POLYTECHNIQUE

POLYPUBLIE

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre:

Title: Algorithmes optimaux pour lI'approximation de fonctions concaves

Auteur:
Author:
Date: 2005

Type: Mémoire ou thése / Dissertation or Thesis

Jean Guérin

Référence: Guérin, J. (2005). Algorithmes optimaux pour I'approximation de fonctions
" concaves [Theése de doctorat, Ecole Polytechnique de Montréal]. PolyPublie.

Citation: https://publications.polymtl.ca/7558/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:) C
PolyPublie URL: https://publications.polymtl.ca/7558/

Directeurs de
recherche: Gilles Savard, & Patrice Marcotte
Advisors:

Programme:

Program: Non spécifié

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/7558/
https://publications.polymtl.ca/7558/

UNIVERSITE DE MONTREAL

ALGORITHMES OPTIMAUX POUR L’APPROXIMATION DE FONCTIONS
CONCAVES

JEAN GUERIN
DEPARTEMENT DE MATHEMATIQUES
ET DE GENIE INDUSTRIEL
ECOLE POLYTECHNIQUE DE MONTREAL

THESE PRESENTEE EN VUE DE L’OBTENTION
DU DIPLOME DE PHILOSOPHIE DOCTOR
(MATHEMATIQUES DE L'INGENIEUR)
AOUT 2005

© Jean Guérin, 2005.

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-16995-7
Our file Notre référence
ISBN: 978-0-494-16995-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Cette thése intitulée :

ALGORITHMES OPTIMAUX POUR L’APPROXIMATION DE FONCTIONS
CONCAVES

présentée par : GUERIN Jean
en vue de I'obtention du diplome de: Philosophiee Doctor

a été dument acceptée par le jury d’examen constitué de :

M. AUDET Charles, Ph.D., président
M. SAVARD Gﬂles, Ph.D., membre et directeur de recherche

M. MARCOTTE Patrice, Ph.D., membre et codirecteur de recherche
M. DUFQOUR Steven, Ph.D., membre
M. DUBEAU Frangois, Ph.D., membre externe

iv

REMERCIEMENTS

Je tiens d’abord & remercier mes deux codirecteurs Gilles Savard et Patrice Marcotte

pour leurs conseils et leur soutien.

Je remercie aussi tous les collegues avec qui j’ai eu des discussions & propos de mon

travail. Leur intérét et leurs idées on été grandement appréciés.

Je remercie enfin Nam Soo pour sa patience et ses encouragements tout au long de

ce travail.

RESUME

Ce travail porte sur 'approximation de fonctions concaves définies sur l'intervalle
[0, 1]. Celles-ci proviennent d’un sous-ensemble F' connu de toutes les fonctions conti-
nues sur [0, 1] et ce sous-ensemble constitue de I'information a priori sur les fonctions
a approximer. Ici, I'information a priori est la valeur de la fonction et de sa dérivée
aux extrémités de l'intervalle. De l'information supplémentaire est disponible sur
chaque élément de F', obtenue en évaluant la fonction et I'un de ses surgradients en
n points de [0, 1]. Ces valeurs sont ensuite utilisées pour construire une approximation
de la fonction. La qualité de cette approximation est mesurée par la différence entre
celle-ci et la fonction elle-méme, évaluée selon I'une des normes LP avec 1 < p < oo

ou L' pondérée par une fonction de poids positive.

L’information obtenue par I’évaluation d’une fonction de F est partielle et ne déter-
mine pas complétement cette fonction. Par conséquent on cherche & choisir les points
d’évaluation de fagon & minimiser I'incertitude quant & la fonction a approximer, et
ce quelque soit I’élément de F' qui nous est donné. On est donc amené a déterminer
I'information, c’est-a-dire les points d’évaluation, qui minimise 'erreur d’approxi-
mation dans le pire cas. Une fois ces points déterminés et la fonction évaluée, on
construit ensuite une approximation qui utilise au mieux I'information obtenue. Une
procédure pour calculer les points d’évaluation optimaux et construire une approxi-
mation & partir de l'information donnée par ceux-ci est appelée algorithme optimal

pour le probleme si elle donne la plus petite erreur d’approximation dans le pire cas.

Les points d’évaluation peuvent étre choisis & I'avance quelque soit la fonction, ou
encore séquentiellement en utilisant & chaque étape 'information des évaluations
précédentes pour choisir le prochain point. Dans le premier cas I'algorithme d’ap-
proximation est appelé passif et dans le second adaptatif. Une question qui se pose

alors est de savoir si un algorithme adaptatif est plus efficace qu’un algorithme passif.
g S p

vi

La réponse a cette question dépend de tous les détails du probleme et est importante
en pratique puisque les algorithmes adaptatifs sont habituellement plus coliteux que

ceux passifs.

Dans ce document, nous considérons des fonctions concaves sur [0, 1] dont la valeur
aux extrémités est fixée, f(0) = 0 et f(1) = 1, et dont les dérivées en 0 et 1 sont
bornées par des constantes connues : f'(0) < a et f'(1) > b. Nous montrons que
quelques soient les points d’évaluation choisis la meilleure approximation & l'aide de
ces points est une certaine fonction linéaire par morceaux construite a partir des
valeurs obtenues. Ainsi, le probleme de trouver le meilleur algorithme se réduit &

celui de trouver les meilleurs points d’approximation.

Les points d’évaluation optimaux de méme que la réponse & la question sur la
supériorité des algorithmes adaptatifs dépendent de la norme employée dans la
définition de l'erreur d’approximation. Nous montrons que pour ’approximation
dans la norme L! un algorithme adaptatif ne peut faire mieux dans le pire cas qu’un
algorithme passif optimal et un tel algorithme est présenté. Pour I'approximation
dans la norme LP avec p > 1 nous montrons qu’un algorithme optimal doit étre
adaptatif en calculant des bornes explicites sur l'erreur pour les algorithmes pas-
sifs et pour un algorithme adaptatif particulier. Nous montrons également que pour
I'approximation dans la norme L' pondérée, comme dans le cas non pondéré, un

algorithme adaptatif ne peut faire mieux qu’un algorithme passif optimal.

Pour chacun de ces problemes nous proposons des algorithmes optimaux au sens ot
étant donnés n points d’évaluation aucun autre algorithme ne peut faire mieux, a une
constante (indépendante de n) prés. Cette emphase sur la minimisation de 'erreur
en fonction du nombre d’évaluations est typique de notre approche et reflete le fait
qu'en pratique les f#Betions & approximer sont souvent trés coiiteuses & calculer
et donc que le nombre de points d’évaluation utlllges est un élément crucial du

probléme. Nous proposons également pour les problémes avec les normes L' et L!

vii

pondérée un algorithme séquentiellement optimal, qui est un algorithme adaptatif
congu pour faire le meilleur usage possible de l'information favorable obtenue au

cours des évaluations.

Enfin, tous les algorithmes que nous construisons sont testés numériquement pour

juger de leur mérites respectifs.

viii
ABSTRACT

In this work we consider the approximation of concave functions defined on the
interval [0, 1]. These come from a known subset F of all continuous functions on [0, 1]
and this subset defines a priori information about the functions to be approximated.
Here, the a priori information is the value of the function and its derivative at the
endpoints of the interval. Additionnal information is available on each element of
F, obtained by evaluating the function and one of its supergradient at n points of
[0,1]. These values are then used to construct an approximation of the function.
The quality of this approximation is measured by the difference between it and the
function itself, under one the LP norms with 1 < p < co or the L! norm weighted

with a positive function.

The information obtained from the evaluation of a function in F is partial and does
not completely determine this function. Therefore, we want to choose the evaluation
points so as to minimize the uncertainty on the function being approximated, whi-
chever element of F is actually under consideration. We are thus interested in finding
the information, i.e. the evaluation points, that minimize the approximation error
in the worst case. Once these points are found, we construct an approximation that
makes the best use of the information that was obtained. A procedure to compute
the optimal points and construct the best approximation based on these points is
called an optimal algorithm for the problem if it achieves the smallest error in the

worst case.

The evaluation points can be chosen in advance, regardless of the actual function or
sequentially, making use at each step of the previous information to choose the next
point. In the first case the algorithm is called passive, and adaptive in the second. A
question that arises then is whether an adaptive algorithm is more efficient than a

passive one. The answer to that question depends on all the elements of the problem

IX

and it is important in practice because adaptive algorithms are often more expensive

than passive ones.

In this document we consider concave functions on [0, 1] whose values at the end-
points are fixed : f(0) = 0 and f(1) = 1 and whose derivatives at 0 and 1 are
bounded by known constants : f'(0) < a and f'(1) > b. We show that for any fixed
evaluation points the best approximation is a piecewise linear function constructed
from the values obtained from these points. Therefore, the problem of finding the

best algorithm reduces to that of finding the best evaluation points.

The optimal evaluation points, as well as the answer to the question on the super-
iority of adaptive algorithms depend on the norm in which the approximation error
is measured. We show that for L' approximation an adaptive algorithm cannot do
better in the worst case than an optimal passive one, and such an algorithm is given.
For LP approximation, with p > 1 we show that adaptive algorithms are better by
computing error bounds on passive algorithms and for a specific adaptive algorithm.
We also show that for weighted approximation, as for L' approximation, adaptive

algorithms are not better that passive ones.

For each of these problems we construct algorithms which are optimal in the sense
that given n evaluation points no other algorithm can do better, up to a constant
factor (which does not depend on n). This emphasis on minimizing the error as a
function of the number of points is typical of our approach. It reflects the fact that
in practice functions are often very costly to compute so therefore the number of
evaluations is a crucial factor in the problem. We also construct a sequentially opti-
mal algorithm for the L' and weighted L' problems. This is an adaptive algorithm
designed to make the best use of favorable information in the course of the evaluation

process.

Finally, all the algorithms we construct are numerically tested andblcompared.

TABLE DES MATIERES

REMERCIEMENTS o e iv
RESUME v
ABSTRACT e viii
TABLE DES MATTERESt X
LISTE DES TABLEAUX oo xiii
LISTEDES FIGURES Xiv
INTRODUCTION e e s s e 1
CHAPITRE1 THEORIEGENERALE. 6
1.1 Problémes considérés 6

1.2 Algorithme 8

1.3 Erreur d’approximation L. 11

1.4 Information 13

1.5 Opération terminale 16

1.6 Algorithmes optimaux, 18

1.7 Algorithmes passifs et adaptatifs 21
1.7.1 Information séquentielle et non-séquentielle 21

1.7.2 Utilité de Padaptation 23

1.7.3 Résultats généraux 24

1.8 Optimalité séquentielle R 25
1.8.1 Algorithme séquentiellement optimal 25

1.8.2 Algorithme optimal & chaque étape 27

1.8.3 Utilité pratiqueo 27

x1

CHAPITRE 2 REVUEDE LITTERATURE 29
CHAPITRE 3 APPROXIMATION L' : RESUME ET EXTENSIONS . . . 35
3.1 Résultats générauxo 35
3.2 Approximation L. 39
3.3 Formulation de programmation dynamique 41
CHAPITRE 4 APPROXIMATION LP 44
4.1 Préliminaires L 44

4.2 Borne inférieure pour les algorithmes passifs 47
4.3 Algorithme adaptatif pour le probleme d’approximation LP 55
4.4 Utilité de 'adaptation et algorithmes optimaux 63
4.5 Solutionpourp=ocetn=1 65
4.6 Discussionsurlecasp=o0etn>2 69
CHAPITRE 5 APPROXIMATION L} oot 72
5.1 Utilité de 'adaptation 72
5.2 Simplification du probleme 74

5.3 Remarques sur la condition nécessaire 91
CHAPITRE 6 ALGORITHMES OPTIMAUX 95
6.1 Schémas généraux 95
6.1.1 Algorithme séquentiellement optimal 95

6.1.2 Algorithme optimal & chaque étape 100

6.2 Approximation L'. e 102
6.2.1 Algorithme optimal 102

6.2.2 Algorithme séquentiellement optimal 102

6.3 Approximation L™=0 103
6.3.1 Algorithme optimal & chaque étape 103

6.4 Approximation L 104

xii

6.4.1 Algorithme optimal 104

6.4.2 Algorithme séquentiellement optimal 106

6.4.3 Algorithme optimal & chaque étape 106
CHAPITRE 7 RESULTATS NUMERIQUES 107
7.1 Méthodologie destestso 107
7.2 Fonctions testso 108
7.2.1 TFonctions lisses, premiére méthode. 108

7.2.2 Fonctions lisses, deuxieme méthode. 109

7.2.3 Fonctions lisses par morceaux. 110

7.2.4 TFonctions linéaires par morceaux. « . « o 111

7.3 Approximation L' : OPTvs DYNvs SO 111
7.4 Approximation L*® : SANDvs OSO 114
7.5 Approximation L} : OPTvs OSOvs SO 117
7.6 Conclusion 124
CONCLUSION . . . o e e e e e e s s e e 126

REFERENCES . . . o 130

Tableau 7.1
Tableau 7.2
Tableau 7.3
Tableau 7.4
Tableau 7.5
Tableau 7.6

LISTE DES TABLEAUX

Valeurs extrémes des parametres pour les fonctions tests . .
Moyenne des erreurs d’approximation L*.
Moyennes des erreurs d’approximation L*°.
Rapport r = e, /(eo/(n + 1)?) pour cing fonctions lisses.

Moyennes des erreurs d’approximation L}, avec h(t) = t.

Moyennes des erreurs d’approximation L} avec h(t) = t(1 —t).

xiii

. 108

112
115

. 119
. 120

122

Figure 1.1
Figure 1.2
Figure 1.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 7.1

Figure 7.2

LISTE DES FIGURES

Un algorithme général.
Le rayon r et le diametre Dde W(f)..
Les fonctions Let U.
La situation sur [z;, Tix1]- -« - -« o o oo o
Proposition 4.1, cas 1.
Proposition 4.1, cas 2, zo < R.
Proposition 4.1, cas 2, z > R.,
Lafonctiong.
Proposition 4.1, cas 3. Lo
Larbre A.
Transformation 1.
Transformation 2.

Les fonctions wa(n) et wg(n)
Aproximation L* avecn=1.
Deux cas pour le maximum de la fonction ¢ (v).
La fonction f(x).
Deux cas pour le maximum sur p.
Le probléme sur [z;_1, Tip1]e - -« v o oo oo
Le domaine C(zp).o
Solution aux équations (5.8)
Proposition 5.3, cas 3.o
Proposition 5.3, cas 4.
Proposition 5.3, cas 5 : les vecteurs dy et cfz
Proposition 5.3, cas 5 : 'erreur en zg et z..
Comparaison de OPT, DYN et SO pour 'approximation L!. .

Comparaison de SAND, et OSO pour 'approximation L. . .

xiv

53

67

Figure 7.3

Figure 7.4

Figure 7.5

XV

Comparaison de OPT, OSO et SO pour 'approximation L},

avec h(t)=1t. 122
Comparaison de OPT, OSO et SO pour l'approximation L}

avec h(t) =t(1—1t). 124
Décomposition du simplexe unité. 129

INTRODUCTION

Considérons le probleme suivant : on cherche a approximer une fonction f d’une
seule variable pour laquelle on ne connait pas de définition analytique mais que
I’on peut évaluer en tout point d’un intervalle. La fonction f étant coliteuse a cal-
culer, on veut une approximation construite a partir d'un petit nombre de points
d’évaluation. La fonction particuliere que I’on doit approximer n’est pas connue mais
on suppose que l'on dispose quand méme d’information a priori sur f, qui provient
du contexte dans lequel se pose le probleme. Cette information a priori ne caractérise
pas completement f mais détermine toute une classe de fonctions, qui est 'ensemble
de toutes les fonctions partageant la méme information que f. Par exemple, dans
ce travail la fonction a approximer est concave et sa valeur de méme que sa dérivée
aux extrémités d’un intervalle fini sont connues. Une définition précise de la classe

ainsi déterminée est donnée & la section 1.1.

Notre probleme d’approximation peut donc s’énoncer comme suit : connaissant
la classe a laquelle appartient la fonction & approximer f, on cherche les points
d’évaluation qui donnent le plus d’information sur f de fagon & pouvoir reconstruire
cette fonction le plus précisément possible. D’un autre point de vue, on peut voir
cette classe de fonctions comme un espace d’ot1 on tire des échantillons et on cherche
les points d’échantillonnage qui permettent de déterminer f avec la plus petite in-

certitude possible.

Pour bien définir ce probleme il faut, en plus d’information a priori, une mesure de
'erreur d’approximation (de Pincertitude) que 'on veut minimiser. Ainsi, la notion
de «meilleurs points d’évaluation» prend un sens p¥écis. Cet aspect du probleme est

discuté en détails & la section 1.3.

Motivations

La motivation originale pour notre étude de ce type d’approximation provient du
probleme d’équilibre bicritere sur un réseau. La résolution numérique de ce probleme
proposée par Marcotte, Nguyen et Tanguay [22] requiert la solution répétée d’un
probléme de plus court chemin paramétrique. Ceci revient a déterminer la fonction

valeur définie par

f(@) = min{Ci()}

ou Cj est le cott du ¢ chemin en fonction du parameétre @ € R. Pour le probleme
d’équilibre bicritere le cotit d’un chemin est de la forme F;+aG; ol F; est le temps de
parcours, GG; un cofit fixe pour l'utilisation du chemin et « donne le poids relatif de
ces deux criteéres et représente la «valeur du temps» pour les usagers. La fonction f
est concave et linéaire par morceaux et peut étre déterminée completement en temps
fini (voir Chvétal [8]). Cependant pour accélérer I’algorithme proposé dans [22] il a
été suggéré de remplacer la valeur exacte de f par une approximation construite a
partir d’un petit nombre d’évaluations de la fonction. Chaque évaluation détermine
a la fois le plus court chemin pour la valeur de « choisie, la valeur de f en ce point et
sa dérivée G;. Pour étre cohérent avec le critere d’arrét utilisé dans [22], la qualité de
Papproximation est mesurée dans la norme L. On se retrouve donc dans la situation

décrite plus haut.

Cette application est 'une parmi de nombreuses autres. Sonnevend [34] mention-
ne également des applications de ce type d’approximation en géologie, microscopie,
traitement d’images, codage, design et en ingénierie. En mathématiques, il mentionne
des liens avec la programmation mathématique, le controle optimal et les jeux dif-

férentiels. Nous verrons aussi des liens avec la programmation dynamique.

Description des problemes

Nous donnons ici une bréve description informelle des problémes qui sont étudiés

dans notre travail.

Chaque fonction f & approximer est concave et pour simplifier est définie sur [0,1]
avec f(0) = 0et f(1) = 1. La seule information a priori connue sur f est f(0) < a et
f/(1) > b. Ici f'(x) dénote la dérivée de f en z ou plus généralement un surgradient

lorsque la fonction n’est pas dérivable.

Pour approximer f on doit recueillir de I'information supplémentaire. L’information
disponible est la valeur de f et de f’, qu’il est possible de calculer en tout point

z € [0, 1] et on suppose que n évaluations sont & faire.

La qualité de approximation est déterminée par la différence entre celle-ci et f,
mesurée dans l'une des normes L? avec 1 < p < oo ou la norme L' pondérée par
une fonction de poids & > 0, que nous dénotons par L}. Dans le premier cas, lorsque
p = 1, le probléme d’approximation est équivalent au probléme de quadrature, c’est-
a-dire 'approximation de 'intégrale de la fonction. Lorsque p = oo, on parle souvent
du probléme de reconstruction optimale (optimal recovery) de la fonction. Pour ’ap-
proximation pondérée, la fonction de poids correspond dans ’exemple de Iéquilibre
bicritére & la distribution du parameétre o dans la population des usagers du réseau :

la valeur du temps n’est pas la méme pour tous.

Parmi toutes les fonctions concaves ayant la méme information a priori, certaines
sont «faciles» & approximer, c’est-a-dire que 'on peut choisir les n points d’évalua-
tion de facon a ce que 'erreur d’approximation soit petite, tandis que d’autres sont
plus difficiles. Nous avons choisi de chercher & minimiser I'erreur pour la plus difficile
des fonctions de sorte que ’on ait une borne sur 'erreur qui soit valable pour toutes

les fonctions de la classe considérée. Notre contexte est donc celui de la minimisation

de l'erreur dans le pire cas.

Les questions auxquelles nous allons répondre sont les suivantes :

1. Pour des points d’évaluation fixés z1,...,z, et les valeurs f(z;),..., f(zn),
f(z1), ..., f'(z,) correspondantes, quelle est la meilleure approximation pos-
sible de f7?

2. Quels sont les points d’évaluation z; qui permettent de minimiser 'erreur d’ap-

proximation dans le pire cas?

3. Pour déterminer les points d’évaluation optimaux est-il utile d’utiliser un al-
gorithme adaptatif, qui tient compte des évaluations précédentes pour choisir

le point suivant ?

Notre approche dans ce travail est concrete et calculatoire. Notre but est d’énoncer
nos problémes dans un cadre théorique approprié, pour ensuite les exprimer le
plus explicitement possible de fagcon a pouvoir utiliser les résultats théoriques pour
construire des procédures de calculs. Chaque algorithme discuté dans notre travail
a été implanté et testé numériquement. Les preuves des résultats théoriques sont
souvent longues mais ne requierent que des techniques élémentaires et des calculs

détaillés, qui pour la plus grande part ont été effectués a ’aide du logiciel Maple [21].

Organisation du document

Nous décrivons maintenant l'organisation de ce document. Au chapitre 1 nous intro-
duisons les concepts et la notation nécessaires a notre étude. Nous faisons ensuite au
chapitre 2 une revue de la littérature sur notre sujet et certains problemes connexes.
Au chapitre 3 nous examinons le probléme d’approximation dans la norme L!'. Ce
probléme peut étre complétement résolu et ce de plusieurs facons. Nous en donnons
la solution et proposons un algorithme pour le choix des points d’évaluation opti-

maux. Au chapitre 4, 'approximation dans la norme LP est abordée. Nous montrons

que pour ce probleme les algorithmes adaptatifs sont supérieurs si et seulement si
p > 1 et nous construisons un algorithme adaptatif d’ordre optimal. Nous discutons
également plus en détails dans ce chapitre du cas p = oo, qui est important mais
difficile. Au chapitre 5 nous étudions l’approximation L' pondérée et nous donnons
une condition nécessaire que doivent satisfaire les points d’évaluation optimaux pour
ce probleme. Cette condition est utilisée au chapitre 6 pour construire un algorithme
optimal pour calculer ces points. Dans ce méme chapitre sont décrits en détails des
algorithmes pour les problémes L', L™ et L}. Ces algorithmes sont testés et com-
parés numériquement au chapitre 7. Finalement nous proposons quelques avenues

pour de futures recherches avant de conclure notre travail.

CHAPITRE 1

THEORIE GENERALE

Nous développons dans ce chapitre les bases théoriques sur lesquelles est fondé
notre travail. Des définitions précises des concepts d’algorithme, erreur d’approxi-
mation et optimalité sont données. Ces définitions s’appuient en grande partie sur
I’étude systématique des algorithmes optimaux faites par Traub, Wasilkowski et

Wozniakowski dans [41, 42, 43] et par Sukharev [40].

1.1 Problémes considérés

Les problemes étudiés dans ce travail se posent dans le contexte général suivant. Soit
F un sous-ensemble d’un espace linéaire X, B un espace métrique avec une fonction
de distance d, et S : F' — B un opérateur. On veut construire un algorithme donnant
une approximation a(f) de S(f) pour chaque élément f € F (voir figure 1.1). De
I'information a priori est disponible sur chaque f du fait que l'on sait qu’il s’agit
d’un élément de F. De plus, il est possible d’obtenir de I'information supplémentaire

pour un élément f donné & ’aide d’un calcul d’information.

Deux approches sont possibles pour juger de lefficacité d’un algorithme. On peut
fixer une marge d’erreur € > 0 et chercher un algorithme qui minimise le nombre de
calculs d’information tout en produisant une erreur inférieure & ¢ sur la classe F.
Plus généralement, on cherche & minimiser la complexité informationnelle (informa-
tion-based complexity, voir Traub et al. [43]) pour une marge ¢ fixée. Une autre facon -
d’aborder le probleme, équivalente & la premiere, est de fixer le nombre de calculs

d’information (ou la complexité) et de chercher un algorithme qui minimise ’erreur

d’approximation. C’est cette deuxieéme approche qui est adoptée dans ce document.

La notion de complexité est définie de différentes fagons par différents auteurs mais
essentiellement elle représente le cotit du calcul de ’approximation, qui est la somme
du colit des calculs d’information et de celui des calculs nécessaires pour la mise en
oeuvre de l'algorithme. Dans ce travail nous appellerons complexité informationnelle
le cotit des calculs d’information et complezité combinatoire le colit de l'algorithme.
Habituellement on suppose que le coiit de I'information est beaucoup plus grand que
celui de ’algorithme et c’est pourquoi on s’intéresse principalement a la complexité
informationnelle. Cependant certains algorithmes optimaux ont une complexité com-

binatoire tres élévée et il faut en tenir compte dans les applications pratiques.

Un probléme sera dénoté par un triplet P = (S, F, B) et on parlera du probleme S
sur F'. Dans la plupart des situations, [’ est un ensemble de fonctions et on appellera

donc les éléments de F' des fonctions.
Exemple: Pour les probléemes d’approximation P et L} qui nous intéressent,
X =B=L"0,1], 1<p< oo,

F=Fy={f:10,1] =R | f concave, f(0) =0, f(1) = 1, f'(0) < a, f'(1) > b, }

et S(f) =1/

Ici f'(0) désigne la dérivée a droite de f en z = 0 et f'(1) la dérivée & gauche en

z=1.

1.2 Algorithme

Soit P = (S, F, B) le probleme d’approximer l'opérateur S : F' — B, tel que présenté
a la section 1.1. Un algorithme o = (N, ¢) est constitué d’un opérateur d’information
N : F — X xY et d'une opération terminale ¢ : X x Y — B, et Papproximation
de f € F par a est af) = ¢(N(f)). L'espace Y est quelconque, mais souvent
Y Cc R™. Quant & X, c’est un espace d’opérateurs sur F'. En pratique les éléments
de X sont souvent identifiés & des points du domaine de la fonction f & approximer.
L’opérateur IV représente l'information que 'on peut obtenir sur un élément f et
¢ donne 'approximation de S(f) obtenue & partir de cette information. Ceci est

schématisé a la figure 1.1.

Figure 1.1 Un algorithme général.

Un algorithme comportéwdeux parties : premierement le calcul de I'information pour
un f donné et deuxiemement la construction de 'approximation de S(f) & I'aide de

cette information.

Explicitement, s’il y a n calculs d’information & effectuer, soit X = X; x -+ x X,

et Y =Y, x--- xY,. Alors N = (&,...,%,) ou

1= F-Y

521X1XY1—>X2

Fp i X1 X Xox - X, 1 XY XYyx. - xY,_1 =X,

avec

To(z1,71) = 22, OUzy: F = Y5

Zn(Z1, oy Tne1, Y1y oo oy Yno1) = Tn, OU Tyt F— Y.

N est donc défini comme une suite d’opérateurs Z; qui donnent a chaque étape %

une fagon de choisir l'information y; = z;(f) & recueillir, en fonction de celle déja

obtenue ¥, ...,y;—1 et des opérateurs x1,...,x;-1; déja choisis.
Le résultat de la premiére partie de 'algorithme est l'information (yi, ..., y,) obtenue

successivement comme suit :

Z1 = Ty, ylzl'l(f)
Ty = T2(21, Y1), Yo = Z2(f)
xn:in(a’;la""xn—hylw"ayn—l)y yn=zn(f)

et N(f)= (xl,...,f{:ﬁ?,yl,..},yn).

Chaque calcul d’information consiste & choisir d’abord quelle information recueillir,

c’est-a-dire z;, et ensuite a calculer cette information pour la fonction f, c’est-a-

10

dire y;.

La deuxiéme partie de ’algorithme est le calcul de approximation de S(f) & partir

de (xlw"’xn)yly"')yn):

&(z1,. .o TnyY1,---,Yn) =b € B.

On veut ici faire un usage efficace de l'information recueillie pour approximer f.

L’opération terminale sera examinée plus en détails a la section 1.5.

La définition donnée ci-dessus est celle d’un algorithme déterministe. On peut é-
galement définir le concept d’algorithme stochastique, comme dans Sukharev [40].
Essentiellement un tel algorithme est un choix de mesures de probabilité &; (a la
place des ;) et le choix de z; est fait aléatoirement selon ces mesures. Nous ne
considérons dans ce travail que des algorithmes déterministes, bien qu’en pratique
certains éléments aléatoires soient utilisés dans leur implantation. Il s’agit dans ce
cas de simplement faire certains choix au hasard lorsqu'un choix optimal n’est pas

défini, et ceci ne change pas la nature essentiellement déterministe de ’algorithme.

k

Pour simplifier P'écriture, nous dénoterons dans la suite par w® = (wy,...,w,) un

k-tuplet de nombres w;.

Exemple: Pour les problemes d’approximation étudiés ici on a

X;=[0,1, ¥;=R? Vi
j:51 =TI € [07 1]’ nh = (f(xl)’f/(xI»

‘ ‘ifz‘(f’?i'_l,y{—l) =z5;€[0,1], yi = (f(ﬁvi);.f;(l’i)) Vi.

11

Le symbole f'(z) dénote un surgradient de f en z, c’est-a-dire un scalaire £ tel que
f(z) < f(z) + &(z — z) pour tout z € [0, 1]. Géométriquement, £ est la pente d’une
tangente au graphe de f en z. Un calcul d’information dans ce contexte consiste a
choisir un point d’évaluation sur Uintervalle [0,1] puis & calculer la valeur de f et f’

en ce point.

Notons ici que F,; contient des fonctions qui ne sont pas dérivables partout sur
[0,1]. Pour ces fonctions, 'opérateur d’information ci-dessus n’est pas bien défini
tant qu’'un choix du surgradient n’est pas donné. Cette question sera traitée a la
section 3.1 ou 'on verra que le choix du surgradient n’est pas important, et c’est

pourquoi il n’est pas explicité ici.

Les données ci-dessus sont les mémes pour tous les problémes que nous considérons.

Ce qui distingue ces problemes est la mesure de 'erreur d’approximation.

1.3 Erreur d’approximation

Etant donné un élément f € F, la mesure de la qualité de approximation en f est
Vécart entre S(f) et a(f) dans B, c’est-a-dire d(S(f),a(f)). On appelle cet écart
lerreur absolue de 'algorithme au point f. D’autres mesures sont possibles si B est

un espace normé, par exemple l'erreur relative

S(f) —a(f)lls
1S(H)lle

ou Perreur normalisée (lorsque F' posséde une norme)

I1S(f) —a(fH)lis
fllF

12

Ces deux derniéres sont brievement examinées dans Traub et al. [43]. Dans le présent
travail, nous ne considérerons que l'erreur absolue. Pour mesurer la qualité de 1'ap-
proximation sur toute la classe F', plusieurs approches sont pertinentes. On donne
dans Traub et al. [43] les deux suivantes pour les algorithmes déterministes :

PIRE CAS : Ici 'erreur est définie par

sup d(S(f), a(f))-

fer

C’est donc Perreur absolue pour ’élément f qui est le «pire» pour ’algorithme c.

ERREUR MOYENNE : L’erreur est définie comme étant

Ed(S(f), (),

ol £ est l'espérance par rapport & une mesure de probabilité fixée sur F.

Dans ce travail, seule ’erreur dans le pire cas est considérée. L’erreur moyenne est
aussi une mesure pertinente pour notre probleme mais requiert une analyse d’'un
type différent de celle faite ici. En particulier, il est nécessaire de définir une mesure

de probabilité sur F' pour pouvoir exprimer ’erreur moyenne d’un algorithme.

Exemple: Pour le probleme d’approximation LP, I’écart entre deux fonctions de
F,p est mesuré dans la norme LP. Soit a(f)(¢) la valeur de 'approximation a(f) en

t. L’erreur d’approximation est

1ol = (/ | £(6) o ><>|pdt) s 1<p<oo

1 f = alf) [l = max | f(t) — a(f)()], si p= oo,

t€(0,1)

13

Pour I'approximation L}, avec une fonction de poids A : [0,1] — R™ I'erreur est

1f=a(f)ll1n= / F®) — alF)(E) [hle) .

Par la suite, lorsque la discussion sera valable pour toutes les normes considérées,

nous utiliserons la notation || - ||.

1.4 Information

Une caractéristique essentielle des problemes considérés ici est que l'information
donnée par opérateur N est partielle, c’est-a-dire que N n’est pas injectif. On
peut donc avoir f, f € F avec N(f) = N(f) et ¢(N(f)) = ¢(N(f)), bien que
S(f) # S(f) Pour Traub et al. [43] ceci distingue ’approche de la complexité
informationnelle de celle de 'approximation classique. Dans le premier cas, ’ap-
proximation est construite a partir d’information partielle tandis que dans le second
cas l'information est compléete. Il arrive fréquemment en pratique que l'information
disponible ne soit que partielle, et c’est le cas pour nos problemes d’approximation,

ce qui justifie I’étude du point de vue de la complexité informationnelle.

L’ensemble des opérateurs d’information que 1’on peut utiliser est habituellement
un sous-ensemble de ’ensemble I de toutes les applications de F vers X x Y. Cette
restriction dépend des caractéristiques du probleme, c’est-a-dire de 'information que
'on peut calculer en pratique et représenter par un vecteur de dimension finie. Pour

un probleme donné, ’ensemble des opérateurs d’information admissibles sera noté

I

Dans l'étude de Traub et al. le concept de rayon d’information joue un rdle crucial.

14

Il est défini comme suit. Pour f fixé, soit

v(f)={Ff e FIN() = N (D},

I’ensemble de tous les éléments de F' ayant la méme information que f, et soit

I'image de cet ensemble dans B. Le rayon de ’ensemble W (f) est défini par

ray(W(f)) = inf sup d(a,S(f))-
=P fevis)
Informellement, ray(W (f)) est le rayon de la plus petite boule dans B contenant
W(f). Ceci est illustré & la figure 1.2. Le rayon d’information de ’opérateur N est
le supremum sur tous les f € F de ces rayons locaux. On définit aussi le diametre

d’information de N qui est le maximum des diametres des ensembles W (f).

Définition 1.1 Le rayon d’information de l'opérateur N pour le probléme S sur F'

est

r(N,S) = Sup ray(W(f)).

Le diamétre d’information de N pour le probléme S sur F est

D(N,S)= sup d(S(f),S(3)).

S
eV(f)

f7

Ces deux quantités sont liées par la relation

r(N,S) < D(N,S) < 2r(N,S),

15

Figure 1.2 Le rayon r et le diametre D de W (f).

prouvée dans Traub et al. [41]. Notons que D(N, S) est souvent plus facile & calculer

que r(N,S). Par la suite, lorsque S et F' sont fixés on notera simplement 7(N) et

D(N).

Le rayon d’information est une mesure de I'incertitude intrinseque associée a 'infor-
mation donnée par V. Ce rayon donne une borne inférieure sur 'erreur (dans le pire

cas) d’un algorithme utilisant 'information V.

Théoréme 1.1 [{1] Pour toute opération terminale ¢,

sup d(5(f), ¢(N(f))) =2 r(N,S).

fer

Un opérateur d’information est optimal s’il minimise 'erreur dans le pire cas.

Définition 1.2 Pour ¢ fiz€, l'opérateur d’information N* est optimal si

sup d(S(f), 6(N*(f))) = inf sup d(S(f), 6(N(f))).

feF Nel feF

Pour le probléme d’approximation L!, le rayon d’information minimal, correspondant
a l'information optimale, est donné a la section 3.2. Pour 'approximation P avec

p > 1, une borne supérieure sur le rayon minimal est donnée & la section 4.3.

16

1.5 Opération terminale

L’opération terminale ¢ est construite a partir de l'information N(f) pour tout
f € F. Ici aussi le choix de cette opération est habituellement restreint & un sous-
ensemble, dénoté T, de toutes les opérations terminales possibles. La théorie clas-
sique de 'approximation fournit plusieurs résultats sur la facon d’utiliser au mieux
I'information disponible pour ’approximation de f étant donné N(f). Un cas parti-
culier est lorsque T contient une unique opération permise, ce qui sera le cas pour nos
problémes d’approximation. On pourrait aussi restreindre 7' aux opérations linéaires,

etc.

Pour un opérateur d’information fixé, une opération terminale est optimale si elle

minimise ’erreur d’approximation.

Définition 1.3 Pour N € [fizé, ¢* € T est optimale si

sup d(¢*(N(f)),S(f)) = inf sup d(&(N(f)), S(f))-

fer ¢cT feF

Une opération terminale qui est optimale pour un N donné ne ’est pas nécessaire-
ment pour un opérateur d’information différent. Cependant une opération terminale
centrale, telle que définie ci-dessous, possede la propriété d’étre optimale quelle que

soit 'information N.

Un centre de W{(f) C B est un élément ¢ € B tel que

sup d(a,c) = inf sup d(a,b).
aeW (f) 5B aew (f)

Ceci est illustré a la figure 1.2, olt ¢ est un centre de W(f).

17

Définition 1.4 Une opération terminale ¢ est centrale si pour tout N € I et f € F
S(N(f)) =c(f) est un centre de W(f) C B.

Il est démontré dans Sukharev [40] que §’il n’y a aucune restriction sur les opérations
terminales admissibles alors il existe une opération qui est centrale. L’intérét d’une
telle opération est qu’elle est optimale pour tout NV, et en plus elle est la meilleure

opération terminale possible pour chaque f € F.

Théoréme 1.2 [40] Si ¢, € T est centrale alors

1. Pour tout Ne I

sup d(¢.(N(f)),S(f)) = inf sup d($(N(f)),5(f))

fer ocT feF

2. Pourtout NeletfeF

sup d(go(N(f)),S(f)) = inf sup d($(N(f)), S(f))
Ffev(s) ¢€T fev(f)

c’est-a-dire que ¢, minimise l'erreur locale en f (voir section 1.6).

Exemple: Pour les problémes d’approximation L? et L; on définit Popération

terminale ¢* par

5 (N(f)) = 5(U + 1)

ol
Ut) = sup f(t), t€[0,1]
fevis)
L(t) = _inf f(¢), te[0,1].
fevin

Notons que U et L dépendent de f, méme si cette dépendance n’est pas dénotée

18

explicitement. Nous verrons a la section 3.1 que cette opération terminale est centrale
et donc optimale. Ceci justifie la restriction de T' & cette unique opération pour nos
problémes. Géométriquement, les fonctions U et L correspondent aux enveloppes
supérieure et inférieure de I’ensemble de toutes les fonctions de Fj, ayant la méme
information que f (voir figure 1.3). Une définition explicite de ces fonctions est

donnée a la section 3.2.

Figure 1.3 Les fonctions L et U.

1.6 Algorithmes optimaux

Le choix d’un algorithme pour résoudre un probleme se fait en trois étapes :

1. Formulation du probleme, c’est-a-dire une définition précise de F', B et S, ainsi

que de la mesure de ’erreur.

2. Choix de l'opérateur d’information. Sur le plan pratique, on doit définir ’en-
semble des opérateurs admissibles. Du point de vue théorique on doit, par
exemple, déterminer si un algorithgge adaptatif (voir section 1.7) est suscep-

tible de donner de meilleurs résultats.

3. Choix de 'opération terminale ¢.

19

Plusieurs objectifs sont a considérer lors du choix d’un algorithme. On consideére

dans Traub et al. [41] les suivants :

- Pour F, B, S, ¢ donnés, trouver 'opérateur d’information optimal.

- Pour F, B, S, N donnés, trouver 'opération terminale optimale.

- Pour F,B,S donnés, trouver un algorithme optimal pour Perreur (optimal by
error), c’est-a-dire un algorithme qui réduit au maximum Perreur d’approximation.

- Pour F, B, S donnés, trouver un algorithme avec une erreur fixée dont la com-

plexité (combinatoire ou informationnelle) est minimale.

Clairement, certains de ces objectifs peuvent étre contradictoires. Par exemple, un
algorithme optimal pour I'erreur peut avoir une complexité élevée. Dans ce travail
nous avons choisi ’objectif suivant, qui correspond au troisiéme critére décrit ci-

dessus :

Trouver un algorithme o* qui minimise 'erreur dans le pire cas étant

donné que n calculs d’information sont permis.

Ici, calcul d’information signifie le calcul d’un point puis I’évaluation de la fonction
a approximer et d’'un de ses surgradients en ce point. Cet objectif est cohérent avec
la situation décrite en introduction, a savoir que le colit d'une évaluation est trés
élevé par rapport aux calculs servant a déterminer les points d’évaluation et a calcu-
ler 'approximation. C’est aussi 'objectif retenu habituellement pour les problemes

d’approximation dans ce contexte.

Avant de définir la notion d’algorithme optimal, nous introduisons la notation sui-
vante, qui sera employée dans la suite. D’abord dénotons par A c I x T Pensemble

des algorithmes admissibles pour un probleme donné. Ensuite, soit

e(, f) = d(a(f), 5(f))

20

Verreur de l'algorithme « sur 1'élément f € F. Lorsque IV ou ¢ est fixé on écrit

plutét e(g, f) ou e(N, f).

L’erreur dans le pire cas de « sur F’ est

e(a) = supe(a, f)
fer

et l’erreur locale de o en f est

eoc(a, f) = sup d(a(f), S(f))-
fevis)

Définition 1.5 Un algorithme o* est optimal dans le pire cas s’il satisfait

e(a*) = inf e(a).
acA

Le résultat suivant sera utile plus tard :

Lemme 1.1 L’erreur dans le pire cas est donnée par

e(a) = sup e, f).
feF

Preuve: D’abord, puisque f € V(f) pour tout f on a

sup d(a(f), S(f)) z d{e(f), S(f))

fevis)

ce qui implique que

sup e, f) > sup d(a(f),S(f)) = e(a).
feFr feF

21

Ensuite, si f € V(f) alors a(f) = a(f) donc pour tout f € F

sup d(a(f),S(f)) = sup d(a(f),S(f))
Fevn fev(s)

< supd(ea(f), S(f)) = e(a),

feF

ce qui implique que sup e(a, f) < e(a) et le lemme est démontré. |
feF

1.7 Algorithmes passifs et adaptatifs

1.7.1 Information séquentielle et non-séquentielle

Dans la premiere phase de l'algorithme défini & la section 1.2, si les applications Z;
ne dépendent pas de f, c’est-a-dire que Z; = x; € X;, 'information peut étre calculée
simultanément pour tout 7. On peut alors considérer que les x; sont choisis a ’avance
et ne dépendent que de V'information a priori f € F. Dans ce cas, l'algorithme a qui

en résulte est appelé passif ou non-séquentiel.

Dans le cas ot les Z; dépendent de 'information sur f, les calculs d’information de
la premiére phase doivent étre effectués de fagon séquentielle : il faut calculer z;(f)

pour 7 < ¢ pour obtenir Z; ;. L’algorithme est alors adaptatif ou séquentiel.

Puisquun algorithme séquentiel utilise plus d’information et s’adapte a la fonction a
approximer, il est possible qu’il soit plus efficace qu’un algorithme passif. Cependant
nous le verrons que g¢a n’est pas toujours le cas. Un algorithme adaptatif est plus
difficile & mettre en oeuvre qu'un algorithme passif car il faut alors, en plus de
I'évaluation z;(f), une procédure pour déterminer les fonctionnelles Z; & chaque

étape et cette procédure peut étre compliquée. De plus, un algorithme passif possede

22

Vavantage que les calculs d’information peuvent étre faits en parallele, ce qui réduit
encore le temps d’exécution. Il est donc pertinent de se demander si pour un probléme

donné un algorithme adaptatif est plus efficace qu’un algorithme passif.

La réponse & cette question dépend du probléme, c’est-a-dire de F, B et S, du
type d’algorithme utilisé, déterministe ou stochastique, du contexte, pire cas ou
cas moyen, et de la mesure de l'erreur. Un petit changement dans la formula-
tion du probléme peut entrainer une réponse différente. Par exemple, pour certains
problemes les algorithmes adaptatifs ne sont pas plus efficaces dans le pire cas mais
le sont dans le cas moyen (voir par exemple Novak [25]). De méme, les algorithmes
adaptatifs peuvent étre plus efficaces dans le cas stochastique mais pas dans le cas

déterministe (voir Novak [25] et Sukharev [39]).

Sur ce point, l'exemple donné par Sonevend [33] est éclairant : pour la méme classe
de fonctions convexes sur [0,1] deux sous-ensembles sont définis en fixant la valeur
des fonctions en z = 1/2 pour la premiére et = 1/3 pour la deuxiéme, en plus des
deux extrémités. On peut de plus évaluer f(z) en tout point de [0, 1]. Un algorithme
adaptatif pour 'approximation L' est plus efficace pour le second probléme mais

pas pour le premier.

Pour nos problemes d’approximation, nous verrons qu’un algorithme adaptatif est
plus efficace seulement dans le cas ol Perreur est mesurée dans la norme P avec

p > 1. Pour les cas L! et L} il existe des algorithmes passifs optimaux.

23

1.7.2 Utilité de ’adaptation

Dénotons par Apas ensemble des algorithmes admissibles passifs et par An.q len-

semble des algorithmes admissibles adaptatifs. On définit

epas = 1nf e(a) et e, = inf e(a),
a€Apas acA, g
lerreur optimale pour les algorithmes passifs et adaptatifs, respectivement. Les
quantités epss €t e,q sont des bornes inférieures sur lerreur maximale pour un
probleme donné. Puisque les algorithmes passifs sont des cas particuliers d’algo-

rithmes séquentiels, on a Apas C Aag €t
€ad S €pas-

Pour qu’il soit intéressant d’utiliser un algorithme adaptatif pour un certain pro-
q g

bleme, il faut que e,q soit inférieur & ep,s de fagon significative.

Plus précisément, on dira que [adaptation est utile (adaption helps) si
€pas = O(neaq)

pour € > 0, ol n est le nombre de calculs d’information. Si ep,s > €59 Mals €pas =
O(esq), on dira que l'adaptation n’est pas utile au sens large. Dans ce cas, 'erreur
pour les algorithmes passifs et adaptatifs optimaux est du méme ordre, mais ces
derniers peuvent étre légerement meilleurs. Si ep,s = €54 alors on dira que "adaptation
n’est pas utile au sens strict. Dans ce cas, un algorithme adaptatif ne peut faire mieux

dans le pire cas qu’un algorithme passif optimal.

24

1.7.3 Résultats généraux

L’utilité de I'adaptation pour un probleme dépend de tous les parametres de ce
probleme. Cependant, il est possible de montrer certains résultats généraux sur 'uti-

lité de 'adaptation.

Théoréme 1.3 [39] Pour un probléme donné si e, posséde un point de selle gé-
néralisé, c’est-a-dire que
sup inf ey (@, f) = inf sup e (@, f)

fEF acA acA feF

alors epes = €44, l'adaptation n’est pas utile au sens strict pour ce probléme.
On montre aussi dans Gal et Micchelli [11] les corollaires suivants :
Corollaire 1.1 [11] §’il existe fo € F tel que

eloc (0 fo) 2 €woe (@, f), Yo, f
alors epys = €44.

L’élément fy doit étre vu comme un «pire»élément pour le probléme. Si on con-
sidere un algorithme séquentiel comme un jeu & deux joueurs, le premier qui cherche &
minimiser ’erreur et le deuxieme qui veut la maximiser, f, est une stratégie optimale

pour ce dernier, quelle que soit la stratégie du premier.

Si F' est convexe et symétrique par rapport & f, alors le centre f. est un pire élément

et le corollaire 1.1 s’applique :

Corollaire 1.2 [11] Si F est conveze et symétrique alors €pes = €44

25

1.8 Optimalité séquentielle

Un algorithme optimal dans le pire cas tel que défini ci-dessus donne, sous la forme
d’une borne supérieure, une garantie sur l'erreur d’approximation pour toutes les
fonctions de la classe F'. Cependant un tel algorithme n’utilise pas nécessairement
Pinformation obtenue sur la fonction a approximer de fagon optimale dans le cas ol
cette information est favorable. Il est facile de trouver des exemples oli un algorithme
optimal dans le pire cas est tres inefficace pour une fonction f représentant un «bon»
cas (pour un exemple, voir Sukharev [38]). Sukharev suggére donc dans [40] de raf-
finer la définition d’optimalité et introduit le concept d’algorithme séquentiellement
optimal. Dans la terminologie de ’auteur, un calcul d’information constitue une étape
de I'agorithme. Un algorithme séquentiellement optimal a n étapes est optimal sur
F comme ci-dessus et de plus, pour chaque étape 4, est un algorithme optimal a n—1¢
étapes sur la classe F; C F définie par I'information obtenue lors des i premieres

étapes.

1.8.1 Algorithme séquentiellement optimal

Pour un f € F donné, soit y; = z;(f), z* = (@1,...,2;) et ¥* = (y1, ..., y;). L'infor-

mation obtenue lors des 7 premiéres évaluations est 2* = (z°, ") et on définit

F(Z)={f e Flz(f)=y; Vi <i}.

Si F(2*) # 0 alors on dit que 2% est une situation réalisable. Dans la définition
suivante 'opération terminale ¢ est fixée et l'opérateur d’information est N =

(31, .., En)-

Définition 1.6 Soit ¢ € T fizée. Pour chaque i <n — 1 s0it @; = (Fiy1,...,%n, O)

26

un algorithme défini sur F(2*) pour tout 2*. Un algorithme o = (oy,...,qn) est

séquentiellement optimal (SO) si
1. « est optimal sur F.

2. chaque a; est optimal sur F(2) pour toute situation réalisable z*.

Un algorithme SO est non seulement optimal mais aussi optimal pour chacun des
problemes définis successivement par l'information recueillie a chaque étape. Ceci
permet & l'algorithme d’utiliser de la meilleure fagon possible l'information favo-
rable qui pourrait étre obtenue au cours de son application & un probleme donné.
Méme lorsque ’adapation n’est pas utile pour un probleme, un algorithme SO donne
généralement de meilleurs résultats qu'un algorithme optimal puisque celui-ci se
prémunit seulement contre le pire cas, qui ne survient pas nécessairement. Cepen-
dant, un algorithme SO est plus difficile & mettre en oeuvre et possede généralement

une complexité combinatoire élevée.

Exemple: Pour les probléemes d’approximation LP et L} une situation réalisable

est donnée par

Zi = (.’131, ey Iy, f(ﬂ?l), ... ,f(flfi), f’(ﬂ?1>, v ,f/(CI/'Z))

pour un f € F,; et F, ,(2%) est Uensemble des fonction de F, ; ayant les mémes valeurs
et dérivées que f aux points z;. Un algorithme SO powa.ces probléemes choisira le
prochain point d’évaluation z;41 en tenant compte des valeurs f(z;) et f'(z;) pour
j < 7 en plus du fait qu’il reste encore n — i évaluations a faire. Une description

détaillée d’un algorithme SO dans ce contexte est donnée a la section 6.1.1.

27

1.8.2 Algorithme optimal & chaque étape

Un algorithme séquentiellement optimal est souvent difficile & réaliser et cofiteux
du point vue calculatoire. Un algorithme optimal & chaque étape (one-step optimal,
0OSO) est plus simple et peut étre efficace. Essentiellement un algorithme OSO ga-
rantit la plus grande amélioration a chaque étape, mais sans prendre en compte le

nombre d’évaluations restantes.

Définition 1.7 Pour ¢ € T' fizé, un algorithme of = (29,...,3%,¢) est optimal d

chaque étape si pour tout i

sup e((Z7,¢),f) = inf sup e((&,9),f)

feF(zt) F€Xit1 feF(2t)

pour toute situation réalisable F(z*).

Dans cette définition)~(H1 désigne un ensemble d’applications X; X -+ x X; X Y7 X

X Y= X,

Exemple: Pour nos problemes d’approximation, un algorithme OSO choisira a
chaque étape le prochain point d’évaluation z;,; qui réduit au maximum l’erreur, en
tenant compte des valeurs de f(z;) et f'(z;) déja calculées. Une description détaillée

d’un algorithme OSO dans ce contexte est donnée a la section 6.1.2.

1.8.3 Utilité pratique

Le développement et la mise en oeuvre d'un algorithme séquentiellement optimal
est généralement plus difficile que celui d’un algorithme optimal dans le pire cas. En

pratique 'amélioration de la précision apportée par un tel algorithme pourrait étre

28

compensée par la plus grande complexité des calculs nécessaires. On pourrait ce-
pendant, connaissant un algorithme séquentiellement optimal, essayer de définir un
algorithme qui en serait «proche» et dont la complexité (combinatoire et/ou infor-
mationnelle) serait moindre. Il s’agit donc, connaissant 1’algorithme idéal en théorie,
de l'utiliser pour juger de l'efficacité d’une approximation ou d’une heuristique. C’est
ce qui est fait au chapitre 7 pour les problémes d’approximation L? et L}, ou des

algorithmes optimaux, OSO et SO sont comparés.

29

CHAPITRE 2

REVUE DE LITTERATURE

Le point de vue de la complexité informationnelle pour les probléemes d’approxima-
tion a pris de l'importance a partir des années 50, motivé par le développement
des premiers ordinateurs. Parmi les précuseurs on compte Nikolskij en 1950, qui
a étudié le probleme d’intégration et Kiefer [17] en 1957, qui a examiné des algo-
rithmes séquentiels pour divers problemes. Plus tard, Bakhvalov en 1971 a considéré
le probléme d’adaptation pour l'approximation d’opérateurs. A la méme époque, les
travaux de Traub et Wozniaskowski dans les années 60 et 70 mettaient 'emphase
sur le role de I'information dans les problemes d’approximation. Pour plus de détails
et des références sur les les travaux cités ci-dessus, nous suggérons au lecteur la

bibliographie dans Traub et Werschulz [44].

Selon ces derniers, ’histoire de la complexité informationnelle comporte trois phases.
Dans la premiere les chercheurs se sont penchés sur des probléemes particuliers :
intégration, reconstruction de fonctions, résolution d'équations différentielles, etc.
Dans les phases suivantes, la théorie est systématisée : lors de la seconde pour les
problemes dans le contexte du pire cas et lors de la troisieme pour les contextes
stochastiques et moyens. Les textes de Traub, Wasilkowski et Wozsniakowski [41],
[42] et [43] exposent de facon détaillée les concepts et résultats de la complexité
informationnelle. La théorie générale propose des bornes sur l'erreur pour des classes
de problemes et des résultats sur l'utilité de I'adaptation, comme par exemple la
.proposition 1.3 de la section 1.7.3. Novak ([24, 27]) utilise avec profit les relations
entre les concepts de n-diamétre et de rayon d’information pour obtenir des résultats

généraux de méme que des bornes sur ’erreur pour des problemes particuliers.

30

Parallelement & ces développments, Sukharev ([36, 38, 40]) élabore le concept d’op-
timalité séquentielle. Cette idée avait aussi été examinée par Sonnevend [32] dans le
cas particulier de 'approximation dans la norme L' pour les fonctions de la classe
F,p. Plus récemment, Korneichuk ([18, 19]) reprend le concept d’algorithme optimal

a chaque étape du point de vue de la théorie des n-diametres.

La théorie de méme que les applications de la complexité informationnelle continuent
a se développer. Parmi les sujets d’intérét on compte les problémes d’intégration
en grande dimension (par exemple Hickernell et al. [16], Wozniakowski [46]) et les

méthodes stochastiques pour ces problémes (par exemple, Wang [48]).

Nous présentons maintenant une revue de la littérature concernant nos problemes
particuliers. Il est important de rappeler que toutes les données d’un probleme :
classe et opérateur étudiés, mesure de I'erreur et information disponible sont cruciales
pour sa solution. Un petit changement peut entrainer une différence au niveau de
la solution elle-méme, de la difficulté du probleme et de l'utilité de l'adaptation.
Il importe donc de souligner ici les caractéristiques de nos problemes, de facon &

pouvoir faire des comparaisons avec d’autres travaux.

D’abord, comme mentionné en introduction, notre approche est pratique et nous
nous efforcons le plus possible de donner les formules explicites a la fois pour les
points d’évaluation optimaux et pour les bornes sur les erreurs. Ensuite, la classe
F,» que nous étudions est particuliere : beaucoup d’information a priori est connue
sur les fonctions a approximer, et on cherche a faire le meilleur usage de toute
I'information disponible. Cependant elle est aussi assez générale au sens ol il n’y a
pas de restrictions sur, par exemple, la dérivabilité des fonctions. Ceci fait en sorte

" que plusieurs outils d’analyse ne nous sont pas accessibles.

31

Approximation L!

Notre probléme d’approximation dans la norme L! est équivalent au probléme d’in-
tégration, essentiellement parce qu’il existe pour chaque F, ;(2™) une fonction maxi-
male U et minimale L (voir la section 1.8.1 pour la notation). En fait, par un
théoréme de Sukharev [37], le probleme est équivalent & trouver une formule de

quadrature affine optimale.

Ce probleme a été étudié par Glinkin [12] pour une classe de fonctions qui ne differe
de F,;, que par le fait que la valeur des fonctions n’est pas fixée aux extrémités de
I'intervalle de définition. L’information utilisée est la valeur de la fonction seulement
et on cherche & déterminer les points d’évaluation et la formule de quadrature linéaire
optimaux. Des formules explicites sont données et la borne sur ’erreur trouvée est

d’ordre O(n~?), ol n est le nombre de points d’évaluation.

Le méme probleme est considéré par Zwick [47] qui trouve une formule affine optimale
et améliore la borne sur l'erreur de [12], qui reste cependant du méme ordre. L’algo-
rithme déterminé par cette formule est optimal parmi les algorithmes passifs. En fait,
il est démontré dans Novak [26] que I’adaptation n’est pas utile pour ce probléme et
donc la formule de Zwick est d’ordre optimal parmi tous les algorithmes. De plus,
meéme lorsque I'information sur la dérivée est disponible I’adaptation n’est pas utile.
Cette information supplémentaire peut donc réduire ’erreur d’approximation mais

pas assez cependant pour en changer 'ordre par rapport a n.

Le probléeme d’approximation L' sur la classe F,;, avec l'information de f et f/,
est résolu par Sonnevend [33]. L’auteur montre d’abord que adaptation n’est pas
utile au sens strict pour ce probleme en exhibant la pire fonction et en utilisant le
corollaire 1.1 de la section 1.7.3. Il donne ensuite des formules explicites pour les
points d’évaluations optimaux et pour l'erreur d’approximation. Méme si I’adapta-

tion n’est pas utile pour ce probleme un algorithme séquentiel est proposé. Il possede

32

I’avantage par rapport a la méthode passive de pouvoir étre prolongé indéfiniment,
c'est-a-dire que le nombre d’évaluations n'est pas fixé a 'avance. Cet algorithme est
essentiellement I’algorithme du sandwich de Burkard, Hamacher et Rote [5], décrit

a la section 4.3.

Les mémes formules ont été retrouvées par Guérin, Marcotte et Savard [14], qui
construisent un nouvel algorithme adaptatif de faible complexité combinatoire basé

sur la programmation dynamique.
Approximation L*

Le probleme d’approximation L%, aussi nommé probléme de reconstruction opti-
male, a été étudié par plusieurs auteurs et pour diverses classes de fonctions. Nous

présentons ici les travaux les plus pertinents pour nous.

Sonnevend [33] mentionne sans cependant le démontrer que l'algorithme adaptatif
qu'il propose pour 'approximation L! s’applique aussi au cas L™ et donne une erreur
d’ordre O(n~2), et mentionne aussi que pour ce probléme I’adaptation est utile. Ces
résultats sont démontrés et généralisés dans Sonnevend [35] lorsque seule I’évaluation
de la fonction est permise mais, comme avant, les résultats s’appliquent aussi au cas
ol la dérivée est disponible. Un algorithme séquentiel d’ordre O(n~2) est proposé
et il est démontré que cette borne est optimale quant a 'ordre. Pour montrer que
I’adaptation est utile, on démontre que les algorithmes passifs ne peuvent pas faire
mieux qu'une erreur d’ordre O(n!). Ces bornes ne sont pas données explicitement

cependant.

Burkard et al. [5] considérent aussi le probléme d’approximation L sur F, ;. Leur
point de vue n’est pas celui_de la complexité informationnelle mais leur approchue
constructive leur permet de définir de fagon simple et concrete un algorithme adap-

tatif et de prouver une borne explicite pour 'erreur de cet algorithme. On propose
o

33

en fait deux variantes de 'agorithme du sandwich de la section 4.3, qui différent par
le choix du point de subdivision a chaque étape. D’autres variantes sont décrites et
comparées numériquement par Rote [30]. L’auteur conclut qu’aucune d’entre elles
variantes étudiées n’est systématiquement meilleure que les autres et pose la question
de savoir si un algorithme optimal (au sens de la section 1.6) peut étre trouvé pour
Papproximation L*°. Il remarque que le contexte approprié pour y répondre est celui
de la complexité informationnelle mais que le probléme semble difficile : méme si
seulement deux évaluations sont & faire on ne sait pas comment déterminer les deux
points optimaux. Yang et Goh [49] utilisent aussi 'algorithme du sandwich pour
approximer des fonctions définies sur un intervalle fini dans le cas ol la dérivée n’est
pas disponible. Cependant leur méthode suppose que l'on connaisse (ou calcule) la

fonction a approximer en tout point de [0,1].
Approximation L? et L;

La littérature sur les problémes d’approximation L? pour 1 < p < oo et L' pondérée
est beaucoup moins abondante que pour les problemes d’intégration et de recons-
truction optimale. En fait & notre connaissance ces problemes n’ont pas été abordés

pour la classe Fy; qui nous intéresse.

Le probléme d’approximation L} étant équivalent au probléme d’intégration pondé-
rée, il a fait ’objet de plusieurs travaux mais souvent dans le cadre de I'approxima-
tion classique plutot que dans celui de la complexité informationnelle. Dans ce cas
les algorithmes proposés sont passifs et des restrictions sont imposées au type de for-
mule/algorithme, ainsi qu’aux classes de fonctions, & I'information utilisée et au type
de fonction de poids. Par exemple, Mathé [23] cherche une formule de quadrature
_pondérée pour des fonctions de Holder sur la droite réelle et donne des conditions
sur la fonction de poids pour que 'intégrale soit finie. Cerone, Roumeliotis et Hanna

[6] proposent des formules de quadrature avec trois termes (trois évaluations) pour

34

des fonctions sur un intervalle fini et une fonction de poids générale. Leur approche
calculatoire se rapproche de la nétre mais leur point de vue n’est pas celui de la
complexité informationnelle et ils ne considérent pas le probléme de déterminer si
leur formule est en fait un algorithme optimal tel que défini au chapitre 1. Lee [20]
étudie 'approximation pondérée dans la norme LP dans le cadre de la théorie des

ondelettes.

Lorsque le point de vue de la complexité informationnelle est adopté, les fonctions
considérées sont souvent restreintes aux espaces classiques de ’analyse mathéma-
tique, des restrictions étant imposées sur les dérivées, et les fonctions de poids sont
d’'un type particulier. D’autres auteurs envisagent le probléme de déterminer des
caractéristiques de la fonction de poids qui rendent un certain problé'me plus simple.
Par exemple, Curbera [7] montre que certaines fonctions de poids permettent de
retarder la «malédiction de la dimension» (curse of dimension) pour lintégration
a plusieurs variables. Wasilkowski et WoZniaskowski [45] quant & eux cherchent &
caractériser les fonctions de poids qui rendent finie la complexité du probleme d’ap-
proximation LP pondérée sur toute la droite réelle, autrement dit telles que le nombre

de calculs d’information pour atteindre une borne donnée sur l’erreur soit fini.

Pour ce qui est de 'approximation dans la norme LP, nous avons constaté que ce
probleme est souvent étudié en conjonction avec 'approximation pondérée, comme
dans les travaux cités plus haut. Nous ne connaissons pas de travaux portant sur

I’approximation L? sur la classe Fy .

35

CHAPITRE 3

APPROXIMATION L' : RESUME ET EXTENSIONS

Dans ce chapitre nous développons en détails I’étude de 'approximation des fonctions
de F,; dans la norme L!. Aprés avoir démontré certains résultats généraux nous

décrivons et généralisons le travail présenté dans Guérin et al. [14].

3.1 Résultats généraux

Nous démontrons ici les résultats annoncés aux sections 1.4 et 1.5 concernant l'o-
pérateur d’information et 'opération terminale pour nos problemes. Ces résultats
s’appliquent non seulement & I'approximation L' mais aussi & 'approximation dans

les normes L? et Lj.

Rappelons que I'information sur les fonctions f € Fj; a approximer est obtenue en
évaluant f et f'en n points de [0,1]. Dans la suite, nous identifierons donc l'opérateur
d’information N avec un n-tuplet (zi,...,z,) et nous dénoterons z = (z1,...,Z,).
Si on considere seulement des algorithmes passifs cette identification est tout a fait
appropriée. Pour les algorithmes adaptatifs, le n-tuplet ne met pas en évidence les
fonctionnelles Z; qui déterminent les points z; en fonction de I'information recueillie
lors des évaluations précédentes. Cependant, ce qui nous intéresse dans ce qui suit est
le résultat de ’application des Z;, c’est-a-dire les points d’évaluation. C’est pourquoi
méme dans ce cas IV sera identifié & z, sous-entendu que ces points sont possiblement

obtenus de fagon adaptative.

Puisque Fy; contient des fonctions qui ne sont pas dérivables, il faut inclure dans

36

la définition de N, pour chaque f € F,; et z € [0,1], le choix d’un surgradient.
Dénotons par df(z) le surdifférentiel de f en z (c’est-a-dire I’ensemble de tous les
surgradients de f en z). Un choix d’un surgradient est défini par un ensemble de
fonctions s = {sf}ser,, qui donnent pour z € [0,1] un élément s¢(z) € df(z). Un

opérateur d’information peut maintenant étre défini par

N(f)=(z1,..., 20, f(21), ..., f(Zn), 8¢(21), ..., 8¢(Tn))

et on notera N = (z,s).

Lemme 3.1 5i N; et Ny sont des opérateurs d’information qui ne different que
par le choiz des surgradients, c’est-d-dire que Ny = (z,s') et Ny = (z,s%), alors

T'(Nl) = T(NQ).

Preuve: Soit Fa,b le sous-ensemble de Fj; constitué des fonctions dérivables. Pour
tout f € Fopet k= 1,2il existe f € Fqp avec s§(z;) = fi(z;) pour tout i =1,...,m.
Dans ce cas les fonctions U et L construites & partir de U'information f(z;), s%(z;) et
Fi(25), fi(z;) sont les mémes. On peut donc calculer le rayon d’information de N; et
Ny en considérant seulement les fonctions de Fa,b. Or pour ces fonctions l'information

donnée par les deux opérateurs N est la méme donc

r(N1) = sup ||U(z, f) — L(z, f)[| = r(N2).
F€Fap

Ce lemme signifie qu’il n’y a pas de meilleur choix pour les surgradients.

Lemme 3.2 Si a; = (N;,), pour i = 1,2, et que Ny et Ny ne différent que par le

choiz des surgradients alors e(ay) = e(ag).

37

Preuve: Comme dans la preuve du lemme 3.1 on peut calculer e(a;) et e(az)
en considérant seulement les fonctions dérivables. Pour ces fonctions, ¢(N:(f)) =

&(N2(f)) et on doit donc avoir e(a;) = e(az).]

Ce lemme implique que quelque soit le choix des sous-gradients, la solution au

probléme de minimiser e(c) est la méme.

L’opération terminale ¢* a été définie & la section 1.5 par ¢* = (U + L) € Fyp, ol
U et L dépendent de z et f (voir aussi la section 3.2). Lorsqu’il sera nécessaire de
rendre explicite cette dépendance on écrira U = U(z, f) et L = L(z, f). Lorsque de
plus on voudra rendre explicite la variable d’intégration ¢, on notera U = Uz, f,t)

et L =L(z, f,1).
Proposition 3.1 L’opération terminale ¢* est centrale.

Preuve: Pour le probleme d’approximation, S(f) = f donc W(f) = V(f). Il faut

montrer que pour tout z et f

sw |50+ 1@ - F | =t s lo=Fll B1)
fev(s) 9 ek fev ()

Soit z et f fixés. Par définition de U et L, 0 < L < f < U pour tout f € V(f), ce

qui implique que
U-L
2

: U-L

<(U+L)-f<

DN
[NV]

Donc puisque U € V(f),

oo lswen-il=gw-o - e

38
Maintenant soit g € Fj,; et montrons que

sup llg=Fll > S|V~ L. (3.3)
fev(f)

Si|lg — L|| > 3||U — LJ| alors (3.3) est satisfaite car il existe des fonctions de V/(f)

qui sont arbitrairement proches de L. Sinon

-zl < 11V =gli+lg - Zi
1
< I =gll+ 510 - Ll

. ,
ce qui implique §HU — L|| < |lg = Ul| et (3.3) est satisfaite car U € V(f). Finale-
ment, (3.3) et (3.2) impliquent (3.1) car (U + L) € F,, donc ¢* est bien un centre
de V(f). |

Comme corollaires de la preuve de la proposition 3.1 on a les expressions suivantes

pour le rayon d’information et ’erreur locale :
Corollaire 3.1 Pour ¢* fizé et N = (z1,...,2,), on a

(V) = = sup UGz, f) — Lz,)]

2 fer,,

Preuve: Par la définition du rayon d’information et les égalités (3.1) et (3.2) de la

preuve de la proposition 3.1 on a

") = sup (ginf sup ,1|g—fu)

FE€Fap \9€Fan Fey(f)™

= 3 sw [IUG, /) - Lz,). '
FEF

39

Corollaire 3.2 Pour un algorithme o = (z1,. .., Ty, $*) Uerreur locale en f est

ercler, £) = 511Uz, £) — L,)

Preuve: Par la définition de e, et ’égalité (3.2) de la preuve de la proposition 3.1

on a

eloc(Q) f) = _Sup H a(f) - f”
Fev(f)

= o || 506N+ 1w) - |

_ %[|U(x,f)~L(fE,f)||~

3.2 Approximation L!

Rappelons brievement les données de ce probleme. Soit
Fop={f:[0,1] — R| f concave , f(0) =0, f(1) = 1, f'(0) < a, f'(1) > b}

ou f'(0) et f’(1) sont les dérivées & gauche et & droite en z = 0 et z = 1, respective-
ment. On veut approximer les fonctions de F,, & l’aide d’un algorithme o = (N, ¢),
oll 'opérateur d’information N est identifié avec un vecteur x = (z1, ..., z,) repré-
sentant les points d’évaluation, comme & la section 3.1, et I'opération terminale est

¢* = (U + L) qui est centrale et donc optimale.

Explicitement, les fonctions U et L sont définies comme suit. Posons g = 0, 11 =

40

Lou; = f(x), e = f(zi) et v="_(vo,...,0n11), &= (o, - -, thns1). Alors

Uz, f,t) = U(z,v,u,t) = min {wt —z;) + v}

0<i<n+1

Osisn (\ Ti+1 — &4

L(z, f,t) = L(z,0,4,t) = min { (u) (t— ;) + v}

Puisque les fonctions de Fj; sont concaves, v et 4 doivent satisfaire

Vs — Vi1 .
<< —, 1=1,...,n
Tit1 — T4 Ty — Tj—1

C(z) : (3.4)

Vit1 — g

To=0,Tns1=1,00 =0, Uny1 =1, plo = a, tny1 = 0.
Pour z fixé, ces conditions seront notées (v, u) € C(z).

Pour le probléme d’approximation L' Sonnevend [33] a montré que ’adaptation
n’est pas utile au sens strict en construisant explicitement une fonction pire cas et

en utilisant le corollaire 1.1. Ce résultat est également conséquence de la proposition

4.3 du chapitre 4.

Puisque de plus ¢* est fixée, le probléeme de trouver un algorithme optimal se réduit
a trouver les points d’évaluation optimaux. Le probleme s’énonce maintenant comme
suit :
min e(r) = min sup eplx
1‘6[0,1]" () D:E[D,l]" fGFEb lOC(7f)

(3.5)
1

1
= min sup —/ [U(z,v, p,t) — L(z, v, p, t)] dt.
z€[0,1]™ (4, 1)eC(z) 2 Jo

Ici e(z) est lerreur de l'algorithme (z, ¢*).

41

3.3 Formulation de programmation dynamique

Dans Guérin et al. [14] une formulation de programmation dynamique, inspirée d'un
probléeme semblable de Bellman et Dreyfus [3], a été employée pour trouver une
solution au probléme (3.5) restreint aux fonctions croissantes de Fy, ;. Nous rappelons

cette formulation avant d’en donner une généralisation & toutes les fonctions de .

Soit f une fonction concave avec f(x;) = vy, f(z2) = ve, f'(x1) = 1 et f'(z2) = po.

Définissons un changement de variable par

t—.’L‘l
Tt =
(t) p——
S — U1
S =
() = o—,.

et une nouvelle fonction

f(t) =So foT (t).

La fonction f est définie sur [0,1] et satisfait f(0) = 0 et f(1) = 1. Si v; < vy
alors f est concave. Ceci est le cas, en particulier, si f est croissante. Sinon, f est
conveze. Cependant, le probléme d’approximation L! pour les fonctions convexes est

essentiellement le méme que pour les fonctions concaves. Définissons donc

E,p={f:[0,1] = R| f convexe , f(0) =0, f(1) = 1, f(0) > a, f/(1) < b}

et
erreur minimale dans le pire cas pour I’approximation de

fonctions. de F,p, sia > 1 et qu'il y a n évaluations permises,
Ey(n)(a,b) =

erreur minimale dans le pire cas pour I'approximation de

fonctions de Fy 5, sia < 1 et qu'il y a n évaluations permises.

42

Maintenant, pour établir une relation de récurrence pour 'erreur F;(n) on a

1

/ U - L) dt = (22— 71) (v — v2) / O - L, (36)

1 0

ou
U(t) = min{p(t—21) +v1, uo(t — z2) + va}

L(t) = (u) (t— 1) + 1.

o — I
Il est facile de montrer que la formule (3.6) est valide si v; < vy ou v; > vy. En fait,
en posant v, = v; + € et en prenant la limite quand € — 0 on peut montrer qu’elle

est aussi valide lorsque v, = vy. Enfin, on a
Ey(n)(a,b) =

X

min max {:val(O) (o, 2) + (1= 2)(1 -) Ea(n ~ 1) (1 =, L _"’”b>}.

2€[0,1] v,ueC(z) l—v "1—w

(3.7)
Le point z est le premier point d’approximation sur {0, 1] et, dans la somme entre
accolades, le terme de gauche représente 'erreur sur [0, z] tandis que celui de droite
représente l'erreur sur [z, 1] étant donné que les n— 1 autres évaluations seront faites

sur cet intervalle.

Le point z* qui minimise ’expression (3.7) est

Tt = (n—il)Q (1 +2ni:2> (3.8)

-+t erreur optimale est

e

1 (a—1)(1—b)
2n+12 (a—b)

Ey(n)(a,b) = (3.9)

43

Pour plus de détails concernant cette formulation, voir Guérin [15].

La relation de récurrence (3.7) avec la formule (3.8) donnent une méthode adaptative
pour calculer successivement de gauche & droite sur [0,1] les points d’évaluation
optimaux. Puisque 'adaptation n’est pas utile au sens strict pour ce probléme, cette
méthode ne peut pas faire mieux dans le pire cas que 'algorithme passif optimal
proposé par Sonnevend [33]. Cependant l’algorithme obtenu par cette méthode est
tres simple, sa complexité combinatoire étant la méme que celle de l'algorithme
passif. Il est en pratique plus efficace que ce dernier, comme le montrent les résultats

numériques du chapitre 7.

Finalement, pour ’approximation de fonctions avec f(z1) = vy, f(z2) = vo, f'(z1) =

w1 et f/(z2) = us on a la formule générale

gl Ce e R

pour le premier point d’évaluation. L’erreur minimale dans ce cas est

1 [Ml(iﬁ *331) - (212_?11)“”2—?21 —M2($2—$1)]‘

3.11
2(n+1)? fin = e (311

44

CHAPITRE 4
APPROXIMATION LP

Nous examinons dans cette section le probleme d’approximation dans la norme LP
pour 1 < p < 0o, qui généralise la section précédente. Les deux principaux résultats
de cette section sont la proposition 4.1 qui donne une borne inférieure sur l’erreur
pour les algorithmes passifs et la proposition 4.2 qui donne une borne supérieure pour
I’erreur de l'algorithme du sandwich, qui est un algorithme adaptatif d’ordre optimal.
Ces deux propositions impliquent que ’adaptation est utile pour ce probléme si et

seulement si p > 1.

4.1 Préliminaires

Les données du problemes sont les mémes qu’au chapitre 3 sauf pour ’erreur d’ap-
proximation qui est maintenant mesurée dans la norme LP pour 1 < p < o0 : si

f,g € F,; alors

I f=gll, = </01|f(t)—g(t)4”dt>% si p < o0,

\ Nf—9glle = trg[g}fﬂf(t)—g(tﬂ si p = o0.

Les résultats de la section 3.1 concernant 'opérateur d’information et l'opération
terminale ¢* = %(U + L).gent encore valables ici. En particulier, ¢* est centrale et

donc optimale.

45

Pour simplifier, nous dénoterons la fonction %(U — L) par UL et nous utiliserons la
notation v, u du chapitre 3 pour la valeur d’une fonction et de son surgradient aux

points d’évaluation.

Pour p < oo si les points z = (zy,...,z,) ont été choisis alors l'erreur d’approxima-

tion sur la fonction f est

e(z, f) : <zn: /zm UL(z,v, p, t)? dt) ’ .
i=0 v %

Puisque UL > 0, e(z, f) est plus grande ou égale & I'erreur sur un sous-intervalle

donné [z;, z;41], qui est égale &

Tit1 %
e = (/ UL(z,v, p,t)P dt> .
T3

Le lemme suivant donne la valeur exacte de e; de méme qu’une borne supérieure sur

cette quantité. Cette borne sera utilisée dans la preuve de la proposition 4.2.

Lemme 4.1 1. Sur Uintervalle [z;,zi11], st f(z:) = v, f'(x:) = Wi, f(2i1) =

vir1€t f/(Tir1) = pit1 alors

1
1 (Ti1 —)77 {M' Uiyl — Uz} {Ui—kl — v
21 +p)p M~ M1 [

€ = - ,Ui+l} ‘ (4.1)
Tit1 — i) [Tit1 — T4

2. L’erreur d’approzimation (4.1) ci-dessus est bornée comme suit

.

1
< ($i+1 - xi)HP(N' - um)
N 8(1 + p)

. (4.2)

=

46

Preuve:

T B Tit1

Figure 4.1 La situation sur [z;, Z;+1]-

1. Soit P; I’abcisse du point d’intersection des tangentes u;(t) = ui(t — z;) + v; et
U1 (t) = piz1(t — Tip1) + vie1 €n z; et x4, tel quillustré sur la figure 4.1. On a

alors
MiTi — Uit 1Ti41 + Vip1 — Uy
F= :
Hi — Hit1

Sur cette figure est également illustrée

li(t) = <w> (t—z)+v = (Z}M) (t — Tiy1) + vig.

Tiv1 — T4 Tit1 — T4

Pour p < oo, la formule (4.1) est le résultat du calcul de

=

- (/ P (wat) — L(8))P dt + / " e (t) — L) dt)

2 P,

Pour p = oo, il faut calculer

eo= _max UL(rvu1) = 3 (u(P) ~ b(P)).

tE[:I)i,.’I:7;+1]

La formule (4.1) résulte de la simplification de ces expressions.

47

2. Posons X =z, 1—z; et V = v —v;. Pour X, p; et p;pq fixés, le maximum sur V
de la fonction quadratique (u; — %)(XV— — 14i+1) est atteint lorsque V = %(Mz + 1) X

En substituant dans I’expression de ’erreur (4.1) on obtient

X's [m - %(ui + Mi+1)X] [%(Mz + prig1) X — Ni+1]

€ =< T
201 +p)7 (ks — Miv1)
1
- XH"(/% — fit1)
8(1+ p)%
Ceci complete la preuve du lemme.]

La borne (4.2) a 'avantage d’étre linéaire en y; et p;. 1, ce qui simplifiera certains
calculs a la section suivante. Elle est aussi exacte au sens ou il y a égalité pour
certaines valeurs de z;, v;, i;. Cependant, la différence entre e; et la borne devient

arbitrairement grande lorsque p; — 0o ou piq — —00.

4.2 Borne inférieure pour les algorithmes passifs

Nous calculons dans cette section une borne inférieure pour 'erreur des algorithmes

passifs pour le probleme d’approximation LP.

Puisque l'opération terminale ¢* est fixée, un algorithme est déterminé par le choix
des points d’évaluation = = (z,...,z,). Pour un algorithme passif on peut consi-
dérer que tous les z; sont choisis & 'avance en fonction seulement de l'information a
priori donnée par Fy .

o SR

Proposition 4.1 Soit a un algorithme passif pour le probléme d’approzimation LP,

48

avec 1 < p < oo, sur la classe Fy . Alors

o) s L [(a —1)(1—b) J

(n+ 1) | 12(1 +p)?(a — b)

Preuve: Si n points d’évaluation sont choisis, I'intervalle [0,1] est subdivisé en n+1
sous-intervalles et au moins un d’entre eux est de longueur 6 > n—}r—l Pour simplifier
la notation, dénotons cet intervalle par [z, zo], ot z3 = z;+6. On peut supposer que
0= n—}ﬁ’ quitte & se restreindre & un sous-intervalle de [z}, z2]. Nous allons montrer
que 'on peut trouver une fonction f € Fj; pour laquelle 'erreur est d’au moins la
borne inférieure annoncée ci-dessus. Pour calculer Perreur sur [z, zs], notée e, on
substitue vy = f(z1),v9 = f(z2), 41 = f'(z1) et uz = f'(x3) dans la formule (4.1) du

lemme 4.1.

Dans la situation représentée & la figure (4.1) lorsque z; = v; = 0, 4; = @, Ty =
viy1 = 1 et u;11 = b on retrouve la situation standard ol aucun point n’a encore été
placé sur [0,1]. Le point correspondant & P, dans ce cas est P = 1= et u;(t) = at,

P
Maintenant trois cas sont a considérer, dépendant de la position de z; et zs.
Cas 1:0<z; <P —96. Tel quillustré a la figure 4.2, soit

ll(t) = Cl,t, V1 = ll(l'l),

Ia(t) = (1 ‘”1) (E—1)+1, vy= %(ll(r2)fl2(3:2)),

Ly(t) = (”2""1> (t—21) +v1, La(t) = <1‘“2> (t—1)+1.

1—1‘2

49

at /.
Vg | ” ly
I3 7
(L
l
_ P l
0 = T 1

Figure 4.2 Proposition 4.1, cas 1.

Pour la fonction f € F,}, définie par

L(t) st 0<t<z
F)=1q (@) sl oz <t<a
l4(t) si T S t < 1
onap = f'(z1) =aet ug= f'(ze) = }—:—% En substituant les valeurs de x, vy, 1

et de 2, U2, g dans 'expression (4.1) du lemme 4.1 on trouve que erreur sur [z7, 2]

pour cette fonction est

1
P a—1

1
41 +p)pr 2(1—z1)—6

Cette quantité est croissante en x; et atteint son minimum sur l'intervalle considéré

en z; = 0. En substituant z; =0 et § = n%l on obtient

- S 1 1 a—1
T 4(l+p)F (n+1)p 2m+1

o0

1 ~ (a-1)
T O8(L+p)r (n+ 1)
N 1 (a—1)(1-b) }
T (DY 120+ p)Fa—b) |

—b<1.

La derniere inégalité provient du fait que

Cas 2 : P-4 <z < P. Tel quillustré a la figure 4.3, soit

(a+ 1)z; o 1—u
U1 5 y ll (t) T t, lg(t) 1_ 1 (t) + y
w—v
w——(ll(P)+l2(P)), l3(t>= (P 1> (t-$1)+?}1
bt+1-—5b
at /|
Vo2 1 : l4
| l lg
w | v,
! : lg
(5 \
//)
[y)
P S R
0 Ty To 1

Figure 4.3 Proposition 4.1, cas 2, 2 < R.

Soit aussi S et R les points tels que [;(S) =bS+1—bet 3(R)=bR+1-5b.0na
P < 5 < R. Supposons d’abord que z3 < R. Dans ce cas, soit

ol

1—U2

wzh@ﬂetuﬂ=< >@—U+L

1—.’£2

Pour la fonction f € F,;, définie par

ll(t) si OSthl
fA)=4 L) sz <t<m

l(t) sl zo<t<1

onaulzz—iet,ug—l_”z

?
= =2 et avec ces valeurs lerreur pour f sur [z1, To] est

1
P a—1

1
41 +p)r 2(1—m) -0

Comme avant, cette quantité est croissante en x; et atteint ici son minimum en

P — 6, ce qui donne en substituant cette valeur et celle de dans I’expression de

lTerreur du lemme 4.1

e 1 1 (a=-1(a-bh
= 41+p)p (nt1)p 2a-Dn+1)+a—b
> 1 1 (a=1){a—b)

T 4(1+p)¢ (n+1)F (@—0)(n+3)
1 (a=1)(1—1b) }
(n+ 1)*5 | 1201+ p)s(a—b)|

La deuxiéme inégalité ci-dessus vient du fait que a — 1 < a — b et la troisieme du

fait que === > =2

1-b
53 _mpournzletquea—_ggl.

Supposons maintenant que 2o > R (voir figure 4.4). Alors

P-0<S—-6<R-40<5<P<S<LR

52

Pour la fonction f € F,,,

Li(t) si 0<t<z
ft) =< 030t si 21 <t<R
bt+1—-0b si R<t<l1

onavy="bra+1—b, 1 =2 et uy = b. Avec ces valeurs, I'erreur pour f sur [z, 2]

est)
51‘*‘1—, 1
62—-—*—1(a+1—2b)—2‘(5—l‘1)(l‘1+5—5) (43)
4(1 + p)# 0
bt+1-b
at / |
V27 ! l3
w v,
! 2
U171 :
//)
1 |
P S R
0 T Zo 1

Figure 4.4 Proposition 4.1, cas 2, z > R.

Soit g(z) = (S—x)(z+J—S). Cette fonction quadratique s’annule en S et en S — ¢,

et son maximum est en z* =5~ 2 €15 -6, S[.

e Siz* < R—¢6 < P alors le minimum de g sur [R — 6, P] est en P et g(P) =

5 1 1
- =0 — . < —(S—=P)> - =_ - <=
(S=P)3—(5=FP).Ora" SP=5-(S=P)25et 6= 75 done
1 | 1 5
79(@) 2 59(P) 2 (S~ P)-5> 85— P

53

e Si R—§ < z* < P alors le minimum de g sur [R — 4, P] est & l'une des extrémités

de cet intervalle. S’il est en P, on a comme avant 3%2—9(:1:1) >S5 —~P.Silesten R—§¢
alors g(R—0)=(0—(R—=8))(R—S5).0Orz"*>R—-6=>6—(R—-5) > g donc

1 1

1
79(01) 2 9(R—0) =2 5(R-5)-5 2 R—3.

|

e Si z* > P alors le minimum de ¢ sur [R — ¢, P] est en R — ¢ et comme auparavant

359(331) >R-S.

Figure 4.5 La fonction g.

On conclut donc que glig(ml) > min{S — P, R — S}. Si le minimum est S — P alors,

puisque S = ffl—_l;)b et S— P = w(fl;_l;&ilf—b), on obtient en substituant ces valeurs
dans (4.3)
L 1 pn a=D0-b
4(1+p)? a—b

. 1 [(a—1)(1—b) }

(n+1)"*% |12(1 + p)¥(a — b)

Si le minimum est en R — S il faut condsidérer le point R, qui dépend de z; :

(a=b+3(1=0b))z —4(1-b)
((a=b)+ (1 —=0b))zy —(a—b+3(1 =b))

RE R(zy) = 5

Cette fonction est décroissante en x; et atteint son minimum sur [P — §, P] en P.

On a alors
(a—1)(1—=10)

R-SzRP)-5= (a+1—2b)(a+2—3b)

Puisque - +21_3b > 3(a1_b), en substituant dans (4.3) on trouve

1 P (a—1)(1-b)

e > T
4(1 + p)» 3(a—10)
B 1 (a—1)(1-0)
(n+ 1) [1200+p)r(a—b)|
Cas 3 : z; > P. Soit
v 1
ll(t) = bt + 1 - b, Vg = ll(mz), lz(t) = z—gt, v = §(l1(£l’1) -+ lz($1)),
2
. Vg — Uy _ _ ﬂ
lg(t) = <$2 _ CE1> (t II?Q) =+ V9, l4(t) Ilt
tel qu'illustré a la figure 4.6.
U2 4 /:/ I3 ly
n L
ad
P
0 o T2 1

Figure 4.6 Proposition 4.1, éas 3.

54

99

Pour la fonction f € F,;, définie par

la(t) st 0<t<m,
fO)=19 i) stz <t<a

Lty st z<t<1
on a u; = Z- et pp = b et 'erreur pour f sur [1, 23] est

s 1-b
2(1+p)p 2x1+0

e =

qui est décroissante en x; et dont le minimum est en 1 —¢. On obtient en substituant

cette valeur dans 'expression de 'erreur du lemme 4.1

1 1-b
€ Z 1 T’
41+pr(n+1)r 20+l
1 1-—-

> T’ bl I

8(1+p)r (n+1)"»
S 1 (a—1)(1—=1b)
T (n+ 1) | 12(1+p)i(a—b)

car gil; < 1. Ceci complete la preuve de la proposition. 1

4.3 Algorithme adaptatif pour le probleme d’approximation LP

L’algorithme du sandwich décrit plus bas a été employé par Burkard et al. [5] et aupa-
ravant par Sonnevend [33] pour 'approximation de fonctions convexes (ou concaves)
dans la norme L*. Cet algorithme peut aussi étre utilisé pour 'approximation dans

la norme LP et la borne O(n~2) prouvée dans [5] généralisée & 1 < p < oo.

56

L’algorithme du sandwich consiste & approximer une fonction concave f a laide des
sous- et sur- estimations U et L construites & partir de I’évaluation de f et f’ en des

points obtenus par une suite de bissections de l'intervalle [0,1].

Plus précisément, soit € > 0 un seuil pour l'erreur a priori sur chaque sous-intervalle.

Cette erreur peut étre calculée a 'aide de la formule du lemme 4.1.
Algorithme du sandwich

Itération 1

1
Poser z; = 5 et calculer v; = f(z1), 1 = f'(z1).

Itération 1

L'intervalle [0,1] est subdivisé en 7 4 1 sous-intervalles [z;,z;41], J < ¢

1) Calculer l'erreur a priori e; sur chaque sous-intervalle.

(1)

(2) Sie; < e pour tout j, arréter. Sinon soit jy tel que ej, = max;j<;1 €.

(3) Poser zip1 = 5(j, + Tjo41), vir1 = f(Tin1), pas1 = f(Tig1)-

(4) Si nécessaire, réordonner les indices de z;, vj, 5, § < i+ 1 de fagon & ce que

les z; soient en ordre croissant. Aller & (1).

Cette procédure se termine lorsque ’erreur a priori sur chaque sous-intervalle est
inférieure a €. Si le nombre d’évaluations est fixé & 'avance, l’algorithme s’arréte
lorsque ce nombre est atteint et 'erreur e est alors bornée par la formule de la

proposition 4.2 ci-dessous.

Cette méthode peut étre représentée par un arbre binaire tel qu’illustré & la figure

4.7, oun = 4 évaluations on été effectuées pour déterminer n+1 = 5 sous-intervalles.

37

Appelons A l'arbre binaire ainsi obtenu. Cet arbre comporte n sommets intérieurs
correspondant chacun a une évaluation et n + 1 feuilles correspondant chacune a un
sous-intervalle. En retirant les feuilles de A, on obtient un nouvel arbre binaire 4

avec n feuilles, une pour chaque évaluation.

| | § | 1 |
I I i 1 T 1

0 To Ty T T3 1

Figure 4.7 L’arbre A.

On définit le niveau d’un sommet comme étant la distance de ce sommet & la racine,
la distance étant le nombre d’arétes traversées par un chemin de la racine au sommet.

La hauteur d’un arbre est la plus grande distance de sa racine a 'une de ses feuilles.

L’arbre A sera utilisé dans la preuve de la proposition 4.2 ci-dessous, mais d’abord
le lemme suivant est nécessaire. C’est une généralisation du lemme 2.2 de Burkard
et al. [5]. Chaque terme de la somme correspondra dans la preuve de la proposition
a une borne inférieure pour la différence entre les pentes aux extrémités d’un sous-
intervalle & la fin de ’algorithme, étant donné que la longueur de ce sous-intervalle
est 27, La somme de ces termes sera une borne inférieure pour la différence a — b,
chaque feuille de niveau ¢ représentant un sous-intervalle. Le facteur ¢ sera tout

1
simplement 1 4+ —.
p

Lemme 4.2 Soit A un arbre binaire de hauteur d comportant n—1 sommets et soit

vi(A) le nombre de feuilles de A au niveau 1. St ¢ > 0 alors

d
w(A) = 3 20 (A) > K(g)nt™

1=0

a8

ou

_ 24 1
K(q) = mm{gé:f, W} .

Preuve : D’abord, en appliquant & A si nécessaire les deux transformations décrites
ci-dessous, on obtient un nouvel arbre binaire A ayant les propriétés suivantes :

1) Aet A ont le méme nombre de sommets,

2) w(A) = w(A),

3) u(Ad)=0sii<d—2,

4) chaque sommet de A au niveau d — 2 posséde exactement deux successeurs,

5) deux cas sont possibles :

(A) ou bien chaque sommet au niveau d — 1 possede au plus un successeur,

(B) ou bien chaque sommet au niveau d — 1 posséde au moins un successeur.

Les propriétés 1) et 2) impliquent qu’il suffit de considérer les arbres du type A pour
prouver la borne. On supposera donc que A donné par l'algorithme du sandwich
est de ce type. Dans ce cas par la propriété 3) la somme dans 'expression de w(.A)

comporte seulement deux termes, ce qui simplifie les calculs.

Les transformations de A sont :

TRANSFORMATION 1. Pour chaque sommet y de niveau ¢ < d — 2 ayant au plus un
successeur, retirer un sommet z de niveau d et en faire un successeur de y (voir

figure 4.8).

i

Figure 4.8 Transformation 1.

99

TRANSFORMATION 2. S’il existe un sommet 2z de niveau d — 1 ayant deux succes-
seurs z et y et un autre sommet u de niveau d — 1 qui est une feuille, retirer y et

en faire un sucesseur de u (voir figure 4.9).
d—1 Z U = 7&{
d
z Y z Yy

Figure 4.9 Transformation 2.

Pour la preuve que ces transformations donnent bien un arbre avec les propriétés 1)

- 5), voir Burkard et al. [5].

Les sommets de A de niveau d—1 et moins forment un arbre binaire complet de 2¢—1
sommets. Le niveau d — 1 contient exactement 297! sommets et le niveau d contient
n—1- (2% —1) = n — 2% sommets. Deux situations sont possibles, correspondants
aux deux possibilités de la propriété 5). Dénotons par w4 et wp les nombres w(A)

pour ces deux cas.

Cas (A) : le nombre de feuilles au niveau d — 1 est égal au nombre de sommets sans
successeurs. Comme il doit y avoir n — 2¢ sommets ayant un successeur au niveau

suivant d, on a vg_1(A) = 2971 — (n —29), y4(A) =n — 2% et
wa = 21d=D(d=1 _(y _ 2d)) 4 29%(p, — 29)

= 206d=1)(20 — 1)p 4 201 (3 _ 9+,

Dans le cas (A) on a aussi 0 <n — 24 <2971 = p ¢ [2¢ 29 4 2471],

60

Cas (B) : il n'y a aucune feuille au niveau d — 1, donc v4_, (A) = 0, vg(A) =n—24
et

wp = 2%%(n — 24) = 294y, — 2le+Lid,
Dans le cas (B), 2971 <n —2% <2¢ = n e [2¢ 42471 20+

Les nombres w4 et wp sont des fonctions linéaires de n sur les intervalles déterminés
ci-dessus. Pour ces fonctions ws(2¢ 4 2471) = wp(2? + 24-1) = 2@+)d=1 De plus,
2¢¢ > 94(d-1) (27—1) donc la pente de wg est supérieure a celle de w4. Ceci est illustré

a la figure 4.10.

wp

w4

I | -l
T 1 1

2d 2d + 2d—-1 2d+1

Figure 4.10 Les fonctions w4 (n) et wg(n)

On doit maintenant montrer que wa(n),ws(n) > K(q)n?™! pour tout n > 1. Puisque
g > 0 le terme de droite de cette inégalité est une fonction convexe de n et il suffit

de vérifier 'inégalité aux points 2¢, 2¢ + 24-1 gt 24+1,

Sin = 2¢alors 2¢°! = g et
dy — ! nya*t +1y _

Sin=2¢+2%""alors 2% = £ et

Cede - 2n\? o\ 1! 99
wa(28 4+ 2471 = wp(2? + 2971 = <?> n— <?> = ndt! <§§1¥>

61

Si n = 2%+ alors 2¢ = Zet

n\4 nyetl pitl
@) =(3)n-(3) =5

Chacune de ces quantités étant plus grande ou égale & K(q)n?*!, ceci compléte la
preuve du lemme. 1
27 1 In(3/2)

Notons que 3051 S ger1 74 < In(4/3)

1 1
pour Valgorithme du sandwich, ¢ =14+ - < gy < p> 7
D —4do

= gg. Dans le calcul de la borne sur Verreur

~ 2.4424.

La proposition suivante est une généralisation & p > 1 du théoreme 2.3 de [5].

Proposition 4.2 Soit o® lalgorithme du sandwich pour l'approzimation sur Fyp

dans la norme LP, 1 < p < 00, avec n évaluations permises. Alors

1 a—>b
(n+1)° 8K, (1+p)s

e(a®) <

3

ou Kp = K(l + %) et K est défini comme au lemme 4.2.

Preuve: Sin évaluations ont été faites, chacune des n+1 feuilles de ’arbre A obtenu
a la fin de l'algorithme correspond & un sous-intervalle sur lequel lerreur a priori
est inférieure & £. Chacun des n sommets intérieurs de A correspond & un sous-
intervalle qui sera subdivisé par la suite et possede exactement deux successeurs.

Comme avant, soit A 'arbre obtenu de A en lui retirant ses feuilles.

Soit A I'ensemble des feuilles de A." Chaque élément A € A de niveau ¢ correspond &
un sous-intervalle [z, Z,] de longueur 27¢ sur lequel 1’erreur a prioriwesé supérieure 3

€. 51 py et [y sont les pentes aux extrémités alors par la deuxiéme partie du lemme

62
4.1
_ 1oi(1+3)
,U,)\—[L,\Z&?(l-l—p)PQ P/,

Puisque les intervalles [z, Z,] sont disjoints (sauf aux extrémités) et que leur union

est [0,1) on a par le lemme 4.2 avec ¢ = 1+ z%

a—b = Y pm—fa=) vi(A)8e(l +p)p2i 1)

A€l >0

> 8e(1+p)rK,(n+ 1),
Si p < oo alors sur chaque sous-intervalle a la fin de 'algorithme

’ a—>b

Tit1 p
(/ UL(z,v, p, t)? dt> < e < - -
31+ PP Ky(n+ 1

et pour l'erreur totale

e(a®) = <Zn: /%M UL(z,v, p, t)? dt)

K

o (=

3 fe

1 . a—>b
(n+1)% 8Kp(1+p)?

Pour p = oo, lim (1 + p)% =1, Kw = 1/2 et sur chaque sous-intervalle
p—o0

a—b
max UL(z,v,ut)<e < ————
te(zi @it (0 459) T 85 (n+1)?

63

donc
e(a®) = max UL(z, v, u,t) < -i:_—g—.
te[0,1] T 4(n +1)2
Ceci complete la preuve de la proposition. 1

On sait que pour approximation L' I'erreur optimale est d’ordre O(n2). Puisque
| f—glli < || f—gllp pour p > 1, Perreur pour 'approximation L? est au moins
du méme ordre. En effet, quelques soient les points optimaux pour le probleme LP,
lerreur d’approximation L' pour ces points est bornée inférieurement par 5((21—31(2%;—%7
comme nous l'avons vu au chapitre 3. Ceci, avec la proposition (4.2), montre que

Palgorithme du sandwich est d’ordre optimal.

4.4 Utilité de ’adaptation et algorithmes optimaux

Les propositions 4.1 et 4.2 montrent que I’erreur d’un algorithme passif est au mieux
d’ordre (’)(n_(H%)) tandis qu’il existe un algorithme adaptatif avec erreur d’ordre
O(n™?). On conclut donc que pour le probleme d’approximation sur Fgp dans la

norme [P I'adaptation est utile si et seulement si 1 + % < 2, c’est-a-dire p > 1.

Proposition 4.3 Pour le probleme d’approrimation LP sur Fu; l'adaptation est

utile si et seulement sip > 1.

Preuve: Ceci découle de la discussion précédent la proposition.]

Ceci vient compléter ce qui était déja connu pour p = 1 et p = oo (voir Sonnevend

[33] et Burkard et al. [5]). Il serait maintenant intéressant de calculer exactement

erreur optimale e? = inf e(«) pour I'approximation LP. Pour p = 1, e! est.connue
acA

et donnée par la formule (3.9) de la section 3.3. Pour p > 1 on ne connait pas eP.

Pour le cas important p = oo, Rote conclut dans [30] en posant la question de savoir

64

comment construire un algorithme optimal pour ce probleme. Il remarque que le
contexte approprié pour cette question est celui de la complexité informationnelle,

mais ne propose pas de réponse.

Comme le démontre le cas p = 1, la programmation dynamique peut donner une
formulation explicite du probleme, et la solution a I’équation de récurrence est la
réponse cherchée. Cependant ce cas se distingue du cas p > 1 sur deux points.
Premierement, puisque 'adaptation n’est pas utile au sens strict pour p = 1, Vordre
des points dans la formulation de programmation dynamique n’a pas d’importance,
ce qui simplifie la relation de récurrence. Et deuxiémement, les calculs pour la

résolution de cette récurrence s’averent relativement simples.

Nous donnons maintenant une formulation de programmation dynamique pour p >
1, qui généralise celle de la section 3.3. Nous proposons ensuite une simplification de

la récurrence lorsque p = oc.

Puisque p > 1, minimiser || a(f)— f||, est équivalent & minimiser (|| a(f) — f||)7
Soit Ep(n)(a, b) Verreur optimale pour 'approximation L? sur F, , avec n évaluations
et Ep(n)(a,b) = [Ey(n)(a,b)]P. En utilisant un changement de variables comme 4 la
section 3.3, le probleme pour 1 < p < oo peut se formuler de la facon suivante

E,(n)(a,b) = min max min {:Evap(k) (za, Eu)
v

z€[0,1] v,ueC(x) k+l=n—-1

(1= 2)(1 - vPE,(l) (-1‘—%, ﬂb) } |

l—-v 1—-vw

Cette formulation tient compte du fait que l'ordre des points d’évaluation n’est
pas fixé & l'avance et s’interpréte comme suit en termes d’un jeu & deux joueurs.
Le premier joueur choisit les points d’évaluation et cherche & minimiser 1'erreur

tandis que le deuxieme choisit v et p et cherche & la maximiser. Lorsque le premier

65

point z est déterminé le deuxiéme joueur réagit en choisissant v, u € C(z) de fagon
& maximiser 'erreur, sachant que le premier joueur pourra par la suite choisir la

répartition a gauche et a droite de z des n — 1 points restants.

Pour p = oo soit Ew(n)(a,b) 'erreur optimale pour I'approximation L™ sur Fj,

avec n évaluations. Le probleme peut s’écrire

3 . r
Ew(n)(a,b) = min max k_g}il?{l_lmaX{ono(k) (;a, ;u),

(1= 0Ealt) (12 1220 |

l—-v 1—vw

(4.5)

et s’interpréte de la méme fagon que précédemment. Remarquons que pour résoudre
les récurrences (4.4) et (4.5) il faut a chaque étape calculer la meilleure répartition
des points restants puis les points optimaux selon cette répartition. Cette procédure
donne pour chaque ¢ un algorithme optimal & n — i étapes sur le sous-ensemble de
F» défini par 'information recueillie lors des i premiers calculs d’information. La
solution aux récurrences produit donc, en théorie du moins, un algorithme séquen-

tiellement optimal pour ces problemes.

4.5 Solution pour p=occ et n=1

Sin = 1alors kK =[= 0 et il est possible de calculer la solution & la récurrence (4.5)
et en fait Maple peut souvent trouver une solution exacte de fagon analytique. Ceci
sera utilisé pour construire un algorithme optimal & chaque étape au chapitre 6, qui

pourra étre comparé a l'algorithme du sandwich.

66

Lorsque n = 1 les deux termes entre accolades dans (4.5) sont

(az — v)(v — pz)

Pr(p) =

z(a — p)
_ (l=v=(1-2)b)(pl-z)—(1-v))
Pl = (- o) D '
’UQ(?’J)
L wl®) us (t)
v A L)
lo(t)
I‘PO ;E Pl Il

Figure 4.11 Aproximation L™ avec n = 1.

1—v
l-z

Il est facile de voir géométriquement que le maximum de ¢; est en u; = et le

maximum de ¢, en pg = 2.

Pour z fixé, soit

(z —v)(az — v)
z(l—v—a(l —2x))

If

h() = i) =

et
(z—v)(1—v—>b(1—2x))
(1 —xz)(bx — v)

_/(
l

Pa(v) Go(pia) =

67

que 'on cherche & maximiser sur v € [z, min{az, bz + 1 — b}]. Soit

1-b\? 1—b a—1\2
Q—<a_b> R e R-l—(a_b> |

Ces points satisfont () < P < R.

On peut calculer que ¥} (v) =0 & v= = az — (@ — 1)(1 £ /1 — z) et en substituant
ces racines dans 1! on trouve que ¥;(v") > 0 et] (v™) < 0 et donc que v* est
un minimum local et v~ un maximum. De plus il est facile de vérifier que v* < z,

v" >z, v” <azetquev <br+1-b<< x < R Par conséquent le maximum de

i est en

n=ar—(a—1)(1-+1-2) siz <R,
br+1-—0 siz> R.

Ceci est illustré & la figure (4.12).

[
T

vtz v bz+1-b ot v~

T br+1-b

Figure 4.12 Deux cas pour le maximum de la fonction 1 (v).

De fagon semblable on peut montrer que le maximum de 1 est en

vo=bz £l - b)YV siz>Q,

az siz < Q.

68

La fonction & minimiser dans (4.5) est

0(z) = maX{Hgixqﬁl(u),rggxcbz(u)}

= max {mgx 1 (v), max ?,DQ(U)}

[max {4 (v:), ¥s(az)} siz€0,Q)

= max{¥1(v1), Y2(v2)} siz € (@, Rl

| max{¢1(bz + 1), Ua(ve)} siz€[R,1].

Posons Ti(z) = ¥1(v1), Ta(z) = ¥o(az), T5(x) = a(ve) et Tu(z) = ¥1(bx + 1 —b).
Ces fonctions sont définies sur [0,1]. En calculant leur dérivée on trouve que T}
et Ty sont croissantes tandis que T3 et T3 sont décroissantes. De plus, T1(0) = 0,

Ti(R) = Ty(R), To(Q) = T5(Q) et T3(1) = 0. Ceci est illustré a la figure 4.13.

Figure 4.13 La fonction 6(z).

69

Enfin, soit
6u(x) = Ti(z) z<R
et
bo(z) = Tr(z) z<@Q
T3 (IL') Tz > Q

Alors 6(z) = max {6:1(z),02(x)} et puisque 6; est croissante et f; décroissante, le
minimum de 6 survient au point z* tel que 6 (z*) = f2(z*). Ce point dépend de a et

b et peut étre calculé analytiquement avec Maple lorsque ces valeurs sont données.

Proposition 4.4 Pour le probléme d’approzimation L™ avec n = 1, le point x qui

minimise ['erreur est le minimum de la fonction 0(x) définie ci-dessus.

Preuve: Ceci découle de la discussion précédent la proposition. 1

4.6 Discussion sur lecas p=oc et n> 2

Considérons maintenant le cas n = 2. Les deux termes entre accolades dans (4.5)
sont des fonctions de z,v et y mais on considérera d’abord que z et v sont fixés. Ces
termes représentent l’erreur a gauche et & droite du premier point z. On dénotera la
valeur des ces fonctions en p par e;(k,) pour k = 0,1 ol j = 1 dénote le premier

terme et j = 2 le deuxiéme. Il est facile de voir que
1. €;(0, u) > e;(1, u) pour tout u,

2. e1(0,2) = e1(1,2) =0 et e2(0, 1=2) = ey(1, +=2) = 0,

e P l-z L
3. e1(0, 1) et e1(1, 1) sont décroissantes en 4 tandis que ey(0, 1) et ex(1,) sont

croissantes en L.

70

Ceci est illustré a la figure 4.14. Le maximum sur p de

min { max{e1(0, 1), e2(1, u)}, max{ei (1, 1), e2(0, u)}}

peut donc survenir lorsque

1. u:t—z, 2. p=71, 3. e1(0,u) = es(0, w).
e2(0,u) e1(0,u)
e1(0,p) e2(1,p)
e2(0,u)
e1(Lu) e1(1,u)
eg(l,p.)
- - L
1-v v H 1-v z
1—z T l-z T
(a) Maximum lorsque u = 7 (b) Maximum lorsque e;(0, u) =
e2(0, p)

Figure 4.14 Deux cas pour le maximum sur .

Dans le premier cas, le deuxiéme point est placé & gauche de z et dans le deuxieme
cas, & droite. On voit ici que le principe d’égalité des erreurs (voir Bakhvalov [1])
n’est pas satisfait pour le probleme d’approximation L : l'erreur sur un des sous-
intervalles peut étre nulle & 'optimum tandis qu’elle ne I’est pas sur l'autre sous-
intervalle. Le troisieme cas correspond & une situation ot le deuxiéme point est en
fait inutile : qu’il soit placé a gauche ou a droite de z, ’erreur maximal ne sera pas

réduite. Nous dénoterons par i la valeur de pu qui satisfait 1’égalité 3.

L’ordre des points est important pour ce probleme. En effet, supposons que 1'ordre

est fixé, par exemple de gauche & droite. Alors pour z et v fixés, le maximum sur

71

14 est nécessairement atteint en EE ou 7, selon que la plus grande des valeurs est

e1(0, %:—71) ou ey(1,2). Si l'ordre n'est pas fixé & I'avance, le maximum sur p peut
possiblement étre atteint en un point entre ces deux valeurs extrémes de u. C’est le
cas si e1(1, 1=2) et ez(1,2) sont inférieurs & e;(0, i) et alors 'erreur a (possiblement)
diminué (voir le deuxiéme graphe sur la figure (4.14)). Ici, le deuxiéme point est
inutile au sens ol l'information supplémentaire obtenue en évaluant en ce point ne

permettra pas de réduire ’erreur. Cependant, la possibilité de le placer a gauche ou

a droite force p a prendre une valeur qui donne une erreur moindre.

Dans le contexte d’'un jeu & deux joueurs, la liberté qu’a le premier de choisir 1'inter-
valle pour le deuxieme point force le deuxiéme joueur & choisir un p de compromis

pour se prémunir contre les deux possibilités.

En conclusion, pour n = 2 on peut réduire le probleme original (4.5) &

i 1—w v _
Ew(2)(a,b) = min max max{el (1, —1—jg—:-> , €9 (1, ;) ,ez(O,M)}

z€[0,1] veB(z)
ol B(z) = [z, min{az, bz + 1 — b}].

Pour n > 2, les mémes arguments permettent de réduire le calcul de max min .
B ptg=n—
dans le probléme (4.5) au calcul du maximum de n + 1 fonctions comme dans le cas

n=2.

La discussion précédente montre que le probleme L* possede un aspect combina-
toire dont I’analyse permet de simplifier la récurrence (4.5). Ceci est un premier pas
vers la réponse & la question posée par Rote [30]. Nous croyons qu’il serait trés diffi-
cile de trouver une formule analytique pour les points d’évaluation optirnaux, mais
cependant méme une procédure de résolution numérique efficace serait un progres
important. Dans cette optique, il serait intéressant de voir si un examen plus poussé -

pourrait déboucher sur de nouvelles simplifications.

72

CHAPITRE 5
APPROXIMATION L}

Nous considérons dans cette section le probléme d’approximation dans la norme
L}. Les données du problémes sont les mémes qu’au chapitre 3 sauf pour 'erreur
d’approximation qui est maintenant mesurée dans la norme L' pondérée par une

fonction de poids h : [0,1] — R™. Si f,g € F,; alors

1f=gllin =/O | £(t) — g(t) |n(t) dt.

Les résultats de la section 3.1 concernant 1’opérateur d’information et l'opération

terminale sont encore valides. En particulier, ¢* est centrale et donc optimale.

Comme avant, dénotons UL = £(U ~ L). Pour n donné, z, f(x) et f'(z) dénotent

les vecteurs (z1,...,2y,), (f(z1),..., f(zn)) et (f'(z1),..., f'(x,)) respectivement.

5.1 Utilité de Padaptation

Nous montrons dans cette section que pour 'approximation L} 'adaptation n’est pas
utile au sens large si la fonction de poids A est strictement positive. Intuitivement,
ceci découle du fait que les problémes L}, et L' sont semblables, le second étant un cas
particulier du premier. L’introduction d’une fonction de poids h connue n’augmente
pas 'incertitude sur la fonction & approximer et puisque que 'adaptation n’est pas

utile pour 'approximation L', elle ne I'est pas non plus pour L}. Ceci est démontré

rigoureusement ci-dessous.

73

Proposition 5.1 1. L’erreur optimale pour le probléme d’approzimation L} avec

h > 0 est d’ordre O(n=?%).

2. Pour ce probléme ’adaptation n’est pas utile au sens large.

Preuve: D’abord, dénotons E ,(n)(a,b) et E1(n)(a,bd) les erreurs optimales pour
'approximation L} et L' avec n points sur F,;, respectivement. Soit 2% les points
d’évaluation optimaux pour la fonction f € Fj; donnés par un algorithme optimal
pour le probleme L}. L’indice f reflete le fait que ces points peuvent dépendre de
f dans le cas d’un algorithme adaptatif. Si A et A sont les minimum et maximum

essentiels de h sur [0,1] alors pour tout f € F,, on a

1 1
hﬂé ULu}fjﬁﬁfiA UL(z, f,t)h(t) dt

et en prenant le supremum sur f de chaque coté de cette inégalité on obtient

hE(n)(a,b) < h- sup /1 UL(z}, f,t) dt = E1p(n)(a,b).
0

feFa,b
Par la formule (3.9) de la section 3.3 pour Ey(n)(a,b) on obtient

(a—1)(1-b)

A1) e =)

< Eyn(n)(a,b). (5.1)

L’erreur E; 4(n)(a,b) est donc d’ordre au moins O(n™?).

D’autre part, soit z* les points d’évaluation optimaux pour un algorithme (passif)

optimal pour 'approximation L*. Alors pour tout f € F,,

/l UL(z*, f,t)h(t)dt < E/l UL(z*, f,t)dt
0 0

74

et en prenant le supremum sur f,

E1p(n)(a,b) < h sup /0 UL(z*, f.t)h(t) dt = hE;(n)(a,b)

fEFa.,b

et on a
(a —1)(1 —b)
2(n+1)%(a—b)’

Eip(n)(a,b) <h (5.2)

ce qui montre qu’il existe un algorithme passif avec erreur d’ordre O(n~?) pour
le probléme L;. En combinant les inégalités (5.1) et (5.2) on obtient 1 et 2 de la

proposition. |

5.2 Simplification du probleme

Gréce & la proposition 5.1 le probléme d’approximation L} sur F,, s’énonce

Ein(n)(a,b) = min sup /1 UL(z, f,t)h(t) dt.
0

z€[0,1]™ fE€F,p

En posant v = f(z) et u = f'(z) le probleme devient

Ein(n)(a,b) = min max / UL(z,v, u, t)h(t) dt. (5.3)

z€{0,1]" v,ueC(z

L’ensemble C(xz) décrit les contraintes que doivent satisfaire v et p du fait que la

fonction & approximer f est concave, tel que défini a la section 3.2.

Ce probleme min-max est difficile & résoudre pour deux raisons. D’abord, la fonction
de z & minimiser peut étre trées compliquée, dépendant de h. Ensuite, le domaine
des variables v et u dépend des variables x ce qui fait que les conditions d’optimalité
habituellement -empldyées pour ce type de probléme ne sont pas applicables -ci. .

Notons que bien que C(z) soit un polyedre convexe pour chaque z, le domaine

73

{(z,v,u) |z €1[0,1]", (v,) € C(z)} n'est ni un polyedre, ni convexe.

Nous allons maintenant chercher & simplifier le probléme (5.3). Dans la suite nous
allons toujours supposer que le nombre n de points d’évaluation est fixé. Les points
T1,...,Z, & déterminer subdivisent V'intervalle [0,1] en n sous-intervalles [z;_1, Z;41]
et sur chacun on peut définir un probléme d’approximation L} avec n = 1 en fixant
Vi1, i1, Vit1, fhir1, l€ point & choisir étant x;. Ce probléme se ramene a la situation

standard sur [0,1] par un changement de variables. Cette décomposition du probleme

sur [0,1] en sous-problemes sera cruciale pour la suite. Ceci est illustré & la figure

5.1, ou uz(t) = uz(t - Iz) + v; et li(t) = (M> (t - CC;) + V.

Tit1—T4

I I ;

Ti-1 Z; Tip1

Figure 5.1 Le probleme sur [z;-1, Zi41].

Lemme 5.1 Siz = (21,...,%,) est un minimum pour le probléme (5.8) alors pour
chaque i, z; est le minimum pour le probléme avec n = 1 défini sur [x;—1,Z;11] par

Vi—1, Uit 1, Hi—15 Hi+1-

Preuve: Si z; n’est pas optimal sur [z;_y, x;11] alors on peut trouver Z; avec 7j; et

fi; correspondants qui réduirait l'erreur sur ce sous-intervalle. Clairement, changer

76

Z;, Vs, i en gardant fixées les valeurs aux extrémités du sous-intervalle ne change pas
Verreur sur le reste de [0,1]. Par conséquent le nouveau Z; diminue Uerreur totale,

contredisant le fait que les z; sont optimaux. 1

Soit R; l'intersection des deux tangentes wu;_1(t) et u;41(¢) (voir la figure 5.1). Si
(x;,v;) = R; alors v; n’est pas maximal car lerreur sur l'intervalle est alors nulle.
Dans la suite on supposera donc que (z;,v;) # R;. De méme on supposera toujours
que z;_; < x; < T;41 car sinon le point z; est inutile et n’est donc pas optimal. De
plus, si a = 1 ou b =1 alors Fj;, ne contient que la fonction identité et le probleme

d’approximation ne se pose pas. On suppose donc que a > 1 et b < 1.

Nous allons maintenant examiner le probleme sur un sous-intervalle lorsqu’un seul
point d’évaluation est & déterminer. Pour simplifier, on considérera la situation stan-
dard sur [0,1], quitte & se ramener au cas général par un changement de variables.
Soit
1
G(z,v,p) = / UL(z,v, u, t)h(t) dt
0

Perreur sur [0,1] en fonction de z,v, 1 (qui sont des scalaires puisque n = 1). Com-
me avant, dénotons par P ’abscisse de l'intersection des tangentes aux extrémités
up(t) = at et ug(t) = bt + 1 —b et soit R = (P, ug(P)). Définissons aussi les abscisses
Py et P, des points d’intersection de ces tangentes avec la tangente en z, uy(t) =

pu(t —x) + v, tel quillustré a la figure 5.1. Explicitement,

PO:v-ux7 P 1-5 Plz,ux-b—{—l—v-

a— a—10b pw—"b

[

Avec cette notation,

Gz, v,u) = /OPO (a—g)th(t)dw/z[(u-g)(t—x)ﬂ]h@)dt

+/:1 (ﬂ— 1:;) (t — 2)h(t) dt (5.4)
Sl) emsmm - fwa

Cette fonction est continue pour tout z, v, it sauf en = a et en y = b. En fait G est
aussi définie en (x,az,a) et en (x, bz + 1 — b,b) pour tout z. Pour le premier de ces
points les deux derniers termes de (5.4) sont bien définis lorsque y = a. Quant aux
deux premiers, ils représentent 'erreur sur 'intervalle [0, z], qui est nulle si v = ax
et u = a. G(z,az,a) est donc égal aux deux derniers termes évalués en (z,az,a).

De la méme fagon on montre que G est définie en (z,bz + 1 — b, b).

Les dérivées de (G sont

Colz,v,p) = 2 /’”th<t)dt+lm1 / (L= t)h(t) dt — /Plh(t)dt,
z Jo — T Jg Py

Golz,0,p) = /Pl h(t) dt — /mth(t)dt— 11 / U-onnd, (55)
Py T Jo —ZJg

Gz, 0,) = / (£ D)h(t) dt.

Py

. v 1—w
oumg=—etm; =
T

. Ces dérivées sont définies pour tous z, v et psaufsi p = a
— x ‘

ou u = b. Pour z fixé, méme si le gradient V, ,G par rapport & v et u n’est pas

défini en (az,a) et (bz + 1 — b,b), la dérivée directionnelle de G existe en ces points

78

pour toute direction d= (dy,ds) avec dy # 0. Pour le point (az,a) on a

G(z,az + d1s,a + dgs) — G(z,az, a)

G-(z,ax,a) = lim -
i) =0 s|ld]]
d [P dyr —dy [°
d —
Y i——l/ (z — £)h(t) dt
xr 0 T dZ:Z;dl
d2(1 - CU) + dl dl

/ (1= he) .

— X

(5.6)
Cette expression a été obtenue en appliquant la regle de 'Hospital et en utilisant
Maple pour les calculs. Une autre propriété de G est donnée par la proposition

suivante :

Proposition 5.2 Pour chaque x # P la fonction G est strictement concave en v et
en u sur C(z). Pour z = P, G est strictement concave sur C(P) sauf possiblement

lorsque v = aP.

Preuve: D’abord en dérivant & nouveau la dérivée en v donnée en (5.5) on trouve

Gulz,v, 1) = — <Z(1_312) + Z(folD <0

pour h > 0 et b < pu < a, ce qui est vérifié pour v, u € C(z).

Ensuite, le déterminant du hessien de G par rapport & v, p est
de};ﬁHéS‘sv,u(G)) = h(Pl)h(Po)(Pl — PO)(PlvPOu — Plup()v)'

Orh>0et P, — Py > 0si (z,v) # R, donc ce déterminant est strictement positif

79

si et seulement si

PM,P()# — Pl/.LPOv > 0. (57)

Un calcul montre que ceci est vérifié si et seulement si aP > u(P — z) + v, ce qui
est toujours vrai si (z,v) # R = (P,aP). Dans ce cas le hessien de G est donc défini

négatif, ce qui montre que G est strictement concave.

Si (z,v) = R, ce qui est possible seulement si = P, alors l'inégalité (5.7) n’est pas

stricte et le hessien est semi-défini négatif. 1

La remarque qui suit la proposition 5.1 montre qu’en fait le cas (z,v) = R ne sera
jamais considéré et par conséquent on supposera toujours que G est strictement

concave.

La proposition suivante montre que les contraintes C(z) ne jouent pas de role lors

de la maximisation sur v, u pour les z qui sont candidats pour le minimum.

Proposition 5.3 Si z est un minimum pour le probléme (5.83) alors le mazimum

sur v, est atteint en un point ot Gy(z,v, pu) = Gz, v, u) = 0.

Preuve: Montrons que pour xg fixé si le maximum sur v, i est atteint en un point de
la frontiere de C(zg) qui n’est pas un point critique alors zy n’est pas un minimum

pour (5.3).
Considérons d’abord le cas ol o < P. On a alors min{azg, bzg + 1 — b} = axg et

Ty < v < axg

C(l‘o) .

1—wv v
Sps—.
1—1’0 Zo

Le domaine C(z) est illustré a la figure 5.2. Sur cette méme figure est aussi illustré

80

le domaine C(z.) pour un petit € > 0, ot x, = zp + €.

On doit examiner six cas pour (v,) sur la frontiere de C(zp), correspondant aux

trois segments la composant et aux extrémités de ces segments.

Cas 1. Si v = zp alors on doit avoir i = 1 et 'erreur est réduite a 0, qui n’est pas

le maximum.

Cas 2. Si v = axg alors il est clair géométriquement que y = a est maximal et cette

situation sera examinée plus loin.

~oA

. (azo,a) (aze,a)
v
K=1zq
L4 C(zo)
_ 1—v
K1z azy | ax,
I { T P
l—-azxp Ty Te 1 v
l-2z0 T

Figure 5.2 Le domaine C(xy).

Cas 3. Soit xp fixé. Si le maximum est atteint lorsque p = P (et n’est pas un point

critique) alors au point optimal on a

VouG(2o,v, 1) = AV, 01 (20,v, 1)
ll ((L‘o, v, /,l,) = 0 (58)
A > 0,

81

v 1
ou ly(zg, v,) = b — — et Vyul1(zo,v, u) = (——,1). Ici V,, , dénote le gradient par
0 Zo

rapport aux variables (v,).

Le point vg satisfaisant les conditions (5.8) correspond & intersection des deux
courbes A = g1(v) = —2oGy(20,v, %) et A = g2(v) = Gu(z0,v, &), tel quillustré
a la figure 5.3. Si on perturbe les équations (5.8) en ajoutant un petit € > 0 & zo,
ce systéme aura encore une solution avec v €]z, az] et A > 0 & condition que
Pintersection des courbes de la figure 5.3 soit transversale. Nous allons montrer que

c’est le cas en montrant que ces courbes ne sont jamais tangentes.

Figure 5.3 Solution aux équations (5.8)

Les dérivées de G en (v, ;=) sont

Qo 1 0
Golzo,v, L) = / hyde—~ [thie)dt —
0

[- one at

' zg
0 Zo Jo 1—SL‘0J$O

Qo
Gulanv2) = [(= sophit)
0

82

01\1 QO = gl_—ﬂ.z.;_o > O Si A = —-TOGU(IO,'U, zi) alors
v — bxg 0
dx dQo Qo
do ~ ToR(Qo) g, = mohl Qo) (59)
et si A = G(z0,v, +) alors
dr dQo B Qo
T h(Qo)(Qo — xo)ﬁ = —7(Qo)(Qo — z0) -— boo (5.10)

Par hypothese h(Qo) > 0 et Qo > 0 puisque (1 — b)zyp > 0 et v — bzg > 0. Les
dérivées (5.9) et (5.10) sont donc égales si et seulement si zy = o — Qo < Qo = 0,

ce qui est impossible.

De ceci on conclut que pour € > 0 assez petit le systéme (5.8) perturbé posseéde une
solution v, avec v, € |z, az.[et A > 0. La fonction G étant concave en (v, u) sur
C(z.), ces conditions impliquent que ce point est un maximum. On a donc montré
que si 7o < P et que le maximum en (v,) est atteint lorsque p = wlo alors il en est

de méme pour z..

Soit (vy, ZJ;) le maximum correspondant a xg. Alors ce point est le maximum sur v

de la fonction G(xzg,v, %) sur [zg, azo]. Le cas v = o a déja été examiné et le cas

2
Zo
v = axy le sera plus loin. Supposons donc que le maximum est atteint en un point
critique v, ¢’est-a-dire que

0= %G (xo,v, ;’—0>

z_l___/Qo(t—xo)h(t)dt— ! /l(l—t)dt

v=ug 130(1 - .’L'[)) 0 1- Zo Qo
1

N / b~ 2o)h(e) dt = 2, / (1)ht) dt. (5.11)

7/ Qo

Substituant le membre de gauche dans 'expression de G(zg, v, :—0) on trouve apres

83

simplifications que pour vy maximal satisfaisant (5.11)

G (xo,vo, —) — (1-b) /1(1 — t)h(t) dt.

De méme pour € > 0 assez petit, pour le maximum (v, ;—:) correspondant a x.

G (:cv —) = (1—b) /1(1 — {)h(t) dt,

(1-0b)x

ol Q. = ———b—f Clairemement, G(zc,ve, 2) < G(o, o, 32) si Qe > Qo. Ceci est
ve — bz, :
vérifié si
z T Vo
>0 ooy < .. (5.12)
ve — bre vy — bxy I

Géométriquement, ceci signifie que (z., v¢) est sous la droite de pente % e d’origine

(0,0) (voir figure 5.4).

Ve

Vo4

Ty X,

Figure 5.4 Proposition 5.3, cas 3.

La fonction G(z.,v, z%) étant concave, pour démontrer la deuxieme inégalité de
(5.12), il suffit de montrer

iG(xe,v L) < 0. (5.13)

'z
dv € _wv
y= &’30 Te

Puisque vg est maximum pour zy il satisfait la condition (5.11). Dénotons par A le

membre de gauche de cette inégalité et par B le membre de droite. Un calcul montre

84

que (5.13) est satisfaite si

C= /Qo(t _ 2)h(t) dt < . /1 (1— t)h(t)dt = D. (5.14)

Or pour € > 0 on a clairement A > C et D > B. Donc C < A= B < D et (5.14)

est bien satisfaite.

En conclusion, on a montré que lerreur en z. est inférieure a celle en zy. Le point

Zo ne peut donc pas étre un minimum pour le probleme (5.3).

1—v
1—x2p?

Cas 4. Si le maximum sur (v, 4t) de G est atteint lorsque y = les arguments sont

semblables & ceux du cas précédent. Soit ly(v,) = =L —pet V, Iy = (—1% —1).

1—(1)0 zg)

Les conditions d’optimalité sont

Go(zo,v, =2) = A—

’ 1—x9

Gu(zg,v, 222) = —A (5.15)

' 1—x0

A > 0.

Comme auparavant, on peut montrer que ces conditions sont encore satisfaites si on

perturbe z, en lui retranchant un petit e > 0. On a

- Ro _ zo
G (:co,v, f_—;}) = 220 ”/ th(t) dt + ——v——ﬂ—/ (zo — t) dt
0

T ro(1 — 20) SR,

ol R():

v—T d
a(1— z0) _SU —- La condition ——G (ﬁo,v, 11__:0) = 0 se simplifie pour

donner

(1= o) /O " th(t) dt = / zo(:co—t)h(.t) dt. (5.16)

Ro

En substituant le membre de droite dans l'expression de G(zq, v, 1—1__—;’3) on trouve

85

qu’au maximum vy

Ry
G (xo,vo, i:;‘;) = (a — 1)/ th(t) dt.
0

1—ve
1—z¢

L’erreur G (xe, Ve,) en . = Ty — € est inférieure & celle en xq si Ry > R, ou R,

est Panalogue de Ry pour z.. C’est le le cas si

Ve < Uy — € .
1-—$0

(Voir la figure 5.5.(

Or

—d—G (xe,v 1_“)

dv -z <0

si

(1—z) /O " thit) dt > / (20— (L) dt. (5.17)

Ro
Le membre de gauche de (5.17) est supérieur au membre de gauche de (5.16) et le

membre de droite de (5.17) est inférieur & celui de (5.16). L’inégalité (5.17) est donc

satisfaite.
1—vo
v (1 zo)(z—xo)-l—vo
Vo
Ve
e Zo r

Figure 5.5 Proposition 5.3, cas 4.

86

On conclut que lerreur en z. est inférieure a celle en zp et ce point ne peut etre un

minimum pour le probléme (5.3).

Cas 5. Examinons maintenant le cas ol le maximum sur v,u de G est atteint

en (azo,a). Soit l1(v,n) = p — ;- comme avant et I3(v,) = v — azy. Soit aussi

di = (zo, 1) et d> = (0,1) les vecteurs illustrés sur la figure 5.6. A I'aide de la formule

(5.6) on peut calculer les dérivées de G dans les directions dy et dy en (azo, a) :

G; (xo, azo,a) = (1—x0)1\/m [/ﬂ:(t—xo)h(t)dt—xo/}:(l—t)h(t)dt},

P
Gy (0, az0,0) = /(t—zo)h(t)dt > 0.

Zo

B] S
ol / d;
C(xo)
ATy
) 1 v

Figure 5.6 Proposition 5.3, cas 5 : les vecteurs cfl et d;

Puisque le maximum est en (azy,a), G est croissante dans la direction d; en ce point,

done

/P(t — so)h(t)dt > :;co/l(l _ Bh(t) dt. . (5.18)

Zo
Le membre de gauche de cette inégalité est décroissant en z; et le membre de droite
est croissant. Sil'inégalité est stricte, elle est toujours valide lorsque zg est augmenté

a ., a condition que € soit assez petit. Ceci implique que G 4 (z,az.,a) > 0, ce qui

87
implique & son tour, G étant concave, que le maximum sur C(z.) est en (az.,a).

Dans ce cas il est clair que Verreur en z. est inférieure a celle en zq (voir figure 5.7)

et donc que ce point n’est pas un minimum pour le probleme (5.3).

Vo

To Te z

Figure 5.7 Proposition 5.3, cas 5 : 'erreur en zg et z..

Enfin,si G & (xo, azo, a) = 0, montrons que pour z. avec € > 0 assez petit le maximum
sur v, i est atteint lorsque y = m% On se retrouve alors dans la situation du cas 3
et on a vu que ceci implique que xy n’est pas un minimum. Pour ce faire on doit
montrer que les équations (5.8) sont satisfaites en z.. Ces équations sont équivalentes
a

—z.G, <x6,v, x%) =G, <:1:€,v, z%) >0

et un calcul permet de voir que 1'égalité ci-dessus est équivalente a

1 Qe
z. / (1= t)h(t) dt = / (t — z)h(t) dt. (5.19)

Si G g, (0, ax0,a) = 0 alors (5.18) est satisfaite & égalité et pour tout € > 0 on a

. / (1= Oh(t)ydt > / (b zh(t) . (5.20)

P

1-b)z.

Rappelons que Q). = (v_bwe et notons que Q. = 1siv =2z, et Q. = Psiv =ax.. De

plus, si v décroit & partir de az, alors Q. croit a partir de P. Donc (5.20) implique

88

qu'il existe ¥ et Q. correspondant tel que

/Qé(t 2)h(t) dt =z, /_1 (1 = £)h(t) dt.

Q

Si € est assez petit alors on peut trouver ¥ proche de az. de sorte que G, (., 7, Z%) >0
car cette fonction de v est continue et strictement positive en az.. Ceci montre que
(5.19) est vérifiée et que les conditions (5.8) sont staisfaites en (z, 7,) et il s’ensuit

que le maximum de G sur v, u est atteint en ce point.

Cas 6. Finalement, le maximum sur v, u ne peut survenir en (azo, 11“_;';?) car lerreur

est alors réduite a zéro.

Ceci acheve la preuve de la proposition dans le cas ol zp < P. Si zg > P, les

arguments sont semblables et ne seront pas présentés ici. 1

Les propositions 5.2 et 5.3 impliquent que pour x minimum la condition pour le
maximum sur v, u est simplement V,, ,G(z,v, u) = 0. La proposition suivante montre

qu’on peut encore simplifier le probleme.

Proposition 5.4 Si (z*,v*, u*) est une solution du probléme (5.3) pour n =1 alors

VG(z*,v*, u*) = 0.

Ici V dénote le gradient par rapport a toutes les variables z,v et u.

Preuve: Soit z* un minimum et v*, u* correspondants. Définissons la fonction S :
R x R? — R? par S(z,v,) = (Gy(2, v, 1), Gu(z, v, 1)). Cette fonction est continue
et dérivable si b < p < aet 0 < z < 1 et en vertu de la proposition 5.3 on a

S(z*,v*, u*) = (0,0). Si on dénote par J, , le jé?bb\ien par rapport & v, 4 on a

Juu(S) = Hess, ,(G)

89

et par la proposition 5.2 cette matrice est inversible en (z*, v*, u*). Par le théoréme
des fonctions implicites il existe donc un voisinage W de z* et des fonctions dérivables
v(z) et p(z) telle que v(z) = v*, u(z) = p* et G(z,v(z), u(z)) = 0 pour tout z € W.

Puisque z* est un minimum pour cette fonction

d

%G(:c ,o(z*), p(z™)) =0,
ce qui implique
* * * * * * d
Ga(2®, v(@"), u(z™)) + Go(a”, v(z"), u(z")) v ()
* * * d
Gl @) b)))| = 0

et donc Gy(z*,v(z*), u(z*)) = 0 car les dérivées de G par rapport & v et y sont
nulles en v(z*) et pu(z*). On conclut que si (z*, v*, u*) est une solution de (5.3) alors

Gz, v*, 1*) = Gz, v*, 1*) = G,(z*, v*, u*) = 0. |

Remarque : puisque les contraintes C'(z) n’interviennent pas pour le maximum sur
v, 4 on aurait aussi pu démontrer cette proposition a I’aide de la condition nécessaire

d’optimalité habituelle pour un probléme min-max (voir Demyanov [9]).

La proposition 5.4 donne une condition nécessaire d’optimalité pour le cas n = 1.
Pour généraliser cette condition a n > 1, considérons l’erreur sur un sous-intervalle
[£;—1, T;41] comme au début de la section. Soit G; 'analogue sur le sous-intervalle

de la fonction G. Les formules (5.5) deviennent pour G;

90

0 mi—1 i
Gl X, Vg) = —— t —xi_1)h(t) dt
G Gilamm) = 2 [g
ooy Tit1l P;
M / (t— zoan)h(E) dt — s / h(t) dt,
Tit1l — i Sy, Pi—1

8G-(- D) = /Pi h(t)dt————l——/zi (t — zi—1)h(t) dt
8’01 i\ Ty Uiy Mg - T — Ti1 Jy i—1

P i1

: / i ht) d
i Tiv1 — t t t,
Ti+l — i Jgy (5.21)
0 B
=—Gi(Ti, vi, i) = / (t — z;)h(t) dt,
5 G (=)
ol
;= Vig1 — U4 B _ Wil — Mig1Tir1 + Vig1 — 'Ui. (522)

)
Tip1 — T4 Mg — i1

Par les propositions 5.1 et 5.4, une condition nécessaire pour que (z, v, &) soit une
solution au probléme (5.3) pour n > 1 est que les dérivées (5.21) soient nulles pour

tout i = 1,...,n. En écrivant pour le cas général n > 1 (ol z, v, p sont des vecteurs)

n+1 z
G =Y, [ULlwv,uh)ds
i=1 7 i1

et en remarquant que seuls les termes ¢ et :+1 de cette somme dépendent de x;, v;, s,
on peut calculer les dérivées de G par rapport a ces variables. Apres simplifications

on trouve que ces dérivées sont en fait données par les expressions (5.21), ¢’est-a-dire

91

que

0 0 0
Gy, = 6_:ciGi’ Gy, = év_iGi’ G, = ézGl

Par conséquent la condition nécessaire sur chaque sous-intervalle [z;_j,z;.1] peut

s’écrire simplement G, = G,, = G, = 0 pour tout 7. On a donc :

Proposition 5.5 Si (z*,v*, u*) est une solution au probléme (5.3) alors

VG(z*,v*, u*) = 0.

Preuve: Ceci découle de la discussion précédent la proposition. 1

Nous avons ainsi déterminé une condition nécessaire d’optimalité pour le probléme
d’approximation Lj. Cette condition est simple au sens ou il s’agit de trouver la
solution a un systeme de 3n équations a 3n inconnues. Cependant ces équations
sont non linéaires et lorsque n est grand le systeme peut étre difficile & résoudre,
surtout si la fonction de poids h est compliquée. Au chapitre suivant nous décrivons
une méthode de solution reposant sur la décomposition du probléme sur les sous-

intervalles [z;_1, Zit1].

5.3 Remarques sur la condition nécessaire

Le systeme VG(z,v,u) = 0 peut étre résolu numériquement mais cela exige des
efforts qui peuvent étre considérables. Il serait utile du point de vue pratique de
simplifier ces équations pour accélérer la résolution. Nous présent‘(’)ns brievement
quelques idées qui pourraient donner des simplifications. Du point de vue théorique,

les considérations ci-dessous permettent de mieux comprendre la nature du probléme.

92

D’abord, posons
1 i
o = ——/ (t —zi1)h(t) dt,
Ty — Ti-1 Jgyy

g = _1____/xi+1(xi+1—t)h(t)dt.

Tit1 — L4

i

Les quantités ¢; et 5; ne dépendent que des z; et sont strictement positives (car on

suppose z; < ;41 pour tout 7). Le systeme VG(z, v,) = 0 s’écrit maintenant

(P;
Mi_1Q; + miﬂi - ,U,,L/ h(t) dt = 0
P
P;
< /) dt—i— B = 0 (5.23)
Py
P;
/(pﬁwmn:o
P

pour 2 =1,...,n. Les deux premiéres équations de (5.23) impliquent que

_ mi_1a; +myf;
o + F;

K

donc les pentes p; sont uniquement déterminées par les z; et les v;. Ceci permet de

réduire de n le nombre de variables.

Nous montrons maintenant qu’a 'optimalité les points P; sont complétement déter-

minés par les z;. La deuxiéme équation de (5.23) implique

P P -
L/hww=%+@+/ B(t) dt (5.24)
0 0

93

donc

/ : h(t) dt = i:(ak + Br) + K h(t) dt. (5.25)

k=1 0
Par conséquent, pour z fixé, chaque P, avec ¢ > 1 est uniquement déterminé par
Py car le membre de gauche de (5.25) est strictement croissant en P;. Considérons

maintenant les deux dernieres équations de (5.23) pour i =1 :

(P
/ h(t)dt = a1+ 0
Po
X (5.26)
Py
/ (t—z)h(t)dt = 0.
\ JpB,

Comme avant, la premiére des équations (5.26) implique que P, est uniquement
déterminé par P, et donc on peut écrire P, = g(F,) pour une fonction continue g.
De plus, si P, augmente alors puisque h(t) > 0, P, doit aussi augmenter dans le
membre de gauche de cette équation, donc g est une fonction croissante de F. La

deuxiéme équation de (5.26) s’écrit

9(Fo) T1
/ (t—xl)h(t),dt:/ (21 —)A(E) dt

1 PO

ol le membre de droite est décroissant en Fy tandis que le membre de gauche est
croissant. S’il y a une solution a cette équation, elle est donc unique. On a donc
montré que la solution aux équations (5.26) est unique et ceci combiné avec (5.24)

montre que les F; sont uniquement déterminés en fonction des x;.

En utilisant la définition (5.22) des P; on obtient pour chaque ¢ = 0,...,n une

équation linéaire en v, 1

v — Vig1 + Wi(Py — 23) + pip1 (241 — B) = 0.

94

De plus, les premiére et deuxieme équations de (5.23) donnent n équations supplé-
mentaires

(i + Bi)pi = mi—1 + mif;.

Au total, une solution & VG(z,v, u) = 0 doit satisfaire 2n + 1 équations linéaires
& 2n inconnues v;, u;. Cecl implique que les z; ne sont pas indépendants et doivent
étre solution d’une équation S(z1,...,z,) = 0, qui définit une surface dans R". On
voit donc que les x qui sont candidats pour la solution forment un sous-ensemble de

[0, 1]™ qui est de mesure nulle.

Nous avons présenté ces quelques idées pour amorcer une étude plus poussée de la
condition nécessaire d’optimalité qui, nous espérons, débouchera sur une meilleure

méthode de résolution.

95

CHAPITRE 6

ALGORITHMES OPTIMAUX

Nous présentons dans ce chapitre des algorithmes optimaux, séquentiellement opti-
maux et optimaux & chaque étape pour les probléme d’approximation L!, L* et L},
qui sont & notre avis les plus importants. Ces algorithmes seront ensuite comparés

au chapitre 7.

6.1 Schémas généraux

Les probléemes L!, L™ et L; ont la particularité que l'erreur totale sur [0,1] se
décompose en erreurs partielles sur les sous-intervalles [z;, z;11] déterminés par les
points d’évaluation. L’erreur totale est la somme des erreurs partielles pour L' et
L} et le maximum des erreurs partielles pour L. Ceci nous permet d’établir un
schéma général pour un algorithme séquentiellement optimal et optimal & chaque

étape pour ces problemes.

6.1.1 Algorithme séquentiellement optimal

Un algorithme séquentiellement optimal se divise en deux étapes & chaque itération :
d’abord le calcul de la meilleure répartition des points et ensuite le choix d’un point
d’évaluation selon cette répartition. Généralisant Sukharev [38] un algorithme SO

pour problemes L!, [et L} se définit comme suit.

Si 4 points d’évaluation z7, ...z} ont été choisis alors Iintervalle [0,1] est subdivisé

en 1 + 1 sous intervalles [:E]*, :v’;H], j=0,...,7. Comme & la section 1.8.1 dénotons

96

par 2' la situation réalisable définie par la valeur de la fonction & approximer et
de son surgradient aux points z%. Sur chaque sous-intervalle ces valeurs fixées aux
S j
7 2 s . \) M : * % 3 ’L
extrémités définissent un probléme d’approximation sur [z},] Soit A;(z", n;)
Ierreur optimale pour le probléme sur le j° intervalle si m; < n — 4 évaluations

sont permises sur cet intervalle. La forme de A; dépend de la norme employée pour

mesurer l'erreur. La répartition optimale des n — ¢ points restants est celle qui réduit

au maximum Uerreur F(z%,my,..., m; 1) ol
i+1
E(zaml7-"ami+1): Aj(z)mj)
j=1

avec Z;J;l m; = n — % pour 'approximation L' et L} et

E(Z’i, mi,... ,mi+1) = j:lir,l..a.l,}i(—{—l {Aj(zi) mj)}

avec Z;J;ll m; = n — 1 pour L™, L’algorithme SO procede comme suit.
Algorithme SO

Itération O

L. (1) Poser 2° = (0,1, £(0), f(1), f'(0), f'(1))
(2) Calculer les points optimaux z3,, ..., z}, sur [0,1] pour le probléme déter-

miné par 2°

2. (1) Choisir un point z}; et le dénoter par =}
(2) Calculer f(z3), f'(z3)
(3) Poser 2' = (0,1, f(0), f(=3), (1), F/(0), f'(z}), f'(1))

Itération ¢

L’intervalle [0,1] est subdivisé en 7 + 1 sous-intervalles par les i points déja choi-

97

: *
sis z3,...,%;-
1. (1) Calculer la solution (mj7,..., m;) au probleme

min E(z*, my,...,mMi41)
m;

i+1

s.C. E m;=mn-—1
=1
m; eN Vj

(2) Choisir un sous-intervalle jo pour lequel m; # 0
2. (1) Calculer les nj, points optimaux sur le sous-intervalle jo pour le probleme
déterminé par 2*
(2) Choisir I'un des points trouvés en (1), dénoté z; ,
(3) Calculer f(zf, 1) et f'(z74)
(4) Si nécessaire réordonner les indices des z} de fagon & ce que les points

soient en ordre croissant et poser

i—+1 * *
T = (0,23,...,25,1)

i a— (f(o),f(xi),...,f($f+1)af(1))

T = (F10), F =z, fl(zh), £1(1)

i+1

> — (CL’H_l, v7.+1

L’algorithme s’arréte lorsque ¢ = n — 1.

Pour I’étape 1 il faut avoir une procédure pour calculer E(z%,my, ..., m;y1) pour
toutes les valeurs de 2% et m;, et c’est 1a la diffculté de la mise en oeuvre de cet

algorithme. Nous avons une telle méthode pour 'approximation L' et L} mais pas

98

pour L?, p > 1. En fait nous avons une formule explicite seulement dans le cas L :
on a vu au chapitre 3 (formule (3.10)) que

a;

AT = 17

(6.1)

ol a; est l'erreur sur l'intervalle j si aucune évaluation n’y est faite, qui ne dépend

que de 2°.

Pour L} il faut utiliser une procédure numérique pour résoudre le systéme
VG(z,v,pu) =0,

ce qui peut étre coliteux si n est grand. C’est pourquoi nous avons choisi dans ce
cas de remplacer le calcul exact de A; par une approximation en utilisant la méme

formule (6.1) que pour le cas L', avec cette fois a; mesurée dans la norme pondérée.

Lorsque A; est de la forme (6.1) le programme en nombres entiers de l’étape 1 peut
étre résolu exactement avec la méthode de Gross [13] décrite ci-dessous, qui est basée

sur le théoréme suivant :

Théoreme 6.1 [13] Soit ¢;, j = 1,..., K, des fonctions convezes et m un entier

positif. Alors (my,...,mg) est solution du probleme en nombres entiers
K
min Zl@(mj)
J:

K

8.C. ij =M

=1

m; e N V]

99

s1 et seulement st

jzr{l.i.r.lx ¢j(m; + 1) — ¢5(m;) = max ¢j(m;) — ¢;(m; — 1).

Le probleme peut étre résolu itérativement de la facon suivante :
Algorithme de résolution du PNE [13]

Itération 0

Poser m; =0,7=1,..., K.

Pour 1<k<M:
Itération &

(1) v € argmin ¢;(m; + 1) — ¢;(m;)
j=1,..,K

(2) m, «—m, + 1.

Plus de détails ainsi qu’une preuve d’optimalité sont donnés dans Saaty [31]. La
complexité combinatoire de la procédure ci-dessus est d’ordre O(M K). On peut aussi
pour réduire la complexité utiliser I’heuristique consistant a arrondir & la solution
réalisable entiere la plus proche la solution a la relaxation continue du probleme, que

'on peut trouver facilemiént lorsque A; est de la forme (6.1) : les z; optimaux sont

(2aj)§ .
Z;‘V:I(2aj)%

Ijz

100

Dans le schéma de I'algorithme SO Pintervalle & subdiviser et le point d’évaluation
sur cet intervalle ne sont pas précisés puisqu’on ne peut définir de choix optimal.
Selon Sukharev [40] on peut les déterminer aléatoirement puisqu’en théorie aucun
choix n’est meilleur qu’un autre dans le pire cas. En pratique cependant nous avons
constaté que les choix suivants donnent de meilleurs résultats et seront utilisés pour

les tests du chapitre 7 :

e l'intervalle jg sur lequel 'erreur a priori est la plus grande, c’est-a-dire tel que

Ajo(25,0) = max {Aj(zi,O)};

J=1,.,1+1

e sur lintervalle j, le point d’évaluation du «milieu», c’est-a-dire celui d’indice

[(m5, +1)/2].

6.1.2 Algorithme optimal a chaque étape

Pour nos problemes d’approximation un algorithme optimal a chaque étape est sem-
blable & l'algorithme du sandwich de la section 4.3. La seule différence réside dans
le choix de l'intervalle & subdiviser et du point d’évaluation. Plutot que l'intervalle
ou l'erreur a priori est la plus importante, on subdivise celui ou la diminution de
Ierreur est la plus grande si un point y est placé. Le point choisi sur cet intervalle
est le point optimal, c’est-a-dire celui qui réalise A;(2%,1). Cet algorithme procéde

donc comme suit :
Algorithme OSO

Itération 0O

Poser z! = (07 1, f(O), f(l)a f/(0>7 f/(1)>

101

Itération ¢

L’intervalle [0,1] est subdivisé en i + 1 sous-intervalles par les ¢ points déja choisis

* *
x5, 7).

1. Trouver un sous-intervalle 7, tel que

Ajo(2,1) — Ajp(24,0) = max {4;(z",1) — A;(2*,0)}

ge=1,..54+1

2. Déterminer z; € [z, 2} ;] qui réalise le minimum A;,(2*, 1)
3. Calculer f(z7), f'(x})
4. Poser

i+l * * N
x = (0,27,...,2]4,1)

o= (F(0), £, F@E), (D)

B = (£, £ @) fat), £1(1)

i+1

5 = (g pi i,

v

L’algorithme s’arréte lorsque i = n — 1.
Cet algorithme est beaucoup plus simple & mettre en oeuvre que l'algorithme SO
puisque A;(z%, 1) est souvent facile & calculer et qu’il n’y a pas de programme en
nombre entiers a résoudre a chaque itération. De plus l'algorithme OSO pour l'ap-
proximation LP est d’ordre optimal puisque 'algorithme du sandwich l'est (voir
section 4.3). Sukharev [40] remarque qu’en général un algorithme OSO peut donner
de trés mauvais résultats mais les expériences montrent que pour nos problemes ce

n’est pas le cas.

Nous décrivons maintenant en détails ces algorithmes pour les probléemes L, L™ et

L.

102

6.2 Approximation L!

Les algorithmes pour I’approximation L' sont basés sur les formules pour les points

d’évaluation et l'erreur optimaux proposés par Sonnevend [33] et Guérin et al. [14].

6.2.1 Algorithme optimal

Soit n le nombre de points d’évaluation et a, b les dérivées en 0 et 1. L’algorithme

optimal passif est donné par le choix suivant des points d’évaluation :

xizm {i—&-?(n-{—l—i) <i:z>}

pourz=1,...,n.

La complexité (combinatoire) de la procédure qui résulte de cette formule est de

O(n).

L’adaptation n’est pas utile ici mais la récurrence de la section 3.3 et sa solution
donnent une autre méthode, adaptative, pour calculer les points d’approximation.
Cette méthode est intéressante et elle est considérée ici parce qu’elle est treés simple
et est en fait du méme ordre de complexité que ’algorithme passif. Elle est décrite

en détails dans Guérin [15]. Ces deux algorithmes seront comparés au chapitre 7.

6.2.2 Algorithme séquentiellement optimal

Dans le schéma général de la section 6.1.1 si z* = (z1,...,2;), ¥v* = (v1,...,0;),

ph= (B, .o, i) et 2= (fci,vi,ui) alors :

103

e Par la formule (3.9) de la section 3.3

Ay(my) = [(2501 = 25) = (Vi1 = V)]V51 = 05 — pgea(@jn — 25)]
2(my + 1)* (15 — Hy+1)

e La méthode exacte de Gross est employée pour la solution du programme en
nombres entiers de 'étape 1. L’algorithme SO qui en résulte possede une com-
plexité combinatoire d’ordre O(n?). Pour un algorithme SO du méme ordre de
complexité que V'algorithme passif optimal, soit O(n), on peut plutét employer

I'heuristique d’arrondi discutée ci-dessus en 6.1.1.

Nous n’avons pas considéré d’algorithme optimal & chaque étape pour ce probléeme

car I'algorithme SO est supérieur et est déja tres simple.

6.3 Approximation L™

Le probleme d’approximation L* est difficile et on ne connait pas d’algorithme
de solution atteignant la borne inférieure inf e(a). Pour cette raison, il n’est pas
possible de calculer exactement les Aj(zi,%?) lorsque m; > 1 et donc de définir
un algorithme séquentiellement optimal. Cependant nous proposons ci-dessous un

algorithme optimal a chaque étape pour ce probleme.

6.3.1 Algorithme optimal a chaque étape

Le casn = 1 a été examiné a la section 4.4 et on a vu g#’on peut trouver une solution
analytique a l'aide de la proposition 4.4. L’algorithme OSO pour ce probleme est

ensuite défini comme dans le schéma général de la section 6.1.2.

A;(2", 1) est calculé comme suit :

104

1. Par un changement de variables, ramener la situation sur [z}, z}.,] & la situa-

tion standard sur [0,1].

2. Calculer le point z optimal en minimisant la fonction 6(z) de la proposition

4.4.

3. En utilisant le changement de variables inverse, calculer I'erreur et le point

. * *
optimal sur [z}, z},,].

6.4 Approximation L}

Les algorithmes de cette section sont basés sur la condition nécessaire (5.5) de la

section 5.2.

6.4.1 Algorithme optimal

L’algorithme optimal passif est déterminé par les points d’évaluation x; qui sont solu-
tion de VG(z, v, u) = 0. Sur chaque sous-intervalle [z;_, z;,1] ceci donne le systéme
de trois équations et trois inconnues z;,v;, ti, VG;(%s,v;, ;) = 0. La procédure
suivante cherche & résoudre VG(z,v,u) = 0 en procédant une variable a la fois
(UVALF) sur chaque sous-intervalle. Nous dénotons par f, la fonction pire cas pour

le probléeme d’approximation L', définie par Sonnevend [33].
Algorithme UVALF

Itération 0
1. Choisir ¢, > 0, €5 > 0.
. J .
2. Soit 21, = —2—, j=0,... n+1.
Olt Ty, S 7 n -+
3. Calculer vy; = fy(215), p; = fi(z1;) pour j =0,...,n+ 1.

105

4. Poser z! = (3510, cee ,$1(n+1))7 vl = (0107 .- ~,U1(n+1)), #1 = (NIO) . =7/J'1(n+1))'

Itération &
1. Soit ¥ = (2%, v*, u¥) les valeurs courantes pour les variables.
2. Pour chaque sous-intervalle [Tg;—1), Zka+1)), ¢ = 1,..., 7.
(i) Fixer tous les z;, v;, u; & leur valeur courante sauf z;, v;, .
(ii) Trouver la solution zj, v}, u; aux équations VGi(z;, vy, u;) = 0.
(iii) Poser T(xi1yi < Tj, Viks1ys < V55 Mipe1)s < Hi-

3. Soit 2F+t = (R, oF*1 R+ Calculer

disty, = ||zF! — 2]
resy = igllé}.xn||VGi(iI?(kH)i,U(k+1)i,ﬂ(k+1)i)Hoo-

Si

res; < €. ou disty < ¢4

alors la solution optimale cherchée est z**!. Sinon, poser k « k+1 et retourner

b

a l.

L’algorithme s’arréte lorsque les équations sur chaque intervalle sont résolues a ¢,
pres ou que d’une itération & la suivante les points z°*! et z* sont & moins de ¢; 'un
de l'autre. Ce qui nous intéresse a la conclusion de ['algorithme ce sont les points
x; et c’est pourquoi l'algorithme s’arréte lorsque la partie en x de la solution aux
équations semble avoir convergé, méme si celles-ci n’ont pas encore été résolues avec

la marge d’erreur prescrite.

L’algorithme UVALF est semblable a la méthode de Gauss-Seidel décrite dans Bur-

den [4] pour la solution d’un systeme d’équations linéaires. En pratique nous avons

106

constaté que UVALF convergeait vers une solution aux équations dans tous les cas

mais nous n’avons pas fait ici d’analyse de convergence détaillée.

6.4.2 Algorithme séquentiellement optimal

Dans le schéma général les A;(2*, m;) devraient étre calculés a 'aide de la procédure
UVALF. Cependant I'algorithme serait alors complexe et exigerait beaucoup de cal-

culs. En particulier, pour évaluer A;(2%,m;) & la ¢ itération il ferait appel & UVALF

n—1

mi, Mo, ..., My

fois. Nous avons choisi, pour les tests du chapitre 7, d’apporter la simplification

suivante & la procédure SO : lors de I’étape 1, remplacer le calcul exact des A;(2%, m;)
a;

(n+12 "

par 'approximation

%z/wﬁwao—Lw@mma. (6.2)

j
Dans le schéma général on a donc :

% 5 tel que défini par (6.2) et le

(n+1)

o A Iétape 1, A;(2*,m;) est approximé par
PNE résolu avec l'algorithme de Gross.

o A I’étape 2, les points optimaux sur l'intervalle a subdiviser sont calculés a 'aide

de la procédure UVALF.

6.4.3 Algorithme optimal & chaque étape

Dans le schéma général, A;(z2",1) est calculé en résolvant le systéme de trois équa-

. . 3 _ P *x X
tions et trois inconnues VGj(z,v,) = 0 sur [z}, z},,].

107

CHAPITRE 7

RESULTATS NUMERIQUES

Nous présentons dans ce chapitre les résultats d’expériences numériques faites sur
les différents algorithmes présentés au chapitre précédent. Le but de ces expériences
est, d’abord, de montrer qu’il est possible d’irﬁplanter concretement ces algorithmes
et ce de maniére assez simple. Ensuite, de comparer les différentes méthodes d’ap-

proximation et d’évaluer leurs mérites relatifs.

7.1 Meéthodologie des tests

Chaque algorithme a été testé sur des échantillons de fonctions concaves. Ces fonc-
tions sont de trois types : lisses (C1), lisses par morceaux (CO0), c’est-a-dire que la
dérivée peut étre discontinue, et linéaires par morceaux (LPM). Dans cette section,

une fonction f est dite normalisée si f(0) =0et f(1) = 1.

Chaque échantillon contient 30 fonctions normalisées et a été produit & ’aide des
procédures décrites a la section 7.2. Dans la suite, lorsqu’un parametre est choisi
aléatoirement sur un intervalle donné, le choix sera toujours fait selon une distribu-
tion uniforme sur cet intervalle. Les dérivées aux extrémités a = f'(0) et b = f'(1)
ont été choisies aléatoirement sur les intervalles 1 < a < 100 et —100 < b < 1.

L’échantillon obtenu posséde les caractéristiques données au tableau 7.1.

Pour chaque fonction test l’erreur d’approximation pour un algorithme donné a été
calculée pour n = 1,...,12 points d’évaluation. L’erreur a été ensuite divisée par

Perreur a priori pour cette fonction, c’est-a-dire ’erreur maximum étant donnée

108

Tableau 7.1 Valeurs extrémes des parametres pour les fonctions tests

@ min | ¢ max | b min | b max
C1 1.58 | 98.79 [-96.76 | 0.15
Co 3.55 | 97.86 | -99.91 | -1.68

LPM || 1.34 | 96.26 | -97.51 | 0.83

seulement les dérivées aux extrémités, pour obtenir une erreur relative. Ceci permet
de compenser les différences entre les normes des différentes fonctions. Enfin, la
moyenne des erreurs relatives a été calculée. Pour mieux visualiser les comparaisons
entre les algorithmes, nous avons également représenté sur un graphe le rapport des

erreurs en fonction du nombre de points d’évaluation. Les rapports sont de la forme

algorithme de base

algorithme

ol 'algorithme de base est celui qui est le plus simple pour un probleme donné. Les

détails de ces comparaisons se trouvent dans les sections 7.3 a 7.5.

7.2 Fonctions tests

Les fonctions utilisées pour les tests sont construites par morceaux a partir de po-
lynomes de fagon a ce que la fonction résultante soit lisse, continue ou linéaire par
morceaux, selon le cas. Cette construction est semblable & la méthode d’interpolation

par des splines cubiques décrite dans Fortin [10].

7.2.1 Fonctions lisses, premiére~ méthode.

Soit pr = ckax®+cpaz® + o1z +cro, k = 1,2, deux polynomes de degré trois, z; € [0, 1]

et Yo, 71,72 des nombres négatifs. On choisit les coefficients cx; de facon & ce que

109

1. p1(0) =0, p2(1) = 1 (normalisation)
2. pi(z1) = p2(x1) (continuité)
)

(
3. py(x1) = py(x1) (continuité de f’)
i

0) = 70, Pi(z1) =, Pa(z1) = 1, p3(1) = 72 (concavité).
Ces huit équations linéaires permettent de déterminer les huit coefficients cg. En
choisissant aléatoirement z; € [0, 1] et v; € [—300, 0}, on obtient une fonction concave

normalisée en définissant

pi(z) sixz € [0,z]
f(z) =

pa(z) sizx € [zy,1].

Notons que cette méthode pourrait étre généralisée en utilisant k£ > 2 polyndmes.

7.2.2 Fonctions lisses, deuxieéme méthode.

Si de plus on exige que les dérivées de f soient fixées aux extrémités, disons f'(0) =

a, f'(1) = b, on peut procéder comme suit.

Aux équations 1 a 4 ci-dessus on ajoute

pi(0) =a, py(1)=0b.

Pour que ce systeme a dix équations ait une solution il faut imposer des contraintes

a rp et aux ;. Explicitement, les deux équations supplémentaires sont
Ci1 = @, et 3022 + 2021 + Cyg = b. (71)

Lorsque les coeflicients cg; sont exprimés en termes de z; et 7; & l'aide de la solution

110

aux équations 1-4, les équations (7.1) deviennent

6+ 22(y0 — Y2) + T1(N + 272 — 37) — (1 +7) = 6a
6+ 2 (10— 72) + T1(vi — Y2) + 22 + ™ = 6b.

Résolvant pour 71, y2 on trouve

o= =257 — 2z1(a —b) — 4(a — 1) + 2(1 — b)

72 = T+ 2z1(a—0b)+2(a—1)—4(1 - b). (7.2)

Pour que f soit concave il faut que ~v;,v2 < 0, ce qui est possible seulement si

1-5 1—b
—2< <3—-. .
a—b 2_151_3a_b ‘ (73)

3

Dans ce cas il faut aussi que vy < 0 satisfasse

Par conséquent pour générer f concave normalisée avec f'(0) =a et f'(1)=b:
1. Choisir aléatoirement z; € [0, 1] satisfaisant (7.3)
2. Choisir ensuite aléatoirement 7y < 0 satisfaisant (7.4)
3. Calculer 71,7, & laide de (7.2)

4. Calculer les coefficients cg; en résolvant les équations 1-4.

7.2.3 Fonctions lisses par morceaux.

Pour générer une fonction f concave normalisée lisse par morceaux, c’est-a-dire dont

la dérivée peut étre discontinue en certains points :

111

1. Poser zg = 0,41 = 1 et choisir aléatoirement m points z; €]0, 1] et v;, y;
correspondants de telle sorte que (z,v, u) soit une situation réalisable, c’est-a-
dire que v,y € C(z) (voir la définition (3.4)).

2. Sur chaque sous-intervalle [z;, z;+1] générer une fonction concave lisse satis-
faisant f(z;) = v, f(Tir1) = vip1, f(zi) = p, [(@i41) = pig1 & Vaide de la

deuxieme méthode 7.2.2 et d’un changement de variable approprié.

7.2.4 Fonctions linéaires par morceaux.

Pour générer une fonction concave normalisée linéaire par morceaux :

1. Poser zg = 0,Z,+1 = 1 et choisir aléatoirement m points z; €]0, 1[et v;, y;
correspondants de telle sorte que (z, v, 4) soit une situation réalisable, c’est-a-
dire que v, u € C(z) (voir la définition (3.4)).

2. Sur [z;, %i11], définir

flz) = min{u(x — ;) + v, pi1 (z — Tig1) + viga }-

7.3 Approximation L' : OPT vs DYN vs SO

Nous comparons ici les algorithmes suivants pour approximation dans la norme L! :
1. Optimal (OPT), basé sur la méthode de Sonnevend [33].

2. Algorithme de programmation dynamique (DYN), tel que décrit & la section
3.3.
3. Séquentiellement optimal (SO), tel que décrit & la section 6.4.2.
Le tableau 7.2 donne les erreurs moyennes pour les différents problémes en fonction

du nombre de points d’évaluation. I’algorithme de base est OPT et les graphes 7.3

ci-dessous représentent les rapports OPT/DYN et OPT/SO.

Tableau 7.2 Moyenne des erreurs d’approximation L!.

Fonctions lissses

Fonctions CO

Fonctions LPM

n OPT DYN SO OPT DYN SO OPT DYN SO
1 241711 241711 241711 .164692 .164692 .164692 186173 .186173 .186173
2 .107096 .105086 .105086 .068794 .064904 .059800 .083571 .073845 .070999
3 .061082 .058705 059174 036713 .033672 027793 .046555 .037454 .031489
4 .039074 .037484 .037547 .022916 .020300 .015900 1031246 .023545 017775
5 027233 .026024 .025899 016659 .014872 .010169 .021949 .015311 010257
6 .020018 .019102 .018931 .011969 .010636 .006514 .015742 .010985 005751
7 015346 .014638 .014401 .009678 008057 .005046 011698 .008091 .003485
8 012121 .011562 011413 .006973 .006191 .003622 .009213 .006557 .002739
9 .009809 .009380 .009141 005977 | .005191 .002721 .007193 .005098 .001781
10 .008113 007760 .007521 .004918 .004276 .002162 005517 | .003870 .001271
11 .006829 .006528 .006263 .004161 .003652 .001736 .004511 .003164 .000909
12 .005828 005576 .005331 .003509 .002997 .001427 .004026 002729 .000623
1.15

1.081

1.06]

1.04 1 e

1.02 5

0.98 2 4 6 8 10 12

n
----------------------- OPT/DYN
(TI)PT/SO

(a) Fonctions lisses

112

241

227

----------------------- OPT/DYN
————— OPIO

{(b) Fonctions lisses par morceaux

Figure 7.1 Comparaison de OPT, DYN et SO pour I'approximation L*.

4 6 8 10

----------------------- OPT/DYN
T OPTSO

(c) Fonctions linéaires par morceaux

113

114

On voit qu’en pratique les méthodes adaptatives sont meilleures que la méthode
optimale passive, en particulier pour les fonctions CO et linéaires par morceaux. Pour
les fonctions lisses DYN et SO sont comparables mais SO est nettement plus efficace
pour les fonctions dont la dérivée est discontinue. Le cotit des trois algorithmes OPT,
DYN et SO pour le probléme d’approximation L' est sembable et en fait ils ont la
méme complexité combinatoire, soit O(n), si 'heuristique d’arrondi est utilisée dans
SO pour la résolution du probleme en nombres entiers. Par conséquent, ’algorithme
SO est & la fois efficace et peu coliteux pour le probléme d’approximation L' et ce

pour les trois types de fonctions testées ici.

7.4 Approximation L>* : SAND vs OSO

Dans cette section, nous comparons les algorithmes suivants pour approximation

dans la norme L :

1. Algorithme du sandwich (SAND) de Burkard et al. [5].

2. Algorithme optimal & chaque étape (OSO) tel que décrit & la section 6.3.1.

Le tableau 7.3 donne les erreurs moyennes pour ces deux méthodes. L’algorithme de

base ici est SAND et les graphes 7.4 ci-dessous représentent le rapport SAND/OSO.

On constate que l'algorithme OSO est supérieur & l'algorithme du sandwich dans
presque tous les cas. Pour les fonctions lisses SAND est meilleur pour n = 11,12
mais il faudrait faire d’autres tests avec un échantillon plus grand et plus de points
pour vérifier si SAND est effectivement supérieur que OSO pour de grandes valeurs

de n.

115

De méme, il serait intéressant de voir avec d’autres tests si le comportement en dents
de scie du rapport DYN/OSO est caractéristique de ces algorithmes. Rote [30] a déja
constaté ce genre de variations pour l’algorithme du sandwich avec différentes regles
de subdivision. Dans son cas, les expériences portaient sur des fonctions (convexes)
lisses particulieres : 4/, v/1 — 22 et sinz et sur un grand nombre de points (n =
1024). L’auteur a observé plusieurs types de comportements périodiques de l'erreur

par rapport au nombre de points.

Malgré ces questions, et bien que 'algorithme OSO soit plus cofiteux que SAND, il

nous semble que le premier soit supérieur si les fonctions a approximer sont difficiles

2

a évaluer et le nombre d’évaluations est petit.

Tableau 7.3 Moyennes des erreurs d’approximation L.

Fonctions lissses Fonctions CO Fonctions LPM

n SAND 08O SAND 0S50 SAND 0SS0

1 424092 | .293441 321545 | .261642 319533 | .268368

2 .268978 | .227217 170765 | .113509 199279 | .134797

3 .152706 | .088403 .098709 | .056035 126178 | 062401

4 .108063 | .069867 .051631 | .035607 .082294 | .039693

5 .079428 | .063198 .032064 | .023603 .063039 | .024638

6 .062302 | .042036 .023994 | .017001 .048301 | .015317

7 .041040 | .027669 .018456 | .012123 .038227 | .010096

8 .027412 | .018480 .014241 | .008627 .025566 | .007193

9 .021039 | .017850 .011208 | .007092 .015699 | .004700

10 .018204 | .017126 .008737 | .005943 .012184 | .003541

11 .015609 | .016444 .006882 | .005084 .009071 | .002624

12 .013473 | .014500 .005740 | .004318 .006938 | .002013

116

1.89

0.8 2 4 6 8 10 12

1SAN D/OSO

(a) Fonctions lisses

1.44

1.2

S)PT/OSO

(b) Fonctions lisses par morceaux

117

3.54

2.5

27

2 4 6 8 10 12

1OPT/OSO

{(c) Fonctions linéaires par morceaux

Figure 7.2 Comparaison de SAND, et OSO pour 'approximation L.

7.5 Approximation L; : OPT vs OSO vs SO

Dans cette section nous comparons les algorithmes suivants pour 'approximation

dans la norme Lj :
1. Algorithme optimal UVALF décrit a la section 6.4.1.

2. Algorithme optimal a chaque étape (OSO), ol le calcul du point optimal sur

chaque sous-intervalle est fait a I’aide de UVALF.

3. Algorithme séquentiellement optimal (SO), ol les points optimaux sur chaque
sous-intervalle sont calculés & 'aide de UVALF. A chaque étape, la répartition

des points sur les sous-intervalles est obtenue avec ’heuristique discutée a la

118

section 6.4.2. Cet algorithme est donc en fait une approximation d’'un algo-

rithme SO.

En utilisant la notation de la section 6.4.1 le critere d’arrét pour 'algorithme UVALF
est le suivant : €, = 107 et ¢4 = 107%. L’algorithme s’arréte donc lorsque les
équations définissant les points optimaux sont résolues & 107° prés ou la variation

des points optimaux est de moins de 10~® d’une itération & l’autre.

Les algorithmes ont été testés avec deux fonctions de poids, soit hi(t) = t et
hy(t) = t(1 —t). En I’absence d’autres critéres, ces fonctions ont été choisies parce
que les équations correspondantes sont relativement simples. D’autres fonctions de
différents types (exponentielles, linéaires par morceaux, discontinues, etc.) ont été
employées avec certaines fonctions tests mais les calculs numériques avec Maple, bien

que possibles, se sont avérés trop lourds pour des tests a plus grande échelle.

Les tableaux 7.5 et 7.5 donnent les erreurs moyennes pour les trois algorithmes.

L’algorithme de base ici est OPT et les graphes 7.5 et 7.5 ci-dessous représentent les

rapports OPT/0OSO et OPT/SO.

La premiere conclusion a tirer de ces tests est que les méthodes adaptatives donnent
en pratique de meilleurs résultats pour les fonction qui ne sont pas lisses. Pour les
fonctions lisses, on constate ici aussi un comportement en dents de scie pour 'algo-
rithme OSO, qui rappelle les variations périodiques de l'erreur observées par Rote

[30]. L’algorithme SO, lui, présente un comportement plus régulier et est toujours

supérieur a OPT et OSO.

Cependant pour les fonction CO et linéaires par morceaux, OSO est beaucoup plus
efficace que dans le cas lisse. Il semble donc que les méthodes OPT et SO puissent
tirer un meilleur parti de 'information sur le nombre de points & choisir dans le cas

de fonctions lisses mais que OSO réussit & tres bien s’adapter aux fonctions qui ne

119

le sont pas.

Enfin on observe que OSO est presqu’aussi efficace et parfois méme plus que SO
pour ces dernieres fonctions. Ceci est peut-étre dii au fait que l'information sur
le nombre de points est moins pertinente que la capacité & s’adapter lorsque les
fonctions présentent de brusques variations de leur dérivée. La similarité des perfor-
mances tient peut-étre aussi au fait que 'algorithme SO testé n’est en fait qu’une
approximation d’'un algorithme séquentiellement optimal, dit a la simplification du
sous-probléme de la répartition des points discutée ci-dessus. Si c’est le cas, il est
possible qu'un véritable algorithme SO donne de meilleurs résultats que OSO pour

le probleme d’approximation pondérée.

A ce propos, nous rappelons que pour 'approximation L} avec h = 1 lerreur e,
lorsque n évaluations sont faites est exactement e, = ey/(n + 1)? et dans ce cas
Papproximation de I’algorithme SO est en fait exacte. Pour les autres fonctions de
poids, le rapport 7 = e,/(eg/(n+1)%) n’est pas constant mais il est le méme quelque
soit m. Le tableau 7.4 ci-dessous donne ce rapport pour les cing premiéres fonctions

tests lisses et h(t) =t.

Tableau 7.4 Rapport r = e, /(eo/(n + 1)?) pour cing fonctions lisses.

fonction 1 2 3 4 5
f(0) 43.31 | 74.92 | 26.72 | 96.08 | 95.15
f(1) | -67.56 | -96.76 | -68.68 | -17.89 | -85.20

r 1.8537 | 1.9115 | 1.7337 | 2.5734 | 2.0298

Nous n’avons pas su déterminer une relation entre r, f'(0) et f’(1). Une telle relation
serait tres utile car elle permettrait d’implanter facilement un algorithme SO pour le

probléme L} sans avoir recours & UVALF pour la résolution du PNE & I’étape 1. De

120

plus, connaissant la valeur optimale du probléme de min-max il serait probablement

plus simple de calculer les points optimaux.

Cependant si on s’en tient aux algorithmes testés il semble que OSO est préférable
3 SO pour les fonctions CO et linéaires par morceaux puisque la légere différence

d’efficacité est amplement compensée par le cofit moindre de OSO.

Fonction de densité h,(t) = t.

Tableau 7.5 Moyennes des erreurs d’approximation L} avec h(t) = t.

Fonctions lissses Fonctions CO Fonctions LPM

n OPT 0S80 SO OPT 0S80 SO OPT 0SSO SO

1 222889 | .222889 | .222889 .140108 | .140108 | .140108 165509 | .165509 | .165509

2 096367 | .123169 | .093678 .052229 | .055851 | .047925 .074055 | .068213 | .057087

3 .063217 | .051677 | .051595 .030859 | .022584 | .022300 .038957 | .026332 | .026800

4 .033763 | .038448 | .032452 .018057 | .012822 | .012461 .026672 | .013918 | .014348

5 .023343 | .027873 | .022276 .012780 | .007700 | .007500 .017902 | .007382 | .007957

6 .017089 | .019112 | .016096 .009617 | .005259 | .005071 .013042 | .004257 | .004100

7 .013036 | .012308 | .012165 .006883 | .003710 | .003640 .009898 | .002718 | .002837

8 .010281 | .010675 | .009585 .005504 | .002742 | .002663 .007344 | .001829 | .001665

9 .008327 | .009181 | .007629 .004753 | .002090 | .001987 .006195 | .001227 | .001186

10 .006878 | .007857 | .006324 .003767 | .001642 | .001563 .005016 | .000831 | .000850
11 005776 | .006578 | .005244 .003159 | .001287 | .001274 .004330 | .000390 | .000582

12 .004916 | .005477 | .004457 .002667 | .001045 | .001039 .003482 | .000436 | .000474

117
094 / “_\ __________
0.8
0.7 3 4 6 8 10 12
n
----------------------- OPT/OSO
OPT/SO
(a) Fonctions lisses.
267 .
241 —
2.2
1.84 T
161 7
144
1.2
, ;
e -
4 6 8 10 1:
n

0.8 5

OPT/OSO
OPT/S0
]

(b) Fonctions lisses par morceaux.

121

(c) Fonctions linéaires par morceaux.

OPT/OSO
1OPT/SO

122

Figure 7.3 Comparaison de OPT, OSO et SO pour 'approximation L} avec h(t) = t.

Fonction de densité hy(t) = t(1 —).

Tableau 7.6 Moyennes des erreurs d’approximation L} avec h(t) = t(1 —t).

Fonctions lissses

Fonctions CO

Fonctions LPM

n OPT 08O SO OPT 0OSO SO OPT 0SS0 SO

1 202647 | .202647 | .202647 .132599 | .132599 | .132599 1149931 | .149931 | .149931
2 .084956 | .110451 | .083263 .050911 | .047532 | .044185 .066827 | .063943 | .055701
3 .046675 | .045253 | .045200 .026635 | .020802 | .020343 .036388 | .024703 | .025253
4 .020604 | .033644 | .028013 .017157 | .012088 | .010664 .022481 | .013871 | .013541
5 .020394 | .024208 | .019103 .012242 | .007131 | .006765 .016440 | .007423 | .007506
6 .014921 | .016445 | .013838 .008554 | .004609 | .004417 011757 | .004087 | .004310
7 011370 | .010649 | .010510 .006349 | .003162 | .003154 .008927 | .002616 { .002705
8 .008952 | .009134 | .008263 .005024 | .002331 | .002326 .006674 | .001700 | .001700
9 .007227 | .007835 | .006612 .004136 | .001778 | .001791 .005759 | .001157 | .001277
10 .005959 | .006673 | .005384 .003255 | .001389 | .001385 .004617 | .000787 | .000860
11 .004998 | .005603 | .004488 .002872 | .001109 | .001074 .003968 | .000547 | .000656
12 004252 | .004666 | .003829 .002459 | .000899 | .000865 .003238 | .000394 | .000482

123

!A\\
1/ \\
AN
q ’“\ S \\
'k [N 7 ~
\‘ ,:' N /l \\
\ 7 N / .
\ / \ /
\ e, g
094 / e Ry
Y / ...
A B e i
\ i e
\
.
.
5 H
0.8- \/
AY
Y
4 6) 10 12
n

34

2,54

OPT/OSO
?PT/SO

(a) Fonctions lisses.

OPT/OSO
?PT/SO

(b) Fonctions lisses par morceaux

124

----------------------- OPT/OSO
S———

(¢) Fonctions linéaires par morceaux.

Figure 7.4 Comparaison de OPT, OSO et SO pour I'approximation L; avec h(t) =
t(1—t).

7.6 Conclusion

Nos expériences montrent qu’il est pertinent d’examiner des algorithmes adaptatifs
pour les problemes d’approximation et ce méme dans les cas ou I’adaptation n’est pas
utile. Connaissant un algorithme séquentiellement optimal idéal mais possiblement
coliteux, on peut chercher des approximations qui seront presqu’aussi efficaces mais

a moindre cofit.

Pour l'approximation L™ la performance en dents de scie des algorithmes de type
sandwich et OSO devrait étre comprise pour pouvoir élaborer des algorithmes. plus
réguliers. Ce type d’algorithme est & notre avis tres utile pour les problemes d’ap-
proximation car ils sont non seulement efficaces et peu coiiteux mais nous croyons

qu’ils se généralisent aux problemes de plus grandes dimensions.

125

Enfin, pour I'approximation pondérée d’autres tests seraient de mises pour tenter
de comprendre 'effet de la fonction de poids A sur la performance des différents

algorithmes.

126

CONCLUSION

Nous avons dans ce travail complété et unifié la théorie concernant [’aproximation
des fonctions de la classe F, . D’abord, des bornes inférieure et supérieure explicites
pour 'approximation dans la norme L? avec p > 1 nous ont permis de montrer que
pour ces problémes les algorithmes adaptatifs sont meilleurs dans le pire cas sauf
si p = 1. Dans ce dernier cas, il existe un algorithme passif optimal. Ensuite, pour
I'approximation dans la norme L! pondérée par une fonction de poids positive, nous
avons montré qu’'un algorithme adaptatif ne peut pas faire beaucoup mieux qu’un

algorithme passif optimal.

Pour tous ces problemes nous avons proposé des algorithmes d’ordre optimal et dans
le cas L' et L} un algorithme optimal et séquentiellement optimal. Ces différents
algorithmes ont été comparés et nous avons constaté qu’en pratique 'efficacité de
ces méthodes dépend du type de fonctions a approximer : lisses ou avec une dérivée
discontinue. Il est donc utile d’avoir plusieurs méthodes a notre disposition de fagon
& pouvoir choisir celle qui présente le meilleur compromis entre efficacité et colit des

calculs pour un probleme donné.

Pour le difficile probléeme d’approximation dans la norme L nous avons proposé
une formulation de programmation dynamique qui nous a permis de résoudre le
probleme pour n = 1 point d’évaluation et de le simplifier pour n > 2 points. Du
travail reste encore & faire pour en tirer un algorithme optimal efficace mais nous

croyons avoir fait un pas vers la solution de ce probleme.

D’un point de vue général, ce travail montre que 'approche calculatoire que nous
avons employée peut donner & la fois des résultats théoriques et pratiques. Les
problemes d’approximation tels ceux que nous avons étudiés sont intéressants parce

qu’ils permettent de réfléchir sur les rapports entre la théorie et les applications pra-

127

tiques. Du point de vue théorique, on définit des limites & ce qui peut étre accompli

concretement et il faut ensuite se poser la question de savoir quelles restrictions nous

sont imposées par ces limites. Traub et Werschulz [44] vont plus loin dans ce sens

et posent la question de savoir si les limites théoriques sont en fait des limites & la

connaissance scientifique. Du point de vue des applications, ’étude des algorithmes

optimaux donne des modeles pour construire des algorithmes efficaces.

Problémes ouverts et généralisations

Certains problemes abordés dans ce travail n’ont pas encore trouvé de solution

compleéte. Nous les présentons avec un bref commentaire.

1.

Les bornes inférieure et supérieure pour 'approximation LP du chapitre 4 ne
sont sans doute pas exactes. Est-il possible de déterminer des bornes exactes,
particulierement pour p = oo 7 La difficulté ici est que 'on cherche a calculer

une borne supérieure pour des algorithmes adaptatifs.

Pour I'approximation L°°, peut-on construire un algorithme efficace & partir

de la formulation de programmation dynamique (4.5)7

. Au chapitre 5 les bornes sur P’erreur pour 'approximation L sont suffisantes

pour montrer que l'adaptation n’est pas utile au sens large mais elles sont

grossieres. Peut-on en trouver de meilleures ?

. ¢ ¢ ous croyons qu’en fai ion n'est pas utile au
Pour ce méme probléme, nous croyo ‘en fait 'adaptation n'est til

sens stricte, c’est-a-dire que e,q = epas. Peut-on démontrer ceci? Nous croyons

que le théoreme (1.3) peut étre utile ici.

. Comment peut-on améliorer 'efficacité de la méthode de résolution de

VG(z,v,u) =0

pour 'approximation L} ? Nous croyons qu’une meilleure implantation pour-

128

rait déja donner une procédure plus rapide.

La généralisation la plus immédiate de nos problemes est de considérer des fonctions
concaves de plus d’une variable. Les problemes d’approximation en grande dimension
dans la norme L' sont présentement des domaines de recherche trés actifs et sont
souvent étudiés dans le contexte stochastique. Dans ce cas les algorithmes aléatoires
permettent souvent de vaincre la malédiction des grandes dimensions, en contrepartie
d’une borne plus faible sur ’erreur moyenne de P'algorithme (voir par exemple Traub
et Werschulz [44]). Le contexte du pire cas et les algorithmes déterministes sont
toujours pertinents si on considére des fonctions avec peu de variables. Par exemple,
une généralisation de ’exemple donné en introduction est le probleme d’équilibre
a trois critéres qui peut survenir en pratique. Dans ce cas, on doit approximer des

fonctions concaves de deux variables.

Sonnevend [34] a étudié le probleme d’approximation L* de fonctions concaves sur le
carré [0, 1) et les algorithmes qu'il propose sont du type sandwich avec évaluations en
plusieurs points & chaque itération. Pour I'approximation L' Sukharev [40] construit
un algorithme séquentiellement optimal pour l'intégration itérée basé sur un algo-
rithme d’approximation a une seule variable. Dans le méme ordre d’idée Plaskota
et Wasilkowski [29] utilisent eux aussi un algorithme optimal en une variable pour

construire un algorithme d’intégration a plusieurs variables.

La plupart des auteurs considerent les problemes d’approximation de plus d’une
variable pour des fonctions définies sur un cube [0, 1]™. Nous croyons qu’il est avan-
tageux d’exploiter, comme nous ’avons fait pour une variable, la décomposition du
. , L . . .
probléeme d’approximation sur des «sous-intervallesyol sur chacun est reproduite
la situation initiale lorsqu’aucune évaluation n’a été faite. Nous proposons donc de
considérer des fonctions concaves sur le simplexe unité, qui est une généralisation

naturelle de lintervalle [0, 1] et qui se préte & cette décomposition. Ceci est illustré

129

a la figure 7.5.

T2
- .

Figure 7.5 Décomposition du simplexe unité.

Les dérivées aux «extrémités»sont les gradients aux trois sommets de chaque sous-
domaine. Avec cette décomposition on peut écrire une formulation de programma-
tion dynamique du probleme. Cependant l'utilisation de 'information donnée par
les gradients est beaucoup plus difficile en deux variables et représente un défi de

taille.

En conclusion, nous espérons avoir fait dans ce travail quelques pas vers la solution
de différents problemes d’approximation et que les directions proposées ci-dessus

s’avéreront propices a de futures recherches.

130

REFERENCES

[1] BAKHVALOV, N. (1976). Méthodes numériques, Editions Mir, Moscou, 1976.

[2] BAZARAA, S.M., SHERALI, H.D., SHETTY, C.M. (1993). Nonlinear Pro-
gramming : theory and algorithms, 2nd edition, Wiley, New York, 1993.

(3] BELLMAN, R. and DREYFUS, R. (1962). Applied Dynamic Programming,

Princeton University Press, Princeton, 1962.

[4] BURDEN, R.L., FAIRES, J.D. (2001). Numerical Analysis, seventh edition,
Brooks/Cole, Pacific Grove, CA, 2001.

[5] BURKARD, R.E., HAMACHER, H.W., ROTE, G. (1991). Sandwich Ap-
proximation of Univariate Convex Functions with an Application to Separable

Convex Programming, Naval Research Logistics 38, 911-924.

[6] CERONE, P.,, ROUMELIOTIS, J., HANNA, G. (2000). On weighted three point
quadrature rules, ANZIAM Journal 42, C340-C361.

[7] CURBERA, F. (2000). Delayed Curse of Dimension for Gaussian Integration,
Journal of Complezity 16, 474-506.

[8] CHVATAL, V. (1983). Linear Programming, W.H. Freeman, New York, 1983.

[9] DEMYANOV, V.F, MALOZEMOV, V.N. (1974), Introduction to Minimaz, Do-
ver, New York, 1974.

[10] FORTIN, A. (1995), Analyse nurﬂér@'que pour ingénieurs, Editions de I'Ecole
Polytechnique de Montréal, Montréal, 1995.

[11]

[12]

[13]

[14]

131

GAL, S., MICCHELLI, A. (1980). Optimal sequential and non-sequential pro-

cedures for evaluating a functional, Applicable Analysis 10, 105-120.

GLINKIN, I.A. (1984). Best quadrature formula in the class of convex functions,
Mat. Zametki 35, 267-277.

GROSS, O. (1956). A class of discrete type minimization problems, Rand Cor-
poration Research Memorandum no. 1644 (1956).

GUERIN, J., MARCOTTE, P., SAVARD, G. (2001). An optimal adaptive algo-
rithm for the approximation of concave functions, Mathematical Programming,

a paraitre.

GUERIN, J. (2000). Une méthode adaptative pour [’approzimation de fonctions

concaves croissantes, Mémoire de maitrise, Ecole Polytechnique de Montréal.

HICKERNELL, F.J., SLOAN, L.H., WASILKOWSKI, G.W. (2004). On trac-
tability of weighted integration over bounded and unbounded regions in R?,

Mathematics of Computation 73, 1885-1901.

KIEFER, J. (1957). Optimum sequential search and approximation methods

under minimum regularity assumptions, STAM Journal 5, 105-136.

KORNEICHUK, N. P. (1995). Information widths, Ukrainian Mathematical
Journal Vol. 47 no. 11, 1720-1732.

KORNEICHUK, N. P. (1999). Information aspects in the theory of approxima-
tion and recovery of operators, Ukrainian Mathematical Journal Vol. 51 no. 8,

353-365.

[20]

[27]

[28]

132

LEE, M.-S. (2001). Approximation in weighted L, spaces, Numerical Functional
Analysis and Optimization 22 nos. 5-6, 657-674.

MAPLE 10, Logiciel de calcul symbolique et numérique, Maplesoft,

www.maplesoft.com (2005).

MARCOTTE, P, NGUYEN, S., TANGUAY, K. (1996). Implementation of an
efficient algorithm for the multiclass traffic assignement problem, Proceedings of
the 13th International Symposium on Transportation and Traffic Assignement

Theory, Lyon, Jean-Baptiste Lesort ed., Pergamon, 217-236.

MATHE, P. (1998). Asymptotically optimal weighted numerical integration,
Journal of Complexrity 14, 34-48.

NOVAK, E. (1988). Deterministic and Stochastic Error Bounds in Numerical

Analysis, Lecture Notes in Mathematics, Springer-Verlag, 1988.

NOVAK, E. (1992). Quadrature formulas for monotone functions, Proceedings
of the American Mathematical Society Vol. 115 no. 1, 59-68.

NOVAK, E. (1993). Quadrature formulas for convex classes of functions, Inter-
national Series of Numerical Mathematics Vol. 112, Birkhduser Verlag, Basel,

283-296.

NOVAK, E. (1995). Optimal recovery and n-widths for convex classes of func-
tions, Journal of Approzimation Theory 80, 390-408.

NOVAK, E. (1996). On the power of adaption, Journal of Complezity 12, 199-
237.

[29]

[30]

[31]

32]

[34]

133

PLASKOTA, L., WASILKOWSKI, G.W. (2004). Smolyak’s algorithm for in-
tegration and Li-approximation of multivariate functions with bounded mixed

derivatives of second order, Numerical Algorithms 36 no.3, 229-246.

ROTE, G. (1992). The Convergence Rate of the Sandwich Algorithm for Ap-

proximating Convex Functions, Computing 48, 337-361.

SAATY, T.L. (1970). Optimization in Integers and Related Extremal Problems,
McGraw-Hill, New York, 1970.

SONNEVEND, G. (1978). On the optimization of adaptive numerical algo-
rithms of approximation. Operations Research Verfahren, vol.31, Hain, Scriptor,

Hanstein, Konigstein eds., 581-595.

SONNEVEND, G. (1983). Optimal passive and sequential algorithms for the
approximation of convex functions in L,[0,1]°, p = 1, 00, Constructive function

theory ’81, Sofia 1983.

SONNEVEND, G. (1983). An optimal sequential algorithm for the uniform
approximation of convex functions on [0, 1]?, Applied Mathematics and Optimi-

zation 10, 127-142.

SONNEVEND, G. (1984). Sequential algorithms of optimal order global error
for the uniform recovery of functions with monotone (r—1) derivatives, Analysis

Mathematica 10, 311-335.

SUKHAREV, A. G. (1979). A sequentially optimal algorithm for numerical
integration, Journal of Optimization Theory and Aplications Vol. 28, no. 3,

363-373.

[37]

[38]

[39]

[40]

[41]

42]

[43]

[44]

(4]

[46]

134

SUKHAREV, A. G. (1986). On the existence of affine methods for approxima-
ting linear functionals, Journal of Complexity 2, 317-322.

SUKHAREV, A. G. (1987). The concept of sequential optimality for problems

in numerical analysis, Journal of Complezity 3, 347-357.

SUKHAREV, A. G., CHUYAN, O.R. (1990). On adaptive and nonadaptive

stochastic and deterministic algorithms, Journal of Complezity 6, 119-127.

SUKHAREV, A. G. (1992). Minimaz models in the theory of numerical methods,
Theory and Decision Library Series B Vol. 21. Kluwer Academic Publishers,
1992.

TRAUB, J. F., WOZNIAKOWSKI, H. (1980). A general theory of optimal al-
gorithms, Academic Press, New York, 1980.

TRAUB, J. F., WASILKOWSKI, G. W., WOZNIAKOWSKI, H. (1983). Infor-
mation, Uncertainty, Complexity, Addison-Wesley, Reading, MA, 1983.

TRAUB, J. F., WASILKOWSKI, G. W., WOZNIAKOWSKI, H. (1988).
Information-Based Complezity, Academic Press, New York, 1988.

TRAUB, J. F., WERSCHULZ, A.G. (1999). Complezity and Information, Cam-
bridge University Press, Cambridge, 1999.

WASILKOWSKI, W.G., \/VOZNIAKO'\/VSKI, H. (2000). Complexity of weigh-
ted approximation over RY, Journal of Complezity 103, 223-251.

WOZNIAKOWSKI, H. (2003). Open problems for tractability of multivariate
integration, J. Complezity 19 no.83, 343-444.

135

[47] ZWICK, D. (1988). Optimal Quadrature for Conver Functions and Generali-
zations, International Series of Numerical Mathematics, Vol 85, Birkh&user,

Basel, 1988.

[48] WANG, X. (2003). Strong tractability of multivariate integration using quasi-
Monte Carlo algorithms, Math. Comp. 72 no. 242, 823-838.

[49] YANG, X.Q., GOH, C.J. (1997). A method for convex curve approximation,
European Journal of Operational Research 97, 205-212.

