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RESUME

Le présent mémoire démontre les principales facettes de la théorie de séquence
périodique proposée par le Professeur Ke Wu. Cette théorie est appliquée a la théorie des
champs et a la théorie des circuits pour les calculs numériques. Il s’agit d’une analyse ni
dans le domaine temporel, ni dans le domaine fréquentiel. Il s’agit d’une nouvelle
théorie et méthode. Les caractéristiques de cette théorie sont les suivantes :

1. Elle donne des solutions analytiques de champs €lectromagnétiques. Ce sont

des solutions analytiques, discretes et simplement calculables.

2. L’autre caractéristique est que les valeurs propres d’une matrice peuvent

décrire des caractéristiques de propagation d’onde.

3. La simulation est simple et précise. L’erreur est petite et controlable.

L’idée de base de cette théorie est que la réponse est périodique si I’excitation est
périodique dans un systéme linéaire. Apres la discrétisation, la structure périodique peut
étre exprimée par une matrice. Ensuite, le systéme devient un systeme couplé et discret.
Il peut étre découplé par une transformation. Puis, il devient un systéme simple et
résolvable.

Parmi les applications de la théorie de Ke Wu dans la théorie des champs, ce
mémoire étudie les équations de Maxwell sans source. Il dérive les équations d’ondes ou
équations de Helmholtz. Il démontre la relation entre le nombre d’onde et les valeurs
propres d’une matrice de constantes qui dépendant seulement d’un nombre donné. Il
donne aussi I’autre relation entre les valeurs propres et la fréquence de coupure du guide
d’ondes rectangulaires. Ces formules démontrent qu’il y a des relations parmi les valeurs
propres et les parameétres des micro-ondes. A guise d’exemple, les résultats sont
appliqués a des guides d’ondes. Il étudie des ondes de surface de plaques diélectriques (a
grounded dielectric slab) en utilisant des conditions différentes. Ces résultats peuvent

étre appliqués a d’autres guides d’ondes, a des lignes micro rubans, etc.
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L’autre application de cette théorie s’applique aux lignes de transmission dans la
théorie des circuits. Les cas avec et sans pertes des lignes de transmission sont étudiés
séparément. Le cas sans pertes ne peut pas €tre utilisé dans le cas avec pertes parce
qu’ils impliquent des conditions différentes. Dans le cas sans pertes, cette théorie est
appliquée aux équations des télégraphistes. Elle donne les solutions analytiques et
discrétes de tension et de courant. Les constantes sont déterminées avec des conditions a
I’infini. La condition de convergence est donnée. En guise d’exemple, il montre les
courbes de la théorie et de la nouvelle méthode.

Dans le cas avec pertes, cette nouvelle théorie est appliquée a des lignes de
transmission. Les solutions analytiques et discrétes sont données en utilisant la théorie
analytique et algébrique. Des constantes sont déterminées par des conditions différentes.
Les conditions de convergence et de signaux complets a la sortie sont données par la
longueur de I’intervalle de temps et le nombre de partitions. Par exemple, ils étudient les
influences de parametres tels que le nombre de partitions, la position z, la résistance et la
conductance.

Il sera question aussi des les parametres caractéristiques des lignes de transmission.
Les calculs de I'impédance caractéristique, du coefficient de réflexion et de I’'impédance
d’entrée et VSWR sont présentés. On peut aussi montrer les solutions de la tension et du
courant a 'entrée et a la sortie. Les adaptations au générateur et a la charge sont
discutées.

Ce mémoire est juste une introduction a la théorie de Ke Wu. Il y a beaucoup de

travail a faire afin de poursuivre cette recherche.

Mots Clés : Electromagnétisme, micro-onde, séquence périodique, équation de
Maxwell, équation de téléphoniste, équation de Helmholtz, ligne de transmission,

computation numérique, valeur propre, guide onde.
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ABSTRACT

This thesis presents the development of periodic sequence theory of Ke Wu. This
theory is neither in the time domain analysis nor in the frequency domain analysis. This
theory and its method can be applied to a very wide domain such as field theory and

circuit theory for numerical computations. The characteristics of this theory are as

follows:
1. It gives the analytical solutions to problems. These solutions are discrete and
simply calculable.
2. Another characteristic is that the eigenvalues of a matrix can describe the
characteristics of wave propagation.
3. The simulation is simple and accurate. The error is very small and

controllable.

The basic hypothesis of this theory is that the response is periodical if the excitation
is periodical and the system is linear. After discretization, this periodic structure can be
expressed by a matrix. Thus the system becomes coupled and discrete. It can be
decoupled through transformations. It then becomes a decoupled and resolvable system.

As an application of Wu's theory in field theory, this thesis studies the Maxwell
equations without source. It derives the wave equations, that is, Helmholtz wave
equations. It shows the relation between the traditional wavenumber and the eigenvalues
of a constant matrix which only depends on a given number. It also gives another
relation between the eigenvalues and the cutoff frequency of a rectangular waveguide.
These formulas suggest that there are relations amongst the eigenvalues and the other
microwave parameters. As examples, the results are used for a rectangular waveguide
and a ground dielectric slab waveguide by setting different boundaries conditions. These
results can be applied to other waveguides, to micro-strips, etc.

Another application of this theory is related to transmission lines in circuit theory.
The lossless case and lossy case of transmission lines are studied separately. The lossless
case can’t be used in the lossy case because they have different conditions. In the

lossless case, this theory is applied to telegraph equations. It obtains the discrete and
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analytic solutions of voltage and current. The constants are determined with the
conditions at infinity. The condition of convergence is obtained. As an example, the
curves of both the theory and this new method will be shown.

In the second case, this new theory is used for lossy transmission lines. The
analytical and discrete solutions are given by using analytic and algebraic theory. The
constants are determined by changing conditions at infinity. The conditions of
convergence and complete signal output are given by the interval length A¢ of partitions
on time and the number of partition. As examples, the influences of parameters such as
the number of partitions, the point z, the resistance and the conductance are studied.

I shall discuss the characteristic parameters of transmission lines. The calculus of
characteristic impedance, deflexion coefficient and input impedance and VSWR are
presented. The solutions of voltage and current at input port and load port are also
shown. The load matching is discussed.

This thesis is just an introduction to Ke Wu’s theory. His ideas and thoughts are so
rich that I can only express a small portion of them. Further research will take place in

the future.

Key words: Electromagnetism, microwave, Periodic sequence, Maxwell equation,
telegraph equation, Helmholtz equation, transmission line, numerical computation,

eigenvalue, waveguide



CONDENSE EN FRANCAIS

DEVELOPPMENT DE THEORIE DE SEQUENCE PERIODIQUE

Ce mémoire présente la théorie de séquence périodique du professeur Ke Wu. Il
s’agit d’une nouvelle théorie. Il ne s’agit ni d’une analyse dans le domaine temporel, ni
dans le domaine fréquentiel. Cette analyse peut étre appliquée a la théorie des champs et

a la théorie des circuits pour calculs numériques.

0.1 Applications de la nouvelle théorie a la théorie de champs

L’hypothése de base de cette théorie est que la réponse est périodique si I’excitation
est périodique et le systtme est linéaire. Le Professeur Ke Wu utilise cette idée pour
discrétiser des équations de Maxwell. La séquence périodique correspond a une matrice

circulante. Les équations de Maxwell sans source peuvent étre approximées par

VXEngﬁ' 0.1)
Y
VxH =*DE 0.2)

ou D est une matrice de constante. Puis, Ke Wu fait les transformations suivantes

E=T.¢ (0.3)
H=T.h (0.4)
ou T, et Ty, sont les matrices des transformations. Dans le domaine transformé, on a
VxVxe=£EM e (0.5)
d
vaXh=§§Mh 0.6)

ol M est une matrice réelle et symétrique. Les variables sont couplées dans ces
équations. En utilisant la théorie algébrique, on peut diagonaliser la matrice M en

choisissant T, et Ty. Et puis, on obtient les équations indépendantes
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VxVxéz—gé/VZ
0.7
S ue o 0.7)
VXVxh=—=A"h
d

ol A est une matrice diagonale. Ce systéme représente la propagation d’ondes. Ensuite,
on peut démontrer que le systéme d’équations (0.7) correspond aux équations de
Helmbholtz qui sont indépendantes et ainsi résolvables.

Des équations en composants pour les Modes TM, TE et TEM sont présentés. Les
solutions des ondes planaires sont obtenues.

11 aussi présente la relation entre les valeurs propres et le nombre d’onde.

Comme applications de ce systéme, elles sont appliquées a un guide d’ondes
rectangulaire et aussi €tudié les ondes surface de plaques diélectriques (grounded

dielectric slab).

0.2  Applications de la nouvelle théorie a la théorie de circuits

Une application de la nouvelle théorie est la théorie des circuits. Ce mémoire
démontre les applications pour des lignes de transmission. Les cas avec et sans pertes
des lignes de transmission sont étudiés séparément. Dans le cas sans pertes, on dérive les
équations des télégraphistes en utilisant cette méthode. Et puis, les constantes doivent
étre déterminées a ['aide des conditions initiales. L.a condition de convergence est
présentée. Les courbes de la théorie et de la nouvelle méthode sont présentées.

Dans le cas avec pertes, les équations des télégraphistes avec pertes sont des
équations couplées et discrétes. En utilisant les transformations, elles deviennent
découplées et résolvables. Les solutions sont trouvées pour des constantes arbitraires.
Les constantes arbitraires sont déterminées par les conditions a I'infini. Les résultats des
lignes de transmission sans pertes ne sont pas un cas particulier du cas avec pertes. Ils
donnent aussi la condition de convergence. Ils montrent les relations parmi le nombre de
partitions ou la longueur de lintervalle de temps, le point z, la résistance et la

conductance. Ils €tudient ’effet de la position sur la propagation d’onde, I'effet de
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changement de la résistance et de la conductance. Dans tous les cas, on compare les
courbes de la nouvelle méthode avec celles de la théorie.

Les parametres caractéristiques des lignes de transmission sont définis. Les calculs
de I'impédance caractéristique, du coefficient de réflexion, de 'impédance d’entrée et
du T.O.S. sont présentés. On montre aussi les solutions de la tension et du courant a
I’entrée et a la sortie. Les adaptations au générateur et a la charge sont discutées.

La nouvelle méthode est caractérisée par son efficacité, sa simplicité et sa rigueur.
L’erreur est trés petite et peut €tre contrdlée. La convergence est rapide par rapport aux
méthodes traditionnelles, telles que la méthode spectrale, la méthode du domaine
temporel de la différence finie (FDTD), la méthode des moments, etc. Cette théorie aura

beaucoup d’applications dans le domaine de micro-ondes et du génie.
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CHAPTER 1
INTRODUCTION AND OVERVIEW

1.1  Origin of the periodical sequence theory

About ten years ago, Professor Ke Wu had an idea for the establishment of a new
theory of computational electromagnetism. Neither in time domain nor in frequency
domain, it is a discrete numeric method that can be applied to any system with a periodic
response when it is excited by a periodic input. The basic work of this theory has been
done by Professor Wu.

This new theory is not only suitable to field theory, but also suitable to circuit theory.

1.2 Theory of periodic sequence

As the excitation is periodic, in a linear system, the response is periodic too. This
idea is applied to second order linear equations of electromagnetic fields. The periodicity
can be expressed as a circulant matrix. Then by means of the transformations, the
coupling equations are decoupled in the process of the diagonalization. Finally, we
obtain the decoupled equations. We call these equations a standard form. This idea and
method is applied to both the theory of fields and the theory of circuits in this thesis.

In Chapter 2, we present this new theory. Maxwell’s equations are taken as a model
for applications of this theory in solving the problems of electric and magnetic fields.
The original idea of this theory contains the process of the discretization, the
transformations and the diagonalization. It derives the standard forms of decoupled

equations. These standards can be used in many boundary problems.

1.3 Development of the periodic sequence theory

Chapter 3 presents general TEM, TE and TM waves. It introduces the product
operation of two vectors which is used in Matlab. We obtain the wave equations

expressed in components as well as the solutions of general plane wave. The relationship



between the traditional wavenumber k and the eigenvalues are obtained. Hence we can
calculate the wavenumber from the eigenvalues.

We apply these results to rectangular waveguide in Chapter 4. As a result, the
solutions of electric and magnetic fields in TM and TE modes are obtained, as well as a
formula to calculate the cutoff frequency from the eigenvalues.

In Chapters 5 and 6, we apply the theory to analyze circuit. In Chapter 5, we apply
this theory to lossless transmission lines. The analytic solutions of standard telegraph
equations are presented and the relationship of the coefficients is analyzed. The accuracy
of this numerical method is verified by comparing the voltages of a lossless transmission
line obtained from the theoretical analysis and from calculations using the new theory.
In Chapter 6, we study lossy transmission lines. The discussions of solutions are
presented. The minimum number (N) of partitions is presented for complete wave and
convergence. Many examples are given to find the influences exerted by the resistance R,
the conductance G, the position z, and N in the calculations when using this method. Dr
Xu F. found that the matrix is circulant. I used his discovery in my research for
diagonalisation.

Chapter 7 discusses the characteristic parameters of transmission lines. The
calculations of characteristic impedance, deflexion coefficient and input impedance and
VSWR are presented. We also show the solutions of voltage and current at the input port
and the load port followed by a discussion of the load matching and generator matching.

The ground dielectric slab waveguide is studied in Chapter 8. We obtained the
solutions for TE modes and TM modes. We also discuss the solution of the

transcendental equation for the cut-off frequency of both TM and TE modes.

1.4 Overview of the computational methods

Numerical computation plays a very important role in engineering. It is applied in
many fields of the industry. The following eight examples are some of the most
contemporary and emerging applications of numerical computation.

e radar-guide missile.



The problem lies in the interactions between the missile seeker’s horn antenna and
randomly generated errors in the angular location of a target.

¢ high-speed computer circuit-board module,

The digital circuits can be upset at very high clock rates due to parasitic coupling
between signal paths.

e high-speed computer multi-chip module
The problem is to find the inductance of a complex MCM power distribution system.

e Microwave amplifier
The problem is with the linear and non linear characters of a 6-GHz amplifier.

e Cellular telephone
The problem is to design a cellphone which meets the safety standards for microwave
exposure.

e Optical microdisk resonator
The problem is to discern how photonic integrated circuits are best used by these
elements for ultrafast all-optical switching of signals based upon their wavelength.

e Photonic bandgap microcavity laser
People want to design the world’s smallest laser sources based on PBG structures.

¢ Colliding spatial solitons
The project is to build the world’s fastest all-optical switches with ordinary glass.

The modeling of microwave structures has been growing rapidly in the past few
decades. It ranges from increasing various operating frequencies to reducing the design
cycle. The accomplishing growth was made in numeric theory and computation. People
often use two analysis methods to solve the problems of fields and circuits. One is Time
Domain Analysis (TDA), another is Frequency Domain Analysis (FDA). Now we shall
review both of them.

Finite difference method (FDM)

The finite difference method was first developed by A. Thom [1] in the 1960s. The
FDM [2] is an old and popular method in numerical computation. This method is known

to be simple and basic and it is applied in many domains to solve different problems.



The idea is to calculate the new values from previous ones by means of the Taylor

series.
P(x, +h)—o(x,)=9'(x,)h+ 51—, ¢"(x, )h* + % ¢"(x,)h’ +O(h*)

1

§¢vu(xn)h3 +0(h4)

d(x, —h)—o(x,) = —¢'(x,)h + —21—'(/5 "(x,)h* ~

Adding two equations, we can obtain

o(x, +h)+¢(x, —h)
2

d(x,) = +¢"(x )h* +O(h*)

Hence

o(x,) = +O(h*)

o(x, +h)+é(x, —h)
2

This is a second order of h. If the length of step h is small, it has a small error. In fact,
the error is O(h?).

In general, the FDM has three steps:

(1) dividing the region of problems into a grid of nodes

(2) approximating the given differential equation using finite difference

(3) solving the difference equations subject to the prescribed initial conditions or

boundary conditions.
The FDM has three types of differences: the forward-difference, the back-ward
difference, the central-difference. The errors of the forward-difference and the
backward-difference are first order. The central-difference error is second order.
Finite element method (FEM)

The finite element method [3]-[5] is a method similar to the finite difference method.
The FEM has its origin in the field of structural analysis, but it has some advantages.
FEM has been employed in diverse areas such as waveguide problems, electric
machines, semiconductor devices, microstrips, and absorption of EM radiation. It can
help solve problems with flexible features. The functional and variation expressions are
applied to the region under consideration. The small segments are polygons. Usually,

they are triangles or rectangles depending on whether they are two-dimensional



problems or three-dimensional problems, respectively. This method is flexible to sub-
region which may be more or less polygons depending on the problems.

This method is very popular in electrical and magnetic field computations and
mechanics in which the electrical field and the force are not homogenate. Lately, the
boundary element method has been proposed. It uses the boundary integral equation and
the discrete technique.

To apply FEM involves four steps:

(1) discretizing the region into some subregions

(2) deriving governing equations for a typical element

(3) assembling all elements in whole region

(4) solving the equations

Although the finite difference method and the method of moments are conceptually
casier to program than the finite element method, FEM is a more powerful and versatile
numerical technique. It is more useful for handling problems involving complex
geometries and inhomogeneous media. This method makes it possible to construct a
general-purpose computer program for solving a wide range of problems.

TLM method

The TLM method [6][7] converts the field problem to a three dimensional equivalent
network problem. In this method the region or space is discretized into a two or three-
dimensional lattice. The field components are represented by a hybrid TLM cell. The
boundaries correspond to the electric wall and magnetic wall by short-circuited shunt
nodes and open-circuited shunt nodes. The magnetic and dielectric materials are
introduced by adding short or open-circuited series to the stub of half length of step at
the series or shunt nodes. It can represent the loss by resistively loading the shunt nodes.
The frequency response can be obtained by the Fourier transform.

In general, the TLM method involves two basic steps:

(1) Replacing the field problem by an equivalent network and deriving

analogies between the field and network quantities.

(2) Solving the equivalent network



The structures of TLM are quite varied. Due to the introduction of periodic structures,
there is a typical passband-stopband phenomenon. This is one of several precautions.
Integral equation method

The integral equation method [8] uses the integral of unknown quantities on
boundary. This is the form of an integral equation; it uses the Fourier transform to
convert two-dimensional Helmholtz equation to one dimensional ordinary equation, and
then to find the solution. The Green function can be found by two-dimensional inverse
Fourier transform. The variation method is used in it, too.
Method of moments (MOM) and Galerkin’s method

Many electromagnetic problems can be stated in terms of an inhomogeneous
equation

Lo=g

where L is a differential and integral operator and g is an excited source. The MOM is a
general procedure for solving this kind of equation.

The MOM [9]-[11] is concerned with the integral equation method. The integral

equation has the following form
[ Ger.rf(rydr=p(r),re D
Where p is the excitation function and G is the Green function. The step functions are

used as basis function to express f. It is also used in delta functions as testing functions.
These very popular basis and testing functions were introduced by Galerkin. It is called
Galerkin’s method.
The general MOM procedure involves four steps:

(1) Derivation of the appropriate integral equation.

(2) Discretization of the integral equation into a matrix equation using basis

functions.

(3) Evaluation of the matrix elements

(4) Solving the matrix equation
Mode-matching method (MMM)



The Mode-matching method [12][13] is used to solve the problem of discontinuity
structures such as a waveguide. The mode-matching procedure first involves the
expansion of unknown fields in the individual regions by using the known normal
modes. The problems are turned to determine the modal coefficients. In general, it is
impossible to find the exact solution. People use this approximate technique to find
approximate solutions. This method is applied to solve for scattering problems and
eigenvalue problems.

Method of lines (MOL)

The method of lines [14][15] is similar to the finite difference method. In this
method, the physical structure of two or three-dimensions is discretized for numerical
computations while the analytical expressions are determined in the other dimension.
This method has the advantage of giving discrete analytical solutions. MOL[16]-[18] has
many advantages such as computational efficiency, numerical stability, and reduced
programming effort and time.

To apply MOL, in general, involves the following five steps:

(1) partition of the region into layers.

(2) discretization of the differential equation in one dimension.

(3) transformation to obtain decoupled ordinary differential equations

(4) using inverse transform and initial or boundary conditions

(5) solution of equations
Spectral domain method (SDM)

The spectral domain method [19]-[11] is known as the Fourier transform version.
The hybrid fields can be found from two potentials which are associated with electrical
and magnetic components. Using Fourier transform, the problem is converted to spectral
domain with structure conditions to find solutions. Then use inverse Fourier transform to
obtain the solutions.

Finite-Difference Time-Domain method (FDTD)
The Finite-Difference Time-Domain method [22]-[24]is used to solve Maxwell’s

equations for phenomena of electromagnetic waves. Yee [22] in 1966 first employed a



uniform mesh of space having rectangular unit cells to approximate the surface of the
structural feature. There has been great progress since the 1970s; Taflove and Brodwin
[23][24] obtained the correct numerical stability criterion for Yee’s algorithm. This
method is efficient for a large structure. It uses iteration for the computation of the field.
FDTD does not use linear algebra. The error in FDTD can be bounded to permit
accurate models for a large variety of electromagnetic wave iteration problems. The
FDTD can treat nonlinear problems. But this method requires a large random access
memory. So it usually demands a powerful computer.

The FDTD is very popular today and there are lot of people working on it. After Yee
and Taflove’s works, Holland, Kunz and Lee applied Yee’s algorithm to EMP problems
[25][26]. Then Taflove coined the FDTD acronym and published the first validated
FDTD models of sinusoidal steady state electromagnetic wave penetration into a three-
dimensional metal cavity [27][28][30] etc.

Conclusion

In general, all of the above methods have advantages and disadvantages. Some of
them are simple, and cannot easily solve complicate problems, while others are complex.
The methods of time domain analysis are not easy to realize because they involve a large
amount of computations, they require a high CPU and substantial memory. The
frequency domain techniques present difficulties and tradeoffs. They are not very
accurate, and they must calculate each frequency point in a band for spectral analysis. It

is impossible to do so for a large band of frequency.



CHAPTER 2
APPLICATIONS OF PERIODIC SEQUENCE THOERY

TO FIELD THOERY

2.1 Introduction

In this chapter, Maxwell’s equations without source are taken as a model for the
theory of periodic sequence. We shall demonstrate this new theory through the process
of discretization, transformation, diagonalization, and solutions.

The system hypothesis is that, in the linear system, the response is periodic if the

excitation is periodic. This is the theoretical basis of periodic sequence theory.

2.2 Theory of periodic sequence

We shall show the theory of periodic sequence in three steps: discretization,

transformation and diagonalization.

2.2.1 Discretization

Maxwell’s equations in lossless, without current source, homogenate, and isotropic

medium are expressed as

-

VXE=—py—, 2.1
Y2 o (2.1a)
V><H=f:9§. (2.1b)
dt

where E,H, 4 and £ are the electric field intensity, the magnetic field intensity, the

permeability and the permittivity, respectively. We use the method of lines and the
differences divided by time, and denote the length of partition interval as d. Then,

rewrite (2.1). The discrete forms of Maxwell’s equations can be obtained:
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VXE = gD’H +0(d), (2.2a)
VxH = %DE+O(d), (2.2b)

where N is the number of lines within a period, T is the period of excitation, the

superscript t in the D' is the transpose of D and D is defined by
p=| . | (23)

Omitting the terms of O(d) from (2.2), we can be obtain the nice approximate equations:
V><E=§D’ﬁ, (2.42)

-

VxH = %DE. (2.4b)

2.2.2 Transformations

We use the transformations to electric and magnetic fields as

E=Tg@, (2.52)
H=Th, (2.5b)
Let
(2 -1 0 - 0 -1}
-1 2 -1 0 0
0 -1 2 - 0 0
P= : (2.6)
0 0 0 2 -1
-1 0 0 -1 2]

The rotations of e and 4 in the following demonstration can be obtained by using (2.2)
and (2.5):
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Vxé=Vx(T'E)
=T'(VXE)

=§nuﬁ+m@
£ DT 1+ 0(d)
d e h

=§5%+0m) 2.7

Let Iy be the identity matrix. By using 7,T'=Iy, we obtain
Vxh=VX(T 'H)
=T/ (VxH)

=§nDE+0w)

=§nbné+0u)

=§§E+OML 2.8)

where 0 =T, DT, Neglecting O(d), the formulas (2.7) and (2.8) can be simplified as

follows

Vxézga%, (2.92)



2.2.3 Diagonalization

Using formulas (2.5) and (2.9) and omitting the term O(d), we can obtain:

VxVxE=Vx§5’f;
=E5vxh
d
=/C'Z‘—f5f55,
and
VxVxﬁ=Vx§§é

=£§V><'é
d

=g—f55’ﬁ.

Simply, it can be written as such

VXVXe :—'L—l—-?é"Je,
d

V><V><;z> =£§5§’ 71)
d

Since 88" = §'8, we only need to calculate §'6:

12

(2.9b)

(2.10a)

(2.10b)

(2.11a)

(2.11b)
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8'8=T PT, =A%, (2.12a)

8'6=T,PT, =4 (2.12b)

We choose T, as

2 . (N+8pk)r
T, = (T, )T, =\/;s1n————4—]\7———-—,p, k=12, ...,N. (2.13)

It is easy to show that T. is an orthogonal matrix. Similarly we choose the orthogonal

matrix Ty, such that (2.12b) holds. We can obtain the eigenvalues
2 . .2 kx
A® =diag(A,), A = 4sin (7) , k=12 ..., N. (2.14)

Therefore, A is a diagonal matrix.

2.3 Standard forms

We obtain the following standard form of decoupled equations

V><V><é’=ﬂ—f/lzz
d

L 2.15)

VxVxh=£2 2
d



CHAPTER 3
GENERAL TEM, TE AND TM WAVES

3.1 The Wave Equations

14

In the Cartesian coordinate system, the first order formulas in (2.9) are equivalent to the

following system of scalar equations:

ai_aizﬁgtﬁx,
dy o0z d
dé, 0é, U .-
x—"‘i—"—é‘thv
oz ox d 7
% _% Ly,
ox dy d °
%_aﬂzf&;,
dy 0z

oh. oh ¢
x__zz—é‘—‘,
0z o d
ihi_%=f_5g,
ox dy d °

The equations in field components in (2.15) become the equations of Helmholtz:

ol 9%, %
ox* oy 97’

+ g—fﬂzéx =0,

2— 2 2—
0 ey+8 ey+a é,

HE 2o
PRI R

(3.1a)

(3.1b)

(3.1¢)

(3.1d)

(3.1e)

(3.19)

(3.2a)

(3.2b)



0%, 0%, 0J%, e .
8x2+82 az+?/121=0,
y z
o*h, 0h, 0*h,  pE ;-
X p % t+ A*h =0,
ox*  oy? 972 d* 7
3*h, 9*h, 0%

0%h, N 0%h, N 0*h,  ue

oxr oy’

3.2 TEM Waves

dz* * -
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(3.2¢)

(3.2d)

(3.2e)

(3.2)

Transverse electromagnetic (TEM) waves are characterized by settinge, = ﬁz =0.

We then obtain the following equations

2—
d°e,

0z

2——»
d%€¢,

0z°

2%,

0z°

Y

0z°

+%ﬂzé’x =0,
+%§Azé’y =0,
+’;l—f/125x =0,
+—’g—f—/125y =0.

(3.33)

(3.3b)

(3.3¢)

(3.3d)

The formulas in (3.3) are the equations of plane waves in a lossless medium (cf. David

M. Pozar [29] p16). Comparing (3.3) to (3.2), we have

0%

X

ox?

2
) ezx 0.
dy

(3.4a)
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0%¢, 0%,
9% o (3.4b)

ox* ¥ dy*

9%h, 0%
O o (3.4d)

ox* ¥ dy’

o*h, 9h,
—2=0. (3.4e)

ox’ ¥ oy*

Using the Laplacian operator V7 =0/0x* +9%/0y® in the two transverse dimensions

ande(x,y) = %e, + J¢,, we obtain
Vie(x,y) =0, (3.5a)

Vih(x,y)=0. (3.5b)
The results (3.5) are well known as the Laplace equations in two transverse dimensions.
It shows that the transverse electric and magnetic fields, e (x, y) and h (%, y), of TEM
waves satisfy Laplace’s equations (cf. David M. Pozar [29] p107).

For the wave impedance of the TEM mode, the ratio of k-th components of the

transverse electric and magnetic fields is the following:

ah(k)

y

e __H o
WP £ 9e G0

0z

Integrating both sides of (3.6), we obtain the wave impedance of TEM:

= \/Z . (3.7)
£

)
ey

)
h’x

®

eX
®

h y

Zrpy =

3.3 TE Waves

Transverse electric TE waves are characterized by €, =0 andﬁz #0.
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9, _ws (3.82)
0z7 d *
L (3.8b)
0z d "’
9, %, _us (3.80)
ox dy d °
oh O &5, (3.8d)
dy dz d °
oh, Oh &5
x U _ Y > 3.8e
dz odx d % ©.8¢)
oh, _oh, (3.80)
ox dy

The formula (3.3f) can be obtained from (3.8)

0%h, .\ 0°h, s ’h,
a? 9t 9

+ ﬁl—?ﬂzﬁz =0.

3.4 TM Waves

Transverse electric TM waves are characterized by ﬁz =0 ande, # 0. From (3.1),

06, 06, ud'

: , (3.92)
dy dz d °

dé, o0e, uo -

—& =i (3.9b)
dz dx d °

9%, 2 (3.9¢)



The formula (3.3¢) can be obtained from (3.9)

0%, d%, 0d%,
+—z 4
ox*  oy* 97’

3.5 Solutions of General Plane Waves

Vector operations

+ g—fﬂzéz =0.

18

(3.9d)

(3.9)

(3.91)

For the expression of solutions and simple computation, we introduce the vector

operations used in Matlab.

Let
a
a=(a)=|: |,
an
and
bl
b=()=|":
b

The vector operations are defined as

a.*b=(ab,ab,, ,ab),

n-n

a.lb=(a/b,a,lb,,.a,lb),

Eip :(alp’aé)’...,a’f)t’

(3.102)

(3.10b)

(3.11a)
(3.11b)

(3.11c)
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fa=(] a.] @] a), (3.11d)

%d’z(%al,%az,m,%anjt, (3.11e)
exp(a) = (exp(q, ),exp(a,), --,exp(a,)) , (3.11f)
cd =(ca,,ca,, ,ca,) , (3.11g)
d+b=(a th,a,%b,,--,a b ), (3.11h)

where A’ is the transpose of A, ¢ is a scalar constant, p is a nonnegative rational number
and b, #0 in (3.11b). When p in (3.11) is not an integer, it takes the principle value of

multi-values.
Solution of wave equations

Now, we can solve the equations in (3.2). Let n=N. Let u represent the N-dimension

—_ -

column vectors €,,€,,¢€,,h,,h andh,, respectively. The formula (3.2) can be written

X2y
as
% 0% 9% -,
B + 5 + 7 +A%i =0, (3.12)
where
A2*if =—g§/12ﬁ. (3.13)
Let
F(x)=(£(x), GO =(g.(»), Hz)=0(2)). (3.14)

Then we assume that the solution of (3.12) can be written as
i(x, y,2) = F(x).*G(»).* H(2), (3.15)
Substituting this form into (3.12) and using the commutative properties of vectors, we

have

F' (x)./F(x)+G (y)./GO)+H (z)./ H)+A*=0, (3.16)
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where 0 is the zero vector. We notice that each term of F'./F,G./G and H'./H

must be equal to a constant vector, since they are independent of each other. Hence we
define three column vectors A, A ,»and KZ such that
F +AL*F=0; G +A}.*G=0; H +A}.*H =0, (3.17)
and
AZ+A+AI =A% (3.18)
Now we can give the solutions of equation (3.12)
ii = (exp(=jA, x).* A +exp(jA x).* AP).* (exp(—j/iy y).* B® .19
+exp(jA,¥).BD).*(exp(jA,2).*C?” +exp(- jA,z).*C?),
and A”, B”  and C (i=1,2) are arbitrary complex constant column vectors. Hence the
electric field density is given by
E=T,(63+¢7+83). (3.20)
Denoting the coordinate vector by

xx+yy+z2
XE+y,5+2,2

A=AZ+A5+A 2= 3.21)
XX+ Yy Y+ 242
Defining a position vector as
F=xX+yp+ 22 (3.22)
The dot product of Aand 7 is
Xx+yy+2zz
Ar=Ax+ANy+A,z= : . (3.23)

Xy X+ Yy Y+ 242
The coordinate vectors are treated as a particular case of vectors. The dot product of two
coordinates vectors A, and A, is

AA,=ALFA, +A A (3.24)
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where 7\,. has the form of (3.21). We have also

(x X+ y,2+272aq
Ad=ad A= : , (3.25)
(xyX+yyZ+zy2)ay

where vectors @ and A are defined in (3.10a) and (3.21). Then the electric field can be
expressed by
¢ =exp(—jA-T).*E,. (3.26)
where &, =@t +by+&% is the electric field amplitude vector, and &, b, Care the
arbitrary complex constant column vectors. Now we discuss the relation between A
ande,. We define
V-(a,,ay) =NV-a,-,V-a,), (3.27)
The formula
V-(7)=V -VF+ V-V, (3.28)

holds for a complex scalar mapping f. For simplicity of expression, we consider only the
“incident wave”’; the “reflection wave” is similar.
V-E=TVexp(—jA -F).*&, = —jT, exp(—jA-F).*(A-&,). (3.29)
From the divergence condition, we have
A-,=0, (3.30)
which means that the electric field amplitude vector ¢, are “perpendicular” to Ain the
transformed fields
Now we turn to the relation among E, H andA. Simply calculating,
V><E=(VTeexp(—j7\-f))><éo=—j7\><E. (3.31)

Hence

>l
X
trys
1l
.
SRS
S
]

(3.32)
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3.6 Wavenumber and Eigenvalues

In this section we discuss the relation between the traditional wavenumber and
eigenvalues. The vector A of eigenvalues is given as (3.13). The elements of Aare the
eigenvalues (4, ). The elements of /Kx,/iy,/iz are (Axk),(Ayk) and (A, ), respectively.
From (3.18), we have

N+ AL +AL =2 (3.33)
The traditional wavenumber is given by
k=2—;[—\/,u€. (3.34)

The following proposition gives the formula which determines the relation between
engenvalues and the traditional wavenumber.

Proposition 3.1 For the given N, u and &, the mapping

27

()], (3.35)

is from N-dimension complex Hilbert space to complex Hilbert space, where [], is I,

norm. We choose the principle branch of multi-values. Then there is the relation

between wavenumber and eigenvalues
k=F(A). (3.36)

We can verify this result through the following example 3.1.

Example 3.1 Fore = ¢, u = u,, f =1GH, c is the speed of light in free space. In [29],
the usual wavenumber is expressed in (3.34). We have the table 3.1.
From Table 3.1, we see thatk and F (7\) are almost identical despite a small error of

calculus or computer: the relative error of F (K) is:

w <4.973x107",

for N <10°.



N Theory values of k F(A)

10 20.94395102393196 | 20.94395102393196
10 20.94395102393196 | 20.94395102393195
10° 20.94395102393196 | 20.94395102393196
10* 20.94395102393196 | 20.94395102393201
10° 20.94395102393196 | 20.94395102393199

Table 3.1 Calculation of k and F(A)

3.7 Variance of electric field in t

23

‘We are interested in the variance of electric field on time t. Now we can also obtain the

ratio of difference. Let us denote EO =(a,,-++,ay)" as the constant column vector of the

electric field. Then the variance of the electric field on time t will be

AE, E,-E_

At

1 N ' .
=?\/ﬁkz=;/1k Re((1+ j)a* ™ a,,

where @ = e~

DN Similarly, we can obtain the magnetic variance in t.

(3.37)
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CHAPTER 4

RECTANGULAR WAVEGUIDE

4.1 Introduction

Rectangular waveguides are one of the earliest types of transmission lines and are still
used today in many applications. A lot of components such as couplers, detectors,
isolators, attenuators, and slotted lines etc are commercially available for various standard
waveguides. Because of a recent trend toward MMIC, the microwave circuits are using
planar transmission lines. There is, however, still a need for waveguides in many
applications such as high-power systems, millimeter wave systems, and in some precision
test applications.

Waveguides, often consisting of a single conductor, support transverse electric TE
waves and/or transverse magnetic TM waves. The hollow rectangular waveguide can
propagate TM and TE modes, but not TEM waves, since only one conductor is present.
We shall show the solutions of the transverse magnetic TM waves and the transverse
electric TE waves. We obtain a formula which reveals the relation between the traditional
cutoff frequency and eigenvalues. The elliptical conditions are presented.

In this chapter, the geometry of a rectangular waveguide is shown in Figure 4.1,

Figure 4.1 Geometry of a rectangular waveguide
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where it is assumed that the guide is filled with material of permittivity € and
permeability 2 .
4.2 TM Modes

Transverse magnetic TM waves are characterized by ﬁz =0 and Ez #0. The wave

equation and the boundary conditions are applied to Ez :

0’E, 0°E, OE, e -
z 4 A i+ —PE =0, (413)
ox*>  dy* 9  d* ¢

—

=0, (4.1b)

x=0,a

z

=0. (4.1¢c)

y=0,b

4

By using (3.9) and (3.19), the solutions of (4.1) and other traverse field components for

the TM mode can be computed as

E = jT,0(0,).*A_ .*cos(©,x).*sin(®, y).*(exp( JA . 2).%a,, —exp(— j]\zz).*ém,,) [(4.2a)
E, = jT,0(®,).*A,.*sin(®,x).*cos(®, y).*(exp( jA,2).*G,, —exp(~ j]\zz).*Em) ,(4.2b)
E, =T, sin(®, x).* sin((:)ny)<exp( JjA2).*a,, +exp(-jA 2).*b,, ) (4.2¢)

H. =sTh&Q(én).*sin(@mx).*cos(@)ny).*(exp( JA2).* Gy, +exp(—jA,2).*b,, ), (4.2d)

H = —gThﬁQ(@m).*cos((:)mx).*sin(@ny).*(exp( iR .2).*a,, +exp(-jA,2).*b,, ), (4.2¢)

y
where, in non TMymode, and for any vector A

Q(A)=A1(8]+6}), (4.3)
and ém and @, are the vectors whose elements are m,7/a and n/b , respectively, for

some integers m;,and n,
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Usually, the wave propagation along the +z-axis in the TM modes of a rectangular
waveguide is studied.

4.3 TE Modes

Transverse electric TE waves are characterized by E“Z =0, while H . must satisfy the
wave equation:

0*H, s 0’H, 9°H,
ox*

HE b
5 o + F PH. =0, (4.42)

The boundary conditions on the electric field components tangential to the waveguide
walls are expressed as

E ly-0=0, (4.4b)
Ey Ix—_— 0,a = O.

(4.4¢)
Similarly, by using the equation (3.8), the solutions of (4.4) and other transverse field
components for the TE mode can be computed as

E

= —g—EJ’Q((:)n).* cos (émx) ¥sin (@n y) K (exp(j/izz). *a, + exp(—j/izz).*gmn) ,(4.52)
Ey = ﬁTj’Q((:)m).* sin (@mx) J¥cos ((:)ny) JE (exp(j/»\zz).* a,, + exp(—j/izz). * l;mn) ,(4.5b)
H,=-jT,0(0,).* A sin(6,x).*cos(©,y).* exp(jA,2). *a,, —exp(-jA 2).*D,,) (4.5c)
H, = jT,0(8,).*A, *cos(©,x).*sin(©,y).* (exp(jA,2). *&,, —exp(~jA,2).*b,,) (4.5d)
H, =T, cos(®,x).*cos(©,y).* (exp(jA,2). *G,,, +exp(- jA 2).%b,,) (4.5¢)

where ©,, and ©, are the vectors whose elements are m,z/a and n7 /b , respectively, for
some integers m,and n,
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4.4 Cutoff Frequency

4.4.1 Elliptical Conditions

Elliptical Conditions

We define the elliptical conditions of mp, n, and 4, which are shown in Figure 4.2

2 2 2
My T | NHEND, (4.6)
at b al ' '
n,f
b fus Ni
6
Jf-# ]
yd
rd 2
( ' \ ™
\ of [ 2 3] & | J,rewx
N\ / T
AN e
\"‘--.._ L
Rty

Figure 4.2 Elliptical conditions of my, n, and 4,

Cutoff frequencies in transformed fields
The eigenvalue vector is
A*=02 +0% +A%. 4.7)

In the case of TM modes and TE modes, the vector /12 in transformed fields can be

defined as
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A*=A*-0 -0, (4.8)

which is seen to be real if it satisfies elliptical conditions shown in Figure 4.2. We define

the cutoff frequency f” of TM and TE modes for a rectangular waveguide by
£ =inf{f :A,(f)| is real and m, =m,n, =n forall i=12,+,N —1} . 4.9)

Set

2 2 2
Fpmm)=—> \/{J‘Eﬁp] —(m—"”j —(Z’-’f} . (4.10)
27\l ue d a b

4.4.2 Relation of cutoff frequencies between original fields and transformed

fields

We consider original electric and magnetic fields E andH . The following quantities

are identical:

(a) The cutoff frequency f.”* of TEm, TMma is given by the definition in (4.10).

(b) &=

N N .
ZZIm(y;pkf(i,-,.))l. (4.11)

(c) The traditional cutoff frequency f,

cmn

1 mr 2 nri 2
= . 4.12
J 27 ,us\/(ajJr(bj 12

We omit the proof of the result; the accuracy of the statements can be verified by the

numerical method in Example 4.1.



Mode . (GHz) 7S (GHz) fc(;l;)ps
TE 6.561679790026246 | 6.561679790024629 | 0.001617
TE 13.12335958005249 | 13.12335958004993 | 0.002567
TE 19.68503937007874 | 19.68503937007514 | 0.003593
TE 14.76377952755905 | 14.76377952755623 | 0.002820
TE 29.52755905511811 | 29.52755905511379 | 0.004322
TE 44.29133858267716 | 44.29133858267220 | 0.004966

TE, T™M 16.15626279822195 | 16.15626279821892 | 0.003032

TE, T™M 30.24784926933362 | 30.24784926932926 | 0.004356

TE, TM 44.77475086599797 | 44.77475086599298 | 0.004989

TE, TM 19.75327194683775 | 19.75327194683421 | 0.003536

TE, TM 32.31252559644391 | 32.31252559643957 | 0.004337

TE, TM 46.19464514543545 | 46.19464514543044 | 0.005004

TE, TM 24.60629921259842 | 24.60629921259459 | 0.003826

TE, TM 35.48770040417312 | 35.48770940416853 | 0.004592

TE, TM 48.46878839466587 | 48.46878839466071 | 0.005165

Table 4.1 Comparison of fc between two methods

29
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Observe that the transverse field components of TEmn modes and TMmn modes in (4.12)

are zero if both m=n=0; thus there is neither TEgqo mode nor a TMjy¢ mode.
4.4.3 An Example

Example 4.1. We choose the parameters as a=2.286 cm, b=1.016 cm, &, =1, u=y,,

T=0.1 ns. We denote by f, and f* the traditional cutoff frequencies in (4.12) and the
cutoff frequencies in the method of periodic sequence in (4.11), respectively. We choose

N=2000 in this example.

From Table 4.1, we know that the absolute error for the cutoff frequency between two

methods is less than one centi-Hz when N=2000, m=1, n=0. The relative error is

0.001617

- = 2.464308x10™.
6.561679790026246 -10
Although the error is dependent on the number N, N does not influence the error too
9 fc, fcps vs N(m=1, n=0)
65617 19 : . , } , . : : :
| | | | i | | (| —e— fc
6'5617_ﬁ___:____-:______:_____{ _____ o L L L| —+— fcps ||
; i | : | | | | | |
[ i | | } | | I i i
6.5617---- T""i*""?""*.""ﬁ: """ E """ CTTTT ‘T"":*""T*
i 1 1 I ! ] ! i t i
i i t I ] ! I t | 1
6.5617F----F----t----q----q----1 REEEE - - F-=--F----7
{ Il 1 1 i I ! i i !
i 1 | I 1 I i t i |
g 8817 -werbonochonndoo oL
Q
£ | | | | I ! | | | I
£ B.5617F---- R ST e i—— a2
| | i | | | | | | |
t t t I ) I 1 I | H
8.5617F----f----f----4----9----1 - - oo P mpmm e
| t { I | I l { ) |
| | | | | | | } ] |
6.5617---- At o i P T
| | | ) ! I l | | i
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i i } i ! I i i i t
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N

Figure 4.3 Cutoff frequencies vs N
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much. We shall discuss this in the next section.
4.4.4 Convergence on N

We use the same parameters: a=2.286 cm, b=1.016 cm, &, =1, u=u4,, T=0.1 ns,

m=1, n=0. We choose a number N of lines from 500 to 5000.

The two curves in Fig.4.3 are the same in the case of m=1, n=0 because the difference
between them is less than one Hz. The cutoff frequency of the periodic sequence method
is convergent to 6.56167979002 GHz, which is equal to that of the traditional method.
From Figure 4.3, we can see the two curves for the cutoff frequency coincide when N is
verified from 500 to 5000. Hence, we can say that the two kinds of computation for cutoff

frequencies in Figure 4.3 are convergent to the same value of N, and they coincide.
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CHAPTER 5
APPLICATIONS OF PERIODIC SEQUENCE THEORY

TO CIRCUIT THOERY:
LOSSLESS TRANSMISSION LINES

5.1 Introduction

In this Chapter, we apply the theory of periodic sequence to lossless transmission
lines. We assume that the medium of wave propagation is homogeneous, isotropic and
linear.

In section 5.2, we shall demonstrate the method of this theory. We use this new
theory and method for telegraph equations. The voltage and the current in the telegraph
equations are discrete, transformed and decouple. In section 5.3, we shall give the
analytic solutions of the wave equations and determine the coefficients using initial
conditions. In section 5.4, we shall discuss the relation between the convergence and the
number N of partition. In section 5.5, a numerical computation example will be given to
show the theoretical curve and the new method curve for wave propagation of lossless
transmission line.

Figure 5.1 shows the lossless transmission line modeling. The piece of transmission
line of length Azcan be modeled as a lumped-element circuit of T-type equivalent
modeling as in Figure 5.1, where the parameters L and C are inductance and capacitance
per unit length of the line, respectively. In Figure 5.1, we assume that the wave
propagates in the +z direction, from the generator to the load. The circuit model of

transmission line in Figure 5.1 satisfies the telegraph equations

W __ )
0z or

(5.1a)
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A(z) __ -3V (z0)

(5.1b)
0z ot
I(z,t}) Liz 0 Itz +>£\z,f)
+ +
Y/
(z.t) — Viz+AzH
Zl z+'ﬁz i

Figure 5.1. T-type equivalent circuit model of a lossless transmission line

5.2 Application of new theory to lossless transmission lines

We suppose that the system is linear. Hence the response is periodic if the excitation
is periodic. Let us denote the period of excitation by T. We divide T into N intervals on
t: 1, <t,<..<t, . Let us denote by At, =t —t _ (n=12,.,N) the length of n-th
interval. Usually, we choose equal intervals. By means of difference in t, denote by
V= WV,,V,,..V,) the column vector, whereV = V’;:;" , by X' the transpose of X and by
N the number of intervals of partitions. We start with the equations in (5.1) and use the

difference and method of line. The equations in (5.1) can be written as approximate

forms of one order

oV L -
—=_D'TI, 5.2a
o0z h (5.22)
ol C -
—=-=—DV, 5.2b
0z h (5.2b)
where
-1 1
D = - ..- s 53
N (5.3)
1 -1

and
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h=[|A]| = max Ar, = Ar. (54)

We use the transformations of this method
V=T, (5.52)
1=T,. (5.5b)

In this paper, all lowercase vectors are in the transformed domain; all uppercase

vectors are in the original domain. We have

0% LC R
= —FT 'D'DT¥, (5.62)
i  LC..,
—=~—T,'DD'T;i . 5.6b
3 5 (5.6b)
Set
2 -1 ~1]
-1 2 -1
-1 2 "
©=DD'=D'D= o . (5.7)
-1 2 -1
-1 -1 2|

The matrix © is real and symmetric. According to the theory of real symmetric

matrices, there exits an orthogonal matrix T such that

T7'eT =A;. (5.8)
We can choose
2 . (N+8pk)x
T=(T,).T, =\/;smT,p, k=12, ..., N. (5.9)
It is easy to show that T is an orthogonal matrix. The eigenvalues of @ can be found as:
A} =4diag| sin’ ( ﬂ) sin (2ﬂ),...,s ((N D”),o i (5.10)
N N N

Then, we have the standard forms
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az_zz_]v 55 (5.112)
% <y .-
‘5272—/\2.*1 , (Sllb)

where A.*7 = AV /(v,h) and v, =1/~ LC is the phase velocity. The operation *“.*” is

defined in section 3.5.
5.3 Solutions of telegraph equations

5.3.1 The form of solutions
The traveling wave solutions to (5.11) can be found as
F(z)=e M xq + el #g (5.122)
i(z)=e /™ #b + e 5 (5.12b)

where a, and b, are arbitrary constants.

5.3.2 The relation between 3, and b,

Now we discuss the relation between a, and l;k. Between a, and ka , only one is

independent. For example, we can determine Ek if a, is given. In fact, from (5.5), (5.2)

can be written as

o L. e
—=—=T""D'Ti , 5.13a
0z h ( )
% C..
—=——T"DTv. 5.13b
0z h ( )
By (5.12) and (5.13), we can obtain
A¥b =- j%T-lDTa1 : (5.142)
.C

A*b, = J—h—T"lDTEz'2 : (5.14b)
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We note that A and D are vector and singular matrix, respectively.

5.3.3  Determining &,

We suppose that ¥ =7, at pointz =0. We can find the initial current 7, if we only

know the initial voltage v,. We assume that

Vo =V, (5.152)
Then
a,+a,=v,. (5.15Db)
We can find out i, by
if=97" (%?)J =;—Z, (5.16)

where & is the discrete Fourier transform, 3 is the inverse Fourier transform and

Z, =/L/C is the characteristic impedance of the lossless transmission line.

We can find &, if we know ¥, and i, from (5.14)

—

A*(-a, +&’2)=—j%T”‘D’TZ), (5.17)

From (5.15) and (5.17), we can obtain 4, and a, as

A*d, =%(f\.*\70 +j%T“D’TZ)j, (5.182)
K**_lﬁ*" Lot
. az—E A VO_JZT D'Ti, |. (5.18b)

5.4 Convergence on the number N of partitions

Let g(t) be the continuous-time signal by sample g(n At ) and Af =1/At be the
sample rate . According to the uniform-sampling theorem of Nyquist, if g(t) is band

limited with no components at frequencies greater than f, Hz, then it is completely
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specified by samples taken at the uniform rate f, >2f, Hz. Usually, f, is a frequency

which we are interested in the spectral space. In our case, the relation between the

number N of partitions and f, is as follows

N2Ag=2ﬂ¢a{?ij. (5.19)

Yo
where T is the period of excitation, v,is the speed of light in a medium and ceil(x)
returns the closest integer above x.
For example, if we consider that the frequency is within 100GHz, we

take f, =100GHz . Then, we have
N >200

if the period is T =1ns and z=70mm.
5.5 Wave propagation of the lossless transmission lines

We choose the periodic impulse as the periodic Gauss impulse:

e 0<t<T/2.
g)y= ,
e T TI2<<T.

where ¢, = (20/ T)*. The parameters are as follows: T = 0.3333ns, L= 100nH, C=

111.11pF, z =6 cm, N=500. In Figure 5.2, one of the two curves is obtained using
traditional theory. Another is obtained using the new method in this thesis. We can see
two curves coincide well.

We have already demonstrated the application of this new theory to the lossless
transmission lines. It involves less computation in the numerical computation than
traditional methods. With this advantage, it will have many applications in electrical

engineering, such as electric and magnetic field computing, filter design, etc.
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Figure 5.2 Curve comparisons between theory and new method for periodic impulse.
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CHAPTER 6
APPLICATIONS OF KE WU’S THEORY
TO LOSSY TRANSMISSION LINES

6.1 Introduction

In this chapter, we apply the periodic sequence theory to lossy transmission lines.
From the previous chapter, we see that this new theory is neither time domain analysis
nor frequency domain analysis. This theory can avoid the disadvantages of the frequency
domain method and the time domain method.

In section 6.2, we demonstrate the theory of periodic sequence by using
transformations and algebra theory. We apply the period sequence theory and method to
telegraph equations. The voltage and the current in the telegraph equations are
decoupled under the transforms and changed into the standard equations. In section 6.3,
we give the analytic solutions of wave equations and determine the coefficients. In
section 6.4, the relation between the complete signal and the number N of partitions is
given. Section 6.5 gives the discussion of parameter influences on convergence. The
numerical computing examples are given to show the difference between the theory
curve and the new method curve of wave propagation for lossy transmission lines.

We assume that the medium of wave propagation is homogeneous, isotropic and
linear. Figure 6.1 illustrates the transmission line modeling. The piece of transmission
line of length Az can be modeled as a lumped-element circuit of T-type equivalent
modeling as in Figure 6.1, where the parameters R, L, G and C are resistance,
inductance, conductance and capacitance per unit length of the line, respectively. In
Figure 6.1, we assume that the wave propagates in the +z direction, from the generator
to the load. The circuit model of transmission lines in Figure 6.1 satisfies the telegraph

equations
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_dV(z,1)

= RI(z t)+Lal (@1 (6.12)
0z ot
A@D Gy c B0 (6.1b)
oz ot
I(z? Riw Lz 0 Iz+4z,9
. +
Vizt) Gz T CAz V(z+hzt)
zl z+‘.’_\z »

Figure 6.1. T-type equivalent circuit model of a transmission line

6.2 Application of New Theory to Telegraph Equations
The theoretic base of periodic sequence theory is, in a linear system, if the excitation
is periodic then the response is too. We suppose that the voltage and current are

functions of period T in time t. We do a partition Aon t:f, <t <...<t, denoted by
At =t —t _(n=12,..,N)the length of the n-th interval. To simplify the calculation,
we choose the equal interval partition in this chapter. By means of difference in t,
denoted by V = V,,V,,..V,) the column vector, whereV, = V|;=;,, ,by B’ the transpose of
B and by N the number of intervals in partitions. Then, by means of the difference and

method of lines, the equations in (6.1) can be written as approximate forms of one order

%‘Zi =01, (6.22)
‘32 =0,V, (6.2b)

where
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L R L
_._+_ —— i —
h 2 h
e, = R L| (6.3)
2 h
R L L
——— — —_——t —
L 2 h-NXN
f G -
—— i — —_+_
2 h 2
G.c
0, = , 6.4)
G G C
__+_ —_—— ——
i 2 2 hldvw
and
h= “A" =max At, =At. (6.5)
We use the following transformations
V=TV, (6.62)
I1=T,. (6.6b)

In this chapter, all lowercase vectors are in the transformed domain; all uppercase

vectors are in the original domain. We have
0%
0z’
0%

y = TZ—IQTZ; .

=701y,

where

o=l R, LY _G_C +[_£_£) _§+§_)_£§_2LC
! 2 h 2 h 2 h 2k 2 K

(6.7a)

(6.7b)

(6.8)

(6.9)



and
G G G
G ¢ G
G G
0=00,=0,0, = R
G G G
| G2 G 6

Then O is a special Toepliz matrix, i.e., a circulant matrix. Set the polynomial
pA)=c+c,A+c AV
Then ®© can be written as

©=p(C,)=cly +c,C, +03C0N'1 .

where
0 1 -
0 1
C, =
1
..1 O_
Set
11 1 I
. 1 o o - !
T=ﬁ 1 o o - "
1 o™ D L VDD

where wis an Nth root of unity. It is easy to show that T is a unitary matrix.

According to matrix theory,
T'OT = A},

where * is the conjugate transpose and

42

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)
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A} =diag (p), p(@),+, p(@™)). 6.17)
Then, we have the standard forms

0’y

Fro A, (6.18a)
9% -
'a—Z—ZZAgl, (618b)

where A, is given in (6.17).

6.3 Solutions of telegraph equations
The traveling wave solutions to (6.18) are of the form
T(z)=e M xa +ei *a,, (6.192)
[(D)=e ™ 5b +e™ *pb, (6.19b)
where A.*¥ =A,7, 4, and l;k are arbitrary constants.
We shall discuss the properties of A= (A,). Set
A =r+js,n=12,N. (6.20)

There are multi-values in (6.20), we choose the principle values. From the properties
of A , the equality
A, =A,_, (6.21)
holds for N/2<n<Nif Niseven (6.or (6. (N +1)/2<n< N if N is odd).
Now, we want to prove that

r.>0 forn=1, 2,..., N in loss case. (6.22)

In fact, for all n < N , we can obtain the following equality from (6.20)
p(a)”’l)=c1 +(c, +¢;)cos 2z +i(c, —¢;)sin 2nz , (6.23)
N N

where
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RG 2LC

Cy +C3 = h2

, (6.24)

cz—c3=;1l—(LG+RC), (6.25)

From (6.21), we only need to prove that (6.22) holds for n< N/2 if N is even (6.for
n< (N -1)/2 if N is odd). In a hypothetical case, we havec, # ¢,. Then

Im[ p(o™ )] >0, (6.26)
Therefore, r, >0 for n< N/2 if N is even (6.for n <(N —1)/2 if N is odd). Therefore,
(6.20) holds.
Now we’ll determine the constants a, and l;k in (6.19). For the symmetry a, and Z;k ,
we need only to discussa, .
In the lossy case, first of all, for n=N, we have
Ay =(c, +e,+¢,)? =vRG . (6.28)
Since the voltage and current must be zero when z tends to infinity, we haved, |,_y=0.
For n<N/2-1 if N is even (6.for n<(N-1)/2 if N is odd), for the voltage and

current must be zero when z tends to infinity, we can obtain thatd, |,.y,,,=0 from

(6.22a). For n=N/2 if N is even, we have

] .2
Ay, =(—c, _Cs)é = J;l—;_’ (6.29)

p

where v, is the speed of wave propagation in free space:

v, = L . (6.30)

» o JLC

For N/2<n<Nif N is even (6.or (N+1)/2<n<N if N is odd), we can prove that

d, |,»5,»=0. Therefore, a, =0. Hence
i) =€ xg, (6.31a)

[(2)=e™.%p, (6.31b)
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6.4 The Relation between Complete Signals and N

In this section we suppose that the transmission line has lower losses, that is,
R« wL and G < wC so the influences of R and G are neglected. The convergence of
numeric computation is dependent on the number N of partitions, z, and T. On one hand,
the error is big if N is taken too small. On the other hand, the convergence is very good
if we choose N “very big”, but this may take a little longer. So choosing a suitable N is
important for an engineer. We must know the inferior limit for N. Let the frequency

which we are interested in be less than f, . According to the sample theorem of Nyquist,
the sampling frequency is f, = 2 f, . In our lower loss case, N must satisfy
N = N, = 2Tf,ceil (ij : (6.32)
Tv,
where T is the period of excitation,v,is the speed of light in a medium and ceil(x)

returns the closest integer above x. When we consider the Gauss impulse, the band is not

limited. Equation (6.32) can be expressed in At :

At< Aty = {2 £,ceil [TLH : (6.33)
v

The following function is used as Gauss’s impulse

e 0<t<T/2.
g(t)= (6.34)

e TI2<1<T.
where ¢, = (20/T)*. We often use this pulse as an excitation. The theoretical values of
traditional voltage and current are given by
V() =V e +V e, (6.35a)
I(zy=Ije " +1je"”, (6.35b)

where ¥ is given by

y=a+ jB=(R+ joL)G+ jaC). (6.36)
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Example 6.1. We give a low loss example to see the effect of N in (6.32). We choose,

throughout this chapter, f, =200 GHz. We’ll discuss three cases N=20, 100, and 200.

Propagation of impulse {z=0.03m}
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5
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g 001 002 003 o004 005 006 0.07 008 009 0.1
Axe z {m)
Figure 6.2 The case of N=20 < 134.
In Figure 6.2:

Parameters: L=100nH, C=111.11pF,R=10Q, G=0.05S,
T =0.3333ns, z = 50mm. N=20
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).
Condition (6.32): not satisfied
Analysis of Figure 6.2:
Figure 6.2 is the case where N=20< N, =134, condition (6.32) is not satisfied. The
output signals are not complete. We can see that the two curves don’t coincide because
N is too small. When N is too small, there are not only incomplete signals at output, but

also the two curves are not well fitting. That is to say, the error is too big in this case.
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Propagation of impulse {N=100)

1 T T l r T 1 u r s
: .| -*- Curve of theory
ﬁ —z— Cuive of new method
Y EORURE SOV RO SRR SO 51 OUUN SO SO SO S
: : : L V¥ : : :
: A : :
I S . }; -------------------------- feeeae
: : . O .
Z : : 5 o : ! .
> : : : E : : . . '
e e e AR AS S Wi B A A s
£ ' : : : : ' :
3 U
1 U F . — 0 N . 95 NSNS ES S S
PP A S T SN SN AN S S
0 001 00z 003 004 005 006 007 008 009 0.1
Axe z {m)
Figure 6.3 The case of z=50mm and N=100 < 134.
In Figure 6.3:

Parameters: L= 100nH, C=111.11pF,R=10Q, G =0.05S,
T =0.3333ns, z = 50mm. N=100

Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).

Model of new method in (6.31a).
Condition (6.32): not satisfied

Analysis of Figure 6.3:
Figure 6.3 is the case where N =100< N, =134, condition (6.32) is not satisfied.

But N is not too small and it approaches N, . The output signals are nearly complete. We

can see that the two curves almost coincide.
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Propagation of impulse {H=150)
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Figure 6.4 The case of z=50mm and N=150 > 134.
In Figure 6.4:

Parameters: L= 100nH, C=111.11pF,R=10Q, G =0.05S,
T =0.3333ns, z = 50mm. N=150
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).

Condition (6.32): satisfied
Analysis of Figure 6.4:
Figure 6.4 is the case of N=150> N, =134 . Condition (6.32) is satisfied. The output

signals are complete. We can see that the two curves coincide well.

Example 6.2 The parameters T, R, G, L, C, and the Gaussian impulse are the same as in
Example 6.1. We consider that z is far from the origin, for example, z = 460mm. In this

example N, =667 .We take N=200, 400, 800 to see the effect of the two formulas.
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Propagation of impulse {N=200)
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Figure 6.5 The case of z = 460mm and N=200 <667.
In Figure 6.5:

Parameters: L= 100nH, C=111.11pF,R=10Q, G =0.05S,
T =0.3333ns, z = 460mm. N=200

Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.352).

Model of new method in (6.31a).
Condition (6.32): not satisfied

Analysis of Figure 6.5:
Figure 6.5 is the case of N=200< N, =667. Condition (6.32) is not satisfied. The

output signals of the new method are not complete. There is distortion and they are

incomplete if N is much lower than N, . The error is too big in this case.
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Propagation of impulse {N=400}
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Figure 6.6 The case of z=460mm and N=400 <667.
In Figure 6.6:

Parameters: L= 100nH, C=111.11pF,R=10Q, G =0.05S,
T =0.3333ns, z = 460mm. N=400

Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).

Model of new method in (6.31a).
Condition (6.32): not satisfied

Analysis of Figure 6.6:
Figure 6.6 is the case where N=400< N, =667, condition (6.32) is not satisfied. But N

is not too small, it nearly approaches N, . The output signals are almost complete. We

can see that the two curves almost coincide. The error is small in this case. From figure
6.6, we see that the voltage amplitude decays 1/3 at point z. The wave can be decayed a

lot if z is far from the source even if in lower case (not lossless).
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Propagation of impulse {N=800}
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Figure 6.7 The case of z=460mm and N=800 >667.
In Figure 6.7:
Parameters: L= 100nH, C=111.11pF,R=10Q, G =0.05S,
T =0.3333ns, z = 460mm. N=800
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).
Condition (6.32): satisfied
Analysis of Figure 6.7:
Figure 6.7 is the case where N=800> N, =667, condition (6.32) is satisfied. The

output signals are complete. We can see that the two curves coincide well. There is little

error in this case.
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6.5 Numeric computations and convergence

The parameters in this section are given as: T = 0.3333ns, L= 100nH, C= 111.11pF.

The impulse is given in (6.34). We shall discuss the following cases:
(a). The lossless case.
(b). The effect of position z on wave propagation.
(c). The convergence on N.
(d). The effect of R and G.

We can discuss the influence of Ar instead of N. In fact, a tiny At is equal to a big N if

the period of the pulse is fixed.

6.5.1 The lossless case

The lossless transmission lines were discussed in Chapter 5. The lossless case is not
included in (6.31) as a particular case. Although most demonstrations in this Chapter can
be suitable for lossless cases, the conditions at infinity are different. Hence the solution
discussions and the constants that were determined are different. So the solutions in this
chapter are not suitable for the lossless case, that is, we cannot obtain the voltage and
current of lossless transmission lines in (6.31) by choosing R=G=0. That’s why we
discuss them separately. If one chooses that R=G=0 in (6.31), what will happen? It will
yield the wrong results. We can see this from Example 6.3.

Example 6.3 In this example, at first, we’ll show figure 6.8 which wrongly uses (6.31)
by setting R = G =0. The R and G could not equal zero at the same time in (6.31), that is,
the lossless case is not included in (6.31). Then we want to know whether the new
theory is suitable or not if R and G approach zero in (6.31). Figures 6.9-6.11, in the

second part of this example, will answer this question.
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Propagation of impulse {R=G=0)
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Figure 6.8 The wrong use of the solutions (6.31) by choosing R=G=0.

In Figure 6.8:

Parameters: T=0.3333ns, L= 100nH, C= 111.11pF, R=0, G=0

z = 40mm. N=250
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).

Condition of lossy case: not satisfied
Analysis of Figure 6.8:

Figure 6.8 shows that the output is two pulses when the input is one pulse. The
energy is divided into two equal parts at the output. The voltage amplitude is reduced to
half of the input.

The theory curve is one pulse. Hence the result of the lossless case by choosing
R=G=0 in (6.31) is wrong.

Therefore, formulas (6.31) of the lossy case are not inclusive for a lossless case in

particular.
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Propagation of impulse {(RB=1 nOhm, G=1n%}
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Figure 6.9 The case of R=1nQ and G=1nS.
In Figure 6.9:

Parameters: T=0.3333ns, L= 100nH, C=111.11pF, R=1nQ, G=1InS
z = 40mm. N=250
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).

Condition of lossy case: satisfied
Condition (6.33): satisfied
Analysis of Figure 6.9:

We want to know whether the new theory is suitable when both R and G are tiny. In
Figure 6.9, we set G=10"S, R= 107 Q which approach zero. Figure 6.9 shows that there
is no phenomenon of two pulses. The response signals are complete and the curve of the

new method coincides well with that of traditional theory.
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Propagation of impulse {R=1 nano Ohm, G=0)
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Figure 6.10 The case of R= 1nQ and G=0.
In Figure 6.10:
Parameters: T=0.3333ns, L= 100nH, C=111.11pF, R=1nQ, G=0
z = 40mm. N=250

Excitation: periodic Gaussian pulse in (6.34)

Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).

Condition of lossy case: satisfied

Condition (6.33): satisfied

Analysis of Figure 6.10:
We want to know whether the new theory is suitable if R or G is zero, and the other
is very small. In Figure 6.10, we choose G=0, R= 10 Q. Figure 6.10 shows that there is

no phenomenon of two pulses. Besides, the response signals are complete and the curve

of the new method coincides well with that of traditional theory.



Propagation of impulse (R=0, G=1n5)

1.2 T

Voltage V (v}

0.2 '

e beeen g -----1i---{ —# Curve of theory a
' ' ' —& Curve of new method

! ! i I ! T |
1 ' ' ' ' '
| ' ) 1 1 1

' i ) '

i i I i | [ i

0 001 002 003 004 005 0.06 007 008 009 0.1

Axe z (m)

Figure 6.11 The case of R= 0 and G=1nS.

In Figure 6.11:

Parameters: T=0.3333ns, L= 100nH, C=111.11pF, R=0, G=1nS
z = 40mm. N=250

Excitation:

Curve models:

Condition of lossy case:

Condition (6.33):
Analysis of Figure 6.11:

periodic Gaussian pulse in (6.34)
Model of traditional theory in (6.35a).
Model of new method in (6.31a).
satisfied

satisfied
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This time we change to R=0 and G=10"S is very small to see whether the new

theory is correct. Figure 6.11 shows that there is no phenomenon of two pulses, neither.

The response signals are complete and the curve of the new method coincides well with

that of traditional theory.
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6.5.2 The effect of position z on wave propagation

Now we turn to study the effect of position z on wave propagation.

Example 6.4 We’ll show the effects of position z=0, 70, 260, 540, 850 (mm),

respectively.
Propagation of impulse (z=0}
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Figure 6.12 The case of z = 0 and N=500.
In Figure 6.12:

Parameters: T=0.3333ns, L= 100nH, C=111.11pF, R=10LQ, G=0.05S

N=500, z =0
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).

Model of new method in (6.31a).
Condition (6.32): satisfied
Analysis of Figure 6.12:
Figure 6.12 shows the result of the simulation of the wave propagating over one
wave length. The wave does not yet propagate at the origin. The theoretical curve

represents the excitation over one period. So we can say in this case that the curve of the

new method coincides well with that of traditional theory.
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Propagation of impulse (z=70mm)}
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Figure 6.13 The case of z = 70mm and N=500.

In Figure 6.13:
Parameters: T=0.3333ns, L= 100nH, C=111.11pF, R=10Q, G=0.05S
N=500, z =70mm
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).

Model of new method in (6.31a).
Condition (6.32): satisfied
Analysis of Figure 6.13:
Figure 6.13 shows that the simulation of a front wave arrives at z=70mm, conditions

(6.32) and (6.33) are satisfied for N, =133. Hence the curve of the new method

coincides well with that of traditional theory in this case. There is 0.05 V(0.5dB) loss in

the voltage amplitude at point z which is within one wave length.
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Propagation of impulse {z=260mmj}
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Figure 6.14 The case of z = 260mm and N=500.

In Figure 6.14:

Parameters: T=0.3333ns, L= 100nH, C=111.11pF, R=10Q, G=0.05S

N=500, z =260mm
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).

Condition (6.32): satisfied

Analysis of Figure 6.14:
Figure 6.14 shows that the simulation of the front wave arrives at z=260mm. We

obtain N, =400 in (6.32) for this case. Conditions (6.32) and (6.33) are satisfied. Hence

the curve of the new method coincides well with that of traditional theory in this case.
There is a 0.2 V (2dB) loss in voltage amplitude at point z which is within three wave

lengths.
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Figure 6.15 The case of z = 540mm and N=500.
In Figure 6.15:
Parameters: T=0.3333ns, L= 100nH, C=111.11pF, R=10Q, G=0.05S
N=500, z =540mm
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).
Condition (6.32): not satisfied
Analysis of Figure 6.15:
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Figure 6.15 shows the simulation of the front wave arriving at z=540mm. We obtain

N, =800 from (6.32) in this case. Conditions (6.32) and (6.33) are not satisfied. Hence

the curve of the new method differs slightly with that of traditional theory. There is a 0.4

V (4.5dB) loss in voltage amplitude at point z which is within six wave lengths.
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Propagation of impulse {z=850mm}
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Figure 6.16 The case of z = 850mm and N=500.
In Figure 6.16:
Parameters: T=0.3333ns, L= 100nH, C=111.11pF, R=10Q, G=0.05S
N=500, z =850mm
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).

Model of new method in (6.31a).
Condition (6.32): not satisfied
Analysis of Figure 6.16:
This time we choose z far from the origin at z=850mm. In this case, N, =1200.
Conditions (6.32) and (6.33) are not satisfied. The curve of the new method is obviously
different with that of traditional theory. There is a 0.57 V (6.5dB) loss in voltage

amplitude at point z which is within nine wave lengths.
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6.5.3 The convergence on N

We’ll discuss the influence of the number N of partition on wave propagation.

Example 6.5 We’ll choose N=100, 300, 500, respectively, to see the effect of N.

Propagation of impulse {N=100}
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Figure 6.17 The case of N=100 and z=250mm.
In Figure 6.17:
Parameters: T=0.3333ns, L= 100nH, C= 111.11pF, R=10Q, G=0.05S
z =250mm, N=100
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).
Condition (6.32): not satisfied
Analysis of Figure 6.17:
In this case N,=400. Conditions (6.32) and (6.33) are not satisfied. The curve of the
new method is obviously different with that of traditional theory. There is distortion with

the new method. There is a 0.2 V (2dB) loss in voltage amplitude at point z which is

within three wave lengths.
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Propagation of impulse (N=300}
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Figure 6.18 The case of N=300 and at point z=250mm.
In Figure 6.18:
Parameters: T=0.3333ns, L= 100nH, C= 111.11pF, R=10Q , G=0.05S
z =250mm, N=300
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).
Condition (6.32): not satisfied
Analysis of Figure 6.18:
In this case N,=400. Conditions (6.32) and (6.33) are not satisfied. The curve of the

new method is a little different with that of traditional theory. There is a 0.2 V (2dB) loss

in voltage amplitude at point z which is within three wave lengths.
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Figure 6.19 The case of N=500 at point z=250mm.

In Figure 6.19:

Parameters: T=0.3333ns, L= 100nH, C=111.11pF, R=108, G=0.05S

z =250mm, N=500
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).

Condition (6.32): satisfied

Analysis of Figure 6.19:
In this case N,=400. Conditions (6.32) and (6.33) are satisfied. The curve of the

new method coincides with that of traditional theory. There is a 0.2 V (2dB) loss in

voltage amplitude at point z which is within three wave lengths.
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6.5.4 Theeffectof Rand G

Now we want to know the effects of R and G when they are increasing.
Example 6.6 We fix R=10Q, and choose G=0.08, 0.1, 0.15 and 0.2 S, respectively. We
choose N and z such that (6.32) and (6.33) are satisfied.

Propagation of impulse {G=0,085}

0.8 : ! ! !
07 e bnneerece b i
; N 3 S ECUE Curve of theory
: ! e {rve of new method
0.6 f-nermmeneees fummmnmnoonnaos R B e = -
Y U S— e —
= , i 1 ;
=> ; : : :
L AR AR R reroremeesenes romennmnaes -3
= S I8 L S—
S S S 0 O L S ]
17 SRSUSUUS SRR 38 SR S hoeeenenans .
0 : .
0.2 0.22 0.24 0.26 0.28 0.3
fAxe z {m)
Figure 6.20 The case of G=0.08S and R =1082.
In Figure 6.20:
Parameters: T=0.3333ns, L= 100nH, C= 111.11pF, z =250mm, N=500
R=10Q, G=0.08S
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).
Condition G << wC satisfied

Analysis of Figure 6.20:
The lower loss condition G << wC shows that G << 28 and wC /G =25. The curve of
the new method coincides with that of traditional theory. There is a 0.3 V (3dB) loss in

voltage amplitude at point z which is within three wave lengths.
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Propagation of impulse {G=0.1%)

0.7 T T T T
| ' r ' |
— Curve of theory
L] R [ Ty -== Curve of new method |
] IO e U U SO ARS— |
3 7] S AU OO R O S, R |
b : J '
@ i ' ;
= \ v 1 3
E ' ) 1
) | SRS fomnreeeee e fnnenneeneee =
e : ;

]
0.2 0.22 0.24 0.26 0.28 0.3
Axe z ()

Figure 6.21 The case of G=0.1S and R =10Q.

In Figure 6.21:
Parameters: T=0.3333ns, L= 100nH, C=111.11pF, z =250mm, N=500
R=10Q, G=0.1S
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).
Condition lower loss: almost satisfied

Analysis of Figure 6.21:

In this case wC/G =20. We think that the conditions of lower loss are almost
satisfied. The curve of the new method is a little different than that of traditional theory.
There is a 0.35 V (3.7dB) loss in voltage amplitude at point z which is within three wave

lengths. R and G influence the effects of wave propagation and simulation
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Propagation of impulse (G=0.155}
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Figure 6.22 The case of G=0.15S and R =1082.
In Figure 6.22:
Parameters: T=0.3333ns, L= 100nH, C= 111.11pF, z =250mm, N=500
R=10Q, G=0.15S
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).
Condition lower loss: almost not satisfied

Analysis of Figure 6.22:

In this case @wC/G =13. We think that the conditions of lower loss are almost not
satisfied in this case. The curve of the new method differs from that of traditional theory.
There is a 0.45 V (5dB) loss in voltage amplitude at point z which is within three wave

lengths.
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Propagation of impulse {G=0.25)

0.3 ! : s !
045 Ty P . —=— Curve of theory
. t % | — Curve of new method
L R ARt B T :
] I E—— S . S R A §
: , 4tp : 3 , :
5z 0.3 ;
p )
2 025
pc
2 0.2
0.15
0.1
0.05
]
0.2
Axe z {m)
Figure 6.23 The case of G=0.25 and R =10Q.
In Figure 6.23:
Parameters: T=0.3333ns, L= 100nH, C= 111.11pF, z =250mm, N=500
R=10Q, G=0.2S
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).
Condition lower loss: not satisfied

Analysis of Figure 6.23:

In this case wC/G=10. We think that the conditions of lower loss are not satisfied
in this case. The curve of the new method is much different with that of traditional
theory. There is a 0.55 V (7dB) loss in voltage amplitude at point z which is within three

wave lengths.
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Example 6.7 Now we set G=0.05S and choose R=100 € ,200 Q ,300 Q , 400

respectively.
Propagation of impulse {(R=100)
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Figure 6.24 The case of R =100Q and G=0.05S.
In Figure 6.24:
Parameters: T=0.3333ns, L= 100nH, C= 111.11pF, z =250mm, N=500
G=0.05S, R=100£2

Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).

Model of new method in (6.31a).
Condition lower loss: satisfied

Analysis of Figure 6.24:
The lower loss condition R << wL shows that R <<1900Q. In this case wL/R=19.

We think that the conditions of lower loss are satisfied in this case. The curve of the new
method coincides with that of traditional theory. There is a 0.35 V (3.7dB) loss in

voltage amplitude at point z which is within three wave lengths.
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Propagation of impulse {R=200}
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Figure 6.25 The case of R =200Q and G=0.05S
In Figure 6.25:
Parameters: T=0.3333ns, L= 100nH, C=111.11pF, z =250mm, N=500
G=0.05S, R=200Q2
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).
Condition lower loss: almost satisfied

Analysis of Figure 6.25:

In this case wL/R=9.5. We think that the conditions of lower loss are almost
satisfied in this case. The curve of the new method is a little different from that of
traditional theory. There is a 0.65 V (9dB) loss in voltage amplitude at point z which is

within three wave lengths.
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Propagation of impulse (R=300}
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Figure 6.26 The case of R=300£2 and G=0.05S
In Figure 6.26:
Parameters: T=0.3333ns, L= 100nH, C= 111.11pF, z =250mm, N=500
G=0.05S, R=300£2
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).
Condition lower loss: not satisfied
Analysis of Figure 6.26:
In this case @wL/R=6.3. We think that the conditions for lower loss are not satisfied
in this case. The curve of the new method is obviously different from that of traditional
theory. There is a 0.77 V (12.8dB) loss in voltage amplitude at point z which is within

three wave lengths.
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Propagation of impulse {R=400}
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Figure 6.27 The case of R=400Q and G=0.05S

In Figure 6.27:

Parameters: T=0.3333ns, L= 100nH, C= 111.11pF, z =250mm, N=500

G=0.05S, R=400 €2
Excitation: periodic Gaussian pulse in (6.34)
Curve models: Model of traditional theory in (6.35a).
Model of new method in (6.31a).

Condition lower loss: not satisfied
Analysis of Figure 6.27:
In this case wL/R=4.75. We think that the conditions for lower loss are obviously not
satisfied in this case. The curve of the new method is greatly different from that of
traditional theory. There is a 0.84 V (16dB) loss in voltage amplitude point z which is

within three wave lengths.



73

CHAPTER 7
CHARACTERISTIC PARAMETERS OF

TRANSMISSION LINES

In this chapter, we shall discuss the characteristic parameters of lossless transmission
lines such as characteristic impedance, reflection coefficient, input impedance, voltage

standing-wave ratio (VSWR) and generator and load matching etc.

7.1 Characteristic impedance

In this chapter, the uppercase letters represent the quantities in the original domain;
the lowercase letters present the quantities in the transformed domain. We can rewrite

the solutions (5.12) of telegraph equations in short form

V(2)=V"(2)+V (2), (7.1a)
(D)=T" @+ (@), (7.1b)
where V' = e"a\z.*é1 andV™ =¢™.*d,, and i * andi " have similar forms.

In Chapters 5, 6, we have already demonstrated that the term V* coincides with the
traditional incident voltage. Hence V" in that case is just the incident voltage. In the
original domain, the characteristic impedance Z, can be defined by the current and
voltage as

V=217 (7.2)
Another relation of current and voltage can be obtained as
Vo ==2Z,I;. (7.3)
We come to the following conclusion:

The characteristic impedance Z,is invariant under the transformations of the new theory.
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That is
INEV AN (7.4)

7.2 Voltage and current expressed by input

Let ¥, and i, be the voltage and current at input port z=0 in the transformed domain.
Then, the expressions of voltage and current by input port can be written as

T+ Zol . ie Vo —Zoly o i
0 0’0 *el\z_l_o 00.*€AZ

v(z)= S 5 , (7.52)

Vo + Zgly % A _ Vo = Zoly % i
2Z, 2Z,

Now, we assume that the voltage 170 and the current io at the input port are given as

i(z)= , (7.5b)

shown in Figure 7.1. The solutions of voltage and current at the input port in the original

domain can be written as

V()ir%+zh>*aM+T5£iﬁhﬁe&, (7.6)
2 2
f(@:Tﬁfih % g~ Az T__ﬂ *el\z (7.6b)
27, 27,
D V@I L
Zin [ Vo Za L
d=L =0 d
Z=0 Z-L 7

Figure 7.1 A transmission line terminated by load impedance Z,

7.3 Voltage and current expressed by output

Now we assume that there is a load Z, at the terminal port. We denote by ¥, and i

the terminated voltage and current in the transformed domain. Then

Vo=V ke 4T ke (7.7a)
L [} 0
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—’__"+* —AL 7—* AL
I, =i, Fe T+, Fe. (7.7b)

The solutions of voltage and current at the terminal port in the original domain can be

written as
LoV Zy o Vi =2y, ka-
V(Z)— L 0 kAL | 7L P07 kg AlL-2) s (783)
2 2
- 1_/: +ZZ. A(L— ‘7 _Z; ~A(L-
l(Z)z L 0°L ‘*eA(L ) L TOL sk, AL Z), (78b)
27, 22,

Let us set d = L—z . Formulas (7.8) can be rewritten as

V+Z0 . xg Y, —Zol . i
L- 0" wphd L0 %M

v(d)= . , 7.9a
(d) 5 5 (7.92)
i(d)= M_*ef\d _‘-;_L______Zi.*e—f\d. (7.9b)
2Z, 2Z,
The solutions of voltage and current at the input port in the original domain can be
written as
F(d)=T2tll woht 7Yl pohd (7.10a)
2 2
F(d)y =1Vt Zule s pia gl Lol s (7.10b)
2Z, 2Z,

7.4 Reflection coefficients

The traditional load impedance at d=0 in the original domain can be defined as
V(0)=2,1(0). (7.11)
The relation among voltage, current and traditional load impedance at d=0 in the
transformed domain can be expressed as
¥(0)=Z,i (0). (7.12)
Let us denote by I, the traditional load reflection coefficient in the original domain.

Then, at d=0

Vo =T,V . (7.13)
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We have the following property:
The load reflection coefficient T', is invariant under the transformations of the new

theory

In fact, from (7.13) we can derive

v, =T 9. (7.14)
Then, (7.12) gives
T, = Z 7% (7.15)
Z,+Z,

The voltage and current on the lines can be written as

F(d)=v}.*(eM+T,e™), (7.16a)
7(d) =ZZL—.*(eM ~T,e™). (7.16b)

0

The reflection coefficient I', (d) at the position d is defined as:
$(V7 (@) =T, ()3(V'(@), (7.17)
where 3 is the Fourier transform, and I',, is dependent on @ . The load reflection

coefficient I',is I';,, atd =0.

7.5 Input impedance

The input impedance Z,, (d) can be defined as

S(V(d)) = Z,()S(I(@)). (7.18)
where Z, is dependent on @ . From (7.17), we can obtain
z, @)=z, Luld) (7.19)
1-T, (d)

Then, if we take d=0 in (7.19), there will be

Z.(0)=2,=2, 1* ? , (7.20)

)
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which is the same as in (7.15).

7.6 Voltage standing-wave ratio (VSWR)

The voltage standing-wave ratio is defined by

1+|T,|
1"‘FLI
The Voltage standing-wave ratio is invariant under the transmission of the new theory
since I, is invariant.

VSWR = (7.21)

7.7 Generator and load matches

Figure 7.2 shows a transmission line with an arbitrary generator and load
impedances, Z . and Z, . We consider the lossless case.

Tealn V@, I Iiqk,

Zo > >
Ve Zin [ Zg e
: ] :
d=L =0 d
70 L 7

Figure 7.2 Transmission line circuit for mismatched load and generator

The input impedance looking into the terminated transmission line from the generator is
given by (7.18). The reflection coefficient I'; of the load is given by (7.15). From
(7.16), at d=L, the voltage on the line can be written as

V, =V, #(eM+Te ™). (7.22)
We can obtain V[ from the voltage at the generator end, where d=L.

Zin
Z,+Z,

S(V,)= 3(v,). (7.23)

8

Let us denote by T, the reflection coefficient seen looking into the generator. Through a

similar discussion, we can obtain:

r ==%£ . (7.24)
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Then, VL" can be found from (7.22) and (7.23).

For a given value of Z,, the maximum power delivered to Z, can be found by
setting Z,, = Z, .

Load matched to line

The load is matched if ', =0. In this case VSWR=1 in (7.21). From (7.15), we
conclude that the load matching condition is given as

Z,=Z,. (7.25)
Generator matched to loaded line

In this case Z, and Z,are chosen to make the input impedance Z,, =Z_, so that the

generator is matched to the load presented by the terminated transmission line. The total

overall reflection coefficientI’, =0:

g — N § (7.26)

In this case, the power delivered to Z,, is not maximal.

There are other parameters and a lot of problems in transmission lines. The

researchers can continue to work on thses.
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CHAPTER 8
GROUNDED DIELECTRIC SLAB WAVEGUIDE

8.1 Introduction

In this section, we will study the grounded dielectric slab waveguide. Figure 8.1
shows the geometry of a grounded dielectric slab with the thickness d and relative
dielectric constant &, . The slab is assumed to be infinite in the yoz plane. We assume
that propagation is in the +z direction and that there is no variation in the y direction
(d/dy=0).

H A

Alr

Dielectric

Ground plane

Figure 8.1 Geometry of a grounded dielectric slab

8.2 TM Modes

We transform the electric and magnetic fields E and H to the standard fields & and &
using E-= Te andH = Thfz . The component ¢, of ¢ must satisfy Helmholtz’s equation
(3.2) and it can be assumed to equal exp(— jﬁzz).*M (x,y) from the solution of (3.2),

where f\z and M are column vectors. Equation (2.1) in this problem becomes

2
[—a—2+€,1?3—A§j.*EZ=O, for 0<x<d, (8.12)
X
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2
9 @A |#s =0, for d<x<eoo, (8.1b)
x> S R

where &2 =A2e,u/d? is a column vector, A} is an eigenvalue vector and d is the
length of the interval of partitions on t. We introduce two vectors

K:=gi2-A2, (8.22)

e’ =Al-&2, (8.2b)

and the “sign” of © is selected as exponentially decaying for x>d and the vector

functions

sinA= ZLj(ejA —e_jg) ,

cosA= —12—(e"’s +e'jA),
for a vector A.The general solutions of (8.1) are then
M(x,y)=sin(K x).* A+cos(K x).*B, for 0<x<d, (8.32)
M (x, y)= exp(C:)x).* C+ exp(—(:)x).* D, for d<x<oo, (8.3b)

-

WhereA, E, C and D are constant column vectors. From the hypotheses and (3.9),
0.

h,=e, = fzz = 0. We use the following boundary conditions to set the constants:
e (x,y,2)=0, a x=0, (8.4a)
e,(x,y,2), convergent, as X-—>oo, (8.4b)
e, (x,y,z), continuous at x=d, (8.4¢c)
ﬁy (x,y,2), continuous at x=d. (8.4d)

We obtain that B=0 for (8.4a). We must choose © such that €, is exponentially

decaying for x>d. Condition (8.4b) implies thatC=0 or D=0.Without loss of

generalization, we assume that C = 0. From the continuity of e, at x=d, we have

sin(K,d).* A =exp(-0d).*D. (8.5)
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By integration, we obtain

B, = —g—f&csexp(— jA.z)*cos(Rx).*AIK,, 0<x<d, (8.62)
0

- E = — —- —

b, == 5exp(-jR.2)./6.exp(-6x).3 D, dSw<em, (8.6b)

0

The condition (8.4d) leads to

e, cos(K.d).* A/ K, =exp(-©d).*D./©. (8.7)
For a nontrivial solution, the determinant of the equations in (8.5) and (8.7) must vanish,
thus
dK . *tan(K d) = £,d®. (8.8)
From (8.2),
- \2 —\2 - .2
(d&.) +(d6) = (&, ~D(dK,). (8.9)

Formula (8.9) means that each element in the vectors satisfies a circle equation. The
curve of (8.9) is a group of circles. The radius of the ith circle is \/z———ldKOi. We plot
the curves in (8.8). The intersections of these curves are the solutions of (8.8) and (8.9).
For a nonzero thickness grounded slab withe, >1, there is at least a dominant mode

TMj for the slab waveguide with zero cutoff frequency.

Once we have choosen I%c and © for a particular surface wave mode, we can
determine Kz . From (8.6), we can derive that
g, = jA. . *exp(—jA z).*cos(K,x).*A/K,, 0<x<d, (8.10a)
& = jA, *exp(=jA z). *exp(-O(x—d)).*sin(K d).*A./©, d<x<es. (8.10b)
After obtaining the standard field expression, we can determin the original field E
and H . The expressions of original field can then be given by
E, =T, exp(-jA, z).*sin(K,x).*A, for 0<x<d, (8.11a)

E, =T, exp(-jA 2).*exp(-O(x ~d)).*sin(K d).*A, for d<x<e, (8.11b)
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E, = jTA, . *exp(~jA z).*cos(K.x).*A/K,, for 0<x<d, (8.11c)
E. = jT.A *exp(—jA,z). *exp(-O(x—d)).*sin(K d).*A./©, for d<x<eo, (8.11d)

ﬁy=—%Thﬁexp(—jﬁzz).*cos(IECx).*A./IZC, for 0<x<d, 8.11¢)

0

— E L - . — - —
H, =——diThé'eXp(—]Azz).*exp(—@(x—d)).*sm(ch).*A./(@, for d<x<e, (8.11f)

0

Figures 8.2 and 8.3 show the graphical solution of the transcendental equation for the
cutoff frequency of a TM surface wave mode with d=2mm, i=N/5 and d=5mm, i=N/2,

where i correspondents to the ith component.

Solution of the transcendental equation

g O S

theta*d

Figure 8.2 Graphical solution of the transcendental equation for the cutoff

frequency of a TM mode with d=2mm, i=N/5
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Figure 8.3 Graphical solution of the transcendental equation

for the cutoff frequency of a TM mode with d=5 mm, i=N/2

8.3 TE Modes

&3

The grounded dielectric slab waveguide can also support TE modes. As in the

discussion above for TM modes, the equations of the standard fields ¢ and h are

2
- I+ . =0, or <x<d,
;21 K} |*h =0, for O d
X
2_. p— —
['a—zl —63)*hz =O, fOT d<x<oo,
X

The solutions of (8.12) are

h, = exp(- j]\zz).*(sin(iécx).*}ncos([%cx).*é), for 0<x<d,
ﬁz = exp(—jﬂzz).*<exp(@x).* C+ exp(—C:)x).* 13) , for d<x<oo.

(8.12a)

(8.12b)

(8.13a)

(8.13b)
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By using the boundary condition of radiation, we have C =0. We can find e, from Ez.
We can determine the constants for A =0 by using €, =0 for x=0. By the continuities of
e, and h, at x=d, we have
sin(K.d).*B./ K, =—exp(-0d).*D./ 0, (8.14a)
cos(K.d).* B = exp(-0d).*D. (8.14b)
The formula (8.14) leads to
-dK..*cot(K,d)=d® . (8.152)
Another equation deduced from (8.2) is
(dR.) +(a®) = (e, ~1(dR,)*. (8.15b)
The two equations can be solved as for TM modes
After determining the constant matrix IEC and ©, the field expressions can be
derived as
H_=T,exp(-jA,z).¥cos(K.x).*B, for 0<x<d, (8.162)
H, =T, exp(—jA 2).*exp(-O(x~d)).*cos(K.d).*B,  for d<x<eo, (8.16b)
H, = jTA *exp(—jA,2).*sin(K x).*B./K,, for 0<x<d, (8.16¢)

H, = jT,A, . *exp(—jA.z).*exp(-O(x—d)).*cos(K,d).*B./©, for d<x<e, (8.16d)

Ey=%Qn5exp(—szz).*sin(l%cx).*é./IEC, for 0<x<d, (8.16¢)

0

E =—glz;ﬁexp(—jf\zz).*exp(—c:)(x—d)).*cos(l%cd).*é./é, for d<x<oo, (8.160)

y
0



85

Solution of the transcendental equation
Ke*d

Figure 8.4 Graphical solution of the transcendental equation

for the cutoff frequency of a TM mode with d=2 mm, i=N/2

Solution of the transcendental equation
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Figure 8.5 Graphical solution of the transcendental equation

4 mm, i=N/2

for the cutoff frequency of a TM mode with d
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Solution of the transcendental equation

theta*d

Figure 8.6 Graphical solution of the transcendental equation
for the cutoff frequency of a TM mode with d=8 mm, i=N/2
Figures 8.4, 8.5 and 8.6 show the graphical solutions of the transcendental equation
for the cutoff frequency of a TE surface wave mode with d=2mm, d=4mm and d=8mm
at position 1i=N/2.
The curves show the surface wave propagation constants for the grounded dielectric

slab with &,=2.55.
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Conclusion

This thesis presents the theory of periodic sequence and its development. Through

the applications of this theory to both field theory and circuit theory, the theory of

periodic sequence presents the following advantages:

1.

This theory can be applied to linear and nonlinear systems in
electromagnetic engineering.

It can solve problems of both field theory and circuit theory.

The analytic solutions are given. We don’t need iterations like in FDTD to
calculate the solutions.

It yields less error. Because of analytic solutions, we need fewer steps to
calculate. Hence the error is less and it can be controlled too.

This theory, as a method of numerical computation is effective, accurate and
simple.

It can calculate very fast and is programmable.
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APPENDIX A: POLARIZED WAVES

We will discuss polarized plane waves, as well as incident, reflection and propagation

waves.

A.1 Linearly Polarized Waves

We call a field a transformed field if it is a field after an orthogonal transformation.
Otherwise a field is called an original field. In a transformed electric field, an X linearly

polarized wave with constant amplitude vector ¢, traveling in the positive z-axis

direction has the form

¢ =exp(—jA. 7). ¥6,%, (A.1)
where Kzis a matrix. Going back to the original electric field, this linearly polarized
wave in E field will have the form

E =T exp(-jA2) *E}. (A2)

We shall discuss some of the properties of this linearly polarized wave.

A.2 Wave Shapes

Now we consider other excitation waves such as trianglular, square and impulse waves.

If we choice EO properly, we can obtain the following graphs. Although this

corresponds to the choice of excitation, the components of E"O are only chosen from two

values: 0 and 1. This is like a numeric signal input. We can obtain various forms of

waves.
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(a) Sinusoid

Field E:
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Figure A.1 Sinusoidal wave in E
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FigureA.2 Another sinusoidal wave in E
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(b) Distorted sinusoid

HedE

Figure A.3 Distorted sinusoid Iin E
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Figure A .4 Distorted sinusoid I in E
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Figure A.5 Distorted sinusoid Il in E
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(c) Square wave

10)

Linearly polarized wave E (f=1GHz,N
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x 10

Figure A.6 Square wave in E (N=10, z=0.001).



98

(d) Trianglular wave

Linearly polarized wave E (f=1GHz N=10)
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Figure A.7 Trianglular wave E (N=10, z=0.001)

A.3 Polarized Plane Waves

Now we consider an % and a § linearly polarized plane wave with amplitude vectors E;

and E,, which are traveling in the positive z-axis direction. The superposition of two

waves can be written as
E =T exp(-jA 2).*(Ei+E,5). (A.3)

Casel. E, #0,E, =0(or E, #0, E, =0). It is a linearly polarized plane wave in % (or
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y ) direction.

Case 1L E’l.*Ez #0, and both E, and E, are real. We have a linearly polarized plane

wave at the angle

¢, =tan™ (E,./ E,) (A.4)

Example A.1 Suppose that E;=E,, f=1GHz, N=100, Assume excitation is pulse at the
origin. The polarized plane waves in Figure A.8 will be shown in graph Fig A. with
¢ =45 forall 1.

Sinusoid wave E (f=1GHz, N=100)

Division number: N, length of 3N

Figure A.8 Sinusoidal wave E with ¢ =45°.
Case IIL. 1732 = jE"l = E’o , Eg is real. We have
E =T, exp(-jK,z2).* E,(Z+ J9). (A.5)
This wave is called right hand circularly polarized wave (or left hand circularly

polarized wave if EZ =- jf_fl = EO . It is plotted in Figure A.9. The incident wave in field
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¢is a pulse with f=1GHz, N=100 and z=0. We consider the time domain. The angle

from the x-axis of the electric field vector at n is

¢ =tan” (E,./E,) = ENZ (A.6)

which shows that the polarization rotates at the uniform angular velocity @ .

Sinusoid wave E (f=1GHz, N=100)

PN

Division number: N, length of 3N

Figure A.9 Circularly polarized wave in B



