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Résumé

La constante miniaturisation du transistor a révolutionné le marché des systemes
embarqués des dernieres années. Grice aux progres réalisés dans le domaine des semi-
conducteurs et aux possibilités offertes par les nouvelles technologies, la porte a €été
ouverte aux systemes multiprocesseurs, systémes qui permettent & plusieurs unités de se
répartir les taches a effectuer de facon a atteindre une vitesse de traitement bien

supérieure aux systémes utilisant un seul processeur.

Une des conditions essenticlles pour atteindre de tels gains de performance est de
diminuer autant que possible le temps de communication entre les composants. En effet,
la synchronisation entre diverses unit€s de traitement implique en général une
communication constante entre ces derniers. De plus, I'intégration d’une centaine de
blocs sur une méme puce engendre une imposante quantité de transactions. L architecture
de communication utilis€e se doit d’étre en mesure de supporter cette hausse des

communications.

Les architectures de communication dominant le marché actuel sont celles utilisant les
bus, que ce soit dans leur forme la plus simple ou dans une version hiérarchisée. Or, ces
architectures de bus seront prochainement déficientes puisqu’elles ne permettent
d’accomoder qu’un nombre limité de blocs (moins de cinq processeurs, par exemple).
Ceci est nettement insuffisant pour les systemes intégrés sur puce du futur qui

comprendont des centaines de composants.

Pour contourner ce probleme, un nouveau concept a fait son apparition depuis quelques
années : le réseau intégré sur puce. L’utilisation de ce type d’architecture permet de

rencontrer les besoins en bande passante et en extensibilité.
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Ce travail met d’abord en lumiere les déficiences des architectures de bus en mettant
I’accent sur leurs carences les plus importantes. Ensuite il présente le concept de réseau
pur puce. Ce type d’architecture incorpore des notions générales associées aux réseaux a
grande échelle. 1l est donc primordial de présenter quelles sont ces notions générales qui

seront ensuite intégrées au monde des systémes sur puce.

Il existe par ailleurs plusieurs facons d’agencer entre eux les composants qui forment le
réseau. On parle ici de la notion de fopologie. Plusieurs topologies sont étudiées et
caractérisées selon leurs avantages et inconvénients. Une dizaine de réseaux intégrés sur
puce, issus de travaux universitaires ou commerciaux sont d’ailleurs présentés pour

valider la théorie sur les topologies.

Une nouvelle architecture de réseau intégré, basée sur le modele de I’anneau par jeton (en
anglais Token Ring) et baptisée RoC (Rotator on Chip), est présentée et détaillée. Cette
architecture facilement extensible se veut un réseau qui maximise le taux d’utilisation de
ses composants, ce qui le rend tres peu coliteux en espace tout en permettant d’obtenir de
bonnes performances. Les simulations montrent qu’il est plus lent que les architectures en
mailles, mais qu’il necéssite un espace plus restreint sur la puce. En ayant en téte le
perpétuel compromis performance/cofit, le RoC se démarque particulierement lorsque le
concepteur doit se soucier de la surface occupée par le réseau en méme temps que de la
puissance qu’il dissipe. Le RoC se démarque également pour les applications necéssitant
un trafic local et il est un choix avantageux lorsqu’utilisé pour traiter les applications de

type streaming.
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Abstract

In recent years, technology scaling caused the embedded systems’ world to change
drastically. Because of constant progress and interesting outcomes connected to new
technologies, multiprocessor systems have emerged as the ultimate solution to process

many embedded applications such as multimedia and telecommunications.

The expected performance gains can be reached only to one condition: communication
time between components must be lowered as much as possible. Indeed, synchronisation
between processing units involves high and constant communications. Moreover,
integrating hundreds of IP cores on a single chip leads to a significant increase in the
number of transactions. The communication infrastructure must then be able to sustain

the required bandwidth and latency.

Currently, bus-based architectures are very popular, whether simple shared based or
advanced hierarchical structures. Nevertheless, typically, these architectures can only
support up to 5 processors and up to twelve masters before becoming the system
bottleneck. This is obviously insufficient for systems on chip integrating over a hundred

cores, which will be widely used in the near future.

To solve this problem, a new paradigm has emerged since the year 2000: the network on
chip approach. Such networks easily allows meeting bandwidth needs and scalability

requirements.

This work highlights bus-based architecture deficiencies by showing why they are not
suitable for multiprocessor SoCs and then presents the network on chip concept. This
type of architecture uses general notions associated with wide area networks. Those

concepts are thus presented in this work
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In addition, it is possible to connect network components together in many ways, leading
to various topologies. Several of those topologies are presented in this work and are
discussed in order to highlight their pros and cons. Some NoC architectures are then

presented to go along with the discussions.

A new NoC architecture, based on the token ring model and called RoC (Rotator on
Chip) is the main focus of this thesis. Its architecture is easily scalable and can support a
high utilization rate, which makes it less expensive in area than other networks while still
preserving acceptable performance. Simulations show that RoC is slower than mesh-
based networks on chip, while being less expensive. Having in mind the
performance/cost tradeoff, RoC is very suitable when area and power consumption are
significant issues. RoC also provides very good performance when used to process

stream-based applications.
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Introduction

Depuis une quinzaine d’années, les grands progres technologiques dans le domaine des
systemes intégrés sur puce (SoC, pour System on Chip) ont fait considérablement croitre
les possibilités. 11 n’y a pas si longtemps, un processeur pouvait occuper a lui seul un dé
(puce). Les communications avec les mémoires et autres périphériques se faisaient via
I’utilisation d’une carte (board). Chacun des composants du systeme congu était une puce

dont ’ensemble constituait la carte.

Or, les progres réalisés au niveau transistor permettent aujourd’hui d’inclure plusieurs
blocs fonctionnels sur une seule et méme puce. Avec la poursuite de cette évolution, les
transistors étant de plus en plus petits et de plus en plus rapides, il sera possible d’ici
quelques années de concevoir un SoC comportant I’équivalent d’un milliard de portes
logiques pouvant opérer a des fréquences avoisinant la dizaine de giga hertz (GHz)
[ITRS04]. Cela ouvre la porte a I’intégration de fonctionnalités multiples dans un méme
systeme. Les champs d’opération sont immenses. Que ce soit dans le domaine de la
sécurité des systemes (caméras de surveillance), de la santé (protheses auditives), des
communications (téléphonie cellulaire), du divertissement (lecteurs MP3) ou de la
photographie (caméras numériques), les SoC sont tout désignés pour remplir les
exigences du marché en termes de performance et de colit [HEWC04]. L’avénement
récent des SoC apporte donc une solution intéressante aux besoins propres de ces
domaines. Ils offrent la possibilité d’intégrer un ensemble de processeurs et de

coprocesseurs spécialisés pour exécuter les différentes taches du systéme.

Les SoC du futur seront basés sur le traitement de signaux numériques, avec des charges
allant de 10 MOPS pour du traitement audio jusqu’a 1 TOPS pour la génération
synthétique de vidéo. Pour accomplir ce traitement, un seul processeur ne suffira pas 2 la
tiche, d’ou I’apparition prochaine des systemes sur puce multiprocesseurs (MPSoC)

[BEBEO4].



Problématique

Sur un systetme monoprocesseur, la fonctionnalité d’un systeme est décortiquée puis
séparée en tiches spécifiques et relativement indépendantes entre elles. Ces taches
peuvent €tre ordonnancées sur 'unité centrale de traitement (UCT) par un systeme
d’explottation temps réel (RTOS), par exemple. Elles s’exécuteront concurremment sur

I’UCT, laissant croire a un parallélisme pourtant absent.

Il est possible d’ajouter du parallélisme avec I’introduction de modules matériels dédiés
qui permettent, selon la tiche a effectuer, d’obtenir des gains substantiels sur la
performance comparativement & une méme tiche effectuée par une UCT (de I’ordre
d’une centaine de fois plus rapide). D’ailleurs, un intéressant domaine de recherche est le
partitionnement logiciel/matériel des modules de facon a obtenir un compromis optimal

entre performances et cotits [CBRB04].

Qui plus est, la naissance des MPSoC apporte obligatoirement avec elle le concept de
parallélisme dans les opérations. Plusieurs UCT peuvent se partager une portion
d’exécution de tiche (par exemple, I’encodage d’une image) ou exécuter plusieurs tiches
indépendantes (par exemple, un systetme de surveillance par caméra). Tel que mentionné
plus tdt, la technologie actuelle permet d’intégrer plusieurs de ces processeurs,
coprocesseurs et modules matériels. Le nombre d’opérations s’exécutant en méme temps

se trouve alors augmenté de facon drastique.

D’un autre coté, I’augmentation du nombre d’opérations implique aussi 1’augmentation
des communications sur la puce. En effet, un processeur a parfois besoin d’obtenir une
information se trouvant sur une mémoire externe, de demander a un coprocesseur
d’effectuer une opération spécifique, etc. Ces communications entrainent un mouvement
de données d’un composant a un autre. La multiplication des initiateurs de telles

transactions apporte donc la multiplication des données circulant sur la puce. Selon



[BEBE(4], les systtmes de demain seront dominés par les communications plutdt que par

le traitement.

Actuellement, les architectures de communication sont assez rudimentaires, bien qu’elles
soient tout a fait adéquates pour les besoins actuels. Les architectures de bus [IBMO3]
[ARMO1] [SILIO2] [SONIO1] permettent d’acheminer une transaction ayant &té initiée
par un module maitre (ex : processeur) vers un module esclave (ex : mémoire). Toutefois,
lorsqu’un systeme comporte plus d’une dizaine de modules maitre, les communications
deviennent le goulot d’étranglement du systtme et ne permettent plus de profiter du
parallélisme, puisque plusieurs modules peuvent attendre le résultat des transactions

qu’ils ont initiées [BEDEQ2].

Depuis quelques années, un nouveau concept a fait son apparition dans le design d’un
SoC : les réseaux intégrés sur puce (NoC pour Network on Chip). Les NoC procurent une
amélioration significative aux communications en permettant a plusieurs transactions de
s’effectuer en méme temps, a I’instar des grands réseaux informatiques tels que le réseau

Internet.

Objectifs
Le principal objectif de ce mémoire est de concevoir un modele de NoC et d’évaluer ses

performances par rapport a des topologies connues. En effet, plusieurs recherches ont
déja été entamées dans ce domaine, recherches ayant conduit a 1’élaboration de plusieurs
configurations possibles pour obtenir un NoC. Par contre, il n’existe toujours pas de
consensus a ce sujet et 1’on en est encore a I’exploration architecturale de méme qu’a
I’évaluation de la contribution réelle d’un réseau dans un SoC. Par conséquent, un second
objectif se veut une réflexion sur I'utilisation des NoC selon leurs caractéristiques et

selon le type d’application.



Méthodologie

Afin de répondre aux objectifs fixés, plusieurs tiches devront étre réalisées. Une premicre
étape est I’exploration des opportunités offertes par la plate-forme StepNP, développée en
langage SystemC [OSCIO3] par la société StMicroelectronics. Cette plate-forme de haut
niveau renferme une bibliotheque de blocs de propri€té intellectuelle tels que processeurs,
mémoires et réseaux d’interconnexions [PAPBO02]. Une architecture en développement
peut €tre facilement modifiable par I’ajout ou le changement d’un composant par un
autre, ce qui facilite les comparaisons et les prises de décision. De plus, tous les outils
essentiels au développement d’une architecture a haut niveau (simulateur, débogueur et
différents mécanismes d’analyse de performance) sont fournis et leur utilisation est
relativement simple. Enfin, le code source de la plate-forme nous était disponible et

gratuit, ce qui est tres utile dans le contexte académique oul les travaux ont été réalisés.

Une deuxiéme étape sera de construire le modele de base du réseau. Deux niveaux
d’abstraction seront explorés: UTF (untimed functional) et TF (timed functional), selon la
méthodologie de co-design. Le niveau UTF permet de ne pas tenir compte des notions de
temps pour permettre de se concentrer sur la fonctionnalité du systeme, c’est-a-dire ce

qu’il doit accomplir. Le niveau TF ajoute du timing.

Une troisieme étape sera d’apporter plusieurs améliorations a I’algorithme de base, d’ou
en découlera plusieurs variantes du modele initial. L’analyse de ces variantes donnera des
informations sur leur utilisation dans un contexte donné et selon le type d’application.
Une application compléte préalablement développée, MPEG4 (Motion Picture Experts

Group 4), servira de banc d’essai.

Originalité et contribution

Une analyse récente des NoC existants, effectuée par [HEWC04], suggérait I’exploration
du concept de hiérarchisation dans les réseaux, pour maximiser les avantages offerts par

la localisation des ressources. Il est de plus en plus important d’exploiter cette localité



dans le contexte des SoC ou le temps de propagation des signaux devient une source de
problémes pour les concepteurs. Les réseaux sur puce modélisés ici tentent de remédier a
ce probléme et invitent les concepteurs a profiter des avantages de la localité des

ressources lorsque vient le temps de faire 1’assignation des composants sur la puce.

Par ailleurs, ce travail se veut un apport important a I’exploitation d’une plate-forme
multiprocesseurs, puisqu’il offre au concepteur d’une telle plate-forme différentes
configurations possibles du réseau dans le but de satisfaire le plus possible a ses besoins

en termes de bande passante et de latence.

Finalement, ce réseau sur puce tente de pousser au maximum la réutilisation de ses
composantes ainsi que leur taux d’utilisation afin de donner une justification solide pour
I’espace supplémentaire que le réseau occupe sur la puce ainsi que la puissance qu’il
consomme, tout ceci dans un contexte trés contraignant pour les développeurs de

systémes intégrés sur puce.

Distribution des chapitres

Ce mémoire est constitué de cinq chapitres. Le chapitre 1 survole le monde des systemes
intégrés sur puce, en mettant I’accent sur les limitations des architectures actuelles de
communication. Le chapitre 2 introduit une idée qui se veut une solution prometteuse aux
problémes de communication : les réseaux intégrés sur puce. Une partie de ce chapitre est
aussi consacrée a I’explication de différents concepts que I’on peut retrouver dans les
réseaux a grande échelle. En effet, plusieurs similarités existent entre ces types de
réseaux et les réseaux intégrés sur puce. Le chapitre 3 décrit ensuite les composants du
modele de base du réseau développé alors que le chapitre 4 regroupe tous les ajouts
apportés a ce modele de méme que les améliorations qu’ils procurent au niveau des
performances du réseau. Puis, les résultats sont présentés au chapitre 5. Enfin, pour clore
ce mémoire, la conclusion résume le travail accompli et renferme également une courte

discussion portant sur les travaux futurs et autres considérations.



CHAPITRE 1 Revue de littérature

1.1. L’état actuel

Les systemes, les applications et la technologie sont en constante évolution. Cette
situation donne lieu a de nouveaux besoins. Afin de mieux cerner ces besoins, il est

important de bien comprendre dans quelle portion de I’évolution nous nous retrouvons.

1.1.1. L’écart de productivité

Un des enjeux actuels des systemes sur puce est que la technologie évolue trop

rapidement par rapport aux capacités des développeurs d’en tirer profit.

Gordon Moore, co-fondateur d’Intel et de Fairchild, annonca en 1965 que la densité des
transistors intégrés sur une puce doublerait tous les 18 mois. Cette prédiction,
éventuellement nommée « Loi de Moore », est encore validée de nos jours et est illustrée

ala Figure 1.1.

nombre de transistors

’

années

Figure 1.1 : Allure de la loi de Moore

D’un c6té, cette importante croissance de la densité des transistors permet aux ingénieurs

de créer des systémes sur puce toujours plus denses, plus complexes et plus rapides



qu’auparavant. D’un autre c6té, la productivité d’un concepteur augmente également
avec le temps, mais de fagon beaucoup plus limit€e. L’amélioration des outils de
développement et de synthése se fait lentement par rapport a la vitesse a laquelle la
technologie €volue. Le fossé qui se creuse entre technologie et productivité est représenté

par la Figure 1.2.
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Figure 1.2 : L’écart de productivité

Par ailleurs, la loi de Moore devrait encore s’appliquer pour une période variant entre
cing et dix ans. Par conséquent, pour la prochaine décennie a venir, les concepteurs de
systemes devront adapter les méthodologies de conception de facon a leur permettre

d’exploiter le maximum des ressources qui seront mises a leur disposition.

1.1.2. Raffinement progressif

11 existe plusieurs techniques qui tentent de réduire 1’écart de productivité. Une premiére
technique, appelée raffinement progressif, consiste a développer sur plusieurs niveaux
successifs d’abstraction [FILIO2]. On appelle niveau d’abstraction le fait de négliger des
spécificités de I’'implantation pour se concentrer sur une partie du probleme. Par exemple,
au niveau UTF aucune notion de temps n’est considérée et seuls les fonctionnalités du
systeme de méme que les algorithmes sont validés. Lorsque ce niveau de développement

est complété, on passe au niveau d’abstraction suivant, nommé TF, ol une certaine notion



de temps est introduite (1’ordre des opérations est important et une synchronisation entre

les modules doit étre présentée).

Par la suite, on passe au niveau BCA (bus cycle accurate) ou les communications entre
modules sont décrites abstraitement sous forme de transactions. Cela conduit au dernier
niveau PA (pin accurate) qui représente 1’évolution des signaux proprement dits dans le
temps. Le niveau PA est celui qui exprime le niveau le plus élevé de détail avant la

synthese elle-méme. La Figure 1.3 récapitule les différentes étapes de la méthodologie.

fﬁf—r\/—ﬁ/——\

UTF b —
R R D
Fonctionnalité Ordre Communications Signaux

physiques

Figure 1.3 : Le raffinement progressif

Plusieurs compagnies, comme par exemple Synopsys [SYNOO3], tentent de développer
des outils et des langages qui couvrent toutes les étapes pour accélérer et automatiser la
conception jusqu’a la syntheése du systtme, de facon a réduire son temps de

développement.

1.1.3. Réutilisation

Une deuxieme technique, appelée réutilisation, permet d’intégrer les fonctionnalités d’un
module déja existant sans avoir a le concevoir de nouveau. Les développeurs se sont
rapidement apercus qu’il était impossible de construire un systeme entier (comme par
exemple un encodeur MPEG ou un routeur sophistiqué) a partir de rien. Les systémes
sont maintenant si complexes qu’il est trés ardu d’obtenir les résultats escomptés en
partant d’une plate-forme complétement générique. Egalement, de plus en plus de

pression est mise sur I’ingénieur afin de réussir a concevoir ces systemes dans un délai



raisonnable. En effet, les échéanciers pour demeurer concurrentiel dans le marché sont de

plus en plus courts (parfois moins d’une année).

La réutilisation des composants est apparue comme étant une solution bénéfique dans le
processus de conception. Les compagnies productrices de systémes ont commencé a se
doter d’une bibliotheque de composants réutilisables, au premier rang desquels se
trouvent les simples portes logiques. Plus tard, des blocs relativement primitifs tels
qu’additionneurs, compteurs et multiplexeurs se sont joints aux entités réutilisables. De
nos jours, des processeurs entiers, des mémoires et d’autres modules spécialisés et
complexes sont réutilis€s dans la conception puisqu’il n’est pas avantageux de les
redéfinir. Bon an mal an, les sociétés qui concoivent des puces ont acces a des centaines
de blocs IP (intellectual property (modules)) pour élaborer leur systeme global. Dans une
vision naive du processus de conception, les concepteurs n’ont qu’a intégrer les blocs
requis en les faisant interagir entre eux adéquatement a travers des interfaces communes
et par des communications appropriées. Cette portion du travail représente tout de méme
un défi important au niveau de la standardisation des communications. Ce sujet sera

approfondi plus loin.

La réutilisation est donc une technique omniprésente dans la réalisation de systemes sur
puce et continuera de I’é€tre. Dans le chapitre suivant, le concept de réseau intégré sur
puce sera décrit et on notera que les avantages qu’offrent la réutilisation ne seront pas mis

de cOté.

1.1.4. Applications du présent et du futur

Tel que mentionné plus t6t, les champs d’application des SoC sont trés vastes. De plus en
plus de systemes électroniques peuvent €tre intégrés sur une seule et méme puce. Ces
systemes peuvent regrouper plusieurs fonctionnalités souvent indépendantes les unes des

autres. On n’a qu’a penser aux téléphones cellulaires qui permettent également la
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navigation sur Internet, ’envoi de messages texte, la prise de photos numériques et la

capture de séquences vidéo.

On considere deux types d’applications : les applications orientées données ainsi que les
applications orientées contréle. Les applications orientées données manipulent un grand
flot d’information. Par exemple, une caméra vidéo numérique échantillonne plusieurs fois
par seconde des images de I’environnement filmé pour ensuite les convertir en pixels
(points de couleur) pouvant étre affichés simultanément sur un écran. Les données
traversent plusieurs blocs d’'un méme systeme ou elles subissent différents traitements

(ex. : conversion en pixels, correction gamma, amplification, encodage, etc.).

Les applications orientées contréle, comme le nom !’indique, doivent contrler un
environnement. Par exemple, un simple thermostat permet d’ajuster la température
ambiante a un niveau précis. Un systeme orienté contrble est souvent composé de
senseurs qui sont responsables de prendre des mesures de I’environnement controlé (ex. :
la température d’une piece). Ces résultats de mesure sont alors envoyés au systéme

exploitation qui vérifie si une action doit &tre apportée a I’environnement.

Dans ces deux types d’application, les communications sont généralement nombreuses
mais leurs caractéristiques different. Une application orientée données enverra une
grande quantité d’information et nécessitera donc une grande bande passante. Une
application orientée controle générera beaucoup moins de trafic; par contre, ce trafic
devra €tre acheminé le plus rapidement possible puisque le contrdle de I’environnement

en dépend.

1.2. Limitations des systemes sur puce actuels

Cette section se veut une présentation des défis qui attendent la prochaine génération de
systemes sur puce. Les requis de performance y sont présentés, de méme que les moyens

a prendre pour atteindre ces nouveaux standards.
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1.2.1. Systémes sur puce

Les systemes sur puce fournissent des solutions intégrées aux problemes de design
rencontrés dans les domaines des télécommunications, du multimédia et autres domaines
grands consommateurs d’électroniques [BEDEO2]. Le monde des SoC est en pleine
effervescence et surtout en continuelle progression. Dans quelques années, des systémes
comprenant quatre milliards de transistors opérant a une fréquence de dix GHz seront
monnaie courante. Actuellement, plusieurs modules IP remplissant différentes fonctions
et opérant a différentes fréquences doivent €tre intégrés sur une méme puce, ce qui
augmente le défi de conception [GPIS03]. Les ressources disponibles sur une puce étant
immenses, un simple processeur ne peut plus utiliser ’ensemble des transistors du dé. Il
est donc possible de fractionner la puce en différentes régions ayant des fonctionnalités

distinctes (voir Figure 1.4) [KISFO2].

traitement des
ondes

lecteur

messagerie
texte

prise de
photo

Figure 1.4 : Fractionnement de la puce en systéemes hétérogenes

Une nouvelle facon de concevoir le systtme peut alors étre envisagée. Notamment
I’approche GALS (Globally Asynchronous, Locally Synchronous) permet a plusieurs

régions de la puce d’opérer a des fréquences différentes (il est aussi possible qu’elles
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operent a la méme fréquence mais dans des domaines de phase différents; le sujet sera

approfondi plus loin).

1.2.2. Premier probléme : les fils

Il n’y a pas si longtemps, il était possible de négliger le temps de propagation d’un signal
sur un fil sans que cette négligence n’entraine une erreur catastrophique de conception.
Le délai de propagation des fils était largement inférieur aux délais d’un transistor ou
d’une porte logique. Avec la largeur du canal d’un transistor qui sera bient6t de 50 nm, la
fréquence d’opération de ce transistor pourra atteindre 10 GHz. C’est donc dire que deux
fronts montants d’horloge seront séparés par 100 picosecondes seulement. La vitesse de
propagation de la tension étant limité a une fraction de celle de la lumiere, le signal a le
temps de parcourir moins de 30 mm avant que le prochain front montant ne survienne!
Dans une puce ou les fils sont trés entremélés, un signal pourrait prendre entre six et dix
périodes d’horloge pour se propager sur la puce entiere [GPIS03b]. Le probleéme est déja
rencontré dans les designs actuels, ou le temps de propagation d’un signal s’étend sur une
période complete d’horloge. Méme si les longs délais peuvent Etre contr6lés par des
techniques de pipelinage, I'incertitude apportée par ces délais sera tout de méme
considérable pour les développeurs [BEDEO2b]. L’ajout de répéteurs pour garder le délai
linéaire plutdt que quadratique est donc requis et il est difficile de placer proprement ces
répéteurs, d’autant plus qu’ils s’ajoutent aux contraintes d’espace et de puissance déja

présentes [DATOO1].

Par ailleurs, la taille réduite des transistors permet d’inclure plus de blocs sur la puce, ce
qui engendre forcément plus de fils pour relier les blocs en question. Du point de vue
global, plus de fils sont sollicités a la fois, ce qui cause une augmentation sensible de la
puissance dissipée [BEDEOQ2]. Aussi, des fils ne suivant aucune structure ont une capacité
parasite difficile a prévoir tot dans le processus de conception. Ils engendrent également
des interférences (en anglais: crosstalk) envers les fils adjacents, ce qui rend le

comportement hautement imprévisible [DATOO01].
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De méme, un filage ad hoc présente souvent la caractéristique qu’une importante
proportion des fils ne sont utilisés que 10% du temps ou moins, ce qui n’est pas
souhaitable dans le mesure o les fils prennent une importance grandissante dans le
systtme [WIGOO02]. Finalement, la miniaturisation fait en sorte que les transistors
nécessitent maintenant des tensions d’opération de plus en plus faible pour éviter qu’ils
ne claquent. Prochainement, il ne sera pas rare d’observer des tensions inférieures a 1V.
L’intégrité du signal est donc menacée, puisqu’une légeére variation de la tension peut
maintenant faire la différence entre un 1 logique et un 0 logique. Somme toutes, les fils
deviennent un enjeu majeur dans le développement de systemes sur puce. Il est a noter
que les impacts des problemes mentionnés plus haut deviennent encore plus grands au fur

et a mesure que la technologie évolue.

1.2.3. Deuxiéme probleme : la synchronisation

Les enjeux entourant les fils ont des conséquences directes sur la synchronisation du
circuit. Puisqu’il sera bientdt impossible qu’un signal se propage d’une extrémité de la
puce a I’autre en une période d’horloge, la synchronisation globale de tous les blocs IP
perdra sa signification. Il sera donc important de limiter la distance parcourue par les

signaux critiques de facon a garantir la performance du systeme global [BEBE(02].

Une solution intéressante est donc de fragmenter le systeme en plusieurs sous-systémes
distincts. Ainsi, tous les blocs d’'un méme sous-systéme seraient synchronisés entre eux
sur le méme signal d’horloge. Par contre, les sous-systemes n’auraient pas cette
synchronisation et devraient se synchroniser par les communications. Le réseau
d’interconnexions devrait donc étre en mesure d’assumer cette synchronisation. Voila
pourquoi cette approche, présentée plus tot comme I’approche GALS, devient attrayante :
les ingénieurs peuvent se séparer la tiche en travaillant parallelement sur des sous-
systemes différents sans se soucier du détail fin de la synchronisation avec les autres. Les

communications devraient en principe ramener tout les signaux au méme niveau lorsque
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vient le temps des échanges d’informations. Ces communications deviendront
omniprésentes au fur et a mesure que le nombre de modules sur une puce continuera

d’augmenter.

1.2.4. Troisieme probléme : les communications

La possibilité d’inclure plusieurs dizaines d’unités de traitement sur une puce représente
une solution intéressante pour un ingénieur toujours avide de concevoir des systemes
performants et rapides. Le parallélisme dans les opérations est une facon révée
d’accomplir une tiche le plus rapidement possible. Toutefois, le fait d’exécuter cette
tache avec N processeurs ne garantit pas que le traitement se fera N fois plus rapidement,
surtout si le degré de dépendance est grand entre les processeurs. On peut faire I’analogie
avec un groupe d’ingénieurs qui travaillent sur un syst¢tme commun. Bien que chaque
ingénieur puisse travailler sur une portion du systeme, chacun doit étre au courant des
travaux exécutés par les autres, via des réunions et des rencontres de mise a jour.
L’ingénieur ne passera donc pas tout son temps a faire progresser son travail; la
communication prendra une grande part de son temps. Il en sera de méme dans les futurs
systémes sur puce multiprocesseurs. Un modéele souvent cité dans les systemes futurs est
composé de processeurs esclaves faisant «ce qu’on leur demande » et de maitre(s)
répartissant le travail a effectuer aux autres unités de traitement. Ceci engendre une
importante communication entre tous ces modules qui doivent communiquer entre eux. A
cela s’ajoute la communication que ’on retrouve sur les SoC actuels, comme par
exemple les échanges traditionnels de données entre maitres et esclaves (Ecritures et
lectures en mémoire). Les communications deviendront donc rapidement le goulot
d’étranglement de la prochaine génération des systemes sur puce, c’est donc ce qui en

limitera les performances.
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1.3. Les architectures de bus

Présentement, les communications sont assurées par des architectures de bus sur puce qui
sont une adaptation des bus sur carte que I’on retrouve sur des ordinateurs personnels, le
bus PCI par exemple. La prochaine section présente un survol des architectures de bus

existantes ainsi que leurs limitations.

1.3.1. AMBA
Depuis 1999, ARM [ARMO1] propose le protocole AMBA en tant que norme pour les

systemes sur puce. La spécification offre deux protocoles qui peuvent étre utilisés selon

les besoins.

Processeur Mémoire
Haute performance Haute performance
AHB
Arbitre
Pont APB DMA

Haute performance

APB

‘ Entrées/sorties ’ (

programmables Minuterie ’

Figure 1.5 : Structure du bus AMBA
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Tout d’abord, le Advanced High-speed Bus est adapté pour les communications a haute
vitesse requises par les modules performants du systtme comme les processeurs, par
exemple. Ensuite, le Advanced Peripheral Bus est utilisé pour connecter les modules qui
n’ont pas besoin de la performance offerte par AHB. Les périphériques comme les
minuteries et les contrOleurs d’entrées/sorties sont tout désignés pour ce genre de
protocole. Un pont APB permet de relier des bus gérés selon les deux protocoles. Selon
les spécifications de AMBA, ce pont n’a comme utilité que de fournir une interface plus
simple. Toute latence présentée par un périphérique de basse performance sera reflétée
par le pont APB au bus AHB. Le pont ne peut agir comme maitre qu’au niveau APB, ol
il sera d’ailleurs le seul maitre. Un exemple de systeme utilisant le protocole AMBA est
illustré a la Figure 1.5. Le lecteur est invité a consulter [BERTO03] pour plus de détails sur

les spécifications du protocole AMBA.

1.3.2. CoreConnect

CoreConnect [IBMO3] est un protocole congu par IBM et ayant plusieurs similarités avec
AMBA. Le protocole est illustré a la Figure 1.6. On retrouve premierement le Processor
Local Bus pour les modules a haute performance tels que les processeurs, mémoires
cache et DMA (Direct Memory Access). 1l est a noter qu’une interface a un bus externe

peut étre ajoutée a ce niveau.

Le deuxieme niveau, appelé On-Chip Peripheral Bus (OPB), est un bus secondaire dont
le but principal est d’augmenter la performance du bus principal en diminuant la charge
capacitive sur le PLB. Les périphériques comme les ports série, ports paralleles, UART
(Universal Asynchronous Receiver-Transmitter), minuteries et autres modules de faible
performance peuvent adéquatement é€tre branchés a ce bus. Plusieurs maitres sont
supportés a ce niveau. Un pont fait également le lien entre le niveau PLB et OPB. 1l est a

noter que ce pont agit comme maitre au niveau OPB et comme esclave au niveau PLB,

contrairement 2 AMBA.
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Figure 1.6 : Structure du bus CoreConnect

CoreConnect est un protocole de bus complet qui peut trés bien faire parti d’un systeme
de haute performance tel qu’une station de travail. Il supporte une lecture concurrente a
une écriture, de méme que des transactions de type différé (split), ou le maitre laisse le
contrdle du bus apres avoir effectué sa requéte pour le reprendre lorsque la réponse sera
préte. Le désavantage de CoreConnect est qu’il est possiblement trop compliqué, en ce
sens qu’il offre trop de fonctionnalités qui ne seront pas utilisées dans une simple
application embarquée [USSEOQ1]. Prés d’une quarantaine de sociétés et d’organismes ont

une licence de CoreConnect, dont I’Ecole Polytechnique de Montréal.

1.3.3. SilliconBackplane 111

SiliconBackplane III est un systeme d’interconnexions commercialis€é par Sonics
[SONIO1] pour les applications multimédia. Ce systtme est implanté un peu

différemment des architectures de bus AMBA et CoreConnect. Une représentation est
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illustrée a la Figure 1.7. Chacun des composants est relié au réseau via un agent
[WINGO1]. L’arbitration est basée selon un systeme rotatif a priorit€ qui découle du
TDMA (Time Division Multiple Access). A chaque coup d’horloge, I’arbitre sélectionne
I’agent correspondant a la période de temps en cours. Si I’agent n’a aucun message a

envoyer, I’intervalle de temps est allou€ a un autre agent selon I’ algorithme round-robin.

Port série Mem 4 Mem 3 UART Minuterie

CPU DMA COPRO Mem 1 Mem 2

Figure 1.7 : Structure du bus SiliconBackplane

1.3.4. Wishbone

Wishbone [SILIO2], développée par Silicore, est une spécification qui propose de réduire
au minimum [’ensemble des signaux de fagon a permettre des acces simples via un bus. 1l
n’y a donc pas de notion de bus opérant a différentes fréquences ni de ponts pour les
relier (voir Figure 1.8). Si le concepteur souhaite avoir un systéme avec deux niveaux de
bus, il est possible de le faire en créant deux interfaces Wishbone, plutdt qu’en définissant

deux interfaces différentes (PLB et OPB par exemple). Par contre, le développeur doit
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définir lui-méme les sous-standards de Wishbone, comme par exemple 'ordre des
données (Little endian versus Big endian). Aussi, des fonctionnalités supplémentaires
pourraient devoir étre ajoutées si nécessaires puisque non présentes dans la version de

base de Wishbone.

Processeur Mémoire
Haute performance Haute performance
I WISHBONE

DMA

Arbitre Haute performance

Figure 1.8 : Structure du bus Wishbone

1.3.5. Limitations des bus

Dans un bus partagé, lorsque plusieurs requétes sont générées simultanément par
plusieurs maitres, I’arbitre décide de donner I’acces a un maitre en particulier selon des
regles d’arbitration. Un probléme significatif de telles architectures est une dégradation
de la performance causée par le nombre excessif de conflits. Une solution, telle
qu’adoptée par AMBA et CoreConnect, entre autres, est d’instaurer une hiérarchie de bus
contenant chacun les modules communiquant fréquemment ensemble, autant que

possible. Cette solution est présentée a la Figure 1.9. Deux requétes sur un bus partagé
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(Figure 1.9a) produisent un conflit qui peut étre évité par I'utilisation d’un bus

hiérarchique (Figure 1.9b).

A B ‘ Cc D
./ /
CONFLIT!
a) b)

Figure 1.9 : Situation sur un bus partagé menant & un conflit réglé par Putilisation d’un bus

hiérarchique

Si on examine les considérations physiques, on observe une contradiction qui rend
problématique 1’utilisation des bus comme médium de communication dans un systéme
complexe. D’un autre c6té, plus il y a de modules connectés a un segment de bus, plus ce
bus devra opérer a une fréquence d’horloge petite, ceci étant dii a la charge capacitive
présente sur le bus. Pour garder une performance acceptable, il faut donc réduire le
nombre de modules connectés a un méme segment et par conséquent augmenter le
nombre de segments. D’un autre coté, plus il y a de segments, plus la performance
(latence) s’en trouve affectée a cause de la surcharge qu’apporte chaque pont reliant deux
segments [YOOO3]. Le bus le plus lent déterminera la performance des communications
inter-segments. La solution pour diminuer la surcharge est donc de diminuer le nombre

de segments, ce qui est contradictoire avec le probleme précédent.

Par ailleurs, dans le cas ou I’arbitration est faite selon la priorité de la requéte, une
requéte de faible priorité pourrait prendre un temps considérable a €tre traitée si les
requétes de plus haute priorité se multiplient, ce qui peut entrainer un probléme de
famine. 11 serait souhaitable, si on parle de qualité de service, de garantir une certaine
bande passante a ce type de module. Toutefois, la bande passante du bus n’augmente pas

avec le nombre de modules connectés a celui-ci, contrairement aux réseaux
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conventionnels ou la bande passante augmente lorsqu’on y inseére un noeud
supplémentaire [GPISO3b]. On dira alors du bus qu’il n’est pas extensible (en anglais
scalable), ce qui est son probleme majeur puisqu’au-dela d’un seuil limite, il est
incapable de recevoir une charge supplémentaire. Finalement, les architectures de bus ne
sont pas en mesure de répondre aux contraintes temps réel associées aux applications de
réseautique, de télécommunications et de multimédia, puisqu’il est presque impossible de

déterminer avec précision leur pire temps de réponse [WINGO1].

Néanmoins, les architectures de bus restent tout de méme adéquates pour les SoC actuels
qui inteégrent moins de cinq processeurs et tout au plus une dizaine de maitres [BEDE02].
Cependant, ces architectures seront inappropri€es pour les futurs systemes qui
comprendront des centaines d’unités pouvant générer de I’information a étre transférée.
Avec des IP opérant a des fréquences de I’ordre du GHz, un seul bus (ou méme plusieurs
bus synchronisés) ne sera pas une solution viable, en raison des charges capacitives et de

la résistance des fils qui ralentissent la propagation du signal [MAMAO4].

Comme nous le verrons dans ce travail, il y a toutefois de I’espoir en ce qui a trait aux
perspectives d’utilisation des bus dans les SoC du futur. En effet, dans 1’architecture que
nous proposons, le bus standard occupera encore une place de choix dans les

communications.

1.3.6. Défis

Suite a la problématique énoncée dans la section précédente, voici une liste des
principaux défis qui attendent les concepteurs dans le domaine des communications sur
puce et des SoC en général :
- Fournir un réseau d’interconnexions dont les composants assureront des
transmissions fonctionnelles et fiables. On peut y parvenir en exploitant des

infrastructures et des protocoles déja existants dans le domaine des réseaux a
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grande échelle. Les interconnexions formeraient maintenant un micro-réseau sur
puce, ce qui constituerait une adaptation du traditionnel modele OSI.

- Parvenir au compromis flexibilité versus efficacité énergétique. Le systeme se
doit de faire une gestion intelligence de la puissance dissip€e. En effet, I’énergie
résultante des communications globales ne diminue pas avec les nouvelles
technologies, contrairement a I’énergie résultante du traitement. Cela s’explique
par le fait que plus un transistor est petit, moins il consomme de puissance. Par
contre, un fil ne change pas sensiblement d’une technologie a I’autre. L’énergie
devient donc de plus en plus dominante dans les communications [BOZZ04].

- Fournir une qualité de service avec un budget limit€ en consommation d’énergie
et en espace, le tout en tenant compte des limitations de la technologie. Une
qualité¢ se service inclut la performance et la fiabilité, sans se limiter a ces
métriques. La performance est nécessaire pour répondre aux applications toujours
plus exigeantes tandis que la fiabilité découle plutét de la dépendance des
consommateurs face a I’utilisation qu’ils font des accessoires électroniques dans
la vie de tous les jours [ BEDEO2b].

- FEtendre la réutilisation aux réseaux d’interconnexion pour permettre au
concepteur d’utiliser les composants du réseau sur plusieurs systemes [DATOO1].
La réutilisation, si importante dans la méthodologie de conception des SoC, peut
étre facilitée par I’emploi d’interfaces communes qui attacheraient chacunes des
composants au réseau.

- Permettre I’extensibilit€ des communications, ce qu’une architecture de bus n’est
pas en mesure de faire. Il serait souhaitable que le réseau en place supporte 1’ajout
d’un nouveau bloc sans altérer les performances pour les blocs déja en place. Ceci

serait donc un bénéfice découlant directement de la réutilisation du réseau.

Ces défis sont intéressants pour les ingénieurs qui auront comme contraintes
supplémentaires des échéanciers a respecter pour la mise en marché de nouvelles

technologies en plus des problemes d’intégrité de signal et une surface de puce limitée.
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CHAPITRE 2 Les réseaux intégrés sur puce

Depuis quelques années, un nouveau concept a émergé dans le domaine des systemes sur
puce. Ce concept vise, essentiellement, & améliorer considérablement les communications
dans les systémes. L’idée est de reproduire sur une puce les infrastructures de
communication que 1’on retrouve dans les grands réseaux d’ordinateurs, comme les LAN
et Internet. On parlera donc de réseaux intégrés sur puce (en anglais NoC pour Network
on Chip). Cette section décortique plusieurs concepts réseau et NoC en présentant leurs

caractéristiques ainsi que le contexte dans lequel ils s’inscrivent.

2.1.1. Modéle OSI

Pour éviter la multiplication des solutions d'interconnexion d'architectures hétérogenes,
I'ISO (International Standards Organisation) a développé un modele de référence appelé
modele OSI (Open Systems Interconnection). Ce modele décrit les concepts utilisés et la
démarche suivie pour normaliser l'interconnexion de systémes ouverts (un réseau est
compos€ de systémes ouverts lorsque la modification, I'adjonction ou la suppression d'un
de ces systemes ne modifie pas le comportement global du réseau). Le modele OSI n'est
pas une véritable architecture de réseau, car il ne précise pas réellement les services et les
protocoles a utiliser pour chaque couche. Il décrit plutdt ce que doivent faire les couches.
Cette norme a éi€ adoptée depuis une vingtaine d’années. Le modele OSI comporte sept
couches (voir Figure 2.1). Les couches basses (1, 2, 3 et 4) sont nécessaires a
I'acheminement des informations entre les extrémités concernées et dépendent du support
physique. Les couches hautes (5, 6 et 7) sont responsables du traitement de l'information
relative a la gestion des échanges entre systemes informatiques. La suite de cette section

résume le role des diverses couches.
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Figure 2.1 : Modele OSI

2.1.1.1. La couche physique

La couche physique s'occupe de la transmission des bits de facon brute sur un canal de
communication. L'unité d'information typique de cette couche est le bit, représenté par

une différence de potentiel.

2.1.1.2. La couche liaison

Elle va transformer les signaux regus de la couche physique en une liaison a priori
exempte d'erreurs pour la couche réseau. Elle fractionne les données d'entrée de
I'émetteur en trames, transmet ces trames en séquence et gére les trames d'acquittement
renvoy€es par le récepteur. De maniere générale, un rdle important de cette couche est la
détection et la correction d'erreurs apparues sur la couche physique. Cette couche integre
également une fonction de contrdle de flux pour éviter l'engorgement du récepteur.

L'unité d'information de la couche liaison de données est la trame.
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2.1.1.3. La couche réseau

C'est la couche qui permet de gérer le routage des paquets et l'interconnexion des
différents sous-réseaux entre eux. La couche réseau contrble également I'engorgement du

sous-réseau. L'unité d'information de la couche réseau est le paquet.

2.1.1.4. La couche transport

Cette couche est responsable du bon acheminement des messages complets au
destinataire. Le role principal de la couche transport est de prendre les messages de la
couche session, de les découper s'il le faut en unités plus petites et de les passer a la
couche réseau, tout en s'assurant que les morceaux arrivent correctement de 1'autre coté.
Cette couche effectue donc aussi le réassemblage du message a la réception des
morceaux. Cette couche est également responsable du type de service a fournir aux
utilisateurs du réseau : service en mode connecté ou non, avec ou sans garantie d'ordre de
délivrance, diffusion du message a plusieurs destinataires a la fois, etc. L'unité

d'information de la couche réseau est le message.

2.1.1.5. La couche session

Cette couche organise et synchronise les échanges entre des tiches distribuées. Elle
établit également une liaison entre deux programmes d'application devant coopérer et

commande leur dialogue (qui doit parler, qui parle...).

2.1.1.6. La couche présentation

Cette couche s'intéresse a la syntaxe et a la sémantique des données transmises : c'est elle

qui traite I'information de maniére a la rendre compatible entre les tAches communicantes.
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2.1.1.7. La couche application

Cette couche est le point de contact entre 'utilisateur et le réseau. C'est donc elle qui va
apporter a l'utilisateur les services de base offerts par le réseau, comme par exemple le

transfert de fichiers, la messagerie, etc.

envoyer(données) recevoir(données)
donné
e | 4
Transport Routeur(s) Transport
El Il 4
Réseau Réseau Réseau
Liaison Liaison Liaison
Physique Physique Physique
A I

| l

Figure 2.2 : Modéle OSI appliqué aux réseaux intégrés sur puce

2.1.1.8. Couches couvertes par un NoC

Pour une communication sur puce, les quatre dernieres couches du modele sont
supportées puisque ce sont ces couches qui sont responsables de traiter les échanges

d’informations entre deux composants du systeme (Figure 2.2).

2.1.2. Caractéristiques / Catégories de NOC

On peut dire des réseaux intégrés sur puce qu’ils représentent une approche prometteuse
pour remplacer les bus. Tel que mentionné précédemment, un des principaux avantages
est la réduction des effets é€lectromagnétiques en introduisant une interconnexion
structurée dans le but d’éliminer autant que possible les longs fils [SIBR04]. Un autre

avantage est qu’une approche de communication en couches permet d’isoler les
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implémentations physiques des couches de plus haut niveau comme les transactions, ce
qui permet d’obtenir une meilleure bande passante avec moins de fils [MAMAO4]. De
plus, de telles architectures peuvent supporter un nombre pratiquement illimité de
composants, ce qui les rend trés extensibles, comparativement aux bus. Une fois que le
protocole réseau est bien défini et standardisé, les composants du réseau peuvent €tre
congus, fabriqués et testés indépendamment avant d’étre connectés ensemble. Du point
de vue SoC, cela implique que des sous-systemes indépendants peuvent potentiellement
étre développés séparément de la spécification avant d’étre intégrés avec les autres sous-
systemes. Par ailleurs, il serait souhaitable, pour les SoC de demain, d’avoir des modules
de traitement qui pourraient étre employés dans différentes plates-formes selon un style
de conception plug-and-play. C’est pour cette raison qu’un réseau sur puce modulaire et
extensible représente une bien meilleure infrastructure de communication qu’un bus
partagé [BEBEO4]. Les réseaux seront donc préférés aux bus (une forme dégénérée de
réseau) puisqu’ils offrent une plus grande bande passante et qu’ils supportent

normalement plusieurs transactions simultanées [DATOO01].

Un NoC peut étre décrit par sa topologie et par les stratégies utilisées pour effectuer des
opérations comme le routage, le controle de flot, la commutation, 1’arbitration et le
stockage d’informations [ZESUO3]. La topologie peut étre définie comme étant la fagon
dont sont répartis les canaux de communication et les nceuds qui s’y rattachent. Le
routage détermine quel est le chemin qui sera suivi par les paquets pour passer d’une
source A a une destination B, tandis que le contréle de flot est responsable de 1’allocation
des canaux et des tampons a un message au fur et 2 mesure qu’il chemine dans le réseau.
La commutation est le mécanisme qui retire un message d’un canal d’entrée d’un routeur
pour le remettre sur un canal de sortie de ce méme routeur. L’arbitration permet de
donner I’autorisation a un message d’utiliser les canaux et les tampons. Finalement, le
stockage définit 1’approche utilisée pour mémoriser des messages qui ne peuvent
temporairement pas cheminer dans le réseau. Ces divers concepts de réseau seront décrits

plus en détail dans le prochain chapitre.
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Les NoC transmettent des paquets plutdt que des mots (comme sur les bus). Les fils
dédiés aux adresses ne sont plus utiles car ’adresse de destination est maintenant
contenue dans le paquet [HEWCO04]. Plusieurs transactions peuvent étre traitées en
parallele si le réseau fournit plus qu’un canal de transmission entre une source et une

destination données.

2.1.3. Interface réseau

La mise en place d’un réseau sur puce doit réduire le temps alloué aux communications.
Cependant, le réseau doit €tre accessible aux blocs qui veulent s’y connecter. Dans un
scénario futur pour lequel un concepteur pigera a gauche et a droite dans plusieurs
bibliotheques d’IP, cette tiche pourrait se révéler ardue. Les IP peuvent avoir été congus
par des compagnies différentes avec des interfaces différentes et des facons de
communiquer tout aussi différentes. Une interface uniforme a I’avantage de libérer le
concepteur, en ce sens qu’il n’a pas a faire des suppositions sur le systeme dans lequel un
bloc sera utilisé [WIGOO02]. Le but est que tous les composants parlent le méme langage
lorsqu’ils communiquent entre eux. Dans une architecture de bus, par exemple AMBA,
tous les composants sont «enveloppés » d’une couche supplémentaire, cette couche
traduisant leurs signaux en d’autres signaux qui seront compris par les autres enveloppes
(wrappers) des autres composants. Le principe reste le méme pour les NoC, ou les
modules sont enveloppés d’une interface réseau (en anglais, NI pour Network Interface).
La Figure 2.3 illustre une situation ol un processeur, une mémoire, un coprocesseur de
méme qu’un module matériel. Les principales taches d’une NI sont :

- cacher aux modules les détails concernant le protocole de communication du
réseau en temps que tel. Les modules n’ont pas a se soucier comment
Pinformation est acheminée; ils doivent seulement prendre pour acquis que
I’'information se rendra a destination.

- convertir le protocole de communication. Pour les modules IP, les

communications se font toujours point a point, c’est-a-dire que la source et la
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destination se parlent directement. Concretement, le paquet devra franchir
plusieurs routeurs avant de parvenir a destination.

- mettre en paquets les données. Les modules envoient des données brutes
auxquelles seront ajoutées des en-tétes et autres informations. Les NI sont donc

responsables de 1’assemblage, du désassemblage et de la livraison des paquets.

Figure 2.3 : Exemple d’utilisation d’une interface réseau commune pour tous les blocs

2.14. VCI

VCI (Virtual Component Interface) est un exemple de protocole de communication qui
permet de normaliser 1’interface d’un maitre (initiateur, dans la nomenclature VCI) et
d’un esclave (cible). Cette interface a été produite par I’ Alliance VSI (en anglais, VSIA
pour Virtual Socket Interface Alliance), un regroupement d’entreprises et de chercheurs
dont la mission est de faciliter la réutilisation de IP [VSIA0Q]. C’est la spécification de
VCI qui a ouvert la voie a la réutilisation des IP dans la conception des systémes. Depuis,
la compagnie Sonics a développé son propre protocole de communication, qui est nul
autre qu’une extension et une amélioration de VCI et qui est donc trés bien percu par

I’ Alliance VSL
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2.1.5. OCP

OCP est trés proche de VCI, mais fournit en plus une suite d’outils qui permettent de
vérifier si les noyaux produits sont conformes a OCP. La communication entre un
initiateur et une cible se fait via un paquet. L’initiateur envoie d’abord un paquet requéte
(request) et attend une réponse de la cible (response). Normalement, la cible renvoie le
méme paquet apres que les champs appropriés aient été mis a jour (par exemple, la valeur
d’une donnée si I'initiateur faisait une lecture). Dans ce cas, c’est le pont OCP qui
modifiera le paquet, apres avoir regu les données de la cible via son interface. Par la suite,
le paquet OCP devra retourner a I’initiateur en cheminant dans le réseau (Figure 2.4). Le
réseau peut adopter différentes topologies: un bus classique, un bus hiérarchique ou un
réseau commuté. C’est ce qui permet de découpler (orthogonaliser) totalement le choix
des composants du systtme du choix des interconnexions qui les relieront. Il faut
simplement créer le pont OCP — réseau (identifi€ NI sur la figure) et ce pont pourra étre

réutilisé pour tous les blocs.

BLOC a o (@] (@] BLOC
Q Q NI NI
A o} o} 8 9 B

Figure 2.4 : Role de 'interface OCP

OCP a ét€ retenu pour ce travail puisqu’un modele haut niveau de ce protocole €tait déja
disponible. Les ponts permettant de lier tous les initiateurs et les cibles utilisés dans les
simulations a OCP étaient déja faits, ce qui €tait un avantage considérable. Par ailleurs,

OCP jouit déja d’une popularité considérable dans le marché, ce qui a joué en sa faveur.
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2.2. Concepts réseau

Puisque les réseaux intégrés découlent directement des réseaux a grande échelle, comme
les réseaux locaux et Internet, ils auront forcément plusieurs points en commun. Cette
section fait un bref rappel de quelques concepts que I’on retrouve dans les réseaux

d’ordinateurs.

2.2.1. Réseaux vs NoC

Méme si les similarités sont multiples, il n’en demeure pas moins que le concepteur ne
peut pas appliquer les techniques de réseautique telles quelles sans tenir compte de

plusieurs différences causées par I’application et I’environnement de développement.

On remarque d’entrée de jeu que les NoC se doivent de diminuer au minimum la latence
des communications, tandis que les réseaux d’ordinateurs paralleles mettent plutdt
I’accent sur la bande passant offerte, puisqu’elles mettent en attente les blocs qui les

initient.

Il y aussi une énorme différence dans le déterminisme des communications. Sur une
puce, les taches qui seront exécutées dans les blocs sont connues treés tot dans le
processus de design. Un SoC est toujours concu pour combler un besoin précis et pour
effectuer des opérations restreintes. Il est donc possible de prévoir un tant soit peu quelles
seront les communications entre les blocs et d’ajuster le réseau en conséquence. Sur un
réseau d’ordinateurs, ceux-ci sont habituellement composés de processeurs a usage
général qui pourront traiter une gamme d’applications et qui produiront une tout aussi
grande variété de trafics. Par ailleurs, le nombre de composants sur un réseau sur puce est
fixe et déterminé pendant la période de design. La topologie utilisée (la fagon de
connecter les composants entre eux) sera donc aussi fixe. Dans un réseau d’ordinateurs,

des nceuds peuvent €tre ajoutés ou retirés a tout moment, ce qui fait en sorte que la

topologie change continuellement [WILIO3].
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De plus, dans un réseau a grande échelle, les algorithmes de routage requiérent une
grande tolérance aux fautes, comme par exemple des bris de liens ou des pannes de
routeurs. Ce probleme se retrouve trés diminué sur les réseaux sur puces qui sont moins

susceptibles de « tomber en panne » [WILIOO0].
Finalement, les SoC font face a des contraintes d’énergie et de dissipation de puissance

qui sont moins critiques dans les grands réseaux [BEDEO2b]. Il est a noter qu’un

concepteur a un temps limité pour mettre en marché le systéme congu.

2.2.2. Concepts réseau

Les concepts réseau incluent notamment le type de trafic, la commutation, le routage, le
multiplexage de données, le controle d’erreur, le contrdle de flot, le controle de
congestion ainsi que 1’allocation des ressources [YOOO3]. Les prochaines sous-sections
se concentrent sur les trois premiers, puisqu’ils auront un impact plus grand sur le type de

NoC utilis€ dans cette recherche.

2.2.3. Trafic

~

A une époque ou la consommation d’énergie devient un souci important dans la
conception des SoC, le contrdle du trafic dans les réseaux devient essentiel puisqu’un bon
contrble permet de mieux gérer la consommation de puissance des composants qui
utilisent le réseau [BEDEO2b]. Au rythme ol vont les choses, le contrdle global du trafic
d’informations deviendra impossible car le systeme se doit de mémoriser 1’état de chacun
des composants, ce qui est ardu avec le nombre croissant de connexions. Ces composants
devront donc initier leurs transactions de mani€re autonome, selon leurs besoins

[BEDEQ2].

On retrouve deux types de trafic dans les réseaux : trafic garanti (en anglais, GT pour

guaranteed traffic) et meilleur effort (en anglais BE pour best effort). Le trafic de type
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GT garantit une certaine bande passante pour un composant, par exemple 4 Mb/s pour un
flux de données vidéo. Le trafic GT est nécessaire pour des communications temps réel,
tout comme 1l est approprié pour une intégration rapide des IP. Cependant, ce type de

trafic a pour conséquence une faible utilisation des ressources.

Le trafic de type BE donne I’accés aux ressources a la transaction la plus prioritaire. Les
architectures conventionnelles de bus basées sur les requétes et les priorités fonctionnent
de cette facon. Le trafic BE ne peut généralement pas €tre jumelé a une application temps
réel car la communication ne peut €tre garantie, ce qui est une qualité de service
essentielle dans ce type d’applications. Par contre, les ressources de communication ont

un meilleur taux d’utilisation [YOOO03].

Fondamentalement, partager une ressource (BE) et réserver une ressource (GT) sont

conflictuels et combiner ces deux types de trafic est une tache difficile [WIGO02].

2.2.4. Commutation par paquets et commutation de circuit

On retrouve deux facons d’acheminer les données dans les réseaux a grande échelle : la
commutation par paquets et la commutation de circuits. La commutation de circuits
(Figure 2.5 a) repose sur 1’établissement d’une connexion entre deux points. Lorsque la
connexion est établie, le module initiateur a un usage exclusif de cette connexion et ce
pour toute sa durée. Cela revient a réserver un chemin entre deux blocs. Toute autre
transaction nécessitant une portion de ce chemin doit €tre retardée jusqu’a la libération du

lien.

Il existe deux sortes de commutation par paquets. La premiere, appelée circuit virtuel
(Figure 2.5b)), fragmente le message en paquets et fixe un chemin entre une source et une
destination. Tous les paquets passeront par ce méme chemin. Toutefois, une portion de ce
chemin peut étre partagé avec un autre trafic (paire source-destination différente). On

aura donc un multiplexage de paquets sur un méme lien. La deuxieme, appelée datagram,
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(Figure 2.5c)) consiste également a séparer !’information en plusieurs fragments
élémentaires (paquets) qui voyageront dans le réseau indépendamment les uns des autres.

Chaque paquet peut alors prendre un chemin différent de son prédécesseur.

Dans une commutation par paquets, les paquets d’une connexion se retrouvent en
compétition avec d’autres pour accéder aux lignes de transmission. La taille du paquet
doit par ailleurs étre choisie judicieusement. Si la taille est trop petite, le message devra
étre fragmenté en un nombre trop grand de paquets et le temps de réassemblage sera trop
colteux. D’un autre coté, si la taille du paquet est trop grande, le paquet pourrait bloquer

la liaison pendant plusieurs cycles, ce qui retarderait les autres trafics [HEWCO04].
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Commutation de circuit Commutation pas paquets - Commutation par paquets -
circuit virtuel Datagramme

Figure 2.5 : Différentes sortes de commutation

La commutation par paquets peut causer des probléemes reli€s a la latence en ce sens
qu’un paquet peut parfois prendre quelques centaines, voire un millier de cycles avant
d’arriver a destination. Ceci est causé par la distribution statistique des délais associée
aux réseaux de commutation par paquets. De plus, puisque les paquets prennent des
chemins différents pour se rendre a la méme destination, il est fort possible que les
paquets arrivent dans un ordre différent duquel ils ont ét€ envoyés. Tel que mentionné ci-
haut, le réassemblage des paquets a la destination necéssite alors un traitement

supplémentaire, ce qui entraine une latence supplémentaire. La commutation de circuits

n’a pas ces problemes puisque la latence dépend seulement de la distance et du temps pris
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pour établir la connexion. Les données arriveront toujours en ordre puisqu’elles
empruntent le méme chemin, peu importe la quantité de transactions concurrentes dans le
réseau [WILIO3]. Il est a noter que ce type de commutation entraine un faible taux
d’utilisation des liens. Normalement, la commutation de circuits est associée au trafic

GT, tandis que la commutation par paquets va de paire avec le trafic BE.

2.2.5. Routage

Le routage détermine le chemin qui sera pris par un paquet de sa source a sa destination.
Les facteurs a considérer pour les algorithmes de routage [HEWC04] sont :
- la connectivité : indique s’il est possible de router un paquet pour n’importe
quelle paire source-destination.
- adaptabilité : indique s’il existe plusieurs routes pour passer d’une source a une
destination.
- anti-interblocage et anti-itinérance : empéche un paquet de bloquer le réseau
(deadlock) ou d’y circuler indéfiniment sans arriver a destination (livelock).
- tolérance aux fautes : indique s’il est possible de router un paquet malgré le bris

d’un lien.

Par ailleurs, étant donné les ressources limitées dont une puce dispose, les compromis
suivants devront étre appliqués aux algorithmes de routage de NoC [BEDEO2] :

- déterminisme versus performance moyenne

- robustesse versus agressivité

- complexité et vitesse versus utilisation du canal

Il existe trois algorithmes principaux de routage [YOOO03].
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2.2.5.1. Stockage et réémission (store and forward)

Lorsqu’un routeur a recu un enticrement paquet, il demande au routeur suivant dans la
chaine s’1l est prét a recevoir le paquet. Si la réponse est positive, le paquet est envoyé;
sinon, il est mémorisé. Cette approche est la plus exigeante en termes de mémoire

nécessaire et de latence de communication.

2.2.5.2. Par raccourcis (virtual-cut-through)

Lorsqu’un routeur a regu partiellement un paquet, il demande au prochain routeur dans la
chaine s’il est prét a recevoir complétement le paquet. Si la réponse est positive, I’envoi
du paquet est amorcée méme si le paquet n’est pas encore compleétement recu; sinon, il
est mémorisé. Cette approche nécessite également une quantité significative de mémoire

mais permet une plus petite latence de communication.

2.2.5.3. Trou de ver (wormhole)

Lorsqu’un routeur recoit un flit du paquet (flow control digit, soit la plus petite unité sur
laquelle un contréle de flot peut étre fait), il demande au prochain routeur dans la chaine
s’il est prét a recevoir le flit. Si la réponse est positive, le flit est envoyé€; sinon, il est
mémoris€. Cette approche ramene a son minimum la latence de communication et la
mémoire requise dans les routeurs. Le désavantage de cet algorithme est qu’il est plus
sensible aux interblocages puisque le flit de téte peut €tre bloqué a un certain routeur, ce

qui bloquera également tous les routeurs associés aux autres flits du méme paquet.

2.3. Topologies existantes

11 existe plusieurs fagons d’agencer les composants pour former un réseau. Les diverses
configurations, jumelées a différents algorithmes de routage, ont des conséquences sur la

latence, le filage requis et ’espace occupé par le NoC. Cette section présente d’abord une
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breve description des topologies les plus populaires. Par la suite, plusieurs NoC

(commerciaux et universitaires) seront passé€s en revue.

2.3.1. Maille

La maille est probablement la topologie la plus populaire puisqu’elle sharmonise avec la
forme rectangulaire d’une puce. On retrouve les composants (nodes) répartis
uniformément sur la puce, de méme qu’un réseau bidimensionnel de commutateurs
(switches). Dans sa version la plus simple, chacun des composants est attachée a un
commutateur. Toutefois, il est possible d’avoir plus de commutateurs que de composants,
tout dépendamment des performances souhaitées et des ressources disponibles. Chaque
commutateur est connecté a quatre autres, selon les directions nord, sud, est et ouest.
Cette topologie est illustrée a la Figure 2.6 a). Il est également possible d’ajouter un lien
entre le premier commutateur d’une rangée et le dernier pour former un tore, ce qui
améliore les performances au prix de plusieurs liens supplémentaires (Figure 2.6 b)). Les
composants sont identifi€s de facon cartésienne avec une coordonnée en X (ligne) eten Y

(colonne).

Les mailles sont adéquates pour des communications a grande échelle. Elles sont souvent
choisies au détriment des autres topologies en raison de leur cofit acceptable en fils, de
leur bande passante raisonnablement élevée et dii au fait qu’il est relativement simple de
regrouper géographiquement les modules communiquant beaucoup entre eux [WILIO3].
Il est donc important de bien exploiter la localité pour profiter des fils courts entre deux
commutateurs. On les choisira donc lorsque le délai dans le commutateur approche le
délai des fils [CARNOQ].
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Figure 2.6 : Topologies maille et tore

2.3.2. Papilion

Les topologies de type papillon (en anglais, butterfly) sont des topologies a diametre
logarithmique (leur croissance est proportionnelle au logarithme du nombre de
composants qui y sont connectés). Elles nécessitent cependant plus de commutateurs
qu’un arbre élargi pour un méme nombre de composants (Figure 2.7). Une caractéristique
de cet agencement est qu’il n’y a qu’un seul chemin pour n’importe quelle paire source-
destination. Ceci peut représenter un risque, qui est minimisé€ par le fait que les liens sont
moins susceptibles de briser dans un réseau sur puce. Les probabilités pour que deux
transactions entrent en conflit 3 un des commutateurs du réseau sont tres faibles
[CARNOO]. Il est toutefois possible de réduire ces probabilités a 0 en utilisant une

variante, le bene, qui se compose de deux papillons dos a dos.

Les topologies papillon sont moins appropriées que les mailles pour les NoC en raison du

cofit élevé des fils.
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Figure 2.7 : Schéma de la topologie papillon

2.3.3. Arbre élargi

Les arbres élargis, tout comme les topologies dites « papillon », font parti des réseaux a
diametre logarithmique. On peut considérer un arbre élargi comme un papillon auquel on
aurait rendu les liens bidirectionnels. Les composants sont attachés a un premier niveau
de commutateurs (le standard étant de 4 composants/commutateur). Ces commutateurs
peuvent ensuite €tre rattachés a d’autres commutateurs a un niveau plus élevé, selon le
méme rapport. C’est le nombre de composants qui dictera le nombre de niveaux de
commutateurs a utiliser. Par exemple, dans un réseau a2 16 composants (Figure 2.8), deux
niveaux de commutateurs sont nécessaires, €t un paquet a au maximum trois
commutateurs a franchir avant de parvenir a destination. On notera donc une grande

amélioration de la latence.
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Les réseaux a arbre élargi sont difficilement extensibles, étant donné€ les longs fils qu’ils
nécessitent. De plus, la localité des composants peut étre moins bien exploitée. s sont
tout de méme recommandables pour des communications a échelle moyenne, en autant
que le délai dans les fils ne devienne pas un probléme. Contrairement aux mailles, on
choisira les arbres élargis lorsque le délai dans le commutateur est bien supérieur au délai

dans les fils.
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Figure 2.8 : Schéma de la topologie en arbre élargi

2.3.4. Autres topologies

Il existe plusieurs autres topologies qui découlent directement des architectures multi-
processeurs. Ces topologies sont plus difficilement intégrables dans les SoC pour diverses
raisons. Toutefois, elles sont tout de méme présentées dans cette section puisque certains

NoC s’inspirent de ces topologies.

Tout d’abord, la topologie honeycomb (Figure 2.9 a)) présente un rapport d’un
commutateur pour trois composants [JANAO1]. Chaque commutateur est connecté a six
autres de méme qu’a six composants, donc douze connexions. Ceci a pour conséquence

une trop grande complexité de commutateur et un routage plus difficile.
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Ensuite, la topologie crossbar (Figure 2.9 b)) est ce qu’on pourrait appeler 1’utopie dans

les communications. Une telle architecture permet & un composant d’avoir un lien direct

avec tous les autres. Deux blocs qui communiquent voient leurs transactions emprunter

des bus «privés », ce qui ameéne le délai de la transaction & son minimum. Cette

topologie n’est pratiquement pas extensible dii & sa complexité astronomique (N

composants nécessitent N * (N — 1) / 2 liens). Par contre, elle est idéale pour une

communication locale entre quelques modules. Les routeurs sont généralement constitués

d’un crossbar.

honeycomb

- N

b)
crossbar

Figure 2.9 : Allure des topologies honeycomb et crossbar

Le Tableau 2.1 résume les caractéristiques des diverses topologies.

Tableau 2.1 : Caractéristiques des topologies

Topologie Latence Complexité  Extensibilit¢  Echelle de communication
Maille O(VN) O(N) Oui Grande
Papillon O(log N) | O(N log(N)) Difficile Moyenne
Arbre élargi O(log N) | O(N log(N)) Difficile moyenne
Honeycomb ON) O(N) Difficile moyenne
Crossbar 0(1) O(N?) Non petite
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Les prochaines sections présentent rapidement quelques NoC issus de travaux

universitaires ou de sociétés commerciales.

2.3.5. Black-Bus

Blakc-Bus se veut davantage une nouvelle technique pour envoyer des données qu’un
NoC proprement dit [AYKJ04]. Les objectifs de Black-Bus sont de retirer les interfaces
réseau attachés aux composants de telle sorte que les composants puissent envoyer des
données brutes comme sur les architectures conventionnelles de bus et les circuits dédiés.
La structure du paquet est remplacée par 1’ajout de fils dédiés contenant un identificateur
local correspondant a I'initiateur de la transaction. Lorsqu’un nceud débute un transfert,
I’identificateur est généré et circule avec les données brutes. Ensuite, quand les données
parviennent au prochain routeur, elles sont redirigées d’apres les informations contenues
dans une table de routage a laquelle on accéde via I’identificateur. Une fois les données
arrivées au nceud destinataire, I’identificateur permet de déchiffrer le nceud source dans
un séquenceur, ce qui permettra au nceud de destination de compléter le transfert de

données. Cette technique est indépendante de la topologie du réseau.

2.3.6. ClearConnect®

ClearConnect® est une architecture proposée par la société ClearSpeed™ [CLEAO1]. 1
s’agit d’un réseau a commutation par paquets congu spécialement pour une
implémentation efficace sur silicium. Le bus traditionnel est remplacé par une chaine de
commutateurs (Figure 2.10), ce qui permet plusieurs transferts simultanés sur différents
segments de la chaine [CLEAO3]. De plus, la bande passante augmente avec le nombre
de nceuds qui sont connectés a cette chaine. ClearSpeed™ annonce une bande passante de
12,5 Gb/s pour un bus de 128 bits a 400 MHz. Finalement, la puissance dissipée est
proportionnelle a la quantité de données transférées et a la distance qu’elles parcourent.
Si aucun transfert n’a lieu, aucune puissance n’est dissipée. Le désavantage de cette
topologie est que la chalne est unidimensionnelle, ce qui rend la latence proportionnelle

au nombre de composants.
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Figure 2.10 : Allure du réseau ClearConnect®

2.3.7. STBus

Le STBus, développé par STMicroelectronics [STMIO0], est une architecture modulaire
ou plusieurs neeuds peuvent €tre instanciés plusieurs fois selon différentes configurations
pour former une structure d’interconnexions hiérarchique. Dans la nomenclature ST, un
nceud est une matrice de commutation, c’est-a-dire une combinaison de blocs logiciels et
de blocs matériels qui servent a acheminer des données d’un pour d’entrée a un port de
sortie [BOZZ04]. Dans le STBus, un nceud peut étre un bus partagé, un crossbar complet
ou un crossbar partiel. Comme mentionné précédemment, le bus est peu coliteux en fils
mais lent, le crossbar complet est trés performant mais treés cofiteux, alors que le crossbar
partiel se veut un compromis entre les deux extrémes. Plusieurs nceuds formeront le
réseau d’interconnexions global. Le STBus a la particularité d’utiliser trois protocoles, un
peu comme AMBA et CoreConnect: les protocoles peripheral, basic et advanced.
STBus nécessite donc des convertisseurs de type pour permettre la communication entre
deux IP qui n’utiliseraient pas le méme protocole. On retrouve aussi des convertisseurs de
taille qui permettent la communication entre deux IP qui n’auraient pas la méme taille de
bus ainsi que des tampons qui agissent comme des étages de resynchronisation entre deux
IP utilisant des protocoles différents. Le lecteur voulant en connaitre davantage peut se

référer aux spécifications [STMIO3].

2.3.8. SPIN

SPIN (Scalable Programmable Interconnection Network) a été développé en 2000 par le
Laboratoire Informatique Paris-6 (LIP6). 1l s’agit d’un arbre élargi (voir Figure 2.8), plus
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précisément d’un arbre quaternaire. Ce NoC emploie la commutation de paquets par
datagramme et un routage adaptatif de type trou de ver (section 2.2.5.3). Ce type de
commutation a le désavantage de conduire au désordre dans 1’arrivée des paquets, ce qui
nécessite un travail supplémentaire pour reconstituer le message. Lorsque la quantité de
trafic augmente, le routage trou de ver fait en sorte que plusieurs routeurs peuvent étre
bloqués simultanément lorsqu’un conflit survient, ce qui fait qu’il est impossible de
garantir une latence donnée. SPIN sature d’ailleurs lorsque sa charge atteint autour de
30%. Le projet a ét€ abandonné. Notons que SPIN se veut un NoC de haute performance,

mais il est trés cotiteux en fils étant donné sa structure en arbre.

2.3.9. Hot Potato

Hot Potato, congu en Sueéde, a une structure en maille de deux dimensions (voir Figure
2.6a). L appellation vient du routage patate chaude, qui pose comme contrainte qu’un
paquet doit obligatoirement changer de commutateur a chaque cycle, quitte a revenir sur
ses pas. Ce type de routage a 1’avantage de produire des commutateurs de trés faible
complexité puisqu’il n’est pas nécessaire de mémoriser les paquets. Par contre, lorsque le
trafic augmente, le taux de contention augmente considérablement et il est donc possible
qu’un paquet chemine vers sa destination sans jamais y parvenir. Une priorité basée sur le
nombre de cycles passés dans le réseau peut toutefois corriger ce probléme. Malgré
I’exploitation de la localité des composants, il est impossible 1a aussi de garantir une
latence maximale pour ce réseau. De plus amples informations sont disponibles dans

[NILSO02].

2.3.10. SoCIn

Une université du Brésil a elle aussi développé son NoC : SoCIN (SoC Interconnection
Network). 11 s’agit également d’un réseau en mailles ou en torus (Figure 2.6b) utilisant un
routage trou de ver de type XY [ZESUO3]. Le routage XY consiste a router les paquets

d’abord sur une ligne, puis sur une colonne. Chaque paquet prendra donc toujours le
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méme chemin et ce pour toute paire source-destination dans le réseau. Le routage XY est
plutdt restrictif en ce sens qu’il limite I’utilisation de la bande passante offerte de par sa
nature. Néanmoins, c’est une des approches les plus simples pour éviter les interblocages
et permettre aux paquets d’arriver dans le méme ordre. II est a noter que les
commutateurs sont paramétrables sur le degré de connectivité (jusqu’a 5), la largeur du

canal (8, 16 ou 32 bits) et la profondeur des tampons (1, 2 ou 3 mots).

2.3.11. ECLIPSE
ECLIPSE (Embeddeb Chip-Level Integrated Parallel Supercomputer) est un bon

exemple d’utilisation de la maille 2D. ECLIPSE se compose d’une chalne de processeurs
jumelés a des mémoires d’instructions dédiées, de modules de mémoire hautement
imbriqués ainsi que d’un NoC en maille clairsemée de haute capacité [FORS02]. Le
terme « maille clairsemée » (en anglais, sparse mesh) signifie simplement qu’on retrouve
plus de commutateurs que de ressources connectées, ce qui permet d’augmenter la bande
passante. Plutot que d’avoir un seul commutateur connecté a une ressource, on retrouve
plutdt un supercommutateur comprenant quatre commutateurs. A la source, le paquet est
acheminé au hasard a un des quatre commutateurs. Par la suite, le message se promene

via les supercommutateurs selon un routage XY.

2.3.12. NoCGEN

NoCGEN (Network on Chip Generator) est un outil proposé par une université
australienne visant a générer un réseau en utilisant des composants modulaires pour
former des commutateurs configurables au niveau du nombre de ports, de 1’algorithme de
routage, de la largeur du canal et de la profondeur des tampons. Un graphe de description
représentant les interconnexions entre les commutateurs (c’est-a-dire la topologie) est
utilisé pour générer une description haut niveau en VHDL [CHPAO4]. NoCGEN se veut

un outil semblable a celui développé pour Sonics Backplane, mais appliqué aux NoC. Le
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protocole utilisé est semblable au AMBA AHB. A ce jour, seule la maille est supportée

comme topologie.

2.3.13. Et les autres...

Il existe plusieurs autres propositions de NoC, la plupart étant issues des universités.
Mentionnos d’abord Aethereal [RGRMO3], qui supporte a la fois un trafic GT et BE
Ensuite, il y a Proteo [SAANO3], qui consiste en une petite bibliotheque de composants
paramétrables pour former un grand éventail de topologies, protocoles et configurations.
Vient ensuite XPipe [BEBEO4], qui veut pousser cette approche a la limite en voulant
instancier un NoC pour une application spécifique. D’autres NoC non décrits ici, tels que
SoCBUS [WILI03], Nostrum [MNTKO04], QNoC [ROVFO035] et autres vont dans la méme

direction et tentent de répondre a un besoin criant de performance a cofits minimum.
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CHAPITRE 3 : Le Rotator on Chip

Le présent chapitre présente un modele de réseau intégré sur puce qui a été développé en
étroite collaboration avec la société STMicroelectronics a Ottawa. Il est important
d’insister sur la notion de modeéle, puisque ce NoC n’a pas été réalisé physiquement mais
qu’il est simplement programmé en C++. Le but fixé au départ est de monter a un niveau
d’abstraction plus élevé dans le but de bien évaluer la fonctionnalit€ d’un NoC de méme
que de mieux cerner les paramétres qui interviennent dans sa conception. Ainsi, ce type
de modélisation permet de recueillir tres peu de mesures concernant la puissance dissipée
par les composants, la complexité matérielle de ce NoC sur la puce et la fréquence
possible d’opération. Par ailleurs, le chemin des données (datapath) se retrouve trés
simplifi€ puisque l’on fait abstraction des composants de bas niveau comme les
multiplexeurs et les registres a décalage. Par conséquent, la taille des paquets, des
tampons et autres modules composant le réseau sont simplement approximatifs et leur
détermination finale est laissée a de futurs concepteurs qui poursuivront les travaux a plus

bas niveau.

3.1. Vue d’ensemble

Le RoC (Rotator on Chip) est inspir€ du Token Ring, un réseau ou tous les ordinateurs
sont connectés schématiquement en cercle (Figure 3.1). Un jeton (agencement spécial de
bits) chemine dans ce cercle. Pour envoyer un message, un ordinateur « attrape » le jeton
quand il passe, y attache son message et laisse le jeton poursuivre sa route dans le réseau.
Tout comme les architectures simples de bus, un seul message peut circuler a la fois dans

le réseau, puisqu’on n’y retrouve qu’un seul jeton.



48

O

Station 1

Station 2 \ P Station 8
AN /
I | Token-ring |
Station 3 j/< Stafon 7

% Station 6
Station 4 n

Station 5

I,

Figure 3.1 : Architecture Token Ring

Le RoC se veut a la base une architecture Token Ring, mais a plusieurs jetons, en ce sens
que tous les composants qui y sont connectés peuvent envoyer simultanément des
messages. Certains pourront faire la comparaison avec un Token Ring pipeliné, ce qui

n’est pas erroné.

Soit N le nombre de ressources a étre connectées au réseau. Une ressource, rappelons-le,
peut €tre un processeur, un coprocesseur, une mémoire, un circuit matériel dédi€ ou un
autre périphérique. Chaque ressource est attachée a un neud, qui agit comme interface
réseau (voir la section 2.1.3). Cette interface est responsable de transformer les

requétes/réponses des ressources en paquets a acheminer dans le réseau. Les paquets

circulent sur N banques qui se connectent successivement a tous les nceuds. La vue
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d’ensemble du NoC est présentée a la Figure 3.2. Les prochaines sections décrivent en

détails les modules du réseau ainsi que leurs roles.

Banques

u

——1 ||
Tampons LB
(noeud)

! \
2  Tampons

(banque)

Figure 3.2 : Vue d’ensemble du RoC

3.2. Le noeud

A la base, un nceud est composé de tampons d’entrée et de tampons de sortie. C’est par
I’intermédiaire de ces tampons que les paquets sont injectés dans le réseau ou retirés de
celui-ci. Comme nous le verrons plus loin (chapitre 4), un nombre plus restreint de
tampons pourrait €tre utilis€ avec pour conséquence une légere diminution de
performance. La Figure 3.3 décrit la structure d’un nceud. En a), on peut observer les
ports d’entrée/sortie du bloc. Un pont OCP est nécessaire puisque la communication entre
les nceuds et les ressources qui y sont attachées est analogue a celle qui est représentée a

la Figure 2.4.
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{ ®
tampon tampon
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N -1 N -1

b) composants internes

Figure 3.3 : Description du noeud

C’est donc par ce pont OCP que les paquets arrivent et repartent de la ressource. Le port

pr_port est un port d’entrée qui regoit un paquet d’une banque alors que le port pw_port

envoie un paquet a une banque. Les requétes de transaction générées par le nceud sont

acheminées par le port req port alors que les réponses sont regues par le port ack_port.

Le Tableau 3.1 résume le réle de chacun des ports.

Tableau 3.1 : Description des ports d’un nceud

Port Type Description
pr_port entrée Lecture d’un paquet en provenance d’une banque
pw_port sortie Ecriture d’un paquet vers une banque
req_port sortie Ecriture d’une requéte vers une banque
ack port entrée | Lecture d’un accusé de réception en provenance d’une banque
fifo in entrée Réception d’un paquet en provenance d’une ressource
fifo out sortie Envoi d’un paquet vers une ressource
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La Figure 3.3 b) montre ce qui constitue le cceur de 1’interface : des tampons d’entrée, des
tampons de sortie ainsi que des blocs de contrdle pour effectuer les transactions
correctement. Le nombre de tampons est paramétrable et est normalement €gal au
nombre de ressources connectées au RoC. Ce nombre peut étre fixé par le concepteur

juste avant la synthese.

Les rdles du neeud sont donc de :
- Transformer les paquets de type OCP provenant des ressources en paquets de type
RoC
- Permettre aux ressources d’envoyer des paquets de fagon transparente

- Construire des requétes selon 1’état de ses tampons (pleins ou vides)

Des détails supplémentaires sur le protocole et sur le cheminement des données sont

présentés plus loin dans ce chapitre.

3.3. La banque

La banque joue le r0le de commutateur dans le réseau. La banque contient plusieurs
tampons par lesquels les paquets voyagent de la source vers la destination. Une banque
contient normalement un nombre de tampons équivalent au nombre de ressources
connectées au RoC, comme c’est le cas pour le nceud. Ainsi, chaque tampon est identifié,

deOaN-1.

La Figure 3.4 a) présente le diagramme bloc d’une banque, qui comporte quatre ports
principaux, outre celui relié a I’horloge. Ces ports sont complémentaires a ceux d’un
neeud. Le port pr_port est un port d’entrée qui recoit un paquet d’un nceud alors que le
port pw_port envoie un paquet a un noeud. Les requétes de transaction générées par le
nceud arrivent a la banque par le port req_port alors que les réponses sont retournées via

le port ack_port. Le tableau 3.2 résume le rdle de chacun des ports.
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GENERIQUE
Nombre de tampons
Nombre de bits de I:D:D D
statut bits de statut
TAMPON TAMPON
0 1
—> U — » I —
pr_port pw_port
Contrdle
BANQUE TAMPON TAMPON
req_port ack_port 2 3
TAMPON TAMPON
clk 4 . . ' N -1
a) diagramme bloc b) composants internes
Figure 3.4 : Description d’une banque
Tableau 3.2 : Description des ports d’une banque
Port Type Description
pr_port entrée Lecture d’un paquet en provenance d’un nceud
pw_port sortie Ecriture d’un paquet vers un nceud
req_port entrée Ecriture d’un accusé de réception vers un nceud
ack port sortie Lecture d’une requéte en provenance d’un nceud

La Figure 3.4 b) montre le contenu d’une banque. D’une part, des tampons servent a

stocker les paquets. D’autre part, la banque incorpore également des bits de statut qui

correspondent a 1’état des tampons de la banque suivante dans le réseau (banque i + /

pour une banque 7). L’état des tampons peut étre vide ou plein (0 ou 1). L’utilité de

maintenir ce statut est expliquée ultérieurement. Le nombre de tampons ainsi que le

nombre de bits de statut sont deux parametres génériques. Finalement, un bloc de

contrdle gere la cohérence globale du module.
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On peut résumer les roles de la banque ainsi :
- Transporter un paquet du nceud source au nceud destination
- Gérer Darbitration dans les requétes (donner la permission ou non au nceud
d’envoyer un paquet)

- Maintenir 1’état des tampons de la prochaine banque a jour

3.4. Cheminement des données

Soit un ensemble composé de quatre ressources connectées via un RoC. Examinons le cas
typique ou un processeur veut écrire une donnée quelque part sur une mémoire externe.
Soit NO le numéro du nceud qui rattache la mémoire au réseau et N3 le numéro du nceud
qui rattache le processeur au réseau. Le processeur met a sa sortie les valeurs d’adresse
qui correspondent a I’emplacement de la mémoire ou I’écriture se fera ainsi que la
donnée a écrire. Ces signaux sont interceptés par le pont OCP (voir Figure 2.4) qui crée
un paquet OCP. La Figure 3.5 b) présente tous les champs qui composent le paquet en
question. Le rdle de chacun des champs est défini au Tableau 3.3. Ce paquet OCP est
ensuite intercepté par le nceud qui en fait un paquet RoC (Figure 3.5 a)). Les champs
source et destination du paquet RoC sont décodés a partir des champs mConnlD et
mAddr du paquet OCP. Dans le cas présent, le champ source aura comme valeur 3, tandis
que le champ destination aura la valeur 0. La taille d’un paquet RoC peut étre estimée a
100 bits, selon le nombre de bits qu’on associe aux différents champs. Cette
approximation est cohérente mais n’a pas d’influence sur la suite des opérations puisque
le traitement se fait a un plus haut niveau d’abstraction. Elle peut néanmoins fournir une

bonne approximation au lecteur intéressé€ par ce parametre.
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{ mConnlID | mThreadID length mCmd | mBurst mAddr mbData sResp
6 5 5 3 3 32 32 2
b) Paquet OCP
Figure 3.5 : Représentation des paquets
Tableau 3.3 : Description des champs d’un paquet OCP
Champ Description
mConnID Numéro d’identification du maitre
mThreadID Numéro de thread
length Longueur des données a transférer (en mots de 32 bits)
mCmd Commande du maitre a ’interface (typiquement lecture ou écriture)
mBurst Code de burst
mAddr Champ d’adresse
mData Champ de donnée
sResp Code de réponse de I’esclave

Lorsque le nceud 3 détecte un paquet dans sa FIFO d’entrée, il va le placer dans le

tampon de sortie correspondant a I’adresse de destination (ici, le tampon 0). Au cycle

suivant, le nceud envoie une requéte a la banque pour lui signifier qu’il a un paquet pour

le nceud 0. La banque vérifie 1’état des tampons de la banque qui la suit dans la rotation

en examinant son bit de statut 0. Si ce bit est 4 0, le tampon est libre et un accusé de

réception (ACK) est envoyé au nceud. Le nceud peut alors envoyer le paquet qui est

tamporisé dans le tampon approprié, toujours selon I’adresse de destination (Figure 3.6).
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Figure 3.6 : Transfert d’un paquet d’un neeud 2 une banque

Les paquets « tournent » ensuite dans le sens des aiguilles d’une montre et le noyau de
banques mettra N étapes 2 effectuer une rotation complete. A chaque étape, une banque
est connectée a exactement un nceud, toujours différent. Le paquet arrive a destination
lorsque le numéro du tampon sur lequel il voyage correspond au numéro du nceud qui est
connecté avec la banque a une étape donnée. La banque envoie donc le paquet vers le
nceud, ce qui vide le tampon. Lorsque le nceud regoit ce paquet, il va le placer dans le
tampon d’entrée correspondant a 1’adresse de source du paquet (ici, le tampon 3). Ceci est
illustr€ a la Figure 3.7 a) ou le paquet arrivant a destination (noued 0) est transféré dans le
tampon 3, puisqu’il a été émis a partir du noeud 3. Il est a noter qu’un nceud peut envoyer
un paquet vers une banque au méme moment que celle-ci lui en envoie un, comme le

montre la Figure 3.7 b).
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a) envoi des paquets b) état résultant

Figure 3.7 : Transfert d’un paquet d’une banque a un neeud

L’envoi d’un paquet est conditionnel a I’obtention d’un signal ACK. Toutefois, le nceud
n’envoie pas immédiatement le paquet apres la réception de ce signal. Cet accusé est
plutdt interprété par le nceud de la maniere suivante : « Apres la prochaine rotation, je
pourrai envoyer le paquet ayant comme destination O a la banque ». Ainsi, un paquet
envoyé par un nceud est toujours précédé d’un signal ACK recu a I’étape précédente. Le
nceud procede de cette fagon, car cela permet d’envoyer un paquet a la banque tout en
envoyant une requéte pour le transfert suivant (i.e. a la banque qui suivra selon le sens de
la rotation). Cette facon de procéder permet de sauver un cycle sur le traditionnel
protocole handshaking entre deux ressources. En effet, tandis que ce protocole se
compose de quatre €tapes (requéte, réponse, envoi, confirmation), le protocole RoC
comporte trois étapes illustrées a la Figure 3.8. Dans cette derniere, les wait()
représentent des cycles d’horloge (dans une éventuelle synthése). Au point 1, le paquet et
la requéte ont été envoyés par le nceud pendant la premiére phase et sont disponibles pour
la banque. Pendant la deuxieme phase, la banque analyse la requéte et émet un signal
ACK et ce en méme temps qu’elle envoie au nceud un paquet qui serait arrivé a

destination. Au point 2, ces signaux sont disponibles pour le nceud qui va les recevoir
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pendant la troisieme phase. Au point 3, les paquets ont cheminé dans le réseau de
banques et une nouvelle paire nceud/banque se connecte pour entamer les mémes

Processus.

Noeud Banque

Envoi du paquet
Envoi de la requéte

wait() wait() ( \ 1)
Réception de la requéte
Réception du paguet
Envoi du ACK
Envoi du paquet S~
wait() wait() ( 2 )
Réception du ACK -
Réception du paquet o
wait() wait() (3)

Figure 3.8 : Séquence d’exécution du neud et de la banque

3.5. Détails d’implantation

Le RoC a été développé en SystemC et a été intégré sur la plate-forme StepNP. SystemC
[OSCIOI] est une bibliotheque C++ orientée-objet qui permet de modéliser une
application a plusieurs niveaux d’abstraction différents. Le systéme est spécifi€ a I’aide
d’objets tels que modules, processus, canaux et ports. Les modules communiquent entre
eux par des canaux via leurs ports. Pour la synchronisation, les processus (ou threads)
s’exécutant sur les modules peuvent se mettre en attente d’événements, qu’ils soient
synchrones (front montant d’horloge) ou asynchrones (signal d’entrée). L’utilité¢ de
SystemC est de modéliser les blocs matériels et logiciels dans le méme langage pour
obtenir le systtme entier dans la méme spécification. Par la suite, les blocs matériels

peuvent étre raffinés vers du SystemC synthétisable ou vers des langages de description
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de matériel tels que VHDL ou Verilog. Les objets qui ont été utilisés pour le RoC sont les
modules (SC_MODULE), les interfaces (SC_INTERFACE), les ports (SC_PORT) et les
processus reliés a 1’horloge (SC_CTHREAD). Une interface définit les opérations qui
sont effectuées via un port. Le canal de communication implante ces opérations. La
Figure 3.9 montre les interactions entre les différents objets alors que la Figure 3.10

donne un exemple d’utilisation.

; — : \ o ‘
; : i . | | i i
§ I CANAL - E |
| MODULEA | | }\ M | o | MoDULEB

| | :

i

[

INTERFACES

PORTS

Figure 3.9 : Interaction des modules, canaux, ports et interfaces dans SystemC

class A : public sc_module

{
Ce - déclaration du port
sc_port<module_if> read port; - assignation a une interface

class module_if: public sc_interface

{

virtual int Readvalue() = 0

class canal: public sc_module, public module_if

{

- définition de l'opération
dans linterface

- implantation de I'opération

int ReadValue () { return value; }

}

main ()

{

module->read_port (canal) ; - rattachement du port au canal

Figure 3.10 : Fonctionnement des communications sous SystemC
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Le lecteur peut en apprendre davantage sur SystemC en consultant le manuel de référence

[OSCI03].

StepNP [PAPB02] est un environnement de développement qui prone la réutilisation de
blocs de propriété intellectuelle dans sa méthodologie. Cette plate-forme se concentre
davantage sur le développement de processeurs réseaux. Le choix de cette plate-forme a
été motivé par plusieurs facteurs. D’une part, elle renferme une bibliotheque de blocs IP
tels que processeurs et mémoires. D’autre part, les architectures en développement sont
facilement modifiables par I’ajout ou le retrait de composants. De plus, la plupart des
outils essentiels au développement d’architectures haut niveau (simulateur, débogueur,
analyseur de performance) sont disponibles et simples d’utilisation. Finalement, le code
source de cette plate-forme est gratuit et ouvert en raison d’une collaboration entre
I’école Polytechnique de Montréal et STMicroelectronics, ce qui est un net avantage dans

le contexte académique ou les travaux ont été effectués.

StepNP utilise également le protocole OCP, modélisé sous le nom de SOCP (SystemC
OCP). Considérons a nouveau notre exemple ol un processeur (le maitre) veut écrire une
donnée quelque part sur une mémoire externe (1’esclave). Deux interfaces sont utilisées
pour la communication : SOCPMaster, pour le maitre, et SOCPSlave, pour I’esclave.
L’interface SOCPMaster définit une seule opération, putReq(), qui représente la requéte
générée par le maitre. L’interface SOCPSlave définit quant a elle I’opération putRsp(),
qui correspond a la réponse de 1’esclave. Par ailleurs, le maitre découle d’une classe de
base appelée SocpMasterBase. Ainsi, lorsqu’un maitre désire effectuer une écriture, la
fonction wr (write) de SocpMasterBase s’exécute. Cette fonction construit le paquet OCP
et fait une requéte sur le canal par son port (slavePort -> putRegq). Le maitre se
met ensuite en attente via un wait (écriture bloquante). Le paquet OCP chemine vers la
destination selon les regles dictées par le canal. Lorsqu’il parvient a destination, la
fonction putReq de la mémoire est appelée. C’est a ce moment que le paquet OCP est

décomposé et que 1’écriture est faite. Par la suite, la mémoire répond au maitre en
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appelant la fonction putRsp du canal pour lui signifier que le travail a été accompli. Le
paquet fait ainsi le chemin inverse. Lorsque le paquet revient au point de départ, la
fonction putRsp du maitre est appelée, ce qui le réveillera. L’ensemble de cette procédure

est illustré a la Figure 3.11.

Maitre Canal Esclave
(SOCP) (RoC) (SOCP)
v Ecriture
' Attente (wait) putReq) o putReq) o,
z
%4 putRsp() < putRsp()

Figure 3.11 : Suite d’appels de fonction menant 3 une transaction entre maitre et esclave

Comme on vient de le mentionner, le contenu des opérations putReq et putRsp est
implanté dans le canal de communication. Ce contenu differe selon I’ architecture utilisée.
Par exemple, la fonction putReq d’un crossbar appelle directement la fonction putReq de
I’esclave (acheminement instantané) alors que celle du RoC prend le paquet OCP, lui
ajoute les champs source et destination et ’envoie dans le FIFO appropri€ du bon nceud.
Ce n’est que lorsque le paquet RoC arrive au nceud destination que la fonction putReq de

I’esclave est appelée.

Le diagramme de classes allégé est présenté a la Figure 3.12. La classe SocpFuncROC se
veut I'intégration du NoC dans StepNP. Le Tableau 3.4 résume les rdles de chacune des
classes qui composent le RoC. Il est a noter que les classes SC_MODULE et
SC_INTERFACE proviennent de I’environnement SystemC alors que les classes
SOCPChannelBase, SOCPMaster et SOCPSlave sont issues de la plate-forme StepNP.
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Figure 3.12 : Diagramme de classes simplifié
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Tableau 3.4 : Role des classes du RoC

Classe Description

Packet Définit la structure du paquet RoC

Buffer Tampon contenant un paquet
Request Structure d’une requéte envoyée du neeud & la banque
Node if Définition des fonctions appelées par les ports du nceud
Bank if Définition des fonctions appelées par les ports de la banque

Node Interface réseau qui relie la ressource au RoC

Bank Objet sur lesquels les paquets circulent dans le réseau

CircularChannel Le canal de communication proprement dit
SocpFuncROC Classe qui intégre le RoC dans StepNP (pont RoC — SOCP)

3.6. Caractéristiques du RoC

Le RoC se veut a la base un réseau a commutation par paquets qui utilise un circuit
virtuel. En effet, différents paquets cheminant entre une méme paire source-destination
vont toujours prendre le méme chemin. L’ordre d’arrivée des paquets est donc préservé,
ce qui sauve le temps pris a reconstituer le message. Cependant, le chemin peut étre
partagé avec d’autres paires source-destination si la source ou la destination est la méme.
Par contre, le RoC est intérieurement non bloquant : une connexion entre deux nceuds A
et B ne peut pas bloquer une connexion entre deux nceuds C et D et ce pour toute paire A-

B différente de C-D.

Les requis en mémoire augmentent rapidement, notamment lorsqu’on ajoute des
ressources connectées au réseau. Ainsi, quatre ressources nécessitent quatre banques et
donc 4 x 4 = 16 tampons. A huit ressources, ce nombre passe a 64 (croit comme N2, si N
est le nombnre de ressources). La superficie du NoC sur la puce augmente donc de fagon
quadratique, ce qui peut étre un probléme. Il est possible d’utiliser un plus petit nombre
de tampons sans en affecter les performances. Le chapitre 4 élabore davantage sur cette

stratégie et ses implications.
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CHAPITRE 4 Optimisation du RoC

Le modele de base du RoC est fonctionnel et beaucoup plus efficace qu’une architecture
de bus. Toutefois, 1’algorithme de base et I'utilisation actuelle des composants ne
permettent pas d’exploiter pleinement la bande passante que le réseau peut offrir.
Quelques améliorations ont €té apportées pour augmenter sensiblement les performances
sans complexifier le réseau. De plus, il est possible d’utiliser le RoC dans plusieurs
configurations qui tentent de répondre a une vaste gamme de trafics et d’applications. Ce

chapitre présente les améliorations apportées et décrit ces configurations.

4.1. Requéte sous forme d’une matrice de bits (bitmap)

Dans sa configuration de base, le nceud vérifie successivement 1’état des tampons de
sortie selon un algorithme du tourniquet (round robin). Lorsqu’il découvre qu’un tampon
est plein, le numéro d’identification de ce tampon est mémorisé, de telle sorte qu’au
prochain cycle, le nceud reprendra sa vérification ou il était rendu. Par exemple, soient
huit tampons numérotés de 0 a 7. Soit une premicre étape ou le noeud vérifie les tampons
0, 1 et 2 avant de détecter un tampon plein (le #2). A I’étape suivante (apres la rotation),
le nceud reprendra sa vérification au tampon 3, puis 4, etc. Le nceud procede de cette
facon pour ne pas donner la priorité a une destination en particulier. De plus, c’est une

forme d’arbitration simple a implanter et peu coliteuse.

Un cas particulier peut mener a une situation facheuse. La Figure 4.1 illustre le cas ot un
nceud contient des paquets a envoyer pour les destinations O et 3. Dans ce cas,
I’algorithme du tourniquet meéne a la sélection du tampon 3. Une requéte est alors
construite en conséquence. Lorsque la banque regoit cette requéte, elle examine le statut
du tampon 3 de la banque suivante et découvre qu’il est déja plein. Un refus (NACK) est
alors envoyé au nceud. Ainsi, aucun paquet ne sera envoyé par le nceud dans I’étape
suivant la rotation. Pourtant, un paquet provenant du tampon O aurait pu étre envoyé

pendant cette étape. Le noeud ne fera donc rien pendant une étape entiére, ce qui est
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dommageable pour I’efficacité du NoC. Ce cas n’est pas rarissime. En effet, plus le trafic
est lourd, plus les probabilités qu'un tampon soit déja plein sont €levées. 1l a donc été

impératif de régler ce probleéme.

# de destination

Tampons de sortie /
- e

¥ Tampons de la
H L 3 prochaine banque

Réponse
Aucun envoi, \//@ NON! @
étape gaspillée N

Figure 4.1 : Situation menant a un cycle inutilisé

Une facon plus astucieuse de procéder est de laisser le nceud envoyer une requéte qui
indique a la banque toutes les destinations a qui un paquet peut étre acheminé. Plutdt que
de construire une requéte en y insérant un numéro de destination, le nceud fabrique une
requéte qui prend la forme d’un bitmap. Ce bitmap contient N bits, un pour chaque
destination. Un bit est forcé€ a 1 si le tampon correspondant est plein et a 0 dans le cas
contraire. Lorsque la banque regoit ce bitmap, elle n’a qu’a le comparer avec le statut des
tampons de la prochaine banque, ce qui revient a plusieurs opérations ET BINAIRE
effectuées en parallele. Par la suite, elle choisit une destination qui correspond a la
situation tampon du nceud plein ET tampon de la banque vide et renvoie le numéro de
destination au nceud, plutdt que le traditionnel ACK. Dans le cas ou I’envoi demeure
impossible, la banque renvoie au nceud 1’équivalent de la valeur —1. Ainsi, dans le cas
présenté précédemment, le nceud peut envoyer un paquet provenant du tampon O plutdt
que de perdre son tour, comme le montre la Figure 4.2. Dans sa version actuelle, la
banque choisit la destination selon un algorithme du tourniquet. Un autre algorithme

pourrait &tre considéré.
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Le noeud enverra 7 y
un paquet du j 0] &ﬂ
tampon #0 a la h
prochaine étape

Figure 4.2 : Situation réglée par I’emploi de la requéte bitmap

Les gains de performance sont notables, puisqu’un paquet est toujours envoyé, dans la
mesure du possible. De plus, le coflit en matériel est minime, puisque quelques fils
supplémentaires sont nécessaires pour supporter les nouvelles requétes et réponses
échangées. Par exemple, a huit noeuds, 8 bits sont requis pour la requéte,
comparativement a 3, alors que 3 bits sont requis pour la réponse, comparativement a 1.

Le chapitre suivant illustre davantage les bénéfices qui découlent de cette astuce.

4.2. Mode rafale

L’utilisation du mode en rafale (burst) apporte une performance supplémentaire dans les
échanges entre ressources. Par exemple, si les ressources communiquent en utilisant un
algorithme de handshaking, I’envoi de N paquets nécessite N requétes, N réponses, N
transferts et N confirmations, donc 4N communications. En utilisant le mode en rafale, on
abaisse ce nombre a N + 3, soit 1 requéte, 1 réponse, N transferts et 1 confirmation. Voila

un avantage indéniable qui rend le support du mode burst primordial.

Le mode burst implique I’envoi successif de plusieurs mots, soit d’un maitre a un esclave
(écriture) ou d’un esclave a un maitre (lecture). L’intégration de ce mode dans le RoC
souleve une certaine problématique. En effet, soit ’exemple d’une ressource B voulant

envoyer huit paquets en rafale a une ressource A, tel que A est le voisin immédiat a droite
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de B. Au méme moment, soit un paquet déja envoyé dans le NoC par une ressource C
avec pour destination la ressource A (Figure 4.3 a)). Le premier paquet de B est envoyé
sur le NoC puis acheminé vers la ressource A. Il en est de méme pour les trois autres
paquets suivants. Toutefois, au cinquieéme envoi, le paquet envoyé par la ressource C
atteint le voisin immédiat a gauche de B (Figure 4.3 b)). Si, a la rotation suivante, le
nceud B envoie son paquet a A, le paquet envoyé par la ressource C sera écras€ et perdu,
ce qui n’est pas souhaitable. Par ailleurs, la ressource B peut décider de ne pas envoyer le
paquet pour préserver le paquet déja en route. Dans ce cas, au niveau de la ressource A,
cing paquets de B arrivent, puis un de C, puis les trois derniers de B. Il faut donc pouvoir
garder en mémoire le paquet provenant de C et I’envoyer a la ressource une fois le
transfert en rafale terminé. Les tampons de sortie du nceud permettent déja de mémoriser
un paquet. Toutefois, si le trafic est lourd et que le transfert en rafale est sans cesse

interrompu, plusieurs tampons sont nécessaires, ce qui est coliteux en espace.
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a) envoi 1/8 du burst b) envoi 5/8 du burst

Figure 4.3 : Probléme lors d’un envoi en rafalede B a A

Une autre solution a ce probleme est de « réserver » tous les tampon A pour la ressource
B, un peu comme la commutation de circuit réserve une suite de commutateurs entre
deux ressources pour une utilisation exclusive. Toutefois, pour ne pas perdre les paquets

déja présents dans le NoC, il faut attendre une rotation compléte du systéme pour laisser
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le temps aux paquets d’arriver a bon port tout en empéchant les autres ressources
d’envoyer d’autres paquets de destination A. Dans un RoC a huit ressources, cela
implique un délai de sept rotations (ou vingt et un cycles d’horloge selon la figure 2.8).
Les répercussions dépendent de la nature de I’application (contraintes de temps, nature
temps-réel, etc.). Cette facon de procéder permet néanmoins de garantir une latence

d’arrivée des paquets, avec une certaine pénalité prédictible.
4.3. RoC bidirectionnel

Intuitivement, une facon optimale d’agencer une paire de ressources qui communiquent
beaucoup entre elles est de les placer codte a cOte, de fagon a exploiter au maximum la

localité des ressources. Cependant, cette configuration pose un probleme pour le RoC.

A

a)envoi de B a A, 1 étape b) envoi de A a B, 7 étapes

Figure 4.4 : Probleme causé par I’architecture unidirectionnelle

En effet, le fait que les paquets tournent dans le sens horaire permet un transfert a latence
minimale entre une source B et une destination A (Figure 4.4 a)). Par contre, cela conduit
a un transfert a latence maximale lorsque la source et la destination sont inversées,

puisque le paquet doit entierement traverser le réseau avant d’arriver a destination (Figure
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4.4 b)). Egalement, lorsque le trafic augmente, la latence reliée 4 une transaction entre
deux ressources voisines et dans le sens de rotation devient aussi un probléme. Soit un
RoC a huit nceuds ol sept maitres (processeurs) qui transigent avec le méme esclave
(mémoire). La mémoire (nceud A) est voisine d’un processeur (nceud B) dans la rotation
(voir Figure 4.5). 1l est possible d’imaginer une situation ou les processeurs écrivent en
mémoire plus ou moins simultanément. Lorsque cette situation survient, le processeur B
se voit toujours refuser I’acces au tampon A de la banque puisque celui-ci est toujours
plein! L’envoi du paquet peut ainsi étre passablement retardé puisque les probabilités que
le tampon soit plein sont élevées. Cette situation sera illustrée expérimentalement au
chapitre 5 (Figure 5.4) ou la latence entre le maitre O et I’esclave 7 (voisins dans la

rotation) dégénére lorsque le nombre de threads augmente.

Figure 4.5 : Situation qui conduit a Pincapacité d’un neeud i envoyer un paquet & son voisin

immédiat

Une bonne fagon de régler ce probleme est d’utiliser un rotateur bidirectionnel, tel que le
montre la Figure 4.6. Les banques sont regroupées en deux sous-groupes allant dans des

directions opposées. Ainsi, chaque noeud est successivement connecté a une banque de
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déplacant dans le sens horaire et a une autre se déplacant dans le sens anti-horaire. Cette
solution permet de profiter de la localité des ressources puisque la latence des transferts
entre deux voisins est ramenée 4 son minimum dans les deux directions. Par ailleurs, si le
trafic devient plus imposant, la latence entre deux voisins reste basse puisque la moitié
des nceuds ont €té connectés a la banque plutdt que la totalité. Dans I’exemple présenté
plus haut, on aurait donc trois processeurs plutdt que six qui auraient pu envoyer un
paquet sur la banque avant le processeur B. Par conséquent, la probabilité qu’un transfert
soit possible est augmentée. Le chapitre traitant des résultats élabore sur les avantages
qu’apportent 1’utilisation du RoC bidirectionnel. Cette version du RoC implique
cependant 'utilisation de canaux full duplex ainsi qu’un contrfleur de banque plus
complexe. En effet, ce contrbleur doit tenir compte du sens de rotation de la banque
(horaire ou antihoraire) lorsqu’il analyse la requéte provenant du nceud. L’arbitre doit
négliger la moiti€ des bits du bitmap, c’est-a-dire les bits correspondants aux nceuds les
plus éloignés dans la rotation. Ces nceuds seront traités par une banque allant dans le sens

opposé.

—

!
| Ressource
,,J

Ressource

1

B / ’ —
R%Hm :

Ressource

=i

-

| HessourceJ
|

Figure 4.6 : RoC bidirectionnel
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4.4. RoC hiérarchique

Lorsque le nombre de nceuds devient relativement élevé, la latence moyenne augmente
sensiblement, méme avec un RoC bidirectionnel. Ceci est le principal désavantage de la
topologie du réseau en anneau par jeton (Tokern Ring). L’objectif est de garder la latence a
un niveau respectable, nonobstant le nombre élevé de nceuds qui peuvent €tre connectés
au reseau. Cela suggere 1'utilisation d’une structure plus hiérarchique, a I’image des
récentes architectures de bus. Le RoC hiérarchique (Figure 4.7) permet d’atteindre cet
objectif. Un rotateur dans sa version initiale est appelé satellite et plusieurs satellites sont
connectés entre eux via un satellite central. Chaque satellite permet d’incorporer N/S
nceuds, ou N représente le nombre total de ressources a connecter et S représente le
nombre de satellites utilisés. Des interfaces « spéciales » sont utilisées pour acheminer un
paquet d’un satellite & un autre. Cette interface peut étre attachée a un coprocesseur dédié
Ou un processeur qui communique trés peu avec les autres ressources afin de minimiser le
trafic entrant et sortant de ce nceud. Le pire cas découlant de cette topologie survient
lorsqu’un paquet nécessite N/S étapes pour atteindre l’interface, S — 1 étapes pour
atteindre le bon satellite et N/S étapes pour atteindre le nceud destination. Ainsi, pour
traverser ce réseau, un nombre maximal de 2N/S + (S — 1) étapes sont requises,
comparativement a N — 1 étapes pour un RoC traditionnel et a N/2 étapes pour un RoC
bidirectionnel. Le Tableau 4.1 présente le nombre d’étapes nécessaires selon la

configuration utilisée.

Tableau 4.1 : Nombre maximal d’étapes requises pour I’acheminement d’un paquet

Configuration Latence 8 nceuds 16 nceuds 32 noeuds 64 nceuds
RoC traditionnel N-1 7 15 31 63
RoC bidirectionnel N/2 4 8 16 32
RoC hiérarchique | 20> D | 7% o 17% 21%
RoC hicrarchique | g | ¢/ 5% 6* 10% 12%
bidirectionnel

* Indique qu’il faut ajouter deux (2) au nombre d’étapes calculé pour avoir un résultat plus véridique
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Figure 4.7 : RoC hiérarchique

Un délai supplémentaire de deux étapes doit cependant &tre considéré lorsqu’un paquet
passe par le module central. Ce délai provient du fait aux subtilit€s d’implémentation qui

font que le paquet doit passer du tampon d’entrée au tampon de sortie de I’interface
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spéciale pour entrer dans le module central. Le délai pour en sortir est le méme puisque le
paquet doit changer de tampon une seconde fois lorsqu’il atteint le bon satellite. Tel
qu’indiqué au tableau 4.1, I’astérisque (*) indique donc qu’il faut ajouter deux (2) au

nombre d’étapes calculé pour avoir un résultat plus véridique.

Le RoC hiérarchique permet d’augmenter la bande passante du réseau en diminuant la
latence. De plus, une allocation intelligente des ressources permet de garder la plupart des
transactions locales, c’est-a-dire sans passer par le module central. Par ailleurs, le RoC
devient moins coliteux en tampons lorsqu’on le hiérarchise. En effet, malgré le fait que S?
tampons supplémentaires sont nécessaires pour le satellite central, les satellites comptent
pour leur part (N/S)? tampons, plutdt que N2. Pour un RoC a 128 nceuds, 16384 tampons
sont nécessaires dans la version classique. En utilisant 8 satellites de 16 nceuds chacun, ce
nombre passe a 2376! Cela démontre que le RoC hiérarchique rend le réseau hautement
extensible. Jumelé au RoC bidirectionnel, il permet d’atteindre des performances plus
qu’intéressantes. De par sa nature générique, il est possible de configurer les satellites
pour supporter un nombre quelconque de neeuds. Par exemple, pour 29 ressources, il est
possible d’utiliser 5 satellites (4 de 6 nceuds et 1 de 5 nceuds). Si une topologie en maille
était utilisée, il faudrait utiliser 30 commutateurs (5 x 6), ce qui engendrerait un

gaspillage d’un commutateur.

Le prochain chapitre présente les résultats complets sur les différentes configurations.
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CHAPITRE 5 : Résultats et analyse

La validation du modele du RoC s’est faite en trois étapes. Tout d’abord, le cheminement
d’un seul paquet a ét€ analysé pour bien comprendre les interactions entre composants
ainsi que les caprices du simulateur utilisé. Une fois cette étape complétée, le RoC a
ensuite été soumis a une batterie de tests fonctionnels qui ont permis de cerner les limites
du réseau en fonction de différents paramétres configurables. Pour effectuer ces tests,
trois modeles de trafic ont été considérés: « aléatoire », «au méme endroit » et
« voisin ». Ces types de trafic seront décrits plus tard. Finalement, le RoC a été€ utilisé

pour simuler une application multimédia, soit le MPEG4.

Les autres modeles de RoC (bitmap, bidirectionnel et hiérarchique) ont été soumis aux
mémes tests pour isoler leurs avantages et inconvénients. Afin de situer les performances
de ces différents modeles, des simulations supplémentaires ont été effectuées avec les

modeles Token Ring et Hot Potato (maille bidimensionnel décrit a la section 2.3.9).

5.1. Description des simulations fonctionnelles

Des simulations fonctionnelles ont €té faites a 1’aide du simulateur SystemC dans
Penvironnement StepNP. Un petit programme, nommé funcTest, instancie des maitres
(modeles génériques de processeur) et des esclaves (mémoires). Les processeurs ne font
aucun traitement; ils ne font qu’écrire une donnée quelque part sur une mémoire pour la
relire immédiatement apres, de facon a symboliser sa consommation. Les transactions
sont bloquantes, c’est-a-dire que la lecture est faite lorsque I’écriture est complétement
terminée, selon le cheminement illustré a la Figure 3.11. Par ailleurs, il est possible
d’augmenter le trafic dans le réseau en incrémentant le nombre de threads roulant sur
chaque processeur. Ce nombre peut étre spécifi€ a la ligne de commande. Les threads

exécutent tous le méme code. Les maitres et les esclaves sont ensuite attachés au NoC
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pour que la simulation débute. L’ajout d’un parametre de compilation permet de changer

un NoC pour un autre trés aisément.

5.1.1. Détails sur ’environnement

La période de I’horloge est fixée a 3 ns, ce qui correspond & un NoC opérant a 333 MHz.
Cette configuration peut sembler optimiste mais il s’agit seulement d’une référence de

temps. Ainsi, tous les NoC simulés roulent a la méme fréquence.

Pour les simulations, I’interface réseau des différents RoC a été configurée en mode
maitre/esclave, en ce sens qu’elle dessert un maitre et un esclave, comme le montre la

Figure 5.1.

Processeur
Mémoire

Interface

réseau

Figure 5.1 : Utilisation d’une interface maitre/esclave

Par conséquent, une simulation a huit nceuds implique huit processeurs et huit mémoires,

identifiés de 0 a 7.
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5.1.2. Types de trafic

Trois types de trafic ont été employés pour les simulations fonctionnelles. Chaque trafic
permet de mettre en évidence différentes caractéristiques du modele de base ainsi que de

ses varlantes.

5.1.2.1. Trafic aléatoire

Les processeurs écrivent et lisent des données aléatoirement dans une des mémoires. Un
processeur n’est pas autorisé a écrire/lire dans la mémoire avec laquelle il partage une
interface réseau. Par exemple, dans un systeme a huit nceuds, le processeur O peut écrire

dans les mémoires 1 a 7.

5.1.2.2. Trafic « méme endroit »

Tous les processeurs, sauf un, écrivent et lisent des données dans une seule et méme
mémoire. Le processeur qui partage I’interface réseau avec cette mémoire ne fait rien. Par
exemple, a huit nceuds, les processeurs 1 a 7 écrivent et lisent dans la mémoire O pendant

que le processeur O est dans un état inactif.

5.1.2.3. Trafic « voisin »

Chacun des processeurs écrit et lit des données dans une mémoire qui lui est voisine dans
la rotation. Par exemple, toujours pour un systéme a huit nceuds, le processeur 5 écrit et
lit exclusivement dans la mémoire 4 ou la mémoire 6 alors que le processeur 7 écrit ou lit
exclusivement dans la mémoire 6 ou la mémoire 0. Cette configuration représente

grossierement I’exploitation de la localité des ressources.
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5.1.3. perNOC

Les mesures de performance ont été prises grace a un outil d’analyse de performances de
NoC : petNOC (pour performance NOC). Cet outil [FOALO3] est intégré dans StepNP et
permet d’obtenir des résultats d’analyse de performance tels que la latence, la bande
passante et la contention. Lorsqu’une transaction est initiée (fonction putReq), cette
transaction est interceptée par perNOC qui peut ainsi la mémoriser sans son registre.
Lorsque la transaction se termine, pertNOC en est informé, ce qui lui permet de calculer
les différentes valeurs mentionnées précédemment. Le résultat est affiché a 1’écran par
une ligne de commande, ou certaines métriques sont affichées selon la demande de
I’'usager. Un exemple d’affichage est présenté a la Figure 5.2. L’axe des ordonnées
affiche le délai moyen d’une transaction entre un maitre et un esclave. Cette figure
illustre donc quatre maitres (étiquette Master # sur I’axe des abscisses) transigeant avec

autant d’esclaves (une couleur par esclave selon la l1égende).

M Slave 0 g Siave 1 .SIavé 2 Stave 3

Figure 5.2 : Affichage des résultats de performance avec perNOC

5.2. Résultats des simulations fonctionnelles

Voici en rafale quelques résultats qui permettent de caractériser le RoC et de le situer

parmi les autres NoC selon ses forces et ses limitations.



77

5.2.1. Trafic aléatoire

Le trafic aléatoire a pour but de cerner les performances du NoC. Ce type de trafic est
relativement approprié pour les réseaux a grande échelle, mais n’est pas reli€ a la réalité
des SoC, ou les transactions sont déterministes, connues et répétitives. Il s’agit

néanmoins d’un repere intéressant pour une évaluation initiale.

5.2.1.1. Résultats de base

On peut remarquer la tendance en escalier qui découle de I’architecture Token Ring : plus
la ressource est située loin dans la rotation, plus le temps de transfert augmente (Figure
5.3). La latence est donc proportionnelle au nombre de ressources connectées dans le
réseau. Ceci constitue un désavantage par rapport a la topologie en maille ol la latence
est proportionnelle a la racine carrée du nombre de ressources et a la topologie en arbre
ou la latence est proportionnelle au logarithme du nombre de ressources connectées. Le
concepteur devra donc utiliser tous les dispositifs intégrés au RoC de fagon a garder

I’écart minimal entre les autres topologies.

Figure 5.3 : Résultat typique du RoC pour la latence
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5.2.1.2. Effets de I’augmentation du nombre de nceuds

L’ajout de nceuds supplémentaires entraine une augmentation de la latence moyenne des
paquets dans le réseau. Cela va de soi puisque les ressources sont géographiquement plus
¢loignées, en moyenne. Par contre, la bande passante offerte augmente
proportionnellement avec le nombre de nceuds. Ceci est caractéristique des NoC, par
oppsition aux architectures de bus. Le Tableau 5.1 montre par ailleurs que la bande
passante associée 2 un nceud reste relativement constante. Par conséquent, le nceud n’a
pas a se soucier du nombre de ressources connectées dans le réseau lorsqu’une

transaction doit étre effectuée; il y a toujours une place réservée pour lui sur le réseau.

Tableau 5.1 : Effet de I’ajout de nceuds sur la bande passante du RoC

Nombre de noeuds  Bande passante (Gb/s) Bande passante normalisée (Gb/s)
4 3,60 0,90
8 6,89 0,861
16 12,72 0,795

5.2.1.3. Effets de ’augmentation du nombre de threads

L’objectif de ce test est de constater jusqu'ou le RoC peut garder un comportement
normal lorsque le trafic augmente. Le Figure 5.4 montre que pour huit nceuds, la bande
passante sature aux environs de 7 Gb/s. Un agencement optimal des composants sur la

puce permettrait de profiter autant que possible de cette bande passante.
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Bande passante du NoC pour un nombre de
threads par processeur

Bande passante (Gb/s)
O -~ NWhOTIONO®
™~
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Nombre de threads

o
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Figure 5.4 : Saturation de la bande passante

Par ailleurs, lorsque le trafic devient imposant sur le réseau, le phénoméne de saturation
décrit a la section 4.3 se produit effectivement, tel qu’illustré a la Figure 5.5. Pour un
certain nombre de threads par maitre (1, 2, 4, 8 et 12 sur la figure), on note que la latence

dégeénere lorsque ce nombre dépasse 8.

B

S

0

T

=

1 2 12

Figure 5.5 : Dégénérescence de la latence pour un transfert entre deux ressources voisines
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En effet, tel que discuté a la section 4.3 lors de la présentation du RoC bidirectionnel, la
situation observée provient du fait que le tampon rattaché a une ressource voisine dans la
rotation est trés souvent déja occupé par un paquet envoyé par une autre ressource. Le
paquet demeure alors beaucoup plus longtemps dans le tampon de sortie du nceud avant
de pouvoir &tre envoyé. Le RoC bidirectionnel peut régler en partie ce probleme

puisqu’une banque dessert un nombre plus restreint de nceuds.

5.2.1.4. Effets de I’utilisation de la requéte bitmap

Pour un méme nombre de cycles d’exécution, plus de transactions sont effectuées
lorsqu’une requéte de format bitmap est employée plutdt qu’une requéte standard (pour
une destination en particulier). Tel que présenté dans la section 4.1, la requéte bitmap
permet au nceud d’envoyer un paquet plus souvent puisque la banque considere
Pensemble des tampons plutét qu’un seul lors de ’analyse de la requéte. La Figure 5.5
montre une augmentation significative du nombre de transactions complétées alors que la
bande passante du NoC passe de 6,89 a 8,62 Gb/s, soit une augmentation de 25%. De
plus, le colit matériel de ce dispositif est minime (se référer a la section 4.1 pour les

détails).

 R12500 :
a) Requéte b) Requéte
standard bitmap

Figure 5.5 : Augmentation de la bande passante effective avec une requéte bitmap
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5.2.1.5. Utilisation du RoC bidirectionnel

Le RoC bidirectionnel permet de diminuer le temps que prend un paquet a cheminer dans
le réseau, tel que prévu. Une petite pénalité s’ajoute toutefois en début de transfert. Par
conséquent, le paquet doit attendre une étape supplémentaire une fois sur deux, en
moyenne. En effet, pour que le paquet soit envoyé, le nceud doit &tre connecté a une
banque qui se dirige dans la bonne direction. Si ce n’est pas le cas, une seule étape est
perdue puisqu’il est certain que le noeud sera connecté a une banque valide (qui va dans le
bon sens) a I’étape suivante. Cette pénalité est largement compensée par le fait que le
paquet doit traverser au plus la moiti€ des nceuds pour arriver a destination, plutdt que la
totalité dans la version originale du RoC. Une allure en escalier double résulte donc de

cette nouvelle configuration, comme I’illustre la Figure 5.6.

T Masterd

Figure 5.6 : Résultat typique du RoC bidirectionnel pour la latence

5.2.1.6. Utilisation du RoC hiérarchique

Les simulations d’un RoC hiérarchique ont été effectuées avec deux satellites de quatre
neeuds chacun. Les résultats montrent que le RoC hiérarchique est plus ou moins
performant pour un trafic distribué. Ceci s’explique par le fait que les paquets doivent

changer de satellite & deux reprises avant d’arriver a destination. On constate donc deux
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étapes ou le paquet stagne car le nceud qui y est associé doit faire une requéte pour
ensuite envoyer le paquet I’étape suivante. Voila pourquoi la Figure 5.7 montre un écart
plus grand entre les trois premieres destinations, situées sur le méme satellite, et les
quatre autres, connectées a 1’autre satellite. Ceci explique aussi pourquoi on obtient une
latence moyenne supérieure a celle que I’on obtient en utilisant un RoC standard. Par
contre, avec un plus grand nombre de ressources, le RoC hiérarchique devient meilleur
puisque les paquets arrivent a destination plus rapidement, et ce malgré la pénalité

engendrée par I’attente supplémentaire dans les nceuds transitoires.

|

Figure 5.7 : Résultat typique du RoC hiérarchique pour la latence

Par ailleurs, étant donné que tous les paquets externes (dont la destination se trouve sur
un autre satellite) doivent transiter par le méme nceud, ce nceud peut devenir le goulot
d’étranglement dans le réseau lorsque le trafic augmente. En effet, si un paquet ne peut
accéder au satellite central en raison d’un tampon plein, un autre paquet arrivant au nceud
transitoire doit &étre stocké dans un FIFO. Voilad pourquoi le RoC hiérarchique est a
proscrire pour un trafic tres distribué. Cependant, les sections suivantes montrent qu’il est

plus approprié pour un trafic local.
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5.2.1.7. Effets de la diminution du nombre de tampons sur une banque

Une des préoccupations que souléve le RoC est la surface qu’il peut occuper sur la puce
avec le nombre de tampons requis sur chaque banque qui croit de fagon quadratique. La
consommation de puissance et 1a taille qui en résultent peuvent étre source d’inquiétude
pour le concepteur. Des simulations ont été effectuées pour valider le taux d’utilisation
moyen des tampons ainsi que ’effet d’une réduction du nombre de tampons sur les
performances. Le Tableau 5.2 montre que le taux d’utilisation des tampons tourne autour
de 50% avec un RoC utilisant le bitmap. Cette donnée concorde avec la supposition
qu’un paquet parcourt la moitié des noeuds pour arriver a destination, en moyenne. Avec
I’utilisation du RoC bidirectionnel (incluant la requéte bitmap), le taux d’utilisation passe
a 25%, étant donné que les paquets parcourent maintenant le quart des noeuds totaux, en
moyenne. Ces résultats laissent présager qu’il est possible de réduire considérablement le
nombre de tampons et donc D’espace occupé par le NoC sans en dégrader les

performances.

Tableau 5.2 : Taux d’occupation moyen des banques pour un RoC 2 8 nceuds

Moyenne d’utilisation de tampons a saturation Pourcentage

RoC 2,64 33.0%

RoC bitmap 3,52 44.0%
RoC bidirectionnel 1,89 23.6%
RoC hiérarchique 1,35 16.9%

En effet, les simulations montrent que la réduction du nombre de tampons affecte peu la
latence des paquets, méme dans le cas d’un trafic élevé (huit threads par processeur).
Dans le cas du RoC bidirectionnel, ce n’est que lorsque le nombre de tampons occupés
atteint 25% du nombre total que le réseau perd de son efficacité, comme le présente la
Figure 5.9. Néanmoins, il faut apporter plus de soin au contréleur de la banque étant
donné qu’il est impossible d’associer une destination & un tampon. Les tampons

deviennent alors partagés. Une solution simple pour éviter la confusion est de comparer
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le numéro du nceud connecté a la banque avec un registre indiquant si un des paquets
présents dans les tampons a ce numéro comme destination. Le registre doit également
indiquer dans quel tampon le paquet en question se retrouve afin de transférer le bon
paquet au nceud destination. Cette fagcon de procéder est commune dans la plupart des
réseaux existants. Par ailleurs, une modification doit &tre apportée a I’arbitre de la banque
puisqu’il ne doit pas y avoir deux paquets de méme destination sur une seule banque.
Cette situation est impossible dans la version standard du RoC mais elle pourrait survenir
dans le cas ol les tampons ne sont plus assignés 2 des destinations spécifiques. Etant
donné que le nceud ne peut recevoir qu'un paquet a la fois, un paquet de méme
destination se trouvant sur une banque devrait effectuer une autre rotation compléte avant
de pouvoir étre délivré, ce qui dégraderait la performance. Pour empécher ce probleme,

des flags pourraient &tre utilisés pour indiquer les destinations déja couvertes par les

2

Figure 5.8 : Effet de la diminution du nombre de tampons sur la latence avec un RoC bidirectionnel a

paquets se trouvant sur une banque a un temps donné.

8 noeuds
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5.2.1.8. Comparaisons avec les réseaux Token Ring et Hot Potato

La Figure 5.9 illustre la bande passante offerte par différents réseaux selon le nombre de
ressources qui s’y connectent. Tel que prévu, un réseau conventionnel comme le Token
Ring sature tres rapidement et I’ajout de ressources n’a aucun effet sur la bande passante
et donc dégénere les performances. Les autres réseaux se comportent de facon extensible,
en ce sens que leur bande passante est proportionnelle au nombre de ressources
connectées. Pour un trafic aléatoiré, le RoC bidirectionnel a le dessus sur le RoC
standard, alors que le RoC hiérarchique performe moins bien. Outre la version
hiérarchique, les différentes configurations du RoC se comparent avantageusement au

réseau en mailles Hot Potato (section 2.3.9).

| TokenRing
‘+ RoC

{ —¥— RoC Bitmap
‘\—0— RoC bidirectionnel

— e —
o n E-N
f .

—+— Roc hierarchique
—é—HotPotato |

bande passante (Gb/s)

0 5 10 15 20

nombre de noeuds

Figure 5.9 : Bande passante pour différents NoC

Il faut par contre faire treés attention aux résultats présentés par la Figure 5.9. Tout
d’abord, ces résultats découlent de I’hypothese selon laquelle les commutateurs de tous

les réseaux transferent un paquet a la méme fréquence (333 MHz dans la simulation).
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Pour mesurer la réelle bande passante des réseaux sur puce, il faudrait travailler 2 un
niveau d’abstraction plus bas, ou les résultats de syntheése permettraient de chiffrer
exactement ce que les différents réseaux peuvent donner. Cependant, les résultats obtenus
sont treés encourageants pour le RoC et ses variantes puisqu’ils se démarquent du réseau
en maille méme en présence d’un trafic aléatoire. Finalement, chaque commutateur du
réseau est constitué de cing tampons et d’un crossbar 5 x 5. A 16 ressources, 80 tampons
sont donc nécessaires, ainsi que 16 crossbars. Un RoC bidirectionnel a 16 ressources
nécessite 64 tampons et trés peu de logique supplémentaire, ce qui le rend gagnant pour
I’espace occupé et la puissante dissipée. Ces estimations sont formulées sous toutes
réserves. Tel que mentionné plus haut, des simulations a plus bas niveau devront étre
effectuées pour les valider. Toutefois, cette tdche dépasse le cadre de la présente

recherche et devra étre faite dans des travaux futurs.

Par ailleurs, une caractéristique intéressante des NoC est le pourcentage d’utilisation de
ses composants. Cette métrique, appelée load en anglais, se définit comme le degré de
sollicitation des interfaces entre le réseau et les ressources qu’il dessert. Pour le RoC, en

supposant une étape de trois cycles d’horloge, le taux d’utilisation est équivalent a :
Nombre de threads * 3 / latence moyenne en nombre de cycles
Pour le Hot Potato, le taux d’utilisation sera égal a :
Nombre de threads / latence moyenne en nombre de cycles
puisque les commutations se font a chaque cycle. La Figure 5.10 montre le taux
d’utilisation du réseau pour différents NoC avec un trafic aléatoire. Tout d’abord, comme
prévu, le modele du Token Ring sature tres rapidement puisqu’une seule requéte peut étre

traitée a la fois. Le RoC dans sa forme classique sature a environ 66%, ce qui se compare

avantageusement a un réseau comme Hot Potato, qui sature a 57%, ou a SPIN, qui sature
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a 28% [ACGMO3]. Par ailleurs, la configuration bidirectionnelle du RoC permet de
réduire la latence moyenne d’un transfert et ainsi d’approcher un taux d’utilisation de
83%, ce qui est considérable dans un contexte ou l’accent est beaucoup mis sur la
réutilisation des composants. Le taux d’utilisation diminue toutefois lorsqu’on utilise le
RoC dans sa version hiérarchique. Tel que mentioné plus haut, ce phénomeéne s’explique
par le fait que les paquets doivent souvent changer de satellite, ce qui crée un goulot
d’étranglement au niveau des ponts entre satellites. La Figure 5.10 vient donc confirmer
une fois de plus que le RoC hiérarchique se comporte trés mal en présence d’un trafic
aléatoire et qu’il offre de meilleures performances pour des transactions majoritairement

locales.
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100 ———— e RoC hiérarchique
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Figure 5.10 : Pourcentage d’utilisation de I’interface réseau (neeud)

Une conclusion intéressante est que le réseau en mailles peut satisfaire une application
nécessitant une faible latence alors que la famille des RoC peut se révéler un choix

intelligent pour une application roulant sur une puce od I’espace est restreint et oi la
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consommation de puissance est un enjeu important. D’autres réflexions portant sur ce

sujet sont présentées dans la conclusion.

5.2.2. Trafic dirigé

Le trafic dirigé est un test qui vient mettre en évidence une faiblesse du RoC : le chemin
unique. Peu importe la paire de ressources A et B dans tout le réseau, il n’existe qu’un
seul chemin possible pour acheminer les paquets entre A et B. Quel que soit le type de
RoC utilisé (standard, bidirectionnel ou hiérarchique), un seul chemin de transmission est
possible. Dans un réseau a grande échelle, cette situation est rarissime en raison du risque
de bris de liaison ou de panne de commutateur. Dans un systéme sur puce, ce risque est
minime et 1’accent ne doit pas étre mis sur la tolérance aux fautes. La constatation
majeure qui découle de ce test est qu'une source géographiquement proche de sa
destination n’a jamais la chance d’envoyer de paquets, toujours selon le phénoméne
présenté a la section 4.3. Ainsi, la Figure 5.11 montre que les processeurs 10 a 15 peuvent
envoyer des paquets a la mémoire O (slave 0), alors que les autres processeurs sont
bloqués et ce méme s’ils se retrouvent plus pres dans la rotation (le processeur 1 étant le
plus proche). Il est a noter que le méme phénomene est observé pour le RoC
bidirectionnel alors que les processeurs du milieu sont avantagés, puisque le voisin le
plus éloigné de la mémoire O est le processeur 8. Par conséquent, les processeurs 6 a 10

ont un avantage.
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Figure 5.11 : Bande passante pour un RoC standard a 16 nceuds suivant un trafic dirigé (8 threads /

processeur)

Ceci constitue donc une limitation par rapport au réseau en mailles utilisant un routage
adaptatif comme c’est le cas pour Hot Potato (Figure 5.12). Etant donné que la ressource
est accessible par quatre directions différentes et que les paquets sont délivrés selon une
priorité qui augmente au fur et a mesure que le paquet demeure dans le réseau, toutes les
ressources ont donc une chance relativement égale d’envoyer un paquet a une méme
destination. Il est a noter que I’algorithme de routage utilis€ a une influence sur le
comportement du systeme. Par exemple, avec une maille bidimensionnelle, les résultats
seraient proches de ceux obtenus avec le RoC si un routage de type X-Y était utilisé
puisqu’il existerait moins de chemins pour router les paquets. Cela revient toujours a un

compromis entre la performance et le cofit.
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Figure 5.12: Bande passante pour un réseau Hot Potato 4 16 neeuds suivant un trafic dirigé

Toutefois, pour le RoC, il est impossible de remédier a cette situation étant donné la
nature méme du réseau. Par contre, une chose est certaine : pour un réseau a N nceuds, il
est toujours possible d’avoir N paquets simultanément en route pour une méme
destination, ce qui est considérablement meilleur que ce que peuvent offrir les topologies

de bus et d’anneau.

5.2.3. Trafic voisin

Ce type de trafic montre jusqu’a quel point le RoC peut €tre considéré comme un réseau
intégré sur puce trés peu coliteux si certaines conditions sont respectées. Dans le cas ou
les communications se limitent & des transactions entre ressources voisines 1’une de
I’autre, I’utilisation du RoC bidirectionnel permet de sauver énormément d’espace,
puisqu’un seul tampon sur 8 est occupé, en moyenne (voir Tableau 5.4). Les tampons
forment le plus gros de I’espace consacré au NoC, un peu comme la mémoire occupe
maintenant la majorité de la surface d’'un SoC. S’il est possible de réduire de 85% le
nombre de tampons requis par la spécification de base, le réseau ne constituera pas une
énorme surcharge pour le systeme entier. Un tel trafic semble a priori utopique et

irréaliste, mais il n’est pas rare dans la réalité d’observer des systemes sur puce pour
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lesquels une ressource communique majoritairement avec une poignée d’autres

composants.

Tableau 5.3 : Taux d’occupation moyen des banques pour un RoC a 8 neeuds

Moyenne d’utilisation de tampons a saturation  Pourcentage

RoC 3,15 39.4%

RoC bitmap 3,91 48.9%
RoC bidirectionnel 0,98 12.3%
RoC hiérarchique 2,22 27.8%

Voila pourquoi la connaissance et la maitrise de 1’application qui s’exécute sur le systéme
dédié sont essentielles puisque cela permet au concepteur d’incorporer un réseau qui rend
les communications performantes sans donner 1’impression qu’il prive le développeur
d’espaces utilisables. Il est a noter que les résultats découlant des simulations faites avec
le Hot Potato ne sont pas discutés ici puisqu’ils n’apportent aucune information

supplémentaire aidant & la comparaison entre les différents réseaux.

5.3. Simulations du RoC avec une application multimédia

Des simulations supplémentaires ont été effectuées pour évaluer les performances du
réseau sur puce RoC lorsqu’il doit répondre a un trafic se rapprochant davantage de la
réalité¢ des systémes sur puce. Différentes configurations du RoC ont donc été soumises
au trafic découlant du modéle d’un encodeur MPEG4, modéle développé par
STMicroelectronics. Cet encodeur transforme une image vidéo de format AVI en image
vidéo de format MPEG. Le Tableau 5.4 donne la liste des modules nécessaires a

I’encodage ainsi que le role qu’ils viennent jouer dans le traitement.
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Tableau 5.4 : Description des modules de I’encodeur MPEG4

Processeur ARM Unité principale de traitement de I’encodage MPEG

Serveur DNS Module associant un numéro d’identification & un composant
Module DCT Module matériel dédié effectu'fmt une transformée discrete en
cosinus
Module matériel dédié calculant la différence entre les valeurs des
Module SAD )
pixels de deux macroblocs
Module de Module matériel dédié effectuant la quantification d’un macrobloc
quantification (opération requise par I’encodage MPEG)
Module dont la fonction est de lire le fichier d’entrée image par
Module Videoln image a partir du disque dur et de placer ces images dans la
mémotre de la plate-forme
Module VideoOut Module dont la fonction est d’écrire le ﬁchler de sortie sur le disque
dur de la machine
Stack RAM Pile rattachée & chacun des processeurs ARM
Text RAM Mémoire contenant le programme a exécuter
Heap RAM Section de mémoire (monceau) utilisée par les processeurs pour
effectuer leurs calculs
Module de gestion | Module permettant de créer des threads ainsi que de leur allouer
de concurrence I’exclusivité aux ressources du systéme
Module Horba Module resppn,sable de lfl repartltlf)r_l de certaines fonctions aux
différents maitres (matériels ou logiciels)

Par ailleurs, le Tableau 5.5 regroupe différents parametres utilisés pour la simulation. Il

est & noter que le nombre de threads matériels s’applique aux modules DCT, SAD,

VideoOut, ainsi qu’au module de quantification.

Tableau 5.5 : Paramétres de simulation

Classe Description
Nombre de processeurs 8
Nombre de threads par processeur 4
Taille de la pile / thread 4096 octets
Taille de la pile / processeur 16 Ko
Période de I’horloge des processeurs 5000 picosecondes
Fréquence du systéme 200 MHz
Taille de la Text RAM 384 Ko
Taille de la Heap RAM 1192 Ko
Nombre de threads matériels 32
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Comme le montre la Figure 5.13, ce modele d’encodeur MPEG4 utilise au total 26
ressources qui peuvent étre réparties sur autant de nceuds. Ce modele a été simulé selon
trois configurations différentes du RoC. Les trois configurations utilisent la requéte

bitmap plutdt que la requéte originale.

bCT
Component

SAD VideoOut Videoln
Component i Component Component
L
( }, El\ ( )El

™ maitre
T Concurrency HORBA N
i Engine (i / esclave

—

Figure 5.13 : Configuration 4 26 neeuds

5.3.1. RoC classique / 26 nceuds

Une premiere configuration se veut &tre le RoC de base ol un nceud dessert une seule
ressource, qu’elle soit maitre ou esclave. On retrouve donc 26 nceuds (se référer a la
Figure 5.13 et au Tableau 5.5 pour les descriptions des modules) autour d’un rotateur
central. Afin d’observer les effets du mapping sur les performances, tous les modules
maitres se suivent dans la rotation. Il en est de méme pour tous les modules esclaves, tel

qu’illustré a la Figure 5.14 (a noter le sens de rotation).

5.3.2. RoC bidirectionnel / 14 necuds

Le RoC bidirectionnel permet bien slir de réduire la latence en permettant au paquet de
prendre le chemin le plus court entre sa source et sa destination. Cependant, le grand
nombre de nceuds garde la latence relativement élevée. Une fagon de réduire le nombre
de nceuds dans le réseau est de jumeler un maitre et un esclave. Le nceud (interface) doit
agir en arbitre et acheminer un paquet au bon destinataire (maitre ou esclave). Ceci est

possible avec le protocole OCP puisqu’un des champs du paquet contient le type de
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ressource qui ’a initi€ (maitre ou esclave). Un examen sommaire du trafic créé par les
ressources suggere d’emblée le jumelage entre les processeurs et leur pile. Cette
association permet de diminuer le nombre de paquets injectés dans le réseau et ainsi de
diminuer une possible contention. La Figure 5.15 résume cette configuration. Deux

ressources se retrouvent seules puisqu’il y a 14 maitres comparativement 2 12 esclaves.

DCT
l Component .
SAD

! Component

1 Quantize
.*** - ‘i Component
\ i L
"{ procO0 |
‘ VideoOut
B N | Component
HORBA | 5
|

Videoln
Component

Concurrency

|
‘
Engine |

Figure 5.14 : Ordre des ressources dans la rotation

5.3.3. RoC hiérarchique / 14 nceuds

Le RoC hiérarchique utilise la méme distribution maitre/esclave associée au nceud. Pour
cette configuration, deux satellites de 7 nceuds sont utilisés. Rappelons qu’un rotateur

central permet de relier entre eux les satellites externes.
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proc O proc 7
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Figure 5.15 : Configuration & 14 neeuds

5.3.4. Résultats obtenus

Les résultats ont ét€ pris aprés I’encodage d’une seule image (le fichier en comprenant
30, formant ainsi une séquence vidéo d’une durée d’une seconde). En examinant la nature
des transactions entre les différents modules, on constate que ce type de trafic n’avantage
pas nécessairement le RoC. En effet, la Figure 5.16 montre que la plupart des maitres
initient des transactions a deux esclaves en particulier: I’esclave #9 (Heap RAM) et
I’esclave 11 (Horba). Ainsi, cette situation tend a se comparer au trafic de type méme
endroit (section 5.1.2.2) ou tous les paquets sont dirigé€s au méme endroit. Ce type de
trafic meéne a une hausse de la contention pour ces deux esclaves. Les simulations de la
version de base du RoC montrent en effet que jusqu’a 30 paquets a la fois doivent se

diriger a la mémoire. Ce nombre augmente a 55 en ce qui attrait au Horba.
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Figure 5.16 : Nombre de transactions traitées par les esclaves (réponses)

La Figure 5.17, la Figure 5.18 et la Figure 5.19 montrent les délais moyens obtenus pour
I’envoi d’un paquet d’un maitre a un esclave en utilisant le RoC classique a 26 nceuds, le
RoC bidirectionnel 2 14 nceuds et le RoC hiérarchique & 14 nceuds, respectivement. On
constate a la Figure 5.18 que la latence moyenne entre le maitre 7 (processeur ARM) et
I’esclave 9 (Heap RAM) est trés élevée, comparativement aux autres latences. Ce
phénomene découle du fait qu’a un certain moment de la simulation, tous les processeurs
communiquent en méme temps avec la mémoire. Or, I’utilisation du RoC bidirectionnel
fait en sorte que, pour ce mapping, les processeurs 2 a 7 utilisent des banques allant dans
le sens horaire, alors que les processeurs O et 1 ainsi que les autres maitres (excepté le 8)
utilisent des banques allant dans le sens anti-horaire. Ainsi, le processeur 7 a de tres
fortes chances de se buter a un tampon plein étant donné que cinq autres processeurs ont
acces aux banques avant lui. Ce phénomene ne se produit pas pour le RoC classique
puisque tous les composants ont acces a I’ensemble des banques, et non a la moitié. Une
facon de diminuer 1’ampleur de ce probleme serait de changer la disposition des

ressources, en insérant la mémoire Heap entre les processeurs #3 et #4, par exemple.



Tave 1 @Slave 2 Siave 3 Slaved WSfave s
Slave 1§

Figure 5.18 : Latence moyenne des paquets (en ns) en utilisant le RoC bidirectionnel

Master fo

Figure 5.19 : Latence moyenne des paquets (en ns) en utilisant le RoC hiérarchique
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Par ailleurs, pour ce type de trafic, on ne note pas de véritable amélioration sur la latence
lorsqu’on passe d’un modéle a un autre. Ceci est encore di a la forte contention qui garde
les paquets « prisormiers » sur les neeuds pendant plusieurs rotations. A cet effet, le
Tableau 5.6 présente le délai maximal observé pour une transaction (maitre-esclave ou
esclave-maitre). Encore une fois, pour le RoC bidirectionnel, la situation présentée ci-
haut conduit a un délai maximal de 2 550 000 ns, soit I’équivalent de 170 000 étapes
(rotations). Un paquet est donc prisonnier sur un nceud pendant 1’équivalent de plus de 12
000 tours complets! Si ’encodage doit étre effectué en temps réel, cette situation est tout
simplement catastrophique, méme si les contraintes de temps sont assouplies. Par
conséquent, ’analyse du trafic relié a 1’application ainsi que la disposition des
composants du systtme sont deux critéres primordiaux qui permettront d’utiliser

efficacement un réseau intégré sur puce comme le RoC.

Tableau 5.6 : Latence maximale observée avec le trafic MPEG4 selon différentes configurations

Classe Latence maximale (ns) Rotations équivalentes
RoC classique, 26 nceuds 6100 407
RoC bidirectionnel, 14 nceuds 2 550 000 170 000
RoC hiérarchique, 26 nocuds 7500 500

A la lumiére des résultats obtenus, on peut conclure que le RoC est un réseau qui s’inscrit
a merveille dans le contexte de la réutilisation étant donné le taux d’utilisation élevé de
ses composants. Il est facilement extensible et peu cofiteux en matériel, dans la mesure ou
certaines optimisations sont employées. Le désavantage principal de ce réseau est sa
latence, proportionnelle au nombre de composants qui y sont connectés. Cependant, dans
le contexte d’un systéme dominé par des données, la latence importe peu, 1’accent étant
mis sur le débit. Par contre, pour un systéme dominé par du contr6le ou des contraintes de

temps réel dures peuvent s’appliquer, une latence élevée peut constituer un probléme.
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Conclusion et travaux futurs

L’étude des systemes intégrés sur puce a permis de mettre en évidence quelques unes de
leurs lacunes, en particulier les problemes découlant des architectures actuelles de
communication. En approfondissant le domaine récent des réseaux sur puce et en
intégrant les concepts de réseautique sur des systemes a plus petite échelle, 1’idée est
venue de concevoir un NoC qui utilise efficacement les ressources limitées dont il
dispose. Le RoC se veut un réseau sur puce facilement extensible qui, lorsque optimisé,
consomme peu de ressources tout en offrant une bande passante respectable et une
latence relativement basse. Le RoC n’est pas congu pour optimiser la latence. D’ailleurs,
un réseau en mailles comme le Hot Potato et méme la plupart des architectures de bus
effectuent les transactions en un temps moindre en absence de contention. L’idée derriere
le RoC est de mettre I’accent sur la réutilisation maximale des ressources. Tel
qu’expliqué dans le chapitre 1, le développement rapide d’un systéme sur puce repose sur
la réutilisation des blocs IP préalablement congus. Cette idée peut également étre percue
d’un autre angle : celui d’une utilisation optimale de ces blocs. Le RoC rencontre cet
objectif, puisque la topologie et le routage engendrent un trés haut taux d’utilisation de
ses composants (jusqu’a 80% pour un RoC bidirectionnel). Cette caractéristique est un
atout pour le développement de systémes performants ol I’espace disponible est limité. Il

est plus avantageux de privilégier un design ot 10 blocs operent a 100% plutdt que 20 a
50%.

Pour valider la fonctionnalité du NoC développé dans le cadre de ce projet, le RoC a été
soumis a plusieurs types de trafic. Les différentes simulations, que ce soit celles
correspondant a un trafic aléatoire ou celles rattachés a 1’application MPEG4, ont permis
de mieux cerner les possibilités du NoC de méme que ses limitations. Les performances
du RoC dépendent énormément de la nature du trafic (distribution des destinations) ainsi

que de ’ordre dans lesquels les composants sont disposés sur la puce. Le développeur a
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donc tout a gagner a effectuer une analyse approfondie de 1’application, étant donné que

la plupart des SoC sont dédi€s a une tache bien précise.

La contribution majeure de ce travail est le développement du modele du RoC a haut
niveau et I’intégration de ce modele dans une plate-forme d’exploration architecutrale. Le
modele a haut niveau a permis de valider I’algorithme et la fonctionnalité des composants
du NoC alors que son intégration a permis de caractériser ses performances et de le
comparer avec d’autres topologies. Les résultats prometteurs ouvrent la voie a de grandes
possiblités au niveau du traitement des applications de type stream. En plus de s’inscrire
parfaitement dans le contexte de la réutilisation grice a un taux d’utilisation élevé de ses
composants, le RoC cherche a diminuer la surcharge en espace et en puissance qui

accompagne 1’ajout d’une architecture de communication structurée.

Considérations pour le futur

Le monde des réseaux intégrés sur puce en est encore a ses balbutiements. Plusieurs
universités et compagnies développent leurs propres topologies en espérant trouver la
configuration idéale. On en est donc encore a I’étape de I’expérimentation et des
découvertes. D’ici les cinq prochaines années, il sera primordial de développer des
normes reli€es aux NoC pour faire converger les recherches sur quelques aspects des
réseaux. Une classification des NoC selon les applications et les ressources matérielles
disponibles permettra de proposer des systeémes multiprocesseurs complets incluant le

réseau sur lequel les processeurs communiqueront.

Par ailleurs, il faut garder en téte que les réseaux intégrés sur puce ne constituent pas la
solution pour tous les problémes reli€s aux communications sur puce. Les NoC apportent

aussi quelques problémes avec eux.
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On s’attend a ce que les NoC prennent une part notable du budget alloué a I’aire des SoC,
en raison de la complexité grandissante des algorithmes de routage et des politiques de
gestion des transactions, qui affectent le chemin de contrble des interconnexions. Par
ailleurs, ’ensemble des commutateurs en charge de réaliser I’acheminement a haute
vitesse des paquets requiert une fraction significative de I’aire disponible [BOZZ04]. Le
probléme reli€ a I’optimisation de la taille des tampons des commutateurs demeure entier.
En effet, rejeter un paquet ou le router inadéquatement en raison d’une taille de tampon
inappropriée réduit les performances et augmente la consommation de puissance sur la

puce [VAMAQ2].

En général, le développement d’un SoC implique 1’intégration de plusieurs blocs
spécialisés issus de différentes technologies. Ainsi, on se retrouve avec plusieurs noyaux
(core) ayant des tailles, des fonctionnalités et des requis de communications différents
(voir Figure 1 b)). Par conséquent, il peut &tre impossible d’employer une structure
réguliere, comme celle illustrée a la Figure 1 a). De plus, la bande passante requise par
les différents blocs peut varier énormément, certains d’entre eux n’ayant méme aucun
besoin de communiquer. En utilisant un tel systtme jumel€ a une architecture en mailles,
par exemple, on peut constater une sous-utilisation des liens et des commutateurs a un
endroit ou une congestion locale & un autre endroit. Ces facteurs motivent 1’utilisation

d’un réseau spécifique a une seule application [BEBE(04].
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a) Homogénséité b) Hetérogénéité

Figure 1 : Homogénéité de la topologie versus hétérogénéité des blocs et des communications

Malgré I’émergence des NoC, une place de choix est encore disponible pour les
architectures de bus. Ces architectures peuvent en effet servir de premier niveau de
communication entre quelques blocs, le trafic restant étant acheminé a un deuxieéme
niveau de communication, le NoC proprement dit. La Figure 2 montre en effet qu’un
maitre (M) qui communique fréquemment avec quelques esclaves (E) peut utiliser un bus
pour le faire. Le trafic destiné a d’autres blocs est acheminé au NoC via un pont (P). Les
raisons pour utiliser cette configuration sont multiples. D’une part, le bus permet une
meilleure utilisation de la bande passante offerte puisqu’un méme lien est partagé par
plusieurs blocs ayant des requis différents. D’autre part, les interfaces réseau sont plus
coliteuses en espace qu’un adaptateur de bus. En changeant les interfaces pour des

adaptateurs, le cofit global en espace occupé par le réseau de communication diminue.



103

G
N\

Ro \ P
—//
1

Gkl
|
ST

E

Figure 2 : Utilisation d’un NoC conjointement & une architecture de bus

Finalement, le nombre de commutateurs est réduit significativement lorsque les bus sont
utilisés. Cela est un avantage puisque les commutateurs sont plus gourmands en espace
que les bus, étant donné les files de paquets et les algorithmes plus complexes que leur

utilisation nécessite [WIGO02].

Travaux futurs

A la lumire de ces considérations, les travaux qui pourraient découler de ce projet sont
nombreux. Le modele initial du RoC (ainsi que ses variantes) néglige toute forme de
contrdle de flot. Cette situation mene a un indéterminisme qui proscrit 1’utilisation du
RoC lorsque des contraintes de temps réel sont en jeu. Un travail intéressant a effectuer
serait donc d’étendre le réseau a I’ensemble des domaines d’applications en ajoutant des
caractéristiques reliées au controle de flot. Une premicre caractéristique serait de
supporter la réservation de tampons pour une utilisation exclusive. Par exemple, le nceud
#0 aurait ’exclusivité des tampons associés a la destination #2 le temps qu’il envoie un
stream de données. Cette caractéristique permettrait une meilleure maitrise du mode en

rafale (burst) présenté a la section 4.2.

Une deuxieéme caractéristique serait de contrOler la rotation des banques de fagon

individuelle. La Figure 3 présente une situation ol un trafic jugé plus prioritaire arrive a
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sa destination, le nceud #1 d’un RoC a 4 ressources. La rotation des tampons associés a la
destination 1 pourrait étre interrompue pour donner le temps a la ressource #1 d’accepter
les paquets provenant de l’extérieur. Toutefois, les rotations des tampons associés aux
destinations 0, 2 et 3 pourraient continuer de facon a permettre a ces trois ressources de

communiquer entre eux.

Cette caractéristique sous-entend que le RoC supporte des trafics de priorités différentes,
ce qui n’est pas le cas actuellement. L’algorithme utilisé présentement est basé sur le
tourniquet, qui donne une chance égale a toutes les destinations. L’ajout d’une priorité
dans le processus de décision se rapprocherait davantage de la réalité des systemes sur
puce et des systemes embarqués temps réel. Un systéme de priorit€s dynamiques pourrait
également &tre instauré pour €viter la famine d’un trafic toujours interrompu par des

transactions plus prioritaires.

3 C 1
trafic prioritaire

provenant d'une
source externe
2 a destination de
#1

Figure 3 : Exemple de controle de flot

Travaux reliés

Deux projets reliés au RoC ont été réalisés ou sont en voie de 1’€tre. Un premier projet
consiste a modéliser le RoC a plus bas niveau afin de le caractériser sur ’espace réel qu’il

peut occuper, la fréquence d’opération qu’il peut atteindre ainsi que la puissance qu’il
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dissipe. Ce projet est en cours de réalisation et les résultats seront éventuellement

disponibles dans [STPIOS].

Un deuxieme terminé en avril 2005 a €té la modélisation en SystemC du HyRoC (Hyper
Ring on Chip) imaginé par la compagnie STMicroelectronics. Le HyRoC, qui est illustré
a la Figure 4, se veut un réseau bidimensionnel de nceuds, chaque nceud étant connecté a
4 rotateurs RoC. De ces quatre roues (dans la nomenclature HyRoC), deux sont
horizontales et les deux autres sont verticales. C’est comme si un nceud €était connecté a
deux RoC bidirectionnels, a I’exception que le nceud peut transiger avec 4 banques a la
fois, une par roue. Le modele initial du HyRoC permet donc a un nceud de recevoir ou
d’envoyer plusieurs paquets a la fois, ce qui n’est pas possible avec le RoC. La topologie
en maille permet d’utiliser le routage XY pour s’assurer de I’ordre d’arrivée des paquets.
Avec une configuration de huit maitres et huit esclaves (4 x 4) et un trafic aléatoire, les
résultats préliminaires montrent que les délais restent stables méme lorsqu’on augmente
le nombre de threads par processeur et le HyRoC offre une bande passante de 17 Gb/s,

comparativement a 14 Gb/s pour une méme configuration.
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Figure 4 : Vue d’ensemble du HyRoC (Hyper Ring-on-Chip)

Les NoC en sont encore a leurs débuts et les recherches des prochaines années

permettront de mieux les caractériser de fagon a en tirer le meilleur profit.
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ANNEXE A
Fichier d’intégration du RoC classique a la plate-forme
StepNP

Cette section contient le code du fichier SOCPFuncROC.h qui se veut le pont entre le

protocole OCP et le RoC.

#include <stdlib.h>

#include <iostream.h>

#include <stream.h>

#include <string>

#include <systemc.h>

#include <component/interconnect/include/packet.h>
#include <component/interconnect/include/socp.h>

#include <component/interconnect/include/bitmap.h>
#include "bank.h"

#include <component/interconnect/include/node.h>

#include "circularChannel . h"

#include <component/interconnect/instrumentation/perNoc.h>
#include <component/interconnect/include/socpChannelBase.h>

#define MASTERS 14
#define SLAVES 12
#define MAXTHREAD 32

typedef uint AddrT;
typedef uint DataT;

template <class AddrT, class DataT, int NB_NODES = 8, int NB_MASTERS=8,
int NB_SLAVES = 8, int MAX MASTERS = 32, int MAX SLAVES = 32>

class SocpFuncROC:
public SocpChannelBase<AddrT, DataT, MAX MASTERS, MAX SLAVES> {

private:

typedef SocpInfo<AddrT, DataT> Info;

typedef Buffer<AddrT, DataT> buffer;

typedef Packet<AddrT, DataTs> packet;

typedef Bitmap<NB NODES> bitmap;

typedef Node<AddrT, DataT, NB _NODES> node;

typedef Bank<AddrT, DataT, NB_NODES> bank;

typedef CircularChannel<AddrT, DataT, NB _NODES> circular connect;
typedef sc_fifo<packet*> fifo;

public:

int numReq;

sc_buffer<packet> resPack[NB_NODES*2] ;
int i,3;

# define MAX ILEAVE 8
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struct I1I {

AddrT al, a2; /
int startSlave; /
int numSlave; /
int offsetBits; /

/ -- address range of interleave

/ -- slave where we start the interleave
/ -- how many slaves we interleave over
/ -- start bit # in addr for interleave

11T() {
al = a2 = 0
startSlave
offsetBits

o
~ R

} il1IMAX ILEAVE+1];
int numIL;

long compteur, compteur2;
node* nodes [NB_NODES] ;
bank* banks [NB_NODES] ;
circular connect* core;
packet* input;

packet* output;

sg_in<bool> clk;

Info* start [NB_NODES] [NB_NODES] [MAXTHREAD] ;
bool flag[NB NODES] [NB NODES]} [MAXTHREAD] ;

// burst from that source, a second dimension is added in case of
multithreaded source

burst

DataT* dataPtr[NB_NODES][NB_NODES][MAXTHREAD]; //
value
unsigned int cnt[NB_NODES][NB_NODES][MAXTHREAD];

long getCycle () {return core->getCyclel();}
double getBufferUsed() {return banks[o]—>getBufferUsed();}

void dynamic_run() {
while (1) {

sc_spawn (sc_bind (&SocpFuncROC: : fifo_in2output_buffer,

this)) ;

sc_spawn (sc_bind (&SocpFuncROC: : input_buffer2fifo_out,

this));

sc_spawn (sc_bind (&SocpFuncROC: : fifo_out2destination, this));
wait (3);

}
}

void fifo_in2output_buffer ()

packet* pack;

int s, 4d;
for(i = 0; i < NB_NODES; i++)
for(j = 0; j < NB_NODES; j++) {
if (nodes[i] -> output_buffer[j] ->isFull() != 1)

if (nodes[i] -> fifo_in[j] -> nb_read(pack)) {
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//debugging

s = pack -> getSource();

d = pack -> getDestination();

if ((s != i) or (d != j)) cout << "DANGER: mixmatch
in fifo_in" << endl;
#ifdef ROC_DEBUG1

cout << " fifo_in2cuput_buffer: (sour -> dest): " << s
<< " -> " <<« d << endl << endl;
#endif

nodes [i] -> output_buffer[j]->setPacket (*pack) ;
delete pack;

}
}

void input_buffer2fifo out ()

for(i = 0; i < NB_NODES; i++)
for(j = 0; j < NB_NODES; j++) {
if (nodes[i] -> input_buffer[j] -> isFull() == 1)

input = mnew packet(nodes[i] -> input buffer[j] ->
getPacket ()) ;
if (nodes[i] -»> fifo_out[j] -> nb_write(input)) {
nodes[i] -> input buffer[j] -> empty();
#ifdef ROC_DEBUG1 :
cout << " input_buffer2fifo_out: packet transfered in
fifo out (sour -> dest): " << j << " -> " << 1 << endl << endl;
#endif }

else {

delete input;
//#ifdef ROC_DEBUG1

cout << "input_buffer2fifo out: fifo_out is full: "
<< j << " "<< i << endl;

//#endif }

}
}

void fifo_out2destination()
packet* pack;
int s, 4, t;

for(i = 0; i < NB_NODES; i++)
for(j=0; j < NB_NODES; j++)

if (nodes[i] -> fifo_out[j] -> nb_read(pack)) {
//debugging

s = pack -> getSource();
d = pack -> getDestination();
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if ((s != j) or (d != 1)) cout <« "DANGER: mixmatch in
fifo out" << endl;
#ifdef ROC_DEBUG1

cout << "fifo out2destination (sour -> dest): " << s << "
-> " <« d << endl << endl;
#endif

Info* p = pack -> getPayload();
t = p->mThreadlID;

// if burst transaction and (read response from glave or
write from master)

if( (p->length > 1) && {( (p->mCmd == Info::RD && p-> sResp
!= Info::SNULL) || (p->mCmd == Info::WR && p-> sResp == Info::SNULL) ) )

// we first create a data array
if (1flagls] [d] [t])

flag(s] [d]l [t] = true;
if (dataPtr([s] [d] [t])
delete dataPtr[s] [d]l [t];
dataPtr[s] [d] [t] = new DataT[p->length];
ent {s] [d] [t] = O; // reset
the counter

dataPtr[s] [d] [t] [ent[s] [A]l [t]] = p->mData;
// store data
cnt [s] [A] [t]++;

if (entls] [d] [t] == p->length) //
packet is complete

start [s] [d] [t] ~>mDataPtr = dataPtr[s] [d] [t];
flag[s] [d] [t] = false;

// Answer Null means the source is the master

if (p -> sResp == Info::SNULL) ({
d = d - NB_MASTERS;
sPort [d] ->putReg(* (start[s] [d +

NB_MASTERS] [t]));

// Otherwise the source is the slave
else {
mPort [d] ->putRsp (* (start[s] [d] [t]));

else

// Answer Null means the source is the master
if (p->sResp == Info::SNULL) ({

d = d - MASTERS;

sPort [d] ->putReq(*p) ;

// Otherwise the source is the slave
else {
mPort [d] - >putRsp (*p) ;
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delete pack;

}
}

int myDecode (Info &info) {

int s = -1;
AddrT a = info.mAddr;
if (info.length > 1) a = info.mAddrPtrI[0];

// -- first see if we are in an interleaved address range
!/
for(int i = 0; i < numIL; i++) {

I1I &r = il[i];
if((a >= r.al) && (a < r.a2)) {

s = r.startSlave + ((a>>r.offsetBits) % r.numSlave);
break;

}
if(s < 0)

s = decode(a);

}

if(s < 0 || s >= MAX SLAVES) {
fprintf (stdexrr, "\n*** Error in channel '%$s': \n", name());
fprintf (stderr, " addr 0x%08x from "

"master %$d, tid %d is not a valid address!\n\n",
(int) a, info.mConnID, info.mThreadID) ;

doneSystemC () ;

return s;
void putReq(Info &info) //eguivalent to source2fifo_in
numReqg++;
int s;
Info* ptr; // burst thing

s = myDecode (info) + MASTERS;
// assert(s >= 0 && s < MAX_SLAVES) ;

int m = info.mConnID;
int t = info.mThreadlD;

if(m == g)
#ifdef ROC_DEBUG1

cout << "Slave = master, packet directly sent" << endl;
#tendif
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sPort [s] ->putReqg (info) ;

else if((info.length == 1) || (info.length > 1 && info.mCmd !=
Info::WR))

output = new packet () ;

output -> setSource (m);

output -> setDestination(s);

output -> getPayload(&info) ;
nodes [m] ->fifo _in{s] ->write(output);

}

else // burst write from master

start[m] [s] [t] = &info;
for (unsigned int i = 0; i < info.length; i++)

ptr = new Info (info.mCmd, * (info.mAddrPtr),
info.mbataPtr[i], info.mConnID, info.mThreadlD);
ptr->length = info.length; // just to indicate the

packet is part of a burst transaction
ptr->sResp = info.sResp;

output = new packet () ;

output -> setSource (m) ;

output -> setDestination(s);

output -> setPayload(ptr) ;

nodes[m] ->fifo in[s] ->write (output);

1
}
//debugging
#ifdef ROC_DEBUG1
COUL << Mo-mmmmmmmm e m e e e e m e mmm - -
—————————————————————— " << endl;
cout << "putReqgq (m -> s): " << m << " -> " << s << ",
Address: " << info.mAddr;
Info::MCmd Cmd = info.mCmd;
if (Cmd == Info::RD) cout << " RD command" << endl << endl;
else cout << " WR command (mData): " << info.mData << endl
<< endl;
cout << M"-----mmm e e — e e m e = -
—————————————————————— " << endl;
#endif
}
// -- Send response to master

!/

void putRsp(Info &info) { //equivalent to source2fifo_in
int s;
Info *ptr; // burst thing

int m = info.mConnID;
assert(m >= 0 && m < MAX MASTERS) ;
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int t = info.mThreadID;

// + MASTERS is to remove master/slave interface
g = myDecode (info) + MASTERS;

if(m == g)

#ifdef ROC_DEBUG1
cout << "Slave = master, packet directly sent" << endl;

#endif
mPort [m] - >putRsp (info) ;
// burst write or normal
else if((info.length == 1) || (info.length > 1 && info.mCmd !=
Info::RD))

output = new packet () ;

output -> setSource(s);

output -> getDestination (m) ;

output -> setPayload(&info) ;

nodes([s] -> fifo_in[m] ->write(output);

}

else // burst read

start[s] [m] [t] = &info;
for (unsigned int i = 0; i < info.length; i++)

ptr = new Info(info.mCmd, * (info.mAddrPtr),
info.mbataPtr[i], info.mConnID, info.mThreadlD) ;

ptr -> length = info.length;

ptr->sResp = Info::DVA;

output = new packet () ;

output -> setSource(s);

output -> setDestination(m);

output -> setPayload(ptr);

nodes[s]->fifo_in[m] ->write (output);

}

#ifdef ROC_DEBUG1

Cout < Moo m e e e e e —— -
—————————————————————— " << endl;

cout << "putRsp (s -> m, data): " << s << " -> " << m;

Info::MCmd Cmd = info.mCmd;

if (Cmd == Info::RD) cout << " RD command (sData): " <<
info.sData << endl << endl;

else cout << " WR command {ack): " << /*info.mbata << */
endl << endl;

COUL €< Mmoo m e e r e e e e e e r e e e e e e - - =
—————————————————————— " << endl;

#tendif

void bind clk() {
core -> clk(clk);
for(i = 0; i < NB_NODES; i++)

nodes[i] ->clk (clk) ;
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banks [i] ->clk(clk) ;

}

string setParm(SocGenParm &p) {

if (p.name == "msbDone") {
printf ("msbDone for ROC\n");
bind_clk () ;
return SocpChannelBase<AddrT, DataT, MAX MASTERS,

MAX_SLAVES>::setParm(p) ;

// -- the ileave parameter triggers new IL structure generation
/7
if (p.name == "ileave") {

if (numIL »>= MAX_ILEAVE)
return "too many ileave structures defined";

I1TI &i = il [numIL];

if(

(i.al1 >= i.a2)

(i.startSlave < 0)

(i.numSlave <= 0)

(i.startSlave + i.numSlave >= MAX SLAVES) H
(i.o0ffsetBits < 0 )

(i.0ffsetBits >= (int) (sizeof (AddxT) *8))

)

return "Bad ileave parameters";
numILi++;

return "";

}

return SocpChannelBase<AddrT, DataT, MAX MASTERS,
MAX SLAVES>::setParm(p) ;

string getParm(SocGenParm &p) {

if (p.name == "numReq")
gp{p, "numReqg", numReq) ;
return "";
return SocpChannelBase<AddxT, DataT, MAX MASTERS,

MAX SLAVES>::getParm(p) ;

SC_HAS_PROCESS (SocpFuncROC) ;

SocpFuncROC (const char *name, bool isLast = true, int
fifo_in size = 1000, int fifo out_size = 1000)

: SocpChannelBase<AddrT, DataT, MAX _MASTERS, MAX SLAVES> (name,
false, "ROC"), clk("clock") {

cout << "Rotate name:" << name << endl;
numlIlL, = numReqg = 0;

SC_CTHREAD (dynamic_run, clk.pos());
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core = new circular_connect () ;
// core -> clk(eclk); //Later we could set the latency
passed as a parameter

// node creation, bank creation
//bind nodes and banks to channel
for(i = 0; 1 < NB_NODES; i++)

string node name = sform("node%d", i);

string bank name = sform("bank%d", i);

nodes[i] = new node (node_name.c_str (), 1i);

banks[i] = new bank (bank name.c_str (), i);

cout << "node name:" << node name .c_str() << endl;
cout << "bank _name:" << bank_name .c_str() << endl;

// connect node to channel interface

nodes [i] ->pr_port (*core) ;

nodes [i] ->pw_port (*core) ;

nodes [i] ->reg_port (*core) ;

nodes [i] ->ack_port (*core) ;

// nodes [i] ->clk (clk) ; //Later we could set
the latency passed as a parameter

// connect bank to channel interface

banks [1] ->pr_port (*core) ;

banks [i] ->pw_port (*core) ;

banks[i] ->req_port (*core) ;

banks [i] ->ack port (*core) ;

banks [1] ->connected port (*core) ;

// banks[i] ->clk (clk) ; //Later we could set
the latency passed as a parameter

}

// bind the banks together

for(i = 0; 1 < NB_NODES; i++)
for(j = 0; j < NB_NODES; j++)
// banks[i] -

>full out[jl] (bank connection{i] [j]1);
banks [ (i+1) $NB_NODES] -
>full_inlj]} (bank_connection([i] [j]);
nodes[i]l->fifo_in[j] = new fifo(fifo_in size);
nodes [i]l ->fifo _out[j] = new fifo(fifo out_size};

for (int k = 0; k < MAXTHREAD; k++) {
start [i] {j] (k] = NULL;
flag[il [§]1 [k] = false;
ent {11 [} [kl = 0;
dataPtr[i] [j] [k] = NULL;

}

end_module () ;

}
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// -- define some common configurations for SocMon

//

typedef SocpFuncROC<AddArT, DataT, MASTERS+SLAVES, MASTERS, SLAVES>
FuncROCChannel32;

typedef perNoc<AddrT, DataT, FuncROCChannel32, MASTERS, SLAVES>
perNoCRoC;

STEPNP COMPONENT (FuncROCChannel32) ; // 32 bit unsigned addr/data

STEPNP:COMPONENT(perNoCROC);

class perNoCRoCHelper {

public:
perNoCRoCHelper () {
registerAttachHelper ("perNocRoc", "socp32", pernocAttach«<AddrT,

DataT, perNoCRoC>);

};

static perNoCRoCHelper perNoCRoChelp;
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ANNEXE B
Programme de test pour les simulations fonctionnelles

Cette section contient le code utilisé pour effectuer les simulations fonctionnelles.

A demo platform, with demo slave,
protocol) abstraction.

#include
#include
#include
#include
#include
#include

<signal.h>
<stream.h>
<strings>
<time.h>
"systemc.
<glob.h>

h"

#include
#include
#include
#include "demoMaster.h"

uint AddrT;
int DataT;

typedef
typedef

#define
#define

C_MAX MASTERS 8
¢ MAX_SLAVES 8

const int numMaster
const int numSlave

int NUMTHREAD 32;
int prob 20;

8;
8;

#ifdef MT MASTER

typedef DemoMasterBase<AddrT, DataT,
MyMaster;

#elif MULTI_DEF_THREAD

#include "MultiDefinedThread.h"

typedef MultiThreadMaster<AddrT, DataT,

MyMaster;
#elif MULTI_BURST_ THREAD
#include "MultiBurstThread.h"

typedef MultiThreadBurstMaster<AddrT,
DataT> > MyMaster;

f#telse

typedef DemoMasterBase<AddrT, DataT,
MyMaster;

#endif

channel,

and master.

<component /processors/generic/socpMasterBase.h>
<component /processors/generic/fastMasterBase.h>
<component /memories/simple/simpleMemory.h>

SocpMasterBase<AddrT, DataT> >

SocpMasterBase<AddrT, DataT> >

DataT, SocpMasterBase<AddrT,

FastMasterBase<AddrT, DataT> >

typedef SimpleMemory <AddrT, DataT> MySlave;

#ifdef HROC // hierarchical ROC

#include <component/interconnect/hierarchicalROC/socpFuncHROC.h>
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//typedef SocpFuncHROC<AddrT, DataT, numMaster, (numMaster + numSlave) /
numMaster> MyBaseChannel;

// RA4drT, DataT, NB_NODES, NB SATELLITES

typedef SocpFuncHROC<AddrT, DataT, 4, 2, numMaster, numMaster>
MyBaseChannel;

sc_clock clk;

#eTif BIWAYROC // bi-directionnal ROC

#include <component/interconnect/2waysROC/socpFuncROC.h>

// Use SocpFuncROC: The 3 last parameters can be default

typedef SocpFuncROC<AddrT, DataT, numMaster, numMaster, numMaster,
numMaster, numMaster> MyBaseChannel;

sc_clock clk;

#elif ROC

#include <component/interconnect/classicROC/socpFuncROC.h>

// Use SocpFuncROC: The 3 last parameters can be default

typedef SocpFuncROC<AddrT, DataT, numMaster + numSlave, numMaster,
numMaster, numMaster, numMaster> MyBaseChannel;

sc_clock clk;

#elif HYROC

#include <component/interconnect/HyRoc/socpFuncHyROC.h>

// Use SocpFuncROC: The 3 last parameters can be default

typedef SocpFuncHyROC<AddrT, DataT, 4, 4, 4, numMaster, numMaster,
numMaster> MyBaseChannel;

sc_clock clk;

#elif BROC // ROC using bitmap as request

#include <component/interconnect/classicROC/socpFuncROC. h>

// Use SocpFuncROC: The 3 last parameters can be default

typedef SocpFuncROC<AddrT, DataT, numMaster, numMaster, numMaster,
numMaster, numMaster> MyBaseChannel;

sc_clock clk;

#elif RING // ROC using only one bank (token ring)

#include <component/interconnect/ringR0OC/socpFuncROC.h>

// Use SocpFuncROC: The 3 last parameters can be default

typedef SocpFuncROC<AddrT, DataT, numMaster, numMaster, numMaster,
numMaster, numMaster> MyBaseChannel;

sc_clock clk;

#elif XBAR

#include <component/interconnect/funcXBar/funcXBarChannel.h>

typedef FuncXBarChannel <AddrT, DataT, C_MAX MASTERS, C_MAX SLAVES>
MyBaseChannel ;

sc_clock clk;

#elif HOTPO

#include <component/interconnect/HotPotato/socpHotPotato.h>

typedef SocpHotPotato<AddrT, DataT, 2,4,C_MAX MASTERS, C_MAX SLAVES>
MyBaseChannel ;

sc_clock clk;

#elif BUS

#include <component/interconnect/simpleBus/simpleBus.h>

typedef SimpleBus<AddrT, DataT, MyBaseChannel> MyBaseChannel;

#else

#include <component/interconnect/pureFunctional/socpFuncChannel. h>
typedef SocpFuncChannel<AddrT, DataT, C_MAX MASTERS, C_MAX SLAVES>
MyBaseChannel ;

#endif

#ifdef ICE

#include <component/interconnect/instrumentation/demoIce.h>
//typedef SocpFuncChannel<AddrT, DataT> MyBaseChannel;
typedef SocpICE<AddrT, DataT, MyBaseChannel> MyChannel;
#else




125

#ifdef PERNOC

#include "perNocControllerServer.h"

#include <component/interconnect/instrumentation/perNoc.h>

//typedef SocpFuncChannel<AddrT, DataT> MyBaseChannel;

typedef perNoc<AddrT, DataT, MyBaseChannel, C_MAX MASTERS, C_MAX SLAVES>
MyChannel ;

ftelse

//typedef SocpFuncChannel<AddrT, DataT> MyChannel;
typedef MyBaseChannel MyChannel;

#endif

#endif

MyChannel *mc = 0; // -- for terminate stats

double startTime;
bool shuttingDown = false;

void
cruelWorld(int arg) {

if (shuttingDown) return;
shuttingDown = true;

printf ("\n\t\t\t\t---- End of simulation ----\n");

double runTime = {double) (clock() - startTime)/CLOCKS_PER_SEC;

#ifdef XBAR :

double numRW = (mc == 0) ? 0.0 : mc->stats.numReq;

printf ("\nTotal Number of Transactions: %d\n", mc->stats.numReq) ;
ftelse

double numRW = (mc == 0) ? 0.0 : mc->numReq;

printf ("\nTotal Number of Transactions: %d\n", mc->numReq);
#tendif

printf ("\n\nExecution Time: %9.9f seconds, %d K read/writes per
sec\n",
runTime, (int) (numRW/ (runTime*1000.0)));

#ifdef ROC
long cycle = mc->getCycle();
double buffer use = mc->getBufferUsed() ;

cout << "Number of cycles: " << cycle << endl;

cout << "Average load on buffers: " << buffer use << " packets" <<
endl;
#elif BROC

long cycle = mc->getCycle();

double buffer_use = mc->getBufferUsed();

cout << "Number of cycles: " << cycle << endl;

cout << "Average load on buffers: " << buffer use << " packets" <«
endl;
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#elif BIWAYROC
long cycle = mc->getCycle();
double buffer use = mc->getBufferUsed();

cout << "Number of cycles: " << cycle << endl;

cout << "Average load on buffers: " << buffer use << " packets" <<
endl;
#elif HROC

long cycle = mc->getCycle();
double buffer use = mc->getBufferUsed();

cout << "Number of cycles: " << cycle << endl;
cout << "Average load on buffers: " << buffer_use << " packets" <<
endl;
// #elif RING
// long cycle = me->getCycle();
// double buffer use = mc->getBufferUsed();
// cout << "Number of cycles: " << cycle << endl;
!/ cout << "Average load on buffers: " << buffer use << " packets"
<< endl;
#endif
exit (0) ;

int sc_main(int ac, char *av[]) {

int MINDIST = 0;
int talInterval = 1;

int MAXDIST = numMaster;
int ACCURACYDIST = 1;

if (ac == 1)

Jr*F*xxxxxxx*x gdd to make connection betwee C++ nd Java worlds**+*/
#ifdef PERNOC

int port = 1234;
printf ("running SIDL server on port %d...\n", port);
initsidlServer (port) ;

#endif

JrEEkh ko kkkkkkkkhkkk*k end of add
Kkkkkkkkhkkkkkkkkkkkkhkkkhkkkhkhkhkh* /

}

// -- how often to do time accounting
// in the channel.
if(ac == 2) {

taInterval = atoi(av[l]);
#ifdef PERNOC

int port = 1234;

printf ("running SIDL server on port %d...\n", port);

initsidlServer (port);
#endif

}



talnterval = atoi(av[l]l);
#ifdef PERNOC
int port = atoi(av(2]);

printf ("running SIDL server on port %d...\n",

initSidlServer (port) ;
#endif

if (ac == 4)
taInterval = atoif(av[l]);

#ifdef PERNOC
int port = atoi(av[2]);

port) ;

printf ("running SIDL server on port %d...\n", port);

initSidlServer (port) ;
#endif
NUMTHREAD = atoi(av[3]);

talnterval = atoi(avi{i]l);
#ifdef PERNOC
int port = atoi(av[2]);

printf ("running SIDL server on port %d...\n", port);

initsidlServer (port) ;
#endif
NUMTHREAD = atoi(av[31]);
MINDIST = atoi(avi4]);
MAXDIST = atoi(av[5]);
ACCURACYDIST = atoif(av[el);

if ( ac > 4 & ac < 7)

cout <<endl«<"wrong argument number"<<endl;

assert (0) ;

assert (NUMTHREAD > 0 && NUMTHREAD <= 32);

assert (MINDIST < MAXDIST) ;
assert (ACCURACYDIST >= 1) ;

signal (SIGINT, cruelWorld) ; // CTRL-C

assert (numMaster <= C_MAX MASTERS) ;
assert (numSlave <= C_MAX SLAVES) ;

assert (numMaster == numSlave) ; // -- for this demo config

int numComponents = numMaster;

MyMaster *demoMaster [numComponents] ;
MySlave *demoSlave [numComponents] ;

printf ("running test with %d slaves,

threads/master...\n",
numSlave, numMaster, NUMTHREAD) ;

%d masters,

printf ("hit control-c to exit the program...\n");
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// -- define the channel

//
#ifdef ICE

MyChannel demoChannel ("MyDemoChannel", true);
/*

#ifndef ROC

demoChannel .setSliceParameters (taInterval, 100*talInterval);

#endif
*/
#elif HOTPO
MyChannel demoChannel ("MyDemoChannel", true);
#elif HYROC
MyChannel demoChannel ("MyDemoChannel") ;
#else
#ifdef PERNOC
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MyChannel demoChannel ("MyDemoChannel", true, MINDIST, MAXDIST,
ACCURACYDIST) ;
#ifdef XBAR
// Set Latency to 100 and Jitter to 0
for (int i = 0; i < numComponents; i++)
for (int j = 0; j < numComponents; j++)
demoChannel .setLatency (i, j, 100);
demoChannel.setJitter (i, j, 50);

#else
#ifndef ROC
#ifndef HROC
#ifndef BROC
#ifndef BIWAYROC
#ifndef RING
#ifndef HYROC

demoChannel .gsetSliceParameters (talnterval, 100*talnterval);
#endif
#endif
#endif
#endif
#endif
#endif
#endif
#else

MyChannel demoChannel ("MyDemoChannel", true, taInterval,
100*taInterval); // talnterval = fifo in size
#endif
#endif

mc = &demoChannel;
#ifdef ROC

demoChannel .clk (clk) ;
demoChannel .bind _clk () ;
#endif

#ifdef BROC
demoChannel . clk (clk) ;
demoChannel .bind clk () ;

#endif
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#ifdef HROC
demoChannel.clk (clk) ;
demoChannel .bind_clk () ;

#endif

#ifdef BIWAYROC
demoChannel .clk (clk) ;
demoChannel .bind_clk() ;

#endif

#ifdef RING
demoChannel .clk (clk) ;
demoChannel .bind clk();

#endif

#ifdef HYROC
demoChannel .clk (clk) ;
demoChannel .bind_clk() ;

#endif

#ifdef HOTPO
demoChannel.clk (clk) ;
demoChannel .bindHopotato () ;

#endif

// -- memory regions

/7

uint memStartAddr = 0;

uint memSize = 0x1000;

uint memEnd;

int masterID = 0, slavelD = 0;

for(int i = 0; i < numComponents; i++, memStartAddr += memSize) {

demoChannel .map (memStartAddr, memStartAddr+memSize, 1i);

string masterName = sform("demoMaster%d", 1i);
string slaveName = sform("demoSlave%d", 1i);

memEnd = memStartAddr + memSize;

// -- Make demoMaster i, which checks memory in slave i.

//
#ifdef MULTI_DEF THREAD
// the master can write/read in any slave

/* demoMaster [i] = new MyMaster (masterName.c_str(}, i,
memStartAddr, numComponents*memSize); */
demoMaster[i] = new MyMaster (masterName.c str (), i,

memStartAddr, numComponents, memSize) ;

#elif MULTI_ BURST THREAD
int prob = 50;

demoMaster[i] = new MyMaster (masterName.c_str (), i,
memStartAddr, numComponents, memSize,
prob) ;
#else
demoMaster[i] = new MyMaster (masterName.c str(), i,
memStartAddr, memEnd) ;
#endif

MyMaster &m = *demoMaster[i];

demoChannel .attachMaster {(m, m.slavePort, masterID++) ;
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// -- make a demo slave

//

demoSlave [i] = new MySlave (slaveName.c_str (), memStartAddr,
memEnd) ;

MySlave &s = *demoSlavel[i];
demoChannel .attachSlave (s, s.masterPort, memStartAddr,
} memEnd, slavelID++) ;
demoChannel .msbDone () ;
startTime = clock () ;
sc_start (-1);

return 0;
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ANNEXE C
Fichier de configuration pour MPEG4

Cette section contient le code du script Python utilis€é pour simuler le RoC avec
I’application MPEG4. Ce fichier de configuration correspond aux caractéristiques

énumérées dans le Tableau 5.6.

#!/usr/bin/python
# -*- mode: python -*-

# Make a SMP configuration. This one has 1 ARM running 1 thread at
# 'normal' speed, and the rest running very fast (1000 GHz!) to model
# execution on inf fast hardware.

import getopt
import sys
import os

if not os.environ.has_key ('STEPNP'):

print """You must have STEPNP environment variable, pointing to
where you installed STEPNP"""

sys.exit (1) ;

if not os.environ.has key{'DSOC') :

print """You must have DSOC environment variable, pointing to
where you installed DSOC"""

sys.exit (1) ;

if not os.environ.has_key('SIDL_PORT'):
sidl_port = -1

else:
sidl port = int(os.environ['SIDL_PORT']) ;

stepNP = os.environ['STEPNP'];
dsoc = os.environ['DS0OC'];

sidl _host = 'localhost'

if os.environ.has_key ('SIDL_HOST'):
sidl_host = os.environ{'SIDL_HOST'];

gys.path.append (stepNP + "/lib/python")
sys.path.append(stepNP + "/lib/python/interfaces")



from sidl
from sysc
from cpu
from socgen

import *;

import *;

import *;
import *;

-~ default values

F=

cpus

threads

app =

debug =

makeSWComponents

dctLatency

sadLatency

pernoc

extpernoc

nsReceiveRate

filename

makeVideoIn

numThreads

interleave

stbus

roc

biroc

hroc

hyroc

numBank

dcache

# -- show script

#

def usage () :
print nna

Usage:

4

[eNoNoNeNel

o nnn o0

1
32;

OMHOOOOOO

[
0
o
WQ
0]

./socgen [options]
where options are:

--help

-h <host>
localhost)

-p <port>
env var)

--g

--app
mpeg4c_socpa_ARM)

--cpus
simulation (def 8)

--threads
(def 1)

--latency

--dctlatency

<app>

200000000
"/mnt/disk_d/superGreg/movie/test.avi"

<numCpus>
<numThreads>

<latency>
<latency>

s.path.abspath (sys.path[0]) + '/mpeg4c_socpa_ARM'

# prints out this message
# host running the SystemC model (def

# SIDL port number (default SIDL PORT

# enable debugging options
# application to run (def

# number of cpus to enable in
# number of threads per cpu to enable

# latency for hardware components
# latency for dct hardware components
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--sadlatency <latencys> # latency for sad hardware components
--r_rate <r_rate> # receive rate of the frames in ns
--sw # make only software components
--file <filenames # specifies the avi file to open for
encoding
~--no_videoin # don't make the hardware VideoIn
--interleave <interleaver> # interleaved memory banks
- ~numBank <numBank> # number of memory bank
--numThreads <numThreads> # number of hardware threads
--stbus # Use STBus as internal channel
--roc # Use RoC as internal channel
--biroc # Use bidirectional RoC as internal
channel
--hroc # Use hierarchical RoC as internal
channel
--hyroc # Use hyper ring-on-chip as internal
channel
--pernoc # Use pernoc on the internal channel
--extpernoc # Use pernoc on the external channel
nnn
sys.exit ()
# -- now get command line options
#
try:
opts, args = getopt.getopt(sys.argvil:], 'p:h:', ['help',
'app="', 'epus="', 'g', 'threads=", 'sw', ‘dectlatency=",
'sadlatency="', 'latency="',
'pernoc’', 'r rate="', 'file="', 'no_videoin?', 'numThreads="',
'extpernoc', 'stbus',
'roc', 'biroc', 'hroc', ‘'hyroc', 'interleave', 'numBank=']
)
except getopt.GetoptError:
print "\nOPTION ERROR"
usage ()
for o, a in opts:
if o == '-h':
sidl _host = a
print "Host is: " + sidl host
elif o == '-p':
sidl_port = int(a)
print "Port is: " + “sidl_port"
elif o == '--app':
app = a
print "Application is: " + app
elif o == '--cpus':
cpus = int(a)
print "CPUS is: " + “cpus”
elif o == '--g':
debug = 1;
print 'debugging enabled’
elif o == '--threads':
threads = int(a)
print "Threads is: " + “threads”
elif o == '--help':
usage ()
elif o == '--sw':

makeSWComponents = 1
print "Making SW components"



elif o == '--dctlatency’
dctLatency = int (a)

print "Setting dct component latency to %d" % dctlatency

elif o == '--sadlatency'
sadLatency = int (a)

(]

print "Setting sad component latency to %d" % sadLatency

elif o == '--latency'’
sadLatency = int (a)
dctLatency = sadLatency

print "Setting hw component latency to %d" % dctLatency

elif o == '--pernoc’
pernoc = 1;
print "PerNoc Enabled"
elif o == '--extpernoc'

extpernoc = 1;
print "PerNoc Enabled on external channel"

elif o == '--r rate?

nsReceiveRate = int (a)

print "Setting receive rate to %d" % nsReceiveRate
elif o == '--file'

filename = a

print "Openning file named : " + filename
elif == '--no_videoin'

makeVideoIn = O
app = app + '_no vif

print "Don't make the VideoIn, setting app to : " + app

elif o == '--numThreads’
numThreads = int (a);

print "Setting HW component numthreds to %d" % numThreads

elif == '--stbus’

stbus = 1

print "Using the STBus as internal channel"
elif o == '--roc'

roc = 1

print "Using the RoC as internal channel"
elif o == '--biroc’

biroc = 1
print "Using the bidirectional RoC as internal channel™"

elif o == '--hroc'

hroc = 1

print "Using the hierarchical RoC as internal channel"
elif o == '--hyroc'

hyroc =1

print "Using the hierarchical RoC as internal channel"
elif o == '--interleave’

interleave = 1

print "interleaving is on"
elif o == '--numBank'

numBank = int(a);
print "Setting numBank to %d" % numBank

if sidl_port < 0:

print "\n\nno port specified (say -p <your ports>,
SIDL_PORT)\n\n"

usage ()

sidlClientMgr.tryConnect (sidl_host, sidl_port) ;
from sgHelper import *;

oxr
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setenv
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# Stuff to dynamic load libs we need

def dl(lib):
1ldResult = sg.dynamicLoad(lib)
if 1dResult != "":
print "Problems dynamic loading library '%s':\n gs" % |
1lib, 1ldResult
)

sys.exit (1) ;

# -- load base DSOC libraries into stepNP simulator
#

dl (dsoc + '/sc/xsc.so!')

# -- Load PerNoC
#
dl (stepNP + "/lib/sidl/perNocControllerServer.so");

# -- load MPEG coprocessors
#
dl (os.path.abspath(sys.path[0]) + '/component/appdom.so')

print "\nObjects available for dynamic configuration:'";
print "============================================";
listComponentTypes ()

print "\n\n";

# -- SocGen address map & other parameters
#

# -- Stack management
stackPerThread
stackPerProcessor

4096 #
stackPerThread*threads

5

# -- External memory address space

#

RAM_SIZE = 160 # MBytes
STACK_SIZE = stackPerProcessor*cpus
SRAM_PROG_BEGIN =0

TEXT_END = 0x6000

SRAM PROG_END = RAM SIZE*1024*256

# -- Frame buffer address space

#
FRAME_BUFFER_SIZE = 4096 # KBytes
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FRAME BUFFER START

» . SRAM_PROG_END
FRAME BUFFER_END

FRAME BUFFER START+FRAME BUFFER_SIZE*256

SRAM_END FRAME_BUFFER_END+STACK SIZE
# -- Local memory size
#
LOCAL_RAM SIZE = (SRAM_END)/CpuS
SEM_MGR_START = 0x11000000
SEM_MGR_END = 0x21000000
HORBA_ENGINE_START = 0x21000000
HORBA ENGINE_END = 0x22000000
PS_CLOCK_PERIOD = 5000 # == 200 MHz
masterID = 0
extMasterID =0
slavelD =0
# -- stack management
#
sp = SRAM_END
slaves = []
masters = []
#:======================================================================
# the external channel
#:==========-_'===========================================================
if { not extpernoc ):
makeComponent ("FuncXBarChannel32", "extChannel",
"enableTimingAnnotation" , '1°' ) ;
else:
makeComponent ("MyPerNoc32", "extChannel");
# -- the EXTERNAL system memory
#
makeComponent ('SimpleMemory32"', 'systemSRAM',
'memStartAddr’, \SRAM_PROG_BEGIN\,
'memEndaddr’', “SRAM END,
'allocate?', 1
)
attachSlaveToChannel (0, 'systemSRAM', 'extChannel',

SRAM_PROG_BEGIN, SRAM_ END
)

# -- the NUMA architecture memory
#

for ¢ in range (0, cpus):
1l2Name = 'stackRaAM' + “c¢~
makeComponent ('SimplelL2 32 , l2Name,

'cacheSize! , stackPerProcessor,
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'mConnlID!' , extMasterlD,
‘accessTimeInNS' , 0);

slaves.append((slaveID, l2Name, 'channel',

sp-stackPerProcessor, sp))
attachMasterToChannel (extMasterID, 12Name, 'extChannel')
sp -= stackPerProcessor;

slavelD += 1
extMasterID += 1

12Name = 'textRAM'
makeComponent ('SimpleL2 32 , l2Name,
'cacheSize! , 0x60000,
'mConnID' , extMasterlD,
'accessTimeInNS' , 0);

slaves.append{(slaveID, 1l2Name, ‘'channel’,
SRAM_PROG_BEGIN, TEXT_END))
attachMasterToChannel (extMasterID, l2Name, 'extChannel')

slavelID += 1
extMasterID += 1

12Name = 'heapRAM'

makeComponent ('SimplelL2 32 , l2Name,
'cacheSize' , LOCAL_RAM SIZE*cpus ,
'mConnID' , extMasterlD,
'accessTimeInNS'! , 0);

slaves.append( (slaveID, 12Name, 'channel', TEXT_END, FRAME BUFFER_END))
attachMasterToChannel (extMasterID, l2Name, 'extChannel')

slavelD += 1

extMasterID += 1

sp = SRAM_END

makeComponent ('ConcurrencyEngine32’', 'cEngine',
'memStartAddr’, SEM_MGR_START,
'memEndAddr ', SEM_MGR_END,
‘accessTime', 0

)

slaves.append( (slaveID, 'cEngine', ‘'channel’,

SEM_MGR_START, SEM MGR_END
)

slavelD += 1



makeComponent ('HorbaSlave32',

slaves.append( (slavelD,

'horbaEngine’,
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'horbaEngine')

'channel'?,

HORBA_ENGINE_START, HORBA_ENGINE_ END

))

slavelD += 1

for ¢ in range (0,
armName =

cpus) :
'smpArm' + “e¢”

initExternalMem = 0

if(c == 0):
initExternalMem = 1

# -- The ARM processor
#
cpuPeriod = PS_CLOCK PERIOD

makeComponent ( 'MPEG4_ARM MT',

'heapEnd',
'TCacheBridgeDevice32"',
'MagicBridgeDevice32',
'MsgBridgeDevice32"',
'WireBridgeDevice32',

'ArmCoproDevice32',

'modellID’,
'mConnlID',

‘stackEnd',
'stackPerThread’,
'stackBegin',

'pipeDepth’,
"numThreads’',
'initExternalMem’',

'clockPeriod’,
'clockUnits',

'numInstrumentRegs’,
'logInstrument’,
'breakInstrument',
'space’,

Iappl,
'objDumpProgram',
"initSTH',

'load’,

armName,

FRAME_BUFFER_END,

HEBERPRP

0x12340001,
masterID,

Sp,
stackPerThread,
sp - stackPerProcessor,

1,
threads,
initExternalMem,

cpuPeriod,
'SC_PS',

4,
1,
0,
'mainArmProgram’,
app ! Kl .
stepNP + '/bin/arm-elf-objdump’',
1,

app
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)

if (debug) : setParms (armName,
'proSymbolEnabled’, 1,
"initMHP', 1)
if (threads > 1): setParms (armName, 'pipeDepth', 4)

setParms (armName, 'initCPU', 1);

if (dcache == 1):
setParms (armName, 'NWCacheBridgeDevice32 L1', ‘'dcache');
setParms (armName+' .dcache.isShared', 0)
setParms (armName+'.dcache.isWriteBack', 0)
setParms (armName+'.dcache.Ways', 4)
setParms (armName+' .dcache.Setsg', 64)
setParms (armName+'.dcache.alRange', TEXT_END)
setParms (axrmName+'.dcache.a2Range', SRAM END)
setParms (armName+'.dcache.range', 1)
setParms (armName+'.dcache.releaseAl', SRAM END)
getParms (armName+'.dcache.releaseA2' , Oxffffffff)
setParms (armName+ '.dcache.release’, 1)

sp -= stackPerProcessor

masters.append( (masterID, armName, "channel'))

# -- configure a debugger for this arm

#

a = AccessCpuClient (armName) ;

a.symbolicDebug ('ARM',
stepNP + '/bin/tgdb’,
os.path.abspath (app),
"target sim\nload\nrun\n");

masterID += 1

#=============================.'==========================================
# the DSOC DNS server running in SystemC space
#=======================================================================
makeComponent (

'DemoDNS32"', 'myDns',

'mConnlID', “masterID”,

'domNameServer', 'domNameServer',
)
masters.append( (masterID, 'myDns', 'channel’))

masterID += 1

if ( not makeSWComponents )
makeComponent (
'MPEGComponent ', 'myDCTComponent ',



'‘mConnID',
'numThreads',

'detServer!',
'latency',

)

masters.append ( (masterID,
masterID += 1

makeComponent (
'MPEGComponent ',
'mConnID',
'numThreads',
'sadServer',
'latency’,

)

masters.append ( (masterID,
masterID += 1

makeComponent (
'MPEGComponent ',

'mConnID’,

'numThreads’',
'quantizeServer',

)

masters.append ( (masterID,
masterID += 1

makeComponent (
'MPEGComponent ',
'mConnlD',
'numThreads',
'videoOut',
'latency’,

)

masters.append ( (masterID,

masterID += 1

if (makeVideoln) :

makeComponent (

'MPEGComponent ',
'mConnID',
'‘bufStart?,
'bufEnd’,
'receive_rate',
'filename',
'rxFrame',
'handleFrame',

)

masters.append ( (masterID,

masterID += 1

“masterID”,
“numThreads ™,
"HWDCT' ,
“dctLatency ™,

'myDCTComponent', 'channel'))

"mySADComponent ',
“masterID”,
“numThreads ™,
"HWSAD',
“sadLatency”,

'mySADComponent ', 'channel'))

'myQuantizeComponent',

“masterID”,
“numThreads ™,

'HWQUANTIZE',

'myQuantizeComponent', 'channel'))

'myVideoOutComponent ',
“masterID”,
“numThreads ™,
'VIDEOOUT' ,
IOI,

'myVideoOutComponent', 'channel’))

'myVideoInComponent',
“masterID”,
\FRAME_BUFFER_START\,
\FRAME_BUFFER_END\,
“nsReceiveRate”,
filename,

'rxFrame',
'handleFrame',

'myVideoInComponent', 'channel'))
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if (stbus) :
makeComponent ('SGClock', 'systemClock',
'onTime', PS_CLOCK_PERIOD/2,
'offTime', PS_CLOCK_PERIOD/2,
'units', 'SC_PS')
makeComponent ('SGReset', 'systemReset',

'resetTimeNS', 10000)

if not permnoc:

makeComponent ('BaseSTBus', 'channel'’)
# makeComponent ( 'hPSTBT', 'channel')
else:
makeComponent ('PerNocSTBus', 'channel’)
# makeComponent ('perNoChPSTBT', 'channel')
attachComponent ('systemClock', 'clock', 'channel', 'channel.clock');
attachComponent ('systemReset', 'reset', 'channel', 'channel.reset');
elif (roc):
makeComponent ('SGClock', 'systemClock',

'onTime', PS_CLOCK PERIOD/2,
'offTime', PS_CLOCK_PERIOD/2,

'units', 'SC_PS')
# setParms ('systemClock', ‘'onTime', PS CLOCK_PERIOD/2, ‘'offTime’,
PS_CLOCK_PERIOD/Z,'units‘, 'SC_PS')
if not pernoc:
makeComponent (' FuncROCChannel32', 'channel')
else:
makeComponent ( 'perNoCRoC', 'channel!')
attachComponent ('systemClock', 'clock', ‘'channel', 'channel.clock');

elif (biroc):
makeComponent ( 'SGClock', 'systemClock’',
'onTime', PS_CLOCK PERIOD/2,
"offTime', PS_CLOCK_PERIOD/Z,

'units', 'SC_PS')
# setParms ('systemClock', 'onTime', PS_CLOCK PERIOD/2, 'offTime'’,
PS_CLOCK_PERIOD/2,'units', ‘SC_PS')
if not pernoc:
makeComponent (' Func2WayROCChannel32', 'channel')
else:
makeComponent ('perNoC2WayRoC', 'channel')
attachComponent ( 'systemClock', 'clock', 'channel', 'channel.clock');

elif (hroc) :
makeComponent ('SGClock', 'systemClock',
'onTime', PS_CLOCK PERIOD/2,
"offTime', PS_CLOCK_PERIOD/2,
'units', 'SC_PS')

# setParms ('systemClock', ‘'onTime', PS_CLOCK_PERIOD/2, 'offTime',
PS_CLOCK_PERIOD/Z,'units‘, 'SC_PS')
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if not pernoc:

makeComponent (' FuncHROCChannel32', 'channel')
elset;akeComponent('perNoCHRoC‘, 'channel')
attachComponent ('systemClock', 'clock', 'channel', 'channel.clock');
elif (hyroc) :
makeComponent ('SGClock', 'systemClock',

'onTime', PS_ CLOCK PERIOD/2,
"offTime', PS_CLOCK PERIOD/2,

'units', 'SC_PS')
# setParms ('systemClock', ‘'onTime', PS CLOCK PERIOD/2, 'offTime',
PS_CLOCK_PERIOD/Z,'units', 'SC_PS')
if not pernoc:
makeComponent (' FuncHYROCChannel32', 'channel')
else:
makeComponent ( 'perNoCHyRoC', 'channel')
attachComponent ('systemClock', 'clock', 'channel', 'channel.clock');
else:
if { not pernoc ):
makeComponent ("FuncXBarChannel32", "channel",
"enableTimingAnnotation" , '1' ) ;
else:
makeComponent ("MyPerNoc32", "channel');
setParms ('channel ',
'baselatency', '0',
'baseJdJitter', '0')

print "Masters: %d - Slaves: %d" % (masterID,slavelD)

map (lambda m: attachMasterToChannel (m{0], m{1], m[2]), masters)
map (lambda s: attachSlaveToChannel(s[0]l, s[1}, s[2}, s[3], s[4]),
slaves)

setParms ('channel', 'msbDone', '1l')
setParmsg ('extChannel', 'msbDone', '1',
'baselatency', '0',

'baseJitter', '0')

print "\nObjects Configured';
print Vo= ==s=z========" ;
listComponents ()

sg.startSystemC(-1) ;

print "Masters: %d - Slaves: %d" % (masterID,slavelD)
print "\n\nModeled configured, ready to start simulation..."
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# -- do this from startUp script...

#

#systemC = SystemC Client ("SystemC Server", "accessO");
#systemC.runModel ("cycle", '10000000000');

Code de multi_defined_thread ?
Code de funcTest?

script socgen
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ANNEXE D
Article soumis a la conférence ICCD 2005

Cette section présente 1’article découlant des travaux de recherche effectués. Cet article a
été soumis a la conférence ICCD. Au moment de la rédaction de ces lignes, 1’article était

soumis a la révision par le comité de sélection.
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RoC: A Scalable Network on Chip Based on
the Token Ring Concept

Francois Deslauriers], Michel Langevinz, Guy Boisl, Yvon Savaria], Pierre Paulin?

! Ecole Polytechnique de Montréal, QC, Canada
{deslaur, bois, savaria } @ grm.polymtl.ca

Abstract

A recent practice in the development of
SoCs is the integration of interconnect networks,
since integration offers significant bandwidth
increases. This allows implementing
multiprocessors systems that communicate more
effectively than bus based architectures. This
paper proposes a new network-on-chip based on
the token ring model. This easily scalable
network has been integrated into a system level
exploration  platform  for characterization.
Increased performance is confirmed and
improvements are proposed to decrease packet
latency through the network.

1. Introduction

Technology scaling will allow Systems-
on-Chips (SoCs) containing hundreds of
complex cores in the near future [1]. This will
lead to new applications in fields like
telecommunication and entertainment [2]. A
promising approach to design flexible high
performance SoC architectures is to organize
them as multiprocessors, where the ability for
processors to communicate effectively with each
other is critical. Tomorrow’s on-chip bandwidth
requirements will easily reach hundreds of
Gbit/s. Nowadays, buses are widely used, but
they are increasingly becoming system
bottlenecks as their bandwidth is usually shared
between several modules. Buses can be
segmented with bridges to support multiple
simultaneous data transfers, and they can also be
organized according to hierarchical structures.
Nevertheless, buses are hard to scale. A
significant challenge with future highly paraliel
SoC architectures is to avoid communications
being their system bottleneck.

Networks on Chip (NoCs) have been
proposed as a means to address these issues.
NoCs attempt to meet the requirements for future
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SoCs with respect to reusability, scalability and
parallelism.

In this paper, we introduce the RoC
(Rotator on Chip), a scalable network based on
the token ring concept. RoC guarantees packet
arrival order and is fairly simple to implement.

The following section presents an
overview of existing NoC architectures. Section
3 presents guiding principles behind the RoC
concept, followed in section 4 by optimizations
and features added to the architecture. Section 5
presents performance analysis results while
Section 6 presents final remarks about RoC and
suggests directions for future research.

2. Networks on chip

NoCs typically exploit a packet passing
communication model, as in larger scale
networks like LANs or the WWW. They exploit
the same concepts as large scale networks:

- messages are decomposed into packets with
header, payload and trailer;

- packets are routed from source to destination
according to a specified algorithm;

- processing cores require wrappers (also
called network interfaces) to be attached to
the network terminals, in order to support
different protocols and communication
models, and

- various strategies are used for routing, data
control, switching, buffering, and
arbitration.

2.1 SoC interconnection topologies

Popular topologies for NoCs include
crossbars, trees and meshes. The crossbar is
known for its low latency, high cost and poor
scalability. Tree topologies [4], [5] offer a good
latency, but they are coupled to very high wiring
costs. Moreover, in fat tree topologies, routers
are quite costly in area (a partial crossbar).
Although wormhole routing allows a bandwidth



increase, contention between message pairs may
block several links at the same time. Adaptive
routing improves the saturation threshold, but its
use imposes that packets must be reassembled at
the receiving end, since packet arrival order may
be random, particularly at high loads. Mesh
topologies [2], [6] offer a large bandwidth, but
are non-deterministic, and their latency can be
very high under heavy traffic. In some cases,
packets are not guaranteed to reach destination,
since a high traffic can lead to livelock.

Some networks are already on the
market. For instance, ClearConnect® [7]
provides a good bandwidth by replacing a typical
bus structure with a chain of switches, allowing
several simultaneous transfers on different chain
segments. Also, STBus [8] is a modular
architecture using several nodes in different
configurations to obtain a hierarchical structure.
A node is considered a partial crossbar as it can
go from a shared bus to a full crossbar,
depending on the configuration. The RoC
emerged from the need for a less costly NoC that
offers good performance.

3. The RoC System Architecture

The RoC project is part of a broader
research on SoC design methodologies. As part
of this research, it was observed that
communications represent a system bottleneck,
and that using low latency interconnect network
is imperative. RoC is a novel NOC architecture
based on the general token ring network model.
It addresses the requirements for scalable and
simple integrated networks.

The architecture of the RoC is
illustrated in Figure 1 and its modules are
detailed in the following sections.

Input
FIFOs
(delivery of
packets)

Output
FIFOs

(packets to
be sent)

° Bank
buffers

Figure 1 : RoC high level block diagram with
4 resources.
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3.1 Node interface

In the following discussion, it is
assumed that we want to connect together N
resources (N is equal to 4 in the example of
Figure 1). For instance, a resource can be a
Processor, a coprocessor, a memory, a dedicated-
hardware component, a bridge used to connect to
another communication channel or any data
processing device. Each resource must be
attached to a node interface (also called network
interface — n0 to n3 in Figure 1). Each node is
composed of N - 1 input FIFOs and N - 1 output
FIFOs (one per destination). The fixed-size
packets to be sent are tagged with source and
destination 1D, and queued in associated FIFOs.

3.2 Core-switch

The core-switch is composed of N
memory banks (b0 to b3 in Figure 1), each bank
being composed of N bank buffers. Each buffer
is associated to a node ID, such that the tag is
used as the destination address. Since each bank
contains N buffers, the number of required
buffers is N? (means to reduce this number are
proposed in Section 4). The core-switch turns
(i.e. changes its connections to the nodes)
clockwise and makes one full rotation in N steps
(the description of a step is given below). At
each step, each bank is connected with exactly
one node. A node can send one packet to the
connected bank only if the buffer associated with
the packet destination is empty. Each node may
send at most one packet per step. Also, during
the same step, a bank can deliver a packet to the
connected node to which it is associated. It
means that a packet sent from one node to
another requires at least two steps to get through
(one to send the packet from the input node to a
bank and one to send it from the bank to the
output node).

Every step, each node examines the
status of its output FIFOs and builds a transfer
request according to a given priority scheme.
The classic RoC uses a round-robin algorithm
because of its simplicity, although more complex
priority-based algorithm could be used. The
request contains information about the packet
source and its destination. If the request is
accepted, the node will send the packet during
the next step (i.e. when the core will have turned
one step). If not, no transfer will occur.
Therefore, a packet sent by a node follows an
acknowledgement received a step earlier, i.e. a



packet is sent to the connected bank (bank #I),
while the node initiates a request for the next
transfer (bank #I+1). The behavior for one step is
summarized in Figure 1. Note that this process
involves two priority schemes: the FIFO
selection done at the node and the request
acceptance/rejection done by the bank controller.

Node Bank
Beginning of process Beginning of process
Send packet
i Send request

end of clock cycle end of clock cycie

Receive packet
Time Receive request

Send ack

Send packet

end of ciock cycle end of ciock cycie

|
\ Receive ack
‘ Receive packet

end of clock cycle
v End of process

end of clock cycle

End of process

Figure 1 : Functional behavior of components
during a step

The RoC model was built using
SystemC 2.0 [9] and integrated in StepNP
(System-Level Exploration Platform for Network
Processors). StepNP is a SystemC environment
used to explore applications and architectures
[3]. It easily allows adding processors,
coprocessors, memories, and interconnects
fabrics. Modules that compose the platform
communicate using the OCP protocol [10]. That
means the fixed-sized RoC packet is composed
of three fields as the OCP packet is wrapped
with a source ID and a destination 1D, as shown
in Figure 2. An example of how many bits are
required by every field is also provided in Figure
2. Depending on the communication protocol
used between resources, packet size may vary
from 50 bits up to 200 bits.

Source Destination OCP

6 6 88

Figure 2 : Representative structure of a RoC
packet

The RoC guarantees packet arrival
order, since the core-switch is token ring like.
Also, a connection from A to B cannot block a
connection from C to D, for any C and D
different from A and B, making the RoC
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internally non-blocking for packets with different
sources and destinations.

4. Proposed Improvements

In the following sections, improvements
to ROC are proposed. The gains achieved by
those improvements are quantified in Section 5.

4.1 Buffer optimization

The basic model of the RoC (Section 3)
considers N buffers in each bank. This is very
costly in area and consumes power. Also,
simulations showed that even under heavy
traffic, the buffer occupancy rate is around 50%
(see Section 5). Indeed, considering a distributed
traffic, packets travel half the nodes before
getting to destination, on average. Then, we
could expect that on average half the buffers of a
given bank will be free at any given time.
Therefore, removing half the buffers allows
preserving  performance  while  reducing
significantly the power consumed by the NOC.
This reduces implementation complexity and
may allow adding extra nodes. However,
arbitration algorithm must be adapted. This issue
is briefly discussed in Section 5.2.

4.2 Bitmap request

As mentioned earlier, a bank sends back
a NACK (not-acknowledged) to a node if the
next bank’s Dbuffer associated with the
destination is full. For instance, let node #1 be
connected to bank #0 in a given step. Node #1
sends a request for a transaction to node #3.
Bank #0 then examines buffer #3 of bank #1 (the
next one in the rotation). If this buffer is full,
bank #0 will send back a NACK to node #].
Thus, node #1 will not send any packet during
the next step. However, another buffer (either #0
or #2) could be available and used for a
transaction. To solve this problem and to let each
node the possibility to transmit a packet at each
step, a node can send a bitmap giving every
possible destination for ready to transmit
packets, rather than sending destination number
for a unique packet (Figure 3). In this case, the
bank controller examines the request and sends
back a buffer number telling the node which
packet it must send during the next step. The
buffer number can be chosen using a round-robin
algorithm. A priority-based algorithm could also
be supported, although it would be more costly.



To summarize, in the basic model of the RoC,
part of arbitration decisions are executed by the
node controller, while the introduction of the
bitmap request sends all arbitration decisions to
the bank side. The node simply sends a request
based on its FIFOs’ states.

Output FIFOs

;‘1) »1‘- . Request

i b b i {70011} Buffers of

L’3”\ | i“f_f. ) . next bank

T 01
Node will send a Response Ei
packet from FIFO [0
#0 during the next —
step

Figure 1 : Bitmap request mechanism
4.3 Bi-directional RoC

A good way to map a high proportion of
node pairs communicating heavily would be side
by side. This configuration is best for a
transaction in the rotation direction, but is the
worst for a transaction occurring in the opposite
direction, like in the original token ring model.
Indeed, even if two nodes are neighbors, packets
exchanged in a bi-directional flow between them
will still have to travel all the way around.

L

Figure 2 : Contention problem

Also, under heavy traffic, the latency
for a rotation-direction transfer between two
neighbor nodes becomes a problem. For
instance, let us consider an eight-node RoC,
where seven masters (processors) request the
same slave node (a memory). Let node A (that
includes the memory) be located right next to
node B (that includes a processor) in the rotation
(Figure 2). Each time node B wants to send a
packet to node A, a request is sent, as explained
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earlier. In that case, node B will receive an
acknowledgment if buffer #A is empty on the
connected bank. However, there is a high
probability that the buffer will already contain a
packet since the six remaining processors have
been connected to this bank before. Even though
the transfer between node B and A seems very
fast considering the topology, a large amount of
time can occur before the transfer begins. This
situation is also illustrated in Figure 5 (Section
5.1) where the latency of packets sent between
master 0 and slave 7 increases with the number
of threads per master.

A good way to alleviate these problems
is to use a bi-directional rotator, as shown in
Figure 3. The banks are divided in two sets
rotating in opposite directions. Thus, each node
will be successively connected to a clockwise
direction moving bank and a counterclockwise
direction moving bank. This solution allows
mapping a pair of nodes communicating heavily
side to side, since the transaction latency will be
reduced to its lowest in both directions. Thus,
proper selection of the direction must be
included in the priority scheme. Also, under
heavy traffic, the overall latency (including the
delay due to the request being rejected) between
node B (processor) and node A (memory) will
decrease because half the nodes to which buffers
rotating in a direction will use this direction in
priority (the other half will have sent their packet
the other way). Thus, the contention probability
is lowered and there is a higher probability that
the transaction will occur, which reduces average
latency.

Figure 3 : Bi-directional rotator



4.4 Hierarchical RoC

When the number of interconnected
nodes is high, the average latency becomes large,
even using a bi-directional rotator. This is the
main disadvantage of the token ring topology.
Keeping latency at a reasonable level regardless
of the number of nodes suggests the use of a
hierarchical RoC, as shown in Figure 1.

In the hierarchical structure, a basic
rotator is called a satellite, and many satellites
are interconnected using a central rotator. In a
balanced 2-level hierarchy, each satellite
contains N/S nodes, where N is the total number
of nodes to connect and S is the number of
satellites. Among those nodes, some use a
special node interface (bridge) to forward
packets from a satellite to another. Those bridges
can be viewed as dedicated processors, or
processors performing a special kind of
transactions.

d el i

Figure 1 : Hierarchical RoC

The worst case of this topology occurs
when a packet requires N/S steps to reach the
special interconnect node, S - 1 steps to reach the
destination satellite and N/S steps to get to
destination. Then, a total of 2(N/S) + S - 1 steps
may be required, compared to N — 1 steps in the
initial RoC. For example, considering a 16 nodes
system with 4 satellites, it requires 11 steps
instead of 15. For a 128 nodes system with 8
satellites, the maximum number of steps is 39
instead of 127! This leads to significant latency
reduction. Moreover, a clever application
mapping would keep most of the transactions
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Jocal (on a satellite), rather than global. Finally,
this configuration makes the RoC less costly in
area. Although S? additional buffers are needed
for the central rotator, all the satellite banks are
smaller, because they comprise fewer nodes. For
instance, to connect 128 nodes, 128 * 128 = 2!
buffers are needed. With 8 satellites supporting
16 nodes each, 8*17%17 + 8*8 = 2376 buffers
are needed, which is much less than 2'*. The gain
is even better as N grows. It shows how the ROC
can be easily scaled while remaining affordable.

5. Results

This section presents results of
simulations conducted to confirm the RoC
functionality and to characterize its performance.

As mentioned previously, the RoC was
simulated using the StepNP platform that
regroups several IP models, such as processors
and memories. An instrumentation tool, named
PERNoC (PERformance NoC) and also part of
StepNP, probes results produced during
simulations and analyzes performance according
to specified metrics, such as latency and offered
bandwidth.

The simulations involved eight nodes.
Each node can be considered as a cluster
comprising a multi-threaded processor (the
master) and its memory (the slave). Each thread
repetitively writes a 32-bit integer somewhere in
the memory of other nodes (random destination
address) and reads it back. Since the read and
write transactions done on respective processors
are blocking (i.e. the process is stopped until the
transaction has completed), multi-threading is
used to increase the load on the network. The
multi-threading degree is a configurable
parameter specified in respective experiments.
Results were taken after 5 million (simulated)
clock cycles.

5.1 Load

Figure 2 shows that an 8-node RoC can
route up to 64 packets (8 threads on 8 masters) at
the same time without observing a significant
increase of its latency (note the scale change
between graphs). Further increasing the load may
lead to an undesirable behavior. Examining the
right columns (8 and 12 threads) of Figure 2, we
notice that a packet from node #0 to node #7 (his
neighbor) takes a long time to get to destination.
This behavior has already been discussed in
Section 4.3.



1 thread i 5 4 threads 3 thraads 12 threads

Figure 1 : Average packet latency for
a transfer between master 0 and slave 1 to 7
(from left to right resp.), according to the
number of threads per master. Rotation
occurs in a descending order of destination
addresses

An interesting NoC characteristic is the
utilization rate of its interface (also called load).
Assuming a three-clock rotator step, the
utilization can be defined as the Number of
threads * 3 / Average delay in clock cycles.
Figure 2 shows that RoC saturates for an offered
load of 66% before latency becomes large and
tends to go to infinity with random traffic. This
is much better than the 28% saturation rate
obtained with the SPIN fat tree network [4].
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Figure 2 : RoC latency/load
5.2 Buffers

As discussed in Section 4.1, simulations
confirmed that half of the buffers could be
removed from the banks without affecting
performance, because the occupancy rate rarely
exceeds 50% (see Table 1). A possible means to
do so is proposed later. Moreover, the fraction of
removed buffers can grow up to 75% when using
a bi-directional RoC, as shown in Figure 3 where
a reduction of the number of buffers of 75% does
not increase the latency.
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Classic RoC 14.0% 1 26.4% | 32.3% | 32.9% | 33.0%

Bitmap ReC 14.3% } 26.9% | 40.4% | 43.4% | 44.0%
Bi-directionat RoC with 9.3% { 16.1% | 21.9% | 23.3% | 23.6%
bitmap
Hierarchical RoC with 7.9% 14.6% 1 16.8% | 16.9% | 16.9%
bitmap (two 4-node satellites)

Table 1 : Average buffer occupancy rate with
random traffic

The proposed reduction in number of
buffers can have a major impact on area and
power consumption. However, the arbiter must
be a little more intelligent because the algorithm
changes slightly: for instance, the bank cannot
verify in the next bank if the buffer
corresponding to the destination is free, because
there is now fewer buffers than the number of
destinations. The buffers would now shared,
making the algorithm more complex. For
instance, with half the buffers removed, an easy
way to proceed would be to tag the buffer with
the destination number shifted right by one bit.
Thus, buffer #0 would be associated with
destinations #0 and #1, buffer #1 would be
associated with destination #2 and #3, and so on.
Despite this change, removing useless buffers is
a major improvement.

8 buffers [ bu"ersm 4 buf‘fers . 2 h\‘lbﬂers
Figure 3 : Packet latency for a transfer
between master 0 and slave 1 to 7 (from left to
right resp.) using a bi-directional RoC,
according to the number of buffers on banks

(8 threads/master).
5.3 Global performance

The insertion of additional nodes on the
network leads to additional available bandwidth,
unlike what can be seen using token ring or bus
architectures (see Figure 4) As the bandwidth
provided by a basic token ring network capable
of one transfer at a time quickly saturates, the
bandwidth  associated with RoC models
continues to grow as more resources are
connected to the network. Indeed, the modular
RoC structure allows processing multiple



simultaneous transactions. The use of a bitmap
request leads to more transfers and thus increases
effective bandwidth, as shown in Figure 2, where
a 25% increase in the number of completed
transactions is observed. In this case, more
packets get through the network because
available resources are better managed. Also, the
bi-directional RoC leads to a lower latency, since
packets travel in fewer steps before reaching
destination. These two features allow the nodes
to use more efficiently the bandwidth offered by
the core-switch buffers. Figure 1 also provides
information about which configuration can be
selected for a given traffic pattern. For instance,
with random traffic, the hierarchical structure
leads to reduced performance compared to the
original model because of additional steps taken
to go from a satellite to another. Therefore, a
hierarchical ROC is less suitable for a random
traffic, but it is more appropriate for clustered
traffics.

R —

Bi-d rectiona| RoC

—— @ Hierachical Rec

[ 5 10 15
Number of rodes

Figure 1 : Effective bandwidth for different
RoC configurations

6. Conclusion and future work

This work presented the Rotator on
Chip, a parameterized and scalable NoC
architecture based on the token ring concept. It
was designed to produce a low latency and to
maximize the use of the available bandwidth
without consuming too much resources. Features
such as bi-directional transmission, and bit-map
priority resolution can improve its performance.
A hierarchical version of RoC was proposed to
limit latency as well as means to improve buffer
utilization efficiency. It was shown that RoC can
support higher utilization rate than SPIN before
saturating.

Currently, we are working on additional
features that can be added to existing models,
such as bandwidth reservation and flow control
mechanisms. Also, we are developing an RTL
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model of the RoC to better assess its
characteristics in terms of die area, clock
operating frequency, and power consumption.

Figure 2 : Number of transactions between
master 0 and slave 1 to 7 using a) a standard
request form and b) a bitmap request form.
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