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R E S U M E 

Un nouveau terme est de plus en plus frequemment utilise pour designer une sous-

discipline de la biologie : la biologie systemique. Ce nouveau champ d'etude s'interesse 

aux interactions entre les composantes d'un systeme biologique et a F emergence des 

fonctions et du comportement de ce systeme a partir de ces interactions. Apres avoir 

cherche a decortiquer la cellule et ses composantes, les biologistes ont maintenant 

une liste exhaustive des composantes et de leurs caracteristiques. Toutefois, devant 

les systemes tres complexes qu'ils essayent de comprendre, les biologistes manquent 

de concepts et d'approches pour investiguer cette complexite. Pour mieux s'outiller 

et developper de nouvelles approches integratives, les biologistes ont entame un dia­

logue avec des ingenieurs, des informaticiens, des mathematiciens et des theoriciens 

des systemes et du controle. La biologie systemique est done un champ d'etude mul-

tidisciplinaire encore tres jeune, mais qui laisse presager de grandes percees dans les 

sciences du vivant. 

En ingenierie, la modelisation et la simulation sont des methodes privilegiees pour 

l'investigation des systemes complexes. Les avantages de la modelisation et de la 

simulation n'echappent pas aux biologistes, qui veulent eux aussi realiser des etudes 

theoriques a l'aide de modeles computationnels. En consequence, un important travail 

d'adaptation de differents langages de modelisation pour des applications biologiques 

a ete accompli dans la derniere decennie et les outils informatiques de modelisation 

et de simulation des systemes biologiques se sont multiplies. Les biologistes peuvent 

maintenant facilement modeliser et simuler. Mais pour ce qui est de Fanalyse des 

donnees de simulation, peu de methodes ont ete specifiquement congues pour ce 

domaine d'application. Cette constatation a inspire Fobjectif de recherche de cette 

these. Cet objectif est de concevoir des methodes d'analyse de donnees de simula­

tion de modeles de voies de signalisation cellulaire qui permettent de degager leur 

comportement systemique. 
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Cette these par articles presente trois methodes d'analyse distinctes. L'approche 

presentee dans le premier article propose d'utiliser la structure du reseau biochimique, 

de la fonction des composantes et de leurs interrelations pour, dans un premier temps, 

caracteriser l'activite moleculaire de modules biochimiques et ensuite, pour creer 

des nitres d'analyse. Ces filtres permettent de produire, a partir des donnees de 

simulation, une representation fonctionnelle animee du systeme. 

Le second article presente une methode de visualisation des donnees de simulation des 

voies de signalisation cellulaire. A l'aide d'une technique d'analyse issue de la theorie 

des reseaux de Petri (1'identification de P-invariants), la methode de visualisation 

prend en compte le fonctionnement enzymatique pour generer une vue du systeme 

qui reflet e le comport erne nt systemique des voies de signalisation. Les methodes de 

visualisation existantes, appropriees pour les voies metaboliques, donnent des resul-

tats mitiges avec les voies de signalisation. Les problemes detectes sont solutionnes 

par not re methode. 

Le troisieme article presente une methode d'analyse des modeles de voies de signa­

lisation qui permet d"etudier leur dynamique de la propagation de signal. A l'aide 

de techniques d'analyse des reseaux de Petri (l'identification de P-invariants et de 

T-invariants), la methode permet d'identifier les elements du modele qui jouent un 

role important dans la transmission de signaux cellulaires. Elle permet aussi de de-

crire la dynamique de transduction et d'identifier la presence de motifs de regulation. 

Cette methode transforme les donnees de variation de concentration moleculaire en 

donnees de transmission de signaux cellulaire, ce qui permet un acces rapide aux 

mecanismes systemiques de traitement d'information de la cellule. 

Les trois methodes de cette these ont ete utilisee pour analyser les donnees de si­

mulation d'une variante du modele du reseau de regulation de l'enzyme CaMKII du 

neurone CAl de l'hippocampe. Ce systeme biologique est majeur en neurobiochimie 

puisqu'il est experimentalement associe a la plasticite synaptique, qui est la propriete 
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neuronale qui expliquerait les capacities d'apprentissage et de memorisation du cer-

veau. II s'agit d'un modele complexe, avec plusieurs boucles de retroaction, ideal 

pour une etude sur des methodes d'analyse destinees a la biologie systemique. 

Les result at s des deux derniers articles de cette these confirment la pertinence de 

rutilisation du formalisme des reseaux de Petri pour des applications de biologie 

systemique. Les methodes de ces articles peuvent s'integrer dans une methodologie 

globale de modelisation-simulation-analyse basee sur ce formalisme. 
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A B S T R A C T 

A term is widely used to identify new approaches in biosciences: systems biology. 

This new field of study is about the interactions of the components of a biological 

system and how the functions and behavior of this system emerge from these inter­

actions. After decades of a reductionist approach in molecular biology, which led 

to a quite exhaustive component list, biologists are now aiming at a system-level 

understanding of the cell. However, the actual concepts and tools of biology are 

inadequate to complete this new task of investigating biological complexity. To have 

new tools and to develop new integrative approaches, biologists started a dialogue 

with engineers, mathematicians, computer scientists and specialists of the system 

and control theory. Systems biology is a young interdisciplinary field of study, with 

promises of bringing our knowledge about life further. 

In engineering and other sciences, modeling and simulation are widely used methods 

to study complex systems. Systems biology is no exception and computational biol­

ogists have also wanted to undertake theoretical studies with computational models. 

As a consequence, different modeling languages and formalisms have been adapted to 

biological applications in the last decade. Also, modeling and simulation tools have 

been multiplied. Biologists now can easily model and simulate biological systems. 

However, few tools for the analysis of the simulation data have been specifically de­

signed for biological applications. This inspired the research goal of this thesis. This 

goal is to design computational methods for the analysis of the simulation data of 

models of signal transduction networks, that can reveal their systemic behavior. 

This thesis contains three articles, each presenting a distinct analysis method. The 

approach presented in the first paper is a proposal to use the structure of a biochem­

ical network, the function of its components and their interrelations to characterize 

the molecular activity of its modules and to create data analysis filters. These fil­

ters are used to create a functional animated representation of the system from the 
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simulation data, 

The second paper presents a visualization method of the simulation data of signaling 

pathways. In this method, the p-invariant property of Petri nets is used to identify 

meaningful biological entities. It is then possible to create a view of the system 

taking into account the behavior of enzymes. Existing visualization methods have 

been developed mostly for metabolic network models and they are less suitable for 

signaling pathway models. The Petri net-based method solves this problem and 

highlights the switching behavior of enzymes, thereby allowing a visual exploration 

of the global dynamic behavior of complex biochemical model. 

The third article presents a method for the analysis of the dynamics of the prop­

agation of a signal in signaling pathway models. In this method, the p-invariant 

and t-invariant properties of Petri nets are used to identify key signaling elements of 

pathways. This method produces temporal information about signal propagation in 

the network, a simplified graphical representation of the network and of the signal 

propagation dynamics and a characterization of some signaling routes as regulation 

motifs. This method can be useful to deciphering the information processing capa­

bilities of the pathway. 

In each article, the presented method has been used to analyze the simulation data 

of variations of model of the CaMKII enzyme regulation network of the hippocampal 

CAl neuron. This biological system is very important in neurobiochemistry because 

it is experimentally linked to synaptic plasticity, which is the neuronal property 

hypothesized to be responsible for memory and learning processes. This is a complex 

model, perfect for a study on computational analysis methods for systems biology. 

The results of the two last papers of this thesis confirm the usefulness of the Petri net 

formalism for systems biology applications. The methods presented in these papers 

can be integrated into a unified methodological Petri net-based framework for the 

modeling, simulation and data analysis of complex biological systems. 
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1 

I N T R O D U C T I O N 

Avec les percees scientifiques majeures de la biologie moleculaire des deux dernieres 

decennies, comme le sequen^age du genome humain, les biologistes ont du se doter 

de nouveaux outils informatiques. Plusieurs methodes computationnelles ont alors 

ete adaptees ou creees par de nouveaux speciahstes, les bioinformaticiens, pour re-

pondre a cette demande. Des techniques de criblage de donnees (data mining) ont 

ete developpees pour traiter le raz-de-maree de donnees collectees au laboratoire a 

Taide des nouvelles technologies automatisees de la genomique et de la proteomique. 

Comparaison et alignement de sequences biologiques, recherche de motifs, assem­

blage de fragments d :ADN, cartographie genetique, structure 3D des proteines et 

ARN, les methodes computationnelles se sont averees essentielles pour accomplir ces 

taches. Ceci a enfin donne aux biologistes une liste plus complete des composantes 

biologiques du vivant et de leurs caracteristiques. 

Cette liste ne leur a toutefois pas livre les secrets de la vie. Entre autres, les biolo­

gistes se sont etonnes du nombre peu eleve de genes dans le genome humain, soit 

approximativement 20 000 a 25 000. Comment si peu de genes peut-il generer la 

complexity de l'espece humaine ? 

Dans leur quete de comprehension, les biologistes ont adopte une nouvelle approche, 

une approche systemique qui suppose que les processus et les fonctions biologiques 

emergent de la complexite des interactions entre les composantes. Peu habitues a 

ce nouveau type de questions de recherche et mal equipes conceptuellement pour 

faire face a la complexite des systemes etudies, certains biologistes se sont adjoint 

des scientifiques plus aguerris avec ce genre de problematique. Mathematiciens, inge-

nieurs, informaticiens et theoriciens de l'automatisation et du controle ont vu, dans 

les nouvelles interrogations des biologistes, un domaine de recherche ou ils pouvaient 
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appliquer leurs connaissances. Cette nouvelle approche en biologie. clont on a com­

mence a parler vers l'annee 2000. a ete nominee biologie systemique (connue sous le 

nom de systems biology en anglais). La definition de cette jeune discipline est encore 

imprecise et il en existe plusieurs. Voici une definition satisfaisante, proposee par 

Sauer et al. (2007) : 

Rather than a reductionist viewpoint (that is. a deterministic genetic 

view), the pluralism of causes and effects in biological networks is better 

addressed by observing, through quantitative measures, multiple compo­

nents simultaneously, and by rigorous data integration with mathemati­

cal models. Such a system-wide perspective (so-called systems biology) 

on component interactions is required so that network properties, such 

as a particular functional state or robustness, can be quantitatively un­

derstood and rationally manipulated. 

La conception de modeles, ou on represents differentes entites ainsi que leurs interre­

lations, est une approche privilegiee pour synthetiser la connaissance accumulee sur 

systeme. La realisation de simulations est a la base des approches quantitatives uti-

lisees pour comprendre le comportement global d'un systeme. La modelisation et la 

simulation sont un des axes de recherche en informatique et on en recense une variete 

d'applications dans tous les domaines d'etude. La biologie ne faisait pas figure d'ex-

ception, mais Tavenement de la biologie systemique a provoque une multiplication des 

etudes sur les systemes biologiques a l'aide de la modelisation et la simulation. C'est 

ainsi que differents formalismes de modelisation ont ete etudies pour leur adequation 

a representer des phenomenes biologiques. 

Lors de mes travaux de recherche a la maitrise, j ' a i moi-meme realise une de ces 

etudes ou j'explorais l'utilisation des reseaux de Petri pour la modelisation biolo-
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gique. Decrits simplement, les reseaux de Petri sont un outil de modelisation du 

comportement des systemes dynamiques a evenements diserets et de description des 

relations existantes entre des conditions et des evenements. Depuis qu'ils ont ete 

inventes par Carl Adam Petri en 1962. les reseaux de Petri ont principalement ete 

appliques aux systemes informatiques et industriels. La theorie de ce formalisme a ete 

l'objet de plusieurs recherches et plusieurs contributions l'ont enrichie de nouveaux 

concepts et ont augmente son pouvoir de modelisation. 

Mon memoire de maitrise etait constitue de deux etudes. Dans la premiere etude, 

j 'a i fait une recension des ecrits sur les differentes utilisations de ce formalisme pour 

la modelisation biologique ainsi qu'une analyse identifiant les meilleures techniques 

selon les objectifs de modelisation (Hardy et Robillard, 2004). Dans la seconde etude, 

je demontrais que les reseaux de Petri sont un formalisme qui facilite la creation 

de modeles biologiques ou Ton retrouve plusieurs niveaux d'abstractions (Hardy et 

Robillard, 2005). 

Ma these de doctor at est le prolongement de ce premier pro jet de recherche. Elle 

porte sur un aspect de la modelisation et de la simulation que je n'avais jusqu'alors 

pas aborde : P analyse des donnees de simulation. En effet, la simulation de modeles 

complexes genere une grande quant ite de donnees dont il n :est pas toujours facile de 

degager Tinformation recherchee. Cette problematique fut le point de depart de mes 

recherches doctorales et a servi a definir mon objectif de recherche. Cet objectif est 

de concevoir des methodes d'analyse de donnees de simulation de modeles de voies 

de signalisation cellulaire qui permettent de degager leur comportement systemique. 

J 'ai atteint cet objectif a Faide de trois etudes distinctes, sous la forme d'articles. 

Chaque etude propose une approche originale pouvant s'inserer parfaitement dans 

une demarche de biologie systemique. Une premiere etude se veut une reflexion sur 

l'utilisation du concept de fonctionnalite dans l'analyse de donnees de simulation 
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d*un modele biochimique (Hardy et Robillard, 2006a). L'approche presentee propose 

d:identifier les unites fonctionnelles d'un systeme, de specifier mathematiquement 

le fonctionnement attendu de ces unites pour ensuite generer des representations 

animees de leur dynamique. Cette approche est valide pour tout formalisme de m o 

delisation qui permet la realisation d'etudes quantitatives. 

Les deux autres etudes presentees dans cette these decrivent des methodes d"analyse 

des donnees de simulation basees sur le formalisme des reseaux de Petri. Ce forma­

lisme propose differentes techniques pour analyser les proprietes des systemes et pour 

valider les modeles, dont l'analyse des invariants. On peut etablir des relations entre 

les invariants des reseaux de Petri et des caracteristiques particulieres ayant une 

signification biologique. Les deux etudes exploitent ces relations. La seconde etude 

utilise les invariants dans une methode de visualisation des donnees de simulation 

(Hardy et Robillard, 2007b). La troisieme etude utilise les invariants pour decorti-

quer le comportement dynamique de la propagation d'un signal dans un reseau de 

transduction cellulaire (Hardy et Robillard, 2007a). 

Le premier chapitre de cette these porte sur les reseaux de Petri. S'y trouvent une 

courte introduction sur ce formalisme, une recension des ecrits sur ses applications 

biologiques de 2004 a aujourd'hui et la presentation d'un ajout a la theorie que je 

propose, les reseaux de Petri peintures. Le chapitre 2 presente des concepts d'inge-

nierie et de la theorie des systemes qui servent de fondement conceptuel a la biologie 

systemique ainsi qu'une recension non-exhaustive d'etudes qui utilisent ces concepts. 

Le chapitre 3 presente l'organisation generale du travail et la coherence des articles 

par rapport aux objectifs de recherche. Les chapitres 4, 5 et 6 presentes les trois 

articles. Un dernier chapitre propose une discussion sur des aspects methodologiques 

de la simulation avec les reseaux de Petri et aussi deux reflexions philosophiques sur 

des sujets relatifs a la biologie systemique et aux idees de cette these. 
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CHAPITRE 1 

LES RESEAUX DE PETRI, UN OUTIL DE MODELISATION 

POLYVALENT 

Les reseaux de Petri sont un outil de modelisation principalement utilise en informa-

tique et en automatique pour representer des systernes ayant des proprietes de paral-

lelisme, de concurrence, de synchronisme et de partage de ressources. Les reseaux de 

Petri ont une double nature : une nature graphique qui facilite la modelisation et la 

visualisation et une nature mathematique qui les dote d:interessantes proprietes tres 

utiles pour les analyser. De plus, cet outil de modelisation est suffisamment general 

pour permettre la modelisation de phenomenes tres varies. 

Ce chapitre se divise en trois sections. La premiere section est une introduction a la 

theorie des reseaux de Petri, en ne s'attardant que sur les pans qui sont essentiels 

a la comprehension de cette these. Elle est entre autres inspiree d'un livre sur les 

reseaux de Petri discrets, continus et hybrides de David et Alia (2004) que nous 

invitons le lecteur a consulter pour une introduction complete. La deuxieme section 

est une mise a jour de la recension des travaux de recherche port ant sur l'utilisation 

des reseaux de Petri pour la modelisation et la simulation de systemes biologiques. 

La precedents revue recensait les ecrits jusqu'en 2004 (Hardy et Robillard, 2004). La 

troisieme section presente un ajout que nous avons fait a la theorie de ce formalisme : 

les reseaux de Petri peintures. 
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1.1 Introduct ion aux reseaux de Petr i 

Cet outil de modelisation a ete invente par Carl Adam Petri en 1962 et publie dans 

sa these de doctorat (Petri. 1962). Depuis, la theorie des reseaux de Petri n'a cesse 

de s'enrichir et celle-ci est toujours l'objet de recherches theoriques et appliquees. 

1.1.1 Concepts fondamentaux 

1.1.1.1 Places , transit ions et arcs 

Un reseau de Petri (RdeP) est un graphe bipartite ou les deux types de noeuds 

sont les places et les transitions. Le RdeP traditionnel se nomme aussi un reseau 

place-transition. Les places sont representees par des cercles et les transitions, par 

un trait (ou une boite rectangulaire, selon les auteurs). Les places et les transitions 

sont reliees par des arcs. Ces arcs sont diriges et ils ne peuvent connecter que deux 

noeuds de types differents. Dans un reseau place-transition, les arcs ont chacun un 

poids, qui est un nombre entier strictement positif et dont la valeur par defaut est 

un. De fagon generale, dans un reseau de Petri, les places representent les elements 

passifs d'un modele alors que les transitions representent les elements actifs. 

La figure 1.1 presente un reseau de Petri qui modelise ralgorithme d'exclusion mu-

tuelle de Peterson. Ce reseau contient 7 places, 6 transitions et 16 arcs. L'algoritlime 

de Peterson gere Faeces a une ressource qui est partagee entre differents processus 

et qui ne peut etre accedee ou utilisee que par un seul processus a la fois. Les places 

Pi, P2 et P3 representent les differents etats d'un premier type processus, les places 

F4, P5 et P6 representent les differents etats d'un second type processus et la place 

P7 represente la ressource que les deux processus se partagent. Les places P3 et P6 
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representent les etats ou les processus accedent ou utilisent la ressource. 

Figure 1.1: Reseau de Petri de l'algorithme de Peterson 

Les relations entre les places et les transitions peuvent etre qualifiers d'entree ou de 

sortie. Par exemple, dans la figure 1.1, les places P2 et P-j sont les places d'entree 

de la transition T2. De meme, la transition T5 est une des transitions de sortie de la 

place P7. 

1.1.1.2 Marquage 

Pour qu'un reseau de Petri soit pleinement fonctionnel, celui-ci doit etre marque. 

Un RdeP est marque lorsque ses places contiennent un nombre positif de jetons. 

Le nombre de jetons de la place P, est associe a la variable m(Pj) ou m,. Dans 

l'exemple de la figure 1.1, nous avons m\ = vn-j = 1, m2 = ra^ = 7715 = m6 = 0 et 

m4 = 2. La distribution de jetons dans les places est appelee le marquage d'un RdeP. 
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Le marquage m. d'un RdeP est defini par un vecteur du marquage de ses places, 

tel que m = (mi .m 2 . m3 , m4,TO5, m6 , m 7 ) . Le marquage du RdeP de la figure 1.1 

est m = (1 ,0 ,0 ,2 ,0 ,0 ,1) . Ce marquage signifie qu'il y a un processus du premier 

type, deux autres processus du second type et une seule ressource a partager entre 

ces trois instantiations de processus. Le marquage determine l'etat dans lequel le 

systeme decrit par le RdeP se trouve. Le RdeP evolue a mesure que son marquage 

change. Ceci se produit lorsqu'une transition est franchie. 

1.1.1.3 Franchissement d'une transit ion 

Une transition est franchie - on dit aussi qu'elle est tiree - si chaque place d'entree 

de cette transition contient un nombre de jetons egal ou superieur au poids des arcs 

reliant les places d'entree a la transition. Si cette condition de franchissement est 

remplie. on dit de la transition qu'elle est tirable. Dans le RdeP de la figure 1.1, les 

transitions T\ et Z4 sont tirables. 

Lors du franchissement d'une transition, on retire des jetons des places d'entree de la 

transition en nombre equivalent au poids des arcs les reliant et on ajoute des jetons 

aux places de sortie de la transition, toujours selon le poids des arcs. La figure 1.2 

illustre cet evenement. A la figure 1.2(a), on peut voir le marquage du RdeP de la 

figure 1.1 apres le franchissement de la transition T\. Lors de ce franchissement, un 

jeton a ete retire de la place P\ et un autre a ete ajoute a la place P-i- A partir de ce 

marquage, les transitions T<i et T4 sont tirables. Toujours a partir du marquage de la 

figure 1.1, on peut voir le marquage du RdeP apres le franchissement de la transition 

T4 a la figure 1.2(b). 

Dans certains cas, le franchissement d'une transition peut mener a un marquage ou 

aucune transition n'est tirable. Un reseau de Petri dans cet etat est dit en blocage. 
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(a) 

Figure 1.2: Franchissement de transition 

Maintenant que la notion de jeton est introduite. remarquez que la structure du 

RdeP de l'exemple. a partir du marquage initial de la figure 1.1, assure qu'un seul 

processus a la fois est dans un etat d'utilisation de la ressource. Si Pinstanciation du 

premier processus est dans Petal represente par la place P3, ceci signifie qu'il utilise la 

ressource partagee et done il n'y a aucun jeton a la place P7. Ceci a pour consequence 

que les conditions de franchissement de la transition T5 ne sont pas remplies, ce qui 

rend cette transition infranchissable et empeche done l'utilisation de la ressource par 

une des instanciations du deuxieme processus tant que la ressource est utilisee par 

l'autre processus. En d'autres mots, il est impossible qu'il y ait simultanement un 

jeton a la place P3 et un autre a la place P6 . 

1.1.1.4 Reseaux de Petri autonomes et non-autonomes 

Les reseaux place-transition sont entierement non-deterministes. II n'y a aucune 

contrainte de modelisation pour fixer revolution du reseau. II n'y pas de priorite 

pour certains changements d'etat et l'ordre de franchissement des transitions n'est 
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pas fixe ni previsible. On dit de ces reseaux qu'ils sont autonoraes. Nous verrons que 

ceci n'est pas le cas pour tous les types de reseau de Petri. Certaines extensions de 

la theorie permettent le franchissement de transition uniquement lors d'evenements 

externes ou selon des contraintes temporelles. De tels RdeP sont non-autonomes. 

Par exemple, dans les RdeP synchrones, qui sont un type de reseaux non-autonomes, 

on peut specifier une duree entre le moment ou une transition devient tirable et le 

moment de sa transition. 

1.1.2 Proprietes des reseaux de Petri 

1.1.2.1 Nota t ions et definitions 

Pour introduire certaines notations usuelles et certains concepts, ayons comme point 

de depart le marquage du RdeP de la figure 1.1, nomme marquage initial mo. Ce 

marquage, comme le marquage du RdeP a tout moment donne, est represente par 

un vecteur colonne ou la composant i est le marquage de la place Pi. Pour ne pas 

alourdir le texte, la forme transposee du vecteur entre parentheses sera plus souvent 

utilisee. Par exemple : 

1 

0 

0 

2 

0 

0 

1 

Du marquage initial m 0 , nous avons deja vu que les transition 7\ et T4 sont tirables. Si 

m 0 = (1,0, 0,2, 0,0,1) = 1 0 0 2 0 0 1 
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la transition 7\ est franchie, le nouveau marquage n i j du reseau est (0,1, 0. 2, 0, 0,1). 

Cet evenement, dont le result at est montre a la figure 1.2(a), est decrit par : 

m 0 >• m i . 

Dans le cas ou la transition T4 est franchie, le nouveau marquage m 2 du reseau est 

(1 ,0 ,0 ,1 ,1 ,0 ,1) . Cet evenement. dont le result at est montre a la figure 1.2(b), est 

decrit par : 

m 0 —> m 2 . 

Du marquage m i , les transitions T2 et T4 sont tirables. Si la transition T2 est franchie, 

on obtient le marquage m 3 alors que si la transition T4 est franchie, on obtient le 

marquage m 4 . Ces evenements sont decrit s par : 

m x
 T2 ) m 3 = (0,0,1,2, 0,0,0), 

m j — - — • m 4 = (0,1, 0 ,1 ,1 , 0,1). 

En poursuivant l'exploration des marquages qu'il est possible d'atteindre par le fran-

chissement de transitions, on peut revenir a des marquages connus ou decouvrir de 

nouveaux etats. Par exemple, le franchissement de la transition T\ a partir du mar­

quage m 2 produit aussi le marquage m 4 . Toujours a partir du marquage ni2, le 

franchissement de la transition T4 genere le nouveau marquage m 5 et le franchis­

sement de la transition T5 genere le nouveau marquage m 6 . Ces evenements sont 

decrit s par : 

m 2 > 1H4, 

m 2
 TA ' m 5 = (1 ,0 ,0 ,2 ,0 . 0,1), 
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m 2
 n > m6 = (1. 0, 0,1, 0,1, 0). 

L:exploration des marquages atteignables du RdeP de Talgorithme de Peterson se 

poursuit ainsi : 

m 3 -—-—> m0, m 7 —> m2 , 

m 3
 Ti > m 7 = (0, 0.1,1,1. 0.0), m 7

 Ti > m n = (0, 0,1. 0, 2, 0, 0), 

m 4 —> m7 , m 8 —> m n , 

m 4
 TA > ma = (0,1,0,0,2,0,1), m 8

 n > m10 , 

m 4 — - — > m 9 = (0.1,0,1,0,1,0), m9 —-—• mi , 

m 5 —> m2 , m1 0 —> mi2 = (0,1, 0, 0,1,1, 0), 

m 5 —> m6, m1 0 —> m2, 

rp rp 

m 6
 l—> m9 , m n —• m5 , 

m 6
 TA >mi0 = (1,0,0,0,1,1,0), m i 2

 n m4. 

m 6 > m0 , 

Dans le RdeP de 1'algorithme de Peterson, il existe un nombre fini de marquages attei­

gnables. Pour un RdeP, M(mo) est Fensemble des marquages atteignables a partir 

du marquage mo par une sequence finie de franchissements. Dans notre exemple, 

M(m0) = {m0, m!, m2 , m3 , m4 , m5 , m6 , m7 , m8, m9, m10, m n , m 1 2 } . Les figures 

1.1, 1.2 et 1.3 illustrent tous les marquages atteignables a partir de mo- En exami-

nant Ai(m0), on peut constater que la propriete souhaite du modele de 1'algorithme 

de Peterson est en effet respecte. Dans aucun des marquages accessibles a partir d'un 
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(a) m3 

(c) m5 

(e) m7 (f) m8 

Figure 1.3: Marquages atteignables 
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(g) m9 (h) m 10 

(i) mn (j) mu 

Figure 1.3: Marquages atteignables (suite) 

etat coherent, il n'y a des jetons simultanement dans les places P3 et P§. 

Une succession de franchissements de transition est appelee sequence de franchisse-

ment. Dans notre exemple, si a partir de mo les transitions T\ et ensuite T4 sont 

franchies, le marquage obtenu est m4 . T{T^ est une sequence de franchissement qui 

est decrite ainsi : 

TiT4 

m 0 > m4. 

Avant de poursui\T:e avec l'introduction de la representation en algebre lineaire des 
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reseaux de Petri, il est utile de fournir une definition plus formelle des reseaux de 

Petri. 

Definit ion 1.1. Un reseau de Petri marque Q est defini par le quintuple (P . T. Pre, 

Post, m) ou : 

P = {P1,P2,...,Pn}, est un ensemble fini de places ou n > 0; 

T = {Ti, T 2 , . . . . Tm}, est un ensemble fini de transitions ou m > 0 ; 

P n T = 0 , c'est-a-dire que les ensembles P et T sont disjoints; 

Pre : P x T —• N, est la matrice d'incidence avant; 

Post : P x T —> N, est la matrice d'incidence arriere; 

m : P —> N, est le marquage du reseau. soit un vecteur de n composantes 

(mi,rn,2, • • •, m n ) ou m(Pi) est le nombre de jetons de la place Pj. mo est le marquage 

initial. 

Pre(Pj, Tj) est le poids de Tare Pt —> Tj, cette valeur est un nombre naturel. Post(Pj, 

Tj) est le poids de Tare Tj —> p , cette valeur est aussi un nombre naturel. Nous 

pouvons maintenant etablir la notation suivante : 

°Tj = {P E P\Pre(Pi,Tj) > 0} = ensemble des places d'entree de T3; 

T° = { p € P | P o s t ( p , Tj) > 0} = ensemble des places de sortie de Tj ; 

°Pi = {Tj € T|Post(Pj, Tj) > 0} = ensemble des transitions d'entree de p ; 

P° = {Tj £ T | P r e ( P , Tj) > 0} — ensemble des transitions de sortie de p . 

Definit ion 1.2. La transition 7} est tirable au marquage nik si 



mk{Pi) > Pre(PuTj) pour toutes P% e °Tr 

1.1.2.2 Representat ion en algebre lineaire 

Un reseau place-transition peut etre represent^ a Taide de matrices. II en est 

pour le franchissement de transition. 

La matrice d'incidence avant est ainsi specifiee : 

W - = [u-r.],outi;r. = Pre(P i,TJ-); 

et la matrice d'incidence arriere est ainsi specifiee : 

W + = [w±], ou w± = Post(P2, Tj); 

Pour le RdeP de la figure 1.1. nous avons : 

Tx 

1 
0 
0 
0 
0 
0 
0 

T2 

0 
1 
0 
0 
0 
0 
1 

T3 

0 
0 
1 
0 
0 
0 
0 

T4 

0 
0 
0 
1 
0 
0 
0 

n 
0 
0 
0 
0 
1 
0 
1 

T6 

0 
0 
0 
0 
0 
1 
0 

Pi 

P2 
p3 

P4 

P5 

Pe 
Pi 

Tx T2 

0 0 
1 0 
0 1 
0 0 
0 0 
0 0 
0 0 

n 
1 
0 
0 
0 
0 
0 
1 

T4 

0 
0 
0 
0 
1 
0 
0 

T5 

0 
0 
0 
0 
0 
1 
0 

T6 

0 
0 
0 
1 
0 
0 
1 

Pi 

P2 

Pi 

PA 

P5 

P6 

Pi 

La matrice suivante est la matrice d'incidence d :un RdeP : 

W = W + - W " = [wij]. 

Pour notre exemple, nous obtenons la matrice d'incidence suivante : 
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T6 

0 
0 
0 
1 
0 
-1 
1 

Pi 

Pi 

Pz 
P, 
P5 

Pe 

P-

Les valeurs d'une colonne de cette matrice informent des modifications a apporter au 

reseau lors du franchissement de la transition associee a cette colonne. Par exemple, 

la colonne de la transition 7\ indique que lors du franchissement de cette transition, 

il faut retirer un jeton de la place Pi et en ajouter un a la place P2- La matrice 

d'incidence est independante du marquage d'un reseau, elle ne donne done aucune 

indication sur la tirabilite des transitions. 

Soit la sequence de franchissement 5 , qui peut etre executee a partir du marquage 

m;. Ceci s'ecrit m; >. Par exemple, au marquage m 1 2 , illustre a la figure 

1.3(j), une sequence de franchissement possible est m 1 2 —>. La sequence de 

franchissement Si = T6 contient une fois la transition T6 et aucune fois les autres 

transitions. Le vecteur caracteristique d"une sequence S. qui s'ecrit s, est un vecteur 

ou la composante j correspond au nombre de franchissements de la transition 7} 

dans la sequence S. Le vecteur caracteristique de la sequence Si de notre exemple 

est S! = (0 ,0 ,0 ,0 ,0 ,1) . 

A Taide de la matrice d'incidence et d ;un vecteur caracteristique, nous pouvons definir 

Fequation fondamentale des reseaux de Petri. Cette equation, pour une sequence de 

franchissement 5* tel que m; > m^, est la suivante : 

Tx 

-1 
1 
0 
0 
0 
0 
0 

T2 

0 
-1 
1 
0 
0 
0 
-1 

T3 

1 
0 
-1 
0 
0 
0 
1 

r4 
0 
0 
0 

- 1 
1 
0 
0 

T5 

0 
0 
0 
0 
-1 
1 
-1 

mk = mi + W • s. 
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Dans notre exemple, cette equation devient : 

m 4 = m 1 2 + W • Si 

La solution de cette equation est : 

0 

1 

0 

0 

1 

1 

0 

+ 

- 1 

1 

0 

0 

0 

0 

0 

0 

- 1 

1 

0 

0 

0 

- 1 

1 

0 

- 1 

0 

0 

0 

1 

0 

0 

0 

- 1 

1 

0 

0 

0 

0 

0 

0 

- 1 

1 

- 1 

0 

0 

0 

1 

0 

- 1 

1 

L'equation fondamentale signifie que l'effet d'une sequence de franchissement est 

entierement determine par la matrice d'incidence et par le vecteur caracteristique de 

la sequence. Pour cela, le vecteur caracteristique doit correspondre a une sequence 

de franchissement possible pour le reseau. 

1.1.2.3 Invariants 

L'equation fondamentale permet de mettre en evidence des quantites invariantes dans 

un reseau de Petri. En supposant qu'un reseau n'atteint jamais un etat de blocage, le 

nombre de franchissements de transition, qui font evoluer le reseau de marquage en 

marquage, est illimite. Dans l'ensemble des marquages accessibles, des proprietes qui 

ne changent pas malgre les franchissements de transition sont dites invariantes. De 

plus, d'autres proprietes invariantes peuvent aussi etre decelees dans les sequences 

de franchissements. Ces deux types d'invariant sont appeles invariant de marquage 

et invariant de franchissement et on leur associe respectivement des composantes 

u 

1 

0 

0 

1 

1 

+ 

u 

0 

0 

1 

0 

- 1 

1 

= 

u 

1 

0 

1 

1 

0 

1 
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conservatives et des composantes repetitives. 

Dans les marquages accessibles du reseau de Petri modelisant ralgorithme de Peter­

son de la figure 1.3, nous pouvons voir qu'il n'y a toujours qu'un seul jeton dans les 

places P\, P2 et P3 et que deux jetons dans les places P4, P5 et P6. En tout temps, 

mi + m2 + W3 = 1 et m4 -(- m5 + m§ = 2. Ces proprietes invariantes ont pour si­

gnification qu'il y a en tout temps une seule instantiation du processus 1 et deux 

instantiations du processus 2. Ce sont des invariants de marquage. De fagon generale, 

un invariant de marquage est une somme ponderee des jetons de places d'un reseau 

de Petri qui demeure constante peu importe le franchissement de transition. 

Definition 1.3. Soit R un reseau de Petri et P l'ensemble de ses places. II y a un 

invariant de marquage dans R si pour un sous-ensemble de places P' = Pi, P?..... Ps 

inclus dans P et un vecteur de ponderation (q\. q2...., qs) dont toutes les composantes 

sont positives nous avons : 

qi • m(Pi) + g2 • ^ ( A ) + ••• + Qs • m(Ps) = constante, pour tout m G M(m0). 

L'ensemble de places P' est une composante conservative du RdeP R. Les com­

posantes conservatives sont constituees independamment du marquage initial d'un 

RdeP, ce sont des proprietes structurales. Toutefois, la valeur de la constante de 

rinvariant de marquage depend du marquage initial. 

Certaines sequences de franchissement du reseau de Petri modelisant ralgorithme 

de Peterson forment la base de sequences repetitives. C'est le cas des sequences 
rrt rj- rj-f rry rw-i m 

TiT2T3 et T^TSTQ. En effet, nous avons m 0
 1-^-^—> m 0 et m 0 ^-^—> m0 . 

Ces sequences induisent un retour a Fetat initial et elles pourraient etre repetees 

infiniment. 

Definition 1.4. Soit R un reseau de Petri et T l'ensemble de ses transitions. II v a 
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un invariant de franchissement dans R si pour une sequence de franchissements Sk 

composee du sous-ensemble de transition V inclus dans T, nous avons : 

m 0 > m0 . 

L'ensemble de transitions T" est une composante repetitive du RdeP R. 

L'equation fondamentale des RdeP est liee aux invariants, ce qui permet de degager 

deux proprietes. 

Soit un vecteur pondere de places x = (qi,q2-,--,Qn) ou qi est une valeur entiere de 

ponderation associee a la place p . Soit P(x) l'ensemble des places dont le poids est 

non-nul. ce qui en fait un sous-ensemble de P. 

Propriete 1.1. L'ensemble de places B est une composante conservative si et seule-

ment si un vecteur de ponderation x existe tel que 

P(x) = B et x T • W = 0. 

Le vecteur x est un P-invariant. 

On peut demontrer ceci a l'aide de l'equation fondamentale ou pour une sequence 

de franchissement S a partir de mo, le marquage resultant est donne par m^ = 

m0 + W • s. En multpliant les deux termes de l'equation par xT , on obtient x T • m^ = 

x T • m0 + x T • W • s. Enfin, si x T • W = 0, nous avons 

T T 
s. • rrik = xA • m 0 

peu importe la sequence S et done pour tout marquage nik G .M(mo)- Finalement, 

x T • mk est une somme ponderee dont le result at est l'invariant de marquage. 

Dans le modele de l'algorithme de Peterson, voici ce que donne ces equations dans 
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x T W = 1 1 1 0 0 0 0 0 0 0 0 0 0 

le cas de la composante conservative composee des places Pi, P2 et P3 011 le vecteur 

de ponderation Xi est (1, 1, 1. 0. 0, 0, 0) : 

- 1 0 1 0 0 0 

1 - 1 0 0 0 0 

0 1 - 1 0 0 0 

0 0 0 - 1 0 1 

0 0 0 1 - 1 0 

0 0 0 0 1 - 1 

0 - 1 1 0 - 1 1 

Ceci prouve que F ensemble de places P(xi) = {-Pi,-Pj--P3} e s t bien une compo­

sante de conservation. Avec le marquage initial mo = (1, 0, 0, 2. 0, 0,1), on obtient la 

constants de Finvariant de marquage avec F equation suivante : 

1 

0 

0 

2 

0 

0 

1 

Ainsi, cet invariant de marquage est m2 + m2 + m^ = 1. 

Un raisonnement similaire est possible pour les invariants de franchissement. 

Propriete 1.2. Soit D, un ensemble de transitions. L'ensemble D est une compo­

sante repetitive si et seulement si une sequence de franchissement 5", dont le vecteur 

caracteristique est s, existe tel que : 

x T • m0 = 1 1 1 0 0 0 0 
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T(s) = D e t W • s = 0. 

Le vecteur s est un T-invariant. 

Dans le modele de ralgorithme de Peterson, le vecteur caracteristique de la sequence 

Si = TiT2T3 y i = (1,1,1,0, 0, 0) est un T-invariant en raison du result at suivant : 

0 

0 

0 

W - y x = 0 0 0 - 1 0 1 - 1 1 1 0 0 0 = 0 

0 

0 

0 

Pour trouver tous les P-invariants d'un reseau de Petri, ralgorithme 1.1 a ete conc,u. 

Celui-ci peut aussi etre adapte pour trouver les T-invariants. Cet algorithme per-

met de trouver les P-invariants de support minimaux. Un P-invariant Xi est un 

P-invariant de support minimal s'il n"y a aucun P-invariant x 2 dans le meme RdeP 

tel que P (x 2 ) C P(x x ) . 

Algor i thme 1.1. Recherche des P-invariants de support minimaux. 

Etape 1. Soit A une matrice unit aire de dimension n (n etant le nombre de places) 

et B = W (la matrice d'incidence). Construire la matrice [A|B]. 

-1 

1 

0 

0 

0 

0 

0 

0 

- 1 

1 

0 

0 

0 

- 1 

1 

0 

- 1 

0 

0 

0 

1 

0 

0 

0 

- 1 

1 

0 

0 

0 

0 

0 

0 

- 1 

1 

- 1 

0 

0 

0 

1 

0 

- 1 

1 

Etape 2. Pour chaque index j de la transition Tj. 

Etape 2.1. Ajouter a la matrice [A|B] autant de lignes i qu'il y a de combinai-

sons lineaire avec des coefficents entiers positifs composees de deux lignes, tel que 

re lement( i j ) soit nul. 
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Etape 2.2. Eliminer de la matrice [A|B] toutes les lignes k dont l'element (k.j) 

n'est pas nul. 

Etape 3. Soit IA • IB une ligne / de la matrice [A|B] et P(IA) le support de IA (c'est-

a-dire lrensemble de places pour lesquels le poids n'est pas nul). Si deux lignes, p et 

q, de la matrice tel que P(PA) 5 P{QA)-. alors la ligne p est retiree de la matrice. 

Etape 4- Les P-invariants de support minimaux correspondent aux lignes non-nulles 

de A. 

• 

Voici le deroulement de Texecution de ralgorithme 1.1 lorsqu'il est utilise pour iden­

tifier les invariants de support minimaux du modele de ralgorithme de Peterson. La 

matrice qui suit est la matrice construite par ralgorithme. 

Etape 1. La matrice de 7 lignes (Pi a P7) et de 13 colonnes est construite. 

Etape 2. Etape 2.1. pour 7\ : la ligne Pi + P^ est ajoutee, il s'agit de la somme 

des deux premieres lignes. 

Etape 2.2. pour Tx : les lignes Px et P2 sont retirees de la matrice. 

Etape 2.1. pour T2 : les lignes P 3 + P7 et P 3 + (Pi + P2) sont ajoutees. 

Etape 2.2. pour T2 : les lignes P3 . P 7 et Pi + P 2 sont retirees de la matrice. 

Etapes 2.1. et 2.2 pour T3 : rien a faire. 

Etape 2.1. pour T4 : la ligne Pj + P5 est ajoutee. 

Etape 2.2. pour T4 : les lignes P4 et P5 sont retirees de la matrice. 

Etape 2.1. pour T5 : les lignes P6 + (P3 + P7) et P6 + (P4 + P5) sont ajoutees. 

Pte,^e ^.^. pour T5 : les lignes P6 , P 3 + P7 et P4 + P 5 sont retirees de la matrice. 

Etapes 2.1. et 2.2 pour T6 : rien a faire. 
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Etape 3. Aucune ligne ne peut etre retiree. 

Etape 4- II reste trois lignes a la matrice. II y a done trois composantes conserva­

tives dans le modele. soit {P1.P2.P3}, {P4, P5, P&} et {Pz,P6,P7}. Les P-invariants 

de support minimaux sont xx = (1,1,1,0.0,0,0), x2 = (0,0,0,1,1.1,0) et x3 = 

(0,0,1,0,0,1,1). 

B 

Pi . 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

p2 

0 

1 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

P3 

0 

0 

1 

0 

0 

0 

0 

0 

1 

1 

0 

1 

0 

P4 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

P'o 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

1 

Pe 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

1 

Pi 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

1 

0 

Ti 

-1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

T2 

0 

-1 

1 

0 

0 

0 

-1 

-1 

0 

0 

0 

0 

0 

T3 

1 

0 

-1 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

T4 

0 

0 

0 

-1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

T5 

0 

0 

0 

0 

-1 

1 

-1 

0 

-1 

0 

-1 

0 

0 

T6 

0 

0 

0 

1 

0 

-1 

1 

0 

1 

0 

1 

0 

0 

Pi 

P2 

Ps 

PA 

A 
PG 

Pi 

P1 + P2 

P3 + P1 

P3 + (Pi + P2 

Pi + P5 

P6 + (P3 + P7 

Pe + (PA + P5 

La recherche des P-invariants du modele de Peterson a permis de retrouver les deux 

invariants de marquage precedemment identifies, mais aussi un troisieme, dont la 

composante conservative est {P3, P6, P7}. Cet invariant correspond a la ressource que 

les processus 1 et 2 se partagent et sa signification est que la quantite de ressource 

est invariante. Dans notre exemple, cette quantite est 1, et l'invariant permet de 

http://%7bP1.P2.P3%7d
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demontrer que la ressource ne peut etre que dans un des trois etats suivants a la fois : 

libre (place P7), utilisee par le processus 1 (place P3) ou utilisee par le processus 2 

(place Pe). 

L'algorithme 1.1 peut facilement etre modifie pour la recherche des T-invariants. II 

suffit de rechercher les P-invariants de la matrice W T . En effect ant cette trans­

formation, ralgorithme trouve les T-invariants suivants : yx = (1,1,1,0,0,0) et 

y2 = (0,0,0,1,1,1). A partir du marquage m0, ces T-invariants correspondent aux 

composantes repetitives TiT2T^ et T4T5T6 que nous avions informellement identifiees 

precedemment. 

1.1.2.4 Autres proprietes 

Les reseaux de Petri ont plusieurs autres proprietes que nous ne presenterons pas 

puisqu'elles ne sont pas utilisees dans cette these. Le lecteur devrait toutefois savoir 

que la theorie des RdeP permet d'analyser plusieurs proprietes d'un modele. Par 

exemple, un RdeP est dit borne si le marquage de chacune de ses places n'est jamais 

superieure a une certaine valeur. Aussi, une transition d'un RdeP est dite vivace 

si cette transition apparait dans toutes les sequences de franchissement possibles a 

partir des marquages atteignables. 

1.1.3 Extensions a la theorie originale 

Certaines limites au pouvoir de modelisation des reseaux place-transition sont rapi-

dement apparues. Afin d'augmenter le nombre d'applications possibles, la theorie des 

reseaux de Petri a ete etendue et enrichie. On appelle extensions les nouveaux types 

de reseau de Petri qui ont ete developpes. Les extensions ont de nouvelles regies 
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de fonctionnement qui ont ete ajoutees a celles que nous avons deja definies. Les 

sous-sections 1.1.3.1 a 1.1.3.3 presentent trois extensions a la theorie des reseaux de 

Petri : les reseaux de Petri colores. les reseaux de Petri stochastiques et les reseaux 

de Petri hybrides fonctionels. Ceci n'est pas une presentation exhaustive de toutes 

les extensions exist antes. Nous presentons ces extensions-ci puisqu'elles ont deja ete 

utilisees pour modeliser des systemes biologiques. 

1.1.3.1 Reseaux de Petr i colores 

Pour modeliser adequatement certains modeles, il fut necessaire de distinguer dif-

ferentes categories de jetons. Ce qui fut fait en etiquetant les jetons d'un RdeP de 

differentes couleurs. Les conditions de franchissement d'une transition d'un RdeP 

colore peuvent varier selon la couleur des jetons. Cette extension a la theorie des 

RdeP est ainsi definie : 

Definition 1.5. Un reseau de Petri colore R est defini par le n-tuple (P, T, Pre, 

Post, C, m) ou : 

(P, T, Pre, Post, m) est un reseau de Petri tel que defini par la definition 1.1 

ou les jetons de m sont identifies par une couleur; 

C = {C\, C2 . . . .} est un ensemble de couleurs. Les matrices d'incidence Pre et 

Post sont des fonctions qui tiennent compte de la couleur des jetons. 

Dans le modele de l'algorithme de Peterson illustre a la figure 1.1, les deux jetons 

des instantiations du processus deux ne peuvent etre distingues l'un de l'autre. La 

preservation de l'identite de chacune des instantiations est possible en coloriant les 

jetons, ce qui permet de savoir exactement dans quel etat chaque instantiation du 

processus se trouve. Conceptuellement, les RdeP colores sont des superpositions de 
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reseaux place-transition. Une interessante consequence de cette propriete est la re­

duction de la taille de certains modeles puisque la superposition reduit le nombre de 

places et de transitions. 

1.1.3.2 Reseaux de Petri stochastiques 

Les reseaux de Petri stochastiques sont une sous-categorie de reseaux non-autono-

mes : les reseaux de Petri temporises. Ces derniers ont ete developpes afin d'introduire 

une dimension temporelle a la theorie originale. En effet, dans les reseaux place-

transition, le franchissement de transition est un evenement discret instantane qui a 

une position relative a d'autres franchissements puisqu'il fait partie d'une sequence, 

mais qui n'est pas situe sur une ligne de temps absolue. Les reseaux temporises 

introduisent une abstraction temporelle par la notion d:horloge. II devient possible de 

specifier des delais pour le franchissement de transition. Autrement dit, les transitions 

sont tirees a des temps donnees. Les temps de franchissement peuvent etre dermis de 

fagon statique (delai constant) ou de fagon dynamique (delai variable dependant du 

marquage). 

Dans les RdeP stochastiques, les delais de franchissement sont des valeurs stochas­

tiques. Le franchissement d'une transition se produira lorsqu"un temps d, qui est 

une valeur aleatoire, se sera ecoule. Cette extension a la theorie des RdeP est ainsi 

definie : 

Definition 1.6. Un reseau de Petri stochastique R est defini par le n-tuple (P, 7\ 

Pre, Post, F, A, m) ou : 

(P, T, Pre, Post, m) est un reseau de Petri tel que defini par la definition 1.1; 

F — {FT,, Ti e T | FTl : [0, oo) —>• [0,1]} est un ensemble de fonctions de 
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repartition des delais de franchissement des transitions de R. Elles ont une moyenne 

egale a un et elles sont independantes du marquage; 

A = {\Ti, Ti e T | XTi • N —> R+} est Tensemble des taux de franchissment. Ce 

taux est un nombre reel positif qui est utilise pour calculer la fonction de repartition 

de la transition T, 

De la definition 1.6. on peut comprendre que le delai d d'une transition suit une 

fonction de repartition ayant un taux specifique. Dans le cas ou toutes les fonctions 

de repartition d'un modele suivent une loi exponentielle. on peut transformer le 

modele en chaine de Markov. 

1.1.3.3 Reseaux de Petri hybrides fonctionnels 

Les reseaux de Petri hybrides fonctionnels (RdePHF) sont une extension qui a ete 

congue specifiquement pour la modelisation de systemes de biologie moleculaire (Mat-

suno et al., 2003c). Cette extension combine les regies de fonctionnement d'autres 

extensions existantes. Avant de definir formellement les RdePHF, voyons les autres 

extensions dont ils empruntent certaines caracteristiques, soit les extensions hybride, 

a arc inhibiteur et fonctionnelle. 

La nature discrete des reseaux de Petri (quantites discretes et evenements discrets) 

est une autre limite a la modelisation de certains systemes qui est devenue indesi-

rable. On a alors imagine des RdeP continus formes de places contenant des quantites 

continues et des transitions a flux continu. Ce type de reseau est parfait pour modeli-

ser des flux, que ce soit le flux d:un liquide ou la production continue d'une machine. 

Un modele de RdeP continu a son equivalent en equations differentielles. Toutefois, 

tout flux peut etre subitement interrompu par un evenement considere discret, par 
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exemple la fermeture d'une conduite ou le bris d'une machine. Une extension a la 

theorie des RdeP ayant une nature mixte, discrete et continue, permet de modeli-

ser de tels phenomenes. Ce sont les reseaux de Petri hybrides. Les RdeP hybrides 

peuvent etre autonomes ou non. Dans ce dernier cas, on parle aussi de RdeP hy­

brides temporises. Les places continues d'un RdeP hybride ne peuvent pas contenir 

une quantite de jetons indivisibles comme les places discretes. On parle alors de la 

marque d'une place continue, qui est un nombre reel. 

Comme nous l'avons vu a la definition 1.2. les conditions de franchissement des 

transitions d"un reseau place-transition ne peuvent qu'etre des enonces de la forme 

™-k{Pi) > Pre(Pj.Tj) pour toutes Pt £ °7}. Ce qui signifie que le marquage de toutes 

les places d'entree d'une transition doit etre egal ou superieur au poids des arcs 

reliant les places d'entree a la transition. Par definition, le poids d'un arc reliant une 

place a une transition est egal ou superieur a 1. Pour modeliser des situations ou une 

condition de franchissement est un test negatif, un test de seuil, c'est-a-dire qu'une 

transition devient tirable seulement si le marquage d'une place est inferieur au seuil 

s, on a cree les arcs inhibiteurs. Cette condition de franchissement est representee 

ainsi : si le poids de Tare inhibiteur Pi —>• 7} est s. alors la transition 7} est tirable 

si m,(Pi) < s. Les RdeP qui incluent ce type d'arc sont les RdeP a arc inhibiteur. 

Lorsqu'une transition est franchie, les places d :entree reliees a cette transition par 

un arc inhibiteur n'ont aucun jeton de retirer. Un arc inhibiteur sert exclusivement 

a des tests de seuil et non a la consommation de jetons par une transition. II existe 

aussi les arcs de test, qui ont un comportement similaire. Un arc de test permettra le 

franchissement d'une transition sans consommation de jetons si la condition suivante 

est remplie : la transition 7} est tirable si m(P,) > s. 

Toutes les extensions que nous avons vues jusqu'ici ont une structure statique. Ceci 

empeche la modelisation de systemes ou certains parametres s'adaptent dynami-
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quement. Dans les termes de la theorie des reseaux de Petri, eette adaptation est 

dependante du marquage. Par exemple, on pourrait ajouter a la definition d'un re­

seau place-transition que le poids des arcs est fonction du marquage du reseau. Ainsi, 

apres chaque franchissement de transition, le poids des arcs est mis a jour selon le 

nouveau marquage. Un reseau qui s'adapte dynamiquement est un reseau fonctionnel. 

En combinant les regies de fonctionnement des RdeP hybrides. a arc inhibiteur et 

fonctionnels, nous obtenons les RdePHF. 

Definition 1.7. Un reseau de Petri hybride fonctionnel R est defini par le n-tuple 

(P, T, h, A, b, V, d, m) oil : 

P = {Pi, P 2 , . . . , Pn}, est un ensemble fini de places oil n > 0 ; 

T = {T\, T2,.... Tm}, est un ensemble fini de transitions ou m > 0 ; 

P C\T — 0 , c'est-a-dire que les ensembles P et T sont disjoints ; 

h : P U T —» {discret . continu}, est la fonction hybride qui indique pour 

chaque place Pi £ P si c'est une place discrete, h(Pi) = d i sc re t , ou une place 

continue, h(P{) = continu. La fonction hybride s'applique de la meme fa^on a chaque 

transition T, G T. Ceci permet de diviser P en deux sous-ensembles (PD, l'ensemble 

des places discretes, et Pc, Tensemble des places continues). T est aussi divisible en 

TD et Tc; 

A = PTUTP ouPT = PxT etTP = T x P. A est un ensemble fini d'arcs; 

b : A —> {normal, t e s t , inhib i teur} , est la fonction de type d'arc qui indique 

pour chaque arc Ai 6 A si c'est un arc normal, b(Ai) = normal, un arc de test, 

b(Ai) = t e s t , ou un arc inhibiteur, b(Ai) = inhibi teur . Les restrictions suivantes 

s'appliquent au triplet place, transition et arc de R : si b(Ai) = normal A At £ 
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PDxT^AtePDxTD et si b(Ar) = normal AAt 6 T x PD => At € T D x P D . Ces 

restrictions signifient que si une place d'entree ou une place de sortie d'une transition 

reliees par un arc normal est discrete, la transition doit necessairement etre discrete 

aussi; 

V = {fAD{m1,...:mn) UgAc{m1,...:mn), A? G P x TD U TD x P, Af e P x 

Tc U Tc x P \ f : M ^ N. g : M —* M+}, est un ensemble de fonctions assignees 

aux arcs de R qui ont le marquage A4 du reseau comme parametres. Lorsqu'un arc 

est relie a une transition discrete, son poids est un nombre naturel. Lorsqu'un arc 

est relie a une transition continue, sa vitesse est un nombre reel positif; 

d : TD —>• R+, est Fapplication appele delai. Pour une transition discrete Ti, 

d(Tj) : M —»• M+ est la fonction de delai de Ti; 

m : P —• N, est le marquage du reseau, soit un vecteur de n composantes 

(mi ,m 2 , . . . , mn) ou m(Pi) est le nombre de jetons (la marque) de la place Pi discrete 

(continue). m 0 est le marquage initial. 

Les RdePHF ont un grand pouvoir de modelisation, tres utile pour la simulation. 

Toutefois, certaines proprietes des reseaux place-transition n'ont pas d'equivalent 

pour les RdePHF, ce qui affaiblit les possibilites d'analyse qualitative des systemes 

modelises avec cette extension. II existe aussi les RdePHF avec extension, qui ajoute 

au RdePHF la capacite de modeliser d'autres types de donnees comme des booleens 

et des chaines de caracteres. Pour une definition formelle de cette extension, voir 

Nagasaki et al. (2004). 
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1.2 Les reseaux de Petri et leur application aux sys temes biologiques de 

2004 a aujourd'hui 

Lors de travaux precedents sur Futilisation des reseaux de Petri pour la modelisa-

tion et la simulation de systemes de biologie moleculaire, nous avons complete une 

recension des ecrits sur le sujet (Hardy et Robillard, 2004). Cette revue de la littera-

ture couvrait les publications a partir du premier article suggerant Implicat ion des 

reseaux de Petri a la biologie (Reddy et al.. 1993) jusqu'aux parutions du debut de 

Fannee 2004. Depuis, plusieurs autres articles ont ete publics, suggerant de nouvelles 

applications de la theorie de reseaux de Petri tant pour l'analyse qualitative que 

quantitative de systemes biologiques. Cette section presente ces nouveaux articles. 

Nous verrons dans un premier temps d'autres revues de litterature parues au cours 

de cette periode. Ensuite. nous recenserons des etudes dont Fobjectif est l'analyse 

qualitative a Faide des reseaux de Petri et finalement les etudes quantitatives de 

systemes biologiques. 

1.2.1 Recensions des ecrits 

Quelques mois avant que notre premiere revue de la litterature sur Futilisation des 

reseaux de Petri pour Fetude de systemes biologiques soit publiee, une autre tres 

courte revue de litterature paraissait (Pinney et al., 2003). Cet article entreprend de 

fagon beaucoup plus succincte de presenter les differentes avenues offertes aux biolo-

gistes qui desirent utiliser les reseaux de Petri pour la modelisation et la simulation 

de systemes biologiques, soit l'analyse structurale et l'analyse quantitative. Suivant 

de peu la publication de notre article, une troisieme recension des ecrits fut publiee 

(Peleg et al., 2005). Cet article propose une revue des differents formalismes et ou-

tils bases sur les reseaux de Petri. Une particularite interessante de cet article est 
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de comparer les formalismes et les outils selon leurs capacites mathematiques ainsi 

que leur aptitude a repondre a certaines questions pertinentes a l'etude de systemes 

biologiques. Cette approche en fait un article tres pratique pour les biologistes. Les 

auteurs comparent cinq outils : Mobius (Deavours et al., 2002), TimeNET (German 

et al., 1995), Design/CPN (Jensen, 1992), Genomic Object Net (Nagasaki et al.. 

2003; Doi et al., 2003b) et Woflan (Verbeek et van der Aalst, 2000). 

Plus recemment, une quatrieme recension des ecrits a ete publiee (Matsuno et al., 

2006b). Similairement aux autres revues, cet article presente les differents forma­

lismes de reseau de Petri appliques a la biologie et discute de leur utilisation. Encore 

une fois, la distinction entre modelisation qualitative et modelisation quantitative est 

utilisee pour presenter L ensemble des etudes publiees. Nous utiliserons, nous aussi, 

cette categorisation pour recenser les etudes sur le sujet. 

1.2.2 E t u d e s qua l i t a t i ves de voies b iologiques 

Reddy et al. (1993) ont suggere pour la premiere fois de representor une voie metabo-

lique a l'aide d'un reseau de Petri. Leur travail a constitue la fondation theorique de 

plusieurs autres projets de modelisation qui ont suivi. Dans leur article, les places et 

les transitions du modele sont respectivement associees aux metabolites et aux reac­

tions biochimiques. Le poids des arcs sont les coefficients stoechiometriques des reac­

tions entre substrats et produits. Le nombre de jetons indique le nombre de molecules 

des differents metabolites. Ces regies ont servi aux etudes subsequentes de systemes 

biologiques qui, jusqu'en 2004, ont porte essentiellement sur les voies metaboliques 

(Hofestadt, 1994; Kiiffner et al., 2000; Voss et al., 2003). Zevedei-Oancea et Schuster 

(2003) ont discute d'autres rapprochements possibles entre les voies metaboliques et 

la theorie des reseaux de Petri. Entre autres, ils ont expose la correspondance entre 

les relations de conservation et les flux elementaires des voies metaboliques et les 
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P-invariants et les T-invariants des reseaux place-transition. 

Depuis 2004, les voies de signalisation cellulaire sont maintenant l'objet d'etude prin­

cipal des nouvelles publications. Ce deplacement dans le type de systemes de biologie 

moleeulaire etudies indique une augmentation du niveau de complexite des systemes 

modelises avec les RdeP. Les voies metaboliques sont constitutes de mecanismes 

simples, une suite uniforme de reactions catalytiques. Les voies de signalisation cel­

lulaire sont plus complexes. Elles sont formees par differents types de reactions tels 

la formation de complexes moleculaires, des reactions catalytiques et le transport de 

molecules. La combinaison de ces reactions permet la propagation d'un signal mole­

culaire qui provoque le changement d'etat de molecules d'un etat inactif a un etat 

act if. 

Voyons maintenant les differentes etudes qualitatives de voies et de systemes biolo-

giques basees sur les reseaux de Petri menees de 2004 a aujourd'hui. 

1.2.2.1 Analyse de voies metabol iques 

Les derniers articles portant specifiquement sur l'analyse de voies metaboliques a 

l'aide de RdeP sont ceux de Heiner et Koch (2004) et Koch et al. (2005). Ces deux 

articles constituent en fait la poursuite du meme projet ou les auteurs proposent une 

methode pour la modelisation et la validation de voies metaboliques. Cette methode 

est basee sur les RdeP colores et constitue une excellente synthese des propositions 

anterieures d'applications de la theorie de RdeP aux voies metaboliques. L'etape de 

modelisation de cette methode reprend les regies de modelisation de Reddy et al. 

(1993). L'etape de validation propose differentes analyses (analyse structurale, ana­

lyse des invariants et analyse d'accessibilite pour verifier la coherence du modele et 

deduire certaines de ses proprietes structurales et dynamiques. Cette methode a ete 
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appliquee a la voie du catabolisme du sucrose dans le tubercule de patate (Koch 

et al., 2005). 

1.2.2.2 Analyse de voies de signalisation cellulaire 

On a tente d'adapter la methode de modelisation et de validation de voies metabo-

liques aux voies de signalisation cellulaire (Heiner et al., 2004). Pour modeliser les 

reactions enzymatiques de ce type de voies, on a fait appel aux arcs de test. Pour 

effectuer la validation du modele. les arcs de test sont convertis en arcs unidirection-

nels afin de determiner les T-invariants et ainsi d'offrir une description des flux dans 

la voie de signalisation. Cette methode a ete appliquee a Tapoptose cellulaire. 

Lee et al. (2004) ont cherche a definir un nouveau cadre conceptuel pour la mo­

delisation de voies de signalisation en se basant sur le formalisme des RdeP. Entre 

autres, ils ont suggere des representations utilisant les reseaux de Petri pour des 

reactions types d'une voie de signalisation (transformation chimique, translocation, 

association, dissociation, activation enzymatique et cascade de signalisation). Ils ont 

applique leur cadre conceptuel a la voie de signalisation induite par l'interleukine-l/? 

et le facteur-Q' de necrose tumorale. 

En analysant les differentes utilisations faites des RdeP pour la modelisation des 

voies de signalisation, Takai-Igarashi (2005) a remarque des incoherences. Elle ne 

remet pas en cause l'utilite de ces approches pour la modelisation et l'analyse des 

complexes voies de signalisation. mais elle entrevoit des difncultes futures pour la 

reutilisation, le partage et la modification des modeles. Elle proposa une standar­

disation des representations par RdeP des processus de signalisation cellulaire qui 

repose sur le Cell Signaling Network Ontology (Takai-Igarashi et Mizoguchi, 2004). 
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En parallele, deux articles sont parus en 2006 qui temoignent, a mon avis, d'une 

maturation de ce champ de recherche. Sackmann et al. (2006) et Li et al. (2006) 

explorent des applications pointues de techniques d ;analyse basees sur les RdeP et 

tentent de les arrimer aux concepts des voies de signalisation. 

D'une part. Li et al. (2006) poursuivent le travail de Lee et al. (2004) et proposent 

des modeles de RdeP pour d'autres reactions types des voies de signalisation (entre 

autres, phosphorylation, autophosphorylation, homodimerisation ainsi que l'ouver-

ture et la fermeture de canaux). D'autre part, ils introduisent un nouveau concept, 

la composante deactivation de transduction, qui permet de decrire le processus d'ac­

tivation enzymatique des reactions des voies de signalisation. Ils montrent la corres­

pondence entre ce concept et les T-invariants des modeles de RdeP. Ils suggerent 

un algorithme qui identifie les composantes d'activation de transduction et qui eta-

blit les liens entre celles-ci. Cet algorithme necessite une identification des places qui 

modelisent une enzyme. Cette methode permet de decomposer une voie de signali­

sation en blocs d'activation qui agissent sequent iellement les uns sur les autres pour 

faire passer des enzymes d u n etat inactif a un etat actif et ainsi faire transiter un 

signal par la voie. Ils demontrent leur methode sur un modele des voies de signali­

sation stimulees par rinterleukine-3 et ils obtiennent comme result at l'architecture 

d'activation de la voie. 

L'approche de Sackmann et al. (2006) atteint un objectif similaire de decomposition 

du modele d'une voie de signalisation en unites fonctionnelles, qui sont les plus petits 

regroupements possibles ayant une signification biologique. Cette approche, au lieu 

d'utiliser une identification explicite des places represent ant une enzyme, repose sur 

les P-invariants du RdeP. En effet, une enzyme est une entite constante du modele 

puisqu'elle est toujours dans au moins un etat. L'action d'une enzyme est mode-

lisee par un arc de lecture {read arc, c'est-a-dire un arc double, a la fois d'entree 
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et de sortie, qui entraine une consommation et une production de jetons nulles). 

La presence d'arcs de lecture complique Identification de T-invariants a partir de 

la matrice d'incidence. Les auteurs de cet article proposent done le concept de T-

invariant faisables, des T-invariants realisables a partir du marquage d'un reseau. 

Les T-invariants faisables ont tous une signification biologique. Les auteurs defi-

nissent un second concept, les ensembles maximaux de transitions communes, qui 

regroupent des transitions qui apparaissent toujours ensemble dans les T-invariants. 

Ces ensembles representent des reactions qui sont toujours executees ensemble pour 

accomplir une fonction biologique. Les conclusions de cette approche servent princi-

palement a valider les modeles complexes. La voie de signalisation de la pheromone 

de reproduction de Saccharomyces cerevisiae sert d'exemple d'application de cette 

approche. 

1.2.2.3 Analyse du sys teme corporel d'homeostasie du fer 

L'approche d'analyse que nous venons de recenser fut reprise pour le systeme d'ho­

meostasie corporel du fer. Dans une premiere etude, un modele de RdeP a ete deve-

loppe (Formanowicz et al., 2007). Selon les auteurs, il s'agit du premier modele formel 

de ce systeme qui n'est toujours pas completement elucide. Dans une seconde etude, 

ce modele a ete analyse en y identifiant les T-invariants faisables et les ensembles 

maximaux de transitions communes (Sackmann et al., 2007). Ce modele comporte 

85 T-invariants et 14 ensembles-MTC qui ont tous une signification biologique. Les 

auteurs utilisent aussi une nouvelle technique, le regroupement des T-invariants fai­

sables en grappes selon la methode UPGMA (Grafahrend-Belau, article a paraitre). 

Les grappes identifiees correspondent aux voies biologiques du systeme. 
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1.2.3 Etudes quantitatives 

Jusqu'a present, nous avons reeense les etudes qui utilisent le cadre theorique des 

reseaux de Petri pour analyser qualitativement les systemes biologiques. L'avantage 

principal d:une telle approche est de permettre la validation d'un modele. Ces mo-

deles qualitatifs deviendront reellement utiles que s'ils permettent par la suite une 

etude quantitative, reelle generatrice de nouvelles hypotheses a etre testees experi-

mentalement puisque les etudes quantitatives permet d'investiguer le comportement 

dynamique des systemes. 

Comme nous Favons vu a la section 1.1.3.3, une extension particuliere de la theo-

rie des RdeP a ete specifiquement congue pour realiser des etudes quantitatives de 

systemes biologiques. II s'agit des reseaux de Petri hybrides fonctionnels. Beaucoup 

d'etudes ont ete menees a l'aide de ce formalisme dedie a la simulation. Quelques 

autres etudes quantitatives ont aussi ete conduites a l'aide d'autres extensions de 

RdeP. Nous les repertorions ici. 

1.2.3.1 Analyse quantitative de voies biochimiques avec les reseaux de 

Petri hybrides et leurs extensions derivees 

La modelisation du mecanisme de commutation genetique du phage-A avec les RdeP 

hybrides a demontre pour la premiere fois que ce formalisme avait un interessant 

potentiel pour la modelisation et la simulation des voies biochimiques (Matsuno et al.. 

2000). Depuis, plusieurs types de modeles ont ete developpes, simules et analyses. 

• Reseaux de regulation genetique 

- Commutateur genetique du phage A (Matsuno et al., 2000) 

- Rythmes circadiens de la mouche a fruit (Matsuno et al., 2003c) 
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- Rythmes circadiens de la souris (Matsuno et al., 2006a) 

- Regulation de genes du cancer (p53, MDM2 et pl9ARF) (Doi et al., 2006) 

• Voies de signalisation cellulaire 

- Apoptose induite par la proteine Fas (Matsuno et al., 2003c) 

- Voie de signalisation Notch-Delta chez Drosophila (Matsuno et al., 2003b) 

- Voie de la drogue chimiotherapique gemcitabine (Peleg et al., 2005) 

- Maladie d'Huntington (Nagasaki et al., 2005) 

- Role dinterleukine-6 dans le developpement des cellules souches hematopoie-

tiques (Troncale et al., 2006) 

- Effet de l'inhibiteur de la kinase Raf sur la voie de signalisation de la kinase 

ERK (Gilbert et Heiner. 2006) 

- Voies de signalisation des kinases Akt et MAPK (Koh et al., 2006) 

• Voies metaboliques 

- Cycle de Puree et sa regulation (Chen et Hofestadt, 2003) 

- Operon lac et la voie de la glycolyse (Matsuno et al.. 2003a) 

• Reseaux proteiques des cycles cellulaires 

- Processus de division cellulaire de Xenopus (Matsui et al., 2004) 

- Cycle de fission cellulaire de la levure (Fujita et al., 2004) 

Pour la plupart des etudes citees precedemment, l'approche est similaire. On procede 

a la modelisation d :un systeme biochimique en structurant les molecules et leurs 

interrelations. On specifie les parametres dynamiques (concentrations, parametres 

cinetiques) pour ensuite simuler le modele. Les donnees de simulation sont des series 

de donnees temporelles, principalement la variation dans le temps des concentrations 

de molecules. Une particularite de l'etude de Koh et al. (2006) est de proposer une 

approche de decomposition pour Festimation des parametres dynamique d'un modele 

de RdePHF qui tient compte de sa structure. Cette approche diminue de fac,on 

importante le temps d'execution de Talgorithme. 
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1.2.3.2 Analyse quantitat ive de voies biochimiques avec d'autres ex ten­

sions 

Depuis 2004, il y a eu peu de tentatives d'etudier quantitativement un systeme bio-

chimique avec des RdeP d i m autre type que les RdePHF. Lee et al. (2006) ont simule 

la voie de signalisation du facteur de croissance epidermique a Taide de reseaux de 

Petri executables et de l'outil Design/CPN. Popova-Zeugmann et al. (2005) ont uti­

lise les reseaux de Petri temporises pour transformer un modele qualitatif a l'etat 

stable en un modele quantitatif a l'aide des T-invariants. Elles presentent des tech­

niques structurales qui permettent de determiner la realisabilite temporelle d"une 

sequence de transitions et de calculer les plus court et long delais de la sequence. 

Inspires par cette derniere approche discrete, Li et al. (2007) ont aussi utilise les 

reseaux de Petri temporises pour etudier quantitativement la voie de signalisation de 

l'apoptose cellulaire induite par la proteine Fas. Selon ces derniers, une approche dis­

crete est une etape de modelisation quantitative qui devrait preceder une approche 

hybride comme les RdePHF. lis justifient cette affirmation en mentionnant que les 

modeles hybrides necessitent un important effort de : 'tunning" des parametres par 

essai-erreur. La simulation des modeles hybrides est aussi tres couteuse en ressources 

computationnelles. Avec les modeles discrets, on obtient des resultats moins precis, 

mais qui donnent des indications tres pertinentes a une modelisation hybrides. Pour 

ces trois raisons, Li et al. (2007) suggerent une premiere modelisation quantitative 

discrete avec les RdeP temporises avant de realiser une modelisation hybride. 

1.3 Les reseaux de Petr i peintures 

Pour visualiser les donnees produites lors de la simulation d'un RdeP, la plupart 

des simulateurs supportent la visualisation par jeu de jetons qui permet de voir la 
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modification de la distribution des jetons dans le reseau. A Taide d'une animation, 

on a l'impression que les jetons voyagent au rythme de leur production et de leur 

consommation. D'autres simulateurs presentent le marquage sous forme numerique 

directement sur le reseau ou encore, ils sont equipes d'une fonctionnalite permettant 

la production de grapliiques de donnees bidimensionnels ou des courbes representent 

la variation de la marque des places dans le temps. Quand les modeles atteignent un 

degre eleve de complexity, ces met nodes de visualisation des donnees de simulation ne 

suffisent plus a donner rapidement une idee du comportement du modele simule. Le 

simple coup d'oeil n'informe plus vraiment et une analyse plus approfondie devient 

necessaire. 

Arm de conserver la possibilite d'explorer visuellement les donnees de simulation d'un 

modele de RdeP complexe, nous avons imagine un ajout simple a la theorie que nous 

avons appele les RdeP peintures. Nous avons presente cette idee pour la premiere fois 

dans l'article de conference reference ici (Hardy et Robillard, 2006b), qui se trouve 

a l'annexe II. Les reseaux de Petri peintures consistent en l'application de teintes 

sur chacune des places du modele. Une regie de peinturage, qui a comme principal 

parametre d'entree la marque d'une place, sert a determiner la teinte a appliquer 

aux places. Differentes regies de peinturage peuvent etre creees afin de generer des 

representations qui revelent differents aspects des donnees. A la sous-section 5.3.4. 

nous presentons deux regies differentes de peinturage. 

Les teintes des places du modele sont calculees a chaque pas de simulation, ce qui 

permet ensuite de produire une representation animee du graphe du modele de RdeP. 

Dans cette representation animee, les teintes changent pour refleter revolution du 

marquage du reseau. Les RdeP peintures permettent done d'apprecier visuellement 

le comportement dynamique du modele. Nous croyons que cet ajout presente syn-

thetiquement les donnees de simulation et complete tres bien la theorie existante et 
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supporte Tobjectif principal du formalisme de RdeP est de representor comment un 

systeme fonctionne. 
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C H A P I T R E 2 

U N E A P P R O C H E S Y S T E M I Q U E E N BIOLOGIE M O L E C U L A I R E : 

LE G E N I E A LA R E N C O N T R E D E LA BIOLOGIE 

2.1 Introduct ion 

Depuis quelques annees. des scientifiques observent une profonde transformation de la 

recherche en biologie. En 50 ans de recherche, plus precisement depuis la decouverte 

de la structure de l'ADN en 1953 jusqu'a la fin du sequenc_age du genome humain 

en 2001, les chercheurs en biologie ont majoritairement adopte une approche de 

recherche reductionniste. En 1966, Francis Crick a affirme que "L'objectif ultime 

de la biologie moderne est d'expliquer tous les phenomenes biologiques en termes 

provenant de la physique et de la chimie." Crick est cite par Van Regenmortel (2004). 

Cette phrase resume bien tout le courant de pensee qui a prevalu en biologie pendant 

la deuxieme moitie du siecle dernier. C'est ainsi que tous les elements participant 

aux processus biologiques : organes, cellules, organites et macromolecules ont ete 

decortiques, analyses, caracterises, etc. 

Mais cette demarche scientifique a certaines limites et une nouvelle demarche a 

emerge : la biologie systemique. appelee systems biology en anglais. Cette approche 

prone la comprehension des processus biologiques comme des systemes hautement 

complexes, ayant une structure et une dynamique propres, des mecanismes de controle 

et des principes de conception (Kitano, 2002b). Par exemple, il ne s'agit plus d'asso-

cier des fonctions precises a des proteines, mais d'identifier et comprendre les reseaux 

d'interactions oil elles sont actives. 
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Les partisans de la nouvelle approche systemique et holistique considerent mainte-

nant que la biologie est une discipline autonome qui requiert son vocabulaire propre 

et des concepts qui ne sont issus ni de la cliimie ni de la physique (Van Regenmortel, 

2004). Toutefois, les bases de cette nouvelle biologie sont difficiles a imaginer et a 

poser de facon consensuelle. Dans un texte d"anticipation scientifique etonnamment 

juste, Hartwell et al. (1999) stipulent que les systemes biologiques sont tres differents 

des systemes chimiques et physiques : les systemes physiques sont composes de co­

pies d'elements habituellement simples, alors que les systemes biologiques contiennent 

des milliers de composantes differentes, variant en nombre de quelques unites a des 

millions, ayant des interactions precises et formant souvent des dispositifs plus com­

plexes. Selon eux, plus importantes encore sont les contraintes qui distinguent la 

biologie de la physique et de la chimie, a savoir la survie et la reproduction des 

organismes vivants, et la notion concomitante de fonctionnalite. 

Quelques chercheurs ont avance, comme Hartwell, qu'une meilleure comprehension du 

vivant proviendrait d'une application des principes d'ingenierie a la biologie. Ceux-ci 

sont d'avis que les principes d'organisation des systemes biologiques se rapprochent 

de ceux des systemes technologiques hautement complexes et que plusieurs paralleles 

sont a etablir entre les deux. 

Wolkenhauer (2001) a fait remarquer que les origines de la biologie systemique ne 

sont pas si recentes puisque des biologistes avaient deja emis les memes principes de 

base il y a quelques decennies. Toutefois, c'est a partir des informations biologiques 

sur les genomes, les proteomes et autres omes biologiques qui sont amassees avec les 

technologies d'aujourd'hui que cette discipline peut reellement prendre son envoi. Les 

discussions qui s'amorcent entre ingenieurs et biologistes pour batir ce nouvel axe de 

recherche en biologie offrent de nouvelles opportunites. Mes activites de recherches, 

menees an Laboratoire de Recherche en Genie Logiciel de FEcole Polytechnique dans 
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le cadre de la maitrise et du doctorat et portant sur les outils de modelisation et 

de simulation des systemes de biologie moleculaire, s'inscrivent dans Foptique de 

cette nouvelle biologie puisque les chercheurs, taut theoriciens qu'experimentalistes, 

reclament de nouveaux outils informatiques. 

Cette section est structuree en deux sous-sections distinctes. La premiere sous-section, 

intitulee Concepts systemiques en biologie, fait un tour d'horizon des concepts de la 

theorie des systemes qui peuvent etre appliques a la biologie et qui ont ete discu-

tes dans de nombreuses publications. Ces concepts sont F emergence, la robustesse, 

la fragilite, la modularite et la retroaction. Y est aussi presentee Farchitecture en 

noeud papillon qui est une structure architecturale particuliere qui rassemble tous 

les concepts de la biologie systemique. La deuxieme sous-section, intitulee Methodes 

d'analyse en biologie systemique, retrace certaines etudes qui utilisent et illustrent 

les concepts de la biologie systemique. Certains resultats de ces etudes sont pre-

sentes. II s'agit d'etudes de la robustesse, de la retroaction et de la modularite des 

systemes biologiques. Nous presenteront aussi des types particuliers d'etudes, a sa-

voir de nouvelles etudes theoriques en theorie des systemes et du controle qui sont 

motivees par la biologie systemique dans un cas, et dans Fautre, des etudes purement 

experiment ales dont les objectifs sont ceux de la biologie systemique. 

2.2 Concepts systemiques en biologie 

Un des premiers defis de la biologie systemique naissante est d:etablir un cadre 

conceptuel. Parmi toutes les suggestions qui ont ete emises dans la litterature speciali-

see, la nature complexe des systemes biologiques semble faire consensus (Weng et al., 

1999). De cette complexite decoule differents principes d'organisation qui pourraient 

constituer la structure conceptuelle et la coherence logique qui sont actuellement re-
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cherchees. Cette sous-section presente ces different.s concepts et certaines etudes qui 

les support ent. 

Plusieurs concepts theoriques qui sont decrits ci-bas proviennent des travaux de Csete 

et Doyle (2002). John C. Doyle a participe a titre d'auteur ou de collaborateur a plu­

sieurs des publications decortiquees dans ce rapport et il a, avec Hiroaki Kitano, 

une influence indeniable sur le domaine. Cet ascendant exerce sur la theorie de la 

biologie systemique par Doyle est principalement du au developpement pionnier qu'il 

a accompli avec Carlson sur la theorie HOT (Highly Optomized Tolerance). Ses pro­

positions sont issues de ses reflexions sur la complexity et sur ses caracteristiques qui 

transcendent les domaines analyses (Carlson et Doyle, 1999. 2002). Les mecanismes 

de cette theorie reproduisent une observation generalisee dans les systemes com­

plexes optimises : la generation de distributions en loi de puissance1. Par systemes 

complexes optimises, on ent end des systemes comme les organismes biologiques qui 

sont optimises par la selection naturelle ou comme les technologies avancees qui sont 

optimisees par les methodes de conception d'ingenierie. La theorie HOT presente 

quatre caracteristiques : (1) de l'efficacite, de la performance et de la robustesse pour 

contrer les incertitudes prevues; (2) une hypersensibilite aux defauts de design et 

aux perturbations non-anticipees ; (3) des configurations non-generiques. specialisees 

et structurees; et (4) des lois de puissances. Dans un contexte biologique, nous par-

lerons entre autres de robustesse. de modularite, de protocole, de retroaction et de 

fragilite. 

1Simplement definie, une loi de puissance implique d'une part un tres grand nombre de petites 
occurrences et d'autre part, une rarete des grandes occurrences, dans une proportion log-log. De 
telles distributions ont ete observees dans la taille des villes, la magnitude des secousses sismiques, 
la frequence d'utilisation des mots, pour ne nommer que quelques exemples. Plusieurs distributions 
de loi de puissance ont aussi ete observees dans les statistiques se rapportant a Internet. 
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2.2.1 E m e r g e n c e 

A mesure que les caracteristiques des macromolecules biologiques sont determinees, 

il appert que les proprietes des systemes biologiques sont rarement le fruit d'acteurs 

isoles. En d'autres mots, la specificite des activites complexes des systemes biolo­

giques ne provient pas de la specificite des molecules individuelles (Van Regenmortel, 

2004). Les interactions entre les composantes ainsi que les influences de l'environ-

nement font apparaitre de nouvelles proprietes, qui sont absentes des composantes 

isolees. Cette constatation a mene a la conceptualisation de l'emergence, qui est un 

complement aux approches reductionnistes. Une particularity des proprietes emer-

gentes est qu'elles ne peuvent pas etre predites ou deduites a partir d'informations 

sur les comportements de bas niveau. 

Les travaux de modelisation et de simulation sur les voies de signalisation cellulaire 

impliquees dans la regulation de l'enzyme CaMKII de Bhalla et Iyengar (1999) illus-

trent bien la recherche de comportements emergents dans les systemes biologiques. 

En assemblant plusieurs modules de reactions biochimiques et de voies de signali­

sation dans un seul modele informatique, les chercheurs ont observe des proprietes 

emergentes dans le grand reseau de signalisation resultant. Dans ce cas-ci, il s:agit 

plus precisement d'une propriete systemique de stockage d'informations a l'interieur 

du systeme. Cette propriete est le resultat de multiples boucles de retroaction qui 

supportent un comportement bistable. Ainsi, en fonction de stimuli precis, le reseau 

de signalisation agit comme un mecanisme binaire qui existe grace aux differents 

etats stables que le reseau peut atteindre et conserver. 

Mesarovic et al. (2004) avancent qu'un deuxieme type de relation existe dans un 

systeme complexe entre les comportements de haut et de bas niveaux : la coordi­

nation. Si l'emergence consiste en la manifestation d'un comportement distinct du 
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systeme resultant uniquement de l'interaction des sous-systemes, alors la coordina­

tion serait la double dependance d'un comportement systemique a l'interaction des 

sous-systemes et a un processus de coordination maintenant l'harmonie entre les 

sous-systemes. Les auteurs supportent cette theorie par la presence de mecanismes 

de regulation de l'expression genetique et ils effectuent une analyse de leurs motifs 

de coordination. Toutefois, je suis d'avis que le bien-fonde scientifique de l'isolation 

des mecanismes de l'expression genetique a un niveau organisational superieur telle 

qu'ils le proposent reste a demontrer. 

2.2.2 Robustesse 

La robustesse est la capacite d'un systeme a maintenir ses fonctionnalites malgre 

des perturbations internes et externes (Alon, 2003). Un systeme biologique devrait 

etre en mesure de resister au bruit occasionne par la modification des parametres de 

reaction moleculaire ou par des modifications de concentration. Pour Kitano (2004), 

la robustesse est un principe organisational ubiquitaire chez tous les systemes com­

plexes qui doivent evoluer. La robustesse englobe de fagon generale toutes les pro­

prieties systemiques comme la modularity, l'utilisation de protocoles, la retroaction 

et la fragilite. 

La presence aujourd'hui de robustesse dans tous les systemes vivants s'expliquerait 

par le favoritisme exerce par revolution (Kitano, 2004). Cette selection procede d:un 

cercle vertueux ou d'une part, les systemes robustes facilitent leur propre evolution a 

l'aide de leurs proprietes intrinseques et d:autre part, 1'evolution privilegie des traits 

robustes. Ainsi, les requis pour la robustesse et la capacite devolution auraient des 

objectifs similaires qui se soutiennent mutuellement. 

En adopt ant un point de vue "robustesse" lorsque Ton etudie les systemes biologiques, 
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on remarque que certaines pathologies sont reliees a cette propriete. Par exemple, le 

cancer, qui est un des pires scenarios possibles pour un systeme puisque la maladie 

est maintenue et meme encouragee par les mecanismes robustes du systeme liote. Les 

tumeurs proliferent et developpent des metastases grace aux mecanismes habituel-

lement sains et essentiels de la reproduction cellulaire, ce qui contrecarre la plupart 

des therapies. Un medicament anti-cancer peut reduire la masse d'une tumeur, mais 

celle-ci peut reapparaitre apres un certain temps, laissant peu d'espoir au patient 

d :une guerison complete. Toutefois, a l'aide d u n e perspective de robustesse, de nou-

velles strategies cliniques pourraient etre explorees. En comprenant les mecanismes 

cellulaires de robustesse, il serait peut-etre possible d'induire la dormance des cellules 

pour stopper leur reproduction, si devastatrice lors du cancer. 

Wilhelm et al. (2004) distinguent deux types de robustesse : la robustesse structurale 

et la robustesse dynamique. La robustesse structurale est une propriete qui permet 

a un systeme de palier a la perte d ;un ou de plusieurs de ses elements. Ce type 

de robustesse s'observe par la redondance presente dans un systeme. La robustesse 

dynamique consiste en mecanismes d'adaptation ou de controle qui compensent pour 

la modification de parametres internes ou externes. 

2.2.3 Fragilite 

Dans la theorie de tolerance grandement optimisee (HOT) de Carlson et Doyle (1999), 

la robustesse s'accompagne invariablement de fragilite, d'ou l'expression robust, yet 

fragile. Ceci peut sembler contradictoire a premiere vue, mais ce principe se verifie 

dans la nature et dans la technologie : tous systemes complexes semblent vulnerables a 

des perturbations exceptionnelles. En effet, lorsque des perturbations imprevues dans 

le design du systeme surviennent, une cascade souvent catastrophique d'evenements 

mene a la deterioration, a l'arret ou meme a la destruction du systeme. Un design 
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optimal pour un systeme n'est pas une robustesse a toute epreuve. ce qui necessiterait 

line complexite incroyable ainsi qu'une perte importante de performance, mais plutot 

une tolerance optimale aux perturbations probables. La nature et les hommes se 

satisfont de ce compromis. 

Une nouvelle interpretation du diabete de type 2 a ete proposee ou les proprietes de 

robustesse et de fragilite seraient en cause (Kitano, 2004). Des milliers de generations 

auraient permis a notre organisme de devenir particulierement robuste a la famine 

et a un mode de vie tres exigeant en energie ou les risques d'infection sont eleves, 

mais 1'organisme serait vulnerable aux conditions de vie de plus en plus repandues 

aujourd'hui, soient la suralimentation et un mode de vie tres sedentaire. Impuissant 

devant ces nouvelles conditions imprevues par notre systeme, et done expression de 

sa fragilite, notre organisme developperait des pathologies reliees a cette abondance. 

2.2.4 Modulari te et protocoles 

Le concept de modularite en biologie n'est pas nouveau. Toutefois, il est de plus en 

plus reconnu que Torganisation en modules fonctionnels est un principe organisa-

tionnel majeur en biologie (Hartwell et al., 1999). Un module est une entite discrete 

dont les fonctions sont separables de celles d'autres modules. L'isolation chimique 

est responsable de cette separation en unites, dont la cause peut etre une localisa­

tion spatiale restreinte ou une specificite chimique. Du point de vue de la robustesse 

des systernes, la modularite est un mecanisme efficace pour contenir localement les 

perturbations et les dommages arm d'en minimiser les effets sur l'ensemble d'un 

systeme. 

Les modules sont indissociables du design des systemes complexes. Les modules ont 

differentes caracteristiques : (1) ils ont des interfaces identifiables entre modules; 
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(2) ils peuvent etre modifies et evoluer de fagon independante; (3) ils facilitent la 

modelisation par abstraction : (4) ils conservent une certaine identite meme s'ils sont 

isoles ou reorganises ; mais (5) ils ont aussi une identite supplement aire qu'ils derivent 

du reste du systeme avec lequel ils interagissent (Csete et Doyle. 2002). 

Un exemple evident de modularity est la cellule, qui interagit avec l'environnement 

et les autres cellules d'un organisme pluricellulaire via une interface, tout en etant 

un milieu ferine. Les modules sont aussi souvent organises en niveaux hierarchiques : 

par exemple, le module cellulaire contient d'autres modules plus petits. En plus des 

modules physiques comme la cellule, il existe aussi des modules fonctionnels. spatiaux 

et temporaux, qui sont des sous-systemes des reseaux metaboliques, de signalisation 

cellulaire et de regulation du developpement (Kitano, 2004). 

Les protocoles qui regissent les communications entre modules sont tout aussi im-

portants a connaitre que les modules eux-memes (Csete et Doyle, 2002). Dans cet 

article de Csete et Doyle reference precedemment, une interessante illustration des 

proprietes des systemes robustes est faite a l'aide des blocs Lego. Les blocs Lego sont 

des modules de tailles et de fonctions diverses qui utilisent toutefois le meme proto­

cols un mecanisme a pression, pour relier les blocs entre eux. Un systeme simple, 

mais qui permet neanmoins de creer une tres grande variete de structures. 

2.2.5 Retroact ion 

Le controle par retroaction est un mecanisme de regulation qui est essentiel aux sys­

temes qui doivent etre robustes. Une boucle de controle est fermee si elle inclut un 

signal de retroaction. Ce signal, qui provient de la sortie d'un dispositif, revient en 

entree pour agir sur son fonctionnement. La retroaction assure des reponses dyna-

miques et permet aux systemes de diminuer l'impact des perturbations exterieures 
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et des variations internes. La figure 2.1 presente une boucle de retroaction. 
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Figure 2.1: Systeme de controle en boucle fermee avec signal de retroaction 

II existe deux types de retroaction. La retroaction negative cherche a renverser la 

direction d'un changement dans un systeme afin de lui permettre de s'adapter par-

faitement et de le stabiliser. La retroaction positive contribue, elle aussi, a la robus-

tesse d'un systeme, mais en amplifiant certains stimuli, accelerant ainsi le passage 

d'un etat a un autre. Un exemple classique de boucle de retroaction est la regulation 

de Toperon lactose, propose par Jacob et Monod (1961). Les boucles de retroaction 

permettent, entre autres, de maintenir un systeme dans un etat homeostatique. 

2.2.6 Architecture en noeud papillon 

Un des object ifs de la biologie systemique est de trouver un cadre organisationnel 

en biologie. Dans la recherche de celui-ci, on a identifie deux caracteristiques archi-

tecturales qui facilitent de fagon compatible revolution des systemes et leur donnent 

davantage de robustesse : un noyau tres stable de processus interfaces a diverses 

entrees et sorties; ainsi que des mecanismes versatiles qui soutiennent les processus 

essentiels du systemes, de fagon a ce que tout nouveau processus qui a une interface 

adaptable a ceux-ci puisse les utiliser (cette propriete est nominee faible liaison ou 

weak linkage) (Kitano, 2004). Ce type d'architecture est appele noeud papillon, ou 

bow tie, en raison de sa forme (voir figure 2.2, qui est inspiree de la figure 3 de (Kitano, 

2004)). Cette architecture constitue presentement une des principales hypotheses de 
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principe d'organisation des systemes biologiques. 
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Figure 2.2: Architecture en noeud papillon 

Des analyses recentes de genomes supportent l'hypothese de cette structure, plu-

tot qu'une organisation scale-free. Dans un reseau ayant une organisation scale-free, 

certains noeuds plus importants et repartis uniformement dans le reseau sont im-

pliques dans de nombreuses connexions alors que les autres noeuds sont impliques 

dans peu de connexions. Toutefois, a travers differentes experiences sur les reseaux 

metaboliques, on a plutot remarque qu'un noyau important de grappes de noeuds est 

hautement connectes et qu'il est relie a d'autres groupes moins intensement connec-

tes. Cette observation supporte Fhypothese de l;architecture bow tie. 

La structure bow tie accommode les flots d'informations et de controle, tout comme 

les flux de matieres et d'energie. De nouveaux processus sont facilement ajoutes au 

noyau de 1'architecture. Ces processus n'ont qu'a utiliser les processus versatiles. Le 

systeme de transcription et de traduction des genes en proteines est un exemple de 

cette architecture. Quelques mecanismes (et toujours les memes) sont requis pour 

exprimer tous les genes. Ainsi, si des mutations introduisent de nouveau genes dans 

un genome, il n'est pas necessaire pour le systeme de developper un nouveau meca-
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nisme de transcription et de traduction. Ceci a pour result at de donner a la cellule la 

possibility d'exprimer une vaste variete de genes en macromolecules tres differentes. 

Le metabolisme est aussi est tres bon exemple d'architecture en noeud papillon. Une 

multitude de sources nutritionnelles sont catabolisees en une douzaine de metabolites 

precurseurs qui sont ensuite synthetises en environs 70 molecules de constructions (les 

acides amines, les nucleotides, les acides gras et les sucres). Ces dernieres serviront 

ensuite a la constitution de toutes les macromolecules de biosynthese de Torganisme. 

Cette architecture serait universelle et il en existe aussi des exemples en technologie 

(Csete et Doyle, 2004). Citons tout d'abord celui d ;un reseau electrique. A une extre-

mite, ce reseau tire son energie de plusieurs sources distinctes pouvant avoir des types 

de production differents. Cette energie est livree dans un reseau de transport dans 

un format unique. A Tautre extremite, l'utilisateur s en sert pour des usages varies 

qui evoluent rapidement. Internet est aussi un exemple evident de cette architecture. 

Entre differentes applications logiciels se trouve un systeme de materiel electronique 

et des couches de reseautique qui transmettent des paquets de donnees selon un 

protocole unique. Ces deux exemples decrivent des systemes ou un large eventail 

d'inputs differents est transforme par un noyau de processus et de mecanismes pour 

donner un tout aussi large eventail d'outputs. 

2.3 M e t h o d e s d'analyse en biologie systemique 

Les echanges entre les theoriciens du controle et les biologistes ont eu comme pre­

mier result at de donner naissance a differentes methodes d'analyse des systemes bio-

logiques, qui sont en fait des applications de techniques existantes de la theorie du 

controle. Ces etudes concernent differents aspects de la biologie systemique, dont la 

robustesse. Par exemple, il s'agit de definir des metriques pour mesurer quantitative-
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ment cette propriete. Ou bien d'etudier la sensibilite d'un systeme a la modification 

de ses variables et d'explorer Fespace de ses parametres. D'autres etudes ont pour 

objectif la caracterisation des mecanismes de retroaction, par exemple pour identifier 

les molecules responsables de certains comportements complexes ou pour identifier 

le role d u n e boucle de retroaction dans un systeme. Cette sous-section presente ces 

differentes methodes qui utilisent les concepts de robustesse, de retroaction et de mo­

dularity, les systemes biologiques qui ont ete analyses par celles-ci ainsi que certains 

resultats obtenus. 

Un deuxieme result at des echanges entre theoriciens du controle et biologistes est la 

formulation de nouveaux problemes theoriques sur le controle et les systemes et qui 

proviennent de la biologie systemique. Nous discuterons de deux etudes qui s'ins-

crivent dans cette problematique. Finalement. nous presenterons aussi deux etudes 

experiment ales dont les objectifs sont inspires de la biologie systemique. 

2.3.1 Etudes de la robustesse 

La robustesse des systemes interesse de plus en plus de chercheurs de la biologie sys­

temique (Stelling et a l , 2004b). Des problematiques de recherche en biotechnologie et 

en pharmaceutique ciblent directement cette propriete. II y a done un besoin d'outils 

theoriques. Des metriques de robustesse comptent parmi ces outils. Wilhelm et al. 

(2004) ont developpe une metrique qui permet de quantifier la robustesse structurale 

et de comparer le caractere robuste de differents systemes biologiques entre eux. Pour 

se faire, les chercheurs proposent de calculer le nombre de chaines reactionnelles qui 

sont coupees par le retrait d :une enzyme par rapport au nombre total de chaines, in-

cluant dans leur metrique une ponderation selon l'importance du produit en bout de 

chaine. lis ont applique leur metrique au metabolisme d'Escherichia coli et a celui de 

Terythrocyte de Thomme pour comparer la robustesse des deux systemes. Les resul-
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tats obtenus correspondent a une realite bien connue. le metabolisme d'Escherichia 

coli doit etre en mesure de s'adapter a des conditions variees et il est done plus ro-

buste, alors que la cellule erythrocyte qui evolue dans des conditions beaucoup plus 

homeostatiques n'est pas autant robuste. 

Morohashi et al. (2002) ont propose d"utiliser la robustesse comme une mesure de la 

plausibilite d'un modele. Leur hypothese est qu*un modele qui reflete adequatement 

la realite devrait etre aussi robuste a des modifications de parametres que le systeme 

reel. Leur methode consiste a etablir une mesure quantitative du comportement d u n 

systeme et d'etudier par des graphiques a deux et trois dimensions revolution de 

ce comportement selon des variations de parametres. Selon eux. un systeme robuste 

conserve un comportement normal sur une plage etendue de valeurs de ses para­

metres. lis ont applique cette methode a deux modeles des oscillations biochimiques 

du cycle cellulaire du Xenopus. Le premier modele, datant de 1991. est plus simple 

que le modele de 1998 et l'etude a confirme que ce modele avait certaines deficiences 

de robustesse puisqiril reagissait mal a l'introduction de bruit dans la valeur des pa­

rametres. Le modele de 1998 semble plus robuste, done plus plausible. Cette methode 

a d'ailleurs permis aux auteurs d'optimiser les parametres du modele exist ant. Les 

auteurs sont d'avis que ce type d retude sur la robustesse devrait faire partie de tous 

processus de modelisation puisqu'il offre des indications eclairantes et des indices sur 

les faiblesses d'un modele pour les modeleurs lorsqu'ils sont confrontes a des choix 

ou lorsqu'ils doivent proceder a revaluation de leur modele. 

De fac.on generale, des analyses de sensibilite sont utilisees pour mesurer la robustesse 

d'un systeme, mais elles ont peu ete appliquees aux systemes biologiques dynamiques 

en raison de leur caractere complexe et non-lineaire. Deux equipes de recherche ont 

propose des avenues differentes pour pallier aux difficultes d'application des analyses 

traditionnelles. Dans un premier temps. Sterling et al. (2004a) ont investigue sys-
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tematiquement Pespace des parametres de deux modeles des oscillateurs genetiques 

responsables du rythme circadien de Drosophtla via trois types d'analyse : sensibilite 

d'etat, sensibilite de periode et sensibilite d'amplitude, chacune ayant leur propre 

metrique mathematique. lis ont ainsi observe dans les systemes plusieurs aspects de 

la robustesse comme P influence des processus de regulation sur le systeme, les hierar­

chies de controle et les impacts des perturbations. Dans un second temps, Chen et al. 

(2005) ont emis l'opinion que des analyses de sensibilite ne sont pas suffisantes en 

biologie puisqu'elles font abstraction de la necessite de maintien de Petal d'equilibre 

du systeme. lis ont utilise la representation par synergie et saturation de systeme 

(S-system) pour developper une metrique de la robustesse des reseaux biochimiques 

lorsqu'ils sont sounds a des variations de leurs parametres cinetiques. Cette metrique 

leur a permis de calculer la limite superieure des valeurs tolerees pour la variation 

d'un parametre a Petal d'equilibre du systeme et d'utiliser cette limite pour calculer 

la robustesse d u n systeme. lis ont demontre Putilite de leur metrique en Pappli-

quant a quatre reseaux biochimiques : un reseau modele de la cascade biochimique, 

la voie glycolitique-glycogenolytique, le cycle de Pacide tricarboxylique et le reseau 

de Poscillation du cAMP. 

2.3.2 Etudes de la retroaction 

Les etudes sur la retroaction m'ont semble les plus pres de la pensee de la biologie 

systemique puisqu'elles offrent des pistes concretes du fonctionnement interne des 

systemes biologiques complexes. Dans une premiere etude, Khammash et El-Samad 

(2004) font une nouvelle interpretation qualitative de deux systemes : un systeme 

physiologique, la regulation homeostatique du calcium du plasma chez les mammi-

feres ; et un systeme de regulation genetique, le reseau de reponse au choc thermique. 

Dans le cas du systeme physiologique, les chercheurs ont analyse la courbe de retour a 
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la normale de la concentration du calcium apres une perturbation. La forme de cette 

courbe et l'absence d'erreur dans la concentration finale suppose la presence d"un 

mecanisme de controle proportionnel-integral, ce qui impose raction de deux agents 

regulateurs (un premier proportionnel. et un deuxieme integral). 1/etude de l'endo-

crinologie de ce systeme a permis d'identifier deux hormones, deja reconnues comme 

des acteurs dans ce systeme, dont le comportement dynamique correspond a celui 

des agents regulateurs recherches. Dans le cas du systeme de regulation genetique, 

1:analyse des chercheurs, encore une fois qualitative, decortique le comportement 

dynamique d'un systeme complexe qui doit etre modelise a Faide de 31 equations 

differentielles ou algebriques. A premiere vue, une telle complexite semble superflue 

pour la fonction a accomplir par ce reseau genetique lors d'un choc thermique, c"est-

a-dire la production de la molecule a32 lors d'une augmentation de la temperature 

pour reparer les proteines denaturees. Toutefois, en adoptant une vision systemique, 

les chercheurs justifient la presence de tous les acteurs de regulation, qu'ils soient 

impliques dans des boucles de retroaction positive ou negative. Ceux-ci appuient 

leur raisonnement de differentes donnees experiment ales comme la fonction connue 

de certaines proteines, le comportement dynamique des macromolecules a differentes 

temperatures, les mecanismes d'expression genetique et le temps d'action de la mole­

cule a32. Dans une deuxieme etude, El-Samad et al. (2005) poursuivent leur analyse 

de ce systeme de regulation genetique, mais de fagon quantitative, pour discuter 

du role de chacune des boucles de retroaction. Pour ce faire, ils utilisent le modele 

mathematique de ce systeme compose de 31 equations. Leur demarche consiste a 

ajouter dans le modele les modules de retroaction un a un et de comparer les re-

ponses dynamiques du systeme par simulation. Leur modele de base, un systeme en 

boucle ouverte, se voit successivement ajouter des boucles de retroaction negative et 

positive, ce qui permet aux auteurs de discuter du role de chacun de ces mecanismes 

dans le systeme. 
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Schmidt et Jacobsen (2004a,b) ont developpe une methode mathematique qui identi-

fie les mecanismes de retroaction dans les systemes caracterises par un comportement 

multistable et par des oscillations periodiques soutenues. lis proposent une linearisa­

tion du modele mathematique du systeme autour de certains points significatifs afin 

d'etre en mesure d'utiliser les outils d'analyse de la retroaction lineaire provenant 

de la theorie du controle. Ces points precis, appeles racines en theorie du controle, 

correspondent a des etats de transition entre les differents etats stables du systeme. II 

est possible de les determiner par une analyse de bifurcation. Par la suite, en decom-

posant le systeme en sous-modules et en appliquant a ceux-ci differents theoremes et 

transformations, on parvient a identifier les molecules ainsi que les interactions qui 

jouent un role significatif dans le comportement oscillatoire du systeme (en d'autres 

mots, les acteurs de la retroaction qui font transiter periodiquement le systeme a 

travers differents etats). Cette approche est purement qualitative puisqu'elle ne per-

met pas d'obtenir des result at s quantitatifs a propos de la robustesse du systeme ou 

de la sensibilite de ses parametres. Neanmoins, cette methode, utilisee tot dans un 

processus de modelisation, sert a cibler les composantes les plus importantes dans 

un modele et elle fournit des indications quant a leur fonctionnement dans un sys­

teme complexe. A travers leurs deux publications, Schmidt et Jacobsen ont applique 

leur methode a trois systemes differents : le cycle cellulaire du Xenopus, le cycle 

oscillatoire de la glycolyse chez la levure et le cycle circadien de Drosophila. Dans 

chaque cas, les molecules et les interactions qui sont instrument ales pour generer un 

comportement non-lineaire complexe ont ete identifiees. 

2.3.3 Etudes de la modularity 

La modularity est a la base de la methode proposee par Saez-Rodriguez et al. (2004). 

lis suggerent qu'il est utile de decomposer les voies de signalisation en modules pour 
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demeler la complexity biologique. Leur methode prone la reconnaissance de modules 

en ayant comme critere de delimitation 1'absence de retroaction a l'interieur de ceux-

ci. Les chercheurs justifient le choix de ce critere par le nombre d'outils qui existent 

pour analyser de tels modules sans retroaction. Dans le cas de cette recherche, des 

reseaux de signalisation sont analyses. Suite a la formation des modules, il devient 

possible de calculer pour ceux-ci 1:amplitude d :un signal d'output, le temps de si­

gnalisation et la duree du signal en fonction d ;un signal d'entree. Cette methode 

a ete appliquee a deux systemes simples, la signalisation a deux composantes et la 

cascade MAPK, et a un systeme plus complexe, le reseau de signalisation du facteur 

de croissance epidermique. Leur methode permet de caracteriser le fonctionnement 

de signalisation des modules. L'assignation a la derniere sous-unite du reseau de 

signalisation du facteur de croissance epidermique de Tentiere responsabilite d :une 

insensibilite a des stimuli, que Ton croyait auparavant distribute dans tout ce reseau, 

est un exemple de propriete determinee par cette methode d'analyse par modularite. 

2.3.4 Etudes theoriques 

Pour les specialistes de la theorie du controle, Sontag (2004) a identifie quatre catego­

ries de possibilites de recherche en biologie systemique. Les deux premieres categories 

se referent aux applications de la theorie du controle au domaine biologique : 1) le 

role du controle et des techniques de traitement de signaux dans la conception d'ins-

trumentation de mesure biologique a haute precision: 2) l'utilisation de techniques 

existantes de la theorie du controle (identification, quantification de gain, analyse de 

sensibilite, controle optimal, etc.) dans l'analyse et la solution de problemes qui inte-

ressent les biologistes. Les deux autres categories de possibilites de recherche resultent 

de la pression de la biologie systemique sur la theorie du controle pour se developper 

davantage : 3) l'abstraction de nouvelles idees pour lingenierie du controle a partir 
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de la recherche biologique; 4) la formulation de nouveaux problemes theoriques pour 

la theorie du controle et des systemes, provenant de la recherche en biologie syste-

mique. C'est sur ce dernier point que Sontag poursuit son article en affirmant que la 

cellule est un systeme d"entree/sortie semblable a d'autres qui sont etudies en theo­

rie du controle. mais que les systemes biologiques posent des problemes qui different 

fondamentalement des problemes classiques. II effectue meme une mise en garde : 

trop souvent et a tort, on croit que les problemes poses par la biologie systemique 

sont des problemes standards de la theorie du controle. A son avis, de nombreuses 

nouvelles questions theoriques emergent de ce constat et il tire de ses recherches 

differents exemples. Parmi ceux-ci. le melange de modelisation qualitative et quan­

titative, les systemes monotones, les reponses a 1'etat stable, la detection du bruit, 

les systemes dr identification et de reingenierie, le controle adaptatif et la stabilite 

robuste des structures. 

L'article d'Angeli et Sontag (2003) est un bon exemple des recherches theoriques 

rendues necessaires par la biologie systemique. Dans cet article, les auteurs se sont 

attardes a faire la demonstration mathematique rigoureuse que la notion de systemes 

monotones peut etre et endue aux systemes avec entrees et sorties. Ceci est le premier 

pas permettant la comprehension des interconnections qui sont formees entre des 

modules monotones, notamment celles qui incluent des boucles de retroaction. Ceci 

ouvre la porte a l'application de la theorie des systemes monotones et de ses outils 

aux modules biologiques et a la demonstration de certaines de leurs proprietes. 

2.3.5 Etudes experimentales 

Le developpement de nouvelles approches experimentales pour la biologie systemique 

pose certains problemes, malgre les nombreuses nouvelles questions formulees par les 

theoriciens. Les scientifiques doivent faire appel a plusieurs technologies de collecte 
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d'informations qui sont couteuses et qui sont habit uellement cloisonnees dans diffe-

rents domaines de la biologie. Les problemes sont complexes et de taille importante. 

Ideker et al. (2001b) ont ete parmi les premiers a proposer des analyses genomiques 

et proteomiques integrees pour developper iterativement mi modele d'une voie cellu-

laire. Aderem et Smith (2004) ont approfondi cette idee dans leurs recherches sur le 

systeme immunitaire et les reactions infiammatoires en y incorporant un environne-

ment informatique qui analyse les donnees genomiques et proteomiques et qui faci-

litent la determination d'interactions complexes. Cet environnement informatique est 

tout d'abord compose du logiciel et base de donnees SBEAMS, qui regit la collecte, 

Tentreposage et Faeces aux donnees produites par differents types d :experience. lis 

utilisent ensuite le logiciel Cytoscape qui integre les donnees, et en permet la visuali­

sation et Fexploration. Certaines fonctionnalites de Cytoscape sont de regrouper en 

modules les reseaux moleculaires, de faire des analyses de genomiques comparatives 

et de deriver des reseaux de regulation genetique. 

Certaines problematiques de recherche a plus petite echelle sont tout de meme in-

fluencees par la philosophic de la biologie systemique. Mentionnons, en exemple, 

Fetude de Batchelor et al. (2004) dans laquelle ils ont caracterise des circuits regula-

teurs d'Escherichia coli et determine les modes de controle de ceux-ci. Leur analyse 

pointe vers un systeme de controle continu de la transcription d"un gene dans un cas 

(alors qu'on le supposait discret jusqu'alors) et d :une boucle de retroaction ouverte 

(ce qui est surprenant pour cette espece). 

2.4 Sommaire 

Peu de disciplines scientifiques ont la chance de revoir leur cadre conceptuel comme 

e'est le cas actuellement en biologie a cause de la biologie systemique. Ceci est une op-
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portunite intellect uelle tres stimulante qui suscite et suscitera encore bien des debats. 

Les scientifiques se dotent de nouveaux concepts et de nouveaux outils pour repous-

ser les limites de leurs connaissances du vivant. Et le rapprochement qui se produit 

entre la biologie et le genie est porteur de nombreuses collaborations prometteuses. 

Cette section a offert un survol theorique de ce pont qui se construit actuellement 

entre les sciences de la vie et les sciences appliquees. A plusieurs egards, les sys-

temes biologiques et les systemes technologiques complexes ont plusieurs points en 

commun, dont leurs principes d'organisation. Certains concepts de ce lieu commun 

entre biologie et genie, qui sont actuellement proposes dans la litterature, ont ete 

presentes : l'emergence, la robustesse, la fragilite, la modularite, la retroaction ainsi 

qu'une premiere proposition de structure architecturale, le noeud papillon. Dans la 

seconde sous-section, des etudes realisees par differents chercheurs et qui exploitent 

les differents concepts de la biologie systemique ont ete recensees. 

Depuis environs une decennie, la biologie est en ebullition, frappant rimaginaire 

populaire par de grandes reussites et occasionnant plusieurs quest ionnements tech­

niques, scientifiques et ethiques dans le milieu scientifique. Les ingenieurs sont main-

tenant invites a partager avec leurs collegues biologistes leurs connaissances des sys­

temes complexes et a participer aux nouvelles avancees de la biologie. Aurons-nous 

le genie de relever le defi ? 
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CHAPITRE 3 

DEMARCHE DE L'ENSEMBLE DU TRAVAIL DE RECHERCHE ET 

ORGANISATION GENERALE DU DOCUMENT 

L'etude de Bhalla et Iyengar (1999). portant sur les proprietes emergentes d'un re­

seau de voies de signalisation du neurone, est une contribution scientifique majeure 

pour deux raisons. Premierement, il s'agit d'une etude de biologie systemique avant 

l'heure puisqu'on y etudie les proprietes d'un systeme complexe a l'aide d:un modele 

computationnel. Deuxiemement. ces proprietes peuvent etre reliees a la plasticite sy-

naptique, une import ante propriete neuronale qui serait a la base des processus de 

memorisation et d'apprentissage du cerveau et dont la mecanique biochimique etait 

encore obscure a Tepoque. 

Nous avons utilise ce modele dans notre etude portant sur la modelisation biologique 

a multiples niveaux d'abstraction basee sur le formalisme des reseaux de Petri (Hardy 

et Robillard, 2005). La realisation de cette etude nous a donne une comprehension 

approfondie du comportement d)'namique de ce modele. Toutefois, il nous a semble 

que les methodes traditionnelles de representation et d'analyse des donnees de simu­

lation ne permettaient pas de degager facilement ce comportement et ne facilitaient 

done pas l;atteinte d"une comprehension systemique. Ce sont ces lacunes auxquelles 

les trois articles constituant le corps de cette these tentent de pallier. Le modele du 

reseau de regulation de l'enzyme CaAiKII developpe par Bhalla et Iyengar (1999) 

et augmente par Kikuchi et al. (2003) a ete utilise dans les trois articles de cette 

these parce qu'il rassemble tous les attribute d'un excellent cas d'etude pour notre 

recherche. II s'agit d'un modele complexe d'un systeme tres important en neurobio-

chimie. C'est aussi un reseau de signalisation constitue de plusieurs mecanismes de 
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regulation qui a un comportement dynamique tres interessant a analyser. 

Le chapitre 4 introduit le premier article. Intitule "A functional representation of 

the simulation data of biochemical models based on molecular activity", et ecrit par 

Simon Hardy et Pierre N. Robillard, il a ete sounds pour publication a la revue In 

Silico Biology. Cet article presente une approche d'analyse de donnees de simulation 

oil l'activite moleculaire de modules biochimiques sert a creer une representation 

fonctionnelle du modele. Dans toute demarche d'analyse de donnees d'un systeme 

complexe, 1'analyse se fait en partie grace a une conceptualisation mentale. Cette 

conceptualisation tient compte de la structure du reseau, de la fonction des com-

posantes et de leurs interrelations. Le scientifique qui effectue une analyse se base 

sur cette conceptualisation pour dechiffrer ses donnees et pour leur donner un sens 

generant de la connaissance. L'approche presentee dans cet article propose d :utiliser 

cette conceptualisation mentale pour creer des nitres d'analyse pour la visualisation 

des donnees. Ces nitres permettent de produire. a partir des donnees de simulation, 

une representation fonctionnelle du systeme. 

Le chapitre 5 introduit le second article. Intitule "'Petri net-based visualization of 

signal transduction pathway simulations", et ecrit par Simon Hardy et Pierre N. 

Robillard, il a ete soumis pour publication a la revue IET Systems Biology. Cet 

article presente une methode de visualisation des donnees de simulation des voies 

de signalisation cellulaire. A l'aide d'une technique d'analyse des reseaux de Petri 

(Fidentification de P-invariants). la methode de visualisation prend en compte le 

fonctionnement enzymatique pour generer une vue du systeme plus fidele a son com­

portement systemique. Les methodes de visualisation existantes, appropriees pour 

les voies metaboliques, donnent des resultats mitiges avec les voies de signalisation. 

Les problemes detectes sont solutionnes par notre methode. 

Le chapitre 6 introduit le troisieme article. Intitule "Petri net-based method for the 
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analysis of the dynamics of signal propagation in signaling pathways", et ecrit par 

Simon Hardy et Pierre N. Robillard, il a ete soumis pour publication a la revue 

Bioinformatics. Cet article presente une methode d'analyse des modeles de voies de 

signalisation qui permet d :etudier leur dynamique de propagation de signal. A Paide 

de techniques d :analyse des reseaux de Petri (Pidentification de P-invariants et de 

T-invariants), la methode permet d'identifier les elements du modele qui jouent un 

role important dans la transmission de signaux cellulaires. de decrire la dynamique de 

transduction et d'identifier la presence de motifs de regulation. Cette methode trans-

forme les donnees de variation de concentration moleculaire en donnees de transmis­

sion de signaux cellulaire, ce qui permet un acces rapide aux mecanismes systemiques 

de traitement d'information de la cellule. 

Les trois articles atteignent independamment l'objectif de recherche de cette these, 

qui est de concevoir des methodes d'analyse de donnees de simulation de modeles de 

voies de signalisation cellulaire qui permettent de degager leur comportement syste-

mique. Les deux premieres methodes accordent une place de choix aux techniques de 

visualisation. Mais ce sont les methodes des deux derniers articles, puisqu'elles sont 

basees sur les reseaux de Petri, qui sont complement aires et qui peuvent parfaitement 

s'integrer dans une approche unique. 

Par ailleurs, deux articles de conferences auxquels l'auteur a principalement contribue 

ont ete inclus en annexes a cette these. L :annexe I est constituee de Particle intitule 

"Painted Petri net and functional abstraction to visualize dynamic modeling" ou 

les reseaux de Petri peintures sont decrits pour la premiere fois. L'annexe II est 

constituee de Particle intitule "Visualization of the simulation data of biochemical 

network models : a painted Petri net approach", qui est une version preliminaire du 

chapitre 5 de cette presente these. 
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CHAPITRE 4 

FUNCTIONAL ABSTRACTION AND SPECTRAL 

REPRESENTATION TO VISUALIZE THE SYSTEM DYNAMICS 

AND THE INFORMATION FLUX IN A BIOCHEMICAL MODEL 

Abstract 

Interpreting the simulation data1 of a complex biochemical model to understand its 

dynamic behavior is a difficult task. Traditional data representations display sim­

ulation outputs as concentration plots. To study the dynamic behavior of a model 

from these plots, it is necessary to have in mind the topology of the modeled system, 

know the function of the individual elements of the system and be able to describe 

their activity. Only with this mental image of the model can the dynamic behav­

ior be deciphered. In this paper, we suggest exploiting this knowledge to create a 

preprocessing filter for the simulation data. This data filter is based on the concept 

of molecular activity and transforms the simulation data from a concentration per­

spective to a molecular activity perspective. This is done in two steps: identify the 

functional groups of the system, and mathematically describe the molecular activity 

of these groups. In this paper, we demonstrate this new data representation approach 

with a complex model of the signal transduction system of long-term potentiation in 

the hippocampal post-synapse, a model exhibiting a bistable behavior. To facilitate 

viewing of the resulting data matrix, the preprocessed data are displayed with known 

visualization techniques, followed by the production of an animated and a spectral 

1Cet article a ete soumis a la revue In Silico Biology. Voir la reference (Hardy et Robillard, 
2006a) 
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functional representation. One advantage of the functional data filter is that, once 

created, it can be applied to a large number of simulation runs while at the same 

time performing parametric and structural modifications on the model in order to 

quickly explore the impacts on the model's behavior. 

Keywords: biochemical modeling, simulation data, system dynamics, function, visu­

alization. 

4.1 Introduct ion 

The simulation of biochemical models based on kinetic reactions generates data time 

series of concentration. To interpret these time series, the data are usually displayed 

on Cartesian graphs where time is the x-axis and concentration the y-axis. These 

plotted data are used to study the dynamic behavior of simulated models by com­

bining sets of graphs. This simple type of representation is convenient for the study 

of simple models, but using it to study the dynamic behavior of complex models is 

a difficult task. Biochemical systems are highly organized and composed of many 

heterogeneous processes, formed by the interaction of the activities of different mole­

cules. The signaling pathways of the cell are typical cases of such processes, where 

signals are transmitted by the perturbation of enzymatic activities and the actions of 

molecular messengers. An example of enzymatic activity is phosphorylation: some 

proteins are turned "on" and "off' by the addition and removal of a phosphate group, 

catalyzed by a kinase. Thus, it is possible to link a structural modification of a 

molecule to its role in a biochemical process. 

Researchers develop models of signaling pathway networks on the basis of experimen­

tally established relationships between molecules, their function and the property of 

a biological system under study. Analyses of the simulation data of these models re-



69 

quire a deep understanding of the underlying molecular or biochemical processes. To 

make sense of the simulation data, they are processed and filtered according to the 

researcher's understanding of the activities of the system components. Our analysis 

will focus mostly on some relevant dynamic behaviors of model components. 

The original approach presented in this paper enables researchers to explore a new 

functional interpretation of a signaling pathway based on their existing knowledge of 

molecular activities by using simulation data. This functional interpretation trans­

forms the data from a molecular concentration perspective to a molecular activity 

perspective, a transformation which is achieved in two steps. In the first step, the 

molecular substances of the model are grouped into functional units, a functional unit 

being defined as a group of molecules participating in a given activity performed by 

the signaling network. In the second step, the activity of each functional unit is 

mathematically formalized by an equation. This equation defines an indicator of 

the degree of molecular activity as a function of the concentration of the molecules 

of a functional unit. The parameters of the equation are empirically defined by the 

researchers based on their understanding of the molecular processes at the functional 

unit level. 

This new functional interpretation of the simulation data provides a unique dynamic 

perspective when combined with powerful visualization techniques. Colors are used 

to represent the degree of molecular activity of the functional units of a model. The 

mapping of these colors on a graph displaying the topology of the model creates a 

highly informative animated graphical representation of the dynamic behavior of the 

model. 

This paper presents the use of this functional interpretation approach combined with 

visualization techniques based on the simulation data of the model of the signal trans­

duction system of long-term potentiation (LTP) in the hippocampal post-synapse. 
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Bhalla et Iyengar (1999) were the first to model this network. Their model was later 

modified by Kikuchi et al. (2003). This system is interesting because of its property 

of bistability, which, it is hypothesized, is linked to the neuronal memory processes. 

Representation of the data from a functional perspective clearly illustrates this sys­

temic property, as well as the dynamic behavior of the system and its molecular 

components. 

4.2 Previous work 

In many different scientific fields, making sense of large quantities of complex data 

can be perilous without the help of data processing and visualization techniques. This 

is the case for genome, transcriptome and microarray data, protein interaction maps 

and metabolic pathways - molecular biology is no exception. Biologists use data 

analysis and visualization techniques to both explore their data and present their 

results. In computational biology, the simulation of complex biochemical models 

can also generate a substantial amount of data. The interpretation of this data can 

be a slow and inefficient process using the traditional means of data representation: 

two-dimensional plots of concentration-time series data. Another problem with the 

presentation of the simulation data of biochemical models with raw numbers and 

plots is the loss of the network topology, which is information that is crucial to 

building a mental representation of the dynamic behavior of a model. 

Prior to the creation of the molecular activity perspective developed in this paper, 

software tools had been developed to try to solve these problems. Met Vis (Qeli 

et al., 2003), SimWiz (Rost et Kummer. 2004) and BioPathwize2 make it possible 

to visualize the simulation data of metabolic networks and signaling pathways in a 

2http://bioanalyticsgroup.com 

http://bioanalyticsgroup.com
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more comprehensive way. These tools show a manually or automatically generated 

network graph to which the simulation data are mapped. This creates an animated 

representation of the data. Either the edges or the nodes of the network graph change 

in color or volume to show the evolution of the concentration of the substances making 

up the biochemical network. The tools Met Vis and SimWiz are also available in a 

three-dimensional version (Qeli et al., 2004a; Wegner, 2005). 

The advantages of the animated views produced by these tools are numerous. They 

take advantage of the benefits of visual data exploration, one of which is to inte­

grate the human perceptual abilities into data interpretation, a useful asset in the 

exploratory steps of data analysis (Keim, 2002). They also make full use of the 

capacity of the human mind to detect structures and patterns in images, such as 

synchronicities, global changes of state and oscillations (Miiller et Schumann, 2003). 

The developers of Met Vis and SimWiz stress the usefulness of the topology of the 

biochemical networks for their animated graphical representations. To map the sim­

ulation data to the model structure gives a good impression of the dynamic behavior 

of the system. Thus, a wealth of information becomes accessible to the user. 

Despite these advantages, the animated representations generated by the existing 

visualization software tools of the biochemical network simulation data show only 

the variation in concentration of the network substances. In short, they provide a 

single point of view without any data processing, which is the concentration perspec­

tive. The same is true for concentration plots. These tools fail, however, to fully 

benefit from another data analysis method: the visualization of data with multiple 

views (Roberts, 1998). By displaying data in multiple ways, the user may interpret 

the data through different perspectives, hasten its understanding and avoid possible 

misinterpretations. Visualization systems usually follow a four-step pipeline dataflow 

model: the data are filtered to create a subset of data, which is then mapped to a 
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representation which can be displayed. To produce multiple views from the same 

data set, three modifications of the visualization dataflow are possible: 1) modifi­

cation of the data filter; 2) modification of the data mapping; and 3) modification 

of the display. A modification of the data mapping or the display, as proposed by 

the tools Met Vis and SimWiz with the transformation of concentration plots into a 

topological view, preserves the same data filter: concentration variation. The func­

tional perspective presented in this paper is based on a modification of the data filter, 

which is the first step in the pipeline dataflow model. 

4.3 The long-term potent iat ion signal transduct ion model 

Much research has been conducted on the synaptic plasticity of the neuron. This 

property enables the neuron to undergo a lasting alteration to the efficiency of its 

neurotransmission signaling process. When there is an enduring increase in the am­

plitude of post-synaptic exciter potentials, synaptic plasticity is called long-term po­

tentiation (LTP). LTP was first described by Bliss et Lomo (1973). Experimentally, 

it is caused by series of short, high-frequency electrical stimulations, also described 

as tetanic, stimulations, to a nerve cell synapse which strengthen, or potentiate, that 

synapse for minutes or hours. Research on LTP (and its opposite, long-term depres­

sion or LTD) is in part motivated by the assumption that synaptic plasticity forms 

the cellular basis of learning and memory. (Blitzer, 2005) is an introductory paper 

on LTP, and (Ajay et Bhalla, 2006) is a review of the theoretical and experimental 

research on synaptic plasticity. Many kinetic simulations of LTP at the molecu­

lar level, as well as models based on phenomenological facts, have been developed 

to theoretically study this complex property. As reported in a previous paper, we 

transformed these two kinds of model into a single, Petri net-based representation 

(Hardy et Robillard, 2005). 
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Bhalla et Iyengar (1999) developed a complex LTP model at the molecular level com­

posed of many simple networks combined to form post-synaptic signaling pathways. 

A remarkable aspect of their work is that they used a systemic approach to unravel 

long-term potentiation. They demonstrated that their model was characterized by 

the property of bistability, as a result of the combination of multiple networks, since 

none of them exhibited this behavior by itself. They based their work on the experi­

mentally observed fact that bistability is an enduring biochemical modification linked 

to LTP. New experimental evidence has led Kikuchi et al. (2003) to add some reac­

tions to this model, involving the dynamic inactivation of the protein phosphatase 2A 

(PP2A). This addition was significant because PP2A affects important molecules in 

synaptic plasticity, and thus has an impact on the bistability of the system. Adding 

the dynamic modeling of PP2A made the LTP model more robust and facilitated 

LTP induction in the system. The block diagram of the modified model of the signal 

transduction system of LTP is shown in Figure 4.1. In this figure, rounded rectan­

gles represent enzymes, circles represent messenger molecules, rectangles represent 

receptors and dotted, rounded rectangles represent a reaction module. Regular ar­

rows represent activation and circle-ended arrows represent inhibition. Each block in 

this diagram corresponds to a set of chemical reactions between several substances. 

Consequently, the blocks are simplifications of more complex networks. 

In the remainder of this paper, the simple interconnected networks of the model 

are referred to as modules. The modules of the LTP model are represented in two 

different ways in Figure 4.1: either a module is composed of a number of blocks (in 

which case, the module is represented by a dotted, rounded rectangle) or a module 

is a single block outside a dotted rounded rectangle (like PKA, CaM and CaMKII). 

One module is a set of chemical reactions involving approximately five to fifteen 

substances, and each reaction has constants, all of which have been experimentally 

obtained and documented. Those parameters are compiled in the DOQCS database 
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Figure 4.1: Block diagram of the long-term potentiation signal transduction system 
in the hippocampal post-synapse 

(Sivakumaran et al., 2003). The model contains approximately 200 substances and 

350 reactions. The reader is referred to Kikuchi et al. (2003) for more information 

about the model. 

The model was simulated with the software E-CELL (Tomita et al., 1999). Model 

bistability from a normal steady state to a potentiated steady state was observed 

by inducing a tetanic inflow of calcium ions to the model. The entry point of the 

model is calcium, and the increase in its concentration activates several enzymes, 

which in turn activate various molecules. The activity of the model's interconnected 

positive and negative feedback loops, combined with the appropriate stimulus, leads 

to a potentiated steady state. 
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4.4 Creation of a molecular act ivity perspect ive of the s imulation data 

of the LTP model 

The first step in the transformation of the simulation data from a concentration 

perspective to a molecular activity perspective is the identification of the functional 

units of the LTP model. Grouping the substances of the LTP model into functional 

units was performed by interpreting the reaction equations of the modules and the 

topology of the model, with the experience gained with the model and according to 

engineering reasoning. A key factor in the identification of the functional units of the 

LTP model is to group together the different configurations of a molecular species 

(for example, the calmodulin (CaM) functional unit is composed of the following 

different molecular configurations of the CaM molecules: CaM, CaM.Ca2, CaM.Ca3. 

CaM.Ca4, CaM.Ng). However, the functional units are specific to the biological 

process under study and cannot be derived from formal analysis of the model. This 

is discussed in more detail later in this paper. 

Figure 4.2 shows examples of functional units. On the left of this figure is the reaction 

scheme of the PKA module. On the right is the same reaction scheme represented 

in a hybrid functional Petri net notation, where double circles are substances, rec­

tangles are reactions and arrows indicate the direction of the reaction (see (Hardy et 

Robillard, 2004) for more information about Petri nets and molecular biology). The 

PKA module of the LTP model is divided into the following three functional units: 

1) the Pi2C2 complex unit, where the two R complex subunits first bond successively 

to four cAMP molecules, after which the complex releases two PKA enzymes; 2) the 

PKA inhibitor unit, in which inhibitor molecules are either in a free or a coupled 

configuration with inhibited PKA enzymes; and 3) the PKA enzyme unit. These 

units represent the three main activities performed by the molecules of the PKA 

module, which are, respectively, the entry point of the module, where a molecular 
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complex needs input molecules to produce an important enzyme; the inner control 

mechanism; and the output molecule that will interact with other modules. One 

of the advantages of forming functional units is to reduce the number of numerical 

values of interest. In the PKA module, ten concentration values are expressed with 

the activity level value of three functional units. For the entire LTP model, 200 

concentration values are expressed with an activity level value of 34 functional units. 

IcAMP 

cAMP.R2C2 

A IcAMP 

\ cAMPz.RjQp PKA inhibv 7^ PKA inhib.PKA 

A ~ /' 
CAMP / 

cAMPs.R2C2
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cAMP4.RjC2^-^-oAMP,.R2C r 
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c*MP^4-R_2-C_2Q£^ 

^ v ^ j - L - - - ' " ~ CAMP_-
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Figure 4.2: Reaction equations and functional units of the protein kinase A module 
of the LTP model 

The second step in the transformation of the simulation data is to mathematically 

describe the activity of each functional unit by an equation. The continuous con­

centrations of the substances of the functional unit are converted into discrete states 
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indicating the level of activity of the functional unit. This conversion is performed 

with equations using concentrations as inputs to compute a value on a discrete scale 

from 0 to 10 (0 being the lowest level of activity for a functional unit, 10 being the 

highest). For the LTP model, each functional unit has a state equation designed to 

produce an activity level value that is consistent with the unit behavior. Equations 

4.1, 4.2 and 4.3 are the equations of the R2C2 complex unit, the PKA inhibitor unit 

and the PKA enzyme unit of the PKA module. The equations are used to determine 

the activity level of the three functional units at every simulation time step. 

\stateR2C2] = ^ j (llRiCz] + \\cAMP.R2C2) + l[cAMP2.R2C2] + %AMP3.R2C2] 
50 \ b b b b 

+ %AMP,.R2C2] + \[cAMPA.R2C] + %AMPA.R2]\ 
b o b y 

(4.1) 

\statePKAtnhJ = 20(0.5 - [PKAinhib]) (4.2) 

\statePKA\ = 100[PA',4] (4.3) 

For the purposes of this paper and to explain the functional representation, we pro­

vide a general description of the design of the first state equation. Equation 4.1 uses 

the concentration of the seven molecular configurations of the R2C2 complex. The 

function of this unit is to produce PKA enzymes when cAMP molecules are available 

in sufficient quantity. In its least active configuration (R2C2), the R2C2 complex is 

not bound to any cAMP molecule. In its most active configuration (cAMP4.R2), it 

is bound to four cAMP molecules and has released two PKA enzymes. The other 

five molecular configurations can be positioned relative to this activity scale. Ac­

cording to the distribution of the concentration of the R2C2 complex in the seven 

configurations, the equation gives a value from 0 to 10, associating a discrete value 

to the level of the activity of the functional unit. If all the complexes are in the R2C2 
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configuration, the level of activity is 0. If all the complexes are in the cAMP4 .R2 

configuration, the level of activity is 10. If the complexes are distributed among the 

seven configurations, the level of activity will be between 0 and 10. The first constant 

of equation 4.1, ¥^, is a normalization constant, 50 being the total concentration for 

every R2C9 configuration, and 10 being the number of possible activity levels. 

4.5 Visual izat ion of the s imulation data from a functional perspect ive 

The 34 state equations of the LTP model each provide an integer from 0 to 10 for 

every time step of a simulation run. An easy way to visualize this data matrix is 

to associate the integer values with colors. For the LTP model, we used the colors 

of the light spectrum. Violet is associated with the state 0, low activity, and red is 

associated with the state 10, high activity. The color association process is complete 

when the color of every functional unit for every simulation step is determined. 

Subsequently, the colored functional data are displayed in two different types of 

visual representation. The first representation is an animated, global view of the 

model, where the colored functional data are mapped to the topology of the model. 

The result is that the variation in the activity of all the model components can be 

seen simultaneously. This view is made up of a succession of images of the colored 

functional units of the model for various time steps, in other words an animation. 

The second representation is a collection of spectra of the functional units, showing 

their changing level of activity through time. A spectrum is a timeline, where the 

color changes represent the activity variation for a single functional unit. 

The next two subsections present the animated and spectral representations of two 

simulation runs of the LTP model. The first simulation run is based on normal 

concentrations and parameters. For the second simulation run, the value of the Kcat 
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parameter of the inactivation reaction of PP2A by CaMKII.CaM is modified. The 

normal value of the parameter is 5 s_1 and the modified value is 0.5 s_1. These values 

were extracted from the work of Kikuchi et al. (2003). The modification is known to 

affect the model's bistability. In both simulation runs, a tetanic calcium stimulation 

is induced at 120 seconds. The concentration of the 200 substances of the model is 

recorded at every second. The simulation duration is 1,000 seconds. The simulation 

outputs, a set of the concentration data of the 200 substances for each simulation 

run, were transformed to create a colored functional perspective. 

4.5.1 Animated functional representation of the simulation data of the 

LTP model 

The animated functional representation of the simulation data of the LTP model is a 

mapping of the colored functional data to a graphical representation of the topology 

of the signaling network. The graphical representation of the topology is a graph 

where the functional units are displayed as nodes. Regular and rounded arrows link 

the functional units to show the activation and inhibition relationships. The nodes 

are colored according to their level of activity computed from the simulation data. A 

change in color reflects a change in activity level3. Four frames of the animation of 

the first simulation run are shown in Figure 4.3. Two frames of the animation of the 

second simulation with the modified parameter are shown in Figure 4.4. Subfigure 

4.3(a) shows the system from the functional perspective of both simulation runs at 

90 s (normal steady state), subfigure 4.3(b) shows the system at 124 s (a few seconds 

after the tetanic stimulation), subfigures 4.3(c) and 4.4(a) show the system at 200 

s (in transition to the final steady state) and subfigures 4.3(d) and 4.4(b) show the 

3The animated representations of the first and second simulation runs, SpectroNet 1 and Spec-
troNet2 respectively, can be downloaded at http://www.polymtl.ca/rgl/Downloads.php. 

http://www.polymtl.ca/rgl/Downloads.php
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system at 1.000 s (almost final steady state). 

An initial visual exploration of subfigure 4.3(a) shows mainly cold colors. Before the 

introduction of any calcium input, the system is in a non-potentiated state. Only 

the PP1 functional unit is active, as its red color indicates. The PP1 functional unit 

has a unique behavior in the LTP model, in that it is the only unit with a reverse 

behavior: at the normal steady state, the PP1 functional unit is highly active, while 

at the potentiation steady state it is inactive. The function of this unit is inhibitory; 

it limits the activation of the CaMKII and PP2A units. Part of the system bistability 

property is triggered by a persistent diminution in the PP1 unit inhibition activity, 

in order to let the CaMKII and PP2A units be persistently more active. 

In subfigure 4.3(b), 4 seconds after the induction of the calcium stimulation, the cyan 

color of the calcium functional unit (Ca) denotes the higher concentration of this ion 

due to the tetanic calcium stimulation. The modules directly connected to the Ca 

unit, such as the PLC, PLA2, CaM and CaN modules, react rapidly. The change in 

color of the first-degree neighbors of the Ca unit shows an activity increase, which 

has also been communicated to some of the Ca unit's second-degree neighbors, the 

GEF and cAMP modules. 

Subfigure 4.3(c) shows the state of the system 80 seconds after the Ca stimulation, 

which occurs after 120 seconds of simulation. Two groups of functional units behave 

in distinctive ways. The first-degree neighbors of the Ca unit are returning to their 

initial state. However, the modules at the end of the signaling network, such as 

the MAPK, PP1 , CaMKII and PP2A modules, which are slower to react to the Ca 

stimulation, are showing an increase in their activity. 

This transitional state leads to the final state of the system, 880 seconds after the Ca 

stimulation and shown in subfigure 4.3(d). First-degree neighbors of the Ca unit are 
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(a) 90s 

(b) 124s 

Figure 4.3: Four snapshots of the animated representation of the LTP model simu­
lation in normal conditions at various moments 
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(c) 200s 

(d) 1000s 

Figure 4.3: Four snapshots of the animated representation of the LTP model simu­
lation in normal conditions at various moments (continued) 
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back in their initial state. The final colors of the modules at the end of the signaling 

pathway, however, which are located at the bottom of the frame, indicate a persistent 

activity in the system's final state. This is the potentiated state. Subfigures 4.3(a) 

and 4.3(d) are visual representations of the bistability of the LTP model. According 

to Kikuchi et al. (2003), a particularly important functional unit is the AMPAR 

unit (at the bottom center of the model). At the beginning of the simulation, this 

receptor is in a depressed, or inactive, state (blue), and, at the end of the simulation, 

this receptor is in a potentiated, or active, state (orange). 

The visual exploration of Figure 4.4 shows a different behavior of the LTP model. 

The frames of the simulation of the modified model at 90 s and 124 s are not shown 

because they are identical to the same frames of the normal model. This suggests 

that the initial state and the first reactions to the Ca stimulation are similar in the 

two versions of the model. The impact of the modified parameter appears later in 

the simulation. Subfigure 4.4(a) shows a different transitional state: the modules at 

the end of the signaling pathway are less active than they were in subfigure 4.3(c). 

The last frame of the animation, shown in Subfigure 4.4(b), displays a final state that 

is similar to the initial state. Thus, this version of the LTP model is not bistable. 

4.5.2 Spectral functional representation of the s imulation data of the 

LTP model 

The animated representation is made up of a sequence of images of the network 

topology showing the activity level of every functional unit of the model as time 

progresses. It enables analysis of the system behavior and provides information on 

the interactions between modules. The spectral representation is the set of colored 

timelines of the level of activity of the functional units. It provides a view of the 

complete simulation period. Figure 4.5 shows the spectral representation of the 
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NMDAR 

(a) 2005 

(b) 1000s 

Figure 4.4: Two snapshots of the animation of the LTP model simulation with the 
parameter of the inactivation reaction of PP2A by CaMKII modified 
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functional units for the simulation data of the LTP model. For each functional unit, 

the spectrum on the left is the visualization of the simulation outputs of the normal 

LTP model, and the spectrum on the right is the visualization of the simulation 

outputs of the modified LTP model. The Ca spectrum indicates the calcium stimulus 

at 120s. The activity-level scale is at the left (violet = inactivity, red = activity) and 

the time proceeds from top to bottom, starting at 90 s and ending at 1,000 s. 

Figure 4.5 shows the spectral representation of the functional units of the modules 

exhibiting a modification in their level of activity. A spectral representation can 

display more information in less space than a traditional representation using charts 

and plots. The spectra of the CaM and the CaN functional units for the two sim­

ulations confirm the behavior of the first-degree neighbors of the Ca unit suggested 

by the animations. They react rapidly to the increase in the calcium concentration, 

and their activity pattern is, for the most part, unaffected by modification of the 

PP2A reaction parameter. Because their final state is the same as their initial state, 

these units do not exhibit bistability. This observation is also true for the functional 

units of the PLC and cAMP modules. The spectra of the MAPK, CaMKII, AMPAR 

and PP2A functional units illustrate the behavior of the units at the end of the sig­

naling network. Their activation is slower than the activation of the Ca first-degree 

neighbors, and it occurs after a delay. The activity pattern of the spectra of these 

units, produced from the simulation of the normal LTP model, shows the bistable 

property of this network: from an inactive, initial state, the spectra indicate that 

the functional units stabilize to a different and more active state. On the spectra 

of the modified LTP model, we can see a different activation pattern, one without 

bistability. These three functional units, after a transitory change in their activity 

level, eventually return to their normal steady state after the Ca stimulation. As 

already explained, the PP1 functional unit exhibits a reverse activity relative to the 

other functional units of the system. The MAPK, CaMKII, AMPAR and PP2A 
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units change from a low level of activity (cold colors) to a higher level of activity 

(warmer colors) as the PP1 unit undergoes the opposite variation. 

The spectra of the PLA2 and AA functional units are examples of a combined behav­

ior involving the behavior of a Ca first-degree neighbor and that of an end-of-signal 

unit. An initial activity change to the stimulus induction is noticeable immediately 

after this, followed by a return to its original, inactive state. A second inactivation 

occurs later, resulting in a persistent activation of the unit in the normal model. 

4.6 Concluding remarks 

In this paper, we explored an innovative perspective of the simulation data: a new 

data filter to present and analyze the data, based on the concept of molecular ac­

tivity. This data filter is an approach to creating data subsets: functional units. In 

two steps - identification of the functional units and mathematical description of 

the molecular activity of the functional units - the simulation data are transformed, 

with a functional data filter, into data on the molecular activity of the model. This 

perspective of the molecular activity of the simulation data of a biochemical model 

formed the basis for two views of the simulation data of the model: a spectral func­

tional view displaying the behavior of individual functional units, and an animated 

functional view of all the functional units of the model. This last type of data repre­

sentation integrates the system structure and its dynamics into a single view. One of 

the goals of these views is to represent many numerical simulation outputs in such a 

way as to more easily access a system's overall systemic behaviors. This is achieved 

by identifying the functional units of a system and by visualizing the interactions 

between them. As demonstrated in this paper, this approach can replace numerous 

traditional concentration graphs and will help enable the rapid observation of the 
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impacts of structural or parametrical modifications of the model. This is an asset 

for the computational biologist developing a biochemical model. With the molecular 

activity approach, the computational biologist can create a data-preprocessing filter 

and afterwards easily explore the parameter space of the model and study the result­

ing behavioral modifications. This filter, built with the knowledge he or she usually 

uses to interpret the raw simulation data, is implemented only once and can then be 

applied to the data of any number of subsequent simulation runs. In this way, the 

modeler will have rapid access to the dynamic behavior of the different instantiations 

of a model. 

A limitation of the simulation data representation approach based on molecular ac­

tivity is that it is only efficient for qualitative analyses. The level of molecular activity 

is assigned on a relative basis that is specific to the characteristics of each functional 

unit. The result is a qualitative indication of the activity level of a functional unit. 

Despite this limitation, a qualitative glance at the dynamic behavior of a model is 

useful in the initial exploratory steps of simulation data analysis, while concentration 

graphs remain useful for detailed quantitative analyses. Taken together, concentra­

tion graphs and a data representation based on molecular activity are complementary 

approaches constituting two distinct perspectives, and it is advantageous to use them 

together. 

At the moment, our approach and its two steps cannot be implemented in a system­

atic method for two reasons. First, the composition of functional units is intended 

to be customizable in order to fit research hypotheses and goals. The composition of 

functional units can be adapted to fit either micro- or macrosystem dynamics, thus 

allowing the representation of a model behavior at different levels of abstraction. The 

composition can also be focused on some specific molecular activities and leave some 

other activities out. In the LTP model, this is exemplified with the calcineurin mod-
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ule (CaN). If the criterion for the composition of the functional units of this module 

was to be solely based on the recognition of a single molecular species and its various 

configurations, only one functional unit would be identified for this module. However, 

this protein phosphatase has three distinct regulatory effects of dephosphorylation 

on neurogranin (Ng) and inhibitory-1 protein (II). To distinguish among these three 

different molecular activities, three functional units were identified, one for each de-

phosphorylation activity. The second reason why this data representation approach 

based on molecular activity cannot be implemented in a systematic method is that, 

as we have already mentioned, it does not involve a specific modeling language. Each 

modeling language will require its own algorithm. Depending on whether the model 

is specified with ordinary differential equations, is a Petri net model or has a sto­

chastic nature, the algorithms will be different because of the particularities of the 

languages. However, the properties of a modeling language can be useful for the 

development of such an algorithm. Part of our current work involves the use of the 

invariants of a Petri net, which are structural properties, to implement an algorithm. 
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C H A P I T R E 5 

P E T R I N E T - B A S E D V I S U A L I Z A T I O N OF S I G N A L 

T R A N S D U C T I O N P A T H W A Y S I M U L A T I O N S 

Abstract 

Biological simulation1 is a growing field, and attempts are being made to model 

and simulate ever more complex systems. Software tools for the visualization of 

simulation data have been developed, mostly for metabolic network models. In this 

paper, we present a visualization approach based on the Petri net formalism that 

is more suitable for signaling pathway models. The marking invariant property of 

Petri nets is used to identify meaningful biological entities and to generate, with the 

painting feature of Petri nets, animated representations of the simulation data in 

which the switching behavior of enzymes is highlighted, thereby allowing a visual 

exploration of the global dynamic behavior of complex biochemical models. 

5.1 Introduct ion 

The increasing complexity of computational biochemical models raises some problems 

for the visualization of their simulation data. The traditional means of representa­

tion, two-dimensional plots of time-series data, is more suitable than raw numbers, 

but they become cumbersome for large and complex models. Another problem with 

concentration plots is the loss of the structure of the biochemical model. The topol-

1Cet article a ete soumis a la revue IET Systems Biology. Voir la reference (Hardy et Robillard, 
2007b) 
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ogy of a network is an important source of information for analyzing a model's 

simulation outputs. Without a proper visualization technique, the topology has to 

be memorized by the user. These problems have been addressed by developing a 

local relative visualization approach, in which the graph structure of a biochemical 

model is constructed from its ordinary differential equations. The nodes of the graph 

represent the molecular substances of the model and the arcs represent the chemical 

reactions. The simulation data of the model are then mapped to the model structure: 

a graphical parameter of the nodes, such as their color or shape, changes to show 

the local concentration variations, resulting in an animated display of the simulation 

data of the model. The software tools Met Vis (Qeli et al., 2003), SimWiz (Rost et 

Kummer, 2004) implement this local relative method. To enhance the visual ren­

dering, the tools MetVis and SimWiz also have a three-dimensional graph generator 

(Qeli et al., 2004a; Wegner, 2005). With this local relative visualization approach, 

the simulation data of metabolic networks can be visualized in a more comprehensive 

way. One advantage to such a view is to make full use of the capacity of the human 

mind to detect structures and patterns in images, such as synchronicities, global 

changes of state and oscillations (Miiller et Schumann, 2003). Also, it is possible to 

integrate the human being's perceptual abilities in data interpretation, a useful asset 

during the exploratory steps of data analysis (Keim, 2002). The combination of an 

animated representation of the topology of biochemical networks and simulation data 

allows a wealth of information to be accessible to the user and provides information 

on the system's dynamic behavior. 

However, we detect two problems with this approach. First, a graphical represen­

tation of the model has to be generated with a graph layout algorithm, since the 

formalisms of the models that are visualized with these tools are not graphical in 

nature. For example, SimWiz uses an extended version of the Becker-Rojas algo­

rithm (Becker et Rojas, 2001). Since there is no standard for biochemical network 
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graphical representation, each tool has its own format. A consequence of this is that 

users have to familiarize themselves with a new graphical representation once they 

have mathematically specified the model. The second problem appears when the 

local relative approach is used with models of signaling pathways. This approach is 

appropriate for visualizing the simulation data of metabolic pathways where metabo­

lites are produced, consumed and degraded. However, it is less suitable for signal 

transduction networks, where the main biological activity for transmitting a signal 

is the change of state of enzymes. The activity in signaling pathways is normally the 

result of the activation and deactivation of enzymes through conformational changes 

as they turn "on" and "off', rather than the production and consumption of metabo­

lites. In other words, enzymes can change from one state to another. Thus, the sum 

of the concentrations of the various states of an enzyme is modeled as a constant 

quantity. 

This article presents a Petri net-based approach for the visualization of the simula­

tion data of signal transduction networks which solves the graphical representation 

issue and the specific problem of the visualization of the switching activity of signal­

ing transduction networks. The Petri net is a modeling language designed to study 

systems with causal concurrent properties. This formalism was used for the first 

time for biological modeling by Reddy et al. (1993). All the studies that followed 

their pioneering work correspond to either the qualitative or quantitative analysis 

of biological systems. To qualitatively analyze the biological properties of metabolic 

pathways, Petri-net properties such as invariants, liveness, boundedness and reach­

ability have been used (Voss et al., 2003; Zevedei-Oancea et Schuster, 2003). More 

recently, concepts of Petri net theory have been used to identify functional units 

(Sackmann et al., 2006) or transduction activation components (Li et al., 2006) in 

signal transduction networks. These applications of Petri net concepts serve mainly 

to validate biological models. To quantitatively analyze biological systems, the Petri 
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net's high-level extensions that support simulation have been used (Hofestadt et The-

len, 1998; Matsuno et al., 2003c). The Notch-Delta signaling pathway in Drosophila 

(Matsuno et al., 2003b). the role of interleukin-6 in the fate of hematopoietic stem 

cells (Koh et al.. 2006) and the Akt and MAPK pathways and their crosstalk (Tron-

cale et al., 2006) are examples of signaling networks which have been quantitatively 

studied with the simulation of Petri net models. As well, review articles have been 

written on Petri net modeling approaches in biology (Hardy et Robillard, 2004; Pin-

ney et al., 2003: Matsuno et al.. 2006b). There are two main advantages to a Petri 

net-based approach for biological modeling. First, the theoretical elements of Petri 

nets with a mathematical basis are useful as a preliminary analysis tool for biolog­

ical pathways. Second, researchers can easily model a biological system with Petri 

nets, partly due to the graphical nature of the formalism, and then study it with the 

simulation capabilities of Petri net tools. 

In Petri net models of signaling pathways, the conservation relations known as mark­

ing invariants (or p-invariants) can be used to identify the sets of places associated 

with the different states of the enzymes of the model. Because of this relationship, 

marking invariants have been used for the validation of biochemical models, since 

they can help to detect inconsistencies (Zevedei-Oancea et Schuster, 2003: Voss et al., 

2003). In this article, we propose to use p-invariants in a new visualization approach 

using painted Petri nets (Hardy et Robillard, 2006b). To the best of our knowledge, 

the visualization of biochemical models based on Petri net theory and presented in 

this paper is a new development in this field. In this study, Petri nets are not used 

for qualitatively or quantitatively analyzing biological systems, but rather for the 

visualization of the simulation data of signaling pathway models. We demonstrate 

that the Petri net's structural invariant property provides a basis for the automatic 

identification of meaningful groups of molecules and we show that the painted Petri 

net can be used to enhance the existing visualization method. Section 5.2 provides 
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a short introduction to the Petri net. Section 5.3 presents the new Petri net-based 

visualization approach and exemplifies it with the modeling of the calmodulin ki­

nase pathway (CaMKII) of the complex signaling network of the hippocampal CA1 

neuron. Section 5.4 compares the display produced by this new approach to another 

display produced by the local relative approach. Sections 5.5 and 5.6 discuss our 

results and the limitations of the visualization approach. We conclude by discussing 

future research directions. 

5.2 Petri net concepts 

This section introduces the basic concepts of Petri net theory that are necessary in 

the context of biological modeling, and which constitute a subset of the whole theory. 

Then, it describes a new Petri net feature designed to visualize the simulation data 

of Petri net models. 

5.2.1 An introduction to Petri nets 

Carl Adam Petri invented the Petri net formalism in 1962 to model the systems 

of concurrent processes (Petri, 1962). It is a modeling language depicting systems 

as directed bipartite graphs, i.e. directed arcs linking nodes from two disjoint sets. 

The first kind of node is the place. Places are the passive elements of the model, 

like entities and states. The second kind of node is the transition. Transitions are 

the active elements of the model, like processes and events. Directed arcs represent 

the causal relation between places and transitions, and a value is attached to them 

so that the modeled relations are weighted. In the graphical representation of a 

Petri net, places are displayed as circles and transitions as rectangles. For example, 

in a Petri net model of a biochemical system, places and transitions most often 
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represent molecular substances and chemical reactions respectively. Also, in a Petri 

net model of a metabolic pathway, the weights of the net :s arcs might represent the 

stoichiometric coefficients. 

The dynamic elements of a discrete Petri net are called tokens. Places contain an 

integer number of tokens, called marks, and transitions withdraw tokens from or add 

tokens to places. This process of withdrawing and adding occurs when a transition is 

fired. The firing of a transition can happen only when the transition preconditions, 

specified by the directed arcs whose destination is this transition, are met. Precon­

ditions are fulfilled when the places at the source of the arcs, called input places. 

contain a number of tokens greater than or equal to the weight of the arcs. If the fir­

ing occurs, the transition postconditions, specified by the directed arcs whose source 

is this transition and destinations are output places, are met. The firing has two 

consequences: tokens are removed from input places, as stated by the preconditions, 

and tokens are added to output places in a number corresponding to the weights of 

the output arcs. There is no implicit conservation of tokens, which means that, for 

example, one transition can withdraw two tokens from the source place and add five 

tokens to the target place based on the weight of the transition. The state of a Petri 

net model is given by the token distribution in its places. The token distribution is 

called the marking. Most of the time, a firing modifies the marking, thus changing 

the state of the model. In the example of the biochemical Petri net model, the tokens 

are the molecules. The molecules change their forms (tokens moving from place to 

place) as they form molecular complexes, undergo chemical modification, etc. (tran­

sition firing). In this kind of Petri net model, the marking indicates the distribution 

of the molecules between the different molecular substances. The initial marking 

describes the state of the model before any transition firing occurs. A reachable 

marking is a marking that is attainable from the initial marking by a finite number 

of firings. 
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The conceptual framework of Petri nets is usually used to understand "how" a system 

works. The mathematical properties of some Petri net extensions, like invariants, 

serve to achieve a qualitative and structural analysis of a system and a validation of 

a model. The simulation capabilities of other Petri net extensions serve to realize a 

quantitative analysis of a system and a performance analysis of a model. 

5.2.2 Invariants 

Invariants are structural properties of Petri nets. In biochemical models, they usually 

have a mass conservation meaning. This relationship is detailed in subsection 5.3.3. 

This subsection presents the theoretical background on Petri net invariants. 

The structure of a Petri net model, i.e. the arrangement of places, transitions and 

arcs, can be expressed in linear algebra by a matrix. This is the incidence matrix 

W. One dimension of the incidence matrix is the number of places of the model, and 

the other dimension is the number of transitions. Each element w^ of the matrix 

indicates the token change at place i after firing transition j . From the incidence 

matrix, it is possible to determine the structural properties of Petri nets. Some of 

these properties are called invariants. Among all the reachable markings of a model, 

some quantities do not change, even when transitions are fired. This first type of 

invariant is the marking invariant (p-invariant). Every p-invariant of a Petri net 

model is a positive vector x that is a solution of the following equation: 

x W = 0 (5.1) 

A p-invariant characterizes a conservation component of the model, which is a set 

of places over which the weighted sum of the tokens is constant for every reachable 

marking. 
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Among all possible firing sequences of a model, some repetitions are possible. This 

second type of invariant is a firing invariant (t-invariant). Every t-invariant of a Petri 

net model is a positive vector y that is a solution of the following equation: 

W y = 0 (5.2) 

A t-invariant characterizes a repetitive component of the model, which is a firing 

sequence composed of several transitions causing a return to the model's initial state. 

In other words, the transition firings of a repetitive component together have a null 

effect on the marking of the model. 

The Petri net formalism described so far is the original form of this formalism, 

known as the place-transition net. This modeling language can represent discrete, 

non-deterministic, asynchronous systems. Other types of Petri nets have been de­

veloped to enhance the modeling capabilities of the formalism. These other types 

are called extensions. For example, continuous and hybrid Petri nets are extensions 

to the original theory enabling the modeling of continuous quantities and processes 

(David et Alia, 2004). Ordinary differential equations have their equivalent in con­

tinuous Petri net models using continuous places and transitions. The marking of a 

continuous place is represented by a real number and a continuous transition has a 

speed. The hybrid Petri net combines elements of a discrete and a continuous nature. 

5.2.3 Painted Petri nets 

To visualize the simulation data of Petri net biochemical models, we suggest using 

the painting feature of Petri nets. By painting a Petri net model, it is possible to 

display the simulation data on the net's graphical structure. The painting feature is 

described below. 
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Several extensions of Petri net theory, like the stochastic, synchronous and hybrid 

extensions, have been used to complete the quantitative analysis of different sys­

tems. The choice of the appropriate extensions depends of the nature of the systems 

modeled. The simulation of a Petri net model, whatever the extensions, generates 

raw numbers of data on the model in the simulation environment. In the case of 

a discrete Petri net model, the token game display is usually used: tokens move 

throughout the model to show the evolution of the marking. Other Petri net tools 

can also generate 2-dimensional histograms or plots. Unfortunately, the problems 

related to the visualization of the simulation data of complex models are the same 

for complex Petri net models. To create a more intuitive and meaningful represen­

tation of the simulation data, the Petri net painting feature can be used (Hardy et 

Robillard, 2006b). 

The aim of the Petri net painting feature is to visually indicate the evolution of the 

place contents of a Petri net model during the model's simulation. To achieve this 

goal, places are painted according to their token content. The painting approach can 

be applied on a Petri net model of any kind of extension used for simulation without 

modifying the properties of the extension on which paints are applied. A painted 

Petri net should not be confused with a colored Petri net (Jensen, 1992). In colored 

Petri nets, coloration is an abstract concept used to distinguish the different data 

token types of a model. In painted Petri nets, tints are used to visually indicate 

the temporal variation of the modeled entities represented by places. The painting 

rules use the mark of the places to generate values from 0 to 1 for each place. This 

numerical value is then associated with a tint from a color spectrum (0 being blue at 

one end and 1 being red at the other end, for example). A paint value of a place is 

computed for each time step of the simulation. The result is an animated graphical 

representation of the painted Petri net model which combines the topology of the 

model and the simulation data, 
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5.3 M e t h o d 

The following section presents the Petri net-based visualization approach for the 

simulation data from signal transduction models. First, we explain how to represent 

kinetics models with Petri net elements, and we illustrate this modeling process with 

the signaling pathway of the CaMKII. We then identify the marking invariants of the 

example and define an adaptation of the marking invariant concept which enables the 

identification of other meaningful entities in signaling transduction models. Finally, 

we specify two painting rules which are used in the next section to compare the local 

relative visualization approach with our approach based on the marking invariant of 

a Petri net model. 

5.3.1 Petri net-based model ing of biochemical reactions 

Modeling systems with ordinary differential equations (ODE) is the quantitative 

method most commonly used to represent signal transduction pathways (Eungdam-

rong et Iyengar, 2004). For that reason, we show here the way to transform this type 

of model into a continuous Petri net model with marking-dependent speeds. 

A biochemical model specified with ODEs is partly composed of chemical reactions 

like the following: 

A + B^C + D (5.3) 

In this chemical reaction, there are four molecular substances (substrates A and B, 

and products C and D) and two chemical processes (forward and backward reac­

tions). The variation in concentration of substrate A is expressed by the following: 

^ = h[C\[D] - kf[A][B] (5.4) 
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Four continuous places and two continuous transitions can represent the chemical 

reaction of equation 5.3 when they are structured as in Fig. 5.1. In this small Petri 

net model, one can see that the substances modeled by places A and B react together 

through transition t\ at a speed corresponding to the product of the concentration 

of these substances (marks X\ and x2) and the kinetic parameter kf to produce the 

substances modeled by places C and D. 

kb * x3 * x4 

Figure 5.1: Petri net representation of a chemical reaction. 

Another important building block of signaling transduction pathways is the enzy­

matic reaction. These reactions can be expressed either by the bidirectional reaction 

of the formation of a complex composed of an enzyme and a substrate, followed by 

an irreversible reaction creating the product from the complex, or simply by the 

Michaelis-Menten formulation. The Petri net representation of these two forms of 

enzymatic reaction is given in (Koh et al., 2006). 

Following these modeling guidelines, it is possible to create a Petri net model for 

any chemical kinetics model where the concentration is only a function of time. It is 

important to note that Petri net modeling is not limited to continuous deterministic 

systems with known kinetic parameters. For example, a method has been developed 

to systematically build discrete Petri net models of signal transduction pathways that 

reflect their qualitative biological behavior from experimental observations, without 

any precise kinetic parameters (Sackmann et al., 2006), and stochastic Petri nets 
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have been used to model the stochastic process of ColEl plasmid replication, since 

this process involves low concentrations of biological compounds (Goss et Peccoud. 

1998, 1999). Also, hybrid functional Petri nets are a modeling formalism designed 

specifically for biological hybrid modeling (Matsuno et al., 2003c). 

5.3.2 Petri net model of the calmodulin kinase pathway 

With the previous modeling guidelines, we transform an ODE model of the CaMKII 

pathway into a continuous Petri net model. In the next sections, we identify the 

invariants of this model and we use a painted version of the model to compare two 

visualization approaches of simulation data. 

The CaMKII pathway, shown in Fig. 5.2. is one module among several others which 

makes up a larger signaling network. The ODE model of this pathway comes from a 

study on the bistability of a complex signaling network of the hippocampal CA1 neu­

ron (Bhalla et Iyengar, 1999). The kinetic parameters and the initial concentration 

of the pathway substances were experimentally obtained and can now be found in the 

Database of Quantitative Cellular Signaling (Sivakumaran et al.. 2003). In Fig. 5.2, 

reversible reactions are drawn as bidirectional arrows, and enzymatic reactions are 

represented by arrows with two bends. For clarity, a reactant can appear multiple 

times and in the two depicted enzymatic reactions. CaM.CaMKIIQCtj,.e/or.ms stands 

for all phosphorylated forms of CaMKII. After Fig. II of (Bhalla et Iyengar, 1999). 

The CaMKII pathway is composed of an autophosphorylation cycle in which each 

phosphorylated form of this enzyme contributes to the activation of the enzyme by 

phosphorylation at Thr286. The inflow of calcium ions is first signaled to the CaMKII 

pathway by increased binding with calmodulin (CaM.Ca4). The CaM.CaMKII com­

plex is then able to activate itself by autophosphorylation. Conversely, when the 

protein phosphatase 1 (PP1) is active, it is able to dephosphorylate CaMKII, thus 
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deactivating the kinase. Another regulation effect of the calcium inflow, also mod­

eled in the complete model of the neuron, is to delay the deactivation of CaMKII by 

PPL The source of this effect is the production of cyclic adenosine monophosphate 

(eAMP) caused by CaM activation. The elevation of cAMP levels causes an acti­

vation of PKA. which in turn phosphorylates the Inhibitor-1 protein, leading to the 

inhibition of PP1. 

CaMKII 

A 
CaM.Ca4 

V 
CaMK|LCaM.Ca4 

PP1 

CaMKII 

CaM.CaMKIIactive forms 

*mr286.CaM.Ca4 

A 
CaM.Ca4 

_RPJ_ 

^ 
CaMKII*thr286 < -̂Basal activation— CaMKII 

PP1 CaM.CaMKIIact ive forms 

C a M K I I 

P P 1 

C a M K I I inactive 

P P 1 

Figure 5.2: Reaction schemes of the calmodulin kinase pathway. 

We create a continuous Petri net model from this ODE model by assigning a place to 

each substance and a transition to each reaction. The initial marking of the model 

corresponds to the initial concentrations, and the speed of the transitions corresponds 

to the kinetic equation of the reactions. The resulting Petri net model of the CaMKII 

pathway is shown in Fig. 5.3. The specifications of the places of the Petri net model 

are given in Table 5.1, and the specifications of its transitions and arcs are given in 

Table 5.2. 
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Figure 5.3: Continuous Petri net model of the calmodulin kinase pathway. 
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Tableau 5.1: Specifications of the places of the Petri net model of the calmodulin 
kinase pathway 

Name 

Pi 
P2 
Ps 
PA 

h 
P6 

Pi 
Ps 
A 
PW 

Pu 
P12 

Pl3 

Pu 

Pl5 
Pl6 
Pu 
Pis 
Pl9 

P20 

Substance 

CaMKII 
CaM.CamKII 

CaM.CaMKII*""' 
CaMKII**'"" 
CaMKII** 

C a M K I I inactive 

complex26 
complex27 

complex28 
complex29 
complex30 

complex3i 

complex32 
complex33 
complex34 
complex35 

complex36 
complex37 

complex38 

CaM.Ca4 

Variable 

h 
h 
U 

h 
i& 
h 
is 
ig 

ho 
in 
i\i 
iis 
i14 

H5 

iie 
in 
hs 
iw 
?20 

7773 

P21 PP1 



Tableau 5.2: Specifications of the transitions and arcs of the Petri net model of the 
camodulin pathway 

Name 

k 

*2 

U 

U 
U 

t7 

ts 

t9 

^10 

*n 

*12 

*13 

tu 

*15 

^16 

tl7 

tin 

tl9 

^20 

Speed 

50 x ix x m 

5 x i3 

0.35 x ?8 

1.543 x i3
2 

2 x i9 

0.5 x ?'9 

1.543 x i3 x 

2 x iio 

0.5 x ?10 

k X k 

2xiu 

0.5 x z n 

k x z6 

2 x i u 

0.5 x i12 

0.343 x u x 

1.4 x is 

0.003 x ii 

1000.2 x i5 x 

3 

«4 

0\ 

m3 

From 
variable factor 

m 3 

*3 

?-8 

?3 

?9 

«9 

' 3 

iio 

?10 

?3 

?-5 

«11 

*11 

«3 

«6 

?12 

«12 

i4 

?-8 

*1 

«5 

m3 

1 
1 

1 

1 

2 
1 

1 

1 
1 

1 

1 
1 
1 

1 

1 

1 
1 

1 

1 

1 
1 

1 

1 
1 
1 

To 
variable 

k 

k 
m 3 

k 

«9 

is 
k 
k 

iio 

k 
k 
u 
i l l 

«3 

k 
k 
k 

i\2 

k 
k 
k 
k 

k 

k 
Ol 

k 

k 

factor 

1 

1 
1 
1 
1 
1 
2 

1 
1 

1 

1 
1 
2 

1 

1 
1 
1 
1 

1 

1 
1 
1 
1 

1 

1 
1 
1 

1 

Continued on next page 



Tableau 5.2 - continued from previous page 

Name 

*21 

t22 

^23 

^24 

*25 

^26 

*27 

^28 

"̂29 

^30 

*31 

^32 

^33 

t34 

t35 

^36 

*38 

^39 

^40 

Speed 

0.1 x z4 

0.35 x i13 

0.343 x k x oi 

1.4 x ?:13 

12 x i5 x i6 

24 x iu 

6 x ?14 

1 2 X 2.5
2 

24 x i15 

6 x i15 

18.519 x j 4 x ?.5 

24 x ?;16 

6 x z16 

18.519 x ?:3 x i5 

24 x i17 

6 x z17 

0.343 x i6 x oi 

1.4 xz 1 8 

0.35 x i18 

From 
variable factor 

U 

ii3 

k 

?13 

h 

714 

''-14 

*5 

?15 

?'l5 

«4 

?5 

? 16 

iie 

k 
k 

in 

in 

k 
Ol 

«18 

*18 

1 

1 

1 
1 

1 

1 
1 

1 

1 
2 

1 

1 

1 
1 

1 

1 

1 
1 

1 

1 

1 
1 

1 

1 

To 
variable 

h 
777-3 

k 
Ol 

?13 

k 
Ol 

«14 

*5 

k 
k 
«15 

*5 

*5 

k 

iw 

i\ 
k 
u 
k 

in 

k 
k 
k 
k 

«18 

«6 

Ol 

«7 

Ol 

factor 

1 
1 
1 
1 

1 

1 
1 

1 

1 
1 
2 
1 
2 
1 
1 

1 

1 
1 
1 
1 

1 

1 
1 
1 
1 

1 

1 
1 
1 
1 

Continued on next page 
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Tableau 5.2 - continued from previous page 

Name 

t41 

C49 

*43 

^45 

^46 

i47 

Speed 

0.343 x i7 x 

1.4 x i19 

0.35 x ii9 

0.343 x i5 x 

1.4 x ?;20 

0.35 x i2Q 

0\ 

0\ 

From 
variable factor 

0\ 

*19 

?'l9 

0\ 

?20 

*20 

1 
1 

1 

1 

1 
1 

1 

1 

To 
variable 

?19 

?7 

0\ 

«20 

«1 

factor 

1 

1 
1 
1 
1 

1 

1 
1 
1 
1 

5.3.3 Marking invariants and mass conservation in biochemical models 

The relationship between the marking invariants of a Petri net, also known as p-

invariants, and the basic concepts of biochemical modeling has already been estab­

lished. In models of metabolic pathways, marking invariants express conservation 

relations for metabolites (Voss et al., 2003; Zevedei-Oancea et Schuster, 2003). In 

signal transduction models, marking invariants represent a different kind of conser­

vation relation (Sackmann et al., 2006). A signaling pathway is considered active 

when enzymes change state to transmit a signal, and the total concentration of all 

forms of an enzyme is modeled as a constant quantity. This quantity is a marking 

invariant in a Petri net model. 

The p-invariants of a Petri net model are all the vectors x that solve equation 5.1. 

The non-zero values of these vectors indicate the places of the Petri net that are part 
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of a conservation component. The marking invariant associated with a p-invariant. 

is the sum of the marks of the places of the conservation component, where each 

mark is multiplied by its associated value in the vector. To find the invariants of 

simple Petri net models. David et Alia (2004) described an algorithm. There are 

more efficient algorithms using linear programming (Takano et al., 2001), and Petri 

net analysis software is also freely available (Starke. 2003). The marking invariants 

of the Petri net model of the CaMKII pathway are shown in Table 5.3. These 

invariants correspond to the three enzymes present in the model: CaMKII, CaM and 

PP1 . The marking invariants identify the places representing the different substances 

containing at least one molecular form of the enzymes. When a coefficient other than 

one precedes the marking of a place, it means that there is an equivalent number of 

enzyme molecules assembled in a multi-enzyme complex. To obtain a constant sum, 

the concentration of these complexes has to be weighted, so as to form a constant 

positive linear combination. 

Tableau 5.3: The marking invariants of the Petri net model of the calmodulin kinase 
pathway 

Substance 

CaMKII 

CaM 

PP1 

X l 

x2 

Ncc2 

x2 

Ncc3 

P-invariant 
Marking invariant 

= [ 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 2 1 1 1 0 0] 
= ix + i3 + i4 + i5 + i6 + i7 + ig + 2i9 + 2iw + 2iu + 2iu+ 

«13 + 2?14 + 2 i i 5 + 2? i6 + 27i7 + i18 + ?19 + i20 

= [ 0 1 1 0 0 0 1 2 2 1 1 0 0 0 1 1 0 0 0 1 0 ] 
= i3 + H + H + 2i9 + 2iw + iu + il2 + ?'ie + «i7 + m3 

= [ 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 ] 
= h + ?-i3 + Hs + «i9 + 2̂0 + oi 

Often, biochemical models are open systems with the entry and exit of mass in the 

systems causing a perturbation or stimulation. Because of this, some places mod­

eling external substances are not part of any conservation component. This is not 
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the case for the Petri net model of the CaMKII pathway, in which every place is 

part of at least one conservation component. However, it is the case for some places 

of the complete complex signaling network model of the hippocampal CA1 neuron, 

where these places are not part of any conservation component, like the places mod­

eling the calcium ions and the cAMP. The temporary removal of the places and 

transitions responsible for the input/production and output/consumption of these 

external substances enables the identification of a new type of component related 

to p-invariants. After their removal, new solutions might be found to equation 5.1, 

also corresponding to mass conservation relationships. We call these new solutions 

modified p-invanants. The places of the sets found after this modification of the 

model represent molecular entities partly formed of the external substances. The 

positive linear combinations of the modified p-invariants no longer produce constant 

values. However, these combinations do provide useful information. For example, in 

the complete model of the complex signaling network of the hippocampal CAl neu­

ron, the positive linear combinations of the two modified p-invariants are equations 

giving the total concentration of calcium ions and cAMP in the system, in one form 

or another, at each time step. The modified p-invariants can come into play in the 

process of painting a model. 

5.3.4 Local relative and marking invariant-based painting rules 

To display the simulation data of a model with the Petri net painting feature, a 

painting rule must be defined. A painting rule is an equation transforming the mark 

of a place into a value from 0 to 1. This value is then associated with a tint that 

is applied to the place in the Petri net graphical representation. In this section, we 

present two different painting rules. The first is associated with the data visualization 

approach used by existing software tools, while the second is a new approach. In the 
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next section, the two approaches are compared. 

The local relative approach converts raw simulation data into relative values using the 

range between the minimum and maximum values of each variable. This produces a 

percentage, a local relative value, which can be transformed into a color or a scaling 

factor for data visualization. With the first painting rule, given by equation 5.5, a 

local relative value paintpi t is calculated for each place Pi at time t. 

paintpti = (markpit — minpj)/(m,axpj — minp^ (5.5) 

where markpit represents the mark of the place Pi at time t, and m.axpi and minpt 

represent the minimum and maximum marks for the place Pi during the entire sim­

ulation. 

With the second painting rule, we present a novelty: the use of marking variants in 

a painting rule. The rule is the following: 

paint Pit = niarkpit/NCcx (5.6) 

where the place F, is part of the conservation component CCX having Nccx for 

marking invariant. This rule computes the ratio between the concentration of a 

single molecular form at simulation time t and the concentration of this substance 

in all forms. 

Because a place can be part of several conservation components, a place can logically 

have x paint values, where x is the number of conservation components of which 

this place is a part. To solve this potential problem, we suggest that users assign 

priorities to conservation components. By doing so, they decide on the paint from 

which conservation components will be preferred in the display. Thus, it is possible 
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to ensure that every place which is part of multiple conservation components has a 

single tint in the final display. 

5.4 Results 

In this section, we show an initial display of the simulation data of the CaMKII 

pathway which uses the local relative painting rule, and a second display which uses 

the marking invariant-based painting rule. The complete Petri net model of the 

complex signaling network of the hippocampal CAl neuron has been simulated, but 

only the data pertaining to the CaMKII pathway are shown. A calcium inflow, 

reproducing a neuronal tetanic stimulation, is induced after 60 seconds of simulation 

time. The simulation software used is Genomic Object Net (a hybrid functional 

Petri net simulator commercially known as Cell Illustrator) (Nagasaki et al.. 2003). 

Both displays are animated representations, where each frame shows the places of 

the model with their respective paint at time t. The paints vary from blue to white 

to red on a spectrum of 100 discrete colors. Only when the simulations are completed 

can the paints be computed and the animated representations of the simulation data 

be displayed. 

Figure 5.4 shows a series of snapshots of the animated painted Petri net model of 

the CaMKII pathway using the local relative painting rule of equation 5.5 at various 

moments during the simulation. In this display, the bluer a place is, the closer its 

mark is to the place's minimal value, and the redder a place is, the closer its mark is 

to the place's maximal value. A consequence of this painting rule is the absence of 

a relationship between the red paint of one place and the red paint of another place; 

the same red paint might represent very different concentration values. Their only 

similarity is in representing the maximal value of the mark of the place. In other 
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words, it is strictly local relative information. Neither the network nor any functional 

entity is taken into account. Despite this shortcoming, it is possible to describe the 

concentration variations of the CaMKII pathway model. At t1 : the inactive state of 

CaMKII (the place at the top of the model and identified as CaMKII) is red, and thus 

at its maximal concentration value. The concentration of PP1 is also at its highest. 

The concentrations of some CaMKII activated forms in the autophosphorylation 

cycle are also high. At t<i. 10 seconds after the calcium stimulation, many places of 

the CaMKII activated forms in the autophosphorylation cycle are redder. At t3. we 

can observe a slight decrease in the level of the inactivate CaMKII and PP1 reaches its 

minimal level, due, as we have already explained, to regulation outside the CaMKII 

pathway. At £4, the only CaMKII form at its maximal concentration is the completely 

phosphorylated form (CaMKII**). At t5, the CaMKII** concentration decreases, 

while the concentration of one of the two inactive CaMKII forms (CaMKII*jnacfjve) 

increases. At te, the system slowly returns to its initial state, the levels of two 

inactive CaMKII forms are close to their maximal values and the PP1 concentration 

is increasing. 

Figure 5.5 shows a series of snapshots of the animated painted Petri net model of 

the CaMKII pathway at various moments during the simulation using the marking 

invariant-based painting rule of equation 5.6. A first look at this display reveals that 

there is less red. The reason for this color distribution is that the paint values of 

the places represent absolute values in this display: the bluer a place is, the smaller 

its mark is compared to the marking invariant of its conservation component. In 

the case of the CaMKII conservation component, the sum of the concentrations of 

all the different forms is, according to the initial parameters of the model, 70 /j,M 

(this is the NCc1 value of equation 5.6 for the places that are part of the CaMKII 

conservation component). With this painting rule, every concentration variation is 

scaled to the total enzyme concentration. This causes small concentration variations 
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(a) h = Os (b) t2 = 70s (c) t3 = 100s 

(d) U = 250s (e) t5 = 500s (f) t6 = 800s 

Figure 5.4: A series of snapshots showing the animated painted Petri net model of 
the calmodulin kinase pathway at different moments in time using a local relative 
painting rule. 
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(a) ti = Os 

^ " : 

(b) t2 = 70s 

_ - * \ . , 

(c) t3 = 100s 

- * X 5 . . <£ . ^ ! » . . 

(d) t4 = 250s (e) t5 = 500s 

'••]""5'T!;T7"^^" '"''"T 

(f) i6 = 800s 

Figure 5.5: A series of snapshots showing the animated painted Petri net model 
of the calmodulin kinase pathway at different moments in time using a marking 
invariant-based painting rule. 
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to disappear from the display, and the focus is thus set on significant variations. 

In the CaMKII pathway model, there are places that are part of more than one 

conservative component. For these places, the painting priority is then given to the 

CaMKII conservation component. 

The description of the simulation data of the CaMKII pathway shown in 5.5 is 

straightforward. At ti, most of the CaMKII concentration is in an inactive form 

(the CaMKII place). After stimulation, at t2 and t3. there is a slow decrease in the 

concentration of the inactive form. At £4, we see that almost half of all the CaMKII 

molecules are in the active form. CaMKII**. At t5 and t6. we can observe a slow-

return of the pathway to its initial inactive state. 

5.5 Discuss ion 

The two animated representations of the simulation data of the CaMKII pathway 

model presented in the previous section differ in their level of detail. The display of 

the simulation data with the local relative painting rule shows the detail of every con­

centration variation in the model, while the display with the marking invariant-based 

painting rule presents a clearer picture of the switching behavior of this pathway. 

The local relative approach is less suitable for showing the dynamic behavior of signal 

transduction models than the marking invariant-based approach for two reasons. 

First, it is difficult to compare the paints of the places in the first display because of 

their relative nature. The minimum-maximum range can vary greatly from one place 

to another. For example, the initial concentration of CaMKII is 52.03 /xM and the 

initial concentration of CaMKII*""" is 0.014 /iM, but, because these values constitute 

the local maxima, both places are painted red. It is difficult to describe the behavior 

of this pathway with the display shown in Fig. 5.4 without any knowledge of the 
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absolute concentrations of the molecular substances. As we have already pointed out, 

at t\. the places representing the inactive CaMKII form and the active CaMKII**'"' 

form are both painted red because their values are close to the maximal concentration 

they reach during simulation. Does this mean that the CaMKII enzyme in its initial 

state is equally active and inactive? In Fig. 5.4, it is impossible to know if CaMKII 

is initially active or inactive, because the absolute values are absent from the first 

display. 

A second problem with the local relative painting rule is the numerous color changes 

in the display of a complex signaling network. For some substances, the presence of 

many different intermediate molecular forms with a small minimum-maximum range 

introduces unwanted color flashings. In the snapshots of the animated display shown 

in Fig. 5.4. irrelevant color changes for several places hinder the visualization of 

the network behavior. The impact of this problem grows exponentially for complex 

models: the animated representation of the simulation data of the complete network 

composed of six similar interconnected modules shows 100 nodes changing color! 

The objective of easing the visualization of the dynamic behavior is not achieved. A 

global painting rule (the same global minimum value and global maximum value for 

every place) would not be a good solution either, because of the different orders of 

concentration in the model. 

These two limitations of the local relative approach are not problematic for metabolic 

pathways. Local relative information is all that is needed to visualize the increase 

and decrease in the concentration of metabolites. Thus, it is sufficient to see the 

dynamic behavior of this family of biochemical systems. For signaling pathways, 

some kind of network-related information is required to attain this objective, and it 

can be attained with the marking invariants of Petri net models. The animated rep­

resentation of the Petri net model of the CaMKII pathway painted with the marking 
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invariant rule shows color modifications which are relevant to the evolution of the 

distribution between the different forms of the CaMKII enzyme. The distribution 

for this enzyme, as for others present in signal transduction systems, is linked to its 

functional activation or inactivation. For example, the distribution of CaMKII in 

phosphorylated and dephosphorylated forms indicates whether this enzyme is "on"' 

or "off". This painting rule can also eliminate concentration variations extraneous to 

the dynamic behavior of enzymes, and results in the appropriate level of detail for 

understanding systemic behavior: the simple display of the dynamic behavior of one 

enzyme is an asset for the visualization of the simulation data of a complex signaling 

pathway model with several enzymes. 

We could rapidly conclude that a painting rule based on conservation components 

and marking invariants computes paints which are always more significant in terms 

of the dynamic behavior of a model than the paints computed with the local rela­

tive painting rule. Nonetheless, the marking invariant-based painting rule also has 

drawbacks. 

While it is perfect for enzymes with a switching behavior, this rule is less effective 

for depicting an enzyme which performs its function with only a small part of its 

total concentration. For example, the paints of the CaM.Ca4 and PP1 places in the 

CaMKII model are computed with their marking invariant value from the complete 

model, which is 20 /J,M for CaM and 1.8 /JM for PP1 . The range of the concentra­

tion variation of CaM.Ca4 is 0.00001-0.0135 //M, and the range of the concentration 

variation of PP1 is 0.0461-0.285 ^M. Because of the values of the marking invari­

ants, the CaM.Ca4 and PP1 marks in Fig. 5.5 are never represented with tints other 

than blue. Instead of revealing the dynamic behavior of these enzymes, the marking 

invariant-based painting rule conceals it. 

The weakness of the first painting rule is the strength of the second, and vice-versa. 
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This is why we recommend visualizing the simulation data of the biochemical models 

with both types of animated representation. The marking invariant-based painting 

rule generates displays which are suitable for an initial exploration of the global 

dynamic behavior. The local relative painting rule generates displays which can give 

supplementary detailed information once the general behavior is understood. Thus, 

the use of more than one viewpoint is an efficient technique for exploring different 

aspects of the data. 

5.6 Conclusion 

In this article, we used the Petri net formalism and some of its properties for the 

development of a new visualization method tailored to the simulation data of complex 

signaling pathways. We exemplified the advantages of this approach by comparing 

two animated representations of the simulation data of the CaMKII pathway: the 

first animated representation was created with a local relative painting rule, and the 

second with a marking invariant-based painting rule. We have also explained how to 

transform an ODE model into a continuous Petri net model. 

To model a biological system and to visualize the simulation data with the same 

graphical formalism is an advantage for modelers. No time is lost in becoming fa­

miliar with a new graphical representation once a system has been mathematically 

modeled. A single modeling framework is used from beginning to end. It was also 

demonstrated that a Petri net-based visiialization approach for the simulation data 

of a signal transduction pathway using marking invariants emphasizes its dynamic 

behavior. The switching mechanisms of enzymes are particularly highlighted, be­

cause of the elimination of small perturbations from the animated representations. 

One of the disadvantages of this visualization approach is that, for some enzymes. 
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the elimination of small perturbations conceals their dynamic behavior from viewers. 

For that reason, we believe that the local relative and the marking invariant-based 

visualization approaches should be used together, in order to provide more than one 

viewpoint for data exploration. 

The visualization of the simulation data of signaling pathway models raises questions 

about the visualization of signal fluxes. For example, could the Petri net formalism 

be used to visualize the transmission of signals in a biochemical model? In the near 

future, we will investigate this matter, and we will work on the development of a 

new Petri net-based technique to characterize the dynamics of regulation motifs and 

signal fluxes in signal transduction models. 
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CHAPITRE 6 

PETRI NET-BASED METHOD FOR THE ANALYSIS OF THE 

DYNAMICS OF SIGNAL PROPAGATION IN SIGNALING 

PATHWAYS 

Abstract 

Motivation: Cellular signaling networks1 are dynamic systems which propagate and 

process information, and, ultimately, cause phenotypical responses. Understanding 

the circuitry of the information flow in cells is one of the keys to understanding 

complex cellular processes. The development of computational quantitative models 

is a promising avenue for attaining this goal. Not only does the analysis of the 

simulation data based on the concentration variations of biological compounds yields 

information about systemic state changes, but it is also very helpful for obtaining 

information about the dynamics of signal propagation. 

Results: This paper introduces a new method for analyzing the dynamics of signal 

propagation in signaling pathways using Petri net theory. The method is demon­

strated with the Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulation 

network. The results constitute temporal information about signal propagation in 

the network, a simplified graphical representation of the network and of the signal 

propaga t ion dynamics a n d a character izat ion of some signaling routes as regula t ion 

motifs. 

*Cet article a ete soumis a la revue Bioinform.atics. Voir la reference (Hardy et Robillard, 2007a) 
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6.1 Introduct ion 

With high-throughput technologies, cell signaling research has produced a great deal 

of data on the signaling networks of cells. To understand how complex biological 

processes perform and how biological information is processed, some researchers are 

investigating how multiple components interact in a systemic manner. Part of this 

understanding wrill come from models developed by computational biologists, and a 

number of modeling and simulation tools have been developed in the last two decades 

specifically for biological applications. Some mathematical approaches are aimed at 

developing quantitative models that are numerically simu-lated (Eungdamrong et 

Iyengar, 2004). Other approaches are based on graph theory and ignore quanti­

tative information to focus on the topology of the interactions between biological 

compounds in cellular networks (Mason et Verwoerd. 2007). 

Petri net theory is used in another group of theoretical approaches to studying bi­

ological systems. This mathematical and graphical formalism was created by Petri 

(1962) to study systems with causal, concurrent processes. Since then, Petri nets 

have been further developed and applied to different types of systems, such as com­

munication and industrial processes. Reddy et al. (1993) first applied this theory 

to biological systems. Meanwhile, a number of the theoretical tools and methods 

provided by Petri net theory have been used to study metabolic networks, signal 

transduction pathways and gene regulation networks (see, for example, Goss et Pec-

coud, 1998: Voss et al., 2003; Li et al., 2006; Matsuno et al., 2006a; Sackmann et al., 

2006; Steggles et al., 2007). Because of the versatility of Petri net theory, Petri net 

approaches can be used to complete either qualitative or quantitative studies. 

This paper presents a new Petri net-based method for the analysis of the dynamics 

of signal propagation in quantitative models of signal transduction networks. This 
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method combines invariant analysis (a structural analysis of the dynamic proper­

ties of Petri net models) and topological analysis to analyze simulation data. This 

method gives temporal information about signal propagation, produces a simplified 

graphical representation of the network and of the signal propagation dynamics, and 

it characterizes some signaling routes as regulation motifs. This method can be 

part of a unified Petri net framework used by computational biologists for modeling, 

simulation and simulation data analysis. 

We apply this method to the Ca2+/calmodulin-dependent protein kinase II (CaMKII) 

regulation network, which is composed of several interconnected signaling pathways. 

The next section briefly presents the model of the CaMKII regulation network, gives 

a short introduction to Petri net basics, presents the signal dynamic analysis method 

and provides an example of it with a model of the calmodulin and calcineurin path­

ways. Section 6.3 presents the results of the analysis of the signal dynamics of the 

CaMKII regulation network. 

6.2 M e t h o d s 

6.2.1 T h e model of the Ca 2 + / ca lmodul in -dependent protein kinase II 

regulation pathway 

The model of the CaMKII regulation pathway that is analyzed in this paper is one 

of the three developed for a theoretical study of long-term potentiation in the hip-

pocampal CA1 neuron (Bhalla et Iyengar, 1999). In the cited study, several kinetic 

models of signaling pathways were connected to form complex networks in order 

to investigate their signaling processing capabilities. The experimentally observed 

link between persistently activated CaMKII in the postsynaptic neuron and increased 
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synaptic responses was one of the motivations for conducting this quantitative study. 

The cyclic adenosine monophosphate (cAMP). protein kinase A (PKA) and protein 

phosphatase 1 (PP1) signaling pathways were connected to the calmodulin (CaM). 

calcineurin (CaN, also known as protein phosphatase 2B, PP2B) and CaMKII signal­

ing pathways to create a single network, because earlier studies had shown evidence 

that the cAMP pathway gated CaMKII signaling through the regulation of protein 

phosphatases (Iyengar, 1996; Blitzer et al., 1998). The kinetic parameters of the 

model were derived from experimental observations, and are now available in the 

Database of Quantitative Cellular Signaling (Sivakumaran et al., 2003). The simula­

tion data were analyzed with concentration plots to work out the dynamic behavior 

of the network. The modeled CaMKII regulation pathway is shown in Figure 6.4(a). 

We provide an example of the Petri net-based signal analysis method in this section 

using a subset of the CaMKII regulation pathway model. This subset model is 

composed of the CaM and CaN modules. The results section presents the conclusions 

of the signaling dynamic analysis of the complete model of the CaMKII network. 

6.2.2 Petri net model ing 

A Petri net is a directed, bipartite graph. It contains two kinds of nodes, places and 

transitions, connected by directed arcs. In biochemical Petri net models, places rep­

resent biological compounds, like enzymes or metabolites, and transitions represent 

chemical reactions. Arcs can only link one node of each kind. They indicate the 

causal relations between biological compounds and chemical reactions. These rela­

tions are weighted. In biochemical Petri net models, arcs are labeled with weights 

corresponding to the stoichiometric parameters of the reaction equations. Places 

can contain dynamic objects, called tokens, which represent a certain quantity of a 

chemical compound. The mark of a place corresponds to its number of tokens, thus 



124 

to the number of molecules of the biological compounds. 

Tokens are produced and consumed through the firing of transitions. A transition is 

able to fire if the marks of all its input places satisfy the token amount required by 

the weights of the arcs connecting these input places with the considered transition. 

This is the precondition of a transition. If a transition fires, it means that the 

chemical reaction has occurred. The weights of the outgoing arcs indicate the token 

amount that is added to the output places of the considered transition. This is the 

postcondition of a transition. 

The distribution of tokens in the Petri net places is called the marking of the net 

and indicates the state of the system. For a biochemical model, the marking is the 

distribution of compounds. The initial marking is the marking of the start state. 

The theoretical description of Petri nets given above is the description of the origi­

nal theory (Petri, 1962). These nets are also called place/transition nets. In these, 

places contain a discrete quantity of tokens (marks are integers) and the firings of 

transitions are discrete events. Different extensions have been added to the original 

theory to augment the modeling possibilities of this formalism. In this paper, we 

also use elements with continuous properties. Continuous places contain a contin­

uous quantity; and the marks of continuous places are real numbers. The firing of 

continuous transitions is a continuous flow, and continuous transitions have a spec­

ified speed. A kinetics model can be modeled with continuous Petri net elements: 

the mark of continuous places represents the concentration of chemical compounds, 

and the marking-dependant speed of the continuous transitions can correspond to 

the reaction-rate equations of chemical reactions. For more detailed information on 

using Petri nets for biochemical modeling, see Hardy et Robillard (2004). 

The model of the CaM and CaN modules of the CaMKII regulation pathway, shown 
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in Figure 6.1. is an example of a biochemical Petri net model incorporating kinetics 

parameters. In this model, every place and transition is continuous. Tables 6.1 and 

6.2 present the specifications of the Petri net model of the CaM and CaN modules. 

The continuous places are drawn as double circles, and the continuous transitions 

as white rectangles. The input places of a transition indicate that these biological 

compounds are the substrates of the chemical reaction, and the output places its 

products. This continuous model is mathematically equivalent to a model of ordi­

nary differential equations, but with a formal graphical representation and numerous 

theoretical tools for model analysis. 

Tableau 6.1: Specifications of the places of the Petri net model of the calmodulin 
kinase pathway 

Ca4-
Ca4-
Ca4-

Name 

CaM 
CaM-Ca2 

CaM-Ca3 

CaM-Ca4 

Ca 
CaM-Ng 

Ng 
Ng* 
PKC 
c22 
c2l 

Ca4-PP2B 
Ca2-PP2B 

PP2B 
-PP2B-CaM-Ca4 

-PP2B-CaM-Ca3 

-PP2B-CaM-Ca2 

c25 
c24 

Substance 

Calmodulin 
Calmodulin-Ca2 

Calmodulin-Ca3 
Calmodulin-Ca4 

Calcium 
Calmodulin-Neurogranin complex 

Neurogranin 
phosphorylated Neurogranin 

Protein kinase C 
CaM-Ng-PKC complex 

Ng-PKC complex 
Calcineurin-Ca4 

Calcineurin-Ca2 

Calcineurin 
Calcineurin-Ca4-Calmodulin-Ca4 

Calcineurin-Ca4-Calmodulin-Ca3 
Calcineurin-Ca4-Calmodulin-Ca2 

complex 
complex 
complex 

Ca4-PP2B-CaM-Ca4-Ng* complex 
Ca4-PP2B-CaM-Ca3-Ng* complex 

Variable 

m0 

777i 

777 2 

7773 

m4 

777 5 

m6 

777.7 

7778 

7779 

m10 

nQ 

77.1 

772 

77,4 

" 5 

« 6 

n7 

n8 

c23 Ca4-PP2B-CaM-Ca2-Ng* complex 



a - 2 v C m v l \ CaM-Ca_3 KjTi2)j \ CaM-Ca_4ftjn3\j 
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'127 / 125 
t30 / 128 , 

_t?4 ca 4-CaM-Ca 4-PP2B , 

Ca_3-Ca»*Ca 4-PP2B 

Figure 6.1: Petri net model of the calmodulin and calcineurin modules of the CaMKII 
regulation pathway 
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Tableau 6.2: Specifications of the transitions and arcs of the Petri net model of the 
camodulin pathway 

Name 

to 

h 

t2 

h 

U 

to 

*6 

tl 

*8 

*9 

Speed 

7 2 X m o X T7742 

3 . 6 x m i x 777.4 

0.465 x 7772 x mi 

72 x mi 

1 0 X 777-2 

1 0 x 777.3 

0 . 3 X 777-0 x m6 

7775 

0.0612 x 777.5 x Ws 

1 . 4 x 777.9 

From 
variable factor 

mo 
m4 

rrii 

m4 

7772 

7774 

7771 

7772 

7773 

777-0 

m,c 

7775 

m-5 

m8 

m.Q 

1 
2 

1 
1 
1 
1 

1 

1 

1 

1 
1 

1 

1 
1 

1 

variable 

7771 

mo 

777.3 

m0 

777.4 

777.1 

7774 

777.2 

m4 

m5 

777-0 

m6 

777,9 

777-5 

777 8 

To 
factor 

1 

1 

1 

1 
2 

1 
1 
1 
1 

1 

1 
1 

1 

1 
1 

'10 0.35 x 777.9 m9 

777-0 

7777 

777-8 

i n 

*12 

«13 

tu 

ho 

he 

0.101 x m6 x ms 

2.32 x m1 0 

0 . 5 8 x 777,10 

0.005 x m 7 

77-! 

10008 x n2 x rnA
2 

m6 

m,8 

"7-10 

m-10 

777.7 

77i 

772 

777-4 

1 
1 

1 

1 

1 

1 

1 
2 

777-10 

777-6 

777-8 

777-7 

m8 

777-6 

n2 

777,4 

77.1 

1 

1 
1 
1 
1 
1 
1 
2 

1 

Continued on next page 
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Tableau 6.2 - continued from previous page 

Name 

*17 

*18 

tl9 

ho 

t2i 

^22 

^23 

^24 

*25 

^26 

*27 

^28 

^29 

^30 

*31 

^32 

^33 

Speed 

3.6 x ?ii x 777.42 

7?.0 

0.24 x n0 x m i 

77.6 

2.238 X 770 X 7772 

n 5 

600 x 77 0 x r?73 

77.4 

0.3346 x 774 x m7 

0.67 x 777 

2.68 x n 7 

0.3346 x 775 x m 7 

0.67 X 778 

2.68 x 778 

0.3346 x 776 x 7777 

0.67 x 77.9 

2.68 x 77.9 

From 

variable factor 

771 

7774 

n0 

770 

7771 

ne 

770 

7772 

" 5 

770 

7773 

77.4 

774 

777.7 

777 

777 

77 5 

777.7 

" 8 

n8 

n 6 

777.7 

77,9 

779 

1 
2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

variable 

77.0 

771 

7774 

776 

n 0 

77? 1 

n-o 

770 

7772 

77.4 

77,0 

7773 

n7 

77.4 

7776 

77.4 

7777 

« 8 

77.5 

777.6 

775 

777.7 

n 9 

n6 

me 

776 

777.7 

To 

factor 

1 

1 
2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

£34^35 These transitions are simplifications for the calcium pump module. 
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6.2.3 Invariant analysis 

Invariants are dynamic properties of Petri nets, and are obtained from a structural 

computation. In biochemical models, they usually have a mass conservation meaning 

or represent a cyclic pathway. This subsection presents the theoretical background on 

Petri net invariants and the result of the invariant analysis of the CaM-CaN model. 

The structure of a Petri net model, i.e. the arrangement of places, transitions and 

arcs, can be expressed in linear algebra by a two-dimensional matrix. This is the 

incidence matrix W. One dimension of the incidence matrix is the number of places 

of the model and the other dimension is the number of transitions. In place-transition 

nets, each element w^ of the matrix indicates the token change at place i after the 

firing of transition j . In continuous nets, each element Wij of the matrix indicates 

the flow from transition j to place i. The element w^ is negative if the flow direction 

is from a place to a transition. The flow is the product of the speed of a transition 

and the weight of the arc between the place and the transition. From the incidence 

matrix, it is possible to determine structural properties of Petri nets like invariants. 

Among all the attainable states of a model, called the reachable markings of a Petri 

net model, some quantities do not change, even when transitions are fired. This first 

type of invariant property is the marking invariant (p-invariant). Every p-invariant 

of a Petri net model is a positive vector x that is a solution of the following equation: 

x W = 0 (6.1) 

A p-invariant characterizes a conservation component of the model. A conservation 
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component is a set of places over which the weighted sum of the tokens is constant 

for ever\^ reachable marking. Relationships between p-invariants and biochemical 

modeling concepts have already been discussed. P-invariants express conservation 

relations of metabolites in metabolic pathway models (Voss et al., 2003; Zevedei-

Oancea et Schuster, 2003). In signaling pathway models, p-invariants can represent a 

different kind of conservation relation (Sackmann et al.. 2006). Biochemical processes 

in signaling pathways are performed by enzymes that change state to transmit a 

signal. The total concentration of all forms of an enzyme is modeled as a constant 

quantity. This quantity is a marking invariant of a Petri net model. Thus, the 

p-invariants and their associated conservation components identify all the places 

representing a specific form of an enzyme. The four conservation components of the 

CaM-CaN model are listed in Table 6.3. 

Tableau 6.3: Conservation components and marking invariants of the Petri net model 
of the calmodulin and calcineurin modules of the CaMKII regulation pathway 

^ Conservation component 
hnzvme , , . . . . 

Marking invariant 

Cd = {CaM, CaM-Ca2, CaM-Ca3, CaM-Ca4, CaM-Ng. c22, 
Ca4-PP2B-CaM-Ca2 , Ca4-PP2B-CaM-Ca3 , 

Calmodulin Ca4-PP2B-CaM-Ca4 , c23: c24, c25} 
Nee-*. = mo + mi + m2 + m 3 + m5 + m9 + n4 + n 5 + n6 + n7+ 

n8 + n9 

v • CC2 = {Ng, Ng*, CaM-Ng, c2i, c22, c23, c24. c25} 
Neurogranm Ar

 L ' 
Ncc2 = m5 + m6 + m7 + mg + m,w + n7 + n8 + n9 

PKC C°3== { P K C ' °21' °22} 

Ncc3 = rn-s + mg + mw 
CCA = {PP2B, Ca2-PP2B, Ca4-PP2B, Ca4-PP2B-CaM-Ca2 

„ , . . Ca4-PP2B-CaM-Ca3 , Ca4-PP2B-CaM-Ca4 . c23. c24, 
Calcineurin ^ ' 

C25} 
Nee* = nQ + nx + n2 + n4 + n5 + n6 + n7 + n8 + n9 

Among all the possible firing sequences of a model, some can repeat themselves, 
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creating a cycle of successive states. This second type of invariant is the firing 

invariant (t-invariant). The t-invariant of a Petri net model is a positive vector y 

that is a solution of the following equation: 

W y = 0 (6.2) 

A t-invariant characterizes a repetitive component of a model. A repetitive compo­

nent is a set of transitions causing a return to a previous state of a model. In other 

words, all the firings of the transitions of a repetitive component together have a null 

effect on the marking of the model. In Petri net models of signaling networks, the 

t-invariant property has been used for the identification methods of functional units 

(Sackmann et al., 2006) and of transduction activation components (Li et al., 2006). 

For continuous Petri nets, the t-invariant definition has to be adapted. The firing 

of continuous transitions is a continuous flow and not a discrete event. Because a 

continuous flow cannot be repeated, the concept of a repetitive component makes no 

sense. In its place, we suggest using the concept of a steady component. From an 

unstable state, a continuous Petri net model evolves to a steady state. In a stable 

steady state and without any external perturbations, the marking of the model no 

longer changes. In this stable state, a subset of the solutions of equation 6.2 lists 

the steady components of a model, which are the sets of transitions for which the 

total flow is null. To be part of this subset of solutions, these special t-invariants 

must be vectors composed only of 0 and 1 (a flow can either exist or not, it cannot 

be multiplied). Hence, the non-zero elements of these t-invariants correspond to the 

transitions composing a steady component. In the case of a continuous Petri net with 

marking-dependent speeds, equation 6.2 must be solved with the incidence matrix 

filled with the steady state flow values in order to find the steady components. Linear 
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combinations of the t-invariants are also solutions of equation 6.2: however, only the 

vectors that do not include other solutions are searched. These are the minimal 

steady components. The minimal steady components of the CaM-CaN model are 

listed in Table 6.4. 

Tableau 6.4: Steady components of the Petri net model of the calmodulin and cal-
cineurin modules of the CaMKII regulation pathway 

SCi = {*o.*3} 
SC2 = {U.t4} 
SC3 = {t2.t5} 
SCA = {£15. t i 6 / 

SC5 = \t&. tj. tg. t9. :^10' . t i l . .tl2. .*13. 

SC§ = {ti7. f 18/ 

SC7 = {t\g, t2$} 
SC$ — {t2i. t22} 
SCq = \t23, £24} 

• ^14- t25.t26: t2j. t2g. t29, £30, £31, £32,^33} 

6.2.4 Identification of the information flux segments and nodes of a sig­

naling network 

To detect signal propagation through a signaling network, places and transitions 

must be identified to serve as measuring points. These are called information flux 

nodes and segments. Information flux segments are the portions of a pathway com­

posed of places and transitions that might transmit or route a signal in the network. 

Information flux segments are positioned between two groups of one or more places 

described as information flux nodes. The flow circulating on an information flux seg­

ment is bidirectional. At steady state, the flow in each direction, on every possible 

pathway linking the nodes, is equal. This is the equal flow condition that will be used 

in Algorithm 6.1 to identify information flux segments and nodes. This condition 

is true only for the places and transitions of information flux segments. As we will 

see in the next subsection, a comparison of the flow in one direction with the flow 

in the opposite direction on a segment reveals the direction of a signal. The steady 
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components of a Petri net model provide the initial subnets used in the search for 

the information flux segments of the signaling network. 

The search for the information flux nodes and segments can be accomplished with 

the following algorithm: 

Algori thm 6.1. Search for the information flux segments and nodes of a steady 

component. 

Step 1. Let SC be a given steady component and SPN the subnet of a given 

Petri net with only the transitions of SC and all the places directly linked to these 

transitions. Generate B, the set of all the pairs of places from SPN. Initialize the 

set of information flux nodes IFN <— 0 . IFN is a set containing pairs of sets of 

places. 

Step 2. If B ^ 0 , then pull the pair ({A}, {^2}} from B and perform steps i) to v), 

otherwise go to 3). 

Step 2i. Let D1 be the set of all the paths in SPN from 61 to b2 and D2 be 

the set of all the paths in SPN from b2 to 61. A path is a succession of places 

and transitions linked by arcs. The paths with a transition having an outgoing arc 

towards the initial place of the path are rejected. Initialize cumulative flow values 

*i,-„ = F w = Fiin = F2out = 0. If Dl or D2 is empty, stop. 

Step 2ii. Add to F\in the value of the speeds of every transition directly linked 

to 61 in the paths from D2 (i.e. every transition ty that is part of the last place-

transition-place triplet px —»• ty —• bi of a path). For triplets where px is not b2 (i.e. 

for indirect paths), withdraw from F l i n the values of the speed of any transition tz 

in SPN in a place-transition-place triplet b\ —> tz —»• px where place px is the same 

as one of the triplets of the first category. 
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Step 2iii. Add to F2out the value of the speeds of every transition directly linked 

to b\ in the paths from Dx (i.e. every transition tm that is part of the last place-

transition-place triplet h —> tm ^ py of a path). For triplets where py is not bo (i.e. 

for indirect paths), withdraw from F2out the values of the speed of any transition tn 

in SPN in a place-transition-place triplet py —> tn —> bi where place py is the same 

as one of the triplets of the first category. 

Step 2iv. Add to F2m the value of the speeds of every transition directly linked 

to b2 in the paths from Di (i.e. every transition ty that is part of the last place-

transition-place triplet px —> ty —> b2 of a path). For triplets where px is not 61 (i.e. 

for indirect paths), withdraw from F2in the values of the speed of any transition tz 

in SPN in a place-transition-place triplet b2 —> tz —• p x where place p x is the same 

as one of the triplets of the first category. 

Step 2v. Add to F2out the value of the speeds of every transition directly linked 

to b2 in the paths from D2 (i.e. every transition tm that is part of the last place-

transition-place triplet b2 —• t,„ —> py of a path). For triplets where py is not 61 (i.e. 

for indirect paths), withdraw from F2out the values of the speed of any transition tn 

in SPN in a place-transition-place triplet py —> tn —* b2 where place py is the same 

as one of the triplets of the first category. 

Step 2vi. If Fiin = F2out, FXout = F2in and these values are not null, then add 

( { f r i M M ) to IFN. Go to 2). Step 3. If two pairs (Bx,By) in IFN share 

an identical element, determine whether or not the two pairs also share the same 

transitions. If they do, form the union of the two different sets of places and replace 

the two pairs in IFN by the new unified pair. 

• 
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In step 1 of the above algorithm, the main operation is the construction of the set B 

of all possible pairs of places. These places are part of the subnet SPN corresponding 

to the steady component SC. Also, the set IFN that will contain the information 

flux nodes identified by the algorithm is initialized. In step 2, each pair of sets 

of places ({bi},{b2}) of set B is tested with the equal flow condition to determine 

whether or not they are part of an information flux segment. In step 2i, the sets 

D\ and Do are constructed to contain every possible path linking places b\ and b2 

in SPN. In steps 2ii to 2v, four cumulative flow values are computed; these values 

are the flows going in and out of places b\ and b2- In step 2vi, the cumulative flow 

values are compared to verify the equal flow condition. If it is verified, the pair is 

added to IFN. In step 3, the pairs of sets of places in INF sharing an identical set 

are merged into a single pair only if they are part of the same segment. Table 6.5 

shows the results of the search for the informa-tion flux nodes and segments of the 

steady components of the CaM-CaN model. 

6.2.5 Analysis of the information flux of a signaling network 

Once the information flux segments and nodes have been identified, these measuring 

points can be used, together with the topology of the network, to characterize the 

dynamics of a signal. At steady state, the difference between the flows in each 

direction on an information flux segment is zero. However, after a perturbation, this 

difference indicates the direction of the propagation of a signal, which can then be 

followed throughout the structure of the model. With formal definitions about the 

pathway structure of regulation motifs, such as positive and negative feedback loops, 

different types of signal routes can also be identified. 

Here, we complete the introduction of the Petri net-based signal analysis method 

by presenting an analysis of the information flux caused by the inflow of calcium 
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Tableau 6.5: Information flux segments of the Petri net model of the calmodulin and 
calcineurin modules of the CaMKII regulation pathway 

Steady 
component 

SCi 

sc2 

sc3 

SCA 

Segment 

Si 

s2 

S3 

s. 

Nodes and speeds of the input and output transitions 
of the segment 

<{Ca. CaM};{CaM-Ca2}> 
Fhn = speedto, Flout = speedt3 

F2in = speedt3, F2ont = speedto 

<{Ca. CaM-Ca2}!{CaM-Ca3}> 
Fhn = speedtl. Flout = speedu 

F2tn = speedu. F2out = speedtl 

<{Ca. CaM-Ca3},{CaM-Ca4}> 
FUn = speedt2. Flout = speedu 

F2,n = speedtr,, F2out = speedy 
<{Ca, PP2B}.{Ca2-PP2B}> 
Fhn = speedt16, Flout = speedy 
F2in = speedtl5. F2oui = speedy 
<{CaM},{CaM-Ng}> 

S5 Fhn = speedt6, Flout = speedy - speedts 

F2i„ = speedt7 + speedt10, F2oyt = speedy 
<{Ng},{Ng*}> 
Fhn = speedt13 + speedho, Flout = speedtl4 + speeds-
speedy + speedt28 — speedt30 + speedt31 — speedt33 

F2,n = speedtl4 + speedt26 + speedt2g + speedt32, 
Flout = speedUx - speedtl2 + speedte - speedtl 

SCe 

SC7 

SC8 

s7 

Ss 

S9 

<{Ca, Ca2-PP2B}.{Ca4-PP2B}> 
Fhn = speedt17, Flout = speedhs 

F2in = speedtls, F2out = speedtl7 

<{CaM-Ca2; Ca4-PP2B},{Ca4-PP2B-CaM-Ca2}> 
Flin = speedtl9, Flout = speedt20 

F2in = speedt20: F2out = speedy 
<{CaM-Ca3, Ca4-PP2B},{Ca4-PP2B-CaM-Ca3}> 
Flin = speedy. Flout = speedy 
F2in = speedt22, F2out = speedt2l 

<{CaM-Ca4, Ca4-PP2B},{Ca4-PP2B-CaM-Ca4}> 
SC9 Sw FUn = speedt23, Flout = speedt2A 

Fiin = speedt24, F2out = speedt23 

SC5 

S6 
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in the CaM-CaN model. The CaM-CaN pathway was modeled and simulated with 

the software Genomic Object Net (GON, commercially known as Cell Illustrator) 

(Nagasaki et al., 2003). The simulation period lasts 10 seconds. The calcium inflow 

occurs at the first second and lasts 1 second. This inflow perturbs the CaM-CaN 

model and a propagation of a signal ensues. 

The speed differential of an information flux segment is defined as the difference 

between its F\in and F2in values. Figure 6.2 presents the normalized speed differential 

plots of the information flux segments computed with the data generated by the 

simulation of the CaM-CaN model. The plots show an increase in calcium binding 

with calmodulin and calcineurin. an increase in the dephosphorylation of neurogranin 

and a decrease followed by an increase in the binding of calmodulin with neurogranin. 

The speed differential plots give a first indication of the consequences of the calcium 

inflow, but with Petri net properties and the topological data of the network, a deeper 

analysis of the dynamics of the signal propagation can be performed and a graphical 

representation of the signal propagation can be generated. 

The initial data needed for the signal analysis of a Petri net model is the source 

of the signal and the duration of the stimulation. For the CaM-CaN model, the 

Ca place is the source and the stimulation lasts 1 second. At every simulation step 

of the stimulation period, the differential speeds of the information flux segments 

linked to the source of the signal are checked. For the CaM-CaN example, the speed 

differentials of segments Si, S2. S3, S4 and S7 are verified, because the Ca place is part 

of these segments. When the relative difference between F-i. and F2 , or vice-versa. 

is above an arbitrary threshold (10% in this example), the segment is considered to 

be propagating a signal. When this occurs, the speed differentials of other segments 

connected to the nodes of the activated segment are examined to determine whether 

or not the propagation continues. In our example, following signaling activation of 
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Figure 6.2: Concentration plot of calcium and normalized speed differential plots 
for some information flux segments of the Petri net model of the calmodulin and 
calcineurin modules of the CaMKII regulation pathway 
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segments Si, So, S3, S4 and S~ due to the calcium inflow, the speed differentials of 

segments S8. Sg and Sw are evaluated. This assessment of the speed differentials of 

the connected in-formation flux segments continues as the signal is propagated. In 

our example, following signaling activation of segments S§, Sg and 5io- the activation 

of segment S& and eventually of segment £5, is observed. 

More than just observing successive signaling activations, the Petri net-based signal 

analysis method can yield temporal information about these activations and produce 

a simplified graphical representation of the network and of the signal propagation 

dynamics, as well as characterizing some signaling routes as regulation motifs. These 

three features of the method are shown in Figure 6.3. In this figure, the precise 

moments of the signaling activation of the information flux segments are indicated. 

Also, instead of displaying the detailed model of the network, this figure shows a 

simpler structure. The results of the p-invariant analysis of the model provide the 

information to generate this view: the nodes of this abridged graph correspond to 

the conservation components of the Petri net model. Finally, the definitions of the 

graph structure of two regulation motifs, positive and negative feedback loops, are 

used to detect special signaling pathways. A positive feedback loop is identified when 

a signal is propagated to an information flux segment that wras previously activated 

by the same signal. The signal then promotes the activation of the segment in the 

same direction in which it was initially activated. In other words, the signal loops 

back to sustain the signaling activation of an already activated segment. A negative 

feedback loop is identified in two situations. The first situation is when a signal is 

propagated to a segment that was previously activated by the same signal, and the 

signaling flux of the segment is then reversed. The second situation is when a signal 

is propagated to a segment in such a way that it competes with a connected segment 

already activated by this signal. In both situations, the signal loops back to hinder 

the signaling activation of an already activated segment. A negative feedback loop 
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was identified in the CaN-CaM model and is shown in Figure 6.3(d). The activation 

of the segment SQ, (CaM + Ng —• CaM-Ng), competes with the activated segment Si 

(CaM + 2 Ca —» CaM-Ca2) because they both share the CaM place. This process is 

known as the inhibition of calmodulin by neurogranin. In our example, this inhibition 

occurs at 2.5 seconds. 0.5 second after the end of the calcium inflow. 

(a) Usual static graphical repre­
sentation 

( Ca ) 

( Ng i 

(b) h = 1.01s 

(c) t2 = 1.30s (d) t3 = 2.50s 

Figure 6.3: Graphical representations of the propagation of a signal in the calmodulin 
and calcineurin modules of the CaMKII regulation pathway 
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6.3 Results 

This section presents the results of the signal dynamic analysis of the CaMKII regu­

lation pathway with a Petri net-based method. The Petri net model of the CaMKII 

regulation pathway was simulated with GON for 800 seconds. A calcium inflow re­

producing a tetanic stimulation is induced at the sixtieth second and lasts 1 second. 

A p-invariant analysis of the model resulted in the identification of 15 conservation 

components. Also, using the concentration values of the steady state of the model. 30 

information flux segments have been identified. Figure 6.4 shows the dynamics of the 

signal propagation in the network. This figure is a simplified graphical representation 

of the Petri net model of the network produced with the p-invariant analysis data. 

It gives temporal information about the signaling activation of the information flux 

segments of the network. The initial and final states are not shown because they are 

steady states in which no signal is propagated (no arrows displayed). Figure 6.4 also 

shows the activity of three feedback loops. The first loop, the negative feedback loop 

leading to the inhibition of calmodulin by neurogranin, has already been discussed 

and is shown in an active state in Figure 6.4(c). Another negative feedback loop has 

been detected: the increase of the degradation of cAMP into AMP because of the 

activation of phosphodiesterase (PDE) by PKA. This regulation motif is shown in an 

active state in Figure 6.4(c) and 6.4(d). The third loop is a positive feedback loop. 

It corresponds to the autophosphorylation cycle of CaMKII. This motif is active im­

mediately following calcium stimulation at 61 seconds and lasts for more than 500 

seconds. This loop is represented as a circular arrow on the CaMKII conservation 

component in every subfigure of Figure 6.4. The details of this motif and the cyclic 

activation of two information flux segments are hidden, because both seg-ments are 

enclosed in the CaMKII conservation component. 

Figure 6.4 illustrates key moments of the signal propagation due to the calcium 
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( PKA >-K±>-< PPI ) {CaMKIl)< 

(a) Usual static graphical representation 

—® 
( CaM } 

( PKA ) ( 11* ) ( PP1 ) (CaMKIlW ( PKA ) 

(b) ti = 61s 

j ( c ? ) 

(AC1/8) ( PDE )^J 

'cAMP 

^ 8 ) QDE3*J-H^S) 

'cAMP 

( PP1 ) {CaMKIl)< 

(c) t2 = 03s 

( N9 ) 

V {_ CaN ^ 

pp-l }——n(caMKIl)< ( PKA ) — » ( II ~ ) •<( ppj )——,(caMKIl)< 

(d) *3 = 89s (e) U = 450s 

Figure 6.4: Graphical representations of the propagation of a signal in the CaMKII 
regulation network 
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inflow in the CaMKII regulation network. Figure 6.4(b) shows the propagation of the 

signal immediately after the end of the stimulus. At 61 seconds, the CaM activation 

initiates the production of eAMP through the activation of adenylyl cyclases 1 and 

8 (ACl/8) , which in turn immediately starts activating PKA. CaM activation also 

starts the autophosphorylation cycle of CaMKII and with CaN, dephosphorylates Ng. 

Two seconds later, as shown in Figure 6.4(c), the Ng and PKA negative feedback 

loops are active. Also. CaN has activated PP1 and the inhibited Inhibitor-1 protein 

(II), which in turn has a deactivation effect on CaMKII. Figure 6.4(d) shows that 

the PP1 activation by CaN is overcome by the activation of PKA, because it causes 

the phosphorylation of II and therefore the inhibition of PP1 . Figure 6.4(e) shows 

that the positive feedback loop of the CaMKII is still active, for a long period of 

time after the stimulus has been withdrawn. 

6.4 Conclusion 

This paper describes a method derived from Petri net theory to analyze the dynam­

ics of signal propagation in a signaling network. The Petri net formalism is useful 

for depicting biochemical networks and performing simulations, but, more impor­

tantly, it provides techniques for the validation of the model and for the analysis 

of the simulation data. Because of its theoretical richness, Petri net theory offers a 

unified framework to computational biologists. The techniques that have been ex­

ploited in this paper are the calculation of p-invariants (conservation components) 

and t-invariants (steady components) of a system. The method has been applied 

to the Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulation network, 

an important pathway in the synaptic plasticity of neurons, and resulted in a new 

portrayal of the dynamics of the signal propagation in the network. We believe that 

this Petri net-based method will be of great value to computational biologists who 
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need to rapidly interpret the simulation data of their signaling network models and 

gain insights into the systemic dynamics of signal processing components. 

Understanding the dynamics of signal propagation in signaling network models is 

usually achieved with the analysis of the concentration plots of the simulation data, 

However, studying the concentration variations of a model yields more information 

about the changes of state of the model components than the dynamics of the signal 

propagation, and, as a result, the signal propagation dynamics have to be deduced 

from the data. The Petri net-based method presented in this paper is a new analysis 

tool, which highlights, in a comprehensive way, the propagation of a signal in cellular 

network models and facilitates a system-level understanding. 

The study of this method has been limited to models with a single signal source. 

Its application to the signaling dynamics of networks with simultaneous signals from 

multiple sources has yet to be performed. 

New definitions of the graph structure of regulation motifs such as scaffolds and 

bifans can be added to this method. This will enrich its analytical possibilities and 

enhance its ability to help in deciphering the signal processing functions of cellular 

networks. Also, in the future, this method will be adapted to the particularities of 

hybrid Petri nets. 
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C H A P I T R E 7 

D I S C U S S I O N G E N E R A L E 

Une discussion sur l'objet de cette these multidisciplinaire ouvre la porte a de nom-

breux sujets. Au confluent de la biologie, de rinformatique et du genie, j 'a i choisi 

de me tourner vers deux pistes de reflexion fort diflerentes l'une de l'autre. Premie-

rement. je discuterai des aspects techniques de la simulation de modeles complexes 

avec les reseaux de Petri. Celle-ci presente des difficultes qui pourraient faire obstacle 

a l'utilisation de cette methode. Ensuite. j 'aborderai deux themes de nature philoso-

phique et historique qui sont lies a la biologie systemique et aux idees avancees dans 

cette these. Si l est possible de diviser les scientifiques en deux groupes, les premiers 

etant ceux qui comme Richard Feynman. prix Nobel de physique 1965, croient que la 

philosophie des sciences est aussi utile aux scientifiques que l:ornithologie les t aux oi-

seaux, et les seconds, ceux pour la philosophie des sciences s'averent un efficace outil 

de reflexion sur les concepts mis en place par les scientifiques et sur leur construction 

d'une representation rationnelle du monde, alors j 'appartiens vraisemblablement au 

deuxieme groupe! 

7.1 Aspec t s methodologiques de la s imulation avec les reseaux de Petri 

La simulation des systemes biologiques presente d'importantes difficultes. La nature 

meme de ces systemes pose certains problemes. Et nous ne par Ions ici meme pas des 

complexites experiment ales des mesures en milieu in vivo, ni de la demarche ardue 

qui consiste a selectionner les elements a assembler dans un modele pour reproduire le 

comportement cellulaire observe. Le developpement de modeles biologiques realistes 
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suppose l'integration dans un meme modele de phenomenes se deroulant a differentes 

echelles de temps et de grandeur. Certaines composantes ont un comportement sto-

chastique. Les modeles sont heterogenes, de grande dimension et de plus en plus 

complexes a mesure que les donnees experiment ales s'accumulent. 

7.1.1 Reseaux de Petr i versus equations differentielles 

La simulation de tels modeles necessite de considerables ressources de calcul. Une 

approche de modelisation basee sur les equations differentielles. qui est Fapproche la 

plus communement utilisee en raison d'un imposant heritage theorique et d'une uti­

lisation massive dans pratiquement tous les domaines d'application de modelisation, 

propose des techniques pour optimiser la simulation des modeles de grande taille. En 

recourant a des grappes multiprocesseurs et a des techniques de traitement par allele 

comme la decomposition par domaine, la resolution numerique de larges modeles 

d'equations differentielles peut s'effect uer sans que le temps de simulation ne de-

vienne dissuasif. Notons qu'avec les equations differentielles partielles, les variables 

spatiales peuvent s'ajouter au temps et qu'avec les equations differentielles stochas-

tiques. l'inclusion de processus stochastiques est permise. Toutefois, les possibilites 

de ce type de modele se limitent a la modelisation continue. 

Lrinteret d'une approche hybride se situe en partie dans l'extension des possibilites de 

modelisation. En effet. l'ajout de quantites et d'evenements discrets, pouvant aussi 

avoir un caractere stochastique, combine le pouvoir de modelisation de methodes 

continues comme les equations differentielles a celui des approches discretes. Une 

approche hybride semble mieux repondre aux besoins de modelisation realiste des 

systemes biologiques (Jordan et al., 2000). De plus, si nous considerons l'apport 

de la theorie des reseaux de Petri et de son formalisme graphique, nous sommes 

enclins a penser que nous tenons la une approche ayant beaucoup de potentiel. Des 
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publications recentes montrent des signes probants d'une maturation des methodes 

basees sur les reseaux de Petri pour les applications biologiques (Sackmann et al.. 

2006; Li et al., 2006). Nous pensons aussi que la methode que nous avons developpee 

pour 1:analyse de la dynamique de la propagation des signaux cellulaires, presentee au 

chapitre 6, contribue a ce mouvement. Malgre cela, Linefficacite computationnelle de 

la simulation de modeles de reseaux de Petri hybrides pourrait devenir un obstacle 

serieux entrainant un desinteret de cette approche dans le cas de vastes analyses 

quantitatives. 

A notre connaissance. les modeles de reseaux de Petri que nous avons simules sont 

les plus grands modeles a avoir ete presentes dans la litterature. Au cours de nos 

recherches, nous avons rencontre certains problemes qiril faut souligner. Ceux-ci ont 

ete riches d'enseignements et nous amenent a proposer une methodologie. 

7.1.2 Reduct ion de la precision des s imulations 

De prime abord, le temps de calcul pour simuler un modele de reseaux de Petri 

hybrides est plus important qu'un modele equivalent d'equations differentielles. Les 

techniques de resolution numerique sont differentes et les outils ne sont pas aussi 

performants. Le seul logiciel de simulation de reseaux de Petri hybrides specifique 

a la biologie, Genomic Object Net (GON). a ete developpe en Java, un langage de 

programmation dont on a demontre qu'il etait moins performant que d'autres (Pre-

chelt, 2000). Un premier compromis possible porte sur la precision de la simulation. 

Une simulation moins precise est moins vorace en ressources de calcul, mais les re-

sultats peuvent aussi etre corrompus en raison de Timprecision. La figure 7.1 illustre 

les consequences d'une resolution numerique avec un certain degre d :imprecision. La 

courbe de ce graphe de concentration s'avere tout de meme une bonne approxima­

tion de la courbe malgre les oscillations provoquees par un grand pas de simulation. 
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Figure 7.1: Concentration de CaM.Ca4. illustrant la problematique de l'imprecision 
numerique lors d'une simulation 

Heureusement. ces oscillations n'ont pas introduit de perturbations inattendues et 

indesirables dans le systeme et n'ont done pas cause de vices de simulation. Dans un 

contexte de recherche ou il n'y a pas de resultats attendus pour valider les resultats 

obtenus par simulation, il est impossible de determiner avec certitude le seuil de pre­

cision necessaire afin d'eviter une resolution numerique biaisee. C'est pourquoi nous 

deconseillons une diminution de la precision afin de simuler plus rapidement, plus 

particulierement, lors des premieres etapes de developpement du modele. 

7.1.3 Simulation dans un environnement mult iprocesseur 

Nous avons aussi fait des tests de performance d"execution de GON sur une grappe de 

multiprocesseurs puisque le traitement parallele est une avenue moins dispendieuse 

que les superordinateurs pour obtenir une grande puissance de calcul. La figure 7.2 

montre les resultats de ces tests, effectues sur la grappe Gropp du laboratoire DRAP 

(design et realisation d'application paralleles) de TEcole Polytechnique de Montreal. 

II s'agit d'une grappe de 64 processeurs Opteron distribues sur 32 noeuds qui sont 

interconnectes a l'aide d'un reseau de fibre optique Myrinet et par un reseau Gigabit 

Ethernet. Cette grappe nous a servi de plateforme pour la simulation du modele 

300 400 

Temps (s) 
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2 4 

Nombre de processeurs 

Figure 7.2: Temps d'execution d'une simulation en fonction du nombre de processeurs 
utilises 

des voies de la calmoduline et de la calcineurine du chapitre 6. La courbe de ce 

graphe montre un tres faible gain de performance, ce qui revele une inadequation de 

GON a un environnement multiprocesseur. Ces resultats etaient previsibles puisque 

rarchitecture de ce logiciel n"a pas ete concue pour ce genre d'environnement. Pour 

rinstant, les equations differentielles semblent done superieures aux reseaux de Petri 

hybrides pour leur temps de resolution. Toutefois, ceci est en partie le resultat du 

peu de recherche sur ce sujet. 

La litterature scientifique contient bien des travaux sur Putilisation de traitement 

parallele (par exemple. voir Chiola et Ferscha (1993); Nicol et Mao (1995); Nketsa 

et Khalifa (2001); Knoke et al. (2005)) et aussi d'autres travaux portant sur Top-

timisation de la simulation des reseaux de Petri (par exemple, voir Gaeta (1996); 

Mortensen (2001)). Mais seuls les reseaux discrets temporises ou colores sont consi­

dered dans ces etudes. L'optimisation et le traitement parallele de reseaux de Petri 

hybrides est done est champs de recherche vierge. 

s 4 
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7.1.4 Approche mixte de simulation 

Pour la simulation de modeles complexes de reseaux de Petri hybrides, ou de larges 

pans sont de nature continue, nous avons conclu que pour des considerations d'effica-

cite, il vaut mieux adopter une approche mixte qui combine la simulation d'equations 

differentielles et la simulation de reseaux de Petri. Lors du developpement d:un mo-

dele, nous suggerons de proceder par incrementation, c'est-a-dire par la modelisation 

successive de parties du modele. Ces sous-modeles sont individuellement valides pour 

ensuite etre relies. Aussi, toute simulation consommant beaucoup de ressources de-

vrait d'abord etre faite avec des modeles d:equations different ielles, ou les elements 

discrets sont approximes par des elements continus. Cette technique permet d'obtenir 

plus rapidement des donnees de simulation qui permettent de confirmer la justesse de 

la modelisation. Lorsque des resultats satisfaisants sont obtenus et que les parametres 

du modele sont presque fixes, on peut alors passer aux reseaux de Petri hybrides et 

inclure les aspects discret et stochastique. Cette approche de modelisation et de si­

mulation profite de l'efficacite de la simulation d'equations different ielles ainsi que 

de la puissance de la modelisation des reseaux de Petri hybrides fonctionnels. 

7.2 Reflexions philosophiques 

I/epistemologie est le domaine de la philosophic qui designe la reflexion sur ce qu'est 

le savoir. L'origine grecque du mot signifie discours sur la connaissance. C'est notam-

ment le cas de la philosophic des sciences qui etudie la connaissance scientifique d'un 

point de vue critique et qui a aussi parfois recours a Thistoire des sciences. L'essor 

actuel de la biologie est une excellente occasion pour jeter un regard critique sur 

cette discipline. 
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Dans un premier texte critique, je porterai mon attention sur le concept de fonction 

en biologic Central dans cette these, ce concept est aussi a la base de la demarche 

biologique. Les biologistes cherchent a comprendre le fonctionnement du vivant et 

ils attribuent des "fins", des '"fonctions" et meme des "dessins" aux composantes des 

systemes biologiques ainsi qu'aux systemes eux-memes. Identifier la raison d'etre 

de leurs objets d'etude amene les biologistes a utiliser un langage teleologique. Ce 

langage est aussi present lorsque, adopt ant un point de vue d'ingenierie en biologie, 

Ton parle du design du vivant. Pourtant, un tel langage est honni en chimie et 

en physique. II est considere non-scientifique par certains puisque insuffisamment 

reducteur et trop eloigne des lois naturelles. Selon les biologistes. ce langage est 

neanmoins necessaire pour obtenir des explications satisfaisantes. Ces derniers sont 

aussi d'avis que la theorie de revolution par selection naturelle de Darwin a evacue la 

"mauvaise" teleologie. Puisque j 'a i abondamment utilise le concept de fonction dans 

cette these, je me demanderai dans un premier texte si le recours a la teleologie est 

justifie en biologie. 

Le second texte critique porte une discussion sur le caractere pretendument revolu-

tionnaire de la biologie systemique. Genomique, proteomique, biologie systemique, 

epigenomique, et autres -omique ont semble naitre a un rythme accelere au cours des 

deux dernieres decennies. Dans mon memoire de maitrise, j 'a i dresse un portrait de 

ce bouillonnement animant la recherche en biologie et de ce que cela signifiait pour la 

demarche de comprehension du vivant (Hardy, 2004). Je relayais en grande partie les 

points de vue de publications de vulgarisation et specialisees, tres souvent dithyram-

biques a propos de la "nouvelle'" biologie. J'ai utilise le mot "revolution" a plusieurs 

reprises puisqu'il se retrouvait dans les articles que j"ai consultes. Mais la biologie 

systemique est-elle reellement une revolution scientifique ? Les nouvelles technologies 

et les nouvelles decouvertes changent-elles la conceptualisation du vivant ? S'est-il 

produit un changement de paradigme en passant d'une approche reductionniste a 
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une approche systemique ? 

7.2.1 La teleologie en biologie 

Une courte mise en contexte s"impose afin d'exposer la presence d"un langage teleo-

logique tant chez Darwin que dans un debat plus recent en pliilosophie de la biologie. 

La teleologie - du grec telos, fin ou but. et logos, discours - est U etude des causes 

finales, ou finalisme. Aristote developpa le principe de causalite pour en faire ressor-

tir une finalite sous-jacente a la nature des choses. Apres les Grecs, le finalisme fut 

assimile a la representation chretienne du monde dans une croyance que tout dans 

la nature et ses processus avait une raison d'etre, un but predetermine : une teleo­

logie cosmique. Au XVIIIe siecle, Kant decrivit en termes strictement mecaniques 

ou newtoniens la nature inanimee, mais, en raison du peu de savoir biologique dont 

on disposait a l'epoque, il ne put voir a Toeuvre, dans tous les processus du monde 

vivant, que des forces teleologiques. Selon Mayr (2001). un des plus grands accom-

plissements philosophiques de Darwin fut d'expliquer par la selection naturelle tous 

les phenomenes naturels pour lesquels Kant avait du invoquer la teleologie. Ainsi, 

la theorie de revolution par selection naturelle de Darwin - et ce malgre l'illusion 

de progres et d;amelioration que le mot evolution induit - mit fin a la teleologie 

cosmique (Darwin, 1859). Pourtant, il est possible de voir la teleologie reintroduite 

par Darwin dans le fonctionnement meme des etres vivants. A propos des organes 

ayant diverses fonctions peu specifiques a accomplir, Darwin (1859, p. 149) ecrit : 

'"In the same way that a knife which has to cut all sorts of things may be of almost 

any shape; whilst a tool for some particular object had better be of some particular 

shape1." Darwin, implicitement, voit-il done les organes accomplissant une fonction 

1 Traduction de cette citation dans l'edition franchise, p.202 : "On pourrait comparer ces organes a 
un couteau destine a toutes sortes d'usages, et qui peut. en consequence, avoir une forme quelconque, 
tandis qu'un couteau destine a un usage determine doit prendre une forme particuliere." 
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precise comme ayant un but determine ? La voie tracee par Darwin menerait-elle a 

une interpretation teleologique du vivant, qui n'est plus cosmique, mais d'une autre 

nature ? 

Le biologiste Mayr reconnait qu'un langage teleologique est souvent utilise en biolo-

gie pour formuler des affirmations a propos des fonctions des organes, des processus 

physiologiques ainsi qu'a propos du comportement et des actions d'especes ou d'in-

dividus. Ce langage est caracterise par l'utilisation des mots fonction, raison d'etre 

et but ou par des affirmations que quelque chose existe ou est fait afin de. Les phy-

siciens s'opposent a rutilisation d'un tel langage. arguant qu'il est subjectif. charge 

d'un sens metaphysique et qu'il introduit de ranthropomorphisme en biologic Les 

biologistes retorquent que l'emploi d ;un langage teleologique est legitime et qu'eli-

miner ce langage provoque la perte dup l i ca t ions significatives. Mayr (1988) affirme 

que ce differend proviendrait d'une confusion sur la definition de teleologie. Pour y 

remedier. il identifie et distingue les differentes categories de processus teleologiques. 

Le philosophe Nagel (1977) conteste cette categorisation des processus teleologiques 

et il critique tout particulierement le concept de programme de Mayr. 

Dans ce court texte, j'explorerai les positions de Mayr sur les processus teleologiques 

en biologie a la lumiere de la theorie de Darwin sur revolution par la selection 

naturelle. Je tenterai done de repondre a la question : L'utilisation d'une heuristique 

teleologique, telle que formulee par Mayr. est-elle fondee en biologie dans le cadre de 

la theorie de revolution ? 

7.2.1.1 La teleologie : un concept que definit Ernst Mayr 

Mayr est d'avis que le mot teleologie est historiquement galvaude; plusieurs pheno-

menes heterogenes ont ete maladroitement rassembles sous la banniere "teleologique". 



154 

C'est pourquoi il propose quatre categories pour faciliter 1; analyse de la teleologie en 

biologic Selon lui, les trois premieres ont une solide base empirique alors qu'il n'y a 

aucune preuve de Texistence de la quatrieme categorie, la teleologie cosmique. Cette 

derniere categorie a ete brievement abordee dans rintroduction et je ivy reviendrai 

plus. Je ne decrirai pas non plus la categorie des dispositifs adaptatifs, qui n'est pas 

pertinente pour cette discussion. 

Mayr regroupe dans une premiere categorie tous les phenomenes teleologiques qui 

sont des processus dont l'etat final est cause et determine par des lois naturelles 

(par exemple. la gravite ou la deuxieme loi de la thermodynamique). II qualifie ces 

processus de teleomatiques. Les processus teleomatiques sont orientes vers une fin, 

mais uniquement de fac,on passive et automatique. 

Dans une seconde categorie. Mayr regroupe tous les phenomenes teleologiques dont 

l'orientation vers un but determine est controlee par les operations d'un programme. 

II qualifie ces processus de teleonomiques. Selon Mayr. ce type de processus est pos-

siblement la caracteristique la plus repandue dans le monde des organismes vivants. 

II donne en exemple les activites reliees a la migration, a ralimentation, a la seduc­

tion, a Tontogenese ainsi qu :a toutes les phases de la reproduction. II y a aussi tous 

les processus dependant du "programme'' au coeur des cellules, le code genetique. 

Contrairement aux processus teleomatiques, les processus teleonomiques impliquent 

un processus dynamique plutot que des conditions statiques. Ces processus ont deux 

caracteristiques : ils sont guides par un programme, et ils dependent d'un but qui 

est prevu par le programme et qui regule leur comportement. Mayr precise que tous 

les programmes biologiques sont le resultat de la selection naturelle et qu'ils sont 

constamment ajustes selon la valeur selective de leur resultat. 
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7.2.1.2 Des processus te leonomiques , une particularite du "vivant"? 

La deuxieme categorie de processus orientes vers un but que propose Mayr. les pro­

cessus teleonomiques, repose sur Tidee de programme. Mayr (1992, p. 127) definit ce 

concept comme suit : " Un programme consiste en de rinformation codee ou prear­

ranged qui controle un processus menant a un but et aussi en des instructions pour 

rutilisation de cette information. " II distingue deux types de programme : les pro­

gramme fermes, comme l'ADN ; et les programmes ouverts, ou somatiques, auxquels 

de rinformation additionnelle est incorporee par apprentissage durant la vie d u n 

organisme. 

Nagel (1977) critique la conceptualisation de la teleologie par programme proposee 

par Mayr. II emet quatre objections et il conclut que le concept de programme ne 

permet pas de decrire adequatement les processus biologiques. A l'aide des definitions 

de Mayr, comment distinguer, en effet, les processus biologiques qui dependent de lois 

naturelles (par exemple, les reactions chimiques determinees par les lois de la thermo-

dynamique) et qui sont done teleomatiques, des autres processus biologiques guides 

dynamiquement par un programme et qui sont done teleonomiques ? Le concept de 

programme de Mayr ne revele-t-il pas Timpossibilite passee et actuelle d'atteindre 

le niveau de reductionnisme physico-chimique necessaire pour expliquer les compor-

tements cellulaires "guides" par l'ADN ? En d'autres mots, les comportements cellu-

laires seraient compris comme etant guides par le programme de l'ADN parce qu'on 

ne possede pas de connaissances plus precises sur les phenomenes physico-chimiques 

qui les rameneraient a des processus teleomatiques. 

Malgre leur divergence, les propos du biologiste et du philosophe sont en accord avec 

la theorie de Darwin. Les deux hommes rejettent la teleologie cosmique et les explica­

tions non empiriques. Mayr a reagi aux critiques de Nagel. A son avis, la nouveaute du 
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concept de programme, issu de la recente theorie de rinformation creee par Shannon 

(1949), genererait cette incomprehension. Mayr ecarte rapidement toute intention-

nalite en affirmant que les programmes biologiques sont le fruit de revolution par 

selection naturelle. Pourtant, les programmes, tels qu'on les connait aujourd'hui, sont 

produits par des individus ayant Fintention de creer des processus executes par un 

ordinateur, et ce pour atteindre un but. Ce processus est clairement teleologique. En 

est-il de meme du '"programme" du vivant ? Dans le cas des programmes somatiques, 

qui necessitent un conditionnement, il est possible d'identifier une intention ou des 

etats internes analogues a la volonte d'atteindre un but. Dans le cas des programmes 

fermes, particulierement pour l'ADN, on ne peut pas identifier d :intention a moins 

d'etre un apotre de la theorie du dessein intelligent. Ce constat, a mon avis, affaiblit 

la proposition de Mayr puisqu'il revele Finadequation de son analogie information-

nelle (i.e. les programmes de l'ADN ne peuvent pas etre compares aux programmes 

informatiques). 

A ce sujet, il est interessant de s'arreter a Fexpression "code genetique". Est-ce un 

"code" parce que les triplets de nucleotides de FADN sont decodes par les ribosomes 

pour assembler des acides amines en proteines ? Ou bien est-ce un "code" parce 

qu'il s'agit du programme de la cellule qui conduit son developpement ? L'analogie 

informationnelle fallacieuse de Mayr est peut-etre meme presente dans ce concept 

des biologistes. 

La teleologie renferme plusieurs pieges. Les philosophes et les physiciens ont raison 

d'etre prudents a son sujet. Toutefois, rejeter le langage teleologique des biologistes 

comme ils le font est mal avise. La realite experimentale des biologistes et des phy­

siciens est radicalement differente. Les physiciens ont generalement affaire a des sys-

temes fortement homogenes, dont la modelisation mathematique et la deduction de 

lois sont possibles. Les biologistes font face a des systemes d'une extraordinaire com-
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plexite dont certains mecanismes sont encore difficiles, voire impossibles, a mesurer 

a l'echelle moleculaire. Des explications causales strictement physico-chimiques leur 

sont souvent inaccessibles avec les technologies actuelles. Sur ce point, je me range 

aux arguments de Mayr. La teleologie a une puissante valeur heuristique. Alors que 

les questions debutant par "Quoi ?"' et "Comment ?" sont suffisantes en physique, les 

questions debutant par 'Tourquoi V sont generatrices de nouvelles hypotheses et de 

savoir en biologic Darwin n :a-t-il pas lui-meme utilise une heuristique teleologique 

pour comprendre la specificite des variations entre individus et especes, ce qui Ta 

mene a sa theorie ? 

A la question qui a inspire ce texte, je repondrai done que l ;utilisation d u n e heuris­

tique teleologique est fondee en biologie et qu'elle est compatible avec la theorie de 

revolution. Une approche teleologique peut parfois etre l'approche la plus feconde de 

savoir. faute de moyens techniques. Les methodes informatiques presentees dans cette 

these s'inscrivent dans ce type d'heuristiques. Chercher des fonctions systemiques aux 

macromolecules, visualiser le comport ement dynamique des enzymes et caracteriser 

la dynamique de la propagation d'un signal dans une cellule et ses motifs de regu­

lation sont des methodes qui, a divers degres, tentent de repondre a des questions 

debutant par 'Tourquoi ?". Malgre 1'utilite que je reconnais au langage teleologique 

en biologie, je ne peux pas accepter la definition de processus teleonomiques de Mayr 

en raison des difficultes soulevees quant au concept de programme biologique. La 

vague deferlante de la genomique a mene les biologistes jusqu'au contenu du code 

genetique. mais sans livrer les cles de la comprehension du phenotype. L'heuristique 

teleonomique de Mayr a ete utile en biologie moleculaire. Avec prudence, on peut 

utiliser les mots fonction, signal et information cellulaire. mais le paravent mental du 

"programme"', si les biologistes le conservent intact, pourra devenir un obstacle a la 

comprehension des phenomenes physico-chimiques du "vivant". 
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7.2.2 La biologie s y s t e m i q u e : une reelle revolution scientifique ? 

Pour offrir une reponse a cette question, il faut definir le ternie "revolution scienti­

fique." Et, bien entendu, la reponse dependra fortement de la definition! Revolution 

conceptuelle, revolution teclmologique, grande decouverte, tous ces elements peuvent 

faire partie de la definition d'une revolution scientifique. Differentes definitions ont 

servi de premisses a quelques discussions sur 1:assertion que la biologie systemique 

est une revolution scientifique. Bothwell (2006). en se basant sur la definition deve-

loppee par Kulm (1962), refute la these revolutionnaire. Wellstead (2006) a manifest e 

son desaccord avec ce point de vue. II voit s"operer en biologie un changement d a p -

proche fondamental, annonciateur de revolution et il fonde son argumentaire revolu­

tionnaire, entre autres, sur l'idee dinnovation disruptive de Christensen (1997). Le 

deuxieme propos du texte de Wellstead est pourtant d'affirmer que la systematisa-

tion de la biologie est en partie 1'heritage des idees d'Erwin Schrodinger. prix Nobel 

de physique 1933. Un heritage vieux de soixante ans peut-il constituer aujourd'hui 

une revolution ? Je presenterai brievement l'heritage biologique de Schrodinger pour 

ensuite exposer la critique qu'en a fait Kupiec (2003). une critique audacieuse qui 

s'etend a toute la biologie moleculaire moderne. Je terminerai avec les commentaires 

de Lazebnik (2004) qui montre les limites conceptuelles de la biologie pour etudier 

les systernes complexes. Mais avant, Bothwell et Wellstead soulevent tous deux des 

argumentaires qui meritent consideration. lis sont contradictoires a premiere vue, 

mais nous verrons comment ils decrivent une realite complement aire. 

7.2.2.1 Pas de changement de paradigme, dit Bothwell 

Bothwell (2006) amorce son article en citant des exclamations triomphalistes sur 

la perspective systemique en biologie : qualifiee de "revolution" (Aderem, 2005) et 
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de "changement de paradigme des sciences de la vie modernes"' (Aggarwal et Lee, 

2003), la biologie des systemes "promet de revolutionner notre comprehension des 

systemes biologiques complexes de regulation'' (Kitano, 2002b). Pourtant, les revolu­

tions scientifiques decrites par Kuhn sont rares. Entre les revolutions, les scientifiques 

font de la science dite normale puisqu"ils adherent a un ensemble coherent de lois, 

de procedures et d'hypotheses, ce que Kuhn nomme un paradigme. Le paradigme 

est peu remis en question et l'essentiel du travail scientifique. en periode de science 

normale. est de faire des ajouts minimes au paradigme et de 1'utiliser pour resoudre 

des enigmes de la nature. Le paradigme est ebranle lorsque plusieurs anomalies le 

contredisant s'accumulent. Ces anomalies signifient, non pas que le paradigme est 

incomplete mais qu'il est en partie incorrect. La realisation de ce fait, jumelee a la 

proposition d'un nouveau paradigme adopte par une majorite de scientifiques, in-

dique une rupture avec la tradition que Ton peut qualifier de revolution. Les deux 

paradigmes, l'ancien et le nouveau, sont alors incommensurables, c"est-a-dire qu'ils 

sont fondamentalement incompatibles. 

Bothwell reconnait la popularite de la biologie systemique : de nouveaux instituts de 

recherche sont inaugures et des programmes universit aires sont crees, il y a une crois-

sance exponentielle des articles inspires par cette nouvelle discipline et les nouveaux 

periodiques consacres a ce sujet sont nombreux. Selon Bothwell. il y a un engoue-

ment reel pour l'approche systemique, mais ceci n'est pas du a un changement de 

paradigme, done pas une revolution scientifique. Les scientifiques optent pour une 

nouvelle approche, pas pour un nouvel ensemble de theories, de precedes et d'hypo­

theses. L'argument principal de Bothwell est qu'on ne peut pas opposer le paradigme 

reductionniste (comprendre le vivant en decomposant les systemes biologiques en une 

liste de composantes) au paradigme de la biologie systemique (comprendre le vivant 

en etudiant les fonctions et les processus qui emergent de l'interaction des compo­

santes biologiques). II s'agit en fait de la continuation d'un seul et meme paradigme. 
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Bothwell fait appel a Aristote, dont le tiers des oeuvres portent sur la biologie et qui 

fut un des premiers a suggerer que pour comprendre un systeme complexe, il faut 

le decomposer en ses constituants, definir l'arrangement de ceux-ci, caracteriser les 

changements qui se produisent dans le systeme et determiner sa fonction. Pour Bo­

thwell, la biologie systemique est done la suite logique du reductionnisme biologique 

selon Fapproche epistemologique aristotelicienne. 

7.2.2.2 La recherche en biologie est en profonde mutation et la revolution 

est inevitable, selon Wellstead 

Wellstead (2006), contrairement a 1'analyse principalement philosophique que fait 

Bothwell. adopte une perspective plus historique. Selon lui, la recherche en biologie 

subit actuellement une systematisation, identique a celle qui a transforme la concep­

tion des produits de fabrication humaine complexes. Les manipulations en laboratoire 

sont automatisees et on a recours plus que jamais a la modelisation mathematique et 

a la simulation. Le developpement de la theorie des systemes et de certaines de ses 

constituantes, soient la theorie de la retroaction, 1'analyse dynamique et la modelisa­

tion mathematique, fournit maintenant des approches structurees pour la resolution 

de problemes scientifiques a l'aide d:une approche systemique. Pour Wellstead. il y a 

aussi eu un synchronisme d'interet entre les biologistes et les theoriciens des systemes 

et des technologies sont arrivees a maturite pour supporter les etudes systemiques. 

Wellstead fait un parallele entre la revolution industrielle et la revolution biologique. 

Par exemple, des technologies cruciales pour rinvestigation biologique, comme la cy­

tometric, ont connu une acceleration de developpement exponent ielle ces dernieres 

annees. Les courbes du progres technologique de la biologie moleculaire des der­

nieres annees (ces courbes tracent la distribution temporelle des innovations ma­

jeures) montrent des similitudes frappantes avec celles du developpement technolo-
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gique de la revolution industrielle. Selon Wellstead, nous sommes a la fin de la periode 

pre-revolutionnaire et il juge que la revolution scientifique est inevitable. 

Les conclusions de Bothwell et de Wellstead sont diametralement opposees parce 

qu'ils analysent des aspects differents de la biologie et de Fapproche systemique. II 

n"y a pas de revolution scientifique selon Bothwell puisqu'il n'y a pas de revolution 

conceptuelle. II y a revolution scientifique selon Wellstead puisqu'il se produit une 

revolution technologique majeure. Mais Wellstead affirme aussi que la biologie sys­

temique, avec ses presupposes actuels, est en partie l'heritage de Schrodinger parce 

qu'il a conceptualise le fonctionnement des organismes vivants comme s'approchant 

d'un fonctionnement purement mecanique, done deterministe. Selon Wellstead. il 

faut concevoir les organismes vivants ainsi pour etre en mesure d'appliquer la theorie 

des systemes. Cette affirmation circonscrit la position de Wellstead et la rapproche 

de celle de Bothwell. La revolution decrite par Wellstead n'a rien d'un changement 

paradigmatique. Voyons pourquoi. 

7.2.2.3 U n dogme pour la biologie moleculaire, inspire par Schrodinger 

Le dogme central de la biologie moleculaire ( res t reellement le mot dogme qui est 

communement employe, ce qui irest pas sans rappeler Kuhn, pour qui Fenseigne-

ment de la science normale est un endoctrinement) est que l'information genetique 

contenue dans l'ADN, le genotype, est retranscrite en ARN pour ensuite etre deco-

dee et transformee en proteines, le phenotype. Ce flux d?information confere un role 

particulier a l'ADN, celui d'une macromolecule contenant sous forme d'information 

codee le plan architectural des organismes. 

La paternite de cette idee revient a Schrodinger (1944), pour qui les systemes biolo-

giques different des systemes physiques puisqu'on ne peut pas y appliquer la loi des 
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grands nombres, ce principe creant l'ordre macroscopique a partir d'un desordre mi-

croscopique. La seule autre avenue possible, specifique aux systemes biologiques. est 

celle d'un principe d'ordre microscopique menant a un ordre macroscopique. Schro-

dinger propose que rinformation genetique soit ce principe d'ordre microscopique. 

Inspire par Delbruck. il propose meme qu ;un crista! aperiodique soit le support de 

cette information, et ce, un peu moins de dix ans avant la decouverte de l'ADN par 

Watson et Crick! Le raisonnement de Schrodinger. pere de la biologie moleculaire, 

a ainsi ete valide par une decouverte scientifique majeure. Son influence est encore 

bien presente puisque le dogme central de la biologie moleculaire constitue une des 

theories fondamentales enseignees aux jeunes biologistes. 

7.2.2.4 L'erreur de Schrodinger : les anomalies soulignees par Kupiec 

L'ordre microscopique, tel que congu par Schrodinger, a mene les biologistes molecu-

laires a la stereospecificite des proteines. La stereospecificite, definie par la forme et 

la charge de chaque proteine. limite a un nombre tres reduit les possibilites d'asso-

ciations entre proteines. Subsequemment, les proteines peuvent generer des chaines 

de reactions causales qui permettent la transmission d'information. On remarquera 

que les modeles presentes et les methodes avancees dans cette these sont fondes sur 

cette hypothese. 

Kupiec (2003) est un detracteur du concept de stereospecificite. Dans une analyse 

theorique, il compare ce concept ainsi que celui de rinformation genetique a la me-

taphysique aristotelicienue (encore Aristote!). En effet, puisque les biologistes sup-

posent que 1'organisme s'explique par ses genes, le reductionnisme genetique constitue 

une actualisation de la cause finale d'Aristote. Kupiec s'oppose au role particulier 

d'ontogenese que les biologistes attribuent aux genes. Kupiec afflrme aussi que la 

stereospecificite des proteines n'a pas reellement ete demontree experimentalement. 
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II cite en exemple les etudes in vitro des facteurs de transcription (les proteines qui 

regulent specifiquement Lexpression des genes en se liant a FADN) qui n"ont jamais 

pu montrer que ractivation et la repression speciflques des genes reposent sur la 

stereospecificite. 

Si on adopte l'ontologie kuhnienne, les problemes identifies par Kupiec sont des 

anomalies qui menacent le paradigme actuel de la biologie. Kuhn (1962) explique 

clairement la mecanique du monde scientifique : face aux anomalies, les scienti-

fiques peuvent choisir de les ignorer. de modifier legerement leur paradigme pour 

les resoudre, ou flnalement, d :adopter un nouveau paradigme. ce qui declenche une 

revolution scientifique. 

Kupiec a propose un nouveau paradigme. II s'agit d'une biologie moleculaire darwi-

nienne ou le modele de hasard-selection s'applique a la cellule. Selon cette nouvelle 

definition de la biologie, differentes structures peuvent apparaitre, avec des durees 

de vie et des probabilites differentes, et le comportement des proteines comme des 

cellules est exprime en termes probabilistes. Le paradigme de la biologie molecu­

laire darwinienne n'a pas entraine de revolution scientifique. II faut des anomalies 

serieuses pour que les scientifiques, qui ont toujours demontre un certain conserva-

tisme conceptuel, modifient leur paradigme. Les anomalies soulevees par Kupiec et sa 

solution n'ont pas suscite une adhesion massive a ses idees. Neanmoins, voila, contrai-

rement a la biologie systemique. un exemple de germes conceptuels d'une revolution 

scientifique. 

7.2.2.5 Alors, pourquoi la biologie systemique ? 

Je crois bien avoir demontre que l'arrivee de la biologie systemique n'est pas un chan-

gement de paradigme pour la biologie moleculaire. Meme si des mathematiciens, des 
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informaticiens, des ingenieurs, des chimistes et des physiciens se joignent mainte-

nant aux equipes de recherche oeuvrant en biologie, les concepts fondamentaux de la 

biologie demeurent inchanges. Au-dela de la technologie, on peut alors se demander 

ou se situe F innovation scientifique de la biologie systemique puisque cette nouvelle 

discipline ne vient pas bouleverser les concepts etablis. L'innovation provient du fait 

que la biologie systemique cree un pont entre deux univers conceptuels exist ants pour 

permettre la resolution de nouveaux problemes. 

Lazebnik (2004), dans un article au ton humoristique mais tout de meme tres convain-

quant, imagine un biologiste reparer une radio avec les methodes qu'il utilise au la-

boratoire. II veut ainsi demontrer que les notations, les concepts et les outils que 

les biologistes utilisent aujourd'hui sont trop primitifs pour etudier les systemes bio-

logiques complexes. II est d'avis que Fapport du domaine du genie pourrait etre 

benefique pour la biologie. Ces propos recoupent ceux de Csete et Doyle (2002) que 

nous avons presentes en detail au chapitre 2 et confirment le grand interet de leur 

demarche. 

Nonobstant notre conclusion que la biologie systemique n'est pas une revolution 

scientifique. elle est un formidable moteur pour de nouvelles decouvertes. Avec ces 

decouvertes viendront probablement la constatation d'importantes anomalies, qu:il 

sera alors impossible d'ignorer, et ce sera la revolution! 
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C O N C L U S I O N E T R E C O M M A N D A T I O N S 

Les contributions originates de cette these a l'avancement des connaissances, via 

ses trois articles, sont nombreuses. Parmi celles-ci, il y a deux ajouts a la theorie 

des reseaux de Petri : les reseaux de Petri peintures, une technique efficace pour 

visualiser le marquage d'un modele complexe; et les composantes d'equilibres. qui 

sont un sous-ensemble des T-invariants pour les reseaux de Petri continus et hybrides. 

Une autre contribution, presentee au chapitre 5 est la resolution des problemes des 

methodes actuelles de visualisation des donnees de simulation des modeles biochi-

miques. Ces methodes sont mieux adaptees aux reseaux metaboliques qu'aux voies 

de transduction. La methode de visualisation que nous avons developpee est basee 

sur des techniques issues de la theorie des reseaux de Petri. Elle propose une vi­

sualisation qui tient compte de F organisation des voies de transduction et de leurs 

enzymes. Cette information est obtenue par une analyse des P-invariants. Ainsi, cette 

methode peut montrer plus clairement la dynamique de commutation des enzymes, 

qui est le mecanisme fondamental de transmission de signaux cellulaires. 

La derniere contribution, qui tout de meme la plus significative aux yeux de l'auteur. 

est la methode d'analyse de la dynamique de la propagation de signal d'une voie 

de transduction presentee au chapitre 6. Cette methode, entierement automatisable, 

transforme les donnees de variation de concentrations moleculaires en donnees de 

transmission de signaux cellulaire. La premiere etape de cette transformation est 

de creer une representation graphique plus simple de la structure du systeme en 

trouvant ses P-invariants. La deuxieme etape est de produire un portrait dynamique 

de la propagation du signal dans le reseau en ayant au prealable identifie les T-

invariants et les segments de flux d'information du systeme. Dans une troisieme 

etape, les chemins de propagation sont analyses pour detecter la presence de motifs 
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de regulation comme les boueles de retroaction. En resume, cette methode offre un 

acces rapide aux mecanismes systemiques de traitement d'information de la cellule. 

L'originalite des travaux de recherche rapportes dans cette these est aussi d'un autre 

ordre. Les applications des reseaux de Petri a la biologie moleculaire se sont toujours 

cantonnees dans deux types d'utilisation : les analyses qualitatives et les analyses 

quantitatives. Les analyses qualitatives sont principalement utilisees a l'etape de 

modelisation pour effectuer une validation du modele. En d'autres mots, les analyses 

qualitatives sont utilisees pour s'assurer que le modele a les proprietes attendues. 

Dans les analyses quantitatives. les reseaux de Petri servent de support a la simula­

tion. Les donnees de simulation sont, quant a elles. analysees par d'autres methodes. 

Dans cette these, j ' a i propose d'utiliser les reseaux de Petri pour proceder a l'analyse 

des donnees. Au meilleur de mes connaissances. ceci est une premiere. Ces travaux 

sont d'autant plus interessants que les techniques d'analyses de ce formalisme per-

mettent d'obtenir des informations sur les caracteristiques systemiques d'un modele. 

Ces techniques sont remarquablement utiles pour developper des methodes d'analyse 

destinees a la biologie systemique. Pour cette raison, elles ont facilite l 'atteinte de 

Tobjectif de recherche des travaux de recherche presentes dans cette these. 

Les resultats de mes travaux de recherche renforcent Fidee que les reseaux de Petri 

est un formalisme de choix pour la modelisation biologique. Nous pouvons meme 

imaginer une methodologie complete ou modelisation, simulation et analyse des don­

nees sont effectuees avec les reseaux de Petri. Cette methodologie pourrait etre im-

plementee dans un logiciel facilement utilisable par les biologistes. L'application de 

cette methodologie aux modeles de grande taille, qui seront de plus en plus nombreux 

en biologie, est neanmoins encore laborieuse en raison des difficultes rencontrees lors 

de la simulation de tels modeles. Ces problemes ont ete Tobjet de la discussion du 

chapitre 7 et un moyen d'y pallier a ete presente. Cette solution n'est pas ideale 
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puisqu'il faut recourir a un autre formalisme pour accelerer les simulations lors des 

phases critiques de la modelisation. De meilleures solutions seront possibles lorsque 

davantage de travaux de recherche sur l'optimisation de la simulation des reseaux de 

Petri hybrides et sur l;utilisation du traitement parallele auront ete menes. 

Malgre tous les avantages mentionnees dans cette these et qui encouragent l'utili-

sation des reseaux de Petri pour la modelisation biologique, ce formalisme n'a pas 

ete encore adopte par un grand nombre d'equipes de chercheurs. A mon avis, cette 

situation est due a 1'absence d'une demonstration convaincante de son utilite avec 

un modele original. Les applications de ce formalisme a la modelisation biologique 

ont toujours ete realisees par des scientifiques dont la formation principale est en 

informatique. Cette critique s'applique aussi a cette these. Je suis un ingenieur qui 

a propose de nouvelles methodes computationnelles en vue d:applications en bio-

logie moleculaire. Pour demontrer Finteret de ces methodes, j'ai utilise un modele 

developpe par des biologistes. Ce modele, quoique formidable par sa complexity, n'ex-

ploite pas encore tout le pouvoir de modelisation des reseaux de Petri. S'exprime ici 

1:immense defi de la biologie systemique. Batir un pont entre les sciences appliquees 

et la biologie est une operation delicate puisque deux langages, deux pratiques et 

deux communautes se rencontrent. Je compte moi-meme relever ce defi, en allant 

completer un stage postdoctoral sous la direction d:un biologiste. 
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ANNEXE I 

PAINTED PETRI NET AND FUNCTIONAL ABSTRACTION TO 

VISUALIZE DYNAMIC MODELING 

Abstract 

The Painted Petri Net1 and Functional Abstraction techniques are combined in a 

new visualization approach aimed at representing the dynamic behavior of simulated 

complex Petri net models. This approach consists in creating dynamic representa­

tions of a model at different levels of abstraction. At the first level, the Petri net 

model structure is displayed, and the model dynamics is represented by variations in 

the tints coloring the Petri net model places. The degree of abstraction can be pro­

gressively increased based on the organizational layers of the model which are defined 

according to the functionalities of the model elements. This process is called func­

tional abstraction, and it is used here to create views where specific functionalities 

are isolated. The approach is illustrated with a model from systems biology: visu­

alization of the dynamic behavior of a biochemical model obtained from the hybrid 

Petri net model of the CaMKII regulation pathway. 

1.1 Introduction 

The essence of systems biology is to develop a system-level understanding of bio­

logical systems. This is achieved by studying the structure and dynamics of these 

xCet article a ete presente a la European Simulation and Modelling Conference 2006. Voir la 
reference (Hardy et Robillard, 2006b) 



190 

systems, as well as their control mechanisms and design methods (Kitano. 2002b). 

With advances in the high-throughput technologies in the last decade, biology has 

evolved from a mostly experimental hypothesis-driven science to one with a more 

data-driven approach, and now relies also on a model-driven approach based on 

computer simulation. A tight coupling of the three approaches is at the heart of 

systems biology (Ye et al., 2005), and specific tools are needed for each approach. 

Computational methods have been developed or adapted to the modeling and sim­

ulation of biological systems (de Jong, 2002; Eungdamrong et Iyengar, 2004), and 

methodologies from systems and control theory have been successfully applied to the 

analysis of biological models (El-Samad et al., 2005; Schmidt et Jacobsen, 2004a; 

Stelling. 2004). As a result, biologists now have a system-level understanding of 

certain biological systems. 

Among the methodologies available based on modeling and simulation, a few ex­

ploit information visualization and visual data mining to acquire system knowledge. 

(Keim, 2002) clearly stated the benefits of visual data exploration, which integrates 

human perceptual abilities in the interpretation of the data and is highly useful in the 

exploratory steps of data analysis. (Qeli et al., 2005a) developed such an approach 

to visualize time-varying matrices by combining multidimensional scaling and the 

reorderable matrix method. The objective of their static representation method is 

to analyze the data matrices of a simulated metabolic network in order to identify 

the parts of a model that could be simplified. (Rost et Kummer, 2004) developed a 

visualization software tool, SimWiz, which produces a dynamic representation of the 

simulation data of biochemical networks by presenting the data in a comprehensive 

way and by preserving the topology of the modeled system. 

The Petri Net technique is a modeling approach used for biological modeling (Hardy 

et Robillard, 2004). Different types of Petri nets have been created, based on the orig-
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inal theory, to increase the modeling expressiveness of this formal notation: timed, 

stochastic, colored and hybrid, to name a few. The Hybrid Petri Net approach 

combines variables of a discrete and continuous nature. A variant of this modeling 

approach, the Hybrid Functional Petri Net, was designed specifically for biological 

modeling and has been successfully used to study a number of different biological 

systems (Matsuno et al., 2003b, 2006a). In biological modeling, time-varying data 

are usually generated by an ordinary differential equation (ODE) model that is sim­

ulated. ODEs do not have a formal graphical representation. Since Hybrid Petri Net 

modeling has been demonstrated to be equivalent to a system of ODEs (Matsuno 

et al., 2000), it offers an interesting substitute for ODE modeling when a graphical 

representation is desired. The software that has been developed for the modeling and 

simulation of the Hybrid Functional Petri Net is the Genomic Object Net (GON) 

(Nagasaki et al., 2003). 

However, the visualization of Petri net simulations and of the model dynamics by 

traditional means is arduous for large and complex models. Since the human mind 

has an incredible capacity to detect structures and patterns in images (Miiller et 

Schumann, 2003), we have devised a visual dynamic representation of Petri net sim­

ulation data which integrates the structure and the dynamics of a system model and 

presents the model at different levels of abstraction. We call this the Painted Petri 

Net. The objective of our method is to provide insights leading to a system-level 

understanding of a dynamic model. This paper describes how this representational 

approach displays the model structure with the Petri net and makes use of relative 

values instead of absolute values to represent dynamic behaviors with paints. We also 

explain how our method can generate representations at different abstraction levels 

from the same simulation data with a modular and functional approach. Finally, 

we discuss the possible applications of our dynamic representation. Readers already 

familiar with the colored Petri net must not confuse that particular extension of Petri 
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net theory with the dynamic representation of systemic behavior presented in this 

paper. In the colored Petri net, coloration is an abstract concept which makes it 

possible to distinguish different data types inside a model. In the painted Petri net, 

tints or colors from a real palette are used to visually indicate the temporal variation 

of the modeled entities represented by places. 

1.2 Visual dynamic representation of the Petri net system behavior 

According to the Miiller et Schumann (2003) taxonomy of methods of visualization 

of time-dependent data, the method we suggest is a dynamic representation of mul­

tivariate data with a continuous linear time axis. Being time-dependent means that 

the visual representation changes dynamically over time and is a function of time. 

Two aspects of the model representation have to be considered: how to represent 

the model structure or topology and how to represent the model dynamics. These 

two aspects correspond to the two data sources needed to implement this method: a 

file containing the organizational specifications of the model (Petri net elements and 

interactions) and a file containing the simulation data. 

1.2.1 Representation of the model structure 

The Petri Net is a modeling approach with a formal graphical representation (Reisig, 

1985). The Petri Net model specifications are usually defined with the help of a 

graphical editor, with which the user draws the model structure by arranging Petri 

net elements in a drawing space. In this approach, three main elements are repre­

sented: places, transitions and arrows. In molecular biology modeling, places are 

associated with substances and are represented as circles; transitions are associated 

with chemical reactions and are represented as rectangles; and arrows link places 



193 

to transitions and represent the relation between substances and chemical reactions. 

The time-varying data of interest in a molecular biology Petri net model are the 

numerical values associated with places. Those values mainly represent substance 

concentrations or numbers of molecules. Figure 1.1 shows a hybrid functional Petri 

net representation of the ODE model of the Ca2+ calmodulin-dependent protein 

kinase II (CaMKII) regulation pathway of Bhalla et Iyengar (1999). The structural 

elements animated in the dynamic representation are the places (painted circles). 

The Hybrid Petri net Net model was edited and simulated with GON. The CaMKII 

regulation pathway model is part of a larger network in the hippocampal CAl neu­

ron, which has already been thoroughly studied for its role in synaptic plasticity. 

However, its details and composition, as well as its simulation results, are outside 

the scope of this paper. The reader should consult the referenced paper for more 

information. 

Other methods for visualizing Petri net dynamic behavior already exist. Three-

dimensional visualization of the Petri net has been developed by Kindler et Pales 

(2004), but, in their work, a Petri net model represents real world objects: a train 

and a railway controller. Software is also available with GON, called Cell Animator, 

to create animations based on simulation data. For example, Cell Animator can 

be used to represent a cell with several enzymes and metabolites interacting with 

one another, their number and position varying according to the numerical values 

obtained from simulation. These animated representations are useful for rapidly 

communicating information to others who are unfamiliar with the model, partic­

ularly in a teaching context. In the type of problem that interests us, however, 

such representations are unsatisfactory or even impossible. A 3D-visualization of a 

model of cellular signaling pathways, for example, where the Petri net entities are 

associated with animated objects, is not feasible we are dealing with concentrations 

of diffused substances. An animation of moving molecules becomes quite confusing 
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Figure 1.1: A frame of the dynamic representation of a painted Petri net molecular 
biology model, simulation step 68 s 

when tens, or even hundreds, of different substances are involved. More importantly, 

these animations do not incorporate the topology of the signaling pathways, and, 

as a result, crucial information about a model needed to reach a system-level un­

derstanding is lost. Keeping the Petri net structure for the dynamic representation 

is efficient for the modeler, as this individual is already accustomed to the model's 

abstracted elements and no transformation or rework is needed. 
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1.2.2 Representation of the model dynamics 

We previously studied the modeling power of the Hybrid Functional Petri Net (Hardy 

et Robillard, 2005), and are now concerned with providing a single representation 

of the dynamic behavior of a complex system that incorporates all the simulation 

data. Such a comprehensive visualization tool is needed because traditional ways of 

representing dynamic data are sometimes too limited. Simulators produce plots and 

graphs for any variable of a mathematical model. For example, in molecular biology 

models, these are concentration graphs. When results are presented, only significant 

graphs illustrating important features of a system are displayed. However, if all 

the simulation data have to be explored, the modeler has to deal with one graph 

for each substance. This type of representation with graphs can rapidly become 

cumbersome in complex models involving many substances. For example, the model 

in Figure 1.1 contains approximately one hundred substances. There are twice as 

many substances in a more complete model, adding other signaling pathways to the 

CaMKII regulation pathway to form a network (Bhalla et Iyengar, 1999), and there 

are five times as many substances in the latest enlarged version of the network model 

(Ma'ayan et al., 2005). 

Color is commonly used in information visualization methods to improve their visual 

aspect. For our dynamic visual representation, we painted the simulation data using 

an 11-color palette (visible light spectrum: from violet to red). For the mapping, we 

favored a relative assignment of numerical values to colors rather than an absolute 

one, because the range of values for some concentrations is an order of magnitude 

smaller than the range of values of other concentrations. A relative assignment of 

tints gives an appreciation of the change for every substance. We believe that this 

advantage is greater than its disadvantage, which is that a tint does not represent 

the same quantity throughout the animated model. Numerical values are normalized 
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with equation 1.1. 

Tiit = 110 ' Xu Xi 

•Ei.max •t,i,ri 
(1.1) 

In equation 1.1. T^t is the tint of the substance i at time t. xit is the concentration of 

the substance i at time t. and ximin and ximax are the minimum and maximum values 

of the concentration of substance i. The multiplication by ten and the application of 

the floor function return an integer value from 0 to 10, which corresponds to one of 

the 11 discrete tints of the palette. By applying this formula to the simulation data 

of a model, we obtain a tint for each substance at every simulation step (0 is mapped 

to violet and 10 is mapped to red). It is then possible to juxtapose the tints, which 

reflect the dynamic behavior of the model, to the model structure. This is done by 

painting the places of the Petri Net model, as shown in Figure 1.1. The painted 

structure of the model at a given simulation step is one frame of the dynamic system 

representation. The Petri net model painted with the normalized concentrations for 

every time step results in successive frames that are assembled into an animation. 

This creates a movie-like representation of the Petri net dynamics. 

1.2.3 Creation of abstraction levels to isolate specific functional activity and high­

light system behavior 

For large and complex models, there is a need to provide a hierarchy of abstraction 

levels in order to alleviate potential complexity pitfalls and to add systemic signif­

icance to the visualization. This hierarchy is created by recognizing the functional 

organization of the model. Figure 1.2 depicts four frames of a representation of the 

CaMKII regulation pathway model at the second level of abstraction (Figure 1.1 de-
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picting the first level). To create this representation, several substances are grouped 

into new units according to their biochemical function. As we can see in Figure 1.2, 

the Petri net model places are transformed into rounded rectangles linked by arrows. 

This view of the model has fewer elements and it is a coarse-grained abstraction of 

the network topology. The grouping into units was achieved with a detailed knowl­

edge of the network's small components, which the modeler usually acquires during 

the modeling process. This grouping approach is similar to the ideas of modular 

cell biology of Hartwell et al. (1999), who argued for the recognition of functional 

modules as a critical level of biological organization in the cell. The grouping rules 

are rather simple. In the case model study in this paper, there are few different types 

of functional role. For example: 

• a substance, or a group of substances, that assumes the role of a messenger 

molecule or an active enzyme; 

• a substance, or a group of substances, that inhibits the activity of one or more 

other substances and thus participates in a negative feedback loop; 

• a group of substances that relays an input activation to the production of an 

enzyme or a messenger molecule. 

These three types of functional role are appropriate for the CaMKII regulation path­

way model. Each application domain is likely to have some specific abstraction rules 

to define the model organization and appropriate abstraction levels. 

The color palette of the model dynamics in the visual representation is similar 

throughout the abstraction levels, but the tint mapping is different. Since several 

substances can be combined into one unit, the normalization equation 1.1 cannot be 

applied for abstraction levels other than the basic one. New equations are needed to 
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(a) ii = 0 s (b) t2 = 62 s 

r-gn 

(c) t3 = 68 s (d) t4 = 500 s 

Figure 1.2: Four frames of the dynamic representation of the functional units derived 
from a Petri net biological model at various moments of the simulation 

Ca 

Figure 1.3: A frame of the dynamic representation of the higher-level modules derived 
from a Petri net biological model, simulation step 68 s 
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map appropriate tints to the dynamic activity of the units. At the basic abstraction 

level, there is one concentration variable per equation. At higher levels of abstraction, 

the equation of a unit is composed of the concentration variables of the substances 

enclosed by the units. These new equations compute integer values from 0 to 10 that 

are associated with tints. With these equations, the tints no longer represent only 

a relative quantity on a min-max scale, but they are also designed to represent the 

functional activity level of the corresponding units. 

In the model presented in this article, one organizational component is the module. 

Modules are pathway building blocks, and they are represented as dotted rectangles 

in Figure 1.2. Combining several modules recreates a network. According to the 

grouping rules used at the second level of abstraction, substances acting together 

as an inhibitor inside a module are grouped into a unit, and substances acting as 

messenger molecules or enzymes are grouped into a unit as well, etc. Thus, the 

internal control structure of the units is preserved at the second abstraction level. 

Figure 1.3 shows a representation of the model at the third level of abstraction. At 

this level, there is only one unit for each module. Every substance in a module is 

abstracted by a single unit responsible for the module's main function. At this level 

of abstraction, details about the module's internal control mechanisms vanish and 

the representation granularity is coarser than at the previous abstraction level. The 

emphasis is on the interactions between modules. At this level of abstraction, the 

equations computing the tints represent the module activity level. For the CaMKII 

regulation pathway model, three levels of abstraction are enough to decompose the 

model into organizational layers. Any higher abstraction level would be useless for a 

model of this complexity, and additional abstraction levels could be useful for more 

complex models. 
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1.3 Discussion 

The Painted Petri Net and Functional Abstraction techniques are the constituent 

parts of a new approach to visualizing the dynamic behavior of modeled systems. 

An example of this approach was given with the visualization of the molecular bio­

logical model of the CaMKII regulation pathway. In systems biology, modeling and 

simulation are used to study system behavior, and so this visualization approach 

can be useful in this area of research. However, we are extending the use of this 

visualization method to any application domain where complex Petri net models are 

used to study model dynamics by simulation. The Painted Petri net Net can be 

useful for modelers during the design of the model, as it can help rapidly provide 

them with a picture of the model model's dynamic behavior and help them find the 

source of problems or errors. Usually, Petri net simulators represent the dynamics 

of the model, with animations of discrete tokens being generated and consumed by 

the firing of discrete transitions or by displaying the real values of the markings of 

continuous places as continuous transitions are fired. Obtaining a global appreciation 

of the dynamics of a large Petri net model with these simulators is burdensome and 

inefficient, and the Painted Petri Net is a solution to this problem. 

There are two advantages to the new views created by functional abstraction. First, 

by reducing the number of elements in the dynamic representation, the graphical 

display is simplified. This advantage will become more valuable as models increase 

in complexity. Second, grouping different substances linked to the same biochemical 

functionality adds a systemic knowledge filter that can facilitate the visualization 

of system behavior. The viewer can navigate between the different organizational 

layers of the model, thus helping him to refine his system-level understanding of the 

model. An important concept in systems biology is that of the emergent property, 

which is defined as a system-level characteristic that results from the complex and 
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nonlinear interactions of system elements and that cannot be predicted from what 

is known about these elements. In other words, we might understand the dynam­

ics of the system elements taken separately, but wrhen these elements are connected 

to form a complex network, it is impossible to predict the dynamics of the overall 

network. Emergent properties are nonintuitive. and systemic analysis is the main 

approach to understanding them. Indeed, the study of emergent properties was the 

main motivation behind combining the Painted Petri Net and Functional Abstraction 

techniques. By isolating specific functional activities and displaying their interactions 

in a dynamic representation, our visualization method can help a modeler detect and 

characterize the emergent properties of a model. Whether a network exhibits mul-

tistability, specific oscillatory patterns or synchronization, these complex properties 

may now be rapidly detected visually, revealing particular systemic properties of 

interest which would then be worth exploring with other analytical methods. 

For this visualization approach, we favored grouping rules based on functional activ­

ity rather than rules based on other existing Petri net approaches like the hierarchical 

Petri net or structural reduction. Our main concern was to use the knowledge of the 

modeler that is specific to the application domain. However, in future studies, it will 

be interesting to verify whether or not these theoretical approaches can be combined 

with the hybrid Petri net, and to analyze what groupings the developed algorithms 

wrould identify. It would also be interesting to see whether or not the functional 

units identified by these theoretical approaches are identical to the functional units 

suggested by the application knowledge or if discrepancies appear. 
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A N N E X E II 

V I S U A L I Z A T I O N OF T H E S I M U L A T I O N DATA OF B I O C H E M I C A L 

N E T W O R K M O D E L S : A P A I N T E D P E T R I N E T A P P R O A C H 

Abstract 

The large quantity of data generated by the simulation1 of complex biochemical 

models is difficult to interpret with traditional plots of time series data. A visualiza­

tion method has been developed and software tools have been implemented. They 

are efficient with models of metabolic networks in which molecules are produced, 

consumed and degraded. However, models of signaling pathways in which enzymes 

are either activated or deactivated to transmit a signal are not handled well with 

the existing method. In this paper, we present a new visualization method using 

the painted feature of Petri nets and their invariant properties. We apply the first 

steps of this method to the continuous Petri net model of the calmodulin pathway. 

We also present the methodology that we will use to compare the existing visualiza­

tion method with our Petri net-based method and to verify if it is more suited for 

signaling pathways. 

II. 1 Introduction 

The visualisation of the simulation data of molecular biology models with traditional 

means - 2-dimensional plots of time series data - raises some problems when models 

'Cet article a ete presente a la Summer Computer Simulation Conference 2007. Voir la reference 
(Hardy et Robillard, 2007c) 
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reach a certain level of complexity. These trajectories of concentrations are better 

interpreted than raw numbers, but it is increasingly confusing for a human user to 

make sense of relatively large quantities of data and substantial variables for different 

phenomena at the same time. Also, the topology of a biochemical model is not shown 

with these plots, thus there is an important loss of information when the networks 

are large and the topology cannot be memorized by the user. These problems were 

addressed by developing new visualisation software tools. Met Vis (Qeli et a l , 2003). 

SimWiz (Rost et Kummer, 2004) and BioPathwize 2 offer the possibility to visualize 

simulation data of metabolic networks in a more comprehensive way. Once a sim­

ulation is completed, these tools proceed similarly. The first step is to reconstruct 

the graph structure of the model from the differential equations. In this graph, the 

different nodes represent the various substances of the molecular model. The second 

step is to modify the graphical aspect of the graph nodes to show the variation of 

concentration, or of the number of molecules, obtained from simulation. The result is 

an animated view of the graph of the model displaying the simulation data. Depend­

ing of the software tool, the graphical aspect that changes to display the simulation 

data is either the color or the size of the nodes. Another feature of some tools is to 

display the variation of the fluxes between the molecular substances by modifying 

the graphical aspect of the edges linking the nodes of the graph. The tools Met Vis 

and SimWiz have also a 3-dimensional version (Qeli et al., 2004a; Wegner, 2005). 

The advantages of such a view are numerous. These tools take advantage of the 

benefits of visual data exploration, one of which is to integrate the human percep­

tual abilities in data interpretation, a useful asset in the exploratory steps of data 

analysis (Keim, 2002). They also give the possibility to make full use of the human 

mind capacity to detect structures and patterns in images, such as synchronicities, 

global changes of state and oscillations (Muller et Schumann, 2003). The developers 

2http://bioanalyticsgroup.com 

http://bioanalyticsgroup.com
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of Met.Vis and SimWiz insist on the usefulness of the topology of the biochemical 

networks for their animated graphical representation. To map the simulation data 

onto the model structure gives a good impression of the dynamical behavior of the 

system. Thus, a wealth of information is accessible to the user. However, a graphical 

representation of the models has to be generated since the models that are visualized 

with these tools are without any graphical nature. Since there is no standard for 

biochemical network graphical representation, each tool has its own format. 

Petri net is a modeling language designed to study systems with causal concurrent 

properties. This modeling language has been used in molecular biology modeling for 

the first time by Reddy et al. (1993). Petri nets properties such as liveness, bound-

edness and reachability have been used to qualitatively analyze biological properties 

(Voss et al., 2003; Zevedei-Oancea et Schuster. 2003; Sackmann et al., 2006). The 

Petri net high-level extensions supporting simulation have been used to realize quan­

titative studies (Hofestadt et Thelen, 1998; Matsuno et al., 2003a, 2006a). For review 

articles on the subject, consult Hardy et Robillard (2004) or Matsuno et al. (2006b). 

A Petri net-based approach for biological modeling offers two main advantages. First, 

many theoretical elements of Petri nets with a mathematical basis are useful as a 

preliminary analysis tool for biological pathways. Second, biologists can easily model 

a biological system with Petri nets, partly due to its graphical nature, and then study 

it with the simulation capabilities of Petri net tools. In this paper, we start the ex­

ploration of a new kind of application of Petri nets for biological systems: the use 

of Petri nets for the visualization of the simulation data of biochemical models. We 

present a visualization method using the painted feature and the marking invariants 

of Petri nets. In this method, the marking invariant property of Petri nets is used 

to identify meaningful biological entities and to generate, with the painted feature of 

Petri nets, animated representations of the simulation data. Our hypothesis is that 

our method will highlight the switching behavior of enzymes during the visualization 
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of the simulation data of the models of signal pathways. In section II.2, we present 

the painted feature of Petri net and how we use it to reproduce the existing visual­

ization method and to develop our new method. In section II.3. we explain how we 

plan to verify our hypothesis in future work. 

II.2 Visualization of simulation data with the painted Petri net 

Our visualization method uses a recent Petri net feature, the painted Petri net. first 

introduced in (Hardy et Robillard. 2006b). This feature is explained in the first 

subsection. Using this feature and a local relative painting rule, we describe in the 

second subsection how we can reproduce the existing visualization method, in order 

to compare it with our new visualization method. This method is based on marking 

invariants and it is presented in the third subsection. 

II.2.1 Painted Petri net feature and a Petri net model of the calmodulin pathway 

Several extensions of the Petri net theory have been used to complete quantitative 

analysis of different systems. The choice of the right extension depends of the nature 

of the studied system. However, no matter what the extension is, the data from 

the simulation of the Petri net model is generally communicated as raw numbers, 

directly on the model in the simulation environment during the simulation. Other 

tools also generate 2-dimensional histograms or plots. Unfortunately, it can be as 

confusing to make sense of the simulation data of complex Petri net models as for 

other formalisms with traditional means of data representation. To create a more 

intuitive and meaningfull way of representing the simulation data, we suggest the 

use of the painted Petri net feature to benefit from a more graphical representation. 
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The painted feature of Petri nets makes use of colors, called paints, that are applied 

on the places of a Petri net model, to give a visual indication of the evolution of the 

places content for the duration of the simulation of the model. The painted Petri net 

is not a standalone extension. This painted layer can be put on a Petri net model 

of any kind of extension used for simulation. The painted Petri net does not change 

any mathematical properties of the extension on which it is put on. The word paint 

is prefered to the word color to avoid any confusion with the colored Petri net. In 

the colored Petri net, coloration is an abstract concept, which makes it possible to 

distinguish different data types inside a model. In the painted Petri net, paints are 

used to visually indicate the temporal variation of the modeled entities represented 

by places. The paint of a place is determined for each time step of the simulation 

with a painting rule that uses the place's mark to generate a value from 0 to 1. The 

obtained numerical value is then associated to a paint from a spectrum (0 being 

blue at one end and 1 being red at the other end for example). The result is an 

animated graphical representation of the painted Petri net model that combines the 

topology of the model with the simulation data. Types of animated representations 

of a model, exposing different dynamical aspects of the model, can be created with 

different painting rules. 

In this paper, the Petri net model of the calmodulin pathway is used to illustrate the 

first steps of the marking invariant-based visualization method. This model is part of 

a more complex model of the regulatory pathway of the Ca2 + calmodulin-dependent 

protein kinase II (CaMKII) in the hippocampal CAl neuron. The original system 

was modeled with ordinary differential equations (ODE) by Bhalla et Iyengar (1999) 

and it has been converted into a Petri net model in a previous study (Hardy et 

Robillard, 2005). Figure II. 1 shows a frame of the animated representation of the 

complete model painted using the local relative painting rule presented in the next 

subsection. The Petri net extension used to model this system has been specifically 
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Figure II. 1: A frame of the animated representation of the painted Petri net of the 
CaMKII regulation pathway model, simulation step 66 s 

designed for biological modeling and simulation: the hybrid functional Petri net 

(HFPN) (Matsuno et al., 2003a). The HFPN extension enables the modeling of 

discrete and continuous elements and processes and the formation of three types of 

relationship between places and transitions with normal, inhibition and test arcs. A 

formal definition of the HFPN is given in Nagasaki et al. (2004). The software that 

has been developed for the modeling and simulation with HFPN is Genomic Object 

Net (GON), also commercially known as Cell Illustrator (Nagasaki et al., 2003). 

The Petri net model of the calmodulin pathway is shown in Fig. II.2. All the elements 

of this Petri net model are continuous. Each place of the Petri net model (drawn as 
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Figure II.2: Petri net model of the calmodulin pathway 

circles) corresponds to a molecular substances. Each transition of the Petri net model 

(drawn as rectangles) corresponds to a chemical reaction. The directed arcs of the 

model indicate the relationships between the molecular substances and the chemical 

reactions: an arc from a place to a transition means that the substance modeled by 

the place is a substrate of the reaction; an arc from a transition to a place means that 

the substance is a product of the reaction. The places contain a mark, indicating 

the concentration of the substance. The transitions has a speed equation, used to 

compute their reaction rate. The tables II. 1 and II.2 present the specifications of the 

places, transitions and arcs of the Petri net model of the calmodulin pathway. These 

specifications are given so that the reader can follow the steps of the identification 

of the marking invariants. We will use these invariants for a painting rule. 
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The calmodulin pathway model will react to an elevation of the calcium concentra­

tion. After such an elevation, the fully activated form of this calcium-binding protein 

(Ca4.CaM) can then bind to other proteins (not shown in this model) to trigger a 

specific response. The calmodulin pathway model includes a regulatory protein, 

neurogranin (Ng), that binds to calmodulin in the absence of calcium. The phospho­

rylation of Ng by protein kinase C (PKC) lowers its binding ability. The remaining 

substances, complexi and complex2, are two intermediary molecular complexes par­

ticipating in enzymatic reactions caused by the presence of PKC and phosphorylating 

Ng (Ng* is the phosphorylated form of Ng). 

Tableau II. 1: Specifications of the places of the Petri net model of the calmodulin 
pathway 

Name 

Po 
Pi 
Pi 
P3 
PA 

P5 
P, 
Pi 
Ps 
P9 
Pm 

Substance 

CaM 
CaM-Ca2 

CaM-Ca3 

CaM-Ca4 

Ca 

CaM-Ng 

Ng 

Ng* 
PKC 

complex2 

complex 1 

Variable 

m.0 

m\ 

7772 

7773 

7774 

777,5 

7776 

777.7 

m8 

m9 

777,10 

II.2.2 Visualization of simulation data with a local relative painting rule 

The tools Met Vis and SimWiz normalize the raw simulation data of a model into 

relative values by using the range between minimum and maximum values of each 

variable. This produces an individual percentage that can be transformed into a 

color or a scaling factor for visualization. The same data conversion into colors can 
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Tableau II.2: Specifications of the transitions and arcs of the Petri net model of the 
camodulin pathway 

Name 

*o 

h 

*2 

t3 

u 

h 

U 

t7 

*8 

t9 

tw 

tu 

tl2 

*13 

Speed 

72 x m0 x m4
2 

3 . 6 X 777.1 x W)4 

0 .465 X 7772 X 777-4 

72 X 777i 

10 X 7772 

10 x 7773 

0 .3 X m 0 X 777-6 

7775 

0 .0612 X 7775 X 7778 

0 .101 x 7n6 x m& 

0 .005 X 7777 

2.32 x 7779 

0 .58 x 777.9 

0 .35 X 77710 

From 
variable factor 

7770 

7774 

7771 

7774 

7772 

7774 

7771 

777 2 

7773 

777.0 

7776 

7775 

7775 

m8 

777.6 

777 8 

7777 

7779 

777-9 

mio 

1 
2 
1 
1 
1 
1 

1 

1 

1 

1 
1 

1 

1 
1 
1 
1 
1 

1 

1 

1 

To 
variable 

7771 

7772 

7773 

777o 

777.4 

7771 

777.4 

7772 

777.4 

7775 

777o 

777.6 

777io 

7779 

7776 

7776 

m8 

777.7 

7778 

777,0 

7777 

777.8 

factor 

1 

1 

1 

1 
2 
1 
1 
1 
1 

1 

1 
1 

1 

1 

1 
1 
1 
1 
1 
1 
1 
1 

£l4 1.4 X 777io "7io 1 

m8 
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be achieved for each place P, at time t of a painted Petri net with the following 

painting rule: 

paint p^t = (iTi-arkp^t — minpi)/(maxpi — minpt) (H.l) 

where markpit represents the mark of the place Pt at time t and maxpi and minpi 

represent the maximum and minimum values reached by each place during the com­

plete simulation. The application of the paints calculated with this painting rule 

onto a Petri net model produces an animated representation where each frame at 

time t shows the places of the model with their respective paint at time t. 

A first disadvantage of this visualization method is that it is difficult to compare the 

paints of different places because of their relative nature. The minimum-maximum 

range can vary greatly from one place to another. A second disadvantage of this 

painting rule, mainly for signalling network model, is the confusion caused by too 

many color changes. For some substances, the presence in the pathway of many 

different intermediate molecular forms with a small minimum-maximum range intro­

duces unwanted color flickering. A global painting rule (the same minimum value 

and maximum values for every place) instead of a local one would not be a good 

solution either because of the variation between the different orders of concentration 

in model. A potential improvement is possible by using some structural properties 

of the Petri net. 

II.2.3 Visualization of simulation data with a painting rule using marking invariants 

To visualize the concentration variations of a signaling pathway model without the 

disadvantages of a local relative method, we suggest to use the Petri net concept of 

marking invariant. In this subsection, we demonstrate that the sets of places defining 
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the marking invariants of a biochemical Petri net model, also known as conservative 

components in Petri net theory, are meaningful biological entities and that their 

properties justify their use in a painting rule. First, we formaly define these Petri 

net concepts and we present the common algorithm used to identify the conservative 

components of a Petri net model. Because Petri nets have a mathematical represen­

tation in linear algebra, it is possible to implement an automated procedure. Basic 

knowledge on Petri net theory is required to understand all the terms in the following 

paragraphs. Despite the jargon, we provide a comparaison with biochemical concepts 

that will help any reader to grasp their significance. After this more formal part of 

the text, we discuss the result of the algorithm for the calmodulin pathway model 

and present the marking invariant-based painting rule. We invite readers to consult 

(David et Alia. 2004) for a complete introduction to Petri net theory. 

Def in i t ion I I . l . The set B of places of a Petri net model is a conservative component 

if and only if a weighting vector x exists such that 

P (x) = B and x r • W = 0 (II.2) 

where W is the incidence matrix of the Petri net model. The vector x is a P-invariant 

(x T is its transposed equivalent) and the set of places P ( x ) is known as the support 

of the P-invariant x. 

A consequence of this definition is that for whatever firing sequence from marking 

m 0 . i.e. for every marking m*. G M ( m 0 ) (set of reachable markings from initial 

marking), we have 

x T • mk = x T • m 0 (II.3) 

which is a scalar quantity known as a marking invariant. This means that the sum 

of the marks of the set of places of a conservative component, weighted by vector x, 
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is constant. This definition of the marking invariant applies in an equivalent way to 

discrete, continuous and hybrid Petri nets. In a biochemical network model based 

on chemical reactions and kinetic rates, a conservative component has a physical 

meaning: the places of a conservative component represent all the different forms of 

a molecular species for which the total concentration is constant. By forms, we mean 

the substances that are modified configurations of a molecular species (like Ng and 

the phosphorylated Ng* are different forms of neurogranin) or the substances that 

are complexes composed of at least one molecule of a molecular species (like CaM, 

CaM.Ca2. CaM.Ca3. CaM.Ca4, and CaM.Ng are different forms of calmodulin). 

We use algorithm II. 1 to find the minimal support P-invariants of the calmodulin 

pathway Petri net model showed in Figure II.2. This algorithm can be found in 

(David et Alia, 2004). Minimal support P-invariants is the formal term for the 

smallest conservative components of a Petri net model. 

Algor i thm II. 1. Search for minimal support P-invariants. 

Step 1. Let A be the dimension n unit matrix (n = number of places) and B = W 

(incidence matrix). Construct matrix [A|B]. 

Step 2. For each index j of transition Tj. 

Step 2.1. Add to matrix [A|B] as many lines i as there are linear combinations 

of two lines, with positive integer coefficients, such that element(i J ) is zero. 

Step 2.2. Eliminate from matrix [A|B] all the line k whose element (k.j) is not 

zero. 

Step 3. Let lA • lB denote a line I of the matrix [A|B] and P(IA) the support of lA 

(i.e., the set of places for which the weight is not zero). If there are two lines p and 

q of the matrix such that P(PA) 5 P{QA), then line p is removed. 
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Step 4- The minimal support P-invariants correspond to the non zero lines of A. 

• 

Tableau II.3: The four marking invariants of the Petri net model of the calmodulin 
pathway 

Substance 

CaM 

Ca 

Ng 

PKC 

P-invariant 
Marking invariant 

X! = [1 1 1 1 0 1 0 0 0 
Ned = mo + f"i + m2 + m3 + m5 + 

x 2 = [0 2 3 4 1 0 0 0 0 
Ncc2 = 2m. i + 3T772 + 4m3 + m4 

x3 = [0 0 0 0 0 1 1 1 0 
Ncc3 = m5 + m6 + m7 + mg + m10 

x 4 = [0 0 0 0 0 0 0 0 1 
Ncc4 = m.8 + m9 + mw 

0 
m 
0 

1 

1 

'J 
10 

oj 

Ij 

Ij 

The results of the search for the minimal support P-invariants of the Petri net model 

of the calmodulin pathway are shown in table II.3. Four conservative components 

have been found. This means that there are four distinct molecular specie in the 

model, which are calmodulin, neurogranin, calcium and protein kinase C. These 

conservative components correspond to the sets of places containing all the different 

forms of the four molecular species. For example, the strictly positive values of the 

P-invariant xx indicate that the places P0 (CaM), Px (CaM.Ca2), P2 (CaM.Ca3), P3 

(CaM.Ca4), F5 (CaM.Ng) and Pi0 (complexi) are associated to the different forms 

of the calmodulin species. More importantly, the sum of the marks of these places, 

weighted by the P-invariant values, is the total constant concentration of calmodulin 

molecules in the model. For example, the sum of m0 + ?r?i + m2 + m3 + m5 + m10 is 

a constant value throughout the simulation indicating the total concentration of all 

the forms of calmodulin in the system. This result shows that there is a relationship 
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between mass conservation and marking invariants in biochemical Petri net models. 

This relationship has already been discussed in previous studies in which the marking 

invariants were used to verify the soundness of a model (Zevedei-Oancea et Schuster, 

2003; Sackmann et al., 2006). Here again, the marking invariants demonstrate that 

the model specifications and its structural properties respect the mass conservation 

law. This is not new information, it is the intention of the modeler to assure that 

mass conservation is respected in the model. The marking invariants validate the 

modeler's work. The novelty we propose in this paper is to use marking invariants 

in a painting rule for a better visualization of the dynamical behavior of a Petri net 

model. The marking invariant-based painting rule is the following: 

paintPi,ccx.t = markPi.t/Nccx (H.4) 

where the place Pi is part of the conservative component CCX. This rule computes 

the ratio between the concentration of one form of a molecular species and the sum 

of the concentrations of all forms of this molecular species. Since a place can be part 

of several conservative components, like the place CaM.Ng is part the calmodulin 

and the neurogranin conservative components in the calmodulin pathway model, a 

place can have x paint values, where x is the number of conservative component this 

place is part of. 

The hypothesis to be tested next is if this painting rule based on conservative com­

ponents and marking invariants computes paints that are more significant than the 

paints computed with the individual relative painting rule. The preliminary animated 

view of a Petri net painted according to this rule shows color modifications that are 

relevant to the evolution of the distribution between different forms of a molecular 

species. For many enzymes, this distribution is linked to their functional activation 

or deactivation. For example, the distribution of an enzyme in phosphorylated and 
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dephosphorylated forms can indicate if this enzyme is "on" or "off'. This is also the 

case for other signaling macromolecules involved in the formation of complexes. 

II.3 Concluding remarks 

The creation of the animated view of the Petri net model of the CaMKII regulation 

pathway with a painting rule using marking invariants is actually a wTork in progress. 

The confirmation or not of our hypothesis - the improvement of the visualization of 

the simulation data of signaling pathway models- will be possible after a comparison 

of the animated views of the complex Petri net model painted with the local relative 

painting rule and painted with the marking invariant-based pating rule. We will 

also need to define how to deal with some expected special situations that are for 

the moment left out of the painting rule using marking invariants. One of these 

situations is how to visualize the places having several paints. This occurs when 

a place is part of more than one conservative component, like the place Pw of the 

calmodulin module model, which is part of the conservative components of the CaM, 

Ng and PKC molecular species. A second special situation is how to represent the 

places without paint. This occurs when a place is not part of any conservative 

component. In the complete CaMKII regulation pathway model, places without 

paint are associated to messenger molecules like Ca and cAMP that are produced and 

degraded or introduced and expelled during the simulation. The total concentration 

of these substances is not constant during simulation, but the evolution of their 

concentration is also important to visualize. A second complementary painting rule 

will probably be developed for places in this situation. 
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