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RÉSUMÉ 

 

L’industrie minière génère une grande quantité de rejets de différents types. La majorité des 

opérations minières entrepose la fraction fine de ces rejets issue du traitement minéralogique 

(rejets de concentrateur) dans des parcs à résidus ceinturés par des digues de retenues. Cette 

solution engendre des risques, notamment au niveau de la rupture de ces digues qui peut être due 

à un débordement en crête, une fuite d'eau excessive, une instabilité géotechnique, l'action d’un 

séisme ou même à un défaut de conception. Le potentiel de drainage minier acide (DMA) produit 

par les résidus réactifs doit aussi être pris en compte puisque la libération des eaux acides dans la 

nature peut s’avérer extrêmement nocive pour l’environnement.  

En raison de ses différents avantages techniques, économiques et environnementaux, le 

remblayage souterrain représente un des principaux axes de recherche dans le domaine de la 

gestion des rejets miniers car cela représente une solution alternative, susceptible d’améliorer le 

rendement d’une opération minière.  

À cet égard, le remblai en pâte cimenté (RPC) est un matériau particulièrement intéressant. Il est 

composé de résidus miniers filtrés, d’eau et d'un liant hydraulique. Pour maintenir le remblai lors 

de sa mise en place, les structures de retenue, appelées "barricades", doivent être dimensionnées 

adéquatement pour prévenir les ruptures induites par les fortes pressions générées par le remblai.  

Il est important de connaître les différentes caractéristiques et le comportement des remblais pour 

assurer de bonnes conditions de travail et optimiser la séquence de remblayage. La plupart des 

travaux menés à ce jour se sont focalisés sur l’analyse du comportement des remblais (surtout en 

pâte) en condition stationnaire (drainée ou non), sans prendre en compte l’effet de l’évolution des 

pressions interstitielles et de la cimentation, qui influencent grandement l'ampleur des contraintes 

dans le chantier.  

L’objectif principal de ce projet est d'analyser, à l'aide de simulations numériques, le 

comportement des remblais dans les chantiers en tenant compte de l’effet du drainage et de la 

dissipation des pressions interstitielles, de la cimentation et de la séquence de remblayage, en 

considérant différentes propriétés du matériau et diverses configurations géométriques. 
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On compare aussi les réponses obtenues avec le modèle élastoplastique Mohr-Coulomb 

(élastique parfaitement plastique; ÉP-MC) et le modèle Cam-Clay modifié (CCM). 

Les résultats des simulations sont comparés aux solutions analytiques existantes proposées par 

différents chercheurs. 

Les résultats de ces analyses numériques montrent que les contraintes de cisaillement qui se 

développent près de la paroi rocheuse à l'interface remblai-roc produisent des effets d'arche. Il en 

résulte une réduction significative des contraintes effectives (verticales et horizontales) dans le 

chantier par rapport au poids des terres. Ces effets d'arche sont plus marqués dans les chantiers 

étroits, bien drainés. 

Lorsque le remblai est mis en place dans un état initialement saturé, un excès de pression 

interstitielle peut se produire. Dans certains cas, les contraintes effectives et les contraintes de 

cisaillement sont nulles dans la zone des fortes surpressions. Grâce au drainage, l'excès de 

pression interstitielle se dissipe graduellement, ce qui permet au remblai de mobiliser une 

résistance au cisaillement due à une augmentation des contraintes effectives dans le temps. 

Lorsque le remplissage se fait séquentiellement, la contrainte totale (horizontale ou verticale) 

augmente avec le remplissage du chantier. Cette augmentation peut se faire selon un taux 

décroissant pour un remblai relativement rigide si on laisse suffisamment de temps pour le 

drainage. 

La cimentation du remblai engendre une augmentation de sa cohésion c', de son module de 

Young Eb et de sa valeur de pression à l’entrée d'air (AEV) et une réduction de la conductivité 

hydraulique saturée ksat dans le temps. Les simulations numériques qui représentent un 

remblayage séquentiel avec effets de cimentation progressifs montrent qu'une quantité d'eau non 

négligeable peut rester dans le chantier plus longtemps et que les pressions interstitielles peuvent 

augmenter considérablement avec l'ajout de nouvelles couches comparativement au cas sans 

cimentation (selon la vitesse de remplissage). 

Les résultats des simulations montrent aussi comment divers paramètres géotechniques 

influencent les contraintes dans les chantiers remblayés, notamment l'angle de friction interne ϕ ', 

le module de Young Eb, la cohésion c', le coefficient de Poisson ν et l'angle de dilatance ψ. La 

vitesse de remplissage influence aussi grandement l'évolution des contraintes dans le chantier 

avec un remblai saturé. Une vitesse rapide de remplissage produit de plus grandes contraintes 
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totales verticales et horizontales, comparativement à une vitesse de remplissage moyenne ou 

lente. On montre également que le comportement mécanique de la barricade dépend de plusieurs 

facteurs incluant l'état du remblai (drainé ou non drainé), la vitesse de remplissage, la dimension 

et la position de la barricade dans la galerie souterraine.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mots clés : 

Remblai minier, mines souterraines, chantiers, barricade, contraintes, déformations, cimentation, 

pression interstitielle. 
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ABSTRACT 

The mining industry generates large quantities of different types of solid wastes, from the 

excavation of rock and milling of ore. The majority of mining operations dispose of the fine 

fraction produced at the mill, called tailings, as a slurry in surface impoundments enclosed by 

retention dikes. This practice is associated with many risks, including the failure of these dikes 

due to overtopping, excessive seepage, geotechnical instability, or seismic activity. The potential 

for acid mine drainage (AMD) produced by reactive (sulphidic) tailings must also be taken into 

account, as the release of acidic water can be harmful to the environment. 

Due to its various technical, economical, and environmental advantages, underground backfilling 

is a major focus of research in mining waste management because it represents an alternative 

solution that may improve the performance of a mining operation.  

In this regard, the use of cemented paste backfill (CPB) is a particularly interesting alternative. 

CPB, consisting of densified tailings, water and a binding agent, is now commonly used to 

backfill mine openings (stopes). To maintain the backfill in place, retaining structures, called 

barricades (or bulkheads), must be used; these need to be properly designed to prevent failure due 

to the high pressures induced by the backfill. 

It is important to assess the different characteristics and the behavior of backfill to ensure good 

working conditions underground and optimize the filling sequence. To date, most research work 

has focused on analyzing the behavior of backfill (especially paste backfill) under equilibrium 

conditions (drained or undrained), without taking into account the effect of changing pore water 

pressure and cementation over time, which can greatly influence the magnitude of stresses in 

stopes and on barricades. 

The main objective of this project was to analyze, using numerical simulations, the behavior of 

mining backfill in underground stopes, taking into account the effect of drainage and dissipation 

of pore water pressure, cementation, and the sequence of filling, while also considering different 

material properties and various geometric configurations. 

Simulation results are compared with existing analytical solutions proposed by different 

researchers. The responses obtained with the Mohr-Coulomb elasto-plastic model (elastic, 

perfectly plastic) and with the modified Cam-Clay model are also compared. The results of these 
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numerical analyses show that shear stresses develop near the rock mass, along the backfill/rock 

interface, and produce an arching effect that can result in a significant reduction in effective 

stresses (both vertical and horizontal) within the backfilled stope (compared to the overburden 

stresses). These arching effects are more pronounced in narrow stopes. 

When the backfill is placed in an initially saturated condition, excess pore water pressures may 

develop. In some cases, effective and shear stresses are temporarily nil in zones of high excess 

pressures. Through drainage, these excess pressures dissipate gradually, allowing the backfill to 

mobilize shear strength due to an increase in effective stresses with time. 

During sequential filling, the total stresses (horizontal and vertical) increase with the filling of the 

stope. This increase can occur more slowly for a relatively stiff backfill, especially if sufficient 

time for drainage is allowed. 

Cementation of the backfill generates a progressive increase in cohesion, c', Young's modulus, Eb 

and air entry value, AEV, and a reduction in the saturated hydraulic conductivity, ksat. Numerical 

simulations representing sequential filling with such effect of cementation show that more water 

can be retained in the backfilled stope and that the pore water pressure can significantly increase 

with the placement of new saturated layers, when compared with the case without cementation 

(depending on the rate of filling). 

The results also show how various geotechnical parameters can influence the stresses in 

backfilled stopes, including the internal friction angle, ’, Young's modulus, Eb, cohesion, c', 

Poisson's ratio, ν, and the dilatancy angle, ψ. The filling rate also greatly influences the evolution 

of stresses in stopes when an initially saturated backfill is used. A high filling rate tends to 

produce greater vertical and horizontal total stresses, compared to a lower filling rate.  

It is also shown that the mechanical behavior of the barricade depends on several factors 

including the condition of the fill (drained or undrained), the filling rate, as well as the size and 

the position of the barricade in the underground drift. 

 

Keywords : 

Mining backfill, underground mines, stopes, barricade, stresses, strains, cementation, pore water 

pressure. 
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CHAPITRE 1 INTRODUCTION 

 

L’industrie minière génère des revenus vitaux pour l’économie et la population de plusieurs pays 

dans le monde. Cette industrie génère aussi de grandes quantités de rejets, comme les roches 

stériles et les rejets de concentrateur, qui peuvent nuire à l’environnement s'ils ne sont pas gérés 

adéquatement. 

L’engagement public et les récentes législations environnementales de plus en plus strictes 

contraignent les compagnies minières à rechercher et à développer des techniques de gestion des 

rejets miniers écologiquement acceptables et  économiquement viables. 

L’utilisation des rejets dans les remblais miniers est une approche de plus en plus utilisée dans les 

méthodes de minage. Il existe principalement 3 types de remblais miniers utilisés dans l'industrie 

minière, soit le remblai rocheux, le remblai hydraulique et le remblai en pâte cimenté. Le remblai 

rocheux est un matériau constitué de roches stériles, auquel on ajoute parfois une boue (coulis) 

contenant un agent liant pour augmenter sa résistance mécanique. Le remblai hydraulique est 

constitué principalement de rejets de concentrateur (tamisés ou non), d’eau et d'agents liants avec 

une densité de pulpe P (rapport de la masse solide des résidus sur la masse totale) variant 

généralement entre 65 % à 70 %. Le remblai en pâte cimenté (RPC) est un matériau constitué des 

rejets de concentrateur tout venant filtrés, avec un pourcentage de solide entre 70 % et 85 %, 

d’eau et d'un liant hydraulique (3 à 7% en masse). 

Le remblayage d’un chantier souterrain nécessite la construction d’une structure de retenue, 

appelée « barricade », mise en place dans la galerie de soutirage (comme le montre la figure 1.1) 

afin de maintenir le remblai en place. Les barricades sont généralement construites en bois, en 

briques, ou en grillage et béton projeté. La construction de ces barricades peut engendrer des 

coûts élevés et peut ralentir la production minière. De plus, de nombreuses ruptures de barricades 

ont été rapportées, particulièrement au Canada, en Turquie et en Australie (Grice, 2001; 

Kuganathan, 2001; Yumlu et Guresci 2007). La rupture de ces barricades est souvent due à 

l'excès des contraintes qui se produit suite à un remblayage trop rapide. Les ruptures de 

barricades peuvent endommager des équipements et dans certains cas, causer des blessures 

graves, voire le décès du personnel de la mine par ensevelissement. 
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Il est nécessaire d’avoir des outils appropriés pour évaluer l’état des contraintes effectives et 

totales dans les chantiers remblayés afin d’évaluer leur réponse géomécanique et pour optimiser 

la mise en place du remblai. Les barricades qui retiennent le remblai en place doivent aussi être 

dimensionnées de façon à prévenir une rupture selon l’état des contraintes, qui dépendent des 

propriétés du remblai, de la géométrie des ouvertures et de la séquence de remplissage. 

Une technique alternative est de construire les barricades avec de la roche stérile déjà disponible 

sur le site. Cependant, il y a eu très peu d’investigations sur le comportement de ces structures et 

il existe peu d’approches qui permettent de les dimensionner (Li et al., 2009; Li et Aubertin, 

2009d, e). 

Le remblai en pâte cimenté (RPC) est une technologie qui a été adoptée dans plusieurs mines au 

Canada et ailleurs dans le monde en raison de ses avantages, incluant (Landriault, 1995; Hassani 

et Archibald, 1998; Slade, 2010) :  

- Une réduction significative de la quantité de résidus miniers déposée en surface 

- Une meilleure stabilité des excavations souterraines et par conséquent, une plus grande 

extraction du minerai 

- Une réduction des coûts d’opération (par rapport aux autres types de remblai) 

- Une amélioration de la sécurité et des conditions de travail des mineurs 
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Figure 1.1: Illustration d'un remblai en pâte mis en place dans un chantier minier souterrain et 

retenu par une barricade en roches stériles 

 

Les remblais miniers sont des matériaux au comportement complexe qui évolue avec le temps, 

depuis la préparation jusqu’à la mise en place et la consolidation dans le chantier (Belem et al., 

2002b; Benzaazoua et al., 2004; Kesimal et al., 2005).  

 

1.1 Objectifs 

Cette étude vise à évaluer l'état des pressions induites par différents types de remblai durant leur 

mise en place et subséquemment à l'aide de simulations numériques. Les calculs réalisés ici 

évaluent également l'effet de la séquence de mise en place du remblai, des caractéristiques du 

remblai et des propriétés de la barricade.  

Afin d’atteindre les objectifs spécifiques du projet, il a été nécessaire de compléter différentes 

étapes : 
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- Évaluer les caractéristiques hydro-géotechniques typiques des remblais d’après des 

résultats tirés de la littérature (essais de laboratoire et résultats in situ). 

- Répertorier les méthodes d’évaluation des contraintes dans les chantiers miniers 

souterrains. 

- Construire et vérifier un modèle numérique de référence en se basant sur les dimensions 

courantes des chantiers miniers souterrains, les propriétés des matériaux et les solutions 

analytiques et numériques développées par divers chercheurs. 

- Comparer les résultats des simulations numériques additionnelles aux résultats des 

solutions analytiques disponibles. 

- Simuler différents scénarios selon diverses propriétés, séquences de mise en place du 

remblai, et différentes géométries des chantiers. 

- Analyser l’impact de différents paramètres sur les contraintes et le comportement global 

des remblais (via une étude paramétrique). 

- Formuler les conclusions et les recommandations découlant de cette étude. 

 

1.2 Contenu du mémoire 

 

Le mémoire débute par une revue de littérature (chap. 2) qui consiste à présenter : 

- Les différents types de remblais miniers utilisés dans les mines souterraines et rappeler 

leurs caractéristiques. 

- Les différentes méthodes d’évaluation de l'état des contraintes dans les chantiers miniers 

remblayés. 

- Un rappel sommaire des modèles et lois de comportement les plus utilisés pour simuler le 

comportement des matériaux d'intérêt. 

- Le logiciel d'éléments finis SIGMA/W (GeoSlope, 2008) et ses principales 

fonctionnalités, qui est utilisé dans le cadre de ce projet. 

Le chapitre 3 présente les cas de référence simulés dans cette étude. Le modèle conceptuel de 

chaque cas inclut un descriptif concernant la géométrie du modèle, les paramètres des différents 

matériaux, les caractéristiques de la simulation et les conditions initiales et aux frontières 
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appliquées. Les résultats des analyses des contraintes et des déformations sont ensuite montrés 

pour chaque cas et comparés aux solutions analytiques existantes (lorsqu'applicables). 

Le chapitre 4 présente une étude paramétrique basée sur les éléments suivants : 

- Les propriétés géotechniques du remblai (cohésion c', angle de friction interne ϕ ', module de 

Young Eb, coefficient de Poisson ν et angle de dilatance ψ) 

- La géométrie du chantier (largeur, inclinaison) 

- La vitesse de remblayage du chantier (de rapide à lent) 

- L'influence de la loi de comportement (élastoplastique - Mohr Coulomb et Cam-Clay modifié) 

Ce chapitre présente aussi une analyse du comportement de la barricade selon différents scénarios 

(remplissage instantané ou séquentiel, cimentation du remblai, etc.). Cette analyse illustre 

l'importance du drainage, de la vitesse de remblayage et de la géométrie de la barricade sur son 

comportement mécanique.  

Une discussion générale sur les résultats des divers cas de référence et sur l'étude paramétrique 

est aussi présentée à la fin du chapitre 4. 

Enfin, les conclusions et les recommandations terminent le document au chapitre 5 

Une liste de références et d'annexes complète ce document. 

Les contributions scientifiques originales issues de ces travaux sont principalement liées à 

l'analyse de l'évolution des pressions interstitielles, des contraintes totales et des contraintes 

effectives avec drainage et écoulement. Jusqu'à présent, peu de travaux ont mis en évidence l'effet 

de l'excès des pressions interstitielles et leur dissipation (avec le drainage) sur la distribution des 

contraintes totales, effectives et de cisaillement dans les chantiers remblayés. De plus, ce travail a 

également permis de valider les différentes solutions analytiques proposées par certains 

chercheurs (incluant celles proposées par Li et al., 2005a; Li et Aubertin, 2009a).  

L'analyse numérique d'un remplissage instantané peut donner un aperçu de la distribution des 

contraintes à l'équilibre; ces cas sont représentatifs de conditions qui n’évoluent pas dans le temps 

(i.e. pas de changement des propriétés et des pressions d’eau). Une évaluation des contraintes et 

des déformations lors du remplissage séquentiel d'un chantier requiert plusieurs analyses 

transitoires pour simuler les phases de remplissage. Li et Aubertin (2009c) ont simulé la réponse 



6 

 

d'un chantier remblayé séquentiellement et ont montré les effets de la déposition des couches sur 

les contraintes (mais sans tenir compte des pressions interstitielles). Dans ce contexte, l'analyse 

de l'influence de la vitesse de remplissage du chantier, avec un remblai initialement saturé, sur les 

contraintes et les déformations, présentée au chapitre 4, représente une autre contribution 

originale de ce travail. Les résultats des simulations montrent qu'une vitesse rapide de 

remplissage donne des contraintes plus élevées au bas du chantier et produit un déplacement plus 

important de la barricade. 

L'analyse indirecte de l'effet de la cimentation (évolution des paramètres géotechniques du 

remblai dans le temps) a aussi été prise en compte dans certaines simulations pour mieux 

représenter le comportement des remblais cimentés dans les chantiers souterrains. Les résultats de 

ces simulations originales montrent que la quantité non négligeable d'eau qui reste dans le 

chantier lorsque le ciment agit peut produire des pressions interstitielles élevées suite à la mise en 

place de nouvelles couches. Il s'agit là aussi d'une nouvelle contribution. 

Ces travaux ont également confirmé que le comportement d'une barricade dépend principalement 

de ses propriétés géotechniques et de sa dimension. Une barricade de roches stériles de grande 

dimension avec une bonne résistance mécanique résiste bien aux pressions induites par le 

remblai. 

Les travaux présentés dans ce mémoire apportent d'autres contributions, notamment sur 

l'influence des paramètres géotechniques et de la loi de comportement utilisée pour simuler le 

comportement des remblais dans les chantiers miniers. 
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CHAPITRE 2 PROBLÉMATIQUE ET REVUE DE LITTÉRATURE 

 

2.1 Généralités 

 

L’utilisation du remblai est en croissance constante dans les mines souterraines afin d’assurer la 

stabilité géotechnique des ouvertures où le minerai est extrait de la masse rocheuse. Le 

remblayage souterrain réduit la quantité de rejets déposés en surface, ce qui peut aider à diminuer 

l'impact de l'opération minière sur l'environnement (Aubertin et al., 2002). 

Dans ce chapitre, les différents types de remblais utilisés dans l’industrie minière sont brièvement 

présentés. Les caractéristiques géotechniques de chaque type de remblai, ainsi que les différentes 

méthodes d’évaluation des contraintes dans les chantiers miniers remblayés, pertinentes pour ce 

projet, sont présentées par la suite. Les méthodes d'évaluation des réponses des barricades sont 

aussi abordées. Une description de quelques modèles constitutifs communs utilisés dans les codes 

numériques est présentée dans la section « Modèles et lois de comportement ». Finalement, 

certaines particularités et fonctionnalités du code d'éléments finis SIGMA/W 2007 (GeoSlope 

International Inc) sont décrites à la dernière partie de ce chapitre. 
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2.2 Types de remblais miniers 

De plus en plus, les exploitations minières utilisent une partie de leurs rejets miniers pour le 

remblayage des ouvertures souterraines. Certains remblais se composent de roches stériles, alors 

que d’autres contiennent surtout des rejets de concentrateur, mélangés ou non avec un agent liant 

comme du ciment Portland, des scories et des cendres volantes. On reconnaît principalement 3 

types de remblai, et leurs caractéristiques propres dépendent de la nature des matériaux utilisés et 

de la technique de transport et de mise en place. 

2.2.1 Remblai rocheux (RR) 

Le remblai rocheux est constitué principalement de roches stériles, auquel on ajoute parfois un 

coulis de liant, permettant ainsi de cimenter le remblai et lui procurer une meilleure résistance 

mécanique (Hassani et Archibald, 1998). Ce type de remblai est caractérisé par une granulométrie 

grossière assez étalée, un bon drainage et un faible degré de saturation initial. Il est usuellement 

transporté et mis en place dans un état relativement sec. Le remblayage rocheux est 

particulièrement efficace pour limiter la quantité de stériles à stocker en surface et pour accroître 

la stabilité des chantiers souterrains. Ce type de remblai est distribué sous terre par un réseau de 

cheminées et transporté aux chantiers par convoyeur ou par camion, selon la géométrie du 

chantier. La mise en place du remblai rocheux (RR) peut engendrer des coûts élevés et peut aussi 

produire une ségrégation des particules qui affecte significativement la résistance mécanique 

(Farsangi, 1996). 

2.2.1.1 Classification des remblais rocheux 

Les remblais rocheux peuvent être classés en 4 catégories (Hassani et Archibald, 1998) : 

- URF (Uncemented Rockfill) : C'est un remblai constitué de roches stériles sans agent liant 

qui offre un support mécanique grâce à son propre poids et à sa résistance frictionnelle. 

- CRF (Cemented Rockfill) : Il s’agit d’un remblai rocheux constitué de stériles auquel un 

agent liant est ajouté (généralement 5 à 6 % en masse), ce qui lui confère une meilleure 

résistance mécanique et améliore le support de terrain. Cependant, la ségrégation peut 

altérer cette résistance mécanique en produisant des plans de faiblesse. 
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- CSRF (Cemented Sand Rockfill) : C'est un remblai rocheux avec du sable cimenté (5 à 10 

%). Le sable permet de remplir les vides et produire un remblai plus dense. Ce type de 

remblai est moins susceptible à la ségrégation et permet d’obtenir une plus grande 

résistance mécanique que celle obtenue avec le CRF. 

- CSWF (Cemented Sand Waste Fill) : Ce remblai consiste à mettre en place les stériles et 

de rajouter au dessus un mélange constitué de sable et de ciment. Le mélange percole à 

travers les stériles et remplit les vides, ce qui permet d'augmenter la résistance mécanique. 

Le principal défaut de cette technique est l’incertitude quant à la percolation du liant à 

travers la masse des stériles.  

 L’utilisation d’un type particulier de remblai rocheux dépend principalement de la fonction 

qu’on souhaite lui attribuer et de son comportement anticipé durant et après sa mise en place dans 

le chantier. 

 

2.2.1.2 Caractéristiques typiques des roches stériles et du remblai rocheux 

 

Des essais de laboratoires effectués par Gamache (2004) sur des roches stériles (de la mine 

LaRonde en Abitibi) ont montré une valeur de densité relative des grains Dr = ρs/ ρw, (où ρs est la 

densité des grains solides et ρw le poids volumique de l'eau) se situant autour de 2,8, ce qui est 

légèrement supérieur à celle usuellement mesurée pour les sols (Dr ≈ 2,6 à 2,7). D'autres résultats 

d'investigations montrent une valeur de Dr plus élevée pouvant atteindre plus de 3,5 pour les 

roches stériles des mines Canadiennes contenant des minéraux ferrifère ou sulfureux (Bussière, 

1993; Aubertin et al., 2002; Belem et al., 2002b). 

La densité en place des roches stériles qui servent à la fabrication du remblai rocheux se situe 

typiquement entre 1600 et 2200 kg/m
3
 (Williams, 2000). Les courbes granulométriques des 

roches stériles sont souvent très étalées avec des coefficients d'uniformité Cu supérieurs à 20 

(Aubertin et al., 2002; Gamache, 2004). 

Les études des propriétés géotechniques de différents remblais rocheux (RR) utilisés dans les 

opérations minières montrent une porosité n typique entre 0,3 à 0,5, soit une valeur de l'indice des 

vides e entre 0,43 et 1 (Fersangi, 1996). L'angle de friction interne ϕ varie significativement 
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selon la courbe granulométrique, la forme des particules, la densité du remblai et l’état des 

contraintes. Les investigations in situ et de laboratoire montrent des valeurs de l'angle de friction 

entre 35° et 45° (Leps, 1970; Fersangi, 1996). La résistance en compression uniaxiale UCS du 

RR (avec ciment) varie souvent selon l'endroit de prélèvement des échantillons à cause de la 

ségrégation des particules. Des valeurs de l'UCS entre 1,4 MPa et 7 MPa sont souvent 

rencontrées pour des remblais rocheux cimentés, dépendamment de la teneur en ciment ajoutée 

(Fersangi, 1996; Isagon et al., 2011). 

Plusieurs paramètres influencent la perméabilité des roches stériles, notamment la courbe 

granulométrique, la porosité, la forme et la texture des particules, la présence ou non d'agents 

liants ainsi que la composition minéralogique. Les essais de perméabilité à charge constante et à 

charge variable effectués par Gamache (2004) donnent des valeurs de conductivité hydraulique 

saturée (sur des matériaux passant le tamis # 4 (4,75 mm)) se situant entre 1,1 x 10
-2

 cm/s et 3,7 x 

10
-1

 cm/s, pour des échantillons de roches stériles (sans ciment) ayant une porosité qui se situe 

entre 0,3 et 0,37. 

Les remblais rocheux qui contiennent des minéraux sulfureux peuvent générer des eaux de 

drainage minier acides (DMA) suite au contact de la roche stérile réactive avec de l'air et de l'eau. 

Ces eaux de drainage, caractérisées par un faible pH, des concentrations en métaux lourds et en 

sulfates solubles élevées, peuvent affecter sérieusement l'environnement et contaminer l'eau 

souterraine (Aubertin et al., 2002). 

 

2.2.1.3 Mise en place dans le chantier 

 

Après la préparation du remblai et son transport via les cheminées jusqu’au sous-niveau, le 

remblai est transporté par camions ou par convoyeur jusqu’au chantier à remblayer. La mise en 

place du remblai rocheux dans le chantier est une étape cruciale pour la réussite de l’opération de 

remblayage. Une mise en place inadéquate peut produire une hétérogénéité importante dans le 

chantier et occasionner une baisse considérable de la résistance mécanique. 
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Farsangi (1996) a conduit des investigations in situ sur les opérations de remblayage à la mine 

Kidd Creek (KCM) en Ontario. Les chantiers souterrains à KCM ont une hauteur variant entre 60 

et 105 m, une largeur entre 15 et 18 m et une longueur entre 30 et 60 m. La hauteur de chute varie 

de 30 à 45 m. Ses investigations ont montré que la ségrégation des particules au sein des 

chantiers souterrains est due à la différence des vitesses de déposition des particules grossières et 

fines. Les particules grossières déboulent au bas du cône de déposition, tandis que les particules 

fines demeurent en haut du cône, créant ainsi des zones de matériau ségrégées (comme c'est le 

cas dans les haldes à stériles de surface; Aubertin et al., 2002).  

 

2.2.2 Remblai hydraulique 

2.2.2.1 Caractéristiques géotechniques du remblai hydraulique 

 

Le remblai hydraulique est un remblai constitué principalement de rejets de concentrateur, d’eau 

et d'agents liants (comme du ciment, des scories, etc...); il peut aussi contenir des matériaux 

naturels comme du sable. Ce matériau relativement perméable est classifié comme un sable 

silteux (SM) ou du silt sableux (ML) selon le système de classification unifié USCS (Unified Soil 

Classification System). La fraction très fine (argileuse) est souvent enlevée pour augmenter la 

résistance mécanique et faciliter le drainage (Rankine et Sivakugan, 2005; Rankine et al., 2006). 

La figure 2.1 représente un fuseau granulométrique typique des résidus miniers qui peuvent être 

utilisés pour la fabrication du remblai hydraulique. Cette figure permet de calculer une valeur 

moyenne du coefficient d'uniformité Cu = D60 / D10 (où D10 est la taille (diamètre) des grains 

correspondant à 10% de passant (Holtz et al., 2010); le même raisonnement s'applique pour le 

D60). Le coefficient d'uniformité Cu représente l'étendue des grosseurs des grains. Une valeur 

élevée représente un grand étalement granulométrique. La figure 2.1 indique que la valeur du 

coefficient d'uniformité Cu se situe aux alentours de 8, ce qui représente une granulométrie étalée. 

L'étude menée par Bussière (2007) sur les propriétés hydrogéotechniques des résidus de mines 

polymétalliques au Canada montre que ces résidus sont généralement composés de particules 

fines sableuses ou silteuses avec un D10 variant entre 0,001 et 0,004 mm, et un D60 variant entre 
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0,01 et 0,05 mm. Le coefficient d'uniformité correspondant Cu de ces résidus tout venant (sans 

séparation granulométrique pour ajustement) varie entre 8 et 18. 

Le remblai hydraulique est généralement transporté via des pipelines par gravité avec une densité 

de pulpe P (rapport de la masse solide des résidus sur la masse totale, P = ) variant 

généralement entre 65 à 70 % (Belem et al., 2011). Cette densité de pulpe est plus élevée que 

celle des résidus miniers conventionnels (P ≤ 45%), et elle est obtenue suite à des opérations de 

filtrage et de classification granulométrique (Rankine et al., 2006).  

 

 

 

Figure 2.1 : Fuseau granulométrique typique des résidus miniers utilisés pour les remblais 

hydrauliques en Australie (d’après Rankine et al., 2006) 

 

 

La méthode de préparation du remblai hydraulique dépend de plusieurs paramètres, notamment la 

résistance mécanique requise, la densité de pulpe qui permet le transport du remblai, la 

granulométrie et la capacité de stockage des résidus sous terre.  

 

 



13 

 

La densité relative des grains Dr a une grande influence sur la quantité d'eau sous terre et drainée 

par la suite. Des valeurs de Dr entre 2,8 et 4,4 ont été mesurées pour des résidus de mines 

polymétalliques dépendamment de la minéralogie du gisement (Rankine et Sivakugan, 2005; 

Bussière, 2007). 

Des essais de conductivité hydraulique sur des échantillons de résidus de concentrateur ont été 

conduits par plusieurs chercheurs. Les résultats de ces essais montrent que la valeur de ksat se 

situe entre 10
-4

 et 10
-6

 cm/s pour des résidus fins tout venant (non tamisés) et entre 10
-2

 et 10
-4

 

cm/s pour des résidus grossiers (≥ 80 μm) (Aubertin et al., 1996; Rankine et Sivakugan, 2005; 

Bussière, 2007). 

L'angle de friction interne est aussi un paramètre important pour l'analyse du comportement 

statique et dynamique du remblai hydraulique. Des valeurs d'angle de friction interne variant 

entre 37° et 45° ont été mesurées pour des remblais hydrauliques ayant un indice de densité 

relative ID entre 50 et 80 % (Rankine et Sivakugan, 2005). Cela représente une valeur jusqu'à 6° 

plus grande que l'angle de friction interne des sables ou silts naturels à cause d'une angularité des 

particules plus prononcée pour les résidus de concentrateur (Vick, 1990; Aubertin et al., 2002; 

Bussière, 2007). 

Lorsqu'une des faces du remblai hydraulique sera exposée, l'addition de ciment (≈ 6 %) est 

souvent requise. Ceci produit typiquement une résistance en compression uniaxiale (UCS) 

supérieure à 750 kPa après 28 jours. Des résistances plus grandes peuvent être atteintes en 

ajoutant plus de ciment. 

L'avantage du remblai hydraulique réside dans sa facilité de fabrication et au niveau des coûts 

relativement faibles de sa mise en place dans les excavations souterraines (par gravité). Sa 

résistance mécanique est souvent plus faible que celle des autres remblais miniers (remblais 

rocheux et en pâte), ce qui requiert la construction de barricades perméables très solides, qui 

doivent être construites pour retenir le remblai et permettre le drainage de l'excès de l'eau de 

transport. Ce surplus d'eau doit être récupéré et retourné en surface. 
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2.2.3 Remblai en pâte 

L'utilisation du remblai en pâte est une technologie assez récente, qui date des années 70. Elle a 

été utilisée pour la première fois en Allemagne à Bad Grund Mine en 1974 (Lerche et 

Renetzeder, 1984). Avec une densité de pulpe P entre 70 et 85 % et un affaissement au cône se 

situant typiquement entre 150 à 250 mm (Benzaazoua et al., 2002), le remblai en pâte ressemble 

à une pâte dentifrice. Il est caractérisé par des propriétés géotechniques et hydrogéologiques 

différentes de celles du remblai hydraulique ou du remblai rocheux. Il est constitué de rejets de 

concentrateur tout venant, d’eau et d’un agent liant. Le remblai en pâte peut parfois contenir du 

sable, des stériles broyés et des additifs (fluidifiants, accélérateurs de prise, etc.).  

Les barricades construites pour retenir le remblai en pâte pendant sa mise en place peuvent être 

moins coûteuses comparativement à celles construites pour le remblai hydraulique puisqu’elles 

peuvent être construites en roches stériles (Le Roux et al., 2005; Rankine et Sivakugan, 2007). 

Grâce à ses avantages économiques et environnementaux, le remblai en pâte est devenu une 

pratique de plus en plus utilisée dans les mines souterraines à travers le monde. Cependant, le 

manque de compréhension sur l’acquisition de la résistance mécanique, nécessite un contrôle de 

qualité serré avant la mise en place. Le coût relié à l’utilisation d’importants équipements pour la 

fabrication et le transport du remblai en pâte représente le principal inconvénient de cette 

technologie (Landriault, 1995). 

2.2.3.1 Préparation et transport du remblai en pâte 

Avant d'être transporté depuis l'usine en surface jusqu'aux chantiers souterrains, le remblai en 

pâte doit être préparé selon des règles spécifiques pour répondre à plusieurs exigences. Les 

résidus doivent être épaissis et filtrés pour atteindre une densité de pulpe P entre 70 et 85 %. Un 

agent liant est ensuite ajouté pour conférer au remblai une plus grande résistance mécanique 

(figure 2.2). La proportion typique de l'agent liant est de 3 à 7 % de la masse des résidus secs. 

L'eau est ajoutée pour permettre le transport du RPC ainsi que l'hydratation de l'agent liant. Le 

mélange est malaxé pour homogénéiser le matériau (Cayouette, 2003).  

Le transport du mélange se fait habituellement à l’aide de pompes à piston, par gravité, ou une 

combinaison des deux. Le nettoyage du réseau de pipelines se fait avec de l’eau et de la 



15 

 

pressurisation à l’air comprimé pour éviter le bouchage des tuyaux par le remblai (Belem et 

Benzaazoua, 2008). 

 

Figure 2.2 : Schéma expliquant la préparation du remblai en pâte cimenté (adaptée de Belem et 

al., 2011. Notes du cours GML6603 – Remblais miniers) 

 

2.2.3.2 Mise en place du remblai en pâte 

La mise en place du remblai en pâte se fait généralement en 3 étapes (figure 2.3). La première 

étape consiste à déverser un remblai en pâte cimenté (RPC) qui contient un pourcentage de 

ciment plus élevé pour former un bouchon. Il s’agit d’une zone de remblai de quelques mètres de 

hauteur, avec une plus grande résistance mécanique (Bw = Mb / Ms = 5 à 7 %; où Mb représente la 

masse du liant et Ms la masse solide des rejets), qui sert de fondation aux séquences ultérieures de 

remblayage. Une période de cure de 3 à 7 jours est généralement requise pour la prise de la 

résistance mécanique. La deuxième étape consiste à verser un RPC (contenant moins de ciment 

par rapport au bouchon) de résistance mécanique moindre (Bw = 2 à 5%) au dessus du bouchon à 

une vitesse variant entre 2 m / jour et 10 m / jour (Cowling et al., 1987; Harvey, 2004; Belem et 

 liant 
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al., 2004; Helinski, 2007; Thompson et al., 2011). La hauteur de la 2
e
 zone dépend entre autres, 

de la résistance mécanique du bouchon, de la séquence de production et de la géométrie du 

chantier. Une hauteur entre 20 à 30 m est souvent rencontrée dans les mines souterraines (Belem 

et al., 2004; Belem et al., 2011). Une période de cure entre 2 à 4 jours est aussi requise pour 

permettre au remblai de se consolider et d'acquérir de la résistance (Belem et al., 2004; 

Thompson et al., 2011). La 3
e
 étape consiste à compléter le remblayage du chantier jusqu’à la 

galerie supérieure avec des roches stériles pour permettre la circulation des machines au dessus 

du remblai. 

 

Figure 2.3 : Méthode de mise en place du RPC avec bouchon (tirée de Belem et al., 2011. Notes 

du cours GML6603 – Remblais miniers) 

 

D’autres méthodes de mise en place utilisées souvent dans l’industrie minière, incluent 

notamment une mise en place sans bouchon, un remblayage en continu ou un remblayage 

séquentiel du chantier en entier avec le même remblai (Belem et al., 2004; Belem et al., 2011; 

Thompson et al., 2011). 

Les propriétés géotechniques et géochimiques des remblais en pâte cimentés (RPC) sont abordées 

plus en détails à la section 2.4. Cette section apporte des éléments d’information utiles qui aident 

à comprendre l'évolution de certains paramètres géotechniques des RPC avec le temps de cure et 

décrit sommairement le processus d'hydratation et son effet sur la microstructure. 
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2.3 Impacts environnementaux et économiques des remblais miniers 

2.3.1 Réduction de la quantité des résidus miniers en surface 

Le drainage minier acide (DMA) est le problème majeur engendré par les dépôts des rejets 

miniers en surface sous formes de haldes à stériles et de parcs à résidus (Aubertin et al., 2002; 

Price, 2005). Le DMA est le résultat de l’acidification des eaux de drainage dans 

l’environnement, résultant de l’oxydation des minéraux sulfureux à la suite d’un contact avec 

l’oxygène et l’eau. Ce phénomène s’accompagne d’une accélération d'une lixiviation de métaux 

et métalloïdes dont la toxicité pourrait avoir de graves répercussions sur l’environnement et 

présenter des risques majeurs pour la santé humaine. 

Le mécanisme de production du DMA peut être résumé par l'expression simplifiée ci-dessous 

(Aubertin et al., 2002) : 

 (2-1) 

Le remblayage des excavations souterraines réduit significativement la quantité de rejets réactifs 

déposés en surface, qui sont souvent associés au risque de génération des eaux contaminées. Par 

conséquent, cette pratique alternative minimise considérablement l'impact des opérations 

minières sur l'environnement. 

Dans certains cas, il est possible d'utiliser la désulfurisation pour produire des résidus non 

générateurs d'acide et un concentré de sulfure. Les résidus non générateurs d'acide peuvent être 

utilisés comme matériaux de construction en surface (digues, couvertures, etc.) alors que le 

concentré de sulfure peut être utilisé dans le remblai en pâte cimenté (Benzaazoua et al., 2008). 

2.3.2 Réduction de la migration des contaminants 

Plusieurs investigations ont été conduites pendant cette dernière décennie pour comprendre 

l’impact environnemental des remblais cimentés, particulièrement vis-à-vis du potentiel de 

génération des eaux acides. Ouellet et al. (2006) ont montré que la consommation d’oxygène 

dans les remblais en pâte cimentés diminue avec le temps dans les chantiers. Cette diminution est 

attribuée principalement au haut degré de saturation du matériau et sa forte capacité de rétention 

d’eau. En empêchant l’oxygène d’atteindre et réagir avec les résidus sulfureux, le haut degré de 
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saturation maintenu joue le rôle d’une barrière et produit un effet écologiquement bénéfique (Fall 

et Benzaazoua, 2005; Ouellet et al., 2006). De plus, l’ajout d’un agent liant améliore le 

comportement environnemental des résidus, puisqu’il permet de réduire la perméabilité et par 

conséquent, réduit la génération de lixiviats et le transport de contaminants (Godbout et al., 2007; 

Fall et al., 2009). Le ciment a également tendance à stabiliser les contaminants qui pourraient etre 

solubles dans l'eau interstitielle (Benzaazoua et al., 2002). 

 

2.3.3 Impacts économiques 

Un des principaux avantages économiques des opérations de remblayage souterrain résident dans 

la réduction des coûts reliés à la gestion des aires d’accumulation. Un pourcentage non 

négligeable des rejets réactifs peut être retourné sous forme de remblais miniers, diminuant le 

volume et les coûts de gestion des haldes à stériles, des parcs à résidus et des équipements de 

traitement en surface (Hassani et Archibald 1998; Aubertin et al., 2002).  

Grâce à leur bonne résistance mécanique, les remblais en pâte cimenté et les remblais rocheux 

cimentés peuvent remplacer les piliers secondaires entre les chantiers minés. Ceci permet une 

plus grande stabilité mécanique de la mine et permet une plus grande extraction du minerai et une 

diminution de dilution (Mitchell, 1989; Belem et Benzaazoua, 2008). 

Le remblai en pâte cimenté présente plusieurs avantages économiques : 

- Un faible coût de transport comparativement à celui du remblai rocheux, puisqu’il se fait 

par gravité et par pompage. 

- Une réduction du temps de remblayage par rapport au remblai hydraulique, par 

conséquent, une augmentation de la productivité (Slade, 2010). 

- Une utilisation de barricades moins coûteuses, comparativement au remblai hydraulique 

(Le Roux et al., 2004). 

Certains des avantages énumérés ci-dessus peuvent engendrer des réductions de coûts 

d’opération. Ainsi l’implantation du système de remblai en pâte peut générer des économies 

considérables pour des opérations importantes de remblayage (Slade, 2010).  
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2.4 Caractéristiques spécifiques des remblais en pâte 

Le remblai en pâte cimenté est le remblai le plus utilisé dans l'industrie minière grâce notamment 

à ces nombreux avantages environnementaux et économiques cités ci-dessus. Ce remblai est un 

matériau particulièrement complexe qui évolue avec le temps, depuis la préparation jusqu'à la 

mise en place et la consolidation dans le chantier (Belem et al., 2002a; Benzaazoua et al., 2004; 

Kesimal et al., 2005). Pour pouvoir simuler numériquement le comportement du RPC dans les 

chantiers souterrains, il est important d'étudier les paramètres géotechniques de ce matériau et 

leur évolution dans le temps pour une analyse numérique plus réaliste. 

 

2.4.1 Caractéristiques géotechniques 

2.4.1.1 Propriétés des résidus 

 

Les résidus miniers utilisés pour la fabrication du remblai en pâte sont habituellement des rejets 

de concentrateurs non ségrégés (non tamisés), qui doivent être épaissis et filtrés pour atteindre les 

exigences en terme de granulométrie et de teneur en particules solides.  

Dans la pratique, on recommande qu'au moins 15 % des particules soient inférieures à 20 μm 

avec un coefficient d'uniformité Cu entre 4 à 6 et un coefficient de courbure Cc entre 1 à 3 (Belem 

et al., 2011). Le coefficient d'uniformité offre un aperçu de l'étendue des grosseurs des grains, le 

coefficient de courbure Cc exprime quant à lui l'allure de la courbe entre D60 et D10.  

La figure 2.4 représente des courbes granulométries (% de grains passant en fonction du diamètre 

des grains) typiques de quelques résidus utilisés pour la fabrication du remblai en pâte au Canada. 

Sur cette figure, il est montré que la granulométrie des résidus est relativement étalée avec une 

valeur de Cu d'environ 8 pour la majorité des courbes. Les distributions granulométriques de ces 

résidus miniers sont similaires à celles mentionnées par Bussière (2007) dont le Cu se situe entre 

8 et 18. 
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Figure 2.4 : Granulométries typiques de résidus miniers utilisés pour la fabrication du remblai en 

pâte (tirée de Belem et al., 2011. Notes du cours GML6603 – Remblais miniers) 

Il existe peu de résultats d'essais de compactage sur des résidus de concentrateur parce qu'ils sont 

rarement compactés (sauf lorsqu'ils sont utilisés comme matériaux de construction dans les 

couvertures). La teneur en eau optimal (wopt) pour les deux types d'essais Proctor (standard et 

modifié) se situe entre 10 et 20%, avec un poids volumique sec maximal γd correspondant entre 

14,6 et 20,1 kN/m
3
. De plus grandes valeurs de γd et de plus petites valeurs de wopt ont été 

observées pour des résidus grossiers comparativement à des résidus fins (Bussière, 2007). 

 

2.4.1.2 Conductivité hydraulique du RPC 

 

La conductivité hydraulique influence considérablement le comportement du remblai en pâte. 

Des investigations de laboratoire ont montré qu'elle décroît avec le temps de cure (Belem et al., 

2002a; Godbout et al., 2007; Fall et al., 2009; Yilmaz, 2010).  

Helinski et al. (2011) ont investigué le comportement hydraulique de deux types de remblais 

utilisés dans deux mines. Les résidus de concentrateur utilisés pour la fabrication du remblai en 

pâte de la mine d'or Kanowna Belle (KB) sont des résidus fins, alors que ceux utilisés à la mine 

Savannah Nickel (SNM) se composent de résidus de nickel relativement grossiers. La figure 2.5 

montre l'évolution de la perméabilité des deux remblais en fonction du temps de cure. Cette 
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figure montre une décroissance bien prononcée pour le remblai en pâte de la mine SNM. La 

perméabilité du remblai en pâte cimenté de la mine KB diminue aussi avec le temps de cure, mais 

de manière moins marquée comparativement à celle de la mine SNM. 

 

 

Figure 2.5 : Évolution de la conductivité hydraulique en fonction du temps de cure pour deux 

types de remblais en pâte cimentés utilisés en Australie (tirée de Helinski et al., 2011) 

 

Une illustration de l’effet du type de liant sur l’évolution de la conductivité hydraulique en 

fonction du temps de cure est montrée à la figure 2.6 (Godbout et al., 2007). Pour cette 

investigation, 3 échantillons différents de remblai en pâte ont été testés. Un remblai en pâte sans 

ciment (« control sample »), un remblai en pâte à base de ciment portland et de cendres volantes 

(CPFA) et un remblai en pâte à base de ciment portland et de scories (CPSG). La figure 2.6 

montre que la conductivité hydraulique du remblai en pâte sans ciment demeure pratiquement 

constante jusqu'à 28 jours. Aussi, le ciment à base de ciment Portland et de scories (CPSG) 

conduit à une plus grande diminution de ksat, par rapport au RPC à base de ciment Portland et de 

cendres volantes (CPFA). Des résultats similaires ont été observés pour d'autres investigations 

(Fall et al., 2009; Yilmaz, 2010). Ceci peut s’expliquer par l’effet des scories qui permettent 
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d’avoir une microstructure moins poreuse comparativement aux autres types de liants (Belem et 

al., 2002a; Ramlochan et al., 2004; Ouellet et al., 2008). 

 

Figure 2.6 : Évolution de la conductivité hydraulique en fonction du temps de cure pour des 

remblais en pâte cimentés ayant différents types de liants (tirée de Godbout et al., 2007) 

 

Pour l'analyse numérique d'un remplissage séquentiel avec effets de cimentation, présentée aux 

chapitres 3 et 4, l'évolution de la conductivité hydraulique saturée dans le temps est basée sur les 

résultats de Godbout et al. (2007) et Helinski et al. (2011) décrits ci-dessus. 

 

2.4.1.3 Résistance mécanique 

 

Le remblai en pâte cimenté (RPC) présente plusieurs avantages, notamment sa capacité à 

atteindre des résistances mécaniques plus élevées que le remblai hydraulique pour un même 

pourcentage de liant. Plusieurs investigations ont été effectuées sur des séries d’échantillons de 

RPC afin d'évaluer l’influence des différents paramètres sur la résistance mécanique.  

Le paramètre généralement adopté pour évaluer le comportement mécanique du RPC est la 

résistance en compression uniaxiale (UCS pour Unconfined Compressive Strength). En plus de 

sa facilité et sa rapidité d’utilisation, l’essai de compression uniaxial est relativement peu coûteux 

et permet un contrôle de qualité sur le remblai en pâte produit.  
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La résistance UCS d’un RPC dépend notamment de la minéralogie, des éléments chimiques dans 

l'eau, de la granulométrie des résidus, de la teneur en eau du RPC, du type et du % de liant utilisé 

(Benzaazoua et al., 1999; Belem et al., 2000; Fall et al., 2007).  

Les investigations ont montré qu’il existe une relation entre le % de liant et la résistance 

mécanique obtenue : plus la quantité de liant est importante, plus la résistance en compression 

uniaxiale et la cohésion augmentent (figure 2.7 (a)). 

Quant à l'influence du type de liant, la résistance en compression uniaxiale maximale est souvent 

obtenue avec un ciment à base de scories (Belem et al., 2000; Ramlochan et al., 2004; Kesimal et 

al., 2005; Ouellet et al., 2008). Ce type de liant permet aussi d’obtenir des cohésions plus élevées 

qui peuvent atteindre le triple des valeurs obtenues avec du ciment portland de type 10.  

  

Figure 2.7 : Évolution de la résistance en compression uniaxiale en fonction du temps de cure 

pour des RPC ayant différents teneurs en liant (a) et différents types de liants et de résidus (b) 

(tirée de Belem et al., 2000). 

L'évolution de la cohésion en fonction du temps de cure et des différentes teneurs et types de 

liants ont fait l'objet de quelques investigations en laboratoire. Les résultats de ces investigations 

montrent que l'augmentation de la cohésion effective est associée à l’augmentation de la teneur 

en liant, au pourcentage des particules solides et au temps de cure. Des valeurs typiques de 

cohésion varient entre 20 kPa (teneur faible en liant) et 500 kPa (teneur élevée en liant) ont été 

mesurées en laboratoire et in situ (Belem et al., 2000; Le Roux et al., 2005; Rankine et 

Sivakugan, 2007).  
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La relation qui lie la cohésion, l'angle de friction interne et la résistance en compression uni-

axiale est donnée par l'équation (2-2).  

 (2-2) 

où c est la cohésion du RPC, qu (=UCS) est sa résistance en compression uniaxiale et ϕ son angle 

de friction interne. Cette équation est obtenue en supposant que le critère de Mohr-Coulomb 

s'applique (figure 2.8).  

 

Figure 2.8 : Critère de rupture Mohr-Coulomb dans le plan de Mohr. 

 

  

Figure 2.9: Influence de la teneur (a) et du type de liant (b) sur la courbe de contrainte-

déformation après une période de cure de 112 jours (tirée de Belem et al., 2000) 
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L’effet de la cimentation contrôle aussi l’évolution du module de Young E du RPC dans le 

temps. Les figures 2.9 et 2.10 montrent que l'évolution du module de Young (pente de la partie 

linéaire à partir des courbes contraintes-déformations) dépend aussi de la teneur en liant, du type 

du liant et du temps de cure. Le module E augmente avec le temps et cette augmentation est 

surtout marquée à court terme (entre 0 et 28 jours) par rapport à celle sur le long terme (28 à 120 

jours). Aussi, le liant à base de scories et de ciment Portland (SP) permet d'obtenir le module de 

Young le plus élevé, par rapport à un remblai en pâte à base de cendres volantes (FP) ou de 

ciment Portland uniquement (PC) (Belem et al., 2000). 

 

 

Figure 2.10: L'effet de la cimentation sur la courbe de contrainte-déformation (tirée de  

Fall et al., 2007) 

 

Pour certaines des analyses numériques présentées par la suite, l'évolution du module de Young E 

en fonction du temps est basée sur les résultats de Belem et al. (2000) et Fall et al. (2007) 

présentés ci-dessus. 
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2.4.2 Caractéristiques géochimiques 

2.4.2.1 Minéralogie du RPC 

La composition minéralogique des résidus miniers peuvent influencer significativement la 

résistance, la rhéologie et la stabilité environnementale des remblais en pâte. La réactivité 

géochimique de certains minéraux peut affecter le développement de la résistance dû à la 

cimentation du RPC. 

Les réactions géochimiques particulièrement critiques qui dépendent de la minéralogie des 

résidus miniers sont (Benzaazoua et al., 1999; Aubertin et al., 2002; Benzaazoua et al., 2004; 

Ouellet et al., 2006): 

- Réaction d’hydratation 

- Réaction d’oxydation (minéraux sulfureux) 

- Réaction de sulfatation  

- Lixiviation des métaux 

- Réactions chimiques produisant des relâchements de gaz  

La teneur en sulfures influence grandement la réaction d'hydratation et la réaction d'oxydation 

selon le type de sulfures contenu dans les rejets (pyrite, pyrrhotite, sphalérite, etc...).  

Un choix adéquat du type de liant peut aider à prévenir la réaction d'oxydation et favoriser un 

remplissage maximale du volume des pores par les produits d'hydratation. Les liants à base de 

scories ou de cendres volantes contiennent moins d'aluminate tricalcique. Ils sont souvent utilisés 

dans l'industrie et peuvent produire des RPC de grande stabilité géochimique (Belem et al., 

2002a; Benzaazoua et al., 2002; Fall et al., 2010).  

2.4.2.2 Réaction d’hydratation 

Le ciment Portland est le liant hydraulique le plus utilisé dans l'industrie minière. Il est obtenu 

par la cuisson des matières premières (calcaire essentiellement) qui apportent de la chaux CaO, 

de la silice SiO2, de l'alumine Al2O3 et du fer Fe2O3. Après les étapes de cuisson, de broyage et de 

séparation, le ciment est composé des phases minérales suivantes :  

- Silicate tricalcique (C3S) 

- Silicate bicalcique (C2S) 
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- Aluminate tricalcique (C3A) 

- Aluminoferrite tétracalcique (C4AF) 

Le C3S et le C2S s'hydratent pour former les silicates de carbone hydratés (C-S-H) et de la 

Portlandite C-H (équation (2-3) et (2-4)).  

 (2-3) 

 (2-4) 

Le gain de résistance est principalement dû à la formation des silicates de carbone hydratés  

C-S-H qui représentent plus de 50% en masse de la pâte de ciment hydratée (Taylor 1997; 

Benzaazoua et al., 2004). 

Le ciment Portland est souvent mélangé avec un ou plusieurs ajouts minéraux comme de la 

cendre volante, de la fumée de silice ou des scories qui sont des sous-produits de l'industrie 

métallurgique. On parle alors de ciments ou liants composés. Une bonne composition minérale 

doit rendre le RPC plus économique, réduire sa perméabilité et augmenter sa résistance 

mécanique.  

L'hydratation du ciment est une réaction exothermique. Le temps et la chaleur d'hydratation 

dépendent essentiellement des ajouts minéraux et des adjuvants utilisés. 

2.4.2.3 Effet de l’hydratation sur la microstructure 

Les investigations microstructurales et chimiques sur plusieurs types de remblais en pâte 

cimentés (principalement des remblais en pâte à base de ciment portland, de scories et de cendres 

volantes) ont montré que les produits d’hydratation ne permettent pas de remplir tous les vides 

entre les particules des résidus (Belem et al., 2002a; Ramlochan et al., 2004). La quantité élevée 

d’eau, qui excède la quantité d’eau requise pour la réaction d’hydratation, peut entraîner les 

produits d'hydratation avec le drainage. 

Les observations au microscope électronique à balayage et les tests MIP (porosimétrie par 

intrusion de mercure) montrent que la porosité effective des RPC est diminuée considérablement 

(par rapport aux résidus) par l'irrégularité géométrique des pores causée par la formation des 

hydrates (Belem et al., 2001, 2002a). C'est pourquoi le RPC est caractérisé par une plus grande 

capacité de rétention d’eau après sa consolidation. Cette révélation est particulièrement 
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intéressante puisque la présence d'eau limite l’intrusion et la consommation de l’oxygène, et par 

conséquent, l’oxydation des sulfures présents dans les résidus (Ouellet et al., 2008). Cependant, 

un haut degré de saturation du RPC peut diminuer sa résistance mécanique (Belem et al., 2002a). 

2.4.2.4 Effet des sulfures sur la microstructure du RPC 

Une teneur en sulfures élevée peut modifier significativement la microstructure du RPC et 

affecter sérieusement sa résistance mécanique et sa stabilité géochimique. La présence de sulfates 

(dans l'eau du mélange) dans les résidus produit une dissolution des produits d’hydrates et forme 

des phases gonflantes, responsables de fissures dans le RPC (Benzaazoua et al., 1999, 2002; Fall 

et Benzaazoua, 2005). Ces fissures créent des plans de faiblesses et facilitent aussi l’intrusion de 

l’oxygène à travers le RPC, créant ainsi un potentiel plus élevé de génération d'eaux acides. 
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2.5 État des contraintes dans les chantiers et théorie de l’effet 

d’arche 

 

Les chantiers miniers souterrains ont souvent des parois très rugueuses produites par les 

opérations de sautage pour extraire le minerai. Après la mise en place et le tassement du remblai 

minier, une résistance frictionnelle se développe à l'interface roc-remblai (figure 2.11). La 

contrainte de cisaillement créée en raison de la différence de rigidité entre le roc et le remblai 

engendre un transfert d'une partie de son poids au roc adjacent et une réduction de pression dans 

les remblais comme le montre des mesures in situ (Knutsson, 1981; Hassani et Archibald 1998; 

Harvey, 2004; Grabinski, 2010). Ce phénomène de transfert de charge est reconnu comme "effet 

d'arche" puisque les isocontours des contraintes verticales et horizontales sont sous forme 

d'arches comme montré dans plusieurs investigations (Aubertin et al., 2003; Li et al., 2003, 

2005a, 2007; Li et Aubertin 2009c, 2010) et suggéré à la figure 2.11. 

 

Figure 2.11: Illustration de l'effet d'arche qui se développe dans les chantiers miniers souterrains 

(tirée de Belem et al., 2011. Notes du cours GML6603 – Remblais miniers) 
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La théorie de l'effet d'arche a été développée par Janssen (1895) pour le calcul des contraintes 

dans les silos. Cette approche a été ensuite adaptée par Marston (1930) pour le calcul des 

pressions sur les conduites dans les tranchées enfouies. 

À cause de l'effet d'arche, les contraintes verticales et horizontales au bas du chantier sont 

souvent plus faibles comparativement au poids des terres, qui est calculé par l'équation (2-5): 

 (2-5) 

où  est la contrainte verticale (kPa),  le poids volumique du remblai (kN/m
3
) et z la 

profondeur du point de mesure à partir de la surface du remblai (en m).  

La considération de l'effet d’arche dans la conception pourrait être avantageuse puisqu’elle 

permet de dimensionner les structures de support soumises à de moindres chargements. 

La solution analytique proposée par Marston (1930) pour calculer la contrainte normale verticale 

dans une tranchée étroite remblayée à une profondeur z est définie par l'équation (2-6) (McCarthy 

1988) : 

 (2-6) 

Avec μ = tan δ = coefficient de friction à l’interface mur-remblai 

δ = angle de friction à l’interface mur-remblai 

K =  coefficient de pression des terres 

B = largeur de la tranchée (en m) 

 = poids volumique du remblai (kN/m
3
) 

L’équation (2-7) représente la solution de Terzaghi (1943), qui a inclut la cohésion c (en kPa) 

dans la solution de Marston : 

 

 (2-7) 



31 

 

La valeur du coefficient de pression des terres K a fait l’objet de plusieurs investigations. Les 

travaux de Marston (1930) suggèrent que la valeur K devrait prendre la valeur du coefficient de 

pression active des terres Ka de Rankine définit par : 

 
(2-8) 

Les analyses présentées par Li et al. (2003) tendent à montrer que la valeur du coefficient de 

pression des terres K varie entre les valeurs Ka (à l'état actif) et K0 (au repos donné par l’équation 

(2-9)). 

 (2-9) 

La figure 2.12 présente la distribution des contraintes verticales et horizontales obtenues par la 

solution analytique de Marston et la solution basée sur le poids des terres. La figure montre qu'il 

existe une importante différence entre les deux solutions, due à l'effet d'arche développé (figure 

2.11). Les travaux de Marston montrent que la magnitude des effets d'arche dépend de plusieurs 

facteurs incluant : la largeur de la tranchée, l'angle de friction à l’interface mur-remblai et le 

coefficient de pression des terres K. Aubertin et al. (2003) et Li et al. (2003), (2005a) et (2009a) 

se sont basés sur la solution de Marston (1930) pour proposer des solutions analytiques qui 

correspondent à différents scénarios. De plus, ils ont étudié les différents facteurs qui influencent 

ce phénomène incluant les pressions interstitielles, la cohésion du remblai et la dimension du 

chantier. Ces solutions ont été validées par des calculs numériques et des essais sur modèles 

physiques (Mitchell, 1992; Take et Valsangkar, 2001). Ces solutions sont montrées et discutées 

plus loin dans ce chapitre. 

 
Figure 2.12: Comparaison entre les contraintes verticales et horizontales obtenues par la solution 

de Marston (avec le coefficient de pression des terres au repos K0) et celle basée sur le poids des 

terres (tirée de Li et al., 2003). 
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2.6 Méthodes d’évaluation des propriétés des remblais dans les 

chantiers souterrains 

 

2.6.1 Mesures in situ 

 

Dans l'industrie minière, la conception des remblais, surtout pour les RPC, se base principalement 

sur des résultats obtenus sur des échantillons préparés et contrôlés dans des conditions de 

laboratoire. Des investigations ont toutefois montré que les propriétés in situ des RPC peuvent 

différer significativement de celles rencontrées au laboratoire (Belem et al., 2004; Le Roux et al, 

2005).  

Les mesures in situ peuvent permettre l'optimisation des mélanges des RPC, les séquences de 

remblayage et la conception des barricades. Plusieurs instruments permettent d'évaluer les 

propriétés géotechniques in situ des RPC dans les mines souterraines (Hassani et Archibald, 

1998; Revell, 2003; Grabinski et Bawden, 2007). L'interprétation des résultats d'études in situ 

retrouvés dans la littérature est souvent limitée à la mine concernée, à cause de plusieurs raisons, 

notamment la différence des méthodes expérimentales utilisées, des conditions in situ des 

chantiers miniers et du type de RPC fabriqué.  

 

Le Roux et al. (2005) ont utilisé un pressiomètre auto-foreur (Self-boring pressuremeter - SBP) 

montré à la figure 2.13, pour investiguer l'état de contraintes et les propriétés in situ (résistance au 

cisaillement, module de cisaillement) du RPC utilisé dans la mine Golden Giant. La portion 

centrale du pressiomètre SBP est équipée d'une membrane élastique qui gonfle durant le test. Des 

jauges de déformations en contact avec la membrane permettent les mesures de déplacement en 

réponse aux chargements appliqués. Les résultats des essais in situ entrepris par le pressiomètre 

auto-foreur ont donné un module de cisaillement G entre 240 et 510 MPa pour un RPC à 6% de 

liant après un temps de cure de 5 mois. Ces valeurs correspondent à une valeur du module de 

Young E comprise entre 576 et 1224 MPa en assumant une valeur du coefficient de Poisson de 

0,2. 
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Figure 2.13 : Schéma du pressiomètre auto-foreur utilisé pour des investigations in situ (tirée de 

Le Roux et al., 2005) 

 

Thompson et al. (2011) ont utilisé différents instruments de mesure dans deux chantiers à la mine 

Cayeli (en Turquie) selon un axe vertical et un axe horizontal comme l'indique la figure 2.14(a). 

Le chantier 685 a une largeur de 25 m et une hauteur de 16 m, comparativement à une largeur de 

10 m et une hauteur de 15 m pour le chantier 715. La vitesse de remplissage a été d'environ 25 

cm/h pour le chantier 685, qui a été rempli avec un remblai contenant 8,5% de liant au bas du 

chantier et 6,5% de liant à la partie supérieure du chantier (figure 2.14(a)). La vitesse de 

remplissage a été entre 35 et 42 cm/h pour le chantier 715, avec un remblai contenant 6,5% de 

liant sur toute la hauteur du chantier. Le système d'instrumentation utilise des cellules de 

pressions totales, des transducteurs de déplacement et des piézomètres. Tous les instruments de 

mesure ont été intégrés dans une cage connectée au système d'acquisition des données. Des 

cellules de pressions totales (TEPC) et des piézomètres ont aussi été installés sur chaque 

barricade pour mieux comprendre leur comportement pendant le remplissage du chantier.  
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Figure 2.14 : Mesures in situ effectués dans un chantier et sur une barricade à la mine Cayeli par 

Thompson et al. (2011) : (a) Plan de localisation des équipements d’instrumentation; (b) exemple 

d'évolution des pressions enregistrées par les cellules de pression (cage 3) installées dans un 

chantier en phase de remblayage; (c) comparaison des pressions verticales pour deux vitesses de 

remplissage; (d) comparaison des pressions mesurées à la cage 2 dans deux chantiers différents. 

 

La figure 2.14(b) montre l'évolution des contraintes totales verticale σy, horizontale σx et 

perpendiculaire au plan σz telles qu'enregistrées par les cellules de pression au bas du chantier 

685 (cage 3) pendant le remplissage. Cette figure montre que les pressions au bas du chantier 

augmentent au fur et à mesure que le remplissage s’effectue. Aussitôt que le remplissage s’arrête, 

après 3 jours, la pression interne dans le remblai décroît pendant plusieurs jours.  

(a) (b) 

(c) (d) 
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Il est intéressant de noter que pendant les premières heures, la contrainte verticale est égale à la 

contrainte horizontale. Pendant cette période, il n'y a pas de contrainte effective (car la pression 

d'eau est égale aux contraintes totales) et la résistance frictionnelle est nulle, ce qui veut dire que 

le remblai se comporte comme un fluide visqueux (figure 2.14(b)). Par la suite, les contraintes 

effectives verticales augmentent avec le remplissage plus rapidement comparativement aux 

contraintes horizontales. Cela suggère que le remblai commence à acquérir une résistance 

frictionnelle due au drainage (et peut être aussi une cohésion) et à la réaction d'hydratation qui 

consomme de l'eau (à travers plusieurs mécanismes). Ceci diminue le volume d'eau disponible 

dans les pores du remblai, et par conséquent, produit une diminution des pressions interstitielles 

et une augmentation des contraintes effectives (Witteman et Simms, 2010; Thompson et al., 

2011). 

La figure 2.14(b) montre aussi l’évolution de la température et des pressions interstitielles 

mesurées à la cage 3. On peut voir que la température augmente significativement au début du 

remplissage et devient pratiquement constante à la fin du remplissage. La température serait en 

relation directe avec la réaction d’hydratation du liant. 

La figure 2.14(c) illustre l'effet de la vitesse de remplissage sur les pressions verticales  

(= horizontales) du remblai au chantier 715. Il est montré que l'augmentation des pressions est 

plus rapide pour la vitesse 42 cm/h (cage 5) comparativement à celle de 31cm/h (cage 3). 

La figure 2.14(d) compare les pressions verticales et horizontales dans les deux chantiers (685 et 

715). Initialement, le taux d'augmentation des pressions est plus grand pour le chantier 715 à 

cause de la plus grande vitesse de remplissage. Dans le chantier 685, les pressions ne sont plus 

hydrostatiques après 0,4 jours. Les auteurs estiment que la prise rapide du liant dans ce cas était 

le facteur déterminant de la réduction de la pression sur la barricade puisque les pressions 

interstitielles ont diminué (diminution de la quantité d'eau dans le remblai) et la résistance 

frictionnelle du remblai a augmenté. 
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2.6.2 Mesures en laboratoire 

Les essais de laboratoire sont effectués pour contrôler la qualité du RPC fabriqué, pour 

déterminer ses propriétés, et pour mieux comprendre l'évolution du comportement de ce matériau 

sous des conditions relativement contrôlées.  

L'essai de compression uniaxiale (similaire à l'essai triaxial sans confinement) est souvent utilisé 

pour déterminer le module de Young E et la résistance en compression uniaxiale (UCS). L'essai 

en compression triaxiale à divers confinements permet de déterminer la cohésion non drainée du 

remblai saturé (cu), la cohésion effective c', l'angle de friction interne ϕ ', le module de Young E; 

il peut aussi servir à mesurer la conductivité hydraulique k (par l'application d'un gradient 

hydraulique). 

L'essai triaxial est utilisé avec différentes pressions de confinement (avec une mise en charge 

initiale isotrope ou anisotrope). L'essai consiste typiquement à appliquer une pression de 

confinement sur l'échantillon de remblai en pâte placé dans la cellule. Une contrainte 

déviatorique (augmentation de la contrainte axiale) est ensuite appliquée jusqu'à la rupture. La 

rupture du remblai se produit au moment où le demi-cercle des contraintes touche le critère de 

rupture dans le plan de Mohr (figure 2.8). Il existe plusieurs types d'essais triaxiaux (McCarthy, 

2007) incluant l'essai CD (consolidé drainé), CU (consolidé non drainé) et UU (non consolidé 

non drainé). L'essai CU peut être mené si le remblai est saturé et son drainage complet n'est pas 

possible ou le cas d’une charge rapide. Les pressions interstitielles doivent alors être mesurées. 

Dans le cas où le remblai est saturé et le drainage est possible, l'essai CD peut être mené; il faut 

alors que la variation des pressions interstitielles soit négligeable par rapport à l'augmentation des 

contraintes appliquées.  

Des investigations ont montré qu'il existe une différence significative entre les résultats des essais 

en laboratoire et les essais in situ. Cette différence a été expliquée par plusieurs facteurs incluant 

le milieu d'essai (température, humidité), les conditions aux frontières (murs, parois), l'état des 

contraintes et autres facteurs (Belem et al., 2002a, b; Le Roux et al., 2005). 

Belem et al. (2000) ont investigué le comportement mécanique du remblai en pâte cimenté 

fabriqué avec deux résidus sulfureux de mines Canadiennes. Trois différents types de liant ont été 

utilisés à base de : ciment portland ordinaire (PC), cendre volante (FP) et scories (SP). Aussi, 

trois différentes proportions de liant (3 wt%, 4,5 wt%, 6 wt%) ont été utilisées. Leur étude montre 
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que pour une proportion de liant donnée, la plus grande cohésion et le plus faible angle de friction 

sont obtenus avec le liant à base de scories (figure 2.15). Ces résultats semblent indiquer aussi 

que l'angle de friction interne diminue avec une augmentation de la teneur en liant, mais ces 

résultats n'ont pas été confirmés par d'autres études (Potvin et al., 2005) 

  

Figure 2.15 : Essais triaxiaux sur des échantillons de remblai en pâte fabriqués avec différents 

types de liants (a) et avec différentes proportions de liant (b) (d'après Belem et al., 2000) 

L'aspect de la consolidation du RPC a été investigué par Yilmaz (2010) qui a effectué une série 

d'essais de laboratoire sur les RPC en utilisant un appareil innovateur appelé CUAPS (Curing 

Under Applied Pressure System) (Belem et al., 2002b; Benzaazoua et al., 2006).  

L'appareil CUAPS est un appareil qui permet d'effectuer plusieurs types d'essais : Essai de 

consolidation unidimensionnelle, essai de perméabilité direct ainsi que des essais de cure sur des 

RPC sous des pressions verticales constantes ou variables. Un cylindre de 102 mm de diamètre et 

204 mm de hauteur est utilisé pour contenir le RPC. 

La figure 2.16 présente les courbes de consolidation unidimensionnelle e-log(σ') pour différents 

types de liants et à différents temps de cure obtenues par Yilmaz et al., (2010). Cette figure 

montre que la courbe de consolidation change significativement avec le temps de cure et le 

pourcentage de liant dans le RPC. La figure 2.17 est tirée des résultats de la figure 2.16 et illustre 

l'évolution de l'indice de compression Cc dans le temps pour différents types de liants. Dans cette 

étude, les valeurs de Cc semblent plus élevées comparativement aux résultats d'autres 

investigations (Fahey et al., 2011; Helinski et al., 2011). On y montre aussi que l'indice de 

compression Cc diminue avec le temps de cure et l'ajout du liant. Ceci s'explique par le 
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développement de la rigidité du remblai suite à l'hydratation et la  prise du liant (Belem et al., 

2000; Benzaazoua et al., 2004).  

 

Figure 2.16 : courbes de consolidation unidimensionnelle de certains échantillons de remblais en 

pâte cimentés ayant différents teneurs en ciment (tirée de Yilmaz et al., 2010) 

 

Figure 2.17 : Variation de l'indice de compression Cc dans le temps de certains échantillons de 

RPC ayant différentes teneurs en ciment (tirée de Yilmaz et al., 2010). 
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La figure 2.18 montre l'évolution des valeurs du coefficient de compressibilité mv (exprimé par 

l'équation (2-25)) mesurées par Yilmaz et al., (2010) sur des échantillons de RPC. Cette figure 

montre que les valeurs du coefficient de compressibilité mv ont tendance à décroître avec 

l'augmentation du pourcentage de liant et du temps de cure. Ces résultats se concordent bien avec 

les investigations de Belem et al. (2000) et Fall et al. (2007). 

 

Figure 2.18: Évolution du coefficient de compressibilité volumique mv en fonction du temps de 

cure pour différentes teneur en liant (d'après Yilmaz et al., 2010). 

 

L'évolution du coefficient de consolidation cv peut être calculé à partir de l'évolution de la 

conductivité hydraulique et du coefficient de compressibilité volumique suivant l'équation (2-10) 

(Holtz et al., 2010). Les résultats des calculs montrent que le coefficient de consolidation cv 

diminue avec le temps de cure principalement à cause de la diminution de la conductivité 

hydraulique dans le temps. 

 (2-10) 

où e0 l'indice des vides initial, av coefficient de compressibilité (pente de la courbe de 

compression sur une échelle arithmétique) et γw poids volumique de l'eau (kN/m
3
) 
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2.6.3 Solutions analytiques pour l'état des contraintes 

Les solutions analytiques sont des outils relativement simples et rapides qui permettent 

d’effectuer des calculs préliminaires en géotechnique. Il existe peu de solutions analytiques pour 

évaluer l’état des contraintes dans les chantiers minier souterrains. Li et Aubertin (2009a) ont 

proposé une solution 3D pour l’évaluation des contraintes normales verticales et horizontales le 

long d’un chantier remblayé en tenant compte de la position du niveau d'eau. Cette solution a été 

basée sur la solution de Marston (équation (2-6)) et sur les solutions précédemment développées 

par les mêmes auteurs (Aubertin et al., 2003; Li et al., 2003, 2005a). L'équation analytique prend 

en compte la cohésion du remblai ainsi que l’effet d’une charge à sa surface (figure 2.19). 

 

Figure 2.19 : Géométrie d’un chantier minier remblayé (tirée de Li et Aubertin, 2009a) 

 

Pour le cas où la nappe phréatique est profonde (cas drainé - h ≤ Hm), le coefficient de pression 

latéral Kcim pour la i
ème

 interface entre le remblai et le i
ème

 mur rocheux, est définie par : 

 (2-11) 

où  représente la contrainte effective horizontale perpendiculaire au i
ème

 mur (en kPa) et  

représente la contrainte effective verticale (en kPa). 
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Ce coefficient est exprimé en fonction de la cohésion du matériau selon l’équation (2-12): 

 (2-12) 

Kim et αim représentent le coefficient de réaction pour un sol sans cohésion et l'angle d'état du 

matériau respectivement. Les valeurs de ces deux paramètres sont données au tableau 2-1. Le 

paramètre cm représente la cohésion du remblai. 

Tableau 2-1: Définition de Kim et αim pour différentes conditions de remblai (tiré de Li et 

Aubertin, 2009a). 

Condition du remblai Kim αim 

Au repos (K0)  0° 

Active (Ka)   

Passive (Kp)   

La solution 3D proposée par Li et Aubertin (2009a) exprime la contrainte effective verticale  

(= contrainte totale verticale pour le cas drainé; u=0) comme suit : 

 (2-13) 

γm et cm représentent respectivement le poids volumique (en kN/m
3
) et la cohésion du remblai au 

dessus de la nappe phréatique (en kPa), p0 est la pression appliquée à la surface du remblai (en 

kPa). 

avec 

 (2-14) 

et  

 ,  (2-15) 

où δm représente le coefficient de frottement entre le mur et le remblai minier 

Les auteurs ont exprimé la contrainte effective horizontale en remplaçant l’équation (2-13) dans 

l'équation (2-11): 
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 (2-16) 

Une solution qui prend en compte le niveau de l'eau dans le chantier a aussi été élaborée par Li et 

Aubertin (2009b). Pour le cas submergé (h ≥ Hm) , le coefficient de pression latéral devient : 

 (2-17) 

La contrainte effective verticale peut être exprimée comme suit : 

 

(2-18) 

avec 

 (2-19) 

Kisat et δsat sont respectivement le coefficient de pression des terres et le coefficient de friction 

entre le mur et le remblai à l’état saturé. 

La contrainte effective horizontale devient : 

 (2-20) 

Dans le cas où il n’y a pas de charge à la surface du remblai (p0 = 0) et les 4 murs réagissent de la 

même manière et partagent les mêmes propriétés, la solution devient 

 

(2-21) 

Dans le cas où υm = δm, υsat = δsat et cm= csat = 0, l’équation (2-21) devient : 
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(2-22) 

Si en plus, la longueur du chantier est beaucoup plus importante que sa largeur (L >> B), alors 

l’équation (2-22) devient une solution 2D comme suit : 

 

(2-23) 

et la contrainte horizontale correspondante peut s'exprimer : 

 

(2-24) 

La figure 2.20 (a) montre les contraintes verticales effectives et totales obtenues par les solutions 

analytiques de Li et Aubertin (2009a) (équation (2-18)) et celles dues au poids des terres. Les 

résultats ont été obtenus pour un remblai sans cohésion dans un état actif (K = Ka). Sur cette 

illustration, p0 = 50 kPa et les dimensions de l'ouverture sont B = 10 m, L = 20 m et Hb = 30 m. 

Les propriétés du remblai humide sont γm=18 kN/m
3
, ϕm = δm = 30°. Pour le remblai saturé γsat= 

20 kN/m
3
 et ϕsat= δsat = 30°. Les effets d'arche mentionnés auparavant sont clairement montrés 

dans cette figure. Les contraintes verticales seront surestimées si le poids des terres seul est 

considéré. 

Les figures 2.20(b), (c) et (d) montrent l'influence des propriétés du remblai et de la géométrie du 

chantier sur les contraintes effectives verticales et horizontales. Il est montré dans ces figures que 

l'augmentation de l'angle de friction υ et la cohésion c peuvent réduire significativement les 

contraintes effectives au bas du chantier. Il est aussi montré que l'accroissement de la longueur L 
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peut augmenter les contraintes effectives horizontales et verticales à cause de la diminution du 

transfert des contraintes au roc adjacent (figure 2.20 d).  

  

  

Figure 2.20: (a) Contraintes verticales en fonction de l'élevation dans le chantier, basées sur le 

poids des terres et la solution analytique 3D. Influence des paramètres de résistance au 

cisaillement ϕ (b) et la cohésion c (c) ainsi que la longueur L du chantier (d) sur les contraintes 

effectives à différentes élévations h (tirée de Li et Aubertin, 2009a) 

 

 

 

(c) (d) 

(a) (b) 
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2.6.4 Analyses par méthodes numériques 

L’utilisation d'outils de modélisation numérique connaît depuis une vingtaine d'années un 

développement considérable dans le domaine de la géotechnique. La modélisation numérique 

permet l'analyse du comportement des matériaux sous diverses conditions de sollicitation. Les 

simulations numériques sont souvent utilisées pour résoudre des problèmes complexes. Les 

techniques numériques comme les méthodes d'éléments finis et des différences finies sont plus 

flexibles et plus versatiles que les solutions analytiques, qui sont surtout appliquées à des 

situations simples ou idéalisées. En choisissant des paramètres représentatifs, des conditions aux 

frontières et des modèles constitutifs adéquats, les simulations numériques peuvent mener à une 

évaluation réaliste des problèmes géotechniques. 

Li et al. (2003, 2005a) et Li et Aubertin (2009a, b et 2010) ont effectué plusieurs séries de 

simulations numériques pour analyser le comportement géotechnique des chantiers miniers 

remblayés. Les résultats de ces investigations montrent un effet d'arche qui se développe au sein 

du chantier comme l'illustrent les iso-contours des contraintes verticales sur la figure 2.21 (a). Le 

remblai minier étant beaucoup moins rigide que le roc, ce contraste de rigidité contribue aux 

effets d'arche qui se développent au sein du chantier et qui sont caractérisés par des contraintes 

verticales plus élevées au centre du chantier par rapport à celles proches du roc adjacent (figure 

2.21 b).  

La figure 2.22 montre la distribution du coefficient de réaction K=σ'h/ σ'v selon la largeur du 

chantier, obtenue par les solutions numériques, pour différentes élévations. Il est montré que cette 

distribution ne varie pas beaucoup avec la profondeur du chantier, et que la valeur de K est très 

proche de la valeur en condition active (Ka). 

Des simulations numériques considérant l'effet des pressions interstitielles à l'équilibre ont aussi 

été conduites par Li et Aubertin (2009 a, b) qui les ont comparé aux solutions analytiques 

présentées plus haut (équations (2-23) et (2-24)). La figure 2.23 montre une bonne corrélation 

entre les solutions numériques, conduites par le code FLAC-2D (Itasca, 2002) et les solutions 

analytiques développées par les mêmes auteurs en utilisant un coefficient de réaction à l'état actif 

Ka. 
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Les simulations numériques menées par Pirapakaran et Sivakugan (2007) à l'aide du code FLAC-

2D estiment que le coefficient de pression des terres K est plus proche de la valeur de K0 que Ka 

et que les contraintes calculées avec Ka sous-estime les contraintes au sein du chantier dans le cas 

où l'angle de friction à l'interface δ est inférieur à l'angle de frottement interne du remblai ϕ '. 

 

 

 

Figure 2.21: (a) Iso-contours des contraintes verticales dans un chantier minier remblayé.  

(b) Distribution des pressions verticales obtenus avec FLAC-2D (Itasca 2002) selon la largeur du 

chantier à différents endroits; les calculs ont été menés avec E = 100 MPa, c = 0, γ = 18 kN/m
3
, ν 

= 0,2, ϕ = 30°, pour le remblai; E = 30GPa, ν = 0,3 et γ = 27 kN/m
3
 pour la masse rocheuse; 

largeur B = 6 m et hauteur H = 45 m (tirée de Li et al., 2003) 

 

Figure 2.22: Coefficient de réaction K obtenu par les solutions analytiques et numériques à 

travers la largeur du chantier à différentes élévations h pour le cas montré à la figure 2.21 (tirée 

de Li et al., 2003). 

(a) (b) 
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Figure 2.23 : Contraintes verticales et horizontales effectives (a) et totales (b) à côté de la paroi 

rocheuse obtenus des simulations numériques et des solutions analytiques; E = 300 MPa, c = 0, 

γsat = 20 kN/m
3
, ν = 0,2 et ϕsat = 30° pour le remblai saturé; E = 30 GPa, ν = 0,3 et γ = 27 kN/m

3
 

pour la masse rocheuse; B = 6 m et H = 45 m (tirée de Li et Aubertin, 2010). 

 

Il a été montré que plusieurs facteurs régissent le comportement des remblais dans les chantiers 

miniers (Aubertin et al., 2003; Li et al., 2005a; Li et Aubertin 2009a, c, 2010; Rankine et 

Sivakugan, 2005; Rankine et al., 2006). À titre d'exemple, la largeur du chantier influence 

significativement la distribution des contraintes verticales et horizontales au sein du chantier. La 

figure 2.24 montre quelques résultats des simulations numériques menées par Fahey et al., 2009 

avec le logiciel PLAXIS. Cette figure montre que l’effet d’arche est plus prononcé quand la 

largeur du chantier diminue. Des résultats similaires ont été observés par Aubertin et al. (2003) et 

mis en évidence par leurs solutions analytiques. 
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Figure 2.24 : Résultats de simulations numériques 2D (PS pour Plane Strain) qui montrent 

l'ampleur des contraintes verticales et horizontales effectives le long de la hauteur du chantier 

avec E = 10 MPa, c = 0 kPa, γsat = 20 kN/m
3
, ν = 0,2, ψ = 0° et ϕ ' = 45° pour le remblai sec; 

hauteur du chantier H=50m; remplissage instantané (tirée de Fahey et al., 2009) 

 

Malgré l'intérêt croissant des simulations numériques et leur développement pour aider à mieux 

comprendre le comportement géotechnique des chantiers souterrains remblayés, il existe peu 

d'études numériques traitant l'évolution des pressions interstitielles au sein des remblais miniers. 

Witteman et Simms (2010) ont simulé la dissipation des pressions interstitielles mesurée à la 

mine Williams Gold au nord de l’Ontario pendant et immédiatement après remplissage près de la 

barricade au bas du chantier. Ces simulations ont été conduites avec le logiciel SVFlux en 

utilisant la courbe de rétention d’eau obtenue par des mesures in situ. La conductivité hydraulique 

saturée du remblai en pâte cimenté a été fixée à 1 × 10
-7

 m/s; le coefficient de compressibilité 

variait de 0.07 ou 0.007. Une mise en place instantanée d'une couche de 5 m a été simulée sur une 

durée de 20 heures. Initialement, une distribution hydrostatique des pressions interstitielles a été 

supposée. Une condition à la frontière h = 0 m a été choisie pour représenter le drainage au bas 

du chantier.  
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La figure 2.25 montre l’effet du coefficient de compressibilité mv (exprimé par l'équation (2-25)) 

sur l’évolution des pressions interstitielles; ce coefficient peut être exprimé comme suit :  

 (2-25) 

où M est le module contraint (kPa), E est le module de Young (kPa) et ν est le coefficient de 

Poisson. 

Leurs résultats indiquent qu'un coefficient de compressibilité faible engendre une plus grande 

dissipation des pressions d’eau. À long terme, cela suggère qu'un remblai avec un faible 

coefficient de compressibilité mv engendre de plus faibles pressions (avec des succions en haut 

du chantier).  

 

Figure 2.25 : Simulation des pressions interstitielles après 20 heures du moment de remplissage 

(tirée de Witteman et Simms, 2010) 
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2.7 Analyse des barricades 

 

La stabilité des barricades est l'un des aspects les plus problématiques liés au remblayage 

souterrain dans l'industrie minière. Le Roux et al. (2004) suggère de prêter une attention 

particulière à la conception des barricades face à un remblayage séquentiel rapide. Une 

conception adéquate et une bonne évaluation des contraintes sur les barricades permettent non 

seulement d’augmenter la production, mais aussi d'assurer la sécurité des mineurs dans les 

chantiers à proximité (Hassani et Archibald, 1998; Landriault, 2006).  

 

2.7.1 Type de barricades 

 

Il existe différents types de barricades utilisées dans l’industrie minière incluant des barricades en 

bois, en roches stériles, en grillage d'acier, en brique ou en béton. Le choix du type de barricade à 

utiliser dépend de la configuration du chantier, du type de remblai à soutenir et de la disponibilité 

des matériaux de construction. La figure 2.26 montre des configurations traditionnelles des 

barricades utilisées dans l'industrie minière. 

Les barricades en béton sont considérées les plus résistantes aux pressions induites par les 

remblais. Le béton qui sert à construire ce type de barricade peut atteindre une valeur de 

résistance en compression uniaxiale (UCS) allant jusqu’à 7 MPa après 28 jours de cure du béton. 

Il est possible de dépasser cette valeur en renforçant la barricade avec des armatures en acier du 

côté de la surface libre de la barricade (endroit où la traction est élevée) comme le montre la 

figure 2.26 (c). 
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Figure 2.26: Plan (a) et coupe-section (b) de deux conceptions de barricades en bois dans une 

mine de Falconbridge (courtesy of Falconbridge Ltd). (c) Coupe-section d’une barricade typique 

en béton armé (d’après Neindorf, 1983). 

Les barricades en blocs sont souvent utilisées pour leur bonne résistance et leur coût relativement 

faible par rapport aux autres types de barricades traditionnelles. On retrouve souvent une 

conception en arche pour ce type de barricade qui favorise la compression de la barricade plutôt 

que sa traction. La figure 2.27 illustre un exemple d'une barricade en arche faite avec des briques.  

Berndt et al. (2007) ont investigué les différentes propriétés des blocs utilisés pour la 

construction des barricades. Les résultats de leurs tests ont montré que la valeur de la 

perméabilité entre les blocs (joints en mortier) se situe entre 1,2 × 10
-2

 et 3,1 × 10
-1

 cm/s, ce qui 

représente 100 à 1000 fois la conductivité hydraulique des remblais hydrauliques et permettant un 

bon système de drainage. Quant à la résistance en compression uniaxiale des blocs, elle se situe 

(a) (b) 

(c) 
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aux alentours de 7 MPa. En revanche, leur investigation a montré que lorsque ces blocs sont 

saturés, une perte d’environ 25% de la résistance peut se produire. 

  

Figure 2.27 : (a) Vue en plan d’une barricade en arche (d’après Neindorf 1983).  

(b) Barricade en blocs en cours de construction (tirée de Berndt et al., 2007) 

 

L'utilisation des roches stériles comme matériau pour la construction des barricades est de plus en 

plus courante dans les mines souterraines grâce à la disponibilité de ce matériau de construction 

sur le site. La grande conductivité hydraulique et la bonne résistance mécanique des roches 

stériles représentent aussi des raisons favorables à l'utilisation de ce type de matériau pour la 

fabrication des barricades de soutènement. 

2.7.2 Cas de rupture 

Depuis que le remblayage souterrain est devenu une pratique répandue dans les mines, plusieurs 

ruptures de barricade ont été enregistrées aussi bien pour les remblais hydrauliques, que pour les 

remblais cimentés en pâte. À titre d'exemple, la mine Mount Isa a connu 11 ruptures de barricade 

entre 1980 et 1997 (Kuganathan, 2001). Depuis la mise en place du remblai en pâte à la mine 

Cayeli en 1999, trois ruptures majeures de barricade ont causé des dommages matériels 

importants ainsi que de longs délais de production (Yumlu et Guresci, 2007). En 2000, la rupture 

d'une barricade à la mine Normandy Bronzewing a provoqué la mort de 3 personnes en Australie 

et 2 ruptures de barricades en briques ont été rapportées la même année à la mine Osborne au 

Queensland (Grice, 2001).  

(a) (b) 
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Plusieurs causes peuvent expliquer la rupture d'une barricade, incluant un design inadéquat de la 

barricade, un mauvais système de drainage ou un remplissage trop rapide (Le Roux et al., 2004; 

Sivakugan et Rankine, 2006).  

La plupart des mines utilisent des solutions empiriques pour le dimensionnement des barricades. 

La méconnaissance des pressions exercées par le remblai d'une part, et de la résistance 

mécanique des matériaux utilisés pour la fabrication des barricades d'autre part, rendent souvent 

la conception des ces structures de soutènement très imprécis (Berndt et al., 2007). 

La figure 2.28 montre l'endommagement du matériel et l'écoulement du remblai en pâte dans une 

galerie adjacente suite à une rupture de barricade produite à la mine Cayeli en Turquie. Cette 

figure illustre les conséquences d'un drainage inadéquat et un remplissage trop rapide qui ont 

entravé la dissipation des pressions interstitielles et la consolidation du remblai. Il est montré que 

le remblai se comporte comme un fluide sans contraintes effectives. L'excès de la pression 

interstitielle produit une contrainte totale très élevée au bas du chantier, ce qui peut engendrer des 

déplacements (déformations) significatifs de la barricade (Soderberg et Busch 1985; Helinski, 

2007). 

 

 

Figure 2.28 : Matériel endommagé par la rupture d'une barricade à la mine Cayeli (d'après 

Yumlu et Guresci, 2007) 
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2.7.3 Pressions sur les barricades 

2.7.3.1 Instrumentation des barricades 

L’instrumentation des barricades permet de déterminer les pressions et les déformations 

qu’exerce le remblai lors du remplissage du chantier. Elle permet de vérifier les hypothèses de 

calcul avec les résultats in situ et améliorer les connaissances sur les réponses des barricades 

soumises à des chargements. La méthode d’instrumentation la plus utilisée consiste à implanter 

des cellules de pressions et des jauges de déformation le long de la hauteur de la face libre de la 

barricade. Pour déterminer la résistance limite de la barricade, celle-ci est soumise à une pression 

(sur sa face non libre) qui augmente graduellement jusqu'à la rupture de la barricade. Ce test 

destructeur est généralement requis pour la compréhension du comportement des barricades sous 

chargement et pour déterminer la contrainte limite de rupture (Hughes et al., 2010). 

La figure 2.29 montre un exemple pour l'emplacement des différents instruments d’auscultation 

sur la face libre de la barricade. Les 2 cellules de pression totale (EPC) sont à 0,6m et à 1,8m de 

la base de la barricade, et permettent de mesurer les pressions durant le remplissage. Les jauges 

de déformation (SG) sont installées horizontalement et verticalement à la mi-largeur de la 

structure, où les déformations sont les plus élevées. L'inclinaison de la barricade est mesurée par 

des inclinomètre (Tilt meters) placés en haut de la barricade. 

 

Figure 2.29 : Exemple de plan de localisation des équipements d’instrumentation sur une 

barricade (adaptée de Hughes et al., 2010) 
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Les résultats des investigations du comportement des barricades montrent que les cellules EPC 

enregistrent des pressions qui augmentent avec l’augmentation du niveau du remblai dans le 

chantier, ce qui correspond aux observations d’autres chercheurs (Belem et al., 2004; Hughes et 

al., 2010; Thompson et al., 2011). La variation des déformations montrent un comportement 

similaire à celle des contraintes, à savoir une croissance avec une augmentation de la hauteur du 

remblai en pâte.  

La figure 2.30(a) présente l'évolution des pressions et de la température sur la face libre d'une 

barricade située au chantier 715 (voir section 2.6.1 pour plus de détails) à la mine Cayeli en 

Turquie (Thompson et al., 2011). On observe que pendant le premier remplissage, les pressions 

sur la barricade ont augmenté jusqu'à 99 kPa. Ensuite, le remplissage a été arrêté pour permettre 

au remblai de se drainer et consolider (notamment grâce à la réaction d'hydratation). Pendant ce 

temps de cure, les pressions sur la barricade ont significativement diminué comme le montre la 

figure. 

La figure 2.30(b) présente les déplacements de la barricade à différents endroits. Le déplacement 

maximal observé à la fin du remplissage 1 a été de 22 mm à la mi-hauteur de la barricade 

(position 5 à la figure 2.30(c)) où quelques fissures ont été observées sur le béton projeté. 
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Figure 2.30 : (a) Évolution dans le temps des pressions sur la barricade située au chantier 715 

(tirée de Thompson et al., 2011). (b) Évolution dans le temps des déplacements de la barricade à 

différents emplacements (tirée de Grabinski, 2010). (c) Plan de localisation des équipements 

d'instrumentation sur la barricade du chantier 715 (tirée de Thompson et al., 2010). 

 

 

 

 

  

(b) (a) 

(c) 



57 

 

2.7.3.2 Solutions analytiques 

 

Avant de pouvoir remblayer un chantier souterrain, il est important d’évaluer les contraintes (et 

les déformations) que va subir la barricade afin d’effectuer un design adéquat de celle-ci. Les 

simulations numériques représentent une bonne méthode d’évaluation puisqu’elles peuvent 

prendre en compte l’influence de plusieurs paramètres. En revanche, mener des simulations 

numériques peut être à la fois coûteux et long. La disponibilité de solutions analytiques est donc 

très souhaitable afin d’établir des évaluations préliminaires des états de contraintes de manière 

rapide et efficace. 

Suite à leurs travaux d’évaluation des états de contraintes des remblais dans les chantiers miniers 

souterrains, Li et Aubertin (2009d, e) proposent une solution analytique qui permet d’évaluer la 

charge P qu’exerce un remblai minier drainé (équation (2-26)) et non drainé (équation (2-29)) sur 

la barricade. La dimension et la géométrie du chantier sont montrées dans la figure 2.31. 

 

Figure 2.31 : Chantier minier souterrain remblayé avec une galerie d’accès et une barricade en 

roche stérile (tirée de Li et Aubertin, 2009d, e) 

 (2-26) 

 (2-27) 

 (2-28) 
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La charge sur la barricade en considérant le niveau de l'eau dans le chantier s'exprime comme  

suit : 

 
(2-29) 

Dans ces équations,  représente la contrainte effective horizontale à la base de la barricade, 

 est la contrainte effective horizontale en haut de la barricade,  est l'angle de friction le 

long de l’interface remblai-roc,  est l'angle de friction du remblai minier et  est le poids 

volumique de l’eau (= 9.81 kN/m
3
) 
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2.8 Modèles et lois de comportement géotechniques 

Plusieurs lois de comportement ont été utilisées dans les logiciels de calcul en géotechnique en se 

basant sur les méthodes des éléments finis. Les lois de comportement expriment une relation 

entre le tenseur de contraintes, le tenseur de déformations et leurs accroissements respectifs 

pouvant impliquer un critère de rupture ou de limite d’élasticité. Le choix d'un modèle dépend du 

comportement du matériau à étudier et du type d'analyse que l'ingénieur géotechnicien souhaite 

effectuer.  

La compréhension des lois de comportement est nécessaire pour une modélisation adéquate des 

problèmes géotechniques. Ici, on présente 3 modèles parmi les plus utilisés en simulations 

numériques en géotechnique : linéaire élastique, élastoplastique de Mohr-Coulomb (ÉP-MC) et le 

modèle Cam-Clay modifié (CCM).  

2.8.1 Modèle linéaire élastique 

Le modèle linéaire-élastique est le modèle le plus simple et le plus utilisé dans plusieurs 

domaines, incluant la géotechnique à cause de sa simplicité. Dans ce modèle, on suppose que les 

contraintes sont proportionnelles aux déformations en suivant l’équation généralisée de Hooke 

(Geoslope, 2008) pour le cas isotrope (voir aussi la figure 2.32). 

 

(2-30) 

Dans cette équation, σx représente la contrainte verticale, σy la contrainte horizontale, σz la 

contrainte dans le sens perpendiculaire à la feuille, τxy la contrainte de cisaillement et γxy la 

déformation de cisaillement. 

La contrainte de cisaillement τxy est reliée à la déformation de cisaillement γxy par l'équation 

(2-31) : 

 (2-31) 
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G représente le module de cisaillement et peut être exprimé en fonction du module de Young E et 

du coefficient de Poisson ν selon l'équation (2-32) : 

 (2-32) 

Pour le cas 2D (structure avec une grande dimension dans l’axe z), on postule que les 

déformations suivant l’axe z sont nulles (déformations planes, ).  

Il est important de noter que la loi de Hooke est souvent inappropriée pour les sols puisqu’ils ne 

se comportent ni de manière linéaire élastique ni de manière isotrope. Cette relation linéaire 

permet l’application de très grandes contraintes sans engendrer des déformations plastiques (ou 

de rupture). Il est toutefois utile d’appliquer cette loi pour les petits déplacements afin de calculer 

les déformations élastiques produites par des contraintes appliquées sur le sol. 

 

Figure 2.32 : Courbe contrainte-déformation pour le modèle élastique linéaire 

 

2.8.2 Modèle élastique parfaitement plastique (élastoplastique) de Mohr-

Coulomb (ÉP-MC) 

 

Le modèle élastoplastique décrit un comportement élastique et plastique du matériau. La courbe 

contrainte-déformation correspondant à ce modèle est montrée à la figure 2.33. Avant la limite de 

plasticité, le matériau a un comportement élastique linéaire et les déformations produites sont 

réversibles. Dès que la limite de plasticité est atteinte, la courbe contrainte-déformation devient 
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parfaitement horizontale : le matériau subit alors des déformations plastiques irréversibles ou 

permanentes. 

 

Figure 2.33 : Courbe contrainte-déformation du modèle élastique parfaitement plastique (adaptée 

du Manuel de SIGMA/W - Geoslope, 2008) 

 

Le critère de plasticité de Coulomb s'exprime en terme de contrainte de cisaillement τ et de la 

contrainte normale σn sur un plan. La plasticité commence lorsque la contrainte de cisaillement 

satisfait cette équation :  

 (2-33) 

où c et  sont la cohésion et l'angle de friction interne du sol. 

En terme des deux contraintes principales extrêmes, le critère de Mohr-Coulomb peut être 

exprimé par  

 (2-34) 

pour  ≥  ≥  

Le critère de plasticité peut être aussi exprimé en termes d'invariants des contraintes comme suit : 

 (2-35) 

avec : 

unloading 
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 (2-36) 

 (2-37) 

 (2-38) 

 (2-39) 

La contrainte déviatorique   dans la direction i peut être définie comme :  

 (2-40) 

Avec i = x, y ou z 

Lorsque le seuil d’élasticité est franchi, la déformation plastique peut être calculée par l’équation 

suivante (Hill, 1950) : 

 (2-41) 

où  est un scalaire positif, et  

 (2-42) 

Cette dernière fonction représente le potentiel plastique, qui peut être différent du critère de 

plasticité. L'équation (2-41) correspond à la règle d'écoulement plastique qui définit les 

composantes de la vitesse de déformation plastique. Cette règle d'écoulement plastique a été 

basée sur l'observation que pour les métaux, les axes principaux de la vitesse de déformation 

plastique coïncident avec ceux des contraintes.  

Si le potentiel plastique est identique au critère de plasticité, alors la règle de l'écoulement 

plastique (équation (2-41)) est dite "associée". Sinon, elle est non associée. 

Plus d'information sur les modèles élastoplastiques utilisés en géotechnique sont présentés dans 

Wood (2004), Yu (2006), Helwany (2007) et SIGMA/W (GeoSlope 2008) 

 



63 

 

 

2.8.3 Modèle Cam-Clay modifié (CCM) 

 

Le modèle Cam-Clay est un des modèles élastoplastiques les plus connus et les plus utilisés en 

géotechnique. Il a été développé par une équipe de chercheurs de l'université Cambridge (U.K) 

dans les années 60 pour décrire le comportement des argiles molles (Helwany, 2007). La version 

du modèle Cam Clay la plus couramment utilisée pour les applications géotechniques est appelée 

«modèle Cam-Clay modifié». Ce modèle est caractérisé par des surfaces de charge écrouissables 

en forme d'ellipses dans le plan des deux invariants des contraintes q et p (p contrainte moyenne, 

q contrainte déviatorique). À l'intérieur de ces surfaces, le matériau a un comportement élastique. 

Il existe de plus, en un point de chaque ellipse, un état critique caractérisé par une variation de 

volume nulle. 

Le modèle Cam Clay modifié tient compte de certaines caractéristiques des matériaux poro-

plastiques, tels que certaines argiles (Fernandez, 2009): 

 la forte porosité de ces matériaux provoque des déformations volumiques irréversibles 

sous chargement hydrostatique, correspondant à une réduction de la porosité. 

 une phase contractante suivie d'une déformation à volume plastique constant, ou s'il s'agit 

d'un matériau dense, une dilatance suivie aussi d'une déformation à volume constant 

lorsque ces matériaux sont soumis à des chargements déviatoriques. 

Des essais en compression triaxiale sur certains matériaux mettent en évidence ces types de 

comportement. Des observations amènent à postuler qu'il existe un seuil plastique dont 

l'évolution est gouvernée par deux mécanismes : l'un purement contractant, associé 

essentiellement à la contrainte moyenne, et l'autre dilatant, associé au mécanisme déviatorique 

(Fernandez, 2009) 

L'intérêt du modèle de Cam Clay modifié réside dans sa faculté à décrire ces phénomènes (en 

terme de relations contraintes-déformations, volumique et déviatorique) avec un minimum 

d'ingrédients et notamment, une seule surface de charge et un écrouissage associé à une seule 

variable scalaire (l'indice des vides e). 
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La figure 2.34(a) montre de façon schématique la déformation volumique par rapport à la 

pression (isotrope) pour un sol comprenant une ligne de consolidation normale et une autre de 

sur-consolidation. Pour un matériau sur-consolidé, une augmentation de la contrainte appliquée 

changera l'état initial des contraintes, qui va se déplacer sur la ligne de sur-consolidation (pente κ 

ou Cr) vers la ligne de consolidation normale. Une fois dépassée l'intersection entre les deux 

lignes, une augmentation de la contrainte appliquée change le comportement, avec une 

déformation qui se déplacera le long de la ligne de consolidation normale (pente λ ou Cc). 

Si la figure 2.34(a) est tournée de 90° en sens antihoraire, les lignes de sur-consolidation et de 

consolidation normale montrent des analogies à celles d'une relation contrainte-déformation du 

modèle élastoplastique avec écrouissage, montrée par la figure 2.34(b). La ligne de sur-

consolidation est analogue à la portion linéaire élastique, alors que la ligne de consolidation 

normale est analogue à la portion avec écrouissage de la relation contrainte-déformation (Yu, 

2006; Lancellotta, 2008). 

 

Figure 2.34: Relation entre le changement volumique en fonction de la pression (isotrope) et la 

relation contrainte-déformation, pour un sol compressible (tirée de GeoSlope, 2008) 

 

Le modèle Cam-Clay modifié utilise les contraintes effectives, avec plusieurs autres paramètres 

définis ci-dessous (Nova, 2005; Yu, 2006; voir figure 2.35). La ligne d'état critique est montrée 

dans le plan p' - q où la pente de la ligne d'état M est en relation avec l'angle de friction interne du 
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sol υ'. Dans le cas d'une compression triaxiale conventionnelle (avec σ1 = σaxiale > σ2 = σ3 = 

σradiale), M peut être exprimé par l'équation (2-43).  

 (2-43) 

 

 , où  est la pression interstitielle; 

  

  

 et  sont les contraintes principales majeure et mineure, respectivement. 

  est le deuxième invariant des contraintes déviatoriques 

  et  sont le premier et le deuxième invariants 

du tenseur de contraintes respectivement et , ,  sont les trois contraintes 

principales. 

 M est la pente de la ligne d'état critique (à volume constant) dans le plan p' - q 

  est le volume spécifique pour   kPa ou  

  est la pente de la ligne de sur-consolidation isotrope (dans le plan e-log p') 

  est la pente de la ligne de consolidation normale isotrope (dans le plan e-logp') 

 v = (1+e) est le volume spécifique 

 

D'un essai de consolidation uniaxial, on peut obtenir les indices de compression Cc et de 

récompression Cr sur un graphique de la variation de l'indice des vides (e) en fonction de 

 (Helwany 2007; Geoslope, 2008). Les indices Cc et Cr sont reliés aux pentes λ et κ par: 

Ligne de consolidation normale :  (2-44) 

Ligne de surconsolidation :  (2-45) 
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Figure 2.35: Définition des propriétés du sol pour le modèle Cam-Clay modifié. (tirée de 

GeoSlope, 2008) 

La limite élastique pour le modèle Cam Clay modifié est représentée par l'ellipse de la figure 

2.36. La fonction de la limite élastique du modèle Cam Clay modifié est donnée par l'équation 

suivante (Helwany, 2007) : 

 (2-46) 

où pc' est la pression de pré-consolidation 

 

Figure 2.36: Fonction de la limite élastique pour le modèle Cam Clay modifié. (tirée de  

GeoSlope, 2008) 
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Le logiciel SIGMA/W utilise la valeur de px' (figure 2.36) pour définir le lieu géométrique de 

l'ellipse du modèle Cam Clay modifié. À l'état critique, la contrainte de cisaillement, q est donnée 

par : 

 (2-47) 

La contrainte px' est la pression isotrope du sol à l'état critique, avec : 

 (2-48) 

Le modèle Cam Clay modifié inclut une surface de charge avec écrouissage (qui évolue). Pour un 

sol normalement consolidé, l'état actuel des contraintes est présenté par un point dans la surface 

d'écrouissage. Pour un sol sur-consolidé, l'état actuel de contraintes est représenté par un point à 

l'intérieur de la surface d'écrouissage qui a été créée dans le passé. Dans les deux situations, un 

chargement pourrait produire une expansion de la surface d'écrouissage. La surface d'écrouissage 

du modèle Cam Clay modifié peut subir une expansion, mais ne peut jamais se contracter. La 

contrainte maximale à laquelle le sol a été soumis dans le passé, connue sous le nom de 

«contrainte de pré-consolidation p'c» détermine la surface d'écrouissage. Le rapport entre cette 

contrainte maximale subie dans le passé et la contrainte actuelle (in situ) est le rapport de sur-

consolidation («over-consolidation ratio», OCR). Les concepts et ces équations sont inclus dans 

le code SIGMA/W, qui sera utilisé dans la suite de ce travail. 

 

2.9 Logiciel SIGMA/W 

2.9.1 Introduction 

Le logiciel SIGMA/W est un logiciel d'éléments finis qui permet l'analyse contrainte-déformation 

de nombreux problèmes en mécanique des sols et des roches. Outre la possibilité de simuler 

l’interaction sol-structure, SIGMA/W permet de modéliser des problèmes de construction par 

étape, où les conditions aux frontières peuvent changer avec le temps. Pour l'analyse de la 

consolidation (déformation en raison d'un changement des pressions interstitielles) SIGMA/W 

peut être couplé avec SEEP/W pour une analyse interactive des changements des pressions 

interstitielles et des déformations. Une analyse partiellement couplée est aussi possible pour 

certaines applications. 
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2.9.2 Modélisation numérique par éléments finis 

La méthode des éléments finis (MEF) consiste à discrétiser un domaine et résoudre un système 

des équations en dérivées partielles (EDP) dont on cherche une solution approchée. Sauf cas 

particuliers, la discrétisation passe par une redéfinition et une approximation de la géométrie. Une 

fois la géométrie approchée, il faut choisir un espace d'approximation de la solution du problème; 

dans la MEF, cet espace est défini à l'aide du maillage (composé des éléments finis).  

L'analyse par les méthodes des éléments finis permet de modéliser des géométries complexes des 

ouvrages, l'hétérogénéité du comportement des matériaux, le comportement non linéaire des sols 

et des roches, le couplage entre les comportements mécanique et hydraulique et autres aspects 

essentiels.  

Les logiciels de calcul par éléments finis sont de plus en plus nombreux dans le domaine de la 

géotechnique et deviennent de plus en plus sophistiqués. L’utilisation de ces logiciels doit être 

conduite en toute connaissance des limites des logiciels et des spécificités des matériaux. 

La figure 2.37 représente les trois aspects fondamentaux de la modélisation numérique par 

éléments finis: la discrétisation du maillage, les conditions aux frontières et les propriétés des 

matériaux. Ces aspects sont expliqués plus en détails aux paragraphes suivants. 

2.9.2.1 Discrétisation du maillage 

SIGMA/W 2007 utilise des algorithmes spécifiques à des problèmes géotechniques, permettant 

de développer et d’assigner automatiquement un maillage à la géométrie. En revanche, les limites 

des capacités de calcul des ordinateurs contraint l’utilisateur à contrôler cette discrétisation 

automatique générée par ces algorithmes disponibles, afin d’arriver à un équilibre entre le temps 

de calcul et la précision de la solution. Une analyse de sensibilité de maillage est essentielle avant 

de l’utiliser pour des calculs d’application. 

2.9.2.2 Conditions aux frontières 

Établir les bonnes conditions aux frontières est une étape essentielle pour une bonne définition du 

problème et une modélisation numérique adéquate. Il existe plusieurs types de conditions aux 

frontières disponibles sur SIGMA/W (GeoSlope, 2008): Contrôle du déplacement, des forces, de 

la pression de fluide, des débits hydrauliques, etc.  
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Le logiciel SIGMA/W permet d’appliquer ces conditions aux frontières sur les nœuds et sur les 

segments des éléments. Des conditions initiales peuvent être appliquées au début de chaque étape 

de simulation. 

 

2.9.2.3 Modèles et propriétés 

 

SIGMA/W 2007 permet d’utiliser 5 modèles constitutifs déjà construits dans le code: linéaire 

élastique, élastique-anisotrope, élastique non linéaire (hyperbolique), élastoplastique (ÉP-MC) et 

le modèle Cam-Clay modifié (CCM). SIGMA/W 2007 permet aussi aux utilisateurs d’introduire 

leurs propres modèles («User defined models») afin de mieux représenter le comportement de 

certains matériaux. Le choix de chaque modèle dépend du type d'analyse que l'utilisateur souhaite 

effectuer (analyse avec ou sans pressions interstitielles par exemple) et du type de matériau 

modélisé. 

 

 

Figure 2.37 : Les fondamentaux de la modélisation numérique des problèmes géotechniques 

(adaptée de GeoSlope, 2008) 

 

Modélisation 
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Discrétisation 
en maillage
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2.9.3 Options disponibles en analyse hydromécanique sur SIGMA/W 2007 

2.9.3.1 Analyse contrainte-déformation 

L'analyse contrainte-déformation est utilisée lorsqu'on souhaite simuler un chargement et évaluer 

le changement des états de contraintes et des déplacements, notamment pour des simulations 

d'excavation ou de remblayage. Ce type d'analyse permet aussi de déterminer les contraintes et 

déformations à la rupture.  

2.9.3.2 Analyse déformation dynamique 

SIGMA/W permet de calculer l’évolution des contraintes et des déformations engendrées par un 

séisme modélisé à partir du code Quake/W (GeoSlope, 2008). Ce type d’analyse n’a pas été 

utilisé dans le cadre de ce projet de recherche. 

2.9.3.3 Analyse couplée contraintes/pressions interstitielles 

La version 2007 du code SIGMA/W (Geoslope, 2008) ne requiert pas un couplage avec le 

logiciel SEEP/W pour les problèmes de consolidation. L’analyse couplée requiert la résolution 

simultanée des équations contraintes-déformations et d’une équation d’écoulement par le code 

SIGMA/W. Le calcul des pressions interstitielles est effectué pour chaque étape de calcul des 

contraintes et des déformations afin de déterminer le changement des contraintes effectives. Cette 

analyse nécessite la définition de conditions hydrauliques aux frontières (position de la nappe, 

drainage, débits hydrauliques, etc.) ainsi que les paramètres hydro-géotechniques de chaque 

matériau (courbe de rétention d’eau et la courbe de la conductivité hydraulique en fonction de la 

succion). 

2.9.4 Vérification de l'application du code 

Avant l'utilisation du code SIGMA/W 2007, il faut s'assurer que le logiciel permet de reproduire 

des solutions connues, incluant des résultats des essais de labos sous des conditions bien 

contrôlées. Une fois l'application du code vérifiée, des simulations numériques plus compliquées 

à grande échelle peuvent être entreprises. 

Dans cette section, le résultat d'un essai oedométrique de laboratoire sur une argile bleue, tiré de 

la littérature (Bowles, 1987, essai no 13), a été reproduit numériquement avec SIGMA/W. 



71 

 

L'essai oedométrique permet de déterminer le coefficient de consolidation cv pour chaque palier 

de charge appliquée. L'échantillon a une hauteur initiale de 20 mm et un diamètre de 62,14 mm. 

Des charges de 0, 25, 50, 100, 200, 400, 800, 1600 kPa ont été appliquées à chaque 24 heures. Le 

modèle conceptuel est présenté à la figure 2.38. L’axe (Oy) représente l’axe de symétrie pour la 

représentation axisymétrique. Puisque le chargement est uniaxial (confiné), un maillage composé 

de 100 éléments rectangulaires a été choisi. Chaque élément rectangulaire a une largeur égale au 

diamètre de l'échantillon et une hauteur de 0,2 mm. Les frontières latérales ne peuvent pas se 

déplacer horizontalement (les déplacements horizontaux sont fixés à droite et à gauche des deux 

matériaux); la base de l'échantillon d'argile ne peut se déplacer ni horizontalement ni 

verticalement (les déplacements horizontaux et verticaux sont fixés simultanément). Une 

condition frontière hydraulique (charge de pression de 20 mm) est appliquée au bas de 

l'échantillon d'argile pour simuler la saturation de l'échantillon.  

 

Figure 2.38: Schéma du modèle conceptuel d'un essai oedométrique simulé avec SIGMA/W 

2007 
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Le tableau 2-2 représente les données tirées des résultats de l'essai de laboratoire. Dans ce 

tableau, la première colonne présente le temps de l'essai, la deuxième colonne présente les 

valeurs de la contrainte verticale (σv') appliquée pour chaque palier de charge de l'essai 

oedométrique. On y retrouve aussi l'évolution de la hauteur de l'échantillon et de l'indice de vides 

(e) à la fin de chaque palier, le temps requis pour obtenir 50% de consolidation pour chaque 

palier de charge (t50) et le coefficient de consolidation (cv) estimé à l'aide de la construction de 

Casagrande (e.g. Holtz et al., 2010). 

Tableau 2-2: Données tirées des résultats de l'essai au laboratoire sur l'argile bleue (tiré de 

Bowles, 1978). 

Temps 

(jours) 
σv' 

Hauteur 

moyenne (cm) 
e t50 (min) 

cv 

(cm
2
/min) 

0 0 2 0,845 - - 

1 25 1,984 0,815 10 0,0194 

2 50 1,954 0,791 22 0,0089 

3 100 1,922 0,755 33 0,0055 

4 200 1,875 0,705 19 0,0091 

5 400 1,812 0,639 15 0,0108 

6 800 1,741 0,572 14 0,0107 

7 1600 1,67 0,510 7,4 0,0186 

La simulation numérique a été réalisée en 8 étapes, une pour chaque palier de charge. Un 

matériau perméable fictif est ajouté au dessus de l'échantillon d'argile (matériau 2 sur la figure 

2.45) pour appliquer la contrainte effective initiale σ'0. Ce matériau (sec) a un comportement 

élastique avec une grande rigidité (E = 1 GPa) et un poids volumique de 400 kN/m
3
 et une 

hauteur de 25 mm (contrainte effective initiale σ'0 = 10 kPa). Le tableau 2-2 montre la charge 

verticale exercée sur l'échantillon d'argile à chaque étape de calcul. Cette charge est modélisée 

par une condition au frontière de type «contrainte». Le modèle de comportement CCM (Cam-

Clay modifié), décrit sommairement à la section 2.8.3, a été utilisé pour représenter l'argile. Les 

paramètres du modèle CCM ont été déduits des données de l'essai oedométrique. Le tableau 2-3 

présente les paramètres estimés à partir des résultats expérimentaux et attribués aux deux 

matériaux pour la simulation numérique. 
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Tableau 2-3: Paramètres estimés à partir des données du laboratoire et utilisés pour la simulation 

numérique (résultats tirés de Bowles, 1978). 

 Argile bleue (1) Matériau fictif (2) 

Loi de comportement Cam Clay Modifié (CCM) Linéaire élastique 

E (kPa) Non requis 1 GPa 

Indice des vides initial e0 0.845 Non requis 

OCR 8 Non requis 

Contrainte initiale p0 (kPa) 10 kPa Non requis 

λ (Cc) 0.09 Non requis 

κ (Cr) 0.0125 Non requis 

Poids unitaire (kN/m
3
) 18.5 400 

Angle de friction interne ϕ '  25.4° Non requis 

Coefficient de Poisson ν 0.3 0.35 

Conductivité hydraulique 

saturée ksat (m/s) 

6 x 10
-10

 Non requis 

Les valeurs de κ (pente de la ligne de compression en phase surconsolidée) et de λ (pente de la 

ligne de compression en phase normalement consolidée) sont obtenues à l'aide des équations 

suivantes : 

 

 

Les résultats de la simulation numérique de l'essai oedométrique sont présentés par les figures 

2.39 et 2.40. Les points expérimentaux sont aussi présentés sur les mêmes figures. 

La figure 2.39 montre que le résultat global (courbe de consolidation e vs log σ') de l'essai 

oedométrique a été bien reproduit par la modélisation numérique avec SIGMA/W. Le code 

permet aussi d'analyser d'autres aspects associés à un tel essai. Par exemple, la figure 2.40 

représente l'évolution du tassement en fonction de la contrainte effective verticale. Il est montré 

dans cette figure que les résultats numériques se corrèlent bien avec les résultats expérimentaux. 

Ainsi, ces résultats permettent de conclure que le code SIGMA/W est en mesure de simuler 

correctement le comportement des sols sous chargement. Il est aussi montré dans la suite que le 

code permet d'analyser le comportement d'autres types de matériaux et structures à grande 

échelle.  
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Figure 2.39: Courbe de compression d'un essai oedométrique sur l'argile bleue simulé avec le 

logiciel SIGMA/W et celle obtenue des résultats expérimentaux (données tirées de Bowles, 

1978) 

 

Figure 2.40: Résultats numériques et expérimentaux montrant l'évolution du tassement en 

fonction de la contrainte effective (données tirées de Bowles, 1978) 
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CHAPITRE 3 SIMULATIONS DE LA RÉPONSE DES CHANTIERS 

REMBLAYÉS - CAS DE RÉFÉRENCE 

 

Ce chapitre présente les différents modèles conceptuels utilisés et types d'analyses menées dans 

cette étude numérique. Les descriptions des résultats numériques, obtenus avec le code 

SIGMA/W (GeoSlope, 2008), pour chaque cas sont également présentées dans ce chapitre. Huit 

séries de simulations ont été réalisées afin d'évaluer le comportement hydrogéotechnique des 

remblais sous différentes conditions. 

3.1 Modèles conceptuels 

Les principaux cas simulés avec le logiciel SIGMA/W sont basés sur un chantier long (analysé en 

2D ou déformation plane), d'une hauteur de 50 m et une largeur de 6 m. Des maillages formés 

d'éléments triangulaires (triangles équilatéraux) ou carrés ont été adoptés pour discrétiser la 

structure en éléments finis. La dimension du côté des éléments du maillage (E.E.L) est de 0,5 m 

pour le maillage triangulaire et 0,25 m pour le maillage carré. Le type et le nombre d'éléments du 

maillage est précisé à la figure 3.1. Cette figure présente aussi les géométries et les conditions 

aux frontières utilisées pour les chantiers avec un remplissage instantané (figures 3.1(a) et (d)) et 

avec un remplissage séquentiel (figures 3.1(b) et (c)). La figure 3.2 présente deux exemples de 

maillage pour l'analyse d'un chantier remblayé instantanément (figure 3.2a) et un autre remblayé 

séquentiellement (figure 3.2b). 

Le roc est modélisé comme un milieu homogène, isotrope et linéaire élastique. Pour chaque 

simulation de remblayage, on commence toujours par une étape initiale in situ pour obtenir un 

état d'équilibre dans le massif rocheux après l'excavation et avant tout remblayage. Cette étape est 

importante puisqu'elle fait en sorte qu'il n'y ait pas de convergence (ou déplacement) des parois 

rocheuses lorsque le chantier est remblayé (i.e. le déplacement élastique du massif rocheux sous 

contraintes survient avant le remblayage). Les propriétés géotechniques de la masse rocheuse 

utilisées dans les simulations numériques présentées ici sont aussi montrées sur la figure 3.1. Le 

programme de la modélisation qui contient 8 séries de simulations numériques est présenté dans 

le tableau 3-1, alors que les caractéristiques géotechniques du remblai utilisées dans les 

simulations sont présentées au tableau 3-2.  
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La figure 3.1(a) représente le cas d'un remplissage instantané avec un remblai homogène sans 

évolution de ses caractéristiques géotechniques dans le temps. La figure 3.1(b) représente le cas 

d'un remplissage séquentiel du chantier selon une vitesse de remplissage déterminée. Trois types 

d'analyse sont présentés pour ce cas, soit un remplissage séquentiel avec le modèle 

élastoplastique Mohr-Coulomb (ÉP-MC) sans cimentation où les caractéristiques géotechniques 

du remblai sont similaires pour toutes les couches et un remplissage séquentiel (ÉP-MC) avec 

cimentation où les couches du remblai ont différentes propriétés qui évoluent dans le temps. La 3
e
 

série de simulation avec le remplissage séquentiel consiste à analyser le comportement du 

chantier remblayé avec le modèle Cam-Clay modifié (série F, tableau 3-1).  

La figure 3.1(c) représente un chantier remblayé avec une barricade en roches stériles pour retenir 

le remblai au niveau de la galerie souterraine. La barricade est caractérisée par une forme 

trapézoïdale qui correspond à la forme que prend celle-ci lors de sa mise en place avec des roches 

stériles. Les caractéristiques et les propriétés géotechniques de la barricade sont montrées au 

tableau 3-3 et à la figure 3.5. La figure 3.1(d) représente le cas d'un chantier incliné d'un angle α 

où le remblayage se fait instantanément. Pour les cas où l'eau est présente dans le chantier, le 

drainage de l'eau se fait soit à travers le point de drainage montré sur les figures 3.1(a), (c) et (d), 

soit à travers toute la base du chantier comme le montre la figure 3.1(b). Le drainage de l'eau est 

représenté par une condition hydraulique hc = 0 m (où hc est la charge hydraulique en m). 

Les interfaces entre les matériaux sont des interfaces solidaires (éléments attachés). SIGMA/W 

ne permet pas la simulation des interfaces, avec des propriétés géomécaniques spécifiques, 

comme on peut le retrouver dans d'autres codes numériques tels FLAC 2D (Itasca, 2002) et 

PLAXIS (2002). Cette limitation peut être en partie corrigée par l'ajout d'une couche mince entre 

deux matériaux, avec des propriétés spécifiques représentant la nature du contact entre deux 

matériaux. Cette technique a été utilisée dans certaines simulations (voir section 4.2, simulations 

A1, A2, A3, A4, A18 et A19) pour évaluer l'influence des caractéristiques de l'interface remblai-roc 

sur l'état des contraintes. Le cas général utilisé ici (avec des éléments solidaires) est considéré 

comme étant représentatif de la situation anticipée dans les chantiers remblayé, à cause de la 

surface de contact très rugueuse le long des parois du massif rocheux (suite au dynamitage); dans 

ce cas, le cisaillement le long des interfaces se produit dans le matériau de moindre résistance 

(i.e. le remblai).   
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Figure 3.1: Modèles conceptuels d'un chantier minier (a) vertical remblayé instantanément, (b) 

vertical remblayé séquentiellement, (c) vertical avec une barricade en roche stérile, (d) incliné d'un 

angle α et remblayé instantanément. 
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Figure 3.2 : Exemple de discrétisation du modèle avec la forme et le nombre des éléments du 

maillage pour un remplissage instantané (a) et pour un remplissage séquentiel (b); la figure 

montre aussi les conditions imposées à la périphérie du modèle. 
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Les différentes simulations ont été classées par catégories selon le type d'analyse, le modèle 

constitutif choisi, la configuration géométrique du chantier, la méthode de remplissage et le type 

de remblai simulé. Le tableau 3-1 présente ces différentes séries de simulation, classées selon les 

caractéristiques du remblai et du modèle. 

Tableau 3-1: Description des différentes séries de simulation 

Simulations Caractéristiques du remblai Caractéristiques de la simulation 

Série A - Drainé à l'équilibre 

- Modèle élastoplastique (ÉP-

MC) 

- Remplissage instantané 

Série B - Saturé à l'équilibre  

- Modèle élastoplastique (ÉP-

MC) 

- Remplissage instantané 

Série C - Initialement saturé avec 

écoulement  

- Modèle élastoplastique (ÉP-

MC) 

- Remplissage instantané 

- Drainage au bas du chantier  

(charge hc = 0 m) 

- Durée du drainage simulé : 3,17 

années 

Série D - Nouvelles couches 

initialement saturées avec 

drainage  

- Modèle élastoplastique (ÉP-

MC) 

- Remplissage séquentiel  

- Drainage au bas du chantier  

(charge hc = 0 m) 

- Durée du drainage simulé : variable 

Série E - Nouvelles couches 

initialement saturées avec 

drainage  

- Modèle élastoplastique (ÉP-

MC) 

- Remplissage séquentiel avec effet de 

cimentation 

- Drainage au bas du chantier  

(charge hc = 0 m) 

- Durée du drainage simulé : variable 

Série F - Nouvelles couches 

initialement saturées avec 

drainage  

- Modèle Cam-Clay modifié 

(CCM) 

- Remplissage séquentiel avec le 

modèle Cam-Clay modifié. 

- Drainage au bas du chantier  

(charge hc = 0 m) 

- Durée de la simulation : variable 

Série G - Conditions hydrauliques : 

évolutives 

- Modèle élastoplastique (ÉP-

MC) 

- Modélisation avec une barricade 

- Remplissage : variable 

- Drainage au pied de la barricade 

(charge hc = 0 m) 

- Durée de la simulation : variable 

Série H - Condition hydraulique : 

variable  

- Modèle élastoplastique (ÉP-

MC) 

- Chantier incliné 

- Remplissage instantané 

- Durée de la simulation : variable 
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Le tableau 3-2 présente les paramètres géotechniques du remblai et les caractéristiques de chaque 

simulation des cas de référence. Les paramètres géotechniques d'entrée dans les simulations 

numériques dépendent essentiellement du modèle constitutif choisi et du type d'analyse. 

Les paramètres géotechniques du remblai communs (qui ne changent pas d'un modèle à l'autre) à 

tous les types d'analyse et modèles constitutifs, retenus pour cette étude, comprennent le poids 

volumique γb, le coefficient de Poisson ν et l'angle de friction interne ϕ '. Lorsque le remblai est 

modélisé par le modèle élastoplastique (ÉP-MC), on ajoute à ces paramètres le module de Young 

du remblai Eb, son angle de dilatance ψ et sa cohésion c'. Les paramètres supplémentaires pour le 

modèle Cam-Clay modifié (CCM) sont le rapport de surconsolidation OCR, l'indice des vides 

initial e0, et les pentes λ et κ qui définissent la relation entre l'indice des vides et l'état des 

contraintes (voir section 2.8.3). Les divers paramètres sont spécifiés au tableau 3-2 pour les 

diverses simulations. 

Mise à part la simulation d'un remplissage séquentiel avec effet de cimentation et la simulation 

avec le modèle Cam-Clay modifié, la valeur du module de Young du remblai est de 100 MPa 

pour tous les cas de référence des autres simulations. Le choix de cette valeur est basé sur les 

résultats de Belem et al. (2000); Belem et al. (2002b); Le Roux et al. (2005) et Fall et al. (2007). 

Le poids volumique γ du remblai pour le cas sec (ou humide mais complètement drainé) est de γd 

= 18 kN/m
3
. Cette valeur est de 20 kN/m

3
 pour les cas saturés (γsat) (sans ou avec drainage). 

L'angle de friction interne ϕ ' (exprimé en contraintes effectives) des cas de référence est égal à 

35°. Ces valeurs sont basées aussi sur les observations de Belem et al. (2000); Le Roux et al. 

(2005) et Bussière (2007). 

La cohésion c' est nulle pour les cas de référence pour des raisons de simplification et de 

comparaison; cette valeur est conservatrice et elle représente bien le comportement des remblais 

sans ciment ou avant l'effet de la cimentation. Pour l'étude paramétrique, la cohésion c' varie 

entre 10 et 50 kPa pour le cas d'un remplissage instantané. Ces valeurs sont représentatifs de 

remblais en pâte à faibles teneurs en ciment (Belem et al., 2000; Le Roux et al., 2005; Rankine et 

Sivakugan, 2007). Pour le remplissage séquentiel avec effet de cimentation, la valeur de la 

cohésion peut aller jusqu'à 250 kPa (Belem et al., 2000). 
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Le coefficient de Poisson ν = 0,25 et l'angle de dilatance ψ = 0° pour les cas de référence. Ces 

valeurs sont proches de celles choisies dans les simulations de Li et al. (2003) et Fahey et al. 

(2009) ce qui facilite les comparaisons. 

Pour le cas de référence avec le modèle Cam-Clay modifié (série F), le remblai est normalement 

consolidé (OCR=1) avec un indice des vides initial e0 = 1 et des pentes λ et κ égales à 0,05 et 

0,01 respectivement. Ces valeurs sont basées sur des résultats expérimentaux de Yilmaz (2010) et 

de Helinski et al. (2011). 

Lorsque l'analyse est couplée avec un écoulement de l'eau, d'autres paramètres doivent être 

ajoutés pour le calcul des pressions interstitielles. Ces paramètres comprennent la conductivité 

hydraulique en fonction des succions et la courbe de rétention d'eau caractérisée par la valeur 

d'entrée d'air AEV et la valeur d'entrée d'eau WEV. Il est nécessaire aussi de déterminer le niveau 

d'eau initial dans le chantier et la position où se produit le drainage (charge hydraulique nulle hc = 

0 m à la base du chantier). 

La figure 3.3 présente les fonctions utilisées pour les analyses couplées avec calcul des pressions 

interstitielles. Ces courbes comprennent les relations entre la teneur en eau volumique ou la 

conductivité hydraulique et la succion (figures 3.3(a) et (b) respectivement). Ces courbes sont 

basées sur les résultats de Aubertin et al. (1996); Bussière (2007); Godbout et al. (2007) et 

Helinski et al. (2011). 

Les figures 3.3(c) et 3.4(a), (b) et (c) présentent respectivement l'évolution dans le temps de la 

courbe de rétention d'eau volumique, de la cohésion c', du module de Young Eb et de la 

conductivité hydraulique saturée ksat. Ces courbes sont utilisées pour les cas d'un remplissage 

séquentiel avec effet de cimentation où les propriétés géotechniques du remblai évoluent dans le 

temps. L'évolution de ces paramètres est basée sur les différentes mesures de Belem et al. (2000), 

Fall et al. (2007) et Godbout et al. (2007). 

La barricade en roches stériles est modélisée avec le modèle élastoplastique Mohr-Coulomb (ÉP-

MC). Les paramètres géotechniques de la barricade sont présentés au tableau 3-3. Le poids 

volumique sec de la barricade γd est de 20 kN/m
3
 (Williams, 2000; James, 2010). La valeur du 

module de Young des roches stériles constituant la barricade est de 300 MPa (James, 2010). 

L'angle de friction interne est égal à 35° comme observé par Leps (1970) et Bussière (2007). La 
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valeur de la cohésion c' est nulle et la conductivité hydraulique saturée ksat = 10
-4

 m/s comme 

mesuré par Aubertin et al. (2002) et Gamache (2004). 

La figure 3.5(a) représente la teneur en eau volumique en fonction de la succion. La valeur du 

AEV est plus faible comparativement à celle du remblai puisque les roches stériles sont plus 

grossiers que les résidus miniers. La figure 3.5(b) montre la conductivité hydraulique en fonction 

de la succion. On voit qu'à des succions élevées, la conductivité hydraulique devient très faible. 

La vitesse de remplissage V, définie comme la hauteur de couche ajoutée par unité de temps, est 

prise en compte dans les cas où le remblayage se fait séquentiellement, soit selon plusieurs étapes 

d'analyse dans SIGMA/W. Un remblayage de 5 m à tous les 5 jours (soit, une vitesse de 

remplissage de V = 1 m / jour ou 0,042 m/h) est choisi pour les cas de référence. Des vitesses 

moyenne et rapide (V = 5 m/jour ou 0,208 m/h et V = 5 m aux 5 heures ou 1 m/h respectivement) 

sont utilisées dans l'évaluation paramétrique (section 4.5). Ces vitesses sont tirées de quelques 

exemples de remblayage dans certaines mines (Belem et al., 2004; Thompson et al., 2011). 
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Tableau 3-2: Paramètres et caractéristiques géotechniques du remblai pour les 8 cas de référence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N.A = Non Applicable 

 Simulation 

A0 

Simulation 

B0 

Simulation 

C0 

Simulation 

D0 

Simulation 

E0 

Simulation  

F0 

Simulation 

G0 

Simulation 

H0 

Poids 

volumique γb 
18 kN/m

3
 20 kN/m

3
 20 kN/m

3
 20 kN/m

3
 20 kN/m

3
 20 kN/m

3
 20 kN/m

3
 20 kN/m

3
 

Module de 

Young Eb 
100 MPa 100 MPa 100 MPa 100 MPa 100 MPa 

e0 1 
100 MPa 100 MPa 

OCR 1 

Angle de 

friction 

interne ϕ ' 
35° 35° 35° 35° 35° 35° 35° 35° 

Coefficient 

de Poisson ν 
0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 

Angle de 

dilatance ψ 
0° 0° 0° 0° 0° λ (Cc) 0,05 0° 0° 

Cohésion c' 0 kPa 0 kPa 0 kPa 0 kPa variable κ (Cr) 0,01 0 kPa 0 kPa 

Conductivité 

hydraulique 

saturée ksat 

N.A 10
-7 

m/s 10
-7 

m/s 10
-7 

m/s variable 10
-7 

m/s 10
-7 

m/s N.A 

Valeur 

d'entrée d'air 

(AEV) 

N.A 15 kPa 15 kPa 15 kPa variable 15 kPa 15 kPa N.A 

Valeur 

d'entrée d'eau 

(WEV) 

N.A 50 kPa 50 kPa 50 kPa variable 50 kPa 50 kPa N.A 

Niveau d'eau 

initial N.A 

En haut  

(niveau  

h = 0 m) 

En haut  

(niveau  

h = 0 m) 

En haut  

(niveau  

h = 0 m) 

En haut de 

la nouvelle 

couche 

En haut de la 

nouvelle 

couche 

En haut de 

la nouvelle 

couche 

N.A 

Drainage 
N.A 

Non 

Permis 
Progressif Progressif Progressif Progressif Progressif N.A 

Vitesse de 

remplissage 
N.A N.A N.A N.A V=5m/5jrs V=5m/5jrs V=5m/5jrs N.A 
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Figure 3.3 : (a) Courbe de rétention d'eau pour les cas de référence. (b) Conductivité hydraulique 

en fonction de la succion pour les cas de référence. (c) Évolution de la courbe de rétention d'eau 

dans le temps pour le remplissage séquentiel avec effet de cimentation. 
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Figure 3.4 : Évolution dans le temps de la cohésion c' (a), du module de Young Eb (b) et de la 

conductivité hydraulique saturée ksat (c) du remblai cimenté pour le remplissage séquentiel avec 

effet progressif de la cimentation. 
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Tableau 3-3: Propriétés géotechniques et dimensions de la barricade pour le cas de référence. 

Propriétés géotechniques de la barricade Dimensions de la barricade 

Poids volumique γd 20 kN/m
3
 

Forme trapézoïdale 

Hd = 3 m 

Longueur de la base L= 5 m 

Longueur du sommet = 2m 

 

Module de Young E 300 MPa 

Angle de friction interne ϕ ' 35° 

Coefficient de Poisson ν 0.25 

Angle de dilatance ψ 0° 

Cohésion c' 0 kPa 

Conductivité hydraulique 

saturée ksat 
10

-4
 m/s 

 

  

Figure 3.5 : (a) Courbe de rétention d'eau de la roche stérile dans la barricade. (b) Courbe de la 

conductivité hydraulique en fonction de la succion de la roche stérile dans la barricade. 
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3.2 Analyses numériques de l'état des contraintes et des 

déformations dans les chantiers miniers remblayés 

3.2.1 Cas A0 : Remblai drainé (remplissage instantané) 

Le cas A0 est un cas stationnaire (à l’équilibre) qui consiste à remplir "instantanément" le chantier 

souterrain avec un remblai drainé (ou sec). L’analyse en contraintes effectives sans pressions 

interstitielles est choisie dans SIGMA/W pour analyser l’état des contraintes et des déformations 

du chantier remblayé. Pour ce cas, les contraintes effectives et totales dans le remblai sont égales 

(i.e. u = 0).  

La figure 3.6(a) présente la distribution des contraintes le long de la ligne centrale verticale 

(LCV) obtenue à partir des simulations et des solutions analytiques (équations (2-23) et (2-24)). 

Les contraintes calculées à partir du poids des terres sont aussi montrées sur cette figure. Il est 

observé que les contraintes horizontales et verticales calculées en utilisant les 2 solutions sont 

relativement proches. Les contraintes obtenues par les simulations numériques et les solutions 

analytiques sont beaucoup plus faibles que celles calculées à partir du poids des terres, 

particulièrement au bas du chantier. Ces résultats confirment aussi que les solutions analytiques 

avec Ka donnent une bonne corrélation avec les résultats numériques le long de la ligne centrale 

verticale (avec σ'v numérique légèrement inférieure à σ'v analytique), comme ce qui a été montré 

dans des investigations précédentes menées avec FLAC (Li et al., 2003; Li et Aubertin, 2009a, b, 

c, 2010). La figure 3.6(b) présente les contraintes de cisaillement (définies par l'équation (3-1)) 

au centre du chantier et près de la paroi rocheuse. Ceci montre que les contraintes de cisaillement 

près de la paroi augmentent (en valeur absolue) avec la profondeur du chantier, alors qu'elles 

demeurent nulles le long de la ligne centrale verticale (LCV). Ceci confirme l'effet d'arche 

associé au développement des contraintes de cisaillement le long de la paroi rocheuse qui retient, 

en partie, le remblai en place.  

 (3-1) 

où  contrainte principale majeure,  contrainte principale mineure et  angle d'orientation 

entre la normale et la direction de  (McCarthy, 2007). 
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Figure 3.6 : Cas A0 - (a) Valeurs des contraintes effectives verticales et horizontales le long de la 

ligne centrale verticale obtenues par les solutions numériques (Num) et analytiques (Anal). (b) 

Contraintes de cisaillement le long de la ligne centrale verticale et près de la paroi rocheuse, 

obtenues par les simulations numériques. Iso-contours des contraintes effectives verticales (c) et 

horizontales (d) (valeurs données en kPa). (e) Iso-contours des déplacements verticaux (m) 

obtenus de SIGMA/W (m). 
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La figure 3.6(c) présente les iso-contours des contraintes verticales dans le chantier remblayé. 

Cette figure montre que les contraintes ne sont pas uniformément distribuées le long de la largeur 

du chantier. Les contraintes verticales sont plus faibles près de la paroi qu'au centre du chantier 

en raison du transfert des charges du remblai au roc adjacent (associé à l'effet d'arche). Des 

observations similaires ont été faites à partir de calculs conduits par d'autres outils numériques et 

analytiques (Li et al., 2003, 2005a; Li et Aubertin, 2010). 

La figure 3.6(d) présente les iso-contours des contraintes horizontales dans le chantier remblayé. 

La figure montre des effets d'arche beaucoup moins marqués comparativement à ceux associés 

aux contraintes verticales (figure 3.6(c)).  

Les iso-contours des déplacements verticaux sont illustrés à la figure 3.6(e). Cette figure montre 

que la distribution des déplacements verticaux n'est pas uniforme le long de la largeur du  

chantier : les déplacements verticaux sont plus importants au centre du chantier que près des 

parois rocheuses. 

La figure 3.7(a) montre le déplacement vertical des nœuds du maillage du remblai en fonction de 

la hauteur h(m) à deux endroits. Cette figure montre que le déplacement vertical à la ligne 

centrale verticale (LCV) est plus important que celui près de la paroi rocheuse. Le déplacement 

vertical est maximal en haut du chantier et il est nul à la base du chantier. Ce déplacement 

vertical est plus faible près de la masse rocheuse parce qu'il est retenu par la masse rocheuse à 

l'interface roc-remblai (contact parfait modélisé par des interfaces solidaires). 

La figure 3.7(b) montre le coefficient de pression des terres K (= 'h / 'v) en fonction de la 

hauteur à la ligne centrale verticale et à 0,5 m de la paroi rocheuse. À la ligne du centre, on voit 

que le coefficient K est proche de la valeur à l'état actif Ka comme observé par Li et al. (2003, 

2005a). Cependant, le coefficient de pression des terres K est proche de 1 près de la paroi 

particulièrement en haut du chantier. Cette observation est différente de celle rapportée par Li et 

al. (2003) où la valeur de K se situe aux alentours de 0,4 près des parois rocheuses à différentes 

profondeurs; cet aspect est discuté au chapitre 4 (section 4.8).  
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Figure 3.7: Cas A0 - (a) Déplacements verticaux le long de la hauteur du chantier à la ligne de 

centre et près de la paroi rocheuse. (b) Coefficient de pression des terres K ( 'h / 'v) le long de la 

hauteur du chantier à la ligne centrale verticale (LCV) et près de la paroi, avec les valeurs de K0 

et Ka.(c) Coefficient de pression des terres K en fonction de la largeur du chantier à différentes 

profondeurs à partir du haut (h = 10, 20, 30, 40 et 49 m) 
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Figure 3.8: Contraintes effectives verticales et horizontales (a) et déplacement vertical (b) sur la 

largeur du chantier à différentes profondeurs (h = 10, 25 et 40 m; h est la profondeur du point de 

mesure à partir du haut du chantier). 

La figure 3.7(c) présente le coefficient de pression des terres en fonction de la largeur du chantier 

à différentes profondeur, soit à h = 10, 20, 30, 40 et 49 m. De manière générale, on voit que le 

coefficient K est plus élevé près des parois rocheuses comparativement au centre du chantier. On 

remarque aussi que plus on se déplace vers le bas du chantier (h accroît), plus le coefficient K 

diminue près des parois. Au centre du chantier, la valeur K ne varie que légèrement avec la 

profondeur, comme observé dans Li et al. (2003). 

La figure 3.8(a) montre les contraintes effectives (verticales et horizontales) sur la largeur du 

chantier à 3 différentes profondeurs, soit h = 10, 25 et 40 m. On constate que les contraintes 

effectives verticales varient considérablement à travers la largeur pour les 3 profondeurs, alors 

que cette variation est moins marquée pour les contraintes effectives horizontales (voir aussi Li et 

al., 2003; Li et Aubertin, 2010). L'effet d'arche est bien montré sur cette figure de sorte que les 

contraintes effectives verticales sont plus élevées au centre du chantier par rapport aux parois. 

La figure 3.8(b) montre que le déplacement vertical est plus important au centre du chantier et 

qu'il est nul à l'interface remblai-roc (en raison du contact solidaire entre le remblai et le roc). Il 

est aussi montré que les déplacements verticaux diminuent avec la profondeur. 
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3.2.2 Cas B0 : Remblai saturé (remplissage instantané) 

Le cas B0 d'un remblai saturé consiste à remplir "instantanément" le chantier souterrain par un 

remblai complètement saturé sans drainage. La saturation du remblai est simulée avec SIGMA/W 

en choisissant une analyse couplée et en mettant la nappe phréatique à la surface du remblai. 

La figure 3.9(a) montre les contraintes totales en fonction de la hauteur du chantier à la LCV. Les 

solutions numériques obtenues sont comparées aux solutions analytiques et aux poids des terres. 

Cette figure montre une bonne concordance entre les solutions numériques et analytiques pour les 

contraintes totales verticales et horizontales. Il est aussi montré que l'utilisation du poids des 

terres surestime les contraintes totales par rapport aux approches analytiques et numériques. 

En termes de contraintes effectives, la même tendance est observée : les contraintes calculées à 

partir des solutions numériques et analytiques sont beaucoup plus faibles que les contraintes 

obtenues par le poids des terres comme le montre la figure 3.9(b). De manière générale, une 

bonne concordance est obtenue encore une fois entre les solutions analytiques et numériques. Il 

faut noter toutefois que la solution numérique sous-estime les contraintes effectives verticales par 

rapport à la solution analytique (particulièrement au bas du chantier). Cependant, l'allure générale 

de la distribution des contraintes est similaire pour les deux approches.  

La figure 3.9(c) montre la distribution des contraintes verticales totales et effectives ainsi que les 

pressions interstitielles le long de la ligne du centre. On peut voir que la pression d'eau augment 

linéairement avec la profondeur (u = γw × h). Aussi, les contraintes effectives verticales sont 

beaucoup plus faibles que les contraintes totales et les pressions d'eau (particulièrement au bas du 

chantier). La figure 3.9(d) montre le coefficient de pression des terres K le long de LCV et près 

de la paroi rocheuse avec les valeurs Ka et K0. Comme pour le cas sec (cas A0), le coefficient de 

pression des terres K est très proche de la valeur Ka à la ligne du centre (LCV) sauf à la partie 

supérieure du remblai où K devient proche de la valeur 1. La faible valeur de la contrainte 

effective verticale à cet endroit (à cause de l'effet de bord) pourrait expliquer la valeur élevée de 

K près de la surface du remblai. Près de la paroi, la valeur du coefficient de pression des terres K 

est à nouveau proche de 1 le long de la hauteur du chantier, sauf pour la partie au bas du chantier 

où la valeur de K est proche de 1,5. L'effet de bord (interface remblai-roc) serait responsable de 

l'augmentation de K au bas du chantier. 
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Figure 3.9 : Cas B0 - (a) Contraintes totales le long de la ligne centrale verticale obtenues par les 

solutions numériques et analytiques (b) Contraintes effectives le long de la ligne centrale 

verticale obtenues par les solutions numériques et analytiques. (c) Valeurs des pressions 

interstitielles, des contraintes totales et effectives verticales le long de la ligne centrale verticale 

(LCV). (d) Coefficient de pression des terres K le long de LCV et près de la paroi rocheuse. 
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Figure 3.10 : Cas B0 - Iso-contours des contraintes effectives verticales (a), des contraintes 

effectives horizontales (b), des pressions interstitielles (c) (en kPa) et des déplacements verticaux 

(d) (en m). 
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La figure 3.10(a) présente les iso-contours des contraintes effectives verticales. La distribution 

des contraintes effectives est comparable au cas drainé avec un effet d'arche plus prononcé. Au 

bas du chantier, la contrainte effective verticale est de 100 kPa, ce qui représente une réduction 

des contraintes de 80% par rapport au poids des terres. La figure 3.10(b) présente les iso-contours 

des contraintes effectives horizontales. La distribution des contraintes horizontales est 

comparable au cas drainé avec un effet d'arche moins prononcé que celui pour les contraintes 

verticales. Au bas du chantier, la contrainte effective horizontale est de 30 kPa, ce qui donne un 

coefficient de pression des terres K de 0,375 à la mi-largeur du chantier. 

La figure 3.10(c) présente les iso-contours des pressions interstitielles dans le chantier remblayé. 

On voit que les pressions interstitielles augmentent linéairement avec la profondeur. Cette figure 

montre que le niveau d'eau demeure en surface du remblai et que les pressions interstitielles sont 

à l'équilibre et peuvent être calculées en multipliant le poids volumique de l'eau par la hauteur du 

remblai saturé. 

Les iso-contours des déplacements verticaux, présentés dans la figure 3.10(d), ont une forme 

convexe, illustrant un déplacement plus important à la mi-largeur (centre) du chantier que près 

des parois. Le tassement pour le cas saturé (avec u = γw × h; γw le poids volumique de l’eau 

(kN/m
3
) et h (en m) la profondeur à partir du haut du chantier) est inférieur à celui pour le cas 

drainé (3 cm comparativement à 6,5 cm) puisque les contraintes effectives sont plus faibles 

lorsque les pressions d’eau sont positives.  
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3.2.3 Cas C0 : Remblai initialement saturé avec écoulement (remplissage 

instantané) 

Le cas C0 est une analyse transitoire où le remblai est initialement saturé avec un drainage au bas 

du chantier. Le drainage est modélisé avec une condition aux frontières qui correspond à une 

charge hydraulique nulle (hc = 0 m) au point droit à la base du chantier (figure 3.1(a)). 

La figure 3.11(a) illustre l'évolution dans le temps des contraintes totales verticales le long de la 

ligne centrale verticale (LCV). Il est montré dans cette figure que les contraintes verticales sont 

égales au poids des terres juste après le remplissage "instantané". Pendant ces courts instants, les 

contraintes totales verticales augmentent linéairement avec la hauteur pour atteindre une valeur 

de 1000 kPa au bas du chantier (20 kN/m
3
 × 50 m). Au fur et à mesure que le drainage se produit, 

les contraintes totales verticales diminuent progressivement en "se déplaçant" vers la gauche. Il 

est observé que le taux de décroissance des contraintes totales diminue avec le temps. À titre 

d'exemple, la distribution des contraintes totales verticales après 3,7 jours n'est pas très 

différentes de celle après 3,17 ans. 

L'évolution des pressions interstitielles le long de la hauteur du chantier est montrée à la figure 

3.11(b). Peu après le remplissage du chantier, les pressions interstitielles sont égales au poids des 

terres. Cela veut dire que l'eau supporte tout le poids du remblai et que les pressions interstitielles 

sont en excès de Δu = u - (γw × z) = (γtot - γw) z à t ≈ 0. 

Après, les pressions interstitielles se dissipent progressivement avec le temps. Ces résultats des 

simulations numériques correspondent bien aux observations rapportées par Grabinski (2010), 

Thompson et al. (2011) et Witteman et Simms (2011). Puisque le remblai (fabriqué avec des 

résidus de particules fines) a une conductivité hydraulique relativement faible, la consolidation du 

matériau et la dissipation des pressions interstitielles prend quelques jours pour se produire. 

L'évolution des profils des pressions interstitielles est similaire à celle d'une consolidation avec 

drainage à la base et vers le haut. Lorsqu'un temps suffisant est alloué au drainage, des pressions 

interstitielles négatives se développent dans la partie haute du remblai indiquant la présence d'une 

zone non saturée. 
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Figure 3.11 : Cas C0 - Valeurs des contraintes totales verticales (a), des pressions interstitielles 

(b), des contraintes effectives verticales (c) et de la teneur en eau volumique le long de la LCV 

pour un remblai initiallement saturé avec drainage (d). 
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Figure 3.12 : Cas C0 - (a) Valeurs des pressions interstitielles dans le partie supérieure du 

remblai. (b) Comparaison des contraintes effectives verticales le long de la LCV entre le cas C0, 

le cas A0, la solution analytique (cas sec) et le poids des terres (avec γ = 18 kN/m
3
). 

 

La figure 3.11(c) montre l'évolution de la distribution des contraintes effectives verticales le long 

de la ligne centrale verticale. Initialement, les contraintes effectives verticales sont nulles car  

u = σv; le remblai se comporte alors comme un fluide visqueux. Après un certain temps, les 

contraintes effectives augmentent avec le drainage produisant ainsi une augmentation de la 

résistance frictionnelle le long de la paroi rocheuse et un développement progressif de l'effet 

d'arche au sein du chantier remblayé. Ces résultats sont conformes aux tendances générales 

observées in situ par Grabinsky (2010) et Thompson et al. (2011). 

La figure 3.11(d) présente l'évolution de la teneur en eau volumique le long de la ligne centrale 

verticale. Les résultats de simulation montrent que le chantier commence à se dé-saturer quelques 

jours après la mise en place du remblai. Au fur et à mesure que le drainage se produit, le niveau 

de l'eau descend le long du chantier créant ainsi des zones non-saturées. La teneur en eau 

volumique en haut du chantier (h = 0 m) diminue dans le temps jusqu'à sa valeur minimale, soit 

0

2

4

6

8

10

12

14

-100 -50 0 50 100 150 200 250 300 350

h
 (
m

)

Pressions interstitielles (kPa)

351 sec

34 min

2,6 hr

5,3 hr

8,6 hr

13 hr

18,6 hr

1 jr

1,5 jr

2 jr

2,6 jr

3,7 jr

16 jr

111 jr

257 jr

1,2 ans

1,92 ans

3,17 ans

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800

h
 (
m

)

Contraintes effectives verticales (kPa)

Cas C0 - t = 3,17 années

Cas A0 - Num

Anal (cas sec)

Poids des terres (γ = 18 kN/m3)

(a) (b) 



99 

 

la teneur en eau résiduelle (θr ≈ 0.08). À très long terme, la teneur en eau volumique le long de la 

ligne centrale verticale tendrait vers la courbe de rétention d'eau "CRE" (voir aussi figure 3.3(c)). 

La figure 3.12(a) est une vue élargie (zoom) de la figure 3.11(b) pour montrer seulement 

l'évolution des pressions interstitielles dans la partie supérieure du chantier (0 ≤ h ≤ 15 m). Sur 

cette figure, on voit que la succion maximale se situe en haut du chantier et atteint une valeur de 

40 kPa après 3,17 années. 

La figure 3.12(b) compare les valeurs des contraintes effectives verticales obtenues de SIGMA/W 

pour le cas C0 après 3,17 années à celles obtenues au cas A0, aux solutions analytiques (cas sec) 

et au poids des terres. Après la dissipation des pressions interstitielles du remblai, on voit que les 

contraintes effectives verticales du cas C0 sont proches du cas sec A0 et celles obtenues avec la 

solution analytique (équations (2-23)) sans pressions interstitielles. Ces valeurs sont beaucoup 

plus faibles que les contraintes obtenues par le poids des terres. À la surface du remblai, on voit 

que la contrainte effective verticale est positive pour le cas C0 (≈ 50 kPa) à la fin de la simulation 

(t = 3,17 années). Ceci est dû aux succions générées en haut du remblai en raison des forces 

capillaires. 

La figure 3.13(a) présente les équipotentiels et les vecteurs d'écoulement dans la partie basse du 

chantier. Cette figure montre que les vecteurs d'écoulement sont verticaux le long du chantier et 

s'orientent vers le point de drainage au fur et à mesure qu'ils s'approchent de celui-ci. Les 

équipotentiels sont perpendiculaires aux lignes d'écoulement montrées par les vecteurs 

d'écoulement. Près du point de drainage, les équipotentiels ont la forme de quarts de cercles dont 

le centre est le point de drainage. Au dessus du niveau d'eau (indiqué par la ligne bleue sur la 

figure), les équipotentiels sont horizontales et représentent des valeurs négatives de pression 

d'eau.  

La figure 3.13(b) illustre la forme du déplacement du remblai après sa mise en place et son 

drainage. Comme les iso-contours des déplacements verticaux le montrent, le tassement du 

remblai est beaucoup plus important à la mi-largeur du chantier que près des parois. 
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Figure 3.13 : Cas C0 (après 3.7 années) - (a) Équipotentiels et vecteurs d'écoulement au bas du 

chantier × 4x10
6
. (b) Allure du déplacement du remblai au sein du chantier × 10. (c) 

Déformations de cisaillement à la fin de la simulation. (d) Iso-contours de la teneur en eau 

volumique. 
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La figure 3.13(c) présente les déformations de cisaillement (équation (3-2)) le long de la hauteur 

du chantier. Il est montré dans cette figure que les déformations de cisaillement, dues aux 

contraintes de cisaillement, sont plus importantes près de la paroi rocheuse qu'au milieu du 

chantier (où les contraintes de cisaillement sont très faibles). Ceci montre que la paroi rocheuse a 

l'effet de retenir les particules du remblai les plus près, qui à leur tour retiennent des particules 

plus loin, créant ainsi une zone de cisaillement entre la paroi et le centre à travers la largeur. 

 (3-2)  

où  est la déformation principale majeure,  la déformation principale mineure et  angle 

d'orientation entre la normale et la direction de  (McCarthy, 2007). 

SIGMA/W permet d'obtenir les valeurs de la teneur en eau volumique à chaque point du maillage 

selon la valeur de u grâce à la courbe de rétention d'eau (figure 3.3(a)). L'évolution de la teneur 

en eau volumique sur la hauteur du chantier après 3,17 années est montrée à la figure 3.13(d). Les 

valeurs de la teneur en eau volumique diminuent en s'approchant de la surface du remblai. Ceci 

explique les valeurs de succions relativement élevées en haut du remblai, qui diminuent 

graduellement en s'approchant du niveau d'eau dans le chantier. 

La figure 3.14(a) montre le déplacement vertical du remblai en fonction de sa hauteur h(m) près 

de la paroi rocheuse et à la ligne centrale verticale. Comme pour le cas drainé (cas A0), cette 

figure montre encore une fois que le déplacement vertical à la ligne centrale verticale (LCV) est 

plus important que celui près de la paroi rocheuse et que le déplacement vertical est maximal en 

haut du chantier.  

La figure 3.14(b) présente le coefficient de pression des terres K en fonction de la position 

verticale dans le remblai à la ligne centrale verticale et près de la paroi rocheuse. Ce coefficient 

est proche de la valeur à l'état actif Ka à la ligne du centre sauf dans le haut et dans le bas du 

chantier. Près de la paroi, ce coefficient est proche de 0,9 (proche du cas sec A0 et du cas saturé 

B0) sauf dans la partie supérieure et inférieure du chantier où la valeur de K diminue jusqu'à la 

valeur 0,6 aux deux extrémités; cet aspect sera discuté au chapitre 4.  

La figure 3.14(c) montre la valeur du coefficient K en fonction de la largeur du chantier à 

différentes profondeurs. On voit que la valeur du coefficient K est élevée près des parois et 
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diminue en s'approchant de la ligne du centre. Cette tendance est la même que celle observée par 

Li et al. (2003). 

 
 

 
Figure 3.14: Cas C0 - (a) Déplacement vertical à la LCV et près de la paroi rocheuse le long de la 

hauteur du remblai initialement saturé (avec drainage) à la fin de la simulation. (b) Coefficient de 

pression des terres K le long de la hauteur du chantier à la ligne centrale verticale (LCV) à la fin 

de la simulation. (c) Coefficient de pression des terres K selon la largeur du chantier à différentes 

élévations (h = 10, 20, 30 et 40 m). 
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3.2.4 Cas D0 : Remblayage séquentiel sans cimentation 

Le remblayage séquentiel sans cimentation consiste en un remplissage par couche avec drainage 

jusqu'à ce que le chantier soit entièrement rempli suivant une vitesse de remblayage déterminée. 

Les couches ont les mêmes propriétés géotechniques, qui ne varient pas avec le temps. Le cas de 

référence simule un remplissage par couches de 5 m ajoutées à tous les 5 jours (vitesse moyenne 

de 0,042 m/h). Le chantier est rempli entièrement après 50 jours (10 couches) pour mieux évaluer 

l'évolution de l'état des contraintes dans le temps. D'autres simulations numériques pour un 

remplissage séquentiel avec des couches de remblai de plus faibles épaisseurs (1 m et 2 m par 

couche) ont été analysées. Les résultats de ces simulations sont montrés en annexes (figures B.7 

et B.8) et sont comparés à la solution de Gibson (1958) pour un remplissage continu. 

La figure 3.15(a) présente l'évolution des pressions interstitielles selon la profondeur du chantier 

pour la mise en place de la 3
e
, 6

e
 et 10

e
 couche (35 m ≤ h ≤ 40 m, 20 m ≤ h ≤ 25 m et  

0 m ≤ h ≤ 5 m respectivement). 

L'allure des courbes de dissipation des pressions interstitielles dans les 3 couches sont similaires. 

On remarque qu'après la mise en place de la plus récente couche, un excès de pression 

interstitielle se produit au niveau de cette couche alors que les couches du dessous demeurent non 

saturées. Avec le drainage, cet excès de pression interstitielle se dissipe graduellement avec le 

temps. Lorsqu'un temps suffisant est alloué au drainage (5 jours pour chaque couche dans ce cas), 

des succions sont générées dans la couche, ce qui explique les valeurs négatives des pressions 

interstitielles.  

Il est intéressant de noter que la dissipation des pressions interstitielles et de la consolidation au 

niveau de chaque nouvelle couche (figure 3.15(a)) est assez similaire à celle d'un remplissage 

immédiat (figure 3.11(b)). 

La figure 3.15(b) représente l'évolution des contraintes effectives verticales après la mise en place 

de la 3
e
, 6

e
 et 10

e
 couche. Cette figure montre que juste après la mise en place d'une nouvelle 

couche, les contraintes effectives verticales sont nulles dans la couche en question (car la pression 

interstitielle u est égale à la contrainte totale). Avec le drainage et la dissipation de l'excès de 

pressions interstitielles au sein de cette couche, les contraintes effectives augmentent 

graduellement dans cette nouvelle couche.  
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Figure 3.15 : Cas D0 - Profil des pressions interstitielles (a) et des contraintes effectives verticales 

(b) sur la hauteur du chantier remblayé à différents temps correspondant à la mise en place des 

différentes couches 3
e
, 6

e
 et 10

e
, avec une vitesse de remplissage de 5 m à chaque 5 jours. (c) 

Évolution des contraintes effectives verticales le long de la LCV à différents temps. (d) 

Distribution des contraintes de cisaillements le long de la ligne centrale verticale et près de la 

paroi rocheuse. 
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La figure 3.15(c) présente la distribution des contraintes effectives verticales le long de la ligne 

centrale verticale (LCV) à la fin de chaque étape (5 jours après chaque mise en place). Les 

contraintes calculées à partir du poids des terres sont aussi montrées sur cette figure. On 

remarque qu'une fois les pressions interstitielles dissipées dans chaque couche, les contraintes 

sont beaucoup plus faibles que celles calculées à partir du poids des terres, particulièrement au 

bas du chantier. Ceci confirme à nouveau le développement des effets d'arche avec le 

remplissage, le drainage et la consolidation des couches mises en place. 

Ces effets d'arche sont confirmés par la distribution des contraintes de cisaillement τxy dans le 

chantier, montrée à la figure 3.15(d), 5 jours après la mise en place de la dernière couche. Cette 

figure montre que les contraintes de cisaillement sont beaucoup plus élevées près de la paroi 

rocheuse qu'au milieu du chantier. La distribution des contraintes de cisaillement est caractérisée 

par des petites oscillations au milieu des couches et à l'interface de contact entre ces couches. Ces 

variations d’origine numérique sont moins marquées pour les cas A0 et C0. Cette différence est 

due principalement à l'effet de déposition séquentielle des couches. L'effet du remplissage 

séquentiel sur les résultats générés par les codes numériques a aussi été observé par Li et al. 

(2007); Li et Aubertin (2009c) et Fahey et al. (2009).  

La figure 3.16(a) présente les iso-contours des contraintes effectives verticales pour un 

remblayage séquentiel. Cette figure illustre le transfert des contraintes du remblai au roc adjacent 

associé à l'effet d'arche. La distribution des contraintes suit une forme d'arche avec une 

distribution non uniforme sur la largeur du chantier. Les contraintes verticales sont plus faibles 

près de la paroi qu'au centre du chantier. On peut voir aussi qu'à partir de la mi-hauteur jusqu'au 

bas du chantier, les contraintes effectives verticales n'augmentent que légèrement avec la 

profondeur. 

La figure 3.16(b) présente les iso-contours des déplacements verticaux le long du chantier 

remblayé à la fin de la simulation (après 50 jours). Les iso-contours sont de forme convexe avec 

des déplacements au milieu du chantier plus élevés que près de la paroi du roc pour chaque 

couche.  
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Figure 3.16 : Cas D0 - Iso-contours des contraintes effectives verticales (kPa) (a) et des 

déplacements verticaux (m) (b) dans le chantier remblayé. Évolution des contraintes totales 

verticales (c) et horizontales (d) à différents endroits (vitesse de remplissage de 5 m aux 5 jours). 
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La figure 3.16(c) présente l'évolution des contraintes totales verticales à 3 emplacements 

différents (soit h = 47,5 m, h = 37 m et h = 22 m; voir les points de mesure à la figure 3.1(b)). 

Cette figure montre que les contraintes augmentent avec la mise en place des nouvelles couches 

dans le chantier. À la fin de la simulation (t = 50 jours), les contraintes totales verticales aux 3 

emplacements sont proches (≈ 200 kPa) l'une de l'autre. Ceci s'explique par la faible variation des 

contraintes effectives verticales le long de la hauteur à partir du milieu du chantier vers le bas 

(voir figures 3.14(c) et 3.15(a)). 

La figure 3.16(d) montre l'évolution des contraintes totales horizontales avec le remplissage à 

différentes élévations soit à h = 47,5 m (1
ère

 couche), h = 37 m (3
e
 couche) et h = 22 m (6

e
 

couche). Après la mise en place de la première couche, on voit que la contrainte horizontale 

augmente brusquement jusqu'à atteindre une valeur de 50 kPa à h = 47,5 m. Pendant ces courts 

instants, la contrainte totale horizontale est égale à la contrainte totale verticale et le remblai se 

comporte comme un fluide sans contraintes effectives. Au fur et à mesure que le drainage de la 

première couche se produit, la contrainte totale horizontale diminue pour atteindre une valeur de 

10 kPa. De manière générale, la mise en place des nouvelles couches fait augmenter la contrainte 

totale horizontale à différentes profondeurs. Cette augmentation est selon un taux décroissant où 

elle est élevée au début et devient de moins en moins marquée. À la fin de la simulation, la valeur 

de la contrainte totale horizontale est proche de 60 kPa, ce qui correspond à une valeur moyenne 

du coefficient de pression des terres K égale à 0,3. 

La figure 3.17(a) montre le déplacement vertical cumulatif du remblai en fonction de sa hauteur 

h(m) près de la paroi rocheuse et à la ligne centrale verticale. Cette figure montre que le 

déplacement vertical à la ligne centrale verticale (LCV) est plus important que celui près de la 

paroi rocheuse à cause des contraintes de cisaillement qui se développent près de l'interface roc-

remblai et qui empêchent le déplacement vertical du remblai. Cette figure montre aussi les effets 

d'un remblayage progressif où le déplacement vertical n'est pas uniforme le long de la LCV 

(présence d'oscillations). Le déplacement vertical est plus important à la surface de chaque 

couche par rapport au bas de la couche. 
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Figure 3.17: Cas D0 - (a) Déplacement vertical sur la hauteur du chantier remblayé à la LCV et 

près de la paroi rocheuse, à la fin de la simulation (t = 50 jours). (b) Coefficient de pression des 

terres K le long du chantier à la ligne centrale verticale (LCV) à la fin de la simulation. 

 

La figure 3.17(b) présente le coefficient de pression des terres K en fonction de la hauteur à la 

ligne centrale verticale. Contrairement au cas d'un remplissage instantané où K évolue presque 

uniformément le long de la hauteur du chantier, le cas d'un remplissage progressif met en 

évidence l'effet de déposition des couches sur le profil de K avec la profondeur. En effet, la 

valeur du coefficient K est proche de la valeur Ka au bas de chaque couche, alors qu'elle est 

proche de la valeur K0 en haut de chaque couche, comme observé par Fahey et al. (2009). 
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3.2.5 Cas E0 : Remblayage séquentiel avec cimentation 

La simulation d'un remplissage séquentiel avec effet de la cimentation consiste à remplir le 

chantier par couches suivant une vitesse de remplissage déterminée. Les propriétés hydro-

géotechniques des couches varient dans le temps pour simuler l'effet de la cimentation avec 

certaines caractéristiques.  

Les nouvelles couches ajoutées simulent la mise en place progressive d'un remblai initialement 

saturé d'eau. Une fonction spatiale sur SIGMA/W est utilisée pour chaque étape d’analyse. Cette 

fonction est basée sur une condition hydraulique initiale qui permet d'appliquer des pressions 

interstitielles sur n'importe quel nœud de la structure au début de chaque étape d'analyse. Le 

niveau d'eau est placé à la surface de la 1
ère

 couche. L'analyse couplée contrainte-déformation 

avec pressions interstitielles est exécutée pour une durée de simulation de 5 jours. À la fin de la 

simulation, l'état des pressions interstitielles de la 1
ère

 couche du remblai est rentré dans la 

fonction spatiale et elle est utilisée dans l'étape suivante (mise en place de la 2
e
 couche) pour 

définir la condition hydraulique de la 1
ère

 et de la 2
e
 couche et ainsi de suite. L'état hydraulique 

final de toutes les couches anciennement mises en place est pris en compte dans les étapes de 

calculs suivantes. 

Les figures 3.18(a), (b) et (c) représentent respectivement l'évolution du profil des pressions 

interstitielles à la ligne centrale verticale après la mise en place de la 3
e
, 7

e
 et la 10

e
 couche  

(35 ≤ h ≤ 50 m, 15 ≤ h ≤ 50 m et 0 ≤ h ≤ 50 m respectivement). La même tendance est observée, 

soit des pressions interstitielles élevées à la mi-hauteur du remblai mis en place, comparativement 

à la partie supérieure et inférieure. On remarque aussi qu'au fur et à mesure que le drainage se 

produit, les pressions interstitielles au milieu du chantier diminuent progressivement 

(déplacement des profils de u à gauche).  

La figure 3.18(d) rassemble les 3 figures précédentes dans une même figure. Les pressions 

interstitielles à l'équilibre et en excès sont aussi montrées dans cette figure. Après la mise en 

place des nouvelles couches saturées, un excès de pressions interstitielles se produit autour de la 

mi-hauteur du remblai. Les pressions d'eau ne se dissipent pas complètement ici et la mise en 

place des nouvelles couches produit une augmentation des pressions interstitielles dans les 

anciennes couches. À titre d'exemple, juste après la mise en place de la 10
e
 couche, les pressions 

interstitielles sont en excès dans toute la partie haute du chantier (u > γw × z). Ceci s'explique par 
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la courte durée allouée au drainage de l'eau dans les couches en dessous de la 10
e
 couche. Les 

pressions interstitielles dans les couches proches de la face de drainage (au bas du chantier) sont 

beaucoup plus faibles que les pressions interstitielles à l'équilibre parce que ces couches se 

drainent plus rapidement. 

Les figures 3.19(a) et (b) présentent la distribution des contraintes verticales effectives et totales 

respectivement à la ligne centrale verticale à la fin de chaque étape de simulation. La figure 

3.19(a) montre que les effets d'arche sont très marqués pour le cas cimenté, avec des contraintes 

effectives verticales plus faibles comparativement au cas sans cimentation (voir figure 3.15(c)). 

Cette diminution est due en partie à l'augmentation graduelle de la cohésion du remblai dans le 

temps. À la figure 3.19(b), on voit que les contraintes totales verticales sont plus élevées que les 

contraintes effectives verticales (figure 3.19(a)) à cause des pressions interstitielles relativement 

élevées qui se produisent dans la partie haute du remblai (figures 3.18 (a), (b), (c) et (d)). 

La figure 3.19(c) illustre l'évolution des contraintes effectives verticales après la mise en place de 

la 3
e
, 7

e
 et 10

e
 couche. Il est intéressant de noter la similitude entre cette figure et la figure 

3.15(b). Il s'agit en fait du même processus de consolidation, où la mobilisation de la résistance 

frictionnelle (avec l'augmentation des contraintes effectives) se produit après la dissipation 

graduelle de l'excès d'eau. 

La figure 3.19(d) présente l'évolution des contraintes verticales totales à différents endroits  

(h = 47 m, 37 m et 22 m). De manière générale, la figure montre qu'après la mise en place de 

chaque nouvelle couche de remblai, la contrainte totale verticale augmente puis diminue 

graduellement. Cette diminution est due au drainage de l'eau qui dissipe partiellement les 

pressions interstitielles et donc diminue les contraintes totales. Les contraintes totales obtenues à 

la fin de la simulation à h = 47 m et h = 37 m sont plus faibles que celle à h = 22 m. Ceci est dû 

principalement aux plus faibles valeurs des pressions interstitielles à ces deux endroits 

comparativement à celles à la profondeur h = 22 m (voir figure 3.17 (c)). 

La figure 3.19(e) présente l'évolution des contraintes de cisaillement dans le temps après la mise 

en place de la 5
e
 et la 10

e
 couche près de la paroi rocheuse. Ces contraintes de cisaillement dans 

le chantier augmentent graduellement dans chaque couche avec le drainage. On remarque aussi 

que les contraintes de cisaillement sont presque nulles le long de la 10
e
 couche juste après sa mise 

en place. Puisque les pressions interstitielles sont en excès pendant ces courts instants (figure 
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3.18(d)), le remblai se comporte comme un matériau sans résistance frictionnelle caractérisé par 

des contraintes effectives et des contraintes de cisaillement nulles le long de cette couche. 

   

    
Figure 3.18 : Cas E0 - Évolution des pressions interstitielles après la mise en place de la 3

e
 (a), 7

e
 

(b) et la 10
e
 (c) couche, le long de la ligne centrale verticale. (d) Comparaison entre les pressions 

d’eau après la mise en place de la 3
e
, 7

e
 et 10

e
 couche avec les pressions à l'équilibre 

(hydrostatiques) et interstitielles (valeur maximale due au poids des terres). 
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Figure 3.19: Cas E0 - Évolution des contraintes effectives verticales (a) et des contraintes totales 

verticales (b) à différents temps (à la fin de chaque étape de simulation) pour le cas d'un remblai 

cimenté, avec une vitesse de remplissage de 5 m aux 5 jours. (c) Évolution des contraintes 

effectives verticales correspondant à l'ajout de la 3
e
, 7

e
 et 10

e
 couche. (d) Évolution des 

contraintes totales verticales à différents endroits durant le remplissage. (e) Évolution des 

contraintes de cisaillement suite à l'ajout de la 5
e
 et la 10

e
 couche. 
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3.2.6 Cas F0 : Remblayage séquentiel avec le modèle CCM 

 

Le remblayage séquentiel avec le modèle Cam-Clay modifié (CCM) consiste en un remplissage 

par couche jusqu'à ce que le chantier soit entièrement rempli suivant une vitesse de remblayage 

déterminée. La conductivité hydraulique saturée et la courbe de rétention d'eau ne varient pas 

avec le temps (contrairement aux simulations de la série E). Le cas de référence simule un 

remplissage par couche de 5 m à tous les 5 jours. Le chantier est rempli entièrement après 50 

jours (10 couches). Ceci permet d'illustrer l'évolution des états de contrainte dans le temps. Le 

drainage est modélisé avec une condition aux frontières qui correspond à une charge hydraulique 

nulle (hc = 0 m) sur toute la base du chantier (figure 3.1(b)). Les propriétés géotechniques du 

modèle Cam-Clay modifié utilisées pour modéliser le comportement du remblai sont présentées 

au tableau 3-2. 

La figure 3.20(a) présente les iso-contours des contraintes effectives verticales qui montrent des 

effets d'arche développés au sein du chantier comme pour l'analyse avec le modèle 

élastoplastique - Mohr-Coulomb (ÉP-MC), abordée à la section 3.2.4. Cependant, ces contraintes 

sont plus élevées comparativement aux solutions analytiques et aux simulations avec le modèle 

Mohr-Coulomb (ÉP-MC). 

La figure 3.20(b) présente les iso-contours des pressions interstitielles du remblai à la fin de la 

simulation (t = 50 jours). Cette figure permet de voir l'excès de pression interstitielle qui se 

produit le long de la 9
e
 couche et au bas de la 10

e
 couche. À partir du bas de la 9

e
 couche, les 

pressions interstitielles diminuent avec la profondeur jusqu'à atteindre une valeur nulle au bas du 

chantier (face du drainage). 

Les iso-contours des déplacements verticaux sont montrés à la figure 3.20(c). On voit que le 

déplacement vertical de la 1
ère

 couche est plus élevé que pour les autres couches. L'effet combiné 

de la mise en place de nouvelles couches et du drainage augmente graduellement la contrainte 

effective verticale dans cette couche avec le remblayage, comme le montre la figure 3.20(d), ce 

qui diminue l'indice des vides et augmente les déplacements verticaux. 
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Figure 3.20 : Cas F0 - Iso-contours des contraintes effectives verticales (kPa) (a), des pressions 

interstitielles (kPa) (b) et des déplacements verticaux (m) (c) à la fin de la simulation (t = 50 

jours). (d) Évolution des contraintes effectives verticales et horizontales au bas du chantier (à h = 

47 m) suite au remblayage. (e) Vecteurs d'écoulement de l’eau après la mise en place de la 10
e
 

couche. 
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La figure 3.20(e) montre les vecteurs d'écoulement après la mise en place de la 10
e
 couche. On 

voit que l'eau de cette dernière couche se draine essentiellement vers le haut, alors que l'eau se 

trouvant dans les autres couches, se draine vers le bas du chantier. Cette caractéristique de 

drainage est différente avec le modèle MC qui ne permet pas un drainage vers le haut si aucune 

condition hydraulique n'est spécifiée. 

La figure 3.21(a) présente l'évolution de la distribution des contraintes totales verticales à la fin 

de chaque étape de remplissage. Les contraintes calculées à partir du poids des terres sont aussi 

montrées sur cette figure. Après la mise en place des 2 premières couches du remblai, la 

distribution des contraintes totales verticales est presque linéaire, et correspond aux contraintes 

calculées à partir du poids des terres. Cependant, au fur et à mesure que la hauteur du remblai 

augmente, les contraintes totales verticales obtenues par la simulation numérique divergent du 

poids des terres en raison du drainage et de la consolidation. 

La figure 3.21(b) montre clairement les effets d'arche qui se produisent le long de la LCV, avec 

une différence significative entre les contraintes calculées à partir du poids des terres et celles 

obtenues numériquement. Il est intéressant aussi de remarquer que la contrainte effective 

verticale est nulle sur la hauteur de la couche récemment mise en place dans le chantier. Cette 

contrainte augmente par la suite grâce au drainage et à la consolidation de la couche en question. 

La figure 3.21(c) montre les contraintes effectives horizontales obtenues des résultats numériques 

est plus importante que celle obtenue par le poids des terres sauf en haut et au bas du chantier. 

Les contraintes effectives horizontales sont proches des contraintes effectives verticales 

particulièrement au milieu du chantier. Dans ce cas, le coefficient de pression des terres K est 

proche de la valeur 1 et l'angle de friction interne ϕ ' est faible. Nous reviendrons sur ces résultats 

dans la discussion à la fin du chapitre 4. 

La figure 3.21(d) montre l'évolution de la distribution des pressions interstitielles le long de la 

LCV juste après la mise en place de la 10
e
 couche jusqu'à la fin de la simulation (45 < t < 50 

jours). Après un court moment suite à la mise en place de la 10
e
 couche, la pression interstitielle 

augmente avec la hauteur de la couche jusqu'à atteindre une pression interstitielle de 100 kPa à  

h = 5 m. Cette valeur équivaut au poids unitaire du remblai (20 kN/m
3
) multiplié par la hauteur 

de la couche (5m).  
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Figure 3.21 : Cas F0 - Évolution des contraintes totales verticales (a), contraintes effectives 

verticales (b), contraintes effectives horizontales (c). (d) Évolution des pressions interstitielles 

dans le temps après la mise en place de la 10
e
 couche (45 < t < 50 jours). 
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Pendant ces courts instants, les pressions interstitielles sont presque constantes le long des autres 

couches (5 < h < 50 m) se situant aux environs de 100 kPa, ce qui reflète l'ajout de la charge au 

dessus de ces couches (mise en place de la 10
e
 couche). Avec le temps, les couches les plus 

proches de la position de drainage se drainent. L'excès des pressions interstitielles se situant le 

long de la couche récemment mise en place persiste même après 5 jours de drainage, comme le 

montre la figure 3.20(b) qui présente les iso-contours des pressions interstitielles le long du 

chantier à la fin de la simulation (t = 50 jours). 

La figure 3.22(a) présente l'évolution de la distribution des pressions interstitielles le long de la 

LCV à différents temps (à la fin de chaque étape de remplissage). La pression interstitielle est en 

excès au niveau de la couche nouvellement mise en place. Les couches anciennement mises en 

place (près de la face de drainage) dissipent les pressions interstitielles au fur et à mesure que le 

drainage se produit. Au bas du chantier, la pression est nulle puisqu'il s'agit de la position du 

drainage imposé par la condition hydraulique h = 0 m. On remarque que la distribution des 

pressions interstitielles sur la hauteur du chantier obtenue avec le modèle Cam-Clay modifié est 

différente de celle obtenue avec le modèle Mohr-Coulomb (ÉP-MC). La comparaison de ces 

résultats est présentée au chapitre 4. 

  
Figure 3.22 : Cas F0 - (a) Évolution des pressions interstitielles le long de la LCV à la fin de 

chaque étape de remplissage. (b) Évolution des contraintes de cisaillement à 0,25 m de la paroi 

rocheuse à la fin de chaque étape de remplissage (t= 5, 10, 15, 20, 25, 30, 35, 40, 45 et 50 jours). 
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Figure 3.23 : Cas F0 - Évolution des pressions interstitielles (a) et de l'indice des vides (b) au bas 

du chantier (h = 47 m). Évolution de l'indice des vides en fonction de la contrainte moyenne 

verticale au bas du chantier (h = 47 m) sur un graphique avec une échelle (c) arithmétique et (d) 

semi-logarithmique. 
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La figure 3.22(b) présente la distribution des contraintes de cisaillement près de la paroi rocheuse 

à différents temps (à la fin de chaque étape de remplissage). L'effet combiné de l'ajout des 

couches et le drainage augmente la contrainte de cisaillement dans les couches précédemment 

mises en place. À la fin de la simulation (t = 50 jours), la contrainte de cisaillement est maximale 

au bas du chantier alors qu'elle est nulle le long de la plus récente couche (10
e
 couche) à cause de 

l'excès des pressions interstitielles à cet endroit. 

La figure 3.23(a) présente l'évolution de la pression interstitielle au bas au centre (mi-largeur) du 

chantier (h = 47 m). À chaque fois qu'une nouvelle couche est ajoutée, une augmentation de la 

pression interstitielle se produit. Pendant les premiers instants, la pression interstitielle augmente 

jusqu'à une valeur entre 90 et 100 kPa. À cause du drainage, cette pression interstitielle se dissipe 

rapidement. À la fin de chaque étape de remplissage, la pression interstitielle demeure positive au 

bas du chantier (u ≠ 0), ce qui engendre une augmentation de la pression interstitielle après la 

mise en place de couches subséquentes. 

L'évolution de l'indice des vides e en fonction du temps est présentée à la figure 3.23(b). Après la 

mise en place de la première couche, l'indice des vides décroît de e0 = 1 à une valeur de 0,8. 

L'ajout de nouvelles couches augmente la contrainte effective verticale au bas du chantier, ce qui 

produit une décroissance de l'indice des vides. La relation e - σ' est montrée aux figures 3.23(c) et 

3.23(d) qui ressemblent à une courbe de consolidation verticale sur des graphiques à échelle 

arithmétique et semi-logarithmique respectivement. La pente de l’indice des vides en fonction de 

la contrainte moyenne verticale obtenue de SIGMA/W et montrée à la figure 3.23(d) correspond 

à la pente imposée λ = 0,05 dans le modèle CCM. 
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3.2.7 Cas G0 : Comportement de la barricade 

 

Pour mieux comprendre le comportement des barricades responsables de retenir le remblai en 

place, différents scénarios ont été simulés pour évaluer le rôle de divers paramètres sur la réponse 

de ces structures de retenue. Le cas de référence consiste à simuler le comportement d'une 

barricade en roche stérile face à un remblayage instantané. La barricade est modélisée en 2D 

selon une forme trapézoïdale qui correspond à la forme que prend celle-ci lors de sa mise en 

place avec des roches stériles. Il faut préciser toutefois que cette représentation n'est pas tout à 

fait réaliste puisque les galeries souterraines et les barricades ne sont pas infiniment longues 

(structures en 3D plutôt qu'en 2D); néanmoins, cette analyse en déformation plane apporte 

quelques éléments d’information utiles qui aident à comprendre l’effet des facteurs d’influence. 

Le remblai est initialement saturé avec la nappe phréatique en haut du chantier. Le drainage qui 

se produit à travers la barricade est modélisé par la condition frontière h= 0 m, au point montré à 

la figure 3.1(c). La simulation a été faite pour une durée de 5 années, soit jusqu'à ce que le niveau 

d'eau se trouve au bas du chantier. 

La figure 3.24(a) présente les iso-contours des contraintes effectives verticales le long du 

chantier. Cette figure montre une distribution des contraintes selon une forme d'arche où les 

contraintes sont plus élevées au milieu du chantier que près de la paroi rocheuse. Cette figure est 

similaire aux iso-contours du cas A0 sans barricade présentés par la figure 3.6(c). 

La figure 3.24(b) présente les iso-contours des déplacements verticaux au sein du chantier 

remblayé à la fin de la simulation. La distribution des déplacements est convexe le long de la 

largeur du chantier, avec des déplacements plus élevés au milieu du chantier que près de la paroi 

rocheuse. Il est aussi montré que les déplacements verticaux au milieu du chantier diminuent avec 

la profondeur du chantier comme pour le cas sans barricade (cas A0 - voir figure 3.6(d)). 

La figure 3.24(c) représente les iso-contours des déplacements horizontaux près de la barricade. 

Les déplacements horizontaux maximaux se situent à la mi-hauteur de la galerie et augmentent 

graduellement en allant vers la barricade. Le déplacement de la barricade dépend essentiellement 

de sa résistance mécanique et sa rigidité (voir propriétés de la barricade au tableau 3-3). Dans ce 

cas, le déplacement horizontal près de la barricade est de l'ordre 0,055 m. 
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Figure 3.24 : Cas G0 - Iso-contours des contraintes effectives verticales (kPa) (a), des 

déplacements verticaux (m) (b) et des déplacements horizontaux (m) (c) dans un chantier 

remblayé avec une barricade. (d) Déformation de la barricade face à un remplissage "instantané" 

(les déplacements sont exagérés dans cette figure). 
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La figure 3.24(d) présente l'allure de la déformation de la barricade, à la fin de la simulation, 

après avoir rempli "instantanément" le chantier avec le remblai minier. On voit que les 

déformations horizontales (exagérées sur la figure) sont plus importantes à la mi-hauteur de la 

barricade que près des parois rocheuses, comme observé par Grabinski (2010), Thompson et al. 

(2011) et Le Roux et al. (2005). 

La figure 3.25(a) présente l'évolution dans le temps des pressions interstitielles le long de la ligne 

centrale verticale (LCV). L'allure des courbes est similaire au cas sans barricade. La principale 

différence se situe au niveau des pressions interstitielles au bas du chantier, car elles ne sont pas 

nulles en présence d'une barricade. Le fait d'éloigner le point de drainage jusqu'à la barricade 

laisse la partie inférieure du remblai dans un état saturé pendant une certaine période. La figure 

3.25(b) représente les déplacements de la barricade suite au remblayage instantané du chantier. 

Le déplacement de la barricade atteint son maximum à la mi-hauteur, tandis qu'il est presque nul 

aux deux extrémités (qui sont ici en contact avec les parois rocheuses). 

La figure 3.25(c) présente l'évolution du tassement du remblai. On voit que le tassement n'est pas 

uniforme, et qu'il est plus important au milieu du chantier que près de la paroi du roc. Au fur et à 

mesure que le drainage se produit, le tassement du remblai devient de plus en plus important 

jusqu'à atteindre une valeur maximale de 8 cm après une durée de 5 ans. 

La figure 3.25(d) représente les contraintes totales et effectives horizontales, ainsi que les 

pressions interstitielles le long de la galerie souterraine jusqu'à la barricade. Dans cette figure, on 

voit que la contrainte totale horizontale est proche de 130 kPa. Les pressions interstitielles 

diminuent progressivement avec la distance jusqu'à atteindre des valeurs négatives près de la 

barricade. Puisque la barricade a une grande conductivité hydraulique, le drainage se produit 

aisément à travers ce matériau qui a tendance à se dé-saturer rapidement. En conséquence, des 

pressions interstitielles négatives se développent dans la partie du remblai proche de la barricade. 

Les pressions d'eau ont tendance à augmenter avec la distance à partir de la face libre de la 

barricade en allant vers l'entrée de la galerie. 
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Figure 3.25 : Cas G0 - (a) Évolution des pressions interstitielles le long de la LCV pour un 

chantier remblayé avec une barricade. (b) Déplacement horizontal de la face de la barricade le 

long de sa hauteur. (c) Évolution du tassement du remblai dans le chantier à différents temps. 

(d) Distribution des contraintes effectives, totales et les pressions interstitielles à la mi-hauteur 

de la galerie à gauche de la barricade.  
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3.2.8 Cas H0 : Chantiers inclinés 

Le cas de référence consiste à remplir instantanément un chantier incliné avec un remblai drainé 

(u= 0). Les figures 3.26(a), (b) et (c) représentent respectivement les iso-contours des contraintes 

effectives verticales, horizontales et des déplacements verticaux du chantier incliné. Les iso-

contours des contraintes verticales et horizontales suivent la forme d'arches inclinés. On 

remarque aussi une concentration des contraintes au bas du chantier à droite pour les contraintes 

effectives verticales et à gauche pour les contraintes effectives horizontales comme observé dans 

Li et Aubertin (2009c). Les iso-contours des déplacements sont aussi similaires au cas d'un 

chantier drainé vertical, avec une convexité prononcée où les déplacements à la mi-largeur du 

chantier sont beaucoup plus importants que près des parois rocheuses. 

La figure 3.26(d) présente les contraintes effectives verticales le long de la ligne centrale inclinée 

obtenues par les solutions numérique et analytique pour un angle d'inclinaison α = 70°. Le poids 

des terres ainsi que la distribution des contraintes effectives verticales le long de la LCV pour un 

chantier vertical drainé sont aussi montrés sur cette figure. On constate que les allures des 

courbes des contraintes obtenues par les solutions analytiques et numériques sont très similaires. 

Néanmoins, une différence existe entre la solution analytique développée par Caceres 2005 

exprimée par l'équation (3-3) présentée ci-bas, et la distribution des contraintes obtenue par les 

simulations numériques. Encore une fois, les contraintes effectives verticales obtenues avec la 

méthode du poids des terres sont significativement surestimées par rapport aux solutions 

analytique et numérique. La même tendance a été remarquée pour les distributions des 

contraintes effectives horizontales montrées à la figure 3.26(e). 

 (3-3) 

où  est le poids unitaire (en kN/m
3
); B la largeur du chantier (en m); ϕ ' l'angle interne de 

friction; α l'angle d'inclinaison; K le coefficient de pression des terres et h représente la 

profondeur (en m) à partir de la surface du remblai. 

La figure 3.27(a) présente la distribution des contraintes effectives verticales le long de la hauteur 

du chantier à différents endroits. Pour le cas du chantier incliné à 70°, les contraintes effectives 

verticales le long de l'éponte supérieure sont plus faibles que celles le long de l'éponte inférieure. 

Par ailleurs, les contraintes sont maximales à la ligne centrale du chantier pour ce cas. 



125 

 

   

  

Figure 3.26 : Cas H0 - Iso-contours des contraintes effectives verticales (a) (kPa), des contraintes 

effectives horizontales (b) (kPa) et des déplacements verticaux (c) (m) d'un chantier remblayé 

incliné. Distribution des contraintes effectives verticales (d) et horizontales (e), obtenues avec les 

solutions numériques et analytiques, le long de la LCV.  
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Figure 3.27 : Cas H0 - (a) Valeurs des contraintes effectives verticales à différents endroits pour 

un chantier vertical et un chantier incliné obtenues avec SIGMA/W. (b) Distribution des 

contraintes de cisaillement à différents emplacements.  

 

La figure 3.27(a) compare aussi ces contraintes avec les contraintes effectives verticales près de 

la paroi et à la ligne du centre le long du chantier vertical. On voit que les contraintes effectives 

verticales à la LCV sont les plus élevées. Les contraintes effectives verticales aux épontes 

supérieures sont plus faibles que celles près des parois pour un chantier vertical.  

La figure 3.27(b) présente les contraintes de cisaillement simulées aux épontes inférieures et 

supérieures, ainsi qu'au niveau de la ligne centrale pour le cas incliné. Contrairement au cas d'un 

chantier vertical, les contraintes de cisaillement à la ligne centrale ne sont pas nulles pour le cas 

d'un chantier incliné.  
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Figure 3.28: Cas H0 - (a) Déplacement vertical le long du remblai à la ligne du centre (LC), aux 

épontes inférieures et aux épontes supérieures à la fin de la simulation. Coefficient de pression 

des terres K sur la hauteur du chantier à la ligne centrale (LC) (b) et aux épontes supérieure et 

inférieure (c) à la fin de la simulation. 
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La figure 3.28(a) montre le déplacement vertical du remblai en fonction de sa hauteur h(m) à la 

ligne centrale et aux épontes inférieures et supérieures du chantier. Le déplacement vertical à la 

ligne centrale (LC) est plus important que celui aux épontes inférieures et supérieures, comme 

montré aux iso-contours des déplacements verticaux (figure 3.26(c)). Les faibles valeurs des 

déplacements verticaux aux épontes sont dues aux contraintes de cisaillement qui se développent 

près de l'interface roc-remblai et qui limitent le déplacement vertical du remblai à cet endroit. 

La figure 3.28(b) représente l'évolution du coefficient de pression des terres en fonction de la 

hauteur à la ligne centrale. La valeur du coefficient K se situe entre la valeur à l'état actif Ka et 

celle au repos K0 comme ce qui a été suggéré par plusieurs auteurs (Li et al., 2003, 2005a; Goel 

et Patra 2008; Fahey et al., 2009; Li et Aubertin, 2010). 

La comparaison entre le coefficient de pression des terres aux épontes inférieure et supérieure et à 

la ligne du centre (LC) est montrée à la figure 3.28(c). On remarque que la valeur du coefficient 

K le long de l’éponte inférieure est proche de la valeur de K0 et celle à la ligne du centre. À 

l’éponte supérieure, le coefficient de pression des terres K est beaucoup plus élevé. Cette valeur 

est proche de 2 dans la partie supérieure du chantier et décroît jusqu’à 1 au bas du chantier. Les 

faibles valeurs des contraintes effectives verticales le long de l’éponte supérieure, 

particulièrement en haut du chantier sont responsables de la valeur élevée de K à cet endroit. 
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CHAPITRE 4 ÉVALUATION PARAMÉTRIQUE ET DISCUSSION DES 

RÉSULTATS 

Ce chapitre présente les principaux résultats d'une étude paramétrique visant à évaluer l'influence 

relative de différentes propriétés et caractéristiques sur le comportement géotechnique des 

remblais miniers dans les chantiers souterrains. La méthodologie consiste usuellement à modifier 

un paramètre ou une caractéristique spécifique à la fois dans les analyses numériques. Les 

résultats des simulations numériques sont ensuite comparés aux cas de référence décrits au 

chapitre 3. 

Les tableaux 4-1 et 4-2 résument toutes les simulations effectuées pour chaque série d'analyse. 

Tous les cas d'une série sont similaires au cas de référence mise à part un ou deux paramètres 

modifiés, comme le montrent les tableaux 4-1 et 4-2.   

Les principaux aspects étudiés concernent les propriétés géotechniques des remblais, la géométrie 

du chantier et certaines caractéristiques des analyses numériques. De façon plus spécifique, 

l'influence de l'angle de friction interne ϕ ' du remblai, du module de Young Eb, du coefficient de 

Poisson ν, de l'angle de dilatance ψ et de la cohésion c' a été investiguée. L'influence de la 

géométrie du chantier remblayé est aussi abordée dans ce chapitre. 

Les résultats des simulations E0 sont aussi comparés aux résultats des simulations D0 pour 

évaluer l'effet progressif de la cimentation du remblai. L'effet de la vitesse de remplissage est 

également étudié pour le cas d'un remplissage séquentiel sans effet de la cimentation (série D). Le 

choix du modèle constitutif pour modéliser le comportement des chantiers remblayés influence 

l'état des contraintes (et des déformations) tel que montré par les cas portant sur l'effet de la loi de 

comportement qui est aussi analysé et discuté dans ce chapitre. 

On aborde aussi l'étude sur le comportement des barricades face à différents scénarios dans ce 

chapitre. L'influence de certains paramètres, incluant l'effet du drainage, la vitesse de remblayage, 

la dimension de la barricade et sa position le long de la galerie est analysée pour mieux 

comprendre le comportement mécanique de ce type de structure. 

La discussion présentée à la fin de ce chapitre apporte une vue d'ensemble des différents cas 

simulés et de l'influence de chaque paramètre sur l'état des contraintes (et des déformations). 
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Tableau 4-1: Paramètres modifiés par rapport aux cas de référence (tableau 3-2) lors des analyses paramétriques (séries de simulations 

A, B, C et D) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* : Avec couches minces. 
1
 : Maillage rectangulaire avec 836 éléments équilatéraux de 1m de côté. 

2
 : Maillage triangulaire de 11780 éléments équilatéraux de 0.25m de côté. 

 

Série n° Paramètre 

modifié 

Série n° Paramètre 

modifié 

Série n° Paramètre 

modifié 

Série n° Paramètre modifié 

A 

E 

e 

s 

A0 - 

B 

F 

B0 - 

C 

G 

C0 - 

D 

H 

D0 - 

A1 ϕ ' = 10°* B1 ϕ ' = 5° C1 Maillage
1 

D1 V = 5m/jr 

A2 ϕ ' = 20°* B2 ϕ ' = 20° C2 Maillage
2
 D2 V = 5m/5hr 

A3 ϕ ' = 35°* B3 ϕ ' = 50° C3 ϕ ' = 5° D3 E=10MPa 

A4 ϕ ' = 50°* B4 ν = 0.33 C4 ϕ ' = 20° D4 E=1MPa 

A5 ν = 0.33 B5 ν = 0.49 C5 ϕ ' = 50° D5  

A6 ν = 0.49 B6 c = 10 kPa C6 ν = 0.33 D6  

A7 c' = 10 kPa B7 c = 25 kPa C7 ν = 0.49 D7  

A8 c' = 25 kPa B8 c = 50 kPa C8 c = 10 kPa D8  

A9 c' = 50 kPa B9 Ψ = -5° C9 c = 25 kPa D9  

A10 Ψ = -5° B10 Ψ = 5° C10 c = 50 kPa D10  

A11 Ψ = 5° B11 Ψ = 10° C11 Ψ = -5° D11  

A12 Ψ = 10° B12 E = 10 MPa C12 Ψ = 5° D12  

A13 B = 6 m B13 E = 1 MPa C13 Ψ = 10° D13  

A14 B=6m - Axi B14 B = 10 m C14 E = 1 MPa D14  

A15 B = 10 m B15 B = 20 m C15 E = 10 MPa D15  

A16 B = 20 m B16 B = 50 m C16 E= 10 GPa D16  

A17 B = 50 m       

A18 c' = 10 kPa*       

A19 c' = 25 kPa*       
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Tableau 4-2 : Paramètres modifiés par rapport aux cas de référence (tableau 3-2) lors des analyses paramétriques (séries de simulations 

E, F, G et H) 

Série n° Paramètre 

modifié 

Série n° Paramètre 

modifié 

Série n° Paramètre 

modifié 

Série n° Paramètre modifié 

E 

E 

e 

s 

E0  

F 

F0 - 

G 

G0 - 

H 

H0 - 

E1 V = 5m/jr F1 ϕ ' = 5° G1 drainé H1 α = 80° 
E2 V = 5m/5hr F2 ϕ ' = 20° G2 saturé H2 α = 60° 

E3 E variable F3 ϕ ' = 50° G3 α = 70° H3 ϕ ' = 5° 

E4 
k variable 

E = 1 MPa 
F4 ν = 0.33 G4 V = 5m/5jrs H4 ϕ ' = 20° 

E5 
c variable 

E = 1 MPa 
F5 ν = 0.49 G5 V = 5m/jr H5 ϕ ' = 50° 

E6 

AEV 

variable 

E = 100 MPa 

F6 
λ = 0.34  

κ = 0.055 
G6 

V = 5m/5hrs 

l = 10 m 
H6 α = 70° - saturé 

E7 

AEV 

variable 

E = 1 MPa 

F7 
λ = 0.08  

κ = 0.014 
G7 L = 2.5 m H7 α = 60° - saturé 

  F8 OCR = 5 G8 L = 10 m H8 α = 80° - drainage 

  F9 OCR = 10 G9 
V = 5m/5hrs 

l = 5 m 
H9 α = 70° - drainage 

  F10 
Remblai 

saturé 
G10 

V = 5m/5hrs 

l = 15 m 
H10 α = 60° - drainage 

l (m) : Éloignement de la barricade (distance entre l’entrée de la galerie et la position de la barricade) 

L (m) : Longueur de la base de la barricade (m) 

α : Angle d’inclinaison par rapport à l'axe horizontal 
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4.1 Effet du maillage 

Le but de cette section est d'évaluer l'effet du maillage (i.e. nature et taille des éléments) sur les 

résultats. Les simulations C0, C1 et C2 ont été menées pour étudier cet effet. Rappelons que la 

simulation de référence simule le comportement géotechnique du remblai minier mis en place 

dans un état initialement saturé avec un écoulement et un drainage au bas du chantier. Les 

résultats correspondent à la fin de la simulation (t = 3,17 années), lorsque le niveau phréatique de 

l'eau est proche de la base du chantier. 

Trois maillages ont été utilisés. Le maillage du cas C0 (cas de référence) consiste en un maillage 

de 3126 éléments triangulaires équilatéraux de 0,5 m de côté. Le maillage C1 comprend 836 

éléments rectangulaires équilatéraux de 1 m de côté; le maillage C2 est aussi un maillage 

triangulaire de 11780 éléments équilatéraux avec une longueur de côté de 0,25m. 

Les paramètres d'entrées, les conditions initiales et les conditions aux frontières sont identiques 

pour les 3 cas de simulation (C0, C1, C2). Le temps de calcul requis pour résoudre le problème 

dépend de la finesse du maillage. Par exemple, pour le maillage le plus grossier (maillage C1), la 

simulation se fait en 10 minutes approximativement. Cette durée est d'environ 30 minutes et 6 

heures pour un maillage relativement fin (maillage C0) et un maillage très fin (maillage C2) 

respectivement. 

La figure 4.1(a) montre le profil des contraintes effectives verticales le long de la ligne centrale 

verticale (LCV) à la fin de la simulation (3,17 années). On constate que le maillage C0 et le 

maillage C2 donnent exactement le même résultat. Le maillage C1 donne un résultat assez 

similaire aux deux autres maillages mais avec une moins bonne stabilité (on note la présence de 

petites oscillations). La figure 4.1(b) présente les pressions interstitielles le long de la hauteur du 

chantier à la ligne du centre. Le maillage C0 et C2 donnent la même distribution le long de la 

hauteur du chantier. On remarque cependant une différence avec les pressions interstitielles 

obtenues par le maillage C1 particulièrement au bas du chantier. Pour ce maillage, le niveau d'eau 

est plus bas comparativement aux deux autres maillages. Cette remarque est observée à la figure 

4.1(c) qui montre le profil de la teneur en eau volumique le long du remblai à la LCV. Pour une 

même courbe de rétention d'eau (CRE), un maillage grossier (maillage C1) permet une plus 
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grande dé-saturation du matériau par rapport aux maillages C0 et C2 qui donnent le même 

résultat. Ceci est dû au niveau phréatique plus bas obtenu avec le maillage C1 (figure 4.1(b)).  

La figure 4.1(d) représente le profil des contraintes de cisaillement près de la paroi rocheuse pour 

les 3 maillages. La distance du point de mesure à la paroi rocheuse est de 0,5 m, 1 m et 0,25 m 

respectivement pour les simulations C0, C1 et C2. Les résultats montrent que le maillage C1 n'est 

pas suffisamment fin pour éviter les divergences entre des valeurs proches d'élévation. De 

manière générale, les résultats des maillages C0 et C2 sont assez similaires. On note une petite 

différence entre les deux courbes particulièrement au bas du chantier qui est due à la différence 

de la distance entre le point de mesure et la paroi rocheuse pour les deux maillages (0,5 m et 0,25 

m pour C0 et C2 respectivement)  

Dans la suite, le maillage choisi pour effectuer les simulations est celui du cas de base C0 soit un 

maillage triangulaire avec des éléments de 0,5 m de côté. Ce maillage a été adopté parce qu'il 

produit de bons résultats pour un temps de simulation acceptable.  
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Figure 4.1: Cas C0, C1 et C2 - Comparaison de l'évolution des contraintes effectives verticales 

(a), des pressions interstitielles (b), de la teneur en eau volumique (c) et des contraintes de 

cisaillement (d) en fonction de la hauteur pour différents maillages.  
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4.2 Effets des propriétés du remblai 

4.2.1 Angle de friction interne ϕ' (modèle ÉP-MC) 

Les comparaisons suivantes correspondent au cas d'un remblai drainé sans pressions interstitielles 

(u = 0), avec un angle de friction ϕ ' qui varie. Pour ces simulations particulières, deux couches 

minces de remblai (sans cohésion) ont été ajoutées le long des parois pour permettre un 

déplacement à l'interface remblai-roc. La figure 4.2 montre la partie haute du chantier avec les 

couches minces d'une épaisseur b de 10 cm entre la paroi rocheuse et le remblai minier. Ces 

couches sont représentées avec le modèle élastoplastique (Mohr-Coulomb) et ont les mêmes 

propriétés géotechniques que le remblai minier, sauf pour le module de Young E qui prend une 

valeur de 1 MPa afin de permettre la déformation de la couche mince et le déplacement du 

remblai à l'interface remblai-roc. L'effet de ces couches minces (qui jouent le rôle d'un élément 

d'interface) est montré à la figure 4.3. On compare ici l’état des contraintes et des déplacements 

dans le cas de base (sans couches minces – comme au chapitre 3 – Cas A0) et avec les couches 

minces (cas A3). La figure 4.3(a) présente le déplacement vertical sur la largeur du chantier 

remblayé à 3 emplacements différents (h = 0 m, h = 25 m et h = 40 m). On voit que les 

déplacements verticaux sont plus élevés (en valeurs absolues) en présence des couches minces 

par rapport au cas sans éléments d'interface à différentes profondeurs. Ceci est principalement dû 

au grand déplacement des couches minces à l'interface remblai-roc. À titre d'exemple, le 

déplacement vertical de la couche mince est proche de 0,04 m au bas du chantier (h = 40 m) alors 

qu'il est nul à l'interface remblai-roc (interface solidaire) et atteint un maximum de 0,02 m à la 

mi-largeur du chantier à cette profondeur (h = 40 m) pour le cas sans interfaces (cas A0).  

 
Figure 4.2: Cas A1, A2, A3 et A4 - L'ajout d'une couche mince à l'interface roc-remblai ayant les 

mêmes propriétés géotechniques du remblai minier, une épaisseur e = 0,1 m et un module de 

Young E = 1 MPa. 
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La figure 4.3(b) présente le déplacement vertical sur la hauteur du chantier à la LCV pour les cas 

avec éléments d'interfaces (ϕ ' = 35°, cas A3) et sans interfaces (ϕ ' = 35°, cas de référence A0). 

On remarque que le déplacement vertical est plus élevé pour le cas avec des éléments d'interfaces 

(couches minces). Le faible module de Young E de la couche mince permet une déformation plus 

grande à l'interface roc-remblai, ce qui permet au remblai minier de se tasser plus au sein du 

chantier. 

La figure 4.3(c) montre la distribution des contraintes effectives verticales et horizontales 

obtenues des simulations numériques pour les cas avec et sans interfaces (ϕ ' = 35°; cas A0 et A3). 

Les contraintes verticales calculées à partir du poids des terres sont aussi montrées sur cette 

figure. La figure montre qu'il existe une petite différence entre la distribution des contraintes 

effectives verticales obtenues du cas avec interfaces (cas A3) et le cas sans interfaces (cas A0). 

Les contraintes effectives verticales sont légèrement plus élevées pour le cas avec éléments 

d'interface particulièrement au bas du chantier. Comme mentionné plus haut, la présence 

d'éléments d'interface entre le roc et le remblai permettent un plus grand déplacement du remblai 

à l'interface, ce qui diminue l'effet d'arche qui se développe dans le chantier. Les contraintes 

effectives horizontales sont très proches pour les deux cas (cas A0 et A3). 

La figure 4.3(d) présente les iso-contours des contraintes effectives verticales pour le cas avec 

interfaces (à droite; cas A3) et le cas sans interfaces (à gauche; cas A0) dans le chantier remblayé. 

Pour les deux cas, les effets d'arche sont bien montrés sur la figure. Néanmoins, la forme des iso-

contours est légèrement différente pour les deux cas. On remarque que la concavité des iso-

contours est plus marquée (sommets des iso-contours plus pointus) pour le cas sans interfaces 

(cas A0) par rapport au cas avec interfaces (cas A3) qui est caractérisé par des sommets d'iso-

contours plus arrondis. 

On constate que la présence de ces zones plus déformables permettent d’accroître le déplacement 

le long des parois et favorise la mobilisation de la contrainte de cisaillement due à la friction à 

l’interface, conformément à ce qui est anticipé dans un chantier remblayé. À noter que des 

simulations avec différentes valeurs d'angles de friction interne ϕ ' ont aussi été menées sans ces 

couches minces, mais les résultats obtenus dans certains cas ont été jugés non réalistes car trop 

loin des résultats anticipés (et des solutions analytiques); certains de ces résultats sont montrés en 

annexes (figure B.1). 
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Figure 4.3 : Cas A0 et A3 - Déplacement vertical sur la largeur à différentes profondeurs (a) et sur 

la hauteur à la LCV (b) du chantier remblayé pour les cas avec et sans interfaces. (c) Distribution 

des contraintes effectives le long de la LCV avec et sans interfaces (ϕ ' = 35°). (d) Iso-contours 

des contraintes effectives verticales (kPa) (sans interfaces à gauche et avec interfaces à droite) 
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La figure 4.4 présente l'influence de l'angle de friction interne ϕ ' sur la distribution des 

contraintes effectives verticales le long de la ligne centrale verticale (LCV) du chantier. Quatre 

cas avec différents angles de friction (ϕ ' = 10°, 20°, 35° et 50°; cas A1, A2, A3 et A4 

respectivement) sont comparés. Les distributions des contraintes effectives verticales et 

horizontales obtenues des solutions analytiques et à partir du poids des terres sont aussi montrées 

sur cette figure.  

On remarque que les contraintes horizontales et verticales calculées en utilisant les solutions 

numériques et analytiques sont relativement similaires pour les quatre valeurs de ϕ ' tel que 

montré aux figures 4.4(a), (b), (c) et (d). Les contraintes obtenues par les simulations numériques 

et les solutions analytiques sont beaucoup plus faibles que celles calculées à partir du poids des 

terres, particulièrement au bas du chantier. Ces résultats confirment aussi que les solutions 

analytiques avec Ka donnent une bonne corrélation avec les résultats numériques le long de la 

ligne centrale verticale, comme montré dans des investigations précédentes menées avec FLAC 

(Li et al., 2003; Li et al., 2005a; Li et Aubertin, 2009a, b, c) 

La figure 4.5(a) montre la distribution des contraintes effectives verticales le long de la ligne 

centrale verticale (LCV) pour les 4 valeurs de l'angle de friction interne ϕ ' soit 10°, 20°, 35° et 

50° (cas A1, A2, A3 et A4 respectivement). On remarque que les cas avec ϕ ' de 20°, 35° et 50° 

donnent des distributions similaires, qui ne varient pas beaucoup avec la profondeur. Les 

contraintes effectives verticales du cas A1 avec ϕ ' = 10° sont plus élevées le long de la moitié 

basse du chantier par rapport aux autres cas, en raison d'un effet d'arche moins bien développé. 

Cette figure montre qu'à partir d'une certaine valeur de l'angle de friction interne ϕ ' (20° pour 

notre cas), son influence sur les contraintes verticales n'est plus significative. Des observations 

similaires ont été rapportées par Li et Aubertin (2009a, b et c). 

L'influence de l'angle de friction interne est par contre plus marquée sur les contraintes effectives 

horizontales. La figure 4.5(b) montre que plus l'angle de friction interne augmente, plus les 

contraintes effectives horizontales diminuent et plus les effets d'arche contribuent à réduire les 

contraintes en profondeur. À titre d'exemple, la contrainte effective horizontale au bas du chantier 

pour un angle de friction interne ϕ ' = 10° est de 300 kPa comparativement à 50 kPa pour ϕ ' = 

50°. On remarque aussi que pour le cas ϕ ' = 10° (cas A1), la contrainte effective horizontale 
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dépasse légèrement celle obtenue par le poids des terres avec K0 = 0,33 (= ν / (1- ν); avec ν = 

0,25). 

  

  

Figure 4.4 : Cas A1, A2, A3 et A4 - Comparaison des contraintes effectives verticales et 

horizontales obtenues des solutions analytiques (Anal) et numériques (Num) pour les cas (a) ϕ ' 

= 10° (cas A1), (b) ϕ ' = 20° (cas A2), (c) ϕ ' = 35° (cas A3) et (d) ϕ ' = 50° (cas A4).  
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Figure 4.5 : Cas A1, A2, A3 et A4 - Influence de l'angle de friction interne sur la distribution des 

contraintes effectives verticales (a) et horizontales (b) à la ligne centrale verticale (LCV) pour les 

cas A1, A2 A3 et A4. 
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4.2.2 Influence du module de Young Eb 

Lorsqu'il y a un déplacement suffisant du remblai dans le chantier (requis pour permettre les 

déplacements et mobiliser pleinement les contraintes de cisaillement à l'interface), les résultats 

des simulations montrent qu'il y a usuellement très peu d'influence du module de Young sur l'état 

des contraintes pour un remplissage instantané sans pression interstitielle (Li et Aubertin, 2007, 

2009c; Fahey et al., 2009).  

L'influence du module de Young Eb est étudiée ici pour un remblayage séquentiel sans 

cimentation (séries D) et sans éléments d'interface. Le chantier est remblayé par couche de 5 m à 

tous les 5 jours jusqu'à ce qu'il soit entièrement rempli (avec 10 couches en 50 jours). Une 

comparaison des états de contraintes, des pressions interstitielles et des déplacements dans le 

chantier remblayé est établit pour 3 valeurs du module de Young Eb: 1MPa, 10MPa et 100MPa 

(simulations D4, D3 et D0 respectivement). Un module de 1MPa peut représenter le module de 

Young d'un remblai en pâte très déformable (compressible) durant les premiers jours de cure 

(Belem et al., 2000), où sa résistance mécanique n'a pas encore été acquise. Les valeurs Eb = 10 

MPa et 100 MPa peuvent représenter des valeurs de modules de Young de remblais ayant un âge 

de 7 à 90 jours (Fall et al., 2007). 

La figure 4.6(a) présente l'évolution de la contrainte verticale totale au bas du chantier (à  

h = 47 m) pour les 3 valeurs du module de Young (1 MPa, 10 MPa et 100 MPa; simulations D4, 

D3 et D0 respectivement). Les mesures au bas du chantier ont été prises à h = 47 m près du centre 

de la première couche mise en place et non pas à h = 50 m qui représente l'interface de contact 

remblai-roc où les résultats sont grandement influencés par les effets de bord. Il est montré dans 

cette figure qu'à chaque fois qu'une couche est ajoutée, la contrainte verticale totale augmente 

d'environ 100 kPa pour les cas Eb = 1 MPa et 10 MPa, ce qui correspond à la contrainte due au 

poids total de la couche (20 kN/m
3
 × 5m). En revanche, ceci est différent pour le cas Eb = 100 

MPa où l'ajout de nouvelles couches n'augmente que peu la contrainte totale verticale, 

particulièrement à la fin de la simulation; ceci reflète l'effet d'une rigidité accrue qui modifie la 

répartition des contraintes dans le cas d'un remplissage par couches.  
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Figure 4.6 : Cas D0, D3 et D4 - Influence du module de Young E sur l'évolution dans le temps des 

contraintes totales verticales (a), des contraintes totales horizontales (b), des pressions 

interstitielles (c) à la base du chantier (h = 47 m). (d) Profils des pressions interstitielles le long 

de la LCV pour un remplissage séquentiel sans cimentation (cas D0, D3 et D4). 
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Il est aussi montré dans cette figure que la contrainte verticale totale pour le cas 1 MPa augmente 

presque linéairement avec la hauteur de remblayage (dans le temps), alors qu'elle augmente selon 

un taux décroissant pour le cas Eb = 10 MPa (et 100 MPa). À la fin de la simulation, la contrainte 

verticale totale au bas du chantier est nettement plus élevée pour le cas d'un module Eb de 1MPa 

(570 kPa) que pour les cas 10 MPa et 100 MPa (245 et 180 kPa respectivement). 

De manière générale, la même tendance est observée concernant l'évolution dans le temps de la 

contrainte horizontale totale au bas du chantier, tel que montré à la figure 4.6(b). La valeur de la 

contrainte horizontale à la fin de la simulation pour un module de Eb de 1 MPa est de 275 kPa 

comparativement à 70 kPa et 45 kPa pour les cas 10 MPa et 100 MPa. 

Un module de Young élevé produit un tassement plus faible comparativement à de faibles 

modules Eb. Cette rigidité accrue affecte aussi la répartition des contraintes dans chaque couche.  

Un remblai avec un module de Young Eb élevé se tasse moins et génère moins de surpression 

dans la nouvelle couche et dans les couches précédemment mises en place comparativement à un 

remblai dont le module est faible. La figure 4.6(c) montre l'évolution dans le temps de la pression 

interstitielle au bas du chantier (h= 47 m) pour les trois valeurs du module de Young Eb (1 MPa, 

10 MPa et 100 MPa; simulations D4, D3 et D0 respectivement). Pour le cas Eb= 1 MPa, l'ajout de 

chaque couche saturée augmente la pression interstitielle de 100 kPa (approximativement). Elle 

diminue ensuite progressivement (dissipation grâce au drainage) mais ré-augmente à nouveau 

suite à l'ajout des nouvelles couches. Pour les cas Eb = 10 MPa et Eb = 100 MPa, la pression 

interstitielle peut aussi augmenter (pour D3) mais elle se dissipe presque complètement avant la 

mise en place de nouvelles couches saturées sur les couches précédemment mises en place. Un 

remblai « mou », avec une faible valeur de Eb génère des pressions interstitielles plus importantes 

dans chaque couche et au bas du chantier suite à la mise en place de nouvelles couches de 

remblai saturé. À la fin de chaque étape de simulation, les pressions interstitielles au bas du 

chantier ne se dissipent pas entièrement (i.e. u > 0) pour le cas avec une faible valeur de Eb 

(simulation D4) car la déformation induite est plus grande et demande le drainage d'une plus 

grande quantité d'eau (dans un temps plus long). La mise en place d'une nouvelle couche 

augmente la pression interstitielle au bas du chantier d'une pression égale au poids total de cette 

couche (20 kN/m
3
 × 5 m = 100 kPa pour notre exemple). La génération des pressions 

interstitielles est plus faible pour une valeur plus élevée du module de Young (Eb = 100 MPa), car 
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le remblai rigide se déforme moins; les pressions interstitielles au bas du chantier se dissipent 

alors complètement à la fin de chaque étape de simulation (car cela implique un faible volume 

d'eau de drainage). L'ajout d'une nouvelle couche saturée de remblai n'affecte que légèrement les 

pressions interstitielles au bas du remblai plus rigide surtout vers la fin de la simulation où les 

effets d'arche réduisent les contraintes transmises au bas du chantier. 

À la fin de la simulation (t = 50 jours), la pression interstitielle à la base du chantier est de 140 

kPa pour le cas Eb =1 MPa, alors qu'elle est presque nulle pour les cas Eb =10 MPa et 100 MPa. 

Ceci expliquerait les valeurs élevées des contraintes totales (verticales et horizontales) montré 

aux figures 4.5(a) et (b) pour un module faible Eb = 1 MPa, comparativement à des modules plus 

élevés (Eb = 10 MPa et Eb = 100 MPa). 

La figure 4.6(d) représente l'évolution dans le temps des profils des pressions interstitielles le 

long de la ligne centrale verticale (LCV), juste après la mise en place de la 10
e
 couche jusqu'à la 

fin de la simulation (45 ≤ t ≤ 50 jours), pour les cas Eb = 1 MPa, 10 MPa et 100 MPa. Pour le cas 

Eb = 1 MPa, les pressions interstitielles sont très élevées sur la hauteur du chantier, 

particulièrement à la mi-hauteur. Ceci est dû aux surpressions élevées associées à une plus grande 

compressibilité du remblai ayant une faible valeur de Eb. Pour le cas Eb= 10 MPa, il y a une 

dissipation plus rapide des pressions interstitielles le long de la hauteur du chantier (car elle se 

produit suite au drainage d'un faible volume d'eau). Pour le cas Eb =100 MPa, les pressions 

interstitielles sont négatives (succions) le long des couches mises en place précédemment (1
ère

 à 

la 9
e
 couche), et la dissipation de la pression ne concerne que la couche nouvellement mise en 

place (i.e. 10
e
 couche sur la figure). 

Pour les trois cas Eb = 100 MPa, 10 MPa et 1 MPa (simulation D0, D3 et D4 respectivement), le 

processus de dissipation des pressions interstitielles est similaire au cas d'un remblayage 

immédiat avec un remblai saturé où un excès des pressions interstitielles se produit juste après la 

mise en place d'une nouvelle couche saturée, et qui se dissipe au fur et à mesure que le drainage 

se produit (figure 3.11(b)). Lorsque le module Eb est plus faible, cela prend plus de temps car le 

volume d'eau à drainer est plus grand pour accommoder la déformation plus élevée. 
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Figure 4.7 : Cas D0, D3 et D4 - Influence du module de Young sur l'évolution dans le temps des 

contraintes effectives verticales (a) et horizontales (b). Comparaison des contraintes de 

cisaillement près du mur (à 0,25 m de la paroi rocheuse) (c) et des déplacements verticaux (d) le 

long de la hauteur du chantier (à la LCV) pour différentes valeurs de E.  
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Les figures 4.7(a) et (b) présentent l'influence du module de Young sur l'évolution des contraintes 

effectives verticales et horizontales respectivement, au bas du chantier. Les deux figures sont très 

similaires et montrent une évolution presque linéaire de la contrainte effective pour le cas d'un 

module Eb de 1MPa, alors que cette contrainte effective augmente presque linéairement au début 

de la simulation, et tend à se stabiliser à une valeur fixe (moins élevée) pour les valeurs de Eb 

plus élevées (10 et 100 MPa). À la fin de la simulation, les contraintes effectives sont plus 

élevées pour le cas Eb = 1 MPa comparativement aux cas Eb = 10 MPa et 100 MPa. 

La figure 4.7(c) montre le profil des contraintes de cisaillement le long de la ligne verticale à 0,25 

m de la paroi rocheuse à la fin de la simulation. Pour le cas d'un module de Young faible (i.e.  

Eb = 1 MPa), la contrainte de cisaillement est nulle dans le haut, jusqu'à la mi-hauteur du 

chantier, et elle augmente au bas du chantier (là où la dissipation des pressions se produit) pour 

atteindre une valeur absolue de 100 kPa. L'excès de pressions interstitielles dans la partie haute 

du chantier réduit considérablement l'effet d'arche pour ce cas. Ceci explique la différence entre 

les contraintes effectives (horizontales et verticales) entre le cas Eb = 1 MPa et les cas Eb = 10 

MPa et 100 MPa vers la fin de la simulation aux figures 4.6(a) et (b). Au bas du chantier, le 

drainage favorise la dissipation des pressions interstitielles, ce qui augmente les contraintes de 

cisaillement au bas du chantier pour le cas Eb = 1 MPa. Pour les valeurs de Eb plus élevées, la 

contrainte de cisaillement est positive sur presque toute la hauteur du chantier et atteint une 

valeur absolue de 40 kPa à partir de la mi-hauteur jusqu'au bas du chantier. 

La figure 4.7(d) illustre l'influence du module de Young Eb sur le profil des déplacements 

verticaux cumulatifs (par rapport aux positions initiales des nœuds) le long de la LCV à la fin de 

la simulation (i.e. t = 50 jours). Les déplacements verticaux d'un remblai moins rigide (Eb = 1 

MPa) sont beaucoup plus élevés le long du chantier, comparativement à des remblais plus rigides 

(E = 10 MPa et 100 MPa). Les tassements les plus élevés se situent vers le bas du chantier, et 

sont dus à la déposition de nouvelles couches qui produisent une augmentation progressive du 

tassement pour chaque couche qui se situe en dessous. 
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Les figures 4.7(a), 4.7(a) et 4.7(d) illustrent bien l'effet d'un remplissage séquentiel sur les 

contraintes et les déformations. La figure 4.7(a) montre par exemple les discontinuités dans 

l'évolution des contraintes effectives verticales qui se produisent entre deux étapes correspondant 

à la mise en place d'une nouvelle couche. En réalité, cet effet d'escalier qui montre l'augmentation 

graduelle des contraintes en fonction de la hauteur du remblayage (ou du temps) ne se produit pas 

nécessairement de façon aussi marquée. L'augmentation des pressions se fait usuellement de 

manière relativement continue (sans discontinuités), en raison de la mise en place progressive du 

remblai, comme observé dans les investigations in situ de Grabinski (2010) et Thompson et al. 

(2011). 
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4.2.3 Influence du coefficient de Poisson ν et de l'angle de dilatance ψ 

 

L'influence du coefficient de Poisson ν et de l'angle de dilatance ψ est étudiée dans cette section 

pour le cas d'un remplissage instantané avec un remblai drainé sans pressions interstitielles. 

Rappelons que pour ce cas, les contraintes effectives sont égales aux contraintes totales (u=0). 

Les couches minces qui modélisent les éléments d'interface entre le roc et le remblai n'ont pas été 

utilisées dans cette analyse. 

La figure 4.8(a) présente la distribution des contraintes effectives le long de la LCV pour 

différentes valeurs du coefficient de Poisson ν (ν = 0,25; 0,33; 0,49; simulations A0, A4 et A5 

respectivement). La contrainte due au poids des terres est aussi montrée sur la figure. Pour toutes 

les valeurs de ν, les contraintes effectives verticales données par la solution numérique sont 

moins élevées que celle obtenue avec le poids des terres. Il peut aussi être déduit de cette figure 

que l'augmentation du coefficient de Poisson tend à décroître les contraintes effectives verticales, 

particulièrement à la partie haute du chantier. Cependant, cette décroissance demeure assez légère 

et n'est plus observée à la moitié basse du chantier pour le cas ν = 0,49 (cas A5). Des résultats 

similaires ont été observés par Li et Aubertin (2009c) et Fahey et al. (2009). Si on compare les 

résultats des simulations numériques avec la solution analytique exprimée par l'équation (2-23), 

on voit que les contraintes effectives verticales obtenues avec la valeur ν = 0,25 sont les plus 

proches des contraintes obtenues avec la solution analytique. 

En terme de contraintes effectives horizontales, les cas ν = 0,25 et ν = 0,33 (cas A0 et A4) donnent 

la même distribution le long de la LCV du chantier. Cette distribution est très proche de celle 

obtenue de la solution analytique avec un coefficient de pression des terres Ka (Li et al., 2005a). 

Ces contraintes sont beaucoup plus faibles que la distribution des contraintes horizontales basée 

sur le poids des terres avec le coefficient K0 à cause des effets d'arche. Il est remarqué que les 

contraintes obtenues pour le cas ν = 0,49 sont beaucoup plus élevées que pour les cas ν = 0,25 et 

ν = 0,33 comme le montre la figure 4.8(b). De plus, l'allure de la distribution des contraintes 

horizontales pour le cas ν = 0,49 est différente des deux autres courbes. Au bas du chantier, la 

contrainte horizontale du cas ν = 0,49 s'approche de celle obtenue avec le poids des terres au 

repos (K0 = ν / (1- ν) ~ 1-sinϕ '). Ces résultats sont conformes aux observations de Li et Aubertin 

(2009c) et Fahey et al. (2009). 



149 

 

  

    

Figure 4.8 : Cas A0, A4 et A5 - Influence du coefficient de Poisson ν sur la distribution des 

contraintes effectives verticales (a) et horizontales (b) le long de la LCV (cas A0, A4 et A5). Iso-

contours des contraintes effectives verticales (c), (e) et horizontales (d), (f) pour les cas ν = 0,33 

et ν = 0,49 (cas A4 et A5 respectivement). 
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La figure 4.8(c) montre les iso-contours des contraintes effectives verticales du chantier remblayé 

avec une valeur de ν = 0,33 (cas A4). Comme pour le cas de base ν = 0,25 (cas A0), cette figure 

montre que les contraintes ne sont pas uniformément distribuées sur la largeur du chantier : les 

contraintes effectives verticales sont plus élevées au milieu du chantier par rapport à près de la 

paroi. On remarque que ce cas est très similaire au cas de base A0 avec ν = 0,25 (figure 3.6(c)). 

La figure 4.8(d) montre les iso-contours des contraintes effectives horizontales le long du 

chantier remblayé pour le cas A4 (ν = 0,33). Cette figure montre aussi que les contraintes ne sont 

pas uniformément réparties sur la largeur du chantier et qu'elles augmentent avec la profondeur 

mais à un taux décroissant en se rapprochant de la base. 

Les iso-contours des contraintes effectives verticales pour le cas ν = 0,49 (cas A5) sont montrés à 

la figure 4.8(e); ce cas correspond à un matériau qui ne subit presque pas de variation de volume 

sous une contrainte de compression axiale, de sorte que les contraintes horizontales (qui sont 

typiquement proportionnelles à K0 = ν / (1 - ν)) sont plus proches des contraintes verticales. En 

haut du chantier, on remarque que les contraintes effectives verticales sont légèrement plus 

faibles que celle des deux autres cas (ν = 0,25 et ν = 0,33; simulations A0 et A4 respectivement). 

Dans la partie basse du chantier, les contraintes effectives verticales augmentent plus avec la 

profondeur pour atteindre une valeur de 300 kPa à la base du chantier pour le cas ν = 0,49  

(cas A5) comparativement à 220 kPa et 200 kPa pour le cas ν = 0,25 (cas A0) et ν = 0,33 (cas A4) 

respectivement.  

La figure 4.8(f) montre les iso-contours des contraintes effectives horizontales pour le cas ν = 

0,49 (cas A5). Au bas du chantier, on voit que les contraintes effectives horizontales sont presque 

uniformément répartie sur la largeur du chantier; elles sont plus élevées pour ce cas par rapport 

aux deux autres cas (ν = 0,25 et ν = 0,33) car la valeur de K0 est plus grande. Les contraintes 

effectives horizontales dans ce cas sont très proches des contraintes effectives verticales, en 

raison d'un coefficient de pression des terres K ~ 1, comme observé par Fahey et al. (2009) pour 

le cas d'un remplissage instantané d'un remblai sec avec ν = 0,49. 

Le rapport des déplacements plastiques verticaux sur les déplacements horizontaux, exprimé par 

l'équation (4-1), est utilisé en géotechnique afin de représenter la dilatance d'un échantillon 

soumis à un cisaillement (Wood, 2004). 
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Figure 4.9 : Cas A0, A10, A11 et A12 - Influence de l’angle de dilatance sur la distribution des 

contraintes effectives verticales (a) et horizontales (b) le long de la LCV. Iso-contours des 

contraintes effectives verticales (c) et horizontales (d) pour le cas ψ = 10° (simulation A12). 
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 (4-1) 

Dans cette équation, ψ est l'angle de dilatance,  le déplacement vertical et  le déplacement 

horizontal de l'échantillon. Lorsque l'angle de dilatance ψ est positif, l'échantillon se dilate 

lorsqu'il est soumis à des efforts de cisaillement. L'échantillon se contracte lorsque l’angle de 

dilatance ψ est négatif. 

La figure 4.9(a) présente l'influence de l'angle de dilatation ψ sur la distribution des contraintes 

verticales le long de la LCV du chantier. Il est observé qu'une valeur positive ou négative de 

l'angle de dilatance tend à diminuer les contraintes verticales par rapport au cas de référence avec 

un angle ψ = 0°, comme observé par Li et Aubertin (2009c) et Fahey et al. (2009). Cette 

diminution est plus prononcée pour les cas ψ = 5° et ψ = 10° (cas A11 et A12) par rapport au cas ψ 

= - 5°. De manière générale, les contraintes verticales obtenues de SIGMA/W, pour les 

différentes valeurs de l'angle ψ étudiées sont beaucoup plus faibles que les contraintes verticales 

calculées à partir du poids des terres. Aussi, la distribution des contraintes effectives verticales la 

plus proche de celle obtenue avec la solution analytique est celle correspondant à un angle de 

dilatance ψ = 0° (cas de référence, sans déformation volumique plastique). 

La figure 4.9(b) représente la distribution des contraintes effectives horizontales le long de la 

LCV pour différentes valeurs de ψ. Il est observé que l'augmentation de l'angle de dilatance ψ 

augmente les contraintes horizontales par rapport au cas de référence, particulièrement dans la 

partie supérieure du chantier remblayé (aussi observé par Fahey et al., 2009). Au bas du chantier, 

les contraintes horizontales obtenues des simulations numériques sont très proches l'unes des 

autres, et elles diffèrent significativement des contraintes horizontales obtenues par le poids des 

terres. Les contraintes effectives horizontales avec un angle de dilatance ψ = 0° sont les plus 

proches des contraintes obtenues avec la solution analytique. 

La figure 4.9(c) montre les iso-contours des contraintes effectives verticales dans le chantier 

remblayé pour le cas ψ = 10° (simulation A12). On voit que pour ce cas, les contraintes effectives 

verticales sont différentes du cas de base avec ψ = 0° (figure 3.6(c)). Dans la partie supérieure du 

chantier, les contraintes effectives verticales sont plus faibles près de la ligne de centre que près 
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des parois rocheuses. Au bas du chantier, on voit que les contraintes sont plus élevées au milieu 

du chantier par rapport aux parois (en raison du transfert des contraintes au massif rocheux). 

La figure 4.9(d) présente les iso-contours des contraintes effectives horizontales du chantier 

remblayé pour le cas d'un remblai dilatant, avec ψ = 10°. On voit une certaine concentration des 

contraintes au milieu du chantier particulièrement près des parois. Les contraintes horizontales 

sont aussi élevées près de la surface du remblai où elles atteignent 60 kPa à 5 m de la surface, 

dépassant ainsi celles dues au poids des terres (pour K0= 0,33). Cette observation a aussi été 

rapportée par Fahey et al. (2009). 
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4.2.4 Influence de la cohésion c' 

L'influence de la cohésion a été étudiée pour le cas d'un remplissage instantané avec un remblai 

drainé sans pressions interstitielles. Dans certains cas (A18 et A19), des couches minces de remblai 

sans cohésion ont été ajoutées aux parois pour permettre un déplacement à l'interface remblai-roc 

(là où l'ampleur de la cohésion est généralement moindre, le long de la surface de contact; e.g 

Fall et Nasir, 2010). La figure 4.10 montre la partie haute du chantier avec des couches minces 

d'une épaisseur b de 10 cm entre la paroi rocheuse et le remblai minier. Ces couches sont 

modélisées avec le modèle élastoplastique (Mohr-Coulomb) et ont les mêmes propriétés 

géotechniques que le remblai minier sauf pour la cohésion c' (= 0) et le module Young Eb (= 1 

MPa - figure 4.10). Le module de Young Eb de ces couches est relativement faible par rapport à 

celui du remblai (Eb = 100 MPa) pour permettre la déformation de la couche mince et le 

déplacement du remblai à l'interface remblai-roc (requis pour mobiliser pleinement la résistance 

frictionnelle). 

 

Figure 4.10 : Cas A18 et A19 - Ajout d'une couche mince à l'interface roc-remblai avec une 

épaisseur b = 0,1 m, une cohésion c' nulle et un module de Young Eb = 1 MPa. 

Les figures 4.11(a) et (b) présentent les distributions des contraintes effectives verticales et 

horizontales le long de la ligne centrale verticale (LCV) avec l'ajout des deux couches minces 

(interfaces), obtenues à partir des simulations numériques et des solutions analytiques pour un 

remblai ayant une cohésion de c' = 10 kPa et c' = 25 kPa respectivement. Les solutions 

analytiques utilisées pour le calcul des contraintes pour un remblai cohérent sont exprimées par 

l'équation (2-21). Les contraintes verticales et horizontales effectives calculées à partir du poids 

des terres (utilisation de K0 pour les contraintes horizontales) sont aussi montrées sur cette figure.  
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On observe sur ces 2 figures que les contraintes horizontales et verticales calculées en utilisant les 

2 approches (numériques et analytiques) sont bien corrélées. Aussi, les contraintes obtenues par 

les simulations et les solutions analytiques sont beaucoup plus faibles que celles calculées à partir 

du poids des terres, particulièrement au bas du chantier. 

Les résultats confirment aussi que les solutions analytiques avec un coefficient de pression des 

terres Ka sont bien corrélés avec les résultats numériques le long de la ligne centrale verticale, 

comme ce qui a été montré dans des investigations précédentes (Li et al., 2003; Li and Aubertin, 

2009a, b, c). 

La figure 4.11(c) compare les contraintes effectives verticales obtenues par les simulations 

numériques avec et sans couches minces (A19 et A8 respectivement) pour une cohésion c' = 25 

kPa. Les contraintes obtenues de la solution analytique pour un remblai cohérent et selon le poids 

des terres sont aussi montrées sur cette figure. On voit que les résultats de la simulation avec 

couches minces donnent des contraintes effectives verticales très proches de celles obtenues par 

la solution analytique. En l'absence de couches minces, les simulations numériques donnent des 

contraintes effectives verticales inférieures à celles obtenues des solutions analytiques et des 

simulations avec couches minces. Cette figure montre l'effet des éléments d'interface qui 

influencent les contraintes au sein du chantier remblayé lorsque ceux-ci ont une cohésion nulle 

(ou réduite). Les interfaces solidaires (cas de référence), avec une cohésion égale à celle du 

remblai, donnent des contraintes verticales plus faibles que celles obtenues par les solutions 

analytiques et par les simulations avec des couches minces. 

La figure 4.11(d) présente les contraintes effectives horizontales en fonction de la hauteur du 

chantier à la ligne centrale verticale suite à des simulations d'un remblai cohérent avec et sans 

couches minces (simulations A19 et A8 respectivement), et selon la solution analytique d'un 

remblai avec une cohésion c' = 25 kPa. La contrainte due au poids des terres calculée avec K0 est 

aussi montré sur cette figure. On voit que les contraintes effectives horizontales obtenues des 

simulations numériques et des solutions analytiques sont très proches. Le cas sans couche mince 

(interface solidaire) sous-estime légèrement les contraintes effectives horizontales par rapport aux 

deux autres résultats de calcul. On voit également que le poids des terres surestime 

significativement les contraintes au sein du chantier remblayé.  
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Figure 4.11 : Cas A8, A18 et A19 - Profils des contraintes effectives verticales et horizontales le 

long de la ligne centrale verticale (LCV) obtenues par les solutions numériques et analytiques 

pour une valeur de cohésion du remblai de 10 kPa (cas A18) (a) et 25 kPa (cas A19) (b). Influence 

de la cohésion sur la distribution des contraintes effectives verticales (c) et horizontales (d) le 

long de la LCV. 
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Les iso-contours des contraintes effectives verticales pour le cas d'un remblai avec une cohésion 

c' = 25 kPa sans couches minces (cas A8) sont montrées à la figure 4.12(a). Comme pour le cas 

sans cohésion (cas de base A0), on remarque que les contraintes ne sont pas uniformément 

distribuées sur la largeur du chantier. L'effet d'arche est également bien mis en évidence sur cette 

figure. 

La figure 4.12(b) présente les iso-contours des contraintes effectives horizontales pour un remblai 

cohésif avec une cohésion c' = 25 kPa (cas A8). On voit que les contraintes augmentent 

légèrement avec la profondeur. Par exemple, pour une profondeur de h = 45 m depuis la surface 

du remblai, la contrainte effective horizontale est environ 40 kPa, comparativement à une 

contrainte effective horizontale de 70 kPa à cet endroit pour le cas c' = 0 kPa (cas de référence 

A0). On voit aussi qu'à cette profondeur, la contrainte effective horizontale varie légèrement sur 

la largeur du chantier (tel que rapporté par Li et Aubertin, 2010).  

Les figures 4.12(c) et (d) illustrent l'influence de la cohésion sur la distribution des contraintes 

effectives verticales et horizontales respectivement pour les cas sans couches minces aux 

interfaces. Quatre valeurs de cohésion sont considérées pour fins de comparaison : c' = 0, 10, 25 

et 50 kPa (A0, A7, A8 et A9 respectivement). Les deux figures montrent que l'augmentation de la 

valeur de la cohésion tend à réduire les contraintes effectives verticales et horizontales sur la 

hauteur du chantier. Par exemple, les contraintes effectives verticale et horizontale au bas du 

chantier sont de 240 kPa et 70 kPa respectivement pour le remblai sans cohésion (cas de 

référence A0), tandis qu'elles sont de 70 kPa et 20 kPa respectivement pour un remblai avec une 

cohésion de 50 kPa (cas A9). Ceci représente une réduction de 70% de la contrainte effective 

verticale et horizontale au bas du chantier par rapport au cas de base (c = 0 kPa). Des 

observations similaires figurent dans Li et al. (2005a) et Li et Aubertin, (2009a). Ces 

observations s'appliquent au cas où la cohésion est disponible dès la mise en place du remblai (ce 

qui n'est pas vraiment le cas en pratique) 
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Figure 4.12 : Cas A0, A7, A8 et A9 - Iso-contours des contraintes effectives verticales (a) et 

horizontales (b) pour le cas A8 (c = 25 kPa). Influence de la cohésion sur la distribution des 

contraintes effectives verticales (c) et horizontales (d) le long de la LCV pour les cas sans 

éléments d'interface (cas A0, A7, A8 et A9). 
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4.3 Influence de la géométrie du chantier 

Plusieurs investigations ont montré que l'état des contraintes et des déplacements dépend 

grandement de la géométrie du chantier (Li et al., 2003, 2005a; Helinski et al., 2007; Li et 

Aubertin, 2008, 2009a, c). Quelques scénarios ont été simulés pour mettre en évidence le rôle de 

la géométrie du chantier dans le calcul de l'état des contraintes du remblai. Quatre valeurs de 

largeur de chantier (B) sont étudiées : 6 m, 10 m, 20 m et 50 m (cas A0, A15, A16 et A17) ayant un 

même maillage (éléments triangulaires de 0,5 m de côté). Une comparaison entre une 

représentation de chantier axisymétrique 3D et une représentation en 2D (déformation plane) est 

aussi présentée ici. 

La figure 4.13(a) montre l’effet de la largeur du chantier (B) sur la distribution des contraintes 

verticales le long de la ligne du centre pour le cas d'un chantier 2D en déformation plane. On voit 

que l’ampleur de l’effet d’arche devient moins marquée lorsque la largeur augmente. Par 

exemple, la contrainte au bas d’un chantier d’une largeur de 50 m (cas A17) est très proche de 

celle due au poids des terres, alors qu’elle n’est que de 20% de cette valeur au bas d’un chantier 

de 6 m de largeur. Ces résultats sont conformes aux tendances prévues par les solutions 

analytiques (Aubertin et al., 2003; Li et al., 2003, 2005a) 

La même tendance est observée en termes de contraintes effectives horizontales : l'augmentation 

de la largeur du chantier augmente la contrainte effective horizontale et l'effet d'arche devient 

moins prononcé comme le montre la figure 4.13(b). Une distribution particulière a été observée 

pour une largeur de 20 m et 50 m : la contrainte horizontale obtenue de SIGMA/W surestime 

celle calculée avec le poids des terres (en utilisant un coefficient K0 = 0,33) dans la partie 

supérieure du chantier. Les contraintes deviennent plus faibles, par rapport au poids des terres, à 

la partie basse du chantier pour le cas B = 20 m (cas A16). Pour le cas B = 50 m (cas A17), les 

contraintes effectives horizontales sont proches de celles calculées à partir du poids des terres au 

bas du chantier. 

La figure 4.13(c) présente les iso-contours des contraintes effectives verticales dans un chantier 

remblayé avec une largeur B = 50 m (cas A17). On remarque que les contraintes effectives 

verticales sont beaucoup plus élevées pour ce cas comparativement au cas d'un chantier étroit 

(cas de référence A0 - figure 3.6(c)). Des effets d'arches sont aussi observés sur la figure 4.13(c), 

mais ces effets sont moins marqués par rapport au cas de base A0 (avec une largeur B = 6 m). 
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Figure 4.13 : Cas A0, A15, A16 et A17 - Influence de la largeur du chantier sur le profil des 

contraintes effectives verticales (a) et horizontales (b) (cas A0, A15, A16 et A17). Iso-contours des 

contraintes effectives verticales (c) et horizontales (d) pour le cas avec une largeur B = 50 m  

(cas A17).. 
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La figure 4.13(d) présente les iso-contours des contraintes effectives horizontales dans un 

chantier large (B = 50 m). On remarque la présence d'un effet d'arche sur cette figure. 

Néanmoins, la forme d'arche est moins marquée dans ce cas comparativement au cas de base A0. 

Cela veut dire que la variation des contraintes à la ligne centrale verticale et près des parois est 

plus grande lorsque la largeur du chantier augmente. On voit aussi que la contrainte effective 

horizontale près de la surface du remblai est très élevée (voir aussi figure 4.13(b)). Au bas du 

chantier, la contrainte effective horizontale est proche de celle obtenue par le poids des terres. 

Les figures 4.14(a) et (b) représentent l'influence du type de la représentation du chantier sur la 

distribution des contraintes effectives verticales et horizontales le long de la LCV. Une géométrie 

axisymétrique réduit les contraintes effectives (en raison d'un effet d'arche plus marqué) par 

rapport au cas 2D. Ceci peut s'expliquer par le fait que la représentation axisymétrique génère une 

plus grande surface de contact remblai-roc que celle du cas 2D; la mobilisation de la résistance au 

cisaillement aux interfaces est donc plus importante, ce qui produit des effets d'arche plus 

prononcés. Ces observations sont conformes à celles rapportées par Li et al. (2005a) et Fahey et 

al. (2009). 

La figure 4.14(c) montre les iso-contours des contraintes effectives verticales dans une ouverture 

remblayée pour le cas axisymétrique (simulation A14). La figure montre la moitié du chantier 

puisqu'il s'agit d'un problème symétrique autour de l'axe y. Les effets d'arche sont bien montrés 

sur cette figure. La contrainte effective verticale au bas du chantier se situe autour de 140 kPa, ce 

qui représente une réduction de 85% de la contrainte verticale par rapport au poids des terres. 

La figure 4.14(d) montre les iso-contours des contraintes effectives horizontales pour le cas 

axisymétrique (simulation A14). On remarque que les contraintes effectives horizontales varient 

légèrement sur la largeur du chantier, comme observé par Li et Aubertin (2010) dans leurs 

simulations avec une géométrie 2D (déformations planes). Au bas du chantier, la contrainte 

effective horizontale est égale à 40 kPa; cette représentation axisymétrique donne aussi une 

contrainte effective horizontale réduite de 85 % par rapport à la contrainte due au poids des terres 

avec un coefficient de pression des terres au repos K0 = 0,33. 
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Figure 4.14 : Cas A0 et A14 - Influence du type de représentation géométrique du chantier sur le 

profil des contraintes effectives verticales (a) et horizontales (b) à la ligne centrale verticale 

(LCV) (cas A0 et A14). Iso-contours des contraintes effectives verticales (c) et horizontales (d) 

pour le cas avec une représentation axisymétrique du chantier (cas A14). 

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000

h
 (
m

)
Contraintes effectives verticales (kPa)

σ'v - Axisymetrique (cas A14)

σ'v - 2D (cas de base A0)

σ'v - Poids des terres

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300

h
 (
m

)

Contraintes effectives horizontales (kPa)

σ'h - Axisymetrique (cas A14)

σ'h - 2D (cas de base A0)

σ'h - Poids des terres (K0 = 0.33)

 

 

 

 

140 

120 

100 

80 

60 

40 

20 

 

 40 

35 

30 

25 

20 

15 

10 

(a) (b) 

(c) (d) 



163 

 

4.4 Effet progressif de la cimentation du remblai 

 

Une comparaison entre les résultats de simulations des cas d'un remplissage séquentiel avec et 

sans cimentation est présentée dans cette section. On simule ici un remplissage séquentiel, avec 

un remblai initialement saturé en eau, durant lequel certaines propriétés hydro-géotechniques du 

remblai évoluent dans le temps (cohésion c', module de Young Eb, la conductivité hydraulique 

saturée ksat et la courbe de rétention d'eau - voir figures 3.3(c), 3.4(a), (b) et (c)). Initialement, la 

cohésion c' du remblai est nulle (c' = 0), le module de Young Eb est de 100 MPa et la conductivité 

hydraulique est de 10
-7

 m/s. L'évolution de ces paramètres se fait sur une période de 28 jours 

alors que le chantier est rempli complètement après 50 jours. À partir de 28 jours, les valeurs de 

la cohésion c', du module de Young Eb et de la conductivité hydraulique ksat deviennent 

constantes et valent 250 kPa, 60 MPa et 4 x 10
-9

 m/s respectivement. Les modèles simulés ne 

comportent pas de couches minces aux parois du chantier (i.e. le contact est solidaire). 

La figure 4.15(a) montre les iso-contours des contraintes totales verticales pour le cas cimenté (à 

gauche) et le cas sans cimentation (à droite) à la fin de la simulation (t = 50 jours). La figure 

montre des contraintes effectives verticales plus élevées au milieu du chantier et plus faibles au 

bas du chantier pour le cas «cimenté». À titre d'exemple, la contrainte totale verticale au bas du 

chantier est proche de 140 kPa pour le cas cimenté (cas E0) alors qu'elle est aux environs de 220 

kPa pour le cas sans cimentation (D0). 

La figure 4.15(b) compare les iso-contours des contraintes effectives verticales du cas «cimenté» 

(cas E0) avec le cas sans cimentation (cas D0). On voit que pour les deux cas, l'effet d'arche est 

bien développé dans le chantier remblayé. Ceci produit des contraintes effectives verticales plus 

élevées à la LCV que près des parois. On remarque aussi que les contraintes effectives verticales 

sont plus faibles pour le cas «cimenté» comparativement au cas sans cimentation. Au bas du 

chantier, σ'v = 135 kPa au bas du chantier pour le cas avec cimentation, alors qu'elle est de 225 

kPa pour le cas sans cimentation. 
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Figure 4.15 : Cas D0 et E0 - Iso-contours des contraintes totales verticales (a), des contraintes 

effectives verticales (b), des pressions interstitielles (c) et des déplacements verticaux (d) pour les 

cas avec et sans cimentation (à droite et à gauche respectivement) à la fin de la simulation. 
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La figure 4.15(c) présente les iso-contours des pressions interstitielles au sein du chantier 

remblayé pour les cas avec et sans cimentation. On voit que les pressions interstitielles sont 

élevées au milieu du chantier (6
e
, 7

e
 et 8

e
 couche) pour le cas «cimenté». La valeur de u à cet 

endroit se situe aux alentours de 140 kPa (avec des pressions interstitielles en excès). Ceci est lié 

aux valeurs élevées des contraintes totales verticales au milieu du chantier (figure 4.15(a) à 

gauche). Pour le cas sans cimentation, on voit que les pressions interstitielles sont négatives le 

long de la hauteur du chantier remblayé à la fin de cette simulation. Pour ce cas, le temps alloué 

au drainage est suffisant (car ksat est plus élevé) pour permettre la dissipation des pressions 

interstitielles et la génération de succion dans le remblai non saturé. 

Les iso-contours des déplacements verticaux pour les deux cas (cas cimenté E0 et cas sans 

cimentation D0) sont montrés à la figure 4.15(d). On remarque que le déplacement vertical est 

plus élevé pour le cas avec cimentation (jusqu'à 4 fois celui du cas sans effets de cimentation D0). 

Ceci peut s'expliquer par les plus faibles valeurs du module de Young Eb du remblai avec 

cimentation (1 MPa ≤ Eb ≤ 60 MPa) comparativement au cas sans cimentation (Eb = 100 MPa). 

La figure 4.16(a) compare la distribution des contraintes totales verticales le long de la LCV à la 

fin de la simulation (t = 50 jours) pour les cas avec et sans cimentation (D0 et E0). On voit que 

dans la partie haute du chantier, les contraintes verticales obtenues de SIGMA/W sont proches 

pour les deux cas. Cependant, une différence des contraintes totales verticales se produit au bas 

du chantier pour les deux cas. Les contraintes totales verticales du cas sans cimentation dépassent 

celles avec effet de cimentation au bas du chantier. 

Les figures 4.16(b) et (c) présentent respectivement la distribution des contraintes effectives 

verticales et horizontales le long de la LCV à la fin de la simulation (i.e. t = 50 jours). Le cas avec 

cimentation progressive produit des contraintes effectives (verticales et horizontales) plus faibles 

que le cas sans cimentation. La baisse des contraintes s'explique principalement par 

l'augmentation de la valeur de la cohésion c' dans le temps. Pour les deux cas, le calcul basé sur le 

poids des terres surestime les contraintes effectives verticales et horizontales. 
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Figure 4.16 : Cas D0 et E0 - (a) Comparaison des distributions des contraintes totales verticales 

entre les cas avec et sans effet de cimentation à la LCV (cas D0 et E0). Distributions des 

contraintes effectives verticales (b) et horizontales (c) le long de la LCV à la fin de la simulation 

(t=50 jrs) pour les cas avec et sans cimentation. (d) Évolution dans le temps des pressions 

interstitielles le long de la LCV pour les cas avec et sans cimentation après la mise en place de la 

10
e
 couche. 
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La figure 4.16(d) met en évidence la différence au niveau de l'évolution des pressions 

interstitielles le long de la LCV entre le cas avec et sans effets de cimentation. On voit que le cas 

non cimenté permet de dissiper entièrement les pressions après avoir mis en place les couches 

saturées. En revanche, le cas avec cimentation est caractérisé par une plus grande rétention d'eau 

au sein du remblai à cause notamment de la conductivité hydraulique saturée plus faible et d'un 

AEV plus grand, ce qui produit des pressions plus importantes au milieu du chantier remblayé 

(voir aussi figure 4.15(c)). L'effet combiné de la réduction progressive de la conductivité 

hydraulique et de l'augmentation graduelle de la valeur d'entrée d'air (AEV) ne permet pas une 

dissipation rapide de l'excès des pressions interstitielles dans les couches mises en place. 

L'accumulation de l'eau dans le chantier et la mise en place, ce qui affecte de nouvelles couches 

saturées (application de surcharges) produit un excès des pressions interstitielles dans les couches 

précédemment mises en place, ce qui affecte les contraintes totales et effectives et les 

déplacements verticaux. 
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4.5 Effet de la vitesse de remblayage 

 

L'influence de la vitesse de remplissage sur les états de contrainte dans le chantier est évaluée 

dans cette section. Le cas de base simule un remblayage par couche de 5 m d'épaisseur avec une 

vitesse de remplissage de 5 m ajoutés à tous les 5 jours (V = 0,042 m/h). Le chantier est rempli 

entièrement après 50 jours, ce qui correspond à la hauteur 50 m du chantier. Deux autres vitesses 

de remplissage ont été simulées pour analyser l'impact de celles-ci sur l'évolution des contraintes 

dans le chantier. Ces vitesses moyennes sont de 5 m à chaque jour (vitesse moyenne de 0,2 m/h) 

et de 5 m aux 5 heures (vitesse moyenne de 1 m/h) pour un remplissage complet du chantier en 

10 jours et 50 heures respectivement. 

Les figures 4.17(a) et (b) présentent l'évolution de la contrainte totale verticale et horizontale au 

bas du chantier (h = 47,5 m) pour les différentes vitesses de remplissage. Ces figures montrent 

que la vitesse de remblayage peut affecter significativement la grandeur des contraintes totales 

durant la période de remplissage du chantier. Lorsque la vitesse de remblayage est de 5 m aux 5 

heures (vitesse rapide de remblayage), la contrainte totale verticale maximale dans ce chantier de 

50 m de hauteur atteint plus de 600 kPa, alors qu’elle est presque 3 fois moindre pour une vitesse 

de remblayage de 5 m aux 5jours (après 50 jours). La même tendance est observée pour la 

contrainte totale horizontale qui est de 600 kPa pour une vitesse rapide de remblayage (i.e. 5 m 

aux 5 heures), alors qu'elle est que de 50 kPa pour une vitesse de remblayage de 5 m aux 5 jours. 

Ces valeurs des contraintes demeurent toutefois inférieures à la contrainte verticale totale pour 

une séquence de remblayage « instantanée » en une seule couche de 50 m (voir figure 3.11(b)). 

Ceci reflète l’effet du drainage et de la consolidation qui se produit durant le remplissage 

progressif, qui affectent la dissipation des pressions interstitielles et le développement des 

contraintes effectives ainsi que le transfert des contraintes du remblai vers les parois adjacentes 

Les figures 4.17(c) et (d) illustrent l'évolution de la contrainte totale verticale pour les différentes 

vitesses de remplissage à deux autres emplacements (h = 37 m et h = 22 m). La même tendance 

est observée, soit une contrainte totale verticale maximale significativement plus élevée pour le 

cas d'une vitesse de remplissage rapide (V= 5 m aux 5 heures) que celles obtenues pour les deux 

autres vitesses (V = 5 m aux 5 jours et V = 5 m par jour).  
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Figure 4.17 : Cas D0, D1, D2 - Évolution des contraintes totales verticales (a) et horizontales (b) 

au bas du chantier (h = 47.5m) pour différentes vitesses de remplissage. Évolution des contraintes 

totales verticales à h = 37 m (c) et à h = 22m (d) pour différentes vitesses de remplissage. 
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4.6  Influence de la loi de comportement (CCM vs MC) 

 

Certains résultats obtenus avec le modèle élastoplastique Mohr-Coulomb (ÉP-MC) sont 

comparés à ceux obtenus avec le modèle Cam-Clay modifié (CCM) pour un remplissage 

séquentiel avec une vitesse de 5 m ajoutés à tous les 5 jours (cas de référence sans effets de 

cimentation), pendant 50 jours. 

La figure 4.18(a) présente les iso-contours des contraintes totales verticales à la fin de la 

simulation (t = 50 jours) obtenus avec les modèles MC et CCM (à gauche et à droite 

respectivement). Un effet d'arche se produit au sein du remblai, et les contraintes totales 

verticales ne sont pas uniformément réparties sur la largeur du chantier. On remarque que les 

contraintes totales verticales sont plus élevées dans la moitié inférieure du chantier pour le cas 

CCM par rapport à un remblai modélisé avec le modèle MC. 

Les iso-contours des pressions interstitielles sont montrés à la figure 4.18(b) pour les deux 

modèles (MC et CCM) à la fin de la simulation. On voit que les valeurs des pressions 

interstitielles sont différentes pour les deux cas. En haut du chantier, des valeurs de pressions 

interstitielles négatives (succions) sont observées pour le cas avec le modèle MC (simulation D0). 

En revanche, un excès de pressions interstitielles est présent dans la partie haute du chantier pour 

le cas avec le modèle CCM (simulation F0), tel qu'illustré par la zone rouge sur la figure. Les 

pressions interstitielles diminuent avec la profondeur jusqu'à atteindre une valeur nulle à la base 

du chantier (face de drainage) pour le cas modélisé avec le modèle CCM. 

La figure 4.18(c) montre les iso-contours des contraintes effectives verticales avec les deux 

modèles (simulations D0 et F0). On voit que les contraintes effectives verticales sont plus faibles 

en haut du chantier pour le cas avec le modèle CCM comparativement avec le modèle MC. Ceci 

est dû à l'excès de pressions interstitielles qui se produit dans cette zone (voir figure 4.18(b)). Les 

contraintes effectives verticales du modèle CCM dépassent celles obtenues avec le modèle MC à 

la moitié basse du chantier. 
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Figure 4.18 : Cas D0 et F0 - Simulations avec les modèles CCM et MC - Iso-contours des 

contraintes totales verticales (a), des pressions interstitielles (b), des contraintes effectives 

verticales (c) et des déplacements verticaux (d) (CCM à droite et MC à gauche) à la fin de la 

simulation (t = 50 jours). 

 

 

 

 

220 

200 

180 

160 

140 

100 

40 

 

 

 

40 

80 

120 

160 

200 

240 

280 

320 

360 

380 

360 

320 

 

 

 

 

-1 

-3 

-5 

-7 

-7 

-7 

 

 

 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

75 

80 

80 

15 

 

 

 

200 

225 

175 

150 

100 

50 

 

 

 

 

 

 

350 

330 

310 

290 

270 

190 

150 

110 

70 

30 

230 

 

 

 

 

-0.01 

-0.008 

-0.016 

-0.012 

-0.02 

-0.016 

-0.022 

-0.018 

-0.022 

-0.018 

-0.022 

-0.018 

-0.022 

-0.018 

-0.02 

-0.016 

-0.016 

-0.012 

-0.008 

-0.006 

 

 

 

-0.4 

-0.05 

-0.15 

-0.25 

-0.1 

-0.1 

-0.1 

-0.1 

-0.1 

-0.1 

-0.1 

-0.15 

(a) (b) 

(c) 
(d) 



172 

 

La figure 4.18(d) compare les iso-contours des déplacements verticaux pour le modèle MC avec 

le modèle CCM à la fin de la simulation (i.e. t = 50 jours). On voit que les déplacements 

verticaux sont beaucoup plus importants dans le cas du modèle CCM comparativement au 

modèle MC. On voit aussi que les déplacements verticaux sont plus élevés au bas du chantier 

pour le cas avec le modèle CCM. La plus grande déformation des couches dans le cas CCM 

explique la plus faible dissipation des pressions interstitielles (donc u élevées) comparativement 

au cas avec le modèle MC (cet effet est assez similaire à l'effet du module Eb vu à la section 

4.2.2). 

La figure 4.19(a) présente la distribution des contraintes totales verticales le long de la LCV 

obtenues avec les deux lois de comportement utilisées. Sur cette figure, il est montré que les 

contraintes totales verticales obtenues par le modèle Cam-Clay modifié (CCM) sont plus grandes 

que celles obtenues par le modèle Mohr-Coulomb (MC), particulièrement à la mi-hauteur du 

chantier.  

La figure 4.19(b) compare les pressions interstitielles à la ligne centrale verticale après la mise en 

place de la 10
e
 couche jusqu'à la fin de la simulation (45 jours ≤ t ≤ 50 jours) avec les modèles 

élastoplastique Mohr-Coulomb (ÉP-MC) et Cam-Clay modifié (CCM) (cas D0 et F0 

respectivement). On voit que les pressions interstitielles sont différentes le long du chantier pour 

les deux cas, comme montré aussi par les iso-contours à la figure 4.18(b). Juste après la mise en 

place de la 10
e
 couche, la pression interstitielle est en excès à la base de cette couche et se situe 

aux alentours de 100 kPa pour les deux cas. Au fur et à mesure que le drainage se produit, les 

pressions interstitielles sont entièrement dissipées le long de cette couche avec le modèle MC 

(cas D0). Avec le modèle CCM, la mise en place de la 10
e
 couche produit des pressions 

interstitielles plus élevées le long des couches anciennement mises en place (5 m < h < 50 m) par 

rapport au modèle MC. Avec le drainage, ces pressions diminuent progressivement. Cependant, 

on voit que le drainage ne permet pas de dissiper complètement les pressions interstitielles avec 

le modèle CCM en raison d'une déformation accrue qui implique un plus grand volume d'eau à 

drainer. 
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Figure 4.19 : Cas D0, D3 et F0 - Simulations avec les modèles Mohr-Coulomb (MC) et Cam-Clay 

modifié (CCM). (a) Distributions des contraintes totales verticales le long de la LCV à la fin de la 

simulation (t = 50 jours). (b) et (c) Évolution des pressions interstitielles le long de la LCV. (d) 

Distributions des contraintes effectives verticales le long de la LCV à la fin de la simulation (t = 

50 jours) 
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La figure 4.19(c) compare la dissipation des pressions interstitielles le long de la ligne centrale 

verticale pour le cas CCM (simulation F0) et le cas MC avec un module de Young réduit Eb = 10 

MPa (simulation D3) après la mise en place de la 10
e
 couche jusqu'à la fin de la simulation (45 ≤ t 

≤ 50 jours). On voit que les pressions interstitielles sont assez différentes pour les deux cas. Le 

cas MC avec un module de Young relativement faible (Eb = 10 MPa) génère plus de pressions 

interstitielles au milieu du chantier après la mise en place de la 10
e
 couche par rapport au cas 

CCM. Pour les deux cas, le drainage ne permet pas une dissipation complète des pressions 

interstitielles, contrairement au cas MC avec un module de Young Eb = 100 MPa (simulation D0 - 

figure 4.19(b)); cet effet de la déformabilité du remblai a aussi été observée (et discutée) à la 

section 4.8. 

La distribution des contraintes effectives verticales est montrée à la figure 4.19(d). Le modèle 

CCM donne des contraintes effectives verticales plus faibles que le modèle MC dans la partie 

haute du chantier. Avec le modèle CCM, l'excès de pressions interstitielles qui se produit le long 

de la 10
e
 couche (0 ≤ h ≤ 5 m) et qui n'est pas entièrement dissipé (voir figure 4.19(b)) donne des 

contraintes effectives nulles le long de cette couche.  

Le drainage et la dissipation de l'excès des pressions interstitielles produisent des contraintes 

effectives verticales élevées dans les couches anciennement mises en place. Les contraintes 

obtenues avec le modèle CCM (cas F0) sont surestimées par rapport aux deux cas simulés avec le 

modèle MC (cas D0 et D3). 

Les mêmes observations s'appliquent pour les contraintes effectives horizontales qui sont 

largement surestimées avec le modèle CCM sur presque toute la hauteur du chantier par rapport 

au cas avec le modèle MC comme illustré à la figure 4.20(a). 

La figure 4.20(b) présente la distribution des contraintes de cisaillement le long de la ligne 

verticale à 0,25 m de la paroi rocheuse. On voit qu'au niveau de la moitié supérieure du chantier, 

les contraintes de cisaillement obtenues avec le modèle CCM sont plus faibles que celles 

obtenues avec le modèle MC. Ceci est dû principalement à l'excès de pressions interstitielles qui 

se produit avec la mise en place de la 10
e
 couche et qui n'est pas entièrement dissipé. En 

revanche, les contraintes de cisaillement obtenues avec le modèle CCM deviennent plus 

importantes dans la moitié inférieure du chantier. L'effet combiné de l'augmentation des 
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contraintes moyennes (due au remplissage) et la position du drainage au bas du chantier favorise 

la consolidation et l'augmentation des contraintes de cisaillement à cet endroit. 

 
 

 

Figure 4.20 : Cas D0, D3 et F0 - Simulations avec le modèle MC et le modèle CCM. (a) 

Comparaison des distributions des contraintes effectives horizontales le long de la LCV à la fin 

de la simulation (t = 50 jours). (b) Profil des contraintes de cisaillement à 0,25 m de la paroi à la 

fin de la simulation. (c) Comparaison de l'évolution de la pression interstitielle au bas du chantier 

(h = 47 m). 
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La figure 4.20(c) montre l'évolution dans le temps de la pression interstitielle au bas du chantier 

(h = 47,5 m) pour les 3 cas simulés, soit un remplissage séquentiel (sans effet de cimentation) 

avec les modèles MC (simulations D0 et D3) et CCM (simulation F0). Il est remarqué qu'après la 

mise en place de chaque nouvelle couche, la pression interstitielle augmente. Cette augmentation 

est plus faible pour un remblai simulé avec le modèle MC avec une grande rigidité (Eb = 100 

MPa; cas D0) surtout vers la fin de la simulation. On constate que l'évolution de la pression 

interstitielle avec le remplissage pour le cas avec le modèle CCM (cas F0) est proche de celle 

obtenue du modèle élastoplastique avec Eb = 10 MPa (cas D3). L'augmentation de la pression 

interstitielle avec le remplissage pour ces deux autres cas (cas D3 et F0) est proche de la valeur du 

poids unitaire total du remblai (20 kN/m
3
) multiplié par la hauteur (5 m) des couches ajoutées à 

chaque étape. La plus grande rigidité du remblai pour le cas MC avec Eb = 100 MPa (cas D0) 

produit des tassements plus faibles et une dissipation plus rapide des pressions interstitielles 

comparativement aux deux autres cas (cas D3 et F0). 

 

 

 

 

  



177 

 

4.7 Comportement de la barricade de roches stériles 

Les barricades sont des structures de retenue conçues pour maintenir le remblai minier en place, 

l'empêchant de se déverser dans la galerie adjacente. Une méthode efficace de construction des 

barricades est l'utilisation des roches stériles disponibles sur place. Dans notre analyse 

numérique, la barricade fabriquée de roches stériles est modélisée en 2D comme une petite digue 

ayant une forme trapézoïdale dans le plan (et de longueur infinie). Cette géométrie représente la 

forme typique (dans le plan) que prend ce type de barricades lors de leur mise en place. 

 

4.7.1 Influence du drainage 

On simule ici deux cas de chantiers remblayés avec une barricade au niveau de la galerie. Le cas 

avec drainage (simulation G0) consiste à remplir «instantanément» le chantier avec un remblai 

initialement saturé en présence d'une barricade en roches stériles à travers laquelle le drainage se 

produit. Le cas non drainé (simulation G2) consiste à remplir le chantier avec un remblai saturé 

sans permettre le drainage de l'eau au bas du chantier. Le cas saturé non drainé peut représenter 

les premiers instants (t ≈ 0) de remplissage du chantier où le remblai n'a pas le temps de se 

drainer et de dissiper les pressions interstitielles. 

Les figures 4.21(a) et (b) présentent les iso-contours des contraintes effectives verticales pour le 

cas initialement saturé avec drainage après 5 années (cas G0) et le cas saturé non drainé 

respectivement (cas G2). Ces deux figures illustrent les effets d'arche qui se produisent le long de 

la hauteur du chantier et qui influencent les contraintes dans le remblai et sur la barricade. La 

distribution des contraintes effectives pour les deux cas (cas G0 et G2) est très similaire à celle 

d'un chantier remblayé sans barricade (figure 3.6(c)) où les contraintes sont plus élevées au 

milieu du chantier comparativement à celles près de la paroi rocheuse.  

La figure 4.21(f) présente les iso-contours des pressions interstitielles le long de la hauteur du 

chantier remblayé saturé. Pour ce cas (simulation G2), le drainage n'est pas permis, car la face 

libre de la barricade représente une frontière imperméable. La figure 4.21(f) montre que le niveau 

de l'eau est légèrement en dessous de la surface du remblai car il y a tout de même un écoulement 

dans la barricade (initialement sèche).  
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Figure 4.21 : Cas G0 et G2 - Iso-contours des contraintes effectives verticales (a) pour le cas 

drainé et (b) pour le cas saturé (u = γ×z). Iso-contours des déplacements verticaux (c) pour le cas 

d'un chantier remblayé saturé et (d) pour le cas d'un chantier remblayé initialement saturé avec 

drainage. (e) Allure du déplacement de la barricade pour le cas saturé non drainé. (f) Iso-contours 

des pressions interstitielles pour le cas d'un chantier remblayé non drainé. 
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En effet, après la mise en place du remblai saturé, un certain écoulement (drainage partiel) se fait 

à travers la barricade et s'arrête à la face libre de celle-ci (lorsque la barricade est saturée). Les 

pressions interstitielles sont proches des pressions à l'équilibre, augmentant linéairement jusqu'à 

atteindre une valeur de 450 kPa au niveau de la barricade.  

Les figures 4.21(c) et (d) présentent les iso-contours des déplacements verticaux à la fin de la 

simulation pour les deux cas étudiés. Comme pour le cas sans barricade (cas A0 - figure 3.6(d)), 

les déplacements sont plus élevés à la mi-largeur du chantier que près des parois, ce qui produit 

des iso-contours sous forme d'arche inversé pour les deux cas (cas G0 et G2). Pour le cas non 

drainé (cas G2 - figure 4.21(c)), les nœuds sur la face libre à la mi-hauteur de la barricade se 

déplacent d'une valeur de 14 cm, comme le montre la figure 4.21(e), alors que le déplacement de 

la face libre de la barricade est presque nul pour le cas drainé (cas G0).  

La figure 4.22(a) met en évidence la différence entre la distribution des contraintes totales 

verticales le long de la LCV pour le cas initialement saturé avec drainage et le cas non drainé. Tel 

qu'anticipé, les contraintes totales verticales pour un chantier remblayé saturé sont plus élevées 

que les contraintes totales verticales pour un chantier drainé après 5 ans. À titre d'exemple, la 

contrainte totale verticale au bas du chantier pour le cas non drainé est d'environ 600 kPa  

(γtot × z), alors que cette valeur est réduite de 65% pour le cas drainé (environ 220 kPa) après 5 

ans. Les contraintes totales verticales obtenues par les simulations numériques sont plus faibles 

que celles obtenues par le poids des terres; l'effet d'arche est plus marqué dans le cas drainé. 

La distribution des contraintes effectives verticales le long du chantier pour le cas initialement 

saturé avec drainage (après 5 ans) et le cas non drainé sont montrées à la figure 4.22(b). Il est 

montré qu'à la fin de la simulation (t = 5 années), les deux cas donnent des distributions de 

contraintes effectives verticales très proches. 

En termes de pressions interstitielles, il existe une différence significative entre le cas drainé à la 

fin de la simulation (cas G0 - t = 5 années) et le cas non drainé (G2) comme le montre la figure 

4.22(c). Après 5 années, le chantier se désature presque complètement avec l'apparition de 

succions à partir de 5 m du bas, alors qu'il demeure saturé avec des pressions interstitielles à 

l'équilibre lorsque le drainage n'est pas permis. Il faut noter toutefois que la pression interstitielle 

est négative à la surface du remblai pour le cas non drainé, en raison du drainage partiel à travers 
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la barricade qui fait descendre le niveau d'eau de quelques mètres et qui génère des succions en 

haut du remblai. 

  

  
Figure 4.22 : Cas G0 et G2 - Distribution des contraintes totales verticales (a), des contraintes 

effectives verticales (b) et de la pression interstitielle (c) le long de la LCV pour le cas drainé et le 

cas non drainé. (d) Comparaison de l'évolution de la contrainte totale horizontale près de la 

barricade entre le cas avec et sans drainage. 
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La figure 4.22(d) présente l'évolution dans le temps de la contrainte totale horizontale sur la 

barricade (à la mi-hauteur de la face non libre). À long terme, la contrainte totale horizontale est 

nettement plus élevée pour le cas saturé avec u à l'équilibre comparativement au cas drainé où les 

pressions interstitielles ont été dissipées. 

La figure 4.23(a) montre le tassement total (en haut du chantier) produit sur la largeur du remblai 

pour les deux cas (drainé et non drainé). La figure montre que la différence n'est pas significative 

au niveau du tassement du remblai mis en place. Celui-ci se situe aux alentours de 0,08 m à la mi-

largeur du chantier pour les deux cas. Ce tassement est plus important par rapport au cas d'un 

remblai saturé ou drainé sans barricade comme montré à la figure 3.6(d) (simulation A0 ou B0). 

La rigidité de la barricade étant beaucoup plus faible que celle du roc, celle-ci à tendance à se 

déplacer vers sa face libre, ce qui permet au remblai de se tasser plus. 

La figure 4.23(b) présente le déplacement horizontal sur la hauteur de la face libre de la barricade 

pour le cas drainé et le cas saturé sans drainage après 5 années. Cette figure montre que le 

déplacement horizontal maximal se produit à la mi-hauteur de la barricade pour les deux cas. Les 

déplacements horizontaux d'un remblai drainé, initialement saturé, sont significativement plus 

faibles que ceux pour un chantier saturé d'eau avec u = γw × z. Le déplacement horizontal 

maximal de la barricade pour le cas drainé est de l'ordre de 5 cm, alors qu'il est six fois supérieur 

pour le cas saturé, atteignant une valeur d'environ 30 cm. Cette différence est due aux valeurs des 

contraintes totales plus élevées qui agissent sur la barricade (avec une face externe imperméable). 

La contrainte totale horizontale le long de la galerie est montrée à la figure 4.23(c). Comme 

prévu, les contraintes totales horizontales sont plus élevées pour le cas saturé sans drainage (cas 

G2) par rapport au cas drainé (G0). Il est aussi observé que la contrainte totale horizontale pour le 

cas saturé non drainé (simulation G2) tend à décroître vers le sens de la barricade. Ceci est relié à 

la diminution de la contrainte effective horizontale, montrée la figure 4.23(d). Pour le cas drainé, 

la contrainte effective horizontale tend à croître le long de la galerie jusqu'à l'interface remblai-

barricade où elle décroit significativement. La résistance de la barricade aux pressions du remblai 

(et à son déplacement) explique la croissance de la contrainte effective jusqu'à l'interface remblai-

barricade pour le cas drainé. 
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Figure 4.23 : G0 et G2 - Comparaison du tassement (a), du déplacement horizontal de la face libre 

de la barricade (b), de la distribution de la contrainte totale horizontale le long de la galerie (c) et 

de la distribution de la contrainte effective horizontale le long de la galerie (d); cas avec et sans 

drainage. 
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4.7.2 Influence de la vitesse de remblayage 

 

La vitesse de remplissage influence significativement l'évolution des contraintes dans les 

chantiers remblayés, comme on l'a vu à la section 4.4. Il est utile d'évaluer l'influence de ce 

paramètre sur le comportement mécanique de la barricade. 

Les résultats suivants portent sur 3 simulations qui illustrent le comportement de la barricade face 

à un remplissage séquentiel sans cimentation selon différentes vitesses. Le cas de base simule une 

vitesse de remplissage lente de 5 m à tous les 5 jours. Le chantier est rempli en 50 jours durant 

lesquels l'eau peut se drainer à travers la barricade au bas du chantier. Des vitesses de 

remplissage moyenne et rapide de 5 m par jour et 5 m aux 5 heures respectivement, sont aussi 

simulées pour mettre en évidence l'impact de la vitesse de remblayage. 

Les figures 4.24(a) et (b) représentent l'évolution de la contrainte totale verticale et horizontale 

près de la barricade (à la mi-hauteur). Un remplissage rapide (i.e 5m aux 5 heures) produit des 

contraintes (verticales et horizontales) plus élevées que pour un remplissage moyen ou lent. À 

titre d'exemple, la contrainte horizontale maximale sur la barricade pour un remplissage rapide 

(G6) est de 180 kPa, alors qu'elle est de 110 kPa (G5) et de 80 kPa (G6) pour une vitesse moyenne 

et lente respectivement. 

L'évolution de la contrainte totale verticale et horizontale au bas du chantier (à la mi-largeur du 

remblai) pour les différentes vitesses de remplissage sont montrées aux figures 4.24(c) et (d) 

respectivement. On remarque qu'au bas du chantier, les contraintes totales verticales et 

horizontales sont plus élevées que celles près de la barricade. Ceci est relié aux pressions 

interstitielles qui sont plus faibles près du point de drainage (près de la barricade) qu'à la mi-

largeur au bas du chantier et à l'effet d'arche horizontal (Li et Aubertin, 2009d, e). De manière 

générale, un remplissage rapide produit des contraintes totales verticales et horizontales plus 

importantes par rapport à des remplissages plus lents aux deux emplacements (au bas du chantier 

et près de la barricade). 
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Figure 4.24 : Cas G4, G5 et G6 - Évolution dans le temps des contraintes totales verticales (a) et 

horizontales (b) près de la barricade à sa mi-hauteur pour différentes vitesses de remplissage. 

Évolution dans le temps des contraintes totales verticales (c) et horizontales (d) au bas du chantier 

à la mi-hauteur de la galerie souterraine pour différentes vitesses de remplissage. 
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Figure 4.25 : Cas G4, G5, G6, D0, D1 et D2 - Comparaison de l'évolution des contraintes totales 

verticales au bas du chantier pour les cas avec et sans barricade, et pour 3 vitesses de 

remplissage. 

La figure 4.25 compare l'évolution des contraintes totales verticales au bas du chantier pour les 

simulations avec et sans barricade (séries de simulations G et D respectivement; figures 3.1(b) et 

(c)). La figure montre que les contraintes augmentent avec le remplissage du chantier. On 

remarque que les contraintes obtenues avec les simulations G (cas avec barricade) sont plus 

élevées que celles obtenues avec les simulations D (cas sans barricade) pour toutes les vitesses 

étudiées. La présence de la barricade dans la galerie souterraine allonge le parcours de la goute 

d'eau pour arriver au point de drainage comparativement au cas sans barricade. Puisque la 

conductivité hydraulique du remblai est relativement faible, le drainage est plus lent en présence 

d'une barricade à une certaine distance dans la galerie, ce qui engendre des contraintes totales 

plus élevées au bas du chantier durant la période requise pour compléter le drainage et évacuer 

l'eau. 
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Figure 4.26 : Cas G4, G5 et G6 - (a) Évolution de la distribution des pressions interstitielles le long 

de la LCV après la mise en place de la 10
e
 couche pour les différentes vitesses de remplissage. 

(b) Déplacement horizontal de la face libre de la barricade le long de sa hauteur pour différentes 

vitesses de remplissage. (c) Distribution des contraintes horizontales le long de la galerie à sa mi-

hauteur pour différentes vitesses de remplissage. 
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La figure 4.26(a) présente l'évolution des profils de pressions interstitielles à la LCV, après la 

mise en place de la 10
e
 couche pour les différentes vitesses de remplissage. Comme à la figure 

4.24(c), cette figure montre que la pression interstitielle finale à la base du chantier pour une 

vitesse de remplissage rapide (u = 400 kPa) est beaucoup plus élevée que celle obtenue avec une 

vitesse de remplissage moyenne et lente (u = 100 et 80 kPa respectivement). La différence de 

temps alloué au drainage et à la dissipation des pressions interstitielles explique cette différence. 

Cette différence des contraintes pour les diverses vitesses de remplissage influence le 

déplacement horizontal de la face libre de la barricade, présenté à la figure 4.26(b). On voit sur 

cette figure qu'une vitesse rapide de remplissage produit des déplacements horizontaux de la 

barricade plus élevés par rapport aux deux autres vitesses de remblayage. 

La figure 4.26(c) présente la distribution des contraintes horizontales (effectives et totales) le 

long de la galerie à la mi-hauteur de la barricade. Cette figure montre que les contraintes totales 

horizontales diminuent en s'approchant de la barricade jusqu'à atteindre une valeur négative à la 

face libre de celle-ci (désaturation de la barricade). La contrainte totale horizontale la plus élevée 

est produite par une vitesse de remplissage rapide (simulation G6). Le drainage à travers la 

barricade donne des pressions interstitielles légèrement négatives dans celle-ci, à cause 

notamment de sa conductivité hydraulique élevée. C'est pourquoi, les contraintes effectives sont 

légèrement plus élevées que les contraintes totales le long de la barricade comme montré à la 

figure 4.26(c). 
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4.7.3 Influence de la dimension de la barricade 

Deux configurations ont été analysées pour déterminer l'influence de la dimension de la barricade 

sur l'état des contraintes et des déplacements. La première configuration consiste en une barricade 

de roches stériles avec une base L de 5 m et la deuxième configuration représente une barricade 

en roches stériles avec une base L de 10 m. La figure 4.27(a) montre les deux configurations avec 

les dimensions correspondantes. Un remplissage séquentiel rapide (V= 5 m aux 5 heures) a été 

choisi pour évaluer l'impact de la dimension sur le comportement mécanique de la barricade.  

Les simulations montrent que l'état de contraintes le long de la hauteur du remblai est similaire 

pour les deux configurations de barricade.  

La figure 4.27(c) montre les contraintes verticales (effective et totale) le long de la galerie jusqu'à 

la face libre de la barricade après le remplissage de la 10
e
 couche. Cette figure montre que la 

contrainte totale verticale diminue lorsqu'on se déplace vers la barricade pour les deux cas. 

Puisque le drainage se produit au pied de la face libre de la barricade, une perte de charge se 

produit le long de la galerie souterraine comme le montre la figure 4.27(b). Au bas du chantier, la 

pression interstitielle se situe aux alentours de 600 kPa, et elle décroît en allant vers la barricade 

pour atteindre des valeurs faibles à l'interface remblai-barricade. Dans la barricade, les pressions 

interstitielles sont presque nulles, ce qui produit des contraintes totales égales aux contraintes 

effectives. À l'interface remblai-barricade, la contrainte effective verticale augmente 

considérablement et tend à décroître en allant vers la face libre de la barricade. La résistance de la 

barricade aux pressions induites par le remblai explique cette croissance des contraintes près de 

l'interface remblai-barricade. Les mêmes tendances sont observées pour les contraintes 

horizontales le long de la galerie, comme le montre la figure 4.27(d). 

La figure 4.27(e) présente le déplacement horizontal de la face libre de la barricade sur sa 

hauteur. La barricade de longueur L = 5m se déplace plus que celle avec une longueur de 10 m. 

La plus grande surface de frottement (contact roc-barricade) de la grande barricade procure a 

celle-ci une plus grande résistance aux pressions induites, ce qui produit de plus petits 

déplacements. 
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Figure 4.27 : Cas G6 et G8 - (a) Configurations des deux barricades en roches stériles. (b) Iso-

contours des pressions interstitielles le long de la galerie à la fin de la simulation (t=50 heures). 

Distribution des contraintes totales et effectives verticales (c), et horizontales (d) le long de la 

galerie pour les deux configurations. (e) Distribution du déplacement horizontal de la face libre 

de la barricade le long de sa hauteur pour les deux configurations. 
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4.7.4 Influence de la position de la barricade 

L'éloignement l (m) de la barricade représente la distance entre la barricade et l'entrée au bas du 

chantier. Cette position est très importante pour l'optimisation du dimensionnement des chantiers 

remblayés. Dans cette section, l'influence de ce paramètre est analysé en simulant le 

comportement de la barricade pour 3 positions (l = 5 m, 10 m et 15 m; simulations G9, G6 et G10 

respectivement). Le remplissage séquentiel rapide de 5 m à tous les 5 heures sans effets de 

cimentation a été choisi pour cette évaluation paramétrique. 

Les figures 4.28(a) et (b) présentent l'évolution dans le temps des contraintes totales verticales et 

horizontales près de la barricade respectivement. Il est montré que pour un éloignement plus 

grand (15 m dans ce cas), les contraintes totales horizontale et verticale maximales sont plus 

élevées que celles obtenues avec des éloignements plus petits, particulièrement vers la fin de la 

simulation (1,5 jours ≤ t ≤ 2 jours). Ceci est dû, comme nous l'avons vu, à la présence accrue 

d'eau qui augmente les pressions interstitielles (en raison d'un drainage plus lent lorsque la 

distance l est plus longue) 

L'évolution des contraintes horizontales (effective et totale) le long de la galerie (à la mi-hauteur) 

pour différents éloignements à la fin de la simulation (t = 2 jours) est illustrée à la figure 4.28(c). 

Il est observé qu'à l'entrée de la galerie, au bas du chantier (x ≈ 0 m), les contraintes effectives 

horizontales sont faibles alors que les contraintes totales sont élevées pour les 3 cas. Le cas avec 

un éloignement élevé (l = 15 m; cas G10) donne la plus grande contrainte totale horizontale au 

bas du chantier (u est maximale aussi). Les contraintes totales diminuent en direction de la 

barricade jusqu'à devenir nulle à la face libre de celle-ci. Les contraintes effectives sont proches 

des contraintes totales au niveau de la barricade puisque les pressions interstitielles y sont nulles 

(la barricade est presque totalement désaturée). 

À partir de la figure 4.28(d), on constate que plus l'éloignement est grand, plus le déplacement de 

la barricade devient important. L'éloignement de la barricade augmente la distance de parcours de 

la goûte d'eau pour arriver au point de drainage (au pied de la barricade). Un éloignement élevé 

ne permet pas la dissipation rapide des pressions interstitielles dans le remblai ce qui engendre de 

plus grandes pressions sur la barricade. La différence du déplacement horizontal de la face libre 

de la barricade entre les 3 cas n'est toutefois pas significative par rapport à l'influence d'autres 
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paramètres (vitesse de remblayage et dimension de la barricade, etc.). On pourrait éviter cet effet 

négatif de la distance l en installant des conduites de drainage dans le remblai (dans la galerie). 

  

  

Figure 4.28 : Cas G6, G9 et G10 - Évolution dans le temps de la contraintes totales verticales (a) 

et horizontales (b) près de la barricade pour différentes valeurs d'éloignement l(m). (c) 

Distribution des contraintes horizontales le long de la galerie pour différentes valeurs 

d'éloignement l (m). (d) Comparaison du déplacement horizontal de la face libre de la barricade 

en fonction de sa hauteur pour différentes valeurs d'éloignement l (m). 
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4.8 Discussion 

On rappelle ici certains résultats importants et on discute ici quelques aspects liés au contenu des 

chapitres 3 et 4, suites aux diverses simulations numériques de la réponse des chantiers 

remblayés. 

Rappelons d'abord que la majorité des simulations numériques utilise un modèle 2D 

(déformations planes) qui incluent deux matériaux, soit le remblai minier et le roc. L'analyse de 

sensibilité portant sur le maillage et la géométrie du modèle a permis de définir une distribution 

et une taille acceptable pour les éléments du maillage dans le remblai et le roc. Des maillages 

triangulaire (triangles équilatéraux de 0,5 m de côté) et carré (0,25 m de côté) ont été adoptés 

pour un remplissage instantané et séquentiel respectivement. Ces maillages ont été choisis en 

fonction de la qualité des résultats obtenus (i.e. stabilité numérique sans oscillations et conformité 

avec les solutions analytiques et d'autres résultats numériques) et de la durée des simulations. 

Pour la géométrie du modèle, il a été constaté qu'utiliser un modèle de plus grande taille, avec un 

gros volume de la masse rocheuse autour de l'ouverture et des frontières éloignées du chantier 

remblayé, n'influence aucunement les résultats obtenus lorsque comparé au modèle de base; ceci 

est dû au fait que le massif rocheux a un comportement élastique rigide et qu'il est très peu 

déformé dans les cas simulés ici. Il nous a donc semblé judicieux d'opter pour un modèle de taille 

réduit, comme indiqué à la figure 3.2, puisque cela réduit la durée des simulations. Ce modèle ne 

serait toutefois pas approprié pour simuler d'autres types de conditions, comme par exemple une 

excavation séquentielle du chantier avec un remblai comprimé par la convergence du massif 

rocheux, ou le cas d'excavations multiples. 

Dans les simulations des chantiers avec une barricade, celle-ci est modélisée avec le modèle 

Mohr-Coulomb (ÉP-MC) et des propriétés hydrogéotechniques similaires à celles des roches 

stériles (identifiées selon les données de la littérature). Il est important de rappeler qu'une 

représentation en 2D de la barricade n'est pas tout à fait réaliste puisqu'elle n'est jamais infiniment 

longue (sur l'axe z), contrairement à certains chantiers très longs qui peuvent être représentés 

correctement en déformations planes; pour plus de réalisme, la barricade devrait plutôt être 

modélisée en 3D (mais nous ne disposions pas d'un tel outil de calcul pour ce projet). Néanmoins, 

cette représentation 2D apporte des éléments d'information utile sur l’effet relatif de divers 

facteurs d’influence. 
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L'analyse numérique des chantiers miniers remblayés montre comment les effets d'arche se 

produisent dans le remblai, en raison d'une rigidité beaucoup plus faible que celle du roc. Ces 

effets d'arche sont associés aux contraintes de cisaillement qui se développent près de la paroi 

rocheuse (à l'interface remblai-roc; voir figure 3.6b). Il en résulte une réduction significative des 

contraintes effectives (verticales et horizontales) en profondeur, par rapport au poids des terres. 

Les résultats montrent aussi que les contraintes obtenues des solutions numériques sont 

usuellement bien corrélées avec celles obtenues des solutions analytiques, pour des conditions 

comparables, lorsque ces dernières sont basées sur l'utilisation d'un coefficient de pression des 

terres actif Ka (théorie de Rankine). À cet égard, les simulations numériques montrent que la 

valeur du coefficient de pression des terres K (σ'h/ σ'v) est usuellement proche de 0,3 (pour ϕ ' = 

35°) à la ligne centrale verticale (LCV), mais qu'elle devient plus élevée (quelques fois proche de 

1) près de la paroi rocheuse (figures 3.7(b), 3.9(d) et 3.14(b)). Rappelons toutefois que cette 

définition du coefficient K, exprimée comme le rapport de la contrainte effective horizontale sur 

la contrainte effective verticale, est basée sur le fait que ces deux axes cartésiens devraient 

correspondre à ceux des contraintes principales (mineure et majeure). Toutefois, près de la paroi 

rocheuse, les contraintes de cisaillement (figure 3.6(b)) produisent une rotation des contraintes 

principales (e.g Handy, 1985; Li et al., 2005a), de sorte que les contraintes horizontales et 

verticales ne correspondent pas dans ce cas aux contraintes principales. La signification du 

rapport entre la contrainte effective horizontale et la contrainte effective verticale n'est donc pas 

la même proche des épontes qu'au centre du chantier (Handy et Spangler, 2007). Il est utile de 

rappeler aussi que la théorie de Rankine pour Ka ne s’applique que pour des murs lisses (sans 

résistance frictionnelle; e.g McCarthy, 2007). Il est donc normal que la valeur de Ka ne soit pas 

représentative des rapports (σ'h/ σ'v) observés près des parois rugueuses considérées ici. 

Les simulations numériques réalisées ici montrent par ailleurs que la mise en place du remblai 

dans un état initialement saturé produit généralement un excès de pression interstitielle durant la 

période qui suit l'ajout. Dans ce cas, pendant une certaine période plus ou moins longue (selon les 

conditions de drainage et de consolidation), les contraintes effectives et les contraintes de 

cisaillement peuvent être nulles dans la zone des fortes surpressions (qui peut atteindre presque 

toute la hauteur du chantier). Suite au drainage, l'excès de pression interstitielle se dissipe 

graduellement et les contraintes effectives se développent, ce qui permet au remblai de mobiliser 
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une résistance au cisaillement (requise pour produire un effet d'arche). Ce type de comportement 

a aussi été observé par des mesures in situ (Grabinski, 2010; Thompson et al., 2010). 

Les simulations numériques qui représentent un remblayage séquentiel (ce qui constitue un volet 

original) montrent que la contrainte totale augmente avec le remplissage du chantier. Cette 

augmentation peut se faire selon un taux décroissant si on laisse suffisamment de temps pour le 

drainage (cas D0 - sans effet de cimentation; voir figure 3.16c). Dans ce cas, l'ajout de nouvelles 

couches affecte relativement peu les pressions interstitielles dans les couches précédemment 

mises en place (particulièrement au bas du chantier), surtout lorsque u ≤ 0 suite au drainage (i.e. 

lorsque le remblai devient non saturé).  

L'effet de diverses propriétés du remblai a été analysé. Le cas de base a été simulé avec un 

remblai ayant un module de Young Eb de 100 MPa, ce qui correspond à un remblai assez rigide 

(qui serait dans sa phase finale de cure). Dans le cas du remblai initialement saturé en eau, les 

résultats montrent que la valeur de Eb affecte l'ampleur et la vitesse de consolidation, ainsi que les 

contraintes le long de la hauteur du chantier. Cette évaluation a mis en évidence l'influence du 

module Eb sur les contraintes induites dans le chantier, qui est couplé avec l'effet de la déposition 

des couches qui influence aussi le rapport (σ'h/ σ'v). On a ainsi observé que la valeur de K (à la 

LCV) est proche de K0 en haut de chaque couche et proche de Ka au bas de cette couche après 

que les pressions interstitielles dans le chantier remblayé se soient dissipées (figure 3.17b). 

Les résultats tirés de la littérature montrent que l'ajout du ciment au remblai produit une 

augmentation de la cohésion c', du module de Young Eb et de la valeur du AEV, et une réduction 

de la conductivité hydraulique saturée ksat dans le temps. Les simulations qui tiennent compte de 

ces effets montrent que l'évolution de ces paramètres engendre une plus grande rétention d'eau 

dans le remblai. Comme l'eau reste plus longtemps et en plus grande quantité dans le chantier, on 

observe que les pressions interstitielles peuvent augmenter considérablement avec l'ajout de 

nouvelles couches, comparativement au cas sans cimentation où le drainage est usuellement plus 

rapide (selon la vitesse de remplissage). On observe aussi que les contraintes effectives 

(verticales et horizontales) sont plus faibles le long de la hauteur du chantier suite à une 

augmentation graduelle de la cohésion pour les cas «cimentés». L'effet d'autres propriétés du 

remblai est abordé plus loin. 
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La géométrie des ouvertures affecte également la réponse du remblai. Par exemple, les 

simulations de chantiers inclinés montrent que les contraintes effectives verticales et horizontales 

sont souvent plus faibles que celles pour des chantiers verticaux le long de la ligne de centre. Les 

contraintes de cisaillement élevées le long de l'éponte inférieure génèrent des transferts plus 

prononcés vers le massif rocheux, produisant alors une réduction des contraintes au sein du 

chantier remblayé. 

L'évaluation paramétrique, présentée dans le présent chapitre, montre aussi que : 

a) L'ajout d'éléments d'interface, modélisés par des couches minces entre le remblai 

et le roc, produit usuellement une meilleure corrélation entre les solutions 

analytiques et les solutions numériques comparativement à des interfaces 

solidaires (voir simulations A1, A2, A3, A4, A18 et A19). Dans le cas du modèle de 

base (avec Eb = 100 MPa et ϕ ' = 35°), le modèle numérique sans éléments 

d'interface entre le roc et le remblai donne des contraintes effectives verticales plus 

faibles par rapport aux solutions analytiques (voir figures 3.6(a), 3.8 (b) et figures 

B.1, B.2 et B.3 en annexes). La mobilisation d'une plus grande résistance au 

cisaillement près de la paroi rocheuse lorsque le contact est solidaire (éléments 

attachés) en présence d'un remblai relativement rigide, produit un transfert des 

contraintes prononcé vers le massif, ce qui explique les valeurs plus faibles des 

contraintes effectives dans le remblai par rapport aux solutions analytiques (voir 

aussi la section 4.2.4). La présence des couches minces (plus déformables) permet 

d’accroître le déplacement dans le chantier et le long des parois. Les contraintes de 

cisaillement sont plus faibles dans le remblai près de la paroi, ce qui produit des 

contraintes effectives plus élevées dans le chantier comparativement au cas sans 

éléments d'interface. Les contraintes effectives verticales et horizontales ont aussi 

tendance à augmenter avec la présence des couches minces près du bas du chantier 

(figure 4.5b). 

b) Tel qu'anticipé, la valeur de l'angle de friction interne du remblai ϕ ' a un impact 

sur la distribution des contraintes dans le chantier. Des faibles valeurs de ϕ ' 

produisent des contraintes verticales et horizontales plus élevées, particulièrement 

au bas du chantier comme observé dans Li et Aubertin (2009a, b, c et d). 
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Toutefois, à partir d'une certaine valeur de l'angle de friction donné (≥ 20° pour 

notre cas), l'influence de ϕ ' sur les contraintes n'est plus significative.  

c) En plus des effets mentionnés plus haut, l'influence du module de Young du 

remblai Eb a aussi été étudié selon deux types d'analyse : un remplissage instantané 

et un remplissage séquentiel (avec un remblai initialement saturé en eau). Pour le 

remplissage instantané avec un remblai sans eau (drainé), il a été observé que la 

valeur du module de Young Eb a peu d'impact sur les contraintes si un 

déplacement suffisant du remblai se produit (pour mobiliser les contraintes de 

cisaillement près de la paroi rocheuse), comme constaté dans Li et Aubertin 

(2009c). Toutefois, on constate qu'un remblai trop rigide ne permet pas 

suffisamment de déplacement pour mobiliser les contraintes de cisaillement à 

l'interface remblai-roc. Dans ce cas, les effets d'arche sont moins présents et les 

contraintes sont beaucoup plus élevées (voir annexes, cas C16). Lorsque le chantier 

est rempli séquentiellement avec un remblai saturé en eau, le module de Young Eb 

peut influencer significativement les contraintes dans le chantier. Une valeur faible 

de Eb engendre alors de plus grands déplacements, qui génèrent de plus grandes 

pressions interstitielles suite à la mise en place de chaque couche de remblai; 

lorsqu'il n'y a pas assez de temps pour drainer les couches, on observe une 

augmentation progressive de la teneur en eau et des contraintes totales durant le 

remplissage séquentiel. Les surpressions générées par la mise en place de chaque 

nouvelle couche de remblai avec une faible valeur de Eb réduisent 

significativement les contraintes de cisaillement près de la paroi rocheuse. À court 

terme, les contraintes effectives peuvent ainsi être plus élevées dans le chantier 

pour des valeurs faibles de Eb puisque les effets d'arche sont moins marqués. 

d) Une variation modérée du coefficient de Poisson ν affecte assez peu les contraintes 

effectives verticales, mais une valeur élevée de ν (= 0,49 par exemple) augmente 

considérablement les contraintes effectives horizontales et diminue les contraintes 

effectives verticales le long du chantier (ceci a aussi été observé par Li et 

Aubertin, 2009c et Fahey et al., 2009). 
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e) L'augmentation de l'angle de dilatance ψ tend à réduire les contraintes effectives 

verticales et à augmenter les contraintes effectives horizontales, comme rapporté 

par Li et Aubertin (2009c). Les contraintes effectives obtenues pour différentes 

valeurs de ψ sont plus faibles que celles dues au poids des terres. 

f) L'ampleur de la cohésion c' peut affecter considérablement la distribution des 

contraintes effectives verticales et horizontales à la LCV. Pour des remplissages 

instantanés et séquentiels, les résultats montrent que l'augmentation de la cohésion 

diminue les contraintes effectives (verticales et horizontales) le long de la hauteur 

du chantier, comme observé par Li et Aubertin (2009a, c). 

g) Tel que mentionné plus haut, la géométrie du chantier influence aussi grandement 

l'ampleur des contraintes (verticales et horizontales). Une ouverture d'une grande 

largeur produit moins d'effet d'arche, ce qui augmente les contraintes effectives 

verticales et horizontales le long de la LCV du chantier. Aussi, un chantier 

circulaire (axisymétrique en 3D) produit un effet d'arche plus marqué qu'une 

représentation en 2D (chantier long). La mobilisation des contraintes de 

cisaillement sur une plus grande surface pour un chantier circulaire (représentation 

axisymétrique) est à l'origine de cette différence de grandeur des contraintes, 

particulièrement au bas du chantier (voir aussi Li et al., 2005a; Li et Aubertin 

2009c). 

h) Les simulations ont également montré qu'une cimentation progressive, représentée 

par une évolution dans le temps de certains paramètres géotechniques du remblai 

(i.e cohésion c', module de Young Eb, conductivité hydraulique ksat et courbe de 

rétention d'eau) peut engendrer des contraintes effectives verticales et horizontales 

plus faibles par rapport au cas sans cimentation. L'évolution dans le temps de ces 

paramètres géotechniques pour le cas «cimenté» peut aussi engendrer une plus 

grande rétention d'eau dans le remblai, ce qui peut produire des pressions 

interstitielles plus importantes le long de la hauteur du chantier selon la vitesse de 

remplissage (comparativement au cas non cimenté). 

i) La vitesse de remplissage influence grandement les contraintes dans le chantier 

lorsque le remblai est initialement saturé. Une vitesse rapide (remplissage de 5 m 
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aux 5 heures pour notre cas) produit de plus grandes contraintes totales verticales 

et horizontales, comparativement à une vitesse de remplissage moyenne ou lente 

(figure 4.17). Ces contraintes sont toutefois inférieures à la contrainte verticale 

totale calculée pour une mise en place « instantanée » du remblai minier (figure 

3.11b). 

j) Les résultats des simulations numériques avec le modèle Cam-Clay modifié 

(CCM) montrent la présence d'effets d'arche, où les contraintes verticales obtenues 

sont plus faibles que celles obtenues du poids des terres. Les quelques résultats 

obtenus avec le modèle CCM montrent toutefois plusieurs différences par rapport 

aux résultats simulés avec le modèle élastoplastique Mohr-Coulomb (ÉP-MC), 

utilisé dans presque toutes les simulations présentées ici. Par exemple, les 

contraintes effectives horizontales obtenues du modèle CCM dépassent les 

contraintes effectives horizontales calculées à partir du poids des terres (avec un 

coefficient de K0 = 0,33) et elles sont proches des contraintes effectives verticales. 

Dans ce cas, le coefficient de pression des terres K est proche de la valeur 1 à la 

ligne centrale verticale (LCV). Ceci pourrait s'expliquer par un état de contraintes 

se trouvant proche du sommet de l'ellipse du critère de plasticité du modèle CCM, 

montré à la figure 2.36, (pour OCR=1) où la valeur équivalente de l'angle de 

friction interne ϕ ' est faible. Les résultats montrent aussi que les pressions 

interstitielles obtenues avec le modèle CCM sont plus élevées le long du chantier 

remblayé que celles obtenues avec le modèle ÉP-MC en utilisant un module de 

Young Eb = 100 MPa. Dans le modèle CCM, la valeur équivalente au module de 

Young est proportionnelle à ln(p') (p' étant la contrainte effective moyenne). Des 

faibles valeurs de cette contrainte effective moyenne donnent une faible rigidité Eb 

ce qui pourrait expliquer les pressions interstitielles élevées le long du chantier 

remblayé obtenues du modèle CCM, comparativement aux cas du modèle ÉP-MC 

avec un module de Young Eb élevé. Des travaux additionnels avec le modèle CCM 

sont toutefois requis pour mieux saisir les différences de comportement avec le 

modèle ÉP-MC, et leur signification. 

k) Le comportement mécanique d'une barricade dépend de plusieurs facteurs incluant 

l'état du remblai (drainé ou non drainé), la vitesse de remplissage, ainsi que la 
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dimension et la position de la barricade. Le drainage permet de dissiper les 

pressions interstitielles dans le chantier, ce qui réduit les contraintes totales dans le 

chantier et la galerie. Mais la vitesse de remplissage influence grandement les 

contraintes sur la hauteur du chantier et sur la barricade. Par exemple, une vitesse 

de remplissage élevée génère des surpressions au bas du chantier et sur la 

barricade. Ces pressions accrues produisent des déplacements plus importants de 

la barricade comparativement à des vitesses de remplissage plus lentes. Aussi, une 

barricade d'une plus grande dimension résiste mieux aux pressions induites et subit 

un déplacement plus faible. La position de la barricade dans la galerie souterraine 

joue également un rôle. Une barricade éloignée de l'entrée de la galerie (l grand) 

doit supporter l'effet d'un parcours de drainage plus long, ce qui ralentit la 

dissipation des pressions interstitielles. On observe qu'un éloignement élevé donne 

de plus grands déplacements de la barricade (lorsqu'aucune mesure pour accélérer 

le drainage n'est incluse).  

 

La grande majorité des résultats présentés dans le mémoire semblent conséquents avec les 

données issues d'études antérieures (analytiques et numériques) et lorsqu'applicable avec les 

tendances déduites des mesures réalisées dans les chantiers remblayés. Il faut toutefois être 

prudent avant d'utiliser ces résultats car il n'y a pas eu de validation directe pour plusieurs de ces 

simulations, en raison notamment du peu de données expérimentales disponibles. Néanmoins, les 

simulations menées ici permettent de mieux comprendre l'effet des principaux paramètres qui 

influencent le comportement des chantiers remblayés. Des travaux subséquents sont 

recommandés au chapitre suivant afin de poursuivre les analyses de ce comportement pour des 

conditions pratiques réalistes. 
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CHAPITRE 5 CONCLUSIONS ET RECOMMANDATIONS 

 

Les résultats des simulations numériques, menées avec le code d'éléments finis SIGMA/W 2007 

(Geoslope International Inc) et le modèle élastoplastique Mohr-Coulomb (ÉP-MC), présentées 

dans ce mémoire contribuent à l'amélioration des connaissances sur le comportement 

hydrogéotechnique des remblais miniers et des barricades dans les chantiers souterrains. On 

présente ici les principales conclusions découlant des analyses décrites dans le mémoire; 

quelques recommandations sont aussi présentées ci-dessous. 

5.1 Conclusions 

Le chapitre 2 (problématique et revue de littérature) a permis de rappeler les différents types de 

remblais miniers utilisés pour remplir les chantiers souterrains. Les propriétés géotechniques 

typiques de chaque type de remblai ont aussi été présentées dans ce chapitre; certaines ont été 

utilisées dans les analyses numériques présentées dans le mémoire. Les outils analytiques 

disponibles pour évaluer l'état des contraintes dans les chantiers remblayés sont aussi revus, en 

relation avec les objectifs de cette recherche. 

Les simulations des cas de référence (chapitre 3) mènent aux conclusions suivantes : 

- Les résultats montrent comment les effets d'arche qui se produisent dans les 

chantiers étroits affectent la distribution des contraintes. Les résultats confirment 

qu'il est généralement incorrect d'évaluer les contraintes le long de la hauteur de 

chantiers étroits en se basant sur le poids des terres. Il a aussi été montré que les 

solutions numériques se corrèlent bien avec les solutions analytiques (calculées 

avec Ka) développées par Li et al. (2003, 2005a; voir aussi Li et Aubertin, 2009(a), 

(c), (e) et 2010); ces résultats indiquent que ces solutions analytiques peuvent 

constituer des outils de calcul rapides et pratiques pour estimer les contraintes dans 

les chantiers miniers remblayés surtout dans les phases préliminaires d'un projet. 

- Lorsque le remblai est initialement saturé, un excès de pressions interstitielles se 

développe juste après la mise en place du remblai dans le chantier. Les pressions 

interstitielles peuvent se dissiper graduellement le long de la hauteur du chantier 
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grâce au drainage. Si suffisamment de temps est alloué au drainage, une 

désaturation du remblai avec l'apparition de succions peut être observée dans le 

haut du chantier, ce qui produit une augmentation des contraintes effectives 

verticales et horizontales. 

- À long terme, les contraintes dans le remblai pour un remplissage séquentiel sont 

assez similaires à celles d'un remplissage instantané (sans cohésion), avec des 

effets d'arche bien prononcés le long de la hauteur du chantier.  

- Pour un remblai assez rigide (Eb élevé) placé séquentiellement, les déformations 

moins élevées des couches permettent aux pressions interstitielles de se dissiper 

plus rapidement par rapport à un remblai moins rigide. Dans ce cas, l'ajout de 

nouvelles couches de remblai saturé (et rigide) n'affecte que peu les pressions 

interstitielles dans les couches du bas car elles peuvent être dissipées entièrement 

si suffisamment de temps est alloué au drainage. 

- La mise en place d'une barricade près de l'entrée de la galerie influence peu la 

distribution des contraintes verticales et horizontales et la distribution des 

pressions interstitielles dans le chantier. La valeur élevée de la conductivité 

hydraulique de barricades faites de roches stériles permet le drainage rapide du 

chantier (surtout si la barricade est située proche de l'entrée du chantier). 

- Les effets d'arche sont plus prononcés pour les chantiers étroits, et ils sont souvent 

plus marqués lorsque les parois sont inclinées. Dans ce dernier cas, il est observé 

que les contraintes effectives verticales et horizontales aux épontes inférieures sont 

plus grandes qu'aux épontes supérieures. 

Les conclusions suivantes découlent des résultats de l'évaluation paramétrique (chapitre 4) : 

- La nature de l'interface remblai-paroi influence les contraintes dans le chantier 

remblayé. Les éléments d'interface (modélisés par des couches minces plus 

déformables) créent un plus grand déplacement à l'interface remblai-roc et 

engendrent une diminution des contraintes de cisaillement à cet endroit, ce qui 

donne des contraintes effectives plus élevées (i.e. un effet d'arche moins marqué) 

dans le chantier par rapport au cas sans éléments d'interface (avec un contact 

solidaire). Les résultats des simulations numériques avec des éléments d'interface 
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(couches minces) donnent souvent une meilleure corrélation avec les solutions 

analytiques (en utilisant le coefficient de pression des terres active Ka de Rankine).  

- Certains paramètres géotechniques influencent grandement l'état des contraintes 

dans les chantiers remblayés. C'est particulièrement le cas pour l'angle de friction 

interne ϕ ', le coefficient de Poisson ν et l'angle de dilatance ψ. 

- La géométrie influence aussi l'état des contraintes dans un chantier remblayé. On a 

déjà mentionné qu'un chantier étroit produit des effets d'arche plus prononcés par 

rapport à un chantier large. Les résultats montrent qu'à partir d'un rapport largeur / 

hauteur donné, les effets d'arche disparaissent et les contraintes correspondent au 

poids des terres. Aussi, un chantier circulaire (simulation axisymétrique en 3D) 

produit un effet d'arche plus marqué qu'une représentation en 2D (chantier long). 

- Pour un remplissage séquentiel avec un remblai initialement saturé, la vitesse de 

remblayage est l'un des facteurs qui influencent le plus les contraintes dans les 

chantiers. Lorsque le chantier est rempli rapidement, le temps alloué au drainage 

devient insuffisant. Les pressions interstitielles positives (qui n'ont pas été 

dissipées préalablement) peuvent alors augmenter avec la mise en place de 

nouvelles couches saturées et générer ainsi des contraintes totales (verticales et 

horizontales) plus élevées au bas du chantier. Aussi, l'excès de la pression 

interstitielle diminue les contraintes effectives et de cisaillement près de l'interface 

roc-remblai, ce qui réduit significativement le transfert de charge du remblai vers 

le roc adjacent, produisant des contraintes plus élevées au bas du chantier et sur la 

barricade. 

- L'effet de la cimentation progressive, simulé avec une décroissance de la 

conductivité hydraulique ksat et une augmentation de la cohésion c', du AEV et du 

module de Young Eb dans le temps peut produire des pressions interstitielles plus 

importantes le long de la hauteur du remblai par rapport au cas sans cimentation. 

Même si l'augmentation de la cohésion du remblai dans le temps peut contribuer à 

la diminution des contraintes effectives, on constate que les contraintes totales 

verticales et horizontales sont plus importantes par rapport au cas sans cimentation 

en raison d'une teneur en eau plus élevée. 
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- Il est important de choisir une loi de comportement qui prend en considération les 

différents phénomènes qui se produisent au sein des chantiers remblayés. À cet 

effet, quelques simulations ont été menées avec le modèle Cam-Clay modifié 

(CCM). Les résultats montrent la présence d'effets d'arche moins développés au 

niveau des contraintes verticales. Les contraintes obtenues avec ce modèle sont 

donc plus grandes que celles obtenues avec le modèle élastoplastique Mohr-

Coulomb (ÉP-MC, généralement utilisé dans le mémoire) et celles obtenues des 

solutions analytiques (calculées avec le coefficient de pression des terres actives, 

Ka, de Rankine). Les pressions interstitielles le long du chantier, obtenues avec le 

modèle CCM, sont comparables à celles obtenues avec le modèle ÉP-MC 

lorsqu'on impose une valeur faible du module de Young Eb. Dans ces cas, les 

résultats montrent aussi que la mise en place d'une nouvelle couche peut affecter 

significativement les pressions interstitielles dans les couches précédemment mises 

en place puisqu'elles n'ont pas été dissipées complètement avec le drainage (temps 

trop court). Le modèle CCM peut apporter des éléments d'information additionnels 

qui peuvent aider à mieux comprendre l'évolution de la déformation et de la 

consolidation d'un remblai durant ces premiers jours de cure; son utilisation 

devrait toutefois faire l’objet de travaux additionnels afin de mieux définir ses 

particularités et sa pertinence pour ce type de problème.. 

- Le comportement de la barricade dépend de plusieurs facteurs, incluant sa 

résistance mécanique, sa conductivité hydraulique, sa géométrie et les contraintes 

(et déformations) générées dans le chantier remblayé. Par exemple, un remplissage 

rapide d'un chantier avec barricade drainante (de roches stériles) peut produire de 

grandes pressions interstitielles au bas du chantier. Le déplacement horizontal de 

la barricade est alors plus grand pour des vitesses de remplissage rapides. On note 

aussi que la contrainte totale horizontale sur une barricade non drainante est plus 

grande (remblai saturé, non drainé) comparativement au cas où le drainage est 

permis. Ceci se reflète directement sur le déplacement horizontal de la face libre 

de la barricade qui est beaucoup plus important pour le cas saturé, non drainé, par 

rapport au cas drainé. 
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- La dimension de la barricade de roches stériles affecte directement le déplacement 

de celle-ci face aux pressions induites par le remblai minier. Ce déplacement est 

inversement proportionnel au volume de la barricade: plus le volume (ou surface 

pour une représentation 2D) de la barricade est grand, plus son déplacement est 

petit. 

- L'éloignement de la barricade dans la galerie d'accès a une influence sur les 

contraintes dans le chantier. Néanmoins, cette influence est moins marquée par 

rapport aux autres facteurs mentionnés plus haut. Rappelons qu'un éloignement 

plus grand de la barricade augmente le parcours de drainage de sorte que les 

pressions interstitielles se dissipent plus lentement. En conséquence, le 

déplacement de la barricade est plus élevé à cause des plus grandes contraintes 

totales sur la barricade.  

 

5.2 Recommandations et recherches additionnelles 

 

En complément de ce qui est présenté dans ce mémoire, plusieurs aspects demandent des 

recherches additionnelles pour une meilleure évaluation du comportement du remblai dans les 

chantiers miniers. Ces aspects incluent :  

a) Il serait utile d'étudier plus en détails l'influence des éléments d'interface entre le 

remblai et le roc sur l'état des contraintes et des déformations dans les chantiers 

remblayés. On suggère aussi d'évaluer l'effet de ces éléments d'interface pour un 

remplissage séquentiel avec drainage et écoulement. Des analyses numériques 

avec d'autres outils numériques (FLAC par exemple) qui permettent de définir des 

éléments d'interface explicites (avec des propriétés géomécaniques propres), 

pourraient apporter des éléments d'information additionnels sur cet aspect.  

b) D'autres outils numériques, qui permettent l'analyse couplée (contraintes et 

déformations avec changement des pressions interstitielles), pourraient être utilisés 

afin de comparer les résultats avec ceux présentés ici. 
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c) L'effet de la cimentation progressive pourrait être simulé avec le modèle Cam-

Clay modifié (CCM) en faisant varier l'indice de consolidation Cc (ou la pente λ), 

le rapport OCR et la conductivité hydraulique saturée ksat (voir Godbout et al., 

2007; Yilmaz et al., 2010; Helinski, 2007; Helinski et al., 2011). Si les résultats 

sont conséquents, une évaluation paramétrique plus poussée pourrait être menée 

avec ce modèle. 

d) Il pourrait s'avérer pratique de développer une solution analytique qui prédit 

l'évolution de la pression interstitielle avec le temps de remplissage (de type 

Gibson, 1958; voir aussi Pedroni, 2011). 

e) Une étape importante de validation sera franchie lorsque les résultats numériques 

seront comparés aux mesures in situ publiées par certains chercheurs (Grabinski, 

2010; Thompson et al., 2011); il faudra alors se baser sur les propriétés 

géotechniques réelles du remblai utilisé, la géométrie du chantier et la séquence de 

remblayage. 

f) Pour l’optimisation du remblayage, il est recommandé de modéliser le remplissage 

de chantier par zones, avec un remblai ayant différentes propriétés géotechniques 

(teneur en ciment, module de Young, cohésion, etc.) selon la position. 

g) Il est aussi suggéré de simuler le remplissage séquentiel d'un chantier incliné avec 

effets de cimentation. Afin de se rapprocher de la réalité, il pourrait aussi s’avérer 

intéressant de réduire l'épaisseur de chaque couche du remblai pour tendre vers un 

remplissage en continu. 

h) Les travaux futurs devraient aussi porter sur le comportement de plusieurs 

chantiers adjacents excavés et remblayés en prenant en compte une géométrie 

réaliste. 

i) Pour mieux représenter le comportement des barricades, on suggère de mener des 

simulations en 3D, avec un remblayage séquentiel, et d'évaluer le comportement 

du remblai dans le chantier et dans la galerie. 

j) Des travaux additionnels devraient aussi porter sur l'utilisation d'une loi de 

comportement adaptée pour les remblais en pâte, qui surmonterait les limitations 
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du modèle élastoplastique basé sur le critère Mohr-Coulomb. Le modèle 

élastoplastique MSDPu proposé par Li et al. (2005b) et les résultats obtenus avec 

celui-ci montrent certaines différences non triviales par rapport à ceux découlant 

des modèles de comportement classiques (Li et al., 2009f); cet aspect mérite d'être 

investigué en détail.  

k) Il est suggéré d'évaluer l'utilisation de roches stériles ou d'une couche de sable 

drainante (avec ou sans conduites perforées) à la base du chantier pour accélérer le 

drainage et la consolidation du remblai minier. 

 



207 

 

BIBLIOGRAPHIE 

 

Aubertin, M., Bussiere, B., & Chapuis, R. (1996). Hydraulic conductivity of homogenized 

tailings from hard rock mines. Canadian Geotechnical Journal, 33(3), 470-482. 

Aubertin, M., Bussière, B., & Bernier, L. (2002). Environnement et gestion des rejets miniers. 

Montréal, Qc: Les Presses Internationales de Polytechnique. 

Aubertin, M., Li, L., Arnoldi, S., Belem, T., Bussière, B., Benzaazoua, M., et al. (2003). 

Interaction between backfill and rock mass in narrow stopes. Soil and rock America, 1, 1157-

1164. 

Belem, T., Benzaazoua, M., & Bussière, B. (2000). Mechanical behaviour of cemented paste 

backfill. 53rd Annual Conference of the Canadian Geotechnical Society, Montréal, QC, 

CANADA (pp. 373–380).  

Belem, T., Bussière, B., & Benzaazoua, M. (2002a). The effect of microstructural evolution on 

the physical properties of paste backfill. Tailings and Mine Waste'01  (Vol. 1, pp. 365-374).  

Belem, T., Benzaazoua, M., Bussière, B., & Dagenais, A. (2002b). Effects of settlement and 

drainage on strength development within mine paste backfill.  (pp. 139)Taylor & Francis.  

Belem, T., Harvey, A., Simon, R., & Aubertin, M. (2004). Measurement and prediction of 

internal stresses in an underground opening during its filling with cemented fill. Fifth 

International Symposium on Ground Support, Perth, Australia (pp. 28–30).  

Belem, T., El Aatar, O., Bussière, B., Benzaazoua, M., Fall, M., & Yilmaz, E. (2006). 

Characterization of self-weight consolidated paste backfill.  (Vol. 6, pp. 3-7).  

Belem, T., & Benzaazoua, M. (2008). Design and application of underground mine paste backfill 

technology. Geotechnical and Geological Engineering, 26(2), 147-174. 

Belem, T., Aubertin, M., Bussière, B., Mbonimpa, M. (2011). Note du cours de GML6603 - 

Remblais miniers. UQAT – École Polytechnique de Montréal, 2011. 



208 

 

Benzaazoua, M., Ouellet, J., Servant, S., Newman, P., & Verburg, R. (1999). Cementitious 

backfill with high sulfur content Physical, chemical, and mineralogical characterization. Cement 

and Concrete Research, 29(5), 719-725. 

Benzaazoua, M., Belem, T., & Bussiere, B. (2002). Chemical factors that influence the 

performance of mine sulphidic paste backfill. Cement and Concrete Research, 32(7), 1133-1144. 

Benzaazoua, M., Fall, M., & Belem, T. (2004). A contribution to understanding the hardening 

process of cemented pastefill. Minerals Engineering, 17(2), 141-152. 

Benzaazoua, M., Belem, T., & Yilmaz, E. (2006). Novel lab tool for paste backfill. Canadian 

Mining Journal, 127(3), 31. 

Benzaazoua, M., Bussière, B., Demers, I., Aubertin, M., Fried, É., & Blier, A. (2008). Integrated 

mine tailings management by combining environmental desulphurization and cemented paste 

backfill: Application to mine Doyon, Quebec, Canada. Minerals Engineering, 21(4), 330-340. 

Berndt, C., Rankine, K., & Sivakugan, N. (2007). Materials properties of barricade bricks for 

mining applications. Geotechnical and Geological Engineering, 25(4), 449-471. 

Bishop, J., & Hill, R. (1951). A theory of the plastic distortion of a polycrystalline aggregate 

under combined stresses. Philosophical Magazine, 42(327), 414-427. 

Bowles, J. E. (1978). Engineering properties of soils and their measurement (second Edition). 

New York: McGraw-Hill. 

Bussière, B. (1993). Évaluation des propriétés hydrogéologiques de rejets miniers utilisés comme 

barrières de recouvrement (M. Sc, École Polytechnique de Montréal, Montréal, QC).  

Bussière, B. (2007). Colloquium 2004: Hydro-geotechnical properties of hard rock tailings from 

metal mines and emerging geo-environmental disposal approaches. Canadian Geotechnical 

Journal, 44(9), 1019 - 1052. 

Caceres, C. (2005). Effect of backfill on Longhole Open Stoping (M.A.Sc, University of British 

Columbia).  

 Cayouette, J. (2003). Optimization of the paste backfill plant at LVT mine. CIM Bulletin, 

96(1075), 51-57. 



209 

 

Cowling, R., Grice, A., & Isaacs, L. (1987). Simulation of hydraulic filling of large underground 

mining excavations. Proceedings of 6th International Conference on Numerical Methods in 

Geomechanics, Innsbruck, Austria (pp. 1869-1876).  

Fahey, M., Helinski, M., & Fourie, A. (2009). Some aspects of the mechanics of arching in 

backfilled stopes. Canadian Geotechnical Journal, 46 (Compendex), 1322-1336. 

Fahey, M., Helinski, M., & Fourie, A. (2011). Development of Specimen Curing Procedures that 

Account for the Influence of Effective Stress During Curing on the Strength of Cemented Mine 

Backfill. Geotechnical and Geological Engineering, 1-15. 

Fall, M., Benzaazoua, M., & Ouellet, S. (2004). Effect of tailings properties on paste backfill 

performance. Proceedings of the 8th International Symposium on Mining with Backfill, Beijing, 

China (pp. 193-202)The Nonferrous Metals Society of China.  

Fall, M., & Benzaazoua, M. (2005). Modeling the effect of sulphate on strength development of 

paste backfill and binder mixture optimization. Cement and Concrete Research, 35(2), 301-314. 

Fall, M., Belem, T., Samb, S., & Benzaazoua, M. (2007). Experimental characterization of the 

stress–strain behaviour of cemented paste backfill in compression. Journal of materials science, 

42(11), 3914-3922. 

Fall, M., Adrien, D., Celestin, J. C., Pokharel, M., & Toure, M. (2009). Saturated hydraulic 

conductivity of cemented paste backfill. Minerals Engineering, 22(Compendex), 1307-1317. 

Fall, M., Celestin, J. C., Pokharel, M., & Touré, M. (2010). A contribution to understanding the 

effects of curing temperature on the mechanical properties of mine cemented tailings backfill. 

Engineering Geology, 114(3-4), 397-413. 

Fall, M., & Samb, S. (2009). Effect of high temperature on strength and microstructural 

properties of cemented paste backfill. Fire Safety Journal, 44(4), 642-651. 

Farsangi, P. N. (1996). Improving cemented rockfill design in open stoping (McGill Montreal).  

Fernandez, R. (2009). Loi de comportement CAM-CLAY. Fascicule r7.01 : Modélisations pour le 

Génie Civil et les géomatériaux. Consulté au http://www.gnu.org/copyleft/fdl.html. 



210 

 

Gamache-Rochette, A. (2004). Une étude de caractérisation en laboratoire et sur le terrain des 

écoulements de l'eau dans les roches stériles (M.Sc.A, École Polytechnique de Montréal, 

Montréal).  

GeoSlope (2008). Stress-Deformation Modeling with SIGMA/W 2007 (3
e
 éd.). 

Gibson, R. (1958). The progress of consolidation in a clay layer increasing in thickness with 

time. Geotechnique, 8(4), 171-182. 

Godbout, J., Bussière, B., Aubertin, M., & Belem, T. (2007). Evolution of cemented paste 

backfill saturated hydraulic conductivity at early curing time. The Diamond Jubilee Conference, 

Ottawa.  

Goel, S., & Patra, N. (2008). Effect of arching on active earth pressure for rigid retaining walls 

considering translation mode. International Journal of Geomechanics ASCE, 8, 123-133. 

Golder Paste Technology (1997). “Paste Technology for Underground Backfill and Surface 

Tailings Disposal Applications”, Short Course Notes for the Technical Workshop, C.I.M., 

Vancouver, British Columbia, April 27, 1997. 

Grabinsky, M., & Bawden, W. (2007). In situ measurements for geomechanical design of 

cemented paste backfill systems. CIM Magazine, 2(5). 

Grabinsky, M. W. (2010). In situ monitoring for groundtruthing paste backfill designs. Paste 

2010, Toronto (pp. 85-98).  

Grice, A. G. (2001). Recent minefill developments in Australia. Proceedings of the 7th 

international Symposium on Mining with Backfill (MINEFILL)  (pp. 351-357).  

Handy, R. (1985). The arch in soil arching. Journal of Geotechnical Engineering ASCE, 3(111), 

302-318. 

Handy, R., & Spangler, M. (2007). Geotechnical Engineering: Soil and Foundation Principles 

and Practice (5
e
 éd.): McGraw-Hill Professional. 

Harvey, A. (2004). Étude comparative des contraintes triaxiales dans le remblai en pâte selon la 

portée des chantiers. Mémoire de maîtrise ès sciences appliquées (génie minéral), École 

Polytechnique de Montréal, Canada, 136 p. 

Hassani, F., & Archibald, J. (1998). Mine backfill. CIM, CD-ROM. 



211 

 

Helwany, S. (2007). Applied soil mechanics: with ABAQUS applications: Wiley. 

Henderson, A., Revell, M., Landriault, D., & Coxon, J. (2005). Paste Fill. Handbook on Mine 

Fill. 

Helinski, M. (2007). Mechanics of Mine Backfill (Ph.D, The University of Western Australia).  

Helinski, M., Fahey, M., & Fourie, A. (2007). An effective stress approach to modelling mine 

backfilling. CIM Bulletin, 2(5). 

Helinski, M., Fahey, M., & Fourie, A. (2011). Behavior of Cemented Paste Backfill in Two Mine 

Stopes: Measurements and Modeling. Journal of Geotechnical and Geoenvironmental 

Engineering, 137, 171. 

Hill, R. (1950). The Mathematical Theory of Plasticity: Clarendon Press, Oxford. 

Holtz, R. D., Kovacs, W. D., & Sheahan, T. C. (2010). An Introduction to Geotechnical 

Engineering - Second Edition: Prentice Hall Inc. 

Hughes, P. B., Pakalnis, R., Hitch, M., & Corey, G. (2010). Composite paste barricade 

performance at Goldcorp Inc. Red Lake Mine, Ontario, Canada. International Journal of Mining, 

Reclamation and Environment, 24(Compendex), 138-150. 

Isagon, I., Razavi, M., & Townend, S. (2011). Backfill Practice at Copper Cliff North Mine. CIM 

Conference & Exhibition 2011 - Mines without Borders, Montreal, Canada. 

Itasca. (2002). FLAC - Fast Lagrangian Analysis of Continua, user's guide. Minneapolis, Minn: 

Itasca Consulting Group.  

James, M. (2010). The use of waste rock inclusions to control the effects of liquefaction in 

tailings impoundments (Ph.D, École Polytechnique de Montréal, Montréal).  

Janssen HA (1895) Versuche u¨ber Getreidedruck in Silozellen. Z Verein Ingenieure 39:1045–

1049 

Kesimal, A., Yilmaz, E., & Ercikdi, B. (2004). Evaluation of paste backfill mixtures consisting of 

sulphide-rich mill tailings and varying cement contents. Cement and Concrete Research, 34(10), 

1817-1822. 



212 

 

Kesimal, A., Yilmaz, E., Ercikdi, B., Alp, I., & Deveci, H. (2005). Effect of properties of tailings 

and binder on the short-and long-term strength and stability of cemented paste backfill. Materials 

Letters, 59(28), 3703-3709. 

Knutsson, S. (1981). Stresses in the hydraulic backfill from analytical calculations and in-situ 

measurements. Proceedings of the Conference on the Application of Rock Mechanics to Cut and 

Fill Mining  (pp. 261-268). Institution of Mining and Metallurgy.  

Kramer, S.L. (1995). Geotechnical Earthquake Engineering. Upper Saddle River, NJ: Prentice 

Hall Inc. 

Kuganathan, K. (2001). Mine backfilling, backfill drainage and bulkhead construction–a safety 

first approach. Australian Mining Monthly, 58–64. 

Lancellotta, R. (2008). Geotechnical Engineering - Second Edition: Taylor & Francis. 

Landriault, D. (1995). Paste backfill mix design for Canadian underground hard rock mining. 

97th Annual General Meeting of the CIM Rock Mechanics and Strata Control Session, Halifax, 

Nova Scotia (pp. 14-18).  

Landriault, D. (2006). They said “It will never work” - 25 years of paste backfill 1981–2006. 

Australian Centre for Geomechanics, Perth, Australia, pp. 277–292. 

Le Roux, K., Bawden, W., & Grabinsky, M. (2004). Liquefaction analysis of early age cemented 

paste backfill. Eighth International Symposium on Mining with Backfill (Minefill 2004), Beijing, 

China (pp. 233-241).  

Le Roux, K., Bawden, W. F., & Grabinsky, M. W. (2005). Field properties of cemented paste 

backfill at the Golden Giant mine. Institution of Mining and Metallurgy: Mining Technology, 

114(2), 65-80. 

Leps, T. M. (1970). Review of shearing strength of rockfill. ASCE Journal of Soil Mechanics & 

Foundations Div. 

Lerche, R., & Renetzeder, H. (1984). Development of pumped fill at Grund Mine, Preussag AG 

Metall. Proceedings of the 9th International Conference on the Hydraulic Transport of Solids in 

Pipes, Rome, Italy (pp. 24).  



213 

 

Li, L., Aubertin, M., Simon, R., Bussière, B., & Belem, T. (2003). Modeling arching effects in 

narrow backfilled stopes with FLAC.  (pp. 211–219).  

Li, L., Aubertin, M., & Belem, T. (2005a). Formulation of a three dimensional analytical solution 

to evaluate stresses in backfilled vertical narrow openings. Canadian Geotechnical Journal, 

42(6), 1705-1717. 

Li, L., Aubertin, M., Simon, R., & Bussière, B. (2005b). Formulation and application of a general 

inelastic locus for geomaterials with variable porosity. Canadian Geotechnical Journal, 42(2), 

601-623. 

Li, L., Aubertin, M., Shirazi, A., Belem, T., & Simon, R. (2007). Stress distribution in inclined 

backfilled stopes. 9th International Symposium in Mining with Backfill, Montréal Canadian 

Institute of Mining, Metallurgy and Petroleum (CIM).  

Li, L., & Aubertin, M. (2009a). A three-dimensional analysis of the total and effective normal 

stresses in submerged backfilled stopes. Geotechnical and Geological Engineering. 

Li, L., & Aubertin, M. (2009b). Influence of water pressure on the stress state in stopes with 

cohesionless backfill. Geotechnical and Geological Engineering, 27(1), 1-11. 

Li, L., & Aubertin, M. (2009c). Numerical Investigation of the Stress State in Inclined Backfilled 

Stopes. International Journal of Geomechanics, 9(2), 52-62. 

Li, L., & Aubertin, M. (2009d). Horizontal pressure on barricades for backfilled stopes. Part I: 

Fully drained conditions. Canadian Geotechnical Journal, 46(1), 37-46. 

Li, L., & Aubertin, M. (2009e). Horizontal pressure on barricades for backfilled stopes. Part II: 

Submerged conditions. Canadian Geotechnical Journal, 46(1), 47-56. 

Li, L., & Aubertin, M. (2009f). An elastoplastic evaluation of the stress state around cylindrical 

openings based on a closed multiaxial yield surface. International Journal for Numerical and 

Analytical Methods in Geomechanics, 33(2), 193-213. 

Li, L., Ouellet, S., & Aubertin, M. (2009). A method to evaluate the size of backfilled stope 

barricades made of waste rock. 62nd Canadian Geotechnical Conference, Halifax.  

Li, L., & Aubertin, M. (2010). An analytical solution for the nonlinear distribution of effective 

and total stresses in vertical backfilled stopes Geomechanics and Geoengineering, 5(4), 237-245. 



214 

 

Matthews, M. K. (1989). The use of backfill for improved environmental control in South 

African gold mines. 4th International Symposium on Mining with Backfill, Montreal (pp. 287-

294). 

Marston, A. (1930). The theory of external loads on closed conduits in the light of the latest 

experiments: Iowa State College. 

McCarthy, D. (1988). Essentials of Soil Mechanics and Foundations, ; Regents: Prentice Hall, 

Inc., Englewood Cliffs, NJ. 

McCarthy, D. F. (2007). Essentials of Soil Mechanics and Foundations. Basic Geotechnics (7
th

 

Ed.): Prentice Hall, New Jersey. 

Mitchell, R. (1989). Stability of cemented tailings mine backfill. In Proceedings of computer and 

physical modelling in geotechnical engineering. Edited by Balasubramaniam et al., A.A. 

Balkema, Rotterdam, pp. 501-507 

Mitchell, R. (1992). Centrifuge model studies of fill pressures on temporary bulkheads. CIM 

Bulletin, 85(960), 48-54. 

Neindorf, L. (1983). Fill Operating Practices at Mount Isa Mines. Proceedings of the 

International Symposium on Mining with Backfill, Lulea, Sweden (pp. 179–187)Ed. S. Granholm.  

Nova, R. (2005). Fondements de la mécanique des sols (SEPS, Trans). Milano, Italia: Hermes 

Science publications. 

Ouellet, J., Bussière, B., & Gagnon, G. (1995). Numerical simulation of backfilling of a stope 

with cemented hydraulic backfill: model elaboration. Canadian conference on computer 

applications in the mineral industry, Montréal (Canada) (pp. 22-25).  

Ouellet, S., Bussière, B., Mbonimpa, M., Benzaazoua, M., & Aubertin, M. (2006). Reactivity and 

mineralogical evolution of an underground mine sulphidic cemented paste backfill. Minerals 

Engineering, 19(5), 407-419. 

Ouellet, S., Bussiere, B., Aubertin, M., & Benzaazoua, M. (2008). Characterization of cemented 

paste backfill pore structure using SEM and IA analysis. Bulletin of Engineering Geology and the 

Environment, 67(2), 139-152. 



215 

 

Paterson, A. (2004). High density slurry and paste tailings, transport systems. International 

Platinium Conference "Platinium Adding Value"  The South African Institute of Mining and 

Metallurgy.  

Pedroni, L. (2011). Étude expérimentale et numérique de la sédimentation et de la consolidation 

des boues de traitement des eaux acides (Ph.D., École Polytechnique de Montréal, Montréal).  

Pirapakaran, K., & Sivakugan, N. (2007). Arching within hydraulic fill stopes. Geotechnical and 

Geological Engineering, 25(1), 25-35. 

Plaxis, B. (2002). Plaxis, finite element code for soil and rock analyses. RBJ Brinkgreve. Delft, 

Netherlands. 

Potvin, Y., Thomas, E., & Fourie, A. (2005). Handbook on mine fill: Australian Centre for 

Geomechanics. ISBN 0-9756756-2-1. 

Price, W. A. (2005). Liste des éléments d'information à connaître pour évaluer et atténuer les 

phénomènes de lixiviation de métaux et de drainage minier acide: Rapport NEDEM 26 pp.  

Ramlochan, T., Grabinsky, M., & Hooton, R. (2004). Microstructural and chemical investigations 

of cemented paste backfills.  (pp. 293)Taylor & Francis.  

Rankine, K., & Sivakugan, N. (2005). Drainage characteristics and behaviour of hydraulically 

placed mine fill and fill barricades.  (Vol. 16, pp. 579)AA BALKEMA PUBLISHERS.  

Rankine, R., & Sivakugan, N. (2007). Geotechnical properties of cemented paste backfill from 

Cannington Mine, Australia. Geotechnical and Geological Engineering, 25(4), 383-393. 

Rankine, K., Sivakugan, N., & Cowling, R. (2006). Emplaced geotechnical characteristics of 

hydraulic fills in a number of Australian mines. Geotechnical and Geological Engineering, 24(1), 

1-14. 

Revell, M. (2003). Underground mining at AurionGold's Kanowna Belle. Proceedings of 

CAIRNS North Queensland, Australia  (Vol. 3, pp. 37-41)AusIMM Bulletin(Australia).  

Sivakugan, N., & Rankine, K. S. (2006). A simple solution for drainage through a 2-dimensional 

hydraulic fill stope. Geotechnical and Geological Engineering, 24(5), 1229-1241. 

Soderberg, R., & Busch, R. A. (1985). Bulkheads and drains for high sandfill stopes: Report of 

Investigations 8959. US Dept. of the Interior, Bureau of Mines. 



216 

 

Slade, N. M. (2010). Paste backfill - adding value to underground mining. Paste 2010 - 13th 

international seminar on paste and thickned tailings, Toronto, Canada.  

Take, W.A., and Valsangkar, A.J. (2001). Earth pressures on unyielding retaining walls of 

narrow backfill width. Canadian Geotechnical Journal, 38 : 1220-1230. 

Taylor, H. F. W. (1997). Cement chemistry (3rd
e
 éd.): Thomas Telford Publishing. 

Terzaghi, K. (1943). Theoretical Soil Mechanics: John Wiley & Sons, New York. 

Thompson, B., Grabinsky, M., & Bawden, W. (2011). In situ monitoring of cemented paste 

backfill pressure to increase backfilling efficiency. CIM Journal, 2(4). 

Vick, S. G. (1990). Planning, Design and Analysis of Tailings Dams: BiTech Publishers Ltd. 

Vancouver, B.C. 

Williams, D. J. (2000). Assessment of embankment parameters. Slope Stability in Surface 

Mining, 275-284. 

Witteman, M., & Simms, P. (2011). Hydraulic response in cemented paste backfill during and 

after hydration. Proceedings of the 13th international Conference on Paste and Thickened 

Tailings, Toronto, Ontario (pp. 199-208).  

Wood, D. M. (2004). Geotechnical modelling: Taylor & Francis. 

Yilmaz, E., Belem, T., Benzaazoua, M., & Bussière, B. (2010). Assessment of the Modified 

CUAPS Apparatus to Estimate In Situ Properties of Cemented Paste Backfill. ASTM 

geotechnical testing journal, 33(5), 351-362. 

Yilmaz, E. (2010). Investigating the Hydrogeotechnical and Microstructural Properties of 

Cemented Paste Backfill using the CUAPS Apparatus (Ph.D, Université du Québec en Abitibi-

Témiscamingue). 

Yu, H. S. (2006). Plasticity and geotechnics (Vol. 13). USA: Springer. 

Yumlu, M., & Guresci, M. (2007). Paste backfill bulkhead monitoring: A case study from 

Inmet’s Cayeli Mine, Turkey. CIM Bulletin, 100(1103), 1-10 

 



  217 

 

ANNEXES 

 

ANNEXE A – Résultats supplémentaires des cas de référence 
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Figure A.1 : Cas B0 - Contraintes effectives verticales et horizontales (a); Coefficient de pression 

des terres K (b); déplacement vertical (c) sur la largeur du chantier à différentes profondeurs (h = 

10, 20, 30, 40 et 49 m). (d) Iso-contours des contraintes de cisaillement (en kPa) (à gauche) et des 

déformations de cisaillement (à droite) obtenue de SIGMA/W. 
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Figure A.2 : Cas C0 - Iso-contours des contraintes de cisaillement XY (a) et des déformations en 

cisaillement (b) à t = 5,3 heures et t = 3,17 années (à gauche et à droite respectivement). (c) Iso-

contours des pressions interstitielles (kPa) à la fin de la simulation (t = 3,17 années). (d) 

Évolution des contraintes de cisaillement le long de la ligne centrale verticales (LCV) pour un 

remblai saturé avec drainage. 
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Figure A.3 : Cas C0 - Contraintes effectives verticales et horizontales sur la largeur du chantier à 

différents temps et à différentes profondeurs : h = 10 m (a), h = 20 m (b), h = 30 m (c) et  

h = 40 m (d).  
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Figure A.4 : Cas C0 - Déplacement vertical sur la largeur du chantier à différents temps et à 

différentes profondeurs : h = 10 m (a), h = 20 m (b), h = 30 m (c) et h = 40 m (d).  
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Figure A.5 : Cas D0 - Contraintes effectives (a) et coefficient de pression des terres K (b) sur la 

largeur du chantier à différentes profondeurs. (c) Évolution des contraintes de cisaillement avec 

le remplissage à 3 profondeurs différentes (h = 47,5 m, 37m et 22 m). 
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Figure A.6 : Cas D0 - (a) Iso-contours des contraintes totales verticales (à gauche) et horizontales 

(à droite) (a), des pressions interstitielles (b), des contraintes de cisaillement (c). (d) Zone de 

plasticité au sein du chantier remblayé à la fin de la simulation.  
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Figure A.7 : Cas E0 - Iso-contours des contraintes de cisaillement (a), des déformations de 

cisaillement (b) à la fin de la simulation (t=50 jours). Évolution des contraintes de cisaillement 

avec le temps de remplissage à h = 47,5 m (c) et à h = 37 m et h = 22 m (d). 
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Figure A.8 : Cas F0 - Contraintes effectives horizontales et verticales (a) et coefficient de pression 

des terres K (b) sur la largeur du chantier. Évolution de la pression interstitielle avec le 

remplissage à h = 37 m (c) et à h = 22 m (d). 
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Figure A.9 : Cas F0 - Évolution des contraintes effectives horizontales et verticales avec le 

remplissage à h = 37 m (a) et h = 22 m (b). (c) Déplacement vertical le long de la hauteur du 

chantier à la LCV et à 0,25 m de la paroi rocheuse. (d) Déplacement vertical sur la largeur du 

chantier à différentes profondeurs. 
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Figure A.10 : Cas G0 : (a) Iso-contours des déformations de cisaillement à la fin de la simulation 

(t = 5 années). (b) Zone de plasticité au niveau du chantier remblayé et de la barricade. Contrainte 

de cisaillement (c) et déplacement horizontale (d) en fonction de la distance à trois emplacements 

différents (à la fin de la simulation). 
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Figure A.11 : Cas G0 : Contraintes effectives verticales (a), horizontales (b), coefficient de 

pression des terres K (c) et déplacement horizontal (d) en fonction de la hauteur à 4 emplacement 

différents (1 m, 3 m, 5 m et 8 m de la face gauche de la barricade). 
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Figure A.12 : Cas H0 - Iso-contours des contraintes de cisaillement (a) et des déformations de 

cisaillement (b) pour un chantier remblayé drainé incliné. 
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Figure A.13 : Cas H0 - Déplacement vertical (a), contraintes effectives horizontales et verticales 

(b) et coefficient de pression des terres K (c) en fonction de la largeur du chantier à différentes 

profondeur. (d) Déplacement vertical à la ligne de centre pour un chantier remblayé incliné et 

drainé. 
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Figure B.1 : Cas A0, C3, C4 et C5 - Comparaison des distributions des contraintes effectives 

verticales (a) et horizontales (b) le long de la LCV pour différents cas de simulation. 

Comparaison des contraintes effectives verticales (c) et horizontales (d) obtenues des solutions 

analytiques et numériques pour une valeur d'angle de friction interne ϕ ' = 20°. 
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Figure B.2 : Cas A7, A8, et A9 - Comparaison des distributions des contraintes effectives 

verticales (a) et horizontales (b) le long de la LCV obtenues des solutions analytiques et 

numériques pour différentes valeurs de cohésion. Comparaison des contraintes effectives 

verticales (c) et horizontales (d) à la LCV obtenues des solutions analytiques et numériques pour 

une valeur de cohésion c = 10 kPa. 
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Figure B.3 : Cas A8 et A9 - Comparaison des contraintes effectives verticales (a) et horizontales 

(b) à la LCV obtenues des solutions analytiques et numériques pour une valeur de cohésion c = 

25 kPa. Comparaison des contraintes effectives verticales (c) et horizontales (d) à la LCV 

obtenues des solutions analytiques et numériques pour une valeur de cohésion c = 50 kPa. 
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Figure B.4 : C0, C14, C16 et C17 - Distribution des contraintes effectives verticales (a) et des 

pressions interstitielles (b) à la ligne centrale verticale. Comparaison du déplacement vertical à la 

LCV pour les cas C0, C14 et C17 (c) et pour les cas C0, C16 et C17 (d). 

 

0

5

10

15

20

25

30

35

40

45

50

0 200 400

h
 (
m

)

Contraintes effectives verticales (kPa)

C0 - t = 3,17 ans
C14 - t = 3,17 ans
C17 - t = 3,17 ans
C16 - t = 3,17 ans

0

5

10

15

20

25

30

35

40

45

50

-100 -50 0 50 100

h
 (
m

)

Pressions interstitielles (kPa)

C0 - t = 3,17 ans

C14 - t = 3,17 ans

C17 - t = 3,17 ans

C16 - t = 3,17 ans

0

5

10

15

20

25

30

35

40

45

50

-8 -6 -4 -2 0

h
 (
m

)

Déplacement vertical à la LCV (m)

C0 - t = 3,17 ans

C14 - t = 3,17 ans

C17 - t = 3,17 ans

0

5

10

15

20

25

30

35

40

45

50

-0,08 -0,06 -0,04 -0,02 0

h
 (
m

)

Déplacement vertical à la LCV (m)

C0 - t = 3,17 ans

C16 - t = 3,17 ans

C17 - t = 3,17 ans

(a) (b) 

(c) (d) 



  236 

 

 
 

 

Figure B.5 : C0, C14 et C17 - Contraintes effectives verticales et horizontales sur la largeur du 

chantier pour les cas C0 (a), C14 (b) et C17 (c) à différentes profondeurs (h = 10 m, 20 m, 30 m et 

40 m). 
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Figure B.6 : C0, C14, C16 et C17 - (a) Teneur en eau volumique le long de la LCV. (b) 

Comparaison des contraintes de cisaillement entre les cas C0, C14, C16 et C17 à 0,5 m de la paroi 

rocheuse. 
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Figure B.7 : (a) Modèle conceptuel d'un remplissage séquentiel avec la mise en place de plusieurs 

couches de remblai avec une vitesse de 5 m par jour. Étapes d'analyses numériques pour un 

remplissage séquentiel simulant la mise en place de plusieurs couches du remblai dans le 

chantier. 
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La solution de Gibson (1958) pour un remplissage en continu est exprimée par l’équation B-1 

 (B-1) 

où cv est le coefficient de consolidation (m
2
/s), u la pression interstitielle en excès (kPa), x la 

distance verticale du point de mesure jusqu’à la base de la couche (m), t le temps de remplissage 

(sec) et γ’ le poids volumique effectif (kN/m
3
). 

 

 

 
Figure B.8 : Comparaison de la solution analytique de Gibson avec les résultats numériques pour 

un remplissage séquentiel d'un mètre par couche (a) et pour un remplissage de 2 m par  

couche (b). 
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Figure B.9 : Cas E3 - Évolution des pressions interstitielles après la mise en place de la 10
e
 

couche (a) et de la 5
e
 couche (b) le long de la LCV. (c) Comparaison des distributions des 

pressions interstitielles le long de la LCV après la mise en place de la 5
e
 et de la 10

e
 couche. (d) 

Contraintes effectives horizontales le long de la LCV à la fin de chaque étape de simulation. 
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Figure B.10 : Cas E3 - Contraintes effectives verticales le long de la LCV à la fin de chaque 

étape de simulation (t = 5, 10, 15, 20, 25, 30, 35, 40, 45 et 50 jours). 
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Figure B.11 : Cas E5 - Évolution des pressions interstitielles le long de la LCV après la mise en 

place de la 10
e
 couche (a) et de la 5

e
 couche (b). (c) Comparaison de l'évolution des pressions 

interstitielles après la mise en place de la 5
e
 et de la 10

e
 couche à la LCV. (d) Distribution des 

contraintes effectives verticales le long de la LCV à la fin de chaque étape de simulation. 
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Figure B.12 : Cas E5 - (a) Distribution des contraintes effectives horizontales le long de la LCV à 

la fin de chaque étape de simulation. (b) Contraintes de cisaillement à la LCV et près de la paroi 

rocheuse à la fin de la simulation (t = 50 jours). (c) Évolution du déplacement vertical le long de 

la LCV après la mise en place de la 10
e
 couche (45 ≤ t ≤ 50 jours). 
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Figure B.13 : Cas E6 - Évolution des pressions interstitielles le long de la LCV après la mise en 

place de la 10
e
 couche. (b) Contraintes effectives verticales le long de la LCV à la fin de chaque 

étape de simulation. (c) Évolution de la teneur en eau volumique après la mise en place de la 10
e
 

couche (45 ≤ t ≤ 50 jours). 
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Figure B.14 : Cas E7 - Évolution des pressions interstitielles le long de la LCV après la mise en 

place de la 10
e
 couche. Contraintes effectives verticales (b) et horizontales (c) le long de la LCV 

à la fin de chaque étape de simulation. (d) Contraintes de cisaillement le long de la LCV et près 

de la paroi rocheuse à la fin de la simulation (t = 50 jours). 
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Figure B.15 : Cas E7 - Évolution des contraintes totales (a), des contraintes effectives (b), de la 

pression interstitielle (c) et du déplacement vertical (d) avec le temps de remplissage à  

h = 47,5 m. 
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Figure B.16 : Cas F0, F6 et F7 - (a) Contraintes effectives (horizontales et verticales) le long de la 

LCV. (b) Pression interstitielle le long de la LCV à la fin de la simulation. Évolution de la 

pression interstitielle (c) et des contraintes effectives (d) avec le remplissage à h = 47,5 m. 
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Figure B.17 : Cas F0, F6 et F7 - Évolution des contraintes effectives verticales (a) et horizontales 

(b) avec le remplissage à h = 37 m. Évolution des contraintes effectives verticales (c) et 

horizontales (d) avec le remplissage à h = 22 m. 
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Figure B.18 : Cas F0, F6 et F7 - Évolution de la pression interstitielle avec remblayage à h = 37 

m (a) et à h = 22 m (b). Évolution de l'indice des vides e en fonction du temps de remplissage (c) 

ou de la contrainte effective moyenne p' (d) au bas du chantier (h = 47,5 m). 
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Figure B.19 : Cas H0, H6 et F7 - Contraintes effectives verticales le long de la ligne de centre (a), 

de l'éponte supérieure (b) et de l'éponte inférieure (c). 
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Figure B.20 : Cas H0, H6 et F7 - Déplacement vertical le long de la ligne de centre (a), de l'éponte 

supérieure (b) et de l'éponte inférieure (c). 
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Figure B.21 : Cas H0, H6 et F7 - Contraintes de cisaillement le long de la ligne de centre (a), de 

l'éponte supérieure (b) et de l'éponte inférieure (c). 
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Figure B.22 : Cas H0, H6 et F7 - Contraintes effectives verticales et horizontales sur la largeur du 

chantier à différentes profondeurs, soit h = 10 m (a), h = 20 m (b), h = 30 m (c) et h = 40 m (d). 
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