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ABSTRACT

One of the critical issues addressed very often both in research and industry is the boundary mesh
generation technique for wall dominated phenomena, for example, viscous fluid flow, heat trans-
fer, etc. This technique is called front propagation or front offset. This thesis presents a novel

application of front propagation technique to domain partitioning and mesh generation processes.

The propagation process proposed in this work is directly inspired from marching technology, that
is all the points located on the original front are propagated along their local normal directions. The
main difference between the current method and traditional marching methods lies in the way that
local normal direction is computed. Traditionally, the local normal directions are computed using
geometric information, such as the average normal of neighboring points or facets surrounding the
point to be propagated. In this method, the local normal directions are calculated using equation
il = V¢/|V¢|. Function ¢ is the numerical solution of the minimum distance equation, which is a

variation of the Eikonal equation, V¢ - V¢ = 1.

The benefit of calculating normal directions in such a way is that self-intersections are avoided in
a natural way. Since normal directions are represented using the numerical solution of the PDE,
propagation is thus performed in the ¢ space rather than geometric space. In addition, the proposed
method transports the original parameterization to the propagated surface, there is a one-to-one
parametric consistency between the original front and its offset, which allows rigorous matching

of block interfaces.

This front propagation method used was validated from two aspects: accuracy and efficiency. For
accuracy, the results show that the proposed technique converges linearly with mesh size. The

result follows from the fact the ¢ field is solved using a first order numerical scheme. The time
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spent in this propagation method is divided into three parts, and measured separately: initialization
time and fast sweeping time, which both are dependent on the mesh size; propagation time, which
is independent of mesh size, but dependent on the initial discretization of the front to be propagated

and time increment.

The proposed front propagation technique is successfully applied in the applications of Geometric
Modeling, ie, offset surface construction. The presented method can be used to offset both facet
and NURBS represented geometries. When surfaces are discretized into triangular or quadrilateral
surfaces, the discretization points are propagated directly and the offset points are used to construct
new offset boundary; when surfaces are NURBS represented geometries, the control points are

propagated using the proposed method.

Another type of application presented in this thesis is Mesh Generation, ie, boundary mesh gen-
eration. The proposed method is used to decompose the entire domain into sub-domains near
boundary areas, and then hybrid meshes are generated in each sub-domain. The boundary mesh is
validated using a ball valve model under both steady and unsteady flow conditions. The prelimi-
nary result shows that the presented method provides a possibility to generate boundary mesh in a

robust and automated manner.
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RESUME

Cette dissertation présente une recherche sur nouvelle technique de propagation de front avec
comme finalité son utilisation dans la méthodologie de génération de maillages hybrides dans
des configurations industrielles. Le domaine est la simulation numérique d’écoulements com-
plexes dans des applications industrielles telles que les turbomachines. La qualité et I’efficacité
de ces solutions dans un processus de design dépend largement du maillage qui sert de support
la discrétisation. Outre la conformité du maillage a la géométrie, la problématique d’actualité se
trouve au niveau de I’adaptation & une phénoménologie de I’écoulement, c’est-a-dire on recherche
un maillage qui épouse les variations des propriétés de I’écoulement, telles que les champs de
vitesses, pression etc. Le défi dans un contexte industriel est de concilier plusieurs exigences con-
tradictoires, la finesse du maillage et le cofit de la solution. En effet, un écoulement en dimension
trois a I’intérieur des divers éléments d’une turbine présente une grande disparité d’échelle dans
ces variables, de sorte qu’un «bon» maillage dans une partie de 1’écoulement ne le sera pas ailleurs,

ou bien engendrera un cofit de calcul trop élevé.

La stratégie proposée dans ce travail repose sur la génération de maillages hybrides qui consiste &
utiliser différents types de maillages selon la région du domaine de calcul. Cette approche est bien
adaptée aux problémes basés sur des écoulements fluides ot le domaine se divise en une partie
fortement rotationnelle ol dominent les effets visqueux fortement concentrés dans le voisinage
des parois ou bien des trainées des obstacles, et une partie plus homogene a I’extérieur de cette
mince couche. Spécifiquement, dans ce travail on entend par maillage hybride des éléments non-
structurés isotropes (tétrahédres) a I’extérieur et des éléments semi-structurés anisotropes (prismes

ou hexahedres) dans les couches pres des parois.



La mise en oeuvre de la génération de maillages hybride nécessite donc un découpage ou parti-
tion du domaine en zones ou couches selon ce criteére de proximité a la paroi. Nous avons étudié
les diverses techniques de décomposition de domaines aux vues de leur applicabilité au prob-
leme présent. Ces techniques ont comme objectif de découper un domaine quelconque pour le
remplacer par plusieurs sous-domaines plus simples géométriquement, c-a-d s’approchant d’un
rectangle. A ’origine la plupart des solutions proposées visaient la génération d’un maillage struc-
turé a I’intérieur de chacun des sous-domaines. La caractéristique (et la faiblesse) des partitions
ainsi obtenues est un découpage topologique global qui ne «respecte» pas nécessairement bien la
géométrie dans le voisinage des parois. Or, dans les configurations envisagées dans cette étude,
-les sous-domaines que 1’on cherche a obtenir doivent étre trés minces, de la taille d’un couche
limite ou d’un sillage, et doivent épouser la paroi. Il en découle certaines exigences particulieéres
notament la nécessité d’engendrer des mailles étirées avec un rapport d’alongement trés élevé. On

parle effectivement de couches ou de peaux.

Les premicres tentatives dans ce sens ont été obtenues par des opérations géométriques qui dépla-
cent («offset» en anglais) la représentation de la géométrie. Une analyse critique montre plusieurs
difficultés: 1) lourdeur sur le plan des opérations mathématiques, 2) complexité dans leur utilisa-
tion dans un contexte d’ingénierie et 3) certaines pathologies dans les résultats. Sous cette derniére
rubrique, nous soulignons le probléme de croissement de surfaces. Ces discussions sont présentées
au Chapitre 2, mais la plus contraignante est celle du manque de fiabilité des résultats dans une util-
isation en mode d’exploitation, oii on tente de minimiser les interventions humaines. Pour réaliser,
méme partiellement cet objectif, on doit baser la technique de déplacement des surfaces sur des
algorithmes fiables qui évitent les intersections de fagon intrinseque plutdt que sur des heuristiques

comme les méthodes courantes de construction par déplacement géométrique.

Une recherche blibliographique dans le domaine de 1’avance de fronts a permis d’identifier des
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approches qui semblent rencontrer les diverses exigences du probléme de génération de peaux et
qui évitent les difficultés associées aux techniques de construction géométriques. La différence
principale réside dans le calcul des normales. Dans le cas de ces ces derniéres, les directions
normales au front sont calculées par la moyennes des vecteurs perpendiculaires a partir de données
géométriques, ce qui donne lieu a des croisements du front. Dans la méthode proposée, le probléme
est reformulé sous la forme d’une équation différentielle, 1’équation Eikonale, V¢ - Vé = 1 ot ¢

représente une fonction de distance minimale que 1’on solutionne sous une forme faible.

La normale est obtenue calculée comme le gradient deg, 77 = V¢/|V ¢, L’ avantage de calculer les
normales de cette fagon est que les croisements sont automatiquement et naturellement évités par la
nature méme de la solution faible de I’équation Eikonale. De plus, avec cette méthode on transporte
la paramétisation du front original, ce qui assure une consistance entre les paramétrisations du front

transporté et le front initial.

Une implémentation de cette technique de propagation et son application a différents cas industriels

constituent les principales contributions de cette theése.



Xii

CONDENSE EN FRANCAIS

La qualité des simulations numériques dépend fortement des diverses techniques de discrétisation
appliquées a la géométrie du domaine ainsi qu’aux équations. Spécifiquement en ce qui a trait a la
discrétisation spatiale, la précision et I’efficacté des méthodes numériques reposent sur la forme et

la répartition des éléments générés par le processus de génération de maillage.

Afin d’améliorer le processus de génération de maillage pour des géométries complexes, on
développe dans cette recherche des méthodes nouvelles de décomposition de domaine et de prop-
agation de front, qui peuvent &tre utilisées dans une stratégie de génération de maillages hybrides.
Les méthodologies courantes de maillages hybrides sont étendues avec les objectifs spécifiques

suivants:

Etendre les capacités de résolution des caractéristiques physique :
La capacité de simulation de gradients élevés dans des couches limites d’écoulements
visqueux dépend de la capacité du maillage a localiser ces régions et a fournir un type et
une densité de maille appropriés. Cette recherche vise le développement d’une nouvelle
technique de génération de maillage afin de surmonter les faiblesses principales retrouvées

dans les approches courantes.

Accroitre le niveau d’automatisation :
Bien que de nombreuses techniques de maillages hybrides aient été proposées, le maillage
de domaines de complexité arbitraire demeure un frein significatif dans ce processus. Un
objectif important de cette recherche est de tenter de développer un algorithme avec un haut

niveau d’automatisation qui minimise les interventions usager.
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Améliorer ’efficacité du calcul :
L utilisation de 1a méthode de balayage rapide (Fast Sweeping Method), avec son temps de
calcul Q2(n), ot n représente le nombre total de noeuds de maillage du domaine de calcul, se
compare avantageusement, en terme de coiit de calcul, a d’autres méthodes telles que le Fast
Marching. Des algorithmes de parallélisation peuvent également étre appliqués a ce schéma

de calcul.

La méthode développée dans cette recherche permet d’ aborder la simulation d’écoulements présen-
tant une anisotropie élevée telle que rencontrée dans des phénoménes ol dominent les effets de
paroi comme dans les couches limites dans les applications en aérodynamique. Afin de cerner la
directionalité du phénomene, des maillages hautement anisotropes sont nécessaires dans le voisi-
nage des parois. Loin des frontiéres, des éléments isotropes peuvent étre utilisés. D’oll le besoin
de partitionner le domaine en une couche pariétale ou peau anisotrope, et un coeur isotrope pour
le reste du domaine. La région de la couche est générée par une technique de propagation de front

qui apporte plusieurs avantages importants par rapport aux méthodes traditionnelles:

1. Une technique de décomposition nouvelle:

Dans cette technique le probleme de décomposition de domaine est formulé comme un
probléme de déplacement de surface et sa solution est obtenue en utilisant les équations
Eikonale. Cette technique peut &tre appliquée a la solution de problémes ot dominent les

parois, par exemple les écoulements visqueux, de transfer de chaleur, etc.

2. Un modele mathématique simplifié:

Le nouveau modele proposé pour résoudre le probleme de propagation de front, I’équation

de distance de déplacement (Offset Distance Equation), est une variante de 1’équation
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Eikonale. Une validation de I’extension du schéma de balayage rapide en 3d est réalisé
avec des surfaces lisses. Cette partie du travail est resumée dans la publication Wang er al.

(to be published), soumis au International Journal for Numerical Methods in Engineering.

3. Un calcul amélioré de la direction normale:

Les directions normales sont representées en utilisant la solution numérique de 1’équation
Eikonale, qui évite les intersections de surfaces en propre pendant leur propagation. Les

détails sur le contourmenent de ces intersections est discuté au Chapitre 5.

4. Une nouvelle méthode de construction de surface par déplacement:

Comme une extension, cette approche a été appliquée a la propagation de fronts a géométries
complexes, c-2-d des frontieres convexes et concaves dans des domaines non-simplement
connexes. Spécifiquement, différentes techniques ont été développées pour la construction
de telles surfaces de déplacement dans des topologies diverses comme des surfaces per-

méables pour les conditions frontieres d’entrée/sortie.

La méthode proposée a €té€ appliquée avec succes a différentes situations, par exemple, la construc-
tion de surfaces par déplacement, le maillage de fronti¢res et I’analyse d’écoulements fluides. Ces
travaux sont publi€s dans Wang et al. (June 2005), Wang et al. (September 2005) et dans Wang

et al. (September 2006) respectivement.

La méthode de déplacement

Il existe plusieurs méthodes de déplacement parmi lesquelles la méthode des ensembles de niveaux

se distingue. Elle utilise un schéma décentré pour le calcul de la solution faible des équations de
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la fonction distance, ce qui apporte une amélioration significative quant au traitement des intersec-

tions locales des courbes et des surfaces durant la propagation.

Cependant, le résultat du déplacement de courbes et surfaces dépend de plusieurs facteurs, et on ré-
initialiser la fonction des ensembles de niveau au cours des calculs pour maintenir la précision de la
représention des ensembles de niveau. Ces exigences augmentent le temps de calcul et alourdissent

la mise en oeuvre.

Dans la présente méthode on pose le probléme de propagation de front comme la solution d’un
probleme 2 valeurs aux frontieres, ou le front a étre déplacé est le niveau zéro de I’ensemble de
niveaux et représente la condition frontiére. Le front original et sa propagation sont implicitement
compris dans les équations. Les courbes et surfaces d’iso-¢ qui correspondent i la valeur de la
distance du déplacement représentent les courbes et surfaces deplacées et doivent &tre extraites du

domaine de calcul.
Vo -Vo=1
. (1)
¢p=0 «f PeTl

ou ¢ est la distance Euclidienne minimale entre le front (I") qui doit étre propagé et P, un point

arbitraire dans I’espace de calcul £2.

La méthode présente possede tous les avantages de la méthode des ensembles de niveaux, c-a-
d une fagon naturelle et précise de suivre des coins aigus et des cornes, ainsi que la maitrise
de changements topologiques de fusion ou séparation de surfaces. Ceci est possible parce que
ces deux méthodes reposent sur la solution avec viscosité artificielle des équations différentielles
associées, afin de garantir une solution unique qui vérifie la condition d’entropie. De plus, la
méthode présente est implicite et par conséquent 1’approximation n’est pas sujette aux conditions

de stabilité de CFL, ce qui n’est pas le cas de la méthodes des ensemble de niveaux.
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La distinction entre la méthode de I’équation de distance de déplacement et la méthode des en-
sembles de niveaux est qu’elles approchent les problemes de propagation de fronts d’un point de
vue stationnaire et dynamique, respectivement. Dans la méthode des ensembles de niveaux, la
propagation du front est traitée comme un probléme a valeurs initiales o1 1a valeur des fonctions
de niveaux ¢ sont connues initialement. Cette fonction ¢ évolue dans le temps de maniére que
le niveau zéro de I’ensemble de niveaux est toujours identifié ave 1’interface de propagation. Le

niveau zéro de 1’ensemble doit etre extrait du domaine de calcul.

Le travail présenté utilise 1a méthode de balayage rapide (FSM), parce que comparée a la méthode
d’avance rapide (FMM) (1) elle permet une efficacité élevée (2(M)) comparé a (Q(MlogM));
(2) sa mise en oeuvre est directe et plus facile puisque sa structure de données est un tableau,

comparé a une pile; et (3) des algorithmes de parallelisation peuvent étre appliqués directement.

La méthode de balayage rapide a été mise en oeuvre en 2d et validée avec les résultats de Zhao
(Zhao (2005)). De plus, deux cas analytiques simples en 3d ont été utilisés afin d’établir la
précision de ¢ pour 1’algorithme proposé. Ces essais sont réalisés pour une sphere, centrée a (0,0,0)
et de rayon r = 0.15, avec un référentiel cartésien de 0.5x0.5x0.5, et un cube centré a (0,0,0) et de
dimension 0.3x0.3x0.3, avec un référentiel cartésien de 0.5x0.5x0.5. Dans ces essais, la solution

exacte est connue, de sorte que le comportement de 1a convergence est facilement évalué.

Selon Zhao (Zhao (2005)), I’erreur du schéma ne dépend que du pas de 1a maille. Pour la sphére,
le front original est spécifié comme des points isolés, et les valeurs de ¢ aux noeuds frontiéres sont
initialisées avec les distances exactes de la surface de la sphére. Pour le cube, la discrétisation
de la géométrie du front est spécifiée, et le comportement de deux normes (Lo, L) est étudié en

fonction de la taille de 1a maille.

Le Théoreme 4.1 de Zhao (2005) énonce que pour un seul point I', 1a solution numérique de la
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méthode de balayage rapide converge en 2" balayages en R", ou I indique ’ensemble de données
a etre propagées, et n est la dimension de I’espace. Ce théoréme est démonté dans Zhao (2005).
Dans le travail présent, on utilise directement le Théoréme 4.1, et les résultats présentés montrent
que tous les calculs sont obtenus avec 8 balayages pour des domains 3d. La convergence n’est pas

influencée par le pas de la maille, mais seulement par la dimension de 1’espace.

Application 1 - Construction de surface déplacée approximative

La méthode de déplacement développée a été appliquée avec succes pour construire des surfaces
déplacées ol on obtient une paramétrisation consistante entre la surface originale et son déplace-
ment. Ceci est réalisé par une combinaison des techniques traditionnelles de déplacement direct et

I’approche présente basée sur I’équation Eikonale.

La différence principale entre la méthode présente et les méthodes traditionnelles de déplacement
se trouve dans la maniére de calculer la direction normale. Dans le méthode de déplacement direct,
les directions normales locales sont calculées avec des informations géométriques, telles que les
positions des points voisins situés sur I'. L’idée centrale de la méthode est donc de propager chaque
point discrétisé de la géométrie originale du front I' le long de sa direction normale dans 1I’espace ¢
plutdt que dans I’espace géométrique. On obtient alors une méthodologie qui en plus de résoudre le
probleme des auto-intersections, assure également un lien paramétrique entre la surface originale

et son déplacement dans la plupart des cas.

Ces surfaces déplacées sont valides aussi bien pour des représentations discretes que continues,
tant que I’information paramétrique est disponible pour chaque type de surface. Deux type de

données peuvent étre utilisées:
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Données polygonales discrétes Dans ce cas, la description géométrique est représentée par une
surface en mosaique (c-a-d par triangles ou quadrangles), la méthodologie de propagation

est validée en termes de précision et d’efficacité.

Représentation NURBS continue Les points de contrdle de 1a NURB sont propagés, et le résultat

est validé.

Dans ce travail toutes les courbes et surfaces sont représentées avec des NURBS qui peuvent étre
discrétisées a une précisoin arbitraire. La géométrie donnée I' est discrétisée en segments (2d)
ou en triangles (3d), et se situe & I'intérieur d’un domaine 2. Le déplacement est réalisé par
la propagation de tous les points situés sur I" le long de la direction normale locale en utilisant

I’équation suivante:

Fl =7 4 Fdt )
ou F est la vitesse de propagation unitaire.

La distance de déplacement ¢, la distance Euclidienne minimale, est obtenue pour chaque noeud
de la grille cartésienne en fonction des coordonnées spatiales tel qu’établi a la Section 4.3 et en

utilisant I’algorithme décrit & 1a Section 4.4. Ce champ est ensuite utilisé pour évaluer la valeur de

la vitesse de propagation unitaire locale V¢/|V¢| a chaque noeud sur T,

Apres la propagation, les valeurs finales £ sont reliées séquentiellement afin de construire I',,, le
front propagé, selon leur connectivité originale. Ainsila consistance de la paramétrisation entre I',
la surface originale, et I, son déplacement, est préservée, ¢’est-a-dire qu’il y a une correspondance
univoque entre tous les points de I' et de I',. Cependant lors de la collision entre deux fronts cette

information paramétrique ne peut &tre maintenue.

Les trois étapes essentielles de cette métode sont:
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1. Le domaine § est discrétisé sur une grille cartésienne;

2. Le champ ¢ est calculé a chaque noeud de cette grille en utilisant 1’algorithme de balayage

rapide;

3. Chaque noeud sur I' est déplacé le long de la direction normale locale de la valeur de la

distance de déplacement.

Application 2 - Génération du maillage pariétal

La méthode proposée est utilisée pour générer des mailles de rapport de forme élevé dans le voisi-
nage des parois pour des simulations d’écoulements a grand nombre de Reynolds. Les problemes
ou les effets de parois dominent sont caractérisés par de forts gradients dans la direction orthogo-
nale 2 la paroi comparés aux autres directions. Ceci nécessite une taille d’éléments minimale dans
cette direction. L’alignement d’éléments anisotropes est essentiel pour cerner les caractéristiques
de I’écoulement, avec une petite taille dans la direction de forts gradients et une plus grande dans

les autres directions.

La méthode proposée est congue pour engendrer efficacement et de fagon fiable des maillages
anisotropes semi-structurés prés de frontieres dans des domaines arbitrairement complexes a partir
d’un maillage surfacique de triangles. Dabord, une décomposition en blocs, issus des frontiéres
du domaine, est engendrée, conforme par les faces contigués. Ensuite, a I’intérieur de chaque bloc
on construit des maillages semi-structurés, avec un redistribution utilisant un opérateur Laplace-

Beltrami aux interfaces des blocs, et un opérateur Laplace a I’intérieur des blocs.

Dans ce travail on utilise la technique de propagation de front a cause de sa capacité de contrdle

de I’orthogonalité et de la taille des éléments. Les intersections des surfaces par elles-mémes sont
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évitées de facon naturelle et automatique tel que présenté en détail au Chapitre 4. Le dilemme entre
le choix d’hexahédres ou de tétrahedres est résolu par 1’utilisation de ces deux familles d’éléments:
des éléments prismatiques étirés dans les régons pariétales, ol des phénomeénes de paroi (couches
limites) sont attendus, et des éléments tétrahedriques isotropes ailleurs dans le domaine. Les
éléments prismatiques sont composé€s de faces triangulaires dans la direction tangengentielle a
la paroi, et de faces quadrilatéres dans la direction perpendiculaire. Ils combinent la flexibilité

géométrique des éléments nonstructurés ainsi que 1’orthogonalité et 1’élancement des maillages

structurés.

Le éléments tétrahedriques semblent appropriés dans le coeur du domaine a cause de I’irrégularité
des formes. Les faces triangulaires des tétrahédres s’adaptent aux faces correspondantes des

prismes, formant un maillage globalement conforme.

Le processus de génération de maillage est résumé en cinq étapes principales:

1. les surfaces de la frontiere I' du domaine de calcul sont discrétisées en faces triangulaires;
2. le champs de distance est calculé;

3. les noeuds situés sur I" sont déplacés, et les interfaces de la décomposition multi-bloc sont

engendrés;
4. les éléments anisotropes sont redistribués a I’intérieur de chaque blocs;
5. P’extérieur de la couche est discrétisé avec des tétrahédres.
La démarche décrite est appliquée au cas industriel du modele d’un aspirateur 3d d’une turbine,

pour des configurations ouverte et fermée. La qualité (répartition volumique et élancement) du

maillage résultant est mesuré montrant que la qualité est acceptable.
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Application 3 - Calcul d’écoulements fluides

Le but de cette application est de valider la qualité et I’efficacité d’une nouvelle stratégie de généra-
tion de maillage hybride appliquée a I’écoulement dans un modele de valve sphérique. La qualité
du maillage est mesurée sous trois aspects: (1) la distribution volumique; (2) le rapport de taille et
(3) I’élancement normalisé. Ces résultats montrent que la qualité du maillage est acceptable, et les

solutions convergées de I’écoulement fluide sont illustrées a la Section 7.4.

Le but de la simulation de I’écoulement fluide est de déterminer les champs de vitesse et de pression
a la sortie du modele 3d pour valider la méthodologie de génération de maillage proposée. Les con-
ditions de I’écoulement sont en position demi-ouverte et en régime stationnaire et instationnaire.
Topologiquement, la géométrie est tres simple et équivalente a un cylindre. Géométriquement,
la configuration présente des formes convexes et concaves. La partie la plus difficile est de cal-
culer correctement la direction normale aux quatre points singuliers tel qu’illustré a la Figure 7.2
ol quatre surfaces s’intersectent et partagent un méme point. La méthode traditionnelle de calcul
de la normale utilise 1’information géométrique autour du point a &tre propagé, c-a-d la moyenne
pondérée des vecteurs normaux aux surfaces voisines. Dans de tels cas, la définition de vecteur

normal devient ambigué lorsque calculée de la sorte.

On illustre les étapes du processus de maillage, et comment les problémes identifiés sont résolus
par la méthodologie proposée, particulicrement en ce qui a trait au comportement dans les coins

aigus, et les singularités. Les champs de vitesse et de pression sont illustrés & la Section 7.4.
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CHAPTER 1

MOTIVATION

1.1 Background

The quality of numerical solutions are critically dependent on various discretization techniques as
they apply to the geometry of the domain as well as to the governing equations. More specifically
regarding spatial discretization, numerical methods rely for accuracy and efficiency on the shape

and distribution of the elements used in the grid generation processes.

Grid generation has evolved rapidly over the last two decades, resulting in a well established
methodology to generate structured or unstructured grids for an entire domain, known as single-

block grids. This methodology includes three elements:

e Geometric Modeling, which is the foundation for the geometric representation of the bound-

aries;

e Grid Generation, which discretizes the physical domain using specialized elements (hexa-

hedra, tetrahedra or prisms) and appropriate algorithms (structured, unstructured grids);

¢ Grid Adaptation, which improves the mesh quality through some combination of redistribu-

tion, refinement, and topological re-connections of the elements.

While the single-block strategy (e.g. all tetrahedra mesh) has achieved a high level of success

to generate grids in three dimensions even for highly complex shapes when solver requirements



are not too stringent, further improvements are still expected. New approaches are still required to
overcome the difficulties encountered as more complex objects are modeled and analyzed in highly
complex physics such as high Reynolds turbulent flow. Specifically these difficulties are related to
the local control of the grid characteristics to capture specific features related to the physics of the

problem, and to the automation issue as it applies to an engineering production environment.

A promising strategy to overcome these and associated problems is to use generalized multi-block
grids, a technique which reduces a single geometrically complex grid generation problem into sev-
eral grid generation problems in a set of simpler components. Multi-block strategies consist of a
partition of the physical domain into a few overlapped sub-domains or non-overlapped contiguous
sub-domains, called overset grids or hybrid grids, respectively. The resulting blocks may be con-
sidered as the cells of a coarse mesh, and at the individual block or sub-domain level, the mesh can
be locally structured or unstructured, but it is globally unstructured when viewed as a collection of

blocks.
The benefits of using multi-block grids are:

e Local grids in each block are much easier to generate than a single global grid for the whole
domain, as the geometry of each block is generally simpler;

e More flexibility for grid adaptation and modification, since the regeneration of the local grids
is applied within the relevant blocks rather than to the entire domain;

e Flexible physical modeling for problems which are heterogeneous relative to some of the
physical quantities, allowing different mathematical models in different zones of the domain;

e Processing may be embedded in the mesh generation algorithms whereby different blocks
can be assigned to different processors, resulting in an improved efficiency, especially for

large problems.



1.2 Goals and Objectives

As discussed before, to improve the grid generation process for complex geometries, it is neces-
sary to first subdivide complex domains into blocks, and then apply a local meshing process to
each block. Since multi-block strategies prevail over single-block strategies in mesh generation
processes, it is greatly promoted in industrial applications and is employed in this research, as the

former can combine several single-block strategies for specific sub-domains.

There are two major types of multi-block strategies: hybrid grids and overset grids. According to
the topological arrangement of interfaces between blocks, multi-block grid generation strategies
can be classified as: overlaid Grids, in which the interfaces of blocks are overlapped and Hybrid

Grids, in which the interfaces of blocks are non-overlapped.

In overlaid grid strategies, separate grids are generated about each boundary component, and these

separate grids are simply overlaid on a background grid and perhaps on each other in a hierarchy.

Overlaid grids are also known as Chimera, or overset methods. The advantages of overlaid grids
are: (1) simplicity in grid generation since the various grids are generated separately, (2) local
body-fitted properties are preserved since separate boundary-conforming structured grids are gen-
erated for each component of a complex configuration, and (3) data is communicated between the

various component grids by interpolation.

The hybrid grid strategy decomposes the domain into blocks which can be viewed as unstructured

grids globally, and then structured or unstructured grids are generated in each block.

The combination of grids of different types not only allows the benefits of structured and un-

structured grids to be attained simultaneously, but also allows high grid quality to be achieved



throughout the domain due to the appropriate use of each element type.

This research proposes to use a hybrid grid strategy rather than the overlaid grid strategy. The

reasons are given below:

1. Overlaid grids are suitable to simulate problems which have relative motions between com-
ponents of multiple-body configurations, e.g., moving stores, flaps. However, these are not

attractive features to this research.

2. In hybrid grids, the mesh points at interfaces of blocks are matched to each other. This is
an attractive feature for this research especially at boundary areas, where different types of

mesh cells are required.

3. One of the defect for overlaid grids is that interpolations are required at the overlapped mesh

area for overlaid grids, which severely decreases the accuracy of the solution.

The aim of the present work is to develop a new hybrid grid generation method. The bottleneck in
the hybrid grid strategy is the domain decomposition and, in particular, its automation in an engi-
neering context. This research investigates such domain partitioning methodologies and proposes
a hybrid meshing strategy and related techniques capable of handling highly anisotropic features as
they occur in wall dominated phenomena such as viscous layers in aerodynamic applications. This
type of physical problem exhibits strong gradients in directions orthogonal to the wall compared to
the other directions. To capture the directionality of the phenomena, highly anisotropic meshes are
required in the vicinity of solid walls. Away from the boundaries, isotropic elements can be used.
Hence, the necessity to partition the domain into a wall layer or skin regibn, and the remainder of

the domain.



Current hybrid meshing methodologies will be extended with the following specific objectives:

Enhancement of the feature capturing capabilities :
The ability to simulate high-gradient features for viscous flows in boundary layers depends
on the capability of the mesh to adequately locate these regions and to assign an appropriate
mesh type and density. This research aims to develop a new boundary layer mesh generation

technique to overcome the major weaknesses in current approaches.

Increase of the level of automation :
Although many hybrid meshing techniques have been presented, the automatic meshing of
an arbitrarily complex domain is still a very significant bottleneck of the mesh generation
process. One important objective of this research is to attempt to develop an algorithm with

a high level of automation which minimizes user intervention.

Improvement of the computational efficiency :
The use of the Fast Sweeping Method increases computational efficiency, since its computa-
tional complexity is (), where N is the total grid number of the computational domain.

Also, parallelized algorithms can be applied to this numerical scheme.

1.3 Research Contributions

Many domain decomposition methods have been presented that aim to apply hybrid meshing strate-
gies to boundary layer mesh generation. This research proposes an efficient way to decompose the
domain in the vicinity of the geometric boundaries where boundary or skin meshes are required.
The proposed method is based on a front propagation technique which brings two major advantages

compared with the traditional techniques:



A new domain decomposition technique :

A new domain decomposition method is developed based on the offset technique, this tech-
nique formulates the domain decomposition problem as an offset problem and its solution
is obtained using the Eikonal equations. This technique can be applied to solve boundary

dominated problems, for example, viscous flow, heat transfer, etc.

A simplified mathematical model :

A new simplified mathematical model, the Offset Distance Equation, which is a variation
of the Eikonal equation, is proposed to solve the front propagation problem. An extended
validation of the fast sweeping numerical scheme to 3D applications with smooth surfaces is
performed. This part of the work is summarized in the paper (Wang et al. (to be published)),

submitted to the International Journal for Numerical Methods in Engineering.

An improved normal direction calculation :
Normal directions are represented using the numerical solution of the Eikonal equation,
which avoids self-intersections from occurring during propagation. The details about pre-

venting self-intersection is discussed in Chapter 5.

A new offset surface construction method :
As an extension, this approach has been applied to the propagation of geometrically complex
fronts, i.e. convex and concave boundaries in multiply-connected domains. Specifically, dif-
ferent techniques have been developed to account for the construction of such offset surfaces
in diverse types of topologies such as permeable surfaces for inlet/outlet boundary condi-

tions.



The proposed method has been successfully applied to different applications, for example, surface
offset construction, boundary meshing process, and fluid flow analysis. These works are published
in Wang et al. (June 2005), Wang et al. (September 2005) and Wang er al. (September 2006)

respectively.

1.4 Thesis Organization

The organization of this thesis is as follows: a literature review for domain decomposition tech-
niques is presented in Chapter 2. As the geometric complexity of configurations in industrial appli-
cations increases, mesh processing is increasingly being replaced by multi-block strategies, where
partitioning techniques play a key role. Domain decomposition is a topological process which aims
to simplify complex geometries by subdividing the domain into smaller and simpler regions called

blocks. This chapter goes through the major historical improvements of this technique.

The domain decomposition technique developed in this work is a direct inspiration from front
offset technique, thus a literature review for boundary offset techniques is presented separately in
Chapter 3. Since there is great incentive to use anisotropic grids over boundaries in viscous flow
simulation, where the boundary layer requires very small spacing out from the wall. The major
problems in boundary offset encountered in classical front propagation methods are: 1), detecting
and resolving self-intersections, and 2), preserving the one-to-one parameterizations mapping from
original surface to the offset surface. This chapter introduces the major methods currently available

to solve offset problems and their efforts to avoid the problems mentioned above.

Chapter 4 gives a brief derivation of the Offset Distance Equation model, and explains why the

proposed model can solve the front propagation problem. The fast sweeping numerical scheme to



solve this equation is then briefly summarized; validations using smooth 3D surfaces are presented,
which confirm the convergence theorems of the fast sweeping method. Finally, some 2D and 3D
propagation results are presented, which show that the presented method can be used for solving

propagation problems.

Chapter 5 illustrates the proposed front propagation methodology, to construct offset surfaces and
transport the parameterization of the original surface to the propagated surface. This method,
based on the solution of the equation derived from the Eikonal equation, comprises three essential
steps : (1) construct a uniform Cartesian grid fully covering the domain of interest, consisting of
discretized curves and surfaces; (2) solve the Eikonal equation using the fast sweeping numerical
scheme on the Cartesian grid, and, (3) march in space from the discretized original geometric
front points, along their local normal directions, by iteratively solving a propagation equation,
using a fourth-order Runge-Kutta scheme. The most attractive features of this technique are that
in the absence of blocks, it can exactly map the parameterization information from the original
front to the offset front, and local normal directions are represented by the ¢ field , thus they do
not intersect each other during propagation. This technique can also be used to offset the control
point of NURBS represented curves and surfaces, and to generate meshes in boundary layer areas.

Numerical experiments are presented to demonstrate the accuracy and efficiency of the method.

In Chapter 6, the proposed method is applied to automatic boundary block meshing of engineering
configurations, with through-flow boundaries to illustrate the use of a permeable front. The decom-
position approach proceeds by explicitly constructing offset surfaces to boundaries, which are then
used to topologically subdivide the domain into simple regions that are meshed independently. A
key contribution of this approach lies in the method used to construct the boundary offset surfaces
and construct the structured mesh in each block. A mixed method for the solution of the offset

distance equation, derived from the Eikonal equation, is used, that alleviates local and global self-
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intersection problems during offset surface construction, while allowing to maintain a parametric
relationship between the original surfaces and their corresponding offset. Mesh results in actual

industrial geometries are used to demonstrate the validity of the method.

A robust and automated approach to generate unstructured hybrid grids comprised of prismatic
and tetrahedral elements for viscous flow computations is presented in Chapter 7. The hybrid
mesh generation starts from a triangulated surface mesh. The prismatic elements are extruded
based on the proposed algorithm to generate anisotropic elements at boundaries, and finally the
isotropic tetrahedral grids are generated to fill the rest of the domain. The presented hybrid meshing

algorithm was validated using a ball valve model under both steady and unsteady conditions.

Finally, conclusions and future research directions are discussed in Chapter 8.
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CHAPTER 2

DOMAIN DECOMPOSITION

Early mesh generation techniques were based on single-block strategies. As the geometric com-
plexity of configurations in industrial applications increased, this has proved to be inadequate. It
1s increasingly being replaced by multi-block strategies, where the partitioning technique plays a

key role.

The interest of this research lies in the application of the front propagation techniques, as a multi-
block domain decomposition tool and in the investigation of its effectiveness for partitionning a

global domain into sub-domains, particularly in the vicinity of solid boundary areas.

This Chapter will briefly review domain decomposition in general. Specifically, this will empha-
size its application as a domain decomposition technique in an overall multi-block grid generation
methodology. These will be reviewed and critically compared in the light of the objectives of this

work.

2.1 Introduction

Domain decomposition is a topological process which aims to simplify complex geometries by
subdividing the domain into smaller and simpler regions called blocks. The development of this
approach is motivated by the need to simplify the task of meshing complex geometries in order

to make such problems more manageable. In addition, it allows the apllication of different mesh
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types and/or generation techniques in different regions (or blocks). Finally, parallel algorithms can
be embedded in the mesh generation algorithms where different blocks can be assigned to different

processors, thus the computational efficiency of the program can be greatly improved.

2.2 Unstructured method

Some researchers have employed unstructured triangulation methods to first generate triangular
sub-domains by applying the Delaunay technique (Bergman (1990); Cordova (1992)), and then
transform the triangles into quadrilaterals by removing of the appropriate edges or subdividing
each triangle into three quadrilaterals that were used as blocks (Bergman (1990)). Schonfeld and
Weinerfelt (1991) decomposed the domain directly into quadrilaterals using an advancing-front
technique. Stewart (1992a) and Stewart (1992b) proposed an approach in 2D based on a small set
of search rules to drive directional probing from the boundary to search for an appropriate block
decomposition, in analogy with balloons inflating against each other: a coarse approximation to
the outer boundary of the region was obtained. Kim and Eberhardt (1995) used advancing front to
automate block construction by generating coarse hexahedra cells for 3D problems. The distance
and general direction of advancement were user controlled. The method tended to create a large

number of relatively small blocks, since all are full-face matched.

2.3 Prime Rectangle Method

A new domain decomposition algorithm has been presented in Piperni and Camarero (2003), which
aims for the automation of structured grid generation in multiply-connected domains. This domain

decomposition technique has many new features: (/) it can decompose an arbitrary complex do-
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main automatically without human intervention, (2) it generates overlaid blocks which is an im-
portant advantage in the mesh optimizing process, and (3) it guarantees a unique decomposition

topology for the physical domain once the geometric and topological information are specified.

The basic idea of this method is to first subdivide the physical domain into non-overlapped blocks
to generate algebraic meshes in each block; and then decompose the physical domain into over-
lapped blocks to optimize the algebraic meshes by an elliptic method through successive scanning
of the overlapped blocks. The whole meshing process is carried automatically, resulting in a glob-

ally structured mesh.

Disjoint Rectangle
If a rectilinear polygon' consists of a set of minimum number of non-overlapped rectangles,

then this set of rectangles is called disjoint rectangles.

Figure 2.1(a) illustrates a rectilinear polygon covering by non-disjoint rectangles, since the
set of rectangles are overlapped; Figure 2.1(b) illustrates a rectilinear polygon covering by
non-disjoint rectangles, since the number of decomposed rectangles is not minimum. Fig-
ure 2.1(c) illustrates a rectilinear polygon covering by disjoint rectangles, since it meets all

the conditions of disjoint rectangles.

Prime Rectangle
A Prime Rectangle is a rectangle of maximum size for a given area of the region. It is such
that a part of each of the four sides of a prime rectangle must touch a domain boundary. The

relationship of a prime rectangle P and any rectangle P’ in a given figure F is such that:

1. PCF}

LA rectilinear polygon is a polygon whose sides are either perpendicular or parallel to each other.
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________________________________

(a) Non-disjoint rectangles (b) Non-disjoint rectangles (c) Disjoint rectangles

FIGURE 2.1 Disjoint and non-disjoint rectangles

2. no P’ C F exists, such that P C P'.

A rectilinear polygon may consist of overlapped prime rectangles. Consider the problem of
subdividing a given non-simple rectangular domain, the dash-line rectangle in Figure 2.2(a)
is a prime rectangle, while the solid-line rectangle is not a prime rectangle as its upper side
can be extended along its upper direction to touch the upper boundary. Figure 2.2(b) is

covered by prime rectangles.

The application of this method consists of the following steps:

Domain geometric and topological configuration Domain configuration is a critical step since
it leads to a unique domain decomposition. Domain geometric configuration is performed by
inputting the geometry boundaries and the outer boundaries. Domain topological configura-
tion includes specifying the boundary conditions (or mappings), i.e. the values of the mesh
indices on the geometry and outer boundaries. A rectilinear polygon will be constructed

after this configuration.
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FIGURE 2.2 Prime and non-prime rectangle

Domain Decomposition Sub-domains are generated by: (/) decomposing the rectilinear polygon
into disjoint rectangles according to the algorithm of (Lipski ef al. (1979))?, and (2) mapping

these disjoint rectangles to the physical domain to generate non-overlapped blocks.

Mesh generation Initial meshes are generated by algebraic method in individual blocks in the

physical domain.

Mesh optimization The rectilinear polygon is further decomposed into prime rectangles accord-
ing to the algorithm of (Lodi ez al. (1979))%; and then these prime rectangles are mapped into
physical domain to generate overlapping blocks. The initial algebraic meshes are optimized
successively in the overlapping blocks by elliptic method (Spekreijse (1995)) through an

iterative loop. The resulting mesh is a global non-overlapped structured mesh.

?It can decompose an arbitrary rectilinear polygon into disjoint rectangles automatically.
31t can decompose an arbitrary rectilinear polygon into prime rectangles automatically.
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2.4 Boundary-based domain decomposition

Guibault (1998) proposed a domain decomposition method, based on a direct propagation of the
boundaries, aimed at generating multiple blocks around geometric boundary areas. Topologically,
each block is equivalent to a cube template. The blocks are obtained by first generating surface
grids on the boundaries to be offset, then propagating these surface grid points along their normal
directions. Finally, the relative topological connectivities are constructed by sequentially connect-
ing propagated points into edges, faces and volumes. The input and output files include both
geometric information, (points, curves and surfaces), and topological information (vertices, edges,

faces and volumes).

2.5 Discussion

Among all the reviewed blocking methods discussed in previous sections, only the Unstructured
Methods, the Prime Rectangle Method and the Boundary-based Domain Decomposition Method
have effectively achieved a high level of automation. They can accept geometric and topological

information as input, and output the resulting mesh with minimum user intervention.
Unstructured Domain Decomposition

Although unstructured domain decomposition algorithms have been developed with a high level

of automation, these have two limitations:

(1) They do not allow globally structured grid generation, while local structured grids are possible

to be generated internally for each block, and
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(2) once the interfaces between blocks are generated, it is difficult to float the block interfaces.
Prime Rectangle Method

Because the physical domain is decomposed into overlapped blocks, the prime rectangle method

presents some advantages over the unstructured method:

(1) It makes data interchanges possible during the optimization process,

(2) It allows free-floating interfaces between blocks in the optimization process, and

(3) The overlapped blocks preserve the properties of local body-fitted boundaries.

However, this method requires expertise from the user in the specification of the mesh topology
which is cast as a boundary value problem. The resulting meshes are highly dependent on the

topological definition which is prescribed by the user.
Boundary-based Domain Decomposition Method

Both the unstructured and the prime rectangle decomposition techniques are suitable for partition-
ing an entire domain into several sub-domains. This kind of technique can be viewed as a global
domain decomposition technique since it is very effective to decompose the entire domain into sub-
domains. But they do not present any potential to generate thin layers in the vicinity of boundaries,

in which high-aspect-ratio grids are required for capturing high gradients.

Boundary-based domain decomposition methods generate a skin around the geometric boundaries
which is the desired domain decomposition technique for this research. The advantage of this

method is that it enforces parametric consistency between the original boundary, and its offset
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counterpart. All the points located on the original front are propagated along their local normal
directions, thus all the points on the original front and its offset share a one-to-one parametric
mapping. The weakness of this method is that self-intersection eliminating algorithms are difficult

to implement and may fail for severely concave regions in 3D.

The following chapter will explore another type of techniques for thin skin generation, local do-
main decomposition technique, and specifically concentrate on reviewing front propagation tech-

niques.
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CHAPTER 3

BOUNDARY OFFSET

Computing offset curves and surfaces is a technique to track the evolution of a front propagating
along its normal vector field. This has diverse engineering applications, including, for instance,
tracking the motion of interfaces in fluid mechanics (Smereka and Sethian (2003)); tool path
generation in numerical control machining (Park and Chung (2003), Lee (2003)); image denoising
and enhancement in computer graphics and vision (Malladi and Sethian (1996), Osher (2003));
and gap closing in computer-aided design (Sethian (1999)).

In the present work we will apply the generation of an offset boundary to create a thin layer in
the vicinity of solid boundaries (Pirzadeh (1993), Guibault (1998)). This procedure is part of
the global strategy to partition the domain into regions of highly stretched grid elements close to

boundaries, and regions of isotropic grid elements elsewhere.

3.1 Offset Problem Description

Figure 3.1 illustrates the boundary offsetting problem, where ~(Z, ¢o) is the surface generated by
moving (%) along its normal vector field for a given parameter ¢. The position of v(Z,t), as it
evolves in the normal direction is such that this motion ignores displacement along its tangential

direction. It can be expressed as:

WE, 1) = 7(T, to) + Adt 3.1)
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where 77 is the normal vector and dt is the time step.

N
n

V(% 1)

FIGURE 3.1 Boundary Offset Problem

The major problem encountered in classical front propagation methods is detecting and resolving

self-intersections. Two situations can arise:

e alocal warping may occur when the offset distance is greater than the local curvature radius

in concave regions as illustrated in Fig. 3.2, when the curve has a discontinuity.

e a global self-intersection may occur when the distance between two distinct points on the

curve or surface reaches a local minimum as illustrated in Fig. 3.3.

A variety of contributions deal with the computation of curve and surface offsets. They can be
classified in two types: direct offset methods (DOM), which propagate curves or surfaces directly
based on original geometric data; and indirect offset methods (IOM), which cast curve or surface

offset problems into a set of partial differential equations (PDE), with the numerical solution to
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FIGURE 3.2 Local wrapped area

Wrapped area

Propagated boundary

£/ —— Original boundary

FIGURE 3.3 Global wrapped area

these being the offset curves or surfaces. The capacity to effectively eliminate self-intersections is

an important criterion and we will review and evaluate each method in that context.
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3.2 Direct Offset Methods

Many variants of the direct propagating methods which make use of Eqn. 3.1 have been proposed.
The common point of these methods is that they construct offset surfaces based simply on geomet-

ric information of the given surface to be propagated.

Corner grid point

N

-~

Boundary/ grid i)éint

FIGURE 3.4 Direct offset method - quadralitrial discretization

The basic idea of direct offset method is shown in Figure 3.4. A surface grid is generated by first
defining triangular or quadrilateral elements in surface patches from the geometric representation.
Surface normal vectors are determined at each mesh point by averaging the unit normal vectors of
the faces sharing the point and then smoothing the resulting vectors by a Laplacian operation. This
surface is advanced as one layer by connecting the surface grid points and the tip of the surface

vectors. The spacing for each layer of cells is determined by a geometric function.
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3.2.1 Advancing-Layers Method

The direct offset technique was applied to grid generation by Pirzadeh (1993, 1994) and Pirzadeh
(1996). Known as the advancing-layers method, it is a marching strategy where layers are advanced
according to Eqn. 3.1. The aim of this method was to generate highly stretched cells to resolve
the boundary layer in three dimensional problems. In this method, a surface grid is generated on
the boundary as line segments in two dimensions or surface patches in three dimensions from the
geometric representation. Grid points are then distributed along the lines to form an initial front
in two dimensions. In three dimensions, surface patches are triangulated to construct the surface

grid.

Surface normal vectors are then determined at each mesh point by averaging the unit normal
vectors of the faces sharing the point, and then smoothing the resulting vectors by a Laplacian
operation. Finally, this surface is advanced as one layer by connecting the initial surface grid points
and the tip of the averaged surface vectors. The spacing for each layer of cells is determined by a
specified geometric function. In this method, the front and the grid are generated simultaneously.

It starts from a surface grid rather than from a geometric description of the surface itself.

One representative attempt to eliminate self-intersections is to simply stop the advancement of
the front before self-intersections occur thus avoiding the problem. Based on a similar marching
idea, Sullivan and Zhang (1997) presented a self-intersection detection and removal algorithm
in 2D. This approach uses a normal offsetting technique to develop nodes followed by Delaunay

triangulation with a mesh resolution function based on the physics and problem geometry. The

method can handle multi-connected boundaries and multiple material regions.
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3.2.2 NURBS offset method

The NURBS direct offset method aims to improve the boundary offset process using a formal
representation of the boundaries based on a NURBS geometric representation (Coquillart (1987)).
In this method, the offset curve is defined by a new control polygon where each new control point
is the offset of the corresponding control point of the original curve in a direction given by the
normal at the closest point of the curve. Guibault (1998) has given an improved algorithm to
offset a NURBS B-Rep boundary. In this procedure, the surface grid generation is obtained from
the NURBS representation where the boundaries are discretized along their « and v directions.
The normal vectors for each surface point is computed by averaging the unit normal vectors of the

faces sharing the point.
NURBS represented curve C' is defined as:

- ™ BN
G — 2=V o (3.2)
D im0 wilV;

n is the total number of the control points, the f’; is the 7th control point, the w; is the ith weight,
and the N, ,(u) are the pth-degree B-spline basis functions defined on the nonperiodic (and nonuni-

form) knot vector U,

U={a,..,a,upi1, ..., Um—p-1,b, ..., b} (3.3)
p+1 p+1

The normal vectors for 3D curves and surfaces are calculated using the definition of differential
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geometry (Farin (1997)).

-t

mn =

CZu X C_:uu y CZu (3.4)
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where C,, and C_”'uu are the first and second derivatives of the curve with respect to the u-direction,

respectively.
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The offset surfaces are generated by moving each point along its normal vector according to a
specified distance, and then linearly connecting the new grid points sequentially in the u direction

for curves (u and v directions for surfaces) to construct propagated curves (bilinear patches for
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surfaces).

In the 3D algorithm developed by Guibault (1998), one proceeds by first detecting tangled loops,
etc., and then these are eliminated by redistributing the points located within the looped area

(Figure 3.5). The interpolation formula is given below:

:‘c“Pif =1 —-r)Zp +rZp,,, 3.7
where, ©p, denotes the position of point P; which is to be deleted from the loop, Z ./ denotes the
new point position to be inserted which corresponds to the deleted point P;; r is the interpolation
ratio at 4-th point. This approach requires considerable trial and error, and the resulting interfaces

are not always satisfactory.

(a) Before smoothing

P
R B p o op By
(b) After smoothing

FIGURE 3.5 Smoothing algorithm

In the procedure described by Glimm er al. (2000), an algorithm is applied to resolve self-
intersections by either re-triangulating the relative elements after removing unphysical surfaces,

or reconstructing the interface within each rectangular grid block in which crossing is detected.



26

Other types of techniques to eliminate self-intersections use the properties of curves and surfaces,
i.e. control points, derivatives, curvature etc. Blomgren (1981), Tiller and Hanson (1984), and
Coquillart (1987) approached the problem by offsetting the control polygon for NURBS curves.
Kulczycka and Nachman (2002) extended this idea to propagate surfaces by offsetting control
points. Piegl and Tiller (1999) sampled offset curves and surfaces based on bounds on the second
derivatives to avoid self-intersections. In the method developed by Sun ef al. (2004), control points
are repositioned to reduce local curvature in areas where local self-intersections may occur, while
the rest of the control points remain unchanged. Farouki (1986) described an algorithm which first
decomposes the original surfaces into parametric patches, and then uses Hermite interpolation to

construct the offset surfaces.

3.2.3 Trimmed surface offset method

Kumar er al. (2003) proposed an algorithm to offset a trimmed NURBS surface (Please refer to
Fig. (3.6)). In this development,

1. the underlying surface of the trimmed surface is propagated along the normals with the given

offset distance;

2. the computed offset surface is extended in all four sides with a distance equal to the offset
distance to avoid the numerical difficulties in computing the parametric images of the offset

trimming loops on the offset surface;

3. for trimming loops, trimming curves are first propagated along the underlying surface normal

with the given offset distance; then the corresponding surface curves on offset surface for
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cach of these 3D offset trimming curves are computed; finally, offset trimming loops are

constructed using all the offset surface curves;

4. the offset trimmed NURBS surface is created using the extended offset surface and all the

offset trimming loops.

This approach works under the assumption that the singularities should not occur after surface
propagation, which means that the offset distance should be everywhere less than the local curva-

ture radius.

underlying surface

FIGURE 3.6 A trimmed NURBS surface (Kumar et al. (2003))

3.2.4 Marker Particle Method

The marker particle method is known under a variety of names, including marker particle tech-
niques, string methods, nodal methods whose detailed descriptions can be found in Sethian (1982);

Sethian (1985); Osher and Sethian (1988).
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The difference between this method and the NURBS offset method lies in the way the normal
directions are calculated. In the NURBS offset method, relations from differential geometry are

used to represent normal vectors. While the marker particle method uses parameterized equations.

The unit front normal vector 77 in Eqn. (3.1) is parameterized into segments along the parameter
direction s. Replacing 7i by finite difference approximations, offset curves or surfaces are gener-
ated by successively applying the resulting set of algebraic equations. Since this method captures
a strong solution to the offset problem, self-intersection problems are unavoidable, and an addi-
tional scheme to detect and remove warped areas from the result is required. The front offsetting

algorithm is given below:

1. Front parameterization
The front is parameterized into segments along parameter s, thus the normal vectors can be

replaced by the parameter derivatives.

7l = (s, Ys, 25) (3.8)

2. Finite difference approximations
The numerical solution of Eqn. (3.8) is obtained by replacing the parameter derivatives at

each grid point by central differences;

3. Advancing-layer generation
Finally, these approximations of parameter derivatives are substituted into Eqn. (3.1), which
yields a system of algebraic equations. The advancing-layer is generated by successively

solving this transformed differential equation.
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Helmsen (1994) has used de-looping procedures in an attempt to remove the wrapped areas (self-
intersection area) directly from the result. While these procedures are sometimes manageable in
two spatial dimensions, they become increasing intractable in three spatial dimensions (Sethian

(1999)).

3.3 Indirect Offset Method

The indirect Offset Method models the front propagation problems into hyperbolic partial differ-
ential equations, in which both the initial front and propagated fronts are implicitly embedded into

the equations. The numerical solution of the equations is the resulting front.

There are two ways of embedding the fronts into hyperbolic PDEs. The first is the Level Set Method
which was developed by Sethian (1996). This method views the front propagation as an initial
value problem where the resulting front is obtained by repeatedly iterating in time space. The other
method is the Eikonal Equation Based Method which is promoted by this work. This method deals
with the front propagation problem as an initial boundary problem. This section will discuss the

methods used to solve these equations.

3.3.1 Level set method

The Level set method developed by Sethian and Osher (Sethian (1988)) models front propagation

problems as a hyperbolic differential equation:

¢+ F|Veg| =0 (3.9)
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where ¢ is the level set function, which represents the offset distance to the original curves or
surfaces. F' is the propagation speed function, and t is the time step. In this representation, the

original front and propagated front are implicitly embedded into the Level Set model.

The main idea of the level set methodology is to embed the propagating interface as the zero level
set of a higher dimensional function ¢. The Level Set model links the evolution of the function
¢ to the propagation of the front itself through the time-dependent initial value problem given by
Eqn. 3.9. Atany time, the front is given by the zero level set of the time-dependent function ¢. Or,
in other words, the level set value of a particle on the front with path Z(¢) must always be zero at

any time ¢.

The level set method employs a local Riemann scheme to solve the initial differential equation
which uses values upwind of the direction of information propagation. A more comprehensive
discussion of the Riemann scheme can be found in Engquist and Osher (1980). The numerical
scheme for solving Eqn.(3.9) was given in Sethian (1996). The significant contribution of this
scheme is that self-intersection problems are avoided in a natural manner. Kimmel applied level

set equation to offset NURBS curves and surfaces in Kimmel and Bruckstein (1993).

Weaknesses of this method include: (1) The result of offsetting curves or surfaces are dependent
on many other factors, i.e.: offset speed F', curvature k etc., which increase the complexity of the
algorithm, and degrade the precision of offsetting curves or surfaces; (2) it requires re-initialization
of the level sets during calculation to maintain a nice level set representation, which increases the

cost of computing time.
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3.3.2 The Eikonal equation based method

This research proposes to offset the front using the Eikonal equation. Many efforts were made to-
wards solving the equation in the last two decades: upwinding schemes (Trier and Symes (1991),
Vidale (1988)), dynamic programming sweeping methods (Schneider et al (1992)), Jacobi itera-
tions (Rouy and Tourin (1992)), semi-Lagrangian schemes (Falcone and Ferretti (1994)), down-
n-out approaches (Dellinger and Symes (1997), Kim and Cook (1999)), wavefront expanding
methods (Qin et al (1992)), adaptive upwinding methods (Qian and Symes (2002)).

The fast sweeping methods (Boue and Dupuis (1999), Zhao et al (2000), Tsai et al (2003), Kao
et al (2004), Zhang et al (2004), Zhao (2005)) and fast marching type methods (Tsitsiklis (1995),
Helmsen et al (1996), Sethian (1996), Kimmel and Sethian (1998)) both are efficient methods
designed to solve the nonlinear system directly using causality of the PDE. Only these two methods

are discussed in this section.

The fast marching method has a computational complexity of Q(M log M), since a heap-sort is
used at each step. M is the total number of mesh points. The fast sweeping method has a computa-
tional complexity of (M) for Cartesian grids (Zhao (2005)). If the first order monotone scheme
is used, both schemes will obtain the same accuracy, which is determined by the discretization
size. In general only O(0.5h) precision (Crandall and Lions (1984)) and h log h convergence can
be expected (Zhao (2005)), with & the Cartesian mesh size.

The present work uses the fast sweeping method, because (1) it provides a better computational
complexity (£2(M)) compared with the fast marching method (§2(MlogM)); (2) its implementation
is straightforward and easier than the fast marching method, since its data structure is an array,

while the fast marching methods uses heap data structure; and (3) the parallelized algorithm can
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be directly applied to this scheme.
Fast Sweeping Scheme

The original fast sweeping method was inspired from the work of Boue and Dupuis (1999) using
Gauss-Seidel iterations with alternate sweeping orderings.The crucial idea behind the fast sweep-
ing method developed in Zhao (2005) is that all directions of characteristics can be divided into a
finite number of groups; any characteristic can be decomposed into a finite number of pieces that
belong to one of the above groups; there are systematic orderings that can follow the causality of

each group of directions simultaneously.

On a rectangular grid there are natural orderings of all grid points. For example, in the two-
dimensional case, there are four characteristic directions, up-right, up-left, down-right, and down-

left, which yield four possible orderings to cover the entire computational domain.
Fast Marching Scheme

The basic idea of the fast marching method (Sethian (1996)) is summarized below. Initially, the
closest points data in the zero band that surrounds the surface is computed. This closest point data
in the zero band determines the closest points in the narrow band on the distance grid. Then this
data on the narrow band is marched outward and inward to calculate the closest points in the rest

of the distance grid.

Suppose there are M points in the distance grid. Each distance grid point is stored in a heap,
and is removed from the narrow band once. The cost of adding and deleting elements from the
narrow band is proportional to the Jogarithm of the number of points in the narrow band, thus the

computational complexity of recomputing the distance is Q(MlogM).
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3.4 Conclusion

Overall, among all of these reviewed propagating methods, the advantage of the DOM methods
is that the entire or partial original parameterization information is well preserved, but the self-
intersections problem is addressed in an ad hoc way requiring heuristics for detection and removal.

This does not lend itself to a fully automatic procedure.

The indirect offset methods prevail over direct offset methods, and bring a significant improve-
ment and an elegant way in avoiding self-intersection problems. They intrinsically prevent self-
intersections by constructing numerical solutions to the offset problem. In these methods, corners
and cusps are naturally handled, and topological changes can take place in a straightforward and
rigorous manner. Complex motion, particularly those that require surface diffusion, sensitive de-
pendence on normal directions to the interface, and sophisticated breaking and merging, can be

straightforwardly implemented, without user intervention (Malladi and Sethian (1996)).

For the above reasons, the present work applies the indirect method, but a simpler mathematical
model - the Eikonal equation, for solving the offset problem. The fast sweeping method is used to
solve the Eikonal equation. The derivation of the Eikonal equation and the details about the fast

sweeping numerical scheme are presented in Chapter 4.
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CHAPTER 4

THE SOLUTION OF THE EIKONAL EQUATION

Among the reviewed offset methods, the level set method prevails over other methods. It uses
an upwind scheme to calculate the weak solution of the level set equation, which brings a signif-
icant improvement in the treatment of curves or surfaces local self-intersection problems during

propagation.

However, the result of offsetting curves or surfaces are dependent on many factors, such as the
calculation of offset speed F' and curvature k, and re-initialization of the level set function dur-
ing calculation are required to maintain an accurate level set representation. These requirements
increase the computing time, and complicate the implementation. In this chapter, the use of the
Offset Distance Equation instead of the level set PDE is proposed. This equation directly repre-
sents the connection between the offset distance ¢ and the space coordinates, thus simplifying the

mathematical model. In addition, this results in a more computationally efficient algorithm

The fast sweeping method proposed by Zhao Zhao (2005) is directly used to solve the equation.
The contributions of the presented work include: 1), extending the Eikonal equation to solve the
front propagation problem; and 2) validation of continuous surface (Theorem 4.4 of Zhao (2005))
in 3-dimension using the fast sweeping method; 3) development of an initialization algorithm to

compute initial ¢ values for continuous surface.
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4.1 Introduction

The distinction between the proposed Offset Distance Equation and the level set method is that
they deal with front propagation problems from different perspectives, that is, stationary and dy-
namic, respectively. In the Level set method, the front propagation problem is treated as an initial
value problem in which initial values of the level set function ¢ are known in the computational
domain. This ¢ function evolves in time in such a way that the zero level set of the function is
always identified with the propagating interface. The zero level set needs to be extracted from the

computational domain.

The present method casts the front propagation problem as the solution of a boundary value prob-
lem, in which the front to be offset is the zero level set and is viewed as the boundary condition.
The iso-¢ curves or surfaces which are equal to the given offset distance is the resulting offset and

needs to be extracted from the computational domain.

The present method preserves all the advantages of the level set method, i.e., natural and accurate
ways of tracking sharp corners and cusps, and handling subtle topological changes of merger and
breakage, since both the level set method and the present method rely on viscosity solutions of the
associated partial differential equations in order to guarantee that a unique, entropy-satisfying solu-
tion is obtained. In addition, the present method requires no time step, and hence its approximation

is not subject to CFL stability conditions, unlike the level set method.

One of the limitations of the present method compared with the level set method is that it can
solve only equal distanced propagation problems since there is no speed function embedded in the

Eikonal equation.
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As is also the case with the level set method, the parametric connection with the parent layer is
not preserved. Offset surfaces are extracted from the computed ¢ field as iso-value surfaces. This
results in a triangulated surface representation which has to be re-parameterized. Transforming

this parameterization or connectivity information into offset surfaces is investigated in Chapter 5.

4.2 Derivation of the equation

Let I be the curve or surface to be propagated which can be closed or open; Pbea point in the
domain of interest 2, ' C €2; and ¢ be the smallest Euclidean distance between the point P and
the curve(surface) I'. To represent the distance function ¢, a point Py is defined which meets the

following conditions:

1. ]30 islocated on I';

2. the Euclidean distance between P and ]30 is the minimum Euclidean distance between P and

I

Then the ¢ function can be expressed as

¢ =|P - Py, 4.1)

in which ¢ is 0 when P lies on I'. In a 3D Cartesian frame of reference, let P = (z,y,2),

]30 = (Zo, Yo, 20), then Eqn. (4.1) can be written as
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¢(x,y,2) = V/(z —20)2 + (y — ¥0)2 + (2 — 20)2. 4.2)

The first derivatives of ¢ in the z, y and z directions are:

?ﬁéz T — Ty
0z \fle =02+ (y—yo)® + (2 — 202’
06 _ Y — Yo
AW \(w—20)?+ (y—v0)? + (2 — 20)2
0¢ zZ =2

0z \flz —20)* +(y = y0)? + (2 — 20)* 4.3)

A squared summation of the first derivatives (Eqn. (4.3)), yields the distance offset equation, which

can be written in a more practical form:

96\* _ (99\* . (99
bt s =] =1 4.4
<8x) * <8y * 0z @4
This equation can be cast into a more general and formal manner for any dimension or frame of

reference as the boundary value problem:

{ V¢-V¢=1q (4.5)
6=0 ifPeTl



38

where ¢ is the minimum Euclidean distance between the front (I') to be propagated and P, an

arbitrary point in the computational space (2.

4.3 Discretization of the ¢-field

The geometry information of the front to be propagated is given as line segments in 2D, or tri-
angular faces in 3D. The representation of the original curves or surfaces does not impact on the
method, as long as it provides intersection tests and closest point interrogation procedures. For
instance, as illustrated in Fig. 4.1(a), a curve which is originally represented using NURBS, is first

discretized into line segments before propagation.

The second step is to define and discretize the domain 2 (see Fig. 4.1(b)). It is constructed by
enlarging the bounding box of the original geometry by 5% to 40%. The domain {2 is discretized
into an equally spaced Cartesian grid of square (cube) elements in 2D (3D), i.e. h = Az = Ay(=

Az). This is to simplify the procedure and is not a restriction of the algorithm.

The Cartesian grid nodes are classified into two types: boundary-nodes, and non-boundary-nodes.
If I intersects an edge constructed between two Cartesian grid nodes, then all the nodes belonging
to the cells sharing this edge are marked as boundary-nodes. In Fig. 4.1(c), suppose a boundary
segment (.5;.5; 1) passes through an edge which consists of two Cartesian grid nodes (ab), then all
the nodes belonging to the two neighboring cells are marked as boundary nodes. All the rest of the

Cartesian nodes are called non-boundary nodes.

Boundary-nodes To enforce the boundary condition, ¢ = 0 when (z, vy, 2) € T, exact distance (¢)

values are assigned to boundary-nodes. These are kept fixed during the sweeping calcula-
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Discretizati f boundary T’
(a) Discretization of boundary of domain O

(b) Construction and discretization

. Boundary-nodes

Projection lines

~Front segment

Cartesian grid

(c) Boundary-nodes definition

FIGURE 4.1 Problem discretization
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tions. The exact value is calculated by projecting a boundary-node onto the front segments
and the minimum length of this projection line is the value to be used for initializing the ¢
value of this boundary-node (see Fig. 4.1(c)). To accelerate boundary-node detection, the
line segments in 2D (or triangles in 3D) are stored in an Alternating Digital Tree (ADT), as

described by Bonet and Peraire (1991).

Non-boundary-nodes A large positive value is initially assigned to all non-boundary-nodes, which

is updated subsequently by the sweeping algorithm.

4.4 Computation of ¢

The following is an extended description of the Fast Sweeping Method algorithm presented by

Zhao (2005), as applied in 3D in the present work.

A 3D Cartesian grid system is used to discretize Eqn. (4.4), with a uniform step size in the z, y

and z directions, given as Ax = Ay = Az = h. Distance function derivatives -.g—f, g—j and -g#f are

replaced by upwind differences,

0  Piii—a
or h
dp ot —b
oy B
ol _ Cbi,j,k - C
a_z' _— —h'—'. (4.6)

In the above equations, (3, j, k) are the indices for the Cartesian grid nodes in 3D, ¢ is the sweep
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counter, and a, b, ¢ are defined as

a= mm(‘/)f—l,j,k» ¢§+1,j,k) i=2,..,1-1
b= min((bﬁ,j_l,k, ¢§,j+1,k) J=2,.,J -1
C = mzn(¢,tl7]k_17 ¢§,]7k+1) k = 27 reey K - ]. (4.7)

In Eqn. (4.7), I, J and K are the total grid number in the z, y and z directions respectively. a, b
and c are determined by their internal neighboring values wheni = lor/,j=1lorJand k =1
or K. Replacing the partial derivatives into Eqn. (4.4) by their discrete approximations defined in

Eqgn. (4.6), yields:

=T+ [l =0T + [ -a7] = 9

where function (m) " is defined as:

( )+ m, whenm > 0
m et
0, whenm <0

Re-arranging a, b, and ¢ so that a < b < c, the discrete solution gbf*]‘lk to Eqn. (4.8) can be obtained

by the following algorithm:
let Gtemp =a+h

1. if, ¢remp < b, then gbf“;lk = Premp» and it is the solution to Eqn. (4.8);

—{a—>b)2
2. else, let Premp = (a+b)+4/2h7—(a—b)?

2
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(@) 1f, ¢remp < c, then qﬁf*]‘lk = Premp, and it is the solution to Eqn. (4.8);

b 3h2 4 2(ab+ botac—a? —b2—c? . .
(b) else, (ﬁf';lk _ (etbrory/any (‘;+ craca ?) and it is the solution to Eqn. (4.8).

The new value ¢7'5; at node (4, j, k) is chosen as: @754 = min(¢} ¢f§1k)

The old value (1557 ;. 18 always replaced by ¢75" in the sweeping calculation process.

To enforce the boundary condition, exact values at Cartesian grid points on or near I are assigned
by projecting them to the front as illustrated in Fig. 4.2. Then the fast sweeping algorithm is applied

to calculate the ¢ field for the rest of grid points in the Cartesian domain.

N
# P
w,M?’f v
; §
L b
} v
/ |
A /
! ]
%
N ’j o
ke
"/ \\y{\
o, L >
P"‘"«L _ s_,_«-vi\

FIGURE 4.2 Initializing exact ¢ for all near boundary nodes
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Algorithm 1 updating ¢ (one sweep example)
fork=1,Kdo
forj=1,Jdo
for:=1,1do
1) calculate a, b, and ¢
2) calculate ¢},
3) calculate ¢T<¥

i5.k
P = min(el, 4, 9 %)
end for
end for
end for

Gauss-Seidel iterations are used to update ¢’s at non-boundary-nodes. Algorithm 1 gives an ex-

ample for one sweep in 3D.

One-sided difference schemes are used at the boundaries of ) for the values of a, b, and ¢ in the
updating process. i.e. a = ¢} ;, wheni = 1; and a = ¢%t_y jx When i = I. The same rule applies
for b and c values at boundaries of 2. The one-sided difference schemes at the boundaries of £
enforces the propagation of information from inside the domain {2 to the boundary, since the data

set I is contained in 2. For example, at boundary 1 ; x, the following equation is used:

(D155 — Pan)” + (15 — 02 + (@4 — o) = 12 (4.9)
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4.5 Validation of Accuracy

4.5.1 Norms (L, and L) definitions

In the accuracy validations, we use L, and L, norms to analysis the results, which definitions are

given below:

L, represents the local norm and it is defined as
Ly = ((Q_(Dicsoce = Piayera))/1)" (4.10)
i=0
L represents the global norm and it is defined as

n

Loo = (Y (Pienses = Biupprs))/ 1 (4.11)

=0

where ¢;,,,., is the exact minimum Euclidean distance to the front from point P; (P, € €, 2 is the
computational domain), ¢;, ... is the minimum Euclidean distance calculated by the fast sweeping

scheme, n is the total number of the Cartesian grid points.

4.5.2 Theorems

We will use Theorems 4.1, 4.3 and 4.4 for accuracy validation purpose. These theorems are proved

in Zhao’s work and are used directly in this research.

In Theorem 4.1, Zhao (2005) states that for a single data point, the numerical solution of the fast
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sweeping method converges after 2" sweeps in R", and the error of the numerical solution by the
fast sweeping method is bounded by Q(|hlog(h)|), where n is the spatial dimension, and h is the

Cartesian grid size.

In Theorem 4.3, Zhao (2005) states that for an arbitrary set of discrete points, the error of the
numerical solution by the fast sweeping method is bounded by Q(|hlog(h)|) after 2™ sweeps in

R™, where n is the spatial dimension, and £ is the Cartesian grid size.

In Theorem 4.4, he states that for smooth curves or surfaces, the error of the numerical solution by
the fast sweeping method is bounded by Q(hlog(+)) after 2" sweeps in R", where n is the spatial

dimension, and & is the Cartesian grid size.

4.5.3 Test cases

The presented results show that all computations are carried out using four sweeps in two dimen-
sional domain and eight sweeps in three dimensional domain. Convergence is not influenced by

grid size, but the spatial dimension only.
2D test

The fast sweeping scheme has been implemented in 2D and validated with example 2 in Zhao’s
work. In this test, the domain is a unit square, a single data point is located at (%, —\1@) Table
4.1 shows the errors measured in different norms with different grid sizes. For one single point,
the fast sweeping method converges exactly in four sweeps in two dimensions, which is coincident
with Theorem 4.1 in Zhao (2005). Fig 4.3 is the graphical illustration of the comparison of the

norms for this test. From this figure, we can see that Ly and L is quasi-linearly convergent with



h 0.02 | 0.01 | 0.005 | 0.0025
[hxlog(h)] | 0.0340 | 0.02 | 0.0115 | 0.0065
Ly 0.02885 | 0.01386 | 0.00554 | 0.00307
Leo 0.04981 | 0.02440 | 0.01097 | 0.00672

TABLE 4.1 Norms Comparison: a single data point

0.06
0.05
0. 04
0.03

Norm

0.02
0.01

0.01

0. 005

Mesh Size

i

0. 0025

oo

'—*; L27 ) V WVZJ

FIGURE 4.3 Norms Comparison: a single data point

mesh size, and L, is bounded by the maximum error as stated in Theorem 4.1.

3D tests (sphere and cube)
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In addition, two simple 3D analytical test cases have been used to determine the accuracy of ¢ for

the proposed algorithm. These test cases are a sphere, centered at (0,0, 0) with radius r = 0.15,

with a Cartesian frame of 0.5x0.5x0.5, and a cube centered at (0,0, 0) with size of 0.3x0.3x0.3,

and a Cartesian frame of 0.5x0.5x0.5. In these cases, the exact solutions are known, so that the

convergence behavior of the method can be easily evaluated.

From Theorem 4.3 and 4.4, we can see that the error of the fast sweeping scheme is dependent

on the Cartesian mesh size. For this reason, the error of the computed solution is only analyzed
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h 0.05 0.025 0.0125 0.00625
o+ log(R)] | 0.065 0.04 0.024 0.014
L, 0.0100132 | 0.0056586 | 0.00299202 | 0.00154483
Lo 0.0397926 | 0.0257559 | 0.0160101 | 0.00965976

TABLE 4.2 Norms Comparison: Sphere case

as a function of the Cartesian mesh size. For the sphere, the original front is specified as isolated
points, and the initial ¢ values at all the boundary-nodes are initialized using the exact distances
to the sphere surface. For the cube, the discretization for the geometric front is specified, and the

behavior of the two norms (L, and L) is studied as a function of the mesh size.

Table 4.2 presents the comparison of the two norms for meshes varying from 0.05 to 0.00625 for
the sphere. In this case, the sphere surface, T', is viewed as an arbitrary set of discrete points, thus
the predicted bounding error behavior is |hlog(h)| (see Theorem 4.3 of Zhao (2005)). Table 4.3
presents the norms comparison for the cube, for mesh size A varying from 0.02 to 0.0025. Ac-
cording to Zhao (2005) (see Theorem 4.4), the expected bounding error behavior in this case is
hlog(1/h), since the cube surface, I, is viewed as a smooth surface. Table 4.2 and 4.3 show that

the results converged after eight sweeps in sphere and cube cases.

Figs. 4.4 and 4.5 are the graphical illustrations of the comparisons of the norms for the sphere and
cube respectively. From these figures it can be seen that L, and L, are quasi-linearly convergent
with mesh size, and bounded by the maximum error predicted by Zhao (2005). These results

confirm the expected convergence of the scheme using eight sweeps in 3D.
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FIGURE 4.4 Norms Comparison: Sphere case
h 0.02 0.01 0.005 0.0025
hxlog(1/h) | 0.034 0.02 0.0115 0.0065
L, 0.00353006 | 0.00188081 | 0.00106662 | 0.000606601
Lo 0.0224117 | 0.0149685 | 0.00950699 | 0.00567656

TABLE 4.3 Norms Comparison: Cube case
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FIGURE 4.5 Norms Comparison: Cube case

4.6 Applications

The surface offsetting methodology described in the previous sections is now applied to the prob-
lem of near body domain decomposition through the generation of thin skins near solid boundaries
in several different configurations. This is achieved by capturing iso-¢ curves in 2D or surfaces in
3D obtained by interpolating the distance field values at the Cartesian grid nodes. Since all the in-
terpolating points are isolated points, the resulting surfaces are in the form of triangulated surfaces

in 3D.

4.6.1 Validation of topology

The purpose of these test cases is to illustrate how the surfaces are naturally broken at the cusps

without user intervention. Fig 4.6 shows the inward propagation results of two different geometric
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configurations. Fig. 4.6(a) defines two circles, the inner circle being tangent to the outer one.

Fig. 4.6(c) consists of one closed line with a self-intersection loop at the top of the domain.

Fig. 4.6(b) and 4.6(d) show that both configurations behave identically during propagation. In
both cases, the size for the Cartesian grid is 0.01, and the propagation distance is 0.02. From these
results, we can see that when the original geometries are inwardly propagated a topological change

occurs and the original curves are split into two curves.

4.6.2 Turbine cascade

Propagation of the two-dimensional turbine cascade model shown in Fig. 4.7(a) demonstrates how
the scheme avoids global warping problems. The two closed curves represent the stay vane and the
wicket gate blades of a turbine distributor which are the solid boundaries in direct contact with the
fluid. The two outside curves are periodic lines, which are artificial interfaces added for studying
the flow phenomena in multiply-bladed turbo-machines. The objective is to generate thin layers
around the two blades by outwardly offsetting their fronts. In this case, the two closed curves
forming the fronts may clash with each other when the propagating distance is greater than half
of the minimum distance between the two blades. In addition, for a given propagating distance,
there are two iso-curves with the same ¢ value for each blade, one inside, and the other outside the
blades. To correctly identify an inward or outward propagation in a closed domain, the sign of ¢

at each Cartesian grid is defined as follows:

e ¢ > 0 when a Cartesian grid is outside the blades;

e ¢ = 0 when a Cartesian grid is on the blades;
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(b) Inward propagation result

(a) Two tangential circles

(d) Inward propagation result

(c) A self-intersection loop

FIGURE 4.6 Results
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(a) Geometry definition

(b) Sample output

FIGURE 4.7 Turbine cascade



53

Boundary-reference-point Cartesian-grid-point
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FIGURE 4.8 ¢ sign detection

e ¢ < 0 when a Cartesian grid is inside the blades;

Figure 4.7(b) illustrates a sample output in which the fronts are outwardly advanced by the same
value at each propagation step. It is noted that when the propagation distance is greater than a
certain value, the two fronts do not conflict with each other, illustrating that global self-intersection
is naturally avoided by the scheme itself. However, the trade-off is that topological information

from previous levels is changed when the two propagated curves merge into a single front.
Algorithm to determine the sign of the ¢ function

The procedure to determine the sign of the ¢ function is shown in Fig. 4.8:

1. construct a line from a Cartesian grid point to the boundary reference point, which can be

any point located at the boundary of Cartesian frame.

2. detect the number of intersections between this line and the geometric boundaries. If the



54

number of intersections is an even number, then the sign at this grid point is positive; other-

wise it is negative.

4.6.3 Heat exchanger

To illustrate the ability of the scheme to handle the propagation in a multi-connected open domain,
with sharp corners, a heat exchanger configuration was used (Fig. 4.9) including circles in the
middle representing the pipes, surrounded by a shell. Both the internal shell of the heat exchanger
and the outside walls of the pipes are in direct contact with the fluid. For the purpose of studying
the internal flow inside this configuration, all the pipes are outwardly propagated, and the shell of

the exchanger is inwardly propagated.

Figure 4.9(a) is the geometry of the heat exchanger without defining inlet and outlet boundaries.
These are introduced as artificial permeable interfaces in Fig. 4.9(b) and make the exchanger a

closed domain.

As shown in Fig. 4.10 the front is not differentiable as there is a sharp corner. The results show both
convex and concave propagation behaviors of this discontinuous front as the shell moves along its
inward and outward normal directions. After four sweeps, the distance between each propagation
1s 0.2. Fig. 4.10(a) and Fig. 4.10(b) show the propagation of this sharp front for two different

meshes, i.e. 61x81 and 241x321, respectively.

From the results of Fig. 4.10, it can be seen that:

¢ The present method does not require the initial front to be differentiable, i.e. the method can

handle a front with discontinuous points.
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FIGURE 4.9 Heat exchanger configuration
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e Local self-intersection problems are naturally avoided by the numerical scheme itself with-

out adding any extra self-intersection detection and removing algorithm.

e If the direction which blunts the sharp corner is defined as the outward propagation, and
the direction which sharpens the sharp corner is defined as the inward propagation, then the
present method can deal with both convex and concave geometries without special treatment.
The shell can be viewed as a convex shape when the shell is inwardly propagated, or a

concave shape when it is outwardly propagated.

e The behavior of corner propagation can be controlled by varying the mesh size which directly
influences the propagation behavior. As the mesh is refined, a sharp corner will be uniformly

blunted or rapidly sharpened.

Figure 4.11 illustrates three distinct configurations corresponding to different boundary conditions,
the detail about each boundary configuration is discussed below. The results are all obtained using

the same mesh definition and a propagation distances between iso-curves of 0.2.

Figure 4.11(a) is the propagation of the front defined in Fig. 4.9(b), in which the inlet, the outlet
and the shell of the heat exchanger are treated as one closed domain. The sign of ¢ is defined as

follows:

e ¢ > 0 when a grid node is outside the shell (including inlet/outlet) of the exchanger; or when

a Cartesian grid is inside the holes (the pipes);
e ¢ = 0 when agrid nodeisonI’;

e ¢ < 0 when a grid node is inside the shell and outside the holes (the pipes).
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(b) Pattern 2- No inlet/outlet boundary conditions

(a) Pattern 1- Solid inlet/outlet boundary conditions

(c) Pattern 3- Permeable inlet/outlet boundary condi-

tions

FIGURE 4.11 Boundary conditions
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Fig. 4.11(b) is the propagation pattern for the configuration of Fig. 4.9(a). In this case the shell of
the heat exchanger is an open boundary, and to correctly capture the propagated curves, the sign of

¢ 1s set as follows:

e ¢ =0whenagridnodeisonT[;
e ¢ < 0 when a grid node is inside the pipes;

e ¢ > () elsewhere.

The appropriate configuration depends on the nature of the physical model. For instance, in through
flow configurations neither Fig. 4.11(a) nor 4.11(b) are correct propagation patterns for studying
the viscous flow in such a geometry. To obtain a correct propagation, a new type of boundary is
required. These are inlet/outlet surfaces and are not solid but rather porous and open. These special
boundary conditions must be applied to boundaries which do not propagate. It is a restriction to the
propagation treatment, which confines the propagation path of extreme points to a preset trajectory.
In Fig. 4.11(c), extreme points are the intersection points betWeen the shell and the inlet or outlet
surfaces. In general, all extreme points are marked in the post processing step, and they should
meet two constraints: (1) their ¢ values are set equal to the propagated distance, and (2) their

propagation paths lie on special boundaries.

To get Fig. 4.11(c), we first capture Fig. 4.11(b), and then add the inlet and outlet as special
boundary conditions into Fig. 4.11(b) (see Fig. 4.12(a)). The porous inlet and outlet surfaces are
then used to trim the extra part located outside of the shell (see Fig. 4.12(b)). Figure 4.12(c) shows

the final inward propagation result.
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4.6.4 Draft tube

To illustrate the importance of correctly treating of boundary conditions in real applications, the
propagation method is applied to an industrial configuration in hydraulic turbo-machinery. The
geometry consists of an external shell, the draft tube, with two internal obstructions, the piers and
an extension. As shown in Fig. 4.13, it is essentially a duct or a cylindrical surface, bent into an
elbow where the cross-section makes a transition from a circle to a square. To study the internal
flow for this draft tube, the domain is decomposed into several partitions consisting of a skin in
the vicinity of the solid walls and an internal core volume. Such multiple blocks are necessary to

generate high aspect ratio elements in the grid generation process.

From the point of view of surface propagation, the geometry in this example is rather complex:
it is a multi-connected domain, because there are two holes (piers) inside the domain; it includes
both convex and concave shapes in its outside wall; the input geometry is not smooth, it has sharp
corners; boundary conditions require special treatment for a correct propagation at the inlet and
outlet surfaces. These through-flow (porous) surfaces exactly seal the entrance and exit part of
this draft tube, and make it a closed domain. This leads to two distinct propagation problems
depending on the way propagation is treated. In the first instance (see Fig. 4.14), the inlet and
outlet surfaces are propagated as part of the draft tube surface. The draft tube’s external shell
is entirely shrunk along its internal normal direction. For fluid mechanics analysis, it is not the
expected propagation result, because the extreme points located at the rim of the entrance and exit

surfaces are not propagated correctly.

In the second instance (see Fig. 4.15), the draft tube surface is propagated distinctly from the inlet
and outlet surfaces. These are not propagated and thus make the draft tube an open domain. In this

test, the wall of the draft tube is dealt with as an open domain and the propagated surface looks
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like a hollowed shell which wraps around the original front. To get the correct propagation result,
an algorithm is developed to remove the extra part which is located outside of the inlet, outlet and
the wall of the draft tube. Fig. 4.16 presents the correct output from two different points of view
after removing the extra part. In this case, the wall of the draft tube is correctly propagated in its
inward direction. The inlet and outlet surfaces work as special boundary conditions, and restrict

the extreme points located at the entrance and exit part to be propagated correctly.

4.7 Discussion

The front offset method discussed in this chapter casts the front propagation problem as the solution
of a boundary value problem, in which the front to be offset is the zero level set and is viewed as the
boundary condition. Both the original front and the resulting propagation are implicitly embedded
into the equation. The iso-¢ curves or surfaces which are equal to the given offset distance is the

resulting offset. The offset front needs to be extracted from the computational domain.

The present method preserves all the advantages of the level set method, i.e., natural and accurate
ways of tracking sharp corners and cusps, and handling subtle topological changes of merger and
breakage, since both the level set method and the present method rely on viscosity solutions of the
associated partial differential equations in order to guarantee that a unique, entropy-satisfying solu-
tion is obtained. In addition, the present method requires no time step, and hence its approximation

is not subject to CFL stability conditions, unlike the level set method.

The presented work uses the fast sweeping method, because (1) it provides higher computational
efficiency (Q2(M)) compared with the fast marching method (Q(MlogM)); (2) its implementation

is straightforward and easier than the fast marching method, since its data structure is an array,
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while the fast marching methods uses heap data structure; and (3) the parallelized algorithm can

be directly applied to this scheme.

The ¢ field computed by the present method can be used to calculate the normal directions for
propagating front, and the extended applications are presented in the next three chapters (Chapter 5
discusses the offset surface construction; Chapter 6 discusses the boundary layer mesh generation;

and Chapter 7 discusses a fluid flow simulation).



Extrem point Special boundary condition

(b) Extra part to be removed

Special boundary condition

Inward propagation

(c¢) Inward propagation result

FIGURE 4.12 Special Boundary Condition
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CHAPTER 5

APPLICATION 1 - APPROXIMATE OFFSET SURFACE CONSTRUCTION

As discussed in Chapter 2, the front propagation methodology based on the solution of a distance
function does not preserve the parametric connection with the parent layer. In this chapter a new
approach is proposed to enforce parametric consistency between I', the original surface, and T, its
offset. This is achieved by a combination of the traditional direct offset techniques and the present

Eikonal-based approach.

The main difference between the current method and traditional DOM methods lies in the manner
in which the local normal direction is computed. In DOM, the local normal directions are com-
puted using geometric information, such as the positions of neighboring points located on I'. The
central idea of the method is thus to propagate each discretized point of the original geometric
front I' along its normal direction in ¢ space rather than geometric space. This results in a method-
ology that in addition to resolving the self intersection problems, will also maintain the parametric

relationship between I' and I', in most circumstances.

In this work, only discrete surfaces are considered. The input geometric description is represented
using tesselated surfaces (i.e., triangulated cells or quadrilateral cells), the propagation methodol-
ogy is discussed in Section 5.1 and its validation is illustrated in Section 5.4. This is the main topic

of this chapter;
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5.1 Methodology

The original front can be represented either in NURBS form or discretized form (lines in 2D or
triangles in 3D). This section discusses the propagation of discretized curves/surfaces, described

using NURBS which can be descritized with arbitrary precision.

The given geometry I' is discretized by line segments (2D) or triangulated surface (3D), and is
embedded into a domain €2 large enough to cover I'. The offset is achieved by propagating all the

points located on I" along their local normal direction using the following equation:
=+ Fdt (5.1)

where [ is the unit normal propagation velocity.

We are now facing the problem of representing the relationship between the offset distance ¢
and the space coordinates. Using the discretization procedure described in Section 4.3, and the
algorithm of Section 4.4, the minimum Euclidean distance ¢ is computed at each Cartesian grid
node. This field is then used to evaluate the local unit normal propagation velocity V¢/|V¢| for

eachnodeonT.

After propagation, the final £**! are sequentially connected to construct I’y according to their
original connectivities. Thus parametric consistency between T', the original surface, and T,
its offset, is preserved, and all the points on I' and I, share a one-to-one parametric mapping.
However, when two fronts collide, the parametric information can not be maintained, such as in

the case illustrated in Fig. 5.1.

There are three essential steps in this method :



VR

70
1. The domain () is discretized using a uniform Cartesian grid;
2. The ¢ field is computed for each Cartesian grid node using the fast sweeping algorithm;

3. Each node located on I' is offset along its local normal direction according to the given

distance.

For each propagated point, ¢ values are obtained using the ¢ values at Cartesian grid points by

interpolation. From these, stopping and collision detection criteria are evaluated.

FIGURE 5.1 Collision detection criteria

Two stopping criteria are applied to each new propagated point !:

o If ¢ is equal to or greater than the specified propagation distance, i.e. ¢ > d;

¢ If the fronts to be propagated are too close, collisions between two offset fronts may occur
for a given propagation distance as shown in Fig. 5.1. In this case, when ¢ starts to decrease,

the condition ¢, 11 — ¢, < 0 1s used to stop propagation.
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5.2 Propagation of the Parameterization

The propagation equation is

V¢
Ty = —— (5.2)
LIVl
replacing 'y by a finite difference scheme, Eqn. (5.2) can be rewritten as
Vo
=4+ —dt (5.3)
Vol
The term % can be viewed as a unit propagation speed in the normal direction, with a positive

value for an outward propagation, and a negative value for an inward propagation. The propagation

process can be divided into three steps:

1. calculate ¢,, ¢, and ¢, at each Cartesian grid node using a centered finite difference scheme
for internal nodes, and one-sided finite difference scheme for the nodes located at the bound-
ary of 2. Then, calculate ¢,, ¢,, and ¢, for all the points to be propagated on I" using
interpolation (Fig. 5.2(a)).

2. propagate points on I' using a fourth-order Runge-Kutta method. Propagation is stopped
when the value of ¢ at position 11 is greater or equal to the given propagation distance. If
the value of ¢ at the final position ! is greater than the given propagation distance, linear

interpolation is used to determine the final position & t;,; as shown in Fig. 5.2(b).

3. construct I',, by sequentially connecting all points on I', using the parameterization informa-

tion conveyed from I'.

The 4" order Runge-Kutta method (RK4)
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The 4'" order Runge-Kutta (RK4) is specified as follows. Let 3/’ represents an initial value problem,

y' = f(t,y), (5.4)

with f : R x R — R, and (¢o,y0) € R x R is the initial condition. A solution to an initial value

problem is a function y that is a solution to the differential equation and satisfies

y(to) = o (5.5)
Then, the RK4 method for this problem is given by the following equation:

h
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where n is the iteration time, A is the incremental value at each interaction, and k; is the slope
at the beginning of the interval; k; is the slope at the midpoint of the interval, using slope k; to
determine the value of y at the point t,, + h/2 using Euler’s method; k3 is again the slope at the
midpoint, but now using the slope &, to determine the y-value; and ky is the slope at the end of the

interval, with its y-value determined using k3. They are calculated by:

ki =f (tnayn) 5.7
h h

ky =f (tn + 50 Yn + 5’%) (5.8)
h h

ks =f (tn + = Yn + *Lk:)) (5.9)
2 2

ky=f (tn + hyyn + hkg) (5.10)

5.3 Sweeping Behavior

It is shown Zhao (2005) (Theorem 3.6) that the iterative solution by the fast sweeping algorithm
converges monotonically to the solution of the discretized system. Furthermore, after 2" sweeps,
the error of the scheme is bounded by |hlogh/|, if T is an arbitrary set of discrete points (Theorem
4.3); or hlog(1/h), if I" is a smooth curve or surface (Theorem 4.4). Exponent n is the spatial
dimension, and £ is the mesh size. The proof of these theorems are presented in Zhao’s paper and
are directly applicable to the present work. In Section 5.4, Theorem 4.3 is validated using a sphere

surface, and Theorem 4.4 is validated using a cube surface.

Fig. 5.3 is a 2D example to illustrate the sweeping behavior in the calculation of the distance
function for a circle. In 2D, it takes 4 sweeps to get a converged solution, each sweep is carried

along a diagonal direction of the Cartesian grid. In Fig. 5.3(a), the sweep is performed from the
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right-lower corner to the left-upper corner. After the first sweep, the data located in the left-upper
quadrant is correctly updated; Figs. 5.3(b) to 5.3(d) illustrate the other three steps of the diagonal
sweeping process. After each sweep, one-quadrant data located in the destination area of the
sweeping direction is updated. The same sweeping procedure is applied in 3D. Since there are

eight vertices in a 3D Cartesian grid, it takes 8 sweeps to update the data located i:: the 8 octants.

The property of the above described sweeping behavior can be applied in the parallelized algo-
rithm. Since the sweeping process converges after 2" sweepings, we can send the sweeping calcu-
lations to n processors simultaneously to speed up the sweeping computing time, thus the efficiency

of the algorithm can be greatly improved comparing using only one processor.

5.4 Validation

This scheme has been applied to two test cases to verify the accuracy and efficiency of the method:
a circle centered at (0,0) with a radius of 0.5, and a cube centered at (0, 0, 0) with a side length
of 0.5. The Cartesian frame size is 1.0x1.0 for the circle and 2.0x2.0x2.0 for the cube. The
propagation is in the inward direction with an offset distance of 0.1, and a time increment of 0.01.
The number of discretized points on the front are fixed, and the Cartesian grid size varies from 212
to 3212 for the circle, and from 212 to 1613 for the cube. For the circle, the front is discretized into

39 line segments; and for the cube, the front is discretized into 76800 triangles.

The purpose of these validations is to establish that the accuracy is first order, and that the com-

plexity is Q2(N).
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5.4.1 Accuracy Validation

Propagating Tessellated Surface

To assess the accuracy and the order of convergence of the method, the L, and L., norms (Fortin
and Garon (2000)) are used to measure the error on the position of the propagated front. Table 5.1
and 5.2 give the comparison of Ly and L, for an inwardly propagated circle and an inwardly
propagated cube. Fig. 5.4(a) and Fig. 5.4(b) show that both L, and L, converge as the mesh size
is increased. As can be seen from these results, the method converges for increasing mesh size

with quasi-linear first order accuracy.

Mesh Size 212 412 8172 1612 3212
Ly 0.00497535 | 0.00315108 | 0.00244957 | 0.00182176 | 0.00136155
Lo 0.00548393 | 0.00367538 | 0.00319467 | 0.00246195 | 0.00172537

TABLE 5.1 Norm comparisons for an inwardly propagated Circle

Mesh Size 213 413 813 161°
Lo 0.0270416 | 0.01941 | 0.0132613 | 0.00864016
Loo 0.0601622 | 0.0449 | 0.0312165 | 0.020511

TABLE 5.2 Norm comparisons for an inwardly propagated Cube

Fig. 5.5(a) illustrates the result of propagating a circle in its inward direction using a coarse Carte-
sian mesh (mesh size=21%); and Fig. 5.5(b) illustrates the same propagation of a circle using a
refined Cartesian mesh (mesh size=321?). Fig. 5.6(b) shows the result of propagating a cube in its
inward direction using a coarse Cartesian mesh (mesh size=21%), and Fig. 5.6(c) using a refined
Cartesian mesh (mesh size=161%). From Figs. 5.5 and 5.6, we can intuitively observe that mesh

size directly influences the propagated front; more precise offset surface definitions are obtained
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FIGURE 5.4 Norm comparisons for inwardly propagated boundaries

when Cartesian mesh density is increased. The output circle in Fig. 5.5(b) is smoother than the
circle in Fig. 5.5(a), and the behavior for corners in the output cube in Fig. 5.6(c) are much sharper

than the cube in Fig. 5.6(b).
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(b) inward propagation (mesh (c) inward propagation (mesh
size 21%) size 161%)

(a) Cube geometry

FIGURE 5.6 Propagation of a cube (inward direction)

As shown by these numerical experiments, the propagated front position directly depends on mesh
size, since the unit propagation velocity in the normal direction, %, is entirely dependent on the
precision of the ¢ field, which is the numerical solution to Eqn. (4.4). The fast sweeping scheme

used to solve this equation is first order accurate with respect to mesh size and this dominates the



79

propagation accuracy.

5.4.2 Efficiency Validation

The computer used to evaluate time efficiency is under the Linux system (RedHat 9.0), CPU model

name is: AMD Athlon(tm) processor; CPU: 512M, cache size: 256 KB.

In order to evaluate the efficiency of the scheme, calculation times are divided into three parts, and

each is measured separately:

1. initialization time, which is the time used to initialize the boundary conditions, i.e. the exact

distance for the points near or on the front;
2. fast sweeping time, which is the time used to compute the numerical solution ¢ to Eqn. (4.4);
3. offset front obtaining time

e iso-front capturing time
In chapter 4, we discussed that the offset front needs to be extracted from the ¢ field.
In this case, iso-front capturing time is the time used to capture the constant-¢ fronts,

1.e. the interpolation time to compute the iso-value lines(surfaces);

® propagation time
In this chapter, we discussed that the offset front is directly obtained after propagation.
In this case, propagation time is the time used to advance all the points located on the

original front to their destination positions.
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Since there are two ways to compute the offset front obtaining time, in this section, we will compare
the results of the total consumed time using different offset front obtaining method. The total

consumed time is calculated using either:

total time = (initialization)+(fast sweeping)+(iso— front capturing) (Chapter 4) (5.11)

or

total time = (initialization) + (fast sweeping) + (propagation) (this Chapter) (5.12)

Tables 5.3 and 5.4 give the time in seconds consumed by each part of the overall algorithm to

propagate a circle and a cube in their inward directions, respectively.

Figs. 5.7(a) and 5.7(b) give the graphical results for the time consumed by each part of the over-
all algorithm to propagate a circle and a cube in their inward directions, respectively . From
Figs. 5.7(a) and 5.7(b), we can see that the initialization time, fast sweeping time and iso-front
capturing time are dependent on the mesh size while the propagation time is dependent on the
number of points for front initialization and time increment. Once these two factors are fixed,
propagation time is a constant value. The reason for this is that in the propagation process, for
a fixed number of initial points in the original front, the variable factor is the time increment d¢.
The number of time steps for the points on I' to reach their destinations depends on dt. Thus the
propagation time is not influenced by mesh size, but it is only a function of the number of points

on the original front and the size of the time increment.



| MeshSize [ 217 [ 417 [ 817 [ 1617 | 321° |
Initialization 0.00457 | 0.007592 | 0.015335 | 0.040478 | 0.131439
Fast Sweeping || 0.003768 | 0.023966 | 0.160162 | 1.2056 | 9.11685
Iso-front capturing || 0.000212 | 0.000712 | 0.001863 | 0.005838 | 0.022492
Front propagation || 0.016103 | 0.016017 | 0.015958 | 0.016986 | 0.017038

TABLE 5.3 Time Comparisons for an inwardly propagated circle

I MeshSize [ 21° [ 415 [ 81° [ 161° |
Initialization | 0.136941 | 1.03858 | 10.0974 | 154.029
Fast Sweeping | 0.138135 | 2.06642 | 14475 | 198.76

Iso-front capturing || 0.009081 | 0.250023 | 5.53021 | 135.45
Front propagation || 0.003874 | 0.003655 | 0.003835 | 0.003362

TABLE 5.4 Time Comparisons for an inwardly propagated cube

For 3D applications, propagation is much cheaper than iso-capturing, and this method allows to

transport parametrization for both inward and outward propagations.

5.5 Applications

81

The purpose of this Section is only to demonstrate that the proposed propagation technique has

been successfully applied in medical applications. This section illustrates a complex medical

example, a carotid vessel, which was supplied by the Mechanical Engineering Department of Ecole

Polytechnique, courtesy of the Groupe de recherche of Garon A., Thiriet M. et Farinas M.I. - ACE

Project INRIA/EPM.

The geometric model of this case has both convex and concave shape. The description of the

input file is a triangulated surface, and is written in STL format. In this case, all the points are
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propagated toward its inward and outward directions. The output surfaces preserve exactly the

same connectivity as the input file.

5.6 Discussion

The developed offset method is successfully applied to construct offset surfaces, which can en-
force the parametric consistency between the original surface and its offset. This is achieved by a

combination of the traditional direct offset techniques and the present Eikonal-based approach.

The main difference between the current method and traditional direct offset methods lies in the
manner in which the local normal direction is computed. In direct offset method, the local normal
directions are computed using geometric information, such as the positions of neighboring points
located on initial front. The central idea of the method is thus to propagate each discretized point
of the original geometric front along its normal direction in ¢ space rather than geometric space.
This results in a methodology that in addition to resolving the self intersection problems, will also

maintain the parametric relationship between the original and its offset in most circumstances.

The input geometric description of the present method is tesselated surfaces (i.e., triangulated cells
or quadrilateral cells), the propagation methodology is validated from accuracy and efficiency
aspects respectively. The accuracy result shows that the accuracy is quasi-linearly converged to the

mesh size.

One future work of this present method is to further study how to determine a proper value of d¢
used in the fourth-order Runge-Kutta method. If the value of dt is too small, then it will take a

long time to reach the propagated distance; if the value of dt is too large, then the first propagation



may exceed the specified propagation distance.
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(a) Carotid (global)

(b) Carotid (branch)

FIGURE 5.8 Carotid vessel
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CHAPTER 6

APPLICATION 2 - BOUNDARY MESH GENERATION

This chapter discusses the use of the proposed front propagation techniques to generate high-
aspect-ratio cells in the vicinity of boundaries for high Reynolds number-fluid flow simulations.
Boundary dominated problems exhibit strong gradients in the direction orthogonal to the boundary
compared to the other directions. This requires a minimum element size along this direction. The
use of properly aligned anisotropic meshes is essential to resolve flow features, and meshes must

comprise small element sizes in the direction of strong gradients and larger sizes along the others.

The present method is designed to efficiently and reliably generate good quality anisotropic semi-
structured meshes near boundary surfaces for arbitrarily complex domains starting from a surface
triangular mesh. First, face-matching multi-blocks emanating from an arbitrary complex boundary
are generated. Then semi-structured meshes are constructed in each block and the meshes are
redistributed using a Laplace-Beltrami operator at block interfaces and Laplace operator within

block volumes.

6.1 Methodology

The present work is based on the front propagation technique for its strong capability of controlling
the orthogonality and element size. The method can prevent self-intersections in an automatic and
natural manner as presented in more detail in Chapter 4. The solution to the dilemma of choos-

ing between hexahedra and tetrahedra is to solved by employing two families of grid elements:
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stretched prismatic grid cells in boundary regions, where a wall phenomena (i.e. a boundary layer)
is expected, and isotropic tetrahedral elements elsewhere. Prismatic cells are composed of trian-
gular faces in the lateral (body-surface) directions and quadrilateral faces in the normal direction.
Therefore, they can provide the geometric flexibility of unstructured as well as the orthogonality

and high aspect ratio characteristics of structured grids.

Tetrahedral elements appear to be appropriate for the core of the domain, because of the irregularity
shape of the regions. The triangular faces of the tetrahedra can match the corresponding triangular

faces of the prisms, globally forming a conformed mesh.

This section presents the mesh generation process (as illustrated in Fig. 6.1), which includes three

major steps:

1. Generation of surface patches
The boundary (I") of the computational domain surface boundaries are discretized into trian-

gulated surfaces;

2. Block interfaces and boundary mesh generation
The distance field is computed, and the nodes located on I" are propagated, so the multi-block

interfaces and boundary mesh are generated;
3. Mesh redistribution process

The positions of anisotropic elements are redistributed within each block.

The above procedure is applied to the 3D industrial geometric model of a draft tube previously

used in Section 4.6.4.
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FIGURE 6.1 Boundary layer mesh generation process

6.1.1 Generation of surface patches

The first step is to decompose the domain into multiple hexahedral blocks emerging from the walls
or boundary surfaces. The draft-tube surface is decomposed into a set of four-sided patches (see
Fig. 6.2). These are propagated or swept into the domain, and the original patch and the propagated
patch form the top and bottom faces, respectively, of a new block. A patch can originally be rep-
resented as either a triangulated surface or as a NURBS surface. In the latter case, a discretization

of the patch is first constructed.
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FIGURE 6.2 Geometric model: a draft tube with 2 piers

6.1.2 Block interfaces and boundary mesh generation

The offset algorithm have been defined in Chapter 5 and will not be repeated here. Two issues

related to boundary mesh generation are addressed here:

Open domain

For an open domain, in addition to the boundary surfaces, it is necessary to specify the
boundary curves which bound the boundary surface. For example, the inlet circle and outlet
rectangle in Fig. 6.3 are such boundary curves. These lie on special boundary surfaces
(planes) which are added for the purpose of correctly closing the domain from a topological

point of view, as well as providing the support for the propagation of these boundary curves.

Within each such surface, the boundary curve propagation problem is transformed into a 2D
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FIGURE 6.3 Boundary curves and Special boundary planes

curve propagation problem, and the algorithm described in this section is applied directly.
In the present application, it is required that normal directions should lie on such special
boundary planes, i.e. this algorithm cannot be used when the boundary curves are general

Space curves.

Block construction All the propagated points are sequentially connected according to their orig-
inal connectivities, and corresponding points on the original and propagated geometries are
used to construct blocks. Detailed descriptions about topological connectivities can be found

in Guibault (1998).

Figure 6.4 illustrates the block construction process. Figure 6.4(a) shows the overview of
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the block with the original patch surfaces in Figure 6.4(b) which form the bottom face of
the block. The process of constructing the side face proceeds sequentially by connecting the
propagated points of all the layers of one edge of the original patch surface as demonstrated
in Fig. 6.4(c). The top face of the block in Fig. 6.4(d) is built by sequentially connecting
the propagated points of the last layer according to the connectivities of the original patch

surface. The final block is displayed in Figure 6.4(¢).

Boundary mesh construction Boundary mesh within each block are generated simultaneously

while block interfaces are constructed.

6.1.3 Mesh redistribution process

The proposed method can effectively prevent the occurrence of both global and local self-
intersection problems, however, another problem arises. At sharp corners, propagation paths may
be skewed together, and this can eventually cause the volume of elements connected to those paths
to vanish. Fig. 6.5 illustrates the propagation behavior for the corner blocks. Fig. 6.5(a) is the
overall view of two corner blocks. Figures 6.5(b) and 6.5(c) display the mesh distribution on one

side face of these two blocks before applying the redistribution process.

The promising thing of the proposed method is that, local self-intersections of the propagation
paths will not occur. This property guarantees that the sequence of the connectivities will always
remain the same as on the original patch surfaces. This property can be used to solve the above
mentioned problem, that is to redistribute the position of boundary mesh nodes to improve mesh
quality. Since mesh redistribution process is a standard strategy for improving the geometric qual-
ity of a grid without modifying the topology of the mesh and therefore not requiring manipulation

of the data structure. The quality of redistributed meshes is discussed in Section 7.3. The grid in
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each block is redistributed by introducing grading functions. The mesh redistribution process is

performed sequentially at three different levels, edge level, surface level, and volume level.
Edge level

At the Edge level, the positions of mesh points at side faces of one block are redistributed by a
user defined function. In the present work, for simplicity, we redistribute the propagated points
according to the ratios of edges located on the original patch surfaces. Fig. 6.6 illustrates the
redistribution result. From it, we can see that, the position of propagated points are redistributed,
and the propagation paths are evenly redistributed. Once the positions of mesh nodes on side faces

are optimized, they are kept fixed in the later redistribution process.
Surface level

At the surface level, all the edges of blocks have been already redistributed at the edge level, so the
four edge points on the top face are used as boundary conditions. The problem now can be viewed
as, given a space surface, the nodes on the four edges are fixed, and the mesh nodes on the top face
are used as the initial positions, so the Laplace-Beltrami operator (Spekreijse (1995)) is used to

optimize the mesh points located on the top face of one block.

The Laplacian can be extended to functions defined on surfaces, or more generally, on Riemannian
and pseudo-Riemannian manifolds. This more general operator goes by the name Laplace-
Beltrami operator. One defines it, just as the Laplacian, as the divergence of the gradient. To
be able to find a formula for this operator, one will need to first write the divergence and the gradi-
ent on a manifold. the formula for the Laplace-Beltrami operator applied to a scalar function f is,
in local coordinates

Af = div(Vf) (6.1)
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Volume level

At the Volume level, the location of the six surface meshes are fixed and used as boundary condi-
tions, so the Laplace operator is used to iteratively redistribute the meshes inside of the block, until

it converges.

6.2 RESULTING MESH

Fig. 6.7 illustrates the difference of the resulting blocks for a closed and open domain. In
Fig. 6.7(a), inlet and outlet surfaces are added to Fig. 6.2. In this case, the original geometry
can be viewed as a closed domain. Fig. 6.7(b) illustrates the resulting blocks generated by directly
propagating the original geometry, in this case, the original domain can be viewed as an open do-
main, thus special boundaries are added at the inlet and outlet parts. From Fig 6.8(a) to 6.8(d), we
can see that inlet and outlet surfaces are propagated and blocks are generated when the original
geometry is dealt with as a closed domain; and boundary curves are propagated along the inlet and

outlet planes when the original geometry is an open domain.

Fig. 6.9 is the mesh generated around a pier and at one corner of the draft tube. Fig. 6.11 is the
overall view of the resulting mesh, in which a structured mesh is generated within each individual
block. Fig. 6.10 is the enlarged view for the results generated around a pier and in a sharp corner,

respectively.

Like the level set method, the offset front computed by the proposed method does not intersect
itself, the reason for this has been explained and proved in Crandall and Lions (1984), Sethian

(1999). However, marched elements can eventually collapse causing the volume of some of the
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resulting elements to vanish. Elliptical smoothing of the mesh in each block is used to attenuate

this problem.

The proposed boundary mesh generation method can be applied for hybrid meshing strategy. Fig-
ures 6.12 to Fig. 6.13 illustrate the hybrid meshes generated for this draft tube, with prism elements
generated using the present method around boundary layers for viscous flow, and tetrahedral ele-

ments generated using a Delaunay algorithm inside of the domain.

6.3 MESH QUALITY MEASURES

The mesh generation scheme proposed here has been applied to one academic test case, cube,
and a real industry geometric model, a draft tube, to verify the quality of the method. The cube
is centered at (0.5,0.5,0.5) with a side length of 1.0. The Cartesian frame size is 1.2x1.2x1.2.
The propagation is in the inward direction with an offset distance of 0.01 each time, and a time
increment of 0.003, five propagations have been performed. The number of discretizing points on
each cube surface is 31x31 grids, there are 1800 triangles on each cube face. Two criteria are used
to evaluate the quality of the resulting mesh: volume distribution and Normalized Equiangular

Skewness, (Qgas).

6.3.1 Volume distribution

The volume of one mesh element, which nevertheless is always positive, remains quite acceptable
as one important criterion. As mentioned in Section 6.1.3, at sharp corners, propagation paths may

bend together, this can eventually cause the volume of corresponding elements to vanish. One of



Volume Distribution (before optimization)

volume range || numbers | % of total number

0.0t0 0.1 12,056 22.33
0.1t00.2 24,389 45.16
0.2t00.3 7,404 13.71
0.3t00.4 2,252 4.17
0.4t00.5 532 0.99
0.5t 0.6 101 0.19
0.6 t0 0.7 399 0.74
0.7t00.8 95 0.18
0.8t0 0.9 2,970 5.50
09t01.0 3,802 7.04
54,000 100.00

Measured minimum value: 1.30573e-10
Measured maximum value: 1.0

Volume Distribution (after optimization)

volume range || numbers | % of total number

0.0t0 0.1 3,223 5.97
0.1t00.2 17,386 32.20
0.2t00.3 15,983 29.60
03t004 10,603 19.63
0.4t00.5 5,892 10.91
0.5t00.6 497 0.92
0.6 t0 0.7 52 0.10
0.7t00.8 43 0.08
0.8t00.9 123 0.23
09t01.0 198 0.36
54,000 100.00

Measured minimum value: 0.0315601
Measured maximum value: 0.96

TABLE 6.1 Mesh volume distribution results (Cube)
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the major targets of the presented method is to improve the distribution of volume for each element.

Table 6.1 gives the volume distribution results before and after using the mesh redistribution al-
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gorithm on the cube. Volume is measured by Gambit (Fluent Inc.). Fig. 6.14 shows the graphic

histogram of the volume distribution results.

6.3.2 Normalized Equiangular Skewness ((0 5 4s)

The deformation is quantified by the Normalized Equiangular Skewness, which is an indicator of
the commercial mesh generator TGrid developed by Fluent Inc. It determines how close to ideal
(i.e., equiangular) an element is. Highly skewed elements are unacceptable because the equations
being solved assume that the cells are relatively equiangular. In the 2D cases, an element can be a
triangle, or a square; in the 3D cases, an element can be a pyramid, a prism, a tetrahedron or a hex.

This indicator is computed using the following formula

(6.2)

Hmaac - 96 ee - 9mm
QEas = maz ( )

180—-6." 6,

where 0,4, is the largest angle between the edges at each corner of an element, 8,,;, is the smallest
angle between the edges at each corner of an element, and 6, is the angle for an equiangular element

(e.g., 60 for a triangle, 90 for a square).

QEas is equal to zero for ideal elements (best), to one for badly distorted elements which are
completely degenerate elements. In general, quality grids have an average skewness value of

approximately 0.1 for 2D and 0.4 for 3D according to TGrid.

Fig. 6.15 is the histogram results of skewness for a cube. From this figure we can see that the
skewness of mesh elements are uniformly distributed after mesh redistribution algorithm. The
average skewness is 0.08847016 for the cube before mesh redistribution algorithm; and 0.3852097

after mesh redistribution algorithm. The result falls inside of the recommended skewness range
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suggested by TGrid.

6.4 Discussion

This Chapter proposed a method to generate high-aspect-ratio cells in the vicinity of boundaries
for high Reynolds number-fluid flow simulations using the new front propagation techniques. The
geometric boundary is first decomposed into patch represented surfaces with triangular or quadri-
lateral elements, then face-matching multi-blocks emanating from an arbitrary complex boundary
are generated. Finally semi-structured meshes are constructed in each block and the meshes are re-
distributed using a Laplace-Beltrami operator at block interfaces and Laplace operator within block
volumes. The quality (i.e. volume distribution and Skewness) of the resulting mesh is measured,

and it proves that the quality of the boundary mesh is acceptable.

The attractive features of this method include: 1) it can be applied to very complicate geometric
model, for both open and closed cases. 2) it provides a strong capability of controlling the orthog-
onality and element size. 3) The method can prevent self-intersections in an automatic and natural

manner.



(a) Overview of the blocks

(b) Bottom face

(d) Top face (e) Whole block

FIGURE 6.4 Corner mesh without redistribution
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(a) Overview of two corner blocks

(b) with volume mesh

(c) without volume mesh

FIGURE 6.5 Before redistribution
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FIGURE 6.6 After redistribution
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(a) The resulting blocks - closed domain
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(b) The resulting blocks - open domain

FIGURE 6.7 Result comparisons (overall views)
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(b) Inlet part - open domain

(a) Inlet part - closed domain

(d) Outlet part - open domain

(c) Outlet part - closed domain

FIGURE 6.8 Comparisons between open and closed domains (inlet and outlet part)
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FIGURE 6.9 Resulting mesh - partial view
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(b) Resulting blocks around a pier  (¢) Resulting Mesh around a pier

e,

(e) Resulting blocks at a sharp cor-
ner

(d) Input patches at a sharp corner (f) Resulting mesh at a sharp corner

FIGURE 6.10 Resulting mesh - partial views
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FIGURE 6.11 Resulting mesh - overall v



(a) Side view 1

(b) Side view 2
FIGURE 6.12 Hybrid mesh for draft tube
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(a) Side view 3

(b) Side view 3
FIGURE 6.13 Hybrid mesh for draft tube
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FIGURE 6.14 Histogram of the volume distribution results (Cube)
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CHAPTER 7

FLUID FLOW CALCULATIONS

A great challenge for viscous flow simulations is to generate anisotropic elements in the vicinity of
boundaries, especially for complex geometries. When such domains are discretized, it is important
that the grid fit the boundaries, and that no conflict occur during the boundary mesh generation

process.

To effectively avoid the warping of normal directions during the meshing process is the critical
step to the successful generation of good quality, high-aspect-ratio cells in the vicinity of bound-
aries for wall dominated phenomena. For this purpose, a new approach based on hybrid meshing
methodology was proposed, in which the prism elements are generated using the method described
in Chapter 5.2, and the surface mesh (triangle elements on the surface) and the tetrahedral elements

are produced using the ALGOR commercial softwares.

The purpose of this chapter is to validate the quality and effectiveness of this new hybrid mesh
generation strategy applied to the flow in a ball valve model under both steady and unsteady
conditions. The mesh quality is measured from three aspects: 1) volume distribution, 2) aspect
ratio and 3) Normalized equiangular skewness. These results show that the quality of the mesh is

acceptable, and the convergent fluid calculation results are illustrated in Section 7.4.
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FIGURE 7.1 Diagram of the Pipe Section

7.1 Problem Description

A fluid flow simulation in a three-dimensional (3D) model of a ball valve is used to validate the
proposed grid methodology. Fig. 7.1 shows the geometry of the pipe section including the ball
valve which is in the half open position. The goal of the fluid flow analysis is to determine the

velocity and the pressure of the fluid as it exits the section.

Topologically, the illustrated geometry is very simple and is equivalent to a cylinder. Geometri-
cally, this configuration has both convex and concave shapes in its body. The most difficult task in
this test case is to correctly calculate normal directions at the four singularity points as shown in
Figure 7.2 where four surfaces pass through and share the singular point. The traditional normal
calculation method uses the geometric information surrounding the point to be propagated, i.e.,
the weighted average normal vectors of neighboring surfaces. In such situations, the definition of
the normal vector may become ambiguous when normal direction is performed in this way. For
example, in Figure 7.2, the definition of normal vectors for Surface 2 and Surface 4 are almost
in opposite directions, and it is difficult to determine a compromise normal vector at this point
using the average normal vectors of neighboring surfaces. Instead, in the present analysis uses the

proposed method Wang et al. (June 2005) to calculate normal vectors.
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Surface 4

Surface 4

Surface 2 O

Singularity point

\

Surface 2

Surface 1

Singularity point

FIGURE 7.2 Singularity Point

The geometric parameters are as given in Figure 7.1. The total length of the pipes is 8.0 in, the
diameter at intake areas and valves is 1.0 in. Several physical characteristics of the fluid are also

pre-defined, including the flow rate at the inlet area, which is 0.5 in/s, the material is set as water.

7.2 Methodology

Figure 7.3 shows the outline of the proposed mesh generation process. The details for each step is

explained below.
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Surface mesh generation
(Triangulated element)

...............................................................................................................................

Boundary mesh generation

® calculation
v

Normal calculation

v
Nodes propagation

v

Connectivity construction

o — —

Internal mesh generation
(Tetrahedral element)

!

Fluid flow
calculation

FIGURE 7.3 Outline of grid generation process
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FIGURE 7.4 Surface mesh

7.2.1 Surface mesh generation

There are no restrictions for the shape of surface mesh elements. The proposed boundary mesh

process can accept any type of elements, i.e., triangular, quad, etc.

In the present hybrid meshing strategy, the surfaces are discretized into triangles because tetrahe-
dral elements are employed in the internal domain as the quality of this type of elements is easier

to control. Figure 7.4 shows the initial surface mesh used in this test.

7.2.2 Boundary mesh generation

There are four steps in the boundary meshing process:

1. calculate ¢ values for each grid node using the fast sweeping algorithm. This step is ex-

plained in Chapter 4.
2. calculate normal directions for the front grid nodes, and as described in Chapter 5.

3. propagate front points along their local normal direction according to the given distance,
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Singularity points

Singularity points

FIGURE 7.5 Boundary mesh interface

FIGURE 7.6 Boundary mesh
which is presented in Chapter 5.

4. construct blocks or the relative topological connectivity around boundary area. This algo-

rithm is covered in Chapter 6

Figures 7.5 and 7.6 show the overall boundary mesh interface and the final boundary mesh of this

ball valve model.

7.2.3 Internal mesh generation

Figures 7.7 and 7.8 illustrate the final mesh generated for this model.

After the boundary meshing process, a new surface mesh is generated which possesses exactly the
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FIGURE 7.7 Final mesh (outside view)

same topological definition (triangle connectivity) as the original solid surface, and which becomes
the input surface mesh for tetrahedral mesh generation. The entire computational domain defined
by this surface mesh is tessellated by isotropic tetrahedra George et al (1991), and Borouchaki et
al (1995).
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FIGURE 7.8 Final mesh (internal view)

Layer 1 Layer 2 Layer 3
Min. Size | Max. Size | Min. Size | Max. Size | Min. Size | Max. Size
4.776e-5 | 4.516e-4 | 2.374e-5 | 2.851e-4 1.504e-5 | 2.701e-4

TABLE 7.1 Prismatic element volume range

7.3 Mesh validation

7.3.1 Volume distribution

For validation, the original boundary is decomposed into 12 surfaces, and three layers are generated
after propagation. The 1-st layer is the closest layer to the valve boundary. Table 7.1 illustrates the
size of the minimum and maximum volume for prismatic elements at each layer. From this Table

we can see that the volume of the prisms are reduced when marching proceeds internally.

Figure 7.9 illustrates partial volume distribution of the prismatic elements. Since the normal di-

rections on the surface mesh are defined in the outward direction of the domain, all volumes are
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Volume

06003643 0000260 “lodoTEgET 000015288 g T.5036e-05

FIGURE 7.9 Volume distribution of prismatic elements

Type Min. Size | Max. Size
Prismatic element 1.503e-5 | 4.516e-4
Tetrahedral element | 2.904e-5 1.802e-3

TABLE 7.2 Overall volume range

labeled using negative values. In this figure, blue color represents maximum volume, and red
represents minimum when absolute values are used. This figure shows that the surface mesh can
greatly affect the quality of the boundary mesh. A more uniform area distribution of the origi-
nal surface, will yield a better quality distribution of the prismatic elements. Table 7.2 shows the

overall volume range generated for this model.

7.3.2 Aspect ratio

The definition of aspect ratio for a prism element is:

averaged beam length (7.1

aspect ratio = - - -
averaged circumcircle radius

Table 7.3 illustrates the histogram of aspect ratio for prismatic elements. From the table we can see

that the averaged aspect ratio is 0.012632. The reason for such a small aspect ratio value is that the



Range Number of prisms %
0.003443 - 0.007660 2241 42.395006
0.007660 - 0.011877 1010 19.107075
0.011877 - 0.016093 562 10.631858
0.016093 - 0.020310 423 8.002270
0.020310 - 0.024527 362 6.848278
0.024527 - 0.028743 293 5.542944
0.028743 - 0.032960 183 3.461975
0.032960 - 0.037177 68 1.286417
0.037177 - 0.041393 64 1.210745
0.041393 - 0.045610 80 1.513432

| total 5286 | 100 ]

l Averaged aspect ratio = 0.012623 |

TABLE 7.3 Histogram of aspect ratio

Value of normalized | Number of | Percentage Cell
equiangular skewness prisms % quality
0.000000 - 0.250000 710 13.431706 | Excellent
0.250000 - 0.500000 3827 72.398789 | Good
0.500000 - 0.750000 391 7.396897 Fair
0.750000 - 0.900000 332 6.280742 Poor
0.900000 - 1.000000 26 0.491865 Bad
[ total | 5286 | 100 ] I

Averaged normalized equiangular skewness = 0.16386 ﬂ

TABLE 7.4 Histogram of normalized equiangular skewness
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initial surface mesh is very coarse. Refining the surface mesh size or increasing the offset distance

will help to increase the aspect ratio.
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7.3.3 Normalized equiangular skewness

The definition of normalized equiangular skewness (NES) and cell quality can be found in Fluent
(2003), and it is also described in section 6.3.2. According to Fluent (2003), 0 indicates ideal
elements, 1 indicates bad elements, and the acceptable NES range in 3D is 0-0.4. Table 7.4 illus-
trates the histogram of NES. From this table, we can see that the averaged normalized equiangular

skewness is 0.16386 which falls in the acceptable range.

7.3.4 Sharp corner behavior

FIGURE 7.10 Propagation behavior at a sharp corner

Theoretically, this boundary mesh generation method allows the propagation to proceed to any
distance without loosing the original mesh connectivity at sharp corners. However, some of the
elements may degrade down to zero-volume elements when the propagated distance is greater than

a certain value.
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For example, Figure 7.10 shows the propagation behavior at one sharp corner in two dimensions.
The boundary line is propagated in the inner direction (from left to right), and it is seen that the
propagation paths are skewed together after a certain distance. A post-redistribution algorithm is
required to avoid zero-volume elements during the boundary mesh generation process. Chapter 6
discusses a boundary mesh registration algorithm, which is only limited for patch decomposition of
the original surface. The surface mesh of this model is a hybrid mesh (triangular and quadrilateral
elements), the algorithm of how to redistribute boundary mesh generated from this kind of surface

mesh is to be explored in the future work.

7.3.5 Singularity point propagation behavior

Figure 7.11 shows the propagation behavior at singularity points. From these figures, we can see
that there is only one propagation path at the singularity point, shared by the four surface meshes.
A unique normal direction is obtained at the singularity points because the ¢ value at any point in
the computational domain has a unique value. Consequently the normal vector, %, is also unique
at any point of the computational domain, illustrating the reason why the proposed method avoids

the problem arising in the traditional normal calculation method.

7.4 Flow analysis

The purpose of performing these fluid flow analysis is NOT to compute the precise results of

this flow simulation, but to achieve the following targets: 1) we want to verify the capability of



FIGURE 7.11 Mesh at singularity points
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capturing vertex phenomenon at the corners of the boundary layer area; 2) if the converged velocity
and pressure results can be obtained using the proposed boundary mesh. For these reasons, the
original surface mesh is discretized into a very coarse mesh to illustrate successfulness of the
proposed boundary meshing methodology. Also, the fluid flow analysis results are not discussed

in details.

Fluid enters the pipe which is connected to a ball valve in the half open position. The Reynolds

number for a pipe can be expressed as:

_ pudy
7

Re

(7.2)

where, p is the density (kg/m?), v is the velocity (m/s), and dj, is the hydraulic diameter (m). Tak-
ing the water properties at temperature 20C° and pressure 101325 Pa, the density is 998.29kg/ms,
and dynamic viscosity is 0.001003kg/ms (Thermexcel (2003)), the Reynolds number in this work
is 321.

Two analysis (steady and unsteady flow) are performed using this mesh. The commercial software
used in analysis is ALGOR Inc, which is a finite element analysis (FEA) solver. The velocity and

pressure distributions are shown below.

7.4.1 Steady flow

The flow at the inlet is set as a uniform velocity in the direction of z-axis. The expected velocity
solution in the domain is shown in Fig. 7.12. As expected, a vertex flow pattern develops in the

downstream area shown in Fig. 7.13. Fig. 7.14 is the internal pressure distribution which is in
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FIGURE 7.12 Velocity distribution (plot by magnitude)

general agreement with the anticipated results.

7.4.2 Unsteady flow

Figure 7.15 is the velocity results for the unsteady simulation plotted by magnitude. From this
figure we can see that, the final fluid velocity distribution exhibits a similar behavior to the steady

flow for a sufficiently long time.

Figure 7.16 illustrates the vertex pattern developed in the downstream area. Since all the nodes
demonstrate the same convergent behavior, we only choose one node#2794 to illustrate the velocity

varication, as shown in Fig. 7.17. Figure 7.18 illustrates the internal pressure distribution of this
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FIGURE 7.13 Vertex pattern
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FIGURE 7.15 Velocity distribution (plot by magnitude)

model.

7.5 Discussion

In this Chapter, a fluid flow simulation in a three-dimensional (3D) model of a ball valve is used to
validate the proposed hybrid grid methodology. This configuration has both convex and concave
shapes in its body. The most difficult task in this test case is how to correctly calculate normal
directions at the singularity points. At each singularity point, four surfaces pass through and
share the singular point. The traditional normal calculation method uses the geometric information
surrounding the point to be propagated, which brings ambiguous normal directions at singularity

points for this model.



FIGURE 7.16 Vertex pattern
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The boundary mesh is generated using the method proposed in Chapter 6, boundary mesh quality
is measured from three aspects: 1, volume distribution 2, aspect ratio, and 3, Normalized equian-
gular skewness. These results show that the quality of the boundary mesh is acceptable. Also,
this Chapter illustrated the sharp corner propagation behaviors and how the singularity problem
is solved using the proposed normal calculation method. Finally, the fluid flow analysis under
both steady and unsteady conditions are computed using commercial software to evaluate the vor-
tex phenomenon. The results show that boundary mesh can correctly capture the vortex flow at
the sharp corner area, and the result is converged after a certain period under the unsteady fluid

conditions.
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CHAPTER 8

CONCLUSION

8.1 Conclusions

The main contributions of this research achieved are classified into three types per the objectives

addressed in Chapter 1. This section summarizes them accordingly.

8.1.1 Objective 1: Enhancement of the feature capturing capabilities

A new boundary mesh generation process for viscous flow is developed using a new front propa-

gation technique. This method has several improvements over the previous front offset techniques:

¢ a new simplified mathematical model based on the Eikonal equation to solve a weak for-
mulation of the front propagation problem. This mathematical model establishes a direct

relationship between the points to propagate and the offset distance.

¢ this method intrinsically prevents self-intersections (global and local) by constructing a weak

solution to the offset problem. In this method, corners and cusps are naturally handled.

e the formulation of the front propagation problem allows to propagate both convex and con-
cave shapes using the same algorithm, and permeable boundaries such as inlet and outlet

surfaces can be accounted for through the addition of special boundary conditions.
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applications to an arbitrary complex domain, i.e. a concave, or a convex shape, it may have

sharp corners, or even be a multi-connected domain.

the ability to handle the un-uniform front propagation applications by varying front propa-

gation speed.

the validation of the fast sweeping numerical scheme in the context of 3D applications with
both smooth and discontinuous surfaces. As expected, the number of sweeps required to
achieve field convergence depends only on the dimension of the computational domain, as 4
sweeps are needed in 2D and 8 in 3D, making the fast sweeping scheme extremely efficient

numerically.

preservation of the parametric information from the original front to the propagated front,

i.e. topological connectivities of the original front.

The description of the front can be continuous, ie, NURBS represented curves/surfaces, or

non-continuous surface, ie, discretized line segments (2D) or triangulated faces (3D).

The propagation techniques is quasi-linear first order to mesh size, the normal directions are

dependent on the accuracy of the weak solution field only.

The numerical scheme used for solving this PDE is a first order scheme. This research
verifies that the bounding error is |hlog(h) for an arbitrary set of discrete points, and the

bounding error is hlog(1/h) for a smooth surface.

Normal direction at each front node to propagate is represented by the ¢ field rather than
by the geometric information of each front node, i.e. the average of the surface normals
attached to the node. The way of normal calculation ensures that the resulting propagation

avoids self-intersections.
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The boundary mesh generation method is validated using a 3D ball valve model. From the results
of volume distribution, aspect ratio and normalized equiangular skewness, we can see that the
quality of boundary mesh is acceptable, and it provides a convergent results for both steady and

unsteady flow.

8.1.2 Objective 2: Increase of the level of automation

For very complicated geometrical models, manually quality checking is normally required when
the traditional boundary layer mesh generation method is used. This is because sometimes the
application may fail to generate a valid boundary mesh due to the self-intersections problems. The
proposed front technique can successfully prevent both global and local self-intersection prob-
lems, there is no need to detect the self-intersection problems during propagation process, thus it

improves the automation the boundary layer meshing.

e At viscous regions, the domain is automatically decomposed into face-matching multi-
blocks while semi-structured grids are constructed, which makes the quality of stretched
meshes are easily guaranteed, since optimization processes are carried out in each individual
block. Also, mesh size is easily controlled by properly setting the speed function in the offset

algorithm.

e The proposed The desired resulting mesh is a non-overlapped mesh because it avoids the

interpolation as this is a source of inaccuracies.

e The physical domain can be an arbitrary complex domain. It may have both convex, and
concave shape, a multiple-connected domain, or sharp corners, moreover, it can be extended

to an open domain.
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e It achieves a high level of automation. This algorithm works like a black-box, the input
will be geometric and far-field boundaries, and topological information, the output will be
the mesh points and connectivity. It does not require a human intervention during the mesh

generation process.

8.1.3 Objective 3: Improvement of the computational efficiency

The utilization of the fast sweeping method for solving the Eikonal equation improves the com-
putational complexity to (M) compared with the fast marching method which computational
complexity is M (M). Also the sweeping property is suitable of using the parallelized algorithm
which can further improve the sweeping efficiency. A primary parallized algorithm has been inves-
tigated, and it shows that the efficiency of the algorithm can be greatly improved when paralleled

algorithm is applied.

8.2 Future works

There are several suggested future works being suggested to further improve the front propagation

technique and the quality of the boundary layer mesh, which include:

1. One of the future research direction is to investigate the un-even space propagation equation.
As discussed in the work of Qian ez al (2006(1) and Qian ef al (2006(2), a variable function
can be used to represent the spatial dependent propagating speed. Moreover, anisotropic

metric can be incorporated in the Eikonal equations.
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2. A higher order numerical scheme for solving the distance offset equation is to be investigated

to acquire more accurate solution of the proposed distance offset equation. A high order
fast sweeping methods for eikonal equations has been presented in Zhang et al Zhang et al
(2004), which can be used to improve the quality of the normal calculations. The usage
of high order numerical scheme will provide a better propagation result especially for the

offset-surface construction applications.

. This thesis presents an optimization algorithm, which is discussed in Chapter 6, to optimize

the boundary mesh. However, it is only limited to block-structured boundary mesh, and its
tradeoff is to sacrifice the quality of skewness when improving the quality of volume distrib-
ution. The improvement of a more generalized optimization algorithm is to be investigated,

especially when surface mesh is unstructured mesh.

. One future work of this present method is to further study how to determine a proper value

of dt used in the fourth-order Runge-Kutta method. If the value of dt is too small, then it
will take a long time to reach the propagated distance; if the value of dt is too large, then the

first propagation may exceed the specified propagation distance.
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