POLYTECHNIQUE

PG LYPUBLIE

A [
UNIVERSITE o3

PO'YtGChnique Montréal D'INGENIERIE
Titre: L . . L, i
Title: Stratégies de mise en antémémoire dans les réseaux ad hoc
Auteur: , "
Author: Thérence Houngbadiji

Date: 2005
Type: Mémoire ou thése / Dissertation or Thesis

Référence: Houngbadiji, T. (2005). Stratégies de mise en antémémoire dans les réseaux ad
... hoc [Master's thesis, Ecole Polytechnique de Montréall. PolyPublie.
Citation: 'https://publications.polymtl.ca/7629/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . N
PolyPublie URL: https://publications.polymtl.ca/7629/

Directeurs de
recherche: Samuel Pierre, & Alejandro Quintero
Advisors:

Programme

' Génie informatique
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/7629/
https://publications.polymtl.ca/7629/

UNIVERSITE DE MONTREAL

STRATEGIES DE MISE EN ANTEMEMOIRE
DANS LES RESEAUX AD HOC

THERENCE HOUNGBADII
DEPARTEMENT DE GENIE INFORMATIQUE
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE INFORMATIQUE)

Décembre 2005

© Thérence Houngbadji, 2005.

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-16797-7
Our file Notre référence
ISBN: 978-0-494-16797-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé :

STRATEGIES DE MISE EN ANTEMEMOIRE
DANS LES RESEAUX AD HOC

présenté par : HOUNGBADJI Thérence

en vue de 1’obtention du diplome de : Maitrise ¢s sciences appliguées

a été dliment accepté par le jury d’examen constitué de :

M. BILODEAU Guillaume-Alexandre, Ph.D., président

M. PIERRE Samuel, Ph.D., membre et directeur de recherche
M. QUINTERO Alejandro, Doct., membre et codirecteur

M. BENSLIMANE Abderrahim, Doct., membre

v

REMERCIEMENTS

Je voudrais tout d’abord remercier le directeur de la Fondation de 1'ceuvre Saint
Justin en Suisse, M. Nicolas Scherrer, pour tout son appui.

Je remercie aussi mon directeur de recherche, M. Samuel Pierre pour son soutien
indéfectible et ses encouragements tout au long de ce travail.

Je remercie aussi M. Alejandro Quintero mon codirecteur et M. Haidar Safa,
pour leurs critiques et leurs conseils.

Enfin les membres du LARIM pour leurs collaborations et leurs soutiens.

RESUME

Dans les réseaux ad hoc communément appelés MANET (Mobile Ad hoc
Network), bien que le routage soit d’une grande importance, il existe également un autre
¢lément d’intérét tout aussi important qui est la mise en antémémoire. Une antémémoire
est une partie de la mémoire d’une unité mobile dédiée pour le stockage de données
fréquemment accédées par cette derniére.

En effet, les unités mobiles n’ont pas souvent la possibilité d’accéder facilement
aux données localisées sur un serveur distant, a cause de leurs ressources limitées (bande
passante faible, énergie limitée, faible portée radio, puissance de calcul faible, mémoire
restreinte). Une relocalisation des données stockées sur le serveur distant a proximité des
unités mobiles permettrait d’améliorer les performances de ces réseaux. Deux étapes
permettent de mettre en place un mécanisme de mise en antémémoire : la répartition a
moindre cotlit des données du serveur et I'invalidation d’antémémoire.

L’objectif de ce mémoire consiste & concevoir et développer une stratégie pour la
mise en antémémoire de données tout en optimisant l'utilisation des ressources limitées
des unités mobiles. De facon spécifique, la stratégie que nous proposons est une
combinaison des techniques de mise de données en antémémoire et de réplication de
données. Elle inclut une réplication partielle de données du serveur sur des unités
mobiles clés, choisies suivant un profil et une fonction de colit. Cette derniére est une
fonction dont 1’objectif est de réduire le colt d’une unité mobile choisie pour la
réplication, le délai d’accés aux données ainsi que leur stockage. La stratégie integre
aussi les méthodes d’acces et de compression de données.

Pour évaluer la performance de la solution proposée, nous 1’avons implémentée
et stmulée a travers une série d’expériences, en mettant I’accent sur le délai moyen
d’acces aux données ainsi que le débit efficace. Enfin, nous ’avons comparé avec
d’autres stratégies telles que celle sans aucune mise en antémémoire, celle avec une mise

en antémémoire systématique et une stratégie proposée dans la littérature, dénommée
Greedy-S.

vi

Les résultats obtenus montrent que le modéle de réplication partielle de données
proposé offre une meilleure performance en termes de délai moyen d’accés aux données

et du débit efficace de données, comparativement aux autres stratégies.

Vil

ABSTRACT

In commonly called ad hoc networks, although the routing is of great importance,
there is also another element of interest such as data caching. A cache memory is part of
the memory of a mobile unit dedicated for the storage of data frequently accessed.
Indeed, the mobile units often do not have the possibility of easily reaching the data
located on a remote server, because of their limited resources (weak bandwidth, limited
energy, weak radio range, low computing power, restricted memory).

A relocalization of data stored on the remote server, near the mobile units, would
make it possible to improve the performances of these networks. Two stages are
required to install a mechanism of data caching: the distribution with lower cost of the
server data, and the update or the invalidation of cache memory.

The objective of this thesis consists of conceiving and developing a strategy for
the database caching, while optimizing the use of the limited resources of the mobile
units. More specifically, the strategy that we propose is a combination of data caching
and replication techniques.

Our approach includes a partial replication of server data on selected mobile
units according to a profile and an optimization function. The latter is a function which
minimizes in particular, the cost of selected mobile unit for the replication, the data
access delay and their storage. The strategy integrates also the access methods and data
compression.

To evaluate the performance of the proposed solution, we implemented it and
simulated through a series of experiments, by having the focus on the data average
access delay, the hit ratio and the throughput. Finally, we compared it with other
strategies such as those without any caching mechanism, with a systematic caching, and
a strategy suggested in the literature, named Greedy-S.

Our results show that the partial data replication model outperforms the other

strategies, in terms of data average access delay and data throughput.

viii

TABLES DES MATIERES

R M E R I E M E N T S ettt e et r e e e e e e e s e e s e e e ee e eeeenmeeanee iv
RESUME ..ottt ettt et et e s e s e s s e es et e eeesen et enoraerneeaeeeans v
ABSTRACT .o et e et et e e e e e e e e e e e e s e e raaaaaann vii
TABLES DES MATIERES ..ot see e eeeseses e e ess s e senenn viii
LISTE DES FLGURES . ..ot aevev e v X1
LISTE DES TABLEAUX .ottt et es e e e e e e e e e eaase e e asaenenaeeseranaarereterenaaananes Xiv
CHAPITRE I - INTRODUCGCTION oottt et eeeeeeere e e e eeeaeeeeveneeaeeeaaaaaeaneaes 1
1.1 Définitions et concepts de DaSEcccuiieeiieiirieiiieie e 2
1.2 Eléments de [a problématiqUeoeerueeueeeeeeeeeeeeeeeeeseeeereeeesieseesesses e seesessenans 4
1.3 Objectifs de larecherche.......c.oooviioiiiiiee e 7
1.4 Plan dU MIEIMIOITE ..o e e ee et et e e e reseassesseannnnes 7
CHAPITRE 1I - MISE EN ANTEMEMOIRE DANS LES RESAUX AD HOC 9
2.1 RESCAUKX A NOC ettt s e e e e eae s e eeaaaneesaeaaanaaas 10
2.2 Gestion d’antémémoires dans les réseaux mobIleS......ocoveevivieeeee e eeeeienn 11

221 Problémes de mise de données en antémeémoiresccocoveevvveeviveeeeeieieeeeneeens 12

222 Stratégies de mise de données en antémMeEMOIrecccevveeveveeereeerieeeenneenns 14

2.2.3 Mécanismes d’invalidation d’antémeEmoIreueeeeeeeeeeeeeereeeeeeeeeeeeeeeeeennen 23
2.3 Reléve du service de dONNEESooveueieeeeeeeeeeee e eeaeerereseessesssananas 30
2.4 Localisation d’antémEmOIrESoevvemeereriieeieeeeee et ee e reseaeeesseesesesaseaenns 32
2.5 Un modéle de mise €1 @NtEMEMOITE «...eveeeeeeieeeeeeeeeeeeeeeeeeeeee e ee e e eareeereienenaaes 36
CHAPITRE III - MODELE DE MISE DE DONNEES EN ANTEMEMOIRE 38
3.1 Analyse du Probleme.........cocveriiiiiiiiice e 38
32 Formulation du mOdELEoooeieeeeeeeeeeeeee e 39

33 Localisation des Quasi-Reéplica........c..couviiiiiiniiiiiiniinee e 40

X

3.3.1 Description analytique du modele.......c.oooviviiriiiniiniineieeii e 42
3.3.2 Le MOACIE ... 44
3.4 MiSe €N anNtEMEIMOITE . .vvuvieiieaiiie it eiee et et te et te st e st eeeebe e br e ieerassaeesneeeennraeanne 54
3.5 Maintenance des QRoioiiiiiieiiec e s 55
3.5.1 Période de 10caliSationeeueeieriiiie e e 56
3.6 Compression de dONNEGES.....cc.iieuiiiiieiiierieeit et eetee e e e esteesaeeree e sreaens 59
3.7 ALGOTTHIIMES ..ttt ettt s sttt e e et ens 60
3.7.1 Agent du MSS s 60
3.7.2 AZENt A UM oottt ettt ae e nnnans 61
CHAPITRE IV - IMPLEMENTATION ET RESULTATS ...oovovereeeeeeeeeeeeeeeeeene 64
4.1 Environnement d’implémentation et de simulation...........cccveevienieeniecreiecnnneeenne, 64
4.1.1 Environnement de développement..........coccviviciiiciiiiiciiiieereee e 64
4.1.2 Le SIMUIALEUL.ottt 65
4.2 Méthodologie A Implémentation...........cccueivvrerruireriieierieeir e e eseveeenaees 66
4.2.1 Choix de la couche d’ implémentation............cocevveeerieerieseseceeeeee e 67
422 AGENT AU SEIVEUL ..eeiriiiiiiii ittt ettt sttt st see e 67
423 Agent de UM ..ottt et sssae s e 73
4.3 Plan d’expériences et de SImulation..........ccceveervieriineniiniecie e 75
4.3.1 Définition des indices de performance............ueeveiciieeieeniireveiiieeeeseee e 75
432 ChoiX des fACIEUIS ...veeuireieeieeiiee et 76
433 Configuration de la SImulation.........ccccoeieiviniinieniiinrie e 77
434 Scénarios de SIMUIAtION.eiirierierieceeee e 79
4.4 Analyse des résultats de SIMulationcocceevireeriiiieiieesteeie e 80
4.4.1 SCENATIO T ...t ettt ettt e 80
442 SCENATIO 2...eieiiieieteettet ettt ettt sttt ettt et e s 94
4.5 Synthése des PerformanCesoovecieieriereeeecieeeeeee ettt 95
CHAPITRE V - CONCLUSION ..ottt s e e 97
5.1 SYNThESE AES TrAVAUX ...evvieeeiieeeiiiceiie et e eiteeeeat e e et eee et e e e sveeeerreeerseeenssaaeeessns 97

5.2 LAMItAtIONS AES TTAVAIIX c.rvette e eeeeeee e ettt seseseeneneeseannannns 100

5.3 TIAVAUX TUTIIS «o ettt et e e ee eaeeeeeeeerreesaaanaan

BIBLIOGRAPHIE

LISTE DES FIGURES

Figure 2.1 Architecture d'un réseau ad hoC......cccoecieiiiiieiiiiiiiieiieiee e
Figure 2.2 Architecture d’accés aux données d’un environnement mobile.....................
Figure 2.3 Réseau ad hoc et stratégie de mise en antémémoire

Figure 2.4 Algorithme de la méthode HybrideCache

Figure 2.5 Partitionnement par rupture de Liencoocoeevieriiiiiniie e
Figure 2.6 Accés aux données par répliCationccevevvieiieieieiniieeeeeeesreniesveereessneeeene
Figure 2.7 Exécution de 1a méthode SAFocoooiiieiiiiricie et
Figure 2.8 Exécution de la méthode DAFN.........cccoiiiiiiii e
Figure 2.9 Exécution de la méthode DCGoocviiiiieiiiicee e e
Figure 2.10 Algorithme Greedy-S

Figure 2.11 Diffusion d’un IR dans le temps........ccccoveirenininn e
Figure 2.12 Algorithme Broadcasting Timestamps (TS)......ccccovvviivciiieiicieniineeeieeee,
Figure 2.13 Algorithme Amnesic Terminal (AT)ccoooiiiiiiiiiiieeeeee
Figure 2.14 Rapport d’invalidation UIRcccooiiiimiriiiieeeeie e
Figure 2.15 Algorithme Bit SEqUENCEScovieiiiiieeiiieiieereeit e
Figure 2.16 Architecture d’une reléve du service de données

Figure 2.17 Architecture d"un réseau WAPccovvviiieiii e e
Figure 2.18 Compression de données au format XML avec usage de Tokenizer............
Figure 3.1 Architecture de désignation des QRccoooiiiiiiiiiiiiieeccee
Figure 3.2 Fonction de colt d’une procédure de désignation de QR............cccceeeiennn
Figure 3.3 Occurrence des requétes dans 1€ t€mpPscc.eeevveeiieviioriereeieeneenie e
Figure 3.4 Profil d'un QRoooiioii ettt s
Figure 3.5 Format d’un objet stocké en antémemoire..........ccoevvvrvivieriieiveenvenienieseneeans
Figure 3.6 Diagramme fonctionnel du systéme asservi au nombre de QR......................
Figure 3.7 Algorithme de compression et de décompression LZWccceevvenieeveennne.
Figure 3.8 Algorithme exécuté par I'agent du MSS ..o

Figure 3.9 Algorithme exécuté par I’agent de I’'UM

xi

xii

Figure 4.1 Structure d’une couche du simulateur Qualnet...........cocceevvievininnnniniininnns 66
Figure 4.2 Structure interne du serveur de données (MSS)cccoviiiiinniinnienien 67
Figure 4.3 Intégration de la base de données au simulateurccccoeeeeecrienecnenncen 68
Figure 4.4 Contenu de la table de la base de donn€es...........ccoeeiriieevinininiinniccnnens 69
Figure 4.5 Structures de dONNEEsccueevieiiriirieriiiccer et 71
Figure 4.6 Structure de données du profil d’une UM enregistrée par le serveur 72
Figure 4.7 Profil d’un QR enregistré par le serveur ou P'UM ... 72
Figure 4.8 Structure interne de I"agent d’une UMc.coocioiiiininiiiiiiiiiinnc e 73
Figure 4.9 Esquisse de code des politiques de renouvellement de 'UM...........cc.cc.eeee. 74
Figure 4.10 Configuration du scénario de base...........occcrrvcveveinineecniinicncnicneeieeneean 79
Figure 4.11 Délai moyen de réponse en fonction de la densitécccccoveiincencecnnnane. 81
Figure 4.12 Effet de la régression sur la variation de densité...........cecvevvvinencennneenn. 82
Figure 4.13 Variation du délai moyen en fonction de la taille de I’antémémoire............ 82
Figure 4.14 Effet de la régression sur la variation de la taille d’antémémoire 83

Figure 4.15 Variation du délai moyen en fonction de la taille de la base de données83

Figure 4.16 Effet de la régression sur la variation de la taille de la base de données......84

Figure 4.17 Variation du délai moyen en fonction de la vitesse des nceuds.................... 84
Figure 4.18 Variation du délai moyen en fonction du facteur de zipfcccccevenenaenn 85
Figure 4.19 Variation du délai en fonction de la densité de nceuds dans le réseau.......... 86
Figure 4.20 Variation du Débit efficace en fonction de la densité............cccoeceecvniiennnnne 87
Figure 4.21 Variation du Débit efficace en fonction de la vitesse des nceuds.................. 87
Figure 4.22 Variation du Débit efficace en fonction du facteur de zipf 88
Figure 4.23 Variation du Débit efficace en fonction de la taille de I’antémémoire......... 89

Figure 4.24 Variation du Débit efficace en fonction de la taille de la Base de données..89

Figure 4.25 Variation du Débit efficace en fonction de la densité (OLSR)......c..ccceneee. 90
Figure 4.26 Variation du Hit Ratio en fonction de la densitéc.ccooevieniiciininnnnnn 90
Figure 4.27 Variation du Hit Ratio en fonction du facteur de zipfcccoveviirvenneene 91
Figure 4.28 Variation du Hit Ratio en fonction de la taille de I’antémémoire................. 92

Figure 4.29 Variation du Hit Ratio en fonction de la taille de la base de données.......... 93

x1il

Figure 4.30 Variation du Hit Ratio en fonction de la vitesse des nceuds........cceevveneeee. 94

Figure 4.31 Variation des indices de performance en fonction de la vitesse du serveur .95

Xiv

LISTE DES TABLEAUX

Tableau 2.1 Différences entre la réplication de données et la mise de données en
ANEEMEIMOITE ..ottt ettt tee s bt st e st e et e ebb e et e st e beaseseesbeenbeesbeenne 30
Tableau 3.1 Profil des UM requUerantes........c.cooueerirerieerieeiiiieerte e 57

Tableau 4.1 : Parametres de SIMULATION «...veeeeeeeeeeeeeeeeeeee et ee e e e e eeeeeevee s 78

CHAPITRE I

INTRODUCTION

Les réseaux ad hoc communément appelés MANET (Mobile Ad hoc Network),
instances de réseaux sans fil, suscitent une attention particuliére de la part de la
communauté scientifique et de ’industrie des télécommunications, a cause de leur
simplicite et rapidité de déploiement. Ils sont particulieérement adaptés pour les situations
ou l’installation d’infrastructures a grande échelle n’est pas possible, telles que les
champs de bataille ainsi que les catastrophes géographiques. Les premiers champs de
recherche sur ces types de réseaux se sont focalisés sur le développement de protocoles
de routage dynamique. Bien que le routage soit d’une grande importance dans les
réseaux ad hoc, il existe également un autre ¢lément d’intérét tout aussi important qu’est
I’acces aux données des entités composant ce réseau. En effet, récemment ont été
installés des centres d’informations pour permettre aux touristes en visite dans un musée
de bénéficier d’'un guide en ligne a I’aide de leurs terminaux personnels, ou aux
voyageurs dans une gare d’accéder aux horaires de trains ou d’avions. Ces derniers sont
ainsi des usagers mobiles qui, & un certain moment au cours de leur déplacement,
peuvent ne plus se trouver a la portée du central d’information qui les dessert. Ils perdent
ainsi I'accés a I'information requise en ce moment. Par contre, si le terminal de I’usager
est équipé d’une antémémoire contenant |’information requise auparavant utilisée, il
disposerait toujours de cette derniére sans avoir a en formuler la requéte au central. C’est
dans ce contexte qu’on fonde beaucoup d’espoir sur la mise de données en
antémémoires pour améliorer ’accessibilit¢ des terminaux mobiles aux services de
données, ce qui constitue I’objet de ce mémoire. Dans ce chapitre d’introduction, nous
allons présenter tout d’abord les concepts de base sur lesquels reposent les éléments de
problématique reliés au sujet, puis nous formulerons nos objectifs de recherche.

Finalement nous présenterons un plan de mémoire.

o

1.1 Définitions et concepts de base

Une antémémoire communément appelée cache, en anglais, est a ’origine une
petite portion de la mémoire RAM d’un ordinateur utilisée pour faciliter 1’accés aux
données entre le processeur et les différents périphériques, en entretenant les données
fréquemment accédées par ces derniers dans cette partie spécialisée de la mémoire. C’est
une terminologie souvent appliquée au systéme processeur-mémoire, mais qui s est
étendue avec I’essor de ’accessibilité des données a travers un réseau. Dans les réseaux,
c’est un dispositif matériel éventuellement associé a un composant logiciel dont
l'objectif est de stocker localement des données afin de diminuer le délai de mise a
disposition de celles-ci. Les antémémoires sont largement utilisées aujourd’hui
notamment par Internet et donnent lieu aux techniques appelées web caching dont
I’objectif est de stocker temporairement les documents pour un acces futur de 1'usager
[1].

La mise en antémémoire ou caching est une technique qui exploite la tendance
des utilisateurs au sein d’une communauté donnée, d’accéder a un méme document.
Dans un tel environnement de mémorisation, une requéte effectuée pour obtenir une
information est directement transmise & un systéme d’antémémoires. Si I’information
requise ne s’y trouve pas, on parle de cache miss et la requéte est transférée vers 1"hote
I’hébergeant. L usager sera donc servi dépendamment de la bande passante dont dispose
I’h6te pour lui transmettre la ressource demandée. La mise en antémémoire peut aussi
s’effectuer dynamiquement, de telle sorte que les informations requises sont stockées au
fur et a mesure en incluant également d’autres ressources qui n’ont fait I’objet d’aucune
requéte par 'usager ; ce dernier peut étre servi trés rapidement et complétement lors
d’une prochaine requéte sur la méme ressource, auquel cas on parle de cache hit.

Plusieurs systémes d'antémémoires peuvent également étre configurés pour
coopérer. Dans de tels systémes, une antémémoire peut rediriger une demande pour une
ressource demandée par 1’usager vers une autre antémémoire plutdt que vers le serveur

hote de la ressource. Cette méthode est particulierement efficace lorsque la bande

(S}

passante entre certains systémes d'antémémoires est supérieure ou moins encombrée que
celle qui est disponible entre l'antémémoire locale et le serveur hote de I’information
requise. Dans un tel environnement ou plusieurs systemes d’antémémoires cooperent
pour servir la requéte de l'usager, on parle de cooperative caching [2] [3]. Une telle
coopération résulte de la mise en place d’une stratégie de localisation des ressources
fréquemment accédées par |’utilisateur, donnant ainsi lieu au concept de réplication de
données.

La réplication de données est une technique permettant de garder une copie de la
méme information sur plusieurs serveurs de données ou dans plusieurs antémémoires, de
maniére a garantir un acces ¢ventuellement hiérarchique lors d’une demande de la
ressource. Elle est utile pour servir une communauté d’usagers, mais souffre d’un
gaspillage de I’espace en antémémoire du fait que la copie de la méme ressource peut se
trouver dans toutes les antémémoires.

La mise en place d’antémémoires pour réduire ['usage abusif des ressources d’un
réseau et pour améliorer les délais fait également intervenir un concept tout aussi
important qu’est la consistance des données en antémémoire. En effet, a un certain
moment, les données maintenues en antémémoires peuvent connaitre des changements
sur I’hote les hébergeant, et donc devenir invalides. La consistance des données référe a
la possibilité pour la source de la donnée de mettre & jour a intervalle de temps régulier
ou non les données maintenues en antémémoires par les usagers ou par les systemes
d’antémémoires. Cette mise a jour s’effectue sous deux formes :

e propagation : un objet qui connait un changement dans la base de données est
propagé vers toutes les antémémoires ;

e invalidation : quand I’objet connait un changement, un message d’invalidation
est envoy€ a toutes les antémémoires, qui le marquent comme invalide. Une
requéte future sur cet objet ne pourra étre servie que par le serveur de la donnée
et non plus par I’antémémoire de 1'usager.

Ces deux formes de mise a jour des données profitent souvent de la bande passante a

disposition de la source de la donnée. Par ailleurs, la fagon dont les données sont

stockées en antémémoires ou transmises fait également intervenir le concept de
granularité.

La granularité référe au niveau de détails des informations stockées en
antémémoire ou transmises pendant la mise a jour. Elles peuvent étre sous une forme
compressée ou non, dépendamment de 1’espace de stockage a disposition. Dans les
réseaux filaires, son importance est souvent minimisée a cause de ’espace de stockage
important dont disposent les infrastructures filaires, ainsi que leur bande passante
relativement large.

Toute cette terminologie a 1’origine utilisée pour les réseaux filaires, doit étre
réadaptée aux réseaux ad hoc dont 'architecture complétement distribuée est basée sur
des entités mobiles servant de routeurs les unes aux autres et requérant des acces aux
informations indépendamment de leur emplacement. L’accés aux informations
hébergées par une source de données dans ces types de réseaux fait I’objet d’un intérét
de recherche de plus en plus grandissant, particuliérement en ce qui concerne les
stratégies de mise en antémémoire, ainsi que les mécanismes de mise a jour des

antémeémoires.

1.2 Eléments de la problématique

Dans les réseaux sans fil, les utilisateurs équipés d’ordinateurs portables sans fil
sont appelés a effectuer des requétes sur une base de données a travers le médium sans
fil pour obtenir des informations bien déterminées. En particulier, les réseaux ad hoc
composés d’unités mobiles sont des systémes & architectures distribuées dont le
dynamisme de la topologie ainsi que les caractéristiques en font une aire fertile de
recherche, en ce qui concerne 1’accés aux données entreposées sur un serveur distant.
Ainsi, pour étre a méme de garantir le succeés aux services requis par l'usager,
I’accessibilité aux données doit viser le plus grand nombre possible d’entre eux.
Cependant, plusieurs défis liés aux fonctionnements des réseaux ad hoc nécessitent

d’étre pris en compte pour assurer cette accessibilité aux données. Au prime abord, les

problémes intrinséques aux réseaux ad hoc sont multiples, au nombre desquels on peut
citer:

» une asymétrie de la communication, c'est-a-dire que la bande passante dans le sens
descendant (serveur - client) est plus grande que celle du sens ascendant, de sorte

que le client peut ne pas avoir la capacité de dialoguer avec le serveur ;

7
7

les déconnexions fréquentes des usagers, c'est-a-dire que les terminaux dont
disposent ceux-ci dans leur mobilité ne restent pas indéfiniment connectés, ceci dans

le but d’économiser I’énergie déja limitée dont dispose leur batterie ;

Y

la connexion, si elle est établie entre unités mobiles, n’est pas toujours fiable offrant
du coup une qualité de service imprévisible.

Chacune de ces caractéristiques a un impact direct sur la maniére dont la gestion de
Paccés aux données peut étre effectuée. L’asymétrie de la communication peut, a
premiére vue, paraitre comme un moyen d’éviter les faiblesses en énergie des unités
mobiles, car elle fait du modeéle de dissémination de données (broadcast) une technique
attractive, au lieu d’attendre que 1’unité mobile effectue une requéte pour obtenir un
service. Cependant, elle releve d’un gaspillage de ressources et nécessite d’étre utilisée
efficacement.

La faible bande passante ainsi que le motif de déconnexion des unités mobiles
ont une influence évidente sur la maniére dont les transactions doivent s’effectuer entre
entités du réseau ad hoc.

Lorsque les usagers se déplacent d’une zone de service de données a une autre,
ils doivent étre pris en charge par le nouveau serveur de données pour éviter un
gaspillage de ressources et des attentes prolongées. 1l y a donc une nécessité de définir
une procédure de prise en charge de la releve (handoff) des usagers.

Avec toutes ces restrictions dont font 1’objet les réseaux ad hoc, la mise en
antémémoire par les unités mobiles de données résidant sur un serveur distant apparait
comme une technique efficace pour améliorer les performances de I’accessibilité aux
données dans un environnement mobile. Plusieurs acceés aux données peuvent, comme

dans le cas des réseaux filaires étre servis directement a I’usager depuis son

antémémoire. Cela réduit considérablement la latence d’accés aux informations requises
par 'usager et diminue le risque d’usage abusif de la bande passante. Cependant, le
schéma classique utilisé dans les réseaux filaires ou les usagers sont toujours connectes,
ne pourrait pas convenir a un environnement aussi dynamique que celui des réseaux ad
hoc, a cause de leur déconnexion fréquente et de leur mobilité incontrdlable.

Typiquement, pour les unités mobiles effectuant des requétes sur des données
entreposées sur un serveur, la validation des données qu’elles mettent en antémémoire
est une opé€ration coiiteuse en bande passante.

Par ailleurs, si toutes les unités mobiles doivent effectuer a chaque fois des
requétes en direction d’un seul serveur de données, cela risquerait d’augmenter la charge
du serveur ainsi que la latence d’accés a ’information requise. D’ou un probléme
d’évolutivité, c'est-a-dire que si, a un certain moment, le nombre d’unités mobiles dans
une celiule donnée devient important, il n’y aurait plus aucune garantie de service ni de
qualité de service.

De méme, si toutes les unités mobiles doivent disposer d’une antémémoire et
stocker les mémes données dans cette dernieére, cela reléverait d’un gaspillage d’espace
mémoire, posant du coup le probléme de localisation d’antémémoires dans les réseaux
ad hoc. Par exemple, on peut imaginer qu’un groupe de travail traitant du méme sujet
accede pratiquement tout le temps aux mémes informations et constitue ainsi un scénario
typique de gaspillage d’espace puisque chaque membre du groupe dispose d’une
antémémoire pour stocker ces mémes informations.

Pour stocker les données, les unités mobiles dont la capacité de calcul est limitée
peuvent ne pas adopter des mécanismes de compression de données et verraient ainsi le
cycle de renouvellement de leur antémémoire raccourcir, effet di & un stockage abusif
de I’information. Méme disposant d’une antémémoire, les unités mobiles peuvent ne pas
étre completement 3 méme de satisfaire une requéte sur la base de 'information qu’elles
détiennent.

Les recherches effectuées sur la mise de données en antémémoire se sont surtout

focalisées sur les mécanismes d’invalidation d’antémémoires, pergus comme des

moyens d’améliorer I"accessibilité des usagers aux données. Pourtant, le probleme de la
stratégie a adopter pour mettre a la disposition des usagers les données avant de les

invalider demeure entier.

1.3 Objectifs de la recherche

Ce mémoire a justement pour objectif de concevoir une stratégie de mise de données en
antémémoire dans les réseaux ad hoc, tout en optimisant 1’ utilisation des ressources
limitées des unités mobiles. De maniére spécifique, ce mémoire vise a :

» proposer une architecture pour la mise de données en antémémoire en se basant sur

celles existantes ;

A\

concevoir des mécanismes pour la compression et le stockage des données ainsi
qu'une méthode pour l’identification, ’association et la translation des directives

utilisées pour accéder aux données ;

\Y%

évaluer la performance de 1’architecture et des mécanismes proposés en considérant
des métriques telles que le délai moyen d’acceés aux objets, le débit de réponse aux

requétes, ainsi que le pourcentage de succes en antémémoire ou Ait ratio.

1.4 Plan du mémoire

Le chapitre II fait le point sur les stratégies existantes pour la mise de données en
antémémoire. Un état de 1’art des stratégies de mise en antémémoire et de réplication de
données y sera effectué.

Une fois les concepts de base définis a travers cet état de 1’art, le chapitre III se
focalisera sur la définition des stratégies et algorithmes proposés pour la mise de
données en antémémoires. Par la suite, nous ferons une modélisation analytique de la
stratégie proposee.

Dans le chapitre IV, nous effectuerons une mise en ceuvre des stratégies
proposées. Ce chapitre se divise en deux parties. Nous ferons au prime abord, une

implémentation des stratégies propos€es dans un simulateur. Par la suite, nous

produirons les résultats de cette implémentation puis effectuerons une analyse de la
performance de ces stratégies.

Pour conclure, le chapitre V produira une synthése des travaux en mettant
I’accent sur les principaux résultats obtenus, sur les limitations de la stratégie congue,
ainsi que sur les améliorations possibles qu’on pourrait y apporter. Enfin, nous
définirons une esquisse des recherches futures relatives au sujet traité dans le présent

mémoire.

CHAPITRE 11
MISE EN ANTEMEMOIRE

DANS LES RESAUX AD HOC

La conception d’une stratégic de mise de données en antémémoire pour les
réseaux mobiles ad hoc nécessite au préalable une étude de celles déja existantes. Dans
ces types de réseaux, de nombreux usagers munis d’ordinateurs portables (PocketPC,
Palm Pilot, Pager) effectuent des requétes sur des serveurs de données a travers le
médium sans fil pour accéder a une information précise indépendamment du temps et de
I’espace. Ces ordinateurs portables, appelés abusivement unités mobiles (UM) a cause
de la mobilité des usagers, sont limités en ressources telles que la durée de vie de leur
batterie et la capacité de leur mémoire [4]. De plus, elles doivent se déconnecter a
intervalles de temps plus ou moins réguliers et prolongés pour réduire leur
consommation en énergie. De méme, du fait de leur caractére nomade, ces UM peuvent
ne pas rester connectées au méme serveur de données. Toutes ces contraintes, que ce soit
du co6té des UM que de celui du médium ont un impact direct sur la manicre dont les
données doivent étre gérées dans un environnement mobile.

La motivation menant a la conception d’une stratégie de mise de données en
antémémoire vient du fait qu’elle permet une meilleure accessibilité aux données en
réduisant les interactions entre serveur de données et UM. Cela permet ainsi de réduire
la latence d’acces ainsi qu’un usage rationnel de la bande passante du médium sans fil.
Dans ce chapitre, nous ferons un bref survol des réseaux ad hoc. En outre, nous
effectuerons une analyse des problemes de gestion d’antémémoire dans les réseaux ad

hoc, puis présenterons les stratégies existantes pour cette gestion.

10

2.1 Reseaux ad hoc

Les réseaux ad hoc sont une collection composite ou non d’entités mobiles
reliées entre elles par les ondes ¢lectromagnétiques, formant un réseau sans fil sans
I’aide d’aucune infrastructure tierce ou d’une administration centrale de commutation.
Chaque entité mobile agit en tant que routeur avec éventuellement des contraintes liées a
un type de qualité de service. Les réseaux ad hoc peuvent fonctionner de maniere isolée

ou étre connectés au réseau filaire. La Figure 2.1 présente une architecture de ce type de

réseau.

Figure 2.1 Architecture d'un réseau ad hoc

Les principales caractéristiques des réseaux ad hoc sont les suivantes:

¢ Dbande passante limitée a la disposition des unités mobiles ;

e topologie extrémement dynamique ;

e Dbatterie limitée ;

e taux d’erreurs élevés sur le médium de transmission ;

e rupture fréquente des chemins de transit de 1’information.

Avec de telles restrictions, les UM doivent accéder a des données résidant sur un
serveur de bases de données (ou un serveur WEB). En particulier, pour un réseau ad hoc
de grande taille, ’accés aux informations peut devenir rapidement chaotique a cause de
la concurrence d’acceés des UM a une information vitale. De ce fait, un mécanisme de

régulation de I’accés aux données tel une mise en antémémoire est nécessaire.

11

La mise en antémémoire de données est déja largement adoptée dans le cas des

réseaux filaires pour [’usage du protocole HTTP ainsi que dans les systemes

d’exploitation.

2.2 Gestion d’antémémoires dans les réseaux mobiles

Avec les avantages qu’offrent les schémas classiques de gestion d’antémémoires
dans les réseaux filaires, les stratégies utilisées par ces derniers ne sont pas qualifiables
pour un usage dans les réseaux sans fil. En effet, les UM effectuent des déconnexions
fréquentes [S] pour économiser de 1’énergie, si bien qu’il est difficile pour un serveur
d’effectuer des mises a jour des données stockées par ces UM de facon permanente.
D’autre part, des requétes effectuées par des UM pour valider des données récemment
mémorisées, peuvent obtenir des réponses lentes a cause de la limitation en bande
passante. C’est dans ce contexte que, pour mieux résoudre les problémes liés a 1'acces

aux données dans les réseaux mobiles, I’architecture d’acces aux données illustrée par la

Figure 2.2 est proposée [6].

Réseau fixe

s |
=7

Figure 2.2 Architecture d’accés aux données d’un environnement mobile

12

Ce modele largement repris dans la littérature [7-12] se compose d’entités fixes
et mobiles. Les MSS (Mobile Support Station) sont des stations fixes, et sont supposées
étre €quipées d’une interface sans fil qui leur permet de communiquer avec les UM se
trouvant a leur portée radio, c’est-a-dire dans la cellule couverte par ces MSS. Les UM
sont équipées d’un dispositif de stockage susceptible de garder de I'information méme
apres une déconnexion (mémoire flash, disque dur). Elles accédent a une base de
données répliquée sur toutes les MSS. Cette base de données est réguli¢rement mise a

jour de maniere a garantir une consistance des données.

2.2.1 Problémes de mise de données en antémémoires

Dans les systémes de bases de données client-serveur traditionnels, il est
relativement facile de maintenir une consistance des données détenues par le client dont
la localisation est fixe et connue. De plus, la connexion du client au serveur de base de
données change peu. A I'inverse, dans les réseaux mobiles, maintenir des antémémoires
au sein de chaque UM n’est pas aussi simple comme dans le cas du modéle client-
serveur des réseaux filaires, car les UM ont un motif de déconnexion aléatoire. Avec
I’architecture d’acceés aux données présentée a la Figure 2.2, il est impossible, avec les
procédures conventionnelles des réseaux filaires pour une UM, de déterminer si les
données disponibles dans son antémémoire permettent de répondre adéquatement a une
requéte. Elle pourrait ainsi étre obligée de contacter le serveur de données pour récupérer
de I'information additionnelle ou tout simplement d’attendre une éventuelle mise a jour
de son antémémoire. Cela prolonge le délai d’accés a I'information, gaspille la bande
passante de I’'UM déja trés limitée ainsi que I’énergie de sa batterie.

L’objectif central de la mise de données en antémémoire sera donc d’essayer de
minimiser le délai d’acces a I’information en limitant les interactions inutiles mais aussi
de réduire le nombre de messages transmis pour les interactions nécessaires. Deux
stratégies de mise de données en antémémoire au sein de I'UM sont décrites dans la

littérature [13] : Stateful Server, et Stateless Server.

Stateful Server : le serveur de données connait exactement toutes les UM se

trouvant dans sa zone de couverture ainsi que I’état de leur antémémoire. Si un objet
particulier mis en antémémoire par une UM connait une mise & jour sur le serveur, ce
dernier produit un message d’invalidation de cet objet qu’il envoie a cette UM. Cette
stratégie est exactement la méme que celle client-serveur classique. Les UM doivent
donc prévenir le serveur de leur état dans le temps (déconnexions, reconnexions,
handoff). Cette approche présente de sérieuses faiblesses car elle requiert beaucoup trop
d’interactions entre UM et serveurs. D’autre part, si le nombre d’UM est élevé, 1’accés
aux données a travers le médium sans fil peut devenir immédiatement chaotique a cause
du nombre d’interactions pouvant devenir rapidement important.

Stateless Server : dans cette approche, le serveur n’a aucune information sur les

UM se trouvant & un moment donné dans sa zone de couverture et donc aucune
information sur 1’état de leur antémémoire. Le serveur peut servir des données a toutes
les UM sous sa tutelle sans aucune contrainte, et ceci de maniére synchrone ou non.
Cette approche refléte plus la réalité car elle tient compte des ressources limitées des
unités mobiles.

Les requétes effectuées par une UM a un moment donné aussi bien que les
réponses aux requétes requicrent de cette derniere qu’elle réserve de 1’espace pour
stocker ces informations. Le stockage de ces données peut devenir rapidement prohibitif.
Un besoin apparent de définir une stratégie de codage de 1'information a stocker pour
gagner en espace mémoire s’avere donc indispensabile.

Dans les réseaux ad hoc, puisque les UM bougent librement, des ruptures
fréquentes de liaisons surviennent et partitionnent involontairement le réseau, empéchant
ainsi I’'UM d’obtenir rapidement la réponse a sa requéte. Par contre, si la requéte de
I’UM pouvait trouver une réponse aupres d’un voisin disposant d’une copie de 1’objet
requis, cela lui éviterait de perdre du temps, de la bande passante ainsi que de I'énergie.
Hara propose en réponse a ce probléme, de mettre en place des mécanismes de

réplication de données que nous décrirons dans les prochaines sections [14][15].

14

De fagon générale, la mise en ceuvre d’un mécanisme de gestion d’antémémoire
dans les réseaux ad hoc est décomposée en deux sous-mécanismes qui constituent
chacun, un axe de recherche. Il s’agit de la stratégie a utiliser pour la répartition des
données dans le réseau ou encore stratégie de mise en antémémoire, et de la procédure
d’invalidation ou de mise a jour de ces données la.

Les caractéristiques intrinséques des réseaux ad hoc requi¢rent d’une stratégie de

mise en antémémoire la prise en compte des points suivants :

¢ lalimitation en bande passante et en énergie oblige a la définition de mécanismes
pour réduire les interactions entre UM et serveur de données ;

e la déconnexion fréquente des UM impose la mise en place de mécanismes
efficace pour I’invalidation de I’antémémoire des UM ;

e pour les interactions possibles entre UM et serveur de données, il faudra
minimiser la taille des messages a transmettre ;

e la limitation de I’espace de stockage de I'information du coté des UM impose la
définition de mécanismes de compression pour sauvegarder de 1’espace ;

e dans un réseau ad hoc, la rupture fréquente des liens entre UM oblige a la
définition de méthodes pour répliquer des données entre voisins se trouvant a un

ou plusieurs sauts.

2.2.2 Stratégies de mise de données en antémémoire

Elles consistent & la mise en place d’une architecture pour la répartition des
données dans un réseau tout en minimisant les colts liés a leur accessibilité. La
conception d’une stratégie de mise de données en antémémoire est souvent guidée dans
les réseaux filaires par I’hypothése que le réseau jouit d’une certaine stabilité et d’une
bande passante quasiment fixe [16]. On a vu précédemment que ces deux requis entrent
en conflits avec les caractéristiques d’un environnement mobile. C’est pourquoi des
travaux se sont penchés sur la mise en place de mécanismes plus appropriés pour les

réseaux mobiles.

15

Cooperative cache-based

Pour réduire le délai de réponse aux requétes et améliorer 1’accessibilité aux
données, Cao propose des techniques de mise en antémémoire dénommées CacheData,
CachePath et HybridCache, utilisant les protocoles de routage sous jacents [12].

CachePath : la Figure 2.3 illustre cette stratégie. En effet, le nceud N/ représente
la source de données tandis que N/ est un nceud qui gere les transactions de ses voisins a
portée radio. NI est dit cluster head. Supposons que NI requiert la donnée d; de NI1.
Quand N3 transfert d; a N1, elle sait maintenant que N/ détient une copie de d; de sorte
que si N2 en fait la demande prochainement, qu’elle puisse la convoyer a N/ qui se
trouve a un saut, plutét qu'a N// qui se trouve a trois sauts. La connaissance du nombre
de sauts d’une UM a une autre est obtenue grace au protocole de routage (tel que AODV
et DSR). La mise en antémémoire du chemin d’une donnée permet ainsi de réduire
I’'usage de la bande passante ainsi que le délai pour obtenir une réponse a cause du faible

nombre de sauts pour accéder a une donnée.

Figure 2.3 Réseau ad hoc et stratégie de mise en antémémoire

Cependant, il importe de noter que I’'UM n’enregistre pas les chemins de toutes
les données qu’elle transfere. En effet, seuls sont enregistrés les chemins des données
qu’elle transfere quand elle se trouve plus proche de I'UM qui requiert la donnée
concernée plutdt que de la source de données. Ainsi, quand N// transfere la donnée d; au
destinataire N/ tout au long du chemin N35-N4-N3, N4 et N5 ne mettront pas en mémoire

le chemin correspondant parce qu’ils sont plus proches de la source de donnée que NI.

16

La proximité d'une UM est définie par un ensemble de paramétres fonctions de sa
distance a la source de la donnée, sa distance a 1’'UM mémorisant la donnée, la stabilité

de la route ainsi que la fréquence de mise a jour des données.

Soit H(i, j) la distance (en nombre de sauts) de I'UM i & celle j mémorisant la

donnée et H(i,C) sa distance a la source de donnée C (possiblement le serveur de

données). Le nombre de sauts que CachePath peut sauvegarder est de :

Lorsqu’a un moment donné le réseau est stable, c’est a dire avec un faible taux
de mise a jour de la source de donnée et H(i, j)< H(i,C), alors 'UM acheminant la
donnée peut mettre le chemin afférent dans son antémémoire.

CacheData : I'UM achemine la donnée et ne la met en antémémoire que si elle
remarque que cette derniére est fréquemment accédée. A la Figure 2.3, si N6 et N7
requiérent la donnée d, a travers N3, cette dernic¢re se rendra compte que d; est souvent
demandée et la mettra en antémémoire. Des requétes futures en provenance de N3, N4
ou N3 pourront ainsi étre servies directement par N5. Cependant, en supposant que le
serveur de données recoive plusieurs requétes pour la méme donnée d; transférée par N3,
toutes les UMs acheminant cette derni¢re (N3-N4-NJ5) la mettront en antémémoire,
croyant qu’elle est populaire. Ainsi, ce phénomeéne conduit a un gaspillage de 1’espace
mémoire car chacune de ces UM stocke d;. Pour éviter cette situation, une UM ne mettra
pas en antémémoire une donnée dont la requéte est souvent faite par un méme requérant.
CachePath est meilleur quand la taille de I’antémémoire est faible ou lorsque le taux de
mise a jour des données est faible, tandis que CacheData est meilleur si la taille de la
donnée & mémoriser est faible. Pour mieux utiliser leur potentiel, une approche
dénommée HybridCache, meilleure que les deux précédentes est proposée.

HybridCache : c’est une combinaison des points forts de CachePath et de
CacheData. Quand une UM transfére une donnée, elle met en antémémoire celle-ci ou le

chemin pour y accéder en se basant sur des criteres tels que sa taille s;, son T7L; (time to

live) ainsi que le H

17

e Précédemment défini. Pour chaque donnée d;, les opérations

suivantes sont effectuées :

si la taille s; de la donnée est faible (inférieure a un seuil 7), CacheData est
utilisée parce que ’espace requis pour mémoriser la donnée est faible. Dans le
cas contraire, CachePath est utilisée pour sauvegarder de I'espace ;

si TTL; est faible (inférieur a un seuil donné), CachePath n’est pas choisi car la
donnée risquerait d’étre vite invalide et CacheData est alors utilisée. Mais, pour

un 7T7TL; élevé, CachePath est préfére ;
si H_,, est grand, CachePath est utilisé, car il permet de sauvegarder un chemin

composé de plusieurs sauts. Cependant, lorsqu’une donnée est mémorisée, I’'UM
prend le soin de mémoriser aussi le chemin pour y accéder ; cela est da au fait
que, si cette donnée venait a étre écrasée en raison d’un défaut d’espace, il y
aurait toujours un moyen d’y accéder en utilisant le chemin qui y donne acces.

La Figure 2.4 illustre I’algorithme qui implémente la méthode HybrideCache.

{A) When & data ltern g arrves:
if 4 is the requested data by the current nede
Bien cache g
else &~ Data passing by ~¢
if there is a copy of & in the cache
Hien upiate the cached copy if necessary
else 5« q 08 TTL <y then
cache data tem drand the path;
else i there is a cachad path for o, then
cache data item d;
apdate the path for o
else
cache the path of d¢

{B) When & request for data em & arrives:
if there is a valid copy in the cache
then send dito the requester;
glse if there is a walid path for &;in the cache then
forward the request to the caching node;
else
forward the request 1o the data certer,

Figure 2.4 Algorithme de Ia méthode HybrideCache

18

Ces stratégies de mise en antémémoire présentent la faiblesse d’étre tributaires du

protocole de routage utilisé. Leur efficacité dépendrait de la performance de ce

protocole.

Réplication de données

L’accessibilité des données dans un réseau ad hoc est plus faible que dans les
réseaux filaires a cause de la topologie dynamique de ces derniers. A la Figure 2.5, la
rupture du lien mise en évidence rend inaccessibles pour les UM situées de part et
d’autre du lien, les données DI et D2. Pour résoudre un tel probléeme dans les réseaux ad
hoc, le recours a la réplication de données est une solution possible. En effet, si une UM,
d’un c6té comme de I'autre, disposait d’une copie de D1 (respectivement D2) comme le
montre la Figure 2.6, cette derniére pourrait étre toujours accessible et ce, malgré la

rupture du lien.

deconnection

=,

Figure 2.6 Accés aux données par réplication

19

Pour adapter cette technique aux réseaux ad hoc, Hara propose des stratégies qui
assument une mise a jour périodique des données en antémémoire [15]. Quand 'UM
effectue une requéte sur un objet, cette derniere est un succes (cache hit) dans chacun
des cas suivants :

e |'UM possede elle-méme I’originale de la donnée ou une copie de cette derniere

dans son antémémoire ;

e un voisin se trouvant a un ou plusieurs sauts, dispose de 1’original de 1’objet

requis ou d’une copie.
L’UM vérifie donc I’existence de 1’objet dans son antémémoire avant d’effectuer une
diffusion de la requéte vers ses voisins en cas d’échec. Au cas ou elle n’obtient aucune

réponse de ses voisins a un ou plusieurs sauts, la requéte échoue tout simplement.

Static Access Frequency (SAF): dans cette stratégie, 'UM effectue une

classification des copies d’objets par ordre décroissant de leur fréquence d’acces. Cette
méthode présente 1’avantage de permettre aux UM de ne plus communiquer une fois
que des copies d’objets sont échangées. La Figure 2.7 illustre cette méthode. En effet, on
voit a la Figure 2.7 (a) les fréquences d’acces des différents objets D; détenus par les UM

et 'ordre dans lequel chacune d’entre elles les répartit dans son antémémoire.

5 Mobile host o oy P
b [an Van oan |2 | s = I m
£): - 72
T, a6 025 Julr 022 ol | 6.4 D, (A s M)
. | 643 | 062 | 041 | 540 | 042 | 04da 5 e -
D, | 035 | 043 | 0.50 [625 | 045 | 037] M,
T | 051 | 015 | 0.00 | 060 | 009 | 0.00 D i3y, D
Tis | OS5I [G4l [043 [638 | 071 [0.2 1 7 M) [,
Ds | 6.08 | 007 | 0.08 | 0.15 | 0.0 | 0.6z M) L= D
- » A
T5 | 006 | 0.52 | 0.47 | 0.3 | 640 | 0.32 2
T35 | 022 | 053 [021 | 023 | 623 [007 bs
T, | 0I5 [0l6 [oD [0 | 0.8 | 0.0
The | 000 | 0.08 | 0.06 | 0.11 | 0.12 | 6.9

(a) Fréquence d’acces aux données (b) Exemple d’exécution de SAF

Figure 2.7 Exécution de la méthode SAF

L’inconvénient de cette méthode est qu’il existe un risque de duplication d’une
copie chez des UM voisines. Il faudrait donc trouver un moyen pour que des UM
voisines n’entretiennent pas les mémes copies d’objet en antémémoire, ce que se
propose de faire la méthode DAFN.

Dvynamic Access Frequency and Neighbourhood (DAFN) : cette méthode élimine

les copies d’objets détenues par des voisins. Elle se sert d’abord de la méthode SAF,
puis s’il existe des duplications de copies entre voisins, celui qui dispose de la plus
faible fréquence d’acces a 1’objet concerné remplace ce dernier par un autre objet. Cette

procédure s’exécute périodiquement et est illustrée a la Figure 2.8.

j'!l'j‘& . D: “‘*D'! élfl }_, D; — Dg ‘l;:‘
.MEVM.; . D;x —+Ds ‘,M’;}
?Lf:-.li’.) : D: — DMy
Me-My o Noduphication
MM Ds = DyiMp
MM, Noduplicaron
Mol Dy~ Dridly, Dy — Dy 1My

(a) Exécution de la méthode SAF | (b) Elimination des duplications | (c)Nouvelle répartition des données

Figure 2.8 Exécution de 1a méthode DAFN

Cette méthode présente I’inconvénient de 1’échange de beaucoup de messages
entre voisins et n’élimine pas toujours les duplicas d’objets. D’autre part, si pendant la

période de répartition la topologie du réseau change, la procédure s’arréte.

Dynamic Connectivity based Grouping (DCG) : cette méthode partitionne les

UM en sous-ensembles connectés les uns aux autres tels des sous-graphes. Méme si un
sommet du graphe, c’est a dire une UM se déconnecte du sous-ensemble auquel il
appartient, ce dernier peut toujours rester connecté aux autres sous-ensembles, d’ou une

relative garantie de stabilité. La Figure 2.9 illustre son fonctionnement.

21

Muobile hiost Ciroup m ny D
D Py Tl lulala .) h
Oy [oes [o2s falrJe2 Tosr f o |12] 638 = Vv D A e
T, [643 | 062 [G4) | 030 |04z | 046 || 187 | as® L —
T, | 635 | 044 | 050 | 035 | 045 | 037 |[153 [ase B MO !
D, | 631 | 615 | 610 | 060 | 0.9 | 610 || 116 | 619 s Iy D
Ts | 651 [041 [043 | U3 [071 Y 000 [173 [09 [\ W
T | 608 | 0.07 | 005 | 605 | 020 | 662 || 035 [082 WD, | D
T; | 638 | 022 [637 [033 [040 [082 || 140 | 6.2 A G, LA
T [022 [057 [621 [023 [024 [617 [[609 [04 G, e
DA EEEACHEALE KGN K50 EAN EANEES
T | 600 | 055 | Do6 | 611 | 0.12 | 009 || 633 | 821

(a) Fréquences d’accés des groupes (b) Exécution de la méthode DCG

Figure 2.9 Exécution de la méthode DCG

En effet, pendant la période de répartition, la procédure DCG calcule la
fréquence d’acces du groupe pour un objet donné en additionnant les fréquences d’accés
des UM membres du groupe. Si I’original d’un objet existe dans un groupe, la procédure
alloue une copie a un membre du groupe. Pour un objet donné, une copie est seulement
allouée au membre ayant la fréquence d’accés la plus élevée du groupe. Cette stratégie
présente cependant I'inconvénient d’un volume d’échange de messages encore plus
important que les deux procédures précédentes.

Pour réduire les délais d’accés et améliorer ’accessibilité aux données, Yin et
Cao ont proposé des techniques de réplications proactives de données qui assument que
la probabilité¢ d’accés aux objets est connue [17]. Une comparaison de leurs techniques,
effectuée avec la méthode DAFN de Hara, a fourni des performances meilleures. Ci-

apres, nous présentons 1’une d’entre elles, dénommée Greedy-S.

Greedy-S
Cette stratégie consiste a allouer les données les plus fréquemment accédées a
I’espace de stockage jusqu’a ce que ce dernier soit plein. Elle prend en compte la taille

de I’objet a stocker et calcule la fréquence d’acces & chaque objet a ’aide de la fonction :

Fy :ark/sk

22

ou a, représente la fréquence d’acces du noeud N,a l'objet d, de tailles, . Soit C,

I’espace réservé au stockage des données. L’algorithme Greedy-S exécuté par chaque

neeud est illustré a la Figure 2.10. L’ensemble O représente 1’ensemble des objets

stockés.

Tant que (NombreObjet < C)
{

Evaluer min{F(0,)};
si (£, > min{F(0,)})

{
Détruire 'objet stocké de fréquence min{F (Ok)}
Ajouter le nouvel Objet O, ;
NombreObjet ++ ;
Servir O, a I'application requérante ;
}
Sinon
{
Servir O, a l'application requérante ;
}
Fin Si

Figure 2.10 Algorithme Greedy-S

Cette stratégie, bien que meilleure a celle DAFN, présente cependant le défaut d’une
absence de coopération entre nceuds voisins pour le partage des données. 1l ressemble
assez a une stratégie de mise en antémémoire dotée d’une politique de renouvellement

du type LRU (Least Recently Used).

Granularité de I’antémémoire
Chan et al., adressent plutdt la granularit¢é de l'information a stocker en
antémémoire, c'est-a-dire son niveau de détail en proposant trois approches de mise de

données en antémémoire : Attribute caching, Object caching, et Hybrid caching [18].

Attribute caching : les attributs fréquemment accédés des objets de la base de
données du serveur sont mis en antémémoire par I’'UM. Apres 1’évaluation de la requéte

de I’'UM, le serveur retourne a cette derniére uniquement les attributs des objets requis.

Object caching : chaque UM a son propre ensemble d’objets fréquemment
accédés et entretenus en antémémoire. En effet, une UM peut accéder a différents
attributs d’un méme objet dans différentes requétes. Le serveur, a la réception de telles
requétes, fournit au requérant tous les attributs de 1'objet en incluant également les
attributs qui ne sont pas requis; ceci permet d’éliminer toute requéte future concernant le

méme objet. L"UM met automatiquement tous les attributs de cet objet en antémémoire.

Hybrid caching : dans la précédente approche, le serveur procure au requérant
tous les attributs de 1’objet. Pourtant, il est souvent rare que tous les attributs d’un méme
objet soient accédés a la fois. Cela gaspille non seulement de la bande passante mais
aussi I’espace utilisable pour la mémorisation des attributs d’autres objets. C’est dans ce
contexte que la stratégie Hybride est utilisée pour permettre plutdt au serveur de données
de ne procurer au requérant que les attributs des objets fréquemment accédés. Ces objets
sont ceux dont la probabilité d’acces dans le futur est élevée, c’est a dire au dela d’un
certain seuil. Ce mécanisme est implémenté par 1’usage d’une table dans 1"antémémoire
de chaque UM pour identifier les attributs et objets s’y trouvant. Sa faiblesse réside dans
le fait que chaque UM est supposée communiquer avec un seul serveur de données, ce
qui n’est pourtant pas le cas dans les réseaux ad hoc ou les usagers passent d’une zone

de service de données a une autre.

2.2.3 Meécanismes d’invalidation d’antémémoire

IIs se basent sur I’approche Stateless Server et la diffusion de rapports
d’invalidation (IR). Le serveur de données diffuse de maniére asynchrone ou non un
rapport des derniers changements intervenus dans la base de données. Lorsque cette
diffusion est asynchrone, les changements sont immédiatement notifiés aux UM. Celles
qui a cet instant sont connectées peuvent alors invalider les objets dont elles sont en

possession et faisant partir du rapport. Pour éviter que les UM déconnectées perdent tout

24

le contenu de leur antémémoire, une horodate est ajoutée a chaque objet ayant subi une
mise a jour. Ainsi, dés qu'une UM se reconnecte, elle attend le prochain rapport
d’invalidation pour mettre a jour son antémémoire. Cette diffusion asynchrone du
rapport d’invalidation de I’antémémoire ne garantit aucune borne pour la durée d’attente
de I'UM qui s’est reconnectée.

Dans I’approche synchrone, la diffusion de I'IR est périodique. L'UM doit
scruter I’IR pour valider ou non les objets se trouvant dans son antémémoire a intervalle
de temps régulier. Pour répondre a une requéte, I’'UM se sert des copies valides d’objets
dans son antémémoire. Autrement, elle effectue une requéte vers le serveur de données.
Ce dernier effectue cette diffusion toutes les L secondes. La Figure 2.11 donne une

illustration de I’occurrence des rapports d’invalidation.

Misce 2 jour

Requéte

00000

T.. N T /‘Répnnsc a

~ '/ 7 la requéte

Figure 2.11 Diffusion d’un IR dans le temps

Cao a estimé que si un IR de taille importante rend efficace I'invalidation des
antémémoires en procurant plus d’informations sur les changements intervenus dans la
base de données du serveur, en revanche il consomme beaucoup de bande passante et
oblige I'UM a consommer beaucoup d’énergie [19]. Plusieurs algorithmes d’invalidation
d’antémémoire ont été proposés dans la littérature. Nous en présentons ici quelques uns
sur lesquels se sont basés la plupart des autres.

Broadcasting Timestamps (TS)
Dans cette stratégie [6], I'IR est composé des horodates des objets qui ont subi un

changement dans la base de données durant les w secondes passées. L’UM scrute ce

25

rapport pour maintenir a jour I’état du contenu de son antémémoire. En d’autres termes,
I'IR contient I'historique des mises a jour intervenues pendant les w secondes passées.
Pour chaque objet en antémémoire, I’'UM le détruit ou non, dépendamment du fait qu’il
ait été mis & jour a une date plus récente que celle en antémémoire. A la réception de
I'IR, I’horodate de I"antémémoire est mise a jour. Le serveur diffuse toutes les 7, =i- L
I'IR et entretient une liste U; d’objets telle que :

1

. [] jeDet
=5Lit, . . . : '
7 t, estl'horodatede la précédentemised jourde j telque T, —w<t, < T,
A la réception de I'IR, 'UM effectue une comparaison avec les objets en
antémémoire |_],th (ou jeD et 1 représente I’horodate de I'objet j dans

I’antémémoire) pour décider si elle garde ou non un objet. L"UM entretient de son coté,

une liste O, de requétes telles que :
0 =1 /] afait1'objet d'une requéte dans l'intervalle de temps [Ti_1 T] }

L’UM maintient aussi une variable 7, indiquant I’horodate du dernier IR regu tel
que, si la différence entre I’horodate de I’IR courant et 7, est plus grande que w, alors
tout le contenu de 1'antémémoire est détruit. Plus particulierement, 'UM exécute
I’algorithme de la Figure 2.12.

Pour sauvegarder de I’énergie, I'UM pourrait ne devenir active que pendant la
diffusion de I'IR. Elle peut considérer son antémémoire valide aussi longtemps que la

durée de sa déconnexion est plus petite quew .

26

if (T;— Ty > w) { drop the entire cache }
else {
for every item j in the MU cache {
if there is a pair [, £;] in U; {
ife§ <t {
throw j out of the cache }
else { 1;=T; }
}

for every item j € Q; {
if j is in the cache {
use the cache’s value to answer the query }
else { go uplink with the query }}
T =1

}

Figure 2.12 Algorithme Broadcasting Timestamps (TS)

Amnesic Terminal (AT)

Dans cette stratégie, le serveur effectue une diffusion des identifiants des objets
qui ont connu un changement depuis le dernier IR. Une UM qui entre temps s’est
déconnectée, va devoir reconstruire toute son antémémoire. Le serveur construit une

liste U; des objets a diffuser telle que :

i

- JjeD et »
i précédente mise a jour de j estintervenuat, telque T, <t . <T

A la réception de cet IR, 'UM compare les objets en antémémoire avec ceux
contenus dans I’IR. Si un objet en antémémoire y figure, I'UM le détruit de

I’antémémoire, autrement il considére I’objet valide. Elle maintient aussi une liste O,

des requétes en instance telle que :

Q, ={j/J faitI'objet d'une requéte dans l'intervalle de temps [, tl}

1;

27

Par ailleurs, I’'UM maintient aussi une variable 7, indiquant I"horodate du dernier
IR regu. Si la différence entre 1’horodate de I’IR courant et 7, est plus grande que L,

alors tout le contenu de I’antémémoire est détruit. En clair, 'UM exécute 1’algorithme

de la Figure 2.13.

if (T: ~ Ty » L) { drop the entire cache }

eise {
for every item j in the M1 cache {
if 7 is in the report {
throw j out of the cache }
}
}

for every item 7 € @; {
if § is in the cache {
use the cache’s value to answer the query }
else { go uplink with the query }}
Ty :=T;
}

Figure 2.13 Algorithme Amnesic Terminal (AT)

La stratégie TS s’avére avantageuse quand la fréquence des requétes est plus
élevée que celle des mises a jour. Quant a la stratégie AT, elle est plus efficace pour les

UM s qui se déconnectent rarement.

Update Invalidation Report (UIR)
Dans le but de réduire la latence de la réponse aux requétes, I’'UIR est proposé

[19] pour permettre une diffusion de I’IR m fois dans I’intervalle [TH T |. Le résultat de

cette approche pour 'UM qui a une requéte en instance est de ne pas attendre un
prochain IR avant de répondre. Donc, le délai de latence se voit aussi réduit dans une
proportion de 1/m, par rapport a 1’approche TS. Puisque I'IR véhicule un volume de
données non négligeable, le répliquer m fois consommerait de I’énergie et de la bande

passante. Pour pallier ce probléme, I’approche propose plutdt d’insérer dans chaque

28

intervalle [T,_I T], m-1 mises a jour de I’IR ne contenant que les objets qui ont été mis a

jour dans la base de données du serveur depuis la diffusion du dernier IR ; d’ou la
dénomination de Update Invalidation Report (UIR). La taille de I'UIR devient ainsi plus

petite, comparée a celle de I'IR. La Figure 2.14 illustre cette approche.

Mise a jour

Requéte

UIR

Figure 2.14 Rapport d’invalidation UIR

En effet, quand 1"UM regoit une requéte d’un voisin dans [’intervalle de temps

lT/—l,]’Tr—l,zja elle ne pourra y répondre que deés 7, , au lieu de 7, comme dans

I’approche TS. Sur la base de 'UIR qu’elle regoit, I’'UM peut invalider ou non des
objets en antémémoire. S’il existe des copies valides des données requises, I'UM les sert
immédiatement a 1’usager. Autrement, elle formule une requéte en direction du serveur
de données.

Puisque le contenu d’un UIR dépend de celui de I'IR précédemment diffusé,
chaque UM a besoin de recevoir ce dernier pour utiliser les UIR intermédiaires. En
d’autres termes, si une UM manque un IR parce qu’elle était déconnectée pour
économiser de 1’énergie, elle ne pourra répondre aux requétes en attente qu’a la
réception du prochain IR. La faiblesse de cette approche est qu’elle utilise non
seulement beaucoup de bande passante dans le sens descendant, mais aussi ne résout pas

le probléme des déconnexions.

29

Bit Sequences
Avec cette stratégie [20], I'IR est composée d'un ensemble de n séquences de

bits représentant les mises a jour intervenues aux temps 7

ne

Iy T, avee T < T
pourl <i < 7. Chaque bit représente un objet de la base de données. Un «1 » représente
un objet qui a été mis a jour dans la base de données. Les n séquences binaires sont

organisées de maniére hiérarchique telle que celle au niveau Je plus élevé (séquence B))

contienne autant de bits qu’il y a d’objets dans la base de données; et celle au plus bas

niveau (séquence B,) contienne 2 bits. Soit I'IR:

{[BO9TO]5"'7[Bk9Tk]}9 tel que 7, <7,

B =1 = {La moitié¢ des objets, de 0 a 2’ on ét& mise 4 jour au temps 7, }

La séquence B, est utilisée avec I"horodate T, pour indiquer qu’aucun objet n’a été mis
a jour. L’UM utilise la séquence de bits ainsi que I"horodate T, pour décider quel objet

dans son antémémoire doit étre invalidé ou non. En clair 'UM exécute I’algorithme
décrit a la Figure 2.15.

I T timestamp of current repott
HlTea timestamp of Tast valid report received by mobile cient
i Ty 1%
all cached objects are valid
b {
f e,
remove the entire cache content
else { :
determine the bit sequence B; such that T, < T¢ < el gign
invahidate all the objects marked *1* in B; :
1
}
for every object O.€ @, {
if (O is in the cache)
use the cache’s content to answer the query
olse
submit request for £

)

Figure 2.15 Algorithme Bit Sequences

Remarque

En général, il existe deux mécanismes de copies de données sur différents sites,
dans les systémes a architecture distribuée comme les réseaux ad hoc [21]. 1l s’agit de la
mise de données en antémémoire et de la réplication de données. Les deux techniques
poursuivent le méme but, c'est-a-dire la réduction du colit de communication et de la

charge du réseau. Cependant, elles sont différentes sur plusieurs points, comme indiqué

au Tableau 2.1.

Tableau 2.1 Différences entre la réplication de données et la mise

de données en antémémoire

Mise de données en antémémoire | Réplication de données
Cibles client, tierce partie serveur
Stockage Mémoire (flash, etc.) disque
Protocole de mise a jour invalidation propagation
Destruction des copies implicite explicite
Granularité fine brute

La réplication de données bénéficie a un grand nombre d’usagers, alors que la
mise de données en antémémoire sert un client ou un groupe restreint de clients.
Cependant, elle garantit ’existence de la donnée a I’endroit ou on en a le plus besoin.
Une combinaison de ces deux techniques dans les réseaux ad hoc améliorerait

I’accessibilité aux données.

2.3 Reléve du service de données

Dans les réseaux ad hoc, comme les utilisateurs se déplacent d’'une zone de
service de données a une autre, le serveur de données de la nouvelle zone doit assurer la
continuité de I’accés aux données, cela afin de réduire les colits de communication en
bande passante, en énergie et en délai. Ce procédé est désigné sous le nom de releve du
service de données (service handoff). Pour permettre cette reléve du service de données,

il existe une technique adaptative dénommée DAR (Dynamic and Adaptive cache

Retrieval scheme) utilisant des méthodes appropriées de mise en antémémoire fondées
sur I'architecture décrite a la Figure 2.16 [22]. Ces méthodes sont : le FLB, le FPS, et le
FCB.

u Base de
By " données A
- :
Coordinator
Buffer

Coordinateur

Réseau Fixe

Serveur S¢

Figure 2.16 Architecture d’une reléve du service de données

FLB (Caching from Local Buffer) : due a la propriété asymétrique de la

communication entre UM et serveur, ce dernier crée un processus pour chaque UM, de
maniere a entretenir une instance d’antémémoire locale LB (Local Buffer) propre a
chaque UM. Le serveur y mémorise les données fréquemment accédées par I"UM.
Lorsque I’UM effectue une prochaine requéte, elle pourrait ainsi étre servie depuis cette
antémémoire.

FPS (Caching from Previous Server): pour les UMs effectuant des releves

fréquentes, cette technique est utilisée pour rechercher les données utilisées par I'UM

dans le LB maintenu par le précédent serveur de données. Ceci permet de réduire de

fagon substantielle la latence d’accés a I’'information requise quand I’'UM effectue une
reléve. Cette méthode élimine le cofit d’une requéte vers la base de données.

FCB (Caching from Coordinator Buffer) : pour les données fréquemment mises a

jour dans la base de données et qui sont aussi fréquemment accédées par les UM, cette
méthode est utilisée. Elle permet d’aller directement chercher 1’information requise par
I’UM dans le Coordinator Buffer, car elle assume que celles entretenues dans les LB ne
sont pas valides. Cela diminue ainsi le délai d’acces.

La méthode DAR quant a elle, est une méthode adaptative qui combine
I’efficacité des trois précédentes pour assurer I’acceés aux données durant la releve de
I"UM. Elle s’exécute en trois phases :

e phase initiale : les méthodes candidates utilisées dans cette phase sont le FLB
et le FCB. Lorsque ’'UM effectue une requéte, la méthode FLB est d’abord
utilisée puis en cas d’échec, on recourt a la méthode FCB ;

e phase d’exécution: elle intervient lors de la procédure de reléve. Les
méthodes candidates sont le FPS, le FCB et le FLB ;

e phase terminale: elle active une procédure d’invalidation des données
obsolétes dans les différentes antémémoires.

Ces méthodes sont trés attrayantes a cause de la hiérarchie d’exécution des
différentes procédures. Cependant, elles souffrent toujours du fait que toutes les UM
sont supposées se trouver a un saut du serveur qui dessert leur cellule. La charge de
trafic peut facilement étre importante au niveau du serveur si les UM sont nombreuses

dans une cellule donnée. 11 faudrait donc un mécanisme pour réguler cette charge.

2.4 Localisation d’antémémoires

Malgré 1'usage d’antémémoires dans les réseaux ad hoc pour diminuer les délais
de réponse aux requétes, 'usage de la bande passante ainsi que la consommation
d’énergie, il y a toujours trop de messages transmis et beaucoup de dépenses en ¢nergie.

C’est pourquoi Nuggehalli et al., proposent une approche qui consisterait a ne doter

|8}
W

d’antémémoires qu’un nombre limité d’UM [10]. Le probléme ainsi posé revient a la

localisation des antémémoires dans un réseau ad hoc.

Modélisation du probleme
Le réseau ad hoc est modélisé par un graphe G(V,E)ou I’ensemble ¥ des

sommets représente les UM liées entre elles par I'ensemble des liens E sans fil. Le
serveur de données dispose d’un ensemble de données 7 qui changent toutes les 7" unités
de temps et qu’il peut disséminer aux nceuds via des routes a un ou plusieurs sauts.

Pendant I’intervalle de temps 7, un nceud quelconque désire la donnée i avec une

probabilité¢ p, telquel <k <]V’

Pour réduire la latence d’accés a la donnée i, au début de chaque intervalle 7, le
serveur produit i a seulement quelques nceuds du réseau. Cette phase est appelée phase

de dissémination.

Soit le vecteur Z =(z,,z,....,z,) ol

¢

{1 si une copie de i est transmise a traversleliene€ E pendant la phase de dissémination

0 autrement

A la fin de la phase de dissémination, les nceuds désirant la donnée i, y accedent avec un

colt d’accés exprimé en €nergie consommeée: C’est la phase d’acces.

Hypothéses du modéle
i. Latopologie du réseau est considérée stable a un moment donné.

ii. Les liens sont supposés bidirectionnels.

ili. Le serveur posséde toujours 1’original de la donnée i.

iv. L’énergie requise pour transmettre et pour recevoir la donnée i a travers un lien
est supposée constante et égale a 1.

v. Le cout de la latence d’acces pour tout nceud &k est modélisé par le nombre
minimum de sauts pour atteindre la donnée i.

vi. Le colit de stockage de la donnée i est suppos¢ négligeable.

34

Calcul des coiits
Soient :
C I"'ensemble des nceuds désignés pour disposer d’une antémémoire.

d, , la distance minimale en nombre de sauts de n’importe quel nceud £ a C.

Le colit de I’énergie consommée pendant la phase de dissémination de i est donnée par :

Kd/,\z\'venurgv = : ,Zc :

cels
Le colit de 1’énergie consommeée pendant la phase d’accés assimilé également au colit de

la latence d’accés a la donnée i par un nceud % est donné par :

Kacccsx\'—enel‘gy = K/ulem'y = z pkdk

kel

KCHL’I'JI}’ - KUL'CL’.VA\'—L’I‘I(.’I‘K‘V + K{l’L\l\'—L’HL’I‘gV *

Le coft total est donné par :

Kml = Kencrgy + A’) Klalcnuy = ch + (1 + 2’) zpkdk

ceE keV

ou A indique I’'importance relative de la latence d’acces et de I’énergie consommge.
L’objectif du probléme est de trouver une stratégie Z qui minimise le coft total, en

essayant de trouver un compromis entre 1’énergie moyenne consommée et la latence

d’acces.

Formulation du probléme

La formulation revient & un probléme de programmation en nombres entiers dont

la fonction objectif est :

P :Minimiserzz DX, + M E z, @.1
kel leek kel
E x, 21 VkeV (2.2)

e E

z,—x,20 VkeV,ec E (2.3)
z, — E x. 20 VSCE,e¢S,VkeV 2.4)

4(8) ecS
x,.,z €{0,1} VkeV,eekE @2.5)

ou M = % +2) et ¢, représente le colt de la latence d’acceés du nceud £ a la donnée i

au noeud antémémoire du lien e.

{x,.} est I’ensemble des variables d’assignation telles que :

3

{1 sile noeud k accéde a la donnée i du nceud antémémoire du lien e
x, =
ki

0 autrement.

Résoudre (2.1) revient & minimiser I’énergie K

o - La contrainte (2.2) assure que
chaque nceud est au moins assigné a un nceud antémémoire a partir duquel il peut
accéder a la donnée i. La contrainte (2.3) assure que chaque nceud appartient & au moins
un lien disposant d’un nceud antémémoire. La contrainte (2.4) est induite par la
connectivité du sous-graphe formé par Z. La contrainte (2.5) représente celle de
cardinalité.

Pour résoudre ce probléeme NP-complet, afin de déterminer quels nceuds peuvent
abriter une antémémoire, une heuristique dénommée POACH (Power Aware Caching
Heuristic) est proposée pour produire une solution approximative au probleme P.

Le probléme avec cette approche vient du fait que la localisation des nceuds

pouvant abriter une antémémoire est dynamique et prendrait plus de temps. La topologie

peut déja changer avant une nouvelle relocalisation. De méme, lorsque le nombre d’UM

est élevé, cette approche deviendrait trés vite coliteuse en délai de relocalisation.

2.5 Un modéle de mise en antémémoire

Le modéle de mise en antémémoire que nous présentons ici est celui du protocole
WAP (Wireless Application Protocol) utilisé dans les réseaux cellulaires pour permettre
d’apporter aux usagers des services autres que la voix (e-mail, web browsing). Ce
modele est présenté, car il correspond a un exemple typique de [utilisation
d’antémémoires dans les réseaux mobiles [23]. Pour rappel, la Figure 2.17 décrit
I’architecture d’un réseau utilisant ce protocole.

En effet, le mécanisme de gestion d’antémémoires utilisé par le protocole WAP
est dénommé Cache Operation. 11 offre des moyens d’invalider les objets maintenus en
antémémoire par 1’agent de 1’usager, instance de gestion de ’antémémoire dans le
terminal de ’usager. Son contenu est spécifié sous forme d’un document XML dont la
structure est faite d'URIs (Uniform Ressource Identifier) d’objets a invalider. Deux
types d’opérations sont effectués :

o invalidate object : permettant d’invalider un objet identifié par une URI donnée ;
o invalidate service: permettant d’invalider tous les objets utilisant le méme

préfixe d’URL

Documents
WML

Terinal WAP Passerelle WAP Serveur WEB

Figure 2.17 Architecture d’un réseau WAP

Cache Operation requiert de 1’agent de I’'usager une invalidation d’un ou de
plusieurs objets dés réception du message CO. Cette opération d’invalidation peut étre

initiée par le serveur du domaine de 1’opérateur ou par I’agent de 1’usager. Si aucune

URI du CO n’identifie un objet de I’antémémoire d’une UM, cette dernie¢re détruit tout
simplement le CO. Le contenu du CO est encodé grace a une représentation binaire
compacte basée sur le WAP Binary XML utilisant des Tokenizer tel que le montre le

scénario décrit a la Figure 2.18.

Fichier XML transmis

<?xml version="1.0"7?>

<!DOCTYPE co PUBLIC "-//WAPFORUM//DID CO 1.0//EN"
"http://www.wapforum.org/DTD/co_1.0.dtd">
<co><invalidate-object uri="foo.wml"></invalidate-
object><invalidate-sexvice
uri="/bar"></invalidate-service>

</co>

Encodage | WBXML

02 07 6A 00 45 86 05 03 "£' 'o' 'o' '.' 'w' 'm"'" '"1' '\
0' 01 87 05 03 '/' 'b' 'a' 'r' "\0' 01 01

Forme Tokeniser du fichier XML

Figure 2.18 Compression de données au format XML avec usage de Tokenizer

En effet, le format textuel qui est constitué de 150 octets se voit réduit grace aux
Tokenizer a 27 octets, soit une réduction de 82% de I’information a transmettre; ce qui
est remarquable pour 1'usage efficace de la bande passante. Si on imagine qu’a la suite
de cette réduction du nombre d’octets existe une procédure de compression, cela pourrait
diminuer davantage la quantité d’informations a transmettre sur le médium.

Tous ces mécanismes de mise de données en antémémoire et de réplication de
données, offrent des attraits qu’utilisera le modéle de mise de données en antémémoire

que nous proposons dans le prochain chapitre.

38

CHAPITRE III
MODELE DE MISE DE DONNEES
EN ANTEMEMOIRE

L’objectif ultime de ce mémoire est de proposer une stratégie de mise de données
en antémémoire. Nous avons vu dans le chapitre précédent que la bande passante a la
disposition des UM est limitée, ainsi que I’espace de stockage dont elles disposent.
D’autre part, leur liberté de mouvement fait que les déconnexions sont fréquentes,
occasionnant souvent un partitionnement arbitraire de la topologie du réseau qu’elles
constituent. Les UM d’une partition ne peuvent donc plus accéder aux données d’une
autre partition. L’accessibilit¢ aux données est donc faible, comparativement aux
réseaux filaires. Deux techniques attractives telles que la mise de données en
antémémoire et la réplication de données sont généralement utilisées dans les réseaux
filaires pour améliorer I’accessibilité aux données. Leur application aux réseaux ad hoc
constitue un ensemble de défis pour les raisons précédemment énumérées. Dans ce
chapitre, nous proposons un modele pour la mise de données en antémémoire, en tenant
compte des contraintes auxquelles sont soumises les unités mobiles. De fagon
spécifique, ce modele utilisera une combinaison des techniques de réplication et de mise
en antémémoire vues dans le précédent chapitre. Nous le formulons sous la forme d’un
probléme d’optimisation et proposons une approche pour sa résolution. Viendra par la
suite une esquisse de I’approche de résolution sous la forme d’algorithmes a mettre en

ceuvre au sein d’agents au niveau du serveur et des UM.

3.1 Analyse du probléme

Plusieurs aspects nécessitent d’étre pris en compte pour la définition d’une solution
aux problemes de la mise de données en antémémoire.
La limitation en bande passante et en énergie oblige a la définition de mécanismes

pour réduire les interactions entre UM et serveur de données. Il faudra aussi pour les

39

interactions nécessaires définir une méthode pour réduire la taille des messages
¢changés.

La restriction de 1’espace de stockage de I’information du c6té des UM impose la
définition de mécanismes de compression de données pour sauvegarder de l’espace.
Rappelons que les techniques de mise en antémémoire utilisées actuellement que ce soit
dans les réseaux filaires qu'ad hoc, tiennent compte du fait que chaque entité dispose
d’une mémoire pour le stockage des données auxquelles elle accede fréquemment. La
conséquence dans une telle situation est le gaspillage de 1’espace, car les mémes
informations sont stockées au niveau de plusieurs UM. Mais cela garantit toutefois des
couts d’acces faibles aux objets. Dans un tel contexte, il faut définir un mécanisme qui
permette de spécifier les UM devant disposer d’une antémémoire ou d’un réplica des
données du serveur. On parlera plutét de quasi-réplica (QR), car les UM ne peuvent
héberger toute la base de données du serveur.

La rupture fréquente des liens entre UM ainsi que le partitionnement arbitraire du
réseau rallonge le délai d’acces a l'information désirée. II faudra, pour réduire cette
latence d’accés, définir une méthode pour minimiser la distance entre I'UM et son
serveur de données. De méme, le dynamisme de la topologie du réseau impose la mise
en ceuvre de mécanisme de mise a jour des données liées a la mobilité¢ des UM.

Pour tenir compte de tous ces requis, le modéle que nous formulons plus loin, met un
accent particulier sur la combinaison des techniques de réplication de données et de mise
en antémémoires. L’ensemble de ces requis est mis sous forme d’un probléme
d’optimisation a la fois de 1’espace de stockage, du délai d’accés aux données, ainsi que

de celui du choix des UM pouvant héberger des réplicas de données du serveur.

3.2 Formulation du modéle

Le probléeme que nous allons tenter de résoudre peut étre reformulé de la fagon
suivante : « Comment choisir des unités mobiles clés dans un réseau ad hoc pour y
répliquer des données localisées sur un serveur distant? Comment augmenter le

pourcentage d’accés a l'information tout en réduisant le délai d’acces a celle-ci ? »

40

Le partitionnement des réseaux ad hoc permet une flexibilité de leur contrdle ainsi
que de leur gestion; c’est-a-dire des méthodes de routage de l'information, de
Iallocation des ressources ainsi que de la mise a jour de leur topologie [24]. Ce
partitionnement peut étre effectué de plusieurs fagons pour couvrir tout le réseau. Les
avantages offerts par le découpage en partitions (c/uster en anglais) sont notamment :

1. une réutilisation spatiale des ressources a disposition du réseau;

2. une réduction du nombre de messages de routage propagés a travers le réseau ;
en effet, chaque cluster dispose d’un leader (cluster head) qui coordonne le trafic
des membres (cluster member);

3. une vue globale d’un cluster a travers son leader est généralement suffisante pour
une prise de décision de routage de I'information ;

4. en particulier, la mise a jour de la topologie du réseau peut se faire de fagon
1solée entre clusters, ou entre leaders.

Pour bénéficier de tels avantages, nous proposons une approche basée sur le
partitionnement du réseau. Dans notre modéle, cela consistera a désigner des UM clés
pour héberger des partitions de données du serveur. Nous identifierons ces UM par la
dénomination de Quasi-Réplica (QR). Elles représentent les clusters head. Puis, d’autres
UM s’associeront a ces QR dépendamment de leur proximité, pour accéder aux données
entreposées. Celles-ci sont des clusters member-.

Un aspect important de la solution que nous proposons est la combinaison de la
réplication partielle de données du serveur avec une technique de mise en antémémoire.
Ainsi, les UM désignées QR ne disposent plus d’un espace de stockage dédié pour
I’antémémoire, contrairement aux autres non-QR qui, elles, en disposent. Cet espace
dédié¢ pour I’antémémoire est muni d’une politique de renouvellement des objets regus

par I'UM lors de ses diverses requétes.

3.3 Localisation des Quasi-Réplica

Dans cette section, nous introduisons plus en détail le concept de quasi réplica

(OR). Puisqu’une UM ne peut stocker entierement le contenu de la base de données du

41

serveur, on y entreposera les données les plus fréquemment accédées, dépendamment de
son espace de stockage: on parlera alors de réplication partielle.

Ainsi, la zone de couverture du serveur de données est découpée en clusters,
gérées chacune par un QR. Ce dernier est désigné par le serveur sur la base de critéres
tels que la vitesse, I’espace de stockage, 1’énergie a disposition ainsi que la densité
(nombre de voisins) des UM. Une définition analytique de ces terminologies est
présentée dans les prochaines sections.

L objectif du modele est de rapprocher les QR le plus possible des UM, pour
réduire les colts d’acces aux données (typiquement la distance entre UM et QR). Nous
désignerons par la suite, le serveur de données par MSS (Mobile Support Station)
comme dans la littérature.

En effet, bien que le MSS soit capable d’atteindre toutes les UM se trouvant a sa
portée radio en un seul saut, il n’en est pas de méme des UM dont la portée de
transmission est moins importante.

Le fait de partitionner chaque zone de service de données en cluster offre les
avantages que nous avons cités plus haut, mais génére un colt a payer quant a la
maintenance des clusters. En effet, lorsqu’un QR devient indisponible pour une raison
ou une autre, il faudrait trouver une alternative pour la continuité du service de données.
De méme, quand un cluster se retrouve isolé, il importe également de définir un moyen
de combler la faille engendrée par son absence.

Dans notre architecture, afin d’éviter ces procédures de maintenance qui
contribueraient a inonder le réseau de messages supplémentaires, nous adoptons une
approche basée sur le choix de la localisation de QR, afin de permettre aux UM
d’effectuer leurs requétes aupres du QR le plus proche en terme de distance.

Une illustration de 1"architecture proposée est faite a la Figure 3.1. En effet, on 'y
voit sous forme de batons cylindriques une représentation des UM désignées QR, ainsi
que des petits points tout autour de ces batons représentant les UM associées a un
moment donné au QR. Il faut mentionner que les QR représentent les UM sur lesquelles

le serveur fait une réplication partielle de ses données.

42

S e
données

Figure 3.1 Architecture de désignation des QR

La délimitation des cellules ou cluster est dynamique dans le temps, c’est & dire
qu'une UM peut acheminer ses requétes au QR de son choix dépendamment de sa
proximité. En effet, chaque UM non désignée QR dispose d’une table répertoriant la
liste des QR désignés par le MSS. Cette liste est diffusée par ce dernier, a I’issue de la

procédure de désignation.

3.3.1 Description analytique du modéle

La désignation judicieuse des QR requiert la prise en compte de paramétres tels
que la vitesse moyenne des UM, leur degré de connectivité, 1’énergie instantanée dont
elles disposent, leur capacité de stockage ainsi que la popularité des données entreposées

dans la base de données du MSS. 11 faut donc, sur la base de ces parametres, définir un

profil d’une UM éligible. Avant de détailler la procédure de désignation des QR, nous
introduirons quelques terminologies qui serviront a 1’élaboration du modeéle.
Vitesse moyenne d’un nceud

Chaque neceud calcule sa vitesse moyenne, grandeur donnant une idée de sa

mobilité dans le temps de la facon suivante :

1 T 2 2 2
M, =;ZJ(XI X,) (Y, - Y) +Z -2, G
t=1

Les variables X,, Y, et Z, représentent les coordonnées des différentes positions
occupées par I’'UM au cours du temps tandis que 7 représente I’instant auquel cette
vitesse est estimée.
Degré de connectivité

Le degré de connectivité d’une UM v représente le nombre d’'UM dans son
voisinage N (v) , c'est-a-dire I’ensemble des autres UM se trouvant a sa portée radio. Elle

est définie de la fagon suivante :

D, =|N(G)= D {dist(j,j’)< R} (3.2)

iev.j=i

Energie de la batterie

L’énergie E_ a la disposition d’un nceud a un instant T donné est exprimée par :

1 T
E, =E, —?Z(E, ~E,_) 3.3)

=1
ou E; représente 1’énergie intrinséque de I'UM, et E, les différentes valeurs de 1'énergie
au cours du temps.
Loi de Zipf
Dus a I’explosion d’Internet, les serveurs d’antémémoire connus sous la
dénomination de web proxy caching servers sont utilisés comme des moyens

d’améliorer I’accessibilité aux pages Web de serveurs distants. Plusieurs recherches ont

44

été effectuées pour modéliser le comportement des requétes effectuées sur les pages
Web par les usagers d’Internet [8]. Ces recherches ont démontré que les requétes
effectuées par les usagers des pages Web suivent une distribution particuliere dénommée
distribution comportementale de Zipf (Zipf-Like distribution en anglais).

La distribution de Zipf définit la popularité d’un objet, et statue que la probabilité
d’accés au k-ieme objet d’un serveur (1< k < N) est inversement proportionnelle au

rang de cet objet, telle que :
Pe="7x 71 (34

ou0<8<1. Pourf =0, la distribution devient uniforme et pour & =1, elle devient une
distribution stricte de Zipf. Pour de grandes valeurs de @, les accés se focalisent sur les

objets de faible rang.

3.3.2 Le modéle

Les hypothéses régissant le mode¢le sont les suivantes :

1. Le serveur de données MSS est considéré comme une référence géographique par les
UM se trouvant dans sa zone de couverture. En effet la plupart des méthodes de
localisation utilisent le GPS (Global Positionning System) dont la précision n’est
pourtant pas efficace, spécialement lorsque des entités équipées de récepteur GPS se
retrouvent dans un espace clos. Cependant, il existe aujourd’hui une méthode plus
adaptée pour les réseaux sans fil utilisant la technologie SDMA (Space Division
Multiple Access) dans laquelle une UM dotée d’antennes intelligentes (smart
Antenna) focalise sa transmission vers d’autres UM de son choix. Cette nouvelle
technologie utilisée de plus en plus dans les réseaux sans fil est combinée avec la
localisation GPS pour améliorer la précision de la localisation du récepteur. Nous
ferons ainsi I’hypothese que la couche physique des différentes entités du réseau est
dotée d’un tel équipement muni d’un récepteur GPS. Notons que dans la littérature

existent des protocoles de couche MAC pour ce type de support physique [25]. Le

45

MSS diffuse donc I'information sur sa position, et chaque UM requérante est donc

capable de lui fournir les informations telles que sa capacité de stockage S, , ses
coordonnées géographiques (X Y.z,) relatives au MSS, sa vitesse moyenne M |,
I’énergie a disposition de sa batterie £, ainsi que son degré de connectivit€ D, . Ces

informations sont transmises au serveur de données lors des différentes requétes
effectuées par I’'UM a travers un ou plusieurs sauts ;

2. Le MSS possede en tout temps une copie de la donnée requise par une UM, dans sa
base de données. 1l dispose d’une puissance de calcul largement supérieure a celle
des UM ainsi qu’une portée radio conséquente pour alimenter les UM se trouvant
dans sa zone de couverture ;

3. Contrairement a I’architecture proposée dans la littérature et décrite dans le chapitre
précédent qui assume que le serveur est fixe, nous ferons plutét dans notre modele
I’hypothése qu’il est doté d’une mobilité réduite. Il n’est donc pas forcément
stationnaire ;

4. Les mécanismes d’invalidation d’antémémoire ne sont pas pris en compte dans ce
modele, ainsi que la gestion du handoff pour une UM passant d’une zone de service
de données a une autre (d’'un MSS a un autre). La gestion du mécanisme du handoff
pour le service de données est déja couverte par des entités supérieures telles que les
routeurs d’acces (compatibles Mobile IP). On considére ainsi que le MSS se trouve
dans un domaine couvert par un routeur d’acces.

Notation

La notation suivante est utilisée pour la modélisation. Soient :

N I’ensemble des nceuds se trouvant dans la zone de couverture du MSS et D I’ensemble

des objets entreposés dans la base de données du MSS;

H I’ensemble des UM élues pour abriter un QR et £ I’ensemble des états possibles d’une

UM.

z; variable 0-1 telle que :

46

z; =

1 siun QR estinstallé sur l'UMJ.
0 sinon

x; variable 0-1 telle que :

ij

1 si l’UMi accede a un objet dans le QR installé surl’ UMj
0 sinon

Yy variable 0-1 telle que :

1 si l'objetO kest entreposé au QR installé sur!'UM .

Yk =]]
0 sinon

C, . le colt du stockage de I'objet O, au QR localisé sur 'UM; et U, le colt li€ au

choix d’une UM pour héberger un QR; ¢, le colit d’acces de I'UM,; a un objet entreposé
au QR de I'UM,;.

F. la fonction de compression des objets stockés dans les QR; e, [borne inférieure

(resp. supérieure) de la taille d’un cluster géré par un QR préalablement désigné; les
variables 1, et 1, désignent la borne inférieure (respectivement supérieure) du nombre

de QR qu’il pourrait y avoir dans le réseau en tout temps.
Les variables m, n, t, g, r, h sont des facteurs de coit, exprimé en %ni e La procédure

de désignation des QR suit la fonction de cotit F,, illustrée a la Figure 3.2. Cette

fonction minimise : le cott lié¢ au choix des UM devant héberger un QR, le cott lié¢ au

stockage des données et enfin le colit d’acceés des UM a I’information requise.

47

Minimiser Fp = > > cx, + D Y Cy+» Ug, (3.5)

ieNH e H ©H keD N
Sujetd: @< ny <pB (jeH) (.6)
ieN\H
quzl (ie N\H) 3.7
eH
D ROy, <8, () (3.8
keD
D, >D
E. 2E
. (je N) (3.9)
M, <M
S, =%
ms) oz, s, (3:10)
N

Figure 3.2 Fonction de coiit d’une procédure de désignation de QR

La contrainte (3.6) permet de délimiter le nombre maximum d’UM pouvant
effectuer des requétes sur le QR placé sur I'UM j. Cette contrainte est nécessaire pour
permettre de répartir la charge du trafic de fagon quasi uniforme sur I’ensemble des QR
désignés. La contrainte (3.7) indique qu’une UM ne peut effectuer a un instant donné ses
requétes qu’aupres d’un et un seul QR. La contrainte (3.8) quant a elle, permet de limiter
le nombre d’objets du MSS stockables sur le QR au moyen de la fonction de

compression de données F, . En effet, I'usage d’un algorithme de compression

permettrait un stockage plus important d’objets sur les QR désignés. La contrainte (3.9)
elle, définit le profil d’'une UM susceptible d’étre élue QR. On I'appelle le profil
d’éligibilité. La contrainte (3.10) définit le nombre de QR éligibles.

Dans le profil d’éligibilité, une UM dispose d’une vitesse moyenne en dessous de

la moyenne des vitesses de I’ensemble des UM, une capacité de stockage au dessus de la

48

moyenne, une ¢nergie plus importante que la moyenne et enfin un degré de connectivité
supérieur a la moyenne. Toutes ces variables réunies sous forme de combinaison

linéaire, définissent la fonction de cott U ; liée au choix d’une UM. Cette fonction de
cott est définie comme une pondération des variables du profil telle que :
U=m-M +n-D +t-E, +quj

m+n+t+qg=1 (-1

L’hébergement d’un QR & vide (ne stockant aucun objet) par une UM cofite

moins cher si ceite derniére a une faible mobilité dans le temps, posséde beaucoup de

voisins et dispose de plus d’énergie que la moyenne. Le coft d’accés Cjj de 'UM i au

QR j est proportionnel a la distance entre les deux entités, soit :

o5 =hJ(X,~X)? +(Y,~Y)? +(Z,-Z)? (3.12)

Le cofit de stockage d’un objet est proportionnel a la taille de ’objet rendue par

la fonction de compressionF, ainsi qu’a sa probabilité d’acces p, , telle que :
C,=r-(1-p,)-E(0,) (3.13)

Dans cette fonction de cofit, un objet fort populaire cotitera plus cher a stocker
qu’un autre a faible popularité, ceci a taille égale. Le nombre d’états 4 examiner pour

désigner les UM accueillant des QR est :

|Ej =21 (3.14)

La résolution du modé¢le peut devenir trés colteuse en temps de calcul (NP-
difficile) si le nombre d’usagers dans une zone de service de données est élevé. Le
modele ainsi formulé est proche de celui de la localisation de commutateurs dans un
réseau filaire soluble en général a I'aide d’une heuristique hors ligne comme la

recherche taboue.

49

Dans notre cas, c'est-a-dire avec les réseaux ad hoc, trouver une solution a 1’aide
d’une heuristique en ligne telle que la recherche taboue sans que la topologie n’ait
changé, puis, charger les QR d’objets populaires reléverait d’un exercice trop colteux en
temps de calcul.

Il est donc peu probable d’utiliser une méthode approximative en ligne pour
garantir une bonne solution dans des délais bornés. Donc, nous utiliserons une approche
adaptative, c'est-a-dire une méthode qui inclut la coopération de toutes les entités (MSS,
UM et QR). Pour faciliter la mise en ceuvre de cette méthode de localisation des QR,

nous allons décomposer la résolution du probléme en trois phases :

Phase I : Election des QR

Durant cette phase, le profil d’éligibilité est utilisé pour évaluer la valeur de la

fonction objectif, donnée par :

D, 2D
i . EjZE
MlmmlserE_-:szj Sujeta: __pet M S Z. =1, (3.15)
_ M. <M
N J EN
S; >8S |

De cette évaluation est obtenu I’ensemble H des UM élues pour héberger un QR.
Phase II : Chargement des QR

C’est la phase d’approvisionnement des QR en objets entreposés dans la base de
données du MSS. En effet, nous avons formulé que 1’assignation d’objets du MSS aux

différents QR désignés est donnée par la fonction objectif :

MinimiserZZCkyﬂ(Sujeta : ZFC(Ok)yjk <S. (jeH) (3.16)

jeH keD keD

50

Cette fonction objectif essaye de minimiser le colt d’affectation des objets du
MSS aux QR. Dans un tel contexte, un objet peut se retrouver assigné a un QR sans pour
autant étre populaire dans la région desservie par ce dernier. De la méme fagon, un QR
peut se retrouver uniquement chargé d’objets qui n’ont aucun intérét pour sa région.

Par ailleurs, ce probléme d’affectation n’est pas soluble de mani¢re exacte
lorsque la taille de la base de données du MSS est importante. L usage d’une méthode
approximative pour délivrer une solution requiert un temps de calcul non borné, alors
que la topologie du réseau est dynamique.

Pour contourner ces limitations du modele, nous utiliserons plutoét une approche
qui consisterait a évaluer pour chaque QR désigné, en fonction de son espace de

stockage S, disponible, le nombre d’objets populaires qu’il peut héberger.

Comment choisir donc les k objets les plus populaires de maniére a garantir un
pourcentage de succes élevé pour l’accés a ['information requise ?

La réponse a cette question, c’est-a-dire la valeur de k£ déterminera le nombre
d’objets que le MSS devra charger dans chaque QR.

Soit D ={Ol 1<is<M } I’ensemble des objets entreposés sur le MSS et accédés par

I’ensemble des UM durant un intervalle de temps Az. En effet, pour suivre 1’évolution de
la dynamique du réseau, le temps est découpé en intervalles égaux au cours desquels le

MSS regoit les requétes des usagers. La Figure 3.3 illustre cette situation.

Alt-D Alt) e A(t+n)

VA /A A

Figure 3.3 Occurrence des requétes dans le temps

La popularité des M objets entreposés sur le MSS est connue grice a la loi de

Zipf. Pour ce faire, déterminons le nombre d’acces aux & objets les plus populaires :

Soit N, le nombre d’accés concentrés sur [’ensemble des M objets du MSS. Le nombre

d’acces a I’objet O, est :

51

N,=N,-P
ou P est la probabilité d’acces a I'objet O, . Le nombre total d’acces aux k& objets les plus

populaires est donc de:

k k
Nior :zNi =N, ZR
i=1 i=I
Dans I’expression de la distribution de zipf

1

=7
KD

i=1 1

P,

Posons :
1 a

M K°
2

i=l l

a =

Faisant I’approximation que & est proche de 1 (€ =1), on observe que :

a= ouH, est le nombre harmonique d'ordre M tel que:
Hyy
1 1 1 1
Hy =—+t—+—+:- +—=InM
M 2 3
La probabilité d’acces a ’objet de rang k devient : P, = 1 ;
M

L’expression du nombre total d’acces sur les k objets les plus populaires devient :

H,
Nrr =N, - H
M
Le pourcentage de succes h (Hit Ratio) d’acces aux k objets les plus populaires est donné
par :
h - NT()T —_ Hk
Na HM

En fixant la valeur de A, la valeur de k peut étre choisie telle que :

52

Ink=h-InM = k=M’ (3.17)

Exemple : Pour M =1000 objets entreposés sur le MSS, pour atteindre un pourcentage de
succes de 80% aupres d’un QR, le MSS doit charger dans les QR ses 251 premiers
objets.
Phase III : Diffusion des QR

Cette phase est la plus importante. Le MSS, au lieu d’évaluer la fonction du

cott d’acces:

E z:cijxij sujeté-aSinjSﬁ (je H)

jieN\H © EeH ieN\H

ethg.:l - (ieN\H)

jeH

(3.18)

effectue plutét une diffusion de la liste des QR qu’il vient juste de désigner et
d’approvisionner. Nous adoptons plutot cette stratégie de diffusion pour :
e ¢viter au serveur de devoir assigner a chaque UM non désignée, un QR pour le
service de données ;
o réduire le temps de calcul quant a I’achévement de la procédure de désignation
des QR ;
e permettre a chaque UM d’effectuer un choix préférentiel dépendamment du
profil d'un QR.
Dans la liste de diffusion se trouve une description du profil de chaque QR de méme
que celui du MSS qui est également un QR. Le contenu de cette liste comporte les

champs indiqués a la Figure 3.4:

Adresse du QR | Coordonnées (X, Y, Z) | Vitesse | Nombre d’objets stockés

Figure 3.4 Profil d’un QR

Chaque UM, des réception de cette liste, crée une table dans laquelle sont
enregistrées les composantes de la liste diffusée. L"UM peut s’associer a un QR selon
des criteres tels que :

e la proximité du QR : I'UM calcule pour chaque QR, la distance les séparant ;

e [a vitesse du QR : UM peut décider de choisir un QR ayant une faible

vitesse relative par rapport a la sienne ;

e le nombre d’objets stockés : I"'UM peut décider d’acheminer ses requétes a un

QR stockant plus d’objets, parce qu’elle estime avoir plus de chance
d’obtenir une réponse.

Le QR répondant a I’un ou I’autre des criteres de choix de I'UM est celui choisi
par cette derniére. Toutes les requétes de I’'UM seront ainsi acheminées vers celui-ci.
Nous allons cependant privilégier le premier critére car il est celui qui garantit le délai
d’acces le plus court a la ressource requise. Lorsqu’une requéte de 'UM ne trouve pas
sa réponse aupres de son antémémoire, elle achemine cette requéte dépendamment du
rang de I’objet requis, au QR le plus proche. Autrement, I’'UM achemine la requéte au
serveur, en prenant soin d’inclure dans cette derniére, son profil actualisé (coordonnées,
vitesse). Le MSS peut donc effectuer a intervalle de temps une diffusion de la liste des

QR avec leur profil actualisé.

Nombre optimal de QR

La désignation des QR nécessite la connaissance du nombre optimal de QR
comme décrit par la contrainte (3.10) de la fonction objectif Fpg. Nous allons, dans cette
section, déterminer ce nombre optimal de QR tout en lui définissant une borne inférieure

et supérieure. Soit N le nombre de requérants a I’époque de désignation ¢, et k le
nombre de QR. En moyenne, % UM peuvent accéder a un objet sur un QR, y compris

ce dernier. La moyenne de I’espace de stockage total dans le réseau est :

54

ou S, est la moyenne de I’espace de stockage des QR et S, celle des UM. En

admettant que les UM disposent du méme espace de stockage, c'est-a-

dire S, =S,,, =S, on obtient la fonction de stockage :

7 (k)z(k +£Ig S (3.19)

On peut trouver le nombre de QR minimisant la fonction de stockage en faisant :

—a—g—g{—) =0 = k=N (3.20)

Le nombre optimal de QR &

. Peut étre choisi tel que

JN <k, <N (3.21)

up{ e
3.4 Mise en antémémoire

Les UM qui ne sont pas désignées QR entretiennent une antémémoire dont la
taille est identique a celle des QR. Lorsqu’une UM effectue une requéte, elle vérifie s’il
est possible d’obtenir cet objet aupres de son antémémoire. En cas d’échec, la requéte
est acheminée au QR le plus proche ou au serveur de données, dépendamment du rang
de I’objet requis. A la réception de la réponse, 1’objet est stocké en antémémoire avant
d’étre servi au requérant, suivant la politique de renouvellement. A cet effet, les données
stockées font I’objet de deux politiques de renouvellement : LRU (Least Recently Used)
et MFU (Most Frequently Used). La Figure 3.5 donne une esquisse du format d’un objet

stocké en antémémoire.

ObjetID | Objet | Horodate ObjetlD | Objet | Fréquence

(a) objet stocké avec LRU (a) objet stocké avec MFU

Figure 3.5 Format d’un objet stocké en antémémoire

55

Le champ ObjetID représente I’identifiant de 1’objet et est identique a celui de
I"objet stocké dans la base de données du MSS. Le champ Horodate identifie 1’époque a
laquelle I’objet a été stocke ou accédé dernierement. Il est mis a jour dans 1'un ou "autre
de ces cas, suivant qu’il existe déja ou qu’il est nouveau. Cette horodate est nécessaire
pour la mise en ceuvre du mécanisme de renouvellement LRU. Le champ Objet, quant a
lui, représente 1’objet proprement dit. Lorsqu'un objet se trouve déja en antémémoire,
tout acces futur a ce dernier occasionne la mise a jour du champ Horodate. Ainsi,
lorsque 1l’espace antémémoire est rempli, toute autre réponse y sera stockée en
remplagant le plus vieux des objets existants en antémémoire.

Dans le cas du mécanisme MFU, seuls sont stockés les objets dont la fréquence
d’acces est la plus élevée. Ainsi, lorsque I'espace alloué a I’antémémoire est rempli
d’objets, une nouvelle arrivée d’objets occasionne le remplacement de celui en
antémémoire ayant la plus faible fréquence d’accés.

Quant aux QR, lorsqu’ils effectuent une requéte, I’existence de I’objet requis est
vérifiée dans 1’espace de stockage dont ils disposent. En cas d’échec, la requéte est
acheminée au serveur de données. Ainsi, contrairement a une UM, un QR n’entretient
pas une antémémoire. Les objets de la base de données du serveur y sont stockés de
facon statique. Cependant, un QR est muni d’un mécanisme de compression de données
de facon a stocker plus d’objets qu’une UM. Dépendamment de I’algorithme de
compression de données utilisé, un QR pourra stocker deux a trois fois plus d’objets

qu’une UM.

3.5 Maintenance des QR

La mise en place des QR nécessite aussi une procédure de maintenance relative a
leur relocalisation. En effet, la perte d’'un QR est une faiblesse dont il faudra tenir
compte. Ainsi, di a leur réle de pseudo serveur de données, les QR sont appelés a
consommer plus d’énergie qu’une UM ordinaire. Ils peuvent donc disparaitre dans le
temps, de sorte qu’une procédure de relocalisation est nécessaire pour étendre le nombre

de QR, dépendamment de la topologie du réseau. Cette procédure de désignation de QR

56

doit donc étre évaluée périodiquement.

Une expansion du nombre de QR est effectuée dépendamment du nombre de QR

encore actifs. L’intervalle de temps entre deux évaluations doit étre assez large pour

permettre au MSS de faire un apprentissage de la topologie du réseau, a travers les

multiples requétes des usagers.

3.5.1 Période de localisation

L’exécution de la procédure de localisation des QR est une opération nécessitant la

prise en compte d’informations telles que :

1.

la localisation de I'UM (coordonnées géographiques) ainsi que sa vitesse qui sont
des parametres dynamiques, car variant avec le changement de topologie du réseau ;
de ce fait, le MSS entretient une table dans laquelle elle crée ou maintient a jour une
entrée pour chaque UM lorsque cette derniére effectue une requéte;

le nombre de requérants qui est un parametre important pour la détermination du
nombre de QR a installer; il est déterming par la taille de la table des UM entretenue
par le MSS. A chaque requéte d’une UM ayant déja une entrée dans la table, une
mise & jour de son profil est effectuée.

A quelles conditions s effectue la procédure de désignation des OR ?

Le MSS évalue a intervalle de temps préfixé, la dynamique de la topologie du

réseau, et déclenche la procédure de désignation dans chacun des cas suivants:

1.

2.

le nombre de requérants de 'intervalle de temps Af est supérieur a celui ayant servi
lors de la précédente désignation durant Ar-1. Soient N,, et N, les nombres de

requérants a chacun de ces intervalles de temps. Sachant que la désignation de QR
devrait réduire le nombre de requétes parvenant au MSS en distribuant la charge du

service de données sur les QR désignés, une désignation est déclenchée quand :

3.22
NaeZNag g (3.22)

le nombre de QR encore actifs a At ne vérifie plus :

k>N (3.23)

57

Remarque

Notons qu’a I’issue de chaque procédure de désignation, le MSS réinitialise la table
contenant le profil des requérants pour un usage futur, tout en maintenant une liste des
UM qu’il a auparavant désignée QR. Une esquisse du contenu de cette table est donnée

au Tableau 3.1.

Tableau 3.1 Profil des UM requérantes

Host Adresse CoordX CoordY Vitesse Energie Stockage Densité
UM1 192.128.0.1 800.00 200.00 Im/s 50mWhr 200KB 6
UM2 192.128.0.2 500.00 150.00 5m/s 30mWhr 100KB 2

Lors d’une procédure de relocalisation, une UM active désignée précédemment
QR garde son statut. Une relocalisation équivaudrait juste & une extension ou non du
nombre de QR précédemment désignés et encore actifs. En effet, un QR peut disparaitre
pour défaut d’énergie ou s’isoler du reste du réseau pour toutes autres raisons. Pour

maintenir une certaine marge quant au nombre de QR, nous allons choisir un optimum

a:
k,, =1.5JN (3.24)

Le systéme (QR+ UM+MSS) est un systéme asservi au nombre de QR, perturbé
par la défaillance des QR (manque d’énergie, indisponibilité, imprévisibilité etc.). La
réponse du systéme est représentée par le nombre de QR actifs dans le réseau en tout

temps. La Figure 3.6 représente le diagramme fonctionnel du systéme asservi.

58

Nombre de QR
désignés

Nombre de QR
actifs

Perturbation
(perte de QR)l

T

Figure 3.6 Diagramme fonctionnel du systéme asservi au nombre de QR

————- Systeme(UM+QR+MSS)

Une mise a jour du profil des QR est nécessaire pour maintenir la consistance du
positionnement géographique de ces derniers. Pour s’assurer de la présence des QR
désignés, le MSS maintient une table qu’il met & jour lors des requétes acheminées par
ces derniers.

Chaque QR désigné, en marge des requétes qu’il effectue, signale a intervalle de
temps sa présence au serveur de données en envoyant un message du type HELLO. Ceci
permet au serveur, en cas d’indisponibilité d’un QR, de détruire son profil dans la table
des QR de maniére a assurer une cohérence, quant au nombre de QR encore actifs dans
le réseau. Ainsi, le serveur peut, a des intervalles de temps prédéterminés diffuser la liste
des QR encore actifs dans sa table, aux UM qui, dés réception maintiennent également
leur table de QR a jour.

De la méme facon, lorsqu’un QR quitte un MSS pour un autre, il s’annonce a ce
dernier a I’aide du méme message HELLO. Ainsi, le serveur peut I’enregistrer dans sa

table de QR et le publier dans sa liste de diffusion.

Remarque

Un avantage de la réplication partielle est de permettre aux UM temporairement
déconnectées pour économiser de 1’énergie, de toujours accéder a des données valides
apres une reconnexion. Un QR tenant lieu de pseudo serveur de données connaitrait
rarement des périodes d’inactivité; la probabilit¢ qu’'un QR se déconnecte pour

économiser de 1’énergie est donc tres faible.

59

3.6 Compression de données

Nous avons montré plus haut que le pourcentage de succes d’acces a
Pinformation désirée augmentait avec la taille de I'espace de stockage. Ainsi, pour
augmenter ce ratio, la mise en place d’un mécanisme de compression efficace est
nécessaire. Lors de la procédure de chargement des QR, a cause du volume important
d’objets a transmettre et a stocker, nous utiliserons un algorithme de compression de
données existant tel que celui de Lempel-Ziv-Welsch (LZW). Notre choix s’est porté sur
ce dernier car ¢’est une méthode de compression indépendante de la nature de la source
a compresser contrairement a celui de Huffman qui doit d’abord faire une étude
statistique de 1’occurrence des caractéres avant codage. Pendant que la méthode de
Huffman compresse un texte avec un ratio de 20%, LZW compresse image et texte avec
un ratio de 40 a 60% [26]. Par conséquent, si nos objets sont des mélanges de textes et
d’images (comme c’est le cas pour les pages web), la compression LZW serait mieux
adaptée. Elle est d’ailleurs trés populaire et déja utilisée dans les utilitaires de
compression de données tels que Gzip et Winzip. Nous rappelons de maniére bréve le
principe de la compression LZW.

La méthode LZW consiste a remplacer par quelques bits, un mot, une phrase ou
méme un paragraphe entier. Ces bits sont constitués de maniére unique a l'aide d'un
dictionnaire créé au fur et a mesure que s’effectue le codage. On commence avec un
dictionnaire rempli avec tous les caractéres existants (0 a 255). Les nouveaux mots
ajoutés au dictionnaire commencent donc au numéro 256. Les pseudo-codes des
procédures de compression et décompression sont esquissés a la Figure 3.7. Les
notations utilisées sont les suivantes : @ est I’opérateur de concaténation; D représente
le dictionnaire des symboles rencontrés; s, t, u, a, b sont des variables.

Dans le processus de chargement des QR, au lieu de compresser les objets les uns
apres les autres, nous ferons plutdt une compression groupée des objets de maniere a
réduire le temps de chargement. Une fois regus par le QR, ces objets sont maintenus

compressés pour permettre le gain en espace de stockage.

60

s«—1% octet a1 octet; émettre a
tant que fichier non terminé faire tant que fichier non terminé faire
t<— octet suivant b« code suivant
u—sdt si be D alors s«<séquence(b)
siue D alors s<—u sinon s<—séquence(b) @ t
sinon émettre code(s) émettre (s)
D—Du{u} te— 1" octet de s
st D «Du{séquence(a) Dt}
émettre code(s) a—b
(a) pseudo code de la compression (b) pseudo code de la décompression

Figure 3.7 Algorithme de compression et de décompression LZW

3.7 Algorithmes

Dans cette section, nous faisons un résumé de la mise en ccuvre du modele, sous
forme d’algorithmes. Toutes les fonctionnalités relatives au MSS sont mises en ceuvre au
sein d’un agent servant d’intermédiaire entre ce dernier et les UM. Quant aux UM, elles
communiquent également avec le MSS par I’intermédiaire d’un agent mandaté pour

jouer soit le réle de QR, ou le simple role d”UM.

3.7.1 Agent du MSS

C’est I’entité de gestion des interactions avec le réseau de QR et d"UM. L’agent
du MSS dispose de trois temporisateurs : 1’'un dénommé TQOR pour évaluer la procédure
de localisation des QR, un autre dénommé TBR qui, a expiration permet la publication
du profil des QR et le dernier, TOUT, qui a expiration permet au serveur de s’assurer de
la disponibilité des QR précédemment désignés. La Figure 3.8 illustre 1’algorithme
régissant les fonctionnalités du MSS.

Par ailleurs, le MSS maintient en permanence dans le temps deux tables : une
table pour mettre a jour le profil des QR, qu’il diffuse a ’expiration du temporisateur
TBR ou a I’issue de la procédure de désignation des QR; une table pour mettre a jour le

profil des UM lorsque ces derniéres effectuent des requétes. Cette table est purgée a

61

I’issue de chaque procédure de désignation de QR. L agent du MSS incorpore aussi un

engin pour la gestion des interactions avec la base de données.

3.7.2 Agent de ’'UM

Son rdle varie dépendamment du fait que I’'UM est élue QR ou non. Dans son rdle de
QR, il gere I’espace de stockage réservé pour charger les données les plus populaires du
MSS, ainsi qu’un engin de compression et de décompression des données chargées.

Dans son réle d’UM toute simple, il geére I’espace de stockage réservé pour
I’antémémoire, et se contente juste d’acheminer ses requétes au QR le plus proche se
trouvant dans sa table (ORTable), ou au serveur. Cette table contient le profil des QR
recus de la diffusion faite par 1’agent du MSS. La Figure 3.9 donne un apergu de
I’algorithme régissant les fonctionnalités de 1’agent du c6té de I'UM.

Pour évaluer la fiabilit¢ du modéle que nous proposons, nous allons aborder
également les points suivants :

e mise en place d'un réseau ad hoc dans lequel aucune UM ne dispose

d’antémémoire ;

e mise en place d’un réseau ad hoc dans lequel toutes les UM disposent d’une

antémémoire ;

e mise en place d’un réseau ad hoc ou le schéma Greedy-S [17] décrit dans le

chapitre précédent est appliqué ;

e mise en place d’un réseau ad hoc dans lequel notre modele sera appliqué.

Cette évaluation se fera en termes de comparaison des différents schémas précités.

(A) Quand une requéte arrive
Si I'objet ObId est requis par un QR
Mettre a jour la table ORTable
Servir I’objet requis au QR
Sinon
Si I’adresse de I’'UM existe dans la table UmZTable
Mettre a jour la table UmTable
Sinon créer une entrée dans UmTable
Servir I’objet requis a I’'UM
Fin Si
Fin Si
(B) A I’expiration de TQR
N(t) = TailleDe(UmTable)

Si N(t)>N(t—-1)ouk <1.5/N()
Pour k :=1,...N(t) Faire
Evaluer la fonction objectif F,

Retourner min{ F, }
Désigner les QR
Pour j:=1,...|H| Faire
Charger les QR
Publier la liste des profils des QR désignés
Vider la table UmTable
Mettre a jour la table QRTable
Fin Si
(C) A Pexpiration de TBR
Publier la liste des profils des QR de la table QRTable
(D) A I’expiration de TOUT

Détruire le profil des QR devenus indisponibles, et diffuser 1a nouvelle liste

Figure 3.8 Algorithme exécuté par Pagent du MSS

(A) UM élue QR
a. Lorsqu’une requéte arrive
Si Objet se trouve dans QRStore
Servir Objet au requérant
Sinon
Effectuer la requéte de Objet au MSS
Fin Si
b. - Tant que le QR recoit un avis de chargement Faire
Décompresser Objet et récupérer-ObjetlD
Mettre Objet dans ORStore
c. Lorsque le OR recoit une réponse
Servir la réponse a I’application requérante

(B) LUM n’est pas élue QR
a. Lorsqu’une requéte arrive
Récupérer I’1D de I’objet requis
Si ID < NbreObjet
Retourner Padresse-du QR le plus proche dans QRTable
Acheminer la requéte de Objer a cette adresse
Sinon
Acheminer la réquéte au MSS
Fin Si
b. Lorsque le QR recoit le profil des QR élus
Si QRtable est vide
Créer une entrée pour chaque QR €lu
Sinon
Mettre & jourle profil de chaque QR dans QRrable
Fin Si
¢. : Lorsque 'UM récoit une réponse
Si CacheStore n’est pas plein
Si Objet existe dans CacheStore
Mettre a jour Objer
Sinon
Créer une entrée pour Objet dans CacheStore
Fin Si
Servir la réponse a I’application requérante
Sinon
Si Objet existe dans CacheStore
Mettre a jour Objet
Sinon
Supprimer 1’objet dont I’horodate est le plus ancien
Créer une entrée pour Objet dans CacheStore
Fin Si
Servir la réponse 4 ’application requérante
Fin Si

Figure 3.9 Algorithme exécuté par I’agent de PUM

64

CHAPITRE 1V

IMPLEMENTATION ET RESULTATS

Dans ce chapitre, nous allons procéder a 1’évaluation de performance du modele
proposé au chapitre précédent. Dans un premier temps, nous présenterons
I’environnement d’implémentation et de simulation ainsi que les détails des structures de
données utilisées par les algorithmes du modele proposé. Une fois cet exposé fait, nous
procéderons a la mise en place d’un plan d’expériences en définissant au passage les
métriques que nous utilisons pour 1’évaluation des performances du mod¢le. Enfin, outre
la présentation des résultats de simulations, nous effectuerons une analyse de ces
derniers et situerons les performances du modéele par rapport aux performances d’autres

solutions proposées dans la littérature.

4.1 Environnement d’implémentation et de simulation

Cette section donne une description de I’environnement de développement de

notre modeéle ainsi que les outils utilisés.

4.1.1 Environnement de développement

La plate-forme utilisée pour la mise en ceuvre de notre solution est du type PC.
C’est une machine munie d’un processeur Intel Pentium de 1.80 GHz et d’une mémoire
vive de 256 Mo, avec un systeme d’exploitation Windows XP. L’ éditeur Visual C++ 6.0
est utilisé pour la programmation et la compilation s’effectue avec 1’engin nmake faisant
partie de la suite Visual Studio .NET (2003) de Microsoft. La mise en place d’une base

de données a nécessité 'usage du systeme de gestion de base de données Microsoft

Access.

65

4.1.2 Le simulateur

Le simulateur utilisé est celui de Qualnet, congu en particulier pour les réseaux
sans fil. Il est développé a I’ Université de Californie a Los Angeles (UCLA) et se base
sur un langage de simulation parallele dénommé PARSEC (PARallel Simulation
Environment for Complex system) a événements discrets trés similaire au langage C.
Qualnet se présente sous la forme d’une architecture en couches, similaire a celle de
TCP/IP. La communication s’effectue uniquement entre les couches adjacentes a 1’aide
d’API prédéfinies. Puisque Qualnet est un simulateur & évenements discrets, la mise en
place d’un protocole s’effectue a 1’aide d’une machine d’états dont les transitions
s’effectuent a "occurrence d’éveénements; un événement est défini comme un incident
causant le changement d’état ou I’activation d’une action précise. Les cinq couches du
simulateur sont les couches Application, Transport, Réseau, Liaison (MAC) et Physique.
La couche Application est responsable de générer du trafic. Elle est particuliérement
intéressante pour I’implémentation de notre modele. La couche Transport garantit un
service de transmission de bout-en-bout aux protocoles de la couche Application. Les
protocoles TCP, UDP et RSVP-TE y sont implémentés pour les besoins de la couche
Application. La couche Réseau, quant a elle, implémente les protocoles de routage tels
que AODV (4d hoc On Demand Vector) et DSR (Dynamic Source Routing)
spécifiquement congus pour les réseaux ad hoc, ainsi que d’autres protocoles sur
lesquels nous ne nous attarderons pas ici. La couche MAC implémente plusieurs
protocoles de liaisons tels qu’lEEE 802.3, IEEE 802.11 et le CSMA. La couche
Physique assure un accés brut au canal de transmission et implémente un grand nombre
de modeles de propagation radio et de mobilité.

Le modeéle en couches du simulateur Qualnet permet d’intégrer facilement de
nouveaux protocoles. Chaque protocole exécute sa machine d’états dépendamment de la
couche a laquelle il est implémenté [27]. La Figure 4.1 présente une vue d’ensemble de

la structure d’une couche du simulateur.

66

Initialization
Y
Event 1
Event Event 1
> Dispatcher - Handler
’ Event 2 E\\
\ Finalization called
E‘ggt,; \\ automatically at
\ end of simulation

Finalization:
Print Statistics

Figure 4.1 Structure d’une couche du simulateur Qualnet

Chaque couche est implémentée comme un gestionnaire d’événement qui recoit
des événements sous forme de structure de données appelées messages contenant le type
d’éveénement ainsi que les informations assocides. Le gestionnaire d’événements
détermine alors le type d’événement puis en crée ou non un nouveau.

A chaque couche, un protocole est initialisé par une fonction qui regoit en entrée
les données relatives a son fonctionnement et effectue sa configuration. Ainsi, quand un
événement survient, le gestionnaire d’événements en détermine le type et effectue
1’aiguillage vers le protocole concerné. A la fin de chaque simulation, une fonction de
finalisation est appelée pour chaque protocole et pour chaque nceud pour I'impression
des statistiques. Un événement de fin de simulation est généré automatiquement pour
permettre la transition vers 1’état final des protocoles impliqués dans la simulation. En
résumé, chaque protocole doit implémenter les trois fonctions suivantes : une fonction

d’initialisation, un gestionnaire d’événements, et une fonction de finalisation.

4.2 Meéthodologie d’implémentation

Dans cette section, nous allons décrire les détails de I'implémentation du modele
proposé au sein du simulateur. Nous commencerons par justifier le choix de la couche

d’implantation du modéle, puis nous décrirons les structures de données utilisées.

67

4.2.1 Choix de la couche d’implémentation

Un type d’application comme celle de la mise en antémémoire est généralement
implanté au sein de la couche application du modele OSI. Ceci est déja le cas dans les
réseaux filaires, et se justifie par le fait que ce type d’application est reli¢ directement au
trafic des usagers, notamment d’Internet. Dans cette méme lignée, nous allons implanter
notre modéle dans la couche applicative du simulateur, sous forme d’agent mandaté pour
la gestion d’antémémoire au niveau de chaque UM. Serveur et client seront représentés

chacun par un agent pour I’exécution des taches afférentes a la mise en antémémoire.

4.2.2 Agent du serveur

La Figure 4.2 montre la structure interne de 1’agent du serveur.

Processeur
;. d'enregistrement des
um

Processeur
| derequétes
Processeur de
planification
et de désignation des .
QR I Base de données

Figure 4.2 Structure interne du serveur de données (MSS)

Il se compose d’'une Base de données Microsoft Access : une liaison ODBC
(Open DataBase Connectivity) permet la connexion avec la base de données par
I'intermédiaire de la fonction SrvagProcessQuery(Node* node, char* request,
SrvagData* dataPtr) représentant le processeur de requétes. Cette fonction sert 1’objet
requis en I’acheminant vers une queue de sortie dénommée outQueue. La Figure 4.3

donne un apercu de I’intégration de la base de données au simulateur.

i) Admmlstra!:ive Touls

Component Computey
Services Management { Pl Framework

iMicrosoft \NET Microsoft .NET Microsoft .NET Performance Services Telnet Server
Framework ... Framework .., Framework ... Administration

Brids, remmtes, and m&;gmas@peneatabase- 1.42K8 E My Computer J

(a) Ajout d’une connexion ODBC

&1 DDBC Data Sm.m:e Admmfslxatcr

Mictosoft dBase Driver {*.dbf]
Base Files - Word Miciosoft dBase WFP Driver [*.dbf]
{ DeluneCD Microsoft Access Driver (*.mdb]
? Excel Files Microsoft Excel Driver [xls)
Fichiers Excel Microsoft Excel Driver [*.xls]
! Microsoft FoxPro YFP Driver [*.dbf)
SOL Server
! B33 Microsoft Access Driver [*.mdb)
Visual FoxPro Database Microsoft Visual FoxPro Driver
1 Visual FoxPro T ables Microsoft Yisual FoxPro Driver

AnODBE User data Wltce S!:;mes inforrakion about haw to conrectto
the ndicated data provider. & U data source i only visible to you,
amicmmlybaused ori the curert o

(c) Sélection de la base de données.

Figure 4.3 Intégration de la base de données au simulateur

69

Cette base de données contient une table dénommée “Authorsl™ comprenant cing
champs, et répertoriant un total de 1000 objets de taille moyenne égale a 1 Ko. Un bref

apercu du contenu de cette table est donné a la Figure 4.4.

Numero| = A arPublisl| Companyblame |»

110 Minu Martin, Sherry J. 1994 AL PHA BOOKS

4 2 10 Minute Guide to &c 1-5676145-0-7 Townsend, Carl 1994 ALPHA BOOKS
) 3 for Windows 95 0-7397055-5-9 Davis, Lorraine G. 1995 QUE CORP
’ 410 Minute Guide to Ac 0-7897055-5-9 Wempen, Faithe 1995 QUE CORP

5 10 Minute Guide to Ac 1-5A76153-9-2 Ribar, John L, ; 1995 ALPHA BOQKS

6 10 Minute Guide to Ac 1-5676153-0-2 ('Hara, Shelley | 1995 ALPHA BOOKS

7 10 Minute Guide to Lo 1-5676140-7-8 Mullen, Rabert 1994 4L PHA BOOKS

8 10 Minute Guide to Lo 1-5676140-7-8 Freeland, Pat 1994 AL PHA BOOKS

9 10 Minute Guide to Lo 1-5676117-6-1 Meuhold, Eridk 3, 1993 ALPHA BOOKS

10 10 Minute Guide to Lo 1-5676117-6-1 :Barnes, Kate ’ 1993 ALPHA BOOKS

. 11110 Minute Guide to Pz 1-5676102-7-7 Jamberding, &lbert & 1992: AL PHA BOOKS

i -

Wl 5 o [fos] s 2007

Figure 4.4 Contenu de la table de 1a base de données

L agent du serveur intégre aussi une queue d’entrée dénommée /nQueue qui regoit
les requétes et les achemine a leur arrivée pour étre traitées par le processeur de requétes.
Une fois la requéte traitée par le processeur, la réponse est acheminée vers la queue de
sortie. Cette derniére dénommée ourQueue achemine les réponses aux requétes en les
préparant a la diffusion. Elle est parcourue a I’expiration d’un temporisateur. Le serveur
dispose aussi d’un temporisateur qui, a expiration de la période d’apprentissage de la
configuration du réseau, lui permet désigner les UM devant héberger un réplica de la
base de données. En effet, la période d’apprentissage représente 1’'intervalle au cours
duquel I’agent comptabilise le nombre d’UM requérantes. Durant cette période, 1’agent
crée une structure de données décrivant le profil de chaque requérant. Un engin de

compression et de décompression de données muni de ['utilitaire GZIP est utilisé pour

70

procéder au chargement des UM désignées QR. Il offre une efficacité de compression de
1/3.

Quant a la mise a jour du profil des requérants, une table dénommée UmTable est
utilisée. La librairie STL de C++ offre une souplesse quant a la manipulation des tables
par usage de conteneurs et d’itérateurs du type vector. Dans cette table sont enregistrées
les informations relatives a une UM, telles que ses coordonnées géographiques. sa
vitesse, la taille de sa mémoire ainsi que le nombre de voisins dont elle dispose. Pour la
mise a jour du profil des UM élues QR, une table dénommée QrTable est utilisée. Cette
table est servie dans la réponse a une requéte de 'UM. De cette fagon, chaque UM
dispose en tout temps du profil de chaque QR élu. La structure de données manipulée
par I’agent du serveur est illustrée a la Figure 4.5.

Cette structure de données posseéde des attributs qui définissent la configuration de
I’agent du serveur, a savoir son état state (émission, réception de données, libre), son
adresse NodeAddress, et le port d’émission/réception (Connectionld, protocol). Quant
aux attributs de position, de vitesse et de densité, ils sont indiqués par les variables
density, speed, xsource, ysource. Les attributs de type vector représentent les tables
manipulées par ’agent du serveur, pour le service des requétes. Il faut noter que chaque
requéte est identifiée par le triplet (Reqld, Req, ReqAddress) représentant respectivement
le numéro de D’objet requis, le libellé de la requéte ainsi que 1’adresse de 1'UM
requérante. Le reste des attributs représente ceux permettant d’effectuer la désignation

des QR a I’expiration du temporisateur 7QR.

71

(a) Structure de données du serveur

(b) Structure de données de I'UM

typedef struct struct_srvag str

int state;

int connectionId;

short sourcePort;

int protocol;
NodeAddress MSSAddr;
unsigned short seed[3];

int density;
double speed;
double xSource;
double ySource;

char req[MAX STRING LENGTH];
int ReqID;

NodeAddress RegAddress;

int CurrentUmTableSize;

int PreviousUmTableSize;

int CurrentQrTableSize;
float nextime;

vector <«<strings> UmTable;
vector <string> QrTable;
vector <strings> QrPreTable;
gueue <Message*> inQueue;
gueue. <strings> outQueue;
queue <string> RegQueue;
BOOL QRRegStart;

int QROpt;

int OptNow;
float speedF;
float cacheF;
float densityF;
string QrList;
} SrvagData;

(c) Structure de données d’antémémoires

typedef struct

{
char TimeStamp([12];
int ObjId;

char Objet [MAX_RESP_BUFF];

} ‘Cache;

typedef struct struct_umag str

int state;

short sourcePort;
int protocol;

int connectionld;

NodeAddress clientAddr;
NodeAddress MSSAddr;
clocktype sessionStart;
clocktype sessionFinish;
BOOL sessionIsClosed;
clocktype meanInterval;
clocktype startTime;
clocktype endTime;

double xSource;
double ySource;
double speed;

BOOL . IsQR;
BOOL QRSet;
BOOL stat;
BOOL RegStart;

char ‘type;

unsigned short seed[3];
char reqg[MAX RESP_BUFF];
chat TimeStamp[15];

int density;
int ReqID;

int Objid;

int ServerHit;
int QRHit;

int CacheHit ;
int NumOfReq;
int NumOfResp;
int CacheSize;

vector <NodeAddress> neighborTable;
vector <string> QrTable;

vector <string> QRStore;

gueue <string> QRgqueue;

vector <Cache*>CacheStore;

} ‘UmagData;

Figure 4.5 Structures de données

Procédure de désignation des QR

I existe une période d’apprentissage au bout de laquelle le serveur procede au

choix des QR. A cet effet, le serveur détermine le nombre optimal de QR, & partir du

72

nombre d’UM préalablement enregistrées dans la table UmTable, ceci a I’expiration de
la période d’apprentissage. Le format du profil de chaque UM enregistrée dans cette

table est représenté a la Figure 4.6.

ataPtr— density | dataPr—speed | dataPtr—CacheSize.

Figure 4.6 Structure de données du profil d’une UM enregistrée par le serveur

Par la suite, toute réponse a une éventuelle requéte se voit dotée aussi de la liste des
QR que le serveur vient juste de désigner. Il faut noter que les réponses aux requétes
sont compressées a 1’aide de 1'engin GZIP avant d’étre acheminées vers la queue de
sortie. Dés réception de la réponse, I'UM effectue une décompression de la réponse du
serveur, récupere la réponse utile puis effectue une mise a jour de sa table de QR dont le

format est illustré a la Figure 4.7.

Figure 4.7 Profil d’un QR enregistré par le serveur ou ’'UM

De cette fagon, I'UM obtient a chacune des réponses qu’elle regoit du serveur une
situation quasi-précise de I’emplacement des QR élus. Elle peut donc acheminer dés lors
ses requétes au QR le plus proche en calculant la distance les séparant. 11 faut
mentionner qu’avant d’envoyer sa requéte, que ce soit au serveur ou a un QR, 'UM
effectue une vérification de ’existence de ce dernier dans son antémémoire, ceci a I’aide
de la fonction CheckObjectinCache(Node* node, UmagData* dataPtr) .

Suivant le nombre d’objets chargés dans ledit QR et I'ID de 1’objet requis, 'UM
achemine sa requéte vers ce dernier. Le QR peut ainsi servir I'UM requérante depuis son
entrep6t. Quant au QR, chaque fois qu’il effectue une requéte, une vérification de
I’existence de l'objet est effectuée dans son entrepdt QRStore, ceci a I’aide de la
fonction CheckQRStore(Node* node,UmagData* dataPtr). Cette fonction retourne

I’objet si ce dernier se trouve dans I'entrepdt; sinon la requéte est acheminée au serveur.

4.2.3 Agentde I’'UM

Processeur
de requétes

==1H1

Figure 4.8 Structure interne de Pagent d’une UM

L’agent de I'UM, quant a Iuj s’articule autour de trois fonctions majeures,
comme décrites par la structure interne présentée 4 la Figure 4.8.

Gestionnaire d’antémémoire

Cette fonction est dédiée a I’antémémoire et au stockage des objets servis par le
serveur. Elle implémente les mécanismes de remplacement LRU et MFU. Pour cela,

chaque objet est mémorisé a I’aide de trois champs tels qu’indiqués par la structure de

données de la Figure 4.5. Le champ TimeStamps indique la derniére date & laquelle
I’objet Objet de numéro Objld a été sollicité. Un conteneur de type vecror est utilisé

pour mémoriser ces objets de type Cache*. Les régles régissant la mise en antémémoire

d’un objet sont résumées par I’esquisse de code présentée & la Figure 4.9,

static void MFU(Nodex node, UmagData* dataPtr)

{

if(dataPtr->CacheStore.size() < dataPtr—>CacheSizé)

CacheNewObject(node,dataPtr);

}
else
{
if(dataPtr->Frequency > min{dataPtr—>Frequency})
{
RemoveMinObject(node,dataPtr);
CacheNewObject(node,dataPtr);
}
1

(a) Politique de renouvellement MFU

74

static void LRU{Node* node,UmagData* dataPtr)

int id = CheckObjectInCache{node,dataPtr);

if (dataPtr->CacheStore.gize{) < dataPtr->CacheSize)

{

1f.(1d)
{
UpdateObject (node,dataPty) ;
}
else
{
CacheNewObject (node,dataPtr) ;
}
}
else
{
if(id)
{
UpdateObject (node;dataPtr) ;
}
else

RemoveOldObject {node,databtr);
CacheNewObject (node,dataPtr) ;

(b) Politique de renouvellement LRU

Figure 4.9 Esquisse de code des politiques de renouvellement de ’UM

Distribution de Zipf

Cette fonction implémente la distribution de Zipf et définit ainsi le motif d’acces
aux objets requis par 'UM. En effet, dans un fichier texte ‘requete.txt’, nous avons

formulé, pour tous les champs d’un objet, une requéte SQL de la forme :

Select OID, Title, ISBN,: Author; YearPublished,;
CompanyName from Authors where OID =.

75

Chaque UM, pour initier une requéte, génere un nombre entier a ’aide de la
distribution de Zipf dans I’intervalle [1,1000]. Une fois généré, ce nombre correspond au
numéro de la requéte que I"'UM lira dans le fichier de requétes.

Lé motif d’émission de la requéte suit une distribution de poisson dont une
implémentation est déja disponible dans le simulateur. L'UM émet la requéte en
appelant la fonction enter UmagTimerExpired(...) qui controle 1’émission des requétes de
fagon périodique, la période d’émission correspondant au temps entre deux requétes.

Réception de réponses

Une fonction dénommée enter UmagReceiveResponse() est appelée a chaque fois
que I’UM regoit une réponse du serveur. Elle implémente comme le serveur, un engin de
compression et de décompression de données utilisant 1’utilitaire Gzip. Lorsque 1"'UM
est €lue QR, elle entretient un fichier dans lequel sont stockés les objets chargés par le
serveur, et ceci sous format compressé. A taille de mémoire équivalente, une UM élue
QR stocke trois fois plus d’objets qu'une UM simple, & cause du mécanisme de

compression de données.

4.3 Plan d’expériences et de simulation

Dans cette section, nous effectuons la mise en ceuvre d’un plan d’expériences
pour évaluer les performances du modele proposé que nous dénommons QRScheme. En
marge de la configuration des scénarios et des différents paramétres de la simulation, le
plan d’expériences définit un certain nombre d’indices de performance que nous allons
mesurer en fonction de facteurs clés décrits plus loin. II faut mentionner qu’un seul

facteur sera varié a la fois.

4.3.1 Définition des indices de performance

Pour évaluer la performance du modele, nous allons le comparer a une
configuration sans mise en antémémoire (No Caching), a celle d’une mise en
antémémoire systématique (Caching) (ou toutes les unités disposent d’une mémoire

dédiée pour le stockage d’objets fréquemment accédés), et enfin avec le schéma Greedy-

76

S. Les indices de performance que nous avons retenus pour évaluer la performance du

modele sont :

le délai moyen d’accés : il représente le temps écoulé entre I’émission d’une requéte

par une UM et la réponse a cette requéte;

le débir efficace : si q,, désigne le nombre total de requétes effectuées par une UM

et g, le nombre de réponses obtenues avec succes, 1’expression du débit est

donnée par :

T = Zue .100% @4.1)
ql(ll

le Local Hit Ratio : il représente le pourcentage de requétes ayant trouvé une réponse

dans I’espace antémémoire d’une UM, comparativement au total des réponses

obtenues. Soit g le nombre de requétes ayant trouvé une réponse en

cache

antémémoire, 1’expression du Local Hit Ratio (LHR) est donnée par :

LHR = e 100% 4.2)
ql()l

le Server Hit Ratio (SHR) : il représente I’ensemble des requétes ayant trouvé leurs

réponses aupres du serveur de données.

Nous unifierons la dénomination de ces deux derniers indices sous celle plus simple de

Hit Ratio (HR).

4.3.2 Choix des facteurs

Les résultats des mesures effectuées avec les différents indices ci-dessus définis

seront donnés en fonction de six facteurs dont nous étudierons les effets sur le

fonctionnement du modeéle. Ce sont :

la densité ou encore le nombre de naeuds composant le réseau : ce facteur permettra
de déterminer le comportement du modéle lorsque le nombre de nceuds dans le
réseau augmente. Les niveaux de ce facteur seront choisis entre un minimum de 20

et un maximum de 80, ceci par pas de 10 nceuds ;

77

e la vitesse des nceuds pour délimiter les performances du modéle : le choix de ce
facteur tient au fait que la forte mobilité des nceuds crée une instabilité des liens. Ce
sera ainsi une maniere d’évaluer la réaction du modele aux perturbations causées par
cette instabilité. A cet effet, les vitesses MIN_SPEED et MAX_SPEED seront prises
dans I’ensemble V = {[0, 5], [5, 10}, [10, 15], [15, 20], [20, 25]} ;

e la taille allouée pour I"antémémoire d'une UM : ce facteur est choisi pour évaluer
I’'impact de la taille de 'espace antémémoire et de la réplication sur les indices
prédéfinis. En particulier, cette taille est exprimée comme une fraction du nombre
d’objets stockés dans la base de données. Elle sera choisie dans I’ensemble T = {2%,
3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%} ;

® la taille de la base de données choisie dans 1’ensemble {300, 400, 500, 600, 700,
800, 900, 1000} ;

o le facteur de Zipf (0) : puisque la distribution de Zipf est celle utilisée pour le motif
d’accés aux objets entreposés sur la base de données, il est nécessaire d’en varier le
coefficient 6 pour en évaluer I’influence sur le comportement du modele; il sera pris

dans I’intervalle [0,1] et ceci par pas de 0.2 ;

® le protocole de routage pour évaluer le comportement du modéle vis-a-vis du
protocole de routage : pour cela, nous allons tester le modéle avec un protocole
réactif tel que AODV (4d hoc On Demand Distance Vector) et un autre proactif,

nommément le protocole OLSR (Optimized Link State Routing Protocol).

4.3.3 Configuration de la simulation

Dans le cadre de notre série de simulations, nous considérons un réseau mobile
ad hoc distribué uniformément sur une surface de 600m x 600m. Les unités mobiles
(UM) utilisent une interface de communication sans fil de type 802.11b en mode ad hoc
avec un débit d’interface de 2 Mbps. Le protocole de couche MAC ne requiert pas
I’utilisation des messages RTS et CTS pour accéder au médium de communication. De
plus, I'usage de la méme technique d’accés au médium permet d’avoir une méme portée

de transmission, soit 50 métres. Par ailleurs, la propagation des signaux se fait suivant un

78

modele en espace libre. Le serveur est représenté¢ par un nccud fixe dont le débit
d’interface est de 11 Mbps avec une portée de transmission couvrant ’aire de
simulation. Le modele de mobilité choisi pour les simulations est le Random-Waypoint
déja largement utilisé dans la littérature, car approchant plus la réalité. En effet, dans le
modele Random-Waypoint, une unité mobile choisit une destination a I’intérieur de la
surface définie. Le déplacement de I'unité mobile en direction de sa destination se fait a
une vitesse constante choisie selon une distribution uniforme située entre MIN_SPEED
et MAX SPEED. Une fois que ’unité atteint sa destination, elle attend sur place pour un
temps déterminé par PAUSE TIME avant de choisir une nouvelle destination et de s’y
rendre. Deux variables permettent de contréler le mouvement des unités mobiles : la
vitesse v et la durée de la pause p. Les mesures sont prises lorsque I’antémémoire de
I’UM est remplie et que la politique de remplacement est en vigueur. En outre, dans le
cas du modele QR, les mesures sont effectuées aprés la désignation des QR et le

remplissage des antémémoires des UM non désignées QR.

Tableau 4.1 : Paramétres de simulation

Parameétres Valeurs par défaut Intervalle
Taille de la Base de données 1000 objets 300 -1000
Nombre de noeuds 60 20-80
Taille moyenne par objet 1k
Distribution des nceuds Uniforme
Temps inter requétes 10s
Distribution de Zipf 0 0.95 0-1
Taille des Réplica / Cache 2% de la base de données 1-10%
Modele de mobilité Random-Waypoint
Aire de simulation (m) 600 x 600
Débit (Mbps) 2
Portée de transmission (m) 50
Intervalle de vitesse (m/s) 0-5 0-5,5-10,10-15,15-20, 20-25
Temps de simulation (min) 20
Protocole de routage AODV AODV, OLSR

Dans le but d’approcher un intervalle de confiance de 95% dans les mesures,

nous effectuerons une série de 7 simulations pour chaque indice de performance. Le

79

Tableau 4.1 résume la configuration des principaux parametres utilisés durant les

simulations. Les facteurs qui varient d’une simulation a I’autre sont surlignés en gris.

4.3.4 Scénarios de simulation

Dans cette section, nous présentons deux scénarios clés qui font I’objet de nos
simulations.
Scénario 1 :

C’est le scénario de base. Un agent serveur est monté sur un seul nceud, dont la
vitesse est variable dans lintervalle [0,2] tandis que celle des autres nceuds est
maintenue variable dans 'intervalle [0, 5]. Le serveur est disposé dans un coin de I’aire
de simulation. Les autres nceuds mobiles, sont équipés d’un agent UM et leur nombre est
maintenu variable. La Figure 4.10 décrit cette configuration. Les UM non QR sont

représentées en blanc, celles élues QR sont représentées en bleu, et le serveur en rouge.

. Serveur UM . ar

Figure 4.10 Configuration du scénario de base

Dans le cas d’une mise en antémémoire simple (Caching) et du schéma Greedy-
S, les UM peuvent recevoir des réponses de leur antémémoire. Le délai de réponse est
ainsi considéré nul. Dans celui avec des QR actifs, les UM regoivent des réponses soit de
leur antémémoire, soit depuis le QR le plus proche ou encore a partir du serveur.
Lorsque le QR effectue lui-méme une requéte qui trouve sa réponse dans son espace de

stockage, le délai de réponse est considéré également nul.

80

Scénario 2 :

Comme le scénario précédent, la vitesse des nceuds est maintenue variable dans
I'intervalle [0, 10], tandis que celle du serveur est maintenue variable dans les intervalles
de I’ensemble R = {[0, 2], [2. 4], [4. 6], [6, 8], [8, 10]}. L’ objectif de ce scénario est
d’observer le comportement du modéle lorsque la vitesse du serveur augmente par

rapport a celle des autres nceuds du réseau.

4.4 Analyse des résultats de simulation

Les simulations visant a évaluer les performances du modele proposé sont, a
cette étape, achevées. Dans cette section, nous présentons les résultats obtenus en termes
de comparaison entre les différentes configurations implémentées Un grand nombre de
résultats étant généré, nous présentons ici ceux qui sont d’intérét pour comprendre le

comportement du modele.

4.4.1 Scénariol

Il s’agit du scénario de base. C’est le scénario le plus important. La vitesse des
nceuds est comprise entre 0 et 10 m/s, avec un temps de pause de 30 secondes. La vitesse
du serveur, est choisie entre 0 et 2 m/s avec le méme temps de pause que les autres

nceuds.

Délai moyen d’accés aux objets
Cet indice de performance est un indicateur de performance clé que nous
observons en fonction de tous les facteurs que nous avons définis plus haut. Ainsi, la

Figure 4.11 montre le délai moyen en fonction de la densité de nceuds dans le réseau.

81

—e— NoCaching & Caching Greedy-S QRScheme

Délai moyen [s]

20 30 40 50 60 70 80

densité [noeuds]

Figure 4.11 Délai moyen de réponse en fonction de la densité

On note, a partir des résultats illustrés a la Figure 4.11, que le délai d’acces aux
objets entreposés dans la base de données augmente avec la densité de nceuds dans le
réseau. L’allure de ces courbes presque réguliére peut étre approchée par une fonction de

la forme :

.- density [seconde] 4.3)

Délai =p-e

La réplication partielle (QRScheme) offre cependant des délais plus faibles,
comparativement aux autres schémas. En particulier, en effectuant une régression
exponentielle d’ordre 2 sur ces courbes, on obtient les résultats de la Figure 4.12 avec les
¢équations de la régression afférentes a chaque schéma. Le modéle proposé QRScheme
est donc plus performant comparativement aux autres configurations, a cause de son
coefficient a plus faible que ceux des autres. Avec la régression effectuée, il est possible
a partir de ces résultats, d’effectuer une liaison entre la configuration de mise en

antémémoire systématique et celle de la réplication partielle, telle que :

Aa = f(|/density) 4.4)

avec Aa représentant la différence entre les coefficients de mise en antémémoire

systématique et de réplication partielle.

82

— l\iloCiaicHirTg’r ;iﬂcraghiing Greedy-S —— QRScheme

0,08

Délai moyen [s]
o o o o o ©
o o o o o o
8 8 8§ & & =2

o
o

20 30 40 50 60 70 80

densité [noeuds]

Figure 4.12 Effet de la régression sur la variation de densité

La Figure 4.13 montre la variation du délai moyen en fonction de la taille allouée
a I'antémémoire d’une UM, TailleCache. Cette taille est exprimée en pourcentage de

celle de la base de données.

'——Caching = G

S - - QRScheme

Délai moyen [;

2% 3% 4% 5% 6% 7% 8% 9% 10%
TailleCache [%]

Figure 4.13 Variation du délai moyen en fonction de la taille de ’antémémoire

Ainsi, on note qu’avec I’augmentation de cette taille, le délai moyen d’acces aux
objets diminue et ceci de fagon réguliere. Cette situation est due au fait qu’il y a plus
d’objets stockés en mémoire. La stratégie QRScheme offre cependant des délais plus
faibles a cause d’objets obtenus par les nceuds auprés de QR qui leur sont plus proches.
En particulier, il est possible d’approcher cette tendance & 1’aide d’une régression

exponentielle d’ordre 2 telle qu’illustrée par la Figure 4.14.

—e— Caching = Greedy-S — — QRScheme

0,035
0,03
0,025
0,02
0,015
0,01
0,005

Délai moyen [s]

2% 3% 4% 5% 6% 7% 8% 9% 10%
TailteCache {%]

Figure 4.14 Effet de la régression sur la variation de la taille d’antémémoire

Le délai moyen d’accés aux objets diminue lorsque la taille allouée aux
antémémoires des UM croit. La taille de I'antémémoire a donc un effet significatif sur le
délai d’acces aux objets. La réplication partielle, elle, suit aussi cette méme tendance.

La Figure 4.15 montre, quant a elle, la variation du délai moyen en fonction de la
taille de la base de données. En effet, on observe que ce délai croit de maniére assez
lente lorsque la taille de la base de données augmente. La réplication partielle

(QRScheme) produit des délais moyens plus faibles.

-e—Caching -a-- Greedy-§ - - QRScheme

0.03

0.023

.02

0.015

001

Détal moyen [s]

¢.063

0 w L
300 400 200 600 700 800 900 1000
TaileBD {objets]

Figure 4.15 Variation du délai moyen en fonction de la taille de Ia base de données

La tendance de cette augmentation quasi réguliére illustrée a la Figure 4.16 est

telle qu’il est possible a I’aide d’une régression linéaire d’ordre 2, de I'approcher par la

fonction :

84
Délai = a - (BDSize)+p [seconde] 4.5)

Avec I'effet de cette régression illustrée a la Figure 4.16, la performance de QRScheme
par rapport aux autres schémas, peut étre expliquée par la pente plus faible de sa droite

de régression, et ceci lorsque la taille de la base de données augmente.

.~ QRScheme

Délai moyen [s]

300 400 500 600 700 800 900 1o0¢
TailleBD [objets]

Figure 4.16 Effet de 1a régression sur la variation de la taille de 1a base de données

La Figure 4.17 quant a clle, illustre le délai moyen en fonction de la vitesse des
nceuds. En particulier, les niveaux de vitesse pour les différents nceuds ont été choisis
dans six intervalles de vitesse V = {[0, 5], [5, 10], [10, 15], [15, 20], [20, 25], 25, 30. La

vitesse du serveur quant 2 elle est maintenue variable dans 'intervalle [0, 2].

-4~ l\]ﬁdﬁcﬁing B .Cacﬁihg Grreed‘y-S _

~—QRSceme |

; 0,035
0,03
0,025
0,02
0,015
0,01
0,005 |

Détai moyen [s]

0-5 5-10 10-15 15-20 20-25 25-30

Vitesse [m/s]

Figure 4.17 Variation du délai moyen en fonction de la vitesse des nceuds

Avec le temps de pause maintenu & 30 secondes, on note de nouveau une

performance du délai moyen dans le cas de la réplication partielle (ORScheme) par

85

rapport aux autres configurations. Cette performance peut étre expliquée par le fait que
dans leur mouvement, les nceuds se retrouvent souvent dans le voisinage d’un QR leur
assurant le service de données dans des délais courts. Cependant, on note que ’effet de
la variation du délai en fonction de la vitesse des nceuds est quasi-nul.

La mobilité des neeuds n’affecte pas de facon significative le délai moyen d’acces
aux objets de la base de données.

La Figure 4.18 montre la variation du délai moyen en fonction du facteur de Zipf.
Rappelons que ce facteur définit le motif d’accés des UM aux objets de la base de
données et est utilisé pour décrire les habitudes d’accés des usagers d’Internet aux
différents sites web. Lorsque ce coefficient croit, les acces des usagers se focalisent sur
les objets de rang plus faible. Avec la réplication partielle (QRScheme), ce coefficient est
mis a 1, de facon a répliquer sur les QR désignés par le serveur de données, les n
premiers objets de sa base de données. Grace a I’engin de compression, un QR peut
stocker trois fois plus d’objets que I’antémémoire d'une UM ordinaire. On observe que,
malgré la variation du facteur de zipf, la réplication partielle garantit toujours des délais
plus faibles que ceux des autres schémas. Cependant, pour des valeurs de ce facteur,
supérieures a 0.6, les délais sont nettement plus courts que pour les autres schémas.

Le facteur de zipf, lorsqu’il croit, affecte donc le délai d’accés des UM aux
objets d’une base de données en ce sens qu’il I'améliore en réduisant sa valeur.

Dans le motif d’accés aux serveurs web le facteur de zipf est mesuré égal a 0.98.

0,04
0,035
0,03
0,025 |
0,02

0,015

Détai moyen [s]

0,01

0,005

0 0,2 0.4 0,6 0,8 1
Facteur de Zipf

Figure 4.18 Variation du délai moyen en fonction du facteur de zipf

86

La Figure 4.19 montre la variation du délai moyen en fonction de la densité de
nceuds, avec 'usage du protocole de routage proactif OLSR. On note que les
performances obtenues avec le protocole AODV utilisé pour générer les résultats
précédents, ne sont plus les mémes. La réplication partielle, bien qu’elle soit meilleure
que la mise en antémémoire simple, ne garantit pas des délais plus faibles que le schéma
Greedy-S. Cependant, la tendance du délai quant a ’augmentation de la densité est la
méme que pour le protocole AODV. Cette tendance confirme ainsi une fois de plus que

le délai moyen d’acces aux objets de la base de données augmente exponentiellement

avec cette densité.

0,016
0,014

_ 002

P oot
. 30008
| ‘g 0,006
-
0,002

20 30 40 50 60 70 80

densité[noeuds]

Figure 4.19 Variation du délai en fonction de la densité de naeuds dans le réseaun

Débit efficace

Cet indice mesure le nombre de réponses obtenues avec succeés aux diverses
requétes effectuées. En effet, la Figure 4.20 montre la variation du débit efficace en
fonction de la densité des nceuds du réseau. On note que celui-ci, dans le cas de la
réplication partielle (ORScheme), est meilleur que le débit offert dans les autres cas et
augmente avec la densité de nceuds dans le réseau. Cette amélioration est beaucoup plus

visible lorsque cette densité est supérieure a 40 nceuds.

87

QRScheme |

Débit efficace [%]

20 30 40 50 60 70 80

densité [noeuds]

Figure 4.20 Variation du Débit efficace en fonction de la densité

La Figure 4.21 montre la variation du débit efficace en fonction de la vitesse des
nceuds. Cette mesure est faite dans le but d’estimer comment le modele de la réplication
partielle réagit aux perturbations causées par la mobilité incontrolable des nceuds. En
effet, le débit efficace connait aussi une dégradation progressive avec 1’augmentation de
la vitesse des nceuds comparativement au schéma Greedy-S. Cette baisse est prononcée
lorsque la vitesse des nceuds est supérieure & 10 m/s (équivalent de la vitesse d’une
voiture). Elle peut s’expliquer par le fait que la forte mobilit¢ des UM occasionne des
ruptures fréquentes de liens durant le service de données par les QR. Cependant, le débit
efficace reste meilleur comparativement au schéma Caching
La vitesse des neeuds a donc un effet perturbateur sur le modéle, en ce sens qu’elle

affecte le Débit efficace en la diminuant de fagon prononcée et ceci, lorsqu ’elle croit.

7@ Nﬁ Caching @ Cachi;gj 0 Greedy-S thcheme

Débit efficace [%)

05 5-10 10-15 15-20 20-25 25-30

Vitesse [m/s]

Figure 4.21 Variation du Débit efficace en fonction de la vitesse des neeuds

88

La Figure 4.22 montre la variation du D¢ébit efficace en fonction du facteur de
zipf. On note a partir de ces résultats que la réplication partielle de données
(ORScheme), améliore le débit efficace par rapport a la mise en antémémoire simple
d’au moins 2% en moyenne et ceci, lorsque ce facteur croit. Un maximum de débit est
obtenu lorsque ce facteur est égal a 1.

Le Débit efficace est meilleur pour des valeurs élevées du facteur de zipf (typiquement

supérieures a 0.6), et plus particulierement avec une réplication partielle de données.

L;mrbﬁac'ﬁinig @ Greedy-S @ QRScheme

ébit efficace [%]
w

D
©
s

0 0,2 0,4 0,6 0.8 1
Facteur de Zipf

Figure 4.22 Variation du Débit efficace en fonction du facteur de zipf

La Figure 4.23 quant a elle montre la variation du Débit efficace en fonction de
la taille de I’antémémoire d’une UM. Elle montre que le débit efficace augmente avec la
taille allouée a I’antémémoire. Intuitivement, ce résultat est prévisible car plus d’objets
sont stockés en antémémoire au sein de chaque UM. Cependant, la réplication partielle
offre de meilleurs résultats du débit efficace, comparativement aux autres schémas. Cette
amélioration est en moyenne de 1.5% lorsque la taille de 1’antémémoire représente
moins de 7% de celle de la base de données et de 0.4% pour des valeurs supérieures ou

égales a 7%.

89

Céchrng B Greedy-S 2 QRScheme

©

Débit efficace [%]

TailleCache [%]
Figure 4.23 Variation du Débit efficace en fonction de la taille de ’antémémoire

La Figure 4.24 montre la variation du débit efficace en fonction de la taille de la
base de données. De nouveau, le débit offert par la réplication partielle de données est
meilleur, malgré la taille croissante de la base de données. Cependant, il décroit pour
tous les schémas avec 1’augmentation de la taille de la base de données. Ceci est
intuitivement prévisible, car le nombre d’objets populaires est plus important, si bien

que ’espace réservé pour les stocker en antémémoire n’est plus suffisant.

@ Caching B Greedy-S @ QRScheme |

300 400 500 800 700 800 900 1000
TailleBD [objets]

Figure 4.24 Variation du Débit efficace en fonction de la taille de la Base de
données

La Figure 4.25 montre la variation du D¢bit efficace en fonction de la densité de
nceuds dans le réseau, et ceci avec le protocole de routage proactif OLSR. On observe ici
une dégradation significative du débit efficace lorsque la densité de nceuds dans le
réseau augmente. Cette situation peut s’expliquer par le fait qu’il y a un nombre de plus

en plus croissant de messages échangés pour que les nceuds apprennent la topologie du

90

réseau. Donc, cette baisse de performance progressive est imputable au trafic de

signalisation du routage.

aiN'frJéaching B Caching 0 Greeedy-$ QRSchehe

Débit efficace[%]

20 30 40 50 60 70 80
densité [noeuds]

Figure 4.25 Variation du Débit efficace en fonction de la densité (OLSR)

Hit Ratio

Cet indice de performance décrit le pourcentage de réponses obtenues avec
succes soit aupres de I’espace antémémoire, soit auprés du serveur de données. La

Figure 4.26 montre la variation du Hit Ratio en fonction de la densité de nceuds dans le

réseau.

‘& Caching WGreedy-S mQRScheme | | . BCechng B Greedy-S | QRScheme

Local Hit Ratio [%]

20 30 40 50 60 70 80 : 20 30 40 50 60 70 80
densité [noeuds] L densité [noeuds]

Figure 4.26 Variation du Hit Ratio en fonction de la densité

En effet, on note qu’en moyenne 30% des réponses obtenues avec succeés ont été
servies depuis I'espace antémémoire comme l'indique le Local Hit Ratio, pour les
schémas QRScheme et Greedy-S. En revanche, ce taux est plus faible dans le cas de la
mise en antémémoire systématique ou seulement 17% en moyenne des réponses
obtenues avec succes sont servies depuis 1’antémémoire. Cela peut s’expliquer par le fait

que la politique de renouvellement MFU utilisé pour les configurations QRScheme et

91

Greedy-S, garantit un meilleur acces aux données avec 'usage de la fréquence d’accés a
ces dernicres.

Par ailleurs, la charge du serveur dans la configuration de la réplication partielle
comme le montre le Server Hit Ratio, est beaucoup plus faible comparativement aux
autres configurations. En moyenne, cette charge est réduite de 15% par rapport au
schéma Greedy-S et de 25% par rapport 4 la mise en antémémoire systématique
Caching.

La réduction de la charge au niveau du serveur est comblée par le service de
données assur¢ aussi par les QR préalablement désignés. La réplication partielle offre
donc un avantage certain quant a la réduction du coit d’acces des UM aux objets de la
base de données. Une bonne partie des objets (25% en moyenne) est servie depuis les
QR.

La réplication partielle de données dans un réseau ad hoc réduit la charge au
niveau du serveur de données, mais pourrait causer plus rapidement la défaillance en
énergie de ['UM élue QR a cause de son réle de pseudo-serveur.

La Figure 4.27 montre la variation du Hit Ratio en fonction du facteur de zipf qui

’affecte particuliérement.

' Caching @ Greedy-S & QRScheme L 8 Caching B Greedy-S B QRScheme.

100
90
80
70
60
50
40
30
20
10

: ‘ 0
0 02 04 06 08 1 : 0 0

Server Hit Ratio [%]

Local Hit Ratio

0,4 0,6 08 1
Facteur de Zipf Facteur de Zipf

Figure 4.27 Variation du Hit Ratio en fonction du facteur de zipf

En effet, lorsque ce facteur croit, le Local Hit Ratio croit de fagon exponentielle,

tandis que le Server Hit Ratio connait I’effet inverse. La charge au niveau du serveur,

décroit plus rapidement avec I’augmentation de ce méme facteur dans le cas de la
réplication de données que pour les autres configurations.

Lorsque ce facteur est nul, correspondant a un motif d’accés régi par une
distribution uniforme, on ne note aucune amélioration vis-a-vis des autres schémas. A
I’inverse, lorsqu’il est égal a 1, correspondant a un motif d’acces régi par une
distribution comportementale de zipf, non seulement la charge du serveur est réduite de
facon drastique, mais encore plus d’objets sont servis depuis les QR et 1’espace
antémémoire.

Pour les faibles valeurs de ce facteur (entre 0 et 0.6 exclusivement), le serveur est
largement sollicité de telle sorte que, méme une réplication partielle n’en réduirait pas la
charge de fagon significative.

La réplication partielle dans les réseaux ad hoc est donc bénéfiqgue seulement
pour des valeurs plus élevées du facteur de zipf (0.6 a 1).

La Figure 4.28 montre la variation du Hit Ratio en fonction de la taille allouée a

I’antémémoire de I’UM.

Caeﬁiﬁé [} Gréedy;S ® QRScheme Caching B Greedy-S @ QRScheme

Server Hit Ratio[%]

2% 3% 4% 5% 6% 7% 8% 9% 10%
TailleCache [%]

2% 3% 4% 5% 6% 7% 8% 9% 10%

TailleCache [%]

Figure 4.28 Variation du Hit Ratio en fonction de la taille de I’antémémoire

L’effet de I’augmentation de cette taille est significatif. En effet, lorsque la taille
de lantémémoire croit, le pourcentage de succeés, que ce soit au niveau de
I’antémémoire que des QR, croit de fagon réguliere. Cela est di a I’augmentation du
nombre d’objets populaires stockés dans cet espace. L’effet sur la charge au niveau du

serveur est net, car cette derniére décroit régulierement avec I’augmentation de I’espace

antémémoire; moins de requétes sont donc acheminées au serveur. Ces allures réguliéres

peuvent étre approchées respectivement pour le LHR et le SHR, par une fonction de la

forme :

LHR =% -+/CacheSize [%] (4.6)
SHR=c-LHR [% 4.7)
En outre, la charge du serveur dans le cas de la réplication partielle est réduite grace au
service de données assuré par les QR.

La réplication partielle est encore meilleure lorsque la taille de [’espace
antémémoire augmente. Plus d’objets peuvent étre répliqués.

La Figure 4.29 montre la variation du Hit Ratio en fonction de la taille de la base

de données.

Caching @ Greedy-S @ QRScheme :

35

Local Hit Ratio [%]
Server Hit Ratio [%]

0 & /,I,/:zr /§’ B 1 i 4 %
300 400 500 600 700 800 900 1000 ‘ 300 400 500 600 700 800 900 1000

TailleBD [objets] TailleBD [objets]

Figure 4.29 Variation du Hit Ratio en fonction de la taille de la base de données

Cette variation est significative sur le Hit Ratio. En effet, pour tous les schémas,
on note que lorsque le nombre d’objets de la base de données augmente, de moins en
moins d’objets sont servis localement depuis 1’espace antémémoire car il y a plus
d’objets populaires qui ne peuvent étre stockés a cause de la restriction imposée par la
taille de cet espace. C’est ce qui explique la diminution exponentielle du Local Hit
Ratio. Dans la méme logique, puisqu’il y a moins d’objets servis depuis 1’antémémoire,
la conséquence est que ces objets sont servis soit par le serveur (dans le cas des schémas

Caching et Greedy-S) soit par les QR (dans le cas de QRScheme); ceci explique

94

I’augmentation réguliére mais trés lente du Server Hit Ratio. Cependarit, avec la
réplication partielle, la charge du serveur est largement moindre que celle des autres
schémas.

L’augmentation de la taille de la base de données réduit ['efficacité de la réplication
partielle si la taille de ['espace antémémoire n’est pas augmentée. Il faudra donc
dimensionner cette taille de maniére a réduire la charge du serveur d’un pourcentage
bien déterminé.

La Figure 4.30 montre la variation du Hit ratio en fonction de la vitesse des

nceuds.

S e e — 79:; Cach];\g @ Greedy-S ® QRSChen{e
& Caching @ Greedy-S @ QRScheme B — T "
35
30
25
20
15
10

Local Hit Ratio [%]
Server Hit ratio {%]

0-5 56-10 10-15 15-20 20-25 25-30
Vitesse [m/s]

Vitesse [m/s]

Figure 4.30 Variation du Hit Ratio en fonction de la vitesse des neeuds

Comme pour le délai, on note que, malgré la mobilité incontrélable des nceuds
liée a l’augmentation de leur vitesse, le Hit Ratio ne connait aucune variation
significative. Cette situation s’explique par le fait que chaque nceud n’obtient de réponse
que de lui-méme ou du serveur (dans le cas des schémas Caching et Greedy-S). En
revanche, dans le cas du schéma QRScheme, puisque la charge du serveur est constante
malgré cette augmentation de la vitesse, cela montre que les UM non QR, dans leur
mobilité se sont souvent retrouvées proches de QR. Ceci a garanti cette stabilité de

réduction de la charge du serveur de 15% en moyenne par rapport au schéma Greedy-S.

4.4.2 Scénario 2

L’objectif de ce scénario est d’évaluer I’aptitude du modéle a résister a la
mobilité incontrolable du serveur de données, puisque des résultats précédents du débit

efficace ont montré une dégradation de ce dernier lorsque la vitesse des UM est

95

supérieure a 10 m/s. Dans cette optique, nous avons fixé pour les nceuds, une fenétre de
vitesse [0, 10] dans laquelle nous faisons varier une fenétre de vitesse pour le serveur
d’un pas de 2 m/s. La Figure 4.31 montre la variation des indices de performances avec

cette nouvelle situation.

ing --#--Caching
Greedy-S

i“uN'oégthér @ Caching
~— QRScheme! ; : DO Greedy-S @ QRScheme

98
96
94
92

Délai moyen [s]

90

Débit efficace [%]

88 . - . .
0-2 2-4 4-8 6-8 6-10

Vitesse [m/s]

| 0-2 2-4 4-6 6-8 6-10
Vitesse [m/s]

C;(;ﬁihg & Greedy-S @ QRScheme . I
— T T imCaching & Greedy-S @ QRScheme

T —
& £
- [+ 4
z £
g 5
S 2

3 |

0-2 2-4 4-6 6-8 610 1

Vitesse {m/s] Vitesse [m/s] ;

Figure 4.31 Variation des indices de performance en fonction de la vitesse du
serveur

Ces résultats montrent une fois de plus que la vitesse du serveur n’a aucune

influence notable sur les indices de performance définis.

4.5 Synthése des performances

Suite & cette phase d’analyse des résultats, une synthése des résultats obtenus
s’impose pour situer la solution proposée. Les résultats satisfont dans I’ensemble aux
objectifs préfixés de réduction du coiit d’accés aux objets ainsi que ’augmentation du
débit efficace, ceci sur I’ensemble des facteurs choisis pour [’évaluation des
performances. Ces derniéres sont bonnes, comparativement a la mise en antémémoire

classique et la stratégie Greedy-S proposée dans la littérature. En effet, le délai moyen a

96

un comportement qu’on peut prédire avec 1’augmentation du nombre d’unités mobiles
dans le réseau. 1l est plus faible dans tous les cas de figure pour la réplication partielle,
comparativement aux autres schémas étudiés. D’autre part, la charge du serveur s’est
vue réduite de 30% en moyenne par rapport a la mise en antémémoire systématique et de
15% par rapport a la stratégie Greedy-S. Cette charge est distribuée sur I’ensemble des
entités hébergeant des réplicas de données du serveur. Quant au Débit efficace, il subit
une amélioration de 2% en moyenne sur 1’ensemble des cas considérés.

En somme, nous pouvons affirmer que 1’évaluation des performances met en

lumiére la validité de notre approche adoptée pour assurer 1’accés aux données dans un

réseau ad hoc, a moindre coft.

97

CHAPITRE V

CONCLUSION

Dans ce mémoire, nous avons traité du probléme de la mise en antémémoire de
données dans les réseaux ad hoc. Nous avons proposé une stratégic basée sur la
réplication partielle de données. Il faut mentionner que I’objectif principal de la mise en
antémémoire est de réduire les cofits d’acces aux objets d’une source de données distante
et d’améliorer le taux de succes d’accés a I'information désirée. La mise en antémémoire
est la stratégie la plus courante, que ce soit dans les réseaux filaires que ceux ad hoc. Par
contre, la réplication de données, méme si elle est largement utilisée dans les réseaux
filaires, sa mise en place dans les réseaux sans fil et plus particuliérement ceux ad hoc,
constitue un défi. Dans ce chapitre, nous allons faire une synthése des travaux réalisés.
Nous allons également présenter les limites de la stratégie que nous avons proposée ainsi

que quelques pistes pour des travaux futurs dans le domaine.

5.1 Synthése des travaux

Le probléme de la mise en antémémoire dans les réseaux ad hoc consiste a doter
les unités mobiles d’un espace de stockage leur permettant de mémoriser les données
auxquelles elles accédent fréquemment. Le premier objectif de cette méthode est de
réduire les colts d’acces a ces données souvent entreposées sur un serveur distant. Le
deuxiéme objectif est d’augmenter le taux de succés d’acces a I'information requise par
les unités mobiles. Ces objectifs usuellement fixés pour les réseaux filaires sont, a
travers notre recherche, appliqués aux réseaux ad hoc a I’aide d’une stratégie basée sur
la réplication partielle de données. Avant d’aller plus loin, il faut mentionner que les
travaux de la littérature sur la réplication de données dans les réseaux ad hoc sont rares,
sinon presque inexplorés.

Dans ce mémoire, nous avons propos¢ une combinaison des techniques de mise

en antémémoire classique avec la réplication de données pour atteindre les objectifs cités

98

précédemment. Ainsi, nous avons proposé une architecture dans laquelle sont choisies
des unités mobiles disposant d’un profil bien déterminé sur lesquelles seront entreposés
des réplicas partiels de données hébergées par une source distante, tandis que les autres
se contenteront d’un espace de stockage muni d’une politique de renouvellement MFU
(Most Frequently Used). Nous avons défini ce profil comme étant un ensemble de
parametres tels que la vitesse de 1'UM, son degré de connectivité, 1’énergie dont elle
dispose, ainsi que son espace de stockage. Nous avons esquissé une formulation
mathématique de ce probléme de réplication partielle de données en mettant un accent
particulier sur les contraintes dont font I’objet les unités mobiles ainsi que le réseau ad
hoc qu’elles constituent.

De facon spécifique, nous avons formulé qu'une unité mobile destinée & héberger
un réplica partiel de données du serveur distant devra disposer d’une vitesse en dessous
de la moyenne pour garantir une stabilit¢ relative quant a4 son positionnement
géographique. Elle doit également disposer d’un degré de connectivité au-dessus de la
moyenne, pour mettre les données répliquées dont elle dispose au service d’un grand
nombre d’unités mobiles. En outre, elle devra disposer d’une énergie au-dessus de la
moyenne pour préserver son indisponibilité prématurée. Par ailleurs, afin d’assurer un
stockage consistant de données, des mécanismes de compression sont mis en place pour
permettre aux unités mobiles hébergeant des réplicas de stocker trois fois plus d’objets
qu’une unité mobile ordinaire, et ceci a espace de stockage égal.

La formulation mathématique du probléme effectuée, sa résolution ne peut se
faire avec une méthode de résolution exacte. En effet, la mobilité anarchique des entités
du réseau ne peut permettre au serveur d’assigner de fagon définitive dans le temps une
unité mobile & une autre hébergeant des réplicas sans que la topologie du réseau n’ait
changé entre temps. D’autre part, le serveur ne peut assigner des objets bien précis de sa
base de données a une unité mobile bien précise choisie pour héberger des réplicas de
données. Cette difficulté est aussi liée a I’éventualité que la densité d’unités mobiles

dans le réseau change et peut augmenter démesurément.

99

Fort de ces restrictions liées aux comportements intrinséques des réseaux ad hoc,
nous avons adopté une approche coopérative impliquant la collaboration du serveur, des
unités mobiles et des unités mobiles hébergeant des réplicas de données. Trois phases
sont exécutées pour effectuer la réplication partielle sur des UM clés. Durant la premiére
phase, le serveur lors du service des requétes d’unités mobiles effectue un apprentissage
de la topologie du réseau et choisit les unités mobiles devant héberger des réplicas,
suivant un profil d’¢ligibilité décrit par les paramétres mentionnés plus haut. Durant la
deuxiéme phase, le serveur procéde au chargement des unités choisies en données
populaires, puis dans la derniére phase, effectue une diffusion de la liste des unités ¢lues
ainsi que leurs coordonnées géographiques. Les unités mobiles non choisies évaluent
leur proximité avec I’'unité mobile la plus proche hébergeant des réplicas de données du
serveur. De cette facon, le colit d’acces a un objet est évalué par I'unité requérante avant
d’acheminer sa requéte.

Pour tenir compte des habitudes des usagers pour ’accés aux données, nous
avons utilisé la distribution de zipf qui décrit le comportement d’accés des usagers aux
pages des serveurs web. En effet, cette distribution déja utilisée pour évaluer la
popularité des pages web est appliquée au modele proposé.

Nous avons aussi déterminé une borne inférieure pour le nombre d’unités
mobiles susceptible d’étre choisies pour la réplication. Pour avoir la garantie d’atteindre
les objectifs de minimisation de délai et d’augmentation du débit efficace, nous avons
modélisé I'ensemble du réseau et ses entités comme un systéme asservi au nombre
d’unités mobiles optimales pour la réplication partielle de données. Ainsi, un mécanisme
d’expansion est mis en place pour remplacer toute unité hébergeant des réplicas en cas
de défaillance.

La compression de données est utilisée pour réduire le temps de réplication des
données et augmenter le nombre d objets stockés sur les unités mobiles choisies pour
héberger les réplicas du serveur de données.

L’ensemble du modele que nous avons dénommé QRScheme a fait I’objet d’une

comparaison avec le modele de mise en antémémoire systématique dans lequel toutes les

100

unités mobiles disposent d’un espace antémémoire, d’une configuration dans laquelle il
n’existe aucun mécanisme de mise en antémémoire ou de réplication de données et enfin
d’une configuration existant dans la littérature. Pour évaluer les performances du modéle
de réplication partielle de données que nous avons proposé, nous avons implémenté et
simulé le modeéle, ainsi que les configurations de comparaison au moyen d’un simulateur
pour réseau sans fil.

De prime abord, nous avons implémenté la configuration sans aucun mécanisme
de mise en antémémoire ou de réplication de données. Par la suite, nous avons
implémenté le modele de mise en antémémoire et celui existant dans la littérature, et
enfin, le modele de réplication partielle de données.

Des indices de performance ont été définis ainsi que des facteurs qui influencent
le modele. Les variations de ces facteurs a travers des niveaux préfixés ont fourni un
ensemble de résultats montrant la performance du mode¢le de réplication partielle de
données, comparativement aux autres configurations étudiées. Dans la majeure partie
des cas étudiés, le délai moyen d’acces aux objets est nettement réduit, et le débit
efficace amélioré. De plus, la charge du serveur est considérablement réduite et
distribuée sur I’ensemble des unités mobiles hébergeant des réplicas de données du
serveur. La mise en antémémoire n’est donc plus forcément la meilleure stratégie de
partage de données dans les réseaux ad hoc. La réplication de données jusque-la quasi
inexplorée dans les réseaux ad hoc est donc une stratégie dont ’'usage est a approfondir

dans ces types de réseaux.

5.2 Limitations des travaux

En dépit des résultats intéressants obtenus avec la stratégie de réplication
partielle de données proposée dans ce mémoire, il persiste certaines limitations sur
lesquelles nous mettons I’emphase. En effet, les résultats obtenus qui assurent la
performance de la réplication partielle de données par rapport aux autres schémas sont
générés avec 1’usage d’un protocole de routage réactif, nommément AODV. Les mémes

expériences effectuées avec un protocole proactif tel qu’OLSR produisent une

101

dégradation de performance de la stratégie de réplication proposée en ce qui concerne le
délai moyen d’accés aux objets. Donc, le probléme du routage constitue toujours un
goulot d’étranglement dans les réseaux ad hoc. Le modéle de réplication partielle
proposée, n’est donc pas indépendant du protocole de routage utilisé. Il faudra donc,
pour le rendre indépendant du protocole de routage, effectuer des améliorations en
tenant compte des réalités du routage dans les réseaux ad hoc. D’autre part, lorsque les
nceuds du réseau deviennent trés mobiles, on note également une dégradation du débit

efficace au-dela d’une certaine valeur (typiquement 10 m/s) de la vitesse de ces nceuds.

5.3 Travaux futurs

Nous avons proposé une stratégie de réplication partielle de données combinée
avec la mise en antémémoire classique. Cependant, il reste a appliquer les mécanismes
d’invalidation d’antémémoires et a réaliser la mise en place de mécanismes de mise a
jour des données répliquées sur les unités mobiles choisies.

Il importe aussi de rendre le mécanisme de gestion des pannes de QR plus rapide,
pour réduire le temps de dégradation des indices de performance.

Une autre indication de recherche future, serait d’étudier et de concevoir un
vivier des mécanismes de remplacement d’objets stockés en antémémoire pour
augmenter davantage la probabilité d’acces aux objets requis par les UM. On pourrait
envisager par exemple de combiner plusieurs de ces mécanismes de remplacement
d’objets suivant le mode de fonctionnement de 1'UM (libre, déconnecté, etc.). De
maniere spécifique, un mécanisme de remplacement efficace combiné avec la réplication
partielle garantirait des performances encore meilleures.

Enfin, il serait aussi intéressant de réaliser un déploiement réel a I’aide d'un
réseau ad hoc connecté a un point d’accés aux données, pour assurer une validation

complete du modele.

(1]

12]

[4]

[5]

[7]

BIBLIOGRAPHIE

HASSANEIN, H., ZHENGANG, L., MARTIN P., “Performance Comparison
of Alternative Web Caching Techniques™ Proceedings of the 7" IEEE
International Symposium on Computers and Communications, pp. 213 - 218, 1-
4 July 2002.

TEWARIL R., DAHLIN, M., VIN, HM., KAY, J.S., “Design considerations for
distributed caching on the Internet,” Proceedings of 19th IEEE International
Conference on Distributed Computing Systems, pp. 273 — 284, 1999.
WOLMAN, A., VOELKER, M., SHARMA, N., CARDWELL, N., KARLIN,
A.,LEVY, HM., “On the scale and performance of cooperative Web proxy
caching” Proceedings of the seventeenth ACM symposium on Operating
systems principles, Charleston, South Carolina, United States , pp. 16 — 31,
1999.

PIERRE, S., “Réseaux et systetmes informatiques mobiles Fondements,
architectures et applications” ISBN: 2-553-01038-9, 2™ trimestre 2003.
FORMAN, G.H., ZAHORIJAN, J., “The challenges of mobile computing” IEEE
Journal of Computer Sciences, Vol. 27, Issue 4, pp. 38 - 47, April 1994.
BARBARA, D., IMIELINSKI, T., “Sleepers and workholics: Caching
Strategies in mobile environments,” Proceedings of ACM SIGMOD 94, pp. 1-
12, 1994.

YEUNG, M.K.H., KWOK, Y-K., “Wireless cache invalidation schemes with
link adaptation and downlink traffic” IEEE Transactions on Mobile Computing,
Vol. 4, Issue 1, pp. 68 — 83, Jan-Feb 2005.

BRESLAU, L., CAO, P., FAN, L., PHILLIPS, G., SHENKER, S., ” Web
Caching and Zipf-like Distributions: Evidence and Implications,” Proceedings
of Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies., New York, USA, Vol. 1, pp.126-134, March 21-25
1999.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

103

TAN, K-L., CAL J., OOl B. C., “An Evaluation of Cache Invalidation
Strategies in Wireless Environments”, IEEE Transactions on Parallel and
Distributed Systems, Vol. 12, Issue 8, pp 789-806, August 2001.
NUGGEHALLL P., SRINIVASAN, V., CHIASSERINI, C., RAO, R., “Energy-
Efficient Caching Strategies in Ad Hoc Wireless Networks,” Proceedings of the
4th ACM international symposium on Mobile ad hoc networking & computing,
Annapolis, Maryland, USA, pp. 25 — 34, 2003.

CAO, G., “Scalable Low-Latency Cache Invalidation Strategy for Mobile
Environments,” IEEE Transactions on Knowledge and Data Engineering, Vol.
51, pp. 1251-1265, 2003.

CAO, G., YIN, L., DAS, C.R., “Cooperative Cache-based data access in ad hoc
networks,” IEEE INFOCOM, Vol. 37, Issue 2, pp. 32 - 39, Feb 2004.
BARBARA, D., “Mobile Computing and Databases: A survey,” IEEE
Transactions on Knowledge and Data Engineering, Vol. 11, Issue 1, pp.108 —
117, Jan.-Feb. 1999.

HARA, T., “Cooperative Caching by Mobile Clients in Push-based Information
Systems,” Proceedings of the 11th ACM International Conference on
Information and Knowledge Management, Virginia, USA, pp. 186 — 193,
November 2002.

HARA, T., “Replica Allocation Methods in Ad hoc Networks with data
update,” ACM Mobile Networks and Applications, Vol. 8, Issue 4, pp. 343 —
354,2003.

FRANKLIN, M.J,, CAREY, M.J., LIVNY, M., “Transactionnal Client-Server
Cache Consistency: Alternatives and Performances,” ACM Transactions on
Database Systems, Vol. 22, Issue 3, pp.315 — 363, September 1997.

YIN, L., CAO, G., “Balancing the tradeoffs between Accessibility and Query
Delay in Ad Hoc Networks,” Reliable Distributed Systems, 2004. Proceedings
of the 23rd IEEE International Symposium on 18-20 Oct. 2004 pp 289 — 298
CHAN, B.Y., SL, A., LEONG, H.V., “Cache management for mobile databases:

[19]

[20]

[25]

[26]

[27]

104

design and evaluation,” Proceedings of 14" IEEE International Conference on
Data Engineering, pp. 54-63, Feb. 1998.

CAO, G., “On improving the performance of Cache Invalidation in Mobile
Environments”, ACM/Kluwer Mobile Networks and Application (MONET),
Vol. 7, Issue. 4, pp. 291-303, August 2002.

JING, J., ELGARAMID, A., HELAL, A., ALONSO, R., “Bit Sequences: An
Adaptive cache Invalidation Method in Mobile Client/Server Environments,”
ACM-Baltzer Mobile Networks and Applications, Vol. 2, Issue. 2, pp.115 -
127, 1997.

KOSSMANN, D., “The state of the art in distributed query processing” ACM
Computing Surveys (CSUR), Vol.32 , Issue 4, pp. 422 — 469, December 2000
PENG, W-C., CHEN, M-S., “Design and performance studies of an adaptive
cache retrieval scheme in a mobile computing environment,” IEEE Transactions
on Mobile Computing, Vol. 4, Issue 1, pp. 29 — 40, Jan.-Feb. 2005.
WAP-175-CacheOp-20010731-a, version 31-Jul-2001

http://www.wapforum.org/

YU, J.Y., CHONG, P.H.J., “A survey of clustering schemes for mobile ad hoc

networks” IEEE Communications Surveys & Tutorials, Vol.7, Issue 1, pp. 32 —
48, 2005.

NAGASHIMA, K., TAKATA, M., WATANABE, T., “Evaluations of a
directional MAC protocol for ad hoc networks™ Proceedings. 24th International
Conference on Distributed Computing Systems Workshops, pp. 678 — 683,
2004.

KINSNER, W., GREENFIELD, R.H., “The Lempel-Ziv-Welch (LZW) data
compression algorithm for packet radio” WESCANEX '91 IEEE Western
Canada Conference on Computer, Power and Communications Systems in a
Rural Environment pp.225 — 229, 29-30 May 1991.

Qualnet Simulator

http://www.scalable-networks.com/help/index.html

[29]

[31]

[35]

[36]

105

YIN, L., CAO, G., CAI Y., “Target-Driven Cache Replacement for Mobile
Environments,” IEEE Journal of Parallel and Distributed Computing, Vol. 65,
pp. 583-594, 2005.

LIM, S., LEE, W., CAO, G., DAS, C., “Performance Comparison of Cache
Invalidation Strategies for Internet-based Mobile Ad Hoc Networks,” IEEE
International Conference on Mobile Ad hoc and Sensor Systems (MASS). pp.
104 — 113, 25-27 Oct. 2004.

YIN, L., CAO, G., “Supporting Cooperative Caching in Ad Hoc Networks,”
Twenty-third Annual Joint Conference of the IEEE Computer and
Communications Societies, Vol. 4, pp. 2537 - 2547, March 2004.

HARA, T., “Effective Replica Allocation in Ad Hoc Networks for Improving
Data Accessibility,” Proceedings of IEEE Twentieth Annual Joint Conference
of the Computer and Communications Societies, Vol. 3, pp. 1568 — 1576, 22-26
April 2001.

ARTAIL, H., SAFA, H., PIERRE, S., “Database Caching in MANET Based on
Separation of Queries and Responses,” Proceedings of IEEE WiMob’2005, Vol.
3, pp. 237-244, September 2005.

BERNERS-LEE, T., MIELSEN, H.F., “Propagation, Caching and replication
on web,” http://www.w3.org/Propagation

CHEN, W., MARTIN, P., HASSANEIN, H.S., “Caching dynamic content on

the Web,” IEEE Canadian Conference on Electrical and Computer Engineering,
Vol. 2, pp. 947-950, 2003.

HU, Q., LEE, H., “Adaptive cache Invalidation Methods in Mobile
Environments,” Proceedings of the Sixth IEEE International Symposium on
High Performance Distributed Computing, pp. 264-273, Aug.1997.

MOHAN, C., “Caching Technologies for Web Applications,” Proceedings of
the 27th International Conference on Very Large Databases, p.726, September
11 - 14, 2001.

