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RÉSUMÉ 

Cette étude examine le processus de Poisson filtré  proposé par Lefebvre et 

Guilbault (2008) comme modèle pour représenter les débits journaliers d’un fleuve. Soit  

, pour  , 

où  est un processus de Poisson homogène de taux ,  est une série 

de variables aléatoires indépendantes et identiquement distribuées (i.i.d) d’une 

distribution exponentielle de paramètre  et indépendantes du processus  

et  sont les instants d’arrivée des événements ou signaux du processus de Poisson. Les 

paramètres du modèle  et  sont estimés par la méthode des moments à l’état 

asymptotique du processus une fois que les paramètres  et  seront trouvés par une 

approche statistique basée sur les coefficients de corrélation théoriques du modèle. 

Finalement, la qualité et la performance du modèle sont évaluées par le biais des 

coefficients de corrélation théoriques comparativement au modèle classique (lorsque 

) couramment utilisé en hydrologie et par la capacité prévisionnelle du modèle par 

rapport au modèle classique et à un modèle autorégressif. Une application sur les fleuves 

Delaware et Hudson situés aux États-Unis est présentée. Les résultats favorisent en 

général le modèle proposé par Lefebvre et Guilbault (2008). 
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ABSTRACT 

This study examines the filtered Poisson process  proposed by Lefebvre and 

Guilbault (2008) as a model to represent the daily river flows of rivers. Let 

, for  , 

where  is a homogeneous Poisson process with rate ,  is a series 

of random variables independent and identically distributed (i.i.d) having an exponential 

distribution with parameter  and independent of the process , and  are  

the arrival times of the events or signals of the Poisson process. The model parameters  

and  are estimated by the method of moments in the asymptotic state of the 

process once the parameters  and  are found by a statistical approach based on the 

theoretical correlation coefficients of the model. Finally, the quality and the performance 

of the model are evaluated through the theoretical correlation coefficient compared to 

the conventional model (with ) commonly used in hydrology, and through the 

predictive power of the model compared to both the traditional model and an 

autoregressive model. An application on the Hudson and Delaware Rivers located in the 

United States is presented. The results generally favor the model proposed by 

Lefebvre and Guilbault (2008). 

 



vi 

TABLE DES MATIÈRES 

REMERCIEMENTS .......................................................................................................... iii 

RÉSUMÉ ............................................................................................................................ iv 

ABSTRACT ......................................................................................................................... v 

TABLE DES MATIÈRES .................................................................................................. vi 

LISTE DES TABLEAUX ............................................................................................... viii 

LISTE DES FIGURES ....................................................................................................... ix 

LISTE DES ANNEXES ..................................................................................................... xi 

INTRODUCTION ............................................................................................................... 1 

CHAPITRE 1 : CONTEXTE ET SURVOL DE LA LITTÉRATURE ............................... 5 

CHAPITRE 2 : MODÉLISATION, ESTIMATION ET PRÉVISION ............................. 17 

2.1  Modélisation, estimation .................................................................................... 17 

2.2  Approche d’estimation des paramètres  et  ................................................... 24 

2.3  Prévision ............................................................................................................ 26 

2.3.1  Modèle avec  ......................................................................................... 26 

2.3.2  Modèle avec  ......................................................................................... 30 

CHAPITRE 3 : APPLICATION ET RÉSULTATS .......................................................... 31 

3.1  Modèle avec la valeur du paramètre  estimée ................................................. 32 

3.2  Comparaison avec les modèles lorsque  et  .................................. 34 

3.3  Stabilité du paramètre  ..................................................................................... 37 

3.4  Capacité prévisionnelle du modèle .................................................................... 39 

3.4.1  Cas lorsque  ........................................................................................... 40 

3.4.2  Cas lorsque  .......................................................................................... 42 

 



vii 

CONCLUSION .................................................................................................................. 51 

BIBLIOGRAPHIE ............................................................................................................. 54 

ANNEXES :  ...................................................................................................................... 57 

  

 

 



viii 

LISTE DES TABLEAUX 

 

Tableau 2.1 : Caractéristiques du débit en (m3/s)………………………………….. 31

Tableau 2.2 : Écart entre les coefficients de corrélation théoriques et empiriques 

des débits  et  pour ,  et 

 (Delaware)……………………………………………..   34

Tableau 2.3 : Écart entre les coefficients de corrélation théoriques et empiriques 

des débits  et  pour ,  et  

(Delaware)…………………………………………………………. 36

Tableau 2.4 : Écart entre les coefficients de corrélation théoriques et empiriques 

des débits  et  pour ,  et 

 (Delaware)…………………………………………….. 36

Tableau 2.5 : Variabilité du paramètre  ………………………………………….. 38

Tableau 2.6 : Critères de comparaison de prévisions entre modèles pour le fleuve 

Delaware…………………………………………………………… 45

Tableau 2.7 : Critères de comparaison de prévisions entre modèles pour le fleuve 

Hudson…………………………………………………………….. 46

 



ix 

LISTE DES FIGURES 

 

Figure 2.1 : La fonction de réponse unitaire de l’hydrogramme  

………………………………………….. 25

Figure 2.2 : Hydrogramme du débit en (m3/s) des fleuves Delaware et Hudson 

(01/10/2002 à 30/09/2003)................................................................ 31

Figure 2.3 : Les valeurs de  en fonction des valeurs du paramètre 

 prises de  à ………………………………………………… 33

Figure 2.4 : Les valeurs de  en fonction des valeurs du 

paramètre  prises de  à …………………………………… 33

Figure 2.5 : Hydrogramme du débit en (m³/s) du fleuve Delaware de 2002 à 

39

Figure 2.6 : Hydrogramme du débit en (m³/s) du fleuve Hudson de 2002 à 

39

Figure 2.7 : Débits (m³/s) prévus et observés du fleuve Delaware (21/01/2004 au 

47

Figure 2.8 : Débits (m³/s) prévus et observés du fleuve Delaware  (01/10/2003 au 

48

Figure 2.9 : Débits (m³/s) prévus et observés du fleuve Hudson (21/01/2004 au 

2009…………………………………………………………………. 

2009…………………………………………………………………. 

30/04/2004)…………………………………………………............. 

09/01/2004)………………………………………………................. 

 



x 

30/04/2004)……………………………………………………......... 49

 Débits (m³/s) prévus et observés du fleuve Hudson (01/10/2003 au Figure 2.10 :

09/01/2004)………………………………………………………… 50

Figure A.1 : 

 

l’hydrogramme; 

Exemple de la trajectoire d’un processus de Poisson ........................ 57

Figure A.2 : Exemple de la trajectoire de la fonction de réponse unitaire de

 ………………………….. 

 

57

Figure A.3 rajectoire du processus e 

process)………………………………………………………………. 58

Figure A.4 

: Exemple de la t  de Poisson filtré (Shot nois

: Forme de l’HUI par le modèle de Nash (fonction gamma )… 58

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

LISTE DES ANNEXES 

ANNEXE A : Illustration de …………………. 57

 

 

 

 

 

 

 

s trajectoires de processus………

 

 



1 

INTRODUCTION 

Le cadre de la recherche de ce travail est la modélisation des débits journaliers d’un cours 

d’eau à partir du processus de Poisson filtré. Soit  un processus de Poisson 

homogène de taux ; le processus stochastique  est le processus de 

Poisson filtré défini par  

 , (1) 

où  est une série de variables aléatoires indépendantes et identiquement distribuées 

(i.i.d) et indépendantes du processus ,  sont les instants d’arrivée des 

événements ou signaux du processus de Poisson. La fonction  est appelée fonction de 

réponse.  

L’hydrologie est un domaine, parmi différents autres, d’applications de ce processus. Le 

modèle défini en (1) représente le débit du fleuve ou de rivière à l’instant . Ce modèle est 

couramment utilisé dans la littérature hydrologique pour générer les données de débits à 

de courtes échelles de temps (journalières à hebdomadaires). En particulier, ce modèle est 

capable de reproduire la présence des pics et de récessions dans la trajectoire des débits 

journaliers. Ce modèle s’exprime avec une fonction de réponse définie par  

 , (2) 

où  sont des variables aléatoires i.i.d d’une distribution exponentielle de paramètre , 

le paramètre  prend une valeur positive qui dépend de chaque fleuve et doit être estimé, 

 sont les instants d’arrivée des précipitations, par exemple, et  sont les quantités 

d’eau observées à ces instants. On suppose donc ici, que les événements arrivent selon un 

processus de Poisson  de taux  indépendant de la séquence , où  

prend des valeurs entières. En pratique, la variable du temps est discrète, puisque les 

débits ne sont pas mesurés de façon continue (en général, le débit est mesuré 

quotidiennement). La fonction de réponse donne la valeur à l’instant  d’un signal (les 

précipitations) qui se réalise à l’instant  et pour lequel la quantité  a été ajoutée au 
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processus. La variable aléatoire  traduit alors la somme à l’instant  de l’effet de tous 

les signaux qui se sont produits depuis l’instant initial (Lefebvre, 2005b). Les figures 1 et 

2 (en annexe A) illustrent un exemple de la trajectoire d’un processus de Poisson et un 

schéma de la fonction de réponse unitaire de l’hydrogramme respectivement. La variable 

 est considérée comme la variable entrante dans le système, le terme  dans 

l’équation (2) permet de prendre en compte la décroissance graduelle du débit après une 

pointe.   

Le modèle classique défini en (1), avec la fonction de réponse en (2), a conduit à des 

résultats relativement bons dans plusieurs études antérieures, voir par exemple (Weiss, 

1977; Kelman, 1980; Koch, 1985; Konecny, 1992; Seidou et al., 2002; Lefebvre et al., 

2003). La forme de la fonction de réponse est choisie principalement pour des raisons 

de simplicité, et l'hypothèse que les variables aléatoires  sont exponentiellement 

distribuées est supposée tenir sans être testée (Lefebvre, 2005a; Claps et al., 2005). Ce 

modèle a été utilisé par Lefebvre et al. (2003) pour prévoir les crues du fleuve Delaware. 

Étant donné que la variable dénotant le temps qui s’écoule entre l’arrivée des événements 

ne suit pas exactement une distribution exponentielle, Lefebvre (2005a) a utilisé une 

transformation (la racine carrée) de la variable temps de sorte que la nouvelle variable 

suivra une distribution exponentielle et, de ce fait, l’auteur a modélisé les débits par un 

processus de Poisson filtré transformé. 

En outre, ce modèle suppose que l’effet de l’événement arrivé à l’instant  est maximal à 

cet instant et commence aussitôt à décroître (Lawrance et Kottegoda, 1977; Konecny, 

1992; Murrone et al., 1997). La figure A.3 (en annexe A) montre un exemple de la 

trajectoire d’un processus de Poisson filtré; voir aussi  Bado et Unny (1990) et Konecny 

(1992). 

Cependant, l’observation d’un hydrogramme montre qu’il y a très souvent des périodes 

durant lesquelles le débit augmente (non pas d’une façon instantanée) puis tend à 

décroître plus au moins rapidement.  

 



3 

Plusieurs variantes du modèle ont été proposées dans la littérature hydrologique, la 

plupart des efforts ont été consacrés à la définition de la fonction de réponse et à 

l’estimation des paramètres du processus; voir Konecny (1992), Murrone et al. (1997) et 

Lefebvre et Guilbault (2008). 

La fonction de réponse proposée par Lefebvre et Guilbault (2008) est l’expression 

suivante :    

  (3) 

En fait, cette fonction de réponse présente une forme qui ressemble à une partie de 

l’hydrogramme (comparable à la forme d’une distribution gamma), à l’opposé de la 

forme classique en (2) qui suppose une augmentation instantanée du débit suivie par une 

longue période de décroissance (voir figures 2 et 4 en annexe A). En théorie, le paramètre 

 peut prendre sa valeur dans l’intervalle  et doit être estimé. Nous montrons dans 

ce travail que ce paramètre prendrait des valeurs plus élevées (soit  pour un 

échantillon de débits d’une année) lorsque la dynamique du fleuve se distingue par 

l’arrivée de quelques crues exceptionnelles. Il y a lieu de noter que l’une des 

caractéristiques du modèle, qui stipule que les temps entre les arrivées des événements 

sont d’une distribution exponentielle, est dans la plupart des cas non satisfaite en 

pratique, et que de ce fait le processus  ne serait pas considéré comme un processus 

de Poisson. 

Cette conceptualisation mathématique de la fonction de réponse devrait améliorer la 

qualité du modèle; c’est l’objectif d’analyse dans cette étude. Une approche basée sur les 

propriétés statistiques du processus est proposée, suivant les résultats de Lefebvre et 

Guilbault (2008), pour estimer les paramètres du modèle et tester sa qualité d’ajustement 

aux observations. En outre, on vérifie la performance du modèle dans les prévisions, en 

se servant de certains indicateurs d’écart, comparativement aux modèles classique et 

autorégressif. Enfin, l’apport de ce travail se résume en deux points : 1) nous avons 

trouvé une méthode pour estimer significativement le paramètre  du processus. 2) Nous 

avons développé une formule qui permet de prévoir le débit futur lorsque . 
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Trois chapitres seront consacrés à répondre à cet objectif; dans le premier chapitre, nous 

dressons le contexte général de l’application du processus de Poisson filtré en survolant 

la littérature hydrologique sur la modélisation des débits des cours d’eau. Le second 

chapitre porte sur les résultats théoriques de la modélisation, l’estimation et la prévision, 

en utilisant le processus de Poisson filtré. L’application de ces résultats sur les débits des 

fleuves Delaware et Hudson, situés aux États-Unis, fera l’objet du dernier chapitre. Enfin, 

nous conclurons par une discussion et interprétation des constats de l’étude. 
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CHAPITRE 1 : 

CONTEXTE ET SURVOL DE LA LITTÉRATURE 

La modélisation théorique d’un système hydrologique a été au cœur de la recherche 

depuis de longues années; le but de cette modélisation est de représenter le système par 

une fonction reliant les intrants et les extrants et qui décrit, jusqu’à un certain niveau de 

détails, les interactions et les mécanismes des éléments physiques du système ainsi que 

les phases du mouvement de l’eau. Présentement, les recherches sont orientées sur le 

développement de modèles stochastiques qui reposent soit sur une approche physique des 

processus, soit sur une approche conceptuelle (Bado et Unny, 1990). La formulation d’un 

modèle stochastique spécifique pour générer les débits d’un cours d’eau, à court terme, 

constitue l’objet de cette étude. Nous présenterons, dans ce qui suit, une brève revue de 

littérature sur certains travaux importants dans la modélisation des débits journaliers, en 

commençant par la théorie linéaire de l’hydrogramme unitaire instantané (HUI) formalisé 

par Nash (1957) et par le processus de Poisson filtré proposé par Bernier et al. (1970) et 

Weiss (1977) par la suite. En effet, ces travaux reposent sur la notion de l’HUI sous 

l’hypothèse que la seule variable entrante dans le système est la précipitation. Le point 

commun est que la distribution marginale du processus de Poisson filtré et la fonction de 

réponse de l’hydrogramme est une fonction gamma à deux paramètres. On passe en revue 

d’autres variantes de la fonction de réponse du processus de Poisson filtré qui ont été 

mises au point dans les recherches actuelles sur la physique des processus. Par ailleurs, la 

formulation conceptuelle du processus générant les débits journaliers constitue le cadre 

de cette étude; cet aspect conceptuel prend compte, même de façon simple, l’aspect 

physique du système. En effet, le modèle proposé par Lefebvre et Guilbault (2008) est 

une forme conceptuelle qui repose sur la notion de l’HUI. Autrement dit, la forme de la 

fonction de réponse du modèle traduit les brèves périodes de montée suivies par des 

récessions lentes qui caractérisent l’hydrogramme des débits journaliers et qui tend à 

suivre théoriquement une distribution gamma.    
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Dans le but de modéliser la dynamique et la réponse du bassin versant, l’approche du 

réservoir linéaire de stockage est la méthode sur laquelle Nash (1957) s’est basé pour 

proposer un modèle de l’HUI. Il suppose que la trajectoire du débit dans un bassin 

versant avec une chute de pluie instantanée est équivalente à l’écoulement à travers une 

succession linéaire de réservoirs, le débit sortant d’un réservoir devenant l’entrée pour le 

suivant. Ainsi, le débit du ne réservoir est donné par : 

  (4) 

Le système de réservoirs linéaire est caractérisé par la relation linéaire entre le stockage 

 et le débit sortant  pour chaque réservoir à l’instant , telle que , 

où  est un coefficient correspondant à la capacité moyenne de stockage du réservoir 

dans le temps; on l’appelle en général "coefficient de stockage ou du bassin versant".  

Le débit  du premier réservoir obéit à la fonction de réponse impulsive (FRI) du 

réservoir linéaire, qui représente la réponse du système à une impulsion unitaire 

instantanée à l’instant  :  

 

 devient le débit entrant dans le second réservoir pour obtenir le débit sortant  du 

second réservoir. Ainsi de suite, les débits des autres réservoirs en série linéaire se 

calculent comme suit : 
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Le débit du ne réservoir (la dernière équation) peut se simplifier en remplaçant la 

factorielle par la fonction gamma, et obtenir l’équation (4). 

L’hydrogramme unitaire instantané correspondant au modèle de Nash (1957) peut être 

obtenu par la fonction de distribution gamma à deux paramètres . La forme de la 

courbe de l’HUI est représentée par la figure A.4 (annexe A) pour différentes valeurs de 

 (paramètre de forme) et  (paramètre d’échelle). Les paramètres   et  peuvent être 

estimés par la méthode des moments.  

Bernier et al. (1970) furent les premiers qui ont proposé le processus de Poisson filtré, 

appelé aussi "shot noise". Ils ont considéré explicitement le processus intermittent et le 

caractère "poissonnien" des précipitations et la fonction déterministe reliant les 

précipitations et les débits journaliers. Le débit peut évoluer de façon déterministe 

lorsqu’il n’y a plus d’incitations (précipitations) sur le bassin et suit ainsi une trajectoire 

obéissant à une loi particulière; il s’agit de la période de tarissement. Les précipitations 

sont considérées comme l’élément important entrant dans le processus aléatoire de la 

formation de débits. Les périodes de décrues des débits suivent en alternance les périodes 

de montées des débits causées par l’alimentation du bassin par les précipitations. 

Selon Bernier et al. (1970), le débit à l’instant  peut être donné sous forme d’un 

processus continu, exprimé par   
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  (5)  

où  est la fonction de transfert déterministe de l’hydrogramme; la forme la plus 

simple de cette dernière dans le cas d’un processus stationnaire est une exponentielle : 

 

 est une série de variables aléatoires qui mesurent l’intensité des précipitations et 

sont supposées indépendantes et identiquement distribuées selon une loi exponentielle, 

 est un processus ponctuel de comptage, c'est-à-dire que  est le nombre 

d’averses produites dans l’intervalle . 

La structure de ce modèle n’est pas valable pour des régimes hydrologiques complexes, 

là où d’autres mécanismes aléatoires se combinent à la pluie, comme la fonte des neiges 

liée à la température. Cependant, la forme de l’hydrogramme peut être réaliste en période 

de tarissement du débit.  

Weiss (1977) a étudié plus en détail le processus "shot noise" ou processus de Poisson 

filtré en le développant comme un modèle simple et physiquement réaliste qui reproduit 

les récessions des débits journaliers. Ce modèle développé équivaut à un processus 

autorégressif de premier ordre, mais dans lequel les innovations ne sont pas gaussiennes. 

La structure du processus de Poisson filtré consiste en un processus ponctuel reproduisant 

l’occurrence des événements de précipitations effectives (impulsions ou signaux) 

considérées comme l’entrée du système; la propagation de ces entrées est ensuite filtrée 

par la fonction de réponse du système pour obtenir l’écoulement (Murrone et al., 1997). 

Le débit est une variable aléatoire  représentée en temps continu par le processus de 

Poisson filtré (Weiss, 1977) :  
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                             (6) 

où  est un processus de Poisson de taux ,  est l’entrée du processus (quantité des 

averses) qui est une variable aléatoire de distribution exponentielle de paramètre ,  est 

la fonction de réponse du système qui décrit l’évolution et la propagation de l’impulsion 

(l’effet du signal) dans le temps, et  est la fonction de transfert 

déterministe de l’hydrogramme. Ce processus a trois paramètres à estimer : la moyenne 

des sauts , le taux d’occurrence des événements  et le taux de décroissance 

. Weiss (1977) a utilisé la méthode des moments pour l’estimation des 

paramètres. 

Le modèle présenté par Weiss (1977) se compose alors d’un processus couplé Poisson-

exponentiel, reproduisant les occurrences et intensités des précipitations effectives. 

L’écoulement du bassin versant a, par hypothèse, une réponse exponentielle à la 

précipitation (Murrone et al., 1997). 

Pour modéliser la récession du débit, sous l’hypothèse du système linéaire, Weiss (1977) 

propose la forme suivante du processus  : 

  (7) 

où  est un processus indépendant et non corrélé décrivant tout l’aléa dans , et 

 est la fonction de réponse du système.    

Cette dernière équation est définie de la même façon que l’équation (5); la somme en (6) 

sur l’ensemble des effets d’impulsions produits dans l’intervalle  remplace 
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l’intégrale en (7). Weiss (1977) affirme que les événements aléatoires entrant dans la 

formation de  se traduisent par l’occurrence des crues à des instants aléatoires 

suivant un processus de Poisson. 

Pour appliquer ce processus continu à la série de débits qui est de nature discrète, il est 

possible de représenter le processus sous une forme discrète  en l’intégrant sur un 

intervalle de temps de longueur  (une journée par exemple) : 

   (8) 

D’après Weiss (1977), ce processus  suit une distribution gamma (Pearson type 2) 

de paramètres , de densité  

  (9) 

ce qui permet d’obtenir les moments suivants : 

  (10) 

  (11) 

  (12) 

Le choix d’une distribution exponentielle pour la fonction de transfert  rend le 

processus  un processus autorégressif d’ordre 1, , et correspond à un réservoir 

linéaire unique. En plus,  détermine la pente de récession de  (Weiss, 1977).    

Le débit à l’instant  est donné par  
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où   

Le processus de Poisson filtré, selon Weiss (1977), n’est que le processus  en 

temps continu, mais dont les innovations  ont une distribution asymétrique (voir 

distribution gamma) et non pas gaussienne. La probabilité qu’aucun événement ne se 

produise dans l’intervalle  est la probabilité que l’innovation soit nulle; cette 

probabilité est strictement positive : 

 

Étant donné le résultat de Weiss sur le réalisme des processus de Poisson filtrés pour 

modéliser les débits journaliers de rivières, par rapport aux autres modèles caractérisés 

par des entrées gaussiennes, le processus de Poisson filtré est défini par des discontinuités 

aux instants d’arrivée des événements (signaux), suivies par des décroissances 

exponentielles (Bado et Unny, 1990). Autrement dit, la trajectoire du processus 

recommence au sommet de chaque crue qui est atteinte au début de chaque signal. La 

figure A.3 (annexe A) montre une réalisation typique d’un processus de Poisson filtré; 

voir aussi Bado et Unny (1990) et Konecny (1992). Dans ce cas, la trajectoire entre deux 

impulsions successives peut être représentée par (Bado et Unny, 1990)  

 

Le processus de Poisson filtré est bien connu pour modéliser les récessions de 

l’hydrogramme, mais il reste que la période de l’augmentation du débit n’est pas 

considérée comme un élément composant de ce modèle. 
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Weiss (1977) a développé, par ailleurs, un modèle composé de deux processus de Poisson 

filtrés représentant respectivement le débit de surface et le débit de base. Par ce modèle, 

les statistiques mensuelles peuvent être préservées en plus des statistiques quotidiennes. 

La modélisation stochastique pour la simulation des débits journaliers, en particulier, est 

très vaste. Bernier et al. (1970) ont dressé un inventaire de ces modèles; voir aussi Bado 

et Unny (1990). Selon Lawrence et Kottegoda (1977), il y a deux défis importants dans la 

génération des débits journaliers synthétiques : le premier est la modélisation d’une série 

de variables dépendantes et non gaussiennes avec une grande variabilité; le deuxième est 

que la série des débits journaliers est caractérisée par des augmentations rapides suivies 

par des diminutions lentes. Étant donné que les modèles autorégressifs gaussiens ne 

peuvent pas reproduire fidèlement les caractéristiques de débits journaliers, l’approche 

théorique prometteuse est de pouvoir reproduire le mouvement ascension-récession de 

l’hydrogramme via un processus autorégressif avec un terme d’innovation asymétrique 

(Lawrance et Kottegoda, 1977). 

Treiber et Plate (1977) ont développé un modèle plus général que celui de Weiss (1977). 

Le débit est généré d’un système linéaire, et à chaque jour pluvieux correspond une 

entrée (signal) du système. La séquence des jours secs et pluvieux est supposée constituer 

une chaîne de Markov. Par conséquent, les amplitudes des entrées sont reproduites par un 

modèle autorégressif de premier ordre. Les entrées sont transformées en débits par la 

fonction de réponse déterministe du système, et suivent une distribution exponentielle 

transformée. Le modèle a fourni de bon résultats, mais il n’est pas parcimonieux, vu le 

grand nombre de paramètres qu’il nécessite à déterminer. 

Kelman (1980) s’est intéressé à la modélisation séparée de la montée et de la baisse des 

débits, la baisse étant soumise à la règle de vidange du bassin et la montée, causée par 

l’arrivée d’un événement, est modélisée de la même façon que les précipitations. En 

considérant deux processus intermittents alternatifs (voir aussi Évora, 1997, Koch, 1985, 

et Bado et Unny, 1990), l’auteur propose un modèle conceptuel basé sur un système de 

deux réservoirs linaires.  
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Koch (1985) a proposé une version à deux variables du modèle de Weiss (1977), basée 

sur des arguments du système physique. Le bassin est représenté comme un système de 

deux composants : le premier décrit la surface et l’autre le ruissellement aquifère. La 

combinaison linéaire des réponses de ces deux composants traduit la fonction de réponse 

impulsive du bassin. L’écoulement de surface a les précipitations excédentaires comme 

intrant, alors que le ruissellement aquifère est dû à la recharge de la zone durant 

l’infiltration et le drainage. Le processus du débit est représenté en temps continu comme 

la somme de ces deux composants. Les entrées de ce système, les précipitations 

excédentaires et la recharge, sont aléatoires et deviennent décroissantes par le processus 

d’acheminement. Le processus stochastique du débit  à l’instant  est représenté par 

le processus de Poisson filtré donné par  

 

où   l’instant d’occurrence du ie orage; 

 processus de Poisson, comptant le nombre d’orages dans l’intervalle ; 

 la valeur initiale du débit à l’instant ; 

 l’écoulement de surface du ie orage; 

 l’écoulement aquifère du ie orage; 

 le volume des précipitations excédentaires du ie orage; 

 le volume de recharge du ie orage; 

 et  sont les coefficients de stockage de l’écoulement de surface et aquifère 

respectivement. 

, ,  et  sont des variables aléatoires. 
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Cette approche permet une concordance entre les paramètres du modèle et les paramètres 

du système physique (Murrone et al., 1997), mais l’application du modèle s’avère 

irréalisable étant donné que le problème des estimations des paramètres n'est pas traité 

directement (Allamano et al., 2007).  

Le modèle continu peut être discrétisé sur une période de longueur  comme donné 

précédemment à l’équation (8). Comme l’hydrogramme est caractérisé par des périodes 

de montées et de baisses, d’après Koch (1985) : "A further simplification of the 

continuous model is proposed based on the assumption that the discretization period is 

"long" relative to storm durations. If this is the case, the rising limb occurs over a short 

time period and is represented as being instantaneous. This leads to a shot noise 

representation of the continuous model which is similar to the second order shot noise 

model of Weiss (1977)". 

Plusieurs autres modèles stochastiques décrivant la série temporelle des débits ont été 

proposés pour modéliser les débits de cours d’eau, par exemple Salas, 1980, et Évora, 

1997. D’autres travaux ont été consacrés à l’analyse des propriétés statistiques des débits 

de rivières en les modélisant par le processus de Poisson filtré; voir Kavvas et Delleur, 

1984, et Yue et al., 1999. 

Un autre modèle stochastique dérivé du modèle shot noise a été développé par Murrone 

et al. (1997) pour reproduire les données à court terme des débits (journaliers et 

hebdomadaires). Le système est composé de trois composants en parallèle : l’écoulement 

de base (souterrain), l’écoulement aquifère et l’écoulement de surface (les deux derniers 

composants représentent les précipitations directes). Les travaux de Allamano et al. 

(2007) et Claps et al. (2005) ont été réalisés sur le même modèle développé par Murrone 

et al. (1997).  

La fonction du bassin  est supposée être la combinaison linéaire de la réponse des 

trois réservoirs en parallèle : 
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où  est un paramètre de recharge des éléments du système respectant la condition de 

continuité , et  est un coefficient de stockage. L’hydrogramme unitaire 

instantané est représenté par la fonction de réponse à une impulsion du réservoir linéaire 

. La fonction de réponse du bassin est une combinaison linéaire de fonctions 

delta de Dirac. Le débit  en temps continu est représenté par le processus de Poisson 

filtré : 

 

où  est l’entrée du processus, supposée suivre une distribution exponentielle, et la 

fonction  est représentée par l’équation précédente.  

Claps et al. (2005) ont, par ailleurs, considéré d’autres points importants qui, selon eux, 

ont été négligés par la littérature sur les processus de Poisson filtrés. Pour vérifier les 

hypothèses de base derrière le modèle de Poisson, à savoir l’indépendance des signaux 

consécutifs (précipitations effectives) et leur assignation à chaque crue, et la distribution 

de Poisson de leurs occurrences, les auteurs suggèrent des approches empruntées à 

l’hydrologie statistique pour estimer la séquence des précipitations effectives du modèle. 

Ils montrent aussi que la dépendance temporelle des débits journaliers augmente la 

pertinence d'avoir des modèles parcimonieux au niveau du nombre de paramètres.                                           

La majorité des efforts dans l’étude des processus de Poisson filtré ont porté sur la 

définition de la fonction de réponse du système et sur les méthodes pour estimer les 

paramètres; voir les travaux précédents : Bernier et al., 1970, Lawrance et Kottegoda, 

1977, Weiss, 1977, Koch, 1985 et Murrone et al., 1997.  

Plus récemment, Lefebvre et Guilbault (2008) (voir aussi Lefebvre et Guilbault, 2009) 

ont proposé une fonction de réponse qui traduit la forme "ascension-récession" du débit 

journalier, soit  

 

Le débit  est alors exprimé par  
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où  est une constante non négative à estimer. 

Soit la fonction 

 

Cette fonction permet d’avoir une forme semblable à celle d’une distribution gamma 

(voir figure A.2, en annexe A). En plus, si , on retrouve la forme classique du 

modèle de processus de Poisson filtré qui implique des récessions lentes, exponentielles 

et des augmentations instantanées du débit. Lorsque , le modèle proposé peut être 

meilleur avec le choix des bons paramètres. Le paramètre  joue le rôle du paramètre de 

forme de la distribution gamma. L’avantage de ce modèle est qu’il comprend la forme 

classique d’une part et, d’autre part, permet plus de flexibilité ou de variabilité du débit. 

Cette conceptualisation mathématique pour modéliser les débits journaliers est retenue 

dans notre travail. Nous apporterons de nouvelles contributions à l’estimation des 

paramètres du modèle proposé et au développement d’un estimateur de la valeur du débit 

prévu, tout en testant la qualité d’ajustement du modèle et sa capacité prévisionnelle par 

rapport à d’autres modèles candidats. 
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CHAPITRE 2 : 

MODÉLISATION, ESTIMATION ET PRÉVISION 

Le contexte de ce chapitre se fonde sur les résultats théoriques d’estimation des 

paramètres du processus de Poisson filtré comme modèle du débit de cours d’eau, et 

d’estimation des valeurs prévues du débit, en parcourant et développant de nouvelles 

approches suivant les résultats de l’étude menée par Lefebvre et Guilbault (2008) (voir 

aussi Guilbault, 2008).  

2.1 Modélisation, estimation 

Le processus de Poisson filtré utilisé pour modéliser le débit  à court terme est donné 

par  

    pour  (13) 

Tel que  et . Ce modèle devrait reproduire vraisemblablement l’hydrogramme 

des débits d’un fleuve. Pour vérifier l’ajustement de ce modèle aux données observées 

des débits journaliers, il est tout d’abord nécessaire d’étudier les propriétés du processus 

de Poisson filtré.  

- Distribution du nombre d’occurrences  des événements journaliers : 

Étant donné que le processus  d’occurrence de précipitations est supposé 

suivre une distribution de probabilité de Poisson de paramètre , alors  
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Konecny (1992) a proposé, au lieu du processus de Poisson homogène de taux  

précédent, un processus non homogène (non stationnaire) avec une fonction d’intensité 

, pour . Cette fonction d’intensité décrit certaines tendances dans 

l’occurrence des événements du processus. 

À partir de la définition du processus de comptage , il est évident que la séquence 

des instants d’arrivée des événements , pour , est équivalente au processus 

 (voir figure A.1, en annexe A). 

Un processus de renouvellement est un processus de comptage où les temps entre les 

arrivées des événements ou le temps d’inter-occurrence (le temps que le processus passe 

dans un état )  sont des variables i.i.d. Le processus de Poisson 

homogène est un cas particulier du processus de renouvellement lorsque la variable 

 est d’une distribution exponentielle.  

Par ailleurs, le processus de Poisson est un cas particulier d’une chaîne de Markov en 

temps continu. Les variables aléatoire , pour , sont indépendantes par la 

propriété de Markov, et sont identiquement distribuées par le fait que le processus de 

Poisson se caractérise par des accroissements indépendants et stationnaires. En fait, du 

point de vue probabiliste, le processus recommence à zéro, à partir de n’importe quel 

instant . Les variables  ont une distribution exponentielle de paramètre  (Lefebvre, 

2005b).                   

- Distribution de l’amplitude  des événements journaliers : 

La variable  est en général d’une distribution exponentielle ou gamma, le choix de cette 

distribution devrait fournir un bon ajustement aux observations (Yue, Hashino et al., 

1999). Si  suit une distribution exponentielle de paramètre , alors  
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- Fonction caractéristique du processus de Poisson filtré : 

On peut obtenir la fonction caractéristique  du débit  en 

conditionnant sur le nombre d’événements se produisant à l’intérieur de l’intervalle , 

comme suit : 

 

En utilisant le fait que l’instant de la réalisation d’un événement dans l’intervalle  est 

une variable aléatoire  d’une distribution uniforme , par indépendance et pour 

, la fonction de densité conjointe des variables  est donnée 

par  

 

Par conséquent, 
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Il s’ensuit que  

 

- Les statistiques de base du débit  : la moyenne, la variance et le coefficient 

de corrélation : 

À partir de la fonction caractéristique, le calcul des moments par rapport à l’origine 

 et de la covariance  se fait comme suit : 

 

 

L’espérance et la variance de  ainsi que la covariance de  et  peuvent être 

obtenues à partir de ces formules, découlant des calculs précédents (Lefebvre, 2005b): 

  (14) 

  (15) 

  (16) 
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Étant donné que la variable  est supposée suivre une distribution exponentielle de 

paramètre , alors les formules (14) et (15) précédentes peuvent être développées comme 

suit : 

   (17) 

   (18) 

où  est la fonction gamma incomplète définie par  

 

Les équations (17) et (18) s’obtiennent si  et  respectivement. 

La preuve est donnée par la formule 3.381(1) (Gradshteyn et Ryzhik, 2000, p. 342) qui 

suit : 

 

Par ailleurs, en appliquant la formule 8.352(1) (Gradshteyn et Ryzhik, 2000, p. 

890) suivante : 

 

les équations (16) et (17) s’expriment alors, pour des valeurs entières de  et  

respectivement, comme suit : 
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  (19) 

  (20) 

La formule (16) de la covariance de  et , lorsque , est donnée par (voir 

la Proposition 2.3 de Lefebvre et Guilbault, 2008) : 

 

 

    (21) 

 

Pour , la valeur de la covariance s’arrête à . 

- Estimation des paramètres du processus de Poisson filtré : 

L’estimation des paramètres du modèle, , ,  et , se fait en considérant que le 

processus a été en opération pour une durée assez longue dans le temps. Pour ce faire, des 

expressions des équations précédentes (17), (18) et (21) devraient être calculées à l’état 

asymptotique du processus, c’est-à-dire quand t tend vers l’infini.  

Par le fait que 

 
  

l’espérance et la variance du processus sont alors données par 

  (22) 

  (23) 

Le calcul de la covariance de  et , avec , se fait comme suit : 
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lorsque . On a : 

 

Il suit que : 

  (24) 

où  est la fonction de Bessel modifiée. 

Vu son utilité pratique pour les besoins de modélisation, le coefficient de corrélation de 

 et  est aussi calculé, et il est donnée, lorsque , par 

  (25) 

Les formules asymptotiques précédentes (22), (23) et (25) dépendent des paramètres  et 

; il est impossible de les utiliser pour obtenir la valeur du paramètre  si la valeur du 

paramètre  est inconnue. En outre, si  est inconnu, il est pratiquement impossible aussi 

de se servir directement de ces formules asymptotiques. Pour cette raison, une méthode 

alternative d’estimation du paramètre  a été envisagée (se référer à Lefebvre et 

Guilbault, 2008).  
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2.2 Approche d’estimation des paramètres  et  

Une approche pour estimer le paramètre  consiste à trouver une relation linéaire entre le 

temps que cela prend pour qu’un débit atteigne son maximum après l’arrivée d’un signal 

et la valeur que peut prendre ce paramètre . En effet, pour maximiser la fonction de 

réponse unitaire de l’hydrogramme proposée par Lefebvre et Guilbault (2008) (voir 

l’équation (3) et la figure A.2) 

   pour     

on pose 

 

Si l’on suppose que l’instant initial du signal est . Alors, pour  la fonction  

définie sur l’intervalle du temps  admet un maximum en . 

Intuitivement, le maximum serait atteint lorsque la durée de l’augmentation du débit, du 

minimum au maximum, équivaut à  unités du temps. Autrement dit, le maximum doit 

être observé  unités de temps après l’arrivée d’un événement à l’instant , et ce, si le 

temps écoulé entre les arrivées des différents événements successifs est assez long afin 

d’assurer une durée suffisante de la montée du débit suivie par une longue décroissance 

(Lefebvre et Guilbault, 2008).  

À partir de la figure 2.1, en prenant, par exemple, un ensemble à valeurs discrètes dans 

 de 20 jours ( ),  et . Le signal étant arrivé à l’instant 

 (aujourd’hui, par exemple). Le point maximum de la fonction  serait atteint 

deux jours après;  et . On parle donc de 

maximum (ou maximum global) de la fonction  parce que, pour tout 

, on a : , et de maximum local pour le processus .        
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Figure 2.1. La fonction de réponse unitaire de l’hydrogramme 

 

Cependant, l’expression  ne permet pas d’obtenir une valeur précise du 

paramètre  sans fixer le paramètre  qui peut prendre n’importe quelle valeur dans 

l’intervalle . Maintenant, si l’on suppose que le temps moyen nécessaire pour que le 

débit augmente à son maximum vaut  unités du temps, c’est-à-dire que , il 

devient facile de calculer les coefficients de corrélation théoriques (équation 25) en 

remplaçant le paramètre  par ; les coefficients dépendront donc seulement des 

valeurs de  et , du moment que l’on peut calculer en pratique la moyenne arithmétique 

des temps  d’augmentation du débit.  

En donnant des valeurs réelles positives au paramètre , nous obtenons des valeurs du 

coefficient de corrélation théorique  pour . Le critère utilisé pour estimer le 

paramètre  est de calculer la somme des différences absolues entre les coefficients de 

corrélation théoriques et empiriques sur un horizon , et le point qui minimise la 

valeur de cette somme serait l’estimation du paramètre . 
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2.3 Prévision 

Cette section illustre l’utilisation du processus de Poisson filtré aux fins de prévision, en 

se basant sur l’espérance conditionnelle du débit prévu à l’instant  étant donné ses 

valeurs un ou deux jours d’avance. L’évaluation des prévisions est considérée dans le cas 

du modèle lorsque  et .   

2.3.1 Modèle avec  

Lorsque , il est possible de calculer l’espérance conditionnelle du débit d’un cours 

d’eau à l’instant , étant donnée l’historique du processus aux instants  et . En 

effet, l’estimateur du débit à l’instant  ;  est donné par 

 

Lorsque , l’estimateur est équivalent à  

où 

 

Si , alors 
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tel que   

 

exprime l’espérance conditionnelle du processus, lorsque , connaissant son état aux 

instants  et . 

La quantité  peut aussi être calculée d’une autre façon : 

 

Soit  

 

Il s’ensuit que 
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Si l’on remplace  par  dans cette dernière équation, la valeur de  vaudrait 

donc 

 

Il reste à évaluer la quantité , qui peut être obtenue par indépendance comme suit : 

 

Afin de calculer approximativement , nous supposons que dans l’intervalle de temps 

, au plus 1 événement s’est produit : soit 0 ou 1 signal survient dans une unité de 

temps. S’il n’y a pas eu de signal qui fait augmenter le débit à l’instant  dans 

l’intervalle , le débit à l’instant  serait généralement inférieur au débit précédent 

à l’instant , c’est-à-dire que . Alors que si un signal se produit dans 

l’intervalle , le débit à l’instant  augmenterait, c’est-à-dire que 

. L’événement en question s’est produit en moyenne à l’instant , et 

son effet est donné par 

 

En outre, pour prendre en considération une éventuelle diminution dans cette période 

, nous tenons compte du nombre d’unités de temps de diminution du débit dans 

l’intervalle , et puis nous calculons la moyenne  de la baisse relative du débit par 

unité de temps. Il s’ensuit que le premier terme de  serait donné par 
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si  

La moyenne  traduit la pente de la baisse du débit dans la période , et le terme 

 est interprété comme étant la force du signal dans cette période.                                    

Puisqu’il est supposé qu’un seul événement s’est produit dans l’intervalle , nous 

avons ; il est donc possible sous cette hypothèse d’évaluer le second 

terme de  comme suit  

 

   

Par déduction, 

 

et 

 

Finalement, l’estimateur de la valeur prévue du débit à l’instant  se simplifie à 
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  (26) 

2.3.2 Modèle avec  

Dans le cas du modèle avec , l’espérance conditionnelle de , étant donnée 

l’historique du processus dans l’intervalle , donne l’estimateur de prévision 

suivant (Lefebvre et Guilbault, 2008) : 

 

(27) 

En effet, lorsque , la valeur de  ne dépend que de . Lorsque , 

l’estimateur calculé du débit à l’instant  dépend de la valeur du débit aux instants  

et , ce qui donne une information de plus pour prévoir la valeur du débit à l’instant 

.          
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CHAPITRE 3 : 

APPLICATION ET RÉSULTATS 

Une application des formules obtenues précédemment sur des données réelles, tirées des 

relevés hydrographiques de deux fleuves, va permettre de juger pratiquement des 

résultats théoriques du modèle. Les stations Montague (No. 014385) du fleuve Delaware 

au New Jersey et Green Island (No. 013580) du fleuve Hudson à New York serviront à 

cette fin. Pour la période de temps du 1er octobre 2002 au 30 septembre 2003, les 

statistiques correspondant à la moyenne, l’écart-type du débit et le coefficient de 

corrélation entre les débits pour deux jours consécutifs sont résumés dans le tableau 2.1, 

et la figure 2.2 illustre la trajectoire du débit pour les deux fleuves. 

Tableau 2.1. Caractéristiques du débit (en m³/s) 

 Delaware River Hudson River 

Moyenne  
Écart-type  

Coef. Corrélation  

7517,75342 
6358,28631 
0,90121739 

15482,9863 
11621,5812 
0,93868413 

 

Figure 2.2. Hydrogramme du débit (en m³/s) des fleuves Delaware et Hudson 

(01/10/2002 au 30/09/2003) 
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3.1 Modèle avec la valeur du paramètre  estimée 

Avec l’utilisation de l’approche du critère du coefficient de corrélation et la méthode 

alternative d’estimation du paramètre , une relation de dépendance entre les paramètres 

 et  est obtenue, ce qui permet par la suite de calculer le coefficient de corrélation  

en fonction de valeurs réelles positives du paramètre . La valeur du paramètre  lorsque 

 vaut approximativement en moyenne  jours pour que le débit passe du 

minimum au maximum pour le fleuve Delaware. Comme l’illustre la courbe de la figure 

2.3, la valeur du paramètre  optimale qui minimise la somme des différences absolues 

entre le coefficient de corrélation théorique  et empirique  (sur un horizon  de 7 

jours) vaut .  

Sur 52 signaux ou impulsions produits, selon un processus de Poisson, durant l’année 

d’étude du fleuve Delaware, la moyenne et l’écart-type temporels séparant deux 

impulsions consécutives (le début de l’augmentation du débit), sont : , 

, ce qui implique que le temps  entre  deux signaux consécutifs qui font 

augmenter le débit n’a pas une distribution exponentielle puisque la moyenne et l’écart- 

type de cette distribution doivent être égaux. Bien que ce constat signifie que le processus 

de Poisson filtré n’est peut-être pas le modèle valable théoriquement pour les débits du 

fleuve Delaware, il est toutefois parfois possible d’appliquer une fonction qui transforme 

la variable   à une variable aléatoire exponentielle (Lefebvre, 2004). Nous nous 

contentons dans ce travail de supposer que le modèle du processus de Poisson filtré est 

valable pour les observations dont nous disposons. 

Si l’on calcule la somme des différences absolues entre les coefficients de corrélation 

théorique  et empirique  sur un horizon  plus élevé, nous constatons alors qu’au 

fur et à mesure que  prend des valeurs plus élevées, la valeur du paramètre  tend à 

diminuer pour à la fin se stabiliser sur une valeur constante. Effectivement, la valeur du 

paramètre  se stabilise à  lorsque les différences absolues des coefficients de 

corrélation sont calculées sur un horizon de plus de 20 jours pour le fleuve Delaware 
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(figure 2.4). Cela est, statistiquement parlant, évident du moment que la fonction 

d’autocorrélation décroît exponentiellement et/ou s’annule après un certain décalage dans 

le temps. En outre, la valeur du coefficient de corrélation empirique  convergera vers 

la valeur du coefficient de corrélation théorique ; ainsi l’écart entre ces deux 

coefficients tend à s’annuler dans le temps, c’est-à-dire pour  très grand. 
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Figure 2.3. Les valeurs de  en fonction 
des valeurs du paramètre  prises de  à . 
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Figure 2.4. Les valeurs de  en fonction 
des valeurs du paramètre  prises de  à . 
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Le tableau 2.2 qui suit montre les calculs des coefficients de corrélation théorique et 

empirique avec la valeur estimée du paramètre ; la valeur du paramètre  vaut . 

Tableau 2.2 : Écart entre les coefficients de corrélation théorique et empirique des débits 

 et  pour ,  et  (Delaware).   

    

        

        

        

En conclusion, le modèle apparaît estimer très bien la valeur du coefficient de corrélation 

théorique . En fait, l’erreur d’estimation la plus élevée est de  (au 3e jour 

suivant l’observation la plus récente), ce qui traduit le fait que le modèle peut être aussi 

bien approprié pour des prévisions sur une longue période, soit au-delà de sept jours, que 

sur une brève période. Il faut rappeler que la somme des différences absolues des 

coefficients de corrélation pour un horizon assez long atteint son minimum lorsque 

. Par ailleurs, la différence des deux coefficients de corrélation théorique et 

empirique  est plus petite qu'avec les modèles avec  ou  comme il 

sera montré ci-après. 

3.2 Comparaison avec les modèles lorsque  et  

Pour pouvoir estimer les paramètres du modèle lorsque , il est nécessaire d’estimer 

la valeur du paramètre  afin d’être capable, par la suite, de calculer les valeurs des 

paramètres  et  en tenant compte des formules asymptotiques précédentes. Le critère 

crédible utilisé pour calculer la valeur du paramètre  est de supposer l’égalité de la 

limite asymptotique du coefficient de corrélation théorique de pas 1 :  et la 

valeur du coefficient de corrélation empirique de pas 1 : .  
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À partir de l’équation (25), on déduit que  

  

Alors 

 lorsque . 

 

Par conséquent, les équations (22) et (23) lorsque  sont données par 

 

 

D’où 

              

et           

- Le modèle avec  obtenu pour le fleuve Delaware est alors 

 pour    

où  est un processus de Poisson de taux  et les  sont des v.a. i.i.d. 

de distribution exponentielle de paramètre . 
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- Dans le cas du modèle avec  pour le fleuve Delaware, l’estimation du paramètre 

 est , et le modèle s’exprime comme suit : 

 pour    

où  est un processus de Poisson de taux  et les  sont des v.a. i.i.d. 

de distribution exponentielle de paramètre . 

Les tableaux 2.3 et 2.4 ci-après montrent les valeurs des différences des coefficients de 

corrélation théoriques et empiriques du modèle lorsque  et  respectivement. 

Tableau 2.3 : Écart entre les coefficients de corrélation théorique et empirique des débits 

 et  pour ,  et  (Delaware). 

    

        

        
   

Tableau 2.4 : Écart entre les coefficients de corrélation théorique et empirique des débits 

 et  pour ,  et  (Delaware). 

    

        

        
   

La différence absolue des coefficients de corrélation  des débits  et 

 devrait décroître dans le temps et le modèle serait valable pour prévoir le débit 

du fleuve à l’horizon  si l’erreur relative du coefficient de corrélation tend à s’annuler à 

cet horizon. En guise de comparaison de ces modèles avec le modèle obtenu en estimant 
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le paramètre , il peut être conclu de ces résultats de modélisation que la qualité du 

modèle semble bien meilleure avec  qu’avec , mais il reste que les résultats de 

ce dernier sont obtenus avec une valeur fixe du paramètre  calculée à partir du 

coefficient de corrélation de pas égal à une unité du temps, par convention, car il est le 

plus fiable statistiquement et qu’à cet horizon-là le modèle devrait être parfaitement 

réalisable. Par ailleurs, il n’y a pas une très grande différence entre le modèle avec 

 et le modèle avec . On voit dans le graphique de la figure 2.3, que la 

courbe de la somme des différences absolues semble stationnaire à partir du point 

minimum  et que, de ce fait, les valeurs de  à ce point ne sont 

pas très élevées ou très différentes de celles au point , ce qui fait que l’ajustement 

du modèle à moyen terme paraît aussi bon avec  qu’avec . Mais si on 

considère un ajustement à court terme, soit à sept jours (voir figure 2.2), la différence des 

valeurs de  étant importante entre les deux points  et , le modèle 

avec la valeur du paramètre  estimée ( ) s’ajuste donc mieux aux observations 

que le modèle quand  vaut . 

3.3 Stabilité du paramètre  

Dans le but de savoir si l’ensemble des valeurs possibles du paramètre  est défini sur un 

intervalle donné, nous vérifierons la variabilité de ce paramètre en le calculant sur 

différentes périodes de débits pour d’autres échantillons de données. Le tableau 2.5 

résume les valeurs du paramètre  sur différents périodes annuelles de débits; une 

variabilité du paramètre est immédiatement remarquée pour le fleuve Delaware, 

contrairement, plus au moins, au fleuve Hudson. Une valeur élevée du paramètre , 

dépassant la valeur 2 dans les années 2003-2004 et 2005-2006, est observée pour le 

fleuve Delaware; même chose dans l’année 2005-2006 pour le fleuve Hudson. Il ne doit y 

avoir que la nature des données qui influence ces variations, voire le mouvement ou la 

dynamique du débit dans chaque période, ce qui explique la valeur de  qui est 

légèrement supérieure à 1 sur deux années consécutives (2002-2004 et 2004-2006) pour 

le fleuve Delaware. Cependant, la valeur 1,59 du paramètre  pour le fleuve Hudson 
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n’apparaît pas trop influencer la variabilité du paramètre sur une période de deux ans 

(2004-2006 où ) puisque la valeur est suffisamment inférieure à 1. En 

examinant le mouvement des fleuves de plus près (voir les figures 2.5 et 2.6), nous 

constatons que deux crues se sont produites au fleuve Delaware à la période de l’automne 

et de l’été de 2004 et 2006 respectivement, alors que par opposition aux autres années, le 

débit fluctue plus aux périodes printanière et hivernale. En outre, la crue hivernale de 

2005 n’a pas trop d’impact sur la valeur du paramètre , peut-être parce que cette crue a 

été suivie par une stagnation du débit, ce qui a fait alors compenser la moyenne des 

variations. Par ailleurs, le fleuve Hudson est distingué par l’arrivée de crues très élevés à 

la période 2005-2006, ce qui a conduit à une valeur de  qui vaut , soit inférieure à 

, de sorte que la dynamique générale du fleuve est bien stationnaire à l’exception de la 

crue estivale qui est bien distinguée par rapport aux autres années.  

Tableau 2.5 : Variabilité du paramètre . 

 Fleuve Delaware Fleuve Hudson 

 

 

 

 

 

 

 

 
 

          
 

          
 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

   

   

Remarque : la valeur du paramètre  entre parenthèses est sa valeur limite (lorsque 

). 
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Figure 2.5. Hydrogramme du débit (en m³/s) du fleuve Delaware de 2002 à 2009. 

 

Figure 2.6. Hydrogramme du débit (en m³/s) du fleuve Hudson de 2002 à 2009. 

 

3.4 Capacité prévisionnelle du modèle  

Le calcul des coefficients de corrélation théorique et empirique a servi de premier critère 

d’évaluation de la qualité d’estimation du modèle. Par ailleurs, le second critère 

primordial de l’adéquation du modèle comme spécification formelle de la dynamique 

d’un fleuve est son utilité à prévoir le débit du lendemain, voire le débit futur. 
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3.4.1 Cas lorsque  

L’application qui suit se fait sur le fleuve Delaware, en utilisant les données sur les débits 

du 1er octobre 2002 au 30 septembre 2003.  

Le débit a diminué 247 fois pendant cette année, et la diminution moyenne par jour a été 

d'environ . Avec , le calcul de l’estimateur du débit  à 

l’instant  (équation 26) se fait comme suit : 

 

Alors 

 

Ainsi, si , le terme  

 

sera ajouté à l’estimateur du débit . 

Étant donné que les données sont disponibles pour la période de prévision, le calcul des 

débits prévus se fait selon la méthode statique de prévision qui tient compte des valeurs 
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réellement observées des débits; le débit du lendemain serait donc estimé à partir du débit 

observé aujourd’hui et hier. Avec l’application de cet estimateur, nous effectuons des 

prévisions sur les quatre premiers mois de l’année 2004, soit du 21 janvier au 30 avril. 

L’erreur absolue moyenne mae (Mean Absolute Error), soit la moyenne de la valeur 

absolue des 101 erreurs de prévision (21/01/2004-30/04/2004) et son écart-type sdae 

(Standard Deviation of Absolute Error)) sont  

 et  

avec   

Le modèle de régression linéaire obtenu à partir du même échantillon d’observations est  

 

avec   et  

Un autre indicateur d’écart entre les deux modèles de prévision est l’erreur absolue 

moyenne en pourcentage mape (Mean Absolute Percentage Error) qui mesure la 

précision de l’ajustement du modèle aux données, soit 

 pour l’estimateur du débit , 

 pour le modèle de régression, 

et ce, sur les 101 erreurs de prévision correspondantes. 

Par conséquent, à partir de ce dernier indicateur, le modèle issu du processus de Poisson 

filtré paraît s’ajuster plus aux vraies données que le modèle de régression linéaire pour 

prévoir le débit du fleuve Delaware; l’écart d’erreur en pourcentage entre les deux 

modèles est d’environ 5%. Par contre, en prenant compte de l’erreur quadratique 

moyenne mse (Mean Square Error) ou de sa racine carrée rmse (Root Mean Squared 

Error),  
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 ,  pour l’estimateur du débit , 

 ,  pour le modèle de régression. 

Nous notons que le mse est un peu plus élevé pour le modèle de prévision. En fait, le mse 

incorpore la variance et le biais des erreurs de prévision, ce qui permet un arbitrage entre 

les deux. Alors que le mae pénalise moins les grandes erreurs de prévision en donnant 

moins de poids aux observations extrêmes, ce n’est pas le cas avec le mse. Quant au 

rmse, il permet d’avoir une unité de mesure comparable à celle des observations. Étant 

donné que les débits prévus dans cette période des premiers quatre mois de l’année 2004 

sont beaucoup moins élevés par rapport aux autres périodes de l’année et que, par 

conséquent, les erreurs de prévision observées sont également plus faibles, alors les 

indicateurs pertinents pour comparer les prévisions seraient le mae et le mape. Ces 

derniers sont moins élevés pour l’estimateur du débit  que pour le modèle de 

régression linéaire. Notre modèle est donc plus performant que la régression linéaire. 

3.4.2 Cas lorsque  

Dans le cas du modèle avec , pour le même échantillon de données du fleuve 

Delaware, l’estimateur du débit  (équation 27) est donné par 

  

avec   

 

 

, . 

 Le modèle de régression linéaire est donné par 

   

 



43 

avec  

 

  

, . 

Les résultats du modèle lorsque  sont comparables avec ceux du modèle de 

régression linéaire. Ce qui traduit sa puissance prévisionnelle à court terme (en prévoyant 

le débit du lendemain à partir de l’observation la plus récente). Cependant, le modèle 

avec  semble battre le modèle classique du processus de Poisson filtré autant que le 

modèle de régression correspondant. En fait, ce modèle donne les valeurs les plus petites 

de mae et mape. De plus, 66 fois sur 101 la valeur absolue de l'erreur de prévision de 

l’estimateur a été inférieure à celle obtenue en utilisant le modèle avec  et la 

médiane des valeurs absolues des 101 erreurs est égale à  dans le cas de 

l’estimateur du débit  avec , et à  avec . Enfin, cela témoigne 

du fait que le modèle du processus de Poisson filtré serait un bon modèle aux fins de 

prévision.  

Nous voulons maintenant vérifier si l’on obtient des résultats semblables en prévoyant 

sur une autre période de même longueur que la précédente, soit 101 jours de prévision, du 

1er octobre 2003 au 9 janvier 2004 (101 données qui succèdent la période d’estimation du 

modèle).  

Les résultats des calculs obtenus pour chaque critère d’écart entre valeurs observées et 

prévues du débit sont présentés dans ce qui suit sans le terme . En fait, l’estimateur du 

débit , avec le terme , amplifie les valeurs de prévision lorsque le débit est en 

période de croissance (cela est bien clair graphiquement, voir figures 2.7 à 2.10), cela est 

dû à l’hypothèse qu’un événement s’est produit durant l’intervalle de temps , ce 

qui implique évidement une augmentation du débit. Ce terme  était censé améliorer les 

prévisions, mais en pratique il les rend moins bonnes. 
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Le tableau 2.6 résume les résultats obtenus sur la période 01/10/2003 - 09/01/2004, pour 

le processus de Poisson filtré et pour le modèle de régression linéaire. Les résultats, cette 

fois-ci, favorisent la régression linéaire plutôt que le processus de Poisson filtré lorsque 

, quoiqu’on peut prétendre que les résultats sont presque similaires mais avec un 

degré de plus pour le modèle autorégressif. Le modèle lorsque  demeure 

comparable avec la régression linéaire correspondante. Le point le plus important à 

remarquer est que le modèle avec  donne des résultats meilleurs que le modèle 

classique lorsque  (voir figures 2.7 et 2.8). 

En refaisant les mêmes prévisions pour le processus de Poisson filtré sur le fleuve 

Hudson (tableau 2.7), le modèle lorsque  est meilleur que lorsque , mais la 

régression linaire l’emporte dans les deux périodes de prévision, quoique que les résultats 

du modèle lorsque  demeurent similaires à ceux de la régression correspondante 

(voir figures 2.9 et 2.10). 

Ainsi, ce qui doit être noté, est que les résultats de l’estimateur  du processus de 

Poisson filtré avec  sont similaires à ceux du modèle de régression correspondant, 

tandis que cet estimateur avec  donne de moins bons résultats comparativement au 

modèle de régression, mais s’avère meilleur que le modèle classique avec . 
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Tableau 2.6. Critères de comparaison de prévisions entre modèles pour le fleuve 

Delaware. 

  
Estimateur 

du débit  

Régression 

linéaire

Période (21/01/2004-30/04/2004) 

Modèle avec  

mae  

sdae  

mape 

mse 

rmse 

 

 

 

Modèle avec  

 

mae  

sdae  

mape 

mse 

rmse 

 

Période (01/10/2003 - 09/01/2004) 

Modèle avec  

mae  

sdae  

mape 

mse 

rmse 

 

2

5

Modèle avec  

mae  

sdae  

mape 

mse 

rmse 
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Tableau 2.7. Critères de comparaison de prévisions entre modèles pour le fleuve 

Hudson. 

  
Estimateur 

du débit  

Régression 

linéaire

Période (21/01/2004-30/04/2004) 

Modèle avec  

mae  

sdae  

mape 

mse 

rmse 

Modèle avec  

 

mae  

sdae  

mape 

mse 

rmse 

Période (01/10/2003 - 09/01/2004) 

Modèle avec  

mae  

sdae  

mape 

mse 

rmse 

 

Modèle avec  

mae  

sdae  

mape 

mse 

rmse 
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Figure 2.7. Débits (m³/s) prévus et observés du fleuve Delaware.  

(21/01/2004 au 30/04/2004) 

 



48 

 

 

Figure 2.8. Débits (m³/s) prévus et observés du fleuve Delaware.  

 (01/10/2003 au 09/01/2004) 
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Figure 2.9. Débits (m³/s) prévus et observés du fleuve Hudson  

(21/01/2004 au 30/04/2004). 
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Figure 2.10. Débits (m³/s) prévus et observés du fleuve Hudson  

(01/10/2003 au 09/01/2004). 
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CONCLUSION 

Ce travail donne suite à celui mené par Lefebvre et Guilbault (2008) dans lequel on 

propose une version plus réaliste du modèle classique du processus de Poisson filtré 

utilisé pour modéliser le débit journalier  :  

 ,   pour    

Intuitivement, il est évident que la constante  devrait être plus grande que . En fait, la 

fonction de réponse du modèle quand  génère une augmentation instantanée avec 

une décroissance exponentielle du débit, ce qui est assez loin de la réalité. C’est un 

modèle qui est simple à utiliser parce que les estimateurs et les formules sont faciles à 

obtenir, mais les résultats des critères utilisés dans ce travail (voir aussi les résultats de 

Lefebvre et Guilbault 2008; Guilbault, 2008) prouvent que le modèle avec une valeur de 

 supérieure à  apparaît plus réaliste. 

Lefebvre et Guilbault (2008) ont considéré les cas où la constante  prend une valeur 

nulle ou égale à 1. En analysant la qualité d’ajustement du modèle, les auteurs ont 

prétendu que la valeur  pour le paramètre  donnait un meilleur ajustement au modèle. 

Cependant, dans le cadre de notre travail, nous avons adopté une approche reposant sur la 

minimisation de l’écart absolu entre les coefficients de corrélation théorique et empirique 

sur un horizon  de 7 jours. Étant donné que l’estimation des paramètres est faite en 

calibrant le modèle sur les observations des débits journaliers au cours d’une année, les 

variations annuelles de la valeur du paramètre  étaient bien remarquées. Ce paramètre 

varie selon les fluctuations du débit et peut prendre des valeurs plus élevées (soit 

) lorsque la dynamique du fleuve se distingue par l’arrivée de quelques crues 

exceptionnelles.   
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En se basant sur le critère de différence des coefficients de corrélation, théorique et 

empirique, pour comparer la qualité du modèle en tant que telle, nous avons remarqué 

que la qualité d’ajustement du modèle avec  est équivalente à celle du modèle avec 

le paramètre estimé ; ces deux derniers modèles s’ajustent plus parfaitement que le 

modèle classique avec . 

Dans le cadre de la capacité prévisionnelle du modèle, nous avons comparé les résultats 

obtenus du modèle lorsque  avec ceux du modèle classique lorsque  et du 

modèle autorégressif correspondant. Si les résultats du modèle du processus de Poisson 

filtré sont comparables à la régression linéaire, c’est déjà un point important marqué par 

le modèle, puisque le processus autorégressif est un modèle qui fonctionne bien, par 

défaut, pour les prévisions à court terme d’après l’étude de Lefebvre (2003). En plus, le 

modèle nous permet de faire plus de prévision en hydrologie; il nous permet de calculer 

d’autres quantités, des centiles par exemple, de calculer la probabilité que le débit 

dépasse telle valeur dans certaines périodes, qu’on ne peut pas faire avec la régression. 

De notre point de vue, le modèle avec  est le meilleur modèle, d’un côté parce qu’il 

bat le modèle classique avec  et, d’un autre côté, car il donne à peu près la même 

précision que la régression pour les prévisions à court terme. 

On a donc trouvé la valeur du paramètre  de façon plus précise et on s’est servi du 

modèle quand  vaut  pour les prévisions. Dans l’étude de Lefebvre et Guilbault (2008), 

pour faire des prévisions avec , il fallait reconstruire toute la séquence de données 

en introduisant beaucoup d’erreur dans la précision. Mais avec la formule développée, 

dans ce travail, pour les prévisions avec  (sans le terme  puisqu’il nuit), on 

améliore les prévisions en les estimant deux jours d’avance. Pour les coefficients de 

corrélation à moyen terme et pour prévoir, le modèle proposé est meilleur que lorsque 

. Pour ces deux raisons, l’utilisation du modèle avec  apparaît plus 

réaliste.  

L’estimateur  lorsque  sans le terme  donne de meilleurs résultats, parce 

que ce terme fait en sorte qu’il surestime la représentation thématique des données. En 
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es. M s, en pratique, on 

effet, son inclusion dans l’estimateur fait en sorte que la valeur du débit est plus élevée 

lors de son augmentation par rapport aux données observé ai

s’aperçoit que ceci rende les résultats moins bons que lorsque .  

Ce qui peut être envisagé pour continuer cette étude est de refaire l’estimation du modèle 

ainsi que le calcul du débit à l’instant  sur des périodes plus courtes : trimestres, 

mois, pour prendre en considération les variations saisonnières du débit, ce qui est 

oint imp ule très explicite pour les 

révisions 

généralement le cas en hydrologie.  

Un autre p ortant est d’essayer de trouver une form

p  en tenant compte du paramètre estimé . 
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ANNEXE A 

ILLUSTRATION DES TRAJECTOIRES DE PROCESSUS 
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Figure A.1. Exemple de la trajectoire d’un processus de Poisson 

 

Figure A.2. Exemple de la trajectoire de la fonction de réponse unitaire de 

l’hydrogramme :  

 



  58 

 

 

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

18

t

X(t)

 

 

  

 

                                                   

Figure A.3. Exemple de la trajectoire d’un processus de Poisson filtré (shot noise 

process) 
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Figure A.4. Forme de l’HUI par le modèle de Nash (fonction gamma ) 
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