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RESUME

Un nouveau terme est de plus en plus fréquemment utilisé pour désigner une sous-
discipline de la biologie : la biologie systémique. Ce nouveau champ d’étude s’intéresse
aux interactions entre les composantes d’un systeme biologique et a 1'’émergence des
fonctions et du comportement de ce systéme a partir de ces interactions. Apres avoir
cherché a décortiquer la cellule et ses composantes, les biologistes ont maintenant
une liste exhaustive des composantes et de leurs caractéristiques. Toutefois, devant
les systemes tres complexes qu’ils essayent de comprendre, les biologistes manquent
de concepts et d’approches pour investiguer cette complexité. Pour mieux s’outiller
et développer de nouvelles approches intégratives, les biologistes ont entamé un dia-
logue avec des ingénieurs, des informaticiens, des mathématiciens et des théoriciens
des systemes et du controle. La biologie systémique est donc un champ d’étude mul-
tidisciplinaire encore tres jeune, mais qui laisse présager de grandes percées dans les
sciences du vivant.

En ingénierie, la modélisation et la simulation sont des méthodes privilégiées pour
I'investigation des systemes complexes. Les avantages de la modélisation et de la
simulation n’'échappent pas aux biologistes, qui veulent eux aussi réaliser des études
théoriques a I’aide de modeles computationnels. En conséquence, un important travail
d’adaptation de différents langages de modélisation pour des applications biologiques
a été accompli dans la derniére décennie et les outils informatiques de modélisation
et de simulation des systemes biologiques se sont multipliés. Les biologistes peuvent
maintenant facilement modéliser et simuler. Mais pour ce qui est de ’analyse des
données de simulation, peu de méthodes ont été spécifiquement congues pour ce
domaine d’application. Cette constatation a inspiré 'objectif de recherche de cette
these. Cet objectif est de concevoir des méthodes d’analyse de données de simula-
tion de modeles de voies de signalisation cellulaire qui permettent de dégager leur

comportement systémique.
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Cette thése par articles présente trois méthodes d’analyse distinctes. L'approche
présentée dans le premier article propose d’utiliser la structure du réseau biochimique,
de la fonction des composantes et de leurs interrelations pour, dans un premier temps,
caractériser l'activité moléculaire de modules biochimiques et ensuite, pour créer
des filtres d’analyse. Ces filtres permettent de produire, a partir des données de
simulation, une représentation fonctionnelle animée du systeme.

Le second article présente une méthode de visualisation des données de simulation des
voies de signalisation cellulaire. A T'aide d'une technique d’analyse issue de la théorie
des réseaux de Pétri (I'identification de P-invariants), la méthode de visualisation
prend en compte le fonctionnement enzymatique pour générer une vue du systéme
qui reflete le comportement systémique des voies de signalisation. Les méthodes de
visualisation existantes, appropriées pour les voies métaboliques, donnent des résul-
tats mitigés avec les voies de signalisation. Les problemes détectés sont solutionnés
par notre méthode.

Le troisieme article présente une méthode d’analyse des modeles de voies de signa-
lisation qui permet d’étudier leur dynamique de la propagation de signal. A Taide
de techniques d’analyse des réseaux de Pétri (I'identification de P-invariants et de
T-invariants), la méthode permet d'identifier les éléments du modéle qui jouent un
role important dans la transmission de signaux cellulaires. Elle permet aussi de dé-
crire la dynamique de transduction et d’identifier la présence de motifs de régulation.
Cette méthode transforme les données de variation de concentration moléculaire en
données de transmission de signaux cellulaire, ce qui permet un acces rapide aux
mécanismes systémiques de traitement d’information de la cellule.

Les trois méthodes de cette these ont été utilisée pour analyser les données de si-
mulation d’une variante du modele du réseau de régulation de ’enzyme CaMKII du
neurone CA1 de I'hippocampe. Ce systéme biologique est majeur en neurobiochimie

puisqu’il est expérimentalement associé a la plasticité synaptique, qui est la propriété
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neuronale qui expliquerait les capacités d'apprentissage et de mémorisation du cer-
veau. Il s’agit d'un modele complexe, avec plusieurs boucles de rétroaction, idéal
pour une étude sur des méthodes d’analyse destinées a la biologie systémique.

Les résultats des deux derniers articles de cette theése confirment la pertinence de
I'utilisation du formalisme des réseaux de Pétri pour des applications de biologie
systémique. Les méthodes de ces articles peuvent s’intégrer dans une méthodologie

globale de modélisation-simulation-analyse basée sur ce formalisme.



ABSTRACT

A term is widely used to identify new approaches in biosciences: systems biology.
This new field of study is about the interactions of the components of a biological
system and how the functions and behavior of this system emerge from these inter-
actions. After decades of a reductionist approach in molecular biology, which led
to a quite exhaustive component list, biologists are now aiming at a system-level
understanding of the cell. However, the actual concepts and tools of biology are
inadequate to complete this new task of investigating biological complexity. To have
new tools and to develop new integrative approaches, biologists started a dialogue
with engineers, mathematicians, computer scientists and specialists of the system
and control theory. Systems biology is a young interdisciplinary field of study, with
promises of bringing our knowledge about life further.

In engineering and other sciences, modeling and simulation are widely used methods
to study complex systems. Systems biology is no exception and computational biol-
ogists have also wanted to undertake theoretical studies with computational models.
As a consequence, different modeling languages and formalisms have been adapted to
biological applications in the last decade. Also, modeling and simulation tools have
been multiplied. Biologists now can easily model and simulate biological systems.
However, few tools for the analysis of the simulation data have been specifically de-
signed for biological applications. This inspired the research goal of this thesis. This
goal is to design computational methods for the analysis of the simulation data of
models of signal transduction networks, that can reveal their systemic behavior.
This thesis contains three articles, each presenting a distinct analysis method. The
approach presented in the first paper is a proposal to use the structure of a biochem-
ical network, the function of its components and their interrelations to characterize
the molecular activity of its modules and to create data analysis filters. These fil-

ters are used to create a functional animated representation of the system from the
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simulation data.

The second paper presents a visualization method of the simulation data of signaling
pathways. In this method, the p-invariant property of Petri nets is used to identify
meaningful biological entities. It is then possible to create a view of the system
taking into account the behavior of enzymes. Existing visualization methods have
been developed mostly for metabolic network models and they are less suitable for
signaling pathway models. The Petri net-based method solves this problem and
highlights the switching behavior of enzymes, thereby allowing a visual exploration
of the global dynamic behavior of complex biochemical model.

The third article presents a method for the analysis of the dynamics of the prop-
agation of a signal in signaling pathway models. In this method, the p-invariant
and t-invariant properties of Petri nets are used to identify key signaling elements of
pathways. This method produces temporal information about signal propagation in
the network, a simplified graphical representation of the network and of the signal
propagation dynamics and a characterization of some signaling routes as regulation
motifs. This method can be useful to deciphering the information processing capa-
bilities of the pathway.

In each article, the presented method has been used to analyze the simulation data
of variations of model of the CaMKII enzyme regulation network of the hippocampal
CA1 neuron. This biological system is very important in neurobiochemistry because
it is experimentally linked to synaptic plasticity, which is the neuronal property
hypothesized to be responsible for memory and learning processes. This is a complex
model, perfect for a study on computational analysis methods for systems biology.
The results of the two last papers of this thesis confirm the usefulness of the Petri net
formalism for systems biology applications. The methods presented in these papers
can be integrated into a unified methodological Petri net-based framework for the

modeling, simulation and data analysis of complex biological systems.
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INTRODUCTION

Avec les percées scientifiques majeures de la biologie moléculaire des deux dernieres
décennies, comme le séquencage du génome humain, les biologistes ont di se doter
de nouveaux outils informatiques. Plusieurs méthodes computationnelles ont alors
été adaptées ou créées par de nouveaux spécialistes, les bioinformaticiens, pour ré-
pondre a cette demande. Des techniques de criblage de données (data mining) ont
été développées pour traiter le raz-de-marée de données collectées au laboratoire a
I’aide des nouvelles technologies automatisées de la génomique et de la protéomique.
Comparaison et alignement de séquences biologiques, recherche de motifs, assem-
blage de fragments d’ADN, cartographie génétique, structure 3D des protéines et
ARN, les méthodes computationnelles se sont avérées essentielles pour accomplir ces
taches. Ceci a enfin donné aux biologistes une liste plus complete des composantes

biologiques du vivant et de leurs caractéristiques.

Cette liste ne leur a toutefois pas livré les secrets de la vie. Entre autres, les biolo-
gistes se sont étonnés du nombre peu élevé de genes dans le génome humain, soit
approximativement 20 000 a 25 000. Comiment si peu de genes peut-il générer la

complexité de I'espece humaine ?

Dans leur quéte de compréhension, les biologistes ont adopté une nouvelle approche,
une approche systémique qui suppose que les processus et les fonctions biologiques
émergent de la complexité des interactions entre les composantes. Peu habitués a
ce nouveau type de questions de recherche et mal équipés conceptuellemment pour
faire face a la complexité des systemes étudiés, certains biologistes se sont adjoint
des scientifiques plus aguerris avec ce genre de problématique. Mathématiciens, ingé-
nieurs, informaticiens et théoriciens de I’automatisation et du controle ont vu, dans

les nouvelles interrogations des biologistes, un domaine de recherche ou ils pouvaient
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appliquer leurs connaissances. Cette nouvelle approche en biologie, dont on a com-
mencé a parler vers I'année 2000, a été nommée biologie systémique (connue sous le
nom de systems biology en anglais). La définition de cette jeune discipline est encore
imprécise et il en existe plusieurs. Voici une définition satisfaisante, proposée par

Sauer et al. (2007) :

Rather than a reductionist viewpoint (that is, a deterministic genetic
view), the pluralism of causes and effects in biological networks is better
addressed by observing, through quantitative measures, multiple compo-
nents simultaneously, and by rigorous data integration with mathemati-
cal models. Such a system-wide perspective (so-called systems biology)
on component interactions is required so that network properties, such
as a particular functional state or robustness, can be quantitatively un-

derstood and rationally manipulated.

La conception de modeles, ol on représente différentes entités ainsi que leurs interre-
lations, est une approche privilégiée pour synthétiser la connaissance accumulée sur
systeme. La réalisation de simulations est a la base des approches quantitatives uti-
lisées pour comprendre le comportement global d'un systéme. La modélisation et la
simulation sont un des axes de recherche en informatique et on en recense une variété
d’applications dans tous les domaines d’étude. La biologie ne faisait pas figure d’ex-
ception, mais I’avenement de la biologie systémique a provoqué une multiplication des
études sur les systemes biologiques a 'aide de la modélisation et la simulation. C’est
ainsi que différents formalismes de modélisation ont été étudiés pour leur adéquation

a représenter des phénomenes biologiques.

Lors de mes travaux de recherche a la maitrise, j'ai moi-méme réalisé une de ces

études ol j'explorais l'utilisation des réseaux de Pétri pour la modélisation biolo-



gique. Décrits simplement, les réseaux de Pétri sont un outil de modélisation du
comportement des systemes dynamiques a événements discrets et de description des
relations existantes entre des conditions et des évenements. Depuis qu’ils ont été
inventés par Carl Adam Petri en 1962. les réseaux de Pétri ont principalement été
appliqués aux systemes informatiques et industriels. La théorie de ce formalisme a été
I'objet de plusieurs recherches et plusieurs contributions l'ont enrichie de nouveaux

concepts et ont augmenté son pouvoir de modélisation.

Mon mémoire de maitrise était constitué de deux études. Dans la premiere étude,
j’ai fait une recension des écrits sur les différentes utilisations de ce formalisme pour
la modélisation biologique ainsi qu’une analyse identifiant les meilleures techniques
selon les objectifs de modélisation (Hardy et Robillard, 2004). Dans la seconde étude.
je démontrais que les réseaux de Pétri sont un formalisme qui facilite la création
de modeles biologiques ou 1'on retrouve plusieurs niveaux d’abstractions (Hardy et

Robillard, 2005).

Ma these de doctorat est le prolongement de ce premier projet de recherche. Elle
porte sur un aspect de la modélisation et de la simulation que je n’avais jusqu’alors
pas abordé : I'analyse des données de simulation. En effet, la simulation de modeles
complexes génere une grande quantité de données dont il n’est pas toujours facile de
dégager I'information recherchée. Cette problématique fut le point de départ de mes
recherches doctorales et a servi a définir mon objectif de recherche. Cet objectif est
de concevoir des méthodes d’analyse de données de simulation de modeles de voies

de signalisation cellulaire qui permettent de dégager leur comportement systémique.

J’al atteint cet objectif a l'aide de trois études distinctes, sous la forme d’articles.
Chaque étude propose une approche originale pouvant s’insérer parfaitement dans
une démarche de biologie systémique. Une premiere étude se veut une réflexion sur

I'utilisation du concept de fonctionnalité dans ’analyse de données de simulation



d’un modele biochimique (Hardy et Robillard, 2006a). L’approche présentée propose
d’identifier les unités fonctionnelles d'un systéme, de spécifier mathématiquement
le fouctionnement attendu de ces unités pour ensuite générer des représentations
animées de leur dynamique. Cette approche est valide pour tout formalisme de mo-

délisation qui permet la réalisation d’études quantitatives.

Les deux autres études présentées dans cette these décrivent des méthodes d’analyse
des données de simulation basées sur le formalisme des réseaux de Pétri. Ce forma-
lisme propose différentes techniques pour analyser les propriétés des systemes et pour
valider les modeles, dont 'analyse des invariants. On peut établir des relations entre
les invariants des réseaux de Pétri et des caractéristiques particulieres ayant une
signification biologique. Les deux études exploitent ces relations. La seconde étude
utilise les invariants dans une méthode de visualisation des données de simulation
(Hardy et Robillard, 2007b). La troisieme étude utilise les invariants pour décorti-
quer le comportement dynamique de la propagation d'un signal dans un réseau de

transduction cellulaire (Hardy et Robillard, 2007a).

Le premier chapitre de cette theése porte sur les réseaux de Pétri. S’y trouvent une
courte introduction sur ce formalisme, une recension des écrits sur ses applications
biologiques de 2004 a aujourd’hui et la présentation d'un ajout a la théorie que je
propose, les réseaux de Pétri peinturés. Le chapitre 2 présente des concepts d’ingé-
nierie et de la théorie des systemes qui servent de fondement conceptuel a la biologie
systémique ainsi qu'une recension non-exhaustive d’études qui utilisent ces concepts.
Le chapitre 3 présente I'organisation générale du travail et la cohérence des articles
par rapport aux objectifs de recherche. Les chapitres 4, 5 et 6 présentes les trois
articles. Un dernier chapitre propose une discussion sur des aspects méthodologiques
de la simulation avec les réseaux de Pétri et aussi deux réflexions philosophiques sur

des sujets relatifs a la biologie systémique et aux idées de cette theése.



CHAPITRE 1

LES RESEAUX DE PETRI, UN OUTIL DE MODELISATION
POLYVALENT

Les réseaux de Pétri sont un outil de modélisation principalement utilisé en informa-
tique et en automatique pour représenter des systémes ayant des propriétés de paral-
lélisme, de concurrence, de synchronisine et de partage de ressources. Les réseaux de
Pétri ont une double nature : une nature graphique qui facilite la modélisation et la
visualisation et une nature mathématique qui les dote d’intéressantes propriétés tres
utiles pour les analyser. De plus, cet outil de modélisation est suffisamment général

pour permettre la modélisation de phénomenes tres variés.

Ce chapitre se divise en trois sections. La premiere section est une introduction a la
théorie des réseaux de Pétri, en ne s’attardant que sur les pans qui sont essentiels
a la compréhension de cette these. Elle est entre autres inspirée d’un livre sur les
réseaux de Pétri discrets, continus et hybrides de David et Alla (2004) que nous
invitons le lecteur a consulter pour une introduction complete. La deuxieme section
est une mise a jour de la recension des travaux de recherche portant sur I'utilisation
des réseaux de Pétri pour la modélisation et la simulation de systémes biologiques.
La précédente revue recensait les écrits jusqu’en 2004 (Hardy et Robillard, 2004). La
troisieme section présente un ajout que nous avons fait a la théorie de ce formalisme :

les réseaux de Pétri peinturés.



1.1 Introduction aux réseaux de Pétri

Cet outil de modélisation a été inventé par Carl Adam Petri en 1962 et publié dans
sa these de doctorat (Petri, 1962). Depuis, la théorie des réseaux de Pétri n'a cessé

de s’enrichir et celle-ci est toujours l'objet de recherches théoriques et appliquées.

1.1.1 Concepts fondamentaux

1.1.1.1 Places, transitions et arcs

Un réseau de Pétri (RdeP) est un graphe bipartite ou les deux types de noeuds
sont les places et les transitions. Le RdeP traditionnel se nomme aussi un réseau
place-transition. Les places sont représentées par des cercles et les transitions, par
un trait (ou une boite rectangulaire, selon les auteurs). Les places et les transitions
sont reliées par des arcs. Ces arcs sont dirigés et ils ne peuvent connecter que deux
noeuds de types différents. Dans un réseau place-transition, les arcs ont chacun un
poids, qui est un nombre entier strictement positif et dont la valeur par défaut est
un. De facon générale, dans un réseau de Pétri, les places représentent les éléments

passifs d'un modele alors que les transitions représentent les éléments actifs.

La figure 1.1 présente un réseau de Pétri qui modélise 1'algorithme d’exclusion mu-
tuelle de Peterson. Ce réseau contient 7 places, 6 transitions et 16 arcs. L’algorithme
de Peterson gere l'acces a une ressource qui est partagée entre différents processus
et qui ne peut étre accédée ou utilisée que par un seul processus a la fois. Les places
Py, P, et P; représentent les différents états d'un premier type processus, les places
Py, P5 et FPs représentent les différents états d'un second type processus et la place

P; représente la ressource que les deux processus se partagent. Les places P; et Py



représentent les états on les processus accedent ou utilisent la ressource.

p1 p4

Figure 1.1: Réseau de Pétri de l'algorithme de Peterson

Les relations entre les places et les transitions peuvent étre qualifiées d’entrée ou de
sortie. Par exemple, dans la figure 1.1, les places P, et P; sont les places d’entrée
de la transition T5. De méme, la transition Ty est une des transitions de sortie de la

place F;.

1.1.1.2 Marquage

Pour qu'un réseau de Pétri soit pleinement fonctionnel, celui-ci doit étre marqué.
Un RdeP est marqué lorsque ses places contiennent un nombre positif de jetons.
Le nombre de jetons de la place P; est associé & la variable m(F;) ou m;. Dans
I'exemple de la figure 1.1, nous avons my = my = 1, mg = m3 = ms = mg = 0 et

my = 2. La distribution de jetons dans les places est appelée le marquage d’'un RdeP.



Le marquage m d’'un RdeP est défini par un vecteur du marquage de ses places,
tel que m = (mq.ma. ms3, mg, M5, Mg, m7). Le marquage du RdeP de la figure 1.1
est m = (1,0.0,2,0,0,1). Ce marquage signifie qu’il y a un processus du premier
type, deux autres processus du second type et une seule ressource a partager entre
ces trois instanciations de processus. Le marquage détermine 1'état dans lequel le
systeme décrit par le RdeP se trouve. Le RdeP évolue a mesure que son marquage

change. Ceci se produit lorsqu'une transition est franchie.

1.1.1.3 Franchissement d’une transition

Une transition est franchie — on dit aussi qu’elle est tirée — si chaque place d’entrée
de cette transition contient un nonibre de jetons égal ou supérieur au poids des arcs
reliant les places d’entrée a la transition. Si cette condition de franchissement est
remplie, on dit de la transition qu’elle est tirable. Dans le RdeP de la figure 1.1, les

transitions 13 et Ty sont tirables.

Lors du franchissement dune transition, on retire des jetons des places d’entrée de la
transition en nombre équivalent au poids des arcs les reliant et on ajoute des jetons
aux places de sortie de la transition, toujours selon le poids des arcs. La figure 1.2
illustre cet événement. A la figure 1.2(a), on peut voir le marquage du RdeP de la
figure 1.1 apres le franchissement de la transition 7;. Lors de ce franchissement, un
jeton a été retiré de la place P} et un autre a été ajouté a la place P,. A partir de ce
marquage, les transitions 75 et T}y sont tirables. Toujours a partir du marquage de la
figure 1.1, on peut voir le marquage du RdeP apres le franchissement de la transition

T, a la figure 1.2(b).

Dans certains cas, le franchissement d'une transition peut mener & un marquage ou

aucune transition n’est tirable. Un réseau de Pétri dans cet état est dit en blocage.



Figure 1.2: Franchissement de transition

Maintenant que la notion de jeton est introduite, remarquez que la structure du
RdeP de I'exemple, a partir du marquage initial de la figure 1.1, assure qu'un seul
processus a la fois est dans un état d’utilisation de la ressource. Si l'instanciation du
premier processus est dans 1'état représenté par la place P, ceci signifie qu’il utilise la
ressource partagée et donc il n'y a aucun jeton a la place P;. Ceci a pour conséquence
que les conditions de franchissement de la transition 75 ne sont pas remplies, ce qui
rend cette transition infranchissable et empéche donc 'utilisation de la ressource par
une des instanciations du deuxieme processus tant que la ressource est utilisée par
I'autre processus. En d’autres mots, il est impossible qu’il y ait simultanément un

jeton a la place P et un autre a la place Fs.

1.1.1.4 Réseaux de Pétri autonomes et non-autonomes

Les réseaux place-transition sont entiérement non-déterministes. Il n'y a aucune
contrainte de modélisation pour fixer I'évolution du réseau. Il n'y pas de priorité

pour certains changements d’état et I'ordre de franchissement des transitions n’est
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pas fixé ni prévisible. On dit de ces réseaux qu'ils sont autonomes. Nous verrons que
ceci n'est pas le cas pour tous les types de réseau de Pétri. Certaines extensions de
la théorie permettent le franchissement de transition uniquement lors d’événements
externes ou selon des contraintes temporelles. De tels RdeP sont non-autonomes.
Par exemple, dans les RdeP synchrones, qui sont un type de réseaux non-autonomes,
on peut spécifier une durée entre le moment ol une transition devient tirable et le

moment de sa transition.

1.1.2 Propriétés des réseaux de Pétri
1.1.2.1 Notations et définitions

Pour introduire certaines notations usuelles et certains concepts, ayons comme point
de départ le marquage du RdeP de la figure 1.1, nommé marquage initial mg. Ce
marquage, comme le marquage du RdeP a tout moment donné, est représenté par
un vecteur colonne ou la composant 7 est le marquage de la place P;. Pour ne pas
alourdir le texte, la forme transposée du vecteur entre parentheses sera plus souvent

utilisée. Par exemple :

T
m0=(1,0,0,2,0,0,1)=[1 00200 1] =

= o O N O O

Du marquage initial mg, nous avons déja vu que les transition T et Ty sont tirables. Si
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la transition 7 est franchie, le nouveau marquage m; du réseau est (0,1,0,2,0,0,1).

Cet événement, dont le résultat est montré a la figure 1.2(a), est décrit par :
T
mg — ;.

Dans le cas ou la transition T} est franchie, le nouveau marquage me du réseau est
(1,0,0,1,1,0,1). Cet événement, dont le résultat est montré a la figure 1.2(b), est

décrit par :
Ty
mg — My.

Du marquage my, les transitions 73 et Ty sont tirables. Si la transition 75 est franchie,
on obtient le marquage mg alors que si la transition 7} est franchie, on obtient le

marquage my. Ces événements sont décrits par :
m; —=2— mjy = (0,0, 1,2,0,0,0),
m; —+— my =(0,1,0,1,1,0,1).

En poursuivant I'exploration des marquages qu’il est possible d’atteindre par le fran-
chissement de transitions, on peut revenir a des marquages connus ou découvrir de
nouveaux états. Par exemple, le franchissement de la transition 7 & partir du mar-
quage my produit aussi le marquage my. Toujours a partir du marquage mo, le
franchissement de la transition 7, géneére le nouveau marquage ms et le franchis-
sement de la transition 75 génere le nouveau marquage mg. Ces événements sont

décrits par :
T
my ——— My,

mz —=— mg = (1,0,0,2,0.0, 1),
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m; —>— mg = (1,0,0,1,0,1,0).

L’exploration des marquages atteignables du RdeP de l'algorithme de Peterson se

poursuit ainsi :

T T3
mg — g, my; — My,
T Ts
mg — ms = (0701 1717 17010)5 m7 ——— My = (07071',07270:0)7
T2 T2
my ——— Iy, mg > My1,
T4 T5
my ——— Mg = (O 13 0~,07 27 07 1)* mg ——— Iy,
T5 Ts
mg —=— mg = (0,1,0,1,0.1,0), mg —°— m.
T T
msy —Q*mzf mlO—l—’m12:(0~,1~0307111~,0)7
T5 Ts
ms ——— IMg, My ——— My,
T1 T3
Me — Iy, my; ———— s,
T4 TG
Mg — MMy = (1000 1 1,0), mio — IMy.
Ts

mg ——— My,

Dans le RdeP de 'algorithme de Peterson, il existe un nombre fini de marquages attei-
gnables. Pour un RdeP, M(my) est I'ensemble des marquages atteignables a partir
du marquage mg par une séquence finie de franchissements. Dans notre exemple,
M(my) = {mg. m;, my, m3, my, ms, Mg, M7, Mg, Mg, Myg, My1, My2}. Les figures
1.1, 1.2 et 1.3 illustrent tous les marquages atteignables a partir de mg. En exami-
nant M(my), on peut constater que la propriété souhaité du modele de I'algorithme

de Peterson est en effet respecté. Dans aucun des marquages accessibles a partir d'un



(e) my (f) mg

Figure 1.3: Marquages atteignables

13
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(1) mi (.]) mi2

Figure 1.3: Marquages atteignables (suite)

état cohérent, il n'y a des jetons simultanément dans les places P; et F;.

Une succession de franchissements de transition est appelée séquence de franchisse-
ment. Dans notre exemple, si a partir de mg les transitions T et ensuite Ty sont
franchies, le marquage obtenu est my. 77T}, est une séquence de franchissement qui

est décrite ainsi :

Avant de poursuivre avec l'introduction de la représentation en algebre linéaire des
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réseaux de Pétri, il est utile de fournir une définition plus formelle des réseaux de

Pétri.

Définition 1.1. Un réseau de Pétri marqué Q est défini par le quintuple (P, T Pre,

Post, m) ou :

P={P,,P,,...,P,}, est un ensemble fini de places ot n > 0;

3

T ={T\,Ts....,T,}, est un ensemble fini de transitions ot m > 0;

PNT = @, c'est-a-dire que les ensembles P et T sont disjoints ;
Pre: P xT — N, est la matrice d'incidence avant ;
Post : P x T — N, est la matrice d'incidence arriere;

m : P — N, est le marquage du réseau, soit un vecteur de n composantes

(my,ma, ..., my) ol m(P;) est le nombre de jetons de la place P;. mg est le marquage

initial.

Pre(P;, T;) est le poids de 'arc P, — T}, cette valeur est un nombre naturel. Post(F;,

T;) est le poids de I'arc T; — P, cette valeur est aussi un nombre naturel. Nous

pouvons maintenant établir la notation suivante :
°T; = {P, € P|Pre(P;,T;) > 0} = ensemble des places d’entrée de T} ;
T? = {P; € P|Post(P;,T;) > 0} = ensemble des places de sortie de T ;
°P, = {T; € T|Post(P,, T;) > 0} = ensemble des transitions d’entrée de P;;

P? ={T; € T|Pre(P,;, T;) > 0} = ensemble des transitions de sortie de P;.

Définition 1.2. La transition T} est tirable au marquage my si
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my(P;) > Pre( P, T;) pour toutes P; € °Tj.

1.1.2.2 Représentation en algébre linéaire

Un réseau place-transition peut étre représenté a I’aide de matrices. Il en est de meme

pour le franchissement de transition.

La matrice d'incidence avant est ainsi spécifiée :
W~ = [w;], ot w;; = Pre(P;, Tj);

et la matrice d'incidence arriere est ainsi spécifiée :
W = [w]], ot w;} = Post(P;, Ty);

Pour le RdeP de la figure 1.1, nous avons :

LT T T T T T T T, Ty
100000/ P 001000]| PR
010000]|PR 100000]|R

Wr=[001000|P w2 |010000]|PR
000100]| P 000001] P
000010]|P 0001005
000001]|PR 000010] P
(010010] P (001001 P

La matrice suivante est la matrice d’incidence d'un RdeP :
W = W+t —-W~ = [’UJU]

Pour notre exemple, nous obtenons la matrice d’incidence suivante :
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nn T T3 Ty, Ts T

-1 0 1 0 0 0 |PR
1 -1 0 0 0 0 |PB
w= |0 1 -1 0 0 0P
0 0 0 -1 0 1 |P
0 0 0 1 -1 0 | P
0 0 0 0 1 -1|P
0 -1 1 0 -1 1 | P

Les valeurs d'une colonne de cette matrice informent des modifications a apporter au
réseau lors du franchissement de la transition associée a cette colonne. Par exemple,
la colonne de la transition 7T indique que lors du franchissement de cette transition,
il faut retirer un jeton de la place P; et en ajouter un a la place P». La matrice
d’incidence est indépendante du marquage d'un réseau, elle ne donne donc aucune

indication sur la tirabilité des transitions.

Soit la séquence de franchissement S, qui peut étre exécutée a partir du marquage
C s s . PN

m;. Ceci s’écrit m; ———. Par exemple, au marquage myo, illustré a la figure
. , . . Ts .

1.3(j), une séquence de franchissement possible est m;; ———. La séquence de

franchissement S; = Tg contient une fois la transition Ty et aucune fois les autres

transitions. Le vecteur caractéristique d une séquence S. qui s’écrit s, est un vecteur

ou la composante j correspond au nombre de franchissements de la transition T;

dans la séquence S. Le vecteur caractéristique de la séquence S} de notre exemple

est s1 = (0,0,0,0,0,1).

A T'aide de la matrice d’'incidence et d'un vecteur caractéristique, nous pouvons définir
I’équation fondamentale des réseaux de Pétri. Cette équation, pour une séquence de

. s .
franchissement .S tel que m; ——— my. est la suivante :

m; =m; + W -s,
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Dans notre exemple, cette équation devient :

m4:m12+W-51

La solution de cette équation est :

o]l [=1 0 1 0 o o] 1 Jo] [o] [o]
1 R R S N A B 0 1
ol 1o 1 10 0 ol |Y o] |o 0
mazlol+lo o o 1 0 1|-|"[=1lol+l1]=]
1 o o 0o 1 -1 ol ' L 0 1
1 o o o o 1 <l 1l 1l e
of] o -1 1 0 -1 1] o o] 1] |

L’équation fondamentale signifie que l'effet d'une séquence de franchissement est
entierement déterminé par la matrice d'incidence et par le vecteur caractéristique de
la séquence. Pour cela, le vecteur caractéristique doit correspondre a une séquence

de franchissement possible pour le réseau.

1.1.2.3 Invariants

L’équation fondamentale permet de mettre en évidence des quantités invariantes dans
un réseau de Pétri. En supposant qu'un réseau n’atteint jamais un état de blocage, le
nombre de franchissements de transition, qui font évoluer le réseau de marquage en
marquage, est illimité. Dans l'ensemble des marquages accessibles, des propriétés qui
ne changent pas malgré les franchissements de transition sont dites invariantes. De
plus, d’autres propriétés invariantes peuvent aussi étre décelées dans les séquences
de franchissements. Ces deux types d’invariant sont appelés invariant de marquage

et invariant de franchissement et on leur associe respectivement des composantes
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conservatives et des composantes répétitives.

Dans les marquages accessibles du réseau de Pétri modélisant 1'algorithme de Peter-
son de la figure 1.3, nous pouvons voir qu’il n’y a toujours qu'un seul jeton dans les
places P;, P, et Ps et que deux jetons dans les places P;, Ps et F;. En tout temps,
my +mo +ms =1 et my +mys + mg = 2. Ces propriétés invariantes ont pour si-
gnification qu'il v a en tout temps une seule instanciation du processus 1 et deux
instanciations du processus 2. Ce sont des invariants de marquage. De fagon générale,
un invariant de marquage est une somme pondérée des jetons de places d'un réseau

de Pétri qui demeure constante peu importe le franchissement de transition.

Définition 1.3. Soit R un réseau de Pétri et P l'ensemble de ses places. Il y a un
invariant de marquage dans R si pour un sous-ensemble de places P’ = P, P, ..., P,
inclus dans P et un vecteur de pondération (qi, ¢a. ..., ¢s) dont toutes les composantes

sont positives nous avons :

q - m(P) + g - m(P) + ... + g, - m(P;) = constante, pour tout m € M(my).

L’ensemble de places P’ est une composante conservative du RdeP R. Les com-
posantes conservatives sont constituées indépendamment du marquage initial d'un
RdeP, ce sont des propriétés structurales. Toutefois, la valeur de la constante de

I'invariant de marquage dépend du marquage initial.

Certaines séquences de franchissement du réseau de Pétri modélisant 1'algorithme
de Peterson forment la base de séquences répétitives. C'est le cas des séquences
15715 et TyT5T5. En effet, nous avons mg LG BN mg et mg Nt | mg.
Ces séquences induisent un retour a 1'état initial et elles pourraient étre répétées

infiniment.

Définition 1.4. Soit R un réseau de Pétri et T ’ensemble de ses transitions. Il y a
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un invariant de franchissement dans R si pour une séquence de franchissements S

composée du sous-ensemble de transition T inclus dans 7', nous avons :

Sk
my — myg.

L’ensemble de transitions 7" est une composante répétitive du RdeP R.

L’équation fondamentale des RdeP est liée aux invariants, ce qui permet de dégager

deux propriétés.

Soit un vecteur pondéré de places X = (q1, ¢a, ..., ¢») OU ¢; est une valeur entiere de
pondération associée a la place P;. Soit P(x) I'ensemble des places dont le poids est

non-nul, ce qui en fait un sous-ensemble de P.

Propriété 1.1. L’ensemble de places B est une composante conservative si et seule-

ment si un vecteur de pondération x existe tel que
P(x) = BetxT-W =0.

Le vecteur x est un P-invariant.

On peut démontrer ceci a 'aide de 1'équation fondamentale ou pour une séquence

de franchissement S a partir de mp, le marquage résultant est donné par my =

T

mg+ W -s. En multpliant les deux termes de 1'équation par xT, on obtient xT . my =

xT - mg + xT - W -s. Enfin, si xT - W = 0, nous avons

xT . my =xT -mg

peu importe la séquence S et donc pour tout marquage my € M(mp). Finalement,

T

x" - myg est une somme pondérée dont le résultat est I'invariant de marquage.

Dans le modele de 'algorithme de Peterson, voici ce que donne ces équations dans
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le cas de la composante conservative composée des places Py, P5 et P3 ou le vecteur

de pondération x; est (1,1,1.0.0,0,0):

1010 0 0

1 -10 0 0 0

01 -1020 0
xT-W:[llloooo]- 00 0 -10 1 =[000000]

00 0 1-10

00 0 0 1 -1

| 0-11 0 -11
Ceci prouve que l'ensemble de places P(x1) = {Pi, P», Ps} est bien une compo-

sante de conservation. Avec le marquage initial mg = (1,0,0,2,0,0, 1), on obtient la

constante de l'invariant de marquage avec 1’équation suivante :

xT-mo=[1 11000 O]'

-

1

SO O N O O

1

-

Ainsi, cet invariant de marquage est my + my + ms = 1.

Un raisonnement similaire est possible pour les invariants de franchissement.

Propriété 1.2. Soit D, un ensemble de transitions. L’ensemble D est une compo-

sante répétitive si et seulement si une séquence de franchissement S, dont le vecteur

caractéristique est s, existe tel que :



[R]
[N

T(s)=Det W-s=0.

Le vecteur s est un T-invariant.

Dans le modele de 1'algorithme de Peterson, le vecteur caractéristique de la séquence

S =NTT3 y; =(1,1.1,0,0,0) est un T-invariant en raison du résultat suivant :

(10 1 0 0 0] 0]
1 -1 0 0 0 0 0
0 1 -1.0 0 0 0
Weayi=|o o 0o -1 0 1{-[t11000=]o0
0 0 0 1 -1 0 0
0 0 0 0 1 -1 0
0 -1 1 0 -1 1 0|

Pour trouver tous les P-invariants d'un réseau de Pétri, I'algorithme 1.1 a été congu.
Celui-ci peut aussi étre adapté pour trouver les T-invariants. Cet algorithme per-
met de trouver les P-invariants de support minimaux. Un P-invariant x; est un
P-invariant de support minimal s'il n'y a aucun P-invariant x; dans le méme RdeP

tel que P(xq) C P(xy).

Algorithme 1.1. Recherche des P-invariants de support minimaux.

Etape 1. Soit A une matrice unitaire de dimension n (n étant le nombre de places)

et B =W (la matrice d'incidence). Construire la matrice [A|B].
Etape 2. Pour chaque index j de la transition T;.

Etape 2.1. Ajouter & la matrice [A|B] autant de lignes i qu’il y a de combinai-
sons linéaire avec des coefficents entiers positifs composées de deux lignes, tel que

I'élément(7,5) soit nul.
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Etape 2.2. Eliminer de la matrice [A|B] toutes les lignes & dont 1'élément (k.j)

n’est pas nul.

Etape 3. Soit L4 - I une ligne [ de la matrice [A|B] et P(l4) le support de [ (c’est-
a-dire l'ensemble de places pour lesquels le poids n’est pas nul). Si deux lignes, p et

g, de la matrice tel que P(pa) 2 P(qa), alors la ligne p est retirée de la matrice.

FEtape 4. Les P-invariants de support minimaux correspondent aux lignes non-nulles

de A.

Voici le déroulement de I'exécution de I'algorithme 1.1 lorsqu’il est utilisé pour iden-
tifier les invariants de support minimaux du modele de I'algorithme de Peterson. La

matrice qui suit est la matrice construite par l'algorithme.
Etape 1. La matrice de 7 lignes (P & P;) et de 13 colonnes est construite.

Etape 2. Etape 2.1. pour T} : la ligne P, + P; est ajoutée, il s’agit de la somme
des deux premieres lignes.
E’ta,pe 2.2. pour Tj : les lignes P; et P, sont retirées de la matrice.
Etape 2.1. pour T : les lignes Py + P; et P+ (P, + P,) sont ajoutées.
E’tape 2.2. pour Ty : les lignes P53, P; et P; + P, sont retirées de la matrice.
Etapes 2.1. et 2.2 pour T3 : rien a faire.
Etape 2.1. pour Ty : la ligne Py + P; est ajoutée.
Etape 2.2. pour Ty : les lignes P, et Pj sont retirées de la matrice.
Etape 2.1. pour Tj : les lignes Ps + (P5 + Pr) et Py + (P, + P5) sont ajoutées.
Etape 2.2. pour Ty : les lignes Py, P3; + P; et Py + Ps sont retirées de la matrice.

Etapes 2.1. et 2.2 pour Ty : rien A faire.



Etape 3. Aucune ligne ne peut étre retirée.

Etape 4. 1l reste trois lignes & la matrice. Il y a donc trois composantes conserva-
tives dans le modele, soit { Py, Py, P3}, { Py, Ps, Ps} et {Ps. Ps. P;}. Les P-invariants
de support minimaux sont x; = (1,1,1,0.0,0,0), x2 = (0,0,0,1,1,1,0) et xg =
(0,0,1,0,0,1,1).

A

Vs N 7~ N

Pl Pz P3 P4 P:) P6 P7 T1 TQ T3 T4 T5 T6

> o

1 00 000O0|-101000]| P

01 00O0O0GO| 1-1 000 0| P

001 00O0O0| 0 1-10 00| P

0001 000 00 O0-1 01| P

00007100 000 1-1 0| P

000 0O0T1O0| 00 0UO0 1-1| P
(000000 1] 0-1 1 0-1 1/ P

11000 00| 0-11 000 P+P

001 00 01| 000 0-11 P+P

1 1 100 00| 000 0 00 P+(P+h)

0 001 1 00| 000 0-1 1 P+P

001001 1| 00 0 0 0 0 P+ (Ps+P)

0001 1 1 0/ 000 0 00 P+(P+F)

La recherche des P-invariants du modele de Peterson a permis de retrouver les deux
invariants de marquage précédemment identifiés, mais aussi un troisieme, dont la
composante conservative est { Py, Py, P;}. Cet invariant correspond a la ressource que
les processus 1 et 2 se partagent et sa signification est que la quantité de ressource

est invariante. Dans notre exemple, cette quantité est 1, et 'invariant permet de


http://%7bP1.P2.P3%7d
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démontrer que la ressource ne peut étre que dans un des trois états suivants a la fois :
libre (place P;), utilisée par le processus 1 (place P3) ou utilisée par le processus 2

(place Fs).

L’algorithme 1.1 peut facilement étre modifié pour la recherche des T-invariants. Il
suffit de rechercher les P-invariants de la matrice WT. En effectant cette trans-
formation, 1'algorithme trouve les T-invariants suivants : y; = (1,1,1,0,0,0) et
y2 = (0,0,0,1,1.1). A partir du marquage mg, ces T-invariants correspondent aux
composantes répétitives T1ToT3 et TyT5Ts que nous avions informellement identifiées

précédemment.

1.1.2.4 Autres propriétés

Les réseaux de Pétri ont plusieurs autres propriétés que nous ne présenterons pas
puisqu’elles ne sont pas utilisées dans cette these. Le lecteur devrait toutefois savoir
que la théorie des RdeP permet d’analyser plusieurs propriétés d'un modele. Par
exemple, un RdeP est dit borné si le marquage de chacune de ses places n’est jamais
supérieure a une certaine valeur. Aussi, une transition d’'un RdeP est dite vivace
si cette transition apparait dans toutes les séquences de franchissement possibles a

partir des marquages atteignables.

1.1.3 Extensions a la théorie originale

Certaines limites au pouvoir de modélisation des réseaux place-transition sont rapi-
dement apparues. Afin d’augmenter le nombre d’applications possibles, la théorie des
réseaux de Pétri a été étendue et enrichie. On appelle extensions les nouveaux types

de réseau de Pétri qui ont été développés. Les extensions ont de nouvelles regles
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de fonctionnement qui ont été ajoutées a celles que nous avons déja définies. Les
sous-sections 1.1.3.1 a4 1.1.3.3 présentent trois extensions a la théorie des réseaux de
Pétri : les réseaux de Pétri colorés. les réseaux de Pétri stochastiques et les réseaux
de Pétri hybrides fonctionels. Ceci n'est pas une présentation exhaustive de toutes
les extensions existantes. Nous présentons ces extensions-ci puisqu’elles ont déja été

utilisées pour modéliser des systemes biologiques.

1.1.3.1 Réseaux de Pétri colorés

Pour modéliser adéquatement certains modeles, il fut nécessaire de distinguer dif-
férentes catégories de jetons. Ce qui fut fait en étiquetant les jetons d'un RdeP de
différentes couleurs. Les conditions de franchissement d'une transition d'un RdeP
coloré peuvent varier selon la couleur des jetons. Cette extension a la théorie des

RdeP est ainsi définie :

Définition 1.5. Un réseau de Pétri coloré R est défini par le n-tuple (P, T, Pre,
Post, C, m) ou :

(P, T, Pre, Post, m) est un réseau de Pétri tel que défini par la définition 1.1

ol les jetons de m sont identifiés par une couleur;

C = {C),Cy,...} est un ensemble de couleurs. Les matrices d’incidence Pre et

Post sont des fonctions qui tiennent compte de la couleur des jetons.

Dans le modele de l'algorithmme de Peterson illustré a la figure 1.1, les deux jetons
des instanciations du processus deux ne peuvent étre distingués I'un de I'autre. La
préservation de l'identité de chacune des instanciations est possible en coloriant les
jetons, ce qui permet de savoir exactement dans quel état chaque instanciation du

processus se trouve. Conceptuellement, les RdeP colorés sont des superpositions de
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réseaux place-transition. Une intéressante conséquence de cette propriété est la ré-
duction de la taille de certains modeles puisque la superposition réduit le nombre de

places et de transitions.

1.1.3.2 Réseaux de Pétri stochastiques

Les réseaux de Pétri stochastiques sont une sous-catégorie de réseaux non-autono-
mes : les réseaux de Pétri temporisés. Ces derniers ont été développés afin d'introduire
une dimension temporelle a la théorie originale. En effet, dans les réseaux place-
transition, le franchissement de transition est un événement discret instantané qui a
une position relative a d’autres franchissements puisqu’il fait partie d'une séquence,
mais qui n’'est pas situé sur une ligne de temps absolue. Les réseaux temporisés
introduisent une abstraction temporelle par la notion d’horloge. Il devient possible de
spécifier des délais pour le franchissement de transition. Autrement dit. les transitions
sont tirées a des temps données. Les temps de franchissement peuvent étre définis de
facon statique (délai constant) ou de facon dynamique (délai variable dépendant du

marquage).

Dans les RdeP stochastiques, les délais de franchissement sont des valeurs stochas-
tiques. Le franchissement d’une transition se produira lorsquun temps d, qui est
une valeur aléatoire, se sera écoulé. Cette extension a la théorie des RdeP est ainsi

définie :

Définition 1.6. Un réseau de Pétri stochastique R est défini par le n-tuple (P, T,
Pre, Post, F, A\, m) ou :

(P, T, Pre, Post, m) est un réseau de Pétri tel que défini par la définition 1.1;

F={F,, T, € T| Fr, : [0,00) — [0,1]} est un ensemble de fonctions de
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répartition des délais de franchissement des transitions de R. Elles ont une moyenne

égale a un et elles sont indépendantes du marquage;

A={M, T; €T | Ar, : N = RT} est I'ensemble des taux de franchissment. Ce
taux est un nombre réel positif qui est utilisé pour calculer la fonction de répartition

de la transition T;

De la définition 1.6. on peut comprendre que le délai d d’'une transition suit une
fonction de répartition ayant un taux spécifique. Dans le cas ou toutes les fonctions
de répartition d'un modele suivent une loi exponentielle, on peut transformer le

modele en chalne de Markov.

1.1.3.3 Réseaux de Pétri hybrides fonctionnels

Les réseaux de Pétri hybrides fonctionnels (RdePHF) sont une extension qui a été
congue spécifiquement pour la modélisation de systeémes de biologie moléculaire (Mat-
suno et al., 2003c). Cette extension combine les regles de fonctionnement d’autres
extensions existantes. Avant de définir formellement les RdePHF'. voyons les autres
extensions dont ils empruntent certaines caractéristiques, soit les extensions hybride,

a arc inhibiteur et fonctionnelle.

La nature discréete des réseaux de Pétri (quantités discretes et événements discrets)
est une autre limite a la modélisation de certains systémes qui est devenue indési-
rable. On a alors imaginé des RdeP continus formés de places contenant des quantités
continues et des transitions a flux continu. Ce type de réseau est parfait pour modéli-
ser des flux, que ce soit le flux d’un liquide ou la production continue d’une machine.
Un modele de RdeP continu a son équivalent en équations différentielles. Toutefois,

tout flux peut étre subitement interrompu par un événement considéré discret, par
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exemple la fermeture d’'une conduite ou le bris d'une machine. Une extension a la
théorie des RdeP ayant une nature mixte, discréete et continue, permet de modéli-
ser de tels phénomenes. Ce sont les réseaux de Pétri hybrides. Les RdeP hybrides
peuvent étre autonomes ou non. Dans ce dernier cas, on parle aussi de RdeP hy-
brides temporisés. Les places continues d'un RdeP hybride ne peuvent pas contenir
une quantité de jetons indivisibles comme les places discretes. On parle alors de la

marque dune place continue, qui est un nombre réel.

Comme nous l'avons vu a la définition 1.2, les conditions de franchissement des
transitions d’un réseau place-transition ne peuvent qu’étre des énoncés de la forme
my(P;) > Pre(P;, T;) pour toutes P; € °T;. Ce qui signifie que le marquage de toutes
les places d’entrée d'une transition doit étre égal ou supérieur au poids des arcs
reliant les places d’entrée a la transition. Par définition, le poids d'un arc reliant une
place a une transition est égal ou supérieur a 1. Pour modéliser des situations ou une
condition de franchissement est un test négatif, un test de seuil, c’est-a-dire qu'une
transition devient tirable seulement si le marquage d’une place est inférieur au seuil
s, on a créé les arcs inhibiteurs. Cette condition de franchissement est représentée
ainsi : si le poids de I'arc inhibiteur P, — T est s, alors la transition T; est tirable
si m(P;) < s. Les RdeP qui incluent ce type d’arc sont les RdeP & arc inhibiteur.
Lorsqu'une transition est franchie, les places d’entrée reliées a cette transition par
un arc inhibiteur n’ont aucun jeton de retirer. Un arc inhibiteur sert exclusivement
a des tests de seuil et non a la consommation de jetons par une transition. Il existe
aussi les arcs de test, qui ont un comportement similaire. Un arc de test permettra le
franchissement d'une transition sans consommation de jetons si la condition suivante

est remplie : la transition T} est tirable si m(P;) > s.

Toutes les extensions que nous avons vues jusqu’ici ont une structure statique. Ceci

empéche la modélisation de systéemes ou certains parametres s’adaptent dynami-
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quement. Dans les terines de la théorie des réseaux de Pétri, cette adaptation est
dépendante du marquage. Par exemple, on pourrait ajouter a la définition dun ré-
seau place-transition que le poids des arcs est fonction du marquage du réseau. Ainsi,
apres chaque franchissement de transition, le poids des arcs est mis a jour selon le

nouveau marquage. Un réseau qui s’adapte dynamiquement est un réseau fonctionnel.

En combinant les regles de fonctionnement des RdeP hybrides, a arc inhibiteur et

fonctionnels, nous obtenons les RdePHF.

Définition 1.7. Un réseau de Pétri hybride fonctionnel R est défini par le n-tuple
(P, T,h, A, b, V. d, m) on:

P={P,P,...,P,}, est un ensemble fini de places ou n > 0;
T ={T\,T,,....T,}, est un ensemble fini de transitions ol m > 0;
PNT =@, c’est-a-dire que les ensembles P et T sont disjoints;

h : PUT — {discret,continu}, est la fonction hybride qui indique pour
chaque place P, € P si c'est une place discréete, h(P) = discret, ou une place
continue, h(P;) = continu. La fonction hybride s’applique de la méme facon a chaque
transition 7; € T. Ceci permet de diviser P en deux sous-ensembles (P, I'ensemble

des places discrétes, et PC, 'ensemble des places continues). T est aussi divisible en

TP et TC:
A=PTUTPouPT =P xTetTP=T X P. A est un ensemble fini d’arcs;

b: A — {normal, test, inhibiteur}, est la fonction de type d’arc qui indique
pour chaque arc A; € A si c’est un arc normal, b(A;) = normal, un arc de test,
b(A;) = test, ou un arc inhibiteur, b(A4;) = inhibiteur. Les restrictions suivantes

s’appliquent au triplet place, transition et arc de R : si b(A;) = normal A A; €
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PP xT = A; € PP xTP et sib(4;) =normalAA; € T x PP = A; € TP x PP. Ces
restrictions signifient que si une place d’entrée ou une place de sortie d une transition
reliées par un arc normal est discrete, la transition doit nécessairement étre discrete

aussi;

V = {fap(my, .omp) U gae(ma,..omy), AP € PxTPUTP x P, AY € P x
TCUT x P | f: M —N.g: M — R}, est un ensemble de fonctions assignées
aux arcs de R qui ont le marquage M du réseau comme parametres. Lorsqu’un arc
est relié a une transition discréte, son poids est un nombre naturel. Lorsqu'un arc

est relié a une transition continue. sa vitesse est un nombre réel positif;

d: TP — R*, est I'application appelé délai. Pour une transition discrete T,

d(T;) : M — R™ est la fonction de délai de T;;

m : P — N, est le marquage du réseau, soit un vecteur de n composantes
(my1,ma, ..., my) ol m(F;) est le nombre de jetons (la marque) de la place P; discrete

(continue). myg est le marquage initial.

Les RdePHF ont un grand pouvoir de modélisation, tres utile pour la simulation.
Toutefois, certaines propriétés des réseaux place-transition n’ont pas d’équivalent
pour les RdePHF, ce qui affaiblit les possibilités d’analyse qualitative des systémes
modélisés avec cette extension. Il existe aussi les RdePHF avec extension, qui ajoute
au RdePHF la capacité de modéliser d’autres types de données comme des booléens
et des chaines de caracteres. Pour une définition formelle de cette extension, voir

Nagasaki et al. (2004).
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1.2 Les réseaux de Pétri et leur application aux systémes biologiques de

2004 a aujourd’hui

Lors de travaux précédents sur l'utilisation des réseaux de Pétri pour la modélisa-
tion et la simulation de systémes de biologie moléculaire, nous avons complété une
recension des écrits sur le sujet (Hardy et Robillard, 2004). Cette revue de la littéra-
ture couvrait les publications a partir du premier article suggérant l’application des
réseaux de Pétri a la biologie (Reddy et al., 1993) jusqu'aux parutions du début de
I’année 2004. Depuis. plusieurs autres articles ont été publiés, suggérant de nouvelles
applications de la théorie de réseaux de Pétri tant pour l'analyse qualitative que
quantitative de systemes biologiques. Cette section présente ces nouveaux articles.
Nous verrons dans un premier temps d’autres revues de littérature parues au cours
de cette période. Ensuite, nous recenserons des études dont 1'objectif est 1’analyse
qualitative a l'aide des réseaux de Pétri et finalement les études quantitatives de

systemes biologiques.

1.2.1 Recensions des écrits

Quelques mois avant que notre premiere revue de la littérature sur 'utilisation des
réseaux de Pétri pour 'étude de systémes biologiques soit publiée, une autre tres
courte revue de littérature paraissait (Pinney et al., 2003). Cet article entreprend de
facon beaucoup plus succincte de présenter les différentes avenues offertes aux biolo-
gistes qui désirent utiliser les réseaux de Pétri pour la modélisation et la simulation
de systemes biologiques, soit I'analyse structurale et 'analyse quantitative. Suivant
de peu la publication de notre article, une troisieme recension des écrits fut publiée
(Peleg et al., 2005). Cet article propose une revue des différents formalismes et ou-

tils basés sur les réseaux de Pétri. Une particularité intéressante de cet article est
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de comparer les formalisimes et les outils selon leurs capacités mathématiques ainsi
que leur aptitude & répondre a certaines questions pertinentes a I'étude de systemes
biologiques. Cette approche en fait un article tres pratique pour les biologistes. Les
auteurs comparent cinq outils : Mabius (Deavours et al., 2002), TimeNET (German
et al., 1995), Design/CPN (Jensen, 1992), Genomic Object Net (Nagasaki et al.,
2003; Doi et al., 2003b) et Woflan (Verbeek et van der Aalst, 2000).

Plus récemment, une quatrieme recension des écrits a été publiée (Matsuno et al.,
2006b). Similairement aux autres revues, cet article présente les différents forma-
lisines de réseau de Pétri appliqués a la biologie et discute de leur utilisation. Encore
une fois, la distinction entre modélisation qualitative et modélisation quantitative est
utilisée pour présenter I'ensemble des études publiées. Nous utiliserons, nous aussi,

cette catégorisation pour recenser les études sur le sujet.

1.2.2 Etudes qualitatives de voies biologiques

Reddy et al. (1993) ont suggéré pour la premiére fois de représenter une voie métabo-
lique a 'aide d’un réseau de Pétri. Leur travail a constitué la fondation théorique de
plusieurs autres projets de modélisation qui ont suivi. Dans leur article, les places et
les transitions du modele sont respectivement associées aux métabolites et aux réac-
tions biochimiques. Le poids des arcs sont les coefficients stoechiométriques des réac-
tions entre substrats et produits. Le nombre de jetons indique le nombre de molécules
des différents métabolites. Ces régles ont servi aux études subséquentes de systémes
biologiques qui, jusqu'en 2004, ont porté essentiellement sur les voies métaboliques
(Hofestadt, 1994; Kiiffner et al., 2000; Voss et al., 2003). Zevedei-Oancea et Schuster
(2003) ont discuté d’autres rapprochements possibles entre les voies métaboliques et
la théorie des réseaux de Pétri. Entre autres, ils ont exposé la correspondance entre

les relations de conservation et les flux élémentaires des voies métaboliques et les
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P-invariants et les T-invariants des réseaux place-transition.

Depuis 2004, les voies de signalisation cellulaire sont maintenant 1'objet d’étude prin-
cipal des nouvelles publications. Ce déplacement dans le type de systémes de biologie
moléculaire étudiés indique une augmentation du niveau de complexité des systemes
modélisés avec les RdeP. Les voies métaboliques sont constituées de mécanismes
simples, une suite uniforme de réactions catalytiques. Les voies de signalisation cel-
lulaire sont plus complexes. Elles sont formées par différents types de réactions tels
la formation de complexes moléculaires, des réactions catalytiques et le transport de
molécules. La combinaison de ces réactions permet la propagation d'un signal molé-
culaire qui provoque le changement d’état de molécules d'un état inactif & un état

actif.

Voyons maintenant les différentes études qualitatives de voies et de systemes biolo-

giques basées sur les réseaux de Pétri menées de 2004 a aujourd’hui.

1.2.2.1 Analyse de voies métaboliques

Les derniers articles portant spécifiquement sur ’analyse de voies métaboliques a
I'aide de RdeP sont ceux de Heiner et Koch (2004) et Koch et al. (2005). Ces deux
articles constituent en fait la poursuite du méme projet ou les auteurs proposent une
méthode pour la modélisation et la validation de voies métaboliques. Cette méthode
est basée sur les RdeP colorés et constitue une excellente synthese des propositions
antérieures d’applications de la théorie de RdeP aux voies métaboliques. L’étape de
modélisation de cette méthode reprend les régles de modélisation de Reddy et al.
(1993). L’étape de validation propose différentes analyses (analyse structurale, ana-
lyse des invariants et analyse d’accessibilité pour vérifier la cohérence du modele et

déduire certaines de ses propriétés structurales et dynamiques. Cette méthode a été
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appliquée & la voie du catabolisme du sucrose dans le tubercule de patate (Koch

et al., 2005).

1.2.2.2 Analyse de voies de signalisation cellulaire

On a tenté d’adapter la méthode de modélisation et de validation de voies métabo-
liques aux voies de signalisation cellulaire (Heiner et al., 2004). Pour modéliser les
réactions enzymatiques de ce type de voies, on a fait appel aux arcs de test. Pour
effectuer la validation du modele, les arcs de test sont convertis en arcs unidirection-
nels afin de déterminer les T-invariants et ainsi d’offrir une description des flux dans

la voie de signalisation. Cette méthode a été appliquée a 1'apoptose cellulaire.

Lee et al. (2004) ont cherché a définir un nouveau cadre conceptuel pour la mo-
délisation de voies de signalisation en se basant sur le formalisme des RdeP. Entre
autres, ils ont suggéré des représentations utilisant les réseaux de Pétri pour des
réactions types d'une voie de signalisation (transformation chimique, translocation,
association, dissociation, activation enzymatique et cascade de signalisation). Ils ont
appliqué leur cadre conceptuel a la voie de signalisation induite par I'interleukine-14

et le facteur-a de nécrose tumorale.

En analysant les différentes utilisations faites des RdeP pour la modélisation des
voies de signalisation, Takai-Igarashi (2005) a remarqué des incohérences. Elle ne
remet pas en cause l'utilité de ces approches pour la modélisation et ’analyse des
complexes voies de signalisation. mais elle entrevoit des difficultés futures pour la
réutilisation, le partage et la modification des modeles. Elle proposa une standar-
disation des représentations par RdeP des processus de signalisation cellulaire qui

repose sur le Cell Signaling Network Ontology (Takai-Igarashi et Mizoguchi, 2004).
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En parallele, deux articles sont parus en 2006 qui témoignent, a mon avis, d'une
maturation de ce champ de recherche. Sackmann et al. (2006) et Li et al. (2006)
explorent des applications pointues de techniques d’analyse basées sur les RdeP et

tentent de les arrimer aux concepts des voies de signalisation.

D’une part, Li et al. (2006) poursuivent le travail de Lee et al. (2004) et proposent
des modeles de RdeP pour d’autres réactions types des voies de signalisation (entre
autres, phosphorylation, autophosphorylation, homodimérisation ainsi que l'ouver-
ture et la fermeture de canaux). D’autre part, ils introduisent un nouveau concept,
la composante d’activation de transduction, qui permet de décrire le processus d’ac-
tivation enzymatique des réactions des voies de signalisation. [ls montrent la corres-
pondance entre ce concept et les T-invariants des modeles de RdeP. Ils suggerent
un algorithme qui identifie les composantes d’activation de transduction et qui éta-
blit les liens entre celles-ci. Cet algorithme nécessite une identification des places qui
modélisent une enzyme. Cette méthode permet de décomposer une voie de signali-
sation en blocs d’activation qui agissent séquentiellement les uns sur les autres pour
faire passer des enzymes d'un état inactif a un état actif et ainsi faire transiter un
signal par la voie. lls démontrent leur méthode sur un modele des voies de signali-
sation stimulées par l'interleukine-3 et ils obtiennent comme résultat 1'architecture

d’activation de la voie.

L’approche de Sackmann et al. (2006) atteint un objectif similaire de décomposition
du modele d'une voie de signalisation en unités fonctionnelles, qui sont les plus petits
regroupements possibles ayant une signification biologique. Cette approche, au lieu
dutiliser une identification explicite des places représentant une enzyme, repose sur
les P-invariants du RdeP. En effet, une enzyme est une entité constante du modéle
puisqu’elle est toujours dans au moins un état. L’action d’une enzyme est modé-

lisée par un arc de lecture (read arc, ¢’est-a-dire un arc double, & la fois d’entrée
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et de sortie, qui entraine une consommation et une production de jetons nulles).
La présence d’arcs de lecture complique l'identification de T-invariants a partir de
la matrice d’'incidence. Les auteurs de cet article proposent donc le concept de T-
invariant faisables, des T-invariants réalisables a partir du marquage d'un réseau.
Les T-invariants faisables ont tous une signification biologique. Les auteurs défi-
nissent un second concept, les ensembles maximaux de transitions communes, qui
regroupent des transitions qui apparaissent toujours ensemble dans les T-invariants.
Ces ensembles représentent des réactions qui sont toujours exécutées ensemble pour
accomplir une fonction biologique. Les conclusions de cette approche servent princi-
palement a valider les modeles complexes. La voie de signalisation de la phéromone
de reproduction de Saccharomyces cerevisiae sert d’exemple d’application de cette

approche.

1.2.2.3 Analyse du systéme corporel d’homéostasie du fer

L’approche d’analyse que nous venons de recenser fut reprise pour le systeme d’ho-
méostasie corporel du fer. Dans une premiere étude, un modele de RdeP a été déve-
loppé (Formanowicz et al., 2007). Selon les auteurs, il s’agit du premier modele formel
de ce systeme qui n’est toujours pas completement élucidé. Dans une seconde étude,
ce modele a été analysé en y identifiant les T-invariants faisables et les ensembles
maximaux de transitions communes (Sackmann et al., 2007). Ce modéle comporte
85 T-invariants et 14 ensembles-MTC qui ont tous une signification biologique. Les
auteurs utilisent aussi une nouvelle technique, le regroupement des T-invariants fai-
sables en grappes selon la méthode UPGMA (Grafahrend-Belau, article a paraitre).

Les grappes identifiées correspondent aux voies biologiques du systeéme.
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1.2.3 Etudes quantitatives

Jusqu'a présent, nous avons recensé les études qui utilisent le cadre théorique des
réseaux de Pétri pour analyser qualitativement les systemes biologiques. L’avantage
principal d'une telle approche est de permettre la validation d’'un modele. Ces mo-
deles qualitatifs deviendront réellement utiles que s’ils permettent par la suite une
étude quantitative, réelle génératrice de nouvelles hypotheéses a étre testées expéri-
mentalement puisque les études quantitatives permet d’investiguer le comportement

dynamique des systemes.

Comme nous 'avons vu a la section 1.1.3.3, une extension particuliere de la théo-
rie des RdeP a été spécifiquement congue pour réaliser des études quantitatives de
systémes biologiques. Il s’agit des réseaux de Pétri hybrides fonctionnels. Beaucoup
d’études ont été menées a 'aide de ce formalisme dédié a la simulation. Quelques
autres études quantitatives ont aussi été conduites a l'aide d’autres extensions de

RdeP. Nous les répertorions ici.

1.2.3.1 Analyse quantitative de voies biochimiques avec les réseaux de

Pétri hybrides et leurs extensions dérivées

La modélisation du mécanisme de commutation génétique du phage-A avec les RdeP
hybrides a démontré pour la premiere fois que ce formalisme avait un intéressant
potentiel pour la modélisation et la simulation des voies biochimiques (Matsuno et al..

2000). Depuis, plusieurs types de modeles ont été développés, simulés et analysés.

e Réseaux de régulation génétique
— Commutateur génétique du phage A (Matsuno et al., 2000)

- Rythmes circadiens de la mouche a fruit (Matsuno et al., 2003c)



39

— Rythmes circadiens de la souris (Matsuno et al.. 2006a)

- Régulation de genes du cancer (p53, MDM2 et pl9ARF) (Doi et al., 2006)
e Voies de signalisation cellulaire

— Apoptose induite par la protéine Fas (Matsuno et al., 2003c)

— Voie de signalisation Notch-Delta chez Drosophila (Matsuno et al., 2003b)

~ Voie de la drogue chimiothérapique gemcitabine (Peleg et al., 2005)

Maladie d'Huntington (Nagasaki et al., 2005)

Role d’interleukine-6 dans le développement des cellules souches hématopoié-
tiques (Troncale et al., 2006)
— Effet de l'inhibiteur de la kinase Raf sur la voie de signalisation de la kinase
ERK (Gilbert et Heiner, 2006)
— Voies de signalisation des kinases Akt et MAPK (Koh et al., 2006)
e Voies métaboliques
— Cycle de 'urée et sa régulation (Chen et Hofestddt, 2003)
— Opéron lac et la voie de la glycolyse (Matsuno et al.. 2003a)
e Réseaux protéiques des cycles cellulaires
— Processus de division cellulaire de Xenopus (Matsui et al., 2004)

— Cycle de fission cellulaire de la levure (Fujita et al., 2004)

Pour la plupart des études citées précédemment, 'approche est similaire. On procede
a la modélisation d’un systeme biochimique en structurant les molécules et leurs
interrelations. On spécifie les parametres dynamiques (concentrations, parametres
cinétiques) pour ensuite simuler le modele. Les données de simulation sont des séries
de données temporelles, principalement la variation dans le temps des concentrations
de molécules. Une particularité de I’étude de Koh et al. (2006) est de proposer une
approche de décomposition pour I'estimation des parametres dynamique d’un modeéle
de RdePHF qui tient compte de sa structure. Cette approche diminue de facon

importante le temps d’exécution de 'algorithme.
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1.2.3.2 Analyse quantitative de voies biochimiques avec d’autres exten-

sions

Depuis 2004, il y a eu peu de tentatives d’étudier quantitativement un systéme bio-
chimique avec des RdeP d’un autre type que les RdePHF. Lee et al. (2006) ont simulé
la voie de signalisation du facteur de croissance épidermique a l'aide de réseaux de
Pétri exécutables et de 'outil Design/CPN. Popova-Zeugmann et al. (2005) ont uti-
lisé les réseaux de Pétri temporisés pour transformer un modele qualitatif a 1'état
stable en un modeéle quantitatif a 'aide des T-invariants. Elles présentent des tech-
niques structurales qui permettent de déterminer la réalisabilité temporelle d une
séquence de transitions et de calculer les plus court et long délais de la séquence.
Inspirés par cette derniere approche discrete, Li et al. (2007) ont aussi utilisé les
réseaux de Pétri temporisés pour étudier quantitativement la voie de signalisation de
I’apoptose cellulaire induite par la protéine Fas. Selon ces derniers, une approche dis-
crete est une étape de modélisation quantitative qui devrait précéder une approche
hybride comme les RdePHF. Ils justifient cette affirmation en mentionnant que les
modeles hybrides nécessitent un important effort de “tunning” des parametres par
essai-erreur. La simulation des modeéles hybrides est aussi tres coliteuse en ressources
computationnelles. Avec les modeles discrets, on obtient des résultats moins précis.
mais qui donnent des indications tres pertinentes a une modélisation hybrides. Pour
ces trois raisons, Li et al. (2007) suggeérent une premiere modélisation quantitative

discrete avec les RdeP temporisés avant de réaliser une modélisation hybride.

1.3 Les réseaux de Pétri peinturés

Pour visualiser les données produites lors de la simulation d’'un RdeP, la plupart

des simulateurs supportent la visualisation par jeu de jetons qui permet de voir la
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modification de la distribution des jetons dans le réseau. A T'aide d’une animation,
on a I'impression que les jetons voyagent au rythme de leur production et de leur
consommation. D’autres simulateurs présentent le marquage sous forme numérique
directement sur le réseau ou encore, ils sont équipés d'une fonctionnalité permettant
la production de graphiques de données bidimensionnels o1 des courbes représentent
la variation de la marque des places dans le temps. Quand les modeles atteignent un
degré élevé de complexité, ces méthodes de visualisation des données de simulation ne
suffisent plus & donner rapidement une idée du comportement du modele simulé. Le
simple coup d'oeil n'informe plus vraiment et une analyse plus approfondie devient

nécessaire.

Afin de conserver la possibilité d’explorer visuellement les données de simulation d'un
modele de RdeP complexe, nous avons imaginé un ajout simple a la théorie que nous
avons appelé les RdeP peinturés. Nous avons présenté cette idée pour la premiere fois
dans l'article de conférence référencé ici (Hardy et Robillard, 2006b), qui se trouve
a 'annexe II. Les réseaux de Pétri peinturés consistent en l'application de teintes
sur chacune des places du modele. Une regle de peinturage, qui a comme principal
parametre d’entrée la marque d'une place, sert a déterminer la teinte a appliquer
aux places. Différentes regles de peinturage peuvent étre créées afin de générer des
représentations qui révelent différents aspects des données. A la sous-section 5.3.4,

nous présentons deux régles différentes de peinturage.

Les teintes des places du modele sont calculées a chaque pas de simulation. ce qui
permet ensuite de produire une représentation animée du graphe du modele de RdeP.
Dans cette représentation animée, les teintes changent pour refléter I'évolution du
marquage du réseau. Les RdeP peinturés permettent donc d’apprécier visuellement
le comportement dynamique du modele. Nous croyons que cet ajout présente syn-

thétiquement les données de simulation et compléte tres bien la théorie existante et
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supporte 1'objectif principal du formalisme de RdeP est de représenter comment un

systeme fonctionne.
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CHAPITRE 2

UNE APPROCHE SYSTEMIQUE EN BIOLOGIE MOLECULAIRE :
LE GENIE A LA RENCONTRE DE LA BIOLOGIE

2.1 Introduction

Depuis quelques années. des scientifiques observent une profonde transformation de la
recherche en biologie. En 50 ans de recherche, plus précisément depuis la découverte
de la structure de 'ADN en 1953 jusqu’a la fin du séquencage du génome humain
en 2001, les chercheurs en biologie ont majoritairement adopté une approche de
recherche réductionniste. En 1966, Francis Crick a affirmé que "L’objectif ultime
de la biologie moderne est d’expliquer tous les phénomenes biologiques en termes
provenant de la physique et de la chimie.” Crick est cité par Van Regenmortel (2004).
Cette phrase résume bien tout le courant de pensée qui a prévalu en biologie pendant
la deuxiéme moitié du siecle dernier. C’est ainsi que tous les éléments participant
aux processus biologiques : organes, cellules, organites et macromolécules ont été

décortiqués, analysés, caractérisés, etc.

Mais cette démarche scientifique a certaines limites et une nouvelle démarche a
émergé : la biologie systémique, appelée systems biology en anglais. Cette approche
prone la compréhension des processus biologiques comme des systémes hautement
comiplexes, ayant une structure et une dynauique propres, des mécanismes de controle
et des principes de conception (Kitano, 2002b). Par exemple, il ne s’agit plus d’asso-
cier des fonctions précises a des protéines, mais d’identifier et comprendre les réseaux

d’interactions ou elles sont actives.
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Les partisans de la nouvelle approche systémique et holistique considérent mainte-
nant que la biologie est une discipline autonome qui requiert son vocabulaire propre
et des concepts qui ne sont issus ni de la chimie ni de la physique (Van Regenmortel,
2004). Toutefois, les bases de cette nouvelle biologie sont difficiles a imaginer et a
poser de facon consensuelle. Dans un texte d’anticipation scientifique étonnamment
juste, Hartwell et al. (1999) stipulent que les systemes biologiques sont tres différents
des systemes chimiques et physiques : les systemes physiques sont composés de co-
pies d’éléments habituellement simples, alors que les systemes biologiques contiennent
des milliers de composantes différentes, variant en nombre de quelques unités a des
millions, ayant des interactions précises et formant souvent des dispositifs plus com-
plexes. Selon eux, plus importantes encore sont les contraintes qui distinguent la
biologie de la physique et de la chimie, a savoir la survie et la reproduction des

organismes vivants, et la notion concomitante de fonctionnalité.

Quelques chercheurs ont avancé, comme Hartwell, qu'une meilleure compréhension du
vivant proviendrait d une application des principes d’ingénierie a la biologie. Ceux-ci
sont d’avis que les principes d’organisation des systemes biologiques se rapprochent
de ceux des systémes technologiques hautement complexes et que plusieurs paralleles

sont a établir entre les deux.

Wolkenhauer (2001) a fait remarquer que les origines de la biologie systémique ne
sont pas si récentes puisque des biologistes avaient déja émis les mémes principes de
base il y a quelques décennies. Toutefois, ¢’est a partir des informations biologiques
sur les génomes, les protéomes et autres omes biologiques qui sont amassées avec les
technologies d’aujourd hui que cette discipline peut réellement prendre son envol. Les
discussions qui s’amorcent entre ingénieurs et biologistes pour batir ce nouvel axe de
recherche en biologie offrent de nouvelles opportunités. Mes activités de recherches,

menées au Laboratoire de Recherche en Génie Logiciel de I'Ecole Polytechnique dans
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le cadre de la maitrise et du doctorat et portant sur les outils de modélisation et
de simulation des systémes de biologie moléculaire, s’inscrivent dans 1'optique de
cette nouvelle biologie puisque les chercheurs, tant théoriciens qu’expérimentalistes,

réclament de nouveaux outils informatiques.

Cette section est structurée en deux sous-sections distinctes. La premiere sous-section,
intitulée Concepts systémiques en biologie, fait un tour d horizon des concepts de la
théorie des systémes qui peuvent étre appliqués a la biologie et qui ont été discu-
tés dans de nombreuses publications. Ces concepts sont I'émergence, la robustesse,
la fragilité, la modularité et la rétroaction. Y est aussi présentée l’architecture en
noeud papillon qui est une structure architecturale particuliere qui rassemble tous
les concepts de la biologie systémique. La deuxieme sous-section, intitulée Méthodes
d’analyse en biologie systémique, retrace certaines études qui utilisent et illustrent
les concepts de la biologie systémique. Certains résultats de ces études sont pré-
sentés. Il s’agit d’études de la robustesse, de la rétroaction et de la modularité des
systémes biologiques. Nous présenteront aussi des types particuliers d’études, a sa-
voir de nouvelles études théoriques en théorie des systémes et du controle qui sont
motivées par la biologie systémique dans un cas, et dans I'autre, des études purement

expérimentales dont les objectifs sont ceux de la biologie systémique.

2.2 Concepts systémiques en biologie

Un des premiers défis de la biologie systémique naissante est d’établir un cadre
conceptuel. Parmi toutes les suggestions qui ont été émises dans la littérature spéciali-
sée, la nature complexe des systémes biologiques semble faire consensus (Weng et al.,
1999). De cette complexité découle différents principes d’organisation qui pourraient

constituer la structure conceptuelle et la cohérence logique qui sont actuellement re-
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cherchées. Cette sous-section présente ces différents concepts et certaines études qui

les supportent.

Plusieurs concepts théoriques qui sont décrits ci-bas proviennent des travaux de Csete
et Doyle (2002). John C. Doyle a participé a titre d’auteur ou de collaborateur a plu-
sieurs des publications décortiquées dans ce rapport et il a, avec Hiroaki Kitano,
une influence indéniable sur le domaine. Cet ascendant exercé sur la théorie de la
biologie systémique par Doyle est principalement di au développement pionnier qu’il
a accompli avec Carlson sur la théorie HOT (Highly Optomized Tolerance). Ses pro-
positions sont issues de ses réflexions sur la complexité et sur ses caractéristiques qui
transcendent les domaines analysés (Carlson et Doyle, 1999, 2002). Les mécanismes
de cette théorie reproduisent une observation généralisée dans les systémes com-
plexes optimisés : la génération de distributions en loi de puissance!. Par systémes
complexes optimisés, on entend des systemes comme les organismes biologiques qui
sont optimisés par la sélection naturelle ou comme les technologies avancées qui sont
optimisées par les méthodes de conception d’ingénierie. La théorie HOT présente
quatre caractéristiques : (1) de l'efficacité. de la performance et de la robustesse pour
contrer les incertitudes prévues; (2) une hypersensibilité aux défauts de design et
aux perturbations non-anticipées; (3) des configurations non-génériques, spécialisées
et structurées; et (4) des lois de puissances. Dans un contexte biologique, nous par-
lerons entre autres de robustesse. de modularité, de protocole, de rétroaction et de

fragilité.

!Simplement définie, une loi de puissance implique d’une part un trés grand nombre de petites
occurrences et d’autre part, une rareté des grandes occurrences, dans une proportion log-log. De
telles distributions ont été observées dans la taille des villes, la magnitude des secousses sismiques,
la fréquence d’utilisation des mots, pour ne nommer que quelques exemples. Plusieurs distributions
de loi de puissance ont aussi été observées dans les statistiques se rapportant & Internet.
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2.2.1 Emergence

A mesure que les caractéristiques des macromolécules biologiques sont déterminées,
il appert que les propriétés des systémes biologiques sont rarement le fruit d’acteurs
isolés. En d’autres mots, la spécificité des activités complexes des systemes biolo-
giques ne provient pas de la spécificité des molécules individuelles (Van Regenmortel,
2004). Les interactions entre les composantes ainsi que les influences de 1'environ-
nement font apparaitre de nouvelles propriétés, qui sont absentes des composantes
isolées. Cette constatation a mené a la conceptualisation de I'émergence, qui est un
complément aux approches réductionnistes. Une particularité des propriétés émer-
gentes est qu'elles ne peuvent pas étre prédites ou déduites a partir d’informations

sur les comportements de bas niveau.

Les travaux de modélisation et de simulation sur les voies de signalisation cellulaire
impliquées dans la régulation de I'enzyme CaMKII de Bhalla et Iyengar (1999) illus-
trent bien la recherche de comportements émergents dans les systémes biologiques.
En assemblant plusieurs modules de réactions biochimiques et de voies de signali-
sation dans un seul modele informatique, les chercheurs ont observé des propriétés
émergentes dans le grand réseau de signalisation résultant. Dans ce cas-ci, il s’agit
plus précisément d'une propriété systémique de stockage d’informations a l'intérieur
du systeme. Cette propriété est le résultat de multiples boucles de rétroaction qui
supportent un comportement bistable. Ainsi, en fonction de stimuli précis, le réseau
de signalisation agit comme un mécanisme binaire qui existe grace aux différents

états stables que le réseau peut atteindre et conserver.

Mesarovic et al. (2004) avancent qu'un deuxieme type de relation existe dans un
systeme complexe entre les comportements de haut et de bas niveaux : la coordi-

nation. Si I'émergence consiste en la manifestation d'un comportement distinct du
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systeme résultant uniquement de 'interaction des sous-systemes, alors la coordina-
tion serait la double dépendance d'un comportement systémique a l'interaction des
sous-systemes et a un processus de coordination maintenant '’harmonie entre les
sous-systemes. Les auteurs supportent cette théorie par la présence de mécanismes
de régulation de l'expression génétique et ils effectuent une analyse de leurs motifs
de coordination. Toutefois, je suis d’avis que le bien-fondé scientifique de l'isolation
des mécanismes de 'expression génétique a un niveau organisationnel supérieur telle

qu’ils le proposent reste a démontrer.

2.2.2 Robustesse

La robustesse est la capacité d'un systéeme a maintenir ses fonctionnalités malgré
des perturbations internes et externes (Alon, 2003). Un systeme biologique devrait
étre en mesure de résister au bruit occasionné par la modification des parametres de
réaction moléculaire ou par des modifications de concentration. Pour Kitano (2004),
la robustesse est un principe organisationnel ubiquitaire chez tous les systémes com-
plexes qui doivent évoluer. La robustesse englobe de facon générale toutes les pro-
priétés systémiques comme la modularité, I'utilisation de protocoles, la rétroaction

et la fragilité.

La présence aujourd’hui de robustesse dans tous les systémes vivants s’expliquerait
par le favoritisme exercé par I'évolution (Kitano, 2004). Cette sélection proceéde d'un
cercle vertueux ou d'une part, les systemes robustes facilitent leur propre évolution a
I’aide de leurs propriétés intrinseques et d’autre part, 1'évolution privilégie des traits
robustes. Ainsi, les requis pour la robustesse et la capacité d’évolution auraient des

objectifs similaires qui se soutiennent mutuellement.

En adoptant un point de vue “robustesse” lorsque 1'on étudie les systémes biologiques,
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on remarque que certaines pathologies sont reliées a cette propriété. Par exemple, le
cancer, qui est un des pires scénarios possibles pour un systeme puisque la maladie
est maintenue et méme encouragée par les mécanismes robustes du systeme liote. Les
tumeurs proliferent et développent des métastases grace aux mécanismes habituel-
lement sains et essentiels de la reproduction cellulaire. ce qui contrecarre la plupart
des thérapies. Un médicament anti-cancer peut réduire la masse d'une tumeur, mais
celle-ci peut réapparaitre apres un certain temps, laissant peu d’espoir au patient
d’une guérison complete. Toutefois, a 'aide d'une perspective de robustesse, de nou-
velles stratégies cliniques pourraient étre explorées. En comprenant les mécanismes
cellulaires de robustesse, il serait peut-étre possible d’induire la dormance des cellules

pour stopper leur reproduction, si dévastatrice lors du cancer.

Willielm et al. (2004) distinguent deux types de robustesse : la robustesse structurale
et la robustesse dynamique. La robustesse structurale est une propriété qui permet
a un systeme de palier a la perte d'un ou de plusieurs de ses éléments. Ce type
de robustesse s’observe par la redondance présente dans un systéme. La robustesse
dynamique consiste en mécanismes d’adaptation ou de contréle qui compensent pour

la modification de parametres internes ou externes.

2.2.3 Fragilité

Dans la théorie de tolérance grandement optimisée (HOT') de Carlson et Doyle (1999),
la robustesse s’accompagne invariablement de fragilité, d’ou 'expression robust, yet
Jragile. Ceci peut sembler contradictoire a premiere vue, mais ce principe se vérifie
dans la nature et dans la technologie : tous systemes complexes semblent vulnérables &
des perturbations exceptionnelles. En effet, lorsque des perturbations imprévues dans
le design du systéme surviennent, une cascade souvent catastrophique d’événements

mene a la détérioration, a l'arrét ou méme a la destruction du systéme. Un design
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optimal pour un systeme n’est pas une robustesse a toute épreuve, ce qui nécessiterait
une complexité incroyable ainsi qu une perte importante de performance, mais plutot
une tolérance optimale aux perturbations probables. La nature et les hommes se

satisfont de ce compromis.

Une nouvelle interprétation du diabete de type 2 a été proposée ol les propriétés de
robustesse et de fragilité seraient en cause (Kitano, 2004). Des milliers de générations
auraient permis a notre organisme de devenir particulierement robuste a la famine
et a un mode de vie tres exigeant en énergie ou les risques d’infection sont élevés,
mais l'organisme serait vulnérable aux conditions de vie de plus en plus répandues
aujourd’hui, soient la suralimentation et un mode de vie trés sédentaire. Iimpuissant
devant ces nouvelles conditions imprévues par notre systéme, et donc expression de

sa fragilité, notre organisme développerait des pathologies reliées a cette abondance.

2.2.4 Modularité et protocoles

Le concept de modularité en biologie n’est pas nouveau. Toutefois, il est de plus en
plus reconnu que l'organisation en modules fonctionnels est un principe organisa-
tionnel majeur en biologie (Hartwell et al., 1999). Un module est une entité discréte
dont les fonctions sont séparables de celles d’autres modules. L’isolation chimique
est responsable de cette séparation en unités, dont la cause peut étre une localisa-
tion spatiale restreinte ou une spécificité chimique. Du point de vue de la robustesse
des systemes, la modularité est un mécanisme efficace pour contenir localement les
perturbations et les dommages afin d’en minimiser les effets sur 1'ensemble dun

systeme.

Les modules sont indissociables du design des systémes complexes. Les modules ont

différentes caractéristiques : (1) ils ont des interfaces identifiables entre modules:
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(2) ils peuvent étre modifiés et évoluer de facon indépendante; (3) ils facilitent la
modélisation par abstraction: (4) ils conservent une certaine identité méme s’ils sont
isolés ou réorganisés ; mais (5) ils ont aussi une identité supplémentaire qu’ils dérivent

du reste du systéme avec lequel ils interagissent (Csete et Doyle, 2002).

Un exemple évident de modularité est la cellule. qui interagit avec l'environnement
et les autres cellules d’un organisme pluricellulaire via une interface, tout en étant
un milieu fermé. Les modules sont aussi souvent organisés en niveaux hiérarchiques :
par exemple, le module cellulaire contient d’autres modules plus petits. En plus des
modules physiques comme la cellule, il existe aussi des modules fonctionnels. spatiaux
et temporaux, qui sont des sous-systemes des réseaux métaboliques, de signalisation

cellulaire et de régulation du développement (Kitano, 2004).

Les protocoles qui régissent les communications entre modules sont tout aussi im-
portants a connaitre que les modules eux-mémes (Csete et Doyle, 2002). Dans cet
article de Csete et Doyle référencé précédemment, une intéressante illustration des
propriétés des systemes robustes est faite a 'aide des blocs Lego. Les blocs Lego sont
des modules de tailles et de fonctions diverses qui utilisent toutefois le méme proto-
cole, un mécanisme a pression, pour relier les blocs entre eux. Un systéme simple,

mais qui permet néanmoins de créer une tres grande variété de structures.

2.2.5 Rétroaction

Le controle par rétroaction est un mécanisme de régulation qui est essentiel aux sys-
temes qui doivent étre robustes. Une boucle de controle est fermée si elle inclut un
signal de rétroaction. Ce signal, qui provient de la sortie d’un dispositif, revient en
entrée pour agir sur son fonctionnement. La rétroaction assure des réponses dyna-

miques et permet aux systemes de diminuer l'impact des perturbations extérieures
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et des variations internes. La figure 2.1 présente une boucle de rétroaction.

Réponse de sortie .
psouhanée sl COMPBrAISON  prmmemm ol Controle P Processus P Réponse de sorte

A

Mesure <%

Figure 2.1: Systeme de controle en boucle fermée avec signal de rétroaction

Il existe deux types de rétroaction. La rétroaction négative clierche a renverser la
direction d'un changement dans un systéme afin de lui permettre de s’adapter par-
faitement et de le stabiliser. La rétroaction positive contribue, elle aussi, a la robus-
tesse d'un systeme, mais en amplifiant certains stimuli, accélérant ainsi le passage
d'un état a un autre. Un exemple classique de boucle de rétroaction est la régulation
de 'opéron lactose, proposé par Jacob et Monod (1961). Les boucles de rétroaction

permettent, entre autres, de maintenir un systeime dans un état homéostatique.

2.2.6 Architecture en noeud papillon

Un des objectifs de la biologie systémique est de trouver un cadre organisationnel
en biologie. Dans la recherche de celui-ci, on a identifié deux caractéristiques archi-
tecturales qui facilitent de facon compatible 'évolution des systémes et leur donnent
davantage de robustesse : un noyau trés stable de processus interfacés a diverses
entrées et sorties; ainsi que des mécanismes versatiles qui soutiennent les processus
essentiels du systemes, de facon a ce que tout nouveau processus qui a une interface
adaptable a ceux-ci puisse les utiliser (cette propriété est nommée faible liaison ou
weak linkage) (Kitano, 2004). Ce type d’architecture est appelé noeud papillon, ou
bow tie, en raison de sa forme (voir figure 2.2, qui est inspirée de la figure 3 de (Kitano,

2004)). Cette architecture constitue présentement une des principales hypotheéses de



principe d’organisation des systémes biologiques.

{ * Systéme de contrble *
Processus [ Processus
(7] —>
5 d’input I Y I y / d'output
% [72] [72]
c o
8w Processus .y Processus &
C _> N ] _) (]
® d'input d’output >
5 g P \ Noyau stable ©
}= qg’ de processus g
e Processus | Processus =
£72 ) d'input T doutput [~ _§
o ©
RO
E Processus / \ Processus )
> d’input Interfaces d’output
versatiles

Figure 2.2: Architecture en noeud papillon

Des analyses récentes de génomes supportent 1'hypothese de cette structure, plu-
tot qu’une organisation scale-free. Dans un réseau ayant une organisation scale-free,
certains noeuds plus importants et répartis uniformément dans le réseau sont im-
pliqués dans de nombreuses connexions alors que les autres noeuds sont impliqués
dans peu de connexions. Toutefois, a travers différentes expériences sur les réseaux
métaboliques, on a plutét remarqué qu'un noyau important de grappes de noeuds est
hautement connectés et qu’il est relié a d’autres groupes moins intensément connec-

tés. Cette observation supporte I'hypothese de I'architecture bow tie.

La structure bow tie accommode les flots d’informations et de contrdle, tout comme
les flux de matieres et d’énergie. De nouveaux processus sont facilement ajoutés au
noyau de 'architecture. Ces processus n'ont qu’a utiliser les processus versatiles. Le
systeme de transcription et de traduction des genes en protéines est un exemple de
cette architecture. Quelques mécanismes (et toujours les mémes) sont requis pour
exprimer tous les génes. Ainsi, si des mutations introduisent de nouveau génes dans

un génome, il n’est pas nécessaire pour le systéme de développer un nouveau méca-



nisme de transcription et de traduction. Ceci a pour résultat de donner a la cellule la
possibilité d’exprimer une vaste variété de génes en macromolécules tres différentes.
Le métabolisme est aussi est tres bon exemple d’architecture en noeud papillon. Une
multitude de sources nutritionnelles sont catabolisées en une douzaine de métabolites
précurseurs qui sont ensuite synthétisés en environs 70 molécules de constructions (les
acides aminés, les nucléotides, les acides gras et les sucres). Ces derniéres serviront

ensuite a la constitution de toutes les macromolécules de biosynthese de 'organisme.

Cette architecture serait universelle et il en existe aussi des exemples en technologie
(Csete et Doyle, 2004). Citons tout d'abord celui d'un réseau électrique. A une extré-
mité, ce réseau tire son énergie de plusieurs sources distinctes pouvant avoir des types
de production différents. Cette énergie est livrée dans un réseau de transport dans
un format unique. A Tautre extrémité, l'utilisateur s'en sert pour des usages variés
qui évoluent rapidement. Internet est aussi un exemple évident de cette architecture.
Entre différentes applications logiciels se trouve un systeme de matériel électronique
et des couches de réseautique qui transmettent des paquets de données selon un
protocole unique. Ces deux exemples décrivent des systémes ol un large éventail
d’inputs différents est transformé par un noyau de processus et de mécanismes pour

donner un tout aussi large éventail d’outputs.

2.3 Meéthodes d’analyse en biologie systémique

Les échanges entre les théoriciens du controle et les biologistes ont eu comme pre-
mier résultat de donner naissance a différentes méthodes d’analyse des systemes bio-
logiques, qui sont en fait des applications de techniques existantes de la théorie du
controle. Ces études concernent différents aspects de la biologie systémique, dont la

robustesse. Par exemple, il s’agit de définir des métriques pour mesurer quantitative-
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ment cette propriété. Ou bien d’étudier la sensibilité d'un systeme a la modification
de ses variables et d'explorer I'espace de ses parametres. D autres études ont pour
objectif la caractérisation des mécanismes de rétroaction, par exemple pour identifier
les molécules responsables de certains comportements complexes ou pour identifier
le role d'une boucle de rétroaction dans un systeme. Cette sous-section présente ces
différentes méthodes qui utilisent les concepts de robustesse, de rétroaction et de mo-
dularité, les systemes biologiques qui ont été analysés par celles-ci ainsi que certains

résultats obtenus.

Un deuxieme résultat des échanges entre théoriciens du contréle et biologistes est la
formulation de nouveaux problemes théoriques sur le controle et les systémes et qui
proviennent de la biologie systémique. Nous discuterons de deux études qui s'ins-
crivent dans cette problématique. Finalement. nous présenterons aussi deux études

expérimentales dont les objectifs sont inspirés de la biologie systémique.

2.3.1 Etudes de la robustesse

La robustesse des systemes intéresse de plus en plus de chercheurs de la biologie sys-
témique (Stelling et al., 2004b). Des problématiques de recherche en biotechnologie et
en pharmaceutique ciblent directement cette propriété. Il y a donc un besoin d’outils
théoriques. Des métriques de robustesse comptent parmi ces outils. Wilhelm et al.
(2004) ont développé une métrique qui permet de quantifier la robustesse structurale
et de comparer le caractere robuste de différents systémes biologiques entre eux. Pour
se faire, les chercheurs proposent de calculer le nombre de chalnes réactionnelles qui
sont coupées par le retrait d'une enzyme par rapport au nombre total de chaines, in-
cluant dans leur métrique une pondération selon I'importance du produit en bout de
chaine. Ils ont appliqué leur métrique au métabolisme d’ Escherichia coli et & celui de

I'érythrocyte de I'’homme pour comparer la robustesse des deux systéemes. Les résul-
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tats obtenus correspondent a une réalité bien connue, le métabolisme d’Escherichia
coli doit étre en mesure de s’adapter a des conditions variées et il est donc plus ro-
buste, alors que la cellule érythrocyte qui évolue dans des conditions beaucoup plus

homéostatiques n’est pas autant robuste.

Morohashi et al. (2002) ont proposé d'utiliser la robustesse comme une mesure de la
plausibilité d'un modele. Leur hypothese est qu'un modele qui reflete adéquatement
la réalité devrait étre aussi robuste a des modifications de parametres que le systeme
réel. Leur méthode consiste a établir une mesure quantitative du comportement dun
systeme et d’étudier par des graphiques a deux et trois dimensions 1'évolution de
ce comportement selon des variations de parametres. Selon eux. un systeme robuste
conserve un comportement normal sur une plage étendue de valeurs de ses para-
metres. Ils ont appliqué cette méthode & deux modeles des oscillations biochimiques
du cycle cellulaire du Xenopus. Le premier modele, datant de 1991, est plus simple
que le modele de 1998 et 1'étude a confirmé que ce modele avait certaines déficiences
de robustesse puisqu’il réagissait mal a I'introduction de bruit dans la valeur des pa-
rametres. Le modele de 1998 semble plus robuste, donc plus plausible. Cette méthode
a d’ailleurs permis aux auteurs d’optimiser les parameétres du modele existant. Les
auteurs sont d’avis que ce type d’étude sur la robustesse devrait faire partie de tous
processus de modélisation puisqu’il offre des indications éclairantes et des indices sur
les faiblesses d'un modele pour les modeleurs lorsqu’ils sont confrontés & des choix

ou lorsqu'’ils doivent procéder a 1'évaluation de leur modele.

De fagon générale, des analyses de sensibilité sont utilisées pour mesurer la robustesse
d'un systeme, mais elles ont peu été appliquées aux systemes biologiques dynamiques
en raison de leur caractere complexe et non-linéaire. Deux équipes de recherche ont
proposé des avenues différentes pour pallier aux difficultés d’application des analyses

traditionnelles. Dans un premier temps, Stelling et al. (2004a) ont investigué sys-
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tématiquement l'espace des parametres de deux modeles des oscillateurs génétiques
responsables du rythme circadien de Drosophila via trois types d’analyse : sensibilité
d’état, sensibilité de période et sensibilité d’amplitude, chacune ayant leur propre
métrique mathématique. Ils ont ainsi observé dans les systemes plusieurs aspects de
la robustesse comme l'influence des processus de régulation sur le systeme, les hiérar-
chies de controle et les impacts des perturbations. Dans un second temps, Chen et al.
(2005) ont émis 'opinion que des analyses de sensibilité ne sont pas suffisantes en
biologie puisqu’elles font abstraction de la nécessité de maintien de 1'état d’équilibre
du systeme. Ils ont utilisé la représentation par synergie et saturation de systéme
(S-system) pour développer une métrique de la robustesse des réseaux biochimiques
lorsqu’ils sont soumis a des variations de leurs parametres cinétiques. Cette métrique
leur a permis de calculer la limite supérieure des valeurs tolérées pour la variation
d'un parametre a 1'état d’équilibre du systéme et d'utiliser cette limite pour calculer
la robustesse d'un systeme. Ils ont démontré 1'utilité de leur métrique en l'appli-
quant a quatre réseaux biochimiques : un réseau modele de la cascade biochimique,
la voie glycolitique-glycogénolytique, le cycle de 'acide tricarboxylique et le réseau

de Toscillation du cAMP.

2.3.2 Etudes de la rétroaction

Les études sur la rétroaction m'ont semblé les plus prés de la pensée de la biologie
systémique puisqu’elles offrent des pistes concrétes du fonctionnement interne des
systemes biologiques complexes. Dans une premiere étude, Khammash et El-Samad
(2004) font une nouvelle interprétation qualitative de deux systémes : un systeme
physiologique, la régulation homéostatique du calcium du plasma chez les mammi-
feres ; et un systeme de régulation génétique, le réseau de réponse au choc thermique.

Dans le cas du systeme physiologique, les chercheurs ont analysé la courbe de retour &
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la normale de la concentration du calcium apres une perturbation. La forme de cette
courbe et I'absence d’erreur dans la concentration finale suppose la présence dun
mécanisme de controle proportionnel-intégral, ce qui impose 1’action de deux agents
régulateurs (un premier proportionnel, et un deuxieme intégral). L'étude de 1'endo-
crinologie de ce systéme a permis d’identifier deux hormones, déja reconnues comme
des acteurs dans ce systeme, dont le comportement dynamique correspond a celui
des agents régulateurs recherchés. Dans le cas du systeme de régulation génétique,
I’analyse des chercheurs, encore une fois qualitative, décortique le comportement
dynamique d’un systéme complexe qui doit étre modélisé a 1'aide de 31 équations
différentielles ou algébriques. A premiere vue, une telle complexité semble superflue
pour la fonction a accomplir par ce réseau génétique lors d'un choc thermique, ¢’est-
a-dire la production de la molécule 032 lors d’'une augmentation de la température
pour réparer les protéines dénaturées. Toutefois, en adoptant une vision systémique,
les chercheurs justifient la présence de tous les acteurs de régulation, qu’ils soient
impliqués dans des boucles de rétroaction positive ou négative. Ceux-ci appuient
leur raisonnement de différentes données expérimentales comme la fonction connue
de certaines protéines, le comportement dynamique des macromolécules a différentes
températures, les mécanismes d’expression génétique et le temps d’action de la molé-
cule 0. Dans une deuxiéme étude, El-Samad et al. (2005) poursuivent leur analyse
de ce systeme de régulation génétique, mais de facon quantitative, pour discuter
du role de chacune des boucles de rétroaction. Pour ce faire, ils utilisent le modeéle
mathématique de ce systéme composé de 31 équations. Leur démarche consiste &
ajouter dans le modele les modules de rétroaction un a un et de comparer les ré-
ponses dynamiques du systeme par simulation. Leur modele de base, un systéme en
boucle ouverte, se voit successivement ajouter des boucles de rétroaction négative et
positive, ce qui permet aux auteurs de discuter du réle de chacun de ces mécanismes

dans le systeme.
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Schmidt et Jacobsen (2004a,b) ont développé une méthode mathématique qui identi-
fie les mécanismes de rétroaction dans les systemes caractérisés par un comportement
multistable et par des oscillations périodiques soutenues. Ils proposent une linéarisa-
tion du modele mathématique du systéme autour de certains points significatifs afin
d’étre en mesure d’utiliser les outils d’analyse de la rétroaction linéaire provenant
de la théorie du contréle. Ces points précis, appelés racines en théorie du contrdle,
correspondent a des états de transition entre les différents états stables du systeme. Il
est possible de les déterminer par une analyse de bifurcation. Par la suite. en décom-
posant le systéeme en sous-modules et en appliquant a ceux-ci différents théoremes et
transformations, on parvient a identifier les molécules ainsi que les interactions qui
jouent un réle significatif dans le comportement oscillatoire du systéme (en d’autres
mots, les acteurs de la rétroaction qui font transiter périodiquement le systéme a
travers différents états). Cette approche est purement qualitative puisqu'elle ne per-
met pas d’obtenir des résultats quantitatifs a propos de la robustesse du systéme ou
de la sensibilité de ses parametres. Néanmoins, cette méthode, utilisée tot dans un
processus de modélisation, sert a cibler les composantes les plus importantes dans
un modele et elle fournit des indications quant a leur fonctionnement dans un sys-
teéme complexe. A travers leurs deux publications, Schmidt et Jacobsen ont appliqué
leur méthode a trois systemes différents : le cycle cellulaire du Xenopus, le cycle
oscillatoire de la glycolyse chez la levure et le cycle circadien de Drosophila. Dans
chaque cas, les molécules et les interactions qui sont instrumentales pour générer un

comportement non-linéaire complexe ont été identifiées.

2.3.3 Etudes de la modularité

La modularité est a la base de la méthode proposée par Saez-Rodriguez et al. (2004).

Ils suggerent qu’il est utile de décomposer les voies de signalisation en modules pour
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démeéler la complexité biologique. Leur méthode prone la reconnaissance de modules
en ayant comme critére de délimitation l’absence de rétroaction a l'intérieur de ceux-
ci. Les chercheurs justifient le choix de ce critere par le nombre d’outils qui existent
pour analyser de tels modules sans rétroaction. Dans le cas de cette recherche, des
réseaux de signalisation sont analysés. Suite a la formation des modules, il devient
possible de calculer pour ceux-ci 'amplitude d'un signal d’output, le temps de si-
gnalisation et la durée du signal en fonction d'un signal d’entrée. Cette méthode
a été appliquée a deux systemes simples, la signalisation a deux composantes et la
cascade MAPK, et a un systéme plus complexe, le réseau de signalisation du facteur
de croissance épidermique. Leur méthode permet de caractériser le fonctionnement
de signalisation des modules. L’assignation a la derniere sous-unité du réseau de
signalisation du facteur de croissance épidermique de I’entiere responsabilité d'une
insensibilité a des stimuli. que l'on croyait auparavant distribuée dans tout ce réseau,

est un exeniple de propriété déterminée par cette méthiode d’analyse par modularité.

2.3.4 Etudes théoriques

Pour les spécialistes de la théorie du controle, Sontag (2004) a identifié quatre catégo-
ries de possibilités de recherche en biologie systémique. Les deux premiéres catégories
se réferent aux applications de la théorie du controle au domaine biologique : 1) le
role du controle et des techniques de traitement de signaux dans la conception d’ins-
trumentation de mesure biologique a haute précision; 2) l'utilisation de techniques
existantes de la théorie du controle (identification, quantification de gain, analyse de
sensibilité, controle optimal, etc.) dans I'analyse et la solution de problémes qui inté-
ressent les biologistes. Les deux autres catégories de possibilités de recherche résultent
de la pression de la biologie systémique sur la théorie du controle pour se développer

davantage : 3) I'abstraction de nouvelles idées pour I'ingénierie du contréle a partir
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de la reclierche biologique; 4) la formulation de nouveaux problemes théoriques pour
la théorie du contrdle et des systemes, provenant de la recherche en biologie systé-
mique. C’est sur ce dernier point que Sontag poursuit son article en affirmant que la
cellule est un systeme d’entrée/sortie semblable & d’autres qui sont étudiés en théo-
rie du controle, mais que les systemes biologiques posent des problemes qui different
fondamentalement des problemes classiques. 1l effectue meéme une mise en garde :
trop souvent et a tort, on croit que les problémes posés par la biologie systémique
sont des problemes standards de la théorie du controle. A son avis, de nombreuses
nouvelles questions théoriques émergent de ce constat et il tire de ses recherches
différents exemples. Parmi ceux-ci, le mélange de modélisation qualitative et quan-
titative, les systémes monotones, les réponses a 1'état stable, la détection du bruit,
les systémes d’identification et de réingénierie, le controle adaptatif et la stabilité

robuste des structures.

L’article d’Angeli et Sontag (2003) est un bon exemple des reclierches théoriques
rendues nécessaires par la biologie systémique. Dans cet article, les auteurs se sont
attardés a faire la démonstration mathématique rigoureuse que la notion de systemes
monotones peut étre étendue aux systemes avec entrées et sorties. Ceci est le premier
pas permettant la compréhension des interconnections qui sont formées entre des
modules monotones, notamment celles qui incluent des boucles de rétroaction. Ceci
ouvre la porte a 'application de la théorie des systémes monotones et de ses outils

aux modules biologiques et a la démonstration de certaines de leurs propriétés.

2.3.5 FEtudes expérimentales

Le développement de nouvelles approches expérimentales pour la biologie systémique
pose certains problenies, malgré les nombreuses nouvelles questions formulées par les

théoriciens. Les scientifiques doivent faire appel a plusieurs technologies de collecte
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d’informations qui sont cotteuses et qui sont liabituellement cloisonnées dans diffé-
rents domaines de la biologie. Les problemes sont complexes et de taille importante.
Ideker et al. (2001b) ont été parmi les premiers a proposer des analyses génomiques
et protéomiques intégrées pour développer itérativement un modele d une voie cellu-
laire. Aderem et Smith (2004) ont approfondi cette idée dans leurs recherches sur le
systéme immunitaire et les réactions inflammatoires en y incorporant un environne-
ment informatique qui analyse les données génomiques et protéomiques et qui faci-
litent la détermination d’interactions complexes. Cet environnement informatique est
tout d'abord composé du logiciel et base de données SBEAMS, qui régit la collecte,
I'entreposage et 'acces aux données produites par différents types d’expérience. Ils
utilisent ensuite le logiciel Cytoscape qui integre les données, et en permet la visuali-
sation et 'exploration. Certaines fonctionnalités de Cytoscape sont de regrouper en
modules les réseaux moléculaires, de faire des analyses de génomiques comparatives

et de dériver des réseaux de régulation génétique.

Certaines problématiques de recherche a plus petite échelle sont tout de méme in-
fluencées par la philosophie de la biologie systémique. Mentionnons, en exemple.
I'étude de Batchelor et al. (2004) dans laquelle ils ont caractérisé des circuits régula-
teurs d’ Escherichia coli et déterminé les modes de controle de ceux-ci. Leur analyse
pointe vers un systeme de controle continu de la transcription d'un gene dans un cas
(alors qu’on le supposait discret jusqu’alors) et d'une boucle de rétroaction ouverte

(ce qui est surprenant pour cette espece).

2.4 Sommaire

Peu de disciplines scientifiques ont la chance de revoir leur cadre conceptuel comme

c’est le cas actuellement en biologie a cause de la biologie systémique. Ceci est une op-
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portunité intellectuelle tres stimulante qui suscite et suscitera encore bien des débats.
Les scientifiques se dotent de nouveaux concepts et de nouveaux outils pour repous-
ser les limites de leurs connaissances du vivant. Et le rapprochement qui se produit

entre la biologie et le génie est porteur de nombreuses collaborations prometteuses.

Cette section a offert un survol théorique de ce pont qui se construit actuellement
entre les sciences de la vie et les sciences appliquées. A plusieurs égards, les sys-
temes biologiques et les systeémes technologiques complexes ont plusieurs points en
commun, dont leurs principes d organisation. Certains concepts de ce lieu commun
entre biologie et génie, qui sont actuellement proposés dans la littérature, ont été
présentés : 1'émergence, la robustesse, la fragilité, la modularité, la rétroaction ainsi
qu'une premiere proposition de structure architecturale, le noeud papillon. Dans la
seconde sous-section, des études réalisées par différents chercheurs et qui exploitent

les différents concepts de la biologie systémique ont été recensées.

Depuis environs une décennie, la biologie est en ébullition, frappant I'imaginaire
populaire par de grandes réussites et occasionnant plusieurs questionnements tech-
niques, scientifiques et éthiques dans le milieu scientifique. Les ingénieurs sont main-
tenant invités a partager avec leurs collegues biologistes leurs connaissances des sys-
témes complexes et a participer aux nouvelles avancées de la biologie. Aurons-nous

le génie de relever le défi?
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CHAPITRE 3

DEMARCHE DE L’ENSEMBLE DU TRAVAIL DE RECHERCHE ET
ORGANISATION GENERALE DU DOCUMENT

L'étude de Bhalla et Iyengar (1999). portant sur les propriétés émergentes d'un ré-
seau de voies de signalisation du neurone, est une contribution scientifique majeure
pour deux raisons. Premierement, il s’agit d'une étude de biologie systémique avant
I'heure puisqu’on y étudie les propriétés d'un systeme complexe a l'aide d'un modele
computationnel. Deuxiemement. ces propriétés peuvent étre reliées a la plasticité sy-
naptique, une importante propriété neuronale qui serait a la base des processus de
mémorisation et d’apprentissage du cerveau et dont la mécanique biochimique était

encore obscure a 1'époque.

Nous avons utilisé ce modele dans notre étude portant sur la modélisation biologique
a multiples niveaux d’abstraction basée sur le formalisme des réseaux de Pétri (Hardy
et Robillard, 2005). La réalisation de cette étude nous a donné une compréhension
approfondie du comportement dynamique de ce modele. Toutefois, il nous a semblé
que les méthodes traditionnelles de représentation et d’analyse des données de simu-
lation ne permettaient pas de dégager facilement ce comportement et ne facilitaient
donc pas 'atteinte d'une compréhension systémique. Ce sont ces lacunes auxquelles
les trois articles constituant le corps de cette theése tentent de pallier. Le modele du
réseau de régulation de I'enzyme CaMKII développé par Bhalla et Iyengar (1999)
et augmenté par Kikuchi et al. (2003) a été utilisé dans les trois articles de cette
these parce qu’il rassemble tous les attributs d’un excellent cas d’étude pour notre
recherche. Il s’agit d’'un modeéle complexe d'un systéme trés important en neurobio-

chimie. C’est aussi un réseau de signalisation constitué de plusieurs mécanismes de



régulation qui a un comportement dynamique tres intéressant a analyser.

Le chapitre 4 introduit le premier article. Intitulé "A functional representation of
the simulation data of biochemical models based on molecular activity”, et écrit par
Simon Hardy et Pierre N. Robillard, il a été soumis pour publication a la revue In
Silico Biology. Cet article présente une approche d’analyse de données de simulation
ou l'activité moléculaire de modules biochimiques sert a créer une représentation
fonctionnelle du modele. Dans toute démarche d’analyse de données dun systéeme
complexe, 'analyse se fait en partie grace a une conceptualisation mentale. Cette
conceptualisation tient compte de la structure du réseau, de la fonction des com-
posantes et de leurs interrelations. Le scientifique qui effectue une analyse se base
sur cette conceptualisation pour déchiffrer ses données et pour leur donner un sens
générant de la connaissance. L'approche présentée dans cet article propose d’utiliser
cette conceptualisation mentale pour créer des filtres d’analyse pour la visualisation
des données. Ces filtres permettent de produire, a partir des données de simulation,

une représentation fonctionnelle du systéme.

Le chapitre 5 introduit le second article. Intitulé "Petri net-based visualization of
signal transduction pathway simulations”, et écrit par Simon Hardy et Pierre N.
Robillard, il a été soumis pour publication a la revue IET Systems Biology. Cet
article présente une méthode de visualisation des données de simulation des voies
de signalisation cellulaire. A laide d'une technique d’analyse des réseaux de Pétri
(I'identification de P-invariants), la méthode de visualisation prend en compte le
fonctionnement enzymatique pour générer une vue du systeéme plus fideéle 4 son com-
portement systémique. Les méthodes de visualisation existantes, appropriées pour
les voies métaboliques, donnent des résultats mitigés avec les voies de signalisation.

Les problemes détectés sont solutionnés par notre méthode.

Le chapitre 6 introduit le troisieme article. Intitulé "Petri net-based method for the
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analysis of the dynamics of signal propagation in signaling pathways”, et écrit par
Simon Hardy et Pierre N. Robillard, il a été soumis pour publication a la revue
Bioinformatics. Cet article présente une méthode d’analyse des modeles de voies de
signalisation qui permet d’étudier leur dynamique de propagation de signal. A l'aide
de techniques d’analyse des réseaux de Pétri (l'identification de P-invariants et de
T-invariants), la méthode permet d’identifier les éléments du modele qui jouent un
role important dans la transmission de signaux cellulaires. de décrire la dynamique de
transduction et d’identifier la présence de motifs de régulation. Cette méthode trans-
forme les données de variation de concentration moléculaire en données de transmis-
sion de signaux cellulaire, ce qui permet un acces rapide aux mécanismes systémiques

de traitement d’'information de la cellule.

Les trois articles atteignent indépendamment l'objectif de recherche de cette these,
qui est de concevoir des méthodes d’analyse de données de simulation de modeles de
voies de signalisation cellulaire qui permettent de dégager leur comportement systé-
mique. Les deux premieres méthodes accordent une place de choix aux techniques de
visualisation. Mais ce sont les méthodes des deux derniers articles, puisqu’elles sont
basées sur les réseaux de Pétri, qui sont complémentaires et qui peuvent parfaitement

s'intégrer dans une approche unique.

Par ailleurs, deux articles de conférences auxquels 'auteur a principalement contribué
ont été inclus en annexes a cette these. L'annexe I est constituée de l'article intitulé
"Painted Petri net and functional abstraction to visualize dynamic modeling” ou
les réseaux de Pétri peinturés sont décrits pour la premieére fois. L'annexe II est
constituée de l'article intitulé "Visualization of the simulation data of biochemical
network models : a painted Petri net approach”, qui est une version préliminaire du

chapitre 5 de cette présente these.
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CHAPITRE 4

FUNCTIONAL ABSTRACTION AND SPECTRAL
REPRESENTATION TO VISUALIZE THE SYSTEM DYNAMICS
AND THE INFORMATION FLUX IN A BIOCHEMICAL MODEL

Abstract

Interpreting the simulation data! of a complex biochemical model to understand its
dynamic behavior is a difficult task. Traditional data representations display sim-
ulation outputs as concentration plots. To study the dynamic behavior of a model
from these plots, it is necessary to have in mind the topology of the modeled system,
know the function of the individual elements of the system and be able to describe
their activity. Only with this mental image of the model can the dynamic behav-
ior be deciphered. In this paper, we suggest exploiting this knowledge to create a
preprocessing filter for the simulation data. This data filter is based on the concept
of molecular activity and transforms the simulation data from a concentration per-
spective to a molecular activity perspective. This is done in two steps: identify the
functional groups of the system, and mathematically describe the molecular activity
of these groups. In this paper, we demonstrate this new data representation approach
with a complex model of the signal transduction system of long-term potentiation in
the hippocampal post-synapse, a model exhibiting a bistable behavior. To facilitate
viewing of the resulting data matrix, the preprocessed data are displayed with known

visualization techniques, followed by the production of an animated and a spectral

1Cet article a été soumis a la revue In Silico Biology. Voir la référence (Hardy et Robillard,
2006a)
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functional representation. One advantage of the functional data filter is that, once
created, it can be applied to a large number of simulation runs while at the same
time performing parametric and structural modifications on the model in order to

quickly explore the impacts on the model’s behavior.

Keywords: biochemical modeling, simulation data, system dynamics, function, visu-

alization.

4.1 Introduction

The simulation of biochemical models based on kinetic reactions generates data time
series of concentration. To interpret these time series, the data are usually displayed
on Cartesian graphs where time is tlie x-axis and concentration the y-axis. These
plotted data are used to study the dynamic behavior of simulated models by com-
bining sets of graphs. This simple type of representation is convenient for the study
of simple models, but using it to study the dynamic behavior of complex models is
a difficult task. Biochemical systems are highly organized and composed of many
heterogeneous processes, formed by the interaction of the activities of different mole-
cules. The signaling pathways of the cell are typical cases of such processes, where
signals are transmitted by the perturbation of enzymatic activities and the actions of
molecular messengers. An example of enzymatic activity is phosphorylation: some
proteins are turned “on” and "off” by the addition and removal of a phosphate group,
catalyzed by a kinase. Thus, it is possible to link a structural modification of a

molecule to its role in a biochemical process.

Researchers develop models of signaling pathway networks on the basis of experimen-
tally established relationships between molecules, their function and the property of

a biological system under study. Analyses of the simulation data of these models re-
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quire a deep understanding of the underlying inolecular or biochemical processes. To
make sense of the simulation data. they are processed and filtered according to the
researcher’s understanding of the activities of the system components. Our analysis

will focus mostly on sonie relevant dynamic behaviors of model components.

The original approach presented in this paper enables researchers to explore a new
functional interpretation of a signaling pathway based on their existing knowledge of
molecular activities by using simulation data. This functional interpretation trans-
forms the data from a molecular concentration perspective to a molecular activity
perspective, a transformation which is achieved in two steps. In the first step, the
molecular substances of the model are grouped into functional units, a functional unit
being defined as a group of molecules participating in a given activity performed by
the signaling network. In the second step, the activity of each functional unit is
mathematically formalized by an equation. This equation defines an indicator of
the degree of molecular activity as a function of the concentration of the molecules
of a functional unit. The parameters of the equation are empirically defined by the
researchers based on their understanding of the molecular processes at the functional

unit level.

This new functional interpretation of the simulation data provides a unique dynamic
perspective when combined with powerful visualization techniques. Colors are used
to represent the degree of molecular activity of the functional units of a model. The
mapping of these colors on a graph displaying the topology of the model creates a
highly informative animated graphical representation of the dynamic behavior of the

model.

This paper presents the use of this functional interpretation approach combined with
visualization techniques based on the simulation data of the model of the signal trans-

duction system of long-term potentiation (LTP) in the hippocampal post-synapse.
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Bhalla et Iyengar (1999) were the first to model this network. Their model was later
modified by Kikuchi et al. (2003). This system is interesting because of its property
of bistability, which, it is hypothesized, is linked to the neuronal memory processes.
Representation of the data from a functional perspective clearly illustrates this sys-
temic property, as well as the dynamic behavior of the system and its molecular

components.

4.2 Previous work

In many different scientific fields. making sense of large quantities of complex data
can be perilous without the help of data processing and visualization techniques. This
is the case for genome, transcriptome and microarray data. protein interaction maps
and metabolic pathways — molecular biology is no exception. Biologists use data
analysis and visualization techniques to both explore their data and present their
results. In computational biology, the simulation of complex biochemical models
can also generate a substantial amount of data. The interpretation of this data can
be a slow and inefficient process using the traditional means of data representation:
two-dimensional plots of concentration-time series data. Another problem with the
presentation of the simulation data of biochemical models with raw numbers and
plots is the loss of the network topology. which is information that is crucial to

building a mental representation of the dynamic behavior of a model.

Prior to the creation of the molecular activity perspective developed in this paper,
software tools had been developed to try to solve these problems. MetVis (Qeli
et al., 2003), SimWiz (Rost et Kummer, 2004) and BioPathwize? make it possible

to visualize the simulation data of metabolic networks and signaling pathways in a

2http://bioanalyticsgroup.com
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more comprehensive way. These tools show a manually or automatically generated
network graph to which the simulation data are mapped. This creates an animated
representation of the data. Either the edges or the nodes of the network graph change
in color or volume to show the evolution of the concentration of the substances making
up the biochemical network. The tools MetVis and SimWiz are also available in a

three-dimensional version (Qeli et al., 2004a; Wegner, 2005).

The advantages of the animated views produced by these tools are numerous. They
take advantage of the benefits of visual data exploration, one of which is to inte-
grate the human perceptual abilities into data interpretation, a useful asset in the
exploratory steps of data analysis (Keim, 2002). They also make full use of the
capacity of the human mind to detect structures and patterns in images, such as
synchronicities, global changes of state and oscillations (Miiller et Schumann, 2003).
The developers of MetVis and SimWiz stress the usefulness of the topology of the
biochemical networks for their animated graphical representations. To map the sim-
ulation data to the model structure gives a good impression of the dynamic behavior

of the system. Thus, a wealth of information becomes accessible to the user.

Despite these advantages, the animated representations generated by the existing
visualization software tools of the biochemical network simulation data show only
the variation in concentration of the network substances. In short, they provide a
single point of view without any data processing, which is the concentration perspec-
tive. The same is true for concentration plots. These tools fail, however, to fully
benefit from another data analysis method: the visualization of data with multiple
views (Roberts, 1998). By displaying data in muiltiple ways, the user may interpret
the data through different perspectives, hasten its understanding and avoid possible
misinterpretations. Visualization systems usually follow a four-step pipeline dataflow

model: the data are filtered to create a subset of data, which is then mapped to a
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representation which can be displaved. To produce multiple views from the same
data set, three modifications of the visualization dataflow are possible: 1) modifi-
cation of the data filter; 2) modification of the data mapping; and 3) modification
of the display. A modification of the data mapping or the display, as proposed by
the tools MetVis and SimWiz with the transformation of concentration plots into a
topological view, preserves the same data filter: concentration variation. The func-
tional perspective presented in this paper is based on a modification of the data filter,

which is the first step in the pipeline dataflow model.

4.3 The long-term potentiation signal transduction model

Much research has been conducted on the synaptic plasticity of the neuron. This
property enables the neuron to undergo a lasting alteration to the efficiency of its
neurotransmission signaling process. When there is an enduring increase in the am-
plitude of post-synaptic exciter potentials, synaptic plasticity is called long-term po-
tentiation (LTP). LTP was first described by Bliss et Lomo (1973). Experimentally,
it is caused by series of short, high-frequency electrical stimulations, also described
as tetanic stimulations, to a nerve cell synapse which strengthen, or potentiate, that
synapse for minutes or hours. Research on LTP (and its opposite, long-term depres-
sion or LTD) is in part motivated by the assumption that synaptic plasticity forms
the cellular basis of learning and memory. (Blitzer, 2005) is an introductory paper
on LTP, and (Ajay et Bhalla, 2006) is a review of the theoretical and experimental
research on synaptic plasticity. Many kinetic simulations of LTP at the molecu-
lar level, as well as models based on phenomenological facts, have been developed
to theoretically study this complex property. As reported in a previous paper, we
transformed these two kinds of model into a single, Petri net-based representation

(Hardy et Robillard, 2005).
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Bhalla et Iyengar (1999) developed a complex LTP model at the molecular level com-
posed of many simple networks combined to form post-synaptic signaling pathways.
A remarkable aspect of their work is that they used a systemic approach to unravel
long-term potentiation. They demonstrated that their model was characterized by
the property of bistability, as a result of the combination of multiple networks, since
none of them exhibited this behavior by itself. They based their work on the experi-
mentally observed fact that bistability is an enduring biochemical modification linked
to LTP. New experimental evidence has led Kikuchi et al. (2003) to add some reac-
tions to this model, involving the dynamic inactivation of the protein phosphatase 2A
(PP2A). This addition was significant because PP2A affects important molecules in
synaptic plasticity, and thus has an impact on the bistability of the system. Adding
the dynamic modeling of PP2A made the LTP model more robust and facilitated
LTP induction in the system. The block diagram of the modified model of the signal
transduction system of LTP is shown in Figure 4.1. In this figure, rounded rectan-
gleé represent enzymes, circles represent messenger molecules, rectangles represent
receptors and dotted, rounded rectangles represent a reaction module. Regular ar-
rows represent activation and circle-ended arrows represent inhibition. Each block in
this diagram corresponds to a set of chemical reactions between several substances.

Consequently, the blocks are simplifications of more complex networks.

In the remainder of this paper, the simple interconnected networks of the model
are referred to as modules. The modules of the LTP model are represented in two
different ways in Figure 4.1: either a module is composed of a number of blocks (in
which case, the module is represented by a dotted, rounded rectangle) or a module
is a single block outside a dotted rounded rectangle (like PKA, CaM and CaMKII).
One module is a set of chemical reactions involving approximately five to fifteen
substances, and each reaction has constants, all of which have been experimentally

obtained and documented. Those parameters are compiled in the DOQCS database
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Figure 4.1: Block diagram of the long-term potentiation signal transduction system
in the hippocampal post-synapse

(Sivakumaran et al., 2003). The model contains approximately 200 substances and
350 reactions. The reader is referred to Kikuchi et al. (2003) for more information

about the model.

The model was simulated with the software E-CELL (Tomita et al., 1999). Model
bistability from a normal steady state to a potentiated steady state was observed
by inducing a tetanic inflow of calcium ions to the model. The entry point of the
model is calcium, and the increase in its concentration activates several enzymes,
which in turn activate various molecules. The activity of the model’s interconnected
positive and negative feedback loops, combined with the appropriate stimulus, leads

to a potentiated steady state.



4.4 Creation of a molecular activity perspective of the simulation data

of the LTP model

The first step in the transformation of the simulation data from a concentration
perspective to a molecular activity perspective is the identification of the functional
units of tlhie LTP model. Grouping the substances of the LTP model into functional
units was performed by interpreting the reaction equations of the modules and the
topology of the model, with the experience gained with the model and according to
engineering reasoning. A key factor in the identification of the functional unjts of the
LTP model is to group together the different configurations of a molecular species
(for example, the calmodulin (CaM) functional unit is composed of the following
different molecular configurations of the CaM molecules: CaM, CaM.Ca,, CaM.Cags.
CaM.Cay, CaM.Ng). However, the functional units are specific to the biological
process under study and cannot be derived from formal analysis of the model. This

is discussed in more detail later in this paper.

Figure 4.2 shows examples of functional units. On the left of this figure is the reaction
scheme of the PKA module. On the right is the same reaction scheme represented
in a hybrid functional Petri net notation, where double circles are substances, rec-
tangles are reactions and arrows indicate the direction of the reaction (see (Hardy et
Robillard, 2004) for more information about Petri nets and molecular biology). The
PKA module of the LTP model is divided into the following three functional units:
1) the RyCs complex unit, where the two R complex subunits first bond successively
to four cAMP molecules, after which the complex releases two PKA enzymes; 2) the
PKA inhibitor unit, in which inhibitor molecules are either in a free or a coupled
configuration with inhibited PKA enzymes; and 3) the PKA enzyme unit. These
units represent the three main activities performed by the molecules of the PKA

module, which are, respectively, the entry point of the module, where a molecular
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complex needs input molecules to produce an important enzyme; the inner control
mechanism; and the output molecule that will interact with other modules. One
of the advantages of forming functional units is to reduce the number of numerical
values of interest. In the PKA module, ten concentration values are expressed with
the activity level value of three functional units. For the entire LTP model. 200

concentration values are expressed with an activity level value of 34 functional units.
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CAMP.R:C;
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Figure 4.2: Reaction equations and functional units of the protein kinase A module
of the LTP model

The second step in the transformation of the simulation data is to mathematically
describe the activity of each functional unit by an equation. The continuous con-

centrations of the substances of the functional unit are converted into discrete states
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indicating the level of activity of the functional unit. This conversion is performed
with equations using concentrations as inputs to compute a value on a discrete scale
from 0 to 10 (0 being the lowest level of activity for a functional unit, 10 being the
highest). For the LTP model, each functional unit has a state equation designed to
produce an activity level value that is consistent with the unit behavior. Equations
4.1, 4.2 and 4.3 are the equations of the R,C, complex unit, the PKA inhibitor unit
and the PKA enzyme unit of the PKA module. The equations are used to determine

the activity level of the three functional units at every simulation time step.
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(4.1)
(StatePKAmmJ = 20(05 - [PKAmhlb]) (42)
[statepa] = 100[PK A] (4.3)

For the purposes of this paper and to explain the functional representation, we pro-
vide a general description of the design of the first state equation. Equation 4.1 uses
the concentration of the seven molecular configurations of the RyCy complex. The
function of this unit is to produce PKA enzymes when cAMP molecules are available
in sufficient quantity. In its least active configuration (RyCs), the RyCy complex is
not bound to any cAMP molecule. In its most active configuration (cAMP4.R,), it
is bound to four cAMP molecules and has released two PKA enzymes. The other
five molecular configurations can be positioned relative to this activity scale. Ac-
cording to the distribution of the concentration of the RyC, complex in the seven
configurations, the equation gives a value from 0 to 10, associating a discrete value

to the level of the activity of the functional unit. If all the complexes are in the R,C,
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configuration, the level of activity is 0. If all the complexes are in the cAMP,4.R;
configuration, the level of activity is 10. If the complexes are distributed among the

seven configurations, the level of activity will be between 0 and 10. The first constant

10

, 55+ i a normalization constant, 50 being the total concentration for

of equation 4.1

every RoCy configuration, and 10 being the number of possible activity levels.

4.5 Visualization of the simulation data from a functional perspective

The 34 state equations of the LTP model each provide an integer from 0 to 10 for
every time step of a simulation run. An easy way to visualize this data matrix is
to associate the integer values with colors. For the LTP model, we used the colors
of the light spectrum. Violet is associated with the state 0, low activity, and red is
associated with the state 10, high activity. The color association process is complete
when the color of every functional unit for every simulation step is determined.
Subsequently, the colored functional data are displayed in two different types of
visual representation. The first representation is an animated. global view of the
model, where the colored functional data are mapped to the topology of the model.
The result is that the variation in the activity of all the model components can be
seen simultaneously. This view is made up of a succession of images of the colored
functional units of the model for various time steps, in other words an animation.
The second representation is a collection of spectra of the functional units, showing
their changing level of activity through time. A spectrum is a timeline, where the

color changes represent the activity variation for a single functional unit.

The next two subsections present the animated and spectral representations of two
simulation runs of the LTP model. The first simulation run is based on normal

concentrations and parameters. For the second simulation run, the value of the Kcat



parameter of the inactivation reaction of PP2A by CaMKII.CaM is modified. The
normal value of the parameter is 5 s~! and the modified value is 0.5 s~1. These values
were extracted from the work of Kikuchi et al. (2003). The modification is known to
affect the model’s bistability. In both simulation runs, a tetanic calcium stimulation
is induced at 120 seconds. The concentration of the 200 substances of the model is
recorded at every second. The simulation duration is 1,000 seconds. The simulation
outputs, a set of the concentration data of the 200 substances for each simulation

run, were transformed to create a colored functional perspective.

4.5.1 Animated functional representation of the simulation data of the

LTP model

The animated functional representation of the simulation data of the LTP model is a
mapping of the colored functional data to a graphical representation of the topology
of the signaling network. The graphical representation of the topology is a graph
where the functional units are displayed as nodes. Regular and rounded arrows link
the functional units to show the activation and inhibition relationships. The nodes
are colored according to their level of activity computed from the simulation data. A
change in color reflects a change in activity level®. Four frames of the animation of
the first simulation run are shown in Figure 4.3. Two frames of the animation of the
second simulation with the modified parameter are shown in Figure 4.4. Subfigure
4.3(a) shows the system from the functional perspective of both simulation runs at
90 s (normal steady state), subfigure 4.3(b) shows the system at 124 s (a few seconds
after the tetanic stimulation). subfigures 4.3(c) and 4.4(a) show the system at 200
s (in transition to the final steady state) and subfigures 4.3(d) and 4.4(b) show the

3The animated representations of the first and second simulation runs, SpectroNet 1 and Spec-
troNet2 respectively, can be downloaded at http://www.polymtl.ca/rgl/Downloads.php.
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system at 1,000 s (alinost final steady state).

An initial visual exploration of subfigure 4.3(a) shows mainly cold colors. Before the
introduction of any calcium input, the system is in a non-potentiated state. Only
the PP1 functional unit is active, as its red color indicates. The PP1 functional unit
has a unique behavior in the LTP model. in that it is the only unit with a reverse
behavior: at the normal steady state, the PP1 functional unit is highly active, while
at the potentiation steady state it is inactive. The function of this unit is inhibitory;
it limits the activation of the CaMKII and PP2A units. Part of the system bistability
property is triggered by a persistent diminution in the PP1 unit inhibition activity,

in order to let the CaMKII and PP2A units be persistently more active.

In subfigure 4.3(b), 4 seconds after the induction of the calcium stimulation, the cyan
color of the calcium functional unit (Ca) denotes the higher concentration of this ion
due to the tetanic calcium stimulation. The modules directly connected to the Ca
unit, such as the PLC, PLA,, CaM and CaN modules, react rapidly. The change in
color of the first-degree neighbors of the Ca unit shows an activity increase, which
has also been communicated to some of the Ca unit’s second-degree neighbors, the

GEF and cAMP modules.

Subfigure 4.3(c) shows the state of the system 80 seconds after the Ca stimulation,
which occurs after 120 seconds of simulation. Two groups of functional units behave
in distinctive wayvs. The first-degree neighbors of the Ca unit are returning to their
initial state. However, the modules at the end of the signaling network, such as
the MAPK, PP1, CaMKII and PP2A modules, which are slower to react to the Ca

stimulation, are showing an increase in their activity.

This transitional state leads to the final state of the system, 880 seconds after the Ca

stimulation and shown in subfigure 4.3(d). First-degree neighbors of the Ca unit are
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Figure 4.3: Four snapshots of the animated representation of the LTP model simu-

lation in normal conditions at various moments
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(c) 200s
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(d) 1000s

Figure 4.3: Four snapshots of the animated representation of the LTP model simu-
lation in normal conditions at various moments (continued)
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back in their initial state. The final colors of the modules at the end of the signaling
pathway. however, which are located at the bottom of the frame, indicate a persistent
activity in the system’s final state. This is the potentiated state. Subfigures 4.3(a)
and 4.3(d) are visual representatious of the bistability of the LTP model. According
to Kikuchi et al. (2003), a particularly important functional unit is the AMPAR
unit (at the bottom center of the model). At the beginning of the simulation, this
receptor is in a depressed, or inactive, state (blue), and, at the end of the simulation,

this receptor is in a potentiated, or active, state (orange).

The visual exploration of Figure 4.4 shows a different behavior of the LTP model.
The frames of the simulation of the modified model at 90 s and 124 s are not shown
because they are identical to the same frames of the normal model. This suggests
that the initial state and the first reactions to the Ca stimulation are similar in the
two versions of the model. The impact of the modified parameter appears later in
the simulation. Subfigure 4.4(a) shows a different transitional state: the modules at
the end of the signaling pathway are less active than they were in subfigure 4.3(c).
The last frame of the animation, shown in Subfigure 4.4(b), displays a final state that

is similar to the initial state. Thus, this version of the LTP model is not bistable.

4.5.2 Spectral functional representation of the simulation data of the

LTP model

The animated representation is made up of a sequence of images of the network
topology showing the activity level of every functional unit of the model as time
progresses. It enables analysis of the system behavior and provides information on
the interactions between modules. The spectral representation is the set of colored
timelines of the level of activity of the functional units. It provides a view of the

complete simulation period. Figure 4.5 shows the spectral representation of the
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NMDAR

(a) 200s

NMDAR

(b) 1000s

Figure 4.4: Two snapshots of the animation of the LTP model simulation with the
parameter of the inactivation reaction of PP2A by CaMKII modified
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functional units for the simulation data of the LTP model. For each functional unit,
the spectrum on the left is the visualization of the simulation outputs of the normal
LTP model. and the spectrum on the right is the visualization of the simulation
outputs of the modified LTP model. The Ca spectrum indicates the calcium stimulus
at 120s. The activity-level scale is at the left (violet = inactivity, red = activity) and

the time proceeds from top to bottom, starting at 90 s and ending at 1,000 s.

Figure 4.5 shows the spectral representation of the functional units of the modules
exhibiting a modification in their level of activity. A spectral representation can
display more information in less space than a traditional representation using charts
and plots. The spectra of the CaM and the CaN functional units for the two sim-
ulations confirm the behavior of the first-degree neighbors of the Ca unit suggested
by the animations. They react rapidly to the increase in the calcium concentration,
and their activity pattern is, for the most part, unaffected by modification of the
PP2A reaction parameter. Because their final state is the same as their initial state,
these units do not exhibit bistability. This observation is also true for the functional
units of the PLC and cAMP modules. The spectra of the MAPK, CaMKII, AMPAR
and PP2A functional units illustrate the behavior of the units at the end of the sig-
naling network. Their activation is slower than the activation of the Ca first-degree
neighbors, and it occurs after a delay. The activity pattern of the spectra of these
units, produced from the simulation of the normal LTP model, shows the bistable
property of this network: from an inactive, initial state, the spectra indicate that
the functional units stabilize to a different and more active state. On the spectra
of the modified LTP model, we can see a different activation pattern, one without
bistability. These three functional units, after a transitory change in their activity
level, eventually return to their normal steady state after the Ca stimulation. As
already explained, the PP1 functional unit exhibits a reverse activity relative to the

other functional units of the system. The MAPK, CaMKII, AMPAR and PP2A
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units change from a low level of activity (cold colors) to a higher level of activity

(warmer colors) as the PP1 unit undergoes the opposite variation.

The spectra of the PLA2 and AA functional units are examples of a combined behav-
ior involving the behavior of a Ca first-degree neighbor and that of an end-of-signal
unit. An initial activity change to the stimulus induction is noticeable immediately
after this, followed by a return to its original, inactive state. A second inactivation

occurs later, resulting in a persistent activation of the unit in the normal model.

4.6 Concluding remarks

In this paper. we explored an innovative perspective of the simulation data: a new
data filter to present and analyze the data, based on the concept of molecular ac-
tivity. This data filter is an approach to creating data subsets: functional units. In
two steps — identification of the functional units and mathematical description of
the molecular activity of the functional units — the simulation data are transformed,
with a functional data filter, into data on the molecular activity of the model. This
perspective of the molecular activity of the simulation data of a biochemical model
formed the basis for two views of the simulation data of the model: a spectral func-
tional view displaying the behavior of individual functional units, and an animated
functional view of all the functional units of the model. This last type of data repre-
sentation integrates the system structure and its dynamics into a single view. One of
the goals of these views is to represent many numerical simulation outputs in such a
way as to more easily access a system’s overall systemic behaviors. This is achieved
by identifying the functional units of a system and by visualizing the interaction‘s
between them. As demonstrated in this paper, this approach can replace numerous

traditional concentration graphs and will help enable the rapid observation of the
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impacts of structural or parametrical modifications of the model. This is an asset
for the computational biologist developing a biochemical model. With the molecular
activity approach, the computational biologist can create a data-preprocessing filter
and afterwards easily explore the parameter space of the model and study the result-
ing behavioral modifications. This filter, built with the knowledge he or she usually
uses to interpret the raw simulation data, is implemented only once and can then be
applied to the data of any number of subsequent simulation runs. In this way, the
modeler will have rapid access to the dynamic behavior of the different instantiations

of a model.

A limitation of the simulation data representation approach based on molecular ac-
tivity is that it is only efficient for qualitative analyses. The level of molecular activity
is assigned on a relative basis that is specific to the characteristics of each functional
unit. The result is a qualitative indication of the activity level of a functional unit.
Despite this limitation. a qualitative glance at the dynamic behavior of a model is
useful in the initial exploratory steps of simulation data analysis, while concentration
graphs remain useful for detailed quantitative analyses. Taken together, concentra-
tion graphs and a data representation based on molecular activity are complementary
approaches constituting two distinct perspectives, and it is advantageous to use them

together.

At the moment, our approach and its two steps cannot be implemented in a system-
atic method for two reasons. First, the composition of functional units is intended
to be customizable in order to fit research hypotheses and goals. The composition of
functional units can be adapted to fit either micro- or macrosystem dynamics, thus
allowing the representation of a model behavior at different levels of abstraction. The
composition can also be focused on some specific molecular activities and leave some

other activities out. In the LTP model, this is exemplified with the calcineurin mod-
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ule (CaN). If the criterion for the composition of the functional units of this module
was to be solely based on the recognition of a single molecular species and its various
configurations, only one functional unit would be identified for this module. However,
this protein phosphatase has three distinct regulatory effects of dephosphorylation
on neurogranin (Ng) and inhibitory-1 protein (I1). To distinguish among these three
different molecular activities, three functional units were identified, one for each de-
phosphorylation activity. The second reason why this data representation approach
based on molecular activity cannot be implemented in a systematic method is that,
as we have already mentioned, it does not involve a specific modeling language. Each
modeling language will require its own algorithm. Depending on whether the model
is specified with ordinary differential equations, is a Petri net model or has a sto-
chastic nature, the algorithms will be different because of the particularities of the
languages. However, the properties of a modeling language can be useful for the
development of such an algorithm. Part of our current work involves the use of the

invariants of a Petri net, which are structural properties, to implement an algorithm.
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CHAPITRE 5

PETRI NET-BASED VISUALIZATION OF SIGNAL
TRANSDUCTION PATHWAY SIMULATIONS

Abstract

Biological simulation! is a growing field. and attempts are being made to model
and simulate ever more complex systems. Software tools for the visualization of
simulation data have been developed, mostly for metabolic network models. In this
paper, we present a visualization approach based on the Petri net formalism that
is more suitable for signaling pathway models. The marking invariant property of
Petri nets is used to identify meaningful biological entities and to generate, with the
painting feature of Petri nets, animated representations of the simulation data in
which the switching behavior of enzymes is highlighted, thereby allowing a visual

exploration of the global dynamic behavior of complex biochemical models.

5.1 Introduction

The increasing complexity of computational biochemical models raises some problems
for the visualization of their simulation data. The traditional means of representa-
tion, two-dimensional plots of time-series data, is more suitable than raw numbers,
but they become cumbersome for large and complex models. Another problem with

concentration plots is the loss of the structure of the biochemical model. The topol-

1Cet article a été soumis  la revue IET Systems Biology. Voir la référence (Hardy et Robillard,
2007b)
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ogy of a network is an important source of information for analyzing a model’s
simulation outputs. Without a proper visualization teclinique, the topology has to
be memorized by the user. These problems have been addressed by developing a
local relative visualization approach, in which the graph structure of a biochemical
model is constructed from its ordinary differential equations. The nodes of the graph
represent the molecular substances of the model and the arcs represent the chemical
reactions. The simulation data of the model are then mapped to the model structure:
a graphical parameter of the nodes. such as their color or shape, changes to show
the local concentration variations, resulting in an animated display of the simulation
data of the model. The software tools MetVis (Qeli et al., 2003), SimWiz (Rost et
Kummer, 2004) implement this local relative method. To enhance the visual ren-
dering, the tools MetVis and SimWiz also have a three-dimensional graph generator
(Qeli et al., 2004a; Wegner, 2005). With this local relative visualization approach,
the simulation data of metabolic networks can be visualized in a more comprehensive
way. One advantage to such a view is to make full use of the capacity of the human
mind to detect structures and patterns in images, such as synchronicities, global
changes of state and oscillations (Miiller et Schumann, 2003). Also, it is possible to
integrate the human being’s perceptual abilities in data interpretation. a useful asset
during the exploratory steps of data analysis (Keim, 2002). The combination of an
animated representation of the topology of biochemical networks and simulation data
allows a wealth of information to be accessible to the user and provides information

on the system’s dynamic behavior.

However, we detect two problems with this approach. First, a graphical represen-
tation of the model has to be generated with a graph layout algorithm, since the
formalisms of the models that are visualized with these tools are not graphical in
nature. For example, SimWiz uses an extended version of the Becker-Rojas algo-

rithm (Becker et Rojas, 2001). Since there is no standard for biochemical network
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graphical representation. each tool has its own format. A consequence of this is that
users have to familiarize themselves with a new graphical representation once they
have mathematically specified the model. The second problem appears when the
local relative approach is used with models of signaling pathways. This approach is
appropriate for visualizing the simulation data of metabolic pathways where metabo-
lites are produced. consumed and degraded. However, it is less suitable for signal
transduction networks, where the main biological activity for transmitting a signal
is the change of state of enzymes. The activity in signaling pathways is normally the
result of the activation and deactivation of enzymes through conformational changes
as they turn “on” and “off”, rather than the production and consumption of metabo-
lites. In other words, enzymes can change from one state to another. Thus, the sum
of the concentrations of the various states of an enzvme is modeled as a constant

quantity.

This article presents a Petri net-based approach for the visualization of the simula-
tion data of signal transduction networks which solves the graphical representation
issue and the specific problem of the visualization of the switching activity of signal-
ing transduction networks. The Petri net is a modeling language designed to study
systems with causal concurrent properties. This formalism was used for the first
time for biological modeling by Reddy et al. (1993). All the studies that followed
their pioneering work correspond to either the qualitative or quantitative analysis
of biological systems. To qualitatively analyze the biological properties of metabolic
pathways, Petri-net properties such as invariants, liveness, boundedness and reach-
ability have been used (Voss et al., 2003; Zevedei-Oancea et Schuster, 2003). More
recently, concepts of Petri net theory have been used to identify functional units
(Sackmann et al., 2006) or transduction activation components (Li et al., 2006) in
signal transduction networks. These applications of Petri net concepts serve mainly

to validate biological models. To quantitatively analyze biological systems, the Petri
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net’s high-level extensions that support simulation have been used (Hofestadt et The-
len, 1998; Matsuno et al., 2003c). The Notch-Delta signaling pathway in Drosophila
(Matsuno et al., 2003b), the role of interleukin-6 in the fate of hematopoietic stem
cells (Koh et al., 2006) and the Akt and MAPK pathways and their crosstalk (Tron-
cale et al., 2006) are examples of signaling networks which have been quantitatively
studied with the simulation of Petri net models. As well, review articles have been
written on Petri net modeling approaches in biology (Hardy et Robillard, 2004; Pin-
ney et al., 2003; Matsuno et al.. 2006b). There are two main advantages to a Petri
net-based approach for biological modeling. First, the theoretical elements of Petri
nets with a mathematical basis are useful as a preliminary analysis tool for biolog-
ical pathways. Second, researchers can easily model a biological system with Petri
nets, partly due to the graphical nature of the formalism, and then study it with the

simulation capabilities of Petri net tools.

In Petri net models of signaling pathways. the conservation relations known as mark-
ing invariants (or p-invariants) can be used to identify the sets of places associated
with the different states of the enzymes of the model. Because of this relationship,
marking invariants have been used for the validation of biochemical models, since
they can help to detect inconsistencies (Zevedei-Oancea et Schuster, 2003; Voss et al.,
2003). In this article, we propose to use p-invariants in a new visualization approach
using painted Petri nets (Hardy et Robillard, 2006b). To the best of our knowledge.
the visualization of biochemical models based on Petri net theory and presented in
this paper is a new development in this field. In this study, Petri nets are not used
for qualitatively or quantitatively analyzing biological systems, but rather for the
visualization of the simulation data of signaling pathway models. We demonstrate
that the Petri net’s structural invariant property provides a basis for the automatic
identification of meaningful groups of molecules and we show that the painted Petri

net can be used to enhance the existing visualization method. Section 5.2 provides
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a short introduction to the Petri net. Section 5.3 presents the new Petri net-based
visualization approach and exemplifies it with the modeling of the calmodulin ki-
nase pathway (CaMKII) of the complex signaling network of the hippocampal CAl
neuron. Section 5.4 compares the display produced by this new approach to another
display produced by the local relative approach. Sections 5.5 and 5.6 discuss our

results and the limitations of the visualization approach. We conclude by discussing

future research directions.

5.2 Petri net concepts

This section introduces the basic concepts of Petri net theory that are necessary in
the context of biological modeling, and which constitute a subset of the whole theory.
Then, it describes a new Petri net feature designed to visualize the simulation data

of Petri net models.

5.2.1 An introduction to Petri nets

Carl Adam Petri invented the Petri net formalism in 1962 to model the systems
of concurrent processes (Petri, 1962). It is a modeling language depicting systems
as directed bipartite graphs, i.e. directed arcs linking nodes from two disjoint sets.
The first kind of node is the place. Places are the passive elements of the model,
like entities and states. The second kind of node is the transition. Transitions are
the active elements of the model, like processes and events. Directed arcs represent
the causal relation between places and transitions, and a value is attached to them
so that the modeled relations are weighted. In the graphical representation of a
Petri net, places are displayed as circles and transitions as rectangles. For example,

in a Petri net model of a biochemical system, places and transitions most often



represent molecular substances and chemical reactions respectively. Also, in a Petri
net model of a metabolic pathway, the weights of the net’s arcs might represent the

stoichiometric coeflicients.

The dynamic elements of a discrete Petri net are called tokens. Places contain an
integer number of tokens, called marks, and transitions withdraw tokens from or add
tokens to places. This process of withdrawing and adding occurs when a transition is
fired. The firing of a transition can happen only when the transition preconditions,
specified by the directed arcs whose destination is this transition. are met. Precon-
ditions are fulfilled when the places at the source of the arcs, called input places.
contain a number of tokens greater than or equal to the weight of the arcs. If the fir-
ing occurs, the transition postconditions, specified by the directed arcs whose source
is this transition and destinatious are output places, are met. The firing has two
consequences: tokens are removed from input places. as stated by the preconditions,
and tokens are added to output places in a number corresponding to the weights of
the output arcs. There is no implicit conservation of tokens, which means that, for
example, one transition can withdraw two tokens from the source place and add five
tokens to the target place based on the weight of the transition. The state of a Petri
net model is given by the token distribution in its places. The token distribution is
called the marking. Most of the time, a firing modifies the marking, thus changing
the state of the model. In the example of the biochemical Petri net model, the tokens
are the molecules. The molecules change their forms (tokens moving from place to
place) as they form molecular complexes, undergo chemical modification, etc. (tran-
sition firing). In this kind of Petri net model, the marking indicates the distribution
of the molecules between the different molecular substances. The initial marking
describes the state of the model before any transition firing occurs. A reachable
marking is a marking that is attainable from the initial marking by a finite number

of firings.
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The conceptual framework of Petri nets is usually used to understand "how” a system
works. The mathematical properties of some Petri net extensions, like invariants,
serve to achieve a qualitative and structural analysis of a system and a validation of
a model. The simulation capabilities of other Petri net extensions serve to realize a

quantitative analysis of a system and a performance analysis of a model.

5.2.2 Invariants

Invariants are structural properties of Petri nets. In biochemical models, they usually
have a mass conservation meaning. This relationship is detailed in subsection 5.3.3.

This subsection presents the theoretical background on Petri net invariants.

The structure of a Petri net model, i.e. the arrangement of places, transitions and
arcs, can be expressed in linear algebra by a matrix. This is the incidence matrix
W. One dimension of the incidence matrix is the number of places of the model, and
the other dimension is the number of transitions. Each element w;; of the matrix
indicates the token change at place 7 after firing transition j. From the incidence
matrix, it is possible to determine the structural properties of Petri nets. Some of
these properties are called invariants. Among all the reachable markings of a model,
some quantities do not change, even when transitions are fired. This first type of
invariant is the marking invariant (p-invariant). Every p-invariant of a Petri net

model is a positive vector x that is a solution of the following equation:

x-W=0 (5.1)

A p-invariant characterizes a conservation component of the model, which is a set
of places over which the weighted sum of the tokens is constant for every reachable

marking.
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Among all possible firing sequences of a model, some repetitions are possible. This
second type of invariant is a firing invariant (t-invariant). Every t-invariant of a Petri

net model is a positive vector y that is a solution of the following equation:

W.y=0 (5.

(@]
o
~—

A t-invariant characterizes a repetitive component of the model, which is a firing
sequence composed of several transitions causing a return to the model’s initial state.
In other words. the transition firings of a repetitive component together have a null

effect on the marking of the model.

The Petri net formalism described so far is the original form of this formalism,
known as the place-transition net. This modeling language can represent discrete.
non-deterministic, asynchronous systems. Other types of Petri nets have been de-
veloped to enhance the modeling capabilities of the formalism. These other types
are called extensions. For example, continuous and hybrid Petri nets are extensions
to the original theory enabling the modeling of continuous quantities and processes
(David et Alla, 2004). Ordinary differential equations have their equivalent in con-
tinuous Petri net models using continuous places and transitions. The marking of a
continuous place is represented by a real number and a continuous transition has a

speed. The hybrid Petri net combines elements of a discrete and a continuous nature.

5.2.3 Painted Petri nets

To visualize the simulation data of Petri net biochemical models, we suggest using
the painting feature of Petri nets. By painting a Petri net model, it is possible to
display the simulation data on the net’s graphical structure. The painting feature is

described below.
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Several extensions of Petri net theory, like the stochastic, synchronous and hybrid
extensions, have been used to complete the quantitative analysis of different sys-
tems. The choice of the appropriate extensions depends of the nature of the systems
modeled. The simulation of a Petri net model, whatever the extensions, generates
raw numbers of data on the model in the simulation environment. In the case of
a discrete Petri net model. the token game display is usually used: tokens move
throughout the model to show the evolution of the marking. Other Petri net tools
can also generate 2-dimensional histograms or plots. Unfortunately, the problems
related to the visualization of the simulation data of complex models are the same
for complex Petri net models. To create a more intuitive and meaningful represen-
tation of the simulation data, the Petri net painting feature can be used (Hardy et

Robillard, 2006b).

The aim of the Petri net painting feature is to visually indicate the evolution of the
place contents of a Petri net model during the model’s simnulation. To achieve this
goal, places are painted according to their token content. The painting approach can
be applied on a Petri net model of any kind of extension used for simulation without
modifying the properties of the extension on which paints are applied. A painted
Petri net should not be confused with a colored Petri net (Jensen, 1992). In colored
Petri nets, coloration is an abstract concept used to distinguish the different data
token types of a model. In painted Petri nets, tints are used to visually indicate
the temporal variation of the modeled entities represented by places. The painting
rules use the mark of the places to generate values from 0 to 1 for each place. This
numerical value is then associated with a tint from a color spectrum (0 being blue at
one end and 1 being red at the other end, for example). A paint value of a place is
computed for each time step of the simulation. The result is an animated graphical
representation of the painted Petri net model which combines the topology of the

model and the simulation data.
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5.3 Method

The following section presents the Petri net-based visualization approach for the
simulation data from signal transduction models. First, we explain how to represent
kinetics models with Petri net elements, and we illustrate this modeling process with
the signaling pathway of the CaMKII. We then identify the marking invariants of the
example and define an adaptation of the marking invariant concept which enables the
identification of other meaningful entities in signaling transduction models. Finally,
we specify two painting rules which are used in the next section to compare the local
relative visualization approach with our approach based on the marking invariant of

a Petri net model.

5.3.1 Petri net-based modeling of biochemical reactions

Modeling systems with ordinary differential equations (ODE) is the quantitative
method most commonly used to represent signal transduction pathways (Eungdam-
rong et Iyengar, 2004). For that reason, we show here the way to transform this type

of model into a continuous Petri net model with marking-dependent speeds.

A biochemical model specified with ODEs is partly composed of chemical reactions
like the following:
k
A+B==C+D (5.3)

ky
In this chemical reaction, there are four molecular substances (substrates A and B,
and products C' and D) and two chemical processes (forward and backward reac-

tions). The variation in concentration of substrate A is expressed by the following:

A _ kjc)p) — kla18) (5.4)
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Four continuous places and two continuous transitions can represent the chemical
reaction of equation 5.3 when they are structured as in Fig. 5.1. In this small Petri
net model., one can see that the substances modeled by places A and B react together
through transition t; at a speed corresponding to the product of the concentration
of these substances (marks z; and z7) and the kinetic parameter k¢ to produce the

substances modeled by places C and D.

A N*x1*x2 ¢

kb *x3* x4

Figure 5.1: Petri net representation of a chemical reaction.

Another important building block of signaling transduction pathways is the enzy-
matic reaction. These reactions can be expressed either by the bidirectional reaction
of the formation of a complex composed of an enzyme and a substrate, followed by
an irreversible reaction creating the product from the complex, or simply by the
Michaelis-Menten formulation. The Petri net representation of these two forms of

enzymatic reaction is given in (Koh et al., 2006).

Following these modeling guidelines, it is possible to create a Petri net model for
any chemical kinetics model where the concentration is only a function of time. It is
important to note that Petri net modeling is not limited to continuous deterministic
systems with known kinetic parameters. For example, a method has been developed
to systematically build discrete Petri net models of signal transduction pathways that
reflect their qualitative biological behavior from experimental observations, without

any precise kinetic parameters (Sackmann et al., 2006), and stochastic Petri nets
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have been used to model the stochastic process of ColE! plasmid replication. since
this process involves low concentrations of biological compounds (Goss et Peccoud,
1998, 1999). Also, hybrid functional Petri nets are a modeling formalism designed

specifically for biological hybrid modeling (Matsuno et al., 2003c).

5.3.2 Petri net model of the calmodulin kinase pathway

With the previous modeling guidelines, we transform an ODE model of the CaMKII
pathway into a continuous Petri net model. In the next sections, we identify the
invariants of this model and we use a painted version of the model to compare two

visualization approaches of simulation data.

The CaMKII pathway, shown in Fig. 5.2, is one module among several others which
makes up a larger signaling network. The ODE model of this pathway comes from a
study on the bistability of a complex signaling network of the hippocampal CA1 neu-
ron (Bhalla et Iyengar, 1999). The kinetic parameters and the initial concentration
of the pathway substances were experimentally obtained and can now be found in the
Database of Quantitative Cellular Signaling (Sivakumaran et al., 2003). In Fig. 5.2,
reversible reactions are drawn as bidirectional arrows, and enzymatic reactions are
represented by arrows with two bends. For clarity, a reactant can appear multiple
times and in the two depicted enzymatic reactions. CaM.CaMKIl;ctiveforms Stands
for all phosphorylated forms of CaMKII. After Fig. 1I of (Bhalla et Iyengar, 1999).
The CaMKII pathway is composed of an autophosphorylation cycle in which each
phosphorylated form of this enzyme contributes to the activation of the enzyme by
phosphorylation at Thr?®. The inflow of calcium ions is first signaled to the CaMKII
pathway by increased binding with calmodulin (CaM.Cay). The CaM.CaMKII com-
plex is then able to activate itself by autophosphorylation. Conversely, when the

protein phosphatase 1 (PP1) is active, it is able to dephosphorylate CaMKII, thus
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deactivating the kinase. Another regulation effect of the calcium inflow, also mod-
eled in the complete model of the neuron, is to delay the deactivation of CaMKII by
PP1. The source of this effect is the production of cyclic adenosine monophosphate
(cAMP) caused by Call activation. The elevation of cANP levels causes an acti-
vation of PKA. which in turn phosphorylates the Inhibitor-1 protein, leading to the
inhibition of PP1.

CaMKlI

CaM.Ca,

CaMKI|l.CaM.Ca,
PP1 J CaM.CaMK”active forms

CaMKII"™%%® CaM.Ca,

CaM.Ca, PP1

N

CaMK}'"28 < _gasal activation— CaMKII

PP1E JcaM-CaMK”achve forms PP1

CaMKII" CaMK”‘inactive

A

PP1

Figure 5.2: Reaction schemes of the calmodulin kinase pathway.

We create a continuous Petri net niodel from this ODE model by assigning a place to
each substance and a transition to each reaction. The initial marking of the model
corresponds to the initial concentrations, and the speed of the transitions corresponds
to the kinetic equation of the reactions. The resulting Petri net model of the CaMKII
pathway is shown in Fig. 5.3. The specifications of the places of the Petri net model
are given in Table 5.1, and the specifications of its transitions and arcs are given in

Table 5.2.
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Figure 5.3: Continuous Petri net model of the calmodulin kinase pathway.
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Tableau 5.1: Specifications of the places of the Petri net model of the calmodulin
kinase pathway

Name Substance Variable
P 1 CaMKII il
P CaM.CamKII i3
P CaM.CaMKII*t" 14
P4 C&I\’IKII*HW ’i5
b CaMKIT** ig
PG Cal\lKII*inactive 7.’7
P complexog 18
B complexy; 19
Py complexog 110
Py complexag 11
Py complexsg 112
P12 ('ompleX31 ilg
P complexsy 114
P complexss 215
P15 compleX34 ilﬁ
P16 compleX35 i17
P17 compleX36 ilg
Pig complexs; 119
Plg Complex;;g /1.20
Py CaM.Cay ms

PQ] PPl 01
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Tableau 5.2: Specifications of the transitions and arcs of the Petri net model of the

camodulin pathway

Name Speed From To
. be variable factor variable factor
. 1 1 :
t 50 x 77 X 1
1 J (5] ms s 1 13
. . 3 1
' : 1
tQ 9 X 13 13 ms 1
3 0.35 x 13 18 1 3 !
01 1
ts 1.543 x i5° is ig 1
tg 2 X 19 19 1 13 2
tr 0.5 X ig i 1 N !
14 1
. . 13 1 .
23 1.543 x 13 X U4 . 110 1
14 1
g 2 X ilg ilO 1 2.3 1
14 1
t10 0.5 x 110 10 14 2
t1n i3 X 15 73 111 1
15
t12 2 x 7:11 7:11 1 2.3 !
15 1
. . 4 1
t13 0.5 x 111 211 1 .
15 1
. . ? 1 .
t14 13 X 1g 72 1 112 1
tis 2 x 119 219 1 Z.S !
16 1
. ‘ 14 1
tlﬁ 0.5 x 119 119 1 .
16 1
, 1y .
ti7 0.343 x 74 X 0y 18 1
01
. . o 1
t1s 1.4 x 18 18 1
4] 1
119 0.003 x il 7.,1 i5
too  1000.2 X iy x my is 1
ms 1

Continued on next page



Tableau 5.2 — continued from previous page

Name Speed From To
: ' P variable factor variable factor
15 1
t 0.1 x4 f 1 7
21 1 x 14 14 ms 1
t 0.35 X i j 1 's !
29 . 13 113 01 1
. : ig 1 ‘
to3 0.343 x g X 01 113 1
01 1
t 1.4 x 4 i 1 s !
24 - 13 ‘13 01 1
tos 12 X 45 X i ‘s ! i 1
425 ~ 5 6 ZG 1 14
tog 24 x 114 214 1 75 !
16 1
tor 6 x i14 f14 1 7:6 2
tog 12 x 152 75 2 115 1
tag 24 x 115 215 1 15 2
tag 6 X 115 7:15 1 2.5 !
16 1
ts 18519 x iy xi5 ! 16 1
15 1
. . 1y 1
t32 24 % 116 116 1 .
15 1
t33 6 X 116 116 1 Z.4 !
16 1
. . 13 1 .
t34 18.519 x 13 X 15 . 117 1
15 1
. . i3 1
tss 24 x 117 117 1 .
16 1
. . i3 1
t36 6 X 117 117 1 :
16 1
. 16 1 ,
3 0.343 X ig X 01 118 1
01 1
t30 1.4 X d1g i1s 1 ‘6 !
01 1
. . 7 1
t40 0.35 x 218 218 1
01 1

Continued on next page
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Tableau 5.2 — continued from previous page
From To

Name Speed variable factor variable factor
. 17 1 .
; . J / 1
ty 0.343 X 17 X 01 o1 1 119
. . 1 1
t4o 1.4 x 119 119 1 071 1
) . 3 1
ta3 0.35 x 119 119 1 01 1
. 15 1 .
t45 0.343 x 15 X 01 190 1
01 1
. ) 15 1
tag 1.4 X 19g 190 1 o1 1
. . i 1
t47 0.35 x 199 290 1 o, 1

5.3.3 Marking invariants and mass conservation in biochemical models

The relationship between the marking invariants of a Petri net, also known as p-
invariants. and the basic concepts of biochemical modeling has already been estab-
lished. In models of metabolic pathways, marking invariants express conservation
relations for metabolites (Voss et al., 2003; Zevedei-Oancea et Schuster, 2003). In
signal transduction models, marking invariants represent a different kind of conser-
vation relation (Sackmann et al., 2006). A signaling pathway is considered active
when enzymes change state to transmit a signal. and the total concentration of all
forms of an enzyme is modeled as a constant quantity. This quantity is a marking

invariant in a Petri net model.

The p-invariants of a Petri net model are all the vectors x that solve equation 5.1.

The non-zero values of these vectors indicate the places of the Petri net that are part
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of a conservation component. The marking invariant associated with a p-invariant
is the sum of the marks of the places of the conservation component, where each
mark is multiplied by its associated value in the vector. To find the invariants of
simple Petri net models, David et Alla (2004) described an algorithm. There are
more efficient algorithms using linear programming (Takano et al., 2001), and Petri
net analysis software is also freely available (Starke, 2003). The marking invariants
of the Petri net model of the CaMKII pathway are shown in Table 5.3. These
invariants correspond to the three enzymes present in the model: CaMKII, CaM and
PP1. The marking invariants identify the places representing the different substances
containing at least one molecular form of the enzymes. When a coefficient other than
one precedes the marking of a place, it means that there is an equivalent nuinber of
enzyme molecules assembled in a multi-enzyime complex. To obtain a constant sum,
the concentration of these complexes has to be weighted, so as to form a constant

positive linear combination.

Tableau 5.3: The marking invariants of the Petri net model of the calmodulin kinase
pathway

P-invariant
Marking invariant
X1 ::[111111122221222211100]
CaMKII  Nge, =11 +1i3+ 104+ 15+ g +i7 + i + 269 + 2450 + 2611 + 2450+
113 + 2014 + 215 + 2016 + 2047 + 218 + 119 + G20
x, =[01100012211000110001 0]
]\TCCQ = i3 + i4 + ig + 229 + 2110 + le1 + i12 + il6 + i17 + ms
X =[00000010000100001110T1]
Neo, =g+ i3+ l1g+ 119 + igg + 01

Substance

CaM

PP1

Often, biochemical models are open systems with the entry and exit of mass in the
systems causing a perturbation or stimulation. Because of this, some places mod-

eling external substances are not part of any conservation component. This is not
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the case for the Petri net model of the CaMKII pathway, in which every place is
part of at least one conservation component. However, it is the case for some places
of the complete complex signaling network model of the hippocampal CA1 neuron.
where these places are not part of any conservation component., like the places mod-
eling the calcium ions and the cAMP. The temporary removal of the places and
transitions responsible for the input/production and output/consumption of these
external substances enables the identification of a new type of component related
to p-invariants. After their removal, new solutions might be found to equation 5.1,
also corresponding to mass conservation relationships. We call these new solutions
modified p-invariants. The places of the sets found after this modification of the
model represent molecular entities partly formed of the external substances. The
positive linear combinations of the modified p-invariants no longer produce constant
values. However, these combinations do provide useful information. For example, in
the complete model of the complex signhaling network of the hippocampal CA1 neu-
ron, the positive linear combinations of the two modified p-invariants are equations
giving the total concentration of calcium ions and cAMP in the system, in one form
or another, at each time step. The modified p-invariants can come into play in the

process of painting a model.

5.3.4 Local relative and marking invariant-based painting rules

To display the simulation data of a model with tlie Petri net painting feature, a
painting rule must be defined. A painting rule is an equation transforming the mark
of a place into a value from 0 to 1. This value is then associated with a tint that
is applied to the place in the Petri net graphical representation. In this section, we
present two different painting rules. The first is associated with the data visualization

approach used by existing software tools, while the second is a new approach. In the
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next section, the two approaches are compared.

The local relative approach converts raw simulation data into relative values using the
range between the minimum and maximum values of each variable. This produces a
percentage, a local relative value, which can be transformed into a color or a scaling
factor for data visualization. With the first painting rule, given by equation 5.5, a

local relative value paintp, , is calculated for each place P; at time t.

paintp,, = (markp,, — minp,)/(mazrp, — minp,) (5.5)

where markp,, represents the mark of the place F; at time ¢, and maxp, and minp,
represent the minimum and maximum marks for the place P; during the entire sim-

ulation.

With the second painting rule, we present a novelty: the use of marking variants in

a painting rule. The rule is the following:

paintp“ = ma‘rkpi_t/NCCz (56)

where the place F; is part of the conservation component C'C, having Nge, for
marking invariant. This rule computes the ratio between the concentration of a
single molecular form at simulation time ¢ and the concentration of this substance

in all forms.

Because a place can be part of several conservation components, a place can logically
have z paint values, where z is the number of conservation components of which
this place is a part. To solve this potential problem, we suggest that users assign
priorities to conservation components. By doing so, they decide on the paint from

which conservation components will be preferred in the display. Thus, it is possible
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to ensure that every place which is part of multiple conservation components has a

single tint in the final display.

5.4 Results

In this section, we show an initial display of the simulation data of the CaMKII
pathway which uses the local relative painting rule, and a second display which uses
the marking invariant-based painting rule. The complete Petri net model of the
complex signaling network of the hippocampal CA1 neuron has been simulated, but
only the data pertaining to the CaMKII pathway are shown. A calcium inflow,
reproducing a neuronal tetanic stimulation, is induced after 60 seconds of simulation
time. The simulation software used is Genomic Object Net (a hybrid functional
Petri net simulator commercially known as Cell Illustrator)(Nagasaki et al., 2003).
Both displays are animated representations, where each frame shows the places of
the model with their respective paint at time t. The paints vary from blue to white
to red on a spectrum of 100 discrete colors. Only when the simulations are completed
can the paints be computed and the animated representations of the simulation data

be displayed.

Figure 5.4 shows a series of snapshots of the animated painted Petri net model of
the CaMKII pathway using the local relative painting rule of equation 5.5 at various
moments during the simulation. In this display, the bluer a place is, the closer its
mark is to the place’s minimal value, and the redder a place is, the closer its mark is
to the place’s maximal value. A consequence of this painting rule is the absence of
a relationship between the red paint of one place and the red paint of another place;
the same red paint might represent very different concentration values. Their only

similarity is in representing the maximal value of the mark of the place. In other
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words, it is strictly local relative information. Neither the network nor any functional
entity is taken into account. Despite this shortcoming, it is possible to describe the
concentration variations of the CaMKII pathway model. At t,, the inactive state of
CaMKII (the place at the top of the model and identified as CaMKII) is red, and thus
at its maximal concentration value. The concentration of PP1 is also at its highest.
The concentrations of some CaMKII activated forms in the autophosphorylation
cycle are also high. At t9. 10 seconds after the calciuin stimulation, many places of
the CaMKII activated forms in the autophosphorylation cycle are redder. At 3, we
can observe a slight decrease in the level of the inactivate CaMKII and PP1 reaches its
minimal level, due, as we have already explained, to regulation outside the CaMKII
pathway. At t,, the only CaMKII form at its maximal concentration is the completely
phosphorylated form (CaMKII**). At t5, the CaMKII** concentration decreases,
while the concentration of one of the two inactive CaMKII forms (CaMKII*;,4ctive)
increases. At tg, the system slowly returns to its initial state, the levels of two
inactive CaMKII forms are close to their maximal values and the PP1 concentration

is increasing.

Figure 5.5 shows a series of snapshots of the animated painted Petri net model of
the CaMKII pathway at various moments during the simulation using the marking
invariant-based painting rule of equation 5.6. A first look at this display reveals that
there is less red. The reason for this color distribution is that the paint values of
the places represent absolute values in this display: the bluer a place is, the smaller
its mark is compared to the marking invariant of its conservation component. In
the case of the CaMKII conservation component, the sum of the concentrations of
all the different forms is, according to the initial parameters of the model, 70 uM
(this is the N¢¢, value of equation 5.6 for the places that are part of the CaMKII
conservation component). With this painting rule, every concentration variation is

scaled to the total enzyme concentration. This causes small concentration variations
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Figure 5.4: A series of snapshots showing the animated painted Petri net model of
the calmodulin kinase pathway at different moments in time using a local relative
painting rule.
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Figure 5.5: A series of snapshots showing the animated painted Petri net model
of the calmodulin kinase pathway at different moments in time using a marking
invariant-based painting rule.
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to disappear from the display. and the focus is thus set on significant variations.
In the CaMKII pathway model. there are places that are part of more than one
conservative component. For these places. the painting priority is then given to the

CaMKII conservation component.

The description of the simulation data of the CaMKII pathway shown in 5.5 is
straightforward. At f;, most of the CaMKII concentration is in an inactive form
(the CaMKII place). After stimulation, at ¢, and t3, there is a slow decrease in the
concentration of the inactive form. At 4. we see that almost half of all the CaMKII
molecules are in the active form. CaMKII**. At t5 and tg, we can observe a slow

return of the pathway to its initial inactive state.

5.5 Discussion

The two animated representations of the simulation data of the CaMKII pathway
model presented in the previous section differ in their level of detail. The display of
the simulation data with the local relative painting rule shows the detail of every con-
centration variation in the model. while the display with the marking invariant-based

painting rule presents a clearer picture of the switching behavior of this pathway.

The local relative approach is less suitable for showing the dynamic behavior of signal
transduction models than the marking invariant-based approach for two reasons.
First, it is difficult to compare the paints of the places in the first display because of
their relative nature. The minimum-maximum range can vary greatly from one place
to another. For example. the initial concentration of CaMKII is 52.03 uM and the
initial concentration of CaMKII***" is 0.014 uM, but, because these values constitute
the local maxima, both places are painted red. It is difficult to describe the behavior

of this pathway with the display shown in Fig. 5.4 without any knowledge of the
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absolute concentrations of the molecular substances. As we have already pointed out,
at t,, the places representing the inactive CaMKII form and the active CaMKII*"
form are both painted red because their values are close to the maximal concentration
they reach during simulation. Does this mean that the CaMKII enzyme in its initial
state is equally active and inactive? In Fig. 5.4, it is impossible to know if CaMKII
is initially active or inactive, because the absolute values are absent from the first

display.

A second problem with the local relative painting rule is the numerous color changes
in the display of a complex signaling network. For some substances, the presence of
many different intermediate molecular forms with a small minimum-maximum range
introduces unwanted color flashings. In the snapshots of the animated display shown
in Fig. 5.4, irrelevant color changes for several places hinder the visualization of
the network behavior. The iinpact of this problem grows exponentially for complex
models: the animated representation of the simulation data of the complete network
composed of six similar interconnected modules shows 100 nodes changing color!
The objective of easing the visualization of the dynamic behavior is not achieved. A
global painting rule (the same global minimum value and global maximum value for
every place) would not be a good solution either, because of the different orders of

concentration in the model.

These two limitations of the local relative approach are not problematic for metabolic
pathways. Local relative information is all that is needed to visualize the increase
and decrease in the concentration of metabolites. Thus, it is sufficient to see the
dynamic behavior of this family of biochemical systems. For signaling pathways,
some kind of network-related information is required to attain this objective, and it
can be attained with the marking invariants of Petri net models. The animated rep-

resentation of the Petri net model of the CaMKII pathway painted with the marking
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invariant rule shows color modifications which are relevant to the evolution of the
distribution between the different forms of the CalMKII enzyme. The distribution
for this enzyme, as for others present in signal transduction systems. is linked to its
functional activation or inactivation. For example, the distribution of CaMKII in
phosphorylated and dephosphorylated forins indicates whether this enzyme is “on”
or “off’. This painting rule can also eliminate concentration variations extraneous to
the dynamic behavior of enzymes, and results in the appropriate level of detail for
understanding systemic behavior: the simple display of the dynamic behavior of one
enzyime is an asset for the visualization of the simulation data of a complex signaling

pathway model with several enzymes.

We could rapidly conclude that a painting rule based on conservation components
and marking invariants computes paints which are always more significant in terms
of the dynamic behavior of a model than the paints computed with the local rela-
tive painting rule. Nonetheless, the marking invariant-based painting rule also has

drawbacks.

While it is perfect for enzymes with a switching behavior, this rule is less effective
for depicting an enzyme which performs its function with only a small part of its
total concentration. For example, the paints of the CaM.Ca, and PP1 places in the
CaMKII model are computed with their marking invariant value from the complete
model, which is 20 uM for CaM and 1.8 uM for PP1. The range of the concentra-
tion variation of CaM.Cay is 0.00001-0.0135 M, and the range of the concentration
variation of PP1 is 0.0461-0.285 uM. Because of the values of the marking invari-
ants, the CaM.Cay and PP1 marks in Fig. 5.5 are never represented with tints other
than blue. Instead of revealing the dynamic behavior of these enzymes, the marking

invariant-based painting rule conceals it.

The weakness of the first painting rule is the strength of the second, and vice-versa.
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This is why we recommend visualizing the simulation data of the biochemical models
with both types of animated representation. The marking invariant-based painting
rule generates displays which are suitable for an initial exploration of the global
dynamic behavior. Tlie local relative painting rule generates displays which can give
supplementary detailed information once the general behavior is understood. Thus,
the use of more than one viewpoint is an efficient technique for exploring different

aspects of the data.

5.6 Conclusion

In this article, we used the Petri net formalism and some of its properties for the
development of a new visualization method tailored to the simulation data of complex
signaling pathways. We exemplified the advantages of this approach by comparing
two animated representations of the simulation data of the CaMKII pathway: the
first animated representation was created with a local relative painting rule, and the
second with a marking invariant-based painting rule. We have also explained how to

transform an ODE model into a continuous Petri net model.

To model a biological system and to visualize the simulation data with the same
graphical formalism is an advantage for modelers. No time is lost in becoming fa-
miliar with a new graphical representation once a system has been mathematically
modeled. A single modeling framework is used from beginning to end. It was also
demonstrated that a Petri net-based visualization approach for the simulation data
of a signal transduction pathway using marking invariants emphasizes its dynamic
behavior. The switching mechanisms of enzymes are particularly highlighted, be-
cause of the elimination of small perturbations from the animated representations.

One of the disadvantages of this visualization approach is that, for some enzymes,
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the elimination of small perturbations conceals their dynamic behavior from viewers.
For that reason, we believe that the local relative and the marking invariant-based
visualization approaches should be used together, in order to provide more than one

viewpoint for data exploration.

The visualization of the simulation data of signaling pathway models raises questions
about the visualization of signal fluxes. For example, could the Petri net formalism
be used to visualize the transmission of signals in a biochemical model? In the near
future, we will investigate this matter. and we will work on the development of a
new Petri net-based technique to characterize the dynamics of regulation motifs and

signal fluxes in signal transduction models.
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CHAPITRE 6

PETRI NET-BASED METHOD FOR THE ANALYSIS OF THE
DYNAMICS OF SIGNAL PROPAGATION IN SIGNALING
PATHWAYS

Abstract

Motivation: Cellular signaling networks! are dynamic systems which propagate and
process information, and, ultimately, cause phenotypical responses. Understanding
the circuitry of the information flow in cells is one of the keys to understanding
complex cellular processes. Tlhe development of computational quantitative models
is a promising avenue for attaining this goal. Not only does the analysis of the
simulation data based on the concentration variations of biological compounds yields
information about systemic state changes, but it is also very helpful for obtaining

information about the dynamics of signal propagation.

Results: This paper introduces a new method for analyzing the dynamics of signal
propagation in signaling pathways using Petri net theory. The method is demon-
strated with the Ca®" /calmodulin-dependent protein kinase II (CaMKII) regulation
network. The results constitute temporal information about signal propagation in
the network, a simplified graphical representation of the network and of the signal
propagation dynamics and a characterization of some signaling routes as regulation

motifs.

1Cet article a été soumis a la revue Bioinformatics. Voir la référence (Hardy et Robillard, 2007a)
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6.1 Introduction

With high-throughput technologies. cell signaling research has produced a great deal
of data on the signaling networks of cells. To understand how complex biological
processes perform and how biological information is processed, some researchers are
investigating how multiple components interact in a systemic manner. Part of this
understanding will come from models developed by computational biologists, and a
number of modeling and simulation tools have been developed in the last two decades
specifically for biological applications. Some mathematical approaches are aimed at
developing quantitative models that are numerically simu-lated (Eungdamrong et
Iyengar, 2004). Other approaches are based on graph theory and ignore quanti-
tative information to focus on the topology of the interactions between biological

compounds in cellular networks (Mason et Verwoerd, 2007).

Petri net theory is used in another group of theoretical approaches to studying bi-
ological systems. This mathematical and graphical formalism was created by Petri
(1962) to study systems with causal, concurrent processes. Since then, Petri nets
have been further developed and applied to different types of systems, such as com-
munication and industrial processes. Reddy et al. (1993) first applied this theory
to biological systems. Meanwhile, a number of the theoretical tools and methods
provided by Petri net theory have been used to study metabolic networks, signal
transduction pathways and gene regulation networks (see, for example, Goss et Pec-
coud, 1998; Voss et al., 2003; Li et al., 2006; Matsuno et al., 2006a; Sackmann et al.,
2006, Steggles et al., 2007). Because of the versatility of Petri net theory, Petri net

approaches can be used to complete either qualitative or quantitative studies.

This paper presents a new Petri net-based method for the analysis of the dynamics

of signal propagation in quantitative models of signal transduction networks. This
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method combines invariant analysis (a structural analysis of the dynamic proper-
ties of Petri net models) and topological analysis to analyze sinulation data. This
method gives temporal information about signal propagation, produces a simplified
graphical representation of the network and of the signal propagation dynamics, and
it characterizes some signaling routes as regulation motifs. This method can be
part of a unified Petri net framework used by computational biologists for modeling,

simulation and simulation data analysis.

We apply this method to the Ca?* /calmodulin-dependent protein kinase IT (CaMKII)
regulation network, which is composed of several interconnected signaling pathways.
The next section briefly presents the model of the CaMKII regulation network, gives
a short introduction to Petri net basics, presents the signal dynamic analysis method
and provides an example of it with a model of the calmodulin and calcineurin path-
ways. Section 6.3 presents the results of the analysis of the signal dynamics of the

CaMKII regulation network.

6.2 Methods

6.2.1 The model of the Ca?"/calmodulin-dependent protein kinase II

regulation pathway

The model of the CaMKII regulation pathway that is analyzed in this paper is one
of the three developed for a theoretical study of long-term potentiation in the hip-
pocampal CA1 neuron (Bhalla et Iyengar, 1999). In the cited study, several kinetic
models of signaling pathways were connected to form complex networks in order
to investigate their signaling processing capabilities. The experimentally observed

link between persistently activated CaMKII in the postsynaptic neuron and increased
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synaptic responses was one of the motivations for conducting this quantitative study.
The cyclic adenosine monophosphate (cAMP). protein kinase A (PKA) and protein
phosphatase 1 (PP1) signaling pathways were connected to the calmodulin (Call),
calcineurin (CaN, also known as protein phosphatase 2B, PP2B) and CaMKII signal-
ing pathways to create a single network, because earlier studies liad shown evidence
that the cAMP pathway gated CaMKII signaling through the regulation of protein
phosphatases (Iyengar, 1996; Blitzer et al.. 1998). The kinetic parameters of the
model were derived from experimental observations, and are now available in the
Database of Quantitative Cellular Signaling (Sivakumaran et al., 2003). The simula-
tion data were analyzed with concentration plots to work out the dynamic behavior

of the network. The modeled CaMKII regulation pathway is shown in Figure 6.4(a).

We provide an example of the Petri net-based signal analysis method in this section
using a subset of the CaMKII regulation pathway model. This subset model is
composed of the CaM and CaN niodules. The results section presents the conclusions

of the signaling dynamic analysis of the complete model of the CaMKII network.

6.2.2 Petri net modeling

A Petri net is a directed, bipartite graph. It contains two kinds of nodes, places and
transitions, connected by directed arcs. In biochemical Petri net models, places rep-
resent biological compounds, like enzymes or metabolites, and transitions represent
chemical reactions. Arcs can only link one node of each kind. They indicate the
causal relations between biological compounds and chemical reactions. These rela-
tions are weighted. In biochemical Petri net models, arcs are labeled with weights
corresponding to the stoichiometric parameters of the reaction equations. Places
can contain dynamic objects, called tokens, which represent a certain quantity of a

chemical compound. The mark of a place corresponds to its number of tokens, thus
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to the number of molecules of the biological compounds.

Tokens are produced and consumed through the firing of transitions. A transition is
able to fire if the marks of all its input places satisfy the token amount required by
the weights of the arcs connecting these input places with the considered transition.
This is the precondition of a transition. If a transition fires, it means that the
chemical reaction has occurred. The weights of the outgoing arcs indicate the token
amount that is added to the output places of the considered transition. This is the

postcondition of a transition.

The distribution of tokens in the Petri net places is called the marking of the net
and indicates the state of the system. For a biochemical model, the marking is the

distribution of compounds. The initial marking is the marking of the start state.

The theoretical description of Petri nets given above is the description of the origi-
nal theory (Petri, 1962). These nets are also called place/transition nets. In these,
places contain a discrete quantity of tokens (marks are integers) and the firings of
transitions are discrete events. Different extensions have been added to the original
theory to augment the modeling possibilities of this formalism. In this paper, we
also use elements with continuous properties. Continuous places contain a contin-
uous quantity; and the marks of continuous places are real numbers. The firing of
continuous transitions is a continuous flow, and continuous transitions have a spec-
ified speed. A kinetics model can be modeled with continuous Petri net elements:
the mark of continuous places represents the concentration of chemical compounds,
and the marking-dependant speed of the continuous transitions can correspond to
the reaction-rate equations of chemical reactions. For more detailed information on

using Petri nets for biochemical modeling, see Hardy et Robillard (2004).

The model of the CaM and CaN modules of the CaMKII regulation pathway, shown
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in Figure 6.1, is an example of a biochemical Petri net model incorporating kinetics
parameters. In this model, every place and transition is continuous. Tables 6.1 and
6.2 present the specifications of the Petri net model of the CaM and CaN modules.
The continuous places are drawn as double circles, and the continuous transitions
as white rectangles. The input places of a transition indicate that these biological
compounds are the substrates of the chemical reaction, and the output places its
products. This continuous model is mathematically equivalent to a model of ordi-
nary differential equations. but with a formal graphical representation and numerous

theoretical tools for model analysis.

Tableau 6.1: Specifications of the places of the Petri net model of the calmodulin
kinase pathway

Name Substance Variable
CaM Calmodulin mo
CaM-Ca, Calmodulin-Cas my
CaM-Caj Calmodulin-Cajy Mo
CaM-Cay Calmodulin-Cay ms
Ca Calcium my
CaM-Ng Calmodulin-Neurogranin complex ms
Ng Neurogranin Mg
Ng* phosphorylated Neurogranin my
PKC Protein kinase C ms
Co?2 CaM-Ng-PKC complex Mg
eyl Ng-PKC complex My
Cay-PP2B Calcineurin-Cay no
Cao-PP2B Calcineurin-Cas n,
PP2B Calcineurin o

Cay-PP2B-CaM-Ca,s Calcineurin-Cay-Calmodulin-Cay complex 0y
Cas-PP2B-CaM-Cas Calcineurin-Cay-Calmodulin-Cas complex ns

Cays-PP2B-CaM-Cay  Calcineurin-Cay-Calmodulin-Cas complex ne
Cod Cay-PP2B-CaM-Cay-Ng* complex N7
cod Cay-PP2B-CaM-Cas-Ng* complex ng

ca3 Cay-PP2B-CaM-Cayg-Ng* complex Ng




126

Figure 6.1: Petri net model of the calmodulin and calcineurin modules of the CaMKII
regulation pathway
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Tableau 6.2: Specifications of the transitions and arcs of the Petri net model of the
camodulin pathwav

Name Speed From To
. be variable factor variable factor
-0 2 mo 1 1
to 72 X Mgy X My - 9 my
1
t1 3.6 X My X my :”;i ) Mo 1
mo 1
: 0.465 , :
to 65 X mo X My ma 1 ms 1
t3 72 x my my 1 o ,1)
my Z
ty 10 X mg ms 1 m !
my 1
mo 1
t;5 10 .
5 X ms ms 1 my 1
my 1
t 0.3 , -
6 X Mo X Mg me 1 ms 1
t ms ms 1 Mo !
7 J J Tnb 1
. my 1
tg 0.0612 x m5 x mg ms 1 My 1
ms 1
t l.4xm )
9 Mg Mg 1 ms 1
mo 1
t10 0.35 X myg Mg 1 mq 1
Mg 1
m 1
tn  0.101 X mg X ms mz ) Mo 1
t1o 2.32 % mio mio 1 e !
mg 1
t13 0.58 x mig mio 1 7 L
mg 1
t14 0.005 x m~ ms 1 meg 1
t15 (5] ni 1 2 L
my 2
n 1
t1g 10008 x Ny X m42 mi 9 n 1

Continued on next page
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Nam Speed From To
same pee variable factor variable factor
ti7 3.6 X ny X my My 9 No 1

ny 1

118 Ny Mo 1 My 9
Mo 1

.24 , ,

t1g 0 X Mg X 1M m 1 Ng 1

No 1

tQ() Ng g 1 my 1

o 2.238 x ng X Mo "o ! ns 1
mo 1

Ng 1

t9o ns Ny 1 My 1

t23 600 x Ng X M3 "o ! Ny 1
ms 1

Mo 1

to4 Ny Ny 1 ms 1

tos 0.3346 x Nng X My "4 1 nr 1
my 1

tog 0.67 x nr ny 1 4 !

meg 1

to7 2.68 x ny nr 1 "4 1

me 1

toy 03346 x ng xmy 0 ! ng 1
my 1

tog 0.67 x ng ng 1 s 1

me 1

Ty 1
t 2.68 xn , 1

30 X Ng ng s 1

ty1  0.3346 X ng x my 0 ! ng 1
mry 1

t30 0.67 x Ng Ng 1 "6 !

s 1

tas 2.68 X ng ng 1 16 !

my 1

tsg—t3; These transitions are simplifications for the calcium pump module.
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6.2.3 Invariant analysis

Invariants are dynamic properties of Petri nets., and are obtained from a structural
computation. In biochemical models, thev usually have a mass conservation meaning
or represent a cyclic pathway. This subsection presents the theoretical background on

Petri net invariants and the result of the invariant analysis of the CaM-CaN model.

The structure of a Petri net model, i.e. the arrangement of places, transitions and
arcs, can be expressed in linear algebra by a two-dimensional matrix. This is the
incidence matrix W. One dimension of the incidence matrix is the number of places
of the model and the other dimension is the number of transitions. In place-transition
nets, each element w;; of the matrix indicates the token change at place ¢ after the
firing of transition j. In continuous nets, each element w;; of the matrix indicates
the flow from transition j to place ¢. The element w;; is negative if the flow direction
is from a place to a transition. The flow is the product of the speed of a transition
and the weight of the arc between the place and the transition. From the incidence
matrix, it is possible to determine structural properties of Petri nets like invariants.
Among all the attainable states of a model, called the reachable markings of a Petri
net model, some quantities do not change, even when transitions are fired. This first
type of invariant property is the marking invariant (p-invariant). Every p-invariant

of a Petri net model is a positive vector x that is a solution of the following equation:

x-W=0 (6.1)

A p-invariant characterizes a conservation component of the model. A conservation
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component is a set of places over which the weighted sum of the tokens is constant
for every reachiable marking. Relationships between p-invariants and biochemical
modeling concepts have already been discussed. P-invariants express conservation
relations of metabolites in metabolic pathway models (Voss et al., 2003; Zevedei-
Oancea et Schuster, 2003). In signaling pathway models, p-invariants can represent a
different kind of conservation relation (Sackmann et al., 2006). Biochemical processes
in signaling pathways are performed by enzymes that change state to transmit a
signal. The total concentration of all forms of an enzyme is modeled as a constant
quantity. This quantity is a marking invariant of a Petri net model. Thus. the
p-invariants and their associated conservation components identify all the places
representing a specific form of an enzyme. The four conservation components of the

CaM-CaN model are listed in Table 6.3.

Tableau 6.3: Conservation components and marking invariants of the Petri net model
of the calmodulin and calcineurin modules of the CaMKII regulation pathway

Conservation component

Enzyme Marking invariant
CCy = {CaM, CaM-Cay, CaM-Cajz, CaM-Cay, CaM-Ng, cgo.
Cay-PP2B-CaM-Cay, Cay-PP2B-CaM-Cas,
Calmodulin C&4-PP2B—C&1\4-C&4, Ca3, Cogq, C25}
Nee, = mo+my +ma+ mz + ms + mg + ng +ns + ng + ny+
ng -+ Ng
— o No¥ TN B
Neurogranin ?CQ = {l\g, Ng*, CaM-Ng, ca1, ca2, Ca3, Ca4. CQo}
Nce, = ms +me + my+ mg + myo + N7 + g + ng
PKC CC3 = {PKCw Ca1, CQQ}
Neo, = mg+mg + myg
CCy= {PP2B, Cas-PP2B, Cas-PP2B, Cays-PP2B-CaM-Cas,
Calcineurin C&4-PP2B—C&1\’I—CE}3, C&4-PP2B—C&RI—C&4, Coz., Coy4,
025}
17VCC4 = ng-+ny+ne+ng+ns+ng+ny+ng+ ng

Among all the possible firing sequences of a model, some can repeat themselves,
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creating a cycle of successive states. This second type of invariant is the firing
invariant (t-invariant). The t-invariant of a Petri net model is a positive vector y

that is a solution of the following equation:

W.y=0 (6.2)

A t-invariant characterizes a repetitive component of a model. A repetitive compo-
nent is a set of transitions causing a return to a previous state of a model. In other
words, all the firings of the transitions of a repetitive component together have a null
effect on the marking of the model. In Petri net models of signaling networks, the
t-invariant property has been used for the identification methods of functional units

(Sackmann et al., 2006) and of transduction activation components (Li et al., 2006).

For continuous Petri nets, the t-invariant definition has to be adapted. The firing
of continuous transitions is a continuous flow and not a discrete event. Because a
continuous flow cannot be repeated, the concept of a repetitive conmponent makes no
sense. In its place, we suggest using the concept of a steady component. From an
unstable state, a continuous Petri net model evolves to a steady state. In a stable
steady state and without any external perturbations, the marking of the model no
longer changes. In this stable state, a subset of the solutions of equation 6.2 lists
the steady components of a model, which are the sets of transitions for which the
total flow is null. To be part of this subset of solutions, these special t-invariants
must be vectors composed only of 0 and 1 (a flow can either exist or not, it cannot
be multiplied). Hence, the non-zero elements of these t-invariants correspond to the
transitions composing a steady component. In the case of a continuous Petri net with
marking-dependent speeds, equation 6.2 must be solved with the incidence matrix

filled with the steady state flow values in order to find the steady components. Linear
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combinations of the t-invariants are also solutions of equation 6.2; however, only the
vectors that do not include other solutions are searched. These are the minimal
steady components. The minimal steady components of the CaM-CaN model are

listed in Table 6.4.

Tableau 6.4: Steady components of the Petri net model of the calmodulin and cal-
cineurin modules of the CaMKII regulation pathway

SC, = {to. t3} SCs = {t17. 118}
SCQ = {t1t4} SC7 = {tlg,tgo}
SC3 = {ty.t5} SCys = {ta1.ten}
SCy = {t15. t16} SCy = {to3.toa}

SCs = {te, t7.ts. to. t10. t11. t12. t13. t14. tas. tog. tor, tag. tag. ta0, ta1. t3o, t33}

6.2.4 Identification of the information flux segments and nodes of a sig-

naling network

To detect signal propagation through a signaling network, places and transitions
must be identified to serve as measuring points. These are called information flux
nodes and segments. Information flux segments are the portions of a pathway com-
posed of places and transitions that might transmit or route a signal in the network.
Information flux segments are positioned between two groups of one or more places
described as information flux nodes. The flow circulating on an information flux seg-
ment is bidirectional. At steady state, the flow in each direction, on every possible
pathway linking the nodes, is equal. This is the equal flow condition that will be used
in Algorithm 6.1 to identify information flux segments and nodes. This condition
is true only for the places and transitions of information flux segments. As we will
see in the next subsection, a comparison of the flow in one direction with the flow

in the opposite direction on a segment reveals the direction of a signal. The steady
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components of a Petri net model provide the initial subnets used in the search for

the information flux segments of the signaling network.

The search for the information flux nodes and segments can be accomplished with

the following algorithm:

Algorithm 6.1. Search for the information flux segments and nodes of a steady

component.

Step 1. Let SC be a given steady component and SPN the subnet of a given
Petri net with only the transitions of SC' and all the places directly linked to these
transitions. Generate B, the set of all the pairs of places from SPN. Initialize the
set of information flux nodes IFN «— &. IFN is a set containing pairs of sets of

places.

Step 2. If B # &, then pull the pair ({b;}, {bo}) from B and perform steps i) to v),

otherwise go to 3).

Step 2i. Let D; be the set of all the paths in SPN from b; to by and D, be
the set of all the paths in SPN from by to b;. A path is a succession of places
and transitions linked by arcs. The paths with a transition having an outgoing arc
towards the initial place of the path are rejected. Initialize cumulative flow values
k, =k, =F, =F,,=0 1t D, or D, is empty, stop.

in

Step 2u. Add to Fy,, the value of the speeds of every transition directly linked
to by in the paths from D, (i.e. every transition #, that is part of the last place-
transition-place triplet p, — ¢, — b; of a path). For triplets where p, is not by (i.e.
for indirect paths), withdraw from Fi, the values of the speed of any transition ¢,
in SPN in a place-transition-place triplet b; — t, — p, where place p, is the same

as one of the triplets of the first category.
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Step 2ui. Add to Fy_,, the value of the speeds of every transition directly linked
to by in the paths from D; (i.e. every transition t,, that is part of the last place-
transition-place triplet b, — t,, — p, of a path). For triplets where p, is not b, (i.e.
for indirect paths), withdraw from F,,,, the values of the speed of any transition t,
in SPN in a place-transition-place triplet p, — ¢, — b; where place p, is the same

as one of the triplets of the first category.

Step 2iv. Add to F;,, the value of the speeds of every transition directly linked
to by in the paths from D, (i.e. every transition ¢, that is part of the last place-
transition-place triplet p, — t, — b, of a path). For triplets where p, is not b, (i.e.
for indirect paths), withdraw from Fy,, the values of the speed of any transition ¢,
in SPN in a place-transition-place triplet by — ¢, — p, where place p, is the same

as one of the triplets of the first category.

Step 2v. Add to F5_,, the value of the speeds of every transition directly linked
to by in the paths from Dy (i.e. every transition f,, that is part of the last place-
transition-place triplet by — ¢,, — p, of a path). For triplets where p, is not b, (i.e.
for indirect paths), withdraw from F5_, the values of the speed of any transition ¢,
in SPN in a place-transition-place triplet p, — t,, — b, where place p, is the same

as one of the triplets of the first category.

Step 2. If Fy,, = F,,,, F1,,, = I»,, and these values are not null, then add
({br},{b2}) to IFN. Go to 2).  Step 3. If two pairs (B,,B,) in IFN share
an identical element. determine whether or not the two pairs also share the same
transitions. If they do, form the union of the two different sets of places and replace

the two pairs in /F'N by the new unified pair.
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In step 1 of the above algorithm, the main operation is the construction of the set B
of all possible pairs of places. These places are part of the subnet SPN corresponding
to the steady component SC. Also, the set [FN that will contain the information
flux nodes identified by the algorithm is initialized. In step 2, each pair of sets
of places ({b1}, {bo}) of set B is tested with the equal flow condition to determine
whether or not they are part of an information flux segment. In step 2i, the sets
D, and D, are constructed to contain every possible path linking places b; and by
in SPN. In steps 2ii to 2v, four cumulative flow values are computed; these values
are the flows going in and out of places b, and b,. In step 2vi, the cumulative flow
values are compared to verify the equal flow condition. If it is verified, the pair is
added to IFN. In step 3, the pairs of sets of places in I N F sharing an identical set
are merged into a single pair only if they are part of the same segment. Table 6.5
shows the results of the search for the informa-tion flux nodes and segments of the

steady components of the CaM-CaN model.

6.2.5 Analysis of the information flux of a signaling network

Once the information flux segments and nodes have been identified, these measuring
points can be used, together with the topology of the network, to characterize the
dynamics of a signal. At steady state, the difference between the flows in each
direction on an information flux segment is zero. However, after a perturbation, this
difference indicates the direction of the propagation of a signal, which can then be
followed throughout the structure of the model. With formal definitions about the
pathway structure of regulation motifs, such as positive and negative feedback loops,

different types of signal routes can also be identified.

Here, we complete the introduction of the Petri net-based signal analysis method

by presenting an analysis of the information flux caused by the inflow of calcium
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Tableau 6.5: Information flux segments of the Petri net model of the calmodulin and
calcineurin modules of the CaMKII regulation pathway

Steady Nodes and speeds of the input and output transitions
Segment
component of the segment
<{Ca, CaM}.{CaM-Cas}>
SCh Sh F, = speed;,, F1,, = speed,,
F,, = speedy,. F»,,, = speedy,
<{Ca, CaM-Ca,}.{CaM-Caz}>
SCy So F\,, = speed,,. F,,, = speedy,
F, = speed,,. F5,,, = speed,,
<{Ca, CaM-Caz},{CaM-Cay}>
SCs S F,, = speed,,. F1,,, = speed,,
Fy, = speedy,. I, ,, = speedy,
<{Ca, PP2B}.{Cay-PP2B}>
SCy Sy F,, = speed,,,, F1,,, = speed,,,
F,, = speed,,,. F>,, = speed;,
<{CaM} {CaM-Ng}>
Ss Fy,, = speedys, F,,, = speed;, — speedy,
F,, = speed,. + speedy,,. F,, , = speedy,
SCs <{Ng}{Ng*}>
Fy, = speed,,, + speedy,,, F1,,, = speed,,, + speed,,, —
Se speedy,. + speed,,, — speedy,, + speedy,, — speed,,,
F, = speedy,, + speed;,, + speedy,, + speedy,,,
F,, . = speed,,, — speed;,, + speeds, — speedy.,
<{Ca, Cay-PP2B}.{Cas-PP2B}>
SCs Sz Fy, = speed,,.. F1,,, = speedy,,
F,, = speedy,,. F5,,, = speed,,
<{CaM-Ca,, Cays-PP2B},{Cas-PP2B-CaM-Ca,y}>
SC? Ss F,, = speed,,,, F1,,, = speedy,,
F,, = speed,,,. F»,,, = speed,,,
<{CaM-Ca3, Cay-PP2B},{Cay-PP2B-CaM-Ca3}>
SCs So F\,, = speed,,,. F},,, = speedy,,
E,, = speed,,,, Fs,,, = speed,,
<{CaM-Cay, Cas-PP2B},{Cas-PP2B-CaM-Cay} >
SCy S10 Fy,, = speedy,,. F\,,, = speed,,,

F,, = speed,,,, F»,,, = speedy,,

i3
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in the CaM-CaN model. The CaM-CaN pathway was modeled and simulated with
the software Genomic Object Net (GON, commercially known as Cell Illustrator)
(Nagasaki et al., 2003). The simulation period lasts 10 seconds. The calcium inflow
occurs at the first second and lasts 1 second. This inflow perturbs the CaM-CaN

model and a propagation of a signal ensues.

The speed differential of an information flux segment is defined as the difference
between its F}, and Fy, values. Figure 6.2 presents the normalized speed differential
plots of the information flux segments computed with the data generated by the
simulation of the CaM-CaN model. The plots show an increase in calcium binding
with calmodulin and calcineurin. an increase in the dephosphorylation of neurogranin
and a decrease followed by an increase in the binding of calmodulin with neurogranin.
The speed differential plots give a first indication of the consequences of the calcium
inflow, but with Petri net properties and the topological data of the network, a deeper
analysis of the dynamics of the signal propagation can be performed and a graphical

representation of the signal propagation can be generated.

The initial data needed for the signal analysis of a Petri net model is the source
of the signal and the duration of the stimulation. For the CaM-CaN model, the
Ca place is the source and the stimulation lasts 1 second. At every simulation step
of the stimulation period, the differential speeds of the information flux segments
linked to the source of the signal are checked. For the CaM-CaN example, the speed
differentials of segments Sy, Ss, S3, Sy and Sy are verified, because the Ca place is part
of these segiments. When the relative difference between Fi, and F,,_, or vice-versa,
is above an arbitrary threshold (10% in this example), the segment is considered to
be propagating a signal. When this occurs, the speed differentials of other segments
connected to the nodes of the activated segment are examined to determine whether

or not the propagation continues. In our example, following signaling activation of
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Figure 6.2: Concentration plot of calcium and normalized speed differential plots
for some information flux segments of the Petri net model of the calmodulin and
calcineurin modules of the CaMKII regulation pathway
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segments Sy, So. S3. Sy and S; due to the calcium inflow, the speed differentials of
segments Sg. Sy and Syp are evaluated. This assessment of the speed differentials of
the counected in-formation flux segments continues as the signal is propagated. In
our example, following signaling activation of segments Ss, Sg and Sig. the activation

of segment Sy and eventually of segment Ss, is observed.

More than just observing successive signaling activations, the Petri net-based signal
analysis method can yield temporal information about these activations and produce
a simplified graphical representation of the network and of the signal propagation
dynamics, as well as characterizing some signaling routes as regulation motifs. These
three features of the method are shown in Figure 6.3. In this figure, the precise
moments of the signaling activation of the information flux segments are indicated.
Also, instead of displaying the detailed model of the network, this figure shows a
simpler structure. The results of the p-invariant analysis of the model provide the
information to generate this view: the nodes of this abridged graph correspond to
the conservation components of the Petri net model. Finally, the definitions of the
graph structure of two regulation motifs, positive and negative feedback loops, are
used to detect special signaling pathways. A positive feedback loop is identified when
a signal is propagated to an information flux segment that was previously activated
by the same signal. The signal then promotes the activation of the segment in the
same direction in which it was initially activated. In other words, the signal loops
back to sustain the signaling activation of an already activated segment. A negative
feedback loop is identified in two situations. The first situation is when a signal is
propagated to a segment that was previously activated by the same signal, and the
signaling flux of the segment is then reversed. The second situation is when a signal
is propagated to a segment in such a way that it competes with a connected segment
already activated by this signal. In both situations, the signal loops back to hinder

the signaling activation of an already activated segment. A negative feedback loop
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was identified in the CaN-CaM model and is shown in Figure 6.3(d). The activation
of the segment Sg, (CaM + Ng — CalM-Ng), competes with the activated segment S;
(CaM + 2 Ca — CaM-Cay) because they both share the CaM place. This process is
known as the inhibition of calmodulin by neurogranin. In our example, this inhibition

occurs at 2.5 seconds, 0.5 second after the end of the calcium inflow.
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Figure 6.3: Graphical representations of the propagation of a signal in the calmodulin
and calcineurin modules of the CaMKII regulation pathway
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6.3 Results

This section presents the results of the signal dynamic analysis of the CaMKII regu-
lation pathway witl a Petri net-based method. The Petri net model of the CaMKII
regulation pathway was simulated with GON for 800 seconds. A calcium inflow re-
producing a tetanic stimulation is induced at the sixtieth second and lasts 1 second.
A p-invariant analysis of the model resulted in the identification of 15 conservation
components. Also, using the concentration values of the steady state of the model, 30
information flux segments have been identified. Figure 6.4 shows the dynamics of the
signal propagation in the network. This figure is a simplified graphical representation
of the Petri net model of the network produced with the p-invariant analysis data.
It gives temporal information about the signaling activation of the information flux
segments of the network. The initial and final states are not shown because they are
steady states in which no signal is propagated (no arrows displayed). Figure 6.4 also
shows the activity of three feedback loops. The first loop, the negative feedback loop
leading to the inhibition of calmodulin by neurogranin, has already been discussed
and is shown in an active state in Figure 6.4(c). Another negative feedback loop has
been detected: the increase of the degradation of cAMP into AMP because of the
activation of phosphodiesterase (PDE) by PKA. This regulation motif is shown in an
active state in Figure 6.4(c) and 6.4(d). The third loop is a positive feedback loop.
It corresponds to the autophosphorylation cycle of CaMKII. This motif is active im-
mediately following calcium stimulation at 61 seconds and lasts for more than 500
seconds. This loop is represented as a circular arrow on the CaMKII conservation
component in every subfigure of Figure 6.4. The details of this motif and the cyclic
activation of two information flux segments are hidden, because both seg-ments are

enclosed in the CaMKII conservation component.

Figure 6.4 illustrates key moments of the signal propagation due to the calcium
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Figure 6.4: Graphical representations of the propagation of a signal in the CaMKII
regulation network
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inflow in the CaMKII regulation network. Figure 6.4(b) shows the propagation of the
signal immediately after the end of the stimulus. At 61 seconds, the CalM activation
initiates the production of cAMP through the activation of adenylyl cyclases 1 and
8 (AC1/8), which in turn immediately starts activating PKA. CaM activation also
starts the autophosphorylation cycle of CaMKII and with CaN, dephosphorylates Ng.
Two seconds later, as shown in Figure 6.4(c), the Ng and PKA negative feedback
loops are active. Also, CaN has activated PP1 and the inhibited Inhibitor-1 protein
(I1), which in turn has a deactivation effect on CaMKII. Figure 6.4(d) shows that
the PP1 activation by CaN is overcome by the activation of PKA, because it causes
the phosphorylation of 11 and therefore the inhibition of PP1. Figure 6.4(e) shows
that the positive feedback loop of the CaMKII is still active, for a long period of

time after the stimulus has been withdrawn.

6.4 Conclusion

This paper describes a method derived from Petri net theory to analyze the dynam-
ics of signal propagation in a signaling network. The Petri net formalism is useful
for depicting biochemical networks and performing simulations, but, more impor-
tantly, it provides techniques for the validation of the model and for the analysis
of the simulation data. Because of its theoretical richness, Petri net theory offers a
unified framework to computational biologists. The techniques that have been ex-
ploited in this paper are the calculation of p-invariants (conservation components)
and t-invariants (steady components) of a system. The method has been applied
to the Ca?*/calmodulin-dependent protein kinase II (CaMKII) regulation network,
an important pathway in the synaptic plasticity of neurons, and resulted in a new
portrayal of the dynamics of the signal propagation in the network. We believe that

this Petri net-based method will be of great value to computational biologists who
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need to rapidly interpret the simulation data of their signaling network models and

gain insights into the systemic dynamics of signal processing components.

Understanding the dynamics of signal propagation in signaling network models is
usually achieved with the analysis of the concentration plots of the simulation data.
However, studying the concentration variations of a model yields more information
about the changes of state of the model components than the dynamics of the signal
propagation. and, as a result, the signal propagation dynamics have to be deduced
from the data. The Petri net-based method presented in this paper is a new analysis
tool, which highlights, in a comprehensive way, the propagation of a signal in cellular

network models and facilitates a system-level understanding.

The study of this method has been limited to models with a single signal source.
Its application to the signaling dynamics of networks with simultaneous signals from

multiple sources has yet to be performed.

New definitions of the graph structure of regulation motifs such as scaffolds and
bifans can be added to this method. This will enrich its analytical possibilities and
enhance its ability to help in deciphering the signal processing functions of cellular
networks. Also, in the future, this method will be adapted to the particularities of

hybrid Petri nets.
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CHAPITRE 7

DISCUSSION GENERALE

Une discussion sur I'objet de cette thése multidisciplinaire ouvre la porte & de nom-
breux sujets. Au confluent de la biologie, de l'informatique et du génie, j’ai choisi
de me tourner vers deux pistes de réflexion fort différentes 'une de 'autre. Premie-
rement, je discuterai des aspects techniques de la simulation de modeles complexes
avec les réseaux de Pétri. Celle-ci présente des difficultés qui pourraient faire obstacle
a l'utilisation de cette méthode. Ensuite, j'aborderai deux thémes de nature philoso-
phique et historique qui sont liés a la biologie systémique et aux idées avancées dans
cette these. S’il est possible de diviser les scientifiques en deux groupes, les premiers
étant ceux qui comme Richard Feynman, prix Nobel de physique 1965, croient que la
philosophie des sciences est aussi utile aux scientifiques que 'ornithologie I'est aux oi-
seaux, et les seconds, ceux pour la philosophie des sciences s’averent un eficace outil
de réflexion sur les concepts mis en place par les scientifiques et sur leur construction
d’une représentation rationnelle du monde, alors j'appartiens vraisemblablement au

deuxieme groupe!

7.1 Aspects méthodologiques de la simulation avec les réseaux de Pétri

La simulation des systemes biologiques présente d'importantes difficultés. La nature
meéme de ces systemes pose certains problemes. Et nous ne parlons ici méme pas des
complexités expérimentales des mesures en milieu in vivo, ni de la démarche ardue
qui consiste a sélectionner les éléments a assembler dans un modele pour reproduire le

comportement cellulaire observé. Le développement de modeles biologiques réalistes
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suppose l'intégration dans un méme modele de phénomenes se déroulant a différentes
échelles de temps et de grandeur. Certaines composantes ont un comportement sto-
chastique. Les modeles sont hétérogenes., de grande dimension et de plus en plus

complexes & mesure que les données expérimentales s’accumulent.

7.1.1 Réseaux de Pétri versus équations différentielles

La simulation de tels modeéles nécessite de considérables ressources de calcul. Une
approche de modélisation basée sur les équations différentielles, qui est 'approclie la
plus communément utilisée en raison d un imposant héritage théorique et d'une uti-
lisation massive dans pratiquement tous les domaines d’application de modélisation,
propose des techniques pour optimiser la simulation des modeles de grande taille. En
recourant a des grappes multiprocesseurs et a des techniques de traitement parallele
comme la décomposition par domaine, la résolution numérique de larges modeles
d’équations différentielles peut s’effectuer sans que le temps de simulation ne de-
vienne dissuasif. Notons qu’avec les équations différentielles partielles, les variables
spatiales peuvent s’ajouter au temps et qu’avec les équations différentielles stochas-
tiques. l'inclusion de processus stochastiques est permise. Toutefois, les possibilités

de ce type de modele se limitent a la modélisation continue.

L'intérét d’une approche hybride se situe en partie dans I’extension des possibilités de
modélisation. En effet, I'ajout de quantités et d’événements discrets, pouvant aussi
avoir un caractere stochastique, combine le pouvoir de modélisation de méthodes
continues comme les équations différentielles a celui des approches discretes. Une
approche hybride semble mieux répondre aux besoins de modélisation réaliste des
systemes biologiques (Jordan et al., 2000). De plus, si nous considérons I'apport
de la théorie des réseaux de Pétri et de son formalisme graphique, nous sommes

enclins a penser que nous tenons la une approche ayant beaucoup de potentiel. Des
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publications récentes montrent des signes probants d'une maturation des méthodes
basées sur les réseaux de Pétri pour les applications biologiques (Sackmann et al.,
2006: Li et al., 2006). Nous pensons aussi que la méthode que nous avons développée
pour I'analyse de la dynamique de la propagation des signaux cellulaires, présentée au
chapitre 6, contribue a ce mouvement. Malgré cela, I'inefficacité computationnelle de
la simulation de modeéles de réseaux de Pétri hybrides pourrait devenir un obstacle
sérieux entrainant un désintérét de cette approche dans le cas de vastes analyses

quantitatives.

A notre connaissance, les modeles de réseaux de Pétri que nous avons simulés sont
les plus grands modeles a avoir été présentés dans la littérature. Au cours de nos
recherches. nous avons rencontré certains problemes qu’il faut souligner. Ceux-ci ont

été riches d’enseignements et nous amenent a proposer une méthodologie.

7.1.2 Réduction de la précision des simulations

De prime abord, le temps de calcul pour simuler un modele de réseaux de Pétri
hybrides est plus important qu'un modeéle équivalent d’équations différentielles. Les
techniques de résolution numérique sont différentes et les outils ne sont pas aussi
performants. Le seul logiciel de simulation de réseaux de Pétri hybrides spécifique
a la biologie, Genomic Object Net (GON), a été développé en Java, un langage de
programmation dont on a démontré qu’il était moins performant que d’autres (Pre-
chelt, 2000). Un premier compromis possible porte sur la précision de la simulation.
Une simulation moins précise est moins vorace en ressources de calcul, mais les ré-
sultats peuvent aussi étre corrompus en raison de I'imprécision. La figure 7.1 illustre
les conséquences d’une résolution numérique avec un certain degré d’imprécision. La
courbe de ce graphe de concentration s’avere tout de méme une bonne approxima-

tion de la courbe malgré les oscillations provoquées par un grand pas de simulation.
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Figure 7.1: Concentration de CaM.Cay. illustrant la problématique de 'imprécision
numérique lors d une simulation

Heureusement. ces oscillations n'ont pas introduit de perturbations inattendues et
indésirables dans le systeme et n’ont donc pas causé de vices de simulation. Dans un
contexte de recherclie ou il n’y a pas de résultats attendus pour valider les résultats
obtenus par simulation, il est impossible de déterminer avec certitude le seuil de pré-
cision nécessaire afin d’éviter une résolution numérique biaisée. C’est pourquoi nous
déconseillons une diminution de la précision afin de simuler plus rapidement, plus

particulierement, lors des premieres étapes de développement du modele.

7.1.3 Simulation dans un environnement multiprocesseur

Nous avons aussi fait des tests de performance d’exécution de GON sur une grappe de
multiprocesseurs puisque le traitement parallele est une avenue moins dispendieuse
que les superordinateurs pour obtenir une grande puissance de calcul. La figure 7.2
montre les résultats de ces tests, effectués sur la grappe Gropp du laboratoire DRAP
(design et réalisation d’application paralleles) de I'Ecole Polytechnique de Montréal.
Il s’agit d’une grappe de 64 processeurs Opteron distribués sur 32 noeuds qui sont
interconnectés a 1'aide d'un réseau de fibre optique Myrinet et par un réseau Gigabit

Ethernet. Cette grappe nous a servi de plateforme pour la simulation du modéle
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Figure 7.2: Temps d’exécution d une simulation en fonction du nombre de processeurs
utilisés

des voies de la calmoduline et de la calcineurine du chapitre 6. La courbe de ce
graphe montre un tres faible gain de performance, ce qui révele une inadéquation de
GON a un environnement multiprocesseur. Ces résultats étaient prévisibles puisque
I'architecture de ce logiciel n'a pas été congue pour ce genre d’environnement. Pour
I'instant, les équations différentielles semblent donc supérieures aux réseaux de Pétri
hybrides pour leur temps de résolution. Toutefois, ceci est en partie le résultat du

peu de recherche sur ce sujet.

La littérature scientifique contient bien des travaux sur l'utilisation de traitement
parallele (par exemple, voir Chiola et Ferscha (1993); Nicol et Mao (1995); Nketsa
et Khalifa (2001); Knoke et al. (2005)) et aussi d’autres travaux portant sur 1’op-
timisation de la simulation des réseaux de Pétri (par exemple, voir Gaeta (1996);
Mortensen (2001)). Mais seuls les réseaux discrets temporisés ou colorés sont consi-
dérés dans ces études. L'optimisation et le traitement parallele de réseaux de Pétri

hybrides est done est champs de recherche vierge.
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7.1.4 Approche mixte de simulation

Pour la simulation de modeles complexes de réseaux de Pétri hybrides, ou de larges
pans sont de nature continue, nous avons conclu que pour des considérations d’effica-
cité, il vaut mieux adopter une approche mixte qui combine la simulation d’équations
différentielles et la simulation de réseaux de Pétri. Lors du développement d’'un mo-
dele, nous suggérons de procéder par incrémentation, c’est-a-dire par la modélisation
successive de parties du modele. Ces sous-modeles sont individuellement validés pour
ensuite étre reliés. Aussi, toute simulation consommant beaucoup de ressources de-
vrait d’abord étre faite avec des modeles d’équations différentielles, ol les éléments
discrets sont approximés par des éléments continus. Cette technique permet d’obtenir
plus rapidement des données de simulation qui permettent de confirmer la justesse de
la modélisation. Lorsque des résultats satisfaisants sont obtenus et que les parametres
du modele sont presque fixés, on peut alors passer aux réseaux de Pétri hybrides et
inclure les aspects discret et stochastique. Cette approche de modélisation et de si-
mulation profite de l'efficacité de la simulation d’équations différentielles ainsi que

de la puissance de la modélisation des réseaux de Pétri hybrides fonctionnels.

7.2 Reéflexions philosophiques

L’épistémologie est le domaine de la philosophie qui désigne la réflexion sur ce qu'est
le savoir. L’origine grecque du mot signifie discours sur la connaissance. C’est notam-
ment le cas de la philosophie des sciences qui étudie la connaissance scientifique d’un
point de vue critique et qui a aussi parfois recours a I’histoire des sciences. L’essor
actuel de la biologie est une excellente occasion pour jeter un regard critique sur

cette discipline.
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Dans un premier texte critique. je porterai mon attention sur le concept de fonction
en biologie. Central dans cette these, ce concept est aussi a la base de la démarche
biologique. Les biologistes cherchent a comprendre le fonctionnement du vivant et
ils attribuent des “fins”, des “fonctions” et méme des “dessins” aux composantes des
systémes biologiques ainsi qu’aux systemes eux-mémes. Identifier la raison d’étre
de leurs objets d'étude ameéne les biologistes a utiliser un langage téléologique. Ce
langage est aussi présent lorsque, adoptant un point de vue d’ingénierie en biologie,
I'on parle du design du vivant. Pourtant, un tel langage est honni en chimie et
en physique. 11 est considéré non-scientifique par certains puisque insuffisamment
réducteur et trop éloigné des lois naturelles. Selon les biologistes, ce langage est
néanmoins nécessaire pour obtenir des explications satisfaisantes. Ces derniers sont
aussi d’avis que la théorie de I'évolution par sélection naturelle de Darwin a évacué la
“mauvaise” téléologie. Puisque j'ai abondamment utilisé le concept de fonction dans
cette these, je me demanderai dans un premier texte si le recours a la téléologie est

justifié en biologie.

Le second texte critique porte une discussion sur le caractere prétendument révolu-
tionnaire de la biologie systémique. Génomique, protéomique, biologie systémique,
épigénomique, et autres -omique ont semblé naitre a un rythme accéléré au cours des
deux dernieres décennies. Dans mon mémoire de maitrise, j'ai dressé un portrait de
ce bouillonnement animant la recherche en biologie et de ce que cela signifiait pour la
démarche de compréhension du vivant (Hardy, 2004). Je relayais en grande partie les
points de vue de publications de vulgarisation et spécialisées, trés souvent dithyram-
biques a propos de la “nouvelle” biologie. J’ai utilisé le mot “révolution” a plusieurs
reprises puisqu’il se retrouvait dans les articles que j’ai consultés. Mais la biologie
systémique est-elle réellement une révolution scientifique ? Les nouvelles technologies
et les nouvelles découvertes changent-elles la conceptualisation du vivant 7 S’est-il

produit un changement de paradigme en passant d’une approche réductionniste &
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une approche systémique ?

7.2.1 La téléologie en biologie

Une courte mise en contexte s'impose afin d’exposer la présence d'un langage téléo-
logique tant chez Darwin que dans un débat plus récent en philosophie de la biologie.
La téléologie - du grec télos, fin ou but, et logos, discours - est 1'étude des causes
finales, ou finalisme. Aristote développa le principe de causalité pour en faire ressor-
tir une finalité sous-jacente a la nature des choses. Apres les Grecs, le finalisme fut
assimilé a la représentation chrétienne du monde dans une croyance que tout dans
la nature et ses processus avait une raison d’étre, un but prédéterminé : une téléo-
logie cosmique. Au XVIIle siecle, Kant décrivit en termes strictement mécaniques
ou newtoniens la nature inanimée, mais, en raison du peu de savoir biologique dont
on disposait a I’époque, il ne put voir a l'oeuvre, dans tous les processus du monde
vivant, que des forces téléologiques. Selon Mayr (2001). un des plus grands accom-
plissements philosophiques de Darwin fut d’expliquer par la sélection naturelle tous
les phénomenes naturels pour lesquels Kant avait di invoquer la téléologie. Ainsi,
la théorie de 1'évolution par sélection naturelle de Darwin - et ce malgré l'illusion
de progres et d’amélioration que le mot évolution induit - mit fin a la téléologie
cosmique (Darwin, 1859). Pourtant, il est possible de voir la téléologie réintroduite
par Darwin dans le fonctionnement méme des étres vivants. A propos des organes
ayant diverses fonctions peu spécifiques a accomplir, Darwin (1859, p. 149) écrit :
“In the same way that a knife which has to cut all sorts of things may be of almost
any shape; whilst a tool for some particular object had better be of some particular

shape!.” Darwin, implicitement, voit-il donc les organes accomplissant une fonction

ITraduction de cette citation dans I’édition francaise, p.202 : “On pourrait comparer ces organes a
un couteau destiné & toutes sortes d’usages, et qui peut, en conséquence, avoir une forme quelconque,
tandis qu’un couteau destiné & un usage déterminé doit prendre une forme particuliére.”
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précise comme ayant un but déterminé? La voie tracée par Darwin menerait-elle a
une interprétation téléologique du vivant, qui n’est plus cosmique, mais d une autre

nature?

Le biologiste Mayr reconnait qu'un langage téléologique est souvent utilisé en biolo-
gie pour formuler des affirmations a propos des fonctions des organes, des processus
physiologiques ainsi qu’a propos du comportement et des actions d’especes ou d’in-
dividus. Ce langage est caractérisé par 1'utilisation des mots fonction, raison d’étre
et but ou par des affirmations que quelque chose existe ou est fait afin de. Les phy-
siciens s'opposent & l'utilisation d’'un tel langage, arguant qu’il est subjectif. chargé
d'un sens métaphysique et qu’il introduit de I'anthropomorphisme en biologie. Les
biologistes rétorquent que I'emploi d'un langage téléologique est légitime et qu’éli-
miner ce langage provoque la perte d’explications significatives. Mayr (1988) affirme
que ce différend proviendrait d'une confusion sur la définition de téléologie. Pour y
remédier, il identifie et distingue les différentes catégories de processus téléologiques.
Le philosophe Nagel (1977) conteste cette catégorisation des processus téléologiques

et il critique tout particulierement le concept de programme de Mayr.

Dans ce court texte, j'explorerai les positions de Mayr sur les processus téléologiques
en biologie a la lumiere de la théorie de Darwin sur I'évolution par la sélection
naturelle. Je tenterai donc de répondre a la question : L 'utilisation d'une heuristique
téléologique, telle que formulée par Mayr, est-elle fondée en biologie dans le cadre de

la théorie de 1'évolution ?

7.2.1.1 La téléologie : un concept que définit Ernst Mayr

Mayr est d’avis que le mot téléologie est historiquement galvaudé ; plusieurs phéno-

menes hétérogenes ont été maladroitement rassemblés sous la banniére “téléologique”.
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C’est pourquoi il propose quatre catégories pour faciliter I'analyse de la téléologie en
biologie. Selon lui, les trois premieres ont une solide base empirique alors qu’il n’y a
aucune preuve de l'existence de la quatriéme catégorie, la téléologie cosmique. Cette
derniere catégorie a été brievement abordée dans l'introduction et je n’y reviendrai
plus. Je ne décrirai pas non plus la catégorie des dispositifs adaptatifs, qui n’est pas

pertinente pour cette discussion.

Mayr regroupe dans une premiere catégorie tous les phénomenes téléologiques qui
sont des processus dont 1'état final est causé et déterminé par des lois naturelles
(par exemple, la gravité ou la deuxieme loi de la thermodynamique). Il qualifie ces
processus de téléomatiques. Les processus téléomatiques sont orientés vers une fin,

mais uniqueinent de facon passive et automatique.

Dans une seconde catégorie, Mavr regroupe tous les phénomenes téléologiques dont
l'orientation vers un but déterminé est controlée par les opérations d’un programme.
Il qualifie ces processus de téléonomiques. Selon Mayr, ce type de processus est pos-
siblement la caractéristique la plus répandue dans le monde des organismes vivants.
Il donne en exemple les activités reliées a la migration, a l'alimentation, a la séduc-
tion, a 'ontogenese ainsi qu’a toutes les phases de la reproduction. Il y a aussi tous
les processus dépendant du “programme” au coeur des cellules, le code génétique.
Contrairement aux processus téléomatiques, les processus téléonomiques impliquent
un processus dynamique plutét que des conditions statiques. Ces processus ont deux
caractéristiques : ils sont guidés par un programme, et ils dépendent d'un but qui
est prévu par le programme et qui régule leur comportement. Mayr précise que tous
les programmes biologiques sont le résultat de la sélection naturelle et qu’ils sont

constamment ajustés selon la valeur sélective de leur résultat.
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7.2.1.2 Des processus téléonomiques, une particularité du “vivant” ?

La deuxiéme catégorie de processus orientés vers un but que propose Mayr. les pro-
cessus téléonomiques, repose sur l'idée de programme. Mayr (1992, p. 127) définit ce
concept comme suit : 7 Un programme consiste en de l'information codée ou préar-
rangée qui controle un processus menant a un but et aussi en des instructions pour
I'utilisation de cette information. ” Il distingue deux types de programme : les pro-
gramime fermés, comme I'’ADN ; et les programmes ouverts, ou somatiques, auxquels
de l'information additionnelle est incorporée par apprentissage durant la vie d'un

organisie.

Nagel (1977) critique la conceptualisation de la téléologie par programme proposée
par Mayr. Il émet quatre objections et il conclut que le concept de programme ne
permet pas de décrire adéquatement les processus biologiques. A l'aide des définitions
de Mayr, comment distinguer, en effet, les processus biologiques qui dépendent de lois
naturelles (par exemple, les réactions chimiques déterminées par les lois de la thermo-
dynamique) et qui sont donc téléomatiques, des autres processus biologiques guidés
dynamiquement par un programme et qui sont donc téléonomiques ? Le concept de
programme de Mayr ne révele-t-il pas I'impossibilité passée et actuelle d’atteindre
le niveau de réductionnisme physico-chimique nécessaire pour expliquer les compor-
tements cellulaires “guidés” par 'ADN ? En d’autres mots, les comportements cellu-
laires seraient compris comme étant guidés par le programme de I’ADN parce qu’on
ne possede pas de connaissances plus précises sur les phénomenes physico-chimiques

qui les rameneraient a des processus téléomatiques.

Malgré leur divergence, les propos du biologiste et du philosophe sont en accord avec
la théorie de Darwin. Les deux hommes rejettent la téléologie cosmique et les explica-

tions non empiriques. Mayr a réagi aux critiques de Nagel. A son avis, la nouveauté du



concept de programmie, issu de la récente théorie de I'information créée par Shannon
(1949), générerait cette incompréhension. Mayr écarte rapidement toute intention-
nalité en affirmant que les programmes biologiques sont le fruit de 'évolution par
sélection naturelle. Pourtant, les programmes, tels qu’on les connait aujourd li, sont
produits par des individus ayant l'intention de créer des processus exécutés par un
ordinateur, et ce pour atteindre un but. Ce processus est clairement téléologique. En
est-il de méme du “programme” du vivant 7 Dans le cas des programmes somatiques,
qui nécessitent un conditionnement, il est possible d’identifier une intention ou des
états internes analogues a la volonté d’atteindre un but. Dans le cas des programmes
fermés, particulierement pour 'ADN, on ne peut pas identifier d’intention a moins
d’etre un apotre de la théorie du dessein intelligent. Ce constat, a mon avis, affaiblit
la proposition de Mayr puisqu'il révele l'inadéquation de son analogie information-
nelle (i.e. les programmes de ’ADN ne peuvent pas étre comparés aux progranimes

informatiques).

A ce sujet, il est intéressant de s’arréter a l'expression “code génétique”. Est-ce un
“code” parce que les triplets de nucléotides de 'ADN sont décodés par les ribosomes
pour assembler des acides aminés en protéines? Ou bien est-ce un “code” parce
qu’il s’agit du programme de la cellule qui conduit son développement ? L'analogie
informationnelle fallacieuse de Mayr est peut-étre méme présente dans ce concept

des biologistes.

La téléologie renferme plusieurs pieges. Les philosophes et les physiciens ont raison
d’étre prudents a son sujet. Toutefois, rejeter le langage téléologique des biologistes
comme ils le font est mal avisé. La réalité expérimentale des biologistes et des phy-
siciens est radicalement différente. Les physiciens ont généralement affaire a des sys-
temes fortement homogenes, dont la modélisation mathématique et la déduction de

lois sont possibles. Les biologistes font face & des systémes d’'une extraordinaire com-
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plexité dont certains mécanismes sont encore difficiles, voire impossibles, a mesurer
a ’échelle moléculaire. Des explications causales strictement physico-chimiques leur
sont. souvent inaccessibles avec les technologies actuelles. Sur ce point, je me range
aux arguments de Mayr. La téléologie a une puissante valeur heuristique. Alors que
les questions débutant par “Quoi ?” et “Comment 7”7 sont suffisantes en physique, les
questions débutant par “Pourquoi 7" sont génératrices de nouvelles hypotheses et de
savoir en biologie. Darwin n’a-t-il pas lui-méme utilisé une heuristique téléologique
pour comprendre la spécificité des variations entre individus et especes, ce qui l'a

mené a sa théorie?

A la question qui a inspiré ce texte, je répondrai donc que l'utilisation d'une heuris-
tique téléologique est fondée en biologie et qu'elle est compatible avec la théorie de
I'évolution. Une approche téléologique peut parfois étre I’approche la plus féconde de
savoir, faute de moyens techniques. Les méthodes informatiques présentées dans cette
these s’inscrivent dans ce type d heuristiques. Chercher des fonctions systémiques aux
macromolécules, visualiser le comportement dynamique des enzymes et caractériser
la dynamique de la propagation d'un signal dans une cellule et ses motifs de régu-
lation sont des méthodes qui, a divers degrés, tentent de répondre a des questions
débutant par “Pourquoi 7. Malgré 1'utilité que je reconnais au langage téléologique
en biologie, je ne peux pas accepter la définition de processus téléonomiques de Mayr
en raison des difficultés soulevées quant au concept de programme biologique. La
vague déferlante de la génomique a mené les biologistes jusqu’au contenu du code
génétique, mais sans livrer les clés de la compréhension du phénotype. L’heuristique
téléonomique de Mayr a été utile en biologie moléculaire. Avec prudence, on peut
utiliser les mots fonction, signal et information cellulaire. mais le paravent mental du
“programme”’; si les biologistes le conservent intact, pourra devenir un obstacle & la

compréhension des phénomenes physico-chimiques du “vivant”.
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7.2.2 La biologie systémique : une réelle révolution scientifique ?

Pour offrir une réponse a cette question, il faut définir le ternie “révolution scienti-
fique.” Et, bien entendu, la réponse dépendra fortement de la définition! Révolution
conceptuelle, révolution technologique, grande découverte, tous ces éléments peuvent
faire partie de la définition d'une révolution scientifique. Différentes définitions ont
servi de prémisses a quelques discussions sur l'assertion que la biologie systémique
est une révolution scientifique. Bothwell (2006), en se basant sur la définition déve-
loppée par Kuhn (1962), réfute la these révolutionnaire. Wellstead (2006) a manifesté
son désaccord avec ce point de vue. Il voit s'opérer en biologie un changement d’ap-
proche fondamental, annonciateur de révolution et il fonde son argumentaire révolu-
tionnaire, entre autres, sur l'idée d’innovation disruptive de Christensen (1997). Le
deuxieme propos du texte de Wellstead est pourtant d’affirmer que la systématisa-
tion de la biologie est en partie I'héritage des idées d’Erwin Schrédinger, prix Nobel
de physique 1933. Un héritage vieux de soixante ans peut-il constituer aujourd hui
une révolution 7 Je présenterai brievement I'héritage biologique de Schrodinger pour
ensuite exposer la critique qu'en a fait Kupiec (2003). une critique audacieuse qui
s'étend a toute la biologie moléculaire moderne. Je terminerai avec les commentaires
de Lazebnik (2004) qui montre les limites conceptuelles de la biologie pour étudier
les systemes complexes. Mais avant, Bothwell et Wellstead soulévent tous deux des
argumentaires qui méritent considération. Ils sont contradictoires a premiere vue,

mais nous verrons comment ils décrivent une réalité complémentaire.

7.2.2.1 Pas de changement de paradigme, dit Bothwell

Bothwell (2006) amorce son article en citant des exclamations triomphalistes sur

la perspective systémique en biologie : qualifiée de “révolution” (Aderem, 2005) et
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de “changement de paradigme des sciences de la vie modernes” (Aggarwal et Lee,
2003), la biologie des systemes “promet de révolutionner notre compréhension des
systémes biologiques complexes de régulation” (Kitano, 2002b). Pourtant, les révolu-
tions scientifiques décrites par Kuhn sont rares. Entre les révolutions, les scientifiques
font de la science dite normale puisqu’ils adherent a un ensemble cohérent de lois,
de procédures et d’hypotheses, ce que Kuhn nomme un paradigme. Le paradigme
est peu remis en question et l'essentiel du travail scientifique. en période de science
normale. est de faire des ajouts minimes au paradigme et de l'utiliser pour résoudre
des énigmes de la nature. Le paradigme est ébranlé lorsque plusieurs anomalies le
contredisant s’accumulent. Ces anomalies signifient, non pas que le paradigme est
incomplet, mais qu’il est en partie incorrect. La réalisation de ce fait, jumelée a la
proposition d'un nouveau paradigme adopté par une majorité de scientifiques, in-
dique une rupture avec la tradition que l'on peut qualifier de révolution. Les deux
paradignies, 'ancien et le nouveau, sont alors incommensurables, c’est-a-dire qu’ils

sont fondamentalement incompatibles.

Bothwell reconnait la popularité de la biologie systémique : de nouveaux instituts de
recherche sont inaugurés et des programmes universitaires sont créés, il y a une crois-
sance exponentielle des articles inspirés par cette nouvelle discipline et les nouveaux
périodiques consacrés a ce sujet sont nombreux. Selon Bothwell, il y a un engoue-
ment réel pour 'approche systémique, mais ceci n'est pas di & un changement de
paradigme, donc pas une révolution scientifique. Les scientifiques optent pour une
nouvelle approche, pas pour un nouvel ensemble de théories, de procédés et d’hypo-
theses. L’argument principal de Bothwell est qu’on ne peut pas opposer le paradigme
réductionniste (comprendre le vivant en décomposant les systémes biologiques en une
liste de composantes) au paradigme de la biologie systémique (comprendre le vivant
en étudiant les fonctions et les processus qui émergent de I'interaction des compo-

santes biologiques). Il s’agit en fait de la continuation d'un seul et méme paradigme.
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Bothwell fait appel a Aristote, dont le tiers des oeuvres portent sur la biologie et qui
fut un des premiers a suggérer que pour comprendre un systeme complexe, il faut
le décomposer en ses constituants, définir I'arrangement de ceux-ci, caractériser les
changements qui se produisent dans le systeme et déterminer sa fonction. Pour Bo-
thwell, la biologie systémique est donc la suite logique du réductionnisme biologique

selon 'approche épistémologique aristotélicienne.

7.2.2.2 Larecherche en biologie est en profonde mutation et la révolution

est inévitable, selon Wellstead

Wellstead (2006), contrairement a l'analyse principalement philosophique que fait
Bothwell. adopte une perspective plus historique. Selon lui, la recherche en biologie
subit actuellement une systématisation, identique a celle qui a transformé la concep-
tion des produits de fabrication humaine complexes. Les manipulations en laboratoire
sont automatisées et on a recours plus que jamais a la modélisation mathématique et
a la simulation. Le développement de la théorie des systémes et de certaines de ses
constituantes, solent la théorie de la rétroaction, I’analyse dynamique et la modélisa-
tion mathématique, fournit maintenant des approches structurées pour la résolution
de problemes scientifiques a 1’aide d'une approche systémique. Pour Wellstead, il y a
aussi eu un synchronisme d’intérét entre les biologistes et les théoriciens des systemes

et des technologies sont arrivées a maturité pour supporter les études systémiques.

Wellstead fait un parallele entre la révolution industrielle et la révolution biologique.
Par exemple, des technologies cruciales pour l'investigation biologique, comme la cy-
tomeétrie, ont connu une accélération de développement exponentielle ces derniéres
années. Les courbes du progres technologique de la biologie moléculaire des der-
nieres années (ces courbes tracent la distribution temporelle des innovations ma-

jeures) montrent des similitudes frappantes avec celles du développement technolo-
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gique de la révolution industrielle. Selon Wellstead, nous sommes a la fin de la période

pré-révolutionnaire et il juge que la révolution scientifique est inévitable.

Les conclusions de Bothwell et de Wellstead sont diamétralement opposées parce
qu’ils analysent des aspects différents de la biologie et de l'approclie systémique. Il
n’y a pas de révolution scientifique selon Bothwell puisqu’il n'y a pas de révolution
conceptuelle. Il y a révolution scientifique selon Wellstead puisqu’il se produit une
révolution technologique majeure. Mais Wellstead affirine aussi que la biologie sys-
témique, avec ses présupposés actuels, est en partie 'héritage de Schrodinger parce
qu’il a conceptualisé le fonctionnement des organismes vivants comme s’approchant
d'un fonctionnement purement mécanique, donc déterministe. Selon Wellstead, il
faut concevoir les organismes vivants ainsi pour étre en mesure d’appliquer la théorie
des systemes. Cette affirmation circonscrit la position de Wellstead et la rapproche
de celle de Bothwell. La révolution décrite par Wellstead n'a rien d'un changement

paradigmatique. Voyons pourquoi.

7.2.2.3 Un dogme pour la biologie moléculaire, inspiré par Schrédinger

Le dogme central de la biologie moléculaire (c’est réellement le mot dogme qui est
communément employé, ce qui n'est pas sans rappeler Kuhn, pour qui l'enseigne-
ment de la science normale est un endoctrinement) est que l'information génétique
contenue dans 'ADN] le génotype, est retranscrite en ARN pour ensuite étre déco-
dée et transformée en protéines, le phénotype. Ce flux d’information conféere un role
particulier & ' ADN, celui d'une macromolécule contenant sous forme d’information

codée le plan architectural des organismes.

La paternité de cette idée revient & Schrodinger (1944), pour qui les systémes biolo-

giques different des systémes physiques puisqu’on ne peut pas y appliquer la loi des
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grands nombres, ce principe créant l'ordre macroscopique a partir d'un désordre mi-
croscopique. La seule autre avenue possible, spécifique aux systemes biologiques. est
celle d'un principe d’ordre miicroscopique menant a un ordre macroscopique. Schré-
dinger propose que l'information génétique soit ce principe d’ordre microscopique.
Inspiré par Delbriick. il propose meéme qu’un cristal apériodique soit le support de
cette information, et ce, un peu moins de dix ans avant la découverte de 'ADN par
Watson et Crick! Le raisonnement de Schriodinger, pere de la biologie moléculaire,
a ainsi été validé par une découverte scientifique majeure. Son influence est encore
bien présente puisque le dogme central de la biologie moléculaire constitue une des

théories fondaimentales enseigiées aux jeunes biologistes.

7.2.2.4 L’erreur de Schriodinger : les anomalies soulignées par Kupiec

L’ordre microscopique, tel que concu par Schirédinger, a mené les biologistes molécu-
laires a la stéréospécificité des protéines. La stéréospécificité, définie par la forme et
la charge de chaque protéine. limite & un nombre tres réduit les possibilités d’asso-
ciations entre protéines. Subséquemment, les protéines peuvent générer des chaines
de réactions causales qui permettent la transmission d’information. On remarquera
que les modeles présentés et les méthodes avancées dans cette these sont fondés sur

cette hypothese.

Kupiec (2003) est un détracteur du concept de stéréospécificité. Dans une analyse
théorique, il compare ce concept ainsi que celui de I'information génétique a la mé-
taphysique aristotélicienne (encore Aristote!). En effet, puisque les biologistes sup-
posent que ’'organisme s’explique par ses genes, le réductionnisme génétique constitue
une actualisation de la cause finale d’Aristote. Kupiec s’oppose au role particulier
d’ontogénese que les biologistes attribuent aux genes. Kupiec affirme aussi que la

stéréospécificité des protéines n’a pas réellement été démontrée expérimentalement.
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Il cite en exemple les études in vitro des facteurs de transcription (les protéines qui
régulent spécifiquement 1'expression des genes en se liant & 'ADN) qui n’ont jamais
pu montrer que l'activation et la répression spécifiques des genes reposent sur la

stéréospécificité.

Si on adopte l'ontologie kuhnienne, les problemes identifiés par Kupiec sont des
anomalies qui menacent le paradigme actuel de la biologie. Kuhn (1962) explique
clairement la mécanique du monde scientifique : face aux anomalies, les scienti-
fiques peuvent choisir de les ignorer. de modifier légerement leur paradigme pour
les résoudre, ou finalement, d’adopter un nouveau paradigme, ce qui déclenche une

révolution scientifique.

Kupiec a proposé un nouveau paradigme. Il s’agit d une biologie moléculaire darwi-
nienne ou le modele de hasard-sélection s’applique a la cellule. Selon cette nouvelle
définition de la biologie, différentes structures peuvent apparaitre, avec des durées
de vie et des probabilités différentes, et le comportement des protéines comme des
cellules est exprimé en termes probabilistes. Le paradigme de la biologie molécu-
laire darwinienne n’a pas entrainé de révolution scientifique. Il faut des anomalies
sérieuses pour que les scientifiques, qui ont toujours démontré un certain conserva-
tisme conceptuel, modifient leur paradigme. Les anomalies soulevées par Kupiec et sa
solution n’ont pas suscité une adhésion massive a ses idées. Néanmoins, voila, contrai-
rement a la biologie systémique, un exemple de germes conceptuels d’une révolution

scientifique.

7.2.2.5 Alors, pourquoi la biologie systémique ?

Je crois bien avoir démontré que l'arrivée de la biologie systémique n’est pas un chan-

gement de paradigme pour la biologie moléculaire. Méme si des mathématiciens, des
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informaticiens, des ingénieurs, des chimistes et des physiciens se joignent mainte-
nant aux équipes de recherche oeuvrant en biologie, les concepts fondamentaux de la
biologie demeurent inchangés. Au-dela de la technologie, on peut alors se demander
ol se situe l'innovation scientifique de la biologie systémique puisque cette nouvelle
discipline ne vient pas bouleverser les concepts établis. L'innovation provient du fait
que la biologie systémique crée un pont entre deux univers conceptuels existants pour

permettre la résolution de nouveaux problemes.

Lazebnik (2004), dans un article au ton humoristique mais tout de méme tres convain-
quant, imagine un biologiste réparer une radio avec les méthodes qu’il utilise au la-
boratoire. Il veut ainsi démontrer que les notations, les concepts et les outils que
les biologistes utilisent aujourd hui sont trop primitifs pour étudier les systemes bio-
logiques complexes. Il est d’avis que I'apport du domaine du génie pourrait étre
bénéfique pour la biologie. Ces propos recoupent ceux de Csete et Doyle (2002) que
nous avons présentés en détail au chapitre 2 et confirment le grand intérét de leur

démarche.

Nonobstant notre conclusion que la biologie systémique n'est pas une révolution
scientifique. elle est un formidable moteur pour de nouvelles découvertes. Avec ces
découvertes viendront probablement la constatation d’importantes anomalies, qu’il

sera alors impossible d’ignorer. et ce sera la révolution!
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CONCLUSION ET RECOMMANDATIONS

Les contributions originales de cette thése a l'avancement des connaissances, via
ses trois articles, sont nombreuses. Parmi celles-ci, il y a deux ajouts a la théorie
des réseaux de Pétri : les réseaux de Pétri peinturés, une technique efficace pour
visualiser le marquage d'un modele complexe: et les composantes d’équilibres, qui

sont un sous-ensemble des T-invariants pour les réseaux de Pétri continus et hybrides.

Une autre contribution, présentée au chapitre 5 est la résolution des problemes des
méthodes actuelles de visualisation des données de simulation des modeles biochi-
miques. Ces méthodes sont mieux adaptées aux réseaux métaboliques qu'aux voies
de transduction. La méthode de visualisation que nous avons développée est basée
sur des techniques issues de la théorie des réseaux de Pétri. Elle propose une vi-
sualisation qui tient compte de 'organisation des voies de transduction et de leurs
enzymes. Cette information est obtenue par une analyse des P-invariants. Ainsi, cette
méthode peut montrer plus clairement la dynamique de commutation des enzymes,

qui est le mécanisme fondamental de transmission de signaux cellulaires.

La derniére contribution, qui tout de méme la plus significative aux yeux de I'auteur.
est la méthode d’analyse de la dynamique de la propagation de signal d’une voie
de transduction présentée au chapitre 6. Cette méthode, entierement automatisable,
transforme les données de variation de concentrations moléculaires en données de
transmission de signaux cellulaire. La premiere étape de cette transformation est
de créer une représentation graphique plus simple de la structure du systéme en
trouvant ses P-invariants. La deuxiéme étape est de produire un portrait dynamique
de la propagation du signal dans le réseau en ayant au préalable identifié les T-
invariants et les segments de flux d’information du systeme. Dans une troisiéme

étape, les chemins de propagation sont analysés pour détecter la présence de motifs
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de régulation comme les boucles de rétroaction. En résumé. cette méthode offre un

acces rapide aux mécanismes systémiques de traitement d’inforination de la cellule.

L'originalité des travaux de reclierche rapportés dans cette these est aussi d'un autre
ordre. Les applications des réseaux de Pétri a la biologie moléculaire se sont toujours
cantonnées dans deux types d’utilisation : les analyses qualitatives et les analyses
quantitatives. Les analyses qualitatives sont principalement utilisées a 1'étape de
modélisation pour effectuer une validation du modele. En d’autres mots, les analyses
qualitatives sont utilisées pour s'assurer que le modele a les propriétés attendues.
Dans les analyses quantitatives, les réseaux de Pétri servent de support a la simula-
tion. Les données de simulation sont, quant a elles, analysées par d’autres méthodes.
Dans cette these, j'ai proposé d'utiliser les réseaux de Pétri pour procéder a 1'analyse
des données. Au meilleur de mes connaissances. ceci est une premiere. Ces travaux
sont d’autant plus intéressants que les techniques d’analyses de ce formalisme per-
mettent d’obtenir des informations sur les caractéristiques systémiques d un modele.
Ces techniques sont remarquablement utiles pour développer des méthodes d’analyse
destinées a la biologie systémique. Pour cette raison, elles ont facilité I’atteinte de

I'objectif de recherche des travaux de recherche présentés dans cette these.

Les résultats de mes travaux de recherche renforcent 1'idée que les réseaux de Pétri
est un formalisme de choix pour la modélisation biologique. Nous pouvons meéme
imaginer une méthodologie complete ot modélisation, simulation et analyse des don-
nées sont effectuées avec les réseaux de Pétri. Cette méthodologie pourrait étre im-
plémentée dans un logiciel facilement utilisable par les biologistes. L’application de
cette méthodologie aux modeles de grande taille, qui seront de plus en plus nombreux
en biologie, est néanmoins encore laborieuse en raison des difficultés rencontrées lors
de la simulation de tels modeles. Ces problémes ont été I'objet de la discussion du

chapitre 7 et un moyen d’y pallier a été présenté. Cette solution n’est pas idéale
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puisqu’il faut recourir a un autre formalisme pour accélérer les simulations lors des
phases critiques de la modélisation. De meilleures solutions seront possibles lorsque
davantage de travaux de recherche sur I'optimisation de la simulation des réseaux de

Pétri hybrides et sur l'utilisation du traitement parallele auront été menés.

Malgré tous les avantages mentionnées dans cette these et qui encouragent l'utili-
sation des réseaux de Pétri pour la modélisation biologique, ce formalisme n’a pas
été encore adopté par un grand nombre d’équipes de chercheurs. A mon avis, cette
situation est due a ’absence d'une démonstration convaincante de son utilité avec
un modele original. Les applications de ce formalisme a la modélisation biologique
ont toujours été réalisées par des scientifiques dont la formation principale est en
informatique. Cette critique s’applique aussi a cette these. Je suis un ingénieur qui
a proposé de nouvelles méthodes computationnelles en vue d’applications en bio-
logie moléculaire. Pour démontrer l'intérét de ces méthodes, j’ai utilisé un modele
développé par des biologistes. Ce modele, quoique formidable par sa complexité, n’ex-
ploite pas encore tout le pouvoir de modélisation des réseaux de Pétri. S’exprime ici
I'immense défi de la biologie systémique. Batir un pont entre les sciences appliquées
et la biologie est une opération délicate puisque deux langages, deux pratiques et
deux communautés se rencontrent. Je compte moi-méme relever ce défi, en allant

compléter un stage postdoctoral sous la direction d'un biologiste.
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ANNEXE I

PAINTED PETRI NET AND FUNCTIONAL ABSTRACTION TO
VISUALIZE DYNAMIC MODELING

Abstract

The Painted Petri Net! and Functional Abstraction techniques are combined in a
new visualization approach aimed at representing the dynamic behavior of simulated
complex Petri net models. This approach consists in creating dynamic representa-
tions of a model at different levels of abstraction. At the first level, the Petri net
model structure is displayed, and the model dynamics is represented by variations in
the tints coloring the Petri net model places. The degree of abstraction can be pro-
gressively increased based on the organizational layers of the model which are defined
according to the functionalities of the model elements. This process is called func-
tional abstraction, and it is used here to create views where specific functionalities
are isolated. The approach is illustrated with a model from systems biology: visu-
alization of the dynamic behavior of a biochemical model obtained from the hybrid

Petri net model of the CaMKII regulation pathway.

1.1 Introduction

The essence of systems biology is to develop a system-level understanding of bio-

logical systems. This is achieved by studying the structure and dynamics of these

1Cet article a été présenté i la Furopean Simulation and Modelling Conference 2006. Voir la
référence (Hardy et Robillard, 2006b)
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systems, as well as their control mechanisms and design methods (Kitano, 2002b).
With advances in the high-throughput technologies in the last decade, biology has
evolved from a mostly experimental hypothesis-driven science to one with a more
data-driven approach, and now relies also on a model-driven approach based on
computer simulation. A tight coupling of the three approaches is at the heart of
systems biology (Ye et al., 2005). and specific tools are needed for each approach.
Computational methods have been developed or adapted to the modeling and sim-
ulation of biological systems (de Jong, 2002; Eungdamrong et Iyengar, 2004), and
methodologies from systems and control theory have been successfully applied to the
analysis of biological models (El-Samad et al., 2005; Schmidt et Jacobsen, 2004a;
Stelling. 2004). As a result, biologists now have a system-level understanding of

certain biological systems.

Among the methodologies available based on modeling and simulation, a few ex-
ploit information visualization and visual data mining to acquire system knowledge.
(Keim, 2002) clearly stated the benefits of visual data exploration, which integrates
human perceptual abilities in the interpretation of the data and is highly useful in the
exploratory steps of data analysis. (Qeli et al., 2005a) developed such an approach
to visualize time-varying matrices by combining multidimensional scaling and the
reorderable matrix method. The objective of their static representation method is
to analyze the data matrices of a simulated metabolic network in order to identify
the parts of a model that could be simplified. (Rost et Kummer, 2004) developed a
visualization software tool, SimWiz, which produces a dynamic representation of the
simulation data of biochemical networks by presenting the data in a comprehensive

way and by preserving the topology of the modeled system.

The Petri Net technique is a modeling approach used for biological modeling (Hardy
et Robillard, 2004). Different types of Petri nets have been created, based on the orig-
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inal theory, to increase the modeling expressiveness of this formal notation: timed,
stochastic, colored and hybrid, to name a few. The Hybrid Petri Net approach
combines variables of a discrete and continuous nature. A variant of this modeling
approach, the Hybrid Functional Petri Net, was designed specifically for biological
modeling and has been successfully used to study a number of different biological
systems (Matsuno et al., 2003b, 2006a). In biological modeling, time-varying data
are usually generated by an ordinary differential equation (ODE) model that is sim-
ulated. ODEs do not have a formal graphical representation. Since Hybrid Petri Net
modeling has been demonstrated to be equivalent to a system of ODEs (Matsuno
et al., 2000), it offers an interesting substitute for ODE modeling when a graphical
representation is desired. The software that has been developed for the modeling and
simulation of the Hybrid Functional Petri Net is the Genomic Object Net (GON)
(Nagasaki et al., 2003).

However, the visualization of Petri net simulations and of the model dynamics by
traditional means is arduous for large and complex models. Since the human mind
has an incredible capacity to detect structures and patterns in images (Miiller et
Schumann, 2003). we have devised a visual dynamic representation of Petri net sim-
ulation data which integrates the structure and the dynamics of a system model and
presents the model at different levels of abstraction. We call this the Painted Petri
Net. The objective of our mmethod is to provide insights leading to a system-level
understanding of a dynamic model. This paper describes how this representational
approach displays the model structure with the Petri net and makes use of relative
values instead of absolute values to represent dynamic behaviors with paints. We also
explain how our method can generate representations at different abstraction levels
from the same simulation data with a modular and functional approach. Finally,
we discuss the possible applications of our dynamic representation. Readers already

familiar with the colored Petri net must not confuse that particular extension of Petri
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net theory with the dynamic representation of systemic behavior presented in this
paper. In the colored Petri net, coloration is an abstract concept which makes it
possible to distinguish different data types inside a model. In the painted Petri net,
tints or colors from a real palette are used to visually indicate the temporal variation

of the modeled entities represented by places.

.2  Visual dynamic representation of the Petri net system behavior

According to the Miiller et Schumann (2003) taxonomy of methods of visualization
of time-dependent data. the method we suggest is a dynamic representation of mul-
tivariate data with a continuous linear time axis. Being time-dependent means that
the visual representation changes dynamically over time and is a function of time.
Two aspects of the model representation have to be considered: how to represent
the model structure or topology and how to represent the model dynamics. These
two aspects correspond to the two data sources needed to implement this method: a
file containing the organizational specifications of the model (Petri net elements and

interactions) and a file containing the simulation data.

[.2.1 Representation of the model structure

The Petri Net is a modeling approach with a formal graphical representation (Reisig,
1985). The Petri Net model specifications are usually defined with the help of a
graphical editor, withh which the user draws the model structure by arranging Petri
net elements in a drawing space. In this approach, three main elements are repre-
sented: places. transitions and arrows. In molecular biology modeling, places are
associated with substances and are represented as circles; transitions are associated

with chemical reactions and are represented as rectangles; and arrows link places
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to transitions and represent the relation between substances and chemical reactions.
The time-varying data of interest in a molecular biology Petri net model are the
numerical values associated with places. Those values mainly represent substance
concentrations or numbers of molecules. Figure I.1 shows a hybrid functional Petri
net representation of the ODE model of the Ca24 calmodulin-dependent protein
kinase IT (CaMKII) regulation pathway of Bhalla et Iyengar (1999). The structural
elements animated in the dynamic representation are the places (painted circles).
The Hybrid Petri net Net model was edited and simulated with GON. The CaMKII
regulation pathway model is part of a larger network in the hippocampal CA1l neu-
ron, which has already been thoroughly studied for its role in synaptic plasticity.
However, its details and composition, as well as its simulation results, are outside
the scope of this paper. The reader should consult the referenced paper for more

information.

Other methods for visualizing Petri net dynamic behavior already exist. Three-
dimensional visualization of the Petri net has been developed by Kindler et Pales
(2004), but, in their work, a Petri net model represents real world objects: a train
and a railway controller. Software is also available with GON, called Cell Animator,
to create animations based on simulation data. For example, Cell Animator can
be used to represent a cell with several enzymes and metabolites interacting with
one another, their number and position varying according to the numerical values
obtained from simulation. These animated representations are useful for rapidly
communicating information to others who are unfamiliar with the model, partic-
ularly in a teaching context. In the type of problem that interests us, however,
such representations are unsatisfactory or even impossible. A 3D-visualization of a
model of cellular signaling pathways, for example, where the Petri net entities are
associated with animated objects, is not feasible we are dealing with concentrations

of diffused substances. An animation of moving molecules becomes quite confusing



194

SECARL S
s\l
N/

g 64@%‘

i\
:é' J‘ !:'T’évjj'f
,gﬂ_“

A w["-'-_—é!_l ;
Lo | LS

Figure I.1: A frame of the dynamic representation of a painted Petri net molecular
biology model, simulation step 68 s

when tens, or even hundreds, of different substances are involved. More importantly,
these animations do not incorporate the topology of the signaling pathways, and,
as a result, crucial information about a model needed to reach a system-level un-
derstanding is lost. Keeping the Petri net structure for the dynamic representation
is efficient for the modeler, as this individual is already accustomed to the model’s

abstracted elements and no transformation or rework is needed.
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1.2.2 Representation of the model dynamics

We previously studied the modeling power of the Hybrid Functional Petri Net (Hardy
et Robillard, 2005), and are now concerned with providing a single representation
of the dvnamic behavior of a complex system that incorporates all the simulation
data. Such a comprehensive visualization tool is needed because traditional ways of
representing dynamic data are sometines too limited. Simulators produce plots and
graphs for any variable of a mathematical model. For example, in molecular biology
models, these are concentration graphs. When results are presented, only significant
graphs illustrating important features of a system are displayed. However, if all
the simulation data have to be explored. the modeler has to deal with one graph
for each substance. This type of representation with graphs can rapidly become
cumbersome in complex models involving many substances. For example, the model
in Figure 1.1 contains approximately one hundred substances. There are twice as
many substances in a more coniplete model, adding other signaling pathways to the
CaMKII regulation pathway to form a network (Bhalla et Iyengar, 1999), and there
are five times as many substances in the latest enlarged version of the network model

(Ma’ayan et al., 2005).

Color is commonly used in information visualization methods to improve their visual
aspect. For our dynamic visual representation, we painted the simulation data using
an 11-color palette (visible light spectrum: from violet to red). For the mapping, we
favored a relative assignment of numerical values to colors rather than an absolute
one, because the range of values for some concentrations is an order of magnitude
smaller than the range of values of other concentrations. A relative assignment of
tints gives an appreciation of the change for every substance. We believe that this
advantage is greater than its disadvantage, which is that a tint does not represent

the same quantity throughout the animated model. Numerical values are normalized
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with equation I.1.

Ti,t _ ‘710 ( Tit — Timin >“ (Il)
Ii,maz - Ii,min

In equation 1.1, T;; is the tint of the substance ¢ at time ¢, z;; is the concentration of
the substance ¢ at time t, and ; ;i and Z; ;4. are the minimum and maximum values
of the concentration of substance i. The multiplication by ten and the application of
the floor function return an integer value from 0 to 10, which corresponds to one of
the 11 discrete tints of the palette. By applying this formula to the simulation data
of a model, we obtain a tint for each substance at every simulation step (0 is mapped
to violet and 10 is mapped to red). It is then possible to juxtapose the tints, which
reflect the dynamic behavior of the model, to the model structure. This is done by
painting the places of the Petri Net model, as shown in Figure I.1. The painted
structure of the model at a given simulation step is one frame of the dynamic system
representation. The Petri net model painted with the normalized concentrations for
every time step results in successive frames that are assembled into an animation.

This creates a movie-like representation of the Petri net dynamics.

[.2.3 Creation of abstraction levels to isolate specific functional activity and high-

light system behavior

For large and complex models, there is a need to provide a hierarchy of abstraction
levels in order to alleviate potential complexity pitfalls and to add systemic signif-
icance to the visualization. This hierarchy is created by recognizing the functional
organization of the model. Figure 1.2 depicts four frames of a representation of the

CaMKII regulation pathway model at the second level of abstraction (Figure 1.1 de-
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picting the first level). To create this representation, several substances are grouped
into new units according to their biochemical function. As we can see in Figure 1.2,
the Petri net model places are transformed into rounded rectangles linked by arrows.
This view of the model has fewer elements and it is a coarse-grained abstraction of
the network topology. The grouping into units was achieved with a detailed knowl-
edge of the network’s small components, which the modeler usually acquires during
the modeling process. This grouping approach is similar to the ideas of modular
cell biology of Hartwell et al. (1999), who argued for the recognition of functional
modules as a critical level of biological organization in the cell. The grouping rules
are rather simple. In the case model study in this paper, there are few different types

of functional role. For example:

e a substance, or a group of substances, that assumes the role of a messenger

molecule or an active enzyme;

e a substance, or a group of substances, that inhibits the activity of one or more

other substances and thus participates in a negative feedback loop;

e a group of substances that relays an input activation to the production of an

enzyme Or a messenger molecule.

These three types of functional role are appropriate for the CaMKII regulation path-
way model. Each application domain is likely to have some specific abstraction rules

to define the model organization and appropriate abstraction levels.

The color palette of the model dynamics in the visual representation is similar
throughout the abstraction levels, but the tint mapping is different. Since several
substances can be combined into one unit, the normalization equation 1.1 cannot be

applied for abstraction levels other than the basic one. New equations are needed to
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from a Petri net biological model at various moments of the simulation
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map appropriate tints to the dynamic activity of the units. At the basic abstraction
level, there is one concentration variable per equation. At higher levels of abstraction,
the equation of a unit is composed of the concentration variables of the substances
enclosed by the units. These new equations compute integer values from 0 to 10 that
are associated with tints. With these equations, the tints no longer represent only
a relative quantity on a min-max scale, but they are also designed to represent the

functional activity level of the corresponding units.

In the model presented in this article, one organizational component is the module.
Modules are pathway building blocks, and they are represented as dotted rectangles
in Figure 1.2. Combining several modules recreates a network. According to the
grouping rules used at the second level of abstraction, substances acting together
as an inhibitor inside a module are grouped into a unit, and substances acting as
messenger molecules or enzymtes are grouped into a unit as well, etc. Thus, the

internal control structure of the units is preserved at the second abstraction level.

Figure 1.3 shows a representation of the model at the third level of abstraction. At
this level, there is only one unit for each module. Every substance in a module is
abstracted by a single unit responsible for the module’s main function. At this level
of abstraction, details about the module’s internal control mechanisms vanish and
the representation granularity is coarser than at the previous abstraction level. The
emphasis is on the interactions between modules. At this level of abstraction, the
equations computing the tints represent the module activity level. For the CaMKII
regulation pathway model, three levels of abstraction are enough to decompose the
model into organizational layers. Any higher abstraction level would be useless for a
model of this complexity, and additional abstraction levels could be useful for more

complex models.



1.3 Discussion

The Painted Petri Net and Functional Abstraction techniques are the constituent
parts of a new approach to visualizing the dynamic behavior of modeled systems.
An example of this approach was given with the visualization of the molecular bio-
logical model of the CaMKII regulation pathway. In systems biology, modeling and
simulation are used to study system behavior, and so this visualization approach
can be useful in this area of research. However, we are extending the use of this
visualization method to any application domain where complex Petri net models are
used to study model dynamics by simulation. The Painted Petri net Net can be
useful for modelers during the design of the model. as it can help rapidly provide
them with a picture of the model model’s dynamic behavior and help them find the
source of problems or errors. Usually, Petri net simulators represent the dynamics
of the model, with animations of discrete tokens being generated and consumed by
the firing of discrete transitions or by displaying the real values of the markings of
continuous places as continuous transitions are fired. Obtaining a global appreciation
of the dynamics of a large Petri net model with these simulators is burdensome and

inefficient, and the Painted Petri Net is a solution to this problem.

There are two advantages to the new views created by functional abstraction. First,
by reducing the number of elements in the dynamic representation, the graphical
display is simplified. This advantage will become more valuable as models increase
in complexity. Second, grouping different substances linked to the same biochemical
functionality adds a systemic knowledge filter that can facilitate the visualization
of system behavior. The viewer can navigate between the different organizational
layers of the model, thus helping him to refine his system-level understanding of the
model. An important concept in systems biology is that of the emergent property,

which is defined as a system-level characteristic that results from the complex and
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nonlinear interactions of system elements and that cannot be predicted from what
is known about these elements. In other words, we might understand the dynam-
ics of the system elements taken separately. but when these elements are connected
to form a complex network, it is impossible to predict the dynamics of the overall
network. Emergent properties are nonintuitive. and systemic analysis is the main
approach to understanding theni. Indeed, the study of emergent properties was the
main motivation behind combining the Painted Petri Net and Functional Abstraction
techniques. By isolating specific functional activities and displaying their interactions
in a dynamic representation. our visualization method can help a modeler detect and
characterize the emergent properties of a model. Whether a network exhibits mul-
tistability, specific oscillatory patterns or synchronization, these complex properties
may now be rapidly detected visually, revealing particular systemic properties of

interest which would then be worth exploring with other analytical methods.

For this visualization approach, we favored grouping rules based on functional activ-
ity rather than rules based on other existing Petri net approaches like the hierarchical
Petri net or structural reduction. Our main concern was to use the knowledge of the
modeler that is specific to the application domain. However, in future studies, it will
be interesting to verify whether or not these theoretical approaches can be combined
with the hybrid Petri net, and to analyze what groupings the developed algorithms
would identify. It would also be interesting to see whether or not the functional
units identified by these theoretical approaches are identical to the functional units

suggested by the application knowledge or if discrepancies appear.
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ANNEXE II

VISUALIZATION OF THE SIMULATION DATA OF BIOCHEMICAL
NETWORK MODELS : A PAINTED PETRI NET APPROACH

Abstract

1 of complex biochemical

The large quantity of data generated by the simulation
models is difficult to interpret with traditional plots of time series data. A visualiza-
tion method has been developed and software tools have been implemented. They
are efficient with models of metabolic networks in which molecules are produced,
consumed and degraded. However, models of signaling pathways in which enzymes
are either activated or deactivated to transmit a signal are not handled well with
the existing method. In this paper, we present a new visualization method using
the painted feature of Petri nets and their invariant properties. We apply the first
steps of this method to the continuous Petri net model of the calmodulin pathway.
We also present the methodology that we will use to compare the existing visualiza-

tion method with our Petri net-based method and to verify if it is more suited for

signaling pathways.

II.1 Introduction

The visualisation of the simulation data of molecular biology models with traditional

means — 2-dimensional plots of time series data — raises some problems when models

1Cet article a été présenté a la Summer Computer Simulation Conference 2007. Voir la référence
(Hardy et Robillard, 2007¢)
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reach a certain level of complexity. These trajectories of concentrations are better
interpreted than raw numbers, but it is increasingly confusing for a human user to
make sense of relatively large quantities of data and substantial variables for different
phenomena at the same time. Also, the topology of a biochemical model is not shown
with these plots, thus there is an important loss of information when the networks
are large and the topology cannot be memorized by the user. These problems were
addressed by developing new visualisation software tools. MetVis (Qeli et al., 2003).,
SimWiz (Rost et Kummer, 2004) and BioPathwize ? offer the possibility to visualize
simulation data of metabolic networks in a more comprehensive way. Once a sim-
ulation is completed, these tools proceed similarly. The first step is to reconstruct
the graph structure of the model from the differential equations. In this graph, the
different nodes represent the various substances of the molecular model. The second
step is to modify the graphical aspect of the graph nodes to show the variation of
concentration, or of the number of molecules, obtained from simulation. The result is
an animated view of the graph of the model displaying the simulation data. Depend-
ing of the software tool, the graphical aspect that changes to display the simulation
data is either the color or the size of the nodes. Another feature of some tools is to
display the variation of the fluxes between the molecular substances by modifying
the graphical aspect of the edges linking the nodes of the graph. The tools MetVis
and SimWiz have also a 3-dimensional version (Qeli et al., 2004a; Wegner, 2005).

The advantages of such a view are numerous. These tools take advantage of the
benefits of visual data exploration, one of which is to integrate the human percep-
tual abilities in data interpretation, a useful asset in the exploratory steps of data
analysis (Keim, 2002). They also give the possibility to make full use of the human
mind capacity to detect structures and patterns in images, such as synchronicities,

global changes of state and oscillations (Miiller et Schumann, 2003). The developers

2http://bioanalyticsgroup.com
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of MetVis and SimWiz insist on the usefulness of the topology of the biochemical
networks for their animated graphical representation. To map the simulation data
onto the model structure gives a good impression of the dynamical behavior of the
system. Thus, a wealth of information is accessible to the user. However, a graphical
representation of the models has to be generated since the models that are visualized
with these tools are without any graphical nature. Since there is no standard for

biochemical network graphical representation, each tool has its own format.

Petri net is a modeling language designed to study systems with causal concurrent
properties. This modeling language has been used in molecular biology modeling for
the first time by Reddy et al. (1993). Petri nets properties such as liveness, bound-
edness and reachability have been used to qualitatively analyze biological properties
(Voss et al., 2003; Zevedei-Oancea et Schuster. 2003; Sackmann et al., 2006). The
Petri net high-level extensions supporting simulation have been used to realize quan-
titative studies (Hofestadt et Thelen, 1998; Matsuno et al., 2003a, 2006a). For review
articles on the subject, consult Hardy et Robillard (2004) or Matsuno et al. (2006b).
A Petri net-based approach for biological modeling offers two main advantages. First,
many theoretical elements of Petri nets with a mathematical basis are useful as a
preliminary analysis tool for biological pathways. Second, biologists can easily model
a biological system with Petri nets. partly due to its graphical nature, and then study
it with the simulation capabilities of Petri net tools. In this paper, we start the ex-
ploration of a new kind of application of Petri nets for biological systems: the use
of Petri nets for the visualization of the simulation data of biochemical models. We
present a visualization method using the painted feature and the marking invariants
of Petri nets. In this method, the marking invariant property of Petri nets is used
to identify meaningful biological entities and to generate, with the painted feature of
Petri nets, animated representations of the simulation data. Our hypothesis is that

our method will highlight the switching behavior of enzymes during the visualization
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of the simulation data of the models of signal pathways. In section 1.2, we present
the painted feature of Petri net and how we use it to reproduce the existing visual-
ization method and to develop our new method. In section II.3, we explain how we

plan to verify our hypothesis in future work.

II.2  Visualization of simulation data with the painted Petri net

Our visualization method uses a recent Petri net feature, the painted Petri net, first
introduced in (Hardy et Robillard, 2006b). This feature is explained in the first
subsection. Using this feature and a local relative painting rule, we describe in the
second subsection how we can reproduce the existing visualization method, in order
to compare it with our new visualization method. This method is based on marking

invariants and it is presented in the third subsection.

I1.2.1 Painted Petri net feature and a Petri net model of the calmodulin pathway

Several extensions of the Petri net theory have been used to complete quantitative
analysis of different systems. The choice of the right extension depends of the nature
of the studied system. However, no matter what the extension is, the data from
the simulation of the Petri net model is generally communicated as raw numbers,
directly on the model in the simulation environment during the simulation. Other
tools also generate 2-dimensional histograms or plots. Unfortunately, it can be as
confusing to make sense of the simulation data of complex Petri net models as for
other formalisms with traditional means of data representation. To create a more
intuitive and meaningfull way of representing the simulation data, we suggest the

use of the painted Petri net feature to benefit from a more graphical representation.
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The painted feature of Petri nets makes use of colors, called paints, that are applied
on the places of a Petri net model, to give a visual indication of the evolution of the
places content for the duration of the simulation of the model. The painted Petri net
is not a standalone extension. This painted layer can be put on a Petri net model
of any kind of extension used for simulation. The painted Petri net does not change
any mathematical properties of the extension on which it is put on. The word paint
is prefered to the word color to avoid any confusion with the colored Petri net. In
the colored Petri net, coloration is an abstract concept, which makes it possible to
distinguish different data types inside a model. In the painted Petri net, paints are
used to visually indicate the temporal variation of the modeled entities represented
by places. The paint of a place is determined for each time step of the simulation
with a painting rule that uses the place’s mark to generate a value from 0 to 1. The
obtained numerical value is then associated to a paint from a spectrum (0 being
blue at one end and 1 being red at the other end for example). The result is an
animated graphical representation of the painted Petri net model that combines the
topology of the model with the simulation data. Types of animated representations
of a model, exposing different dynamical aspects of the model, can be created with

different painting rules.

In this paper, the Petri net model of the calmodulin pathway is used to illustrate the
first steps of the marking invariant-based visualization method. This model is part of
a more complex model of the regulatory pathway of the Ca?" calmodulin-dependent
protein kinase II (CaMKII) in the hippocampal CA1 neuron. The original system
was modeled with ordinary differential equations (ODE) by Bhalla et Iyengar (1999)
and it has been converted into a Petri net model in a previous study (Hardy et
Robillard, 2005). Figure II.1 shows a frame of the animated representation of the
complete model painted using the local relative painting rule presented in the next

subsection. The Petri net extension used to model this system has been specifically
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Figure II.1: A frame of the animated representation of the painted Petri net of the
CaMKII regulation pathway model, simulation step 66 s

designed for biological modeling and simulation: the hybrid functional Petri net
(HFPN) (Matsuno et al., 2003a). The HFPN extension enables the modeling of
discrete and continuous elements and processes and the formation of three types of
relationship between places and transitions with normal, inhibition and test arcs. A
formal definition of the HFPN is given in Nagasaki et al. (2004). The software that
has been developed for the modeling and simulation with HFPN is Genomic Object
Net (GON), also commercially known as Cell Illustrator (Nagasaki et al., 2003).

The Petri net model of the calmodulin pathway is shown in Fig. I1.2. All the elements

of this Petri net model are continuous. Each place of the Petri net model (drawn as



Figure I1.2: Petri net model of the calmodulin pathway

circles) corresponds to a molecular substances. Each transition of the Petri net model
(drawn as rectangles) corresponds to a chemical reaction. The directed arcs of the
model indicate the relationships between the molecular substances and the chemical
reactions: an arc from a place to a transition means that the substance modeled by
the place is a substrate of the reaction; an arc from a transition to a place means that
the substance is a product of the reaction. The places contain a mark, indicating
the concentration of the substance. The transitions has a speed equation, used to
compute their reaction rate. The tables I1.1 and II.2 present the specifications of the
places, transitions and arcs of the Petri net model of the calmodulin pathway. These
specifications are given so that the reader can follow the steps of the identification

of the marking invariants. We will use these invariants for a painting rule.
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The calmodulin pathway model will react to an elevation of the calcium concentra-
tion. After such an elevation, the fully activated form of this calcium-binding protein
(Cay.CaM) can then bind to other proteins (not shown in this model) to trigger a
specific response. The calmodulin pathway model includes a regulatory protein.
neurogranin (Ng), that binds to calmodulin in the absence of calcium. The phospho-
rylation of Ng by protein kinase C (PKC) lowers its binding ability. The remaining
substances, complex; and complexy, are two intermediary molecular complexes par-
ticipating in enzymatic reactions caused by the presence of PKC and phosphorylating

Ng (Ng* is the phosphorylated form of Ng).

Tableau II.1: Specifications of the places of the Petri net model of the calmodulin
pathway

Name Substance Variable
B CaM mo
P CaM-Cas my
PQ CaM-Cag mo
P3 CaM—Ca4 ms

P 4 Ca my
P CaM-Ng ms
PG Ng mMe
P Ng* mz
Py PKC mg
By complexs Mg
P complex; mig

I1.2.2  Visualization of simulation data with a local relative painting rule

The tools MetVis and SimWiz normalize the raw simulation data of a model into
relative values by using the range between minimum and maximum values of each
variable. This produces an individual percentage that can be transformed into a

color or a scaling factor for visualization. The same data conversion into colors can
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Tableau I1.2: Specifications of the transitions and arcs of the Petri net model of the
camodulin pathway

Name Speed From To
SATe P variable factor variable factor
9 my 1
to 72 X mg X My ma 9 my 1
) my 1
t 3.6 X m1 X my - 1 Mo 1
m 1
to 0.465 X My X My mi 1 ms 1
myg 1
f)
t3 72 X mq my 1 - 9
my 1
t 10 1
4 X Mo mso Ma 1
mo 1
5 1
s 0 x ms ms 1 ma 1
mo 1
te 0.3 X mg X mg e 1 ms 1
myg 1
t 5 1
7 ms msy me 1
5 1
tg 0.0612 x ms X Mg ma 1 mio 1
mg 1
tg 0.101 x meg X Mg Ma 1 Mg 1
ti0 0.005 x m; mr 1 meg 1
Mg 1
t 2.32 , ) 1
11 X Mg Mg e 1
m 1
t192 0.58 x mg myg 1 TTI; 1
mo 1
t13 0.35 x Mg mio 1 my 1
mg 1
T4 1.4 % miyo Mmio 1 s 1
mg 1
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be achieved for each place P; at time t of a painted Petri net with the following

painting rule:

paintp = (markp,; — minp,)/(maxrp, — minp,) (I1.1)

where markp, ; represents the mark of the place F; at time ¢t and maxp, and minp,
represent the maximum and minimum values reached by each place during the com-
plete simulation. The application of the paints calculated with this painting rule
onto a Petri net model produces an animated representation where each frame at

time ¢ shows the places of the model with their respective paint at time ¢.

A first disadvantage of this visualization method is that it is difficult to compare the
paints of different places because of their relative nature. The minimum-maximum
range can vary greatly from one place to another. A second disadvantage of this
painting rule, mainly for signalling network model, is the confusion caused by too
many color changes. For some substances, the presence in the pathway of many
different intermediate molecular forms with a small minimum-maximum range intro-
duces unwanted color flickering. A global painting rule (the same minimum value
and maximum values for every place) instead of a local one would not be a good
solution either because of the variation between the different orders of concentration
in model. A potential improvement is possible by using some structural properties

of the Petri net.

I1.2.3 Visualization of simulation data with a painting rule using marking invariants

To visualize the concentration variations of a signaling pathway model without the
disadvantages of a local relative method, we suggest to use the Petri net concept of

marking invariant. In this subsection, we demonstrate that the sets of places defining
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the marking invariants of a biochemical Petri net model, also known as conservative
components in Petri net theory, are meaningful biological entities and that their
properties justify their use in a painting rule. First, we formaly define these Petri
net concepts and we present the common algorithm used to identify the conservative
components of a Petri net model. Because Petri nets have a mathematical represen-
tation in linear algebra, it is possible to implement an automated procedure. Basic
knowledge on Petri net theory is required to understand all the terms in the following
paragraphs. Despite the jargon. we provide a comparaison with biochemical concepts
that will help any reader to grasp their significance. After this more formal part of
the text, we discuss the result of the algorithm for the calmodulin pathway model
and present the marking invariant-based painting rule. We invite readers to consult

(David et Alla, 2004) for a complete introduction to Petri net theory.

Définition I1.1. The set B of places of a Petri net model is a conservative component

if and only if a weighting vector x exists such that
P(x)=Bandx' -W =0 (I1.2)

where W is the incidence matrix of the Petri net model. The vector x is a P-invariant
(xT is its transposed equivalent) and the set of places P(x) is known as the support

of the P-invariant x.

A consequence of this definition is that for whatever firing sequence from marking
my. i.e. for every marking my € M(my) (set of reachable markings from initial
marking), we have

XT -Imy = XT * Mg (113)

which is a scalar quantity known as a marking invariant. This means that the sum

of the marks of the set of places of a conservative component, weighted by vector x,



214

is constant. This definition of the marking invariant applies in an equivalent way to
discrete, continuous and hybrid Petri nets. In a biochemical network model based
on chemical reactions and kinetic rates, a conservative component has a physical
meaning: the places of a conservative component represent all the different forms of
a molecular species for whicli the total concentration is constant. By forms, we mean
the substances that are modified configurations of a molecular species (like Ng and
the phosphorylated Ng* are different forms of neurogranin) or the substances that
are complexes composed of at least one molecule of a molecular species (like CaM,

CaM.Cay, CaM.Cas. CaM.Cay, and CaM.Ng are different forms of calmodulin).

We use algorithm II.1 to find the minimal support P-invariants of the calmodulin
pathway Petri net model showed in Figure I1.2. This algorithm can be found in
(David et Alla, 2004). Minimal support P-invariants is the formal term for the

smallest conservative components of a Petri net model.

Algorithm II.1. Search for minimal support P-invariants.

Step 1. Let A be the dimension n unit matrix (n = number of places) and B = W

(incidence matrix). Construct matrix [A|B].
Step 2. For each index j of transition 7}.

Step 2.1. Add to matrix [A|B] as many lines i as there are linear combinations

of two lines, with positive integer coefficients, such that element(7,j) is zero.

Step 2.2. Eliminate from matrix [A|B] all the line & whose element (k,j) is not

Zero.

Step 3. Let 14 - lg denote a line [ of the matrix [A|B] and P(l4) the support of I4
(i.e., the set of places for which the weight is not zero). If there are two lines p and

q of the matrix such that P(p4) 2 P(qa), then line p is removed.
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Step 4. The minimal support P-invariants correspond to the non zero lines of A.

Tableau I1.3: The four marking invariants of the Petri net model of the calmodulin
pathway

P-invariant

Substance Marking invariant
CaM x=[L 1T 1T 1T0100001]
Nee, = mo +my + my + ma + m5 + My
Ca TX2=[02341000000T
‘7\ICCQ = erl + 3m2 + 47’7’13 + my
Ng ,X3:[00000111011T
Nee, = ms + mg + m7 + mg + myg
PKC x4=10 000000011 I

J\r(jal = mg + Mg + Mg

The results of the search for the minimal support P-invariants of the Petri net model
of the calmodulin pathway are shown in table II1.3. Four conservative components
have been found. This means that there are four distinct molecular specie in the
model, which are calmodulin, neurogranin, calcium and protein kinase C. These
conservative components correspond to the sets of places containing all the different
forms of the four molecular species. For example, the strictly positive values of the
P-invariant x; indicate that the places Py (CaM), P, (CaM.Cas), P, (CaM.Caj3), P;
(CaM.Cay), Ps (CaM.Ng) and Py (complex;) are associated to the different forms
of the calmodulin species. More importantly, the sum of the marks of these places,
weighted by the P-invariant values, is the total constant concentration of calmodulin
molecules in the model. For example, the sum of mg + mi + my + ms + ms + myg is
a constant value throughout the simulation indicating the total concentration of all

the forms of calmodulin in the system. This result shows that there is a relationship
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between mass conservation and marking invariants in biochemical Petri net models.
This relationship has already been discussed in previous studies in which the marking
invariants were used to verify the soundness of a model (Zevedei-Oancea et Schuster,
2003; Sackmann et al., 2006). Here again, the marking invariants demonstrate that
the model specifications and its structural properties respect the mass conservation
law. This is not new information, it is the intention of the modeler to assure that
mass conservation is respected in tlie model. The marking invariants validate the
modeler’s work. The novelty we propose in this paper is to use marking invariants
in a painting rule for a better visualization of the dynamical behavior of a Petri net

model. The marking invariant-based painting rule is the following:

paintp, cc,+ = markp, 1/ Nec, (I1.4)

where the place P; is part of the conservative component C'C,. This rule computes
the ratio between the concentration of one form of a molecular species and the sum
of the concentrations of all forms of this molecular species. Since a place can be part
of several conservative components, like the place CaM.Ng is part the calmodulin
and the neurogranin conservative components in the calmodulin pathway model, a
place can have z paint values, where z is the number of conservative component this

place is part of.

The hypothesis to be tested next is if this painting rule based on conservative com-
ponents and marking invariants computes paints that are more significant than the
paints computed with the individual relative painting rule. The preliminary animated
view of a Petri net painted according to this rule shows color modifications that are
relevant to the evolution of the distribution between different forms of a molecular
species. For many enzymes, this distribution is linked to their functional activation

or deactivation. For example, the distribution of an enzyme in phosphorylated and
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dephosphorylated forms can indicate if this enzyme is “on” or “off”. This is also the

case for other signaling macromolecules involved in the formation of complexes.

I1.3  Concluding remarks

The creation of the animated view of the Petri net model of the CaMKII regulation
pathway with a painting rule using marking invariants is actually a work in progress.
The confirmation or not of our hypothesis — the improvement of the visualization of
the simulation data of signaling pathway models— will be possible after a comparison
of the animated views of the complex Petri net model painted with the local relative
painting rule and painted with the marking invariant-based pating rule. We will
also need to define how to deal with some expected special situations that are for
the moment left out of the painting rule using marking invariants. One of these
situations is how to visualize the places having several paints. This occurs when
a place is part of more than one conservative component, like the place Pyy of the
calmodulin module model, whicli is part of the conservative components of the CaM,
Ng and PKC molecular species. A second special situation is how to represent the
places without paint. This occurs when a place is not part of any conservative
component. In the complete CaMKII regulation pathway model, places without
paint are associated to messenger molecules like Ca and cAMP that are produced and
degraded or introduced and expelled during the simulation. The total concentration
of these substances is not constant during simulation, but the evolution of their
concentration is also important to visualize. A second complementary painting rule

will probably be developed for places in this situation.
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