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RESUME

Le principal souci dans I’industrie de papier journal est de produire un papier avec de
bonnes propriétés pour en faciliter I'impression. La feuille doit posséder principalement
deux caractéristiques: une résistance mécanique adéquate pour assurer le
fonctionnement efficace des presses imprimantes et une surface appropriée pour
I’impression. Dans ce travail on s’intéressait & la premiére caractéristique et plus

particuliérement a I’étude des causes de variation de I’indice de tension du papier.

A cet effet, des données archivées par une usine intégrée de papier journal ont été
récupérées pour étre analysées. Ces données comportent des informations sur les
propriétés des copeaux, l'opération des raffineurs, la qualité de la pate, 1'opération de la
machine a papier et les propriétés du papier produit. Plusieurs techniques statistiques
d’analyse multivariée ont été envisagées afin d’obtenir le maximum d’information
possible a partir d’une base de données aussi large (plus de 80 variables qui ont été
suivies pendant 8 mois d’opération). La technique la plus appropriée a été celle qui
concerne I’obtention de modeles de projections de structures latentes, appelés modeles

PLS multi-bloc hiérarchisés.

La méthode de mise en blocs hiérarchisés a permis d’identifier et de quantifier, d’une

fagon systématique, le rdle des étapes du procédé et des produits intermédiaires sur
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I’indice de tension sens machine (SM) du papier. Cette méthode s'est révélée simple a

mettre en ceuvre et efficace pour l'identification des corrélations entre les variables.

11 a été trouvé que la composition de la pate alimentée a la machine est le facteur qui a
I’influence la plus importante sur I’indice de tension SM. Une augmentation du
pourcentage de pate thermomécanique produit un papier avec un indice de tension SM
plus élevé, alors qu'une augmentation du pourcentage de pate désencrée produit I’effet
contraire. La longueur des fibres de la pate thermomécanique a aussi une influence trés
significative sur I’indice de tension SM: des fibres plus longues produisent un papier
plus fort en termes de tension SM. Les variables d’opération de la machine & papier qui
présentent une influence significative sur ’indice de tension SM sont reliées aux effets

de la composition de la pate.

Finalement cette étude nous a permis d’appliquer, pour la premic¢re fois dans le
domaine de péte et papier, la méthode de mise en blocs hiérarchisés. Cette méthode
était facile d’application et efficace pour l'identification et la quantification du réle de
chaque étape du procédé par rapport a la variable de réponse choisie. Les résultats de
I’analyse ont mis également en évidence le caractére dynamique des procédés étudiés et
donc le développement d’un modéle qui s’adapte aux changements dans le procédé

devrait étre favorisé.
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ABSTRACT

The main concern in the newsprint industry is the production of good quality paper for
printing purposes. The sheet must have two important properties: an adequate
mechanical resistance to ensure the effective operation of the presses (paper
runnability) and a suitable surface for printing (printability). In this work, we were

primarily interested in the first property and specifically focused on the study of the

parameters causing variations in the tensile index.

For this purpose, data from an integrated newsprint mill was recovered to be analyzed.
The database used comprised information about wood furnish properties, refining
operation, pulp quality, paper machine operation and paper quality. Several
multivariate analysis techniques were considered to obtain as much information as
possible from such a broad data base (more than 80 variables which were monitored for
8 months of operation). The hierarchical blocking method combined with PLS models

used in this work was found to be well-suited for this type of application.

It was found that the composition of the pulp feedstock is the most influent factor on
the tensile index in the machine direction (MD). A higher MD tensile index is obtained
by increasing the thermomechanical pulp fraction, whereas an increase in the fraction
of deinked pulp produces the opposite effect. The thermomechanical pulp fibre length

has also a very significant influence on the MD tensile index: longer fibres produce
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paper with higher MD tensile. The paper machine operation variables having a
significant impact on the MD tensile index are associated with the effects of the pulp

composition.

Finally, in this work, the hierarchical blocking method combined with PLS models was
applied for the first time in a pulp and paper context. This method was efficient and
simple to identify and to quantify the influence of each process operation with respect
to the chosen response variable. The results from the analysis have shown the dynamic
behavior of the studied processes, thus a model which can adapt to changes in the

process should be considered for future applications.
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CHAPITRE 1
INTRODUCTION

1.1 Problématique

Actuellement, les usines canadiennes font face a des demandes de plus en plus
exigeantes sur la qualité du papier. La compétition dans le marché d’exportations de
pate et de papier est féroce. L’industrie canadienne doit continuer a offrir des produits
de bonne qualité a un prix compétitif pour maintenir sa place d’excellence parmi les

producteurs mondiaux de péte et papier.

En outre, quand le produit final ne répond pas aux besoins spécifiques du client, dans la
plupart des cas, la production sera vendue a un prix inférieur, ce qui fait baisser la
rentabilit¢ de 1’usine. Le principal souci dans l’industrie de papier journal, est le
comportement du papier lors de I’impression. La feuille doit posséder principalement
deux caractéristiques: une résistance mécanique adéquate pour assurer le
fonctionnement efficace des presses imprimantes et une surface appropriée pour
I’impression. Dans ce travail on s’intéressait a la premiére caractéristique: 1’étude des
causes de variation des propriétés mécaniques qui affectent le comportement du papier

dans les presses a impression.

A cet effet, on a utilisé des données concernant les propriétés des copeaux, de la pate et
du papier produits, ainsi que les paramétres d’opération des raffineurs et d’une machine

a papier. Il fallait donc trouver la méthode d’analyse multivariable qui permet d’obtenir



le maximum d’information possible de cet ensemble de données qui compte plus de 80
variables qui ont été suivies pendant 8 mois d’opération. Les méthodes par projections,
qui peuvent étre appliquées pour n’importe quel type d’ensemble de données, complet
ou incomplet, qui peut contenir des bruits et des variables colinéaires et ou le nombre
de variables peut étre différent du nombre d’observations, semblaient les plus

appropriés pour réaliser la tache.

1.2 Objectifs de I’étude

Le but de cette étude était d'identifier les principaux parameétres causes de variations
des propriétés mécaniques qui affectent le comportement du papier dans les presses a
impression. La variabilité de la tension du papier dans le sens de la machine a été
choisie comme objet d’étude. La réalisation de cet objectif tient compte des points

suivants:

= Récupération des données concernant les propriétés de la mati€re premiere, de
la pate et du papier produits ainsi que les parametres d’opération des procédés
de mise en pate et fabrication du papier journal.

» Prétraitement des données afin d’obtenir un ensemble approprié pour réaliser
I’analyse des variations a long terme.

= Construction de modéles du procédé de mise en pate et de fabrication de papier,
faciles & interpréter pour ainsi identifier efficacement les principales sources des

variations de la force du papier.



* Formulation des mesures a appliquer dans la conduite du procédé afin

d’augmenter la force du papier et de réduire sa variabilité.

1.3 Organisation du mémoire

Le chapitre 2 présente le cadre de I’étude. En particulier, les grandes lignes des
procédés de mise en pate et de fabrication du papier y sont présentées. Le chapitre 3
réunit une revue de littérature sur les méthodes par projections et leurs applications.
Une attention spéciale est donnée aux applications dans l’industrie papetiére. Le
chapitre 4 présente les principes des méthodes par projections. Leur compréhension est
essentielle afin de tirer tous les avantages qu’elles possedent pour I’analyse des données
et I’interprétation des résultats. Le chapitre 5 décrit ’analyse de la variabilité de la
force du papier réalisée dans une usine intégrée de papier journal. La méthodologie
suivie et les résultats de la démarche de modélisation sont y présentés. Ce chapitre est
autonome, car il constitue une communication faite au Congres Fibre — Papier — Carton
2005 qui sera publiée dans les comptes rendues de ce congrés. Finalement, les
conclusions de I’étude et les recommandations pour la conduite du procédé, ainsi que
les voies possibles a suivre pour la continuation de ce sujet de recherche sont présentées

dans le chapitre 6.



CHAPITRE 2

CADRE DE L’ETUDE

2.1 Présentation de Pindustrie papetiére

De nos jours, il est tres difficile d’imaginer une journée ou on n’utiliserait pas le papier
ou un de ses produits dérivés. Leur importance est indéniable. Les usages et les
applications sont trés diverses et la création de nouveaux produits pour usages spéciaux
est en évolution constante. En outre, I’industrie des pates et papiers fournit de I’emploi
a un grand nombre de personnes et joue un role primordial dans 1’économie globale du
Canada et des Etats-Unis. Seulement au Canada en 2002, I’industrie papetiére a obtenu
des revenus de 35,2 milliards de $ CAN et a employé plus de 94 000 personnes

(Banque de données Strategis, 2005).

2.2 La composition du papier

Le papier est majoritairement constitué¢ de fibres cellulosiques provenant du bois, de
papier recyclé et dans une moindre mesure de fibres non sylvestres. On peut considérer
que le bois est constitué en moyenne, sur une base seche, de 43% de cellulose, de 29%
d’hemicellulose, de 24% de lignine et de 4% de substances extractibles. Les

proportions de chaque composant varient dans les différentes especes d’arbres.

La cellulose détermine la qualité des fibres et rend possible leur utilisation dans la

fabrication du papier. Les fibres cellulosiques présentent les propriétés suivantes:



résistance élevée a la rupture par traction, flexibilité, résistance & la déformation
plastique, insolubles dans 1’eau, hydrophiles, large gamme de dimensions, capacité
d’absorption d’adjuvants modificateurs, chimiquement stables et relativement incolores
(Smook, 2001). Ces propriétés sont grandement améliorées dans le raffinage, en
éliminant la membrane primaire des fibres ce qui rend possible leur hydratation. Ceci

augmente leur flexibilité et leur pouvoir de liaison.

Dans les sections suivantes les grandes lignes des procédés de mise en péte
thermomécanique et de fabrication du papier sont abordées. Pour une étude plus
approfondi, plusieurs références peuvent étre consultés (Biermann, 1994;

Deng, 1994; Smook, 2001).

2.3 Présentation du procédé de mise en pate thermomécanique (PTM)

La mise en pate par voie thermomécanique (PTM) est une variation du procédé de mise
en pate mécanique, par lequel les copeaux de bois sont défibrés entre les plaques d’un
raffineur (Pate de Raffineur Mécanique, PRM). Dans le procédé PRM, une vis
d’alimentation conduit les copeaux dans la chambre de raffinage de I’appareil. Les
copeaux sont réduits progressivement en fragments de plus en plus petits, et finalement
en fibres, pendant leur passage a travers la zone de raffinage. De I’eau introduite dans
la chambre de raffinage sert a régler la consistance de la pate. Pendant le raffinage, la
lignine subit un ramollissement par compression et décompression, ainsi que par le

frottement bois-bois et métal-bois qui s’exerce entre les plaques du raffineur. Les effets



de dévidage et de vrillage sont évidents sur les fibres obtenues. Afin d’éliminer ces
effets de «latencey, la pate obtenue doit étre laissée en repos pendant quelque temps

dans ’eau chaude.

Depuis les années trente, on sait que le ramollissement des copeaux par la chaleur
confére une meilleure résistance a la pate. Ceci constitue ’origine du procédé PTM, qui
consiste a chauffer les copeaux de bois a la vapeur avant et pendant la premiére étape
de raffinage. La pate ainsi obtenue contient un plus grand pourcentage de fibres longues
et moins de bilichettes que la PRM. D’habitude, I’étuvage et la premicre étape de
raffinage sont effectués sous pression et la deuxiéme étape est a pression
atmosphérique. La figure 2.1 montre le schéma généralisé typique du procédé de mise

en pate thermomécanique.

Le tableau 2.1 fournit une liste de variables qui affectent le raffinage des copeaux. Dans
le cas de la PTM, on doit aussi accorder une attention particuliére a la régulation des
températures au cours de 1’étuvage et du raffinage. La température de raffinage doit étre
inférieur a 140 °C. Au dessus de 140 °C les fibres sont facilement séparées avec une
faible consommation d’énergie. Cependant, les fibres ainsi détachées sont enrobées de
lignine qui, lors de son refroidissement, passe a un état vitreux qui risque de nuire a une
fibrillation subséquente des fibres. Entre 120 et 130 °C, la lignine se ramolli
suffisamment pour permettre une bonne séparation des fibres, mais il peut se produire

des ruptures dans les aspirantes extérieures des parois secondaires des fibres.



Procédé de Raffinage Thermomécanique
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Figure 2.1 Schéma généralisé du procédé typique de mise en pate thermomécanique.




Tableau 2.1. Variables qui affectent le raffinage des copeaux (Smook, 2001).

Especes, qualité générale des copeaux,
Mati¢re premiere
degré d’humidité, absence de corps étrangers

Matériel de construction (métal), modéle, conicité,
Caractéristiques des plaques

périphérie ouverte ou fermée, diamétre du disque

Pression d’admission, température d’admission,
consistance, entrefer, adjuvants chimiques,
Conditions d’opération débit d’alimentation, vitesse de rotation des disques,
cycle de remplacement des plaques,

contre-pression a la décharge du raffineur

Quel que soit le type de pite mécanique, la quantité d’énergie dépensée par unité de
production, soit 1’énergie spécifique, demeure un parameétre essentiel concernant la
qualité de la pate. Comme ce parametre est difficile 4 mesurer sur une base continue,
I’égouttage (la résistance présentée par les fibres a 1I’écoulement de 1’eau) est utilisé
fréquemment comme paramétre de contrdle. Plus la dépense énergétique est grande,
moins I’indice d’égouttage de la péte est élevé. Cependant, le lien entre les deux
paramétres peut varier de fagon importante en fonction de la qualité¢ de la maticre
premiére (Smook, 2001). Ainsi, la pate est fabriquée en faisant un compromis entre sa

qualité et son égouttabilité sur la toile de formation de la machine a papier.




Apres le raffinage, des cyclones pressurisés permettent de séparer la pate de la vapeur.
Ensuite, les fibres retrouvent leur forme allongée dans un réservoir de latence. La péte
passe ensuite dans un classeur destiné a enlever les plus gros fragments qui ont échappé
a 'action des raffineurs. Les rejets de ce classeur sont généralement déchiquetés,
épaissis et traités dans un autre raffineur. Le classeur sert aussi 4 éliminer, dans un
certain degré, les éléments indésirables tels que des éclats de bois et des impuretés. 11
est inefficace pour 1’élimination des mini-biichettes dont le rapport longueur/diamétre
est égal a trois ainsi que les petites particules métalliques ou le sable (Chen, 1989).
L’utilisation d’un systéme d’épuration est donc nécessaire. Les épurateurs servent a
purifier la pate mais aussi a la classifier. Les fibres qui sont assez développées sont
envoyées dans la section d’entreposage de la pate. Celles qui sont sous-développées

sont envoyées dans la section de raffinage de rejets (Franko, 1987).

Le degré de blancheur de la pate est affecté par plusieurs facteurs, tels que la couleur de
la lignine des espéces de bois utilisées, les conditions d’entreposage des copeaux et de
la pate ainsi que I’4ge de la pite. La méthode de raffinage peut aussi modifier et
intensifier la couleur associée a la lignine contenue dans la pate. Le degré de blancheur
de la pate mécanique est fréquemment adéquat pour son utilisation finale. Cependant,
dii aux facteurs mentionnés plus haut, le degré de blancheur de la pate peut étre au-
dessous de celui requis pour produire du papier journal et d’autres types de papier de
plus haute qualité. Dans ces cas-ci, ’opération de blanchiment est nécessaire. Afin de

maintenir le rendement de la pate, le blanchiment est fait avec des produits chimiques



10

qui préservent le contenu de lignine dans la pate. Les agents de blanchiment plus
utilisés sont le peroxyde d’hydrogéne et I’hydrosulfite de sodium. L hypochlorite de
sodium ou potassium ainsi que le sulfite ou bisulfite de sodium sont aussi utilisés dans

certains cas (Barton et al, 1987).

2.4 Propriétés de la pite et leur détermination

Une caractérisation de la péite produite est nécessaire afin d’optimiser le
fonctionnement du procédé ainsi que les caractéristiques du produit. Elle permet aussi
d’établir des relations entre les propriétés des formettes (des feuilles de papier qui sont
faites au laboratoire en évacuant 1’eau d’une suspension de péte sur un moule) et les
propriétés de la pate. Divers tests ont été développés et normalisés (Technical
Association of Pulp and Paper Industry [TAPPI] Test Methods) pour déterminer
plusieurs propriétés de la pate, des fibres et des formettes. Fahey (1987), Nam Law et
Garceau (1989), Smook (2001), parmi d’autres sont d’excellentes références a cet
égard. Ici, on se limite & mentionner, dans le tableau 2.2, les propriétés qui ont été

disponibles pour faire I’analyse de la variabilité de la force du papier dans cette étude.

D’autres mesures concernant la force de la PTM, comme la tension, 1’énergie a la
rupture et 1’élongation, ont été également disponibles. La définition de telles propriétés

est présentée a la section 2.6.
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Tableau 2.2 Propriétés physiques de la pate disponibles pour I’analyse de données

et leurs méthodes de mesure.

Propriété

Méthode de mesure’

Longueur

des fibres

= A partir d’une observation au microscope d’un nombre significatif

de fibres. Toutes les fibres sont mesurées et la valeur moyenne est

calculée mathématiquement.

A partir d’une grille spéciale de drainage. Une suspension fibreuse
passe a travers d’une grille qui a un nombre déterminé des espaces
de certaines dimensions. Le poids des fibres retenues sur la grille

est mesuré et reporté comme la longueur pondérée des fibres.

Par fractionnement. On fait s’écouler a grande vitesse une
suspension fibreuse diluée, parallélement a des tamis dont les
mailles sont de plus en plus petites. Au méme temps, un
écoulement beaucoup plus faible passe au travers des tamis.
Seulement les fibres suffisamment courtes pour ne pas recouvrir
les mailles peuvent passer dans la chambre suivante. L’échantillon

est typiquement divisé en cinq fractions.

Egouttage

La résistance opposée par les fibres a I’écoulement de I’eau est
déterminée en Amérique du Nord, par le Canadian Standard
Freeness Tester (CSF). L’indice CSF est le nombre de millilitres
d’eau qui passent a travers |’ orifice latéral de I’appareil quand la

suspension s’égoutte a travers une plaque perforée.

T Nam Law et Garceau (1989) et Smook (2001).
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Tableau 2.2 Propriétés physiques de la pate disponibles pour 1’analyse de données

et leurs méthodes de mesure (continuation).

Propriété Méthode de mesure’

Les biichettes sont des amas de fibres de 3 & 3,5 mm de longueur, de
0,5 mm de largeur et d’environ la moitié de I’épaisseur d’une feuille
de papier (0,08 mm.). Dans la feuille, elles créent des zones de faible

résistance. Les principales méthodes de mesure sont:

Taux de »  Mesure visuelle. Inspection de feuilles par moyen d’un

biichettes microscope, projecteur ou verre illuming.

= (Classeurs de laboratoire: Classeur Somerville, Classeur de mini-

buchettes PFI, Classeur Pulmac, Appareil Von Alfthan.

= Détermination optique: Appareil STFI

T Nam Law et Garceau (1989) et Smook (2001).
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2.5 Présentation du procédé de fabrication du papier journal
Les grandes lignes du procédé de fabrication du papier journal, qui concerne cette
étude, sont montrées dans le schéma de la figure 2.2. Dans cette section, une courte

description de chaque €tape est présentée, a partir de la préparation de la pite.

Systeme
Alimentation d’approche Partie Humide Partie Séche
Dosage et Dosage, Distribution de Séchage,
mélange de classage, la péte, Calandrage,
constituants de épuration et formation de la » Enroulement
la suspension dilution de la feuille et et
fibreuse péte pressage Bobinage

Figure 2.2 Schéma du procédé de fabrication de papier journal.

2.5.1 Dosage et mélange des constituants

Afin d’obtenir un mélange de pate dont les proportions sont appropriées, il est essentiel
de bien régler la concentration et le débit de chaque constituant de la suspension.
Subséquemment, il est important de bien mélanger la pate, afin de I’uniformiser, avant
de ’acheminer vers la machine a papier. Ainsi, les différentes sortes de péte (pate
thermomécanique, pate désencrée et cassés), ainsi que des additifs destinés & améliorer
les propriétés du papier, sont intégrés dans un réservoir de mélange. La pate
uniformisée dont la consistance oscille entre 2.8 et 3.2%, est ensuite conduite au cuvier
de téte de la machine a papier. Ce cuvier, le premier élément du systéme d’approche,
contient généralement le mélange final allant & la machine & papier, bien que dans

certains cas, des additifs peuvent étre ajoutés juste avant la caisse d’arrivée.
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La figure 2.3 montre un schéma simplifi€¢ du systeme d’approche, qui constitue la zone
comprise entre le cuvier de téte de la machine a papier et la caisse d’arrivée. Dans cette
zone, on fait les opérations de dosage, classage, épuration et dilution de la suspension
qui finalement sera alimentée a la caisse d’arrivée. Initialement, la suspension du cuvier
de téte de la machine passe dans une caisse & niveau constant (le cuvier de pate) qui
alimente la pompe de mélange. Cette pompe sert & mélanger la pate avec des eaux
blanches de dilution (qui proviennent de la fosse sous toile de la machine a papier) et a
acheminer la suspension vers la caisse d’arrivée. La consistance de la pate sortant de la

pompe est d’ordinaire entre 0,5 et 1,0 % (Smook, 1997).

Classeurs Caisse
pressurisés d’arrivée
Epurateurs !
tourbillonaires l
2¢ étage
1 Pompe de
mélange
2¢ étage S i 4
Cuvier
de pate Vanne de
poids de base
Cuvier
de téte

Figure 2.3 Schéma simplifié du systéme d’approche

d’une machine a papier (Smook, 1997).
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Bien que la suspension alimentant la machine soit épurée de facon raisonnable, des
classeurs et des épurateurs sont installés en amont de la plupart des machines a papier
pour éviter la présence des contaminants externes. En pratique, les classeurs éliminent
les grosses impuretés et font la défloculation de la suspension, alors que les épurateurs

sont congus pour éliminer les bilichettes et les éclats de bois.

2.5.2 Opération de la machine a papier

La caisse d’arrivée regoit la suspension fournie par la pompe de mélange et la distribue
sur la largeur de la machine a papier. Cette opération doit étre effectuée a vitesse
constante et de fagon uniforme. L’ouverture des levres et la pression de la caisse
d’arrivée sont ajustées en fonction du débit et du poids de base désiré. Ainsi, le
fonctionnement de la caisse d’arrivée est un point critique de l’opération car la

formation et ’uniformité de la feuille finale dépendent de la qualité de la dispersion des

fibres.

Le jet de pate qui sort de la caisse d’arrivée est dirigé vers une toile horizontale (dans le
cas d’une machine de type Fourdrinier) ou entre deux toiles (dans le cas des machines a
double-toile). La formation de la feuille commence ici en faisant intervenir en plus du
processus d’égouttage, des effets comme la génération et I’atténuation de la turbulence,
la formation du réseau fibreux, la rétention et le transport de fines particules dans le
matelas fibreux, le compactage du matelas, et enfin des forces de cisaillement entre le

matelas et la suspension libre (Smook, 2001).
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La figure 2.4 est un schéma d’une section de Fourdrinier avec ses éléments principaux.
La toile est une bande sans fin, finement tissée, qui se déplace entre deux gros
rouleaux: le rouleau de téte, placé pres de la caisse d’arrivée et le cylindre aspirant a
I’autre extrémité. Le rouleau de téte sert a soutenir la toile sur la machine et, dans
certaines configurations, il joue un réle de formeur aspirant. Le cylindre aspirant est un
cylindre creux qui contient une ou deux caisses aspirantes a vide élevé. Il sert a
éliminer 1’eau de la feuille. Les divers éléments entre le rouleau de téte et le cylindre

aspirant sont utilisés a la fois comme support de la toile et comme organe d’égouttage

(Smook, 2001).

Caisse
d’arrivée
Feuille
humide .

4 7 7
“O00 ¥ 000 (>
e )

Pite 12 11 12 13 11

Section Fourdrinier

Figure 2.4 Schéma d’une section Fourdrinier avec ses éléments principaux (Smook,
2001): (1) toile métallique ou plastique, (2) rouleau de téte, (3) marbre, (4) rouleau de
la table, (5) racles, (6) caisses aspirantes (partie humide), (7) caisses aspirantes (partie
séche), (8) rouleau égoutteur, (9) cylindre aspirant, (10) rouleau de retour ou moteur,

(11) rouleau guide, (12) rouleau tenseur, (13) rouleau de retour, (14) fosse sous toile.
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Les travaux de recherche sur d’autres méthodes de formation ont généré la prolifération
de plusieurs configurations de machines a double-toile (Smook 2001). Dans les
véritables formeurs a double-toile, le jet sortant de la caisse d’arrivée pénétre dans
I’espace convergent entre les deux toiles. L’égouttage est produit par la pression due a

la tension des deux toiles et les organes d’égouttage.

La machine & papier ¢étudiée dans ce travail, posséde un formeur Fourdrinier modifié
par ’ajout d’un formeur supérieur (top-former), tel que montré a la figure 2.5. Il s’agit
d’une caisse d’arrivée et un formeur Fourdrinier mis au-dessus d’un autre formeur
Fourdrinier. Cette modification permet d’améliorer le processus d’égouttage et

d’obtenir une feuille avec une meilleure symétrie (Hubbe, 2004).

FORMEUR SUPERIEUR

Caisse d’arrivée
principale

Toile Fourdrinier

Pite

Figure 2.5 Schéma d’un formeur supérieur (Hubbe, 2004).
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Le matelas fibreux sortant de la table de fabrication est transporté par une série de
feutres, a travers différentes presses, afin d’extraire 1’eau de la feuille et de consolider

le matelas fibreux.

A Porigine, les machines étaient équipées de rouleaux leveurs A tirage ouvert pour
transférer la feuille humide de la toile a la section des presses. Le transfert de la feuille
était fait, sans aucun support, sur le feutre de la premiére presse. En maintenant une
différence de vitesse entre la toile et la section des presses, on fournissait la tension
nécessaire pour décoller la feuille de la toile. Cette méthode est obsoléte en raison des
problémes qu’elle pose a grande vitesse. Actuellement, on décolle la feuille de la toile
grice a un feutre qui entoure un cylindre aspirant a ’endroit ou se fait le contact. Avec
la mise au point des rouleaux preneurs aspirants, le premier tirage ouvert se trouve dans
la section des presses. Le premier tirage ouvert est toujours un point sensible car la
feuille est encore assez fragile et soumise a des tensions d’origines diverses (Smook,
2001). La figure 2.6 montre I’emplacement du dernier tirage ouvert dans une machine a

papier moderne typique (Pikulik, 1997).

Le pressage s’effectue dans une série de pinces, la pression augmentant d’une pince a
I’autre. Il faut extraire 1’eau uniformément sur toute la largeur de la machine pour que
le profil d’humidité de la feuille sortant des presses et entrant en sécherie soit régulier.

En outre, I’étape de consolidation de la feuille est trés importante. Le contact intime
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entre les fibres doit étre assuré pour que les liaisons inter-fibres puissent se développer

pendant le séchage (Smook, 2001).

OO

LU

Former Press Dryer Calender Roeel!

Figure 2.6 Emplacement du dernier tirage ouvert dans

une machine a papier moderne typique.

L’cau qui s’écoule de la pate pendant le processus d’égouttage est appelée 1’eau
blanche. Elle contient les particules non retenues dans la feuille: des fibres et des
adjuvants. La majeure partie des eaux blanches provient de la toile Fourdrinier. Elle est
collectée dans la fosse sous toile, pour ensuite étre réutilisé directement ou a travers un
systéme de récupération des fibres. Les eaux blanches sont réutilisées comme eau de
dilution de la pate, comme eau des rinceurs de la toile, comme eau de la section des

presses, etc. La récupération des fibres des eaux blanches est faite plus couramment par



20

des appareils tels que les ramasse-pate a flottation et les filtres a disques. Dans les
ramasse-pate a flottation, on récupére les fibres ainsi que d’autres solides, en fixant sur
ces particules de petites bulles d’air qui les font flotter a la surface ou on les récupére
par écumage. Les filtres & disques sont constitués par un ensemble de disques, monté
sur un axe central. L’eau s’écoule au milieu filtrant de chaque secteur, puis au centre de

’arbre rotatif. L’eau filtrée et le gateau de filtration sont récupérés pour étre réutilisés.

Le papier sortant des presses passe ensuite sur une série de cylindres sécheurs chauffés
par de la vapeur vive. L’eau qui reste dans la feuille est ainsi évaporée au contacte de
ces cylindres et retirée par ventilation. La feuille est plaquée contre le cylindre par une
toile synthétique perméable appelée feutre sécheur. Sur la plupart des machines a
papier, on regroupe les cylindres dans trois ou cinq sections de feutres indépendantes
dont on peut régler séparément la vitesse pour maintenir la feuille en tension entre deux

sections et compenser son retrait (Smook, 2001).

La plupart des grades de papier subissent un calandrage afin d’obtenir une surface lisse
pour I’impression. L’opération de calandrage la plus courante consiste a faire passer le
papier dans une ou plusieurs pinces formées par un ensemble de rouleaux en fonte. La
réduction d’épaisseur de la feuille et le degré de lissé sont fonction de la pression et du

temps de résidence dans la pince, ainsi que du nombre de pinces.
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Finalement, aprés I’avoir séché et calandré, il faut récupérer le papier sous une forme
adaptée aux transformations ultérieures. A cet effet, la plupart de machines modernes
possedent des enrouleuses, ou un tambour enrouleur est entrainé par un moteur doté
d’une charge suffisante pour tendre correctement la feuille qui sort de la calandre. Une
bobineuse sert & découper la feuille des bobines de papier dont la largeur correspond a
celle de la machine, en bandes qui seront ré-enroulées en plus petits bobineaux.
Pendant cette opération, on découpe de 3 a 5 cm sur les bords de la feuille; ces rognures
sont acheminées par un convoyeur vers le triturateur a ¢

assés. Les bobineaux sont emballés et expédiés au client, par exemple dans le cas du
papier journal, ou bien subissent une transformation supplémentaire: aspirantage,

calandrage ou découpe en feuilles.

2.6 Propriétés du papier et leur détermination

La facilité de passage sur les presses dans la salle d’impression, I’imprimabilité, ainsi
que I’apparence sont des propriétés importantes pour la production du papier journal.
Ces propriétés sont affectées directement par la qualité du papier. Un papier plus fort
aura un meilleur comportement lors de I’impression. De bonnes propriétés de surface
conduisent a une bonne imprimabilité et de bonnes propriétés d’apparence donnent un

meilleur aspect au papier.

Dans cette étude on s’intéresse a la facilité de passage sur les presses dans la salle

d’impression et donc a la force du papier. Les définitions des propriétés du papier
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reliées a la force et leur méthode de mesure sont ensuite présentées. La majorité des
tests des propriétés ont été normalisés par plusieurs organismes industriels tels que
Technical Association of the Pulp and Paper Industry (TAPPI), Canadian Pulp and
Paper Association — Technical Section (CPPA — TS), Scandinavian Pulp, Paper and
Board Testing Committee (SCAN), American Society for Testing and Materials
(ASTM), British Paper and Board Makers Association (BPBMA) et Australian Pulp

and Paper Industry Technical Association (APPITA).

La résistance au déchirement est la force moyenne requise pour continuer la déchirure
du papier a partir d’une coupure initiale d’une simple feuille de papier ou de plusieurs
feuilles. Cette force peut étre déterminée avec 1’appareil Elmendorf (Smook, 2001), qui
utilise un pendule tombant qui produit la continuation de la déchirure de la feuille en
appliquant une force de fagon perpendiculaire au plan de la feuille. La perte d’énergie
potentielle du pendule (déterminée a partir de la hauteur de ces oscillations) est reliée a
la force nécessaire pour continuer la déchirure. Si la coupure a été faite dans la
direction de la machine a papier, la force mesurée correspond a la résistance au
déchirements sens machine (SM). Si la coupure a €té fait dans I’autre sens, la force

correspond & la résistance au déchirement dans le sens travers (ST).

La tension du papier, aussi appelée la résistance a la rupture par traction, est la force
maximale par unité de largeur qui peut étre appliquée sur une bande de papier, avant

qu’elle ne se casse. Cette propriété peut étre mesuré dans les deux directions (SM et
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ST). On la détermine en mesurant la force nécessaire pour rompre une bande de papier
de longueur normalisée. La vitesse de traction (la cadence de chargement) est
également spécifiée dans la norme. L’allongement du papier avant rupture est
déterminé simultanément. Certains appareils de mesure fournissent un diagramme de la
force appliquée vs I’allongement subi par la bande de papier. L’aire sous la courbe
représente [ 'énergie a la rupture, définie comme le travail nécessaire pour déchirer la

bande du papier testée.

Ces propriétés sont mesurées afin de caractériser le papier mais elles sont utilisées aussi

pour la caractérisation de la pate a partir de formettes.



24

CHAPITRE 3

REVUE DE LITTERATURE

3.1 Les méthodes par projections PCA et PLS

Selon Jolliffe (1986), 1’analyse en composantes principales PCA est probablement la
technique d’analyse multivariée la plus ancienne et la mieux connue. La méthode a été
introduite par Karl Pearson en 1901 mais Harold Hotelling en 1933 a été le premier a la
présenter telle qu’on la connait actuellement. L’accés généralisé aux ordinateurs ainsi
que le développement de ressources informatiques, de plus en plus puissantes, a permis
d’appliquer ces techniques d’analyse multivariée pour résoudre des problémes d’une
grandissante complexité. La définition et le calcul des composantes principales sont
explicites et simples. Ceci est probablement la raison pour laquelle on trouve de
nombreuses dérivations de la méthode en réponse a divers types de systémes et de

procédés.

Plusieurs documents concernant la théorie de 1’analyse en composantes principales ont
été publiés. Jackson (1980) présente une introduction au concept de composantes
principales ainsi que la démarche numérique, pour faire des estimations, des tests de
signifiance et I’analyse de résidus. Jolliffe (1986) et Jackson (1991) ont présenté des
ouvrages dédiés entierement & I’analyse en composantes principales, la théorie et la
représentation graphique de la méthode ainsi que 1’interprétation des résultats avec des

nombreux exemples. Wold et al (1987) est aussi une excellente référence sur ce sujet.
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Geladi et Kowalski (1986) mentionnent que le travail pionnier sur la méthode PLS a été
fait en grande partie par Herman Wold a la fin des années soixante dans le domaine de
I’économétrie. La base de la méthode est établie entre le début des années soixante-dix
et la décennie suivante. Pendant cette période la méthode gagne en intérét parmi les
économétriciens et les sociologues et elle est appliquée premiérement dans le domaine
de la chimie par les groupes de Svante Wold et Harald Martens et dans le domaine de la
génie chimique par le groupe de John F. MacGregor. L’application de la méthode ne
cesse de se répandre aux différents domaines en intégrant les modifications pertinentes
afin de s’adapter aux besoins spécifiques de chaque discipline. Les détails historiques

sur le développement de la méthode PLS peuvent étre consultés dans Geladi (1988).

Il y a plusieurs algorithmes pour calculer les composantes principales, 1’algorithme
NIPALS (Nonlinear Iterative Partial Least Squares) et I’algorithme dit kernel étant les

plus utilisés.

Geladi et Kowalski (1986) ont présenté un tutorial complet sur la méthode PLS et les
algorithmes NIPALS PCA et NIPALS PLS. Miyashita et al (1990) proposent une
modification a I’algorithme NIPALS original pour assurer la convergence du calcul de
la premiere composante. Tenenhaus et al (1995) et Tenenhaus (1999) sont des
références en francais intéressantes qui exposent deux applications industrielles sur la

méthode PLS ainsi que les grandes lignes de 1’algorithme NIPALS avec leurs
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principales propriétés. La mention de 1’ouvrage de Eriksson et al (2001) qui expose
clairement les méthodes PCA et PLS dans le cadre de I’analyse multivariée de données

et qui fait toujours référence a I’algorithme NIPALS, est incontournable.

Concernant D’algorithme kernel, plusieurs travaux ont été réalisés. Par rapport a
’analyse de composantes principales, Scholkopf et al (1997) proposent une nouvelle
méthode non-linéaire pour la mettre en ceuvre. Ceci devient le principe fondamental de
’algorithme proposé par Lu et al (2003), considéré comme plus robuste que I’original.
L’ouvrage de Scholkopf et Smola (2001) inclut un support pédagogique sur I’analyse
en composantes principales avec 1’algorithme kernel, souvent appelé méthode KPCA.
En ce qui concerne la méthode PLS, ’algorithme kernel (KPLS) a été originellement
développé par Lindgren et al (1993). 1l est particuliérement efficace pour le cas des
matrices ou le nombre d’observations et plus grand que le nombre de variables. De
Jong et Ter Braak (1994) proposent une reformulation du méme algorithme afin
d’éclaircir ’approche kernel et la méthode PLS en soit. La version de I’algorithme
KPLS pour le cas des matrices ot le nombre de variables est plus grand que le nombre
d’observations est exposée par Rinnar et al (1994, 1995). Dayal et MacGregor (1997a)
présentent deux algorithmes KPLS et I’algorithme NIPALS améliorés (le code
MATLAB® y compris) qui réduisent le temps de calcul ainsi que la taille de ressources
informatiques requises en termes de mémoire disponible. Ceci a permit le

développement d’une approche concernant le contrdle adaptatif du procédé qui sera



27

abordée dans la section 3.2.1. Finalement Bennett et Embrechts (2003) présentent des

dérivations de ’algorithme KPLS qui sont orientées vers I”apprentissage-machine’.

La prochaine section présente quelques applications des méthodes PCA et PLS
intéressantes a explorer, étant donné le potentiel d’application pour 1’étude du procédé

de mise en péte et de fabrication du papier.

3.2 Quelques applications des méthodes PCA et PLS

3.2.1 Applications visant le contréle adaptif du procédé

La plupart des procédés industriels sont variables dans le temps. Les changements des
conditions d’opération générent le besoin de mettre & jour le modéle pour maintenir sa
capacité descriptive et prédictive. Dayal et MacGregor (1997b) ont proposé un
algorithme kernel pour la mise a jour exponentiellement pondérée d’un modele PLS. Le
potentiel de cette approche est illustré par deux exemples concernant la simulation du
contrdle adaptif d’un réacteur agité de fagon continue et la mise & jour d’'un modeéle
prédictif d’un circuit de flottation des minéraux. En comparant les modéles obtenus
avec 1’algorithme KPLS récursif et ’estimation récursive par des moindres carrés, il a

été démontré que les premiers donnent les meilleures prédictions.

! L’apprentissage-machine est un effort de recherche qui a comme but le développement d’un systéme

expert avec la création de programmes d’ordinateur qui peuvent apprendre par l'expérience.
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Qin (1993) a présenté sa version récursive de 1’algorithme NIPALS modifié dont
’application illustrée est la modélisation d’un systeme de reformage catalytique d’une
raffinerie de pétrole. Cet algorithme est la base de plusieurs approches (Qin, 1998) de

modélisation du procédé en ligne et hors ligne qui sont en suite briévement décrites.

La premiére approche avec I’algorithme PLS récursif (RPLS) proposé par Qin (1998)
réalise la mise a jour du modéle en intégrant les nouvelles données du procédé aux
valeurs des composantes de 1’ancien modéle. Un nouvel ensemble de données est ainsi
constitué, 1’algorithme NIPALS modifié¢ est alors mis en ceuvre en fonction de ces
données et un nouveau modele actualisé est obtenu. Une deuxiéme approche consiste a
mettre en ceuvre ’algorithme NIPALS modifié afin d’obtenir un modéle PLS qui tient
seulement compte des nouvelles données. Les valeurs des composantes de ce modéle
sont alors intégrées a celles des composantes de I’ancien modéle pour former ce qui
sera un nouvel ensemble de données. L.’algorithme NIPALS modifié est & nouveau mis
en ceuvre avec cet ensemble et donc un nouvel modéle actualisé est obtenu. Une
troisiéme approche, dite a fenétre mobile, est proposée. Pour éliminer les données les
plus anciennes de I’ensemble afin d’adapter le modéle aux nouvelles conditions
d’opération, chaque fois qu’un nouveau ensemble de données (vu comme un bloc) est
disponible et donc un nouveau bloc de composantes est obtenu, les composantes les
plus anciennes sont éliminées de 1’ensemble original tandis que les nouvelles y sont
intégrées et un nouveau modele PLS est obtenu. Une quatri¢eme approche implique un

facteur d’oubli A (0 < A < 1) qui est appliqué aux anciennes composantes chaque fois
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qu’un nouveau bloc de composantes est intégré a 1’ensemble. De cette fagon le poids de
chaque bloc de composantes diminue exponentiellement. Avec une petite valeur de A,

I’ancienne information est oubliée plus rapidement.

Un désavantage des algorithmes de Qin est que le nombre de composantes calculées est
plus grand que celui qui serait déterminé par validation croisée, ce qui fait diminuer
I’efficacité de ’approche. En outre, en fonction du prétraitement des données, certains
parametres, comme les valeurs moyennes et les écarts type, doivent étre mises a jour a

chaque fois qu’un nouveau bloc de données est disponible afin de le mettre a I’échelle.

Le facteur d’oubli A peut étre choisi arbitrairement ou estimé de plusieurs maniéres.
Vijaysai et al (2003) proposent une méthode pour calculer A qui tient compte du
changement de la corrélation entre les variables explicatives et les variables de réponse
des blocs d’entrée et de sortie. Si les parameétres du procédé ne changent pas, la
corrélation entre les variables explicatives et de réponse est presque constante et A est
égal a 1. Cheng et al (1988, 1993) et Cooper et Worden (2000) sont d’autres références
intéressantes concernant le calcul du facteur d’oubli. Des versions récursives des
algorithmes PCA et PLS sont présentés par Li et al (2000), Wang et al (2003), Capron

et al (2005) et Lee et al (2005).
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3.2.2 Cartes multivariables de controle

Les cartes de contrdle sont un outil qui permet de faire le suivi du procédé dans le
temps, avec le but de vérifier que le procédé est sous controle statistique. On dit qu’un
procédé est sous contrdle statistique quand les valeurs des variables suivies restent prés
de leur valeur cible et que les causes de la variabilité observée sont uniquement
aléatoires et non assignables. Les cartes de contrdle comme la carte de Shewhart, la
carte des sommes cumulées CUSUM (Cumulative Sum) et la carte de la moyenne
mobile exponentiellement pondérée EWMA (Exponentially Weighted Moving
Average) sont utilisées pour détecter 1’apparition d’un événement dont les causes sont
assignables. L’élimination de ces causes conduit & I’amélioration de la qualité¢ du

produit et de la conduite du procédé.

La définition ainsi que la construction de chacune des cartes peut étre consultée dans
plusieurs documents (Lamouille et al, 1989; Wheeler, 1995; Levinson, 1997; Wise et
Fair, 1998). Une référence intéressante est Hunter (1986). Il présente les différences
parmi les cartes nommeées ci-haut, en exposant particulicrement la construction de la

carte EWMA qui conduit a une équation empirique de controle dynamique.

Telle que congue, une carte de contrdle fait le suivi d’une seule variable du procédé.
Dans la plupart des procédés industriels modernes, beaucoup de variables (autour de
100 et plus) sont mesurées dont plusieurs sont fortement corrélées. En examinant une

variable a la fois, I'interprétation et le diagnostique d’un événement anormal dans le
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procédé devient tres compliqué. De plus, la justesse de détection des anomalies est plus
erronée au fur et a mesure que la corrélation augmente. Il est souhaitable d’extraire
Pinformation de toutes les données disponibles pour construire un schéma de suivi et
de diagnostique du comportement du procédé qui soit fonctionnel. Ceci est le point de
départ du contréle statistique multivariable du procédé ou les méthodes de projections
PCA et PLS peuvent étre utilisées pour construire la version multivariable de chacune
des cartes de contrdle. A cet égard, Jackson (1985) est une bonne référence. Il présente
une analyse des techniques de contrble de qualité multivariable, concentrée sur les

cartes de contrdle ainsi que I’utilisation des composantes principales.

Une carte Shewhart univariable typique est construite a partir de la série chronologique
de la variable observée, la valeur moyenne des données (idéalement la valeur cible des
spécifications du procédé) et les limites de contrdle qui sont fixés & la valeur moyenne
+ 3 écarts types. L’ apparition d’un point au-dela de cet intervalle signale que le procédé
est hors de contréle. Ce signal ne tient pas compte de I’histoire du procédé car il dépend
seulement du dernier point sur la carte de contrdle. Ainsi, la carte Shewhart n’a pas de

mémoire.

La version multivariable de la carte Shewhart peut étre construite a partir des valeurs
des variables latentes ou des valeurs Hotelling T2. La carte des valeurs des composantes
présente I’évolution du procédé en termes d’une composante, la ligne correspondant a

la valeur cible et les limites de contrdle. Cependant dans la plupart de cas, on a besoin
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de plus d’une composante pour avoir une description compléte du systéme. Il faudrait
construire une carte de contrdle pour chaque composante du modeéle. Une option plus
attirante est présentée par la carte de valeurs Hotelling T. Les valeurs Hotelling T sont
des sommes pondérées des valeurs de toutes les composantes décrivant le systéme.
Elles donnent un indice sur la localisation des observations par rapport au centre de
I’hyperplan conformé par les composantes du modele (Eriksson et al, 2001). Ainsi, la
carte construite avec les valeurs Hotelling T et les limites de contrdle correspondantes,
permet de détecter les points hors limites qui représentent les déviations les plus

importantes par rapport a la variation systématique du procédé.

Kresta et al (1991) ainsi que Nomikos et MacGregor (1995) ont proposé, dans le méme
ordre d’idé€es, I'utilisation des graphiques des valeurs latentes et du carré de I’erreur de
prédiction SPE (Squared Prediction Error). Les premiers illustrent le processus de
détection des fluctuations dans le procédé en utilisant des données des simulations d’un
réacteur a lit fluidisé et d’une colonne de distillation extractive tandis que les
deuxiémes utilisent des données d’un réacteur de polymérisation en discontinu. Dans
les deux travaux, il est montré que ces cartes de contréle multivariable peuvent étre

plus efficaces que leur contrepartie univariable pour la détection de changements dans

le procédé ainsi que des causes de tels changements.

La carte CUSUM univariable typique est un graphique de la somme cumulative des

déviations des observations par rapport a la valeur cible. Tant que la moyenne des
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valeurs observées est proche de la valeur cible, les valeurs sur la carte CUSUM seront
aléatoirement distribuées autour de zéro. Si la moyenne des observations change et
s’écarte de la valeur cible, la pente de la ligne sur la carte de contrdle change en
indiquant un déplacement de la moyenne par rapport a la valeur cible. Ainsi, la carte
CUSUM posseéde une «mémoire d’éléphant» (Hunter, 1986) car elle tient compte de
toutes les valeurs obtenues et leur donne le méme poids. La carte CUSUM
multivariable peut €tre construite & partir de la somme cumulative des valeurs des
composantes et, telle que la version univariable, elle est utile pour détecter des

perturbations mineures dans le développement du procéd¢ (Eriksson, 2001).

Dans le calcul de la valeur moyenne exponentiellement pondérée EWMA, les
observations concernant une variable sont pondérées en donnant plus de poids aux
observations les plus récentes. Ainsi, pour deux cas extrémes, une carte de contrdle
EWMA peut étre équivalente a une carte Shewhart, en donnant tout le poids a la
derniére observation, ou a une carte CUSUM, en donnant le méme poids a toutes les
observations. Les limites de controle de la carte EWMA sont fixés a la valeur cible + 3
écarts types qui sont calculés tenant compte de la constante qui détermine la mémoire

de la carte.

La carte EWMA multivariable peut étre produite a partir des valeurs de composantes.
Ce type de carte a fait I’objet de plusieurs travaux. Lucas et Saccucci (1990) ont

présenté les propriétés de la valeur moyenne exponentiellement pondérée dans le cadre
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du contrdle de procédé et Lowry et al (1992) ont exposé des lignes directrices pour leur
implantation. Scranton et al (1996) ont présenté des avantages de l’utilisation des
composantes principales au lieu de surveiller séparément toutes les variables. Dans le
travail de Martin et al (2002), ’application d’une carte EWMA construite avec les
composantes principales concernant le procédé de fabrication d’un film de polymére,
est présentée. 1l a ét¢ montré que I’identification des perturbations et de leurs sources

s’est faite d’une facon explicite.

Finalement, Lowry et Montgomery (1995), Zullo (1996), MacGregor et Kourti (1995),
Wachs et Lewin (1999), Zhang et al (1999), Tsung (1999), Chen et Liao (2001), Kano
et al (2001) et Kourti (2002), peuvent étre consultés pour une étude plus approfondie

sur les applications de ces méthodes de contrdle multivariable.

3.2.3 Analyse du procédé par blocs

En dépit d’une relative simplicité, ’interprétation de résultats des modeles PLS devient
compliquée lorsqu’on doit considérer un nombre important de coefficients de
régression. La réduction du nombre de variables peut étre une option attrayante mais on
risque de perdre une partie de I’information. L’approche de mise en blocs hiérarchisés
présentée par Wold et al (1996) constitue une alternative intéressante. Elle consiste a
regrouper les variables dans des blocs caractéristiques, a développer un modéle PLS
pour chaque bloc et a utiliser les composantes ainsi obtenues comme de nouvelles

variables dans un modéle PLS global appelé modéle multi-bloc. Ainsi on peut faire la
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distinction entre deux niveaux. Dans le premier niveau on trouve les sous-modéles qui
englobent les relations entre les variables du procédé et dans le deuxiéme niveau on
trouve le modele multi-bloc qui contient les relations entre les blocs. Il est sous-entendu

que tous les modeles du premier niveau ainsi que le modéle multi-bloc partagent les

mémes variables de réponse.

Kourti et al (1995) et Rénnar et al (1998) ont développé I’application de mise en blocs
hiérarchisés pour la surveillance adaptative de lots du produit. L’objectif est de suivre
la trajectoire du procédé pour détecter et éliminer les défauts qui peuvent affecter la
qualité du produit final et ensuite redéfinir les limites de contrble. Ceci conduit a une

production plus consistante.

Westerhuis et al (1998) ont comparé plusieurs versions des méthodes PCA et PLS
hiérarchisés et multi-bloc. Les auteurs rapportent des problémes de convergence des
algorithmes et dans les pires cas des pertes d’information. Ils proposent certaines

modifications afin de résoudre ces problémes.

Etant donné la nature et la complexité des procédés de mise en péte et de fabrication du
papier, ainsi que la structure de I’ensemble de données disponible pour I’analyse,
I’approche d’analyse du procédé par blocs possede un potentiel intéressant pour
résoudre le probléme posé dans cette étude. Elle a donc été choisie comme méthode de

modélisation de la force du papier dans ce travail.
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3.3 Les méthodes PCA et PLS dans I’industrie papetiére

Les méthodes par projections sont de plus en plus utilisées dans I’industrie pour la
modé¢lisation, surveillance et controle des procédés. Dans le cas de I’industrie de pates
et papiers, plusieurs applications de ces méthodes ont été explorées dans les diverses
parties du procédé. Wold (1994) a proposé des modifications aux algorithmes PCA et
PLS pour obtenir des modeles, & partir d’observations exponentiellement pondérées.
Cette démarche est illustrée avec des données concernant 1’opération d’une machine a
papier, ce qui a permis de prouver la capacité prédictive a court terme des modéles
obtenus ainsi que leur utilité¢ pour trouver les corrélations entre les diverses variables

explicatives et de réponse.

Dayal et al (1994) ont étudié I’utilisation de réseaux neuraux et de la méthode PLS pour
I’obtention de modéles empiriques concernant 1’opération continue d’un lessiveur
Kamyr, a fin de prédire la qualité de la pate Kraft en termes de 'indice Kappa, ainsi
que pour obtenir une meilleure compréhension des relations existantes entre les
variables. Les résultats des deux méthodes sont semblables en produisant des modéeles
qui capturent jusqu’a 62 % de la variabilité de I’indice Kappa. Cependant, seulement
les modeles PLS ont permis de mieux comprendre le procédé et d’identifier les
variables de procédé qui affectent le plus I’indice Kappa et donc produisent un modéle

plus fonctionnel.
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Teppola et al (1998) ont obtenu des modeles PCA a partir des données concernant la
partie humide d’une machine a papier. Ils ont mis en évidence 1’utilité des cartes de
valeurs des composantes et des poids pour la visualisation de 1’état du procédé, la
détection des problemes dans le développement du procédé et les variables qui en sont

responsables.

Kesavan et al (2000) ont présenté une méthode de contrdle afin de réduire la variabilité
de la qualité de la pate a la sortie d’un lessiveur discontinu. Un modéle PLS est utilisé a
cet effet dont la capacité prédictive est testée expérimentalement. Le modéle PLS

donne des meilleures prédictions que le modele traditionnel du facteur H de Chari.

Ivanov (2001, 2002, 2003) a exposé 1’utilisation habituelle des méthodes PCA, PLS et
PLS discriminante (PLS-DA) a Tembec Inc., pour I’étude des données archivées, la
surveillance du procédé et la prédiction de certaines propri€tés des produits, ainsi que
pour faciliter la détection de causes des changements dans 1’opération et accroitre les
connaissances sur le procédé qui permettent de 1’optimiser. Les modéles hors ligne sont
utilisés pour améliorer la connaissance du procédé et identifier les causes des
événements spéciaux tandis que les modeles en ligne permettent le contrle de la
production de différents grades de papier en temps réel. Deux autres applications
intéressantes méritent d’étre mentionnés. L une consiste & utiliser des modeles PLS-DA
pour prédire le comportement du produit lors de son utilisation finale, en comparant les

nouveaux lots avec les lots antérieurs. La seconde porte sur la combinaison des
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méthodes PLS-DA et PCA pour modéliser plusieurs grades de papier carton
simultanément. Lane et al (2000, 2001) ont traité aussi la réduction dans le nombre de

modeles pour faire le suivi de la production de plusieurs grades d’un produit.

Lane et al (2002) ont reprit 1’approche de Wold (1994) et ont proposé 1’utilisation des
modeles récursifs EWPCA (exponentially weighted PCA) dont le comportement
adaptatif permet de détecter les changements dans le procédé qui sont considérés
comme anormaux et donc de prendre les actions correctives nécessaires. L’application
de ’approche proposée au procédé de formation de la feuille illustre le potentiel de la
méthode pour faire le suivi d’un procédé dynamique. L’avantage le plus important de
cette méthode est la réduction des fausses alarmes signalées par les cartes de controle
par rapport a celles produites quand la méthode PCA conventionnelle est appliquée

pour le méme type de procédé.

Tessier et al (1999) ont développé un modéle PLS pour optimiser la distribution des
dimensions de copeaux (longueur et épaisseur). Les résultats ont montré qu’il fallait
augmenter la proportion de grands copeaux (en longueur) plus larges que 4 mm, pour
avoir une meilleure combinaison des propriétés étudiées (la résistance au déchirement,
I’éclatement et 1’énergie a la rupture TEA) d’une péite au bisulfite a trés haut
rendement. Cette étude a provoqué I’'intérét de 1’usine impliquée, sur I’extension de la
méthode aux autres parties du procédé de fabrication du papier, tel que présenté par

Lupien et al (2001) qui exposent I’utilisation des modeles PLS, a Papier Masson Ltée,
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pour identifier les causes de variation de propriétés du papier produit, comme [’énergie
a la rupture dans le sens machine, I’opacité et la résistance au déchirement dans le sens
travers. L’objectif de I’étude était d’identifier les variables les plus influentes sur la
qualité du papier et d’établir les conditions optimales d’opération. Les résultats ont
révélé que l'opération de la machine & papier était la source de variation la plus
importante. L.’exercice d’optimisation a permis de confirmer que 1’équipement était a sa
limite de capacité car les valeurs cible étaient trés semblables aux valeurs actuelles

d’opération.

Skoglund et al (2002) ont utilisé¢ des données provenant d’une machine a papier carton
pour comparer la performance des modeles PLS et des réseaux neuronaux décrivant un
processus en continu. Bien que pour les fins de prédictions, les réseaux neuraux ont
démontré leur supériorité, les modéeles PLS ont été plus adéquats pour faire le suivi du
procédé, en détectant plus sensiblement les déviations des conditions normales

d’opération ainsi que les variables responsables des déviations.

Stefanov et Hoo (2003) ont utilisé une approche d’analyse multivariée hiérarchisée
pour déterminer les causes du phénoméne de froissure du papier. Les méthodes PLS,
Tucker 3 et d’analyse de facteurs paralléles PARAFAC (Parallel Factor Analysis) ont
été employées. Les résultats de 1’analyse ont été validés par la connaissance antérieure
du procédé ce qui a démontré la capacité de ’approche d’identifier les sections du

procédé et les variables responsables du phénomene de froissure du papier.
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Wold et Kettaneh-Wold (2003) ont discuté I’emploi de I’analyse multivariable pour la
surveillance des procédés, la détection des défauts, la prédiction des propriétés du
produit et du procédé ainsi que pour mieux comprendre les procédés de mise en pate et
de fabrication du papier. Les avantages sont clairs: la maitrise de la stabilité du procédé,
la réduction de la variabilité dans la qualité du produit, I’utilisation plus efficace des

matiéres premiéres ainsi qu'une meilleure préparation pour faire face aux événements

futurs.

Harrison et al (2004) ont fait ’analyse de données concernant I’opération de raffineurs
pendant une période de 34 mois, avec des modeles PCA et PLS. L’objectif de I’étude
était de déterminer le nombre de variables latentes nécessaires pour décrire la section
de raffinage dans une usine de papier journal. Le débit de la pate produite a été la
variable dominante du modéle PCA, suivie en importance par I’effet de la saison (été vs
hiver), le débit de 1’agent de blanchiment, le degré de blancheur de la péte, la fraction
de fibres fines, la longueur des fibres, 1’énergie spécifique appliquée et I’entrefer des

plaques des raffineurs.

Finalement, Hagedorn et Orccotoma (2004) présentent un survol des méthodes PCA et
PLS, une introduction au développement des modéles ainsi que la fagon de les
interpréter pour le cas de systémes non dynamiques. Afin d’illustrer les concepts qui y
sont mentionnés, des donnés concernant le procédé de mise en péte et fabrication du

papier sont traitées.
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Les méthodes par projections évoluent de fagon continue et leur potentiel d’application
rend impossible la tdche d’énumérer toutes les possibilités dans n’importe quelle
industrie. Plusieurs extensions et modifications peuvent étre faites selon le type des
données a traiter. Quelques-unes ont été¢ résumées par Wold et al (2001). Dans le

prochain chapitre, la théorie de base des méthodes par projections est abordée.
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CHAPITRE 4
PRINCIPES DE L’ANALYSE EN COMPOSANTES PRINCIPALES (PCA) ET

LES PROJECTIONS DE STRUCTURES LATENTES (PLS)

4.1 Les méthodes par projections

Une méthode par projections est définie comme une technique d’analyse multivariée
qui permet d’obtenir une représentation condensée d’un ensemble de données de K
dimensions, au moyen de lignes, plans et hyperplans dans cet espace. La méthode peut
s’adapter a différents objectifs d’analyse tels que la condensation et la visualisation de
I’ensemble des données, la classification multivariée et I’analyse discriminante ou la
détermination quantitative des corrélations entre les variables. Les méthodes peuvent
étre appliquées pour n’importe quel type d’ensemble de données, complet ou
incomplet, pouvant contenir des bruits, ou les variables peuvent étre colinéaires, ou le
nombre de variables est plus grand que le nombre d’observations ou vice-versa. Ceci

représente un avantage tres intéressant pour 1’analyse de procédés industriels.

Dans ce chapitre, la théorie concernant les deux méthodes par projections les plus
utilisées, PCA et PLS, est abordée. Seulement les concepts de base des aspects reliés a
ce projet sont traités. Plusieurs documents peuvent étre consultés pour une étude plus
approfondie. Joliffe (1986), Geladi et Kowalski (1986), Wold et al (1987), Geladi

(1988), Hoskuldsson (1988), Jackson (1991), Lindgren et al (1993), Réannar et al (1994,
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1995), Tenenhaus et al (1999) et Eriksson et al (2001) sont, en la matiere, d’excellentes

références.

Afin de faciliter la compréhension des principes des méthodes par projections, quelques
termes, fréquemment utilisés, sont d’abord définis. La théorie de la méthode PCA, qui
constitue la base de I’analyse multivariée, est ensuite exposée. La méthode PLS, qui en
est un cas particulier important, est traitée postérieurement. Il faut préciser que la
nomenclature utilisée est en grande partie celle qui a ét¢ employée par Eriksson et al

(2001) afin d’étre en accord avec la majorité des textes sur ce sujet.

4.2 Définitions

Le point de départ des méthodes d’analyse multivariée est une banque de données.
Celle-ci est définie comme une matrice X de N rangées (observations) et K colonnes
(variables). Les observations sont des mesures des conditions, des attributs ou des

propriétés d’un systéme, faites & un certain moment i/ dans le temps (figure 4.1).

Variables

A

Observations
A

L~

Figure 4.1 Représentation d’une matrice de données de K variables et N observations.
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Lors de certains types d’analyses, il est intéressant de classifier les variables selon deux
catégories: les variables explicatives et les variables de réponse. Les variables
explicatives sont celles dont les différents niveaux pourraient influencer la performance
du systéme ou du procédé. Les variables de réponse sont celles qui sont mesurées afin
de capturer la performance du systéme ou du procédé pour I’évaluer. Dans ces cas, la
banque de données est constitué de deux matrices: la matrice des variables explicatives
(formée par K variables et N observations) et la matrice des variables de réponse
(formée par M variables et N observations), qui sont généralement appelées matrices X

et Y respectivement (figure 4.2).

Variables explicatives Variables de réponse

4 )

Observations
Observations

Figure 4.2 Représentation des matrices

des variables explicatives (X) et de réponse (7).
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4.3 Prétraitement des données

4.3.1 Mise en échelle et centrage

Avant de mettre en ceuvre les méthodes PCA et PLS, on doit effectuer un traitement
préalable des données afin qu’elles se conforment aux hypothéses de la méthode
(Eriksson et al, 2001). Les valeurs numériques constituant une banque de données
peuvent avoir des étendues trés différentes. Par exemple, on peut avoir des données sur
le débit d’une matiere premiere dont les valeurs sont entre 17 000 et 30 000 L/min et
sur la concentration d’une espece chimique qui varie entre 1 et 3 ppm. Une variable
dont les valeurs ont une grande étendue, comme le cas du débit de matiére premiére de
I’exemple, est caractérisée par une grande variance tandis que une variable dont les
valeurs ont une petite étendue, comme le cas de la concentration de I’espéce chimique,
présente une petite variance. Etant donné que PCA et PLS sont des méthodes de
projection de la variance et de la covariance respectivement, les variables ayant les plus
grandes variances domineront le modele éventuellement obtenu. Si on prend les
données tel qu’elles sont, le débit de matiére premiére dominera sur la concentration de
I’espéce chimique. Pour éviter ce biais artificiel, on proceéde & la mise a I’échelle des

données.

Il y a plusieurs fagons de faire la mise a I’échelle des données. La plus courante
consiste a effectuer sur chaque variable la transformation linéaire ramenant sa variance
a 'unité et sa moyenne a zéro. Pour chaque variable on calcule I’écart type (sx) dont

I’inverse (1/sx) est le facteur de mise a I’échelle. Chaque colonne de la matrice des
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données est alors multipliée par 1/s¢. En outre, la valeur moyenne de chaque variable
est calculée et soustraite de la valeur de chaque observation de cette variable. Toutes les
variables ont alors la méme variance (égale a 1) et la méme moyenne (égale a zéro), et
I’effet d’étendue est ainsi éliminé. Les valeurs des observations ajustées constituent un

ensemble dit centré et réduit. La figure 4.3 illustre cette série d’opérations.

Une fois les variables mises a I’échelle, on peut leur attribuer des poids différents, selon
I’importance qu’on voudrait donner a chaque variable dans le mode¢le, sur la base

d’informations indépendantes disponibles sur le probléme investigué.

(a) (b) (©) (d

Figure 4.3 Illustration des opérations les plus courantes de mise a I’échelle. Les
données concernant une variable sont représentées par une barre dont la longueur est
proportionnelle & la variance des données: (a) les données brutes, (b) les données apres
Iopération de centrage (soustraction de la valeur moyenne), (c) les données apres

’opération de réduction (division par I’écart type), (d) les données centrées-réduites.
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Dans le cas ou toutes les variables sont exprimées dans les mémes unités, la mise en
échelle n’est pas nécessaire. Enfin, il faut noter que ’opération de centrage peut étre

déconseillée pour certaines structures particuliéres de données (Seasholtz et Kowalski,

1992).

4.3.2 Traitement des observations hors limites

Le prétraitement des données peut faire la différence entre un modéle utile et un modele
inutile. La mise a 1’échelle basée sur les écarts type et les valeurs moyennes, peut étre
trés influencée par la présence de valeurs erronées qui s’écartent anormalement de la
moyenne; ce sont les valeurs hors limites. Quand ’objectif de ’analyse est autre que
I’étude des anormalités du procédé, il est recommandé d’éliminer toutes ces
observations suspectes afin de construire des modeles qui reflétent de fagon fiable les
fluctuations réelles du procédé. La suppression des valeurs qui dépassent certaines
limites préfixées est une procédure simple pour produire une estimation fiable des
écarts type et des moyennes. Les données qui sont supprimées peuvent étre remplacés
par des cases vides dans la matrice des données, qui seront considérées comme des
données manquantes, ou par une estimation raisonnable obtenue par ailleurs. On peut,
par exemple, prendre la valeur de 1’observation la plus proche ou la moyenne des deux
valeurs les plus proches. Hoo et al (2002) donnent une attention spéciale au

remplacement des valeurs hors limites.
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4.3.3 Transformations

I existe d’autres techniques de prétraitement des données telles que transformations,
mise en échelle avancée, correction et compression qui peuvent étre nécessaires dans
certains cas particuliers. Ceci est notamment le cas des données qui ont une distribution
qui s’éloigne de la distribution normale ou qui serait mieux capturée par une autre
technique de mise en échelle ou bien qui ont une variation systématique indésirable.
Jackson (1991) et Eriksson et al (2001) peuvent étre consultés a ce sujet qui dépasse le

cadre de la présente étude.

4.3.4 Traitement des observations manquantes

Il arrive fréquemment que ’ensemble de données disponibles est incomplet, soit a la
suite de I’élimination des observations hors limites qui n’ont pas été remplacées ou en
raison de la défaillance d’un appareil de mesure, des mesures hors ligne manquantes ou
entachées d’erreurs, etc. Une fagcon d’aborder le probléme est d’éliminer au complet
toutes les observations pour lesquelles au moins une variable présente une valeur
manquante. Cette opération peut €tre satisfaisante quand il y a peu de données
mangquantes par rapport 2 la taille de 1’échantillon mais dans le cas contraire, on risque
de perdre ainsi de I’information précieuse. Les différents algorithmes des méthodes
PCA et PLS proposent plusieurs techniques alternatives a I’élimination pure et simple.
Dans I’algorithme NIPALS (Nonlinear Iterative Partial Least Squares), par exemple, les
composantes sont calculées par régression linéaire sur les matrices X et Y sans tenir

compte de données manquantes (Wold et al, 1996 et Nelson et al, 1996). Rénar et al
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(1995) traitent le probléme de données manquantes pour 1’algorithme kernel en faisant
une estimation préliminaire de ces données (la moyenne de la colonne respective par
exemple); par la suite les composantes sont calculées et les valeurs qui ont été estimées
sont remplacées par des nouvelles estimations dérivées du modele obtenu. Le processus
est répété jusqu’a ce qu’un certain critére de convergence soit satisfait. Ceci peut étre
trés exigeant en ressources informatiques. Ce désavantage est relevé par Dayal et
MacGregor (1997a, 1997b) qui proposent des améliorations a I’algorithme kernel pour
réduire le temps de calcul et en conséquence 1’effort computationnel. D’autres

possibilités sont exposées par Joliffe (1986) et plus récemment par Muteki et al (2005).

4.4 L’analyse en composantes principales PCA

L’analyse en composantes principales constitue la base de I’analyse multivariée des
données. L’idée principale de la méthode PCA est de réduire le nombre de dimensions
d’un ensemble de données qui contient un nombre considérable de variables
interdépendantes en maintenant, autant que possible, la variation présente dans
I’ensemble original. Cette réduction est réalisée par la création d’un nouvel ensemble
de variables indépendantes, les composantes principales (CP). Les premieres CP
obtenues sont celles qui rendent compte de la plus grande partie de la variation présente

dans ’ensemble original contenant toutes les variables.

Le point de départ de la méthode PCA est une matrice d’observations appelée X, qui

comprend N rangées (observations) et K colonnes (variables), comme celle de la figure
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4.1. La méthode consiste a trouver des lignes, des plans ou des hyperplans de ’espace a
K dimensions qui s’ajustent, aussi bien que possible aux observations dans le sens des
moindres carrés. Ainsi, la variance des projections des coordonnées de la ligne ou du

plan est maximisée (figure 4.4).

x, | La variance résiduelle est
4 minimisée par Panalyse
o de moindres carrées
i)
6]
o O

La variance des composantes
(coordonnées de la ligne) est
maximisée

Figure 4.4 Représentation graphique d’une composante PCA (Eriksson et al, 2001).

4.4.1 Interprétation géométrique de PCA

Considérons la matrice X centrée et réduite, donc dans laquelle toutes les variables ont
la méme ¢€tendue et leur valeur moyenne est égale a zéro. La premiere composante
(a = 1) est la premicre ligne qui s’ajuste le mieux aux observations dans le sens des
moindres carrés. Cette ligne passe par la valeur moyenne (tel que montré a la figure
4.4). Chaque observation (i) est projetée sur cette ligne pour ainsi obtenir des nouvelles

coordonnées ¢,; sur la composante.
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Les valeurs #,; sont définis comme la distance entre 1’origine et la projection de la jome
observation sur la composante a (Figure 4.5 a). Chaque composante est déterminée
également par une série de poids p,. Chaque poids est défini comme le cosinus de
I’angle entre la composante principale et I’axe de la variable originale (Figure 4.5 b).

Ainsi, ’orientation des composantes dans I’espace a K dimensions est déterminée par

les poids pa.
X3 X3
«
o
‘\'Y‘ CP1
7N B
o
X, X,
Py =cos
Py =cos
py; =cosy
X Xy
(a) (®)

Figure 4.5 Représentation géométrique d’une composante pour K = 3.

(a) Valeurs t,;. (b) Poids p.

Dans la plupart des cas, une seule composante ne suffit pas pour capturer la totalité de
la variation de I’ensemble des données. Une deuxiéme composante est introduite & cet
effet; c’est une ligne de ’espace a K dimensions qui est orthogonale a la premiére

composante et qui passe aussi par la valeur moyenne de 1’ensemble de données en
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améliorant 1’approximation de la matrice X. Ces deux composantes définissent un plan
dans I’espace a K dimensions, comme illustré & la figure 4.6 pour K égal a 3. En
général, deux composantes forment un plan et plus de deux composantes forment un

hyperplan.

“ CP1

Projection de
I’observation i

e 2

Figure 4.6 Visualisation graphique des deux composantes principales formant un plan

pour K égal a 3.

La qualité descriptive du modéle PCA est améliorée en ajoutant plus de composantes. 11
y a plusieurs démarches pour déterminer le nombre approprié de composantes (Jackson,
1991). Ce sujet est abordé dans la section 4.4.3. Chaque composante calculée garde la
propriété d’orthogonalité par rapport aux autres composantes et passe par ’origine (la

valeur moyenne).
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Avec les projections de toutes les observations sur les plans définis par les
composantes, il est possible de tracer un graphique de ces nouvelles coordonnées afin
d’investiguer la structure de I’ensemble de données. Pour faciliter I’analyse de toutes
les composantes, les plans sont retracés en prenant deux composantes a la fois. Deux
types de graphiques peuvent €tre construits, le graphique des composantes et le

graphique des poids.

Le graphique des composantes est construit avec les valeurs f,. Ce graphique montre
les relations entre les regroupements des observations tandis que le graphique des poids
par montre la structure de corrélation entre les variables et permet d’identifier celles qui
sont responsables des tendances décelées dans les observations. Par I’analyse conjointe
des deux graphiques, on peut identifier les variables qui influencent la formation des
différents regroupements d’observations. Sur le graphique des poids, les variables qui
sont voisines et dans le méme quadrant, sont positivement corrélées tandis que celles
que se trouvent dans des quadrants diagonalement opposés, sont négativement

corrélées.

D’autre part, les variables qui sont le plus éloignées de ’origine sont celles qui ont
I’influence la plus significative dans le modéle. Quand il y a plus de deux composantes,
toutes les combinaisons de composantes et poids doivent étre considérées pour analyser

le systéme de fagon rigoureuse.
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4.4.2 Interprétation algébrique de PCA
Du point de vue algébrique, la méthode PCA décompose la matrice X en une série de
matrices de rang 1, qui sont composées par le produit vectoriel d’un vecteur de

composantes Z, et un vecteur de poids p,:

X=M+M,+.+M, (4.1)

X =t,p, +t,p, +...+1,p. 4.2)
La figure 4.7 est une représentation graphique de ces opérations. Le paramétre r est le

rang de la matrice X et représente la véritable dimensionnalité fondamentale de X, ¢’est-

a-dire, le nombre maximal de colonnes linéairement indépendantes.

K 1 K 1 K 1 K
Py P P
X =/t + [ty |! +.o4 ]
N N N N
K A K
_PJ
X (=T |}
N N

Figure 4.7 Représentation graphique de la décomposition

de la matrice X en composantes.
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Ainsi, le produit d’un vecteur de composantes ¢, par un vecteur de poids p, constitue
une composante principale et est une combinaison linéaire des variables de ’ensemble
original. Les valeurs ¢,; sont les nouvelles coordonnées des variables latentes tandis que

les poids p représentent 1’influence de chaque variable dans chaque composante.

Le modéle PCA peut étre présenté comme suit,
X=1*X +T*P +E 4.3)

Le premier terme (1* X' ) représente les moyennes des variables calculées a I’étape de

2éme

prétraitement des données. Le terme (7 * P’) modélise la structure de I’ensemble

3 éme

de données et le terme (F) est la matrice des résidus (de K rangées par N colonnes),

qui contient le bruit. Graphiquement:

P,

Figure 4.8 Représentation graphique d’un modéle PCA.

Il y a plusieurs algorithmes pour calculer les composantes principales. La démarche
classique, référée souvent comme l’algorithme kernel, est basée sur la théorie des

valeurs et vecteurs propres (Hagedorn et Orccotoma, 2004) décrite, par exemple, dans
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Strang (1980). Avec I’algorithme kernel PCA (Scholkopf et Smola, 2001; Lu et al,
2003), toutes les composantes principales possibles sont extraites en méme temps,
tandis que I’algorithme NIPALS (Geladi et Kowalski, 1986; Miyashita et al, 1990)
calcule une composante a la fois, ce qui permet de mieux appréhender la méthode PCA.

L’algorithme NIPALS est résumé au tableau 4.1.

Tableau 4.1 Algorithme NIPALS PCA (Geladi et Kowalski, 1986).

1. Prendre un vecteur (une colonne) x; de la matrice X; le renommer: ¢, ¢, = x,

2. Calculer les poids de la matrice X, p’,: p. =t. X /tlt,

3. Normaliser les poids obtenus a la longueur 1: p. ... = P,/ |

Pa
4. Calculer les nouvelles valeurs de la composante a: t, = X *p, / p.p,

5. Comparer ces nouvelles valeurs de ¢, a celles utilisées dans le pas 2. Si elles sont
les mémes (différence < 1%10'° par exemple), I’itération a convergé. Si elles sont

différentes, aller au pas 2.

6. Calculer les résidus E,: E,=E, , —t,p,

7. Remplacer X par E, et répéter la séquence des pas 2 a 7 le nombre de fois nécessaires
pour obtenir toutes les composantes a inclure dans le mod¢le selon le critére choisi

(voir section 4.3.3).
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4.4.3 Détermination du nombre de composantes principales dans un modéle PCA

Différentes méthodes ont été proposées pour déterminer le nombre de composantes qui
doivent étre incluses dans le modéle. Quelques exemples parmi d’autres sont
I’autocorrélation, le pourcentage cumulatif de la variance, le test Scree, les moyennes
des valeurs propres, la validation croisée (Li et al, 2000). La validation croisée (VC) est
une méthode pratique et fiable pour tester la signifiance d’un modele de CP et elle est
devenue une approche standard en analyse multivariée (Eriksson et al, 2001). On trouve
la description de cette méthode dans plusieurs documents (Wold, 1978; Eastment et

Krzanowski, 1982; Geladi et Kowalski, 1986; Eriksson et al, 2001).

L’idée directrice de la VC est de maintenir une portion des données hors du modéle, de
construire le modéle avec les données restantes, de prédire les données qui ont été
omises par le modele développé et de comparer les valeurs prédites avec les valeurs
réelles. Ainsi, la somme des carrés des différences entre les valeurs réelles et les valeurs
prédites, PRESS (predictive residual sum of squares), est une mesure du pouvoir
prédictif du modele. Dans SIMCA-P, le logiciel qui a été utilisé pour développer les
modéles dans le présent travail, la VC est effectuée consécutivement apres I’obtention
de chaque composante. Pour chaque dimension, I’ensemble de données est divisé par
défaut en 7 groupes et donc 7 modéles sont construits (en laissant un groupe a la fois
hors du processus). Aprés chaque itération une PRESS partielle est calculée. La PRESS

globale est la somme des PRESS partielles:
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no.groups

PRESS= Y ii(xhk,—fchk,)z 4.4

h=1 k=1 I=1
Dans cette équation x est la valeur de la variable k au temps 1 et %,,, est la prédiction
de la valeur de la variable k au temps 1 pour Iitération h (Eriksson et al, 2001). A

chaque nouvelle dimension, la PRESS globale est calculée est comparée avec la somme

des carrés des résidus, RSS (residual sum of squares), de la dimension antérieure,

)i
ZEki =

1 i=1

K K ! Y

RSS = (x, - %) (4.5)
k= k=1 i=1

Ici, E désigne la matrice des résidus du modéle, et X est la matrice des valeurs prédites
par le modele. Si la PRESS n’est pas significativement plus petite que la RSS, la
composante testée est considérée comme non significative et le processus de
modélisation est arrété. La détermination du nombre de composantes a inclure dans le
modéle est un compromis entre le degré d’ajustement des variables et la capacité

prédictive du modele (Eriksson et el, 2001).

Le degré d’ajustement refléte la capacité du modéle a reproduire mathématiquement
I’ensemble des données. Le degré d’ajustement est quantitativement exprimé par le
paramétre R’, indice du taux de variation des données qui peut étre expliquée par le

modéle,

R* =1-RSS/SSX (4.6)

K I
SSX = X; 4.7
k=1 i=1

1 i
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Le terme SSX est la somme de carrées de X (sum of squares). Le degré d’ajustement
peut étre calculé pour deux variables: R’ indique la fraction de la variation de la
premiére qui est expliquée par la variation de la deuxiéme. Pour chaque composante, R
indique la fraction de la variation des données qui est capturée par la composante et,

pour I’ensemble de composantes, R? est la somme cumulative des R’ des composantes.

La capacité prédictive du modele est mesurée par le paramétre o’ qui indique la
fraction de la variation des données qui est prédite par le modele,

O’ =1- PRESS / SSX (4.8)
11 faut tenir compte du fait que le O’ global du modéle ne correspond pas & la somme
cumulative des Q2 obtenus apres le calcul de chaque nouvelle composante. Le Q*
global du modéle est calculé selon I’équation (4.8) en y remplagant le ratio PRESS/SSX

par le produit des ratios PRESS/SSX pour chaque composante.

Pour que O soit élevé, le paramétre R’ doit aussi étre élevé. Dans la plupart de cas,
Qz > 0,5 est considéré comme bon et Q2 > 0,9 comme excellent, mais ces seuils de
qualité dépendent de I’application concernée (Eriksson, 2001). Les valeurs reportés de

R et Q2 sont pour les application papetiéres généralement plus basses (Lupien et al,

2001; Hagedorn et Orccotoma, 2004).
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4.5 Les projections de structures latentes PLS

La méthode de projection de structures latentes PLS est une extension de la méthode
PCA, utilisée pour relier deux matrices, X et ¥ (comme celles de la figure 4.2), au
moyen d’un modele linéaire multivariable. La matrice X contient les variables
explicatives, appelées aussi des facteurs, et la matrice ¥ contient les variables de
réponse. La méthode PLS peut étre définie comme une technique particuliere de
régression pour modéliser I’association entre X et Y. La méthode PLS fonctionne dans
les cas ou il n’existe pas de relations explicites expliquant les relations possibles entre
les variables explicatives et de réponse; elle peut étre aussi utilisée pour vérifier la

validité de modéles dérivés d’une théorie.

Le fondement théorique de la méthode PLS et d’autres méthodes par projections se
trouve dans la théorie de la perturbation d’un systéme multivarié. A I’aide de cette
théorie, il est possible de montrer que les modéles par projections sont capables de
décrire un ensemble de données a condition qu’il y ait une certaine similarité entre les
observations. Plus grande est la similarité, meilleure sera la description du systéme
étudié par un modele (Eriksson et al, 2001). La méthode PLS a la capacité de modéliser
plusieurs variables de réponse a la fois, ce qui peut faciliter I’analyse quand les

réponses sont fortement corrélées, car le nombre des modéles a considérer est réduit.
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4.5.1 Interprétation géométrique de PLS

Comme dans le cas de la méthode PCA, chaque observation de ’ensemble de données
peut &tre représentée par un point dans 1’espace de X et un autre point dans 1’espace de
Y. Ceci est illustré par la figure 4.9 pour le cas de trois variables explicatives (K=3) et

trois variables de réponse (M=3).

L’objectif est d’obtenir une bonne description des deux nuages de points et de vérifier
s’il existe une relation entre les positions des observations dans les deux espaces. La
premiere composante PLS est une ligne dans I’espace de X et une autre ligne dans
’espace de Y (figure 4.10). Les deux lignes sont calculées de fagon a produire une
approximation satisfaisable des deux nuages de points et une corrélation fiable entre les
points projetés sur les deux. Les projections des observations sur les lignes déterminent

les valeurs de composantes #;; et u;; pour X et Y respectivement.

X, Y3
©
]
° o . o &
© / Méme ™
@] © ion i © 0
o o observation i o o®
() &) \J)
@]
@] O O
OO
(@]

M
Figure 4.9 Représentation géométrique d’un ensemble des données centrées — réduites

dans les espaces de X et Y.
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X; | Composante 1 (t,) Composante 1 (u,) Y3
« .
o
@ N
© o N %o B}
0, ,— Projection de > C/
° 4 O\O P’observation i o~ | o©
Y2
O
6]

Figure 4.10 Représentation géométrique d’une composante PLS pour K = M = 3.

Les valeurs de la composante ¢ et u,, sont reliées par la relation interne u, =¢,, +4,, olt

h; est un résidu. Un graphique de ¢; vs u; peut étre utilisé pour représenter la structure
de corrélation entre X et Y et, notamment, pour mettre en évidence les points hors
limites dans les espaces de X et Y ainsi que la possibilité de non-linéarité entre les

variables explicatives et les variables de réponse (figure 4.11).

Une deuxiéme composante peut étre représentée par deux autres lignes passant
€galement par la valeur moyenne des données. Dans 1’espace X, cette deuxiéme ligne
est orthogonale a la premiére composante mais dans I’espace Y il n’en est pas
nécessairement ainsi. L’addition d’une seconde composante permet de mieux
appréhender la distribution des nuages d’observations ainsi que la corrélation entre les
positions des plans dans ces espaces X et ¥ (figure 4.12). Géométriquement, un modele

PLS a deux composantes est constitué d’un plan dans I’espace X et d’un autre dans
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I’espace Y. Les projections des observations sur ces plans donnent les valeurs des

vecteurs de coordonnées ¢, et u,,.

u; u,
o/
&)
o,
O o ’,‘ O O
ol 7
£ >
© © t, t
o
o/ ©
o0
a) b)

Figure 4.11 Relation interne entre les valeurs des composantes ¢, et u,.

a) Relation linéaire (la pente est égale a 1) b) Relation non-linéaire.

X3 | Composante 1 (t) Composante 1 (u,) Ys
P .

Composante 2 (t,) 9.5 OO Composante 2 (u,)

Projection de /—’O/O

’observation i O~

X

Yi

Figure 4.12 Représentation géométrique des deux composantes PLS pour K = M = 3.
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Un graphique des valeurs de £, vs u, présente également la structure de corrélation entre
X et Y. Normalement, les valeurs de la deuxiéme composante sont moins corrélées que
les valeurs de la premiére étant donné que la premiére variable latente capture la source
de la variation la plus importante (Eriksson et al, 2001). Une fois cette source de
variation prise en compte par la premiére composante, d’autres sources de variation
moins importantes sont encore présentes dans les résidus, et donc la corrélation entre L

et u; est évidemment plus faible que la corrélation entre ¢; et u;.

Pour interpréter un modele PLS on doit considérer les poids des variables de X et de Y,
dénotés w* et ¢ respectivement, qui sont interprétés de la méme fagon que les poids p,
d’un modele PCA. Ces poids permettent d’identifier les variables les plus importantes
dans le modele PLS, celles qui sont regroupées, et le type de relation qui les lie. Les
graphiques de valeurs des composantes et des poids sont complémentaires. La position
des observations dans une direction donnée dans un graphique de composantes est

influencée par les variables situées dans la méme direction dans le graphique des poids.

Avec les modeles PLS on peut savoir comment obtenir une certaine réponse a partir des
variables explicatives. Donc, avec la modélisation du procédé, il est possible d’en
comprendre le fonctionnement mais aussi d’identifier les paramétres dont la

manipulation pourrait améliorer la qualité du produit ou le rendement de la production.
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4.5.2 Interprétation algébrique de PLS

Comme la méthode PCA, la méthode PLS décompose ’ensemble de données en une
série de matrices de rang égal & 1, qui sont formées par le produit vectoriel d’un vecteur
de composantes par un vecteur de poids. La différence entre les deux méthodes est que
la méthode PLS comporte deux matrices a traiter, X et Y. La matrice X est reconstituée

par le produit de , et p,, et la matrice Y par le produit de u, et c,. Le modéle PLS peut

se représenter comme suit,

X=1*xx +T*P +E 4.3)
Y=1*y'"+U*C+F 4.9)
u,=bt, (4.10)
Graphiquement:
K 1 A K K
P,
X |=|x |+ T A + E

Figure 4.13 Représentation graphique d’un modéle PLS.
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Le premier terme des équations (4.3) et (4.9) est le vecteur des moyennes des variables
Xet Y. L’information reliée aux observations est contenue dans les matrices des valeurs
des composantes T et U alors que ’information concernant les variables est contenue
dans les matrices de poids P et C. La variation de ’ensemble de données qui n’est pas
capturée dans le modele reste dans les matrices des résidus E et F. Les valeurs de
composantes de X et Y sont reliées par ’équation (4.10). Cette relation interne est la
principale différence entre la méthode PLS et la méthode par régression de
composantes principales, PCR (Principal Components Regression) ot les composantes
principales sont calculées indépendamment pour X et ¥, ce qui produit un lien plus
faible entre les composantes des deux matrices. L’introduction de la relation interne
dans I"algorithme de calcul des composantes force celles-ci a faire une légére rotation
qui les rapproche de la ligne de corrélation (figure 4.11). Par contre, a la suite de cette
opération les composantes ne sont plus orthogonales. Pour corriger cette situation les
poids p, doivent €tre remplacés par les poids w, dans I’algorithme de calcul. Les poids
w, combinent les variables de X ou les résidus des variables de X, pour obtenir les
valeurs des composantes f,, en maximisant la covariance entre T et U et en conséquence

entre T et Y.

Il existe un autre type de poids w*,, qui combinent les variables de X (et non les
résidus) pour obtenir les valeurs de composantes t,. Les matrices des poids w* (W*) et

w (W), sont reliées par:

wx=w(P'w)' (4.11)
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Les coefficients de régression B du modéle PLS, pour le modéle ¥ = XB, sont

B=w(P'w)'C (4.12)
ou bien,
B=Ww*C (4.13)
et
Y=XW*C 4.14)

donc, W* est directement relié aux coefficients de régression PLS.

Les poids C caractérisent la corrélation entre les variables de Y et T. Ils combinent les
variables de Y pour obtenir les valeurs des composantes U en maximisant leur
corrélation avec X. Un graphique des poids WC ou W*C montre conjointement les

poids de X (W ou W*) et de Y (C), et donc la structure de corrélation entre X et Y.

Finalement, il existe une autre série de valeurs qui facilite I’interprétation du modéle
PLS appel€es valeurs VIP (variable influence on projection). Elles mesurent 1’influence
de chaque variable sur la projection et représentent donc I’importance de chacune des
variables de X dans le modele. Le vecteur de valeurs VIP est une somme de carrés
pondérée par les poids w* qui tient compte de la fraction de la variance qui est

expliquée par chaque dimension.

4
K
VIP, = wl *(SSY,_ —SSY ) [»——— 4.15
" \/(Z e * (SSY,., G)J SST._SST (4.15)
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Le terme SSY est la somme des carrés de Y. Pour un modéle donné, il n’y a qu’un
vecteur de valeurs VIP qui condense toutes les composantes et les variables Y. Les
variables explicatives qui présentent une valeur VIP, plus grande que 1, sont les plus
influentes dans le modele (Eriksson et al, 2001).

Comme pour la méthode PCA, il existe plusieurs algorithmes de calcul de PLS. Les
plus communs sont les algorithmes kernel (Lindgren et al, 1993; De Jong et Ter Braak,
1994; Rénnar et al, 1995; Dayal et McGregor, 1997; Bennett et Embrechts, 2003) et
NIPALS (Geladi et Kowalski, 1986; Miyashita et al, 1990; Dayal et McGregor, 1997).
Le tableau 4.2 résume [’algorithme NIPALS et permet d’avoir une meilleure

compréhension de la méthode PLS.

4.3.3 Détermination du nombre de composantes principales dans un modéle PLS

I a ét¢ mentionné dans la section 4.4.3 que la validation croisée (VC) est une méthode
pratique et fiable pour tester la signifiance d’un modéle de CP. Dans le cas des modéles
PLS, on suit la démarche exposée plus haut; il faut néanmoins tenir compte des

changements suivants dans les équations,

no.groups M L

PRESS = Z ZZ Yimi = yhml (4.16)
h=1 m=] I=1

R*> =1-RSS/SSY (4.17)

SSY = ZZ (4.18)

m=1 i=]

Q? =1- PRESS / SSY 4.19)
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Tableau 4.2 Algorithme NIPALS PLS (Geladi et Kowalski, 1986 avec des

modifications de Dayal et MacGregor, 1997 et la notation de Eriksson et al, 2001).

1. Prendre un vecteur (une colonne) y,, de la matrice Y. Le renommer u,: u, = y,,

2. Calculer les poids de la matrice X, w's: w., =u. X /1 u,

3. Normaliser les poids obtenus a la longueur 1: w’

a-nouveau

— ’
—wa/l

w,
4. Calculer les nouvelles valeurs de la composante a: t, = X -w, /w/w,
5. Calculer les poids de la matrice ¥, c,: ¢, =t -Y /tlt,

6. Normaliser les poids obtenus a la longueur 1: ¢’

a-nouveau

=cl/

Ca
7. Calculer les nouvelles valeurs de la composante a: u, =Y -c, /c'c,

8. Comparer ces nouvelles valeurs de u, avec celles utilisées dans le pas 2. Si elles sont

les mémes (différence < 1*10™'° par exemple), I’itération a convergé. Si elles sont

différentes, aller au pas 2.

9. Calculer les poids de la matrice X, p’: p., =t/ X /t't,

10. Normaliser les poids obtenus a longueur 1: p! = "= p'/ | p.

11. Normaliser les nouvelles valeurs de la composante a: ¢ =t

a-nouveau a-vieux / |

p.

12. Normaliser les poids de la matrice X, w';: w'

a-nouveau

— !
—W,,/|

P,
13. Calculer les coefficients de régression de la relation interne, b,: b, =u,t, /t.t,

14. Calculer les résidus de X, E,: E, =E, , —t,p,

a

15. Calculer les résidus de ¥, F,;: F, =F, ,—bt,c!

16. Remplacer X par E, et Y par F, et répéter la séquence des pas 1 a 16 les fois
nécessaires pour obtenir toutes les composantes a inclure dans le modéle selon le

critére choisi (sections 4.4.3 et 4.5.3).
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CHAPITRE 5
ANALYSE DE LA VARIABILITE DE LA FORCE DU PAPIER DANS UNE

USINE INTEGREE DE PAPIER JOURNAL

5.1 Présentation’

Le but de cette étude était d'identifier les principaux parametres causes de variations de
la force du papier qui affectent son comportement dans les presses a impression. Pour y
arriver, des données mesurées en ligne, concernant les propriétés de la pate ainsi que les
parametres d’opération des raffineurs et d’une machine a papier, ont été récupérées du
systéme d’archivage d’une usine intégrée de papier journal. Afin d’obtenir le maximum
d’information possible d’une telle base de données, une méthode d’analyse multivariée
concernant 1’obtention de mode¢les de projections de structures latentes, appelés

modéles PLS multi-bloc hiérarchisés, a été utilisé.

La méthodologie suivie et les résultats obtenus sont présentés dans ce chapitre qui est
autonome car il constitue une communication faite au Congres Fibre — Papier — Carton
2005 qui sera publiée dans les comptes rendues de ce congrés. Cette communication a
été faite en collaboration avec Andrea Hagedorn et Jose-Antonio Orccotoma
(Paprican), Jason Baril et Bernard Bégin (Bowater Gatineau) et Jean Paris (Ecole

Polytechnique de Montréal).

? Cette section a pour bout de faire le lien entre le présent chapitre et le mémoire.
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5.2 Introduction

De nos jours, les usines canadiennes font face a des demandes, chaque fois plus
exigeantes sur la qualité du papier. Si le produit final ne répond pas aux besoins
spécifiques du client, dans la plupart des cas, la production sera vendue a un prix
inférieur. D’un autre c6té, les propriétés de résistance comme la tension (résistance a la
rupture par traction) ou 1’énergie a la rupture, TEA (Tensile Energy Absorption), sont
les caractéristiques de plus en plus adoptées par les usines comme mesure de la facilité
de passage sur les presses dans la salle d’impression. Une campagne de mesure
antérieure (2000 - 2001) effectuée conjointement par Paprican et ’'usine de Bowater
Gatineau, a montrée que la tension sens machine (SM) et I’énergie a la rupture SM sont
les deux propriétés qui sont le mieux corrélées avec la performance du papier journal
produit par cette usine dans les salles de presse. Par la suite Ferahi et Uesaka (2002) ont
confirmé que la facilit¢ de passage sur les presses est mieux prédite par la tension SM

du papier que par la résistance au déchirement sens travers (ST).

Dans le but d'identifier les principaux paramétres causes de variations des propriétés
meécaniques qui affectent le comportement du papier dans les presses a impression, des
données mesurées en ligne, concernant les propriétés de la pate ainsi que les parametres
d’opération des raffineurs et d’une machine a papier, ont été récupérées du systéme
d’archivage de 1’'usine de Bowater Gatineau, avec laquelle ce projet a été réalisé. Des
données concernant les espéces et les propriétés physiques des copeaux étaient aussi

disponibles, tout comme les mesures au laboratoire des propriétés du papier produit et
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des formettes faites & partir d’échantillons prélevés en plusieurs endroits du procédé de
raffinage thermomécanique. La variabilité de la tension SM du papier a été choisie
comme objet d’étude, étant donné sa relation de proportionnalité avec 1’énergie a la

rupture et la reproductibilité des mesures (5%) (TAPPI, 2000).

5.3 L’usine

Cette usine intégrée de pates et papier journal, fabrique environ 470,000 tonnes de
papier journal par année sur trois machines. Pendant la période considérée par cette
étude et pour la machine étudiée, 'usine utilisait en moyenne 50% de péte
thermomécanique (PTM) et 50% de pate desencrée (DES). L'atelier de PTM possede
six raffineurs CD-76, répartis en deux lignes principales et une ligne de rejet
(identifiées ici comme lignes A, B et C). La qualité de la pate est mesurée a I’aide d’un
analyseur en ligne PQM (Pulp Quality Monitor). L'atelier de DES posséde trois cellules
de flottation et utilise habituellement un mélange de vieux papier journal et vieux

papier a magasine dans le rapport 80 a 20.

5.4 Données descriptives

Le tableau 5.1 présente les variables prises en compte lors de I’analyse. Les propriétés
des copeaux sont déterminées deux fois par jour, sur des composites de 12 heures. Les
données sur le raffinage, le systétme d’approche et la machine A papier ont été
récupérées du systéme d’archivage a intervalles d’une minute. Une premiére

détermination de la tension est faite sur des formettes de pate prélevée au réservoir de
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mélange de PTM tous les jours a 8 h. Concernant le papier, la tension est mesurée sur
chaque bobine meére produite, c’est-a-dire chaque 50 a 60 minutes en moyenne sur la

machine étudiée.

5.5 Méthode

5.5.1 Démarche de modélisation

Dans le but de détecter les variables qui ont le plus d'influence sur la force du papier, le
procédé a été divis€¢ en deux parties, soit la mise en pate thermomécanique et la
fabrication du papier. En modélisant d’abord le procédé de mise en péte, on identifie les
variables ayant le plus d'influence sur la force des formettes. Par la suite on utilise cette
information pour modéliser le procédé de fabrication de papier. On n’a pas tenu compte

dans cette étude du procédé de DES, sur lequel il y a peu de moyens d’action.

Plusieurs techniques statistiques d’analyse multivariée ont été envisagées pour obtenir
le maximum d’information possible d’une base de données aussi large (plus de 80
variables). La technique la plus prometteuse a été celle qui concerne I’obtention de
modéles de projections de structures latentes, appelés modéles PLS multi-bloc

hiérarchisés.

L’obtention de modéles PLS est une pratique courante dans 1’analyse de données
multidimensionnelles et colinéaires provenant de systémes complexes. Les concepts de
base, de méme que divers algorithmes de calcul ont fait I’objet de travaux (Geladi et

Kowalski 1996, Dayal et MacGregor 1997a, Hagedorn et Orccotoma 2004).
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Tableau 5.1 Variables disponibles pour la modélisation

de la tension SM du papier journal.

Unité du procédé Variable
Espéces, densité, humidité, blancheur,

Copeaux classification par dimensions, éléments indésirables
Entrefers, consistances, dilutions, dge des plaques, charges des
Rafﬁnage' moteurs, production, énergies spécifiques, blichettes totales
Thermomécanique
(PQM), égouttage (PQM), longueur des fibres (PQM)
% cassés, % DES, % PTM, égouttageT, pHT, degré de
Systéme d’approche

blancheur’, agent de rétention, consist. mélange

Caisse d'arrivée: pression, température, consistance,
ouverture des lévres.

Pressions d’aspiration (zone de formation et des presses),
Machine 4 papier | consistance de l'eau blanche, turbidité, agent de blanchiment,
débit du ramasse péte, vapeur totale, vitesse du jet, vitesse de
la bobine, vitesse de la toile, tirage total,

humidité, épaisseur et blancheur du papier produit

T Propriétés mesurées pour la pite mécanique, la pite desencrée et le mélange

pate mécanique — pate desencrée — cassés.

En dépit d’une relative simplicité, I’interprétation de résultats des modeles PLS devient
compliquée lorsqu’on doit considérer un nombre important de coefficients de
régression. La réduction du nombre de variables peut étre une option attrayante mais on
risque de perdre une partie de I’information. L’approche de mise en blocs hiérarchisés
constitue une alternative intéressante. Elle consiste a regrouper les variables dans des
blocs caractéristiques, a développer un modele PLS pour chaque bloc et a utiliser les

variables latentes (composantes) ainsi obtenues comme de nouvelles variables dans un
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modele PLS appelé modéle multi-bloc. Cette démarche a été présentée par

Wold et al, 1996.

L’idée de base des modeles PLS multi-bloc hiérarchisés est illustrée dans ce qui suit.
Dans un procédé quelconque il est possible de regrouper les variables selon leur nature
ou |’opération unitaire a laquelle elles appartiennent. Pour le procédé de mise en pate
étudié (figure 5.1), on a choisi de regrouper les variables en trois blocs. D’abord les
propriétés des copeaux, ensuite les variables d’opération des raffineurs et finalement les

propriétés de la pate thermomécanique produite.

Une fois le processus de mise en blocs fait, la prochaine étape consiste a obtenir un
modéle PLS pour chaque bloc. Les variables latentes de chaque sous-modéle ainsi
obtenues constituent ensembles le groupe de variables explicatives d’un nouveau

modéle PLS, le modéle multi-bloc.

Mise en pate

thermomécanique
Modéle multi-bloc |
Propriétés | | Opération || Propriétés ([ [ Propriétés
copeaux raffineurs PTM formettes

Sous-modéle 3

Sous-modéle 2

Sous-modéle 1

Figure 5.1. Exemple de mise en blocs et modélisation du procédé de mise en péte.
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Ainsi on peut faire la distinction entre deux niveaux. Dans le premier niveau on trouve
les sous-modéles qui englobent les relations entre les variables du procédé et les
propriétés des formettes et dans le deuxiéme niveau on trouve le modéle multi-bloc qui
contient les relations entre les blocs. Il est sous-entendu que tous les modéles du
premier niveau ainsi que le modeéle multi-bloc doivent partager les mémes variables de
réponse. La figure 5.2 présente la fagcon dont on a appliqué cette démarche pour le

procédé de fabrication de papier journal.

Fabrication de
papier journal
Modéle multi-bloc
/ \
Propriétés Propriétés APropnete‘s Operaflon Proprfetes
m —| pite dusystéme || machine [  Papier
copeaux PT™ s .
d’approche a papier Journal
Sous-modéle 4
Sous-modéle 3
Sous-modéle 2
Sous-modéle 1

Figure 5.2. Exemple de mise en blocs et modélisation du procédé
de fabrication de papier journal.
Tous les modéles ont été élaborés a 1’aide du logiciel SIMCA P+, 2002. Celui-ci
propose pour chaque sous-modéle, un nombre de composantes qui permet d’avoir un
coefficient de détermination cumulatif R*X (cum) minimum de 0,6 (Umetrics AB,
2002). Pour le modéle multi-bloc, le nombre de composantes significatives est
déterminé par la méthode de validation croisée, basée sur le calcul de la somme des
carrés des erreurs prédites (PRESS Prediction Error Sum of Squares; Eriksson et al,

2001).



77

5.5.2 Prétraitement des données

5.5.2.1 Synchronisation

Etant donné le temps de résidence de la matiére dans le procédé, la synchronisation des
données a ¢té effectuée. Pour le procédé de mise en péte, le délai estimé entre
I’échantillonnage de la pate pour faire les formettes et le raffinage des copeaux est de
10 2 12 h. Dongc, on a fusionné les mesures des propriétés des copeaux échantillonnés
de 20 a 8 h, avec les moyennes entre 21 et 22 h des variables d’opération du raffinage
et les propriétés des formettes mesurées a 8 h le lendemain. Pour le procédé de
fabrication de papier, la synchronisation n’a pas été nécessaire du fait que les délais

engendrés dans le procédé étaient négligeables.

5.5.2.2 Elimination des observations suspectes ou hors limites

La qualité des modeles obtenus dépend de la qualité des données, donc les observations
suspectes ou hors limites, produites par exemple a cause d’une défaillance d’un
appareil de mesure ou d’un arrét de la machine a papier, ont été éliminées. Cette

opération a permis de réduire la fluctuation des données.

5.5.2.3 Elimination de la dépendance du poids de base

La tension du papier, tout comme 1’énergie a la rupture, la résistance au déchirement, la
résistance a I’éclatement, etc., sont proportionnelles au poids de base (figure 5.3(a)).
Faire I’analyse des mode¢les avec une variable de réponse qui dépend du poids de base

conduirait & une mauvaise interprétation des résultats. Afin d’éliminer une telle
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dépendance, on considére ’indice de tension comme variable de réponse, ¢’est-a-dire la
valeur de la tension divisée par le poids de base (figure 5.3(b)). L’intérét de cette
opération ne se limite pas a la production de papier a différents poids de base cibles

mais est aussi avantageuse pour éliminer I’intra-variabilité dans un seul poids de base

cible.

5.5.2.4 Modéles pour un seul poids de base
L’usine produit du papier journal de quatre poids de base différents. Etant donné que
plus de 60% de la production de 1’usine correspond au poids de base de 48,8 g/m?, on

s’est limité a ’obtention des modéles pour ce seul poids de base.

5.6 Résultats

La base de données pour le poids de base de 48,8 g/m® comprend 8 mois d’opération.
Pour pouvoir tester la capacité de prédiction du modele, les 8 mois d’opération ont €té
divisés en deux périodes de 4 mois. Dans la série chronologique des mesures de
I’indice de tension SM du papier (figure 5.4), on peut voir que la premicre période
présente plus de variabilité que la deuxiéme. Ceci est confirmé par les distributions des
données et les coefficients de variation CV (I’écart type multipli€ par 100 et divisé par

la moyenne), montrés a la figure 5.5.
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Figure 5.3. Elimination de la dépendance de la tension du papier par rapport au poids
de base. (a) Le poids de base vs la tension SM du papier. (b) Le poids de base vs

I’indice de tension SM du papier. 'Valeurs centrées — réduites
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Figure 5.4. Série chronologique des mesures de 1’indice de tension SM du papier.
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Figure 5.5. Histogramme de la base de données divisée en deux périodes.
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5.6.1 Modélisation du procédé de mise en pate thermomécanique

Un modéle multi-bloc pour I’indice de tension des formettes, a été construit pour
chaque période de 4 mois, suivant le schéma général de la figure 5.1. L’opération des
raffineurs a été divisée en 5 blocs afin de traiter I’opération de chaque raffineur
séparément. Les propriétés de la pate sont aussi divisées en 3 blocs, selon la ligne de
raffinage de laquelle provient la pate. Ainsi le modéle multi-bloc est constitué des

variables latentes de 9 sous-modéles.

Chaque mode¢le multi-bloc présente une composante significative qui rend compte de
40% de la variabilité de I’indice de tension des formettes (R*Y). Ceci est typique pour
ce gendre de systéme ou les données sont affectées par un bruit causé par plusieurs
facteurs qui influent sur la reproductibilité et la justesse des mesures (précision de la
lecture, sensibilité de I’essai ou de D’appareil, erreur d’échantillonnage, mode

opératoire, étalonnage de I’appareil, facteurs externes (Smook, 1997).

La figure 5.6 montre les séries chronologiques de ’indice de tension mesuré et prédit
par le modeéle multi-bloc pour la période respective. La prédiction du mode¢le suit de

fagon satisfaisante la réponse a long terme.
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Indice de tension des formettest
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Figure 5.6. Séries chronologiques de ’indice de tension mesuré et prédit des formettes.

T Valeurs centrées - réduites.

Pour déterminer les blocs les plus influents sur la variable de réponse, on considére les
valeurs VIP (Variable Importance in the Projection) de chaque variable latente. La
composante avec la plus grande valeur VIP et supérieure a 1, est la plus influente sur la
variable de réponse (Eriksson et al, 2001). La figure 5.7 présente en ordre décroissant,
les plus grandes valeurs VIP des variables latentes pour les deux périodes. Selon ce
critére, les blocs qui correspondent a la qualité de la pate des lignes de raffinage C et B
sont les plus influents sur I’indice de tension des formettes, pour chaque période

respectivement.

Pour connaitre les variables les plus influentes, on examine les poids w* des variables

du bloc le plus influent. Les poids w* sont directement reliés aux coefficients de
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régression PLS, ainsi les variables avec les plus grands poids (valeur absolue) sont les
plus influentes sur la variable de réponse. Egalement, le signe du poids w* indique le

type d’influence de la variable (soit positive ou négative selon le signe).

Pour les deux périodes, la variable la plus influente concernant la qualité de la pate des
lignes C et B, est la longueur des fibres (figure 5.8). Cette observation est aussi valide

pour la qualité de la pate de la ligne A.

Raffineur C |
Pite Ligne B

Pate Ligne C | -
Raffineur Al
Péte Ligne A
Premiére |

Raffineur A2 ;
Période ;

Copeaux

Pite Ligne B
Raffineur B1
Raffineur A2

Copeaux Deuxiéme
Piate Ligne C Période

Pite Ligne A

1.0 1.2 14 1.6 1.8 2.0 2.2
Valeur VIP

Figure 5.7. Valeurs VIP des blocs des modeles du procédé de mise en péte.
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Biichettes B
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Longueur Fibre C

Biichettes C

Egouttage C

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Poids w*

Figure 5.8. Poids w* des variables concernant la qualité de la pate

de chaque ligne de raffinage.

On a poursuivi I’analyse en considérant les poids des variables des blocs restants
concernant 1I’opération de raffinage. En général on a constaté que les variables les plus
influentes étaient celles qui sont théoriquement connues comme étant influentes sur la
longueur des fibres (I’énergie spécifique, D’entrefer, 1’dge des plaques). En ce qui

concerne les copeaux, les especes ont le rdle le plus important.

D'aprés cette analyse, I’indice de tension des formettes augmente principalement avec
la longueur des fibres tant que I’égouttage reste constant. Le coefficient de

détermination R? entre ces deux variables est de 0.22 pour la premiére période (pate de
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la ligne C, figure 5.9) et de 0.18 pour la deuxiéme période (pate de la ligne B). Bien que
les coefficients R? peuvent sembler petits, tous les deux sont significatifs (différents de
zéro) conformément au test de signifiance des coefficients de détermination (Neter,
1974). Ainsi, en ce qui concerne le procédé de mise en PTM, on peut conclure que le
facteur le plus influent sur I’indice de tension des formettes est la longueur des fibres,

compte tenu que 1’égouttage est constant.

Une fois les blocs et les variables les plus influents sur I’indice de tension des formettes
identifiés, il est possible de passer a la prochaine étape: la modélisation du procédé de

fabrication du papier.
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Figure 5.9. Longueur des fibres de la pate de la ligne C vs indice de tension des

formettes (1€&re période). T Valeurs centrées - réduites.
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5.6.2 Modélisation du procédé de fabrication du papier

Suivant la méme approche qu’auparavant, un modele multi-bloc pour ’indice de
tension du papier a poids de base de 48,8 g/m’, a été construit pour chaque période de 4
mois, suivant le schéma général de la figure 5.2. Conformément aux résultats
précédents concernant les copeaux, seulement les données relatives aux espéces ont €té
prises en compte.

Le modéle multi-bloc de la premiére période présente trois composantes significatives
qui rendent compte de 45% de la variabilité de I’indice de tension SM du papier
(RZY(cum)), tandis que le modele multi-bloc de la deuxiéme période présente deux
composantes significatives qui rendent compte de jusqu’da 50% de la variabilité. La
figure 5.10 montre les séries chronologiques de 1’indice de tension du papier mesuré et
prédit par le modéele de la période respective. La prédiction du modele arrive & suivre la

réponse a long terme, sans tenir compte du bruit de la mesure.

Le tableau 5.2 présente en ordre décroissant, les plus grandes valeurs VIP des variables
latentes pour les deux périodes, et les poids w* des variables les plus influentes de

chaque bloc.

On analyse d’abord les résultats qui sont communs aux deux périodes, soit ceux qui
concernent les propriétés de la pate thermomécanique et ceux qui concernent la pate du

systeme d’approche.
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Tableau 5.2 Valeurs VIP des blocs et poids w* des variables les plus significatives du

procédé de fabrication du papier.

Premiere Période
VIP | Unité de procédé Variable w*
Longueur Fibre Ligne C 0.62
2.24 | Propriétés PTM Longueur Fibre Ligne A 0.57
Longueur Fibre Ligne B 0.47
Degré de blancheur -0.53
2.20 | Machine a papier
Débit de vapeur totale 0.45
‘Egouttage du mélange 0.49
% D¢ésencrée -0.48
Systeme
1.55 Degré blancheur PTM 0.42
d’approche
% PTM 0.32
Débit agent de rétention -0.27
Deuxiéme Période
Consistance. caisse d'arrivée -0.40
2.79 | Machine a papier .
Epaisseur 0.34
% Désencrée -0.52
X % PTM 0.45
197 Systéeme )
. d*approche Egouttage PTM -0.38
Degré blancheur PTM 0.24
Longueur Fibre Ligne B 0.85
1.56 | Propriétés PTM Longueur Fibre Ligne C 0.44
Longueur Fibre Ligne A 0.27
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5.6.2.1 Influence des propriétés de la pate thermomécanique

Tel que souligné par les résultats concernant le procédé de mise en péte
thermomécanique, la longueur des fibres joue un rdle trés important dans le procédé de
fabrication du papier. Avec un R? entre 0.08 et 0.15, I’indice de tension SM du papier

est significativement corrélé a la longueur des fibres de la pite thermomécanique

(figure 5.11).

4.5

3.5 R? =015

Indice de tension SM
L
h n n in

R
h

-3 -2 -1 0 1 2 3
Longueur des fibres ligne c'

Figure 5.11. Longueur des fibres de la PTM de la ligne C vs I’indice de tension SM

du papier (1ére période). T Valeurs centrées — réduites.
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5.6.2.2 Influence des propriétés de la piate du systéme d’approche

Composition de la pdte

D'aprés les poids w* des variables concernant la composition de la pate du systéme
d’approche, la pate DES fait diminuer I’indice de tension SM du papier, tandis que la
PTM le fait monter. On ne s’attendait pas a ce résultat. On avait vu que la pate DES est
en moyenne 10% plus forte que la PTM du fait que les formettes de DES présentent un
indice de tension significativement plus grand que celui des formettes de PTM (figure
5.12). 1l semblerait que ceci ne se refléte pas dans le cas du papier, pour les deux
périodes étudiées (figure 5.13). Ceci suggere que certains paramétres d’opération
changent en fonction de la composition de la pate et affectent négativement la tension
SM du papier quand le pourcentage de pate DES augmente. Le tirage pourrait étre un

de ces parametres.

3 - —— Indice de tension PTM
————— Indice de tension DES

|

1

22 -

Indice de tension des formettes’

0 20 40 60 80 100 120
Observation

Figure 5.12. Séries chronologiques de I’indice de tension des formettes

de PTM et DES (1ére période). T Valeurs centrées — réduites.
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Figure 5.13. Influence de la composition de la pate du circuit de téte sur la force du

papier de la premiére période: a) %DES vs I’indice de tension SM. b) %PTM vs

’indice de tension SM. T Valeurs centrées — réduites.
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Dans les espaces ouverts entre les sections de la machine on doit maintenir la feuille de
papier sous tension suffisante (le tirage) pour éviter le flottement, sans toutefois
amorcer de rupture. La marge d’opération est étroite. Lorsque le % DES augmente, la
feuille a tendance a adhérer aux rouleaux de la machine et on doit augmenter le tirage
pour maintenir la feuille dans les limites s€curitaires d’opération. D’aprés Pikulik
(1997) ’augmentation du tirage a la section des presses pourrait affecter négativement
les propriétés du papier comme le pourcentage d’élongation et 1’énergie a la rupture.
Par contre, dans notre travail il n’a pas été possible de vérifier que ceci s’applique a la
tension SM du papier, du fait qu’il n’y avait pas des données disponibles sur le tirage
ouvert de la machine et qu’on n’a pas trouvé une corrélation significative entre le tirage

total et I’indice de tension SM du papier.

Egouttage du mélange des pates et de la pate thermomécanique

Dans la premiére période, I’égouttage du mélange des pates thermomécanique,
desencrée et de cassés apparait comme la variable la plus influente parmi celles
concernant les propriétés de la pate du systeme d’approche. Pourtant I’usine réalise un
trés bon contrdle de ce paramétre. Les mesures fluctuent + 5% du point de réglage, de
la sorte qu’on ne peut pas tirer de conclusion par rapport a cette variable.

Dans la deuxiéme période, I’égouttage de la pate thermomécanique apparait comme
une des variables les plus influentes. Plusieurs calibrations de la mesure pendant cette
période ont affecté les données de sorte qu’elles ne sont plus fiables; on a donc écarté

cette variable de I’analyse.
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Degré de blancheur de la pdte thermomécanique

Dans la premicre période, le degré de blancheur de la pate thermomécanique apparait
comme une des variables les plus corrélées avec ’indice de tension SM. D’aprés les
poids w*, une pate plus blanche donne un papier plus résistant. Examinant les causes
possibles d’une telle influence, on a trouvé que le degré de blancheur de la péte
thermomécanique est significativement corrélé a la longueur des fibres de la pate des
trois lignes. Donc, le degré de blancheur n’est pas la variable qui fait directement
augmenter 1’indice de tension SM. Par contre il pourrait étre un indicateur indirect de la

force du papier.

Agent de rétention

Toujours dans la premiére période, le débit de ’agent de rétention apparait comme une
des variables les plus influentes. L’augmentation du débit de 1’agent de rétention
entraine une diminution de I’indice de tension SM. On a trouvé que la longueur des
fibres est négativement corrélée au débit de ’agent de rétention d’une fagon
significative, ce qui conduit a poser ’hypothése que la diminution de la longueur des
fibres provoque une augmentation du débit de I’agent de rétention. Ceci entraine
Paugmentation de la rétention des fibres fines, mais aussi des autres particules
provenant de la péte recyclée et des eaux blanches qui génent le contrdle du procédé
ainsi que ’aptitude de la feuille au passage sur la machine. Il faudrait non seulement
essayer de réduire l’entrainement de particules étrangéres mais aussi optimiser

I’opération du circuit d’eaux blanches. La minimisation du temps de résidence des
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fibres fines dans la partiec humide de la machine pourrait diminuer 1’entrainement de

vieilles fibres fines qui affectent également la qualité du papier.

5.6.2.3 Influence de Popération de la machine a papier

Dans le cas de ’opération de la machine a papier étudiée, les variables qui apparaissent
comme les plus significatives, ne sont pas les mémes pour chaque période. Ceci est une
indication du changement de la dynamique d’opération de la machine. Il n’est pas
possible d’utiliser le modé¢le de la premiére période pour prédire I’indice de tension SM
de la deuxiéme période (figure 5.14). Tel que montré au tableau 5.2, pour la premiere
période, le degré de blancheur du papier produit, ainsi que le débit de vapeur totale
utilisée lors du séchage du papier sont les variables les plus corrélées avec ’indice de
tension SM. Pour la deuxiéme période, la consistance a la caisse d’arrivée et 1’épaisseur

du papier ont le réle le plus important.

6

- Valeur Mesurée
4 | — Valeur Prédite

Indice de Tension SM'
\ =) Y}

N
L

Premiére Période . Deuxiéme Période

-4
R? = 0.45 R2=0.02
-6 ]
0 500 1000 1500 2000 2500 3000 3500

Observation

Figure 5.14. Séries chronologiques de I’indice de tension SM mesuré et prédit par le

modele de la 1ére période. T Valeurs centrées - réduites.
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On ne peut pas directement attribuer I’augmentation de I’indice de tension SM du
papier a ’augmentation du débit de vapeur pour le sécher. Il doit y avoir d’autres
variables qui font augmenter la force du papier et par ailleurs la consommation de
vapeur. Ceci s’applique aussi aux autres variables significatives qui deviennent
également des variables indicatrices des changements dans le procédé qui affectent la
force du papier. Afin de trouver les variables du procédé qui influencent
significativement les variables d’opération de la machine, la méme démarche de
modélisation a été suivie. Dans ce cas, la variable de réponse était la variable
d’opération étudiée et les blocs étaient formés par les variables du procédé restantes.

Les résultats de cette démarche sont présentés dans ce qui suit.

Degré de blancheur du papier

L’indice de tension SM augmente avec la diminution du degré de blancheur du papier
produit. Pendant la premiére période, il y a trois variables qui affectent
significativement le degré de blancheur du papier: le pH du mélange de pates et le
pourcentage de cassés qui le font diminuer et, le % DES qui le fait augmenter. Les deux
premiéres variables n’ont aucun effet significatif sur la force du papier, mais le % DES
présente une influence négative sur 1’indice de tension SM. Ainsi, ’influence négative
du degré de blancheur sur P’indice de tension SM est expliquée par la corrélation

positive entre le degré de blancheur et le % DES.
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Le fait que le pH est la variable la plus influente sur le degré de blancheur du papier
avec, pour cette période, une influence négative, est intéressant. D’aprés les études

antérieures faites a ’usine, le % DES en serait sans doute la cause principale.

Débit de vapeur totale

L’indice de tension SM augmente avec le débit de vapeur totale pour sécher le papier.
Les variables qui affectent significativement la consommation de vapeur pendant la
premiére période sont le pourcentage de PTM, le pourcentage de DES et I’égouttage du
mélange. La consommation de vapeur augmente avec le % PTM et I’égouttage du
mélange et diminue avec le pourcentage de DES. Ainsi I’influence positive du débit de
vapeur sur 1’indice de tension SM est expliquée par les corrélations du débit de vapeur

avec la composition de la pate du systéme d’approche.

Consistance dans la caisse d’arrivée

L’indice de tension SM augmente avec la diminution de la consistance de la pate dans
la caisse d’arrivée. La variable qui affecte le plus la consistance dans la caisse
d’arrivée, est I’égouttage de la pate thermomécanique. Cependant, comme on a I’a
mentionné auparavant, plusieurs calibrations de la mesure effectuées pendant cette
période ont conduit a écarter cette variable de I’analyse. On n’a pas trouvé de relations
significatives entre la consistance dans la caisse d’arrivée et la composition de la pate

du systéme d’approche. Une analyse plus profonde est requise.
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Epaisseur

L’indice de tension SM augmente avec 1’épaisseur du papier. Cependant, on a trouvé
que [’épaisseur augmente aussi avec le % PTM. Ainsi, il s’agit d’un effet
d’augmentation provoqué par 1’épaisseur du papier, qui peut étre du a un calandrage

moindre, mais aussi par la composition de la pate du systéme d’approche.

5.7 Conclusions
La méthode de mise en blocs hiérarchisés s’est révélée étre une méthode appropriée
pour l'identification des corrélations entre les différentes variables d’une large base de

données, ainsi que des principales sources de variabilité dans un procédé.

La méthode a permis d’identifier et quantifier, d’une fagon systématique, le role des
étapes du procédé et des produits intermédiaires (copeaux, pate, fibres) sur 1’indice de

tension sens machine du papier, dans I’usine de Bowater Gatineau:

» La longueur des fibres de la pate thermomécanique a une influence trés
significative: des fibres plus longues produisent un papier plus fort en termes de
tension SM.

= La composition de la pite du systéme d’approche joue le rdle le plus important sur
I’indice de tension SM. Une augmentation du % PTM produit un papier avec un
indice de tension SM plus élevé, alors qu’une augmentation du % DES produit

I’effet contraire.
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» Les variables d’opération de la machine a papier qui présentent une influence
significative sur I’indice de tension SM sont reliées aux effets de la composition de

la pate du systéme d’approche.

I1 a été possible de dégager certaines mesures qui pourraient étre appliquées dans la

conduite du procédé pour augmenter I’indice de tension SM du papier et réduire sa

variabilité:

* Optimiser la stratégie de controle des raffineurs afin de préserver la longueur des
fibres de la PTM, tout en gardant un bon contrble de I’égouttage.

=  Augmenter le % PTM et réduire sa variabilit¢ afin de produire un papier qui
présente un bon comportement a 1I’impression.

=  Optimiser ’opération du circuit d’eaux blanches afin de diminuer 1’entrainement

des particules €étrangeres.

L’usine a I’intention de poursuivre cette étude afin de développer un modéle prédictif

de la tension SM et de 1’énergie a la rupture SM du papier.
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5.10 Notes additionnelles

Il faut préciser que les effets des variables explicatives sur les variables de réponse
manifestent un de deux types de dépendance, soit une dépendance qui indique une
relation de cause a effet ou une dépendance produite juste par I’existence d’une certaine
corrélation. Tel qu’il a été fait dans cette ¢tude, ’interprétation des résultats des
méthodes d’analyse multivariée doit tenir compte de I’existence de ces deux types de
dépendance afin d’identifier celles qui pourraient étre les véritables sources de
variations. On peut trouver par exemple qu’un certain facteur avec une valeur VIP
élevée peut étre qualifiée comme un des plus influents sur la variable de réponse. Les
connaissances antérieures sur le systéme, des analyses de régression et de corrélation
(Neter et Wasserman, 1974) ainsi que la méthodologie suivie dans cette étude (section
5.6.2.3), sont des outils qui peuvent étre utilisés afin de déterminer s’il existe une

véritable relation de cause a effet ou juste un effet de corrélation.
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CHAPITRE 6

CONCLUSIONS

6.1 Conclusions des résultats obtenus
Les conclusions qui émanent des résultats obtenus, peuvent étre classifiées en deux
catégories: celles concernant la performance de la méthode d’analyse multivariée et

celles qui touchent la conduite des procédés de mise en pate et de fabrication du papier.

Concernant la performance de la méthode d’analyse multivariée choisie, on peut dire
que la méthode de mise en blocs hiérarchisés s’est révélée étre une méthode appropriée
pour l'identification des corrélations entre les différentes variables d’une large base de

données, ainsi que des principales sources de variabilité dans un procédé.

La méthode a permis d’identifier et de quantifier, d’une fagon systématique, le role des

étapes du procédé et des produits intermédiaires sur 1’indice de tension SM du papier.

Concernant les procédés de mise en pate et de fabrication du papier, les points saillants

sont les suivants:

» La longueur des fibres de la pate thermomécanique a une influence trés
significative: des fibres plus longues produisent un papier plus fort en termes de

tension SM.
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La composition de la pate du systeme d’approche joue le role le plus important sur
I’indice de tension SM. Une augmentation du % PTM produit un papier avec un
indice de tension SM plus élevé, alors qu’une augmentation du % DES produit
1’effet contraire.

Les variables d’opération de la machine a papier qui présentent une influence
significative sur I’indice de tension SM sont reliées aux effets de la composition de

la pate fournie a la machine a papier.

6.2 Recommandations et perspectives

A partir des résultats de I’analyse, il a été possible de dégager certaines mesures qui

pourraient étre appliquées dans la conduite du procédé pour augmenter 1’indice de

tension SM du papier et réduire sa variabilité:

Optimiser la stratégie de controle des raffineurs afin de préserver la longueur des
fibres de la PTM, tout en gardant un bon contrdle de 1’égouttage.

Augmenter le % PTM et réduire sa variabilit¢ afin de produire un papier qui
présente un bon comportement a I’impression.

Optimiser 1’opération du circuit d’eaux blanches afin de diminuer 1’entrainement

des particules étrangéres.

L’usine a I’intention de poursuivre cette étude afin de développer un modéle prédictif

de la tension SM et de I’énergie a la rupture SM du papier. Plusieurs voies peuvent étre
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suivies, par contre, a la lumiére de la présente étude, il a été confirmé que la fabrication
du papier est un processus dynamique et donc I’utilisation d’un modéle qui s’adapte
aux changements dans le procédé s’impose. Le développement d’un modéle prédictif

ne peut sans doute pas négliger cet aspect.

Les différentes cartes de contrdle multivariables pour faire le suivi du comportement du
procédé méritent aussi d’étre explorées. Leur potentiel & détecter des changements dans
le procédé et leur simplicité dans la présentation des données qui facilite 1’interprétation

des événements, sont les avantages a exploiter.

Le développement de modeles qui englobent plus d’un grade de papier s’avére
également intéressant. Non seulement il serait possible d’augmenter la connaissance du
procédé avec un modéle unique qui réunit beaucoup plus d’information et qui tient
compte des périodes de transition entre les grades. L’avantage a avoir un seul modéle
pour faire le suivi de plusieurs grades de papier est évident, surtout pour le cas des

usines qui produisent des dizaines de grades de papier.

Finalement, tel que mentionné a la section 5.5.2.1, les données utilisées dans cette étude
proviennent des différentes banques de données dont la synchronisation a tenu compte
des approximations des temps de résidence de la matiére dans le procédé. Il serait
souhaitable de réaliser une étude plus approfondie afin de vérifier la validité de ces

approximations.
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ANNEXES

A. TEST DE SIGNIFIANCE DU COEFFICIENT DE DETERMINATION

Test d’hypothése du coefficient de détermination d’une population bivariée, p;; (Neter

et Wasserman, 1974).

Hyp:p12=0

Ha:p12#0

Si t*| <=t (1-0/2; n-2), on ne rejette pas Hy

Si [t*| > t (1-a/2; n-2), on ne rejette pas H,

Ou t est le percentile de la distribution t de Student correspondant au niveau de
confiance a et (n-2) degrés de liberté (n étant le nombre d’observations).

t* est calculé selon:

o FaNn=2
Vi-r3

Ou #, est le coefficient de corrélation de I’échantillon.

¢ (A.])

Example:

Avecn= 1651, 115° = 0.15, o = 10%

t* =17.0587

t =1.645 (Neter et Wasserman, 1974).

|17.0587| > 1.645 donc on ne rejette pas H, et on conclut que le coefficient de

détermination est significativement différent de zéro.
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ANNEXE B
COEFFICIENTS DES MODELES OBTENUS
B.1 Premiére Période (Juin a Septembre 2003).
B.1.1 Mode¢les ayant comme variable de réponse I’indice de tension des formettes.

Tableau B.1.1.1 Coefficients R>X, R*Y et Q* du modéle PLS multi-bloc

et des sous modéles.

Modéle PLS Multi-bloc de PIndice de Tension des Formettes - 1ére période
No. d’observations (N)=117, No. de variables explicatives (K)=31
Al RX R*X(cum) RYY R*Y(cum) Q* Q*(cum)
1| 0.1530 0.1530 0.3940 0.3940 0.3210 0.3210
Sous - modéle PLS - Propriétés des Copeaux

K=20
1 | 0.2000 0.2000 0.1410 0.1410 0.0259 0.0259
2 | 0.1030 0.3030 0.0782 0.2190 -0.0923 -0.0641
3| 0.1100 0.4130 0.0172 0.2360 -0.1670 -0.1700
41 0.1020 0.5150 0.0060 0.2420 -0.1820 -0.2880
5] 0.0584 0.5730 0.0036 0.2450 -0.2320 -0.4160
6 | 0.0404 0.6140 0.0038 0.2490 -0.1960 -0.5580

Sous - modele PLS - Raffineur Primaire Ligne A

K=11
1| 0.1910 0.1910 0.1780 0.1780 0.0916 0.0916
2| 0.1170 0.3090 0.0283 0.2060 -0.1680 0.0008
3 | 0.1580 0.4670 0.0038 0.2100 -0.1540 -0.0992
4] 0.1210 0.5880 0.0020 0.2120 -0.1730 -0.2090
51 0.1010 0.6890 0.0009 0.2130 -0.1830 -0.3300

Sous - modéle PLS - Raffineur Secondaire Ligne A

K=11
1} 0.2560 0.2560 0.1720 0.1720 0.0976 0.0976
2 | 0.1050 0.3610 0.0551 0.2270 -0.0887 0.0176
31 0.0912 0.4520 0.0090 0.2360 -0.1710 -0.0807
4 | 0.1490 0.6010 0.0020 0.2380 -0.1340 -0.1890

Sous - modéle PLS - Mesures PQM Ligne A

K=3
1| 0.5430 0.5430 0.1740 0.1740 0.1550 0.1550
2 | 03130 0.8560 0.0051 0.1790 -0.0118 0.1450




Tableau B.1.1.1 Coefficients R>X, R?Y et Q? du modele PLS multi-bloc

et des sous mode¢les (continuation).

A R’X | RX(cum) | R?Y | R®Y(cum) Q’ Q*(cum)
Sous - modéle PLS - Raffineur Primaire Ligne B

K=9
1 0.1850 0.1850 0.0848 0.0848 0.0218 0.0218
2 0.2020 0.3870 0.0224 0.1070 -0.0477 | -0.0249
3 0.1480 0.5350 0.0129 0.1200 -0.0675 | -0.0940
4 0.0886 0.6240 0.0075 0.1280 -0.0634 | -0.1630

Sous - modéle PLS - Raffineur Secondaire Ligne B

K=10
1 0.3710 0.3710 0.0753 0.0753 0.0358 0.0358
2 0.1360 0.5060 0.0278 0.1030 -0.0422 | -0.0049
3 0.1150 0.6220 0.0111 0.1140 -0.0583 | -0.0635

Sous - modéle PLS - Mesures PQM Ligne B

K=3
1 0.5540 0.5540 0.0827 0.0827 0.0620 0.0620
2 0.2690 0.8230 0.0255 0.1080 0.0149 0.0760

Sous - modéle PLS - Raffineur Ligne C

K=10
1 0.2890 0.2890 0.1130 0.1130 0.0324 0.0324
2 0.2530 0.5420 0.0361 0.1490 -0.0436 | -0.0098
3 0.1760 0.7180 0.0147 0.1640 -0.0611 | -0.0715

Sous - modéle PLS - Mesures PQM Ligne C

K=3
1 0.5350 0.5350 0.2720 0.2720 0.2540 0.2540
2 0.3510 0.8850 0.0345 0.3070 0.0286 0.2750
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Tableau B.1.1.2 Coefficients Centrés — Réduits et Valeurs VIP
du modéle PLS multi-bloc.

Modéle Composante | Coefficient CR | VIP [1]
1 0.0854 1.5924
2 0.0604 1.1263
3 0.0321 0.5984
Copeaux
4 0.0042 0.0790
5 0.0084 0.1559
6 0.0171 0.3195
1 0.0966 1.8000
Raffineur 2 0.0418 0.7794
Primaire 3 0.0191 0.3565
Ligne A 4 0.0165 0.3069
5 0.0115 0.2145
1 0.0944 1.7592
Raffineur 2 0.0532 0.9908
Secondaire
Ligne A 3 0.0222 0.4133
4 0.0122 0.2282
PQM 1 0.0945 1.7606
Ligne Al 2 0.0178 0.3320
1 0.0677 1.2614
Raffineur 2 0.0354 0.6597
Primaire
Ligne B 3 0.0199 0.3707
4 0.0188 0.3502
Raffineur 1 0.0601 1.1198
Secondaire 2 0.0404 0.7535
Ligne B 3 0.0221 0.4118
PQM 1 0.0709 1.3221
Ligne B 2 0.0357 0.6656
1 0.0787 1.4663
Raffineur 2 0.0470 0.8760
Ligne C
3 0.0357 0.6649
PQM 1 0.1175 2.1895
Ligne C 2 0.0363 0.6775
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Tableau B.1.1.3 Coefficients Centrés — Réduits et Valeurs VIP des sous - modéles.

Variable Coefliclent | vrp Variable Coellicient | vip
Copeaux A=6 Raffineur Secondaire Ligne A A=4
Luminance -0.0613 0.5986 | Entrefer Plate -0.1853 1.3268
Espéce 1 -0.1878 1.0720 | Entrefer Conique -0.0250 0.7096
Espéce 2 02146 1.6067 | Age des plaques -0.1835 1.1832
Espéce 3 -0.0635 1.0773 Consistance -0.0682 0.5970
Poids spécifique 0.0540 0.4139 Charge du moteur 0.1407 1.2429
Vrac 0.1702 1.5698 Energie Spécifique -0.0129 0.3673
Pin 0.1208 0.9806 Production Ligne A 0.1198 0.9216
1.125 0.0933 1.1577 Dilution alimentée / PR 0.0964 0.9857
0.875 -0.0359 1.0128 | Dilution zone plate /PR | -0.0747 0.5653
0.625 -0.0402 | 0.5462 I?I‘{l““o“ zone conique/ | 1901 | 0.8729
0.375 0.1489 1.2588 | ES PA/ES SA -0.2709 1.5484
0.1875 -0.1316 1.0953
Fines 0.2134 1.1952
Blancheur 0.1175 0.5891 Mesures POM Ligne A A=2
Humidité -0.0537 0.7997 | Total de blchettes 0.2127 1.1615
% Bichettes -0.1237 0.9560 | Egouttage -0.0862 0.2879
% Ecorce 0.1201 0.7578 | Longueur de fibres 0.2611 1.2523
% Pourris 0.0434 0.5320
% Noeuds 0.0855 0.4092
Raffineur Primaire Ligne A1 A=5 Raffineur Primaire Ligne B A=4
Entrefer Plate -7.25E-05 | 4.10E-01 | Entrefer Plate -0.1104 1.0172
Entrefer Conique -3.60E-02 | 5.81E-01 | Entrefer Conique 0.2729 1.8205
Age des plaques 1.40E-01 | 5.77E-01 | Age des plaques 0.1664 0.6625
Consistance 1.34E-01 1.19E+00 | Consistance 0.0563 0.9409
Charge du moteur 1.17E-01 5.14E-01 | Charge du moteur 0.1680 0.7882
Energie Spécifique -2.43E-01 | 1.24E+00 | Energie Spécifique 0.2422 0.9825
1131‘11““0“ alimentée/ | 5 23E-01 | 1.65E+00 | Dilution alimentée /PR | -0.2020 | 0.9699
Dilution zone plate / 1.16E-01 | 121E+00 Dilution zone conique / 0.0417 0.7279
PR PR
Pl‘,ll‘{tlon zone COMque | 5 9402 | 6.59E-01 | Dilution Soufflage /PR | -0.0716 | 0.5193
pitution Soufflage /- 6 08E02 | 1.15E400




Tableau B.1.1.3 Coefficients Centrés — Réduits et Valeurs VIP des sous — modéles

(continuation).
. Coefficient . Coefficient
Variable CR VIP Variable CR VIP

Raffineur S2 A=3 | Raffineur RJ A=3
Entrefer Plate 0.2087 1.2431 | Entrefer Plate 0.0265 0.9284
Entrefer Conique 0.0775 0.8519 | Entrefer Conique 0.0990 0.8738
Age des plagues -0.0355 0.3922 | Age des plaques -0.1387 0.8222
Consistance 0.0190 0.6789 | Consistance 0.0558 0.6417
Charge du moteur 0.1177 1.2299 | Charge du moteur -0.1374 0.8718
Energie Spécifique 0.1400 1.2102 | Energie Spécifique -0.0737 0.9831
Production Ligne A -0.0018 0.6614 | Production Ligne A 0.0004 0.7965
Dilution alimentée / 0.1851 1.2340 Dilution alimentée / -0.0334 0.9044
PR PR

D111}t1on zone -0.0340 1.0030 Dilution zone plate / -0.1470 1.3598
conique / PR PR

ES PB/ES SB 0.0157 | 1.0822 })}lllgtm“ zZone comque | 57510 | 1.5030
Mesures POM L2 A=2 | Mesures POM RJ A=2
Total de blchettes 0.2031 1.0410 | Total de biichettes 0.2319 1.0082
Egouttage -0.2000 | 0.8447 | Egouttage -0.2976 0.6929
Longueur de fibres 0.2254 1.0968 | Longueur de fibres 0.3570 1.2262




B.1.2 Modgéles ayant comme variable de réponse ’indice de tension SM du papier.

Tableau B.1.2.1 Coefficients R?X, R?Y et Q? du modele PLS multi-bloc

et des sous modéles.

Modéle PLS Multi-bloc de I'Indice de Tension SM - 1ére période
No. d'observations (N)=1651, No. de Variables Explicatives (K)=21
A RX R*X(cum) RYY R*Y(cum) Q’ Q*(cum)
1 | 0.0947 0.0947 0.384 0384 0.378 0.378
2 | 0.0774 0.172 0.0555 0.439 0.0789 0.428
3 | 0.0623 0.234 0.0132 0.453 0.00772 0.432
Sous - modéle PLS — Propriétés des copeaux

K=4
1 { 0.4140 0.4140 0.0508 0.0508 0.0496 0.0496
2 | 0.3420 0.7550 0.0089 0.0597 0.0085 0.0577

Sous - modéle PLS — Mesures PQM

K=6
1 | 0.3490 0.3490 0.1880 0.1880 0.1870 0.1870
2 | 0.1360 0.4850 0.0133 0.2020 0.0119 0.1960
3 | 0.1540 0.6400 0.0040 0.2060 0.0029 0.1990

Sous - modele PLS - Systeéme d'approche

K=14
1 | 0.2290 0.2290 0.0885 0.0885 0.0854 0.0854
2 | 0.1480 0.3760 0.0308 0.1190 0.0301 0.1130
3 | 0.0946 0.4710 0.0130 0.1320 0.0095 0.1210
4 | 0.0686 0.5400 0.0060 0.1380 -0.0016 0.1200
5 | 0.0576 0.5970 0.0076 0.1460 -0.0029 0.1170
6 | 0.0636 0.6610 0.0037 0.1500 -0.0027 0.1150

Sous - modéle - Machine & papier

K=27
1 | 0.0802 0.0802 0.1850 0.1850 0.1750 0.1750
2 | 0.0692 0.1490 0.0491 0.2340 0.0445 0.2120
3 | 0.1080 0.2580 0.0110 0.2450 0.0017 0.2130
4 | 0.0829 0.3410 0.0085 0.2540 -0.0031 0.2110
5 | 0.0849 0.4260 0.0047 0.2580 -0.0079 0.2050
6 | 0.0485 0.4740 0.0018 0.2600 -0.0134 0.1940
7 | 0.0368 0.5110 0.0019 0.2620 -0.0144 0.1820
8 | 0.0369 0.5480 0.0027 0.2650 -0.0188 0.1670
9 | 0.0316 0.5790 0.0018 0.2670 -0.0172 0.1530
10 | 0.0247 0.6040 0.0047 0.2710 -0.0219 0.1340
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Tableau B.1.2.2 Coefficients Centrés — Réduits et Valeurs VIP

du modele PLS multi-bloc.

Modéle Composante | Coefficient CR | VIP [3]
Copeaux 1 0.1016 1.2185
2 -0.0424 0.6811

1 0.3385 2.2420

PQM 2 0.0329 0.6348
3 0.0307 0.3974

1 0.2400 1.5506

2 0.0092 1.1151

Systeme d'approche > 0.0824 05780
4 0.0313 0.3031

5 0.0855 0.4613

6 0.0277 0.3201

1 0.2678 2.1993

2 0.2115 1.2281

3 0.1779 0.9732

4 -0.0247 0.8269

Machine & papier 5 0.0402 0.4541
6 0.0200 0.3113

7 0.0809 0.3242

8 -0.0567 0.5159

9 0.0949 0.3833

10 0.0382 0.5271
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Tableau B.1.2.3 Coefficients Centrés — Réduits et Valeurs VIP des sous - modéles.

Variable Coellclent | vIp | Variable Coellicient | vrp
Copeaux A =2 | Machine a papier A=10
Luminance -0.0216 0.1363 | Pression CA -0.0825 0.8132
Espece 1 (%) -0.1688 1.0559 | Consistance CA 0.1357 1.1357
Espéce 2 (%) 0.1491 1.3727 | Floculation CA -0.0796 0.4437
Espece 3 (%) -0.0721 0.9911 | Température CA 0.0807 0.9586
Mesures PQM A=3 | Turbidité 0.1711 0.8622
LA Egouttage 0.0044 0.1352 | Vide C. Transfert 0.0166 0.2808
LA Longueur de fibres 0.1249 1.3442 | Vide 2°™ Caisse 0.0115 0.2031
LB Egouttage 0.0446 0.1432 | Vide aspirant 0.1314 0.6977
LB Longueur de fibres 0.0459 1.1489 | Vide lére presse 0.2811 1.7099
LC Egouttage 0.1895 | 0.7866 ;’r‘:s‘;é"’““é fere 00893 | 07927
LC Longueur de fibres 0.3124 1.4885 | Const. eau blanche -0.0042 0.3509
Systéme d'approche A=g | Videréglage 02376 | 13559

automatique

%Cassés 0.0771 0.7916 | Ouverture de lévres -0.0199 0.9868
%DES -0.2570 1.4109 | Ratio vit. jet/toile 0.0374 0.4509
%PTM 0.1915 1.0543 | Vitesse rouleau -0.1253 0.5413
Egouttage mélange péte -0.0624 1.6006 | Vitesse toile 0.0907 0.3540
Egouttage DES 0.0372 0.5195 | Pressel arriére -0.0532 0.4250
Egouttage PTM 0.0666 0.8018 | Pressl front -0.0467 0.5696
pH mélange péte 0.1183 0.9098 | Press2 arricre -0.0096 0.6042
pH PTM 0.0197 0.4772 | Press2 front 0.0380 0.3079
pH DES -0.0422 0.6321 | Humidité -0.0388 0.3238
Consist. mélange pate 0.0293 0.1825 | Degré Blancheur -0.2519 2.3589
Blancheur PTM 0.2061 1.4708 | Epaisseur 0.1699 1.0800
Blancheur DES -0.0471 0.5830 | % Tirage total 0.1972 0.6857
Ratio TMP/DIP -0.1209 1.2408 | Vapeur total / PR 0.1645 1.9614
Ag. rétention / PR -0.0878 1.1249 | Ag. blanch. /PR 0.0881 1.4889
Ramasse péte / PR 0.0750 1.0672




B.1.3 Modeéles ayant comme variable de réponse le degré de blancheur du papier.

Tableau B.1.3.1 Coefficients R*X, R’Y et Q? du modéle PLS multi-bloc

et des sous modéles.

Modéle PLS Multi-bloc du Degré de Blancheur du papier - 1&re période
Observationes (N)=1611, No. de Variables Explicatives (K)=13
A| RX R*X(cum) RYY RY(cum) Q’ Q’*(cum)
1| 0.1340 0.1340 0.2640 0.2640 0.2620 0.2620
2 | 0.1070 0.2400 0.0274 0.2910 0.0336 0.2870
Sous - modéle PLS - Propriétés de la pate

K=12
1| 0.1460 0.1460 0.1830 0.1830 0.1780 0.1780
2 | 0.1610 0.3070 0.0361 0.2190 0.0406 0.2120
3 | 0.1510 0.4570 0.0033 0.2220 0.0020 0.2130
4 | 0.1000 0.5580 0.0009 0.2230 -0.0040 0.2100
5 | 0.0856 0.6430 0.0007 0.2240 -0.0048 0.2060

Sous - modéle PLS - Caisse d'arrivée

K=4
1 | 0.3500 0.3500 0.1190 0.1190 0.1180 0.1180
2 | 0.1850 0.5350 0.0004 0.1190 -0.0002 0.1180
3 ] 0.2660 0.8010 0.0000 0.1190 -0.0002 0.1180

Sous - modéle PLS - Adjuvants

K=2
11 0.5740 0.5740 0.1340 0.1340 0.1320 0.1320
2 | 0.4260 1.0000 0.0016 0.1360 0.0001 0.1320

Sous - modéle PLS - Machine & papier

K=9
1| 0.1840 0.1840 0.0683 0.0683 0.0651 0.0651
2 1 0.1090 0.2930 0.0096 0.0779 0.0046 0.0694
3 | 0.1440 0.4370 0.0007 0.0786 -0.0027 0.0669
4 | 0.1000 0.5380 0.0003 0.0788 -0.0046 0.0626
5 | 0.0869 0.6250 0.0010 0.0798 -0.0049 0.0581
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Tableau B.1.3.2 Coefficients Centrés — Réduits et Valeurs VIP

du modéle PLS multi-bloc.

Modéle Composante | Coefficient CR | VIP[2]

1 0.2910 2.2632

Propriétés d 2 0.2115 1.1736

roprieies de 3 0.0449 0.3054
la Pate

4 0.0076 0.0455

5 0.0722 0.6119

Cai 1 0.1941 1.8555

asse 2 0.0067 0.1021
d'arrivée

3 0.0313 0.2268

1 0.1775 1.3827

p 2 0.1153 0.6458
aper

Machine 3 0.0183 0.1166

4 -0.0390 0.4163

5 0.0100 0.1034
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Tableau B.1.3.3 Coefficients Centrés — Réduits et Valeurs VIP des sous - modéles.

. Coefficient . Coefficient

Variable CR VIP[5] | Variable CR VIP[5]
Propriétés de la pite A=35 | Caisse d'arrivée A=3
%Cassés -0.1898 1.3234 | Pression CA -0.2298 1.4816
%DES 0.1198 1.0704 | Consistance CA -0.0203 0.1251
%PTM 0.0295 0.4814 | Floculation CA -0.1436 1.1519
Eg‘;““age mélange | 0186 | 0.8874 | Température CA -0.0931 0.6799
Egouttage DES 0.1316 0.8140 ,

, M A=
Egouttage PTM 0.2703 1.8a30 | Faper Machine 5
pH mélange pate 01879 | 14018 | Videréslage 0.0636 0.3990

automatique
pH PTM -0.0389 | 0.3294 | Vide C. Transfert 0.0048 0.0837
pH DES 20.0652 | 0.5779 | Vide 2™ Caisse 0.0104 0.0716
ggtgs'“' mélange -0.0002 | 0.0521 | Vide Aspirant -0.0519 1.1196
Blancheur TMP 0.0455 0.5531 | Vide leére presse -0.1430 1.4344
Blancheur DES 02196 | 1.1439 l‘)’rli‘;f"““é lere 0.0079 | 1.2450
Adjuvants A=2 % Tirage 0.0129 0.4634
Ag. rétention / PR -0.0932 0.5547 | Vapeur total / PR -0.1871 1.6887
Ag. blanch. / PR -0.3409 | 1.3009 | Ramasse pate / PR 0.0857 0.9492




B.1.4 Modé¢les ayant comme variable de réponse le débit total de vapeur.

Tableau B.1.4.1 Coefficients R*X, R?Y et Q* du modéle PLS multi-bloc

et des sous modéles.

Modg¢le PLS Multi-bloc du Débit Total de Vapeur - 1ére période
No. d'observations (N)=1223, No. de Variables Explicatives (K)=10
A| RX R*X(cum) RY R*Y(cum) Q? Q*(cum)
1| 0.1990 0.1990 0.1590 0.1590 0.1520 0.1520
2| 0.1270 0.3260 0.0190 0.1780 0.0130 0.1630
Sous - modele PLS - Propriétés de la péte

K=12
1 | 0.2450 0.2450 0.1240 0.1240 0.1180 0.1180
2 | 0.0945 0.3390 0.0194 0.1430 0.0091 0.1260
31 0.0792 0.4180 0.0094 0.1530 -0.0090 0.1190
4 | 0.0778 0.4960 0.0079 0.1600 -0.0137 0.1060
5| 0.0309 0.5270 0.0072 0.1680 -0.0149 0.0932
61 0.1100 0.6370 0.0000 0.1680 -0.0093 0.0847

Sous - modele PLS - Caisse d'arrivée

K=4
1| 0.3620 0.3620 0.0675 0.0675 0.0633 0.0633
2| 0.2170 0.5800 0.0025 0.0700 -0.0028 0.0607
3] 0.1920 0.7720 0.0006 0.0706 -0.0039 0.0571

Sous - modéle PLS - Adjuvants

K=2

1 0.6 0.6 0.0447 0.0447 0.043 0.043
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Tableau B.1.4.2 Coefficients Centrés — Réduits et Valeurs VIP
du modéle PLS multi-bloc.

Modéle Composante | Coefficient CR | VIP[2]
1 0.254395 1.97109
2 0.0840828 0.791003
Phte 3 0.0741927 0.644111
4 0.100305 0.660972
5 0.084647 0.5473
6 0.0879253 0.64035
1 0.098176 1.51386
Caisse d'arrivée 2 0.0507255 0.321265
3 0.0410452 0.2501
Adjuvants 1 0.0879329 1.21254

Tableau B.1.4.3 Coefficients Centrés — Réduits et Valeurs VIP des sous - modéles.

Variable Coefficient CR vIP

Propriétés de la pite A=6
%Cassés -0.0499 0.6497
%DES -0.2675 1.4645
%PTM 0.3083 1.6222
Egouttage mélange péte -0.2769 1.7242
Egouttage DES 0.0414 0.5789
Egouttage PTM -0.2468 1.2320
pH mélange pate 0.0414 0.4092
pH PTM -0.0012 0.0949
pH DES -0.0704 0.7083
Consist. mélange péte 0.0018 0.1469
Blancheur TMP 0.1613 0.9808
Blancheur DES -0.0507 0.5605
Caisse d'arrivée A=3
Pression CA 0.1933 1.4578
Consistance CA -0.0505 0.4320
Floculation CA 0.1145 1.1890
Température CA -0.0055 0.5241
Adjuvants A=1

Ag. rétention / PR 0.1353 1.0268
Ag. blanch. / PR 0.1281 0.9724




B.2 Deuxiéme Période (Oc'tobre 2003 a Janvier 2004).

B.2.1 Modgéles ayant comme variable de réponse I’indice de tension des formettes.

Tableau B.2.1.1 Coefficients R%X, R?Y et Q* du modéle PLS multi-bloc

et des sous modéles.

Modg¢le PLS Multi-bloc de I' Indice de Tension des Formettes - 2éme période
No. d’observations (N)=115, No. de variables (K)=33
Al RX R*X(cum) RYY R*Y(cum) Q! Q%*(cum)
1| 0.1080 0.1080 0.4270 0.4270 0.2810 0.2810
Sous - modéle PLS - Propriétes des Copeaux
K=20
1] 0.1180 0.1180 0.1140 0.1140 -0.1050 -0.1000
2 | 0.1170 0.2350 0.0763 0.1910 -0.0964 -0.2060
3| 0.1650 0.4000 0.0170 0.2080 -0.1020 -0.3270
4 | 0.0970 0.4970 0.0281 0.2360 -0.1750 -0.4590
5 | 0.0769 0.5740 0.0209 0.2570 -0.1330 -0.6050
6 | 0.0652 0.6390 0.0106 0.2670 -0.1690 -0.7660
Sous - modéle PLS - Raffineur P1
K=10
1 ] 0.1450 0.1450 0.0631 0.0631 -0.1190 -0.1000
2 | 0.2070 0.3520 0.0119 0.0750 -0.0984 -0.2080
3] 02120 0.5640 0.0012 0.0762 -0.0956 -0.3240
4 | 0.0754 0.6390 0.0025 0.0787 -0.1270 -0.4560
Sous - modéle PLS - Raffineur Si
K=11
1 ] 0.2350 0.2350 0.1040 0.1040 -0.0134 -0.0134
2 | 0.0972 0.3320 0.0479 0.1520 -0.2000 -0.1150
3] 0.1430 0.4750 0.0153 0.1670 -0.1450 -0.2260
4 | 0.1700 0.6450 0.0050 0.1720 -0.1310 -0.3490
Sous - modéle PLS - Mesures PQM L1
K=3
1| 0.3410 0.3410 0.0781 0.0781 0.0137 0.0137
2| 03620 0.7030 0.0066 0.0847 -0.0359 -0.0216
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Tableau B.2.1.1 Coefficients R’X, R?Y et Q2 du modéele PLS multi-bloc

et des sous modéles (continuation).

A R’X | R¥X(cum) | R?’Y | R*Y(cum) Q? Q*(cum)
Sous - modéle PLS - Raffineur P2
K=10
1 0.3210 0.3210 0.1530 0.1530 0.1160 0.1160
2 0.1280 0.4490 0.0828 0.2350 -0.0016 0.1140
3 0.1100 0.5590 0.0231 0.2590 -0.0601 0.0609
4 0.0909 0.6500 0.0043 0.2630 -0.0815 | -0.0156
Sous - modele PLS - Raffineur S2
K=11
1 0.1420 0.1420 0.0552 0.0552 -0.1660 | -0.1000
2 0.1590 0.3020 0.0055 0.0606 -0.1530 | -0.2100
3 0.1440 0.4460 0.0046 0.0652 -0.1450 | -0.3310
4 0.1180 0.5640 0.0054 0.0707 -0.1330 | -0.4640
5 0.1450 0.7090 0.0024 0.0731 -0.1250 | -0.6110
Sous - modéle PLS - Mesures PQM L2
K=3
1 0.4710 0.4710 0.1670 0.1670 0.1070 0.1070
2 0.3090 0.7800 0.0327 0.2000 0.0003 0.1080
Sous - modéle PLS - Raffineur RJ
K=11
1 0.293 0.293 0.0199 0.0199 -0.0402 | -0.0402
2 0.114 0.407 0.00883 0.0288 -0.0841 -0.128
3 0.184 0.591 0.0125 0.0413 -0.098 -0.238
4 0.166 0.758 0.00627 0.0475 -0.12 -0.362
Sous - modéle PLS - Mesures PQM RJ
K=3
1 0.498 0.498 0.101 0.101 0.0435 0.0435
2 0.305 0.803 0.0122 0.113 -0.0429 | 0.00244
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Tableau B.2.1.2 Coefficients Centrés — Réduits et Valeurs VIP
du modele PLS multi-bloc.

Modg¢éle Composante | Coefficient CR | VIP[1]

1 0.1094 1.7023

2 0.0867 1.3491

Copeax 3 0.0372 0.5790

4 0.0578 0.8996

5 0.0528 0.8213

6 0.0398 0.6190

1 0.0816 12697

I;’?frt;lllaljlir 2 0.0354 0.5517
Ligne A 3 0.0117 0.1825

4 0.0192 0.2996

1 0.1069 1.6648

S‘:‘;ﬂi‘;i‘l‘:e 2 0.0723 1.1260
Ligne A 3 0.0430 0.6696

4 0.0233 0.3633

. 1 0.0899 1.3995

PQM Ligne A 2 0.0244 0.3797
1 0.1234 1.9215

I;?lffl‘:r‘g 2 0.0911 1.4178
Ligne B 3 0.0510 0.7939

4 0.0218 0.3392

1 0.0742 1.1551

Raffineur 2 0.0220 0.3432
Secondaire 3 0.0198 0.3079
Ligne B 4 0.0221 0.3447

5 0.0152 02373

. 1 0.1304 2.0302

PQM Ligne B 2 0.0565 0.8793
1 0.0444 0.6904

. 2 0.0408 0.6347
Raffineur Ligne C 3 0.0433 0.6747
4 0.0361 0.5625

. 1 0.0995 1.5486

PQM Ligne C 2 0.0290 0.4512
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Tableau B.2.1.3 Coefficients Centrés — Réduits et Valeurs VIP des sous — modéles.

Variable C"eg;:‘e“t VIP Variable C"eg;:'e“t VIP
Copeaux A=6 Raffineur S1 A=4

Luminance -0.0230 0.6275 | Entrefer Plate -0.0188 0.3826
Espéce 1 -0.0675 0.8801 | Entrefer Conique 0.0694 0.7113
Espéce 2 0.0276 0.6450 Age des plaques -0.1060 1.4395
Espéce 3 0.0217 0.8724 | Consistance 0.0509 0.9325
Poids spécifique -0.3263 1.4544 | Charge du moteur 0.2798 1.0012
Vrac -0.0649 0.6418 | Energie Spécifique -0.2910 1.1703
Pin -0.0766 0.7881 | Production Ligne A -0.0680 0.5150
1125 Dilution alimentée /

0.1061 0.8723 | PR 0.1428 1.0273
0.875 Dilution zone plate /

0.1578 1.1963 | PR -0.0420 1.0753
0.625 Dill.ltion zone

-0.0332 1.0995 | conique /PR -0.0598 1.1575
0375 Dilution Soufflage /

-0.0784 0.7288 | PR 0.2050 1.1033
0.1875 0.5291 1.3272
Fines -0.1981 1.2031
Blancheur -0.0441 0.9328 | Mesures POM L1 A=2
Humidité -0.3888 1.6071 | Total de biichettes 0.0382 0.5250
% Bfichettes 0.1427 0.9740 | Egouttage -0.1286 0.5635
% Ecorce 0.2015 0.8122 | Longueur de fibres 0.2665 1.5514
% Pourris -0.0110 0.7783
% Noeuds 0.1008 1.0984
Petits -0.0225 0.7013
Raffineur P1 A=4 | Raffineur P2 A=4
Entrefer Plate -0.1174 0.7284 | Entrefer Plate -0.2729 1.2519
Entrefer Conique 0.2005 1.7895 | Entrefer Conique 0.1790 0.6985
Age des plaques -0.0842 1.0091 | Age des plaques -0.2779 1.2058
Consistance 0.0005 0.6032 | Consistance 0.1168 0.9274
Charge du moteur -0.0090 0.4273 | Charge du moteur -0.0828 1.0248
Energie Spécifique -0.0090 0.5789 | Energie Spécifique 0.1033 1.1259
Dilution alimentée Dilution alimentée /
/PR -0.0739 0.7284 | PR -0.0245 0.9700
Dilution zone plate Dilution zone plate /
/PR 0.0742 0.8409 | PR 0.0561 0.3903
Dilution zone Dilution zone
conique / PR 0.0697 0.3524 | conique / PR 0.2134 1.0929
Dilution Soufflage Dilution Soufflage /
/ PR 0.1899 1.7337 | PR -0.2892 1.0127




Tableau B.2.1.3 Coefficients Centrés — Réduits et Valeurs VIP des sous — modéles

(continuation).

Variable Coefliclent | vrp Variable C"eg;;'e“t VIP
Raffineur 82 A=35 | Raffineur RJ A=4
Entrefer Plate 0.0971 0.5457 | Entrefer Plate 0.1253 1.0165
Entrefer Conique -0.1890 1.4141 | Entrefer Conique -0.0339 0.5747
Age des plaques 0.1190 1.1991 | Age des plaques 0.1486 1.5654
Consistance 0.0797 0.7552 | Consistance 0.1162 1.0730
Charge du moteur 0.1453 0.7508 | Charge du moteur -0.0155 0.6960
Energie Spécifique -0.1038 0.4836 | Energie Spécifique 0.0683 0.8286
Production Ligne B -0.2013 1.7569 | Production Ligne C 0.1137 1.1791
Dilution alimentée / Dilution alimentée /

PR 0.0739 1.0474 | PR 0.1037 1.0767
Dilution zone plate Dilution zone plate /

/ PR 0.0172 0.6276 | PR 0.0516 0.6550
Dilution zone Dilution zone

conique / PR -0.0173 0.6197 | conique /PR -0.0483 1.0813
Dilution Soufflage / Dilution Soufflage /

PR -0.0301 0.9670 | PR 0.0245 0.8462
Mesures POM L2 A=2 | Mesures POM RJ A=2
Total de bfichettes 0.0778 0.5864 | Total de biichettes 0.1334 0.8685
Egouttage -0.0940 0.6904 | Egouttage -0.1284 0.5483
Longueur de fibres 0.4459 1.4763 | Longueur de fibres 0.2872 1.3946
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B.2.2 Modéles ayant comme variable de réponse I’indice de tension SM du papier.

Tableau B.2.2.1 Coefficients R*X, R?Y et Q% du modéle PLS multi-bloc

et des sous modéles.

Modé¢le PLS Multi-bloc de I'Indice de Tension SM - 2éme période
No. d’observations (N)=1935, No. de variables explicatives (K)=20
Al RX R*X(cum) RYY R*Y(cum) Q? Q%*(cum)
1| 0.0933 0.0933 0.4760 0.4760 0.4700 0.4700
2 | 0.0586 0.1520 0.0217 0.4980 0.0218 0.4810
Sous - modele PLS - Propriétés des copeaux

K=3
1| 04720 0.4720 0.0092 0.0092 0.0086 0.0086
2 | 0.5280 1.0000 0.0013 0.0105 0.0012 0.0098

Sous - modéle PLS - Mesures PQM

K=6
1| 0.3280 0.3280 0.1080 0.1080 0.1060 0.1060
2 | 0.1340 0.4620 0.0289 0.1370 0.0286 0.1320
3| 0.1710 0.6340 0.0034 0.1410 0.0020 0.1330

Sous - mod¢le PLS - Systéme d'approche

K=14
1| 02010 0.2010 0.1730 0.1730 0.1700 0.1700
2 | 0.1140 0.3150 0.0519 0.2250 0.0572 0.2180
3 | 0.1000 0.4160 0.0098 0.2350 0.0049 0.2210
4 | 0.0940 0.5100 0.0033 0.2380 -0.0033 0.2190
5| 0.0667 0.5760 0.0018 0.2400 -0.0053 0.2150
6 | 0.0693 0.6460 0.0008 0.2410 -0.0066 0.2100

Sous - modéle PLS - Machine a papier

K=27
1 0.1570 0.1570 0.3500 0.3500 0.3450 0.3450
2 | 0.0714 0.2280 0.0796 0.4290 0.1100 0.4180
3 | 0.0660 0.2940 0.0209 0.4500 0.0205 0.4300
4 | 0.0516 0.3450 0.0121 0.4620 0.0001 0.4300
5 | 0.0860 0.4310 0.0041 0.4660 -0.0068 0.4260
6 | 0.0772 0.5090 0.0026 0.4690 -0.0042 0.4230
7 | 0.0510 0.5600 0.0015 0.4700 -0.0122 0.4160
8 | 0.0382 0.5980 0.0017 0.4720 -0.0165 0.4070
9 | 0.0284 0.6260 0.0012 0.4730 -0.0154 0.3980




Tableau B.2.2.2 Coefficients Centrés — Réduits et Valeurs VIP

du modeéle PLS multi-bloc.

Modéle Composante | Coefficient CR | VIP [2]
1 0.0273 0.4934
Copeaux

2 0.0412 0.2129
1 0.1497 1.5614
POM 2 0.0745 0.8076
3 -0.0053 0.3908
1 0.2148 1.9654
2 0.0854 1.0719
3 0.0273 0.4799

Systéme d'approche
4 0.0146 0.2667
5 0.0235 0.1625
6 -0.0219 0.2665
1 0.3642 2.7856
2 0.2252 1.3922
3 0.1236 0.7077
4 0.1410 0.7191
Machine a papier 5 0.0562 0.4226
6 0.0216 0.2270
7 0.0307 0.2284
8 0.0095 0.1891
9 0.0273 0.1539
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Tableau B.2.2.3 Coefficients Centrés — Réduits et Valeurs VIP des sous - modéles.

Variable Coellicient | vrp Variable C“g;:ie“t vIP
Copeaux A=2 Machine a papier A=9
Espece 1 (%) -0.0937 1.5080 | Pression CA 0.0261 0.6626
Espece 2 (%) 0.0424 0.5765 | Consistance CA -0.1523 1.7911
Espéce 3 (%) 0.0136 0.6274 | Floculation CA -0.0405 0.5580
Mesures POM 43 Température CA 0.0189 0.7998
Vide réglage automatique 0.0229 1.7484
LA Egouttage 0.0185 0.3501 | Vide C. Transfert 0.1443 0.9157
If“g Longueur de -0.0717 | 0.9515 | Vide 2™ Caisse 0.0015 | 0.1038
ibres
LB Egouttage -0.0941 0.3559 | Vide Aspirant -0.0448 0.6679
If‘B Longueur de 03783 | 1.8997 | Vide 1ére presse 0.1352 | 1.0554
ibres
LC Egouttage 0.0183 0.2468 | Vide poussé lere presse 0.1004 0.3250
;gri‘s"“g“e“r de 0.0239 | 1.0843 | Const. eau blanche -0.0242 | 1.0961
Systéme d'approche Py Turbidité 0.0529 0.3719
Ouverture levres -0.0469 1.5937
%Cassés -0.0398 0.6130 | Ratio vit. jet/toile -0.0449 0.7584
%DES -0.1201 1.6856 | Vitesse rouleau -0.0497 0.7342
%PTM 0.1418 1.4946 | Vitesse toile 0.0020 0.6680
Eﬁgt‘;““age meélange | g 1262 | 0.6267 | Pressel arriére 0.1061 | 0.7951
Egouttage DES 0.1592 0.7603 | Press] front 0.1698 1.1771
Egouttage PTM -0.2171 1.3856 | Press2 arriere 0.4089 1.7196
pH mélange péte -0.0528 0.5279 | Press2 front 0.0323 0.6532
pHPTM 0.0273 0.1994 | Humidité -0.0475 0.3766
pH DES -0.0487 0.5857 | Degré de blancheur -0.0019 0.2571
g;’t‘:is" mélange 0.0044 | 0.2027 | Epaisseur 02595 | 1.6549
Blancheur PTM 0.0825 0.8674 | % Tirage -0.2421 1.3397
Blancheur DES -0.0190 0.2306 | Ag. blancheur / PR 0.1451 0.9396
Ratio TMP/DIP 0.1937 1.6501 | Vapeur total / PR 0.0289 0.5847
Ag. rétention / PR -0.2231 1.1947 | Ramasse pate / PR -0.0312 0.1509
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B.2.3 Modg¢les ayant comme variable de réponse la consistance de la caisse d’arrivée.

Tableau B.2.3.1 Coefficients RZX, R?Y et Q* du modéle PLS multi-bloc

et des sous

modéles.

Modéle PLS Multiblock de la Consistencia de la caisse d'arrivée - 2éme
période
No. d'bservations (N)=1975, No. de Variables Explicatives (K)=9
Al RX R*X(cum) RY R*Y(cum) Q’ Q*(cum)
1| 0.1110 0.1110 0.3750 0.3750 0.3710 0.3710
Sous - modéle PLS - Propriétés de la pate

K=12
1 | 0.0949 0.0949 0.3320 0.3320 0.3270 0.3270
2 | 0.1370 0.2320 0.0320 0.3640 0.0442 0.3560
3| 0.0923 0.3240 0.0031 0.3670 -0.0014 0.3550
4 | 0.0571 0.3810 0.0017 0.3680 -0.0041 0.3530
S | 0.1480 0.5290 0.0015 0.3700 -0.0027 0.3510
6 | 0.0694 0.5980 0.0022 0.3720 -0.0019 0.3500
7 | 0.0801 0.6780 0.0018 0.3740 -0.0036 0.3470

Sous - modéle PLS — Adjuvants
K=2

1| 0.5160 0.5160 0.0032 0.0032 0.0027 0.0027
2 | 0.4840 1.0000 2.77E-05 0.0033 -0.0002 0.0025

Tableau B.2.3.2 Coefficients Centrés — Réduits et Valeurs VIP
du modéle PLS multi-bloc.

Modgéle Composante | Coefficient CR | VIP[1]

1 0.5829 2.8371

2 0.1706 0.8303

- 3 0.0506 0.2461

Propriétés de 4 0.0448 0.2180
la pate

5 0.0305 0.1483

6 0.0397 0.1930

7 0.0248 0.1205

) 1 0.0577 0.2806

Adjuvants
2 0.0053 0.0260
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Tableau B.2.3.3 Coefficients Centrés — Réduits et Valeurs VIP des sous - modéles.

Variable Coefficient CR vIP
Propriétés de la pate A=7
%Cassés 0.0457 0.2551
%DES 0.0584 0.5501
%PTM -0.0905 0.6493
Eﬁgt‘;““age mélange 0.1714 0.6726
Egouttage DES -0.3579 1.2495
Egouttage PTM 0.4954 2.7950
pH mélange pate -0.0287 0.1095
pH PTM -0.0124 0.0719
pH DES 0.1995 1.0077
Consist. mélange 0.0203 0.2632
pate

Blancheur TMP -0.0839 0.3761
Blancheur DES 0.0075 0.3767
Adjuvants A=2
Ag. blancheur / PR -0.0281 0.8304
Ag. rétention / PR 0.0481 1.1448




