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RESUME

Cette étude examine le processus de Poisson filtrée X (#) proposé par Lefebvre et
Guilbault (2008) comme modele pour représenter les débits journaliers d’un fleuve. Soit

N(t)

,X(f) — Z )/n{f' - Tn)#t‘:_(r_'-”)’((' poul‘ t 2 Ty

n=1

ou {N(t), t > 0} est un processus de Poisson homogene de taux A > 0, Y,, est une série
de variables aléatoires indépendantes et identiquement distribuées (i.i.d) d’une
distribution exponentielle de paramétre ;. et indépendantes du processus { N (#), t > 0}
et 7,, sont les instants d’arrivée des événements ou signaux du processus de Poisson. Les
paramétres du modele X\ et , sont estimés par la méthode des moments a I’état
asymptotique du processus une fois que les parametres < et A seront trouvés par une
approche statistiqgue basée sur les coefficients de corrélation théoriques du modeéle.
Finalement, la qualité et la performance du modéle sont évaluées par le biais des
coefficients de corrélation théoriques comparativement au modeéle classique (lorsque
- = 0) couramment utilisé en hydrologie et par la capacité prévisionnelle du modéle par
rapport au modele classique et & un modeéle autorégressif. Une application sur les fleuves
Delaware et Hudson situés aux Etats-Unis est présentée. Les résultats favorisent en
général le modele proposé par Lefebvre et Guilbault (2008).



ABSTRACT

This study examines the filtered Poisson process X () proposed by Lefebvre and
Guilbault (2008) as a model to represent the daily river flows of rivers. Let

N(t)

X(6) = Y Yalt=n)'e T por 45 p

n=1

where {N(t), t > 0} is a homogeneous Poisson process with rate A\ > 0, Y,, is a series
of random variables independent and identically distributed (i.i.d) having an exponential
distribution with parameter ;; and independent of the process { N(t). ¢ > 0}, and 7,, are
the arrival times of the events or signals of the Poisson process. The model parameters A\
and . are estimated bythe method of momentsin the asymptotic state of the
process once the parameters < and 4 are found by a statistical approach based on the
theoretical correlation coefficients of the model. Finally, the quality and the performance
of the model are evaluated through the theoretical correlation coefficient compared to
the conventional model (with % = 0) commonly used in hydrology, and through the
predictive power of the model compared to both the traditional model and an
autoregressive model. An application on the Hudson and Delaware Rivers located in the
United Statesis presented. The results generally favorthe model proposed by
Lefebvre and Guilbault (2008).
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INTRODUCTION

Le cadre de la recherche de ce travail est la modélisation des débits journaliers d’un cours
d’eau a partir du processus de Poisson filtré. Soit { N'(#), + > 0} un processus de Poisson
homogene de taux A > 0; le processus stochastique { X (¢), t > 0} est le processus de

Poisson filtre défini par

X(t) = Z w(t, 7, Y,) (X(t)=0si N(t) =0), (1)

n=1

ou Y, est une série de variables aléatoires indépendantes et identiqguement distribuées
(i.i.d) et indépendantes du processus {N(t), + > 0}, 7,, sont les instants d’arrivée des
événements ou signaux du processus de Poisson. La fonction w est appelée fonction de

réponse.

L hydrologie est un domaine, parmi différents autres, d’applications de ce processus. Le
modéle défini en (1) représente le débit du fleuve ou de riviére a I’instant 7. Ce modele est
couramment utilisé dans la littérature hydrologique pour générer les données de débits a
de courtes échelles de temps (journaliéres a hebdomadaires). En particulier, ce modele est
capable de reproduire la présence des pics et de récessions dans la trajectoire des débits

journaliers. Ce modeéle s’exprime avec une fonction de réponse définie par
w(t, 7, Y,) = Y, e~ (t=n)/c 2

ou Y,, sont des variables aléatoires i.i.d d’une distribution exponentielle de parameétre i,
le parametre < prend une valeur positive qui dépend de chaque fleuve et doit étre estime,
T, sont les instants d’arrivée des précipitations, par exemple, et Y, sont les quantités
d’eau observées a ces instants. On suppose donc ici, que les événements arrivent selon un
processus de Poisson { N (¢), ¢ > 0} de taux A\ > 0 indépendant de la séquence Y, ou n
prend des valeurs entiéres. En pratique, la variable du temps est discrete, puisque les
débits ne sont pas mesurés de facon continue (en général, le débit est mesuré
guotidiennement). La fonction de réponse donne la valeur a I’instant  d’un signal (les

précipitations) qui se réalise a I’instant 7,, et pour lequel la quantité Y,, a été ajoutée au
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processus. La variable aléatoire X (#) traduit alors la somme a I’instant f de I’effet de tous
les signaux qui se sont produits depuis I’instant initial (Lefebvre, 2005b). Les figures 1 et
2 (en annexe A) illustrent un exemple de la trajectoire d’un processus de Poisson et un
schéma de la fonction de réponse unitaire de I’hydrogramme respectivement. La variable
Y, est considérée comme la variable entrante dans le systéme, le terme ¢~/ dans
I’équation (2) permet de prendre en compte la décroissance graduelle du débit apres une

pointe.

Le modele classique défini en (1), avec la fonction de réponse en (2), a conduit a des
résultats relativement bons dans plusieurs études antérieures, voir par exemple (Weiss,
1977; Kelman, 1980; Koch, 1985; Konecny, 1992; Seidou et al., 2002; Lefebvre et al.,
2003). La forme de la fonction de réponse est choisie principalement pour des raisons
de simplicité, et I'hypothése que les variables aléatoires Y, sont exponentiellement
distribuées est supposee tenir sans étre testée (Lefebvre, 2005a; Claps et al., 2005). Ce
modele a été utilisé par Lefebvre et al. (2003) pour prévoir les crues du fleuve Delaware.
Etant donné que la variable dénotant le temps qui s’écoule entre I’arrivée des événements
ne suit pas exactement une distribution exponentielle, Lefebvre (2005a) a utilisé une
transformation (la racine carrée) de la variable temps de sorte que la nouvelle variable
suivra une distribution exponentielle et, de ce fait, I’auteur a modélisé les débits par un

processus de Poisson filtré transformé.

En outre, ce modéle suppose que I’effet de I’événement arrivé a I’instant 7,, est maximal a
cet instant et commence aussitét a décroitre (Lawrance et Kottegoda, 1977; Konecny,
1992; Murrone et al., 1997). La figure A.3 (en annexe A) montre un exemple de la
trajectoire d’un processus de Poisson filtré; voir aussi Bado et Unny (1990) et Konecny
(1992).

Cependant, I’observation d’un hydrogramme montre qu’il y a tres souvent des périodes
durant lesquelles le débit augmente (non pas d’une fagon instantanée) puis tend a

décroitre plus au moins rapidement.
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Plusieurs variantes du modeéle ont été proposées dans la littérature hydrologique, la
plupart des efforts ont été consacrés a la définition de la fonction de réponse et a
I’estimation des parametres du processus; voir Konecny (1992), Murrone et al. (1997) et
Lefebvre et Guilbault (2008).

La fonction de réponse proposée par Lefebvre et Guilbault (2008) est I’expression

suivante :
w (f Tns }/n) - }/n (f — Tn )L'f"_(!_'_n .]'hl- (3)

En fait, cette fonction de réponse présente une forme qui ressemble a une partie de
I’hydrogramme (comparable a la forme d’une distribution gamma), a I’opposé de la
forme classique en (2) qui suppose une augmentation instantanée du débit suivie par une
longue période de décroissance (voir figures 2 et 4 en annexe A). En théorie, le parametre
k: peut prendre sa valeur dans I’intervalle [0, co) et doit étre estimé. Nous montrons dans
ce travail que ce parameétre prendrait des valeurs plus élevées (soit 1 < & < 2 pour un
échantillon de débits d’une année) lorsque la dynamique du fleuve se distingue par
I’arrivee de quelques crues exceptionnelles. Il 'y a lieu de noter que I’'une des
caractéristiques du modele, qui stipule que les temps entre les arrivées des événements
sont d’une distribution exponentielle, est dans la plupart des cas non satisfaite en
pratique, et que de ce fait le processus /(%) ne serait pas considéré comme un processus

de Poisson.

Cette conceptualisation mathématique de la fonction de réponse devrait ameliorer la
qualité du modeéle; c’est I’objectif d’analyse dans cette étude. Une approche basée sur les
propriétés statistiques du processus est proposée, suivant les résultats de Lefebvre et
Guilbault (2008), pour estimer les parametres du modele et tester sa qualité d’ajustement
aux observations. En outre, on Vérifie la performance du modele dans les prévisions, en
se servant de certains indicateurs d’écart, comparativement aux modeéles classique et
autorégressif. Enfin, I’apport de ce travail se résume en deux points: 1) nous avons
trouvé une méthode pour estimer significativement le parameétre & du processus. 2) Nous

avons développé une formule qui permet de prévoir le débit futur lorsque & = 1.
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Trois chapitres seront consacrés a répondre a cet objectif; dans le premier chapitre, nous
dressons le contexte genéral de I’application du processus de Poisson filtré en survolant
la littérature hydrologique sur la modélisation des debits des cours d’eau. Le second
chapitre porte sur les résultats théoriques de la modélisation, I’estimation et la prévision,
en utilisant le processus de Poisson filtré. L’application de ces résultats sur les débits des
fleuves Delaware et Hudson, situés aux Etats-Unis, fera I’objet du dernier chapitre. Enfin,

nous conclurons par une discussion et interprétation des constats de I’étude.



CHAPITRE 1:

CONTEXTE ET SURVOL DE LA LITTERATURE

La modélisation théorique d’un systeme hydrologique a été au cceur de la recherche
depuis de longues années; le but de cette modélisation est de représenter le systeme par
une fonction reliant les intrants et les extrants et qui décrit, jusqu’a un certain niveau de
détails, les interactions et les mécanismes des éléments physiques du systéme ainsi que
les phases du mouvement de I’eau. Présentement, les recherches sont orientées sur le
développement de modéles stochastiques qui reposent soit sur une approche physique des
processus, soit sur une approche conceptuelle (Bado et Unny, 1990). La formulation d’un
modele stochastique spécifique pour générer les débits d’un cours d’eau, a court terme,
constitue I’objet de cette étude. Nous présenterons, dans ce qui suit, une breve revue de
littérature sur certains travaux importants dans la modélisation des débits journaliers, en
commengant par la théorie linéaire de I’hydrogramme unitaire instantané (HUI) formalisé
par Nash (1957) et par le processus de Poisson filtré proposé par Bernier et al. (1970) et
Weiss (1977) par la suite. En effet, ces travaux reposent sur la notion de I’HUI sous
I’hypothese que la seule variable entrante dans le systéme est la précipitation. Le point
commun est que la distribution marginale du processus de Poisson filtré et la fonction de
réponse de I’hydrogramme est une fonction gamma a deux parametres. On passe en revue
d’autres variantes de la fonction de réponse du processus de Poisson filtré qui ont été
mises au point dans les recherches actuelles sur la physique des processus. Par ailleurs, la
formulation conceptuelle du processus générant les débits journaliers constitue le cadre
de cette étude; cet aspect conceptuel prend compte, méme de facon simple, I’aspect
physique du systeme. En effet, le modéle proposé par Lefebvre et Guilbault (2008) est
une forme conceptuelle qui repose sur la notion de I’HUI. Autrement dit, la forme de la
fonction de réponse du modele traduit les bréves périodes de montée suivies par des
récessions lentes qui caractérisent I’hydrogramme des débits journaliers et qui tend a

suivre théoriquement une distribution gamma.
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Dans le but de modéliser la dynamique et la réponse du bassin versant, I’approche du
réservoir linéaire de stockage est la méthode sur laquelle Nash (1957) s’est basé pour
proposer un modele de I’HUI. 1l suppose que la trajectoire du débit dans un bassin
versant avec une chute de pluie instantanée est équivalente a I’écoulement a travers une
succession linéaire de réservoirs, le débit sortant d’un réservoir devenant I’entree pour le

suivant. Ainsi, le débit du n® réservoir est donné par :
Qn = F(t/k)" . 4)

Le systeme de réservoirs linéaire est caractérisé par la relation linéaire entre le stockage
s(t) et le débit sortant QQ(¢) pour chaque réservoir a I’instant ¢, telle que s(t) = k x Q(t),
ou /& est un coefficient correspondant a la capacité moyenne de stockage du réservoir

dans le temps; on I’appelle en général "coefficient de stockage ou du bassin versant".

Le débit @, du premier reservoir obéit a la fonction de réponse impulsive (FRI) du
réservoir linéaire, qui représente la réponse du systeme a une impulsion unitaire

instantanée a I’instant ¢t = 0 ;
Q _ Lo
1 2 .

(), devient le débit entrant dans le second réservoir pour obtenir le débit sortant @, du
second réservoir. Ainsi de suite, les débits des autres réservoirs en série linéaire se

calculent comme suit :

LG

1 t 1
— ff_"”"f etlk = etk gy
k 0 k

1

1 't
Q, = Ic4ﬂ/<ﬂkquﬁ
J0



: = —€ € — € L (L
_ Lot
!‘\.'3 .. 2 '
Lt
(2_; = F [& E

Qn = % e~k (k)" (n = 1)1,

Le débit du n® réservoir (la derniére équation) peut se simplifier en remplagant la

factorielle par la fonction gamma, et obtenir I’équation (4).

L’hydrogramme unitaire instantané correspondant au modéle de Nash (1957) peut étre
obtenu par la fonction de distribution gamma a deux paramétres I'(n, k). La forme de la
courbe de I’HUI est représentée par la figure A.4 (annexe A) pour différentes valeurs de
n (parametre de forme) et % (paramétre d’échelle). Les paramétres n et A peuvent étre

estimeés par la méthode des moments.

Bernier et al. (1970) furent les premiers qui ont proposé le processus de Poisson filtré,
appelé aussi "shot noise". lls ont considéré explicitement le processus intermittent et le
caractéere “poissonnien” des précipitations et la fonction déterministe reliant les
précipitations et les débits journaliers. Le débit peut évoluer de facon déterministe
lorsqu’il n’y a plus d’incitations (précipitations) sur le bassin et suit ainsi une trajectoire
obéissant a une loi particuliere; il s’agit de la période de tarissement. Les précipitations
sont considérées comme I’élément important entrant dans le processus aléatoire de la
formation de débits. Les périodes de décrues des débits suivent en alternance les périodes

de montées des débits causées par I’alimentation du bassin par les précipitations.

Selon Bernier et al. (1970), le débit a I'instant ¢ peut étre donné sous forme d’un

processus continu, exprimé par



Q(t) = /{; w(t, ) Y(r)dN(7), (5)

ou w(t. 7) est la fonction de transfert déterministe de I’hydrogramme; la forme la plus

simple de cette derniere dans le cas d’un processus stationnaire est une exponentielle :
w(t,7) =017 §>0.

Y (7) est une série de variables aléatoires qui mesurent I’intensité des précipitations et
sont supposées indépendantes et identiquement distribuées selon une loi exponentielle,
N(7) est un processus ponctuel de comptage, c'est-a-dire que N(7) est le nombre

d’averses produites dans I’intervalle [0, 7].

La structure de ce modele n’est pas valable pour des régimes hydrologiques complexes,
la ou d’autres mécanismes aléatoires se combinent a la pluie, comme la fonte des neiges
liée a la température. Cependant, la forme de I’hydrogramme peut étre réaliste en période

de tarissement du débit.

Weiss (1977) a étudié plus en détail le processus “shot noise™ ou processus de Poisson
filtré en le développant comme un modele simple et physiquement réaliste qui reproduit
les récessions des débits journaliers. Ce modéle développé équivaut a un processus
autorégressif de premier ordre, mais dans lequel les innovations ne sont pas gaussiennes.
La structure du processus de Poisson filtré consiste en un processus ponctuel reproduisant
I’occurrence des événements de précipitations effectives (impulsions ou signaux)
considérées comme I’entrée du systeme; la propagation de ces entrées est ensuite filtrée

par la fonction de réponse du systeme pour obtenir I’écoulement (Murrone et al., 1997).

Le débit est une variable aléatoire X (t) représentée en temps continu par le processus de
Poisson filtré (Weiss, 1977) :



N(t)

X(0) = S ult-n..)

n=1

N(t)
= > Y.h(t—1,)

n=1

N(t)
= Z Y, ettt > r (6)

n=1
ou N(t) est un processus de Poisson de taux A, Y,, est I’entrée du processus (quantité des
averses) qui est une variable aléatoire de distribution exponentielle de parameétre /:, w est
la fonction de réponse du systeme qui décrit I’évolution et la propagation de I’impulsion
(I’effet du signal) dans le temps, et A(t —7,) := ¢ (~™) est la fonction de transfert
déterministe de I’hydrogramme. Ce processus a trois parameétres a estimer : la moyenne
des sauts # (= 1/pu), le taux d’occurrence des événements X et le taux de décroissance
b(=1/c). Weiss (1977) a utilisé la méthode des moments pour I’estimation des

parametres.

Le modeéle présenté par Weiss (1977) se compose alors d’un processus couplé Poisson-
exponentiel, reproduisant les occurrences et intensités des précipitations effectives.
L’écoulement du bassin versant a, par hypothése, une réponse exponentielle a la
précipitation (Murrone et al., 1997).

Pour modeéliser la récession du débit, sous I’hypothése du systéeme linéaire, Weiss (1977)

propose la forme suivante du processus X (1) :

X(t) = /: h(t) dY (t — ), (7)

ou dY () est un processus indépendant et non corrélé décrivant tout I’aléa dans X (1), et

h(7) est la fonction de réponse du systéeme.

Cette derniere équation est définie de la méme facon que I’équation (5); la somme en (6)

sur I’ensemble des effets d’impulsions produits dans I’intervalle (0,t¢) remplace
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I’intégrale en (7). Weiss (1977) affirme que les événements aléatoires entrant dans la
formation de X (¢) se traduisent par I’occurrence des crues a des instants aléatoires

suivant un processus de Poisson.

Pour appliquer ce processus continu a la série de débits qui est de nature discréte, il est
possible de représenter le processus sous une forme discrete X (n) en I’intégrant sur un

intervalle de temps de longueur 7" (une journée par exemple) :

X(n) = /{ " X (t)dt. (8)

n—1)T

D’aprés Weiss (1977), ce processus X () suit une distribution gamma (Pearson type 2)

de parametres (Ac. 1), de densité

Ae v Ae—1
I X —pX

f(X) = T ¢ )
ce qui permet d’obtenir les moments suivants :
EX()] = % (10)
VX (1) = j\T{ (11)
pIX (), X(t+s)] =e*°, s> 0. (12)

Le choix d’une distribution exponentielle pour la fonction de transfert i(7) rend le
processus X (t) un processus autorégressif d’ordre 1, AR(1), et correspond a un réservoir

linéaire unique. En plus, h(7) détermine la pente de récession de X (¢) (Weiss, 1977).

Le débit a I’instant ¢ + s est donné par
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I s)
X(t+s) = Z Y, et (t+s=m)
i=1

N(t) \(f-i—s
_ —bhs —h t—7;) —=b (t+s—T1;)
= e E Y e + E Y;e
i=N(t)

= e X(f,) + e (t+ s),

N(t+s)

o alt4) = 3 K
(t)

Le processus de Poisson filtré, selon Weiss (1977), n’est que le processus AR(1) en

temps continu, mais dont les innovations ¢,(¢ + s) ont une distribution asymétrique (voir

distribution gamma) et non pas gaussienne. La probabilité qu’aucun événement ne se

produise dans I’intervalle (¢, + s) est la probabilité que I’innovation soit nulle; cette

probabilité est strictement positive :
Ples(t+s)=0]=P[N(t+s)— N(t) =0] > 0.

Etant donné le résultat de Weiss sur le réalisme des processus de Poisson filtrés pour
modéliser les débits journaliers de riviéres, par rapport aux autres modeéles caractérisés
par des entrées gaussiennes, le processus de Poisson filtré est défini par des discontinuités
aux instants d’arrivée des événements (signaux), suivies par des décroissances
exponentielles (Bado et Unny, 1990). Autrement dit, la trajectoire du processus
recommence au sommet de chaque crue qui est atteinte au début de chaque signal. La
figure A.3 (annexe A) montre une réalisation typique d’un processus de Poisson filtré;
voir aussi Bado et Unny (1990) et Konecny (1992). Dans ce cas, la trajectoire entre deux

impulsions successives peut étre représentée par (Bado et Unny, 1990)
X (t) = X (tg) e~t=to),

Le processus de Poisson filtré est bien connu pour modéliser les récessions de
I’hydrogramme, mais il reste que la période de I’augmentation du débit n’est pas

considérée comme un élément composant de ce modeéle.
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Weiss (1977) a déeveloppé, par ailleurs, un modele composé de deux processus de Poisson
filtrés représentant respectivement le débit de surface et le débit de base. Par ce modéle,

les statistiques mensuelles peuvent étre préservées en plus des statistiques quotidiennes.

La modélisation stochastique pour la simulation des débits journaliers, en particulier, est
trés vaste. Bernier et al. (1970) ont dressé un inventaire de ces modeles; voir aussi Bado
et Unny (1990). Selon Lawrence et Kottegoda (1977), il y a deux défis importants dans la
génération des débits journaliers synthétiques : le premier est la modélisation d’une série
de variables dépendantes et non gaussiennes avec une grande variabilité; le deuxieme est
que la série des débits journaliers est caractérisée par des augmentations rapides suivies
par des diminutions lentes. Etant donné que les modéles autorégressifs gaussiens ne
peuvent pas reproduire fidelement les caractéristiques de débits journaliers, I’approche
théorique prometteuse est de pouvoir reproduire le mouvement ascension-récession de
I’hydrogramme via un processus autorégressif avec un terme d’innovation asymetrique
(Lawrance et Kottegoda, 1977).

Treiber et Plate (1977) ont développé un modeéle plus général que celui de Weiss (1977).
Le débit est généré d’un systeme linéaire, et a chaque jour pluvieux correspond une
entrée (signal) du systeme. La séquence des jours secs et pluvieux est supposée constituer
une chaine de Markov. Par conséquent, les amplitudes des entrées sont reproduites par un
modele autorégressif de premier ordre. Les entrées sont transformées en debits par la
fonction de réponse déterministe du systéeme, et suivent une distribution exponentielle
transformée. Le modéle a fourni de bon résultats, mais il n’est pas parcimonieux, vu le

grand nombre de parameétres qu’il nécessite a déterminer.

Kelman (1980) s’est intéressé a la modélisation séparée de la montée et de la baisse des
débits, la baisse étant soumise a la régle de vidange du bassin et la montée, causée par
I’arrivee d’un éveénement, est modelisée de la méme facon que les précipitations. En
considérant deux processus intermittents alternatifs (voir aussi Evora, 1997, Koch, 1985,
et Bado et Unny, 1990), I’auteur propose un modele conceptuel basé sur un systeme de

deux réservoirs linaires.
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Koch (1985) a propose une version a deux variables du modele de Weiss (1977), basée
sur des arguments du systeme physique. Le bassin est représenté comme un systeme de
deux composants : le premier décrit la surface et I’autre le ruissellement aquifere. La
combinaison linéaire des réponses de ces deux composants traduit la fonction de réponse
impulsive du bassin. L’écoulement de surface a les précipitations excédentaires comme
intrant, alors que le ruissellement aquifére est di a la recharge de la zone durant
I’infiltration et le drainage. Le processus du débit est représenté en temps continu comme
la somme de ces deux composants. Les entrées de ce systeme, les précipitations
excédentaires et la recharge, sont aléatoires et deviennent décroissantes par le processus
d’acheminement. Le processus stochastique du debit () a I’instant 7 est représenté par
le processus de Poisson filtré donné par

N(t)

Q) = Qo)+ Qu(t. 7))+ Qu(t.7)
i=1

N(t)

Qo(t) + Y Viere™ 7 4 Qp,cpe™e277),

=1

ou Ti I’instant d’occurrence du i° orage;
N(t) processus de Poisson, comptant le nombre d’orages dans I’intervalle [0, ¢];

Qo(t) lavaleur initiale du débit a I’instant ¢;

Q.,  I’écoulement de surface du i° orage;
Q,,  I’écoulement aquifére du i° orage;
Vi le volume des précipitations excédentaires du i® orage;

Qp, le volume de recharge du i° orage;

c1 et ¢, sont les coefficients de stockage de I’écoulement de surface et aquifére

respectivement.

V, Qp, N(t)et ~sont des variables aléatoires.



14

Cette approche permet une concordance entre les parameétres du modele et les parametres
du systeme physique (Murrone et al., 1997), mais I’application du modéle s’avéere
irréalisable étant donné que le probleme des estimations des parametres n'est pas traité
directement (Allamano et al., 2007).

Le modeéle continu peut étre discrétisé sur une période de longueur T comme donné
précédemment a I’équation (8). Comme I’hydrogramme est caractérisé par des périodes
de montées et de baisses, d’aprés Koch (1985): "A further simplification of the
continuous model is proposed based on the assumption that the discretization period is
"long™ relative to storm durations. If this is the case, the rising limb occurs over a short
time period and is represented as being instantaneous. This leads to a shot noise
representation of the continuous model which is similar to the second order shot noise
model of Weiss (1977)".

Plusieurs autres modeéles stochastiques décrivant la série temporelle des débits ont été
proposés pour modéliser les débits de cours d’eau, par exemple Salas, 1980, et Evora,
1997. D’autres travaux ont été consacrés a I’analyse des propriétés statistiques des débits
de riviéres en les modélisant par le processus de Poisson filtré; voir Kavvas et Delleur,
1984, et Yue et al., 1999.

Un autre modele stochastique dérivé du modéle shot noise a été développé par Murrone
et al. (1997) pour reproduire les données a court terme des débits (journaliers et
hebdomadaires). Le systeme est composé de trois composants en parallele : I’écoulement
de base (souterrain), I’écoulement aquiféere et I’écoulement de surface (les deux derniers
composants représentent les précipitations directes). Les travaux de Allamano et al.
(2007) et Claps et al. (2005) ont été réalisés sur le méme modeéle développé par Murrone
et al. (1997).

La fonction du bassin (%) est supposée étre la combinaison linéaire de la réponse des

trois réservoirs en paralléle :

C Cs C:
ht) = ug + —e k4 Zetlhe f ZDo=tlhs ¢ >
;'71 1{1..-2 ,1.73
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ou ¢; est un parameétre de recharge des éléments du systeme respectant la condition de
continuité > .c; =1, et k; est un coefficient de stockage. L’hydrogramme unitaire
instantané est représenté par la fonction de réponse a une impulsion du réservoir linéaire

u; = e~ t/ki, La fonction de réponse du bassin est une combinaison linéaire de fonctions

e
delta de Dirac. Le débit X (7) en temps continu est représenté par le processus de Poisson
filtré :

X)) =SSNy ht — 7).

i=1

ou Y; est I’entrée du processus, supposee suivre une distribution exponentielle, et la

fonction £ (%) est représentée par I’équation precédente.

Claps et al. (2005) ont, par ailleurs, considéré d’autres points importants qui, selon eux,
ont été négligés par la littérature sur les processus de Poisson filtrés. Pour vérifier les
hypothéses de base derriére le modéle de Poisson, a savoir I’indépendance des signaux
consécutifs (précipitations effectives) et leur assignation a chaque crue, et la distribution
de Poisson de leurs occurrences, les auteurs suggeérent des approches empruntées a
I’hydrologie statistique pour estimer la séquence des précipitations effectives du modele.
IIs montrent aussi que la dépendance temporelle des débits journaliers augmente la

pertinence d'avoir des modéles parcimonieux au niveau du nombre de parametres.

La majorité des efforts dans I’étude des processus de Poisson filtré ont porté sur la
définition de la fonction de réponse du systéeme et sur les méthodes pour estimer les
parametres; voir les travaux précedents : Bernier et al., 1970, Lawrance et Kottegoda,
1977, Weiss, 1977, Koch, 1985 et Murrone et al., 1997.

Plus récemment, Lefebvre et Guilbault (2008) (voir aussi Lefebvre et Guilbault, 2009)
ont proposé une fonction de réponse qui traduit la forme "ascension-récession” du débit

journalier, soit
w(t,7,Y;) =Yt — i) ke t=Tille,

Le débit X (¢) est alors exprime par
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N (
ZK t — ) e tmmdle >

ou 4 est une constante non négative a estimer.
Soit la fonction
hit,7)=(t— 'r)!"(-’_“_“)’f".

Cette fonction permet d’avoir une forme semblable a celle d’une distribution gamma
(voir figure A.2, en annexe A). En plus, si & =0, on retrouve la forme classique du
modeéle de processus de Poisson filtré qui implique des récessions lentes, exponentielles
et des augmentations instantanées du débit. Lorsque % > 0, le modéle proposé peut étre
meilleur avec le choix des bons parametres. Le parametre 4 joue le réle du parametre de
forme de la distribution gamma. L’avantage de ce modele est qu’il comprend la forme

classique d’une part et, d’autre part, permet plus de flexibilité ou de variabilité du débit.

Cette conceptualisation mathématique pour modéliser les débits journaliers est retenue
dans notre travail. Nous apporterons de nouvelles contributions a I’estimation des
parametres du modéle proposé et au développement d’un estimateur de la valeur du débit
prévu, tout en testant la qualité d’ajustement du modele et sa capacité prévisionnelle par

rapport a d’autres modeles candidats.
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CHAPITRE 2 :

MODELISATION, ESTIMATION ET PREVISION

Le contexte de ce chapitre se fonde sur les résultats théoriques d’estimation des
parametres du processus de Poisson filtré comme modéle du débit de cours d’eau, et
d’estimation des valeurs prévues du débit, en parcourant et développant de nouvelles
approches suivant les résultats de I’étude menée par Lefebvre et Guilbault (2008) (voir
aussi Guilbault, 2008).

2.1 Modélisation, estimation

Le processus de Poisson filtré utilisé pour modéliser le débit X (#) a court terme est donné

par

N(t)

X(t) = > w(t, . Yn)

n=1
N(t)

= Z Yo (t = 7)Fem /e, pourt > 7, > 0, (13)

n=1

Tel que £ > O et ¢ > 0. Ce modele devrait reproduire vraisemblablement I’hydrogramme
des débits d’un fleuve. Pour Vvérifier I’ajustement de ce modéle aux données observées
des débits journaliers, il est tout d’abord nécessaire d’étudier les propriétés du processus

de Poisson filtreé.

- Distribution du nombre d’occurrences N (t) des événements journaliers :

Etant donné que le processus {N(t). ¢ > 0} d’occurrence de précipitations est supposé

suivre une distribution de probabilité de Poisson de parameétre A ¢, alors

P[N(t) = k] = (’%ﬁ e” A,

E[N(t)] = VIN(t)] = At.
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Konecny (1992) a proposé, au lieu du processus de Poisson homogéne de taux A (> 0)
précedent, un processus non homogene (non stationnaire) avec une fonction d’intensité
A(t) > 0, pour t> 0. Cette fonction d’intensité décrit certaines tendances dans

I’occurrence des événements du processus.

A partir de la définition du processus de comptage N (), il est évident que la séquence
des instants d’arrivée des événements 7;, pour i = 0. 1,2, ..., est équivalente au processus
{N(t), t > 0} (voir figure A.1, en annexe A).

Un processus de renouvellement est un processus de comptage ou les temps entre les
arrivees des evénements ou le temps d’inter-occurrence (le temps que le processus passe
dans un état i € {0,1,...}) (7, — 7,_1) sont des variables i.i.d. Le processus de Poisson
homogene est un cas particulier du processus de renouvellement lorsque la variable

(1; — ;1) est d’une distribution exponentielle.

Par ailleurs, le processus de Poisson est un cas particulier d’une chaine de Markov en
temps continu. Les variables aléatoire 7;, pour i = 0,1, 2, ..., sont indépendantes par la
propriété de Markov, et sont identiquement distribuées par le fait que le processus de
Poisson se caractérise par des accroissements indépendants et stationnaires. En fait, du
point de vue probabiliste, le processus recommence a zéro, a partir de n’importe quel
instant 7;. Les variables 7; ont une distribution exponentielle de paramétre A (Lefebvre,
2005b).

- Distribution de I’amplitude Y des événements journaliers :

La variable Y est en général d’une distribution exponentielle ou gamma, le choix de cette
distribution devrait fournir un bon ajustement aux observations (Yue, Hashino et al.,
1999). Si Y suit une distribution exponentielle de parameétre 4., alors
, 1
frly) = — e,
J

E[Y] = p,
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VY] = i’
- Fonction caractéristique du processus de Poisson filtré :

On peut obtenir la fonction caractéristique Cx(6) := E[eX"] du débit X (t) e

conditionnant sur le nombre d’événements se produisant a I’intérieur de I’intervalle (0, t],
comme suit :

oo k
Cxw(0) = Z( {{xp{: Z o(t,7;. Y}

o1}
k=0

- +Z(p t)=k) {(xp{u‘) iu t,7j, }f}

i=1

wo-1))

En utilisant le fait que I’instant de la réalisation d’un événement dans I’intervalle (0, ¢] est
une variable aléatoire 7; d’une distribution uniforme U (0, ¢], par indépendance et pour
0<7m <7 <..<m <t lafonction de densité conjointe des variables U; est donnee

par

Par conséquent,

E{(!X]) {10 Z _yw(t, T, Y)}

N(t) = ;:;}

_ szl E{{!Xp['r’:ﬁ ~w(t, 7, Y;)} }

= (E{(‘.xp [-.E() ~w(t, T, Y)} }) k
= (% /{: E{ox])[éﬁ cw(t, T, Y)] d'r}) | .



Il s’ensuit que

> k t
Cxp(0) = Z ();) e M (%/{; E{(exp[?ﬁf)-w(f..r.}/ﬂ (h'})

o0 1 t *

t
= e Mexp {)\f E{(‘.X])[il‘)‘ ~w(t, T, Y)} rh‘}}
0
.
= exp {)\/ E{exp[?ﬂﬁ cw(t,T,Y)] - 1} d’r} .
0
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k

- Les statistiques de base du débit X () : la moyenne, la variance et le coefficient

de corrélation :

A partir de la fonction caractéristique, le calcul des moments par rapport a I’origine

E[X™"(t)] et de la covariance Cov[ X (t;), X (t2)] se fait comme suit :

d"
E[X"(t)] = (=i)" 20 Cx)(0)

7=0

Ay
s O°

CovlX (11, X (t2)] = (=0)° 5555 Ox(e1).x(12) (1. 62)

@1=0, 82=0

L’espérance et la variance de X () ainsi que la covariance de X (#;) et X (/) peuvent étre

obtenues a partir de ces formules, découlant des calculs précédents (Lefebvre, 2005b):

ELX(1)] = A A Blw(t.r, Y.)dr.

t
Var[X(t)] = )\/ E['¢1!2(t.7,,.K,)](£T.
0

min(ty.to)
Cov[X (t1), X (t2)] = A/ Elw(ty, Tn, Yo)w(ta, 7, Yy,)dr.
0

(14)

(15)

(16)
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Etant donné que la variable Y, est supposée suivre une distribution exponentielle de

parameétre ;, alors les formules (14) et (15) précédentes peuvent étre développées comme

suit ;

;
E[X(t)] = AE[Y,] /({: — 7p)ke (=™ edr
J0

ot
A / (t = 7a)fe "™ edr
H.Jo

éc*’“-y (}.1 + 1, i) .
L c

;

AE [Y,7] /(f — 7,) ke At ey
0

2\ [

= I (t — 7)) e2t=m)/eqr
= Jo

B>—1 2) (:)ml_ opa 1 2t

ou v (., .) est la fonction gamma incompléte définie par

o
W
|

Var X (t)]

I

v(a,z) = / ettt (R(a) >0).
0

(17)

(18)

Les équations (17) et (18) s’obtiennent si k € (—1,00) et k € (—1, o) respectivement.

La preuve est donnée par la formule 3.381(1) (Gradshteyn et Ryzhik, 2000, p. 342) qui

suit :

/ e e dr =y (v, pu)  si v > 0.
0

Par ailleurs, en appliquant la formule 8.352(1) (Gradshteyn et Ryzhik, 2000, p.

890) suivante :

y(n+1l,2)=mn! ll —e " (Z i |)] stn=0,1,...,
m!

m=0

les équations (16) et (17) s’expriment alors, pour des valeurs entieres de A et 2k

respectivement, comme suit :
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k m
€f01,) A e 1 [/t
E[X (f)] Ae{(}:l } —(.‘L+1;lﬂ! [1 — e t/ E m (;) ] B (19)

I
f m=0

2k

. . 2k€{0,1,..} 2N fcy 2R+ —ot/e 1 /2t\™
; - — (= 26 [ 1 — e e —{ — . 20
Var [X (1)] ;.2 (2) (2k) ll ¢ Z:U — (= (20)
La formule (16) de la covariance de X (#;) et X (¢5), lorsque %~ > 0, est donnée par (voir

la Proposition 2.3 de Lefebvre et Guilbault, 2008) :

Cov[X (t1), X (£2)]

- o\ v41 ) . _1ym m
= 2 eltitta)/e (!.11-'2)}"2 0.(—1)" ! (%) ! ll — el Z ( ”1’3 (21’.11':) ] (21)

Pour k € {0.1,...}, la valeur de la covariance s’arréte a 2.

- Estimation des parametres du processus de Poisson filtre :

L’estimation des paramétres du modele, <, &, A et pu, se fait en considérant que le
processus a eté en opération pour une durée assez longue dans le temps. Pour ce faire, des
expressions des équations précédentes (17), (18) et (21) devraient étre calculées a I’état

asymptotique du processus, c’est-a-dire quand t tend vers I’infini.
Par le fait que

v(e, 2) = I'(a),

lim
t—oo

I’espérance et la variance du processus sont alors données par

rlim E[X(t)] = A ATk +1) sike(=1.00), (22)
20 ey kL
rli111 Var [X(1)] = — (3) F(2k+1) sik>-1/2. (23)
— 00 = &

Le calcul de la covariance de X () et X (t + d), avec § > 0, se fait comme suit :
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Cov[X(t), X(t+0)] = / — 7)) (t+ 0 — 1) e G20/ g

= —(_O/Ef[(%+é)]ﬂ m2/e s,

e 0

lorsque & > —1.0Ona:

* 1o\ 5
flﬂli /[; [s(s + O)] leds = ﬁ (?) e« I'(k+1) K;-Jré ((—) .

Il suit que :
1

2\ [dc\FTe 5
Jim CoufX(0). X (0 +) = —= (7) Dk + 1) “() *9

ou K, 1 (.) est la fonction de Bessel modifiée.

F4

Vu son utilité pratique pour les besoins de modélisation, le coefficient de corrélation de

X (t)et X(t+ o) estaussi calculé, et il est donnée, lorsque & > —1, par

1‘ o Cov[X (t). X (t + )]
AMpx (), X(t+s) = VVar [A t)] /VarX(t+9)]

A5 (57 T+ 1) Ky (2)

B L(oh) P D(k+1) i (g)
VAN Fik+1) +i\e) (25)

Les formules asymptotiques précédentes (22), (23) et (25) dependent des parametres i et

c; il est impossible de les utiliser pour obtenir la valeur du parameétre 4 si la valeur du
parameétre ¢ est inconnue. En outre, si A est inconnu, il est pratiquement impossible aussi
de se servir directement de ces formules asymptotiques. Pour cette raison, une méthode
alternative d’estimation du parametre < a été envisagée (se référer a Lefebvre et
Guilbault, 2008).
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2.2  Approche d’estimation des parameétres £ et «

Une approche pour estimer le paramétre ¢ consiste a trouver une relation linéaire entre le
temps que cela prend pour qu’un débit atteigne son maximum apres I’arrivée d’un signal
et la valeur que peut prendre ce paramétre ¢. En effet, pour maximiser la fonction de
réponse unitaire de I’hydrogramme proposée par Lefebvre et Guilbault (2008) (voir

I’équation (3) et la figure A.2)
h(t) = (t — )% e~/ pour t>7 >0,

on pose

d
—h(t) =0 t—1=ke(>0).
.:zr.’() < c(=0)

Si I’on suppose que I’instant initial du signal est 7 = 0. Alors, pour ¢ > 7 la fonction 5

définie sur I’intervalle du temps [0, +00) admet un maximum en (¢ = kc) € [0, o).

Intuitivement, le maximum serait atteint lorsque la durée de I’augmentation du débit, du
minimum au maximum, équivaut a ~c¢ unités du temps. Autrement dit, le maximum doit
étre observé kc unités de temps apres I’arrivée d’un événement a I’instant +, et ce, si le
temps écoulé entre les arrivées des différents événements successifs est assez long afin
d’assurer une durée suffisante de la montée du débit suivie par une longue décroissance
(Lefebvre et Guilbault, 2008).

A partir de la figure 2.1, en prenant, par exemple, un ensemble & valeurs discrétes dans
[0, +00) de 20 jours (¢ € {0,1,2,...,20}), k = 1 et c = 2. Le signal étant arrivé a I’instant
7 = ¢ = 0 (aujourd’hui, par exemple). Le point maximum de la fonction % serait atteint
deux jours apres; ke = 2 et h(kc+ 1) = (ke)F e™* =2 ¢~1 = 0,7358. On parle donc de
maximum (ou maximum global) de la fonction h(t) parce que, pour tout

T e {0,1,2,....20},0ona: h(T) < h(2), et de maximum local pour le processus X (¢).
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h(t)

0.8r h(2) = 0,7358

Figure 2.1. La fonction de réponse unitaire de I’hydrogramme

h(t) = (t — )" e~

Cependant, I’expression ¢ — 7 = ke ne permet pas d’obtenir une valeur précise du
parameétre < sans fixer le paramétre A qui peut prendre n’importe quelle valeur dans
I’intervalle [0, co). Maintenant, si I’on suppose que le temps moyen nécessaire pour que le
débit augmente & son maximum vaut k¢ unités du temps, c’est-a-dire que (£ — 7) = ke, |l
devient facile de calculer les coefficients de corrélation théoriques (équation 25) en
remplacant le paramétre  par (t — 7)/k; les coefficients dépendront donc seulement des
valeurs de & et &, du moment que I’on peut calculer en pratique la moyenne arithmétique

des temps d’augmentation du débit.

En donnant des valeurs réelles positives au paramétre %, nous obtenons des valeurs du
coefficient de corrélation théorique p pour § = 1, 2, .... Le critére utilisé pour estimer le
parametre 4 est de calculer la somme des différences absolues entre les coefficients de
corrélation théoriques et empiriques sur un horizon ¢ > 0, et le point qui minimise la

valeur de cette somme serait I’estimation du parameétre 4.
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2.3  Prévision

Cette section illustre I’utilisation du processus de Poisson filtré aux fins de prévision, en
se basant sur I’espérance conditionnelle du débit prévu a I’instant ¢ 4+ 1 étant donné ses
valeurs un ou deux jours d’avance. L’évaluation des prévisions est considérée dans le cas

du modeéle lorsque k = 1 etk = 0.
2.3.1 Modele aveck =1

Lorsque & = 1, il est possible de calculer I’espérance conditionnelle du débit d’un cours

d’eau a I’instant ¢ + 1, étant donnée I’historique du processus aux instants + — 1 et t. En

———

effet, I’estimateur du débit a I’instant ¢ + 1 ; X (¢ + 1) est donné par

EX(t+1)|X(6)X(t-1)] = F! Yoo Ya(t+1—m) el X (1), X (t-1)

n:0<r, <t+1
= Bl Y Ya(t+1-n)e | X (1), X(E-1)
nl<m, <t
+ FE Z Y, (t+1—r1,)fetH=m/e X(r‘.).X(t—l)].
<t <it+l

Lorsque & > 0, I’estimateur est equivalent &

E[Xt+1)[X(@#).X(¢t-1)] = c‘iEl Y Y (t+1—7,) et

n:0<r, <t
+ E[X(1)]
= e cap + EIX(1)].

X (), X (t - 1)]

ou

Si k =1, alors
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o= E| Y Y (t+1-r,)e 7"

L n:0< 7, <t

= F Z Y, (t — T,,)(i_“_q—")‘h'

| n:0< 7, <t

S Vet

n:0<r, <t

= X(t)+v.

X (), X (t — 1)]

X(), X(t - 1)]

+ F

X(t), X (t - 1)]

tel que

y ::E[ Yy, et

n0<tp<t

X (1), X(t - 1)]

exprime I’espérance conditionnelle du processus, lorsque k& = 0, connaissant son état aux

instants f et 1 — 1.

La quantité z; peut aussi étre calculée d’une autre facon :

r = F[ Yo Ya(t—1—7,+2)e e

X(t), X(t — 1)]

n:0<r, <t
= 2B Y Y,e el X(1).X(t-1)
n:0<T, <t
+ e B D no<rm<t1Yn(t—1— Ta)e = hle X (), X (t — 1)]
+ Bl > Yat—1—m)e T X (1), X(t - 1)] .
nit—1<m, <t

Soit

= E[ Yo (£ = 1 = 7)o /e
nit—1<tp<t

X(t), X (t — 1)].

Il s’ensuit que

z1 =2y +e ¢ X(t—1)+ =
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Si I’on remplace # par z; — X (t) dans cette derniére équation, la valeur de x;, vaudrait

donc
1 =2X(t)—e t X(t—1) — z.

Il reste a évaluer la quantité =, qui peut étre obtenue par indépendance comme suit :

z = FE Z Y, (t —1—1,)e t=m)/e X(f.)_X(!.—l)]
L nit—=1<r, <t
= Bl Y v X(f,).X(t—l)]
L nit—1<mp<t
x E Z (t—1—7,)e"t=m)/e X(:‘.).X(t—l)].
nit—1<rm,<t

Afin de calculer approximativement z, nous supposons que dans I’intervalle de temps
(t — 1,1, au plus 1 événement s’est produit : soit 0 ou 1 signal survient dans une unité de
temps. S’il n’y a pas eu de signal qui fait augmenter le débit a I’instant 7,, dans
I’intervalle (f — 1, 1], le débit a I’instant ¢ serait généralement inférieur au débit précédent
al’instant ¢ — 1, c’est-a-dire que X (1) < X (t — 1). Alors que si un signal se produit dans
I’intervalle (¢ —1,¢], le débit a Iinstant ¢— 1 augmenterait, c’est-a-dire que
X(t) > X (t — 1). L’événement en question s’est produit en moyenne a I’instant ¢ — 1, et

son effet est donné par

N en) 1
}fu lr - (T - _) ](ﬂ_ © = — }/;; e Z2c,
2 2

En outre, pour prendre en considération une éventuelle diminution dans cette période
(t — 1,t], nous tenons compte du nombre d’unités de temps de diminution du débit dans
I’intervalle (0, t], et puis nous calculons la moyenne p de la baisse relative du débit par

unité de temps. Il s’ensuit que le premier terme de = serait donné par
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E[ > v,

nit—1<r,<t

X(i:).X(r,—l)] ~ Qe {[X(t)—X(!.—l)]+pX('r.—1)}.

si X(t) > X(t—1).
La moyenne p traduit la pente de la baisse du débit dans la période (¢ — 1, 1], et le terme
2 e3¢ est interprété comme étant la force du signal dans cette période.

Puisqu’il est supposé qu’un seul événement s’est produit dans I’intervalle (¢ — 1,¢], nous
avons 7, ~ U(t — 1,t]; il est donc possible sous cette hypothese d’évaluer le second

terme de 7z comme suit

E[ Z (t —1— T},)(:_(!_T”)""'

nit—1<m,<t

X(1), X (t - 1)]

t
= / (t—1—s)e "9/ 1ds
t—1

f t
— f ce =9/ g
t—1 t—1

= (t—1-39)c e~ (t=s)/c

Par déduction,

2~ 2(_«:'_’17 f((;) {[X(f’) — X(f — J.)} +1UX(?L— 1)} l{X(f)ZX(f—l)}

[0

2¢% f(c) {X(t) —(1=p)X(t - 1)} 1{‘\'(”2'\'“_1) }
et
21 ~2X(t) —e e X(t—1)—2e2 f(c) {X“) —(L=p)X(t— l)} ! {x®zx@-1}

Finalement, I’estimateur de la valeur prévue du débit a I’instant ¢ + 1 se simplifie a
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E[X(t+1)[X(t).X(t—1) ]
e"cm + E[X(1)]

e IZXU) —ec X(t—-1)

—2e3 f(c) {X(r.) —(1-p)X(t— 1)} L s x0-1 }]

+ E[X(1)].
(26)

2.3.2 Modeleaveck =0

Dans le cas du modele avec & = 0, I’espérance conditionnelle de X (¢ + 1), étant donnée

I’historique du processus dans I’intervalle [0,%], donne I’estimateur de prévision
suivant (Lefebvre et Guilbault, 2008) :

E[X(t+1)[X(#)]

_|_

E Z Y, e~ (tH1-m)/e X(t)]
n:0<r, <t+1
E| Y Yperttmmlle o 3"y, en (/e X({.)]
<, <t < <t+1
VB Y Vet X(t)}
n:0<r, <t
Bl Y Yaerttmmile g X(ﬁfJ
nit <, <t+1

e~ Ve B[X (1) X (t)] + E[X(1)]
eV X(t) + B[X(1)]
Ac

(_,—1,-"(' 3 A P—l;"('
X + T (1), -

En effet, lorsque & = 0, la valeur de X (¢ + 1) ne dépend que de X (). Lorsque k =1,

I’estimateur calculé du débit a I’instant ¢ + 1 dépend de la valeur du débit aux instants #

et t — 1, ce qui donne une information de plus pour prévoir la valeur du débit a I’instant

t+ 1.
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CHAPITRE 3 :

APPLICATION ET RESULTATS

Une application des formules obtenues précédemment sur des données réelles, tirées des
relevés hydrographiques de deux fleuves, va permettre de juger pratiguement des
résultats théoriques du modele. Les stations Montague (No. 014385) du fleuve Delaware
au New Jersey et Green Island (No. 013580) du fleuve Hudson a New York serviront a
cette fin. Pour la période de temps du 1° octobre 2002 au 30 septembre 2003, les
statistiques correspondant a la moyenne, I’écart-type du débit et le coefficient de
corrélation entre les débits pour deux jours consécutifs sont résumés dans le tableau 2.1,

et la figure 2.2 illustre la trajectoire du débit pour les deux fleuves.

Tableau 2.1. Caracteéristiques du débit (en md3/s)

‘ Delaware River ‘ Hudson River
Moyenne 7517,75342 ‘ 15482,9863
Ecart-type o 6358,28631 11621,5812
Coef. Corrélation r 0,90121739 0,93868413
100000
90000
80000 IJI
70000 |:
0000 ik
50000 Inl‘l"
40000 :i :” .‘1 H l
30000 \II-. ”\ | Almrl |”| :1 \
20000 " ”’ -~ f:l N , "\ ,“K !\ “'
o j@w" CLAAN w ST
RS \_N_,W . 23
& & & NQ\, & %9*\, & o & P @D'\, &p"'

e g N N ¥ § J S
¥ & ¥ o o % o o o ot o &
U A A A

Delaware NJ 014385 - --- Hudson NY 013580

Figure 2.2. Hydrogramme du débit (en m?/s) des fleuves Delaware et Hudson
(01/10/2002 au 30/09/2003)
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3.1 Modele avec la valeur du parametre k estimée

Avec [I’utilisation de I’approche du critere du coefficient de corrélation et la méthode
alternative d’estimation du parameétre ¢, une relation de dépendance entre les parameétres
c et k est obtenue, ce qui permet par la suite de calculer le coefficient de corrélation p(d)
en fonction de valeurs réelles positives du paramétre 4. La valeur du parametre < lorsque
k =1 vaut approximativement en moyenne 2, 1923 jours pour que le débit passe du
minimum au maximum pour le fleuve Delaware. Comme I’illustre la courbe de la figure
2.3, la valeur du paramétre A optimale qui minimise la somme des différences absolues
entre le coefficient de corrélation théorique p(6) et empirique r(4) (sur un horizon & de 7

jours) vaut 0, 75.

Sur 52 signaux ou impulsions produits, selon un processus de Poisson, durant I’année
d’étude du fleuve Delaware, la moyenne et I’écart-type temporels séparant deux
impulsions consécutives (le début de I’augmentation du débit), sont: T ~ 8, 0392,
st o~ 4,1374, ce qui implique que le temps 7" entre deux signaux consécutifs qui font
augmenter le débit n’a pas une distribution exponentielle puisque la moyenne et I’écart-
type de cette distribution doivent étre égaux. Bien que ce constat signifie que le processus
de Poisson filtré n’est peut-étre pas le modele valable théoriquement pour les débits du
fleuve Delaware, il est toutefois parfois possible d’appliquer une fonction qui transforme
la variable 7 a une variable aléatoire exponentielle (Lefebvre, 2004). Nous nous
contentons dans ce travail de supposer que le modele du processus de Poisson filtré est

valable pour les observations dont nous disposons.

Si I’on calcule la somme des différences absolues entre les coefficients de corrélation
théorique p(d) et empirique (&) sur un horizon & plus élevé, nous constatons alors qu’au
fur et a mesure que & prend des valeurs plus €elevées, la valeur du parametre A tend a
diminuer pour a la fin se stabiliser sur une valeur constante. Effectivement, la valeur du
paramétre % se stabilise a 0,63 lorsque les différences absolues des coefficients de

corrélation sont calculées sur un horizon de plus de 20 jours pour le fleuve Delaware
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(figure 2.4). Cela est, statistiguement parlant, évident du moment que la fonction
d’autocorrélation décroit exponentiellement et/ou s’annule aprés un certain décalage dans
le temps. En outre, la valeur du coefficient de corrélation empirique (&) convergera vers
la valeur du coefficient de corrélation théorique p(4); ainsi I’écart entre ces deux

coefficients tend a s’annuler dans le temps, c’est-a-dire pour & trés grand.

Fleuve Delaware

35

0 50 100 150 200 250 300
Valeur du paramétre k (102)

Figure 2.3. Les valeurs de Z;:l |p(8) — ()| en fonction
des valeurs du paramétre £: prises de 0,01 a 3.

Fleuve Delaware
140

100 B

80 B
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a0} f
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0 50 100 150 200 250 300

Valeur du paramétre k (102)

Figure 2.4. Les valeurs de ) ;. ,, |2(d) — 7(d)| en fonction
des valeurs du paramétre % prises de 0,01 a 3.
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Le tableau 2.2 qui suit montre les calculs des coefficients de corréelation théorique et

empirigque avec la valeur estimée du paramétre 1; la valeur du paramétre ¢ vaut 7"/.

Tableau 2.2 : Ecart entre les coefficients de corrélation théorique et empirique des débits

X(t)et X(t+d)pours =1,2,....7, J: = 0,63 et ¢ ~ 3, 4798 (Delaware).

) 1 2 3 4 5 6 7
r(0) 0,9012 0.7470 0.6123 0.5102 0.4247  0,3464  0.2888
p(0) 0,9390 0,8259 0,7022 0,5844 0,4789  0,3883  0,3120
|p(0) = r(0)] 10,0378 0,0789 0,0899 0,0742 0,0542  0.0419  0.0232

En conclusion, le modele apparait estimer tres bien la valeur du coefficient de corrélation
théorique p(d). En fait, I’erreur d’estimation la plus élevée est de 14,7% (au 3° jour
suivant I’observation la plus récente), ce qui traduit le fait que le modéle peut étre aussi
bien approprié pour des prévisions sur une longue période, soit au-dela de sept jours, que
sur une breve période. Il faut rappeler que la somme des différences absolues des
coefficients de corrélation pour un horizon assez long atteint son minimum lorsque
k= 0,63. Par ailleurs, la différence des deux coefficients de corrélation théorique et
empirique p(d) — r(0) est plus petite qu'avec les modeles avec & = 0 ou & = 1 comme il

sera montreé ci-apres.
3.2 Comparaison avec les modeles lorsque £ = 0etk =1

Pour pouvoir estimer les paramétres du modele lorsque & = 0, il est nécessaire d’estimer
la valeur du parameétre < afin d’étre capable, par la suite, de calculer les valeurs des
parametres A et ;. en tenant compte des formules asymptotiques précédentes. Le critére
crédible utilisé pour calculer la valeur du paramétre < est de supposer I’égalité de la
limite asymptotique du coefficient de corrélation théorique de pas 1: p(d = 1) et la

valeur du coefficient de corrélation empirique de pas 1 : r(d = 1).
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A partir de I’équation (25), on déduit que
i S e~9/¢ si k=0,
i pxwxes) = (bte) -t g g = 1.
Alors
lim pxyxeen = e /¢ lorsque k = 0,
t—oo

e Ve~ 0.9012 = ¢~9.6128.

Par conséquent, les équations (22) et (23) lorsque k& = 0 sont données par

. N Ac
. — B Ac
rlifi Var [X(t)] = el

D’ou

A(9,6128)
J

~ 751775 = [~1,86x107%

A(9.6128)

et
I

~ (6358,29)> = A ~0,1454.

- Le modeéle avec #: = 0 obtenu pour le fleuve Delaware est alors

N(t)
X(t) =" Y,e =m0 pour t >0 (X(t) =0 si N(t) = 0)
n=1
ou {N(t), t > 0} est un processus de Poisson de taux 0. 1454 et les Y,, sont des v.a. i.i.d.

de distribution exponentielle de parameétre 1, 86 x 10~
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- Dans le cas du modele avec & = 1 pour le fleuve Delaware, I’estimation du parameétre

cesté ~ 2,1923, et le modéle s’exprime comme suit :

N(t)
X(t) =Y V(t = 7,)e” /21925 pour £ >0 (X(t) =0 si N(t) = 0)

n=1

ou {N(t), t > 0} est un processus de Poisson de taux 0, 2908 et les Y;, sont des v.a. i.i.d.

de distribution exponentielle de parameétre 1, 86 x 10~

Les tableaux 2.3 et 2.4 ci-apres montrent les valeurs des différences des coefficients de

corrélation théoriques et empiriques du modele lorsque & = 0 et & = 1 respectivement.

Tableau 2.3 : Ecart entre les coefficients de corrélation théorique et empirique des débits
X(t)et X(t+d)pour§ =1,2,....7, k = 0eté ~ 9,613 (Delaware).

S 1 2 3 4 5 6 7
r(9) 0.9012 0.7470 0.6123 0,5102 0.4247  0,3464  0.2888
p(6) 0.9012 0,9967 0.7319 0,6596 0.5944  0.5357  0.4828
|p(6) — r(d)] 0 0,2497 0,1196 0,1494 0,1697  0,1893  0,1940

Tableau 2.4 : Ecart entre les coefficients de corrélation théorique et empirique des débits

X(t)et X(t+d)pour§ =1,2,....7, k = 1et ¢ ~ 2,1923 (Delaware).

1) 1 2 3 4 3 6 7

r(0) 0.9012 0.7470 0,6123 0,5102 0.4247  0.3464  0,2888

p(6) 0,9228 0,7680 0,6028 0,4556 0.3353  0.2421  0,1721
1p(8) = 7(8)] |0,0216 0,021 0.0095 0,0546 0.0894  0,1043  0,1167

La différence absolue des coefficients de corrélation |p(d) — r(d)| des débits X (#) et
X (t + 0) devrait décroitre dans le temps et le modéle serait valable pour prévoir le débit
du fleuve a I’horizon & si I’erreur relative du coefficient de corrélation tend a s’annuler a

cet horizon. En guise de comparaison de ces modéles avec le modéle obtenu en estimant
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le parametre A, il peut étre conclu de ces résultats de modélisation que la qualité du
modeéle semble bien meilleure avec k& = 1 qu’avec k& = 0, mais il reste que les résultats de
ce dernier sont obtenus avec une valeur fixe du parameétre < calculée a partir du
coefficient de corrélation de pas égal a une unité du temps, par convention, car il est le
plus fiable statistiquement et qu’a cet horizon-la le modele devrait étre parfaitement
réalisable. Par ailleurs, il n’y a pas une tres grande différence entre le modéle avec

k= 0,63 et le modéle avec k = 1 On voit dans le graphique de la figure 2.3, que la

courbe de la somme des différences absolues semble stationnaire a partir du point
minimum 0, 63 et que, de ce fait, les valeurs de ;. ,, [2(d) — 7(d)| & ce point ne sont
pas trés elevées ou tres différentes de celles au point & = 1, ce qui fait que I’ajustement
du modéle & moyen terme parait aussi bon avec k = 1 qu’avec & = 0, 63. Mais si on
considere un ajustement a court terme, soit a sept jours (voir figure 2.2), la différence des

valeurs de S°7_, [p(0) — r(6)| étant importante entre les deux points 0,75 et 1, le modéle

avec la valeur du paramétre % estimée (& = 0.75) s’ajuste donc mieux aux observations

que le modele quand % vaut 1.
3.3 Stabilité du parametre k

Dans le but de savoir si I’ensemble des valeurs possibles du parameétre £: est défini sur un
intervalle donné, nous vérifierons la variabilité¢ de ce parameétre en le calculant sur
différentes périodes de débits pour d’autres échantillons de données. Le tableau 2.5
résume les valeurs du parametre % sur différents périodes annuelles de débits; une
variabilité du parametre est immédiatement remarquée pour le fleuve Delaware,
contrairement, plus au moins, au fleuve Hudson. Une valeur élevée du parametre %,
dépassant la valeur 2 dans les années 2003-2004 et 2005-2006, est observée pour le
fleuve Delaware; méme chose dans I’année 2005-2006 pour le fleuve Hudson. Il ne doit y
avoir que la nature des données qui influence ces variations, voire le mouvement ou la
dynamique du débit dans chaque période, ce qui explique la valeur de A qui est
Iégerement supérieure a 1 sur deux années consécutives (2002-2004 et 2004-2006) pour

le fleuve Delaware. Cependant, la valeur 1,59 du parametre A pour le fleuve Hudson
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n’apparait pas trop influencer la variabilité du paramétre sur une période de deux ans
(2004-2006 ou k = 0,63) puisque la valeur est suffisamment inférieure a 1. En
examinant le mouvement des fleuves de plus prés (voir les figures 2.5 et 2.6), nous
constatons que deux crues se sont produites au fleuve Delaware a la période de I’automne
et de I’été de 2004 et 2006 respectivement, alors que par opposition aux autres années, le
débit fluctue plus aux périodes printaniere et hivernale. En outre, la crue hivernale de
2005 n’a pas trop d’impact sur la valeur du parametre 4, peut-étre parce que cette crue a
été suivie par une stagnation du débit, ce qui a fait alors compenser la moyenne des
variations. Par ailleurs, le fleuve Hudson est distingué par I’arrivée de crues trés élevés a
la période 2005-2006, ce qui a conduit a une valeur de A qui vaut 1, 59, soit inférieure a
2, de sorte que la dynamique genérale du fleuve est bien stationnaire a I’exception de la

crue estivale qui est bien distinguée par rapport aux autres années.

Tableau 2.5 : Variabilité du paramétre 4.

Fleuve Delaware  Fleuve Hudson
E (F(s—o0)) E (Koo0))
2002 — 2003 0,75 0,23
2003 — 2004 2,56 (1,97) 0,70
2004 — 2005 0,68 0.31
2005 — 2006 2,37 1,59
2006 — 2007 (1,96)0, 40 0,34
2007 — 2008 0.44 0,33
2002 — 2004 1,54 0,42
2004 — 2006 1,15 0,63
2006 — 2008 0,41 0.33
2003 — 2006 1,31 0.63
2002 — 2008 0,88 0.43

Remarque : la valeur du parametre A entre parenthéses est sa valeur limite (lorsque

5 — 00).
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Figure 2.5. Hydrogramme du débit (en m3/s) du fleuve Delaware de 2002 a 2009.
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Figure 2.6. Hydrogramme du débit (en m3/s) du fleuve Hudson de 2002 & 2009.

3.4 Capacite prévisionnelle du modele

Le calcul des coefficients de corrélation théorique et empirique a servi de premier critére
d’évaluation de la qualité d’estimation du modele. Par ailleurs, le second critére
primordial de I’adéquation du modele comme spécification formelle de la dynamique

d’un fleuve est son utilité a prévoir le débit du lendemain, voire le débit futur.
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34.1 Caslorsquek =1

L application qui suit se fait sur le fleuve Delaware, en utilisant les données sur les débits
du 1* octobre 2002 au 30 septembre 2003.

Le débit a diminué 247 fois pendant cette année, et la diminution moyenne par jour a été

—

d'environ 10,47% (= p). Avec ¢ ~ 2, 1923, le calcul de I’estimateur du débit X (t + 1) a
I’instant ¢ + 1 (équation 26) se fait comme suit :
. Ac (

7517.75
EX(1 == (c—e "1 - :f)
X(D)] P (¢ =7 (1+0)) 2.1923

([). 1689).
Alors

— 1

X(t+1) e« |:2X(f,) — e X(t— l):|

12

—2@$HQ{X@L41—MXQ—1%
+E[X(1)]
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+ 580, 6924.

Ainsi, si X (1) > X (t + 1), le terme

z ~ 0,6876 {){(q —-0.895)(({—-1)}

——

sera ajouté a I’estimateur du débit X (f + 1).

Etant donné que les données sont disponibles pour la période de prévision, le calcul des

débits prévus se fait selon la méthode statique de prévision qui tient compte des valeurs
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réellement observees des débits; le débit du lendemain serait donc estimé a partir du débit
observé aujourd’hui et hier. Avec I’application de cet estimateur, nous effectuons des
prévisions sur les quatre premiers mois de I’année 2004, soit du 21 janvier au 30 avril.
L’erreur absolue moyenne mae (Mean Absolute Error), soit la moyenne de la valeur
absolue des 101 erreurs de prévision (21/01/2004-30/04/2004) et son écart-type sdae

(Standard Deviation of Absolute Error)) sont

-1

mae = 717, 5432 et sdae = 1200, 2266

—

avec e=X(t+1)-X(t+1).

Le modeéle de régression linéaire obtenu a partir du méme échantillon d’observations est

—

X(t+1)~1024,89+ 1,2122X () — 0,3457X (t — 1)
avec mae = 808, 6454 et sdae = 948, 1041

Un autre indicateur d’écart entre les deux modeles de prévision est I’erreur absolue
moyenne en pourcentage mape (Mean Absolute Percentage Error) qui mesure la

précision de I’ajustement du modéle aux données, soit

mape = 11, 29% pour I’estimateur du débit X (¢ + 1),
mape = 16, 36 pour le modéle de régression,
et ce, sur les 101 erreurs de prévision correspondantes.

Par conséquent, a partir de ce dernier indicateur, le modele issu du processus de Poisson
filtré parait s’ajuster plus aux vraies données que le modéle de régression linéaire pour
prévoir le débit du fleuve Delaware; I’écart d’erreur en pourcentage entre les deux
modeéles est d’environ 5%. Par contre, en prenant compte de I’erreur quadratique
moyenne mse (Mean Square Error) ou de sa racine carrée rmse (Root Mean Squared

Error),
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—

mse = 1941149, 2155, rmse = 1393, 2513 pour I’estimateur du débit X (t + 1),
mse = 1543908, 7757, rmse = 1242, 5413 pour le modele de régression.

Nous notons que le mse est un peu plus élevé pour le modele de prévision. En fait, le mse
incorpore la variance et le biais des erreurs de prévision, ce qui permet un arbitrage entre
les deux. Alors que le mae pénalise moins les grandes erreurs de prévision en donnant
moins de poids aux observations extrémes, ce n’est pas le cas avec le mse. Quant au
rmse, il permet d’avoir une unité de mesure comparable a celle des observations. Etant
donné que les débits prévus dans cette période des premiers quatre mois de I’année 2004
sont beaucoup moins élevés par rapport aux autres périodes de I’année et que, par
conséquent, les erreurs de prévision observées sont également plus faibles, alors les

indicateurs pertinents pour comparer les prévisions seraient le mae et le mape. Ces

—

derniers sont moins élevés pour I’estimateur du débit X (# + 1) que pour le modéle de

régression linéaire. Notre modéle est donc plus performant que la régression linéaire.
3.4.2 Caslorsque k=0

Dans le cas du modeéle avec i = 0, pour le méme échantillon de données du fleuve

Delaware, I’estimateur du débit X (7 + 1) (équation 27) est donné par
E[X(t+1)|X(t)] >~ 0,9012X (t) + 742, 7537

avec mae = 837, 3837
sdae = 1022,0397
mape = 15,05%

mse = 1735434, 3390, rmse = 1 317, 3588.

Le modeéle de régression linéaire est donné par

—

X(t+41) ~ 771,1605 4 0,9021.X (¢)
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avec mae = 858, 3267
sdae = 1009, 6543
mape = 15, 71%

mse = 1746033, 4022, rmse = 1321, 3756.

Les résultats du modeéle lorsque & = 0 sont comparables avec ceux du modéle de
régression linéaire. Ce qui traduit sa puissance prévisionnelle a court terme (en prévoyant
le débit du lendemain a partir de I’observation la plus récente). Cependant, le modele
avec k = 1 semble battre le modeéle classique du processus de Poisson filtré autant que le
modele de régression correspondant. En fait, ce modéle donne les valeurs les plus petites
de mae et mape. De plus, 66 fois sur 101 la valeur absolue de l'erreur de prévision de
I’estimateur a été inférieure a celle obtenue en utilisant le modéle avec & =0 et la

médiane des valeurs absolues des 101 erreurs est égale a 585,87 dans le cas de

—

I’estimateur du débit X (¢ + 1) avec & = 0, et a 352, 76 avec k = 1. Enfin, cela témoigne
du fait que le modéle du processus de Poisson filtré serait un bon modele aux fins de

prévision.

Nous voulons maintenant vérifier si I’on obtient des résultats semblables en prévoyant
sur une autre période de méme longueur que la précédente, soit 101 jours de prévision, du
1*" octobre 2003 au 9 janvier 2004 (101 données qui succedent la période d’estimation du

modele).

Les résultats des calculs obtenus pour chaque critére d’écart entre valeurs observées et

prévues du débit sont présentés dans ce qui suit sans le terme =. En fait, I’estimateur du

—

débit X (f + 1), avec le terme =, amplifie les valeurs de prévision lorsque le débit est en
période de croissance (cela est bien clair graphiquement, voir figures 2.7 a 2.10), cela est
dd a I’hypothése qu’un événement s’est produit durant I’intervalle de temps (¢ — 1,1], ce
qui implique évidement une augmentation du débit. Ce terme = était censé améliorer les

prévisions, mais en pratique il les rend moins bonnes.



44

Le tableau 2.6 résume les résultats obtenus sur la période 01/10/2003 - 09/01/2004, pour
le processus de Poisson filtré et pour le modele de régression linéaire. Les résultats, cette
fois-ci, favorisent la régression linéaire plutdt que le processus de Poisson filtré lorsque
k =1, quoiqu’on peut prétendre que les résultats sont presque similaires mais avec un
degré de plus pour le modeéle autoregressif. Le modele lorsque A = 0 demeure
comparable avec la régression linaire correspondante. Le point le plus important a
remarquer est que le modele avec & = 1 donne des résultats meilleurs que le modéle

classique lorsque & = 0 (voir figures 2.7 et 2.8).

En refaisant les mémes prévisions pour le processus de Poisson filtré sur le fleuve
Hudson (tableau 2.7), le modéle lorsque & = 1 est meilleur que lorsque 4 = 0, mais la
régression linaire I’emporte dans les deux périodes de prévision, quoique que les résultats
du modeéle lorsque %~ = 0 demeurent similaires a ceux de la régression correspondante

(voir figures 2.9 et 2.10).

———
Ainsi, ce qui doit étre noté, est que les résultats de I’estimateur X (7 + 1) du processus de
Poisson filtré avec & = 0 sont similaires a ceux du modele de régression correspondant,
tandis que cet estimateur avec & = 1 donne de moins bons résultats comparativement au

modeéle de régression, mais s’avere meilleur que le modele classique avec & = 0.
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Tableau 2.6. Critéres de comparaison de prévisions entre modeles pour le fleuve

Delaware.
Estimateur Régression
du débit X (¢ +1) linéaire
Période (21/01/2004-30/04/2004)
mae 619,9151 _ _
808, 6454
sdae 1076, 2255 ,
. 948, 104116, 36%
Modele avec k. =1 | mape 9,54%
1543908, 7757
mse 1531088, 0801
1242.5413
rmse 1237,3714
mae 837, 3837 858, 3267
. sdae 1022,0397 1009, 6543
Modéle avec k& = 0
mape 15,05% 15, 71%
mse 1735434, 3390 1746033, 4022
rmse 1317, 3588 1321, 3756
Période (01/10/2003 - 09/01/2004)
mae 2579.25732 2444, 2947
sdae 5247,72815 5167,9355
. mape 12,92% 12,43%
Modéle avec k = 1
mse 33918558, 7870 32417702,6619
rmse 5823,9642 5693, 6546
mae 2959, 5348 2975,4709
sdae 5068,7016 5054, 2318
Modele avec & = 0 | mape 16, 06% 16,12%
mse 34 196 208, 9357 34145762, 9852
rmse D5 847,7525 5843,4376
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Tableau 2.7. Critéres de comparaison de prévisions entre modeles pour le fleuve

Période (21/01/2004-30/04/2004)

Hudson.

Estimateur

—

du débit X (¢ + 1)

Régression

linéaire

mae 2296,9780 2377,9165
sdae 3957,4410 3737,3510
Modéle avec &£ =1 | mape 9,28% 9,73%
mse 20782 384,091 19483 984, 0464
rmse 4558, 7700 4414, 0666
mae 2608, 1403 2626, 1009
Modéle avec k — 0 sdae 3979,2372 3966, 3778
mape 10,60% 10, 75%
mse 22479948, 7031 22472794, 8554
rmse 4741,3024 4740,5479
Période (01/10/2003 - 09/01/2004)
mae 4327,6741 4151,4833
sdae 7324, 7111 T7224,7146
Modile avec k — 1 mape 13.58% 13, 04%
mse T1848953,4753 68914 517,9778
rmse 8476, 3762 8301,4769
mae 4463, 3310 4464, 3767
sdae T243,5280 T237,3885
Modele avec & = 0 | mape 14, 25% 14, 27%
mse T1870529,0464 71791840, 2566
rmse 8477,6488 8473, 0066
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CONCLUSION

Ce travail donne suite a celui mené par Lefebvre et Guilbault (2008) dans lequel on
propose une version plus réaliste du modéle classique du processus de Poisson filtré

utilisé pour modéliser le debit journalier X () :

N(t)

X(t) = Z w(t, 7., Y,)

n=1
N(t)

= D Valt=m) e pour s
n=1
Intuitivement, il est évident que la constante A devrait étre plus grande que 0. En fait, la
fonction de réponse du modele quand i = 0 génere une augmentation instantanée avec
une décroissance exponentielle du débit, ce qui est assez loin de la réalité. C’est un
modéle qui est simple & utiliser parce que les estimateurs et les formules sont faciles a
obtenir, mais les résultats des criteres utilisés dans ce travail (voir aussi les résultats de
Lefebvre et Guilbault 2008; Guilbault, 2008) prouvent que le modéle avec une valeur de

k: supérieure a 0 apparait plus réaliste.

Lefebvre et Guilbault (2008) ont considére les cas ou la constante A prend une valeur
nulle ou égale a 1. En analysant la qualité d’ajustement du modeéle, les auteurs ont
prétendu que la valeur 1/2 pour le paramétre A4 donnait un meilleur ajustement au modéle.
Cependant, dans le cadre de notre travail, nous avons adopté une approche reposant sur la
minimisation de I’écart absolu entre les coefficients de corrélation théorique et empirique
sur un horizon §(> 0) de 7 jours. Etant donné que I’estimation des paramétres est faite en
calibrant le modele sur les observations des débits journaliers au cours d’une année, les
variations annuelles de la valeur du parametre A étaient bien remarquées. Ce parametre
varie selon les fluctuations du débit et peut prendre des valeurs plus élevées (soit
1 < k < 2) lorsque la dynamique du fleuve se distingue par I’arrivée de quelques crues

exceptionnelles.
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En se basant sur le critere de différence des coefficients de corrélation, théorique et
empirique, pour comparer la qualité du modéle en tant que telle, nous avons remarqué
que la qualité d’ajustement du modeéle avec i = 1 est équivalente a celle du modele avec
le paramétre estimé k; ces deux derniers modéles s’ajustent plus parfaitement que le

modele classique avec k& = 0.

Dans le cadre de la capacité prévisionnelle du modéle, nous avons compareé les résultats
obtenus du modéle lorsque & = 1 avec ceux du modele classique lorsque 4 = 0 et du
modele autorégressif correspondant. Si les résultats du modele du processus de Poisson
filtré sont comparables a la régression linéaire, c’est déja un point important marqué par
le modele, puisque le processus autorégressif est un modele qui fonctionne bien, par
défaut, pour les prévisions a court terme d’apres I’étude de Lefebvre (2003). En plus, le
modeéle nous permet de faire plus de prévision en hydrologie; il nous permet de calculer
d’autres quantités, des centiles par exemple, de calculer la probabilité que le débit
dépasse telle valeur dans certaines périodes, qu’on ne peut pas faire avec la régression.
De notre point de vue, le modéle avec % = 1 est le meilleur modéle, d’un cété parce qu’il
bat le modele classique avec & = 0 et, d’un autre c6té, car il donne a peu pres la méme

précision que la régression pour les prévisions a court terme.

On a donc trouvé la valeur du parameétre % de facon plus précise et on s’est servi du
modele quand /4 vaut 1 pour les prévisions. Dans I’étude de Lefebvre et Guilbault (2008),
pour faire des prévisions avec & > 0, il fallait reconstruire toute la séquence de données
en introduisant beaucoup d’erreur dans la précision. Mais avec la formule developpée,
dans ce travail, pour les prévisions avec & =1 (sans le terme = puisqu’il nuit), on
améliore les prévisions en les estimant deux jours d’avance. Pour les coefficients de
corrélation a moyen terme et pour prévoir, le modele proposé est meilleur que lorsque
k= 1. Pour ces deux raisons, I’utilisation du modéle avec k € (0.1) apparait plus
réaliste.

—

L’estimateur X (f + 1) lorsque & = 1 sans le terme = donne de meilleurs résultats, parce

que ce terme fait en sorte qu’il surestime la représentation thématique des donnees. En
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effet, son inclusion dans I’estimateur fait en sorte que la valeur du débit est plus élevée
lors de son augmentation par rapport aux données observées. Mais, en pratique, on

s’apercoit que ceci rende les résultats moins bons que lorsque % = 0.

Ce qui peut étre envisagé pour continuer cette étude est de refaire I’estimation du modele
ainsi que le calcul du débit a I’instant ¢ + 1 sur des périodes plus courtes : trimestres,
mois, pour prendre en considération les variations saisonnieres du debit, ce qui est
généralement le cas en hydrologie.

Un autre point important est d’essayer de trouver une formule tres explicite pour les

—

prévisions X (t + 1) en tenant compte du paramétre estimé k.
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ANNEXE A

ILLUSTRATION DES TRAJECTOIRES DE PROCESSUS
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Figure A.1. Exemple de la trajectoire d’un processus de Poisson

h(t)p s,

>
>

T

f

Figure A.2. Exemple de la trajectoire de la fonction de réponse unitaire de

I’hydrogramme : & (¢, 7) = (t — 7)Fe (=7,
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Figure A.3. Exemple de la trajectoire d’un processus de Poisson filtré (shot noise

process)

0.5
0.45
n=1, k=2
0.4
0.35
n=3, k=1
0.3

Figure A.4. Forme de I’HUI par le modéle de Nash (fonction gamma I'(n, k))
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