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RESUME

L’apparition de nouvelles technologies ainsi que les récents progrés dans les vitesses
de traitement des ordinateurs et de transmission des données, combinées a 1’ubiquité de
I'Internet et la déréglementation du marché des télécommunications ont créé de nou-
velles conditions de concurrence entre fournisseurs de services d’Internet (ISP, Internet
Service Providers). Le succés de nouveaux produits dans ce marché dépend autant de
considérations d’ordre technique que d’ordre économique. Dans ce contexte, les ISP
désirent pouvoir imposer une tarification spécifique aux applications Internet considérées
(e.g. téléphonie IP, vidéo en différé, etc.), et en rapport avec une exigence de qualité de
service différenciée. A ce niveau, une problématique double se présente: comment as-
surer la qualité de service désirée sans pour autant perturber 1I’ordre établi de 1’Internet
avec sa grande capacité d’évolution et d’adaptation (protocoles IP) ? Comment gérer
le partage des revenus entre opérateurs multiples responsables des différents réseaux 2
travers lesquels transite le trafic ?

Dans ce mémoire, nous présentons un mécanisme de tarification 2 utiliser entre un
groupe d’ISP et un client désirant faire transiter un trafic important 2 partir d’une origine
fixe et en direction d’une destination donnée (et vice versa). Les ISP ne sont pas directe-
ment en contact avec le client qui s’adresse a un tiers (7P, Third Party) dont la fonction
est de choisir les ISP le long de la route. Le client négocie avec le tiers une courbe
dite courbe de réponse du client (trafic offert versus prix unitaire payé par le client).
Le client paie seulement pour la fraction du trafic qui subit un délai inférieur 2 un seuil
maximal préétabli, et en relation avec les exigences du type de trafic en question. Aprés
avoir prélevé un pourcentage fixe du revenu total, TP redistribue la fraction restante entre
les ISP selon une formule qui reflete a la fois la performance vis-a-vis une exigence de
temps de transit que les ISP individuels déclarent vouloir s’imposer, ainsi que le niveau
d’exigence qu’ils se fixent pour eux-mémes puisqu’il sera une mesure de leur contribu-

tion a I’effort global bout a bout. Le niveau de trafic adopté, la performance obtenue,
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ainsi que les bénéfices des ISP émergent dans ce schéma comme le résultat d’un jeu de

Stackelberg ayant pour leader TP et pour suiveurs les différents ISP participants.
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ABSTRACT

The emergence of new technologies and the recent advancements in the processing and
transmission speeds of computers, combined with the proliferation of the Internet and
deregulation of the communication market, have created a new and highly competitive
environment for communication service providers. Success in this new market depends
almost equally both on economics and technology, making service provider’s decision of
adopting an efficient pricing scheme conforming to the quickly evolving technologies,
among the most important issues of the company. As a result of this, Internet Pricing has
been a very attractive area of research during the creation of commercial Internet.

In this thesis, a pricing scheme to be used between a group of Internet service providers
(ISPs) and a customer who wishes to initiate a packet flow from a fixed origin to a fixed
destination, has been introduced. The ISPs are transparent to the customer who relies
on a third party company for both the choice of the relevant ISPs and the unit flow
price negotiated. The customer pays only for that portion of the traffic which meets a
predefined maximum tolerable total delay within the ISP networks. After taking in a
fixed percentage of the total profit, the third party redistributes the remaining benefits to
the ISPs according to a sharing mechanism which reflects both the QoS the ISPs declare
they will meet, as well as their real performance. The pricing emerges as the result of a

Stackelberg game with the third party as the leader and the ISPs as the followers.
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CONDENSE

0.1 Introduction

Le réseau Internet tel qu’il existe correspond avant tout & un systtme meilleur effort
(best effort), c’est-a-dire a un systeme ou la qualité de service est irrégulitre et dépend
des conditions qui prévalent dans le réseau au moment de son utilisation. Dans un
tel contexte, il est difficile de justifier une tarification différenciée des différents ser-
vices. Cependant, 1I’ambition des opérateurs est d’offrir précisément une telle factura-
tion pour des services différenciés, a ’image de ce que 1’on peut observer depuis fort
longtemps déja dans le contexte des services téléphoniques. Le probleme est compliqué
d’une part, par le fait que le trafic traverse souvent les domaines de multiples opérateurs
indépendants (probleémes de négociation), et d’autre part, par le fait que toute tentative
de faire de la réservation de chemin de bout en bout en vue de garantir une qualité de
service systématique se heurte en fin de compte a 1’obstacle d’explosion de complexité
lorsque 1la taille des réseaux augmente.

L’objectif principal de ce mémoire est le développement d’un schéma de division du
revenu entre opérateurs de service Internet sur les réseaux desquels doit transiter le trafic
d’un utilisateur donné, dans un contexte d’offre de qualité de service. Nous avons visé
un schéma qui soit flexible, et qui encourage les opérateurs a rechercher de bonnes per-
formances pour leurs clients. D’autre part, une contrainte que nous avons cherché a
satisfaire est celle d’un schéma le plus décentralisé possible et qui ne requigre donc pas
une coordination étroite de tous les intervenants de bout en bout, dans le but d’assurer
une qualité de service donnée. Ceci, pour pouvoir envisager une implantation a grande
€chelle sans explosion de complexité. Dans ce contexte, il a fallu opter pour un objectif
de qualité de service de type statistique (satisfaction avec un certain niveau de proba-
bilit€); en revanche, et dans un souci d’équité, nous avons développé le concept du client

qui paie un extra uniquement pour la fraction de son trafic qui est transitée avec la qualité
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de service requise. Egalement, dans le contexte de schémas décentralisés recherchés, la
théorie des jeux non coopératifs paraissait comme un contexte mathématique naturel.
Elle refi¢te aussi les modes d’opération réels avec des opérateurs qui cherchent 2 se po-
sitionner le mieux possible dans un contexte de concurrence. Enfin, nous avons introduit
le concept d’un intermédiaire payant entre le client et les opérateurs. Ce dernier peut &tre
assimilé a un agent de régulation (comme la CRTC au Canada), mais peut également &tre
interprét€é comme un intermédiaire au sens purement commercial du terme, qui pour une
commission consistant en un pourcentage des revenus, va trouver les opérateurs pour
un client donné, et définir les conditions de partage des bénéfices entre ces derniers
ainsi que le niveau de trafic auquel le systéme opere. Dans ce sens, il s’agira d’un jeu de
Stackelberg avec I’intermédiaire dénoté TP (Third Party) comme leader, et les opérateurs
candidats le long de la route dénotés ISP (Internet Service Providers) comme suiveurs,
recherchant un équilibre de Nash pour chaque niveau de trafic proposé par le leader.
Dans ce qui suit, nous résumons le modgle présenté dans le mémoire, ainsi que certains

de nos résultats mathématiques et numériques.

0.2 Description du modéle proposé

Le modele proposé met en jeu trois types d’agents: un client dénoté C, un intermédiaire
dénoté TP et un ensemble d’opérateurs Internet dénotés ISP. Dans notre modele, C est
un gros usager Internet en mesure de générer un trafic important (grosse compagnie) a
envoyer régulicrement d’une origine donnée A 4 une destination donnée B, par exem-
ple bureau chef communiquant vers succursale ,et qui fait des démarches aupres d’un
intermédiaire spécialisé TP a cette fin. C spécifie un temps de transit T},,, bout 2 bout
maximal tol€rable pour les paquets qu’il envoie et pour le respect duquel il est prét a
payer une surcharge unitaire. Un exemple de type de trafic illustrant bien notre con-
texte applicatif est le trafic VoIP. De plus, il existe déja des régulateurs de marché dans

le contexte de VoIP et qui peuvent d’emblée étre identifiés 2 nos intermédiaires TP.



Ainsi, la décision Télécom CRTC 2005 - 28, mise de 1’avant par la Radio Télévision
canadienne et la Commission des télécommunications est un exemple clair d’un ensem-
ble de réglementations qui préconise une organisation pour les services Internet essen-
tiellement identique a celle en place pour les services téléphoniques. Le partage des
revenus entre compagnies de téléphone est fondé sur des accords bilatéraux entre cou-
ples d’opérateurs. Dans le cas d’un grand nombre de tels opérateurs a différents niveaux
hi€rarchiques (opérateurs pour réseaux d’acces versus opérateurs trunk par exemple), la
tiche du partage des revenus incombe en ce moment a une compagnie intermédiaire. Les
échanges de factures et I’information concernant chaque appel téléphonique traversant
le systeme entre différents opérateurs sont basés sur des calculs annuels.

Dans le modele proposé ici, TP est toutefois appelé a jouer un role plus étendu que celui
joué dans les réseaux téléphoniques en ce qu’il fait circuler de I’information en temps
réel et est responsable d’un mécanisme de partage des bénéfices.

TP s’entend au préalable avec C sur une courbe de trafic offert versus colit unitaire,
appelée ici courbe de réponse du client, telle que le niveau de trafic augmente lorsque
le prix unitaire décrot. Cette courbe de réponse constitue une forme d’engagement de la
part du client a I’effet qu’il est prét a payer un certain prix unitaire pour I’envoi de trafic
autour d’un niveau moyen donné, hormis la fraction de trafic pour laquelle il peut établir
que TP n’a pas réussi a opérer le transit a I’intérieur de la contrainte temporelle T},q;. 11
est donc dans I’intérét du client de toujours envoyer du trafic au niveau entendu, ne fut-ce
que pour tester la performance du systéme. Ainsi donc, les revenus de TP sont réduits
de la fraction de trafic qui ne passe pas le test de qualité définie par le temps de transit
maximal toléré. TP sélectionne ensuite un nombre de ISP le long d’un chemin allant de
la destination A vers la destination B et qui sont préts a étre sollicités pour faire passer
le trafic de C. A ce stade, dans le version d’information compléte du jeu, TP collecte les
informations sur les parameétres des ISP qui serviront & définir les régles du jeu 2 I’issue
duquel la fraction des revenus venant de C aprés déduction de la commission de TP sera

connue pour chaque ISP. A moins de se placer dans un contexte expérimental pour lequel
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les temps de transit des paquets individuels sont mesurés, il est nécessaire de faire des
hypothéses probabilistes a priori sur le comportement du trafic, et 2 partir desquelles, on
pourra évaluer la fraction de trafic qui traverse de bout en bout avec la qualité de service
requise. Cette fraction, a son tour, servira a calculer les paiements du client  I’ensemble
TP - ISP.

Dans le contexte pratique, nous supposerons que les temps de transit bout a bout des
paquets peuvent €tre mesurés a des fins d’évaluation de la performance. Cependant,
toutes les décisions d’optimisation liées au jeu que nous sommes sur le point de décrire
seront fondées sur des analyses théoriques découlant des hypotheses mathématiques du
modele. A ce sujet, nous avons adopté un simple modele M/M/1 pour chaque réseau
traversé. Cette décision est un compromis entre complexité de I’analyse et fidélité a
la situation réelle. En résumé, nous supposons que chaque réseau posséde un nceud
d’engorgement dominant du trafic et c’est ce seul nceud dont nous tenons compte dans
les calculs. De plus, nous supposons une longueur constante de paquets, qui sans perte de
généralité sera considérée unitaire, de sorte que la probabilité de satisfaire les exigences
de temps de transit pourra étre directement exprimée en fonction du taux d’émission des
paquets et du taux de service a I'intérieur de chaque réseau.

Dans ce qui suit, nous précisons les régles et parametres du jeu de type Stackelberg dont
les décisions a I’équilibre spécifieront les paiements du client et la qualité de service
associ€e a son trafic. Nous débutons par les fonctions utilité censées étre une expression

mathématique de I’intérét individuel de chacun des joueurs.

0.3 Fonctions utilité et variables de décisions.

La fonction utilit€ de 7P s’exprime comme suit :

TPy(A) = M Pr(t < Tax)Co(M) . 1)
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ou M est la fraction du revenu total prélevée par TP comme commission, Pr(t < Tpax)
est la fonction de distribution du temps de transit évaluée a T,,,, (probabilité de succes),
Cy(A) est la courbe de réponse du client, avec A le taux de la source en bits par secondes.
La seule décision (cruciale) de TP est le niveau A qu’il choisit en vue de maximiser son
revenu. Quant aux ISP, nous supposons qu’ils ont chacun une certaine quantité de bande
passante qu’ils mettent a priori a disposition pour le trafic du client. Elle est dénotée par
s dans le réseau ISPi. Chaque réseau ISP: peut, de plus, moyennant au cofit unitaire c;,
acquérir et allouer au trafic en question, un surplus de bande passante Ay, s’il juge la
chose payante de son point de vue. La fonction utilité de ISP: est alors définie comme

suit :

ISPU2 = (1 e M)Cv()\) Pr(t S Tmam))\SZ - CiA/,Li . (2)

avec S; la fraction des revenus disponibles aprés commission de 7P pour ISP;.

Détaillons a présent la maniere de calculer la fraction S;. Dans un effort de réalisation
d’une qualité de service donnée, bout a bout, définie par la grandeur liée au temps de
transit des paquets, il est nécessaire de répartir 1’effort, ou encore le budget de temps de
transit 7;,,, entre les ISP. Cette décision est difficile & prendre a priori, et en définitive,
ce qui compte, c’est que le temps total de transit reste a I’intérieur de T,,,.,. C’est pour
cette raison que nous avons créé une variable de décision préliminaire T; que chaque
ISP doit fournir, et qui constitue la borne de temps de transit déclarée qu’il se donne.
La performance d’ISPi sera alors jugée a la lumiere du T; qu’il s’est fixé (probabilité
de succes locale); ainsi, la fraction \S; croitra proportionnellement a cette probabilité
de succes, mais en relation inverse avec la taille de 7; puisque, plus 7; est grand, moins
I’effort fourni par ISP: au niveau de la rapidité de service est contraignant. Il est possible
de montrer que la valeur optimale de T; dépend de variables purement locales a chaque
réseau, et peut donc étre fixée indépendamment par I’ISPs, et ceci, en amont du choix

des Ay;.
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0.3.1 Regles de répartition et facteur d’ajustement 8
La fraction S; est donnée par I’expression suivante:
n -1
g _ (1— e—(ui+Am—/\)Ti) Z (1-— e—(#ﬁAHr/\)Tj) 3)
T T Tﬁ Tﬁ 3

i j=1 J

Le terme au numérateur est le rapport de la probabilité de succes local (traverser le réseau
en un temps ne dépassant pas T;) pour la borne T; que le réseau doit se fixer obtenu par
le modele M/M/1, divisée par la taille de 7; élevée & une puissance ( comprise entre
0 et 1, et appelée facteur d’ajustement. Il s’aveére que ce facteur d’ajustement permet
compenser quelque peu des situations inéquitables dans lesquelles certains ISP le long
du parcours auraient acceés a de la bande passante, a un cofit unitaire beaucoup moins
élevé que d’autres. Plus § diminue, moins les tailles relatives des bandes passantes
dédiées au trafic du client dans chaque ISP ont d’impact sur le partage du revenu.

Dans la littérature des télécommunications, le rapport (1—e~Tiki+A81i=X) ) /T; est appelé
facteur de puissance (power factor). Ainsi, pour § = 1, le mécanisme de répartition ci-

dessus correspondrait au rapport relatif des facteurs de puissance. Plus spécifiquement:

S; = P’/ZPJ ou P, = (1 _ e—(ui-i-Aui—/\)Ti)/\/Ti_ @)

j=1
L’hypothése que chaque joueur est rationnel requiert que chaque ISP choisisse le T} qui
lui ramene la plus grande fraction de revenus possible, et ceci pour chaque choix de Ay;
possible. On peut montrer que le choix optimal de T; méne 2 la régle de répartition

suivante:

S = 5 &)

LY
I
—

ol x; = Ay + p; — A



Xiv
0.3.2 Formulation du jeu de type Stackelberg

Etant donné le réle proéminent de TP comme organisateur principal, nous suggérons
que TP soit considéré comme le nivean supérieur de la hiérarchie au sein d’un jeu de
type Stackelberg, c’est-a-dire qu’il soit le leader. Tous les ISP participants sont alors
des suiveurs, et pour chaque valeur donnée du trafic A qui serait proposée par TP, nous
serons a la recherche d’un équilibre de Nash. Nous supposerons dans un premier temps,
dans les Chapitres 2 et 3, un environnement de jeu avec information complete ol les
fonctions utilité sont connues et partagées par tous, et parfaite c’est a dire ol les décisions
individuelles des joueurs sont également connues de tous. Au Chapitre 3, une version
répétée du jeu est présentée, et ceci en vue de lever I’hypothese quelque peu restrictive
de partage complet de 1’information.

En sa qualité de leader du jeu avec information complete, 7P est en mesure d’anticiper,
pour chaque choix possible du niveau de trafic A, les réactions des différents ISP et
I’équilibre de Nash associé, lui-méme dictant chaque fois un niveau de revenu différent.
TP est alors en mesure d’imposer le niveau de trafic qui maximise ses propres revenus.
Ce choix pourrait ne pas étre le plus favorable pour chacun des joueurs ISP. Cependant,
dans la version du jeu sans achat de bande passante additionnelle possible, ce choix

correspondra a la maximisation du bien-étre collectif.

0.4 Propriétés mathématiques du jeu des suiveurs

Le théoréme suivant constitue la justification théorique de notre recherche d’équilibre de
Nash pour chaque valeur de trafic proposée par le leader TP dans un jeu avec deux ISP
pour 3 # 1 et un nombre arbitraires d’ISP pour 3 = 1.

Théoréme: Dans le jeu de Stackelberg défini par la fonction utilité du leader (1), et les
fonctions utilité des suiveurs (2), avec § € (0; 1], et n = 2, & condition que les conditions

suivantes soient satisfaites:

Loz, >2/(5Tme) Vi€1,2,...n
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2. (;—2)Tmax <1 Vi, j€1,2,...1n

3. (11— M)C,(N)F (s, X—i, Timax) > max {e:} D2 =y,
i =1

=1,.,n

alors, pour chaque valeur admissible de A imposée par le leader, le jeu des suiveurs ad-
mettra un €quilibre de Nash qui pourrait a priori ne pas &tre unique. Soulignons cepen-
dant que pour le cas 8 = 1, la condition 1 2 elle seule est suffisante et ceci pour n entier

arbitraire. La démonstration du théoréme est présentée dans le Chapitre 1 et 1’ Annexe 1.

0.5 Meéthodes et calculs numériques

Dans un premier temps, I’environnement d’information compleéte et parfaite a été con-
sidéré. Dans ce contexte, on peut imaginer que TP exécute tous les calculs, anticipant
ainsi, pour chaque choix admissible d’une grille discrétisée de choix de niveaux de trafic
A, I’équilibre de Nash associé au jeu des suiveurs. En vue de calculer ce dernier, une
version virtuelle de jeu répété est simulée o, a partir d’un choix initial de Ayu; nuls, les
joueurs, perturbent leur position & tour de role jusqu’a ce que la condition d’équilibre de
Nash (optimalité de 1’équilibre pour chaque joueur étant donné les positions des autres
joueurs) soit satisfaite & un niveau de tolérance e préfixé, prés.

La fonction utilité de TP est alors tracée en fonction de A et le choix optimal pour 7P
est arrété. Pour ce choix, les suiveurs refont alors individuellement la simulation du
jeu répété de TP en vue de retrouver la position d’équilibre anticipée par TP, et ainsi
calculer la quantité de bande passante qu’ils doivent acquérir. L’algorithme est présenté
au Chapitre 2, ainsi que des résultats de sensibilité par rapport & chacun des paramétres
tels que le cofit unitaire de bande passante, la durée maximale acceptable du temps de
transit, la fraction des revenus prélevée par TP,le facteur d’ajustement (3, etc. Notons
que toute I’implantation des algorithmes a été faite en Matlab®).

Au Chapitre 3, le jeu est repris, mais dans un contexte ol I’ information n’est pas partagée
a priori. En particulier, les cofits d’acquisition de bande passante additionnelle ne sont

communiqués ni aux ISP, ni & TP. Dans ce cas, il est proposé que le jeu répété simulé par
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TP au Chapitre 2 soit repris ici, mais dans un effort d’estimation des quantités inconnues
a partir des décisions des joueurs. Ainsi, 7P annonce un niveau de trafic arbitraire et
demande aux joueurs de se positionner séquentiellement a partir de conditions initiales
des autres réseaux, et qu’il aura auparavant estimées a partir de mesures actives. La
décision de chaque joueur est ensuite estimée et communiquée par 7P aux autres joueurs
dans la séquence. TP compare constamment la position observée des joueurs a celle qu’il
aurait anticipée sur la base des parametres qu’il aura estimés jusque 12 et en particulier, le
coiit d’acquisition de bande passante. La convergence vers les paramétres exacts se fait
assez rapidement. On retombe alors dans le contexte du jeu précédent avec information

complete.

0.6 Conclusion

La croissance incontestable de la téléphonie sur IP (VoIP) et d’autres applications sen-
sibles aux temps de transit des paquets, requiert le développement de schémas assurant
une certaine qualité de service en échange de modeles de facturation et de comptabilité
appropriés. La complexité du probléme est exacerbée, a la fois par la taille des réseaux
Internet suggérant la nécessité d’algorithmes simples, et la nécessité de faire transiter
les trafics a travers des domaines tombant sous la juridiction d’opérateurs multiples
(problemes de négociation). De nouvelles stratégies sont requises qui puissent refléter le
niveau d’effort de chaque opérateur dans la réduction du temps de transit des paquets a
I’intérieur de son réseau.

La situation qui prévaut actuellement impose aux usagers de VoIP une facturation stricte-
ment fonction de la durée des appels, paralléle a celle qui existe pour le téléphone ordi-
naire. Or, VoIP fonctionne avec le protocole IP qui lui-méme est un protocole meilleur
effort (best effort), ne fournissant donc aucune garantie quant a la qualité de service fut
elle reliée au taux de perte des paquets ou encore les temps de transit de ces derniers.

Nous avons donc jugé important de développer de nouveaux schémas o le client paie
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une surcharge uniquement pour la fraction de trafic transitée a I’intérieur des contraintes
temporelles, et o les ISP sont compensés & la mesure de leur contribution & 1’effort
de réduction des temps de transit. Nous avons alors exploré des régles de partage tel
qu’un ISP donné regoive une fraction des revenus qui puisse croitre avec la probabilité
de succes local vis-a-vis un objectif de temps de transit T; qu’il se fixe lui-méme, mais
qui puisse décroitre avec la taille de 7; puisque plus 7; est grand, moins 1’ISP contribue
a I’effort global. Les régles de partage ont été paramétrées par un facteur d’ajustement
8.

Dans notre formulation du probleéme dans un contexte de théorie des jeux, nous avons
privilégi€ la physique par rapport aux mathématiques, en ce que les fonctions utilité ont
reflété avant tout nos objectifs d’équité et d’efficacité. Le résultat est que contrairement
a la littérature dominante dans la théorie des jeux ol les fonctions utilité sont choisies
avant tout pour leurs propriétés mathématiques agréables, nous avons du dans ce cas nous
battre plus longtemps avec les mathématiques menant a 1’établissement de conditions
suffisantes pour I’existence d’équilibres. Des efforts additionnels seront faits en vue
de trouver des conditions suffisantes d’existence de ces équilibres pour un nombre de
joueurs supérieur a 2 lorsque £ est différent de 1. De plus, notons que dans des travaux
futurs, nous considérerons le cas de jeux étendus avec choix de routes multiples par
exemple, et des joueurs pouvant désirer mentir quant a leurs cofits d’acquisition réels
de bande passante. Dans ce dernier cas, TP pourrait jouer le role d’un régulateur qui
compenserait plus favorablement les joueurs qu’il percoit plus honnétes a partir de la
fraction M des revenus qu’il préléve.

Notons enfin que, dans des travaux futurs, le modele proposé ici pourrait servir de
paradigme dans I’étude du probleme de transport de produits par des transporteurs multi-
ples a I’intérieur de contraintes temporelles, ou encore la manufacture de produits donnés
a travers des chaines de production opérées par des compagnies différentes, et devant

collaborer en vue de livrer un produit fini a I’intérieur d’un délai maximal.
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INTRODUCTION

0.7 Background

The dramatic increase in the processing power of workstations and bandwidth of high
speed networks has given rise to new real-time applications such as multimedia, online
financial transactions, television broadcasting over network, voice over IP, point-to-point
file sharing and recently the new market of online games. These applications have traffic
characteristics and performance requirements that are quite different from the previous
generation of data-oriented applications. With the advent of these new Internet appli-
cations for which more quality guarantees are expected from Internet service providers,
existing static pricing schemes have become more and more inappropriate [DaSilva,

2000].

For all its advantages in terms of simplified accounting and scalability, the current prac-
tice of flat rate charging which falls under the category of static pricing, presents impor-
tant disadvantages for customers, in that it is aimed at the average customer. Thus, at the
low usage end of the customer spectrum, there is a sense that the high volume users are
in effect being subsidized. At the high usage end of it, users have to contend with the
irregular QoS resulting from a best effort organization of the Internet, while if given a
choice, they may in fact be willing to pay more for a steadier grade of service. Finally,
from an ISP point of view, there is some level of uneasiness with regards to the high

variance of net benefits resulting from operating under a static pricing paradigm.

The proposed solution to these drawbacks is a dynamic pricing approach, which can
account for multiple parameters when setting unit prices and charges. The diversity of
parameters and factors that can play a role in pricing decisions, new evaluation tools,

different aspects of QoS, as well as the different issues that could be addresses by tarifi-



cations, has turned Internet pricing in to a very active area of research.

0.8 Dynamic Pricing Approaches

Various pricing approaches have been proposed, based on the notion of effective band-
width, a statistically founded tool for the evaluation of quality constrained bandwidth
requirements for certain types of traffic in data networks [Courcoubetis and Weber,
2003, Kelly et al., 1998], as well as different results from both cooperative and non

cooperative game theory [Basar and Olsder, 1995].

In many schemes, along with the basic objective of pricing, which is to recover the

incurred costs, other goals have been considered:

Congestion control and fair allocation of resource to users [Courcoubetis and We-

ber, 2003, Srisankar and Kunniyur, 2001]

e Admission control and QoS provisioning [Dziong and Mason, 1996, Li et al.,

2004]

e Allocating the resource to users who value it most by selling the service in an
online auction, and in a repeated game context [Lazar and Semret, 2000, Semret,

1999, Maillé and Tuffin, 2004]

¢ Differentiated pricing in a best effort network environment [Odlyzko, 1998,0dlyzko,
1999]

o Pricing schemes associated with DiffServ and IntServ [Semret et al., 2000]

e Pricing scheme based on a non-cooperative environment [Haogang Chen, 1998]



As argued in [He and Walrand, 2006], the profit of ISPs as major players in Internet,
has been neglected in many pricing schemes. In this thesis, the interaction between ISPs
and the outcome of a non-cooperative game between them is investigated. However,
our model differs in a number of ways from that in [He and Walrand, 2006]. We have
assumed the case of only one data flow that passes through designated ISPs, and the
end user who initiates the process is assumed to be willing to pay only for that portion
of the traffic that meets a specific delay bound. Furthermore, an ISP reward structure
is defined whereby each ISP obtains a share of customer payments which depends on
both its initially declared individual quality of service goals, as well as on a statistical
measure of how successful this ISP is in meeting the goals in question. Furthermore,
the setup here is not one of guaranteed quality of service, but rather statistical quality of
service. Such a choice was made for at least two reasons: firstly, deterministic quality of
service guarantees can be quite wasteful in terms of bandwidth requirements. Secondly,
when involving multiple ISP domains, guaranteed qualities of service tend to require
a high degree of end to end coordination, and thus the complexity and overhead com-
munications requirements of such schemes can quickly reach unmanageable levels as
network size increases. Instead here, the setup is such that the enforcement of quality of
service is an affair left as entirely internal to each independent network. If a particular
network complies with a high degree of success rate relative to its declared goals, it will
be rewarded accordingly. If not, it will not. This way, the control scheme for quality

enforcement can be left as decentralized as possible.

A third party company herein referred to as TP has been introduced as a coordinator be-
tween the end user and ISPs. In return, it receives a fixed portion of customers payments.
We adopt a Stackelberg game environment, in which TP, is the leader, and ISPs form the

group of followers.



0.9 Game Theory, Oligopolies and Stackelberg Games

An oligopoly is a market dominated by a small number of sellers called oligopolists.
The word is derived from the Greek for few sellers. Because of the existence of few
participants in this type of market, each oligopolist is aware of the actions of the others.
Oligopolistic markets are characterized by interactivity between agents. Oligopolistic
competition can give rise to a wide range of different outcomes. In some situations, the
firms may collude to raise prices and restrict production in the same way as a monopoly.

Where there is a formal agreement for such collusion, this is known as a cartel.

The Stackelberg leadership model is a strategic oligopoly game in economics in which
the leader firm moves first and then the follower firms move sequentially. In game theory
terms, the players of this game are a leader and a follower and they compete on quantity.
The leader moves first, choosing a quantity. The follower observes the leader’s choice
and then picks a quantity, and the envelope of chosen quantities define the utility of
each player of the game. The Stackelberg leader is sometimes referred to as the Market

Leader.

One important issues in Stackelberg games is the commitment of the leader (TP in this

model), to the chosen decision variable; once it is announced it can not be changed.

Overprovisioning of capacities may be the solution for many network operators to deal
with delay and congestion issues, but as discussed in [Courcoubetis and Weber, 2003],
while this looks like the right choice in backbones of the network, it may not be so for its
metropolitan part, and even less so in the access part of the network. This stems from the
fact that overdimensioning in the the access network requires large investments. Based
on this observation, we have assumed that each ISP involved in our model has at least
one congestion node along the chosen route, and the imposed delay caused by this node

dominates that of any other route link within the ISP domain. In summary, each ISP is



represented by a single bottleneck node along the chosen route.

0.10 Thesis Outline

This thesis is organized in the following manner. In Chapter 1, the structure of the game,
as well as the agents or players, their utility functions and reaction functions, revenue
sharing mechanism and its fairness, and mathematical analysis are presented. In Chapter
2, algorithms and sequence of the game are presented, and the space of decision variables
and discretization is discussed. This is followed by a base example of three competing
ISPs. In subsequent sections, the effect of variation of each element of the game is
studied numerically. In Chapter 3, a more generalized repeated version of the game in
incomplete information environment is presented, where the ISPs unit cost vary across
time. Finally, conclusion and future research directions are presented in the last Chapter.
A lengthy mathematical proof in chapter 1 is carried to Appendix I, and in Appendix 2
the article presented at International Conference on Network Control and Optimization,
at Avignon, France, on 6th of June 2007, is attached. This paper, which summarizes

most parts of Chapter 1, won the best student paper award in the conference.



CHAPTER 1

GAME THEORETICAL PRICING MODEL

1.1 Introduction

In this chapter the main ideas of the model and its properties are discussed. In Section
1.2, we present our game theoretic based model involving a customer, a collection of
candidate ISPs and an intermediary company known as the Third Party. It is a Stack-
elberg game with the Third Party as leader and the ISPs as followers. In Section 1.3,
we give details of the utility functions of the ISPs and the Third party and develop some
preliminary structural properties relating to the optimum decisions of players in the ISP
game. In Section 1.4.1, we establish sufficient conditions for the existence of a Nash
equilibrium in for an arbitrary number of players when 3 = 1, and for two players only

when G = 0.

1.2 Model description

The main objective of this thesis is to model the interactions between ISPs and end users
to provide them the required Quality of Service QoS. Here the scope is limited to the

case of a single end user, which is dealing with a group of service providers.

The proposed model involves three types of agents: a customer herein referred to as C,
TP, and a collection of ISP’s to be selected by TP. In our model, C is an end user with a
potentially large volume of traffic to be sent on a regular basis from a given destination

A to a destination B, and who initiates contacts with TP for that purpose. However, C



specifies a maximum end to end tolerable delay for those transmitted packets for which
he is willing to pay a per unit premium. We denote the maximum delay tolerated by C as
Tomaz- The list of variables used in the model and their definitions is presented on page

XX1V,

An example of traffic type particularly relevant to the context here is VoIP. This is be-
cause in VoIP one can sustain the high loss probabilities that may occasionally result
from the organization scheme to be proposed. Furthermore, there does already exist
market regulators in the VoIP context and they can readily be identified as potential TPs
in our model. Indeed the Telecom Decision CRTC 2005-28, which has been set by
Canadian Radio-Television and Telecommunications Commission is a clear example of
a set of regulations, upholding rather identical regulatory framework as extant traditional

phone services for VoIP ["CRTC”, 2005].

Division of revenues amongst telephone companies is based on mutual agreements be-
tween pairs of service providers. In the case of a large number of such providers of
different hierarchical levels e.g. trunk and access network providers, the task of revenue
sharing is currently performed by a third party company. Exchanges of-balances, and
information about each traversing telephone call between service providers are based
on annual calculations. In the current model, TP plays an enhanced role, as compared
to the case of telephone networks, in that a real-time information and revenue sharing

mechanism is adopted.

TP and C, agree on an offered traffic versus unit flow price curve, whereby offered traffic
levels increase as unit price decreases.This curve is a form of commitment on the part
of the customer that it will pay a fixed bandwidth unit price per unit time for sending a
given ultimately agreed to traffic level, unless it can demonstrably establish failure by
TP to meet the QoS requirements at that traffic level. In the latter case, C’s per unit time

payment is reduced by the fraction of its total traffic transmitted with a delay larger than



i
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Figure 1.1 A representation of the model for three ISP’s

Tmaz- As a consequence of this arrangement, it is in C’s best interest to constantly probe

performance by sending traffic (useful or otherwise) at the agreed to level.

TP selects a number of ISPs along the route from A to B who are willing to be so-
licited in offering the service to C. At this stage, TP gathers from the candidate ISPs the
parameters which specify the rules of the game they have to play and whose outcome
will be their individual share of the income from C after TP’s commission is deducted.
The parameters of the ISP profit sharing are discussed in Section 1.3. Fig.1.1 shows a

schematic view of the model.

Unless one can measure the delay for each packet and provide a cumulative payment
for all packets which meet the delay test successfully, it is necessary to carry an a priori
probabilistic analysis for estimating mean success rate and the ensuing payments, which

will then rely on specific modelling assumptions.

In the practical context, we assume that packet end to end delays can be monitored for
performance verification, within ISP domains. However, all optimization decisions are
founded on specific modelling assumptions. In the current context, we have settled for

a simple M/M/1 queueing model of each network. We have assumed an exponential



distribution for packet lengths, so that the probability of meeting the delay requirement
can be expressed as a function of service rate of that network and arrival rate. More
specifically:

Pt <T)=1-edrh (L.1)

where ¢ is the random delay in network i, A is the rate of transfer, u; is the service rate of

network ¢ and T; is the declared maximum transit time in network 1.

The need to calculate success probabilities in each network stems from the fact that we
wish to reflect the customer payment mechanism on the ISPs involved in the negotiation.
More specifically, the fraction of total revenue dedicated to an ISP will directly depend
on the probability of meeting the declared delay within its network. Moreover, as men-
tioned earlier, C pays according to the probability that its packet reaches the destination
in time; this probability can be derived from the probability distribution of individual

network delays.

The per unit time cost for the customer will be:

J = Pr(t < Thae)Cy(M)A (1.2)

where C,()\) is the unit cost versus traffic )\, dependency curve, herein referred to as
the customer response curve. For convenience, it is taken to be a decaying exponential.
Indeed, anticipating a decreasing function of demand versus price is standard (see [He
and Walrand, 2006] for example). With all active agents and their declared parameters
thus defined, we are ready to formulate the rules of a Stackelberg game whose outcome
will be the traffic rate submitted by C to the ISPs, the corresponding premium unit flow

price paid by C, and the revenue obtained by each of the candidate ISPs.
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1.3 Utility functions: definitions and preliminary structural properties

1.3.1 Third Party TP

TP is a company responsible for all negotiations with the ISPs, with the understanding
that the negotiation process must remain transparent to the customer. TP’s unit time
revenue is a fixed fraction of the total unit time payments made by C. The utility function

of TP is considered to be:

TPy(X\) = M Pr(t < Tinax)Co(N)A (1.3)

where M € [0; 1] is the fraction of the total benefit reserved for TP .

The only decision variable of TP is A, and it is chosen to maximize TP’s revenue, or
equally the foral customer payments to the ISPs, so that in a formulation of the game
where ISPs cannot acquire more bandwidth, this corresponds to the social welfare opti-

mization problem. We also assume an upper bound ), for the rate of data transfer.

1.3.2 Service Providers

We assume each network involved in the transaction to have a certain amount of band-
width p;, already available for C’s traffic. Furthermore, we assume that this initial band-
width is sufficient to insure that the maximum possible source rate \,,,, can be satisfied
by any of the p;’s, (A < u; Vi). The ISPs have the option of increasing the amount of
bandwidth they dedicate to C’s traffic, via a specified cost of ¢; per unit of added band-
width. Let Ay, be the added bandwidth with an upper bound Au**, so that the actual
bandwidth that network ¢ can allocate to the flow becomes: y; + Ay, . For each poten-

tial A, the fraction of profit, which is not taken by TP, is assumed to be available in its
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entirety to the participating ISPs. However, for each fixed A, ISPs are pitted against each
other in a game, the rules of which will be defined in what follows. The idea is to reflect
the payment mechanisms at 7P’s level all the way down to the ISPs. More specifically,
ISPi is asked to provide a (hypothetical) maximum delay T; that it will try to meet. This
T; € [0; T[] is very instrumental in determining ISP 7’s share of total income available

after TP’s payment, in that it is proposed that the fraction of that total allocated to ISP;

be given by:
-1
_ (1 _ e—(ui+Aui—/\)Ti) (1 _ e—(uri—Am—)\)Tj)
S, = = > = : (1.4)
7 7 7

with 8 € (0;1] as a coefficient which we refer to as delay tuning factor. Note that the

term 1 — e~Wi+A1i-NT jg simply the probability that the declared delay in ISP; is met.

Also note that the larger the declared time, the less margin is left for other providers to
accommodate their own delays along the packet route. From that point of view, fairness
would dictate that a large declared T; should correspondingly penalize the declarer This
is why we chose to have the Tf in the denominator in (1.4). This penalty prevents
ISPs from letting their own declared 7T;’s to go to infinity in an effort to maximize their
chances of success. Also, note that for an adequate choice of delay tuning factor 3,
we shall establish that the optimal choice of declared 7; is the mean delay within the
network. In addition, as alluded to earlier, the ISP has the option of either buying for
a given unit price extra bandwidth, or equivalently freeing, albeit at the cost of some
loss of revenue per unit bandwidth, a given amount of bandwidth, thus modulating its

effective service rate y;.

As a consequence ISPi, must provide two decision variables: T}, and the extra amount
of bandwidth Ay; it wishes to buy. Note that if we fix Ay; = 0 (no bandwidth buying
allowed), it is not difficult to see that, modulo a reward shift by an appropriate constant,

the game is equivalent to a zero sum game. Using this allocation rule, we define the
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utility function as:

LS.PUz = (1 - M)Cv(/\) PI‘(t S me))\Si - CiAui (15)

where (1 — M)C,(A\) Pr(t < Tn..) A represents the revenue after payment of TP, and c;

is the purchased unit cost of extra bandwidth.

Considering the expression of 1.5 F;’s utility function in (1.5), we note that except for the
share term S;, the utility does not depend on the choice of declared maximum transit time
T;. In the following, we present a string of results aiming at establishing that for given
(i + Ap;), T; can be selected independently of other decision variables to maximize S;,
leaving Ay, as the unique decision variable of .5 P,. Furthermore, for the special case

where the delay tuning factor in (1.4) is equal to 1, the optimum choice is T; = 0 V4.

Define a new variable z;, as the surplus bandwidth that each ISP has as follows:

:cié,ui—i—A,ui—-)\ Vi.

Each ISP, as an independent agent, tries to maximize its share of revenue .S; with respect
to 7T; regardless of its other decision variable Ay, i.e. each ISP faces the following

optimization problem :

1—e =T
max
T; Tﬁ
2

where z; = p; + Ap; — A = cte. (1.6)

The optimization problem in (1.6) will yield the same result for 7; as the following

problem:
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1— e
maz G(o;)  where oy £ Tyr; and G(ai) = Z

(o7} ai

(1.7)

Notice that G(c;) > 0 Va; > 0and V3 1 > 3 > 0. Moreover lim G(o;) = 0.

a;—-+00

The derivative of G(«;) yields:

dG(OéZ) N e ™ (Oéi + ﬂ) — ﬂ

doy; azp’+1

(1.8)

We first analyze the maximization problem in (1.6) for § = 1.
Proposition 1.3.1 For the case 3 = 1, the optimum choice of T is zero.

Proof By studying the sign of the derivative of the numerator with respect to o, it is
possible to conclude that the derivative will be monotone decreasing for «; > 0. Since
the numerator of (1.8) is zero for o; = 0, it will be negative for any o; >, and thus, so
will the function G(a;). As a result, since for stability reasons, z; is constrained to be

positive, one can conclude that for # = 1, the maximizer of (1.6) is T; = 0.

We now consider the maximization in (1.7) for 3 different from 1. Since G(o;) is a

generic form for all ISPs, we remove the index ¢ in the following analysis.

Lemma 1.3.2 For 0 < (8 < 1, there exists oy and o such that:
Vo € (0, 011] G(Ol) S G'(al)
Vo € [ag, +00) G(ag) > G(a)

Proof Calculating the value of (1.8) at the point = 0, via of L”H®opital’s rule, yields:

: _ (€)1 -a-p)
B e LW VY

= +o0. (1.9
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Since dG(w;)/da; is a continuous function in «;, and the results in (1.9) hold, there exits
a finite nonnegative neighborhood of 0, for which dG(«;)/dc; is positive and as a result
Joy such that Vo € (0, i, G(a) is monotone increasing; equivalently:

doy st Vo€ (0,a1] Gla) < G(ay).

The existence of s is shown by using the definition of continuity and the fact that

lim G(a)=0.Nowe=G(1) = 1—e(-V, then: Joy s.t. Va € [ag,00) |G(a)—0| <

a—+00

1 — €Y, and thus G(a) < as.

By using the Weierstrass extreme value Theorem, the existence of at least a maximizer
in the compact interval [ay, ay)] is established. Next we will show that this maximizer
is unique and indeed can be computed by using the first order necessary condition for

optimality:

Theorem 1.3.3 The maximizer in(1.7) for 3 € (0,1), can be obtained using the first

order necessary optimality condition.

Proof The existence of a maximizer in (1.7) has been shown in Lemma (1.3.2). Fur-
thermore, since G(a) is a smooth continuous function in (0, +co) the maximizer should
satisfy the first order necessary condition for optimality. In this proof we show unique-
ness of the stationary point, which then becomes the unique maximizer of G(«).

The following equation yields all possible stationary points:

9G(e) _ em(ai+f)—f

do; af+1

=0 (1.10)
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By re-writing (1.10), we will have:
Zy(a) = Zo(a)  where: Z1(a) = ae™, Zo(a) = (1 —e™®) (1.11)

Next we show that Z; («) and Z,(«x) have only one point of intersection other than o = 0
(which is excluded when considering (1.10) directly). Note that at « = 0: Z;(a) =
1 > Zy(a) = B. Since Z, (a) = —fe~* < 0, Zy(a) is a strictly concave function,
thus Z,(«) remains less than one for o > 0 and is monotone decreasing. On the other
hand Z,(«) admits a maximizer at « = 1, past which it decreases to zero. Given that
Z(a) is positive and below Z; () for (o« — 07), and is a monotone increasing function,
and given that Z;(«) decreases eventually to zero, there will be at least one point of
intersection for o > 0. Let o* be such an intersection point. We can write:

Zy(a*) > Zy(a*) = Be=®" > (1 — a*)e™® = § > 1 — o*. In the next step we show
that for o > o*, we will have Z,(a) > Z;(a):

Va>ao*, f2>21—a*>1—athusfe > (1 — a)e® and as a result:
Va > o, Zy(a) > Zy(e) (1.12)

Since Zy(a*) = Z;(a*), and in view of (1.12), the two functions cannot intersect at a
point past o* again. Besides, o* is unique, since existence of a non negative intersection
point strictly smaller than o* would, using the same line of arguments, preclude the
existence of a* itself. This completes the proof of existence of a unique maximum in

(1.7). Furthermore it can be found using the first order necessary condition. |

Corollary 1.3.4 There exists a unique value for 3, for which the declared time by each
ISP is equal to the mean delay (T;"° = 1/x;) that packets receive in that ISP’s network.

This truth revealing value of (3 is:

1
T =—=T"z,=1=a= from(LI1),f=(e—1)"" ~ 0.58 (1.13)

(2 mz
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Another approach is to try to express Ay, as a function of T;, and use T; as the only
decision variable of the ISP. However since the Ay; ’s are directly used in the probability
function of global success we have adopted Ay, as the working decision variable for

each ISP. As a result, Ay, becomes the unique decision variable of I.SP;.

1.3.3 The sharing mechanism between ISPs

We investigate the sharing rule for the two cases § = 1and 0 < 3 < 1:

Remark 1.3.5 The fact that, at least for the 3 = 1 case, the optimal choices of declared
maximum network transit times T}, for the ISPs correspond to the highly unrealistic value
of zero, justifies their characterization as declared values. This leads to a reasonable

rule for sharing benefits among ISPs. Indeed, for 3 = 1 as T; goes to zero, L’Hépital’s

rule yields:
Si oz
==, 1.14
S, 1 (1.14)
The corresponding general form (n ISPs) of (1.14) is:
S = — (1.15)

n
2T
=1

which indicates that customer payments after commission are shared among ISPs in

inverse proportion to the mean packet transit time in each of the networks.

Remark 1.3.6 Having established that (1.7) admits a unique solution o*, we can con-
sider o to be a function of the 3, say P([3), where the function P(83), can be obtained

numerically. Since we have decided to designate x; (or Ap; equivalently) as the decision
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variable of each ISP, we try to obtain T, as a function of the other decision variable:
=2 PO (1.16)
T; Ty

Substituting (1.16) in the general sharing function (1.4) we obtain:

-1
(1 — e‘(’“)%ﬁ‘u) n (1 - 6_(%)(%5—))) -P@) [ —P(8)
. 5 (=) [ (1)
’ (fga)ﬁ = <£Eﬂ)ﬁ (5&9)5 g (fﬂﬁ)ﬁ
Ti 5 T4 Ty

-1

(1.17)
And as a result the sharing mechanism for € (0, 1) becomes:
B
Sy = —t (1.18)
B
xs
=1’

Parallel to Remark (1.3.5) above, the sharing mechanism in (1.18) indicates that the
revenue of each ISP is proportional to the inverse of mean packet transit time raised to

the power 3 < 1.

In light of this property we next investigate the effect of 5 as a tuning factor in the game.

Proposition 1.3.7 In the case of n competing ISPs, assume that there exist ISP i, and j
such that z; < x;, then as (3 increases from 0 to 1 the ratio of the shares S;/S; increases.
In the case of only two ISPs, the share of the ISP with lower z ISP z;, (or equivalently

higher average transit time T;) decreases while that of ISP j increases.

Proof The ratio S;/.S; and its derivative as a function of 3 can be written respectively
as:

zy
B
J

/ T;

P
=R(p) =5 R(B)=In(")

(1.19)

.’L‘jx
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Since z; < z; then ln(%) < 0. Thus R(0) is a decreasing function and as a result, as 8
increases (from O to 1) the ratio of % decreases. In the case of only two ISPs, since the
J

sum of shares is 1, this would mean that S; decreases while S; increases.

In conclusion, a decrease in 3 tends to de-emphasize the advantage that ISPs may ac-
crue from contributing more bandwidth to the game. This property may in turn be used
to create fairer game conditions whenever the packets route traverses ISP domains with
widely different congestion and access to bandwidth properties. However, an undesir-
able side effect is that this can result in a decrease of the customer perceived QoS at a

given unit cost.

1.4 Existence of Nash equilibria in the followers game

While we have specified different agents utility functions, we have not thus far specified
the sequence in which the game is played. Given the predominant role of TP as the main
organizer, we suggest that 7P be considered as the higher level of the hierarchy within
a Stackelberg game, i.e. TP is the leader. All participating ISPs are followers, and thus,
for each fixed value of customer traffic rate A decided by the leader TP, we shall be look-
ing for potential Nash equilibria. We also assume a perfect information environment in
chapter 1 and 2, whereby each player knows all buying costs of extra bandwidth unit ,
initial networks dedicated bandwidths to C’s traffic, as well the customer response curve.
These strong information availability assumptions will be relaxed in further sections. In
Chapter 3 a repeated version of the game is presented, letting us make the complete in-
formation assumption less restrictive. Having the position of the leader in this game, TP
can predict the outcome of the non-cooperative game among the followers, for any spe-
cific choice of TP’s unique decision variable A. By exploiting this fact, TP can specify
the customer traffic level which best suits its interests. In general, this may not be the

optimum choice for any specific individual participating ISP, but will in general corre-
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spond to the maximization of the envelope paid by C to the ISPs. Thus, in a version of
the game where ISPs do not have the possibility of buying more bandwidth, TP will be

solving the welfare maximization problem.

In general however, for n ISPs, TP will have to calculate the n-tuple Nash solution of the
game (Apyyq, ..., A,un)N %" for each potential value of A, provided it exists and is unique,

and subsequently optimize its utility function with respect to \.

The following theorem provides sufficient conditions for the existence of a (possibly non

unique) Nash equilibrium in the followers game.

Theorem 1.4.1 In the Stackelberg game defined by leader utility function (1.3) and fol-
lowers utility functions (1.5) with 3 = 1, if:
(1 = M)C,(A)Pr(t < Tax) > max {cai}

.Z'j,
1

n
1=

Then for every admissible X set by the leader, the follower game will admit a possibly

non unique Nash equilibrium.

For the special case € (0;1) and n = 2, if the following conditions hold:

a. ;> 25T Vi€l 2
b. (z; — %) Tmae <1 Vi,j€1,2

¢. (1= M)CyAN)F (s, 25, Tmax) > max{ce}(x; + ),

then the follower game will admit a Nash equilibrium.

Proof To prove the existence of Nash equilibria, we use a paraphrase of the following

Theorem [Basar and Olsder, 1995]:
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Theorem 1.4.2 For each player, assuming the sets of decision variables are closed,
bounded and convex, and furthermore that each player’s utility function is continuous
in all decision variables associated with all players, and strictly concave in the entries
associated with its own decision variables, for every admissible combination of deci-
sions of other players, the associated n-person none zero sum game will admit a Nash

equilibrium in pure strategies.

The theorem above can be easily shown to hold if strict concavity is replaced by the
assumption of existence of a unique maximizer for each player’s utility function for ar-
bitrary decisions made by other players. The existence of a unique maximizer is satisfied
provided utility functions can be shown to be strictly log concave in their own decision
variable. Sufficient conditions for log concavity to hold are established through a string
of results discussed below. Since, Ap; € [0; Ap"®*], the set of decision variables is both
convex and compact. Furthermore, the continuity of utility functions on the admissible

decision variable set is clear. Therefore a Nash Equilibrium will exist.

First, we consider the case § = 1, for n arbitrary. Existence of a unique maximizer for
each ISP problem is established in two steps: first, by showing the strict concavity of the
global probability of success function in Lemma 1.4.3, and subsequently, by showing
that the ISP utility function reduces to the product of two strictly concave functions and

is therefore strictly log concave in Lemma 1.4.4.

The proof will cover all possible values of § € (0, 1] for the case of 2 ISPs, while for n
ISPs we are able to establish the proof only for 3 = 1. We start with the case 4 = 1.

1.4.1 The caseof B = 1.

Lemma 1.4.3 The global success probability function Pr(t < Ty, ) is strictly concave

with respect to each ISP decision variable Ay, irrespective of Ap;, j 7 1.
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Proof The probability density function (pdf) of the time in the system ¢ in a simple
M/M/1 queue is [Kleinrock, 1975] : g(t, ) = ze~**. where z = u + Au — M. The total
delay T that is imposed on each packet, is the sum of individual delays within each ISP’s
network. Under the assumption of approximate independence of the transit times within

the successive ISPs, the pdf of T, f(T, X), will be the convolution of all component
pdf’s g(tia xz) .

f(T,X) = g(t1, 1) * g(ta, T2) * ...... % g(tn, Tn) where: X = [11,To, ..., T,]. (1.20)

Defining F(T, X) as the probability distribution function (PDF) of T', and
X_i=[x1,...,%i-1,Tit1, . .., Ty], the pdf of the total transit time when the time spent
in ISPi is excluded, can be defined as: h_; (T, X_;) = g(t1,z1) * ... * g(t;_1,Ti_1) *
g(tis1, Tiv1) - . * gtn, Tn) >0

The probability that the total packet delay be less than T,,, is given by:

F(The, X) = / hoi (b X_0) % g(t, z3)dt = / / hoi(r, X _)g(t — 7, 3)drdt.
0 0 0

(1.21)

Using Fubini’s Theorem to change the order of integration in (1.21), we will have:

Tma,x Tmax

F(Tp, X) = / / (g(t =7 35)dt Vhs(r, X_o)dr (1.22)
0 T

where G(z,t) = 1 — e™** is the PDF of g(z, t). Our goal is to show that %}; < 0VX_,.
Using Lebesgue’s dominated convergence, the differentiation can be carried across the

integral:

Tmax

2 2
’r_ / h_i(r, X ) 4 G (Tinax — 7 2:)dr. (1.23)

2 2
ox; Ox;

Note that %G(me ~T,%;) = —(Thax — 7)2e"@)Tmax=7) < 0 and h_; > 0; hence
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0?F/0x? is always negative, and as a result the global success probability is strictly

concave in z; or equally in Ay;. |

Lemma 1.4.4 For any admissible values of decision variables X _;, ISPy, (x;, X_;) has

a unique maximizer with respect to z; for § = 1.

Proof Our goal is to show that:

ISPUi(xh X—i) = o (1 - M)Cv(/\)F(LL‘,,, X—i) Tmax)’\ - ci(xi — Hq + )‘) (124)

n

2T
j=1

always admits a unique maximizer, where F'(z;, X _;, Ty,ax) is recalled to be the proba-

bility of global success. In Lemma 1.4.3, the strict concavity of F'(z;, X_;, Trax), With
n

respect to z; was established. On the other hand the function —c; } |, ; is a linear func-

J=1
tion in x;, thus the function:

n
AF (35, X_i, Tax) — € 3, %, Where: A = (1— M)Cy(A)X (1.25)
j=1
is also strictly concave in x;. Next we will assume the following for the total reward paid

by the customer to satisfy the following inequality:

AF (i, X_i, Tmax) > max{c;} > (1.26)

j=1
The assumption (1.26) will ensure a positive value for (1.25) for all ISPs and has been

called assumption ¢ in Theorem (1.4.1). Using Mangasarian’s theorem [Avriel et al.,

1988], the log of (1.25) is a strictly concave function in z;, thus (1.25) is said to be
-1

n
strictly log concave. Furthermore, z; | > z; is also a strictly log concave function
=1

in z;. Since log concavity is preserved under multiplication, the following function is

strictly log concave in z;:
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; {Zx]} (AF (i, X_i, Tax) clza:, (1.27)

The strictly increasing nature of the log function, and strict log concavity of (1.27) im-
ply that it has a unique maximizer with respect to z; [Paninski, 2004]. Furthermore
ISPy, (i, X_;) can be obtained by adding the constant ¢;(1; — A), which will not alter
the existence of the unique maximizer of (1.27). Thus ISPy, (z;, X_;) admits a unique

maximizer inz;. [

14.2 The caseof 3 € (0,1)

In this case, while assuming only ISP: and ISPj are present, our goal is to derive the

sufficient conditions that:

B
ISPUi(CEi,.’IJj) = '

751 = M)Co(A)F(2, Zj, Tona) A — i@ — ps +A) - (1.28)
x; + x;

always admits a unique maximizer with respect to x;. Before proceeding, we introduce

1

a change of variables: y; = :c VY = x Pand o & , and further we define the following

=l

function:

R(y:) & AF (Tnaa, y3,45) — iy +42) (1.29)

where we recall that A = (1 — M)C,(A) and F is the global success probability
function, defined in (1.21). We have the following Lemma which is the counterpart

of Lemma (1.4.3) for the case of 3 € (0;1).

Lemma 1.4.5 Forall § € (0,1), and provided

@)z > 2/5Tmae Vk €4,



b)|z; — 25| Trmaz < 1

the function R(y;(x;)) is concave in ;.

24

(1.30)

Proof Since y; = :cf and 0 < 8 < 1, y; is strictly concave in z;, using Manganesian’s

Theorem [Avriel et al., 1988], establishing the concavity of R(y;) in y;, is sufficient to

prove the Lemma. We start with the term F'(Tpn4, ¥, yj‘) and establish that %{; < 0.

8

The proof follows the same procedure as for Lemma (1.4.3). Substituting y; = z; in
1.23 after partial differentiation across the integral, yields:

or g

Er / hi(r, xj)a—ng(Tmax — T, y;)dr. (1.31)
Furthermore,

2 T _ a “y?(Tmaz_T) _ —_ 2] T —
8_2G(Tma,x _ 7_, y;y) — (X( max T)yz € 2(0[ 1 ayz ( max T)) ) (1.32)
dy; Yi

Note that the second partial derivative in (1.32) goes to zero whenever:
a—1
Y= 1.33
v =g (To = 7) (1.33)
or equivalently z; = T,,i,;ﬂ— —.
Eq. (1.31) can then be re-written as:
Tenax+ 22
8°F ’ 8
'—a? = / hj(T, mj)'é:;l—?-G(Tmax -7, yf‘)d’r+
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Tmax
82
hi(7,25) 53 G (Tmax — 7,457 )dT. (1.34)
Tmax+ﬁz;,1 yl

The negative characteristic of 1.34 is preserved for the following two conditions:
a)zg > 2/5T e Yk €14,7
b)|z; — 2| Trnaw < 1
The proof of (1.34) has been carried to Appendix L.

Multiplying the strictly concave function F'(Trnaz, ¥, ¥5') by a constant multiplier: A =
(1 — M)AC, () will not change its property, neither will adding a strictly concave func-

tion: —c;(y¥ + y;’) change its property, as a result the function:
R(yi) = AF (Trnaw, Y55 45) — iyl + 95)

is strictly concave in y;

Following the same assumption discussed in (1.26), R(y;) is positive and strictly con-
cave, as a result it is strictly log-concave, multiplying R(y;) by the strict log-concave
function [y + y$]~1, will result in a strictly log-concave function, so the following

function has a unique maximizer in y;:

e AW, Te) = e0) (135)
% J
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The function y;(x;) is a one-to-one, strictly increasing function in z;, as a result (1.35)
has also a unique maximizer in z;. By replacing y{* by z;, we will arrive at:
B

J 1— M)YCy(ANF(xi, i, Tnax )X — (x5 (1.36)
y?+y?( )Co(A) F (24, 7 ) (23)

X

By adding the constant ¢;(u; — A), which will not alter the property of having a unique

maximizer, we will arrive at the objective function. Thus the function

B
ISPy, (2i,25) = =55 (1 ~ M)Cy(\) F (%, 25, Trnax)A — i — i +3)  (137)
z;, + z;

has a unique maximizer in z;, given the conditions 1.30 are satisfied. |}

1.5 Conclusion

In this chapter, we have developed our Stackelberg game theoretic model for statisti-
cal decentralized QoS assurance for Internet services across multiple operator domains.
Some important structural properties of the game were derived. In particular, while on
the surface of things, individual ISPs have in principle to provide each two distinct de-
cision variables, namely the packet transit time they aim at not exceeding within their
network, and the extra amount of bandwidth they aim to buy, respectively, it turns out
that the first decision can be made independently within each network. Thus, once this
first decision is settled, the extra bandwidth for each network becomes the only core
decision within the followers game. We have also investigated the influence of the band-
width tuning parameter 5 on the utility functions and concluded that the smaller 3, the
lower the overall success rate, and the lesser the sensitivity of wutility to bandwidth al-
location. Finally, we have derived our main theoretical result consisting of sufficient
conditions for the existence of a Nash equilibrium in the followers game, respectively

for an arbitrary number of players when § = 1, and only two players at this stage for
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B € (0;1). Further extensions of these results will be considered in future work. In
the next chapters, we shall numerically investigate the performance of the proposed QoS

assurance scheme.
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CHAPTER 2

THE COMPLETE INFORMATION ENVIRONMENT GAME: ALGORITHMS
AND NUMERICAL PERFORMANCE INVESTIGATION.

In this chapter, computational algorithms are presented for the proposed game in the
case of perfect completed information, and the properties of the results are numerically
investigated. In Sections 2.1 and 2.2, the algorithm and the design of the codes are
presented; in the subsequent section a reference example is presented and the impact of
the different system parameters on the solution of the game is investigated by perturbing
these parameters one at a time. Although a mathematical proof of the existence of Nash
equilibria for values of 3 other than 1 has not been established for 3 or more ISPs as yet,

we have numerically investigated an example of three ISPs.

The goal in this chapter is to establish the numerical methods to solve the following
non-linear equations:

MazTPy(T;),j=1,...,m @2.1)
J

with m the number of discrete points, and Ay = Ap.y/m, while I'; is a row vector
corresponding to the Nash equilibrium of the ISP game, when traffic rate is set at j\4.

More specifically:

Dy=[jAa Awij...Apnsl, j=1...m 2.2)

with: A.u’:,j = arg %CL.’E ISPUz (Aui,ﬁ Auf—i,ﬁ j)‘d))

l‘l’i,]

and: Ap;; € {Apg, 2Apq, . .. ;mApg}, while Apg = Apiaz/m
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2.1 Infinite Vs. finite space of decision variables

In the game as formulated in chapter 1, ISP’s decision variables Ay; can take any value
between zero and Ap***, while the rate of transfer A can vary between zero and A4,
for TP. These assumptions categorize the game as an infinite action space game, i.e. an
infinite number of possible values exist for each decision variables of each player of such

a game. This situation simply cannot be implemented as is on a computer program.

In order to deal with this issue, the decision variable space has to be reduced to a finite
number of elements. For the purpose of the simulations presented here, each continuous
space of decision variables has been descritized to 1000 equidistant decision variables.
This number represents a trade-off between speed of the algorithm and accuracy of the
results. Clearly, more precise solutions can be obtained by increasing the number of

discrete points.

2.2 Reaction functions, algorithms and updating schemes

In the game of followers, the information available to each ISP includes: C,()) the
cost per unit of traffic for successfully delivered traffic, Vi, c; the unit cost for additional
bandwidth for all ISPs, u;, the initially available bandwidth of every ISP, TP’s fraction M
of the customer payments, as well as the maximum tolerable delay (7},..), specified by
C. Note that all these variables are defined in a unit time scale which is assumed to be
shared by all players. This defines a complete information environment; it requires that
every player know the strategies and payoffs of all the other players, but not necessarily

their actions.

This would normally be the context in which the game in this chapter is defined. How-

evet, in order to carry out the computation of the (hopefully unique) Nash equilibrium
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in a numerical context, we pretend that the game is a sequential one at the ISP level and
that all previous moves of every ISP at a given time step are known to all players. This
is a so-called perfect information environment in sequential games. However, only the
final Nash equilibrium solution is considered as the practically implementable step in a
simultaneous game. Note that this virtual repeated game will become a true repeated

game in the incomplete perfect information environment to be considered in Chapter 3.

The following algorithm explains the unfolding of a virtual perfect complete information
sequential game between n followers (ISPs), in which the rate of transfer \ is announced
by TP to all ISPs, and where each ISP knows his and every other ISP’s initial bandwidth
;. Instead of working with Ap;, we adopt the excess bandwidth z; of each ISP as its
decision variable. Recall that z; = u; + Au; — A and K is the iteration counter. Also

X¥is a1 x n vector containing each ISP’s response at the end of iteration K.

Algorithm 2.2.1

(1) Let K = 0

(2) Assign a random initial feasible value to each entry of XX, e.g. zero buying band-
ry ying

width assignment

(3) Fori from 1 to n, calculate the best response of ISPi.

xf<+1

K+1 K+l K K
LR P S z5)

R IRER) n

= arg max [.SPy,(z
K

i

(4) If XE+1 = XK + g exit, ifnotlet K = K + 1 and go to 3.

The & value is a tolerance threshold. It can be either increased to increase the speed,
or decreased to increase the accuracy of the algorithm. A similar approach has been

adopted in [Semret, 1999].
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The algorithm (2.2.1) allows players to move in a predetermined numerical order. i.e. in
the first round of iterations the first ISP will choose its decision variable zZ¢ based on the
preset random values of XX, then the second ISP will base its calculation on the ISP1
decision (zX**) and the randomly assigned values for other ISPs (zX, zX, ... zX), and
this procedure continues until we reach ISP n. The subsequent rounds of the algorithm
follow the same routine as the first round, but instead of a random set of values as for
the starting point, the result of the previous round is used. The algorithm will stop once

it has hopefully converged. i.e. when ISPs decisions all become fixed.

The updating scheme used in algorithm (2.2.1) is similar in sequence to that of the Gauss-
Seidel iterative method as relates the finding of solutions to sets of linear equations. In
the current context, however, a closed form for best response functions of each ISP is not
available, and IS Py, displays a highly non-linear dependance on ISP: decision variable
z;. Algorithm 2.2.1 in fact solves a set of nonlinear equations of reaction functions, for
which an exact closed form of equations does not exist. The sequential unfolding of
the optimization for each one of the ISP utility functions can dramatically reduce the
observed speed of convergence. Furthermore, no theoretical guarantees of convergence

are provided at this stage.

Algorithm 2.2.1, can be run individually by each ISP, in the case of a perfect information
environment. In the next chapter numerical analysis and properties of the game are

considered in the context of perfect incomplete information.

For convenience, we can consider that TP sets the initial random conditions of all ISPs,
although this is not essential since this is a virtual computation is carried by TP for each
set of discretized possible traffic rate, to chose the most favorable one. If the algorithm
converges, the solution is a stable unique e-Nash equilibrium with respect to the given
updating scheme, and set of initial conditions for the corresponding infinite nonzero-

sum game, where e is some function of the threshold value . The definition of e-Nash
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equilibrium is the following: [Basar and Olsder, 1995]

Definition For a given ¢ > 0, an n-tuple {Ays, ..., Apg} with Aug € [0; Au™*], Vi €
{0,...,n} is called a (pure) e-Nash equilibrium for an n-person nonzero-sum infinite

game if:

ISPUz’(A/-Lia v )Aru/:z) 2 SAupISPUi(A:u'iv e 'aAug—laA/"'iaA“ze'-}—l’ e >A/‘l’:z) —¢€
Ha

For € = 0, one simply speaks of equilibrium instead of 0-equilibrium.

Thus, summarizing the above discussion, the following algorithm is executed by TP,
in the first stage of the game, while assuming the following m discrete points as the

admissible rates of sources: [Ag,2\4, ..., MAg = Apaa):

Algorithm 2.2.2

(1) For j from I to m, calculate the Nash equilibrium of the followers game by using

Algorithm (2.2.1), when j\q is taken to be the current source rate.
(2) Forjfrom 1 to m, calculate T Py(j\;), from the results obtained in step 1.
(3) The optimal solution of TP is: j*\g where: j* = arg MaxzTPy(jA), and j €
j

1,2,...,m.

Thus, using Algorithm 2.2.1 in conjunction with (3) above, our particular Stackelberg

problem detailed in (2.1 and 2.2)can be solved.
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2.3 Numerical experiments for the case of three ISPs

In this section, we will investigate the case of three ISPs with arbitrary values presented
in Table 2.1. A sensitivity analysis is carried out in subsections 2.3.1 to 2.3.5 by altering
one input parameter at a time, and a numerical comparison between the original case and
the new results as well as an analysis of the solution are undertaken.

Table 2.1 Values used in the base case
ISP1  ISP2 ISP3

C; 0.249 0.283 0.175
i (Packet/ms) 1.1 1.2 1.28
M 20%
Co(N) 2e /2
Trax 6ms

2.3.1 Impact of the delay tuning factor 3

The model is investigated for six different values of 5 > 0.5. The results are shown in
Table 2.2, and Figures 2.1, 2.2, 2.5 and 2.6. A more detailed analysis is presented for the
special case of 3 = 1, with Figures 2.3 and 2.4.

In view of (1.18), and for a fixed A and a fixed choice of bandwidths, decreasing the
delay tuning factor 3 tends to reduce the relative advantage of the ISP with the largest
bandwidth, and increase the returns of the lower bandwidth ISPs (see Fig. 2.1 and 2.2).
This tends to reduce the amount of bandwidths that ISPs are willing to buy, thus reduc-
ing the overall probability of success (see Table 2.2), which drives TP’s benefits down
and lowers the customer QoS. Although lower [ results in less income for TP, at the

Stackelberg game level, TP still chooses to settle for a the same A\, = 1.

In Fig. 2.3, shares and utilities of ISPs are depicted. In an interval of )\, where no ISP

is buying any additional bandwidth, the revenue shares of ISPs remain constant. This
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Table 2.2 Experiment results of three competitive ISPs for different values of 3
=1 =09 =08 =07 =06 B=05
Optimal A(packet/ms) 1 1 1 1 1 1

Ay, at NE (packet/ms) 0.795  0.710 0.654 0.597 0.537 0.472
Ayps at NE (packet/ms) 0.508  0.462 0.435 0.399 0.356 0.306

Aps at NE (packet/ms) 1 1 0.872 0.747 0.628 0.514
ISPy, atNE 0.0744 0.0786 0.0897 0.0977 0.1015 0.1003
ISPy, at NE 0.0717 0.0822 0.0970 0.1086 0.1160 0.1183
ISPy, at NE 0.2145 0.2106 0.2019 0.1924 0.1810 0.1667

TPy at NE 0.2181 0.2122 0.2050 0.1953 0.1824 0.1655

Pr(t < Tmes) % 9042  88.01 85.25 81.51 76.56 70.02

0.25 , ! ! : ; ; ; ;
0.2

0.15¢

TP utility

0.05F e ............ ............. ................ ..No.barideth..tfuying ..... ............... ............. o 4
i ; : : allowed { i

i i ; ; i i i ; i
8 01 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
A (packet/ms)

Figure 2.1 TP’s utility versus transfer rate A dependency curves, as pre-computed by TP
based on knowledge of the reaction functions of the ISPs, and as a function of the tuning
factor 5. The bottom solid line represents the case of the zero-sum game in which no
ISP is allowed to buy any bandwidth
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Figure 2.3 Right: ISP’s utilities versus A, for the case of G = 1, left: shares of ISPs for
the case of § = 1 according to 1.4 in Chapter 1. An almost constant set of shares is
observed in the interval at which ISPs are buying bandwidth linearly with respect to A
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Figure 2.4 Left: The global probability of success versus A; right: the unit cost of suc-
cessful traffic paid by customer.

appears to be also the case on trafic rate intervals where the three ISPs choose to increase

their decision variable in a linear fashion with respect to \.

As ISP3 starts to buy extra bandwidth at A = 0.45, its share (S3) starts to increase. This
happens at the cost of S; and Sy, plunging down. The decision of ISP3 affects 1.5 Fy,
and IS Py,, which see their utility function start to decrease. (See right part of Fig. 2.3).
Later when ISP1 enters the stage by buying bandwidth, its share (.S;) starts to grow, thus
decreasing the slope of th S; versus A curve even more (see left part of Fig. 2.3), and
making the situation less desirable for ISP2. Finally when ISP2 starts kicking in extra
bandwidth, it can barely increase its share for higher \’s, since ISP1 and ISP2 are already
major players buying more bandwidth, and claiming bigger portions of the total revenue.
The outcome of such a linear increase in Ay of every ISP is that the relative position of

each ISP with respect to other in sharing the revenues remains constant.

ISP’s behavior as would be perceived by customer C is presented in Fig. 2.4. It is
observed that the probability of global success goes through a minimum, while the total

unit price paid by C decreases with traffic level.

The so called breakpoints in 7'P;(\) are presented in Fig. 2.1. They correspond to the
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points at which a given ISP starts to buy bandwidth. The first breakpoint can be defined
as a rate of transfer A*, past which TP expects a higher revenue as compared to the game
where no ISP is allowed to buy more bandwidth (the zero sum version of the game). This

is due to the decision of an ISP to contribute to the data flow by buying more bandwidth.

As other ISPs enter the market (i.e. start to buy bandwidth) when A > A\*, new break-
points in 7' Py are observed, which all tend to increase the slope of TPy (A). As a result,
since for our example, the three ISPs eventually buy some bandwidth for every g > 0.5,
a total of three breakpoints are observed, while for # = 0.5 and 0.6, the first and sec-
ond breakpoints appear to coincide since, ISP1 and ISP2 start to buy almost at the same

source rate. This is clearly depicted in Fig. 2.6.

The effects of ISPs on TPy () is large enough in the considered range of 3, so that TP
chooses )\, instead of the its optimal choice in zero sum game, as the announced rate
of transfer. Further numerical calculations in Fig. 2.1 show that at § < 0.325 , this is
reversed and TP will prefer to chose A < \% = (0.536.

The decision of ISPz, x; affects two different parameters in the model, as viewed ex-
ternally; firstly, the share of the ISP from the total benefits received from customer
after fixed deduction by 7P, which was specified as S; = xf / Xn: :vf ; secondly, the
total benefits itself which is a direct function of every ISPs decisio=n1 variable, given by
A= (1—- M)C,(A)Pr(t < Tmaz) in Chapter 1. Thus, the first ISP to kick in more
bandwidth has its strategy dominated by the improvement in his share of benefit, rather

than the impact that it can have on success rate.

The variation of J will directly affect the share S;that each ISP receives, but also it has

an indirect effect on the total benefits received from customer A.

The total benefits that each ISP receives (S;(1 — M)C,(A)Pr(t < Tpmaez)A) is the main

source of income for ISP:, on the other hand it limits the spending of ISP: on additional
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Figure 2.7 The function 2 for three different values of 3

bandwidth, or in other words it plays a major role on the decision that ISP: takes. This
decision Ay, is a building block of the global probability of success, which regulates the
payment of C, to TP. The less total benefits received by TP, the less will go to any agent
of the game, including ISP:. This closes the chain of reaction loop caused by decreasing

the [ factor.

A [ value less than one, increases (or decreases) the bargaining power of each ISP in
the sharing mechanism, in terms of yielding a higher (or lower) value in xf than z;,
depending whether z; > 1 or 2; < 1. In Fig. 2.7, the simple function of xf is presented
for three values of 3, respectively 1, 0.7 and 0.5. The range of [0; 2] has been chosen for

z; to present feasible values of x; in the current example (Au*** + Ao = 2).
This amplifying effect can be indicated as xf — x4, which has a maximum at x} = ﬂl_iﬁ'.

A lower [, yields lower ¥, encouraging ISPs to invest less in their bandwidth, to enjoy
the maximum amplifying effect in the sharing mechanism. On the other hand, since
lowering 0 requires a lower additional bandwidth by ISPs, it will also eliminate the eco-
nomical advantage of ISPs which had cheaper additional bandwidth at their possession.

For instance ISP 3 in the current example has considerably cheaper bandwidth; as 3
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Table 2.3 Experiment results for three different values of T,,,, = 6, 12, 18ms.
Tmaw =6 Tmaz =12 Tmaa: =18 Tma:v = 100

Optimal A(packet/ms) 1 1 1 1
Apy at NE (packet/ms) 0.795 0.736 0.733 0.732
Aus at NE (packet/ms)  0.508 0.405 0.381 0.379

Apg at NE (packet/ms) 1 1 1 1
ISPy, atNE 0.0744 0.1135 0.1174 0.1177
ISPy, at NE 0.0717 0.1001 0.1014 0.1015
ISPy, at NE 0.2145 0.2794 0.2860 0.2864
TPy at NE 0.2181 0.2414 0.2425 0.2426

Pr(t < Thes) % 90.42 99.55 99.98 1

decreases, its total utility decreases at the final lambda.

One of the drawbacks of the presented results is the low values for probability of global
success as 3 decreases, which is due to less additional bandwidth that each ISP brings
in. However, these low probabilities could be justified given the stringent required de-
lay Tinee = 6 ms, and high bandwidth unit costs of ISPs. In the next subsection we

investigate the variation of the total allowed transit time 77,,,..

2.3.2 ImpactofT,,,,

VoIP communication in general tolerates loss probabilities of less than 1%. However
every VoIP protocol (SIP, H.323 etc.) is equipped with a mechanism to buffer packets to
be able to arrange out of order packets. The average tolerable delay by a typical VoIP is

about 100 ms; thus considering higher values than a T;,,,, of 6 ms is justifiable.

In this section, we study the effect of increasing 7;,,, on the global probability of suc-
cess, and on the behavior of ISPs for the base case (3 = 1) parameters. The outcome of

the game is presented in Table 2.3.

Increasing 7T,,.., increases the global success probability and as a result, increases the
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total revenue that each ISP and TP get from the customer. Although one may think that
this would encourage ISPs to invest more in their additional bandwidth, an inverse effect
is observed in Table 2.3 for ISPs 1 and 2. One way to interpret this behavior is that the

ISPs can obtain the same utility with lower investments.

For each given A, as T,,,, — o0, the probability of global success is replaced by 1, and -
the game between ISPs can be further simplified. Since each ISP’s decision variable is
not going to affect the total income, every ISP’s optimization problem can be focused
on its share of the total 5; and the internal costs ¢;Au;. As a result, the final solution
to the followers game will depend only on the initial bandwidths and unit costs. In
the mentioned example, at 7,,,, = 6ms, ISP1 and ISP2 chose to invest more in their
additional bandwidth, to increase the global performance. As T,,,, increases, probability
of success increases for equal bandwidths. As a result, ISP1 and ISP2 decide to cut some
of the budget that goes to additional bandwidth buying, and do gain more at the end of
the day. An overall higher global probability of success is achieved. For the sake of

comparison the results of 7,,,,, = 100ms, are also presented in Table 2.3.

2.3.3 Variation of the unit costs

Unit costs are a major factor in defining the feasibility region of decision variables of
ISPs, defined by a positive return for each agent of the game. On the other hand, ad-
ditional bandwidth unit cost defines each ISP’s capabilities to compete with others and

produce more profit.

In this section four different sets of unit costs, other than the reference example values,
are investigated for the case of § = 1. The costs are presented in Table 2.4 and the

results in Table 2.5, Fig. 2.8, and Fig. 2.9.
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Table 2.4 Different sets of costs
ISP1 ISP2 ISP3

Unit costs set A 0.220 0.255 0.162
Unit costs set B 0.310 0.490 0.265
Unit costs set C 0.440 0.244 0.235
Unit costs set D 0.323 0.244 0.235

Unit Cost set of the reference example 0.249 0.284 0.175

Table 2.5 Experiment results for different unit cost sets.

reference example Costset A Costset B Costset C  Cost set D

Optimal A(packet/ms) 1 1 0.785 0.711 1
Ay at NE (packet/ms) 0.795 0.940 0.268 0 0.505
A, at NE (packet/ms) 0.508 0.598 0 0.211 0.776
Aps at NE (packet/ms) 1 1 0.234 0.207 0.747
ISPy, atNE 0.0744 0.0961 0.0999 0.1099 0.084
ISPy, at NE 0.0717 0.0799 0.1300 0.1482 0.064
ISPy, at NE 0.2145 0.2108 0.1668 0.1710 0.1555
TPy at NE 0.2181 0.2260 0.1312 0.1311 0.2079
Pr(t < Tra) % 90.42 93.59 63.94 67.63 86.64

233.1 SetAand B

The two cost sets A and B represent a cheaper and a more expensive market respectively.

Or equivalently they can also correspond to a low and high priced time periods.

As expected, each ISP’s decision to buy more, is a decreasing function of the unit costs.
With lower unit cost (set A) ISPs buy more and the global performance,Pr(t < Trnaz)s

improves. The inverse effect is observed for cost set B.

As ) increases, for a fixed additional bandwidth of ISPs, the global success probability
will decrease exponentially. The cost set A results, depicted in Fig. 2.8, shows a situation
where all 3 ISPs will finally start to buy some bandwidth as A increases, giving the total

benefits graph a boost each time they enter the game.
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However, in the case of higher unit prices (Cost set B), ISP2 does not find it worthwhile
to participate in the bandwidth buying game due to its high unit cost. As a result, the
two other ISPs tend to decrease their investments in additional bandwidth as A increases,
probably due to the corresponding fast decrease of probability of success rate, as the the
final outcome of the game appears not to yield enough revenue to justify this investment,
due to the bottleneck created by ISP2. In other words, the strictly increasing nature of
optimal additional bandwidth of ISPs, which has been observed for other unit cost sets,
has disappeared in Fig. 2.9. This, in turn, reflects on the behavior of TPy ()) i.e. a
decreasing property toward the end of the range ), highlighting the fact that the optimal
choice of TP can be situated between \° and \,,,.,, where \° is the maximizer of TPy (M),

in the game where no ISP buys any additional bandwidth.

It remarkable that, although unit costs are increasing from set A to set B, the utilities of
ISP1 and ISP2 are increasing too. This comes at the cost of ISP3 and TP, which starts
to loose some profits. The effect is mainly due to the fact that in the leader optimization
part of the game, TP is choosing a smaller rate of source A for cost set B rather than

choosing Ay = 1 (See Fig. 2.8 and 2.9).

With this new low value of A, ISP1 and ISP2 can still achieve a good performance both
in their individual probability of success, and their share of the total benefits, by giving

up on almost any additional bandwidth and relying mainly on their initial bandwidths.

2332 SetsCandD

These two unit costs are tailored to show the effect of only one ISP’s unit cost on the
whole system. In cost set C, unit cost of ISP1 is considerably higher than other ISPs.
As a result in a similar effect observed for cost set B, ISP2, and ISP3 will start to buy

bandwidth, but as X increases, they limit their additional bandwidth, since ISP1 is not
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going to contribute more to the flow, and any effort to improve the total delay is not
fruitful. This reaction by ISP2, and ISP3 result in a strictly concave set of curves for

optimal additional bandwidths of ISP1 and ISP2, as shown in Fig. 2.10.

In comparison to cost set C, cost set D associates a lower unit cost to ISP1, while the
rest of the prices remain the same. Substantial differences can be seen in the behavior
of the two other ISPs, and TP. ISP1 enters the bandwidth buying game at A = 0.663,
while giving the two other ISPs incentives to invest more, i.e. increasing the slope of
Ay, versus X\ to maintain their shares of revenue. This gives a boost to T'Py()) in
Fig.2.10. The lower unit costs for ISP1 will move the optimal decision of 7P to A4,
and increase its utility, but has a negative effect on every ISP’s utility, since a higher A

puts more pressure on them to meet the delay criteria.

2.34 Impact of customer response curve

One important factor that can affect the global performance of ISPs is C,()), the unit
cost that the customer is willing to pay per successful (in terms of low delay) bandwidth
unit. Thus one possible cause for settling at a A which is far less than A™?* might be
a sharp decrease in C,(\), which eliminates the effect of higher ), in the ISP’s utility

function.

In this subsection, we investigate the base example for different customer response
curves parameterized by K. C,(\) = 2¢(=**) for k= 1.2, 1.5, and 2.8, where K = 2
was presented in the base example. Higher values of K result in a milder slope for C, ()

versus A, and thus a higher payment by customer as one moves towards Ay,qz.

The results are shown in Table 2.6. ISP’s responses are shown in Fig. 2.11, while T' Py

associated with ISP’s response is depicted in Fig. 2.12.
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Figure 2.10 Top: Ap Vs. X and 8 = 1, for cost set C; middle:Au Vs. X and 8 = 1, for

cost set D; bottom: the corresponding utility of 7P for cost sets C, and D
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Table 2.6 Experiment results for different unit customer response curves.
K=12 K=2 K=28
Optimal A(packet/ms) 1 1 1
Apy at NE (packet/ms)  0.480 0.795 0.958
Apy at NE (packet/ms)  0.251 0.508 0.642
Aps at NE (packet/ms)  0.664 1 1
ISPy, at NE 0.0237 0.0744 0.1128
ISPy, at NE 0.0404 0.0717 0.0980
ISPy, at NE 0.1166 0.2145 0.2501
TPy at NE 0.1197 0.2181 0.2629
Pr(t < The) % 70.14 90.42 94.35
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As expected, a higher payment by customer ( a milder decreasing slope of C,(\) ),
increases the performance of the outcome, as well as utilities of all the agents in the
game. While a faster decreasing C,()), can significantly deteriorate the performance

and utilities.

It is important to remember that the total price paid by customer is ACy, (A) Pr(t < Tinaz)s
at the announced rate of source A. For K=1.2 and 2.8 the total prices per unit time paid
by the customer are respectively 0.6096 and 1.3202. In other words, the customer is
paying more than double the price per unit time to push the probability of success from

70% to 94%, at A = 1.

2.3.5 Impact of the share of TP

TP as the regulator and leader of the game receives a fixed share of the revenues. This
portion of the total, which was indicated by M in all utility functions, will also definitely
have an influence on each ISP’s net income. As a result, changing the preset variable M

will alter ISPs reaction, and the final settling point of the game.

In this subsection, we investigate two different values of M = 0.1 and M = 0.3, besides
the reference example (M = 0.2). As expected a higher share for TP tends to dampen
ISP’s enthusiasm for bandwidth buying, and as a result the final probability of success is

lower. Table 2.7 and Fig.2.13 summarize the obtained results.

2.4 Conclusion

In this chapter, we have presented results of the implementation of the pricing scheme
proposed in Chapter 1. The numerical algorithms and their implementation using Matlab®

program have been discussed. The focus here was on a perfect complete information en-
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Table 2.7 Experiment results for different 7P’s share.
M =0.1 M = 0.2 (reference example) M = 0.3

Optimal A(packet/ms) 1 1 1
Ay, at NE (packet/ms)  0.929 0.795 0.658
Apo at NE (packet/ms)  0.618 0.508 0.395
Apg at NE (packet/ms) 1 1 0.946
ISPy, at NE 0.1056 0.0744 0.0472
ISPy, atNE 0.0930 0.0717 0.0539
ISPy, at NE 0.2442 0.2145 0.1759
TPy at NE 0.1132 0.2181 0.3055
Pr(t < Thas) % 93.80 90.42 84.59
1 1
....... Ap, o mmemem AL
08l - Ap, o 08 NG
Apy ’/" T O N B i
;go.s- - Lo ;go.e - o
EOA S o 30.4 o -
02 s g 02 e -
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A (packet/ms) A (packet/ms)

Figure 2.13 Ap Vs. A and 8 = 1 for different fractions for TP’s profit; left: M = 0.1;
right: M = 0.3
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vironment, whereby all calculations could be carried out in a decentralized manner by
each ISP. As a result the assumption of perfectness does not seem to be substantial in
this chapter. In the following chapter the case of an incomplete but perfect information

game is discussed.

The numerical results indicate that the pricing schemes leads to overall very reasonable
results, and occasionally some interesting, non intuitive behaviors, which can emerge
in view of the sheer complexity of players interactions. Under some circumstances,
ISPs can end up earning more money even though their bandwidth buying costs have
increased. The scheme also tends to force ISPs to increase their bandwidths, even though
their individual profits may be decreasing; this ISP action is in an effort to prevent their
shares of profit from falling. Furthermore, a tuning parameter § can help offset some
of the inequalities that can come from too widely spread bandwidth unit costs or initial
bandwidths, along the route traversed by traffic. However, decreasing § can have a
negative impact on performance, as measured by the probability of meeting maximum

delay constraints.

The numerical analysis appears to indicate that for the given set of values, as long as
every ISP participates in the bandwidth buying game, TP will chose A,,,, as the optimal
traffic rate. However, if one ISP decides not to participate in the bandwidth buying game,
and relies only on its initial bandwidth, other ISPs can lose interest in investing more as
A increases, due to their unit costs: the higher the unit cost is for participating ISPs, the
sharper will the decrease in their additional bandwidth buying versus A be. In this case,

TP will also choose a rate of transfer that is less than A,qz.
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CHAPTER 3

NUMERICAL ANALYSIS IN AN INCOMPLETE PERFECT INFORMATION
ENVIRONMENT

3.1 Introduction

The complete information assumption in Chapters 1 and 2 can be considered in practice
to be a strong assumption. In an incomplete information game, either certain relevant
details are withheld from the players, or knowledge is unreliable. In this chapter, the cost
of additional bandwidth of each ISP is considered to be concealed from other players
including the leader of the game 7P. The initial available bandwidth is still supposed to
be a known variable to every agent of the game, since it can be measured using methods

like active probing.

3.2 Sequence and Structure of the Perfect Incomplete Information Game

TP as the leader of the Stackelberg game needs to predict the exact response of each ISP
in order to be able to calculate its best decision variable. In this chapter, we consider
that the costs of additional bandwidth, which play an important role in the willingness
of each ISP to buy more bandwidth, and contribute to the global success probability, are
unknown to 7P. On the other hand, the utility function of TP always yields a positive
value for every outcome of the game. From the point of view of TP, this situation
suggests preliminary probing steps, since it can examine ISP’s feedbacks by choosing

random lambda values.
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More specifically, the game is played in two phases: a preliminary learning phase, and a
more definitive decision making phase. In the preliminary phase of the game, TP picks
an arbitrary point in the interval [\, Anae), and announces it to the ISPs which in turn go
through a, hopefully convergent, repeated game phase about to be described, and with
TP acting as a mediator. )¢ is reminded to be the optimal choice of TP, where no ISP is
allowed to buy any additional bandwidth. The preliminary phase of the game, can last
several stages until 7P learns every ISP’s unit cost and moves to the decision making

phase.

The idea is to implement iterations analogous to Algorithm 2.2.1, but no longer virtually
and mediated by TP during what we call an arbitration transient period. The iterations
in Algorithm 2.2.1 are carried out in a specific sequence. The role of TP is to impose the

sequence in which the ISPs update their bandwidth assignments.

Thus, in summary, the mediating agent should perform two major tasks:

e Maintain an array XX containing the estimated current decision variable of every

ISP
e Forifrom 1 ton : Deliver the array (z5 ™, 251, ... 2F41 2K .. 2K) o ISP;,
K+1

and update the array with ISP: estimated response z

i .

Note that K is the iteration number in the repeated game, played among followers.

TP as the leader of the game, is responsible for performing the mediation between ISPs,
and is able to estimate the unit cost associated with each ISP through ISP’s best re-

Sponses.
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3.3 Unit cost estimation algorithm

As discussed in previous section, the unit cost of additional bandwidth is an essen-
tial information for TP to predict the responses of followers for each rate of trans-
fer XA it chooses. To do this task an arbitrary A is announced to ISPs, and an itera-
tive game between followers starts, hopefully converging and thus yielding a solution

X* = (2%,23,...,2

'n

). Based on that solution, the following algorithm is aimed at

estimating the unknown unit bandwidth costs of ISP: from a single response vector X™*.

Algorithm 3.3.1 (1) Compute the maximum possible unit cost of ISPi as:

C = BAFKY) e A= (1— M)C,O)A G

(Zi — pi + ) 2193;
]=

(2) LetCHigh=Ci andCL0w=0

(3) Let C,p, = M where “op” stands for operational point.

(4) Calculate the best response of ISPi for Clp:

Tiop = arg max(APr(t < Tmaz)(#) — Coplms — s +2) )
' it

(5) If |z} — x4 0p| < €, exit the algorithm with C., as the estimated cost.
(6) ifiop = x}, let Crow = Cup and go to step 3

(7) if x; 0p < x} let Cign = Cop, and go to step 3.

It is needless to say that a necessary condition for the above algorithm to converge for
ISPi, is a positive value of Ay;. In other words, for the given rate of transfer ), every
ISP has to buy a certain amount of additional bandwidth, so that 7P could estimate the

associated unit costs of every ISP. In that sense, TP may wish to probe the ISPs through
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more than one value of A in the hope to solicit some bandwidth buying. This being said,
if a given ISP never buys bandwidth, one can consider the associated cost to be infinite.
Moreover, an accurate estimate of ISP’s unit cost requires a decision variable Ay, less
than the allowed maximum bandwidth Ay,,,, or otherwise TP can only estimate the

higher limit of the unit cost of the ISP in question.

3.4 An incomplete information numerical example

In this section, a numerical example is presented, in which the unit costs associated with
additional bandwidths are not announced. 7P initiates the learning phase of the game
by announcing a random rate of transfer. This learning phase can be broken up into
separate sub-learning phases during which some of the ISPs decide to buy bandwidth,
and their cost is accordingly estimated via Algorithm. 3.3.1. As long as all ISP’s costs
have not been estimated, 7P continues the learning phase, but with a different value of A.
The choice of A may be chosen to get a reaction from a particular previously unidentified
ISP. Once the internal unit costs are all estimated, with possibly some costs set at infinity,
TP can move to the next phase of the game, i.e. the decision phase, thus anticipating the
actions of every ISP, for every possible A. Given this information, the leader of the game
can choose a value for )\ that benefits it most, and announce it to the followers who then

seek the related Nash equilibrium through a 7P mediated repeated game.

We present in Table 3.1 the estimated and actual cost values for the case of § = 1, using

the same inputs as the 3 ISPs example of the previous chapter.

Although, the result in Table 2.2 indicate, Ausz = Apmg, at the announced ), the es-
timated cost of ISP3 is close to the real one. This is due to the fact that the optimal
decision of ISP3 in the case where no upper bound exist for the decision variable is close

to the current point, which is Afipas.
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Table 3.1 Estimated and real unit costs associated with additional bandwidth for the 3
ISPs example of chapter 2 (the base example).
ISP1 ISP2 ISP3
Real Costs 0.24900 0.28400 0.17500
Estimated Costs 0.24914 0.28429 0.17513
e 105

3.5 Dynamic Perfect Incomplete Information Environment for Repeated Games

Most of the past research on the use of game theory in networking prob-
lems, has restricted itself to the use of static games as models, although in
some cases the players clearly interact with each other many times [La and

Anantharam, 2002]

In order to bring the proposed model even closer to a practical situation, a stochastic
environment in which game parameters can possibly change at the end of each learning

phase is considered in this section.

In the dynamic repeated version of the game, we let the unit cost of each ISP change
as we move from a cycle of learning/decision phases to the next, while TP keeps on
validating/verifying the estimates of the unit costs based on the most recent reactions
of the ISPs. We do not expect frequent changes of unit costs of ISPs, so that TP’s
calculations should remain valid for at least some cycles of the game. The flowchart in

Fig. 3.1 presents the dynamic iterative game.

The setup of the dynamic game is such that whenever TP sees a difference between the
predicted and actual response of ISPs, it will reestimate the unit costs to adapt to any
cost changes. Also, in an extension to this version of the game, one could consider
some smoothing algorithm for the initial bandwidths estimates as time goes by, e.g.,

exponential forgetting factors.
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Figure 3.1 The flowchart representing the dynamic version of the game
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Figure 3.2 Arbitrary unit costs of ISPs in each cycle.

3.5.1 Numerical experiments

Every time a unit cost associated to an ISP changes, the best response of that ISP will be
affected. In order for TP to reestimate this new value, the new decision variable of the
ISP should be a positive value, otherwise TP cannot simulate the interaction among ISPs,
and cannot predict their best responses or the corresponding Nash equilibria. When the
costs change TP moves into a performance monitoring mode where it chooses a random

admissible variable as the source rate A for the next stage of the game.

In the following, a dynamic example of a game detailed in Fig. 3.1 is presented. We run
the game for 20 cycles or unit times. The initial unit costs of ISPs are the same as the
example in Chapter 2, but changes in ISP’s unit costs are happening according to Fig.

3.2.

TP’s utility is shown in Fig. 3.3 for each cycle of the game in the two cases of complete
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Figure 3.3 T Py for the two cases of complete and incomplete information game

and incomplete information, while unit costs of ISPs are varying. TP is unable to esti-
mate all the ISP’s unit costs of ISPs during cycle 6 to 14, and as a result receives a lower
utility. This is due to the fact that during these cycles the unit costs of ISPs are increasing
and some ISPs are not willing to buy any bandwidth. Because of the random nature of
the rate of source A that TP announces during the performance monitoring mode, the

results presented in Fig. 3.3 are not unique.

3.6 Conclusion

Among all parameters associated with every ISP’s utility function, the unit costs of ad-
ditional bandwidth and initial bandwidths seem to be the most important factors, in the
sense that they can affect each ISP’s position with respect to other ISPs in the competing
market. Since initial bandwidths can be measured by methods like active probing, and

T;s can be obtained from other decision variables, in this chapter, we have chosen to
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keep unit costs of ISPs as information internal to every ISP, thereby extending the model

to an incomplete information environment.

In this new setup, Algorithm 2.2.1, has to be used between ISPs in a centralized mode,
whereby TP has the responsibility of coordinating between ISPs. Also, TP needs to
obtain an estimate of ISPs additional bandwidth unit costs to be able to choose its best A.
Algorithm 3.3.1 enables 7P to estimate unknown quantities essential to its optimization

problem.
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CHAPTER 4

CONCLUSION

4.1 What was achieved

Along with the growth of VoIP and other delay-sensitive Internet applications, pricing
and accounting of the new services demand new techniques and methods to better reflect

each provider’s performance.

Service providers impose a usage-based billing of VoIP services, in view of the fact that
for the typical customer an IP-based telephone has the same functionality as an ordinary
one and thus can be expected to be billed in the same manner. Yet in practice, compa-
nies are using the best effort delivery infrastructure of Internet to provide such services
which are commonly charged according to duration. As most other communications on
the Internet, VoIP and multimedia application rely on the IP protocol, which is a best
effort service where no fixed guarantee is present either on the packet loss rate or more

significantly, on transmission delay.

This situation was the motivation for proposing a pricing scheme in which the end user
is charged a premium only for that portion of the traffic that receives the desired packet
delay. On the other hand, since the delay in a network is highly dependant on each partic-
ipating network’s performance, a similar reward structure has been adopted to distribute
the revenues among ISPs based on their individual contribution and performance in the
transit process. The probability of meeting total delay requirements is a result of each
agent’s effort to reduce transit time in their own networks. This points to the importance

of fair revenue sharing rules between ISPs. To deal with this issue, we have investigated
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a class of sharing rules, parameterized by a tuning factor 3, whereby revenues are shared
according to both the size of target packet maximum delays, set by individual ISPs for

themselves, and how well they can meet them.

In chapter 1, the complete scenario of a sharing leader-follower game is presented. The
building blocks of the game are utility functions which have been chosen carefully, to
reflect the main ideas of the thesis, and also harmonize with practices in the real world.
To reach this, different form of utility functions and even decision variables were initially
investigated, including multiple different models in which 7P matches reactions of ISPs
to a response curve, and try to minimize the error through iterations of the game, which
is not presented in Chapter 1. Out of all the investigated schemes, the current choice
of utility functions appear to be the most adequate in terms of efficiency and ability to

tackle more general situations.

In our utility functions, we were first and foremost guided by their ability to correctly
reflect both the physics of the transmission process and the sense of fairness to both
customer and ISPs which constitutes the initial thrust behind our search for new pricing
schemes. In doing so, we did not put mathematical success ahead of the objective. As
a result, establishing sufficient reasonable conditions under which a Nash equilibrium

exist in the follower’s game has been somewhat of a significant mathematical challenge.

In Section 1.4 of Chapter 1, mainly by using ideas of log-concavity, sufficient conditions
for the existence of a Nash equilibrium in some instance of the follower’s game are given.
More specifically, for the special case of 3 = 1 conditions are provided for an arbitrary

number of players. For 0 < § < 1, only the case of two players has been addressed.

In Chapter 2, an algorithmic implementation of the proposed model is investigated. This
is followed by a base example of three competing ISPs with arbitrary input values. A nu-

merical sensitivity study to various parameters, be it tuning factor 3, or ISP’s bandwidth
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unit price, maximum transmission delay, or 7P’s percentage of total benefits, follows. A

wide variety of intriguing behaviors can be displayed.

In Chapter 3, in an effort to make the model more realistic, an incomplete but perfect
game has been considered. However the scope of investigation has been limited to un-
known additional bandwidth unit cost of each ISP. This new assumption for the model
entails a repeated version of the game in which multiple consecutive unit times are con-
sidered. Furthermore, a dynamic incomplete perfect information version is presented in
which ISPs unit costs can change in time. In this case TP tries to follow this change and
estimate the new unit costs, to better utilize his position of being a leader, by announc-
ing the exact rate of source A that benefits him the most. However this is not possible
until all ISPs unit bandwidth costs are estimated. Until then, TP keeps probing ISPs by

announcing random values of source rates.

While the ideas developed in the thesis remain at a relatively young stage, the results
of both mathematical analysis and numerical testing of the proposed decision making
and profit sharing schemes, justify a sense of cautious optimism as to their potential

usefulness within practical implementations.

4.2 Future Work

Many extensions of the current thesis work are possible on the mathematical front; in
particular developing sufficient conditions for the existence of a Nash equilibrium for
more than two ISPs when § differs from one. Also, the whole issue of the uniqueness of

Nash equilibria is left open.

From a statistical point of view, one could extend the game to the case of multiple routes.

From an estimation point of view, for the incomplete information environment, one could
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consider the currently ignored aspect of how to convert statistical (on a possibly non sta-
tionary process) measurements obtained through active probing of the various networks
into reliable estimates of the unknown parameters (bandwidth unit costs, initially avail-

able bandwidths, etc...)

Furthermore, the thesis analysis is founded on M/M/1 network models. One possible
direction of further research is to investigate the problem under the assumption of M/D/1
queue, and constant packet sizes, i.e., a deterministic pattern for service rate in each

queue.

Another potentially fruitful idea, which is left as future work, would be considering TP
as a company which can distribute revenues among participating ISPs at the end of each
transaction, in a context where ISPs can try to cheat on their real unit costs. TP would
then attempt to use the revenue fraction it earns so as to reward those ISPs which are

behaving more honestly.

Finally, the conceptual framework developed in the thesis could be applicable to other
research areas facing similar problems be it companies sharing the transportation of
goods across origin/destination pairs, or groups of suppliers and manufacturers involved

in producing a finished good within a certain lead time.
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APPENDIX I

I.1 Sufficient Conditions for Concavity of Modified Global Probability Function
for 2ISPs and 3 € (0;1)

In this appendix, we establish the sufficient conditions under which the following partial

derivative is always negative:

Tm ax

2F 2
Gr = [ 2 56 e = T @)
¢ 0

1

By replacing the value of %%G (Tmax — 7, yf¥), from 1.32 into (I.1), we obtain:

Tmax
2F o~ ZTiTmaz
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which yields the following after integration by parts:
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Note that for § = 1, the expression above is negative. As § decreases for a fixed 7,42,
%iyl_; is more and more likely to go negative. Let 3* be the value of 3, for which our

objective function equals zero for the first time. A sufficient condition for %f} to remain

i

negative is that 5* be outside the range of [0; 1]. To find 5*, we have to solve the equation:

3F _ (.
2 Tmax
(1-8"+—) / rle@ B gy - T2 @redTer =0 (L5)
iEj - T il]'j — Iy
0
Solving (1.5) yields:
T T2 e(xj—mi)Tmaz
1-0"= : UL -2}, {16
o ;= xi{ﬁTmame(wvm)me o (ac~_1x~)2 (el@s=ei)Tmaz — 1) b 49
Let v = (z; — ;)T inaz, then (1.6) can be re-written as:
1-p* “ 2
b ue @7)

T Tmae (w—1De*+1  u

The two cases of u > 0, and u < 0 are investigated. Furthermore since we are seeking

an interval of variables for which (I.1) is negative, we assume throughout that |u| < 1.

If 0 < u < 1, then the following inequality can be achieved from (1.7):

2
T Tma:c U

(

1-9<
A= U u—1

- 2). (1.8)

We note immediately that for the given range of u the right hand side of (I.8) is negative,
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thus 1 — 8* < 0. This yields a §* > 1, which is outside the allowed range.
Thus for w > 0, it is enough that v < 1, to insure that % always remain negative.

Now consider the case of —1 < u < (. The parallel inequality of (1.8) will be:

2
miTmam Uu

(

U u—1

1-8">

—2). (L9)

The goal is to show that the right hand side (RHS) of (1.9) is always greater than 1. This

way we can claim that §* < 0, and thus out of the allowed range.

Since the RHS of (1.9) is always a strictly increasing function for the given range of u,
the minimum of RHS of (I.9), is always greater than its value at w = —1. This can be
verified by considering the sign of the derivative with respect to u. Thus, it is sufficient

to satisfy the following inequality:

2
xiTma:c U

(

U u—1

~ 2)|u=—1>1 (1.10)

The above inequality is satisfied if z; > 2/5T 400

In summary, the two following conditions will result in a strictly concave function

Fy,us)

a) Tk > 2/5Tmee Yk € 1,7

b) [z — %) Tmae| < 1 (L11)
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II.1 Pricing for QoS Provisioning across Multiple Internet Service Provider Do-

mains

II.1.1 Abstract

In this paper we introduce a pricing scheme to be employed between a group of Inter-
net service providers (ISPs) and a customer who wishes to initiate a packet flow from
a fixed origin to a fixed destination. The ISPs are transparent to the customer who re-
lies on a third party company for both the choice of the relevant ISPs and the unit flow
price negotiated. The customer pays only for that portion of the traffic, which meets a
predefined maximum tolerable total delay within the ISP networks. After taking in a
fixed percentage of total profit, the third party redistributes the remaining benefits to the
ISPs according to a sharing mechanism, which reflects both, the QoS the ISPs declare
they will meet, as well as their real performance. The pricing emerges as the result of a
Stackelberg game with the third party as the leader and the ISPs as the followers.?

Keywords: Multiple Domain Internet Pricing, Game theory, Statistical Quality of Ser-

vice, Stackelberg Games.
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I1.1.2 Introduction

With the advent of new Internet applications for which more quality guarantees are ex-
pected from Internet service providers, existing flat rate charging schemes have become
more and more inappropriate [DaSilva, 2000]. As a result, Internet pricing is currently
a very active area of research. Based on the notion of effective bandwidth, a statistically
founded tool for the evaluation of quality constrained bandwidth requirements for certain
types of traffic in data networks [Courcoubetis and Weber, 2003, Kelly et al., 1998], as
well as different results from both cooperative and non cooperative game theory [Basar

and Olsder, 1995], various pricing approaches have been proposed.

In many schemes, along with the basic objective of pricing which is to recover the in-
curred costs, other goals have been considered among which, congestion control and fair
allocation of resource to users [Courcoubetis and Weber, 2003, Srisankar and Kunniyur,
2001], admission control and QoS provisioning [Li et al., 2004], allocating the resource
to users who value it most by selling the service in an online auction [Lazar and Semret,
2000, Maill€ and Tuffin, 2004]. As argued in [He and Walrand, 2006], the profit of ISPs
as major players in Internet, has been neglected in many pricing schemes; therefore in
this paper we are also interested in the interaction between ISPs and the outcome of the
non-cooperative game between them. However, our model differs in a number of ways
from that in [He and Walrand, 2006]. We have assumed the case of only one data flow
that passes through designated ISPs, and the end user who initiates the process is as-
sumed to be willing to pay only for that portion of the traffic that meets a specific delay
bound. On the other hand, an ISP reward structure is defined whereby each ISP obtains
a share of customer payments which depends on both its initially declared individual
quality of service goals, as well as on a statistical measure of how successful this ISP
is in meeting the goals in question. Furthermore, the setup here is not one of guaran-

teed quality of service, but rather statistical quality of service. Such a choice was made
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for at least two reasons: firstly, deterministic quality of service guarantees can be quite
wasteful in terms of bandwidth requirements. Secondly, when involving multiple ISP
domains, guaranteed qualities of service tend to require a high degree of end to end co-
ordination, and thus the complexity and overhead communications requirements of such
schemes can quickly reach unmanageable levels as network size increases. Instead here,
the setup is such that the enforcement of quality of service is an affair left as entirely in-
ternal to each independent network. If a particular network complies with a high degree
of success rate relative to its declared goals, it will be rewarded accordingly. If not, it will
not. This way, the control scheme for quality enforcement can be left as decentralized

as possible.

A third party company herein referred to as 7P has been introduced as a coordinator be-
tween the end user and ISPs. In return, it receives a fixed portion of customers payments.
We adopt a Stackelberg game environment, in which TP, is the leader, and ISPs form the

group of followers.

Overprovisioning of capacities may be the solution for many network operators to deal
with delay and congestion issues, but as discussed in [Courcoubetis and Weber, 2003],
while this looks like the right choice in backbones of the network, it may not be so for
its metropolitan part, and even less so in the access part of the network. This stems
from the fact that overdimensioning in the latter parts requires a lot more investment
and this would raise the costs as edge nodes are approached. Based on this observation,
we have assumed that each ISP involved in our model has at least one congestion node
along the chosen route, and the imposed delay caused by this node, dominates that of
any other route link within the ISP domain. In summary, each ISP is represented by a

single bottleneck node along the chosen route.

The organization of the paper is as follows. In Section II.1.3, we describe our modelling

framework. In Section II.1.4 we specify the utility functions associated with all of the
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active agents. In Section II.1.5 we present our success-rate based pricing scheme, and
we establish existence of a unique Nash equilibrium for the ISP part of the Stackelberg
game. This is followed by a set of examples in Section II.1.6, while Section II.1.7

summarizes our conclusions and plans for future work.

II.1.3 Model description

The proposed model involves three types of agents: a customer herein referred to as C,
TP, and a collection of ISPs to be selected by TP. In our model, C is an end user with a
potentially large volume of traffic to be sent on a regular basis from a given destination
A to a destination B, and who initiates contacts with TP for that purpose. However, C
specifies a maximum end to end tolerable delay for those transmitted packets for which
it is willing to pay a per unit premium. We denote the maximum delay tolerated by C
as Tiq.- An example of traffic type particularly relevant to the context here is VoIP.
This is because in VoIP one can sustain the high loss probabilities that may occasionally
result from the organization scheme to be proposed. Furthermore, there does already
exist market regulators in the VoIP context and they can readily be identified as potential
TPs in our model. Indeed the Telecom Decision CRTC 2005-28, which has been set by
Canadian Radio-Television and Telecommunications Commission is a clear example of
a set of regulations, upholding rather identical regulatory framework as extant traditional

phone services for VoIP ["CRTC”, 2005].

Division of revenues amongst telephone companies is based on mutual agreements be-
tween pairs of service providers. In the case of a large number of such providers of
different hierarchical levels e.g. trunk providers and access network providers, the task
of revenue sharing is currently performed by a third party company. Exchanges of bal-
ances, and information about each traversing telephone call between service providers

are based on annual calculations. In the current model, TP plays an enhanced role, as
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compared to the case of telephone networks, in that a real-time information and revenue

sharing mechanism is adopted.

TP together with C, agree on an offered traffic versus unit flow price curve, whereby
offered traffic levels increase as bandwidth unit price decreases. This curve is a form of
commitment on the part of the customer that it will pay a fixed bandwidth unit price per
unit time for sending a given ultimately agreed to traffic level, unless it can demonstrably
establish failure by TP to meet the QoS requirements at that traffic level. In the latter
case, C’s per unit time payment is reduced by the fraction of its total traffic inadequately
transmitted. As a consequence of this arrangement, it is in C’s best interest to constantly

probe performance by sending traffic (useful or otherwise) at the agreed to level.

TP selects a number of ISPs along the route who are willing to be solicited in offer-
ing the service to C. At this stage, TP gathers from the candidate ISPs the parameters
which specify the rules of the game they have to play and whose outcome will be their

individual share of the income.

In the practical context, we assume that packet end to end delays, and within ISP do-
mains, can be monitored for performance verification. However, all optimization deci-
sions are founded on specific modelling assumptions. In the current context, we have
settled for a simple M/M/1 queueing model of each network. We have assumed an
exponentially distributed packet lengths, so that the probability of meeting the delay re-
quirement can be expressed as P(t < T;) = 1 — e®#)T where ) is the rate of the
source, t, u; and T; are random delay, service rate and declared maximum transit time in

networks, respectively.

The need to calculate success probabilities in each network, stems from the fact that we
wish to reflect the customer payment mechanism on the ISPs involved in the negotiation.

More specifically, the fraction of total revenue dedicated to an ISP directly depends on
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the probability of meeting the declared delay within its network. Moreover, as mentioned
earlier, C pays according to the probability that its packet reaches the destination in
time; the latter probability can be derived from the probability distribution of individual

network delays.

The per unit time cost for the customer will be: Pr(t < Tinax)Cy(A)A, where C,,(A) is the
unit cost versus traffic A, dependency curve , herein referred to as the customer response
curve. For convenience here, it is taken to be a decaying exponential. Indeed, antici-
pating a decreasing function of demand versus price is standard (see [He and Walrand,
2006] for example). With all active agents and their declared parameters thus defined,
we are ready to formulate the rules of a Stackelberg game whose outcome is the traffic
rate submitted by C to the ISPs, the corresponding premium unit flow price paid by C,

and the revenue obtained by each of the candidate ISPs.

I1.1.4 Utility functions and game framework

I1.14.1 Third Party TP

TP, is a company responsible for all negotiations with the ISPs, with the understanding
that the negotiation process must remain transparent to the customer. 7Ps unit time
revenue is a fixed fraction of the total unit time payments made by C. The utility function

of TP is considered to be:

TPy(X) = M Pr(t < Tnax)Co(MA. (IL1)

where M € [0;1] is the fraction of total benefit reserved for TP . The only decision
variable of TP is A, and it is chosen to maximize TP’s revenue, or equally fotal customer

payments to the ISPs, so that in a formulation of the game where ISPs cannot acquire
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more bandwidth, this corresponds to the social welfare optimization problem. We also

assume an upper bound A, for the rate of data transfer.

I1.1.4.2 Service Providers

We assume each network involved in the transaction to have a certain amount of band-
width p; , naturally available for C’s traffic. Furthermore, we assume that this initial
bandwidth is sufficient to insure that the maximum possible source rate A.,,, can be
satisfied by any of the y;’s (A < p; Vi). The ISPs have the option of increasing the
amount of bandwidth they dedicate to C’s traffic, via a specified cost of ¢; per unit of
added bandwidth. Let Ay, be the added bandwidth with an upper bound Ap®*, so that
the actual bandwidth that network ¢ can allocate to the flow becomes: u; + Ay; . For
each potential A, the fraction of profit, which is not taken by 7P, is assumed to be avail-
able in its entirety to the participating ISPs. However, for each fixed A, ISPs are pitted
against each other in a game, the rules of which will be defined in what follows. The idea
is to reflect the payment mechanisms at 7P’s level all the way down to the ISPs. More
specifically, ISPs is asked to provide a (hypothetical) maximum delay 7; that it declares
itself ready to aim at meeting. This T; € [0; 7] is very instrumental in determining
ISP 7’s share of total income available after TP’s payment, in that it is proposed that the

fraction of that total allocated to ISP: be given by:

-1
(1 — e~ (Witdumi-NTi) | B (] — g~ (128 -NT;)
Si = , (IL.2)

i j=1

with J as a coefficient between 0 and 1 (inclusively), and n as the number of ISPs.

Also note that, the larger the declared time, the less margin is left for other providers to
accommodate their own delays along the packet route. From that point of view, fairness

would dictate that a large declared 7;; should correspondingly penalize the declarer (this
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explains the Tf in the denominator in (IL.2)). The latter penalty prevents ISPs from
letting their own declared 7;’s go to infinity in an effort to maximize their chances of
success. Also, note that for an adequate choice of 3 the optimal choice of declared T;
may well become the mean delay in the network. In addition, as alluded to earlier, the
ISP has the option of either buying for a given unit price extra bandwidth, or equivalently
freeing, albeit at the cost of some loss of revenue per unit bandwidth, a given amount of
bandwidth, thus modulating its effective service rate y;. As a consequence ISPi, must
provide two decision variables: T;, and the extra amount of bandwidth Ay; it wishes to
buy . Note that if we fix Ay; = 0 (no bandwidth buying allowed), it is not difficult to
see that, modulo a reward shift by an appropriate constant, the game is equivalent to a

zero-sum game. Using this allocation rule, we define the utility function as:
ISPy, = (1 - M)C,(A\) Pr(t < T)AS; — ciAp; . (1L.3)

where (1 — M)C,(\) Pr(¢t < T)A represents the revenue after payment of TP, and c; is

the extra per unit bandwidth equivalent cost.

11.14.3 Formulation of the game

While we have specified different agents utility functions, we have not thus far specified
the sequence in which the game is played. Given the predominant role of TP as the main
organizer, we suggest that TP be considered as the higher level of the hierarchy within
a Stackelberg game, i.e. TP is the leader. All participating ISPs are followers, and thus,
for each fixed value of customer traffic rate A decided by the leader 7P, we shall be
looking for potential Nash equilibria. We also assume a perfect information environ-
ment, whereby each player knows all extra bandwidth unit buying costs, initial networks
dedicated bandwidths to C’s traffic, as well the customer response curve. This strong

assumption is made in order to investigate the feasibility of the ideal game. However,
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more relaxed versions of the game where ISP’s costs per unit bandwidth are assumed

unknown to TP as well as to other competing ISPs, are possible and indeed workable.

Having the position of the leader in this game, TP can predict the outcome of the non-
cooperative game among the followers, for any A. By exploiting this fact, 7P can specify

the customer traffic level which best suits its interests.

Remark I1.1.1 Considering the expression of 1S P;’s utility function in (I1.3), we note
that except for the share term S, the utility does not depend on the choice of declared
maximum transit time T;. Also for given (u; + Ap;), T; can be selected independently of
other decision variables to maximize S;, leaving Ay; as the unique decision variable of
ISP, Furthermore, for the special case where the coefficient § in (I12) is equal to 1,

the optimum choice is Vi, T; = 0

Remark I1.1.2 The fact that, at least for the 3 = 1 case, the optimal choices of declared
maximum network transit times T; for the ISPs correspond to the highly unrealistic value
of zero, justifies their characterization as declared values. This leads to a reasonable
rule for sharing benefits among ISPs. Indeed, for 3 = 1 as T; goes to zero, L'Hdpital’s
rule yields:

Sl/SJ = (/.Lz + A/,Li - /\)/(M] + A/,Lj — )\) . (II4)

(11.4) in fact indicates that customer payments after commission are shared among ISPs
in inverse proportion to the mean packet transit time in each of the networks. Also, it can
be shown that choosing a ( different from 1 is equivalent to a sharing rule where shares
become proportional to (1; + Ap; — A)P. Thus as § decreases, ISPs could become more

reluctant to buy bandwidth.

However, more relaxed versions of the game where ISP’s costs per unit bandwidth are

assumed unknown to TP as well as to other competing ISPs, are possible and indeed
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workable. In the next section, analysis is focused on the 3 = 1 case. For that spe-
cial case, we establish the existence of Nash Equilibrium (NE) for the followers game

corresponding to any admissible .

II.1.5 Properties of the followers game for § = 1

In the telecommunication literature the throughput of the data stream (1—e~(+Ax#=NTi) \
over mean delay 7; is defined as the power factor. Thus for 3 = 1 the sharing mech-
anism presented in (II.2) can be regarded as a function of each ISP’s power factor F;.

More specifically:

Si =P/ P; where: P, = (1 — e”tut4mNT)\ /T, (IL5)

i=1

In [Mazumdar et al., 1991] an approach based on maximization of product of power
factors to allocate a fair division of flows to users, has been introduced. Indeed, this
corresponds to a so-called Nash bargaining solution. Instead, in the current model, each
ISP tries to maximize its power factor and has an interest in securing a high overall

success rate in meeting end to end QoS constraints.

Theorem I1.1.3 Under an inequality detailed in Lemma 2 in Appendix, in the Stackel-
berg game defined by leader utility function (I1.1) and followers utility functions (I11.3)
with B = 1, for every admissible ) set by the leader, the follower game admits a Nash

Equilibrium.

Proof To prove the existence of NE’s we use a paraphrase of the following theorem

[Basar and Olsder, 1995]:
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Theorem I1.1.4 For each player, assuming the sets of decision variables are closed,
bounded and convex, and assuming that each player’s utility function is continuous in
all decision variables associated with all players, and strictly concave in the entries
associated with its own decision variables, for every admissible combination of decisions
of other players, the associated n-person nonzero-sum game admits a Nash Equilibrium

in pure strategies.

The theorem above can be easily shown to hold if strict concavity is replaced by the
assumption of existence of a unique maximizer for each player’s utility function for ar-
bitrary decisions made by other players. Existence of a unique maximizer is satisfied,
provided utility functions can be shown to be strictly log concave in their own decision
variables. See Appendix for the proof. Since, Ay; € [0; Ap@¥], the set of decision vari-

ables are both convex and compact. The continuity of utility functions on the admissible

decision variable set is also obvious. Therefore a Nash Equilibrium exists. [

I1.1.6 Numerical Results for a two ISP game

We consider the case of two competing ISPs and associate arbitrary bandwidth unit costs
to them. The inputs are: y; = 1.1, yy = 1.2 packet/ms, C,(\) = e~ /07) X\ . =1
packet/ms, M = 20%, Tmax = 6 ms, Auy, Aus € [0;1] and ¢; = 0.075, ¢, = 0.055.
Although, a mathematical proof of the existence of Nash equilibria for values of 3 other
than 1, has not been established as yet, we numerically investigate the two cases of § = 1
and 8 = 0.5. Simulation results are shown in Table II.1 and Fig.II.1. From Table IL.1,
one sees that when § changes from 1 to 0.5, both ISP utilities increase, but more so for
the ISP with less initial bandwidth. This comes at the price of decreasing the incentives
of ISPs in buying more bandwidth. This in turn lowers the QoS to the customer who has

to contend with a lower probability of success.
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6=1 6 =0.5
Optimal A(packet/ms) 0.750 0.708
(Apy, Apso) at NE (packet/ms)  (0.442,0.603) (0.275,0.360)
(T1,T5) at NE (ms) (0,0) (1.88,1.47)
(ISPy,,ISPy,) at NE (0.0588,0.0891) (0.0701,0.0961)
TPy, at NE 0.0536 0.0517
Pr(t < Ths) % 97.06 93.75
............... 08 A, B=1
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Figure I1.1 Left: TP’s utility versus the rate of transfer for 5 = 1 and 8 = 0.5, Right:
Ay, and Ay, at Nash equilibria for § =1 and 8 = 0.5.

II.1.7 Conclusion and future work

Along with the growth of VoIP and other delay sensitive Internet applications, pricing
and accounting of the new services, demand new techniques and methods to better reflect
each provider’s performance. In this article we have proposed a scheme for rewarding
Internet provider companies, which can provide low delay communications. However,

no performance guarantees are given.

The global end to end performance (or equivalently the probability of meeting total delay
requirements) is a result of all agents efforts to cut transit time in their own networks.

This points to the importance of fair revenue sharing rules between ISPs. To deal with
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this issue we have investigated a class of sharing rules, parameterized by the 3 variable.
Setting 3 at a value less than 1, tends to reduce the financial advantage that a given ISP
gets from an increase in bandwidth relative to other ISP’s along the route. While this
results in lower QoS, it can help offset unfair competitive advantages enjoyed by some
ISP’s along the route. Finding the § that makes declared transit times equal to mean
transit times, and existence and uniqueness of NE in the followers game for 8 # 0, are
other future areas of investigation. Also in the future we will consider repeated forms
of the game to account for the possibility of imperfect information, and online utility
parameter estimation. Finally ISPs along the route could be divided into subgroups
in which competition is deemed fairer, insofar as the cost of acquiring bandwidth is

concerned.

APPENDIX

Lemma I1.1.5 The global success probability function Pr(t < T,,,) is strictly concave

with respect to each ISP decision variable Ay, regardless of A, j # i.

Proof The probability density function (pdf) of waiting time ¢ in a simple M/M/1 queue
is [Kleinrock, 1975] : g(t,x) = ze**. where z = p + Ap — A. The total delay T that
is imposed on each packet, is the sum of individual delays within each ISP’s network.

Thus, the pdf of T' (f(T, X)), is the result of a convolution of all component pdf’s.

(T, X) = g(t1,x1) * g(tz2,72) * - - - % g(tn, x,) Where: X =[x, 25, ,2,] . (IL6)

Defining F'(T, X) as the probability distribution function (PDF) of delay T, and X _; =
[T1,...,Ti1, Tit1,* "+ , Tn), the pdf of total transit time when the time spent in ISP is
excluded, can be defined as: h_; (T, X_;) = g(t1,Z1) %+ - *xg(ti1, Ti—1) % g(tiv1, Tit1) *
ek g(tn, ) >0
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The probability that the total packet delay be less than Tr,q, is given by:

Tmax Tmax t
(T, X) = / hos (X _2) % g(t, 22)dt = / / hi(r, X_i)g(t — 7, z;)drdt
0 0 0
{1.7)
Using Fubini’s theorem to change the order of integration in (II.7), we will have:
Tmax Tmax
F(Tax, X) = / / (g(t = 1, z5)dt  Yh_; (7, X_;)dr, (11.8)

0 T

where G(z, t) is the PDF of g(z,t). Our goal is to show that VX _;, %{; <0.

Using Lebesgue’s dominated convergence, the differentiation can be carried across the

integral:
Tma.x
0’F o2
o / h_i(r, X—i)ggG(Tmax — 7, 3;)dT . (IL9)
0
Note that %;G(Tmax — 7,%;) = —(Tmax — 7)%e~@)Tmax—7) < (0 and h_; > 0; hence

(I1.9) is always negative, and as a result the global success probability is strictly concave

in z; or equally in Ap;. |

Lemma I1.1.6 For any admissible values of decision variables X _;, and assuming the

following threshold for the total cost paid by the customer:

AF(z;i, X_;, Tax) > maz{c;} ij, where: A = (1 — M)C,(A)A, (I1.10)

J=1

ISPy, (z;, X_;) has a unique maximizer with respect to x;.
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Proof Our goal is to show that:

T

n
2T
j=1

ISPy (z;, X_;) = AF(xi, X i, Trax) — €i(i — i + A) (IL.11)

always admits a unique maximizer. In Lemma II.1.5, the strict concavity of F/(x;, X_;, Tmax),
n
with respect to x; was established. On the other hand the function —¢; ) z; is a linear

j=1
function in z;, thus the function:

n
AF (@i, X_i, Toae) — i »_ T - (IL12)
j=1

is also strictly concave in x;. ISPy, is assumed to have positive value for all ISPs and
as a result, (IL.12) is always positive. Assumption (II.10) ensures a positive value for
(I1.12) for all ISPs. Using Mangasarian’s theorem [Avriel et al., 1988], the log of (I1.12)
is a strictly concave function in z;, and (II.12) will be strictly log concave. Furthermore
zi( }E z;)~! is also a strictly log concave function in z;. Since log concavity is preserved
uncigrl multiplication, and in view of the strictly increasing nature of the log function, the

utility function in (I.11) has a unique maximizer in ;. [



