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RESUME

L’émergence des transactions électroniques via I'Internet a introduit dans notre
quotidien de nouvelles préoccupations de sécurité. Afin d'uniformiser ce type de
procédure, les régles d’échanges de messages qui constituent une telle transaction
sont décrites par un protocole de sécurité. Les protocoles de sécurité peuvent étre
utilisés pour de nombreux buts : pour échanger des messages confidentiels, pour
authentifier des individus, pour se brancher sur un serveur web, etc. Les méthodes
cryptographiques nous assurent que tout message confidentiel échangé sur un ca-
nal public, lorsqu’il est suffisamment bien crypté, ne pourra étre déchiffré par un
individus que si celui-ci posséde la clé correspondante. Cependant, méme lorsque
que nous utilisons I’hypothése de cryptage parfait, le probléme de déterminer si
un protocole est sécuritaire est trés complexe. En effet, de nombreux protocoles
se sont révélés non sécuritaires, et dans certains cas plusieurs années aprés leur
introduction.

Dans cette thése, nous abordons le probléme de la vérification de protocoles de
sécurité. Plus spécifiquement, nous proposons une méthode générale de spécification
et de validation pour cette famille de protocoles, qui inclue les protocoles crypto-
graphiques. Nous présentons une nouvelle algébre de processus, nommée SPPA . qui
permet une spécification explicite des échanges de messages entre les participants
d’un protocole et des manipulations cryptographiques accomplies par chacun. Une
extension symbolique de cette algébre de processus est également offerte. Nous
introduisons ensuite la propriété de sécurité BNAI qui est une formalisation du
concept d’interférence admissible munie d’une méthode de vérification basée sur
I’équivalence de bisimulation. Nous démontrons que BNAI satisfait certaines pro-
priétés de compositionalité par rapport aux principaux opérateurs de SPPA. Nous
prouvons aussi que BNAI, ainsi que d’autres propriétés de non interférence, ne
sont pas définissables dans le p-calcul. De plus, nous montrons comment utiliser
BNAI afin de valider certaines propriétés de sécurité, notamment la confidentialité,

I’authentification et la vulnérabilité face aux attaques de déni de service.



ABSTRACT

The growing use of e-commerce over the Internet has introduced new security
concerns. In order to standardise such procedure, the rules for exchanging messages
within such transaction are commonly described by a security protocol. Security
protocols are useful for different purpose such as exchanging secret messages, au-
thenticating other users, connecting on a web server, etc. Cryptographic methods
guaranties that any secret message exchanged over a public channel. when well
encrypted, will not be read by another user unless he owns the corresponding key.
However, even under perfect encryption hypothesis, the problem of deciding whe-
ther a protocol is safe is very difficult. Indeed, many security protocols were shown
unsafe, and in some cases many years after their introduction.

In this thesis, we investigate the validation problem of security protocols. More
specifically, we propose a general method for the specification and validation of
these protocols, including cryptographic protocols. We present a new process alge-
bra, named SPPA. which allows explicit specification of messages exchanges bet-
ween users and cryptographic manipulations achieved by each of them. A symbolic
extension of this process algebra is also given. We then introduce the BNAI security
property which is an interpretation of the admissible interference concept combi-
ned with a verification method based on bisimulation equivalence. We prove that
this security property satisfies some compositional properties with respect to SP-
PA’s main operators. We also prove that BNAIL along with others non-interference
properties, is not definable in p-calculus. Moreover, we show how to use BNAI for
the verification of specific security properties such as confidentiality, authentication

and vulnerability against denial of service.
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CHAPITRE 1

INTRODUCTION

1.1 Motivations

L’émergence des nouvelles technologies en informatique et en télécommunica-
tion a engendré un urgent besoin de méthodes et d’outils de vérification. Ceux-ci
ont pour but de s’assurer que les protocoles utilisés lors de communications élec-
troniques soient suffisamment sécuritaires malgré le fait que des échanges d’infor-
mation sont effectués sur des canaux publics tel 'Internet, donc propices a étre
interceptés par quiconque. L’élaboration et la validation de politiques de sécurité
strictes qui établissent une réglementation sur la conception des protocoles utilisés
a ces fins est donc devenue un enjeu majeur qui a capté l'intérét d’une multitude
de chercheurs en informatique.

La validation de protocoles de sécurité est une tiche qui requiert typiquement
le développement de méthodes formelles permettant la détection de toute attaque
possible sur un protocole donné. Il n’y a pas si longtemps, ces protocoles étaient
considérés sécuritaires simplement si personne n’y avait trouvé de faille. Ainsi.
certains protocoles furent utilisés pendant plusieurs années avant d’étre prouvés

non sécuritaires.

1.2 Protocoles de sécurité

Il est possible de classer les différents types de protocoles de sécurité selon les
services qu’ils offrent. Par exemple, les protocoles cryptographiques sont caracté-
risés par l'utilisation du cryptage de données afin d’assurer la confidentialité de
certaines données échangées entre les usagers, communément appelés participants.
Les services offerts par ces protocoles incluent, notamment, I’anthentification des

participants et ’échanges de clés et de messages confidentiels ainsi que la création



de connexions fiables pour les flots de données. Par exemple, un protocole d’authen-
tification offre un service d’authentification entre deux participants par 'entremise
d’une certaine procédure d’authentification. Selon I International Organization for
Standardization (ISO) 1831 T'objectif général d’'un protocole d’authentification est

de

« permettre la vérification de lidentité prétendue d’une entité par une
autre entité, et 'authenticité de l'entité est uniquement garantie que

pour l'instant suivani l'échange d’authentification ».

L’authentification est donc la pierre angulaire de la sécurité des protocoles de sécu-
rité. Nous nous intéressons également aux protocoles de commerce électronique qui
offrent. des services reliés, plus spécifiquement, aux transactions électroniques via
I'Internet. Parmi ces services, il y a, entre autres, le paiement par carte de crédit
et "émission de recu.

Afin d’assurer la confidentialité et I'authenticité des messages échangés, les pro-
tocoles de sécurité nécessitent réguliérement 'utilisation de stratégies de cryptage,
de signature et de hachage. Cependant, malgré I’hypothése de cryptage parfait
(C’est-a-dire qu’un intrus ne peut décrypter un message que s’il posséde la clé cor-
respondante), les protocoles de sécurité peuvent tout de méme contenir des failles
au niveau de leur conception, ce qui les rend vulnérables a des attaques perpé-
trées par des intrus ayant accés aux réseaux publics sur lesquels les données sont

échangées.

1.2.1 Protocole de Needham-Schroder

Un protocole est généralement défini suivant une notation a la Alice et Bob,
c’est-a~dire par une suite de messages échangés entre deux ou plusieurs partici-
pants. Un exemple classique est celui du protocole d’authentification a clé publique
de Needham & Schroder 188, Ce protocole cryptographique utilise le cryptage a clé
publique dans le but d’établir une authentification mutuelle entre deux participants

(désignés par A et B). Afin de compléter la procédure d’authentification, ce pro-



tocole exige que chaque participant posséde la clé publique de son homologue. Ces
clés publiques sont respectivement désignées par k4 et kg. La spécification Alice
et Bob du protocole de Needham-Schroder est donnée par les étapes suivantes :

idasidg {nasidatip

Message 1 : A — B

idp,ida,{nanslk
Message 2: B A |

ida,idp,{nB}ig

Message 3 : A — B.

A la premiére étape du protocole (Message 1), A envoie & B son identificateur
(ida) et celui de B (idg), en compagnie d’un nonce fraichement généré (n4) et son
identificateur tous deux chiffrés & partir de la clé publique de B (kg). La notation
{na,ida}x, représente le résultat de ce cryptage. Notons aussi qu'un nonce désigne
un nombre aléatoire. Suite & la réception de cette demande d’authentification, le
participant B décrypte le message obtenu et obtient le nonce généré par A. Aprés
vérification que I'identificateur id4 a I'intérieur du message chiffré correspond bien &
celui non chiffré, B répond a l'invitation de A en lui retournant le message composé
de son identificateur, I'identificateur de A, et le nonce de A et un nouveau nonce
(ng) chiffrés ensemble en utilisant la clé publique de A. Entre la deuxiéme et la
troisiéme étape du protocole, le participant A doit s’assurer que le nonce chiffré
recu de B correspond bien & celui qu’il a initialement généré. Cette vérification
permet & A de s’assurer de I'authenticité de B. Dans P’éventualité d’un succés, A
envoie a B le troisiéme message qui est composé des deux identificateurs ainsi que
le nonce de B chiffré avec sa clé publique. Aprés avoir recu ce dernier message, le
participant B peut authentifier le participant A en vérifiant si le nonce fraichement
recu correspond a celui qu’il a généré plus tot.

Bien que le protocole de Needham-Schréder semble sécuritaire au premier coup
d’oeil, il en est tout autrement. En effet, Lowe 1" a découvert une faille dans ce
protocole pouvant mener 4 une attaque de type « man-in-the-middle ». L’aspect
le plus inquiétant a propos de cette attaque, c’est qu’elle fut découverte environ
vingt années aprés I'introduction du protocole... Cette fameuse attaque est seule-

ment réalisable lorsque le participant A initie le protocole d’authentification avec



un participant malveillant E (souvent appelé intrus ou participant ennemi). Dans
ce cas, un tel participant malhonnéte E peut utiliser I'information obtenue de A
afin d’initier une attaque d’authentification avec un tiers participant B, dans la-
quelle £ convainc B qu’il est A. Cette mascarade est réalisable & partir de deux
exécutions paralléles du protocole de Needham-Schroder dans lesquels 'intrus E
joue un réle central. Cette attaque est spécifiée dans la notation Alice et Bob de la
facon suivante :

idavide{naidateg
—

Etape 1 : A E (A initie le protocole avec E);
Etape 2 : E idA’idB’{——ni’idA}kB B (FE initie le protocole avec B)

en utilisant lidentité de A);
Etape 3 : B idB’idAﬂ’nB}kA E  (E intercepte la réponse de B);
Etape 4 : E idE'idAY{iAan}kA A (E transfert la réponse de B vers A);
Etape5: A Wadtdefizlip E (A répond a E);
Etape 6 : E idA’idB;{?B}kB B (E transfert la réponse de A vers B).

1.3 Attaques et propriétés de sécurité

La nature des attaques sur un protocole spécifique dépend essentiellement des
services offerts par celui-ci. Du coup, les propriétés de sécurité que nous imposons
4 un protocole, afin de s’assurer qu’il est sécuritaire, dépendent de ses objectifs.

Dans ce qui suit, nous exposons briévement certaines de ces propriétés de sécurité.

1.3.1 Confidentialité

Lors d’une attaque sur un protocole d’échange d’information, un intrus tente
de récolter des renseignements a propos du contenu d’un message secret qui ne
lui est pas destiné. La confidentialité référe a la propriété de sécurité qui s’assure
que toute donnée confidentielle échangée demeure toujours secréte. De toute évi-
dence, le cryptage des messages résout une grande partie des préoccupations de

confidentialité, pour autant que 'algorithme de cryptage utilisé soit suffisamment



sécuritaire. Cependant, certaines divulgations de données secrétes peuvent persis-
ter. Par exemple, un intrus pourrait exploiter une faille du protocole dans le but
d’obtenir les clés privées requises. Si un intrus parvient & lire le contenu intégral
d’un message secret, alors il y a clairement violation de la confidentialité. Par
contre, devons-nous considérer comme non sécuritaire un protocole qui divulgue
seulement une infime partie d’'un message secret (par exemple le premier bit d'un
numéro de carte de crédit), ou qui divulgue simplement l'existence d’'un message
secret 7 Dans le cadre de cette thése, nous considérons toute divulgation d’infor-
mation concernant un message secret comme un non respect de la confidentialité ;
ceci inclut toute information, directe ou indirecte. obtenue par 'étude des flots
d’information du protocole.

Un systéme informatique qui est fondé sur une architecture a plusieurs niveaux
de sécurité doit inévitablement établir et faire respecter une hiérarchie de confiden-
tialité entre les usagers et les objets. Dans le cas le plus simple ou il n’y a que deux
niveaux, communément désignés par haut (privé) et bas (public), nous souhaitons
interdire aux usagers et aux programmes du bas niveau d’accéder aux données
du haut niveau. Dans ce type d’architecture, le non respect de la confidentialité
est généralement illustré par des usagers (ou programmes) de bas niveaux du sys-
téme qui tentent d’obtenir Paccés 4 de I'information confidentielle en interagissant
simplement avec le systéme et les autres usagers et en effectuant certaines déduc-
tions. D’autre part, une attaque pourrait également provenir d’'un usager ou d'un
programme du haut niveau qui tente de divulguer des informations confidentielles,
auxquelles il a accés, 4 un complice du bas niveau. Un tel usager ou programime mal-
honnéte du haut niveau est communément appelé Cheval de Troie ( Trojan Horse).
Un Cheval de Troie qui a directement accés a des données confidentielles pourrait
exploiter certaines failles du systéme afin de convoyer des informations secrétes
vers une destination de bas niveau. Les régles d’acces MAC (Mandatory Access
Control) furent introduites afin d’imposer une politique de respect de la confi-
dentialité dans un systéme composé de plusieurs niveaux de sécurité. Ces régles

d’acceés empéchent les usagers de lire des objets de plus haut niveau et d’écrire sur



des objets de plus bas niveau (no read up, no write down). Cependant, ces régles
s’avérent insuffisantes afin de s’assurer que le systéme soit totalement confidentiel.
En effet, un Cheval de Troie pourrait divulguer de I'information confidentielle tout
en respectant les régles MAC. Par exemple. considérons un systéme composé de
deux niveaux de sécurité qui partagent une ressource d’entreposage finie (e.g. un
disque dur). Il est alors possible de transmettre de 'information du haut niveau

vers le bas niveau de la fagon suivante :

Un Cheval de Troie (du haut niveau) rempli et vide alternativement
I'espace d’entreposage que nous supposons aussi de haut niveau. Au
méme moment, son complice du bas niveau essaye d’écrire sur ce méme
espace, en décodant chaque échec (c’est-a-dire disque plein) comme un

« 0 » et chaque écriture réussie comme un « 1 ».

Cet exemple de canal clandestin binaire permet la transmission d’information confi-
dentielles sans jamais enfreindre les régles d’accés MAC.

Nous sommes donc d’avis que I'élaboration d’une propriété de confidentialité
devrait prendre en compte les capacités qu’ont les usagers de bas niveau, plus spé-
cifiquement les intrus, & déduire certaines informations & l'aide de leurs propres
observations du systéme ou du protocole. Comme nous I'avons constaté plus haut,
la simple existence d’une corrélation entre des données confidentielles et un com-
portement observable par un intrus est propice & une divulgation d’information.
Cependant, certaines de ces corrélations sont a la fois inévitables et acceptables.
Par exemple, considérons un protocole cryptographique dans lequel un participant
envoie un message chiffré sur un canal public. Cette situation engendre une dé-
classification du message puisque que la simple observation du message chiffré sur
le canal public permet a 'intrus d’en déduire son existence, sans pour autant en
connaitre son contenu. Nous sommes d’avis qu’une propriété de confidentialité adé-
quate doit détecter tout flot d’information allant d’un niveau privé vers un niveau
public, & moins que cette déclassification soit accomplie par I’entremise d’un canal

spécialement congu a cet effet.



1.3.2 Authentification

Une deuxiéme famille d’attaques est composée des attaques sur les protocoles
d’authentification. Ces attaques prennent typiquement la forme d’une mascarade :
un intrus utilise les données obtenues lors d’une session du protocole ou inter-
ceptées sur les canaux publics afin de dérober I'identité d’un des participants du
protocole. Dans plusieurs cas, dont le protocole de Needham-Schroder, une attaque
est réalisable lorsqu'un premier participant initie le protocole avec un participant
malhonnéte — I'intrus — qui réutilise 'information transmise afin de lui extirper son
identité et ainsi persuader un autre participant qu’il discute avec le premier. Ces
attaques sont généralement détectables en observant le comportement du proto-
cole lorsque confronté & un environnement hostile. Lors d’un tel scénario, plusieurs
tentatives d’attaques sur le protocole sont initiées et toute attaque victorieuse est

rapportée.

1.3.3 Déni de service

La derniére décennie fut témoin de I'émergence des attaques de déni de service
(DoS), dont le but principal est de priver certains usagers d’accéder a une ressource
ou un service spécifique. Une telle attaque met habituellement en évidence les limi-
tations d’un certain participant. Plus spécifiquement, le attaques de DoS prennent
typiquement I'une des formes suivantes :

— un intrus inonde un réseau dans le but de bloquer le trafic réseau entre les

usagers légitimes:

— un intrus perturbe la connexion entre deux machines afin de priver I'accés a

un service;

— un intrus empéche un certain usager d’accéder a un service;

— un intrus perturbe directement le service offert par un systéme ou un usager.
Une utilisation illégitime des ressources peut également résulter en un DoS. Par
exemple, un intrus pourrait utiliser I'emplacement ftp d’un systéme public afin

d’y entreposer des copies piratées d'un logiciel commercial et ainsi consommer une



bonne quantité d’espace disque et créer un impact significatif sur le trafic réseau.
D’autre part, certaines attaques de déni de service permettent de perturber des
sites Internet sophistiqués a partir d'une quantité limité de ressources. Ainsi, un
intrus muni uniquement d'un vieux PC et d’un modem lent pourrait mettre hors
d’usage des machines ou des réseaux beaucoup plus puissants.

Ces derniéres années, plusieurs sites Internet — principalement & caractére com-
mercial — furent victimes d’attaques de DoS. Parmi celles-ci, on retrouve la célébre
attaque de SYN flooding Y sur le protocole TCP/IP. Depuis 1996, cette attaque
par épuisement de ressources fut perpétrée a plusieurs reprises par des intrus ayant
la capacité d’initier, avec un minimum d’effort, un grand nombre d’exécutions du
protocole avec un méme serveur. La possibilité d’utiliser le protocole TCP/IP afin
de provoquer ce DoS est partiellement due & la facilité de forger une fausse iden-
tité et, conséquemment. la difficulté pour la victime de reconnaitre un attaquant.
D’autres attaques de DoS furent recensées sur des sites Internet a caractére com-
mercial, dont Yahoo. Ebay et E*trade en février 2000, de méme que Microsoft en
janvier 2001. Deés 1999, une nouvelle forme encore plus dangereuse de DoS, appelée
déni de service distribué (DDoS), a fait son apparition causant sa part de pagaille.
Ces attaques utilisent plusieurs points d’un réseau opérant de concert dans le but
d’attaquer un réseau ou un site par 'entremise d'un protocole. Un épuisement de
ressources est créé simplement par une quantité accablante de demandes de bran-
chement. Le refoulement de ces demandes forgées, sans pour autant empécher le
trafic 1égitime, est une tache trés ardue puisque les DDoS sont perpétrés en inondant
la victime d’une grande quantité de trafic réseau provenant de différents emplace-
ments et contrdlée par un seul intrus. Quelques outils #4368 fyrent développés
pour 'analyse d’attaques de DDoS effectuées par des applications malicieuses spé-

cifiques, dont Trin00, TFNZK et Stacheldrahi.

1.3.4 Sécurité dans les protocoles de commerce électronique

En plus de la confidentialité et de 'authenticité, I’analyse de protocoles de com-

merce électronique nécessite la définition de propriétés de sécurité spécifiques telles
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Fanonymat, la non répudiation, la gdmntie de hwvraison et 'atomucité de l'argent
et des biens et services. L'anonymat des participants est une application parti-
culiére de la propriété de confidentialité qui exige que l'identité (nom, courriel,
adresse, emplacement, etc.) d’un certain participant a protocole demeure cachée
aux autres participants. Notons cependant que comparativement a la confidentia-
lité, 'anonymat est enfreinte seulement lorsqu’une identité est entiérement révélée ;
une connaissance partielle d’'un nom secret ou d’une adresse confidentielle est non

significative si on ne peut pas en déduire leur contenu.

1.3.5 Modélisation des attaques

Une approche intuitive pour découvrir des failles dans un protocole de sécurité
consiste & modéliser un intrus spécifique et a observer le comportement du pro-
tocole agissant en concurrence avec celui-ci. Par la suite, il suffit de chercher une
attaque menée i terme parmi tous les dénocuements possibles, et répéter au besoin
cette procédure avec d’autres processus ennemis. De toute évidence, cette approche
ne convient généralement pas a démontrer qu'un protocole n’admet aucune faille.
La complétude d'une telle méthode de validation requiert donc I'interaction du pro-
tocole avec un plus puissant attaquant, c’est-a-dire un processus ennemi capable
de reproduire toute attaque réalisable par un autre processus ennemi. Malgré le
fait que les techniques de modélisation et les algorithmes de vérification différent
énormément d’un auteur a I'autre, ce concept presque utopique de plus puissant at-
taquant est souvent approché par un seul intrus ayant la capacité de communiquer
et d’interagir avec le protocole selon les régles suivantes.

— Un intrus peut intercepter tout message envoyé sur un canal public et, par
conséquent, acquérir de nouvelles données qui lui permettront de construire
de nouveaux messages.

— Un intrus est un participant légitime, et a donc la capacité d’initier le proto-
cole avec tout autre participant ou, réciproquement, de recevoir des invita-
tions de la part des autres participants.

— Un intrus posséde certaines connaissances initiales incluant ses clés privées,
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toute clé publique accessible aux autres participants, et son propre ensemble

de nonces et de messages forgés.

1.4 Apercu de la thése

Dans cette thése, nous présentons une nouvelle méthode de validation pour les
protocoles de sécurité. Cette thése a pour but d’introduire les principales compo-
santes de cette méthode, soit la modélisation des protocoles, I’'élaboration de pro-
priétés de sécurités et le développement d’algorithmes permettant la vérification
de celles-ci. Bien que nous présentons plusieurs applications pertinentes de notre
méthode sur des protocoles connus, I'objectif premier de cette thése est d’établir
les bases théoriques qui ont déja permis le développement d’un outil de validation

automatique de protocoles de sécurité.

Spécification. La premiére phase de la conception d'une méthode de validation
de protocoles de sécurité consiste a déterminer un langage dans lequel nous pou-
vons exprimer a la fois le protocole et la propriété de sécurité que nous souhaitons
faire respecter. D’autre part, la vérification d’une propriété de sécurité nécessite
fréquemment que les appels de fonction effectués par les participants — tels le cryp-
tage/décryptage de données et la génération de nombres aléatoires — soient obser-
vables. Suivant cet objectif, nous introduisons au Chapitre 3 un nouveau modéle
de spécification basé sur une algébre de processus appelée Security Protocols Pro-
cess Algebra (SPPA). Cette algébre de processus introduit aussi la notion d’actions
de marquage dans le but d’étiqueter tout échange de messages entre les partici-
pants du protocole. Nous introduisons également une algébre de messages et une
logique décidable avec lesquelles nous pouvons exprimer des énoncés propres aux
protocoles cryptographiques. Au Chapitre 4, nous introduisons une méthode de
spécification symbolique capable de manipuler des valeurs symboliques telles les
nonces, les clés de session et les adresses forgées. L'idée principale derriére notre
approche consiste a assigner a chaque processus SPPA une formule décrivant les

valeurs symboliques transportées par sa sémantique. A chacun de ces processus
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symboliques, appelés processus contraints, correspond une sémantique opération-
nelle symbolique que nous démontrons finie (¢’est-a-dire un graphe de transitions
avec un nombre fini d’états). D’autre part, nous définissons une équivalence de
bisimulation pour les processus contraints qui s’avére étre une généralisation de
I'équivalence de bisimulation de Milner (pour les processus non symboliques) et

pour laquelle nous proposons une technique de preuve cohérente et compléte.

Validation. Le point central de cette thése est I'introduction d’une propriété
générique de sécurité appelée interférence admissible non déterministe par bisimu-
lation (BNAI). L’idée principale derriére BNAI est de permettre les flots d’infor-
mation entre différents niveaux de sécurité uniquement a travers un systéme de
déclassification (un systéme cryptographique par exemple). Au Chapitre 5, nous
donnons une caractérisation algébrique de cette propriété qui fournit un algorithme
de vérification basé sur une équivalence observationnelle. De plus, nous démontrons
que BNALI satisfait certaines propriétés qui mettent en évidence son caractére com-
positionnel. D’autre part, nous démontrons que BNAI n’est pas définissable dans

le p-calcul modal.

Applications. Des applications non triviales de BNAI pour la vérification de
propriétés de sécurité sont illustrées au Chapitre 6. Pour chacune de ces applica-
tions, des techniques de preuve cohérentes et complétes sont déduites de la carac-
térisation algébrique de BNAI Nous obtenons une propriété de confidentialité qui
exige qu'aucun intrus puisse discerner, de fagon inadmissible, le comportement nor-
mal du protocole du comportement du protocole dans lequel aucune information
confidentielle est échangée. Nous obtenons aussi une propriété d’authentification
qui vérifie qu’aucun intrus n’a la capacité d’interférer, de facon inadmissible, avec
les participants d'un protocole d’authentification. Finalement, nous présentons une
propriété de robustesse contre le déni de service qui s’assure que tout comportement
couteux (en terme de ressources CPU ou de ressources mémoire), et qui pourrait

causer un épuisement de ressources de la victime, est indépendant de toute tenta-



12

tive d’attaque. Des illustrations détaillées de ces propriétés sont données au Cha-
pitre 7 & l'aide du protocole Wide Mouthed Frog. du protocole d’authentification
de Woo-Lam. du protocole d’authentification a clé publique de Needham-Schréder,
du protocole de communication TCP/IP et du protocole de paiement électronique

sécuritaire 1KP.
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CHAPITRE 2

METHODES DE VALIDATION DE PROTOCOLES DE SECURITE

L’analyse d’'un protocole de sécurité commence nécessairement par une phase
de modélisation. La spécification rigoureuse d’un protocole de sécurité, dans un
objectif de vérification, est un probléme notoire %™ Dans ce chapitre, nous pré-
sentons un apercu des principaux modéles dédiés aux protocoles qui furent proposés
au cours des derniéres années. Plus spécifiquement, nous présentons deux grandes
familles de modéles, soit les modéles de traces et les modéles d’algébre de processus.
Les modéles de traces sont principalement caractérisés par une modélisation des
protocoles en termes de régles d’inférence, par opposition & une modélisation en
termes d’expressions algébriques et de graphes de transitions pour les algébres de
processus. Nous donnons ensuite un apercu des principales méthodes de vérification
qui ont servi d’inspiration & cette thése, dont les méthodes de flots d’'information,
les méthodes symboliques et les méthodes de détection du déni de service. Nous
débutons ce chapitre par un bref survol des principales familles d’approches mé-

thodologiques a la validation de protocoles.

2.1 Validation de protocoles

Plusieurs méthodes de validation de protocoles de sécurité, provenant d’une
vaste gamme d’approches, sont proposées dans la littérature. Parmi celles-ci, nous
pouvons identifier deux grandes familles : le theorem-proving et le model-checking.
Les méthodes de theorem-proving consistent a démontrer formellement que le proto-
cole ne posséde aucune faille. Ces méthodes offrent une certification incontestable
mais elles sont beaucoup plus difficiles & développer d'un point de vue algorith-
mique. Par conséquence, ces méthodes sont souvent moins propices 4 une analyse
automatisée et a la conception d’un outil de validation.

Les méthodes de model-checking nécessitent I'extraction d’'un modéle représen-
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tant le protocole et la validation, par ce modéle, de la spécification d’'une propriété
de sécurité. Une propriété de sécurité est typiquement spécifiée par une formule
provenant d'une logique compatible avec le modéle formel dans lequel le protocole
est spécifié. La logique temporelle CTL B, 1a logique TLA [, Ia logique modale
de Hennessy-Milner [ et le p-calcul [#7) sont fréquemment utilisés a cette fin.

Plus récemment, les méthodes d’ éguivalence-checking ont démontré leur effica-
cité pour la vérification de protocoles de sécurité 122132, Celles-ci se distinguent des
méthodes de model-checking principalement par leur formalisation des propriéiés de
sécurité ; elles sont formalisées en terme d’indistinguabilité entre les comportements
d’un protocole confronté a divers environnements hostiles. Ainsi, ces méthodes se
raménent généralement a vérifier si le comportement d’un protocole lors d'une at-
taque équivaut & un comportement correct. Si ’équivalence est satisfaite, alors nous
pouvons conclure que le protocole est sécuritaire. Par contre, si le protocole atta-
qué n’est pas équivalent au protocole sans intrus, alors nous pouvons conclure que
Iintrus peut influencer le déroulement du protocole. Evidement, toute méthode
d’ équivalence-checking nécessite un modéle de spécification pour les protocoles et
une relation d’équivalence entre ces spécifications afin qu’on puisse comparer leurs
comportements.

Les méthodes de validation par typage 1398 constituent une autre impor-
tante approche & la validation de protocoles. L'idée générale derriére ces méthodes
consiste & formaliser les environnements hostiles a4 I’'aide d’un systéme de typage
dans lequel les protocoles sont représentés par des environnements statiques et les
attaques par des types. Ces systémes de typage offrent des caractérisations algé-
briques du probléme de vérification de protocoles en termes d’ensembles finis de
régles de typage (régles d’inférence). La satisfaction d'une propriété de sécurité est

généralement une conséquence d’'un typage adéquat du protocole.



2.2 Modéles de traces

Les modéles de traces permettent une représentation des protocoles par une
suite des régles d’'inférence, correspondant aux différentes étapes du protocole. L’en-
semble des traces d’un tel modéle est généralement composé des messages que I'on
peut déduire a partir d’'une configuration initiale et d’applications successives de
ces régles d’inférence. Du coup, ces modéles de traces sont souvent restreints a des
méthodes de validation basées sur une analyse de l'atteignabilité de messages ou

d’états.

Modéle de Dolev-Yao. Dolev & Yao 37 ont proposé un modéle basé sur une
spécification des protocole cryptographiques en termes de régles de réécriture et
une spécification d’un intrus, appelé saboteur, qui posséde un controle total sur
le mécanisme d’échange de données utilisé par le protocole. Dans ce modéle, la
validation d’un protocole est accomplie en s’assurant que le saboteur ne soit jamais
en mesure de construire un message correspondant a une attaque. L'identification
de ce type de messages dépend évidemment de la propriété de sécurité que nous
voulons vérifier. Par exemple, pour la confidentialité, on doit s’assurer que le sabo-
teur ne peut en aucun cas produire un message secret. Pour I'authenticité, on doit
s'assurer que le saboteur ne peut pas provoquer une authentification non sollicitée.
Des algorithmes de vérification basés sur une analyse des traces du protocole sont
développés pour chacune de leurs formalisations de la sécurité.

Gréce a sa simplicité, le modéle de Dolev-Yao a inspiré plusieurs autres mé-
thodes d’analyse de protocoles cryptographiques. Entre autres, Amadio & Lu-
giez 19 ont introduit une méthode de validation dans laquelle les propriétés de
sécurité sont exprimées en terme de problémes classiques de la théorie de la ré-
écriture, dont le probléme d’atteignabilité. Le probléeme d’atteignabilité du contrile
dans le modéle de Dolev-Yao fut également étudié par Amadio & Charatonik [,
dans le cas ol les participants sont spécifiés en terme de processus récursifs avec

des noms générés dynamiquement. Les auteurs présentent une analyse ensembliste,
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qui s’avére a la fois conservatrice et décidable, d’une approximation du probléme
d’atteignabilité par 'entremise d’une sémantique opérationnelle linéaire.

Suivant une approche similaire a celle d’Amadio, Rusinowitch & Turuani 1% ont
étudiés la complexité du probléme de la sécurité des protocoles dans le cas ou il n’y
a qu’un nombre fini de sessions. Ils ont démontré que ce probléme est NP-complet
dans le modéle de Dolev-Yao dés qu’on suppose que la taille des messages n’est pas
bornée. De plus, ils offrent une borne linéaire sur la taille des messages nécessaires

au saboteur afin de construire une attaque qu’a partir d’'un nombre fini de sessions.

2.3 Algébres de processus

La validation d’une propriété de sécurité est un probléme qui va souvent au-dela
des problémes d’atteignabilité, d’oll la nécessité d’étendre les modéles de traces, et
tout particuliérement le modéle de Dolev-Yao. La vérification des propriétés de non
interférence, que nous aborderons a la prochaine section, est un bon exemple de
probléme non définissable en termes d’atteignabilité. D’autre part, dans le contexte
d’une méthode de model-checking, la vérification de propriétés de sécurité est ha-
bituellement accomplie par I'entremise d’un systéme de preuve. Ainsi, un bon lan-
gage de spécification doit posséder certaines caractérisations algébriques permet-
tant 1’élaboration de preuves récursives par rapport a ses structures. (Krishnan (67!
et van Glabbeek [197 jllustrent de nombreux avantages de la forme récursive des
structures syntaxiques des algébres de processus pour Panalyse de systémes infor-
matiques).

La théorie de la communication et de la concurrence, telle qu’exposée par Mil-
ner 81 prone I'utilisation d’algébres de processus pour la spécification de systémes
composés de plusieurs participants qui évoluent en concurrence et qui peuvent com-
muniquer entre eux. Plus précisément, un protocole de sécurité peut étre représenté
par un agglomérat de processus, chacun représentant un participant, qui ont la ca-
pacité de communiquer par rendez-vous afin d’échanger des messages. Ainsi, les

protocoles sont vus comme des systémes de transitions dans lesquels les états sont
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caractérisés par des affectations de variables et les transitions sont étiquetées par
des actions.

Etant donnée une algébre de processus, nous cherchons & établir une relation
d’équivalence entre les processus qui nous permet de déterminer quels processus de-
vraient étre considérés sémantiquement équivalents, ¢’est-a-dire devraient se com-
porter de fagon analogue. En outre, ces relations d’équivalence sont essentielles aux
méthodes d’ équivalence-checking. Parmi ces relation d’équivalences, nous comptons
I’ équivalence de traces qui établit une sémantique par rapport aux langages (traces)
des processus, et I’ équivalence de bisimulation qui établit une sémantique par rap-

port & leurs comportements.

2.3.1 CCS et CSP

Les algebres de processus Communication Concurrency System (CCS) Bl et
Commaunicating Sequential Processes (CSP) 1 sont, fondées sur la notion d’action
qui permet de modéliser les comportements possibles d'un processus, soit I'émission
et la réception d’un message. Elles furent initialement congues pour la spécification
de schémas de communication des composantes de systémes concurrents qui inter-
agissent par échange de messages. Elles conviennent donc trés bien a la description
et I'analyse des flots d’information dans un réseau, ainsi qu’a la spécification et la
validation de protocoles de sécurité. Leur syntaxe abstraite permet la spécification
de processus concurrents a partir d’opérateurs de séquentialité (a.P)!, de somme
non déterministe (P + Q), de produit paralléle (P || P), de restriction(P\L) et de
dissimulation (P/L)?. La sémantique opérationnelle d’un processus CCS ou CSP
s’'interpréte par un graphe de transitions, une extension de la notion d’automate
non déterministe dans laquelle nous permettons un nombre infini d’états et nous
omettons généralement le concept d’état final. Elle s’obtient d'un ensemble de régles
récursives qui décrit le comportement local de chaque opérateur.

L’algébre de processus CCS avec passage de paramétres (value-passing CCS)

Lo est une action.
2 un sous-ensemble d’actions.
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est une extension de CCS qui offre une formalisation plus précise de la communi-
cation entre les agents. Cette extension est obtenue en interprétant, au niveau de
la sémantique opérationnelle, un processus avec une variable libre par la famille
de tous les processus que I'on peut obtenir en replagant toute occurrence de la va-
riable libre par un message quelconque. Par exemple, la sémantique du processus a
préfixe d’entrée ¢(z).P correspond a la famille de processus {c(a).Pla/z]}aem. OU
M désigne Pensemble des messages pouvant étre envoyés sur le canal ¢ et Pla/z]
désigne le processus dans lequel la variable libre x est substituée par le message
a. De toute évidence, cette sémantique peut produire des graphes de transitions
infinis : celui correspondant au processus ¢(z).P ne sera pas a branchement fini dés
que 'ensemble M est infini. Ce probléme provoque donc des inconvénients majeurs
lors d’'une analyse indépendante des participants jouant un role de récepteur dans

un protocole de sécurité.

2.3.2 Modéle de Lowe

Lowe [™ utilise I'algébre de processus CSP afin de spécifier, individuellement,
chaque participant du protocole d’authentification a clé publique de Needham-
Schréder (voir Section 1.2.1). II définit aussi, toujours en terme de processus CSP,
un processus ennemi appelé intrus le plus général ou intrus le plus non détermi-
niste qui satisfait, grossiérement, les capacités exposées a la Section 1.3.5. Une
analyse du produit paralléle des processus CSP modélisant les participants et ce
processus ennemi a mené a la découverte de la faille d’authentification exposée
a la Section 1.2.1. L’authentification du participant sollicité (respectivement I’au-
thentification du participant qui initie le protocole) est validée en s’assurant que la
spécification du protocole combinée a celle de 'intrus est un raffinement, en terme
de traces, d’un autre processus CSP dans lequel toute authentification du parti-
cipant sollicité (resp. toute authentification du participant qui initie le protocole)
est précédée par une certaine action qui indique clairement 'intention du partici-
pant qui a initié le protocole (resp. 'intention du participant sollicité) pour cette

authentification.
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Plus récemment, Lowe et al. ont utilise CSP pour la modélisation formelle
et I'analyse des flots d’information dans les systémes & plusieurs niveaux de sécu-

rité [ les protocoles d’authentification 12 et les systémes de détection d’intrusion?

[o2]

2.3.3 Modeéle de Schneider

Schneider 1989 a développé un modéle dans lequel les propriétés de sécurité
sont définies & 'aide d’un intrus dont 'identité est connue. Son approche consiste
modeéliser le protocole et I'intrus par des processus CSP distincts. Dans ce modéle,
le processus ennemi est capable d’altérer le déroulement du protocole via certains
canaux non accessibles aux autres participants et un ensemble de connaissances
constitué de tout message qu’il peut construire & partir de ses propres clés privées
et nonces, ainsi qu’a partir des messages interceptés sur les canaux publics. Cette
approche lui permet de considérer diverses tactiques d’attaque, ce qui augmente
Iefficacité de sa méthode d’analyse de protocoles par model-checking. Schneider

illustre sa méthode a l'aide d’une propriété de confidentialité des messages :
tout envoie d'un message secret qui aboutit dans les mains de Iintrus
lui était initialement destiné;

et d’une propriété d’ authentification de message :
I'ensemble d’événements K authentifie Pensemble L si toute occurrence
d'un message provenant de L est précédée d’au moins un message pro-

venant de K.

2.3.4 m-calcul

Le m-calcul est une extension de CCS, introduite par Milner, Parrow & Wal-

ker 18 pour la spécification de processus mobiles concurrents. Plus précisément,

cette algebre de processus permet la modélisation de processus réseaux munis d’un

3 Intrusion Detection System (IDS).
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mécanisme de communication dynamique. Par exemple, le 7-calcul permet la spé-
cification de réseaux nécessitant une gestion dynamique de liens ou de canaux, tel
un réseau local dans lequel les usagers doivent effectuer une demande auprés de
Padministrateur pour I'obtention d'un canal dynamique ou d’une permission afin
d’accéder a une certaine application critique (e.g. une imprimante). Le m-calcul est
essentiellemnent fondé sur la notion de nom. Les noms sont utilisés pour désigner
a la fois les messages et les canaux, et peuvent étre cachés et créés dynamique-
ment. Ainsi, la syntaxe abstraite du w-calcul permet le passage de noms par les
canaux publics, en plus de contenir un opérateur de restriction de portée (vnP) et
un opérateur de copie (1P).

La littérature contient plusieurs sémantiques pour le 7m-calcul et les processus
mobiles. Par exemple, Ferrari et al. BU introduisent un environnement de vérifica-
tion pour le m-calcul & Vaide d’automates. Amadio & Meyssonnier [!1l ont étudié
la décidabilité du probléme d’atteignabilité de contréle pour différents fragments
du 7w-calcul. Ceux-ci démontrent que la combinaison de la génération dynamique
de noms avec la mobilité des noms ou le contréle non borné, méne a4 un fragment
indécidable. D’autre part, ces mémes auteurs démontrent que la génération dyna-
mique de noms combinée au contexte d’un récipiendaire unique et d’un nombre
borné d’entrées, correspond & un fragment décidable du w-calcul.

Hennessy & Riely 159 ont proposé un systéme de typage pour une extension
asynchrone du 7-calcul. Une propriété de controle d’accés est formalisée a I'aide
d’un théoréme de sécurité par typage.

Plus récemment, Kremer & Ryan %% ont utilisé des techniques de vérification
basées sur le m-calcul pour analyser un protocole de vote électronique (FOO 92).
Ils démontrent que ce protocole satisfait des politiques d’équité, d’éligibilité et
de confidentialité qui sont formalisées en terme de propriétés d’atteignabilité et

d’équivalence par observation.
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2.3.5 Spi calcul

Le spi calcul est une extension du m-calcul introduite par Abadi & Gordon [l
et spécialement congue pour la spécification et 'analyse de protocoles cryptogra-
phiques. Sa syntaxe est composée d'un opérateur d’extraction de couple
(let (x,y) =m in P), d'un opérateur de décryptage (case m of {z}; in P)
et d’un opérateur d’ énumération d’entiers (case m of 0: P succ(z) : Q). Abadi [
a aussi développé des principes et des régles de typage pour le spi calcul utiles
pour la vérification de propriétés de sécurité pour les protocoles cryptographiques.
Ces régles « garantissent » qu’'un protocole ne divulguera pas ses données secrétes

lorsque son typage est correct.

Equivalence de test et bisimulation cadrée. Dans le contexte du spi calcul,
Abadi & Gordon P! ont défini une notion d’éguivalence de test qui permet de vé-
rifier si deux processus se comportent de fagon identique lorsqu’ils sont confrontés
aux mémes environnements hostiles. Cependant, cette formalisation est obscurcie
par la présence d'un quantificateur universel qui parcourt I’'ensemble des processus
observant. Ce probléme peut étre contourné en considérant la relation de bisimula-
tion cadrée (frame bisimulation) qui peut étre utiliste comme méthode de preuve
cohérente, mais malheureusement pas compléte, pour la vérification de I'équiva-
lence de test. Abadi & Gordon [% ont introduit une technique de preuve générale
pour l'analyse de protocoles cryptographiques qui est basée sur une spécification
dans le spi calcul et sur une validation par 'entremise de ’équivalence de test. En
outre, un protocole est démontré sécuritaire s’il est équivalent par test & un autre

protocole spécialement construit pour se comporter correctement.

Equivalence de May-testing. A l'aide d'une algébre de processus similaire au
spi calcul, Boreale, De Nicola & Pugliese 2] améliorent la technique de preuve
présentée par Abadi & Gordon en substituant I'équivalence de test par une équiva-
lence de may-testing. Boreale et al. démontrent que cette derniére est équivalente

a I'équivalence de traces entre les processus vus dans leur environnement respec-
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tif. L’équivalence de traces peut donc servir de méthode de preuve cohérente et
compléte pour I'équivalence de may-testing, ce qui nous permet de contourner les
difficultés présentées par le quantificateur universel qui parcourt I'ensemble des

environnements hostiles.

Bisimulation barbelée. En plus de leur équivalence de may-testing, Boreale,
De Nicola & Pugliese !} introduisent une seconde relation d’équivalence sur les
processus du spi calcul, appelée équivalence barbelée (barbed equivalence). Celle-ci
est munie d’'une méthode de preuve cohérente, mais pas compléte, qui consiste a
établir une bisimulation entre les processus comparés par rapport a leur environne-
ment respectif (c’est-a-dire leur assignation de valeurs pour leurs variables locales).
Cette bisimulation est ensuite vérifiée par des techniques de preuves appelées tech-
niques up-to. Boreale et al. utilisent leur méthode de preuve dans le contexte de
la validation de protocoles cryptographiques a l'aide de quelques propriétés de sé-
curité formalisées en terme d’équivalence de may-testing et d’équivalence barbelée.

Par exemple, ils définissent la confidentialité comme suit :

Un protocole préserve la confidentialité du message m si, pour tous mes-
sages 1, et mo, les processus obtenus en substituant toute occurrence

de m par, respectivement, m; et ms, sont barbelées équivalents.

2.3.6 Calcul ambiant

Dans le but de modéliser les calculs mobiles, Cardelli & Gordon 29 ont introduit
le calcul ambiant. Cette algébre de processus est fondée sur une seule structure qui
englobe les agents mobiles, les environnements dans lesquels les agents interagissent
et la mobilité de ces environnements. La notion d’environnement ( ambient) repré-
sente les composantes communes aux systémes distribués telles les messages, les
canaux, les noeuds et le code mobile. Les environnements peuvent également étre
utilisés pour la spécification des dispositifs a calcul mobile, dans lesquels des envi-
ronnements de calcul sont déplacés. Le calcul ambiant est obtenu d’une extension

de la syntaxe du 7-calcul et est basé sur deux catégories syntaxiques : les processus
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et les capacités. Ces derniéres, qui sont composées des capacités d’entrer dans un
nom, de sortir d'un nom et d’ouvrir un nom, servent & la modélisation des actions
effectuées par les processus. De plus, le calcul ambiant permet la définition d’un
processus en tant qu’environnement (ambient), noté par n[P], ou n est un nom et
P est un processus évoluant a I'intérieur de 'environnement.

Cardelli, Ghelli & Gordon ?®! ont récemment introduit un systéme de typage
pour le calcul ambiant dans le but de modéliser diverses propriétés de sécurité. Cette
approche permet la spécification de propriétés de communication et de mobilité par

un partitionnement des environnements en ensembles disjoints, appelés groupes.

2.4 Meéthodes de flots d’information

L’'un des principaux enjeux de l'analyse de systémes informatique consiste a
s’assurer qu’aucun programme ne puisse divulguer des informations confidentielles
4 un tiers partie, que ce soit de fagon malicieuse ou par inadvertance. L’analyse des
flots d’information aborde ce probléme a I’aide de caractérisations précisant lorsque
que les flots d'information d’un programme sont sécuritaires, ¢’est-a-dire lorsque
qu’il n’y a aucun flot d’information d’un haut niveau vers un niveau inférieur. La
plupart des modéles citées plus haut ne détectent pas les attaques perpétrées par
un Cheval de Troie et qui divulguent des données confidentielles & travers un canal
clandestin. La détection de ce genre de faille requiert habituellement une analyse
minutieuse des flots d’information du protocole ou du systéme.

Le modéle de Bell-LaPadula ') fut I'un des premiers modéles développés pour
Ianalyse de flots d’information dans les systémes & plusieurs niveaux de sécurité.
Ce modéle formalise, entre autres, la manipulation d’objets dans le contexte de ces
systémes & architecture complexe. Sutherland [%%1%! 3 proposé un modéle similaire
qui permet une analyse de la sécurité des flots d’information basée sur une propriété
appelée non déductibilité. Par la suite, McLean (7% a développé une théorie destinée
a la formalisation des réseaux de partage de données et basée sur une modélisation

de la sécurité en terme de flots de données.



24

De son coté, Fine 1 a proposé une méthode pour construire des relations
d’équivalence propices a 'analyse des flots d’information d’un systéme. Cette mé-
thode a comme avantage de s’appliquer directement lors des phases de conception
et de développement d’un systéme, plutot qu’aprés. Fine Y propose aussi une
technique pour la spécification de propriétés de flots d'information qui combine la
logique temporelle d’actions (temporal logic of action) de Lamport [ et 1a théorie

de la composition (composition theory) d’Abadi & Lamport.

2.4.1 Non interférence

Le concept de non interférence 1°2 nous procure une famille de propriétés de
flots d’information qui permettent la détection de canaux clandestins dans les sys-
témes a architecture a plusieurs niveaux. Intuitivement, la non interférence s’assure
qu’un certain groupe d’actions K ne cause pas d’interférence sur un second groupe
d’actions L. Cette interférence prend la forme d’'une dépendance causale entre une
action provenant de L et une action provenant de K. Par exemple, I'interprétation
de la non interférence dans le contexte de la confidentialité consiste a vérifier si
certaines actions privées causent de l'interférence sur des actions publiques. Cette
interprétation nous assure que toute action observée par un participant public est
indépendante des actions qui pourraient divulguer de I'information confidentielle.
Ainsi, cette propriété de confidentialité nous permet de détecter tout canal clan-
destin sur lequel le contenu confidentiel d’une action peut étre transmis vers un
participant de niveau public (e.g. un intrus). Dans le contexte des protocoles d’au-
thentification, la non-interférence permet d’identifier si un intrus est capable de

perturber le déroulement du protocole en interagissant avec certains participants.

Non interférence forte non déterministe. Focardi & Gorrieri ont développé
un modéle pour I'analyse de protocoles cryptographiques qui est basé sur I'algébre
de processus Crypographic Security Process Algebra (CSPA ou CryptoSPA). Cette
algébre de processus permet une spécification formelle des manipulations crypto-

graphiques par l'entremise d’un opérateur de déductions b e, sur les messages.



Intuitivement, le processus [{(a; ... ay) Fregle ] P; @ désigne un processus qui tente
de déduire une information z du tuplet de messages {(a; ... a,) par Iapplication de
la régle b1 Si le processus réussi sa déduction, alors il évolue selon le processus P
sinon il évolue selon le processus Q. Focardi & Gorrieri [°! ont introduit la propriété
de non interférence forte non déterministe (SNNI) qui formalise la confidentialité
dans des systémes & plusieurs niveaux de sécurité. Cette propriété est accompagnée
d’une caractérisation algébrique, communément nommeée théoréme de déroulement
(unwinding theorem), basée sur une équivalence de traces (entre des processus CCS

ou CSPA) et qui peut étre utilisée comme algorithme de vérification.

Non déductibilité par composition. Focardi & Martinelli [46-4%5% ont intro-
duit les propriétés de non déductibilité par composition (NDC) et de non déductibi-
lité par composition généralisée (GNDC) qui interdisent tout échange d’information
allant des participants de haut niveau vers ceux de bas niveau. Cependant. la forma-
lisation de la propriété GNDC contient une quantification universelle qui parcourt
I'ensemble des environnements hostiles (modélisés par des processus CSPA), ce qui
la rend trés difficile & vérifier. Afin de contrer ce probléme, Focardi & Martinelli
proposent un critére général permettant de vérifier la propriété de GNDC avec un
seul processus ennemi (c’est-a-dire un seul environnement hostile) suffisamment
puissant. Ce critére peut ainsi servir de condition suffisante dans le cadre d'une
caractérisation statique de leur famille de propriétés. Ils donnent une spécification
de ce « plus puissant intrus » 4 I'aide d'un processus CSPA infini qui s’avére étre
un supremum pour la relation de pré-ordre de traces définie sur tous les processus
ennemis CSPA. La propriété de non déductibilité obtenue a I'aide de ce processus
ennemi peut étre utilisée pour définir des propriétés de sécurité relatives aux pro-
tocoles, dont I'authentification de message, la non répudiation des participants a
une transaction et I'accord mutuel ( agreement).

Bugliese, Ceccato & Rossi [#7) ont développé une technique de preuve, basée sur
le concept de non interférence et l'algébre de processus CSPA, pour Ianalyse de

propriétés de préservation (safety) et de vivacité (liveness) dans le contexte des
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protocoles cryptographiques. Leur approche profite d'une caractérisation séman-
tique des comportements d'un processus en présence d’'un intrus en terme dun
systéeme de transitions étiqueté sensible aux contextes. Leur approche est égale-
ment basée sur une notion d’équivalence de comportement entre ces systémes de
transitions.

Bien que la non interférence fut principalement formalisée dans des algébres de
processus élémentaires telles CCS, CSP et CSPA, Hennessy & Riely [5%59 offrent
une rare formalisation dans le contexte du m-calcul. Celle-ci est accompagnée d’une
caractérisation sémantique obtenue a l'aide des relations d’équivalence de may-

testing et de must-testing (définies pour les processus du 7-calcul).

2.4.2 Analyse des flots d’information intransitifs

Un désavantage de la non interférence provient du fait qu’exiger I'absence de
tout flot d'information déclassifiant est souvent trop drastique pour la spécifica-
tion de propriétés de sécurité telle la confidentialité. En effet, dans plusieurs cas
pratiques, certaines divulgations sont tout simplement inévitables. Afin d’illustrer
cette affirmation, considérons un exemple classique qui consiste en un systéme com-
posé de trois niveaux de sécurité (privé, public et déclassification) quiintégre
un protocole cryptographique. Un tel systéme est présumé confidentiel lorsqu’il sa-
tisfait la non interférence entre toute action de niveau privé, contenant soit un
message secret m ou une clé privée k, et les actions de niveau public (que l'on
suppose observables par un intrus). Cette vérification de la non interférence doit
cependant exclure toute interférence provenant d'une action de niveau privé qui
fut préalablement déclassifiée par I'entremise d’un systéme cryptographique. Dans
cet exemple, le cryptage de données crée une dépendance causale entre le couple de
données secrétes (m, k) et la donnée déclassifiée (message chiffré) {m},. En effet,
toute variation dans m ou k est reflétée par {m};. c’est-a-dire toute modification
aux valeurs m ou k sera invariablement détectée par un intrus ayant accés au mes-
sage chiffré {m},. Par contre, cette corrélation est clairement admissible lorsque

le mécanisme cryptographique utilisé est suffisamment digne de confiance. Nous
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sommes donc & la recherche d’une notion de sécurité qui prend en considération de
tels flots d’'information admissibles, tout en détectant ceux qui sont inadmissibles.

Afin de répondre & ce besoin, Goguen & Meseguer 1°253 ont introduit la pro-
prieté de non interférence conditionnelle (CNI). L’idée derriére cette propriété
consiste & interdire toute interférence du niveau privé sur le niveau public, &
moins que celle-ci se produise sur un canal contrélé (e.g. un canal de déclassi-
fication). Ce concept de canal de contréle fut ensuite développé par Rushby (%%
qui a introduit le concept de non interférence intransitive. Ce concept provient
d’un modéle basé sur une relation d’interférence, notée par ~-, entre les niveaux
de sécurité qui détermine quels niveaux peuvent interférer entre eux. La forma-
lisation des canaux de contrdle dans ce modéle fait en sorte que cette relation
d’interférence n’est pas transitive : on peut avoir privé ~» déclassification et
déclassification ~~ public, mais privé » public.

Plusieurs formalisations de la non interférence intransitive furent introduites
dans la littérature 594 Ces propriétés de flot d’information admettent des ca-
ractérisations algébriques locales qui utilisent des notions comme 1'observabilité de
Boudol 1%, En général, ces caractérisations algébriques stipulent que peu importe
I'environnement hostile, aucun changement de comportement du processus (sys-
téme ou protocole) causé par un certain niveau de sécurité est observable par les
niveaux inférieurs, a moins que celui-ci fut préalablement déclassifié (via un ni-
veau de déclassiﬁcation approprié). Pinsky [°) a proposé un algorithme qui permet
de construire une équivalence minimale et & partir de laquelle des conditions de
déroulement sont déduites afin de spécifier une politique de déclassification. Nous
sommes d’avis que cet algorithme de Pinsky peut étre vu comme un algorithme

qui construit une certaine bisimulation.

Interférence admissible. Mullins [#3 a proposé une formalisation de la non
interférence intransitive selon laquelle tout processus P’ dérivé du processus P, et
n’exécutant aucune action de déclassification, doit satisfaire une méme propriété

de non interférence. Si nous reformulons cette définition dans le contexte de SNNI
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comme propriété de non interférence, nous obtenons la propriété d’interférence
admissible non déterministe (AI) 33, Cette propriété admet une caractérisation

algébrique (théoréme de déroulement) basée sur une équivalence de traces.

Déclassification robuste. Zdancewic & Myers ' ont introduit un modéle for-
mel pour I'analyse des flots d’information pour les systémes qui admettent des
divulgations d’information intentionnelles. De méme, leur modéle comporte une
caractérisation de I'information pouvant étre divulguée sans compromettre la confi-
dentialité du systéme. Ces divulgations admissibles de I'information, initiées par des
déclassifications, sont ensuite formalisées & partir une propriété de déclassification

robuste :

un systéme est robuste lorsque aucun intrus n’est capable d’exploiter

les canaux de déclassification afin d’obtenir des données confidentielles.

Zdancewic & Myers démontrent que tout systéme satisfaisant des propriétés simi-
laires & la non interférence est nécessairement robuste. Des méthodes de vérification
par systéme de typage pour la propriété de déclassification robuste furent dévelop-

pées par Zdancewic, Myers & Sabelfeld (85111

2.5 Meéthodes symboliques

Le développement de sémantiques opérationnelles symboliques est souvent un
prérequis a la conception d’outils d’analyse automatisée capables de raisonner sur
des graphes infinis, sur lesquels les méthodes traditionnelles sont généralement
vouées a l'échec. Par exemple, comme nous l'avons constaté plus haut, I'utilisa-
tion d’une algébre de processus avec passage de paramétres lorsque le domaine des
messages est infini méne a des graphes de transitions qui ne sont pas & branchement
fini, et dans ce cas I’équivalence de bisimulation n’est pas décidable. Une solution
élégante & ce probléme est proposée par Hennessy & Lin 7), qui définissent une
notion de bisimulation symbolique. Cette relation de bisimulation symbolique est

basée sur une sémantique symbolique qui permet d’exprimer des processus CCS
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avec passage de paramétres en terme de graphes de transitions symboliques finis
(¢’est-a-dire ayant un nombre fini d’états et de transitions). L'idée fondamentale
derriére le modéle de Hennessy-Lin consiste a assigner a chaque action (transi-
tion) une formule décrivant les valeurs symboliques (représentées par des variables
libres) présentes dans l'action. A partir de ce modéle symbolique, les auteurs in-
troduisent deux généralisations de I'équivalence de bisimulation forte de Milner,
appelées bisimulation a priori (early bisimulation) et bisimulation & posteriori (late
bisimulation).

Rathke °! a étudié I'utilisation des sémantiques opérationnelles symboliques
pour les langages de processus avec passage de paramétres. En utilisant des tech-
niques fondées sur la bisimulation barbelée, il développe de nouvelles notions sé-
mantiques d’équivalence forte et d’équivalence faible. Rathke propose ensuite un
modéle cohérent, basé sur un concept de graphe symbolique, permettant la vérifi-
cation de formules du p-calcul modal.

A partir d'une algébre de processus similaire au spi calcul, Boreale 20 introduit
une sémantique opérationnelle symbolique fondée sur des techniques d’unification.
Boreale propose ensuite une méthode d’analyse de traces qui s’applique directe-
ment sur son modéle symbolique. Toujours dans un modéle basé sur le spi calcul,
Fiore & Abadi % ont proposé un algorithme de décision pour la vérification de
connaissances. Leur modéle est également muni d’une procédure symbolique pour

Fanalyse des connaissances déductibles par un intrus.

2.6 Formalisation du déni de service

Malgré le grand nombre de méthodes proposées dans la littérature pour 'analyse
de protocoles de sécurité, la majorité sont essentiellement consacrées a la validation
de propriétés de confidentialité et d’authenticité. Jusqu'a tout récemment, trés peu
d’attention fut accordée a la validation contre les attaques de DoS. Cette incapacité
d’établir une définition formelle pour le DoS a fait en sorte que ce type d’attaque

est devenu une préoccupation grandissante pour les concepteurs de protocoles.
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2.6.1 Modéele de Yu-Gligor

Yu & Gligor "% ont proposé une spécification formelle et une méthode de
vérification pour la prévention des DoS. En utilisant une logique temporelle, ils
introduisent des propriétés d’équité, de simultanéité et de « temps-d’attente-fini »,
dans le contexte d’un modéle général d’allocation de ressources. Yu & Gligor af-
firment que la formalisation du DoS peut étre vu comme un probléme de vivacité

(liveness) :

certains usagers empéchent d’autres usagers de progresser dans le sys-

téme pour une durée arbitrairement longue;

et un probléme de préservation (safety) :
certains usagers provoquent la réception de services incorrects a d’autres
usagers.

Millen [#% a étendu le modéle d’allocation de ressources de Yu-Gligor en y in-
tégrant une composante de temps. Le modeéle de Millen permet une formalisation
de propriétés de nature probabilistes pour contrer les DoS, dont une propriété de
temps maximal d’attente. Cuppens & Saurel [*%] ont proposé une approche similaire
qui utilise une propriété d’accessibilité formalisée dans une logique temporelle et
une logique déontique. Ces approches développées autour du modéle de Yu-Gligor
sont essenticllement fondées sur la propriété de controle d’acceés appelée accord de
l'usager (user agreement). Cependant, cette propriété de sécurité n’offre aucune
protection contre les attaques de DoS perpétrées avant 'authentification mutuelle
des participants, comme c’est le cas pour P'attaque SYN flooding %Y et les at-
taques de DoS distribué en général. Dans de telles attaques sur des protocoles qui
établissent des canaux de communication authentifiés, I'identité de Fintrus n’est
habituellement pas connue puisque la procédure d’authentification n’a pas encore

été complétée.
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2.6.2 Modéle de Meadows

Meadows (78 a proposé un modéle basé sur les cotits pour I'analyse de la vul-
nérabilité des protocoles face au DoS. Son approche s’inspire d’une technique de
conception de protocoles pour les rendre plus résistants face aux attaques de DoS
qui consiste & utiliser une suite de mécanismes d’authentification suivant un ordre
croissant de cout ressource (pour chacun des participants) et un ordre croissant de
sécurité. Avec cette approche, un intrus doit étre disposé a4 compléter les premiéres
phases du protocole avant qu’il soit en mesure de provoquer d’importantes dépenses
de ressources dans des phases avancées du protocole. Plus spécifiquement, la for-
malisation de Meadows est basée sur le modéle de protocole échec-arrét (fail-stop
protocol) de Gong-Syverson 4. Elle formalise ce modéle a I'aide d'un ensemble
d’exigences de spécification qui utilisent la relation de pré-ordre causal de Lamport
(causally-precedes relation). Cette relation détermine comment les événements se
précédent causalement entre eux dans le protocole. L’idée principale derriére ce

modéle est fondée sur le principe suivant :

bien qu’un intrus soit capable de feinter certaines étapes d’authentifica-
tion (faible) du protocole, pour y arriver il devra dépenser une quantité
d’effort qui n’en vaut pas la peine.

Notons que Youtil formel NRL protocol analyzer " fut utilisé pour illustrer ce

modéle.

2.7 Mise en contexte de la thése

Pour cette thése, nous avons opté pour un modéle basé sur une algébre de pro-
cessus plutét qu'un modéle de traces. Ce choix fut motivé par I'impossibilité de
définir certaines propriétés de flots d’information en termes d’un probléme d’at-
teignabilité. En fait, nous démontrons au Chapitre 5 que les propriétés de non
interférence ne sont pas définissables dans le p-calcul. Une méthode de validation
par équivalence-checking est donc de mise. D’autre part, nous utilisons une algébre

de processus qui est similaire & CCS plutoét qu’au w-calcul et au spi calcul. La
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possibilité de spécifier des processus mobiles est trés attrayante, mais la simplicité
de CCS, surtout du point de vue sémantique, fut la principale motivation de notre
choix. D’autre part, nous introduisons une formalisation du déni de service qui est
plus prés du modéle de Meadows que de celui de Yu-Gligor. Plus précisément, nous
interprétons le modéle de Meadows dans le contexte des algébres de processus et

des propriétés de flots d’information.
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CHAPITRE 3

SPECIFICATION DE PROTOCOLES DE SECURITE

Notre premier pas en vue vers la conception d’une méthode de validation de
protocoles de sécurité consiste a élaborer un langage dans lequel nous pouvouns for-
maliser a la fois les protocoles et les politiques de sécurité que nous souhaitons faire
respecter. Comme nous 'avons constaté dans le Chapitre 2, les algébres de proces-
sus s'avérent d’excellentes candidates pour cette tache. Cette approche algébrique
4 la modélisation des protocoles de sécurité, adoptée par un nombre grandissant
d’auteurs et de chercheurs depuis quelques années, consiste a spécifier le protocole
comme un regroupement de processus concurrents, chacun représentant un parti-
cipant au protocole, ayant la capacité de communiquer entre eux afin d’échanger
des données. Cependant, la majorité des modéles proposées dans la littérature ne
permettent pas une analyse explicite des manipulations cryptographiques.

Dans le spi calcul et 'algébre de processus CSPA, le cryptage et le décryptage
de messages sont effectuées par entremise d’'un systéme d’inférence indépendant
de la syntaxe, et, par conséquent, ces manipulations ne sont pas directement ob-
servables de la sémantique des processus. Par exemple, un participant qui envoie
un message m chiffré a 'aide d’une clé k est modélisé par une simple action de sor-
tie « ¢({m}y) » lorsque le message chiffré {m}, peut étre inféré des connaissances
courantes du participant. Or, les propriétés de flots d'information, tout particulié-
rement la non interférence et I'interférence admissible. nécessitent habituellement
que ces manipulations soient observables. Suivant cet objectif, nous introduisons
lalgébre de processus Security Protocols Process Algebra (SPPA). Dans SPPA, les
appels de fonction effectués par les participants sont directement modélisés comme
des actions. Ainsi, un participant qui envoie un message m chiffré 4 Paide d’une
clé k est modélisé par une action « enc;y » (ou id désigne l'identificateur du parti-
cipant), suivie par une action de sortie « Gz({m}x) ». Ici, I'action « enc;y » signifie

que le participant associé a l'identificateur id a chiffré un certain message.



34

Une premiére version de SPPA fut présentée dans 1%, La syntaxe abstraite de
SPPA fut légérement modifiée de facon a 'uniformiser par rapport a la syntaxe du
spi calcul. Ainsi, dans ce chapitre, nous reprenons I'exposé de SPPA tel que présenté
dans ™. D’autre part, I'idée d’introduire un opérateur d’observation directement
dans la syntaxe de I'algébre de processus, de méme que le concept de bisimulation

par observation, fut initialement proposée dans 14

3.1 Spécification des messages

Dans cette section, nous présentons un langage de spécification pour les mes-
sages. Ce langage est essentiel 4 notre modéle afin d’établir une représentation

formelle des messages échangés lors de protocoles cryptographiques.

3.1.1 Algébre de messages

Nous considérons 'algébre de messages suivante qui est fondée sur des caté-
gories syntaxiques disjointes : identificateurs de participant, variables et nombres.
Nous désignons par Z,V et N les ensembles composés, respectivement. des identi-
ficateurs, des variables et des nombres. L’ensemble 7 des termes de notre algébre
de messages est construit selon la grammaire suivante :

t == n  (nombre) | id (identificateur) | x (variable)

I (t,t) (couple) | {t}: (cryptage) | [t]: (signature)

| h(t) (hachage).
Etant donné un terme ¢, nous désignons par fv(t) 'ensemble des variables présentes
dans t. Etant donné une variable x € fv(t), t[a/x] désigne le terme obtenu de ¢
en substituant chaque occurrence de la variable x par le terme a € term. Nous
utilisons la notation t[a;/z1]. .. [a,/z,] afin de désigner une suite de substitutions
(lorsqu’une méme variable est substituée plus d’une fois, c’est la substitution la

plus & gauche qui prévaut).

Définition 3.1. Un terme ¢ € 7 est un message s’il est clos, c’est-a-dire fv(t) = 0.

L’ensemble de tous les messages est noté par M.



Définition 3.2. Une évaluation est une application ¢ : V — M qui assigne a
chaque variable 2 un message o(z). Etant donné un terme t € 7, avec fv(t) =

{z1...., 2}, o(t) désigne le message t[o(z1)/x1] ... [o(zn)/xn].

Définition 3.3. Nous désignons par K le sous-ensemble de messages pouvant étre
utilisés comme clés de cryptage. Pour tout id € 7, 'ensemble K,y désigne le sous-
ensemble de K composé de toute clé initialement connue du participant correspon-

dant a d.

Notons que le contenu de l'ensemble K dépend largement du systéme cryp-
tographique utilisé par le protocole a 1'étude. Par exemple, dans le cas d'un al-
gorithme de cryptage symétrique par bloc (symmetric block-cypher), nous posons
K ={ke N ||kl =N} pour un certain N € IN. De fagon plus générale, nous
pouvons supposer que K =N U |J,,5,{#™(n) | n € N'}.? Cependant, afin de sim-
plifier notre présentation, nous supposerons pour cette thése que K = A, De plus,
de facon a modéliser le cryptage a clé publique, nous utilisons un opérateur idem-
potent [—]1 : K — K tel que k™! désigne la clé de décryptage privée correspondant
a la clé de cryptage publique k. ou vice versa. Pour le cryptage symétrique, nous
posons k™1 = k. La méthode de spécification présentée dans cette thése s’inspire du
modéle de Dolev-Yao : nous supposons des algorithmes de cryptage et de hachage
parfaits. De plus, nous supposons qu'une signature [a]; est effectuée d’abord par
un hachage de a, puis par un cryptage du résultat avec la clé publique k. Ainsi, le

terme [a]; désigne grossiérement le terme {h(a)}s.

3.1.2 Fonctions

Nous considérons un ensemble fini F de fonctions f : M™® — M. Si f est
une fonction d’arité n > 1, nous écrions f(zy,...,2,) avec xq,...,Z, € V et nous

désignons par dom(f) son domaine.? Par convention, nous écrivons f{a) = fail

11k| désigne la longueur (nombre de chiffres) du nombre k.
2h™(n) désigne h(...h(n)...) (m fois).
Spour un certain n > 0, ou n est arité de f.

tdom(f) C M™.
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lorsque a & dom(f). Les fonction d’arité n = 0 sont appelées fonction génératrice.
Elles sont essentielles pour la spécification de protocoles de sécurité nécessitant
des nonces, des clés fraiches ou des nombres aléatoires. Ce concept de fonction
génératrice est également fort utile pour la spécification d’intrus ayant la capacité de
créer des messages et des adresses forgés. Les fonctions génératrices sont considérées
comme des fonctions pouvant générer des valeurs symboliques sans aucune entrée.
Etant donnée une fonction génératrice new € F, nous écrivons new(—) et nous
désignons par im(new) son image.’

A titre d’exemple, voici certaines fonctions que nous utiliserons fréquemment

au cours de cette thése :

— pair(xy, z2) = (z1,22) avec dom(pair) = M x M:
- enc(z1,23) = {T2}ay avec domf(enc) = K x M;
— hash(z;) = h(x;) avec dom(hash) = M;

— sign(z, 22) = (o) avec dom(sign) = K x M;
— newMessage(—) avec im(newMessage) = M
— newNumber(—) avec im(newNumber) = N ;
— newld(—) avec im(newld) = T;

- newKey(—) avec im(newKey) = K.

Nous étendons la fonction de couplage a tout n-tuplet; ainsi nous considérons la

fonction pair(xy,...,Z,) = (1,...,Zn).

3.2 Security Protocol Process Algebra

Dans cette section, nous introduisons une algébre de processus appelée Security
Protocol Process Algebra (SPPA), qui est une extension de CCS avec passage de
paramétres spécialement adaptée a la modélisation de protocoles de sécurité. Notre
algébre de processus permet la spécification d’ appels locauz de fonctions et introduit
la notion d’actions de marquage. utilisées pour étiqueter les échanges de messages

entre les participants. Notons que I'objectif premier de cette portion de la thése

Sim(new) C M.
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S =0 (nul)
I ¢(t).S (sortie)
| ¢(x).S (entrée)
| letax= f(t)in S (appel de fonction)
| let (z,y)=tin S  (estraction de couple)
| casetof {z}y in S (décryptage)
| caset of [t"]y in S (vérification de signature)
| t=t]S (comparaison)
| S+ (somme)
| S|S (produit paralléle)

Fi1G. 3.1 — Syntaxe abstraite de SPPA.

consiste a établir un modéle générique basé sur une nouvelle algébre de processus
qui convient le plus possible 4 la méthode de vérification présentée dans cette thése,
et dans lequel il est possible d’interpréter plusieurs modéles déja proposés dans la

littérature.

3.2.1 Syntaxe de SPPA

D’abord, nous considérons un ensemble fini C de canoux publics. Les canaux
publics sont utilisés pour modéliser les échanges de messages entre les participants.
Il y a communément un canal pour chaque étape de 'exécution d’un protocole.
Nous pouvons supposer que les canaux publics sont typés, c¢’est-a-~dire a tout canal
public ¢ correspond un domaine dom(c) C M spécifiant quels messages peuvent
étre envoyés ou recus sur c¢. Pour les besoins de cette thése, nous supposons que
dom(c) = M pour tout ¢ € C.

Les agents de SPPA sont construits selon la syntaxe abstraite présentée a la Fi-
gure 3.1. Lorsque f est une fonction génératrice, nous écrivons let x = f(—) in S.
Nous considérons également, au besoin, une extension de 'opérateur d’extraction
de couple let (z1,...,2,) =t in S qui permet le traitement des n-tuplets de mes-

n
sages. Nous utilisons souvent la notation ZSZ» afin de représenter une somme

i=1
d’agents 57 + ...+ S,.
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Afin de prévenir d’éventuels conflits de nom au niveau des variables (par exemple,
lorsque nous considérons la somme ou le produit paralléle d’agents ayant les mémes
variables libres), nous ne permettons pas I'utilisation répétée d’'une méme variable

pour définir des agents. Nous devons ainsi renommer les variables au besoin.

Définition 3.4. Une variable x dans Pagent S est libre si elle n'est pas dans
la portée d'un opérateur d’entrée c(z), d’extraction de couple let (x,y) =1 in,
d’appel de fonction let z = f(t) in, ou de décryptage case {t'}; of {z}; in.
L’ensemble des variables libres de S est désigné par fv(.S).

Etant donnée une variable libre z € fv(S) et un terme t, nous considérons
l'opérateur de substitution S[t/x] qui remplace toute occurrence libre de = dans

Iagent .S par t.
Définition 3.5. Un agent S est clos si fv(S) = §.

Les agents clos sont utilisés pour spécifier les participants des protocoles de

sécurité.

Définition 3.6. Un participant SPPA est un couple (S,id) composé d’un agent
clos S et d’un identificateur id € 7.

La motivation derriére cette notation est d’établir un lien entre, d'une part un
agent S et ses sous-agents, et d’autre part leur unique propriétaire (participant),
via son identificateur id. Par abus de notation, nous utilisons souvent I’expression
A 4 la fois comme référence & 'entité (participant) qui participe au protocole et
comme référence au participant SPPA correspondant. Dans ce cas, nous posons
A = (S4,ida), ou S4 désigne I'agent initial de A, ¢’est-a-dire 'agent clos spécifiant
le comportement intégral du participant A dans le protocole. De plus, nous utilisons
fréquemment identificateur id4 en tant que message contenant 'adresse de A.
Afin d’alléger la présentation, nous adoptons la notation suivante : étant donnés
les participants SPPA A; = (S),id) et Ay = (S,,4d) (ils doivent avoir le méme

identificateur), nous écrivons
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0 a la place de  (0,id);

¢(t). Ay a la place de  (¢(¢).Sy,id);

c(x). Ay a la place de  (c(x).51,1d):

let x = f(t) in A; a la place de  (let z = f(t) in Sy,id);

let (z,y)=tin A; alaplacede (let (z,y) =1 in S,id);

case t of {z}y in A; ala place de (caset of {z}y in S;,id);
case t of [t"]y in A; alaplace de (caset of [t"]y in Sy, id);
[t =114, a la place de ([t = t']S1,id);

A+ Ay a la place de  (S; + S5, id) ;

A1]As a la place de  (57|So,id);

Cette nouvelle notation offre une correspondance directe entre un participant SPPA
A = (S,id) et son agent S. De plus, afin d’avoir facilement accés aux identificateurs,
nous désignons 'identificateur a I'intérieur du participant SPPA A par id .

Dans le but de modéliser des protocoles de sécurité, nous utilisons une approche
classique qui consiste a spécifier les participants d’un protocole en terme de pro-

cessus concurrents. Les processus SPPA sont construits comme suit :

P == A (participant) | A| P (protocole)
| P\L (restriction) | P/O (observation).

ol A est un participant SPPA, L est un ensemble et O est une application (ces
deux derniers éléments syntaxiques sont clarifiés aux Sections 3.2.3 et 3.2.4) Notons
que nous écrivons souvent P\ (LUL’) ala place de (P\ L)\ L. La communication

entre les participants est formalisée par I'opérateur ||.

Remarque 3.7. Afin de s’assurer que les processus SPPA conservent leur nature
finie, nous devons établir les restrictions syntaxiques suivantes (celles-ci sont sou-
vent appliquées sur d’autres algébres de processus pour des raisons similaires). Nous
ne permettons pas les définitions récursives de la forme P ::= P\ L, P := P, /O,
P ::= P|P, ou P := P, | P, telles que P apparait quelque part dans la définition
de P, ou de P». Ainsi, nous supposons que toute définition récursive d’un agent ou

d’un processus SPPA n’utilise jamais un opérateur de restriction, ni un opérateur
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d’observation, ni un opérateur de composition paralléle. ni un opérateur de pro-
tocole. De telles définitions récursives meénent souvent a des processus infinis. Par
exemple, les processus P ::= (c(x).P)\ L et P == P|P’ sont exclus, tandis que

les processus P ::=let z = f(t) in P et P == ¢(z).P + P’ sont conservés.

Exemple 3.8 (Spécification du protocole de Needham-Schréeder). Dans
cet exemple, nous offrons une spécification formelle, 4 I'aide de SPPA | du protocole
d’authentification & clé publique de Needham-Schroeder, dont la spécification Alice
et Bob est présentée a la Section 1.2.1. Ce protocole posséde deux participants, A
et B, qui sont respectivement spécifiés par les participants SPPA A = (S4,id4) et
B = (Sg,idg), ou id4 et idp sont les identificateurs respectifs des participants, et
les agents initiaux S4 et Sp sont définis comme suit :
Sy = Z let z; = newNumber(—) in let xy = pair(z;,id4) in

ide€T
let x3 = enc(kig, Z2) in let x4 = pair(ida,id, x3) in

Trid(T4). Coa,(x5). let (xg, x7,28) = T5 in
[z6 = id] [x7 = id4] case x5 of {zg}x, in
let (Z10,711) = %o in [x10 = x1] let z1p = auth(id) in
let x13 = enc(kig, x11) in let z14 = pair(ida, id,r13) in

T3id(14).0

Sp == Cuag(t1)- 1et (y2,¥s,¥4) = 1 in [ys = idp] case ys of {ys}r, in
let (ys,y7) = Y5 in [y7r = yo] let ys = newNumber(—) in
let yo = pair(ys, ys) in let yi0 = enc(kiq,,yo) in
let yj; = pair(idp, y2, y10) in
C2g, (W11)- 1et (Y13,%14,%15) = Y12 in
ca(Y12). [y14 = idB| [y13 = ya) case y15 of {Yi6}ry 1D

[yw = yg| 1let y17 = auth(yz) in O

ol cjq désigne le canal public utilisé pour envoyer le j®me message du protocole

au participant dont l'identificateur est ¢d. L’ensemble des canaux publics est donné
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par C = U {¢1id; C2id, C3ia}- Notons qu’en vue d’obtenir une spécification finie de

ideT
Fagent S4, nous devons supposer que l'ensemble 7 est fini, ce qui nous assure

que la somme ., .- correspond bien & une somme finie. D’autre part, cette spé-
cification utilise une fonction d’authentification auth définie par auth(id) = id
si id € Z, et telle que dom(auth) = Z. L’ensemble des fonctions est donné par
F = {newNumber, pair, enc, auth}.

Le protocole de Needham-Schréeder est donc spécifié par le processus SPPA

P ::= A || B dans lequel les participants A et B interagissent.

3.2.2 Actions

Les actions de SPPA sont définies comme suit :

a = Ggla) (sortie)

ciala) entrée)
split,, extraction)
fia appel de fonction)

decyy décryptage)

échec de fonction)
failde échec de décryptage)
£aille™ (échec de vérification de signature)

échec d’une comparaison )

(

(

(

(
signv,;  (vérification de signature)

(

(

(

faill, (

(

i
|
|
|
|
| failf,
|
I
l
l
|

6(a)

T (interne)

marquage )

ol a € M est un message. Par exemple, I’action d’appel de fonction enc;q, signifie
que le participant A a chiffré un certain message a avec une clé k (quelconque);
Paction de sortie G, ({a}x) signifie que le participant A a envoyé le message {a}x
sur canal public c: et I'action de décryptage dec,q, signifie que le participant A a
décrypté, avec succés, un certain message {a}yx. Notons que 'action interne 7 est

principalement utilisée pour exprimer des comportements non observables.
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Dans la plupart des algébres de processus avec passage de paramétres, la com-
munication est exprimée en remplacant des actions de sortie et d’entrée conjuguées
(¢(a) et c(a)) par action interne 7. Cependant, cette approche & la modélisation de
la communication cause une importante perte d’information au niveau du contenu
des valeurs échangées et des participants impliqués. Les actions de marquage sont
introduites dans le but d’établir une annotation sur la sémantique des processus
SPPA; ils n’apparaissent pas au niveau de la syntaxe des processus puisque qu’ils
ne sont pas considérées comme étant des préfixes, et leur sémantique particuliére
restreint leur occurrence de fagon & étiqueter les communications entre les partici-
pants. Une action de marquage est composé de trois parameétres : un identificateur,
un canal et un message. Intuitivement, I’occurrence d’'un marqueur de sortie %(a)
signifie que « le participant A a envoyé le message a sur le canal ¢ », et 'occurrence
d’un marqueur d’entrée &y, (a) signifie que « le participant A a regu le message a

sur le canal ¢ ».

Définition 3.9. L’ensemble de toutes les actions est désignée par Act. Pour tout
participant A, nous considérons I'ensemble Act, des actions exécutables seulement

par A, défini par :

Acty = {Ga,(a), cia,la), E;(a), i1,(a) € Act | c€ C et a € M}
U {fiay, failfy, | £ e F}
U {deciq,, signv,,,, failfs, £ailf¥™, faill }
Notons que nous utilisons C pour désigner a la fois ’ensemble des canaux publics
et I'ensemble des actions de sortie et d’entrée. Nous considérons aussi ’ensemble

des actions visibles défini par Vis = Act \ {7}.

3.2.3 Critére d’observation

Boudol ? a introduit une notion de critére d’observation permettant une for-
malisation de I'observation d’une suite d’actions dans le but d’établir une relation

d’équivalence entre les processus qui refléte le point de vue d'un observateur. Un
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tel critére d’observation sur I'ensemble Act des actions est donc déterminé par la

donnée d’un sous-ensemble L C Act d’actions observables.

Définition 3.10. Un critére d’observation est une application
O : Act* — p(Act*) ®

qui satisfait les conditions suivantes :
1. 7" € O(¢) 7 pour tout n > 0, et
O() si € € Oa)

2. O(ya) =
{H'ar™ | v € O(y) et n >0}  sinon.

Si e € O(a), alors nous disons que l'action « est observable selon le critére
d’observation . Dans ce cas, O(a) est composé de toutes les suites d’actions
correspondant & la méme observation o € Vis. En particulier, nous devons avoir
a € Oa). Dautre part, si ¢ € O(a), alors 'action o n’est pas observable se-
lon O. Dans ce cas, nous avons O(a) = O(e). Entre autres, nous avons toujours
O(1) = O(e). Dans la proposition suivante, nous énongons quelques propriétés fon-
damentales des critéres d’observation. Les preuves de ces propriétés se déduisent

facilement de la Définition 3.10.

Proposition 3.11. Soit O un critére d’observation et considérons la suite d’actions
Y=o ...0pn € Act” telle que € € O(ay,) pour j =1,...,m et € € Oa;) pour tout
i & {k1,... . km}
1. Si v € OF), alors v = thay, .. .tim=raqy 7™ pour certains entiers
lo, i, 1, > 0.

2. Nous avons O(y) = Olou, ... a,,).

L’observation d’une suite d’actions correspond donc a sa sous-suite d’actions

observables. Ainsi, étant donné un critére d’observation, la relation O(v) = O(v')

5o(F) désigne I'ensemble des parties de I’ensemble E.
e désigne la suite vide.
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entre les suites d’actions nous procure une relation d’équivalence sur Act* : deux
suites d’actions sont équivalentes dés qu’elles correspondent a la méme suite mini-

male d’actions visibles ay, ... ag,, -

Définition 3.12. Soit L C Vis un sous-ensemble d’actions visibles. Le critére

d’observation Oy, est défini comme suit :
1. Op(e) = (Act \ L)*, et
Or(7) sia € Act\ L

2. OL(’YOé) =
{(Yay" | v € Op(y) et v" € (Act\ L)*} sia €L

Seuls les comportements provenant de I’ensemble L sont observables par rap-
port au critére d’observation Op. En particulier, deux suites d’actions procurent
la méme observation par rapport au critére faible Oy, si leur contenu visible est
identique. Dans le contexte de I'analyse des protocoles de sécurité, nous sommes
tout particuliérement intéressés a la famille de critéres d’observation {O;q}igez, O
Oia = Oact ,ue lorsque id = id 4. Ainsi, le critére d’observation O,4,, noté simple-

ment par O 4, décrit les actions observables par le participant A.

Proposition 3.13. Soit L C Vis et soit v € Act*. Pour toules actions oy, a3 € L
telles que oy # s, st ay € Op(7y), alors aa & Op(7).

Démonstration. Cet énoncé est une conséquence directe du fait que la suite d’ac-

tions ayg, ...ayg, € Or(y), donnée par la Proposition 3.11, est unique. O

3.2.4 Sémantique de SPPA

La sémantique opérationnelle d'un processus SPPA est présentée aux Figures 3.2
et 3.3, ol a € M est un message, L. C Act est un sous-ensemble d’actions,
A, A’ B, B’ sont des participants SPPA et P, P', @, @ sont des processus SPPA.

La régle Sortie permet I'envoie de messages sur un canal public, tandis que
la régle Entrée doit considérer tous les messages possibles pouvant étre recus sur
un canal public. La régle Extraction permet 'extraction de couples, et s’étend de

facon naturelle a 'extraction de n-tuplets. La régle Fonction permet l'exécution
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TEWyd 4
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case {a}; of {z}; in A —— Ala/z]
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sqd
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case {a};s of {2z} in A —> 0O

signvldA
case [a) of [a]xy in A — A

k#k' _OU  a#d’
fail
case [a/];s of [a]y in A

signy
idy

FI1G. 3.2 — Sémantique opérationnelle des processus SPPA.
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F1G. 3.3 — Sémantique opérationnelle des processus SPPA.
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d’un appel de fonction par un participant. La régle Décryption permet le décryp-
tage des messages chiffrés et la régle Signature-Vérif permet la validation de
messages signés. Notons que la validation d'un message signé ne permet pas pour
autant de récupérer le message a Uintérieur car nous avons supposé qu’il est ha-
ché. Les régles Echec-Fonction, Echec-Décryption et Echec-Signature-Vérif
traitent les cas o, respectivement, une fonction est appelée sur un message hors de
son domaine. un décryptage est tenté avec une mauvaise clé, et une vérification de
signature échoue (soit & cause d’'une mauvaise clé, ou d'un message incorrect). La
régle Comparaison permet la vérification d’une égalité entre deux messages, tan-
dis que la régle Echec-Comparaison traiie les cas ou I’égalité n’est pas satisfaite.
Notons que toute action d’échec méne au processus nul 0. bien que nous pourrions
définir des processus spéciaux pour les différents types d’échec.

Les régles Somme et Paralléle permettent, respectivement, la formalisation de
la somme non déterministe et le produit paralléle de participants SPPA (ayant
le méme identificateur). Les régles Protocole et Synchronisation permettent la
formalisation de protocoles, ou l'opérateur || est similaire au produit paralléle entre
participants et dans lequel la communication entre les participants est accomplie (et
forcée) a I'aide des canaux publics. Lorsque deux processus P et ( communiquent,
ils entrent dans un état intermédiaire P#Q (un état « occupé ») qui ne peut pas étre
atteint autrement. Nous pouvons donc considérer P#Q) ) comme étant un processus
SPPA ayant une unique transition entrante P | Q %a®) P#(), et une unique
transition sortante P#Q) 6M) P || @'. Cette formalisation de la communication
nous assure, entre autres, que toute action de marquage de sortie est nécessairement
suivie d’une action de marquage d’entrée. Ainsi, I'état P#() n’est pas accessible
autrement.

La régle Restriction interpréte P\ L (ou L est un sous-ensemble d’actions)
comme P avec les actions dans L retirées. Finalement. la régle Observation inter-
préte I'observation d’un processus par rapport a un critére d’observation O, ot le
caleul P 1 P/, pour une suite d’actions v = apay ... o, € Act®, désigne la suite

finie de transitions P—%P,—% ... 25 P’ Ainsi, étant donné L C Vis, P/Oyp cor-
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respond & P avec les actions a Uextérieur de L ignorées (c’est-a-dire remplacées par
Iaction 7). Le concept de O-observation d’un processus vise & définir le processus

obtenu de son observation par rapport au critére d’observation O.

Définition 3.14. Le processus P’ est une dérivée du processus P s’il existe un

caleul P -5 P’ pour un certain vy € Act*. L’ensemble des dérivées de P est donné

par
D(P)={FP | 3eaa- P - P'}.

. s . .. . L. 5
Pour toute suite d’actions visibles v = a4 ... a,, € Vis*, nous écrivons P = P’

. 5 N .
dés que P - P’ avec o = 7oy 7% . rFn-10,, 7% pour certains ky, ..., k, > 0.

Remarque 3.15. L’aspect important apporté par les restriction syntaxiques impo-
sées 4 la Remarque 3.7 est de s’assurer que tout processus SPPA ne posséde qu'un
nombre fini de dérivées, & moins que celles-ci ne soient obtenues d’une application

des régles Entrée ou Générateur de la sémantique de SPPA.

Exemple 3.16. Considérons les participants SPPA A = (S4,ids) et B = (Sg,idp)

oll les agents initiaux S, et Sp sont définis par :
Spu= ¢(a).0 et Spu= c(x).0

avec a € M. La sémantique du processus P ::= A || B est illustrée a la Figure 3.4.

05, (a) i (@)

Al|Ba " A#B-“5 ", 0|0

FI1G. 3.4 — Sémantique du processus A || B.

Exemple 3.17. Considérons les sous-ensembles d’actions K,L C Vis tels que
L = {1,020} et K = LU {a}, ainsi que les critéres d’observation Ok et Or.

A la Figure 3.5, nous illustrons la sémantique d’un processus SPPA P et celles de
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processus observés P/Oy et P/Op. Notous que, dans la sémantique de ces deux
derniers processus, nous avons omis, pour chaque état, une transition étiquetée par

7 qui boucle.

P P { OK P { OL
2 e
Q T TN
Q, T o
@1/\1’[33 52' G j 3 ﬁzi 52 83, |Bs

F1G. 3.5 — Processus observés.

3.3 Relations d’équivalence sur les processus

La bisimulation offre une sémantique expressive pour les processus & partir

d’une équivalence par rapport & leurs comportements.

Définition 3.18 (Bisimulation). Soient P et @) des processus. Une bisimulation
entre P et @ est une relation R C D(P) x D(Q) telle que
- (PQ)eR;
— Pour toute action « € Act, si (P,Q1) € R et P -2, P,, alors il existe une
transition Q; —— @, telle que (P, Q;) € R
~ Pour toute action o € Act, si (P, Q) € R et Q; — @, alors il existe une
transition P, — P, telle que (P, Qs) € R.

Si une telle bisimulation entre P et () existe, alors on écrit P =~ ().

Un algorithme de complexité temporelle polynomiale (PTIME) pour vérifier
la bisimulation entre deux processus dotés d'une sémantique finie (c’est-a-dire un
graphe de transitions fini) est donné par Milner 18,

Si nous sommes seulement intéressés & comparer les comportements visibles des
processus, donc en omettant les occurrences de action 7, nous obtenons une exten-

sion de I’équivalence de bisimulation appelée bisimulation faible et notée par ~¢ipe.



La définition de cette relation s’obtient de celle de la bisimulation en remplacant
les transitions —— par ==. Afin de distinguer ces deux notions, nous appelons

souvent la bisimulation par bisimulation forte.

3.4 Bisimulation par observation

Le concept de O-bisimulation® formalise la notion d’indistinguabilité de com-

portement par rapport a un critére d’observation O.

Définition 3.19. Soient P et @ des processus, et soit O un critére d’observation.
Une O-bisimulation entre P et @ est une relation R C D(P) x D(Q) telle que
- (P,Q)€R,
— Pour toute action o € Act, si (P,Q1) € R et P25 P, alors il existe une
transition Q; —— Q,, avec a € O(7), telle que (P, Q;) € R.
— Pour toute action o € Act, si (P1,(Q1) € R et Q1——Q,, alors il existe une
transition P, —— Py, avec o € O(v), telle que (P, Q1) € R.

Dans ce cas, nous écrivons P ~¢ () et nous disons que P et Q) sont O-bisimilaires.

Nous pouvons facilement constater que la Oy;s-bisimulation correspond a la bi-
simulation faible. D’autre part, si nous remplacons dans la Définition 3.19 le critére
d’observation O par I’application identité O 4", alors nous obtenons le critére fort a
travers lequel toute suite d’actions est observable et, conséquemment, distinguable
I'une de l'autre. La O s-bisimulation correspond donc a la bisimulation forte. De
facon plus générale, nous avons la caractérisation suivante de la O-bisimulation en

terme de bisimulation.

Proposition 3.20. Soient P et Q des processus et soit O un critére d’observation.

Alors, P ~p Q si et seulement si P/O ~ Q/O.

Démonstration. D’abord, supposons que P ~p @ et soit B C D(P) x D(Q) une

relation qui témoigne de ce fait, c’est-a-dire qui satisfait les conditions exposées a la

8appelé O-congruence par Boudol 123,
9deéfinie par O a.:(ar) = a pour toute action o € Act.



Définition 3.19. Nous démontrons que la relation R’ = {(P'/0,Q'/O) | (P, Q') €
R} est une bisimulation entre P/O et Q/O, donc P/O ~ Q/O. Nous commengons
par constater que (P/0,Q/O) € R'. Ensuite, considérons (P,/0,Q,/0) € R’
(dott (P, Q;) € R) avec P,/O-5P,/O (la preuve pour le cas oit Q;/O—-Q,/O
est analogue). Or, par la régle Observation, il existe une suite d’actions v telle
que a € O(y) et P, P,. Mais, puisque (P1,Q1) € R, nous avons Q1—5Q» avec
(Py.Q2) € R, pour un certain (2. Ainsi, par la régle Observation, nous voyons
que Q1/0-5Q,/0, avec (Py/O,Q2/O) € R car (Py,Q.) € R.

Réciproquement, supposons que P/O ~ Q/O et soit R C D(P/0) x D(Q/0)
une relation qui témoigne de ce fait. Afin de montrer que P ~» @, nous utilisons la
relation R = {(P, Q") | (P'/O,Q’'/O) € R'}. D’abord, nous constatons facilement
que (P, Q) € R. Ensuite, considérons (P;,Q1) € R (d'oa (P/O,Q,/0) € R') avec
PSP, (la preuve pour le cas ou QlLQQ est analogue). Considérons l'action
B8 € O(a), c’est-a-dire

a sia€ Oa)
T sie€ Oa).

D’odt 8 € O(a). Alors, par la régle Observation, nous avons Pl/OLPQ/(’). Mais
puisque (P,/O,Q,/0) € R'. il exsite un certain Qs tel que Q]/OLQQ/O et
(P,/O,Q2/O) € R. D'ou, par la régle de Observation, il existe une suite d’ac-
tions v telle que 3 € O(v) et @1 ——Q. De plus, nous avons (Py,Q;) € R’ car
(P/O,Q2/0) € R, et O(a) = O(B) = O(v) par la Proposition 3.11. La relation

R est donc une O-bisimulation entre P et Q). O

La prochaine proposition affirme que la notion de (O-bisimulation faible cor-
respond a la O-bisimulation. Nous pouvons donc conclure que I'équivalence O-

bisimulation réduit la relation de bisimulation a celle de la bisimulation faible.

Proposition 3.21. Soient P et @ des processus et soit O un critére d’observation.

Alors, P ~0 Q si et seulement si P/O ~gipe Q/O. En particulier, nous avons

P/O~Q/O si et seulement si P/O ~gppe Q0.



Démonstration. 11 suffit de démontrer que toute bisimulation faible
P/O ~panie QO est nécessairement une bisimulation forte P/O ~ Q/O (la preuve
de I'énoncé réciproque est triviale). Soit R une bisimulation faible entre les pro-
cessus P/O et @/O. D’abord, nous remarquons que (P/O,Q/0O) € R. Ensuite,
considérons (P, /O, Q,/O) € R et supposons que P, /O - P;/O (la preuve pour
le cas ol Q;/O -2 Q,/O est analogue). Puisque R est une bisimulation faible, il
existe un calcul Q,/0 == Q,/O avec (P,/O,Q,/0) € R. D'oa Q,/0 iy Q2/0
pour certains n,m > 0. Par la régle Observation, il existe un calcul ¢ 15 Q,
avec 7"a1™ € O(%), donc o € O(7y). Ainsi, par la régle Observation, il y a une
transition Q;/0 —= Qo/O avec (P/O,Q2/O) € R. La relation R est donc une
bisimulation forte entre P/O et Q/O. a

Exemple 3.22. Considérons les processus P; et P, dont la sémantique est illus-
trée a la Figure 3.6. Considérons aussi l'ensemble d’actions L = {3, 52}. De la

Figure 3.6, nous pouvons déduire que les processus P, et P sont Op-bisimilaires.

P P

A

FiG. 3.6 — Illustration de la O-bisimulation.

3.5 Discussion

L’algébre de processus SPPA est une extension de CCS avec passage de pa-
ramétres spécialement congue pour la modélisation de protocoles de sécurité. Les
principaux avantages de cette nouvelle algébre de processus sont la modélisation,

a 'aide du concept d’appel de fonction, des manipulations cryptographiques effec-



tuées par les participants et une modélisation plus détaillée, a I'aide du concept
d’action de marquage, des communications entre les participants.

Au Chapitre 4, nous introduisons une extension symbolique de SPPA grace a
laquelle nous obtenons une meilleure formalisation des valeurs symboliques néces-
saires aux protocoles de sécurité, telles les nonces et les clés fraiches. En particulier,
cette extension devra intégrer une notion de bisimulation symbolique entre les pro-
cessus.

Au Chapitre 5, SPPA est utilisée dans le contexte d’une nouvelle méthode de
vérification basée sur I équivalence-checking. Nous introduisons une formalisation de
Pinterférence admissible basée sur la O-bisimulation. Ainsi, cette relation d’équiva-
lence et SPPA nous permettent d’établir une caractérisation algébrique pour cette
propriété de flots d’information, de méme que certaines propriétés de compositio-

nalité par rapport aux principaux opérateurs de SPPA.



CHAPITRE 4

MODELE DE SPECIFICATION SYMBOLIQUE

Comme nous 'avons remarqué précédemment, I'utilisation des processus avec
passage de paramétres combinée & des domaines de messages infinis engendre des
graphes de transitions qui ne sont pas a branchement fini, et sur lesquels I'équi-
valence de bisimulation n’est pas décidable. En effet, une telle sémantique opéra-
tionnelle doit prendre en considération tous les messages possibles (voir les régles
Entrée et Générateur de la figure 3.2). L’objectif principal de ce chapitre est
d’introduire une extension de SPPA dans laquelle les valeurs symboliques sont spé-
cifites selon une approche symbolique. Nous considérons un concept abstrait de
processus symbolique muni d'une sémantique opérationnelle symbolique capable
de manier des absractions de messages, c’est-a~dire des variables symboliques qui
n‘ont pas de valeurs spécifiques mais qui satisfont certaines contraintes. Une telle
extension symbolique de SPPA devra garantir une sémantique finie a tout pro-
cessus, méme si le processus posséde des valeurs symboliques qui parcourent des
domaines infinis. De plus, ce modéle nous permet d’analyser les effets sur les flots
d’information d’un protocole d’un intrus qui y introduit des messages forgés (vus
comme valeurs symboliques). En outre, comparativement aux algébres de proces-
sus qui utilisent un systéme d’inférence pour les manipulations cryptographiques,
comme CSPA (voir Section 2.4.1) et le spi calcul (voir Section 2.3.5), SPPA est plus
appropriée a 'analyse d’attaques restreintes basées sur une utilisation répétées de
messages forgés. En effet. nous constaterons au Chapitre 6 que la modélisation des
attaques en SPPA nous permet de restreindre les manipulations cryptographiques
qu’un intrus peut effectuer, donc lui imposer l'utilisation de messages aléatoires
simples (non cryptés). Ceci n’est pas possible dans un modéle basé sur un systéme
d’inférence qui doit prendre en considération tous les messages que l'intrus peut

générer.



(1]
(s ]

Notre modéle de spécification symbolique est basé sur un nouveau concept de
processus contraint. Un processus contraint correspond & un couple (P, ¢) composé
d’un processus SPPA P et d’une formule ¢ exprimant un énoncé sur les valeurs
symboliques présentes dans P. Le processus P peut donc contenir des variables
libres afin de représenter ces valeurs symboliques. De plus. la formule ¢ est tirée
d’une logique basée sur l'algébre de messages présentée 3 la Section 3.1. Le role
de cette formule dans le processus contraint consiste a lier les variables libres qui
apparaissent lors du déroulement du processus. Par exemple, & un processus qui
génére une clé fraiche et qui alloue une variable x pour conserver cette clé, nous lui
assignons la formule ¢ ::= K(z) qui affirme que la variable x correspond a une clé.
La sémantique opérationnelle d’un processus contraint est donc établie par rapport
au comportement de son processus soumis aux restrictions imposées par sa formule.
D’ou, un processus dont la définition lui permet d’exécuter une action afin d’évoluer
vers un autre processus pourra s’exécuter seulement si cette transition satisfait la
formule imposée a ce point. Intuitivement, la formule a l'intérieur d’'un processus
contraint désigne l’ensemble des messages qui peuvent remplacer les variables libres
du processus ; cet ensemble de toutes les valeurs possibles évolu en méme temps que
le processus, par I'ajout de nouvelles variables libres ou de restrictions sur celles
qui sont déja présentes.

Bien que ce chapitre vise I'élaboration d’un modéle similaire & celui de Hennessy-
Lin (voir Section 2.5), nous utilisons le concept de processus contraint dans lequel la
description des valeurs symboliques est située dans les états plutét que sur les tran-
sitions. En fait, les graphes de transitions symboliques correspondant aux processus
contraints s’obtiennent des graphes de transitions de Hennessy-Lin en parcourant
tous les chemins possibles. De plus, notre approche, comparativement a celle de
Hennessy-Lin, bénéficie d’une logique de messages expressive et dans laquelle nous
pouvons définir des énoncés cryptographiques. D’autre part, nous sommes d’avis
que le concept de processus contraint est plus pratique pour 'analyse de protocole
de sécurité que les graphes de transitions symbolique de Hennessy-Lin. En effet, un

processus contraint nous offre un apercu rapide des valeurs symboliques présentes



a un certain état d'un protocole, ce qui nous épargne la tache de parcourir tous les

chemins menant a cet état.

Notons que le contenu de ce chapitre fut présenté dans (7%,

4.1 Logique pour les messages

Nous considérons une logique dont les termes atomiques sont ceux de notre

algébre de messages (voir Section 3.1) et qui posséde les prédicats suivants :
P = M(t) (prédicat de messages) | N(t) (prédicat de nombres)
| Z(t) (prédicat d’identificateurs) | K(t) (prédicat de clés).
Les formules de notre logique sont construites comme suit :

¢ == 0 (fauz) | 1 (vrai)
| t==1t (équation de termes) | P (prédicat)
| ong | 3

L’ensemble des variables libres de la formule ¢ est désigné par fv(¢). Etant donnée

une formule ¢ et une variable z € fv(¢), ¢[t/x] désigne la formule obtenue de ¢ en

conjonction,) | 3 ¢ (quantificateur existentiel).

substituant chaque occurrence libre de la variable x par le terme t € 7.
Définition 4.1. La formule ¢ est dite close si fv(¢) = 0.

La satisfaction d’une formule close ¢, notée par |= ¢, est définie inductivement

de la facon suivante :

- a ==10b siet seulement si les messages a et b sont syntaxiquement

identiques, ¢’ est-a-dire

- E n==n pour tout n € N,

— k= id == id pour tout id € Z,

- [ (a1,a2) == (b1,b) sietseulementsi | ( )
= {az}e, == {b2}s, si et seulement si | (a1 == b;)
E as)e, == [b2)s, sietseulementsi k= (a1 ==b) A (ag == bo), et
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- | h(a) == h(b) si et seulement si = a==1b;
— = M(a) siet seulement si a € M;
- N(a) sietseulementsi a€N;
- E Z{(a) si et seulement si  a €7

= K(a) si et seulement si  a € K;

E ¢N¢  sietseulementsi = ¢ et | ¢
- e si et seulement si  |= ¢[a/x] pour un certain a € M.

Nous supposons que les prédicats A, Z et K sont décidables!.

Définition 4.2. Soit ¢ une formule telle que fv(¢) = {z,,...,2,}. Etant donnée
une évaluation g : V — M, o(¢) désigne la formule close ¢o(x1)/x1] ... [o(xn)/xn)]-

La satisfaction de la formule ¢ par I'évaluation p, notée par o |= ¢, est définie

comme suit :

0 ¢ sietseulement si = o(¢)

Définition 4.3. Les formules ¢ et ¢’ sont équivalentes — noté par ¢ < ¢ — si

0k ¢ sietseulementsi g ¢

pour toute évaluation p.?

Exemple 4.4. Considérons la formule
¢ = Jg, Tz, (== (z1,22) N K(z1) N M(22))

avec fv(¢) = {z} . Cette formule affirme que la variable z correspond & un couple
composé d’une clé et d’'un message. Donc, si I’évaluation p; est telle que g;(z) =
(k,a), avec k € K et a € M, alors nous pouvons constater que g; |= ¢. Cependant,

si nous considérons une évaluation go telle que gs(z) = (a,a), alors gy £ ¢ a

1En outre, ils ne sont jamais satisfaits par un message non atomique (rappelons que nous avons
supposé plus haut que K = N). Par exemple, = Z(h(a)) et = N ({a}) pour tout a,b € M.

2En particulier, une formule ¢ est équivalente & 0 — noté par ¢ < 0 — si g [ ¢ pour toute
évaluation p.



moins que ¢ € K. D’autre part, si nous considérons une évaluation o3 telle que

02(x) = {a}y, alors g5 = ¢.

Lemme 4.5. Toute équation t == t' (avec t,t' € T ) est équivalente & une conjonc-

tion finie d’équations irréductibles x == t" (avec z € V et t" € T ).

Démonstration. Ce résultat se déduit directement de la définition inductive de la

satisfaction |= (a == b) donnée plus haut. O

4.1.1 Formules caractéristiques

A T'aide de notre logique, nous pouvons assigner a chaque fonction f € F une
formule qui caractérise son domaine. De fagon analogue, nous assignons a toute

fonction génératrice new € F une formule qui caractérise son image.

Définition 4.6. 1. La formule caractéristique de la fonction f(z,....xy) est
donnée par la formule ¢y, . 5, (ou simplement ¢f) telle que fv(¢s) =

{z1,..., 25} et

= ¢rlai/x]. .. [an/T,] siet seulement si (a1, ..., a,) € dom(f).

2. La formule caractéristique de la fonction génératrice new(—) est donnée par

la formule @e,, telle que fv(@pey) = {2} et
E Gnewla/z] siet seulement si  a € im(new).

Nous écrivons souvent ¢s(as,...,a,) & la place de ¢¢lai/x1]...[a,/z,), ou
simplement ¢s(a) avec a = (ai,...,a,). Dans le cas d'une fonction génératrice

new € F, nous écrivons ¢ne,(a) a la place de ¢peyfa/z].

4.1.2 Décidabilité

L’objectif de cette section est de démontrer que la logique définie ci-dessus

est décidable. Ce résultat provient du fait qu’elle est restreinte aux opérateurs de



conjonction et de quantification existentielle. Afin de prouver ce résultat, nous de-
vons d’abord montrer que toute formule close est équivalente a une formule (close)
sans quantificateur. Par conséquent, la décidabilité d’une formule se raméne a la
satisfaction d’un nombre fini de prédicats et d’équations, qui sont tous décidables

par hypothése.

Lemme 4.7. Toute formule close ¢ est équivalente & une formule de la forme

Foy oo Fuy, (D1A A D)
ot les sous-formules ¢; sont des prédicats ou des équations de la forme z == t,
avec T € {x1,...,xn} et tv(t) C {z1,..., T, }.
Démonstration. Etant donnée une formule close ¢. nous pouvons toujours supposer
qu’elle est donnée dans sa forme normale® :
du= T .o T, (1A ADp)?

ou les ¢; sont sans quantificateur.® Par le lemme 4.5, toute sous-formule ¢, est
équivalente a une conjonction finie d’équations irréductibles x == ¢. O

Considérons maintenant la famille £ de formules closes définie par :

E = {34 .. .3z, (1N ANdm) | & :=K(t) ou ¢; :=T(t) ou ¢; == N (1)

ou ¢; 1= M(t) ou ¢, ::=z =={, pour certains n,m € IN,

pour un certain & € {z1,...,Z,} et pour un certain t tel que

tv(ty C {z1,...,2o} } U {0,1}

Ainsi, par le Lemme 4.7, toute formule close ¢ est équivalente a une formule ¢’ € £.

3Nous supposons que les formules 1 et 0 coincident avec leur forme normale.

4Si ¢ = (I, é1) A ¢2 alors ¢ est équivalente & la formule 3, (¢1y/z] A ¢2), olt y est une
variable qui n’apparait pas dans ¢,.

Do ¢; = K(t), I(t), N(t) ou M(t), ou ¢; := t ==t avec v(t),v(t") C {z1,..., 20}
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Lemme 4.8. Toute formule ¢ € & est équivalente a une formule sans quantificateur

Y e&.

Démonstration. Nous procédons par induction sur le nombre de quantificateurs
existentiels dans ¢. Le cas ol ¢ ne posséde aucun quantificateur est trivial.

Soit n > 0 et supposons que toute formule dans £ ayant au plus n quantificateurs
existentiels est équivalente & une certaine formule sans quantificateur appartenant

a la famille £. Considérons une formule quelconque ¢ € £, avec
¢ = 3,34, ... 3s, (DIAGIA LA D).

D’abord, nous pouvons supposer qu’aucune sous-formule ¢; est un prédicat M(t);

sinon, nous pouvons les enlever et obtenir une formule équivalente. Supposons

maintenant que ¢; == 2« == t pour un certain 7 (disons i = 1). Sit = x
(c’est-a-dire ¢ = x == z), alors nous pouvons retirer ¢; et supposer que
¢ == FpTIp, ... 3y, (P2 A ... A @) Sinon, si x apparait dans t, alors ¢ est équiva-

lente & 0, donc j= ¢, car nous n’acceptons pas les messages infinis. Réciproquement,

si x n'apparait pas dans ¢, alors nous constatons que ¢ est équivalente a la formule

3y o o (Galt/2] Ao A Gmlt/a])

qui posséde un quantificateur de moins que ¢. Or, puisque cette formule appartient
a £, la preuve se compléte en utilisant '’hypothése d’induction qui nous assure
Pexistence d’'une formule sans quantificateur ¢’ € £ équivalente a la formule ci-
dessus, donc équivalente & ¢. De plus, nous voyons que toute équation présente
dans ¢ peut étre retirée de cette fagon : toute sous-formule ¢; = ¢ == ¢’ est
remplacée par une conjonction d’équations équivalentes z} == t; A ... Az} == t;,
et il suffit de répéter la démarche présentée ci-dessus pour chaque variable :c;
Supposons maintenant que la formule ¢ ne posséde aucune équation parmi
ses sous-formules ¢,. Supposons aussi que la variable x apparait seulement dans

les sous-formules ¢1,...,¢; (pour k& < m). Puisque les formules 3,7(¢), 3N (t)



61

et 3,./K(¢) sont satisfaites seulement lorsque ¢ = x, aucune autre des variables
quantifiées z1, . .., ,, ne peut apparaitre dans les prédicats ¢y, ..., ¢ (sinon j£ ¢).

Par conséquent, la formule ¢ est équivalente a

(P Ao ANGE) A Ty Ty, ( Pk AN A D)

ou ¢; € {K(z),Z(x),N(x)} (pour 1 <i < k). D'ou, il suffit de trouver une formule
sans quantificateur ¢ équivalente & 3,(¢; A ... A @) ; nous prenons ¢ =1 si

- ¢, ==Z(x), pour tout i = 1,...,k; ou

— ¢ :=N(z) ou ¢; := K(x), pour tout i = 1,..., k.
Sinon, nous prenons v ::= 0. Finalement, il est facile de voir que la formule résul-
tante (soit 0, soit 3, ... 3z, (Pr+1/A...Adm)) appartient 4 la famille £ et posséde au
plus n quantificateurs. Ainsi, par 'hypothése d’induction, nous pouvons lui trouver

une formule équivalente ¢’ € £, qui est également équivalente a ¢. O

Pour le lemme suivant, rappelons que toute formule dans £ est close, y compris

les formules sans quantificateur.
Lemme 4.9. Toute formule sans quantificateur dans £ est décidable.

Démonstration. Soit ¢ € £ une formule sans quantificateur. Si ¢ :=1 ou ¢ ::= 0,
alors I'énoncé est trivial. Supposons maintenant que ¢ 1= ¢1A...A¢, avec n > 1.
Puisque ¢ est close, toute sous-formule ¢; est soit un prédicat Z(a), soit K(a), soit
N (a) (tout prédicat M(a) est immeédiatement remplacé par 1), soit une équation
a == da/, pour certains messages a,a’ € M. Puisque les prédicats N, T et K
sont décidables et que toute équation a == o’ est aussi décidable par applications
successives d'un nombre fini de réductions, nous pouvons conclure que toute sous-
formule ¢; peut étre individuellement remplacée soit par 1, soit par 0. Une telle

conjonction de 1 et de 0 est clairement décidable. O
Théoréme 4.10. Toute formule de notre logique est décidable.

Démonstration. Etant donnée une formule close ¢, par le Lemme 4.7, nous pouvons

trouver une formule (close) équivalente ¢’ € £. Par le Lemme 4.8, ¢’ est a son
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tour équivalente 4 une formule sans quantificateur ¢ € £, qui est décidable par le

Lemme 4.9. D’ou ¢ est décidable. 0

4.2 Relations entre sous-ensembles finis de variables

Dans cette section. nous introduisons la notion de relation finie entre variables,
que nous utiliserons afin de lier les variables libres des processus contraints dans le

but de les comparer.

Considérons la famille SR de toutes les relations entre des sous-ensembles finis

de variables, d’ou
R ={R | RC Vi xV, pour certains sous-ensembles finis V;,V, C Vi.
Définition 4.11. La relation R € fR est une relation pleine entre V; et Vs si
Veew, Jyev, (2, y) € R et Vyey,Tzev, (z,y) € R.

Dans le cas ou V; = @ ou V, = 0, alors nous considérons la relation vide R =

comme étant pleine.

La prochaine définition introduit des opérateurs de substitution sur les relations

de R.

Définition 4.12. Soient x,y € V des variables et soit R € R une relation.

1. Nous désignons par R[z] la relation de R définie par
Rlz] ={(z",y) e R |z # z ety #z}.
2. Nous désignons par R[(z,y)] la relation de R définie par

R[(z,y)] = R[z]ly] U {(z.y)}.
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3. Etant donnée une évaluation o, nous désignons par oz /y] I'évaluation définie
par
o(x) siz=y

o(z) sinon.

olz/yl(z) =

La relation R[(z,y)] s’obtient donc de R en retirant. tout d’abord, toute oc-

currence de z et y, puis en ajoutant le couple (z,y).

Définition 4.13. L’évaluation o est cohérente avec la relation R € R si

-

o(x) = o(y) dés que (z,y) € R.

Le prochain lemme nous permet d’afirmer que cet opérateur de substitution
pour les évaluations respecte la relation de cohérence par rapport & une relation,
modulo une substitution analogue sur cette derniére. Sa preuve se déduit facilement

des Définitions 4.12 et 4.13.

Lemme 4.14. Si l’évaluation g est cohérente avec la relation R[z|, alors plx/y] est

cohérente avec R[(z,y)].

4.2.1 Relation d’équivalence sur les évaluations

Dans cette section, nous introduisons une relation d’équivalence sur les évalua-
tions qui est définie de facon a satisfaire trois conditions essentielles a la méthode
de preuve présentée i la Section 4.7. Tout d’abord, elle ne doit posséder qu’un
nombre fini de classes d’équivalences. Elle doit aussi étre préservée par rapport
a l'opérateur de substitution de variables (Définition 4.12). Finalement, elle doit
respecter les propriétés de cohérence par rapport a toute relation (Définition 4.13).

Pour les besoins de cette section, nous considérons les deux ensembles de for-

mules suivants :

Ey={¢1,....,0m} et Ey={¥1,..., 0w}
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avec

U ) = {ar,.om} et | @) = {vn-oum}

1<j<m 1<j<m’

Définition 4.15. Les évaluations ¢ et ¢’ sont équivalentes par rapport aux en-
sembles Ey et Ey, noté par p =g, g, ¢, si

— pourtout 1 <i<m, pl=¢; sietseulementsi o F ¢;

— pourtout 1 <i<m/. o1 sietseulementsi o ;i

- pour tout z,2" € {z1,..., 2o} U{y1, ..., Yn'},
o(z) = 0(z') siet seulement si o'(2) = ¢'(2).

La classe d’équivalence d’une évaluation p par rapport aux ensembles F; et Fs est
définie par :

[[g]}ElE2 - {gl ’ Q, EE1E2 Q}

Lemme 4.16. Le nombre de classes d’équivalence [o] g, E, est fini, ¢’est-a-dire len-

semble {[0) g5, | 0 est une évaluation} est fini.

Démonstration. Etant donnés les ensembles finis F; et E, donnés plus haut, nous

pouvons constater que

- il y a au plus 2™ classes d’équivalence pour la relation :
Vicicm ©F ¢ sietseulement si o = ¢;;

— il y a au plus 2™ classes d’équivalence pour la relation :
Vici<mr 0 F Wi siet seulement si o E 9y

— il y a au plus 2(n+n")? (lasses d’équivalence pour la relation :

Vvl man}Uly,}  0(2) = 0(2') siet seulement si o'(z) = ¢/(2').



Ainsi, le nombre de classes d’équivalence [o]g, g, est borné par 2m+m'+(+n)?

Lemme 4.17. Soient ¢ et ¢’ des évaluations telles que 9 =g, g, 0.

1. Pour toute relation R C {xy,...,Tn} X {y1, ...,y }5, 0 est cohérente avec R

si et seulement si o' est cohérente avec R.

2. Pour toutes variables z,y € {x1,...,zn} U{y1,. ., Y},
olz/yl =pm, dlz/y] et oly/z] =5 E, Oly/7].

Les preuves des énoncés du Lemme 4.17 s’obtiennent directement de la définition

de la relation d’équivalence =g, g,.

4.3 Processus contraints

Dans cette section, nous introduisons un modéle qui peut s’appliquer a plu-
sieurs algébres de processus. En effet, étant donnée une algébre de processus, nous
commencons par étendre sa syntaxe de fagon a formaliser la génération de valeurs
symboliques en terme d’un opérateur de séquentialité (e.g. les appels de fonction
«let z = new(—) in P »). Les messages ainsi générés sont ensuite typés a l'aide
d’une formule caractéristique @n.,. Par souci de simplicité, nous exposons notre

modéle symbolique dans le contexte de 1'algébre de processus SPPA.

Hypothéses. Pour les besoins du modéle symbolique présenté dans ce chapitre,
nous établissons les restrictions suivantes sur les processus SPPA. Tout d’abord,
nous ne prenons pas en considération les actions d’échec de SPPA (failf,, failde
f ailsiifnv et fail,). Ces actions sont exclues puisqu’elles nécessitent I'introduction
d’un opérateur de négation dans notre logique, et nous ne savons pas si cet ajout
préserve la décidabilité de la logique. Pour ces mémes raisons, nous devons res-

treindre opérateur de restriction P\ L aux sous-ensembles d’actions L tels que

Sqvec R € R.
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son complément Act \ L est définissable dans notre logique, c’est-a-dire il existe

une formule ¢ telle que fv(¢l) = fv(a) et, pour toute évaluation p,
o= ¢L siet seulement si o(a) € L.
Définition 4.18. Les formules ¢ et ¢ sont V-équivalentes, noté par ¢ & @', si
& ¢ sietseulementsi ¢ < ¢ et fv(¢) = fv(¢).
La classe d’équivalence d’une formule ¢ sous la relation & est définie par
[olv = {¢' | 6 & ¢}

Définition 4.19. Le processus contraint obtenu du processus P et de la formule

¢, noté par (P, ¢), est défini par 'ensemble
(P, ¢) ={(P,¢) | ¢ & ¢'}.

La formule ¢ dans le processus contraint a pour but de restreindre les variables
apparaissant dans P. Ainsi, si ¢ & ¢’ (c’est-a~dire les formules ¢ et ¢’ sont équi-
valentes et ont les mémes variables libres), alors les processus contraints (P, ¢) et
(P, ¢') sont considérés identiques car le processus P est soumis a des contraintes

équivalentes.

4.3.1 Spécification symbolique des protocoles

L’algébre de processus SPPA combinée au concept de processus contraint nous
procure un modéle trés expressif pour la spécification de protocoles sécurité. L'idée
principale derriére ce modéle consiste, tout d’abord, 4 obtenir des spécifications
de chaque participant du protocole en terme de processus contraints, a partir de
celles en terme de processus SPPA. Par exemple, un participant A est spécifié par

le processus contraint (A, ¢a), ou A = (Sa,id4) est un participant SPPA et
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¢4 est une formule caractérisant ses connaissances initiales (formalisées par des
variables libres dans I'agent initial S4). Notons que les connaissances initiales d’un
participant (e.g. ses clés privées et les clés publiques des autres participants) sont
communément spécifiées implicitement dans l'agent initial en tant que messages
m € M ou clés k € K. D'oll, un agent initial S, est habituellement clos’ et,
dans ce cas, nous avons ¢, = 1. Cependant, notre modeéle symbolique permet
une représentation de ces connaissances initiales en tant que valeurs symboliques
(c’est-a-dire des variables libres) dans I'agent initial. Par exemple, si fv(S4) = {z}
et x désigne, dans la définition de S4. une clé privée appartenant a A, alors nous
posons ¢4 = K(z).

Etant donnée une spécification de chaque participant d'un protocole, disons
(A, d4). (B, ¢p) et (S, ¢g), le protocole entier est alors spécifié par le processus
contraint (P, ¢p), avec P = A || B || S et ¢p ::= dpa A dpp A ds.

De facon analogue, un intrus qui tente d’attaquer le protocole est spécifié indé-
pendamment des autres participants. La spécification d’un intrus est donc donnée
par un processus contraint (F, ¢g), communément appelé processus ennemi, ol
E ::= (Sg,idg) est un participant SPPA, Sg désigne 'agent initial de E (c’est-a~
dire 'agent SPPA spécifiant 'attaque menée par l'intrus) et ¢g est une formule
qui caractérise les connaissances initiales de I'intrus (comme plus haut). A partir
de cette notation, la spécification du protocole P attaqué par le processus ennemi

E est simplement donnée par le processus contraint (Pg, ¢p,), avec Pg = P || E
et @pE o= ¢>P A ¢E

Exemple 4.20. Considérons le protocole & une étape suivant :
{nat
Message 1: A —=4F B

dans lequel le participant A génére d’abord un nonce frais n,4, puis envoie au
participant B ce nonce chiffré avec la clé publique de B (désignée par kg). Les

participants A et B sont respectivement spécifiés par les participants SPPA A =

Tc’est-a-dire fv(Sy4) = 0.
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(Sa,idy) et B = (Sg,idg), ou id, est l'identificateur de A, idp est l'identificateur

de B, et les agents initiaux S, et Sg sont définis comme suit :

Ss == let z; = newNumber(—) in let zy = enc(kp, 1) in ¢(z2).0

Sp u= c¢(y1). case y; of {y2}r, in 0 .
Le protocole est alors spécifié par le processus SPPA P = A || B, dans lequel
les participants A et B peuvent communiquer par Pentremise du canal public c.
Puisque les agents S4 et Sg sont clos. les processus contraints correspondant aux
participants du protocole sont donnés par (A, 1) et (B, 1). Ainsi, la spécification
du protocole est donnée par le processus contraint (P, 1).

Notons que, dans cet exemple, le participant A posséde comme connaissance

initiale la clé publique kg. Dans le but d’exprimer A indépendamment de l'autre
participant B, nous pouvons remplacer le message kg dans la définition de 'agent

S 4 par une variable libre 2. Nous obtenons ainsi le participant A" = (S4,id4) avec
Sa = let x; = newNumber(—) in let zo = enc(z, ;) in &(xs).0

et le processus contraint correspondant (A, K(x)) qui nous assure que la variable
libre = correspond & une clé quelconque. Dans ce cas, la spécification du protocole

est donnée par (P, K(x)), avec P’ := A’| B.

4.4 Sémantique symbolique

Rappelons que la sémantique opérationnelle avec passage de paramétres de
SPPA (voir Section 3.2.4) est seulement définie pour les processus clos.® Nous
avons aussi remarqué plus haut que ce type de sémantique engendre fréquemment
des graphes de transitions infinis. Dans cette section, nous établissons une séman-
tique opérationnelle symbolique pour les processus contraints, qui leur assigne des

graphes de transitions finis.

8processus sans variable libre.
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La sémantique opérationnelle symbolique des processus contraints est définie
dans les Figures 4.1 et 4.2. Elle s’inspire de la sémantique symbolique présentée
par Hennessy & Lin 57 ot les valeurs booléennes qui servent de gardes aux actions
sont remplacées par des formules ¢ restreignant les variables libres du processus. Il
est important de noter que nous supposons qu’une transition (P, ¢) — (P’, ¢)
est éliminée lorsque ¢ ou ¢’ est équivalente & 0.° Notons également que I'introduc-
tion de prédicats M(x) dans les formules des processus contraints est essentielle
a l'identification des variables libres. En effet, il suffit de remarquer que les pro-
cessus contraints (P, 1) et (P, M(z)) sont distincts car 1 ’A M(z), bien que
1 & M(z). D’autre part, cette sémantique symbolique respecte la définition des
processus contraints : étant donnés un processus P et des formules V-équivalentes
1 et o, si (P, ¢1) = (P, &) et (P, ¢o) - (P, ¢}), alors ¢} & ¢b, d'on
(P, &) = (P, &).

Rappelons que les processus contraints (P, ¢) et (¢, ¥) ne peuvent pas avoir
des variables en commun (voir Section 3.2.1), d’ou fv(¢) N fv(y) = (. Dans la
régle Restriction, la formule ¢f désigne la formule qui affirme que l'action o
n’appartient pas a L (voir Section 4.3). Dans la régle Observation, le calcul
(P, ¢) X (P, ¢’), pour une suite d’actions v = ap ..., € Act*, désigne la

suite finie de transitions :
(P, ¢) = -5 (P, ¢).

Définition 4.21. Soit (P, ¢) un processus contraint.

1. Le processus contraint (P, ¢') est une dérivée de (P, ¢) §’il existe un calcul
(P, ¢) SN (P, ¢') pour un certain 7 € Act*. L'ensemble des dérivées de
(P, ¢) est donné par

D((P, ¢)) = {{P', &) | Jyeaa (P, &) — (P', &)}

c’est-a-dire ¢ < 0 ou ¢/ & 0.



Sortie

Entreée

Fonction

Générateur

Extraction

Décryption

Signature-Vérif

Comparaison

FiG.

O]
@©0).A ¢) —— (A ¢

€id ()
elx)-4. 6) = (A (3r0) A M)

fer

fsz
(let 2=f(t) in A, §) — (A, (3:0) A d5(t) A z==£(1))

new € F
new;q ,

(let z=f(—) in A, ¢) — (A, (Fzd) N Pnew(x))

split; 4
(let (zy)=(tt") in A, ¢) — (A4, (FFy¢) A a==t A y==t')

decyy
(case t of {x}y in A, ¢) — (A, (3z¢) A K(¥') A t=={a}y)

signv,,
(case t of [t"]; in A, @) —= (A4, ¢ A K(') A t==[t"]y)

(A, ¢) = (4’ ¢)
o
([t=t)4, §) —— (A', )

(Ga(@At==t DAY’ si a= ci(x), fug. splityg ou decqg
avec ¢ = et ¢'n=(oh)AY’

' N t==t' sinon.

4.1 — Sémantique des processus contraints.
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Parallele

Protocole

Synchronisation

Restriction

Observation

(A, &) = (A, ¢y el fv(e)Nfv(y)=0 ot
(A+B, ¢ A ¥) — (4", ¢/ A %)

(B, ¥) -2, (B’ ¢y et fv(e)nfv(y)=0
(A+B, ¢ A ) — (B, ¢ A )

(A, &) —= (A", ¢) el  f()nfv()=0

— et
(AIB. ¢ A §) — (AB, ¢/ A v)
(B, v) —— (B, ¢/) et fu(p)nfv()=0
(AIB, ¢ A ) — (AB', ¢ A ¥')
(P.¢) == (P ¢). ofC_ et fonfw)=b

(PIQ, & A ) — (P'IQ, &' A )

(Q. ) —= (@, v), ogC et  fv(g)nfv()=0
«
(PQ. ¢ A 9) —— (PIQ, ¢ A %)

e ()
@ ) = (@, ¢) et
5,(t) 82, (1)
(PIQ, ¢ A %) — (P'#Q, v1) — (P'IlQ’, v2)

Tialt)

(P o) — (P, &), fv(p)nfv(y)=0 et

W(t) ca(x)
(Q, ¢) == {Q', &), (P, )— (P, ¥) et f(e)nfv(¥)=0
3¢ (1) 5C (¢

(PIQ, ¢ A #) 2= (PEQ, ¢1) “2= (PIIQ. ¢2)

avec o) n= @AY et =g AY ANx==1.

(P, ¢) — (P, &)
(P\L, ¢) —— (P'\L. ¢/ A L)

oil ¢ est telle que V, (o= ¢L ssi o(a) € Act\ L).

(P, &) — (P, ¢") et o€ Omw
[23
(P/O. ¢) — (P'/O, ¢)

F1G. 4.2 — Sémantique des processus contraints.
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2. Le processus P’ est un sous-processus de (P, ¢) s’il existe une formule ¢’ telle
que (P', ¢') € D((P. ¢)).

Définition 4.22. Un calcul (P, ¢o)—~5(Py, ¢1)—--- Z5%(P,. ¢,) est minimal
si P, # P;pouri # j,saufsit=0et j =n.

Ainsi, un calcul (P, ¢) —— (P’, ¢') est minimal s'il ne contient pas de boucle, &
moins que celle-ci lie les extrémités (P, ¢) et (P', ¢'). Tout calcul (P, ¢) — (P’, ¢')
se réduit clairement & un sous-calcul minimal (P, ¢) 2, (P', @'y (ol ¥ est une

sous-suite de ) en supprimant toute boucle présente dans le calcul de ~.
Exemple 4.23. Considérons les processus SPPA suivants :

A= C(l’l).Al, Al o= C(.’L‘Q).AQ et A2 o= [.’Ifl = .’L‘Q] E(l’l)Al .
La sémantique du processus contraint (A, 1) est illustrée & la Figure 4.3. Notons

que la régle de sémantique Comparaison engendre la transition

EldA (371)

<‘42, M(.’L‘l) AN M(ZKQ)) — <A1, M(IL‘}) A M(ZEQ) A Ty == .'L’2>,

. . Tid 4 (1) }
mais nous écrivons (As, M(x;) A M(xq)) iiie (A1, x1 == z5) puisque

M([El)/\M(IEQ)/\IL'l == I3 <2’i> T == Zqg,

d'ou (A1, M(z1) A M(x2) A xy == 23) = (A1, 1 == x2). De facon analogue, la

transition
Cid 4 (1)

(A1, 1 == 22) — " (A, M(x1) A M(22))

provient de la régle de sémantique Entrée et du fait que

(3a, 71 == 22) AM(z2) & M(z1) A M(xs).



(A, 1)eal) (A M(x1))24a®2) (Ay, M(z1) A M(a2))
Esz (—Tl )l[czdlq (xQ)

<A17 Xy == $2>

Fi1G. 4.3 — Sémantique symbolique de (A4, 1).

Exemple 4.24. Considérons les processus SPPA suivants :
B := cyy).By, Bj:= let ys =enc(y;,y) in Bs et By = ¢(y3).0

ou fv(B) = {y1}. Pour les besoins de cet exemple, nous supposons que la variable
libre y; représente un message quelconque. La sémantique symbolique du processus

contraint (B, M(y;)) est donnée a la Figure 4.4, ot

¢ = K(y1) AN M(y2) A ys == {ya}y, -

(B, M(y)2el)(By, M(y1) A M(y2)) 2248 By, ¢)%al1(0, ¢)

FIG. 4.4 — Sémantique symbolique de (B, M(y;)).

Exemple 4.25. Pour cet exemple, nous considérons le protocole, de méme que sa
spécification, présentés a 'exemple 4.20. La sémantique symbolique des processus
contraints (A, 1) et (B, 1), représentant les participants du protocole, est illustrée
a la Figure 4.5, ot ¢ := N(z;) A (22 == {21}xz). La sémantique symbolique du
processus contraint (P, 1), représentant le protocole, est illustrée a la Figure 4.6,
ol = ¢ A (11 ==22) A (y1 == {y2}rz)-

Si nous considérons la spécification P’ ::= A’ || B (toujours de I’Exemple 4.20),

ou A’ contient une variable libre z a la place de kg, alors nous obtenons les processus



<A, 1>newNumber”1A <‘41’ N(l_l»enc,d <A ¢> Tid, (@ <O ¢>

(B, 1)24sW(B,, M(y:))&%5 (0, y1 == {y2}4p)

F1G. 4.5 — Sémantique symbolique de (A, 1) et (B, 1).

(A | B, 1)mewNumbenay (4, | B, N ()54 (4, || B, 6)%u™) (A% B, ¢)

54py(32)

(010, ¥)L%E(0 || By, A (11 == 2))

FIG. 4.6 — Sémantique symbolique de (P, 1).

contraints (A, K(z)) et (P’, K(x)). La sémantique de ces deux processus contraints

est illustrée a la Figure 4.7. avec

(A, K(z))neNumberids 410 N (20) A K (2)) 2444 AY, ¢)32a2L(0, ¢)

(A" || B, K(z))22m0ea (A) || B, K(z) AN (21))24 (4 || B, ¢)
sz(zz)

(010, ¢)=42(0 || By, ¢ A (31 == z2)) 242U (A# B, &)
F1G. 4.7 — Sémantique symbolique de (&', K(zx)) et (P, K(z)).

¢ = K(x) AN N(z1) AN (20 == {11}4)
et
Vo= ¢ A (i ==1x2) A (1 == {y2}rs)-

Notons que cette derniére formule est & son tour équivalente a la formule

Kz) AN N(z1) A (za=={x1}2) N (1h ==32) A (21 ==y2) A (z == kg).
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4.5 Finitude de la sémantique symbolique

Dans cette section, nous démontrons que le graphe de transitions associé a un

processus contraint est toujours fini.

Lemme 4.26. Tout processus contraint (P, ¢) posseéde un nombre fini de sous-
processus, c’est-a-dire Uensemble {P' | (P', ¢') € D((P, ¢)) pour un certain ¢'}
est fini.

Démonstration. Ce résultat provient du fait que les régles de la sémantique sym-
bolique de SPPA (voir Figure 4.1 et Figure 4.2) n’altérent pas la définition initiale
de P (ni celles de ses sous-processus). En effet, ces régles ne font jamais usage de
substitutions P[t/x]. Ainsi, tout sous-processus P’ apparaissant dans D((P, ¢))
doit étre syntaxiquement identique a la facon dont il fut initialement défini dans
P. Nous pouvons donc conclure que la cardinalité de I'ensemble {P’ | (P', &) €
D(({P, ¢)) pour un certain ¢'} est borné par N, +2N,, ou N, est le nombre d’opéra-
teurs SPPA unaires (sortie, entrée, appel de fonction, comparaison, restriction, etc.)
utilisés dans la définition syntaxique de P, et N, est le nombre d’opérateurs SPPA
binaires (somme, composition paralléle, etc.) utilisés dans la définition syntaxique

de P. ]

Remarque 4.27. Du Lemme 4.26, nous pouvons déduire que, pour tout processus
contraint (P, ¢), il n’y a qu'un nombre fini de variables apparaissant dans P
et ses sous-processus P’. De plus, ces variables sont exactement celles utilisées
dans la définition syntaxique de P. Soit {z,...,z,} I'ensemble fini contenant ces
variables. En observant les régles de la sémantique symbolique de SPPA. nous
pouvons également constater que fv(¢’) C {x1,...,x,} pour toute formule ¢’ € 7,
avec J = {¢' | (P, ¢') € D((P, ¢)) pour un certain P'}. Ainsi, toute variable
apparaissant dans une dérivée (P', ¢') € D((P, ¢)) (soit dans P’ ou dans ¢') doit
aussi apparaitre en quelque part dans la définition initiale de P (ou de I'un de ses

SOUS-Processus).
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Lemme 4.28. Pour tout processus contraint (P, ¢), le nombre de calculs minimauz

(P, ¢) == (P, &) est fini.

Démonstration. D’abord, nous voyons que tout processus contraint (P, ¢) posséde

gqu'un nombre fini de transitions sortantes, ¢’est-a-dire I'ensemble

{a € Act | (P, ¢) — (P', ¢') pour un certain (P, ¢')}
est fini. En effet, nous constatons a partir des régles de sémantique que I'existence
d’une transition (P, ¢) —— (P’, ¢'), de méme que la valeur de I'action «, dépend
exclusivement du processus P, et non de la formule ¢ (a moins que celle-ci soit
équivalente & 0). De plus, puisque (P, ¢) posséde seulement un nombre fini de
sous-processus (par le Lemme 4.26), le nombre total d’actions « apparaissant dans
la sémantique de (P, ¢) doit nécessairement étre fini.

Nous pouvons donc conclure qu’étant donnés deux processus contraints quel-
conques, il existe un nombre fini de calculs minimaux entre eux. En effet. si N,
désigne le nombre de sous-processus de P et N, désigne le nombre d’actions appa-
raissant dans le graphe de transitions (P, ¢). alors le nombre de calculs minimaux
entre (P, ¢) et n’importe quel autre processus contraint est au plus Np!NpN"+1, oll

- N,! est une borne supérieure sur le nombre de suites possibles de sous-
processus correspondant a un calcul minimal entre (P, ¢) et un autre pro-
cessus contraint (aucun sous-processus ne peut apparaitre deux fois) ;

- NI[,N“J’1 est une borne supérieure sur le nombre de suites possibles d’ac-
tions correspondant & un calcul minimal entre (P, ¢) et un autre processus
contraint.

En particulier, il existe seulement un nombre fini de calculs minimaux entre (P, ¢)

et (P, ¢/). O

Lemme 4.29. Si D({P, ¢)) est infini, alors il existe un processus contraint (P, ¢1)

et une suite infini de calcul minimauz

(P, &1) =5 (P o) == (Pr, &) =5 (P, i) =
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=1

avec tv(¢y) = {x1,..., 2} et v € {¥}, V.-, v} pour tout 1 > 1, tel que chague

Y. € Act”® apparait une infinité de fois.

Démonstration. Si D((P, ¢)) est infini, alors il existe un calcul infini
& = (P, g) — (P, ¢) = ... (4.1)

composé de processus contraints distincts deux-a-deux (¢’est-a-dire aucun processus
contraint n’apparait a plus d’une reprise dans le calcul).

Soit {xy,. .., .} 'ensemble des variables apparaissant dans le calcul & (Eq. 4.1)
(cet ensemble est fini par la Remarque 4.27). Puisque toute formule ¢ apparaissant
dans le calcul &; est telle que fv(y)) C {x1,...,z,}, nous pouvons supposer que ce

calcul infini posséde un suffixe
(Pr, d1) =5 (Poy o) =523 (P, ) =5

tel que fv(¢1) = tv(¢x) = {z1,...,2n}, pour k > 2. De plus, puisque P posséde un
nombre fini de sous-processus (par le Lemme 4.26), nous pouvons aussi supposer

que le processus P; apparait une infinité de fois dans le calcul. D’ou, nous pouvons

écrire
& = (P, &) == (P, ¢o) =5 73 (R, d) =5 (42)
avec v, € Act* et tv(¢;) = {z1,...,2,}, pour | > 1. Nous pouvons aussi supposer

que le calcul (P, ¢;) U (Py, ¢+1) est minimal pour tout [ > 1.

D’autre part, par le Lemme 4.28, pour tout [ > 1, il n’y a qu’un nombre fini
de calculs minimaux entre (P;, ¢;) et (P, ¢p), d’ou il n’y a qu’un nombre fini de
suites d’actions différentes ~y,. Supposons que ’ensemble de ces suites d’actions est
donneé par {7}, 7, - - - Vi }; ¢'est-a-dire toute suite d’actions -y, provenant du calcul
& (Eq. 4.2) est tel que vy € {v,7%,---,7,,}- Finalement, nous pouvons supposer
que chaque +; apparait un infinité de fois dans le calcul &. En effet, si une suite
d’actions v}, apparait seulement un nombre fini de fois, alors il suffit de considérer

le calcul infini obtenu en coupant le calcul & aprés la derniére occurrence de 7, ; le
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calcul ainsi obtenu ne contient aucune occurrence de la suite d’actions ;. |

Notation. Afin de simplifier la présentation, nous utiliserons les notations sui-

vantes :

~ nous écrivons 3 ) & la placede 3wy ), et
Y; Yy TaeeilYny
— nous écrivons @[y;"] a la place de @[y;" /«i"]. . [y /z)].

Définition 4.30. Soient deux familles de formules {v }7; et {¢;}i,. La famille

{Tx}ix, de transformations de formules est définie comme suit :
R T VA S W (43)

oil les 3" sont toujours de nouvelles variables, c’est-a-dire les transformations T,

n’utilisent jamais les mémes variables 3, . .. ,y%) a plus d’une reprise.

Lemme 4.31. Etant donné un calcul infini
£ = (P, ¢1) == (Pr, do) =2 (P, 1) = (P1, i) (4.4)

satisfaisant les propriétés exposées au Lemme 4.29, il existe des formules 1y et ¢,

(pour k =1,...,m) telles que, pour tout 1 > 1,
b111 € Ti(on)

des que v = V.-

Démonstration. Du Lemme 4.28, nous savons que la capacité d’ un processus contraint
(P', ¢') d’exécuter une action dépend uniquement de la définition du processus P’
(aussi longtemps que ¢’ n’est pas équivalente & 0). D’ou, étant donnée v, € Act*,
tout calcul (P, ¢) 7—',“>(P1, ¢1+1) transforme la formule ¢, en la formule ¢;,; selon
une régle unique, peu importe . De plus, des régles de la sémantique symbolique

de SPPA, nous pouvons constater que

b1 = 3w w (G Ar) A Yy
W
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pour certaines formules vy et 1, (qui ne dépendent pas de ), avec
{a,..., 2} C {x1,...,25}. Il suffit maintenant de noter que la formule ¢,

est équivalente a la formule

T G-t s R ey o AR B (A A O R

k
RET

ot les y{* sont de nouvelles variables. Si nous réécrivons cette formule & l'aide de

la notation établie plus au haut. nous obtenons

G141 & 3y§k>(¢l[y§k)] A UlyP] A by

Si nous exprimons cette formule en terme de le famille de transformations {T'x}7L .

nous avons 'y (¢;) < é141 pour tout [ > 1 tel que (P1, @) —1'“—>(P1, bis1)- O

Pour le lemme suivant, nous considérons des formules 1, et 1, ainsi que des

transformations T'y, définies a partir de celles-ci, pour £ =1,...,m.

Lemme 4.32. Pour toute suite infinie de formules ¢ = {¢1}1>1 telles que
& =Ty (d-1) avec 1<k <m

et ou chaque transformation Ty (pour k = 1,...,m) revient une infinité de fois,
il existe un entier K > 1 et une famille de formules {0, }jL, telles que, pour tout
1> K, Ti(d) & 6 dés que ki = k.

Démonstration. Toute transformation I'y fait essentiellement deux actions : d’une
part, I'; substitue les variables 1", ..., 2 avec de nouvelles variables (", ... y®.
et, d’autre part, Iy introduit (a4 Paide d’une conjonction) les formules 1y et ;.
Mais, puisque I';, introduit toujours de nouvelles variables, nous pouvons supposer
que toute formule ¢; de la suite < est de la forme 3, .., ol les y1,...,y, sont des
variables 4, ..., y5) introduites lors d’applications précédentes de transformations
Iy (pour 1 < k < m), et ¢ est une certaine formule sans quantificateur. De plus,

nous pouvons constater que la formule 4 doit étre de la forme ¢, [y*"] ... [y**] A ¥/,
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ou la formule ¢ est une conjonction de formules ¢ et ¢ (pour 1 < k < m) sur

: k
*0) . [y*] furent appliquées.

lesquelles des substitutions [y
Malgré le fait qu’il y aura une infinité de nouvelles variables 3{* .. - Y% intro-
duites lors du calcul infini, nous démontrons qu’a partir d’un certain moment dans
le calcul, I'introduction de ces nouvelles variables par un I'y, et leur substitution
avec les variables z{", ... $§f£ créera inévitablement une formule ¢; équivalente a
une formule précédente ¢y .
D’abord, nous voyons que les substitutions introduites par T'y sont appliquées

au plus une fois sur les formules dans ¢'. En effet, des substitutions consécutives

T S R oy oted 2 A o B A

donnent la formule ¢[y;" /z{"] ... [y /2®)], c’est-a-dire ¢[y;"”]. La méme remarque
est également vraie pour toutes formules vy, et ¢}, pour 1 < k < m. et consé-
quemment pour la formule ¢’. D’ol, puisqu’il y a m transformations I'y, donc m
ensembles de variables {z{", .. -, x4} soumises aux substitutions, il y a au plus m!

substitutions composées non équivalentes de la forme [y{™]..

[w™] qui peuvent
étre obtenues de la composition des I';.!° De plus, puisque chaque transformation
I'x introduit toujours les mémes formules ¢ et ;. le nombre de formules pos-
sibles que nous pouvons obtenir des 1y, ¥} et des substitutions composées sur les
ensembles de variables {2{",..., 2} est borné par 2m(m!), donc fini.

D’autre part, puisque que chaque transformation I'; revient infiniment souvent
dans la suite ¢, 4 un certain point, pour toutes nouvelles variables y{, . .. 7y(’“) intro-
duites par une certaine transformation I'y (a travers une substitution des variables
o, ... zl)), il existe des variables =i, ..., 2% introduites préalablement qui sont
présentes exactement dans les mémes substitutions composées équivalentes appli-
quées exactement aux mémes formules ¢/; et +/;. Dans ce cas, ces nouvelles variables
(k)
15

(k)

Y1 - - -5 Yy Peuvent étre remplacées par les 2 ; Zy); et la formule ainsi obtenue

10deux substitutions composées sont équivalentes lorsque ’ordre selon laquelle les ensembles de
variables {:r(” a:(”} sont substituées est exactement le méme (modulo les noms des nouvelles
variables y{*’, ... Y-
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est équivalente a la formule précédente ¢;.

En fait, nous pouvons constater qu’a partir d’un certain point dans la suite ¢,
plus précisément lorsque chaque transformation I';, est appliquée au moins 2m(m;)!
fois, toute nouvelle application nous donne une formule équivalente a la formule
obtenue de I'application précédente de I'y. Ainsi. il existe des formules 6y,...,0,,

telles que ¢p41 < 6k lorsque
(Pr. ¢1) = (P, dun)

pour tout [ > K. pour un certain K > 0 suffisamment grand. D’ou I'y(6r) < 6.
O

Remarque 4.33. Les formules #; mentionnées dans la preuve précédente sont
trop longues pour étre écrites explicitement dans ce document. mais nous pouvons

constater qu’elles ont la forme suivante :
O o=y (01l ] T A0 A [=P] A )

ou yi,...,Yn sont de nouvelles variables introduites par la transformation I'j,
avec {ki,... kn} = {1,...,m} et ", ..y 2% € {y;,...,yn}. La formule
. présente dans toutes les 8, est la formule obtenue en considérant la conjonction
de toutes les combinaisons possibles de substitutions composées [y:"]... [y
(pour de nouvelles variables ") appliquées sur toutes formules v et v} (pour
k =1,...,m). La formule # s’avére étre un point fixe pour toute transformation
T';. En effet, puisque 6 contient toutes les substitutions composées appliquées a
toutes les formules introduites par les transformations, alors toute nouvelle substi-
tution introduite par un certain I'y n’aura aucun effet sur 6. La famille de formules

{6}, est donc telle que I'y (/) < 6k, pour tout &, K.

Théoréme 4.34. Pour tout processus contraint (P, ¢), Uensemble D((P, ¢)) est
fini.

Démonstration. Supposons que (P, ¢) est un processus contraint ayant une infi-
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nité de dérivées, c’est-a-dire D({P, ¢)) est infini. Par le Lemme 4.29, il existe un

processus contraint (P;, ¢1) et un calcul infini

Y41

£ = (P, 1) == (P, ¢2) == ... (P, ¢0) == (P, dip1) — ... (4.5)

avec fv(¢y) = {x1,...,xn} et 7 € {V1, Vs .-, Vit PoUr tout [ > 1, tel que chaque
¥, € Act® est minimal et apparait une infinité de fois. De plus, par le Lemme 4.31,

il existe des familles de formules {v;}7r; et {4} }72, telles que

141 = Ti(dn)

des que 7y = +;. Ainsi, la suite de formules ¢;, ¢, ¢3,... provenant du calcul

& (Eq. 4.2) peut s’écrire de la fagon suivante :

¢ = {d)l) Fk1(¢1)a sz(rk1(¢1))7 st(rkz(rkl(d)l)))""}

avec vy, = 7,21, et oul chaque transformation I';, revient une infinité de fois (car chaque
7, apparait une infinité de fois dans le calcul £ (Eq. 4.5)).

Par le Lemme 4.32, il existe un entier KX > 1 et des formules 6, (pour k =
1,...,m) telles que, pour tout [ > K, ['y(¢;) < 6 dés que ki = k. Mais ceci
constitue une contradiction au fait que les formules ¢; sont deux-a-deux non équi-
valentes, donc une contradiction & I'existence du calcul infini & Par conséquent,

nous devons conclure que 'ensemble D({P, ¢)) est fini. O

4.5.1 Sémantique symbolique vs sémantique avec passage de parameétres

Les relations reliant la sémantique symbolique opérationnelle d'un processus
contraint et la sémantique opérationnelle avec passage de parameétres d'un processus
SPPA sont exposées en détail dans les lemmes suivants. En bref, toute suite de
transitions entre deux processus SPPA correspond a une suite de transitions entre
deux processus contraints. Réciproquement. toute transition entre deux processus

contraints correspond & un ensemble de transitions entre deux processus SPPA.
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La prochaine définition nous permet d’établir une distinction entre deux types

d’actions.

Définition 4.35. Les actions SPPA de la forme Gg(t), 65,(t), 05,(¢). signv,, et T
sont dites de Type I, et les actions SPPA de la forme c¢;4(x), fiq, split,; et dec;y sont
dites de Type II. Les actions de Type I sont désignées par «, et celles de Type 11

sont désignées par 3.

Du point de vue de la sémantique symbolique, nous voyons qu’une action de
Type II est caractérisée par I'introduction d’une nouvelle variable z (ou deux, z et

y, dans le cas de l'action split,;), ce qui n’est pas le cas pour une action de Type L.

Hypothése. Pour le reste du chapitre, nous supposons que, étant donnée une
action 3 de Type II, x est toujours la variable introduite par cette action. De plus,
par souci de simplicité, nous traitons le cas de ’action split,; qui introduit deux
variables au méme titre que les autres actions §. Nous pouvons facilement constater
que cette derniére hypothése n’affectera pas les résultats présentés dans ce chapitre
car des preuves complétes s’obtiennent simplement en ajoutant, au besoin, des cas
spéciaux pour 'action split,,.

Le lemme suivant nous assure que toute action dans la sémantique d’un pro-
cessus SPPA correspond a une action de la sémantique symbolique d'un processus

contraint.

Lemme 4.36. Soient P, P’ des processus SPPA, soit o/ = Tg(t), 65,(1), @(t},
signv,, ou 7, pour un certain terme t tel que tv(t) C {x1,...,z,}, et soit ' = ciax),
fias split,, ou dec;y.
- 8  Play/zi]... [an/zn) =  Play/z1]... lan/z,], pour  certains
a1y...,0np € M (n>0) et @ = a'[ar/z1] ... [an/xy], alors, pour toute formule

¢ < 0 telle que tv(¢) = {z1,...,2,}, nous avons

’

(P, ¢) = (P, ¢)
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ot ¢ est la formule donnée par les regles de la sémantique symboligue (avec

¢ & 0).

- Si  Plai/zi1].. . [an/zy] 2, P'lay/x1] ... lan/zp][a/x], pour certains
a1y an,a € M (n>0) et 3= 3'a/z], alors, pour toute formule ¢ < 0
telle que fv(¢) = {x1,...,x,}, nous avons

(P, ¢y L (P, &)

ou ¢ est la formule donnée par les régles de la sémantique symbolique (avec
¢ % 0).

Démonstration. Afin de raccourcir la démonstration, les deux énoncés sont démon-
trés simultanément par induction sur la structure syntaxique de P. Selon I'énoncé

que nous souhaitons démontrer, nous posons
Q' == Play/zi1)... [an/zs] ou Q = Play/zi]...[an/z,)]a/z].

Tout d’abord, nous constatons que le cas ou P = 0 est trivial. D’autre part,
si P u= ©¢(t).P, clx)P, let z=f(t) in P, let (z,y)=t in P/,
case t of {z}y in P’ ou case t of [t"]y in P’, alors la conclusion suit directement
des régles de sémantique Sortie, Entrée, Fonction. Générateur, Extraction,
Décryption et Signature-Vérif.

Si Pu= P+ P, P|P,,0u P, || P, (et & n’est pas une action de marquage),
alors, des régles de sémantique Somme, Paralléle et Protocole, nous pouvons

supposer que
Pilay/z1] ... [an/Tn] = Pjlay/z1] ... [an/2n)

(resp. Piay/21] ... [an/2n] —— Pllay/z1]. .. [an/z2][a/2])
avec P’ ::== P|, P||P,, ou P| || P,. Donc, par I'hypothése d’induction,

(Pi, ) T8 (Pl ¢).



Ainsi, (P, ¢) — ltled (P, ¢&). Si P = P || P, ou P#P,, et o est une action de

marquage, alors nous pouvons supposer que

Tidy (@)

Pilai/z] .. Jan/zn] = Pllai/z1]. .. [an/T4)
et
Bylar/21]. . [an/za) 25 Bilar /2] . [an/22]la/a]

avec P’ = Pi#P, ou P' == P| || P,. Par I'hypothése d’induction NOUuS avons
zdl( )

(P, ) 8 (P ¢) (ot a = tlay/za] .. [an/za]) et (Bs, &) 25 (P), #). Diou
(P, ¢) — (P’, ¢’) par la régle Synchronisation.

Si P == [t = t'|P, (avec tlay/zi]...lan/z0] = t]a1/z1]...|an/x,)), alors
Pilay/x1] ... [an/xn] kil Q' et, par 'hypothése d’induction, nous voyons que

(P, ) 2 (P, @)

Donc, par la régle de sémantique Comparaison, (P, ¢) — s (P, ¢') avec ¢/ <4 0
car o =t == t’ pour toute évaluation p telle que o(z;) = a;.

Si P = P\ L (avec a,8 & L), alors Pi[a1/z1] ... [an/2y] ofh Q' et, par
Phypothése d’induction, nous avons (P, ¢) —> g (P', ¢") avec ¢" <4 0. Ainsi, nous
avons (P, ¢) &5 et (P', ¢) avec ¢/ <4 0 car p = ¢F, , pour toute évaluation o telle
que o(z;) = a;.

Finalement, si P ::= P;/O, alors il existe un calcul
Pilay/x1] ... [an/2n] == Pllay/21] - - - [an/Zn]

(resp. Pilay/z1] ... [an/Tn) == Pllar/z1] ... [an/2n][a/z])

tel que a € O(y) (resp. 8 € O(%)) et avec Q' == Pllai/x1]... [an/xs]/O (resp.
Q' == Pllai/z1] ... [an/zs][a/x]/O). Donc, par I'hypothése d’induction, nous avons
Boo) D (B @) on v = Yle/ol ez (resp.

v = +'[ay/z1] ... an/xy)[a/x]). D'ou, par la régle de sémantique Observation et
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puisque P == P /O et P == P//O, nous pouvons constater que
(P, ¢) «/8 (P', ¢, ce qui conclut la démonstration. |

Le lemme suivant nous assure que toute action dans la sémantique symbolique

d’un processus contraint correspond a une action de la sémantique d’un processus

SPPA.
Lemme 4.37. Soient P, P’ des processus SPPA, soit o = Tgq(t), 05,(t), %(t),
signv,,; ou T, pour un certain terme t tel que fv(t) C{xy,...,x,}, €t s0it 3 = ciq(x),

fia, split,; ou dec,y.
- Si (P, ¢) N (P, ¢, avec tv(@) = fv(¢') = {x1,...,xn}, alors, pour toute
évaluation o telle que o = ¢/,

Plo(z1) /1] - le(wn) f2n] = Plo(xy)/z1] .- [e(21) /2]

ot a = p(a).
= 8i (P, ¢) L5 (P, &), avec fv(d) = {x1,..., 2} et fv(¢') = fv(e) U {z},

alors, pour toute évaluation o telle que o |= ¢/,

ot 3 = o(3).
Démonstration. Afin de raccourcir la démonstration, les deux énoncés sont dé-
montrés simultanément par induction sur la structure syntaxique de P. Le cas ou
P ::= 0 est trivial. Soit p une évaluation telle que o = ¢, et posons a 1= p(a’),
B u= o(f) et Q = Plo(a1)/z1] ... [0(xs)/2,]. De plus, selon I'énoncé que nous

souhaitons démontrer, nous posons
Q' == Plo(z1)/zi] ... [o(zn)/Ts]

ou

Q' = Pllo(x1)/z]. .. [o(xn)/xn][0(x) /).
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Si P u= ¢(t).P, c(x).P, let z= f(t) in P, let (z,y)=1t in P’
case t of {z}y in P’, ou case t of [t"]y in P’, alors nous avons, respective-
ment, Q = (o(t).Q', c(2).Q'. let z = f(o(t)) in @, let (z.y) = oft) in @,
case {0(t') } o) oF {2}y in Q’, ou case [0(t')] o1y oF [0(t")] o) in Q. D'ott Q@ — 28 — Q.

Si P:u= P, + Py, Pi|P, P, || P2, ou P#P,, alors nous avons, respectivement,
Q= Q1 + Q2. Q1|Q2. Q1 || Q2. ou Q1#Q2 avec Q1 == Pifo(z1)/21]. .. [0(z4)/Tn]
et Qo ::= Pylo(x1)/x1]. .. [o(x1) /2] Lorsque o' n’est pas une action de marquage,
nous pouvons supposer que (P, ¢) — e (P{, ¢') avec, respectivement, P’ := P],

P||P,, ou P || P2. D’oti, par I'hypothése d’induction, nous voyons que
Q1 —— Pilo(x1)/z1] ... [o(zn)/zn]

(resp. Q1 =5 P{lo(w1)/21]. . [olan) /zallol() /x)).

donc Q kilA Q'. Supposons maintenant que o’ est une action de marquage, avec
P o= H Poou P = P#P,. Dans ce cas, NOUS POUVONS SUPPOSEr que
<P]7 1/)1> Ldl (Pl/v ¢1> et <P27 1/)2> <P2/7 ¢2> avec ¢ - wl/\dj2 Par I’ h§ pothese

d’'induction, nous avons

Cldg

Czdl Td; (0(1))

o Pllo(z1)/z] .- - [o(xn) /2n]

et

Q> “22 Pllo(ey) /2] . [o(@n)/za)la/a].

Donc, P — P’ par la régle Synchronisation, avec P := P#P,ou P := P, | P;.

Si P == [t = /| P\, alors nous devons avoir (P, ¢) — i (P, ) avec o E ¢
et o F (t == /) car p = ¢'. Ainsi, par I'hypothése d’induction, nous avons
(Q:, ¢y — tli (@', ¥) ot Qp = Pilo(x1)/xz1] ... [o(zn)/zs]. Dot par la régle de
sémantique Comparaison, @ /8, Q' car o(t) = o(t').

Si P = P, \ L, alors nous avons (P, ¢) —— i (P{, ¥) avec P" == P/ \ L
et ¢ u= YA ¢§, (resp. ¢ = ¥ A ¢§,). De plus, nous pouvons constater que
Q = Q1 \ L oa @ == Plo(z)/x1]...[o(x,)/x,). Mais puisque ¢ = 1, par
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Ihypothése d’induction, nous avons que
Q1 — Pilo(x1)/z1] . . [o(zn) /2]

(resp. @ A, Pllo(z1)/z1] ... [o(zn)/zn][o(z)/x]).

D’autre part, puisque ¢ | ¢, donc o E ¢ (resp. ¢ qbfg,), nous avons que
o8¢ L. DonQ 22 q.
Si P == P/O, alors il existe un calcul (P, ¢) =z, (P, ¢') tel que a €

OF') (resp. 8 € O(%')) avec P’ ::= P]/O. Par I'hypothése d’induction, nous

voyons que Q; —- Q) ou @, u= Plo(x1)/xi]... o(xn)/xn] (resp.
Q= Plofan)/m] .. [olwa)fmallo(@)/a]) et v = ofr'). Dion, @ 22 @ car
a € O(y) (resp. B € O(7)). a

Le prochain lemme nous permet de conclure qu’étant donnés un processus qui
peut exécuter une action et un processus contraint dont la formule est satisfaite et
qui peut exécuter cette méme action, alors la formule dans le processus contraint

suivant l'action est nécessairement satisfaite.

Lemme 4.38. Soient P, P' des processus SPPA, soit o = Tg(t), 65(t), 65(1),
signv,,; ou 7, pour un certain terme t tel que fv(t) C {z1,...,2,}, et soit § = ciq(x),
fia, split,; ou dec;q. Soient ay,...,an,a € M, et posons o = '[ar/z1]. .. [an/xy]
et § = fla/x).
— 8i Play/z1) ... [an/2n] == P'lay/71]. .. |an/2,] et |= dlar/z1] ... [an/Tn], alors
E ¢'lai/z1] .. - [an/xn] lorsque

(P, ¢) =5 (P, ¢).

oy Plai/z1]. .. [an/2n] 2, Play/z1]. . [an/20][a/1] et

= dlar/x1) ... [an/z,), alors = ¢'lar/x1] .. . [an/xn][a/2] lorsque

(P, &) L5 (P, ).
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Démonstration. Tout comme les Lemmes précédents. nous démontrons les deux
énonceés simultanément., et pour chacun nous procédons par induction sur la struc-
ture syntaxique de P. Si la transition (P, ¢) 4 (P', ¢') provient des régles
Entrée. Sortie, Fonction ou Générateur, alors nous pouvons constater directe-
ment a particr de la définition de ¢ que [ ¢fay/xy]...[an/zs] (resp.
E ¢'lar/x1] .. . [an/zs][a/x]) lorsque |= @lar/x1] . .. [an/Ty)

Si P:= P+ P, P|Pou P, || P2, et a n’es pas une action de marquage, alors
nous pouvons supposer que ¢ ::= ¢;Agq et ¢’ 1= @) Ao, avec (P, ¢1) g (P, ).
Ainsi, puisque que = @lai/x1]. .. an/xy], nous avons = ¢ila1 /1] ... [a./2,). d’ou
E ¢dylar/z1] ... |an/zy) (vesp. | @ilar/x1] ... [an/z,][a/z]) par 'hypothése d’'in-
duction. D'ou, E ¢'lay/x1]. .. [an/xn]la/z] (resp. = ¢'[ar/z1]. .. [an/zs]la/x]) car
E ¢olai/x1]. .. [an/Tn). Les cas ou P == Py || P, ou P = Pi#P,, et o est
une action de marquage, sont similaires. Si P = [t = t'|P, alors nous voyons
que l'énoncé demeure valide pour chacune des deux formes possibles pour ¢, car
tlay/z1] ... lan/xn) = t]ar/z41] .. . [an/zn).

Si Pu= P\ L, alors ¢ == ¢; A ¢L. Par I'hypothése d’induction, nous pou-
vons constater que | é1]ai/x1]. .. [an/xn] (vesp. = ¢i[ar/zi] ... [an/zn)[a/z]). et
puisque a & L, |= ¢k [a1/x1]. .. [an/2,] (resp. = ¢flar/21] . .. [an/z4][a/z]). Ainsi,
E ¢'lar/x1] ... [an/za)[a/x] (vesp. |= ¢'lar/x1] . .. [an/zn][a/z]). Finalement, suppo-
sons que P = P;/O. Alors, (P, ¢) =, (P{, &'y, ou P' ::= P et o’ € O(v) (resp.
B € O(®)). D'ou, en utilisant I'hypothése d’induction pour chaque sous-action de
v, nous voyons que = day/x1] ... [an/zx) (resp.

E ¢'lar/x1] . .. [an/zn)[a/x]) lorsque = @las/a1] . . . [an/zy). O

En résumé, les Lemmes 4.36 et 4.37 nous permettent d’établir une relation
biunivoque entre les actions d’un processus SPPA et les actions d'un processus
contraint. D’autre part, nous pouvons grossiérement déduire du Lemme 4.38 la
cohérence de la sémantique symbolique des processus contraints : si un processus
peut exécuter une action et cette action satisfait une certaine formule, alors le

processus contraint composé du processus et de la formule peut exécuter la méme
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action et évoluer dans un processus contraint dont la formule est encore satisfaite.

4.6 Bisimulation entre processus contraints

Dans cette section, nous étendons la notion de bisimulation [ (voir Défini-
tion 3.18) de Milner afin qu’elle puisse traiter les processus contraints. Toute rela-
tion d’équivalence sur les processus contraints est basée sur une comparaison qui
doit prendre en considération les variables libres de chacun des processus SPPA,
ainsi que des formules qui les contraint. Du coup, une telle comparaison doit néces-
sairement étre accompagnée d’une relation qui détermine une correspondance entre
les variables libres des deux processus. Par exemple, pour affirmer que (P, ¢) et
(Q, v) sont équivalents, on doit absolument préciser, pour toute variable libre
x € fv(P), quelles variables libres y € fv(Q) correspondent a x, et vice versa. Pour
cette fin, nous utilisons des relations R € R, avec R C fv(P) x fv(Q), introduites
a la Section 4.2.

D’autre part. la notion de relation pleine est nécessaire a la définition d’une
relation d’équivalence entre les processus contraints. En effet, en plus d’établir une
correspondance entre les variables libres des processus comparés, nous devons nous
assurer que la relation qui établit cette correspondance est pleine, c’est-ad-dire que
toute variable libre d’un processus est associée a4 au moins une variable de 'autre

processus et vice versa.

4.6.1 Bisimulation

Pour la prochaine définition, rappelons qu’étant donnée une action de Type
II B = cig(x), fia, split,; ou dec;q, nous supposons que z est toujours la variable

introduite par 3.

Définition 4.39 (Bisimulation). Soient (P, ¢) et (Q, ) des processus

contraints et soit R € PR une relation pleine entre fv(¢) et fv(¢). Une bisimulation

HRappelons que lorsque nous comparons deux processus, nous supposons toujours qu’aucune
variable n’est utilisée pour définir les deux processus 3 la fois.
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entre (P, ¢) et (Q, v¥) par rapport & R est une famille de relations R = {R¢},,
pour toute évaluation p, telle que chaque relation R¢ C D((P, ¢)) xD{({(Q, ¥)) xR
satisfait les conditions suivantes :
1. Si o= ¢, 0 = ¢ et g est cohérente avec R, alors ((P, ¢),(Q, ¢),R) € R?;
2. Si ((P1, ¢1),{Q1, 1), R1) € R, alors pour toute action a = ¢(t), 05,(¢),
0¢,(t), signv,, ou 7, et toute action 8 = c¢;q(%). fig, split,, ou dec;q, nous avons
- si (P, ¢1) = (P, ¢2) et o |= o, alors (P, ¢2),(Q2, ¥), R1) € RE,
oul (7 et Yy sont tels que o = ¥y et (Qq, 1) <, (Q2, ), et a' est telle
que o' = afyy /1] ... [yn/Ts) avec (z;,y:) € Ry
— 81 (Q1, ¥1) = (Q2, ¥o2) et o |= o, alors ((Py, é2), (Q2, ¥}, R1) € R ou
P, et ¢, sont tels que o = ¢ et (P, ¢1) N (Py, ¢9), et
o =aly/x1]. .. [yn/xn) avec (yi, z;) € Ry;
- i (P, 61) = (P, ). alors (P, 62),(Qa, ) Ru[(z,)]) € R
pour toute évaluation ¢ cohérente avec R;[x] telle que ¢’ | ¢, ot Qs et
Yo sont tels que o[x/y] E o et (Qr, ¥1) = (Qo, Wn), et ' = Bly/al;
~ 51 (Qu, ¥r) = (Q2, ¢a). alors (P, 62). (@2 v2), Rul(w,p)]) € R

pour toute évaluation ¢’ cohérente avec R;[z] telle que ¢’ = 15, ou P, et

@9 sont tels que o'[z/y] E ¢ et (P, ¢1) 7z, (P, ¢2), et 3 = Bly/x].
Les processus contraints (P, ¢) et (Q, 1) sont bisimilaires s’il existe une bisimu-
lation entre (P, ¢) et (Q, 1) par rapport & une certaine relation pleine R entre

tv(¢) et fv(y). Dans ce cas, nous écrivons (P, ¢) >~ (Q, ¥).

Notons que si R = {R?}, est une bisimulation, alors ¢ |= ¢ et ¢ |= ¢ dés que
(P, ¢),{(Q, ¥),R) € Re. De plus, p est nécessairement cohérente avec la relation

R.

Définition 4.40. Soit O un critére d’observation. Les processus contraints (P, ¢)

et (Q, 1) sont O-bisimilaires si (P/O, ¢) ~ (Q/O, ). Dans ce cas, nous écrivons
(P, ¢) ~0 (Q, ¥).

Exemple 4.41. Considérons les processus contraints (P, 1) et (Q, 1) avec
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P = ¢(x).0
Q = c(y1)- 0 + c(y2). 0
On a
(P, 1) <5 (0, M(z))
et

(@, 1) 2 0, M(y) et (Q, 1) 2 (0, M(y)).

Nous pouvons constater que (P, 1) ~ (Q, 1). En effet. nous pouvons construire
une bisimulation R entre (P, ¢) et (@, v) par rapport a la relation vide § (car

fv(1) = 0).}2 Une telle bisimulation est donnée par la famille R = {R?}, avec

(P 1),(Q, 1), 0) € R® pour tout o

((0, M(x)), (0, M(y1)), R1) € R® pour tout ¢ telle que o(x) = o(y1)
({0, M(x)), (0, M(yo)), Rs) € R? pour tout p telle que p(z) = p(y2)
R

1= {(z, 1)} et Ry = {(z,12)}.

ou

4.6.2 Correspondance des bisimulations

Le prochain théoréme affirme que I’équivalence de bisimulation entre les proces-
sus contraints SPPA (Définition 4.39) correspond a I’équivalence de bisimulation
entre les processus SPPA (Définition 3.18). Evidemment, ce résultat est valide
seulement lorsque les processus SPPA comparés sont compatibles, donc seulement

pour les processus SPPA clos.

Théoréme 4.42. Soient P des QQ processus clos. Alors, P ~ @) si et seulement si
(P, 1) = (Q, 1).

Démonstration. D’abord. supposons que P ~ () et soit R une bisimulation entre
P et Q. Considérons la famille de relations R’ = {R'?},. ou, étant donnée une
évaluation g, la relation R’ est définie par :

~ pour tout (P, Q') € R, nous posons ({P', 1),(Q', 1),0) € R?;

12La relation vide est pleine par convention.
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= pour tout (P'[o(z1)/z1] ... [o(@n)/n), Q'lo(y1) /1] - - - [0(ym) /ym]) € R, pour
toutes formules ¢ et ¢ telles que fv(¢) = {z1, ...,z } et fv(¢)) = {v1, ..., Ym},
et pour toute relation R C fv(¢) x fv(¢), nous posons ((P', ¢).(Q', ¥),R) €
R’ lorsque ¢ = ¢, 0 = ¢ et p est cohérente avec R.
Dans ce qui suit, nous démontrons que la relation R’ = {R'?}, est une bisimulation
entre (P, 1) et (Q, 1) par rapport & la relation vide R = (). Afin de démontrer
cet énonce, il suffit de voir que chaque relation R'¢ satisfait les conditions de la
Définition 4.39.
1. D’abord, nous voyons que ({P, 1),(@, 1),0) € R'® (car p =1 et p est
cohérente avec la relation vide 0).
2. Soit ((P, ¢1),{G1, Y1), R) € R'®. Nous commencons par constater que
0 F ¢1, 0 E Y1 et p est cohérente avec R. De plus, nous pouvons
supposer que fv(¢1) = {z1,...,zn} et (1) = {y1,--.,Ym}, avec
R C fv(¢1) x tv(¢y1). D’autre part, nous avons (P},Q)) € R, avec
Py = Blo(er)/aa] .- [0wn) /2] et @ = Qulo(y) /sal - [o(m) /o]
Supposons que g = @9 et (Py, ¢1) N (P2, ¢2) avec o’ = T(t), 85,(1), 0%, (1),

signv,; ou 7. Par le Lemme 4.37,
P = Pj

ou Pj = Blo(x1)/z1]. .. [o(xn)/xn] et a = o(a’). Puisque (P, Q) € R, il
existe une transition
Q) — @

telle que (P, Q5) € R, ot @ == Qa[o(y1)/%1] - - - [0(Ym)/Ym). Ensuite, par le

Lemme 4.36, il existe une transition

(@1, 1) =5 (Qa, o)

avec o = o”[o(y1)/v1] - - - [0(Ym) /ym] €t 0 = 2 (par le Lemme 4.38). De plus,

puisque o est cohérente avec K, nous pouvons supposer que
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o = o'y /x].. [yl xn] avee {yl, ...y} = {v1.-- . ym} et (z;,y)) € R.
Ainsi, puisque ¢ = @9, 0 = o et p est cohérente avec R, nous pouvons
constater que ({(Py, ¢2),(Qa, 1¥2), R) € R'?. Le cas ou nous avons une tran-
sition (@, 1) AN (Q2, o) est similaire.

Maintenant, supposons que (P, ¢;) F, (Py, ¢a), avec ' = cig(x), fia, splity,
ou decy, et soit ¢’ une évaluation cohérente avec R[z] telle que ¢’ = ¢,. Par

le Lemme 4.37,
8

P — P
ou 3 = Q(B) et Py = Bld(x)/z][¢'(x1)/x1] ... [0 (zn)/xn]. Puisque

(P}, Q}) € R, il existe une transition
8
Q) — @

telle que (P;,Q5) € R, o Q5 == Qa0 (@)/ulle'(y1)/v1] - - - [¢'(ym)/ym] pouT

une certaine variable y. Par le Lemme 4.36, il existe une transition

(@1, 1) L (Qa, )

avec 3 = B"[d(z)/y] = (8" et o'[x/y] = = (par le Lemme 4.38). Mais
puisque ¢ est cohérente avec R|z|, nous avons que 3 = g”[y/z]. Ainsi,
puisque ¢'[z/y] E ¢, O[x/y] E 12 et ¢[z/y] est cohérente avec R[(z.y)].
nous pouvons constater que ((Py, ¢2),(Q2, ¥2), R[(z,v)]) € R/, Le
cas ou nous avons une transition (Qq, ¥1) £, (Q2, o) est similaire.
Réciproquement, supposons que (P, 1) ~ (@, 1) et soit R = {R?} une bisi-
mulation entre (P, 1) et (Q, 1) par rapport a la relation vide ). Considérons la
relation R’ C D(P) x D(Q) définie comme suit :
- Si((P, 1), (@, 1), §) € R? pour une certaine évaluation p, alors (P', Q") €
R ;



- Si ((P', ¢), (@', ¥), R) € R® pour une certaine évaluation p, alors
(P'lo(z1)/z1]. . - [o(x1)/zn]. Qle(yr)/n] - [o(ym)/ym]) € R’

ou tv(¢) = {x1,...,zn} et V() = {y1, .., Ym}-
Ainsi, il suffit de démontrer que la relation R’ est une bisimulation entre les pro-
cessus P et ().
1. D’abord. nous constatons que (P,Q) € R’ car ((P, 1), (Q, 1),0) € R,
pour toute évaluation p.
2. Soient P| ::= Pylai/z1]...[an/xn] et Q) = Q1[b1/y1] - - [bm/Ym]. pour cer-
tains messages a;,b; € M. tels que (P{,Q]) € R’ Par la définition de
R', il existe une évaluation p, avec o(z;) = a; et o(y;) = b;, telle que
(P, &1), (@1, ¥1), R) € R2 avec fv(¢1) = {x1,.... 2.} et fv(yy) =
{1, --,Ym}- De plus, nous avons g = ¢, 0 = 91 et o est cohérente avec
la relation R.
Soit o = &(t), 85,(t), 05,(t), signv,, ou T, et supposons que P| — P, avec
a = d[o(x1)/x1]. .. [0(xn)/2n] = o(a) et Py = Palo(z1)/x1] ... [0(zn)/xn)].

Par le Lemme 4.36 et puisque fv(¢;) = {x1,...,2Z,}, nous avons
<P17 ¢1> o <P27 ¢2>

avec g = ¢» (par le Lemme 4.38). Mais puisque ({(P1, ¢1), (@1, ¥1), R) €

Re. il existe une transition

(@1, 1) =5 (Qa, o)

pour o = afy/zi]...[yp/zn] avec {yi,...unt = {vr,..o ym} et
(z:,y)) € R, telle que ((P2, ¢2),(Q2, ¥2),R) € R?et o | vo. D'autre

part, puisque g est cohérente avec R, nous avons p(o”) = o(¢) = «. Ainsi,
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par le Lemme 4.37 et puisque o |= ), nous avons
Q@

ou @ == Qafo(y1)/w1] - .- [0(ym)/ym]- De plus, puisque fv(dy) = fv(¢y) =
{z1,..., 2.} et tv(ipe) = tv(¢1) = {y1,...,Ym}. €t puisque que nous avons
(P2, ¢2),(Q2, o), R) € RE nous pouvons constater, directement de la
définition de la relation R'. que (P;,Q3) € R’. Le cas ol nous avons une
transition Q] — Q) est similaire.

Supposons maintenant que P; 2, Py ou B = (la/x] pour une certaine
action 3" = ¢4(z), fia, split,; ou dec,y, et pour un certain processus Pj ::=

Pyla/z][o(z1)/x1] . .. [o(xn)/xn). Considérons I’évaluation o' définie par :
d(x)=a et ¢(z)=p(z) sinon.

Puisque g est cohérente avec R, l'évaluation o est nécessairement cohé-
rente avec Rx], donc S = ¢'(#’). De plus, nous pouvons constater que
P, = Pfo(x)/z][¢ (x1)/x1] ... [¢'(zn)/xs). Par le Lemme 4.36; et puisque

tv(¢1) = {z1,-..,Zs}, nous avons
(Pr, ¢1) <, (P2, ¢2)

avec ¢ = &, (par le Lemme 4.38). Mais puisque ({P, ¢1), (@1, ¥1), R) €

‘R¢, il existe une transition
ﬁll
(@1, 1) — (Q2, ¥2)

avec 6” - ﬁl[y/ﬂ"] telle que (<P27 (/)2)7(@27 ¢2>aR[[(~T,y)]]) € Rg'[ﬂ?/y] et
o'|z/y] | ¢o. D’autre part, puisque ¢ est cohérente avec Rjz], donc ¢’ est
cohérente avec R[(z,y)], nous avons ¢'[z/y|(3") = ¢'[x/y](8) = 5. Posons



o' = ¢'[x/y]. Par le Lemme 4.37 et puisque ¢” = 1». nous avons
Q= @
oi Q5 = Qa[0"(W)/ylle"(w)/w] - - [0" (ym) /ym] avec
o"(y) =a, ¢"(m) = o), -, 0" (ym) = 0(ym)-

De plus, puisque fv(¢s) = fv(¢y) U {z} = {z1,...,xn,x} et fv(¢) =
fV(ZDl) U {y} = {yh ... 7ym7y}3 et pUiSque (<P27 ¢2>7 <Q27 w2>7R|[($7y)]]) €
R¢', nous pouvons constater, directement de la définition de R’, que

. o B o
(Py, Q%) € R'. Le cas ol nous avons une transition Q7 — ()5 est similaire.

]

4.7 Bisimulation symbolique

Dans cette section, nous introduisons une relation de bisimulation symbolique
pour les processus contraints qui se décide en nombre fini d’étapes. Nous montrons
également que cette relation de bisimulation symbolique est équivalente 4 la relation
de bisimulation présentée a la Définition 4.39. Notre bisimulation symbolique peut
donc nous servir de méthode de preuve cohérente et compléte afin de décider de la
bisimilarité de deux processus contraints.

Etant donnés deux processus contraints (P, ¢) et (Q, 1), nous considérons les

ensembles de formules suivants :
E,={¢" | (P, ¢') € D((P, ¢)) pour un certain P'} = {¢1,...,dm}

et
E,={y' | (Q, ¢') € D{Q, ¥)) pour un certain Q'} = {¢1,...,¢Ym}
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tels que

U tv(g;)) = {z1,..., 20} et U ) = {ys- Y b
1<j<m 1<j<m/
Les ensembles de formules F; et E, sont nécessairement finis (modulo la V-équivalence
de formules é) puisque les ensembles D((P, ¢)) et D({Q, )) sont finis par le
Théoréme 4.34.

La relation de bisimulation symbolique que nous donnons ci-dessous est fondée
sur la relation d’équivalence =g, g, sur les évaluations (voir Définition 4.15). Pour
les besions de cette section, nous désignons par [g] la classe d’équivalence [0]g, g,
par rapport a cette relation. Rappelons que la relation =g g, ne possede qu'un
nombre fini de classes d’équivalences. De plus, ces classes d’équivalences sont pré-
servées par rapport a la propriété de cohérence (selon une relation) et a 'opérateur

de substitution de variable.

Définition 4.43 (Bisimulation symbolique). Soient (P, ¢) et (@, v') des pro-
cessus contraints et soit R € MR une relation pleine entre fv(¢) et fv(¢). Une bisi-
mulation symbolique entre (P, ¢) et (Q, 1) par rapport & R est une famille finie

o. telle que chaque relation R4 satisfait les

[=¢

R = {RI4},, pour toute évaluation
conditions suivantes :
1. Sig = ¢, 0 = ¥ et g est cohérente avec R, alors ((P, ¢), (Q, ¥), R) € Rid;
2. Si ((Py, ¢1), (@1, ¢1), R)) € R alors pour toute action a = Tg(t),
55, (t). E(t), signv,; ou 7, et pour toute action 5 = c¢(z), fig, split,; ou
dec,4. nous avons
- si (P, ¢1) = (P, ¢2) et 0 | ¢, alors (P, ¢2),(Q2, o), R1) €
RIA, ot Q et ¢y sont tels que ¢ = v et (@1, Y1) > (Qa, ), et
o = aly1/x1) ... [yn/xn] avec (x;,y;) € Ry
- st (Q1, Y1) = (@2, ¥2) et o | iy, alors ((Py, ¢2), (Q2, ¥o),R1) €
R, ot Py et ¢y sont tels que o = oy et (P, ¢1) == (Ps, o), et
o' = afy1/x1]. .. [yn/zn] avec (y;, 2:) € Ru;
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—si (P ¢1) o (P o). alors (B o) (Q ) Ril(wy)]) €
R/ pour toute évaluation ¢ cohérente avec Ry[z] telle que
J [ 62 00l Qs et ¥y sont tels que g/[z/y] = vy et (Q1, ¢r) 2 (Qa, ).
et 7' = fly/zl;
- si (Q1, Y1) 2 (Qa, Yn), alors ((P, ¢2),(Q2, o), Ril(z.y)]) €
RIE/ML pour toute évaluation o cohérente avec Rj[z] telle que
0 = 19, ou Py et ¢ sont tels que ¢'[z/y] = ¢ et (P1, ¢1) £, (P, &9},
et 8 = Bly/x].
Nous écrivons (P, ¢) ~ (Q, ) si une telle bisimulation symbolique existe entre

(P, ¢) et (Q, v) par rapport a une certaine relation pleine R entre fv(¢) et fv(¢).

Le théoréme suivant nous permet d’affirmer que la bisimulation symbolique
constitue une méthode de preuve cohérente et compléte pour la vérification de la

bisimilarité entre deux processus contraints.
Théoréme 4.44. (P, ¢) ~ (Q, ¥) si et seulement si (P, ¢) >~ (Q, ).
Démonstration. D’abord, supposons que (P, ¢) ~ (Q, v¥), et soit R = {R?}, une

bisimulation par rapport a une certaine relation pleine R entre fv(¢) et fv(¢). Pour

chaque classe d’équivalence [g], nous considérons la relation

RN — U RY .

o'€ld]

En particulier, nous avons R¢ C Rl pour toute évaluation p. 11 suffit de dé-
montrer que la famille (finie) R’ = {R'l¢1}, est une bisimulation symbolique entre
(P, ¢) et (Q, 1) par rapport & R, donc (P, ¢) ~, (Q, ¢). En effet, étant donnée une
classe d’équivalence [g]. nous pouvons constater que R'lel satisfait les conditions
de la Définition 4.43.

1. Si o = ¢, o = 9, et o est cohérente avec R, alors ((P, ¢),(Q, ¢¥), R) € R,

dou ((P, ¢),(Q, ¥), R) € Rl
2. Supposons que ({(P,, ¢1),(Q1, ¥1),R1) € R, avec o = ¢, et o | ¥;.

Alors nous avons ((P;, ¢1),(Q1, ¥1), R1) € R, pour une certaine évaluation
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0 =pE, 0. avec o = ¢ et ¢ = ¢y Ainsi, si (P, ¢;) — (P, ¢2) pour
a = Ta(t), 84(t), 05,(t), signv,, ou 7, et p = ¢y, donc ¢ | ¢, alors il
existe une transition (Q;., 1) -, (@2, o), pour une certaine action o’ =
alyr/z1] ... [yn/2n), avec (x5, 1) € Ry, telle que ({(Py, ¢3), (Q2, ¥,), Ry) € RY
et o' |= 1. Nous avons donc ((Py, ¢2),{Qs, 1), Ry) € RI¢T = Rld et p |= 1.
Le cas oil nous avons une transition (Qy, ;) — (Q2, ) est similaire.

Supposons maintenant que (P, ¢1) N (P, ¢o), pour 3 = ci(x), fig, split,,
ou dec;y, et soit g; une évaluation cohérente avec Ri[z] et telle que g; |=
¢9. Alors il existe une transition (@, ¥1) £, (Q2, 1), pour une certaine
action # = Bly/z], telle que ((Py, ¢2),(Q2, o), Ri[(z,y)]) € RaE/ et
o01[z/y] = 95 De plus, puisque R/ C Rlal=/¥l nous pouvons constater
que ((P2, ¢2),(Qa, ), Ri[(z,y)]) € RIelEM Le cas ot nous avons une

transition (Q1, ¥1) A, (Q2, o) est similaire.

Réciproquement, supposons que (P, ¢) ~ (Q, ¥) et soit R = {Rl4}, une
bisimulation symbolique entre (P, @) et (¢), 1) par rapport a une certaine relation
pleine R entre fv(¢) et fv(¢). Considérons la famille R’ = {R¢}, ot R¢ = RId. Ti
suffit de constater que R’ est une bisimulation entre (P, ¢) et (Q), 1) par rapport a
R. donc (P, ¢) ~ (Q, ¢). En effet, étant donnée une évaluation g, nous démontrons

que la relation R¢ = R4 satisfait les conditions de la Définition 4.39.

1. Si g |= ¢, 0 |= ¥, et g est cohérente avec R, alors ((P, ¢),(Q, ), R) € R4,
dou ((P, ¢),(Q, ¥),R) € R®.

2. Supposons que ((P1, ¢1),{(Q1, V1), R1) € R2, avec ¢ |= ¢; et ¢ |= 1. Alors,
nous avons ({(Py, é1),(Q1, 1), R1) € R4, Par conséquent, si o = ¢, et
(P1, ¢1) = (Pa, ¢2), pour a = Tg(t), 65,(t), &,(¢), signv,y, ou 7, alors
il existe une transition (Q;, 1) -, (Q2, ¥9), pour une certaine action
o = alyi/z1].. . [yn/Tn], avec (z;,y;) € Ry, telle que ((P2, ¢o), (Q2, v2), B1) €
R et o |= 1py. Do, (P2, ¢2),(Q2, 12), Ry) € R2. Le cas oil nous avons
une transition (Q;, 1) —— (Qq, ) est similaire.

Supposons maintenant que (P}, ¢;) L (P2, ¢2), pour 8 = c;g(x), fia. splity,
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ou decyy, et soit p; une évaluation cohérente avec Rz et telle que g1 = ¢s.
Alors, il existe une transition (Q1, ¥;) £, (Q2, o), pour une certaine ac-
tion B = Bly/x], telle que ((Py, &), (Qq, o), Ri[(zx,y)]) € Rlal=/ll et
oilr/y] E o De plus, puisque R&F/Y = Rlal/vll nous avons
(Pa, ¢2),(Qa, Vo), Ri(x,9)]) € Re/4. Le cas ol nous avons une tran-
sition (Qy, 1) 2, (Q2, 1) est similaire.

(]

Le Théoréme 4.44 nous permet donc de construire une bisimulation entre deux
processus contraints a partir de seulement un nombre fini d’évaluations (plus pré-
cisément, une pour chaque classe d’équivalence [g]). Conséquemment, ce résultat
nous procure une méthode de preuve finie afin de décider de la bisimilarité des

processus contraints.

Exemple 4.45. Considérons les processus A et B définis comme suit :
Av=c(z). A, A i=c(xy).A et B:u=c(y).B

avec idy = idp = id. La sémantique symbolique des processus contraints (A4, 1)
et (B, 1) est illustrée a la Figure 4.8. Dans cet exemple, nous démontrons que
ces deux processus contraints sont bisimilaires. Par le Théoréme 4.44, il suffit de
construire une bisimulation symbolique entre (A, 1) et (B, 1) par rapport a la
relation vide R = §. Du coup, nous pourrons conclure que les processus SPPA A
et B sont bisimilaires (par le Théoréme 4.42).

Tout d’abord, nous considérons les ensembles formés des formules apparaissant,

respectivement, dans D({A, ¢)) et D((B, ¥)) :
El = {17 M(xl)v M(xl) AM(x2)} et E2 = {17 M(y)}

De plus, il suffit de considérer les ensembles de variables {z;, 25} et {y}. Puisque ces

formules sont satisfaites par toute évaluation, il n’y a que cing classes d’équivalence
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(A, 1)@ (A May)) 2422 (A, M(21) A M(z2))

cia{®1)| [cialr2)

(A", M(z1) A M(z2))
(B, 1)24®) (B, M(y))2a2,

FIG. 4.8 — Sémantique symbolique de (A, 1) et (B, 1).

par rapport & la relation =g, g,, & savoir celles qui couvrent tous les cas ou les

variables prennent exactement les mémes valeurs ou des valeurs différentes :

T2), o(71) # o(y) et o(x2) # 0(y)},
T2) et o(x1) # o(y)},

loilpr = {o! o(z1) # o
(
(y) et o(x1) # o(x2)},
(
(

[e2]me. = {0l o(z1) =
[[Q3]]E1E2 {Q | Q(Tl) o
lodee, = {ol]o(z1) # 0
los]e, = {o]o(z1)=0¢

14
e

T) et o(z2) = 0(y)}, et
T3) = o(y)}-

Notons que nous avons [g;[z1/y]]g, e, = [e:ly/z1)] B B, = [03] 5 E, POur @ € {1,3},
[[Qi[',l;l/y]]]ElEQ - Hgi[y/xlmElEQ = [[95]]19152 pour ¢ € {27475}7 l[Qi[:L'Z/yH]ElEz =
lodly/z2)lpp, = leslpp, pour i € {1,4}, et [ailz2/yl]pe. = [oily/z2]leE, =

los) g B, pour i € {2,3,5}.
Pour toute classe d’équivalence [g¢;]g, g, les étapes de la construction de la

relation RI¢1E: 22 sont illustrées & la Figure 4.9. En bref, pour chaque classe lo:] e, Es
nous devons parcourir les conditions imposées par la Définition 4.43 et déterminer
quels couples de dérivées de 'ensemble D({A, 1)) x D((B, 1)) doit appartenir a
la relation RI%}=22 de méme que la relation R qui lie leurs variables libres. La
procédure de construction de ces relations est présentée de facon plus détaillée dans
ce qui suit.

Pour la classe [¢1]g, g, : nous ajoutons d’abord le triplet ({4, 1),(B, 1),0) ala

relation RI2:1= 52 Ensuite, puisque le processus contraint (A4, 1) peut exé-



Rlels &,

|D({4, 1))

| D((B, 1))

| 2]

A1

[ (B

1) [0]

aller aux relations RI®IEiE; o Rleslep,

RHQZ]]ElEz

| D({4, 1)) [D((B, 1))

3

| (A1)

[ (B

1)) 0]

aller aux relations RIelE B g RIoslm 5,

Rlesle; k,

| D({A, 1))

R__|
0

(4, 1)
(A, M(z1))

(A", M(z1) A M(z2))

(B, M(y)))

{(ZL’], y)}
1(21,9)}

aller aux relation Rlelss of Rloslz s,

Rledls &,
[ DAL _[P(BIN] _E_]
@ 1) B, 1) | 0
(4, M(z:) AM(@2)) | (B, M(y)) | {(z2,9)}

aller aux relations RIeslEiE ¢ RleslE 5,

Rlesle, &,

(D5,

1) |

(B,

1)

)
Y))
)

(B, M(
(B, M(
(B, M(y))
)

(v
( My

F1G. 4.9 - Bisimulation symbolique de (A4, 1) et (B, 1).
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cuter 'action d’entrée c¢;4(x1), nous devons vérifier que (B, 1) peut simuler
cette action d’entrée avec sa propre action c¢;4(y), ou z; correspond a y. Mais
puisque les évaluations g3 et ps sont toutes deux cohérentes avec la relation
{(z1,¥)}, nous devons ajouter ((A’, M(z1)),(B, M(y)),{(x1,9)}) a la re-
lation RIe1eiE2 et 4 la relation RI%15E:. De facon analogue, la simulation
de T'action d’entrée c;q(y) de (B, 1) par l'action d’entrée c¢;4(z;) de (A, 1)
nécessite le méme ajout aux relations RI®lEE: o Rle)E B,

Pour la classe [o;]z , : Nous ajoutons d’abord ((4, 1), (B, 1).0) a Rlelm s,
Comme c’était le cas pour la classe [¢1]g, 5,. nous devons ensuite ajouter
le triplet ((A’, M(z1)),(B, M(y)),{(z1,y)}) aux deux relations RI¢l =
(déja présent) et RIesizir: (déja présent).

Pour la classe [03]g, 5, : Nous ajoutons d’abord ((A, 1).(B, 1),0) a Rleslers,
Comme les autres classes ci-dessus, nous devons aussi ajouter le triplet
(A", M(z1)), (B, M(y)),{(z1,y)}) aux relations RIe1=:15: (déja présent)
et Rloslers: (deja présent). L'ajout de ((4', M(z1)), (B, M), {(x1,y)}) a
la relation Rlesleiz, (imposé par les autres relations) nécessite 4 son tour la
bisimulation de I'action d’entrée c;4(x5) provenant de (A’, M(z;)) par l'action
d’entrée c;4(y) provenant de (B, M(y)), par rapport a la relation {(xs,y)}.
D’on, puisque seules les évaluations g4 et g5 sont cohérentes avec la rela-
tion {(x2,y)}, nous devons donc ajouter aux relations RIelE 5 e Rlesls 5,
le triplet ((A, M(z1) A M(z2)), (B, M), {(z2,9)}). Dautre part, ajout
de (A, M(z:) A M(22), (B, M()), {(1.)}) & RIedez: (imposé par re-
lation RI¢lz1%2) nécessite la bisimulation de l'action d’entrée cig(x2) pro-
venant de (A, M(z1) A M(z2)) par I'action d’entrée ¢;4(y) provenant de
(B, M(y)), par rapport a la relation {(z2,y)}. Nous devons donc ajouter le
triplet ({4, M(z1) A M(x2)), (B, M(y)), {(x2,7)}) aux relations RIel=: =,
(déja présent) et RIesleim (déja présent).

Pour la classe [o4]z, =, : Nous ajoutons d’abord ({4, 1), (B, 1),0) a Rlelsz,,

Comme les autres classes ci-dessus, nous devons ensuite ajouter le triplet
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(A, M(x1)), (B, M(y)),{(z1,9)}) aux relations RI=lzz (déja présent)
et Rlesleie: (déja présent). L'ajout, imposé par la relation RIeslzis: | de
(A, M(21) A M(22)), (B, M(y)),{(z2,%)}) & la relation RI¢l&15: nécessite
la bisimulation de 'action d’entrée c;y(z;) provenant de (A, M(x1) AM(xs))
par laction d’entrée c;4(y) provenant de (B, M(y)), par rapport a la rela-
tion {(x1,y)}. Puisque les évaluations g3 et g5 sont cohérentes avec la relation
{(z1,y)}, nous devons ajouter ({A’, M(z1) N M(x2)), (B, M(y)),{(z1,9)})

aux relations Rl z; of Rlosls 5

Pour la classe [gs]g, 5, : Nous ajoutons d’abord ({4, 1),(B, 1),0) a Rlesle s, |
Comme les autres classes ci-dessus, nous devons aussi ajouter le triplet
(A, M(z)), (B, M(y)),{(z1,9)}) aux relations Rleslziz> (déja présent)
et Rlesleies (déja présent). Ce dernier ajout a RI®IEie: nécessite la bisi-
mulation de Iaction d’entrée c;q(x3) provenant de (A’, M(x;)) par l'action
d’entrée ¢;4(y) provenant de (B, M(y)), par rapport a la relation {(z2.y)}.
Mais puisque les évaluations g4 et g5 sont cohérentes avec la relation {(z2,y)}.
nous devons ajouter le triplet ((A, M(z1) A M(z2)),(B, M(y)),{{z2,9)})
aux relations RI%IE 22 (déja présent) et RIeslsi2. (déja présent). Cette dernier
ajout a RIeslEim: pécessite ensuite un bisimulation des processus contraints
(A, M(z1) N M(z2)) et (B, M(y)), donc de leur action d’entrée respective
cia(r1) et ¢q(y) par rapport a la relation {(z1,y)}. Mais puisque les évalua-
tions g3 et g5 sont cohérentes avec la relation {(z1,y)}, nous devons ajouter
le triplet ((A’, M(z1) AM(z2)), (B, M(y)),{(x1,y)} aux relations RIeslzz
(déja présent) et RIeslm5: (déja présent).

Cette procédure s’arréte (avec un succes) lorsque tout triplet ((P, ¢),(Q, ¥),R) a

été traité, sans aucune contradiction, pour toute relation RI%E:5: telle que g est co-

hérente avec R. Dans notre exemple, la procédure de construction de la bisimulation

s’arréte car tous ces triplets ont été ajoutés, sans obtenir de contradiction, lorsque
5

prescrit. Nous obtenons ainsi la bisimulation symbolique R = U{R’[Qi]]El%}, avec

=1
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{ (A, - 1),0)
Rleleies —{ ((4, 1),(B, 1),0)
Rlesle, £, ={ ), 0)

(«
Rleslee: ={ ((A, 1),(B, 1),0), ({4, M(21) A M(z2)), (B, M(y), {(z2,9)}) }
Rleslsie ={ ((A, 1),(B, 1),0), (4, M(z1)), (B, M), {(z1,9)})

((A, M(z1) A M(z2)), (B, M(y)), {(z2,y)})

((A, M(a1) A M(x2)). (B, M(y)), {(z1.9)}) }-

4.8 Discussion

Nous avons présenté dans ce chapitre un modéle de spécification symbolique
pour l'analyse de protocoles de sécurité. Ce modéle est basé sur une algébre de
messages qui fbrmaliée les principales primitives cryptographiques et sur une lo-
gique dont les termes atomiques sont ceux de notre algébre de messages. Nous
avons introduis la notion de processus contraint qui correspond a un couple formé
d’un processus SPPA et d’une formule. Ils permettent une spécification explicite de
la génération de valeurs symboliques, tels des nombres aléatoires, des nonces frais et
des messages forgés. Nous démontrons que la sémantique des processus contraints
correspond & des graphes de transitions finis, et sur lesquels nous établissons une
équivalence de bisimulation. En outre, nous démontrons que cette équivalence de
bisimulation est une généralisation de I’équivalence de bisimulation pour les proces-
sus SPPA. De plus, nous présentons une méthode de preuve cohérente et compléte,
appelée bisimulation symbolique, qui permet de décider si deux processus contraints
sont bisimilaires.

La principale différence entre notre approche et celle de Hennessy-Lin 7] réside
dans le graphe de transition symbolique : dans notre modéle symbolique, nous as-
signons a chaque état (processus) une formule qui offre une description précise des
variables présentes dans le processus, tandis que le modéle symbolique de Hennessy-

Lin nécessite une formule obtenue en considérant tous les chemins menant & I'état
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(processus). Notre modéle symbolique fut développé avec un objectif d’analyse de
protocoles de sécurité en téte — il est donc essentiel d’avoir une description détaillée
des valeurs symboliques a un moment précis du protocole afin d’augmenter Ieffica-
cité de Vanalyse. En effet, 'analyse de protocoles de sécurité requiert fréquemment
une vérification des effets de I'introduction de valeurs aléatoires (par exemple, un
message forgé envoyé par un intrus) sur certains participants du protocole. Dans ce
contexte, notre notion de processus contraint nous permet d’identifier directement
ces valeurs aléatoires qui pourraient mener a une attaque. Par exemple, 'analyse
d’un protocole contre les attaques de DoS nécessite généralement de vérifier si un
message forgé envoyé par un intrus peut engendrer I'exécution de fonctions coi-
teuses en terme de ressources (telles le décryptage de données ou la vérification
d’un message signé). Dans ce cas, une stratégie d’analyse basée sur les processus
contraints consiste a vérifier, pour tout processus contraint obtenu a la suite d’une
telle action coiiteuse, les restrictions imposées par formule sur la variable qui re-
présente le message forgé : si tous les messages forgés satisfont la formule, alors
nous pouvons conclure que le protocole est incapable de détecter et contrer une
session frauduleuse: si la formule est satisfaite seulement par un petit nombre de
messages, alors nous pouvons conclure que le protocole est sécuritaire car la ma-
jorité des attaques initiées par un intrus auront été préalablement détectées. Une
méthode similaire qui permet de détecter si un protocole est vulnérable face aux
attaques de DoS est présentée au Chapitre 6.

De fagon plus générale, les méthodes d’analyse de protocoles sécurité que nous
présenterons dans les prochains chapitres sont essentiellement fondées sur une mé-
thode d’équivalence-checking. L’idée principale derriére cette approche consiste a
vérifier si le protocole se comporte toujours correctement lorsque confronté a un
environnement hostile. Dans le contexte de notre modéle symbolique, étant donné
un processus contraint (P, ¢p) spécifiant le protocole, il suffit grossiérement de
vérifier si le protocole attaqué, spécifié par le processus contraint (Pg, ¢p,), est
équivalent au protocole non attaqué, c’est-a-dire (P, ¢p). Nous utilions la relation

de O-bisimulation (Définition 4.40) afin de comparer ces deux processus contraints.
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De facon générale, toute méthode d’équivalence-checking basée sur une équi-
valence de bisimulation se transfére dans notre modéle symbolique : il suffit de
remplacer les processus comparés, disons P et (). par les processus contraints cor-
respondant, (P, 1) et (Q, 1). Ainsi, la méthode qui requiert la vérification P ~ )
devient celle ou l'on doit vérifier (P, 1) ~ (@, 1). De plus, le théoréme 4.42 nous
permet de conclure que la méthode obtenue équivaut la premiére. En outre, cette
nouvelle formulation nous permet maintenant de vérifier des processus infinis. Du
coup. nous obtenons un autre argument en faveur de 1'utilisation d'une méthode

d’ équivalence-checking comparativement & une méthode de model-checking.
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CHAPITRE 5

VALIDATION DE PROTOCOLES DE SECURITE

L’un des principaux objectifs dans le domaine de la validation de protocoles de
sécurité consiste 3 développer des algorithmes, communément appelés méthodes de
preuve, cohérents et complets qui permettent de vérifier automatiquement si un
protocole satisfait une certaine propriété de sécurité. L'utilisation d’une méthode
de model-checking nécessite généralement une logique & partir de laquelle nous
obtenons une spécification de la propriété de sécurité. Cette derniére est ensuite
vérifiée a l'aide d'une procédure de décision propre a la logique. Il ¥ a une grande
variété de logiques qui permettent la spécification de propriétés sur les graphes de
transitions (automates) et celles-ci différent les unes des autres essentiellement au
niveau du type de propriétés qu’elles peuvent exprimer. (Plusieurs de ces logiques
sont recensées par Arnold [12].) Le p-calcul, vue comme une extension de la lo-
gique de Hennessy-Milner %, est une logique qui permet d’exprimer les propriétés
de sécurité en terme des traces d’un processus. Une classification des propriétés
définissables dans le p-calcul en terme de propriétés de préservation (safety) et
de vivacité (liveness) fut proposée par Lamport [73] Cependant, il s’avére que ces
propriétés de préservation et de vivacité ne sont pas suffisamment expressives pour
spécifier certaines propriétés de sécurité, tout particuliérement les propriétés de
non interférence.

L’idée centrale derriére les méthodes basées sur la non interférence consiste, brié-
vement, a3 démontrer qu'aucun intrus ne peut interférer avec un protocole. Dans
cette thése, nous présentons un raffinement de ces méthodes obtenu en considérant
certaines interférences comme étant admissibles, par exemple I'interférence causée
par le cryptage de données. Ce type d’interférence admissible s’exprime simple-
ment en identifiant les actions de déclassification qui correspondent aux actions de
cryptage (appels de fonction) qui se produisent lors de 'exécution du protocole.

Notre méthode. qui est basée sur l'interférence admissible, nous procure deux types
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d’avantages sur les autres méthodes basées sur la non interférence. En effet, dans
certains cas, notre méthode permet une analyse des flots d’information d’un proto-
cole sans pour autant avoir & étendre notre algébre de processus & 'aide de régles
de déductions paralléles afin d’exprimer les manipulations cryptographiques. Dans
d’autres cas, notre méthode nous permet de mettre au rebut certaines interférences
inoffensives. c¢’est-a-dire qui ne correspondent pas a des attaques réussies, lors de la
phase de spécification du protocole ; ceci nous évite d’effectuer un dépistage manuel
des résultats de la procédure de vérification.

Dans ce chapitre, nous introduisons la propriété d’interférence admissible non
déterministe par bisimulation (BNAI) qui admet une caractérisation algébrique
basée sur le concept de O-bisimulation. Nous démontrons également un résultat
relatif & la compositionalité de BNAI par rapport aux principaux opérateurs de
SPPA. D’autre part, nous démontrons que la propriété BNAI, de méme que la plus
part des propriétés de non interférence, ne sont pas définissables dans le p-calcul.
Ce résultat constitue donc un important argument en faveur de l'utilisation de mé-
thodes d’équivalence-checking pour la vérification de ce type de propriétés de flots
d’information. En effet, une alternative basée sur une méthode de model-checking
requiert la lourde tache de développer une nouvelle logique pour la spécification des
propriétés de sécurité (car nous ne pouvons pas utiliser le p-calcul) et de nouveaux
algorithmes de vérification pour celles-ci. L’approche « équivalence-checking », pour
laquelle nous avons optée dans cette thése, nous permet donc de réutiliser le concept
naturel de bisimulation afin de vérifier la propriété BNAIL. De plus, cette approche,
contrairement & une approche basée sur une nouvelle logique, s’étend trés facile-
ment & notre modéle symbolique.

La propriété BNAI fut initialement présentée dans [*4. Cette publication contient
également une bréve présentation de la méthode de preuve par décomposition as-
sociée & BNAI La démonstration que BNAI n’est pas définissable dans le p-calcul

est originale a cette theése.
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5.1 Non interférence forte non déterministe par bisimulation

Etant donné un processus P et deux sous-ensembles disjoints K et L de l'en-
semble Vis des actions visibles, nous disons que K cause de interférence sur L
(dans le processus P) §'il existe des actions de K qui provoquent (dans P) l'oc-
currence d’une action provenant de L qui ne se serait pas produite autrement.
Par exemple, de la Figure 5.1 nous pouvons constater que l'action «; cause de

I'interférence sur 'action o dans le processus (. mais pas dans le processus P.

pP_ Y1, p_%.0 Q-2,. 0%, 0

05)
F16G. 5.1 — Hlustration de Vinterférence.

La prochaine formulation de la non interférence (par rapport aux ensembles L
et K) exige qu'un processus soit Op-bisimulaire au processus obtenu en retirant
les actions de K, de fagon a interdire toute corrélation entre les comportements

provenant de K et ceux provenant de I.

Définition 5.1 (Non interférence forte non déterministe par bisimula-

tion). Le processus P satisfait BSNNI si
P =0, P \ K.

Cette définition nous procure une caractérisation algébrique de BSNNI basée
sur la Op-bisimulation que nous pouvons facilement adopter comme méthode de

vérification pour BSNNI.

Remarque 5.2. 1] est important de noter que lorsque K correspond a l’ensemble
Hi des actions visibles de haut-niveau et L correspond a 'ensemble Lo des actions

visibles de bas-niveau, nous pouvons démontrer, a ’aide de la Proposition 3.20 et de
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la Définition 5.1, que la propriété BSNNI coincide avec la bisimulation-based strong

non-deterministic non-interference telle que proposée par Focardi & Gorrieri 142,

Exemple 5.3. Considérons les processus P et () dont la sémantique est illustrée
a la Figure 5.1 (de la page 111). avec a; € K et ay € L. Nous démontrons que le
processus P satisfait BSNNI et que le processus @ ne satisfait pas BSNNI. Pour ce,
nous devons déterminer si les processus P et P\ K (respectivement @ et Q\ K) sont
O;-bisimilaires. Considérons tout d’abord la Figure 5.2 qui contient la sémantique
du processus P\ K ainsi celles des processus P/Op et (P\K)/Oy. observés selon le
critére d’observation Or. (Notons que pour ces deux derniers processus, nous avons
omit des transitions 7 qui bouclent pour tout état du graphe.) Directement de la sé-
mantique des processus P/Op et (P\ K)/Op, nous pouvons conclure que P satisfait
BSNNI car
P/Op ~(P\K)/Op, donc P ~p, P\ K.

P\ K P/O;, TP /O, 22,.0/0, (P\K)/Oy
.
Qi (€3] o (85)

0\ K 0/0, (0\ K)/O
FI1G. 5.2 — Sémantique des processus P\ K, P/Op et (P\ K)/Oy.

Considérons maintenant le processus (). Nous commencons par constater que
la sémantique de @ \ K peut exécuter aucune transition, d’ou @ \ K ~ 0. Il en
sera de méme pour le processus observé (Q\ K)/Oy, c¢’est-a-dire (Q\ K)/Op ~ 0.
D’autre part, de la sémantique du processus ¢/Op qui est illustrée a la Figure 5.3,
nous pouvons clairement constater que Q/Op # 0, d'oit Q/Or # (Q\ K)/Oy et
Q #0,@ \ K. Par la Définition 5.1, nous pouvons donc conclure que le processus

Q ne satisfait pas BSNNI.
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QIO T~ QI/OL%O/OL

a2

F1G. 5.3 — Sémantique du processus (Q \ K)/Or.

5.2 Interférence admissible non déterministe par bisimulation

Etant donné un ensemble I' C Vis d’actions de déclassification, I'interférence
admissible fait référence a la propriété de flots d'information qui exige qu'un sys-
téme admette des flots d’information provenant de comportements de K et qui
influencent les comportements observables de L seulement & travers des actions
de déclassification. Mullins 8] a proposé une formalisation de cette propriété qui
exige que tout processus dérivé du processus initial et n’exécutant aucune action de
déclassification doit satisfaire la non interférence. Plus précisément, un processus P
satisfait la non interférence intransitive (voir Section 2.4.2), si les processus P'\T
satisfont la non interférence pour toute dérivée P’ € D(P). Lorsque nous refor-
mulons en utilisant BSNNI comme propriété de non interférence, nous obtenons la

propriété d’interférence admissible non déterministe par bisimulation (BNAI).

Définition 5.4 (Interférence admissible non déterministe par bisimula-

tion). Le processus P satisfait BNAI si
Vp/ep(p) P/\F ~o, P,\(F U K)

Grace a cette caractérisation algébrique de BNAI basée sur la Op-bisimulation,
la démonstration qu’un processus P satisfait BNAI se raméne & construire, pour
chaque dérivée P’, une O;-bisimulation entre P’ \ IT" et P’ \ (I' U K). Lorsque
le graphe de transitions associé au processus P est fini, cette procédure peut étre

accomplie automatiquement.

Exemple 5.5. Considérons le processus P dont la sémantique est illustrée a la

Figure 5.4, avec a; € K, as € L et § € I'. Nous pouvons constater que le processus
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P satisfait BNAIL Pour ce, nous considérons la sémantique du processus P\ T, et
de ses dérivées, qui est illustrée a la Figure 5.5, et celle du processus P\ (I'U K),
et de ses dérivées, qui est illustrée a la Figure 5.6. De ces deux Figures, nous
pouvons constater que P'\T' ~o, P\ (I' U K') pour toute dérivée P’ € D(P) =
{P, P, P, P3, 0}. En effet, la relation

R={((P'\T)/Or, (P\(TUK))/O) | P' € D(P)}

est une bisimulation entre (P'\ T')/Or et (P’ \ (I' U K))/OL, pour toute dérivée

P’. Ainsi, par la Définition 5.4, nous pouvons conclure que le processus P satisfait

BNAL

pa,p B . p ap aqg
Qo

0

Fi1G. 5.4 — Sémantique du processus P.

P\T-Y.P\T B \T-%LP\T-22.0\T
0121

0\T

F1G. 5.5 — Sémantique du processus P\ I

P\(TUK) P\(TUK) PR\TUK) P\TUK)-%2.0\( U K)

0\ (T"'UK)
FIG. 5.6 — Sémantique du processus P\ (I' U K).



5.3 Meéthode de preuve par décomposition

Dans cette section, nous démontrons la compositionalité de BNAI par rapport
aux principaux opérateurs de SPPA. Tout d’abord. nous avons besoin de la pro-
chaine proposition qui étend un résultat obtenu par Milner Y pour CCS a notre
algébre de processus SPPA. Cette proposition nous assure que la bisimulation forte
est une congruence par rapport aux opérateurs de protocole, de produit paralléle,

de restriction et d’observation.

Proposition 5.6 (Congruence). Soit L C Vis. §i P, ~ @y et Po ~ Q2, alors

L PP~ QlQ;
2. P|P, = 1]Q2;
9 P\L ~ Q:\L;
4. P1/OL ~ @/Oy.

Démonstration. Considérons tout d’abord des relations de bisimulation R; et R,

entre, respectivement, les processus Py et ()1, et les processus P; et (.

1. Afin de démontrer cet énoncé, il suffit de voir que la relation

R = {(P £ Q@) Q)€ Ry et (P;,Q3) € Ry}
U {(PI#F;, Q1#Q,) | (P,Q)) € Ry et (F;,Q3) € Ry}

est une bisimulation entre les processus Py || P, et Q; || Q2. D’abord, nous
remarquons que (P || P», @Q: || Q2) € R car (P1,Q1) € Ry et (P,Q2) € Rs.
Soit (P || Py, Q7 || @3) € R, d’ou (P, Q}) € Ry et (Py, Q%) € Ro. Supposons
que P] || P, = P et o n'est pas une action de marquage. Dans ce cas,
nous pouvons supposer que P/ — P} avec P = P} || P;. Mais puisque
(P,,@%) € Ry, il y a une transition Q) — QY avec (P/,Q}) € R;. D’ou
LIl Q- QU 1| @ avee (P Il P @111 Q3) € B.
Considérons maintenant le cas ol « est une action de marquage. Suppo-

&
sons d’abord que P| || P ale) P, pour certains c € C, id € T et a € M.
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Dans ce cas, nous devons avoir P = P/#F, et nous pouvons supposer que
P = s P” t P “u (§) Py. Pulsque (P{,Q7) € Ry et (P5.Q5) € Ry, nous
avons Q’ i Q” et Q) “— culy) cavec (P, Q) € Ry et (Py,Q4) € Ry. D'ou
Q1 l Q2 Q’#Q2 avec (P’#PQ’, Q3 #@5) € R. Finalement, supposons que
P/#P; *— %) P, pour certains ¢ € C id € T et a € M. Alors nous pouvons
supposer que P| “— | P” et Py — Gale, P” avec P = P} || Py. Comme ci-dessus,
nous pouvons conclure qu’il existe une transition Q#Q5 ~— le) 1|l Q% avec
(P"|| P!, Q"] Q%) € R. Le cas ot nous avons une transition Q) || Q — Q

(ou Q,#Q) - Q) est similaire, ce qui compléte la preuve cet énoncé.
. La démonstration de cet énoncé se déduit facilement de celle de 'énoncé (1).

. Nous démontrons que la relation
R={(P\L, Q\1)|(F,Q)) € R}

est une bisimulation entre les processus P, \ L et Q; \ L. Premiérement,
nous constatons que (P, \ L, @1 \ L) € R car (P,Q1) € R;. Ensuite,
considérons (P} \ L, @} \ L) € R et supposons que nous avons une tran-
sition P/ \ L =%+ P. Dans ce cas, nous avons o & L et P| — P/, avec
P = P!\ L. Puisque (P/,Q)) € Ry, il y a une transition Q) — Q7 avec
(P,Q") € Ry. D'ou @\ L - Q;\ L, avec (P,Q/\ L) € R. Le cas ol nous

oy (23 . . -
avons une transition @] \ L — @ est similaire.

. Pour cet énoncé, il suffit de démontrer que la relation
R={(P[/O, Q}/OL) | (F,Q}) € R1}

est une bisimulation entre les processus P;/Op et Q1/Or. Tout d’abord,
nous voyons que (P1/Or, Q1/O0L) € R. Considérons (P;/Op, Q1/0L) € R,
done (P!,Q}) € R,, et supposons que P//O; — P}'/Or. Alors, il existe
un caleul P! —= P! avec o € Op(7). Par la Proposition 3.13, nous avons

P 2L P 25 Plavecy =a;...a. ..o et a; € L (sauf pour o). Puisque
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(P}, Q%) € Ry. le processus peut simuler ce calcul, d’ott Q] Q.. QY
pour certains processus Q; tels que (P, Q;) € Ry et (P, Q) € R;. Ainsi,
nous avons Q) —— QY avec (P/,Q7) € Ry. D'on Q,/0; — Q}/Oy avec
(P!'/Op, Q%/OL) € R. Le cas oli nous avons une transition Q;/O0; — Q}/O.
est similaire.

O

Dans la prochaine définition, nous considérons une propriété de fermeture sur les
ensembles d’actions qui est nécessaire aux résultats de compositionalité présentés

plus loin.

Définition 5.7. Soit L C Vis. L’ensemble L est fermé par rapport ¢ la communi-

cation si
Veee Vaem Vidizer Tala) €L & cala) €L & 5_31(0) €L & 0jy(a) € L.

La prochaine proposition nous permet d’établir la compositionalité de I'opéra-
teur de restriction sur les opérateurs de protocole et de produit paralléle, et une
forme faible de compositionalité de 'opérateur d’observation sur ces mémes opéra-
teurs.

Proposition 5.8 (Compositionalité). Soit L C Vis un ensemble fermé par
rapport & la communication. St P, ~ ¢ et Py >~ (o, alors

L (P P\NL = (@\L) | (Q\ L)

2 (PPN L ~ (@ \L)(Q2\L).
(Pl H PZ)/OL Zfaible (QI/OL) ” (Qz/OL)-
(

Pi|P2)/Or ~paiple (Q1/0L)[(Q2/OL).

3.
4.

Démonstration. 1. Afin de démontrer cet énoncé, il suffit de montrer que

(Pl P\NL = (A\L) || (R2\ L) (5.1)
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car (PL\L)|| (R\L) ~ (@Q1\L) ] (Q2\ L) par les énoncés (1) et (3) de
la Proposition 5.6. Afin d’établir la bisimulation 5.1, nous démontrons que la

relation
R={((P || P)\L, (PI\L) || (P;\L))| Pl € D(P) et P, € D(P,)}

est une bisimulation entre les processus (P || P2)\ Let (PL\L) || (P \L).
Nous commencons par constater que ((P || )\ L, (P \ L) || (2\ L)) € R.
D’autre part, pour toutes dérivées P et F,, si nous avons une transition
(P} || P)\L = P, et a n'est pas une action de marquage, alors nous
pouvons supposer que P] —— P/ avec P = (P} || P;)\ L. Puisque o & L,

nous avons P, \ L — P/'\ L, donc
(PINL) 1 (PN L) — (P\ L) || (P\ L)

avec ((P/' | )\ L, (F'\ L) || (F;\ L)) € R.

Supposons mixintenant que « est une action de marquage, dol
(Pl PONL S (PP \ L ou (PR \ L ") (P! || PY)\ L. avec
E(a),éfd,(a) ¢ L. Dans ce cas, nous pouvons supposer que P cuale) P/ et
P a(§) Py, avec ¢i4(a), cio(a) € L car L est fermé par rapport a la commu-
nication. Ainsi, nous voyons que P, \ L fule) P/\Let PJ\L ) Py \ L.
D’ou, .

(P\L) | (P\ L) "5 (P \ L)#(P;\ L)

ou
(P\ND#(PN L) =S (B L) | (BY\ L),

Le cas ot nous avons une transition (P \ L) || (P, \ L) = P est similaire.

2. La preuve de cet énoncé se déduit facilement de celle de I’énoncé (1).
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3. Afin de démontrer cet énoncé. il suffit de montrer que
(P || P2)/Or = (P1/OL) || (P2/OL) (5.2)

car (P/OL) || (P2/O1) = (Q1/O1) || (Q2/Oy) par les énoncés (1) et (4) de
la Proposition 5.6. Afin d’établir la bisimulation 5.2, nous démontrons que la

relation
R={((P || P,)/OL, (P{/OL) || (P;/OL)) | P{ € D(P,) et P, € D(P,)}

est une bisimulation faible entre les processus (P || FP)/OL et
(Pi/OL) || (P/Or). Tout d’abord, nous pouvons facilement voir que
(P || P.)/Or, (Pi/OL) || (P,/OL)) € R. Considérons ensuite un couple
(P )| P3)/OL, (P{/OL) || (P3/OL)) € R, avec P| € D(Py) et Py € D(P»), et
supposons que nous avons une transition (P! || Py)/Op — P, ot a n’est pas
une action de marquage. Dans «ce cas, il existe une calcul
(Pl || Py) =5 (P || PY) avec oo € O(y) et P = (P} || Py)/Oy. Ainsi, il existe
des calculs P, - P} et P} -2 Py tels que 7, et v, sont des sous-suites dis-
jointes de -y dans lesquelles les actions de marquage ont été remplacées par les
actions de sorties/entrées correspondantes. De plus, I'action « est présente
soit dans 7, soit dans 7,. Nous pouvons donc supposer que a € O(v;) et
€ € O(y2) (donc 7 € O(7,)), puisque L est fermé par rapport a la communi-
cation (d’ol 7, et 2 ne peuvent contenir aucune action de sortie/entrée pro-
venant L). Ainsi P]/Op — P/'/Oy, et P;/Or — Py /O;. Nous avons donc
(P{/OL) || (B/OL) == (P!/O) || (Py/OL), d’ou

(P{/O1) || (P3/O1) == (P{/OL) || (P5/OL).
Supposons maintenant que nous avons une transition (Pj || P;)/Oy %) p
avec P = (P/#P;)/OL et 6(a) € L. Comme ci-dessus, nous pouvons

supposer que P/ 2 P/ et Pj =2+ Py, avec 7, et 7y, des sous-suites de 7y telles
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queTiy(a) € O(m) et cigr(a) € O(vq). De plus, puisque L est fermeé par rapport
ala communlcatlon nous avons Gy(a), ¢;e(a) € L. D'on P}/Op = cudla P” /Or

et P}jOL “Y PLJOL. Done (P/Oy) || (P/OL) (P"/OL) I (F7/Or).
Le cas ou nous avons une transition (P;/Op)#(P;/OL) — Galay (P || Py)/Or
est similaire au cas précédent. De méme, la démonstration est analogue dans
le cas oil nous avons une transition (P;/Oy) || (Py/OL) — P.

4. La preuve de cet énoncé se déduit facilement de celle de I'énoncé (3).
g

La démonstration du Théoréme 5.11 nécessite le prochain corollaire qui établi
la compositionalité des opérateurs de restriction et d’observation sur les opérateurs

de protocole et de produit paralléle.

Corollaire 5.9. Soient P et () des processus et soient L et I' des sous-ensembles

d’action visibles fermés par rapport @ la communication. Alors nous avons
1L (PI\D)/Or =ame (PNT)/OL) | ((Q\T)/OL).
2. (PIQ\T)/Or Zgaime (P\T)/OL)I((Q\T)/OL);

Démonstration. Nous démontrons seulement le premier énoncé car la démonstra-
tion du deuxiéme est similaire. Par 'énoncé (1) de la Proposition 5.8, nous avons

une bisimulation

(PINT = (P\T) [[(Q\T)

et par énoncé (3) de la Proposition 5.8, nous obtenons une bisimulation faible

(PAT) I (@Q\T))/Or =gaive (P\T)/Or) || (Q\T)/Or).
D’ou, par I'énoncé (4) de la Proposition 5.6, nous pouvons conclure que

(P Q\T)/OL =gipe (P\T)/Or) | (Q\T)/OL).
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Le lemme suivant nous permet d’établir la commutativité des opérateurs de

restriction et d’observation de SPPA par rapport a la bisimulation.

Lemme 5.10. Soient P et @ des processus el soient L et M des sous-ensembles

d’action visibles disjoints. Alors, mous avons
(P/O)\ M =~ (Q/OL)\ M si et seulement si (P\M)/Op ~ (Q\ M)/Oy.

Démonstration. Premiérement, si £ est une bisimulation entre les processus

(P/Op)\ M et (Q/Or) \ M, alors nous démontrons que la relation
R ={((P'\M)/O, (Q\ M)/Or) | (P'/OL)\ M, (@'/OL)\ M) € R}

est une bisimulation entre (P \ M)/Op et (@ \ M)/Or. Nous constatons d’abord
que ((P\ M)/O, (Q\ M)/Or) € R’ car (P/OL)\ M, (Q/Or) \ M) € R. Soit
((PP\ M)/Or, (@ \ M)/Or) € R et supposons que nous avons une transition
(P'\ M)/Or > (P"\ M)/O;. Alors, nous pouvons constater que o € L U {7},
donc a ¢ M, et nous avons un calcul P'\ M — P"\ M avec a € Or(v). Ainsi,
nous avons vy € (Act\ M)* (c’est-a-dire la suite d’actions + ne contient aucune sous-
action provenant de M), donc P/ — P”. Par conséquent, il existe une transition
P'JOp = P"/Op car a € O(). Dot (P'/OL)\M -2 (P"/O)\ M car o & M.
Puisque R est une bisimulation et ((P'/Or)\ M, (Q'/Or)\ M) € R, il existe une
transition (Q'/OL)\ M — (Q"/Or)\ M avec ((P"/OL)\ M, (Q"/OL)\ M) €
R, d'ou ((P"\ M)/Or, (Q"\ M)/OL) € R'. Nous avons donc une transition
Q' /0L =5 Q"/Oy car o € M. Par conséquent, il existe un calcul Q' x, Q" avec
a € Op(v'), donc 4 € (Act \ M)*. Puisque 7 ne contient aucune sous-action
provenant de M, nous avons @'\ M -z, Q" \ M. Ainsi, nous avons une transition
(@ \ M)/Or — (Q"\ M)/Oy avec ((P"\ M)/Or, (Q"\ M)/Or) € R'. Le cas
oil nous avons une transition (Q'\ M)/O; — (Q"\ M)/O}, est similaire.

Réciproquement, si R est une bisimulation entre les processus (P \ M)/Oy et
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(Q\ M)/Oy. alors nous pouvons démontrer que la relation
R ={((P"\M)/O, (Q'\ M)/OL) | (P'/OL)\ M, (Q'/Or)\ M) € R}

est une bisimulation entre (P/Op)\ M et (Q/Or)\ M. La démonstration de cet

énoncé est similaire a la démonstration précédente. O

Pour le théoréme suivant, nous considérons la propriété BNAI par rapport & des
ensembles disjoints K. L et I, telle que présentée a la Définition 5.4. De plus, nous
supposons que ces trois sous-ensembles d’actions visibles sont fermés par rapport

a la communication.
Théoréme 5.11 (Compositionalité de BNAI). Soient P et Q des processus

qui satisfont BNAL

1. Le processus P\ M satisfait BNAI pour tout M C Vis fermé par rapport a

la communication et tel que M N L = (.
2. Le processus P || Q satisfait BNAL
3. Le processus P|Q satisfait BNAL
Démonstration. 1. Soit PP\ M € D(P \ M), avec P’ € D(P), et posons
Q=P \T (doa P\ (MUT) = Q\ M). Par la Définition 5.4, il suffit de

montrer que
Q:OL Q\I( = Q\‘A/ Zor Q\(KU]M)
En effet. nous avons :

Q ~o, Q\K <= Q/0r ~ (Q\K)/OL

par la Proposition 3.20

= (Q/O)\ M =~ ((QR\K)/OL)\ M

par I’énoncé (3) de la Proposition 5.6
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= (Q\M)/O, = (Q\(KUM))/O
par le Lemme 5.10
= Q\M =, Q\(KUM)

par la Proposition 3.20.

2. Soit P || @ € D(P || Q), avec P € D(P) et Q' € D(Q). Puisque les

processus P et () satisfont BNAI, par la Définition 5.4 nous avons

P\T ~p, P\(KUT) et Q\T ~o, @\ (KUT)

¢

Drou (P'\T)/Op =~ (P'\(KUI))/Or et (Q'\T)/Or =~ (Q'\(KUTI))/O,
par la Proposition 3.20. Par 1'énoncé (1) de la Proposition 5.6, nous avons la

bisimulation
(P'\T)/Op) || (Q\T)/O1) = ((P'\(KUT))/O) | (Q"\ (K UT))/O1),
et par le Corollaire 5.9, nous voyons que

(P @I\D)/Or ~ivie (P ]| @)\ (K UT))/Or.

D'oa (P || @)\ ~0, (P'| Q)\(KUT) par la Proposition 3.21. Finalement,
a l'aide de la Définition 5.4, nous pouvons conclure que le processus P || @
satisfait BNAIL

3. La démonstration de cet énoncé est similaire a la démonstration précédente.

g

Notons que ce résultat de compositionalité étend un résultat de Mullins 3 pour

la propriété Al dans le contexte de I'algébre de processus CCS.
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5.4 Définissabilité de BNAI dans le u-calcul

Dans cette section, nous démontrons que la propriété BNAI n’est pas définis-
sable dans le u-calcul. Bien que BNAIT soit définissable par I'entremise de I'équiva-
lence de bisimulation, nous allons constater que c’est une propriété qui ne dépend
pas dune seule trace. Ce résultat nous permet de conclure que BNAI ne corres-
pond pas a une propriété de préservation, ni a une propriété de vivacité. De plus,
nous pouvons également constater que BNAI échappe a la famille de propriétés de
sécurité imposables (enforceable security policy) introduite par Schneider 7] (voir
Section 2.3.3). Bien que notre résultat soit obtenu pour la propriété BNAIL nous
constaterons qu’il est également valide pour d’autres propriétés de non interférence
telles BSNNI (Définition 5.1), SNNI (voir Section 2.4.1) et AI (voir Section 2.4.2).

Notons que les résultats obtenus dans ce chapitre sont présentés dans le contexte
de l'algébre de processus SPPA. bien que ceux-ci se transférent facilement aux

autres algébres de processus comme CCS et SPA,

5.4.1 p-calcul modal

Le p-calcul, initialement proposé par Park 18] est présenté dans cette section
comme une extension de la logique modale de Hennessy-Milner. Cette extension
s’obtient par l'ajout d’opérateurs de plus grand et de plus petit point fixe dans
la syntaxe abstraite de la logique de Hennessy-Milner. Les formules ainsi obtenues
permettent, entre autres, de déterminer si un processus peut exécuter des calculs
infinis. Cependant, malgré cette expressivité étendue, la satisfaction d’une formule
du p-calcul par un processus est toujours basée, comme c’est le cas pour la logique
de Hennessy-Milner, sur les calculs du processus, donc une transition a la fois.

Considérons un ensemble de variables {X,Y, Z,...} utilisées pour désigner des
ensembles de processus. Les formules du u-calcul modal sont définies selon la syn-

taxe abstraite suivante :



g =0 (fauz)
| 1 (vrai)
| X (variable de processus)
| —¢ (négation)
| Vo (disjonction)
| ¢Ahe (conjonction)
| (L) ¢ (quantificateur existentiel de transition)
| [Llg (quantificateur universel de transition)
| uX.F(X) (plus petit point fize)
| vX.F(X) (plus grand point fize)

pour tout sous-ensemble d’actions L C Act, et ou F(X) désigne une application
(sur les variables de processus X,Y, Z,...) obtenue de la syntaxe du p-calcul et
telle que toute occurrence libre de la variable X dans F'(X) est dans la portée d'un
nombre pair d’opérateurs de négation —.

La satisfaction d’une formule close ¢ par le processus SPPA P. notée par P = ¢,
est définie de facon naturelle pour les formules 0, 1, =, ¥ Vi et ¢ Ays. Dans le
cas ol p = (L) ¢’ ou ¢ ::= [L] ¢'. nous rappelons que leur satisfaction est définie

comme suit :

P (L) ¢ sietseulement si Jgep,(p) Q E ¥
PE L] ¢ sietseulement si Voep,(p) @ E ¥

oit D1(P) = {Q € D(P) | Juer P—Q}. D’autre part, la satisfaction des opéra-
teurs de point fixe est définie selon le Théoreme de Tarski-Knaster :
- P puX.F(X) sietseulement si P € R pour tout R C D(P) tel que
R={Q e D(P)| QkE F(X) ot X est interprété comme R} ;
- PEvX.F(X) sietseulement si P € R pour un certain R C D(P) tel
que R={Q € D(P) | Q = F(X) ou X est interprété comme R} ;
ou, pour tout R C D(P),

QE R sietseulementsi Q€ R.
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Janin & Walukiewicz 1*4! ont introduit une notion de formules disjonctives qui
possédent un algorithme linéaire qui permet de vérifier leur satisfaction. De plus, ils
démontrent que tout énoncé du p-calcul est sémantiquement équivalent a une telle
formule. Cette notion de formules disjonctives permet donc d’établir une caracté-
risation du p-calcul en terme de graphes de transitions finis. D’autre part, Janin &
Walukiewicz [5% ont aussi introduit une logique monadique de second ordre pour
les graphes de transitions. Ils démontrent que cette logique est invariante par rap-
port & la bisimulation, tout comme le u-calcul. En fait, I'invariance du p-calcul par

rapport a la bisimulation est une caractérisation fondamentale de cette logique.

5.4.2 Procédure de décision pour le u-calcul

Dans cette section, nous présentons une procédure de décision pour le p-calcul

initialement établie par Streett & Emerson 4. Afin d’obtenir celle-ci, nous devons
tout d’abord nous doter d’une description détaillée de la notion de modéle en terme

de pré-modéle muni d’une fonction de choix.

Définition 5.12. Le processus P est un pré-modéle si, pour toute dérivée @@ €
D(P), nous avons

- Q= -y siet seulement si Q jE ¢

- Q E @1 Vo sietseulementsi Q= ¢ 0uQ E o ;

- QF (L) ¢ sietseulement si Jgyep, (@) Q@ F ¢

- Q FE pX.F(X) sietseulement si Q = F(puX.F(X)).

Une fonction de choiz pour un pré-modeéle P est une fonction qui permet de choisir :

1. pour toute formule ¢, V 9, satisfaite par une dérivée @ € D(P), une formule
parmi 1, et 1, satisfaite par Q; et

2. pour toute formule (L) 1 satisfaite par une dérivée @ € D(P), une dérivée

Q' € D1(Q) qui satisfait la formule 9.

Par conséquent, une fonction de choix sur un pré-modéle P détermine une

relation de dérivation entre les couples (p, @), ol ¢ est une formule du p-calcul et
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Q € D(P) est une dérivée telle que @) |= ¢. Cette relation de dérivation est définie
de fagon plus détaillée comme suit :

— (11 V 1, Q) dérive (1, Q), ou ¢ est la formule (1; ou ;) déterminée par la

fonction de choix ;

= (1 A2, Q) dérive a la fois (1, Q) et (Y2,Q):

- ((L) ¥, Q) dérive (¢, Q"), ou Q' est la dérivée de @) déterminée par la fonction
de choix ;
([L] ¥, Q) dérive (v, Q") pour tout Q' tel que Jper Q—Q';
(WX.F(X),Q) dérive (F(uX.F(X)),Q):
- (WX .F(X),Q) dérive (F(vX.F(X)).Q).

Notons que cette relation de dérivation n’est pas réflexive, ni symétrique, ni transi-

|

tive. Pour les besoins de cette section. nous devons considérer la cloture transitive
de cette relation de dérivation. Afin de simplifier notre notation, nous utiliserons la
terminologie dérive et suite de dérivation afin de référer a cette cléture transitive.

A partir des notions définies ci-dessus, il est légitime de se demander si tout
modeéle correspond & un pré-modéle muni d’une fonction de choix qui n’engendre
pas une suite de dérivation qui dérive une méme formule pX.F(X) une infinité de
fois. Cette constatation est presque exacte.

Soient P et () des processus. Nous disons qu'un énoncé de plus petit point fixe
pX. F(X) est régénéré de P a @ lorsque (uX.F(X), P) dérive (uX.F(X),Q) et la
formule X . F(X) est une sous-formule de toutes les étapes de la dérivation. D’autre
part, une fonction de choix est dite bien fondée si les relations de régénération
pour tous les énoncés de plus petit point fixe, avec leur processus associé, sont bien
fondées. Nous disons qu’un pré-modéle est bien fondé s’il est muni d’une fonction de

choix bien fondée. Le prochain théoréme est un résultat de Streett & Emerson 104,

Théoréme 5.13 (Procédure de décision pour le p-calcul). Un processus est

modeéle st et seulement st il est un pré-modele bien fondé.

Dans le contexte de cette thése, nous sommes tout particuliérement intéressés

par Pinterprétation suivante de ce théoréme : si le processus P satisfait une formule
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¢ du p-calcul. alors P doit étre muni d’une fonction de choix bien fondée qui nous
donne la trace du calcul qui nous permet de conclure que P = ¢. Intuitivement, ce
résultat signifie que la satisfaction d’une formule du p-calcul dépend exclusivement

des transitions présentes dans la sémantique du processus.

5.4.3 BNAI n’est pas définissable dans le py-calcul

Dans cette section, nous démontrons la propriété de sécurité BNAI n’est pas
définissable dans le p-calcul modal, c’est-a-dire qu’il n'existe pas de formule ¢
dans cette logique telle que P satisfait BNAI si et seulement si P = ¢, pour tout

processus P.

Remarque 5.14. Avant de démontrer que la propriété de flots d’information BNAI
n’est pas définissable dans le u-calcul, il est intéressant de remarquer que ce résultat
est simple & démontrer lorsque nous nous restreignons a la logique de Hennessy-
Milner * ou, de fagon équivalente. si nous considérons seulement les processus SPPA
finis. 2 Dans ce cas, , pour tout entier positif n > 1, nous pouvons toujours trouver
deux processus non bisimilaires mais indistinguables par toute formule de longueur
< n. ® Cet énoncé est une conséquence du fait qu'une formule de la logique de
Hennessy-Milner peut seulement traiter une transition a la fois, et ne peut donc
pas distinguer des traces dont la longueur est supérieure & sa longueur. Plus spé-
cifiquement, pour tout n > 1, il existe des processus distincts P et P’ tels que
pour toute formule ¢ de la logique modale de Hennessy-Milner, avec [(¢) < n, nous

avons

PE¢ <= Pko

Définition 5.15. Soit P un processus et soient @, Q' € D(P) de dérivées telles

que Q—-Q’, pour une certaine action o. Nous désignons par P[Q——@Q’, a/] le pro-

!obtenue en enlevant les opérateurs de point fixe.

2processus ayant un nombre fini de dérivées.

3La longueur I{¢) de la formule ¢ est définie par I(1) = 1(0) = 1; {{p1 V @2) = U{p1 A ) =
(1) +Uep2) + 15 U(~p1) = W(L) 1) = H[L] 1) = (1) + 1.
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cessus obtenu de P en remplacant la transition Q——@’ par la transition QLQ’ .

Autrement, P[Q—~@’,a’] se comporte comme P.

Lemme 5.16. Soit ¢ une formule close du p-calcul et soit P un processus. Consi-
dérons des actions visibles o, o € Vis telles que, pour tout sous-ensemble L C Act
présent dans o, nous avons « € L si et seulement si o/ € L. Alors, pour toute

transition Q——Q', avec Q, Q' € D(P), nous avons
PEy¢ <= PlQ=Q.dF¢

Démonstration. Par le Théoréme 5.13 et par symétrie, il suffit de démontrer que
Popération de réétiquetage P [QLQ’ , o'] préserve toute fonction de choix pour P,
¢’est-a-dire, toute fonction de choix pour P en demeure une pour P’ = P[Q—=Q’, &/].
De plus, puisque I'unique différence entre ces deux processus est 'action d’une seule
transition Q——(Q’, nous pouvons supposer que Q = P.

Soit ¢ une formule telle que P = ¢. Nous procédons par induction sur la
longueur de . Le cas de base ¢ ::= 1 est trivial. Supposons que P | ¢ <
P’ |= ¢ pour toute formule (close) 9 telle que I(¢) < I(y¢). Par le Théoréme 5.13,
P est un pré-modéle pour ¢ et il est muni d’une fonction de choix bien fondée.
Si ¢ est une disjonction, alors nous pouvons constater directement de ’hypothése
d’induction que la méme fonction de choix fonctionne toujours pour le processus
P’. Si ¢ ::= (L) 4, alors nous pouvons aussi constater que P’ peut conserver la
fonction de choix de P car a € L si et seulement si @ € L. Finalement, nous
voyons que la condition que la fonction de choix de P soit bien fondée est préservée
lorsque celle-ci est vue comme étant la fonction de choix de P’. Nous pouvons donc
conclure que P’ est un pré-modéle bien fondé pour la formule ¢, d'oit P’ | ¢ par

le Théoréme 5.13. Od

Le résultat principal de cette section établit I'impossibilité de définir la pro-
priété de sécurité BNAI dans le p-calcul modal. Cependant, ce résultat nécessite

Iexistence d’une infinité d’actions a, o’ € L telles que décrites au Lemme 5.16. De
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facon & satisfaire cette condition pour tout énoncé, il suffit d’imposer P'hypothése
plus forte que I'ensemble L est infini. Ainsi, pour ce qui suit nous supposons que

|L| = oo.
Théoréme 5.17. La propriété BNAI n’est pas définissable dans le u-calcul modal.

Démonstration. Supposons qu’il existe une formule ¢ du p-calcul qui permet de
définir BNAIL Puisque L est infini, nous pouvons trouver deux actions distinctes

o, o € L telles que, pour tout sous-ensemble L; C Act présent dans ¢, nous avons
a € L, sietseulementsi o € L.

Soit 8 € K et considérons les processus SPPA P et P’ dont la sémantique est

-

illustrée & la figure 5.7

P8 .p apo PB.pay
o o’

0 0

F1G. 5.7 — Sémantique des processus P et P’

Par le Lemme 5.16 et puisque P’ = P[P—a—>0, '], nous pouvons constater que
PE ¢ sietseulementsi P .

Par contre, nous pouvons également constater que le processus P satisfait BNAIL
tandis que P’ ne satisfait pas BNAIL Ceci constitue une contradiction. Par consé-
quent, nous pouvons conclure qu'une telle formule ¢ n’existe pas, ce qui compéte

la démonstration. O

Il est important de noter que ce résultat a une portée bien plus grande que
la simple propriété SNNI. En effet, le Théoréme 5.17 est une conséquence de la

propriété abstraite de non interférence, et non seulement de son interprétation
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BNAI En particulier, 'énoncé de ce théoréme est également valide lorsque nous
remplacons BNAI par les propriétés SNNI, BSNNI et Al Pour ce convaincre de
cette afirmation, il suffit de remarquer que le contre-exemple utilisé dans la preuve
du Théoréme 5.17 est aussi valide pour ces propriétés. Néanmoins, nous croyons que
certaines propriétés de non interférence seraient définissables a I'aide d’un opérateur

de second ordre, et par conséquent dans le p-calcul de second ordre [192),

5.5 Discussion

Nous avons introduit dans ce chapitre une généralisation basée sur la bisimu-
lation de la propriété d’interférence admissible (Al), telle que proposée par Mul-
lins 3. Nous avons également établi une caractérisation algébrique pour cette
nouvelle propriété de flots d’information (Définition 5.4), de méme que certaines
propriétés de compositionalité par rapport aux principaux opérateurs syntaxiques
de SPPA (Théoréme 5.11). De plus, nous avons démontré que BNAI n’est pas
définissable dans le p-calcul modal (Théoréme 5.17).

Des applications de BNAI sont présentées au Chapitre 6, dans lequel nous dé-
veloppons de nouvelles méthodes d’analyse pour les protocoles de sécurité basées
sur BNAI Ces applications généralisent, de facon non triviale, les méthodes basées
sur la non interférence proposées par Focardi & Gorrieri [4448:48.50] Plys spécifique-
ment, des propriétés de confidentialité, d’authentification et de vulnérabilité face
aux attaques de déni de service sont définies en terme de BNAI et des méthodes
de preuve par bisimulation sont déduites pour chacune. Ces propriétés et leur mé-
thodes de preuve sont ensuite illustrées au Chapitre 7 sur des protocoles connus : le
protocole Wide Mouthed Frog (voir Section 7.2), le protocole d’authentification de
Woo-Lam (voir Section 7.3), le protocole d’authentification de Needham-Schréeder
(voir Section 7.4), le protocole de branchement TCP/IP (voir Section 7.5), et le
protocole de paiement électronique 1KP (voir Section 7.6).

Un avantage majeur de notre approche, par rapport aux approches basées sur

la non interférence, réside dans la capacité d’identifier des attaques inoffensives tot
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dans les phases de conception du protocole. Nous sommes d’avis que cette facon
de procéder permet de détecter plus efficacement les failles d’un protocole. D’autre
part, dans certains cas, notre approche nous évite d’augmenter notre langage de
spécification a I'aide d’un systéme de déduction paralléle pour traiter les manipula-
tions de messages, dont le cryptage et le décryptage. Ce dernier avantage provient
du fait que I'interférence admissible accepte une certaine déclassification de Yinfor-
mation mais uniquement a travers des canaux prévus a cette fin. Ces actions de
déclassification s’avérent ainsi d’excellents outils pour décrire les actions de cryp-
tage d’'un protocole cryptographique qui causent inévitablement une interférence,
mais celle-ci est acceptable si nous avons confiance a I'algorithme de chiffrement
utilisé.

Il serait intéressant de caractériser l'interférence admissible, ou de fagon plus
générale la non interférence intransitive, dans le contexte du m-calcul. L’obtention
de cette caractérisation est principalement motivée par la capacité du w-calcul et
de ses diverses extensions de formaliser adéquatement la mobilité, en particulier les
applications critiques distribuées que nous retrouvons sur I'Internet. Nous planifions
donc une extension de notre méthode d’analyse intransitive des flots d’information
qui permettra de traiter des protocoles de sécurité spécifiés dans ces algébres de
processus.

La littérature contient plusieurs modéles basés sur l'algébre de processus
CSP [74.93.100) hour la spécification algébrique et la vérification par model-checking
des protocoles de sécurité. Cependant, ces modéles nécessitent habituellement la
conception d’un intrus suffisamment puissant et spécifique au protocole. Evidement,
le choix d’un tel intrus est souvent arbitraire et toute modification au niveau de I'in-
trus nécessite généralement une nouvelle analyse. Pour la méthode présentée dans
cette thése. nous optons plutét pour une approche généralisée : I'intrus peut étre
n’importe quel processus ennemi définissable dans SPPA. Bien qu’elles n’adoptent
pas une approche basée sur I'analyse des flots d’information pour caractériser la
confidentialité, les méthodes basées sur le spi calcul (présentées a la Section 2.3.5)

constituent d’importantes sources d’inspiration pour le développement de notre
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méthode, tout particuliérement la fagcon que ces méthodes surmontent le probléme
du « plus puissant intrus ».

Pour s’assurer qu’un processus est sécuritaire, nous devons habituellement véri-
fier qu'une propriété de sécurité est satisfaite méme lorsque le processus évolue dans
un environnement hostile. Ainsi, le processus doit étre en mesure de contrer toute
attaque possible provenant d’un intrus, mais la vérification de cette condition est
généralement indécidable due au trop grand nombre de stratégies d’attaque pos-
sibles. Les méthodes basées sur le spi calcul permettent de contourner ce probléme
en représentant les propriétés de sécurité a 1'aide de formes faibles de I'équivalence
de test (voir Section 2.3.5). Intuitivement, deux processus P et () sont équivalents
par test s’il n’existe aucun intrus suffisamment puissant capable de distinguer leurs
comportements. Ainsi, cette définition de I’équivalence de test, initialement offerte
par Abadi & Gordon P, souffre d’une quantification universelle qui parcoure tous
les environnement hostiles possibles. Boreale, De Nicola & Pugliese 2! proposent
une méthode de preuve cohérente et compléte qui permet de contourner cette quan-
tification (voir Section 2.3.5). Cette méthode de preuve est essentiellement basée
sur une sémantique pour le spi calcul en terme de graphe de transitions étendu et
une équivalence de bisimulation faible. Pour des travaux futurs, il serait intéressant

d’adapter nos méthodes d’analyse de flots information a ce contexte.
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CHAPITRE 6

PROPRIETES DES PROTOCOLES DE SECURITE

Dans ce chapitre, nous offrons des interprétations de la propriété BNAI dans le
contexte des protocoles de sécurité. Certaines des méthodes que nous introduisons
raffinent celles introduites par Focardi, Gorrieri & Martinelli (voir Section 2.4.1).
Dans le contexte des propriétés de confidentialité, le concept d’interférence ad-
missible nous procure une meilleure formalisation de l'interférence causée par le
cryptage de données. Comme nous l'avons constaté précédemment, ce type d’in-
terférence inoffensive est inévitable lors d'une analyse des flots d’information d’un
protocole. Focardi et al. contournent ce probléme en considérant une extension syn-
taxique et sémantique de leur langage de spécification constituée d’un systeme de
régles de déduction paralléle pour traiter séparément les manipulations cryptogra-
phiques. L’utilisation d’une approche basée sur l'interférence admissible, combinée
a lalgébre de processus SPPA. nous permet d’effectuer les manipulations crypto-
graphiques requises par le protocole directement sur la sémantique du processus
SPPA spécifiant le protocole. L’identification & priori de l'interférence qui ne cor-
respond pas & une divulgation significative d’information. donc & un non respect de
la confidentialité, est possible grace & la notion d’actions de déclassification. Nous

obtenons ainsi une formalisation de la propriété de confidentialité suivante :

Aucun intrus interagissant avec le protocole ne peut différencier, de
facon inadmissible, le comportement du protocole et le comportement du

protocole dans lequel aucune information confidentielle n’est échangée.

Focardi, Ghelli & Gorrieri [*844 ont proposé une méthode dans laquelle les at-
taques d’authentification sont formalisées en terme d’interférence, plus spécifique-
ment a l'aide d’une propriété semblable 4 SNNI (voir Section 2.4.1). Leur méthode
consiste essentiellement a s’assurer qu’il n’y a aucun flot d’information entre les

participants honnétes du protocole et tout intrus qui interagit avec le protocole.
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Cependant, aprés leur analyse de non interférence, ils doivent filtrer manuellement
certaines interférences qui ne correspondent pas & des attaques d’authentification
mais qui sont tout de méme détectées. Dans ce contexte, le concept d’actions de
déclassification nous permet d’identifier préalablement ces actions qui ne corres-
pondent pas & des attaques d’authentification mais qui causent de l'interférence
lors de I'analyse. Par conséquent, une méthode basée sur l'interférence admissible
devrait bénéficier d’une efficacité accrue et étre plus propice a une automatisation
car elle nous permet d’identifier ce type d’interférence avant de procéder a 'analyse,
plutot qu’aprés. Ainsi, la propriété BNAI nous permet d’établir une formalisation

de la propriété d’authentification suivante :

Aucun intrus interagissant avec le protocole ne peut interférer de fagon
inadmissible avec le protocole.

Dans ce chapitre, nous portons aussi notre attention aux attaques de déni de
service (DoS) dans lesquelles un intrus cause un épuisement de ressources a une
victime (par exemple, un serveur) & travers les étapes d'un protocole de sécurité
(habituellement un protocole d’authentification). Dans ce contexte, nous sommes
principalement intéressés aux attaques qui nécessitent peu d’effort de la part de
Iintrus mais qui causent une grande dépense de ressources pour la victime. Si la
victime peut traiter simultanément plusieurs demandes d’exécution du protocole,
alors I'intrus peut répéter la méme attaque jusqu'au point de causer un épuisement
de ressources. Dans ce cas, la victime devra refuser toute nouvelle demande d’exé-
cution du protocole, dont celles provenant de participants honnétes. Il y a donc
déni de service. Afin de détecter les vulnérabilités d’un protocole face a ce type
d’attaques de DoS et de DoS distribué, il suflit généralement de vérifier si un seul
processus ennemi est capable d’interférer sur les actions cofiteuses de la victime
en utilisant seulement des actions de coiits minimes. Cette faille isolée qui cause
un gaspillage de ressources, lorsque répétée un grand nombre de fois, peut mener
a un DoS. Par contre, nous permettons toute interférence provenant d’un intrus
qui se comporte convenablement. Cette approche est donc similaire a celle que

nous avons adoptée pour notre formalisation de 'authentification. Cette hypothése
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de permettre les comportements honnétes d’un intrus est souvent omise dans la
littérature, mais elle est cruciale afin d’étre en mesure de voir I'intrus comme un
participant légitime du protocole (c’est-a-dire au méme titre que les autres parti-
cipants). L'interférence admissible nous aide a formaliser cette hypothése dans un
objectif de vérification en permettant a un processus ennemi de causer de Pinter-
férence inoffensive sur le protocole uniquement & partir d’actions prédéterminées
appelées attaques admissibles.

Une premiére formulation des propriétés de confidentialité et d’authentification
que nous présentons dans ce chapitre fut initialement proposée dans 184, Une se-
conde formulation de la propriété d’authentification fut aussi présentée dans 8.
D’autre part, la propriété de vulnérabilité face aux attaques de DoS que nous in-
troduirons plus bas fut initialement présentée dans (. Une seconde formulation

plus détaillée est proposée dans 7.

6.1 Confidentialité

L’objectif premier des protocoles de sécurité est la création de canaux sécuri-
taires permettant des échanges de données confidentielles. Les attaques sur un tel
protocole prennent diverses formes, allant des tentatives directes de subtiliser un
message confidentiel en entier, aux tentatives plus subtiles d’observer les échanges
de données privées afin d’en déduire certaines informations. Dans cette section,
nous introduisons une propriété de confidentialité qui permet de détecter tout flot
d’information inadmissible pouvant mener & une divulgation non souhaitée de don-
nées secrétes. En particulier, notre approche souligne le fait qu'un participant A
d’un protocole peut seulement observer les actions qu’il a initiées (contenues dans
I'ensemble Act4), incluant ses actions de sortie et d’entrée effectuées sur les canaux
publics. Ainsi, dans le contexte de la confidentialité, nous sommes particuliérement
intéressés au critére d’observation Op = Ogn, (défini & la Section 3.2.3), ou F
désigne un processus ennemi interagissant avec le protocole. Toute modification

dans le comportement du protocole observable par un intrus est donc refléter a tra-
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vers le critére d’observation Og. D’ou, le concept de Og-bisimulation nous permet
de formaliser le fait qu'un intrus puisse s’apercevoir qu'un protocole échange de
Iinformation confidentielle.

De facon plus précise, notre propriété de confidentialité est obtenue de la pro-
priété BNAT (voir Définition 5.4) en considérant I’ensemble L des actions obser-
vables d'un intrus, 'ensemble K = Actgecrer des actions qui possédent un message
secret en clair, et I'ensemble I' des actions de déclassification qui est composé de
toute action qui provoque une déclassification admissible de 'information. Les en-
sembles Aclsecrer €t T’ sont formellement définis dans les prochaines sections. En
particulier, I'ensemble Actgecey nous permettra d’obtenir un critére d’observation
Ogeoret qui discrimine les actions confidentielles des autres actions. A I'aide de ce cri-
tére d’observation, nous pouvons formaliser la dépendance entre les actions conte-
nant un message confidentiel, communément appelées actions de haut-niveau, et

les actions observables par l'intrus, communément appelées actions de bas-niveau.

6.1.1 Actions confidentielles

Afin de bien capturer le concept de confidentialité, nous devons étendre la notion
d’action SPPA en ajoutant des paramétres & toute action, incluant les appels de
fonctions, les extractions, les décryptages et les vérifications de signature. Les para-
meétres ajoutés sont des messages qui évoquent le contexte de l'action. La syntaxe
étendue pour les actions SPPA (obtenue de celle présentée a la Section 3.2.2) est
donnée a la Figure 6.1, ou id € T, f € F et a,a’,a” € M. Suivant cette nouvelle
syntaxe, la sémantique opérationnelle de SPPA est modifiée de fagon naturelle.

enc;q

Par exemple, l'action de cryptage (appel de fonction) —% P’ devient l'action

P P’ si P = let z = enc(k,a) in P'; I'action d’extraction P ey
devient 'action P

: o deca(k71, . .
tage P 4 pr devient action P *“ES pry p= case {a}y of {a}x in P’;

Evav[a]k) P/

enc;q(k,n)
—_—
lit; g (a1, i : T ;

Pha@02) b p s let o = (a1,a2) in P'; 'action de décryp-

signv, 4 signv,4

laction de vérification de signature P ——° P’ devient l'action P
si P ::= case [a]; of [a]y in P’; ainsi de suite.

Pour les prochaines définitions, nous considérons un processus ennemi F et un
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a = Cgla) (sortie)
| ciala) (entrée)
| fia(a) (appel de fonction)
| split,4(a,a’) (extraction)
| decig(a,a’) (décryptage)
| 51gnvzd(a, a',a")y  (vérification de signature)
| failf,(a) (échec de fonction)
| fail‘ii;c(a, a’) (échec de décryptage)
failis™(a,a’,a”) (échec de vérification de signature
id
| failf;(a,a’) (échec d’une comparaison)
| d(a) (marquage)
| 7 (interne)

F1G. 6.1 — Syntaxe étendue des actions SPPA.

ensemble g C K qui contient toutes les clés publiques initialement connues par

I'intrus.

Définition 6.1. Le message b contient le message a (par rapport a F), noté par
b~ a, s

-b=ua;

— b= (b1,b), avec by ~> a ou by ~ a; ou

— b= {bi}x, avec by ~ a et k7! € Kg.

Le concept d’'un message contenant un autre message s'étend de fagon naturelle
aux n-tuples (ai,...,a,). Nous pouvons constater que tout message de la forme
b = {a}; (message chiffré) avec k™! & Kg, b = [a] (message signé) ou b = h(a)
(message haché) ne contient pas le message a, c’est-a-dire b v a. D’autre part,

notons que si b ~~ a et a # b, alors on doit avoir a ¥ b.

Définition 6.2. Soit ¢ € M un message et soit a ::= Gg(b), ¢;ia(b), fia(b), split,,(b),
dec;q(b), signv,,(b) ou 6(b) une action, ayant b € M comme paramétre. L’action «
contientb le message a, noté par o ~» a, si

— b est un parameétre de o et b ~~ a;

— = fig(b) et f(b) ~ a, o f € F est une fonction;
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- a = fu(—) et a € im(f), out f € F est une fonction génératrice:
~ a = deciy(k™, {b}x) et b~ a.

L’ensemble Act(a) des actions contenant le message a est donnée par
Act(a) = {a € Act\ Actg | a ~ a}.

Ainsi, a € Act(a) dés que I'action a correspond & une manipulation (i.e. ré-
ception, envoie, décryptage ou appel de fonction) d’un message qui contient le
message a. Ces concepts nous permettrons donc de définir I'ensemble des actions
confidentielles. Evidemment, de ce type d’actions nous devons exclure les actions

ennemies car, méme si elles contiennent a, elles sont considérées comme des actions

publiques.

Définition 6.3. Etant donné un ensemble Meeeret C M de messages confidentiels,

Pensemble des actions confidentielles est défini par

Actsecret = U Act(a).
a€Mesecret

Le contenu exact de I'ensemble Moot © M des messages confidentiels dépend
du protocole a I'étude. De facon générale, il est composé des messages que nous
ne souhaitons pas divulguer & un intrus qui interagit le protocole. Pour la suite de
ce chapitre, nous fixons un tel ensemble M ;. Ainsi, de facon & s’assurer que
le protocole préserve la confidentialité de tout message provenant de Mgcper, NOUS
sommes clairement intéressés a analyser les occurrences des actions provenant de
Iensemble Actgecer- Afin de formaliser le concept de confidentialité par rapport a
I'ensemble Mot nous devons donc considérer le critére d'observation Ogecrer =
O Actoerer - Par définition, seules les actions correspondant & une manipulation (ne

provenant pas de l'intrus) d’un message secret sont observables par Ogecret-
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6.1.2 Actions de déclassification

Nous rappelons que nous souhaitons obtenir une spécification de la confiden-
tialité qui ne prend pas en considération toute interférence de ensemble Actsecrer
sur 'ensemble Actp qui provient d’une action (prédéterminée) de déclassification.
Un tel ensemble I" d’actions de déclassification contient toutes actions de cryptage
(appels de fonction) enc;q(k,b). de méme que la plupart des actions de hachage
hash;4(b) et des actions de signature sign,,(k, b). Comme nous 'avons constaté pré-
cédemment, les actions de cryptage établissent une corrélation admissible entre les
messages confidentiels présents dans leurs paramétres et le message chiffré qu’elles
retournent dés que le cryptosystéme utilisé est suffisamment sécuritaire. Cepen-
dant, nous devons &tre légérement plus prudent pour les actions de hachage et de
signature. Etant donné un message secret @ € Meeret Utilisé lors d’une exécution
d’un protocole P, s’il n’y a qu'un petit nombre de messages possibles o’ € Actsecret
par lesquels nous pouvons remplacer a dans P, alors le hachage et la signature ne
préservent pas la confidentialité de a. Par exemple, si a désigne le résultat d’une
certification privée pour un paiement par carte de crédit, a = “oui” et a = “non’,
alors le message haché h(a) et le message signé [a];. (ou k7' est une clé publique)
ne sont pas sécuritaires. En effet, un intrus pourrait vérifier, pour toutes les valeurs
possibles a’ pour a (dans ce cas @’ = “oui” ou ¢’ = “non’), si h(a') = h{a), et
ainsi « deviner » le contenu du message secret a. De plus, étant donné un message
signé [a]x (qui représente grossiérement le message {h(a)}x ot k7! est une clé pu-
blique), un processus ennemi pourrait « décrypter » le message [a]; & aide de la
clé k71, obtenir A(a), et ensuite vérifier, pour tout message possible a’ pour a, si

h{a") = h(a).

Définition 6.4. Soit P un protocole et supposons que a désigne un message secret
dans la représentation Alice & Bob de P. Nous disons que a est suffisamment rare
s’ll existe une infinité ou un trés grande nombre de messages secrets distincts avec

lesquels nous pouvons remplacer a dans P.

Si le message secret a est suffisamment rare, alors les actions de hachage et
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les actions de signature correspondantes sont considérées des actions de déclassifi-
cation. D’autre part, notons qu'une remarque similaire est également valide pour
tout message chiffré {a}; ou k € K, c’est-a-dire la clé k est supposée initialement

connue par un intrus, ce qui inclut les clés publiques.

Définition 6.5. L’ensemble I' des actions de déclassification est composé des ac-
tions a € Act \ Actg qui sastifont 'une des conditions suivantes :
~ az=ency(k,b),ou ke K, k1 € Kgetbe M;
— a == hash;(b), ot tout message secret o € Mgeeer tel que b ~~ a est suffi-
samment rare; ou
- a == sign,(k,b) ol tout message secret @ € Mgeerer tel que b ~ a est

suffisamment rare ;
avec id € T\ {idg}.
6.1.3 Propriété de confidentialité

A partir des ensembles Acteecres, Acty et I' définis plus haut, nous pouvous

établir la propriété de confidentialité suivante

Définition 6.6 (Confidentialité). Le protocole P est confidentiel si, pour tout

processus ennemi F.

vQGD(PE) Q \ r Zog Q \ (P U ACtsecret)

Cette propriété peut étre vue comme l'interprétation suivante de la propriété

de flots d’information BNAI :
V. processus ennemi Tz satisfait BNAI

avec K = Actseqrer €6 L = Actg (voir Définition 5.4). (Notons que par la définition
de I'ensemble Actgecret, les ensembles Actgecrer €t Act g sont nécessairement disjoints.)
Outre le petit exemple suivant, notre propriété de confidentialité est illustrée a

la Section 7.2 & I'aide du protocole Wide Mouthed Frog 13!, sur lequel une attaque
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fut dévoilée il y a quelques années par Abadi 4.

Exemple 6.7. Considérons le protocole P ::= A || B, dans lequel les deux par-
ticipants A et B veulent échanger un message secret a a I'aide d’une clé secréte
symétrique k4p (connue seulement des deux participants). Pour cet exemple, nous
supposons que tout message est binaire, c’est-a-dire M = {0,1}*. De plus, nous
supposons que les comportements des participants A et B sont régis par les parti-

cipants SPPA A = (S,,id4) et B = (Sp,idp), avec :

Sa = let x =enc(kap,a) in G(x).0

Sp = c1(y1).case y1 of {yo}tr,, in let ys = proj(y:1) in &(ys).0
oll ¢, ¢y € C sont des canaux publics et proj € F est la fonction de projection du
dernier bit (par exemple, proj(10010) = 0). Dans cet exemple, il y a clairement une
divulgation inadmissible du message secret a puisque le protocole, plus particulié-
rement le participant B, révele de Uinformation sur le contenu de a (dans ce cas,
sa parité), sans pour autant entiérement divulguer a. Une attaque sur la confiden-
tialité du message a peut étre perpétrée par tout processus ennemi qui écoute le

canal cy. Par exemple, le processus ennemi
E = ¢(2).0

peut apprendre la parité du message secret a échangé lors du protocole P.

A T'aide de la Définition 6.6, nous pouvons constater que le protocole P, tel que
spécifié ci-dessus, ne sastifait pas notre propriété de confidentialité. En effet, soit
A" = 7(2).0 € D(A) et considérons le processus dérive Q == (A" || B || E) €

D(Pg). Alors, nous avons

Q \ r ;£OE Q \ (-F U AACtsecret)

car le processus de gauche peut exécuter la calcul

Q\I' —o0Jo0jo0
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52

Y= SEZ{G}I«AB 51%3{a}k'AB deCidB(k’ABa{a’}k‘As) projidB(a’) idp (b) 5:(12}3(1))

avec b = proj(a). Nous avons donc la transition

8ap (®)
(Q\T)/0r = (010 0)/O%
car ;7 (b) € Ogp(y). Or, le processus @ \ (I' U Actsecrer) ne peut pas effectuer
le calcul correspondant a la suite v car celle-ci contient une action provenant de
I'ensemble Actsecret, plus précisément laction decia, (kag, {a}k,p) € Actsecret. D0,
8., (D)

le processus observé (Q\ (T'U Actsecret)) /O F ne peut pas simuler la transition — ,

et nous pouvons conclure que @\ T' %o, Q\ (T'U Actsecret)-

6.2 Authentification

Une procédure d’authentification est généralement composée d’une phase
d’identification (un participant revendique une certaine identité) suivie d’une phase
de wvérification (la revendication est vérifiée). Dans un environnement distribué,
Pauthentification est accomplie par 'entremise de protocoles d’authentification.
Dans plusieurs cas, la procédure d’authentification est accompagnée par une distri-
bution de clés de session afin de faciliter les échanges qui suivront 'authentification.
Un protocole d’authentification est donc un protocole cryptographique dans lequel
un participant A veut authentifier un autre participant B, ou s’authentifier auprés
de B. Une attaque perpétrée sur un tel protocole consiste communément en un in-
trus qui réussit & convaincre B qu’il est A, ou vice versa. Dans plusieurs situations,
un participant A doit préalablement initier le protocole avec I'intrus, qui utilisera
par la suite les informations obtenues de A afin d’entamer une mascarade envers
B.

Dans cette section, nous introduisons une propriété de sécurité qui permet de

détecter des failles dans des protocoles d’authentification qui peuvent étre exploi-
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tées par un intrus afin de perpétrer une attaque. Comme c’était le cas pour la
propriété de confidentialité présentée & la section précédente, cette propriété d’'au-
thentification est basée sur la propriété BNAIL Nous pourrons ainsi en déduire un
théoréme de déroulement utile pour des fins de vérification.

Dans le but d’utiliser des méthodes d’analyse de flots d’information pour détec-
ter des attaques sur des protocoles d’authentification, nous devons exprimer toute
tentative d’attaque en terme d’interférence sur le protocole. En d’autres termes,
nous devons vérifier si un processus ennemi peut causer de 'interférence sur le pro-
tocole. Plus spécifiquement, nous souhaitons détecter tout comportement ennemi
qui provoque un comportement d’un autre participant qui ne se serait pas pro-
duit autrement. De plus, nous restreignons notre procédure de détection seulement
aux comportements inadmissibles des processus ennemis et aux comportements
critiques des autres participants. La définition exacte de ces deux types de com-

portements dépend clairement de la spécification du protocole.

6.2.1 Actions critiques et attaques admissibles

Les comportements critiques sont habituellement composés des actions qui cor-
respondent & des états critiques d’un processus, c¢’est-a-dire les actions qui ne de-
vraient pas se produire lorsque le protocole est attaqué. Ainsi, pour tout participant
(honnéte) A, nous désignons par Actayn(A) C Act 4 I'ensemble des actions critiques
provenant de A. Nous considérons aussi I'ensemble Act, 1, des actions critiques du

rotocole défini par Act,yn = | ) Actaun(A). De méme, nous considérons le critére
P
A

d’observation Oayth = Osct, -

La méthode d’analyse de flots d’information présentée dans cette section per-
met aux processus ennemis de causer de l'interférence inoffensive & travers d’ac-
tions prédéterminées, communément appelées attagques admissibles. Les actions de
déclassification ne jouent donc pas le méme réle dans le contexte d’'une propriété
d’authentification que dans celui de notre propriété de confidentialité, la situation

étant en quelques sortes renversée. Ainsi, nous considérons toute tentative d’attaque
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sur le protocole comme de Vinterférence, mais nous permettons aux processus en-
nemis de causer de I'inférence inoffensive par I'entremise de canaux prédéterminés.
L’identification, lors de la phase de spécification du protocole, de ces comporte-
ments ennemis admissibles nous permet donc d’omettre, lors de I'analyse, toute
interférence provenant d’un processus ennemi qui, par exemple, recoit une invita-
tion pour participer au protocole ou qui initie une exécution honnéte du protocole.
Cette hypothése nous permet, entre autres, de voir tout processus ennemi comme
un participant légitime du protocole. Notons qu’un tel ensemble d’attaques admis-

sibles, noté par I', est un sous-ensemble de I’ensemble Actg des actions de l'intrus.

6.2.2 Propriété d’authentification

Afin de détecter toute interférence de 'ensemble Actg\T sur 'ensemble Act, iy,
la prochaine propriété d’authentification détermine si tout comportement critique
d’un participant honnéte (c’est-a-dire A ou B) est indépendant de tout comporte-

ment inadmissible provenant d’un processus ennemi.

Définition 6.8 (Authentification). Le protocole P préserve l'authenticité si,

pour tout processus ennemi F,

Vo epwrry Q\T ~o0,, @\ Acte.

Notons que cette propriété d’authentification peut étre vue comme l'interpré-

tation suivante de la propriété BNAI :
Ve processus ennemi Lk satistait BNAI

avec K = Actg\T et L = Actaun (selon la notation introduite a la Définition 5.4),
ou le processus @\ (ActgUT") correspond au processus Q\ Actg car I' C Actg. Nous
obtenons donc une méthode de preuve basée sur 'équivalence de bisimulation pour
notre propriété d’authentification. Celle-ci doit vérifier, pour tout processus ennemi,

si tout comportement dans le protocole attaqué qui contient une action critique
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demeure un comportement du protocole non attaqué (c¢’est-a-dire en 'absence de
processus ennemis).

Notre propriété d’authentification est illustrée & la Section 7.3 & l'aide du
protocole de Woo-Lam ['%% et 4 la Section 7.4 a l'aide du protocole Needham-

Schroder 1861,

6.3 Déni de service

La contribution principale de cette section est 'introduction d’une méthode
d’équivalence-checking pour la validation des protocoles de sécurité contre les at-
taques de DoS par épuisement de ressources. L’idée fondamentale derriére notre
méthode est similaire & celle développée pour notre formalisation de 'authentifica-
tion et elle consiste & démontrer qu’aucun intrus ne peut utiliser le protocole afin
d’interférer avec les actions coiiteuses d’un autre participant, dans le but d’épuiser
les ressources de celui-ci.

Plus spécifiquement, nous introduisons une propriété de sécurité basée sur BNAI
accompagnée d’un algorithme de vérification basé sur la O-bisimulation pour la va-
lidation de la robustesse des protocoles de sécurité contre le DoS. Notre méthode
utilise évidement ['algébre de processus SPPA comme langage de spécification.
Puisque SPPA nous permet de visualiser explicitement les appels de fonction effec-
tués par un participant comme des actions, nous pouvons leur assigner un cotlt qui
décrit la quantité de ressources requise pour 'exécuter. 1l suffit ensuite de vérifier
si la spécification du protocole satisfait une propriété de flots d’information appe-
lée impassibilité qui n’exige aucune dépendance causale entre les comportements
ennemis peu coiteux et les actions colteuses (c’est-a-dire les actions propices a
un épuisement de ressources) provenant des autres participants. En outre, cette
propriété de flots d’information détecte si un processus ennemi peut utiliser le pro-
tocole afin d’envoyer. avec peu d’effort, un message forgé afin de provoquer une
action coiiteuse telle une allocation de ressources, le décryptage d’un message ou

la vérification d’une signature. Une telle faille pourrait étre exploitée par un intrus



147

de facon a perpétrer une attaque de DoS en gaspiliant les ressources précieuses de
la victime. Ainsi, I'impassibilité nous assure que le protocole fournit une protection
contre les intrus qui ne dépense qu'une petite quantité de ressources.

Notre méthode de validation est basée sur un modéle qui étend SPPA a l'aide
d'une notion de cott inspirée d’un modéle proposé par Meadows [8. Cependant,
contrairement a ce modéle, nous ne considérons pas le coit cumulatif des comporte-
ments d’un intrus ou des autres participants au cours d’une exécution du protocole.
Nous considérons plutdt le cott maximal des actions d'un comportement. D’autre
part, la procédure proposée par Meadows pour vérifier si un protocole est vulné-
rable ou non aux attaques de DoS est essentiellement basée sur une relation de
tolérance qui détermine combien de ressources le concepteur du protocole est prét
4 dépenser afin d’assurer un certain niveau de sécurité. Dans notre méthode, les ca-
pacités d’un intrus sont explicitement formalisées a travers le concept de processus

ennemi.

6.3.1 Formalisation des attagques de DoS

Afin de perpétrer une attaque d’épuisement de ressources. un intrus doit habi-
tuellement initier plusieurs exécutions du protocole, chacune exploitant la méme
faille. C’est pour cette raison que nous considérons seulement les attaques ou I'in-
trus est I'instigateur du protocole. D’ou, I'interaction d’un processus ennemi F avec
le protocole P est spécifiée par le processus Pr == F || B, ou B est la victime
(serveur). De plus, nous considérons un ensemble I' C Actgp d’attaques admissibles,
qui contient les actions qui correspondent & des comportements honnétes de I'intrus
(du point de vue du DoS). Ainsi, le processus Pr \ I' désigne 'exécution du pro-
tocole dans laquelle les comportements honnétes de 'intrus sont supprimés ; seules
les attaques possiblement néfastes pour B sont conservées.

Si nous souhaitons effectuer une analyse du protocole dans un contexte plus gé-
néral, nous considérons la spécification Pg ::= E || B | A, ou A est un participant
instigateur du protocole. En outre, cette spécification nous permet d’analyser les

flots d’information du protocole provoqués par 'intrus et les autres autres partici-
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pants honnétes qui évoluent de maniére concurrente.

6.3.2 Fonction de coiit

De facon a comparer les dépenses de ressources effectuées par les divers partici-
pants & un protocole, nous considérons deux ensembles ordonnés, appelés ensembles
des cotts, (Copy, <) (pour formaliser les ressources CPU) et (Ciem, <) (pour forma-

liser les ressources mémoire). De plus, nous considérons deux fonctions de cotit
Pepu * Act — Ccpu et Pmem : Act = Crem

ou pepulx) désigne la quantité de ressources CPU, & savoir le cott CPU, requise
pour exécuter l'action a, et ppem{c) désigne la quantité de ressources mémoire, &
savoir le coiit mémoire, requise pour exécuter I'action . Notons que la définition de
Pmem DUt 8tre généralisée de fagon A traiter les suite d’actions dans lesquelles des
ressources mémoires sont désallouées, et qui permet ainsi de formaliser une notion
de coiit cumulatif.

Etant donné un participant B (victime) du protocole, nous considérons sa ca-
pacité CPU CPUp € Cepy qui désigne la capacité du participant du point de vue

des ressources CPU :

Uezécution simultanée de N actions ayant un coit CPU plus grand que
CPUgp risque de causer & B un DoS di & un épuisement de ressources
CPU.
De fagon analogue, nous considérons sa capacité mémoire MEMpg € Cpem qui dé-
signe la capacité de B du point de vue des ressources mémoire :
Uexécution simultanée de N actions ayant un cotit mémoire plus grand
gue MEMpg risque de causer ¢ B un DoS did d un épuisement de res-

sources meémoire.

Nous considérons également I’ensemble Actcontenx d€s actions coiiteuses de B, qui
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est défini par
Acteonteux = {@ € Actp | pepu(a) > CPUg ou pmem(@) > MEMp}.

De plus. nous considérons la capacité CPU de I'intrus, notée par CPUg € Cepy, qui

est définie comme suit :

un processus ennemi peut seulement exécuter des actions ayant un codt

CPU plus petit ou égal & CPUg ;
de méme que sa capacité mémoire, notée par MEMg € Cpem. qui est définie comme
suit :

un processus ennemi peut seulement exécuter des actions ayant un codt

mémorre plus petit ou égal & MEME.
D’olt, un intrus qui peut seulement perpétrer des attaques qui nécessitent peu
de cott est donc spécifié par un processus ennemi F dans lequel toute transition
E' =5 E", avec E' € D(E), est telle que pepu(@) < CPUg et pmem(e) < MEMg.
Dans ce cas, nous disons que le processus ennemi F respecie ses capacilés. De toute
évidence, les valeurs exactes des capacités de chacun des participants dépendent
de plusieurs facteurs techniques qui sont au-dela de la portée de cette thése. Nous

traitons donc ces notions de colt uniquement de maniére abstraite.

6.3.3 Impassibilité

Dans cette section, nous introduisons la propriété d’impassibilité qui permet
de vérifier la robustesse d’un protocole de sécurité contre le DoS, plus spécifique-
ment de détecter les vulnérabilités du protocole par rapport aux épuisements de
ressources CPU et mémoire. Etant donné un serveur B, l'impassibilité détermine
si aucun processus ennemi respectant ses capacités ne peut causer de l'interférence

inadmissible sur les actions cotiteuses a € Actconteux-

Définition 6.9 (Impassibilité). Le protocole P est impassible si, pour tout pro-
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cessus ennemi F respectant ses capacités,

Voeprs) Q\T =0, o100 @\ Acte.

Notons que cette propriété de DoS peut étre vue comme I'interprétation suivante

de la propriété BNAI :

Y Pr satisfait BNAI

E : processus ennemi

respectant ses capacités

avec K = Actgp et L = Acteonteux (Selon la notation introduite a la Définition 5.4},
ou le processus @ \ (Actg UT) correspond au processus Q \ Actg car I' C Actp.
Nous obtenons donc une méthode de preuve cohérente et compléte, basée sur 1’équi-
valence de bisimulation, pour notre propriété de DoS. Etant donné un processus
ennemi F qui respecte ses capacités, la propriété d’impassibilité est satisfaite dés
que la spécification du protocole dans laquelle E tente d’attaquer un participant
(B) est bisimilaire, du point de vue des actions cotiteuses, a la spécification du pro-
tocole dans laquelle les actions de F sont supprimées. En outre, 'impassibilité est
satisfaite par tout protocole de sécurité qui utilise une suite de mécanismes d’au-
thentification ordonnés selon des niveaux de sécurité et un codt croissants (pour
les deux participants). Lorsqu’un protocole respecte ces critéres de conception, un
intrus doit étre disposé & compléter les premiéres phases du protocole avant de
forcer le systéme & dépenser des ressources dans des phases avancées du protocole.

Des illustrations de notre propriété d’impassibilité sur des protocoles connus
sont offertes au Chapitre 7. A la Section 7.5, nous analysons le protocole TCP/IP
et nous constatons que I'impassibilité nous permet de redécouvrir une attaque de
DoS bien connue sur ce protocole. A la Section 7.6, nous offrons une spécification
compléte du protocole de paiement électronique sécuritaire 1KP !, que nous ana-

lysons ensuite avec notre méthode. Suite a cette analyse, nous démontrons que le

L 1KP Secure Electronic Payment Protocol
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protocole 1KP n’est pas impassible et nous dévoilons une vulnérabilité de ce pro-
tocole face au DoS par épuisement de ressources. Tout d’abord, nous présentons
un protocole d’authentification simple qui ne satisfait pas notre propriété d’impas-
sibilité.

Exemple 6.10. Considérons le protocole suivant :

idg,m,[idanly,

Message 1 : A — B

Message 2: B - A
Dans ce protocole, le participant A initie une procédure d’authentification avec le
participant B en lui envoyant le message composé de son identificateur id 4 et d'un
nonce 7n fraichement généré, signé et non signé, out k4 désigne la clé privée de A.
Suite & la réception de ce message, B vérifie la signature de A et retourne a ce
dernier le nonce n a titre d’accusé de réception. Ce protocole permet donc & un
participant A de s’authentifier auprés d’un serveur B.

Nous considérons les participants A = (S4,id4) et B = (Spg,idg), ou les agents
initiaux S,4 et Sp sont définis comme suit :
Sy = let x; = newNumber(—) in let x5 = pair(ids, ;) in
let x3 = sign(ka,x2) in let x4 = pair(xq, x3) in

Ti(z4). ca(xs).lws = x1] O

Sp = c¢1(y1)- let (y2,y3) = y1 in let (ys,¥5) = ¥ in

2 idezlya = id] case ys of [yok,, in Ta(ys).0
ou kg, = ka. Le protocole est alors spécifié par le processus P ::= A || B. Cette
spécification utilise I’ensemble de fonctions F = {newNumber, pair, sign}. De
plus. nous supposons qu’aucune action n’excéde la capacité mémoire du serveur B,
de méme pour la capacité mémoire de U'intrus. Cependant. nous supposons que les
actions de vérification de signature (incluant les actions d’échec correspondantes)

excédent la capacité CPU du serveur, d’ou

Pepu(signvyy, ), Pepu(£ailPE™) > CPU,.
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De plus, nous supposons que les actions de vérification de signature (dont les actions
d’échec) et les actions de signature excédent la capacité CPU de 'intrus, d’ou

signv

pCPU(SignVidE)v Pepu(failiy ), pcpu(SignidE)a pcpu(failsiiin) > CPUg .
Considérons maintenant le processus ennemi E = (Sg,idg), avec
E := let x; = newMessage(—) in let x5 = pair(r;,x;) in ¢1(z2).0 .

Nous pouvons facilement constater que E respecte ses capacités. Ce processus
ennemi attaque le protocole en lui envoyant des messages forgés qui forcent B
a exécuter des actions colteuses de vérification de signature (qui vont éventuel-
lement échouer). A l'aide du processus Pz ::= E || B, nous pouvons directe-
ment constater que le protocole P n’est pas impassible car 'action de marquage

I'action signv,; € Actcontenx qui excéde la capacité CPU de B.

((a,a)) € Actg (pour un message a quelconque) cause de l'interférence sur

6.4 Spécification symbolique des propriétés de sécurité

Nous pouvons facilement interpréter les propriétés de sécurités présentées dans
ce chapitre dans le contexte de notre modéle symbolique (présenté au chapitre 4)
Afin d’obtenir ceé spécifications, nous utilisons la notaﬁon pour la spécification
symbolique des protocoles introduite a la Section 4.3.1.
Nous commencons par voir que notre propriété de confidentialité s’interpréte
comme suit :
Le protocole (P, ¢p) est confidentiel si et seulement si, pour tout pro-

cessus ennemi (E, ¢g).
Y@, vep(Pe, o) (@\T) ¥) ~op (@\ (I'U Actsecret ), ¥)-

Notons que le fait qu’un message secret a € Mecrer SOit Suffisamment rare se for-
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malise de fagon naturelle dans notre modéle symbolique. En effet. un tel message
fait généralement parti des connaissances initiales d’un participant A, et peut donc
étre identifié avant d’amorcer le protocole. Ainsi, nous pouvons remplacer le mes-
sage secret a par une certaine variable libre 2 dans la spécification de 'agent initial
S4 de A. Dans ce cas, le processus contraint (A, ¢,4) devra étre tel que la formule
@ 4. qui caractérise les connaissances initiales de A, contient z comme variable libre.
Plus spécifiquement, ¢4 contient une sous-formule v qui caractérise le message a,

c’est-a-dire ¢ est seulement satisfaite par les messages par lesquels nous pouvons

remplacer a dans le protocole P. Par exemple, nous pouvons avoir ¢ ::= (x == a)
si a est unique; ¢ == (z == a;) A ... A (x == a,) §’il 'y qu'un nombre fini
de possibilités pour a; 1 ::== N(z) si a peut étre n’importe quel nombre. Etant

donnée une telle sous-formule 1, nous pouvons conclure que le message secret a est

suffisamment rare si et seulement si la cardinalité de 'ensemble

{ae M| | ¢a/z]}

est suffisamment grande ou infinie.
La spécification des autres propriétés de sécurité est semblable. Ainsi, nous
disons que le protocole (P, ¢p) préserve 'authenticité si et seulement si, pour tout

processus ennemi (E, ¢g),

Y@, p)ep(ipe, ory)  (Q\T, ¥) ~o,, (Q\ Actg, ¥)

et le protocole (P, ¢p) est impassible si et seulement si, pour tout processus ennemi

(E, ¢g) tel que FE respecte ses capacités,

V@ v)en(Pe, ¢rp))  (@\TH ¥) o oo (@ \Acte, ¥).



6.5 Discussion

La meéthode proposée par Focardi & Martinelli [°], permet une formalisation
de la confidentialité a I'aide de la propriété de non déductibilité GNDC et de 'al-
gébre de processus CSPA (voir Section 2.4.1). Leur méthode de validation pour
la confidentialité nécessite donc une extension de ’algébre de processus SPA avec
des opérateurs cryptographiques par 'entremise de régles de déduction extérieures
a la sémantique opérationnelle de SPA. Nous sommes d’avis que ces manipula-
tions ne sont pas explicitement visibles de la sémantique des processus afin d’éviter
de détecter I'interférence admissible causée par le cryptage de données. A Foppo-
sée, notre approche basée sur la propriété de confidentialité (Définition 6.6) et sur
I'algébre de processus SPPA, tend a démontrer qu’il est possible d’utiliser des mé-
thodes de flots d’information sans avoir a étendre la sémantique des algébres de
processus pour éviter interférence admissible causée par certaines manipulations
cryptographiques. En effet, d’une part SPPA permet une visualisation explicite des
manipulations cryptographiques directement dans la sémantique des processus, et,
d’autre part, notre propriété de confidentialité, nous permet d’ignorer 'interférence
admissible grace & un choix judicieux d’actions de déclassification.

Le protocole de Needham-Schréder fut préalablement analysé selon une ap-
proche de non interférence par Focardi, Ghelli & Gorrieri 144, Suite 4 cette analyse,
ils découvrent la méme faille initialement dévoilée par Lowe et présentée a la Sec-
tion 7.4. Par ailleurs, notons que leur méthode permet également de redécouvrir
la faille dans le protocole de Woo-Lam. D’autre part, Focardi [43! propose une ap-
proche différente pour formaliser I'authentification dans laquelle les adresses des
entités participant a la procédure d’authentification sont explicites et I'authentifi-
cation des entités se rameéne a une application qui assigne une adresse pour chaque
entité. Il suffit ensuite de s’assurer que cette application demeure correcte, méme
en présence d’'un processus ennemi. Cette propriété se vérifie facilement a Iaide
d’un outil automatique et peut &tre utilisée afin de détecter 'attaque sur le pro-

tocole de Needham-Schréder. Plus récemment, Broadfoot & Lowe 2% ont proposé
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une méthode basée sur CSP qui permet d’étendre certaines techniques connues
afin d’analyser les protocoles d’authentification. Leur méthode est illustrée sur le
protocole TESLAZ? 89 dans lequel un nombre infini de messages est émit, I'un a la
suite de 'autre, par un participant qui posséde une quantité illimitée de clés. Dans
ce protocole, I'authentification du pléme message est accomplie & la réception du
(n+ 1)iéme message. Broadfoot & Lowe démontrent que, malgré la nature infinie de
ce protocole, il est possible de construire un modéle fini qui formalise adéquatement
son comportement.

Les protocoles d’authentification sont développés de facon a fonctionner correc-
tement en présence d’intrus qui peuvent inciter des participants honnétes a initier
un trés grand nombre d’exécutions paralléles du protocole. Le nombre d’états né-
cessaires pour spécifier une seule exécution d'un protocole est typiquement borné
et nous pouvons donc espérer obtenir une borne sur le nombre d’exécutions du
protocole qui peuvent étre utiles & une attaque. Stoller 3 établi une telle borne
pour une grande famille de protocoles d’authentification, qui inclut les protocoles
de Needham-Schrider, de Otway-Rees et de Yahalom. Dans un méme ordre d’idée,
Abdulla, Jonsson & Nylén ¥ proposent un modéle général pour la formalisation
de protocoles d’authentification ayant un nombre infini d’états et un nombre non
borné de participants. Ils présentent une méthode de vérification automatique qui
est basée sur une analyse d’atteignabilité des états non sécuritaires.

La formalisation de la vulnérabilité face aux DoS présentée dans ce chapitre
est basée sur un modéle de coiits qui nous permet d’attribuer des coiits ressources
selon les capacités individuelles de chaque participant. Par exemple, si nous sou-
haitons valider un protocole contre un intrus puissant, nous pouvons supposer que
Popul(€NCidy ) < Pepul€NCigy ). ¢'est-a-dire le cryptage de données nécessite plus de res-
sources CPU au serveur B qu’a 'intrus E. D’autre part, nous planifions d’étendre
notre modéle de spécification de maniére a offrir une meilleure formalisation des at-

taques de DoS distribuées. En outre, puisqu'une grande partie des attaques de DoS

2Time Efficient Stream Loss-tolerant Authentication Protocol.
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consistent a forcer la victime & allouer plusieurs structures de données dispendieuses
(au niveau des ressources mémoire), nous prévoyons étendre notre modeéle afin de
pouvoir traiter le colit cumulatif des actions effectuées par un méme participant.
Toujours a titre de projet. nous prévoyons raffermir les liens entre la méthode
d’analyse de vulnérabilité face au DoS présentée dans ce chapitre et le modéle
symbolique présenté au Chapitre 4. Cette extension nous semble tout a fait natu-
relle puisque les attaques de DoS sont essentiellement basées sur la création par
un intrus de messages et d’adresses forgés. Or, notre modéle symbolique offre une
formalisation adéquate de ces valeurs générées par I'intrus et nous permet d’analy-
ser symboliquement le comportement du protocole lorsque de telles valeurs y sont
introduites. Cette approche nous évite donc d’avoir & considérer tous les messages
et adresses que I'intrus peut générer. D’autre part, nous avons constaté a la Sec-
tion 6.4 que nous pouvons facilement obtenir une interprétation de la propriété
d’impassibilité dans notre modéle symbolique. Or, nous pouvons aussi exploiter le
concept de processus contraint, qui offre un apercu direct des valeurs symboliques
présentes 4 un certain état du protocole, afin d’établir une nouvelle formalisation
de la vulnérabilité face aux attaques de DoS basée sur une analyse d’atteignabilité
au niveau du processus contraint correspondant au protocole. Une telle méthode
consisterait a s’assurer que pour tout processus contraint (P, ¢) correspondant 4 un
état critique du protocole (par exemple, lorsque les ressources d’un participant sont
épuisées), la formule ¢ est satisfaite seulement par un petit nombre de messages
forgés par l'intrus. Si un protocole satisfait une telle propriété, alors nous pouvons
conclure que peu d’attaques perpétrées par un intrus pourront provoquer un DoS.
Une autre extension possible a notre modéle de spécification, qui se combine de
facon naturelle avec la précédente, consiste a considérer une notion de processus
SPPA avec ressources intégrées. Un tel processus serait composé d'un processus
SPPA et d’un vecteur qui contient les quantités de ressources disponibles & chacun
des participants. Cette approche nous permettra d’obtenir directement a partir de
la sémantique du protocole les quantités de ressources (mémoire et CPU) dépen-

sées par un participant, et par conséquent identifier facilement les états critiques
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du protocole, c’est-a-dire les états ou I'un des participants est propice a un DoS.
Ce modéle nous permettra aussi de considérer plus facilement le coit cumulatif des
actions effectuées par un participant (principalement du point de vue des ressources

mémoire).
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CHAPITRE 7

EXEMPLES D’ANALYSES DE PROTOCOLES DE SECURITE

7.1 Mise en oeuvre des méthodes

Dans cette section, nous présentons les principales étapes de la mise en oeuvre
des méthodes de validation présentées au Chapitre 6. Celles-ci seront ensuite illus-
trées sur des protocoles connus dans les prochaines sections.

Etant donné un protocole, nous devons tout d’abord le spécifier dans SPPA.
Nous commencons par identifier les fonctions f € F nécessaires 4 sa modélisation,
ainsi que le domaine de chacune de ces fonctions. Ensuite, nous devons identi-
fier et modéliser le comportement de chaque participant a 'aide d’un agent initial
SPPA. Etant donné un tel agent S,4, nous devons ensuite lui associer un identifi-
cateur id4 et un participant SPPA A = (S4,4d4). Si nous souhaitons considérer
plusieurs participants qui jouent le méme role que A pour notre analyse, il suffit
de produire différents identificateurs idy, ,. ..,id4, et différents participants SPPA
Ay = (Sa,ida,),..., An = (Sa,ida,) (qui ont tous le méme comportement). Lors
de la spécification des participants, nous devons bien identifier les messages qui
sont initialement connus de chaque participant (par exemple, les clés publiques et
privées) et leur donner des valeurs précises lors de la construction des agents ini-
tiaux. Sinon, nous devons recourir au modéle symbolique présenté au Chapitre 4 et
spécifier ces valeurs par des variables libres. La Section 4.3.1 contient plus de détails
sur la spécification symbolique des protocoles. Nous obtenons alors la spécification
du protocole en considérant le processus SPPA qui correspond au produit de tous
les participants SPPA (a 'aide de Popérateur ||).

Selon la nature des services offerts par le protocole, nous devons choisir une
propriété de sécurité (confidentialité, authentification ou déni de service) selon la-
quelle nous allons valider le protocole. Dans tous les cas, nous devons définir le

contenu des ensembles K. L et I



— Pour la confidentialité, nous devons déterminer I'ensemble Mot © M des
messages confidentiels, a partir duquel nous obtenons 'ensemble K = Actieeret
des actions confidentielles. De plus, nous devons définir I'ensemble T" des ac-
tions de déclassification et nous posons L = Actg.

— Pour l'authentification. nous devons déterminer I'ensemble L = Act,, des
actions critiques et I’ensemble I' des attaques admissibles. De plus, nous po-
sons K = Actg.

— Pour le déni de service, nous devons déterminer les fonctions de coit pepy
et Pmem, de méme que les capacités CPU (CPUy,) et les capacités mémoire
(MEM_,) de chaque participant (incluant Iintrus). A partir de celles-ci, nous
obtenons l'ensemble L = Acteontenx des actions cotiteuses. De plus, nous
devons définir Pensemble I' des attaques admissibles et nous posons K =
Actg.

Ensuite, nous devons modéliser, comme un participant SPPA. un intrus qui
peut effectuer un nombre suffisamment grand d’attaques. Nous pouvons toujours
définir un processus ennemi générique qui peut « tout faire », mais celui-ci sera
nécessairement infini. Si nous avons opté pour l'extension symbolique de SPPA.
nous pouvons facilement obtenir une approximation d’un tel processus ennemi qui
émet divers messages aléatoires sur les différents canaux publics.

Nous pouvons maintenant procéder a la validation du protocole en utilisant
la Définition 6.6, la Définition 6.8 ou la Définition 6.9. L’idée est d’approximer
le quantificateur universel qui parcourt I’ensemble des processus ennemis par le
processus ennemi obtenu ci-dessus. Si la bisimulation n’est pas satisfaite avec ce
processus ennemi, alors nous pouvons deés lors conclure que le protocole ne satisfait
pas la propriété de sécurité. Dans ce cas, il est possible de reconstruire 'attaque sur
le protocole & partir d’un parcours des états non bisimilaires. Si la bisimulation est
satisfaite, alors nous pouvons toujours augmenter le processus ennemi de quelques

attaques.
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7.2 Protocole Wide Mouthed Frog

Le protocole Wide Mouthed Frog est utilisé afin d’établir un canal sécuritaire
entre deux participants A et B, sur lequel A souhaite envoyer un message confi-
dentiel a chiffré a I'aide d’une clé de session k. Ce protocole suppose que A et B
partagent, respectivement, des clés kas et kpg avec un troisiéme participant S (un

serveur, par exemple). Le protocole se déroule selon les trois étapes suivantes :

idaidp{k} g
—

Message 1 : A S
id Ak}
Message 2: S takhes  p

Message 3 : A fak B.

D’abord, le participant A envoie a S son identificateur (id,), l'identificateur de
B (idg), ainsi qu'une clé de session fraiche k chiffrée avec la clé permanente k4g
(partagée avec S). Ensuite, S décrypte le message recu {k};, . et envoie a B l'iden-
tificateur de A avec la clé k chiffrés ensemble a l'aide de la clé partagée kps.
Finalement, A envoie, directement a B, son message secret a chiffré avec la clé k.
Le participant B peut maintenant décrypter le message {ida, k}xr,. afin d’obtenir
la clé k., puis décrypter le message {a}x afin d’obtenir le message secret a.

Une attaque bien connue sur le protocole Wide Mouthed Frog, initialement
découverte par Abadi 14, peut étre perpétrée par un processus ennemi F comme
suit. D’abord, FE intercepte le Message 1, puis substitue 'identificateur de B avec
son propre identificateur et envoie ce nouveau message a 5. Suite a la réception de
ce message, le participant .S est persuadé que A veut donner la clé de session k a
E. et non & B. Ainsi, S envoie le message {ida, k}x,, & E qui peut le décrypter et
par conséquent obtenir la clé k. Il suffit maintenant & l'intrus d’intercepter et de
décrypter le Message 8 afin d’acquérir le message confidentiel a. Cette attaque est
présentée de fagon plus détaillée 4 la Section 7.2.2; dans laquelle nous en offrons
une spécification compléte dans 'algébre de processus SPPA. Tout d’abord, nous

présentons dans la prochaine section une spécification des participants A, B et S.
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7.2.1 Spécification du protocole Wide Mouthed Frog

Considérerons les participants SPPA A = (S4,ids), B = (Sg,idg) et S =
(Ss,idg), ou les agents initiaux S4, Sp et Sg sont donnés par :
Sa = let r; = newKey(—) in let x5 = enc(kag, ;) in
let x3 = pair(ida,idp, 2o) in T1(x3).

let x4 = enc(z1,a) in T3(x4).0

Sp = co(y1).case y1 of {Ya}rps in let (y3,44) = 2 in
c3(ys).case ys of {ys}y, in O

Ss = ci1{z1).1et (22,23,24) = 21 in
Y iderlze = id] case zy of {25}, in
Y izerlzs = id'] let z6 = pair(z2, 25) in
let z7 = enc(kigs, 26) in C3(z7).5
Ol ¢p,Ca,¢c3 € C sont les canaux publics sur lesquels les messages 1, 2 et 3 sont
respectivement échangés. (Nous utilisons la notation kiq,s = kas, etc.) Pour cet
exemple, il suffit de considérer I'ensemble de fonctions F = {enc, pair}. Le proto-

cole Wide Mouthed Frog est donc spécifié par le processus SPPA :
P:=A|B|C

avet Meeeret = {k, a}.

7.2.2 Spécification de Pattaque sur le protocole Wide Mouthed Frog

Une alternative intéressante au quantificateur universel « pour tout processus
ennemi E » présent dans la définition de notre propriété de confidentialité, consiste
a obtenir un plus puissant intrus. Une telle approche fut présentée dans un papier
précédent 8], Par contre, dans cet exemple, un tel plus puissant intrus n’est pas
nécessaire puisque que nous souhaitons démontrer que le protocole n’est pas confi-

dentiel et non la réciproque. Ainsi, pour atteindre cet objectif il suffit de trouver
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un certain processus ennemi F pour lequel la Définition 6.6 n’est pas valide. Pour
ce besoin, nous spécifions avec SPPA le processus ennemi utilisé par Focardi &
Martinelli % et qui correspond a I'attaque mentionnée plus haut. Ce processus

ennemi correspond au participant SPPA F = (Sg, idg) avec

Sg = c1(wy).let (we, w3, wq) = wy in let ws = pair(ws, idp, wy) in
Ci(ws). c2(we).case wg of {wrliy, in let (ws, wy) = wy in

c3(wip).case wyp of {wir}w, in 0

A partir de ce processus ennemi, nous pouvons vérifier que le protocole Wide Mou-
thed Frog, spécifié par le processus P, n’est pas confidentiel. En effet, il suffit de
considérer la dérivee Q == A’ || B || §' || ' € D(Pg) ou les participants
A" = (S1,1d4) € D(A), S' = (Ss,ids) € D(S) et E' = (Ss,idp) € D(F) sont
tels que

S; == let x4 = enc(k,a) in G3(z4).0
Se u= G{(ida, k) ips)-S

S3 = co(wg).case wg of {wrly,, in let (ws, we) = w7 in

cs(wio).case wip of {wi1}w, in O

pour une certaine clé k£ € im(newKey) générée par le participant A. A partir de ce

processus (J, nous pouvons constater que

02 ({lidabegg) 652 ({(idaik)bigg)
—_— Q R —

Q/I

avec 053 ({(ida, k) }ips) € Acteecrer (car kps € Kg) et 62 ({(ida, k)}rgs) € Actp.
Puisque OE(FC?—({(j’dm k)}kES)élchE ({(idm k)}kES)) = 5%}5 ({(idav k)}k}ss)= nous avons

ids

la transition
({(ida:k)}kgg)
—_—

(©Q\D)/05 (Q"\T)/O5

tandis que le processus (@ \ (I’ U Actsecret))/Op ne peut simuler cette transition.

Ainsi, nous avons (Q\T')/Or # (Q\(TUActsecrer))/OF, dou Q\T %o, Q\(TU



163

Actseerer)- Nous pouvons done conclure que le protocole P n’est pas confidentiel.

7.3 Protocole de Woo-Lam

Dans cette section, nous illustrons notre propriété d’authentification a 'aide du
protocole d’authentification unilatérale de Woo-Lam %8, Cette application spéci-
fique nous permet du méme coup d’illustrer comment le concept d’interférence ad-
missible nous permet d’accomplir une identification, a la phase de spécification, des
interférences possibles causées par des processus ennemis et qui ne correspondent
pas a des attaques réussites. Notons que ces interférences admissibles, appelées plus
haut attaques admissibles, sont détectées lors de 'analyse de flots d’information
effectuée par Focardi & al. [*®!; mais ca ne devrait pas étre le cas puisqu’elles ne
correspondent pas & de vraies attaques.

Le protocole de Woo-Lam est initié par un participant A qui souhaite s’authen-
tifier auprés d’un autre participant B. Ce protocole suppose que les participants
A et B partagent chacun une clé symétrique permanente, désignées respective-
ment par kag et kps, avec un troisiéme participant S en qui ils ont confiance (par

exemple, un serveur). Le protocole se déroule selon les étapes suivantes :

Message 1 : A LZN B
Message 2 : B Lz, A

{nBliyg
—

B

{idA’{"_Bﬁ;qs}kBs S

Message 3 : A

Message 4 : B
- {nBligg

Message 5 : S — B.

D’abord, le participant A initie le protocole avec B en lui envoyant son identificateur
id 4. Ensuite, le participant B répond en lui retournant un nonce ng fraichement
généré. Suite & la réception de ce dernier message, A retourne a B le nonce ng
chiffré avec la clé k4g. Le participant B peut maintenant débuter la procédure qui
lui permettra d’authentifier A avec 'aide de S, en lui envoyant 'identificateur de A

et le dernier message obtenu de A, chiffrés ensemble avec la clé kps. Le participant

S décrypte le message recu de B a l'aide de la clé kgg, puis décrypte le message



164

{np}r,s aide de la clé kus. Finalement, S envoie np chiffré avec la clé kpg a
B. Une fois ce message recu et décrypté par B, il lui suffit de s’assurer que la
valeur ainsi obtenue correspond bien au nonce ng qu’il a initialement envoyé & A.
Si c’est le cas, B peut conclure qu’il a authentifié A, ou presque... En effet, cette
authentification n’est pas toujours exacte puisque qu'une faille dans le protocole
de Woo-Lam fut découverte par Abadi (et rapportée par Woo & Lam [109}). Dans
cette attaque de type « man-in-the-middle », le participant A initie le protocole
avec un processus ennemi F qui utilise I'information obtenue de A afin d’initier
le protocole avec un autre participant B et se faire passer pour A. Cette attaque
est présentée de facon détaillée a la Section 7.3.2. Tout d’abord, nous offrons une

spécification compléte du protocole dans I'algébre de processus SPPA.

7.3.1 Spécification du protocole de Woo-Lam

Afin de spécifier le protocole d’authentification de Woo-Lam dans SPPA. nous
considérons les participants SPPA A = (S4,id4), B = (Sp,idg) et S = (Sg,ids)

dont les agents initiaux sont définis comme suit :

Sa = Y iuer Clidg (1da)- C2ia,(21). 1ot 2o = enc(kas, 1) in Tggy, (12).0

Sg = capl{y). let yo» = newNumber(—) in G, (y2). c35(ys)-
let y4 = pair(y;,ys3) in let ys = enc(kps,y4) in
€1(Ys)- Csids (Ys)- case yg of {yr}rps in

[yr = n] let ys = auth(y;) in O

Ss = c4(21). D ,4ez case 21 of {2}k, in let (y3,y4) = 22 in
case z4 of {Z5}kY3S in let zg = enc(kigs, 25) in Cpia(26).S
ol c¢jiq désigne canal public utilisé pour envoyer le jiéme message du protocole
destiné au participant associé a I'identificateur id (mais qui peut étre intercepté
par un intrus). Nous pouvons désigner le 4iéme canal simplement par ¢, puisque

nous supposons qu’il est toujours destiné au serveur 5. D’autre part, nous utilisons



165

la notation Z dans la spécification de A et de S afin de représenter un choix

ideT
non déterministe de l'identificateur d’un autre participant. Notons également que

notre spécification du participant B est telle que dés qu’il termine avec succés une
exécution du protocole (c¢’est-a-dire lorsqu’il croit avoir authentifié le participant
A), il exécute I’appel de fonction auth(id4) qui enregistre Uidentificateur de A (dans
la mémoire locale de B) comme étant authentifié. D’oil, nous posons auth(id) = id,
avec Qaueh = Z(x).

A I’aide de ces spécifications, le protocole de Woo-Lam est défini par le processus
SPPA suivant :

P:= A|\B|S

avec C' = |J;gez1¢1id, C2id> C3id, Ca» Csiq }- Pour des fins de vérification, nous supposons
que les seules actions critiques (du point de vue de Pauthentification) correspondent
aux appels de fonction auth,y, € Actg. D'ott Actayn = {authq, }. Nous ne défi-
nissons pas immeédiatement les actions qui composent I'ensemble I' puisque nous
interprétons ces attaques admissibles comme de I'interférence admissible provenant

d’un processus ennemi, d'ou I' C Actg.

7.3.2 Spécification de 'attaque sur le protocole de Woo-Lam

Dans cette section, nous utilisons la propriété de flots d’information BNAI afin
de découvrir la faille dévoilée par Abadi 1% dans le protocole de Woo-Lam. Notre
spécification de cette attaque est inspirée de la spécification offerte par Durante,
Focardi & Gorrieri [*8. Plus précisément, nous démontrons que le protocole d’au-
thentification unilatérale de Woo-Lam ne préserve pas I'authenticité. Afin d’établir
ce fait, nous considérons le prochain processus ennemi qui effectue l'attaque « man-
in-the-middle » d’Abadi. Ce processus ennemi est donné par le participant SPPA

E = (Sg,idg), ou I'agent initial Sg est défini par :

SE = clidE(wl). clidB(wl). Coun (’I.UQ) Coun (IUQ) c3idE(u13). c3,-dB(w3).0 .
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Par ailleurs, le protocole attaqué est donné par le processus SPPA :
Pgo= A|BJS|FE

dans lequel le participant A peut initier le protocole avec B ou avec E. En parti-
culier, quand A tente de s’authentifier auprés de E, ce dernier réutilise les données
obtenues de A afin de lui subtiliser son identité et, par conséquent, s’authentifier en
tant que A auprés de B. A la fin de cette exécution du protocole, B est persuadé

que E est A.

7.3.3 Attaques admissibles

Afin d’identifier correctement les actions qui correspondent a des attaques ad-
missibles dans notre spécification du protocole de Woo-Lam, nous devons considé-
rer toute action ennemie correspondant 4 un comportement honnéte. Par exemple,
si un processus ennemi initie le protocole en utilisant son propre identificateur
ou s’il recoit une demande d’authentification de la part d’un autre participant,
alors nous devons identifier les actions correspondant a ces situations comme étant
des attaques admissibles, ¢’est-a-dire des actions ennemies que nous ne souhaitons
prendre en considération lors de notre analyse des flots d'information du proto-
cole. A partir du processus ennemi F spécifié plus haut, nous pouvons constater
que toute action de marquage d’entrée 45, (a) devrait étre considérée comme une
attaque admissible. De plus, toute action de marquage de sortie %(a) telle que
le message a contient I'identificateur idg (et non celui de A ou un identificateur
forgeé) devrait aussi étre considérée comme une attaque admissible. En fait, puisque
nous ne souhaitons pas détecter 'interférence provenant d’une exécution honnéte
du protocole par I'intrus, nous considérons comme attaques admissibles toutes les

marqueurs de sortie suivants (pour tout id € 7) :

1. @(a) tel que = a == idg;

2. 6;2¢(a) tel que |= N (a) (c’est-a-dire a doit étre un nonce)

3. 824 (a) tel que =3, (a == {2} rps AN (2));

idg
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4. 53 () tel que |= 3,y (@ == {(z. {a}y) g AN (2) A K(y) NI(2)).

Notons qu’aucun marqueur de sortie de la forme ?55”;7(&) est considéré admissible
car le serveur S est le seul participant autorisé a envoyer un messages sur les canaux
publics cs;4.

Les actions correspondant a des appels de fonction tels le cryptage enc;q,, le
décryptage dec;q, et la génération de nombres aléatoires newNumber;q, , sont éga-
lement considérées comme étant des attaques admissibles car elles sont nécessaires
4 tout processus ennemi qui souhaite participer honnétement au protocole. Ainsi,
nous pouvons supposer que 'ensemble I' des attaques admissibles est composé de
toutes les actions de l'ensemble Actgp (les actions ennemies), a 'exception des ac-

tions de marquage de sortie qui ne sont pas énumeérées plus haut.

7.3.4 Analyse de flots d’information du protocole de Woo-Lam

A Jaide de la Définition 6.8, nous pouvons constater que le protocole P ne

préserve pas I'authenticité car

Q\T %o, @\Acp

pour un certain () € D(Pg). En effet, un tel processus @ est donné par la dérivée

du processus Pz qui peut effectué le calcul de la suite d’actions suivantes :

7= O2B({nB}ias) 622 ({nB}kas) PaIL,y, enciy O ({ida, {nB}kss Hhns)
5% ({ida, {nB }kas trps) SPlitiqs decisg enciag 8552 ({n5 }ips)
5;32({n3}k35) dec;q, authigy,.
Nous pouvons constater que %({TLB}]C 4s) € Actp \ T et auth,y, € Actayn, donc
Pobservation de la suite d’actions v & travers le critére d’observation Oy, cor-
respond a la seule action auth,y,, d'oit auth,s, € Ouun(7). Ainsi, nous pouvons
conclure que le processus (Q \ I')/Ouun peut effectuer I'action auth;q,, mais pas
le processus (@ \ Actg)/Oaun. Par conséquent, le processus @ \ I' n’est pas O,yen-
simulé par le processus @ \ Actg, et nous pouvons conclure qu’ils ne sont donc pas

Oautn-bisimilaires.
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Notons qu’une approche analogue basée sur la non interférence est proposée
par Durante, Focardi & Gorrieri 1*®, et avec laquelle le protocole de Woo-Lam est
analysé. Suite & cette analyse, les auteurs doivent filtrer manuellement les interfé-
rences qui ne correspondent pas a des attaques. Par exemple, leur méthode détecte

la suite d’actions suivante

v= 007 (ida) 65 (ida) O5aF (ida) 0538 (id4) newNumber;q, 63 (np)

idg
Sra(ng) 6,58 (np) 6,34 (np) enci, 0i3s ({np}ras)-

Cependant, nous pouvons facilement remarquer que cette suite d’actions ne corres-
pond pas a une attaque réussit du point de vue de authentification. L’interférence
admissible permet donc une spécification explicite de ces attaques inoffensives.
Ainsi, seulement les failles pouvant mener i de réelles attaques sont détectées a la
suite d'une analyse du protocole. De méme, en identifiant de telles interférences ad-
missibles avant d’effectuer une analyse automatique du protocole de sécurité, nous
pouvons bénéficier d'un gain au niveau de la précision et de la clarté des résultats

obtenus de I'analyse.

7.4 Protocole de Needham-Schroder

Dans cette section, nous considérons le protocole d’authentification a clé publique
de Needham-Schrider 18] qui se déroule comme suit. :

idayidp{nasidateg
—_—

Message 1 : A B
idp.,ida,{na,mn
Message 2 : B 7 AL: #hea A
id4,idB,{n
Message 3: A addeliaby g

(Consulter la Section 1.2.1 pour une description détaillée de ce protocole.)

Pour la suite de cette section, nous considérons la spécification du protocole de
Needham-Schroder dans I'algébre de processus SPPA donnée a4 I'Exemple 3.8. Rap-
pelons que la spécification du participant A est telle que A peut initier le protocole
avec n'importe quel autre participant. En particulier, étant donné un processus en-

nemi E = (Sg,idg), le participant A peut initier le protocole soit avec B, soit avec
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E. Posons P ::= A || B le processus SPPA correspondant & cette spécification du
protocole de Needham-Schrdder. A partir de celle-ci, nous supposons que les actions
critiques du participant associé a I'identificateur id sont exactement les appels de
fonction auth,g, car ces actions sont seulement exécutées lorsque le participant en
question (c¢’est-a-dire A ou B) est persuadé qu’il a authentifié 'autre. D’olt, nous

posons Actawn = {auths, authp}.

7.4.1 Spécification de ’attaque sur le protocole de
Needham-Schréder

Dans cette section, nous offrons une spécification de la fameuse attaque sur le
protocole de Needham-Schréder, initialement découverte par Lowe ™. Une des-
cription détaillée du déroulement de cette attaque est exposée a la Section 1.2.1.
Notons que cette attaque de type « man-in-the-middle » est seulement possible
lorsque le participant A initie le protocole avec un processus ennemi. Dans ce cas,
ce dernier utilise I'information obtenue de A afin d’initier une exécution paralléle
du protocole avec un autre participant dans le but de se faire passer pour A. Dans
le contexte de SPPA, cette attaque correspond au processus ennemi F = (Sg,idg)

dont I'agent initial Sg est donné par :

Sg = cap(z). let (z2,23,24) = 2, in case z4 of {25}, in
let zg = enc(kp, z5) in let z7 = pair(zs,idg, z6) in
C1B(27). c2a(2s). let (29,210, 211) = 28 in
let z5 = pair(idg, 210, 211) in
C2a(z12). csp(z13). 1et (214, 215, 216) = 213 in
case 236 of {z17}k, in let 213 = enc(kp, z17) in

let 219 = pair(zz, idB, 218) in @(219)0

A partir de ce processus ennemi, nous supposons que I'ensemble I' des attaques
admissibles est défini de fagon analogue a celui du protocole de Woo-Lam (voir
Section 7.3.3). Par conséquent, toute action de marquage d’entrée d5,_(a) et tout

appel de fonction (cryptage enc,q,, décryptage decy,, couplage pair,;, et authen-
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tification auth,;,) sont considérés comme étant des attaques admissibles car elles
sont requises dés qu'un processus ennemi souhaite participer honnétement au pro-
tocole. De plus, nous supposons que les actions de marquage de sortie suivantes

correspondent & des attaques admissibles (pour tout id € 7) :

661”((1) tel que = 3,4 (a == (idp,z, {(y,1dE)}:) NI(2) AN (y) AK(2));

idp
2. 5;3;’(@) tel que = 3,40 (a == (idp,x,{(y.2)}u) ANT(x) AN(y) ANN(z) A
K(w)):
3. 032 (a) tel que | 3y (a == (idp, 7, {y}:) NI(z) AN (y) AK(2)).
Ainsi, nous pouvons supposer que 'ensemble I' des attaques admissibles contient

toute action provenant de I’ensemble Actp (les actions ennemies), & 'exceptions

des marqueurs de sortie qui ne sont pas énumérés ci-dessus.

7.4.2 Analyse de flots d’information du protocole de

Needham-Schréder

Par la Définition 6.8, et a I’aide du processus ennemi F défini plus haut, nous
démontrons que le protocole d’authentification de Needham-Schréder ne préserve

pas 'authenticité. En effet, il suffit de constater que

Q\TI' %0, @\Ack

pour un certain processus dérivé @ € D(Pg). Soit Q € D(Pg) le processus qui peut

exécuter le calcul de la suite d’actions suivante :
v = 5fg§(1dA,7dB,{nB}kB) 5ij(sz,idB,{nB}kB) dec;q, authygy,.

Puisque 83F (ida,idp,{np}ry) € Actp \ T et auth;y, € Actawn. donc auth;y, €

’LdE

Oautn (), nous pouvons conclure que

auth;

(Q\T)/Outs —" Q'
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pour un certain processus (. D’autre part, nous pouvons constater que le
processus (Q \ Actg)/O.nun De peut pas exécuter l'action auth,, (car
Sg(idf;, idg,{np}rs) € Actg\T'). D'ou, les processus Q\ I et @\ Actg ne sont pas
OLun-bisimilaires. Notons que la dérivée () provient de la branche du protocole P
dans laquelle le participant A a initié une exécution du protocole avec le processus
ennemi F. La suite d’actions 7 correspond donc & une initiation frauduleuse du

protocole par le processus F avec le participant B, dans le but de se faire passer

pour A.

7.5 Transmission Control Protocol

Le protocole TCP ( Transmission Control Protocol) permet d’établir un canal
sécuritaire d’échange de données pour de diverses applications. Une connexion TCP
utilise communément des structures de données afin d’entreposer certaines informa-
tions liées aux extrémités du lien de communication, I’état TCP actuel, les adresses
IP, le numéro du port utilisé, la minuterie, le numéro d’identification de la session,
la statut du flot de contréle, etc. Une description compléte du protocole TCP en
terme de machine & états est offerte par Schuba et al. [0,

Avant de débuter la transmission de données entre une source A et une des-
tination B, le protocole TCP utilise un protocole préliminaire, appelé three-way
handshake, afin d’établir un lien antre A et B. Ce protocole se déroule comme
suit :

Message 1 : A R B
Message 2 : B YNmACKe 4
ACKm B

Message 3 : A —

Premiérement. le participant A initie la connexion en envoyant & B un paquet de
synchronisation SY NV, qui contient un numéro d’identification n, de méme que les
adresses IP de A et B (représentées par leurs identificateurs respectifs id4 et idp).
Ensuite, le participant B retourne & A un accusé de réception, représenté par le

paquet ACK,,, et un nouveau paquet de synchronisation SY N,,. Finalement, A
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retourne & B Yaccusé de réception constitué du paquet ACK,,.

7.5.1 Spécification du protocole TCP

Une session du three-way handshake du protocole TCP est spécifié par le pro-

cessus SPPA
TCP, == Al B:

avec C = {c1,c2,c3} et ou les participants A = (Sg4,id4) et By = (Sp,,idp) sont
définis comme suit :
S4 = let x; = newNumber(—) in let o = makeSYN(idy,idg, z;) in
let z3 = store(xy) in G1(x2). c2(xy). let (x5,26) = x4 in
let z7 = makeACK(z3) in [z7 = z6] 1let 23 = makeACK(z5) in

Cs(s).Sy

Sp, := ¢1(y1). let (Yo, v3, Ya,ys) = y1 in [ys = idp| let yg = store(y;) in
let y; = makeACK(y;) in let yg = newNumber(—) in
let yg = makeSYN(idp, ys,ys) in let yjo = store(yg) in
let y;; = pair(ye,y7) in
G (y11). c3(y12)- let y13 = makeACK(yo) in [y13 = y12] Sp
ou S’ and S sont des agents qui exécutent le reste du protocole TCP.

Notons que les paquets de synchronisation SY N, et d’accusé de réception
ACK, correspondent formellement & des tuplets (header,idy,idx:,n) de notre
algébre de message ou i¢dy,idy: € I sont les identificateurs respectifs de la source
et de la destination. et n € N est le numéro d’identification de la session TCP.
Pour les besoins de notre spécification, ces paquets sont formalisés par des 4-tuples
SYN,, = (0,id,id',n) et ACK,, = (1,id,id',n) (I'en-téte « 0 » désigne un pa-
quet SYN, tandis que I'en-téte « 1» désigne un paquet ACK, bien qu’en pratique
ces en-tétes sont plus longues car elles contiennent d’autres informations relatives

Vinstance du protocole). Cette spécification nécessite les fonctions suivantes :
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— makeSYN(id, id',n) = (0,id,id’,n) est un constructeur de paquets de syn-
chronisation Gpaxesyn = Z(z1) AN Z(x2) AN (23);
— store(a) = a est une fonction d’entreposage avec ¢gore = M(x);
— makeACK(0,id,id",n) = (1,id,id',n) est une fonction d’accusé de réception
avec Pmakeack = (T1 == 0) AL(x2) A L(w3) AN (24);
La valeur retournée par la fonction store(a) désigne, intuitivement, la référence
(adresse locale) ou le message a est entreposé. Puisque le protocole TCP requiert
aucune opération cryptographique, notre spécification utilise 'ensemble de fonc-

tions suivant :

F = {pair,newNumber, makeSYN, store, makeACK}.

La participant B, communément appelé le serveur, peut généralement trai-
ter plusieurs demandes de branchement simultanées. Supposons que N désigne le
nombre maximal de connexions TCP actives permises par B (avant une réinitia-
lisation). Dans ce cas, le serveur B est spécifié par le participant B = (Sg,idp)
avec Sg 1= Sg,|...|Sp, (N fois). Ainsi, le protocole TCP entier, qui peut traiter

plusieurs sessions simultanément, est spécifié par le processus SPPA
TCP == A| B.
Nous utiliserons cette spécification pour le reste de cette section.

7.5.2 Spécification de P’attaque de SYN flooding

L’attaque de SYN flooding ['®!] sur le protocole TCP est certainement I'une des
plus célébres attaques de DoS. Celle-ci fut perpétrée sur plusieurs sites Internet a
caractére commercial depuis son introduction en 1996. L’attaque de SYN flooding
permet 4 un intrus de provoquer un DoS par épuisement de ressource chez un
serveur en initiant, avec trés peu d’efforts, un grand nombre de sessions du protocole

TCP avec la victime. Cette faille dans le protocole TCP est principalement due a
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la facilité de forger une identité (adresse IP) et, par conséquent, la difficulté pour
la victime d’identifier proprement un intrus.
Plus précisément, I'attaque d’épuisement de ressource SYN flooding sur le pro-

tocole TCP se déroule comme suit :
1. newld,q, : U'intrus forge un identificateur id (adresse IP);
2. newNumber,y,, : I'intrus génére un nombre aléatoire n:

3. makeSYN,4, : I'intrus construit un paquet de synchronisation SY N, qui
contient n comme numéro d’identification, I’adresse IP de la victime (repré-
sentée par 'identificateur idg) et une adresse IP source forgée (représentée
par l'identificateur forgé id) :

4. 6;;E(SYN,L) : I'intrus envoie le paquet de synchronisation SY N, a sa victime
(le serveur B).

Suite 4 la réception du paquet de synchronisation de I'intrus, le serveur se comporte
comme suit :

1. store;q, : le serveur alloue des structures de données afin d’entreposer le
paquet de synchronisation SY N, :

2. makeACK;q,, : le serveur crée un paquet d’accusé de réception ACK,, corres-
pondant & SY N, ;

3. newNumber,;, : le serveur génére un nombre aléatoire m

4. makeSYN,4, : le serveur construit un nouveau paquet de synchronisation
SYN,,:

5. 03, (SY Ny, ACK,) : le serveur envoie les paquets SY N,, et ACK,, a E.
Evidemment, I’intrus ignore ce dernier message envoyé par le serveur. (En fait, ce
message ne devrait se rendre nul part puisque le serveur I'envoie a 'adresse 1P forgée
par I'intrus.) L’intrus va plutot répéter cette attaque avec différents identificateurs
forgés et différents paquets de synchronisation SY N,,, mais sans jamais compléter

le protocole.
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L’attaque de SYN flooding est donc possible puisque la génération d’identifi-
cateurs forgés et de paquets de synchronisation nécessite peu de ressources. Or,
un DoS par épuisement de ressource se produit car le serveur alloue des struc-
tures de données colteuses lors de la réception d’'un paquet de synchronisation
(formalisé ci-dessus par l'action store;s,). Afin d’analyser cette attaque de DoS,
nous devons donc comparer le coit pour l'intrus de perpétrer son attaque et
le colt pour le serveur de traiter celle-ci. Si le coiit de l'attaque (c’est-a-dire
cout(newld) + cotit(newNumber) + cott(makeSYN) + coﬁt(g)) est largement in-
férieur au cout pour la traiter (coit(store) + cotut(makeACK) + cout(newld) +
coit(makeSYN) + coﬁt(zil?j;)), alors nous pouvons conclure que le protocole admet
une faille. En effet, un intrus pourrait initier, & I'aide de trés peu de ressources,
une multitude d’attaques qui provoqueront chez le serveur un important gaspillage
de ressources. Si cette dépense de ressources est au-dela des capacités du serveur.
alors le serveur n’aura plus de ressources disponibles et devra refuser toute nouvelle
demande de branchement, incluant les demandes honnétes.

A partir de la spécification du protocole TCP donnée ci-dessus, nous considérons
le processus ennemi F = (Sg, idg) qui exécute l'attaque de SYN flooding. ou I’agent

initial Sg est donné par :
SE = Ell . IE1 (N fOiS)

ot Sg, est I'agent qui exécute une seule attaque, défini par :

Sg = let z; = newld(—) in let zp = newNumber(—) in

let z3 = makeSYN(zy,idp, 22) in ¢1(23).0

Dans cette spécification. l'intrus envoie & B un paquet de synchronisation SY N,
contenant un identificateur forgé id a la place de celui de E.

L’ensemble T" des attaques admissibles est composé des actions de marquage de
sortie et d’entrée dans lesquelles les paquets de synchronisation et d'accusé de ré-
ception contiennent idg comme adresse IP source ou de destination (correspondant

a une instance honnéte du protocole). Formellement, nous avons
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I'= {63, (0.idg.id,n), 63 (0,id.idg.n) | id € T et n € N'}
U {853 (SYNL,ACK)]), 63 (SYN2,ACK?) |id € T et m,n € N'}
U {653 (1,id,idp,m), 63 (1,idg,id,m) | id € T et m € N}
avec SYNL = (0,idg,id,m), ACK} = (1,idg,id,n), SYNZ2 = (0.id,idg, m) et
ACK? = (1,idg,id,n).

L’attaque de SYN flooding est donc formalisé par le processus SPPA

TCPg == E| B
ou B est le participant SPPA défini plus haut (voir Section 7.5.1).

A partir de notre spécification du protocole TCP, nous pouvons établir la dis-
tribution suivante des cotts reliés a son exécution. Tout d’abord, nous suppo-
sons que les actions makeACK;; (de méme que les actions d’échec correspondantes
failmakeACK) gont celles qui ont un cotit CPU le plus élevé, bien que nous sup-
posons que leur coit CPU ne dépasse pas la capacité CPU de B, ni celle de E.
Dot

pepu(a) < CPUg et pepu(e) < CPUg

pour toute action a € Act. Cependant, nous supposons que les actions d’entrepo-
sage store;y sont les seules actions qui ont un cott mémoire qui excédent la capacité

mémoire de B, ainsi que celle de . D’ou,
Pmem (store;q, ) > MEMp et pmem(store;s,) > MEMg.

Par conséquent, le serveur peut subir un épuisement de ressource mémoire seule-
ment lorsqu’il entrepose des données (ce qui est dii a la création de structures de
données dispendieuses). D’autre part, nous pouvons facilement remarquer que le
processus ennemi F défini plus haut respecte ses capacités car il n’exécute aucune
action d’entreposage.

A T'aide de ce processus ennemi et de la Définition 6.9, nous pouvons conclure
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que le protocole TCP n’est pas impassible. De fagon plus précise, nous voyons que

TCPE\P ./”éo TCPE\ACtE.

cofliteux

En effet, le processus TCPg ::= E || B peut effectuer calcul de la suite d’actions

suivante :
v = newld,q, newNumber;y, makeSYNyy, 053 (SYN,) 62 (SY N,)

split;,;, storeq,

avec SYN,, = (0,id,idg,n) pour certain identificateur id € Z un certain nombre
n € N. Donc E(SYNn) ¢ I. Or, puisque store;qs, € Oconteux(7y) €t 7 ne contient
aucune action provenant de I'ensemble I', nous pouvons constater que le processus
(TCPe\T)/Oconteux Peut exécuter 'action store;q,. mais ce n’est pas le cas pour
le processus (T'C Pg \ Actg)/Ocouteux Car v est contient des actions de I'ensemble

Actg. Nous pouvons donc conclure que ces deux processus ne sont pas bisimilaires.

7.6 Protocole de paiement électronique sécuritaire 1KP

La famille de protocoles de paiement électronique sécuritaire :KP (pour ¢ =
1,2,3) furent développés par la Division Recherche de IBM [%17l. Ces protocoles
offrent un service de transaction par carte de crédit entre un acquérant et un
marchand par I'entremise des réseaux financiers existants pour la procédure de
certification et d’autorisation. Les trois protocoles ¢KP sont composés des mémes
étapes et ils different I'un de I'autre seulement au niveau du contenu des messages
envoyés & chaque étape. Ces protocoles utilisent le cryptage & clé publique et la
signature a clé publique, de méme qu’une fonction de hachage fortement résistante
aux collisions.

Dans ce qui suit, nous désignons respectivement par pk4 et sk, la clé publique
et la clé privée d’un participant A (avec pkgl = sk4). Pour les besoins de ce travail,
nous étudions uniquement le protocole 1KP, le plus simple du trio, qui se déroule

comme suit :



Message 1 : A saltashirabans) B
Message 2 : B clear A
Message 3 : A lirbtaca B
Message 4 : B ctearlsalta desd) lirat acg ACQ
resp,[resph(common)|s 4 00
Message 5 : ACQ — B
Message 6 : B Tesp,["esnh(f—ﬂimon)]skACQ A
ou
common = (price,idp, tidg, np, h(ra,bana), h(salt 4, desc)),
clear = (idg, tidg, ng, h(common))
et

slip = (price, h(common),bana, T4, €xpa).

Tout d’abord, I'acquérant A envoie au marchand B un nombre aléatoire salt, et
un second nombre aléatoire 74 haché avec son numéro de compte ban, (son nu-
méro de carte de crédit, par exemple). Ensuite, le marchand B répond a A en lui
envoyant son identificateur idg, le numéro d’identification de la transaction tidg.
un nonce ng fraichement généré, et la valeur hachée du champ common, ol price
et desc correspondent respectivement au prix et a la description de I'achat. Troisié-
mement, I'acquérant A envoie & B le champ slip chiffré avec la clé publique pkacq
de l'autorité de certification ACQ (la banque, par exemple), ol exp, désigne la
date d’expiration associée au numéro de compte ban 4. Le marchand B peut ensuite
entamer la procédure de certification auprés de ACQ afin d’obtenir 'autorisation
de celui-ci avant de conclure la transaction. Pour ce, B envoie a 'autorité de cer-
tification ACQ) le message fraichement recu de A accompagné des champs clear et
h(salt 4, desc). Suite a la réception de ce message, l'autorité de certification ACQ

procéde comme suit :

1. ACQ s’assure d’abord que les valeurs incluses dans le champ clear ne furent

pas préalablement utilisées ;
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2. ACQ décrypte {slip}pk e, et obtient slip;

3. ACQ vérifie si le h(common) du champ clear correspond bien & celui du
champ slip;

4. ACQ reconstruit le champ common, calcul h(common) et vérifie si cette

valeur correspond bien a celle contenue dans le champ clear;

ACQ vérifie si les valeurs ban 4 et exps sont valides, par I'entremise du sys-

[

téme de certification et d’autorisation fourni par I'institution financiére émet-
trice du compte (ou de la carte de crédit), et obtient une autorisation (ou un

refus) en-ligne pour le paiement.

Une fois cette procédure d’autorisation terminée, I'autorité de certification ACQ
envoie au marchand B la réponse resp obtenue du systéme de certification (« ac-
cepté » ou « refusé ») accompagnée de h(common) et resp signés ensemble avec
la clé privée de ACQ. Finalement, le marchand B vérifie la signature de ACQ et

transfert le message recu de ACQ a l'acquérant A.

7.6.1 Spécification du protocole 1KP

Afin de spécifier le protocole 1KP dans l'algébre de processus SPPA, nous
considérons les participants SPPA A = (S4,ids), B = (Sp,idp) et ACQ =
(Sacg,idacg). dont les agents initiaux sont définis a la Figure 7.1.

Notre spécification du protocole 1KP utilise I'ensemble de fonctions
F = {pair, hash, enc, sign, replay, clearing}.

Notons que cette spécification nécessite deux fonctions de hachage. 'une avec un
seul argument et une seconde avec deux arguments, mais, par souci de simplicité,
nous utilisons le méme nom pour désigner ces deux fonctions. D’autre part, la fonc-
tion replay(id, tid, n, h(a)) permet a 'autorité de certification de s’assurer que les
valeurs du champ clear ne furent pas préalablement utilisées; ainsi elle retourne 1

(vrai) si c’est le cas, et produit un échec sinon. D’ou, le domaine de replay est donc
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S, = let x; = newNumber(—) in let x5 = pair(zy,bany) in
let z3 = h(z3) in let x4 = newNumber(—) in
let x5 = pair(xy, z3) in
-C_l(IL'E)) CQ(ZIJG). let (.’IJ7,$87.’I,'9,.1710) = T¢ in
let x; = pair(z4,desc) in let 35 = h{x,,desc) in
let 213 = pair(price, x7, g, To, T3, T12) in
let 14 = }I,(.T13) in [11714 = $10]
let x5 = pair(price, x14,ban 4, 1, €xpa) in
let x16 = enc(pkacg, z15) in
0_3(3716). 66(1'17). let (.Z’lg,l'lg) = r17 in
let x99 = pair(x1s,2:0) in
case T19 Of [Z20|sksp 10 0

Sp = (1) let (y2,y3) = 11 in let ys = h(yq, desc) in
let ys = newNumber(—) in
let yg = pair(price,idg, tidg, ys, y3, Y4) in
let y; = h(ys) in let yg = (idp, tidp, ys5, y7) in
C2(ys). c3(yo)- let yio = pair(ys, ya, yo) in
T1(th0)- ¢s(y11)- Let (pa2,913) = Y11 in
let yi4 = pair(y2,y7) in
case Y13 of [Y14]skaco 1D To(y11)-0

Sacg = ca(z1).let (211, 212, 213) = #1 in
let (2111, 2112, 2113, 21145 2115) = 211 in
let 2y = replay(z111, 2112, 2113, 2114) in [22 = 1]
case 213 of {Z3}sks0p 1D
let (231, 232, 233, 234, 235) = 23 in
[2115 = 2z32] 1et z4 = h(za4, 233) in
let 25 = (231, 2111, 2112, 2113, 21145 24, 212) in
let 6 = h(z5) in[z7 B 232]
let 27 = (233,235, 231) in
let zg = clearing;y, ., (27) in
let zg = (28, 26) in let wy = [2gshueo i
let wy = (2o, w1) in Gg(ws). ACQ

FiG. 7.1 — Spécification des participants du protocole 1KP.
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uniquement composé des valeurs qui n’ont pas été utilisées dans une transaction
précédente, et ce domaine dépend donc des messages entreposés par 'autorité de
certification 4 un instant donné. De plus, nous supposons que la fonction replay
entrepose son message d’entrée. et nécessite donc une certaine quantité de res-
source mémoire. La fonction clearing(ban, exp, price) = resp permet de valider les
messages ban, exp, price de fagon a obtenir une autorisation pour le paiement. Elle
retourne le message resp = ok (ou 1) si la validation est réussite, et le message
resp = nok (ou 0) autrement.

Nous supposons que les actions de signature sign,,. de vérification de signature
signv,; et de validation clearing,; sont les plus cotuteuses du point de vue des res-
sources CPU. Ainsi, nous supposons que ces actions excédent la capacité CPU des

participants honnétes, c’est-a-dire pepu(a) > CPUg, CPUyueq dés que

a € {signv,,., sign,,, SISNV,g, o0 SI8NGa, .0, Clearing,y, ..
faili¥™, failjy’, failj§™, faills:  failje'® ).
D’autre part, nous supposons que l'intrus posséde une capacité CPU moindre que
celles des autres participants. Plus spécifiquement, nous interdisons & un processus
ennemi qui respecte ses capacités d’exécuter toute action de hachage, de cryptage,
de décryptage, de signature et de vérification de signature. D’ol, nous supposons
que pepu(a) > CPUg dés que

a € { hash,,., enci,, deci, sign;y,, signv,, .

failla™h failflC, failf{s, failiy’, failis" }.

(Notons que cet ensemble contient aussi les actions d’échec correspondantes aux
actions.) Pour ce qui est des colits en ressources mémoire, seule I'action replay,,;, co
nécessite une certaine quantité de ressources pour entreposer des données. Ainsi,
nous supposons que c¢’est I'unique action qui excéde la capacité mémoire des par-

ticipants, c’est-a-dire

Pmem(replayiq, ) > MEMacq et pmem(replay,q,) > MEMp.



7.6.2 Attaque de déni de service sur le protocole 1IKP
Considérons le processus ennemi E = (Sg,idg), avec
Sg ::= 1let x1 = newMessage(—) in let xo = pair(x;,x;) in
Ci(xa). cazs). T3(x1). ca(za). T5(22).0 .
Nous pouvons facilement remarquer que ce processus ennemi respecte les capacités

CPU et mémoire définies plus haut. Nous utilisons ce processus ennemi afin de

démontrer que le protocole 1KP ne satisfait pas I'impassibilité, c’est-a-dire

cotiteux

En effet, £ peut perpétrer I'attaque de DoS suivante simplement a partir d’un

message forgé a. Cette attaque se déroule comme suit :

Message 1 : E =4 B
Message 2 : B dear E
Message 3 : E = B
Message 4 : B clearhlsaita des) liphok acq E (ACQ)
Message 5 : E (ACQ) 22, B

D’abord, E envoie le couple de messages forgés (a, a) au marchand B. Celui-ci traite
les données recgues (sans s’apercevoir qu’elles sont incorrectes) et répond a E. Suite
a la réception de cette réponse, F envoie le message forgé a 4 B, qui le traitera
encore sans soupconner une attaque. Ainsi, le marchand B amorcera la procédure de
validation en envoyant un message a I'autorité de certification ACQ par I'entremise
du canal public ¢s. Le processus ennemi E intercepte ce message (avant que ACQ
puisse le recevoir) et retourne a B, en se faisant passer pour ACQ), un autre message
forgé (a,a). Aprés avoir recu ce message, B exécute une vérification de signature
coiiteuse afin de s’assurer de I'authenticité ce dernier message (cette vérification va
évidemment échouer). Ainsi, le processus E réussi & provoquer exécution d’une
action coiiteuse par le marchand B. Si E exploite cette faille & plusieurs reprises,

c’est-a-dire en initiant plusieurs fois le protocole 1KP avec un méme marchand
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B, que nous supposons capable de traiter simultanément un grand nombre de
transactions, alors E pourrait causer chez B un DoS par épuisement de ressources
CPU (du a plusieurs vérifications de signature).

Cetfe attaque de DoS est détectée par notre propriété d’'impassibilité car I'ac-

tion ennemie J;; (a,a) (qui ne correspond pas a une attaque admissible) cause de
E

I'interférence sur action d’échec de vérification de signature failis" (qui provient

de la vérification « case a of [2)sk,c, in » effectuée par B). Puisque cette action

excéde la capacité CPU du marchand B, d’'ou f ailsiidg;1v € Acteonteuxs €6 que cette

action ne se produira pas dans le processus Pg \ Actg (car 6 _(a,a) € Actg), nous

pouvons donc conclure que P \ T %0 Pg \ Actg. D'ou, le protocole 1KP

coliteux
n’est pas impassible.
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CHAPITRE 8

CONCLUSION

8.1 Principales contributions de la thése

L’une des principales contributions de cette thése est I'introduction de I'algébre
de processus SPPA qui étend CCS par des appels de fonctions explicites sans avoir
a intégrer des régles de déductions, comme c’est le cas dans le spi calcul, qui sont
souvent coiiteuses d’un point de vue algorithmique. D’autre part, un opérateur
d’observation est directement intégré a la syntaxe de SPPA. La sémantique de cet
opérateur nous permet de décrire, entre autres, I'observation d’un protocole par
chacun des ses participants : un tel participant ne peut observer que ses propres
appels de fonction, de méme que les messages qu’il envoie et recoit (modélisés par
des actions de marquage). De cette sémantique pour l'observation d’un proces-
sus nous obtenons la notion de bisimulation par observation qui nous procure une
méthode naturelle pour comparer deux processus par rapport a un méme critére
d’observation. Cette relation d’équivalence est fondamentale & la définition et la
vérification de la propriété d’interférence admissible. Nous introduisons aussi une
extension symbolique de SPPA (voir Chapitre 4) qui s’obtient en assignant a chaque
processus une formule spécifiant un ensemble de contraintes sur les variables libres
du processus. Les formules utilisées proviennent d’une logique, que nous démon-
trons décidable, dont les termes atomiques sont ceux de Falgébre de messages de
SPPA. Nous présentons une sémantique symbolique pour ces processus contraints
(voir Section 4.4). De plus, nous introduisons une relation de bisimulation pour les
processus contraints (voir Section 4.6), et nous démontrons que celle-ci coincide
avec la relation de bisimulation lorsque restreinte aux processus (non symboliques)
SPPA.

La contribution la plus importante de cette thése est la formalisation de la pro-

priété d’interférence admissible BNAI dans le contexte de SPPA (voir Section 5.2).
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Nous présentons une méthode de preuve cohérente et compléte pour la vérifica-
tion de BNAI basée sur 'équivalence de bisimulation. Nous démontrons aussi que
BNALI satisfait certaines propriétés de compositionalité par rapport aux principaux
opérateurs de SPPA (voir Section 5.3). D’autre part, nous démontrons que plu-
sieurs propriétés de non interférence. dont BNAI, ne sont pas définissables dans le
p~calcul (voir Section 5.4), ce qui explique que 'on doive les vérifier par une famille
de bisimulations entre contextes.

Afin de motiver I'aspect pratique de BNAI, nous présentons dans cette thése
diverses applications a la validation de protocoles de sécurité. Tout d’abord, nous
illustrons comment utiliser BNAI afin de vérifier si un protocole préserve la confi-
dentialité des données secrétes de ces participants (voir Section 6.1). Puis, nous
Hllustrons comment utiliser BNAI afin de vérifier si un protocole préserve l'au-
thenticité de ses participants (voir Section 6.2). Finalement, nous introduisons une
nouvelle méthode de validation qui permet de déterminer si un protocole de sécurité
est vulnérable aux attaques de déni de service (voir Section 6.3). Cette application
est développée dans une extension de SPPA a l'aide d’'un modéle de cofits qui dé-
crit les quantités de ressources mémoire et CPU utilisées par un participant au
protocole. A partir de ce modéle, nous proposons une interprétation de BNAI qui
nous permet de détecter les comportements qui sont susceptibles de provoquer un
épuisement de ressources de 'un des participants du protocole lorsque celui-ci est
attaqué par un intrus. Ces trois interprétations de BNAI sont appuyées par des

études de cas complétes portant sur des protocoles connus (voir Chapitre 7).

8.2 Comparaisons avec les travaux voisins

La différence majeure entre notre approche basée sur une formalisation des pro-
priétés de sécurité en termes d’interférence admissible et une approche basée sur
une formalisation en terme de probléme d’atteignabilité se résume de la facon sui-
vante. Les deux méthodes détectent des traces qui correspondent a des attaques

sur le protocole. Cependant, I'utilisation de non interférence nous permet d’établir
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une dépendance causale entre les différents types d’actions (par exemple, le com-
portement de I'intrus et les actions critiques d’un participant). Ainsi, la méthode
de validation présentée dans cette thése, comparativement aux méthodes de traces,
nous permet non seulement de trouver les attaques, mais aussi de prouver que
celles-ci correspondent bien a des attaques.

Comme nous l'avons souligné dans cette thése, la validation d’un protocole par
rapport a tout environnement hostile est généralement indécidable due a la quantité
de stratégies d’attaque possibles. Les méthodes de validation par model-checking
basées sur CSP proposées par Lowe [" et par Schneider 1% nécessitent la modé-
lisation d’un intrus spécifique dont la définition dépend du protocole sous étude.
La méthode proposée dans cette thése est plutoét basée sur des propriétés de sé-
curité qui offrent une protection contre tous les processus ennemies définissables
dans SPPA. Cependant, d'un point de vue pratique, et tout particuliérement pour
une analyse de la robustesse contre le déni de service, nous vérifions seulement par
rapport a un seul processus ennemi qui est suffisamment fort. Nous n’obtenons
ainsi qu’une approximation de notre propriété de sécurité, ce qui nous rameéne aux
approches de Lowe et Schneider. Les approches basées sur le spi calcul dévelop-
pées par Abadi & Gordon I et Boreale, De Nicola & Pugliese [?Y] bénéficient de
méthodes de validation par equivalence-checking qui prennent avantage d'une ca-
ractérisation finie de lI'univers de tous les processus ennemis. Notons cependant
que ces approches ne permettent qu'une formalisation de la sécurité qu’en termes
de traces, et non en termes de flots d’information. D’autre part, Boreale et al. [21]
formalisent la confidentialité d’'un message m par une équivalence barbelée de tous
les processus obtenus en substituant toute occurrence de m par d’autres messages.
Ainsi, leur formalisation de la confidentialité garantit une indistinguabilité du pro-
tocole par rapport aux message secrets échangés. Cependant, leur formalisation,
contrairement & la notre, ne considére pas comme un bris de confidentialité la di-
vulgation de l'existence d’un message secret. En effet, notre formalisation de la
confidentialité (Définition 6.6) garantit une indistinguabilité entre le protocole et

le protocole dans lequel aucun message secret n’est échangé. Nous pouvons donc



conclure que notre formalisation raffine celle de Boréale et al.

Du point de vue de la modélisation, comparativement & d’autres algébres de
processus comme CCS, CSP et SPA, Valgébre de processus SPPA permet une mo-
délisation plus détaillée du comportement de 'intrus et des participants (grace aux
appels de fonctions) et une analyse plus poussée des échanges de messages entre les
participants et 'intrus (grace aux actions de marquage). En particulier, I'utilisation
de SPPA plutdét que CSPA ou le spi calcul pour modéliser Vintrus nous permet de
restreindre ce dernier 4 des manipulations de messages spécifiques. Comme nous
I’avons noté précédemment, cet aspect est fort attrayant lorsque nous souhaitons
formaliser des attaques de déni de service qui nécessitent peu de ressources.

Les formalisations de la confidentialité et de 'authentification présentées au
Chapitre 6 généralisent celles introduites par Focardi & Gorrieri #4850 Cepen-
dant, notre approche basée sur l'interférence admissible, comparativement a celles
simplement basées sur la non interférence, nous permet d’identifier des attaques in-
offensives t6t dans les phases de conception du protocole. Par exemple, lors d’une
analyse du protocole de Needham-Schrider, certaines « fausses attaques » détec-
tées par les méthodes de Focardi & Gorrieri ne sont pas détectées par la notre.
D’autre part, le concept d’action de déclassification nous évite d’augmenter notre
langage de spécification a Vaide d'un systéme de déduction parallele pour traiter
les manipulations cryptographiques de messages. Dans CSPA, ces manipulations
ne sont pas directement visibles de la sémantique des processus afin d’éviter de dé-
tecter l'interférence admissible qu’elles introduisent (par exemple, lors du cryptage
d’un message). D’une part, SPPA permet une visualisation explicite des manipula-
tions cryptographiques en terme d’actions et, d’autre part, notre formalisation de
la confidentialité nous permet d’ignorer I'interférence admissible en identifiant les
actions qui correspondent & des déclassifications.

Plus récemment, Bossi, Piazza & Rossi ?2 ont proposé un modéle générique
pour la formalisation de différentes propriétés de non interférence intransitive. Leur
modéle, qui est élaboré dans le langage SPA, est une généralisation de celui présenté

dans cette thése. En considérant différentes relations d’équivalence observationnelle



188

sur les processus SPA, elles obtiennent ainsi une série de propriétés de flots d’infor-
mation intransitifs vérifiables par equivalence-checking. En particulier, les auteures
démontrent que notre propriété BNAI est équivalente a 'une de leurs propriétés
(désignée par DP_ BNDC).

Bien que notre méthode de validation contre les attaques de DoS est une in-
terprétation dans SPPA du modéle de cotit de Meadows [®, certaines distinctions
persistes. Par exemple, nous ne considérons pas le colit cumulatif des comporte-
ments d’un intrus ou des autres participants au cours d’ une exécution du protocole.
Nous considérons plutét le coiit maximal des actions d’un comportement. Il s’avére
qu’une extension du modéle proposé dans cette thése qui permettrait de traiter le
cotit cumulatif des actions requiert une modification non triviale de la sémantique
de Popérateur d’observation P/O de SPPA. D’autre part, notre méthode s’appuie
sur une représentation uniforme des capacités (mémoire et CPU) d’un intrus et
d’une modélisation de celui-ci en terme de processus ennemi. Meadows opte plutot
pour une approche plus informelle qui exploite une relation de tolérance qui dé-
termine combien de ressources le concepteur du protocole est prét a dépenser afin
d’assurer un certain niveau de sécurité.

Abadi, Blanchet & Fournet [ ont analysé le protocole d’échange de clés Just
Fast Keying (JFK) pour les communications IP sécuritaires. A partir d’une spé-
cification dans le m-calcul, ils démontrent que le protocole JFK est robuste par
rapport aux attaques de DoS. Plus spécifiquement, ils prouvent que le serveur (dé-
fendeur) n’effectuera des actions cotiteuses seulement si 'intrus passe a travers les
premiéres étapes du protocole. Leur formalisation de la robustesse face aux DoS est
semblable & la notre car elle a pour but d’établir une dépendance causale entre les
comportements de I'intrus et les actions coiiteuses des participants. Cependant, leur
validation s’appuie sur I’hypothése qu’un intrus utilisant des adresses IP aléatoires
ne sera pas capable d’intercepter les messages envoyées a cette adresse.

Cortier, Delaune & Lafourcade B3 offrent une synthése des propriétés algé-
briques propres aux primitives cryptographiques. L’étude de ces propriétés est mo-

tivé par le fait qu'une analyse basée sur I'hypothése classique de cryptage parfait,



189

dans laquelle le cryptage de données est traitée comme une boite noire, ne parvient
pas a détecter certaines attaques. Par exemple, le protocole peut nécessiter certaines
propriétés algébriques ou une attaque sur un protocole peut dépendre de certaines
propriétés des fonctions de cryptage, de signature et de hachage. Parmi les proprié-
tés cryptographiques répertoriées par Cortier et al., nous comptons l'associativité,
la commutativité. le OU exclusif et la propriété de préfixe. Nous sommes d’avis
que ces propriétés sont définissables dans la logique pour les messages présentée a
la Section 4.1 (directement au niveau des régles de satisfaction pour = a == b).
Ainsi, une implantation notre modéle symbolique pourrait prendre en considéra-
tion ces propriétés, ce que trés peu d’outils automatiques parviennent a faire. Parmi
les outils qui le peuvent, notons le Cryptographic Protocol Verifier développé par
Blanchet '8, dans lequel les propriétés sont définissables en termes de clauses de
Horn. Le NRL protocol analyzer développé par Meadows 77} permet également une
formalisation de ces propriétés en termes de régles de réduction.

La principale différence entre notre modéle symbolique et celui de Hennessy-
Lin 57 réside dans le graphe de transitions symbolique : dans notre modéle, nous
assignons a chaque état (processus) une formule qui offre une description précise
des variables présentes dans le processus, tandis que le modéle de Hennessy-Lin
nécessite une formule obtenue en considérant tous les chemins menant & l'état
(processus). Notre modéle symbolique fut développé avec un objectif d’analyse de
protocoles de sécurité en téte — il est donc essentiel d’avoir une description détaillée
des valeurs symboliques & un moment précis du protocole afin d’augmenter I'effica-
cité de 'analyse. En effet, "analyse de protocoles de sécurité requiert fréquemment
une vérification des effets de l'introduction de valeurs aléatoires (par exemple, un
message forgé envoyé par un intrus) sur certains participants du protocole. Dans ce
contexte, notre notion de processus contraint nous permet d’identifier directement
ces valeurs aléatoires qui pourraient mener &4 une attaque. Par exemple, 'analyse
d’un protocole contre les attaques de DoS nécessite généralement de vérifier si un
message forgé envoyé par un intrus peut engendrer 'exécution de fonctions col-

teuses en terme de ressources (telles le décryptage de données ou la vérification
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d’un message signé). Dans ce cas, une stratégie d’analyse basée sur les processus
contraints consiste & vérifier, pour tout processus contraint obtenu a la suite d’une
telle action coiiteuse, les restrictions imposées par la formule sur la variable qui
représente le message forgé : si tous les messages forgés satisfont la formule, alors
nous pouvons conclure que le protocole est incapable de détecter et contrer une
session frauduleuse: si la formule est satisfaite seulement par un petit nombre de
messages, alors nous pouvons conclure que le protocole est sécuritaire car la ma-
jorité des attaques initiées par un intrus auront été préalablement détectées. Une
méthode similaire qui permet de détecter si un protocole est vulnérable face aux
attaques de DoS fut proposée a la Section 6.5.

Boreale 2% a développé un modeéle symbolique pour I'analyse de protocoles
cryptographiques. Son modéle est basé sur une spécification du protocole dans le
spi calcul sans les opérateurs de copie et de récursion. (Notons que notre modéle
symbolique fonctionne avec les définitions récursives de SPPA.) Comme la majorité
des modéles fondés sur le spi calcul, ce modéle suppose que le réseau de commu-
nication est entiérement controlé par I'environnement (c’est-a-dire 'intrus). Ainsi,
un participant en attente d'un message peut, en principe, recevoir n’importe quel
message que 'environnement est capable de produire. Par conséquent, les graphes
de transitions associés & ces modéles sont souvent infinis (comme c’est le cas pour
les algébres de processus avec passage de paramétres). L'astuce générale derriére
le modéle symbolique de Boreale est similaire a la notre; elle consiste a remplacer
I'infinité de transitions provenant d’une action d’entrée par une seule transition
symbolique dans laquelle le message recu est représenté par une variable. Un état
du protocole est ensuite représenté par un couple (s, P) formé d’un processus P
et d’une trace symbolique s (c’est-a-dire une suite d’actions pouvant contenir des
variables libres), dans laquelle est conservée 'historique des interactions entre le
processus et I'environnement. Cette approche est donc similaire 4 celle de Hennessy-
Lin. Par rapport a notre modéle symbolique, le concept de processus contraint nous
permet de rassembler les couples (s, P) et (s', P) dés que les traces symboliques

s et &' sont caractérisées par la méme formule. Boreale démontre que la séman-
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tique symbolique d’un couple (s, P) coincide avec la sémantique conventionnelle
du processus P. Cependant, aucune relation de bisimulation sur cette sémantique
symbolique n’est offerte.

Fiore & Abadi [*? ont développé un modéle symbolique muni d’une sémantique
de réduction symbolique qui s’inspire de celle de Boreale 9, Plus spécifiquement,
ils offrent une procédure qui, 4 partir d’'une représentation finie d’'un protocole
évoluant dans un environnent hostile, détermine un ensemble de traces symboliques
sur lesquelles des propriétés de sécurité peuvent étre vérifiées. L'idée derriére leur
approche consiste a réduire I’ensemble infini des traces d’un processus du spi calcul
4 un ensemble fini. Cette réduction est accomplie suite & une analyse symbolique
des connaissances de I'environnement. Cette analyse algorithmique est requise car,
contrairement a notre modéle symbolique, certaines traces symboliques provenant
de leur sémantique symbolique ne correspondent pas a des traces du processus.
Notons aussi que les modéles symboliques de Boreale et de Fiore-Abadi sont limités
a des spécifications de la sécurité en terme de probléme de traces (atteignabilité).
Ils s’intéressent tout particuliérement & des propriétés qui sont de la forme « dans
toute exécution du protocole, Paction « se produit avant Paction 3 ».

Echahed & Prost % ont proposé une méthode d’analyse de la confidentialité de
Pinformation pour certaines applications basées sur 'utilisation de mots de passe
(guichet automatique bancaire, procédure de login, etc.), pour lesquels une analyse
de non interférence est souvent insuffisante. Ils introduisent un concept de fonction
de conversion qui permet de modifier le niveau de confidentialité des messages,
et une notion d’interférence contrélée qui s’assure que toute interférence entre les
divers niveaux de confidentialité provient d’une fonction de conversion pour la-
quelle une déclassification de I'information est autorisée. Echahed & Prost donnent
une définition formelle et un algorithme de vérification pour l'interférence contré-
lée dans le contexte de la programmation déclarative concurrente. Cette méthode
de validation s’appuie sur des concepts analogues a ceux qui ont inspirée notre
méthode basée sur la propriété BNAIL Une combinaison de ces deux approches de-

vrait étre parmi nos objectifs de recherche immédiats. L’interférence contrélée nous
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procure un algorithme efficace par vérification de typage qui pourrait s’avérer plus
précis que BNAI dans le sens que I'interférence admissible est permise jusqu’a la
derniére action de déclassification, aprés quoi tout flot d’information qui cause de
Iinterférence est interdit. Par exemple, aprés une déclassification, formalisée par
I'utilisation d'une certaine fonction de conversion, il pourrait y avoir de l'interfé-
rence entre deux niveaux de confidentialité provenant indirectement de 1'utilisation
de la fonction de conversion. Ce type d’interférence est autorisé selon leur approche.

L’approche présentée ci-dessus est similaire & celle de Myers, Sabelfeld & Zdan-
cewic 189 qui utilise une propriété de robustesse afin de caractériser les programmes
pour lesquels les mécanismes de déclassification ne peuvent pas étre exploités par
un intrus afin de provoquer des divulgations d’information non souhaitées. Cette
propriété de déclassification robuste est vérifiée a partir d'une analyse du typage du
programme qui garantit qu’aucun intrus ne peut controler quelles données seront
déclassifiées. Cependant, notons que le langage de spécification utilisé par Myers et
al. ne considére pas la concurrence. Comme c’est le cas pour notre modéle, mais pas
pour celui de Echahed-Prost, les déclassifications sont directement déclarées au ni-
veau des actions. Par conséquent, il est possible de restreindre les déclassifications a
certaines portions du treillis contenant les divers niveaux de sécurité. D’autre part,
leur propriété de déclassification robuste est définie selon une approche analogue a
celle de Boreale et al. 1], c’est-a-dire en exigeant que les programmes P[a] et Pa’]

soient indistinguables pour tous tuplets de messages a et o’ provenant de l'intrus.

8.3 Nouvelles voies de recherche

Un outil d’analyse de protocoles de sécurité basé sur l'algébre de processus
SPPA et la propriété d’interférence admissible a été développé au Laboratoire
CRAC de I'Ecole Polytechnique de Montréal. Cet outil, nommé ASPiC, prend
comme entrée un protocole spécifié dans une extension symbolique de SPPA appelée
Security Process Algebra for Symbolic Manipulations (SPASM) 114 Cet analyseur

de protocoles a été utilisé avec succés pour vérifier certaines propriétés propres aux
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protocoles cryptographiques et aux protocoles de commerce électronique. Plus spé-
cifiquement, ASPiC implante la méthode de vérification par bisimulation de BNAI
et les propriétés vérifiées par celui-ci, dont la confidentialité, 'authentification, la
non répudiation et I'équité, sont directement exprimées en terme d’interférence
admissible.

Toujours au Laboratoire CRAC , nous développons présentement un outil qui gé-
nére la spécification en SPPA d’un protocole & partir de sa spécification dans le lan-
gage High Level Protocol Specification Language (HLPSL) '3l Le langage HLPSL
est un langage de haut niveau (un peu plus détaillé que la notation Alice & Bob)
développé dans le cadre du projet Européen AVISPA (www.avispa-project.org).
Cet outil de traduction nous permettra d’utiliser un grand nombre de protocoles
déja spécifiés en HLPSL et de valider ceux-ci selon les diverses méthodes présentées
dans cette thése. En fait, une fois un protocole traduit en SPPA. plusieurs options
s’offrent 4 nous afin d’en obtenir une analyse. Tout d’abord, nous pourrons utiliser
Poutil présenté ci-dessus pour analyser le protocole, aprés avoir généré la spécifica-
tion SPASM du protocole a partir de celle en SPPA. D’autre part, nous pourrons
effectuer une vérification du protocole directement a partir de la sémantique avec
passage de paramétres de SPPA. Finalement. nous pourrons utiliser le modéle sym-
bolique présenté au Chapitre 4. Comme nous ’avons constaté a la Section 4.3.1,
une spécification du protocole en terme de processus contraint s’obtient facilement
de sa spécification SPPA. L’outil de traduction pourrait générer une spécification
symbolique en SPPA, directement a partir de sa spécification HLPSL, qui formalise
les connaissances initiales des participants a I’aide d’une formule jointe au processus
contraint correspondant au protocole. Une vérification de ce processus contraint est
ensuite accomplie selon I'une des applications de BNAI présentée dans cette thése.
Des méthodes spécialement adaptées a notre modéle symbolique pour la vérifica-
tion de propriétés de confidentialité, d’authentification et de robustesse contre le
DoS sont présentées a la Section 6.4.

Une autre ramification & notre recherche consiste a développer des propriétés de

sécurité, tout particuliérement pour les protocoles de commerce électronique, a par-
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tir d’interprétations de la propriété BNAIL Cette approche nous permet de définir
des propriétés de sécurité a l'aide des flots d’information et de profiter des caracté-
risations algébriques de BNAI dans le contexte d’'une méthode de preuve pour leur
vérification. Une spécification de la propriété d’anonymat a été obtenue a partir de
BNAI par Brlek, Hamadou & Mullins ). D’autre part, nous sommes d’avis qu’une
propriété de non répudiation s’obtient facilement a partir d'une interprétation du
concept de non interférence. En effet, il semblerait que la non répudiation soit reliée
4 la satisfaction de l'interférence plutdét que de la non interférence, c¢’est-a-dire la
non répudiation se raméne & vérifier qu'un participant a causé de I'interférence sur
un certain message afin de s’assurer que ce message est effectivement une consé-
quence directe du comportement du participant. Si nous parvenons 4 démontrer
que I'occurrence de ce message est une conséquence d’une certaine action du parti-
cipant, celui-ci ne peut pas nier son lien avec le message. Cependant, nous ne savons
pas encore comiment interpréter le concept d’admissibilité et d’attaque admissible
dans ce contexte de la non répudiation.

Focardi, Gorrieri & Martinelli ! ont récemment proposé une extension tempo-
relle de SPA, de méme qu’une relation de bisimulation faible temporelle sur celle-ci.
A partir de ce modéle, ils étendent dans un contexte temporel certaines propriétés
de non interférence, dont SNNI et BSNNI. Due a la simplicité de leur approche,
nous sommes d’avis qu'une extension semblable & notre algébre de processus SPPA
s’obtient facilement. Du coup, nous pourrions en déduire une extension temporelle
de notre propriété BNAI Cependant, 'extension temporelle de Popérateur d’ob-
servation P/O de SPPA pourrait s’avérer assez complexe car cet opérateur est un
raflinement non trivial de Popérateur de masquage de SPA et I'extension tempo-
relle de celui-ct doit respecter une propriété de progression maximale (c¢’est-a-dire,
les actions 7 doivent avoir préséances sur 'écoulement du temps).

Une interprétation de la non interférence dans le contexte du w-calcul est pro-
posée par Hennessy %659 En s’inspirant de ces travaux, il serait intéressant de
formaliser la notion d’admissibilité dans cette algébre de processus. Une telle inter-

prétation passerait par une extension de SPPA afin d’y intégrer les concepts propres
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au m-calcul, tout particuliérement la mobilité des processus. Cette extension néces-
site une généralisation de notre algorithme de O-bisimulation (Définition 3.19) au
m-calcul. Une approche basée sur les flots d’information pour le w-calcul fut ré-
cemment proposée par Bodei et al. ['%] et pour laquelle les auteurs présentent une
application a 'analyse du controle de flots d’information dans les protocoles cryp-
tographiques. Cependant, nous conjecturons que les propriétés de sécurité établies
par Bodei et al., plus précisément les propriétés d’« aucune divulgation » (no leaks)
et « pas de lecture vers le haut/pas d’écriture vers le bas » (no read-up/no write-
down), ne permettent pas la détection de canaux clandestins dans les protocoles
cryptographiques, contrairement aux propriétés de flots d’information telles la non
interférence et I'interférence admissible.

Au niveau de notre modéle symbolique, nous avons comme projet d’élaborer un
algorithme pour déterminer si deux formules sont équivalentes. La comparaison de
formules est frequemment utilisée dans la construction de la sémantique symbolique
d’un processus contraint. Un tel algorithme devrait se déduire de l'algorithme de
décision pour notre logique de messages compléiée avec les opérateurs logiques
habituels, dont un quantificateur universel.

Comme nous I’avons mentionné au Chapitre 6, le concept de processus contraint
introduit dans notre modéle symbolique est tout a fait propice a Ianalyse de la
vulnérabilité au DoS. Cette extension de notre méthode d’analyse de la robustesse
face au DoS nous permettrait d’obtenir un aper¢u immeédiat des valeurs symboliques
présentes & un moment précis du protocole. En particulier, cette approche nous
permettrait de déterminer quels messages forgés par un intrus persisteront jusqu’a
la fin du protocole : si la plupart de ces messages se rendent jusqu’a la fin, alors
nous pourrons conclure que le protocole n’est pas sécuritaire ; si seulement un petit
nombre de ces messages se rendent jusqu’a la fin, alors nous pourrons conclure que
la majorité des attaques furent contrées. Nous prévoyons développer une seconde
extension & notre méthode d’analyse de DoS qui pourra prendre en compte le cotit
cumulatif des ressources. Cette approche pourrait ainsi formaliser I'allocation et la

désallocation de ressources mémoire d’un participant lors d’'un protocole.
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Nous sommes présentement a 1’élaboration d'un modéle dans lequel les quanti-
tés de ressources disponibles pour chaque participant a un protocole sont exprimées
conjointement avec le processus SPPA qui décrit le déroulement du protocole. Nous
prévoyons modéliser les dépenses de ressources a 1'aide d'un simple vecteur de res-
sources, d'un semi-anneau, ou d'une autre structure mathématique pour laquelle
un algorithme efficace est connu pour déterminer un état critique du protocole,
c’est-a-dire un moment dans le déroulement du protocole ot il y a épuisement de
ressources. A partir de ce modéle pour les ressources, nous pouvons facilement
élaborer une sémantique pour un processus SPPA P (et éventuellement une sé-
mantique symbolique pour un processus contraint) combiné a une structure de

ressources 7. Cette sémantique aurait la forme suivante :

P=p
(P, T) = (P, T+ p(a))

ou T + p(«) désigne la structure de ressources obtenue de T suite a I'exécution de
I'action o (ou p(a) qui désigne le colit de a). A partir de cette sémantique, il suffirait
d’utiliser un algorithme propre a la structure de ressources afin de déterminer l'état
du protocole pour lequel le niveau de ressources est le plus bas (ou déterminer si le
déroulement du protocole peut mener a une situation de overflow ou de underflow).
Notons que ce genre de sémantique est tout a fait propice & une analyse du protocole
qui prend en compte le coit cumulatif des ressources. De plus, si I'interprétation
de la vulnérabilité au DoS se raméne a déterminer si un certain état critique est
atteignable de 1'état initial du protocole, alors notre méthode pourrait s’appuyer
sur une formulation a I’'aide d’une formule du p-calcul de la propriété de robustesse
face au DoS.

D’autre part, nous travaillons présentement au Laboratoire CRAC sur I’élabora-
tion d’un modeéle stochastique pour I'analyse des attaques de DoS. L’idée derriére
ce modéle consiste 4 développer un langage de spécification pour les protocoles
de sécurité qui combine les algébres de processus, plus spécifiquement SPPA, et

les chaines de Markov. Ce modéle de spécification pourrait s’inspirer du modéle



197

d’analyse de performance de systémes informatiques proposé par Brinksma & Her-

manns 24,
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