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RESUME

Ce mémoire traite de la modélisation et la commande robuste d’hélicoptére.
L’obtention d’un modéle mathématique d'hélicoptére avec un rotor principal
articulé, basé sur les mouvements de battement et de trainée de la pale dus & une
combinaison des charges aérodynamiques, de I’inertie et de la masse de la pale est
I’objet de la modélisation. Le modeéle du rotor principal permet la modélisation de
différentes combinaisons dans 1’ordre des articulations et accorde deux décalages
entre les charniéres. Les forces aérodynamiques sont calculées par la théorie de
I’élément de pale. Aucune analyse d’aéroélasticité n’est employée et les pales sont
supposées rigides. Les effets de déflexion vers le bas des filets d’écoulement d’air
et la vitesse induite sont expliqués par le modele dynamique de Pitt et Peters. Les
conditions d'équilibre et la linéarisation sont décrites et peuvent étre appliqués a un
sous-ensemble du modele dans un repére mobile ou fixe. Deux mod¢les
mathématiques d’hélicoptére différents sont utilisés, un pour représenter la
dynamique linéaire et I’autre pour la dynamique non linéaire. Le mode¢le linéaire
analytique a été développé a partir d’un modéle non lin€aire de la cellule comme
un corps rigide, le rotor principal, le rotor de queue et d’'un mod¢le atmosphérique,
et tient compte de la dynamique de battement verticale des pales et de la vitesse
induite. Le modéle linéaire analytique posseéde 22 ¢tats, dont neuf pour décrire la
vitesse linéaire, angulaire et Dattitude de la cellule, neuf pour présenter la
dynamique de battement verticale des pales et de la vitesse induite et quatre pour
introduire le circuit d’actionnement des commandes. La configuration
d’hélicoptére utilisée dans cette recherche est celle du UH-60A (Black Hawk) de

Sikorsky, un giravion de transport, possédant un rotor articulé de quatre pales.

Ce mémoire développe la synthése de la loi de commande robuste. La synthése de

la commande robuste par I’approche H_ est basée sur la sensibilité mixte ou celle
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de "loop-shaping", et les développements théoriques récents qui permettent la
conception d'un compensateur robuste statique ou dynamique. A cet effet, la
formulation du probléme H_ est discutée de manicre détaillée, différentes
procédures pour calculer les compensateurs et/ou pré-compensateurs sont
développées, et la fonction colit est modifiée pour inclure des caractéristiques de la
matrice de transfert entre les références et les sorties commandées. Quatre
contrdleurs de vol ont été congus pour le modéle linéaire d'hélicoptére UH-60A

(Black Hawk) : deux par I’approche H basée sur la sensibilité mixte, un par la
méthode de "loop-shaping" et un par la méthode d’optimisation lindaire

quadratique et H_ .
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ABSTRACT

This memory deals with the modeling and the robust control of helicopter.
Obtaining a mathematical model of helicopter system with a single main rotor that
includes rigid, hinge restrained rotor blades with flap, and lag, degrees of freedom
due to a combination of the aerodynamic, inertia, and mass loads is the object of
modeling part. The model allows several hinge sequences and two offsets in the
hinges. The aerodynamic loads are calculated by the blade element method. No
analysis of aero elasticity is employed and the blades are supposed to be rigid. The
download and the inflow follow the Pitt/Peters’ dynamic model. Model trim and
linearization are described and can be applied to a subset of the model in the
rotating or no rotating coordinate frame. Two different mathematical models of
helicopter are used one for linear dynamics and other for nonlinear dynamics. The
inflow effects are accounted for by using a three state nonlinear dynamic inflow
model. The analytical linear model was developed on the nonlinear model
including the fuselage rigid body, the main rotor with flapping dynamics, the tail
rotor and an atmospheric model. The analytical linear model has 22 states,
including nine states of the rigid body, nine states of flapping and inflow dynamics,
and four for the swashplate actuator dynamics. The configuration of helicopter
used in this research is UH-60A (Black Hawk) of Sikorsky, transport helicopter

with four blades articulated rotor.

In this memory, a robust control system design procedure is developed. The design

procedure is based on H_ mixed sensitivity formulation or loop-shaping approach,

and recent theoretical developments that enable the synthesis of a robust controller

with fixed or dynamic structure. To this end, H  form is discussed, a procedure
for computing pre and/or post compensators is developed, and the H_, cost

function is modified to include specifications on the transfer matrix from
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references to controlled outputs. Fore flight controllers were designed for the
linear model of UH-60A (Black Hawk) helicopter: two on H_ mixed sensitivity
approach, one on loop-shaping method and one on linear quadratic regulator and

H, approach.
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LISTE DES NOTATIONS ET DES SYMBOLES

Un vecteur est dénoté avec une fléche au-dessus (par exemple le vecteur de

position 1, ), un vecteur colonne, ou n'importe quel autre type de matrice colonne,

al

est représenté par une lettre minuscule soulignée (par exemple v ). Les points

spécifiques du systéme sont indiqués par des lettres minuscules, ainsi I'étiquette du
vecteur de position dans I'exemple ci-dessus est lue "le vecteur de position du
point 5 par rapport au point &". Dans le développement des équations du
mouvement on a besoin de systémes de référence. Pour chaque systéme on a

associ¢ a I’origine un triédre direct (en anglais right - handed frame axes). Les

triédres sont indiqués par des minuscules (par exemple IA est le vecteur unité sur
I’axe x dans le repére (A)). La transformation angulaire entre deux repéres est
dénotée par Rot, _,, lu comme "la matrice de rotation du repére () par rapport
au repére (I) ". Les vecteurs de la vitesse de rotation sont représentés par la
notation @, ,, lu comme "le vecteur de la vitesse de rotation relative du repere
(B) par rapport au repére (I ) ". Les vecteurs de rotation relative sont toujours

résolus dans le repére du premier indice inférieur. Lorsqu’ils sont projetés dans un
troisiéme repére, les vecteurs portent un indice désignant le systéme de référence.
Les quantités non dimensionnelles (normalisées) sont représentées avec une lettre
surlignée. Les fonctions transcendantes de sinus et de cosinus sont abrégées par

Sy et Cy, ou l'indice inférieur est I'argument. Les exemples suivants complétent

cette introduction sur les notations.

) projection orthogonale du vecteur t sur les axes d’un repére (53)
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INTRODUCTION

Les travaux présentés dans ce mémoire sont axés sur ’assistance au pilotage, la
modélisation et la commande robuste d’hélicoptere. Le systeéme étudié est 1’hélicopteére
UH-60A (Black Hawk) de Sikorsky pour un mode de vol au voisinage du vol

stationnaire.

Etant un systéme aérodynamique trés complexe et instable, présentant un couplage
important entre les variables dans le plan longitudinal et le plan latéral, le pilotage
d’hélicoptere est une tache difficile, voire impossible en absence de syst¢me de stabilité.
Dans ce contexte, le but principal de la recherche présentée dans ce mémoire est de
montrer ’application de différentes stratégies de commande robuste, selon I’information
sur le type des incertitudes et des perturbations et que ces méthodes nous ont permis de
garantir la stabilit¢ du systtme étudié avec une marge de stabilit€¢ pour toutes
incertitudes admissibles, entre autre, d’assurer certaine flexibilité entre performance et

robustesse.

Le premier pas pour atteindre le but d’une commande d’hélicoptére concerne I’obtention
d’un modéele du systéme qui implique la connaissance de plusieurs aspects liés & son
comportement tels que la dynamique des rotors, des stabilisateurs, ainsi que certains
phénomenes physiques et aérodynamiques tels que les effets des tourbillons, la
distribution non uniforme de la vitesse induite, le décrochage et la perte de portance qui,
pour les objectifs de cette recherche, ne sont pas considérés dans ce travail. Il est
difficile d’obtenir avec une grande précision les équations de mouvement d’un
hélicopteére car il s’agit d’un systéme ayant un nombre de degrés de liberté important,
qui €évolue dans un milieu trés perturbé. Au niveau théorique, les difficultés principales
de conception de la loi de commande pour les hélicoptéres ont leur origine dans les non

linéarités et les couplages, et dans le fait que les entrées ne sont ni des forces ni des



couples, mais des déplacements de certains €¢léments qui entrainent la dynamique de vol

a travers I’aérodynamique et les mobilités des pales des rotors.
Ce mémoire s’articule autour de 4 chapitres :

e Le chapitre 1 introduit la problématique de la recherche et est une revue de
littérature, positionnant la commande robuste parmi les différentes approches

pour la synthése de la loi de commande d’hélicoptére.

e Sous certaines hypothéses, dans le chapitre 2 est développé le modele
mathématique d’hélicoptére avec un rotor principal articulé, basé sur les
mouvements de battement, de trainée de la pale et de la dynamique de la
vitesse induite. Les pales sont supposées rigides. Pour un cas général de vol en
3 dimensions, les expressions des forces et les couples aérodynamiques du
rotor principal et du rotor de queue sont calculées par la théorie de I’élément de
pale. Finalement, le mode¢le est linéarisé autour d’un point de fonctionnement

pour obtenir une représentation du systéme dans I’espace d’état.

e Le chapitre 3 met en application la théorie de la synthése de la commande

robuste par I’approche H_, ainsi que la régulation par I’approche linéaire

oy

quadratique pour obtenir une loi de commande d’hélicopteére.

e Pour les différentes stratégies de commande étudiées, le chapitre 4 présente les
résultats obtenus dans le domaine fréquentiel, puis les réponses temporelles du
systéme bouclé a différentes entrées caractéristiques. A la fin une comparaison

entre les différents compensateurs utilisés est faite.

La conclusion expose les contributions du mémoire a I’avancement des connaissances et
a D’application de la commande robuste pour la synthése de la loi de commande
d’hélicoptere. Elle introduit également les perspectives et les nouvelles voies de

recherche qui découlent de cette étude.



CHAPITRE 1: PROBLEMATIQUE ET RECHERCHE
BIBLIOGRAPHIQUE

1.1 Introduction

Ce chapitre a pour objectif d’introduire la problématique de ma recherche tout en
définissant la gamme de sous thémes et concepts de base qui forment I’ensemble de
I’hélicoptere. La recherche bibliographique est présentée en deux parties: celle qui
concerne la modélisation d’hélicoptére suivie de la stabilisation et de la commande
robuste d’hélicoptere. Avant d’aborder la modélisation et la commande d’hélicoptere,
nous voulons introduire quatre volets substantiels pour le développement de la

dynamique de vol. Ceux-ci sont résumés par :

— La configuration d’hélicoptere;
— La mission et I’enveloppe opérationnelle de vol;
— La dynamique et les modes de vol;

— L’interface hélicoptére — pilote.

Les hélicoptéres sont congus pour décoller et atterrir sur une trés courte distance ou de
facons verticales et constituent une classe spécifique de « VTOLy» (Vertical Take-Off and
Landing). Cependant, les hélicoptéres sont des giravions, dont la sustentation, la
propulsion et la commande de I’attitude sont le résultat de I’action du rotor principal,
formé d’un moyeu central, solidaire d’un arbre tournant et de pales, entrainées en
rotation par ce moyeu. Ainsi les forces et les moments nécessaires pour générer la
position, I’attitude et la vitesse de 1’aéronef dans I’espace 3D sont produits par un seul
dispositif (rotor principal en coordination avec le rotor de queue) au lieu d’étre créés par
une aile fixe et par un propulseur séparé. La figurc 1.} montre I’aspect extérieur d’un

hélicoptére UH-60A, ainsi que certains composants et systémes spécifiques choisis par



le constructeur. Le rotor principal est actionné par un moteur a pistons ou un

turbomoteur. Pour une puissance, exigée du moteur, supérieure a 4003500 [kW], le

turbomoteur est préféré a cause du meilleur rapport puissance/poids. Par contre, le
moteur 2 pistons possede un meilleur rendement énergétique [Wat04]. En tant que
systéme mécanique, opérant dans des conditions météorologiques variées (enveloppe
opérationnelle de vol), I’hélicoptére doit travailler suivant le cahier des charges de son
utilisateur (pilote), définissant un ensemble de vitesse relative & la vitesse de I’air,
d’altitude, du taux de montée ou de descente, de I’angle latéral de translation, du taux de
rotation, du facteur de sustentation, ainsi que plusieurs parametres limitant 1’évolution
du systéme [Pad96]. Cependant il existe un cahier des charges (mission), définie a
’avance comme un ensemble de manceuvres dans 1’enveloppe opérationnelle de vol,
c’est-a-dire une évolution du systéme suivant certaines spécifications, agissant de
maniére automatique aux perturbations externes. Les concepts de mission, de manceuvre,
de mode de vol, d’enveloppe de vol, ainsi que les spécifications d’AGARD (Advisory
Group for Aeronautical Research and Development), de MIL, d’ADS (deronautical
Design Standard) sur les caractéristiques (paramétres) de vol et la commande de vol
d’hélicoptere (en principe, militaire) sont définis dans quelques articles de confidence
plus ou moins accrue (ex. ADS-33E-PRF Aeronautical Design Standard Performance
Specification, Handling Qualities Requirements for Military Rotorcraft, United States
Army Aviation and Missile Command, 2000; MIL-F9490D General Specification for
Flight Control Systems - Design Installation and Test of Piloted Aircraft, United States
Air Force, 1975; etc.).

1.2 Configurations d’hélicoptéres

Les rotors sur un hélicoptere peuvent étre configurés de plusieurs maniéres. La
configuration la plus usuelle est la combinaison d'un rotor principal et d'un rotor de

queue (figure 1.1).



Figure 1.1 Hélicoptére UH-60A (Black Hawk) de Sikorsky

Etant donné que I’hélicoptere présente un systeme fermé, la conservation du moment
cinétique sur 1’axe du rotor principale se traduit par une réaction de la cellule au sens
opposé€ a la rotation des pales (figusec 1.2). Pour annuler cette réaction ou pour orienter

I"hé€licoptere sur I’axe de lacet, le rotor de queue génere une poussée nécessaire.
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Figure 1.2 Orientation des forces et des couples d’un hélicoptére

Le rotor principal des hélicoptéres produits aux Etats-Unis, au Canada et en Angleterre
tourne dans le sens antihoraire (vue du haut), tandis que ceux en France, en Allemagne
et en Russie tourne dans le sens horaire. Cette particularité influence la notion de la pale

avangant et reculant, ainsi que I’orientation des couples gyroscopiques.

La configuration de rotors en tandem (longitudinale ou cOte & cote) est utilisée
principalement avec les hélicoptéres de transport (tigure 1.3). En raison de la rotation
opposée, le moment cinétique de chaque rotor transmis a la cellule est neutralisé. La
construction du syst¢éme de commande est beaucoup plus compliquée, comparée a celle
de I’hélicoptére composé d’un rotor principal et d’un rotor de queue. La configuration de
rotors cOte & cdte n'a jamais €té trés populaire. Cette conception a €té€ choisie pour le plus
grand hélicoptére jamais construit - le Mil Mi-12 (V-12). Les hélicoptéres de Frank
Piasecki (commercialisés par Boeing Vertol) utilisent également les rotors en tandem
longitudinal. Normalement, il existe un recouvrement significatif des écoulements,

produits par les rotors en tandem, causant une perte de puissance de 8-10% [www0l].



La grandeur de cette perte est similaire & la puissance nécessaire, développé par le rotor

de queue, pour équilibrer la réaction de la cellule.

il %
i

¥igure 1.3 Hélicoptére avec rotors en tandem (Boeing Vertol CH-47 Chinook) et
cote a cote Mil Mi-12 (V-12)

L’hélicoptere aux rotors engrenant (en anglais synchropter) est un systéme avec deux
rotors (figure 1.4) qui engrénent l'un dans l'autre, tout comme une roue dentée. Comme
I’hélicoptére avec rotors en tandem, cette configuration n'a pas besoin d'un rotor anti-
couple. Ce systéme a été développé au début de la giraviation, mais est tombé dans la

désuétude.

Figure 1.4 Hélicoptére avec rotors engrenant (Kaman HH-43)

La demi¢re configuration (figurg 1.5) est ’hélicoptere aux rotors coaxiaux. Les deux
rotors tournent dans des directions opposées. Selon le rotor qui produit le plus de
portance, 1'hélicoptére tournera a gauche ou a droite, en raison du couple des résultantes
aérodynamiques par rapport au centre de masse du giravion. Les hélicoptéres avec cette
configuration ne peuvent pas atteindre une vitesse de croisi€re élevée, parce que la force
de trainée est trop grande. Cette configuration a été choisie principalement par le

constructeur russe Kamov.



Figure 1.5 Hélicoptére aux rotors coaxiaux (Kamov Ka-25)

L'Aéronautique est un ensemble de connaissances, essentiellement divisée en deux
branches : 1'Aviation et la Giraviation. Toutes deux utilisent pour la sustentation des
engins volants, dont la résultante aérodynamique est appliquée sur une surface profilée,
convenablement disposée et inclinée, appelée voilure. Il existe un appareil qui combine
les surfaces sustentateurs d’un avion & aile fixe et de la voilure tournante de

I’helicoptere. Un modele de convertible (en anglais #ilt rotor) (PVTOL ou Planar

Vertical Take Off and Landing) est montré a la figure 1.6. Le rotor est d'abord placé au-
dessus de l'appareil, comme dans un hélicoptére, pour assurer le décollage et le vol a

basse vitesse. Puis il bascule de 90° pour devenir un propulseur permettant de voler

jusqu'a 500-600 [Km/h]. Cette conversion du rotor ne s'effectue que lorsque les ailes,

aux extrémités desquelles sont installés les rotors, sont capables de créer une portance

égale au poids de l'appareil.

¥Figure 1.6 Modéle de convertible a demi-aile basculante ERICA d’Agusta



1.3 Modes de vol et conditions d’équilibre

11 est convenable de décrire les tiches de vol dans une hiérarchie suivante : une mission
est composée d’une série de manceuvres; les manceuvres sont normalement accomplies

par différents modes de vol. Les principaux modes de vol sont résumés a la figure 1.7.

Vol
horizontal

Décollage ) <> ( stationnaire ) <==> (| Atterrissage

7Ny
Vol .
N

Virage

Figure 1.7 Principaux modes de vol

Dans la littérature traitant des aspects aérodynamiques des hélicoptéres, les modes de vol
sont analysés en termes de conditions particuliéres d’équilibre (en anglais trim
conditions), de stabilité et de réponse. De maniére générale les conditions particuliéres
d’équilibre correspondent aux modes de vol, pour lesquels les quatre commandes sont
fixes (trois pour le rotor principal et une pour le rotor anti-couple). La vitesse de rotation
du rotor principal n’est pas directement commandée par le pilote : elle fait partie des

variables asservies.

D’aprés les différentes directions du vol d’hélicoptére, nous pouvons classifier les

principales conditions particuli¢res d’équilibre en définissant les cas suivants :
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Vol stationnaire (en anglais hover). Ayant une vitesse de translation pratiquement nulle,

I’hélicoptere garde une hauteur constante par rapport au sol.

Vol vertical. Est défini lorsque I’hélicoptére se déplace dans le plan vertical ou fait un

vol suivant Iaxe, z, (figure 1.1).

Vol rectiligne et horizontal. Est défini lorsque I’hélicoptere se déplace dans le plan
horizontal. Le vol suivant ’axe, x, est connu comme vol en palier (en anglais
level flight).

Virage et vol en spiral. Développé dans I’espace, le vol est réalisé suivant une ou

plusieurs rotations selon les axes, x, v, et/ou, z.

Autorotation. L'autorotation est un mode de vol ou on permet au rotor principal de
tourner plus rapidement que le moteur qui I’entraine. Tous les hélicoptéres sont
équipés d'une unité de roulement libre entre le moteur et le rotor principal,
placée habituellement dans la transmission. En cas de panne du moteur,
survenant & une hauteur suffisante, la mise en autorotation du rotor principal
permet au pilote de descendre et d'atterrir sans dommage, grice a la

transformation de I’énergie potentiel en énergie cinétique de rotation.

Le comportement dynamique d’un hélicoptere en vol est le résultat de I’action et de
I’interaction de différents sous systémes : rotors, empennage, stabilisateurs, fuselage,

moteur(s), commande, etc.

Pour un hélicoptére, vu comme un corps rigide, les états du fuselage (I’attitude et les
vitesses linéaires et angulaires) sont définis de fagon unique par la trajectoire de vol et
les conditions d’équilibre. Considérons tout d'abord un systéme régit par les équations

différentielles non-linéaires et non-stationnaires de la forme :
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ou, f, est une fonction non-linéaire des forces et des moments de nature aérodynamique,
structurelle, inertielle et gravitationnelle, définie dans I’espace R” x R” x R — R”, avec

I’état du syste¢me x(t)eIRZ”, les conditions initiales x, et le vecteur des variables de
commande u(f)eR” . Les états du fuselage sont représentés par le vecteur
Xy :[u,,,vb,w,,,(I)b,G),),‘Pb.__pb,q,),rb]r avec u,, v,, w, les vitesses en palier, latérale et
verticale, respectivement, p,, g,, r, les vitesses angulaires de roulis, de tangage et de
lacet, respectivement et I’attitude (angles d’Euler) ®,, ®,, ¥, , définie par les angles
de roulis, de tangage et de lacet respectivement. Le vecteur de la commande est défini
par u=[6,,6,5.6,,6,] ob les variables 6, et 6, sont le pas collectif du rotor
principal et du rotor de queue respectivement, &,. et §; sont le pas cyclique latéral et

longitudinal respectivement. Trois équations cinématiques entre les vitesses angulaires
et les angles d’Euler augmentent les équations du mouvement. Les vitesses linéaires et
angulaires sont référées a un repére fixe dans le centre de gravité du fuselage et les
angles d’Euler définissent I’orientation de ce repére par rapport au repére inertiel. On dit

que (X,,u,) est un point d'équilibre (ou point singulier) du systéme (1.1 s'il satisfait la

contrainte:

0= f(x,,u,.1) (1.2)

Les concepts de base et les notions essentielles relatives a la stabilité s'appliquent au
comportement des solutions (ou trajectoire) autour du point d'équilibre { X=X ¥ O%,
Avec les quatre entrées de commande seulement quatre états d’équilibre peuvent étre
calculés; les autres sont définis par des équations additionnelles & partir de (1.1). Afin
d'alléger I'exposé, nous supposerons que le systéme est stationnaire et linéaire, c’est-a-

dire régit par I'équation linéaire (1.3}:
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ol la matrice de stabilité et la matrice de la commande sont définies par les dérivés

partielles 4—(§£) , Bw(gi) et F(t) représente l'effet des perturbations
X=X, Al usu,

atmosphériques (externes) et les incertitudes internes.

Ainsi la notion de stabilité fait intervenir le comportement de 1’hélicoptere dans les
conditions particulie¢res d’équilibre face aux perturbations et aux incertitudes. Le vol est
stable lorsqu’en réponse a une perturbation, les variables d’état du systéme convergent
vers I’état d’équilibre. En pratique ’instabilité signifiera simplement que les variables
sortent largement du domaine souhaité et ne tendent pas & y revenir de maniére stable,
mais au contraire s’en €loignent au moins périodiquement. La condition initiale est
connue sous le nom de la stabilité statique pour distinguer les caractéristiques a long
terme, qui sont définies par la stabilit¢ dynamique. La quantification de la stabilité
d’hélicoptére est développée a partir de la modélisation théorique et empirique de
I’interaction des forces et des couples aérodynamiques. Cette propriété physique est
mathématiquement liée avec les concepts des petites variations, de la linéarisation, des
dérivés de stabilité et de la commande, des modes naturels, des fonctions de transfert,
des matrices de transfert et des réponses dynamiques aux entrées de commande et de
perturbation. Etant un systéme dynamique non linéaire présentant des couplages entre
les variables d’¢tat, la réponse de I’hélicoptére & une entrée unidirectionnelle est
généralement multidirectionnelle, Dans la littérature la réponse directe ou indirecte est
parfois vue comme axiale (en anglais on-axis) ou couplée (en anglais off-axis). La
présente recherche étudie les réponses directes et indirectes des états du systéme aux

entrées de commande, pour but de concevoir une commande robuste d’hélicoptére.

1.4 Interface pilote - hélicoptére

Ce volet de référence trace les limites psychologiques et physiques du pilote trés ou peu
expérimenté en fonction de la conception, d’application ou toute décision d’ingénieur

influengant la manceuvrabilité ou le comportement de Phélicoptére face aux
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perturbations externes. Le pilotage d’hélicoptére en régime de vol aux instruments (en
anglais instrument flight rules) s’avére difficile en absence de systéme d’augmentation
de stabilité (en anglais stability augmentation system); de méme que la navigation et
atterrissage de nuit sans le radiophare omnidirectionnel VHF (VHF omnirange ou
VOR) et le systéme d’atterrissage aux instruments (en anglais Instrument Landing
System ou ILS). Evidemment la charge de travail et le stress que le pilote doit gérer

dépendent crucialement de ses capacités disponibles.

Le pilotage d’hélicoptére peut étre affecté par trois facteurs : la manceuvrabilité désigne
les qualités intrinséques d’un véhicule aérien (aussi terrestre ou naval) permettant de lui
faire effectuer certains types de manceuvres; la maniabilité (en anglais handling qualities)
désigne la plus ou moins bonne aptitude du véhicule a réagir aux sollicitations de son
pilote (ou conducteur) pour effectuer les manceuvres désirées et enfin la réponse face
aux perturbations externes (en anglais ride qualities) caractérise le comportement de
I’aéronef en réponse aux perturbations atmosphériques. Ainsi le pilotage tangible sans
danger, dans une enveloppe de vol, étant 1’objectif principal de tout systéme de
commande de vol, introduit les qualités ci-dessus comme une source logique d’objectifs

fonctionnelles.

Ces qualités de vol sont généralement considérées en premier lors des essais de vol d’un
prototype [Tis96a]. Cependant avec le développement de la technologie de commande
active (active control technology ou ACT) et I’application (aux Etats-Unis) des normes
ADS-33C [ADS-33C] et MIL-H-8501A [MIL-STD-1797A], les spécifications de ces

qualités de vol sont respectées.

' La technologie de commande active (ACT) est une notion de la terminologie aéronautique pour désigner
un aéronef qui n’utilise pas un lien mécanique direct entre les commandes dans le cockpit et les gouvernes.
Un tel appareil inclut généralement des ordinateurs de vol qui modifient les entrées de commande en
fonction de la réponse recherchée. En comparaison avec le terme commande de vol électrique (en anglais
Jly-by-wire) ACT est un terme plus correct, car il n’implique pas obligatoirement la transmission par fil
électrique. Certains ACT systémes utilisent par ex. des fibres optiques.
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Figure 1.8 Echelle de Cooper et Harper pour évaluer la maniabilité [CH69]

Un aéronef mis en oscillations induites par son pilote d’essais (en anglais pilot-induced

oscillations ou PIOz) échouera aux critéres de temps de retard équivalent du systéme (en

?Les oscillations induites par le pilote font parties des pratiques des pilotes d’essais pour tester les qualités
de vol. Elles consistent a initialiser certains modes par manipulation rapide (pousser et retourner dans la
position d’origine) des entrées de commande.
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anglais equivalent system time delay) et retard de phase (en anglais bandwidth phase
delay) si ces derniers sont larges. Dans [CH69] Cooper et Harper définissent la
maniabilité sur une échelle de dix (figure 1.8) qui est le critere de base pour toutes les

spécifications commerciales et militaires des qualités de vol.

Finalement la norme MIL-STD-1797A fait la transition entre les qualités de vol

classiques d’un aéronef (définie par la réponse fréquentielle en mode de courte période,

mode de longue période ou phugoides, etc) et la technologie de commande active.

1.5 Modélisation de la dynamique du rotor principal

1.5.1 Composition d’un rotor

Un rotor comprend essentiellement :

— Un mat qui regoit en outre la puissance motrice, sur lequel est fixé un moyeu;
— Deux ou plusieurs pales équidistantes ou disposées symétriquement;

— Un moyeu assurant la liaison entre les pales et le mat qui les entraine en rotation.

Les pales d'un rotor sont en principe assemblées sur le moyeu par l'intermédiaire de
"fusées". Le moyeu & son tour est relié directement & I'arbre ou méat du rotor. Ces
fixations peuvent étre de type articulation ou encastrement. Mise en rotation, les pales
peuvent étre assimilées & un profil d’aile. Chaque €¢1ément du profil supporte une force
aérodynamique €lémentaire de portance et de trainée de variation périodique. Le grand
diamétre du rotor, ainsi que I’allongement (en anglais aspect ratio) des pales, privilégiés
pour le rendement aérodynamique, ont comme conséquence le fait que les pales sont
considérablement plus flexibles que les hélices des avions. Ainsi le rotor devient une
source de vibrations et des contraintes pour l'appareil tout entier, dues principalement a
des défauts d'équilibrage et des dissymétries aérodynamiques induites par le vol de
l'appareil. Le niveau de ces excitations parasites croit avec la vitesse de translation et

limite le domaine de vol et les performances des giravions. Les progrés technologiques
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(nouveaux matériaux, pales a volets de fuite, etc.) permettent de repousser ces limites,
mais il semble également intéressant de considérer la contribution de la commande a la

résolution de ce type de probléme.

Considérons une hélice a pas constant, sa mise en rotation donne naissance a une force
parall¢le & son axe de rotation. Pour changer la direction de cette force, on peut soit
incliner l'axe de rotation ou faire varier de maniére périodique le pas des pales de I'hélice.
C'est cette deuxiéme solution qui est adoptée dans le cas des pales du rotor d'un
hélicoptere. La force aérodynamique résultante assure a la fois la sustentation et la

propulsion de la cellule.

D’une maniére générale, le principe de base des ailes, des rotors et des hélices est qu'ils
accélérent une masse d'air et que la portance ou la poussée résultante est la réaction

Newtonienne de cette accélération (figure 1.9).

Cependant, deux causes fondamentales sont 4 la source des forces et des moments
aérodynamiques, que subit chaque pale au cours de son mouvement (comme bien shr

chaque profil aérodynamique soumis a un écoulement d’un fluide) :
que p y

— La distribution de la pression, s’exercant selon la normale sur la surface de la
pale;
— La distribution des efforts de frottement (contrainte de cisaillement) selon la

tangente au profil de la pale.

L’intégration des distributions de la pression et des efforts de frottement sur la surface
compléte de chaque pale conduit a une résultante aérodynamique, proportionnelle au
carré de la vitesse relative de la pale par rapport a I’air ambiant. Cette vitesse est la
somme vectorielle de la vitesse de translation de ’hélicoptére, la vitesse périphérique de

rotation du rotor et de la vitesse induite par ’accélération de la masse d'air.
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Figure 1.9 Le deuxiéme principe de Newton et la création de 1a portance [Wat04]
La capacité de portance, pour toute section de pale, est fonction de I’angle local
d’attaque et de la pression dynamique locale. Définissons la position d’une pale dans le
plan de rotation par I’angle d’azimut ,,, dont la position de référence ((,//M = O) par
convention est définie dans la direction en aval. La figue 1.10 présente le cas de vol
stationnaire pour lequel la variation de la vitesse radiale le long de I’envergure de la pale
est symétrique et radialement linéaire avec une valeur nulle & ’emplanture et une valeur

maximale ¥, a I’extrémité. Comme la pression dynamique locale est proportionnelle a

la densité d’air et au carré de la vitesse relative, les forces aérodynamiques sont



18

radialement symétriques et pour un angle d’attaque constant, la force de sustentation est

proportionnelle au carré de la vitesse d’extrémité V, = Q, R,, .
Wy, =180°
N M, =0,6
Q,
l//\/f = 4.70 T W\'f = 9()
f
f_
l—\
‘.__

Figure 1.10 Distribution de la vitesse périphérique lors d’un vol stationnaire

Pourtant, lors d’un vol en palier a vitesse U, figure 1.11, la vitesse d’extrémité V,

”]7
prend la forme Q,,r,, +U, sin(y,, ), n’est plus symétrique et évidement est fonction de

I’angle d’azimut i/,,, en retrouvant sa valeur maximale sur la pale avangant (dans le

vent relatif) et sa valeur minimale sur la pale reculant. La dissymétrie provoque une
région de flux inversé dans laquelle la vitesse périphérique frappe le bord de fuite de la
pale plutdt que le bord d’attaque. En raison de la conception du moyeu (articulation de
pales) et/ou du design de pales, la dissymétrie de la pression dynamique devient
périodique, principalement avec la vitesse de rotation du rotor principal. En résumé, les
pales commencent a battre verticalement et dans le plan de rotation, en inclinant le cone
virtuel de I'extrémité de la pale. Cette tendance intrinséque peut étre compensée par le
pilote par le biais d’un ajustement du pas cyclique. La distribution de la vitesse relative,
de la vitesse induite, de la vitesse de battement et de P'angle de pas altérent I’angle
d’attaque pour toute section de pale et en conséquence les forces aérodynamiques. Le
rotor trouve I’équilibre en battement et en trainé lorsque le changement de I’angle local

d’attaque est suffisant pour compenser la dissymétrie de la pression dynamique locale.
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Figure 1.11 Distribution de la vitesse périphérique lors d’un vol en palier.

La description de la dynamique de la pale en présence d’élasticité structurelle nécessite
un modele plus complexe, qui par contre ne sera pas développé dans cette recherche. A
notre connaissance, les recherches les plus approfondies sur la dynamique des pales sont
fournies par Johnson [Joh80], Bramwell [Bra76] et Bielawa [Bie06].

La complexité aérodynamique du vol d’hélicoptere évolue d’avantage lorsque la trainée
de pression, le décollement de la couche d’air, ainsi que les tourbillons et les interactions
du sillage du rotor principal avec le rotor de queue, ’empennage et la cellule sont pris en

U,

m P

inferieur & 0,3, la théorie prouve [Bra76] que ces effets physiques peuvent étre ignorés

sans dégradation significative du modéle de commande.

1.5.2 Mobilités de la pale

Les trois mobilités de la pale en conséquence sont :

— L’angle de battement, 5, (en anglais flapping) (figure 1.12) produit une

rotation de la pale par rapport a un axe dans le plan de rotation, perpendiculaire
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au longeron de pale. Par convention le signe positif de I’angle est dans le sens de
la force de sustentation.

— L’angle de trainée, ¢, (en anglais lead-lag) (ligure 1.12) produit une rotation
de la pale par rapport & un axe normal au plan de rotation et parall¢le a I’axe du
mat. Par convention le signe positif de ’angle de trainée est dans la direction
opposée a la rotation du mat.

— Pas cyclique, @, (en anglais feathering) ({igurs i,12) produit un mouvement de
rotation de la pale par rapport 4 I’articulation ou le roulement qui est paralléle a
I’axe du longeron. Cette variation cyclique de ’angle de pas des pales du rotor

en fonction de ’angle d’azimut est positive pour une rotation de tangage en

cabré (en anglais nose-up).

AN
? biellette de pas

chamiére de battement

Figure 1.12 Mobilités de la pale

La dynamique quasi-statique de la pale, introduit ci-dessus, assume que le mouvement

de la pale est périodique en fonction de I’azimut, y/,,, et peut étre développée en série de

Fourier.

B(1)= B, + B cos(wyt)+ B sin(wy 1)+ o c08 (2w, 1) + Brgsin(2p 1) +... (1.4
$ (1) =&y + & c0s(Wit) + &g sin(yyt) + & 008 (2p,, 1) + &y N (2,8 ) + ... (1.5)
O(t) =6, +6,. cos (i, 1)+ B,s sin (1) + By cos (2, ) + Oy sin (2yr,, 1) +.. (1.6}
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Figure 1.13 Battement verticaux des pales [Met03]

De maniére mathématique, la force élémentaire de portance pour une section de la pale

est fonction de I’azimut, y,,, et de ’ordre du développement en série de Fourier (figure

....... Poniisaind

Figure 1.14 La portance pour une section de la pale en fonction de I’azimut (z//M ) et

de Pordre du développement en série de Fourier (a) de second ordre; (b) de

troisiéeme ordre [Wat04|
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En négligeant les termes correspondants aux harmoniques d’ordre supérieur ou égal &
deux, car ils ont des effets assez faibles sur les forces et les couples aérodynamiques
[Joh80], nous pouvons approximer la dynamique de battement (1.4} par 1’expression

(1.75:

B(1)= B, + B cos(wyyt)+ By sin (1) (.7

ou [, est ’angle de conicité, f,. et [ sont respectivement les angles longitudinal et

latéral de battement. Ils sont définis par rapport au plan perpendiculaire au méat. D’une

manicre simpliste, nous pouvons assumer que ’amplitude de /5. est déterminée par le

couple de tangage que la force aérodynamique résultante du rotor principal doit produire
autour du centre de gravité de 1’aéronef pour compenser 1’action des couples de tangage
des forces aérodynamique produites par I’empennage, les stabilisateurs, la cellule et le

rotor anti-couple. L’amplitude de [ est celle qui doit équilibrer 1’hélicoptére sous

’action des couples de roulis.

Il a été montré dans [Joh80] que le mouvement de battement, défini dans le plan de
Pextrémité de la pale (en anglais tip-path plane) et celui de pas cyclique (feathering),
défini dans le plan de la commande sont équivalents dans le sens qu’une variation d’un
degré en S produit les mémes effets aérodynamiques qu’une variation d’un degré en &.
Le mouvement de battement vertical peut donc étre éliminé complétement ou

partiellement par la commande.

Du point de vue de la dynamique, ce type de mouvement trouve une position d’équilibre
lorsque les forces aérodynamiques, inertielles, centrifuges et gyroscopiques sont en
équilibre. Johnson a montré dans [Joh80], que quand cela se produit, I’inclinaison de la

force de sustentation 7,,, peut s’exprimer en fonction d’un angle maximal de battement
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vertical, noté /3, . Pour une condition normale’ de battement, I’orientation de 7}, est

max *

donnée par (1.8} :

[ sin(f,.)cos(B) |
e, = - N —cos( B )sin(B) (1.8)
\/} - S~ (/61(3)8]]1 ’ (,[333) C‘OS(IB]_(,‘ ) c()s(l[j’w)

-1

La description mathématique ou la simulation de la dynamique de vol d’hélicoptére
implique la connaissance de plusieurs aspects li€és & son comportement, tels que
I’aérodynamique des rotors, du fuselage, des stabilisateurs et du train d’atterrissage,
ainsi que d’autres aspects mécaniques, aérodynamique et structurels qui font intervenir
I’influence des leviers de commandes et les perturbations atmosphériques sur la réponse
de I’hélicoptére. Le probleme de modélisation est trés complexe et le comportement
aérodynamique de I’hélicoptére est généralement limité par les effets locaux de
décrochage des pales. Au niveau théorique, les difficultés principales de la modélisation
de la dynamique de vol d’un hélicopteére proviennent de la dynamique des pales
relativement a I’air et & I’écoulement d’air a travers eux. Il est convenable de décrire les
différents degrés de complexité du rotor en trois niveaux selon I’application du mod¢le

(Lableau 1)

A28 1 ).

? La condition normale de battement se présente lorsque la pale bat vers le haut du coté du nez et vers le
bas du coté de la queue 3. > O et lorsqu’elle bat vers le bas du coté avangant et vers le haut du c6té

reculant ¢ > 0.
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Tableau 1 Niveau de complexité du modéle mathématique du rotor [Pad96]

Niveau 1

Niveau 2

Niveau 3

Aéro-
dynamique

Linéaire de deux
dimensions;

dynamique de la
vitesse induite évaluée
localement;

application de la
théorie du disque
sustentateur (en
anglais momenium
theory),  intégration
analytique des charges

Non linéaire, limitée a
trois dimensions;
dynamique de la vitesse

induite

évaluée

localement; application
de la théorie du disque
sustentateur (momentum
theory), effets locaux de
décrochage des pales;
introduction du vortex;

compressibilité

irrégu-

liere en deux
dimensions; intégration
numérique des charges

Non linéaire;

analyse complet du

sillage;
compressibilité

irréguliére en deux

dimensions;
intégration
numérique
charges

des

Dynamique

Pales rigides;

1) battements quasi
statique

2) battements des
pales avec 3 DDL

3) battements des
pales avec 6 DDL et
angle de trainée (en
anglais lag)

4) battements des
pales avec 6 DDL,
angle de trainée et
torsion quasi
statique des pales

1

2)

pales rigides et
mémes options qu’au
niveau 1

nombre limité des
modes €lastique des
pales

Représentation

structurelle détaillée
par modes

élastiques
éléments finis

ou

Applica-
tion

Analyse paramétrique
des qualités de vol et
de la performance;

A I’intérieur de
I’enveloppe de vol;
Commande en basse
fréquence

Analyse

paramétrique

des qualités de vol et de
la performance a 1la
limite de I’enveloppe de
vol;

Bande

passante  plus

large destinée au design
des commandes de vol &
gain élevé

Conception du rotor

Estimation
charges limites
Analyse
vibrationnelle
Analyse de
stabilité du rotor
A la limite
I’enveloppe
sécurité

des

la

de
de
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Au niveau 1, le plus bas, I’analyse de la stabilité et de la commande est basée sur un
modéle dérivatif de I’hélicoptére comme un corps rigide a 6 DDL, pour lequel la
dynamique des pales est quasi-statique, c’est-a-dire 1’angle de battement et I’angle de
trainée sont supposés instantanés, dont ses valeurs sont déterminées a partir des
déplacements, des vitesses et des accélérations de la cellule. Bien que le modele quasi-
statique soit physiquement adapté a différentes applications d’analyse et commande en
basse fréquence et dynamique de vol a longs termes, les caractéristiques
aérodynamiques du rotor principal, le couplage entre le rotor et le fuselage, ainsi que les
charges aérodynamiques ne peuvent pas étre saisies sans un modeéle complexe

d’écoulement d’air a travers le rotor.

1.5.3 Modéle d’écoulement d’air a travers le rotor

Pour arriver & une prévision théorique correcte des charges aérodynamiques et des
caractéristiques d’un hélicoptére, on doit nécessairement partir de la conception d’un
modeéle d’écoulement d’air a travers le rotor principal, ainsi qu’une base de données
expérimentales et une bonne connaissance des phénomeénes aérodynamiques qui se
rapportent a cet écoulement. Chen, dans [Che89], résume les modéles dynamiques (non-
uniformes) de la vitesse induite dans leur évolution historique. Visant comme
application I’analyse de la dynamique de vol et la conception de commande de vol,
I’étude compare le modéle harmonique simple de premier ordre avec les modéles
empiriques plus sophistiqués, développés au cours des années. Trés complet, le rapport
percoit I’aspect statique et dynamique de la vitesse induite pour un vol d’hélicoptére a
basse ou a grande vitesse, ainsi que les différents modes de vol. La corrélation entre
certains résultats expérimentaux, obtenus lors d’essais hors de I’effet de sol, indique que
le modéle harmonique de premier ordre de Pitt/Peters approxime le mieux la dynamique
de la vitesse induite pour tous les modes de vol. Dans des conditions prés du sol, Chen
suggere I’utilisation des tableaux, pareilles aux représentations du sillage non-contraint

de Heyson/Karzoff et Castle/De Leeuw.
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1.5.4 Les principales commandes

La fonction principale des quatre entrées du pilote est la suivante :

— Le levier cyclique permet deux types d'action (avant/arriére et gauche/droite).
En effet, I’action sur le levier cyclique provoque une inclinaison du plateau
cyclique par rapport a son plan de rotation initial (figure 1.15 (a}), donc une
variation sinusoidale de I’inclinaison de chaque pale dans le plan de rotation et
par conséquence une inclinaison de la force aérodynamique de portance. Cette
inclinaison produit aussi des couples de tangage et roulis (une modification de
l'assiette de la machine) comme résultat d’un bras de levier de la ligne d’action
de la force aérodynamique résultante par rapport au centre de gravité de
I’hélicoptere. L’orientation du plateau cyclique détermine le plan de la
commande par rapport au plan normal du mét, grice aux entrées de commande
pas cyclique longitudinal et pas cyclique latéral.

— Le levier collectif permet d’agir en méme temps sur I’angle d’incidence de
toutes les pales du rotor dans le plan de la commande. L’entrée de commande
correspondante est le pas collectif du rotor principal (figure 1.15 (a)).

— Le palonnier permet d’agir en méme temps sur I’angle d’incidence de toutes les
pales du rotor anti-couple. L’entrée de commande correspondante est le pas

collectif du rotor de queue.

Quand le pilote actionne le levier cyclique "en avant", le plateau cyclique s’incline de la
méme fagon et comme la biellette de pas (figure 1.15 (b)) est déphasée a 90 [deg], la
pale voit son angle de pas diminuer sur le tribord. Etant un systéme aérodynamique de
deuxiéme ordre dominant, excité par une fréquence proche (et inférieure) a la fréquence
de résonance, le rotor répond & une entrée de commande avec un déphasage
"légérement" inférieur a 90 [deg] , la procédure ci-dessus inclinera la force de

sustentation sur le nez de ’appareil, produisant un couple de tangage autour de centre de

gravité de I’hélicoptére. La procédure de commande en roulis est similaire. Dans les
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deux cas, I’inclinaison du plateau cyclique produit I’inclinaison de la portance dans la
méme direction. Ainsi, d’'une mani¢re descriptive, une manceuvre de base du pilotage
consiste & orienter ’extrémité virtuelle de la pale par rapport au méat, de fagon qu’en
régime établi, la force aérodynamique résultante produira un changement de I’assiette du
giravion comme résultat d’un bras de levier de la ligne d’action de la force par rapport

au centre de gravité de I’hélicoptere.

Cependant, la réponse initiale du rotor aux actions du levier cyclique et du levier
collectif est un mouvement conique et basculeur complexe du longeron de pales.
Comme nous I’avons introduit, le mouvement est occasionné par la différence de la

pression dynamique sur les profils des pales avangant et reculant.
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Figure 1.15 (a) Plateau cyclique et commandes du rotor principal [Pad96]
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Figure 1.15 (b) Plateau cyclique et commandes du rotor principal articulé [Joh80]

1.5.5 Modé¢les d’hélicoptéres et codes existants

Les modeles mathématiques d’hélicoptére sont développés pour une variété de cahier de
charge, comprenant les évaluations des qualités de vol, la formation de pilotes
(simulateurs de vol), la simulation et la mise & niveau de certaines composantes de la
machine, ainsi que des enquétes sur les accidents. Différentes approches sont
actuellement utilisées pour développer les modeéles mathématiques d’hélicopteres. Ces
approches peuvent étre généralisées en trois catégories : 1) modeles analytiques; 2)
modeles d’identifications; 3) combinaison de 1) et 2). Les modeles analytiques se
fondent sur des théories dynamiques et aérodynamiques, produisant des modéles en
temps réel et hors temps réel. Ces modeles sont en principe non-linéaires et permettent
d’extraire des modeles lin€aires pour différents points de fonctionnement, demandent

une connaissance approfondie sur la dynamique de vol d’hélicoptere et sont
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difficilement ajustables pour faire correspondre les données des essais de vol avec le

modele. Nous pouvons noter certains exemples : [Joh77], [Rea78], [TTDC82], [Tak90]

et pour les modeles d’hélicoptéres de taille réduite [Met03]. Nous constatons, que dans
la plupart des travaux, la modélisation de la dynamique de vol d’hélicoptére est basée
sur le niveau 1 de complexité du modele du rotor. Cependant, un certain nombre de
modéles et codes logiciels, développés pour les besoins des principaux producteurs
Sikorsky Aircraft Corporation, Bell Helicopter Textron, Boeing Rotorcraft et Eurocopter,
sont disponibles et peuvent étre télécharger, via Internet. Parmi eux, le modéle GENeral
HELicopter, formulé initialement par Howlett [How81] pour I’hélicoptere UH-60 de
Sikorsky Aircraft Corporation et corrigé par Balin [Bal87], et Kim et al. dans [KCT93a]
et [KCTI3b] est utilisé par Kaplita et al. [KDDWS89] pour I’hélicoptére avec rotors en
tandem CH-53 de Boeing Rotorcraft. Le modéle et le code logiciel COMRAD
(Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics),
développé par Wayne Johnson, permet d’autre part d’effectuer une analyse
aérodynamique d’un hélicoptére existant ou de faire le design d’un nouveau prototype,

incluant sa dynamique structurelle.

Les modeles d’identification se servent des données expérimentales, rassemblées par des
essais de vol ou de tunnel aérodynamique et présentent les caractéristiques
aérodynamiques d’un giravion existant. De tels modéles sont généralement utilisés
pendant les essais d’un prototype, pour optimiser les systémes de commande de vol.
Pourtant, les modéles d’identification n’essayent pas de traiter les composants de
I’hélicoptere individuellement et leur domaine de confiance est généralement limité pour

la configuration et les conditions particuliéres de vol.

En 2007 sont parues deux ouvrages qui résument les techniques de modélisation et

simulation [DreQ7], et d’identification de systéme d’hélicoptére [TRO7].
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1.6 Stratégies de commande d’hélicoptére

En commengant notre recherche, nous avions I’idée que la commande robuste
d’hélicoptére, dans son contexte didactique était loin d’étre originale. Durant les dix
derniéres années, plusieurs travaux ont été réalisés et plusieurs articles ont été publiés.
La compétition internationale de robotique aérienne [www{2] rassemble chaque année
une quinzaine d’universités pour exécuter une mission de détection, de reconnaissance et
d’appréhension d’objets dans un site de « catastrophe naturelle » & partir d’hélicoptéres
autonomes. Notons les groupes de recherches des universités aux Etats-Unis - Carnegie
Mellon, Georgia Institute of Technology, University of California de Barkeley,
Massachusetts Institute of Technology, les universités au Canada — DeVry Institute of
Technologie, Ecole de Technologie Supérieure, University of Calgary, University of
Waterloo, et les universités européennes Technischen Universitédt de Berlin, I’Institut de
Ziirich, etc, qui travaillent depuis quelques années sur le design et la commande
automatique d’hélicoptéres autonomes de petite taille. Le design et les techniques de
commande automatique d’hélicopteres ont évolué et c’est grace a ’envie de chercher et

d’innover.

1.6.1 Stratégies de commande par retour linéaire

Les systtmes de commande des nouveaux hélicopteres doivent répondre aux
spécifications de plus en plus exigeantes que posent les cahiers des charges militaires et
civils. Les recherches et le développement des véhicules aériennes non-pilotés (en
anglais Rotorcraft Unmanned Aerial Vehicles ou RUAV) permettant de construire des
hélicopteres téléguidées et autonomes réalisant des manceuvres rapides avec agilité et
précision. En conséquence, les syst¢tmes de commande des nouveaux hélicoptéres

devraient fournir une bande passante’ plus large, une rapidité améliorée tant en montée

4 D'une fagon générale, la bande passante est l'ensemble des fréquences pour lesquelles la réponse d'un

appareil est supérieure 4 un minimum généralement de —3 [dB] .
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qu’en descente, moins de couplage entre les variables et un meilleur rejet des
perturbations que les syst¢mes de commande existants. Généralement, les contraintes sur
la conception des lois de commande de vol pour le giravion sont plus restrictives que
ceux pour l'avion & aile fixe. La dynamique des pales dans le plan verticale (en anglais
out-of-plane) ou battement et dans le plan de rotation (en anglais in-plane) ou trainée
produit un certain nombre de modes dynamiques additionnels, qui généralement sont
couplés aux modes rigides du fuselage et de la commande. Le phénoméne de résonance
d’air se produit quand un des modes devient 1égérement amorti ou méme instable a
cause de ce couplage. Dans [DKM99] Dryfoos et al. montrent la dépendance de cette
résonance avec la bande passante. Pour stabiliser le systéme Takahashi [Tak94] et Horn
[Eor02] appliquent I’approche classique par retour d’état. Ceci permet d’obtenir de
bonnes marges de stabilité, mais exige la connaissance totale de I’état et également des
capteurs, mesurant la dynamique des pales. Une autre alternative est proposée par Ingle
et Celi [IC92]. Elle consiste & utiliser des compensateurs dynamiques basés sur un
modele d’ordre €levé et précis de la dynamique couplée fuselage/rotor. Cette approche
tend a4 avoir comme conséquence des contrdleurs complexes d’ordre élevé. La
conception de lois de commande linéaires pour contréler le mouvement d'un hélicoptére
pose de nombreux problemes car les modeles linéaires simplifi€s sont généralement loin
de la réalit¢ du systéme physique. Le modéle dynamique complet d'un hélicoptere
engendre en réalité des incertitudes qui constituent I’effet des perturbations sur la
dynamique de vol et par conséquent, rend la syntheése des lois de commande linéaires
plus difficile. Les lois de commande doivent donc présenter des propriétés de robustesse
et de performance. A cet effet, des lois de commande robustes multi-entrées/multi-
sorties (MIMO) ont été proposées par Rozak et Ray [RR97]. Aprés avoir fait une
linéarisation numérique pour les vitesses de vol en palier de 80 et 140 nceuds pour un
modéle de UH-60, Rozak et Ray ont développé des lois de commande basées sur

I’analyse H_ pour des modeles d’état de 24 et 26 variables. Kienitz et al. présentent

dans [KWM90] deux méthodes pour stabiliser le systéme :
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— Stabilisation H_

— Stabilisation quadratique

Une comparaison des deux méthodes montre que la variation de I’angle de pas dans le

temps est complétement bruitée lorsque la méthode de stabilisation H_ est utilisée. La

méthode quadratique est donc préférable dans ce cas. Shim et al. dans [SHHS89] ont

utilisé la théorie de la commande  -Synthese afin de contréler un hélicoptére en mode
de vol stationnaire. En effet, en supposant que toutes les incertitudes peuvent étre

regroupées dans un seul terme noté A, alors le probléme de la commande est défini

- pert ?
comme suit : trouver un contrdleur X (s), stabilisant le systéme de maniére interne, tel

que pour tout A, le systéme bouclée soit stable.

per?

1.6.2 Stratégies de commande par retour d’état non-linéaire

La linéarisation entrée-sortie (voir [Isi95]) a été appliquée dans bon nombre de domaines
pour résoudre les problémes de poursuite de sortie, concernant les syst¢émes dynamiques
non linéaires, incluant les problémes de décollage et d'atterrissage (VTOL) des robots
aériens [HSM92]. Cependant, il y a une large classe de systtmes physiques qui ne
satisfont pas les conditions restrictives de la linéarisation entrée-sortie. En effet, la
linéarisation entrée-sortic ne peut étre appliquée qu'aux systémes non-linéaires a
déphasage minimal [[si93]. Si le systéme est & déphasage non-minimal (ou non-minimal
de phase), c'est-a-dire qu'il engendre dans sa dynamique des zéros instables, I'application
directe de la linéarisation entrée-sortie n'est pas possible [1si95]. Due a la présence de la
dynamique des zéros instables dans la matrice de transfert du modéle dynamique de
I'hélicoptere, ce dernier est considéré comme un systéme non linéaire a déphasage non-
minimal. En effet, pour contourner le probléme, Koo et Sastry [KS99], par exemple, en
se basant sur le travail de Hauser et al. [FHSM92], ont proposé une commande
d'hélicoptére par linéarisation entrée-sortic approximative, en ignorant les termes de

couplage entre la dynamique de roulis (tangage) et la dynamique latérale (longitudinale).
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Le systéme qui en résulte est un systéme réduit (approximé) sans la dynamique des zéros
instables. Dans ce cas, le systeme dit «approximativement & déphasage minimal» n’est
pas réellement un systéme a déphasage minimal. En se basant sur cette linéarisation
approximative, une loi de commande pour la poursuite de trajectoires a €té proposée,
ainsi qu’une deuxi¢me loi de commande, basée sur la théorie des systémes uniformes.
En utilisant le méme modéle dynamique proposé par Koo et Sastry [KS99] d’autres
recherches ont été réalisées. Dans, [MHD99], Mahony et al. proposent une loi de
commande stabilisante pour le vol stationnaire a la base de la méthode directe de
Lyapunov. Pourtant Frazzoli et al. proposent dans [FDFQ0] une poursuite de trajectoire

basée sur les techniques robustes du "backstepping".

D'autres auteurs, comme Sira-Ramirez et al. dans [S-RZA94], appliquent une approche

basée sur le mode de glissement pour stabiliser un hélicoptére en mode de vol vertical.
Kaloust et al. [KHQ97], quant a eux, ont repris le modele proposé dans [S-RZA94], ety
ont proposé une loi de la commande basée sur la méthode directe de Lyapunov pour

commander un hélicoptére a deux degrés de liberté.

1.6.3 Stratégies de commande par logique flou

La stratégie de commande par logique flou est "facile" & implémenter parce qu’elle n’a
aucun besoin d’un modéle de systéme, mais les contrdleurs sont difficiles & ajuster
[JanQ7]. Souvent ils sont utilis€s dans la commande des systémes non linéaires et des
systtmes ou il est difficile de déterminer les paramétres. L'inconvénient dans
I'ajustement du contréleur peut étre contourné en ajoutant un module de logique floue a
un contrdleur linéaire, en lui accordant une certaine caractéristique non linéaire par le
biais de I’approche "teste et erreur". Ceci pourrait étre, par exemple, un contrdleur

robuste qui doit étre amélioré pour lui donner une meilleure performance.

1.6.4 Stratégies de commande par systéme de commutation

deux niveaux. Le niveau inférieur est congu en utilisant une approche aléatoire. En
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tolérant certains niveaux de risques dans de différentes conditions de vol, le systéme de
commande peut choisir de privilégier la stabilité robuste ou la performance nominale. Le
contrleur superviseur de niveau supérieur surveille la réaction du systéme pour un
comportement anormal qui pourrait mener a [’instabilité ou la dégradation de la
performance. Le contrbleur de surveillance peut alors commuter entre les contrdleurs

robustes avec différents niveaux de risques et la performance.

Etant donné un ensemble de points, définis comme états du systeme linéaire (position,
vitesse et accélération), la planification de la commutation consiste & interpoler ces
points en respectant certaines contraintes additives généralement sur le lissage de la
trajectoire. Les points, utilisés en tant que contraintes faibles, permettent un compromis

entre la précision de poursuite et le lissage de trajectoire.

1.6.5 Stratégies de commande par ’approche H,,

L’approche H_ et la technique de "loop-shaping" sont appliquées au cours des quinze

derniéres années dans un vaste domaine de recherche, notamment en aéronautique. Une
étude détaillée de la littérature montre, que les contrdleurs, congus par la méthode
d’optimisation H_, sont les seuls a étre testé en vol piloté. Une loi de commande par
Papproche H, et la technique de "loop-shaping™ avec syst¢tme de commutation pour la
dynamique longitudinal de DERA® avion expérimental Harrier a été développée par
Hyde [Hyd95]. En 1988, Yue et Postlethwaite [YP90] démontrent les avantages de la

méthode d’optimisation H_, pour la synthése d’un compensateur robuste a pleine

autorité de 18 états pour la commande de vol d’hélicoptére. Walker et Postlethwaite

dans [WP96] et Smerlas et al. dans [SPWSHHGB98], appliquent la méthode

d’optimisation H_ pour la synthése d’un compensateur robuste & deux degrés de libertés

3 QinetiQ est le nom actuel de DERA (Defence Evaluation and Research Agency) du Royaume Uni,
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et testent la loi de commande respectivement sur 1’hélicoptere de combat Westland Lynx
et sur I’hélicoptére Bell 205 du Conseil National de Recherches Canada. Mentions aussi
les recherches et testes pilotés sur DERA avion expérimental Harrier de Papageorigiou
et Glover [PGQQ] et Bates et al. [BGPBO00]. Toutes ces recherches ont été congues en
respectant les spécifications d’ AGARD (ddvisory Group for Aeronautical Research and
Development), de MIL-F9490D (Gerneral Specification for Flight Control Systems -
Design Installation and Test of Piloted Aircraft) et A ADS-33 (deronautical Design

Standard) et leurs résultats satisfaisant renforcent I’argument que 1’approche H et la

technique de loop- shaping pourront en effet étre largement appliquer dans I’industrie

aéronautique pour la synthése de loi de commande robuste.

1.7 Conclusions sur la recherche bibliographique

D’apres la recherche préliminaire sur la problématique et les travaux présentés ci-dessus,

nous rapportons ce qui suit :

— La modélisation et la simulation lors de la phase de la conception d’un nouveau
aéronef sont nécessaires pour tester les caractéristiques dans une enveloppe
opérationnelle de vol et trouver les limites des différents modes de vol, ce qui
réduit le temps et les colits de développement, et certainement limite la
possibilité de perte accidentelle du pilote ou de la machine. Quelle que soit
I’approche adoptée, le modéle, n’étant qu’une représentation approchée de la
réalité physique, dissimule certains phénoménes qui peuvent avoir, dans
certaines conditions de fonctionnement, un effet non-négligeable. Parmi ces
phénomeénes, on peut citer ceux qui induisent les variations paramétriques, ceux
correspondant aux dynamiques d’ordre élevé et bien notamment I’impact des
perturbations atmosphérique sur la stabilit¢é du systtme commandé. En
conclusion, ces phénoménes doivent étre pris en compte lors du processus de

modélisation.
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— Concernant I’étude des problémes de la stabilit¢ d’hélicoptére, la plupart des
travaux se limitent aux mode¢les d’hélicoptéres treés simplifiés, localisant les
performances des lois de commande sur un ensemble trés restreint de conditions
de vol.

—~ La théorie de stabilité et de commande de vol vise principalement a trouver les
facteurs impliqués dans la conception des qualités de vol et en général a faire une
évaluation précise de la réponse d'un aéronef aux entrées de commande et aux
facteurs de perturbations. Etant donné que le rotor principal fournit la plus
grande contribution & toute la stabilit¢ de I’hélicoptére et sa dynamique
(principalement de battement) la synthése d’une loi de commande robuste et
performante d’hélicoptére n’est pas possible sans la modélisation détaillée du
rotor principal.

— La méthode d’optimisation H_ et la méthode d’optimisation linéaire quadratique

sont les seuls & étre testé en vol piloté. Ces méthodes de stabilisation de la
dynamique de vol d’hélicoptére sont des méthodes appropriées et nous voulons

les exploiter.

1.8 Objectifs

L'¢tude détaillée de la stabilité et de la commande d'hélicoptére est une question
complexe qui est au dela des objectifs de cette recherche. Par conséquent, une approche
plus simple pourra étre adoptée, se servant de plusieurs simplifications usuelles : la
vitesse du rotor demeure constante; la pale du rotor est rigide en torsion; la dynamique
de trainée est ignorée; I’angle de battement est supposé petit et le mouvement de
battement vertical des pales, ainsi que I’angle de pas sont approximés avec les
harmoniques de premier ordre; la distribution axiale (le long de I'envergure) de la vitesse
induite est uniforme; la poussée du rotor est une fonction linéaire d'incidence locale de la
pale et la force de résistance (trainée) est une fonction quadratique du coefficient de

portance; les pertes de portance a I’extrémité et & I’emplanture de la pale sont ignorées;
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la région d'écoulement inverse est ignorée; dans les conditions de vol d’équilibre, la
dynamique perturbée du rotor est le résultat d’une série de perturbations du taux
d’avancement, de la vitesse angulaire, de 1’accélération angulaire et de 1’accélération

verticale du repére moyeu, etc.
Ainsi, les principaux objectifs de cette recherche sont :

— Drappliquer la méthode d’optimisation H_ et la méthode d’optimisation linéaire
quadratique et H_ pour la synthése des compensateurs stabilisant la dynamique

de vol du modele linéaire d’hélicoptere autour du point d’équilibre.

— Dans le cas ou on dispose de variables de décision mesurables, d’élaborer une
structure de commande qui stabilise le systéme en boucle fermée.

— En présence des perturbations a énergie finie, qui peuvent affecter le systeme, de
concevoir une loi de commande qui permet d’une part d’assurer la stabilité du
systtme en boucle fermée et d’autre part de minimiser ['effet de ces
perturbations sur le comportement du systéme.

— Lorsque les contraintes sur la loi de commande sont exigées, de trouver une
procédure stabilisante, qui assure que les signaux de commande et les erreurs ne
dépassent pas une certaine limite caractérisant la saturation possible pour les
actionneurs.

— Dans le cas ol le systéme est sujet a des incertitudes inconnues, mais bornées en

normes, de trouver les conditions qui assure la stabilité robuste du systéme.

Cette recherche de modélisation et de commande robuste d’hélicoptere va donner lieu &
I’application de différentes techniques de commande modeme et au développement de

différents algorithmes, qui serviront a I’assistance au pilotage d’hélicoptére.



38

CHAPITRE 2 : MODELE MATHEMATIQUE

2.1 Introduction

Ce chapitre a pour objectif de développer un modéle mathématique d'hélicoptere avec un
rotor principal articulé, basé sur les mouvements de battement et de trainée de la pale
dus a une combinaison des charges aérodynamiques, de I’inertie et de la masse de la pale.
Le modele comporte quatre modules : les équations du mouvement de la cellule comme
corps rigide, le modéle du rotor principal, le mod¢le du rotor de queue et le modéele
atmosphérique. Le modéle du rotor principal permet la modélisation de différentes
combinaisons dans [’ordre des articulations et accorde deux décalages entre les
charni¢res. Les forces aérodynamiques sont calcul€es par la théorie de 1’élément de pale.
Aucune analyse d’aéroélasticité n’est employée et les pales sont supposées rigides. Les
effets de déflexion vers le bas des filets d’écoulement d’air et la vitesse induite sont
expliqués par le modele dynamique de Pitt et Peters [PP81]. Les conditions d'équilibre et
la linéarisation sont décrites et peuvent étre appliqués a un sous-ensemble du modéle
dans un repére mobile ou fixe. Dans ’annexe D sont donnés trois scripts : le premier
permet de calculer la dynamique de battement et de trainée pour un rotor articulé, le
deuxie¢me permet de calculer la dynamique du battement vertical des pales et 1’équation
dynamique de I’extrémité de la pale et le troisitme permet de calculer du modéele
atmosphérique. Les deux premiers scripts utilisent le logiciel MAPLE, tandis que le

troisiéme utilise le logiciel MATLAB.

2.2 Incertitudes paramétres du modéle

Etant donné que les paramétres caractéristiques d’hélicoptére varient généralement selon
la mission et I’équipement additionnel, nous avons modélisé les variations des

parametres caractéristiques de I’hélicoptére UH-60A (Black Hawk) de Sikorsky, qui est
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’objet de notre étude, en utilisant les données du constructeur (tableau 2) sur les valeurs

maximales et minimales de ces paramétres. Ainsi définies, ces derniéres sont pergues

comme incertitudes paramétriques.

Tablean 2 Sommaire des variations des patamétres caractéristiques [How81]

CENTER OF HMOMENT OF INERTIA
GRAVITY 2
POSITION - [neSec
CONDITION werenr | osta low (B thy 1Ly Lo ]
Design Mission - Troops 16000.9 | 388,0 | 251.0 165550 | 473624 442646 | 18886
Aeromedicel Mission 15479.3 | 359.0 253.1“[;058 475389 441954 19510
Aer‘iﬂ Recovery Mistion 20250.0 | 359.86 | 234.7 100200 | 502114 430804 | 22130
Extended Range Mission 19193.7 | 382.5| 245,71 | 74633 | 502044 461813 28076
Basic Structural DesfgneFwd. | 16330.9 | 345.7 ] 248.3 | 71141 | 500923 465328 34144
Basic Structural Design-Aft 16330.9 | 360.2 | 245.5 | 68263 | 465774 432715 18268
Kaximum Alternate GW-fud 20250.0 1347, | 244.4 | 79532 | 51480F 479012 33850
Maximum Alternate GW-Aft 20250.0 | 360.2 245,11 77898 | 482147 447627 | 18408

2.3 Définition des systémes de référence

2.3.1 Systéme inertiel

Pour ce mémoire, la terre est considérée comme systéme de référence inertiel; ainsi tout

systéme en mouvement uniforme (par exemple le vent a vitesse constante) par rapport a

la terre peut étre considéré comme Newtonien. Cette simplification est basée sur le fait

que les gyroscopes et les accélérométres sont incapables de détecter la vitesse ou

’accélération angulaire de la terre. On dénote ce référentiel géométrique et

atmosphérique par la lettre 7 .
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2.3.2 Le systéme "corps'', le syst¢me "giravion' et le repére du constructeur

Le systéme B "corps" (en anglais body) est modélisé comme corps rigide (giravion sans
pales) dont le mouvement est défini par six équations différentielles. L’origine du
systtme "corps" est posée dans le centre de masse d’hélicoptére sans pales. Le
mouvement de translation est défini par les composants et les dérivées par rapport au

temps du vecteur de la vitesse du centre de masse du giravion par rapport au repére
inertiel 1, ; le mouvement de rotation est défini par les composants et les dérivées par
rapport au temps du vecteur de la vitesse de rotation @, , . Trois équations

cinématiques, mettant en relation les angles d'Euler et les composantes de la vitesse de

rotation, complétent le modéle dynamique du systéme "corps".

L’origine du syst¢me "giravion" est posée au centre de masse de I’hélicoptere. La

direction positive i, vise la partic avant du fuselage (en anglais rnose), la direction

positive .7,4 vise le tribord (en anglais starboard), la direction positive k , Vvise vers le

bas. Le triedre du repére "corps" est parallele au tri¢édre du repére "giravion".

La position de certains points spécifiques de I’hélicoptére est choisie par le constructeur
dans le repére O et est définie par la référence longitudinale (en anglais fuselage station
STA), la référence latérale (en anglais buttline BL) et la référence verticale (en anglais
waterline WL). Comme les données numériques de la position de ces points sont
exprimées dans un repére spécifique, les valeurs doivent étre prétraitées dans le repére

"giravion" par la transformation suivante :

e o
Rot, ,=|0 1 0 2.1
[ 0 0 M]
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2.3.3 Systéme de trajectoire de vol

L’origine du systéme de trajectoire de vol est placée au centre de gravité du fuselage. Le
triédre direct de la trajectoire de vol est orienté de la fagon suivante : i, vise dans la
direction de la vitesse de vol relative au repére inertiel, ;,, dans le plan horizontal vise
a droite et & » de maniére a compléter le triedre vise vers le bas. On dénote ce référentiel

par la lettre 7.

2.3.4 Systéme ""moyeu" (en anglais hub)

Le point d’attache du syst¢éme "moyeu" est déplacée par rapport au systeme "corps" a

une distance r,, et est ’origine de deux repéres fixes "moyeu” H et "moyeu - vent" W,

et un ensemble de repéres mobiles "arbre moteur" M, ayant leur axe, £, commun avec

le repére "moyeu" (kﬁ =/;M) Le systtme "moyeu" peut €tre incliné par rapport au
repére "corps" B. Vue que presque tous les hélicopteres existants ont une inclinaison
initiale de I’axe du rotor principal, nous avons introduit deux angles ®, et ®,. Par
convention ces angles d'inclinaison sont définis par la transformation, représentée sur la

figure 2.1, obtenue comme une rotation de @, autour de (J[) , suivie d’une rotation de

P, autour de (~10) . La transformation est :

10 0 Co, 0 Sg Co, 0 Se,
. Y — Y il LY Al /} e"‘)'
Rot, y=|0 Cy =S, || 0 1 0 |=| 8,8, Co =5,Cq (2.2
0 8, Co (7%, 0 Co | [=CySe Se  CoCo,
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Figure 2.1 Inclinaison du repére "moyeu' () par rapport au repére "corps'" (5)

Le repére "moyeu" H est suppos€ fixe et un repére mobile R, est associ€ a chaque pale
k et tourne avec I’arbre moteur 4 une vitesse angulaire supposée constante

6378/'}/ = (O‘* 0' "(2111 )Uﬂ

. L’axe j?‘q vise une des articulations (en anglais kinge). Pour se

conformer & la pratique en maticre habituelle d’analyse d’hélicopteére, la position de

référence (z//.&i . :O’) de I’arbre moteur est définie sur ’axe (~17L) Les systémes
fo

, : : 2 .
mobiles sont orientés a un angle d’azimut y, =y, ,, + —, k= 0...(by 1) ou (b, ) est
)\7

le nombre des pales.
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¥igure 2.2 Orientation entre repéres dans le systéme ""moyeu"

Soit V,, la vitesse de I’origine du repére "moyeu" H . Le repére "moyeu -vent" WH. est
orienté de la fagon suivante : 7, vise dans la direction de V,,, j,, est orienté par

rapport au IEH a un angle de glissage 3, et l@w est orienté par rapport au j, & un

vi
angle d’incidence «,, de maniére a compléter le tricdre. On dénote ce référentiel par la

lettre VV. L’orientation relative entre les repéres énoncés est présentée a la figure 2.3.
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¥igure 2.3 Orientation des repéres fixes, mobiles et ""'moyeu - vent"

2.3.5 Systéme "'pale articulée"

Les hélicoptéres moyens (levage opérationnel de 5 & 7 tonnes) et de transport utilisent en
principe de rotors articulés. Chaque rotor articulé¢ posséde trois charni¢res (figure 1.13) :
de battement (en anglais flapping), de trainée (en anglais lead-lag) et de pas cyclique (en
anglais feathering). La "charniére de battement" est utilisée pour diminuer la flexion
dans I’emplanture des pales due aux forces de sustentation et centrifuges, celle "de
trainée" est utilisée pour réduire les forces de trainée et de Coriolis dans le plan de

rotation du rotor et celle "de pas cyclique" pour changer ’angle d’attaque de la pale.

L’origine de la premiére articulation par rapport au rotor est déplacée sur ’axe |
une distance de &, du centre du repére "moyeu” (#). Le triédre direct de la premiére
articulation est orienté de fagon suivante : / sur I’axe de I’articulation, j le long du

vecteur de la seconde articulation et k de maniére a compléter le tri¢dre. L origine de

I’articulation suivante est déplacée sur I’axe ; de la premiére articulation & une distance
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de ¢,. Pour chaque profil aérodynamique (section) de la pale nous pouvons associer un

repére "principal” (T/ )k (j=1-bg ou (i)S) est le nombre des sections). On suppose que
les reperes (T,)k passent par le centre de gravit€ de chaque section de la pale de fagon a
¢éliminer les produits d’inertie de la section. Ainsi les axes /,} et ]%'7; sont les axes
principaux du plan (y z) . orientés par rapport au plan (v Z)f_H a un angle 6, , qui est

fonction de la torsion de la pale. Les points significatifs de chaque section sont le centre

de gravité et le point d’application de la force aérodynamique de coordonnée y - .

L’ordre des articulations est dicté en général par I’expérience et les préférences des
constructeurs et peut varier d’un modéle d’hélicoptére a I'autre. Soit les systémes de

"battement" B, , de "trainée" L., , et de "pas cyclique" P, . L’ordonnance des

articulations (figure 1.13) peut étre classifiée en deux groupes. Le premier groupe

comprend la séquence pour laquelle le battement préceéde la trainée (ex. B, -1.,-P,, B, -
P.-L, et P,-B, -L,). Le deuxiéme groupe place la trainée avant le battement (ex. L., -
B,-P,, L,-P,-B, et P,-1.,-B,). En pratique, seulement les deux séquences B, -L.,-P,

et L,-B, -P, sont utilisées.

H

N
j}‘

:’_.’_}---_-,-

5 ‘ /“
wwwwww T i S
— R ~
i

Figure 2.4 o, articulations
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Pour certains types de rotor, les mouvements de battement et de pas cyclique sont
couplés de facon que le battement vertical des pales diminue le pas cyclique. Cette

orientation mutuelle est appelée o, articulation. (figure 2.4)

2.4 Les équations du mouvement de I’hélicoptére

2.4.1 Influence du poids des pales sur la position du centre de gravité du fuselage

La position du centre de gravité de I’hélicoptére (gg)m[l b h]y', de I’origine du

repére "moyeu" (cgm)z b, | et de tous les points principaux sont généralement

n
hm

déterminés dans le repére de référence longitudinal, latéral et vertical du constructeur O.

La position du centre de gravité du corps (hélicoptére sans pales) est calculée a partir de

(gﬂg) , (Sglﬂ) , des masses de I’hélicoptere m , et de la pale m,, .

My =m,+Am,~b, m, (2.3)
' » b, m, © M rAm, o
- (O) _ T p . y 4 (@ o
= (O) bN an o {O) - r[)]l . L ] t ‘[ai) - rnh (.(.“‘,4)
I — . My iy
m,

e (@) = (0) = (0 w0y My + Amd (O)W‘
Lop  Loh — Ly = Ly - Ton l

my, o
SO _ 5 (O _ (O { -
Ly = L Loa ) {ZQ )
e |y mytAm ) o) omtAmy g
= Ly S Lon + T You

nl, my

ou A représente la déviation de la valeur relativement a la valeur nominale.
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‘ % i ’
Yy %cgb

Figure 2.5 Position de certains points dans le repére du constructeur

L’expression (2.5) s’écrit finalement comme :

: m, +Am by m,
r,"” =cgb+Acgh = 44 (cg + Acg) —A L com =
= m, S n, —
I+ Al A [+ Al - . (2.6
= bb -+ Abb P Wi § b+ Ab s A / "
m m
B R
h +Ah, h+ Ah h,
Pour le vecteur ©,'”, nous pouvons écrire:
B) . © , © _ 0
by, =Rot, 1, =Rot, , (r_,_ —Ty )
]h » lm l[) +Z'\l?; {27)
t,'" = b, |=Rot ,_, ( cgm m(cgb + Acgb)) =Rot , |1 b, |—| b, +Ab,
K I ] LB+ ARy



48

2.4.2 Equations de translation et de rotation du giravion

La description du comportement de vol de I'hélicoptere présente un défi bien plus grand
que la difficulté de la modélisation mathématique. Le véhicule peut étre vu comme un
ensemble complexe de sous-ensembles agissants I'un sur 1'autre, visualisés a la figure 2.6,
sous forme de forces et de moments. Une premiére approximation nous permet de voir
I’hélicoptere comme un corps rigide, qui est sujet a des mouvements de translations et de
rotations. Alors les équations de mouvements sont déduites des principes fondamentaux
de Newton concernant le mouvement des corps en translation et en rotation. Les
équations non linéaires du mouvement du corps sont développées en égalisant les taux
de changement de la quantité de mouvement et du moment angulaire aux forces et aux
moments appliqués. En supposant la masse constante, les équations sont construites en
choisissant un point arbitraire a I’intérieur et en dérivant I'expression pour I'accélération
absolue de ce point. L'accélération peut alors étre intégrée sur le volume du fuselage
pour dériver le changement du moment linéaire et par conséquent de toute la force
d'inertie. Un processus semblable méne a I'accélération angulaire et au moment d’inertie

correspondant.

Maintenant avant de développer les équations du mouvement, posons les conditions

simplificatrices suivantes :

S1.  On considere que la masse du corps est constante lors de I’analyse
d’une dynamique particuliére. En effet lors du vol, la consommation de
carburant est tellement faible que la masse du fuselage est pratiquement

constante.

§2.  Le fuselage est considéré comme un corps rigide. La cellule par contre
est déformable et les équations qui découlent sont complexes. D’un autre c6té,
considérer le fuselage rigide, simplifie les équations et par conséquent

I’analyse.
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$3.  La déviation de la valeur nominale de la matrice inertielle du corps
dépend de la configuration et est constante. Cette simplification est basée sur
le fait que I’inertie des pales du rotor principal n’est pas incluse dans le calcul
de la matrice inertielle du corps. La dynamique des pales est considérée

séparément lors de ’analyse des équations du mouvement du rotor principal.

S4.  Les produits d’inertie J,, et J,, sont nuls.

S5.  Les capteurs gyroscopiques (ou centrale inertielle) sont placés dans le

centre de masse du corps.

L’origine du repére mobile est choisie dans le centre de masse du fuselage. Nous
pouvons exprimer l'accélération absolue d’un point matériel par la somme vectorielle de
l'accélération de I’origine (centre de masse dans notre cas) par rapport au repére inertiel
(terre fixe dans notre cas), I'accélération du point par rapport a ’origine du repére mobile,
l'accélération de Coriolis et I'accélération d’entrainement. Alors, la dérivé par rapport au

temps de la quantité de mouvement d’un systéme de particules de masse dm, position
7 de vitesse absolue v, de vitesse de ’origine VM. et de vitesse relative & I’origine
v, =0 (conditions S2) est €égal a :

d . . d N PN IR (B) | e \[PNENG \
Et—z (6mv) 28;2(()171 ((VM )(b) + gy X 4V, )) = 1, :;;(V"i )cf) (2.8

Sachant que la vitesse et I’accélération inertielle de translation et de rotation, mesurées

[‘]bi []bl \ l)hi ]4;), |
dans le repére "corps", B, sont | ¥, |, |V, | et | O, |, | O, | respectivement,
; Vbr ; fl’bi Rbi . sz

I’accélération du repére , I3, par rapport au repére inertiel a la forme :
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mq"(v’" )(I) =A, = i({}m)(m + By X V)

bi

dt dt
d U, Ul |U,~RV,+Q, W, (2.9)
@ _|p L A
Z{{(Ym) =\V, """'[(DB./I] Vo 1=\ V,=E, W, +R, U,
W, Wl W, -0,U,+RY,

Supposons que la somme des forces externes puisse étre écrite comme une combinaison
des forces créées par le rotor principal, les forces aérodynamique de fuselage, la force
aérodynamique du rotor anti couple, et celle des surfaces de I’empennage par rapport au
centre de masse du giravion. Les équations linéaires du mouvement sont données

finalement sous la forme vectorielle (2.10) :

PR I DD AR G D o
N ) ' ) , v, ) = o - & =, d O ANE s
SEP =Ny, |= Y, + 1+ Y+, =B+ P B )R = E{(m,, V) -G®
D7, Zy+ 242+ 2+ 2, /
(2.10

ou V, G

bi

est la vitesse linéaire relative au repére inertiel du centre de masse du corps,

est le vecteur de la projection orthogonale du poids total de I’hélicoptére sans pales sur

les axes du repére "corps".

La somme des moments par rapport au centre de masse du corps s’exprime par la

relation vectorielle suivante avec le moment angulaire H, :

Z L Ly+Y, h,+Z, b, +Y,. b +Y, b +L.+Y,. h,
ZM(B) - ZJ’\JH — A/[M M‘YM hM +ZM I:\I +A/[I m"yl‘ h‘l’ +ZI' ]T MXH hH +ZI-I II{ - Z'*(}“'(H )(f[)
- ZN” ~X, b A M~ X, B+ 2, det
Ny =Yy by =Y b =5 b, + N =Y, by

240
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Figure 2.6 péfinition des forces et des couples
Etant donn€é que le moment angulaire relatif h d’un systeme de particules de masse om

et de position T est égal &

"“J.\'Y ”J.\‘z o,

Y. om (yz + zz) =Y. dmxy Semxzo (g,
w| =D, 0mXY S om (x2 o :) "“Z smyz |0, I ~Jy | @y
«2 omxz ""Z mysz Z(Sm (af + }) 3, ~Jy I L@
(2.12)
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ou la sommation est faite pour tous les particules du systéme. Selon la simplification 53

et 5S4 nous pouvons écrire :

hy=ld, = 0 J, 0 |a, (2.13)

- { 133 . (8) p
): by, +1, % x (Vb,) (2.14)

,=h +Zt(m (ém( ,”)(

avec T, le vecteur de position du centre de masse. Alors, la dérivée par rapport au temps

du moment angulaire absolu est :

= 5 d /. < W) g d /o \®
1y =) @y +"a"t"(rg(m )an (be) +1 % xm, ””".'(Vm) +

B p X1+ @ s, (V, ) 2.15)
F0 g X\ T XA, |V, (2.13]

PR d e \®
H =] g + Dy X Dy + v, xm, (Vbi) + 1 ey — dt (vh")

Si Iorigine des axes est le centre de masse ou un point fixe dans le repére mobile, alors :

= d .
(%(Hb)rslét(mﬁ 2) By xd Gy (2.16)
a((‘)zﬂ.]’): (0/' =L g +Q, Jo+ R, i (2.47

d -~ B . ) . (B) o \(B)
et pour les deux cas r X 1, A\ =0 et v /=0 ou v, ={V, , donc
Yd £ £ bi

v, xmy, (Vm )(b) ------ 0. En remplagant le résultat de (2.16) dans (2.11), on obtient

I’expression vectorielle (2. 18).
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d 2.5
(00 )= My =y S o =
>N, J
Pbi """ (Z L + ” 77)th R, +'].\’Z ‘Dbi Qbi)+
Sy J/z v
J o
+m(z AIH +("]X.\' ‘ ) Ui QJZ)I J\/ Q/JI I) (24 E 8)

w»}E—-(ZM,ﬂL(JH T ) By R+ J (R, =B.2))
Yy

. S . :
Ry = T X\m 7 (Z Ng+ (S =y ) By Q= s O R/»)+
Jox Sz TV
+ "'}"XX J77 (Z LH " n zz) ( m Qm)

Avant que les calculs des équations du mouvement du corps puisent étre exécutés,
certaines transformations entre les repéres doivent étre définies. En 1772, Leonard Euler
a montré que toute rotation autour d’un axe quelconque peut étre décomposée en trois
rotations fondamentales. En mécanique et en aéronautique il y a une convention qui veut

que I’attitude (position angulaire) résulte de trois rotations, obtenue comme une rotation
de ¥, autour de /%-, suivie d’une rotation de ®, autour de j, et d’une rotation de @,

autour de i, . La transformation résultante est :

Cy, =Sy, o, 0 S, 0
ROt'I(-----B = ¢g\_pb (.jkl,lb 0 0 1 0 ““‘LS‘(D!’ =
0 0 1%, 0 Cg 5, Co,
: SR PN GA T

g Y Y Al ¥ . Y Y "t &l

b -®, ( ¥, ;S o, AS o, - A.q\pb (./ @, ( 'W L.S @ (.. o, + AS ¥, A,S(Dh
A ¥ o ¥ Y y y y v

- b‘{’h C o) S‘{’ Mg, o + ( W C ks‘V ~e, ( ( ¥, ‘S o,

bWy

Y Y
"‘S@h C ©,* S(D, (”@:, C’ @,
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Etant donné que la matrice de transformation Rot, _, est orthogonale, alors

Rot,, , =(Rot,, )“] w(.R.otI‘__“B)T et la projection orthogonale du poids total de

I’hélicoptere sans pale sur les axes du repére "corps" est calculée comme :

0 1 [ “mI;gS@),, 16

G® =Roty, , G* =my Roty, , g(alt)=m, Roty_,| 0 |=|mgCyS, Jj, (2.20)
gk mygCq Cy, kg

ou g’(alt)m , est 'accélération gravitationnelle au niveau de référence.

Pour compléter le modele, on a besoin de connaitre la relation entre le vecteur de la
vitesse angulaire inertielle et les angles d’Euler. Cette expression cinématique (2.21)

peut étre vue comme matrice Jacobienne. Comme Rot n’est pas une matrice

e Fuler
-] , T . . ,
orthogonale, alors (Rot,_,,..)" #(Rot, ., ) et la relation inverse est donnée par

I’expression (2.223. Une expression cinématique concernant la relation entre les

’accélération angulaire et les angles d’Euler et leurs dérivées est donnée par (2.23).

P,y |, I 0 0o [fo 10 0 ||Cy, O —=So I[0
Opr =0y |=| 0 [+[0 Cy S, |0, [+]0 Cp Sp || 0 1 0 0 |=
R, 0110 =8, Co ILOS |0 =8, Cy ||Se, O Co, |L'Fs
0 =S, [, ®,
=10 Cp  S5,Co || Oy [= R | O
0 =Sy CoCo L5 ¥,
220
‘ Rhf C'abb + £) hi S(t)5
"(blv ) ‘pb,' 3 (."(’3),,
@)’ z(R'iue-»L‘ulw)ml thi = Q).hi(:r(b,_ _‘RMS(Dh (222?

43 v A
v, Ry B, +®,S,
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bi ‘@, -
. . g - ~ i At Iy ¢ -y o I Y Y - T ~t ¥ 3
Opy =0y |= 0,0, ~D,0,5, +¥,5, Cy +O,¥,C,, C ~O,V, 5, S, (2.23)
NI Y A N N L
W, Co, =D,y Cy —0,%,C, S,

P, 0, By 0,

P b, -0,9,Co, =¥, 5,

R, | |-8,8, -©,0,C

@, ‘@,

Pour calculer les valeurs des angles d’Euler, il faut intégrer numériquement I’expression

2.5 Les équations du mouvement du rotor principal

2.5.1 Modg¢le dynamique de battement et de trainée des pales du rotor dans le

repére ""moyeu’

Etant donné que le mouvement cyclique de battement des pales fournit une commande
indirecte sur I’orientation de la poussée de rotor et des moments de moyeu du rotor
(c’est-a-dire le pilote a seulement la commande directe de I’angle de pas de la pale), par
conséquent cette dynamique introduit pour I’hélicoptére 1’aptitude primaire de voler. Les
mouvements et la torsion des pales sont influencés par les charges aérodynamiques non
linéaires, qui sont elles-mémes fonction du mouvement de la pale. Le schéma de la
figure 2.8 illustre ce probléme aéro - élastique comme systéme a rétroaction. Les deux
boucles de rétroaction fournissent des perturbations d'incidence dues aux mouvements
du rotor et du fuselage, et a la déflexion vers le bas de I’écoulement du rotor qui sont
ajoutés a ceux dus aux entrées de commande et aux perturbations atmosphériques. Ces
deux boucles de rétroaction dominent le modéle du rotor et par conséquent impliquent le
besoin d’étre détaillées. Pour le calcul des charges aérodynamiques, nous serons
concernés par le mouvement de pale relativement a l'air et par conséquent le mouvement
du moyeu et du fuselage, aussi bien que le mouvement des pales relativement au moyeu.
Le mouvement relatif sera un théme se reproduisant dans ce chapitre qui introduit en
principe le besoin de reperes et de systémes de référence. Pour dériver le mouvement

relatif et les diverses transformations, nous nous référons au schéma de la {igure 2.8.
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Bien qu’il existe différents types de rotor, I’amplitude des mouvements des pales et la

réponse aux entrées de commande et auxdes rafales sont trés semblables.

rotorblade
downwash

blade

blade
gusts " blade incidence | load/incidence loading response
blade + transfert function
pitch

blade motion

Figure 2.7 Schéma bloc de I’aérodynamique des pales [Pad96]

Soit V,, la vitesse du centre du repére fixe "moyeu" H .

(H) _ "< (B, B\
vV, =Roty, LYM‘ ‘"""(92[4/1 X Ly )J

Vir®
o~ Trry
Co, 0 Se, U, l } (2.24)
7 (MY v \ -y y Y ; o B
V, "=l 8,8, Cp =Sy Co l vy |+, ]| B,
~Co, So, Sa,  Co,Co, [ L h,
Pour @, =0 et b, =
U, Co, 0 So, U, +0Oh, Co, (U » + lh) +8g, (Wb - leh)
YH(H) = V=l 0 1

0 || V,~Bh+ R, =

V, = Fh,+ R,
,L(_)h 1L W, = Oy

L'"S@,, (U st Ql)hh)+ C@,‘ (Wb - QbIh)
cos(®,) P, +sin(®,) R,
—BI e Qb

-sin(®,)F, +cos(®,)R,

(2.25)
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iigure 2.8 Définition des repéres "trainée", ""battement' et 'pas cyclique'' pour un

rotor articulé

Pour un rotor articulé, supposons 1’ordonnance des articulations suivante : "trainée",

"battement” et "pas cyclique". La position d’un point rr('p) dans le repere principal est

transposée dans le repere "corps" par la relation suivante :

07 [cos(c) sin(g) 0]j[07 [1
m('m“ g |+ =sin(g) cos(g) Ol |&, [+{0 cos(B) sin(A) I:r"(p)
0 0 0 1][L0] |0 —sin(B) cos(B)

Rot(8)

(2.26)

Rot(¢) \
sin(y,, ) —cos(w,,) O

E'Ju(m = Rotyey Ec.(m = (ROt‘%u—B)I cos(y) sin(y,) O f';(m

0 0 1

Rot{izy, )

. ’ . (F . T
ol &, et &, sont les décalages des charniéres. Pour 1, =[0 7 0]

“("3/3 T COS([”)) cos(y,, + g)wgg cos(y,, )
P 0 (s/j +7, cos(/&’)) sin(y, +¢)—e&, sin(y,, )

—¥, sin(B)



58

La vitesse d’un point de la pale dans le repére fixe "moyeu" est calculée par {2.28).

_, PR |
Vrm) :Vf,m)-i— ( (H))erh”[ t, 06 _
“"“ dt\—

PR
= Rot \VCH . (B) d/ o +R ) ) (2.28)
""" Ol i T Qg Xfﬁ’!_{ ) ‘f"a"{ 5; ROy, O,y XEL’.

yJ/(B)

8 oy [P 26 av, 2)ae o) ]
e\’ or Sy, dt 2e dt | op  dt [ (2.29)

Oy RO, @7

Pour le point E_;m = [0 T, O]T , la relation {2.29) prend la forme (2.30}.
&, Q, sin(y,, )+r, Bsin(B)cos(y, +¢)+(e,+r, cos(/})) (Q, +¢)sin(w,, --kg)—l
s ) ----- £, Q, cos(yy, )4, Bsin(B)sin(w,, +5)+(e,+7n cos(B)) (L +¢)cos(y,, +¢)
-1, cos(B) B

(2.30)

L’accélération d’un point de la pale dans le repere fixe "moyeu" est calculée par (2.31}

a, " xa,,{(’“+a~:[-;(rr“‘))+cow,xm(r(rr”“) 7 (U)H” x””)
’ t t

(H . 8 s -
a, ’= Rot,, p ‘:Ybim) +(w13 iz X rl;/;( ))”"9_)13/1 X (Ybl(lg) Qg X fﬂ:_( )” + (2.31)

(8

dy

. d oy
+a}7(_m)) Roty.s [92:3/:7 xt, " 42 @y x— dt (.L(]{))+mﬁ /T (‘}35/:[ Xff;(m)

"@;(?wﬁ dt (s )d‘/’M 4+t g )dQM + 4t (rr”“)gi+
fj_)_. S0 ot N’ Quy  dt o, dt 05 dt (2.32
dt? (rr ) i(;m)) d m)) d ""(H)) . o
Ldi\r Jdg dt(r’ a8, ol a8
pr At op a9 @
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Soit I’énergie cinétique E, d’un élément de pale & distance r,(m :

_— [ |
<m-2~0j VACAALY dm = j(v“”) V.9 dm (2.33)

0

Pour une distribution uniforme de la masse de la pale dm=m, dr, , en utilisant

’approche €nergétique de Lagrange, la dynamique de battement et de trainée peut étre

calculée a partir de I’équation générale de la dynamique (2.34) :

d(2E, ) OE, (OB, OB, _
op ) o8 o8  ap
d ( K, ]m OB  OE, OE, _

al o e e s .

(2.34)

avec (@, Q. la force généralisée (moment dans notre cas) calculée a partir du travail

virtuel des forces externes dans la direction de déplacement en battement et en trainée et

E, et E,, respectivement énergie potentielle et fonction de dissipation. Chaque équation

(2.34) peut étre vue comme une expression de 1’équation générale de la dynamique dans
la direction de la variation de la coordonnée de battement et celle de la trainée. Etant
donné que la distribution de la masse de la pale est indépendante aux dérivées par
rapport au temps et aux dérivées partielles, I’ordre de I’intégration et la dérivation peut

étre changée.

- ~ iy ] Af#(H) ) A7 (H) '
4 ~lf~"~) s J- . V(m'“w*——c(n. ) WVU’{)-—AW-——U(VY ) dm
di\ag) ap Jal " T op SRPY?
(2.35)
” 200 L (X7 (H)
dE ) 0B, __J' 4 '\“]w-z),a(r" ) _Wv(r-i>,0(v" )) dm
dt 8 8 4| dt| 7 og : dg

En réalité selon (2.28) et (2.29), les dérivées partielles par rapport a { [ g'} sont :
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— : ] (2.36)
op op oc o¢

D’autre part, en prenant les dérivées partielles par rapport & {# ¢} de I'identité (2.29),

nous aurons {2.37) et par conséquent {2.38}.

a[{/r”“] ) { - (fr(m) . o ("rj,“‘“) dy,, N & (7 ( (xi))%+ & (T’(m)gﬁ

op aop oy, 0B dt  9p dt op  dt
BT o (2.37)
o] [2(E"), 2 ) ay, (") as P (") _dp}
¢ 1 oo Byndc dt ¢ dt 0Bdc dt
o[V, ] 3V, ] o5
. . , oo b (2.38)
of ¢ dt

Finalement :

,3(..:.('71)) «( 7 (M) afpon h
LN T 0 1 I A | IR ) A e
. g / r

f
dt| * op ’ 8p  dt| ” op dt dt “/J
o (o (H)
(%) 5 (X7 (H) NI Do V(MY Afz00
4 V(’m.i(r" ) _.\"/u-a,({(v"m):i V(m.o(rf‘ ) gy, L " _:d(vf ) 2(5™)
dtf 7 o¢ " og dt| ’ oc ! dt dt bg
(2.39)
Soit les moments d’inertie
v v ht My
y  ans
j' r’dm = j' mpr,”dr, 3 M,y = j' mpr, dr, § m, = j' m, dr, (2.40)
/.'?,‘f’.:"/)- 1,;. H.‘T/)r !v'é.*livf/: l;; "f'l:/;

Alors la dynamique de battement et de trainée est calculée comme :



61

1, =M, sm([})l(ﬁ + R, U, ~ B, W, )sin(y,, +)~ (U, =R, V, + @, W, Jcos (v, +¢) +
+e, [ sin(0)~(9,,7 -2 R, )cos(¢) ] -# [Q\,Jm 21?,,(!'2,«4+;)J+

+[1,~ &, cos (7, )~ &, cos (i, +5) M(R P, Q,)sin(wy, +¢)+ (9, + Rz )cos (), +g)]+
+[ b, +e,sin (i, )+ £, sin(y,, +5) J[(R,i B, O )cos(y,, +5)~(0,7 + R, )sin (w,, ~+g)}—
=h [ (B, =0, Ry)sin(w, +6)+ (0, + By B, )cos (v, +g):[}+

M, cos(B){W, + B, V,~ 0, U, +2B,[ £, Q cos(p,, )+ £, (Qy, +¢)cos (v, +5) |-

-2, Ia Q,, sin (r//‘()«iv- £, (QM + é)qin(z;./w o+ /‘)} (QH . ,) l,—&, CO%((,Z/W)W

+1'ﬂ {Ll’h +0, Rh o8 (Z,B)Jsm (gf/M + .,) + [ ~ P, R, cos (2.,13)]005 (wy + 4)} +

I, cos([f)sin(ﬁ){ + Q7 [P sin(w,, +¢)+Q, cos(i,, +¢) J ~(R,~¢€ g)j} +

21, c08” (B)(€y +¢ [lj, cos(y,, +¢) -0, sin{w,, + 4)] +Q,

' (2.41)

£(I,c08* (B)+28, M,cos(B)+e7m, )= (R, —Q, (I, c08”(B)+2 5, M,cos(B)+& m,)-
~(M ,cos( )+ f:(_m]){( U, =R, V,+Q, W,)sin(y,, +5)+(V, + R, U, = P, W, )cos(y,, +¢)+
+, [( P, 0,)cos(w,, +5)-(02 + R )sin(v,, +< )] ~b, [(R,, =8, 0, )sin(y,, +¢)+
+(B2 4 R )oos (wy, +¢) |~ [ (B Q4 R, )eos (v, +5)~ (0, = B, B )sin(w, +5) |-

~£, {P,, 0, cos(2p,, +2¢)+ -2-( B} -0, )sin(2u,, + 2;)1 ~g, [(Q_,‘,, ~ R, )cos(5)+

+(€2,, ~ R, ) sin(¢) - £, O, cos (2, +¢)~ B sin(w,, );:os( Wy +¢)+
+0,cos(py, )sin (i, +5) || =(1, cos(B)+£,M, ){sin(B)[ 2B(R, ~ 02y, —¢)+

+{B,-0, R, Jeos(wy, +5)~(B, 0, R, Jeos (), +¢) |-cos(B) &, + B, O, cos (2w, +2¢)+

| I
+-2~([;,"'~Q )sxn(ut//w +2¢) 7/)’[[’ cos(y,, +¢)—Q, sin(yy, +5) }JrQ

Soit
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€p &5
[ = Irf.dmu s M= Ji;_.dm (243
Pour compléter le modéle de trainée, nous devons introduire la dynamique du segment

entre I’articulation de trainée et celle de battement. La dynamique résultante est calculée

de maniére similaire au développement précédent.

Alors la dynamique complémentaire de trainée est calculée par I’expression (2.44) et

doit étre ajoutée a I’expression {2.42}.

-M, {( Uy =R, ¥y + @, W, )sin (,, +¢)+ (V, + R, U, = B, W, )cos (), +¢)+
+l, [( R +P, Qﬂcos (v +6)~(07+ R )sin (y,, + :)J ~b, {(R,z =P, Q,)sin(w,, +5)+
+ (B,2 + R,,z)cos (v, + g)] ~h, [(P,, -Q, R,,)cos (W +5)- (Qh ~P, Rh)sin (v + c)] +
+E, [(QM - R,,)cos () +(Q, - Rh)2 sin(¢) - P, O, cos(2y,, +¢)— FFsin(y,, )cos (i, +¢)+
+0,% cos(wy, )sin (7, + g)J}
(2.44)

Les forces généralisées @ ; et ., associées a la dynamique de battement et de trainée,

contiennent les composantes de la force de gravité, des forces aérodynamiques, de la
force de I’amortisseur de trainée et de la force potentielle de ressort. La présence et les
paramétres des deux dernic¢res forces dépendent du design du rotor principal et sont
ajoutées pour généraliser le modéle. Le développement des forces généralisées est fait

par le biais du travail virtuel dans la direction de déplacement virtuel en battement et en

trainée. Soit SW le travail virtuel élémentaire de la force externe I ;
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. . ("I-:(?‘l')) 1 = a('r-(?{))
SW EAFU{).(S-(f;(?{J) '—'-':AF/]( H) W“é:ﬁmm(sﬁ +AF;W)' _—..é.:cmﬁg :xA(@/] (j‘[)’-{-A(Q_)g 9

FOU B 0D L F DG F 9, F . AN A OB YO B S
all, = alF, S aRy S al, T el BT AR Y = & tak sl Y sk

ARe

(2.45)

En sommant le travail virtuel élémentaire {2.45}, on obtient le travail virtuel total :

2.7 . . » Y i’f;(‘H) o Vi:r(H) g i’:‘(’“ 0 Ii:r(H))
W= J(Q/j SB+Q, 8s)dyy; Q4= AM --%Emldr» Q, = Ofi;—“'—(g;;“df

(2.46)

Les composantes de la force de gravité dans le repére moyeu peuvent étre calculées par

la transformation suivante :
F, =Rot,, zRot, _, gdm (247

Pour @, =0 et une distribution uniforme de la masse :

~cos(@,)sin(®, ) +sin(©, )cos(®, Jcos(D, )
dE " =m, g cos(®,)sin(®,) dr,  (2.48)
sin(®,)sin(©,)+cos(©, )cos(®, )cos(D,)

De (2.26), le déplacement virtuel dans le repére fixe "moyeu” d’un élément de pale est :

oo y
5 (59)= o(5" )(5/3+ (% m)g

’ op e
[ r, sin (B)cos(w,, +¢) (8/3 T4 COS(/?))Sin (Wi +5) (2.49)
S:( (m) =) ~#, Sin (ﬂ)ﬁm (l/./M +g) o+ (1ﬂ +7, cos(ﬂ) COS((/!M +g) Sc
-7, COS ([J’ ) 0

Comme le déplacement virtuel du segment de la pale entre le moyeu et la premicre

articulation est indépendant de la dynamique de battement et de trainée, alors :
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r.sin(y,, +¢)

&, (&ﬁ‘ﬂ‘))z r.cos(y,, +¢) |5 (2.50)
0
\ Al 0D () 9( ﬁ(H))W
5(5;"'“)::51(&”")ﬂsz(r,””)xfjl%—)n(sm s )+( = 5c (2.51)

op ¢ ¢
Finalement :

Que =g M, {L( ~Co, Se, +S6,Co,Co, )cos (wy +5)=Co, So, sin (v, + c)J sin(B)~
- [‘SY@,, So, +Co,Co,C, J cos (3 )}

Q.. =g (m 5+ + M cos( /3)) [(wC 0,5, *56,Co,Co, )sin (W +¢)+

+Co, S, c0s (17, + g)]

(2.5
Remarque : Selon la convention utilisée, I’angle ®, est positif dans le sens de (—«/ /.).

Pour le modéle d’hélicoptere étudiée ( Q,=3 )

Comme nous I’avons énoncé dans le chapitre précédant, deux causes fondamentales sont
a la source des forces aérodynamiques, que subit chaque pale au cours de son

mouvement :

— La distribution de la pression, s’exercant selon la normale sur la surface de la
pale;
— La distribution des efforts de frottement (contrainte de cisaillement) selon la

tangente au profil de la pale.

L’intégration des distributions de la pression et des efforts de frottement sur la surface
compléte de chaque pale conduit & une résultante aérodynamique, proportionnelle au

carré de la vitesse relative de la pale par rapport a I’air ambiant. Cette vitesse est la
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somme vectorielle de la vitesse de translation de 1’hélicopteére, la vitesse périphérique de

rotation du rotor et de la vitesse induite par ’accélération de la masse d'air.

Les charges aérodynamiques sont en général variables, non linéaires et tridimensionnels.
En suivant le développement théorique, notre premiére approximation néglige ces effets
et suppose que les approximations (ci-dessous) meénent & une prévision raisonnable du

comportement global du rotor.

S6.  La poussée du rotor est une fonction linéaire d'incidence locale de la
pale et la force de résistance (trainée) est une fonction quadratique du

coefficient de portance. Les coefficients de poussée et de trainée sont

fonctions de I’angle local d’incidence («,) et du nombre de Mach (Mach, ).

Négliger le décrochage et la compressibilité de la pale peut avoir un effet
significatif sur la fidélité¢ de la prévision du comportement dynamique lors du
vol avec un taux d’avancement élevé. Sans un modéle de ces effets, le rotor
pourra continuer de développer une force de poussée et petite force de trainée
au dela de la frontieére de décrochage, ce qui est clairement peu réaliste. La
supposition de la pente constante de la courbe de portance néglige les
variations linéaires, dues aux effets de compressibilité, le long de I'envergure
et en fonction de la position de la pale dans le plan de rotation du rotor. Le

coefficient de portance C, constant peut €tre expliqué dans une certaine

mesure par une pente médiane de la courbe de portance, en particulier & basse
vitesse. Les variations azimutales provoquées par les changements des angles
de pas cycliques et collectifs en vol d’équilibre ne peuvent non plus étre

simulées avec le modéle linéaire a coefficients constants.

$7.  Certains effets aérodynamiques fréquentiels sont ignorés. Ces effets
aérodynamiques peuvent étre divisés en deux catégories — celle qui implique
le calcul de la réponse de la force de poussée et du moment de tangage de la

pale aux changements de l'incidence locale, alors que l'autre implique le
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calcul de l'incidence locale due aux variations des vitesses de sillage de rotor.
Tous les deux exigent des degrés de liberté additionnels. Néanmoins, les
effets du sillage sont expliqués d’une fagon relativement élémentaire, mais
opérationnelle par la théorie de la vitesse induite, décrite dans cette section, le
développement de la force de poussée et du moment de tangage de la pale en
fonction de I’angle d’incidence sont ignorés, introduisant comme résultat un

simple déphasage de la réponse du rotor aux perturbations externes.

S8.  Les pertes de portance a ’extrémité et & ’emplanture de la pale sont
ignorées. La force de poussée réduit & zéro aux deux extrémités de la partie

opérationnelle de la pale. Un facteur de perte de I’extrémité de 3% de r,, ou

une intégration des charges entre la racine et I’extrémité opérants est
généralement employé. Les deux effets sont petits et expliquent seulement
quelques pourcent du fonctionnement et de la réponse du rotor. La
modélisation de ces pertes augmente la longueur des équations de manicre
significative et dans l'analyse qui suit, nous omettons donc ces pertes.
Cependant, pour réaliser des prévisions précises sur la puissance requise, par

exemple, elles doivent €tre incluses.

S§9.  La distribution axiale (le long de l'envergure) de la vitesse induite est
uniforme. Cette supposition est une simplification forte, méme dans le cas de
vol en palier, & cause des effets complexes du sillage de rotor, mais fournit
une approximation trés correcte pour la prévision de la puissance et la poussée
du rotor. L'usage de la distribution uniforme de la vitesse induite provient de
la supposition que le rotor est congu pour développer la trainée induite
minimale, et par conséquent que la pale a la torsion idéale. Dans ce cas idéal,
la circulation serait constante le long de l'envergure de la pale, avec les seules
pertes induites provenant des tourbillons (vortex) de I’extrémité da la pale. La
torsion idéale, pour une pale de corde constante est inversement

proportionnelle au rayon du rotor, tandis que sur la plupart des hélicoptéres,
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on trouve une torsion linéaire qui donne une approximation raisonnable, sinon
aussi bonne que la torsion idéale, aux effets de distribution de la vitesse

induite.

S10.  Les effets de flux inverse sont ignorés. La région d'écoulement inverse
prend la forme d’un petit disque du coté de la pale reculant, ou la circulation
d'air frappe le bord de fuite de la pale plutdt que le bord d’attaque. Jusqu'au
taux d’avancement modéré (i <0,3), cette région est petite et les pressions
dynamiques associées basses, justifiant son omission dans I'analyse des forces
de rotor. A des vitesses plus élevées, l'importance de région d'écoulement
inverse augmente, ayant pour résultat un pas collectif additif requis pour
fournir la poussée nécessaire du rotor, mais diminuer la trainée du profil et par

conséquent le couple du rotor.

Ces approximations nous permettent de dériver les charges aérodynamiques d’une
maniére analytique. Afin d’établir les expressions des forces aérodynamiques de

portance et de trainée, nous considérons un élément différentiel de pale figure 2.9 :

( : 2 ~ 2 2
al(y,.%) ﬂmp(ul" +uy )c ar C, uw—p(uv,f +u, )c arac,
\‘4 '
qp
D (GO ! 2 Near O Co o=k k (2 T3
A ('//Mvrb) “"5‘/) u,”+u, )C ar s op =Ry R Ly (2.57%

qy

u, ) U
@, = L()o (Wi )+0,(r)-K, B-K, g J t4;  f=tan” (#] “u

u, u,

ol aI'™ et aD™ est la force élémentaire, respectivement de poussée et de trainée, p,

est la masse volumique de I’air, ¢, est la longueur de la corde, a, est le gradient de la

portance, C, et C',, sont respectivement les coefficients de poussée et de trainée, «, est
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U,

-

I’angle effectif d’incidence, V. =| u, | est le vecteur de la vitesse locale, C, est le

»

U,

coefficient de portance, 6, (w,,,,) est Pangle de pas et 6,(,) est la torsion linéaire.

Pour le calcul des éléments de la vitesse relative & la masse d’air, nous devons
additionner les contributions de la vitesse induite et de la vitesse du vent & 1’expression

(2.28).

Figure 2.9 Définition de la portance et de la trainée d’un élément de pale dans des

repéres locales
Soit ;" la vitesse additionnelle, alors la vitesse locale est :
H
Oj( )

vV, + 0 (2.54)

L

La portance et la trainée d’un élément de pale dans le repére de la pale sont :

MA"“ o e 3T NPy "
th cos(,) —sin(4,) {AD J 4, ztan*(ﬂtj (2.55)

aF, Lsin(gﬁr) cos(¢,)J N u

L
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Dans I’expression de (2.55), le premier terme aF, est la somme de la force élémentaire

de trainée induite et de la force élémentaire de trainée du profil. Exprimées dans le

repére fixe, les forces aérodynamiques d’un élément de pale sont :

sin(y,,) —cos () 01 cos(s) sin(s) 0 -aF
aF % =] cos (i sin (y 0| ~sin(g) cos(g) O —aF. sin(f (2.36)
A A M z
0 o 1]l o 0 1|[-aF,cos(p)

Selon {2.51} (2.53) et (2.36}

SW (1 (H)) , by sin(ﬁ)COS(l//M +5)
i =2, " =aF, 70 m=(af,;”’”) ~r,sin(B)sin(y,, + ) |=aF, ¥,
op "’ op '
~r, cos( )
(£+7, cos(B)+r, )sin (W, +5)
::==::(AE,‘M)7 (0. +1, 08 () +r, ) cos (w,, + 6) |=
0

(q(-ﬁ‘(v-{)) (—3(‘1_:_”1:‘;)

..*..

r:wAF( krbuos(/f)ﬂ)

(2.57)
N N Y F Y ] , .
Q, "= J. AA; rdr= J. —Ep(ul’” + unl)c[(,,ll cos(g,)+C), sin(4, )Jr, dr,
8, tey g teg
Q o "j ~ F +7c09(/’))) ,+F].,m:.,rdrw
Al
) e : (2.58)
j —l—p(u__,__z +u’)e[ €, sin(g,)~C, c0s(4,) ] (e -+ 1, cos(/3))dr, +
& tey -

+I;P(u +u?)e[ C,sin(¢,)-C, cos(g,) ]r. dr,

L’intégration des forces aérodynamiques peut étre obtenue de fagon analytique ou

numérique. L’approche numérique consiste & segmenter la pale en sections (entre cinq et
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quinze) et calculer les forces aérodynamiques a partir des données numériques sur les

facteurs de portance et de trainée.

L’énergie potentielle E, et la fonction de dissipation E,, correspondent a la force de

rappel d’un ressort et & la force de frottement visqueux d’un amortisseur. Leur présence

est optionnelle. D’une manicre générale :

| , 1 ok, Ok Nz
E,=—K_ [ 2 e K ~? il i i VR K7 B+C. [
r=g Ko Pk op ap PGS .
| o JE. oE (2.59)
By==C, fF+=-C. " = —L+L=K c4C. ¢
y P Ty B op e
sin{y,, ) —cos(y,) O] 0 0 || -K,B-C, B
aF "9 =) cos(p,,) sin(w,) 00 cos(B) sin(p) 0 (2.60)
0 0 1|0 —sin(pB) cos(B)|| -K.¢~C. ¢

2.5.2 Les équations de battement des pales dans le repére "moyeu - vent''. Mod¢le

aérodynamique équivalent de deuxiéme ordre.

Dans cette section, I'équation du mouvement de battement est explicitement dérivée pour

un modele de moyeu sans décalage entre les charniéres &, = 0, ignorant la dynamique

charniére K ;, le décalage effectif & =¢/r,,, le nombre de Lock (7, ) et le couplage

Ky

important, exprimant le taux entre les forces aérodynamiques et inertielles agissant sur la

4

car . o
LC9% Avant de développer les équations de battement, posons les
2

conditions simplificatrices suivantes :

S1l.  Lapale du rotor est rigide en torsion et présente une torsion linéaire

initiale.
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S12. L’angle de battement est supposé petit et le mouvement de battement
vertical des pales, ainsi que I’angle de pas est approximé avec les

harmoniques de premier ordre.
$13. Les effets du mouvement du corps sur la dynamique de battement du
rotor sont limités & ceux dus a I'accélération angulaire ( 2, Q\,,,,) , & la vitesse
angulaire (7,, 0,,) et a l'accélération normale (verticale) (th) dans le
repe€re moyeu - vent,
Avec un angle de glissage /3, et a, I’angle d’incidence par rapport au plan du disque

rotor, la vitesse linéaire de 1’origine du repére moyeu — vent mobile dans le repere lui-

méme et la vitesse angulaire sont calculées comme :

o U, cos( [},,“_ )i ¥, sin ( /}hw ) =AU ,,2 + I/j,)' =, €, Ky,

b

VH(WH) =V |= 0 {(2.61)
VVhw !VH l sin (a'/,”, ) +v (I//M)
\._—.a...._.._..\,................ww/

w,

. -t

. o .
1 e8] sn(a) O g cos(s, )=t
" ' UZ’+V,
0, |= msin(,b’,,”_) cos(,[j’/,w) 0 0, ; h_,, ! (2.62)
Rm- Rl + [)) sin ,H N Y S—
wl |0 0 1RA (4.,) N
ROty 1
V. yroop |
3 =tan”' |~ |; @ =tan™ S B— R .63
//’u' ([//,) Ay hy UhZ +V;,2 L/Ih { )

En adronautique, afin de faire la comparaison appropri¢e, la pratique courante est de
rendre les variables non dimensionnelles. Ainsi, la vitesse locale non-dimensionnelle est

calculée comme :
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i, v o 0 0 sin(y,, ) cos(p,) 0 -
UP =7 |= Q"W —= 0 cos(B) —sin(B)| —cos(w, ) sin(w,) 0 [Q” —
i, MTMO10 sin(B) cos(B) | O 0 s
Rot™ (47) Rot™ ()
hutind (7)
p, """ + ROty g Ry @y X1, [ 1+ dt X(rr )
) 1y Q, ry
JUE V2 P
i, :-m( n sin((//“) """"~+L.()S( (F * r,,)( /)’, )
Q ry ‘ Tu ’M Qy 1y Y ,'
N
\/ ................................ - I: lt
— (] } : + V; . . . U + U I/'/M
f, = = e i (1, Je0$ () = sin [)’)
g () =
n _ 7 J

Sin([)’_)(f:+r,,){sin(l//M)[Ph cos([i’,” )+Q sin([)’h )] +-cos(:/,/”)[»~}’h Si}l(ﬁ,w)"i"Qh cos([)’hw )}}

I

i = “%%:“COS(VC Jsin(4) - f\, bM +cos( 5) J[W [‘;:: :{(Vw )ﬂ
»__....,;[____, A
cos(A)(e+, ){sm (l//*’)(’u cos( B, )+ @, sin(B,, )}Lc‘)“’ Y [ P,sin(f, )+Qh cos(6,, )}}

Q,, 1,
2.64)
. . . . B . . . Lo N
Ici nous avons introduit ’expression [u(_, +v, (w7, ) | pour la vitesse induite. Se référant

la figure 2.10, Pangle de battement g, (r) de la ™ pale peut étre obtenu en sommant

les moments par rapport a I’articulation des forces externes, exprimées dans le repére

moyeu — vent.
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Y g Q,,

Figure 2.10 Modéle équivalent du rotor avec ressort

Le moment de la force aérodynamique par rapport & I’articulation est calculé comme :

i (1) ny (b-£)
M, = J' 5 d F-1(Wm o= J. A fp;a C uhL?Z ( 0 + ¢:) a'l“,] {(2.68)

0 0

L’angle de pas & peut étre développé en série de Fourier en premier ordre dans le

repére moyeu fixe et a la forme :

G, =0, +( n, +1,)6,+ 6, cos(y,, )+ 6, sin(y,, )- Stan(5,) (2.66)
T By A

avec ¢, angle de torsion initial et les entrées de commande angle de pas collectif §,,
angle de pas cyclique longitudinal B, et angle de pas cyclique latéral 4, . La

transformation (2.67) permet de calculer les variables d’entrée dans le repére moyeu —

vent fixe.

4, =4, cos( B, )—~ B, sin ( B, ) 2.67)
2.6

En supposant /3 petit et (Rh + [],b ) <« ,, le moment de la force aérodynamique est :
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P — =3 .2
M, =:—é—/,7 acr,' @,/ {P——uf«« 4 %—2-4 wsin(y,, )(%~«?i%~|y[%ﬁ‘+%~}«,m (. )H[ﬂo -

4 3 2

. . ) _
-4, cos(y, )-8, sm(ww)] [luz+~2~—6+/lsm(ww)[f—w5+f~3-

5
, 1 2% ,usm _ gusin(y ‘ i

g F I F)
-—5+~6~+/1(--£+-2-~)sm(x//,“)}/iw

l o
| S
=
[

—
1=
—
.

- imi+§+ [gln( ) ~2~w§+§i+;/ i~E+E sm(/ )
4 3 12 2 Wu 3 3 \2 ~ lFM

4._._.._..___.)
g
:/é\.

X
=
i
{
|
|
|

+/1] §+g3+ zﬂ] g+£2\sm(u )
377 Mz WJ /w.

o FOF A 11 g F 1 F B, P
FfL] o o E A e e e 181 (1 o I el 11 il sl 11X 74 —cos{ 3 )+
/£7 2 3J (//“")L‘zﬂ, (4 312 /(° 2% (/M)I__ o e )

é" sin( 4, )js'i“(‘//m) (z)'"""sm(/hn) < cos(f,, )JCOS(%‘)J

M M M

(2.68)

En simplifiant la dynamique de battement (2.4 1}, il est courant de retenir seulement les

termes :

inertiel M, =-I, B
centrifuge M, ==Q,*[ I, cos(B)+E r, M, |sin(5)

My, =2[ 1, cos* (B)+E 1, M, cos(B) ], HP, cos(f,, )+

+Q, sin (/j’,,w )) sin (i, )+ (-—.Ph sin (,li’hw ) +Q, cos (:BhW ‘))005 (W )}

de Coriolis

de contrainte M, =-K, [3

d’accélération angulaire
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M, ., =1, JP,, cos (,[ ) +(), sin (ﬁhw ﬂ sin (y,, )+ (-—Ph sin ([)’h”_ ) +(J, CO8 ([)’h”_ ﬂ cos (i, )}

et d’accélération normale (verticale) 4/, =M, ( w,+pPV,-U, Qh)

ainsi que d’approximer le terme gravitationnel A/, ~ M, g . En remplagant les

moments ici-définis dans I’équation {2.6%),

M +M,+M.. +M., +M,+M

Cor Aced

+ M+ M, =0 (2.69)

nous calculons la dynamique de battement des pales dans le repére moyeu - vent mobile

comme

. pean” Q1 28 _, & (l _ O :
b M L e DL B o ] e E e e 5N (17, ) | B
B . 5 *’4 3 3 £ 5 S ( M)“ B

I, 2|4 3 12

K Fr,M car Q1 7 & y B
lefz. . [1 , _“_Wﬁ_] 0, | E_.EJ_’__QD_MP CELE (v )[ R

Yook

ulmF-vr-Ei sin () | [tan (8, )+ g cos (i, )l~§+:~f Lz, E««\ s ) |18 =
M 5TETS W = W at 17576 H 5 2J ‘/w
_pearn, Q)11 FE 2 L F 1 . £, Vr
""" et B o e e - iy, Y| E A+ ] o E A (800 q, -
[, 2 {4 3t () )3 3702 2 (v |14
Vtack
2 2 - ] -3
. pean, Q11 € € 2 _Z
~4,, cos(y,, ) B, sin(i,, ﬂ*“’}jﬂ‘“f“%“j{ 7—0_4-/19111 (v, )(?;mg =
, B Hsin(y,, ) Eusin( l,[/w S
--|-~,usm(z//M)(Ewam 3 5 () }w(W BV, -U, Q)=
A{ 4 2 = "_‘-“»‘ ' -2
ek pcarw 2y »‘me«+~w+y iwf + o sm(zpw) A+
7, I, 2|3 2 6 M2 2

Fiuck
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+ (2 :fmi;:{mj}/f_/i) 0, [( P, cos (ﬂh ' ) +(), sin (ﬂm ))sin (Wa )= (.P,, sin (/)’,,w ) ~Q, cos(,[)’hw )) cos (v, )J +

7
+[17’ﬂ cos(f,, )+0, sm(,ﬁm ) |sin(w,) leﬂ sin( 3, )+ 0, cos(/}m )j cos(,, )+

A g ? T F )
+é—£mﬂ.}%ﬂwg“ (%~%+%J[(Fh ~cos(/3,w )+Q/; sin ([)’,w ))sin(z//‘,H )+(~/j, sin(/)’,,”,)Jr
‘ VI,NA‘,

+(J, cos (/)‘,1 v )) cos (V/ )

" L mﬂg ), ( ! E " ‘i‘: JHPI’ COS('BM )..;..Qh sin (/;‘hw ))sin(z//M)..f.v

INCI 6 4 12
Lk
. ) iy’ : 1 1 F
+(——P,, sm(ﬂhw )+ 0, cos(ﬂhu‘ )) cos (i, )J(i —cos 2y, ))+§F—(;:jﬁi’-ﬂ;z Q, Lg~-4~+
‘-—n—-u—-vua-u-u-.l‘

¥r ok

+%]"_(l}, cos(ﬂhw ) +(Q, sin (/)’hw ))sin (W )+ (—P,, sin (,6’,,”_ )+ O, cos(ﬁ,.,w ))}sin(byM )

{2.70)
Etant donné que le rotor principal présente un ensemble des pales dont chacune est régie
par une équation de type (2.70), il faut définir une transformation permettant
I’expression de la dynamique de battement individuel des pales dans le repére moyeu
fixe. Ecrire la transformation (2.70) sous forme matricielle (2,71}, nous permet de

généraliser la dynamique de battement individuel des pales en coordonnées multiples.

7h a p y et
A B, ) b =] 27,
. (//M) . (l’ 'H) ‘ . Wy, =Wy “g""f“"(]""])
[j.‘zﬂ ﬁn,l, [jnﬁ .fnk A ”1!
r - =3 =2 |
[ o1 28 _, & 1o Y.
Ay, )= n'lagl;,mkwgwl—zw—;ﬂra --—§—+;1[5-5 +-"2"“"3"]5m(’//,ul,)J} (270
ATk, (. #nm, o1 & 7 2 _F
] s M_E 2 S S A S e B o
By, ) dzagf{ 7, +[]+ I JQM }ky,m 5 [4 T + g sin (z//“)(3 Fat

i ra

| _ & W (s 1 £ 8 (1 8. [
+,u(:2—-e+—i~] m(l//‘,)” (L5;)+/JCOS((//M)[*3’“*5‘#“‘“%‘/,!(:;“8+';']SIH(UIM)]J

6
"
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Figure 2.11 Modele du disque de rotor avec coordonnées unies [Pad96]

Le vecteur [ ho S T’ est calculé a partir de la partie droite de I’équation (2.70), en
remplagant y,, par Wy, - Dans P’analyse du mouvement des pales, la procédure

classique consiste a développer, dans le repére fixe, le mouvement de battement en série

de Fourier.

‘ J el ] e nR
= f,+(=1Y B, TZ/} cos(n Yy, )+ i sm(n l//MJ) — +%.__ (-1)
1 ’ (2.72)
k= ‘2"(”1; ~1); n, { pair} B, = mz”: (-1 4, B = Z;.B L0‘*(’7 W, )

ﬂ() B WZ/} K) = /) '
k= ! . S Py j=t iy
m—zu(nﬁ ~2); ny {impair} Pog =0 siny {impair} B = Z/} sm(n Wi )

Ny



78

Ecrivons la transformation (2.72} sous la forme matricielle (2.73) :

b, .,

' . o
/),,. = T[ﬂo Be Bs B Bs - ﬁl/g:._:\k, ’ﬁ'ﬁl‘;\ Boa | 1 {pair}

I T -

b - N

: =T\ B, Be Bs b P 'B’ff’,:’.‘_.‘\lz‘ ﬂ{ & {zmp airy

vl N
B, ’
1 c-os(c//M‘) sin ((//A,w? ) cos(é(rr,, =)y, sm( ------- (15 =y, J

1 c-os(z//M?‘) sin(w%) cos(%(n”ml)(;/%

g { paair} =

1 C()S((//MW) sin(z//A‘,W ) cos( (n,~ 1//»1 J sm( 1 Liny - I)V/u,, 1]
/ . 1 v
1 cos(%,m) sm(y/ﬂ,w) cos( 79 ) sin (&2 (5~ D, )
I ‘ I
1 cos(z//Ml) sin (%1]) ( Dy, J sin (5 ,~1) r,//‘,!] (1)
(i
2

I cos ((//M;,) Sin(!//m) COS( ”i ’/"u ) sin

)

P {lmp«i/"} il

| . 1 . . 1 N
] cos(a//,v,uﬁ_l) 5111(1//,‘_,"/3‘1) cos(»‘(rz,,wl)t//ﬂ,m_lJ s1n(~2~(n,,wl)z//M’_'_n_!j (»«1)( v )

» ( . l «\Fg
I cos (’//Mng ) 10 (WM% ) o COSLE (”M - })V/M"ﬁ ) s ( ’I;'(”/f - 1)‘/",‘{,“,3 ] (- ') J
{2.73)

_— N

La figure 2.11 illustre les principales coordonnées unies : de conicité /3,, de battement
cyclique longitudinal ., de battement cyclique latéral /% et de conicité différentielle
[, . Les coordonnées unies peuvent étre vues comme différents modes. Le premier, 4,
correspond au mode de conicité - toutes les pales battent ensemble dans un céne. Les
deux premiers modes cycliques, J3., f . représentent les premiéres inclinaisons

harmoniques longitudinales et latérales du disque, tandis que les modes des fréquences

harmoniques plus grandes correspondent aux oscillations azimutales autour des
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coordonnées principales. Pour un nombre pair de pales, le mode différentiel, f,,, peut
étre visualisé (pour n, =4, figure 2.11) comme mode avec des paires opposées de pales

battant ensemble, mais en opposition aux paires voisines. La transformation aux
coordonnées unies n’implique aucune approximation et les différents mouvements de la
pale peuvent étre complétement reconstitués. La transformation inverse de la forme
matricielle {2.71) permet le passage du mouvement de battement des pales, de
coordonnées multiples dans le repére moyeu mobil en coordonnées uni dans le repére

moyeu fixe.

\

Procédant a la transformation inverse, nous calculons I’équation différentielle de
battement des pales dont la matrice I} peut étre vue comme matrice d’amortissement

aérodynamique et la matrice K comme matrice de raideur aérodynamique.

é +D () /3 +K () B=1 () (2.74)
fi
F=T1
T,
avec D=T"[2T+A(w,, )T] (2.75)

K=T"[T+A(w,)T+B(y,)T|

Pour calculer I’inverse de la matrice (T) , nous procéderons & un changement d’échelle.

Ay 1y
o |2 0 0 N N S
y m, (2.76)
=10 T, ., = ¢ I FPT e T P :
0 0 .- \/3- 0 0 0 2 )
n” hg

ol

0 0 0 0 0 0 \//T
I’IB
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La transformation résultante est orthogonale :

T,=TT, T =TT, ' =T*7T" (2.77)

En comparant I’équation différenticlle en coordonnées unies {(2.74} et celle en
coordonnées multiples (2.71), nous pouvons énoncer deux différences importantes.
D'abord, I’équation (2.74) est maintenant couplée et, ensuite, elle contient des
coefficients périodiques pour tout vol non stationnaire. La fréquence de base de la
périodicité est directement li¢e au nombre de pales du rotor. Les termes périodiques dans
les matrices ne contiennent plus les premiéres harmoniques, mais des harmoniques a
fréquence de basse 2 par tour pour un rotor & 4 pales et 3 par tour pour un rotor & 3
pales. En général, on peut montrer que pour un rotor a 3, 5, 7 pales, la fréquence de
base est 3, 5, 7, respectivement et 2, 3, 4 pour un rotor & 4, 6, 8 pales. Une
approximation classique consiste a négliger les termes périodiques, ramenant par
conséquent 1’équation différentielle en coordonnées unies {2.74) & une équation
différentielle ordinaire avec les coefficients constants, qui peuvent alors €tre ajoutée aux
équations du mouvement du fuselage. En 'absence des termes périodiques, 1’équation
différentielle en coordonnées unies, prend la forme conforme au paradigme de

I’automatique dans I’espace d’état.

2.5.3 L’équation dynamique de I’extrémité de la pale

Développée dans la section 2.5.2, la procédure mathématique d’approximer la
dynamique de battement des pales avec les principales coordonnées unies (en exécutant
la transformation de coordonnées multiples en coordonnées uni et en négligeant les
termes autres que les premiers périodiques) est identique & la méthode classique de
développer 1’équation dynamique de I’extrémité de la pale dans le repere "moyeu —

vent" fixe, en premier ordre avec coefficients variables du temps :
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B=a,(t)-a, (t)cos{y, )b, (t)sin(w,,) ”
/3:('70(’)“["’1,,/ (1)+b, (1), }‘«OS W) ',bl« (t)-a, (1) MJsin(t//w) (2.78)
)16 (

B =, (1)~ { (r)+28, (1) ~a, Q,° }cos v )=| b (1) =24, (1), ~b, Q,}° JSIH(!// )

Egaliser respectivement les termes constants et les termes périodiques de cos (z//M ) et de

sin (y,, ) nous permet d’écrire ’équation dynamique de I’extrémité de la pale sous la

forme matricielle (2.79} :

B+D S+ R =7 s B=[ay a, b | (2.79)
v Lock e e e a2l =3 ]
«—EZ—(_?WSS + 65" ~E ) 0 ETH ,u(l JE+3ET-E )
b-=0, 0 }'21‘; (3-8 +68" -&") 2
j-wy L u(1-35+38° - %) 2 %«2&(3 -85 +68° ")

o o Lt Ly (128 +57) MZ{EL (7428
R=0, - 7|'2* (2-3848°)  P-l+ 7;“6“
Lt (3874 687 -7 )+ N
- y’6k p(2-3%-2)an(s) P -1+ ]7'6* it (1-25 +57)
Lo ool +
I +m{‘6" ,uz(lef. + & )

o e > 2 I =
%2:]+ 4 ;’+J,+M ..!.. im+m~— ldn(é)
Ly, 1, 1, \8 6 24)—

Vit



Y 0,
Lok ( 3w 4T 4 F )Q ), = it
24.0,, T,
""" f‘ 34t 2
Liodk L L T L )
6 2 [ 302 (1-7) Ik
Er M, B
~ Lty (125 2 »—i-’ﬂi-(3-4 £')h, +-2-(|+ L ]Q,’ﬁ Yoy
240, Q,, I, Q,
M, . .
bl [ 4 PV, U, O, ~g
I lﬂ Q.7 L RS A ‘»J ]
o
Vo r - 4F F ek [i £ E
Lol e o e a
e L T3 215 4 20 .
gl (I«e ) J
Laect 1-£+€~4~+ %
= 2 8 3 3 B,
=9, 0 0 ) . 0 A
+/’(| -y o
5 (1~ )
7.’.1’)&‘!\' -, 3 IVIJJC/C A=
-—T;I(ZMJS--}-;: ) --‘-2~—p(3-«h. + E ) 0
) ; Piasf” (2-3F+7") 2+
Viokdd 12
Liekt (D -3F + £ 0 0 [ P M, .
240, ( ) P, + .A...j.ﬁ‘..(p;; +PV,~U, Q-
R Fr M, y , 0o, ’ _
+Q,? ~£—(1+”‘l’ f] ~Jm(3-4547") 0 MQI : P’*’ + 0
M £ =4y A [ yoQ 2 \
. p Lock "M s 2
‘ en M, 0., ~ ey (1-F) 4
L (3_gzap) __{_(H Y72 I P RN i
24.9),, L !y Q"

A partir de 1’équation différentielle de battement vertical des pales (2.793,

observations suivantes peuvent €tre faites :

8)
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les



a.

b.

33

Dans des le repére "moyeu —vent" fixe, 1’équation différentielle (2.79)
contient également des coefficients périodiques pour tout vol non
stationnaire. La fréquence de base de la périodicité est directement liée au

nombre de pales du rotor.

L’amplitude des termes dans la matrice d’amortissement aérodynamique
est fonction du nombre de Lock y,,,, du décalage de la charniére &7, , et
du taux d’avancement u et est indépendante de la raideur de I’articulation
K, et du couplage K, =tan(J;). Pour un taux d’avancement donné, plus le

nombre de Lock est inférieur et plus le décalage de la charniére est grand,

plus I’amplitude des termes dans la matrice d’amortissement est petite.

L’amplitude maximale des termes dans la matrice de rigidité

aérodynamique est fonction du nombre de Lock y, ., du décalage de la

K, n'a aucun impact direct sur les termes périodiques. Pour un taux

d’avancement donné, une diminution du nombre de Lock diminue

I'amplitude des termes de la matrice de rigidité. Cependant, I’effet du
décalage de la charniere 7, et du couplage K, =tan(s,) est plus
compliqué. Pour K, =0, une augmentation du décalage de la charniére

réduira I'effet des termes dans la matrice de rigidité aérodynamique.

Pour une valeur des entrées: pas collectif &, , angle de pas cyclique
longitudinal 4, et angle de pas cyclique latéral B, et pour une torsion

initiale ¥, donnée, l'influence paramétrique sur les termes dans le vecteur

d’excitation, f, est semblable a celle dans la matrice d’amortissement

aérodynamique.
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Dans la dynamique de I’extrémité de la pale il y a trois modes : conique, d’avancement
(ou de nutation) et régressif (ou de précession). L’impacte du mode régressif sur la
dynamique du rotor et par conséquent sur les caractéristiques de manceuvrabilité de
I’hélicoptére est le plus important., Le mode régressif posséde la plus basse fréquence
des trois et il a une tendance de coupler les modes de fuselage. Les deux autres modes
(conique et d’avancement) ont des fréquences naturelles plus élevées de l'ordre de la
fréquence de rotation du rotor et deux fois de la fréquence de rotation du rotor,
respectivement, et leur impact sur les caractéristiques de manceuvrabilité de 1’hélicoptere

est donc beaucoup moins significatif.

La fréquence naturelle normalisée et le facteur d’amortissement du mode conique en vol

stationnaire sont calculés comme

o, o EnM, K car?(1 & & .
LN Al i A Py tan (&, )
Sy

Q, 1,9, 1, I, 8 6 2 N
Praock I (2 80 )
— g N
G =g =Tt 1238 o
lepl 3 3

Pour le mode d’avancement et le mode régressif, la fréquence naturelle normalisée et le

facteur d’amortissement sont respectivement :

>b :e
OB
il
Q_N
—
+
3
+
o
2
?}
II\.
2

w w—t :
..L(lwﬁaugmfm)&

“olep 3 3w, N
\ (2.81)
w,, o~ 3 Y Lo 8¢ ..., £ 1Q
ar_ ] 4 2 _ 2, ; = o= Lock ] — 25 —— A
Q, \/ o= g m‘qs( 3 3 ] o,

Pour un vol autre que stationnaire, le mode conique n’est plus découplé et les
caract€ristiques de la dynamique de I’exirémité de la pale deviennent plus complexes.
Cependant les grandeurs des fréquences naturelles normalisées des trois modes

préservent I’ordre du taux ci-dessus. Il est intéressant de noter, que le pas de temps du
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X . : . PP . 4 ;
modéle de simulation en temps réel doit étre inférieur a —— (pour le modéle
M

A 0,4654),
27

2.5.4 Modéle dynamique de la vitesse induite

Le concept du modele dynamique de la vitesse a été développé par un certain nombre de
chercheurs, mais repose sur ’idée de Peters et est connu sous le nom de modéle de

Pitt/Peters [PP81] qui supposent que la distribution de la vitesse induite a la forme

O, + 0, () no 17 o
At,r, =l AT M Y+ A (D) <sin (v + A {1)~t-cos(y, DR
(11 wy) @) Ao (1) + 4, (1)’:\/[ sin(p, )+ 4. ( )"M cos(y,,) (2.82)
¥=180° a0  *V 1 4~ ¥ag0*
W=270° Rl )
"o JQJ;@ ‘ o
-~ o
Ve T4~y A=
¥x180° il J Ve
—

Figure 2,12 Modéle dynamique de la vitesse induite

La formulation générale d’un modéle dynamique de la vitesse induite a trois degrés de

liberté peut étre décrite par 1°équation différentielle (2.83) :
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r v ]
/10 /1’0 (— i i
-1 5 . ,,
A{ﬂow ls +L Slow A C L= (2.83)
;bc i ﬂ‘ - ( ‘M

Les matrices M, et L, ~dans I’expression (2.83) sont associées respectivement a la
masse d’air et au gain et peuvent étre dérivées d'un certain nombre de différentes

théories (par exemple, disque de sustentateur, théorie de vortex). C,, C, et C,, sont le

coefficient de sustentation, le coefficient du moment de roulis et le coefficient du

moment de tangage, respectivement. Une expression pour les matrices M, et L, est

donné par {2.84) ou y, est I’angle du sillage du rotor principal :

- 8 0 0 m-mlmmm lijm tan(iﬁ’wj

S Qw Q.VI 04V 2
M flow = O ,__.__~.._l_9,,,,__ 0 Lﬂaw = 0 Mm‘i__”"""—' 0

: 4570, : (1+cos( 1)) Va
0 0 ,,W:”,l,_(l_,.., lﬁj 0 —4cos(;gh)“
L. 43 ”SZM u 64\/'}; (1+COS(2’/,))Vm
7 i +(2 Ay = 2”" ][Zo - QW" J
Vi = \/ W +[/7.0 i B ] Vo = M R FAEES
v P \Z

2.5.5 Calcul des forces et des moments du rotor principal

- \ : . u
Se référant a la figure 2.9, supposons les angles [, ¢, et 6, petits , donc ¢, = —I et en

|
4.

u
conséquence U’ =z=u’, o, =60 +—L , aF zal ¢ +aD , aoF, =2l . La force de
AL

sustentation peut €tre calculée par la résultante de forces verticales :
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T=25 3 [ 2(Qun) acul(0+4,)dn-BM,+m,(W,+ PV, ~U, 0, ~g) () +

277- 0O 0 2
£
+f_11m2]r'[79 M”H":'"r m [P cos ()~ @, sin{w ):| d{py )+
o ‘[~ M g s T hp g, VISV M Ly M M

M, : |
308 J { f [Phw sin () + @y, c0s(y )]} d(w)

Finalement

N
&

o 2(1_=2 s { =3 201 =
_{(1"*1; )+/l (14 3 )})'"H(lzs )LBIW mtan(()'s)bl”}-—tan(b"s)li(l P2 )+l1 (1 8)}%_;.

E(-7) (3 E) 4 p(i-E) B,
2 " 6 Q,, 4 Q,,

)
By

u (1 - E) [F}, o8 ([}hw ) +(J, sin (,B,,W )}
4 Qy,

-

—ng| My —m, (W, + P, V,~U, 0, - )]

(2.86)
Dans le repére "moyeu"” fixe
[A]J c(,s([}M) ——sin(/fhw )W[AEH/N
B | *m(/”h,,) cos(,[l’, )_. B‘wJ (2.87)
1) -
.
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Les deux autres forces dans le repére "moyeu - vent mobile" sont calculées comme :
t (1~} P 5 _
- HY 2 we A a1
P.xMH‘ = J ”j‘(QM P ) ", c[cz((if +4, )¢’r -Cy l dr, =
1 (1-;:') ’ (?’,8&)
= J %)«(QM Ty )2 c[a(ul u 6, + uuz)+uf C‘d] dr,
0
) 1 (1) ., v
E=gFEO =p | fzi(QM r) acu?(6,+4,)dy (2.89)
0

Selon (2.55), les forces (2.88) et (2.89) sont calculées dans le repére "moyeu - vent" fixe

comme

2x

H, = ”?’]"“ [WFX(W}M sin (i) + F,0 CQS(‘/’m)E d(wy) (2.90)
“ o
¥, = w%”j[wﬂmm cos (w3, )= F.O sin (v, )J d(w,,) (2.91)

O
Le signe négatif devant I’intégrale est ajouté pour respecter le triedre direct, composé

des directions des forces [H, Y, T].

Dans le repére "moyeu" fixe :

iXMR}w COS([}”H') Sin(ﬂ"w’)-{Hu} (2.92)
Y -sin(/i,,w) cas(ﬁhw) Y

L TMR

Le développement analytique des expressions (2.90) et (2.91) est présenté

respectivement par les relations (2.93) et (2.94).
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&
" u(1-82)C,  6,~tan(d,)a a
ty ="pacy’ 2a) b 4( ) 2pu(1-8) 4+ (1-8") 4, - p(1-2 )zﬁi”"
Py
+2m3§+§f’i_4u3§w5f‘ a}y+2(1“53)”hC"S(/’hu’)*QhS‘“(/’h,,») 8 ﬂ(l”gz)ﬂﬁf;(j;fﬁjim
3 Q, 3 3 Q, 4 3
By
~ [2m35+5“ _‘3.0__+3”45+’74ﬁ;w3“25“54a . (’1“5'”)PhCOS(/&W)"*--thiﬂ(/fm,) .
Ha, 6 O, 3 b2 Oy
__f1
B, —n(3)8, e SO 22y DA,
4 3 Q, 4 Q, 2 v 2
Page X
5 . \ T I PR
+3/.1(]_~EA)phcos(ﬁhw)l‘.:,..Q,,sm(/)’h“.) +A!,-,""a“(‘)3)al;p (1mg)7&+2(lmgq)au+
4 0, 4 40, 3
Q‘w
-7 F 1- %) -2, cos ~&) b
+‘u(l 8')/(..‘:—""!1(? 7 )biw+,u( ‘F ) sm(/)” )+thos(ﬂhd.) m/]ﬂ(} :) bh+
Q,, 2 Q,
iy
(1-82)  |Bcos(B,, )+0,sin(8,)
- # 16 al” (9 2;31 B

(Y

{‘“Ej(,0Hl(lwgz)bhy]W&Sin(ﬁ]’“’)_JrQ””C()S(ﬂ”")Jrg F) ag . . (l"—i,-"z.,)/la-|~

1-8Y) h 1-8%) | 2.5~ ., F-F}
+,L[[——( 7) [b &y —hg 1+( )ao"+2 £TF ah_“+6 Ad blh'l-

16 Y Q, Q) 4 8 : 8
- x ' . eV E e (1-f
2 +& ) f”u +a, _‘i'i‘._+bI +(1 £) [ b -4, % ( )(/ b +Aa )1
2 O, Q, ! 3 4, "Ly, 8 f

(2.93)
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2-3F+E &

()+

. . v ) 7
i -z~ 3(1-&Y
Yy m%‘g’/)ac ".»14 QMZ{(QO’“tan(&:&)a{)]{( 48 )/i'ﬂ‘-/l ( 4&) a

g

(o) o) aeol]
e 6 Q,,

12 2

= =3 201 =\
+(4«3gmg L g)]

Ony

+3—4§--i~-§4ﬂ,~+(3-—25w54+/’2(l“gz)Jb‘W +(‘"54)“’2 sin(4,, )+ 0, 054,

24 Q, 8 Q,

I K

tan (5,) | £ ' 1-& “ 1-& : ai Eoa
A.;.LBL,F"tan(é';)b.“. ]Ml 6b A r&)]aﬁw u( ‘ ) 4, ., 8E 3z "

[ ™

“/1(1-§z) ~F,sin( 8, )+0, cos ([)’h”) N A, ~tan(4,)a, {2_"3;; VB 4 g - ﬂ u(1-F)

3 ﬁfw(lugu)%*

16 Q, 4

B

“ﬂ(iw)z __@Lwﬂ(zwwﬁl)% mﬂ(lwa"z)f;cos([ﬂw)+Q,i sin(8,, )
4 Q, 2 g

1— ey a
+ /?'U ( © ) .lw +
Q, 2 Q

[

STETE Ak + “/7 (1_5:'2) _2-38+E° 4 B 7(!&5":) . 1 ~F, sin(/}hw )+ o, COS(/J’;,W ) _
RO 2 6 O, 16 ‘~'J 0,

{pﬁ" a‘)wﬂS(] “_5 ) b }13, cos(B,, )+ ¢, ssn(ﬂ},ﬂ,)m}% (1-2) 4 . (1WE)MS"(1_@"3)‘%&
6 6 Q 2 4

A QA 1

1-z)* ' ' b ~FY g d 1~F
4 ( ........................... (12(,“ Gy . Ta, Gy +5b, !r.f.:.m]m (I ....... : 2’) ...... gﬂ Sy b i (I‘E)( Si b, +74 a, )m

3, Q,, 8

235 +5 [ b 2-5E+481-F) 4 |~F
LETIE TR [—3—“—- -a, }aﬂ - ( 1 ) 50“"”“' - yL—Zv)(M“ ay+dpa,a ~a b, ) f
A

(2.94)
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Dans le repére "corps" les forces créées par le rotor sont calculées comme :

e (B) ey i) . oK)
X MR - X MR -X MR "
+ (8) N » O : 7 T \ - A AR
E,70 = Y| = Roty, 5| Vi (R()t H«b) Y | = [""X wr Y 1 MR] Rot, 4
TMA ""Tjwk Twe
(2.933

Le moment de roulis et le moment de tangage et le rotor couple sont calculées dans le

repére "moyeu - vent" fixe comme :

20| ne (1-7) -
n OV . n,( . Erg M, . o -
L, = _2_H_ J’ J’ %o psovh) S]n(l//M) dr, d(l//M)"*-',f'('\,s b,w Ry (b[W -2a]”,QM ~«b1W.QM )]
Tl o ) “\ 4
(2.96)
22f e (1-¥) =
7 . . gr, M, . 5
M, = %‘; J‘ 1o F 0 cos(yry, ) dr, d(z,z/M)+%9—(1(/, a, - Mg 2 (a,w +2b, Q,, ~a, QM..)}
[} Q - -

(2.97)
Le rotor couple est calculé comme :

r E«!("E)

Nug =22 [| [ (oL g, +D)dr, |d(w,) (2.98)
“it g | o “‘—d’_‘

Dans le repére "moyeu" fixe :

Ly cos ('6"‘:1' ) sin (ﬂ"n ) 0 Ly
MM(M = My, 1=1-sin ([fhw ) cos (/j'hw ) 0 M, (2.99)
Ny 0 0 RERAIT

Dans le repére "corps” les moments créés par le rotor sont calculés comme :

B ’ X H) T (B - ) 1, H) T By e (B . 4
M, = Rot g, 5 M, J+L%(E)JLWK )“(Rmmmﬁ) MM( +leh\mjh\/!( ) (2.100)
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Le développement analytique des expressions (2.96), (2.97) et {2.98) est présenté par les

relations (2.101}, (2.102) et (2.103) respectivement.

£n,M

n Ehy My (o
Ly =7 (Kﬂ by, —— . (bx;,- -24,Q,, -b, Q, )]“‘

2 &

, ' 1~£2 1- 53 1w
«i’i’«/Jacer(!M"‘EIM g, -tan(4,)a, |~ ( & ‘)+3ﬂ (-%) B, ~tan(&,)b |+
2 L — 6 8 o

1 Kl

3 i Q, 12 8

(1-7° -7V & 2-35+8°)[ B Y A (1-F
.1«#( £ )01““#(] £) ﬁ_‘_,i_,( Ere )Lﬁhwlw},,m(,m
g

A

Py
#(1-%)4 (l“gz)ﬂ“x (1*—53) [1’;, COS(ﬂhw )+Qh sin(ﬂh,;« )J]
2 4 () gz}\[

(2.101)

1, ( Er, M
L, =22 K, a, ——— (G, +2b @, ~a, Q, ))m
2 g J

1 . ZMJ i:(lw,“g“) #2(} ;:) 1 i /1(1«5‘2) | #2(1_5)
~Lpacn’ O, E~ el e 4, —tan(d,)a, |- a, + b,
M M l 6 & 1§ 1 _‘1\’;—/ T 4 0 8 1
+‘(Z.-3E:"+E‘l ( by, )+ (1-2%)4, . (1-8)~£,sin(B,, ').~+- 0,cos(B,, )
2 \q, 4 6 Q,

(2.102)

{ & 2
A 2-3F+5 I-E)
N =-Zpacr,’ (25 )| 3-4E+E 1 (1-8) || 6, ~tan (6, )4, 3 +e Aot u(1-%) -
2 4(1 3 ’ 6 4

Py,

_3-8re6r - G, p(-F ' b, ’UE‘(]_.,E')* . (238 +7°) Bcos(f,, )+ O,sin(B,, ) .

+
12 Q,, 6 Q, 4 ‘ 12 Q,

Ky

,_/'

S
A —tan(4, eF w4 v 3 (1 \ )
I <1(f3)£111'3 8E+06E —E (“;a_‘_tv‘__kb“:‘/J.,}_mm{_“‘(_‘TH)b‘ »«/1(2 F+§")a()+(2+57)(]»§)“/1‘\+
4

5

L

12

A
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[ Py
‘ K, ’
AF L F ~Psint B, 1+ 0, cos i, —AF+FY P ocosl B, )+ O,sin B,
+ 3-45+E h (ﬂ/.w) &, © (/))h;,, ) B - tan(c?x)bl 3—~45+E" 1y (ﬂ/;w ) ¢/ (ﬂh” ) B
2 Q, : 24 Q,
~FY T Ly = h 20y ) Rt 1+FEW1-F ]
m/1(1_a) ,‘_’L+3 8g+68 —F'| b, 1 i (1.6 o +//(1 v) /L,+( +&)(1- &) 2+
6 Q, 24 Q, v 6 v 4 12 ‘
g 6-15F 10525 o, w(3-85+65°-5") 5  uE(2-3+ z-*) p(2+8)(1-7) ,
' 30 Q, 24 Q, 12 i 12
Ty
g 3-4F +F) P, cos +0, sin{ A, 217y ,
3-4F+E m#( F+E ) 7 © (/))h”.) o, (/3””) U (1 —a) (4a02+3a,} 2+bl”l)~
12 24 Q, 16 T

i | 2 . 2 : N 3 N3 .
- . a A 1-5Y ¢ : ~FY .

_(-E) 2(—99—) +(—'L+blw.J +(w'£~wa,,, +24, (1-#) -—a—"’—+ﬂ(1 ) (ﬁtﬂj,. +:’Lf’oj"
Q,, \f ; i 3 Q 3 Q, 7 )
Bay Oy

3-8 4+ 65 — £ ( b, ] B, cos(B,, )+ 0, sin(B,, ) X ( ay J ~psin{f,, )+ 0, c0s(8,, )
— ‘ ——t 0 -

PO A al- ‘
12 Q,, Y Ly M Q,
o
=\ = 3 (A w3 oy - I Y o8
- j"(l;&) ..... ( Ao+ phat, )i /1(1:{,) ..... agh, + H (2 3a6+ £*)a, —F,sin (,Uh . 2 2+ 0O, cos (,0; ) B
- M
1’1{,‘ e
3-AF+F4 1 B, cos(ﬂhw )+ Q. sin(/-?,,w) -F, Sin(/}h” )+ Q, cos(ﬂ,}w)
4 Q. " a, -

1-5) |( a b ' 1-£) -5y, . .

0

3 0y, 2y

Fy ny
N (2+ a)(] wé)’ P, COS(ﬁ,sW )+ 0, sin (ﬁh,, ) i+ ~F, sin (/)’hw )+ 0, cos(ﬁhu ) . 1
6 Q,, ' Q,, J



-

94
2.6 Mod¢le du rotor de queue

Le rotor de queue fonctionne dans un écoulement d’air complexe, en particulier lors
d’un vol & vitesse réduite, prés du sol, lors d’un vol latéral et lors de la transition du vol
stationnaire vers un vol en palier. Le sillage du rotor principal, ainsi que I’interaction de
I’écoulement d’air de I’empennage avec le rotor de queue créent un flux fortement non-
uniforme qui peut dominer les réponses du modéle du rotor de queue. Supposant le rotor
de queue comme un rotor de balancement (en anglais teetering rotor), avec un angle de

conicité «,, constant, une premiere approximation consiste a ignorer les effets non-
uniformes décrits ci-dessus. Etant donné que la vitesse de rotation du rotor de queue est

suffisamment grande (= 3Q,, ), la dynamique de I’extrémité de la pale peut étre ignorer

et le rotor trouve son régime établi instantanément.

!

i

h

L

dans le repere du constructeur. L hélicoptére UH — 60 de Sikorsky est congu avec un

rotor de queue incliné sur le tribord du stabilisateur vertical, dont ’orientation est
obtenue comme une rotation de ®,, = 20" par rapport a i,,. Pour le développement des

forces et des moments aérodynamiques, nous avons introduit deux repéres additionnels

"rotor de queue" 7 et "rotor de queue - vent" WT .

(8)

Pour le vecteur £, la vitesse V, et le taux d’avancement z, , nous pouvons écrire:

1, =Rt o 1, = ROt o (1,7 =1, )
n /, R hy+ A, |
R, =] by | = Rot , (9&[ ~(gg}3 + Acgb)) =Rot . i | b |—| b, +AD,

Pz h hy + Ahy )

!

o~
P

104)



U D) — Rt T (e o)
Vil =Roty g [-Vm +(“)5;’1 Xy )—J

)
v, 0 0 1Y
ViD=V =10 Cy S,
LARK MS(DWe (.;Vq)w W
R()t‘ 714 B ‘
iy = U,"Z - V!z

V]"("

Vel

NI
Vo |+ [('OB'I ] by
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(2.105)

(2.106)

Figure 2.13 Orientation du rotor de queue (UH — 60 de Sikorsky)

Avec un angle de glissage S, et o, Dangle d’incidence par rapport au plan du rotor

de queue de rayon #,, la vitesse angulaire dans le repére "rotor de queue - vent" est

calculée comme :

B, mt&n“[L]; a,, =tan™' »--m—mfw—wm (2.1607)
U, U™+ VlZ
hPIW cos( [)’,) sin ( ye ,) 0 P P P,
Q’u' =| —sin (ﬂ:”) COS('B’;«') 000 |5 |9 |=Roty x| O (2.108)
R, 0 0 LR LR B

Rotyype.q
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Les expressions de battement longitudinale (aw ) et latéral (bw ) sont calculés par (2.109) :

tml(dam)(l "'%“/LJ‘ZJ """(] +"/"l"l"!"")
7 4 hy Ky : - ; 2 -
Ko b = 2 107 o i
b o s \[14
[lww—;mJ sma(()w,\.}(l%émj
. i ‘4 ) \2 IL{ 2 3 ’
K,y = diag lm-i—wf« tan ((;}”")J ('ﬁ + —-—i’wJ(l t3 /1,.3J
Kirn )
P -
p 4 pan (5 1 ft6 110, .
o T AL, T T 7 -
T =3 | 2tan( .srR) T cpamr |1 ~16]] O it (’; B, +26,, +2 ;'Vm)
Krvm ........................................................ S| A k
l/f[’]\' ‘ ” 52[ -
Frackin

(2.109)
ou #,, et 8§, sont respectivement le pas collectif et la torsion initiale de la pale du rotor
de queue. La vitesse induite normalisée du rotor de queue 4, peut étre exprimée sous la
forme générale (2.109) en fonction du coefficient de la portance du rotor de queue .,

v W C

I L (2.110)
Y Qo 2 ut A

Les forces aérodynamiques et le rotor anti-couple dans le repére "rotor de queue - vent"

sont calculés par les expressions (2.111), (2,112}, {2.113) et (2.1 14},

F

g My A, (1w 1+ 40,°
Tho= =ty 1y O L * (3“ ﬁz‘“)g ot (—“;:‘““20 -
Kim "“'"'fl\/ﬁ"""“ 23 | 3)

' 1 /U“l 'tan (5“1')’4)/)5'/‘ Ly P
—tan{d.... m+,.,.m1,m. o+ lwmmﬁ;+mmlmm"i‘ﬂw
(‘ .:/R)[3 5 ) or THYy 5 40,
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Klﬂ‘i
e,
S . Cp o Oy —tan (G ) Gyy 4
]IW‘I D Arp Cp 7‘1 Q"/' o ( = ) = *“/”1 /1'01 - 11u )".
2 - 2ay, 4 “
Ky
6y , . tan (‘S‘:me ) 2 _
"“'—“(/"7’/102" Ay )“W or Gy, + bu, (ﬂm =My, ) +
4 4 13 .
Kirg
3 awby  w oy | G —tan (S )ty 6,
= Ay, et B P g ) - Aol
4 oty 6 4 ( 07 Wy ) 6 g
Ky i
3tan (B, ) Ay Myay, | B cos ( B, ); O sin ( B, )
by, A : ’ -
16 Y216 Q,
Kim iy
—— (. , 3 2.112)
tan ((S.STR) 1 + aﬂ/ 4 ,ll;,-b”h _P’ sin (’H}'W )+ Q’ cos (/),['Cif )
e ™M 6 16 Q,

YW/'

I 4
+6, K , +-:’1-—Jb,7;y

- ‘

I A T

O Gy Co By Q,
e

J ‘ Ky
18, ~tan(d,,, ya,, |
07 ( .3/1<) or ((%; 2/1,[,2][)”‘”‘ —-3/17.61071"*"

|

16

™ / o~ . o~
m_/fg‘_a e 6, —tan ((3.37'7%)"07' +«@~'£~—’r/t ( tan (‘Sa'm) b
A Yoy 6 g 7

Q“W

ﬂm + gy

~PF sin ([f,," )+ 0 cos(

) 3201[’3/

2 M6 G )

6 1

L
!(7) (tan(&”\)a‘, + 5y, )J

+ (”é’ - iy J Ao By, + (2.113)

Q, 4
By
- ECOS('BIW )+£?/ Sin(’[}ln’) M_Hl_(()ﬂ( .., =~
Q, 48

e

a]y;’_ 1 #7’2 /L fard |
~&y. by )+ tan (8, ) T(A),, + fhy ay, )-—bw, —6¢+w7)- Aoy + 5 b”u
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K,

("Y (’v tv:v )
My R Oy —tan{dyy oy, O Ay
Ny =2 oa ¢ pt Q22 [ gy 2] ' A IO,
S P by G Tp 88y 4a,, ( Hy ) 3 by P
. By
Ky 4 i N ( ) . ( )
, T ’ tan (3., a, | Pcos(f, )+Q sin(B,

. ,./:_.Lt/... 6”[ wtan(o]liw)a(nl +../_t.l.!‘...g” +_.._(_3,/,R—),.b”h’ —-wj..if.'..,. ‘ i . £ ) N

6 8 8 4 Q,

Kire . N
A ay. by TRV I R
mm(,;m){ Ug(mi’fwé‘m._*. 1;“ /t, ey ] ..... ]“(ﬁz,‘i:fg_r.m.‘éi_,f_’_)g‘ﬁ“”;

Q

’ Kire d
g wn(8) by |Rsin(B, )+ cs(B,)
3 8 Ye 4 Q,

:l o ﬂ' 207 - | ,ll i y
II() (4“01 +oay, +bu“ ) > (’qr;r + ey, )+""§1""ac'rbz7;,. -

., (2114
1L 1'1;,‘2+bn7w2] I (Bcos(/i,ul)+Q,sin([)’,w)TJ{ qu(/, )+Q cos(/] )} 1 (
. J

Q, Q, J

Selon I’approximation S6, le coefficient de trainée Cp,, dans Pexpression de la force de

trainée (2.112) et du rotor couple (2.1 14) est calculé comme une fonction quadratique du

coefficient de portance du rotor de queue C,,, :

[

J

LA
N

(m """ k +k Cme {

Dans le repére "corps" les efforts créés par le rotor de queue sont calculées a partir des

expressions (2.1 16y et (2.117)

Lo o Jes(B) ssin(a,) o)y
0

) _ - Ny ) . g - 2116
go) = 0 C,, -8, |l sin ( B, ) cos ( B, ) Yy (2.116)
Y -y -7,
L 0 S(hY'R ¢ Dy | 0 0 1 & rd
b (T
Rotge.s Roty % - B

M,® = (Rot,,, ) [0 0 N, ] +[5®]E® 2.117)
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2.7 Modéle atmosphérique

La pression, la densité d’air et la température ont une importante influence sur les
paramétres aérodynamiques de chaque aéronef. Etant donné que les hélicoptéres volent &
vitesse subsonique et dans la troposphére (sous 36000 pieds), la température moléculaire

T, et la pression atmosphérique p_,, statique peuvent étre calculées par (2.11§) :

atin

h

ali

T

"ol t

T,

mol T Lmol®)

P €
avec T, =288,15 [K] -la température au niveau de référence (de la mer),
p, = 101325 [N m"ﬂ ou [Pa] est la pression statique de référence,
g, =9,800665 ( m s i - ’accélération de gravité de référence, 4, - I’altitude en métres,

T

mofl

=-0,00651122 -le gradient de température et R, = 287,039 [J K™ kg"] -la

constante spécifique du gaz.

2.8 Linéarisation du modée¢le. Dérivés de stabilité et de commande.

L'¢tude détaillée de la stabilité¢ et de la commande d'hélicoptére est une question
complexe qui est au dela des objectifs de cette recherche. Par conséquent, une approche
plus simple sera adoptée, se servant de plusieurs simplifications usuelles : la vitesse du
rotor demeure constante ; dans les conditions de vol d’équilibre, la dynamique perturbée
du rotor est le résultat d’une série de conditions de vol établies ; le rotor est considéré
comme un systeme répondant instantanément a la vitesse linéaire et angulaire du centre
de masse de I’hélicoptére. La théorie de stabilit€¢ et de commande de vol vise
principalement a trouver les facteurs impliqués dans la conception des qualités de vol et
en général a faire une évaluation précise de la réponse d'un aéronef aux entrées de

commande et aux facteurs de perturbations. Le rotor principal fournit la plus grande
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contribution & la stabilité de I’hélicopteére et sa dynamique (principalement de battement)

est la plus importante.

Les dérivés de stabilité et de commande sont attribués a George Hartley Bryan qui, en
1911, les a développés pour étudier la stabilité des avions. En utilisant sa méthode, la
variation d'une force aérodynamique ou d’un moment correspondant est exprimée en
série de Taylor des variables indépendantes. Pour développer le modéle linéaire de
stabilité et de commande, seulement les premiers termes sont maintenus. Pour notre

systéme, les variables indépendantes sont subdivisées en : variables principales x, ,

variables d’ordre supérieur X, , variables de commande x,. et variables de perturbations

R
atmosphériques X, . Par convention, les principales variables indépendantes utilisées
sont les vitesses linéaires (u,,v,,w,) et angulaires (p,.q,.%) du centre de masse
d’aéronef et I'attitude du fuselage (®,.0,,'V,). Les variables de la commande sont
(6,,4,,Bs.6,,) et les vitesses linéaires (u“‘,,vg.wg) , et angulaires (pg,qg,r;\,) des
rafales sont vues comme perturbations atmosphériques. Les variables d’état du systéme
de commande peuvent étre exprimées en tant que déplacements des leviers du pilote
u :(nm,/,n,a,,,ry,m,g,fypm, )T ou angles de pas des pales [90,81(,49,}9,(9,,,{] . Chaque
ensemble de variable semble adéquat, mais les déplacements des leviers

(r]n,a,,,r],(,,,,n,nng.,npm,a,)et la perception du pilote (attitude, position et déplacements par

rapport au repére inertiel) avec X, =(u,v,.h=-w.4,.0,,1,,p,.q,.7) est le plus

conforme aux criteres de la qualité de vol. Pour I’hélicoptere, les variables d’ordre
supérieur incluent les variables de la dynamiques du rotor principal (de battement, de
trainée, de torsion des pales), les variables de la dynamique de la vitesse induite et
modes de torsion de la cellule. L'application des lois de mouvement de Newton a un
hélicoptere en vol meéne a un ensemble d'équations non linéaires décrivant I'évolution de
la trajectoire et de l'attitude du giravion avec le temps. Le mouvement est attribué a un

systéme orthogonal, fixé au centre de masse du fuselage. Dans la section 2.4 et la section
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2.5 nous avons discuté comment ces €équations pouvaient étre combinées ensemble sous

la forme d’équations différentielles non linéaires de premier ordre :

i‘:)} """" ](H(X s X X xl”l)

’ (2.119)
Xp = Jr (Z(m/sam&/nz(m(’a:&;’ﬂl)

La dimension du syst¢éme dynamique dépend du nombre de degrés de liberté inclus.
Pour le moment, nous considérerons le cas général de dimension [x . X,,x ] e/R". La

solution de I’équation (2.119) dépend des conditions initiales du vecteur d'état, de la

fn( e X Xo J)

et de la dynamique
Jr (fﬁmfﬁwﬁ(‘st)

variation de temps de la fonction de vecteur f,, =

de I’actionnement du rotor principal et du rotor de queue, introduite par la fonction de
transfert G, (s) M, , dont la réalisation interne dans I’espace d’état sera approximée par

—k, I, M,

kI 0 . Généralement, I’actionnement du plateau cyclique/plateau collectif
. V4 T4 4x4

mais ces derniers ne seront pas pris en compte pour ne pas augmenter d’avantage 1’ordre

du systéme.

Madéle dynamique de Factionnement du plateau cycliqua

RIS SO RSO
———— Actuators Series

——- ADOCS_act

UpperBoost_act ||

A

o]

Magnitude (dB)

&Y

120 . . . .
1 10 10" W 19

Frequency {(rad/sec)

¥igure 2.14 Lieu de Bode de I’actionnement du plateau cyclique
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Le systeme de commande utilise I’interface schématisé¢ de découplage statique M, a la

figure 2,15 et impose comme entrées de commande les déplacements des leviers de

commande dans la cabine : longitudinal 7, , latéral ,,, collectif 7., et palonnier

) pedeat

Collective
Pltch

Collective
P05|t|0n

25 9° (up)

10 in (up)
0 in (down) 9 9° (down)
-0.256%in

Lateral Cyclic | 5in (right) ° (right) Lateral
Position { »| 16°%n Cyclic Pitch

XiaT -5 in (left) L — | -0" in (left) Ac
Longitudina! 5in (fwd) _12 50 (afty | Longitudinal
Cyclic Position —————»@ Cyclic Pitch

XLonG -5 in (aft) 16 3° (fwd) Bis

1.63°in

i

Tail Rotor
Pitch
E1r

Tail Rotor
Pedal Position

2.69in ( ° (right)

70

-5.54°in bias ™

A\

-2.69in (it) 29.9° (left)

1.60%in

Figure 2.15 Interface schématisé de découplage statique [JC91]

Malheureusement, les solutions analytiques des équations non linéaires générales (2.119)
sont extrémement complexes et leurs applications sont limitées. Ce n’est pas le cas des
approximations linéaires du mouvement non linéaire général. Le principe de la
linéarisation est la condition que le mouvement peut étre considéré comme perturbation

par rapport a I’équilibre ou a un état d'équilibre,

X=X, +5x (2.120)

supposant que les perturbations sont petites, et que les forces et les moments externes
peuvent étre représentés en tant que fonctions analytiques des variables perturbées et de

leurs dérivées. Le théoréme de Taylor implique, que si le vecteur des forces et des
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moments (fonctions des charges aérodynamiques) et toutes leurs dérivées sont connus a
n'importe quel point (I'état d'équilibre), le comportement de la fonction (2.119),
n'importe ou dans sa partie analytique, peut étre estimé a partir d'une expansion de la
fonction en série, aux environs du point connu. Les forces et les moments peuvent alors

étre écrits sous la forme approximative :

oF oK ar | ot oF o e
LP(B) Ry |5 E v . 9" Ky | . XKe | o &(— oo ‘:\:; <
{vaJ ..... {M[} M Sxyt oM Xyt oM Oxp+ M OXp+ oM OX+ oM Oxp+ oM .
ax, A lawd (& [a ax]  lox,
(2.121)

La fonction {(2.121) peut étre habituellement augmentée avec la dynamique de

I’actionnement du rotor principal et du rotor de queue et écrite comme matrice de

transfert (G, () ou matrice de transfert (5, (s) avec perturbation atmosphérique, dans
I’espace d’état sous la forme matricielle (2.122)
B, 0%, = Ay 0%y + Ay Xy Hh, Ay, 0X, +B,, 0%,

B, 0%y =Ag OXp +Ap 0%, +h Ay 65X +By,.0%,
OXe =~k Jd, X0 +M, Su

Y= 0%y (2122
EyoX,=A 0%, + A, 0X,+k A, OX. ‘
E, 0%, =A, 0%, +Ay 6%, +k,A,. 86X,
0%, ==k 1, X +M, ou
= 0Xy
Am; """
(2.123)
Ay =
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La condition que les charges aérodynamiques soient des fonctions analytiques des
variables perturbées est généralement valide ('hystérésis et les discontinuités des
charges aérodynamiques sont des exemples du comportement non-analytique). La
validité de la linéarisation dépend du comportement des forces a petite amplitude, c’est-
a-dire quand la déviation (de la valeur d’équilibre) de la commande ou la perturbation

deviennent trés petites, l'effet linéaire devient dominant,

2.9 Les équations d’équilibre

Les équations vectorielles du mouvement d’un aéronef sont normalement résolues dans
un des repéres : corps, stabilité ou vent W qui correspondent au trois type de systéme
d’équilibrage de la soufflerie. Si le systéme d’équilibrage est aligné avec la ligne
centrale de la soufflerie, les mesures (et les dérivés de stabilité) sont données dans le
repére "vent"; pour produire les conditions de dérapage, le systéme d’équilibrage est
monté sur une base tournante en lacet et le repére en question est le repere "stabilité"; et
derniérement si le systéme tensiométrique est fixé a I’intérieur d’hélicoptere, le systéme
de balance est dite "corps". Traitant de la cinématique d’abord, en se plagant dans le

repére "corps” B, on a la somme vectorielle suivante :

Vv, =V,

bi bw

+V, P =V, @ AV (2.124)

avec V, la vitesse de vol par rapport au Iair, sz(m la vitesse de I’air par rapport au

I
repére inertiel, Vﬁ_] la vitesse d’équilibre et AV la déviation de la vitesse d’équilibre; Si
}V/}' est la norme du vecteur de la vitesse d’équilibre, (P, ©, ) les angles de roulis et
de tangage en €quilibre, 5, I’angle de glissade (en anglais side slip angle), , 'angle
de la trajectoire par rapport au I’horizon, 2, le taux de rotation (présentée a la
figure 2.16). Les composantes de la vitesse d’équilibre dans le repere "corps" (B) ont la

forme :
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Uy =V, cos(©, oos (a Jeos (4, )-sin(@, Jsin(,)
VE:IV.l,I[cos(<DE)cos((z£)si1‘1(;‘E)+sin(<DE)(sin(@E)cos(a Jeos (&, )+cos(®, )sin( )]
W, s ! l[ sin(®, Jeos(a, )sin (£, )+cos(d, )(sin(©, )Los(af)cos(w)+u)s(0 Jsin(e ,))]

(2.125)

ou I’angle de poursuite de trajectoire d’équilibre (en anglais track angle) £, est calculé

par I’intermédiaire de la solution physiquement valide de la relation quadratique :

sin (g, )=~k £ {2.126)

ou les coefficients kﬂ i=1.5 sont calculés comme :

- —k k
k., =sin (@, )sin (O, )cos(a,,) k, 2#
kh w COS((DE)COS((XE) km , thz 2‘}2?>
k, =sin(B,)-sin(®,)cos(®,)sin(a,) &, __W
P X

Les composantes du vecteur de vitesse angulaire sont calculées par :

Pl b, ~Q,sin (@) Py
Ourr =] Op |+] g, | =] Qsin(@,)cos(0,) |+] g, (2.128)
R, |n] |Qucos(®,)cos(©,)] | n

ou les déviations des valeurs d’équilibre sont désignées par des lettres minuscules. Pour

compléter les paramétres initiaux, définissons les variables dépendantes «,, [3,, et q,

respectivement ’angle d’incidence, I’angle de glissade et la pressions dynamique. La

vitesse ( V,,,-'/;).fl, -~+~(V,,,. -/,,)1,; définie la direction de la I’axe 7,,, dans le repére vent

(W) et j,, est définie par le produit vectorielle j,, = M
’k o X Vb,} )
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(2.129)

q, =0, Sp(Vm V)

bz

La masse spécifique d’air (/f)) au niveau de référence, dans les conditions de

température et de pression standard est fixée a 1,225 [kg m™] ou 0,002377 [slugs fi”].

Remarque : Notons que les valeurs des angles de roulis et de tangage en équilibre ne

sont pas libres. Elles sont calculées a partir de la résolution simultanée des

équations d’équilibre du corps rigide.
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Remarque : Pour certains cas de vol acrobatique, les parametres d’équilibre initiaux

sont calculés en fonction du facteur de charge.

Figure 2.17 Définition de ’angle d’incidence et I’angle de glissade

2.9.1 Les équations d’équilibre d’un corps rigide

Pour un aéronef en équilibre, les forces et les couples aérodynamiques équilibrent les
forces et couples inertiels, centrifuges, et gyroscopiques verifient » F, =0, > M, =0.

En réalité, les valeurs acceptables sont de I’ordre de :

STAF, <m 107, DTAM, <0,57, 107,

Le modele linéaire perturbé (2.132) est développé en premier ordre autour des
conditions d’équilibre (2.130} et (2.131). Le modéle est basé sur la supposition que le
changement dans les conditions de vol de I’hélicoptére peut étre représenté par la
superposition de I’ensemble des effets linéaires sur la dynamique du systéme, provoqué
par les changements des variables indépendantes. Dans un systeme compliqué comme
un giravion en vol, la supposition de linéarité est mathématiquement correcte seulement
pour de petites perturbations autour des conditions d’équilibre. Les composantes en

€quilibre portent I’indice £.
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X, +X, +X, +X,, +X, o , . v
M T Fy Hy Ve W.Q, -V, R,+gsin (@))
m, B4 : Ay T & ;
Y., +Y. +Y. +1Y, ) RN
M Ty by Ve - (“,I'&. R[ — P[ n/(? - gCOos (@1:?)S1n ((DF) 62 1303
", ' :
Z, +2, +2Z, +2Z, +2Z, _ : .
My 1 Fy Hy Ve - V,P.~Q, U, ~gcos ( 0, ) coS ( (Dl‘-,‘)
m, -
J 27 (z L,‘,e,: + (_J vy J iz )Q; R/-" +J X P;Qz ) +J Xz (z Nl&- + (J xx J ¥y ) PIQI -J Xz Ql{ Rﬁ) =0
- N 313
Z‘Mﬁg "*"('] 22 -.J XX ) P/ Rz«: +J hvd (R,,f‘ - PJ-Z») =0 (= 131)
:I,r.\' (Z /\,H/_ + (J.\;r - ‘]rr ) P/Qﬁ - ‘]x./QJv:Rt«: ) +Jyy (2_: sz,, + (Jn' - Jzz )QHR;:; + J\'z Ple) =0

Considérons le modéle non linéaire de la forme (2.1195. En évaluant le modéle autour

d’un point d’équilibre pour de petites perturbations de type (2.132) :

: {(2.132)
- ~ = . R 7 "
Xo=| BB Bp+f | iB=la a, b.]52=[4 4 A1

. . r
X = [f)oﬁ +6, Ay +Ay B +B. 6, + 6’0'/‘]

le modele linéaire perturbé s’écrit comme :
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et (Ry 41, )V +9, ) = (O +9, ) (W, +w, )~ gsin (O, +6, )

+(Be+p )Wy +w, )= (R +1 ) (U +u, )+ g [s'm (O, +6,)cos (D, +4, )J

+(Qp + g )(Up )~ (P oy J(Ve +0, ) + q| cos (@, +0, )cos (D + qﬁ,,)]

Jyy "']zz)(QE +%)(R1e‘ +"b)+‘/.rz (Pl +ph)(Q.~?+%) +

0 z ‘lef J
’ :
+ ”“““_“““M“‘—“’“ Z N{z,, + Z il (J xy 7 J 174 ) ( f )1 + P, ) (QI-: +q, ) -J X7 (Qr +q, ) ( RI:J +H, )

N Ty oX;

. ] i
o DI
, = o,

+m ............. - Z Ly, +Z ........ +(Jyy - ”)(Q +(]P) R, +r, )+ Jo (Pt P/, ( )y +4,)
J

ZNH)
’2: Z\Isj Z \1 )Y) (£ +/7b)(0 + 4, )=y (D +l], R H13)

En supposant cos(g,)=1:sin(g,)= g, ;cos(6,)=1;sin(6,) =6, :cos(w,) ~1:sin(w, )=y, ,

ainsi que le produit de deux (ou plusieurs) variables perturbées soit nul et tenant compte

des relations (2.130) et (2.131), nous pouvons réécrire le modéle linéaire perturbé :
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et Ry ¥, AVt = Qp oy =W g, - g.005(0, )0,

b, = T, +Pow, +Wop, — R, U, + g !cos(é) ,;)cos (fb #)0, —sin (G),,-‘)Sin (®, ) ¢b]
”I}} [ . y ;
)
er,.; + Z ] LA
W, = ;,, By Oty +U,q, = Py, =V p, = g[ sin (@, )cos (D)6, +cos () sin (D)4, |
B
oy
L[5z
Py Z px Lt (L =d i Oty + Ry )+ (o + Q) |+
J (}(z N Bj
J o . J.t Z " * (JX-\‘ = Iy WPty + Oy )“’ Iy (Q}c’}: + Ryqy)
Yz TV xz j X,
i a[ w},J
G, =— z + (S =S Py, + Rypy )+ 20 oy ( Ryt = Py

+ ('].v.x - ‘-]Vy)(P.‘;‘qb +0up, ) ~J (Qk"b + R/i‘(]b) +

+ i 4 7 z A + (']n' - Jzz)(Qz-;’?a + R4, )"' J sz (PE(]h + Q{fp!;)
yi

(2.134)

qui est une forme particuliére du modéle linéaire (2.122}, présentant le développement

de la premiére équation seulement.

Nous avons ainsi obtenu le mod¢le théorique et linéaire d’un hélicoptére en toute

condition de vol (2.122), que nous allons appliquer maintenant a4 un appareil :
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I’hélicoptere UH-60A (BlackHawk) de Sikorsky pour le mode de vol au voisinage du

vol stationnaire & 60 [pi] d’altitude du niveau de référence.

Pour le vol stationnaire et le vol a basse vitesse avec une référence visuelle, I’ensemble

le plus raisonnable des variables de sortie est constitué par le vecteur
o o

X, ::LA'"], )",.,h(hxmé,.),;é,,,(?b,l//,,,ph,q,,,rh i dans lequel les (J) devant les variables

sont omis pour simplifier I’écriture. Ainsi les vitesses linéaires sont définies dans le

repére inertiel de la terre et I’attitude est exprimée sous forme d’angles d’Euler.

Comparativement au modéle (2.122}, le choix des variables de sortie implique une

transformation des paramétres entre le repére "corps” et le repére "inertiel" et nécessite

une transformation de la matrice de transfert G,(s)-—>G,(s) et de la matrice de
transfert Gy,, (s)— G,,, (s) du repére "corps" dans le repére "inertiel” qui s’écrit dans

I’espace d’état sous la forme matricielle :

dont les valeurs numériques seront introduites par la suite. Les détails de cette

transformation sont donnés par Heffley et al. dans [HJL.W79].

Nous considérerons la matrice de sortie compléte sur les variables de la cellule exprimés
dans le repére inertiel, afin de mettre en correspondance le modéle avec le systéme réel,
mais pour la synthése du compensateur par la méthode de sensibilité mixte et par la

méthode de loop-shaping dans le chapitre 3 et le chapitre 4 nous n’effectuerons le retour
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. N T . 7 .
que sur les signaux | A,(p, +¢, ).(X. +6,).1. 0.4, | ou|hd¢.0,.%,0,.q, | ,qui seront
i I f J27h b

introduits par des multiplicateurs matriciels C, et C,.

D’une part, comparativement aux modeles existants qui sont soit trop simplistes (2.134},
soit trop complexes, dont la dynamique du rotor principal est calculée a partir de
I’équation générale de la dynamique (2.34), nous avons développé un modéle
intermédiaire sous certaines hypothéses, tenant compte de la dynamique de battement et
de la dynamique du rotor principal qui nous permettra de faire une analyse et une
synthése de lois de commande dans le chapitre 3 d’une part un peu réaliste. Les
principaux objectifs de la loi de commande sont décrits dans le chapitre 1.8. D’autre part,
pour réaliser une commande de vol ou un systéme de stabilité et commande augmenté
(SCAS Stability-and-Control Augmentation System), I’influence de la dynamique du
rotor principal est trés importante. Ces approches exigent un systéme de commande a
large bande passante et a pleine autorité qui est I’objectif des chapitres suivants. Aprés
avoir examiné les spécifications de base et les techniques de synthése de la commande

robuste, plus spécialement 1’approche H, et la technique de loop-shaping dans le

chapitre 3 et annexe C, nous présenterons les expérimentations des lois de commande
dans le chapitre 4. Les approches utilisées sont basées sur les techniques dans le
domaine fréquentielle, permettent de prendre en compte les différentes spécifications et
les conflits de structure de la loi de commande et fournissent la robustesse nécessaire

aux compensateurs pour étre valables dans un domaine de vol suffisamment élargi.
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CHAPITRE 3 : LA SYNTHESE DE LA COMMANDE ROBUSTE

3.1 Introduction

Dans ce chapitre, nous allons mettre en application la théorie de la synthése de la

commande robuste par I’approche H_, ainsi que la régulation par I’approche linéaire

quadratique pour obtenir une loi de commande de vol de I’hélicoptere UH-60A (Black
Hawk) de Sikorsky. La résolution du probléme standard de la commande robuste par

I’approche H_ , ainsi que les principaux algorithmes sont décrits dans I’annexe C.
Certaines définitions qui nous serons utiles pour le développement sont données dans
I’annexe A. Le calcul des normes H, et H_ est rappelé dans ’annexe B. Le point de
fonctionnement étudié est le voisinage du vol stationnaire & 60 [pi] d’altitude du niveau

de référence. Pour obtenir ces résultats sans rentrer dans les détails du développement
théorique, nous nous sommes donc volontairement concentrés sur 1’adaptation de la

théorie pour notre systéme.

3.2 Formulation du probléme standard H,,

En se référant a la représentation schématique de la figure 3.1, le probléme standard H

appliqué pour I’hélicoptére consiste & minimiser I’effet d’une perturbation, notée, w, sur
le comportement du systéme. Le signal w est supposé & énergie finie et sa taille est

mesurée en norme Euclidienne, notée | “2 Son effet sur le systéme est mesuré par la

norme | | d’un vecteur "coft", z . Enfin, on peut agir sur le systéme par une commande,

u, en utilisant I’observation, e . Il s’agit donc de synthétiser une loi de commande
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U= K(s) e, qui minimise 1’impact du signal, w, sur le signal "coit", z. On mesure cet

|1,

impact par le rapport W . La stabilité du systéme bouclé devra bien siir tre assurée.
w y

w

P(s)

[\(s) <

Figure 3.1 Schéma du probléme H  standard

Dans ce schéma de boucle fermée, ¢ et u, désignent I’entrée et la sortie respectivement

du compensateur K (s). La matrice de transfert P(s) décrit I’interconnexion entre les

. L NI .

signaux du vecteur d’entrée 1 J et du vecteur de sortie l J’ et inclut la matrice de
u [

transfert de I’hélicoptere G (s) et les fonctions de pondérations, qui seront introduites

par la suite. De la figure 3.1 on peut écrire :

O e e

La matrice de transfert 7 (i) est celle du systéme augmenté et on la supposera propre.

Lorsque ce systéme est rebouclé sur la commande « = K () ¢, la matrice de transfert en

boucle fermée de w & z, est donnée par la transformation lin€aire fractionnelle (LFT)

F(P.K):

Z(s)=F(P,K)W(s) o
"( (3.2

F(P,K) =B, (s)+ By (s)K(s)(I =Py () K (5)) Py (s)
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z, .
En observant que le ratio -IUL est dans le pire des cas :

I,

sup-“fwzw = HF, (P.K)

wieQ) ”W"l

(3.3)

@

2

le probleme standard de la synthése de la loi de commande par I’approche H  peut se

formuler mathématiquement comme suit :

Probléme H_ optimal: minimiser la norme HE (P.K )H“ sur I’ensemble des
compensateurs K (s) qui stabilisent le systéme de maniére interne. Le minimum est noté
( 7’0::/) et est appelé gain (ou atténuation) (H_ - optimal). Le probléme sous — optimal

associ€ joue également un réle important.

Probléme H_ sous - optimal : étant donné » >0, trouver un compensateur K(s) qui

stabilise le systéme de maniére interne et assure |, (P, K )]l <y.

oo

Introduisons les différents objectifs et spécifications pour la syntheése de la loi de
commande robuste. C’est l'objet du paragraphe, ou nous choisissons de traiter les
performances fréquentielles de I’asservissement dans le cadre des valeurs singuliéres de

la fonction de sensibilité et de la fonction de sensibilité complémentaire.

3.3 Objectifs de performance

De maniére général, un asservissement est performant s’il réagit rapidement et suit la
consigne avec précision (cas d’une boucle de suivi) ou rejette rapidement les
perturbations (cas d’une boucle de régulation). Intuitivement, les performances sont
d’autant meilleures que le gain de boucle est élevé. Mathématiquement, cette tendance

est exprimée dans le cas multivariable par un ensemble de contraintes sur les valeurs
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singuli¢res de la fonction de sensibilité, la fonction de sensibilité complémentaire et le
transfert en boucle ouverte du systéme. Ainsi, nous choisissons de présenter le probléme

H,, sur la boucle de suivi de la figure 3.2, dans laquelle G (s s) désigne la matrice de
transfert de I’hélicoptére, commandé par un régulateur C(s) dans la boucle, avec la
dynamique des détecteurs O(s) dans la boucle de retour et un pré-compensateur R(s)
sur le chemin direct. On désigne par w, ¢ R™ le signal de référence, y € R’ la sortie du
systtme, £ e R™ Derreur de suivi, e R™ la commande issue du correcteur, w, € R™
la perturbation de la commande, w, € R” la perturbation sur la sortie, w, € R™ le bruit
de mesure et Q(s) introduit la dynamique des capteurs. Faisons la remarque que les
signaux w,, w, et w, sont par nature inconnus. Selon le méme principe, cette mise en

ceuvre peut étre appliquée pour tout autre systéme multivariable, répondant a des

objectifs différents.

Selon le schéma de la figure 3.2, aprés un changement de variable, la

transformée de Laplace de I’erreur de suivi s’écrit :

(s).w () )(s).[ w, (s)+G (), (5)+ G (5).C(s).5(s)]
()R( )w(-') 0 (s)w, (s)-

e(s) R(s)
r : (3.4)
= W, (5)+G(s)w, (5)+ G (5).C(s) O(5). Q" (s) £ (s)

K{s) e(s)

------ )= [0+ GO K W)] [R(3)ow, (5) 07 (5)w, (3) -, (9)- G (s) v, (1)

De maniére similaire, la transformée de Laplace de la sortie y(s) s’écrit :

1o

i
[
— H
S~
——

s
\_/
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y(8)=G(s)| w,(s)+C(5)Q(s).07 (s)-(s) |+w,(s)=

ﬂ’{) o(s)
=G( s [w ; K(: ) 1w, (s 5)

2(5)= G(W)K ()1, + G K ()] [R(s)om, (5)=0 (5)aw, ()4 G-3)

+1 =G(s).K(s). (iwm( )K()] HG(s)w, (s)+w,(s)]

[7,+G(s).K (s )]
En notant la fonction de sensibilité & la sortie par S, [_1 ,+G(s)K (vﬂ] et la
fonction de sensibilité complémentaire a la sortie par
T,(s)=G(s)K [1 N1, +G(s)K(: ')T , ces deux matrices sont reliées par la relation
suivante :
G(s)K (s)[1,+G(s)K (s)] +[1,+G(s)K (s)]" =1, (3.6)
Ty(s) So(s)

La plupart des spécifications fréquentielles peuvent s’exprimer par des contraintes sur

S, (s) et T, (s) et de fagons équivalentes sur le profil de la plus petite et la plus grande
valeur singuliére de la fonction de transfert en boucle ouverte L, (s)=G(s)K(s) du

systéme.

I

<L, (s) W,(s)—>
o Ll e
Y R(s) > Cs) B30 G(s) [ro—onlit, (5) 5>
_AE u . +
W, Y.
| L
55T o@)

+
w,

Figure 3.2 Structure de la boucle de régulation
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3.3.1 Rejet des perturbations sur la sortie

L’influence des perturbations sur la sortie est exprimée mathématiquement par la

fonction de sensibilité a la sortie {3.7) :

0, atpwoy

So(s)
et la spécification de rejet des perturbations sur la sortie demande une faible influence de
w, (s) sur p(s). Autrement dit, on souhaite que (S, (s)) soit aussi "faible" que
possible. Nous pouvons aussi écrire [Mac89] :

I B 1

([, +GER )

(S, (s))= - (3.8)
a| G(s)K(s)|-1
lo(s)

Plus précisément, le probléme standard (sans pondération) de rejet des perturbations sur

la sortie se traduit sous forme d’une inégalité sur la norme :
5(S, (jo))<y : Vo<w<m, 3.9

En supposant que g(LO (v)) > | nous en déduisons 1’approximation suivante :

& (8, () =~
a(Ly(s)) (3.10)

a (L, (s)) =g (K(jw)G(jo))> 1 CV0<w <o,

Z. ¥

Comme cette perturbation prend son sens aux basses fréquences, on voit que I’objectif
de cette performance est d’autant plus atteint que le gain de la boucle est grand dans le

domaine fréquentiel et que la plus petite valeur singuliére du transfert en boucle ouverte

Ly(s)=G(s)K(s) du systéme soit grande dans la bande passante. En introduisant une
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fonction de transfert /7, (s‘) , jouant le rdle de pondération (en anglais weighting function)

de type passe - bas sur la fonction de la sensibilité sur la sortie, la premiére contrainte

sur la synthése de la commande robuste est introduite par I’inégalité suivante:

S, (ja))”w <7t Yo<w< @, Soit ”We (ja))SO (/())Hw <y Vi<w<ao (3.1

w.(jo)

3.3.2 Rejet des bruits de mesure

L’influence des bruits de mesure sur la sortie est exprimée mathématiquement par la

relation (3,12} :

W,,(S)xm\('f(‘s)[x(b)[[”’ 4.(1(5)]\ (s)] Q (5):7})(5)Q 1(‘5) (3.12)

Tols)

Etant donné que la dynamique des détecteurs Q(s) est définie & I’avance, pour réduire

Pampleur des effets du bruit de mesure par I’asservissement, il est nécessaire que la
sensibilité complémentaire de sortie soit la plus "faible" possible. De maniére
équivalente :

1

F(1,(s))=&(1,+S,(s))= &([(Jp + 1, (s))]""') = ey (3.13)

ol(l,+L," (s))

nous désirons donc que g(.[ R (s)) soit plus grand possible, ce qui exige, que
Q( L, (\)) soit aussi le plus grand possible ou bien que & (LO (s)) soit le plus petit

possible. Comme les bruits de mesure se manifestent généralement dans le domaine des

hautes fréquences, la norme H_ du transfert en boucle ouverte L, (s)=G(s)K(s) du

systeme doit €tre petite ou & (,LO (s)) <« | et selon I’expression {3.13)ona:

(T, (5)) =6 (L, (5))=5(G(s)K(s)) <y : Vo, << oo (3.14)
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En exprimant notre intérét dans le domaine des hautes fréquences, introduisons une

fonction de transfert #, (is), jouant le role de pondération de type passe - haut sur la

fonction de la sensibilité complémentaire sur la sortie :

v

|7, o), < A

; Vo>, soit |7, (jo)T, (jm)”w <y; Vo>, (3.15)

Selon les deux premiéres contraintes, le probleme H_ standard consisterait a trouver un

paramétre () et un compensateur K ( s), tels que

Sy (/ (’-))

, (ja)) <y, “SU (ja))--%-- vT(')(jm)“m <y (3.16)

oy

Pondéré, le probléme est contraint par I’inégalité (3.17) :

W, (.ja))S(.) (jw)

RY R <y
W, (jo)I, (jo) 4

1W; (jo)S, (jw)+W,(jo)T, (ja))”m <y (317

)

3.3.3 Poursuite du signal de référence

La relation entre le signal de référence et la sortie est exprimée mathématiquement par la

relation (3.18) :

\_.%\'mm«/
To(s) Ris)

) =G(s)K (s)[1, +G-(s)1<(s)]”"Q"1 (s)R(s) (3.18)

La poursuite idéale de la référence implique que le nombre conditionnel

kr(”l;) (s)fi’(s)) ~1 soit proche de un et mette en valeur le role du pré-compensateur

R(s)=07"(s)R(s).
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3.3.4 Limitation de I’énergie de la commande
L’énergie de la commande sera réduite si la norme de la matrice

K (s)[l ,+G (S)K(sﬂ1 est "faible". En appliquant I’inégalité triangulaire [Mac89] :

F (1, (s))> F(G (s ))E(K(s)[]p + G(S)K(s)j”‘) -
| | o F(T(9) (3.19)
= &(K()[1,+G()K(s)] )Tm

on peut remarquer que 1’énergie de la commande sera d’autant plus petite que & ("/;) (s))

sera "faible", sauf pour les fréquences ou la norme de la sensibilité complémentaire de

sortie & (7, (s)) est elle-méme élevée. Pour cela on introduit une fonction de

pondération W, (A) de type passe-haut ou passe-bande telle que :

”K(jm)SO (]{o)“ < WW(ZJW’ Vo > o, soit

W, (jo)K (jo)S,(jo)|, <y Yo> e, (3.20)
Donc, une diminution de la norme de la fonction de la sensibilité complémentaire a la
sortie f.’l;) ( jm){ aux fréquences élevées répond a un double objectif. D’une part, I’effet
des bruits de mesure sur la sortie y(s) est atténué. D’autre part, pour éviter des
agitations excessives de la commande #(s) et donc la fatigue des actionneurs, dans les

domaines fréquentiels ou la norme du systéme n’est pas €levé, il importe de réduire la

norme de la fonction de la sensibilité complémentaire & la sortie '7}) (jm)]. Cela peut
aussi passer par une réduction de la norme du compensateur E)'"(K'( jm)) ou plus

généralement de & (K (jw)S, (]a)))
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3.4 Synthése du compensateur H,, par la méthode de sensibilité mixte

Dans cette section nous allons appliquer la théorie de la synthése H  du compensateur

central par la méthode de la sensibilité mixte. La structure de la boucle de commande est
présentée a la figure 3.3. Cette derniére peut étre vue comme une boucle de poursuite,

avec sorties additionnelles (la vitesse de roulis et la vitesse de tangage) et (deux) entrées

fictives. Soit Vl, (3, +6,),(%,+6,), 1. D4, T la sortie du modele d’hélicoptére G, (s),

,
3 e ? 14 1

W, = [’7(,(, 1> s> Miamg + T pectar» O O] I’entrée du pilote, alors

zl = Leh * ey, +ih,* E’_\.,’+€b » er,, 3 e[f,, * (3% et 22 = [e(:oﬂ * e/mt s elung ? e‘pvdal ’] * La matrice dC

pondération sur I’erreur J¥, (s) et la matrice de pondération sur la commande W, (s)

sont introduites selon les objectifs de performance dans le domaine fréquentiel. Dans le
cas multivariable, W, (s) et W, (s) sont généralement des matrices diagonales, mais
peuvent étre des matrices plus ou moins pleines, de maniére a privilégier certaines
directions et donc & "fagonner" plus précisément les valeurs singulié¢res de la fonction de
sensibilité et de la fonction de la sensibilité complémentaire. La matrice de pondération

constante /¥, est un paramétre de design, généralement diagonale, qui nous permet, lors

du processus d’optimisation, de privilégier certains signaux de référence.

n P(s)

> W, —Z
w.<l0] > W r s ( ) 3 l
‘ y |+ VL"‘ ‘
G(s)we[sx 2

K .mix (S )

Figure 3.3 Structure de la boucle de poursuite pour le probléme de sensibilité mixte

avec sorties et entrées additionnelles
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Le probléme d’optimisation est de trouver un compensateur dynamique K, (s) qui

minimise la fonction cott (3.21):

I W (jo)S,(jo)W.
. (7250 ) “ <y; Vo (3.21)
H/"mu (.] ([)) Kmix (] a ) S(_') ( J (l)) I/Vz o

o3

La mise en forme du probléme H_, la formulation du systéme augmenté est donné dans

I’annexe C, section C.3. Le systéme augmenté est calculé comme {3.22):

w, (s)w,, | [, (s)G(s)
'P (S) = Omz b
4

ad

Etudions maintenant plus en détail le choix des pondérations que nous allons utiliser lors

de la synthése du compensateur H_ par la méthode de la sensibilité mixte.

3.4.1 Pondération sur Perreur (et sur la performance) /7, (s)

Pour le rejet des perturbations sur la sortie, la fonction de sensibilité de sortie doit étre

petite en basse fréquence. Ceci implique le besoin de "forcer” I’action intégral du

compensateur en utilisant des blocs (—J dans la fonction de pondération W, (s).
‘54 mix

(1
Notons qu’un pur intégrateur LMJ ne peut pas étre utilis€ dans une fonction de

)

pondération, parce que le probleme standard H_ ne sera pas correctement défini et le

systétme augmenté correspondant ne pourra pas é&tre stabilisé par un compensateur
central [BP0O2].
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Lieu de Bode des fonctions de pondération 1/ We (1:4)

10 T T 7

— 1 We,
1mix
Or - 1/We2n1'><
1/ Weanix
-0k — 1 We,
HTHX

~20 -

Magnitude (dB)
&
<
1

ST I ! | 1
16 107° 10° 100
Frequency (rad/sec)

Lieu de Bode des fonctions de pondération 1 /Wesmet w1 ermix

Magnitude (dB)
<
i

0L )
/—\\
200 4
<30 L |
.40 . . Ll 1] . bt
10" 10° 10" 10°

Frequency (rad/sec)

Figure 3.4 Lieu de Bode pour les fonctions de pondération inv(W(,‘

1 inix

(5))
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Comme I’erreur en régime établi ne doit pas nécessairement étre zéro, les éléments de la

fonction de pondération 7, (s) ont la forme #, (s)= . Le choix initial des

s 8+ wy Ay,
fonctions de pondération est discuté briévement dans 1’annexe C, section C.4. En

ajustant les paramétres (.A/I’,,ai,./I,,,!‘,) , nous avons voulu que la bande passante soit

inférieure & la pulsation naturelle de la dynamique de trainée 12 [ra.d/.s], pour ne pas

coupler la dynamique du compensateur avec la dynamique de trainée du rotor principal
non modelée. Avec quatre entrées de commande, nous pouvons commander
indépendamment quatre sorties. Pour les deux sorties additionnelles (les vitesses de

roulis et de tangage), nous avons choisi d’augmenter les propriétés de rejet de

perturbations dans la plage des fréquences (4 ~7)[rad/s]. Le lieu de Bode de Iinverse

des fonctions de pondération W, (i) est présenté a la figure 3.4,

3.4.2 Pondération sur la commande 7, ()

La fonction de pondération sur la commande ¥, (s) est également matricielle et a pour

objectif de minimiser I’influence des dynamiques négligées en hautes fréquences. La
fréquence de coupure de ces pondérations est trés importante puisqu’elle fixe la bande

passante des asservissements. Respectant la dynamique non modelée de trainée, la

fréquence de 12 [rad/s] est fixée comme la limite supérieure et la limite inférieure est
fixée a ~100 [dB] pour s’assurer que la pondération ¥, (s) sera dominée par ¥, (s)

en basses fréquences. Cette réflexion découle de la fonction cott (3.21) et refléte les

objectifs de performance. L’allure fréquentielle de la matrice de pondération sur la

-

commande ¥, (s) est visualisée a la figure 3.5,
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Lieu de Bode des fonctions de pondération 1 qumx
HO T T T

— W,
st

8k B

5oL +

Magnitude (dB)
<
&

. : .
10" I

Frequency (r;;lsec)
Figure 3.5 Lieu de Bode pour les fonctions de pondération ¥/, (s)

3.4.3 Matrice de pondération constante /¥,

La matrice de pondération constante ¥, est appliquée aux signaux de référence et doit
pondérer les entrées fictives avec petites valeurs. Pour ces derniers, nous avons choisi le

poids (0,05), qui contribue a un certain rejet de perturbations sur les sorties

additionnelles sans toutefois influencer de manicre significative le systéme augmenté.

Etant donnée un paramétre de design, la matrice de pondération constante ¥, doit

ad

privilégier de maniére relativement égale les principaux signaux de référence.

3.5 Synthése d’un compensateur H,, par la méthode de sensibilité mixte pour rejet

des perturbations atmosphériques

Afin d’illustrer le rejet des perturbations atmosphériques nous avons congu un

compensateur H_ par la méthode de la sensibilité mixte incluant explicitement I’effet

w3

des perturbations, w, d’énergie finie, sur les vitesses linéaires de 1’hélicoptére. Le

systéme perturbé est décrit par les équations différentielles matricielles (3.23).
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0 ; E - T M

;m,——AhgpLB\M, X, +B,u xeR" ueR (323)
=C C, x x,elR jeR’ ’
Gust PP

—» X

ust ]

Control

——— Kmix (S)

Y

w (s) 72 W, ( s) |-

Figure 3.6 Structure du systéme en boucle ouverte pour le probléeme de la

sensibilité mixte avec perturbations atmosphériques

La structure du systéme est présenté a la figure 3.6, dont les notations Gust et ref sont

mises en relation avec script donné dans I’annexe D et introduisent respectivement les

refales et les consignes, d’énergie finie.

Le systéme augmenté est calculé comme :

W ()| W, (5)G,, () |-W,(5)G(s)
P(s)=| O 0 W, (s) (3.24)

w, S E (s) -G ( s)

Le probléme d’optimisation est de trouver un compensateur dynamique K, (s) qui

myx/

ref z
minimise la fonction coiit (3.25) qui est la fonction de transfert entre ( jt] et { IJ :
TUS

W, (Jo)S, (jw)W, F g, (J©) S0 (Jo)
H/u (/(0) sz'x (j(o)S(f) (jﬁ)) er aguw‘nlu ( ) niix ( /0))‘85,() ( )

3]
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. . . e -1 A ! B Vgt
avec Sg() (,5‘) = [],v -+ Ggusx (S) K(S‘):| 7 ct C;;,rlt,u (S) = C’l Ch (S]n w"Ah ) Bhgn.w = H(Afv é:\ 01 ! U )
. “1 ~h Pxq |

C’est un probléme standard qui peut étre résolu par des algorithmes développés et
disponibles dans la boite a outil ROBUST CONTROL TOOLBOX de MATLAB.

Notons que le probléme est similaire au précédent et les mémes fonctions de

pondérations seront utilisées W, (s)=W, (s), W, (s)=W, (s). Cependant nous avons
un paramétre de design supplémentaire ((x&w), qui doit étre ajusté par itérerions, afin de

* . .
calculer une marge de robustesse ( 4 ) satisfaisante.

3.5.1 «Faiblesse» du compensateur central

I est intéressant de noter que le compensateur central place des zéros 14 ou le systéme
nominal posséde un mode stable dans sa fonction de transfert [ACAGF99]. Un tel
comportement peut étre indésirable en présence de modes faiblement amortis ou non
observables en boucle fermée, dont une variation des paramétres ou une excitation au
voisinage de la fréquence du mode peut entrainer une oscillation excessive et méme une

instabilité.

En présence de perturbation A(s) e RH,, la procédure de (y)-itération du probléme H

[£DG96] trouve la plus grande valeur singuliere du systétme en boucle fermée.
Cependant, la nécessité que la perturbation soit stable peut étre contournée par une
factorisation en €léments premiers. Afin d’illustrer la stabilisation robuste en présence

d’incertitudes inconnues et bornées en normes, nous avons congu un compensateur H_

par la méthode de "loop-shaping" et la factorisation en éléments premiers a gauche.
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3.6 Synthése du compensateur H,, par la méthode de "loop-shaping™ et

factorisation en éléments premiers

La synthése de la commande robuste par la méthode de "loop-shaping" [McF(G92] est

généralement composée de trois €tapes. En premier, la boucle ouverte du systéme est
augmentée par un ensemble de fonctions de pondération (W, (s) et W, (s)) selon les
objectifs fréquentielles du systéme en boucle fermée. Le systéme pondéré classique est
présenté a la figure 3.7. La fonction W, (s) contient des filtres passe-bas pour but de
rejetter les perturbations ou est une matrice scalaire diagonale qui favorise certaines
variables par rapport a d’autres. La fonction W (s) contient des éléments d’action

proportionnelle et intégrale, afin d’augmenter le gain de boucle en basse fréquence et

d’assurer un taux de décroissance des valeurs singuliéres du systéme pondéré en boucle

ouverture, au voisinage de la fréquence de coupure, inférieure a -40(dB) . Une matrice
de pondération constante (k) est utilisée afin d’ajuster les signaux de commande.

Notons que le systéme est supposé normalisé ¢’est-a-dire que la réponse a un échelon
unitaire respecte les limites physiques du systtme réel. Le choix des facteurs de
normalisation demande une certaine expérience ou réflexion sur ce qui semble

physiquement possible pour le syst¢me en question, I’hélicoptére dans notre cas.

w,
+ z

4+

W, (s) FG(s)—Cl—>| W, ()

Figure 3.7 Structure de la boucle de régulation pour le probléme de la commande

robuste par la méthode de'"loop-shaping"
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Yue et Postlethwaite [YP90] appliquent pour un modéle expérimental d’hélicoptere les

facteurs de normalisation suivants :

Basé sur le méme principe de réflexion sur ce qui semble physiquement possible, nous

utiliserons les mémes facteurs de normalisation dans cette recherche. Pour la valeur de

h max *

ce choix devient autant plausible lorsqu’on la compare avec la vitesse des

ascenseurs et le principe du confort des passagers.

La deuxieme étape de la synthése de la commande robuste par la méthode de "loop-
shaping" consiste a stabiliser de maniére robuste le systtme pondéré via une

factorisation en €éléments premiers et procédant a une I _ optimisation. Pour le syst¢me

pondéré :

A, B,
G, (s)=W, (s)G(s)W, () :>H T H (3.26)
’ Bl oo <, b,

une factorisation en éléments premiers est donnée par {A.16) (voir annexe A). Le

systéme incertain s’écrit :

2Gy (5)=[ M, (s)+aM, ()] [N, (s)+aN,, () ]: [al,, () aM, (s)] <& (3:27)

ol aM, (s) et aN, (s) sont des matrices de transfert stables (figurc 3.8), qui

introduisent les incertitudes (a priori inconnues) dans le modéle nominal G, (s). Pour
une telle structure, McFarlane et Glover [McF(G92] montrent que le probleme H_ se

pose comme :
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K, |/ -1 -
Vo = inf 1 -Gk, | |1, G, (3.28)
o K eRH, 1 ( ) L ("«7'1‘*’)1'] g, ) Pt (”(; gy oy ) ! ) i
E g +n”’1ls + i s ) I 2y ) 18 B

G4l

1t

M =
vers
W, | z,

qui est la norme H _ de la matrice de transfert du vecteur L

alN, (S) SO aM, (S‘) <+
n

i o + Y
Ny, () —> M, (s) ]
K (s)

Figure 3.8 Structure du mod¢le incertain avec factorisation en éléments premiers

et s’écrit aussi comme :

K -1
M ™ » "y - -1
v o= int I \—G.K M, =
Fmin K. oRH,, I ( ( nyrng by, ) PNy i
A | @ . 5

" (3.29)
S -
= inf |l I KG | K, 1 .

K.eRH,, ("r‘,"v""w,” T ) (n‘(_; LINEL ) J (nu- gy, gy, )

0

u
Notons que (7, ) est la norme H_ de la matrice de transfert du signal (r7) vers {: } et
Y

-
que ( I \mG},KWJ est la fonction de sensibilit€ pour une boucle de retour

(n\,,- iy iy ]

positive. La valeur réciproque de la norme H, correspond & la marge de stabilité (&),
donnée par McFarlane et Glover [McF(92] :

e =0+ p(X2) (3.30)

max
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ot || |, estlanorme de Henkel (la plus grande valeur propre du produit du grammien de
commandabilité et du grammien d’observabilité), p(.) est le rayon spectral, (.X,) et
(/ ,) sont la solution de I’équation algébrique de Riccati {3.31) et {A.17) respectivement

.
A, ~B.S'D)C, | X, +X,| 4,~B,S,"D,/C, |~
A A (3.30
~X B,S"B,) X+C,/R™C, =0
< |

(,,‘.;vlmlf‘i” ey, )x('h;""”;‘sa_” LT )

Pour (7., <4), qui selon le théoréme du petit gain permet (25%) de variations
d’incertitudes admissibles, la théorie montre que le compensateur ne change pas
significativement les modes du systéme pondéré en boucle ouverte [McFG92]. Si

(7 > 4) ceci indique que le choix des fonctions de pondérations n’est pas compatible

avec la stabilité robuste, c’est-a-dire qu’on privilégie la performance par rapport a la

robustesse.

w

s K, (0)37,,(0)

> W, (s) e G(s) ¢

! IAY

b

K, (s)

W, (s)

Figure 3.9 Structure de la boucle de régulation pour le probléme de la commande

robuste par la méthode de''loop-shaping" avec pré-compensateur

2

La troisitme étape consiste a introduire un pré-compensateur K, (0)J7, (0). Le

schéma correspondant est présenté a la figure 3.4, Le rble du pré-compensateur est
g p

d’assurer une erreur nulle en régime établi, supposant que ¥, (\) introduit une action

intégrale. Notons que le compensateur K (5) est dynamique d’ordre égal a ’ordre du

systéme pondéré.
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3.6.1 Avantages de la méthode du "loop-shaping"

Les principaux avantages de la méthode de "loop-shaping" sont :

— La synthése du compensateur n’applique pas la procédure de y -itérations,
utilisée généralement pour la solution du probléme standard de H .

— La méthode fournit une marge de stabilité pour un systéme avec incertitudes

instables et variations paramétriques des modes faiblement amortis [BP02].

— Le compensateur K (s) ne simplifie pas les pdles stables du systéme pondéré

comme le compensateur central du probléme standard et mixte de H_ .

L’inconvénient résultant se manifeste pour les systtmes dynamiques, dont la
bande passante en boucle fermée est relativement proche aux fréquences
naturelles des modes simplifiés. Etant donné que la simplification se fait pour les
fonctions de transfert entre certaines entrées externes et les sorties contrélées, ces
modes sont pourtant présents dans les autres fonctions de transfert. Intuitivement,
Pincertitude peut déplacer de maniere significative les places des pdles
faiblement amortis et contrarier les performances robustes.

— Les principaux conflits de structure pour le probleme de la sensibilité mixte,
autour de la fréquence de coupure, sont plus facilement gérés par la méthode de
"loop-shaping", qui pondérant la fonction de transfert de boucle (L = G,..K'w)
fagonne simultanément les fonctions de sensibilité et de sensibilité
complémentaire.

— Fournit un compromis entre la robustesse et performance. En particulier, selon le

Théoreme 5.4 de [McFG92] :

(3.32)

,.&
lad
e

e
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&(G,,Km (I-G,K,)" ) =5 (I,)< . 1‘ &(N)x(W,,) (3.34)

&"(K_n(;;,, (I-K,G,)" ) =5(T)) < &1 F(N)x(w,,) (3.35)
I

"o

F(K.(1=GK, )" ) =5 (K. So)s—a&(M)e(W, (W) (336)

& (w,,G W, ) 1

) 5(N.)= , <1, &F(M)= <1
ou F(N) 1+52(wgw(; W]w) (M.) \/ ’i+c‘fz(W,_,/SGW,H)

— La marge de stabilité (5) garantie une marge de gain et une marge de phase

symétriques suivantes :

-20 log,, L%y [dB]< Marge de Gain < +20 log,,

*max

1+, [aB] (3.37)

* max

— [deg < Marge de Phase < +—
S”] (8[“3)( ) ] i S]n (8"10}& )

[deg] (3.38)
3.7 Synthése du régulateur statique de retour de sortie par la méthode

d’optimisation linéaire quadratique et H,,

Parmi les méthodes de synthése de la commande de vol, dites modernes, la conception
du régulateur robuste statique de retour de sortic (en anglais Static Robust OQutput
Feedback Design) est la plus utilisée. La synthése est présentée dans [SL.O3] et [A-

KHL06]. L’approche utilise 1’optimisation linéaire quadratique, qui minimise une



135

fonction quadratique coiit (RU), dite indice de performance (en anglais P/ Performance

Index).

o0

V=5 5 ()0 50+ (1) R (1) o

0

QfT =020, RaT =R, >0

(3.39)

ol (1) est la déviation du vecteur des variables d’état, ii(r) est la déviation du vecteur

des variables de commande et ({;, R, ) sont des matrices de pondération. La méthode
permet de trouver la matrice de retour statique qui résulte de la balance entre I’erreur du
systtme et ’effort de commande. Pour utiliser la méthode d’optimisation linéaire

quadratique, nous devons trouver deux paramétres : la matrice de pondération d’état Q.

matrice (J. doit pondérer tous les états "importants”. Le facteur de pondération de la

commande donne le choix au concepteur de varier les efforts de commande, afin de
trouver les performances désirées, et est réglé par tests de type essai/erreur. Dans la

littérature [S1.03] et [A-KHLO006], il est montré que I’indice de performance, J, sous

certaines hypothéses appropriées satisfait la relation (3.40) :

J— ko

!

:i:re xO x()]‘ i (340}

0

avec D’état initial (x,) (conditions d’équilibre dans contre cas) et (7,,) la solution de

I’équation algébrique de Riccati {3.41).

Sric (K ¥ I )nre ) - Ac/ ' ‘Rrre + Pﬂre Aa:/ + Qf + ('/‘?7' KJ"]' Ru“ K yCTiZ

. . (3.41)
AL,,mAszKyCZ ; y=0% -L7-:.~—K)_y

\

Contrairement a la régulation optimale par retour d’état, qui est bien connue et

paramétrée (la fonction 1gqr de MATLAB), la commande optimale par retour de sortie
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est plus difficile a résoudre, a cause du fait que le probleéme est convexe seulement dans
le voisinage des extremums locaux et la convergence n’est pas toujours assurée [GPS98].
Cependant le probléme peut étre résolu numériquement [S1.03] et permet la synthése du
régulateur lorsque le vecteur d’état n’est pas complétement mesurable, qui est

généralement le cas.

Soit le systéme linéaire invariant (3.42) et I’indice de performance {3.40}.

T (_';'1 X+ l)lﬁ iie R™
y= C'z} W e Rl
==K,y yeR" zeR?

(3.42)

ou (;) est le vecteur des sorties mesurées et (w) est une perturbation d’énergie finie. Le

systeme est dit atténué par le facteur () [A-KHLO6] si

@ Eal

flef de [[5 ()0, #(0)+i ()R, ()] o

I 3% (3.43)

;[Hw(z)“?' dr "Oj“w(z)”" dt

[

La valeur minimale ( y*) <y introduit la marge de stabilité. Initialement, on choisit une

valeur relativement grande (p.ex. ¥y =10) et si ’algorithme converge on diminue y .
Cependant, pour des petites valeurs du facteur d’atténuation, y, (3.43), I’algorithme
n’est plus convergeant, parce que la solution de 1’équation algébrique de Riccati n’est
plus semi-définie positive. Pour un certain nombre d’itérations, on trouve la valeur
optimale, 7" . Le script nous permettant de calculer le régulateur statique de retour de

sortie par la méthode linéaire quadratique et H_, en utilisant le logiciel MATLAB est

donné dans I'annexe D. Pour D, =0
2 [/

gxm ?

la matrice de transfert de boucle Z,,, la matrice
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de sensibilité en entrée S, et la matrice complémentaire de sensibilité en entrée 7,

sont calculées comme :

LLC) - K)CWZ (S]n »__A)ml Bg
Sio )M‘ =1, + K,C, (s2,- A)“! B, (3.44)

Tip =G (S]" ~A4+K C,B, )_1 B, +D,

3.8 Conclusion

Les différentes stratégies de synthése de la commande robuste d’hélicoptére présentées
dans ce chapitre nous permettent de calculer le compensateur stabilisant selon le type de
la perturbation ou de I’incertitude, agissant sur le modele nominal, tenant compte des
différentes spécifications et les conflits de structure de la loi de commande qui
apparaissent dans le domaine fréquentiel. Une attention particuliere est portée sur le
probléme de loop-shaping et le choix des fonctions de pondérations. Ces fonctions
jouent un rdle trés important dans la syntheése d’asservissement, car elles normalisent
principalement les conflits de structure, permettant I’application des algorithmes de
syntheése et déterminent en conséquence la bande passante du systéme commandé, ainsi
que la robustesse et les propriétés en termes de rejet de perturbations. Les différentes
approches augmentent la diversification des solutions et permettent une meilleure
adaptation de la théorie de la commande robuste pour différents types d’hélicoptéres ou
différents modes de vol. Cependant chaque approche impose ses spécifications et il est
parfois difficile, voire impossible de remplacer 1’approche sans changer les

spécifications.
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CHAPITRE 4 : EXPERIMENTATIONS

4.1 Introduction

Aprés I’étude théorique de la synthése des compensateurs et sa mise en application dans
le chapitre 3, voyons maintenant quelles sont les performances atteintes. Nous
étudierons dans un premier temps les résultats obtenus dans le domaine fréquentiel, puis
les réponses temporelles du systéme bouclé a différentes entrées caractéristiques. Pour
étudier I’hélicoptére UH-60A (Black Hawk) de Sikorsky, nous allons considérer le mode

de vol donné au chapitre 3, qui est le voisinage du vol stationnaire & 60 [pi] d’altitude
du niveau de référence avec V,=[0,5 0 O] [kt]: o, =[0 0 0] [radis]. Le

mode¢le linéaire analytique incertain avec perturbation atmosphérique, qui est défini avec

MATLAB comme suit :

>> UHE0AControl

USS: 22 States, 9 Outputs, 4 Inputs, Continuous System
BLCG: real, nominal = 0, variability = [-1 1], 14 occurrences
FSCG: real, nominal = 356, variability = [-2.86597 1.2082]%, 10 occurrences
Ixx: real, nominal = 5.63e+003, variability = [-5.14147 48.3784]%, 54 occurrences
Ixz: real, nominal = 1.67e+003, variability = [-8.11928 70.4246]%, 54 occurrences
lyy: real, nominal = 4e+004, variability = [-2.93794 7.27915]%, 6 occurrences
Izz: real, nominal = 3.72e+004, variability = [-3.45999 7.3341]%, 54 occurrences
WLCG: real, nominal = 248, variability = [-1.53102 1.16841]%, 10 occurrences

Weight: real, nominal = 1.68e+004, variability = [-7.99772 20.3573]%, 85 occurrences

a été développé dans le chapitre 2 et s’écrit sous la forme matricielle suivante :

Vg . . 7
.P.{_[ ::|:“€i’yi7h(h = mél)’¢h’01)51//h‘¢b’(‘}b’{//1)]



avec A, (51:9) =
-0.0156  -0.0097
0.0154 -0.047
-0.048 -0.0178
0 0
0 0
0 0
0.0471  -0.0243
0.0007 0.0089
0.0039 0.0073
0 0
0 0
0 0
-0.0363  -0.0012
0.0707  -0.0085
-0.1805 0.0241
0 0
0 0
0 0
0 0
0 0
0 0
0 0

A, (:10:18) =

-5.2978 -16.1903
-12.9386  11.1183
-538.408  -0.1037
0 0
0 0
0 0
3.4782 3.4116
6.671 5.4559
0.5201  -1.7801
0 0
0 0
0 0
-812.0997 0.0351
-5.6055 -57.7463
-3.4762 632.8893
0.2213 0
-0.0021  -0.0151
-0.0042  -0.5389
0 0
0 0
0 0
0 0

11.1019
16.161
-0.7684
0

0

0
40.9376
-0.6113
1.0753

0

0

0

0
-635.6912
-93.0922
0
-0.5605
0.0134

0

0
0
0

0.0002
32.0908
0.0433
0

0

0
-0.0014
-0.0001
0.0004
0

0

0
0.0669
0.0001
0.0014

OCOO0OO0OO0OO0OO0O

0.2117
-0.0742
-1.3617

0

0

0
0.0772
0.006
0.2153
1

0

0
-23.646

0.0015
-0.0372

0.0033

[oNeoNoNoelNeNol

-32.1701
-0.0056
-0.2636

0

0

0
0.0001
0.0019
-0.0011
0

0

0
-0.0487
-0.0019
-0.0001

[eNeoReNoNoNoNol

0.412
0.2157
-0.0151
0

0

0
0.1073
-0.0232
-0.0397
0

1

0

0
-23.5464
53.8921
0
-0.0043
0.0005
0

0
0
0

0.0082
0.0397
0.015

0

0

0
0.0205
-0.0075
-0.0061
0

0

0
0.0009
0.0073
-0.0206
0

0
0
0
0
0
0

0.2162
-0.4123
0.0102

0

0

0
-0.1276
-0.0144
0.0727

0

0

1

0.018
-53.9831
-23.4393
0

0.0006
0.0042
0

0
0
0

-1.6147
-1.5199
0.0067

1

0

0
-2.5842
0.598
-0.2724
0

0

0

0.0149
-58.3969
-22.4965
0

0.0022
-0.0358
0

0
0
0

-0.0145
0.0001
-0.0393
0

0

0
-0.007
0.001
-0.0183
0

0

0
1.2356
-0.0017
0.0046
-0.1337
0
0.0076

O OO0

1.3527
-1.3952
0.2838

-4.3361
-0.4051
-0.6529
0

0

0
0.2159
-25.2508
62.9056
0
0.0378
0.0009
0

0
0
0

0.0081
-0.0154
0.0006

0.0406
-0.0036
0.005

0.001
0.0038
-1.7973

-0.4997

[eNoNoNeNe
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-0.1349
0.6791
2.1502

0.501
-0.0914
-0.2389

0.117
2.0336
-2.0974

-0.0016
0.0007

[=NeNole
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8.9807
16.2825
458.1117
0

0

0

0.0862
-6.1073
-0.16

0

0

0
704.3978
6.0979
-2.1642
-0.0996
0.0002
0.0037
-76.9231
0

0

0

OO0 OO OOO

0.0455
0.9659
-0.0335
0

0

0
1.4231
-3.6943
-0.049
0

0

0
0.0001
681.8078
-1.4163
0
-0.0009
-0.0153
0
-76.9231
0

0

[eNeoleoNoNoNeNeR ol

1.695
-0.1056
-0.7218

0

0

0
-27.7367
-0.3278
-1.4742
0

0

0

-1.083
0.276
705.7907
0.0001
-0.0006
0.0002

0

0
-76.9231
0

OO0 O0CO0OO0O~200

C, (5:10:22) = zeros(9,13)

4.2 Analyse du modéle en boucle ouverte

1.1763
-1.6894

0.6828

0

0

0
-0.7089
0.0649
0.6838
0

0

0
0.0369
-0.0409
0.7203
0
0.0004
0

0

0

0
-76.9231

OCO0OO0OO0OO0O 2000

OO OO 20000

[oNoNoNoRoBoNoRNololNoNeNoRolNollolNolN ool

2.1481
-0.3437
0.6229
2.1481

OO 200000

2.148

QO 200000000000 ODO0OO0OO0OO0OO0CO

OO0 2000000

-3.799

[« NololoeNoNoNoNoNoloNoNoNoNoloNoNoNolNeNe Nl

OO 00000

0.9994
0.0351

Les pdles du systéme nominal en boucle ouverte sont présentés a la figure 4. 1.
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2.1884
~7.4378

O OOOOO

-0.0705
-0.035
0.9969
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Pole-Zero Map
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Fignre 4.1 Positionnement des poles du modéle nominal en boucle ouverte

Les quatre podles les plus rapides (-‘76,92) correspondent a la dynamique de

I’actionnement du plateau cyclique et I’angle de pas du rotor de queue. L’instabilité du
systéme est caractéristique de tous les hélicoptéres au voisinage du vol stationnaire et est

liée aux deux podles oscillatoires instables du mode phugoide longitudinal

(0,]384ij4183) et présente un intégrateur pur du mode spiral (0) . Les modes

oscillatoires stables et rapides de conicité (11,8295 j25,9311) et d’avancement

du rotor principal. Les autres modes théoriques sont: de phugoide latéral

(-0,1338% j0,4516), d’incidence (-8,5191), de roulis pur (-2,4198) et de roulis

mode phugoide. Le mode rapide est un mouvement en roulis ou en tangage oscillatoire



142

de courte durée. Cependant le mode phugoide ou mode de période longue est un

mouvement oscillatoire, faiblement amorti. L’allure fréquentielle des valeurs singuli¢res
q g

150 T

e l
5oi \

-100 -

Singular Values (dB)

-150

~300 ] L . 1 L S
10° 16 107 10° 10° 1t

Frequency (rad/sec)

Figure 4.2 Valeurs singuliéres du modéle nominal en boucle ouverte

L’analyse des valeurs singuli¢res du modele nominal en boucle ouverte révele le faible

gain statique d’un des circuits et surtout le nombre conditionnel relativement grand.

4.3 Performances du compensateur H,, par la méthode de sensibilité mixte

Dans cette section nous allons présenter les performances du compensateur central H
par la méthode de la sensibilité mixte. Certains principes de base du choix initial des
fonctions de pondération pour la synth¢se du compensateur H_ par la méthode de

sensibilit¢ mixte sont donnés dans I’annexe C. Etudions maintenant plus en détail le

choix des pondérations que nous allons utiliser lors de la synthése du compensateur.
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4.3.1 Choix de la matrice de pondération sur Perreur /7, (s)

La fonction de pondération sur I’erreur #, (s) est matricielle et le choix initial se

ix

présente sous la forme :

§ -
S(s+12)  S(s+5) LTI ,*3 2s 2
$+.006  s+.0025 s+.0025 5+.005 (s+4)(s+4.5) (s+4)(s+4.5)

(4.2}
Etant donné que la pulsation naturelle du mouvement non modélisé de trainée est de

I'ordre de 12[rad s“'] , pour les quatre premiers circuits, nous avons choisi les
fréquences initiales de coupure respectivement de Girrad s‘] , 25 [rad S’J ,

2.5 [rad s”’]et 5 [rad le qui vont assurer que la dynamique du systéme de commande

ne soit pas couplée avec la dynamique non modélisé de trainée. La valeur maximale

A

initiale de la norme H_ de la matrice de sensibilit¢ S, en basse fréquence est

introduite par le facteur 0.5, qui pour les deux premiers circuits est explicitement
démontré. Cependant, la valeur initiale de I’erreur de poursuite en régime établi est
introduite par le facteur 0.001 sur les pdles des quatre premiers circuits. Pour les circuits
de vitesse en tangage et de vitesse en roulis, nous avons choisi un filtre de deuxi¢éme
ordre de type passe-bande qui a pour but de rejeter les perturbations et les effets de

couplage dans la bande de 4 [rad s"] a7 [rad s .

4.3.2 Choix de la matrice de pondération sur la commande 7, (s)

La fonction de pondération sur la commande W, (s) est également matricielle (4.3) et
a pour objectif de minimiser I’influence des dynamiques négligées en hautes fréquences.

La valeur de W”:i_ (s) en hautes fréquences devra étre faible et ajustée afin que la courbe

de la matrice de sensibilité &

mix

suive au plus pres celle de la matrice de pondération
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W, (s). La fréquence de coupure de ces pondérations w, (s) est trés importante

puisqu’elle fixe la bande passante des asservissements. Respectant la dynamique non

modelée de trainée, la fréquence de 12 [rad/s] est fixée comme la limite supérieure et la
limite inférieure est fixée a —~100 [dB] pour s’assurer que la pondération ¥, (s) sera

dominée par W, ( s) en basses fréquences. Cette réflexion découle de la fonction cott

(3.21) et refleéte les objectifs de performance. Le choix initial de la matrice de

pondération sur la commande W, (s) est donné par {4.3). L’allure fréquenticlle de la

matrice de pondération sur la commande W, (s) est visualisée a la figure 3.5,

W, (s)= diag( 5+.00012 5400012 5+.00012 s+.000]2] “.3)
™ s+12 s§+12 s§+12 s+12

\

4.3.3 Choix de la matrice de pondération constante /¥,

7

La matrice de pondération constante #_, doit pondérer les entrées fictives avec petites

ad

valeurs. Pour ces derniers, nous avons choisi le poids (0.05), qui contribue a un certain

rejet de perturbations sur les sorties additionnelles sans toutefois influencer de maniére
significative le systéme augmenté. Etant donné un paramétre de design, la matrice de

pondération constante W, doit privilégier de manicre relativement égale les principaux

signaux de référence. Ainsi, notre choix initial est le suivant :

W, =diag([l 1 1 1 0.05 0.05]) (4.4)

Cependant la modification itérative des fonctions de pondération est un probléme
d’expertise et d’expérience, et est un processus dicté par la volonté de "fagonner" les
valeurs singuliéres des fonctions de transfert caractéristiques pour satisfaire les objectifs

de performance en respectant la régularité du probléme H_ résultant. La difficulté de ce

processus est accrue d’avantage, lorsque le systéme est sous-actionné, qui est bien notre

cas, c’est-d-dire que le nombre des degrés de libertés du systeme est supérieur au
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nombre des entrées. Pour la structure de la boucle de commande illustrée a la figure 3.3

~ . T
avec (| = Lh, (v, +6,).(x,+6,).1, p,,,q,)J et les matrices de pondération finales :

. [.45455+3.5 89295 +2.5 .89295+2.5 .45455+3.5
W, (s)=diag -
- s$+.56 s§+.00125 s+.0025 s+2.15

28 2s
(s+4)(s+4.3) (s+4)(s+45) ]

, o (T100s+.01 45+.0004 9.25+.00092 4.65-+.00046 |
W, (s)=diag
' ' s+10 s+10 s+10 s+10

W, =diag([0.277 0,419 0,26 0,4201 0,05 0,05])

ad

Valeurs singulieres de la matrice de sensibilité en entrée S . et pondération (W_ "W, c’)'1 (--)
20 . \ 1 ; \

101 .

Singular Values (dB)

10° 107 10”7 10° 10 10°

Frequency (rad/sec)

Figure 4.3 Valeurs singuliéres de la matrice de sensibilité en entrée S, et

pondérations (Wc_ ($)w,, )‘1

Fintx
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La fonction hinfsyn de MATLAB calcule le compensateur dynamique K, , qui

stabilise le systéme en boucle fermée. Le critére de performance correspondant est

L’allure fréquentielle des valeurs singulieres de la matrice de sensibilité en entrée S . et

X

est visualisées a la fi

. Nous remarquons que ’'une des courbes de la matrice

sensibilité¢ en entrée S, est située temporairement au dessus de la fonction de

-] *
pondération (WU (9) Wm,) , ¢’est-a-dire que nous avons l <y dans cette

%]

w, S

mix ’ ””\’

Wea

intervalle, o »* =1.0001, et non ¥, S, 7,

mx

<1. Pourtant ce résultat est acceptable,

vue la différence minime.

Valeurs singuliéres de la matrice K_ *S _ *W__ et pondération W' (--)
mix —mix ad umix

100 T T T T T
: Kmix*snix'wad(:'2:4)
T Ko S ol
S 0
7]
[}
3
g
@
= -50
£
w
00 - -
,.150 1 1 1 t ]
10° 16" 107 10° 107 10"

Frequency (rad/sec)

Figure 4.4 Valeurs singuliéres de la matrice X, S, W, et pondérations ¥~

nrix T m
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L’allure fréquentielle des valeurs singuliéres de la matrice K, S

mix T mix

W, est visualisée a

Y
5 nix

W, restent

mix

inférieures en gain a celles de la matrice de pondération "' (s).

Nous avons vérifié qu’en général, les valeurs singuli¢res de la matrice de sensibilité en

entrée S, et de la matrice K, S, restent bornées par les fonctions de pondération

mix™

N

choisies a un facteur multiplicateur » prés. L’analyse des valeurs singuliéres de la
matrice de sensibilité en entrée S, montre que ’allure fréquentielle des principaux

signaux (les entrées du pilote) est atténuée en basse fréquences et assure le rejet des

perturbations atmosphériques qui prennent son sens en basses fréquences.

Valeurs singuliéres de la matrice complémentaire de sensibilité en entrée Tm,x

E——eY .
W50 - —— Tmix(5:6,:) i

&
o 100k ~
73 / \\
[ N
3 ~
g
|
3 .50l i
£
(73]

200 | A

Azso | | i 1 i |

10° 10° T 107 10° 10" 10

Frequency (rad/sec)

Figure 4.5 Valeurs singuliéres de la matrice complémentaire de sensibilité en entrée

T

nix
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A la figure 4.3, les valeurs singuliéres correspondant aux vitesses de roulis et de tangage

sont presque partout égales a 0 [dB] . Les valeurs singuli¢res de la matrice K, S, sont

miix ™ mix

faibles, & I’exception du circuit "collectif”, et donc I’énergie de la commande sera

réduite.

La figure 4.5 présente ’allure fréquentielle des valeurs singuli¢res de la matrice

complémentaire de sensibilité en entrée 7’

/' .- L’analyse de ces derniéres montre que le
systéme en boucle fermée permet une poursuite des principaux signaux (les entrées du
pilote) sans réduction significative de ’amplitude et atténue les entrées additionnelles
(fictives). Comme nous le souhaitions dans le chapitre 3, le nombre conditionnel de la

matrice complémentaire de sensibilité en entrée 7

mix

est faible en basse fréquence avec
un gain presque €gale a 0 [dB] et finalement, nous pouvons conclure que I’allure

fréquentielle du systéme asservi correspond aux objectifs de performance définis dans le

chapitre 3.

Voyons maintenant les réponses temporelles du systtme commandé avec un

compensateur H_ par la méthode de la sensibilité mixte, incluant explicitement ’effet

. r
des perturbations x, = fug v, ow, |
S ot

. W, | , introduites par la matrice B, (:,1:3), sur les

vitesses lindaires de I’hélicoptére.,

By (1:11,1:3) = B, g (12:22,1:3) =
0.7122 0.0455 1.7087 0 0 0
0.3728 0.9659 -0.0792 19.162 0.0001 0.055
4.0563 -0.0335 0.0322 -2.8629 19.0447 0.3322
0 0 0 5.6947 -1.3953 -34.7912
0 0 0 -0.0026 0 0
0 0 0 0 -0.0009 0.0001
-0.2605 1.399 1.3004 0.0002 -0.0004 0.0002
-0.1654 -0.1052 -0.3305 0 0 0
0.0467 0.0856 0.0552 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Rappelons les équations différentielles matricielles (4.1) du systéme perturbé.
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La structure du systéme est présentée a la figure 3.6. Le script permettant de mettre la

dynamique de I’hélicoptére sous la forme standard selon la figure 3.6 est donné dans

’annexe D. Aprés un certain nombre de tests, nous avons fixé la valeur de ( Xt = 0.1).

Le critére de performance correspondant est »* = 0.9777.

Rejet de perturbation Uggust = 10 (ft/s) + VBgust = 5 (ft/s) + Wagust = 20 (ft/s)
20 T T T T T
delta y
delta Y
15+
delta w,
10 -

Vitesse (ft/sec)
(4,3

-10 L — ! I L

5 10 15 20 25 30
Temps (sec)

Figure 4.6 Rejet de perturbations atmosphériques avec un compensateur H_ congu

par la méthode de sensibilité mixte
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Réponse en boucle fermée & une entrée de commande <<coll>> du pilote

1 2 T ¥ T T T

—— delta u,

——— deltay, |

— delta W,

Vitesse (ft/sec)

2 | I 1 I |
0 5 10 15 20 25 30

Temps (sec)

Figure 4.7 Réponse en boucle fermée a (un échelon) une entrée de commande

collective du pilote de 5" pour un systéme asservi avec un compensateur H_, congu

o

par la méthode de sensibilité mixte

Certains résultats temporels du systéme en boucle fermée sont visualisés a la figurc 4.6

et la fizured4.7 et correspondent respectivement a une entrée en échelon de

s

X, :[]_(), 5,20]7' [mpi s'lml et a une entrée de 5" sur le levier collectif du pilote. On

remarque que le compensateur annule I’effet de la perturbation aprés un régime
transitoire en stabilisant la vitesse linéaire de I’hélicoptére. Le temps de réponse et le
dépassement de la réponse en vitesse pour un échelon a I’entrée collective du pilote de
5" sont acceptables dans le contexte de rapidité et confort: ils sont respectivement
o= 27 [s] et 4% . La précision est excellente puisque ’erreur statique est inféricure a
0.15% . Nous pouvons constater également le découplage statique (en régime établi) de

la vitesse d’ascension par rapport a la vitesse dans le plan horizontal qui provient de la

matrice du découplage statique, calculée généralement pour le mode de vol stationnaire.
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Cependant, la loi de commande d’hélicoptére pour toute I’enveloppe de vol doit

également calculer le découplage dynamique des réponses du giravion en vitesse.

4.4 Performances du compensateur H,, par la méthode de "loop-shaping" et

factorisation en élément premiers

Le principe de base pour le choix des fonctions de pondération est expliqué par
McFarlane et Glover dans [McFG92]. Le pre-filtre /¥, (s) est composé de blocs P,
dont le but est d’augmenter le gain en basse fréquence. Le zéro dans le bloc PI est utilisé
pour réduire le taux de décroissance des valeurs singulieres du systéme pondéré en

boucle ouverture, inférieure a ~m40(dB) , au voisinage de sa valeur. Dans notre cas, la

fonction W, (s) est une matrice scalaire diagonale qui favorise les principaux circuits

(Ies quatre entrées du pilote) par rapport aux circuits additionnels et fictifs de vitesse de
roulis et de vitesse de tangage. Pour le systéme présenté dans la section 3.6 et les

matrices de pondération suivantes :

o1 C o -
F’V;,ﬁdfagU”) s+17 s+2 SHD

LS § 5 $

w, =diag([8 1 1 1 .1 3]

Pallure fréquentielle des valeurs singuliéres du systéme pondéré en boucle ouverte est

visualisée a la figure 4.8, La figure 4.9 présente respectivement I’allure fréquentielle des

valeurs singulicres de la matrice de sensibilit¢ en entrée S, et de la matrice
complémentaire de sensibilité en entrée 7,,. Comme nous le souhaitions dans le chapitre
3, les valeurs singuliéres de la matrice de sensibilité en entrée S,; des principaux

signaux (les entrées du pilote) sont faibles en basse fréquences ce qui permet le rejet des

perturbations sur la sortie, de type rafales.



152

P | rd - MW
Valeurs singuliéres du systéme pondéré GIs = W2|s Gnom W1Is kls

500 T T T T

Singular Values (dB)

-100 + R

-200 F

-300 1 1 1 £
-18 - 18 B4l & s
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Frequency (rad/sec)

¥igure 4.8 Valeurs singuli¢res du syst¢eme pondéré en boucle ouverte

Les valeurs singuli¢res correspondant aux circuits additionnels fictifs de vitesses de

roulis et de tangage sont presque partout égales a 0 [dB]. L’analyse de I’allure

fréquentielle des valeurs singulieres de la matrice complémentaire de sensibilité en

entrée 7 montre que le systéme en boucle fermée permet une poursuite des entrées du

pilote sans réduction significative de 1’amplitude, a ’exception du circuit en lacet, et

atténue les entrées additionnelles. La valeur calculée de la marge de stabilité est
7" =6,4104 . Finalement, nous pouvons conclure que la bande passante du systéme

asservi est relativement basse et les qualités de manceuvrabilité ne sont pas atteintes.
Tous nos efforts afin d’améliorer la performance du systéme ont corrompu la stabilité a
cause surtout de la structure diagonale des matrices de pondération qui ne permettent pas
de mieux fagonner les valeurs singuliéres du systéme en boucle ouverte au voisinage de
la fréquence de coupure. La valeur de la marge de stabilité¢ indique également que le

systéme asservi garantie la stabilité pour 15% d’incertitude paramétriques additives sur
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la factorisation en éléments premiers a gauche et donc privilégie la performance par
rapport a la robustesse.

Valeurs singuliéres de la matrice de sensibilité en entrée SloopLS

80

(dB)
&
<

ues

100

Singular Va
o
<

-200

-300 L |

10" 10® Frequency (radisec)  1p°

Valeurs singuliéres de la matrice commplémentaire de sensibilité en entrée TloopLS
T T

100

Singular Values (dB)

-400 |

1™ 1w 0"

Frequency (rad/sec)

kigure 4.9 Valeurs singuliéres de la matrice de sensibilité en entrée S, etdela

matrice complémentaire de sensibilité en entrée 7
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4.5 Performances du régulateur statique de retour de sortie par la méthode

d’optimisation linéaire quadratique et H,

Pour le systéme présenté dans la section 3.7, nous avons choisi un poids égal sur les

variables de sortie O, =C,’ C, et les différents circuits de commande R, =1, . Nous

supposons également une perturbation x,’ (1 3)_¥ w, v, wgJ , introduite par la

-

matrice B, (:,1:3), sur la vitesse de I’hélicoptére. Le script qui nous permet de

calculer le régulateur statique de retour de sortie par la méthode linéaire quadratique et

H_ , en utilisant le logiciel MATLAB, est donné dans I’annexe D. Le paramétre d’entrée
(7) du script introduit la norme euclidienne désirée. Initialement, on choisit une valeur
relativement grande (p.ex. y=10) et si Palgorittme converge on diminue (y) en
projetant la matrice de retour de sortie K, sur I’espace perpendiculaire du noyau de la

matrice C,. Cependant, pour des petites valeurs du facteur d’atténuation (), introduit

par D’expression {3.41), I’algorithme ne converge plus, parce que la solution de
I’équation algébrique de Riccati n’est plus semi-définie positive. Pour un certain nombre

d’itérations, on trouve la valeur optimale »" =0,92. La matrice de retour de sortie X )

trouvée est donnée par :

0.1962 -0.0192  -1.052 0.738 -5.3189 -0.0823 0.184 -2.262 -0.2509
-0.0621  0.9004 -0.0143 149478 -29723 0.639 -0.2626  -4.1579  0.099

0.8241 0.3475 0.2277 11.0165 -31.1802 0.6436 -0.6132  -11.1833 0.1794
0.758 -0.5515  0.4296 3.3284 -37.8218 1.1215 -1.4858 -15.6805 0.8352

Les pdles en boucle fermée sont :



155

-76.9102 + 0i -2.788 + 6.6297i
-76.9144 + 0i -2.788 - 6.6297i
-76.9231 + 0i -4.367 + 0i
-76.9228 + O -2.3035 + 0i
-11.82 + 52.4843i -0.938 + 0.8257i
-11.82 - 52.4843i -0.938 - 0.8257i
-4.2384 + 25.3462i -0.2773 + 0.0891i
-4.2384 - 25.3462i -0.2773 - 0.0891i
-11.0552 + 2.5694i -0.1336 + 0i
-11.0552 - 2.5694i -0.5008 + 0.0037i
-11.039 + Oi -0.5008 - 0.0037i

L’allure fréquentielle des valeurs singuliéres de la matrice de sensibilité en entrée S, , et
de la matrice complémentaire de sensibilité en entrée 7, , est visualisée a la figure 4,10,
Nous pouvons noter que les valeurs singuliéres de la matrice de sensibilité en entrée S,

sont toutes sous 0 [dB] qui assure le rejet des perturbations atmosphériques qui prennent

son sens en basses fréquences et que le gain proche a unité pour trois des quatre canaux

des valeurs singuliéres de la matrice complémentaire de sensibilité en entrée 7, , permet
une poursuite des consignes du pilote sans atténuation. Cependant la bande passante est

inférieure a 1 [rad/s].
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Valeurs singuliéres de la matrice de sensibifité en entrée SLQ
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Figure 4.10 Valeurs singuliéres de la matrice de sensibilité en entrée S, et de la

matrice complémentaire de sensibilité en entrée 7,



Réponse en boucle fermée a une entrée de commande <<coll>> du pilote
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Attitude de la cellule ( Angles d"Euler ) 4 une entrée de commande <<coll>> du pilote
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Figure 4.11 Réponse en boucle fermée a (un échelon) une entrée de commande
collective de 5" du pilote pour un systéme asservi avec un compensateur, congu par

la méthode d’optimisation linéaire quadratique et H

Les réponses en vitesses linéaires & un échelon de commande collective de 5" du pilote
pour I’hélicoptére asservi avec un compensateur, congu par la méthode d’optimisation

linéaire quadratique et H_ peuvent étre directement comparées aux réponses du méme
systéme asservi avec un compensateur H_, congu par la méthode de sensibilité mixte.

Sur la figur¢ 4,11, on constate le couplage relativement plus important de la vitesse

d’ascension par rapport & la vitesse longitudinale, ’erreur statique de 7% et les plus

grandes valeurs du temps de réponse et du dépassement de la réponse en vitesse pour un

avec les courbes de réponse en vitesse a la figure 4.7,

Pour des raisons d’insuffisance de mémoire (de calcul) sur les ordinateurs dans les salles
informatiques de 1’Ecole Polytechnique, 1’analyse des marges de stabilité du systéme en

boucle fermée ne peut étre faite que seulement pour un seul paramétre incertain. Pour
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cette raison, nous avons choisi la variation du poids totale de I’hélicoptére, laissant les
autres paramétres incertains a leur valeur nominale. La fonction robuststab de

MATLAB, calcule les marges de stabilité, la valeur et la fréquence de déstabilisation, et

donne le rapport suivant :

[stabmargLQ, destabuncLQ, report_robuststabl Q,info_robuststablL Q]=robuststab(TloopLQsubs)

stabmargLQ =
UpperBound: 2.2941
LowerBound: 2.2369
DestabilizingFrequency: 173.8244

destabuncLQ =
Weight: 1.0321e+008
report_robuststabLQ =

Uncertain System is robustly stable to modeled uncertainty.
-- It can tolerate up to 224% of the modeled uncertainty.
-- A destabilizing combination of 229% of the modeled uncertainty exists,
causing an instability at 174 rad/s.
-- Sensitivity with respect to uncertain element ...
‘Weight' is 101%. Increasing 'Weight' by 25% leads to a 25% decrease in the margin.

info_robuststabLQ =

Sensitivity: [1x1 struct]
Frequency: [262x1 double]
BadUncertainValues: {262x1 cell}
MussvBnds: [1x2 frd]
Mussvinfo: [1x1 struct]

Le rapport nous indique que le compensateur, congu par la méthode d’optimisation
linéaire quadratique et H_ garantie la stabilité pour toute variation du poids totale de

Phélicoptére UH-60A (Black Hawk) de Sikorsky, donnée du constructeur (tablcau 2),

selon la mission et I’équipement additionnel.
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4.6 Conclusions

Dans le cadre de I’expérimentation des lois de commande de I’hélicoptére UH-60A
(Black Hawk) de Sikorsky pour un mode de vol au voisinage du vol stationnaire, nous
avons utilisé différentes stratégies pour la synthése du compensateur selon I’information
sur le type des incertitudes et des perturbations. Les méthodes nous ont permis de
garantir la stabilit¢ du systtme étudié avec une marge de stabilité pour toutes
incertitudes admissibles, entre autre, d’assurer certaine flexibilité entre performance et
robustesse. Dans ce sens les objectifs liés avec la robustesse de la loi de commande

d’hélicopteére, définis dans le chapitre 1, ont été atteints.

Parmi les structures de commande réalisées, le compensateur H_, congu par la méthode
de sensibilité mixte et le régulateur statique de retour de sortic par la méthode
d’optimisation linéaire quadratique et H_ nous ont permis d’atteindre de meilleurs
performances avec un excellent critére de performance, respectivement de 1,0001 et
0,92, comparativement a la méthode de "loop-shaping" et factorisation en élément

premiers. Cependant les qualités de manceuvrabilité n’ont pas été atteintes surtout a

cause de la fréquence de coupure inférieure a 1 [rad/s].

Comme perspectives de cette recherche, nous pensons qu’il serait souhaitable :

— D’explorer la conception du régulateur robuste statique de retour de sortie avec

contraintes sur la matrice de retour.

— De considérer d’autre type de pondérations, également des matrices de

pondérations avec termes Croisés.
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CONCLUSION GENERALE

Les travaux proposés dans cette recherche présentent une extension a la modélisation et
a I’étude des méthodes d’analyse et de synth¢se des lois de commande robuste pour la

dynamique de vol d’hélicopteére.

Ce projet a €té réalisé en deux grandes étapes : dans une premiére partie, nous avons
développé un modéle mathématique d'hélicoptére avec un rotor principal articulé, basé
sur les mouvements de battement et de trainée de la pale, dus & une combinaison des
charges aérodynamiques, de I’inertie et de la masse de la pale. Le modéle linéaire
analytique a été développé a partir d’'un mod¢le non linéaire de la cellule, considérée
comme un corps rigide, le rotor principal et le rotor de queue et d’un modéle
atmosphérique, et tient compte de la dynamique de battement vertical des pales et de la
vitesse induite. Ce travail théorique, reprenant les principes de la mécanique et de
I’aérodynamique, a été ensuite appliqué a I’hélicoptere UH-60A Black Hawk de
Sikorsky. Dans une seconde partie, nous avons traité la synthése de la loi de commande
d’hélicoptére. Aprés une revue de la littérature sur ce domaine, nous avons choisi de

concevoir la loi de commande d’hélicoptére par I’approche H _, basée sur la sensibilité

mixte, par la méthode de "loop-shaping", ou par la méthode d’optimisation linéaire

quadratique et H_ et les développements théoriques récents qui permettent la

conception d'un compensateur robuste statique ou dynamique.

Dans le cadre de I’expérimentation des lois de commande de I’hélicoptére UH-60A
(Black Hawk) de Sikorsky pour un mode de vol au voisinage du vol stationnaire, nous
avons utilisé différentes stratégies pour la synthése du compensateur selon I’information
sur le type des incertitudes et des perturbations. Les méthodes nous ont permis de
garantir la stabilit¢ du systtme étudié avec une marge de stabilité pour toutes
incertitudes admissibles, entre autre, d’assurer une certaine flexibilité entre performance

et robustesse. Dans ce sens les objectifs liés avec la robustesse de la loi de commande
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d’hélicoptere, définis dans le chapitre 1, ont été atteints. Les difficultés majeures
rencontrées dans cette recherche, résident dans les couplages entre les variables d’état et

le nombre considérable de degrés de liberté.

Parmi les structures de commande réalisées, le compensateur H_, congu par la méthode
de sensibilité mixte et le régulateur statique de retour de sortic par la méthode
d’optimisation linéaire quadratique et H_, nous ont permis d’atteindre de meilleurs
performances avec un excellent critére de performance, respectivement de 1,0001 et
0,92, comparativement a la méthode de "loop-shaping” et factorisation en élément
premiers. Cependant les qualités de manceuvrabilité n’ont pas été atteintes surtout a

cause de la fréquence de coupure inférieure a 1 [rad/s] .

Pour ce qui concerne la modélisation, comme perspective de cette recherche, nous

pensons qu’il serait souhaitable :

— De réviser le modéle afin de prendre en considération la dynamique du
stabilisateur vertical, qui n’est pas commandé par le pilote, et dont I’angle

d’incidence fait partie des variables asservies.

Pour ce qui concerne la synthése de la loi de commande d’hélicoptére, il pourrait étre

intéressant :

— D’explorer la conception du régulateur robuste statique de retour de sortie avec

contraintes sur la matrice de retour.

— De considérer d’autres types de pondérations, également des matrices de

pondérations avec termes croisés.
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ANNEXE A : DEFINITIONS

Dans cette annexe sont présentées les définitions de certaines notions utilisées dans le

texte.

Définition A.1 (Systéme propre et strictement propre) [DET92]: On dit qu'un
systéme est propre, si le degré de son numérateur est inférieur a celui de son

dénominateur (m < n). On dit qu’un systéme est strictement propre, si le degré de
son numérateur est strictement inférieur a celui de son dénominateur (m<n).
Autrement dit, G(s) est propre si IG ( jOO)I<JJ et strictement propre si

|G (joo)|=0.

Définition A.2 (Norme H,) [DFT92] : Soit un systéme linéaire stationnaire de matrice

de transfert G (s). On définie lanorme H, comme :

e

S)“;, = \/(am‘l;jz"[’race((}* (jo)G (jw)) do sup “,U “ A

U{s)eRH,

{G(

ou l'indice ( )* désigne la matrice conjuguée On appelle RH, ['espace des
fonctions X (s), analytiques dans Re(s)>0 , telles que la norme H, est

”X (s)

<@,
o

Interprétation : c’est I’énergie en sortie du systéme lorsqu’on injecte une impulsion

unitaire en entrée (cas mono-entrée / mono-sortie SISO) ou plus généralement un

bruit blanc, vérifiant U/ (j.w)U" (j.w) (densité spectrale uniforme).
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Définition A.3 (Norme H_ ) [DFT92] : Soit un systéme linéaire stationnaire de matrice

de transfert G(s). On définie la norme H,_ comme :

NI 10
00 =swpaGUe))= e, GG

(A2}

carré sommable (espace de Hilbert).

Interprétation : c’est la norme induite par la norme des fonctions de H, . Elle mesure

le gain maximal de la réponse fréquentielle (7( j.m) (le pic dans le lieu de Bode).

La norme H, est finie si et seulement si G(s) est strictement propre et n’a pas de
pble sur I’axe imaginaire; la norme H_, est finie si et seulement si G(.S') est

strictement propre et n’a pas de p6le sur I’axe imaginaire (pour justification voir

[DFT92] p.16).

Définition A.4 (Valeurs propres) [ZDGY96]: Soit une matrice A< C”", alors les

valeurs propres de (A) , notées /l.,.(A) , sont les racines de ['équation

caractéristique det( A1, —4)=0.

Définition A.5 (Vecteurs propres) [ZDGY96]: Le vecteur propre a droite de (4)

v, € R", associés a la valeur propre 4,(A), esttel que Av, =4, v,.

Le vecteur propre a gauche de (A) u, € R", associés a la valeur propre 4,(A), est

tel que u' A=u, A, o l'indice () désigne la matrice transposée.
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Définition A.6 (Valeurs singuliéres) [ZD(G96] : Soit A C™" une matrice complexe.

Ax
Le gain de la matrice (A) peut émre défini par le rapport mm“gm, ou le vecteur

2

xeR". On peut déduire facilement que le gain de la matrice (A) dépend de la
direction du vecteur (x). Pour toute matrice (4), il existe Uy € C™" et Vy e C™",

deux matrices unitaires (c.-a-d. Us' Us =1 ; V5" Ve =1,), telles que :

me

Y =diag|o,,...0,, 0"} n>m - R
( ) : 2eR (A3)

A=U SV
2= diag(o*,, O 0("""'")‘") n<n 0,20

n?

Les valeurs singuliéres de (4) sont les racines carrées des valeurs propres de

(A*A) h
o, (A) =4 (A*A) mzn ; o, (A) =44, (A A*) m<n (Ad)

ot ( ) est la matrice conjuguée transposée et A, ( ) est la i-éme valeur propre. En

général, on les ordonne comme suit :

o (4)20,(4)z...20,(4)z...20,(4) (A.5)

Ainsi o(A)=5(A) est la plus grande valeur singuli¢re et o, (A4)=g(4) est la
plus  petite  valeur singuliére. Si (xuv., s Vs w[v,,vz,...,v”]) , alors
"Uamplification” maximale de la matrice (A) sera &(A) dans la direction

(uI Uy = [u[;uz;...;um]). De maniére similaire :

Av, =0, (A)y (A.6)
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Alors les valeurs propres sont liées aux directions invariantes par la transformation

linéaire associé a (A), tandis que les valeurs singuliéres contiennent I’information

"métrique" de cette transformation. Plus précisément, la boule unité de R" est

transformé en un hyper ellipsoide et les valeurs singuliéres correspondent aux

demi — longueurs des principaux axes de cet ellipsoide.

Définition A.7 (Nombre conditionnel) [SPOS] : Si on définie le nombre conditionnel
(A

de (A) comme :

La matrice mal conditionnée aura une valeur importante du nombre conditionnel,

tandis qu 'une matrice "ronde" aura (x =1).
99]: Toute matrice A C™" peut se

Définition A.8 (Forme de Schur) [ACAGF
décomposer sous la forme :
{A.8)

*

A=U, AU,
oit (U, ) est unitaire et (A) est triangulaire supérieure. Les éléments diagonaux de

(A) sont les valeurs propres de (4)
Définition A.9 (Equations de Riccati) [ACAGFY9] : Pierre angulaire des problémes

de commande avec coiit quadratique, ['équation de Riccati standard est de la
{A9)

forme :

nxh

AX+XA-XBB X+0=0
ou (QER"N' 40) est symétrique (QT mQ) , (A ER”*”) et linconnue est une

matrice (X € R’“”) que [’on souhaite symétrique. Sous réserve d’existence, il n'’y a
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pas en général unicité de solutions (X). Pour les applications a I'automatique, on

X
e ey

de | A—BB' X" | soient toutes dans le demi plan complexe ouvert gauche (C_). La
At

résolution de I’équation algébrique matricielle de Riccati (A.9) fait intervenir le

sous-espace propre stable de la matrice Hamiltonienne :

{1 -BB -
I:Ir«:( ’; . ]e‘ (A10)

Le spectre de cette matrice a la propriété d’étre symétrique par rapport a l'axe

imaginaire. Le sous-espace propre stable de (11) est le sous-espace des vecteurs

propres associés aux valeurs propres stables. On les calcule par la décomposition de

Y, ,
Schur de (H). Si { :} est une base orthonormée de ce sous-espace, I’équation (A.9)
a une solution stabilisante si et seulement si

— le Hamiltonienne () (A.10) n’a pas de valeur propre sur I’axe imaginaire,
alors (YQ,Z# € R”x”) ;
— lamatrice (¥,) est inversible.

Cette solution est alors symétrique et obtenue comme :

Xt =7, 7" {AD

On peut s’en convaincre directement a partiv de l'équation (A.12) :

AR
H| " l=| " |A Re(A)eC. (A2
sl 14
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'd
#
.

oy

qui traduit que { } est le sous-espace invariant stable de (H'). A noter que (A.12)

donne A-BB'Z,Y, " =Y, AY,™ et cette matrice est donc stable. On notera aussi
identité :

I o T [1 0 A-BB'X* -BB" ]
Lo H S T = o
X Xt 0 (A -B B X")

n L n | nan

(A.13)

Définition A.10 (Factorisation en éléments premiers) [SP05]: Soit un systéme avec

une fonction/matrice de transfert G (s) , alors une factorisation en éléments

premiers a droite a la forme :
G(s)=N,(s) M, (s) (A.14)

oit N,(s) et M,(s) sont stables et premiers entre eux. La stabilité implique que
N, (s) inclut tous les zéros (e (["+) du systéme, alors que M, (s) inclut, comme
zéros, tous les poles (e @{‘) du systeme. La factorisation en éléments premiers
implique qu’il n’y a pas de zéros communs (c ((-L) entre N, (v) et M, (v) , qui
peuvent entrainer une simplification, lorsque le produit N, () M, (s) est formé.

Mathématiquement, selon l'identité de Bezout, il existe deux fonctions stables,
U (5)eC™ et V,(s)e C™ telles que :

U, (s)N,(8)+V,(s) M, (s)=1, .Vs (A15)

4

A B
C D

une réalisation interne (dans l’espace

d’état) minimale (les pairs (A,.B) et (A, C) sont respectivement commandable et
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observable), alors une factorisation en éléments premiers a gauche est donnée par

Vidyasagar dans [Vyd83], [Vyd88] -

A+H C B+H,D| [A+H C H,

]
R?C  RE|

1

1
R *C R ?D

" (A.16)

ou Z, est ['unique solution symétrique définie positive de 1’équation algébrique de

Riccati :
~ 1
A-B S,“"' [)7(?] Z,+2, (A - B S,""l [)7(7] A (,",»'T.R,""‘(f? Z+B S,""‘.BT =0, (AT
S LS S———— e
4 A [
Le script MATLAB est :

>>[X, eigCL, Acl] = care(Al’,C’,QLRI);

ACAGF99] : Soit

Définition A.11 (Produit de deux réalisations minimales)

A B 4, B,
G, (s) =it et G, (s)= * *\ deux réalisations minimales, alors le
,("I l)l ( 2 I)‘ .
produit :
Aﬂ Bl CZ B| Dzj V AZ OH?_xn] Bg »
G ()G ()= Yn 4 B, J =B C, A4 B D, (A.18)
» (¢, DG DD [Dc, ¢] DD

Définition A.12 (Marge de gain) [Bou95]: Marthématiquement, pour un systéme

mono-entrée/momo-sortie (SISO) dont la fonction de transfert est G(s), si on

désigne par ((o ) la fréquence a laquelle la phase £G(jo) est égal a (7)), la

h

marge de gain esi/ donnée par:
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Marge de Gain = (A9)

G (,ja‘)ph )'

Définition A.13 (Marge de phase) [Bou93]: Pour un systéme mono-entrée/momo-

sortie (SISO) dont la fonction de transfert est G(s), si on désigne par (».) la

Marge de Phase =z + ZG(jo, ) (A20)
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ANNEXE B: CALCUL DES NORMES H; ET H.,

On rappelle ici les algorithmes pour calculer les normes H, et H_ d’un systéme défini
dans I’espace d’état G'(s) < €. Soit
G(s)=C(sd,~4)" B+D (B.1)

avec (.A € IR""") matrice d’évolution, (.B e ™ ) matrice de commande, (( € H\‘Q."‘")
matrice de sortie et (D € R”X”) matrice d’action directe. Pour la norme H,, on suppose

que la matrice d’évolution () est stable et que la matrice d’action directe (D) est nulle.

En  remarquant que G(jo) est la transformée de  Fourier de

o o

[(ce®B) CeBdt=—— [G(jo)G(jw)dw (B.2)
0 S
Soit 7 le grammien d’observabilité :
O = j'((;*e"“)"‘ Ce™ dt = j e CTCet (B.3)
0 ¢

On montre [ZD98] que le grammien d’observabilité (7 est la solution de 1’équation de

Lyapunov (3.4} :

AO+PA+C"C=0 (B3.4)

En prenant la trace de chaque membre de I’expression (13.2), on obtient :

= [Trace(B"OB) (B.5)
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A noter qu’on a aussi [ZD98] :

6], = Jrrace(ccCT) (8.6)

ou (¢’) est le grammien de commandabilité (8.7) et est la solution de (B.8) :

c=| e’“,B(e’“B)T dr= [e"BB' " ds (B.7)
0 0
AC+CA" +BB =0, (B.8)

Si G(s) est une fonction de transfert, la norme H, peut étre calculée par la racine

carrée de la somme des résidus de G (~s)G (s) aux poles stables :

= \/Z(S-—[)])G(—.S')G(S)] (B3.9)

) s ),
Re( p, )<()

A B
Théoréme B.1 [ZD(96] : Considérons u( Dﬂ , comme réalisation interne
dans I’espace d’état de G(s)eC’. On a toujours |G| >& (D) et pour
tout y > & (D) il y a une équivalence entre :
TB.ia. |G|, <7

TB.1.b. Lamatrice ( y) n’a pas de valeurs propres sur I’axe imaginaire. :

yi. DTTC o, .
{ D;’ o 1 0 -[BT (B.10)
i )

gn .

4 0,110, B
H (y) - [Onxn ’—A’,A_, m{; (‘T Onxq]

De plus, si (jw,) est une valeur propre de H(y) pour y>&(D) , alors

(G (je, )) =y, C’est-a-dire le gain () est obtenu a la fréquence (), ).
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La matrice H(y) est d’une structure particuliére, dite "Hamiltonienne". Lorsque

N o 4 BB -
(D=0} elle s’écrit simplement £ (/).—[ “:CTC 4 y J Cette caractéristique
W’V . —

suggere un algorithme pour calculer la norme H_ . On part d’un encadrement grossier

[Vuwin  Vume | de cette norme et on I’améliore itérativement par la méthode de bissection :

— On calcule le spectre de H () pour y = W ;

— $§’il n’y a pas de valeur propre sur I’axe imaginaire, ( }/) est trop grand et ’on

obtient comme nouvel encadrement [7,.. 7] ;

i

— Sinon, (y) est trop petit et I’on obtient comme nouvel encadrement [y 7., |

¢ max |
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ANNEXE C: RESOLUTION DU PROBLEME Hw

Dans cette annexe nous examinons la résolution, ainsi que la mise en forme du probléme

H, . Nous décrivons également les principaux algorithmes dans le cadre de la synthése

de la commande robuste H_ .

C.1 Théoréme des petits gains

D’une mani¢re générale, deux types de perturbations peuvent affecter le systéme

nominal :

e Signaux perturbateurs (signaux auxiliaires non prévisibles, c’est-a-dire bruits

de mesure, bruits de commande);
e Incertitude sur le modele du systéme lui-méme AG(s) et/ou la commande

AK ( S) .

Ces derniéres sont elles méme de deux types :

o Non-structurées (c’est-a-dire dynamique négligée, dont seulement une

borne est connue);
o Structurées (c’est-a-dire incertitude de type paramétrique).
Etant donné que la stabilité en boucle fermée est sensible aux erreurs de modélisation et
aux dérives de commande A,K(s), assurer la stabilité du modéle nominal bouclé n’est

donc pas suffisant. Il faut également garantir la stabilité de tous les systémes atteignables

par les perturbations AG (9) et A[x(s) admissibles, parmi lesquelles se trouvent le

systéme réel lui-méme. La stabilité est dite "robuste", lorsque cette garantie est fournie.
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Le théoréme des petits gains donne une autre formulation du probléme de la synth¢se

H,, défini dans le section 3.2. Si on se restreint 4 des incertitudes non structurées
AG(s) et AK(s), le résultat du théoréme des petits gains donne un instrument

didactique trés important pour la stabilité robuste.

Théoréme C.1 (Théoréme des petits gains) [21DG96] : Considérons la boucle

d’asservissement de la figure .1, ol G(s) est un systéme linéaire stationnaire
(LTI) stable et propre G(s)e RH_ et Iincertitude non-structurée A(s) est un

opérateur, vérifiant :

AL 7 721 ©

Supposons que la boucle ouverte du systéme L (s)=G(s)A(s) ne présente

pas de simplification de mode instable. Alors le systéme bouclé ci-dessus est

stable de maniére interne pour toute incertitude A(s)e RH_, si et seulement

Si |G (o), <7y Vo (€2

(Pour la justification, voir [ZDG96]).

Remargque : Soit le systeme bouclé (par ex. figure C.1). Alors le systéme est dit stable

de maniére interne (& RH,,), si toutes les fonctions de transfert qui relient les

entrées (W, (s) et W, (s)) aux sorties (£, (s) et £, (s)) sont stables



185

De fait ( ] définit I’amplitude maximale des incertitudes non-structurées A ( \) que
v,
/Ipg

peut subir le syst¢tme bouclé F,(P,K) , expression (3.2} (voir chapitre 3), sans se
déstabiliser. Donc, en minimisant la norme N]*, (P.K )“w, expression (3.3}, le probléme

H, optimal consiste & trouver une loi de commande K (s), de sorte que le systéme

bouclé soit le plus robuste possible vis—a—vis d’incertitudes non—structurées. Lorsque les

incertitudes sont structurées, la norme ”.F} (P.K)

< 7y, €St une contrainte trop forte,

o

étant donné que les fréquences pour lesquelles le systéme bouclé F (P,K) et

I’incertitude A(s) trouvent leur norme H_, sont principalement différentes.

C.2 Résolution du probléme H., normalisé.

Introduiront les techniques de résolution par variables d’état du probléme de H
normalisé. L approche H,_ a été proposée par Glover et Doyle dans [GD88] et Doyle et

al. dans [DGKF89]. Les algorithmes développés sont disponibles dans la boite & outil
ROBUST CONTROL TOOLBOX de MATLAB (fonction hynfsyn). La paramétrisation
du probléme sous-optimal est basée sur la résolution de deux équations de Riccati. Le
probléme optimal est généralement résolu en utilisant la méthode de bissection, c’est-a-

dire la valeur de y,, est habituellement approximée avec 1’expression (B.10) (voir

annexe B) pour des valeurs de plus en plus petites ( » -itération). Introduisons une

réalisation minimale du systéme P(S) , représenté avec notre propre notation ” [] HH :



186

Cette réalisation est associée & la description interne (C.4), dont le vecteur d’état est, x,

M z Xhly
le vecteur de sortie est formé de deux vecteurs { }, on supposera que D, € R”™™ et
Y.

D, e R"™™ avec m, z p, et p,2m,, A R" ou,n, est ’ordre du systeme.

517 T14] (B, B)

]V:J = [C}" it i'DH D}ZJ [-WJ : x(())'“() (C.4)
. U

Y
(‘2_} Lth Dzz

La solution par variable d’état est applicable sous les suppositions suivantes :

SC.1. Les paires (A,B,) et (4,C,) sont respectivement stabilisable et
détectable. Cette condition est nécessaire et suffisante pour I’existence du

compensateur qui stabilise le systéme de maniére interne;

SC.2. Les matrices D,, et D, sont de pleinrang ;

J (() A
rang =n+m,
& ol

SC.3. pour tout @< R . Autrement dit,

Q ](ol —A J]
rang =n+p,

P, (s) et P, (s) n’ont pas de zéro sur I’axe imaginaire. Ces deux derniéres
hypothéses sont appelées hypothéses de régularité. Elles assurent que le
compensateur optimal ne simplifie pas de zéro — péle instable sur 1’axe
imaginaire. Dans un premier temps, nous ferons en plus les hypothéses

simplificatrices dites de normalisation.
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T Ny Dy Dy, . c iy
SC3. D,=0, et D, =| ] est portionnée de maniére que
} frtt Dy Dy
Dy, € R™™ . La supposition D,, =0, est raisonnable, vue que la plus

part des procédés industrielles sont strictement propres.

Remarque : Pour compléter le développement, nous présenterons le cas pour

D, #0 dans la section C.2.1. On peut toujours satisfaire les suppositions

Pyxrmy

SC.4-5SC.5 par des changements appropriés de variables.

On a la caractérisation suivante des valeurs sous — optimales du probléme H K (P, K)”m

normalisé.

Théoréme C.2 [ZDG96]: Sous les hypothéses SC.1-SC.5, il existe un

compensateur K () qui stabilise le systéme de maniére interne et assure

F(p, A)” <y
si et seulement si :

TC.2.a.

y>max({D, 0, )50, D7) (©.5)

TC.2hb. Les équations de Riccati :
A X+ XA+ X (BB = B,B )X +C/C =0 (C.6)

AXH

nxn (((° 7)

AY + XA+ Y (7701 C =) Y+ BB =0
ont des solutions stabilisantes respectivement X et ¥ telles que :

Rej (A-+(r?BB" - B,B")X,)<0, Vi (.8

1
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Re (4+Y, (77°C/C,~C,/C,)) <0, vi (C.9)
TC.2e. Ces solutions et le rayon spectral p(X Y) vérifient :
X, 20 Y, 20 p(X )Y )<y (¢

TC.2.4. Lorsque les conditions T('.2.a-¢ sont satisfaites, I’ensemble

K (s) des compensateurs rationnels et stabilisant de maniére interne le

systtme P(s) , satisfaisant ”.F}(P ,K)

<y, est donné par la
transformation lindaire fractionnelle K(s)=F(K,,®), pour tout

stable et propre ®(s)eRH, denorme ||®] <.

s an

'K‘w = [—'”'"BZTAX;0 g Omzxpl lml_xml
~C, I 0

L P Paxing

[4,] [zrc' z.B]

e
wl

z,=(1,-771.X,) (€11
A, = A+y7B, B,TX,J - B, BZY X 7Y (.Z'ZTC2

"t e

Cette solution particuli¢re du probléme H_ sous— optimal est appelée compensateur

central (en anglais central controller). Nous pouvons faire deux remarques sur la
solution particuli¢re, donnée au théoréme Théoréme C.2 : d’abord le correcteur obtenu
est strictement propre et a le méme ordre que le systeme {C .3}, qui représente le systéme

a réguler — I’hélicoptére dans notre cas, augmenté de différentes fonctions de
pondération. Ensuite, si I’optimum est caractérisé par le rayon spectral p(X ”Y) = y()/_,,z ,
les formules deviennent singuli¢res au voisinage de y,,, c’est-a-dire que Z, n’est plus
inversible a I’optimum. Cependant, on montre que le compensateur dynamique K.,

(C.12) tend alors vers un compensateur d’ordre réduit, la chute d’ordre étant égale a la
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chute de rang de (1,, -7V X ) Cette réduction d’ordre provient de la simplification

o

de pole(s) a I'infini [ACAGF99].

K, ==B/X, (s1,-4,)'(1,-7¥.X,) r.¢;" (€.12)

[2F

Le compensateur central peut étre séparé en estimateur (observateur) d’état de la

forme :

= A+ By?BIX, |34 Bu~(I,-7"Y X,) L0/ (Ch-y)  (C.13)
[ —— '

worst

u(t)=-B,"X %(1) (C14)

En comparant la structure du compensateur central (figure .2) avec la structure d’un

estimateur (observateur) classique d’état (filtre de Kalman), nous pouvons constater que
I’expression (C.13) contient un terme W, ., =By B X, qui peut étre vu comme

worsi

I’estimation de la pire perturbation extérieure [SP03].

s B C >

u

B, —» s C, 204

c,

A+w

WOrst

~B/X, |4

Figure .2 Structure du compensateur central (avec observateur et retour d’état)
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Le Théoréme C.2 suggere un algorithme, permettant d’approcher le gain optimal 7, et

d’obtenir ainsi un correcteur proche du compensateur optimal du probléme standard. Cet

algorithme est connu sous le nom de y -itération. En utilisant la méthode de bisection,
on initialise le processus avec un intervalle [7,., ¥, ] (souvent [0,1 10]) contenant

/£ max

7., €t achaque itération, on élimine une moitié de cet intervalle en testant les conditions

s oopt

TC.2.b et TC.2.c au point médian :

o e max + ,V i
2

Si elles sont satisfaites, on a y >y, et on rejette la moiti¢ droite de ’intervalle. Sinon,

on €limine la moitié gauche. Ce schéma itératif s’arréte lorsque la longueur de

Pintervalle tombe en —dessous de la précision désirée pour y,, . A chaque itération,

"tester" la valeur de » exige :

Etape 1: Calculer le spectre des matrices Hamiltoniennes :

€ i

Foe A y?BB -~ BB, " 2ned
- "C1TC1 ~A"
. e et (€.16)
J, = < - Vol byl by o R
~B,B, - A

associées aux équations de Riccati ({.6) et (C.7). Si les spectres contiennent des

valeurs imaginaires pures, conclure que y <y, et passer a I’itération suivante.

Etape 2: Calculer les sous — espaces invariants stables :

Y, Y, I
et (CA7
LZ " LZ J



191

de F, et J, respectivement. Si (Y,.) ou (¥,) est singuliére, conclure que y <y, et

passer a I’itération suivante. Sinon, calculer les solutions stabilisantes des équations

de Riccati :

X, =2Y, " et ¥ =ZY (C.18)
Etape 3: Tester la condition T'C.2.¢ pour conclure sur la positon de, y, par rapport

au y,

opt *

En général 1’optimum est caractérisé par 1’¢égalité de la plus grande valeur propre du

produit X_¥, avec (;/ ")

opt

o (X,.myw ) - }/L,[,,z ((‘ i ‘))

Cet algorithme est programmé dans la boite & outil ROBUST CONTROL TOOLBOX
de MATLAB (fonction hynfopt).

C2.1 Lecas D,, #0

P

Lorsqu’il existe un chemin direct entre la commande # et la sortie mesurée, la matrice

Dy, #0, ,, . Cependant, le terme D), peut étre séparé du systéme selon figure C.3

e 7
v+
—P ng *-*:O
¢
LSO K

Figure CJ Lecas D,, #0

paxiny
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En premier, on peut faire la synthése d’un compensateur K (s) avec Dy, =0 en

pyxmy

ensuite calculer le compensateur K (s) comme :

R(s)=K(s)(, + DyK (s)) (C.20)

Nous allons maintenant voir comment obtenir le systéme augmenté P(s) en ajoutant

des pondérations sur les signaux & surveiller, et comment choisir ces signaux et
pondérations : c’est l'objet des paragraphes suivants, ot nous choisissons de traiter le

probléme de la sensibilité mixte.

C.3 Mise en forme du probléeme H.,,

Comme nous l'avons présenté dans la section 3.2, la synthése H_ s'applique a des
représentations du type LFT (Transformations Linéaires Fractionnelles) selon la
figure 3.1, Le probléme est maintenant de savoir comment obtenir ce type de
représentation a partir du systéme, qui est I’hélicoptére et des pondérations que 1’on va
lui ajouter, liées & des critéres de stabilité et de performance. Le libre choix des signaux
a surveiller, ainsi que des pondérations, qui dépendent des objectifs de performance,

rend la synthése H_ souple.

C.3.1 Systéme augmenté

Si on se référe a la figure 3.2, le systéme dit "augmenté", élaboré a partir du systéme

nominal G(s) et des fonctions de pondération W,(s)eC™™ , W, (s)eC™"™ et

W;(s)e C™", est donné par la matrice de transfert (C.21) :
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[w.(s5)0"(5)] [-7.(5)G(5)]
- Omgyml ;I/Jl ('S') e g
P(s)= 0. w, ()G (s) (C2n

07 (s) ()

Si la fonction de transfert Q(S)GC""”’ possédant une réalisation interne minimale

B,

-l A, :
O(s)= Cy (Sln,.,. wAQ) B,+D, = H(,{) QH est inversible (D), est inversible), alors

“Q ¢

une réalisation minimale de Q™' () est:

. 1 , S |
AQ—.BQDQ Cy BQ.DQ
A ‘ B
() 1(5,) ....... ot o ({ 59 }
& i .
wl)Q C(? DQ
[ S— S et
€ D
Introduisons les réalisations minimales :
A B, 4, 4, B A4, B,
G(s)=|0 Tl w(y= " T ws)=] | ms)=| ) C22)
(“’U [) (¢ ("W,, W, | ‘(‘V}l’" ‘DW” ] (‘ i ‘D}y_,i ]

Ici la difficulté principale est d’assurer la minimalité de la réalisation de P(s). Pour
cette raison nous cherchons une décomposition de .P(s) en un produit de fonction de

transfert o G(s), W, (s), W, (s), W,(s) et 0"'(s) n’apparaissent qu’une seule fois.

W ()0 (s)| |=W.(5)G(s) Q'(s)| |-G(s)
Om Ny VV:: (‘Y) Y Om i ]m~
P(s)= B 5 = blkdiag (W, (), W, (s), W, (s),/, 2 =
@= (GG || I
o' (s) ~G(s) Q7'(s)  -Gls) |
10 -1 ]
o P ;\ni; 0 r ]p Op'm: } )1 N .
o blkdiag (W( (S),M’; ("v)ast (‘S)ﬁ][') nyxp . oy 3;,\/) Omzxp : {'%) (5) }'\nlz]{@“yzg)
Np ity P O ) ( ; (S) L A my
I, 0 P .

P pxmy »
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En remplagant les réalisations minimales (C.21), (C.22}, (C.24), (C.25) et (C.26) dans

{C.23) on obtient {(".27} :

bikdiag (¥, (s).W, (s).W, (5).1,) =

bikdiag ( 4y, . 4y, . 4, ) Lblkdmg,(k B By) O )x,,} s
¢ o i {w‘»' £ )

(2.p+my pep

0 (2. prmy) P

= bikdiag(C,,.C,, .Gy ) lediag(DW‘.DWu .D,) 0

Z8 o by g, )
i ("ue iy ey

. 0 ] Af} i[ Or GXP BG ‘J
P P S p [ » O Pty ’*(/Y( —! [ ’ “‘“‘DG
Omz “p 1m, X1ty Omz %P " ! 0

myxp i 1”,2

0
0

pxp O Py [p ;
mxp !
0

< E
X
~
[
— 3\"
[P
———
f=
- ok
~ < %
) 3
f'-'_m_'l

oo, 1 L e —
l o , ”Cr; [ r 1 """Do'
/{U I:O/l«/‘[ B(r ]
I, 0
p i,
’ 0 / 0
Om7 i, I,,,ﬂ - XA P | P
0 G(S) Omzxn(; Omgxp ! _{i’i{‘
. Pxp A .
CG 0 pxp i '1")(}
Ay=By,D,Cy | ByDy 0, L,
. [ —1 [
Q_‘ ('S’) O[’anz I AQni 1}0"1 d
0,')17 XAy 1 o, ] MI)Q C Q ,—Ijz\ ; oy
T " o Do (.72)
Cori o ' piny
a0, Olﬂr XM, { 1'7!
20 Xy 2

o, 0 e

n pxing p

1 0
Om» < ]m Om x i Pt )lw] A 0
4 2 X P 0 I }7(- ( ) pxiny )

ey P "y
O pxp Opx "y Ip O G . i, X '[M;
/ 0 -] . PXP (s )

P pxing r
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=
AG On,; Xy On(; i i B(.'r' i
y =1 2 7y !
0, o Ay=B,D,'C,| | B,D, 0, L
-t 2 ST ! 7
‘4;)‘“‘ L bQ-J |
a I P Val - —1 . =
Co  1=-D,7C Dt =Dy,
_"‘ S et =3 -
¢, Dy (C.26)
My xH ( my <y Omﬂ. nmy l I iy
Y
("('} 1 Pty 0 pxmy I DG
~ el -1 —
~Cy  |=D,"C, D, |~ D,
[ T— g
€ I)c__!
o L ¥ -

A I)
) (;'/)

A

I,

Hyyy =gy
gy X,
g Xy,

Fry Xy,
| g
B, D"
e
Fy, X0y
iy,

gy xom,
S |
B,D,
R —

o

¥
C W,

Sy gy

e

Y prng,

B,

D,
Xy,
4,

Py Py

1y %Py

Ty Xy,

“Bng Dr:; |

Bn';
3;‘;{5 Dy
By,

ng Nty

P g,
il
a2

Py Nty

Xy

gy # Ty
Py, Xy
W,

1 4V

)1{! "”ﬁ';

Priy,
iy A
(*v

-y

Pty

—B

W,

C.

G

iy W05
aal
B Wy C G
4,

Fry X7ty

myxmy

proy

DQ”I

0

nry A

D Wy C(;
""C(‘

J

. .
”""Bm DQ ¢ Q
nwl xRy,
iy, XBgy

e 7y

4,-B8,D,7'C,

D,D, ~D,D,

- ~lor
'““DW, C G ""an D(» G Q

w, ¢ |
D,,
D,. D,
-D

G

my g

PRI

m—_DQ;I C,

(C.27)
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On notera que I’ordre du systéme augmenté P(,S‘_) est égal a la somme de ’ordre du

systéme et de ’ordre des fonctions de pondération. Présentons maintenant les principes

de base du choix des fonctions de pondération.

C.4 Choix des fonctions de pondération

Le choix (et la modification généralement itérative) des fonctions de pondération est
dicté par la volonté de "fagonner" les valeurs singuli¢res des fonctions de transfert
caractéristiques et le besoin d’assurer la régularité du probléme H_ résultant. Pour le
probléme de sensibilit¢ mixte, le choix de filtres passe-bas et passe-haut donne
généralement I’allure fréquentielle désirée des fonctions de transfert caractéristiques.
Cependant, les fonctions de pondérations doivent étre propres et stables. Pour cette

raison, si on veut une erreur de poursuite nulle en régime établie en pondérant la

fonction de sensibilité par un terme d’action intégrale, il faut approximer (w—j avec
s

( & ii). De méme, pour assurer que le signal de la commande soit atténué au
S+e&

dela de la bande passante, il faut remplacer la fonction de transfert ¥, (s) =(Ts5+ l.) , qui

s+l

n’est pas propre, par la fonction de transfert (W?_ (s) : VT, < r(] . Dans la boite

7, s+1
a outil ROBUST CONTROL TOOLBOX de MATLAB (fonction mixsyn) est suggéré

un choix préliminaire des fonctions de pondérations :

s @,
;;+a)h é’+“

W =t o W =t (C.28)
Tos+w,A T As+to,

ou @, est la largeur de la bande passante, telle que !T (jo, )] = m\/%:, (y* > l) est la norme

désirée et (A* < l), souvent (A* & 1) est I’atténuation désirée des perturbations dans la
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bande passante. L’idée est que (l—ﬂlwl« = A*} en basse fréquence, [Fﬁ = y*] en hautes
I, I

fréquences et [ﬁf}m} ~ ']} pour la fréquence @, . Bates et Postlethwiate [BP02] présentent
/li

les différentes étapes de la synthése de la commande robuste, ainsi qu’une discussion

pratique sur le choix des fonctions de pondérations.
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ANNEXE D: SCRIPTS

Le script suivant nous permet de calculer la dynamique de battement et de trainée pour

un rotor articulé selon la figure 2.9, Le script utilise le logiciel MAPLE.

> with {(LinearAlgebra) :

Définition des matrices de rotation

> Rotpsi = Mabtriz{[{sin{psi),-cosipsi) . 0], [cos{psi) ,sin{psi), 01,[0,0,111):
> potdeltar=mMateix{ loos {delta) , sinl{delta) 0}, [~

gin{delta) ,coni{delta) , 0},10,0,111:

> Retbeta=Matrix{[{1,9,01,1{0,cos (bata) ,sinfheta) ], [0, -

sin {beta) ,cos{batal 1]}

Calcul du vecteur de la postion <x, y, z> du point P dans le repére fixe

o AR2, yR, mR2» iw <0, sb, 0> ¢ MatnixVectorMultiply{Rotheta,<U, zb, G>):
oCRE, w3, 23> w0, ed, OF 4+ MatrixVectorMoultiply {Botdelta, <x2, w2, 22>):
>oCx, v, 2> m MatrizVectorMolitiply (Rotpsi,<z3, v3, z3>):

Calcul du vecteur de la vitesse <deV> du point P dans le repére mobile

> devli=Onegatmap (difE, <x, v, z>,psi): # Omega = DIiFF{pai, &)
> eV i=Xitnap (1L, <x, v, z>,dalts): # X1 Diff{delta, )
> odevii=Upgilontmap (AiFE, <x, v, 2, bata): # Upszilon = Diff(bata, &)

» daV e deVl+deVi+deVd:

Définition du vecteur de la vitesse <V0> de I’origine du repére mobile

> VO = <uS, v8, wi>» + <pS, q¥, r8> &x <1 M, b M, h M >
Définition du vecteur de la vitesse totale <Vloc> du point P dans le repére fixe

» Vioo = VO + deV o+ <p8, g8, r8» &x <x, y, ¥

Définition du vecteur de l'accélération totale <A0> de I’origine du repére mobile

> B0 = Dotu$, Dotvd, Dotwdk + Dotpd, Dotyd, Dotrd» &4x < 1 M, b M, h M> +
CpS, g, r8x &x (Ku8,v8,wS> 4+ <pd,g8,r8> &x < L M, b M, h M >

Calcul du vecteur de l'accélération <de2V> du point P dans le repére mobile

» de2Vi s Omega*map (GLEE, deV,pai) # Omegs o= )

» A2V DotOmaga*nap (AiFF, deVv, Onega) # DotOmega = DLEF {(Omega, ©)

» de2V3 = Xivtmap (diff,dev,delta) # Ki o= DLEF{delts, i}

» da2Ve DotXitmap (AiFF, dev, Xi) ¥ Dot = DIFFXL, )

2 da2VE = Upsilontmap ((LFF, deV, bata) @ # Upsilon = DIFFf(beta, t)

»odeevE i =Dotlpsilonteap (difE, deV, Upsilon):  # DotUpsilon = DIff (Upsilon, )

wodwmeV e dedViede2V2idel Ve dVAednZVEede2VE

Définition du vecteur de l'accélération totale <Aloc> du point P dans le repére fixe

> Blog e AdedVA<Dotps, Dotg®, Dotr8d fx <x,v,z>4+<Cp8, g8, r8> fx (2*daV +
<pd, g8, w8k Lr <u,y,er)

Définition de I'énergie cinétique

> VeVe r=DotProduct {(Vioe, Vlioo, conjugates=ialsel:

e Hgre 1/2% {I be tarcoal £ {VeVe, v, 2y 4+ ¥ betatcoell (VaVe, rh, 1y o+
masse_procelf (VaVe, b, 0) )

Calcul de la dynamique de battement

> Beta Dynamigue:=simplify (I betavooeff (DotProduct (uwep (L0, <x, v, 2> betaj,

zx,eta) , Aloo, condugate=false) b, 1y +
masze brocelf (DotProduct {nap (daff, <x, v, z> . hetal, &loo,
coniugate=false)  oh, 01
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Calcul de la dynamique de trainée

» Dalts Dynamiquer=sinplify (I betavcoelf (DotProduct (map (ifl, <x, v,

e, delta), Aloc,conjugatasfalge)  rh,2) + M betarcoeil (DotProduct (map (AL, <x,
v, zr,deltay, Alog, conjugatesfalas),zh,l) +
ma&semb*mﬁeff(Dct?rodmat{map{diff,(x, v, 2w delval, Aloo,
conjugate=false) ,vh, 0}

Calcul de la dynamique complémentaire de trainée

> xd,yd,zd> v MatrixVectorMultiply (Rotpsi, <0, ed, 0> +
MatrixVactorMultiply (Rotdelts, <0, 0d, 0>))

> deV Conplémentalre:s Onegaimap (diff dxd, yd, zd> psi) + Xivmap (diff, <xd, yd,
aed> deltal

> Viood:i= VO 4+ ded

dmantaire + <pS, g8, 8> Sz {<xd, yd, zd>):
> del2vV Complémentain Cmagarmap (diff, deV Conplémentaire,psi) +
DotOmega*rmap {diff, dev Complémentalre,Omega) +

K Fmap (i £F, deV Complénen taire,deltal 4+

Dotdicmap (AifE, deV Conplémentaire,¥i)

> Aloc3 = Al + de
adxr<pS, g%, wE» sx (2%deV Complépentaire + <ps, R, r8E>» &x <xd, yd, zdr):
Delta Dynanigque Complémentaire::
o, yo, zd>, delta), Alocd,conduga
M deltavcoaeff (DotProduct (map (diff
conjugatestfalsal  wd, 1Y) ¢

iwplify (I delraxcoeff (DotProduct (wap (diff, <x
Lsed ,rd, 2 +
yexd, yd, zdr,delta), Alocld,
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Le script suivant nous permet de calculer la dynamique du battement vertical des pales

et I’équation dynamique de I’extrémité de la pale, en utilisant le logiciel MAPLE.

» with{Linsarilgabra) @
> kbt secft (=1852/(3800%.3048) ¢ degdrad @+ PL/180: Digits = 61

Calcul du poids de la cellule sans pales

> GlrossWelght] = 16638: N[Blades]:=4: WlieightBlade[MR]] =256.9:

GlrossWeight] est le poids total de 'hélicoptére [Ib], N[Blades] est le nombre des pales, W[eightBlade[MR]] est le
poids d'une pale Ib]

» Wileight[Bodyll = (GirossWelght] - N{Blades!*WleightBlada{MR]]):

> OFB[0G] e 385,89 BLICGT e 0 WLICGT = 248.2:

FS[CQ] est 1a référence longitudinale du centre de gravité total [inch]
BL[CG] est la référence laterale du centre de gravité total [inch]
WL[CG] est la référence verticale du centre de gravité total [inch]
o FSIMRE] w 341.2: BLIMR] e 00 WLIMR] = 315 0
FS[MR] est la référence longitudinale du repére moyeu [inch]
BL[MR] est la référence laterale du repére moyeu [inch]
WL[MR] est la référence verticale du repére moyeu [inch]

> FE{CGIR]]) :» {(GlrossWelghtl*Fs{Ca] -
N Blades] Y"WieightBlade IMR] 1¥FS [MR]) /Wleight{Bodyl i
> BLICGIRI] = (GlrossWeight]*BL{CE] -~
M{Blades] *WieightBlade [MR] 1*BLIMR] ) /¥{eighn[Bodyl )
> WLICGIBIT = (GlrossWelght] *WLICG] -

MiBlades ] *WieightBlade [MR] ] *WLIMR] ) /fFleightiBodyl]:

Calcule de la position du repére moyeu par rapport au centre de masse de giravion [ft]

o<l nixll, A hiv]l M {hizl i e UPBICGIBYI -~ FE{MRIY/12, {(BL{CGIBRIT ~
BLIMR)) /12, (WL[CG{B]} - WLIMRTY /12>

> FSCG aft = 360.2: FSCC _fud = 345.7: FSCG nom i= (FSCG_aft + FSCG_fwd) /2:
{E%CG aft - FROG xwﬂ)/ir%ﬁh afft + FHCG fwd) e

= 0: BLCG fwd = 0@ BLOG nom = (BLCG aft + BLCG fwd)/2: p BLLG 1=
(BLLC; alfi“ - BLLG fwd)/(BLf‘G aft + BLCG fwd) :

b WLCQ w.l:t: = 251 .1: WhLCG i:wd. w244 .4 WLCG o nom 1w (WLC,szzzsft + WLQC;» VVVVV Fwd) /2
P WLOG o= {(WLCG aft ~ WLEG ﬁwd)/(WhFG aft ¥ WLOG Eyrdy -
GO e ) talF8CGi)

> FEICG[B]] = FECE _nom* (1 + p

> BLICEIRB]] = BLCG nom* {1 + p CErdeltalBLOGY) ©
> WLICGIB]] = WLCG nom* (1 + p WLOG*delta{WLCG])
>o<lib{x]],liniyl!, 2(hizli> o= <(FSICGIB]T - FE[MR])/12, {(BL{CG{B}] -

BLIMATY /12, (WLICBIB1] - WLIMR]) /12>
Calcule de la position du repére rotor anti-couple par rapport au centre de masse de giravion [ft]
o RS[TRT e T32: BLITR] = ~140 WLITRT 1= 324.7:
FS[TR]  Fuselage station for horizontal tail rotor [inch]
BL[TR] Buttline station for vertical tail rotor [inch]
WL[MR] Waterline station for vertical tail rotor [inch]
> Zilbriw]) A ibelvi), Liee izl > c= C{FI[CC{B]] - PEIPRIY/L2, ~{BLICGIBI] -~
BLITRIY /12, (WLICE[BE]T - WL{TR])/12>:
Orientation du pilon par rapport au repére "moyeun”
> Fhi{8hatfe] =0 : Thetal8hafit] = 3%01i/180:
> RotiShaft/Bodyl = <<oos(Theta[Shafcl}) | 0 | -sin{(Thetalshaftlyr,
<gin{ThetalsShafe])*ein(Philghaftly | cos(Philghaful) |
cos {Thetalfhafel )y *ein{Fhi[Shaft]) >, <sin{Thetalfhafc]) *eos{(Phil8haft]) |
s5in{Phi[B8haftl) | cos{Thetalshaft]) *cos (Philshafr]) s>
TIPRAIEY] = <L | 0§ O, <0 | cos(PhilB]) | sin(Phi{Bl)>, <0 | -
HinPRi{E1Y | zos{(PhilBl)>>:
f? Matrice de rotation par rapport l'axe inertiel =z
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> [LH%?&FWIEim <<oos{ThetaiBly | 0 | ~zin(Theta{E])>», <0 | 1 | 0>,
<gin(ThetalE]) | 0 | cos(Theta[El)>>»:
# MdLth& de rotation par rapport l'axe inertiel vy
TiRgi[B]]o» «<<cog{Psi{R]) | sin{PgilBl) | O», <-sin(Psi{E]} | cos(Psi{®]) |
0 <0 ] U 1 Ix>:
# Matxxc& de rotation par rapport liaxe inertiel h
S OTIBedy/Barth (B e Multiply Oltiply OPIPRI[B1],7{ThetalBl]), TIPai(BE11):
> Vi{Barth{®]] := Multiply{Transpose (T {Body/Barth][BEl1l}, <uiBody[Ell,
V{Podyixl}, wiBody[B11%)
> # ViBarthi{®]] = <DotX[E], Dot¥{B]l, -DotH[EI>:
Delta TIDLEI(V, eta)] 1=
<oMulbiply Moltiply (Multiply Geap (U FF, TIPhi{B] ], Phi (B . T{Theta{B]]) , T{Psi (B}
1Y, ViEarth[B11)> |
<Multiply (dultiply (Multiply (TIPhi{E1] ,map{diff, T[Theta[E]],Thetalk]) ) , T{Psi(E
11y, ViBarth{®1])> |
<tultiply Gultiply (Multiply (TIPhi[B1]1, T(Thetal®] 1}, nap (diff, T[BPsi[RE1],PeilE]}
3, VIiEarthi{Bl]1)>>:
> TIDLEE {fomega, ava) [B]1] = <1 | 0 | ~sin{ThetalBly>, <0 | cos{Phiifl} |
sin(Phi [B]) *cos (Theta[B]y>», <0 | ~sin{(FhilB1) | cos{PhiiE])¥*cos (ThatalB])»>
> dnverse TIDLICE (omega,eta) [(B]] = << | sin(PhilBl) *tan(Theta(®]) |
s{Phi[E]})*tan (ThetalB]>», <0 | cos{FhilE]}) | -sin{Phil[E])>, <0 |
sin{PhilE]) /cos(Thetalk]l) | cos{PhilR]}/cos (ThetalBl)>>:
> TIDLES (Cravity, eta) [B]] 1=
Gravity*<<cos (Thetal®]) *sin(Psi{B])icos (Pl [BI} 10>, <~
cos{ThetalB]) Ycos(Psi{R]} Iain(Pesi{E]) [ 0>, <0i0]0»>:
Vitesse et accélération lingaire et angulaire du repére moyeu par rapport au repére inertiel, exprimées dans le
repére fixe
> # ulBody] = 0, S¥kt seciit: viBodyl = 0%kt seclit: wiBody] = 0%kt sec2ft:
> f p{Body) =0 q[dey% ceidn o p[Body) =0
> V{Shaft] = MatrixVectorMaltiply (Rot{Shaft/Body],
<u§20dy},v{80dy} wiBodyis=y:
» emegalShaltl] = MatrisVectorMultiply (Rot{Shaft/Body],
QpEBady],q{Bmdy},x[Pmdy]z)
» Dot{omegal {$haft] = MatrixVectorMuliiply (Rot{8haft/Body],
<hotipl [Boedyl  Dotlgl {Body] Dot ix] (Bodyl>)
> Dot{V] [Shaft] = MatrixVeoborMaltiply (RotiShaft/Body],
<Dotlual [Bodyl  Dotlv) {Bodyl Dot iw] [Bodyl>)
Définition des matrices de rotation.
> Bovipsil s Matrig ([ [sin{psi), ~cos{psi), 0], [cosipsil, s zn{%vx)?GI,EO,Q,l}]):
> Botibatal t= Matrixz({{1,0,0],[0,cos{baeta) ,gin{bs ta)?,TO
sin (beta) ,oos (baeta) 11)
Calcul du vecteur de la postion <x, y, z> d'un point dans le repere fixe
7 <x{bl[mobilel, vibllmobilel, zib]llmcbileld = <0, gpsilon*Rietor], 0> +
MatrixVectordultiply {(Rotibetal <0, rik], 0>):

WO

w <xib) ixal, yviblifixe]l, z{bl{fixel> =
MatrixVactorMultiply Rotpsi], <xllk] [nobile], vkl [nobile], z{b] [mobile]>»):

Définition du vecteur de la vitesse <V[hub]> du repére fixe;

> Vihubl = V{ghaft] + omegalShaft] &x <L[h{x]],lib{yi]. liniz]]l>:

oo deV e

Cmega [notor] *wap (AL£F, <x (bl [fixs] , vib] [(fixel, z(bl [fixel> psi)+Upsilon*map {dif

SAx{bl [fixel , vib]l [fixe], z2[bi{fixe]l > bata) :

Définition du veeteur de la vitesse totale <Vloc> du point dans le repere fixe

> Vloe = Vihub] + deV + omega(Shaft] &x <xiblifixe], yvib]{fixal,

il [ final>:

Définition du vecteur de I'accélération totale <A0> du repére mobile

> Alhub] s DotivVi[ghaft] <+ Dotlomegal {Shaft] &x <Li{hi=zli.Liniy]l,%ifh
{

v iz +
omagelShaft] &x (V[shaft] + omegalShaft] &x <Lihfxli,l{hivii,Llibislis):

\/

11

Calcul du vecteur de l'accélération <de2V> du point dans le repére mobile
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P deldVl s Om@dq"motoxﬁ*mapiﬁif R TAYSCT- 8 I # Cwegalmotor] = DIFE{psi, )
P delVv? s DotCmegalnobor]*map (diff, deV, Onega) :  # DolOmnegn DAET {Onegn, 1)
odelVE e Upsilontnap (diff, 533 # Upsilon = hata, L)
P delVé 1w DotUpsilontmap (di0f, deV Upsiion): # Dotlpsilon = DL (Upsilion, 1)

GeRV owm de2VitdeZVe+delVaiitde2VEa:

Définition du vecteur de l'accélération totale <Aloc> du point dans le repére fixe

> Alaoc e Alhubl + delV + Dotionegal {Sheft] &x <wib] (fixel, viki[fixel,
zibl [fixnl> + omegalShaft] &x (2*deV + omegs]fhaft] &x <xlk]{fize],

ikl [fixel, zik]{fixe]>}:

masse b¥ooelf (VeVe, k], 01):

Définition de I'énergie cinétique

> VaVe =DotProduch{(Vioo, Vloea, coniugatesfalse):

> Term /2% {1 _bhetatcosff (VeVe, r{b], 2} + M beta*coeff (VaVe,r[b], +
maqsm_mb*&o@ff’ (V«»Véa rinl, 033

Calcu!l de la dynamique de battement

» Beta Dyneamicgue rs=simplify (I _betatcoeff (DotProduct (map (diff, <z [b] [fixe],
vibl{fixel, zlb][fixel> heta), Aloo,coniugate=falae) , vibl,2) +

M petarcoelf (DotProduct (map (ALET, <x(b] [fixe], vibilfixe]l, alb]fixel> bata),
Aleoo, aoniuagates=False) , rlb), 1) +

masse bYooelf (DotProduct (map (IE, <xibl (fire] , vibiifixel, zibllfirel> bata),
Aloo, conjugatesfalse),ribl, 083

Calcul des composantes de la force de gravité

> # Gravity :=32.147; # gravity acceleration [ft/seqe2]

> Ge twm Crevity*<-sin{ThetalBodyl), gin{Phi{Body])*cos (Theta[Bodyi),

cos {PhilBody]) *cos{Theta [ Body] ) »:

> Ge_beta = M beta*coeff (DotProduct {nap (diff, <xlb] [fixse], vib]ifixe],
2k} [fixel> beta) , MatrixVectorMultiply (Ronlshaft/Body], Ge),
conjugate=Talse)  vib], 1) :

Calcul des composantes de la force aérodynamique. Calcul de la vitesse de vol dans le repére moyeu-vent

> VELight = DotProduct(Vihuab],Vihub], conjugate~falsa)

> Vishafr/Wind] = ggrt (DotProduct{<vihubl (1], Vibub] (2], 0>, <V[hub][l1l}],
Yihubl (27, 0>, comjugate=false)), 0, Vig8haft] (31>

Calcul de I'angle de glissade du disque du rotor principale par rapport au vent

> Zeta s oarcotan (Vi (21, Vihobi[11): #

aonfZeta) =¥ hab! (L1 /Vigh af%’lemi} (11 min{Zesa):=¥ihab) [21/V{shafu/windii1t:
> # Rotpl :w;m« v w08 (Zetay 1o osin{lZeta) | Oy, wmlm{%@tm | oconi{Zata) | 0>,
X € I T T B RSV

> Rot¥Flight = <<cogfZeta | sinZeta | 0>, <-zinfets | coslets | 0>, <0 | O
iR

Calcul de I'angle effectif d'incidence du disque du rotor principale par rapport au vent

> Alpha = grovan{Vihubk] [3],Vighaft/Wind] {11} ¥

cos {Blpha) 1=V [ Shalv/Wind] [1]/vElight: sin{Alpha) = {hubl [3]/VvElight

# Vishaft/Windl [1] = vflightrcos (Alpha): VI[8haft/Wind][3] =
Vilight*ain{Alpha) :

Calcul des composantes de la vitesse angulaire dans le repére moyeu-vent fixe

> DotZeta = (VihaD] {11 /VShaft/Windl{liy 2« {athub] (21 /Alhubl (11}

> opegalShalft/Wind]l = MatrixVectordultiply (RetPlight, <omegalShafit]{l],
onsgalShalftl (2], (omeg'x{_»ha,f vl (31 +DotZata) >) ;

> Dotionsgal [Shaf/Wind] « MatrixVeobordMultiply (Rotilight,

<Dotiomega) [Shalt] {17, Douiomaaagdl {Shaft] (2],

(DothotZetatDot [oneyal [Shalt] [31)»)

Calcul des composantes de la vitesse angulaire dans le repére moyeu-vent mobile

PR, WY, wE> = MatrizVectorMultiply (Transpose (Roti{psil),
<omegalShaft/Wind] (1], omegs [Shafi/Wind] (2], (fomegalShaft/Wind] (31>
Calcul de la vitesse aérodynamique locale

> Homu =V Shaft/Wind] [11/ (Omega[motori *Rlotor]) @ lanbda

{V;'f:;haft/ Ll [ 21 -nu) / (Onaga [notor] YRioteorl)

o # lambdal0l+lanbda el *oos(psi)+lanbdais] *sin(psi)

i
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» Vadéro = {MatrixVectorMulitiply (Transpose {Rotibetal),
MatrizVectorMultiply (Trangpose (Rotipsil), <mu* (Omega(motor] *Riotorl) , 0,02 +
<0, 0, (laskhdal0l+lanbdalcl *cos {psi}+lambda{s] tsin (psi) } ¥ {(Onega(motor] *Riotor])
> 4 Onggalinotor] *map (difE, <x{b] [fixe], yvibl{fixel, z[bl[fixe]> psi)}+ <pX,
oY, 2> &x <0, epsilon*Rictori+ribhl, 0>} + <-Upsilon, 0, 0> &x <0, cih], O>):
» Vaéro simple 1w sisplify(subs ({cos (beta)=1, sinibetaj=betal, Vaérs)):
Définition de I'angle de pas theta dans le repére moyeu-vent mobile

> # delta3 =0

> theta = thetald+{spsilon*Riotori+ribil/Riotor]*thetal -~ Allwl*cusipsi) -
Bliwl*sin{psi) ~ deltal*bata:

Définition de la force aérodynamique

v #oa

toaldragT 07 0= 008 oldeagl {11

A q’rﬁ}¢ﬂrdvaq PRI (60 mh%&%f?/{a*s
ho*a*v*Rfofur}*4/l Data: rho:=0, 002377
> dk&@row ﬁ//*“%a*ﬂfo*1Vnm o simplell]t2%theta +
Vabro s mmefié*Va@rw vvvvvv simplal3l)

ro int {dfadro simpletribl, ribl=0. . (Rlotori-epsilont*Riotorii):

> omadire = L/ R¥rhotaroriRiotor’ ~ 4 Cnmega fnoton] 2% ({1/4~
apsilon/3tepsilon®4/12+nursin{psi) ¥ (2/3~apeilon +epsilon®3/3+1/ 2%nutein (pei) ~
mutapsilontsin{psi}+1/ 2 mutepsilon 2%sin {psi) 1 ¥ {th O« Al lwl*oos (pal) -
Bliw]*aind{psil} + (1/S-~epsilon/d+epsilon B/204mursin{paiy* (1/2~
2/ 3 gpsilontepsilon™4 /640 /3 mutgin (ped) -
1/ @ mutrepsilontsin (ps m}+wu*b*n(wslj*@pﬁilon“alﬁ))*th%tal 4 {1
spsilon) ?3/ 3+ (mu*rsin (psi) +apsilon) ¥ {1
apgilon) *2/2y ¥ {lanhda ] O]+ anbdalo] Yoos {pei) +lanbdal s fein{psiy) - ({1 4~
gpsilon/3tepsilon 4/12wmu*sin (pai) ¥ (2/3-epsilontepsilon® d/5+*/2*mu*$1nfp&m)w
mu*@p&li&%*&lﬂ{p%ﬂ)i1/;*ﬂm*ﬁp%1l0ﬁ“/*kln(psﬁ}))*d&i%@E + ﬁoa{pww)*mu*( /3
1/2%epsilontepsilon3/6+tmutsin {pel) * {1/ 2-apsilontl/2rapsilon™2) } ) *bata ~
(L/4-2/3%epsilontapsilon™2/2~apsilon™ 4/ 12+ mursin (ped) * (1./3~ @pgmlan+apsilan“2w
apsilon™3/3) ) YUpseilon/Oneganotor] +
{i/4-epsilon/3tepsilon®4/124+muFein (ped) * {(1/3~
spsllon/2rapgilon™3/6) 1 * (omega [ Shaft/Wind] (1] *ein {pei)
romaga ] Shaft /Wind] {21 ¥eos {(psi) } /Cnega [notor] )
» omadrol o= L/2%rhorarerRIobor] MM Omegalnotor] "2% {1/ 4~
gpsilon/dtapsilon®4/124mur gin fpeil * {2/ 3~apsilon +epsilon®3/34+1/ 2 nud gin (pei) -
mutepsilontsin {psi) +1 /2% nurepsilon®2%sinlpei) ¥} * (thetad -~ Allw]*cos{psi) -
Bliwl*sin{psi}) + {i/S~epsilon/d+ecsilon™5/20 mavsin {(psid * (1/2~
2/ 3 apgilontepsilion®4/64+1 /3 rmut gin (pei) ~
1/ 2*mutapsilontain {(peid+mursin{pel) Yapsilon™3/6) Y *thetal + ({1~
spsilond *3/3+ (mursin (psi) +apailon) ¥ (1~
grgilon) *2/2)F Qapbda [01+1lanbdal o] *oos (pei) +lanbdals] *sin {psi)) - {{1/4-
apsilon/3repsilon®4/12+ mutsin (psi) * {2/ 3~ansilontepsl lon® 3/ 341/ 2 maf sin (ped) ~
murepsilontain (psi) +1/2%nurepsilon®Z ein{psi) )  *deltal + aoxipsl) Yauv (1/3~
1/ 2%spsilontepsilon™ 3/ S+nu* ginlpsi) * (L/ 2-epsilontl/2epsilon”2) V) *hata ~
(1/4~2/3%epuilontensilon®2/2~epailon” 4/ 1 24nursin (pel) * {1 /3~epsilontepsilon®Z-
apsilon® 3733 *Uosilon/Osega [notor] +
L/ 4~
epsilon/3+tapsilon®4/12) ¥ {onegs [Shaft/Windl [1]vsin (pei) tomega {Shaft/Wing] (21 ¥
ogipsil ) /Onegalnotor] +
mu/ 2% {1/ 3-epailon/2rapsilon™ 3/
o (2Fpsl) ) ronega | Shaf b/ Wind) |
oS I

sy "2

£ % {omega [ Shafc/Wind] [11% (L~
21*sin {2%peil ) /Onegainotor) )

w1y (Moo —om e

0
0

> ogiaplify (Madro-madrol) ;
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> Madroe simple = subs ({epsilon”3=0, eépsilon®d=0, epailon”B=0},

simplify (Madroy )

> madro simple s L/ ¥ rhorararRiator] “4*Onega [motor] A28 ((1/4~
@pa:lon{Bému*&xn(pﬁ3)*{2{3 grsilontl/2rmurgin (psl} -mutepsilontsin{psi}
L/ murapelilontZrgin {(pei) )y (thaetald ~ Aljwl*cos({psi) - Bliwi*tsin{psi)) +
(1/5-gpsilon/dtoutrsin (psil * {1/2-2/3%epasilon+l /3 mursin {pai) -
1/2*murepsilon*sin (psi) ) *thetal + {(1/3-apsilon/2dinutsin (pei) ¥ (1~

epaileont 22/2) * Qlanbda | 0l +lanbda ol Poos(psi) +lanbda (gl *sin {psiy) ~ ({1/4~
epsilon/d + nursin(psi) * {2/ 3epsilon+l/2%mutsin(psi) -

murepasilonrsin {pei) +1/ 2urapsilon ¥ ainlpsil) )y *deltald + coslpsi) rmu* (1/3~
L/2%epsilontmusin (psi) ¥ (1/2-gpsilon+l/2%epsilon®2) ) ) *baeta - (1/4~
2/3%epsilontepsilon 2/ 2+mu*sin (pei) * {1/3~

apsilontapsilon™?) Y ¥Upsilon/Cnegalnotor] + (1/4-~epsilon/3emursio{psi) ¥ (1/3~
epsilon/2) )% (omega [ Shafn/Wind] [1] *sin {(psi) +onegalShalt/Wind] [Z21*cos {(pai) ) /Une
galmotor]):

> simplify (Madre simple-madrce simple) ;

g e ke simplemmage.

Formulation de lequatxon de battement
> Micentrifuge! =
Cmugsa (notor] 2% (1 heta*coy {beta) vaps lmm*ﬁ{aﬁar}VMmﬁ@ta)*sin{beta}:
> Miinertiall = I beta¥DotUpsilon:

> Mieoriolis]
2% {1 betatepsilon*R{otor] *M heta) * (onegalShalt/Wind] [11¥cos (psi) -
»Haff/Wxndj{z}*axn(pmii)*cmwQa motor]

> # K betalspringl =0:

> Mispringl o= ~K betalspring] rtbeta:

M{a&aei&rai1wnwﬁngmld3x@3 e

eta* (Dot {omegal [ Shaft/Wind

LI Fsan (pad) Dot [onegal [Shalft/Windl [2] *cos {(psi)

H

Mlacodlération vetricale] = M beta¥ (Albub] [3] + omega{ghafel [1]1+Vibub] (2]
omega [ Shaft] [21+*V{hub] {1]):

> Beta Dypamique simple = nadrol/I_beta + subslcos(beta)=l, sin{bsta)=bela,
Micentrifuge] + M{inﬁftiel} + Mlvoriolis] + Mispoing] +
Miacodlération angulal + Mlaceslération vetricalel -

M betarG deLLy)fI baha
Fourier Coordinate Transformation
> templl o= coeff («Beta Dynamigue simple, Upsilon):
¥ templ2 = subs{sin{psi)=sin{psi+Pi/2), coeff{-Bets Dynamicque sinple,
Upsilony b
> temp03 = subs{sin{psi)=sin{pei+Pi), coeff (~Beta Dynamigue simple,
Upgilony):
> temp04 = subs (sin(pei)=sin{psi+3*Pi/2), coeff (~Beta Dynamique sinple,
Upsgilon) ).
> Matrice A Psi = Matrix{<temnp0l, templZ, tenpl3, tenpd4>, shar
> tenpl% = womf*( ~Beta Dynamigue sample, b@t&)
> templ6 e ﬁubs({san(p@x}w@mnfgﬁmrps/2), cos {(psi)=cos (psitPi/2) }, coself (-
Beta Dynamique simple, beta)):
> benpl7 e suba {({sin (psit=sin{paiPi) , cos{psi)=gos (Psi+Pi) }, cosff (-
Beta Dynamique simple, Ix Yy
o t@snp‘m te gubs { {win (pei sin (Eait3*RL/2) , aos (pyi)scos (Pel+3¥YPL/2) ),
coefl {(-RBets Dynamigues simple, beta)):

Matrice B Psi = Matrix(<tenpdDh, templé, temp(7, templ8>, shape=diagonsi):
> otempl? = subs DotUpsilon=0, Upsilon=0, betas=0, Betsa Dynamicue simple):

iLagonall:



http://Mae.ro
http://Mlaccelerat.ion_anguIa.tre

205

> Lenpll = gubs (DotUpsilons=0, Upsilons,betas(),

{sin(psi)=sin{peit+Pi/2) ,cos{psi)=cos {(psi+Pi/2}}, Beta Dynamigue simple):
> templl = subs(DotUpsilons=0, Upsilon=0,beta=0, {sin(psi)=sin(psi+Pi},
cos{pel)=cog (psi+Pl) ), Beta Dynamique simple):

»,

o (pel) =cos (Psi+3¥Pi/2) 1, Beta Dynanique simple):
> LMR 1 Chemp0%, templl, L@mpll, Lemp]?>
> Matrice T :=<<1 | cos{psi) | sin{psi) | cos{2*psil}| sin(2¥%psi) | ~1>,<
cos{psi+Pi/2) | sin{psi+Pi/2) | cous{(2*{psit+PL/2)) ] sin{2* {(psi+Pi/2)} | 1,
cog {peirPiy | sin{pgi+Pi) | cos{* {(psi+tPi} )y | sin{2*% {(psi+Piy) | ~1>,
<Licos{psi+3*PL/2) Isin (psi+2*Pi/2) | con (2% {pei+3*Pi/2)y |
sind2* {pml+3*PL/2YY 1 1o>:
> Matrice T8 = Matrix (<1/sqro(i{Blades]), sgrt(2/M{Blades]},

i

4

]

@

hap@m lagonaly

invers =1 Tz Mu]f1piyiwatr1wp THE2, Transpoy G(Matrlcm oD I

Templ3 o map (G117, map (A147, Matrice P, peil, ps;)*Omogarmofarj“f +
Multiply Mateice A Psi, mapl{diff, thr&wmwﬁ, esi} *Onega [notorl) +
Multiply (Matrice B Pel, Matrice T}

p¥g

b

e 1emp12 s gubs (DotUpsilon=0, Upsilon=0, beta=0, {sin(pgi)=sin{psi+3*Pi/2),

|
<3

¢qrn(2/N[ﬁla well, sqri(2/N{Blades]), sgrt(2/NiBlades]), 1/sgrt(¥(Blades))>,

> D _matrice i« Mu1fzply(inverae T, Zrmap{difl, Matrice T, psi) *Oregalmotor]

+ Multiply (Matrice A Psi, Matrioe e TYy) .

> K matrice 1= Multnply(}nverqo T, templl):

> f VﬁCtOT ve Multiply (inverss T, £ R):

Equatxon du disque rotor en coordonnées unis

> I bar = algsubs{rho*a*c*Rlctor] 4/I_betasgamma, simplify (D matrice}):
> K bar = sigplify (algsubs (rhotas*ciRictor]~4/1 betas=gamns, K matricae)):
» £ par e combine Multiply (Mateixi{<l,-1,-1,-1,-1,1>, shapewdiagonal),
£ waotor)):

> 0 bar simple = subs{{ces (2¥psi)=0,sin(2*psi)=0,cog (4¥psi) =0, sin(d¥pal)=0},
combing (D _bar})
» K bar simple = gubs {({cog{(2%psi)=0, sin{2tpsi) =0, cos (4d¥%psl) =0, gin (d*pgi) =0},

comban(K bar)j:

Equation réduite de l'extrémité de la pale
o Dhild wéduite 1w ﬂlqmubﬁ{zho*a*a*ﬁiotex]“&/l b bamganms

Bimplify (<< matrice[l,1] | -D matricell | ~D matricel[l,3]>, «-

0 matricel2, 1] i DmmatriaQEQ,Qi } Dmmatria@iZ,Bjﬁ, <-D matrice{3, 11 |

D matriceld, 2] | D matriceld,31>>) .

> Ktild réduite = simplifylalgsubs(rhora*c*R{otor]” 4/ b@tamgammd,

<K matxxc@[l 1}t -K matricell,2] | ~K matricell, 1>, <K matricel[2,1] |
i matrlae{2 2] | K matwicel2,3]1>, <K matrice(3,11 | Kmmatrice[B,El !

K matricel[d, 31>}
> frild réduite = subs({lambda((]={V{Shafs/¥Wind]l{3]~
nu{O])/meaga{nmtox}*R{otuxj}, lambda {el=-nulcl/ {Cnega {notor | *Riotor] ),
lambda {sim=-nu{s]/ (Onega [notor] *Rictor]) }, combine Multiply (Matriwi<i, -1,
1>, shapew aiaganal},‘fmya&tor{lv,ﬁl))}:
> Drild rédulte simple =
subg {{cos (2*psi)=0, sin (2*psi) =0, cos {d*ps1i =0, sin {4¥psi) =0},
aombin@(mtildwréduite}):

> Drild réduite simplel =

ub*((cns(a*p31)w0,o¢n(z*p 1yel, cos{dfpsil=0, sin{4*psi) =0, ma=C},
combine {DLild néduite)):

> #eild réduite simple =
»ub ({cas(z*pr)WO gin{2*psi)=0,cos{4*psi) =0, sin {4¥psil=0},
combine (KLild réduite}):
> Krild rédulte simplel =
subz {({cos (2*psi) =0, sin{2¥psil)=0, cos {4*psi) =0, sin{d*psl) =0 mu=(},
combine (Ktild réduite)):
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> Rtild réduite simple minusg one s

&d;o:nt(ﬁtlld réduita _simple) /Determinant (Hrild réduite simple) :

> Matrice Evolution Beta réduite i %uba(xh&mo QORBTT, a=h. 73, o=l /73,
R[mtorjwzﬁ 83, Ommqa[motor]m77 I beta=1512.6, gammas=d, 1938,
epsilon=1.25/26.83, M beta=88.7, Kmb&;diwprxngjmo, deltad=0, «<<Matrix(3d) |
Matwix(<l,1,1>, shaps=disgonal)>, <slmplify{(~Kiild réduite simple) |
sawplify (~-Dtild réduits simple)>)

> Fug@nVﬁiuos(Mafrxv@ fvelution _Beta_réduite):

> Bigenvalues {(subs (=00, Matvl0ewEvo;mfzmnwﬁmtawréduitm)):

> Bigenvalues (subs (mu=0,3, Matrice Evolution Beta réduite)):

8l A = gr¥ldentityMatrix{é)-Matrice mvalu%;&n Beta rédulte:
fartcr(bﬁhermxnamt(hl A)?

24 3z 5 2 22
s +73. 01545 + 3578 68., +10G4t‘u IU .510.534u s 2124253 0 s + 504607 107 s -2.00305 ICI5 RS

gt . A . L 5o+ 2 8 T 4
+A80052 10 5-9.77067 10 u s+256080 10 1 5. LISIS510 o5 +339475 10 - 899628 10 1

ad i o2
- 13293410 0
> Vacteur Beta Commande thetal = algeubs (rhovarorRlctor] 4/1 beta=gamma,

nimﬁllLY{¢Nb¢(thet31“”18*d9g2r&d
<0,0,0,map (diff, fuild réduite, thetal) *thetal>)}):

FREVIRY.

> Matrice Beta Commandel = algsubs (rho¥a*oR{otor]”4/I)
gimplify (<<datrin{3, 31>, <aubs ( a{2%psii=0, sin {(2%psi) =0, cos {(d*pal)y=0, ain {4*p
gi)mO}, map {(difi, £rild rédal e,t wtub))i
subg{{cos{2%psi) =0, 8in (2*pait=0, cos {d*pai} =0, gin {4¥pai =0},
map (di£F, ftild réduite, Allw]}) |

”ub“{{co&(Z*p“l)wﬁ,ulm(z*p l) O cuy{&*p%1§u0,awm€4*pgx} ----- «(J},

g$ﬂb {xhota*oRiotor] 4/ hetasganma,
{a

» Commandel = <Matrice Boeta Commandelfd. . 6,1..3]1>:
> Commands minus_one = Adjoint (Commandel) /Deterninant (Cosmandel}

Factor {subs (rho=0 ., 002377, a=5.73, o=l 73, Rlotor]= }F 83, Omegaimotor]=27,
s 512.8, gamma=8.1936, epsilonsl )%/20 a3
. betalspringl=0, deltal=0, mua=0, I ,ezmlnanﬁ{<h BT
Matrice Beba Commandel [1..6,3] | slwﬁilw“6,3A~6}>)/ﬁatarm1ndnt{$IwA))):

3
3781425+ 12.1685) (s +24.3380 5 +731.231)

(5‘4 +243376 5+ 151.457) (52 + 243376 5 + 781 241) (Jg + 243382 5 + 2865.)

> bempld e subs (musW[Shafi/Windl 111/ Onegainoton ] *Riotori),
{uiBody]=u{Bodyi®l1, vfuady]“vfgodyfﬁjl wiBodyl=w{Rody[E1],Dot{u] {Rody =0, Dot.]
vl {8Bodyl=0, Dotiw][Bodyl=0
plBodyl=piBodyiE] ], qlBodyl=g{Rody(B]]  r{Bodyl=r{Body [E] ], Dotipl [Body]=0,
Dotigl (Bodyi=0, Dotnir]iBodyl=0}1,

Multiply (<s*map (diff, subs (cosZeta=cos (Zata) , sinZeta=gin{Zata)  foild r@ﬁllTP),
Dot {ul (Bodyiy +

map (dLEf, subs {cosZatas=cos (Zata) , sinZetassin (Zata) , fLild péduite) , uiBodyl) |
s*pap (K1 EF, subs (cosfetascos {(Zetal , sinfeta=ain (Zeta) , Frild réduite)

Dot{v] (Bodyly 4

map {diff, subs {cosfeta~cos (Zatal , lw&%ﬁzw‘in{ZCva) frild réduite) ,viBodyly |
s*map (ALEL, subs (Cosleta=con (Z2ata) , sinfaetasgin {(Zeta) , frild réduite),

Detiwl [Bodyl) +

map {(diff, subs (copZatascos (Zata) , sindeta=sin ($ava)  ftild réduite)  wiBodyll >,
TIBody/Barthi®ili e

i
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> temeld = gubs (uusV[Shaflft/Wind] [11/7 (Usegamotor}*Rliotor]y,
{u{ﬁgdyjmu{ﬁgdy{ﬁ}}?V[Body}mvgﬂody{E}},w{dey]mw{Bmdy{E]},Dot{u]iBady}wO,Doﬁi
v [Bodyl=0, Dobiw]l [Bodyl=0,

plBodylep(Body [B]] , q{Body [=q[Body [E]] , x{Bodyl=r{Body [E] ], Dot [p] [Body] =0,
Deotigl (Bodyl=0, Dotir]iBodyi=0},

sPMultiply (<s*map (LD, subs (cosBeta=cos {(Zata) , sinZetasgin (Zeta) , fLild réduite
y, DotipliBodyl) +

map {(diff, subs (cosZeta=cos (Zata) , sindeta=sin (Zeta) , ftild réduite) ,p[Body]) |
s*nap (ALEE, subs (cosZeta=cos (Zeta) , sinZeta=gin (Zeta) , ftild réduite)

Dot lql [Bodyl) +

wap (di£f, subs (cosZeta=cos (Zata)  sinfeta=sin{Zeta) , frild rdédulte) ,qiBodyl) |
s*map (ALTH, subs (Cosetamaos (%eta) , sinfetassin (fata) , fLild réduitel,

Dot{r] [Bodyl) +

map (diff, subs (cosZeta=0os (Zata) , sinatassin (Zeta) , f1ild réduite) ., riBodyl) >,
TIDiFf {omaga, atal (B11Y)

> templs e subs {musV{Shaft/Wind] [11/ {(Onega[motor] *Rlotorly,
{ulBodyl=u{Body[B]],

vBodyl=viBody{E] ], wiBodylew{Body[E]] , Dotlu] [Bodyl=0,Dot[v] [Body}=0,

Dot{w] [Bodyl=0,

piBodylepiBodyiBl ], gqiBodyi=gq{BodylB]], riBodyier [Body{E] ], Dotip] {Bodyl=0,
Doti{qg] (Bodyl=0, Dotir]i{Bodyl=0},

Multiply Matrix(map (L0707, TUild _réduite, Gravity) , shape=diagonaly,
TPIRLTL{Gravity, eta) [R11))

> templ? = subs (mu=V{Shafi/Wind] {1]/ (Omage noton]*Riotorl),
{uiBodyl=u{Body!E] ],

viBodyl=viBody{E] ], wiBodylew[BodyE]], Dotlu] {Body =0, Dot{w] [Bodyl=0,

Dot {w] {RBody =0,
piBodyl=piBody[E]], g{Bodyi=qiBody (Bl ] , v{Bodyl=r{Body[81], Dot ip) [Bodyl=0,
Dotiqgl {Bodyl=0, Dotir]Bodyl=0},

Multiply (<s*map (4L, subs (Ccoslata=Cos (Zala) ,
sinZeta=sin(Zeta)  Ftild réduita), Dot{u] [Rodyl) +

map {diff, subs (cosZeta=cos (fota) , sinfetassin(Zeta), fLild réduite) ,uiBody]) |
s*mar (GLEL, subs (coslatas in{Zeta)  frild réduite),

Dot{vi (Bodyl)y +

map (ALEE, subs (cosfetas=cos (Zeta)  sinZeta=sin (Zata) , frild réduite) , viBodyl) |
s*map(ﬁiff,ﬁub9(00$2@taw003(2@ta},ginzetawain(ZQﬁa},ftildmxéduite),

Dotiw] [Bodyl) +

map (diff, subs {cosZeta=cos (Zeta) , sinZeta=gin (Zaeta) , ftild reduite) ,wiBodyl) >,
Dalta T{Diff (V,ata)l)):

> Matrics Bata Commande? 1+ subs(Omeganotor]=Cnaga(notor{®il,

<<Matrixz (3,6}, <templd | tenpli+tomplrtompliar)

> Comsande? = aimplify (subs ({psd=pi/2, a=5%.73, rho=0, 002336, o=1.73,
epsilonsl 25/26.82, WiBlades]w4, Omegaipotor(E] =2 p1i%283/60, Riotori=26. 83,
dalta *deglrad, M beta=86.7, I beta=i’12.4, K betalspringl=d,

Gravity=32.1%4, PhilE}=-2.5875 daglrad, Theta |k
rdagirad, wiBedy{E]l=0. Bk
(), qfBodyi{®]]=0, riBody{f]ll=0}, Matrio

5. L1E8*daglrad,

map (di£f, frild réduite,nuidld) |

subs{{ces (2%psil)=0, 8in(2*psi)=0, cos (d%puil=0, ein {(4¥pei) =0},

map {(diff, fuild réduite. nuicl)y |

subs{{cos (Z*pei) =0, ain (Z2*pai)=0,cos {4*pai) =0, sin{dxpsi =0},

map {(diff, fiild rédulte,nuisl))>>):

Approximation du mouvement de battement verticale des pales et du mouvement de trainée avec les harmoniques
du premier ordre

> beta lin w80 - alroos (psil) -~ bltsin(psi):

> Upsilon lin = Dot a0 -~ (Dot sl + bl*Onega[motor])ieos{psi) - (Dot bl-

sl *Onags [motor] ) *sin{psi) o
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> DotUpsilon lin = DDot _al - (Dhot al + 2*Dot bl*Onegalnotor]
al*Oneganotor]”2) *cos {psi) ~ (DDot bl ~ 2*Dot al+*Onegalmotor]

bl *Omega (notor] ”2) *sin {psi) :

> Vaéro lin = subs ({Upsilon=Upsilon lin, betas=beta lin,
DetBpsilon=DotUpsilon iin}, Vadroe simple):

> thets lin = subs{beta=beta lin, theta):

Expression de forces aérodymanique dans le repére moyeu-vent fixe

s dFaérom}in e 1/2*rhm*a*¢*(VaérmmliniljA2*th@hﬁmlin +

Vadro lin{l]*Vaéro linl(3]):

> dbadro  gimple (= 1/2%rho*etCldrag] *Vadro simple(1]172:

> Thrust = N{Rlades]/(2%Fi) “int {(int{dFadro lin, ribl=0.. (Riotor]~
spedlon¥Riotorit)

+0*cog (psi) ¥ (2¥onega [ Shaft/Wand] | ] *Omege motor] ¥ (M _beta/GravitytepsilontRiot
or]*WieightBlade [MR]1) M beta*Dotiomegal [4 hdff/W&ﬁd}{Q}/GtaVL*y)
+0%gin {pai) * {-

Zromaga] Shalt/Windl (2] *Osega (noter] ¥ (M beta/Gravitytepsilon*Rlotor] *WieightBl
ade [MR]]Y M Detar*Dot[omegal [8 L/Wind] (11 /Gravityy, psiel, 2%P1)
N[Blades]* (DDot_a0¥H bata + WlelghtBlads [MR]1¥ (Gravitvy- (B{hub] [21 +
omegs [ Shafv] | J}*V[hub}{?? ~ omega{Shaltli21*Winuki Il e

> thrust = W{Bladesi/2¥rho*arc*Rictor]* (Orega mobor] *Riotor] ) »2% ({1~
epsilon 2y /2% lanbda 0] raur (L-epsilon) /2*lashdals] + (L/3% {1~

apsilon 3} +mat2/2¥ (I~epsilon) } *thetal + {(1/4% l-epsilon™4)4mu2/4% {1~
apsilon®2)) *thetal -~ mu/2% (I-epsilon”2i* {(Bliwi-delial bl) - delta3* {1/3% (1~
apsilon 3y tautB/2% (L-epsilon) } *al + {(nu/2repsilon® {(l-epsilon))¥al ~ {(1/3-

epsilon/2+1/ 6 apsilon®3) *Dot_al/Onega {motor] + {mu/4* (1~

apsgilon) "2) *Dot bl/Osegalnotor] + mu/4¥ (1

epexlmn“))*omaqafShaft/WJndl{1}/Ommgq{motor}} W Blades] ¥ (DDot,_al*M beta +
WieightBlade (MR] 1 ¥ {(Gravity- {&lhub] [3] + omega!Shaftl [1]14+Vhub] [2]

omega [ Shaft] [(21*Vibubl (113}

> simplify (Thruast -~ thrust):

> Tihrust cvoafficient/sigeal =
mhxu t{(xho*NfHLadea]kﬁ hordBladeMR] ] *Rictor] ¥ (Onegajwotor} *Rioctor]; ~2)
- dFx aérTo Adn e i/z*rhw*a*v*(Vaexa lin{ l‘*Vaero ¢lﬂ§$}*th@fd Lin

V@wxo lxn{E}“z) - l/z*rha*ctdxanwc*vuara rinliin

dFdearawiln 1z -bata lin*dFadro lin:

> Hforea w = N[Blddw“j/(i*?l}*lnf(lﬂf(“

dFx aGro lintein(psi)+diy aéro lin*oosi{psi), zibl=0.. (Rioton]~

ap&lion*ﬁiotozg)), pai=l, ?*?l)

> hioros w =

NiBlades] /2% chorarorRiotor] * (Onega inotor] ¥*Rlotor] ) »2% (Qldrag] ¥mu* {1«
epsilon®2) /{(2*s) -~ (thetal-deltal*a0) /4% (2¥mu* {l-epsilon) *lanbds 101+ (1~
spsilon”2) *lashdals ] -mu* (L-epgilon) "2¥Dot_ a0/ Cmega [notori+ (2~
Irgpsilontepsilon®i) /3+Dot bl/am@gﬁimotmr} - (4= 3Fgrsilon-

apsilon®3Y /3xale2e (1 @pallon*?>/d*wm&gﬁLSbaﬁt/and}{1'/Omﬂgd{matoxi) -
thetal /4% (mu* (L-gpsilon” 2 *lasbda{01+2/3% (L-epsilon® 3 *Lambda s ~ma* (2~
Irepsilontepsilon®3) /3*Dot_ad/Omega [notor] + (3~

d¥epsilon+epsilont4} /6 Dot bl/Omega notor) ”(3”2*@95?10“ apsilon®4) /3%alse (1~
epsilon 4y /2 omegs [ Shaft/Wind] (1] /Onega (notoniy + (ALiw]~

deltaldral) /4% ma/ 4% (l~epsilon) “2¥Dot al/Om@g&'mo%ar) S 2% (1

apgilont *lambdale]+2* (I-epsilon® ?)/3*@0 - {epsilon-epsilon”2) /2vblduu® {1
ensilon®2) /4rtonega [Shaft/Wind] [2]/Onegalmotor]) + (BL{w]l~daltal*bi} /4% (- (2~
Brepsilontepsilon®3) /3 Dot ad/Omega [notor] +mu*3+ (1~

epgilon) "2/4*Dot bi/Onegainctor]-mu¥ (2-3*epsgiloptepsilon™2) /2%al+ (1
apsilon®2) *lanbda 0] +3/2%nmu? {I~epsilon) *lasbdas] +nu*3¥ {1~

spsilon®2) /dromega ]l Shalt/Wind] 111 /Onega [notor] ) -Llanbda 0] % (1~
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epsilon) “2/2%Dot bl/Omegainotor] +lambdall]* (3-4*epsilontepsilon”2)/4*al -
{{l-gpsilon™2) /2% lanbda [0] ~ (2
drepsilontepsilon”3) /6*Dot al/Omegamotor]tmu* (1-

epsilon™2) /16*%al) *onega [ Shaft/Wind] [1]/Cnega lnotor] - ({1~

@psilon”3) /6 alimur (I-epsilont?2) /16%bl) *onega [Shaft/Wind} [2] /Cmega [motor]
+mu*(w(lwepsilon)A2/16*(bi*Dotmal/Omega{motor}%al*Detmbl/Omﬁga{motor])+(1m
epsilon®2) /4%a0%2 +(2-epsilon-epsilon®2) /8+al24 lepsilon-epsilon”2) /231 2)
{2
Srepsilontepsilon~3}/12* (a1l Dot al/Cuagalnotor+al* (Dot al/Onega motor] +bi))
+{2-Grepsilontérepsilon”2-Zrapsilon®3) /6% (Dot bl/Omega [motoxr] -

al)*Dot al/Omegalmotor]-lackbdal0] *lambdals]* (Z-epsilon) - lambdalel /4% {1~

spoilont 2t *al-lanbda [l ma/8% (l-epsilon) *bl+lanbdalal] /2% {1~
;.silon)“E*Dotw&ﬂ/Om@gaimotorjmlambda[g]*mu/ﬁ*(lw@ silon) *al)

> simplify (Hforee w - hforce w);

0

> YEorce w o= wN{Bladeﬁ]/{Q*Pi)*in%(int(wdewaérowiin*cos(pﬁi)~

dry séro lin*sin{psi}, ribl=0.. (R{ctor]-gpsilon*Rloter])), psi=l, 2%*Pi}:

> yiorce w = N{Blades]/2¢crho*a*u*R[stor] ¥ (Omega [motor] *R{oter]) ~2* ( (thetal-
d@ltaﬂ*a@}*{(2m3*epsilan$@p$iimn*3)/12*Datwal/0mega[mator] ERC S TP O R
apsilon®2) /4*al +{{4-3*epailon-epsilon®3) /12+mu 2% (1-epsilon) /23 *D1+ (1~
epsiloen®2) /4*lanbdalc] + {3~

epsilon® 3}/ 6ronega [ Shaft/Wind] (2] /Onega [motor]) +thetal * ({3~
dvepsilontapsilon® 4} /24*Dot_al/Omaegaimotor] ~mu* (1-epsilon3}/2%al+ ((3~
G*ppsilon-epsilen®d) /124mut 2% (1-ersilon®2) /4) *hi+ (L~epsilon®3) /6% lanbda [ o]
+{l~epsilon®d) /Aronega [ Shaft/Wind] [2] /Omegainotor]) +(ALlwl-daeltal*aly /4% { (3~
Irepsilontepsilon®3) /3ot ald/Opegaimotor] -~ (L-epsilon”2) *lambda 0] ~mu* (1~
epsilon) /2% anbdala] -mu* {(I-gpsilon) “2/4%Dot bl /Omega(netor]+ (2+tepsilon-
Zrgpsilont2) /2%al +{l-epsilon”2}/dromegalfhaft/Wind! [1]/Onegalnotor] )

(Bl {wl-deltaX*hi)* {({ {1l-epsilon®d} /6+put2% {I~epsilon) /2) Yad +muk (- {1~
@psiimn)*2/16*Dwtwa1/0mmga{mator]«(Qmepgil0n~3*@psiioﬂA2)/B*blmglw

epsilon /8*¥lasbdala]l ~{i~epsilon”2)/18*omega [Shaft/Windl [2] /Oneganotor] )+ {~
{1~epailon®3) /6 alsSvmut {1~

epsilon®2) /16*0L) Yomega [Shaf t/Wind] [1]/Omega [motor] + {(~ {2~
3vepsilon+epsilon 3} /6*Dot_al/Omaegalnotor] +mur7+* (1-epsilon®2)/16%al+ (1~
gpailont2) /2% lanbda [81) fomega | 8haft/Wind] (2] /Onega [notorl - {L-2%gpsilon
+3*epsilont2-apailon®3) /3 Dot al/Unegalmotor] *Dot_al/Opegalmotor] -~ (32—
5*epgilon&d*@psilon*Qmep@iionAL)/4*Datwa0/0mega{m0torj*bl +lambca[0]* ((1-
epsilon) ~2/2%Dot_al/Omegamotorl+ {3-4%epsilontapsilon®Z) /4¥bl) - (2~
3repsilontapsilon”3) /12 Dot bl/Cragalnotor] *al+ (2-
2*epsilontepsilon™d) /12*a0*alimuy (3*a0* (1-apsilon) “2/4*Dot_al/Omega [motor]
P alx {(l-epeilon) “2/16*Dot_al/Onegamotor]+5*h1* {1~

epsilon) ~2/16*Dot_bl/Onegalnotor] ~3%lanbda [0 ¥ (1-epsilon) /2%a0 ~mu¥ (1~

ap ony Yaltald (l-apgilon) /4¥%al*hl) - (1~

epsilon) ~2/2*Dot_al/Onega [notor] *lamhdalc] - {1-epailon®2) /4%al*lambdals] +
Thmud (I-gpsilon) /8ral*lanbda (ol +58%mur {1-epsilon) /8*bixlanbda s+ (1~
epsilon) *lambdal 0] *lambdalc] )

> simplify (Yloree w - yioroe w) .

o

Hforce h := Hforce w¥cosZeta + Yforoe w¥sinZeta:

s s
> Yforoe h = -Hforce w¥sinZeta + Ylorce wroosiZeta:

> Rotor forae vector b = subs ({cosfaeta=oos {Zeta) , sinZeta=gin {(Zeta) },
Multiply (Transpose (Rot[Shaft/Body]), <-Hforce h, ¥force h, ~Thrustd>}):

> # Mz poment w = simplify(N{Blades]/{2*Pi)*int{int{~

Gre Lin*ribltsin(psi}, ribl=0..{(Rlotor!-epsilon*Rlotor]}), pai=d, . 2%Pi})}
+N{Blades] /2% (K_betalspring] *bi-epsilon*M beta/Cravity* {DDot bl -
2*not_al*Omega[notor] -~ bl¥Omegalmotor]”2)}):
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> & My moment worm -
simplify(N{Biadas}/(2*?1)*int(inx(d?a@xmm;im*x{b}*aoﬁ{pﬁi), cinl=0, . (Riotor]~
epsilon*R{otor]) ), psi=0..2%P1)) +N[{Blades] /2% (K betalspring]val-
epsilon*™ beta/Gravity* (DDot_al + 2*Dot ol*Omeya|soion]
al*Omegs [motor]~2) )
>omx moment w c= N[Blades]/2% (K beta{spring] *bl-
&prian%M Qatd/"w¢V¢L§*(DDuf bl - 2%Dot al*Omegslmotor] -~ bl*Omegalmotor]”2))
~ WiBladen] /2 rhoraxctRiotor]~2% (Onaga {notor] *Ricter]) “2rapailon® (mu/2% {1~
apsiloent2) * {thetal-daeltal*ald) ~ ({I-apsilon®3) /6+3/8%mu 2% (l-epailon) ) * (BL [w] -
deltal*bl)+mua/3*% (1-epsilon”3) *thetal -~mu/4* (I-epsilon) 2*Dot_al/Onegs[motor]
+{1/6~gpsilon/drepsilont 3/12) % (Dot bl/Omegainotor]-al} ARUAD (1
cpaxlen)*a1+mu/?*{Ewepuxlem)*1ambda[0}+(3wmps1len“i)/é* anmbdalst + (1~
epsilon®3) /6 omega | Shaft/Wind] {11 fCaaga [notorl)
> # Lactor My _mopent, w ~ wx moment w) |
> omy moment, wo oo N[%?adﬁs?/ﬁ*(x bmta[qpr}ng}*alw
apgilon¥ bnta/& ravity* (DDot_al + 2*Dot bl*Omegs[motor] - al¥Onsgalmotor]®2))
- MWiBlades ]/?*rho*a*o*ﬁfﬁtouj*?*(Qmogdfmcrar}*R{Otar])A?*npgi}on*( {1/6* {1~
apsilon®d) +muc2y (I-epsilon) /8 ¥ (ALl (w]~deltald*al) -mu/d* {l~epsilon®2) *a0
+{1/6~epsilon/dtepsilont3/12) * (Dot_al/Onegalmotor]+bl) +mut2/8% (1-
epsilon) *bl+ (1-epsilon™2) /4*lambpdals]+ {1~
epailon 3) /6 onega [ Shalt/Wind] (2] /Omega [notorl):
> # fdcfmr(My mowent, w -~ wy moment w),
> 4 moment = mvxmplafy{Niﬂlad@sj/(/*pw)*1nt(1nt(d?x afro linvribl,
ribl=0., (Rictorl~epasilon*Riotoril), psi=l,  2%P1)):
> o moment
NiBlades)/2%rhora*crRlotor]” &V(Owega[motmr}*P[mfor}3“?*{“fdvag]/{4*d§*(1w
4/3*apsilontepsilon®4/3+nun 2% (1-apsilon} *2) ~ (thetal-d BAFay e { {2~
3tgpsilonvepsilon®d) *lanbda (0] /6 + mu/47 {l-gpgilon}*2¥lambdaisg] ~ 1/12% {3~
8*epsilonté¥epgilon”Z-gpsilon”4) *lot al/Omegalnotor] + mu/6% (1
@psilam}AB*Dmtwbl/Gmega[motor}+mu/4*ap$ilon*{1mmpsilmn)“2*al o/ LeE (2
S*epsilontepsilon®3) *omega [Shaft/Wind] [11/Onega lrotor) ) + (BRllw]~
daltadral) * (1/24% (3-B4apsilontbrepsilon” 2-apsilon”4) *Dot al/Onega [mator]-
mu/l2x {(Z-3vepsilontapsilon® 3y val + (1/2%*{3w8*@p$ilam+ﬁ*gﬁsilon*2*
epsilon”4)+1/16% (1l~epsilon) "2¥muc2) *bl + {(Z+aepsilony /12% (1~
apsilon) "2 lanbda el +1/24% (8-
itapsilontepsilon”d) *fonegal Bhaft/Wind] (21 /Onega (motorl) + (Bl lw]l~deltalsbhly ¥ {~
wa/ 6% (I-epeilon) *3* Dot al/Omegainotor] + 1/24% (3-8*apailon+tbrapsilon™2-
apsilon®4) Dot bil/Osegalnotor] + (1/24* (epsilon”4+8*epailon~6*epsilon 2~
Iy +mut2/lE% l-apsilon) *2y *al + L/4%ma* (i~
apsilon) *2+lambdall]+ {2+apailon) /12% (1~apsilon) "2 lambda el +1/24% {3~
4*epsilontepailon®4) *omaga[Shaft/Wind] [1]/Onega luotor] i+ thaetal* {(1/30% (6~
I5repsilontlQrepsilon®2~epsilon” ) *Dot_ al/Onegamotor] ~ mu/24% (3-
frppsilontétapsilon®2-apsilon®/ )*Dovmpl/om aoa[noetor] - muYepsilon* (2«
I*gpzilontepsilon”3) *fal/l2 -~ {3~4*epsilontapsilon”d) *lanbdal]/12 «
miy/1E% (Zrapeilond * (I-epsilon) *2%lambdalisl~ nu/24% (3~
dtapsilontepailon®4) *ornegal Shaft/Wind] (1] /Onegamotor ]y - {1~
4*gpsilontérepsilon®Z-4¥epailon”3+epailon™4) /8Y (2% (Dot a0/Omegainotor]) 2 +
(Dot_al/Onegalmotorl+bi)*2 + (Dot bl/Omegaimoton] al)‘”) ot RS LER (L -
apailony "2% {(44a( 2+ R2+3%al"2y 4+ (2*lambdal(jtmural) /2% (1~
epsilon) "3*Dot al/Omegainctor] + mu/3% (i-epsilon) “3*al+Dot al/Omegaimotor) -
(3w8*apﬁilon+6*@pszlan*2*
epailon™4) f12% (Dot al/Onaega(notor] *omaga (Bhaft/Wind] [21/0nega (notor] +
Dot bl /Omaegalnctor] *onegal $haf it/ Wind] [1] /Omega [notor] ~
l*mmmqaibhatf/ﬂxnd}[l’/Omrga{mafar}*bL*om s [ Shaft/Wind) (21 /Omega[motor]) ~
1/72% L-apsilon) “2% (lambda 0] ~2+mu* lanbda (01 ¥%al) + mu/3+ {I~epsilon) ~3%a0401 +
ma¥ (1/3-1/2%apeilontl/ 6 apailon®3) altonags [ Shaft/Wind] [ 2] /Omaga (motor] -
{178~
T/ é*epailontl /24 epailon”~4) * { (onega | Shaft/Wind] {171 /Onega [notor] ) *2+ {omega [ Sha
Fr/Wind] (21 /Cnegalmotorn]) *2) ~ {i-
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epsilon) “3/3% (lanbdalc) *Dot, al/Onegainotori+tlanbdal s} *Dot bl/Cmegainotor]}) +

mua/2* {l-epsilon) *2%a0*Lanbda ¢l + {1~ @ps¢lon)A3W{dl*iambda{3} ~pl¥lambdalcly /3
(l-epsilony *2% (lambdalol *2+lanbdals]~2) /4 -~  (24+epsilon) /6% (1~

epsiion) “2* {lanbdalcl *omega [ Shafo/Wind] [2] /Onega [notor] +lanbda s ] *omega [ Shaft

/Wind] {1} /Onegalnotor])y:

> siaplify (O moment-q moment) ;

0

> # Mk moment h o= Mx . moment w¥oosZeta + My moment wrsinZeta
> # My moment L 1w ~Mx moment wrsinZeta -+ My mom&nt wronsheta:

S 1 KY% moment b e Muftiply(Tran pogﬁiﬁoé;Shafh/Bodyjﬁ <Mx_moment b,
Mywmomazmw M‘a, (;gwmcameant?f) 2
»omx moment horwomx monent wioosZebtan +owmy poment wrazinleta:
> my poment horw o-mx moment wésinZeta + my moment wrcosieta:
> Rotor moment vector h = gsubsg{{cosZeta=oos (fets), sinfetasgin{Zetal ),
<mx_woment h, my moment h, g moment>) :
o R[n%oz moment. copfficient h/glgma} m
Rotor ) momanh v@ctar b/ (rho*i[Blades] *clhordBlade [MR] 1*R{otor] 2% (Unegamotor]
*RIotor]) 2
> Rotor momﬁnt westor b = gubs{{cosZeta=cos (fata) , sinZaeta=gin{Zeta) },
Mu;t;ply{Trdnpr w(RﬂL{Shatf/Body]), Rotor moment vector h)
<lgh[x}} Likiyll, Lihizi]l> &x Rotor force vec,fax. b ¥

> Rlotor moment cosfficient b/wigma} Hd
Roto:mmamentwv@gtaxmb/(IbO*NEBlaM@@]*c[hardﬂlad&{ﬁﬁ}]*R{otax}”ﬁ*{ﬁm@g&[moton]
*RiIoror]} 2y
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Le script suivant nous permet de calculer du modéle atmosphérique, ainsi que certains

paramétres du régime de vol, en utilisant le logiciel MATLAB.

m2m 2, 54e-02
ft2m = .3048;
slug2kg = 14.59;
1b2kg = .4536;
newton2pound = 2248,
pascal2poundpft2 = 2.089¢-02;
rad2deg = 180/pi;

mps2knots = 3600/1852;
ftps2knots = .591715;

g0 =9.80665;
TO =288.15;
p0 =101325;
rho0 = 1.2251;
Rho0 =.002378,;

a0 =340.29;
R =287.039,
Re =6371210;

T _rate =-0.00651122;

H h*ft2m;

g = g0*(Re/(Re+H))"2;
Ge_Imp = g/ft2m;

f = H*Re/(Re+H); % Geoy

g Mo alar tewmperature and starlc aly pres:
Tm=TO0+T ratc*f

p = exp(log(p0) - log(Tm/T0)*g0/(T_rate*R));

q_Imp_sta = p*pascal2poundpft2; % pound fo
5 Aly density

rho = p/(R*Tm);
rho_Imp = rho*RhoO/rhoO

V| knots = ﬁquknots*:;qrt(V(l) 2+V(3)’\2), ) }
belkt~ftpsanots*V(l)*sqrt(rho Imp/Rho0); W b
Loomir nr SFeR
cLImp dyn— 1/2*rho Imp V'*V & lp/fenz
GE BYeam varis

Alpha Deg = rad2deg*atan(v(3) /V(1));

Beta_Deg = rad2deg*atan(V(2)/sqrt(V(1)"2+V(3)"*2));
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Le script suivant nous permet de calculer le régulateur statique de retour de sortie par la

méthode linéaire quadratique et H_, en utilisant le logiciel MATLAB.

OPFB_Hinf (Plant,q,r, Bpert,gamma)

function [F,K]

if Nx~=size(b,1),
error ('The A and B matri
")
21 f any(size(q)~~Nx)
error ('Thne A & Q matri
elseif any(size(r)~=Nu),
error ('The R matriz must be
elseif ~isreal(q) || ~isreal (r)
error ('The weight matrices Q, R, N must be real valued.')
elseif norm(g'-q,1) > 1l00*eps*norm(q,1),
warning('“ ig not symmetric and has been replaced by
QrQTTY /2T
lseif norm(r'—r,l) > 100*eps*norm(r, 1),
warning (‘R is not symmetric and has been re
(RERYY/Z20.Y)

nave the same number of

el
be the same size. ')

{
i
&

laced by

end

vr = eig(x);
vgnr = eig( blkdiag(q,xr) )

if min(vr) <=0,
error ('The R matriz must be positive d
elseif mln(van)< 1e2*eps*max(0 max(van))
warnlng( a omatrix [0 0;0'Y R should

Lhive semi-

% cul de of
[U S,v] = svd(c);
V1 = V(:,1:size(U,2));

V2 = V(:, (size(V,2)-gize(U,2)):size(V,2) );

Sp = zeros(size(U));

for i=1:size(U,2)
Sp(i,i) = 1/8(i,1);

end

Cplus = V1*Sp*U!;
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L = zeros(Nu,Nx); K = 1lgr(a,b,q,r);

iter = 1; maxit

vitye

rithme pour calculer H inf avec compensaltion statigue

while iter<=maxit
P = care(a, b*inv(r)*b'

Le gain de

@ galn de

b'*P+L) * ( eye(
% s ola matrice des w
L = - b'*p;

differ = norm(K)-norm(Kn) ;

(Vv2*vaz')) - v2*v2');

eurs de Lagrange

NS

if abs(differ) < 1l.e-5

disp('La valsur o brouvés ')
end
ol bleay
tab = sprintf('$3d',iter);
tab = [tab, sprintf(' %12.%e',norm(K-Kn))];

disp(tab);

K = Kn;
iter = iter + 1;
nd; 5 Fin.

Le script suivant nous permet de mettre la dynamique de I’hélicoptere sous la forme

standard selon la figure 3.6. Le script utilise le logiciel MATLAB.

mod_UH60A

vytild = [0,0,1,zeros(1,6); 0,1,0,1,zeros(1,5); ...
1,0,0,0,1,zeros(1,4);zeros(1,8),1;...
zeros(l1,6),1,0,0;zeros(1,7),1,0];

PGust = ss(UH60AControl.a.n, [[UH60A gust.b.n(:,1:3);zeros(4,3)],

... UH60AControl.b.nl, UH60AControl.c.n, zeros(9,7));
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(8/1.1242.5)/(8+2.5%0.0005),

(s/1.12+42.5)/(s+2.5%0.001), (s/2.2+5)/(s+5*0.43),...
2*s/((s+4) *(8+4.5)), 2*s/((s+4)*(8+4.5)));

Wu = [100*(s+le-4)/(s+10), 0, O, 0; 0, 4*(s+le-4)/(s+10), O, 0;...
0, 0, 9.2*%(s+1le-4)/(s+10), 0; 0, 0, 0, 4.6*(s+le-4)/(s8+10)];

Wr = blkdiag(.277,.419,.2600, .4201, .05,.05);

Wg = .l*eye(3);

Guen- Loy
systemnames = '
inputvar = ‘| «r
outputvar = ']
input_to_PGust
input_to_Ytild
input_to We = '
input_to Wu
input_to Wr
input_to Wg =
sysoutname =
cleanupsysic
Taugw = sysic;

[NMEAS,NCON] = size(PGust);

oo

fl
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t suivant calcule le compensateur et la

1p

le scr

i
iy

3

A
:

SUTE

3
b

té a la 1

csen

I3

e¢me pr

\

Pour le syst

%

ité v,

il

marge de stab

~—
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ol of Avrospace

% f

mod_UH60A

C tilde = [0,0,1,zeros(1,6); 0,1,0,1,zeros(1,5);
1,0,0,0,1,zeros(1,4) ;zeros{(1,8),1;..
zeros(1,6),1,0,0;zeros(1,7),1,0]1;

s = tf('s");

Wl 1s = append(t£([1 9],[1 0]),tE£([1 17],[1 01),...
tE((1 21,01 01),t£([1 2],(2 01));

k_1s = diag([.1,.1,.1,.11]);

w2 _ls = diag([.8,1,1,1,.1,.5]);

Gshape = W2_ls*C_tild6*UH60AControl.nom*Wl_ls*k ls;
[Ac_inf,Bc_inf, Cc_inf,Dc_inf,gammin] =

coprimeunc (Gshape.a, Gshape.b, Gshape.c,Gshape.d)
Ks_inf = ss(Ac_inf, -Bc_inf, Cc_inf, -Dc_inf);




