal of Radioanalytical and Nuclear Chemistry, Vol.270, No.2 (2006) 417-423 
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4.1. Introduction 

The most important advantage of neutron activation analysis over other methods of 

chemical analysis is its ability to give accurate average concentrations of many elements 

in bulk solids with no sample preparation. For samples with high concentrations of 

neutron absorbing elements and significant neutron self-shielding, it is possible to obtain 

accurate results when irradiating in a well-thermalized neutron spectrum, because thermal 

neutron self-shielding has been well understood for many years and can be accurately 

corrected. However, with the poorly thermalized neutron spectra common at many 

research reactors, accurate corrections are difficult because of the complexity of 

resonance neutron self-shielding. The task is especially difficult for the analysis of 

materials with high concentrations of heavy elements, which often have relatively high 

resonance cross-sections. In this work, a recent discovery in the field of resonance 

neutron self-shielding is exploited to develop a self-shielding correction method for 

cylindrical samples, of a priori unknown composition, irradiated in a mixed thermal and 

epithermal neutron spectrum. 

4.2. Theory 

For irradiations in a typical reactor neutron spectrum, the activity of a nuclide produced 

by neutron capture is usually expressed as the sum of the contributions from thermal and 

epithermal neutrons: 

A = N (Gth ath Vlh +GepI0<pei) )(l-e-*>) (4.1) 
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where N is the number of atoms of the target nuclide, <yth the thermal neutron activation 

cross-section, Io is the resonance integral, ^ and <pep the unperturbed thermal and 

epithermal fluxes averaged over the volume of the sample. In practice, the latter may be 

measured by simultaneously irradiating flux monitors near the absorbing sample, taking 

in account flux gradients and the fact that the absorbing sample may perturb the nearby 

fluxes outside the samples. For short irradiations, assuming the unperturbed fluxes are 

constant with the time, they may be measured by irradiating flux monitors before or after 

the absorbing sample at the same position. Gth and Gep are the thermal and epithermal 

self-shielding factors. They depend on sample geometry and they are unity for 

sufficiently dilute samples. The thermal self-shielding factor depends on the amounts of 

all elements in the sample that absorb thermal neutrons. The epithermal self-shielding 

factor will be influenced by other elements in the sample only if these elements absorb 

neutrons at resonance energies overlapping with the resonances that activate the nuclide 

in question. 

If we express the activity in Eq. 4.1 in terms of the amount, m, of the element in the 

sample, it becomes: 

A = mN^ ^ ( + Q^ }^_e_ht j ( 4 2 ) 

where Qo = lo/CJo and/= (Pti/<pep- In neutron activation analysis, to determine the amount 

of the element in a sample, we compare its activity with that of a standard, which usually 

has little enough of the element that self-shielding is negligible. Thus, we need to know 
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the activity the sample would have produced had self-shielding been negligible. This is 

obtained by dividing the sample's measured activity by its effective self-shielding factor, 

Geff. This effective self-shielding factor is determined theoretically by dividing the 

activity of Eq. 4.2 by the activity calculated with Gti, = 1 and Gep = 1. Thus, Gejf is given 

by: 

G,h + GepQjf 

i+Qo/f 
oeff = \ _ : : (4.3) 

The variation of Gth with sample geometry and the concentration of the neutron-

absorbing element is relatively well understood. For cylindrical samples of a given 

concentration, irradiated in an isotropic neutron field, the variation of Gth with sample 

size depends on the factor rh/(r+h), where r is the radius and h the height [Gilat and 

Gurfinkel 1963]. Since the cross-section for activation by thermal neutrons is a slowly 

varying function of neutron energy, usually E~V2, the thermal neutron self-shielding factor 

for any element can be expressed by the same simple function of the amount of the 

element and the element's thermal neutron absorption cross-section c w 

On the other hand, the determination of Gep as a function of element concentration and 

sample geometry has always been a difficult task because the variation of absorption 

cross-section with neutron energy, over the range of the resonances, is very different for 

each nuclide. Reactor physicists usually calculate epithermal neutron self-shielding by 

the Monte Carlo method, using a model of the object being activated and absorption and 

scattering cross-sections as a function of neutron energy. This is impractical for routine 
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NAA work, and impossible in the usual case where the concentration of the absorbing 

element is not known in advance. However, in a recent paper, Martinho et al. [2003] 

claimed that Gep can be expressed by a universal function, a sigmoid, with only one 

nuclide-dependent parameter. The Gep calculated with this function agreed with 

experimental data and Monte Carlo calculations for foils, wires and spheres, within 5%. 

The same authors [Gon§alves et al. 2004] recently extended their sigmoid function to 

cylindrical samples of a pure element irradiated in an isotropic epithermal neutron field: 

0.94 
GeP = ———wn + 0.06 (4.4) 

l + (z/z0) 

with to = 2.70 and z= 1.65 rh/(r+h) £tot(Eres) (rr/JT)m, where r and h are the radius and 

height of the cylinder and, in the case of a single dominant resonance, Stot(Eres) is the total 

macroscopic cross-section at the resonance peak and 7^and Fare the radiative and total 

resonance widths. 

To adapt their expression to neutron activation analysis, we rewrite it as a function of the 

amount of the element in a cylindrical sample of fixed size: 

0 94 
GeP= i ( . „82+0.06 (4.5) 

l + (m/mei>) 

The parameter mep contains the geometrical and nuclear factors, and can be thought of as 

the amount of the element that causes about 50% epithermal neutron self-shielding for a 
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given sized cylinder. Comparing Eqs 4.4 and 4.5, mep varies with the radius and height of 

the cylinder as r(r+h). 

Another recent paper of Goncalves et al. [2005] proposes a similar universal sigmoid 

function for thermal neutron self-shielding. Rewriting their expression for Gtu as a 

function of the amount of the element in the sample gives: 

!00 
G* = . , , ,a%4 (4-6) 

/ + (m/mth) 

The parameter m,h is the amount of the element that causes 50% thermal neutron self-

shielding for a given sized cylinder. The work of Gongalves et al. [2003, 2004] suggests 

that mth varies with the radius and height of the cylinder as r(r+h) and, if neutron 

scattering in the sample is neglected, it can be estimated from the thermal neutron 

absorption cross-section as follows: 

J_ = kNAvaahs (4 ?) 

mth r(r + h)Mat 

where A^v is Avogadro's number, Mat the atomic mass and k a universal constant. 

For a sample containing several elements that absorb thermal neutrons, G,h can be 

calculated by replacing m/mth in Eq. 4.6 by the sum of the contributions of all the 

elements. The value of Gth thus calculated applies to the thermal neutron activation of all 

nuclides in the sample. In a mixed thermal-epithermal neutron spectrum, the effective 

self-shielding factor for a nuclide, j , in a cylindrical sample containing an amount ra; of 

that element and amounts m,- of other elements is then given by: 
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G = f 1 0 ° , Qoj 
effj f , n ,V^ / x 0.964 

f+&, /+<2>,K,f" /+&, 
0 9 4 .+ f t«s' ft«2 

V " " ' ' ' ei'J' J i+(mi/m
epjy 

(4.8) 

This assumes negligible epithermal self-shielding on nuclide j by the other elements. The 

values of mth ,• can be determined from Eq. 4.7. The value of mepj needs to be measured 

for the nuclide in question. 

4.3. Experimental 

4.3.1. Confirming the theory 

To verify the expression for the thermal neutron self-shielding factor, Eq. 4.6 and first 

part of Eq. 4.8, cylindrical samples were prepared containing various amounts of 

chlorine. Chlorine has a high thermal neutron absorption cross-section, 33.5 b, and the 

Cl(n,y)' CI reaction has a low ratio of resonance integral to thermal neutron activation 

cross-section, Q0 = 0.69. Up to 1.6 g of MgCl2 powder was mixed with powdered sugar 

and pressed into a 10 mm diameter polyethylene irradiation vial. The height of the 

cylindrical sample was maintained at 12.7 mm with a wooden plug. The samples thus had 

a volume of 1 mL. More dilute samples were prepared by dissolving MgCl2 in water and 

sealing 1 mL of solution in the polyethylene vials. The samples were irradiated for 60 s in 

the inner irradiation site of the Ecole Polytechnique SLOWPOKE reactor at a thermal 

neutron flux of 5.59 x 1011cm"V1. The neutron spectrum of this irradiation site is poorly 

thermalized [Kennedy and St-Pierre, 2003],/= 17.9 and shape parameter cc= -0.042, but, 

because of the low Qo value, 96% of the " CI activity is produced by thermal neutrons. 
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Another series of measurements was performed by irradiating 1 mL samples of NaCl, 

mixed with powdered sugar, in the outer irradiation site of the SLOWPOKE reactor. This 

outer site has/= 51.1 and thus 98 % of the 38C1 activity is produced by thermal neutrons. 

For each sample, the " CI activity was measured by counting the gamma-rays 10 cm from 

a germanium detector. In each case the * CI activity was allowed to decay until the 

analyzer dead-time was below 20% before acquiring the spectrum. The activities were 

calculated from the areas of the 1642 keV peak and corrected for decay time. In the 

absence of self-shielding, the measured activities would be proportional to the mass of 

chlorine in the samples. These activities were divided by the known mass of chlorine to 

determine the specific activity, which would be constant in the absence of self-shielding. 

The specific activities are thus proportional to Gejf. For the two series of measurements, 

using the inner and outer irradiation sites, the relative Geg were then compared to those 

calculated by Eq. 4.8 as a function of the mass of chlorine. 

Iodine and bromine were irradiated in the inner irradiation site of the reactor to study 

epithermal neutron self-shielding, using the 127I(n,y)128L 79Br(n,y)80Br and 81Br(n,y)82Br 

reactions. These reactions have Qo(oc) values of 31.9, 14.4 and 23.8, respectively 

[Kennedy and St-Pierre 2003, Van Lierde et al. 1999, De Corte et al. 1989]. Thus, with/ 

= 17.9 and in the absence of self-shielding, 63.6%, 44.0% and 56.5% of the 128L 80Br and 

82Br activities, respectively, are produced by epithermal neutrons. Solutions with iodine 

concentrations up to 300 g/L or bromine concentrations up to 400 g/L were made by 

/ ' dissolving NH4 or NH4Br in water. Samples of these solutions, of volume 1 mL, were 
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sealed in polyethylene vials and irradiated and counted in the same way as the chlorine 

samples. The 128I, 80Br and 82Br specific activities, measured using their 443 keV, 617 

keV and 554 keV gamma-rays, respectively, were then compared to their Geg calculated 

by Eq. 4.8. 

4.3.2. Tests on samples of unknown composition 

The above measurements allowed the determination of the parameter mti, of Eq. 4.6 for 

TO 19S SO R9 

CI, and mep of Eq. 4.5 for I, Br and "Br. Measurements were then carried out to 

demonstrate the use of these parameters to correct self-shielding in highly absorbing 

samples of these elements with a priori unknown concentrations. A concentrated solution 

of MgCli and NH4I was dried to produce a fine powder with high concentrations of CI 

and I. This powder was pressed into an irradiation vial and retained with a wooden plug 

to produce a 1 mL sample. It was irradiated and counted, and the measured 

concentrations were corrected for self-shielding. To determine the real CI and I 

concentrations, the sample was re-dissolved in water and 1 mL of this dilute solution 

(with negligible self-shielding) was analyzed. 

To test the method on a sample containing two elements that absorb epithermal neutrons, 

a concentrated solution of NH4Br and NH4I was dried to produce a fine powder with high 

concentrations of Br and I. A 1 mL sample of this powder was irradiated and counted, 
QA Q'J 1 'JO 

and the concentrations measured using ouBr, 0iBr and ,zoI were corrected for self-
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shielding. To determine the real Br and I concentrations, the sample was re-dissolved in 

water and 1 mL of the dilute solution (with negligible self-shielding) was analyzed. 

4.4. Results and discussion 

4.4.1. Confirmation of the theory 

The measured relative specific activities of the chlorine samples, prepared with MgCh 

and irradiated in the inner irradiation site, are shown in Fig. 4.1. Also shown is the 

function KGeff , with G^ calculated by Eq. 4.8, which was fitted to the data using least-

squares. The two fitted parameters were the normalizing constant K and the thermal 

neutron self-shielding parameter mth. After the fit, the data and the fitted function were 

renormalized by dividing by K; they thus now represent Geg. The second term of Eq. 4.8, 

describing epithermal neutron self-shielding, was not fitted to the data; it is only 4.4% of 

the total and it should be fairly constant because the chlorine isotopes have low cross-

sections for the absorption of epithermal neutrons. It was therefore kept fixed at 0.044. 

As can be seen, the curve fits the data well, which confirms the use of the exponent 0.964 

in the first term of Eq. 4.8. The fit gave a value of 1.94±0.06 g for the m,/, of chlorine for 

a 1 mL cylindrical sample with r = 0.5 cm and h = 1.27 cm. Using these values in Eq. 

4.7, one obtains k = 0.81±0.03. The small contribution of Mg to the thermal neutron self-

shielding, about 0.1% of the total, was ignored. 
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Figure 4.1 Measured relative specific activities of' CI and the fitted self-shielding 

expression 

The data obtained by irradiating NaCl in the outer irradiation site yielded a similar curve 

(not shown). After applying a 1.6% correction for the self-shielding due to Na, the fit to 

these data gave 1.88+0.13 g for the m,it of chlorine for a 1 mL cylindrical sample and k = 

0.84±0.06. The weighted mean of this measurement and the above measurement with 

MgCl2isfc = 0.82±0.03. 
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Figure 4.2 Measured relative specific activities of 128I and the fitted self-shielding 

expression 

The measured relative specific activities of the iodine samples are shown in Fig. 4.2, 

along with the fitted function KGejf, with Geff calculated by Eq. 4.8. The two fitted 

parameters were the normalizing constant K and the epithermal self-shielding parameter 

mep. After the fit, the data and the fitted function were renormalized by dividing by K, so 

that they now represent Geff. The first term of Eq. 4.8 was not fitted to the data since 

thermal neutron self-shielding is not significant: using k = 0.82 and <7abs = 6.2 b for I and 

<?abs = 1.9 b for N, this first term was calculated to vary from 0.364 for the lowest iodine 

concentration to 0.353 for the highest concentration; it was therefore kept fixed at those 

values. The goodness of the fit confirms the use of the exponent 0.82 in the second term 

of Eq. 4.8. The fit gave a value of mep = 0.48±0.03 g for iodine in a 1 mL cylindrical 

sample. 
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Figure 4.3 Measured relative specific activities of 80Br and 82Br and the fitted self-

shielding expressions 

The measured relative specific activities for 80Br and 82Br are shown in Fig. 4.3, along 

with the fitted functions KGeff. As for iodine, the two fitted parameters were the 

normalizing constant K and the epithermal self-shielding parameter mep. Again, the first 

term of Eq. 4.8 was not fitted: with oau = 6.8 b for Br and oabs = 1.9 b for N, this first 

term was estimated to vary from 0.560 to 0.534 for 80Br and from 0.435 to 0.414 for 82Br, 

and it was kept fixed at those values. The fits gave mep = 0.50+0.04 g for Br and mep = 

0.46±0.03 g for 82Br. 

A comparison of the curve of Fig. 4.1 with those of Figs 4.2 and 4.3 illustrates the 

difference between thermal neutron self-shielding and epithermal neutron self-shielding. 

In fact, there is only a slight difference between the curves. Thermal neutron self-
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shielding, with the exponent 0.964, is a slowly varying function of the mass of the 

element. The epithermal self-shielding curves, with the exponent 0.82, decrease quickly 

at first and then more slowly. All three cases of epithermal self-shielding can be 

explained the same way: a few milligrams of the nuclide absorb the neutrons at the 

energies of the peaks of the resonances, and then much larger amounts are needed to 

absorb the neutrons at the energies of the wings of the resonances and between the 

resonances. At first it seems surprising that three nuclides with widely differing 

resonance patterns, i.e. number of resonances, resonance energies, resonance widths and 

maximum resonance cross-sections, would have exactly the same shaped curves of Gep 

vs. mass. As Salgado et al. discovered [Martinho et al. 2003, Salgado et al. 2004], the 

different resonance patterns have no effect; the dominant effect is the fact that the main 

resonances have roughly similar shapes in the three cases, causing the curves of Gep vs. 

mass to be the same. The extreme difference between the slowly varying cross-sections at 

thermal energies (E~U1) and the wildly varying cross-sections at epithermal energies 

(resonances) only has the effect of changing the exponent from 0.964 for Gth to 0.82 for 

Gep; the differences in the patterns of the resonances for different nuclides have no effect 

on the exponent. From one nuclide to another, only the parameter mep changes as a 

function of resonance peak cross-section, resonance width, atomic mass and isotopic 

abundance. 
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4.4.2. Results for two unknown samples 

The results of the analysis of the concentrated 1 mL powder sample containing chlorine 

and iodine are shown in Table 4.1. The true amounts, determined from the analysis of the 

sample diluted in water, are given in the second last line of the table. For the concentrated 

powder sample, the final amounts, corrected for self-shielding, were determined by an 

iterative procedure. The original amounts, the uncorrected NAA measurement results, 

were used to calculate G^ for CI and I, using Eq. 4.8 with the measured parameters given 

above. The original amounts were then divided by these Gejf to obtain the amounts of the 

first iteration. The procedure continued for six iterations, each time dividing the original 

amounts by the Geg calculated from the masses obtained in the previous iteration. The 

amounts converged to the final values, 0.5994 g CI and 0.1431 g I, which differed from 

the true values by +1.3% and -0.7%, respectively. It is not surprising that the agreement 

is within about 1% of the true values, because the powder sample containing CI and I is 

fairly similar to the MgCl2 powders and the NH4I solutions used to develop the model. 

This does confirm that the epithermal self-shielding for iodine is similar whether it is in 

solution or as a homogeneous compressed powder. 
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Table 4.1 Chlorine and Iodine concentrations measured in a concentrated sample and 

corrected for self-shielding, compared to the true amounts determined 

after diluting the sample 

Chlorine Iodine 

Geff Amount, mg Geff Amount, mg 

Uncorrected 
measurement 

1 st iteration 

2nd iteration 

3rd iteration 

4th iteration 

5th iteration 

6th iteration 

True amount 

Corrected-true 

1.000 

0.8078 

0.7743 

0.7671 

0.7655 

0.7652 

0.7651 

458.6 

567.7 

592.3 

597.8 

599.1 

599.3 

599.4 

591.8 

+1.3% 

1.000 

0.7914 

0.7575 

0.7506 

0.7491 

0.7488 

0.7487 

107.1 

135.3 

141.4 

142.7 

143.0 

143.0 

143.1 

144.1 

-0.7% 

The results of the analysis of the concentrated powder sample containing bromine and 

iodine are shown in Table 4.2. The true amounts, determined from the analysis of the 

sample diluted in water, are given in the second last line of the table. For the concentrated 

powder sample, the final amounts, corrected for self-shielding, were determined by the 

iterative procedure, where the Gejf at each step were calculated using Eq. 4.8 with the 

measured parameters given above. The amounts converged to the final values, 0.2838 g I 

and 0.6381 g Br (80Br) and 0.7032 g Br (82Br), which differed from the true values by -
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6.1%, -2.8% and +6.5%, respectively. For the concentrated powder sample, G,h was 

0.962 while the Gep were 0.629, 0.485 and 0.451 for 1281,80Br and 82Br, respectively. 

Table 4.2 Iodine and Bromine concentrations measured in a concentrated sample and 

corrected for self-shielding, compared to the true amounts determined 

after diluting the sample 

Iodine 

Geff Amount, 
mg 

/80T Bromine (suBr) 

Geff 

/82T 

True amount 

Corrected-
true 

302.1 

-6.1% 

Amount, 
mg 

Bromine ("Br) 

Geff 

656.2 

-2.8% 

Amount, 
mg 

Uncorrected 
measurement 

1 st iteration 

2nd iteration 

3rd iteration 

4th iteration 

5th iteration 

6th iteration 

1.000 

0.7864 

0.7565 

0.7516 

0.7508 

0.7506 

0.7506 

213.0 

270.8 

281.6 

283.4 

283.7 

283.8 

283.8 

1.000 

0.7809 

0.7557 

0.7523 

0.7518 

0.7518 

0.7518 

479.7 

614.3 

634.8 

637.6 

638.0 

638.1 

638.1 

1.000 

0.7198 

0.6801 

0.6732 

0.6719 

0.6717 

0.6717 

472.3 

656.1 

694.5 

701.6 

702.9 

703.1 

703.2 

660.4 

+6.5% 

The results for 80Br and 82Br are reasonable considering the sample contained almost 0.7 

g Br, which is well beyond the range of the calibration measurements shown in Figure 



60 

4.3. The low result for iodine, -6.1%, must be due to some other cause, because the 

sample contained about 0.3 g I, which is within the range of the calibration measurements 

shown in Figure 4.2. It suggests a limitation of the method for samples containing several 

elements activated by epithermal neutrons. An examination of the neutron capture cross-

197 7Q 81 

sections [Janis 3.0, http://www.nea.fr/janis/] for I, Br and Br indicates that there is 

no overlap between the Br resonances and the other two, but there is overlap between 

the 127I and 79Br resonances. A close look at this overlap suggests that the largest effect 
1 ^7 7Q 

would be the shielding of the main " I resonance by the wider main Br resonance, an 

effect not included in our epithermal neutron self-shielding model and which may explain 

the low 128I result in Table 4.2. 

4.5. Conclusions 

The method developed here can be used to correct neutron self-shielding in cylindrical 

samples, using the measured concentrations of the neutron absorbing elements to 

determine Gth and Gep by iteration. To correct thermal neutron self-shielding, the 

equations use a single parameter, mth, which can be calculated for any element from the 

sample size, the absorption cross-section and the constant k, measured here to be 0.82. To 

SO 89 198 

correct epithermal self-shielding, the parameter mep, measured here for Br, Br and " I, 

needs to be measured for each nuclide. Since the expressions for self-shielding are slowly 

varying functions of the amounts of the elements and the other parameters, the correction 

factors should be more accurate than the parameters used to calculate them. For example, 

http://www.nea.fr/janis/
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at a level of 30% self-shielding, an uncertainty of 4% in m,it and mep will cause an 

uncertainty of 1 % in the self-shielding corrected NAA result. 

The correction for thermal neutron self-shielding should be accurate for samples that 

contain several strongly absorbing elements because the effects of several elements are 

combined in a straightforward manner, but, for epithermal self-shielding, the same cannot 

be said because the theory developed here takes into account only the shielding of the 

resonances of a nuclide caused by the nuclide itself and other isotopes of the same 

element. If one wishes to determine several elements activated by epithermal neutrons, in 

a sample containing one element that strongly absorbs epithermal neutrons, one would 

need to know the shielding of the strongly absorbing element on the resonances of the 

nuclides of the other elements. This would require a large number of calibration 

measurements, one measurement per element-nuclide pair, or Monte Carlo calculations. 
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Chapter 5 Second Article: Dependence of Thermal and Epithermal Neutron 

Self-Shielding on Sample Size and Irradiation Site* 

C. Chilian, J. St-Pierre and G. Kennedy 

Ecole Polytechnique, P.O.Box 6079, Downtown, Montreal, Quebec, H3C 3A7, Canada 

Abstract 

Analytical expressions recently developed for calculating thermal and epithermal neutron 

self-shielding for cylindrical samples used in neutron activation analysis were verified 

using three different irradiation sites of a SLOWPOKE reactor. The amount of self-

shielding varied by less than 10% from one site to another. The self-shielding parameters 

varied with the size of the cylinder as r(r+h), for h/r ratios from 0.02 to 6.0, even in 

slightly non-isotropic neutron fields. A practical expression, based on the parameters of 

the neutron spectrum and the well-known thermal neutron absorption cross-section and 

the newly defined epithermal neutron absorption cross-section, is proposed for 

calculating the self-shielding in cylindrical samples. 

Keywords: Neutron activation analysis, epithermal, thermal, self-shielding factors 

*Nuclear Instruments and Methods in Physics Research A 564 (2006) 629-635 
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5.1. Introduction 

The ko standardization method, widely used for multi-element neutron activation analysis 

(NAA) with large research reactors, was adapted for small reactors like SLOWPOKE 

with highly stable neutron fluxes [Kennedy et al. 2000]. Regardless of the reactor type, 

for large samples and for samples with high concentrations of neutron absorbing 

elements, the equation used in ko neutron activation requires the knowledge of thermal 

and epithermal self-shielding factors. Recent studies [Martinho et al. 2003, Goncalves et 

al. 2005, Gongalves et al. 2004] indicate that both self-shielding factors, Gth and Gep, can 

be expressed by a sigmoid function with a parameter depending on the nuclide and the 

geometry and the composition of the sample. The sigmoid function was established for 

mono-element objects irradiated in an isotropic neutron field, conditions not applicable in 

the real NAA situation. Thus, in a previous paper [Chilian3 et al. 2006], we developed an 

experimental method to determine the epithermal self-shielding as a function of the 

amount of the element present in the sample, and the experimental parameter of the 

thermal and epithermal sigmoid self-shielding functions was determined. 

In our previous work [Chilian3 et al. 2006], measurements were done only for 1 mL 

cylindrical samples irradiated in the inner irradiation site of the SLOWPOKE reactor 

where the thermal neutron field is very nearly isotropic. In the present work, we verify 

experimentally the validity of the theoretical sample geometry dependence of the 

expressions for thermal and epithermal self-shielding. We also verify whether the 

magnitude of the self-shielding varies with the size of the irradiation site and the 

surrounding neutron reflecting materials. 
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5.2. Theory 

5.2.1. General 

In a typical reactor neutron spectrum, the activity A of a given nuclide produced by the 

(n, }j reaction upon irradiating a sample containing an amount m of the element is given 

by 

A = mN^_ ^ ^ ^ + GepQjf)(l-e^) (5.1) 
"^ at 

where A^v is Avogadro's number, #is the isotopic abundance, Mat is the atomic mass, crth 

is the thermal neutron cross section, Qo = Io/oih, the ratio of the resonance integral to 

2200 ms"1 cross section, / = (pti/<pep, (fhh and <pep are the average unperturbed thermal and 

epithermal fluxes, A, is the decay constant and V, is the irradiation time. In practice, the 

unperturbed thermal and epithermal fluxes may be measured by simultaneously 

irradiating flux monitors near the absorbing sample, taking into account flux gradients 

and the fact that the absorbing sample may perturb the nearby fluxes outside the sample. 

For short irradiations, assuming that the unperturbed thermal and epithermal fluxes are 

constant with time, they may be measured by irradiating flux monitors before or after the 

absorbing sample at the same position. Gth and Gep are the thermal and epithermal self-

shielding factors for the given (n, y) reaction. These definitions of <p,h, (pep, G,h and Gep 

are consistent with those used in Monte-Carlo simulations [Martinho et al. 2003, 

Gongalves et al. 2005, Gongalves et al. 2004] were (fih and <pep are found by simulating a 

sample of infinite dilution. Gth and Gep depend on sample geometry and they are equal to 
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unity for sufficiently dilute samples. The thermal self-shielding factor depends on the 

amounts of all elements in the sample that absorb thermal neutrons. The epithermal self-

shielding factor will be influenced by nuclides other than the nuclide being activated 

(isotopes of the same element or isotopes of the different elements present in the sample), 

only if these nuclides absorb neutrons at resonance energies that overlap with the 

resonances that activate the nuclide in question. 

The sample activity that would have been produced if self-shielding had been negligible 

is obtained by dividing the sample's measured activity by its effective self-shielding 

factor, Geff. This factor is defined as the ratio between the reaction rate per atom in the 

real sample and in a similar and indefinitely diluted sample. Using this definition, the 

effective self-shielding factor is obtained by dividing the activity of Eq. 5.1 with the 

activity calculated with the same equation when Gth = 1 and Gep = 1. Thus, Gejf is given 

by 

_Gth + GepQjf 
Teff l + Qo/f 

Geff = "' "" r (5-2) 

Experimentally, Gejj-is proportional to the specific activity of the nuclide in the irradiated 

sample, which may be obtained from the area of the detected peak divided by the element 

concentration in the sample and by the detection efficiency and corrected for the decay 

time. The proportionality factor between Geff and the specific activity is found by 

irradiating sufficiently dilute samples. 
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5.2.2. Thermal Self-Shielding 

For almost all nuclides, the thermal cross section of radiative capture is a slowly varying 

function of neutron energy, proportional to E'm. Hence, the thermal neutron self-

shielding factor for any nuclide can be expressed by the same function of the amount of 

the element and the element's thermal neutron absorption cross-section aabs- In the 

literature [Tzika and Stamatelos 2004, Gilat and Gurfinkel 1963] we find different forms 

for this function but, in all of them, the thermal self-shielding factor dependence on the 

sample geometry is the same. In the particular case of cylindrical samples of a given 

concentration, it varies with sample size according to the factor rh/(r+h), where r is the 

radius and h is the height. If the self-shielding is expressed as a function of the total 

amount of the element m, then, for a given m, as the sample size increases, the sample is 

diluted and the self-shielding decreases. It then varies with the size of the cylinder 

according to the factor \/r(r+h). 

This study will use results from a recent paper of Martinho et al. [Gongalves et al. 2004] 

that propose a universal sigmoid function for thermal neutron self-shielding. Simplifying 

and rewriting their expression for Gth as a function of the amount of the element in the 

sample of a given geometry [Chilian" et al. 2006], one obtains 

1.00 , . . . 
G,h~ 7 . ( I \0-964 ^.S) 

l + {m/mlh) 

file:///0-964
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where m is the amount of the element. For cylindrical samples, the parameter mth varies 

with the radius and height of the cylinder as r(r+h) and can be estimated from the thermal 

neutron absorption cross-section as follows 

mth r(r + h)Mul 

where otot is the element total thermal neutron cross-section (scattering plus absorption) 

and kth is a parameter which may depend on the irradiation site, but is independent of the 

nuclide and the sample composition. In Eq. 5.4, the factor involving neutron scattering is 

usually close to unity and can be neglected, especially for elements with high absorption 

cross-sections. 

5.2.3. Epithermal Self-Shielding 

The estimation of Gep as a function of element concentration and sample geometry has 

always been a difficult task because each nuclide has a different and sometimes complex 

resonance pattern; in nuclear reactor studies it is usually done by the Monte-Carlo 

method. Such calculations are time consuming and impractical for routine NAA where 

the concentration of the absorbing element is not known in advance; indeed that is the 

aim of the analysis. The most common approach has been to avoid the problem by 

diluting the samples or by irradiating in a neutron spectrum with a very small epithermal 

component. Thus, the question of a practical solution to the problem of epithermal self-

shielding in neutron activation analysis has not been investigated systematically. 
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Recently, Salgado et al. [Martinho et al. 2003, Salgado et al. 2004] claimed that, for 

nuclides having one resonance or a few isolated resonances, Gep could be expressed by 

the same universal function, a sigmoid, with only one nuclide-dependant parameter. The 

same authors [Goncalves et al. 2004] extend their theory for cylindrical samples by 

introducing a sigmoid expression for Gep that fits the data generated by a Monte-Carlo 

calculation for a pure element sample irradiated in an isotropic neutron flux. The nuclides 

quantified by epithermal neutron activation analysis often have more than a few isolated 

resonances and, also, the real neutron flux is non-isotropic. In addition, their expression, 

with all parameters derived from theory, fits the data with an insufficient precision 

(within 5% to 10%) for practical purposes in activation analysis. Thus, from this theory 

we take only the main idea: the epithermal self-shielding can be expressed by a universal 

sigmoid function. To adapt their expression to neutron activation analysis, we rewrite it 

as function of the amount m of the element in a cylindrical sample: 

0.94 
Ge, = —-—ng2+0.06 (5.5) 

l + (m/mep) 

The parameter mep can be thought of as the amount of the element that causes about 50% 

epithermal neutron self-shielding for a given sized cylinder. The mep varies with the 

radius and height of the cylinder as r(r+h) and can be estimated from the width and 

position of the resonances, the cross-section at the peak of each resonance, and also 

includes the mutual self-shielding generated by the isotopes of the given element, other 

than the isotope that produces the studied (n, f) reaction. Here, we express all this nuclear 

dependence by a single nuclear parameter, <Jabs,eP, which we call the epithermal neutron 



70 

absorption cross-section. We can now write an expression for mep similar to the one for 

the thermal self-shielding parameter: 

mep r(r + h)Mat 

where kep is a parameter that depends on the properties of the actual irradiation site, such 

as the shape of the neutron spectrum and the surrounding reflecting materials. Since 

neither kep nor <7a^ev are known a priori, we will need to assign a value to kep for one 

irradiation site and then we can determine oabs,ep for each nuclide experimentally and also 

kep for other irradiation sites. Note that, analogous to the elemental thermal neutron 

absorption cross-section <jabs, Gabs.ep includes the effect of epithermal neutron absorption 

of all isotopes of the element on the nuclide being activated. 

5.3. Experimental Methodology 

5.3.1. Dependence of the Thermal Neutron Self-Shielding on Sample Geometry and 

Irradiation Site 

To verify the r(r+h) variation of mth with the geometry of the sample, Eq. 5.4, two sets of 

cylindrical samples were prepared containing various amounts of chlorine. The first set 

consists of 1 raL samples with r = 5.0 mm and h = 12.7 mm that contained up to 1.0 g 

chlorine. The second set is represented by six 3 mL samples, r = 7.2 mm and h = 30.7 

mm, containing up to 2.2 g chlorine. Chlorine has a high thermal neutron absorption 

cross-section, 33.5 b, and the ' Cl(n, f)' CI reaction has a low ratio of resonance integral 
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to thermal neutron activation cross-section, Qo = 0.59. The samples were prepared by 

mixing NH4CI powder with powdered sugar and pressed into 10 mm or 14.4 mm 

diameter polyethylene irradiation vials. The height of the cylindrical sample was 

maintained at 12.7 mm or 30.7 mm with a wooden plug, to give volumes of 1 mL or 3 

mL. Both sets were completed with more dilute samples, prepared by dissolving NH4CI 

in water and sealing 1 mL or 3 mL of solution in polyethylene vials. 

The samples were irradiated for 60 s in the inner irradiation site in the beryllium reflector 

of the Ecole Polytechnique SLOWPOKE reactor, site no. 1, at a thermal neutron flux of 

5.59 x lO '^mV 1 . Despite the poorly thermalized neutron spectrum of this irradiation 

site, / = 18.0 and shape parameter a= -0.051, 96% of the CI activity is produced by 

thermal neutrons due to the low Qo value. 

In order to investigate the dependence of the thermal self-shielding on the irradiation site, 

six 3 mL NH4CI samples having the same geometry (r = 7.2 mm, h = 30.7 mm) but 

different chlorine concentration, were prepared and irradiated for 60 s first in the no.l 

beryllium reflector inner irradiation site, tube diameter =31 mm, then one day later in an 

outer irradiation site, site no.6, tube diameter = 38 mm and, finally, after another day, 

irradiated again in another outer irradiation site, no. 8, tube diameter = 22 mm. Sites no.6 

and no.8 are situated in water and have a thermal neutron flux of 2.71 x 10 cm""s" ; it is 

known to be more non-isotropic than the neutron flux of site no.l. In the outer sites the 

neutron spectrum is well thermalized, / = 48.6, and the 38C1 activity produced by 

epithermal neutrons can be neglected. 
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T O 

For each chlorine sample, the " CI activity was measured by counting the gamma rays 10 

cm from a germanium detector. Before acquiring the spectrum, in each case the 38C1 

activity was allowed to decay until the analyzer dead time was below 20%. The activities 

were calculated from the areas of the 1642 keV peak and corrected for decay time. To 

determine the specific activity, these activities were divided by the known amounts of 

chlorine in the sample. The specific activities are thus proportional to Geff. They are 

normalized to G^ using the dilute samples which are known to have Geff= 1. Then, using 

Eq. 5.2 with Gep= 1, the epithermal part was subtracted to obtain the experimental Gti,- A 

least-squares fit of the data as a function of the mass of chlorine, using Eq. 5.3, gives the 

parameter mth, which includes the dependence on r(r+h) and kth, as given by Eq. 5.4. 

5.3.2. Dependence of epithermal neutron self-shielding on sample geometry and 

irradiation site 

To check the r(r+h) dependence of epithermal self-shielding on sample geometry, 

measurements were done with various stacks of Zr metal disks with three different 

diameters, 6 mm, 10 mm and 14 mm. The stacks of disks, with heights varying between 

0.127 mm and 12.7 mm, were irradiated in polyethylene vials in the inner irradiation site 

of the SLOWPOKE reactor, for times varying between 5 minutes and 2 hours, depending 

of the total mass of Zr. Metallic disks are easy to manipulate and, in this irradiation site, 

the 96Zr(n, y) 97Zr reaction has Qo(oc) = 338.5 indicating negligible activation by thermal 

neutrons. In addition to the Zr disks, measurements were also done with several 1 mL 

powder samples of different concentrations, up to 2.12 g Zr, obtained by mixing Zr02 
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powder with AI2O3 powder. The powder samples, sealed in polyethylene vials of 10 mm 

diameter, were irradiated between 10 min and 125 min in the same irradiation site. 

To study the variation of epithermal neutron self-shielding with the irradiation site, six 

4.4 mL samples, with diameter 14 mm and different Zr concentrations, were prepared by 

using different materials: zirconium plate, zirconium oxide powder, zirconium metal 

powder, zirconium nitrate, zirconium sulfate and zirconium nitrate diluted in organic 

resin, and irradiated in inner irradiation site no.l between 5 min and 1 h. One week later, 

the samples were irradiated again in outer irradiation site no.6 and, after another week, in 

outer irradiation site no.8. In the outer sites the 96Zr(n,yf7Zr reaction has a Qo(oc) = 

229.2. 

All the Zr samples, powders, cylinders or stacks of disks, were counted 10 cm from the 

germanium detector to determine the Zr specific activity using the 742 keV gamma-ray. 

The photopeak count rates were converted to specific activities using detector efficiencies 

calculated by an empirical method [Kennedy and St-Pierre 1997], which takes into 

account sample-detector distance, sample geometry and gamma-ray attenuation in the 

sample. The measured specific activities were normalized to give Geff. Then, using Eq. 

5.2 with Gth= 1, the thermal part was subtracted to obtain the experimental Gep. For each 

case the Gep were fitted with an expression given by Eq. 5.5 that includes the r(r+h) 

dependence and the product kepoabs,ep-
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5.4. Results 

5.4.1. Dependence of Thermal Neutron Self-Shielding on Sample Geometry 

To illustrate the dependence of thermal neutron self-shielding on the geometry of the 

sample, the measured Gth of the 1 mL and 3 mL chlorine samples, prepared with NH4CI 

and irradiated in the inner reactor site no.l, are shown in Fig. 5.1. The experimental 

chlorine thermal self-shielding factors, Gth, obtained from Eq. 5.2 with Gep = 1, were 

fitted by the expression of Eq. 5.3 with mth calculated by Eq. 5.4. The fit give k,h = 0.872 

± 0.035 for the inner irradiation site. For both geometries, all the experimental data can 

be described, within 2-5%, by a unique curve obtained from Eq. 5.3 with the geometrical 

dependence of Eq. 5.4. 

0.6 

0.5 I • ' ' ! ' ! ; • 
0 0.1 0.2 0.3 0.4 0.5 0.6 

Mass Chlorine / mth Chlorine 

Figure 5.1 The measured Gth of Cl(n, y)~ CI for cylindrical samples of radii 5.0 mm 

and 7.2 mm and the fitted self-shielding curve 
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These results confirm the r(r+h) geometrical dependence of the thermal self-shielding 

parameter, mr/„ and allow the use of this form for further calculations of the thermal self-

shielding factor for activated samples containing highly absorbing elements. 

5.4.2. Dependence of epithermal neutron self-shielding on sample geometry 

In Fig. 5.2 are shown the Gep measured with the stacks of disks and the powder samples. 

To determine Gep, it was necessary to subtract the thermal neutron contribution to the 

measured G^ using Eq. 5.2. For the powder samples, the first thermal term in Eq. 5.2 was 

calculated with Eq. 5.3 and Eq. 5.4 with kth =0.87 and oabs - 6.6 b for zirconium and oabs 

= 0.2 b for aluminium. The term Gti/(]+Qo/f) is small and it was estimated to vary from 

0.060 for the lowest zirconium concentration to 0.054 for the highest concentration. 

The curve fitted to the data was calculated with Eq. 5.5 using the zirconium mep 

calculated with Eq. 5.6 and containing the r(r+h) dependence. The least-squares fit 

yielded the parameter kep<7abs,ep = 10-4 ± 0.4 b for the relative epithermal neutron 

absorption cross-section for 6Zr(n, y) Zr in the inner irradiation site no. 1. 
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Figure 5.2 The measured Gep of 96Zr(n, y)97Zr for 3.0 mm, 5.0 mm and 7.0 mm radius 

cylindrical samples and the fitted self-shielding curve 

Despite of differences between the Zr samples: powder samples with the same volume 

and same geometry but different concentrations and stacks of disks with diameters 6 mm, 

10 mm or 14 mm and different heights, Fig. 5.2 indicates a good agreement (maximum 

5% difference) between the experimental data and the calculated curve. There is no 

significant deviation from the curve, which confirms that the epithermal self-shielding 

parameter, me[„ varies with the size of the cylinder as r(r+h) for ratios h/r varying from 

0.02 to 6.0. This result validates Eqs. 5.5 and 5.6 for the calculation of epithermal self-

shielding factors for cylindrical samples, containing more than 0.05 g zirconium, 

irradiated in a real irradiation site with non-isotropic epithermal neutron flux. It was not 



77 

possible to verify the accuracy of Eq. 5.6 for the smallest samples, the thin disks, because 

the epithermal self-shielding effect with zirconium is of the same order of magnitude as 

the experimental uncertainty. 

5.4.3. Variation of thermal neutron self-shielding with irradiation site 

To show the variation of thermal self-shielding with the irradiation site, Fig. 5.3 presents 

D-7 J O 

the experimental Gth of " Cl(n, f) ' CI for the inner irradiation site no. 1 and for outer 

irradiation sites no.6 and no.8 as a function of the mass of chlorine in the sample. All 

samples had volume 3 mL. To determine Gr/„ the measured Geff were corrected for the 

epithermal contribution (maximum 4.4%) as before. To find the kt\x characteristic of each 

irradiation site, the experimental data were fitted using Eq. 5.3 with mth calculated as in 

Eq. 5.4. The fitted kth values for each site are presented in the Table 1. The value of kth 

determined for site no.l is essentially equal to that of site no.8, while that of site no.6 is 

about 8% lower. This 8% difference is not significant, considering the experimental 

uncertainties. 
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Figure 5.3 The measured Gth of" Cl(n, f) CI for inner site no. 1 and for outer sites 

no.6 and no.8, along with the fitted expressions for Gt), 

Some physical details of the irradiation sites are also given in Table 5.1. A study of St-

Pierre and Kennedy [2004] found a larger thermal flux gradient in sites no.6 and no.8 

than in site no.l, indicating that the flux is less isotropic in sites no.6 and no.8 than in site 

no.l. Since the self-shielding is the same in site no.l and site no.8, the anisotropy does 

not seem to have had an influence. The small difference in self-shielding between sites 

no.6 and no.8 may be due to the differences in the diameters of the irradiation tubes. In 

site no.6, a neutron passing through the sample would have to travel a larger distance 

before being reflected back into the sample, which might reduce the self-shielding 

slightly. 
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Table 5.1 Properties of the irradiation sites and fitted values of the thermal self-

shielding parameter, kth, and the epithermal self-shielding parameter, kep, 

for each site 

Site Reflector Tube Dist.core- kth o"abs,eP kep 

no. diam.(mm) site (mm) 96Zr (b) 

"1 beryllium 31 42 0.94 ±0.08 10.3 +0.8 I 

6 water 38 125 0.86 ±0.07 10.3 0.93 ±0.08 

8 water 22 125 0.94 ±0.08 10.3 0.93 ±0.07 

5.4.4. Variation of epithermal neutron self-shielding with irradiation site 

Fig. 5.4 presents the experimental epithermal self-shielding factors of 9 6Zr for inner 

irradiation site no. 1 and outer sites no. 6 and 8 and the corresponding fitted curves 

calculated with Eq. 5.5, and mep calculated with Eq. 5.6. For site n o . l , the value of kep, 

defined here for the first time, is set equal to unity. The fit then gave a value of 10.3 ± 

0.8b for <Jabs,ep, the epithermal neutron absorption cross-section of 96Zr. With <Jabs,ep fixed 

at that value, the fits gave values of kep of 0.93 ± 0.08 and 0.93 ± 0.07, for sites no.6 and 

no.8, respectively, as shown in Table 1. The 7% difference between kep of site no . l and 

kep of sites no.6 and 8 indicates that the epithermal self-shielding may be more important 

in the inner site in the beryllium reflector than in the outer sites in the water reflector, 

although the difference is not significant when considering the corresponding 

uncertainties. 
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Figure 5.4 The measured Gep of Zr(n, f) Zr for inner site no. 1 and for outer sites 

no.6 and no.8, along with the fitted self-shielding expressions 

Table 5.1 indicates less than 10% differences between the kth and kep values for three 

different irradiation sites in a SLOWPOKE reactor, which suggests that these parameters 

may be constant to within 10% in the irradiation sites of all research reactors. Now, a 

10% error in kth or kep will result in only about a 3% error in the calculated effective self-

shielding factor Geff (for G^ greater than 0.5). Thus, combining Eqs. 5.2 to 5.6, we can 

now write a practical expression that can be used to correct both thermal and epithermal 

self-shielding in the irradiation sites of any research reactor and which will likely be 

sufficiently accurate for the purpose of routine neutron activation analysis. For a given 

element, the expression is: 
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Geff = 
f 

f + Qo 

LOO 

l + (m NAvkth(TahJ{r(r + h)Mat)) 0.964 

+ -
Qo 

f + Qo 

0.94 
l + (mNAvkepcrah^/{r(r + h)MjG&2 + 0.06 

(5.7) 

This expression can be used with the mean values of Table 5.1: kth - 0.91 and kep = 0.95. 

The values of the elemental thermal neutron absorption cross-sections <yUbS are commonly 

available in the nuclear libraries such as "Table of Nuclides" [http://atom.kaeri.re.kr/]. 

The expression also requires values of the epithermal neutron absorption cross-sections, 

Oabs,ep> which we plan to experimentally measure or estimate with sufficient accuracy 

with an expression like the one proposed by Goncalves et al. [2004]. So far we have 

measured <jabs,ep for 5 nuclides, see experimental data of Ref. [Chilian3 et al.2006]; the 

values are given in Table 5.2. 

Table 5.2 Experimental values of oabs,eP 

Reaction Ocibs.ep (b) 

127l(n,y)mI 387 + 24 

79Br(n,yf°Br 233 ±19 

s,Br(n,y?2Br 253 ±17 

96Zr(n,y)97Zr 10.3 ±0.8 

114Cd(n,f)U5Cd 78±5 

http://atom.kaeri.re.kr/


82 

5.5. Conclusions 

A previous study [Chiliana et al. 2006] proposed a method to correct neutron self-

shielding in cylindrical samples, using the measured concentrations of the activated 

neutron absorbing elements to determine iteratively Gth and Gep. To correct thermal 

neutron self-shielding for cylindrical samples, the necessary parameter, mti„ can be 

calculated for each element from the absorption cross-section, the geometrical 

characteristics r and h, and the constant kth- Despite the difference between activation 

mechanisms: thermal and epithermal and, also, the complexity of the resonance patterns, 

the geometrical dependence, r(r+h), of both self-shielding parameters, m,/, and mep, is 

confirmed for the inner irradiation site of the SLOWPOKE reactor where the flux is 

slightly anisotropic. In the case of a small research reactor like SLOWPOKE, and likely 

for most research reactors, the small site dependence of the thermal and epithermal self-

shielding parameters can be neglected since the expressions for self-shielding are slowly 

varying functions of the amounts of the elements and the other parameters and, 

consequently, the correction factors should be more accurate than the parameters used to 

calculate them. However, for irradiation sites situated far from the reactor core, where the 

neutron flux is highly anisotropic, the r(r+h) dependence of the self-shielding parameters 

for cylindrical samples may not hold. 

The first practical expression has been proposed for the calculation of both thermal and 

epithermal neutron self-shielding in neutron activation analysis with cylindrical samples. 
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Chapter 6 Third Article: Complete Thermal and Epithermal Neutron Self-

Shielding Corrections for NAA using a Spreadsheet* 

C. Chilian1, J. St-Pierre2 and G. Kennedy2 

Atomic Energy of Canada Limited, Chalk River, Canada, Ecole Poly technique, P.O.Box 

6079, Downtown, Montreal, H3C 3A7, Canada 

Abstract 

An analytical expression has been developed to calculate the neutron self-shielding in a 

cylindrical sample using the elemental thermal neutron absorption cross-sections, <jUbs, 

and the newly-defined epithermal neutron absorption cross-sections, <7abs.ep- The oabs,ep 

were measured experimentally for 13 nuclides and calculated from resonance parameters 

for 76 nuclides. Agreement between the two was good to about 20% in most cases. A 

spreadsheet program was written to use these nuclear parameters to perform iterative self-

shielding corrections of concentrations measured by NAA. In cases with up to 30% self-

shielding, the correction factors had uncertainties varying from 2% to 3%. 

Journal of Radioanalytical and Nuclear Chemistry (in press, 2008) 
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6.1. Introduction 

Instrumental neutron activation analysis is an excellent technique for the chemical 

analysis of a wide variety of materials. It can give accurate average bulk concentrations 

of many elements using large, representative samples. However, many interesting 

materials contain high concentrations of elements that strongly absorb thermal and 

epithermal neutrons, and a routine method is needed to correct the self-shielding effect. 

Fortunately, a few years ago, reactor physicists showed that the amount of epithermal as 

well as thermal self-shielding could be expressed by the same analytical function, a 

sigmoid, for all nuclides [Martinho et al. 2003, Gongalves et al. 2004, Martinho et al. 

2004]. Subsequently, this discovery was adapted to neutron activation analysis [Chilianab 

et al. 2006], and expressions were developed to calculate thermal and epithermal neutron 

self-shielding factors in a cylindrical sample irradiated in a nearly isotropic mixed flux. 

The thermal neutron self-shielding factor is given by [Chilian13 et al. 2006]: 

1_ 

/ + 
r(r + h)^f Mati 

G,h = 7 7 7 7 ^ ( 6 - ] ) 

./Y4V - Avogadro's number 

kth - thermal self-shielding constant 

r - radius of cylinder 

h - height of cylinder 

m, - amount of element i (grammes) 

&abs,i - thermal neutron absorption cross-section for element i 

Mat,i - atomic mass of element i 
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The thermal neutron self-shielding is the same for any nuclide in a given sample, and in 

Eq. 6.1 it can be seen that it is the sum of the contributions of all the elements. The 

thermal self-shielding constant, kth, was found to vary only slightly for the three different 

irradiation sites of the SLOWPOKE reactor5, and the mean measured value was 0.91 at 

an approximate moderator temperature of 30°C near the irradiation sites. Since most 

neutron absorption cross-sections decrease as the square-root of the neutron energy, it is 

expected that kth would be about 5% lower in reactors with much higher moderator 

temperature, 60°C. 

The epithermal neutron self-shielding factor is given by [Chilian5 et al. 2006]: 

0.94 
G» = f * i v ^ + 0 M ( 6-2 ) 

1 + 
Av ep ahs,ep 

at J 

m - amount of the element (grammes) 

kep - epithermal self-shielding constant 

<Tabs,eP - epithermal neutron absorption cross-section 

Mat - atomic mass of the element 

The epithermal self-shielding constant, kep, was defined as unity for the inner irradiation 

sites of the SLOWPOKE reactor [Chilian13 et al. 2006], where the first measurements of 

Oubs.ep were performed. It is expected that kep will be independent of moderator 

temperature and the nature of the reflector surrounding the irradiation site. The 

epithermal neutron absorption cross-section, <Jabs,eP, by definition, includes the absorption 

of neutrons by the resonances of all isotopes of the element which may overlap with the 
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resonances of the nuclide being activated. However, Eq. 6.2 ignores the possible 

shielding by other elements in the sample; this should usually be negligible because the 

sharp resonances will not usually overlap, but it may be significant if the sample contains 

very high concentrations of certain other elements. 

For a sample irradiated in a typical reactor neutron spectrum with both thermal and 

epithermal neutrons, the effective neutron self-shielding factor, Gejf, is given by the 

appropriately weighted mean of the thermal and epithermal factors: 

G*=7^(«)G'"+7^)G"' <6-3) 

/ - ratio of thermal to epithermal neutron flux 

a - slope parameter of the epithermal neutron spectrum 

Qo - ratio of resonance integral to thermal activation cross-section 

Combining the above three equations gives the general expression for the effective 

neutron self-shielding factor: 



88 

Geff = 
f 

f + QoW 
1 + 

1.00 
s \ 0.964 

+ -
Go («) 

f + QoW 
1 + 

0.94 
/- \0.<S2 

m_NAvKa«bs,ep 

r(r + h)M 

+ 0.06 

(6.4) 

Gg# can be thought of as the activity of a nuclide in an absorbing sample relative to that 

produced in a similar sample irradiated in the same neutron spectrum and with the same 

fluence, but with no neutron absorption. Thus, in neutron activation analysis, the 

concentration of an element measured with this nuclide needs to be divided by Gejf to 

correct for self-shielding. For several different reactor irradiation channels and for long 

cylinders, h » r, and for flat cylinders, h « r, it was shown [Chilian15 et al. 2006] that 

both Gth and Gep were accurately calculated by this expression. Wires can also be 

calculated, since they are long cylinders, as can thin foils, square or round, since they 

have the same self-shielding as flat cylinders of the same thickness. 

The values of aabsj and o~abs,ep, with the (Tabs.ep calculated as described below or estimated 

from the resonance integrals, were compared for 86 nuclides used in neutron activation 

analysis. This revealed that <Jabs,ep was greater than oabs,i in 76 of 86 cases, and in 52 cases 

by more than a factor of 10. Thus, epithermal self-shielding is usually more severe than 

thermal self-shielding, Gep < Gth- However, many reactors have well-thermalized neutron 
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spectra, / » 20, and for many nuclides, especially those of light elements, Qo is small, 

meaning that the second term of Eq. 6.4 is often negligible. 

The use of Eq. 6.4 for any nuclide requires the knowledge of the thermal and epithermal 

neutron absorption cross-sections. The well-known elemental thermal neutron absorption 

cross-sections, <7abs,i, can be found in many compilations. The newly-defined [Chilian5 et 

al. 2006] epithermal neutron absorption cross-sections, <Jabs,eP, need to be measured or 

estimated with sufficient accuracy for each nuclide. In this work, we measure <Jabs,ep for 

several nuclides activated by (n,y) reactions with high Qo values, we calculate crabSiep from 

resonance parameters for all the other nuclides and we develop a spreadsheet for routine 

self-shielding corrections in neutron activation analysis work. 

6.2. Experimental 

In a previous work [Chilian15 et al. 2006], <Jabs,eP was defined and then measured for the 

79Br(n,y)80Br, 81Br(n,y)82Br, 96Zr(n,y)97Zr, 114Cd(n,y)ll5Cd and 127I(n,y)128I reactions; 

details of the measurements are given there. In this work, <Jabs,ep was measured for eight 

reactions: 115In(n,y)116mIn, 121Sb(n,y)122Sb, 123Sb(n,y)124Sb, 133Cs(n,y)134Cs, 

152Sm(n,y)153Sm, 186W(n,y)187W, 197Au(n,y)198Au and 238U(n,y)239U. For each reaction 

studied, several 1 mL cylindrical samples, with r = 5.0 mm and h = 12.7 mm, were 

prepared with accurately known masses of the element. For the more dilute samples, the 

compounds were dissolved in water, or in HC1 for Siri203, and 1 mL aliquots were sealed 

in 10 mm diameter, 1.4 mL polyethylene vials. For some of the more concentrated 



90 

samples, a weighed amount of the compound, a fine powder, was mixed with epoxy 

resin, in the vial, which then hardened to form the 1 mL cylinder. The type of sample and 

range of masses used is given in Table 6.1 for each element. For Sb, both powders and 

solutions were used. For Zr, metal discs were used as described previously [Chilian15 et al. 

2006]. 

All the samples were irradiated at a thermal neutron flux of 5.59 x 1011 cm"V in the 

inner irradiation site in the beryllium reflector of the Ecole Polytechnique SLOWPOKE 

reactor. This irradiation site was previously characterized [St-Pierre and Kennedy 2006], 

having / = 18.0 and a = -0.051. It was previously shown [St-Pierre and Kennedy 2004] 

that 1 mL of water or organic resin moderates the neutrons and increases the thermal flux 

by 5%. Thus, the value of/was adjusted, between 18.0 and 18.9, for each measurement. 

To measure the activities, the samples were counted 10 cm from a germanium detector. 

The gamma-ray peak count rates, corrected for decay time, were converted to activities 

using detector efficiencies calculated taking into account sample-detector distance, 

sample geometry and gamma-ray attenuation in the sample [Kennedy and St-Pierre 

1997]. In general, no relative efficiency correction was needed for sample-detector 

distance or geometry because these were the same for all samples of a given element, 

except the Zr discs; the main correction was for the variation of gamma-ray attenuation as 

the amount of element increased. To determine the specific activity, proportional to Gejy, 

the measured activity was divided by the known amount of the element in the sample. 

Specific activities were converted to Geg using the most dilute samples, which are known 

to have Gejf = 1. To obtain the experimental Gep, the thermal part was subtracted from Geff 
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using Eq. 6.3, with Gth calculated by Eq. 6.1. The resulting experimental Gep values were 

plotted as a function of the mass of the element and a least-squares fit of the data with Eq. 

6.2, with kep = 1, yielded <Jabs,ep for each nuclide. 

Values of aabs,ep w e r e also calculated by a formula derived from Eqs 2 and 5 of Salgado 

et al. [Salgado et al. 2004] for capture reactions with several resonances: 

Sw« 
(Jabs.ep.Su lgado — 0 . 1 9 5 6 

i=l 

YjWi 
(=1 

(6.5) 

with 

w, = 
rr (27+i)r„ 

El ( 2 / + i ) r 
(6.6) 

9 - isotopic abundance 

OiotJEresj) - total cross section at the peak of resonance i 

Wi 

r 
rn 

j 

i 

weighting factor 

radiative resonance width 

total resonance width 

neutron resonance width 

spin of the resonance state 

spin of the target nucleus 

The weighting factor of resonance i is proportional to the radiative resonance width, ry, 

and inversely proportional to the square of the resonance energy, Eres. The data for the 

http://Jabs.ep.Su
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resonance cross-sections were taken from the JANIS software obtained from the nea.fr 

website [Janis 3.0, http://www.nea.fr/janis/]. 

A computer spreadsheet was written to calculate neutron self-shielding using Eqs. 6.1, 

6.2 and 6.4 (Appendix B). It contains the thermal neutron absorption cross-sections for 71 

elements and the epithermal neutron absorption cross-sections for 76 nuclides. It has two 

pages. The first page is used to correct neutron activation analysis measurements: the 

measured concentrations are entered and an iterative calculation is performed to calculate 

Geff for each nuclide, correcting the measured concentrations with each iteration. The 

calculation of Geff requires the parameters / and a of the neutron spectrum of the 

irradiation channel used. The dimensions of the cylindrical sample, r and h, are also 

entered, as well as the sample mass. The second page is used to estimate the self-

shielding in materials of approximately known composition; the equations are applied 

directly to calculate Gth, Gep and Geg. 

6.3. Results and Discussion 

The measured values of Gep, as a function of the amount of the element in 1 mL 

cylindrical samples, are shown in Figs. 6.1 and 6.2 for two of the elements studied, W 

and Au. The error bars in the figures are the estimated standard uncertainties of the 

measurements. The measurements for the other elements are similar. The expression of 

Eq. 6.2 was fitted to these data to determine <7abs,ep-

http://nea.fr
http://www.nea.fr/janis/
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The measured values of Gabs,eP are shown in Table 6.1 along with some of the details of 

the measurements. Also shown in Table 6.1 are the values calculated with Eq. 6.5. 

The measured values of <Jabs,ep agree fairly well with the calculated values, <Jabs,ep,Saigado, 

except for 116mIn, for which the discrepancy is more than a factor of two. It is suspected 

that the reason for this discrepancy may be that Eq. 6.5 is not accurate for resonances at 

very low energies; the main resonance of the ll5In(n,y) 116mIn reaction is at 1.46 eV, the 

lowest of the 13 cases studied. 

For the 12 other cases, the differences are mostly of the order of 20%. Since the measured 

Gabs.ep have experimental uncertainties of less than 10% in most cases, we attribute the 

20% differences to inaccuracy in the calculated <Jabs,ep,saigado- It is not surprising that the 

Oabs.ep.saigado would often be in error by 20% or more, because Eq. 6.5 assumes a simple 

pattern of neutron resonances, all with the same Breit-Wigner shape [Salgado et al. 

2004], and 20% is the order of magnitude of the uncertainty estimated by Salgado et 

al.[2004] for these calculations. For 122Sb, the calculated value is 40% below the 

experimental value. In this case there is a large experimental uncertainty, 86 b at the 68% 

confidence level; so it is possible that much of the difference could be due to 

experimental error. For 128I, the calculated value is 47% higher than the experimental 

value. The I(n,y) I reaction is exceptional in that it has a large number of significant, 

closely-spaced resonances, and Salgado et al. [2004] admitted that their formula would 

not be accurate in such cases. For the 13 cases studied here, the contribution of the very 

small resonances not included in the calculation of Eq. 6.5, as well as the possible overlap 
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of resonances of other isotopes of the same element, were investigated in detail. These 

two contributions were found to be less than 5% in all 13 cases. 

Table 6.1 Measured and calculated values of epithermal neutron absorption cross-

sections, <7abs,ep, for 13 nuclides. The values in parentheses are the 

experimental standard uncertainties, corresponding to the 68% confidence 

interval 

Reaction Material, Range of masses Measured aabStep Calculated 

(uncertainty) (b) <Tabs,eP,saigado (b) 

79Br(n,y)80Br 

?1Br(n,y)82Br 

96Zr(n,y)97Zr 

14Cd(n,y)115Cd 

KBr soln. 

KBr soln. 

l -400mg 233(19) 

l -400mg 253(17) 

Cd(N03)2:4H20 soln. 1 - 200 mg 78 (5) 

21 

23Sb(n,y) 124Sb 

27I(n,y)128I 

33Cs(n,y)134Cs 

52Sm(n,y) 153Sm 

86W(n,y)187W 

97Au(n,y)198Au 

CsN03 soln. 

290 

239 

Zr metal discs 65 mg - 8.4 g 10.3(0.8) 8.0 

80 

15In(n,y)116mIn InCl3 soln. 0.2-40.7 mg 2582(243) 5922 

Sb(n,y)122Sb K(SbO)C4H406 soln. 14 - 557 mg 500(86) 297 

K(SbO)C4H406 powd. 14 - 557 mg 442 (75) 535 

KI soln. 1 - 300 mg 387 (24) 567 

9-161mg 1033(140) 1289 

Sm203 soln. in HC1 0.3 - 70.6 mg 5930 (262) 5729 

W0 2 powder l l - 1 5 6 m g 1790(181) 2270 

NaAuCl4:2H20 0.13-5.40 mg 4648(290) 5774 

238U(n,y)239U U02(C2H302):2H20 0.4 - 55.2 mg 1148 (129) 1330 
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The spreadsheet developed calculates Gt/t, Gep and Geg for 76 nuclides. It uses elemental 

thermal neutron absorption cross-sections, Gaba,u taken from the Table of Nuclides 

[http://atom.kaeri.re.kr/]. For the 13 nuclides studied here, the measured oau,e\-> are used, 

and for the other 63 nuclides, calculated <7abs,ep,saigado are used; it is assumed the latter 

have 20% uncertainty. The spreadsheet was found to be very convenient for correcting 

neutron activation analysis measurements for self-shielding. Since an analytical 

expression is used, the uncertainties of the corrected concentrations can be calculated 

from the uncertainties of all the parameters used, and error propagation. Assuming 

accurate measurements of the concentrations, the uncertainties of the corrected 

concentrations will depend on the uncertainty of the calculation of the values of Geff. We 

tested the importance of various parameters towards the final uncertainties. For nuclides 

with high Qo values, say Qo > 10, and in poorly thermalized irradiation channels, say /< 

20, it was found that the largest contribution to the uncertainty in Geff was from the 

uncertainty in Gabs,ep- In a typical difficult case, a 7 mL sample weighing 7 g, with 97,000 

ppm CI (thermal neutron absorber) and 74,000 ppm As, irradiated in a neutron spectrum 

with/= 18, the result for 76As (Q0 = 15) was Gth = 0.900, Gep = 0.700 and Geff= 0.797, 

with an uncertainty in G^-of 2.8%. The contributions to the uncertainty in G^ due to the 

uncertainties in/, a, Q0 and <jabSii were less than 0.5%. The 5% uncertainties in r and h 

caused 1% uncertainty in Gejf. The main contribution, 2 .3%, was from the 2 0 % 

uncertainty in &abs,ep-

http://atom.kaeri.re.kr/
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With this spreadsheet, neutron activation analysis measurements are now routinely 

corrected for neutron self-shielding in our laboratory, with typical uncertainty of about 

2% when the self-shielding effect is of the order of 20%. Page two of the spreadsheet is 

used to screen materials of approximately known composition, before irradiation; the 

estimates of G(i„ Gep and Gejj- help to determine the parameters of NAA measurements, 

such as sample size and the appropriate irradiation channel. 

It should be noted that all the measurements of this work and previous work [Chilian3'5 et 

al. 2006] were done with Gth > 0.6 and Gep > 0.6. Thus, they give no assurance that the 

method developed here will be accurate for samples with more than 40% thermal or 

epithermal self-shielding. However, there are data [Martinho et al. 2003, Goncalves et al. 

2004, Martinho et al. 2004, Salgado et al. 2004] to suggest that Eqs. 6.1 and 6.2 may still 

be accurate to about 10% for values of Gth and Gep as low as 0.1. 

6.4. Conclusion 

A spreadsheet has been developed which calculates the thermal and epithermal neutron 

self-shielding for any nuclide in a cylindrical sample irradiated in a reactor neutron 

spectrum. In our SLOWPOKE reactor laboratory, element concentrations measured by 

neutron activation analysis are routinely corrected for self-shielding with typical accuracy 

of 2%; similar accuracy should be achievable with other reactors as long as the 

appropriate parameters /, a, kth and kep are used. The spreadsheet is available from the 

authors on request. Future work will include the measurement of several more epithermal 
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neutron absorption cross-sections, which will improve the accuracy of the self-shielding 

corrections for these nuclides. 
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General Discussions, Conclusions and Future Perspectives 

The main objective of this work was to investigate the epithermal self-shielding in 

neutron activation analysis and to develop a general method to correct both thermal and 

epithermal neutron self-shielding. This would extend instrumental neutron activation 

analysis to a new class of materials with high concentrations of thermal and epithermal 

neutron absorbers. Due to the complexity of the resonance pattern of the neutron 

absorption cross section in the epithermal region, combined with the particularities of the 

irradiation conditions, we conducted our research in three distinct stages: a preliminary 

evaluation of the method and its applicability in activation analysis, a verification of the 

dependency of the thermal and epithermal self-shielding factors on the sample 

dimensions and on the irradiation site, and finally, the complete development of the 

neutron self-shielding correction method and its implementation in routine activation 

analysis. 

We started by formulating the theoretical expressions of the thermal and epithermal self-

shielding factors and we verified their validity for some pure and well-characterized 

substances containing strong thermal and epithermal neutron absorbers, such as chlorine, 

iodine and bromine. For these particular cases, and for constant geometry samples, we 

investigated changes in the self-shielding factor with the amount of element present in the 

sample. Once the theoretical expressions were validated and their characteristic 

parameters identified, we developed an iterative method for correcting neutron self-

shielding in activation analysis, and we tested this method for two extreme cases: first for 



101 

shielding in activation analysis, and we tested this method for two extreme cases: first for 

a very concentrated sample containing a mixture of a thermal neutron absorber, chlorine, 

and an epithermal neutron absorber, iodine; and secondly for a very concentrated sample 

containing two strong epithermal neutron absorbers, iodine and bromine, with their 

isotopes Br, Br and I. The correction for thermal neutron self-shielding was 

accurate because the effects of several elements are combined in a straightforward 

manner, and the error in determining the real concentrations was less than 1.5%. 

However, for mixture of several epithermal absorbers, the error in determining the iodine 

and bromine concentrations was as high as 6.5%, which was explained by the mutual 

self-shielding between the resonances of the nuclides present in the sample. Thus, the 

method is limited for a concentrated mixture of strong epithermal neutron absorbers. If 

we wish to determine several elements activated by epithermal neutrons, in a sample 

containing one element that strongly absorbs epithermal neutrons, we would need to 

know the shielding of the strongly absorbing element on the resonances of the nuclides of 

the other elements. This would require a large number of calibration measurements, one 

measurement per element-nuclide pair, or Monte Carlo calculations. Since an extreme 

case like the one described above is encountered rarely in activation analysis, a sample 

dilution could be the best approach in analysing this type of sample. When we wish to 

conserve the integrity of the sample, an alternative to sample dilution would be ENAA 

followed by a Monte Carlo calculation, which may need to be iterative. 

In the second phase of the project, we have investigated the dependence of thermal and 

epithermal self-shielding factors on sample size and irradiation site. This was done by 
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way of a carefully-designed set of experiments, in which materials were judiciously 

chosen in such a manner that samples of different geometries but identical composition 

were prepared and alternatively activated in three different irradiation sites with different 

neutron flux composition and anisotropy, different distance from the reactor core, and 

different surrounding moderator. The outcome clearly showed that the thermal and 

epithermal self-shielding have only a small dependency on the irradiation site 

characteristics. From conversations at international conferences, we have learned that this 

is contrary to what was commonly believed in the neutron activation analysis community. 

In the case of the SLOWPOKE reactor, the impact of the site dependency of the thermal 

and epithermal self-shielding correction factor is usually less than 1%. Of equal 

importance, the predicted dependence of the thermal and epithermal self-shielding factors 

holds for various sample geometries. However, for irradiation sites where the neutron 

flux is highly anisotropic, the proposed sample geometry dependency of the self-

shielding parameters for cylindrical samples may not hold, and it will be investigated in 

future studies. 

In the above distinct steps of the study regarding the variation of thermal and epithermal 

neutron self-shielding with sample composition, geometry of the sample, and practical 

irradiation conditions, we have been able to validate the study's hypothesis that, in 

activation analysis, epithermal neutron self-shielding is described by a unique sigmoid 

function of the mass of the element present in the sample. The next step was to extend the 

method to correcting epithermal and thermal self-shielding for all 76 important nuclides 

in activation analysis, and generalize the method for any cylindrical sample geometry. 
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For 13 relevant nuclides in activation analysis, we have experimentally evaluated the 

dependency of the epithermal self-shielding factor on the element mass present in the 

sample. In each case, we correlated the epithermal neutron self-shielding with the mass 

and sample dimensions, and hence we were able to identify and define an empirical 

nuclear parameter, epithermal absorption cross section, which characterizes the activation 

by epithermal neutrons. For the other 63 nuclides commonly used in activation analysis 

we calculated the neutron self-shielding nuclear parameters with a theoretical formula 

based on the resonances. Also, for these 63 nuclides we investigated and discussed the 

limitations in using the theoretical approach. In addition, for each of the 13 nuclides for 

which we compared measurement and theory, we systematically investigated the 

potential mutual self-shielding of the resonances of all the isotopes of the element, and 

we concluded that it is negligible in all 13 cases. Finally, the experimental values of 

epithermal absorption cross-section, together with the theoretically estimated values, 

allow us to create a complete thermal and epithermal neutron self-shielding correction 

method by using a spreadsheet for all 76 commonly used nuclides in activation analysis. 

For the first time in the field of ENAA, a systematic method for correcting neutron self-

shielding, for cylindrical samples of any composition, and for any reactor irradiation site, 

was implemented in routine activation analysis, representing an important step forward in 

activation analysis. 



We predict that about one hundred neutron 

method within the next few years. Feedback 

improvements to the method. 
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activation analysis laboratories will use our 

from these users will be important for future 
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Appendix A Epithermal Absorption Cross Section Calculation 

Appendix A presents the calculation of the epithermal absorption cross section, and gives 

an example of <?abs,ep,saigado calculation for 186W. 

A.1 Epithermal Absorption Cross Section Calculation 

For 76 nuclides currently used in NAA, epithermal absorption cross section, <Jabs,ep values 

were calculated by a formula derived from Eq. 2.10 for capture reactions with several 

resonances in the epithermal energy region. 

( 

2 > < °"/w./(£«,«). " 
;=1 ^ ' r < 7 

<Tabs,ep,Sa Ig ado - 0 . 1 9 5 0 ( A . 1) 

;=1 

where w, is the weighting factor defined by the following formula: 

r Z-T 
wt=~ (A.2) 

res A i 

with g being statistical weighting factor: g = (2J+l)/2(2I+l), where J is the resonance 

state spin and / is the target nucleus spin. 

In this work, for calculating crabs,ep,saigado, we used the values of nuclear parameters 

<Ttot,i(Eres), Eres,u rh rrJ, rn,h I, J, provided by JAMS 3.0 software (ENDFB 6.8, JEF 2.2 
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or JEFF 3.0) [http://www.nea.fr/janis/] and isotopic abundances, 6, from Table of 

Nuclides [http://atom.kaeri.re.kr/]. 

186, 
The following table gives an example of the calculation of (JahMPiSaiHado for W, with an 

186i 
isotopic abundance of 0.28426, resulting in a value of Gabs,ep,saigad<> ( W) = 2270 b. 

Epithermal Ahsorpti 

CTabs,ep,Salgado = 2 2 7 0 

0 = 10.2843 

E„(eV) 1 
18.81 

170.40 

204.00 

219.00 

""" 286.50 
405.50 

509.50 
540.50 

662.50 
714.00 

723.50 
769.00 

830.00 
, „ ^ 

1070.00 
1120.00 

1185.50 
1417.00 

1470.00 
1498.00 

1593.00 
1682.00 

] 1793.00 

1817.00 
1930.50 

2023.00 
2069.00 

2103.50 
2346.50 

2386.00 
2510.00 

on Cross Section Calculation for W 

b 

J r(eV)r„(eV) rr(eV)at0 

0 

0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

0 
0 

0 
0 

0 
0 
0 
0 

0.5 

0.5 

0.5 
0.5 

0.5 
0.5 
0.5 
0.5 

0.5 
0.5 

0.5 
0.5 

0.5 

0.5 

0.5 
0.5 

0.5 
0.5 

0.5 
0.5 

0.5 
0.5 

0.5 

0.5 
0.5 

0.5 

0.5 

0.5 
0.5 
0.5 
0.5 

0.329 

0.089 

0.073 
0.582 

0.094 
0.138 

0.122 
0.560 

0.765 
0.090 

2.172 
0.071 

0.091 

1.132 

0.631 
0.482 

0.880 
0.260 

0.074 
1.298 

0.070 
0.071 

0.128 

0.080 
0.725 

0.547 
0.077 

0.207 
0.250 
0.138 
0.320 

0.280 

0.025, 
0.008 

0.520 

0.029 
0.082 

0.078 
0.495 

0.680 
0.025 

2.080 
0.006 

0.026 

1.060 

0.570 
0.420 

0.825 
0.170 

0.009 
1.230 

0.005 
0.006 

0.063 

0.015 
0.665 

0.480 
0.012 

0.140 
0.180 
0.083 
0.250 

0.049 

0.064 

0.065 
0.062 

0.065 
0.056 
0.044 
0.065 

0.085 
0.065 

0.092 
0.065 

0.065 

0.072 

0.061 
0.062: 

0.055 
0.090 

0.065 
0.068! 

0.065 
0.065 

0.065 

0.065 
0.060 

0.067 

0.065 

0.067 
0.070: 

0.055 
0.070 

t(Em)(b) 9 
109363.821 

885.917 

204.808 
8257.962 

474.719 
791.392; 
538.797i 

2553.463 

2375.714 
104.955 

3229.220 
22.586 

87.145 

1907.217 

1129.316! 
825.656 

1282.060 
251.081 

12.123 
1192.300 

6.829 
6.528 

66.531 
15.569 

563.546 

398.107: 

10.253 

115.749 

125.951 
57.130 

157.108 

| j 
j | 

_ ._ 

» \mM(EnsxrYirfa 

1.18E-04 

6.19E-07 
1.62E-07 

1.16E-06 

2.44E-07 
2.02E-07 
1.08E-07 

1.97E-07 

1.72E-07 

3.54E-08 
1.68E-07 

9.29E-09 

2.70E-08 
7.28E-08 
4.81 E-08 
4.31 E-08 

3.67E-08 
2.93E-08 

3.48E-09 
2.87E-08 

1.96E-09 
1.82E-09 

1 9.95E-09 
t 3.69E-09 

1.48E-08 

1 1.44E-08 

1 2.37E-09, 

1 1.02E-O8 
1 9.15E-09 
1 5.81 E-09 
1 8.68E-09 

i n 

f - 1 /=! 

1.21E-04 

4.97E+00 

4.65E-04 
3.13E-05 

3.11E-03 

9.64E-05 
1.02E-04 

3.51 E-05 
1.71E-04 

1.36E-04 

3.16E-06 
1.12E-04 
2.01 E-07 

1.99E-06 

3.50E-05 

1.69E-05 
1.28E-05 

1.18E-05 
4.33E-06 

3.97E-08 
7.84E-06 

1.29E-08 
1.14E-08 

4.72E-07 

5.18E-08 
2.39E-06 

2.00E-06 

2.23E-08 
6.74E-07 
6.10E-07 
2.10E-07! 
6.38E-07 

{ V ' < J 

4.98E+00! 

2272 

http://www.nea.fr/janis/
http://atom.kaeri.re.kr/
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Appendix B Spreadsheet for Correcting Thermal and Epithermal Self-Shielding for 

NAA Measurements with Cylindrical Samples 

Appendix B presents the iterative algorithm for correcting the self-shielding and its 

implementation in the spreadsheet "Self-Shielding Corrections for NAA Measurements 

with Cylindrical Samples". 

B.l Algorithm for Correcting Self-Shielding in NAA 

As a first step, the neutron self-shielding correction is initialized by judiciously choosing 

the irradiation channel characteristics and by inputting sample dimensions and sample 

mass. The second step is to enter the measured concentrations of elements present in the 

sample. This action will automatically generate the calculation of the thermal and 

epithermal self-shielding factors and the corrected concentrations. At each iteration, the 

algorithm calculates Gth, Gep and G^ for 76 nuclides by using: elemental thermal neutron 

absorption cross-sections, <Jabs,i, taken from the Table of Nuclides 

[http://atom.kaeri.re.kr/]; measured and calculated values of epithermal neutron 

absorption cross-sections, Oabs,eP,i for the activated isotope of the element /. The self-

shielding corrected element concentration is obtained by dividing the original 

concentration by Geff-

For the case of a sample containing n elements, the algorithm steps are: 

1. choose irradiation channel characteristics; 

http://atom.kaeri.re.kr/
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2. input the sample dimensions, volume and weight; 

3. measure by NAA the element concentrations, and input these values in the 

spreadsheet; 

4. calculate ?noj of each element i, from element concentration and sample weight; 

5. for each element i, calculate the following term: 

NAvk!h m0.aahs. 

r(r + h) Mat. 

6. sum the values obtained at step 5 and calculate zth given by the following formula: 

Zti, ~ ^ ^ ab" (B.2) 
"' r(r + h)t? M 

7. calculate the thermal self-shielding factor, Gth, with the formula: 

_ 1.00 
Uthfi ~ , 0.964 W-6) 

1 + zth 

8. for each element i, calculate zep with the following formula: 

_ m0.i " A y Kep ^abs,ep,i ~» A \ 
Zep'1 ~ r(r+h)Mul 

9. calculate the epithermal self-shielding factor, Gepj, for the element i: 

0.94 
^ , o „ = - SE- + 0.06 (B.5) 

1 + Zep,i 
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10. calculate the effective self-shielding factor for each element i with the formula: 

I Q , Qo(a) 
f + Qo(a) "u0 f + Q0(a) 

G"ff^ = "7T7T7—I G'h'° + ~TZ7T777~\G'I>M ^B-6^ 

11. correct the element mass from the step 4, moj, by dividing with Geff,o,i, and obtain the 

mass corrected for self-shielding, m/,(: 

mu=~**- (B.7) 

12. stop after the fourth iteration; calculate corrected concentrations using the corrected 

masses; 

13. go back to step 5 and perform the next iteration using corrected element masses in the 

formulas of the steps 5 to 8. 

The algorithm presented in the section B.l was implemented in page one of the 

spreadsheet "Self-Shielding Corrections for NAA Measurements with Cylindrical 

Samples". Section B.2 presents this page and an example of correcting the self-shielding 

for a concentrated sample containing high concentrations of chlorine and arsenic. 

Page two of the spreadsheet, "Neutron Self-Shielding Calculation for Cylindrical 

Samples", presented in the section B.3, calculates the self-shielding in materials of 

known or estimated composition and uses the steps 1 to 10 of the above algorithm. The 

known or estimated concentrations of the elements are entered and the calculation of the 

self-shielding factors is non-iterative. It can be used to screen materials of approximately 
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known composition, before irradiation; the estimates of Gth, Gep and Geff help to 

determine the parameters of NAA measurements, such as sample size and the appropriate 

irradiation channel. 
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B.2 Page 1 of the spreadsheet: Self-Shielding Corrections for NAA Measurements 
with Cylindrical Samples 

Self-shielding corrections for NAA measurements with cylindrical samples 
Enter sample dimensions and mass in B14, B15 and B17 
Enter measured concentrations in D23 to D124 
See corrected concentrations in E25 to E124 

Irradiation Channel site 1 site 1 \ site 61 site 8 

f = 
alpha = 

kth = 
kep = 

18.0 
-0.051 

0.94 
1.00 

Unc. 
0.2 

0.005 
0.08 

0 

18.0 
-0.051 

0.94 
1.00 

48.6 
0.016 

0.86-
1.00 

52.7 
0.018 

0.94 
1.00 

Sample 

d (mm) 14 
h (mm) 46 
jvolume (cm; 7.00 
mass (g) 7.000 ~ 

r(mm) small vial large vial jumbo 
7.0 5 

20 
1.571s 

7 
46 

7.0811 

12.7 
44 

22.295 

Element Nuclide 
GammaS Measured; Corrected' 
Energy |onc. (ppm)j;onc.(pptn) Gth Gep Geff 

Li 
B 
N 
F 
Na 
Mg 
Al 
Si 

P 
s 
CI 
K 
Ca 
Sc 

Ti 
V 
Cr 
Mn 
Fe 
Co 
Ni 

Cu 

Zn 

Ga 
Ge 

As 
Se 

Br 

Li 
B 
N 
F-20 

•Na-24 
Mg-27 

'AI-28 
Si-31 
Si-AI-2S 

' P-32 
,S-37' 
CI-38 
K-42 
Ca-49 

'.Sc-46 
Sc-46m 
Ti-51 
V-52 
Cr-51 
Mn-56 ' 

' Fe-59 
Co-60 
Ni-65 
Ni-Co-5 
Cu-64 
Cu-66 
Zn-65 
Zn-69m' 
Ga-71 
Ge-75 
Ge-75rr 
Ge-77 

' As-76 
Se-75 
Se-77m 
Br-80 
Br-82 

1633 
1368 
1014 
1779 
1266 
1273 
beta 
3102 
1642 
1525 
3084 

889 
142 
320 

1434 
320 

1811 
1099 
1173 
1482 
811 
511 

1039 
1115 
439 
834 
264 
139 
264 
559 
265 
162 
616 
554 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

87600 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

59000 
0 
0 
0 
0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

96828.6 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

73986.5 
0.0 
0.0 
0.0 
0.0 

0.900 
0.900 
0.900. 
0.900 
0.900 

1 
0.900 
0.900 
0.900. 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900! 
0.900' 
0.900 
0.900 
0.900 
0.900 

1 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900' 
0.900-
0.900' 
0.900 
0.900 
0.900 
0.900 

1.000 
1.000 
1.000 
1.000' 
1.000 

1 
1.000 
1.000 
0.996 
1.000 
1.000" 
1.000 
1.000' 
1.000 
1.000 
1.000 
1.000 
1.000' 
1.000 
1.000 

1' 
1.000" 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000' 
0.700' 
1.000 
1.000 
1.000 
1.000 

0.916iF-20 
0.904i Na-24 
0.905 Mg-27 
0.905AI-28 
0.908 Si-31 

1 Si-AI-29 
0.903JP-32 
0.908SS-37 
0.905ICI-38 
0.907;K-42 
0.903;Ca-49 
0.903>Sc-46 
0.904;Sc-46m 
0.905(Ti-51 
0.904 V-52 
0.904jCr-51 
0.907iMn-56 
0.907|Fe'-59 
0.912;Co-60 
0.905|Ni-65 

1 Ni-Co-58' 
0.908 Cu-64 
0.907 Cu-66 
0.913jZn-65 ' 
0.919|Zn-69m 
0.932!Ga-71 
0.911 |Ge-75 
0.916lGe-75m 
0.950 'Ge-77 
0.797 As-76 
0.942 Se-75 
0.905|Se-77m 
0.9451 Br-80 
0.958lBr-82 
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; Element 
Rb 

Sr 

Y 
Zr 

Nb 
Mo 

Ru 

Rh 

Pd 

Ag 

Cd 
In 
Sn 
Sb 

Te 
1 
Cs 

Ba 

La 

Ce 
Pr 
Nd 
Sm 

Eu 

Gd 

Tb 
Dy 

Ho 
Er 
Tm 
Yb 

Lu 
Hf 

Ta 
W 
Re 

Os 

Ir 
Pt 

Nuclide 

Rb-86 
Rb-86m 
Rb-88 
Sr-85 
Sr-87m 

Y-90m 
Zr-95 
Zr-97~ 
Nb-94m 
Mo-99 
Mo-101 
Ru-103 
Ru-105 
Rh-104m 
Rh-104m 
Pd-109 

Ag-108 
Ag-110 
Ag-110m 
Cd-115 
ln-116m 
Sn-125m 
Sb-122 
Sb-124 
Te-i-131 
1-128 
Cs-134 
Cs-134m 
Ba-131 
Ba-139 
La-140 

.Ce-141 
Pr-142 
Nd :147 
Sm-153 
Sm-155 
Eu-152 
Eu-152m 

Gd-153 
Gd-159 

!Tb-160 
Dy-165 
Dy-165m 
Ho-166 
Er-171 

Tm-170 
Yb-169 

Yb-175 
Lu-177 
Hf-179m 
Hf-181 
Ta-182 
W-187 

;Re-186 
Re-188 
Os-191 
Os-193 
lr-192 
Pt-Au-199 

Gamma Measured Corrected 
Energy one 

1077 
556 

1836 
514 
388 
479: 
724 

743 
871 
141 
307 
497 

724 
51 

558 
88 

633 
658 
884 
336 

1097 
332 
564 

1691 
364 
443 
796 
127 
496 
166 

1596 

145 
1576 

91 
103 
246 

1408 
842 

103 
363 
299 

95 
108 
81 

308 
84 

177 

396 
208 
214 
482 

1221 
686 
137 
155 
129 
460 
316 
158 

.(ppm)Ponc 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

.(ppm) 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0' 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0' 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Gth 
0.900' 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900' 
0.900 
0.900' 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 

0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900" 
0.900; 
0.900 
0.900 
0.900 
0.900 
0.900 

0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900 
0.900: 
0.900" 
0.900 
0.900 
0.900 
0.900 
0.900 

Gep 

1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.006]"' 

1.060]" 
1.006T 
1.000! 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000' 
1.000 
1.000 

Geff 
0.954' Rb-86 
0.947 Rb-86m 
0.964 Rb-88 
0.950 Sr-85 
0.924 Sr-87m 
0.933 Y-90m 
0.931,Zr-95 

0.995 Zr-97 
0.936 Nb-94m 
0.980i Mo-99 
0.959 Mo-101 
0.921? Ru-103 
0.949 Ru-105 
0.928 Rh-104m 
0.928jRh-104m 
0.964|Pd-109 

0.916 Ag-108 
0.953' Ag-110 
0.950 Ag-110m 
0.974 Cd-115 
0.949 ln-116m 
0.981 Sn-125m ' 
0.968lSb-122 
0.966;Sb-124 
0.912 Te-l-131 
0.963 1-128 
0.949'Cs-134 
0.943,Cs-134m , 
0.960 Ba-131 
0.906! Ba-139 
0.908 La-140 
0.906iCe-141 
0.910 Pr-142 
0.913 Nd-147 

0.947 Sm-153 
0.923 Sm-155 
0.907 Eu-152 
0.906 Eu-152m 
0.905'Gd-153 ' 
0.967 Gd-159 
0.954Tb-160 
0.901 Dy-165 
0.901 Dy-165m 
0.941,Ho-166 
0.924 Er-171 
0.946 Tm-170 
0.922 Yb-169 
0.903 Yb-175 
0.908!Lu-177 
0.95l]Hf-179m ' 
0.915 Hf-181 
0.970iTa-182 
0.947 W-187 
0.948 Re-186 
0.923 Re-188 
0.912 Os-191 
0.914'Os-193 
0.925 lr-192 
0.955 Pt-Au-199 
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1 

Berr 

Cd 
n 
Sn 
Sb 

Te 
1 
Cs 

Ba 

La 
Ce 
Pr 
Nd 
Sm 

Eu 

(3d 

lb 
Dy 

Ho 
Er 
Tm 
Yb 

Lu 
Hf 

"fa 
W 

Re 

Os 

"ir 
PI 
Au 

BB 

TTI 

0 

Mats gmaTh 

112.41 2520.00 Cd-115 

114.82 
118.71 
121.76 

127.60 
126.90 
132.91 

137.33 

138.91 
140.12 
140.91' 
144.24 

194.00 ln-116m 
0.61 Sn-125n 

5.10Sb-122 
Sb-124 

4.20 Te-l-131 
6.20 1-128 

29.00; Cs-134 
CS-134TT 

1.30:Ba-131 

Ba-139 
9.00 La-140 
0.63 Ce-141 

11.40 Pr-142 
50.00! Nd-147 

150.36 5600.00 Sn>153 
Sm-155 

151.96 4600.00 Eu-152 
Eu-152rr 

157.25 ###### Gd-153 

158.93 
162.50 

164.93 
167.26 
168.93 
173.04 

174.97 
178.49 

180.95 
183.84 

186.21 

190.23 

192.22 
195.08 
196.97 
200.59 

232.04' 
238.03' 

Gd-159 
23.20 TD-160 

950.00 Dy-165 
Dy-165rr 

61.00;Ho166 
160.00 Er-171 
105.00 Tm-170 
50.00 Yb-169 

Yb-175 
84.00 Lu-177 

104.00 Hf-179m 
Hf-181 

20.00 Ta-182 
18.20 W-187 
89.00 Fte-186 

Re-188 
15.00;Os-191 

Os-193 
420.00 lr-192 ' 

10.00 R-Au-15 
98.70 Au-198 

374.00 Hg-197 
Hj203 

7.37 Th-Pa-2C 
7.57U-239 

U-tp-23 

336 

1097 
332 
564 

1691 
364 
443 
796 
127 
496 

166 
1596 

145 
1576 

91 
103 
246 

1408 
842 

103' 
363 
299 

95 
108 
81 

308 
84 

177 
396 
208 
214 
482! 

1221 
686 
137 
155 
129 

460 
316 
158 
412 

77 
279 
312 

75 
278' 

Mass(g)ISltVMati/lass(g)Sth/Mal\/lass(g)Sthi'Mat^ass(g)!tlVMatMass(g) Conc.(pp Geff 

0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 

0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 

0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000: 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 
0 0.000 

sum 

ah 
Gth 

0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 

0.00 
0.00 

0.00 
0.00 
0.00 
0.00 

0.00 
0.00 

0.00 
0.00 
0.00 

0.00 

0.00; 
0.00 
0.00 
0.00 

0.00 
0.00 

0.60 
0.092 
0.909 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
aooo! 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000; 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000: 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 

0.00 
0.00 

0.00 
0.00 
0.00 
0.00 

0.00 
0.00 

0.00 
0.00 
0.00 

0.00 

o.oo! 
0.00 
0.00 
0.00 

0.00 
0.00 

0.66 
0.101 
0.901) 

i 

0.000 
0.000, 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000' 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000! 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000i 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000; 
0.000 
0.000 
0.000 
0.000 

0.000' 
0.000 
0.000 

,,,.,,,,4,. 

0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 

0.00 

0.00 
0.00 
0.00 
0.00 

0.00 

0.00 

0.00 
0.00 

0.00 
0.00> 
a o o i 
aoo; 

0.00 
0.00 

0.00 
0.00 
0.00 

0.00, 

aoo; 
0.00 
0.00 
0.00 

0.00 
0.00 

0.67 
0.102 
0.900 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

"0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 

0.000 

0.00 
0.00, 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

0.00 

0.00 
0.00 

0.00: 
0.00 
0.00 
0.00 

0.00 
0.00 

0.00 

o.oo; 
|jD-O0[ 

ado; 

0.00 
0.00 
0.00 
0.00 

aoo; 
0.00 

0.67 
0.102 
0.900 

0.000 Cd-115 
0.000: ln-116m 
0.000! Sn-125n 
0.000! Sb-122 
0.000 Sb-124 
0.000 Te-l-131 
0.000 1-128 

aooolcs-134 
0.000 Cs-134rr 
a000;Ba-131 
0.000 Ba-139 
0.000! La-140 
0.000 Ce-141 
0.000 Pr-142 
0.000 Nd-147 
0.000Sm-153 
0.000'Sm-155 
0.000 Eu-152 
a000!Eu-152rr 

0.000 Gd-15a 
0.000 Gd-159 
0.000! Tb-160 
0.000 Dy-165 
0.000 Dy-165rr 
0.000 Ho-166 
0.000 Er-171 
0.000 Tm-170 
0.000 Yb-169 
aOOO! Yb-175 
0.000 Lu-177 
0.000 HM79m 

0.000 Hf-181 
0.000 Ta-182 
0.000 W-187 
0.000 Re-186 
aOOOi Re-188 

""0.000 Os-191 
0.000 Os-193 
0.000 lr-192' 
aOOO R-Au-19 
0.000 Au-198 
0.000 Hg-197 
0.000 Hg-203 
0.000 Th-Pa-2:-
aooo;u-239' 
0.000 U-Nt>23? 

0.0 0.974, 
0.0 0.949 
ttO 0.981 

ttO 0.968 
0.0 0.966 
0.0 0.912 
ao 0.963 
0.0 0.949 
0.0 0.943 
0.0 0.960 
aO 0.906 
a o 0.908 
aO 0.906 
a o 0.910 
0.0 0.913' 
ao 0.947 
0.0 0.923 
0.0 0.907 
0.0 0.906 

0.0 0.905 
aO 0.967 
0.0 0.954 
a o 0.901 
a o 0.901 
aO 0.941 
0.0 0.924 
0.0 0.946 
0.0 0.922 
0.0 0.903 
0.0 0.908 
0.0 0.951 

a o 0.915 
aO 0.973 
ao 0.947 
aO 0.948 
ao 0.923 
0.0 0.912 
0.0 0.914 

a o 0.925" 
a o 0.955 
0.0 0.949 
a o 0.901 
aO 0.906 
ao 0.944 
0.0 0.987 
a o 0.987 



122 

theta(°/ 

"F-19 ->F-20 (1| 
Na-23 -> Na-24 ( 
Mg-26 -> Mg-27 
AI-27 -> Al-28 (2 
Sl-30 -> Sl-31 (2 
P-31 -> P-32 ( 

"S-36 ->S-37 ( ! 
CI-37 -> a-38 (3 
K41 -> K-AZ (1 
Ca-48 -> Ca-49 ( 
Sc-45 -> Sc-46 ( 
Sc-45 -> Sc-46m 
Ti-50 -> Ti-51 ( 5 
V-51 ->V-52 (: 
Cr-50 -> Cr-51 (2 
Mn-55 -> Mn-36 
Fe-58 -> Fe-59 (• 

Q>59 -> Cr>60 ( 
M-64 -> N-65 (2 
Oh63 -> Oh64 ( 
Oh65 ->Cu-66 (' 
2h-64 ->2h-65 (2 
Zh-68 ->Zh-69m i 
Ga-71 ->Ga-72 ( 
Ge-74 -> Ge-75 ( 
Ge-74 -> Ge-75m 
Ge-76 ->Ge-77 ( 
As-75 -> As-76 ( 
Se-74 -> Se-75 ( 
Se-76 -> Se-77m 
Br-79 -> Br-80 (1 
Br-81 ->Br-82 (1; 

Rt>85 ->Rb-86 ( 
Rb-85 ->Rb-86m . 
Rb-87 ->Rt>88 ( 
Sr-84 -> Sr-85 (6j 
Sr-«6 ->Sr-87m (; 
Y-89 ->Y-90m ( 

Zr-94 -> Zr-95 (& 
Zr-96 -> Zr-97 (1 

! Nb-93 ->Nb-94m 
j Mo-98 ->Mo-99 

Mo-100 -> Mo-101 

Ru-102 -> Ru-103 
Ru-104->Ru-105 
Rh-103->Rh-104rrt 
Rh-103 -> Rh-104 ft 
Pd-108->Pc(-109 
Ag-107->Ag-108 
Ag-109->Ag-110 
Ag-109-> Ag-HOm 

~Cd-114:>Cd-115 
Irhil5->ln-116m ( 

" Siv124->Sr>125m 
Sb-121 -> Sb-122 

_ _ _ s w 2 4 

100 
100 

11.01 
100 

3.087 
100 

0.02 
24.22 

6.73 
0.187 

100 
100 

5.18 

99.75 
4.345 

100 
0.282 

100 
0.926 
69.17 
30.83 
48.63 
18.75 
39.89 
36.28 
36.28 

7.61 
100 

0.89 
9.37 

50.69 

49.31' 
72.17 
72.17 
27.83 
0.56 
9.86 
100 

17.38, 

QO(a) 

3.50 
0.71 
0.86 
0.92 
1.47 
0.53 
1.45 
0.89 
1.28 
0.51 

0.46 
0.68 
0.89 
0.65 
0.62 
1.32 
1.22 

2.47 
0.86 
1.48 
1.35 
2.67 
4.29 
8.56 
2.19 
3.42 

17.72 
18.95 
12.79 
0.99 

14.95 

24.85 
20.72 
15.93 
31.63 
18.08 
5.64 
8.89 
8.08 

2.8 338.48 
100 

24.13 
9.63 

31.55, 
18.62 

100 
100 

26.46 
51.84 

48.16 
48.16 
28.73 
95.71 
5.79 

57.21 
42.79 

10.03 
70.13 
26.12 

4.64 
17.44 
6.97 
6.97 

31.68 
3.44 

20.17 
17.86 
51.88 
17.21 
74.79 
37.60 
34.10 

0.0109 
.0109TE4I 

l(0)(b)Sabs,ep(b)minit(g) 

0.02 

0.31 
0.02 
0.16 
0.121 
0.081 
0.22| 
0.30 
1.42 
0.44 

11.61 
15.39 
0.12 
2.70 
8.22 

14.00 
1.26 

71.75 
1.07 
5.13 
2.30 
1.45 

2.78 
32.11 

0.69 
1.05 
1.94 

63.00 
561.60 
68.85 

130.68 

51.15 
7.40 
5.70 
2.35 

10.64 
3.37 
7.60 
0.27 
5.54 

8.09 
6.90 
3.58 
4.72, 
6.02 

987.45 
987.45 
215.40 

2.06 
1681.76 
1489.82 

13.46 
3410.40' 

8.05 
198.00 
116.93 

1.19 

1.96 
0.03 
3.21 

0.48 
2.64 
0.00 

4.16 
4.16 
0.06 
2.28 
0.18 

66.73 
0.05 

580.02 
0.15 

965.53 
6.88 
6.65 

42.32 
149.31 

7.07 
7.07 

9.34 
354.41 
44.95 
17.67 

233 

253 
36.12 
36.12 
39.27 

1.66 
15.32 
23.35 
3.08 
10.3 

42.20 
21.08 
15.37 

15.03. 
20.73 

203.17 
203.17 
875.38' 
179.56 

2313.88 
2313.88 

78 
2582 
7.27 
500 
442 

0 

0 
0 
0 
0 
0 
0 

0.6132 

0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0.413 

0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0: 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

; Geff = Gth'tf (f+QO) + Gep*QO/(f+Q0) 

Gep 

1.000 F-20 

1.000 Na-24 
1.000 Mg-27 

1.000 Al-28 
1.000 Si-31 
1.000 P-32 
1.000 S-37 
0.996 a-38 
1.000 K-42 
1.000 Ca-49 

1.000 Sc-16 , 
1.000 Sc46nr 
1.000 71-51 
1.000 V-52 
1.000 Cr-51 
1.000; Mn-56 
1.000 Fe-59 

1.000 0 6 0 
1.000 M-65 
1.000" Cu64 
1.000 Cu-66 
1.000 Zn-65 
1.000 2h-69m 
1.000 Ga-71 
1.000 Ge-75 
1.000 Ge-75rr 
1.000 Ge-77 ' 
0.736AS-76 
1.000| Se-75 
1.000 Se-77rr 
1.000 Br-80 

1.000 Br-82 
1.000 Rb-86 
1.000 Rb-86rr 
1.000! FJ>88 
1.000 Sr-85 
1.000 Sr-87m 
1.000 Y-90m 

1.000 Zr-95 
1.000 Zr-97 

1.000 M>94rr 
1.000 Mo-99 
1.000 Mo-101 
1.000 Ru-103 
1.000" Ru-105 
1.000 Rh-104» 
1.000 Rh-104i 

1.000 Pd-109' 
1.000 Ag-108 
1.000 Ag-110 
1.000 Ag-110i 
1.000 Cd-115 
1.000 ln-116rr 
1.000 Si>125i 
1.000 Sb-122 
1.000 Sb-124 

initial 1st iter. 
Geff 

0.924 

0.912 
0.913 
0.913 
0.916 
0.912 
0.916 
0.913 

0.915 
0.911 

0.911 
0.912 
0.913 
0.912 
0.912 
0.915 
0.915 

0.920 
0.913 
0.916 
0.915 
0.921 

0.926 
0.938 
0.919 
0.924 

0.954 
0.820 
0.947 
0.914 
0.950 

0.962 
0.958 
0.952 
0.967 
0.955 
0.931 
0.939 
0.937 
0.995 
0.942 
0.981 
0.963 
0.928 
0.954" 
0.934 
0.934 
0.967 
0.924 
0.957 
0.954 
0.977 
0.953 
0.982 
0.971 
0.969 

Gep 

1.000 
1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
0.996 

1.000 
1.000 

1.000 
1.000' 
1.000 
1.000 
1.000 
1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000' 

1.000, 
0.704 
1.000 
1.000 
1.000 

1.000 
1.000 
1.000' 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

1.000 
1.000 
1.000, 
1.000 
1.000' 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000' 
1.000 
1.000 

2nd iter. 
Geff 

0.917. 

0.905; 
0.906 
0.906 
0.909 
0.904 
0.908, 
0.906 

0.908 
0.904 

0.904 
0.905 
0.906 
0.905 
0.904 
0.908 
0.907 

0.913, 
0.906 
0.909 
0.908 
0.914 
0.920 
0.933 
0.912 
0.917 

0.950 
0.800 
0.942 
0.906 
0.946 

0.958 
0.954 
0.948 
0.964 

0.951 
0.925 
0.934 

0.932 
0.995 

0.936 
0980~ 
0.960 
0.921 
0.950 
0.929 
0.929 
0.964' 
0.917 

0.953 
0.950 
0.975 [ 

0.949 
0.981 
0.968 
0.966 

Gep 

1.000 

1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
0.996 
1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

1.000 
0.700 
1.000 
1.000 
1.000 

1.000' 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000: 

1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

3rd iter. 

Geff, 

0.917 

0.904' 
0.905 
0.905 
0.908 
0.903 
0.908. 

0.905, 
0.907 
0.903 

0.903 
0.904 
0.905 
0.904 
0.904 
0.907; 
0.907 

0.912 
0.905 
0.908' 
0.907 
0.913 '. 
0.919 
0.932 
0.911 
0.916 
0.950 
0.798 
0.942 
0.905" 
0.946 

0.958 
0.954 
0.947 
0.964 

0.950 
0.924 
0.933 
0.931 
0.995 

0.936 
0.980 
0.959 
0.921 
0.949 
0.928 
0.928 
0.964 
0.916 
0.953 
0.950 
0.974 
0.949 
0.981 
0.968 
0.966 

Gep Geff 

1.000 0.916 
1.000 0.904 
1.000; 0.905 
1.000 0.905 
1.000! 0.908 
1.000 0.903 
1.000 0.908 

0.996] 0.905 
1.000! 0.907 
1.00010.903 

1.000 0.903 
1.00010.904 
1.000:0.905' 
1.000; 0.904 
1.000 0.904 
1.000; 0.907 
1.000; 0.907 

1.000 0.912 
1.000! 0.905 
1.000! 0.908 | 
1.000 0.9071 
1.000 0.913' 
1.000 0.919 
1.000 0.932 
1.000 0.911 
1.000 0.916 

1.000; 0.950 
0.700! 0.797 
1.000 0.942 

"1.OOOO.9O5" 
1.000 0.945 
1.000 0.958" 
1.000 0.954 
1.000 0.947; 
1.000 0.964! 

1.000 0.950 
1.000 0.924 
1.000;0.933 

1.000! 0.931 
1.000 0.995 

1.000 0.936 
1.000 0.980 

1.000 0.959 
1.000 0.921 
1.000! 0.949' 
1.000 0.928 
1.000 0.928 
1.000! 0.964 
1.000! 0.916 

1.000 0.953 
1.000 0.950 
1.000 0.974 
1.000 0.949 
1.000 0.981 
1.000! 0.968 
1.000! 0.966 
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1-127 -> 1-128 (24 
Cs-133->Cs-134 
Cs-133 -> Cs-134rrt 
"B¥l30 -> Ba-131 
"~Ba-138->Ba-139 
La-139-> La-140 j 
Ce-140->Ce-141 
Pr-141 -> Pr-142 ( 

Nd-146 -> Nd-147 
"Srr>152->Sm-153 

SrrH54->Sm-155 
Eu-151 -> Eu-152 
Euh151 -> Eu-152m 
&fl52->Gd-153 
Gd-158->Gd-159 
TD-159->"Ib-160 ( 
Dy-164->Dy-165 
W-164":>"Dy-165m 
Ho-165->Ho-166 

¥M70""->Er-171 ( 
Tm-169 -> Tm-170 
Yb-168->Yb-169 
Yb-174->Yb-175 
Li-176->Lu-177 t 
Hf-178->Hf-179m 
Hf-180->Hf-181 (< 
Ta-181 -> Ta-182 ( 
W-186 ->W-187 

Fte-185 -> Re-186 
"lte-187 -> Re-188 
"6s-190 -> Os-191 
Os-192->Os-193 
lr-191 -> lr-192 (7J 
Pt-198->Au-199 i 
Au-197->Au-198 
"Hg-l'96:>Hg-197 

"fi-2Cg'->Tfe-203 
Th-232 -> Pa-233 
T>238 -> U-239 ( 
U-238 -> Np-239 

heta(°4 

100 
100 
100 

0.106 
71.7 

99.91 
88.45 

100 
17.2 

26.75 

22.75 
47 81 
47.81 

0.2 
24.84 

100 
28.18 

28.18 
100 

14.93' 
100 

0.13 
31.83 
2.59' 

27.28 
35.08 

100 
28.43 
37.4 

62.6 
26.26 
40.78 
37.3 

7.163 
100 

0.15 
29.86 

100 

Q0(a) 

29.94 

16.90 
13.76 

26.75 
1.20 
1.47 
1.09 
1.91 
2.68 

16.05 

5.45 
1.25 
1.20 
0.86 

36.37 
20.71 
0.15 

0.23 
12.36 

5.58 
15.49 
4.89 
0.51 
1.59 

18.43 
3.13 

41.56 
15.94 

16.40 
5.20 
2.50 
2.87 
5.86 

21.48 
17.16 

0.13 
1.17 

14.07 
99.27 119.41 
99.27 119.41 

0.0109 
0109TE.4I 

l(0)(b)Sabs,ep(b)mini1 

151.28 
446.96 
364.08 
194.40 

0.38 
11.16 
0.48 

17.21 

2.80 
302400! 

387 

1033 
1033 
1.64 
3.97 

240.23 
8.44 

196.06 
9.44 
5930 

-x.mssm 
11505.00 
11044.80 

539.00 
71.76 

415.28 
513.00 

675.00 
665.99 
26.52 

1501.501 
11431.00 

55.20J 
3844.34 

1708.28 
1708.28 

4.03 
139.82 
798.74 
279.17 

279.17 
1110.52 

202.58 

60.55 
1 3 2 8 . 0 0 — 

32.76 
738.44 
520.60 

1729.42 
329.73 

26.39J 
4.68| 

5336.81 

244.49 

2134.05 
1790 

1657.39 
170.19 

iffliBOBSIJiSSl l l l i l l l l l l IISHI^B 
932.38 

64.60fJUi!§l 
1550.58 4648 

4i8.6o!BillIiili 
4.46 

84.98 
277.11 
277.11 

1 

20.44 
409.76 

1148 
1148 

bold +-10% 
not bold +-20% 
— j y „ 

(g) 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

"d" 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

Geff = GI 

Gep 

1.0001-128 
1.000 Cs-134 
1.000 Cs-134r 

1.000 Ba-131 
1.000 Ba-139 

1.000 La-140 
1.000 Ce-141 
1.000! Pr-142 
1.000 Nd-147 
1.000 Sm-15C-
1.000 Sn>15£ 
1.000 Eu-152 
1.000 Eu-152( 
1.000 Gd-153 
1.000 Gd-159 
1.000 Tb-160 
1.000 Dy-165 

1.000 Dy-165r 
1.000 Ho-166 

1.000! Er-171 
1.000 Tm-170 
1.000 Yb-169 
1.000 Yb-175 
1.000 Lu-177 
1.000 Hf-179n 
1.000! Hf-181 
1.000 Ta-182 
1.000 W-187 

1.000 Re-186 
1.000 Re-188 
1.000 Os-191 
1.000 Os-193 
1.000 lr-192 
1.000 Au-199 
1.000 Au-198 
1.000 Hg-197 
1.000 Hg-203 
1.000 Pa-233 
1.000! U-239 
1.000 Np-239 

h*1/(f+Q0) + Gep 
initial 1st iter. 

Geff 

0.966 
0.953 
0.943 
0.963 
0.915 • 
0.916 
0.914 
0.918 
0.921 
0.952 

0.930 
0.915 
0.915 
0.913 
0.970 
0.958 
0.910 

0.910 
0.946 

0.930 
0.951 
0.928 
0.911 
0.916 
0.955 
0.922 
0.972 
0.952 
0.952 
0.929' 
0.920 
0.921 
0.931 
0.958 
0.953 

0.910 
0.915 
0.949 
0.988 
0.988 

Gep 

1.000 

1.000 
1.000 
1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000! 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

1.0001 
1.0001 
1.000 
1.000 
1.000 

*Q0/(f+C ») 
2nd iter. 

Geff 

0.963 
0.949 
0.944 

0.960 
0.907 
0.909 
0.907 
0.911 
0.914 
0.948 
0.924 
0.907 
0.907 
0.906 
0.967 
0.954 
0.902 

0.902 
0.941 

0.924 
0.947 
0.922 
0.904 
0.909 
0.951 
0.916 
0.970 
0.948 
0.948 
0.923 
0.913 
0.915 
0.925 
0.955 
0.949 

"1902"! 
0.907! 
0.944 
0.987 
0.987 

Gep 

1.000 
1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

1.000 
1.000 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000: 
1.000' 
1.000 
1.000 
1.000 
1.000 
1.000 

1.000 
1.000 
1.000' 
"1.000 
1.000' 
1.000 
1.000 
1.000 
1.000 

""T666T 
1.0001 
1.000 
1.000 
1.000 

3rd iter. 

Geff 

0.963" 
0.949 
0.943 

0.960, 
0.907' 

0.908 • 
0.906 
0.910 
0.913 
0.947 
0.923 
0.907 
0.907; 
0.905 
0.967 
0.954 
0.901 
0.902 
0.941 
0.924 
0.946 
0.922 
0.903 
0.908 
0.951 
0.915 
0.970 
0.947 

0.948 
0.923 
0.912 
0.914 
0.925 
0.955 
0.949 

6.901 
0.906 
0.944 
0.987 
0.987 

Gep Geff 

1.00010.963' 

1.000 0.949 
1.000! 0.943 

1.000 0.960 
1.000! 0.906 

1.000 0.908 
1.000 0.906 
1.000! 0.910 
1.000! 0.913 
1.000! 0.947 

1.000 0.923 
1.000! 0.907 

1.000 0.906 
1.000 0905 
1.0000.967 
1.000 0.954 
1.000 0.901 
1.000! 0.901 
1.000! 0.941 

1.000 0.924 
i.000 0.946 
1.000 0.922 
1.000 0.903 
1.000 0.908 
1.000 0.951 
1.000 0.915" 

1.000 0.970 
1.000! 0.947 

1.000 0.948 
1.000 0.923 
1.000! 0.912 
1.000 0.914 
1.000! 0.925 
1.000! 0.955 
1.000 0.949 

1.000 0.901 
1.000! 0.906 
1.000 0.944 
1.000 0.987 
1.000! 0.987 
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B.3 Page 2 of the spreadsheet: Neutron Self-Shielding Calculation for Cylindrical 
Samples 

Neutron self-shielding calculations for cylindrical samples 
Enter sample dimensions and mass in BIO, Bl 1 and B13 
Enter element concentrations in B i 8 to B118 

, See self-shielding factors in G21 to 1119 

^Sample 

jr(mm) 
d (mm) 
h (mm) 
volume (cm3 
mass (g) 

10 
12.7 

0.997458 
1 

Irradiation Channel 

f = 
alpha = 
kth = 
kep = 

site i 
:Unc. 

18 02 
0.051 0.005 
0.94 0 08 

1 0 

[site 1 j site 6 i site 8 

18 
0.051 
0.94 

i l 

48.6 s 
0.0161 
0.86! 

1! 

52.7 
0.018 
0.94 

1 

jElement fConc.fppm)! 

Li 

B 
N 
H 

Na 

M g 

AI 

Si 

I' 
S 
CI 
K 
C,i 
Sc 

Ti 
V 
Ci 

Mn 
He 
Co 
Ni 

Cu 

Z n _ 

9ll ,__ 

iAs 

iSe"" 

I Br 

_ _ 

01 _ _ . 

11?" 

nX" 
6 
bl" 
of 

"ZI?T 
' oj_ 

0| 

"of 
6{" 

j)l" 
.Z....M.. 

°! 
gr 

— o f -
oT 
of 

Nuclide 

Li 
B 
N 
F-20 
Na-24 
Mg-27 
Al-28 
Si-31 
Si-Al-29 
P-32 
S-37 
Cl-38 
K-42 
Ca-49 
Sc-46 
Sc-46m 

Ti-51 
V-52 
Cr-51 
Mn-56 
Fe-59 

:Co-60 
Ni-65 
Ni-Co-58 
Cu-64 
Cu-66 
Zn-65 
Zn-69m 
Ga-71 
Ge-75 
Ge-75m 
Ge-77 
As-76 
Se-75 
Se-77m 
Br-80 
Br-82 
Rb-86 
Rb-86m 

jRb-88 

Gamma 
Energy Cone 

1633 
1368 
1014^ 
1779 
1266 
1273 

beta 
3102 
1642 
1525 
3084 
889 

142 
320 

1434 
320 

1811 
1099 
1173 
1482 
811 
511 

1039 
1115 
439 
834 
264 
139 
264 
559 
265 
162 
616 
554 

1077 
556 

1836^ 

(ppm) Gth 

0 
1000 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0, 
0 
0! 

0.9521413 
0 9521413 
0.9521413 
0 9521413 
0 9521413 

1 
0 9521413 
0 9521413 
0 9521413 
0 9521413 
0 9521413 
0 9521413 
0.9521413 
09521413 
0 9521413 
0 9521413 
0 9521413 
0 9521413 
0 9521413 
0 9521413 

1 
0 9521413 
0 9521413 
09521413 
0 9521413 
0 9521413 
0 9521413 
0 9521413 
0 9521413 
0 9521413 
0 9521413 
0 9521413 
09521413 
0 9521413 
0.9521413 
0 9521413 
0.9521413 

Gep iGeff 

Li 
,B 
N 

1| 09599392'F-20 
1 i 0 9539502 Na-24 
11 0.9543276.Mg-27 
1 0 9544604 Al-28 
1 0 9557628 Si-31 
1 1 Si-Al-29 
1 0 9535193 P-32 
1 0 9557005 S-37 
1 0 9543904 Cl-38 
1 0 9553109 K-42 
1 0 9534511 Ca-49 
1 0 9533463'Sc-46 

1 0 9538868 Sc-46m 
1 0 9543886 Ti-51 
1 0 9538186 V-52 
1 0 9537414 Cr-51 
1 0 9554047 Mn-56 
1 0 9551683 Fe-59 
1 0 9579217,Co-60 
1 0 9543135' Ni-65 
1 1 Ni-Co-58 
1 0.9557698 Cu-64 
1 0 9554774 Cu-66 
1 0 958324 Zn-65 
1 0 9613457 Zn-69m 
i | 6.9675634jGa-71 
lj 0.9573417|Ge-75 
1 0 9597885 Ge-75m 
1 0 9758829, Ge-77 
1 0 9766838 As-76 
1 0 972018 Se-75 
1 0 954637 Se-77m 
1 0 9738561 Br-80 
1 0 9798938 Br-82 
1 0 9777525 Rb-86 
1 0 9746098 Rb-86m 
1| 0.9826422|Rb-88 
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Element Conc.(ppm) Nuclide Energy Conc.(ppm) Gth Gep Geff 

Sr 

Y 
Zr 

Nb 
Mo 

Ru 

Rh 

Pel 

Ag 

Cd 
In 
Sn 
Sb 

Te 
1 
Cs 

Ba 

La 
Ce 
Pr 
Nd 
Sm 

Eu 

Gd 

Tb 
Dy 

Ho 
Er 
Tm 
Yb 

Lu 
Hf 

Ta 
W 
Re 

Os 

Ir 

0 

0 
0 

0 
0 

0 

0 

0 
0 

0 
0 
0 
0 

0 
100 

0 

0 

0 
0 
0 
0 
0 

0 

0 

0 
0 

0 
0 
0 
0 

0 
0 

0 
0 
0 

0 

0 

Sr-85 
Sr-87m 
Y-90m 
Zr-95 
Zr-97 
Nb-94m 
Mo-99 
Mo-101 
Ru-103 
Ru-105 
Rh-104m 
Rh-104m 
Pd-109 
Ag-108 
Ag-110 
Ag-llOm 
Cd-115 
In-116m 
Sn-125m 
Sb-122 
Sb-124 
Te-I-131 
1-128 
Cs-134 
Cs-134m 
Ba-131 
Ba-139 
La-140 
Ce-141 

Pr-142 
Nd-147 
Sm-153 
Sm-155 
Eu-152 
Eu-152m 
Gd-153 
Gd-159 
Tb-160 
Dy-165 
Dy-165m 
Ho-166 
Er-171 
Tm-170 
Yb-169 
Yb-175 
Lu-177 
Ht-179m 
Hf-181 
Ta-182 
W-187 
Re-186 
Re-188 
Os-191 
Os-193 
Ir-192 

514 
388 
479 
724 
743 
871 
141 
307 
497 
724 

51 
558 

88 
633 
658 
884 
336 

1097 
332 
564 

1691 
364 
443 
796 
127 
496 
166 

1596 
145 

1576 
91 

103 
246 

1408 
842 
103 
363 
299 

95 
108 
81 

308 
84 

177 
396 
208 
214 
482 

1221 
686 
137 
155 
129 
460 
316 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

100 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 
0.95214128 

1 0.97612154 Sr-85 
1 0.96355638 Sr-87m 
1 0.96796587 Y-90m 
1 0.96696903 Zr-95 
1 0.99758347 Zr-97 
1 0.96926939 Nb-94m 
1 0.99022569 Mo-99 
1 0.98047661 Mo-101 
1 0.96194336 Ru-103 
1 0.97569195 Ru-105 
1 0.96549542 Rh-I04m 
1 0.96549542 Rh-104m 
1 0.98265902 Pd-109 
1 0.95982021 Ag-108 
1 0.97742942 Ag-110 
1 0.9759804 Ag-110m 
1 0.98767183 Cd-115 
1 0.97553367 ln-116m 
1 0.99071622 Sn-125m 
1 0.9845064 Sb-122 
1 0.98346593 Sb-124 
1 0.95802686 Te-I-131 

0.99910348 0.98147036 1-128 
1 0.97531557 Cs-134 
1 0.9728778 Cs-134m 
1 0.98075152 Ba-131 
1 0.95513612 Ba-139 
1 0.95576562 La-140 
1 0.95488372 Ce-141 
1 0.95672889 Pr-142 
1 0.95834864 Nd-147 
1 0.97469901 Sm-153 
1 0.96326021 Sm-155 
1 0.95525234 Eu-152 
1 0.95514051 Eu-152m 
1 0.95431642 Gd-153 
1 0.984157 Gd-159 
1 0.97774875 Tb-160 
1 0.95253267 Dy-165 
1 0.95273859 Dy-165m 
1 0.9716291 Ho-166 
1 0.96346186 Er-171 
1 0.97427692 Tm-170 
1 0.96236756 Yb-169 
1 0.95345073 Yb-175 
1 0.95603225 Lu-177 
1 0.97635442 Hf-179m 
1 0.95922457 Hf-181 
1 0.98553655 Ta-182 
1 0.97462163 W-187 
1 0.97495658 Re-186 
1 0.96287233 Re-188 
1 0.9579814 Os-191 
1 0.95871665 Os-193 
1 0.96389619 Ir-192 
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Element Mat SigmaTh Mass (g) M Sth / Mat 

Li 
B 
N 
F 
Na 
Mg 
Al 
Si 

P 
S 
CI 
K 
Ca 
Sc 

Ti 
V 
Cr 
Mn 
Fe 
Co 
Ni 

Cu 

Zn 

Ga 
Ge 

As 
Se 

Br 

Rb 

Sr 

Y 
Zr 

Nb 
Mo 

Ru 

Rh 

Pd 
Ag 

Cd 
In 

6.941 
10.811 
14.007 
18.998 
22.99 

24.305 
26.982 
28.085 

30.974 
32.065 
35.453 
39.098 
40.078 
44.956 

47.867 
50.941 
51.996 
54.938 
55.845 
58.933 
58.693 

63.546 

65.409 

69.723 
72.64 

74.922 
78.96 

79.904 

85.468 

87.62 

88.906 
91.224 

92.906 
95.94 

101.07 

102.905 

106.42 
107.868 

112.411 
114.818 

71 
760 
1.89 

0.009 
0.53 

0.066 

0.23 
0.168 

0.17 
0.52 
33.5 

2.1 
0.43 
27.2 

6.1 
5 

3.1 
13.3 
2.56 
37.2 

4.5 

3.8 

1.1 

2.9 
2.2 

4.2 
11.7 

6.8 

0.39 

1.2 

1.28 
0.184 

1.15 
2.5 

2.6 

145 

7 
63 

2520 
194 

Li 
B 
N 
F-20 
Na-24 
Mg-27 

Al-28 
Si-31 
Si-Al-29 

1633 
1368 
1014 

1779 
1266 
1273 

P-32 beta 
S-37 
Cl-38 
K-42 
Ca-49 
Sc-46 
Sc-46m 
Ti-51 
V-52 
Cr-51 
Mn-56 
Fe-59 
Co-60 
Ni-65 
Ni-Co-58 
Cu-64 
Cu-66 
Zn-65 
Zn-69m 
Ga-71 
Ge-75 
Ge-75m 
Ge-77 
As-76 
Se-75 
Se-77m 
Br-80 
Br-82 
Rb-86 
Rb-86m 
Rb-88 
Sr-85 
Sr-87m 
Y-90m 
Zr-95 
Zr-97 
Nb-94m 
Mo-99 
Mo-101 
Ru-103 
Ru-105 
Rh-104m 
Rh-104m 
Pd-109 
Ag-108 
Ag-110 
Ag-llOm 
Cd-115 
In-116m 

3102 
1642 
1525 
3084 

889 
142 
320 

1434 
320 

1811 
1099 
1173 
1482 
811 
511 

1039 
1115 
439 
834 
264 
139 
264 
559 
265 
162 
616 
554 

1077 
556 

1836 
514 
388 
479 
724 
743 
871 
141 
307 
497 
724 

51 
558 

88 
633 
658 
884 
336 

1097 

0 
1000 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0.001 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0.0702988 

0 
0 F-20 
0 Na-24 
0 Mg-27 
0 Al-28 
0 Si-31 

Si-Al-29 
0 P-32 
0 S-37 
0 Cl-38 
0 K-42 
0 Ca-49 
0 Sc-46 

Sc-46m 
0 Ti-51 
0 V-52 
0 Cr-51 
0 Mn-56 
0 Fe-59 
0 Co-60 
0 Ni-65 

Ni-Co-58 
0 Cu-64 

Cu-66 
0 Zn-65 

Zn-69m 
0 Ga-71 
0 Ge-75 

Ge-75 m 
Ge-77 

0 As-76 
0 Se-75 

Se-77m 
0 Br-80 

Br-82 
0 Rb-86 

Rb-86m 
Rb-88 

0 Sr-85 
Sr-87m 

0 Y-90m 
0 Zr-95 

Zr-97 
0 Nb-94m 
0 Mo-99 

Mo-101 
0 Ru-103 

Ru-105 
0 Rh-104m 

Rh-104m 
0 Pd-109 
0 Ag-108 

Ag-110 
Ag-llOm 

0 Cd-115 
0 In-116m 
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