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RÉSUMÉ 

 

Des réseaux de nanofils ferromagnétiques multicouches ont été synthétisés afin d'en 

étudier les propriétés magnétiques statiques et dynamiques. Les réseaux consistent en des 

membranes poreuses d'alumine (Al2O3) dans lesquelles sont agencés verticalement des nanofils 

constitués d'alternances de couches de Co94Fe5B1 et de Cu. Les objectifs de cette étude sont de 

maîtriser la fabrication de ces réseaux, d'en explorer les propriétés magnétiques statiques et 

dynamiques, de développer un modèle expliquant leur anisotropie magnétique, et enfin de 

démontrer expérimentalement la faisabilité de réseaux de nanofils magnétiquement isotropes.  

 

Les nanofils multicouches de CoFeB/Cu sont obtenus par électrodéposition à tension 

pulsée dans des matrices d'alumine. Le diamètre des nanofils est d'environ 45 nm et la distance 

inter-fil d'environ 110 nm. Deux configurations de nanofils ont été étudiées: la première consiste 

en l'alternance régulière de couches de CoFeB et Cu, la deuxième consiste en l'alternance de 

tricouches CoFeB/Cu/CoFeB séparées par d'épaisses couches de Cu.  

 

Les nanofils multicouches ont été caractérisés structurellement par microscopie 

électronique à balayage (MEB) et par microscopie électronique en transmission (MET). Ces 

mesures ont confirmé la difficulté de caractériser avec précision l'épaisseur des couches 

ferromagnétiques. Nous avons aussi pu observer une structure polycristalline dans les couches de 

CoFeB.  

 

Nous avons par la suite développé un modèle de champ d'anisotropie effective prenant en 

compte les interactions dipolaires entre les couches ferromagnétiques et l'anisotropie de forme 

des couches. Nous avons généralisé un modèle existant pour les configurations bicouches et 

l'avons adapté à la configuration tricouches. Cela a permis notamment de considérer des 

aimantations adjacentes libres au sein d'une tricouche et d'atteindre un plus grand degré de liberté 



vii 

 

 

pour ajuster l'anisotropie effective du réseau de nanofils. À partir de ce modèle nous avons étudié 

le comportement et la sensibilité du champ effectif en fonction de divers paramètres 

géométriques des nanofils. 

 

Nous avons effectué des mesures de magnétométrie statique par magnétomètre à 

échantillon vibrant (VSM) ainsi que des mesures de résonance ferromagnétique sur plusieurs 

échantillons de réseaux de nanofils bicouches et tricouches. Nous en déduisons des 

comportements qualitatifs et nous comparons les champs effectifs expérimentaux à ceux prédits 

par le modèle. Cela nous a permis de discuter sur la validité du modèle et les résultats suggèrent 

des contributions additionnelles à l'anisotropie telles que l'anisotropie magnétocristalline et 

l'anisotropie de surface dans les couches ferromagnétiques.  

 

Nous montrons enfin les résultats de magnétométrie statique (courbes d'hystérésis) et de 

résonance ferromagnétique (champ de résonance en fonction de l'angle du champ magnétique) 

pour deux échantillons magnétiquement isotropes. Les résultats confirment le comportement 

isotrope de ces échantillons mais la nature des mécanismes permettant cette isotropie n'est pas 

encore claire à ce jour.  

 

Ces travaux ouvrent la voie à une ingénierie plus fine de réseaux de nanofils multicouches 

en apportant une compréhension sur les paramètres les plus pertinents pour obtenir des réseaux 

au comportement particulier (anisotropie dans le plan ou hors-plan, isotropie, etc.). De plus, le 

modèle tel que nous l'avons présenté se prête bien à un raffinement, par exemple en implémentant 

des contributions supplémentaires à l'anisotropie, tel que des anisotropies magnétocristallines.  
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ABSTRACT 

 

Arrays of multilayer nanowires have been synthesized to study their static and dynamic 

magnetic properties. The nanowires are columns of alternating Co94Fe5B1 and Cu layers grown in 

a porous alumina membrane. The objectives of this study are to control the fabrication of these 

arrays, to explore their magnetic properties by static and ferromagnetic resonance measurements, 

to develop a model which explains the behavior of the magnetic anisotropy, and to demonstrate 

that we can synthesize magnetically isotropic nanowire arrays.  

 

The CoFeB/Cu multilayer nanowires are grown in a porous alumina matrix by pulsed 

electrodeposition. Their length is several tens of micrometers, their diameter is about 45 nm and 

the interwire length is around 110 nm. Two types of configuration have been studied: one 

consisting of a periodic CoFeB/Cu bilayer stacking, the other of CoFeB/Cu/CoFeB trilayers, 

separated by thick Cu layers between trilayers. 

 

The structure of the nanowires has been characterized by scanning electrons microscopy 

(SEM) and by transmission electrons microscopy (TEM). These measurements showed that it is 

difficult to distinguish and measure the thickness of the different layers. We also observed that 

the CoFeB layers have a polycrystalline structure.  

 

We present an effective anisotropy field model taking into account dipolar interactions 

between all the ferromagnetic layers as well as the shape anisotropy of the layers. We have 

generalized an existing model based on the bilayer configuration and have adapted it to the 

trilayer structure. A novelty of this model was to explicitly highlight the internal dipolar 

interaction between adjacent layers within a trilayer which makes it possible to tune the effective 

anisotropy of the arrays. With this model in hand we were able to study the behavior and 

sensitivity of the effective field to different geometric parameters of the nanowire arrays.  
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We then conducted static magnetic measurements with a vibrating sample magnetometer 

(VSM) as well as ferromagnetic resonance measurements on several bilayer and trilayer 

nanowire arrays. We study their qualitative behavior and we compare the experimental effective 

fields to those predicted by the model. This allows us to discuss the validity of the model and 

understand if other anisotropy contributions could have a significant effect on these materials.  

 

Finally, we show the experimental results of VSM and ferromagnetic resonance 

measurements for two magnetically isotropic multilayer nanowire arrays, which are interesting 

from a scientific and technological point of view. The results confirm the isotropic behavior of 

these samples; however we do not yet understand the necessary conditions in order to obtain 

these types of material.  

 

These results should open the way to a more controlled engineering of arrays of 

multilayer nanowires and bring a deeper understanding of what are the most relevant parameters 

in order to obtain specific material behaviors (in-plan or out-of-plane anisotropy, isotropy, etc.). 

Moreover, the model as we presented it is suitable for further improvement by, for example, 

taking into account additional anisotropy contributions.  
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CHAPITRE 1 INTRODUCTION 

 

 Les nanotechnologies ont généré depuis les années 80 des innovations dans virtuellement 

tous les domaines: électronique, informatique, cosmétiques, revêtements, biologie, médecine, etc. 

L'exemple le plus évident est le développement effréné de la puissance des microprocesseurs et 

de la capacité de stockage des disques durs, fruit de la miniaturisation des composants formant 

ces dispositifs. La matière se comporte en général très différemment lorsqu'une ou plusieurs des 

dimensions caractéristiques de sa structure sont à l'échelle nanométrique (typiquement 1-100 

nm); les effets quantiques et de surface y prennent beaucoup plus d'importance qu'à l'échelle 

macroscopique.  

 

Dans le domaine du magnétisme et des matériaux magnétiques, plusieurs avancées ont été 

réalisées dans les vingt dernières années. L'une d'elle consiste en la découverte en 1988 du 

phénomène de la magnétorésistance géante (GMR) dans des structures magnétiques multicouches 

(Fert et al., 1988; Grünberg et al., 1989). Cela a d'ailleurs valu la remise du prix Nobel aux deux 

chercheurs l'ayant découvert de façon indépendante: Albert Fert et Peter Grünberg. Il a été 

possible d'observer ce phénomène en alternant des couches minces métalliques magnétiques et 

non-magnétiques dont les épaisseurs se situent autour du nanomètre.  

 

 Il existe plusieurs classes de nanostructures magnétiques affichant chacune des propriétés 

spécifiques (on peut consulter par exemple Shi et al., 2002, pour un survol). Dans le cadre de nos 

activités de recherche au sein du Laboratoire de Magnétisme de l'École Polytechnique Montréal, 

nous étudions le comportement d'une classe de matériaux appelés nanofils ferromagnétiques 

multicouches. Plus particulièrement, nous étudions les nanofils ferromagnétiques électrodéposés 

dans une membrane nanoporeuse d'alumine. Les nanofils sont disposés en réseau dans une fine 

membrane d'alumine tel que montré à la figure 1.1. D'un point de vue ingénierie, ces matériaux 

jouissent d'une grande liberté de design de par la possibilité de contrôler plusieurs de leurs 

paramètres: 
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 Longueur des nanofils: quelques nanomètres jusqu'à 200 µm  

 Diamètre des nanofils: 10 à 150 nm 

 Distance inter-fil: 30 à 300 nm 

 Composition: métaux magnétiques ou non-magnétiques, alliages 

 Structure multicouche avec épaisseurs modulables 

 

 

 

Figure 1.1: Nanofils ferromagnétiques multicouches dans une fine membrane d'alumine. Les 

couches foncées représentent les métaux ferromagnétiques, séparés par les couches 

pâles, représentant les métaux non magnétiques.   

 

 Ces nanofils ferromagnétiques multicouches sont d'un grand intérêt autant pour leurs 

propriétés fondamentales que pour leur potentiel technologique. Illustrons ce propos par 

l'exemple de la GMR mentionnée plus haut. La magnétorésistance géante consiste en une grande 

variation de résistance électrique d'une structure magnétique multicouche selon le champ 

magnétique qu'on lui applique. Ces structures sont typiquement composées de plusieurs 

alternances de couches minces ferromagnétiques (Co, Fe, Ni, alliages, etc.) et non-magnétiques 

(Cu, Au, Cr, etc.) avec des épaisseurs de l'ordre de quelques nanomètres. Une plus faible 

résistance au courant électrique est observée lorsque les moments magnétiques des couches sont 

tous alignés dans le même sens, alors qu'une résistance plus grande est observée à bas champ 

lorsque les moments sont antiparallèles. L'explication des mécanismes derrière le phénomène de 

la GMR dépasse le cadre de ce mémoire et on pourra consulter les nombreuses ressources sur le 

sujet, par exemple Thompson (2008) et Tsymbal et al. (2001). Suite à la découverte de la GMR, 
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les chercheurs effectuaient leurs expériences dans un régime CIP (current in-plane), c'est-à-dire 

que la direction du courant était parallèle aux couches. Le régime CPP (current perpendicular-to-

plane), dans lequel le courant traverse perpendiculairement les couches, est plus difficile à 

appliquer due à la très faible résistance électrique des couches minces pour des courants 

perpendiculaires à la surface des couches. Il est possible de surmonter ces difficultés avec des 

contacts supraconducteurs ou par des techniques de lithographie, mais les nanofils multicouches 

sont vite devenus un système naturel pour effectuer ce type de mesure. Leurs avantages 

principaux reposent sur leurs dimensions latérales réduites, la possibilité d'alterner un nombre 

très élevé de couches, et leur facilité de fabrication.  

 

 Dans cette introduction, nous effectuerons en premier lieu un bref état de l'art sur le 

développement des nanofils ferromagnétiques multicouches. Nous énoncerons ensuite notre 

question de recherche et le but poursuivi par ces travaux. Nous établirons enfin les objectifs 

spécifiques de cette étude  

 

État de la question sur les nanofils ferromagnétiques multicouches 

 L'électrodéposition de réseaux de nanofils non-magnétiques a été rapportée pour la 

première fois en 1970 par Possin (1970) dans des membranes de mica. Whitney et al. (1993) ont 

été les premiers à publier sur la fabrication de nanofils ferromagnétiques homogènes (de 

composition unique) dans une membrane poreuse. Très rapidement des groupes se sont intéressé 

à adapter la technique pour des réseaux de nanofils ferromagnétiques multicouches, motivés par 

leur intérêt dans l'étude de la GMR (Piraux et al., 1994; Blondel et al., 1994, Liu et al., 1995). Ce 

développement a été rendu possible notamment par la compréhension que des multicouches 

métalliques de type AxB1-x/B avec        pouvaient être électrodéposées si la différence de 

potentiel d'équilibre des métaux A et B étaient suffisamment large (généralement plus grande que 

0,4 V) et si la concentration du métal le plus noble était très faible, donc si             (Sun 

et al., 2005). Une limitation de cette technique est qu'elle ne fonctionne pas pour tous les couples 

de métaux A et B.  Néanmoins, des groupes de recherche ont été en mesure de varier 

considérablement la composition des couches, synthétisant par exemple des nanofils 
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multicouches de Co/Cu (Piraux et al., 1994), Ni/Cu (Chen et al., 2006), NiFe/Cu (Dubois et al., 

1997), Fe/ Cr (Velev et Chang, 2002), Ni/Pt (Liang et al., 2005), CoPt/Pt (Peng et al., 2007), 

Co/Ag (Valizadeh et al., 2001), Fe/Pt (Wang et al., 2006), et plus encore (Sun et al., 2005). En 

plus de démontrer la synthèse de ces multicouches, des efforts importants ont aussi été entrepris 

pour caractériser leurs structures cristallines, leurs compositions chimiques, et leurs propriétés 

magnétiques et de transport (Fert et al., 1999; Sun et al., 2005). 

 

 En plus de la GMR en régime CPP, le développement des nanofils ferromagnétiques 

multicouches a permis d'étudier plusieurs phénomènes physiques intéressants. Gravier et al. 

(2004) ont par exemple étudié le transport calorifique dépendant du spin dans des nanofils 

multicouches de Co/Cu. Doudin et al. (1997) ont étudié la magnétorésistance dans les jonctions 

tunnels, c'est-à-dire lorsque les couches non-magnétiques intercalaires sont des oxydes au lieu de 

métaux, ce qui donne lieu à un transport tunnel dépendant des orientations relatives des couches 

ferromagnétiques. Un autre phénomène qui a grandement attiré l'attention des chercheurs ces 

dernières années est le couple induit sur l'aimantation d'une couche lorsqu'elle est parcourue par 

un courant polarisé en spin (Berger, 1996; Slonzcewski, 1996). Cet effet est nommé le spin 

transfert torque (STT) en anglais et les nanofils multicouches électrodéposés constituent un 

moyen maintenant assez aisée d'étudier ce phénomène, surtout comparé aux techniques très 

dispendieuses de lithographie (Blon et al. 2007; Murè et al., 2009).  

 

 Il est évident que plusieurs applications sont envisagées pour motiver tous ces 

développements, plus particulièrement dans les domaines de la magnéto-électronique et des 

dispositifs micro-ondes. L'exploitation du STT semble être une voie intéressante pour produire 

des signaux micro-ondes à l'aide de courants continus. Par exemple, Mourachkine et al. (2008) 

ont développé un dispositif magnétique à base de nanofils multicouches (CoCu/Cu) qui pourrait 

être utilisé comme détecteur micro-onde, oscillateur micro-onde, ou d'unité MRAM fonctionnant 

à champ magnétique nul.  
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Magnéto-transport dans le régime hyperfréquence 

La question du transport électronique dans les nanofils multicouches a été bien couverte 

théoriquement et expérimentalement par les divers travaux cités plus haut. Néanmoins, ce 

phénomène a été presqu’exclusivement étudié pour des courants continus ou alternatifs à basses 

fréquences. Un champ encore très peu exploré est le magnéto-transport en régime 

hyperfréquence, soit le transport d'électrons de spin non nul à des fréquences de l'ordre du 

gigahertz. Ce phénomène a été assez peu étudié dans les couches minces (Rinkevich et al., 2003; 

Rausch et al., 1998; Krebs et al., 1991; Kuanr et al., 1996) et à notre connaissance n'est pas bien 

compris dans les nanofils multicouches. Nos travaux permettront d'établir une base de 

compréhension pour attaquer le magnéto-transport hyperfréquence dans une suite éventuelle à ce 

projet. 

 

 Une extension possible de ce sujet est l'ajustement de la constante diélectrique du réseau 

par un champ magnétique. En effet, dans le régime micro-onde, la permittivité d'un métal dépend 

de sa résistance (DC) et de la fréquence du courant hyperfréquence. Il serait donc en théorie 

possible d'ajuster la permittivité d'un matériau propice à l'effet GMR en variant le champ 

magnétique, lorsque la fréquence du courant atteint le régime micro-onde. Ce phénomène est 

dans la lignée directe des travaux effectués ces dernières années sur les métamatériaux micro-

ondes à base de nanofils ferromagnétiques, notamment par Spiegel et al. (2009), Kuanr et al. 

(2009) et Carignan et al. (2010). Le contrôle de la permittivité par le champ magnétique 

permettrait d'ajuster la relation de dispersion du matériau et devient intéressant pour des 

applications de senseurs et de dispositifs micro-ondes ajustables. Néanmoins, ce sujet est encore 

loin de nos préoccupations actuelles. 

 

 Dans le cadre de nos travaux, nous utilisons un alliage ferromagnétique de Co94Fe5B1, 

développé par Ciureanu et al. (2005). Ce matériau est à la base des divers travaux menés par 

notre groupe sur les nanofils ferromagnétiques. L'alliage de CoFeB est très intéressant pour des 

applications micro-ondes pour plusieurs raisons: une grande aimantation à saturation, un 
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comportement doux par rapport au champ magnétique, une haute température de Curie, et une 

structure amorphe (Ciureanu et al., 2005). Les nanofils que nous avons étudiés sont donc 

constitués d'alternances de couches de CoFeB et de couches de Cu pour l'élément non-

magnétique. Cette couche de Cu joue le rôle d'espacer les couches ferromagnétiques entre elles. 

Cette couche d'espacement est toujours métallique dans le cadre de ces travaux. Cela est dû à la 

nature même du procédé d'électrodéposition ne permettant de ne déposer que des couches 

métalliques. Il est aussi important d'obtenir des nanofils métalliques dans une perspective de 

mesures de transport électronique (ce que nous ne traitons pas ici).      

 

 La compréhension du comportement magnétique des réseaux de nanofils multicouches est 

non seulement utile d'un point de vue théorique, elle permet également de prédire à l'avance le 

comportement du réseau en fonction de plusieurs paramètres d'entrée, ceux-ci dépendant du 

dispositif à élaborer.  Plusieurs propriétés définissent le comportement global du réseau de 

nanofils: champ coercitif, aimantation rémanente, anisotropie magnétique, champs et fréquences 

de résonance, aimantation à saturation, pertes micro-ondes. Ces propriétés sont modulées par les 

paramètres structurels et géométriques du réseau. Carignan (2006) a démontré qu'il était possible 

d'ajuster l'anisotropie effective (englobant toutes les contributions anisotropes du réseau) d'un 

réseau de nanofils multicouche en variant le ratio des épaisseurs des couches magnétiques et non 

magnétiques. Il a aussi développé un modèle pour expliquer cette anisotropie effective à l'aide 

des  interactions dipolaires entre les couches ferromagnétiques. Les résultats du modèle sont en 

bon accord avec les résultats expérimentaux pour ce qui est des nanofils homogènes (une seule 

composition ferromagnétique), mais des déviations importantes sont observées pour les nanofils 

multicouches. Nous avons donc tenté de pousser un peu plus loin la compréhension du 

comportement magnétique des réseaux de nanofils multicouches de CoFeB/Cu afin d'obtenir des 

prédictions plus fiables lors du design de dispositifs. 

 

 Pour ce faire, nous avons développé une structure tricouche dans les nanofils, c'est-à-dire 

que les nanofils sont composés d'alternances de tricouches CoFeB/Cu/CoFeB séparées par 

d'épaisses couches de Cu. Nous avons fait l'hypothèse que cette structure permettait de découpler 

les interactions dipolaires entre les tricouches, ce qui faciliterait en principe l'interprétation des 
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résultats expérimentaux par rapport aux prédictions du modèle. Nous avons aussi adapté le 

modèle pour le cas de tricouches, ce qui ajoute un degré de liberté supplémentaire par rapport aux 

nanofils multicouches traditionnels. Enfin, cette structure tricouche pourrait être plus encline à 

démontrer un effet GMR dans une suite du projet, parce qu'il serait en principe plus aisé dans ce 

cas d'alterner entre une configuration d'aimantations parallèles et antiparallèles (donc de passer 

d'une basse résistance à une haute résistance). Nous avons également effectué des mesures 

expérimentales en magnétométrie statique (courbe d'hystérésis) et dynamique (résonance 

ferromagnétique). Ces mesures nous ont permis de comprendre l'influence des paramètres 

géométriques du réseau (notamment les épaisseurs des couches) sur ses propriétés magnétiques.  

 

Enfin, une application de grand intérêt pour ces réseaux est de pouvoir produire des 

réseaux de nanofils dont le comportement magnétique est isotrope. Cela reviendrait à avoir des 

couches minces ferromagnétiques isotropes, ce qui ne serait pas possible avec du CoFeB massif à 

cause de l’anisotropie de forme. Ce type de matériau isotrope pourrait par exemple être utilisé 

dans des senseurs ou des dispositifs qui sont excités magnétiquement dans plusieurs directions et 

qui doivent se comporter identiquement dans toutes les directions d’application du champ 

magnétique. 

 

Objectifs de recherche et plan du mémoire 

 Parmi les objectifs pertinents à l’étude des nanofils multicouches, nous avons choisi de 

nous concentrer sur les suivants dans le cadre de ce mémoire: 

 

1) Maîtriser la fabrication des réseaux de nanofils ferromagnétiques multicouches 

 

2) Modéliser et prédire l'anisotropie de  réseaux de nanofils tricouches en fonction de 

paramètres géométriques. 

 

3) Explorer les propriétés magnétiques statiques et dynamiques de ces réseaux et les 

confronter aux prédictions du modèle. 
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4) Démontrer la faisabilité expérimentale de réseaux de nanofils magnétiquement 

isotropes 

 

 Le chapitre 2 traite du procédé de fabrication de la membrane d'alumine et de 

l'électrodéposition des nanofils multicouches (CoFeB/Cu et Ni/Cu). Nous avons synthétisé des 

nanofils multicouches de deux classes de géométrie différentes: bicouches et tricouches. Nous 

avons ensuite caractérisé leur structure par deux techniques de microscopie électronique, l'une à 

balayage (MEB) et l'autre en transmission (MET).  

 

 Le chapitre 3 explique le modèle d'anisotropie effective basé sur les interactions dipolaires 

entre les couches ferromagnétiques des nanofils. Ce modèle est adapté pour des nanofils 

tricouches à partir des travaux de Carignan (2006). Nous tenterons d'en extraire des prédictions 

sur le comportement de l'anisotropie effective du réseau en fonction de divers paramètres 

géométriques. Ce chapitre inclue aussi le développement d'un modèle de résonance 

ferromagnétique dans ces structures, ce qui nous sera utile pour interpréter les résultats 

expérimentaux.  

 

 Le chapitre 4 présente les résultats expérimentaux de magnétométrie statique et 

dynamique sur les réseaux de nanofils multicouche. Nous dresserons des tendances sur le 

comportement de l'anisotropie effective du réseau et sur ses propriétés magnétiques en fonction 

des différentes géométries étudiées. Enfin nous présenterons la démonstration expérimentale qu’il 

est possible de fabriquer des réseaux de nanofils multicouches magnétiquement isotropes. 

 

Ce mémoire ne reflète qu’une partie de tout le travail exploratoire sur ces matériaux que 

nous avons effectué dans notre laboratoire durant les deux années de ma maîtrise. Certains 

aspects ont été laissés de côté par soucis de rester le plus concis possible et aussi parce que nous 

n’avions pas de résultats assez solides pour les intégrer dans ce mémoire. Nous avons par 

exemple tenté de mesurer le magnéto-transport dans les réseaux de nanofils, étudié l’effet du pH 

de l’électrodéposition sur l’anisotropie effective, mesuré la réponse magnéto-optique des nanofils 

multicouches, et  tenté de faire le montage d’une expérience de GMR micro-onde. Cela démontre 
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l’étendue du champ des possibilités offert dans l’étude des nanofils multicouches et le travail qui 

reste à effectuer pour exploiter au maximum leurs propriétés uniques.    
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CHAPITRE 2 FABRICATION ET CARACTÉRISATION 

STRUCTURELLE  

 Un des objectifs de ce projet est de maîtriser la fabrication de ces réseaux de nanofils 

multicouches, notamment par le contrôle de l'épaisseur des couches et par leur qualité. Ce 

chapitre présente les méthodes expérimentales utilisées pour fabriquer et caractériser les réseaux 

de nanofils. La section 2.1 présente la fabrication des membranes nanoporeuses d'alumine qui joue le 

rôle de matrice. La croissance des nanofils par un processus d'électrodéposition est présentée à la 

section 2.2. Enfin, la caractérisation structurale des membranes d’alumine et des nanofils par 

microscopie électronique à balayage (MEB) et microscopie électronique en transmission (MET) est 

présentée à la section 2.3. Nous discuterons ce que ces résultats impliquent d'un point de vue général 

à la section 2.4.  

 

2.1 Fabrication des membranes nanoporeuses 

 L'étape de base du procédé de fabrication consiste à synthétiser une membrane 

nanoporeuse pouvant ensuite accueillir les nanofils ferromagnétiques par électrodéposition. Ces 

nanopores sont des colonnes traversant la membrane perpendiculairement à celle-ci. Il existe 

plusieurs types de membranes poreuses pouvant servir de matrices pour les nanofils magnétiques. 

On retrouve notamment les suivantes:  

 Matériaux poreux par nuclear track etching 

 Membranes de copolymère dibloc  

 Alumine poreuse  

o Membranes nanoporeuses obtenues par lithographie interférentielle (Ross et al., 

1998) 

o Matériaux nanoporeux obtenus par nanoimpression 

 

 La technique du bombardement ionique consiste à bombarder un matériau avec des 

particules de hautes énergies et ensuite de le soumettre à une gravure chimique qui viendra élargir 

les zones traversées par les particules. Cette méthode est intéressante pour sa flexibilité quant au 
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choix de matériau pour la matrice, la taille et la densité des pores, et l'épaisseur de la membrane. 

Cette technique est typiquement utilisée sur des polymères comme le polycarbonate (PC) et le 

polyéthylène téréphtalate (PET) ou bien sur des matériaux non-organiques comme le mica. Le 

désavantage de cette méthode est que la distribution des pores est aléatoire (Sun et al., 2005) et 

les pores ne sont pas tous alignés entre eux, car ils dépendent de l’angle d’arrivé des ions. De 

plus, les matériaux polymères possèdent de plus grandes pertes diélectriques aux fréquences 

micro-ondes (Pozar, 2005).  

 

Un copolymère dibloc est constitué de deux chaînes de polymères, liées entre elles bout-à-

bout par des liaisons covalentes. Ce type de polymère peut être auto-assemblé par la non-

miscibilité des deux polymères et la ségrégation de l’un dans l'autre permet, selon les fractions 

volumiques, des réseaux périodiques de sphères, cylindres, et de lamelles. Un procédé pour 

retirer un des polymères est appliqué par la suite pour ne laisser qu'un polymère nanoporeux. Un 

désavantage de cette méthode est la gamme d'épaisseur de la membrane, celle-ci étant limité à 

moins de 10 μm (Raman & Palmese, 2006). 

 

La fabrication de membranes nanoporeuses par lithographie interférentielle consiste à 

faire interférer une lumière U.V. avec elle-même de manière à produire un patron d’interférence 

sur un polymère. Le polymère est ensuite développé, ce qui résulte en un réseau de nanopores 

dans une matrice polymérique (Ross et al., 1998). Cette technique permet d’obtenir un réseau 

parfait de nanopores, mais l’épaisseur des membranes est limitée à quelques microns, et nécessite 

un équipement sophistiqué de lithographie. 

 

La nanoimpression consiste à chauffer et presser une surface polymérique à l’aide d'un 

moule ayant le négatif de la structure désirée. Le polymère, porté à une température supérieure à 

sa température de transition vitreuse, devient malléable et conforme la topologie du moule. Il est 

alors possible d’obtenir une membrane nanoporeuse dont la périodicité est de plusieurs mm. 

Cependant, l’épaisseur des membranes nanoporeuses obtenues est limitée à quelques microns 
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Membranes poreuses d'alumine 

 Les membranes poreuses d'alumine obtenues par anodisation de l’aluminium sont les 

structures qui nous intéressent dans le cadre de ce projet car elles peuvent être obtenues à faible 

coût et leur structure géométrique (épaisseur, diamètre et distance inter-pore) peut être contrôlée 

grâce aux paramètres de croissance de l’alumine. L'alumine (Al2O3) est formée par l'oxydation 

anodique d'une plaque d'aluminium. Nous résumons ici les grandes lignes du procédé de 

fabrication et nous pouvons consulter (Zhao et al., 2007; Jessensky et al., 1998) pour plus de 

détails quant aux mécanismes physiques derrière cette technique. Les trois grandes étapes sont 

schématisées à la Figure 2.1.  

 

Figure 2.1: Schéma simplifié des étapes principales de la fabrication d'une membrane d'alumine. 

 

La première étape consiste à découper un échantillon d'aluminium de très haute pureté 

(99,995%) typiquement en forme rectangulaire. La dimension de la surface de l'aluminium est ici 

de l'ordre de 15 cm
2
, mais celle-ci n'est limitée que par le bassin d'anodisation. Il s'en suit un 

polissage d'abord mécanique, puis un électropolissage dans une solution composée d'eau (H2O), 

d'acide phosphorique (H3PO4) et d'acide sulfurique (H2OSO4). Ces étapes de polissages 

permettent de réduire la rugosité de surface sur l'aluminium, ce paramètre devant être minimisé 

afin d'obtenir une répartition hexagonale ordonnée des pores (Jessensky et al., 1998). 
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 Après obtention d'une surface suffisamment lisse, une première anodisation est appliquée 

à l'échantillon. L'anodisation consiste à appliquer une différence de potentiel entre l'échantillon 

d'aluminium (anode) et une cathode, le tout dans un milieu acide. Des réactions de réduction et 

d'oxydation se produisent respectivement à la cathode et à l'anode, qui résultent en la formation 

de l'alumine: 

 

 Cathode: 2H
+
 + 2e

-
 → H2  

 Anode: Al = 3e
-
 + Al

3+
  et  2Al

3+
 + 3H2O → Al2O3 + 6H

+
  

 Bilan: 2Al + 3H2O → Al2O3 + 3H2 

 

 Cette première anodisation permet de générer des pores sur l'alumine selon divers 

mécanismes bien expliqués ailleurs (Huang et al., 2007; Jessensky et al., 1998; Li et al., 1998). 

Cette première couche d'alumine poreuse est éliminée par un procédé de gravure (avec une 

solution de 6% H3PO4 et 1.8% H2CrO4) et une deuxième anodisation pendant plus de 24 heures 

est appliquée, ce qui a pour effet de faire croître les pores perpendiculairement à la surface 

d'alumine, aux cavités laissés par les pores suite à la première anodisation. Cette technique 

d'anodisation en deux étapes a été démontrée par (Masuda & Fukuda, 1995) pour produire un 

arrangement des pores plus régulier qu'avec une seule anodisation. 

 

 La dernière étape consiste à détacher la membrane d'alumine. Pour ce faire, on plonge 

l'échantillon dans un bain d'acide perchlorique (HClO4) et on l'expose brièvement (2-3 secondes) 

à un potentiel de 45 V par rapport à une contre-électrode d'aluminium. Ces conditions permettent 

non seulement de détacher la membrane mais également d'obtenir des pores traversant 

complètement l'alumine (Zhao et al., 2007). La Figure 2.2 montre une vue de dessus d’une 

membrane d’alumine obtenue par anodisation de l’aluminium, observée par microscopie 

électronique à balayage (MEB). 
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Figure 2.2: Membrane d’alumine obtenue par anodization de l’aluminium, et dimension des 

pores. 

 

 En ajustant les paramètres de croissance (potentiel et durée d’anodisation, type d’acide), il 

est possible de contrôler l'épaisseur de la couche d'alumine, le diamètre des pores, leur 

espacement, et leur arrangement. Par exemple, pour nos échantillons de (41 ± 4) nm de diamètre 

et (111 ± 8) nm de distance inter-pore, nous appliquons un potentiel de 40 V pendant 4 jours, 

dans un bain d'acide oxalique (C2H2O4). Pour comprendre le rôle de ces paramètres sur la 

géométrie de la membrane et de ses pores, on pourra consulter (Jessensky et al., 1998). 
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2.2 Électrodéposition des nanofils 

 L'électrodéposition consiste en la déposition d'ions sur une électrode portée à une certain 

potentiel par rapport à une électrode de référence. Ces ions proviennent d'une solution 

électrolytique que nous avons préparée en laboratoire. Dans notre cas, nous avons préparé une 

solution permettant le dépôt de nanofils multicouches de CoFeB/Cu et Ni/Cu. La composition de 

cette solution est présentée en annexe B. 

 

La Figure 2.3 montre la préparation d’une membrane d’alumine pour l’électrodéposition. 

Un prédépôt d'une couche de 15 nm de Ti est appliqué sur un côté de la membrane, cette couche 

servant d'adhésion pour une couche d'or (Au) d'environ 1 μm. Cette couche d'or joue le rôle de 

cathode dans l'électrodéposition. Un ruban de cuivre est collé à la couche d'or avec de la pâte 

d'argent dans le but d'établir une connexion électrique. La membrane est ensuite placée sur un 

substrat de plexiglas, le côté de la couche d'or en contact direct avec le plexiglas. Les bords de la 

membrane sont attachés au substrat à l'aide de rubans adhésifs. Les bords sont ensuite recouverts 

de vernis à ongle, ceux-ci protégeant contre l'intrusion de solution (et donc d'ions) par les bords. 

Le vernis est intéressant pour cette application parce qu'il est peu dispendieux, sèche assez 

rapidement, est facile d'utilisation et peut se dissoudre aisément avec de l'acétone. 

 

 

Figure 2.3: Vue de face (gauche) et de dos (droite) de la membrane d'alumine prête pour 

l'électrodéposition. La surface d'électrodéposition (bleu) mesure ici environ 4×2 

cm
2
. 
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Figure 2.4:   Montage expérimental de l'électrodéposition. La solution électrolytique contient les 

ions qui migrent vers le fond des pores lorsqu'une différence de potentiel négative 

est appliquée entre l'électrode de travail (ET) et la contre-électrode (CE), par rapport 

à une électrode de référence (ER). L'appareil utilisé pour effectuer 

l'électrodéposition est un EG&G Princeton Applied Research model 263. 

 

 Le montage expérimental est tel que montré à la Figure 2.4. L’échantillon est l’électrode 

de travail, l'anode (contre-électrode) est une électrode de platine (Pt), et une électrode de 

référence de calomel saturée complète la configuration à trois électrodes. Deux classes de 

nanofils peuvent être électrodéposés dans la membrane d'alumine: les nanofils homogènes et 

multicouches. L'appareil utilisé pour effectuer l'électrodéposition est un EG&G Princeton 

Applied Research model 263, pouvant opérer en mode galvanostat (contrôle du courant) ou 

potentiostat (contrôle du potentiel).  

 

Dans le cadre de ce projet, nous nous sommes concentrés sur les nanofils multicouches, 

constitués d’alternance de couches ferromagnétiques et non-magnétiques. La solution 

électrolytique utilisée dans ce cas contient donc à la fois les électrolytes magnétiques (CoFeB) et 
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non-magnétiques (Cu). La concentration de l'électrolyte non-magnétique dans la solution est en 

général très faible (1%) afin d'éviter l’inclusion de cuivre (métal plus noble) dans la couche 

magnétique (métal moins noble). La solution est gardée à température ambiante et à un pH 

contrôlé (pH 3,5 pour le CoFeB/Cu). Le pH est un paramètre important lors de la fabrication des 

nanofils. Nous avons observé des changements importants dans l'anisotropie magnétique des 

réseaux de nanofils en variant le pH de la solution électrolytique (voir annexe A). Nous n'avons 

pas approfondi la question mais il est possible que le pH puisse avoir une influence sur la 

structure cristalline des couches ferromagnétiques et ainsi affecter les propriétés magnétiques du 

réseau. 

 

 Comme nous le verrons plus tard, il est important que l'épaisseur des couches soit bien 

contrôlée au nanomètre près parce qu'elle a une influence notable sur les propriétés magnétiques. 

Dans ce cas, nous cherchons à contrôler la charge d'électrolytes déposée dans les pores de la 

membrane, cette charge étant, selon la loi de Faraday, proportionnelle à la quantité de matière 

déposée. La charge déposée dans tous les pores de la membrane est, pour une seule couche, 

donnée par:  

 
  

        

  
   (2.1) 

où Seff est la surface effective de déposition, h l'épaisseur de la couche, F le nombre de Faraday 

(96500 Coulombs),   la masse volumique de la couche, A sa masse atomique, et   le rendement 

de déposition. Seff  est définie par         , où S est la surface de la membrane d'alumine et P la 

porosité de la membrane (rapport de la surface cumulée des pores sur la surface totale de la 

membrane). Dans le cas d'un alliage (dans notre cas CoFeB), on calcule la moyenne pondérée des 

masses volumiques et atomiques selon les proportions    de chaque atome i dans la phase solide 

de l'alliage (par exemple notre alliage de CoFeB contient 94% massique de Co, 5% de Fe et 1% 

de B): 

               
 

                            
 

   (2.2) 
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L’Éq. (2.1) donnant la charge déposée en fonction de l'épaisseur de la couche est, sans le terme  , 

pour un transfert parfait des ions vers les pores. Ce n'est toutefois pas le cas en réalité et la charge 

mesurée lors de l'électrodéposition ne reflète pas nécessairement l'épaisseur réelle des couches. 

Les causes de ce transfert imparfait d'ions de la solution vers la membrane peuvent notamment 

s'expliquer par la formation d'hydrogène dans les pores et la dissolution d'une couche métallique 

par anodisation (Carignan, 2006; Ciureanu et al., 2005). Le rendement de déposition   tient 

compte de ce transfert imparfait. Toutefois ce rendement peut varier selon les conditions 

expérimentales de l'électrodéposition (composition de la solution, pH, température). 

 

 Une fois les charges de dépôt calculées, le dépôt alterné s'effectue en variant le potentiel 

par rapport à l'électrode de référence favorisant la réduction d'un électrolyte à la fois. Par exemple 

pour le dépôt de CoFeB/Cu, nous alternons le potentiel entre -1 V, le potentiel de réduction du 

CoFeB, et -0,56 V, le potentiel de réduction du Cu, par rapport à l'électrode de référence. Il est 

possible, grâce à un logiciel de contrôle et d'acquisition de données, de planifier le dépôt 

automatique des nanofils. L'épaisseur des couches est contrôlée par la charge déposée, en 

intégrant le courant sur le temps de dépôt. Lorsque la charge atteint la valeur désirée (celle 

donnée par l'Eq. (2.1)) pour une couche, le potentiel alterne à la valeur requise pour déposer 

l'autre couche. Le cycle est ainsi répété jusqu’à l’obtention du nombre requis de couches. Ce 

procédé automatique permet d'obtenir des nanofils de configurations variées. Dans notre cas, 

nous avons exploré deux familles de configuration, que l'on référera par bicouche et tricouche 

(voir Figure 2.5). Les nanofils bicouches sont constitués d’alternance de couches magnétiques 

d’épaisseur hm et de couches non-magnétiques (cuivre) d’épaisseur hnm. Les nanofils tricouches 

sont constitués d’une couche magnétique d’épaisseur hm1, d’une couche non-magnétique (cuivre) 

d’épaisseur hnm1, d’une seconde couche magnétique d’épaisseur hm1 et d’un espaceur non-

magnétique d’épaisseur hnm2, le tout répété plusieurs fois. L'annexe C présente les dimensions 

nominales des nanofils étudiés dans ces travaux ainsi que les conditions expérimentales pour les 

obtenir. 
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Figure 2.5:   Les deux classes de nanofils multicouches que nous avons étudiées. a) 

Configuration classique avec alternance régulière de bicouches magnétiques/non-

magnétiques (par exemple Ni/Cu, CoFeB/Cu). b) Alternance de tricouches de type 

magnétique/non-magnétique/magnétique, séparées par une épaisse couche non-

magnétique. L'épaisseur hnm2 est en général plusieurs fois plus grande que 

l'épaisseur de la tricouche.   

 

2.3 Caractérisation structurelle 

 Nous présentons ici les résultats de caractérisation structurelle des nanofils. La 

caractérisation par microscopie électronique à balayage (MEB) sera présentée à la section 2.3.1, 

et la caractérisation par microscopie électronique en transmission (MET) sera présentée à la 

section 2.3.2. Nous discuterons d’abord des appareils de mesure, et ensuite nous présenterons les 

résultats des nanofils multicouches. 

 

2.3.1 Microscopie électronique à balayage 

 La microscopie électronique à balayage (MEB) ou scanning electron microscopy (SEM) 

en anglais, est une technique permettant la cartographie de surfaces à une résolution de l’ordre de 

quelques nanomètres. Le principe de base est le suivant: un faisceau d'électrons primaires est 

envoyé sur la surface à analyser, puis l'interaction du faisceau avec la matière résulte, entre 

autres, en l'émission d'électrons secondaires, la rétrodiffusion des électrons primaires, et 

l'émission de photons. Chaque type de particule (électrons secondaires, rétrodiffusés ou photons) 

nécessite un détecteur spécialisé et permet d'obtenir des informations différentes sur l'échantillon. 

Les électrons secondaires sont d’intérêt pour l’observation de la topographie de surface. Les 

électrons secondaires proviennent de la bande de conduction et sont émis suite à l’interaction 
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avec le faisceau d’électrons primaires de haute énergie. La faible énergie (<50 eV) des électrons 

secondaires fait en sorte qu'ils sont émis à moins de quelques nanomètres de la surface de 

l'échantillon, les autres électrons étant réabsorbés par le matériau. La détection des électrons 

secondaires offre donc une sensibilité à la topographie de la surface de l’échantillon. 

 

L'appareil que nous avons utilisé est un MEB-Hitachi, modèle S-4700. Nous utilisons 

cette méthode de microscopie pour observer deux types d'échantillon dans le cadre de ces 

travaux: 

 Membranes d'alumine (voir Figure 2.2) 

 Nanofils libérés de la membrane et déposés sur une surface (voir Figure 2.6) 

 

  Ce type de microscopie est utile pour évaluer le diamètre des nanofils et leur rugosité de 

surface. On observe que le diamètre des nanofils tourne effectivement autour de 40 nm. Ce 

diamètre relativement constant sur l'ensemble de nos échantillons démontre la stabilité de notre 

procédure expérimentale de fabrication de l'alumine poreuse. D'un autre côté, les nanofils 

semblent être caractérisés par une surface irrégulière.  Cette rugosité semble provenir de la 

rugosité interne des pores, comme on peut le constater à la Figure 2.7. Cette rugosité peut avoir 

plusieurs effets sur les propriétés magnétiques des nanofils, notamment sur la résonance 

ferromagnétique. 

a)  
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b)  

Figure 2.6:  Caractérisation par MEB des nanofils libérés de la membrane. Les 

mesures par MEB n'ont pas permis de distinguer les différentes 

couches magnétiques et non-magnétiques, ce qui rend son utilité très 

limitée. a) CoFeB(10)/Cu(10)/CoFeB(10)/Cu(50) × 1000 b) 

CoFeB(10)/Cu(5)/CoFeB(10)/Cu(55) × 2000. Diamètre = 45 nm. 

 

 

Figure 2.7:   Mesure MEB en coupe transverse d’une couche d’alumine contenant des nanofils.  

 

 Le MEB ne permet pas, dans notre cas, de mesurer la longueur totale des nanofils puisque 

ceux-ci se cassent pendant la procédure de dissolution de la membrane. Néanmoins, on peut 

obtenir une estimation raisonnable de la longueur totale des nanofils multicouches en multipliant 
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l'épaisseur moyenne des couches magnétiques et non-magnétiques par le nombre de cycles 

effectués par le potentiostat durant l'électrodéposition.  

 

 La question-clé reste ici de déterminer l'épaisseur des couches magnétiques et non-

magnétiques pour les nanofils multicouches. Nos nombreuses mesures MEB ne nous ont pas 

permis de distinguer l'alternance des couches magnétiques et non-magnétiques. La principale 

raison est que le comportement des électrons secondaires dépend du numéro atomique des 

constituants des nanofils, qui sont ici plutôt semblables (Fe-26, Co-27, Ni-28, Cu-29). Le 

microscope électronique en transmission nous permet néanmoins de distinguer l’épaisseur des 

couches, tel que nous verrons à la prochaine section. 

 

2.3.2 Microscopie électronique en transmission 

 

La microscopie électronique en transmission (MET) ou transmission electron microscope 

(TEM) en anglais, consiste tout d’abord à soumettre un échantillon à un faisceau d’électrons 

primaires de haute énergie. L'interaction des électrons avec la matière génère plusieurs types de 

rayonnements. Les trois types de rayonnement d’intérêt ici sont les électrons diffractés, les 

électrons transmis, et les rayons X. Selon le type de détecteur et le mode d'imagerie, il est 

notamment possible d'obtenir le diamètre des nanofils, la cristallinité des nanofils, la composition 

chimique des couches et l’épaisseur des couches.  

 

 Le mode imagerie permet d'analyser le faisceau transmis qui, selon l'épaisseur, la densité 

et la composition chimique de l'échantillon, conduit à un contraste spatial sur le plan image du 

microscope. Le mode diffraction permet d'analyser les faisceaux diffractés en plaçant le détecteur 

dans le plan focal du microscope. Les directions de diffraction des électrons permettent donc de 

déterminer la nature cristalline de l'échantillon. Le troisième mode que nous avons utilisé est la 

spectrométrie en énergie des rayons X (EDS) pour l'analyse de la composition chimique des 

échantillons. Ce mode permet d'obtenir une distribution spatiale de la composition chimique des 

nanofils. L'appareil que nous avons utilisé est un Jeol JEM-2100F. La Figure 2.8 présente 
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quelques exemples d'images MET et clichés de diffraction obtenus sur des nanofils multicouches 

libérés de leur membrane d’alumine. Les clichés de diffraction sont obtenus en focalisant le 

faisceau sur un rayon couvrant pouvant contenir plusieurs périodes de couches au sein d'un même 

nanofil. Nous n'avons pas de cliché ne couvrant l'épaisseur que d'une seule couche; ces mesures 

devraient être prises dans une suite à ce projet.  

a)  

 

b)  

c)   
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d)   

Figure 2.8:  Mesures MET des nanofils multicouches libérés de leur membrane avec les 

épaisseurs ciblées suivantes: a) CoFeB(50)/Cu(50) × 154 

b)CoFeB(10)/Cu(10)/CoFeB(10)/Cu(50) × 1000 

c)CoFeB(10)/Cu(5)/CoFeB(10)/Cu(55) × 2000 

d)CoFeB(10)/Cu(10)/CoFeB(10)/Cu(75) × 100. Le diamètre des nanofils est 

d'environ de 45 nm.  

 

 Comme on peut le constater, les images MET ne montrent pas l'alternance attendue des 

couches ferromagnétique et non-magnétiques. Certains clichés (par exemple Figure 2.8 b) 

montrent des contrastes pouvant s'apparenter à des couches, mais ces contrastes ne sont pas 

réguliers et peuvent aussi être dus à des contrastes de diffraction. Ces résultats sont quelque peu 

étonnants puisque plusieurs autres groupes ont été en mesure de distinguer les couches 

magnétiques et non-magnétiques par des mesures MET sur des nanofils multicouches, par 

exemple (Pullini et al., 2007) et (Peng et al., 2007). Néanmoins, à notre connaissance aucun 

groupe n'a présenté de mesures MET sur des nanofils similaires aux nôtres (en composition et en 

dimensions). Il est donc très délicat de comparer nos mesures à celles de d'autres groupes. 

 

 Une autre information importante extraite de ces images MET concerne l'hypothèse selon 

laquelle les couches de CoFeB sont amorphes (Ciureanu et al., 2005). En analysant les clichés de 

diffraction de nos échantillons, on observe que les couches ont effectivement un caractère plutôt 

polycristallin (Figure 2.8 a, b, d). Notons que ces clichés de diffraction ont été mesurés sur une 

petite portion d'un seul nanofil à chaque fois. Cette confirmation est importante puisque notre 

modèle d'interaction magnétique entre les nanofils fait l'hypothèse que les couches 
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ferromagnétiques sont amorphes (voir chapitre 3). Nous pourrions en principe déterminer la 

composition des réseaux cristallins des couches en focalisant sur des portions de nanofils plus 

petites et obtenir des anneaux de diffraction provenant que d’une seule couche. Nous pourrions 

ensuite effectuer une analyse des rayons de diffraction afin de les associer à des systèmes 

cristallins connus du Cu ou du CoFeB. Nous n’avons pas été en mesure d’effectuer cette analyse 

par manque de temps.  

 

Les mesures EDS ont permis de distinguer l’épaisseur des couches magnétiques et non-

magnétiques. La composition chimique a été obtenue en fonction de la position axiale le long des 

nanofils. La Figure 2.9 présente les résultats de ces mesures pour deux échantillons de nanofils 

multicouches (de type bicouche). Il est possible de distinguer l'alternance régulière de couches 

magnétiques (CoFeB) et non-magnétiques (Cu). Les couches de CoFeB sont ici représentées par 

les pics de Co et Fe. Les atomes de B ne sont pas visibles ici puisqu'ils ne représentent que 1% 

massique de l'alliage de CoFeB. On remarque que l'intensité du cuivre ne redescend pas jusqu'à 

zéro dans les couches magnétiques. Ce signal résiduel provient des atomes de cuivre 

électrodéposés dans la couche magnétique, et de la grille de support en cuivre. L'importance 

relative de ces deux causes n'est pas établie, d'où la nécessité d'effectuer les mesures MET sur un 

autre type de grille (Ni par exemple). Cette mesure permettrait d'estimer l'importance des 

impuretés de cuivre dans les couches magnétiques lors de l'électrodéposition. 
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Figure 2.9:   Spectres EDS sur des échantillons de nanofils en configurations bicouches et 

tricouches: CoFeB(50)/Cu(10)×500 (gauche), CoFeB(50)/Cu(50)×154 (sup. droit) 

CoFeB(10)/Cu(10)/CoFeB(10)/Cu(75) × 100 (inf. droit). Les mesures EDS à 

gauche sont la gracieuseté de Prof. Karen Kavanagh, Université Simon Fraser. 

Diamètre = 45 nm.  
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 Ce type de mesure permettrait en principe d’estimer l’efficacité de dépôt des matériaux 

dans les pores de l’alumine, et d’obtenir une mesure de l’épaisseur réelle de couches. Pour cela il 

faudrait effectuer une mesure statistique sur plusieurs nanofils et plusieurs types d’échantillons 

aux dimensions variées. Dans notre cas, ces mesures EDS ne nous permettent pas d’établir avec 

confiance une efficacité de dépôt qui pourra être généralisée à tous les autres échantillons. Nous 

observons néanmoins que les pics correspondant aux couches de CoFeB indiquent des épaisseurs 

autour de 40-50 nm (Figure 2.9 gauche), ce qui est en accord avec l’épaisseur nominale de 50 nm 

pour ces échantillons (calculée avec l'Éq. (2.1)).   

 

2.4 Discussion 

Notre objectif initial était de maîtriser la fabrication des réseaux de nanofils multicouches 

et pour l'instant nous sommes loin de contrôler parfaitement le procédé. D'une part, les nombreux 

essais d'électrodéposition que nous avons effectués ne nous ont pas permis d'obtenir des nanofils 

multicouches de qualité régulière; c'est-à-dire que pour des conditions expérimentales similaires 

les résultats obtenus variaient significativement. D'une autre part, notre capacité à caractériser la 

structure, notamment l'épaisseur des couches, est encore limitée et demanderait beaucoup de 

raffinement. Nous proposons ici plusieurs pistes de solutions pour améliorer le procédé.   

 

 La première concerne l'utilisation du vernis à ongle comme pour empêcher l'infiltration de 

solution dans certaines zones de la membrane. Il n'est pas clair si les constituants du vernis ont un 

effet notable ou pas sur l'électrodéposition. Il est possible que des impuretés provenant du vernis 

viennent s'insérer dans les pores ou obstruer ceux-ci. De plus, si ces impuretés sont de nature 

magnétique, cela peut fausser l'analyse des propriétés magnétiques des nanofils. Nous avons 

éliminé ce questionnement en modifiant la préparation de la membrane pour l'électrodéposition. 

En effet, nous avons remplacé le vernis par une fine membrane adhésive et photosensible. Cette 

membrane rend la procédure beaucoup plus propre et permet de contrôler, par photolithographie, 

les zones où un dépôt est souhaité. Cela améliore la précision de la surface de dépôt, paramètre 

qui permet d'estimer la charge de dépôt dans l'Éq. (2.1). 
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 La deuxième piste de solution consiste à optimiser les potentiels de dépôt pour les ions 

magnétiques et non-magnétiques. En effet, les couches magnétiques se dissolvent pendant un bref 

instant lorsque le potentiel cathodique passe du plus négatif (-1 V pour le CoFeB) au moins 

négatif (-0,56 V pour le Cu). Cette redissolution des couches magnétiques contribue non 

seulement à réduire l'efficacité de dépôt (hm réelle / hm souhaitée), mais accentue la rugosité de 

surface des nanofils. Une approche potentielle est de limiter cet effet consiste à interrompre le 

potentiostat (à l'aide du programme d'acquisition) le temps que le potentiel monte à la valeur du 

Cu, puis de redémarrer le contrôle potentiostatique (Fert & Piraux, 1999). Nous n'avons 

malheureusement pas eu le temps d'explorer cette technique dans le cadre de ces travaux.     

 

 Une troisième piste concerne le pH de la solution électrolytique. Il a été démontré pour 

des nanofils de Co que le pH de la solution électrolytique influençait significativement la 

structure cristalline des nanofils (Darques et al., 2004). Cette variation de la structure se traduit 

par une contribution différente de l'anisotropie magnéto-cristalline à l'anisotropie magnétique 

totale du réseau de nanofils. Elle peut même contribuer à renverser les directions faciles 

d'anisotropie, comme nous le montrons en annexe A. C'est pourquoi il est important de contrôler 

rigoureusement le pH de la solution électrolytique à la valeur de 3,5 qui a été établi lors du 

développement de l'alliage de CoFeB (Ciureanu et al., 2005).  

 

Caractérisation structurelle 

Nous avons vu que la caractérisation structurelle par MEB et MET n’ont pas permis de 

répondre à toutes les questions concernant l’épaisseur et la nature des couches ferromagnétiques 

et non-magnétiques. Néanmoins, nous avons obtenu des résultats assez fiables pour poursuivre la 

caractérisation magnétique avec un bon degré de confiance sur la structure des nanofils. 

 

Une piste de solution concerne la grille servant de support aux nanofils durant la mesure 

MET. En effet, la grille que nous avons utilisée est composée de cuivre alors que nos nanofils 

sont également composés de cuivre (Cu) et d'éléments très proches en nombre atomique. Cela 

masque en quelque sorte le contraste entre les couches de CoFeB et le Cu des différentes 
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couches. Une manière simple de palier à ce problème serait d'utiliser une grille en nickel (Ni) 

recouverte de carbone. Cela permettrait probablement d'obtenir un meilleur contraste entre les 

couches puisqu'on éliminerait le signal de fond causé par la grille de cuivre.  

 

 Une autre piste de solution serait de graver sélectivement les couches pour obtenir un 

contraste topographique des couches, comme l'ont effectué (Pullini et al., 2007). Nous pourrions 

par exemple utiliser un agent chimique qui graverait plus rapidement l’une des deux couches et 

observer les nanofils au MET.  

 

 Au niveau des clichés de diffractions, ils pourraient donner de l'information pertinente sur 

la structure cristalline des couches si l'on focalisait sur des couches individuelles. De plus, il 

faudrait effectuer une analyse des rayons de diffraction afin de les associer à des systèmes 

cristallins connus du Cu ou du CoFeB. 

  

Malgré ces difficultés, nous avons synthétisé plusieurs nanofils multicouches de qualité 

suffisante pour poursuivre avec les autres objectifs de l'étude, c'est-à-dire que nous avons observé 

une structure bien définie en bicouche et tricouche et que les épaisseurs mesurées des couches 

étaient relativement proches (à moins de 20% près) des épaisseurs nominales. Les objectifs pour 

la suite sont de modéliser l'anisotropie de  réseaux de nanofils tricouches, de mesurer les 

propriétés magnétiques statiques et dynamiques et les confronter aux prédictions du modèle, et 

enfin démontrer la faisabilité expérimentale de réseaux de nanofils magnétiquement isotropes. 
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CHAPITRE 3 MODÉLISATION DE L'ANISOTROPIE MAGNÉTIQUE 

 

Comme nous l'avons mentionné en introduction, un des intérêts principaux d'un réseau de  

nanofils multicouches est de pouvoir exercer un contrôle sur ses propriétés magnétiques en 

ajustant ses paramètres géométriques (diamètre des nanofils, épaisseurs des couches, distance 

inter-fil) et structurels (composition des couches, structure cristalline, rugosité des pores). L'une 

de ses propriétés est l'anisotropie effective du réseau, c'est-à-dire que la réponse magnétique du 

réseau de nanofils se comporte différemment selon la direction du champ magnétique qui lui est 

appliqué. Nous élaborerons ce concept appliqué aux nanofils multicouches à la section suivante.  

 

Ce chapitre est consacré à la modélisation de l'anisotropie magnétique effective d'un 

réseau de nanofils tricouches à partir d'un modèle d'interactions dipolaires entre les nanofils. 

Nous quantifierons cette anisotropie par un champ effectif Heff qui caractérisera l'intensité et la 

direction de l'anisotropie selon un modèle uniaxial. Ce modèle sera ensuite confronté à 

l’expérience au chapitre 4. L'intérêt de cette modélisation est triple: d'une part cela permettra de 

généraliser le modèle d'interaction développé par Carignan (2006) sur des systèmes tricouches, 

d'une autre part cela permettra d’élaborer des règles de design pour guider l'ingénierie de 

l'anisotropie en fonction des paramètres géométriques du réseau, puis enfin cela permettra d’ 

interpréter les résultats expérimentaux présentés au chapitre 4. Nous avons également utilisé ce 

modèle d'anisotropie effective pour développer un modèle de résonance ferromagnétique 

appliqué aux nanofils tricouches. 

 

3.1 Anisotropie magnétique effective 

 L'anisotropie magnétique peut se définir comme la dépendance de l'énergie magnétique 

d'un matériau par rapport à l'orientation de son aimantation relativement à un référentiel fixe lié à 

l’échantillon. Cette propriété est à l'origine de l'hystérésis et de la coercivité des matériaux 

ferromagnétiques (Skomski, 2008). L'anisotropie magnétique a en général plusieurs origines dont 
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l'importance dépend essentiellement de la composition chimique, de la structure cristalline, et de 

la forme des matériaux en question. 

 

 Dans cette section nous décrirons tout d'abord les différentes sources contribuant de façon 

non-négligeable à l'anisotropie globale d'un réseau de nanofils ferromagnétiques multicouches. 

Nous expliquerons ensuite le modèle élaboré par Carignan (2006) et que nous utilisons ici dans le 

cas de nanofils multicouches. Nous discuterons enfin des prédictions réalisées à l'aide de ce 

modèle. 

 

3.1.1 Contributions à l'anisotropie effective 

Les réseaux de nanofils multicouches offrent plusieurs degrés de liberté quant aux 

possibilités d'ingénierie de leur anisotropie magnétique effective. Afin de mieux comprendre 

l'origine de cette dernière, nous allons séparer  les contributions physiques à l’anisotropie en deux 

grands mécanismes, l’interaction dipolaire magnétique et l’interaction magnétocristalline, eux 

même subdivisés en plusieurs contributions qui sont susceptibles d'avoir une importance plus ou 

moins grande sur l'anisotropie globale du réseau. 

 

L’interaction dipolaire magnétique en est une de longue portée. Bien que le champ 

magnétique produit par un dipôle magnétique à une distance r varie en 1/r
3
, tel que montré à l’Éq. 

(3.2), le nombre de dipôles pouvant interagir avec un autre à distance r est proportionnel à r
3
, ce 

qui donne lieu à une interaction net significative entre des régions aimantées non adjacentes. Pour 

des échantillons homogènes et uniformément aimantés, cette interaction dépend essentiellement 

des monopoles effectifs (dipôles non compensés) à la surface du matériau et s’exprime comme un 

facteur de désaimantation (anisotropie de forme). Dans le cas de nos échantillons, l’interaction 

dipolaire au sein d’une monocouche magnétique sera traitée comme telle. De même, l’interaction 

avec les autres monocouches d’un même fil donnera lieu à un facteur de désaimantation effectif 

(anisotropie d’interaction intrafil) et l’interaction avec les monocouches de tous les autres fils 

sera prise en compte par un facteur de désaimantation interfils (anisotropie d’interaction interfils). 
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L’interaction d’origine magnétocristalline est à courte portée. Elle dépend essentiellement 

de l’environnement atomique des ions magnétiques (distance, orientation et nature des proches 

voisins). Dans un cristal, elle reflète la symétrie du réseau cristallin (anisotropie 

magnétocristalline) et elle peut être sensible aux déformations pouvant donner lieu à des effets de 

magnétostrictifs (anisotropie magnétoélastique). Dans les cristaux amorphes, les effets 

magnétoélastiques dominent l’anisotropie atomique. Dans les polycristaux, les effets dépendent 

de la taille relative des grains par rapport aux longueurs caractéristiques d’interaction. Pour les 

matériaux à faible anisotropie magnétocristalline, l’interaction magnétocristalline aura tendance à 

s’annuler en moyenne.   

 

En général, l’anisotropie de nos structures est dominée par les effets dipolaires (Carignan 

2006), avec possiblement une contribution magnétocristalline dans le cas des fils de Co. D’autres 

sources d'anisotropie, telles que l'anisotropie de surface ou l'interaction d'échange entre les 

couches ferromagnétiques, ne seront pas traitées ici. Dans le cas de l’interaction d’échange entre 

les tricouches, nous avons choisi des couches d’espacement suffisamment épaisses pour qu’elle 

soit négligeable. L’anisotropie de surface, tout comme l’anisotropie d’origine magnétoélastique, 

si elles se manifestent, seront pris en compte indirectement dans un terme d’anisotropie 

magnétocristalline effective.  

 

Anisotropie de forme 

 On sait qu'il est en général plus facile d'aimanter un objet de forme ellipsoïdale sur son 

grand axe que sur son petit axe: ce comportement est dû à l'anisotropie de forme du matériau.  

Celle-ci a pour origine les interactions dipolaires entre les moments magnétiques atomiques. Ces 

interactions font en sorte que le champ magnétique à l'intérieur du matériau tend à le désaimanter 

et ce champ est connu sous le nom de champ de désaimantation (Hd). Il existe un lien de 

proportionnalité entre le champ de désaimantation et l'aimantation du matériau: 

            (3.1) 
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où     est le tenseur de désaimantation dépendant de la forme du matériau. Des expressions 

exactes de      existent pour les ellipsoïdes aimantés uniformément (Osborne, 1945), dont se sert 

Carignan (2006) pour approximer les couches ferromagnétiques dans son modèle d'interaction. 

Dans le cas de structures cylindriques, il est possible d'obtenir une expression analytique du 

tenseur de désaimantation effectif que nous appliquerons plus loin pour notre système (Tandon, 

2004). 

 

Interactions dipolaires entre couches 

 Une part importante de l'anisotropie du réseau de nanofils multicouches provient des 

interactions magnétiques dipolaires entre les couches ferromagnétiques, que ce soit au sein d'un 

même fil ou entre différents fils. Si nous considérons chacune de ces couches uniformément 

aimantée comme un dipôle ponctuel (macrospin), l'énergie d'interaction entre deux dipôles s'écrit 

comme 

 
              

  
  

                            
 

   
  (3.2) 

où    et    sont les vecteurs moments dipolaire magnétique (A.m
2
) de chaque couche et     est 

le vecteur spatial reliant les deux positions atomiques des moments. 

 

 Cette contribution dipolaire est particulièrement importante dans le cas des tricouches 

puisque les couches magnétiques sont rapprochées. De façon générale, le comportement 

magnétique individuel d'une couche est influencée par le moment magnétique de toutes les autres 

couches ferromagnétiques du réseau, tel que discuté au début de cette section. 

 

Anisotropie magnétocristalline 

 L'anisotropie magnéto-cristalline provient de deux mécanismes fondamentaux: le 

couplage spin-orbite et les interactions des ions magnétiques avec le champ cristallin (Skomski, 

2008). Selon la symétrie du système cristallin du matériau, l'arrangement des atomes fait en sorte 

que les orbitales atomiques des ions magnétiques s’orienteront préférentiellement par rapport aux 

axes cristallographiques, ce qui influencera l’orientation des moments cinétiques de spin 
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responsables du magnétisme. Certaines directions cristallographiques seront donc plus faciles à 

aimanter et certaines directions plus difficiles.  

 

 

D'un point de vue pratique, on peut modéliser cette contribution par une énergie libre qui 

dépend des variables angulaires. Par exemple, l'anisotropie magnétocristalline uniaxiale de 

certains matériaux magnétiques peut être modélisée par une relation simple du type: 

             
   (3.3) 

où   est l'angle que fait l’aimantation avec l'axe cristallin principal (axe facile), et   ,    sont des 

constantes d’anisotropie s'exprimant en (J/m
3
). On parle ici d'une anisotropie uniaxiale puisqu’un 

seul angle définit la dépendance de l'anisotropie. Des relations beaucoup plus compliquées et 

faisant intervenir 2 ou 3 axes orthogonaux peuvent s'appliquer à d'autres matériaux. Ce qui est 

important de retenir ici est que cette contribution peut prendre de l'importance si nos couches 

ferromagnétiques ont une structure cristalline ordonnée. Néanmoins, la caractérisation 

structurelle des couches de CoFeB nous a montré que les couches sont tout au plus 

polycristallines, ce qui favorise une hypothèse d'anisotropie magnétocristalline nulle en moyenne 

sur le volume d'une couche. On gardera en tête, cependant, qu’une anisotropie cristalline 

apparente pourrait se manifester si l’anisotropie de surface s’avère importante. 

 

3.1.2 Tenseur d'anisotropie effective 

 Nous décrivons maintenant le modèle que nous avons utilisé pour décrire l'anisotropie 

effective du réseau de nanofils multicouche. Ce modèle a été élaboré par Carignan (2006) et nous 

en avons modifié certains aspects dans le cadre de ces travaux. Le système étudié consiste en un 

réseau de nanofils multicouches tel que présenté à la Figure 3.1. Dans ce modèle on suppose que 

chaque tricouche est composée de deux couches ferromagnétiques d'épaisseurs hm1 et hm2, 

séparées entre elles d'une couche non-magnétique d'épaisseur hnm1. Les tricouches sont séparées 

entre elles par une autre couche non-magnétique d'épaisseur hnm2. Les nanofils sont supposés 
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uniformes, de diamètre d = 2a et de longueur L constants. Le nombre de tricouches est lui aussi 

constant et permet de définir la longueur d'un nanofil comme: 

                         (3.4) 

avec   le nombre de tricouches. Les nanofils sont disposés selon un réseau hexagonal de taille 

infinie dans le plan et la distance inter-fil est supposée constante. 

 

 

 

Figure 3.1 : Système de coordonnées utilisé et dimensions caractéristiques du réseau de nanofils 

multicouches dans notre modélisation. L'épaisseur de la membrane est de l'ordre de 

200 µm alors que les nanofils sont d'une longueur de l'ordre de 30-50 µm dans notre 

cas.  

 

Un champ magnétique    agit sur le réseau et s'écrit:  
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                                         . (3.5) 

On admet pour l’instant que les dipôles sont tous orientés parallèlement les uns aux autres (plus 

tard nous allons considérer deux sous-réseaux indépendants pouvant interagir). La réponse 

magnétique du réseau de nanofils s'exprime par une aimantation M s'écrivant:  

                                   (3.6) 

où   est l'amplitude de l'aimantation (moment dipolaire par unité de volume intrinsèque aux 

couches individuelles). On suppose que chaque couche ferromagnétique a un moment 

magnétique             (avec       et Ms est l'aimantation à saturation) et on considère 

les moments magnétiques comme des dipôles positionnés au centre de chaque couche. Notre 

approche consistera à établir une relation entre le champ magnétique (ou densité de flux 

magnétique) B et l'aimantation M du type: 

          (3.7) 

où    est un tenseur de désaimantation effectif que l'on déterminera. Ce tenseur représente la 

contribution des différentes sources d'anisotropie magnétique du réseau. Pour la suite, nous ne 

considérerons que deux contributions à l'anisotropie mentionnées plus haut: les interactions 

dipolaires et l'anisotropie de forme. Nous laissons de côté l'anisotropie magnétocristalline pour le 

moment D’une part, la caractérisation structurelle n'a pas permis d'établir la configuration 

cristallographique des couches de CoFeB. D’autre part, nos travaux antérieurs suggèrent  que 

l’anisotropie est dominée par les effets dipolaires. 

 

Interactions dipolaires 

 On peut commencer par calculer le tenseur de désaimantation provenant des interactions 

dipolaires entre les couches ferromagnétiques. Dans l'hypothèse où les couches se comportent 

comme des dipôles magnétiques de moments m, et que les dipôles sont suffisamment éloignés 

l'un de l'autre, le champ magnétique Bi émanant d'un dipôle mi situé en                    et 

ressenti par un dipôle situé à l'origine            s'écrit:  
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     (3.8) 

où    est le moment magnétique du dipôle i. On doit factoriser cette expression pour faire 

apparaître clairement la relation    et    comme dans l'Éq. (3.7): 

 

              
               

   

  
         

      
     

          
 

  (3.9) 

où   
  est la transposée du vecteur   . On peut donc écrire l'Éq. (3.8) comme  

         
  

    
    

        
        (3.10) 

avec   la matrice identité.  

 

 Le modèle de Carignan (2006) ne tient compte que d'une seule épaisseur commune à 

toutes les couches magnétiques, alors que nous en avons deux dans notre cas. Nous pouvons 

surmonter cette complication en considérant le système comme la superposition de deux sous-

réseaux de couches ferromagnétiques, comme l'illustre la Figure 3.2. Cette astuce nous permettra 

d'appliquer la démarche de Carignan (2006) à chacun de ces deux sous-réseaux.  
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Figure 3.2 : Système de nanofils tricouches comme la superposition de deux systèmes bicouches. 

 

 Nous considérons maintenant que le réseau est composé de deux groupes d'aimantation 

M1 et M2 d'orientation et d'amplitude différentes, tel que montré à la Figure 3.2. Le premier 

groupe correspond aux couches supérieures alors que le deuxième aux couches inférieures de 

chaque tricouche. L'amplitude de Mi est égale au moment magnétique    d'une couche divisé par 

son volume (       ). On obtient le champ dipolaire ressenti par une couche en sommant les 

contributions dipolaires des autres couches sur elle. On sépare l’interaction avec la couche 

voisine de l’interaction avec les autres couches pour mieux faire ressortir le couplage entre les 

deux sous réseaux qui devrait dépendre de la distance hnm1. Nous développerons la suite à partir 

du champ dipolaire ressenti par une couche supérieure (d'aimantation M1 et d'épaisseur     ), 

mais le résultat est parfaitement symétrique pour la couche inférieure:  

                                    (3.11) 

où         et         sont les tenseurs de désaimantation effectif dipolaire du réseau englobant les 

contributions de toutes les couches ferromagnétiques sur la couche de référence. Nous 

développerons plus loin un tenseur      représentant l’interaction dipolaire provenant de la 

couche jumelle dans la tricouche de référence. Ces deux tenseurs s'écrivent:  
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    (3.12) 

 

 

         
     
 

 
 

  
  

  
     

             

        
     

       

              
     

 

 

  

   (3.13) 

 

 Comme on suppose ici que le réseau est hexagonal et infini dans le plan, il existe deux 

axes de symétries; l'un selon     et l'autre selon    . Les termes hors diagonaux étant 

composés de fonctions impaires, ceux-ci sont nuls en effectuant la somme sur les i,j. De plus, les 

deux premiers termes diagonaux de chaque matrice sont égaux par symétrie du réseau. Tout cela 

permet de simplifier considérablement les Éq. (3.12) et (3.13): 

 

         
      
      
      

                      
      
      
      

    (3.14) 

où les termes Nxx et Nzz s'écrivent: 

 

 
     

       
     

  

   
 

  

   
       

     
  

   
 

  

 

      
       

     
  

   
 

  

  

(3.15) 

 On remarque que la trace de chaque matrice est nulle, c'est-à-dire que             . 

On n'aura donc qu'un seul de ces deux termes à calculer pour déterminer le tenseur de 

désaimantation      . Nous choisissons ici de développer le terme      , pouvant en fait être 

décomposé en deux sommes qui ont des significations physiques différentes: 
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                  (3.16) 

Le terme        représente les interactions dipolaires avec les couches au sein du même nanofil 

(sauf la couche jumelle), alors que        modélise les interactions avec les couches des autres 

nanofils. Calculons tout d'abord le terme        , soit lorsque             . Dans ce cas, le terme 

    s'écrit : 

 
         

    
 

 
 

     
  

    (3.17) 

où zi est la position de chaque couche au sein d'un même nanofil (par rapport au point        de 

la couche de référence). On peut montrer (Carignan et al., 2007) que ce terme peut être calculé 

par l’expression suivante :   

 

 
           

                       

     
 

  

                                   

             
                                 

     
 

 

                                              

(3.18) 

 

où n correspond à la n
ième 

couche magnétique du nanofil (hormis la couche jumelle),       

              est la distance entre deux couches du même sous-réseau. L'Éq. (3.18) est 

obtenue en considérant des éléments de volume infinitésimaux dV puis en intégrant la 

contribution d'interaction intrafil sur le volume de chaque couche. On pourra consulter (Carignan, 
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2006) pour plus de détails sur les mathématiques derrière ce modèle. Le terme        doit donc 

être calculé pour chacun des deux sous-réseaux de couches ferromagnétiques d'épaisseurs hm1 et 

hm2. Nous pouvons utiliser l'Éq. (3.18) pour calculer un terme     représentant l'interaction 

dipolaire entre les deux couches jumelles. Pour ce faire, il suffit de ne calculer que le terme en n 

= 0:  

 

    
 

 
 

 
 
 
 

 

   
  

         

 
 

   
  

               
 
 
 

    (3.19) 

Néanmoins, il est probable que ce terme ne décrive pas correctement l'interaction des couches 

jumelles plus celles-ci sont proches l'une de l'autre. Une approche que nous n'avons pas eue le 

temps d'approfondir ici est de procéder à une double intégration des interactions dipolaires sur 

tous les dipôles infinitésimaux des deux couches jumelles. Le fait de considérer une des deux 

couches comme un macrospin est peut-être une hypothèse erronée en-dessous d'une certaine 

distance entre ces couches jumelles.     

  

Dans le cas où l'on considère les interactions dipolaires provenant des couches de nanofils 

différents, soit lorsque   
    

    
   , on calcule le terme       : 

 
         

       
     

  

    
    

     
     

    (3.20) 

On divise chaque couche en petits disques infinitésimaux d'épaisseurs dt et on intègre les 

interactions dipolaires de tous les disques sur chacune des couches de tous les nanofils du réseau. 

Après évaluation de l'intégrale on obtient : 

 
           

   
                       

    
   

    

                 
     

              
      

(3.21) 
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Les sommations sur    sont bornées par l'étendue du réseau (nous verrons ses limitations 

plus loin) et sur n par le nombre de tricouches au sein d'un nanofil. Les termes        et        

sont donc calculées pour les deux sous-réseaux afin d'obtenir les tenseurs de désaimantation 

dipolaires de l'Éq. (3.14).  

 

Anisotropie de forme 

 Maintenant que nous avons calculé la contribution des interactions dipolaires entre les 

couches ferromagnétiques, déterminons l'effet de la forme des couches. Comme nous l'avons 

mentionné plus haut, la forme cylindrique des couches peut jouer un rôle important dans 

l'anisotropie effective du réseau de nanofils. On peut montrer que le tenseur de désaimantation 

associé à la forme d'une couche cylindrique s'écrit: 

 

         

     
     
      

    (3.22) 

avec     et      s'écrivant (Tandon, 2004): 

 
    

 

 
 
 

  
 
 

  
 
 

  
                            

     
 

 
 
 

  
 
 

  
                            

(3.23) 

 

où        ,            , et      et      sont respectivement les intégrales elliptiques 

complètes de première et deuxième espèces. On remarque que            , ce qui nous 

permettra de ne calculer qu'un seul de ces termes pour déterminer        . Le champ de 

désaimantation associé à la forme de la couche supérieure s'écrit donc 
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                     (3.24) 

 

3.1.3 Formes analytiques des tenseurs d’anisotropie 

Les Éqs. (3.18), (3.21) et (3.23) sont utiles d’un point de vue numérique et 

s’implémentent facilement dans un code de calcul, mais elles ne se prêtent pas à une 

interprétation facile de l’influence des facteurs géométriques sur l’anisotropie. De plus, le temps 

de calcul devient vite imposant avec un grand nombre de nanofils considéré pour       . On ne 

peut toutefois pas négliger les fils lointains puisqu’il s’agit d’une interaction longue portée, tel 

que discuté plus tôt. Ce que l’on peut faire cependant est d’évaluer un certain nombre de fils 

voisins de façon discrète et de transformer la somme en intégrale continue pour les fils lointains, 

en considérant un réseau latéral infini. C’est pourquoi nous tentons maintenant de déterminer des 

expressions analytiques faisant mieux sortir l’aspect physique de ces équations. Pour cela, nous 

nous inspirons de la démarche développée dans (Carignan, 2007). Définissions tout d’abord 

quelques paramètres : 

                                                              (3.25) 

représentant les facteurs de remplissage des couches ferromagnétiques, pouvant aller de 0 à 1 

selon l’épaisseur des couches (rappelons que                     ). Le rapport de 

forme des couches ferromagnétiques est exprimé par : 

                                                                  (3.26) 

où 2a est le diamètre des nanofils. Dans notre cas, ce rapport est généralement plus petit que 1 

puisque les épaisseurs     de nos échantillons sont de l’ordre de 2-10 nm pour des diamètres 

d’environ 45 nm. Nous définissons également le facteur de porosité P tel que         représente 

la densité planaire de nanofils dans le réseau (nombre de nanofils par unité de surface de 

membrane). Nous définissons enfin un paramètre de longueur normalisée : 
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          (3.27) 

L étant la longueur totale du nanofil (     , avec N le nombre de tricouches) et D étant la 

distance inter-fil. En pratique le paramètre s est de l’ordre de      puisque     pour les nanofils 

tricouches que nous avons étudié. La première simplification que nous pouvons effectuer 

concerne l’anisotropie de forme. En approximant la couche cylindrique ferromagnétique par une 

ellipsoïde oblate, le facteur de désaimantation       peut s’écrire comme :  

 
       

 

    
    

  

     
 
           

    (3.28) 

qui, dans le cas où la couche ferromagnétique est petite par rapport au diamètre (    ), peut 

être bien approximé par : 

          
 

 
    (3.29) 

 

La Figure 3.3 montre que l'approximation de        n'est valide que pour des valeurs 

suffisamment petites de c. On voit que l'on peut commencer à utiliser l'Éq. (3.29) avec confiance 

que pour      .  
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Figure 3.3 :  Forme de NOOP en fonction du facteur de forme des couches ferromagnétiques c 

pour les trois développements proposés: cylindre (3.23), ellipse (3.28), 

approximation  (3.29).  

 

 

Le terme d’interactions dipolaires interfils         peut également être simplifié en tenant compte 

du fait que le nombre de nanofils à une distance planaire    de l’origine (m étant un entier) est 

de             . En remplaçant la somme sur    par une somme sur m,  

 

            
                     

    
 

       

          

 

   

   

            

(3.30) 

En transformant la somme sur n en intégrale et pour des petits ratios      (             ), 

on peut montrer que (Carignan, 2007) : 

               
  

          

 

   

  (3.31) 

La Figure 3.4 montre les valeurs que prend cette sommation en fonction du paramètre s. On 

constate que la sommation tend rapidement vers l'unité pour de faibles valeurs de s. Comme nous 

l'avons indiqué plus tôt, s est dans notre cas de l'ordre du nombre de tricouches dans un nanofis et 

est donc suffisamment grand pour approximer la sommation par 1.    
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Figure 3.4 : Forme de la courbe de l'Éq.(3.31) en fonction du paramètre s. 

 

Nous devons calculer cette contribution dipolaire interfils pour chacun des deux sous-réseaux et 

nous obtenons finalement que le tenseur de désaimantation dipolaire peut s'exprimer comme un 

facteur de remplissage effectif des couches ferromagnétiques situées dans les autres nanofils: 

 

                                    (3.32) 

 

Un autre terme à approximer est le tenseur de désaimantation tenant compte des interactions 

dipolaire intrafil. En reprenant directement l'Éq. (3.18), nous n'avons pas été en mesure de  

développer une expression simple pouvant rapidement être interprétée. Nous allons donc traiter 

les couches intrafils comme des macrospins et nous utiliserons la sommation de l'Éq. (3.17) sur 

les positions de ces dipôles le long du nanofil. Après quelques développements nous obtenons la 

forme analytique suivante:   

 
                        

   
 

 
 
 

 
 
 

           
 

     
 
            

 

     
 
   

(3.33) 

 

où                . Enfin, pour ce qui est de l'interaction dipolaire entre les couches jumelles, 

nous reprenons tout simplement le résultat de l'Éq. (3.19) et appliquons la définition des facteurs 

géométriques c: 

 

 
    

 

 
 

 
 
 
 

 

   
 

      

 
 

   
 

           
 
 
 

 
(3.34) 
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Les Éqs. (3.29), (3.32), (3.33) et (3.34) seront nos équations de référence pour calculer le champ 

effectif dans la suite et nous verrons plus loin comme se comportent ces termes d'anisotropie en 

fonction des différents paramètres géométriques. Même si ces équations ont été développées pour 

une configuration tricouche, il est important de mentionner que le cas bicouche peut facilement 

être modélisé en posant                          dans les équations précédentes.  

 

3.1.4 Densité d'énergie magnétique  

Maintenant que nous avons établi les différentes contributions à l'anisotropie d'une couche 

ferromagnétique, le champ dipolaire global ressenti par cette couche s'écrit donc: 

                                                   (3.35) 

où les différents tenseurs s'écrivent:  

 

         

 
 

 
       

  
 

 
      

       

             

       

       

        

    

         

 
 

 
       

  
 

 
      

       

        

 
 

 
     

  
 

 
    

     

  

(3.36) 

où                         et                    . 

 

La densité d'énergie magnétique, dont les unités sont en J/m
3
 (erg/cm

3
 en CGS) associée aux 

interactions dipolaires sur une couche supérieure s'écrit (on introduit un facteur ½ pour éviter le 

double comptage des interactions mutuelles):  

 
        

 

 
      

  
 
                                                 (3.37) 
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En tirant profit du fait que                       et en éliminant les termes constants en angle 

(puisqu'ils disparaîtront après dérivation) on peut écrire cette équation dans le système de 

coordonnées sphériques: 

 
       

    
 

 
                      

   

  
      

 
                                              

(3.38) 

De plus, nous définissons les constantes d'anisotropie    ,    
  et    

   : 

 

 
   

    
 

 
                    (3.39) 

 

 
   
   

            
 

 (3.40) 

 

 
   
    

          
 

 (3.41) 

 

Nous pouvons donc écrire la densité d'énergie magnétique associée aux interactions dipolaires et 

à l'anisotropie de forme comme: 

 

 
            

     
 

 
                                      (3.42) 
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    (3.43) 

 

On remarque que le premier terme de l'Éq. (3.42) est celui que l'on retrouve pour un 

réseau bicouche typique tel que développé dans (Carignan, 2006). Il représente les interactions 

dipolaires de toutes les couches supérieures (1) du réseau sur la couche cible ainsi que son 

anisotropie de forme. C'est donc comme si le réseau n'était constitué que des couches supérieures 

(1). Le deuxième terme comptabilise les interactions des couches inférieures (2) avec la couche 

cible et dépend des angles zénithaux    de l'aimantation, de la différence des angles azimutaux 

      , et de l'aimantation    des couches. Le cas particulier où les aimantations sont 

parallèles, c'est-à-dire où           et         revient à ajouter directement les 

contributions dipolaire       et      à la constante    pour obtenir cette expression de l'énergie: 

                 
    (3.44) 

Notons que le cas parallèle devient pertinent lorsque le champ magnétique est assez fort pour 

saturer l'échantillon. Le cas antiparallèle est traité en annexe E. L'énergie totale du système 

composé d'une tricouche est donc, avec les conventions mentionnées plus haut, donnée par 

l'expression suivante:  

                                  (3.45) 

où        est l'énergie de Zeeman de l'interaction de l'aimantation avec un champ magnétique 

externe:  

                                                          (3.46) 

L'énergie totale du système est donc donnée par:  
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(3.47) 

 

avec    
            
            

 . 

 

Minimisation de l'énergie du système 

 Nous pouvons chercher à minimiser l'énergie totale afin de déterminer les positions 

d'équilibre des aimantations M1 et M2 par rapport à un champ externe H0 donné. Pour cela, il 

suffit de calculer les dérivées premières de      (nous noterons           et            

    pour simplifier). Les dérivées premières permettent de déterminer des extrema locaux de 

l'énergie et les dérivées secondes de vérifier si ceux-ci sont des minima ou des maxima. Cette 

approche permet de déterminer  les positions d'équilibre des aimantations M1 et M2. Nous 

pouvons aussi utiliser les dérivées secondes de l'énergie dans le calcul des fréquences de 

résonance ferromagnétique du système. On peut simplifier le résultat en supposant que     

       , c'est-à-dire que les angles d'aimantation et du champ magnétique ne varient que 

dans le plan zénithal. On suppose aussi que         , c'est-à-dire que les aimantations des 

couches sont égales à l'aimantation à saturation du matériau. Dans ce cas, la dérivée première 

devient: 

 
              

 

 
                                

                  

      

(3.48) 

 

avec    
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On pourra consulter l’annexe D pour l'expression de la dérivée seconde. 

 

3.2 Champ effectif d'anisotropie des nanofils tricouches 

 Les résultats présentés jusqu'à maintenant sont très généraux et seraient intéressants à 

approfondir dans des travaux futurs. Dans le cadre pratique qui nous intéresse, nous allons 

restreindre notre analyse au cas où les deux couches formant la tricouche sont en tous points 

identiques et d’aimantations parallèles ou antiparallèles. Dans ces deux cas, nous avons vu que la 

densité d'énergie magnétique s'exprimait en        et l'énergie du système exprimée par l'Éq. 

(3.47) de l'énergie totale d'une tricouche devient donc: 

              
                    (3.49) 

lorsque         et           (aimantations parallèles), puis  

 

Les dérivées première et seconde de l'énergie deviennent dans le cas parallèle: 

                                       

                                    

(3.50) 

On peut trouver la condition d'équilibre    de l'aimantation pour un certain champ magnétique 

appliqué d'angle    en minimisant l'énergie du système, soit: 

            
   

                          (3.51) 

 

où nous avons introduit le champ effectif      donné par: 



52 

 

 

 
    
   

 
     

    
 
         

    
 (3.52) 

 

 Nous nous servirons donc de ces champs effectifs pour quantifier l'anisotropie effective 

du réseau de nanofils tricouches. Un champ effectif négatif représente une anisotropie de plan 

facile (IP), alors qu'un champ effectif positif représente une anisotropie d'axe facile OOP, soit 

l'axe du nanofil. De plus, l'Éq. (3.51) correspond en fait à la dépendance angulaire de 

l'aimantation d'une particule monodomaine dans le cadre du modèle classique de rotation rigide 

de Stoner-Wohlfarth. Ce modèle est pertinent dans le cas d'une expérience de résonance 

ferromagnétique où l'aimantation est supposée saturée et uniforme. Nous verrons plus loin 

comment se comportent ce champ effectif en fonction des divers paramètres géométriques du 

réseau. 

 

Résonance ferromagnétique 

 L'étude de la résonance ferromagnétique est l'un des piliers sur lesquels nous avons basé 

notre compréhension des propriétés magnétiques de nos réseaux de nanofils multicouches. 

Lorsque les spins des électrons d'un matériau sont soumis à un champ magnétique, celui-ci 

exerce un moment de force sur les spins et entraîne leur précession autour du champ. La 

dynamique globale de ces spins, donc de l'aimantation, est exprimée par la relation suivante: 

   

  
           (3.53) 

où M est l'aimantation du matériau,                   le rapport gyromagnétique,   le 

facteur de Landé,     la charge de l'électron,   la constante de Planck, et    la masse de 

l'électron. Le champ H contient tous les champs statiques et dynamiques externes et provenant 

des interactions dipolaires et pourrait éventuellement inclure des champs effectifs provenant de 

l’anisotropie magnétocristalline. L'Éq. (3.53) ne tient pas compte de l'amortissement de la 

précession, qui n’est pas nécessaire au calcul des résonances ferromagnétiques. Au besoin, celle-
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ci pourra être prise en compte par un  paramètre d'amortissement phénoménologique. La 

précession est expérimentalement entretenue par un faible champ magnétique alternatif 

perpendiculaire au champ magnétique appliqué. Lorsque les conditions de champ statique et 

champ alternatif permettent d'activer la résonance naturelle du système, tous les spins précessent 

à l'unisson et cela se traduit par un pic d'absorption de l'énergie provenant du champ alternatif. 

Les fréquences que nous étudions dans le cadre de ce projet sont de l'ordre du gigahertz puisque 

c'est la gamme de fréquence auxquels les dispositifs contenant les nanofils sont destinés.  

 

 Dans le cas de nos structures tricouches, l'Éq. (3.53) devrait se présenter plutôt sous la 

forme d'un système de deux équations couplées, tenant compte de la dynamique de chacune des 

deux aimantations des couches jumelles. Les structures auraient donc en principe deux modes de 

résonance. Néanmoins, nous simplifions ici le problème en supposant que l'on travaille 

essentiellement en régime saturé et que notre configuration expérimentale ne devrait permettre 

que d'exciter le mode uniforme, , ce qui est confirmé dans la plupart des cas au chapitre 4 par les 

résultats expérimentaux. 

 

 Comme la précession, et donc la fréquence de résonance, est affectée par le champ effectif 

dû à l'anisotropie du réseau de nanofils, notre but ici est d'établir une relation entre le champ 

effectif, le champ magnétique appliqué, et la fréquence de résonance. Dans le cadre du modèle 

présenté plus haut, admettant que l’on excite le mode uniforme d’un réseau magnétiquement 

saturé, on peut utiliser le formalisme de Smit et Beljers (1955) avec notre anisotropie uniaxiale 

effective pour montrer que la fréquence de résonance    peut s'écrire:     

 
 
  
     

 
 

                                                  
       (3.54) 

avec    l'angle de la position d'équilibre de l'aimantation obtenu en minimisant l'énergie totale du 

système,    l'angle du champ magnétique appliqué sur le réseau, et     
   

 le champ effectif obtenu 

un peu plus haut. Il est important de noter que ce modèle n'est valide que dans le cas où les 

aimantations sont parallèles et saturées. Le cas antiparallèle ne s'applique pas ici puisque cette 
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configuration est généralement atteinte pour des champs près de 0. Nous verrons au chapitre 4 

comment on peut mesurer le champ effectif par une expérience de résonance ferromagnétique et 

ainsi évaluer la validité du modèle.  

 

3.3 Prédictions du modèle d’anisotropie effective 

Nous présentons maintenant quelques résultats tirés du modèle d'anisotropie effective 

développé plus haut. Nous étudierons plus particulièrement le comportement du champ effectif 

Heff en fonction de plusieurs paramètres macroscopiques: 

 Étendue latérale du réseau 

 Nombre de couches ferromagnétiques  

 Facteurs de forme des couches ferromagnétiques 

 Épaisseur de la couche d’espacement interne 

 Espacement externe entre les tricouches 

 

Nous supposons toujours ici que les couches ferromagnétiques sont identiques et que les 

aimantations des couches sont parallèles (régime saturé présenté à la section 3.2). Afin de 

calculer ces champs effectifs, nous pouvons utiliser les expressions numériques développées aux 

Éqs. (3.18), (3.19), (3.21), et (3.23). Nous pouvons également utiliser les expressions analytiques 

des Éqs. (3.29), (3.32), (3.33), et (3.34) afin de mieux dégager la physique derrière les termes des 

équations. Le champ effectif obtenu par les expressions analytiques s'écrit: 
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(3.55) 

 

                                                            (3.56) 

 Dans ce qui suit, nous présenterons à la fois les résultats tirés de ces formes analytiques 

ainsi que ceux obtenus par les calculs numériques. Cette analyse nous permettra d'une part de 

comprendre l'influence de chacun de ces paramètres macroscopiques sur l'anisotropie effective. 

Cela permettra aussi de déterminer des conditions pour lesquelles le champ effectif du réseau 

peut tendre vers zéro, c'est-à-dire que son comportement magnétique statique devient isotrope. 

Nous comparerons ces prédictions avec nos résultats expérimentaux au prochain chapitre.  

 

Figure 3.5 : Rappel des dimensions caractéristiques des nanofils tricouches. 
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 Les dimensions caractéristiques en jeu ici sont rappelées à la Figure 3.5. Les champs 

effectifs seront ici exprimés en valeurs normalisées par l'aimantation à saturation          . 

Rappelons que         est exprimé en                  et que     est exprimé 

en                 . Donc si             et             , alors            

         . Rappelons également que dans le modèle, une anisotropie effective dans le plan 

(IP) est représentée par un champ effectif négatif, alors que l'anisotropie hors-plan par un champ 

effectif positif. Pour ce qui est de l'aimantation à saturation des couches de CoFeB, nous utilisons 

la valeur                 qui est la valeur mesurée sur des couches minces de CoFeB 

(Ciureanu et al., 2005). Il n'est pas clair à ce stade que cette valeur soit effectivement celle 

retrouvée dans les couches de nanofils, nous discuterons de ce point plus loin. Le rayon des 

nanofils est ici a = 22,5 nm, soit environ la valeur expérimentale que nous obtenons pour nos 

échantillons. La distance interfils considérée est de D = 110 nm et la porosité est de P = 0,12,  ce 

qui sont les valeurs expérimentales que nous mesurons.  

 

Étendue latérale du réseau  

 Utilisons les expressions approximatives de l'Éq. (3.55) pour calculer le champ effectif en 

fonction de l'étendue latérale du réseau. C'est le terme Ninter qui variera en fonction de cette 

étendue puisqu'il représente les interactions dipolaires interfils. Le problème est que pour 

l'approximer nous avons supposé un réseau d'étendue infinie. Nous pouvons facilement 

contourner cette difficulté en modifiant l'Éq. (3.31) pour ne considérer qu'un réseau fini 

d'étendue      , soit le nombre de nanofils présents sur une droite allant de l'origine jusqu'au 

rayon maximal considéré: 

            
  

          

 

   

     
  

          

 

      

 

       
  

          

 

      

  

       
 

         
       

 

           
  

(3.57) 
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où         . La Figure 3.6 (gauche) présente la forme de cette équation en fonction de     . 

Nous avons donc modélisé l'effet du nombre de nanofils sur le champ effectif pour une géométrie 

similaire à celle des échantillons que nous étudions : CoFeB(10)/Cu(10)/CoFeB(10)/Cu(75) × 

300. On remarque que l'approximation de        par      (réseau infini) n'est valide que pour un 

nombre très grand de nanofils (               pour            ). Par-contre, en pratique 

     est beaucoup plus grand (de l'ordre de 100 000) donc nous pouvons pour la suite utiliser 

simplement          .  

 

Figure 3.6 :  (Gauche) Facteur de désaimantation normalisé interfils en fonction du nombre de 

 nanofils considéré dans le réseau, calculé avec l'Éq. (3.55).  (Droite) Champ 

 effectif normalisé calculé à l'aide de l'Éq. (3.55) et en adaptant        pour un 

 réseau fini.  a = 22,5 nm, D = 110 nm, P = 0,12, N = 300. 

 

 Comme on peut l'observer sur la Figure 3.6 (droite), le champ effectif tend à diminuer 

(augmenter négativement) lorsque la taille du réseau augmente et atteint un plateau pour une 

taille assez grande. Cela signifie que plus le réseau est étendu, plus l'anisotropie magnétique 

s'accroît dans le plan (IP). Cela peut s'expliquer par la nature des interactions dipolaires entre les 

nanofils comme on peut le voir  sur la  Figure 3.7. En effet, des interactions intra-fils et inter-fils 

se produisent lorsqu'on aimante les nanofils. Selon la direction du champ magnétique (et donc de 

l'aimantation) ces interactions n'auront pas le même effet global sur le réseau. Lorsqu'un champ 

magnétique IP sature l'aimantation des couches dans le plan, le champ dipolaire de chaque 

nanofil a un effet net positif sur ses voisins, c'est-à-dire que son champ dipolaire inter-fil tend à 
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aimanter les couches voisines dans le même sens que leur aimantation. Dans le cas OOP (Figure 

3.7 droite), c'est l'effet inverse qui se produit: le champ dipolaire inter-fil a un effet négatif sur les 

couches voisines et tend à les désaimanter.  

 

   

Figure 3.7 : Effet des interactions dipolaires en nanofils voisins selon la direction du champ 

magnétique pour les configurations IP et OOP. 

 

 Ainsi, plus l'étendue latérale du réseau est importante plus l'anisotropie magnétique 

s'accroît dans le plan. En ajoutant des nanofils dans le réseau, ceux-ci viennent superposer leur 

champ dipolaire interfils et accroître l'effet positif d'aimantation. La contribution intrafil ne s'en 

voit pas modifiée ici et c'est pourquoi l'effet net est une augmentation de l'anisotropie dans le 

plan. Ce comportement est bien modélisé par l'Éq. (3.55) où le seul terme dépendant de la taille 

du réseau provient de       . Nous avons également calculé le champ effectif pour la même 

configuration en utilisant les équations numériques (Éqs. (3.18), (3.19), (3.21), et (3.52)). Les 

résultats sont présentés à la Figure 3.8.  
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Figure 3.8 :  Champ effectif normalisé en fonction de la taille de l'échantillon en utilisant les 

 expressions numériques. La taille est exprimée ici en nombre de nanofils sur un 

 segment à partir du centre du réseau jusqu'à sa limite. Par exemple, pour une taille 

 de 200 nanofils, le nombre total de nanofils correspond à environ 400×400. a = 

 22,5 nm, D = 110 nm, P = 0,12, N = 300.  

 

Nous observons le même comportement du champ effectif que pour les équations 

analytiques. Les résultats numériques que nous présenterons dans les sections suivantes seront 

basés sur une étendue latérale de 200 nanofils. Cela correspond approximativement à un réseau 

de 400×400 nanofils. Nous avons choisi cette valeur par souci d'obtenir des résultats le plus 

précis possible dans un temps raisonnable. En effet, en passant d'une taille de 700 à 200 nanofils, 

nous perdons moins de 4% de précisions pour un temps de calcul très considérablement réduit 

(1/10 du temps). Les équations analytiques supposeront quant à elles une étendue infinie, ce qui 

reflète mieux la réalité que de considérer une étendue latérale de 200 nanofils.  

 

Nous remarquons enfin un écart assez significatif entre les calculs numériques et les 

équations analytiques. Cela est dû en partie à la simplification de NOOP qui apporte une erreur 

importante lorsque c est plus grand que 0,2 (dans notre cas c = 0,22).  
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Nombre de couches ferromagnétiques 

 Le nombre N de couches ferromagnétiques présent dans un nanofil est aussi un paramètre 

important puisqu'il joue sur l'intensité du signal magnétique, sur l'anisotropie et sur la résistance 

du nanofil dans le cadre d'une expérience de GMR. Nous nous focaliserons ici sur la variation de 

l'anisotropie en fonction du nombre de couches ferromagnétiques. On remarque que dans l'Éq. 

(3.55) aucun des termes ne dépend explicitement du nombre de couches dans les nanofils. La 

raison en est que nous avons simplifié les termes Ninter et Nintra en faisant l'hypothèse que    . 

Dans le cas de Nintra, il est facile de montrer que la contribution des couches lointaines sont 

rapidement négligées (dépendance du champ dipolaire en     ). Comme Ninter représente des 

interactions de longues portées, c'est le terme qui sera susceptible de varier le plus en fonction du 

nombre de couches ferromagnétiques. Pour calculer cette dépendance, nous reprenons l'Éq, 

(3.31) tenant compte du nombre de couches, et nous adaptons l'Éq. (3.55) pour le champ effectif. 

La figure suivante présente les résultats du champ effectif en fonction du nombre de couches dans 

un nanofils calculé par l'équation analytique ainsi que par calcul numérique. 

 

 

Figure 3.9 : Champ effectif normalisé en fonction du nombre de nombre de tricouches obtenu par 

l'Éq. (3.55) (gauche) et par calcul numérique (droite). Étendue du réseau = 200 

nanofils le nombre total de nanofils correspond à environ 400×400. a = 22,5 nm, 

D = 110 nm, P = 0,12. 

 



61 

 

 

On observe que le champ effectif augmente bien avec le nombre de couches, ce qui 

signifie que l'anisotropie hors-plan (OOP) est accentuée. Ce comportement est consistant avec le 

schéma présenté à la Figure 3.7. En effet, en ajoutant des couches dans les nanofils sans pour 

autant augmenter l'étendue latérale du réseau, on favorise les interactions interfils qui ont un effet 

démagnétisant et cela se traduit par une légère diminution du terme Ninter.  

 

Épaisseurs des couches ferromagnétiques 

 L'épaisseur des couches de CoFeB est également un paramètre important puisqu'il 

apparaît dans tous les termes de l'anisotropie. Deux facteurs géométriques sont importants en ce 

qui concerne hnm: les rapports f (facteur de remplissage des couches ferromagnétiques) et c 

(aspect de forme). La figure suivante présente la dépendance du champ effectif en fonction de ces 

deux facteurs géométriques: 

 

Figure 3.10 :  Champ effectif normalisé en fonction des facteurs géométriques des couches 

ferromagnétiques, obtenu par l'Éq. (3.55). a = 22,5 nm, D = 110 nm, P = 0,12. 

 

 Il est important de noter ici que ces courbes ne sont en fait valides que pour de faibles 

valeurs de c (moins de 0,2) sinon cela engendre une erreur importante sur le terme NOOP. C'est 

pourquoi on observe une différence significative de la forme de la courbe avec celle obtenue par 

calcul numérique (Figure 3.11). 
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Figure 3.11 : Champ effectif normalisé en fonction de l'épaisseur des couches ferromagnétique 

pour les nanofils tricouches. Étendue du réseau = 200 nanofils le nombre total de 

nanofils correspond à environ 400×400. a = 22,5 nm, D = 110 nm, P = 0,12, N = 

300. 

 

Dans ce dernier cas nous observons la même tendance mais avec un début de plateau 

après 50 nm. L'anisotropie de forme est ici le terme qui domine la variation du champ effectif, 

passant même d'un plan facile (IP) à un axe facile hors-plan (OOP). Le contrôle de l'épaisseur est 

crucial pour les faibles épaisseurs comme on peut le remarquer sur ces figures où de fortes 

variations se produisent en dessous de 20 nm. Comme ce sont des gammes d'épaisseurs qui nous 

intéressent (surtout les faibles épaisseurs pour la GMR), la caractérisation structurelle présentée 

au chapitre 2 doit être en mesure de donner des valeurs précises d'épaisseurs de CoFeB.  

 

Nous pouvons également constater que ces courbes passent par un champ effectif nul, 

c'est-à-dire que pour certaines conditions géométriques les différentes interactions inter-fils et 

intra-fils ne favorisent pas une configuration particulière (IP ou OOP). Le réseau est donc en 

principe isotrope magnétiquement dans ce cas. À l'aide de ce modèle nous pourrions donc en 

principe dresser une cartographie en 2 ou 3 dimensions des conditions nécessaires pour obtenir 

des échantillons isotropes. Pour ce faire nous devrons tout d'abord vérifier la robustesse du 

modèle en comparant ces prédictions avec les résultats expérimentaux. 
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Épaisseur de la couche d’espacement interne 

 Un autre paramètre très important est l'épaisseur de la couche d'espacement au sein d'une 

tricouche. Ce terme apparaît explicitement dans les facteurs N12 et Nintra. Comme on peut 

l'observer à la figure suivante, le terme d'interaction entre les deux couches jumelles domine 

complètement la variation du champ effectif en fonction de hnm1. Ceci est dû à la proximité des 

deux couches jumelles résultant en une forte interaction dipolaire ainsi qu'à l'isolement des 

tricouches entre elles (hnm2). L'intensité de cette interaction diminue lorsque hnm1 augmente et 

c'est pourquoi le N12 tend vers 0 lorsque hnm1 devient assez grand. 

 

Figure 3.12 :  (Gauche) Facteurs de désaimantation N12 et Nintra en fonction de l'épaisseur hnm1 de 

Cu. (Droite) Champ effectif normalisé en fonction de l'épaisseur hnm1, obtenu par 

l'Éq. (3.55). a = 22,5 nm, D = 110 nm, P = 0,12. 
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Figure 3.13 :  Champ effectif normalisé en fonction de l'épaisseur des couches non-magnétiques 

intercalaires (hnm1) pour les nanofils tricouches. Étendue du réseau = 200 nanofils 

le nombre total de nanofils correspond à environ 400×400. a = 22,5 nm, D = 110 

nm, P = 0,12. 

 

On voit donc que les tricouches sont effectivement bien isolées les unes des autres et que 

l'ajustement de la distance entre les couche jumelles a un impact très significatif sur la réponse 

magnétique du réseau. 

 

Espacement externes entre tricouches 

 Le dernier paramètre géométrique à étudier est la couche de Cu séparant les tricouches 

entre elles. Cette couche a été intégrée à nos nanofils afin de découpler les interactions entre les 

différentes couches ferromagnétiques pour isoler les contributions dipolaires des plus proches 

voisins. L'épaisseur hnm2 apparaît explicitement dans les termes Ninter et Nintra mais nous voyons 

bien dans la figure suivante que les interactions intrafil sont beaucoup plus affectées par une 

variation de cette épaisseur. 
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Figure 3.14 :  (Gauche) Facteurs de désaimantation N12 et Nintra en fonction de l'épaisseur hnm2 de 

Cu. (Droite) Champ effectif normalisé en fonction de l'épaisseur hnm2, obtenu par 

l'Éq. (3.55). a = 22,5 nm, D = 110 nm, P = 0,12. 

 

 On observe bien que les termes de désaimantation dipolaires intrafil et interfils tendent 

éventuellement vers 0 pour de grandes valeurs de hnm2, ce qui ne laisse que les contributions de 

l'anisotropie de forme et de l'interaction au sein de la tricouche. Il est donc possible, en 

choisissant judicieusement l'épaisseur hnm2, d'isoler complètement les tricouches et de contrôler 

finement l'anisotropie effective avec hm et hnm1. Toutefois, un obstacle important est la lenteur 

significative de l'électrodéposition des couches de Cu (dans un bain mix CoFeB/Cu) et c'est 

pourquoi en pratique nous n'avons pas cherché à aller plus loin que hnm2 = 100 nm. 

 

3.4 Synthèse 

 Nous avons développé un modèle d'anisotropie effective basé sur les interactions 

dipolaires entre couches ferromagnétiques et sur l'anisotropie de forme de ces couches. Ce 

modèle a été inspiré de celui développé par (Carignan, 2006) et généralisé pour un système de 

nanofils tricouches dont les aimantations ne sont pas rigidement liées entre elles. Cela nous a 

permis de déterminer l'énergie du système et de calculer les dérivées premières et secondes. Nous 

pouvons donc utiliser ces résultats pour une étude plus approfondie de systèmes tricouches non 

rigidement liés.  
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 Un aspect important de ce développement a été de mettre en évidence l'interaction entre 

les deux couches jumelles, qui prend toute son importance dans le cas des tricouches isolées les 

unes des autres. Nous avons également généralisé les expressions simplifiées des facteurs de 

désaimantation afin de tenir compte des différents facteurs géométriques caractéristiques du 

réseau. Nous avons également développé des expressions analytiques simples afin de mieux faire 

ressortir le comportement de l'anisotropie en fonction des divers paramètres géométriques.  

 

 Nous avons vu à quel point le champ effectif est très sensible à certains paramètres 

géométriques, notamment pour les faibles épaisseurs de couches.  Cela pourrait poser problème 

puisque, comme on l'a vu au chapitre 2, notre capacité à contrôler l'épaisseur des couches est pour 

l'instant limitée et la méthode de caractérisation de l'épaisseur pas encore au point. Toutefois, 

cette sensibilité peut aussi être intéressante d'un point de vue ingénierie puisqu'on se retrouve 

potentiellement avec une méthode pour caractériser expérimentalement les épaisseurs des 

couches par mesures magnétiques. Cela est d'autant plus vrai que lorsque les tricouches sont 

complètement isolées les unes des autres la relation entre les facteurs géométriques et le champ 

effectif s'en voit simplifiée. Une limite évidente de nos équations analytiques est de ne pas traiter 

correctement les épaisseurs plus importantes de couches, cela en partie à cause du terme NOOP qui 

suppose des couches très minces par rapport au diamètre des nanofils. Cette limite explique en 

bonne partie l'écart obtenu pour les champs effectifs calculés numériquement et avec les 

équations analytiques. 

 

 Lors de l’interprétation des résultats expérimentaux et la comparaison avec le modèle, 

plusieurs éléments devront être pris en compte pour cadrer les limites de validité du modèle. 

L'une de ces limites est le fait de négliger l'anisotropie magnétocristalline. Les résultats de 

caractérisation semblent pointer vers une structure polycristalline dans les couches de CoFeB. 

Dans ce cas, on anticipe un moyennage des anisotropies cristallines qui nous conduit à négliger 

ces contributions. Au besoin des termes d’anisotropies cristallines peuvent être rajoutés assez 

facilement au modèle. Il n'y a toutefois rien qui garantit que les couches de CoFeB nanométriques 
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ont la même structure qu'une couche mince beaucoup plus épaisse. Enfin, nous avons également 

négligé les interactions d'échange entre les couches ferromagnétiques, ce qui semble a priori 

raisonnable au vue des épaisseurs considérées ici. Toutefois, il n'est pas clair que ces interactions 

d'échange puissent être négligeables dans les nanofils multicouches pour des espacements de Cu 

de quelques nanomètres.  
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CHAPITRE 4 MESURE DES PROPRIÉTÉS MAGNÉTIQUES 

 

 Nous avons étudié les propriétés magnétiques des réseaux de nanofils multicouches en 

mesurant leur comportement sous un champ magnétique. Deux types de mesure ont été effectués 

dans notre cas, soit la réponse de l'aimantation globale du réseau en fonction de l'intensité et de la 

direction d'un champ magnétique statique appliqué, ainsi que la résonance ferromagnétique de 

l'aimantation en précession autour d'un champ magnétique appliqué. Dans le premier cas on se 

place dans un régime magnétostatique alors que le deuxième cas fait intervenir la dynamique de 

l'aimantation. Ce chapitre présente les résultats expérimentaux de magnétométrie statique et 

dynamique obtenus sur nos réseaux de nanofils multicouches. Ces résultats nous permettront de 

confronter le modèle du chapitre 3 et nous aideront de mieux comprendre l'influence des 

paramètres géométriques du réseau sur l'anisotropie effective. Nous mettrons donc ces résultats 

en perspectives par rapport aux mesures de microscopie (chapitre 2) et à la modélisation de 

l'anisotropie effective (chapitre 3). Enfin nous démontrerons la faisabilité des réseaux de nanofils 

magnétiquement isotropes.  

 

4.1 Propriétés magnétostatiques  

 L'étude des propriétés magnétostatiques des réseaux de nanofils multicouches a été 

effectuée ici en mesurant leurs courbes d'hystérésis de l'aimantation en fonction du champ 

magnétique (voir Figure 4.1). Les principaux paramètres que l’on peut extraire de ces courbes 

sont l'aimantation rémanente (Mr), le champ coercitif (Hc), le champ à saturation (Hs), et la 

susceptibilité apparente (    ) qui représente la pente de l’aimantation par rapport au champ 

magnétique près de la coercivité. Tous ces paramètres dépendent de la géométrie du réseau de 

nanofils et du type de matériau utilisé. 
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Figure 4.1 :  Courbe d'hystérésis typique de l'aimantation en fonction du champ magnétique 

 avec la définition des principales grandeurs la caractérisant: l'aimantation 

 rémanente (Mr) à saturation (Ms), le champ coercitif (Hc) et de saturation (Hs). 

 

Pour la suite, nous utiliserons le système CGS et non le système SI afin d’exprimer les unités de 

mesure puisque ce système est répandu dans la littérature magnétique. Nous rappellerons à 

chaque fois les facteurs de conversion suivant: le champ magnétique H sera exprimé en Oe 

(4π10
-3

 Oe = 1 A/m) et l’aimantation M sera exprimé en emu/cm
3
 (1 emu/cm

3
 = 1 kA/m).  

 

4.1.1 Magnétométrie à échantillon vibrant (VSM) 

 Les courbes d'hystérésis ont été mesurées par une technique de magnétométrie à 

échantillon vibrant, ou VSM (Vibrating Sample Magnetometer) de modèle EV9 de la compagnie 

ADE Technologies. Le principe de la mesure est schématisé à la Figure 4.2. L'échantillon est 

collé à une tige de quartz et positionné entre deux électroaimants produisant un champ 

magnétique statique et homogène sur le volume de l'échantillon (si celui-ci est assez petit). Ce 

champ, pouvant aller de -2,2 T à 2,2 T,  permet donc d'aimanter le matériau. La tige de quartz est 

reliée à une tête de contrôle permettant de faire vibrer sinusoïdalement la tige (et donc 

l'échantillon) à une fréquence déterminée (75 Hz dans notre cas). Quatre bobines de détection 

sont placées de part et d'autre de l'échantillon tel que montré à la Figure 4.2. Comme un champ 

magnétique émane de l'échantillon aimanté en vibration, chaque bobine sera traversée par un flux 
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magnétique variant dans le temps, ce qui induira donc une force électromotrice dans les bobines 

comme le stipule la loi de Lenz: 

    
  

  
   

  

  
 

où   est la tension induite dans les bobines,   est le flux magnétique et   la densité de flux 

magnétique. On sait que cette variation de flux est proportionnelle à la fréquence de vibration   

et au moment magnétique m de l'échantillon: 

 
                     

 

Un échantillon de calibration (dans notre cas un disque mince de Ni) permet de déterminer la 

constante de proportionnalité. Un amplificateur lock-in permet de concentrer la récolte du signal 

de tension sur la fréquence de vibration de l'échantillon. Des détails complémentaires sur la 

calibration et le traitement du signal sont présentés par (Carignan, 2008).  

 

 

Figure 4.2 :  Schéma simplifié du principe de la mesure par VSM. L'électroaimant (1) produit 

 un champ magnétique homogène entre ses pôles. L'échantillon (2) est fixé à la tige 

 (3) et vibre à une fréquence  . La tension induite dans les bobines de détection (4) 

 est analysé par le système et le contrôle des variables s'effectue par un logiciel (5).   
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 Le système VSM offre une grande liberté dans la mesure de l'aimantation puisqu'il permet 

de varier le champ magnétique de -2 à 2 T (-20 à 20 kOe), d'effectuer la rotation de l'échantillon 

autour de l'axe du porte-échantillon, ainsi que de positionner l'échantillon parallèlement ou 

perpendiculairement à l'axe du porte-échantillon. Cela permet d'explorer plusieurs configurations 

de champs et de réponses magnétiques. L'acquisition des données et le contrôle des variables 

(champs, angles, températures) se font automatiquement par le logiciel du fournisseur. 

 

Figure 4.3 :  Rappel des conventions sur les deux directions principales d'anisotropie. La 

direction IP représente une direction quelconque dans le plan de la couche alors que 

OOP représente la direction de l'axe des nanofils.  

  

Détermination expérimentale du champ effectif par VSM  

Nous avons vu au chapitre précédent que l’anisotropie magnétique du réseau de nanofils 

pouvait être quantifiée par un champ effectif dans un modèle d’anisotropie uniaxiale où l'on 

supposait que l'aimantation était uniforme dans toutes les couches. Cette hypothèse est 

raisonnable dans le cas d'une expérience de résonance ferromagnétique lorsque l'échantillon est 

saturé et l'aimantation est uniforme (modèle de rotation rigide de l'aimantation). Toutefois, cette 

hypothèse n'est pas respectée dans le cas d'une mesure VSM où le champ magnétique passe par 

de faibles valeurs (en absolu) et donc où les couches sont partiellement désaimantées. Dans ce 

cas, (Carignan, 2007) montre qu'il est possible de définir un champ effectif dans le cadre d'un 

modèle de champ moyen, où l'on considère que l'aimantation perpendiculaire au champ 
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magnétique appliqué est nulle en moyenne sur la somme de toutes les couches. Cela revient à 

modéliser les courbes d'hystérésis tel que montré à la Figure 4.4.  

 

Figure 4.4 : Courbes d'hystérésis dans le cadre du modèle de champ moyen.  

 

On montre que si l'anisotropie est dominée par les interactions dipolaires entre les couches, le 

champ effectif peut s'écrire comme:   

 
     

            

    
   (4.1) 

avec                et                sont les susceptibilités apparentes normalisées pour les 

directions IP et OOP. D'un point de vue expérimental, il est possible de mesurer ce champ effectif 

à l'aide des courbes d'hystérésis prises dans les deux directions principales d'anisotropie (IP et 

OOP). La formule demeure valide même en présence d’hystérésis. Les susceptibilités apparentes 

représentent alors les pentes des courbes d'hystérésis au point     (champ coercitifs). Dans le 

cas montré à la Figure 4.4, l'échantillon est caractérisé par une anisotropie hors-plan (OOP) 

puisque sa susceptibilité est plus grande que dans l'autre direction.  
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4.1.2 Propriétés magnétostatiques des nanofils bicouches 

Nous débutons par la présentation des résultats sur les nanofils bicouches, c'est-à-dire 

ceux caractérisés par une unité périodique de type CoFeB(hm)/Cu(hnm). Rappelons que la 

structure bicouche n'est pas au cœur de notre analyse mais cela vaut la peine de les traiter comme 

un cas particulier des tricouches lorsque          et           . De plus, comme elle 

constitue la configuration classique traitée par beaucoup de groupes de recherches s'intéressant au 

sujet, nous pourrons mettre en évidence les différences entre ces deux configurations de façon 

expérimentale. Les dimensions ciblées des couches magnétiques et non-magnétiques des nanofils 

bicouches sont présentées à la Figure 4.5. 

 

 

Figure 4.5 :  Dimensions ciblées des couches magnétiques et non-magnétiques des nanofils 

bicouches obtenus expérimentalement.  

 

La première analyse que l'on peut effectuer est de comparer les courbes d'hystérésis 

obtenues pour les directions IP et OOP. Cela nous donne une indication rapide de l'anisotropie du 

réseau en comparant les champs  effectifs déterminés expérimentalement dans le cadre du modèle 

de champ moyen. La Figure 4.6 présente les courbes d'hystérésis mesurées par VSM sur quatre 

échantillons de nanofils bicouches. 
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Figure 4.6 :  Aimantation normalisée en fonction du champ magnétique (4π10
-3

 Oe = 1 A/m) de 

quatre réseaux de nanofils bicouches mesurées par VSM (directions du champ IP et 

OOP). Les épaisseurs ciblées des couches de CoFeB et de Cu sont indiquées en 

encadré pour chaque courbe. L'aimantation est normalisée par la valeur 

d'aimantation au champ maximum (2T = 20 kOe). Nous avons ici 2a = 45 nm, D = 

110 nm.  

 

 Parmi ces quatre échantillons, deux (AA, AB) sont caractérisés par une faible anisotropie 

de plan facile (IP) due à leur géométrie. La faible épaisseur de leurs couches de CoFeB 

(respectivement 5  et 10 nm) par rapport au diamètre des nanofils (45 nm) accentue l'anisotropie 

de forme dans le plan. Néanmoins, le faible espacement de Cu entre ces couches (respectivement 

5 et 10 nm) favorise une anisotropie OOP puisque cela augmente la contribution des champs 
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dipolaires intra-fils. La combinaison des ces deux effets antagonistes semblent engendrer un 

comportement faiblement anisotrope dans le plan. Cela indique que cette gamme d'épaisseurs 

pour hm et hnm permettrait d'obtenir un comportement isotrope dans les nanofils bicouches, en 

ajustant finement ces paramètres. 

 

 Les deux autres échantillons (AC, Bi1) ont un axe facile marqué dans la direction hors-

plan (OOP). Ceci est principalement dû à une couche de CoFeB épaisse (50 nm) par rapport au 

diamètre (45 nm). Il semble ici que la forme plus allongée des couches domine et montre une 

anisotropie effective OOP. En faisant passer l'épaisseur de Cu de 10 à 50 nm, on constate 

effectivement un rapprochement des deux courbes reflétant la diminution du champ effectif avec 

l'atténuation des interactions intra-fils. On remarque enfin que dans (AC, Bi1) l'approche à 

saturation est très différente selon que le champ magnétique est IP ou OOP. Dans la configuration 

OOP le champ sature le réseau à environ 3 kOe alors que pour la configuration IP l'aimantation 

est saturée pour 8 kOe (Bi1) et 10 kOe (AC).  

 

 Nous avons également mesuré la courbe d'hystérésis des échantillons en fonction de 

l'angle que fait le champ magnétique avec le réseau. Nous avons ainsi pu établir le comportement 

du champ coercitif et de l'aimantation rémanente en fonction de l'angle (courbes complètes 

seulement pour AA et AC). Les résultats de ces mesures sont présentés à la Figure 4.7.  
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Figure 4.7 :  (Gauche) Champ coercitif en fonction de l'angle du champ magnétique pour les 

réseaux bicouches. 0° = OOP et 90° = IP. (Droite) Aimantation rémanente en 

fonction de l'angle du champ magnétique pour les réseaux bicouches. 0° = OOP et 

90° = IP. (AA : 5/5 × 368) ; (AB : 10/10 × 500) ; (AC : 50/10 × 500) ; (Bi1 : 50/50 × 154). 

B = 1 T = µ0·10 kOe , 2a = 45 nm, D = 110 nm. (4π10
-3

 Oe = 1 A/m) 

 

 On observe dans les quatre cas que le champ coercitif ne varie que très peu entre les 

configurations OOP et IP, avec Bi1 enregistrant la plus forte variation. Le champ coercitif est 

dans tous les cas minimum lorsque le champ magnétique est dans le plan, et maximum lorsque 

qu'il est selon l'axe des nanofils. Il est à noter que la dépendance angulaire du champ coercitif 

peut servir à analyser le mécanisme de renversement de l'aimantation (rotation cohérente, 

buckling, curling, etc.). On pourra consulter par exemple (Sun et al., 2005) pour une présentation 

de quelques modèles sur ces mécanismes dans les nanofils. 

 

 Le comportement angulaire de la rémanence des échantillons (AC, Bi1) est quant à lui 

caractérisé par une très forte diminution de Mr lorsque le champ magnétique passe de OOP à IP. 

Cela s'explique notamment par l'épaisse couche de CoFeB qui favorise l'aimantation dans la 

direction OOP de par sa forme plus allongée. Les deux autres échantillons (AA, AB) ne voient 

leur rémanence varier que de très peu en valeur absolue. 
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 Le Tableau 4.1 résume les résultats de mesures magnétostatiques sur les nanofils 

bicouches. Nous avons aussi inclus les valeurs de champ effectif déterminées expérimentalement 

par VSM. Nous avons comparé ces valeurs à celles prédites par le modèle d'anisotropie effective 

développé au chapitre 3 (calcul numérique et équations analytiques). Comme nous l'avons 

mentionné au chapitre 2, nous n'avons pas été en mesure de déterminer l'épaisseur précise des 

différentes couches de CoFeB et de Cu. Nous avons donc préféré présenter des prédictions de Heff 

correspondant à une fourchette d'épaisseurs de hm et hnm situées à 20% en dessous des valeurs 

ciblées. Nous considérons seulement la fourchette inférieure puisque l'électrodéposition ne 

devrait pas en principe produire un rendement supérieur à 100%. 

 

Tableau 4.1 : Synthèse des résultats de magnétométrie statique sur les réseaux de nanofils 

bicouches. Heff par VSM est obtenu avec les pentes à M = 0. La taille du réseau 

utilisée dans le calcul numérique est de 200 (environ 400 × 400 nanofils). Les 

valeurs du modèle représentent les champs effectifs extrema dans une fourchette 

inférieure de 20% des épaisseurs des couches par rapport aux dimensions ciblées.  

Échantillon Géométrie Hc (Oe) Mr (M/Ms) Heff (Oe), (4π10
-3

 Oe = 1 A/m) 

CoFeB/Cu- 
hm/hnm (nm) × 

N 
IP OOP IP OOP VSM 

Calculs 

numériques 

Éqs. 

Analytiques 

(3.55) 

AA 5/5 × 368 115 200 0,08 0,12 -250 [-2400  -900] [5315  9580] 

AB 10/10 × 500 245 315 0,17 0,13 -760 [-2450   0] [-4440  -1768] 

AC 50/10 × 500 600 535 0,26 0,51 900 [3900  4700] - 

Bi1 50/50 × 154 370 520 0,19 0,51 670 [525  1800] - 
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Rappelons que pour Heff < 0 la direction facile est dans le plan (perpendiculaire aux 

nanofils) alors que pour Heff  > 0 la direction facile est selon l'axe des nanofils. On observe ici que 

le modèle prédit le bon signe du champ effectif mais qu'il surestime grandement sa valeur 

absolue dans tous les cas. Sur les quatre échantillons, seuls AB et Bi1 ont un champ effectif 

expérimental inclus dans la zone d'incertitude de 20% que nous avons définie pour le modèle. 

L'écart le plus important entre le modèle et le champ effectif déterminé par VSM est pour une 

couche épaisse de CoFeB (50 nm) et un petit espacement de Cu (10 nm).  

 

Les équations analytiques quant à elles donnent des prédictions très différentes des 

mesures. Cela n’est pas surprenant puisqu’elles supposent que l’on peut traiter les couches (autre 

que la couche jumelle) comme des macrospins, ce qui n’est évidemment plus le cas pour des 

bicouches de quelques nanomètres d’épaisseurs. De plus, comme on l’a vu auparavant, les 

équations analytiques ne sont pas valides pour des rapports            plus grands que 1, ce 

qui est le cas pour les échantillons AC/Bi1. Nous n’avons donc pu calculer la valeur de champ 

effectif par ces équations. 

 

Plusieurs aspects peuvent expliquer le désaccord entre le modèle (calculs numériques) et 

le champ effectif déterminé expérimentalement. D’une part, il est très probable que la valeur de 

Ms = 1200 emu/cm
3
 soit en fait plus petite dans la réalité. Nous savons que durant 

l’électrodéposition les atomes de Cu peuvent diffuser dans les couches de CoFeB et venir ainsi 

réduire la valeur Ms. Il est également possible que la stœchiométrie du Co94Fe5B1, basée sur des 

mesures sur couches minces et microfils, puisse être différente pour des couches nanométriques. 

Dans ce cas également la valeur de Ms pourrait être différente. Une autre source d’écart provient 

de  l’erreur sur l'épaisseur des couches.  

 

Ces mesures ont permis de confirmer du moins une limite de validité des équations 

analytiques (3.55). En effet, ces équations ne s’appliquent plus si l’épaisseur de la couche 

d’espacement entre les tricouches compromet l’hypothèse selon laquelle on peut traiter les 

couches (autre que la couche jumelle) comme des macrospins. Dans ce cas, le modèle numérique 
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reflète mieux la réalité en intégrant les contributions dipolaires infinitésimales sur chacune des 

couches.   

 

4.1.3 Propriétés magnétostatiques des nanofils tricouches 

 Nous présentons maintenant les résultats de magnétométrie statique des nanofils 

tricouches, dont l'unité périodique est de type CoFeB(hm)/Cu(hnm1)/CoFeB(hm)/Cu(hnm2). Les 

dimensions ciblées des échantillons étudiés sont présentées à la Figure 4.8.  

 

 

Figure 4.8 :  Dimensions ciblées des couches magnétiques et non-magnétiques des nanofils 

tricouches obtenus expérimentalement. 

 

La Figure 4.9  présente les courbes d'hystérésis mesurées par VSM sur quatre échantillons de 

nanofils tricouche avec des géométries différentes.   
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Figure 4.9 :  Aimantation normalisée en fonction du champ magnétique (1 kOe = 0,1 T) de 

quatre réseaux de nanofils tricouches mesurées par VSM (directions du champ IP et 

OOP). Les épaisseurs ciblées des couches de CoFeB et de Cu sont indiquées en 

encadré pour chaque courbe avec comme nomenclature la suivante: hm/hnm1/hm/hnm2 

= CoFeB(hm)/Cu(hnm1)/CoFeB(hm)/Cu(hnm2). L'aimantation est normalisée par la 

valeur d'aimantation au champ maximum (2T = 20 kOe). 2a = 45 nm, D = 110 nm.  

 

On remarque que la configuration tricouche permet effectivement d'obtenir plus 

facilement des réseaux d'anisotropie effective caractérisée par un plan facile (IP). Plus 

particulièrement pour l'échantillon TR10, une géométrie bicouche équivalente de la forme 
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[CoFeb(20)/Cu(5) × 500] aurait présenté un axe facile OOP en tenant compte des résultats 

présentées pour les bicouches. La séparation des tricouches par une épaisse couche de Cu permet 

donc de réduire considérablement l'importance des interactions intra-fils qui ont tendance à 

favoriser l'anisotropie OOP. Ce comportement est bien décrit par l'Éq. (3.55) où l'on voit bien que 

le terme dépendant de cette séparation des tricouches, f, décroît lorsque hnm2 augmente et cela a 

pour effet de diminuer le champ effectif. La Figure 4.10 présente la dépendance angulaire de la 

coercivité ainsi que le comportement angulaire de la rémanence.  

 

 

Figure 4.10 :  (Gauche) Champ coercitif en fonction de l'angle du champ magnétique pour les 

 réseaux bicouches. [0° = OOP et 90° = IP. (Droite) Aimantation rémanente en 

 fonction de l'angle du champ magnétique pour les réseaux tricouches. 0° = OOP et 

 90° = IP. (AD : 10/10/10/100 × 100) ; (TR5 : 10/10/10/75 × 100) ; (TR6 : 10/5/10/75 × 

 100) ; (TR10 : 20/5/20/100 × 500). B = 1 T = µ0·10 kOe, 2a = 45 nm, D = 110 nm. 

 (4π10
-3

 Oe = 1 A/m) 

 

On observe une dépendance en fonction de l'angle en forme de cloche pour la coercivité et 

la rémanence. Dans le cas de la coercivité, le maximum de Hc se situe dans la configuration OOP 

alors que le minimum est dans la configuration IP. C'est tout le contraire pour la rémanence, où le 

maximum de Mr est dans la configuration IP. On remarque également que le comportement de la 

coercivité et de la rémanence sont très sensibles aux interactions dipolaires et à l'anisotropie de 
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forme. En effet, en variant de quelques nanomètres les épaisseures de CoFeB et de Cu, on 

observe de variations importantes des propriétés magnétiques. Le Tableau 4.2 résume les 

résultats de mesures magnétostatiques sur les nanofils tricouches.  

 

Tableau 4.2 : Synthèse des résultats de magnétométrie statique sur les réseaux de nanofils 

tricouches. Heff par VSM est obtenu avec les pentes à M = 0. La taille du réseau 

utilisée dans le calcul numérique est de 200 (environ 400 × 400 nanofils). Les 

valeurs du modèle représentent les champs effectifs extrema dans une fourchette 

inférieure de 20% des épaisseurs des couches par rapport aux dimensions ciblées. 

Échantillon Géométrie Hc (Oe) Mr (M/Ms) Heff (Oe), (4π10
-3

 Oe = 1 A/m) 

CoFeB/Cu- 
hm1/hnm1 /hm2/hnm2 

(nm) × N 
IP OOP IP OOP VSM 

Calculs 

numériques 

Éqs. Analytiques 

(3.55) 

AD 10/10/10/100 × 100 200 280 0,2 0,14 -1300 [-6620  -5210] [-8140  -6380] 

TR5 10/10/10/75 × 100 120 215 0,14 0,11 -1300 [-6590   -5180] [-8190  -6450] 

TR6 10/5/10/75 × 100 240 315 0,2 0,13 -1250 [-5920  -4330] [-7800  -6070] 

TR10 20/5/20/100 × 500 235 325 0,24 0,12 -1600 [-1670   -320] [-1400  1680] 

 

 On constate encore que le modèle d'anisotropie effective prédit le bon signe du champ 

effectif (dans le plan) mais qu'il surestime fortement sa valeur absolue dans tous les cas sauf celui 

du TR10. On observe aussi une contradiction entre le modèle et la mesure où l'échantillon TR10 

devrait en principe avoir un champ effectif favorisant davantage la direction OOP que TR6 de par 

ses dimensions. Toutefois, la mesure VSM montre un champ effectif plus faible pour TR10. 

Enfin, la faible différence de dimensions entre AD et TR5 se traduit par un champ effectif 

similaire à la fois pour le modèle et pour la mesure VSM. Nous avons vu au chapitre 3 que l'effet 

de la couche de Cu séparant les tricouches était négligeable au-delà de 50 nm, ce qui est ici 
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confirmé expérimentalement. En appliquant l’Éq. (3.55), on constate que le terme fortement 

dominant de l’anisotropie pour tous ces échantillons est l’anisotropie de forme. Cela suggère 

donc que notre modèle ne prend pas bien en compte le calcul de l’anisotropie de forme, que ce 

soit par l’expression pour un cylindre ou une ellipsoïde oblate.  

 

4.2 Résonance ferromagnétique 

 Le comportement dynamique de l'aimantation en hyperfréquences dans les réseaux de 

nanofils magnétiques multicouches est, rappelons-le, très important à comprendre pour 

éventuellement les implanter dans des dispositifs micro-ondes ou bien pour l'étude de la réponse 

magnéto-diélectrique. Nous avons déjà expliqué le concept de résonance ferromagnétique dans 

les nanofils multicouches. Nous donnons ici des détails sur l'aspect expérimental de la mesure qui 

est effectuée à fréquence fixe en balayant le champ magnétique. La Figure 4.11 présente le 

montage utilisé pour les mesures de résonance ferromagnétique. 

 

Figure 4.11 : Schéma du montage de résonance ferromagnétique. L'électroaimant (1) produit un 

champ magnétique homogène entre ses pôles. La cavité résonante cylindrique (sur 

la figure, l’axe du cylindre sort de la page) (2) contient l'échantillon de nanofils et 

est reliée à un guide d'onde. La sonde à effet Hall (3) permet de lire le champ 

magnétique et est reliée à un gaussmètre (4). Les ondes électromagnétiques de 

fréquence ω sont générées par l'analyseur de réseau vectoriel (5) renvoyées à celui-

ci après interactions avec l'échantillon (6). Un moteur (7) permet d'effectuer 

automatiquement la rotation de l'échantillon selon l'axe du porte-échantillon.  
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 L'analyse de réseau vectoriel (VNA) est un Agilent Technologies N5230A (10MHz à 

40GHz) et le gaussmètre est un Bell 9900 Series. L'électroaimant peut produire un champ 

magnétique (       ) allant de 0 à 2T (0 à 20 kOe). Ce montage expérimental nous permet de 

mesurer le coefficient de réflexion de la cavité en fonction du champ magnétique statique, de sa 

direction par rapport à l'échantillon, et ce pour plusieurs fréquences correspondant aux fréquences 

de résonance de cavités résonantes cylindriques de mode TE011 17, 24, 31, et 38 GHz. La 

configuration des champs électromagnétiques dans ces cavités fait en sorte que le champ 

électrique est minimal au centre de la cavité, alors que le champ magnétique y est maximal; nous 

avons donc positionné l'échantillon au centre de la cavité.   

 

 L'acquisition des données et le contrôle des différents appareils furent effectués 

automatiquement à l'aide d'un programme Labview développé par Christian Lacroix (étudiant au 

doctorat) et Alexandre Ouimet (étudiant à la maîtrise). La mesure par cavité résonante est 

particulièrement adaptée aux échantillons à faible signal magnétique tels que les nanofils 

multicouches. Toutefois, l'échantillon doit être suffisamment petit pour demeurer dans le régime 

des faibles perturbations et pour que le champ magnétique alternatif soit uniforme sur l'ensemble 

de l'échantillon.  

 

4.2.1 Détermination expérimentale du champ effectif par FMR 

 Afin d'extraire des données quantitatives de l'anisotropie, il est possible de déterminer le 

champ effectif du réseau par mesure de résonance ferromagnétique. Pour ce faire, nous reprenons 

les Éqs. (3.51) et (3.54) modélisant la résonance ferromagnétique dans les nanofils multicouches 

à l’aide d’une anisotropie effective uniaxiale perpendiculaire à la couche. Les inconnus sont, a 

priori, le champ effectif le facteur gyromagnétique et l’angle d’équilibre 0. Partant de (3.54), 

nous l'écrivons comme une équation quadratique de la forme          
   : 
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 (4.2) 

Supposant 0 connu, les racines de cette équation nous donnent le champ de résonance    en 

fonction de l'angle     du champ magnétique par rapport aux nanofils et la valeur du facteur 

gyromagnétique (lié au facteur g). Cette valeur initiale de Heff peut être utilisée de façon récursive 

entre (3.51) et (3.54) pour déterminer 0 et Heff.  En pratique, nous verrons que les champs de 

résonance impliqués sont plus élevés que les champs de saturation déterminés par VSM et nous 

supposerons donc que 0 = H. Il suffit donc de trouver les meilleurs paramètres expérimentaux, 

ici     et       , qui permettent de reproduire l'Éq. (4.2). Pour ce faire, nous mesurons par 

résonance ferromagnétique le champ de résonance    en fonction de l'angle du champ 

magnétique     et nous minimisons l'écart quadratique moyen entre les solutions expérimentales 

et théoriques. Il est important de souligner que cette équation n'est valide que si le champ 

magnétique sature complètement les nanofils, appuyant ainsi l'hypothèse de moments 

magnétiques rigides en rotation. Cela nous permettra d'établir que       dans l'Éq. (4.2), 

notamment pour les grandes fréquences de résonance qui demande des champs de résonance plus 

élevés. Le champ effectif déterminé par cette technique pourra être comparé aux valeurs du 

modèle, que ce soit par les équations exactes ou approximatives.  

 

4.2.2 Résonance ferromagnétique des nanofils bicouches 

Nous présentons dans cette section les résultats des mesures de résonance 

ferromagnétique effectuées sur les échantillons de nanofils bicouches. Pour chacun des 

échantillons, nous montrons les mesures d'absorption en fonction du champ pour les deux 

directions principales (IP et OOP), ainsi que les mesures de champ de résonance en fonction de 

l'angle du champ magnétique. Nous présentons également la courbe minimisant l'écart 

quadratique entre les données expérimentales et l'Éq. (4.2), ce qui nous permettra de 

déterminer      . Nous montrons enfin l'écart des champs de résonance obtenus 
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expérimentalement avec ceux du modèle, ce qui nous donnera une indication sur les contributions 

manquantes à l'anisotropie. Les résultats sont présentés dans les figures suivantes. 

  

 

Figure 4.12 :  Mesures FMR sur l'échantillon AA (5/5 × 368) à 31 GHz. (Haut) Absorption 

électromagnétique en fonction du champ magnétique pour les deux 

configurations IP/OOP. (Gauche) Champ de résonance en fonction de l'angle du 

champ magnétique appliqué. Les carrés représentent les mesures expérimentales 

et la courbe continue obtenue par l'Éq. (4.2). (Droite) Écart entre mesures 

expérimentales et le modèle. 2a = 45 nm, D = 110 nm 

 

 

Figure 4.13    : Mesures FMR sur l'échantillon AB (10/10 × 500) à 31 GHz.  

 

AA 

AB 
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Figure 4.14 :  Mesures FMR sur l'échantillon AC (50/10 × 500) à 24 GHz. 

 

 

 

Figure 4.15 :  Mesures FMR sur l'échantillon AC (50/10 × 500) à 31 GHz. 

 

 

Figure 4.16 :  Mesures FMR sur l'échantillon Bi1 (50/50 × 154) à 31 GHz. 

 

AC 

Bi1 

AC 
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Le premier constat que l'on peut effectuer est que les approximations impliquées dans le 

modèle de résonance ferromagnétique développée dans l'Éq. (4.2) ne semble pas s'appliquer aux 

échantillons AA et AB. Ces deux échantillons sont caractérisés par une anisotropie de plan facile 

(IP) et des couches de CoFeB très minces (5 ou 10 nm). Le champ de résonance est l'objet d'une 

baisse drastique autour de        pour AA et       pour AB. Le modèle colle beaucoup 

mieux aux courbes de résonance dans le cas des échantillons AC et Bi1, qui sont caractérisées par 

un axe facile hors-plan (OOP) et d'épaisses couches de CoFeB (50 nm). On note tout de même un 

plateau pour les champs de résonance dans une plage autour de 90 deg. (IP).  

 

On remarque également une forme particulière des courbes de résonance à bas champ; 

celles-ci ne sont pas symétriques à gauche de la résonance. Cela suggère une distribution de 

fréquences de résonance à bas champ correspondant à la résonance de couches ferromagnétiques 

d’épaisseurs variées.   

 

Les courbes de l'écart des champs de résonance (    
   

     
      ) en fonction de l'angle 

du champ magnétique permettent de mettre en évidence la forme des contributions non prises en 

compte par le modèle. On observe que cet écart prend une forme de fonctions sinusoïdales avec 

des minima en               et des maxima en             ou            selon 

l'échantillon. L'échantillon AC de la Figure 4.14 montre toutefois une plus petite périodicité avec 

des minima en                        et des maxima en                       . Il est 

intéressant de noter que la forme de cette contribution supplémentaire change de périodicité en 

passant d'une fréquence de résonance de 24 à 31 GHz. Ces formes sinusoïdales seraient 

caractéristiques de contributions d'ordres supérieures à l'anisotropie. La nature de ces 

contributions devrait être traitée dans de futurs travaux. Tous ces résultats sont résumés dans le 

Tableau 4.3. 
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Tableau 4.3 : Synthèse des résultats de résonance ferromagnétiques sur les réseaux de nanofils 

bicouches. Le champ effectif Heff  et le facteur g sont les deux paramètres 

expérimentaux déterminés à l'aide de l'Éq. (4.2). La taille du réseau utilisée dans le 

modèle est de 200 (environ 400 × 400 nanofils). Les valeurs du modèle 

représentent les champs effectifs extrema dans une fourchette inférieure de 20% 

des épaisseurs des couches par rapport aux dimensions ciblées. 

 

Échantillon Géométrie Fréquences  Heff (Oe), (4π10
-3

 Oe = 1 A/m)  

CoFeB/Cu- hm/hnm (nm) × N 
GHz 

FMR 
Calculs 

numériques 

Facteur g 

AA 5/5 × 368 31 -655 [-2400  -900] 2,19 

AB 10/10 × 500 31 -1610 [-2450  0] 2,31 

AC 50/10 × 500 24 ; 31 1510; 

2140 

[3900  4700] 2,18 ; 2,15 

Bi1 50/50 × 154 31 1970 [525  1800] 2,15 

 

On remarque ici que les valeurs de champ effectif déterminées par FMR se rapprochent 

beaucoup plus des valeurs du modèle que celle déterminées par VSM. Alors que le modèle 

surestimait grandement le champ effectif par rapport à la valeur du VSM, ici l'écart est plus 

modéré. Néanmoins, l'écart est relativement important dans les couches plus minces (5 nm), ce 

qui peut être potentiellement expliqué par une contribution importante provenant d'anisotropie de 

surface. Il est également possible que cet écart soit expliqué par la présence d'anisotropie 

cristalline. L’étude des formes périodiques observées plus haut permettra de mieux comprendre la 

nature de cette contribution manquante. 
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4.2.3 Résonance ferromagnétique des nanofils tricouches 

Nous présentons maintenant les résultats des mesures de résonance ferromagnétique 

effectuées sur les échantillons de nanofils tricouches. Les figures suivantes présentent 

l'absorption électromagnétique des échantillons en fonction du champ magnétique ainsi que la 

dépendance angulaire du champ de résonance. Nous présentons également, comme dans le cas 

des bicouches, l'écart des champs de résonance déterminés expérimentalement et par le modèle. 

 

 

Figure 4.17 : Mesures FMR sur l'échantillon AD (10/10/10/100 × 100) à 31 GHz. (Gauche) 

Champ de résonance en fonction de l'angle du champ magnétique appliqué. Les 

carrés représentent les mesures expérimentales et la courbe continue obtenue 

par l'Éq. (4.2). (Droite) Écart entre mesures expérimentales et le modèle. 2a = 

45 nm, D = 110 nm 

 

 

Figure 4.18 : Mesures FMR sur l'échantillon TR6 (10/5/10/75 × 100) à 31 GHz.  

 

AD 

TR6 
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Figure 4.19 : Mesures FMR sur l'échantillon TR5 (10/10/10/75 × 100) à 31 GHz.  

 

Figure 4.20 : Mesures FMR sur l'échantillon TR5 (10/10/10/75 × 100) à 38 GHz. 

 

Figure 4.21 : Mesures FMR sur l'échantillon TR10 (20/5/20/100 × 500) à 17 GHz. 

Absorption électromagnétique en fonction du champ magnétique pour les deux 

configurations IP/OOP. 2a = 45 nm, D = 110 nm. 

 

TR5 

TR5 

TR10 
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On remarque que le modèle de résonance ferromagnétique colle un peu plus ici aux 

courbes de résonance que dans le cas des bicouches. La forme de cloche inversée pour tous les 

échantillons reflète l'anisotropie effective caractérisée par un plan facile (IP). Un phénomène 

curieux est observé pour l'échantillon AD (Figure 4.17), où un deuxième pic de résonance 

apparaît clairement lorsque le champ magnétique est OOP. Cette double résonance disparaît 

complètement en champ IP. Il semblerait qu'en passant de OOP à IP, le pic autour de 13 kOe 

disparaisse brusquement à       pour laisser place à un pic de résonance à champ de 

résonance constant (8,5 kOe) de       à       . On observe le même phénomène, quoique 

dans une moindre mesure, sur l'échantillon TR5 (Figure 4.19 et Figure 4.20) à 31 GHz, mais non 

à 38 GHz. 

  

. A priori, cette double résonance est une caractéristique observée dans nos échantillons 

seulement pour la configuration tricouche. Cela suggère que l'interaction dipolaire entre les deux 

couches jumelles permet d'exciter deux modes de résonance. De plus, on observe que ces effets 

double-pics semblent clairement plus apparents dans les expériences à basses fréquences, donc à 

plus faibles champs. Plus particulièrement, pour TR10 (Figure 4.21) le réseau n'est pas totalement 

saturé pour ces champs magnétiques. Il semble donc plus probable d'exciter deux modes de 

résonance lorsque l'aimantation n'est plus uniforme. Des travaux futurs devraient aborder la 

déconvolution des deux pics de résonance afin d'en déterminer le comportement angulaire. 

 

Les courbes de l'écart des champs de résonance (    
   

     
      ) en fonction de l'angle 

du champ magnétique permettent encore de mettre en évidence la forme des contributions non 

prises en compte par le modèle. Il est pour l’instant difficile d’interpréter ces courbes sans une 

étude plus approfondie des contributions pouvant prendre ces formes périodiques.  

 

 Les résultats sur de résonance ferromagnétique sur les nanofils tricouches sont résumés 

dans le  
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Tableau 4.4 . Comme dans le cas des bicouches, le champ effectif déterminé par FMR se 

rapproche davantage des valeurs du modèle que ce qui est déterminé par VSM. Néanmoins, le 

modèle surestime toujours le champ effectif en valeur absolue, ce qui laisse porter à croire qu'une 

autre contribution à l'anisotropie serait pertinente à considérer.      

 

Tableau 4.4 : Synthèse des résultats de résonance ferromagnétiques sur les réseaux de nanofils 

tricouches. Le champ effectif Heff  et le facteur g sont les deux paramètres 

expérimentaux déterminés à l'aide de l'Éq. (4.2). La taille du réseau utilisée dans le 

calcul numérique est de 200 (environ 400 × 400 nanofils). Les valeurs du modèle 

représentent les champs effectifs extrema dans une fourchette inférieure de 20% 

des épaisseurs des couches par rapport aux dimensions ciblées.   

 

Échantillon Géométrie Fréquences Heff (Oe), (4π10
-3

 Oe = 1 A/m) Facteur g 

CoFeB/Cu- 
hm1/hnm1 /hm2/hnm2 

(nm) × N 

GHz 
FMR 

Calculs 

numériques 

 

AD 10/10/10/100 × 100 31 -3290 [-6620  -5210] 2,29 

TR5 10/10/10/75 × 100 31 ; 38 -2855; -2710 [-6590   -5180] 2,29 ; 2,23 

TR6 10/5/10/75 × 100 31 -1885 [-5920  -4330] 2,18 

TR10 20/5/20/100 × 500 17 - [-1670   -320] - 

 

On remarque que la variation du champ effectif en fonction réduisant les couches hnm1 et 

hnm2 de Cu sont bien expliquées par le modèle. Dans le premier cas, on observe une nette 

augmentation (+1000 Oe) du champ effectif traduisant une plus grande interaction dipolaire N12, 

et donc favorisant une anisotropie OOP. Dans le deuxième cas, on observe effectivement une 

plus faible variation du champ effectif (-400 Oe), tel qu’expliqué au chapitre 3. 
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4.3 Réseaux de nanofils multicouches à comportement isotrope 

Comme nous l'avons mentionné auparavant, un des intérêts de ces structures multicouches 

est de pouvoir contrôler l'anisotropie effective du réseau en fonction de paramètres géométriques. 

Les résultats de modélisation présentés au chapitre 3 montrent qu’il était possible de déterminer 

conditions où l'anisotropie effective tendrait vers zéro, c'est-à-dire que le réseau se comporterait 

de façon isotrope sous l'influence d'un champ magnétique. Un des objectifs de ces travaux est de 

démontrer qu'il est effectivement possible d'obtenir expérimentalement ces réseaux de nanofils 

isotropes. Bien qu’en pratique, nous avons démontré qu’il nous est difficile pour l’instant de bien 

contrôler l’épaisseur des couches, nous présentons ici les résultats sur deux échantillons montrant 

un comportement magnétique isotrope. 

 

Figure 4.22 :  Dimensions ciblées des couches magnétiques et non-magnétiques des nanofils 

constituant les réseaux de nanofils isotropes.  

 

La Figure 4.22 présente les dimensions ciblées des nanofils constituant les réseaux 

étudiés. Les deux sont caractérisés par des couches de CoFeB petites (respectivement 10 nm  et 5 

nm) par rapport au diamètre (45 nm) ainsi qu’un très faible espacement de Cu entre les couches 

ferromagnétiques (respectivement 5 nm et 2 nm). La couche de Cu inter-tricouche mesure quant à 

elle environ 50 nm. L’échantillon TR3 est semblable au TR6, qui présentait une anisotropie 

planaire, mais contient environ 2000 tricouches au lieu de 100 (pour le TR6) ce qui devrait 

augmenter l’effet de forme intrafil et favoriser une anisotropie axiale s’opposant à l’anisotropie 
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planaire. L’échantillon TR8 contient 500 tricouches, avec les épaisseurs les plus faibles réalisées 

pour ce travail.    

 

Nous avons effectué des mesures par VSM de l’hystérésis en fonction de l’angle du 

champ magnétique par rapport à l’échantillon. Les résultats sont présentés à la Figure 4.23, où 

seulement l’hystérésis des directions IP et OOP sont présentées. Le champ coercitif et 

l’aimantation rémanente en fonction de l’angle y sont aussi présentés. Comme on peut le 

constater sur les courbes d’hystérésis parfaitement superposées, les deux réseaux de nanofils ont 

un comportement magnétostatique de l’aimantation isotrope, et ce autant dans le régime saturée 

que non-saturé. Les angles intermédiaires ne sont pas présentés ici mais se comportent de façon 

identique aux angles principaux.  

 

L’approche à saturation est très différente dans les deux cas, avec TR3 approchant la 

saturation beaucoup plus lentement (Hsat vers 12 kOe) que TR8 (Hsat vers 5 kOe). On remarque 

également que l’échantillon TR3 présente une faible coercivité de l’ordre de 100 Oe ainsi qu’une 

faible rémanence de l’ordre de 10% de Ms. Dans le cas de l’échantillon TR8, la coercivité (10-13 

Oe) et la rémanence (1% de Ms) sont presque nulles. La variation angulaire du champ coercitif et 

de l’aimantation rémanente est extrêmement faible comme on peut le constater au côté droit de la 

Figure 4.23. L'aimantation nulle de l'échantillon TR8 pourrait indiquer un alignement 

antiparallèle de l'aimantation des couches jumelles (au sein d'une tricouche) à champ magnétique 

nul. 
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Figure 4.23 :  (Haut) Hystérésis pour les deux directions principales des échantillons TR3 et 

TR8. (Bas) Champ coercitif et aimantation rémanente en fonction de l’angle du 

champ magnétique pour les deux échantillons. 

 

Nous avons également mesuré la résonance ferromagnétique de l’échantillon TR3 pour 

des fréquences de 24 et 31 GHz. Nous n’avons pas été en mesure d’effectuer de mesure FMR sur 

l’échantillon TR8 (nous avons réalisé longtemps après les mesures que l’échantillon était 

isotrope). La Figure 4.24 présente les mesures FMR pour l’échantillon TR3. On observe que les 

propriétés dynamiques ne varient que très peu selon l’angle. Les courbes de résonances se 

déplacent légèrement de 400 Oe vers la gauche en passant de OOP à IP à 24 GHz. À 31 GHz, la 

TR3 TR8 
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variation du champ de résonance est encore plus faible, soit d’environ 200 Oe. Ces variations 

sont beaucoup plus faibles que pour les échantillons tricouches présentés plus haut, ceux-ci 

affichant des variations de plusieurs milliers d’Oersted. Une variation angulaire aussi faible du 

champ de résonance est une preuve supplémentaire du caractère isotrope de ces réseaux de 

nanofils.  

 

 

Figure 4.24 :  Mesures FMR sur l'échantillon TR3 (10/5/10/55 × 2000) à 24 GHz et 31 GHz. 

(Gauche) Absorption électromagnétique en fonction du champ magnétique pour 

les deux configurations IP/OOP. (Droite) Champ de résonance en fonction de 

l’angle du champ magnétique appliqué par rapport aux nanofils. 

 

Le  

Tableau 4.5 présente les résultats du champ effectif obtenu par le modèle d’anisotropie 

effective. Nous nous serions attendus à obtenir des valeurs proches de 0 pour que le modèle 

prédise un comportement isotrope. On voit au contraire ici que le modèle d'anisotropie ne permet 

pas de prédire un champ effectif nul pour les structures géométriques ciblées par ces deux 

échantillons. Il est possible d'une part que les épaisseurs réelles soient différentes de celles 

ciblées, mais le champ effectif prédit par le modèle est trop grand par rapport à 0 pour que l'écart 

soit expliqué par l'erreur sur les épaisseurs. Une explication plus probable proviendrait de 
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contributions à l'anisotropie supplémentaires qui seraient caractéristiques des faibles épaisseurs 

de couches, par exemple l'interaction d'échange.  

 

Tableau 4.5 : Champ effectif Heff calculé avec le modèle d'anisotropie effective. La taille du 

réseau utilisée dans le calcul numérique est de 200 (environ 400 × 400 nanofils).  

Échantillon Géométrie Heff (Oe), (4π10
-3

 Oe = 1 A/m) 

CoFeB/Cu- hm/hnm (nm) × N Calculs numériques Éqs. analytiques 

TR3 10/5/10/55 × 2000 -3920 -6320 

TR8 5/2/5/50 × 500 -7590 -9820 

 

4.4 Synthèse  

Nous avons montré dans ce chapitre les résultats de magnétométrie statique (VSM) et de 

résonance ferromagnétique (FMR) pour divers échantillons de nanofils bicouches et tricouches. 

Nous avons vu que les champs effectifs prédits par le modèle surestimait fortement les valeurs 

trouvées expérimentalement, bien que l’écart soit moindre pour les résultats de FMR. Cela n’est 

pas surprenant sachant que le modèle de résonance ferromagnétique faisait l’hypothèse que 

l’aimantation était saturée et uniforme, conditions que l’on respecte plutôt bien avec les champs 

de résonance dans nos expériences. Dans le cas du VSM, nous avons basé le calcul du champ 

effectif sur un modèle de champ moyen en prenant les pentes des courbes d’hystérésis à M = 0, 

ce qui est loin de refléter nos hypothèses d’aimantation saturée. On a également vu que les 

équations analytiques ne décrivent pas bien les interactions entre bicouches. Cela est 

principalement dû à la perte de l’hypothèse selon laquelle les couches voisines à la tricouche de 

référence puissent être traitées comme des macrospins. Dans ce cas, le modèle numérique 

s’applique mieux comme il intègre les contributions dipolaires infinitésimales sur tout le volume 

des couches. Enfin, l’anisotropie de forme domine l’anisotropie lorsque les couches 

ferromagnétiques sont minces et notre modèle ne prend pas bien en compte le calcul de 

l’anisotropie de forme, que ce soit par l’expression pour un cylindre ou une ellipsoïde oblate.  
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Nous avons également observé dans les tricouches des double-résonance 

ferromagnétiques, ce qui indique que l'interaction dipolaire entre les deux couches jumelles 

permet d'exciter deux modes de résonance. Ces effets double-pics semblent clairement plus 

apparents dans les expériences à basses fréquences, donc à plus faibles champs lorsque 

l’échantillon n’est pas totalement saturé. Il semble donc plus probable d'exciter deux modes de 

résonance lorsque l'aimantation n'est plus uniforme. Des travaux futurs devraient aborder la 

déconvolution des deux pics de résonance afin d'en déterminer le comportement angulaire.  

 

Les résultats de résonance ferromagnétique sont très intéressant mais pour l’instant nous 

n’avons pas été en mesure de bien comprendre les interactions en jeu expliquant les double-pics 

de résonance et les formes périodiques de (    
   

     
      )  Il est clair que ces mesures cachent 

des contributions non prises en compte dans le modèle, par exemple une anisotropie 

magnétocristalline ou des interactions d’échange qui viendrait réduire la valeur absolue du champ 

effectif. 

 

Enfin, nous avons été en mesure de démontrer expérimentalement qu’il était possible de 

synthétiser des réseaux de nanofils multicouches magnétiquement isotropes. Toutefois, le modèle 

prédit une forte anisotropie dans le plan (IP) pour les géométries ciblées par ces nanofils. Il serait 

étonnant d’obtenir des réseaux isotropes en ne tenant compte que des interactions dipolaires et de 

l’anisotropie de forme pour ces géométries. Cela signifie donc que d’autres contributions sont en 

jeu et des travaux futurs devraient focaliser sur la compréhension de ces contributions 

manquantes. Il est également très intéressant de constater que l’on peut obtenir des réseaux 

isotropes dont le comportement de l’aimantation est assez différent, allant même jusqu’à un 

comportement doux et anhystérétique. 

 

Ces réseaux de nanofils tricouches semblent au final apporter beaucoup de surprises avec 

des comportements pour l'instant difficilement explicables avec les outils que nous avons 
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développés. Pour clore ce chapitre, nous  aimerions partager brièvement un résultat encore 

étonnant sur les nanofils tricouches et qui démontre davantage les comportements variés que nous 

obtenons avec ces nanofils. La Figure 4.25 présente les résultats de magnétométrie statique par 

VSM et montre que la rémanence est constante pour toutes les directions de champ magnétique 

alors que la coercivité varie assez significativement. Les dimensions exactes des couches 

ferromagnétiques sont difficiles à établir (mais probablement très minces, de l’ordre du 

nanomètre) et nous nous n’irons pas plus loin dans la compréhension de ce matériau.    

 

 

Figure 4.25 :  Mesures VSM sur un réseau de nanofils tricouches affichant une rémanence 

constante et une coercivité variable. 
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CHAPITRE 5 CONCLUSION 

 

Dans le cadre de ces travaux, nous avons étudié le comportement magnétique statique et 

dynamique de réseaux de nanofils ferromagnétiques multicouches de CoFeB/Cu. Rappelons que 

les objectifs poursuivis par nos travaux étaient de: 

1. Maîtriser la fabrication des réseaux de nanofils ferromagnétiques multicouches 

2. Modéliser et prédire l'anisotropie de  réseaux de nanofils tricouches en fonction de 

 paramètres géométriques. 

3. Explorer les propriétés magnétiques statiques et dynamiques de ces réseaux et les 

 confronter aux prédictions du modèle. 

4. Démontrer la faisabilité expérimentale de réseaux de nanofils magnétiquement 

 isotropes 

 

 Pour adresser ces objectifs, nous avons procédé en plusieurs étapes. Nous avons tout 

d'abord (1) fabriqué une membrane d'alumine servant de matrice pour les nanofils multicouches. 

Nous avons ensuite (2) électrodéposé des nanofils multicouches de CoFeB/Cu dans la matrice 

d'alumine, puis  (3) caractérisé structurellement les nanofils par MEB et par MET. Nous avons 

par la suite (4) élaboré un modèle d'anisotropie effective basé sur les interactions dipolaires entre 

couches ferromagnétiques. Enfin nous avons (5) mesuré les propriétés magnétiques statiques par 

VSM ainsi que (6) la résonance ferromagnétiques des réseaux de nanofils.   

 

Dans le chapitre 2 nous avons vu qu'il restait encore beaucoup de travail afin de maîtriser la 

fabrication des réseaux de nanofils multicouches. Nous faisons face à des problèmes de 

reproductibilité des structures ciblées, ainsi qu'à une difficulté à caractériser les épaisseurs des 

couches ferromagnétiques et non-magnétiques. Du point de vue de la fabrication, nous avons 

proposé plusieurs pistes de développement pour améliorer le procédé. On pourrait remplacer le 

vernis servant à sceller la zone d'électrodéposition par une fine membrane adhésive et 

photosensible. Cette membrane rend la procédure beaucoup plus propre et permet de contrôler, 

par photolithographie, les zones où un dépôt est souhaité. La deuxième piste de solution consiste 

à optimiser les potentiels de dépôt pour les ions magnétiques et non-magnétiques pour éviter la 
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redissolution des couches ferromagnétiques lors des variations de potentiel.  Enfin, la troisième 

piste consiste à contrôler rigoureusement le pH de la solution électrolytique, celui-ci pouvant 

affecter significativement la structure des couches déposées.  

 

Afin d'améliorer la caractérisation structurelle des nanofils multicouches, nous suggérons 

d'utiliser une grille en nickel (Ni) recouverte de carbone. Cela permettrait probablement d'obtenir 

un meilleur contraste entre les couches puisqu'on éliminerait le signal de fond causé par la grille 

de cuivre. Une autre piste de solution serait de graver sélectivement les couches pour obtenir un 

contraste topographique des couches. Nous pourrions par exemple utiliser un agent chimique qui 

graverait plus rapidement l’une des deux couches et observer par la suite les nanofils au MET.  

 

 Dans le chapitre 3 nous avons développé un modèle d'anisotropie effective basé sur les 

interactions dipolaires entre couches ferromagnétiques et sur l'anisotropie de forme de ces 

couches. Un aspect important de ce développement a été de mettre en évidence l'interaction entre 

les deux couches jumelles, qui prend toute son importance dans le cas des tricouches isolées les 

unes des autres. Nous avons enfin développé des expressions analytiques simples afin de mieux 

faire ressortir le comportement de l'anisotropie en fonction des divers paramètres géométriques. 

Cela nous a permis de voir à quel point le champ effectif est très sensible à certains paramètres 

géométriques, notamment pour les faibles épaisseurs de couches. La divergence des résultats 

expérimentaux avec le modèle pointerait en faveur d’un traitement plus rigoureux de 

l’anisotropie de forme puisque cette contribution domine fortement le champ effectif pour les 

géométries de nanofils considérées dans ces travaux. Le terme d’interaction N12 est lui aussi 

d’autant plus important que la distance entre les couches jumelles est importante. Ce terme mis 

en évidence dans ces travaux est la principale différence avec le modèle développé par Carignan 

(2006) et mérite un traitement plus approfondie. Les facteurs Nintra et Ninter sont quant à eux de 

moindre importance dans la configuration tricouche, principalement à cause de l’épaisse couche 

de cuivre séparant les tricouches et minimisant les interactions dipolaires. Dans le cadre de notre 

analyse, nous n’avons pas exploité le cas où les aimantations des deux sous-réseaux ne seraient 

pas rigidement liées. Nous avons toutefois dressé les bases pour analyser ce cas général en 

déterminant les formes générales de l'énergie du système et les dérivées premières et secondes. 
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Nous pouvons donc utiliser ces résultats pour une étude plus approfondie de systèmes tricouches 

non rigidement liés. 

 

Dans le chapitre 4, nous avons vu que les champs effectifs prédits par le modèle 

surestimait fortement les valeurs trouvées expérimentalement, bien que l’écart était moindre pour 

les résultats de FMR. On a également vu que les équations analytiques ne décrivaient pas bien les 

interactions entre bicouches puisque l’on perdait l’hypothèse selon laquelle les couches voisines à 

la tricouche de référence pouvaient être traitées comme des macrospins. Nous avons également 

observé dans les tricouches des double-résonance ferromagnétiques, ce qui indique que 

l'interaction dipolaire entre les deux couches jumelles permet d'exciter deux modes de résonance. 

Des travaux futurs devraient aborder la déconvolution des deux pics de résonance afin d'en 

déterminer le comportement angulaire et ainsi obtenir des informations sur les interactions 

expliquant ce deuxième mode de résonance à bas champ. Les travaux futurs devront mettre en 

évidence les contributions non prises en compte dans le modèle, par exemple l’anisotropie 

magnétocristalline ou des interactions d’échange. 

 

Nous avons également démontré avec succès la faisabilité de synthétiser des réseaux de 

nanofils magnétiquement isotropes. Dans notre cas, nous avons fabriqué deux échantillons 

isotropes de comportement hystérétiques différents, dont l'un est anhystérétique. Ces matériaux 

sont particulièrement intéressant puisqu'il n'est pas évident en pratique de synthétiser des couches 

minces magnétiquement isotropes. Nous avons vu néanmoins que le modèle d'anisotropie, basé 

sur les interactions dipolaires et l’anisotropie de forme, ne permettait pas de prédire un champ 

effectif nul pour les structures géométriques ciblées par ces deux échantillons. Il est donc 

primordial pour la suite d’étudier les contributions supplémentaires à l'anisotropie qui seraient 

caractéristiques des faibles épaisseurs de couches, par exemple l'interaction d'échange. Cela 

permettra éventuellement d’établir des conditions précises pour obtenir des échantillons 

isotropes.   

 



  104 

 

Nos travaux constituent à notre avis une base solide pour développer la compréhension 

des réseaux de nanofils multicouches. Comme souvent en recherche scientifique, ce mémoire 

apporte beaucoup plus de questions que de réponses, et démontre en quelque sorte la nature 

mystérieuse de la configuration tricouche et les possibilités de développement. En plus des 

développements proposés plus haut, une suite logique à ce projet est de mesurer la 

magnétorésistance géante dans les nanofils tricouches et de tendre vers des mesures de transport 

en régime hyperfréquences. Cela permettrait éventuellement de démontrer des effets 

magnétodiélectriques dans ces réseaux, ce qui d'un point de vue technologique serait très 

intéressant. Il reste toutefois beaucoup de chemin à parcourir dans toutes les dimensions de ce 

projet : fabrication et caractérisation, modélisation, et mesures expérimentales. Je n’aurais pu 

souhaiter un projet plus complet que celui-ci pour un ingénieur, et j’espère que ce mémoire aura 

contribué au moins modestement à développer la compréhension d’un matériau plus 

qu’intéressant. 
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ANNEXE A – RENVERSEMENT DE L'ANISOTROPIE PAR VARIATION 

  DU pH DE LA SOLUTION ÉLECTROLYTIQUE 

Les figures suivantes montrent comment le pH de la solution électrolytique utilisée pour 

l'électrodéposition influence l'anisotropie effective des réseaux de nanofils. En faisant varier le 

pH de 3,5 (TR5) à 2,2 (TR7) l'anisotropie du réseau est complètement inversée, passant de plan 

facile (IP) à axe facile hors-plan (OOP). L'hypothèse serait que la variation de pH induit une 

structure cristalline du CoFeB dont l'anisotropie magnétocristalline est beaucoup plus forte que 

les interactions dipolaires et l'effet de forme des couches. Cette hypothèse reste par-contre à 

démontrer par une étude plus rigoureuse du phénomène.  
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ANNEXE B – COMPOSITION DE LA SOLUTION ÉLECTROLYTIQUES 

DU COFEB 

 

 

Les composés ci-dessous sont à incorporer dans un becher d'eau dans l'ordre présenté ici. 

 

 

Composé 

Concentration molaire 

requise 

Masse molaire du 

composé 

(mol/L) (g/L) 

CoSO4·7H2O 0,176 281,0936 

FeSO4·7H2O 0,03 278,01 

CuSO4·5H2O 0,003 249,684 

Diméthylaminoborane (DMAB) 0,007 58,916 

Na saccharin 0,005 241,19 

H3BO3 0,7 61,8307 
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ANNEXE C – DÉTAILS DE FABRICATION DES NANOFILS 

 

Potentiel d'électrodéposition 

CoFeB: -1 V 

Cu: -0,56 V 

 

La surface effective est calculée en mesurant la surface d'électrodéposition et en la multipliant par 

le facteur de porosité surfacique P de la membrane. Dans notre cas, nous avons toujours utilisé P 

= 0,12.  

 
Nanofils bicouches 

 

Échantillon Géométrie Surface 

effective 

Charge par couche (mC) 

CoFeB/Cu- hm/hnm (nm) × N cm
2
 CoFeB (hm) Cu (hnm) 

AA 5/5 × 368 0,13 2 1,9 

AB 10/10 × 500 0,132 3,8 3,6 

AC 50/10 × 500 0,086 12,3 2,3 

Bi1 50/50 × 154 0,125 17,9 3,3 
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 Nanofils tricouches 
 

Échantillon Géométrie Surface 

effective 

Charge par couche (mC) 

CoFeB/Cu- hm1/hnm1 /hm2/hnm2 (nm) × N cm
2
 CoFeB (hm) CoFeB (hm) Cu (hnm) Cu (hnm) 

AD 10/10/10/100 × 100 0,113 3,2 3,2 3,1 30,8 

TR5 10/10/10/75 × 100 0,18 5,4 5,4 5,2 38,3 

TR6 10/5/10/75 × 100 0,136 4,1 4,1 2,2 29 

TR10 20/5/20/100 × 500 0,04 2,3 2,3 0,5 10,9 

TR3 10/5/10/55 × 2000 0,044 1,1 1,1 0,5 6 

TR8 5/2/5/50 × 500 0,29 8,3 8,3 9,5 60 
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ANNEXE D – DÉRIVÉES SECONDES DE L'ÉNERGIE MAGNÉTIQUE 

D’ANISOTROPIE 
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ANNEXE E – ÉNERGIE ET CHAMP EFFECTIF POUR DES 

AIMANTATIONS ANTIPARALLÈLES 

 

Un cas particulier intéressant est lorsque les aimantations sont antiparallèles, soit pour où     

        et          . Dans ce cas, on montre que l'Éq. (3.42) devient: 

 
          

 

 
    

 

 
   
          

On voit bien que dans le cas antiparallèle les contributions provenant des termes     et    
  

viennent se soustraire à la constante   . On s'attend généralement à retrouver le cas antiparallèle 

lorsque les épaisseurs des couches deviennent suffisamment petites pour favoriser un alignement 

antiparallèle à champ nul. En ajoutant l’énergie de Zeeman, on obtient : 

                
                     

Les dérivées premières et secondes deviennent : 

                                         

                                      

 

On obtient le champ effectif d’anisotropie dans la configuration antiparallèle en minimisant l’énergie : 

             
                               

 

 
    
     

      
    

    
 

 
    

 

 
   
   

 


