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RESUME 

Ce memoire traite de la modelisation et la commande robuste d'helicoptere. 

L'obtention d'un modele mathematique d'helicoptere avec un rotor principal 

articule, base sur les mouvements de battement et de trainee de la pale dus a une 

combinaison des charges aerodynamiques, de l'inertie et de la masse de la pale est 

Pobjet de la modelisation. Le modele du rotor principal permet la modelisation de 

differentes combinaisons dans l'ordre des articulations et accorde deux decalages 

entre les charnieres. Les forces aerodynamiques sont calculees par la theorie de 

l'element de pale. Aucune analyse d'aero&asticite n'est employee et les pales sont 

supposees rigides. Les effets de deflexion vers le bas des filets d'ecoulement d'air 

et la vitesse induite sont expliques par le modele dynamique de Pitt et Peters. Les 

conditions d'equilibre et la linearisation sont decrites et peuvent etre appliques a un 

sous-ensemble du modele dans un repere mobile ou fixe. Deux modeles 

mathematiques d'helicoptere differents sont utilises, un pour representer la 

dynamique lineaire et l'autre pour la dynamique non lineaire. Le modele lineaire 

analytique a ete developpe a partir d'un modele non lineaire de la cellule comme 

un corps rigide, le rotor principal, le rotor de queue et d'un modele atmosphe>ique, 

et tient compte de la dynamique de battement verticale des pales et de la vitesse 

induite. Le modele lineaire analytique possede 22 etats, dont neuf pour decrire la 

vitesse lineaire, angulaire et l'attitude de la cellule, neuf pour presenter la 

dynamique de battement verticale des pales et de la vitesse induite et quatre pour 

introduire le circuit d'actionnement des commandes. La configuration 

d'helicoptere utilisee dans cette recherche est celle du UH-60A (Black Hawk) de 

Sikorsky, un giravion de transport, possedant un rotor articule de quatre pales. 

Ce memoire developpe la synthese de la loi de commande robuste. La synthese de 

la commande robuste par l'approche H est basee sur la sensibilite mixte ou celle 



Vll 

de "loop-shaping", et les developpements theoriques recents qui permettent la 

conception d'un compensateur robuste statique ou dynamique. A cet effet, la 

formulation du probleme HM est discutee de maniere detaill^e, differentes 

procedures pour calculer les compensateurs et/ou pre-compensateurs sont 

developpees, et la fonction cout est modifiee pour inclure des caracteristiques de la 

matrice de transfert entre les references et les sorties commandees. Quatre 

controleurs de vol ont ete confus pour le modele lineaire d'helicoptere UH-60A 

(Black Hawk): deux par l'approche H0 basee sur la sensibilite mixte, un par la 

methode de "loop-shaping" et un par la methode d'optimisation lineaire 

quadratique et H . 
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ABSTRACT 

This memory deals with the modeling and the robust control of helicopter. 

Obtaining a mathematical model of helicopter system with a single main rotor that 

includes rigid, hinge restrained rotor blades with flap, and lag, degrees of freedom 

due to a combination of the aerodynamic, inertia, and mass loads is the object of 

modeling part. The model allows several hinge sequences and two offsets in the 

hinges. The aerodynamic loads are calculated by the blade element method. No 

analysis of aero elasticity is employed and the blades are supposed to be rigid. The 

download and the inflow follow the Pitt/Peters' dynamic model. Model trim and 

linearization are described and can be applied to a subset of the model in the 

rotating or no rotating coordinate frame. Two different mathematical models of 

helicopter are used one for linear dynamics and other for nonlinear dynamics. The 

inflow effects are accounted for by using a three state nonlinear dynamic inflow 

model. The analytical linear model was developed on the nonlinear model 

including the fuselage rigid body, the main rotor with flapping dynamics, the tail 

rotor and an atmospheric model. The analytical linear model has 22 states, 

including nine states of the rigid body, nine states of flapping and inflow dynamics, 

and four for the swashplate actuator dynamics. The configuration of helicopter 

used in this research is UH-60A (Black Hawk) of Sikorsky, transport helicopter 

with four blades articulated rotor. 

In this memory, a robust control system design procedure is developed. The design 

procedure is based on Em mixed sensitivity formulation or loop-shaping approach, 

and recent theoretical developments that enable the synthesis of a robust controller 

with fixed or dynamic structure. To this end, Ha, form is discussed, a procedure 

for computing pre and/or post compensators is developed, and the H^ cost 

function is modified to include specifications on the transfer matrix from 
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references to controlled outputs. Fore flight controllers were designed for the 

linear model of UH-60A (Black Hawk) helicopter: two on H„ mixed sensitivity 

approach, one on loop-shaping method and one on linear quadratic regulator and 

H„ approach. 
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1 

INTRODUCTION 

Les travaux presentes dans ce memoire sont axes sur l'assistance au pilotage, la 

modelisation et la commande robuste d'helicoptere. Le systeme etudie est l'helicoptere 

UH-60A (Black Hawk) de Sikorsky pour un mode de vol au voisinage du vol 

stationnaire. 

Etant un systeme aerodynamique tres complexe et instable, presentant un couplage 

important entre les variables dans le plan longitudinal et le plan lateral, le pilotage 

d'helicoptere est une tache difficile, voire impossible en absence de systeme de stabilite. 

Dans ce contexte, le but principal de la recherche presentee dans ce memoire est de 

montrer l'application de differentes strategies de commande robuste, selon l'information 

sur le type des incertitudes et des perturbations et que ces methodes nous ont permis de 

garantir la stabilite du systeme etudie avec une marge de stabilite pour toutes 

incertitudes admissibles, entre autre, d'assurer certaine flexibilite entre performance et 

robustesse. 

Le premier pas pour atteindre le but d'une commande d'helicoptere concerne l'obtention 

d'un modele du systeme qui implique la connaissance de plusieurs aspects lies a son 

comportement tels que la dynamique des rotors, des stabilisateurs, ainsi que certains 

phenomenes physiques et aerodynamiques tels que les effets des tourbillons, la 

distribution non uniforme de la vitesse induite, le decrochage et la perte de portance qui, 

pour les objectifs de cette recherche, ne sont pas considered dans ce travail. II est 

difficile d'obtenir avec une grande precision les equations de mouvement d'un 

helicoptere car il s'agit d'un systeme ayant un nombre de degres de liberte important, 

qui 6volue dans un milieu tres perturbe. Au niveau theorique, les difficultes principales 

de conception de la loi de commande pour les helicopteres ont leur origine dans les non 

linearites et les couplages, et dans le fait que les entrees ne sont ni des forces ni des 
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couples, mais des emplacements de certains elements qui entrainent la dynamique de vol 

a travers l'aerodynamique et les mobilites des pales des rotors. 

Ce memoire s'articule autour de 4 chapitres : 

• Le chapitre 1 introduit la problematique de la recherche et est une revue de 

litterature, positionnant la commande robuste parmi les differentes approches 

pour la synthese de la loi de commande d'helicoptere. 

• Sous certaines hypotheses, dans le chapitre 2 est developpe le modele 

mathematique d'helicoptere avec un rotor principal articule, base sur les 

mouvements de battement, de trainee de la pale et de la dynamique de la 

vitesse induite. Les pales sont supposees rigides. Pour un cas general de vol en 

3 dimensions, les expressions des forces et les couples aerodynamiques du 

rotor principal et du rotor de queue sont calculees par la theorie de 1'element de 

pale. Finalement, le modele est linearise autour d'un point de fonctionnement 

pour obtenir une representation du systeme dans l'espace d'etat. 

• Le chapitre 3 met en application la theorie de la synthese de la commande 

robuste par l'approche H r , ainsi que la regulation par l'approche lineaire 

quadratique pour obtenir une loi de commande d'helicoptere. 

• Pour les differentes strategies de commande etudiees, le chapitre 4 presente les 

r6sultats obtenus dans le domaine frequentiel, puis les reponses temporelles du 

systeme boucle a differentes entrees caracteristiques. A la fin une comparaison 

entre les differents compensateurs utilises est faite. 

La conclusion expose les contributions du memoire a l'avancement des connaissances et 

a Papplication de la commande robuste pour la synthese de la loi de commande 

d'helicoptere. Elle introduit egalement les perspectives et les nouvelles voies de 

recherche qui decoulent de cette etude. 
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CHAPITRE 1 : PROBLEMATIQUE ET RECHERCHE 

BIBLIOGRAPHIQUE 

1.1 Introduction 

Ce chapitre a pour objectif d'introduire la problematique de ma recherche tout en 

deTinissant la gamme de sous themes et concepts de base qui forment 1'ensemble de 

1'helicoptere. La recherche bibliographique est presentee en deux parties : celle qui 

concerne la modelisation d'helicoptere suivie de la stabilisation et de la commande 

robuste d'helicoptere. Avant d'aborder la modelisation et la commande d'helicoptere, 

nous voulons introduire quatre volets substantiels pour le developpement de la 

dynamique de vol. Ceux-ci sont resumes par : 

- La configuration d'helicoptere; 

- La mission et I'enveloppe operationnelle de vol; 

- La dynamique et les modes de vol; 

- L'interface helicoptere - pilote. 

Les helicopteres sont concus pour decoller et atterrir sur une tres courte distance ou de 

facons verticales et constituent une classe specifique de «VTOL» (Vertical Take-Off and 

Landing). Cependant, les helicopteres sont des giravions, dont la sustentation, la 

propulsion et la commande de l'attitude sont le resultat de Taction du rotor principal, 

forme d'un moyeu central, solidaire d'un arbre tournant et de pales, entrainees en 

rotation par ce moyeu. Ainsi les forces et les moments necessaires pour generer la 

position, l'attitude et la vitesse de l'aeronef dans l'espace 3D sont produits par un seul 

dispositif (rotor principal en coordination avec le rotor de queue) au lieu d'etre crees par 

une aile fixe et par un propulseur separe. La figure LI montre l'aspect exterieur d'un 

helicoptere UH-60A, ainsi que certains composants et systemes specifiques choisis par 
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le constructeur. Le rotor principal est actionne par un moteur a pistons ou un 

turbomoteur. Pour une puissance, exigee du moteur, superieure a 400-500 [kW], le 

turbomoteur est prefere a cause du meilleur rapport puissance/poids. Par contre, le 

moteur a pistons possede un meilleur rendement energetique [Wat04], En tant que 

systeme mecanique, operant dans des conditions meteorologiques variees (enveloppe 

operationnelle de vol), l'helicoptere doit travailler suivant le cahier des charges de son 

utilisateur (pilote), definissant un ensemble de vitesse relative a la vitesse de Pair, 

d'altitude, du taux de montee ou de descente, de Tangle lateral de translation, du taux de 

rotation, du facteur de sustentation, ainsi que plusieurs parametres limitant revolution 

du systeme [Pad96]. Cependant il existe un cahier des charges (mission), definie a 

l'avance comme un ensemble de manoeuvres dans l'enveloppe operationnelle de vol, 

c'est-a-dire une evolution du systeme suivant certaines specifications, agissant de 

maniere automatique aux perturbations externes. Les concepts de mission, de manoeuvre, 

de mode de vol, d'enveloppe de vol, ainsi que les specifications d'AGARD (Advisory 

Group for Aeronautical Research and Development), de MIL, d'ADS (Aeronautical 

Design Standard) sur les caracteristiques (parametres) de vol et la commande de vol 

d'helicoptere (en principe, militaire) sont definis dans quelques articles de confidence 

plus ou moins accrue (ex. ADS-33E-PRF Aeronautical Design Standard Performance 

Specification, Handling Qualities Requirements for Military Rotorcraft, United States 

Army Aviation and Missile Command, 2000; MIL-F9490D General Specification for 

Flight Control Systems - Design Installation and Test of Piloted Aircraft, United States 

Air Force, 1975; etc.). 

1.2 Configurations d'helicopteres 

Les rotors sur un helicoptere peuvent etre configures de plusieurs manieres. La 

configuration la plus usuelle est la combinaison d'un rotor principal et d'un rotor de 

queue (jfigureJLi)-
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Figure 1,1 Helicoptere UH-60A (Black Hawk) de Sikorsky 

Etant donne que l'helicoptere presente un systeme ferme, la conservation du moment 

cinetique sur l'axe du rotor principale se traduit par une reaction de la cellule au sens 

oppose a la rotation des pales (jfigyreJL2). Pour annuler cette reaction ou pour orienter 

l'helicoptere sur l'axe de lacet, le rotor de queue g£nere une pouss6e n6cessaire. 
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Figure 1.2 Orientation des forces et des couples d'un helicoptere 

Le rotor principal des helicopteres produits aux Etats-Unis, au Canada et en Angleterre 

tourne dans le sens antihoraire (vue du haut), tandis que ceux en France, en Allemagne 

et en Russie tourne dans le sens horaire. Cette particularite influence la notion de la pale 

avancant et reculant, ainsi que l'orientation des couples gyroscopiques. 

La configuration de rotors en tandem (longitudinale ou cote a cote) est utilisee 

principalement avec les helicopteres de transport (fi^ureXl). En raison de la rotation 

opposee, le moment cinetique de chaque rotor transmis a la cellule est neutralise. La 

construction du systeme de commande est beaucoup plus compliquee, comparee a celle 

de l'helicoptere compose d'un rotor principal et d'un rotor de queue. La configuration de 

rotors cote a cote n'a jamais ete" tres populaire. Cette conception a ete choisie pour le plus 

grand helicoptere jamais construit-le Mil Mi-12 (V-12). Les helicopteres de Frank 

Piasecki (commercialises par Boeing Vertol) utilisent egalement les rotors en tandem 

longitudinal. Normalement, il existe un recouvrement significatif des ecoulements, 

produits par les rotors en tandem, causant une perte de puissance de 8-10% fwwwOl]. 
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La grandeur de cette perte est similaire a la puissance necessaire, developpe par le rotor 

de queue, pour equilibrer la reaction de la cellule. 

Figure 1.3 Helicoptere avec rotors en tandem (Boeing Vertol CH-47 Chinook) et 

cote a cote Mil Mi-12 (V-12) 

L'helicoptere aux rotors engrenant (en anglais synchropter) est un systeme avec deux 

rotors (figurej^fl) qui engrenent l'un dans l'autre, tout comme une roue dentee. Comme 

l'helicoptere avec rotors en tandem, cette configuration n'a pas besoin d'un rotor anti-

couple. Ce systeme a ete developpe au debut de la giraviation, mais est tombe dans la 

desuetude. 

HHMS 

Figure 1.4 Helicoptere avec rotors engrenant (Kantan HH-43) 

La derniere configuration (figure 1,5) est l'helicoptere aux rotors coaxiaux. Les deux 

rotors tournent dans des directions opposees. Selon le rotor qui produit le plus de 

portance, l'helicoptere tournera a gauche ou a droite, en raison du couple des resultantes 

aerodynamiques par rapport au centre de masse du giravion. Les h^licopteres avec cette 

configuration ne peuvent pas atteindre une vitesse de croisiere elevee, parce que la force 

de trainee est trop grande. Cette configuration a ete choisie principalement par le 

constructeur russe Kamov. 
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Figure 1,5 Helicoptere aux rotors coaxiaux (Kamov Ka-25) 

L'Aeronautique est un ensemble de connaissances, essentiellement divisee en deux 

branches : l'Aviation et la Giraviation. Toutes deux utilisent pour la sustentation des 

engins volants, dont la resultante aerodynamique est appliquee sur une surface profilee, 

convenablement disposee et inclinee, appelee voilure. II existe un appareil qui combine 

les surfaces sustentateurs d'un avion a aile fixe et de la voilure tournante de 

l'helicoptere. Un modele de convertible (en anglais tilt rotor) (PVTOL ou Planar 

Vertical Take Off and Landing) est montre a la iigure_L6. Le rotor est d'abord place au-

dessus de l'appareil, comme dans un helicoptere, pour assurer le decollage et le vol a 

basse vitesse. Puis il bascule de 90° pour devenir un propulseur permettant de voler 

jusqu'a 500-600 [Km/h]. Cette conversion du rotor ne s'effectue que lorsque les ailes, 

aux extremites desquelles sont installes les rotors, sont capables de creer une portance 

egale au poids de l'appareil. 

Figure 1,6 Modele de convertible a demi-aile basculante ERICA d'Agusta 

Note : Pour tout ce qui suit, c'est la configuration de la figureJJL qui sera considered. 
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1.3 Modes de vol et conditions d'equilibre 

II est convenable de ddcrire les taches de vol dans une hierarchie suivante : une mission 

est composee d'une serie de manoeuvres; les manoeuvres sont normalement accomplies 

par differents modes de vol. Les principaux modes de vol sont resumes a la iigureil-

Figure 1,7 Principaux modes de vol 

Dans la litterature traitant des aspects aerodynamiques des helicopteres, les modes de vol 

sont analyses en termes de conditions particulieres d'equilibre (en anglais trim 

conditions), de stabilite et de reponse. De maniere generale les conditions particulieres 

d'equilibre correspondent aux modes de vol, pour lesquels les quatre commandes sont 

fixes (trois pour le rotor principal et une pour le rotor anti-couple). La vitesse de rotation 

du rotor principal n'est pas directement commanded par le pilote : elle fait partie des 

variables asservies. 

D'apres les differentes directions du vol d'helicoptere, nous pouvons classifier les 

principals conditions particulieres d'equilibre en definissant les cas suivants : 
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Vol stationnaire (en anglais hover). Ayant une vitesse de translation pratiquement nulle, 

l'helicoptere garde une hauteur constante par rapport au sol. 

Vol vertical. Est defini lorsque l'helicoptere se deplace dans le plan vertical ou fait un 

vol suivant l'axe, z, (JlgurjeJLl). 

Vol rectiligne et horizontal. Est defini lorsque l'helicoptere se deplace dans le plan 

horizontal. Le vol suivant l'axe, x, est connu comme vol en palier (en anglais 

level flight). 

Virage et vol en spiral. Developpe dans l'espace, le vol est realise suivant une ou 

plusieurs rotations selon les axes , x, y, et/ou, z . 

Autorotation. L'autorotation est un mode de vol ou on permet au rotor principal de 

tourner plus rapidement que le moteur qui Pentraine. Tous les helicopteres sont 

equipes d'une unite de roulement libre entre le moteur et le rotor principal, 

placee habituellement dans la transmission. En cas de panne du moteur, 

survenant a une hauteur suffisante, la mise en autorotation du rotor principal 

permet au pilote de descendre et d'atterrir sans dommage, grace a la 

transformation de Penergie potentiel en energie cinetique de rotation. 

Le comportement dynamique d'un helicoptere en vol est le resultat de Taction et de 

P interaction de differents sous systemes : rotors, empennage, stabilisateurs, fuselage, 

moteur(s), commande, etc. 

Pour un helicoptere, vu comme un corps rigide, les etats du fuselage (Pattitude et les 

vitesses lineaires et angulaires) sont definis de facon unique par la trajectoire de vol et 

les conditions d'equilibre. Considerons tout d'abord un systeme regit par les equations 

differentielles non-lineaires et non-stationnaires de la forme : 

^ = f(x,u,/) , x(0) = x0 (1,1) 
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ou, f, est une fonction non-lineaire des forces et des moments de nature aerodynamique, 

structurelle, inertielle et gravitationnelle, definie dans l'espace JR." xR" xM+ -»R", avec 

l'etat du systeme x(/)eIR", les conditions initiales x0 et le vecteur des variables de 

commande u (/) e M'" . Les etats du fuselage sont represented par le vecteur 

xB=luh,vb,wb,cl)b,@b,
KVb,pb,qb,rb] avec ub, vh, wb les vitesses en palier, laterale et 

verticale, respectivement, pb, qh, rb les vitesses angulaires de roulis, de tangage et de 

lacet, respectivement et l'attitude (angles d'Euler) <bb, ©b,
 x¥b, definie par les angles 

de roulis, de tangage et de lacet respectivement. Le vecteur de la commande est d6fini 

par u = [&0,&hS,0iC,8T]l] oil les variables 0O et 6m sont le pas collectif du rotor 

principal et du rotor de queue respectivement, <9r et 01S sont le pas cyclique lateral et 

longitudinal respectivement. Trois equations cinematiques entre les vitesses angulaires 

et les angles d'Euler augmentent les equations du mouvement. Les vitesses lineaires et 

angulaires sont referees a un repere fixe dans le centre de gravite du fuselage et les 

angles d'Euler definissent l'orientation de ce repere par rapport au repere inertiel. On dit 

que (x,, u(.) est un point d'equilibre (ou point singulier) du systeme (JLjj s'il satisfait la 

contrainte: 

0 = / (x„u e , / ) (1.2) 

Les concepts de base et les notions essentielles relatives a la stabilite s'appliquent au 

fx = x +S\, 
comportement des solutions (ou trajectoire) autour du point d'equilibre < 

[u = ue + Su. 

Avec les quatre entrees de commande seulement quatre etats d'equilibre peuvent etre 

calcules; les autres sont definis par des equations additionnelles a partir de (1.1). Afin 

d'alleger l'expose, nous supposerons que le systeme est stationnaire et lineaire, c'est-a-

dire regit par l'equation lineaire (1.3): 

8x-ASx = BSu(t) + F(t) a.3) 



12 

ou la matrice de stabilite et la matrice de la commande sont definies par les derives 

partielles /4= —- , 2?= —- et Fit) represente l'effet des perturbations 

atmospheriques (externes) et les incertitudes internes. 

Ainsi la notion de stabilite fait intervenir le comportement de l'helicoptere dans les 

conditions particulieres d'equilibre face aux perturbations et aux incertitudes. Le vol est 

stable lorsqu'en reponse a une perturbation, les variables d'etat du systeme convergent 

vers l'etat d'equilibre. En pratique l'instabilite signifiera simplement que les variables 

sortent largement du domaine souhaite" et ne tendent pas a y revenir de maniere stable, 

mais au contraire s'en eloignent au moins periodiquement. La condition initiale est 

connue sous le nom de la stabilite statique pour distinguer les caracteristiques a long 

terme, qui sont definies par la stabilite dynamique. La quantification de la stabilite 

d'helicoptere est developpee a partir de la modelisation theorique et empirique de 

l'interaction des forces et des couples aerodynamiques. Cette propri&e physique est 

mathematiquement liee avec les concepts des petites variations, de la linearisation, des 

derives de stabilite et de la commande, des modes naturels, des fonctions de transfert, 

des matrices de transfert et des reponses dynamiques aux entrees de commande et de 

perturbation. Etant un systeme dynamique non lineaire presentant des couplages entre 

les variables d'etat, la reponse de l'helicoptere a une entree unidirectionnelle est 

generalement multidirectionnelle. Dans la litterature la reponse directe ou indirecte est 

parfois vue comme axiale (en anglais on-axis) ou couplee (en anglais off-axis). La 

presente recherche etudie les reponses directes et indirectes des etats du systeme aux 

entrees de commande, pour but de concevoir une commande robuste d'helicoptere. 

1.4 Interface pilote - helicoptere 

Ce volet de reference trace les limites psychologiques et physiques du pilote tres ou peu 

experimente en fonction de la conception, d'application ou toute decision d'ingenieur 

influencant la manceuvrabilitd ou le comportement de l'helicoptere face aux 
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perturbations externes. Le pilotage d'helicoptere en regime de vol aux instruments (en 

anglais instrument flight rules) s'avere difficile en absence de systeme d'augmentation 

de stabilite (en anglais stability augmentation system); de meme que la navigation et 

l'atterrissage de nuit sans le radiophare omnidirectionnel VHF (VHF omnirange ou 

VOR) et le systeme d'atterrissage aux instruments (en anglais Instrument Landing 

System ou ILS). Evidemment la charge de travail et le stress que le pilote doit gerer 

dependent crucialement de ses capacites disponibles. 

Le pilotage d'helicoptere peut etre affecte par trois facteurs : la manoeuvrability designe 

les qualites intrinseques d'un vehicule aerien (aussi terrestre ou naval) permettant de lui 

faire effectuer certains types de manoeuvres; la maniabilite (en anglais handling qualities) 

designe la plus ou moins bonne aptitude du vehicule a r^agir aux sollicitations de son 

pilote (ou conducteur) pour effectuer les manoeuvres desirees et enfin la reponse face 

aux perturbations externes (en anglais ride qualities) caracterise le comportement de 

Paeronef en reponse aux perturbations atmospheriques. Ainsi le pilotage tangible sans 

danger, dans une enveloppe de vol, etant Pobjectif principal de tout systeme de 

commande de vol, introduit les qualites ci-dessus comme une source logique d'objectifs 

fonctionnelles. 

Ces qualites de vol sont generalement considerees en premier lors des essais de vol d'un 

prototype [Tis96a"|. Cependant avec le developpement de la technologie de commande 

active (active control technology ou ACT1) et l'application (aux Etats-Unis) des normes 

ADS-33C [ADS-33C] et MIL-H-8501A [M1L-STD-1797A1, les specifications de ces 

qualites de vol sont respectees. 

1 La technologie de commande active (ACT) est une notion de la terminologie ae>onautique pour designer 
un a^ronef qui n'utilise pas un lien mdcanique direct entre les commandes dans le cockpit et les gouvernes. 
Un tel appareil inclut g6ne>alement des ordinateurs de vol qui modifient les entrees de commande en 
fonction de la reponse recherchee. En comparaison avec le terme commande de vol 61ectrique (en anglais 
fly-by-wire) ACT est un terme plus correct, car il n'implique pas obligatoirement la transmission par fil 
electrique. Certains ACT systemes utilisent par ex. des fibres optiques. 
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anglais equivalent system time delay) et retard de phase (en anglais bandwidth phase 

delay) si ces derniers sont larges. Dans [CH69] Cooper et Harper definissent la 

maniabilite sur une echelle de dix (figureJjT) qui est le critere de base pour toutes les 

specifications commerciales et militaires des qualites de vol. 

Finalement la norme MIL-STD-1797A fait la transition entre les qualites de vol 

classiques d'un aeronef (definie par la reponse frequentielle en mode de courte periode, 

mode de longue periode ou phugo'ides, etc) et la technologie de commande active. 

1.5 Moderation de la dynamique du rotor principal 

1.5.1 Composition d'un rotor 

Un rotor comprend essentiellement: 

- Un mat qui recoit en outre la puissance motrice, sur lequel est fixe un moyeu; 

- Deux ou plusieurs pales equidistantes ou disposees symetriquement; 

- Un moyeu assurant la liaison entre les pales et le mat qui les entraine en rotation. 

Les pales d'un rotor sont en principe assemblees sur le moyeu par l'intermediaire de 

"fusees". Le moyeu a son tour est relie directement a l'arbre ou mat du rotor. Ces 

fixations peuvent etre de type articulation ou encastrement. Mise en rotation, les pales 

peuvent etre assimilees a un profil d'aile. Chaque element du profil supporte une force 

aerodynamique elementaire de portance et de trainee de variation periodique. Le grand 

diametre du rotor, ainsi que l'allongement (en anglais aspect ratio) des pales, privileges 

pour le rendement aerodynamique, ont comme consequence le fait que les pales sont 

considerablement plus flexibles que les helices des avions. Ainsi le rotor devient une 

source de vibrations et des contraintes pour l'appareil tout entier, dues principalement a 

des defauts d'equilibrage et des dissymetries aerodynamiques induites par le vol de 

l'appareil. Le niveau de ces excitations parasites croit avec la vitesse de translation et 

limite le domaine de vol et les performances des giravions. Les progres technologiques 
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(nouveaux materiaux, pales a volets de fiiite, etc.) permettent de repousser ces limites, 

mais il semble egalement interessant de considerer la contribution de la commande a la 

resolution de ce type de probleme. 

Considerons une he lice a pas constant, sa mise en rotation donne naissance a une force 

parallele a son axe de rotation. Pour changer la direction de cette force, on peut soit 

incliner l'axe de rotation ou faire varier de maniere periodique le pas des pales de l'helice. 

C'est cette deuxieme solution qui est adoptee dans le cas des pales du rotor d'un 

helicoptere. La force aerodynamique resultante assure a la fois la sustentation et la 

propulsion de la cellule. 

D'une maniere generate, le principe de base des ailes, des rotors et des helices est qu'ils 

acc&erent une masse d'air et que la portance ou la poussee resultante est la reaction 

Newtonienne de cette acceleration (figure 1.9). 

Cependant, deux causes fondamentales sont a la source des forces et des moments 

aerodynamiques, que subit chaque pale au cours de son mouvement (comme bien sur 

chaque profil aerodynamique soumis a un ecoulement d'un fluide): 

- La distribution de la pression, s'exercant selon la normale sur la surface de la 

pale; 

- La distribution des efforts de frottement (contrainte de cisaillement) selon la 

tangente au profil de la pale. 

L'integration des distributions de la pression et des efforts de frottement sur la surface 

complete de chaque pale conduit a une resultante aerodynamique, proportionnelle au 

carre de la vitesse relative de la pale par rapport a Fair ambiant. Cette vitesse est la 

somme vectorielle de la vitesse de translation de l'helicoptere, la vitesse peripherique de 

rotation du rotor et de la vitesse induite par 1'acceleration de la masse d'air. 
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Figure 1.9 Le deuxieme principe de Newton et la creation de la portance [Wat041 

La capacite de portance, pour toute section de pale, est fonction de Tangle local 

d'attaque et de la pression dynamique locale. Definissons la position d'une pale dans le 

plan de rotation par Tangle d'azimut i//w, dont la position de reference (i//M - 0 ) par 

convention est definie dans la direction en aval. La figure 1.10 presente le cas de vol 

stationnaire pour lequel la variation de la vitesse radiale le long de Tenvergure de la pale 

est symetrique et radialement lin^aire avec une valeur nulle a Templanture et une valeur 

maximale Vn a Textremite. Comme la pression dynamique locale est proportionnelle a 

la densite d'air et au carre de la vitesse relative, les forces aerodynamiques sont 
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radialement symetriques et pour un angle d'attaque constant, la force de sustentation est 

proportionnelle au carre de la vitesse d'extremite Vtt = QMRM • 

y/M-270 

^ = 180 

A/,„=0,6 

Vw=90' 

V = Q r 
* up *iM'M 

Figure 1.10 Distribution de la vitesse peripherique lors d'un vol stationnaire 

Pourtant, lors d'un vol en palier a vitesse Uh figure Ml , la vitesse d'extremite Vu 

prend la forme fiMru +Uh sin((//A/), n'est plus symetrique et evidement est fonction de 

Tangle d'azimut y/M, en retrouvant sa valeur maximale sur la pale avancant (dans le 

vent relatif) et sa valeur minimale sur la pale reculant. La dissymetrie provoque une 

region de flux inverse dans laquelle la vitesse peripherique frappe le bord de fuite de la 

pale plutot que le bord d'attaque. En raison de la conception du moyeu (articulation de 

pales) et/ou du design de pales, la dissymetrie de la pression dynamique devient 

periodique, principalement avec la vitesse de rotation du rotor principal. En resume, les 

pales commencent a battre verticalement et dans le plan de rotation, en inclinant le cone 

virtuel de Pextremite de la pale. Cette tendance intrinseque peut etre compensee par le 

pilote par le biais d'un ajustement du pas cyclique. La distribution de la vitesse relative, 

de la vitesse induite, de la vitesse de battement et de Tangle de pas alterent Tangle 

d'attaque pour toute section de pale et en consequence les forces aerodynamiques. Le 

rotor trouve Tequilibre en battement et en traine lorsque le changement de Tangle local 

d'attaque est suffisant pour compenser la dissymetrie de la pression dynamique locale. 
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Figure LJ 1 Distribution de la vitesse peripherique Iors d'un vol en palier. 

La description de la dynamique de la pale en pr6sence d'elasticite structurelle necessite 

un modele plus complexe, qui par contre ne sera pas developpe dans cette recherche. A 

notre connaissance, les recherches les plus approfondies sur la dynamique des pales sont 

fournies par Johnson [Joh80], Bramwell [Bra76] et Bielawa [Bie06]. 

La complexity aerodynamique du vol d'helicoptere evolue d'avantage lorsque la trainee 

de pression, le decollement de la couche d'air, ainsi que les tourbillons et les interactions 

du sillage du rotor principal avec le rotor de queue, l'empennage et la cellule sont pris en 

consideration. Cependant pour des vitesses de vol a taux d'avancement ju = Uk 

^MrM 

inferieur a 0,3, la theorie prouve [Bra76] que ces effets physiques peuvent etre ignores 

sans degradation significative du modele de commande. 

1.5.2 Mobilites de la pale 

Les trois mobilites de la pale en consequence sont : 

- L'angle de battement, (3 , (en anglais flapping) (figure 1.12) produit une 

rotation de la pale par rapport a un axe dans le plan de rotation, perpendiculaire 
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au longeron de pale. Par convention le signe positif de Tangle est dans le sens de 

la force de sustentation. 

L'angle de trainee, £, , (en anglais lead-lag) (figure 1.12) produit une rotation 

de la pale par rapport a un axe normal au plan de rotation et parallele a l'axe du 

mat. Par convention le signe positif de l'angle de trainee est dans la direction 

opposee a la rotation du mat. 

Pas cyclique, 0, (en anglais feathering) (figure...J....I.2) produit un mouvement de 

rotation de la pale par rapport a 1'articulation ou le roulement qui est parallele a 

l'axe du longeron. Cette variation cyclique de l'angle de pas des pales du rotor 

en fonction de l'angle d'azimut est positive pour une rotation de tangage en 

cabre (en anglais nose-up). 

charniere de trainee 
charniere de i 

* biellette de pas 

charniere de battement 

Figure 1.12 Mobilites de la pale 

La dynamique quasi-statique de la pale, introduit ci-dessus, assume que le mouvement 

de la pale est periodique en fonction de l'azimut, y/M, et peut etre developpee en serie de 

Fourier. 

P{t) = Po + Pic C 0 S ( W ) + Ps s i n 0 /V) + Pic co s (2w) + /4s..sin(2t//Mt) + ... (1 A) 

b (*) = Co + i'u: cos(v/M/) + <1S sin(i//Mt) + £2C cos(2y/Mt) + C2S sin(2i//Mt) + ... (1.5) 

0(t) = 0O + 6K. cos(y/j) + 0IS sin(tf/Mt) + 62C cos(2(//w/) + 02S sin (2i/sj) +... (1.6) 
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K " A, 

Figure 1.13 Battement verticaux des pales [Mejt03] 

De maniere mathematique, la force elementaire de portance pour une section de la pale 

est fonction de l'azimut, i//M , et de l'ordre du developpement en serie de Fourier (figure 

Mi)-

1 cycle 

t cycle 

Figure 1,14 La portance pour une section de la pale en fonction de l'azimut (t//M) et 

de l'ordre du developpement en serie de Fourier (a) de second ordre; (b) de 

troisieme ordre [Wat041 
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En negligeant les termes correspondants aux harmoniques d'ordre superieur ou egal a 

deux, car ils ont des effets assez faibles sur les forces et les couples aerodynamiques 

|"Joh80], nous pouvons approximer la dynamique de battement (1.4) par l'expression 

(I.?): 

/?(/) = J30 + J3IC cos ( w ) + As sin (iyj) (1.7) 

ou J3Q est Tangle de conicite, /?1C et fliS sont respectivement les angles longitudinal et 

lateral de battement. Ils sont definis par rapport au plan perpendiculaire au mat. D'une 

maniere simpliste, nous pouvons assumer que Pamplitude de (3XC est determinee par le 

couple de tangage que la force aerodynamique resultante du rotor principal doit produire 

autour du centre de gravite de Taeronef pour compenser Taction des couples de tangage 

des forces aerodynamique produites par Tempennage, les stabilisateurs, la cellule et le 

rotor anti-couple. L'amplitude de /3iS est celle qui doit equilibrer Thelicoptere sous 

Taction des couples de roulis. 

II a ete montre dans [Joh80] que le mouvement de battement, defini dans le plan de 

Textremite de la pale (en anglais tip-path plane) et celui de pas cyclique (feathering), 

defini dans le plan de la commande sont equivalents dans le sens qu'une variation d'un 

degre en /? produit les memes effets aerodynamiques qu'une variation d'un degre en 6. 

Le mouvement de battement vertical peut done etre elimine completement ou 

partiellement par la commande. 

Du point de vue de la dynamique, ce type de mouvement trouve une position d'equilibre 

lorsque les forces aerodynamiques, inertielles, centrifuges et gyroscopiques sont en 

equilibre. Johnson a montre dans [Joh80], que quand cela se produit, Tinclinaison de la 

force de sustentation TMR peut s'exprimer en fonction d'un angle maximal de battement 



23 

vertical, note J3 . Pour une condition normale de battement, l'orientation de Tm est 

donnee par (1.8) 

^sm 2 ( / ? l c ) s in 2 (/?,,,) 

sin (plc) cos (fis) 

-cos(^ ( :)s in(^ s) 

cos(/?lc)cos(/ils) 

(1.8) 

La description mathematique ou la simulation de la dynamique de vol d'helicoptere 

implique la connaissance de plusieurs aspects lies a son comportement, tels que 

1'aerodynamique des rotors, du fuselage, des stabilisateurs et du train d'atterrissage, 

ainsi que d'autres aspects mecaniques, aerodynamique et structurels qui font intervenir 

1'influence des leviers de commandes et les perturbations atmospheriques sur la reponse 

de l'helicoptere. Le probleme de modelisation est tres complexe et le comportement 

aerodynamique de l'helicoptere est generalement limite par les effets locaux de 

decrochage des pales. Au niveau theorique, les difficultes principales de la modelisation 

de la dynamique de vol d'un helicoptere proviennent de la dynamique des pales 

relativement a Pair et a l'ecoulement d'air a travers eux. II est convenable de decrire les 

difterents degres de complexite du rotor en trois niveaux selon 1'application du modele 

(TaWeauJL). 

3 La condition normale de battement se presente lorsque la pale bat vers le haut du cot6 du nez et vers le 
bas du cote de la queue/?,r > 0 et lorsqu'elle bat vers le bas du cote avanfant et vers le haut du cote 

reculant /31S > 0. 
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Tableau I Niveau de complexity du modele mathematique du rotor [Pad961 

Aero-
dynamique 

Dynamique 

Applica­
tion 

Niveau 1 

Lin^aire de deux 
dimensions; 
dynamique de la 
vitesse induite evaluee 
localement; 
application de la 
theorie du disque 
sustentateur (en 
anglais momentum 
theory); integration 
analytique des charges 

Pales rigides; 
1) battements quasi 

statique 
2) battements des 

pales avec 3 DDL 
3) battements des 

pales avec 6 DDL et 
angle de trainee (en 
anglais lag) 

4) battements des 
pales avec 6 DDL, 
angle de trainee et 
torsion quasi 
statique des pales 

Analyse parametrique 
des qualitds de vol et 
de la performance; 
A l'interieur de 
l'enveloppe de vol; 
Commande en basse 
frequence 

Niveau 2 

Non lineaire, limited a 
trois dimensions; 
dynamique de la vitesse 
induite evaluee 
localement; application 
de la theorie du disque 
sustentateur {momentum 
theory); effets locaux de 
decrochage des pales; 
introduction du vortex; 
compressibilite irregu-
liere en deux 
dimensions; integration 
numerique des charges 

1) pales rigides et 
memes options qu'au 
niveau 1 

2) nombre limite des 
modes elastique des 
pales 

Analyse parametrique 
des qualites de vol et de 
la performance a la 
limite de l'enveloppe de 
vol; 
Bande passante plus 
large destinee au design 
des commandes de vol a 
gain eleve 

Niveau 3 

Non lin6aire; 
analyse complet du 
sillage; 
compressibilite 
irreguliere en deux 
dimensions; 
integration 
numerique des 
charges 

Representation 
structurelle detaillee 
par modes 
elastiques ou 
elements finis 

Conception du rotor 
Estimation des 
charges limites 
Analyse 
vibrationnelle 
Analyse de la 
stabilite du rotor 
A la limite de 
l'enveloppe de 
securite 



25 

Au niveau 1, le plus bas, Panalyse de la stabilite et de la commande est basee sur un 

modele derivatif de Phelicoptere comme un corps rigide a 6 DDL, pour lequel la 

dynamique des pales est quasi-statique, c'est-a-dire Tangle de battement et Tangle de 

trainee sont supposes instantanes, dont ses valeurs sont determinees a partir des 

deplacements, des vitesses et des accelerations de la cellule. Bien que le modele quasi-

statique soit physiquement adapte a differentes applications d'analyse et commande en 

basse frequence et dynamique de vol a longs termes, les caracteristiques 

aerodynamiques du rotor principal, le couplage entre le rotor et le fuselage, ainsi que les 

charges aerodynamiques ne peuvent pas etre saisies sans un modele complexe 

d'ecoulement d'air a travers le rotor. 

1.5.3 Modele d'ecoulement d'air a travers le rotor 

Pour arriver a une prevision theorique correcte des charges aerodynamiques et des 

caracteristiques d'un helicoptere, on doit necessairement partir de la conception d'un 

modele d'ecoulement d'air a travers le rotor principal, ainsi qu'une base de donnees 

experimentales et une bonne connaissance des phenomenes aerodynamiques qui se 

rapportent a cet ecoulement. Chen, dans [Che89], resume les modeles dynamiques (non-

uniformes) de la vitesse induite dans leur evolution historique. Visant comme 

application T analyse de la dynamique de vol et la conception de commande de vol, 

T etude compare le modele harmonique simple de premier ordre avec les modeles 

empiriques plus sophistiques, developp6s au cours des annees. Tres complet, le rapport 

percoit Taspect statique et dynamique de la vitesse induite pour un vol d'helicoptere a 

basse ou a grande vitesse, ainsi que les differents modes de vol. La correlation entre 

certains resultats experimentaux, obtenus lors d'essais hors de Teffet de sol, indique que 

le modele harmonique de premier ordre de Pitt/Peters approxime le mieux la dynamique 

de la vitesse induite pour tous les modes de vol. Dans des conditions pres du sol, Chen 

suggere Putilisation des tableaux, pareilles aux representations du sillage non-contraint 

de Heyson/Karzoff et Castle/De Leeuw. 
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1.5.4 Les principales commandes 

La fonction principale des quatre entrees du pilote est la suivante : 

- Le levier cyclique permet deux types d'action (avant/arriere et gauche/droite). 

En effet, Taction sur le levier cyclique provoque une inclinaison du plateau 

cyclique par rapport a son plan de rotation initial (figure 1.15 (a)), done une 

variation sinusoi'dale de l'inclinaison de chaque pale dans le plan de rotation et 

par consequence une inclinaison de la force aerodynamique de portance. Cette 

inclinaison produit aussi des couples de tangage et roulis (une modification de 

l'assiette de la machine) comme resultat d'un bras de levier de la ligne d'action 

de la force aerodynamique resultante par rapport au centre de gravite de 

Phelicoptere. L'orientation du plateau cyclique determine le plan de la 

commande par rapport au plan normal du mat, grace aux entrees de commande 

pas cyclique longitudinal et pas cyclique lateral. 

- Le levier collectif permet d'agir en meme temps sur Tangle d'incidence de 

toutes les pales du rotor dans le plan de la commande. L'entree de commande 

correspondante est le pas collectif du rotor principal (figure 1.15 (a)). 

- Le palonnier permet d'agir en meme temps sur Tangle d'incidence de toutes les 

pales du rotor anti-couple. L'entree de commande correspondante est le pas 

collectif du rotor de queue. 

Quand le pilote actionne le levier cyclique "en avant", le plateau cyclique s'incline de la 

meme facon et comme la biellette de pas (figure 1.15 (b)) est dephasee a 90 [deg], la 

pale voit son angle de pas diminuer sur le tribord. Etant un systeme aerodynamique de 

deuxieme ordre dominant, excite par une frequence proche (et inferieure) a la frequence 

de resonance, le rotor repond a une entree de commande avec un dephasage 

"legerement" inferieur a 90 [deg] , la procedure ci-dessus inclinera la force de 

sustentation sur le nez de Tappareil, produisant un couple de tangage autour de centre de 

gravite de Thelicoptere. La procedure de commande en roulis est similaire. Dans les 
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deux cas, l'inclinaison du plateau cyclique produit l'inclinaison de la portance dans la 

meme direction. Ainsi, d'une maniere descriptive, une manoeuvre de base du pilotage 

consiste a orienter Pextremite virtuelle de la pale par rapport au mat, de facon qu'en 

regime etabli, la force aerodynamique resultante produira un changement de l'assiette du 

giravion comme resultat d'un bras de levier de la ligne d'action de la force par rapport 

au centre de gravite de Phelicoptere. 

Cependant, la reponse initiale du rotor aux actions du levier cyclique et du levier 

collectif est un mouvement conique et basculeur complexe du longeron de pales. 

Comme nous l'avons introduit, le mouvement est occasionne par la difference de la 

pression dynamique sur les profils des pales avancant et reculant. 

K;t3* ••>.; v'si«(-

.«- -' .1*1 ' ,ij ' 

igure 1.15 (a) Plateau cyclique et commandes du rotor principal [Pad961 
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Figure 1.15 (b) Plateau cyclique et commandes du rotor principal articule [Joh80] 

1.5.5 Modeles d'helicopteres et codes existants 

Les modeles mathematiques d'helicoptere sont developpes pour une variete de cahier de 

charge, comprenant les evaluations des qualites de vol, la formation de pilotes 

(simulateurs de vol), la simulation et la mise a niveau de certaines composantes de la 

machine, ainsi que des enquetes sur les accidents. Differentes approches sont 

actuellement utilisees pour developper les modeles mathematiques d'helicopteres. Ces 

approches peuvent etre generalisees en trois categories : 1) modeles analytiques; 2) 

modeles d'identifications; 3) combinaison de 1) et 2). Les modeles analytiques se 

fondent sur des theories dynamiques et aerodynamiques, produisant des modeles en 

temps reel et hors temps reel. Ces modeles sont en principe non-lineaires et permettent 

d'extraire des modeles lineaires pour differents points de fonctionnement, demandent 

une connaissance approfondie sur la dynamique de vol d'helicoptere et sont 
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difficilement ajustables pour faire correspondre les donnees des essais de vol avec le 

modele. Nous pouvons noter certains exemples : [Joh77"|, [Rea78], [TTDC82], [Tak90] 

et pour les modeles d'helicopteres de taille reduite [Met03]. Nous constatons, que dans 

la plupart des travaux, la modelisation de la dynamique de vol d'helicoptere est basee 

sur le niveau 1 de complexity du modele du rotor. Cependant, un certain nombre de 

modeles et codes logiciels, developpes pour les besoins des principaux producteurs 

Sikorsky Aircraft Corporation, Bell Helicopter Textron, Boeing Rotorcraft et Eurocopter, 

sont disponibles et peuvent etre telecharger, via Internet. Parmi eux, le modele GENeral 

HELicopter, formule initialement par Howlett [How81] pour l'helicoptere UH-60 de 

Sikorsky Aircraft Corporation et corrige par Balin [Bal87"|, et Kim et al. dans [KCT93a] 

et [KCT93b] est utilise par Kaplita et al. [KDDW89] pour l'helicoptere avec rotors en 

tandem CH-53 de Boeing Rotorcraft. Le modele et le code logiciel COMRAD 

(Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics), 

developpe par Wayne Johnson, permet d'autre part d'effectuer une analyse 

aerodynamique d'un helicoptere existant ou de faire le design d'un nouveau prototype, 

incluant sa dynamique structurelle. 

Les modeles d'identification se servent des donnees experimentales, rassemblees par des 

essais de vol ou de tunnel aerodynamique et presentent les caracteristiques 

aerodynamiques d'un giravion existant. De tels modeles sont generalement utilises 

pendant les essais d'un prototype, pour optimiser les systemes de commande de vol. 

Pourtant, les modeles d'identification n'essayent pas de traiter les composants de 

l'helicoptere individuellement et leur domaine de confiance est generalement limite pour 

la configuration et les conditions particulieres de vol. 

En 2007 sont parues deux ouvrages qui resument les techniques de modelisation et 

simulation [DreOJJ, et d'identification de systeme d'helicoptere [TR07], 



30 

1.6 Strategies de com mantle d'helicoptere 

En commen9ant notre recherche, nous avions l'idee que la commande robuste 

d'helicoptere, dans son contexte didactique etait loin d'etre originale. Durant les dix 

dernieres annees, plusieurs travaux ont ete realises et plusieurs articles ont ete publies. 

La competition internationale de robotique aerienne [www02] rassemble chaque annee 

une quinzaine d'universit6s pour executer une mission de detection, de reconnaissance et 

d'apprehension d'objets dans un site de « catastrophe naturelle » a partir d'helicopteres 

autonomes. Notons les groupes de recherches des universites aux Etats-Unis - Carnegie 

Mellon, Georgia Institute of Technology, University of California de Barkeley, 

Massachusetts Institute of Technology, les universites au Canada - DeVry Institute of 

Technologie, Ecole de Technologie Superieure, University of Calgary, University of 

Waterloo, et les universites europeennes Technischen Universitat de Berlin, PInstitut de 

Zurich, etc, qui travaillent depuis quelques annees sur le design et la commande 

automatique d'helicopteres autonomes de petite taille. Le design et les techniques de 

commande automatique d'helicopteres ont evolue et c'est grace a l'envie de chercher et 

d'innover. 

1.6.1 Strategies de commande par retour lineaire 

Les systemes de commande des nouveaux helicopteres doivent repondre aux 

specifications de plus en plus exigeantes que posent les cahiers des charges militaires et 

civils. Les recherches et le developpement des vehicules aeriennes non-pilotes (en 

anglais Rotorcraft Unmanned Aerial Vehicles ou RUAV) permettant de construire des 

helicopteres teleguidees et autonomes realisant des manoeuvres rapides avec agilite et 

precision. En consequence, les systemes de commande des nouveaux helicopteres 

devraient fournir une bande passante4 plus large, une rapidite" amelioree tant en montee 

4 D'une faijon g6n£rale, la bande passante est l'ensemble des frequences pour lesquelles la reponse d'un 

appareil est superieure a un minimum generalement de —3 1 dB I. 
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qu'en descente, moins de couplage entre les variables et un meilleur rejet des 

perturbations que les systemes de commande existants. Generalement, les contraintes sur 

la conception des lois de commande de vol pour le giravion sont plus restrictives que 

ceux pour l'avion a aile fixe. La dynamique des pales dans le plan verticale (en anglais 

out-of-plane) ou battement et dans le plan de rotation (en anglais in-plane) ou trainee 

produit un certain nombre de modes dynamiques additionnels, qui generalement sont 

couples aux modes rigides du fuselage et de la commande. Le phenomene de resonance 

d'air se produit quand un des modes devient legerement amorti ou meme instable a 

cause de ce couplage. Dans [DKM99] Dryfoos et al. montrent la dependance de cette 

resonance avec la bande passante. Pour stabiliser le systeme Takahashi [Tak94] et Horn 

[Hor02] appliquent l'approche classique par retour d'etat. Ceci permet d'obtenir de 

bonnes marges de stabilite, mais exige la connaissance totale de l'etat et egalement des 

capteurs, mesurant la dynamique des pales. Une autre alternative est proposee par Ingle 

et Celi [IC92]. Elle consiste a utiliser des compensateurs dynamiques bases sur un 

modele d'ordre eleve et precis de la dynamique couplee fuselage/rotor. Cette approche 

tend a avoir comme consequence des controleurs complexes d'ordre eleve. La 

conception de lois de commande lineaires pour controler le mouvement d'un helicoptere 

pose de nombreux problemes car les modeles lineaires simplifies sont generalement loin 

de la realite du systeme physique. Le modele dynamique complet d'un helicoptere 

engendre en realite des incertitudes qui constituent l'effet des perturbations sur la 

dynamique de vol et par consequent, rend la synthese des lois de commande lineaires 

plus difficile. Les lois de commande doivent done presenter des proprietes de robustesse 

et de performance. A cet effet, des lois de commande robustes multi-entrees/multi-

sorties (MIMO) ont ete proposees par Rozak et Ray [RR97]. Apres avoir fait une 

linearisation numerique pour les vitesses de vol en palier de 80 et 140 noeuds pour un 

modele de UH-60, Rozak et Ray ont developpe des lois de commande basees sur 

l'analyse Hx pour des modeles d'etat de 24 et 26 variables. Kienitz et al. presentent 

dans [KWM20J deux methodes pour stabiliser le systeme : 
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- Stabilisation HM 

- Stabilisation quadratique 

Une comparaison des deux methodes montre que la variation de Tangle de pas dans le 

temps est completement bruitee lorsque la methode de stabilisation H^ est utilisee. La 

methode quadratique est done preferable dans ce cas. Shim et al. dans [SHHS89] ont 

utilise la theorie de la commande fj, -Synthese afin de controler un helicoptere en mode 

de vol stationnaire. En effet, en supposant que toutes les incertitudes peuvent etre 

regroupees dans un seul terme note A , alors le probleme de la commande est defini 

comme suit : trouver un controleur K.{s), stabilisant le systeme de maniere interne, tel 

que pour tout A , le systeme bouclee soit stable. 

1.6.2 Strategies de commande par retour d'etat non-lineaire 

La linearisation entree-sortie (voir [Isi95]) a ete appliquee dans bon nombre de domaines 

pour resoudre les problemes de poursuite de sortie, concernant les systemes dynamiques 

non lineaires, incluant les problemes de decollage et d'atterrissage (VTOL) des robots 

aeriens [HSM92J. Cependant, il y a une large classe de systemes physiques qui ne 

satisfont pas les conditions restrictives de la linearisation entree-sortie. En effet, la 

linearisation entree-sortie ne peut etre appliquee qu'aux systemes non-lineaires a 

dephasage minimal [Isi95], Si le systeme est a dephasage non-minimal (ou non-minimal 

de phase), e'est-a-dire qu'il engendre dans sa dynamique des zeros instables, l'application 

directe de la linearisation entree-sortie n'est pas possible |"I.si95]. Due a la presence de la 

dynamique des zeros instables dans la matrice de transfert du modele dynamique de 

l'helicoptere, ce dernier est considere comme un systeme non lineaire a dephasage non-

minimal. En effet, pour contourner le probleme, Koo et Sastry [KS99], par exemple, en 

se basant sur le travail de Hauser et al. [HSM92], ont propose une commande 

d'helicoptere par linearisation entree-sortie approximative, en ignorant les termes de 

couplage entre la dynamique de roulis (tangage) et la dynamique laterale (longitudinale). 



33 

Le systeme qui en resulte est un systeme reduit (approxime) sans la dynamique des zeros 

instables. Dans ce cas, le systeme dit «approximativement a dephasage minimal)) n'est 

pas reellement un systeme a dephasage minimal. En se basant sur cette linearisation 

approximative, une loi de commande pour la poursuite de trajectoires a ete proposee, 

ainsi qu'une deuxieme loi de commande, basee sur la theorie des systemes uniformes. 

En utilisant le merae modele dynamique propose par Koo et Sastry [KS99] d'autres 

recherches ont ete realisees. Dans, [M.HD99], Mahony et al. proposent une loi de 

commande stabilisante pour le vol stationnaire a la base de la methode directe de 

Lyapunov. Pourtant Frazzoli et al. proposent dans [FDFQO] une poursuite de trajectoire 

basee sur les techniques robustes du "backstepping". 

D'autres auteurs, comme Sira-Ramirez et al. dans [S-RZA94], appliquent une approche 

basee sur le mode de glissement pour stabiliser un helicoptere en mode de vol vertical. 

Kaloust et al. [KHQ97], quant a eux, ont repris le modele propose dans [S-RZA94], et y 

ont propose une loi de la commande basee sur la methode directe de Lyapunov pour 

commander un helicoptere a deux degres de liberte. 

1.6.3 Strategies de commande par logique flou 

La strategic de commande par logique flou est "facile" a implementer parce qu'elle n'a 

aucun besoin d'un modele de systeme, mais les controleurs sont difficiles a ajuster 

[Jan07]. Souvent ils sont utilises dans la commande des systemes non lineaires et des 

systemes ou il est difficile de determiner les parametres. L'inconvenient dans 

l'ajustement du controleur peut etre contourne en ajoutant un module de logique floue a 

un controleur lineaire, en lui accordant une certaine caracteristique non lineaire par le 

biais de l'approche "teste et erreur". Ceci pourrait etre, par exemple, un controleur 

robuste qui doit etre ameliore" pour lui donner une meilleure performance. 

1.6.4 Strategies de commande par systeme de commutation 

Dans [HTLWR05] le systeme de commande propose a une architecture hierarchique a 

deux niveaux. Le niveau inferieur est concu en utilisant une approche aleatoire. En 
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tolerant certains niveaux de risques dans de differentes conditions de vol, le systeme de 

commande peut choisir de privilegier la stabilite robuste ou la performance nominale. Le 

controleur superviseur de niveau superieur surveille la reaction du systeme pour un 

comportement anormal qui pourrait mener a l'instabilite ou la degradation de la 

performance. Le controleur de surveillance peut alors commuter entre les controleurs 

robustes avec differents niveaux de risques et la performance. 

Etant donne un ensemble de points, definis comme etats du systeme lineaire (position, 

vitesse et acceleration), la planification de la commutation consiste a interpoler ces 

points en respectant certaines contraintes additives generalement sur le lissage de la 

trajectoire. Les points, utilises en tant que contraintes faibles, permettent un compromis 

entre la precision de poursuite et le lissage de trajectoire. 

1.6.5 Strategies de commande par 1'approche Ho, 

L'approche Hw et la technique de "loop-shaping" sont appliquees au cours des quinze 

dernieres annees dans un vaste domaine de recherche, notamment en a6ronautique. Une 

etude detaillee de la litterature montre, que les controleurs, concus par la methode 

d'optimisation Hm, sont les seuls a etre teste en vol pilote. Une loi de commande par 

l'approche H,y et la technique de "loop-shaping" avec systeme de commutation pour la 

dynamique longitudinal de DERA5 avion experimental Harrier a ete developpee par 

Hyde [Hyd95], En 1988, Yue et Postlethwaite [YP90] demontrent les avantages de la 

methode d'optimisation Hm pour la synthese d'un compensateur robuste a pleine 

autorite de 18 etats pour la commande de vol d'helicoptere. Walker et Postlethwaite 

dans [WP96] et Smerlas et al. dans rSPWSHHGB98l appliquent la methode 

d'optimisation Ha. pour la synthese d'un compensateur robuste a deux degres de libertes 

5 QinetiQ est le nom actuel de DERA (Defence Evaluation and Research Agency) du Royaume Uni. 
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et testent la loi de commande respectivement sur l'helicoptere de combat Westland Lynx 

et sur Phelicoptere Bell 205 du Conseil National de Recherches Canada. Mentions aussi 

les recherches et testes pilotes sur DERA avion experimental Harrier de Papageorigiou 

et Glover [PG00] et Bates et al. [BGPB00]. Toutes ces recherches ont ete concues en 

respectant les specifications d'AGARD (Advisory Group for Aeronautical Research and 

Development), de MIL-F9490D (General Specification for Flight Control Systems -

Design Installation and Test of Piloted Aircraft) et d' ADS-33 (Aeronautical Design 

Standard) et leurs resultats satisfaisant renforcent l'argument que l'approche H, et la 

technique de loop- shaping pourront en effet etre largement appliquer dans l'industrie 

aeronautique pour la synthese de loi de commande robuste. 

1.7 Conclusions sur la recherche bibliographique 

D'apres la recherche preliminaire sur la problematique et les travaux presentes ci-dessus, 

nous rapportons ce qui suit: 

- La modelisation et la simulation lors de la phase de la conception d'un nouveau 

aeronef sont necessaires pour tester les caracteristiques dans une enveloppe 

operationnelle de vol et trouver les limites des differents modes de vol, ce qui 

reduit le temps et les couts de developpement, et certainement limite la 

possibility de perte accidentelle du pilote ou de la machine. Quelle que soit 

l'approche adoptee, le modele, n'etant qu'une representation approchee de la 

realite physique, dissimule certains phenomenes qui peuvent avoir, dans 

certaines conditions de fonctionnement, un effet non-negligeable. Parmi ces 

phenomenes, on peut citer ceux qui induisent les variations parametriques, ceux 

correspondant aux dynamiques d'ordre eleve et bien notamment l'impact des 

perturbations atmospherique sur la stabilite du systeme commande. En 

conclusion, ces phenomenes doivent etre pris en compte lors du processus de 

modelisation. 
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- Concernant 1'etude des problemes de la stability d'helicoptere, la plupart des 

travaux se limitent aux modeles d'helicopteres tres simplifies, localisant les 

performances des lois de commande sur un ensemble tres restreint de conditions 

de vol. 

- La theorie de stabilite et de commande de vol vise principalement a trouver les 

facteurs impliques dans la conception des qualites de vol et en general a faire une 

evaluation precise de la reponse d'un aeronef aux entrees de commande et aux 

facteurs de perturbations. Etant donne" que le rotor principal fournit la plus 

grande contribution a toute la stabilite de l'helicoptere et sa dynamique 

(principalement de battement) la synthese d'une loi de commande robuste et 

performante d'helicoptere n'est pas possible sans la modelisation detaillee du 

rotor principal. 

- La methode d'optimisation Hm et la methode d'optimisation lineaire quadratique 

sont les seuls a etre teste en vol pilote. Ces methodes de stabilisation de la 

dynamique de vol d'helicoptere sont des methodes appropriees et nous voulons 

les exploiter. 

1.8 Objectifs 

L'etude detaillee de la stabilite et de la commande d'helicoptere est une question 

complexe qui est au dela des objectifs de cette recherche. Par consequent, une approche 

plus simple pourra etre adoptee, se servant de plusieurs simplifications usuelles : la 

vitesse du rotor demeure constante; la pale du rotor est rigide en torsion; la dynamique 

de trainee est ignoree; Tangle de battement est suppose petit et le mouvement de 

battement vertical des pales, ainsi que Tangle de pas sont approximes avec les 

harmoniques de premier ordre; la distribution axiale (le long de l'envergure) de la vitesse 

induite est uniforme; la poussee du rotor est une fonction lineaire d'incidence locale de la 

pale et la force de resistance (trainee) est une fonction quadratique du coefficient de 

portance; les pertes de portance a Textremite et a Templanture de la pale sont ignorees; 
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la region d'ecoulement inverse est ignoree; dans les conditions de vol d'equilibre, la 

dynamique perturbee du rotor est le resultat d'une serie de perturbations du taux 

d'avancement, de la vitesse angulaire, de Pacceleration angulaire et de Pacceleration 

verticale du repere moyeu, etc. 

Ainsi, les principaux objectifs de cette recherche sont: 

- D'appliquer la methode d'optimisation H„ et la methode d'optimisation lineaire 

quadratique et HOT pour la synthese des compensateurs stabilisant la dynamique 

de vol du modele lin6aire d'helicoptere autour du point d'equilibre. 

- Dans le cas ou on dispose de variables de decision mesurables, d'elaborer une 

structure de commande qui stabilise le systeme en boucle fermee. 

- En presence des perturbations a energie finie, qui peuvent affecter le systeme, de 

concevoir une loi de commande qui permet d'une part d'assurer la stability du 

systeme en boucle fermee et d'autre part de minimiser l'effet de ces 

perturbations sur le comportement du systeme. 

- Lorsque les contraintes sur la loi de commande sont exigees, de trouver une 

procedure stabilisante, qui assure que les signaux de commande et les erreurs ne 

depassent pas une certaine limite caracterisant la saturation possible pour les 

actionneurs. 

- Dans le cas ou le systeme est sujet a des incertitudes inconnues, mais bornees en 

normes, de trouver les conditions qui assure la stabilite robuste du systeme. 

Cette recherche de modelisation et de commande robuste d'helicoptere va donner lieu a 

l'application de differentes techniques de commande moderne et au developpement de 

differents algorithmes, qui serviront a l'assistance au pilotage d'helicoptere. 
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CHAPITRE 2 : MODELE MATHEMATIQUE 

2.1 Introduction 

Ce chapitre a pour objectif de developper un modele mathematique d'helicoptere avec un 

rotor principal articule, base sur les mouvements de battement et de trainee de la pale 

dus a une combinaison des charges aerodynamiques, de l'inertie et de la masse de la pale. 

Le modele comporte quatre modules : les equations du mouvement de la cellule comme 

corps rigide, le modele du rotor principal, le modele du rotor de queue et le modele 

atmospherique. Le modele du rotor principal permet la modelisation de differentes 

combinaisons dans l'ordre des articulations et accorde deux decalages entre les 

charnieres. Les forces aerodynamiques sont calculees par la theorie de l'element de pale. 

Aucune analyse d'aeroelasticite n'est employee et les pales sont supposees rigides. Les 

effets de deflexion vers le bas des filets d'ecoulement d'air et la vitesse induite sont 

expliques par le modele dynamique de Pitt et Peters [PP8JJ. Les conditions d'equilibre et 

la linearisation sont decrites et peuvent etre appliques a un sous-ensemble du modele 

dans un repere mobile ou fixe. Dans 1'annexe D sont donnes trois scripts : le premier 

permet de calculer la dynamique de battement et de trainee pour un rotor articule, le 

deuxieme permet de calculer la dynamique du battement vertical des pales et 1'equation 

dynamique de l'extremite de la pale et le troisieme permet de calculer du modele 

atmospherique. Les deux premiers scripts utilisent le logiciel MAPLE, tandis que le 

troisieme utilise le logiciel MATLAB. 

2.2 Incertitudes parametres du modele 

Etant donne que les parametres caracteristiques d'helicoptere varient generalement selon 

la mission et l'equipement additionnel, nous avons modelise les variations des 

parametres caracteristiques de Phelicoptere UH-60A (Black Hawk) de Sikorsky, qui est 
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l'objet de notre etude, en utilisant les donnees du constructeur (tableau 2) sur les valeurs 

maximales et minimales de ces parametres. Ainsi defmies, ces dernieres sont percues 

comme incertitudes parametriques. 

Tableau 2 Sommaire des variations des patametres caracteristiques [HowSll 

cmmnm 
Design Mission - Troops 

Aeromedlcol Mission 

Atrial Recovery Mission 

Extended Range Mission 

Saslc Structural GestgrwFwd, 

8as1c Structural Design-Aft 

Haxi«um Alternate S4-fwd 

Maximum Alternate Stf-Aft 

weiaff... 

16000.9 

15479.3 

202SO.O 

19193,7 

16330.9 

16330,9 

20250.0 

20250.0 

CENTER Of 
GRAVITY ' 

mmm 
ML 
388.0 

359.0 

369.6 

352. S 

345,7 

360,2 

347.1 

360,2 

JL 
251,0 

251.1 

234.7 

24S.1 

248.3 

249. S 

245.1 

kkln-M 

OF INERTIA 
2 

JUL 

6SSS0 

54058 

100200 

74633 

71141 

68263 

79632 

77898 

I. 

473626 

47538S 

502116 

502044 

500123 

4S5774 

514803 

402141 

442646 

441954 

430804 

461813 

465328 

43271S 

479012 

447627 

I 

18886 

19510 

22130 

28076 

34144 

182.68 

33860 

18408 

2.3 Definition des systemes de reference 

2.3.1 Systeme inertiel 

Pour ce memoire, la terre est considered comme systeme de reference inertiel; ainsi tout 

systeme en mouvement uniforme (par exemple le vent a vitesse constante) par rapport a 

la terre peut etre considere comme Newtonien. Cette simplification est basee sur le fait 

que les gyroscopes et les accelerometres sont incapables de detecter la vitesse ou 

1'acceleration angulaire de la terre. On denote ce referentiel geometrique et 

atmospherique par la lettre J . 
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2.3.2 Le systeme "corps", le systeme "giravion" et le repere du constructeur 

Le systeme B "corps" (en anglais body) est modelise comme corps rigide (giravion sans 

pales) dont le mouvement est defini par six equations differentielles. L'origine du 

systeme "corps" est posee dans le centre de masse d'helicoptere sans pales. Le 

mouvement de translation est defini par les composants et les d6rivees par rapport au 

temps du vecteur de la vitesse du centre de masse du giravion par rapport au repere 

inertiel rhl; le mouvement de rotation est defini par les composants et les derivees par 

rapport au temps du vecteur de la vitesse de rotation &ff.r . Trois equations 

cinematiques, mettant en relation les angles d'Euler et les composantes de la vitesse de 

rotation, completent le modele dynamique du systeme "corps". 

L'origine du systeme "giravion" est posee au centre de masse de Phelicoptere. La 

direction positive iA vise la partie avant du fuselage (en anglais nose), la direction 

positive j A vise le tribord (en anglais starboard), la direction positive kA vise vers le 

bas. Le triedre du repere "corps" est parallele au triedre du repere "giravion". 

La position de certains points specifiques de l'helicoptere est choisie par le constructeur 

dans le repere O et est deTinie par la reference longitudinale (en anglais fuselage station 

STA), la reference laterale (en anglais buttline BL) et la reference verticale (en anglais 

waterline WL). Comme les donnees numeriques de la position de ces points sont 

exprimees dans un repere specifique, les valeurs doivent etre pretraitees dans le repere 

"giravion" par la transformation suivante : 

R o t ^ = 

-1 0 0 

0 1 0 

0 0 - 1 
(2.1) 
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2.3.3 Systeme de trajectoire de vol 

L'origine du systeme de trajectoire de vol est placee au centre de gravite du fuselage. Le 

triedre direct de la trajectoire de vol est oriente de la facon suivante : i.p vise dans la 

direction de la vitesse de vol relative au repere inertiel, j P , dans le plan horizontal vise 

a droite et kp de maniere a completer le triedre vise vers le bas. On denote ce referentiel 

par la lettre V. 

2.3.4 Systeme "moyeu" (en anglais hub) 

Le point d'attache du systeme "moyeu" est deplacee par rapport au systeme "corps" a 

une distance rbh et est l'origine de deux reperes fixes "moyeu" H et "moyeu - vent" W, 

et un ensemble de reperes mobiles "arbre moteur" M., ayant leur axe, k , commun avec 

le repere "moyeu" \kn=kM\. Le systeme "moyeu" peut etre incline par rapport au 

repere "corps" B. Vue que presque tous les helicopteres existants ont une inclinaison 

initiale de l'axe du rotor principal, nous avons introduit deux angles &h et OA . Par 

convention ces angles d'inclinaison sont definis par la transformation, representee sur la 

figure 2.1, obtenue comme une rotation de ©,, autour de (~jB), suivie d'une rotation de 

OA autour de (-/0 ) . La transformation est: 

Rot, 

"l 

0 

0 

0 

c * t 

s*> 

0 

- ^ 

c * f t . 

" c*> 

0 

-SB„ 

0 

I 

0 

s*>' 

0 

c 
= 

( \ 

s s 
_-^<v^©* 

0 

^•'h 

s 

s*> 
-S C 

C ^ k 

(2.2) 
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J 8' JB 

Figure 2.1 Inclinaison du repere "moyeu"(7i)par rapport au repere "corps" (J3) 

Le repere "moyeu" Ti est suppose fixe et un repere mobile lZk est associe a chaque pale 

k et tourne avec l'arbre moteur a une vitesse angulaire supposee constante 

<ax,-v = (0,0, -£i„,)' • L'axe j n vise une des articulations (en anglais hinge). Pour se 

conformer a la pratique en matiere habituelle d'analyse d'helicoptere, la position de 

reference n//^ =0 j de l'arbre moteur est definie sur l'axe (~in) • Les systemes 

mobiles sont orientes a un angle d'azimut i//k =i//*+i+—> k = 0...(bN~\) ou (bN) est 

le nombre des pales. 
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XB 

I 
OH 

2=ff 
.<R> 

zfl ? 

ft • • - - . -
I 

<X. 
^ 

-*•/: v'. 
.VsA 

^4 
T - _* Jr~_/ —_ 

\ 

•CT:. 

Figure 2.2 Orientation entre reperes dans le systeme "moyeu" 

Soit Vw la vitesse de l'origine du repere "moyeu" H. Le repere "moyeu -vent" WH est 

oriente de la facon suivante : iWH vise dans la direction de Vtf, j m , est oriente par 

rapport au kn a un angle de glissage J3wh et kWH est oriente par rapport au j.H a un 

angle d'incidence awh de maniere a completer le triedre. On denote ce referentiel par la 

lettre VV. L'orientation relative entre les reperes enonces est presentee a la figure 2.3. 
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Figure 2.3 Orientation des reperes fixes, mobiles et "moyeu - vent" 

2.3.5 Systeme "pale articulee" 

Les helicopteres moyens (levage operationnel de 5 a 7 tonnes) et de transport utilisent en 

principe de rotors articules. Chaque rotor articule" possede trois charnieres (figure 1,13): 

de battement (en anglais flapping), de trainee (en anglais lead-lag) et de pas cyclique (en 

anglais feathering). La "charniere de battement" est utilisee pour diminuer la flexion 

dans l'emplanture des pales due aux forces de sustentation et centrifuges, celle "de 

trainee" est utilisee pour reduire les forces de trainee et de Coriolis dans le plan de 

rotation du rotor et celle "de pas cyclique" pour changer Tangle d'attaque de la pale. 

L'origine de la premiere articulation par rapport au rotor est deplacee sur l'axe j u a 

une distance de si du centre du repere "moyeu" (H). Le triedre direct de la premiere 

articulation est oriente de facon suivante : / sur l'axe de 1'articulation, j le long du 

vecteur de la seconde articulation et k de maniere a completer le triedre. L'origine de 

Particulation suivante est deplacee sur l'axe j de la premiere articulation a une distance 
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de e2. Pour chaque profil aerodynamique (section) de la pale nous pouvons associer un 

repere "principal" (Tt) (j = \-bs ou (bs) est le nombre des sections). On suppose que 

les reperes \Tj) passent par le centre de gravite de chaque section de la pale de facon a 

eliminer les produits d'inertie de la section. Ainsi les axes j r et kT sont les axes 

principaux du plan (y z) , orientes par rapport au plan (y z)T a un angle 6X , qui est 

fonction de la torsion de la pale. Les points significatifs de chaque section sont le centre 

de gravite et le point d'application de la force aerodynamique de coordonn^e yr . 

L'ordre des articulations est dicte en general par l'experience et les preferences des 

constructeurs et peut varier d'un modele d'helicoptere a l'autre. Soit les systemes de 

"battement" Bk , de "trainee" Lk , et de "pas cyclique" l\ . L'ordonnance des 

articulations (figure 1,13) peut etre classifiee en deux groupes. Le premier groupe 

comprend la sequence pour laquelle le battement precede la trainee (ex. B̂ . -Lj -P^, Bk -

Pt-Lk et IV BA -L t). Le deuxieme groupe place la trainee avant le battement (ex. Lk-

Bk - P4, Lk - Pj. - Bk et Pj - Lk - Bk). En pratique, seulement les deux sequences B^ - l,k - Pk 

et L, - Bk - Pk sont utilisees. 

y~"\ 

iL 
•',.,.. * 

nr 

<lgure 2.4 S3 articulations 
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Pour certains types de rotor, les mouvements de battement et de pas cyclique sont 

couples de facon que le battement vertical des pales diminue le pas cyclique. Cette 

orientation mutuelle est appelee <1 articulation, (figure 2.4) 

2.4 Les equations du mouvement de 1'helicoptere 

2.4.1 Influence du poids des pales sur la position du centre de gravite du fuselage 

La position du centre de gravite de 1'helicoptere (cgj = [/ b h] , de l'origine du 

repere "moyeu" (cgmj: et de tous les points principaux sont generalement 

determines dans le repere de reference longitudinal, lateral et vertical du constructeur O. 

La position du centre de gravite du corps (helicoptere sans pales) est calculee a partir de 

(eg J, (cgm J, des masses de 1'helicoptere m4 et de la pale mp. 

mB=mA+AmA~bN mp (2.3) 

, : (O) - (O) ••• (O) 
lbh ~ lba ^ 'ah 

= (O) bN mP , O) 

m„ 

hit 
(. K mP 

m 

(O) mA+/SmA.; (0) 

B J mK 

'ah (2,4) 

•-• (O) __ ? (O) - (O) _ f (O) 
hb 

lbh ~~~ hh 
m.+Am4 (O) 

tfh 

r W -',: (°) •;: (°) la, - i 

{ 

-=> r. 
(O) m4 + Am4 

V m 

{0) mA+AmA .... 
- r (°} 

B J ma 

ou A repr^sente la deviation de la valeur relativement a la valeur nominale. 

(2.5) 
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Figure 2.5 Position de certains points dans le repere du constructeur 

L'expression (2,5) s'^crit finalement comme : 

«» ,Cgb + Acgb = ^ ^ ( c g + ^ ) - ^ c | ;m = 
m 

!b+Alb 

bb + Abb 

hb+Ahh 

mA + AmA 

m„ 

B 

l + Al' 

b + Ab 

h ••!•• Ah 

w» 

bN mp 

mR 

{2,6) 

Pour le vecteur rbh
( }>, nous pouvons ecrire: 

C^=Rot^ . . , , ^ ° > = R o t ^ ( ^ - ^ ) 

w Rot.4<~e (siE - fe + Ac§b)) = R o t .^ 
L 
K — 

lb+Alb 

bh+Ab„ 
h + Ah 

(2.7) 
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2.4.2 Equations de translation et de rotation du giravion 

La description du comportement de vol de l'helicoptere presente un defi bien plus grand 

que la difficulte de la modelisation mathematique. Le vehicule peut etre vu comme un 

ensemble complexe de sous-ensembles agissants l'un sur l'autre, visualises a la figure 2.6, 

sous forme de forces et de moments. Une premiere approximation nous permet de voir 

l'helicoptere comme un corps rigide, qui est sujet a des mouvements de translations et de 

rotations. Alors les equations de mouvements sont deduites des principes fondamentaux 

de Newton concernant le mouvement des corps en translation et en rotation. Les 

equations non lineaires du mouvement du corps sont developpees en egalisant les taux 

de changement de la quantite de mouvement et du moment angulaire aux forces et aux 

moments appliques. En supposant la masse constante, les equations sont construites en 

choisissant un point arbitraire a l'interieur et en derivant l'expression pour l'acceleration 

absolue de ce point. L'acceleration peut alors etre integree sur le volume du fuselage 

pour deriver le changement du moment lineaire et par consequent de toute la force 

d'inertie. Un processus semblable mene a l'acceleration angulaire et au moment d'inertie 

correspondant. 

Maintenant avant de developper les equations du mouvement, posons les conditions 

simplificatrices suivantes : 

51. On considere que la masse du corps est constante lors de l'analyse 

d'une dynamique particuliere. En effet lors du vol, la consommation de 

carburant est tellement faible que la masse du fuselage est pratiquement 

constante. 

52. Le fuselage est considere comme un corps rigide. La cellule par contre 

est deformable et les equations qui decoulent sont complexes. D'un autre cote, 

considerer le fuselage rigide, simplifie les equations et par consequent 

l'analyse. 
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53. La deviation de la valeur nominale de la matrice inertielle du corps 

depend de la configuration et est constante. Cette simplification est basee sur 

le fait que l'inertie des pales du rotor principal n'est pas incluse dans le calcul 

de la matrice inertielle du corps. La dynamique des pales est considered 

separement lors de l'analyse des equations du mouvement du rotor principal. 

54. Les produits d'inertie Jxr et JYZ sont nuls. 

55. Les capteurs gyroscopiques (ou centrale inertielle) sont places dans le 

centre de masse du corps. 

L'origine du repere mobile est choisie dans le centre de masse du fuselage. Nous 

pouvons exprimer l'acceleration absolue d'un point materiel par la somme vectorielle de 

l'acceleration de l'origine (centre de masse dans notre cas) par rapport au repere inertiel 

(terre fixe dans notre cas), l'acceleration du point par rapport a l'origine du repere mobile, 

l'acceleration de Coriolis et l'acceleration d'entrainement. Alors, la derive par rapport au 

temps de la quantite de mouvement d'un systeme de particules de masse 8m, position 

r'(S), de vitesse absolue v, de vitesse de l'origine Vbi et de vitesse relative a l'origine 

v,, = 0 (conditions S2) est 6gal a : 

dt df 
d £(*» v) 4 Z f 8m ({% f + a w x ?<» + v,)) = m*(%)m (2,8) 

dt 

Sachant que la vitesse et l'acceleration inertielle de translation et de rotation, mesurees 

fp,A (R (u,A (u, ^ 
v 
* hi wt whi 

et dans le repere "corps", B , sont 

l'acceleration du repere , B, par rapport au repere inertiel a la forme : 

hi 

& 

11 

a, 
\ Rbi j 

respectivement, 
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dt 

_d_ 
dt 

dt 

(<B> 
4-m x V (£S) 

(Yw) 
(2') 

tf* 
^ 

wb 

+[%l] 

~£V 

n 
..;n... 

= 

Ub-RhVb+QhWb 

= K -PhWh+RhUh 

Wb-QhUb+Pbl b " b 

(2.9) 

Supposons que la somme des forces externes puisse etre ecrite comme une combinaison 

des forces cr^ees par le rotor principal, les forces aerodynamique de fuselage, la force 

aerodynamique du rotor anti couple, et celle des surfaces de 1'empennage par rapport au 

centre de masse du giravion. Les equations lineaires du mouvement sont donnees 

finalement sous la forme vectorielle (2.10): 

Y£ <B) _ 
'2X 

IX 
YU + YT + YF+YV 

ZM+ZT+ZF + ZH+Zr 

Fw + FJf + Fr + 5 ; F 5 j = ^ V 4 / ) u , - G w 

(2.10) 

ou VA, est la vitesse lineaire relative au repere inertiel du centre de masse du corps, G w 

est le vecteur de la projection orthogonale du poids total de Phelicoptere sans pales sur 

les axes du repere "corps". 

La somme des moments par rapport au centre de masse du corps s'exprime par la 

relation vectorielle suivante avec le moment angulaire Hh : 

YM 
Jmmd 

(B) 
2w « 

.IX 

ki + YM K + z,« K + Yr K + Yv K + LF + YF K 
Mu -XM hM +ZM lM +Mr -XT hr+ZT lr-XH hH +ZH lH • 

-Xrhy+MF-XFhF+ZFlF 

N„ •Y I •Yrlr-Y„ly+NF-YFhF 

^•r dt 

(2,11) 
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F i B„ r e 2 , ( > W f l nmon deforces etdescoup-

, - e.atifhd'unsystemede p a r t i e s de m a s s e d 
Ban. d o n n e d moment ang»>a,re re.auf h d u 

etdeposition? estegala: 

, ... , •?(ei ,. v "\ = T 8m (% i ( 
j:(B) •r W )"S ' 5 w , : < B ) ^ 0 ' x " , : ( ' 3 ^ = 

Sm\y T Z J ^ _-

Jydmxz Liu - *-" (2.12) 
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ou la sommation est faite pour tous les particules du systeme. Selon la simplification S3 

et S4 nous pouvons ecrire : 

(2.13) h* = = J <%/ = 

J xx 

0 

~'JXI 

0 
JYf 

0 

l / .V'Z 

0 

'' 7.Z 

0)x 

(Ov 

CO. 

Le moment angulaire absolu est calcule par 

H A = h A + X r W x ( ^ ( ^ r ) ^ h A + ^ x W , ( v i ( f (2.14) 

avec r, le vecteur de position du centre de masse. Alors, la derivee par rapport au temps 

du moment angulaire absolu est: 

d / - , d / - \W fi*=Ja«^(VB,)^-(^r+VB,^^(vw) 
(B) 

+<%zx(h i+Ve)xWs(vA/) 

Hd = J ©p.z +(flB:r x J SB,Z + vg
(B) xm, (Vw)' 

(2,15) 

{B) . • (B) d 

+ rg
(nxmB-dt (v.)"' 

Si l'origine des axes est le centre de masse ou un point fixe dans le repere mobile, alors : 

ifib ) = J ~~7 («V z) + «W x J %i 

d 
dt 

- (» /? / / ) = <%/7 =Ph,iB+QbiJB + K^B 

(2.16) 

(2.17) 

et pour les deux cas fgxmB— (Vi;) =0 et vg.
(i3)=0 ou vg

(B)=(Vw) , done 

Vg'B)xtnB(VN\ = 0 . En remplacant le r^sultat de (2.16) dans (2.1!), on obtient 

l'expression vectorielle (2.18). 
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dt 
(«w)=H 

~I4 

2XJ 
•dj^y- x J co^,. 

4 = ^ 2 ( X I , + {J„-J7,)QM K + ./K Pu Qhl)4 
"* XX J ZZ ,VZ 

J xx J zz J xz 

Qu = J - g M s + ( J a - Jxv)Pu Rbi + J„ (Rbl
2 -Pb~)) 

Jyy 

'' XX J 7.7. '' X7 

(2.18) 

+ • rrr-rE1*+(^ -^s) a ^+•/« 4 a,) 
'JXX °7,7. ' ''XZ 

Avant que les calculs des equations du mouvement du corps puisent etre executes, 

certaines transformations entre les reperes doivent etre definies. En 1772, Leonard Euler 

a montre que toute rotation autour d'un axe quelconque peut etre decomposed en trois 

rotations fondamentales. En mecanique et en aeronautique il y a une convention qui veut 

que 1'attitude (position angulaire) resulte de trois rotations, obtenue comme une rotation 

de mb autour de kx, suivie d'une rotation de @h autour de jB et d'une rotation de <t>h 

autour de iB . La transformation resultante est: 

Rot.r (~B 

K 
s,. 
0 

-sVt 

cVt 

0 

0" 

0 

1 

" C e t 

0 

l-s*> 

0 

1 

0 

>\) 
0 

CeJ 

1 0 

o c\ -s. «,<. 
o SL c, % 

C C C S S -S C C 8 C +S S 

-9 Ce.5fl ^ • ' 0 1 *-'<&,. 

(2.19) 
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Etant donne que la matrice de transformation Rot2V.B est orthogonale, alors 

RotB<_x = (Rotr<...B) = (Rotr<_B) et la projection orthogonale du poids total de 

l'helicoptere sans pale sur les axes du repere "corps" est calculee comme : 

&B> = RotB,..T &I} = mB R o t ^ j . g(alt) = mB RotB<....z 

0 

0 (2,20) 

ou g(alt) est 1'acceleration gravitationnelle au niveau de reference. 

Pour completer le modele, on a besoin de connaitre la relation entre le vecteur de la 

vitesse angulaire inertielle et les angles d'Euler. Cette expression cinematique (2,2!) 

peut etre vue comme matrice Jacobienne. Comme Rot(fl<_Kilhr n'est pas une matrice 

orthogonale, alors (Rot(0<_£/(/(V,) •*( Rot <,,<_,,„,<,,) et la relation inverse est donnee par 

l'expression (2.22). Une expression cinematique concernant la relation entre les 

Pacceleration angulaire et les angles d'Euler et leurs derivees est donnee par (2.23). 

( 0 , 

(V 
Qbl 

\Rbls 

= 
"**" 

0 

0 

+ 

1 

0 

0 

0 

*» 

" * • ' * ! , 

0 

s% 

c * » . 

" 0 " 

®* 
0 

+ 

0 -S 

0 (,<h $$,('0. ®* 

1 

0 

0 

0 

*/, 

~"s*„ 

0 

s*k 

Q„ 

Ceb 

0 

^ 

0 

1 

0 

s* 
0 

Cs„ 

R, 

: V'\n*-Eider) 

( p \ 

ON 

\RbU 

0 

0 

(2.21) 

(2.22) 
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to JS-'X <2, 
it 

<f) _(>S vi/ / • _ u ) c 

•XP C C S1- b T j0*,ue, 
_(i) w r S 

(2.23) 

Pour calculer les valeurs des angles d'Euler, il faut integrer numeriquement l'expression 

(2.22). 

2.5 Les equations du mouvement du rotor principal 

2.5.1 Modele dynamique de battement et de trainee des pales du rotor dans le 

repere "moyeu" 

Etant donne que le mouvement cyclique de battement des pales fournit une commande 

indirecte sur 1'orientation de la poussee de rotor et des moments de moyeu du rotor 

(c'est-a-dire le pilote a seulement la commande directe de Tangle de pas de la pale), par 

consequent cette dynamique introduit pour l'helicoptere l'aptitude primaire de voler. Les 

mouvements et la torsion des pales sont influences par les charges aerodynamiques non 

lineaires, qui sont elles-memes fonction du mouvement de la pale. Le schema de la 

figure 2.8 illustre ce probleme aero - elastique comme systeme a retroaction. Les deux 

boucles de retroaction fournissent des perturbations d'incidence dues aux mouvements 

du rotor et du fuselage, et a la deflexion vers le bas de Pecoulement du rotor qui sont 

ajoutes a ceux dus aux entrees de commande et aux perturbations atmospheriques. Ces 

deux boucles de retroaction dominent le modele du rotor et par consequent impliquent le 

besoin d'etre d6taillees. Pour le calcul des charges aerodynamiques, nous serons 

concerned par le mouvement de pale relativement a l'air et par consequent le mouvement 

du moyeu et du fuselage, aussi bien que le mouvement des pales relativement au moyeu. 

Le mouvement relatif sera un theme se reproduisant dans ce chapitre qui introduit en 

principe le besoin de reperes et de systemes de reference. Pour deriver le mouvement 

relatif et les diverses transformations, nous nous referons au schema de la fmtsre 2.8. 
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Bien qu'il existe differents types de rotor, Pamplitude des mouvements des pales et la 

reponse aux entrees de commande et auxdes rafales sont tres semblables. 

gusts 

rotorblade 
downwash 

blade + 
pitch 

o blade incidence load/incidence 
transfert function 

blade 
loading 

^ blade 
response 

blade motion 

Figure 2.7 Schema bloc de 1'aerodynamique des pales [Pad961 

Soit V/f la vitesse du centre du repere fixe "moyeu" 'H. 

V, (H) Rot H*-B Y W
( B ) + ( ( D B / / X ^ ) ; 

v. («) 

0 Sa 

~'V, 'QJ. 

V.> T> O „ O T V . „ ' , , - , V. - ' s-. 
' * „ © » , *1 

fA 

W„ 

+ co»; »,„"'] 
(2.24) 

Pour <D, = 0 et bL = 0 

V (W) = 
tA, 

W, 

ffl (H) 
Bfl 

h. 

OH 
R, 

C\ ° Se„ 

~\ 0 C-
K-PA + ty* 

wb-Qhlh 

c%t{
u> + QA)+s9h{wb-Qhi,,) 

v-ph + /? / 

-\(ub+QA)+(\(wl>-Qjl,) (2.25) 
Ce* 

0 

" ^ 

0 

1 
0 

V 
0 

c* 

to (B) --

cos(0A)^+sin(9,)i?6 

a 
_-sin(0A)/>4+cos(0A)/^ 
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JUP 

JH 

M 

u 

t>„ 

* , 

Figure 2,8 Definition des reperes "trainee", "battement" et "pas cyclique" pour un 

rotor articule 

Pour un rotor articule, supposons l'ordonnance des articulations suivante : "trainee", 

"battement" et "pas cyclique". La position d'un point r,(P) dans le repere principal est 

transposed dans le repere "corps" par la relation suivante : 

CR) 

cosfc) sinfc) 0 

-sin(f) cos(g) 0 

0 0 1 

Rol(f) 

0 

1 0 0 
0 cos(/?) sin(/?) 

0 -sin(/?) cos(/?) 

(P) 

r, =^WHr /w )=(Rot , ( +_B) 

Rot(/8) 

sin(y/w) - c o s ( ^ ) 0 
cos(i//v/) sin(y/w) 0 

0 0 1 

(R) 

Rot(v«) 

ou sr et Sp sont les decalages des charnieres. Pour r/P) =[() rb 0] 

(2.26) 

at) 

~(sp + rh cos(/?)) cos(y/M + g)-e. cos(y/M) 

(Sf,+rb cos{f3))s\n{y;M +g)-se sin((//t,) 

-rhsm(/3) 

(2.27) 
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La vitesse d'un point de la pale dans le repere fixe "moyeu" est calculee par (2,28). 

(H) _ V <?"0 v:"J = v """dt 
fe(W,)+S>«,xxr,(K 

= Rot., 'H<r~li ^r+(fiB/I x ^ ) +^fe(w))+R«t^B ^ - r 
3 dt 

I j i« +ri^ ' .J i 

dt 
(i<«), 

9r d<//M dt 3^ dt 9/? dt 

cow / z=RotH^ra 5 / I 

(2.29) 

Pour le point r,.(P" = [0 rh 0] , la relation (2.29) prend la forme (2.30). 

dt (i""h 
£-.. nu sm(i//M) + rb 0sm(fi)cos(iyM + c) + (s(,+rb cos(/?))(QM +c)sin(^M +g) 

s,. QM cos(t//M)-rb ji s in(/?) sin(y/M + $•) + ( ^ + rh cos( /?)) ( J \ •+• g) cos(y/w + g-) 

-/; cos ( /?) /? 

(2.30) 

L'acceleration d'un point de la pale dans le repere fixe "moyeu" est calculee par (2.31). 

dr -dH + 
d /.:(H)\ , d /.,: 

dt rfr(K))+ffiWrxi(^)+i(a„„x^) 
dt dt 

a,. 

d2 

Rot,. i<-B \ r + (&,,* x rJB)) + g)B/I x ( V b r + a>B/I x r ^ ) 

a„ 

+ ̂ T t , W ) ) + Rot »̂ 2^ ^ ^ ^ ^ ^ ( f ' l ^ - ^ K ^ f ) d t v -

(2.31) 

| - ( ^ 

d /„ 

at2 ,P W ) ) + 
dt 

tem) ~(T(H)) 
Vf'' i d ( / A , HfVr'' ) w 

d / - , 
^ 1 dfi 

CV.M 

_d_ 

dt' 

dt anM dt 
M | dt 

d ( - w ) 
d? 

£><,- d t + 

d (?('«> \ 1 / ? W ) 
, dtv r ! ^ | dtv r > &P , dt (̂ W 

â  dt a/? dt a/? dt 

(2.32) 
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Soit l'energie cinetique EK d'un element de pale a distance xf 
(H) 

EK = i ] v ; W ) . V / H ) dm = ~- \(v,™fy,w dm (2.33) 

Pour une distribution uniforme de la masse de la pale dm = mp drr , en utilisant 

l'approche energetique de Lagrange, la dynamique de battement et de trainee peut etre 

calculee a partir de l'equation generale de la dynamique (2.34): 

dt 

dt 

3 E K 

[dj3 

dc 

<3EK 3E„ 3Er 

dp dp dp 

5EK 9 E P <9Er 

(2.34) 

dg dc dc 

avec Qp, Qc la force generalisee (moment dans notre cas) calculee a partir du travail 

virtuel des forces externes dans la direction de deplacement en battement et en trainee et 

Ep et ED respectivement energie potentielle et fonction de dissipation. Chaque equation 

(2.34) peut etre vue comme une expression de l'equation generale de la dynamique dans 

la direction de la variation de la coordonnee de battement et celle de la trainee. Etant 

donne que la distribution de la masse de la pale est independante aux derivees par 

rapport au temps et aux derivees partielles, l'ordre de 1'integration et la derivation peut 

etre changee. 

_ d / E „ ^ SE 

dt v dp) dp ft J 

_d_ 

dt 

(E "1 

{ d$ ) 
dE ^ = J 

dt 
V V 
( f 

£ 
dt 

V v 

V. («). 
d^)) ,»„,.8(*™) 

dp 
_V. 

dp 

V.( 
5c 

d(rn))) . a(v.(W)) 
VJ 

dm 

dm 

(235) 

En realite selon (2.28) et (2.29), les derivees partielles par rapport a {/? c] sont: 
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d[v/*>] d(r,w) S[V/W)] d(lin)) 
dc 

(2.36) 
dp dj3 dg 

D'autre part, en prenant les derivees partielles par rapport a {/? g\ de l'identite (2.29), 

nous aurons (2.37) et par consequent (2.38). 

arv.<H>l fa2(^(H,).32(?/H))d^M s2(l(H))d? #(yu))dfi\ 
dp . + _ 

dtdp dy/udp dt dgdp dt d2/? dt 

a[v/">]^ ( ^ ( ^ H ) ) [ a'(fr<
H>)d^M | a'̂ jdg-1 a'(?/">) d/? 

(2.37) 

oc dldg dy/Mdg dt S f dt dpdg dt 

e[v/W )] dp d[v,lW)] 
d(f,m) 

de­

ep dt dc dt 
(2.38) 

Finalement: 

d 

1 
dt 

y w . 
a(f; (W)) 

V ( W . - > - — ' -
' "' 5/? ~ d t 

V ( W ) . ^ ' ) 1 
^ 

d 

V 

"3(r r
( H ) )" 

dp 

dt 

V. ('«) 
5<r dt 

v i r t 
a(?,H»)) 

•v. ( W . 

d(l™) 

d(v,(W)) a(r;.'":)) 
, _ _ _ _ 

d(v;W)) a(rr
<w») 

dt dt 

(2.39) 

Soit les moments d'inertie 

h ~ J Vr" &m = J W/'r/! d'r ; ^ = J mprr fy '- mp = \ mi> &r
r (2.40) 

Alors la dynamique de battement et de trainee est calculee comme : 
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Ip fi = Mp sin (fi) {(Vh +RhUh- Ph Wh) sin (y/M + g) - (u„ - R. Vh + Qh Wh) cos (i/tM + g) + 

+s( [aM sin (g)-(nM
2 - 2 fiA,/?A)cos(g)] - ^ [(QA, + ?)2 - 2 R, (fiw + f)] + 

+ [ / A - ^ - C O s ( ^ w ) - ^ c o s ( ^ + f ) ] [ ( ^ + i >
f t a ) s i n ( ^ w + ? ) + (e / , 2+V) c oK^Jw+f)] + 

+ [bh + ef sin (!//M) + ep sin (y/w + g)][(Rh - Ph Qh) cos (y/M + g) - (Qh
2 + R*) sin ((//w + g)] -

-AA[(A ~G, i?A)sin(v/w +c) + ( 4 + //, ^)cos((//w + s)\\ + 

Mp cos(/?){Wh + Ph Vh -Qh Uh +2Ph [f,. nM cos(///,,) + ep (QM + g)cos(y/M + g)]-

~2 Qh le< Q,w s i n (v« ) + £p (QA4 + ?) s i n (v« + f)J - ( 4 ~ P>, Rh) \}h ~ £,cos {WM) -

-BP cos(y/M + f)] •+•(/;, + Qh Rh)\bh + s, sin (<//M) + ep sin (y/A/ + $•)]-h„ (Ph
2 + &2)j + 

+Ip{[h + Q, Rt,cos{2fi)]sin(VfM+g) + [Ql,-Ph Rhcos(2.fi)]cos(i//M + g)\ + 

Ip cos (fi) sin (fi){ph
2 + a 2 -[i> sin ((//,, + f) + gA cos (y/,w + f)]" - (i?A - i\, -?)2} + 

2//?cos2(/?)(QA/ + £)[/> cos(y/w + f)-Q,sin(y/w +c)] + Q/, 

(2.41) 

;-'(lp cos2 (/?) + 2 sp Mp cos(/?) + * > , ) = (*„-4,)('„ cos2 (fi) + 2sp Mp cos (/?) + ef
2mp) -

~(.M//cos(^) + iVW,){(L>„ - ^ Vh +Q„ Wh)sm(yrM + g) + (Vh+Rh Uh-P„ Wh)cos(¥u + c) + 

+h [(h +ph &)«*#« +?)-(a2+^2)sm(v„ +?)]-** [(K -pk Qh)MvM+?)+ 
+ ( # + ̂ ) c o s K + ? ) ] - K [(h -QH Rh)cos(y/A, + ? ) - ( 4 -/> i?;,)sin(yM + g)]-

•sJ(ClM-R,,)cos(g) + 1 P„ Qh cos(2y/v/ +2g) + -(Ph
2-Q*)sm{2y,M +2g) 

+ ("A/ -^)2 s i n(f)""Ph Qhcos(2^M +?)-Ph2 sin('/4/)cos(^w + $•) + 

-l-gA
2 cos (;//M) sin (r//A, + g)]} - (/;, cos (fi) + ^W / ?) {sin (/?) [2/? ( ^ - QM - g) + 

+ ( ^ * - a ^)cos(y/M + f ) ~ ( / ^ a * * ) C 0 S K +?)]-cos(yff)[^ + /i 0*cos(2^ +2c)-

+ | ( ^ 2 ~ a 2 ) s m ( 2 ^ + 2 ? ) - 2 / ? [ ^ c o s ( V / M + ? - ) ~ a s m ( ^ + f ) ] j + Qf 

(2.42) 

Soit 



62 

I,. = ]rc
2.dm = ; Af. = J^.dm (2.43) 

Pour completer le modele de trainee, nous devons introduire la dynamique du segment 

entre Particulation de trainee et celle de battement. La dynamique resultante est calculee 

de maniere similaire au developpement precedent. 

Alors la dynamique complementaire de trainee est calculee par l'expression (2.44) et 

doit etre ajoutee a l'expression (2.42). 

/ r - J K-&M +pi, 0*cos(2yw
 +^) + -(Ph

2-Qh
2)sm(2y/M +2g) 

-Ms{(Uh-Rh Vh + Q„ W„)sm{rM + g) + {vh + Rh Uh-Ph Wh)cos(nf +g) + 

H [ ( ^ + ^a )cos (^+ f ) - (0 A
2 + V)s i a (^+ f ) ] -6 A [ ( ^ -P A a ) s in (^ + ff) + 

+ (K + R*) cos (wM + gj] ~~ h„ [(Ph - Qh R„) cos (i//w + g) - (Qh - Ph Rh) sin (i//M + g)] + 

+£t [ ("„ ~ K)cos(?) + (QM - Rh f s in (?)~ ph Qi,cos{2¥M + g)- P,,2 sin (if/M)cos(i//w + g) + 

+a2cos(v/M)sin((//A/ + f)]} 

(2.44) 

Les forces generalises Q/? et Q,., associees a la dynamique de battement et de trainee, 

contiennent les composantes de la force de gravite, des forces aerodynamiques, de la 

force de Pamortisseur de trainee et de la force potentielle de ressort. La presence et les 

parametres des deux dernieres forces dependent du design du rotor principal et sont 

ajouties pour generaliser le modele. Le developpement des forces gdneralisees est fait 

par le biais du travail virtuel dans la direction de deplacement virtuel en battement et en 

trainee. Soit £W le travail virtuel elementaire de la force externe fiH} : 
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<yw=AF(W,.<y(rr
(H))=AF/ («) 

5/? 
$0 +AF J («) =AQ„f^+A(Q) f 4 " 

r: CO r <W1 i & ( ' '0 i 1? <w) : 17 (W) . p (W) _ p (W) , p <K) , p (H) , p («) i r „ = A r „ , - + A I ' „ , + A r „ ,, t i h , ,, i r . = A r . , . T A I ' . , +Al : ' . n + A 1 ' . „ 
p P>(> P^ p.JJ p . A c c,,'./ ~ ,/J £,./-* ^ . A 

(2.45) 

En sommant le travail virtuel elementaire (2.45), on obtient le travail virtuel total: 

2..T >\, ?.(•«) d(xm\ r*< p(W) d(rCH)) 

$ AT d(3 \x dc 

(2.46) 

Les composantes de la force de gravite dans le repere moyeu peuvent etre calculees par 

la transformation suivante : 

F / W ) = R o t , ^ B R o t ^ 2 . g d m (2.47) 

Pour <J>, = 0 et une distribution uniforme de la masse 

dF,/K) = mpg 

-cos(0A )s in(0A ) + sin(©A)cos(04)cos(<D6) 

cos (0 6 ) sin (* , ) 

sin (&h) sin (©,,) + cos (0 / ;) cos (0 4 ) cos (O,,) 

drr (2.48) 

De (2.26), le deplacement virtuel dans le repere fixe "moyeu" d'un element de pale est: 

s\(rr )= \ n
 /W + ^T~^-8g 

dp dc 

4'"')= 
rAsin(/?)cos(i//u+ f) 

~rhsm(p)sm(y/M+c) 

-rh cos (p) 
sp+ 

(efi + rb c°s (/?)) sin (y/M + g) 

(ej3 + rb cos(/?))cos(!//w + g) 

0 

(2.49) 

8c 

Comme le deplacement virtuel du segment de la pale entre le moyeu et la premiere 

articulation est independant de la dynamique de battement et de trainee, alors : 
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wH,y rfcos(i//M+g) 

0 
8c (2.50) 

%'"') = <>-, (i''''H4™) = 
8(i"°), 

dp db + 

9feM )) 
+ -

a r. 
(M) 

5f % 
<5c (2.51) 

Finalement: 

- [ ^ v \ + C 0 4 C 0 ) , Q j c o s ( / ? ) | 

Q4-,G
(W) = S (>«// + ms + Mfi cos (/?)) [(-Ce> S% + Sek C0) C\) sin {y/M +g) + 

+C0iS%cos(if/M+g)] 

(2.52) 

Remarque : Selon la convention utilisee, Tangle &h est positif dans le sens de (-.//)• 

Pour le modele d'helicoptere etudiee (@h = 3 ). 

Comme nous l'avons enonce dans le chapitre precedant, deux causes fondamentales sont 

a la source des forces aerodynamiques, que subit chaque pale au cours de son 

mouvement: 

- La distribution de la pression, s'exercant selon la normale sur la surface de la 

pale; 

- La distribution des efforts de frottement (contrainte de cisaillement) selon la 

tangente au profil de la pale. 

L'integration des distributions de la pression et des efforts de frottement sur la surface 

complete de chaque pale conduit a une resultante aerodynamique, proportionnelle au 

carre de la vitesse relative de la pale par rapport a l'air ambiant. Cette vitesse est la 
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somme vectorielle de la vitesse de translation de l'helicoptere, la vitesse peripherique de 

rotation du rotor et de la vitesse induite par 1'acceleration de la masse d'air. 

Les charges aerodynamiques sont en general variables, non lineaires et tridimensionnels. 

En suivant le developpement theorique, notre premiere approximation neglige ces effets 

et suppose que les approximations (ci-dessous) menent a une prevision raisonnable du 

comportement global du rotor. 

86. La poussee du rotor est une fonction lineaire d'incidence locale de la 

pale et la force de resistance (trainee) est une fonction quadratique du 

coefficient de portance. Les coefficients de poussee et de trainee sont 

fonctions de Tangle local d'incidence (ar) et du nombre de Mach (Machr). 

Negliger le decrochage et la compressibilite de la pale peut avoir un effet 

significatif sur la fidelite de la prevision du comportement dynamique lors du 

vol avec un taux d'avancement eleve. Sans un modele de ces effets, le rotor 

pourra continuer de developper une force de poussee et petite force de trainee 

au dela de la frontiere de decrochage, ce qui est clairement peu realiste. La 

supposition de la pente constante de la courbe de portance neglige les 

variations lineaires, dues aux effets de compressibilite, le long de l'envergure 

et en fonction de la position de la pale dans le plan de rotation du rotor. Le 

coefficient de portance C, constant peut etre explique dans une certaine 

mesure par une pente mediane de la courbe de portance, en particulier a basse 

vitesse. Les variations azimutales provoquees par les changements des angles 

de pas cycliques et collectifs en vol d'equilibre ne peuvent non plus 6tre 

simulees avec le modele lineaire a coefficients constants. 

S7. Certains effets aerodynamiques frequentiels sont ignores. Ces effets 

aerodynamiques peuvent etre divises en deux categories - celle qui implique 

le calcul de la reponse de la force de poussee et du moment de tangage de la 

pale aux changements de l'incidence locale, alors que l'autre implique le 
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calcul de l'incidence locale due aux variations des vitesses de sillage de rotor. 

Tous les deux exigent des degres de liberte additionnels. Neanmoins, les 

effets du sillage sont expliques d'une facon relativement elementaire, mais 

operationnelle par la theorie de la vitesse induite, decrite dans cette section, le 

developpement de la force de poussee et du moment de tangage de la pale en 

fonction de Tangle d'incidence sont ignores, introduisant comme resultat un 

simple dephasage de la reponse du rotor aux perturbations externes. 

58. Les pertes de portance a l'extremite et a l'emplanture de la pale sont 

ignorees. La force de poussee reduit a zero aux deux extremites de la partie 

operationnelle de la pale. Un facteur de perte de l'extremite de 3% de rM ou 

une integration des charges entre la racine et l'extremite operants est 

generalement employe. Les deux effets sont petits et expliquent seulement 

quelques pourcent du fonctionnement et de la reponse du rotor. La 

modelisation de ces pertes augmente la longueur des equations de maniere 

significative et dans l'analyse qui suit, nous omettons done ces pertes. 

Cependant, pour realiser des previsions precises sur la puissance requise, par 

exemple, elles doivent etre incluses. 

59. La distribution axiale (le long de l'envergure) de la vitesse induite est 

uniforme. Cette supposition est une simplification forte, meme dans le cas de 

vol en palier, a cause des effets complexes du sillage de rotor, mais fournit 

une approximation tres correcte pour la prevision de la puissance et la poussee 

du rotor. L'usage de la distribution uniforme de la vitesse induite provient de 

la supposition que le rotor est concu pour developper la trainee induite 

minimale, et par consequent que la pale a la torsion ideale. Dans ce cas ideal, 

la circulation serait constante le long de l'envergure de la pale, avec les seules 

pertes induites provenant des tourbillons (vortex) de l'extremite da la pale. La 

torsion ideale, pour une pale de corde constante est inversement 

proportionnelle au rayon du rotor, tandis que sur la plupart des helicopteres, 
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on trouve une torsion lineaire qui donne une approximation raisonnable, sinon 

aussi bonne que la torsion ideale, aux effets de distribution de la vitesse 

induite. 

S10. Les effets de flux inverse sont ignores. La region d'ecoulement inverse 

prend la forme d'un petit disque du cote de la pale reculant, ou la circulation 

d'air frappe le bord de fuite de la pale plutot que le bord d'attaque. Jusqu'au 

taux d'avancement modere (p < 0,3), cette region est petite et les pressions 

dynamiques associees basses, justifiant son omission dans l'analyse des forces 

de rotor. A des vitesses plus elevees, l'importance de region d'ecoulement 

inverse augmente, ayant pour resultat un pas collectif additif requis pour 

fournir la poussee necessaire du rotor, mais diminuer la trainee du profil et par 

consequent le couple du rotor. 

Ces approximations nous permettent de deriver les charges aerodynamiques d'une 

maniere analytique. Afin d'etablir les expressions des forces aerodynamiques de 

portance et de trainee, nous considerons un element differentiel de pale figure 2.9 : 

A£{VM>n)tP) =-p(MJ.2 + «„2)c Ar C, = -p(u,;'' + u{)c Ar aar 

AD((//;W,rh)iP) =-p(u±
2 +«„2)c Af" CD'> CD = kDlt +kDCr

1 (2,53) 

ar -[0O (i//w) + 6> (rh)-Kx j3-K2g] +• <f>f; <pr = tan" 
fu^ 

^ M i i 

\ui.j 

ou A/;P) et &D{V) est la force elementaire, respectivement de poussee et de trainee, p, 

est la masse volumique de l'air, c, est la longueur de la corde, a, est le gradient de la 

portance, CL et CD sont respectivement les coefficients de poussee et de trainee, a est 
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Tangle effectif d'incidence, V,( ' = 

IL 

est le vecteur de la vitesse locale, CT est le 

coefficient de portance, Or(i//M,rh) est Tangle de pas et 0i(rh) est la torsion lineaire. 

Pour le calcul des elements de la vitesse relative a la masse d'air, nous devons 

additionner les contributions de la vitesse induite et de la vitesse du vent a T expression 

(2.28). 

A F I 

Figure 2,9 Definition de la portance et de la trainee d'un element de pale dans des 

repereslocales 

Soit v}H) la vitesse additionnelle, alors la vitesse locale est: 

V ( P ) = Rot 
P*-H V, (7i) 

1(H) > 

(2.54) 

La portance et la trainee d'un element de pale dans le repere de la pale sont 

AFX 

AF. 

cos(^) -sin(#,.) 

sin(^) cos(^) 
1>V) 

,L(P) = tan~ 
' w , > 

(2.55) 
v "± J 
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Dans l'expression de (2.55), le premier terme AFV est la somme de la force elementaire 

de trainee induite et de la force elementaire de trainee du profil. Exprim^es dans le 

repere fixe, les forces aerodynamiques d'un element de pale sont: 

i F w 
sin(v«) 
cos(i//A/) 

0 

-cos (<//„) 0 

sin((//M) 0 

0 1 

cosfc) 

-sin(g-) 

0 

sinfc) 
cos(^) 

0 

0 

0 

1 

-*FX 

-AFS sin (/?) 

-&Fzcos(j3) 

(2.56) 

Selon (2.51) (2.53) et (2.56) 

^ ('«) „p ('«). 
'e(lm) d(jJm) 

dg 

r,sin(/?)cos((//w+c?) 

-rb sin(/?) sin {\j/M + S) =AF, t\ 

-r„cos(fJ) 

(g(l + rt,cos(fJ) + r()sm{yM + S) 

= (*E,"°)' (ep + rh cos(/?) + r j cos(<//M + (?) 

0 

^(*/r+'*cos(^) + r{.) 

(2.57) 

Q/M
(W) = J ^ r dr = j - p (u±

2 + u*) c [CL cos (#.) + CD sin ( £ ) ] rb d/;; 

(W 
' f -4 

hi 1 

AT 

J TP(?fi.2 + «!i2)CLC/. Sitl (h)~CD c o s ( ^ ) ] ( ^ + rb COs(^))d/i 

rl + J - p (u±
2 + w„2) c [CL sin (^) - CD cos ( £ ) ] rQ drf 

(2.58) 

L'integration des forces aerodynamiques peut etre obtenue de facon analytique ou 

numerique. L'approche numerique consiste a segmenter la pale en sections (entre cinq et 
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quinze) et calculer les forces aerodynamiques a partir des donnees numeriques sur les 

facteurs de portance et de trainee. 

L'energie potentielle Ep et la fonction de dissipation En correspondent a la force de 

rappel d'un ressort et a la force de frottement visqueux d'un amortisseur. Leur pr6sence 

est optionnelle. D'une maniere generate : 

Ep =-KB p2 +-Kr g1 ^> ^ L + ̂ S . = Kp J3+ C, p 
1 2 p 2 <* dp 3f3 p /J 

Ch{f+~C,gz ^> dE" dE 

9 P 2 ' 
f = K?g + C.g 

xR w -' K,0 

sin(i//,w) -cos(i//M) 0 

cos(yw) sin((//w) 0 

0 0 1 

dp dp 

1 0 0 

0 cos(£) sin(/7) 

0 -sin(/?) cos(/?) 

-KPP-C6P 
0 

-K. •C. 

(2,59) 

(2.60) 

2.5.2 Les equations de battement des pales dans le repere "moyeu - vent". Modele 

aerodynatnique equivalent de deuxieme ordre. 

Dans cette section, l'equation du mouvement de battement est explicitement derivee pour 

un modele de moyeu sans decalage entre les charnieres sg = 0, ignorant la dynamique 

de trainee g = 0; g = 0, Les principaux parametres du modeles sont: la rigidite de la 

charniere Kfi, le decalage effectif W = s/rM , le nombre de Lock (f i0l i) et le couplage 

angle de pas-angle de battement Kt = tan (<?,). Le nombre de Lock est un parametre 

important, exprimant le taux entre les forces aerodynamiques et inertielles agissant sur la 

Pale r,.c P c a rM . Avant de developper les equations de battement, posons les 

conditions simplificatrices suivantes: 

S11. La pale du rotor est rigide en torsion et presente une torsion lin^aire 

initiale. 
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Si2, L'angle de battement est suppose petit et le mouvement de battement 

vertical des pales, ainsi que Tangle de pas est approxime avec les 

harmoniques de premier ordre. 

SI3. Les effets du mouvement du corps sur la dynamique de battement du 

rotor sont limites a ceux dus a T acceleration angulaire [Pwh QVA, a la vitesse 

angulaire (Pwh Qv,h) et a l'acceleration normale (verticale) yVwh) dans le 

repere moyeu - vent. 

Avec un angle de glissage fih et a, Tangle d'incidence par rapport au plan du disque 

rotor, la vitesse lineaire de Torigine du repere moyeu - vent mobile dans le repere lui-

meme et la vitesse angulaire sont calculees comme : 

V, (VVH) V,, 
liw 

w, Mr 

0 (2.61) 

P 

xihw 

cos ( A , ) s i n ( A j 0 

- s i n ( A j cos (A j 0 

0 0 

R o tH'. t :<~« 

r p> 
a 

x*+h\ 

cos *K)= tf* 

*in(Ar) = 

4v? + K 
v„ 

u? + K 

(2.62) 

Ph. = tan"1 
( v \ 

\U>J 
; a, . = tan"' 

WL 

^JT^T ; A, vt + vfu* (2.63) 

En aeronautique, afin de faire la comparaison approprtee, la pratique courante est de 

rendre les variables non dimensionnelles. Ainsi, la vitesse locale non-dimensionnelle est 

calculee comme : 
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ur m V, c) 

^ %W ' ' ;W 

1 0 0 
0 cos(/?) -sin(/?) 
0 sin(/?) cos(/3) 

sin((//M) cos(y/M) 0 

- c o s ( ^ ) sin((//M) 0 

0 0 1 

f \T (WW) 

Ror'(p) Kor'in, 

d£ 
u,< W H )+RotW H < . . . .w R„«_B ffl^?/^xr,^p, [> + _dt 

(r>) 
M M 

QM>"M 

-V^2 + ^ s i n(^)+f .L+ c o s( / g)A^ 
n. V',w 0„ r„ («*+4) 

^±^1^ s i n ( ^ ) cog (/j) _ Sin (/?) ^, ~[^+U,(i//M)] 
" . M ' M 

sin (/?)(* + r, ){sin (<//«)[/> cos(/J^ ) + 0, s i n ( ^ )] + cos(<*/„ )[-/>, sin ( / ^ ) + ft cos(phg )' 

> f c t K * 2 - cos ( ^ ) sin (/?) - - £ 5 - + cos 
^yw ' M f\, 1/ 

s(/*) 
H ,̂-[u0 + y, ((,/„)] 

D r 
4 "A/ '.« 

cos(/?)(* + rj{sin(y/,„ )[/» cos(P„w ) + Qh s i n ( A v ) ] + C O S ( ^ M )[-Ph s in (A ; I . ) + ft cos(/?A„)]} 

^'M ' M 

(2.64) 

Ici nous avons introduit l'expression [u0 + u, (y/M )] pour la vitesse induite. Se referant a 

la figure 2,10, Tangle de battement fj; (7) de la j l 6 m e pale peut etre obtenu en sommant 

les moments par rapport a l'articulation des forces externes, exprimees dans le repere 

moyeu - vent. 
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dF, LidF, 

TM » ,W 

Figure 2,10 Modele equivalent du rotor avec ressort 

Le moment de la force aerodynamique par rapport a 1'articulation est calcule comme : 

MA = " j rh&Frm = " j 'rb£acuL
2{Or +*,)*„ (2,65) 

L'angle de pas 9r peut 6tre developpe en serie de Fourier en premier ordre dans le 

repere moyeu fixe et a la forme : 

6r = 0Q + (e rM +rh)6s + ec cos(i//,M)+ 0, sm(y/w)-/?tan(^) (2 .66) 

-"!»• •-K. 

avec #, angle de torsion initial et les entrees de commande angle de pas collectif GQ, 

angle de pas cyclique longitudinal Bv et angle de pas cyclique lateral Ah . La 

transformation (2,67) permet de calculer les variables d'entree dans le repere moyeu -

vent fixe. 

4 =A«0S(A,)-/lsin(A,) 
B]^Alcsm{phw) + Bk:cos(f\w) 

(2.67) 

En supposant (5 petit et [Rh + pk )« QM le moment de la force aerodynamique est: 
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MA =-pacrM
4 QM

2 1 S S . , \ 2 _ £' 
1 v JU sin (y/,,) — E -i 1- w 

4 3 12 v 3 3 

2 . _ f f + _ | s i n ( V / w ) fo-

~ 4 r cos (i//A/) - \ sin ( ^ ) ] + 
1 £• £ 5 . , v 

H + u sin I «/,. j 
5 4 20 v ' - w ; 

f2 _ J3 

— ^ + — 

, M 1 2£- iishi(u/,,) susiniy/..) y 
+//sin(y/M)| _ - _ + > _ A i * i l - - ! _ A v . " ) 

J J 

a + 
\ £ £ f 1 _ £ I . , , 

3 2 6 2 2 ' v " ; 

1 £• f4 . / \ 

4 3 12 v A" 
ff+ — + / / £ + — 

3 3 2 •> "- y 

+A 

+// 

1 £• £"' f i _ £' i . / x 
COS (y*)/*-

1 2ii? _2 

4~T+^ ~T 

t an(4) + 
K, 

-^1 

K2 b 2 3 
sin (f/^) JL 

O / ^ f -P 

fi». 

1 £• -F | 1 £ T 

a 

s i n(^w) 
'h 

-COS (Aj-

( A , ) sin( (//M)+ - J - s i n ^ J + ^ - c o s ^ J c o s K ) 
V « M 

(2.68) 

En simplifiant la dynamique de battement (2.41), il est courant de retenir seulement les 

termes: 

inertiel M, = -Ip p 

centrifuge MCF = -QM
2 \lp cos (/?) + £• rMMp~\sm (/?) 

de Coriolis 
MCor = l[lpcos2(0) + e rMMpcos(p)]nM [(/>Acos(/?A J + 

+Qh S i n (Ph„ ) ) s l n ( Vw ) + [~Ph s i n (P„lr ) + Q-k COS (A,„ ))COS(<//„ ) 

de contrainte MR = ~K,, (3 

d'acceleration angulaire 
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MACC.4 = Ip {[/>„ c o s ( / ^ ) + Qh sin[phw )]sin {x,;M ) + [-/>, sin (/?Ai>.) + Qh c o s ( ^ ) ] c o s ( ^ )j 

et d'acceleration normale (verticale) MAccN = A/^ {\Vh + Ph Vh - Uh Qh) 

ainsi que d'approximer le terme gravitationnel M / M , * ¥ / J g , En rempla9ant les 

moments ici-definis dans l'equation (2,69), 

MA +M, +MCF +MCor+MR+MAccA +MAccN+MG = 0 (2.69) 

nous calculons la dynamique de battement des pales dans le repere moyeu - vent mobile 

comme : 

/? + 
p c a rM~ £ \ 

/ , 
I„2l -=_fl fi_- £L£!N 

4 3 + f f 3 + / 1 2 ^ + 2 3 
S ' " ( V M ) /? + 

' , 

{ 

M 
s -s+Tjsm(ni)^ 

fi„ 
pcarh{ Q,f/ 

4 3 12 v w ; 

tan (£,)+•//cos (i//w) 1 f.. „ £• + _ 
3 2 6 2 2 

p c a rM
2
 O A / 

t 2 + — + //smn//, ,) 
4 3 12 3 3 

- - * + T s . n ( M 

sin(v/w) 

K cos (V*) - K sin (f «)] + — ŷ 
pcarM

2 Qu
2 s s" , / -,(2 _ f 

• + — + A s m ( ^ ) — s + -5 4 20 3 3 

+/<sin(<//M) ' I _ I i + ^
s i n ( ^ ) _ 5"sin(^) 

I ~3 3 2 

\ \ 

/ y 

, .̂ - 1 E F" ( 1 _ ff2 

3 2 6 2 2 sin(w) A + 
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J . ••<•• a . ft cos (P„w ) + Q„ s i n ( / ^ ))sin (i//Af)-(i> s i n ( / ^ ) - Q h c o s ^ ) ) c o s ( y / , , ) 

+[Ph cos ($,,_.) + Qk sin(/3hi>) J sin (i//A/) + [-/>, sin (phr) + 4 cos (fjfh> )j cos(y/M) 

1 pea rh 

2 / , 
« « I T - T + TT fe -cos(^ . ) + a sin(Aif ))sin(^,M) + (-/> sin(/?,r) + 

'•ft C 0 S(/O) cos ()//w) '2 /„ 
-/*\ 

1 ff , £•'' (/>, cos(/?,!() +Qh s in(^) )s in(y / M ) + 

-(-/> sin(A J + a cos(A | r ) ) c o s ( ^ ) J ( l - c o s ( 2 ^ ) ) + i ^ i ^ - A Slu ( i - ~ - + 

(ft c o s ( A , ) + Qh si" (X„ ) ) s in( r ,«) + ( - f t sin (fih:r) + Qh cos(/?Air)) sin (2y/M) 

(2.70) 

Etant donne que le rotor principal presente un ensemble des pales dont chacune est regie 

par une equation de type (2,70), il faut definir une transformation permettant 

1'expression de la dynamique de battement individuel des pales dans le repere moyeu 

fixe. Ecrire la transformation (2.70) sous forme matricielle (2,71), nous permet de 

generaliser la dynamique de battement individuel des pales en coordonnees multiples. 

j = l...nB 'K 

IAJ 
+ HTM) 

' K 

k j 
+ B(VM) 

">," 

A J 

'"./;'" 

k-
X. 

J J-J 
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Wh> 
c o n i n g 

d i f fe ren t ia l ! 
c o n i n g 

Figure 2.11 Modele du disque de rotor avec coordonnees unies [Pad961 

Le vecteur l/j • • • fn> est calcule a partir de la partie droite de l'equation (2.70), en 

rempla9ant i//A/ par y/M . Dans 1'analyse du mouvement des pales, la procedure 

classique consiste a developper, dans le repere fixe, le mouvement de battement en serie 

de Fourier. 

Pi = flo + ( -1) ' (k> + Z P»c cos (» yMj) + pnS sin (« i / /M ; ) 

k = -(nB-l);nB{pair} , ^ / ? ( W = ™ J ( ~ 1 ) ' 

J = 

^=-(n /,--2);«fl{/mpcrj>} 
A=r-S^ «, — 

/, &c= — £ # C 0 S ( W V A / , ) 

(2.72) 

'ij 7=1 2 A 
/3M = 0 j / « , , {//-«/?«//-} /?HiS = — ] T /^ sin I«(//, 
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Ecrivons la transformation (2,72) sous la forme matricielle (2,73) 

0, 

R 
IP,,,, J 

"A" 

A,„ 

. = ?/?=• 

= T 

= T 

A Pic A, Ac A , - /?,,,,. A,.A . A , ^ {/*•«>} 

A Ac A* Ac Av - A^,v / W «B {impair: 

T, 

cos »s(v,w,) sin((//;Wi) 

1 c o s ( ! / v ) s i n ( ^wJ 

1 C 0 S ( ^ , , J sin((/yA'.«,) 

1 cos(^„„) s i n ^ - y j 

1 c o s ( ^ ) sio(y/A/]) 

1 cos(y/A,,) sin(!//M;) 

cosf -(w s - 1)(//Wi ] sin(-(«„ - !)y/Mi J 

c o s ( - ( n a - l ) ^ sml-(/?B-l)i//v/ ; 

T 

«(^ (" B ~l)l/4/,,.1 j sin j - ( n B - l ) w y 

cos! -(«„ - l ) ^ J sin I ~(nB -\)yjt 

cos(-(nA ,- l)i / /M l s i n f - ( / i a - l ) ^ 1 (-1) 

("') ' 

cos 

COS 

'/V,H) s in(v*v) cosf -(/»„ -"l)^v,,fl_, J s i n f - ( « , - 1 ) V V H J (-1)("'"° 

cos 

(2,73) 

La figure 2.1 I illustre les principales coordonn6es unies : de conicite /?„, de battement 

cyclique longitudinal J3tc, de battement cyclique lateral pxs et de conicite differentielle 

fid . Les coordonnees unies peuvent etre vues comme differents modes. Le premier, /?0, 

correspond au mode de conicite - toutes les pales battent ensemble dans un cone. Les 

deux premiers modes cycliques, J3IC , PiS , represented les premieres inclinaisons 

harmoniques longitudinales et laterales du disque, tandis que les modes des frequences 

harmoniques plus grandes correspondent aux oscillations azimutales autour des 
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coordonnees principales. Pour un nombre pair de pales, le mode differentiel, fiod, peut 

etre visualise (pour nB=4, figure 2.11) comme mode avec des paires opposees de pales 

battant ensemble, mais en opposition aux paires voisines. La transformation aux 

coordonnees unies n'implique aucune approximation et les differents mouvements de la 

pale peuvent etre completement reconstitues. La transformation inverse de la forme 

matricielle (2.71) permet le passage du mouvement de battement des pales, de 

coordonnees multiples dans le repere moyeu mobil en coordonnees uni dans le repere 

moyeu fixe. 

Procedant a la transformation inverse, nous calculons 1'equation differentielle de 

battement des pales dont la matrice ID) peut etre vue comme matrice d'amortissement 

aerodynamique et la matrice K comme matrice de raideur aerodynamique. 

0 + B(V,M)0 + K(it,M) i = f{i/sM) (2.74) 

y CTft—1 

/ ; 

Jn„ 

avec HJ = T_1[2t + A(^w)T] 

K = T-'[f + A(^M)t+B(^w)T] 

(2.75) 

Pour calculer l'inverse de la matrice (T), nous procederons a un changement d'echelle. 

P = %§_,: Ts. t 
i»s 

0 0 

0 0 

0 0 

0 0 

v«* 

;T 

n„ 

0 I— 

0 0 

0 0 

(2.76) 
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La transformation resultante est orthogonale : 

T, = T T, T"' = T, T,-1 = Tv
2 T r (2.77) 

En comparant 1'equation differentielle en coordonnees unies (2.74) et celle en 

coordonnees multiples (2.71), nous pouvons enoncer deux differences importantes. 

D'abord, 1'equation (2.74) est maintenant couplee et, ensuite, elle contient des 

coefficients periodiques pour tout vol non stationnaire. La frequence de base de la 

periodicite est directement liee au nombre de pales du rotor. Les termes periodiques dans 

les matrices ne contiennent plus les premieres harmoniques, mais des harmoniques a 

frequence de basse 2 par tour pour un rotor a 4 pales et 3 par tour pour un rotor a 3 

pales. En general, on peut montrer que pour un rotor a 3, 5, 7 pales, la frequence de 

base est 3 , 5, 7 , respectivement et 2 , 3 , 4 pour un rotor a 4 , 6 , 8 pales. Une 

approximation classique consiste a negliger les termes periodiques, ramenant par 

consequent 1'equation differentielle en coordonnees unies (2.74) a une equation 

differentielle ordinaire avec les coefficients constants, qui peuvent alors etre ajoutee aux 

equations du mouvement du fuselage. En l'absence des termes periodiques, 1'equation 

differentielle en coordonnees unies, prend la forme conforme au paradigme de 

l'automatique dans l'espace d'etat. 

2.5.3 L'equation dynamique de l'extremite de la pale 

Developpee dans la section 2.5.2, la procedure mathematique d'approximer la 

dynamique de battement des pales avec les principales coordonnees unies (en executant 

la transformation de coordonnees multiples en coordonnees uni et en negligeant les 

termes autres que les premiers periodiques) est identique a la methode classique de 

developper l'equation dynamique de l'extremite de la pale dans le repere "moyeu-

vent" fixe, en premier ordre avec coefficients variables du temps : 
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P = ao (0 - \ (0cos {y/u) - \ . (t)sin {yM) 

fi = a0(l)~[alr {t) + hlr. (r)0M]cos(V/,k,)-[4H, (t)~ah, (/)nM]sin(y/v/)
 ( 2 ' 7 8 > 

/? = a 0 ( / ) ~ - j \ (0 + 2 \ , (t)toM -«,„ QA/]cos((//M)-f_\ (*)-2aw {r)fiM - \ .Q , W
2 jsin(i//M) 

Egaliser respectivement les termes constants et les termes periodiques de cos(i///W ) et de 

sin(i//w) nous permet d'ecrire l'equation dynamique de l'extremite' de la pale sous la 

forme matricielle (2.79): 

$ + 3$ + K0 = f ; /? = [«„ aXw 1X]r (2.79) 

® = QA, 

24 v > 

0 

- ^ / / ( l - ~ 3 ? + 3g-2~iF3) 

- ^ L / ^ l - S e + S f f 2 - ? 3 ) 

r, 
24 v ; 

-2 ^ L ( 3 - 8 £ + 6 f f 2 - f 4 ) 

K = Q,. 

<P 2 +^ i - / / 2 ( l"2£+ff 2 ) - Zfe«4. // / ^ -1- T ̂ ; 

i 

Ylack 

i 2 , . ( F + 2 r ^ r ) ~ ^ ( 2 - 3 F ~ F ) t a n ( ^ ) 

- ^ . / / ( 2 - 3 ^ + s3) «p*_l + 2 i « L ^ ( l _ 2 J + v2) 2 4 
*-(3-8ff+6ff2-?4) + 

16 v ; 

1 4 V > 

16 V ; 
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/ =" , , / 

rL„ek 
8 3 3 v ' 

Yloek 

5 4 + 20 ' i l 3 I H 6" 

12 12 

7i,c„ 
3 3 2 v ; 

n M V />' a 

• ^ t A ( 2 ~ 3 £ + r ) ^ ™ ^ - A ( 3 - 4 ? + r ) 

•^^ U ( l~?) 5 / ! .~~^^{3~-4F+r l ) /> 

Yi •ock 

8 3 3 2 v ; 

24.a a. 
i + 

crMMfi a, r> 2 

•< ft i ^ A l 1 

/ = "« 

i — + — + 
3 3 

r lock 

2 I T 20 

i/ril-Wf n1 (i s r 
2 3 2 6 

12 
//(2 —3s- +£"'] 

YlMCt 

8 
4£ r_ 
3 3 

+ £ l ( 1 ^ 

rJzLM{2-3e+s3) -^-^(3-Ae+r) 

YM 
8 

4* F' 
-i f 

3 3 

2 v ; 

+flL 

240 , 
(2-3s+s3) 

{ h J >4n..1 ' 24f, 

2 

0 0 

fi„ 

-(3-4/T + fT4) 

24.n„v ; n 
1 

* * , W 

1 
a,. 
A. 

a, 

y^Ar (2 -3F + «:,)/i + 

W 
+: !L{wh + phYh- U, Q„-g) 

'/' 
0 

A partir de 1'equation differentielle de battement vertical des pales (2.79), les 

observations suivantes peuvent etre faites : 
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a. Dans des le repere "moyeu - vent" fixe, l'equation differentielle (2,79) 

contient egalement des coefficients periodiques pour tout vol non 

stationnaire. La frequence de base de la periodicite est directement liee au 

nombre de pales du rotor. 

b. L'amplitude des termes dans la matrice d'amortissement aerodynamique 

est fonction du nombre de Lock y!ljck, du decalage de la charniere ~erM , et 

du taux d'avancement ju et est independante de la raideur de l'articulation 

Kp et du couplage A.', = tan (£3). Pour un taux d'avancement donne, plus le 

nombre de Lock est inferieur et plus le decalage de la charniere est grand, 

plus l'amplitude des termes dans la matrice d'amortissement est petite. 

c. L'amplitude maximale des termes dans la matrice de rigidite 

aerodynamique est fonction du nombre de Lock ylMk, du decalage de la 

charniere WrM, et du couplage Kl = tan(<53). La raideur de l'articulation 

Kp n'a aucun impact direct sur les termes periodiques. Pour un taux 

d'avancement donne, une diminution du nombre de Lock diminue 

l'amplitude des termes de la matrice de rigidite. Cependant, l'effet du 

decalage de la charniere srM et du couplage AT, =tan(<£,) est plus 

complique. Pour Kx = 0, une augmentation du decalage de la charniere 

reduira l'effet des termes dans la matrice de rigidite aerodynamique. 

d. Pour une valeur des entrees : pas collectif <90, angle de pas cyclique 

longitudinal Ah et angle de pas cyclique lateral Bl et pour une torsion 

initiale 6X donn6e, l'influence parametrique sur les termes dans le vecteur 

d'excitation, / , est semblable a celle dans la matrice d'amortissement 

aerodynamique. 
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Dans la dynamique de l'extremite de la pale il y a trois modes : conique, d'avancement 

(ou de nutation) et regressif (ou de precession). L'impacte du mode regressif sur la 

dynamique du rotor et par consequent sur les caracteristiques de manoeuvrabilite de 

l'helicoptere est le plus important. Le mode regressif possede la plus basse frequence 

des trois et il a une tendance de coupler les modes de fuselage. Les deux autres modes 

(conique et d'avancement) ont des frequences naturelles plus elevees de l'ordre de la 

frequence de rotation du rotor et deux fois de la frequence de rotation du rotor, 

respectivement, et leur impact sur les caracteristiques de manoeuvrabilite de l'helicoptere 

est done beaucoup moins significatif. 

La frequence naturelle normalisee et le facteur d'amortissement du mode conique en vol 

stationnaire sont calcules comme 

co... 

a 
. = <*}: 

srMMp Kp pcarj( 

^ — + H 
I Q I 1P \ 

gc = g : 
rLock 

fBq3 
8? 

1 — - + 2W 
3 3 

I s s 

_4 

tan(<S,) 

(2.80) 

Pour le mode d'avancement et le mode regressif, la frequence naturelle normalisee et le 

facteur d'amortissement sont respectivement: 

ft> 

Q). 

l + vp+iyjl-g1 ga 

-JI+<P 2-2^V /I : :7 $,. 

16*p 

Yl.ock 

16^ 

8e __j s 
— + 2s 

3 3 

7 T 4 \ Q, 

86" , S 

vie" - — 
3 3 

i \ Q M 

J C»„r 

(2.81) 

Pour un vol autre que stationnaire, le mode conique n'est plus decouple et les 

caracteristiques de la dynamique de l'extremite de la pale deviennent plus complexes. 

Cependant les grandeurs des frequences naturelles normalisees des trois modes 

preservent l'ordre du taux ci-dessus. II est interessant de noter, que le pas de temps du 
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modele de simulation en temps reel doit etre inferieur a — - (pour le modele 

An 
27 

= 0,4654). 

2.5.4 Modele dynamique de la vitesse induite 

Le concept du modele dynamique de la vitesse a ete developpe par un certain nombre de 

chercheurs, mais repose sur l'idee de Peters et est connu sous le nom de modele de 

Pitt/Peters [PP81J qui supposent que la distribution de la vitesse induite a la forme : 

(2,82) 

«r«iso* y«o* 

v.l I \\ 111 | l l I 
•'•Thv, 

¥«2?0S 
J^M* 

"•* J J v» 

Figure 2..12 Modele dynamique de la vitesse induite 

La formulation generate d'un modele dynamique de la vitesse induite a trois degres de 

liberte peut etre decrite par Pequation differentielle (2,83): 
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M flow 

K 
K 
A 

+ ^ 
X 
K 
A.. 

= 

"Q."1 

Q 

A... PxrM2{rM «w)' 

r 
(2.83) 

Les matrices M/tal, et Iy/(m, dans l'expression (2.83) sont associees respectivement a la 

masse d'air et au gain et peuvent etre derivees d'un certain nombre de differentes 

theories (par exemple, disque de sustentateur, theorie de vortex). Cr, CL et CM sont le 

coefficient de sustentation, le coefficient du moment de roulis et le coefficient du 

moment de tangage, respectivement. Une expression pour les matrices Mflm. et Lflm. est 

donne par (2.84) ou %h e s t 1'angle du sillage du rotor principal: 

M^ = 

8 
3 JTO,. 

0 

16 
45 ;rQ, 

0 

16 
45 n Q, 

V/=J//2+U,- D. r , 
.W 'M J 

M2 + 

1 

0 

64V„, 

15;r • ,[A -tan 

(l + c o s ( ^ ) ) V . 

64V* ( 2 

0 

(l + cos (^ ) )V . 

V*=-

w 
M M J \ M M 

V, 

(2.84) 

2.5.5 Calcul des forces et des moments du rotor principal 

Se referant a la figure 2.9, supposons les angles ft, $r et 0r petits , done <j>r s — et en 

consequence \Jr =u±~ , ars0r+— , &Fx SA£ <j>f +AD , &F.-&L . La force de 

sustentation peut etre calculee par la resultante de forces verticales : 
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2;r 

i< ('-»•) 

/ 7(n*/^) 2o^« J . 1(^+^)^*-^Af / , + /w,(jrA + /i FA-t/A & - g ) 

2* 0
J( 

'A/ 

\ 8 

/,-.<W) 

\ 

d(yM)+ 

[ \ . COS (y/M ) - g v sin (y/M)] \ d (i//M) + 

+J2*. J i jL [> sin(^M) + a r cos((//M)] c%/M) 

#, = ô + ()t {h) - 4 cos (y/M ) - 5, sin (y/M ) - A', fi ; ii 
w, 

(2.85) 

Finalement 

J =-L.pacrM « w 

•(.-r) y(i-r) 

"(l- .̂̂ fl-g)' 

* ( i - * ' ) 

V 

5, -~lm(S,)b, •tan(<5;) 
\i-?)S(i-w) 

M *(1-F) ( 2 - 3 ? + r ) a0 , / i ( l - J ) a ^ 
-a, - Q, 4 O, 

4 O,," 
- nB [a0Mp - mp {wh + Ph Vh - Uh Q, - g) 

(2.88) 

Dans le repere "moyeu" fixe 

"4" 
A. 

V 
A. 

cos(/4a) - s i n f & J 

sin(/?Ai(.) cos(/4 |v) 

cos(A„,) -sin(/?Air) 

sin (A J cos(A„.) 

4B, 

a, 
(2.87) 
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Les deux autres forces dans le repere "moyeu - vent mobile" sont calculees comme : 

;(WH) - " j £{nu rMf uj c[a{er+*,)tr-Q]&„ = 
0 

<i;(l-f> 
(2,88) 

J y ( n « ?M )2 c [a (MX «„ 0f + w„2) + « / Cd 

/(!-?) 

F™=pFj™=p J £ ( Q M ^ ; f a C H l
2 ( ^ + ^ ) d r , (2.89) 

Selon (2.55), les forces (2.88) et (2.89) sont calcul6es dans le repere "moyeu - vent" fixe 

comme : 

II n,=^]^Fri)s\n{,^) + F;^cos(^j]d^M) (2.90) 

Yw=- %L*][-F™> cos (^ ) - / ^ ' sin ( ^ )] d ( ^ ) 
2^ 

(2.91) 

Le signe negatif devant l'integrale est ajoute pour respecter le triedre direct, compose 

des directions des forces [Hw YW T]. 

Dans le repere "moyeu" fixe : 

XK. 
lMR 

cos(/?v) s i n ^ J 

-sin (ph J cos(/?Air) 

Le developpement analytique des expressions (2.90) et (2.91 

respectivement par les relations (2.93) et (2.94). 

(2.92) 

est presente 



89 

/ / , f = ^ / > a c V ^ / • - J—^ J ^ L L ± [ 2 ; , ( i - g ) > l 0 + ( i - f f - ) 4 - / i ( i - e ) -2 . 
2 \ la 4 ii.n 

2-3g+g3 j 4 -3g-g 3 2( l - f fs)PAcos(Aj + e A s in (A j 

3 n„ 
-a, + 

i\ 
M^~£2)Ar 

l.(l-e% 

-j.1 
2-3e+s> 4 3-4g+g 4 *„. 3~2g-g 4 ( l -* 4 ) ?* cos(A J + & s i n ^ ) 

a. 6 a. 
a, +-

a 

i?lr>. --tan(4)/\. 2-3g+g' ' 4 3/ / ( l -g) ' b 2-3J + E2
 h _ n , 3 /*( l -*U 

3/./{l-J2)/>ftcoS(A,!.)+aSin(/4T) 

n, 
-tan(<53)a1 

A 
( l ~ g ) 2 iK [ 2 ( l - g 3 ) ^ 

4 Q„ 3 

fc\. 

- ••'• A , - /.J - •'• * , _ + j.1 - - - - ••• - -

i— ^w ^ i> it I J 

^(ii.i):A,+ 
A) 2 n„ 

3-4e+F2 

4,4, A, 
(i-r) 2~-3<s-+£'" <i0 

6 a" 
( ! - * • > ) 

- + / / - 77 -«i 
/'Acos(Ai() + Q,Sin(A i() 

O,. 

^A>^K) + ̂ Ih^^.(1.f)^_fc£!l^ 

+,w 16 

/ a, & —— + a. 

o. 

b, \ {\~r-) , 2~e 
+ a.r + -

4 " 8 

& I , 

- a, " + — : — b. " 

2-3s+ei 

12 
a. -JL- + al.\ -J~ + b, 

(2.93) 
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Yw^^Pach;a 4 Q 2 #0-tan((5,)a( 
\\-r-) , 3(1-*)2 2-3e+e3 <*, 

-\-fi-
12 CI. ~ + 

ft.,-

' 4 - 3 * - ? ' u / f l ( lz£)L (l-g3)-^sin(A,,) + a c o s ( A j 

12 J2, 
+ « 

O^3)^ Ap-g3)t 

24 Q M 

3~2M%^!iLf2)l, , ('-^-^""(AJ+acosfAj 
12 

\ . + " 
y 

8 «„ 

6 2 , 1 6 a , ' 8 '"' 8 

-hi 
( l - g ^ - ^ s i n ^ J + a c o s ^ J 

16 Q,, 

/JL(, ~tan(J3)(/u 2z3£±HA.-(i_^)^_i£ilz£)^ 
3 a, v ' * 2 

-/< 
(1 - sf \ . {2 + e- 3e2) {l~z2)Ph cos {p„w ) + Qh sin ( /^ ) 

4 i \ 
-'h~l-> 

o„ 
(\-s)~ ax 

' 2 a , 

3-4e+s~ , , 
•+ ^ \ + 

' ( l -?2) 2-3? +J3 a0 7(l-s2) 
^i L . -2-+//- v ' • 

6 O, 16 

-/JSin(An.) + e*cos(Aj 

+/< 

1-ir3 5(1-?2) 
— o ^ - ; ^ t -^1 —£ l / i 0 A v A,.Ctn + 

CI,. "> Q „ y ' " ' 4 

16 
12a,-"2 t-7a, k (-5A. L -

^ " « " M " M 

A. 1 (1-fJ3 o0 «,„. , „ 0 ^ ) / ^ ^ i:v f / i : : . i 2 ( 5 / U + H N 

2-3E+S* \ 

yClM '' j 

(2-5? + 4e'-s3) a0 (1-?) 

O. 
/;, _ - /i - — — f 6^ a, + 4// «0 a,̂  - au, bv J 

(2.94) 

file:////-r-
file://-/-fi-
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Dans le repere "corps" les forces cr6ees par le rotor sont calculees comme : 

:; (fi) 
KM 

X 
-1[ MR 

m 
= Rot B*-H 

• ( W ) 

= (Rotw < . . .B)' 

~A . 

'MR 

«) 

= [ -YAWi ',MA. Awe J " ^ i w w 

(2,95) 

Le moment de roulis et le moment de tangage et le rotor couple sont calculees dans le 

repere "moyeu - vent" fixe comme : 

M'-*) 

2,-r 

2rc i 

j r^F^sm^dr,, < " K ) ^ ^ \, - ^ ^ ( i -2^nM - VV) 
y 

(2.96) 

M'-*) 
J r i A F z

( W H ' c o s ( ^ M ) d r 4 

(2.97) 

Le rotor couple est calcule comme : 

N = ^1 
J V A « « 

2 !̂" J 

»«(i-2:) 

d(vM) (2.98) 

Dans le repere "moyeu" fixe : 

MM 
(n) 

cos(j3hn) sin(/?AJ 0' 

- s i n ( A r ) c o s ( A r ) 0 

0 0 ! 

Mw 

NUB 

(239) 

Dans le repere "corps" les moments crees par le rotor sont calcules comme : 

(B) M { ' =Ro t M (n> + f U ) F ('«) , PS f B ) l p (B) J^^^fM/'l^]^ (2.100) 
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Le developpement analytique des expressions (2,96), (2.97) et (2.98) est pr6sente par les 

relations (2.101), (2.102) et (2.103) respectivement. 

2 [ "' g 

"" nnrr < 0 2F" 1 i f i i Z f l i 
—pactu ilM b < 

d0-\w\{5.i)a0 

K 

^-s%_ti{\-e)2 4 A2-3*+r)(* 
3 4 Q, 12 -a 

( 1 - g 3 ) 3 ^ ( 1 - g ) " 

6 8 

/ / 2 ( 1 - F ) . 

B, - tan(S,)b, 
• 

K, J 

8 

/ f ( l - g ) ^ ( l ~ g 2 ) A (1 - £3) [>* cos(f)hw ) + a sin (A(!,) 

O, 

(2.101) 

T - n B 

* 2 

eruMR 
:fi ^ . ' M

?
 p (a v + 2\ .QA , - a , r f i w

2 ) 

( l - * 3 ) V ( l - s ) "ft 4 r\ 1 — 

{ \ 

4,(. -tont^ja,, 
/*(l-*2) . V ( i - * ) 

4L + 

(2-3?+r)/x î (i-r)A, i (i^r)-/;,Sin(A,ff)+a,cos(A„..) 
12 ( Q , Af / a 

(2.102) 

2 4a 
3-4/7 + ff-

+ //2(1-*)2 <9„~tan((X,)a(l 
2-3F+J3 . A O - ^ ) " 

6 H 4 

„ _j B , ••-• - f ^l Q\ _ "i 

* * A / " JW 12 n„ 

4 r -tan((5,,)«, 

12 
3-M + 6F-S (<h, 

n .« '" J 4 " 
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3 - 4g + g" -//, sin {phw ) + Q, cos(/?,a,) 

o». 

/ j ( l - g ) J a0 3 -8g + 6 g : ' - g " f *.. 

*, ^ 
fiv-tan(^)A1 

3 - 4 g + g 4 ^ c o s ( / ? v ) + a s i n ( f l r ) 

24 fi ~ 

6 O,, 24 O, 16 '»' 4 12 

6-1.5g + 1 0 g 2 - g s a0 ^ ( 3 - 8 g + 6 g 2 - g 4 ) ^ / Qg(2 -3g+g 3 ) //(2 + g ) ( l - g ) 2 

30 fl. 24 O, 12 4.-

3 - AW + g" . A (3 - 4g + F") P„ cos (A T ) + ft sin ( / ^ ) 

12 

0-g)4 

8 

fi,. 16 
(4a„2 + 3alj(.

2 + \ , 2 ) -

21-^2-

x 2 

+ I ^ + V I + 
s\ 

( l -g)3 A, ^(1-g-yf «„ .. . <*,„ 
+2/1,, 

3 a. 
-a, + a. 

ci * n 

3 - 8 g + 6 g 3 - g 4 

12 
— » — a 

Ph cos( A?) + ft s i n ^ W ^ + ̂  ) -P„ sin ( A , ) + & cos( A , ) 

n, a. a, 

ft.,. 

4.0-ef/, \ ^(l-s)3 , //(2"3g+g')a0-/iSin(A]i.) + acos(/?„J 
• ( A i + w J - i ' - ^ a0b, + 

3 - 4 g + g4 >* c o s( f i>,, y) + OH s in (P, ,„ ) 

O, 

24 

( 1 - g ) 3 

Q. - + \ k 

o, 

a 
va„ " , 

- n s m ( A „ ) + a c o s ( / ? / l r ) 

153 

(2 + e)(\-s)2 P„ cos(phw) + Qh sin (pihr) -Ph sin (pK) + Qh cos (p,n) 
K-\ • A. 

a n„ 

(2.103) 
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2.6 Modele du rotor de queue 

Le rotor de queue fonctionne dans un ecoulement d'air complexe, en particulier lors 

d'un vol a vitesse reduite, pres du sol, lors d'un vol lateral et lors de la transition du vol 

stationnaire vers un vol en palier. Le sillage du rotor principal, ainsi que 1'interaction de 

Pecoulement d'air de Pempennage avec le rotor de queue cr6ent un flux fortement non-

uniforme qui peut dominer les reponses du modele du rotor de queue. Supposant le rotor 

de queue comme un rotor de balancement (en anglais teetering rotor), avec un angle de 

conicite aor constant, une premiere approximation consiste a ignorer les effets non-

uniformes decrits ci-dessus. Etant donne que la vitesse de rotation du rotor de queue est 

suffisamment grande (~ 3Q;M), la dynamique de l'extremite de la pale peut etre ignorer 

et le rotor trouve son regime etabli instantanement. 

Soit V7 la vitesse de Porigine du repere du rotor de queue et (cgt) = 
/, 

h 
sa position 

dans le repere du constructeur. L'helicoptere UH-60 de Sikorsky est concu avec un 

rotor de queue incline sur le tribord du stabilisateur vertical, dont P orientation est 

obtenue comme une rotation de Ora = 20 par rapport a ie. Pour le developpement des 

forces et des moments aerodynamiques, nous avons introduit deux reperes additionnels 

"rotor de queue" T et "rotor de queue - vent" WT. 

Pour le vecteur ij,/0 ', la vitesse V7 et le taux d'avancement jur, nous pouvons ecrire: 

hi ^ ° V H > hi 
(O) = Rot^<?( (0) 

r.„ - r„ r) 
(B) 

'TR 

h, TR 

= Rot.^C7 (cgt - (cgb + Acgb)) = Rot A*-& 

(W 
b, 

A 
-

\h+^b~) 
bh + Abb 

hh+i\hh ) 

(2.104) 
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V (T) - Rot XiB)+{**,, "V") 

Yr (T) 

u, 
y, 

v r
< 5 ) 

1 0 0 

- " / • = 

^ / ^ ^ ^ I 

Rot,,..B 

•[&*x
w] 

(2.105) 

(2,106) 

> V . 15 7~> J '7» 

Figure 2,1.3 Orientation du rotor de queue (UH - 60 de Sikorsky) 

Avec un angle de glissage J3hr et a, Tangle d'incidence par rapport au plan du rotor 

de queue de rayon rr, la vitesse angulaire dans le repere "rotor de queue - vent" est 

calculee comme: 

J3t, = tan" 
( y \ 

a, = tan" 
W. 

vVOffy 

P 

R, 

cos(# i r) s i n ( # J o' 

-sin (/?,..) cos(/?„.) 0 

[-/>-
ft 
R, 

5 

\P,~\ 

a 
R, 

= Rot TiB ft 

(2.107) 

(2.108) 

R0tyVT< . . .r 
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Les expressions de battement longitudinale (alTw ) et lateral ibn]f J sont calculus par (2.109) 

' 7 « 

tm{SyrR)\\+-ii!
2 

( M^ 

1 + Mi 

tm(S,m) 
V 

fm 

\-*- + tan(#,7H) 

V Km< J 

EL 
2 

2 ^ 
i 3 • 
\+-MT~ 

2 ' 

/• 4 
2 t a n ( t S ) 7 K ) -*or 4 

P cm aTR rr 

16 1 

1 - 1 6 

'/STR 

ar 

Miw 

fir. 

Mr \~~9w+20vr + 2XrR 

(2.109) 

ou 0or et 0r/. sont respectivement le pas collectif et la torsion initiale de la pale du rotor 

de queue. La vitesse induite normalisee du rotor de queue A,rR peut etre exprimee sous la 

forme generate (2,109) en fonction du coefficient de la portance du rotor de queue CT : 

3 _ V< w. cr 

T'T fl7.rr 2 V V + V 
( 2 . 1 1 0 ) 

Les forces aerodynamiques et le rotor anti-couple dans le repere "rotor de queue - vent" 

sont calcules par les expressions {2. i ! \), (2.112), (2.113) et (2.114). 

f =HsL.fla c r3 Q 2 1, 
3"'" 2 

2 \ 

»«T '+ 
(l + Mr2 

On 

Kim 

- tan(^) 1 + ̂ -
2 A 

a0T +Mr 

tm(Sym)b„w MrPhf 

J 4 a, 

(2.111) 
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+^r 
3tan(^37R) ^ ^« i7(). 

16 
-by,, + 

( Kvin 
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tm(S3n) a0T MTK 

i>cos(/?fr) + g (sin(/?,r) 

- ^ s i n ( ^ r ) + Qcos(/i/i(F 

o7, 

y =H$Z.oa c r
 3 n : 0O7.-tan(<S,ra)aor 
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u\rw ~ uor 

em.~tm(Sm<)aX) 9 tan(5, ra) 

6 8 r 16 '"' 

+ 2 t-/'r16«,zfl. 
7 V - ^ sin (A[f ) + Q cos (/?,„„ ) 3 4 A - , 

Q r 
4 - + l g - / f r ' |«or%, + 

.OSL + Bilt* 
6 ' 16 

(tan (<?„,, )aly„, +5^ , . ) 
i>s(/?,(.) + 0sin(/?,J ^ 

- « i / ; A ) + t a n (^™) J " ( ^ + ^ « , 7 , ) - * , 7 B , 6 2 

(6/},)rfl07, -

.EL aoT+'irK1 
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Nm=-^-pamcmrT*Or
1 

Km, 

4 a T O
l / f ' 3 w 4 

/4 
* l « 

^ir-ta.n(dVA>)a0.r 
aT: 

^ c o s ^ J + a s i n f ^ . ) 

fi. 

«I7« 

-tan (£,„,) 
6 8 16 '"' 

^ 

+ * * 
/ ^ w ^ , /</%„ 

3 8 " lT,r 4 

-^s in (&J + acos(Aj 

fl, 

.Br ...I An. •'• J . 3 . , 2 , ». 2 \ ^Oi" / i , , , , . , \ . /"/ 

16 
(4«or" +3au,,: +fe17.(/)--ffiL(^r +^.a,^ ) + i X a , , ^ . _ 

1 I" 2 i ' 

- aY, +b„ -
P, cos(/i,r ) + a sin(/?/H, )Y f-P, sin(A!f ) + & cosf/^) V ( 

+ 
a, 

(2.114) 

Selon 1'approximation S6, le coefficient de trainee CAv/ dans l'expression de la force de 

trainee (2.112) et du rotor couple (2.114) est calcule comme une fonction quadratique du 

coefficient de portance du rotor de queue CTm : 

C -k +k C 2 (2.115) 

Dans le repere "corps" les efforts crees par le rotor de queue sont calculees a partir des 

expressions (2.116) et (2.117): 

!> ( f i ) 

1 0 0 
o c ~ v 

0 *-Vs
 c-*ra 

cos(/i/(),) -sm(fi,r) 0" 

sin ( A , ) c o s ( A j 0 

0 0 1 

(B) 
M/"'=(RotK_T)'[0 0 N^+Ur% 

RotT«-vvr 

(2.116) 

(2.117) 
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2.7 Modele atmospherique 

La pression, la densite d'air et la temperature ont une importante influence sur les 

parametres aerodynamiques de chaque aeronef. Etant donne que les helicopteres volent a 

vitesse subsonique et dans la troposphere (sous 36000 pieds), la temperature moleculaire 

Tmol et la pression atmospherique palm statique peuvent etre calculees par (2.118): 

'mol " 'molO ' •'•mo/1 "all 

avec Tmo/0 =288,15 [K] -la temperature au niveau de reference (de la mer), 

p0 =101325 |Nm"2 | ou [Pa] est la pression statique de reference, 

g0 =9,80665 ms"2 | - 1'acceleration de gravite de reference, hall - l'altitude en metres, 

lmoli =-0,00651122 -le gradient de temperature et R ^ =287,039 [j K"1 kg"'] -la 

constante specifique du gaz. 

2.8 Linearisation du modele. Derives de stability et de commande. 

L'etude detaillee de la stabilite et de la commande d'helicoptere est une question 

complexe qui est au dela des objectifs de cette recherche. Par consdquent, une approche 

plus simple sera adoptee, se servant de plusieurs simplifications usuelles : la vitesse du 

rotor demeure constante ; dans les conditions de vol d'equilibre, la dynamique perturbee 

du rotor est le resultat d'une serie de conditions de vol etablies ; le rotor est considere 

comme un systeme repondant instantanement a la vitesse lineaire et angulaire du centre 

de masse de l'helicoptere. La th^orie de stabilite et de commande de vol vise 

principalement a trouver les facteurs impliques dans la conception des qualites de vol et 

en general a faire une evaluation precise de la reponse d'un aeronef aux entrees de 

commande et aux facteurs de perturbations. Le rotor principal fournit la plus grande 
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contribution a la stabilite de l'helicoptere et sa dynamique (principalement de battement) 

est la plus importante. 

Les derives de stabilite et de commande sont attribues a George Hartley Bryan qui, en 

1911, les a developpes pour etudier la stabilite des avions. En utilisant sa methode, la 

variation d'une force aerodynamique ou d'un moment correspondant est exprimee en 

serie de Taylor des variables independantes. Pour developper le modele lineaire de 

stabilite et de commande, seulement les premiers termes sont maintenus. Pour notre 

systeme, les variables independantes sont subdivisees en : variables principals xB , 

variables d'ordre superieur xR, variables de commande x r et variables de perturbations 

atmospheriques xP • Par convention, les principales variables independantes utilisees 

sont les vitesses lineaires (uh,vh,wb) et angulaires {ph,qh,rh) du centre de masse 

d'aeronef et l'attitude du fuselage {Oh,&h,^¥h). Les variables de la commande sont 

(90,Alc,Bls,9or) et les vitesses lineaires (V,vy,wA , et angulaires {pK,qrr)^ des 

rafales sont vues comme perturbations atmospheriques. Les variables d'etat du systeme 

de commande peuvent etre exprimees en tant que deplacements des leviers du pilote 

R = (r)mll,r]latt,>ilm,s,r/pecial)' ou angles de pas des pales [9Q,9U.,9]S,9TR] . Chaque 

ensemble de variable semble adequat, mais les deplacements des leviers 

{jlcon>Jlfoti*rlhng*Tlpaiai)^ la perception du pilote (attitude, position et deplacements par 

rapport au repere inertiel) avec X[ =(urv1,h = -wt,0h,9f,,y/h,ph,qh,rh) est le plus 

conforme aux criteres de la qualite de vol. Pour l'helicoptere, les variables d'ordre 

superieur incluent les variables de la dynamiques du rotor principal (de battement, de 

trainee, de torsion des pales), les variables de la dynamique de la vitesse induite et 

modes de torsion de la cellule. L'application des lois de mouvement de Newton a un 

helicoptere en vol mene a un ensemble d'equations non lineaires decrivant revolution de 

la trajectoire et de l'attitude du giravion avec le temps. Le mouvement est attribue a un 

systeme orthogonal, fixe au centre de masse du fuselage. Dans la section 2.4 et la section 
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2.5 nous avons discute comment ces equations pouvaient etre combinees ensemble sous 

la forme d'equations differentielles non lineaires de premier ordre : 

xs=/ f l(x f l ,x«,xc ,x / 1 ,f) 
(2.119) 

La dimension du systeme dynamique depend du nombre de degres de liberte inclus. 

Pour le moment, nous considererons le cas general de dimension [xB,xA,,x(,] e 1R". La 

solution de Pequation (2.119) depend des conditions initiales du vecteur d'etat, de la 

( /* (x ,x ,,x .,/) 
B v_fl>_/v>_<..» / e t ^ e j a ( j y n a m j q u e 

./ft \ 2ifl »—R' —€' ' ) 

de l'actionnement du rotor principal et du rotor de queue, introduite par la fonction de 

transfert GA (s) Mix, dont la realisation interne dans l'espace d'etat sera approximee par 

-kAI4 M.a 

kA /, 04x4 
. Generalement, l'actionnement du plateau cyclique/plateau collectif 

inclus le modele des commandes de vol electriques fifiore JLM (en anglais fly-by-wire), 

mais ces derniers ne seront pas pris en compte pour ne pas augmenter d'avantage l'ordre 

du systeme. 

^ 

20 

•10 

60 

HO 

Module dynamique de factionnement du plateau cycltque 

———— Actuators Series 

— — ADOCS_act 

— — — - UpperBoost_act -

\ : 

Frequency (rad/sec) 

Figure 2.14 Lieu de Bode de l'actionnement du plateau cyclique 
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Le systeme de commande utilise l'interface schematise de decouplage statiqueMu a la 

ligyrc.2Ji et impose comme entrees de commande les deplacements des leviers de 

commande dans la cabine : longitudinal rjlom,, lateral rjlaU, collectif ijcolt et palonnier 

??'pedal • 

Collective 
Position 

M-AT 

X TR 

10 in (up) 

0 in (down) 

Lateral Cyclic f 5 ln (right) 
Position < — 

-5 in (left) 

Longitudinal f 5 in (fwd) 
Cyclic Position < — 

XLONG I " 5 i n (aft) 

Tail Rotor f 2.69 in (rt) 
Pedal Position < — 

-2.69 in (It) 

1.67in -9.9° 
bias 

-0.2567in h 

1,67in 

0.4647in 

-2.837in 

1,637in 

-5.547in 

1.607in 

-7° 
bias 

25.9° (up) 

9.9° (down) 

Collective 
Pitch 

9o 

o° (right) ] Lateral 
• > Cyclic Pitch 
-0° in (left) j Aic 

-12.5° (aft) 1 Longitudinal 
-+• > Cyclic Pitch 
16.3° (fwd) I Bis 

0.1° (right) 1 Tail Rotor 
-»* [ Pitch 
29.9° (left) I 0 T R 

Figure 2.15 Interface schematise de decouplage statique [JC911 

Malheureusement, les solutions analytiques des equations non lineaires generales (2.119) 

sont extremement complexes et leurs applications sont limitees. Ce n'est pas le cas des 

approximations lineaires du mouvement non lineaire general. Le principe de la 

linearisation est la condition que le mouvement peut etre considere comme perturbation 

par rapport a l'equilibre ou a un etat d'equilibre, 

X = X,+Sx (2.120) 

supposant que les perturbations sont petites, et que les forces et les moments externes 

peuvent etre representes en tant que fonctions analytiques des variables perturbees et de 

leurs derivees. Le theoreme de Taylor implique, que si le vecteur des forces et des 
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moments (fonctions des charges aerodynamiques) et toutes leurs derivees sont connus a 

n'importe quel point (l'etat d'equilibre), le comportement de la fonction (2.119), 

n'importe oil dans sa partie analytique, peut etre estime a partir d'une expansion de la 

fonction en serie, aux environs du point connu. Les forces et les moments peuvent alors 

etre ecrits sous la forme approximative : 

" ' Z E ( B ) " 
HM<B> = 

ME. 
+ 

~dE~ 

'%/j + 

" dF " 

dM <«» + 

" dF ' 

SxR + 

' dF' 

MR 

dM 0XR + 

dF 

dM 
Sxc + 

' 3F " 

dM 

dx(. 

Sxc + 

~ 8F~ 

dM 

Mr. 

OXn 

(2.121) 

La fonction (2.1.21) peut etre habituellement augmentee avec la dynamique de 

l'actionnement du rotor principal et du rotor de queue et ecrite comme matrice de 

transfert GB(s) ou matrice de transfert GB/P(s) avec perturbation atmospherique, dans 

l'espace d'etat sous la forme matricielle (2.122): 

E„ SxB = ABB SxB +Am SxR + kAAB(: 8xc + BBl,.SxF 

E* S\R=ARB $xB+ARR SxR + kAARC Sxc + BKP.SxP 

dike =~k,J<i *c +Mlx Su_ 

y = $X.B 

E s S\B = ABB SxB + ABR SxR + kAAm: Sxc 

E/( SxR = A,w SxB+ARR Sxg + kAARC £x c 

y = SxB 

(2.122) 

A1W = 

dF 

faB 
ABR = 

dF 

dxr, f*.«=¥»/'1 

A, 

dF 

dxc 

dM 

dxc (2,123) 
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La condition que les charges aerodynamiques soient des fonctions analytiques des 

variables perturbees est generalement valide (l'hysteresis et les discontinuity des 

charges aerodynamiques sont des exemples du comportement non-analytique). La 

validity de la linearisation depend du comportement des forces a petite amplitude, c'est-

a-dire quand la deviation (de la valeur d'equilibre) de la commande ou la perturbation 

deviennent tres petites, l'effet lineaire devient dominant. 

2.9 Les equations d'equilibre 

Les equations vectorielles du mouvement d'un aeronef sont normalement resolues dans 

un des reperes : corps, stabilite ou vent VV qui correspondent au trois type de systeme 

d'equilibrage de la soufflerie. Si le systeme d'equilibrage est aligne avec la ligne 

centrale de la soufflerie, les mesures (et les derives de stabilite) sont donnees dans le 

repere "vent"; pour produire les conditions de derapage, le systeme d'equilibrage est 

monte sur une base tournante en lacet et le repere en question est le repere "stabilite"; et 

dernierement si le systeme tensiometrique est fixe a Pinterieur d'helicoptere, le systeme 

de balance est dite "corps". Traitant de la cinematique d'abord, en se placant dans le 

repere "corps" B, on a la somme vectorielle suivante : 

Vw = Vta. + V„,,w=V/s
(B'+Av (2.124) 

avec V/w la vitesse de vol par rapport au Pair, Vm
m la vitesse de Pair par rapport au 

repere inertiel, Vy la vitesse d'equilibre et Av la deviation de la vitesse d'equilibre. Si 

lVf\ est la norme du vecteur de la vitesse d'equilibre, (<[>,,, &E) les angles de roulis et 

de tangage en equilibre, J3F Pangle de glissade (en anglais side slip angle), aE l'angle 

de la trajectoire par rapport au Phorizon, QE le taux de rotation (presentee a la 

figure 2.16). Les composantes de la vitesse d'equilibre dans le repere "corps" (£?) ont la 

forme : 
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UE = V/f (cos (©K )cos [aE) cos (4'e) - sin (0/;. )sin {aE )) 

Vj; = | Vfr I [cos (d>£) cos [aE) sin ( ^ ) + sin (<£>E) (sin (0fi) cos (aE) cos (4'£ ) + cos (0f;) sin [aB )) 

WE =\\fj. ir-sin(<&£.)cos(a£-)sin(^J + cos(Ot.)(sin(©£)cos(a£)cos(^£) + cos(@£.)sin(arfi))] 

(2.125) 

ou Tangle de poursuite de trajectoire d'equilibre (en anglais track angle) CF est calcule 

par T intermediate de la solution physiquement valide de la relation quadratique : 

sin (#*) = -*„ + * * " * * 

ou les coefficients k.., i = 1 -.5 sont calcules comme : 

k = sin ($>t.) 801(0,,,) cos (aK) k/ 

k - cos (<t>/f)cos[aE) 

k = sin (PE ) - sin (d>£ ) cos (0£,) sin (aE) ^ 
kr

2+k„2 

Les composantes du vecteur de vitesse angulaire sont calculees par : 

(2.126) 

(2.127) 

CO HIT 

p* 

QE 

[RE\ 

+ 
Pb 

<ib 

Jb_ 

= 

-~QE s in (0 £ ) 

Q£sin(<I>£)cos(0£.) 

fi£cos(Ofi.)cos(0v,) 

Pb 

(2.128) 

ou les deviations des valeurs d'equilibre sont designees par des lettres minuscules. Pour 

completer les parametres initiaux, definissons les variables dependantes awb J3wf, et qw 

respectivement Tangle d'incidence, Tangle de glissade et la pressions dynamique. La 

vitesse (vw»4,).4+(vw«./^J../A definie la direction de la Taxe i>v dans le repere vent 

(yy) et jM, est definie par le produit vectorielle j w -
kff x V t t 

ke x Vw 
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Figure 2.16 Conditions principales de vol d'equilibre [Pad96] 

aKh = tan" 

Pvb = tan" 

V V 4 J 
-n<aKb <K 

-yb>\h (2.129) 

q. = o,5p(vw.vM) 

La masse specifique d'air (p) au niveau de reference, dans les conditions de 

temperature et de pression standard est fixee a 1,225 [kg m"3] ou 0,002377 [slugs ft"3]. 

Remarque : Notons que les valeurs des angles de roulis et de tangage en equilibre ne 

sont pas libres. Elles sont calculees a partir de la resolution simultanee des 

equations d'equilibre du corps rigide. 
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Remarque: Pour certains cas de vol acrobatique, les parametres d'equilibre initiaux 

sont calcules en fonction du facteur de charge. 

Figure 2.17 Definition de Tangle d'incidence et Tangle de glissade 

2.9.1 Les equations d'equilibre d'un corps rigide 

Pour un aeronef en equilibre, les forces et les couples aerodynamiques equilibrent les 

forces et couples inertiels, centrifuges, et gyroscopiques verifient ]T Ffi. = 0, ]T Mf = 0. 

En realite, les valeurs acceptables sont de l'ordre de : 

^AFE <mB 10~\ J]AM£ <0,5 4 10"4. 

Le modele lineaire perturbe (2.132) est developpe en premier ordre autour des 

conditions d'equilibre (2.130) et (2.131). Le modele est base sur la supposition que le 

changement dans les conditions de vol de l'helicoptere peut etre represente par la 

superposition de l'ensemble des effets lineaires sur la dynamique du systeme, provoqu6 

par les changements des variables independantes. Dans un systeme complique comme 

un giravion en vol, la supposition de linearite est mathematiquement correcte seulement 

pour de petites perturbations autour des conditions d'equilibre. Les composantes en 

equilibre portent l'indice E. 
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XME + ^rE
 + X-FE + X-uH + ^ 

mu 

YM + Yr + YF +YV 

^ & ~ ^ . R B + gs\x\{®E) 

•• UE R, - PE WE - g cos (&E) sin (cl)£,) 

zMi!+zr>;+zFE+zHi;+zVi; •VEPE-QeUE-gcos(&ls)cos(a>E) 

(2.130) 

Z M * £ + ( ^ - ^ ) ^*« + / « ( « / ~ PE ) = 0 

Jxx ( Z * », + ("A* - ^ ) ^ & - JxzQKRe ) + / « ( Z K E + (Jrr " Az ) G A + •/« ^ & ) = 0 

(2.131) 

Considerons le modele non lineaire de la forme (2.119). En evaluant le modele autour 

d'un point d'equilibre pour de petites perturbations de type (2.132): 

)••• . , . . - - ™i T 

2£:::::: \JLB ?2£/f >21c J 

(2.132) 

fiE+fi PE + P k+l ;P = [a0 «!„. \ .J ;4 = |A 4 4/ 

* c = K : + 6 o Ast+As BH-F+BH* %+$«, 

le modele lineaire perturbe s'ecrit comme : 
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y j +y_ 
3 j l ( 

ox, • + (RE+r»){rE+vb)-(Qls+q>)(WE + wi)-gsm(®l! + et) 

2X+i-
3 1 1 ' . 

Yz, +y ^ 
dx, 

w. 

A 

- ( ^ + ft)(J^ + w t)-(^+/i)(f / / r + «*) + g[sin(0E+^)cos(«l) J f+^)] 

' (&: + % ) ( ^ + «»)-(/£ + ft )(*'* + vj) + g[cos(0f i +04)cos(«c + A)] 

J7! 

J xx^zz ' xz 

1 ^ 
I X + 1 H -+(4T -^»)(efi+%)K+'»)+^2 to+ft )(&+?») 

ox, 

J XXJ 7Z .VZ 

in*. 
Y ^ + ^ - ^ _ z + ( ^ -yw )(/»E+A)(&+%)-,/„ (a +%)to+/») 

%: 

•AT 

''XX''Z7. ''X2 

J, 

V v 

dx 

' ' x V ' Z Z •'JK5 

5 IX 
IX+I ^r Z + (-/n-^)(fi,+^)(^+'i) + /«(^ + ft)(&+^) 

(2.133) 

En supposant cos [<f>h)«1; sin ($ , )»$, ; cos (fy)»1; sin (6>A,)« ^,; cos (i//6)«1; sin (y/6)« y/b, 

ainsi que le produit de deux (ou plusieurs) variables perturbees soit nul et tenant compte 

des relations (2,130) et (2,131), nous pouvons reecrire le modele lineaire perturbe : 
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5X+I x 
SJ< 
dx, 

Jr. +Y i '-

m,< 

A-v* + VK-rb ~Ql:-
wb -WE% -j?.cos(0K)^, 

• PFwt, + We.Pb ~ RKub " UErb + g[cos(®i;)cos(®e)6i, - s i n ( © A - ) s i n ( * / • : 

2X+E-
fi^ 

("X 

-^—•+a«*+^/f?»-'>fiv4-f''fiP»-g[sin(©£)cos(<D£)(?4+cos(©K)sin(*s)A] 

5fl4 
ft 

••'xX-'/.Z ' X7. 

Jxz 

Y-Hz-^L+(Jrr-Jzz)(QErh+RE4l,)+Jxz(PBgl>+QI1P>) 
dx 

JXX JZZ JXZ 

£ { i J+(Jxx~Jn)(re<h + QEPb)~JXz(QEn + REgb) 
ax, 

% 
Jyy 

Jyy 

9 I X 
E - 4 — - ^ + (yK - . / w ) ( / ^ + REpb) + 2Jxi (RKf), - PEp„) ox, 

/ / - / l 
J XX''ZZ J XZ 

8 2X 
I - ^ + (•/« ~ -^ ) (PEq„ + QE Pb) - Jxz (Q^ + RM) 

dx, 

I j _ / 2 

^ xx,J zz '• xz 

3 I 4 
I - ̂  -+(•;»• - -^) (e£'»+R^„ )+•/« ( ^ + a A ) 

(2.134) 

qui est une forme particuliere du modele lineaire (2.122), presentant le developpement 

de la premiere equation seulement. 

Nous avons ainsi obtenu le modele theorique et lineaire d'un helicoptere en toute 

condition de vol (2.122), que nous allons appliquer maintenant a un appareil: 
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Phelicoptere UH-60A (BlackHawk) de Sikorsky pour le mode de vol au voisinage du 

vol stationnaire a 60 [pi] d'altitude du niveau de reference. 

Pour le vol stationnaire et le vol a basse vitesse avec une reference visuelle, 1'ensemble 

le plus raisonnable des variables de sortie est constitue par le vecteur 

x, = x,, j), h i h = -zX^h,6hf i//h, pb, qh, rh dans lequel les (S) devant les variables 

sont omis pour simplifier Pecriture. Ainsi les vitesses lineaires sont definies dans le 

repere inertiel de la terre et Pattitude est exprimee sous forme d'angles d'Euler. 

Comparativement au modele (2,122), le choix des variables de sortie implique une 

transformation des parametres entre le repere "corps" et le repere "inertiel" et necessite 

une transformation de la matrice de transfert GB (s) —> G, (s) et de la matrice de 

transfert GB!P (.$) -> Gl/f, (,sj du repere "corps" dans le repere "inertiel" qui s'ecrit dans 

Pespace d'etat sous la forme matricielle : 

x = A h x + ["Bh B h l y ; x = [ x / ' x/ xc
! \ ;U = | x/ uf I 

y ~ X, - C h X ; U. - \jlcon Hiall Siting ??'pedal 

... . . -T ' (2-135) 
x,, >• ,h(h = -z, J,(j>b,9b,y/h4b,Qbiy/b 

x, xl,y„h[h = -zi),</>b,Obiy/b,pbtqb,rb 

dont les valeurs numeriques seront introduites par la suite. Les details de cette 

transformation sont donnes par Heffley et al. dans [HJLW79]. 

Nous considererons la matrice de sortie complete sur les variables de la cellule exprimes 

dans le repere inertiel, afin de mettre en correspondance le modele avec le systeme reel, 

mais pour la synthese du compensateur par la methode de sensibilite mixte et par la 

methode de loop-shaping dans le chapitre 3 et le chapitre 4 nous n'effectuerons le retour 
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que sur les signaux [/j,(>';+^,),(i,+^),r,,,/?A,^,] ou [/z,^,^,/'.,/;,,,^] , qui seront 

introduits par des multiplicateurs matriciels C, et C,. 

D'une part, comparativement aux modeles existants qui sont soit trop simplistes (2.134), 

soit trop complexes, dont la dynamique du rotor principal est calculee a partir de 

l'equation generate de la dynamique (2.34), nous avons developpe un modele 

intermediate sous certaines hypotheses, tenant compte de la dynamique de battement et 

de la dynamique du rotor principal qui nous permettra de faire une analyse et une 

synthese de lois de commande dans le chapitre 3 d'une part un peu realiste. Les 

principaux objectifs de la loi de commande sont decrits dans le chapitre 1.8. D'autre part, 

pour realiser une commande de vol ou un systeme de stabilite et commande augmente 

(SCAS Stability-and-Control Augmentation System), l'influence de la dynamique du 

rotor principal est tres importante. Ces approches exigent un systeme de commande a 

large bande passante et a pleine autorite qui est l'objectif des chapitres suivants. Apres 

avoir examine les specifications de base et les techniques de synthese de la commande 

robuste, plus specialement l'approche H„; et la technique de loop-shaping dans le 

chapitre 3 et annexe C, nous presenterons les experimentations des lois de commande 

dans le chapitre 4. Les approches utilisees sont basees sur les techniques dans le 

domaine frequentielle, permettent de prendre en compte les differentes specifications et 

les conflits de structure de la loi de commande et fournissent la robustesse necessaire 

aux compensateurs pour etre valables dans un domaine de vol suffisamment elargi. 
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CHAPITRE 3 : LA SYNTHESE DE LA COMMANDE ROBUSTE 

3.1 Introduction 

Dans ce chapitre, nous allons mettre en application la theorie de la synthese de la 

commande robuste par l'approche Hy;, ainsi que la regulation par l'approche lineaire 

quadratique pour obtenir une loi de commande de vol de l'helicoptere UH-60A (Black 

Hawk) de Sikorsky. La resolution du probleme standard de la commande robuste par 

l'approche H„,, ainsi que les principaux algorithmes sont decrits dans Pannexe C. 

Certaines definitions qui nous serons utiles pour le developpement sont donnees dans 

l'annexe A. Le calcul des normes H2 et Ha. est rappele dans l'annexe B. Le point de 

fonctionnement etudie est le voisinage du vol stationnaire a 60 [pi] d'altitude du niveau 

de reference. Pour obtenir ces r^sultats sans rentrer dans les details du developpement 

theorique, nous nous sommes done volontairement concentres sur 1'adaptation de la 

theorie pour notre systeme. 

3.2 Formulation du probleme standard Hoo 

En se referant a la representation schematique de la figure 3.1, le probleme standard H^, 

applique pour l'helicoptere consiste a minimiser l'effet d'une perturbation, notee, w, sur 

le comportement du systeme. Le signal w est suppose a energie finie et sa taille est 

mesuree en norme Euclidienne, not6e | ||2. Son effet sur le systeme est mesure par la 

norme |j ||2 d'un vecteur "cout", z . Enfm, on peut agir sur le systeme par une commande, 

u, en utilisant l'observation, e . II s'agit done de synthetiser une loi de commande 
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u = K(s)e, qui minimise l'impact du signal, w, sur le signal "cout", z . On mesure cet 

impact par le rapport ~-~-. La stabilite du systeme boucle devra bien sur etre assuree. 
w L 

u 

w 
Pis) 

K{3) 

Figure 3,1 Schema du probleme H::,:. standard 

Dans ce schema de boucle fermee, e et u, designent Pentree et la sortie respectivement 

du compensateur K($). La matrice de transfert P($) decrit 1'interconnexion entre les 

signaux du vecteur d'entree < > et du vecteur de sortie < } , et inclut la matrice de 
I " J W 

transfert de l'helicoptere G(s) et les fonctions de ponderations, qui seront introduites 

par la suite. De la figure 3.! on peut ecrire : 

Z(s) 

E(s) <P{') 
W(sj 
U(s)_ 

'W(s) 

U(s\ 
(3.1) 

La matrice de transfert P(s) est celle du systeme augments" et on la supposera propre. 

Lorsque ce systeme est reboucle sur la commande u = K(s)e, la matrice de transfert en 

boucle fermee de w a z, est donnee par la transformation lineaire fractionnelle (LFT) 

F](P,K) : 

Z(s) = F,(P,K)W[s) 

F) (P, K) = Pu (s) + Pa (s) K(s) (I - P22 (,v) K {s)Y P2i (s) 
(3.2) 
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En observant que le ratio ~-~- est dans le pire des cas : 

H 

SUpli = |/7(p5A')| (3.3) 

le probleme standard de la synthese de la loi de commande par l'approche Hr peut se 

formuler mathematiquement comme suit: 

Probleme Hio optimal: minimiser la norme i<j (/>,£) sur l'ensemble des 

compensateurs K (,s) qui stabilisent le systeme de maniere interne. Le minimum est note 

(yopl) et est appele gain (ou attenuation) (Hm -optimal). Le probleme sous-optimal 

associe joue egalement un role important. 

Probleme H^ sous - optimal: etant donne y>0, trouver un compensateur K[s) qui 

stabilise le systeme de maniere interne et assure ||F, (P, K)\\ <y. 

Introduisons les differents objectifs et specifications pour la synthese de la loi de 

commande robuste. C'est l'objet du paragraphe, ou nous choisissons de traiter les 

performances frequentielles de l'asservissement dans le cadre des valeurs singulieres de 

la fonction de sensibilite et de la fonction de sensibilite complementaire. 

3.3 Objectifs de performance 

De maniere general, un asservissement est performant s'il reagit rapidement et suit la 

consigne avec precision (cas d'une boucle de suivi) ou rejette rapidement les 

perturbations (cas d'une boucle de regulation). Intuitivement, les performances sont 

d'autant meilleures que le gain de boucle est eleve. Mathematiquement, cette tendance 

est exprimee dans le cas multivariable par un ensemble de contraintes sur les valeurs 
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singulieres de la fonction de sensibilite, la fonction de sensibilite complementaire et le 

transfert en boucle ouverte du systeme. Ainsi, nous choisissons de presenter le probleme 

HM, sur la boucle de suivi de la figure 3,2, dans laquelle G(s) designe la matrice de 

transfert de l'helicoptere, commande par un regulateur C(s) dans la boucle, avec la 

dynamique des detecteurs Q(s) dans la boucle de retour et un pre-compensateur R(s) 

sur le chemin direct. On designe par wr e M'"! le signal de reference, y e W la sortie du 

systeme, s e Km' l'erreur de suivi, u e IR."': la commande issue du correcteur, wH e R'"2 

la perturbation de la commande, wv e l p la perturbation sur la sortie, wn e R'"' le bruit 

de mesure et Q(s) introduit la dynamique des capteurs. Faisons la remarque que les 

signaux wu, wv et wn sont par nature inconnus. Selon le meme principe, cette mise en 

oeuvre peut etre appliquee pour tout autre systeme multivariable, repondant a des 

objectifs differents. 

Selon le schema de la figure 3,2, apres un changement de variable, la 

transformee de Laplace de l'erreur de suivi s'ecrit: 

(3.4) 
wy{s) + G(s).wu(s) + G(s).C{s)£(s).Q-\s)£(s) 

e(*) = [/p+G(J)Jf(J)]"\[JR(5).wr(5)-fi-'(,).W||(J)-W,(*)-G(5).W,(*)] 

De maniere similaire, la transformee de Laplace de la sortie y(s) s'ecrit: 
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y(*) = G(s). wu(s) + C(s).Q{s).Q-l(s).e(s) 

A'(.v) *( ,) 

:G(s).[yK(s) + K(s).e(,s)] + wy(s) 

•wy(s) = 

y{s) = G ( * ) X ( s ) . [ / , ^ + G(S)JC{s)V .\R{s).wr {?)-& (s).w„ {*) 
(3,5) 

+ Ip~G(s).K(s){lpxp+G(S).K(s)] 

[!PK:;(S).K {.*)]-' 

.[G(s).w,(s) + wy(s)_ 

Ip+G(s)K(s)\ et la 

fonction de sensibilite complementaire a la sortie par 

T0 (s) = G(s)K(s)\ Ip + G(s)K(sy\ , ces deux matrices sont reliees par la relation 

suivante : 

G(s)K(s)[lp +G(s)K(s)ji +[lp+G{s)K(s)f=Ip (3.6) 

Ms) • • > ; • ; ( » • ) 

La plupart des specifications frequentielles peuvent s'exprimer par des contraintes sur 

S0 (.s) et T0 (.v) et de facons equivalentes sur le profil de la plus petite et la plus grande 

valeur singuliere de la fonction de transfert en boucle ouverte L0 (s) = G (s) K (s) du 

systeme. 

K(*) 
w„ 

R{s) C(s) 

Wu{s) 

G(s) 
| + y 
o—• 

- o -
\w„ 

e(*) 

Wz (s) 

Figure 3.2 Structure de la boucle de regulation 
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3.3.1 Rejet des perturbations sur la sortie 

L'influence des perturbations sur la sortie est exprimee mathematiquement par la 

fonction de sensibilite a la sortie (3.7): 

^W/,+0(,)K(,);r (3.7) 

et la specification de rejet des perturbations sur la sortie demande une faible influence de 

wy (s) sur y($) . Autrement dit, on souhaite que <T(50(.S)) soit aussi "faible" que 

possible. Nous pouvons aussi ecrire [Mac89]: 

*{S0 (,)) = ^ ^ < (3.8) 

a G(s)K(s) 
1 „ < 

Plus precis^ment, le probleme standard (sans ponderation) de rejet des perturbations sur 

la sortie se traduit sous forme d'une inegalite sur la norme : 

cl[S0{ja)))<y ; \fO<a:xa\ (3.9) 

En supposant que cr(L0 (5))» I nous en deduisons 1'approximation suivante : 

a (So(*))> cr(L0(s)) 
~K < n ; ; (3.10) 

a (L0 (,S)) = cr(K (jcv) G {j(o)) >— ; V0 < co < o\ 
Y 

Comme cette perturbation prend son sens aux basses frequences, on voit que Pobjectif 

de cette performance est d'autant plus atteint que le gain de la boucle est grand dans le 

domaine frequentiel et que la plus petite valeur singuliere du transfert en boucle ouverte 

L0 („y) = G(s).K(s) du systeme soit grande dans la bande passante. En introduisant une 
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fonction de transfert We (5), jouant le role de ponderation (en anglais weighting function) 

de type passe - bas sur la fonction de la sensibilite sur la sortie, la premiere contrainte 

sur la synthese de la commande robuste est introduite par l'inegalite suivante: 

llS (̂ja>)\\ <-.—T—r, V0<<w<ft?l soit \\We(ja))S0(j&)\\ <7 V0<axa>1 (3.11) 
We \j(0)\ 

3.3.2 Rejet des bruits de mesure 

L'influence des bruits de mesure sur la sortie est exprimee mathematiquement par la 

relation (3,12) : 

^^G{s)K(s^p + G(s)K{s)\l^(s) = T0{s)^{s) (3.12) 
wn {s) . !:—~ _ ±, 

w) 

Etant donne que la dynamique des detecteurs Q($) est definie a l'avance, pour reduire 

l'ampleur des effets du bruit de mesure par l'asservissement, il est necessaire que la 

sensibilite complementaire de sortie soit la plus "faible" possible. De maniere 

equivalente : 

^o (*)) - 5(1 p +S0 (s)) = ff([(lp + V' (*))J') = ̂ 7 ^ ^ 5 J C3-13> 

nous desirons done que a(lp+L0~*(s)\ soit plus grand possible, ce qui exige, que 

o{l0~
}
 (S)) soit aussi le plus grand possible ou bien que <T(/,0(A)) soit le plus petit 

possible. Comme les bruits de mesure se manifestent generalement dans le domaine des 

hautes frequences, la norme Hx du transfert en boucle ouverte L0(s) = G(s)K(s) du 

systeme doit etre petite ou o(L0 (,V)) <r 1 et selon l'expression (3.13) on a : 

ar(T0(s)) = o(L0(S)) = cr(G(s)K(s))<y ; Va>2 <co<» (3.14) 
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En exprimant notre interet dans le domaine des hautes frequences, introduisons une 

fonction de transfert W3 (s), jouant le role de ponderation de type passe - haut sur la 

fonction de la sensibilite complementaire sur la sortie : 

\\To U(i))\\ 
W3{je>)\ 

; VQ>> (i>2 soit\\lV3( jo.))T0(jo))\\ <y; V<y > CO, (3.15) 

Selon les deux premieres contraintes, le probleme HM standard consisterait a trouver un 

parametre (/) et un compensateur K(s), tels que 

S0(ja>) 
To ( > ) 

<T'; \\So(j<0) + To(jm)\l<y 

Pondere, le probleme est contraint par l'inegalite (3.17): 

(3.16) 

Wt{ja>)S0{ja>) 

W3{jo>)T0(ja>) < r ; Ik ( » s 0 O)+w3 U<°) To (y®)|L < r (3.17) 

3.3.3 Poursuite du signal de reference 

La relation entre le signal de reference et la sortie est exprimee mathematiquement par la 

relation (3.18): 

•^p- = G(s) K (s)[lp + G (s)K 0)]" ' Q-1 (s)R (s) 
w, (s) . : 

3.18) 

R{s) 

La poursuite ideale de la reference implique que le nombre conditionnel 

K(T0(S)R(S))*\ soit proche de un et mette en valeur le role du pre-compensateur 

R(s) = Q-'(s)R{s). 
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3.3.4 Limitation de l'energie de la commande 

L'energie de la commande sera reduite si la norme de la matrice 

K(s)[lp+G(s)K(s)j est "faible". En appliquant Pinegalite triangulaire [Mac89]: 

a(T0 (*)) > a(G(s))a(K(S)[jp+G(s)K(s)Jl) => 

on peut remarquer que l'energie de la commande sera d'autant plus petite que <?{T0 (.$)) 

sera "faible", sauf pour les frequences ou la norme de la sensibilite complementaire de 

sortie a{T0(s)} est elle-meme elevee. Pour cela on introduit une fonction de 

ponderation W2 (s) de type passe-haut ou passe-bande telle que : 

\\K (103)Sn (ja>)\\ < i 7—rr ; V a > a>0 soit 

\\WU (je>)K(jco) S0 ( » | L < r, V« > CD2 (3.20) 

Done, une diminution de la norme de la fonction de la sensibilite complementaire a la 

sortie \T(} (ja>)\ aux frequences elevees repond a un double objectif. D'une part, Peffet 

des bruits de mesure sur la sortie y(s) est attenue. D'autre part, pour eviter des 

agitations excessives de la commande u(s) et done la fatigue des actionneurs, dans les 

domaines frequentiels ou la norme du systeme n'est pas eleve, il importe de reduire la 

norme de la fonction de la sensibilite complementaire a la sortie \T0 (j<n)\ • Cela peut 

aussi passer par une reduction de la norme du compensateur ff(i?(j©)) ou plus 

generalement de a{K(jco)S0 (./'«)) • 
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3.4 Synthese du compensateur H^ par la methode de sensibilite mixte 

Dans cette section nous allons appliquer la theorie de la synthese Hm du compensateur 

central par la methode de la sensibilite mixte. La structure de la boucle de commande est 

presentee a la figure 3,3. Cette derniere peut etre vue comme une boucle de poursuite, 

avec sorties additionnelles (la vitesse de roulis et la vitesse de tangage) et (deux) entrees 

fictives. Soit [7/, (j> + $h), (xj + 6b), rh, pb, qh 1 la sortie du modele d'helicoptere G, (s), 

»v,=['7eo//.'7te,.'7to«,'7pe(W,0,0]/ l'entree du pilote, alors 

z'=Le*'e>-+A'V«i'ei'eP*'e*tJ
 e t z2=[ecoii^ian>eiong'epcdai^ • L a matrice de 

ponderation sur l'erreur Wu (.?) et la matrice de ponderation sur la commande We (,s) 

sont introduites selon les objectifs de performance dans le domaine frequentiel. Dans le 

cas multivariable, We ($) et Wu (s) sont generalement des matrices diagonales, mais 

peuvent etre des matrices plus ou moins pleines, de maniere a privilegier certaines 

directions et done a "fafonner" plus precisement les valeurs singulieres de la fonction de 

sensibilite et de la fonction de la sensibilite complementaire. La matrice de ponderation 

constante Wad est un parametre de design, generalement diagonale, qui nous permet, lors 

du processus d'optimisation, de privilegier certains signaux de reference. 

wJ W ad 

G{s) C, 

+ 1+ 

P(s) WtMk (s) 

K,„ (*) 

y ad 
O-

Kmix (S) 

Figure 3 J Structure de la boucle de poursuite pour le probleme de sensibilite mixte 

avec sorties et entrees additionnelles 



123 

Le probleme d'optimisation est de trouver un compensateur dynamique A"mir(s) qui 

minimise la fonction cout (3.21): 

< y ; \/co (3.21) 

La mise en forme du probleme Hso, la formulation du systeme augmente est donne dans 

l'annexe C, section C.3. Le systeme augmente est calcule comme (3.22): 

P(S): = 

X„>K/ 
nh/m{ 

W 
n ad 

'-WeJs)G(S) 
W2{s) 

-G(s) 

(3.22) 

Etudions maintenant plus en detail le choix des ponderations que nous allons utiliser lors 

de la synthese du compensateur Hx par la methode de la sensibilite mixte. 

3.4.1 Ponderation sur l'erreur (et sur la performance) We (s) 

Pour le rejet des perturbations sur la sortie, la fonction de sensibilite de sortie doit etre 

petite en basse frequence. Ceci implique le besoin de "forcer" Taction integral du 

compensateur en utilisant des blocs — dans la fonction de ponderation We (s). 

Notons qu'un pur integrateur I — ne peut pas etre utilise dans une fonction de 

ponderation, parce que le probleme standard Hm ne sera pas correctement defini et le 

systeme augmente correspondant ne pourra pas etre stabilise par un compensateur 

central [BP02J. 
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Lieu de Bode des fonctions de ponderation 1 / We (1:4) 

-10 

-20 
£" 
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-10 
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,--—'/ 
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i i 

1/We 
1mix 

1/We 
2mix 

1/We 
" VVe3rrtx 

1/We 
4mix 

-

, 
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Frequency (rad/sec) 

Lieu de Bode des fonctions de ponderation 1 / We5mi)<et W16mix 

10 10 
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10 

Figure 3,4 Lieu de Bode pour les fonctions de ponderation inv(We (s)) 
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Comme l'erreur en regime etabli ne doit pas necessairement etre zero, les elements de la 

s 
+ coh 

M, 
fonction de ponderation W„ ($) ont la forme Wtl (s) = —— . Le choix initial des 

""' '">•' ,s + cobAw 

fonctions de ponderation est discute brievement dans l'annexe C, section C.4. En 

ajustant les parametres yMw ,AW\, nous avons voulu que la bande passante soit 

inferieure a la pulsation naturelle de la dynamique de trainee 12[rad/s], pour ne pas 

coupler la dynamique du compensateur avec la dynamique de trainee du rotor principal 

non modelee. Avec quatre entrees de commande, nous pouvons commander 

independamment quatre sorties. Pour les deux sorties additionnelles (les vitesses de 

roulis et de tangage), nous avons choisi d'augmenter les proprietes de rejet de 

perturbations dans la plage des frequences (4-7)[rad/s]. Le lieu de Bode de l'inverse 

des fonctions de ponderation We (5) est presente a la figure 3.4. 

3.4.2 Ponderation sur la commande WUm_ ($) 

La fonction de ponderation sur la commande Wv [s] est egalement matricielle et a pour 

objectif de minimiser 1'influence des dynamiques negligees en hautes frequences. La 

frequence de coupure de ces ponderations est tres importante puisqu'elle fixe la bande 

passante des asservissements. Respectant la dynamique non modelee de trainee, la 

frequence de 1.2[rad/s] est fixee comme la limite superieure et la limite inferieure est 

fixee a -100 [dB] pour s'assurer que la ponderation Wtl (s) sera dominee par We (,s) 

en basses frequences. Cette reflexion decoule de la fonction cout (3.21) et reflete les 

objectifs de performance. L'allure fr^quentielle de la matrice de ponderation sur la 

commande Wu [s) est visualisee a la figure 3.5. 
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Figure 3,5 Lieu de Bode pour les fonctions de ponderation Wu (v) 

3.4.3 Matrice de ponderation constante Wad 

La matrice de ponderation constante Wad est appliquee aux signaux de reference et doit 

ponderer les entrees fictives avec petites valeurs. Pour ces derniers, nous avons choisi le 

poids (0,05), qui contribue a un certain rejet de perturbations sur les sorties 

additionnelles sans toutefois influencer de maniere significative le systeme augmente. 

Etant donnee un parametre de design, la matrice de ponderation constante Wad doit 

privilegier de maniere relativement egale les principaux signaux de reference. 

3.5 Synthese d'un compensateur Hm par la methode de sensibilite mixte pour rejet 

des perturbations atmospheriques 

Afin d'illustrer le rejet des perturbations atmospheriques nous avons concu un 

compensateur Hm par la methode de la sensibilite mixte incluant explicitement l'effet 

des perturbations, w, d'energie finie, sur les vitesses lineaires de l'helicoptere. Le 

systeme perturbe est decrit par les equations differentielles matricielles (3.23). 
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x = Ah x + Bh x^ + B,, u x e K " u e S " 

}' = C, Ch x 

G'wsr 

x/;, eM'' j)eIRf (3.23) 

01 'gusf'l G(s) 
Control 

KmJx {s) | « - f — O 

c, 
>• 

^ (') 

R7, 
re/" 

^ CO 

Figure 3,6 Structure du systeme en boucle ouverte pour le probleme de la 

sensibilite mixte avec perturbations atmospheriques 

La structure du systeme est presente a la tigurcj^, dont les notations Gust et ref sont 

mises en relation avec script donne dans 1'annexe D et introduisent respectivement les 

refales et les consignes, d'energie finie. 

Le systeme augmente est calcule comme : 

/>(,) = 

'Wt{s)Wr 

0 „ 
-w^)Gg,M 

' mlxl 

-We{s)G{s) 

Wu (s) 

w. <h™< is) -G{s) 

(3.24) 

Le probleme d'optimisation est de trouver un compensateur dynamique Kmjx (s) qui 

minimise la fonction cout (3,25) qui est la fonction de transfert entre 
ref 

Gust 
et 

We (ja>) S0 (jot) Wr as,JVe (ye/) Sg0 (jio) 

Wu (ja>)Kmx (ja>)S0 (joj)Wr cigJV,, (ja>)Kmlx (je>)Sg0 (jco) 
<y ; \fco 025) 
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avec Sg0(S) = [lp + Ggus,(s)K(s)y et G^ (*) = C, Ch(sI„-Ahy
lBhpal => 

C'est un probleme standard qui peut etre resolu par des algorithmes developpes et 

disponibles dans la boite a outil ROBUST CONTROL TOOLBOX de MATLAB. 

Notons que le probleme est similaire au precedent et les memes fonctions de 

ponderations seront utilisees We (s) = Wc^ (s), Wu (.$•) = W (s). Cependant nous avons 

un parametre de design supplemental (a^), qui doit etre ajuste par it^rerions, afin de 

calculer une marge de robustesse [y* J satisfaisante. 

3.5.1 «Faiblesse» du compensateur central 

II est interessant de noter que le compensateur central place des zeros la ou le systeme 

nominal possede un mode stable dans sa fonction de transfert [ACAGF99]. Un tel 

comportement peut etre indesirable en presence de modes faiblement amortis ou non 

observables en boucle fermee, dont une variation des parametres ou une excitation au 

voisinage de la frequence du mode peut entrainer une oscillation excessive et meme une 

instabilite. 

En presence de perturbation A(.s) e ,1RHOT la procedure de (r)-iteration du probleme Hm 

[ZDG96] trouve la plus grande valeur singuliere du systeme en boucle fermee. 

Cependant, la necessite que la perturbation soit stable peut etre contournee par une 

factorisation en elements premiers. Afin d'illustrer la stabilisation robuste en presence 

d'incertitudes inconnues et bornees en normes, nous avons concu un compensateur Hm 

par la methode de "loop-shaping" et la factorisation en elements premiers a gauche. 

Ah 

C, Ch 

B„ 
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3.6 Synthese du compensateur Ha, par la methode de "loop-shaping" et 

factorisation en elements premiers 

La synthese de la commande robuste par la methode de "loop-shaping" [Mc.FG92] est 

generalement composee de trois etapes. En premier, la boucle ouverte du systeme est 

augmentee par un ensemble de fonctions de ponderation (W1 (s) et W2 v („y)) selon les 

objectifs frequentielles du systeme en boucle fermee. Le systeme pondere classique est 

presente a la figure 3.7. La fonction Wz (,$) contient des filtres passe-bas pour but de 

rejetter les perturbations ou est une matrice scalaire diagonale qui favorise certaines 

variables par rapport a d'autres. La fonction W{ (s) contient des elements d'action 

proportionnelle et integrate, afin d'augmenter le gain de boucle en basse frequence et 

d'assurer un taux de decroissance des valeurs singulieres du systeme pondere en boucle 

ouverture, au voisinage de la frequence de coupure, inferieure a -40 (dB). Une matrice 

de ponderation constante (kjS) est utilisee afin d'ajuster les signaux de commande. 

Notons que le systeme est suppose normalise c'est-a-dire que la reponse a un echelon 

unitaire respecte les limites physiques du systeme reel. Le choix des facteurs de 

normalisation demande une certaine experience ou reflexion sur ce qui semble 

physiquement possible pour le systeme en question, Phelicoptere dans notre cas. 

w, 

t9^ 
z. 

&LS 
wtJs) h\G(s) c, ^ , (*) 

-K« {*) 

Figure 3.7 Structure de la boucle de regulation pour le probleme de la commande 

robuste par la methode de"loop-shaping" 
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Yue et Postlethwaite [YP90] appliquent pour un modele experimental d'helicoptere les 

facteurs de normalisation suivants : 

*m«=10[p'S'1] * ( ! m-0,5[rads ' ' ] 

ftmx=0, Scads'1] eftnm=0,2[rad] 

^ ( ^ [ r a d s " ] <\ .=0,2[nid] 

Base sur le meme principe de reflexion sur ce qui semble physiquement possible, nous 

utiliserons les memes facteurs de normalisation dans cette recherche. Pour la valeur de 

/jmax , ce choix devient autant plausible lorsqu'on la compare avec la vitesse des 

ascenseurs et le principe du confort des passagers. 

La deuxieme etape de la synthese de la commande robuste par la methode de "loop-

shaping" consiste a stabiliser de maniere robuste le systeme pondere via une 

factorisation en elements premiers et procedant a une H,„ optimisation. Pour le systeme 

pondere: 

GiJ(s) = W2J,y)G(s)Wks(s)^ 

une factorisation en elements premiers est donnee par (A. 16) (voir annexe A). Le 

systeme incertain s'ecrit: 

AG, (S) = [MPi (S) +*MPI (.v)]"'1 [NPi (S) +*NPI [sj] ; \\*NPi (s) AM,, (*)[ < e (3.27) 

ou AMP (S) et ANP (,V) sont des matrices de transfert stables (figure 3.8), qui 

introduisent les incertitudes (a priori inconnues) dans le modele nominal GP (s). Pour 

une telle structure, McFarlane et Glover [McFG92] montrent que le probleme H„ se 

pose comme : 

BP 

D„ 
(3.26) 
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y„;„ = inf 
/CeRJL "(7 + % , + % • > 

-G^A", (3.28) 

qui est la norme H,r de la matrice de transfert du vecteur vers 

<s.Vc ( J ) OH 

u 
* — • *p, ( ' ) 

AM.PI (S) 

o-H MPi (*) 

* - W 
Figure 3.8 Structure du modele incertain avec factorisation en elements premiers 

et s'ecrit aussi comme : 

inf 
A' eKH„ 

K, 

• inf 
GP 

•-,1 

( '(, 

( \ 

- i 

-

- i 

M,"1 

„ = 

f ^ •,'"»=,,) J 

(3.29) 

Notons que (ymin) est la norme Hw de la matrice de transfert du signal (//) vers et 

que /, - - GPK,a est la fonction de sensibilite pour une boucle de retour 

positive. La valeur reciproque de la norme H„, correspond a la marge de stabilite (s). 

donn^e par McFarlane et Glover [MCJFGJ92] : 
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oil [J I est la norme de Henkel (la plus grande valeur propre du produit du grammien de 

commandabilite et du grammien d'observabilite), p(.) est le rayon spectral, [X]) et 

(Z,) sont la solution de l'equation algebrique de Riccati (3.31) et (A. 17) respectivement 

l n T 

T 

Ap-BpS,-,DP
JCP 

K 

X, + X, 1 T\ T 

A, J 

• in r v , n T n-i / 

Ap-BpS-'Dp'Cp 

V 4 ; (3.31) 

-XBpSrB; X + CP' ^Cp^O 
(no+nifi.s, *%2 / v)xp-i+, 'nii / , *"wlis ) 

Pour (/rnin < 4) , qui selon le theoreme du petit gain permet (25%) de variations 

d'incertitudes admissibles, la theorie montre que le compensateur ne change pas 

significativement les modes du systeme pondere en boucle ouverte [McFG92]. Si 

(/min > 4) ceci indique que le choix des fonctions de ponderations n'est pas compatible 

avec la stabilite robuste, c'est-a-dire qu'on privilegie la performance par rapport a la 

robustesse. 

w» K«X°)W2,A°) ^ kr.s W*A°) G{s) <?-+ 

KM w*u (J) 

Figure 3.9 Structure de la boucle de regulation pour le probleme de la commande 

robuste par la methode de"loop-shaping" avec pre-compensateur 

La troisieme etape consiste a introduire un pre-compensateur K^({))W2 (0) . Le 

schema correspondant est presente a la figure 3.9. Le role du pre-compensateur est 

d'assurer une erreur nulle en regime etabli, supposant que Wx (.v) introduit une action 

integrale. Notons que le compensateur K„ (s) est dynamique d'ordre egal a l'ordre du 

systeme pondere. 
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3.6.1 Avantages de la methode du "loop-shaping" 

Les principaux avantages de la methode de "loop-shaping" sont: 

- La synthese du compensateur n'applique pas la procedure de y -iterations, 

utilisee generalement pour la solution du probleme standard de H, . 

- La methode fournit une marge de stabilite pour un systeme avec incertitudes 

instables et variations parametriques des modes faiblement amortis ["BP02"|. 

- Le compensateur Kn (s) ne simplifie pas les poles stables du systeme pondere 

comme le compensateur central du probleme standard et mixte de HM . 

L'inconvenient resultant se manifeste pour les systemes dynamiques, dont la 

bande passante en boucle fermee est relativement proche aux frequences 

naturelles des modes simplifies. Etant donne que la simplification se fait pour les 

fonctions de transfert entre certaines entries externes et les sorties controlees, ces 

modes sont pourtant presents dans les autres fonctions de transfert. Intuitivement, 

P incertitude peut deplacer de maniere significative les places des poles 

faiblement amortis et contrarier les performances robustes. 

- Les principaux conflits de structure pour le probleme de la sensibilite mixte, 

autour de la frequence de coupure, sont plus facilement geres par la methode de 

"loop-shaping", qui ponderant la fonction de transfert de boucle ( I = GP.KX) 

faconne simultanement les fonctions de sensibilite et de sensibilite 

complementaire. 

- Fournit un compromis entre la robustesse et performance. En particulier, selon le 

Theoreme 5.4 de [McFG92] : 

^((j-GyX^y1)---- a=(S0)< — &(MS)K{JV2^ ) (3.32) 
max 

cf((l-K.,Gpy) = ff(S,) <>—o{M,)K-(Whs ) (3.33) 
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a(GpK9{I-GpKjl) = 0(To)*-±-v{N,)K(W2a) (3.34) 
max 

slK.Gr{I-K.Grr)-*(T,)s-L*(N,)KK) (3.35) 
max 

o[K„ (l-GpK„)~l) = a(KJ0)£—ff(M,)K(Wli:s)K(W2ijs) (3.36) 

, a2(W7 GW. ) I j ~ 
ou <f(N,) = • \ > ' W <1 , cf(M)= ^ r 

La marge de stabilite (^) garantie une marge de gain et une marge de phase 

symetriques suivantes : 

-20 log10 f + gmax fdBl < Marge de Gain < +201og10 /1±£EHL fdB] (3.37) 
j i iax 

—r- fde-gl < Marge de Phase < +-—T—- fdeg] (3.38) 

3.7 Synthese du regulateur statique de retour de sortie par la methode 

d'optimisation lineaire quadratique et Hoo 

Parmi les methodes de synthese de la commande de vol, dites modernes, la conception 

du regulateur robuste statique de retour dc sortie (en anglais Static Robust Output 

Feedback Design) est la plus utilisee. La synthese est presentee dans [SL03] et [A-

KHL06]. L'approche utilise l'optimisation lineaire quadratique, qui minimise une 
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fonction quadratique cout (J), dite indice de performance (en anglais PI Performance 

Index). 

^f^(t)Q,^) + u'(t)Rsu(t)]dt (339) 

ou x(l) est la deviation du vecteur des variables d'etat, u(t) est la deviation du vecteur 

des variables de commande et (gx,i?f/) sont des matrices de ponderation. La methode 

permet de trouver la matrice de retour statique qui resulte de la balance entre Perreur du 

systeme et l'effort de commande. Pour utiliser la methode d'optimisation lineaire 

quadratique, nous devons trouver deux parametres : la matrice de ponderation d'etat Qt 

et le facteur de ponderation de la commande, generalement de forme R. = p^ Im. La 

matrice Q. doit ponderer tous les etats "importants". Le facteur de ponderation de la 

commande donne le choix au concepteur de varier les efforts de commande, afin de 

trouver les performances desirees, et est regie par tests de type essai/erreur. Dans la 

litterature [SL03J et [A-KHL06], il est montre que 1'indice de performance, if, sous 

certaines hypotheses appropriees satisfait la relation (3.40): 

• , » 

J = - J ! *T (0 Qi *{*) + "' (0 Ru " ( 0 ] CU = t m C e \ Pare ^0 ̂ ' I (3,40) 

avec l'etat initial (x0) (conditions d'equilibre dans contre cas) et (Pare) la solution de 

Pequation algebrique de Riccati (3.41). 

SrK (Ky,P„) = AjPare + P„Aa +Qi+ C^KjR.K^ 

Arl=A-B2KyC2 ; y = C2x ; u = -Kyy 

Contrairement a la regulation optimale par retour d'etat, qui est bien connue et 

parametree (la fonction lqr de MATLAB), la commande optimale par retour de sortie 
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est plus difficile a resoudre, a cause du fait que le probleme est convexe seulement dans 

le voisinage des extremums locaux et la convergence n'est pas toujours assuree [GPS98]. 

Cependant le probleme peut etre resolu numeriquement [SL03] et permet la synthese du 

regulateur lorsque le vecteur d'etat n'est pas completement mesurable, qui est 

generalement le cas. 

Soit le systeme lineaire invariant (3.42) et l'indice de performance (3.40). 

x = Ax + B{w+B2u xeR" 

z =• C,x +• DM ii e IR"' .,., , -. 
(:> ,42) 

y = C2x weR' 
u - -Kyy y e W, z € W 

ou ( r ) est le vecteur des sorties mesurees et (w)est une perturbation d'energie finie. Le 

systeme est dit attenue par le facteur ( / ) [A-KHL06] s i : 

J||z(/)|f dt l[xr (?) a x(t) + ur {()RS u(t)] dt 
J __=o _ _ < f (3A3) 

^\w(t)f dt j\\w(t)f dt 
0 0 

La valeur minimale (y*\ < y introduit la marge de stabilite. Initialement, on choisit une 

valeur relativement grande (p.ex. y = 10) et si Palgorithme converge on diminue y . 

Cependant, pour des petites valeurs du facteur d'attenuation, y , (3.43), Palgorithme 

n'est plus convergeant, parce que la solution de l'equation algebrique de Riccati n'est 

plus semi-definie positive. Pour un certain nombre d'iterations, on trouve la valeur 

optimale, y * . Le script nous permettant de calculer le regulateur statique de retour de 

sortie par la methode lineaire quadratique et HM, en utilisant le logiciel MATLAB est 

donne dans 1'annexe D. Pour D2 = 0 , la matrice de transfert de boucle LL0, la matrice 
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de sensibilite en entree S/() et la matrice complementaire de sensibility en entree TI0 

sont calculees comme : 

LLQ=KyC2{sI„-A)-xB2 

(sIQy=Im + KyCz(sln-Ay]B2 (3.44) 

T^^fa-A + K&BJ1 B2 + D2 

3.8 Conclusion 

Les differentes strategies de synthese de la commande robuste d'helicoptere presentees 

dans ce chapitre nous permettent de calculer le compensateur stabilisant selon le type de 

la perturbation ou de 1'incertitude, agissant sur le modele nominal, tenant compte des 

differentes specifications et les conflits de structure de la loi de commande qui 

apparaissent dans le domaine frequentiel. Une attention particuliere est portee sur le 

probleme de loop-shaping et le choix des fonctions de ponderations. Ces fonctions 

jouent un role tres important dans la synthese d'asservissement, car elles normalisent 

principalement les conflits de structure, permettant Papplication des algorithmes de 

synthese et determinent en consequence la bande passante du systeme commande, ainsi 

que la robustesse et les proprietes en termes de rejet de perturbations. Les differentes 

approches augmentent la diversification des solutions et permettent une meilleure 

adaptation de la theorie de la commande robuste pour differents types d'helicopteres ou 

differents modes de vol. Cependant chaque approche impose ses specifications et il est 

parfois difficile, voire impossible de remplacer 1'approche sans changer les 

specifications. 
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CHAPITRE 4 : EXPERIMENTATIONS 

4.1 Introduction 

Apres l'etude theorique de la synthese des compensateurs et sa mise en application dans 

le chapitre 3, voyons maintenant quelles sont les performances atteintes. Nous 

etudierons dans un premier temps les r^sultats obtenus dans le domaine frequentiel, puis 

les reponses temporelles du systeme boucle a differentes entrees caracteristiques. Pour 

etudier l'helicoptere UH-60A (Black Hawk) de Sikorsky, nous allons considerer le mode 

de vol donne au chapitre 3, qui est le voisinage du vol stationnaire a 60 [pi] d'altitude 

du niveau de reference avec VB=[0,5 0 0] [kt]; (oE = [0 0 0] [rad/s] . Le 

modele lineaire analytique incertain avec perturbation atmospherique, qui est defini avec 

MATLAB comme suit: 

» UH60AControl 
USS: 22 States, 9 Outputs, 4 Inputs, Continuous System 

BLCG: real, nominal = 0, variability = [-1 1], 14 occurrences 
FSCG: real, nominal = 356, variability = [-2.86597 1.2082]%, 10 occurrences 
Ixx: real, nominal = 5.63e+003, variability = [-5.14147 48.3784]%, 54 occurrences 
Ixz: real, nominal = 1.67e+003, variability = [-8.11928 70.4246]%, 54 occurrences 
lyy: real, nominal = 4e+004, variability = [-2.93794 7.27915]%, 6 occurrences 
Izz: real, nominal = 3.72e+004, variability = [-3.45999 7.3341]%, 54 occurrences 

WLCG: real, nominal = 248, variability = [-1.53102 1.16841]%, 10 occurrences 
Weight: real, nominal = 1.68e+004, variability = [-7.99772 20.3573]%, 85 occurrences 

a ete developpe dans le chapitre 2 et s'ecrit sous la forme matricielle suivante : 

x = Ah x + [Bhgml Bh] U ; x = [x,r x / xc
7 '] ' ;U = [ x / u7 ']' 

^ = Xy=Chx ; u = [77eo// n,all rjkmg i]p 

g, = \xt ,ynh(h = -z,), <j)b, 9b, i//h, fa, 6b, xj/b 

*i = [x, ,y„h(h = -z,), fa, 9b, y/h, p„ ,qb,rb 

if 

Uoiig ' I pedal 

-iT 
(4.1) 
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Figure 4,1 Positionnement des poles du modele nominal en boucle ouverte 

Les quatre poles les plus rapides (-76,92) correspondent a la dynamique de 

l'actionnement du plateau cyclique et Tangle de pas du rotor de queue. L'instabilite du 

systeme est caracteristique de tous les helicopteres au voisinage du vol stationnaire et est 

liee aux deux poles oscillatoires instables du mode phugo'ide longitudinal 

(0,1384 + 7*41.83) et presente un integrateur pur du mode spiral (0) . Les modes 

oscillatoires stables et rapides de conicite (-11,8295 ±j25,931.1) et d'avancement 

(-11,69841:,/52,2723) et regressif (-7,8802±y4,1044) correspondent a la dynamique 

du rotor principal. Les autres modes theoriques sont: de phugoide lateral 

(-0,1338±y0,4516), d'incidence (-8,5191), de roulis pur (-2,4198) et de roulis 

hollandais (-0,2360 + 7*0,0685) qui peuvent etre specifies comme mode rapide ou 

mode phugoide. Le mode rapide est un mouvement en roulis ou en tangage oscillatoire 
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de courte duree. Cependant le mode phugoide ou mode de periode longue est un 

mouvement oscillatoire, faiblement amorti. L'allure frequentielle des valeurs singulieres 

du modele nominal en boucle ouverte est visualisee a la iigurefO. 

Singular Values 

10'" U)4 10"' 10° 10"* to'' 

Frequency (rad/sec) 

Figure 4,2 Valeurs singulieres du modele nominal en boucle ouverte 

L'analyse des valeurs singulieres du modele nominal en boucle ouverte revele le faible 

gain statique d'un des circuits et surtout le nombre conditionnel relativement grand. 

4.3 Performances du compensateur HOT par la methode de sensibilite mixte 

Dans cette section nous allons presenter les performances du compensateur central H,, 

par la methode de la sensibilite mixte. Certains principes de base du choix initial des 

fonctions de ponderation pour la synthese du compensateur HM par la methode de 

sensibilite mixte sont donn6s dans 1'annexe C. Etudions maintenant plus en detail le 

choix des ponderations que nous allons utiliser lors de la synthese du compensateur. 
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4.3.1 Choix de la matrice de ponderation sur l'erreur We (s) 

La fonction de ponderation sur l'erreur We (.<?) est matricielle et le choix initial se 

presente sous la forme : 

T\ 
•5(5 + 12) .5(,? + 5) 2+2'5 2 + 5 2s 2s 
*+ .006 .v + ,0025 s + ,0025 5+ .005 (s + 4)(j + 4.5) (s + 4)(.s + 4.5) 

.) 
(4.2) 

Etant donne que la pulsation naturelle du mouvement non modelise de trainee est de 

l'ordre de 12 Trad s"11 , pour les quatre premiers circuits, nous avons choisi les 

frequences initiales de coupure respectivement de 61 rad s"11 , 2.5 F rad s"1 , 

2.5 rad s"1 let 5 j rad s"1 I qui vont assurer que la dynamique du systeme de commande 

ne soit pas couplee avec la dynamique non modelise de trainee. La valeur maximale 

initiale de la norme Ho; de la matrice de sensibilite Smix en basse frequence est 

introduite par le facteur 0.5, qui pour les deux premiers circuits est explicitement 

demontre. Cependant, la valeur initiale de l'erreur de poursuite en regime etabli est 

introduite par le facteur 0.001 sur les poles des quatre premiers circuits. Pour les circuits 

de vitesse en tangage et de vitesse en roulis, nous avons choisi un filtre de deuxieme 

ordre de type passe-bande qui a pour but de rejeter les perturbations et les effets de 

couplage dans la bande de 4 Trad s"'l a 7 Trad s"1 I. 

4.3.2 Choix de la matrice de ponderation sur la commande W (s) 

La fonction de ponderation sur la commande Wu {s) est egalement matricielle (4.3) et 

a pour objectif de minimiser l'influence des dynamiques negligees en hautes frequences. 

La valeur de W~l (s) en hautes frequences devra etre faible et ajustee afin que la courbe 

de la matrice de sensibilite S lx suive au plus pres celle de la matrice de ponderation 

fVe (s) = diag 
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f'F (s). La frequence de coupure de ces ponderations Wu (s) est tres importante 

puisqu'elle fixe la bande passante des asservissements. Respectant la dynamique non 

modelee de trainee, la frequence de 12 [rad/s] est fixee comme la limite superieure et la 

limite inferieure est fixee a -100 [dB] pour s'assurer que la ponderation Wu (s) sera 

dominee par We (s) en basses frequences. Cette reflexion decoule de la fonction cout 

(3.2!) et reflete les objectifs de performance. Le choix initial de la matrice de 

ponderation sur la commande Wu {s) est donne par (4.3). L'allure frequentielle de la 

matrice de ponderation sur la commande Wu (s) est vlsualisee a la figure 3.5. 

W (s) = diag 
v 

.y+ .00012 s + .00012 A-+ .00012 s + .000.12 
i- + 12 s + \2 .v + 12 s + 12 

(4.3) 

4.3.3 Choix de la matrice de ponderation constante Wad 

La matrice de ponderation constante Wad doit ponderer les entrees fictives avec petites 

valeurs. Pour ces derniers, nous avons choisi le poids (0.05), qui contribue a un certain 

rejet de perturbations sur les sorties additionnelles sans toutefois influencer de maniere 

significative le systeme augmente. Etant donne un parametre de design, la matrice de 

ponderation constante Wad doit privilegier de maniere relativement egale les principaux 

signaux de reference. Ainsi, notre choix initial est le suivant: 

Wad=diag{[\ 1 1 1 0.05 0.05]) (4.4) 

Cependant la modification iterative des fonctions de pond6ration est un probleme 

d'expertise et d'experience, et est un processus dicte par la volonte de "faconner" les 

valeurs singulieres des fonctions de transfert caracteristiques pour satisfaire les objectifs 

de performance en respectant la regularity du probleme Hr resultant. La difficulte de ce 

processus est accrue d'avantage, lorsque le systeme est sous-actionne, qui est bien notre 

cas, c'est-a-dire que le nombre des degres de libertes du systeme est superieur au 



145 

nombre des entries. Pour la structure de la boucle de commande illustree a la figure 3,3 

avec C, = h, (yt + ([>,,), (i, + 9b), rb, ph, qh et les matrices de ponderation finales : 

WtAs) = dia8 
' ,45455+3.5 .8929.?+2.5 .89295 + 2.5 .4545.V+3.5 

s + .S6 5 + .0Q125~ J + .0025 5 + 2.15 

2s 2s 

WH (5) = diag 

(s + 4) (A- + 4.5) (v + 4) (5 + 4.5) 

005+ .01 45+ .0004 9.25+ .00092 4.65+ .00046' 

5 + 10 5 + 10 5 + 10 5 + 10 

Wad=diag ([0,277 0,419 0,26 0,4201 0,05 0,05]) 

Valeurs singulieres de la matrice de sensibility en entree S ^ e t ponderation (w
emjX*Wadr

1 (--) 
20 

10 

& -10 
"O 

40 -20 

w 

-40 

-50 

-60 

ik 

/ 

~y 

]y 
i i i i i 

-

-

-

i 

10 10 10' 10 
Frequency (rad/sec) 

10 10 

Figure 4,3 Valeurs singulieres de la matrice de sensibilite en entree Smix et 

ponderations \We. {AwJ\ 
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La fonction hinf syn de MATLAB calcule le compensateur dynamique Kmix, qui 

stabilise le systeme en boucle fermee. Le critere de performance correspondant est 

/ =1.0001. 

L'allure frequentielle des valeurs singulieres de la matrice de sensibilite en entree Smlx et 

est visualisees a la figure 4.3. Nous remarquons que l'une des courbes de la matrice 

sensibilite en entree Snllx est situee temporairement au dessus de la fonction de 

ponderation (w^ (,s) Wad\ , c'est-a-dire que nous avons We Smjx Wad\ < y* dans cette 

intervalle, ou y" = 1.0001, et non llj^ S^W^ 

vue la difference minime. 

ad\ Pourtant ce resultat est acceptable, 

Valeurs singulieres de la matrice K . *S . *W . et ponderation W 1 (-) 
" miv miY art ' umiY v ' 

100 

50 

I 
c 

-50 

-100 

-150 

mix mix ad 

10 10 ' 10'" 10'" 

Frequency (rad/sec) 

K . *S . *W Y:,2:4) 
mix mix adv ' 

K *S .*W .(:,1) 
mix mix =HX ' 

10" 10 

Figure 4A Valeurs singulieres de la matrice Kmix Smix Wad et ponderations WJ 
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L'allure frequentielle des valeurs singulieres de la matrice KnUx Smix Wad est visualisee a 

la fiBMi:e„4„.4. Elle montre que les valeurs singulieres de la matrice Kmix Smix Wad restent 

inferieures en gain a celles de la matrice de ponderation W~x (,v). 

Nous avons verifie qu'en general, les valeurs singulieres de la matrice de sensibilite en 

entree Smx et de la matrice KBliJISmtt restent bornees par les fonctions de ponderation 

choisies a un facteur multiplicateur y pres. L'analyse des valeurs singulieres de la 

matrice de sensibilite en entree Sma montre que l'allure frequentielle des principaux 

signaux (les entrees du pilote) est attenuee en basse frequences et assure le rejet des 

perturbations atmospheriques qui prennent son sens en basses frequences. 

Valeurs singulieres de la matrice complementaire de sensibilite en entree T . 

10"8 10"6 10'"* 10"2 10° 102 104 

Frequency (rad/sec) 

Figure 4.5 Valeurs singulieres de la matrice complementaire de sensibilite en entree 

mix 
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A la fejiOLlJ, les valeurs singulieres correspondant aux vitesses de roulis et de tangage 

sont presque partout egales a 0 [dB]. Les valeurs singulieres de la matrice KmhSmlx sont 

faibles, a l'exception du circuit "collectif, et done Penergie de la commande sera 

reduite. 

La JigMBLiLl presente Failure frequentielle des valeurs singulieres de la matrice 

complementaire de sensibilite en entree Tmix. L'analyse de ces dernieres montre que le 

systeme en boucle fermee permet une poursuite des principaux signaux (les entrees du 

pilote) sans reduction significative de Pamplitude et attenue les entrees additionnelles 

(fictives). Comme nous le souhaitions dans le chapitre 3, le nombre conditionnel de la 

matrice complementaire de sensibilite en entree Tmix est faible en basse frequence avec 

un gain presque egale a 0 [dB] et finalement, nous pouvons conclure que Failure 

frequentielle du systeme asservi correspond aux objectifs de performance definis dans le 

chapitre 3. 

Voyons maintenant les reponses temporelles du systeme commande avec un 

compensateur Hw par la methode de la sensibilite mixte, incluant explicitement Feffet 

des perturbations xP = rug vg wg ] , introduites par la matrice Bhgusl (:, 1:3), sur les 

vitesses lineaires de Fhelicoptere. 

B ^ (1:11,1:3)= B h ^ (12:22,1:3) = 
0.7122 0.0455 1.7087 0 0 0 
0.3728 0.9659 -0.0792 19.162 0.0001 0.055 
4.0563 -0.0335 0.0322 -2.8629 19.0447 0.3322 

0 0 0 5.6947 -1.3953 -34.7912 
0 0 0 -0.0026 0 0 
0 0 0 0 -0.0009 0.0001 

-0.2605 1.399 1.3004 0.0002 -0.0004 0.0002 
-0.1654-0.1052 -0.3305 0 0 0 
0.0467 0.0856 0.0552 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 

Rappelons les equations differentielles matricielles (4.1) du systeme perturbe. 
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x = A h x + | B h g I O / [ B ^ B h ] U ; x = [x/' x / x / J ; U = [ x / u r J 

pedal y = CiChx ; u=\?7coll r,lan rllnng 77 

y = [h, {y, +fa), {x, +0b), rb, pb, qh ] 

La structure du systeme est presentee a la figirejj). Le script permettant de mettre la 

dynamique de l'helicoptere sous la forme standard selon la figure 3,6 est donne dans 

l'annexe D. Apres un certain nombre de tests, nous avons fixe la valeur de (a^, = 0.1 J. 

Le critere de performance correspondant est y* = 0.9777 . 

Rejet de perturbation uB g u s ( = 10 (ft/s) + vBgugt = 5 (ft/s) + wBgus ( = 20 (ft/s) 

in 

15 
Temps (sec) 

Figure 4.6 Rejet de perturbations atmospheriques avec un compensateur H,, con^u 

par la methode de sensibilite mixte 
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Reponse en boucle fermee a une entree de commande « c o l l » du pilote 

8-

Si 

I 1 1 1 
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/ 

/ 

1 

delta u{ 

delta v. 

delta w. 

-

1 1 . 1 . . 1 . 1 

10 15 
Temps (sec) 

20 25 30 

Figure 4.7 Reponse en boucle fermee a (un echelon) une entree de commande 

collective du pilote de 5" pour un systeme asservi avec un compensateur H<o, concu 

par la methode de sensibilite mixte 

Certains resultats temporels du systeme en boucle fermee sont visualises a la figMKAA 

et la figMIILiLZ et correspondent respectivement a une entree en echelon de 

x,, =[10,5,20]' pis"' et a une entree de 5" sur le levier collectif du pilote. On 

remarque que le compensateur annule l'effet de la perturbation apres un regime 

transitoire en stabilisant la vitesse lineaire de l'helicoptere. Le temps de reponse et le 

depassement de la reponse en vitesse pour un echelon a Pentree collective du pilote de 

5" sont acceptables dans le contexte de rapidite et confort: ils sont respectivement 

tr — 2.7 Lvl et 4% . La precision est excellente puisque l'erreur statique est inferieure a 

0.15% . Nous pouvons constater egalement le decouplage statique (en regime etabli) de 

la vitesse d'ascension par rapport a la vitesse dans le plan horizontal qui provient de la 

matrice du decouplage statique, calculee generalement pour le mode de vol stationnaire. 
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Cependant, la loi de commande d'helicoptere pour toute l'enveloppe de vol doit 

egalement calculer le decouplage dynamique des reponses du giravion en vitesse. 

4.4 Performances du compensateur H^ par la methode de "loop-shaping" et 

factorisation en element premiers 

Le principe de base pour le choix des fonctions de ponderation est explique par 

McFarlane et Glover dans [McFG92]. Le pre-filtre W] (s) est compose de blocs PI, 

dont le but est d'augmenter le gain en basse frequence. Le zero dans le bloc PI est utilise 

pour reduire le taux de decroissance des valeurs singulieres du systeme pondere en 

boucle ouverture, inferieure a -40 (dB), au voisinage de sa valeur. Dans notre cas, la 

fonction W?r (>?) est une matrice scalaire diagonale qui favorise les principaux circuits 

(les quatre entrees du pilote) par rapport aux circuits additionnels et fictifs de vitesse de 

roulis et de vitesse de tangage. Pour le systeme presente dans la section 3.6 et les 

matrices de ponderation suivantes : 

W, , = diag 
s + 9 .v + 17 s + 2 s + l 

s $ s s 
W2n=diag([.& 1 1 1 .1 .5]) 

kLS=diag([A .1 .1 .11]) 

Failure frequentielle des valeurs singulieres du systeme pondere en boucle ouverte est 

visualisee a la figiire.,48. La figure_4J) presente respectivement Failure frequentielle des 

valeurs singulieres de la matrice de sensibilite en entree S[S et de la matrice 

complementaire de sensibilite en entree T[S. Comme nous le souhaitions dans le chapitre 

3, les valeurs singulieres de la matrice de sensibilite en entree Sls des principaux 

signaux (les entrees du pilote) sont faibles en basse frequences ce qui permet le rejet des 

perturbations sur la sortie, de type rafales. 
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Valeurs singulieres du systeme pondere G. = W *G *W *k 

-15 -10 -5 0 5 
10 10 10 10 10 

Frequency (rad/sec) 

Figure 4.8 Valeurs singulieres du systeme pondere en boucle ouverte 

Les valeurs singulieres correspondant aux circuits additionnels fictifs de vitesses de 

roulis et de tangage sont presque partout egales a 0 [dB] . L'analyse de Failure 

frequentielle des valeurs singulieres de la matrice complementaire de sensibility en 

entree Tmx montre que le systeme en boucle fermee permet une poursuite des entrees du 

pilote sans reduction significative de l'amplitude, a l'exception du circuit en lacet, et 

attenue les entrees additionnelles. La valeur calculee de la marge de stabilite est 

/ = 6,4104 . Finalement, nous pouvons conclure que la bande passante du systeme 

asservi est relativement basse et les qualites de manoeuvrabilite ne sont pas atteintes. 

Tous nos efforts afin d'ameliorer la performance du systeme ont corrompu la stabilite a 

cause surtout de la structure diagonale des matrices de ponderation qui ne permettent pas 

de mieux faconner les valeurs singulieres du systeme en boucle ouverte au voisinage de 

la frequence de coupure. La valeur de la marge de stabilite indique egalement que le 

systeme asservi garantie la stabilite pour 15% d'incertitude parametriques additives sur 
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la factorisation en elements premiers a gauche et done privilegie la performance par 

rapport a la robustesse. 

Valeurs singulieres de la matrice de sensibilite en entree SloopLS 

10"" 10"° Frequency (rad/sec) 1 0 ' 10° 

Valeurs singulieres de la matrice complementalre de sensibilite en entr6e TloopLS 

10" 10" 

Frequency (rad/sec) 

10 

Figure 4.9 Valeurs singulieres de la matrice de sensibilite en entree SLS et de la 

matrice complementaire de sensibilite en entree Tls 
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4.5 Performances du regulateur statique de retour de sortie par la methode 

d'optimisation lineaire quadratique et HJ} 

Pour le systeme presente dans la section 3.7, nous avons choisi un poids egal sur les 

variables de sortie Q-x = C,/ Ch et les differents circuits de commande Rs = /,,. Nous 

supposons egalement une perturbation xp' (1:3) = [ ug vg wl , introduite par la 

matrice B, ,(:,1:3), sur la vitesse de Phelicoptere. Le script qui nous permet de 

calculer le regulateur statique de retour de sortie par la methode lineaire quadratique et 

H7, en utilisant le logiciel MATLAB, est donne dans 1'annexe D. Le parametre d'entree 

(/) du script introduit la norme euclidienne desiree. Initialement, on choisit une valeur 

relativement grande (p.ex. f = 10) et si l'algorithme converge on diminue {y) en 

projetant la matrice de retour de sortie K.v sur l'espace perpendiculaire du noyau de la 

matrice Ch. Cependant, pour des petites valeurs du facteur d'attenuation (y), introduit 

par l'expression (3.41), l'algorithme ne converge plus, parce que la solution de 

1'equation algebrique de Riccati n'est plus semi-defmie positive. Pour un certain nombre 

d'iterations, on trouve la valeur optimale y* =0,92. La matrice de retour de sortie K 

trouvee est donnee par : 

0.1962 -0.0192 -1.052 0.738 -5.3189 -0.0823 0.184 -2.262 -0.2509 
-0.0621 0.9004 -0.0143 14.9478 -2.9723 0.639 -0.2626 -4.1579 0.099 
0.8241 0.3475 0.2277 11.0165 -31.1802 0.6436 -0.6132 -11.1833 0.1794 
0.758 -0.5515 0.4296 3.3284 -37.8218 1.1215 -1.4858 -15.6805 0.8352 

Les poles en boucle ferm^e sont: 
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-76.9102 + 0i 
-76.9144 + Oi 
-76.9231 + Oi 
-76.9228 + Oi 
-11.82 + 52.4843S 
-11.82- 52.4843i 
-4.2384 + 25.3462i 
-4.2384 - 25.3462i 
-11.0552+ 2.5694i 
-11.0552-2.5694i 
-11.039 + Oi 

-2.788 + 6.6297i 
-2.788 - 6.6297i 
-4.367 + Oi 
-2.3035 + Oi 
-0.938 + 0.8257i 
-0.938 - 0.8257i 
-0.2773+ 0.0891i 
-0.2773-0.0891 i 
-0.1336 + Oi 
-0.5008 + 0.0037i 
-0.5008 - 0.0037i 

L'allure frequentielle des valeurs singulieres de la matrice de sensibilite en entree S[Q et 

de la matrice complementaire de sensibilite en entree TIQ est visualisee a la figure 4.1,0. 

Nous pouvons noter que les valeurs singulieres de la matrice de sensibilite en entree SlQ 

sont toutes sous 0 [dB] qui assure le rejet des perturbations atmospheriques qui prennent 

son sens en basses frequences et que le gain proche a unite pour trois des quatre canaux 

des valeurs singulieres de la matrice complementaire de sensibilite en entree Tl0 permet 

une poursuite des consignes du pilote sans attenuation. Cependant la bande passante est 

inferieure a 1 [rad/s]. 
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Valeurs singulieres de la matrice de sensibilite en entree S 

10 10' 

Frequency (rad/sec) 

Valeurs singulieres de la matrice complementaire de sensibilite en entree T 

.2 
5 

10 ' 10' 10" 

Frequency (rad/sec) 

igure 4.10 Valeurs singulieres de la matrice de sensibilite en entree SlQ et de la 

matrice complementaire de sensibilite en entree TLQ 
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Reponse en boucle fermee a une entree de commande « c o l l » du pilote 
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Reponse en boucle fermee a une entree de commande « c o l l » du pilote 
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Attitude de la cellule (Angles tf'Euler) a une entree de commande « c o l l » du pilote 

30 40 
Time (sec) 

Figure 4,11 Reponse en boucle fermee a (un echelon) une entree de commande 

collective de 5" du pilote pour un systeme asservi avec un compensateur, concu par 

la methode d'optimisation lineaire quadratique et II, 

Les reponses en vitesses lineaires a un echelon de commande collective de 5" du pilote 

pour l'helicoptere asservi avec un compensateur, concu par la methode d'optimisation 

lineaire quadratique et Hw peuvent etre directement comparees aux reponses du raeme 

systeme asservi avec un compensateur Ho,, concu par la methode de sensibilite mixte. 

Sur la Qgyre 4,11, on constate le couplage relativement plus important de la vitesse 

d'ascension par rapport a la vitesse longitudinale, l'erreur statique de 7% et les plus 

grandes valeurs du temps de reponse et du depassement de la reponse en vitesse pour un 

echelon a Pentree collective du pilote, respectivement de tr = 4 [s] et de 8%, comparees 

avec les courbes de reponse en vitesse a la figyiej/?. 

Pour des raisons d'insuffisance de memoire (de calcul) sur les ordinateurs dans les salles 

informatiques de l'Ecole Polytechnique, l'analyse des marges de stabilite du systeme en 

boucle fermee ne peut etre faite que seulement pour un seul parametre incertain. Pour 
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cette raison, nous avons choisi la variation du poids totale de Phelicoptere, laissant les 

autres parametres incertains a leur valeur nominale. La fonction robuststab de 

MATLAB, calcule les marges de stabilite, la valeur et la frequence de destabilisation, et 

donne le rapport suivant: 

[stabmargLQ, destabuncLQ, report_robuststabLQ,info_robuststabLQ]=robuststab(TloopLQsubs) 

stabmargLQ = 
UpperBound: 2.2941 
LowerBound: 2.2369 

DestabilizingFrequency: 173.8244 

destabuncLQ = 

Weight: 1.0321 e+008 

report_robuststabLQ = 

Uncertain System is robustly stable to modeled uncertainty. 
- It can tolerate up to 224% of the modeled uncertainty. 
- A destabilizing combination of 229% of the modeled uncertainty exists, 

causing an instability at 174 rad/s. 
- Sensitivity with respect to uncertain element... 

'Weight' is 101%. Increasing 'Weight' by 25% leads to a 25% decrease in the margin. 

info_robuststabLQ = 

Sensitivity: [1x1 struct] 
Frequency: [262x1 double] 

BadllncertainValues: {262x1 cell} 
MussvBnds:[1x2frd] 
Mussvlnfo: [1x1 struct] 

Le rapport nous indique que le compensateur, concu par la methode d'optimisation 

lineaire quadratique et Hm garantie la stabilite pour toute variation du poids totale de 

Phelicoptere UH-60A (Black Hawk) de Sikorsky, donnee du constructeur (tableau 2), 

selon la mission et Pequipement additionnel. 
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4.6 Conclusions 

Dans le cadre de 1'experimentation des lois de commande de l'helicoptere UH-60A 

(Black Hawk) de Sikorsky pour un mode de vol au voisinage du vol stationnaire, nous 

avons utilis6 differentes strategies pour la synthese du compensateur selon 1'information 

sur le type des incertitudes et des perturbations. Les methodes nous ont permis de 

garantir la stabilite du systeme etudie avec une marge de stabilite pour toutes 

incertitudes admissibles, entre autre, d'assurer certaine flexibilite entre performance et 

robustesse. Dans ce sens les objectifs lies avec la robustesse de la loi de commande 

d'helicoptere, definis dans le chapitre 1, ont ete atteints. 

Parmi les structures de commande realisees, le compensateur Hol, concu par la methode 

de sensibilite mixte et le regulateur statique de retour de sortie par la methode 

d'optimisation lineaire quadratique et Htt. nous ont permis d'atteindre de meilleurs 

performances avec un excellent critere de performance, respectivement de 1,0001 et 

0,92, comparativement a la methode de "loop-shaping" et factorisation en element 

premiers. Cependant les qualites de manceuvrabilite n'ont pas ete atteintes surtout a 

cause de la frequence de coupure inferieure a 1 [rad/s]. 

Comme perspectives de cette recherche, nous pensons qu'il serait souhaitable : 

- D'explorer la conception du regulateur robuste statique de retour de sortie avec 

contraintes sur la matrice de retour. 

- De considerer d'autre type de ponderations, egalement des matrices de 

ponderations avec termes croises. 
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CONCLUSION GENERALE 

Les travaux proposes dans cette recherche presentent une extension a la modelisation et 

a Petude des methodes d'analyse et de synthese des lois de commande robuste pour la 

dynamique de vol d'helicoptere. 

Ce projet a ete realise en deux grandes etapes: dans une premiere partie, nous avons 

developpe un modele mathematique d'helicoptere avec un rotor principal articule, base 

sur les mouvements de battement et de trainee de la pale, dus a une combinaison des 

charges aerodynamiques, de Pinertie et de la masse de la pale. Le modele lineaire 

analytique a ete developpe a partir d'un modele non lineaire de la cellule, considered 

comme un corps rigide, le rotor principal et le rotor de queue et d'un modele 

atmospherique, et tient compte de la dynamique de battement vertical des pales et de la 

vitesse induite. Ce travail theorique, reprenant les principes de la mecanique et de 

Paerodynamique, a ete ensuite applique a l'helicoptere UH-60A Black Hawk de 

Sikorsky. Dans une seconde partie, nous avons traite la synthese de la loi de commande 

d'helicoptere. Apres une revue de la litterature sur ce domaine, nous avons choisi de 

concevoir la loi de commande d'helicoptere par l'approche Hw, basee sur la sensibilite 

mixte, par la methode de "loop-shaping", ou par la methode d'optimisation lineaire 

quadratique et Hr et les developpements theoriques recents qui permettent la 

conception d'un compensateur robuste statique ou dynamique. 

Dans le cadre de Pexperimentation des lois de commande de l'helicoptere UH-60A 

(Black Hawk) de Sikorsky pour un mode de vol au voisinage du vol stationnaire, nous 

avons utilise differentes strategies pour la synthese du compensateur selon Pinformation 

sur le type des incertitudes et des perturbations. Les methodes nous ont permis de 

garantir la stabilite du systeme etudie avec une marge de stabilite pour toutes 

incertitudes admissibles, entre autre, d'assurer une certaine flexibilite entre performance 

et robustesse. Dans ce sens les objectifs lies avec la robustesse de la loi de commande 
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d'helicoptere, definis dans le chapitre 1, ont ete atteints. Les difficultes majeures 

rencontrees dans cette recherche, resident dans les couplages entre les variables d'etat et 

le nombre considerable de degres de liberie. 

Parmi les structures de commande realisees, le compensateur Hm, con9u par la methode 

de sensibilite mixte et le regulateur statique de retour de sortie par la methode 

d'optimisation lineaire quadratique et Hm nous ont permis d'atteindre de meilleurs 

performances avec un excellent critere de performance, respectivement de 1,0001 et 

0,92, comparativement a la methode de "loop-shaping" et factorisation en element 

premiers. Cependant les qualites de manoeuvrabilite n'ont pas ete atteintes surtout a 

cause de la frequence de coupure inferieure a 1 [rad/s]. 

Pour ce qui concerne la modelisation, comme perspective de cette recherche, nous 

pensons qu'il serait souhaitable : 

- De reviser le modele afin de prendre en consideration la dynamique du 

stabilisateur vertical, qui n'est pas commande par le pilote, et dont Tangle 

d'incidence fait partie des variables asservies. 

Pour ce qui concerne la synthese de la loi de commande d'helicoptere, il pourrait etre 

interessant: 

- D'explorer la conception du regulateur robuste statique de retour de sortie avec 

contraintes sur la matrice de retour. 

- De considerer d'autres types de ponderations, egalement des matrices de 

ponderations avec termes croises. 
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ANNEXE A : DEFINITIONS 

Dans cette annexe sont presentees les definitions de certaines notions utilisees dans le 

texte. 

Definition A. 1 (Systeme propre et strictement propre) [DFT92] : On dit qu'un 

systeme est propre, si le degre de son numerateur est inferieur a celui de son 

denominateur {m<ri). On dit qu'un systeme est strictement propre, si le degre de 

son numerateur est strictement inferieur a celui de son denominateur (/?/ < n). 

Autrement dit, G(s) est propre si \G(j<x>)\<°o et strictement propre si 

|G(H| = O-

Definition A.2 (Norme H,) [DFT92] : Soit un systeme lineaire stationnaire de matrice 

de transfert G(,s). On definie la norme H, comme : 

\( 1 +" \\Y(s)\\ 
- s u p ] • • • • J - ( A . I ) 

(/(s)eSH,, \\U [S)\\ 

oil Vindice ( j designe la matrice conjuguee On appelle !RHa, I'espace des 

fonctions X(,s) , analytiques dans Re(.v)>0 , telles que la norme HM est 

\x(s)\ <m. 

Interpretation : c'est l'energie en sortie du systeme lorsqu'on injecte une impulsion 

unitaire en entree (cas mono-entree / mono-sortie SISO) ou plus gendralement un 

bruit blanc, verifiant U(j.a))U* (jxo) (densite spectrale uniforme). 
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Definition A.3 (Norme llr) rDFT92] : Soit unsysteme lineaire stationnaire de matrice 

de transfert G(s). On deflnie la norme H.m comme : 

\\Y(S)\\ 
\\G(S)\\ = sup a(G (/>»)) = SUP J,, - (.A-2} 

m (/(.vieRH, t / ( , V ) 
~ II ^ '\\2 

On appelle RH2 I'espace des fonctions X{s), analytiques dans Re(»v) > 0 , de 

carre sommable (espace de Hilbert). 

Interpretation : c'est la norme induite par la norme des fonctions de H2. Elle mesure 

le gain maximal de la reponse frequentielle G(j.m) (le pic dans le lieu de Bode). 

La norme H, est finie si et seulement si G(s) est strictement propre et n'a pas de 

pole sur l'axe imaginaire; la norme H,n est finie si et seulement si G(s) est 

strictement propre et n'a pas de pole sur l'axe imaginaire (pour justification voir 

[DFT92] p. 16). 

Definition A.4 (Valeurs propres) [ZDG96] : Soit une matrice A e C"y", alors les 

valeurs propres de (A) , notees A^A) , sont les racines de I'equation 

caracteristique det (XI. n - A) = 0. 

Definition A.5 (Vecteurs propres) [ZDG96] : Le vecteur propre a droite de (A) 

Vj e R.", associes a la valeurpropre Xt (A.), est tel que A vt = A, v,. 

Le vecteur propre a gauche de (A) nl e R", associes a la valeur propre X, (A), est 

tel que u.1 A = u' Xit oul 'indice ( ) designe la matrice transposes 
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Definition A.6 (Valeurs singulieres) [ZDG96] : Soit A e C'x" une matrice complexe. 

\A.x\ 
Le gain de la matrice (A) peut etre deflni par le rapport \ - j | » ou le vecteur 

xeW. On peut deduire facilement que le gain de la matrice (A) depend de la 

direction du vecteur (x). Pour toute matrice [A), il existe Uz e C"x"' et VT e C"xn, 

deux matrices unitaires (c.-a-d. Uy* UT = /,„; Vy* Fx = ln), telles que : 

I = diag (<r ,... or , Qm<"-'^ ] n > m y p „M 

A^IUILV:- \ ; LizK (A3) 
~ " l = diag(al,..,an;0

{m-")x") n<m <*,*<> 

Les valeurs singulieres de (A) sont les racines carries des valeurs propres de 

(A'A) : 

ai(A) = ^Ai(A'A) m>n ; <TI(A) = JA1(AA') m<n (A.4) 

oil { ) est la matrice conjuguee transposee et Xi ( ) est la i-eme valeur propre. En 

general, on les ordonne comme suit : 

a, (A) >cr2(A)>...><ri(A)>...> crn (A) (A,5) 

Ainsi <TX[A) = O:(A) est la plus grande valeur singuliere et an(A) = cr(A) est la 

plus petite valeur singuliere. Si (x = v, ; V}: =[v,,v2,...,v„]) , alors 

"I'amplification" maximale de la matrice (A) sera cr{A) dans la direction 

(z/, ; Uy = [H,; u2;...; um j). De maniere similaire : 

Avi=a){A)ul (A.6) 
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Alors les valeurs propres sont liees aux directions invariantes par la transformation 

lineaire associe a (A), tandis que les valeurs singulieres contiennent I'information 

"metrique" de cette transformation. Plus precisement, la boule unite de R" est 

transforme en un hyper ellipsoide et les valeurs singulieres correspondent aux 

demi - longueurs des principaux axes de cet ellipsoide. 

Definition A.7 (Nombre conditionnel) [SP05]: Si on definie le nombre conditionnel 

de (/4) comme : 

K(A) = - '•• (A.7) 

La matrice mal conditionnee aura une valeur importante du nombre conditionnel, 

tandis qu 'une matrice "ronde" aura (AT «1). 

Definition A.8 (Forme de Schur) [ACAGF99] : Toute matrice A. e C"K" peut se 

decomposer sous la forme : 

A = UX*AU± (A.8) 

oil (U^) est unitaire et (A) est triangulaire superieure. Les elements diagonaux de 

(A) sont les valeurs propres de (A). 

Definition A.9 (Equations de Riccati) [ACAGF99]: Pierre angulaire des problemes 

de commande avec cout quadratique, /'equation de Riccati standard est de la 

forme : 

A1 X + X A - X B If X + Q = 0nxn (A .9) 

oil (QeM."x" >0J est symetrique \Q' =Q) , (AeM."*") et I'inconnue est une 

matrice (X e K"x") que Von souhaite symetrique. Sous reserve d'existence, il n'y a 
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pas en general unicite de solutions (X^. Pour les applications a I'automatique, on 

s 'interesse a I'unique solution stabilisante (X+ > 0), c 'est-a-dire les valeurs propres 

f 

de A-BB'X 

K \ 
r v-+ 

V 

soient toutes dans le demi plan complexe ouvert gauche (C_). La 

resolution de I'equation algebrique matricielle de Riccati (A.9) fait intervenir le 

sous-espace propre stable de la matrice Hamiltonienne : 

H 
A ~~B B' „ TJ'TI 2.n,<7.n (A, 10) 

Le spectre de cette matrice a la propriete d'etre symetrique par rapport a I'axe 

imaginaire. Le sous-espace propre stable de ( / /) est le sous-espace des vecteurs 

propres associes aux valeurs propres stables. On les calcule par la decomposition de 

Schur de (H). Si est une base orthonormee de ce sous-espace, I'equation (A.,9) 

a une solution stabilisante si et seulement si 

- le Hamiltonienne (H) (A. 10) n'a pas de valeur propre sur l'axe imaginaire, 

alors (Z,,Z, e i " j ; 

- la matrice ()',) est inversible. 

Cette solution est alors symetrique et obtenue comme : 

X+ = Zu I, 

Onpeut s 'en convaincre directement apartir de I 'equation (A. 12) 

(A.I I) 

H 
'Y~ 

U 

A.. 
— 

~Y*~ if 

7 
»... 

A R e ( A ) e C . 
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qui traduit que est le sous-espace invariant stable de ( / / ) . A noter que {A, i 2) 

donne A — BB1 Z# Y# ' = Y# A Y.f ' et cette matrice est done stable. On notera aussi 

I 'identite : 

L 0 
n fixn 

X'1 /„ 
H h 0 

X* I. 

'A-BBTX+ -BBr 

Ollxn -(AT-BBrX + ) 
(A. 13) 

Definition A.10 (Factorisation en elements premiers) [SP05] : Soit un systeme avec 

une fonction/matrice de transfert G(s), alors une factorisation en elements 

premiers a droite a la forme : 

G(s)^Nr(s)M;l(s) (A. 14) 

ou Nr (5) et Mr (5) sont stables et premiers entre eta. La stabilite implique que 

Nr{js) inclut tous les zeros (eC+J du systeme, alors que Mr(s) inclut, comme 

zeros, tous les poles [ e C j du systeme. La factorisation en elements premiers 

implique qu'il n'y a pas de zeros communs ( eC + ) entre Nr(s) et Mr(s), qui 

peuvent entrainer une simplification, lorsque le produit Nr (.f) M"r"' (,?) est forme. 

Mathematiquement, selon I'identite de Bezout, il existe deux fonctions stables, 

Ur (.v) e C"xp et Vr (s) e Cxp telles que : 

Ur{s)Nr(s) + V,(s)M,(s) = lq ,Vs (A. 15) 

Soit G (s) = C (s I - A)'1 B + D: 
A B 

C D 
une realisation interne (dans I'espace 

d'etat) minimale (les pairs (A,B) et ( J ,C) sont respectivement commandable et 
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observable), alors une factorisation en elements premiers a gauche est donneepar 

Vidyasagar dans [Vyd85~|, [Vyd88]: 

[N,{s), M,(s)]=> 
A + H,C B + H,D 

R, 2 C R, 2 D 

A + H, C H, 

R,2C R,2 16) 

R, = Ip + D if S, = Iq + DrD H, =-(B If + Z, CT)R'x D e Rpyq 

ou Z, est I'unique solution symetrique definie positive de I'equation algebrique de 

Riccati: 

Z,+Z, 

Le script MATLAB est: 

1 ,<!' A-BS-'D'C 
A, 

-1 nT 
zc'R;lcz+BsrB' =onxn 

;AAT) 

J 

» [ X , eigCL, Acl] = care(Al',C',Ql,Rl); 

Definition A. 1.1 (Produit de deux realisations minimales) [ACAGF99] : Soil 

'A 5, 
et G', (s 1 => 

C, IX 

Gl (s)=> 

produit: 

c, A 
deux realisations minimales, alors le 

Gx(s)G2{s) 
A 

<u 
[c, 

B< C2 

A, 

A c2] 

"3 Di 

. B2 . 

DlD 

-

A o ^ l 

A Q A 
[AQ C,] 

" B2 1 

ADi\ 

A A J 
(A. 18) 

Definition A.12 (Marge de gain) [Bou95]: Mathematiquement, pour un systeme 

mono-entree/momo-sortie (SISO) dont la fonction de transfert est G(.v), si on 

designe par yoph\ la frequence a laquelle la phase ZG(jco) est egal a ( - /T) , la 

marge de gain est donnee par: 
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Marge de Gain = ,—-; (A. 19) 
\G(ja>pk) 

Definition A.13 (Marge de phase) [Bou95] : Pour un systeme mono-entree/momo-

sortie (SISO) dont la fonction de transfert est G(s), si on designe par (o)c) la 

frequence de coupure \G(jcoc) = I, la marge de phase est donnee par: 

Marge de Phase = n f ZG (jcoc) (A,20} 
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ANNEXE B : CALCUL DES NORMES H2 ET H*, 

On rappelle ici les algorithmes pour calculer les normes II, et Hr d'un systeme defini 

dans l'espace d'etat G(s) e €px". Soit 

G (s) = C (sJ„ ~~ A)"1 B + D (B. I) 

avec (.Ae.Rn<n) matrice d'evolution, (fieM*"') matrice de commande, (Ce!/ , x") 

matrice de sortie et (D G M^9) matrice d'action directe. Pour la norme H2, on suppose 

que la matrice d'evolution (A) est stable et que la matrice d'action directe (D) est nulle. 

En remarquant que G{jco) est la transformee de Fourier de 

£"x ic(sl„ - A)"1 B) = CeAlB, l'identite de Parseval donne : 

\(CeA'B)' CeAlBd( = fG*(ja>)G(ja>)do? (B.2) 
o 2.7T ;, 

Soit 0 le grammien d'observabilite : 

0 = +J(CV")7 <V d/ = ]> ' 'C rcV d/ (B.3) 
0 0 

On montre [ZD98] que le grammien d'observabilite 0 est la solution de l'equation de 

Lyapunov (B,4): 

Ar0 + 0A + CTC = O (B.4) 

En prenant la trace de chaque membre de l'expression (B.2), on obtient: 

G\\2 = JTrace ( B T 0 B ) (B.5) 
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A noter qu'on a aussi [ZD98]: 

\\G\2=jTrace(CCCT) 

ou {£) est le grammien de commandabilite (B.7) et est la solution de (B.8): 

(B.6) 

C = \eA,B(eA,B) d/= JV'/J/iV''d/ (B.7) 

AC + CAr+BB' = 0. (B.8) 

Si G(,s) est une fonction de transfert, la norme H2 peut etre calculee par la racine 

carree de la somme des residus de G(-s)G(s) aux poles stables : 

Re( f t )<0 

(B.9) 

TheoremeB.l [ZDG96]: Considerons 
A B 

C D 
comme realisation interne 

dans l'espace d'etat de G($)eCp/q. On a toujours |G||^ ><J(D) et pour 

tout y > <7 (D) il y a une equivalence entre : 

TB.I.a. |G|x <y; 

TB. 1 .b. La matrice H(y) n'a pas de valeurs propres sur l'axe imaginaire. 

H(y) = 
A 0 
•* * w fix n 

0._ ~̂ fr 
<W B 
Cr 0 

rtXf/ 

r/, D 
If ylq 

C 0 
pxn 

0,..„ - / / 
(B.10) 

De plus, si (j(o#) est une valeur propre de H(y) pour y>a(D) , alors 

CT (G(jcoH)) = y, c'est-a-dire le gain [y) est obtenu a la frequence [co#). 
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La matrice H(y) est d'une structure particuliere, dite "Hamiltonienne". Lorsque 

(.D = 0) elle s'ecrit simplement H{y) = 
A y'\B B1 

-y-'CTC -AT 
. Cette caracteristique 

suggere un algorithme pour calculer la norme Hm. On part d'un encadrement grossier 

[ymm ymm ] de cette norme et on l'ameliore iterativement par la methode de bissection : 

- On calcule le spectre de // yy) pour y = J^mifi—^JSM-; 

- S'il n'y a pas de valeur propre sur l'axe imaginaire, (y) est trop grand et l'on 

obtient comme nouvel encadrement [̂ miu ;/] ; 

- Sinon, (y) est trop petit et l'on obtient comme nouvel encadrement [y ytnm ] . 
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ANNEXE C : RESOLUTION DU PROBLEME Hoo 

Dans cette annexe nous examinons la resolution, ainsi que la mise en forme du probleme 

Ht/,. Nous decrivons egalement les principaux algorithmes dans le cadre de la synthese 

de la commande robuste HM. 

C.l Theoreme des petits gains 

D'une maniere generate, deux types de perturbations peuvent affecter le systeme 

nominal: 

• Signaux perturbateurs (signaux auxiliaires non previsibles, c'est-a-dire bruits 

de mesure, bruits de commande); 

• Incertitude sur le modele du systeme lui-meme AG(s) et/ou la commande 

AK(s). 

Ces dernieres sont elles merae de deux types : 

• Non-structurees (c'est-a-dire dynamique negligee, dont seulement une 

borne est connue); 

• Structurees (c'est-a-dire incertitude de type parametrique). 

Etant donne que la stabilite en boucle fermee est sensible aux erreurs de modelisation et 

aux derives de commande AA'(,v), assurer la stabilite du modele nominal boucle n'est 

done pas suffisant. II faut egalement garantir la stabilite de tous les systemes atteignables 

par les perturbations AG(s) et AK(s) admissibles, parmi lesquelles se trouvent le 

systeme reel lui-meme. La stabilite est dite "robuste", lorsque cette garantie est fournie. 
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W}(s) 4- fi^)^ 
A(5) 

G(.) 
£,(,*) 1+^ ' ) 

Figure C.'l Analyse de la stabilite pour la boucle ouverte L($) = G(s) A(s) 

Le theoreme des petits gains donne une autre formulation du probleme de la synthese 

Ha,, defini dans le section 3.2. Si on se restreint a des incertitudes non structurees 

AG (a) et AK(s), le resultat du theoreme des petits gains donne un instrument 

didactique tres important pour la stabilite robuste. 

Theoreme C.l (Theoreme des petits gains) [ZDG96] : Considerons la boucle 

d'asservissement de la figure C.I, ou G(s) est un systeme lineaire stationnaire 

(LTI) stable et propre G(.v)eiHT; et Pincertitude non-structuree A(s) est un 

operateur, verifiant: 

\\A(S)\\ <rTp: YTP (C.l) 

Supposons que la boucle ouverte du systeme L{s) = G{s)A{s) ne presente 

pas de simplification de mode instable. Alors le systeme boucle" ci-dessus est 

stable de maniere interne pour toute incertitude A(.s) e RHa,, si et seulement 

si 

(Pour la justification, voir [ZDG96]). 

(C.2) 

Remarque : Soit le systeme boucle (par ex. figure C.'l). Alors le systeme est dit stable 

de maniere interne (eMH„), si toutes les fonctions de transfert qui relient les 

entrees (Wt (,$•) et W2 (s)) aux sorties (.£", (s) et E2 (s)) sont stables 
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( , ^ 
De fait definit l'amplitude maximale des incertitudes non-structurees A {s) que 

V ' rPg J 

peut subir le systeme boucle Ft[P,K), expression (3.2) (voir chapitre 3), sans se 

destabilises Done, en minimisant la norme \F,{P,K)\ expression (3.3), le probleme 

Hx optimal consiste a trouver une loi de commande K(s), de sorte que le systeme 

boucle soit le plus robuste possible vis-a-vis d'incertitudes non-structurees. Lorsque les 

incertitudes sont structurees, la norme |/<'!(/',X)|| <yTnt, est une contrainte trop forte, 

etant donne que les frequences pour lesquelles le systeme boucle Ft(P,K) et 

l'incertitude A(s) trouvent leur norme HOT, sont principalement difKrentes. 

C.2 Resolution du probleme Hoo normalise. 

Introduiront les techniques de resolution par variables d'etat du probleme de II,, 

normalise. L'approche HM a ete proposee par Glover et Doyle dans [GD88] et Doyle et 

al. dans [DGKF89]. Les algorithmes developpes sont disponibles dans la boite a outil 

ROBUST CONTROL TOOLBOX de MATLAB (fonction hynfsyn). La parametrisation 

du probleme sous-optimal est basee sur la resolution de deux equations de Riccati. Le 

probleme optimal est generalement resolu en utilisant la methode de bissection, e'est-a-

dire la valeur de y est habituellement approximee avec l'expression (B.10) (voir 

annexe B) pour des valeurs de plus en plus petites (y -iteration). Introduisons une 

• HI realisation minimale du systeme P(s), represente avec notre propre notation 
H H 

P(*) = 
Pn{s) Pn{*) c, K-^)" 1 ^ B2] + Dn Du 

A. A2. 
(C.3) 
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Cette realisation est associee a la description interne (C.4), dont le vecteur d'etat est, x, 

le vecteur de sortie est forme" de deux vecteurs on supposera que Dn e RA>""2 et 

£>2I e R''-1""1 avec w, > />2 et px > m2, A e Enx" ou , n, est l'ordre du systeme. 

= x + 

D D 

• *(0) = 0 (C.4) 

La solution par variable d'etat est applicable sous les suppositions suivantes : 

SCI. Les paires (A,B2) et (A,C2)
 s o n t respectivement stabilisable et 

detectable. Cette condition est necessaire et suffisante pour l'existence du 

compensateur qui stabilise le systeme de maniere interne; 

SC.2. Les matrices Dn et D2l sont de plein rang ; 

rang 
SC.3. 

'ja>I„-A -B2 

C Dn 
• n + m.) 

rang 
j(oln — A Bl 

-c2 A, 

pour tout © e l . Autrement dit, 

n + p2 

Pa (.y) et P2] (.*) n'ont pas de zero sur l'axe imaginaire. Ces deux dernieres 

hypotheses sont appelees hypotheses de regularite. Elles assurent que le 

compensateur optimal ne simplifie pas de zero-pole instable sur l'axe 

imaginaire. Dans un premier temps, nous ferons en plus les hypotheses 

simplificatrices dites de normalisation. 

SC.4. Dn
r[Dn C,] = [/m2 0_„]etZ>21[z>/ 5,r] = [/ft 0^,,] 
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SC.5, ^ = 0 ^ et A, 
D D 

D D 
est portionnee de maniere que 

Dim G W2*"'2. La supposition D2, = 0p >m est raisonnable, vue que la plus 

part des precedes industrielles sont strictement propres. 

Remarque: Pour completer le developpement, nous presenterons le cas pour 

D22*Qpxm dans la section C.2.1. On peut toujours satisfaire les suppositions 

SC.4-SC.5 par des changements appropries de variables. 

On a la caracterisation suivante des valeurs sous - optimales du probleme fJ(P,JO| 

normalise. 

TheoremeC.2 [ZDG96]: Sous les hypotheses SCI-SC.5, il existe un 

compensateur K($) qui stabilise le systeme de maniere interne et assure : 

si et seulement si: 

TC.2.a. 

y>max(afDn £>,. \,v\D,'r Du
 r \) (C.5) 

V L ii 'J J L ii 2i ...1/ 

TC.2.b. Les equations de Riccati: 

A'X + XA + X{Y~2BX ~B2B2
T)X + Cj'C, = 0nx„ (C.6) 

AY+ YAT •+• Y^C'Q ~C2
rC2)Y + BA" = 0,IX„ (CJ) 

ont des solutions stabilisantes respectivement Xw et Y;)> telles que : 

RQX^A + (r2BxB'" -B2B^)X^<Qf V/ (C.8) 
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Re A, (A + Yai (y~2C{Cx - C/C2)) < 0, Vz (C.9) 

TC.2.C, Ces solutions et le rayon spectral p(XmYir!) verifient: 

x„,>o YX>{) p(x,x,)<r (c.io) 

TC2.d. Lorsque les conditions TC2.a-c sont satisfaites, l'ensemble 

K(s) des compensateurs rationnels et stabilisant de maniere interne le 

systeme P(s) , satisfaisant |.F/(/
>,iC)|| <y , est donne par la 

transformation lineaire fractionnelle K (s) = Fl (AT;0,®) , pour tout 

stable et propre $>(•$) e lrlM de norme ||OJĵ  < y. 

[ 4 j [ZJ«C/ Z„B2] 

"-A/X" 
~C2 _ 

' m2*ft »<2X'% 

ft <ft. ftK»2 ... 

Cette solution particuliere du probleme H,, sous - optimal est appelee compensateur 

central (en anglais central controller). Nous pouvons faire deux remarques sur la 

solution particuliere, donnee au theoreme Theoreme C.2 : d'abord le correcteur obtenu 

est strictement propre et a le meme ordre que le systeme (€.3), qui represents le systeme 

a r^guler - l'helicoptere dans notre cas, augments' de differentes fonctions de 

ponderation. Ensuite, si l'optimum est caracterise par le rayon spectral p(XaY!C) = y ,z, 

les formules deviennent singulieres au voisinage de / , c'est-a-dire que Z„ n'est plus 

inversible a l'optimum. Cependant, on montre que le compensateur dynamique Kx 

(C.I2) tend alors vers un compensateur d'ordre reduit, la chute d'ordre etant egale a la 
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chute de rang de [l„-y 2YxXmY Cette reduction d'ordre provient de la simplification 

de pole(s) a l'infini [ACAGF99J. 

Kaii, = ~B7Xn (sIH - Aai Y (/„ - f%DX„ J" Y,C2
T (CM) 

Le compensateur central peut etre separe en estimateur (observateur) d'etat de la 

forme : 

x = A + B]r~
2B.rX '•'• D T V 

1 A » x + B2u - (/„ - y~%XmY YSJ (Cx -y) (C. 13) 

etretour d'etat (C.J4): 

u(t) = -B/Xj(t) (C.14) 

En comparant la structure du compensateur central (figure C.2) avec la structure d'un 

estimateur (observateur) classique d'etat (filtre de Kalman), nous pouvons constater que 

l'expression (C.I3) contient un terme wwors, = Biy~2B/XiB qui peut etre vu comme 

1'estimation de la pire perturbation exterieure [SP05]. 

B, 

C>rH Bt fiU J -1/.. 

c, 

+>. c, 

•B?Xn 

y 
>o<-

:_!_ 
ZYC,T 

• T 7 . 
X 

—<?-• 

.4 + w„ 

c, 

Figure C.2 Structure du compensateur central (avec observateur et retour d'etat) 



190 

Le Theoreme C.2 suggere un algorithme, permettant d'approcher le gain optimal y et 

d'obtenir ainsi un correcteur proche du compensateur optimal du probleme standard. Cet 

algorithme est connu sous le nom de y -iteration. En utilisant la m6thode de bisection, 

on initialise le processus avec un intervalle [ynm ymax] (souvent [0,1 10]) contenant 

opt 
et a chaque iteration, on elimine une moitie de cet intervalle en testant les conditions 

TC.2.b et TC.2.C au point median : 

y. 
/max I \ max / mm (C.I 5) 

Si elles sont satisfaites, o n a / > yopl et on rejette la moitie droite de Pintervalle. Sinon, 

on elimine la moitie gauche. Ce schema iteratif s'arrete lorsque la longueur de 

P intervalle tombe en-dessous de la precision desiree pour y A chaque iteration, 

"tester" la valeur de y exige : 

Etape 1 : Calculer le spectre des matrices Hamiltoniennes : 

F. = 

./,„ 

A y^BX'~B2B/ 

-C C 

-BXB; 

TD)2.«X2.H 

6 .ill 

y^C[C^C/C2 

-A 

(C.I 6) 

associees aux equations de Riccati (C.6) et (C.7). Si les spectres contiennent des 

valeurs imaginaires pures, conclure que y < yopl et passer a P iteration suivante. 

Etape 2 : Calculer les sous - espaces invariants stables : 

et 
Zj 

(C.17) 
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de f, et ./„ respectivement. Si (YF) ou (F;) est singuliere, conclure que y < yop, et 

passer a l'iteration suivante. Sinon, calculer les solutions stabilisantes des equations 

de Riccati: 

Xa)=ZFYF-' et Yx=ZjY/] {CAS) 

Etape 3 : Tester la condition TC.2,c pour conclure sur la positon de, y, par rapport 

au / opt • 

En general 1'optimum est caracterise par l'egalite de la plus grande valeur propre du 

produit XJ':ri avec (y„p,
2)-

p{xj„) = r,, •jpi (C.I 9) 

Cet algorithme est programme dans la boite a outil ROBUST CONTROL TOOLBOX 

de MATLAB (fonction hynfopt). 

C.2.1 Le cas £>,, * 0„ yn, 
~z Pzy>,,2 

Lorsqu'il existe un chemin direct entre la commande u et la sortie mesuree, la matrice 

Dn * 0pi>m . Cependant, le terme Dn peut etre separe du systeme selon figure C.3 : 

< 

1 • 
P(s) 

u 

D 

K(s) 

^_ 

+ 

4 

^ z 

' + 

e 

K(s) 

Figure C.3 Le cas Dn •+- 0 ^ 
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En premier, on peut faire la synthese d'un compensateur K[s) avec D22=0 , en 

ensuite calculer le compensateur K (s) comme : 

K(s) = K(s)(lh +DnK(s))~[ (C.20) 

Nous allons maintenant voir comment obtenir le systeme augments P(s) en ajoutant 

des ponderations sur les signaux a surveiller, et comment choisir ces signaux et 

ponderations : c'est l'objet des paragraphes suivants, ou nous choisissons de traiter le 

probleme de la sensibilite mixte. 

C.3 Mise en forme du probleme HTO 

Comme nous l'avons presente dans la section 3.2, la synthese Hm s'applique a des 

representations du type LFT (Transformations Lineaires Fractionnelles) selon la 

figure 3.1. Le probleme est maintenant de savoir comment obtenir ce type de 

representation a partir du systeme, qui est l'helicoptere et des ponderations que Ton va 

lui ajouter, liees a des criteres de stability et de performance. Le libre choix des signaux 

a surveiller, ainsi que des ponderations, qui dependent des objectifs de performance, 

rend la synthese Ha, souple. 

C.3.1 Systeme augmente 

Si on se refere a la figure 3.2, le systeme dit "augmente", elabore a partir du systeme 

nominal G(s) et des fonctions de ponderation We(s)e.C"'-ym' , Wu(s)e.Cm-!<m: et 

W3 (.y) e C/,x/!, est donne par la matrice de transfert (C.21): 
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P(s) = (C.21) 
0 ^ W„ (s) 

<U J [w,{s)G{s)_ 
Q-X(s) -G(s) 

Si la fonction de transfert Q[s)eC"'iyp possedant une realisation interne minimale 

est inversible (D0 est inversible), alors Q{s) = CQ(sIng-AQJlBQ+DQ=i> 
AQ BQ 

esl 

une realisation minimale de Q'1 (,v) est: 

g_1(s) => 

AQ-BQD-'CQ BQL 

Ao~* B -

-D ~~lC 

Q 

u 

£1 
-1 

• ] 

(C.22) 

Introduisons les realisations minimales 

G(.v)=> 4:; BG We is) => 
4F„ ^ 

C*. A,; 
KTu(s)=> 

4 ; 4n, 
W3(s)=> 

Avt Bw> 
\ \.s 4 ^ ^ ^ . I 

Ici la difficulte principale est d'assurer la minimalite de la realisation de P{s). Pour 

cette raison nous cherchons une decomposition de P(s) en un produit de fonction de 

transfert ou G[s), We(s), Wu(s), W3(s) et Q~l (s) n'apparaissent qu'une seule fois. 

P(s) = 

-fYc(s)G(s) 

W3(s)G(S) 

-G{s) 

^b]kdmg(Ws(s)jVu(s),W,(s)jp) 

h~'(«) 
m2 "mt 

pxmx 

. QTx{s) 

-G(5)l 

In, 

G(S)\ 

-G(*) _ 

= blkdiag {lVr (s), Wu (s), W. (s), Ip) 

P Pxflh. P 

nh yP fth. nh. XP 

Up\p ^p\nt?
 l p 

p p'-'-ittz 0"» <U 
0 / 

(C.23) 
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En rempla9ant les realisations minimales (C.21), (C.22), (C.24), (C.2S) et (€.26) dans 

(C.23)onobtient(C27): 

blkdiag(We (s), Wu (s), W3 (s),Ip)=> 

blkdiag (.4, , A%,.4.) blkdiag(Bif,,BK,Bw>) 0 ^ + ^ ^ ^ 

blkdkxg(Dw,DK.Dn,) 0(2/)+m?K blkdiag (cw,CWnX:m) 

0 , , 0 px(2 .p+m,) 

(C.24) 

P Pym2 

m7/p m2xm2 
0 

px»h 

nuxp 

P"»h /•' 

p pxnh 

m^\p til] 

<V, G(s) 

A, 

-Co 
0. 

i 0 
L "C*P 

i"i*p 

p*p 

L 0 pxm-, 

L 
m2>-p '' m2 

°pxP G(s) 

=> 

A,, 

pxnG 

m2 * % 

cG 

[<u 
~JP 1 

m2xp ' 

Bc 

<U 

k 
P*P 

G » o„. 
Hi-, x/n, » 

0 Q Q Q. 

-D "T 

II. 

W l <LXM, 

z?e-' 

mixrn, 1 Hi 

BG 

-Dn 

-DG 

((275) 

*/i pxnij .p 

m?<p m2 m 

o _ 0 
PXP P*'»2 

/.. 0.. 
/-,x"̂  

h.xP 

0 

m2 /•• p m2 

'fi-lW 0 pXiil-y 

0 / 
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4 0 
"a x"o 

AQ-BQDQ-'CQ 

-C I -D C 
L,G | UQ L g 

m-,xnr i m-,/.n0 

Cr 
P*»Q 

•Co I -D^C 
Q v-'e 

./J -̂j UQ 

Dn 

Dr, 

*o 

• n0xnti 

DG 

7 « , 

• £ > 0 

(C.26) 

./>(,*): 
4, 5, 

4 

Bv 

v, 

'ifj x"»i 

" u x " » , 

*W 

BgD£ 

Q 

cD = 

A, 
4, 
" 0 ' % ' ; 

»£J *"»';) 

"A; A; 

^A, 
/ i . 

Dr 

A,Q 

4; 

0. „„ 

0 
"»', x«0 

<? 0 Q Q 

• / ' " « ( • , 

/>"%2 

Px,hv-

-/«%, 

/ " % • , 

~A(„A>~ 
m;xm, 

Pymi 

_ V 

~AnQ; 

m-i xn c ; 

A,Q 

-Co 

-DwpG~ 

l \ 

DwPa 

-DG 

-DWD^CQ 

m-, * fin 

° ^ 
~DQ~% 

(C.27) 
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On notera que l'ordre du systeme augmente P(s) est egal a la somme de l'ordre du 

systeme et de l'ordre des fonctions de ponderation. Presentons maintenant les principes 

de base du choix des fonctions de ponderation. 

C.4 Choix des fonctions de ponderation 

Le choix (et la modification generalement iterative) des fonctions de ponderation est 

dicte par la volonte de "faconner" les valeurs singulieres des fonctions de transfert 

caracteristiques et le besoin d'assurer la regularite du probleme H„ resultant. Pour le 

probleme de sensibilite mixte, le choix de filtres passe-bas et passe-haut donne 

generalement Failure frequentielle desiree des fonctions de transfert caracteristiques. 

Cependant, les fonctions de ponderations doivent etre propres et stables. Pour cette 

raison, si on veut une erreur de poursuite nulle en regime &ablie en ponderant la 

fonction de sensibilite par un terme d'action integrate, il faut approximer - avec 

; s <K 1 . De meme, pour assurer que le signal de la commande soit attenue au V S + £ 

dela de la bande passante, il faut remplacer la fonction de transfert Wz („y) = (r s +1), qui 

n'est pas propre, par la fonction de transfert Rs (s) = ' ' ; r, « r, 
T2S + \ -

. Dans la boite 

a outil ROBUST CONTROL TOOLBOX de MATLAB (fonction mixsyn) est suggere 

un choix preliminaire des fonctions de ponderations : 

s cob 

— + coh s + ~-r 
Wx =-£ v ; W, = - . r (C.28) 

$ + a)bA ' A s + a>b 

ou cob est la largeur de la bande passante, telle que |:T(/<y6)| = —j=, [y* ^ l) est la norme 

desiree et (A* <\\, souvent (A* «:l) est l'att6nuation desiree des perturbations dans la 
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f 
bande passante. L'idee est que 

\w 
A' en basse frequence, = r en hautes 

frequences et 
W, 

1 pour la frequence coh. Bates et Postlethwiate [BP02] presentent 

les differentes etapes de la synthese de la commande robuste, ainsi qu'une discussion 

pratique sur le choix des fonctions de ponderations. 
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ANNEXED: SCRIPTS 

Le script suivant nous permet de calculer la dynamique de battement et de trainee pour 

un rotor articule selon la figure 2.9. Le script utilise le logiciel MAPLE. 

> wi th(LinearAlgefara) : 
Definition des matrices de rotation 
> Rotpsi ;= Matrxx{ [ [sin (psi) ,--cos (psi) , QJ , [cos (psi) ,sin{ps±) , Q] , [G, 0,1] ]) : 
> Fjotdelta:=Matrix{ [ [cos (dcilta) ,sxn(dait.a) ,0] , [--
sin(delta),cos(delta),0],[0,0,1]]): 
> Rotbeta; -Matx-ix ([[1,0,0] , [0, cos (beta) , sin (beta) ] , [ 0, -
sin(beta),cos(beta)] ]} : 
Calcul du vecteur de la postion <x, y, z> du point P dans le repere fixe 
> <:x2, y2 , z2> := <0, ab , Q> + Mat r ixVec to rMul t ip iy (Rotbe ta ,<0 , r b , 0>) : 
> <x3, y 3 , z3> := <0, ed , 0> + MatrixVaetorMuItxpily (Ro tde I t a ,<x2 , y2 , z2>): 
> <x, y , z> := MatxixVsctorMulfciply (Rotpsi ,<x3, y 3 , z3>) : 
Calcul du vecteur de la vitesse <deV> du point P dans le repere mobile 
> deVl:=Omega*map(diff,<x, y, z>,psx): # Omega := DiffCpsi, t) 
> deV2 :=Xi*map (diff , <x, y, z>, delta) : # Xi :--•• Diff (delta, t) 
> deV3i'=0psilon*map(diff ,<x, y, z>,beta) : # Upsilon :•-- Diff (beta, t) 
> d e ¥ :=• deVl+daV2+deV3: 
Definition du vecteur de la vitesse <V0> de l'origine du repere mobile 
> V0 := <uS, v S , wS> + <pS, qS , rS> £x <1_JM, b__M, h_M >: 
Definition du vecteur de la vitesse totale <Vloc> du point P dans le repere fixe 
> Yloc i= V0 + cteV + <pS, qS, rS> &x <x, y, z>: 
Definition du vecteur de 1'acceleration totale <A0> de l'origine du repere mobile 
> AG ;= <OotuS, DotvS, DotwS> + <DotpS, DotqS, DotrS> &x < 1__M, bJM, h_M > + 
<pS,qS,rS> &x «uS,vS,wS> + <pS,qS,rS> Sx < 1__M, bj<t, h_M » : 
Calcul du vecteur de l'acceleration <de2V> du point P dans le repere mobile 
> de2Vl := Omega*map(diffff,deV,psi): # Omega :•= Diff(psi, t) 
> de2V2 :••••- DotOmsga*s>,ap (diff , deV,Omega) ; # DotOmega :---- Diff (Omega, t.) 
> de2V3 i= Xi*map{diff,deV,delta): # Xi :~ Diff(delta, t) 
> de2V4 := DotXi*map{diff,daV,Xi); # DotXi := Diff(Xi, t) 
> de2V5:=Upsilon.*map(diff,deV,beta): # Upsilon := Diff(beta, t) 
> de2V6: =DottJpsilo'D*ffiap{diff ,de¥,Upsilon) : # DotUpsilon := Diff (Upsilon, t) 
> de2V := d.e2Vl+de2V2+de2¥3+de2V4+de2V5+de2V6: 
Definition du vecteur de l'acceleration totale <Aloc> du point P dans le repere fixe 
> Aloe := A0+ds2V+<DotpS, DotqS, DotrS> fex <x,y, z>+<pS, qS, rS> &x (2*daV + 
<pS,qS,rS> £x <x,y,z>): 
Definition de l'energie cinetique 
> VeVe :=DotProduct (Vloc, Vloc , coxrjugate=fal.ee) i 
> Ts:= 1 /2*( l_be ta*coef f (VeVe , rb ,2 ) t H_beta*coef£(VeVe,rb,1} + 
masse jb*coeff (VeVe, r b , Q)) : 
Calcul de la dynamique de battement 
> Beta Dynamique:=simplify(I__faeta*coef£(OotProdunt{map(dif£,<x, y, z>,betai , 
Aloc,con3wgate=false3,rb,2) + M_beta*cos£f(DotProduct(sap(diff,<x, y, 
z>,beta) , Aloe, conjugate=,false) ,rb,l) + 
masse__b*coeff(DotProduct(map(dxff,<x, y, z>,bata), Aloe, 
con^ugats=false),rb,0)): 

http://al.ee
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Calcul de la dynamique de trainee 
> DeltaJDvnamiqua:=simplify{X beta*coef£(DotProduct(map(cliff,<x, y, 
z>, del ta) , Aloe, con.jugate=£alae) , rb,2) + M_Joeta*cosff (DotProduct {map {cliff, <:x, 
y, z>,delta), Aloe, conjugate=false),rb,l> + 
masse_b*coeff(DotProduct(map<diff,<x, y, z>,delta), Aloe, 
conjugate=false) , rb ,0)} : 
Calcul de la dynamique compl&nentaire de trainee 
> <xd,yd,zd> :--- Matri.xVeetorMuli.iply(Rotpsi,<0,ed,0> + 
MatrixVsctorMultiply(Rotdelta,<0,rd,0>)): 
> deV Cosiplementaire: = Qmega*map{di££ ,<xd,yd, z,d>,psi) + Xi.*map{diff ,<xd, yd, 
zd>,delta): 
> Vloc3:= VO + deV Coa.plemanta.ire + <pS, qS, rS> £x {<xd, yd, zd>) : 
> de2V Complementaire:-- Omega*map (dif f , daV Complementa.ire,psi) + 
DotQmega*roap(diff, daV Cosiplementaire, Omega) + 
X:i *map {d.i£f, deV Complementsire, dalt:a) 4-
DotXi*map{diff,day Complement tax re,XI} : 
> Aloc3 : — AO + de2V Complansentaira + <DotpS, DotqS, DotrS> £x <xd, yd, 
zd>+<pS, qS, rS> Sx (2*deV Compl.ementai.re + <pS,qS,rS> Sx <xd, yd, jsd» : 

Delta. Dynamique Complementaire; ---simplify (I delta*coeff (DotProduct {map (dif f, <x 
d, yd, sd>,delta.) , Aloa3,conjugate-false) ,rd,2} + 
M__deIta*coeff(DotProduct(map(diff,<xd, yd, zd>,delta), Aloc3, 
conjiigatê -false) ,rd,l) ) : 

http://Matri.xVeetorMuli.iply
http://Coa.plemanta.ire
http://Compl.ementai.re
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Le script suivant nous permet de calculer la dynamique du battement vertical des pales 

et l'equation dynamique de l'extremite de la pale, en utilisant le logiciel MAPLE. 

> w i t h ( I i i n o a r A l g e b r a ) : 
> k . t s e c 2 f t : = 1 8 5 2 / ( 3 6 0 0 * . 3 0 4 8 } : d e g 2 r a d := P i / 1 6 0 : D i g i t s := 6 : 
Calcul du poids de la cellule sans pales 

> G t r o s s W e i g h t ] i= 1 6 6 3 8 : N [ B l a d e s ] : =4 : Wfe.tght.Bl.ade[MB] ] ; = 2 5 6 . 9 : 
G[rossWeight] est le poids total de l'helicoptere [lb], N[Blades] est le nombre des pales, W[eightBlade[MR]] est le 

poids d'une pale [lb] 
> W[eight[Body]] :-- (GfrossWeight] ~ NfBladss]*W[eightBlade[MR]]}: 
> FS[CG] : = 3.55.9: BL[CG] := 0: WL[CG] : = 248.2: 
FS[CG] est la refdrence longitudinale du centre de gravite total [inch] 
BL[CG] est la reference laterale du centre de gravite total [inch] 
WL[CG] est la reference verticale du centre de gravity total [inch] 
> FS[MR] := 3 4 1 . 2 : BL[MR] := 0 : 3SL[MR] :-- 3 1 5 . 0 : 
FS[MR] est la reference longitudinale du repere moyeu [inch] 
BL[MR] est la reference laterale du repere moyeu [inch] 
WL[MR] est la reference verticale du repere moyeu [inch] 
> F S [ C G [ B J ] := C G [ r o s s W e i g h t ] * F S [ C G ] -
N [ B l a d e s ] * W [ a i g h t B l a d e l M R ] ] * F S [ M R ] } / W [ e i g h t [ B o d y ] ] : 
> B L [ C C [ B ] ] : = <G[rossW<aight]*BL[CG3 -
N [ B l a d e s ] *W[exght31ada[MR] J *BL[MR] } / W [ e i g h t [ B o d y ] ] : 
>WL[CG[BJ ] := (G[rossWeight ]*WL[CG3 -
N [ B l a d e s 3 * W [ e i g h t B l a d e [ M R ] ] * W L [ M R ] 5 / W [ e i g h t [ B o d y ] 1 : 
Calcule de la position du repere moyeu par rapport au centre de masse de giravion [ft] 

> < l [ h [ x ] ] , i [ h [ y ] ] , l [ h [ z ] ] > := <{FS[CG[B]] ~ F S [ M R ] > / 1 2 , CBL[CG[B]] -
B L [ M R ] } / 1 2 , (WL[CG[BJ] - WL [MR] } /12> : 
> F S C G a f t = 3 6 0 . 2 : FSCG__fwd = 3 4 5 . 7 : FSCG nom :=• (FSCG a f t + FSCG f w d ) / 2 : 
p FSCG*": = (FSCG a f t - FSCG..fwd) / (FSCG_ a f t + FSCG_ fwd) : 
> BLCG a f t = 0:~BLCG_fwd = ' 0 : BLCG nom := {BLCG a f t + BLCG_.fwd)/2: p BLCG : = 
<BLCG__af t - BLCG_fwd) / (BLCG__af t 4- BLCG__fwd) : 
> WLCG a f t =• 2 5 1 . 1 ; WIXG fwd = 2 4 4 . 4 : WLCG UOB ;•= (WliCG a f t + WLCG £ wd) / 2 : 
p_WLCG~:= {WLCG__aft - WLCG f w d ) / ( W L C G j a f t + WLCG f w d ) : 
> FS[CG[B]] := FSCGjnom*(1 "+ p F S C G * d e l t a [ F S C G ] ) 7 
> BL[CG[B]] := BLCGjaom* (1 + p""BIX;6*deIfa[BLCG]} : 
> WL[CG[B]J := WLCG j i o m * ( 1 + p3fLCG*dei ta [WLCG]) : 
> < I [ h [ x ] 3 , l [ h f y ] 3 / l [ h [ z ] ]> :="""< (FS[CG[B] ] ~ F S [ M R ] ) / 1 2 , <BL[CG[B] ] -
B L [ M R j ) / 1 2 , <WL[CG[B]J - WL[MR]3/12>: 
Calcule de la position du repere rotor anti-couple par rapport au centre de masse de giravion [ft] 

> FS[TR| := 7 3 2 : BL("TR] ;•=• - 1 4 : Wi[TR] := 3 2 4 . 7 : 
FS[TR] Fuselage station for horizontal tail rotor [inch] 

BL[TR] Buttline station for vertical tail rotor [inch] 
WL[MR] Waterline station for vertical tail rotor [inch] 
> < l [ t r [ x ] ] , I [ t r [ y ] ] , l [ t r [ z ] ]> :•= < ( F S [ C G [ B ] ] - FS [TR] ) / 1 2 , ~{B.L[C6[B]] -
B 1 4 T R D / 1 2 , (WL[CG[B]J - W L [ T R ] ) / 1 2 > : 
Orientation du pilon par rapport au repere "moyeu" 
> Phi[Shaft] :=0 : Theta[Shaft] := 3*Pi/180: 
> Rot[Shaft/Body] := «cos(Theta[Shaft]) | 0 | -sin(Thata[Shaftj>>, 
<s.in (Theta [Shaft] 3 *sin (Phi [Shaft]) I cos{Phi[Shaft]3 ! 
cos(Theta. [Shaft])*sin (Phi[Shaft])>, <sin{Ihata[Shaft]}*cos(Phi[Shaft]) ! -
sin(Phi[Shaft]) I cos(Theta[Shaft]3 *cos{Phi[Shaft])»: 
> T[Phi.[E]] := «1. | (3 I 0>, <0 | cos(Phi[E]) | sin (Phi. [E]} >, <0 I -
.sin (Phi [E] 3 I cos (Phi [E]) » : 
# Matrice de rotation par rapport 1!axe inertiel x 
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> T[Theta[E]]:= <<cos(Theta[Ej} | 0 ! -sin(Theta[E])>, <0 I 1 I Q>, 
<s.in (Theta[E]) | 0 i cos(Theta!.!]):»: 
# Matriee de rotation par rapport 1'axe inertiel y 
> I[Psi[E]];= «cos{Psi[E]3 I sin(Psi[E]) 1 0>, <™sin(Psi[E]} ! cos (Psi[E]} I 
0>, <0 I 0 I 1»: 
# Matriee de rotation par rapport 1' axe xnertiel h 
> T[Body/Earth[E]] ;= Multiply(Multiply(T[Phi[E]],T[Theta[EJ]), T[i?si[E]]): 
> v[Ea.rth[E]] ;= Multiply(Transpose(T[Body/Earth[E]]}, <u[Body[E]], 
v[Body[E] ] , w[Body[E] ]» : 
> # V[Earth[E]] := <DotX[E], Dot.Y[E], -DotH[E3>: 
> Del, tajr [Diff (y,eta) ] i = 
« M u l t i p X y (Mul t ip ly (Mul t ip ly (map <dif f, T [Phi [E] ] , Phi [E]) , ! [Theta [E] ]} , T [Ps i [E] 
3 ) , V [ E a r t h [ E ] ] ) > i 
<Mult.iply (Mul t ip ly (Mul t ip ly (T [Phi [13! ,map(dif f ,T[Theta [E] ] rTheta [E])) ,T[.Psi [E 
33) , V [ E a r t h [ E ] ] ) > | 
< M u l t i p l y ( M u l t i p l y ( M u l t i p l y ( T [ P h i [ E ] ] , T [ T h e t a [ E ] ] 5 , m a p ( d i f f , T [ P s i [ E ] ] , P s i [ E ] ) 
) , V[Ear th[E] ] } » : 
> T [Di f f (omega , e t a ) [E ] ] ;= « 1 | 0 | --sin (Theta [E]) >, <0 | c o s ( P h i [ E ] ) | 
s in .{Phi [E])*cos{Theta[E]}>, <0 I - s i n (Phi [E]} | cos (Phi[E]} *eos (ThetafE] > » : 
> i n v e r s a J T f D i f f ( o m e g a , e t a ) [ E ] ] ; = « 1 | s i n { P h i [ E ] ) * t a n ( T h e t a [ E ] ) ) 
c o s ( P h i [ E ] } * t a n ( T h e t a [ E ] } > , <0 i cos (Phi[E]) I -s in. (Phi [E])>, <0 I 
s i n (Phi [E] ) / c o s ( T h e t a [ E ] ) I cos {Phi[E3 5 / c o s ( T h s t a [ E ] ) » : 
> T [ D i f f ( G r a v i t y , e t a } [ E ] ] := 
G r a . v i t y * « c o s (Theta [E]) *sin. (Psi [E]) I cos (Psi [S3) I £», <-• 
cos (Theta [E]) *cos (Psi [E]) j s i n (Psi [E]) I 0>, <0 | 0 j 0 » : 
Vitesse et acceleration lin6aire et angulaire du repere moyeu par rapport au repere inertiel, exprimees dans le 

repere fixe 
> # u[Body] := 0.5*kt_sac2ft: v[Body] :•= 0*kt_sae2ft: w[Body];= G*fct_sec2ft: 
> # p[Body] :=0: q[Body] :=0: r[Bodyj;=0: 
> V[Shaft3 := MatrxxVectorMultiply(Rot[Shaft/Body], 
<u[Body],v[8ody3,w[Body]>): 
> omega[Shaft] := MatrixVectorMultipiy(Rot[Shaft/Body], 
<p[Body],q[Body],r[Body]>5: 
> Dot[omegaJ[ShaftJ ;= MatrixVectorMultiply(Rot[Shaft/Body], 
<Dot[p][Body]rDot[q][Body],Dot[r][Body3>): 
> Dot[V][Shaft] := MatrixVectorMuitiply(Rot[Shaft/Body], 
<Pot[u][Body],Dot[v][Body],Dot[w][BodyJ>); 
Definition des matrices de rotation. 
> Rot[psi] := Matrix([[sin(psi),-cos(psi),0],[cos(psi),sin(psi),0],[0,0,13]): 
> Rot[beta]:= Matrix{[[1,0,0],[0,cos(beta),sin. (beta)1,[0,-
sin, (beta) , cos (beta) ] ]) : 
Calcul du vecteur de la postion <x, y, z> d'un point dans le repere fixe 
> <x [b] [mobile] , y [b ] [mobile] , z [b] [mobile] > := <0, epsi ion*P,.[otor] , 0> + 
Ma.t r ixVectorMtxIt i .p ly(Rot[beta] ,<0, r [ b ] , 0>) : 
> < x [ b ] [ f i x e ] , y [b ] [ f i xe ] , z [ b ] [ f i x e ] > : = 
M a t r i x V e c t o r M u l t i p l y ( R o t [ p s i ] , < x . [ b ] [ m o b i l e ] , y [ b ] [ m o b i l e ] , z[fa][mobile]>): 
Definition du vecteur de la vitesse <V[hub]> du repere fixe; 
> V[hub] := V[Shaft.] + omega[Shaft3 &x < l [ h [ x ] ] , 1 [ h [ y ] 3 , 1 [ h [ z ] 3 > : 
> deV;~ 
Omega[motor]*map(diff,<x[b][fixe],y[t>][fixe],z[b][fixe]>,psi)+Upsilon*map(dif 
f,<x[b][fixe],y[b)[fixe],z[b][fixe]>,beta)i 
Definition du vecteur de la vitesse totale <Vloc> du point dans le repere fixe 
> viae ;= V[hub] + deV + omega[Shaftj &x <x[b][fixe], y[b][fixe], 
z[b][fixej>: 
Definition du vecteur de l'acceleration totale <A0> du repere mobile 
> A[hub] :•= Dot[V][Shaft] + Dot[omega][Shaft] fix <1[h[x]],l[h[y]3,1[h[s]]> + 
omega [Shaft] Sx (V[ Shaft] + omega [Shaft] &.x <1 [h[x] 1 ,1 [h[y] ] , 1 [h [a] 1 >} : 

Calcul du vecteur de l'acceleration <de2V> du point dans le repere mobile 
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> de2Vl := Omega[motor]*map(difiT,devypsi): # Omega [ sio t o r J := B i f f ( p s i , t ) 
> de2V2 := DotOaega [motor] *map (d.xf.f,deV, Omega) : # DotOmega := Dix"f(Gsaga, t.) 
> d.€i2V5 := Upsilon*map (d i f f ,deV,b«>ta) ; # Ups i lon := Dif£"(beta, t ) 
> c!e2V6 := Dot.UpsiIort*»ap (d i f f ,deV,0psxlon) : # DotUpsilon := Diff (Upsi lon, t ) 
> de2V := d«2Vl+de2V2+da2VS+de>2V6: 
Definition du vecteur de l'acc61eration totale <Aloc> du point dans le repere fixe 
> Aloe := A[hub] + de2V + Dot[omega][Shaf t ! 6x < x [ b ] [ f i x e ] , y [ b ] [ f i x e ] , 
z [ b ] [ f i x e ] > + omega[Shaft] 6x (2*deV + omega[Shaft} &x < x [ b ] [ f i x e ] , 
y [ b ] [ f i x e ] , z [ b ] [ f i x e ] > ) : 
masseJb*coeff(VeVe, r [b ] , 0 )} ; 
Definition de l'̂ nergie cinetique 
> VeVe :-"DotProduct ( v l o c , Vloc , c o n j u g a t e = f a l s e ) : 
> Te:= 1/2*<l_beta*aoef£(VeVe,r fb3,2) + M beta.*aoeff(Vev©,r[to] ,1) + 
masss b*coe£f (VeVe, r [b] ,0)5 -' 
Calcul de la dynamique de battement 
> Bests Dynam.iqu«s:=s.iaiplify (I b e t a * coef £ (DotProducfc (map (d i f £, <x[b] [fix.©] , 
y f b ] [ f i x e ] , z [b] [ f ixe ] >, b e t a ) , Aloe , con juga.te=f al.se) , r [ b ] ,2) + 
M beta.*coeff (DotProduct, (map (d i f £ ,<x[b] [ f i xe ] , yfb] [ f i xe ] , ss[b] [ f i x e ] > , b e t a ) , 
Aloe, c o n j u g a t e - f a l s e ) , r [b] , 1) + 
masse b * c o e f f ( D o t P r o d u c t ( m a p ( d i f f , < x [ b ] [ f i x e ] , y f b ] [ f i x e ] , z [ b ] [ f i x a ] > , b e t a ) , 
Aloe, conj ' aga te=fa lse) , r [ b ] , 0) ) : 
Calcul des composantes de la force de gravite 
> # G r a v i t y ;=32.147: # g r a v i t y a c c e l e r a t i o n [ f t / s e c A 2 ] 
> Ge := Gravity*<~-si.n(Theta[Bod.y] ) , s i n (Ph i [Body] )*cos<The ta [Body] ) , 
cos (Ph i [Body] )*cos (The ta [Body] )> ; 
> Ge_beta := M _ b e t a * e o e f f ( D o t P r o d u c t ( m a p ( d i f £ , < x [ b ] [ f i x e ] , y [ b ] [ f i x e ] , 
z [ b ] [ f i x e ] > , b e t a ) , Mafcr ixVactorMul t ip ly(Rot[Shaf t /Body] ,Ge) , 
c o n j u g a t e = f a l s e ) , r [ b ] , 1 ) : 
Calcul des composantes de la force aerodynamique. Calcul de la vitesse de vol dans le repere moyeu-vent 
> Vflight := DotProduct<V[hub],V[hub],conjugate=false): 
> V[Shaft/Wxnd] ;= <sqrt(DotProduct«V[hub][1], V[hub][2], 0>, <v[hub][1], 
V[lrub][2], 0>, conjugate=false)5, 0, V[ Shaft][3]>; 
Calcul de l'angle de glissade du disque du rotor principale par rapport au vent 
> zeta := arctan(V[hub] [2] ,V[hub] [1]} : # 
cos{Zeta):=v[hub][1]/V[Shaft/Wxnd][1]: sin(Seta);=V[hub][2]/V[Shaft/Wind][1]: 
> # RotFlight := « c o s (Zeta) j sin(Zsta) | 0>, Osin(Eeta) | oos(Zeta) I 0>, 
<0 ! 0 | 1>>: 
> RotFlight := «cosZeta | sinZeta | G>, <-sinZeta | cosZeta I 0>, <0 i 0 I 
1 » : 

Calcul de Tangle effectif d'incidence du disque du rotor principale par rapport au vent 
> Alpha. := a r c t a n ( v [ h u b ] [3] ,V[Shaft/Wind] [1]) ; # 
c o s ( A l p h a ) : = V [ S h a f t / W i n d ] [ 1 ] / V f l i g h t : s in (Alpha) :=V[hub] [3 ] /Vf l i g h t 
# V[Shaf t /Wind][1] :«• V f l i g h t * c o s ( A l p h a ) : V[Shaf t /Wind][3] := 
V.fl. ight*sin (Alpha) : 
Calcul des composantes de la vitesse angulaire dans le repere moyeu-vent fixe 
> DotZeta : = (V[hub3 [1] /V[Shaf t /Wxnd][1] )"2*{A[hub][2] /A[hub] [ 1 ] } : 
> omega[Shaft/Wind] := M a t r i x V s c t o r M u l t i p l y ( R o t P l i g h t , <omega[Shaf t ] [1 ] , 
oraega [Shaf t ] [2] , (omega [Shaf t ] [3] +D©tZ<ata) >) ; 
> Dot[omega][Shaft /Wind] := M a t r i x V e c t o r M u l t i p l y ( R o t F l i g h t , 
<Do t [omega ] [Sha f t ] [1 ] , D o t f o m a g a ] [ S h a f t ] [ 2 ] , 
(DotDotZeta+Dot[omega][Shaf t ] [3] )>) ; 
Calcul des composantes de la vitesse angulaire dans le repere moyeu-vent mobile 
> <pX, qY, rZ> := MatrixVectorMultiply(Transpose(Rot[psi]J, 
<omega[ Shaft/Wind] [1] , omega [Shaft/Wind] [2] , 0*omega [Shaft/Wind] [3]» :; 
Calcul de la vitesse aerodynamique locale 
> # au i-=V[Shaft/Wind] [1]/(Omega[motor]*R[otor]) : lambda ; = 
(v[Shaft/Wind][3]-nu)/(Omega[motor]*R[otor]) 
> # lambda!0]-f lambda[c]*cos(psi)+laabda[s]*sin(psi) 
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> Vaero ;= {Mat r ixVec to rMuI t ip ly (Transpose{Rot [be t a ] ) , 
Mat r ixVacfcorMul t ip ly (Transpose (Rot [ps i3 ) , <mu*{Omega[motor]*R[otor]) ,0,0> + 
<0,Q, (lambcia[03+IaBibciatG] *cos ( p s i ) + l a a b d a [ s ] * s i n { p s i ) ) * (Omega[motor] *R[otor]3 
> + Omega [motor ] *siap(di££,<x [b] [ f i x e 3 , y [ b ] [ f i x e ] , z [ b ] [ f i x e ] > , p s i ) ) + <pX, 
qY, rZ> Sx <0, e p s i l o n * R [ o t o r ] + r [ b ] , 0>) + <- l Jps i lon , 0, 0> &x < 0 , r [ b ] , 0>) : 
> Vaero_simple := s impl i fy<subs {{cos (beta) = 1 , s i n (be ta) = b a t a } , Vaisro) 3-. 
Definition de Tangle de pas theta dans le repere moyeu-vent mobile 
> # de I t a3 :=G; 
> theta := thetaO+{apsilon*R[otor]+r[b])/R[otor]*thetal - Al[w]*aos(psi) -
BI[w]*sin(psi) - delta3*beta: 
Definition de la force aeiodynamique 
> # a := 5 . 7 3 : a[drag][0]:=.009: o f d r a g ] [ 1 ] ; = . 3 : 
C[d ra .g3 :=c [d rag ] [G]+c[d ragJ [1 ]* (6*G[Thrus t ] / {a*8 igaa} ) A 2 : 
Lock:=rho*a+c*R[otor3 A 4 / I b e t a : rho:•=().. 002377 : 
> dFaero s imple :•••••• l /2*rho*a*c* {Vaero s imp le [1 j " 2 * t h e t a + 
Vaero simple[X] *Vae.ro s imple [ 3 ] ) : 
> .Maero := in t (d .Faero simpie*.r[b1 , r [ b ] ~ 0 . . {Rfotor] ™epsi lon*Rtotor]) ) : 
> w e r o := l /2*rho*a*c*R[otor ] A 4*Omega[motor] A 2*({1/4-
epsi . Ion/3+epsi lon '>4/12+Bm*sin (ps i ) * ( 2 / 3 - e p s i l o n +epsi . IonA3/3+l/2*mu*sin (psi.) -
mu*epsi. lon*sin (ps i ) +l/2*mu*epsi.l©riA2*sin ( p s i ) ) ) * {thetaO - Al [w ] *cos (ps i ) -
E l [ w ] * s i n ( p s i ) ) + { l / 5 - eps i l on /4+eps i lon"5 /20+f f iU*s in (ps i )* ( l / 2~ 
2 /3*eps i Ion+eps i lon A 4/6+l /3*mu*s in . (ps i ) -
l / 2 * m u * e p s i l o n * s i n { p s i } + E u * s i n ( p s i ) + e p s i l o n A 3 / 6 ) 5 * t h e t a l + ( ( 1 -
e p s i l o n ) A 3 / 3 + ( m u * s i n ( p s i ) + e p s i i o n ) * ( 1 -
e p s i l o n ) A2/2) * {lambda [0]+lambda[c] *cos {psi}*lambda[s] * s i n ( p s i ) ) - { (1 /4 -
epsiiori/3+epsilonA4/12-«-Kiu*s,in (ps i ) * (2/3-ep3i loi i+epsi lonA3/ '3+l /2*mu*s. in (ps i ) -
nm*epsilor<*sin{psi) +.l/2*xau*eps.iionA2*sin{psi) )} * d e l t a 3 + cos (ps i ) *mu* {1 /3 -
l /2*eps i lon+eps i lo i i A 3 /6+mu*s in (ps i ) * (1/2 eps i lon+l /2*eps3, lon A 23 ) ) *be ta -
Cl/4" '-2/3*epsilon+epsilonA2/2-epsilQn'M/12+ffli i*sin (ps i ) * ( l / 3 ~ e p s i l o n + s p s i l o n A 2 -
epsiIonA3/3))*Upsi ' lon/Oniega[motor] + 
{l /4™epsi lon/3+epsi ior 1

A4/12+s 'u*8in (psi) * {1 /3 -
aps i lon /2+aps i Ion A 3 /6 ) )* (o««aga[ S h a f t / W i n d ] [ 1 ] * s i n ( p s i ) 
+om«sga [Shaft/Wind] [2] *cos (ps i ) ) /Omega [motor]) : 
> maerol ;= l /2*r 'ho*a*c*R[otor] A4*Oiaega[motor] A2* { ( 1 / 4 -
eps i lon /3+eps i lon A 4 /12+niu*s in Cpsi) * { 2 / 3 - a p s i l o n + e p s i l o n A 3 / 3 + l/2*juu*sa.n (ps i ) -
m u * e p s i l o n * s i n ( p s i ) + l / 2 * m u * a p s i l o n A 2 * s ± n ( p s i ) ) ) * ( t h e t a O - A i [w]*cos (ps i ) -
El [w] *s in ( p s i ) ) + { l /5-sps i lon/4+©psi lo i i A 5/20+Era*sin (psx) * ( 1 / 2 -
2 / 3 * e p s i l o n + e p s i l o n . A 4 / 6 + l / 3 * m u * s i n ( p s i ) -
l / 2 * m u * e p s i l o n * a i n ( p s i ) + m u * s i n ( p s i ) * e p s i l o n A 3 / 6 ) ) * t " n e t a l + { ( 1 -
e p s i l o n ) A 3 / 3 + { m u * s i n ( p s i ) + e p s i i o n ) * ( 1 -
e p s i l o n ) A2/2) * {Iaiabda[0]+lambda[e] *oos (ps i ) +la»tbda[s] * s i n (ps i ) 3 - {{1/4™ 
e p s i l o n / 3 + a p s i l o n A 4 / 1 2 + mis* s i n ( p s i ) * C2/3-eps i lon+eps i3 ,or i A 3/3+l /2*mu*s in(ps i ) -
m u * e p s i l o n * s i n ( p s i ) + l / 2 * m u * e p s i l o n A 2 * s i n ( p s i ) 3 } * d e l t a 3 + c o s ( p s i ) * m u * ( 1 / 3 -
l /2*epsi lori+epsi ionA3/6J+mir*sin{p3i) * (1/2 e p s i l o n + i / 2 * e p s i i o n A 2 ) 5 5 *be ta -
{l /4~2/3*epsi lon+ej>si lonA2/2-epsxlonA4/12+KU*s, in (ps i ) * { l / 3 - e p s i . i o n + a p s i l o n A 2 -
eps i !on A 3/3) )*Ups i lon /Omega[motor ] + 
( 1 / 4 -
epsi lon/3+<apsi lor iA4/12) * (omega [Shaft/Wind] [1] *s in (ps i ) +omega [Shaft/Wind] [2] *o 
o s (p sx ) ) /Omega [ac to r ] + 
m u / 2 * ( l / 3 " « p s i l a n / 2 + a p s i l o n A 3 / 6 3 * ( o m e g a [ S h a f t / W i n d ] [ 1 ] * ( 1 -
cos (2*ps i ) ) +oaisga, [Shaft/Wind] [2] *s in (2*psi) ) /Omega [motor] ) : 

0 
> s impl i fy(Maero-maerol ) ; 

0 
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> Maero__simpl« := s u b s ( f e p s i l o n A 3 = 0 , eps i l on A 4=0 , eps i lon ' , 5=Q}, 
s impl i fy(Maero) ) : 
> maero^sijaple := l /2*rho*a*c*Rto tor ] A 4*0maga[motor ] A 2*{(1 /4 -
e p s i l o n / 3 + m u * s i n ( p s i ) * ( 2 / 3 - e p s i l o n + l / 2 * m u * s i n ( p s i ) aru*epsilori*sin(psx} + 
i / 2*a i j*eps i l on A 2*S in (ps i ) )} * ( thataO - Al j > ] * e o s ( p s i ) - B l [ w ] * s i n ( p s i ) ) + 
{ l /5 -eps i lon /4f iau*s i r i (ps i . ) * { l /2-"2/3*epsi lon + l / 3*mu*s in (ps i ) -
l /2*mu*«ps i lon*s in ( p s i ) ) ) * t h e t a l + ( l /3 -eps i l©n/2+iau*s in (ps i ) * ( 1 -
e p s i l c n ) A2/2) * (lambda.[0] +lambda[c] *cos (ps i ) -Klambda [s] *siri ( p s i ) ) - {(1/4,-
e p s i l o n / 3 + mu*sin (ps i ) * {2/3-epstIon+.1./2*mu*s.in (ps i ) -
mu*eps i loa*s in (ps i ) *l/2*mu*spsi.l.ori.A2*sixi ( p s i ) ) ) *dslt.a.3 + cos (ps i ) *nu* ( 1 / 3 -
l /2*eps. i lon+mu*sin (ps i ) * ( l / 2 ~ e p s i l o n + l / 2 * e p s i l o n A 2 ) 5 ) *.beta - (I. / 4 -
2 /3*eps i lon+eps i ion A 2/2+mu*si r i ( p s i ) * ( 1 / 3 -
eps.i.lon+apsiI.onA2)) *0ps.i lon/Oraegat^otor] + ( l / 4 -ops . i l on /3+mu*s in (ps i ) * (.1/3™ 
e p s i l o n / 2 ) ) * (omega[Shaft/Wind] [1] *s . in(psi) +os>.aga [Shaft/Wind] [2] *cos (ps i ) 3 /Oms 
ga f m o t o r ] ) : 
> simplify(Mae.ro s imple-maero s i m p l e ) ; 

0 

Formulation de l'equation de battement 
> M[cent r i fuge} ;= -
Qmaga[motor]"2*(I_beta*cos(beta j+epsi lon*?. . [o tor ]*M__beta)*s in(be ta ) : 
> M[in .er t±s i ] := -I__beta*DotUpsilon: 
•<* M j. C O X ' l O x X S j *"'-'-' 

2* CI_mfasta+epsilon*R[otor] *H beta) * (omega[Shaft/Wind] [1] *c:os (psi) -
oiasga[Shaft/Wind]12] *s.in(psi))*Omega[motor]: 
> # K beta[spring] :=0: 
> M[spring] := -KJbsta[spring]*beta: 
> M[acceleration angulaire] ;= 
I_beta*(Dot[omega][Shaft/Wind][1]*sin(psi)+Dot[omega][Shaft/Wind][2]*cos(psi) 
) : 
> M[aooslaration vatrioale) := M beta* (A[hub'j [3] + omega[Shaft] [ 1] *V[hub] [2] 
- omega[Shaft][2]*V[hub][1]): 
> BetaJDynaiaique__simple ;= maerol/I_bata + subs (cos (beta) =1, sin(beta)=beta, 
M(centrifuge] + M[inertiel] + M[coriolis] + M[spring] + 
Mlaccelerat.ion_anguIa.tre] + M[acceleration_jvetricale] -
M .beta*Gravi ty) / I b e t a : 
Fourier Coordinate Transformation 
> tamp01 ;= coeff(-Beta Dynamique_simple, Opsilon): 
> teiapQ2 := subs (sin (psi) =sin (psi+Pi/2) , coef f (-Beta__Dynamiqua simple, 
Opsilon)): 
> tamp03 := subs (sin(psi) =sin(psi+Pi) , coef±"(~Bata_JDynamique___simple, 
Upsilon)); 
> temp04 := subs (sin (psi) =sin (psi+3*Pi/2) , coeff (~Beta_JDynamiqua___simpler 
Opsilon)): 
> Matrice_A__Psi := Matrix {<tentpQl, tempG2, temp03, temp04>, shape=diagonal) : 
> tempOS := coeff{-BetaJDynamique simple, beta): 
> tempOS ;= subs((sin(psi)=sm(psi+Pi/2), cos(psi)—cos(psi+Pi/2)}, coeff(-
Beta__Dynamique_simpl.e, beta)) ; 
> temp07 := subs ({ sin (psi) =sin (psi+Pi) , cos (psi) =cos (psi+Pi) } , coeff (-• 
Befca__Dynamique__3isnpla, beta)); 
> tompOB :~- snibs {( sin (psi) — sxn (p3i+3*Pi/2) , eoss (pai)—cos (psx + 3*P±/2) } f 

coeff(-Beta Dynamique simple, beta)): 
> Matnce_ B_J?si := Matrix (<tei»p05, temp06, t.ei«p07, temp08>, shaps=diagonal) : 
> tsmp09 := subs(DotUpsilon=0, Upsilon=0, beta=0, Beta Dynamiqua simple): 

http://Mae.ro
http://Mlaccelerat.ion_anguIa.tre


205 

> fcemplO := subs{DotGpsxlon=0, IJpsi lon=0,beta=G, 
{ s i n ( p s i ) = s i n ( p s i + P i / 2 ) , c o s ( p s i ) = c o s ( p s i + P i / 2 ) }, Bsta_Dynamxque__simp.le) : 
> tea ip l l ;= subs (D©tUpsilon,=0, UpsiXon=0 ,beta=0 , ( s i n ( p s i } = s i n ( p s i + P i ) , 
c o s ( p s i ) = c o s ( p s i + P i ) } , Beta_Dynamique s i m p l e } : 
> templ2 := subs{DotOpsilon=0, Upsilon,=0, b s t a = 0 , { s i n ( p s i ) ~ s i n ( p s i + 3 * P i / 2 ) , 
c o s ( p s i ) = c o s Cpsi+3*l?i/2)}, Beta_J>ynaffiique_j3iir.ple): 
> f R := <tempO9, tempi0 , t empi1 , temp!2>: 

L) i cos{2*ps i ) l s i n ( 2 * p s i ) i -1>,<1 | 
( p s i + P i / 2 ) ) | s in{2* ( p s i + P i / 2 ) ) | 1>, <1 

> Matrica_JT : = « 1 | cos (ps i ) \ s i n (psi 
c o s ( p s i + P i / 2 ) I s i n (ps i+P i /2 ) ] cas{2 
I c o s ( p s i + P i ) 1 s i n ( p s i + P i ) 1 c o s ( 2 * ( p s i + P i ) ) I s i n ( 2 * ( p s i + P i ) ) | -1>, 
<l jcos (ps i+3*P. i /2 ) I s i n ( p s i + 3 * P i / 2 ) | cos (2* (ps i + 3*P.i/2) 5 1 
s i n (2* (psi+3*Pi,/25 ) ( 1 » : 
> M a t r i c e j r s := Matr ix « 1 / s q r t ( N f B l a d e s ] ) , s q r t (2/N[Bl.ades]} , 
sq r t {2 /N[B . l ades ] ) , sqr t (2 /H[B. la .des] ) , sqrt(2/N[Bi.ad.e.s]) , 1 / sq r t (N [Blades]5>, 
shape=diagona.l) : 
> i n v e r s e T := M u l t i p l y (Matrices TSA2, Transpose: (Matr ice T) ) : 
> tempi 3 := map(dif f , map (di iff, Matrice__T, p s i ) , p s i ) *Omega [motor] A2 + 
M u l t i p l y (Matrioa A P s i , mapldi.ff, M a t r i c e T, p s i ) +Omega [ a c t o r ] 5 + 
M u l t i p l y ( M a t r i c e B P s i , M a t r i c e T ) : 
> D__matri.ee := M u l t i p l y ( i n v e r s e _T, 2*map{d,iff, Matriee__T, p s i ) * Omega [motor] 
+ M u l t i p l y (Matr.ice_AJPsi, Matriee___T)) : 
> K m a t r i c e := Mult ip ly( inverse__T, t emp i3 ) : 
> f_yec tor := M u l t i p l y ( i n v e r s e j r , f_R) : 
Equation du disque rotor en coordonnees unis 
> DJbar := a l g s u b s ( rho*a*c*R[otor] A4/I__bsta=gamma, s i m p l i f y ( D j a a t r i c e ) ) : 
> K h a r := simplify(algsubs(rho*a*c*R[otor]A4/I___bata=gamffia, K m a t r i c e ) ) : 
> £_Jbar := c o m b i n e ( M u l t i p l y { M a t r i x ( < 1 , - 1 , - 1 , - 1 , - 1 , i > , s h a p e - d i a g o n a l ) , 
£_yea to r ) ) : 
> D___bar_jsimple := subs ( (cos (2*psi) =0, sin. (2+psi) =0, cos (4*psi) =0, s i n (4*psi) =0} , 
combine(D_bar) ) : 
> K_bar_j3imple ;= subs ({cos C2*psi)=G, s in{2*ps i ) =0, cos (4*psi) =0, s i n ( 4 * p s i ) = 0 ) , 
combine(K b a r ) ) : 

liquation reduite de l'extremite' de la pale 
> Dtild_reduita := algsubs <rho*a*c*R[otor] A4/I beta=ga»aiaa, 
simplify(<<D matrice[1,1] j -D matrice[1, 2] I -D matrice[l, 3]>, <•-
Djaatrxce[2,1] | D_matrice[2,2] I D matrice12,3J>, <-D_matrice[3,1] j 
D matrice[3,2] j D satrice[3,3]»)): 
> Ktild__reduita ;= simplify (algsubs (rho*a*c*R[otor] A4/I beta=gamma, 
«K_atatrice[l, 1] | ~-R__matrica [ 1, 2] | ~'K__matriea[l, 3 j >, <™K matrice [2 ,1] I 
K_raatrice(2,2] | K matrice[2,3]>, <-K matrice[3,i] | K matrice[3,2] | 
Kjaatxice [ 3,3]») 5 : 
> ftildjreduita ;= subs({lambda[0]=(V[Shaft/Wind][3]-
nu[0])/(Omega[motor]*R[otor]), laiabda[c]=~nu[c]/(Cteega[motor]*R[otor]), 
lambda[s]=~nu[s]/(Omega[motor]*R[otor])}, combine(Multiply(Matrix(<1, -1, -
1>, shape=diagonal), f_vactor[1,.3]})) : 
> Dtiid reduite__simpla := 
suba{(cos(2*psi)=0,sin(2*psi)=0,cos(4*psx)=0,sin(4*psi)=0}, 
combine (Dtild_reduite)) : 
> Dtild.___reduite_sim.plel : = 
subs({cos <2*psi)=0,sin(2*psi)=0,cos(4*psi)=G,sin(4*psi)=0/mu=0), 
combine(Dtild_reduite)5: 
> Ktild___reduite__simple : = 
subs({cos(2*psi)=0,sin(2*psi)=0,cos(4*psi)=0,sin(4*psi)=0}, 
combine (Ktild___reduite)) ; 
> Ktild__red«ite__simplel : = 
subs ({cos {2*psi)=D,sin.(2*psi)=0,cos (4*psi) =0, sin(4*ps.i)=0,mu=0} , 
combine(Ktild rsduite)): 

http://D__matri.ee
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> Ktild reduite siaple minus one : = 
Adjoint (Ktild reduite simple) /Deterwinant(Kfcild reduite simple) : 
> Matrice^Evolution^Beta^reduite := subs (rho=0.002377, a=5.73, c=1.73, 
R[otor'j=26 , 83 , Omega [motor] =27, X_beta=1512.6, gasBia=9 .1936, 
epsilon=l.25/26.83, MJosta=86.7, K beta[spring]=0, delta3=G, «Ma,tr.ix{3) | 
Matrix (<1,1, 1>, shap6=dxagonai)>, <simplifyC-Ktilcl__reduite_siiipIe) j 
simplify (--Dtild reduite simple)'») : 
> Eigenvalues (MatxioeEvolut.ion_Betaredui.te) : 
> Eigenvalues(subs{mu=0.0, Ma.trice Evolution Beta r^duits)): 

> Eigenvalues (subs (mu=0 ,3, Matrica__Evolutioii__Beta_reduite)) : 

> si A :•= s'*IdentityMat.rix{6} ~Matrice_.Evolu.tion Beta reduite: 

> factor(Determinant(si A)) ; 

/ + 73.0134/ + 5578.68 / + 1.99465 l o V . 510.534 \L / -12425.3 |i* / + 5.04607 10° / -8.00305 1Q5 M* / 

+ S.S0052 107 s - 9.77067 106 ^ s +2.56080 10* M* s -1.15155 lO"' |i+ / + 3.39473 1Q8 - S.99628 10? \i 
6 2 

-1.5293410 (i 
> Vec teur Beta_Cosms.and.e t h e t a l := algstsbs ( rho*a*c*R[otor] A 4 / I beta=gamma, 
s i m p l i f y (subs ( theta. l=~18*deg2rad, 
< 0 , 0 , 0 , m a p ( d i f f , f t i l d . r e d u i t e , t h e t a l ) * t h e t a l > ) ) ) : 

> M a t r i c e Beta Commands! := aigsufas ( rho*a*c*R[otor] A 4 / I beta=gawma, 
s i m p l i f y ( « M a t r i x (3 , 3) >,<subs ({cos (2*psi)-~Q, s i n (2*ps i )=0 , cos ( 4 * p s i ) = 0 , s i n (4*p 
s i ) =0} , map (d i f f, f t i l d r e d u i t e , t he taG) ) | 
s u b s { ( c o s C 2 * p s i ) = 0 , s i n ( 2 * p s i ) - 0 , c o s ( 4 * p s i ) - 0 , s i n ( 4 * p s i > = 0 ) , 
m a p ( d i f f , f t i l d r e d u i t e , A l [ w ] ) ) | 
subs{{cos < 2 * p s . i ) = 0 , s i n { 2 * p s i ) = 0 , c o s ( 4 * p s i ) - 0 , s i n ( 4 * p s i > = 0 ) , 
m a p ( d i f f , f t i l d r e d u i t e , B l [ w ] ) ) » ) ) ; 

> Commands! := <Matrica_JBeta Commands! [4 , , 6, .1. . 3 ]> : 

> Conunande_!Binus__one := Adjoint(Coauaandel) /Determinant(Commandel) : 

> f a c t o r (subs (rho=0.002377, a--5.73, C--1.73, R[o tor ]=26 . 83 , Oaega[motor]=27, 
I b e t a = 1 5 1 2 . 6 , gasBaa=8,1936, e p s i l o n = l . 2 5 / 2 6 . 8 3 , M be ta - -86 .7 , 
K. b e t a [ s p r i n g ] = 0 , d e l t a 3 = 0 , mu™0, D e t e r m i n a n t ( < s l A [ 1 . . 6 , l ] I 
M a t r i c e Beta Commandel[1. .6,3] I s i A [ l . . 6 , 3 . . 6 ] > ) / D e t e r m i n a n t ( s i A ) ) ) ; 

37814.2 (s +12.1689) ( / +24,3380 s + 781.231) 

(s +24.33761 +151.457) (s + 24.3376 s + 781.241) {s + 24.3382 ;s+2§69.) 
> templ4 := subs(mu=V[Shaf t /Wind][1] / (Omega[motor]*R[otor]5 , 
{u[Body]=u[Body[E]],v[Body]=v[Body[E]],w[Body]=w[Body[B'J] ,Dot[u][Body]=0,Dot[ 
v][Body]=0, Dot[w][Body]=0, 
p[Body]=p[Body[E]] ,q[Body]=q[Body[E]] , r [Body]=r[Body[E]] ,Dot [p] [Body)=0, 
Dot[q][Body3=0, Dotfr][Body1=0{, 
M u l t i p l y ( < s * a a p { d i f f , s u b s ( c o s Z e t a - - c o s ( Z s t a ) , s i n S e t a = s i n { Z e t a ) , f t i l d r e d u i t e ) , 
Dot[u][Body]) + 
map(d i f f , subs{cosZe ta=eos (Ze ta ) , s inZeta—sin (JSeta) , f t i l d r e d u i t e ) ,u[Body'j) | 
s * » a p ( d i f f , s u b s ( c o s Z e t a - c o s ( Z s t a ) , s i n Z e t a — s i n { Z e t a ) , f t i l d r e d u i t e ) , 
Dot[v][Body]) + 
m a p ( d i f f , s u b s ( c o s Z e t a = c o s ( Z e t a ) , s i n Z s t . a = s i n ( Z e t a ) , f t i l d r e d u i t e ) , v [ B o d y ] ) i 
s * m a p ( d i f f , s u b s { e o s Z e t a = - c o s { Z s t a ) , s i n Z e t a = s x n ( Z e t a ) , f t i l d r e d u i t e ) , 
Dot[w][Body]) + 
map {diff , subs (cosZeta=cos (Zeta) , sxnZeta~s in (Zeta) , f t i l d r e d u i t e ) ,w[Body]'j >, 
T[Body/E a r t h [ E ] 1 ) ) : 
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> temp15 := subs(au=V[Shaft/Wind][1]/(Osiaga [motor]*R[otor]), 
{utPody-]=u[Body[E]j ,v[Body]=v[Body[E]] rw[Body]=w[Body[E]] ,Dot[u] [Body.1=0,Dot[ 
v][Body]=G, Dot [w] [Body] =0 , 
p[Body]=p[Body[E]],q[Body]=q[BodyCE3J,r[Body]=r[Body[E]],Dot[p][Body]=0r 

Dot[q][Body]=0, Dotir]EBody]=0}, 
©•Multiply (<s*map(dif£, subs CcosZet,a=cos (Zeta) , sinZata=sin (Zeta) , £tild__reduite 
), Dot[p][Body]) + 
map (diff, subs (oo«Zeta«cos (Zeta) , sir.3eta~sin (Zeta) , f ti.ld reduite) ,p[Body]) I 
s*ma.p (diff, subs (cosZefca=cos (Zeta) , si.nZeta.=sin (Zeta) ,ftild reduite) , 
Dot[q][Body]) + 
map (diff, subs (cosZeta=eos (Zeta) , sinEeta=s.in (Zeta.) , f ti.ld reduite) , q[Bod.y]) | 
s*ma.p (diff, subs (cosSeta=cor> (Zeta) , sin7.sta=sin (Zeta) ,.fti.id_redui.te) , 
Dot[.r] [Body]) + 
map (d.if f, subs (cosZeta=cos (Zeta) , sinSsta=sin (Zeta.) , f tild_jeeduite) , r [Body]) >, 
T[Diff(omega,eta)[E]]5): 
> tempi6 := subs (mu=V[Shaf t/Wind] [1] / (Omega [motor] *R[ot.or]) , 
{u[Body]=u[Body[E3 3, 
v[Body]=v[Body[EJJ,w[Body]=w[Body[E]],Dot[u][Body]=0,Dot[v][Body]=0, 
Dot[w][Body]=0, 
p[Body]=p[Body[E]j,q[Body]=q[Body[E3],.r [Body]=r [Body[£]],Dot[p)[Bod.y]=0, 
Dot[q][Body]=0, Dot[r][Body]=0), 
Multiply (Matrix (map (diff, fti,ld__redtiite, Gravity) , shape=diagonal) , 
T[Diff (Gravity,eta.) [E] ])) : 
> tempi7 := subs(mu=V[Shaft/Wind] [1]/(Omega.[motor]*R[otor]), 
{u[Body]=u[Body[E]], 
v[Body]=v[Bod.y[E]],w[Body]=w[BodyFE3],Dot[u][Body]=0,Dot[v][Body]=0, 
Dot[w][Body]=0, 
p[Body]=p[Body[E]],q[Body]=q[Body[E]],r[Body]=r[Body[E]],Dot[p][Body]=0, 
Dot[q][Body]=0, Dot[r][Body]=0), 
Multiply (<s*ma,p(diff, subs (cosSeta=cos (Zeta) , 
s.inZeta=sin(2eta) , f tild__redui.ta) , Dot[u] [Body]) + 
map(diff,subs(cosZeta=cos(Zeta) , sinZeta=sin(Zeta) , .ftild reduite) ,u[B©dy]) I 
s*map (diff, subs (cosZeta=cos {Zeta) , sinZeta.=sin {Zeta) , f tild_ reduite) , 
Dot[v][Body]) + 
map (diff, subs (cosZata=cos (Zeta) ,s±nZeta=sin(Zeta) ,ftild reduite) , v[Body'J) I 
s*raap(diff,subs(cosZeta=cos(Zeta) ,sinZeta=sin{Zefca) , ftil.d_redui.te5 , 
Dot[w][Body]) + 
map(diff,subs(cosZeta=aos(Seta),sinZ®ta=sin(Zeta),ftild reduite),w[Body]3 >, 
Delta JT [Diff(V,eta)])): 
> MatriceJBeta Commande2 :--••• subs (Omega [motor] --Omega [motor [E] ] , 
«Matrix (3, 6)>,<templ4 I t©mpl5+templ6+templ7») : 
> Commande2 := simplify(subs{(psi=Pi/2, a=5.73, rho=0.002336, o=l,73, 
epsilon=l.25/26,83, N[Blades]=4., Omega[motor[E|]=2*Pi*263/60, R[otor]=26,83, 
delta3=0*deg2rad, M beta=86.7, I beta=1512.6, K beta[spring]=0, 
Gravity=32 ,174, Phi [E]=-2 ,5675*dsg2rad, Theta[E'j=5.U68*deg2rad, 
Psi[E]=0*deg2rad, u[3ody[£] ]=0 . 5*lct sec2f"t, v[Body[E] ]=0, w[Body['K] 1=0, 
p[Body [E ] 3=0, q[Body [E] ]=0, r [ Body [ E ]] •••••-()} , Ma trie® Beta Commanded)): 
> Matrice Beta Comaande3 :•= simplify («Matrix (.3, 3) >, 
<subs ({cos (2*psi)=0, sin(2*psi)=0,cos (4*psi)=0, sin(4*psi)-™0}, 
snap (diff, ftild reduite,rm[0])) j 
subs{{cos(2*psi)=0,sin(2*psi)=0,cos(4 *psi)=0,sin(4*psi)=0], 
map(diff,ftild reduite,nu[c])) \ 
subs {(cos (2*psi) =0 , sin (2*psi)=0 , cos (4*psi) ~~-0, sin (4*psi) =0 } , 
map(diff,ftild reduite,nu[s]))»): 
Approximation du mouvement de battement verticale des pales et du mouvement de trainee avec les harmoniques 
du premier ordre 
> bata_lin. := aO al*cos (psi) - bl*sin (psi) ; 
> tjps.iloii__l.i.n ;= Dot__a0 - (Dotjal + tal*Omega[motor]) *eos (psi.) •••• (Dot bl-
aX*Omega[motor])*sin(psi): 

http://fti.id_redui.te
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> DotUpsi lonJLin := DDot_aQ - (DDot_al + 2*Dofc_bl*Omega[motor] •-
a l*0»ega[motor ] A2) *cos (ps i ) - (DDotJal - 2*Dot_jal*Omega [motor] •••-
b l * O m e g a [ m o t o r ] A 2 ) * s i n ( p s i ) ; 
> Vaero__lin :~ subs {{Ups.ilon=tJpsilQn_.lin, beta~beta_JLin, 
D©tUpsilon««DotUpsilon l i n } , Vaero^simple) ; 
> theta__l in := subs (beta=beta_JL±n, t h e t a ) : 
Expression de forces a6rodymanique dans le repere moyeu-vent fixe 
> dFaaro lin := l/2*rho*a*c*(Vaer© lin[l]*2*thata lin + 
Vaero__lin (1 ] *Yaero_i.in [ 3 ]) : 
> dDaero__sixttple := l/2*rho*c*C[drag] *Vaero__simple[l] A2 ; 
> Thrust ;= N[Blades]/(2*Pi)*int{int(dFaaro_lin, r[b]=0..CR[otor]-
epsilon*R.[otor] 5) 
+0*cos(psi)*(2*omega[Shaft/Wind][1]*0stega[ motor]*(M_beta/Gravity+epsxlon*R[ot 
or]*W[eightBlade [MR]]) +M_beta*Dot[omega][Shaft/Wind][2]/Gravity) 
+0* sin (psi) * (••• 
2*omega[Shaft/Wind][2]*Qmega[motor]*(M_beta/Gravity+epstIon*R[otor]*W[eight.Bl 
ad.e[MR"J]> +M_beta*Bot[omega] [Shaft/Wind] [IJ/Gravity) , psi=0. .2*Pi) •••• 
N[Blades]*(DDot_aO*M_besta + W£eightBlade[MR]]*(Gravity-{A[hub][3] + 
omega[Shaft][1]*V[hub][2] - omega[Shaft][2]*V[hub][13))3 : 
> thrust := N[Blades]/2*rho*a*c*R[otor]* (Omega[motor]*R[otor]3 A2*((1-
epsilonA2)/2*lambda[0] usu*(1-epsilon)/2*lambda[s] + (1/3* (1-
epsilonA3) +muA2/2* {1-epsilon}} *theta0 + (1/4* (l-epsilonA4>+muA2/4* (1-
GpsilonA2)) *tb.etal - mu/2* (l-epsilonA2) * {Bl [w] -delta3*bl) -- delta3* (1/3* (1-
epsilonA3) +iauA2/2* (1-epsilon)} *a0 + (;mi/2*epsilon* (1-epsilon)) *al - {1/3-
®psilon/2+i/6*epsilonA3)*Dot_aG/Omega[motor] + (mu/4*(1-
epssilon) A2) *Dot_fol/Omega[motor] *• mu/4*(1~ 
epsilonA2)*omega[Shaft/Wind][1]/Omega[motor]5-15f[Blades]*(DDot_aO*M_beta + 
W[eightBlade[MRJ3 *(Gravity-(A[hub][3] + omega[Shaft][1]*V[hub][2] -
omega[Shaft][2]*V[hub][1]))): 

> simplify (Thrust - thrust) ,* 

0 
> T[hrust coefficient/sxgma3 := 
Thrust/Crho*N[Blades]*c[hordBlade[MR]]*R[otor]*(Omega[motor]*R[otor])A2); 
> dFx aero lin := l/2*rho*a*c*(Vaero lin[1]*Vaero lin[3]*theta lin + 
Vaero__lin[3]A2} - l/2*rho*C[drag]*c*Vaero__lxn[l]A2: 
> dFy aero lin := -beta lin*dFa©ro lin: 
> Hforcew~":=N [Blades] /"(2*Pi) *xnt (int (-
dFx aero lin*sin(psi)-s-dPy a©ro__lin*aos(psi), r[b]=Q..(R[otor|~ 
apsilon*R[ofcorJ)), psi=0,„2*P±): 

> hforce w := 
N[Blades]/2*rho*a*c*R[otor]*(Omega[motor]*R[otor])A2*(C[drag]*mu*(1-
epsiXonA2)/(2*a) -(t.heta0~delta3*a0)/4*(2*mu*(1-epsilon)*iamfada[0]+(1-
epsilonA2) *lambda[s] -mil* (1-epsilon) A2*Dot_aO/Gmegafmotor|+ (2-
3*epsilon+epsilonA3)/3*Dot_bl/Omega[motor] -(4-3*epsilon-
epsi.IonA3)/3*al+2*(l-epsilonA3)/3*omega[Shaft/Wind][1]/Omega[motor]) ~ 
thatal/4* (BU* {l"-epsiionA2} *lambda[0] +2/3* (l-epsilonA3) *lambd.a[s] -mu* (2-
3*epsilon+®psilonA3)/3*Dot aO/Omega[motor] +{3-
4*epsilon+©psilonA4)/6*Dot_bl/Om©ga[motor] -(3~2*epsilon~apsilonA4)/3*al+(1-
opsilon*4)/2*omega[Shaft/Wind][1]/Omega[motor]} + (Al[w]~ 
deita3*al)/4*(mu/4*(1-epsilon)A2*Dotal/Qaiega [motor]+mu/2*(1™ 
epsiXon)*lambda[c]+2*(l-epsilonA3)/3*a0 -mu*(epsxlon~spsiionA2)/2*bl+mu*(1-
epsilonA2)/4*omega[Shaft/Wind][2]/Omega[motor3) + (Bl[w]~dslta3*bl)/4*(~(2-
3*epsilon+epsi.lonA3) /3*Dot aO/Omega [motor] +SBU*3* (1-
epsiXon)A2/4*Dot__bl/Osaega[motor]-mu*(2-3*epsilon+epsiIoKA2)/2*al+(1-
epsilonA2)*lambda[0]+3/2*mu*(1-epsilon)*laabda[s] +mu*3*(1-
epsilonA2)/4*omega[Shaft/Wirsd][1]/Omega[motor]}-lambda[0]*(1-
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epsilon}A2/2*Dot_Jsl/Omega[motor] +lambda[0]*(3-4*epsilan+epsilanA2)/4*al -
C(l~©psilonA2)/2*lamfada[0]-(2-
3*epsilon+epsilonA3)/6*Dot aO/Omega[motor]+mu*(1-
epsilonA2)/16*al)*om.aga[Shaft/Wind5[1]/Omega[motor] -((1-
epsilonA3)/6*a0+mu*(l-epsilonA2)/16*bl)*omega[Shaft/Wind][2]/Omega[motor] 
+mu*(-(1-epsilon>A2/16*(bl*Dot__al/Qsuaga [motor]+al*Dot__bl/Qmega[ motor]> + (1-
epsilonA2)/4*aQA2 +(2-apsilorv-epsilonA2)/8*alA2+(apssilon»epsilonA2)/8*blA2) -
(2-
3*epsilon+epsilonA3} /12* (al*DotjaO/Omega [motor] +a0* (Do t_al/Oa>ega [motor]+bl)} 
+ {2™6*epsilori+6*epsiIonA2~2*epsilonA3) /6* (Dot__bl/Omega [motor] -
al)*Dofc_aO/Omega[motor]-lambda[0]*larabda[s]*(1-epsilon) - lambda[c]/4* U-~ 
epsilonA2)*a0-lambda[c]*mu/8*(1-epsilon)*bl+lambda[s]/2*(1-
epsilon)A2*Dot aO/Omega[motor]-lambda.[s]*mu/8*(1-epsilon)*al) : 
> simplify(Hfores w - hforce w); 

0 
> Yforce_w i= -N [Blades] / (2*Pi) *int(int (-dFx_a6rojLin*cos (psi) •-
dFy_aero_lin*sin(psi) , r[b]=0. . (R[otor] -epsilon*R[otor])) , psi=0 . .2*Pi) ; 
> yforce w := N[Blades]/2*rho*a*c*R[otor]*(Omega[motor]*R[otor])A2*((thetaO-
delta3*a0)*{(2~-3*epsilon+epsilonA3)/12*Dot__al/Omega.[motor] -3*mu*(1-
epsilonA2) /4*a0 + (C4"3*epsil©n-epsilonA3) /12+auA2* <1-epsilon) /2) *bl + (1-
epsilonA2)/4*lambda[c3 + {!-•• 
epsilor>.A3)/6*omega[Shaft/Wind][2]/Onega[motorJ}+thetal*((3-
4*©psilon*epsilonA4)/24*Dot_ai/Omega[motor 1 -aru,*(l~epsilonA3)/2*a0+<(3-
2*epsilon-epsilon.A4} /12+muA2* (1-epsilon*2) /4) *b.l+ (l-eps.ilonA3) /6*iambd.a [c] 
+ {l~eps.ilonA4) /8*oaega [Shaft/Wind] [2] /Omega [motor]) + (Al. [w] -delta3*al) /4* ((2-
3*epsilon+eps.iIonA3) /3*Dot__aO/Omega[motor] - (l-aps.iioriA2) *lambda[0] -rou* (1™ 
epsilon.) /2*.lambda[s] ™mu* {(1-epsi.lon) A2/4*Dot Jhl/Omega.[motor ] + {2+eps.ilon-
3*epsilonA2)/2*al +(1-epsilonA2)/4 *omega[Shaft/W.ind][1]/Omega[motor])) 
+(Bl[w]~delta3*bl)*C{(l-epsilonA3)/6+»uA2*(l-epsilon)/2)*a0 +mu*<-(1~ 
epsilon) A2/15*Dot__al/Omega [motor] - (4-epsiloa~3*epsilonA2) /8*bl- (1-
epsilon) /8*lat»bda. [c] - (l-~epsi.lonA2) /16* omega [Shaf t/Wind] [2] /Omega, [motor])) + (-
Cl-epsilonA3) /6*a.0+5*mu* (1-

epsilonA2)/18*bX)*omega[Shaft/Wind][1]/Omega[motor] + (~{2-
3*epsilon+eps.i.lonA3) /6*Dot_aO/Gmega [motor] +mu*7* (l~epsilonA2) /16*al+ (1-
epsiionA2)/2*lambda[0])*omega[Shaft/Wind][2]/Omega[motor]-(l-3*epsilon 
+3*epsilon.A2-epsiionA3) /3*D©t_a.O/Omega [motor] *Dotj3.1/Gmega.[motor] - (2-
5*epsilon-r4*spsilonA2-epsilonA3) /4*Dot__aO/Omega [motor] *bl +lambda[0] * ( (1-
opsilon)A2/2*Dot__al/Omega [motor] +(3-4*epsilon+spsilonA2)/4*bl) -(2-
3*epsilon+eps.ilonA3) /12*Dot_Jbl/Omega [motor] *a.0+ (2-
3*epsilon+epsilonA3) /12*a0*al+.mu* (3*a0* (1-epsi.lon) A2/4*Dot__aO/Omega [motor] 
+7*3.1* (1-epsi.lon) A2/16*Dotjal/Omega [motor] +5*bl* {I-
epsilon) A2/16*Dot__bl/Omega [motor] -3*lambda[0] * (1-epsi.lon) /2*a.O ~mu* (1-
epsilon.) *a0*al+ (1-epsilon) /4*al*bl) - (1~ 
epsilon) A2/2*Dot_aO/Omega [motor] * lambda [c] - (1-epsilon A2) /4*a0*lai»bda[s] + 
7*mu* (1-epsilon) /8*al*laiabda[c] +5*mu* (1-epsilon.) /8*bl*.lambda [s] + <1-
epsilon)+lambda[0]* lambda[c]): 
> simplify{Yforce w - yforcejw); 

0 
> Hforee__h := Hforce_jw*eJosZeta + Yforce w*s.inZeta: 
> yforcejh := -Hforoe__w*sin2eta + Yforce__w*cosZata: 
> Rotor_force_veetor_b := subs({cosZota.=cos(2eta),sin2eta=sin(Zeta)}, 
Muitiply(Transpose(Rot[Shaft/Body]), <~Hforce_h, Yforceji, ~Thrust»): 

> # Mx. moment__w := simplify (N[Blades] / (2*Pi) *,int(irit(-
dFaero lin*r[b3*sin(psi), r[b]=0..{Rfotor]-eps.ilon*R[otor])), psl=0,.2*Pi)) 
+N [Blades] /2* (K_beta.[spring] *bl-epsilon*M__b©ta/Grav.ity* (DDot_bl -
2*Dot al*Omega[motor] - bl*Omega[motor]A2)): 
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> # Myjfaoment_w i= -
simplify (H[Blades] / (2*Pi) *int(int (dFa&ro lin*r[b] *cos (psi) , r[b]=0, , (R[otor]~ 
epsilon*R[otor])}, psi=0..2*Pi)} +N[Blades]12* (KJbata[spring]*al •••• 
epsilon*M_beta/Gravity* (DDot_al + 2+Dot__fol*Omega[motor] -
al*Omega[motor]A2)}: 

> mx_jaomant__w : = N[Blades] /2* (K__beta[ spring] *bl-
epsilon*M__beta/Gravity* (DDot__bl -- 2*Dot__al*Oiuega [motor] ••• bl*Omega[motor]A2)) 
- N[Blades]/2*rho*a*c*R[otor]A2*(Omega[motor]*R[otor])A2*epsilon*(mu/2*(I-
epsilonA2)*(thetaO-delta3*a.O)- {(l--opsiionA3)/6+3/8*muA2* (1-epsilon)5 *(Bl[w]-
delta3*bl) +au/3* (l--eps±lonA3) *thetal -mu/4* (1-epsilon) A2*Bot^__aO/Omega(motor] 
+ (l/6~epsl.lon./4*epsiIonA3/12) * (Dot_bl/Omega [motor] ~al.) +auA2/8* (1-
epsilon) *al+Kui/2* (1-epsilon) *lambda[0]+ (l-epsi.ionA2) /4*lambda. [s] +(1-
epsilonA3)/8*omega[Shaft/Wind][1]/Onega[motor]): 

> # factor(Mx j»o»«nt w - rax moment w ) ; 
> my_moimen,t__w := N[BIades]/2+(K_beta[spring]*al™ 
epsilon*M_foeta/Gravity* (DDot_al + 2*Dot_bl*Qmega [motor] - al * Omega [motor] A2) ) 
- N[Blade's]/2*rho*a*o*R[otor]A2*(Omega[motor]*R[otor])A2*epsilon*(~(1/6*(1~ 
epsilonA3) +muA2* (1-spsilon) /8) * (Al [w] -de.lta3*al) -m«/4* {l~-opsiionA2) *a0 
+ Cl/6-epaiion/4+epaiIonA3/12)*(Do t__al/Omega[motor]+bl) +muA2/8*(1™ 
epsilon)*bl+(l-epsilonA2)/4*lambda[s]+(1~ 
eps.ilonA3) /6*omega [Shaft/Wind] [2] /Omega [motor]) : 
> # factor (My moment w - my moment, w) ; 
> Qjraoment := -simplify (NfBIades] / (2*Pi) *int (int (dFx__a.e.ro__lin*r [b] , 
r[b]=0, . (P.[otor] ~epsiion*B.[otor]}) , ps.i=0 , ,2*Pi}) : 
> g__moment := 
N[Blades]/2*rho+a*c*R[otor]A2*(Omega[motor]*R[otor])A2* (C[drag]/(4*a)* (1-
4/3*epsilon.+epsilonA4/3+HruA2* (1-epsilon) A2) - (fcheta0-delta3*a0) * ((2-
3*eps.ilon+epsilonA3)*lambda[0]/6 + mu/4*(1-epsilon)A2*lambda[s] - 1/12*(3-
8*epgilon+6*epsiIonA2-epsiIonA4)*Dot__aO/Omega[motor] + nsu/6* (1-
epsilon.)A3*Dot bl/Omega[motor]+mu/4*apsilon*(1-epsilon}A2*al + mu/12*(2~ 
3*epsilon+epsilonA3)*omega[Shaft/Wind][1]/Omega[motor]> + (Al[w]-
dalta.3*al) * (1/24* (3-8*e.psilorH-6*epsilonA2~epsiiofiA4} *Dotal/Omega[motor] -
mu/12*(2~3*epsi,lon+epsilonA3)*a0 + (1/24*(3~8*epsiIon+6*epsilonA2~ 
epsilonA4)+1/16*(1-epsilon)A2*muA2)*bl + (2+epsilon)/12*(1-
epsilon)A2*iamfoda[c] +1/24* (3-

4*epsilon+epsilonA4)*omega[Shaft/Wind][2]/Omega[motor]) +(Bl[w]-delta3*bl5 *(-
mu/6*(1-epsilon)A3*Dot aO/Omega[motor] + 1/24*(3-8*epsilon+6*epsilonA2~ 
epsilonA4}*Dot bl/Omega[motor] + (1/24*(epsilonA4+8*epsilon-6*epsilonA2-
3}+ffiuA2/16*{l~epsiian)A2)*al + l/4*Btu*Cl~ 
epsilon)A2*lambda[0]+(2+epsilon)/12*(1-epsilon)A2*iambda[s]+l/24*(3-
4*epsilon+epsiionA4)*omega[Shaft/Wind][1]/Omega[motor])+ thstal*(1/30*(6-
15*epsilon+10*epsilonA2-epsilonA5)*Dot aO/Omega[motor] - EM/24*(3-
8*epsilon+6*epsilonA2-epsilonA45*Dot bl/Omega[motor] - mu*epsi!on* (2-
3*epsilon+epsilonA3)*al/12 -(3~4*epsilon+epsilonA4)*lambda[0]/12 -
mu/12*(2+epsilon)*(1-epsilon)A2*lambda[s]- mu/24*(3-
4*epsilon+epsilonA4)*omega[Shaft/Wind][1]/Omega[motor]) - (1-
4*epsilon+6*epsilonA2-4*epsilonA3+opsilonA4)/8*(2*(Dot aO/Omega[motor])A2 + 
(Dot_al/Omega[motor]+bl)A2 + (Dot bl/Omega[motor]-al)A2) ~ muA2/16*(1-
epsilon) A 2 * (4*aOA2+blA2+3*alA2) +"'(2*lambda [0]+mu*al) /3* (1-

epsxlon)A3*Dot_ a()/Gmega[motor] + mu/3*(1-epsilon)A3*aO*Dot_al/Omega[motor] -
(3-8*apsilon+6*eps,i.lonA2~ 
ep>£u.lonA4) /12* (Dot: al/Omecj^ [motor) *omega fSĥ ifffc/wind] (21/Omega (motor ] + 
Dot bl/Omega[motor]*omega[Shaft/Wind][1]/Omega[motor] -
al*omega[Shaft/Wind][1]/Omegafmotor]+bl*omega[Shaft/Wind][2]/Omega[motor]) -
1/2*(1-epsilon)A2*(lambda[0]A2+mu*lambda[0]*al) + mu/3*(1-epsilon)A3*a()*bl + 
EU*(l/3~l/2*epsilon+l/6*epsilonA3)*a0*omega[Shaft/Wind][2]/Omega[motor] -
(1/8-
l/6*epsilon+l/24*epsilonA4)*{(omega[Shaft/Wind][1]/Omega[motor])A2+(omega[Sha 
ft/Wind][2]/Omsga[motor])A2) - (1-
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epsilon) A3/3* (lambda[c] *DQt_a/i/Omega[motor j+lambda[sj *DotJbl/Gffi&ga[motor]} + 
mu/2* (1-epsilon) A2*a0*lai«bda[c] + (1-epsilon) A3* {al*lambda[s] ~bl*lasibda, [c]! /3 
- (1-epsilon)A2*{larabda[o]A2+lasibda[s3A2)/4 - (2+epsilon)/6*(1~ 
epsilon)A2* flambda[c]*omega[Shaft/Wind][2j/Omega[motor]+lambda[s]*omegaIShaft 
/Wind][1]/Omega[motor])): 
> s i m p l i f y (Q moment-c^jmomanfc) ; 

D 

> # Mx moment h := Mx moment w*cosSeta + My moment v*sinZeta; 
> # Myjaomentjh := -Mxjnosent w*sinZeta + My__jaoiaant jw*cos2eta: 
> # XYZ_moment b := Multiply{Transpose{Rot[Shaft/Body]5, <Mx moment h, 
My moment h, Q moraent>); 
> az moment_h := mx__mom©nt w*cos2ata + my^mostant w*sinZeta: 
> fflyjuomantjj := -iBx_!tiom6nt_w*siriZeta + my moment__w*cosZeta: 
> Rotor_moment_yector__h := subs<{cos2eta~cos(Zata),sinZeta=sin{2eta)}, 
<rax Biomentjh, my_jaoiaent__h, Q__moinent>) : 
> Rfofcor moment coefficient h/sigma] := 
Rotor_jttoment__vector_h/ (rbo*S[Blades] *c[hordBlade[MR] ] *R[otor] A2* (Omega[motor] 
*R[otor])A2): 
> Rotor tioaent vector b := subs {!,cosZeta=oos (Seta) , sinZeta=sin (Zeta) } ( 
Multiply {Transpose{Rot[Shaf t/Body]) , Rotor__moment__yector_h) + 
<1[h£x]],1[h[y]],1[h[z]]> &x Rotor force vector b ): 
> RJotoriaoment coefficient b/sigiaa] : = 
Rotor moment vector__b/(rho*N[Blades]*e[hordBlade[MR]]*R[otor]A2*(Omega[motor] 
*R[ot"or3 ) A2}7 
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Le script suivant nous permet de calculer du modele atmospherique, ainsi que certains 

parametres du regime de vol, en utilisant le logiciel MATLAB. 

E V % r ' t / ' S ' ( ' !; I 
n h 1 f t ' ' >< 
i C o n v e r s i o n term;-
in2m = 2.54e-02; 
ft2m = .3048; 
slug2kg= 14.59; 
lb2kg=.4536; 
newton2pound = .2248; 
pascal2poundpft2 = 2.089e-02; 
rad2deg=180/pi; 
mps2knots = 3600/1852; 
ftps2knots = 591715, 

gO = 9 80665, s 
TO =288 15, , , . 
pO =101325; { 
rho0 = 12251, 
Rho0= 002378. 
aO =340.29; * 
R =287.039; 'i 
Re =6371210; * 
Tjate =-0.00651122; % 

H = h*ft2m; 
g = g0*(Re/(Re+H))A2; 1 A c c e l e r a t i o n of g r a v i t y 
Ge Imp = g/ft2m; 
f = H*Re/(Re+H); * G e o p o t e n t x a 1 a ! ! . t i r ade 

t M o l e c u l a r t e m p e r a t u r e a n d s t a t i c a i r p r e s s u r e 
Tm = T0 + T_rate*f; 
p = exp(log(p0) - log(Tm/T0)*g0/(T_rate*R)); 
q_Imp_sta = p*pascal2poundpft2; % pound f o r c e / ; 

rho = p/(R*Tm); h kg/m*3 
rhojmp = rho*Rho0/rho0; i s l u g / f f 3 
% A i r s p e e d 
a = sqrt(1.4*R*Tm); 1 m/s 
a_Imp = a/ft2m; I tt/s 
f. i'.1/^ i.. i ; ; j . U I U i a >::.!. 

Mach = sqrt(V'*V)/aJmp; 

V_knots = ftps2knoK*sqrt(V(l)A2 i V(3)A2). 
Vxbikt = flps2knots*V( 1 )*sqrt(rho lmp/RhoO), 
•f Dvnarci 

q_Imp_dyn = l/2*rho_Imp*V'*V; « i b / f t " ! 

Alpha_Deg = r a d 2 d e g * a t a n ( V ( 3 ) / V ( l ) ) ; % d< 
BetaJDeg = r a d 2 d e g * a t a n ( V ( 2 ) / s g r t ( V ( l ) * 2 + V ( 3 ) * 2 ) ) ; * d( 

' * < 

?a l e v e l 

:>a! 

t A 2 

'9 
<J 
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Le script suivant nous permet de calculer le regulateur statique de retour de sortie par la 

methode lineaire quadratique et HL„, en utilisant le logiciel MATLAB. 

funct ,j o n [F( K] = QPFB Hinf (Plant, q, r, Bpert, gamma) 

'I i 1 r i . i i symmetry 
if Nx~=size(b,l), 

error('The A and B matrices must have the same number of 
rows.') 
elseif any(size(q)~=Nx) 

error ('The A and Q matrices must be the same size.') 
elseif any(size(r)~=Nu), 

error('The R matrix must be square with as many columns as 
elseif -isreal(q) || -isreal(r) 

error('The weight matrices Q, R, N must be real valued.') 
elseif norm(q'-q,1) > 100*eps*norm(q,1), 

warning('Q is not symmetric and has been replaced by 
(Q+Q")/2).') 
elseif norm(r'-r,l) > 100*eps*norm(r,1), 

warning('R is not symmetric and has been replaced by 
(R+R' '1/2) . ') 
end 

% Enforce symmetry and check posttivity 
q = (q+q1)/2; 
r = (r+r')/2; 

vr = eig(r); 
vqnr = eig( blkdiag(q,r) ); 

if min(vr)<=0, 
error('The R matrix must be positive definite.') 

elseif min(vqnr)<-le2*eps*max(0,max(vqnr)), 
warning ('The matrix [Q 0;C' R] should be positive semi-

definite.*) 
end 

:s Calcul de cjpseudo inverse) --- Cplus 
[U,S,V] = svd(c); 
VI = V(:,l:size(U,2) ) ; 
V2 =V(:, (size(V,2)-size(U,2)):size(V,2) ); 
9, 

Sp = zeros(size(U)); 
for i=l:size(U,2) 

Sp(i,i) = 1/S(i,i); 
(ill C-i 

Cplus = Vl*Sp*U'; 

% Initialisation 

B. ' ) 
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L = zeros(Nu,Nx); K = lgr(a,b,q,r); 

iter = 1; maxit = 10; 

dispC ' ) ; 
disp(' Algorithme pour calculer H inf avec compensation statique 

disp(' ' ) ; 
dispC k DeltaK norme ') ; 

while iter<=maxit 
P = care (a, b*inv(r) *b' -l/gammaA2*Bpert*Bpert', q+L' *inv(r) *L) -, 

.. j > i i 

Kn = r\(b'*P+L)*( eye( size(V2*V2')) - V2*V2'); 
I i i i ) L 

L = r*K - b'*P; 
differ = norm(K)-norm(Kn); 

if abs(differ) < l.e-5 
disp ('La. valeur optimale est trouvee') , break; 

end 

tab = sprintf('%3d',iter),-
tab = [tab, sprintf(' %12,Se!,norm(K-Kn))]; 
disp(tab); 

K = Kn; 
iter = iter + 1; 

end; % fin. 
P = K*Cplus; 

Le script suivant nous permet de mettre la dynamique de Ph61icoptere sous la forme 

standard selon la figure 3.6. Le script utilise le logiciel MATLAB. 

mod_UH6 0A 

Ytild = [0,0,1,zeros(1,6); 0,1,0,1,zeros(1,5); ... 
1,0,0,0,1, zeros (1,4) ,- zeros (1, 8) , 1; . . . 
zeros(1,6),1,0,0;zeros(1,7),1,0]; 

PGust = ss(UH60AControl.a.n, [[UH60A_gust.b.n(:,1:3);zeros(4 , 3) ] , 
... UH60AControl.b.n], UH60AControl.c.n, zeros(9,7)); 
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% Fonc t ions de pondei:a.tion 
s = t f ( ' s ' ) ; 
We = append((s/2.2+3.5)/ (s+3.5*.16) , (s/1.12 + 2.5)/(s + 2.5*0.0005), 

(s/1.12+2.5)/(8 + 2.5*0.001), (s/2.2 + 5)/(s + 5*0.43) 
2*s/((s+4)* (s+4.5)), 2*s/((s + 4)* (s+4.5))) ; 

WU = [100*(s+le-4)/(s+10), 0, 0, 0; 0, 4*(s+le-4)/(s+10), 0, 0;... 
0, 0, 9.2*(s + le-4)/(s + 10) , 0; 0, 0, 0, 4.6*(s + le-4)/ (s + 10)] ; 

Wr = blkdiag(.277, .419, .2600, .4201, .05, .05); 
Wg = .l*eye(3); 

s open-"loop connection with the weighting function 
systemnames = ' PGust Ytild We Wu Wr Wg' ; 
inputvar = '[ ref{6) ; Gust{3j; Control{4} ]'; 
outputvar = '[ PGust; We; -Wu ; Wr - Ytild]'; 
input_to_PGust = '[ Wg; Control ]'; 
input_to_Ytild = '[ PGust j ' 
input_to_We = '[ Wr - Ytild 
input_to_Wu = '[ Control ]'; 
input_to_Wr = '[ ref ]' ; 
input_to_Wg = ' [ Gust ] '; 
sysoutname = 'sys ic'; 
cleanupsysic = 'yes'; 
Taugw = sysic; 
[NMEAS,NCON] = size(PGust); 
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Pour le systeme presente a la figure 3.7, le script suivant calcule le compensateur et la 

marge de stabilite y*, 



mod_UH60A 
C_tild6 = [0, 0,1,zeros (1,6) ; 0,1, 0,1, zeros(1,5) ; ... 

1,0,0,0,1, zeros(1,4);zeros (1,8), 1; . . . 
zeros(1,6),1,0,0;zeros(1,7),1,0]; 

s = tf ('s') ; 

Wl_ls = a p p e n d ( t f ( [ 1 9 ] , [1 0 ] ) , t f ( [1 1 7 ] , [1 0 ] ) , . . . 
t f ( [1 2 ] , [1 0 ] ) , t f ( [1 1 ] , [1 0 ] ) ) ; 

k _ l s = d i a g ( [ . 1 , . 1 , . 1 , .11]) ; 
W2_ls = d i a g ( [ . 8 , 1 , 1 , 1 , . 1 , .5] ) ; 

Gshape = W2_ls*C_tild6*UH60AControl.nom*Wl_ls*k_ls; 

[Ac_inf,Bc_inf,Cc_inf,Dc_inf,gammin] = 
coprimeunc(Gshape.a,Gshape.b,Gshape.c,Gshape.d) 
Ks_inf = ss(Ac_inf, -Bc_inf, Cc_inf, -Dc_inf); 


