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Résumé

Cette thése se propose d’étudier la bioconvection gravitactique dans des cavités
rectangulaires et cylindriques. Pour une cavité rectangulaire les effets du nombre de
Peclet de bioconvection et du rapport de forme sont étudiés sur le début de la
bioconvection. Les cavités rectangulaires sont avec des parois rigides et imperméables.
En outre, la condition d’adhérence aux parois verticales ne s’applique pas. Le nombre de
Peclet varie de 0.1 a 10 et le rapport de forme de 1 a 5. Dans le cas d’un cylindre vertical,
l'effet du chauffage ou du refroidissement par le bas a la température ou au flux constant
sur le développement de bioconvection gravitactique a été étudiée. Les parois des
cylindres verticaux sont avec des parois rigides, imperméables et adiabatiques, mais la
condition d’adhérence ne s’applique pas. Par contre, les parois horizontales sont rigides,
imperméables et la condition d’adhérence s’applique. Le nombre de Peclet varie de 1 a

10, et le rapport de forme de 0.2 4 1.

Dans le cas de bioconvection, les équations modélisant le phénomene sont la continuité,
les équations de Navier-Stokes avec l'approximation de Boussinesq, 1'équation de
diffusion pour les micro-organismes mobiles et dans le cas thermo-bioconvection,
I'équation d'énergie est aussi incluse. La méthode des volumes de controle est employée
pour résoudre numériquement le systéme des équations avec les conditions aux frontieres

appropriées.
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Dans le cas de bioconvection dans des cavités rectangulaires, nos résultats montrent
l'influence du nombre de Peclet de bioconvection et du rapport de forme sur le
diagramme de bifurcation et la structure d'écoulement. Nous avons trouvé que la
bifurcation demeure sous-critique dans tous les cas quand le nombre de Peclet de
bioconvection varie de 0.1 a 10 dans des cavités rectangulaires ayant un rapport de forme
de 1 a2 5. Le nombre de Rayleigh critique diminue avec l'augmentation du nombre de

Peclet de bioconvection et aussi avec l'augmentation du rapport de forme.

Dans le cas de thermo-bioconvection dans des cavités cylindriques, les résultats montrent
l'influence de l'effet du chauffage et du refroidissement par le bas sur le diagramme de
bifurcation et le contour de la bioconvection gravitactique. Nous avons constaté que les
bifurcations sous-critiques de la bioconvection deviennent supercritiques quand le
nombre de Rayleigh thermique est différent de zéro. Pour Rar < 0, c.-a-d. pour le
refroidissement par le bas, nous avons des forces de flottabilité opposantes, la convection
décroit et le nombre de Rayleigh critique du thermo-bioconvection augmente par
rapport a celui de la bioconvection. Pour Rar > 0, c.-a-d. pour le cas du chauffage par le
bas, les forces de flottabilité sont coopérantes et la convection augmente et le nombre de
Rayleigh critique de thermo-bioconvection diminue par rapport a celui de la

bioconvection.
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Abstract

This thesis investigates the gravitactic bioconvection in rectangular and cylindrical
enclosures. In case of rectangular cavities, the effects of bioconvection Peclet number and
aspect ratio are investigated on the onset of bioconvection. The Peclet number varied
from 0.1 to 10 and the aspect ratio from 1 to 5. In the vertical cylinder case, the effect of
heating or cooling from below at constant temperature and constant heat flux on the
development of gravitactic bioconvection is studied in vertical cylinders with stress free
sidewalls, and top and bottom rigid walls. The Peclet number changed from 1 to 10 and

aspect ratio from 0.2 to 1.

The governing equations for bioconvection are the continuity, the Navier-Stokes
equations with the Boussinesq approximation, the diffusion equation for the motile
micro-organisms and in case of thermo-bioconvection, they include also the energy
equation. The control volume method is used to solve numerically the complete set of

governing equations.

In case of bioconvection in rectangular cavities, the present results exhibit the influence
of bioconvection Peclet number and aspect ratio on the bifurcation diagram and the flow
structure. We have found that the bifurcation remains subcritical in all cases when the

bioconvection Pe number is varied from 0.1 to 10 in rectangular enclosures having an
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aspect ratio from 1 to 5. The critical Rayleigh number is decreased with increasing

bioconvection Peclet number and with increasing aspect ratio.

In case of thermo-bioconvection in cylindrical cavities, the results show the influence of
thermal effect on the bifurcation diagram and the pattern of gravitactic bioconvection.
We found that subcritical bifurcations of bioconvection became supercritical bifurcations
when the thermal Rayleigh number Rar is different than zero. For Rar <0, i.e. for cooling
from below, we have opposing buoyancy forces, the convection is decreased and the
critical thermo-bioconvection Rayleigh number is increased with respect to that of
bioconvection. For Rar > 0, i.e. for heating from below, we have cooperating buoyancy
forces, the convection is increased and the critical thermo-bioconvection Rayleigh

number is decreased with respect to that of bioconvection.
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Condensé

Le but de ce mémoire de maitrise est d'étudier la bioconvection gravitactique des micro-
organismes dans les cavités. Nous étudions la bioconvection dans des cavités
rectangulaires avec les parois rigides et impermcables. Pour examiner la thermo-
bioconvection, nous allons considérer des cylindres verticaux et étudier l'effet du
chauffage et du refroidissement par le bas a la température ou au flux constant sur la

bioconvection.

La bioconvection est la formation spontanée d’un mouvement dans les suspensions des
micro-organismes, qui sont un peu plus denses que l'eau et se déplacent aléatoirement,
mais avec un mouvement global de bas vers le haut, dans le sens contraire de la
pesanteur. Le mouvement ascendant des micro-organismes est généralement une réponse
a un champ de force externe tel que la pesanteur (le gravitaxe ou le géotaxe), une source
lumineuse (phototaxe), un stimulus biochimique tel que le gradient de la concentration en
oxygene (chemotaxes) et des couples de force dus a la pesanteur et au cisaillement
(gyrotaxes). En raison du mouvement ascendant, la couche supérieure de la suspension
devient plus dense que la couche inférieure, résultant en une distribution instable de
densité. Ceci peut mener & une convection instable et a la formation de convection

semblable a la convection de Rayleigh-Bénard.



Des modeles théoriques du bioconvection pour différents types de micro-organismes
motiles ont été développes dans diverses publications récentes et, une analyse du travail
fondamental dans ce secteur a été publiée. Des mode¢les rationnels de continuum pour une
suspension des micro-organismes purement gravitactiques ont été formulés et analysés
par Childress et al. Cette formulation inclut les équations de Navier-Stokes avec
l'approximation de Boussinesq pour les fluides incompressibles et 1’équation de la
conservation de micro-organismes. Les diverses études basées sur les équations
formulées par Childress et al. ont été présentées par Fujita & Watanabe, et Harashima et
al. lls ont constaté que le systéme de la bioconvection peut avoir un comportement
chaotique par l'intermédiaire d’une séquence des bifurcations lorsque le nombre de
Rayleigh augmente et ainsi le syst¢éme évolue dans la direction de l'advection
descendante plus forte des micro-organismes et celui de la minimisation de 1’énergie

potentielle du systéme.

La revue de littérature montre qu'il n'y a, jusqu'ici, aucune simulation numérique de la
bioconvection dans des cavités rectangulaires et des écoulements de thermo-
bioconvection au-dessus des nombres Rayleigh critiques, toutes les études ont seulement
considéré les solutions analytiques du probléme de stabilité. Par conséquent, nous avons
dans ce mémoire, deux études distinctes ; la premiére est sur la bioconvection des micro-
organismes gravitactiques dans des cavités rectangulaires et la seconde sur la thermo-

bioconvection des micro-organismes gravitactiques dans des cylindres verticaux.



Xi

Cette thése est présentée en 5 chapitres. Le chapitre 1 présente la bioconvection. Elle
contient la définition du probléme et passe en revue bri¢vement les travaux précédents
effectués sur le sujet. Dans le chapitre 2, le modéle mathématique utilisé pour résoudre le
probléme est décrit. Ce chapitre inclut 3 sections; dans la premicre section le modele
mathématique et les équations de la bioconvection dans une cavité rectangulaire sont
exposées. Dans la deuxieme partie, les équations régissantes la thermo-bioconvection
sont présentées en coordonnées cylindriques. Dans la derniére partie, la méthode
numérique employée pour résoudre le probleme est exposée. Le chapitre 3 présente les
résultats et les discussions pour le probleme de la bioconvection dans des cavités
rectangulaires. Le chapitre 4 discute les résultats obtenus pour la thermo-bioconvection
dans des cylindres verticaux. Le chapitre 5 donne les conclusions générales de cette

étude.

Dans la premiére partie de ce mémoire, nous nous concentrons sur la bioconvection
gravitactique développée dans une solution des micro-organismes gravitactiques, comme
la paramécie et le tetrahymena, dans les cavités carrées a rectangulaire avec différents
rapport de formes. Les paramétres influant sont Sc¢ = 1, Pe = 0.1-10 et 4 = 1-5. Nous
obtenons les solutions numériques aux équations régissantes : les équations de la
continuité, de Navier-Stokes complétes et de la concentration des cellules avec conditions
critiques au début de la convection. Notre but a été d'étudier les effets du rapport de
forme et du nombre de Peclet sur le commencement et le développement de la

bioconvection.
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Dans la deuxié¢me étude, nous effectuons une recherche numérique sur le développement
de la thermo-bioconvection dans des cylindres verticaux avec les parois latérales
adiabatiques et imperméables. Nous nous concentrons sur l'effet du chauffage ou du
refroidissement le bas dans les cas (i) d'isotherme et (ii) du isoflux, et nous étudions
l'effet thermique sur les caractéristiques de bifurcation des micro-organismes

gravitactiques.

En cas de la bioconvection dans des cavités rectangulaires, le systéme se compose d’une
solution de micro-organismes gravitactiques inclus dans des cavités rectangulaires
bidimensionnelles de largeur L et hauteur H référant aux coordonnées cartésiennes (%,
y’) avec l'axe y’ se dirigeant verticalement vers le haut. Initialement, nous avons une
distribution uniforme de concentration 7 et chaque cellule a un volume # et une

densité p, . Nous supposons que la solution est incompressible et l'approximation de

Boussinesq s'applique. L'approximation de Boussinesq suppose que toutes les propriétés
physiques sont constantes, excepté la densité dans les termes des flottabilités, qui peut
étre exprimée comme fonction linéaire de concentration des cellules. L'équation de
quantit¢ de mouvement sous l'approximation de Boussinesq méne a l'équation de
vorticité. Nous imposons des conditions limites rigides avec la condition d’adhérence aux
parois supérieure et inférieure, mais pas aux parois latérales. En outre, il n'y a aucun flux
de cellule a travers les parois rigides. Les paramétres régissant sont le nombre de

Schmidt Sc =v/D_, le nombre de Peclet de 1a bioconvection Pe=V_H /D, et le nombre

de Rayleigh de bioconvection Ra = gd3nApH® / pvD,.
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Dans le cas de thermo-bioconvection dans des cylindres verticaux, le systéme se compose
d'une solution des micro-organismes gravitactiques dans des cavités cylindriques du
rayon R et de la hauteur H en référence aux coordonnées cylindriques (r, z) avec l'axe de
z se dirigeant verticalement vers le haut. Les parois des cylindres sont rigides et
imperméables. De plus, les parois verticales de la cavité sont adiabatiques et la condition
d’adhérence ne s’applique pas. Il n'y a aucun flux des cellules a travers les murs. Nous
supposons le fluide incompressible et I'écoulement axisymétrique. La distribution de la
concentration est uniforme et chaque cellule a un volume # et une densité¢ p, . Les
équations bidimensionnelles de Navier-Stokes avec l'approximation de Boussinesq,
I’équation de conservation de cellules et I'équation de I'énergie sont résolues. Les

paramétres régissant du probléme sont, le nombre de Schmidt Sc =v/D,_, le nombre de
Peclet de la bioconvection Pe=HV /D, le nombre de Rayleigh de
bioconvection, Ra=gdnApH’/pvD, et les nombres de Rayleigh thermique

Ra, = gPATH /ver et Ra, = gfBqH" /vok , et le nombre de Lewis Le=« /D,.

Pour résoudre le systeme d’équations résultant, nous avons utilisé la méthode de volumes
de contrdle. Les équations régissantes sont discrétisées avec une grille uniforme décalée
avec la fonction de courant stockée sur un ensemble de nceuds et la vorticité et la
concentration stockées sur un autre ensemble de nceuds. Les’ équations discrétisées sont
dérivées en utilisant les différences centrales pour les dérivées spatiales et des différences

arriéres pour des dérivées temporelles. Un algorithme ligne par ligne de matrice
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tridiagonale avec la relaxation est employé conjointement avec une méthode itérative

pour résoudre les équations discrétisées non-linéaires.

Le programme numérique a ét¢ validé par rapport a la convection thermique, a la
bioconvection et a la diffusion double disponible dans la littérature. Un maillage
uniforme dans la direction de x et de y est employé pour tous les calculs. La convergence
en fonction du maillage est étudiée pour différents cas, et la taille appropriée du maillage

pour chaque cas est utilisée pour tous les calculs de la présente étude.

Dans l'étude de bioconvection, des calculs ont été effectués en utilisant les gammes
suivantes des paramétres pour I'étude de bioconvection : le rapport de forme (de 4 =1, 2
et 5), le nombre de Peclet de bioconvection, (Pe = 0.1, 1 et 10), le nombre de Schmidt Sc
= 1 et le nombre de Rayleigh. Les nombres de Pe et de Sc correspondent aux cas de
bioconvection avec micro-organismes typiques : le coefficient de diffusion D, = 5x107 -
0.5x10 cm?/s, la vitesse de cellules V, = 7.5x10” - 1x10™ cm/s , densité de cellules p, =
(1.035 -1.10) py, le volume de cellules v = 1x10™" - 5x1071° cm3, la concentration de
cellules = 8.44x10° - 1x10° cell/cm’. Par exemple, pour le caudatum de paramécie, D, =
5x107 - 4.5x107 cm¥s, V, = 3.2x107% - 7.7x107% cm/s, H = 0.1 centimétre ; nous obtenons

Sc=0.22-2et Pe=0.07-1.54.

Les résultats ont montré l'influence du nombre de Peclet de bioconvection et du rapport

de forme sur le diagramme de bifurcation et la structure de 1'écoulement. Nous avons
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constaté que la bifurcation demeure sous-critique dans tous les cas quand le nombre de
Pe de bioconvection varie entre 0.1 et 10 dans les cavités rectangulaires ayant un rapport
de forme de 1 a 5. Pour le cas de thermo-bioconvection, les calculs ont été exécutés avec
le rapport de forme de 4 = 1, 0.5, 0.2 et des valeurs variables de Ra et Rar pour des
parameétres sans dimensions suivantes : Sc = 1, Le = 1, Pe = 1 et 10, qui correspondent
aux cas typiques de bioconvection avec caractéristiques connues de micro-organismes.
D'abord, nous avons obtenu des courbes de bifurcation par simulation numérique, les
nombres critiques de Rayleigh thermiques, Rar. sans bioconvection, c.-a-d. avec Ra = 0.
Puis, nous avons obtenu des courbes de bifurcation par simulation numérique, les
nombres sous-critiques de Rayleigh de bioconvection, Ra, sans effet thermique, c.-a-d.
avec Rar = 0. En conclusion, en employant les nombres critiques de Rayleigh thermiques
et les nombres sous-critiques de Rayleigh de bioconvection, nous avons étudi€ par la
simulation numérique pour obtenir des courbes de bifurcation pour déterminer les
nombres de Rayleigh critiques pour les cas Rar = 1xRar., et 2xRar. (c.-a-d. chauffage par
le bas) et au Rar = -1xRar., -2xRar. (c.-a-d. refroidissement par le bas) avec les

conditions de 7 = constante et ¢ = constante.

Les résultats montrent l'influence de l'effet thermique sur le diagramme de bifurcation et
le modeéle de la bioconvection gravitactique. Nous avons constaté que les bifurcations
sous-critiques de la bioconvection deviennent supercritiques quand le nombre de
Rayleigh thermique Rar est différent de zéro. Pour Rar < 0, c.-a-d. pour le

refroidissement par le bas, nous avons les forces de flottabilité oppossantes. La
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convection diminue, les courbes de concentration sont modifiées pour refléter le
changement du champ d'écoulement, et le nombre de Rayleigh critique de thermo-
bioconvection augmente par rapport a celui de la bioconvection. Pour Rar > 0, c.-a-d.
pour le cas de chauffage par le bas, nous avons les forces de flottabilité coopérantes, la
convection augmente, les courbes de concentration sont modifiées, et le nombre de
Rayleigh critique de thermo-bioconvection diminue par rapport a celui de la
bioconvection. Nous avons donc trouvé que tant le chauffage par le bas que
refroidissement par le bas avec la température ou le flux constante nous avons un effet

déstabilisant sur la bioconvection gravitactique.
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Chapter 1

Introduction

1.1 Objectives

In this master thesis our aim is to study the gravitactic bioconvection of micro-organisms
in enclosures. We will investigate bioconvection in a rectangular enclosure with isolated
and stress free side walls as shown in Figure 1.1 To examine thermo-bioconvection we
consider a vertical cylinder, shown in Figure 1.2, and the effect of heating and cooling

from bellow on the bioconvection will be investigated.

Bioconvection is the spontaneous pattern formation in suspensions of micro-organisms,
which are little denser than water and move randomly, but on average upwardly against
gravity. Up swimming of micro-organisms is generally a response to an external force
field such as gravity (gravitaxis or geotaxis), light source (phototaxis), biochemical
stimulus such as gradient of oxygen concentration (chemotaxis) and torques due to
gravity and shear (gyrotaxis). Due to up swimming, the top layer of the suspension
becomes denser than the layer below, resulting in an unstable density distribution. This
may lead to a convective instability and formation of convection patterns similar to the

patterns observed in the Rayleigh-Bénard convection.



Applications of the bioconvection and thermo-bioconvection are in biotechnology, where
various micro-organisms are used. There are also possibilities for the natural exploitation
of bioconvection and thermo-bioconvection such as in development of marine life.
Bioconvection and thermo-bioconvection by micro-organisms can provide also a unique
possibility to better understand various convection phenomena in fluid mechanics and
heat transfer, because these systems constitute both the driving force for the convection
and the marker particles allowing visualizing the flow. Additionally, appropriate

analogies may be discovered to better understand various classical flow phenomena.

1.2 Literature Review

Theoretical models of bioconvection for different types of motile micro-organisms have
been developed in various recent publications, including Metcalfe & Pedley [1],
Hillesdon & Pedley [2] and Hill et al. [3]. For a review of the fundamental work in this

area, see Pedley & Kessler [4] and Hill & Pedley [5].

Rational continuum models for a suspension of purely gravitactic micro-organisms have
been formulated and analyzed by Childress et al. [6]. The formulation includes the
Navier-Stokes equations with the Boussinesq approximation for an incompressible fluid
and the micro-organisms conservation equation. A numerical study based on the
equations derived by Childress et al. was presented by Fujita & Watanabe [7]. They

discretized the equations using finite difference method with a spatially staggered grid.



They found that the system of bioconvection can lead into chaotic behaviour via a
sequence of bifurcations by increasing the Rayleigh number. The preferred wave number
of gravitactic bioconvection in a rectangular cavity was studied by Harashima et al. [8]
who carried out numerical experiments to show that the system evolves in the direction of
intensifying downward advection of micro-organisms and reducing the total potential

energy of the system.

Ghorai & Hill [9] studied gyrotactic bioconvection, using a vorticity-stream function
formulation of the basic model, which was first introduced by Pedley et al. [10]. The
development and instabilities of a single, two-dimensional gyrotactic plume and a
periodic array of such plumes were examined in Ghorai & Hill [9] [11]. They
investigated numerically the existence and stability of a plume in a suspension of
gyrotactic swimming micro-organisms, C. nivalis, in a deep and narrow chamber with
stress free side walls. Their governing parameters were, in our notation, Sc = 20, Pe = 5-
20, A =1 to 0.125, i.e. square to tall, narrow enclosures. They carried out a parametric
study to determine effects of gyrotactic number and cell swimming speed, and the
instability mechanism. They carried out also a linear stability analysis at small gyrotactic
numbers and found good agreement between the numerical and the linear stability

analysis results [9].

Bees and Hill [12] carried out a study by weakly non-linear theory and showed that in

gyrotactic swimming micro-organisms in a deep suspension, the bifurcation to instability



was supercritical. They found also that the linear theory was adequate to predict the
pattern formation, i.e. the first plumes to appear in an initially well mixed deep

suspension of gyrotactic micro-organisms.

The onset of bioconvection and the mechanism of bifurcation are studied by using linear
stability theory, nonlinear theory and numerical methods (e.g. [4]). For gravitaxis
bioconvection, using weakly nonlinear theory Childress and Spiegel [13] found that the
bifurcation in bioconvection of gravitactic micro-organisms in a horizontal fluid layer
was subcritical. Alloui et al. [14] studied numerically bioconvection and pattern
formation of gravitactic micro-organisms in a vertical cylinder, with the aspect ratio of 1
and 0.1, i.e. square and tall enclosures. They found that the pattern formation at low
Peclet numbers was analogous to the Rayleigh-Bénard convection, i.e. the bifurcation
was supercritical, while at high Peclet numbers it was subcritical. In contrast, it is found
that pattern formation in gyrotaxis bioconvection in tall enclosures was through

supercritical bifurcation [9, 12].

Recently, a number of theoretical analyses of thermo-bioconvection of a suspension of
gyrotactic and oxytactic micro-organisms have been carried out by Kuznetsov [15-17].
The effect of the temperature gradient on the stability of a suspension of motile gyrotactic
micro-organisms in a fluid layer was investigated [15]. It is suggested that this problem
may be relevant to motile thermophilic micro-organisms that live in hot springs. The

author found that a suspension of gyrotactic micro-organisms in a horizontal fluid layer



heated from below is less stable than the same suspension under isothermal conditions. In
a complementary study [15], Nield and Kuznetsov [18] investigated the case where the
layer is cooled from below. They presented a linear stability analysis of a suspension of
gyrotactic micro-organisms in fluid layer of finite depth. They found that cooling from
below stabilizes the suspension and oscillatory convection is possible in certain
circumstances. Alloui et al. [19] carried out a linecar stability analysis of the thermo-
bioconvection in suspension of gravitactic micro-organisms in shallow fluid layers. The
effect of heating or cooling from below on the stability was investigated. They found that
the thermal effect may stabilize or destabilize the suspension and change the wave length
of the bioconvection pattern. In a subsequent study [20], they investigated numerically
thermo-bioconvection in a square cavity and found that the bioconvection was stabilized
when cooled from below while destabilized by heating below. They observed that there
was a transition from subcritical to supercritical when the Rayleigh number was

increased.

From the brief review we can see that (a) bioconvection in shallow cavities containing a
suspension of gravitactic micro-organisms and the onset and development of
bioconvection are not investigated, (b) there are as yet no numerical simulations of
thermo-bioconvection flows above the critical Rayleigh numbers in cylindrical cavities,

all studies considered only the analytical solutions of the stability problem.



In the first part of this thesis we focus on gravitactic bioconvection developed in a
suspension of gravitactic micro-organisms, like paramecium and tetrahymena, in square
to shallow enclosures. The governing parameters are Sc = 1, Pe =0.1-10 and 4 = 1-5. We
will obtain numerical solutions to the governing equations of the continuity, the full
Navier-Stokes and the cell concentration at critical conditions for the onset of convection.
Our aim is to investigate the effects of the aspect ratio and Peclet number on the onset

and development of bioconvection.

In the second part of this thesis we carry out a numerical investigation of the
development of thermo-bioconvection in vertical cylinders with stress free sidewalls,
which has not been addressed in the literature. We will focus on the effect of heating or
cooling from below in case of (i) isothermal and (ii) constant heat flux, and we will
investigate the thermal effect of on the bifurcation characteristics of the gravitactic micro-

organisms.

This thesis is presented in five chapters. Chapter zl introduces the bioconvection and
contains the problem statement and briefly reviews the previous works done on the
subject. In chapter 2 the mathematical model used to solve the problem is described. This
chapter includes 3 subchapters; in the first part the numerical model and equations of
bioconvection in a rectangular enclosure is derived. In the second part the governing
equations for thermo-bioconvection in cylindrical coordinates are given. In the last part

the numerical method used to solve the problem is explained. Chapter 3 presents the



results and discussions for the problem of bioconvection in rectangular enclosure.
Chapter 4 discusses the results obtained for thermo-bioconvection in a vertical cylinder.

Chapter 5 gives the general conclusions of this study.

Figure 1.1 Schematic diagram of the computational domain and boundary conditions for
bioconvection in rectangular enclosures.
on'
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Figure 1.2 Coordinate system, computational domain and boundary conditions for

thermo-bioconvection in vertical cylinders.



Chapter 2

Mathematical Models and Numerical Procedure

2.1 Mathematical Model of Bioconvection in Rectangular Enclosures

The system consists of a suspension of gravitactic micro-organisms enclosed in a two-
dimensional rectangular cavity of width L and height H referred to Cartesian coordinates
(x',y") with the y'axis pointing vertically upwards (Figure 1.1). Initially we have a
uniform concentration distribution 7 and each cell has a volume ¢ and density p, .
Assuming that the suspension is incompressible and introducing the stream function '

and the vorticity @', we get

i =0y’ /oy, —dy’/ox") (1)

o =-Viy’ 2)

The Boussinesq approximation assumes that all physical properties are constant except
for the density in the buoyancy term, which may be expressed as a linear function of cell

concentration

/ Ap ,
p=p,+(p,—p = p,A+3L 1) (3)

w



where p is the density of the suspension, p, and p, the density of the fluid and of the

cells, respectively; n” is the number of cells in a unit volume.

The momentum equation under the Boussinesq approximation leads to the vorticity

equation

0G V(@)= - g2 I
ot ox

w

@

Here v is the kinematic viscosity of the suspension, which is assumed to be that of the
fluid.

The cell concentration can be described by the equation

=-V.J’ (5)

where the flux of the cells is

J =@ +V.kw -DVr 6)

where V, is the upward velocity, k is the vertical unit vector and D, is the diffusion

coefficient of the cells.
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We impose rigid, non-slip boundary conditions at the top, bottom and side walls. Also

there is no flux of cells through the walls, as shown in Figure 1.1. Hence,

2
w=0, 2% 20 and Jii=0  at ¥=0,1

l//'=0,%l/£,—=0 and J'7i=0 at y =0,H
Y

where # is the unit vector normal to the boundary.

()

(8)

Length is scaled on the height H, time on the diffusive scale H”/D,, velocity on

D./H , and the concentration on the mean concentration 7z . The resulting system of

non-dimensional coupled equations is

w=-Vy

99 | v (wii) = Sc Vw— Sc Ra D
ot ox
on -

P v

ot

where the flux of the cells is

J = (i + Pek)n—Vn

)

(10)

(1)

(12)
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Here Sc =v /D, is the Schmidt number, Pe =V_H /D, the bioconvection Peclet number

and Ra=gdnApH’ / pvD, the bioconvection Rayleigh number. The Schmidt number is

the ratio of momentum diffusivity (viscosity) and mass diffusivity, which is diffusivity of
micro-organisms here, and is used to characterize the fluid flow because there is
simultaneous momentum and mass diffusion convection processes. The bioconvection
Peclet number is the dimensionless number relating the swimming velocity of micro-
organisms to the rate of their diffusion. The Rayleigh number describes the relationship

between buoyancy of micro-organisms and viscosity forces within the fluid.

The equations (9), (10) and (11) are subjected to the boundary conditions

2

w=02Y -0 and -2 =0 at x=0,4 (13)
ox 0x

w=02Y =0 and nPe-22=0 at y=0.1 (14)
oy dy

where 4=L/H is the aspect ratio of the cavity.

2.2 Mathematical Formulation of Thermo-Bioconvection in Vertical Cylinders

The system consists of a suspension of gravitactic micro-organisms enclosed in a

cylindrical enclosure of radius R and height H referred to cylindrical Cartesian



12

coordinates (7, z) with the z axis pointing vertically upwards. The vertical walls of the
enclosure are stress free and the top and bottom walls are rigid. There is no flux of cells
through any of the walls. The coordinate system, computational domain and the thermal

boundary conditions are shown in Figure 1.2.

We assume that the fluid is incompressible and the flow is axisymmetric. The
concentration distribution is uniform and each cell has a volume ¢ and density p.. The
two-dimensional Navier-Stokes equations with the Boussinesq approximation, cell

conservation equation and energy equation are solved.

Vii'=0 (15)
aﬁ, —af st ’ 22 = ’ -

P, at,+pwV.(uu)=—Vp + UV + ' —p, ST -T,)8 (16)

al’l, =, . 3/ —7 N2 ’

v -VJ" with J'=@+Vk)yn-DVn (17)

aaf, +V.(i@'TYy=V’T’ (18)

By using the vorticity stream function formulation, these equations are made
dimensionless using the length scale H, the time scale of HZ/DC, the velocity scale of

D,/ H , the concentration scale # and the temperature scale AT . The resulting system of

coupled equations is
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w ==V (19)
%—i)-kg%w—)ﬁ-—a%z@:Sc(Vza)—rﬂz)+Sc(Ra%—RaTL€%—f) (20)
L w4 P2 =V @1)
%—+u%§+v%=LeV2T (22)

where the governing parameters of the problem are Sc=v/D,, the Schmidt number,
Pe=HV,/D, , the bioconvection Peclet number, Ra=giApnPeH’/pvD, , the
bioconvection Rayleigh number, Ra, = gBATH®/ver and Ra, = gfqH" /vak the
thermal Rayleigh numbers, and Le=¢« /D,, the Lewis number. The physical meanings

of the Schmidt, Peclet and bioconvection Rayleigh numbers have been defined earlier.
The thermal Rayleigh number is relating buoyancy and viscosity forces within the fluid.

The Lewis number is the ratio of thermal diffusivity and diffusivity of micro-organisms.
The computational domain and the boundary conditions are as shown in Figure 1.2. We

impose rigid, no-slip boundary conditions at the bottom and top walls and assume that the

vertical boundary and the symmetry centerline are stress-free, so that

1//:0,—8—%:0 at z=0,1 (23)



14

o’y
=0
or?

at r=0,4 (24)

At the impermeable boundaries, the condition of zero-flux are applied, J/i =0, i.c.

nPe -a—n=0 at z=0,1 (25)
oz

L tr=0,4 26

ar at r= b ( )

The thermal boundary conditions are isothermal and constant heat flux on horizontal
boundaries, and adiabatic at vertical boundary as well as at the symmetry centerline.

Hence,

I'=1or0, q=1or-1 at z=0 27)
I'=00rl, q=1or-1 at z=1 (28)
a—Tz() at r=0,4 (29)
or

The initial condition is

n=1,T=0 at t=0 (30)



15

2.3 Numerical procedure

The control volume method of Patankar [21] is used to discretize governing equations
(9)-(12) with a uniform staggered grid with the stream function stored on one set of nodes
and the vorticity and concentration stored on another set of nodes. The discretized
equations are derived using the central differences for spatial derivatives and backward
differences for time derivatives. A line-by-line tridiagonal matrix algorithm with
relaxation is used in conjunction with iteration to solve the nonlinear discretized

equations.

The validation of the code was done earlier [14], which is summarized here. Egs. (9) —
(11) with Eq. (14) possess a steady state solution with ¥ = @ =0, which is solved

analytically and the results are compared to those obtained numerically using the present
code. The agreement found was excellent for Pe = 1 and 10. Additionally, by using the
present code, we simulated the Rayleigh-Bénard convection in a horizontal fluid layer
heated from below by constant temperature and produced the bifurcation diagram. We
determined the critical Rayleigh number as 1708, which is consistent with the literature

[22].

Uniform grid in x and y direction were used for all computations. Grid convergence was
studied for the case of 4 = 0.5 and Pe = 10 and Rar= 0, Ra = 1000, as presented in Table

2.1. Grid sizes were varied from 26x51 to 101x201. Grid independence was achieved
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with grid size of 51x101 within 0.3% in extremum stream function with reference to that
of 101x201. Similar tests were done with the cavities having 4 = 1 and 5, and found that
the grid size was satisfactory with the following grids: 51x51 for 4 = 1 and 51x251 for 4

= 5. The time step 4r was 0.02.

For the case of double diffusion, the code was validated earlier for 4 = 1.5, Ra, =

40000, Ra, = -10°, Pr = 1, Le = 10"?, which showed that the present code reproduced
exactly the same iso - patterns of O, T'and S, and very good agreement for v, ¥, ,as

well as for Nusselt and Sherwood numbers, Nu,, and Sh,, [23].

We consider that the convergence is reached when

kel _ _kl
-l

< 31
max‘ f,.f,‘

where f corresponds to the variables (w,y,n) and € is the prescribed tolerance, k is

the iteration number, and 7, j denote the grid points. The results were obtained with £=

10" and k = #/At was variable depending on the convergence time ¢.

Table 2.1 Grid independence study with Ra, =0, Sc =1, Pe=10 and Ra=10’
N, XN, 26%51 51x101 76x151 101x201

v 0.2861 0.2862 0.2873 0.2870
n_ 13.396 11.771 11.580 11.466
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Chapter 3
Bioconvection of Gravitactic Micro-Organisms

in Rectangular Enclosures

3.1 Introduction

We presented in Chapter 2 the problem description, mathematical model and boundary
conditions for this study. The results of this study are submitted for publication [24]. In
our computation, we used the following ranges of parameters: Aspect ratio of 4 = 1, 2
and 5, the bioconvection Peclet number, Pe = 0.1, 1 and 10, the Schmidt number Sc = 1
and the Rayleigh number is variable. Pe and Sc numbers correspond to bioconvection
cases with typical micro-organisms (e.g. [25,26]): the diffusion coefficient D, = 5x107 —

0.5x10 cm®/s, the cell velocity ¥V, =7.5x10" - 1x107 cm/s, the cell density p. = (1.035 —

1.10) p, the cell volume v = 1x10" - 5x10'" cm’, the cell concentration » = 8.44x10° —
1x10° cell/em®. For example, for paramecium caudatum used in [25], D, = 5x107 —
4.5x107% cm®/s, V. = 3.2x107 - 7.7x107 cm/s, H= 0.1 cm; we obtain Sc = 0.22 - 2 and Pe

=0.07 - 1.54.
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3.2 Results and Discussion

The procedure of determining the critical Rayleigh number and bifurcation was: we begin
the simulation with the diffusion state as initial condition, gradually increasing the
Rayleigh number until convection arises. The Rayleigh number at which the convection
begins corresponds to the supercritical Rayleigh number. We continue to obtain solutions
at higher Rayleigh numbers with the solution at the previous, lower Rayleigh number as
initial condition. Once the solution at the highest Rayleigh number is obtained, we
proceed backward to obtain solutions at lower Rayleigh numbers using the solution at the
previous, higher Rayleigh number as initial condition. As Ra is decreased, we continue to
obtain solutions until the convection disappears suddenly at a certain value, which
corresponds to the subcritical Rayleigh number. Thus, it is found that the bioconvection
arises, as the Rayleigh number Ra is increased at a certain supercritical value, Ra™”, and
disappears suddenly as Ra is decreased at a certain subcritical value, Ra®™®. 1t is Ra™*<
Ra™. This behaviour is typical of a subcritical bifurcation. It has also been observed
experimentally by Mogami et al. [26], who analyzed the temporal and spatial changes in
bioconvection pattern with varying gravity. They found a lower threshold, i.e. a lower

critical Rayleigh number, for decreasing gravity than for increasing gravity.

We present the results of case with 4=1 and Pe=0.1, 1 and 10 in Figure 3.1. For Pe=0.1
in Figure 3.1 (a), we obtain Ra/“*=16800 and Ra.#=20200. Thus, the gravitactic

convection is subcritical. This was not the case in cylindrical enclosure in which it was
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Figure 3.1 Bifurcation diagrams for aspect ratio 4=1 and various bioconvection Peclet

numbers. (a) Pe=0.1, (b) Pe=1 and (c) Pe=10.



20

supercritical [14]. For Pe=1 shown in Figure 3.1 (b), it appears that the gravitactic
convection is subcritical at Ra;"*=1730 and its value is reduced considerably by
increasing Pe number from 0.1 to 1. We have a supercritical Ra."P=1770 from the
diffusive state. The solution is unstable as shown in Figure 3.1 (b). When we further
increase Pe number to 10, we see in Figure 3.1 (c) that a similar situation is obtained as
for Pe=1, i.e. we have a subcritical bifurcation and Ra/ ™ is further decreased with

increasing bioconvection Pe number. The convection sets in at a supercritical Rayleigh

number of Ra.™ =800, which is obtained from the diffusive state.

We present in Figure 3.2 streamlines and iso-concentration at Rayleigh numbers slightly
above the critical Rayleigh number for each case of Figure 3.1, i.e. for Pe=0.1, Ra=17000,
Pe=1, Ra=1780 and Pe=10, Ra=780. We see the strong influence of Peclet number on the
concentration field: for Pe=0.1, the micro-organism concentration is quasi-uniform in the
enclosure, for Pe=1, it is similar to that of Pe=0.1 with some accumulation on the top,
and as Peclet is further increased to 10, the micro-organisms are accumulated on the top.
The flow patterns show that the fluid flow covers almost all the enclosure regardless of

Peclet number.

The results of the case with 4=2 and Pe=0.1, 1, 10 are shown in Figure 3.3. We see that
the gravitactic convection is subcritical with all three Pe numbers. For Pe=0.1 in Figure
3.3 (a), Ra,"*=8400, which is smaller than the critical Rayleigh obtained for 4=1 for the

same Pe number.
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Figure 3.2 Streamlines and iso-concentrations for 4=1 of Figure 3.1 (a) Pe=0.1,

Ra=17000, (b) Pe=1, Ra=1780, (c) Pe=10, Ra=780.
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For Pe=1 shown in Figure 3.3 (b), Ra, =870 and for Pe=10 shown in Figure 3.3 (c),
Ra"*=455. Also in all these cases the critical Rayleigh number is lower than those for
the case with A=1. We note that for Pe=10, when the results obtained from the
convective state, we have two convection cells from Ra=2000 down to 650 at which the
flow field changes to one convection cell. Similarly, in the case of the result obtained
from the diffusion state, the supercritical Rayleigh number is 930 at which we get directly

a flow field with two convection cells.

We present in Figure 3.4 the flow and concentration fields at Ra=2000, 650 and 600 and
for A=2 and Pe=10. At Ra=2000 in Figure 3.4 (a), the flow field is with two convection
cells, the left one is clockwise and the right counterclockwise rotating, as a result, the
fluid sinks at the center of the enclosure. The micro-organisms are concentrated at the top
center. At Ra=650 shown in Figure 3.4 (b), the flow field is similar to the one in Figure
3.4 (a), however with reduced circulation strength. As a result, we have a similar iso-
concentration pattern. At Ra=600 in Figure 3.4 (c), we have a single counterclockwise
circulating convection cell at the left upper corner and the micro-organisms form a layer

at that corner.

We present the shallow enclosure case, 4=5 with Pe from 0.1 to 10 in Figure 3.5. For

sub

Pe=0.1 in Figure 3.5 (a) we have a subcritical bifurcation at Ra."=6990. The gravitactic

convection obtained from the convection state is with the flow field having four
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convection cells from Ra ~ 50x10° down to 13000, then the flow field becomes one with
two convection cells, for Ra from 12000 down to 6990. By continuing at lower Ra
numbers, the convection disappears suddenly at 6990. Starting with diffusive state, we
obtain the supercritical Rayleigh number, Ra.#=9600, slightly above which, the

gravitactic convection begins with two convection cells.

For Pe=1 shown in Figure 3.5 (b), we have a subcritical bifurcation. The gravitactic
convection obtained from the convection state is with four cells. By continuing at lower

Rayleigh numbers, the flow with three cells is obtained at Rayleigh about 1200 down to

()

Figure 3.4 Iso-lines for A=2 and Pe=10 of bifurcation diagram in Figure 3.3(c) at various
Rayleigh numbers. (a) Ra=600, (b) Ra=650 and (¢) Ra=2000. Streamlines are shown on

the left and iso-concentration on the right.
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950. Then, the flow becomes with two cells at Ra=905. By continuing still at lower Ra
numbers, the two cells convection becomes one cell convection at Ra=870. Then, the
convection disappears at Rayleigh number, Ra"*=775. Starting from the diffusive state,
we have a supercritical Rayleigh number at Ra/*=1450, above which we obtain
convection with three convection cells, yet at the same Rayleigh number, we obtained
four convection cells in case of starting from the convection state. As discussed before,

this is due to unstable convective flow.

To see these different states, we plotted streamlines and iso-concentration, and presented
in Figure 3.6 to illustrate the flow and concentration fields thus obtained corresponding to
various states observed in Figure 3.5 (b). For Ra=2000 shown in Figure 3.6 (a), we see
four convection cells and the concentration varies in a way corresponding to the cells
formed. The left convection cell is counterclockwise, the next two convection cells in the
central part are clockwise and counterclockwise circulating and the last convection cell at
the right is clockwise circulating. Thus, the micro-organisms are concentrated on the top
at the left and right corners and at the center above the two convection cells in the center.
For Ra=1200 in Figure 3.6 (b), we have three convection cells formed. The right
convection cell is clockwise circulating as a result of which the micro-organisms are
concentrated on the top at the right corner. As the center convection cell circulating
counterclockwise and the left one clockwise, they are concentrated on top of the two left
cells. At Ra=900 in Figure 3.6(c), we see the micro-organisms are concentrated at the top

corners corresponding to counterclockwise circulating left convection cell and clockwise
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circulating right convection cell. At Ra=780 in Figure 3.6 (d) we have a flow with single
counter clockwise circulating convection cell squeezed to the right, the micro-organisms

are concentrated at the top right corner.

As Pe increased to 10, shown in Figure 3.5 (c), the bifurcation is subcritical at Ra.**=250.
The solution obtained from the convection state is with six convection cells. By
continuing at lower Rayleigh numbers, the flow with four convection cells is obtained at
Rayleigh about 1150 down to 920, and then with two convection cells at 900 down to 505.
At still lower Ra numbers, the convection becomes single cell at 450 and it disappears at
Ra*=250. Starting from the diffusive state, the bifurcation is supercritical at Ra-"=920,
above which we obtain convection with four convection cells. The influence of Peclet
number at various Rayleigh numbers in this case is shown in Figure 3.7. At Ra=1500 in

Figure 3.7 (a), the flow field is with six convection cells and the iso-concentration

G

o.o 11 N\X\:&f

(d)

Figure 3.6 Iso-lines for A=5 and Pe=1 of bifurcation diagram in Figure 3.5(b) at various
Rayleigh numbers. (a) Ra=2000, (b) Ra=1200, (c) Ra=900 and (d) Ra=780. Streamlines

are shown on the left and iso-concentration on the right.
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follows the pattern of each pair of convection cells: the micro-organisms are accumulated
at the top location corresponding to the sinking fluid of each pair. At Ra=1000 in Figure
3.7 (b), the flow field is with four convection cells. The left and right cells rotate
counterclockwise and clockwise respectively and as a result, the micro-organisms are
accumulated at the left and right corners at the top. At the center, the fluid sinks by the
counterclockwise and clockwise rotating pair of convection cells and we see the micro-
organisms are accumulated at the top center. At Ra=700 in Figure 3.7 (c), there are two
convection cells, the left one counterclockwise and the right one clockwise rotating. The
micro-organisms are accumulated at the top corners. At Ra=300 in Figure 3.7 (d), just

sub

above Ra.", the flow field becomes with a clockwise rotating single convection cell and

the micro-organisms are accumulated at the right corner.

@14 @D@ (b) 2?:0/ ?wf
- <GP T
0‘@ (@ |

Figure 3.7 Streamline and iso-concentration patterns at various Rayleigh numbers of

Figure 3.5(c) for A=5, Pe=10. (a) Ra=1500, (b) Ra=1000, (c) Ra=700, (d) Ra=300.

3

o M)
s
g

r [




29

For Pe = 1 and 10 in Figure 3.5 (b) and (c), the convective flow in the region between
Ra, ™ and Ra/™’ is unstable where, depending on the Rayleigh number, different
convection patterns are formed. In fact, we see in Figure 3.5 (b) and (c) and the
corresponding patterns in Figure 3.7 that the number of convection cells formed changes

from 4 to 2 and from 2 to 1 before reaching the subcritical Rayleigh number.

To see the mechanism of pattern change near the supercritical Rayleigh number of Figure
3.5 (c), we present the time sequence diagrams at Ra = 1000, 900 and 800 in Figure 3.8.
Following the procedure explained earlier, we obtained the solution at Ra = 1000 by
using the solution from the previous solution at Ra = 1050 from which we get (¢ = 0.02,
Yot = 5.634). We see in Figure 3.8 (a) that after a relatively short computation time (¢ =
0.75, wex = 5.542), the solution becomes quasi steady-state, a typical time sequence.
After satisfying the convergence criteria Eq. (31), we obtain (¢ = 12.26, ., = 5.5424, Ra
= 1000), which is on the bifurcation curve with four convection cells. To obtain solution
at Ra = 900 < Ra.™ = 920, we follow the same procedure and use the solution at Ra =
1000. The time sequence diagram is shown in Figure 3.8 (b); in a very short computation
time at (r = 0.02, Y, = 5.3202), Yex: increases steadily from (1 = 0.30, ¥, = 5.0108) to (¢
=762, Yexr= 5.6219), and then it increases suddenly to (t = 768, Y, = 6.6725) and finally
a converged solution is obtained at (¢ = 833, ¥, = 6.6935, Ra = 900), at which we have a
pattern of two convection cells. The next computation at lower Ra = 800 is done similarly
by reading the solution from Ra = 900, the time sequence diagram of which is shown in

Figure 3.8 (c). We observe that the time sequence is once more a typical one, like in
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Figure 3.8 (a), and the solution is (f = 12.54, y,y = 6.1363, Ra = 800) with two
convection cells. We note that the mechanism of pattern formation observed here is quite

different from that of gyrotactic bioconvection in narrow and tall enclosures [9].
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Figure 3.8 Time sequence diagrams corresponding to the case with 4=5, Pe=10 of Figure
3.5(c) at a) Ra =1000, b) Ra = 900, c) Ra = 800.

3.3 Conclusion
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Numerical simulations of gravitactic bioconvection in rectangular enclosures were
carried out. The vertical walls of the cavity are assumed to be stress-free and insulated,
while horizontal boundaries are rigid. The governing equations are integrated numerically
using the control volume method. The present results exhibit the influence of
bioconvection Peclet number and aspect ratio on the bifurcation diagram and the flow
structure. We have found that the bifurcation remains subcritical in all cases when the
bioconvection Pe number is varied from 0.1 to 10 in rectangular enclosures having an

aspect ratio from 1 to 5.
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Chapter 4
Thermo-Bioconvection of Gravitactic Micro-Organisms

in Vertical Cylinders

4.1 Introduction

In this chapter we investigate the effect of heating or cooling from below at constant
temperature and constant heat flux on the development of gravitactic bioconvection in
vertical cylinders with stress free sidewalls. The mathematical model and boundary
conditions are presented in section 2.3. Computations were performed with the aspect

ratio of 4 =1, 0.5, 0.2 and variable Ra, and Ra for the following values of dimensionless

parameters: Sc =1, Le=1, Pe= 1 and 10, which correspond to typical bioconvection
cases with known micro-organism characteristics (e.g. [25-26]), First, we obtained
bifurcation curves by numerical simulation, the critical thermal Rayleigh numbers, Rar.
without bioconvection, i.e. with Ra = 0. Then, we obtained bifurcation curves by
numerical simulation, and the subcritical bioconvection Rayleigh numbers, Ra, without
thermal effect, i.e. with Rar = 0. Finally, by using the critical thermal Rayleigh numbers
and the subcritical bioconvection Rayleigh numbers, we carried out numerical simulation
to obtain bifurcation curves to determine the critical Rayleigh numbers at Ray = 1xRay,
2xRar. (i.e. heating from below) and Rar = -1xRay., -2xRar. (i.e. cooling from below)

using the conditions of 7' = constant and g = constant.
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4.2 Results and discussion

Figure 4.1 displays the bifurcation diagrams (., vs. Ra, ) for the case of thermal

convection, i.e. no bioconvection, Ra =0, for heating from the bottom at isothermal and
constant heat flux. A bifurcation between purely conductive and convective states is
clearly seen in Figure 4.1 (a), (b) and (c) at Raz, = 2,265, 10,800 and 299.4x10° for 4 = 1,
0.5 and 0.2 respectively. They are the critical Rayleigh numbers of a horizontal fluid
layer in a vertical cylinder heated from below at constant temperature. Similarly we see
in Figure 4.1 (d), (e) and (f) the bifurcations at Raz = 1,708, 10,350 and 298x10°, which
are the critical Rayleigh numbers when heated from below at constant heat flux. The

situations in Figure 4.1 (a)-(c) correspond to the classical Rayleigh-Bénard problem [27].

Figure 4.2 shows the bifurcation diagrams (y/,, vs. Ra) for the case of isothermal cavity

i.e. at Rar = 0. These results are obtained by beginning the simulation at a high Rayleigh
number, which is estimated by trial and error to have a convection state. We obtained
solutions at lower Rayleigh numbers using the solution at the previous (higher) Rayleigh
number as initial condition. Then, we started with the diffusion state (i.e. no convection)
as initial condition, gradually increasing the Rayleigh number until convection arose. As
usual, at each step we continued to obtain solutions at higher Rayleigh numbers by
initializing using the solution at the previous (lower) Rayleigh number. Thus, we

determined the supercritical Rayleigh numbers.
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We see that the bifurcations are all subcritical with bioconvection Rayleigh numbers,
Ra", which are obtained for the cases of a horizontal fluid layer in a vertical cylinder
for Pe = 1 in Figure 4.2 (a)-(c) and for Pe = 10 in Figure 4.2 (d)-(f). The subcritical

bioconvection Rayleigh numbers for Pe = 1 are Ra:,"‘b =1,710, 10,400 and 270x10° for 4

=1, 0.5 and 0.2 respectively. For Pe = 10, they are Raj"” =520, 2,160 and 19,000 for 4 =

1, 0.5 and 0.2 respectively. We note that the subcritical bioconvection Rayleigh number
is higher for smaller bioconvection Peclet number, i.e. for a given bioconvection
Rayleigh number; the bioconvection strength is higher at higher Peclet number. The same

phenomenon was also observed earlier [28]. We note also that for the aspect ratio of 4 =

1, the unstable region between Ra® and Ra™ is quite distinct. Yet, for 4 = 0.5 and 0.2 it
is almost merged. For example, for 4 = 0.5 and Pe =1, Ra)""=10,400 and Ra’* = 11,000
and for 4 = 0.5 and Pe =10, Ra""=2,160 and Ra™= 2,350; for 4 = 0.2 and Pe =1,
Ra!"=269,000 and Ra’™ = 280,000 and for 4 = 0.2 and Pe =10, Ra™ =19,100 and

Ra™™ = 19,500.

We studied the effect of heating and cooling from below at constant temperature and
constant heat flux with the bioconvection Peclet number of 1 and 10, and the aspect ratio
of 4 =1, 0.5 and 0.2. We obtained bifurcation diagrams with Rar = 1xRar. and 2xRar,
(i.e. corresponding to heating from below) and Rar = -1xRar. and -2xRar. (i.e.
corresponding to cooling from below) at constant temperature and constant heat flux; the

critical thermal Rayleigh numbers employed here, Rar. are those obtained for heating
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from below at constant temperature and constant heat flux and presented in Figure 4.1.
The procedure we followed was to use a starting Rayleigh number, Ra > 5xRa. and after
obtaining the first solution, continue to obtain a new solution at a lower Ra by using the
previous solution at higher Ra as initial condition. We continued the same procedure until

we obtained diffusive state.

Bifurcation results are shown in Figure 4.3 (a-c) for Pe = 1 and Figure 4.4 (a-c) for Pe =
10 respectively. Each figure shows the bifurcation diagrams for heating and cooling from
below with constant temperature (shown with dashed lines) and constant heat flux
(shown with full lines) for 4 = 1, 0.5 and 0.2 in figures (a), (b) and (c) respectively. In
addition, the bifurcation curve for Rar = 0, i.e. the bioconvection bifurcation curve for a

given 4 is also included in the same figure for the same A as reference.

Generally, in all bifurcations the extremum stream function ,, is smaller at a given

Rayleigh number when the fluid layer is cooled from below by a constant temperature or
constant heat flux with respect to that of the bioconvection only. Thus, we see in Figure
4.3 (a-c) that the bifurcation diagrams fall below the bioconvection bifurcation diagram
and the critical Rayleigh numbers are higher. This case represents opposing buoyancy
forces and the resulting convection is reduced. In general, we see that the convection is
reduced more when the cooling from below is by a constant temperature. Another
striking result is that the critical Rayleigh numbers obtained by cooling from below by

constant temperature and constant heat flux are the same.
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In contrast, the extremum stream function y/,, at a given Rayleigh number is higher than

that of bioconvection when the fluid layer is heated from below. This case corresponds to
cooperating buoyancy forces and the resulting convection is enhanced. The convection is
higher when heated from below at constant temperature than at constant heat flux.
Similar to the case of cooling from below, the critical Rayleigh numbers for this case
with Rar = 1xRar. for heating at constant temperature and constant heat flux are the
same and equal to zero, as they should be, since Rar = Rar. as found earlier. However, at
Rar = 2xRar. we could not obtain critical Rayleigh numbers, hence no bifurcation.
Indeed, for this case of heating at constant temperature and constant heat flux, we
checked starting from diffusion state, i.e. initializing at uniform temperature and
concentration and obtained convection only. This shows that the cooperating thermal
buoyancy forces are too strong and a diffusion state does not exist. We present

v, obtained at Ra = 0 and its coordinates in Table 4.1 for the case of Rar = 2xRar; i.e.

heating from below at constant temperature and at constant heat flux, and for various

aspect ratios. We see in this table that y, (r,z) is exactly the same for Pe=1 and 10 and

for each aspect ratio. The iso-lines fory, ,, n and T showed that for 4 = 1 and 0.5, there

ext ?
was a single clockwise rotating convection cell. The isotherms and iso-concentration
lines (not presented here) showed similar trends with micro-organisms concentration near
the top corner at r = 4 when heated from below at constant heat flux and with micro-
organisms concentration at the center, »=0 when heated from below at constant

temperature. We note that at Ra = 0, there is no bioconvection and the concentration of
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Table 4.1 y.,, and its coordinates for Ra7=2xRar. at Ra=0

Aspect Thermal boundary

Ratio, A Pe condition Rar Feu (r;z)
! g=const. 2x1710 0.9821 (0.58,0.56)
1 T=const. 2x2270 1.5893 (0.58,0.42)
10 g=const. 2x1710 0.9821 (0.58,0.56)
T=const. 2x2270 1.5893 (0.58,0.42)
1 g=const. 2x10350 0.4450 (0.28,0.34)
0.5 T=const. 2x10800 0.6489 (0.28,0.32)
) 10 g=const. 2x10350 0.4450 (0.28,0.34)
T=const. 2x10800 0.6489 (0.28,0.32)
) g=const. 2x298000 0.1466 (0.11,0.845)
02 T=const. 2x299400 0.4306 (0.11,0.135)
) 10 g=const. 2x298000 0.1466 (0.11,0.845)
T=const. 2x299400 0.4306 (0.11,0.135)

micro-organisms at the top is as a result of thermal convection. For 4 = 0.2, similar
observation was made when heated from below at constant temperature but there were
two symmetrical convection cells with respect to mid-plane when heated from below at
constant heat flux. Consequently, isotherms and iso-concentration lines were also
similarly symmetric with respect to mid-plane. We see in Figure 4.3 (a-c) that the effect

of increasing aspect ratio on the critical Rayleigh number is to decrease it.

We see in Figure 4.4 (a-c) that the effect of heating and cooling from below is relatively
higher for Pe = 10 than for Pe = 1 since the strength of the bioconvection is relatively
higher in the former case. The reason is that Pe is non-dimensional swimming velocity of
micro-organisms in opposing direction to the gravity and thermal diffusion forces in case
of cooling from below. It is in the same direction in case of heating from below. Thus, we
will have opposing forces in play in case of cooling from below and cooperating forces in

case of heating from below. Indeed, we see in Figure 4.4 (a-c) that as expected, with all
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three aspect ratios Ray. = 0 at Ra = 0 for Rar = 1xRar.. Generally, for the opposing
buoyancy case, i.e. cooling from below, convection is lower than that for bioconvection
only, i.e. Rar = 0. It is the reverse in the cooperating buoyancy case, i.e. heating from
below. In case with Rar = 2xRay. in heating from below at constant temperature and
constant flux, we observed the same phenomenon of sudden convection starting from

diffusion state at Ra = 0. For this case ¥, obtained at Ra = 0 and its coordinates are also

shown in Table 4.1. We see that y, and their coordinates are the same as for Pe = 1. The

reason, as discussed before, is because there is no bioconvection at Ra = 0. By examining
the iso-lines for this case we noticed that they were all identical to those for Pe = 1 except
iso-concentration lines. They showed almost total accumulation of micro-organisms at
the top right corner near r = 4 when heated from below at constant heat flux and at the
center » = 0 when heated from below at constant temperature. We see in Figure 4.4 (a)
and (c) that in case of 4 = 1 and 0.2, as observed earlier with Pe = 1 in Figure 4.3, the
critical Rayleigh numbers are the same or almost the same for cooling from below at
constant temperature and at constant heat flux. However, they are not the same in case of
A = 0.5 in Figure 4.4 (b). In this case, the critical Rayleigh number is higher for cooling

from below at constant temperature than at constant heat flux.

To see the reason we produced iso-lines % n, T at near critical Rayleigh numbers for the
cases of constant temperature and heat flux, all for cooling from below and presented in
Figure 4.5. For the case with Rar =-1xRaz., and Ra = 3,000 and 2,700 for constant

temperature or heat flux respectively, we find that all three iso-lines are quite different:
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Figure 4.5 Streamlines, iso-concentration and isotherm near critical Rayleigh number for

A=0.5, Pe=1. (a) T=constant, Ra;=-1x Rar., Ra=3000 (b) T=constant, Ra;=-2x Rar,
Ra=3700 (c) g=constant, Rar=-1x Rar., Ra=2700 (d) g=constant, Ra;=-2x Rar,,

Ra=3270.
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A single convection cell circulates clockwise when cooling from below at constant
temperature, ¥, is 0.009 at Ra = 3,000, i.e. almost a diffusive state, the micro-organisms
are accumulated almost uniformly at the top and the isotherms show a conduction regime.
For cooling from below at constant heat flux, a single convection cell circulates
counterclockwise, ¥, is -0.25 at Ra = 2,700, the micro-organisms are accumulated at
the top near r = 0 and the isotherms show a conduction regime with negative values at
the bottom, positive values at the top. The case with Rar =-2xRar. for both cooling from
below at constant temperature and at constant heat flux is quite similar to the case with
Rar =-1xRar.: At Ra =3,700 and 3,270 for T or g constant respectively, corresponding
¥.xr was 0.033 and -0.235, and iso-lines for concentration and temperature are almost
identical to those with Rar =-1xRar.. In contrast, we find identical iso-lines in the other
cases with identical critical Rayleigh numbers for cooling from below at constant
temperature or heat flux. Thus, we conclude that the reason for different critical Rayleigh

numbers obtained in Figure 4.4 (b) could be an aspect ratio effect.

The onset of bioconvection with Rar = 0 is subcritical in all cases as shown in Figure 4.2
and transposed also in Figures 4.3 and 4.4. At Rar from -2xRar, to +2xRar,, the effect of
the thermal Rayleigh number is to increase or decrease the convection, because the
buoyancy forces developed are either cooperating or opposing the bioconvection. We see
that for all cases considered in this study, the thermal effect Rar on the onset of the

bioconvection is to make the subcritical bioconvection strongly supercritical.
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A summary of the bifurcation diagrams for bioconvection and thermo-bioconvection
including Rarand Ra. values used at constant temperature and constant heat flux cases of
Figures 4.3 and 4.4 are presented in Table 4.2. In this table, we listed the numerical
values of the thermal Rayleigh number, Ray, the critical Rayleigh number of thermo-

bioconvection, Ra., and the cases for which we could not obtain a diffusive state.

To examine the flow, concentration and temperature patterns at Ra = 5xRa,, streamlines

and iso-concentration of selected cases at Ra, = 1x Rar., -1x Rar. of Figures 4.3 and 4.4

are plotted in Figures 4.6-4.8, for 4 = 1, 0.5 and 0.2 respectively.

We present the case with 4 = 1, Pe = 1, Ra = 5xRa. in Figure 4.6 (a-e). The case of
bioconvection with Rar = 0 is shown as reference in (a), the circulation of convection cell
is clockwise and ¥.,, = 2.20. The convection cell is slightly asymmetric and transports
the micro-organisms towards the upper corner near » = 4. The cases with constant
temperature heating and cooling are presented in Figure 4.6 (b.c). For Rar = 1x Rar,, i.e.
heating from below at constant temperature in Figure 4.6 (b), the thermal buoyancy
forces are cooperating and the strength of convection is increased to ¥, = 2.67. The
concentration iso-lines are similar to those for bioconvection. The isotherms show high
temperature gradients at the top center near » = 0. For Rar = -1x Ray., and for cooling
from below at constant temperature in Figure 4.6 (c), the thermal buoyancy forces are

opposing and the strength of convection is decreased to ¥, = 1.71. The concentration
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Table 4.2 Summary of bifurcation diagrams of Figures 4.3 and 4.4
CFB=cooling From Below, HFB=heating from below, No DS=No Diffusive State

Aspect Ratio  Pe Temp/Flux CFB /HFB Rar Rac Remarks
Rar=-2Rar=-3420 5190
CFB Rar=-Rar=-1710 3480
q HER Ra=Rar=1710 =
_ Rar=2Rar=3420 - No DS
Pe=1 Rar——2Rar—4540 5160
CFB
T Rar=-Rar=-2270 3480
Rar=Rar=2270 =
HFB Rar=2Rar=4540 - No DS
=1 Rar=0 1710 Bioconvection
CFB Rar=-2Rar~=-3420 1350
q Rar=-Rar~=-1710 1100
HFB Rar=Rar~1710 =
Pe=10 Ra;=2Rar=3420 - No DS
CFB Rar=-2Rap=-4540 1300
T Rar=-Rar=-2270 1100
HFB Rar=Rar=2270 =
Rar=2Rar~4540 - No DS
Rar=0 520 Bioconvection
CFB Rar=-2Rar=-20700 29800
Rar=-Rar.=-10350 20300
9 Rar=Rar=10350 =0
pect HFB Rar=2Rar=20700 - No DS
¢ . Rar=—2Rar=21600 29400
T Rar=-Rar.~-10800 20000
HFB Rar=Rar:~=10800 =)
Rar=2Ra;=21600 -- No DS
A=0.5 Rar=0 10400 Bioconvection
CFB Rar=-2Rar=-20700 3250
Rar=-Rar=-10350 2600
a B Rar=Rar=10350 =0
Pe=10 Rar=2Rar=20700 -
CFB Rar=-2Rar=-21600 3500
T Rar=-Rar=-10800 2910
HFB Rar=Ra;~=10800 =0
Rar=2Ray=21600 -- No DS
Rar=0 2160 Bioconvection
CFB Rar=-2Ra=-596000 749000
Rar=-Rar .=-298000 514000
q Rar=Rar=298000 )
Pert HFB Rar=2Rar=-596000 - No DS
e=
CFB Rar=-2Rar=-598800 731000
T Rar=-Ray.=-299400 509000
HFB Rar=Rar=299400 ={
Rar=2Rar=598800 -
A=02 Rar=0 270000 Bioconvection
: CFB Rar=-2Rar=-596000 38500
Rar=-Rar=-298000 29100
q HEFB Rar=Rar,=298000 ~0
Rar=2Rar=-596000 - No DS
Pe=10 CFB Rar=-2Rar~-598800 36100
Rar=-Ray=-299400 29000
T Rar=Rar=299400 )
HFB Rar=2Rar=598800 - No DS
Rar=0 19000 Bioconvection




47

iso-lines are similar to those in case of (b). As expected, the isotherms show that
temperature gradients at the top center near r = 0 slightly reduced. We present the cases
for heating and cooling at constant heat flux in Figure 4.6 (d,¢). For Rar = 1x Rar, i.e.
heating from below at constant heat flux in Figure 4.6 (d), the thermal buoyancy forces
are cooperating and the strength of convection is increased to ¥, = 2.42, which is
slightly reduced with respect to that for heating from below at constant temperature in
(b), though the concentration iso-lines are very similar to those in case (b). As expected,
the isotherms are completely different with lower temperature gradients changing sign at
approximately mid-plane. At Rar = -1x Rar., and for cooling from below at constant heat
flux in Figure 4.6(e), the thermal buoyancy forces are opposing and the strength of
convection is decreased to ¥, = 1.96, lower than that for bioconvection in (a) but higher

than that in (¢). The concentration iso-lines and the isotherms are similar to those in case

of (d).

We present ¥, n, T for 4 = 0.5, Pe = 1, Ra = 5xRa. in Figure 4.7 (a-d). The cases (a)
and (b) are for heating and cooling below at constant temperature and (c¢) and (d) for
heating and cooling from below at constant heat flux. We note that for bioconvection in
this case (not shown here), we had a single clockwise circulating convection cell with

Y. = -0.92 and the micro-organisms accumulated at the top center near » = 0. We see in

Figure 4.7 (a) that for Ra, =1xRar. the single convection cell is circulating

counterclockwise, almost symmetric. Its strength is ¥,, = -1.15. Due to its circulation

direction, going upward at the center near r = 0, the micro-organisms are concentrated at
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Figure 4.6 Streamlines, iso-concentration and isotherm for 4=1, Pe=1 and Ra=5xRa.. (a)
Rar=0 (b) T=constant, Ra;=1x Rar. (c) T=constant, Rar=-1x Rar. (d) g=constant, Ra;=1x

Rar., (€) g=constant, Rar=-1x Rar,.
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the center. As expected, the isotherms show high temperature gradients at the bottom and

on the top right side. For Ra, =-1xRay. in Figure 4.7 (b), i.e. in cooling from below at

constant temperature, in contrast to that of Figure 4.7 (a), the circulation of the single
convection cell is clockwise and the circulation strength is reduced to ¥, = 0.73,
because of opposing thermal buoyancy forces. However, the iso-concentration is almost
the same with micro-organisms at the right upper corner near » = 4. The isotherms are

almost a mirror image of those in (a) with high temperature gradients at the top center.

The results for heating and cooling from below at constant heat flux are presented in

Figure 4.7 (c-d). We see for Ra, = 1xRay. in Figure 4.7 (c¢) that we have a

counterclockwise circulating single convection cell with a circulation strength of ¥, =
-1.03. Consequently the micro-organisms are concentrated at the center near » = 0. Both
streamlines and iso-concentration lines are similar to the case with constant temperature.
The isotherms are with smaller temperature gradients, positive at the bottom and negative

at the top, a typical characteristic for constant heat flux case. For Ra, = -1xRar, in Figure

4.7 (d), i.e. cooling from below at constant heat flux, the flow and concentration fields as
well as the isotherms are similar to those in (c) but the circulation strength is reduced to
¥x= -0.79, the concentration at the top is slightly increased and the isotherms are
positive at the top and negative at the bottom. We note that in this case, we still have a
counterclockwise circulation and for this reason the pattern did not change much with

respect to the case (c).
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Figure 4.7 Streamlines, iso-concentration and isotherm for 4=0.5, Pe=1 and Ra=5xRa..
(a) T=constant, Ra;=1x Rar. (b) T=constant, Ra;=-1x Rar. (¢) g=constant, Ra;=1x Rar,
(d) g=constant, Ra;=-1x Rar..
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We present ¥, n, T for 4 = 0.2, Pe = 1, Ra = 5xRa,. in Figure 4.8 (a-d). Heating and
cooling from below at constant temperature are in Figure 4.8 (a,b) and those at constant
heat flux in Figure 4.8 (c,d). We note that for bioconvection in this case (not shown here),
we had two counter rotating convection cells, the lower one in counterclockwise
circulation with ¥, = -0.16 and the upper one in clockwise circulation with ¥, = 0.34.
The micro-organisms were accumulated at the top right corner with some stratification at

the two counter rotating convection cells. For Ra,= 1xRar,, i.c. heating from below in

Figure 4.8 (a), we have two counter rotating cells, the lower one counterclockwise
circulating with a strength of ¥,,=-0.29 and the clockwise circulating upper one with a
strength of ¥, = 0.44. Following circulation direction, the micro-organisms are
concentrated mainly on the top right corner near r = A4, and the isotherms show high
temperature gradients at the bottom and top center. The appearance of flow and

concentration fields is exactly similar to those for bioconvection with increased strength.
For Ra, = -1xRar., i.e. cooling from below, in Figure 4.8 (b), a single clockwise
circulating convection cell fills the cavity with the circulation strength of ¥,,,= 0.25. The

iso-concentration as well as the isotherms is quasi-stratified. Following circulation

direction, the micro-organisms concentration is highest at the top right corner.

The case with heating and cooling at constant heat flux is presented in Figure 4.8 (c,d).

For Ra,= 1xRar, i.e. heating from below, in Figure 4.8 (c), similar to that in (a), we

have two counter rotating convection cells, the lower one counterclockwise circulating
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with a strength of ¥,,=-0.23 and the upper one clockwise circulating with a strength of

Yext = 0.38. Patterns of iso-concentration lines and isotherms are very similar to those in
Figure 4.8 (a), except the isotherms are positive on the bottom corresponding to the
counterclockwise rotating convection cell and negative on the top corresponding to the

clockwise rotating convection cell. For Ra,= -1xRar. i.e. cooling from below, in

Figure 4.8 (d), the patterns are similar to those in (b) with a single clockwise circulating
convection cell filling the cavity with the circulation strength reduced to ¥,, = 0.29. The
iso-concentration and the isotherms are quasi-stratified. Following circulation direction,
the micro-organisms concentration is highest at the top right corner. Similar to the case in

(c), the isotherms are in this case negative at the bottom and positive in the upper part.

4.3 Conclusion

Numerical simulations of thermo-bioconvection in vertical cylinders are carried out. The
vertical walls of the cavity are assumed to be stress-free and insulated, while horizontal
boundaries are rigid. For heating and cooling from below at constant temperature, the
horizontal boundaries were maintained at fixed temperatures. For heating and cooling
from below at constant heat flux, a constant heat flux through the horizontal boundaries
was maintained. The governing equations are integrated numerically using the control

volume method.
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The results show the influence of thermal effect on the bifurcation diagram and the
pattern of gravitactic bioconvection. We found that subcritical bifurcations of
bioconvection became supercritical when the thermal Rayleigh number Rar is different
than zero. For Rar < 0, i.e. for cooling from below, we have opposing buoyancy forces,
the convection is decreased, the concentration iso-lines are modified to reflect the change
in the flow field, and the critical thermo-bioconvection Rayleigh number is increased
with respect to that of bioconvection. For Ray > 0, i.e. for heating from below, we have
cooperating buoyancy forces, the convection is increased, the concentration iso-lines are
changed, and the critical thermo-bioconvection Rayleigh number is decreased with
respect to that of bioconvection. We found that both heating and cooling below at

constant temperature and constant heat flux destabilize the gravitactic bioconvection.
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Chapter 5

General Conclusions

Numerical simulations of bioconvection of gravitactic micro-organisms are carried out.
In the first part at Chapter 3, the bioconvection in the rectangular cavity is investigated.
The vertical walls of the cavity assumed to be stress-free and insulated, while horizontal
boundaries are rigid. In the second part at Chapter 4, the thermo-bioconvection in the
vertical cylinder is studied. The horizontal walls are kept at constant temperature or
constant heat flux for the cooling and heating from bellow at constant temperature or
constant heat flux, respectively. The governing equations are integrated numerically

using the control volume method.

The results presented in Chapter 3 show the influence of bioconvection Peclet number
and aspect ratio on the bifurcation diagram and the flow structure. We have found that the
bifurcation remains subcritical in all cases when the bioconvection Pe number is varied

from 0.1 to 10 in rectangular enclosures having an aspect ratio from 1 to 5.

The results presented in Chapter 4 show the influence of thermal effect on the bifurcation
diagram and the pattern of gravitactic bioconvection. We found that subcritical
bifurcations of bioconvection became supercritical when the thermal Rayleigh number

Rar 1s different than zero. For Rar < 0, i.e. for cooling from below, we have opposing
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buoyancy forces, the convection is decreased, the concentration iso-lines are modified to
reflect the change in the flow field, and the critical thermo-bioconvection Rayleigh
number is increased with respect to that of bioconvection. For Rar > 0, i.e. for heating
from below, we have cooperating buoyancy forces, the convection is increased, the
concentration iso-lines are changed, and the critical thermo-bioconvection Rayleigh
number is decreased with respect to that of bioconvection. We found that both heating
and cooling below at constant temperature and constant heat flux destabilize the

gravitactic bioconvection.
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