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RESUME

Dans le domaine de la visualisation scientifique, la modélisation des phénoménes
gazeux suscite de plus en plus d’intérét, mais demeure un défi de taille en raison de leur
complexité. Trouver un compromis adéquat entre le réalisme et la performance est
souvent indispensable. Ce travail se situe dans cette perspective. Nous avons développé
un modele permettant de représenter par un algorithme commun différents phénomeénes
gazeux a partir de données de densité de gaz. Deux paramétres, 1’albedo et le niveau de

transparence, permettent de spécifier I’apparence du gaz désirée.

La modélisation utilise comme structure de base une texture 3D comprenant des valeurs
de transparence et de luminosité. La transparence est calculée & partir des valeurs de
densité. La luminosité est obtenue par un algorithme d’illumination du gaz a partir
d’une source lumineuse. Afin d’obtenir un niveau de réalisme intéressant tout en
minimisant le plus possible le colit en calcul, nous effectuons un compromis au niveau
du calcul de la diffusion de la lumiere. Plutdt que d’évaluer la diffusion multiple réelle,
nous utilisons deux phases de calculs. La premiére concerne la diffusion de la lumiére
dans la direction des rayons lumineux. La seconde calcule !’'intensité¢ de la lumiére
diffusée en direction de I’observateur. Pour y parvenir, les nuanceurs de sommets et de

pixels sont mis a contribution.

Nous évaluons notre méthode selon trois critéres : le réalisme du rendu, 1’exactitude des
données et l’interactivité avec 1’observateur. Or, cette modélisation ne permet pas
d’obtenir un niveau de réalisme parfait en raison des compromis effectués au niveau de
I’illumination. Toutefois, elle engendre un rendu qui se rapproche suffisamment de la
réalité pour étre convaincant. D’autre part, cette méthode demeure représentative des

données numériques et permet une interactivité fluide avec un observateur.
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ABSTRACT

In the field of scientific visualization, the modeling of gaseous phenomena rises great
interest, but remains a challenge due to their complexity. There is a trade-off between
realism and performance, and it is often essential to find an acceptable compromise
between the two. This work aims to explore this question. We developed a model which
uses a single algorithm to represent various gaseous phenomena given a certain gas
density distribution. Two parameters, albedo and transparency, are used to specify the

desired appearance of the gas.

The model generates a 3D texture containing the transparency and luminosity data. The
transparency is calculated from the gas density, while the luminosity is obtained using
an algorithm for gas illumination from a light source. In order to maintain an
acceptable level of realism while minimizing the computational cost, we adopt a
compromise regarding light scattering. Instead of computing the real multiple scattering,
we use a two—step algorithm: we first relate to light scattering in the direction of the rays
and then we calculate the intensity of the scattered light in the direction of the observer.

The latter step is achieved using vertex shaders and pixels shaders.

We evaluate our method according to three criteria: realism, exactitude and interactivity.
This modeling technique does not allow to reach a perfect realism because of the
compromises regarding light scattering. However, it approaches reality sufficiently well
to be convincing. In addition, this method remains representative of the numerical data

and allows a fluid interactivity with the observer.
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INTRODUCTION

Motivation

Les phénoménes gazeux ont toujours suscité beaucoup d’intérét et de curiosité. Par
phénomenes gazeux, on peut regrouper les nuages, la fumée, la vapeur, le brouillard, le
smog et méme la poussi¢re. Tous ces éléments possédent un comportement complexe
souvent indépendant de la volonté de 1’observateur ou difficilement contrélable ainsi
qu’une structure non rigide difficile & modéliser. Cette complexité est la raison pour
laquelle encore aujourd’hui plusieurs scientifiques s’évertuent a les étudier et a proposer

différents modéles pour les représenter.

Les études scientifiques visant & comprendre et & simuler le comportement des gaz ont
souvent recours a la visualisation scientifique pour valider leurs approches. La
visualisation scientifique est également mise a profit pour I’étude de dispositifs qui
interagissent avec des phénomeénes gazeux, que ce soit la ventilation, la simulation
d’incendies, ou des procédés industriels. En effet, ’objectif de la visualisation
scientifique appliquée & ces domaines d’étude consiste & transformer des données
strictement numériques en images pour pouvoir les étudier plus facilement. Dans bien

des cas, la simulation par informatique s’avere essentielle, car reproduire la situation

deviendrait beaucoup trop coliteux ou dangereux.

Il n’y a pas que dans le domaine scientifique ou la représentation des phénomeénes
gazeux est devenue un défi de taille. Dans ’industrie du film, on tente de plus en plus
de reproduire la nature pour créer des effets spéciaux. De méme, pour les jeux vidé€o, la
demande toujours plus grande sur le plan du réalisme a amené les concepteurs & trouver

de nouveaux algorithmes pour les représenter. On cherche alors & créer un rendu



convaincant de gaz, mais sans nécessairement respecter de facon rigoureuse les lois de la

physique afin de conserver une interactivité acceptable.

Le réalisme, ’exactitude du rendu et l’interactivité avec 1’observateur sont les trois
éléments a tenir compte lors de la modélisation des phénomeénes gazeux. Un rendu sera
réaliste s’il laisse croire a 1’observateur qu’il voit bel et bien une image de gaz tel qu’il
serait possible de 1’apercevoir dans une simulation réelle. Dans une situation idéale, le
rendu devrait ressembler a une photographie. L’exactitude concerne le respect des
données numériques et des lois de la physique. Il s’agit d’un concept crucial dans un
contexte de visualisation scientifique ol 1’on désire habituellement représenter une
situation concréte ou prédire un comportement réel. Pour une application aux jeux
vidéo, on pourra sacrifier une partie de I’exactitude, en tentant toutefois de conserver un
comportement raisonnablement exact. Finalement, une visualisation offrira un bon
niveau d’interactivité si 1’observateur peut influencer I’état de la visualisation, que ce

soit par des déplacement ou des rotations, sans délais notables au niveau de 1’affichage.

Ce travail s’effectue en coopération avec un projet de recherche en mécanique des
fluides portant sur la simulation d’incendies. Ces simulations fourniront les résultats
numeériques dont nous nous servirons pour en calculer le rendu. Ainsi, ce travail porte
uniquement sur la modélisation en vue de la visualisation de phénoménes gazeux et non

pas sur leur simulation numérique.

Méthodologie

Dans un premier temps, nous effectuerons un survol de I’état de ’art. Les techniques de

modélisation les plus fréquentes seront étudiées. Nous prendrons en considération a la

fois les techniques provenant du domaine de la visualisation scientifique et celles



proposées pour les jeux vidéo et ’animation par ordinateur. Ainsi, nous obtiendrons un

apercu de modélisations proposant des degrés de réalisme et d’exactitude variés.

A la lumiére de cette revue de littérature, nous décrirons la solution que nous proposons
utilisant les textures tri-dimentionnelles comme éléments de base pour la modélisation.
Cette avenue s’inspire de différentes techniques déja existantes que nous avons adaptées
pour nos besoins. Finalement, nous comparerons différents résultats obtenus suite a
I’implémentation de cette solution avec ceux d’autres applications et nous discuterons de

ses forces et ses lacunes.



CHAPITRE 1 - DEFINITIONS ET MISE EN CONTEXTE

Ce chapitre a pour but d’éclaircir certaines notions qui s’avéreront essentielles a la
compréhension de ce travail et de mettre le lecteur en contexte. Ainsi, nous définirons
briévement ce qu’est la visualisation scientifique en mettant 1’accent sur ses objectifs, les
avantages que la recherche scientifique peut tirer de son utilisation de méme que ses
faiblesses. Ensuite, nous expliciterons une technique largement utilisée en infographie :
les textures. De fagon plus spécifique, nous nous concentrerons sur les textures 3D,
lesquelles forment le pilier sur lequel repose notre technique de modélisation. La
section qui suit traitera des nuanceurs de sommets et de pixels, ainsi que du langage Cg.
Nous tiendrons compte uniquement du processus général du rendu graphique, sans
entrer dans les détails d’implémentation matérielle. Par la suite, nous exposerons
rapidement le fonctionnement du logiciel FDS V3.10 [38][39] ayant servi a générer les
résultats numériques de phénomeénes gazeux que nous utiliserons par la suite.
Finalement, une section traitera de 1’aspect théorique de I’illumination d’un gaz en

décrivant les principaux phénomeénes optiques a tenir compte.

1.1 La visualisation scientifique

Le principe de la visualisation scientifique est d’interpréter de 1’information sous une
représentation visuelle pour en permettre une analyse plus facile et efficace. Elle se base
sur la capacité de 1’étre humain & comprendre et & analyser les images. Le défi de la
visualisation consiste donc a calculer une représentation adéquate pour un ensemble de
données brutes. La difficulté repose souvent au niveau de la trés grande taille du volume
de données et potentiellement de son aspect multidimensionnel. Une autre difficulté
courante reliée a la visualisation scientifique concerne la reconstruction des données. En
effet, la résolution d’équations par méthode numérique implique une forme de

discrétisation, puis une reconstruction par interpolation. Optimiser la transformation des



données pour augmenter la qualité visuelle et 1’efficacité du temps d’affichage est un

probléme crucial.

Les bénéfices issus de la visualisation scientifique sont variés. Premiérement, la
représentation visuelle requiert souvent moins d’espace mémoire que les données brutes.
De plus, la représentation visuelle est beaucoup plus intuitive et plus universelle, qu’une
codification scientifique spécialisée, ce qui facilite la communication d’informations.
Les chercheurs ont souvent recours 4 la visualisation scientifique pour explorer les
résultats de simulations numériques, pour les manipuler ainsi que pour en analyser les
détails. Typiquement interactive, elle peut étre utilisée tout au long du processus de
recherche pour la compréhension du phénomeéne et la diffusion des résultats [30]. Elle

peut également étre trés avantageuse au niveau de la vulgarisation scientifique.

Les apports de la visualisation scientifique touchent de nombreux secteurs d’activité,
tant au niveau de 1’exploration de grands volumes de données qu’a la conception de
simulateurs. Nous pouvons entre autres mentionner les simulateurs de vol, 1’étude de la
mécanique des fluides ainsi que les simulateurs chirurgicaux ou la visualisation est
particuliérement bénéfique. En effet, la simulation sur ordinateur tend de plus a plus a

remplacer la réalisation de coliteux prototypes [31].

Pour étre efficace, la visualisation doit répondre & trois critéres : le réalisme, I’exactitude
et interactivité. L’image projetée doit permettre a 1’observateur de bien comprendre le
phénomeéne étudié et doit également étre fidelement représentative des données
numériques. Elle doit également pouvoir donner I’impression que 1’objet simulé est une
entité réelle que 1’on peut manipuler, faire pivoter sous différents angles ou méme
modifier. Si I’outil de visualisation permet une navigation intuitive et aisée de 1’espace

virtuel, I’image graphique devient donc un instrument de recherche des plus utiles.



Afin d’éviter les confusions, nous établirons pour ce travail la signification de quelques
termes qui reviendront fréquemment. Tout d’abord, nous considérerons une
« représentation » comme étant une maniére de traduire de I’information sous une forme
visuelle pour des fins de visualisation. Par « modélisation » ou « modeéle », nous
décrirons de fagon générale toute procédure utilisée afin d’obtenir un rendu final du
phénoméne gazeux.  Ainsi, une modélisation peut faire appel a différentes
représentations. Par exemple, si on représente la présence de gaz par des sphéres et le
niveau de densité par une échelle de couleurs, un modéle pourrait combiner ces
représentations pour décrire 1’état d’un gaz. Il est important de mentionner que nous

considérerons la modélisation comme étant distincte de la simulation numérique.

1.2 Les textures 3D

Une texture est un tableau de données que I’on peut appliquer sur une primitive
géométrique (point, ligne ou polygone) [33]. Ces données peuvent étre une couleur, une
luminosité ou une transparence. Les valeurs individuelles d’une texture sont
habituellement appelées texels. Lorsqu’une texture est appliquée & une structure
géométrique, les sommets regoivent une valeur de la texture et des interpolations sont
effectuées pour calculer le rendu des pixels situés entre ceux-ci. Une texture peut
posséder de une a trois dimensions. Les textures 2D sont les plus utilisées, afin

d’appliquer des images sur des surfaces.

Les textures 3D sont souvent utilisées comme technique pour effectuer du rendu de
volume afin de visualiser des tableaux de données en trois dimensions [32]. Les textures
3D peuvent étre vues comme étant un ensemble de textures 2D, tel qu’illustré la Figure

1.1.
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Figure 1.1 Coordonnées d’une texture 3D

La texture 3D est appliquée aux coordonnées (r,s,t) allant de (0,0,0) & (1,1,1) spécifiées
pour les sommets d’un volume donné. Les textures 3D ont comme avantage par rapport
aux textures 2D que le calcul d’interpolation est effectué dans les trois dimensions de
I’espace par la carte graphique. La texture 3D peut également subir les transformations
courantes (rotation, déformation, déplacement) selon les trois axes. Les valeurs de
textures affichées correspondent a leur intersection avec le volume sur lequel elle est

appliquée, comme le montre la Figure 1.2.

Figure 1.2 Extraction d’une texture planaire 3 partir d’une texture 3D



1.3 Nuanceurs de sommets, nuanceurs de pixels et le langage Cg

De fagon simplifiée, le calcul du rendu graphique peut étre divisé en trois étapes (Figure
1.3).

Traitement des primitives |y Traitement des | Rendu des pixels
géométriques sommets

Figure 1.3 Etapes de rendu du pipeline graphique

Dans la phase du traitement des primitives géométriques, les sommets sont produits a
partir des structures de données. Ces sommets décrivent des triangles, des points ou des
lignes. Ensuite, le traitement des sommets peut étre subdivisé en plusieurs étapes : les
transformations, le calcul de D’éclairage et possiblement la transformation des
coordonnées de texture. Les transformations consistent & transférer les coordonnées du
monde virtuel aux coordonnées d’affichage. Le calcul de 1’éclairage prend en
considération les sources lumineuses pour déduire la couleur des sommets. Enfin, si des
textures sont utilisées, leurs coordonnées sont également transformées pour éEtre
appliquées a 1’espace d’affichage. L’étape finale consiste a prendre les données
résultant de 1’étape du traitement des sommets et a les placer dans la mémoire de trame

comme valeurs de pixels.

Les opérations pour le traitement des sommets et des pixels sont & présent
programmables. Au niveau du nuanceur de sommets, les sommets sont regus en entrée
et, suite & un traitement arbitraire, les valeurs de sortie (position, couleur, coordonnées
de texture...) sont inscrites dans les registres. La Figure 1.4 schématise le traitement

effectué par le nuanceur de sommets.
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Figure 1.4 Processeur du nuanceur de sommets

Egalement programmable, le nuanceur de pixels calcule la couleur finale du pixel &

afficher a partir de la couleur des sommets ainsi que des coordonnées de texture.

Les cartes graphiques récentes possedent leur propre processeur (GPU) optimisé pour les
calculs de rendu, ce qui le rend beaucoup plus performant que le processeur sur lequel
fonctionne le systéme d’exploitation (CPU), congu pour des traitements plus généraux.
Le langage Cg (C for Graphics) [35] a été développé afin de permettre une
programmation haut niveau des nuanceurs de sommets et de pixels. Il devient donc
possible d’effectuer des calculs au niveau des sommets et des pixels directement sur le
GPU plutdt que sur le CPU.

Le langage Cg peut étre utilisé en combinaison avec OpenGL ou DirectX. Plusieurs
effets de rendu peuvent ainsi étre créés facilement et efficacement [35]. Mentionnons
entre autres le placage d’environnement avec réflexion et réfraction ainsi que le placage

de relief.
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1.4 Simulations numériques et FDS V3.10

Dans cette section, nous décrirons sommairement le fonctionnement du logiciel FDS
V3.10 ayant fourni les résultats numériques utilisés lors de nos modélisations. Il ne
s’agit pas d’une description exhaustive des fonctionnalités et capacités du logiciel, mais
plutdt d’un apercu permettant de comprendre les principales techniques utilisées. Pour
plus de précisions, il serait préférable de consulter le manuel d’utilisation [38] et le guide
de référence [39] de FDS.

FDS simule les écoulements de fluide en divisant I’espace en petits volumes de controle.
Les équations fondamentales de conservation de la masse, de la quantité de mouvement,
des especes et de 1’énergie y sont appliquées et résolues pour chaque volume. Les
propriétés de ces volumes (température, densité, vitesse...) sont mises a jour selon
I’évolution du temps. La fiabilité des résultats dépend en grande partie du raffinement
utilisé au niveau de la division en volumes: de trés petits volumes permettront de
s’approcher de la réalité, mais nécessiteront beaucoup plus de ressources informatiques.
FDS ne permet ’utilisation que de parallélépipédes rectangulaires comme volumes de
contrble (illustré a la Figure 1.5) afin de simplifier la résolution des équations. Une fois
la géométrie créée, I'utilisateur doit spécifier les conditions frontiéres, les conditions

initiales ainsi que les propriétés des matériaux.
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Figure 1.5 Exemple de division du domaine en volumes de controle'

Le logiciel FDS propose deux méthodes de résolution de turbulence : la méthode DNS
(« Direct Numerical Simulation ») et la méthode LES (« Large Eddy Simulation ») [37].
La méthode DNS résout directement les termes dissipatifs, alors que la méthode LES
résout la turbulence de grande échelle a partir d’une approximation des équations de
Navier-Stokes et modélise les structures de petite échelle. L’utilisation de la méthode
DNS se limite en général & des simulations de petite taille, car elle demande beaucoup
de ressources informatiques. Quant a la méthode LES, elle est envisageable pour la
plupart des simulations. Les résultats numériques que nous avons utilisés ont été

obtenus uniquement par la méthode LES.

A chaque pas (At) de simulation, les approximations d’équations de Navier-Stokes sont
résolues pour chaque volume, les différents parameétres du domaine sont mis & jour et

ceux-ci sont enregistrés dans un fichier :

! Hardy [37]
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e Température

o Vélocité selon les trois axes
e Densité

e Composition chimique

e Pression

La composition chimique Z varie entre 0 et 1, Z=0 correspondant a I’air pur, et Z=1 a du
carburant pur. La densité de gaz ainsi que la composition chimique serviront lors de

notre modélisation.

1.5 Les phénomeénes optiques

Lorsqu’une onde lumineuse est propagée & I’intérieur d’un médium gazeux, différents
phénomenes optiques surviennent, modifiant son énergie et sa direction. Nous allons
décrire les deux phénoménes engendrant le plus de répercussions sur le plan visuel :
I’absorption et la diffusion. Ensuite, nous parlerons de la fonction de phase et de
I’albedo, qui sont deux autres éléments jouant un role déterminant au niveau de

I’illumination d’un gaz.

1.5.1 Absorption

L’absorption correspond a une transformation d’énergie de sa forme ondulatoire a une
forme vibratoire.  Elle dépend des propriétés du gaz (température, pression,
constituants...) et sa conséquence visuelle correspond & une diminution de I’intensité

lumineuse (illustré 4 la Figure 1.6).
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Figure 1.6 Absorption®

La lumiére est atténuée en fonction de la grosseur et de la densité des particules. Le
coefficient d’extinction, Bex(A) est la quantité totale de lumiére perdue par unité de
distance par particule. La lumiere restante aprés absorption le long du parcours du rayon

allant du point « a » vers le point « b » dépend donc de la profondeur optique’ :

Las(2) = Io(2) exp(-7(Po, P, 1))

Aah,A)= [Be( D) pls)dls

ol A Longueur d’onde de la lumiére
Ip(A) : intensité initiale de la lumiére (entrante)
P, Point d’entrée « a »
Py: Point de sortie « b »

oP,, Py, 4): Profondeur optique
p(s) Densité du médium a s

Bex(M) : Coefficient d’extinction

% Da Dalto [27]
3 Taxen G. [4]
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1.5.2 Diffusion

La diffusion survient lorsque I’intensité lumineuse est retransmise dans une direction
différente de la direction initiale. La lumiére peut étre diffusée par les particules
atmosphériques dans différentes directions dépendamment de la grosseur des particules
et de la longueur d'onde de la lumiére. Pour une diffusion simple, I’intensité restante

I(2) aprés diffusion peut étre écrite’:

I(ﬂ) = lo(ﬂ) ﬂsc(l: 0)

ol A: Longueur d’onde de la lumiére
Io(4) : intensité initiale de la lumiére (entrante)
0: angle de diffusion
Pl 6) coefficient de diffusion (ou fonction de dispersion)

Si I’on ajoute le phénomene d’absorption, on peut calculer I’intensité de la lumiere I(4)
atteignant 1’ceil’ :
I(2) = Lp(2) + Lie(A)

I sc(ﬂ)=l sun (l)}?]-ﬂsc(iﬂ)exp(— T(B,l ,)u) —T(l ,Bz,ﬂ))dl

ou Lp(2) : Lumiére restante apres absorption
Li(A) : Lumigere restante aprés diffusion
Lon(A) : Lumiére de la source lumineuse (soleil)
P,: Point d’entrée
Py Point de sortie
[: Point d’observation

* Taxen G. [4]
> Taxen G. [4]
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La diffusion sortante est 1’émission de la lumiére entrante dans différentes directions,
comme le montre la Figure 1.7. Cela engendre donc une diminution de 1’énergie

transportée par le rayon.

Figure 1.7 Diffusion sortante®

De méme, si une particule recoit la diffusion provenant de particules voisines, une
augmentation du flux lumineux sera créée. Il s’agit de la diffusion entrante, telle

qu’illustrée a la Figure 1.8.

P *

Figure 1.8 Diffusion entrante’

¢ Da Dalto [27]
7 Da Dalto [27]
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1.5.3 Fonction de phase

La fonction de phase détermine, pour un angle entre les directions incidentes et de sortie,
la diffusion de l’intensité de la lumiére. En général, la dispersion de la lumiére
s’effectue beaucoup plus dans le sens « avant » des rayons que par en arriére. Le choix
de la fonction de phase théorique pour représenter le comportement du milieu est
habituellement bas€ sur le rapport entre la grosseur de la particule (de rayon r) et la
longueur d’onde de la lumiére (A). Normalement, il est préférable de définir une taille
de particule moyenne et d’utiliser un seul type de fonction de phase pour tout le gaz.

Inakage [29] propose le classement illustré par le Tableau 1.1.

Tableau 1.1 Classement du type de fonction de phase utilisé

r<<) |Absorption atmosphérique (pas de diffusion)

r<A |Diffusion de Rayleigh
r~) |Diffusion de Mie

r>>3 | Optique géométrique (pas de fonction de phase)

Taxen [4] considére que pour des particules de rayon allant jusqu’a environ 0,054, la
dispersion de Rayleigh est prédominante. Le coefficient d’extinction par molécule par

unité de longueur est approximativement :

87° (n2=1y2
Pl A3 N

ou N: nombre de particules (densité)

n: index de réfraction
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La fonction de diffusion par particule est approximativement :

2 2 _1 2
ﬂsc(l,Qz%%(l+cosz(®)

ou 6 est I’angle de diffusion

Le terme 1/A* des coefficients explique la couleur bleue durant le jour et le rouge au

coucher du soleil.

Pour des particules plus grosses (brume, gouttelettes de nuage), la dispersion de Mie
prédomine. On assume que les coefficients d’extinction et de dispersion sont
indépendants de la longueur d’onde. Le coefficient d’extinction par kilomeétre pour un

nuage typique est :
Pex = 16,33
Le coefficient de diffusion est approximativement :

3(1-g%») (1+cos?6)
PAO* 577 ) (1272 gcosh

g:iu_,_(i_;iuz -1/3 +x1/3

043781
_5 125 (ﬂ_3_2§2 1250 4)/2
XUt o7 2434 o187

ou u varie entre 0,7 et 0,85
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1.5.4 Albedo

On définit 'extinction comme étant 1’atténuation de la lumieére par absorption et par
diffusion.

Extinction = Diffusion + Absorption
Le coefficient de diffusion est appelé «albedo» Il représente le pourcentage
d’atténuation par extinction due a la diffusion plutét que par absorption. Une valeur

d’albedo pres de zéro correspond a une fumée trés sombre, alors qu’une valeur d’albedo

élevée (prés de 1) convient & de la vapeur et a un nuage.

Albedo = Diffusion / Extinction
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CHAPITRE 2 - ETAT DE L’ART

Ce chapitre décrit différentes méthodes de visualisation des phénoménes gazeux
proposées dans la littérature. Premiérement, nous allons exposer celles qui modélisent la
structure du gaz. Nous avons subdivisé ces derniéres en deux catégories : les méthodes
permettant de respecter intégralement les données numériques et celles qui utilisent des
procédures stochastiques. Finalement, nous allons décrire les modélisations qui traitent

de I’illumination du gaz et qui tiennent compte des phénomeénes optiques.

2.1 Modélisations représentatives des résultats numériques

2.1.1 Champs vectoriels

Une des premieres modélisations utilisées en visualisation scientifique pour représenter
un mouvement de fluide est le champ vectoriel. Les particules de gaz étant caractérisées
par une direction et un module, il est possible d’échantillonner 1’espace et de les

représenter par des vecteurs.
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Figure 2.1 Champ vectoriel pour un espace 2D*

La Figure 2.1 donne un exemple de champ vectoriel pour un espace 2D. Ce type de
représentation peut s’avérer utile pour déceler certaines tendances des données et
extraire des informations rapidement. Par contre, elle présente des lacunes importantes.
Premiérement, si les vecteurs reflétent bien les données numériques, 1’aspect visuel
obtenu, quant a lui, n’est pas réaliste. De plus, pour un espace en trois dimensions, les

résultats visuels deviennent beaucoup plus ambigus, comme I’illustre la Figure 2.2.

8 Post F. H. [36]
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Figure 2.2 Champ vectoriel pour un espace 3D’

2.1.2 Surfaces iso-densité

Si des surfaces sont formées a partir de points de coordonnées offrant une méme densité
de gaz, il est possible d’obtenir un apergu global du médium. Il s’agit d’une
représentation simple nécessitant peu de calculs et permettant de retirer rapidement des
informations visuelles. Par contre, cette méthode présente des lacunes importantes au
niveau du réalisme et de I’exactitude des résultats. En effet, le calcul de la propagation

de la lumiére & travers le gaz n’est pas considéré lors du rendu des surfaces. De plus, les

surfaces sont générées uniquement pour certaines valeurs de densité, délaissant les

® Post F. H. [36]
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autres valeurs. Ceci engendre une perte de I’information lors de la visualisation. La

Figure 2.3 présente ’affichage de cinq surfaces iso-densité obtenu par le logiciel VU'® :

DEHSIY .
0.6 060571 077143 085714 09086 IO L

Figure 2.3 Simulation d’explosion utilisant des surfaces iso-densité

Max et Crawfis [3] proposent d’utiliser des surfaces de contour afin de représenter un
ciel nuageux. Se basant sur des données climatiques réparties dans une grille
tridimensionnelle, des tétraédres sont construits. Ces derniers sont ensuite reliés entre
eux en interpolant linéairement la fonction d’ennuagement (Figure 2.4). Finalement,
une texture procédurale est utilisée pour contrbler la transparence des nuages (Figure
2.5).

19 Ozell, B. [41]
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Figure 2.4 Surfaces de contour pour un Figure 2.5 Ajout de la texture de transparence
ennuagement de 15%"! sur les surfaces de contour'

2.1.3 Lancer de rayon

Le lancer de rayon (« ray tracing ») est une méthode fréquemment utilisée pour obtenir
des images de haute qualité visuelle. Pour chaque pixel d’affichage, un rayon est lancé

et la couleur résultante dépend des objets de la scéne rencontrés le long de son parcours.

Stam [13] utilise une grille 3D afin de calculer 1’évolution de la densité en interpolant
linéairement des données de densité entre deux étapes de temps. Par lancer de rayon, la
transparence (alpha) et I’intensité (intens) des volumes sont ensuite obtenues comme

suit ;

alpha[i][j][k] = 1 — exp( -ex*coul*dens[i][j][k] * (1 x+1 y+1 z)/3)

intens[i][j][k] = ( albedo * shadow( i, J, k, light ) * intens( light ) + em ) * coul

' Max et Crawfis [3]
12 Max et Crawfis [3]
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ou [ x,1 yetl zsont les espacements de la grille tridimensionnelle
ex est le coefficient d’extinction
em est |’émission du gaz
coul est la couleur du gaz
dens est la densité du gaz aux coordonnées (i,j,k)
shadow() est I’opacité causée par le gaz ou par d’autres objets gazeux

light est I’intensité du rayon lumineux

La méthode du lancer de rayon permet de générer un rendu trés précis et de tenir compte
d’éléments optiques tels que la réflexion et la réfraction. Toutefois, les ressources
informatiques & ce jour ne sont pas suffisantes pour permettre un affichage fluide en

utilisant uniquement cette technique.

2.1.4 Modélisation par nuées (blobs)

Une nuée peut étre définie comme étant une sphere dans laquelle la densité de gaz est
homogéne. La modélisation par nuées échantillonne le volume gazeux uniquement aux
endroits contenant de I’information, ce qui permet de minimiser I’espace mémoire
requis. Par contre, plus le milieu est perturbé, plus les nuées devront étre petites. De
plus, pour éviter les artéfacts, un grand nombre de nuées est nécessaire. Pour limiter le
temps de calcul et offrir un raffinement plus ou moins fin, une hiérarchisation des nuées
peut étre utilisée. Une arborescence utilisant des « macro-nuées » contenant des nuées

plus petites est illustrée a la Figure 2.6.
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Figure 2.6 Modélisation hiérarchique a I’aide de nuées™

Stam [16] propose une méthode de rendu stochastique pour afficher des phénomeénes
gazeux représentés par des champs aléatoires de densité. Un champ de densité
homogéne ayant une covariance gaussienne est premiérement créé. Ce champ de densité
aléatoire est vu comme une somme de nuées aléatoires, la variance de densité de chaque
nuée étant proportionnelle & sa moyenne. Le rendu final est effectué par lancer de rayon.
Pour chaque lancer de rayon, I’intensité de la lumiére en absence de champ de densité
est initialement calculée. Elle est ensuite modifiée selon les nuées. Pour chaque nuée i
intersectant le rayon, on calcule la moyenne et la covariance le long du rayon au point

d’intersection et on en effectue I’intégrale :

Ezﬂ‘l +E(xay)+0'i(an’)Qi(st’)
ou Ti(x,y) est la moyenne de la nuée au point d’intersection
oi(x,y) est la covariance de la nuée au point d’intersection

QOi(x,y) est la valeur de densité du champ homogéne au point (x,y)

Tp=0
La transparence est ensuite définie par une relation exponentielle :

r=exp(—«:T)

1 Barrero [28]
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ol k: caractérise la quantité de lumiere absorbée ou diffusée par unité de
longueur

T est ’accumulation de la densité le long du rayon

On prend ensuite en considération 1’augmentation d’intensité (notée J) causée par
1’émission et la diffusion de la lumiére provenant d’autres directions. L’intensité finale

du rayon sera :

I=1l+ (I-9J

ou Jj est ’intensité en absence de champ de densité

La complexité de I’algorithme est de I’ordre de O(n) ol n est le nombre de nuées.

Stam et Fiume [10][11] modélisent des ensembles de particules par des nuées.
Sphériques initialement, les nuées grossissent et se déforment dans le temps sous I’effet
du vent (Figure 2.7). A chaque étape de ’animation, la température et la densité des
nuées sont mises a jour. L’illumination du gaz est calculée par un algorithme de lancer
de rayon entre les sources lumineuses et les nuées. L’absorption, I’émission et la
diffusion multiples sont prises en considération. Un exemple de rendu obtenu par Stam

et Fiume [10][11] est illustré a la Figure 2.8.

1,

Figure 2.7 Nuée se déformant dans le temps'*

' Stam et Fiume [11]
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Figure 2.8 Fumée obtenue par la modélisation par nuées déformables'®

Stam [14] précise sa méthode de rendu utilisant la modélisation par nuées déformables.
Cette modélisation ne fournit pas une précision numérique exacte, mais une
approximation. Une structure hiérarchique de nuées est d’abord construite permettant de
calculer la transparence et l’intensité par lancer de rayon traversant les nuées. La
transparence du rayon traversant la nuée k entre les points d’intersection a et b posséde

une allure gaussienne calculée comme suit:

Y}(b,a)sz;kaW(dk,e)

ou Ak est la profondeur traversée dans la nuée
dy est la distance entre le centre de la nuée et le point d’intersection du
rayon

W(dke) est une fonction d’adoucissement

g est la plus petite valeur résolue par la méthode numérique

1 Stam et Fiume [11]
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Calculer la transparence totale du rayon correspond & effectuer la sommation de la
contribution de chaque nuée interceptée et d’en calculer ensuite 1’exponentielle inverse.
L’intensité est ensuite obtenue par calcul de radiosité. A chaque étape de 1’algorithme,
I’énergie est propagée des sources de lumiére aux nuées ainsi que de nuées a d’autres

nuées.

Barrero [28] réutilise la méthode des nuées diffuses proposée par Stam [14][16] pour
simuler ’animation de gaz dans le temps, mais y apporte des modifications pour corriger
les problémes causés par des nuées de trop grande taille. Lorsqu’une nuée atteint une
taille maximale, elle est subdivisée en plusieurs nuées. De plus, lorsqu’une nuée a une
densité plus petite qu’un seuil minimal, elle est supprimée. Le calcul d’illumination est
effectué par un algorithme de radiosité. Les échanges d’énergie lumineuse sont calculés
des sources aux nuées et des nuées a d’autres nuées. Finalement, lors du rendu, un
lancer de rayon est utilisé en tenant compte de 1’absorption et de la diffusion. La
transparence Ty, d’un pixel [x,y] & I’écran est le résultat de la multiplication des

transparences de chaque nuée 7, pour ce pixel :

N
Tolx,y=] [Tlx.]
Jj=1

La Figure 2.9 montre un exemple de fumée obtenue par Barrero [28].
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Figure 2.9 Eclairage d’une scéne utilisant des nuées'®

2.2 Modélisations « ontogénétiques »

La modélisation ontogénétique réfere a une modélisation se basant sur les
caractéristiques morphologiques visibles. Elle vise [I’atteinte des ressemblances
subjectives plutdt que de viser la véracité¢ issue des principes scientifiques. De
nombreuses modélisations ontogénétiques de phénomeénes gazeux ont été développées
dans le but d’obtenir un rendu convaincant pour un observateur non scientifique. En
effet, dans de nombreux secteurs tels que ceux du jeu vidéo et du cinéma, il n’est pas
nécessaire de s’assurer que les gaz possédent un comportement respectant de fagon
pointilleuse les lois de la physiques. L’effort est plutét mis sur la beauté du rendu. Les

modélisations ontogénétiques se basent souvent sur des techniques stochastiques.

16 Barrero [28]
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2.2.1 Systémes de particules

La modélisation la plus simple et qui demeure trés utilisée est le systéme de particules.
Basée sur le modéle moléculaire des gaz, elle consiste a représenter le médium par un
nuage de petites sphéres semi-transparentes. Les forces entre les particules peuvent étre
facilement définies ainsi que leur trajectoire a travers un champ de turbulence. De plus,
cette méthode est trés simple & implémenter. Toutefois, pour que D’effet soit
convaincant, un trés grand nombre de particules est requis, ce qui représente une
capacité de stockage mémoire importante. De plus, le nombre de particules ainsi que
leur taille étant limités, il demeure toujours possible de distinguer les sphéres si
I’observateur s’en approche suffisamment prés. La Figure 2.10 présente cet

inconvénient :

Figure 2.10 Systéme de particules vu de trés prés
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2.2.2 Utilisation de textures

Une technique souvent utilisée pour représenter des phénomeénes gazeux consiste a
décrire le volume gazeux par un espace solide a travers lequel on fait varier la couleur et
la transparence. Des fonctions de densité habituellement aléatoires sont utilisées pour
créer des variations au niveau de l’intensité et de ’opacité. L’un des inconvénients de
cette technique réside dans le fait que le résultat visuel dépend entiérement du talent de
’artiste et que la procédure pour trouver une fonction de densité offrant des résultats

réalistes s’effectue souvent par essais et erreurs.

King et al. [7] proposent une méthode simple pour créer une animation pour des
phénomenes gazeux. Un ensemble de textures procédurales (bruit de Perlin ou autre) en
teintes de gris est d’abord généré. Un volume contenant le gaz est ensuite défini et
divisé en voxels espacés régulierement. Une opacité est spécifiée pour chaque voxel et
une texture initiale leur est appliquée. Pour chaque étape de I’animation, une nouvelle
texture est apposée et I’image est affichée de I’arriére vers I’avant. Le volume peut
également se déformer dans le temps. La Figure 2.11 illustre une fumée définie a

I’intérieur d’un volume de forme elliptique.

Figure 2.11 Fumée générée par des textures procédurales’’

7 King et al. [7]
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Ebert [22][23] construit des textures procédurales afin de spécifier les valeurs de
transparence pour un volume de gaz. Deux fonctions sont & la base du calcul de la

texture :

densité = pow( turbulence * max, exp )

turbulence = (1 + sin( fast_turbulence( pnt )PI *5 ) )0.5

ou max est la valeur de densité maximale (entre O et 1)
exp est le degré de I’exposant

fast_turbulence est une fonction aléatoire

Différentes modifications sont appliquées a la procédure de création de la texture selon
le type de gaz désiré. Par exemple, pour simuler la vapeur s’élevant d’une tasse (Figure
2.12), la densité est amenuisée en fonction de la hauteur. Un parametre de déplacement

est également utilisé pour créer une animation.

Figure 2.12 Vapeur s’élevant d’une tasse'®

'8 Ebert [22]
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De leur c6té, Heidrich et al. [8] utilisent les textures de pixels (une extension d’OpenGL)
dans le but de générer du brouillard dont la densité n’est pas uniforme selon 1’altitude.
Une texture 3D contenant un calcul de distances selon la direction du regard est générée
et appliquée aux pixels lors de I’affichage de la scéne. Le résultat est illustré a la Figure
2.13.

Figure 2.13 Effet de brouillard non uniforme avec les textures de pixels'’

Pour sa part, Stam [12] simule le mouvement de la fumée sous ’effet d’un écoulement
d’air. Les valeurs de densité de gaz sont placées dans une grille 3D. Un résoluteur
calcule les nouvelles valeurs de densité pour un intervalle de temps plus €loigné et des
interpolations linéaires sont effectuées entre les deux grilles de densité. Ceci permet
d’obtenir un mouvement fluide du gaz. Initialement, des coordonnées de texture 3D
allant de 0 & 1 sont appliquées a la grille 3D. Durant la simulation, les coordonnées
subissent les mémes déformations que les valeurs de densité. Finalement, I’affichage est
généré en faisant correspondre les coordonnées de texture a une texture 3D de type
fractal et en multipliant la densité par une texture 2D (une image quelconque). La

Figure 2.14 présente une animation de nuages obtenue par la méthode de Stam [12].

' Heidrich et al. [8]
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Figure 2.14 Animation de nuages 3D*

2.2.3 Méthode des ellipsoides

En raison de la forte similitude entre la forme d’un ellipsoide et celle d’un nuage, de
nombreuses techniques ont été développées utilisant cette géométrie comme structure
pour le volume gazeux. Les ellipsoides présentent une forme simple et facile a

contrbler.

Gardner [1] a été le premier a proposer la modélisation de nuages & I’aide d’ellipsoides
et d’une texture générée par une fonction mathématique. La texture est créée par une
série de Fourier composée d’une courte somme de sinus (entre quatre et sept) disposant
de décalages aléatoires. Cette texture est appliquée sur les ellipsoides (Figure 2.15) pour
en moduler I’intensité et la transparence (Figure 2.16 et Figure 2.17). Une transparence
plus élevée est spécifiée prés de la frontiere des ellipsoides. En modifiant certains
paramétres de la fonction mathématique, différents aspects visuels peuvent étre obtenus,
pouvant correspondre & un cirrus, un stratus ou un cumulus. Le nuage est finalement
formé par la combinaison de plusieurs ellipsoides (Figure 2.18), disposant tous d’une
couleur et de parametres de texture communs. Par contre, leur grandeur, leur position

ainsi que leur orientation sont modifiées par une variation aléatoire.

2% Stam [12]
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Figure 2.15 Ellipsoide avec une intensité

texturée! Figure 2.16 Ellipsoide avec un seuil de

transparence en 2D*

Figure 2.18 Combinaison de plusieurs

Figure 2.17 Ellipsoide avec un seuil de ellipsoides™
transparence en 3D%

Cette méthode peut étre effectuée avec un coiit de calcul suffisamment faible pour
permettre 1’affichage fluide d’une séquence d’images. De plus, elle permet une
modélisation tridimensionnelle. Toutefois, elle ne considére pas I’illumination de la

lumiére a travers le gaz.

Elinas et Stuerzlinger [1] reprennent la méthode de Gardner utilisant un ensemble
d’ellipsoides pour simuler la structure d’un nuage. Chaque ellipsoide posséde une

texture irréguliere et est partiellement transparent. Toutefois, la texture est générée par

2! Gardner [1]
22 Gardner [1]
2 Gardner [1]
 Gardner [1]
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un bruit de Perlin plutdt qu’une série de sinus, permettant une plus grande flexibilité et
un meilleur contrble. Afin de s’assurer que l'intérieur de 1’ellipsoide offre une plus
grande opacité que I’extérieur, une texture semblable & un éclairage de projecteur est
préalablement appliquée sur chaque ellipsoide. La Figure 2.19 illustre un rendu de

nuages obtenu par Elinas et Stuerzlinger [1].

Figure 2.19 Nuage formé par 27 ellipsoides®®

Taxen [4] reprend ’approche de Gardner [1] en ce qui concerne la modélisation du
nuage, sauf qu’il propose un bruit de Perlin comme texture. Pour les calculs d’intensité,
il effectue un lancer de rayon ou chaque rayon est modifié par une fonction d’opacité
plutdt que de calculer la véritable intensité de voxel a voxel. Les nuages de la Figure

2.20 résultent de cette méthode.

% Ellinas [1]
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Figure 2.20 Cumulus obtenus par Taxen?®

Rasmussen et al. [18] construisent un champ de vélocité 3D a partir de solutions
d’équations de Navier-Stokes 2D. Des particules sont ensuite propagées a travers ce
champ. Une grille tridimensionnelle est également créée, chaque voxel ayant la forme
d’une pyramide tronquée alignée dans la méme direction que celle de la caméra. Les
densités de particules sont ensuite échantillonnées dans la grille en les considérant
comme étant des ellipsoides. Chaque ellipsoide posséde un rayon pour chaque axe de

coordonnées ainsi qu’une densité au point p (inclus dans ’ellipsoide) tel que :

D(p)=1-f1-s,1,|p|/r)
ro si t<a
Aab)=<1 si 12b
_2(1—_aj +3 f—_a)z si a<t<b
| Y-a -a
ol 0<s<l est un facteur de dégradation

r est le rayon de I’ellipsoide passant par p

Une fonction de turbulence (bruit de Perlin) est utilisée pour moduler la fonction de

densité. L’illumination directe du volume est calculée a chaque voxel par lancer de

% Taxen [4]
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rayon. Apres avoir emmagasiné les valeurs d’illumination a chaque voxel, la diffusion
isotropique de la lumiére est ensuite simulée en utilisant une méthode hiérarchique. Le
rendu du volume est finalement effectué par lancer de rayon en accumulant 1’intensité et

I’opacité. L’opacité d’un voxel centré au point x est :

a=1-exp(-t*D(x) *dz)
ol D(x) est la densité du voxel
dz est la profondeur du voxel dans la direction du rayon

Test une constante contrdlant la conversion entre la densité et 1’opacité
L’opacité est accumulée le long du rayon tel que :
Api1=4n+a(l-4,)
Finalement, a chaque point du volume la couleur est pondérée par 1’opacité :

Crr1=Cyp + a(] “An) I(X)

ou I(x) est I’illumination du voxel

La Figure 2.21 illustre un rendu d’explosion simulée par Rasmussen et al. [18].
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Figure 2.21 Rendu d’une explosion®’

2.2.4 Méthodes de projection

La nature tri-dimensionnelle des phénoménes gazeux est grandement responsable de la
complexité du calcul de rendu d’une scene nécessitant I’interaction avec un observateur.
Les méthodes de projection visent & réduire ce colit en performance en réduisant le

volume gazeux a une surface 2D.

Dobashi et al. [S] présentent une méthode pour produire une animation de nuages
(création, extinction, déplacement) dans le temps. L’espace est divisé en voxels, chacun
possédant trois paramétres booléens (humidité, nuage, activation) qui effectuent des
transitions. Cette méthode ne donne pas des résultats physiquement exacts, mais permet
d’étre visuellement convaincante. La fonction de distribution de densité est exprimée
par un ensemble de métaballes. Pour calculer I’intensité lumineuse des pixels, une

diffusion simple de la lumiére a travers le nuage est considérée en calculant 1’intensité

27 Rasmussen et al. [18]
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lumineuse traversant les métaballes. Ensuite, la transparence est obtenue en projetant

chacune d’elles sur une surface plane perpendiculaire & I’angle de vue. L’affichage final

résulte de la combinaison de ces projections.

Les étapes de cette méthode sont

présentées a la Figure 2.22 et la Figure 2.23 illustre un exemple de nuages obtenus par

Dobashi [5].

plans de kY
mémoire  Projection

da trame

metaballes

Lire
lintensité

Texture

o d'ombre
multiplier

I'atténuation

Figure 2.23 Formation de nuages®®

Heinzlreiter et al. [6] utilisent des ellipsoides déterminés par la position du centre, la

longueur des axes, la densité au centre et la densité a la surface pour approximer la

% Dobashi et al. [5]
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distribution spatiale de la densit¢ de vapeur d’eau. La distribution de densité a
I’intérieur de chaque ellipsoide est calculée par interpolation linéaire entre ses valeurs de
densité au centre et & la surface. Le calcul de 1’absorption de la lumiére entre les voxels
est effectué de fagon récursive. La diffusion est également calculée en utilisant la
fonction de phase de Mie avec trois itérations. Toujours dans la phase de pré-traitement,
des images sont générées par lancer de rayon selon différents points de vue (un
minimum de 32) autour du nuage pour créer des textures de projection. Une opacité est
attribuée 4 chaque texture selon leur position avant de les superposer sur un plan de
projection. Une texture pour I’ombre sur le sol peut également €étre créée en utilisant un
point de vue directement au-dessus du nuage. L’image de la Figure 2.24 résulte de cette

méthode de rendu.

Figure 2.24 Formation d’un nuage®

Harris et Lastra [9] proposent d’utiliser des « imposteurs » pour diminuer la complexité
des calculs lors de I’affichage de chaque image d’une animation incorporant des nuages.

Un imposteur remplace un objet dans la scéne par un plan semi-transparent sur lequel on

 Heinzlreiter et al. [6]
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appose une texture. Ces plans de projection sont illustrés a la Figure 2.25. La texture
appliquée aux plans correspond & 1’image de 1’objet remplacé vu de I’endroit ou se situe
la caméra. Etant donné que le point de vue par rapport & certains nuages change peu, un
méme imposteur peut étre utilisé pour plusieurs images de 1’animation. Le temps de

calcul pour le rendu de nuages tridimensionnels s’en trouve amenuisé.

Figure 2.25 Utilisation d’imposteurs pour afficher des nuages*

30 Harris et Lastra [9]
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2.3 La modélisation des phénoménes optiques

2.3.1 Méthodes analvtiques

Le calcul de l’illumination ne peut &tre résolu sous sa forme théorique de fagon
analytique. Il est nécessaire d’intégrer les équations de transfert d’énergie a 1’intérieur
du milieu pour finalement en connaitre le bilan. Le principe consiste & échantillonner le
milieu par lancer de rayon et d’en obtenir un systtme que 1’on peut résoudre
analytiquement. Ceci permet de calculer la diffusion simple, mais non la diffusion

multiple. Toutefois, 1’efficacité de ces algorithmes est élevée.

Kajiya et Herzen [24] proposent un algorithme de lancer de rayon pour simuler
I’illumination dans le cas d’un albedo faible. Dans cette procédure, le calcul de rendu
est divisé en deux étapes. Premiérement, la propagation de la lumiére provenant des
sources i a travers un tableau de densité p(x,y,z) est calculée dans un second tableau
li(x,y,z) en tenant compte de la contribution de chaque lumiére a I’illumination de
chacun des points de I’espace. Ceci est effectué en calculant en parallé¢le I’intégrale pour

chaque parcours Ty =(x(t),y(t),z(t)) de la source de lumiére a travers p(X,y,z).

I(x,y,2)=expl -t jp(x(t),y(r),z(t))dtJ

Te,y,2
T=K/p

ou x est le coefficient d’absorption

Pour la seconde étape, chaque rayon est recueilli par une frontiére en prisme
rectangulaire, la clarté du rayon correspondant a la somme des contributions de chaque

voxel.
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1
pr j Axu), y), 2 s

B=le * XI:ZL'(.X‘(!), y(t),z(t))p(cosﬁx)pr(x(t),y(t),z(t))vlt

Al
ou A; et A, sont le début et la fin du trajet entre 1’ceil et le voxel visible le
plus éloigné.
6, est I’angle entre la direction du regard et le rayon pour le voxel i

p(cos(6)) est la fonction de phase

Le terme exponentiel de I’intégrale donne 1’atténuation causée par l’absorption et la
diffusion, tandis que la sommation fournit la contribution en clarté¢ de chaque source de
lumiére pour un point donné. La Figure 2.26 donne un exemple de rendu obtenu par la

méthode de Kajiya et Herzen [24].

Figure 2.26 Calcul d’illumination®

La diffusion par des particules plus grosses est plus complexe et est décrite par Mie.
C’est notamment le cas des particules de nuage, qui s’apparentent davantage au régime

de Mie qu’a celui de Rayleigh. Toutefois, Harris et Lastra [9] considérent qu’il est

3! Kajiya et Herzen [24]
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possible d’obtenir des résultats visuels intéressants par la formule de Rayleigh, mais en

utilisant une simplification de cette fonction de phase :

p(6) = % (1 + cos’ (6))

ou Hest I’angle entre la direction incidente et la direction de diffusion

Etant donné que le calcul de la diffusion anisotropique multiple est cofiteux, les auteurs
simplifient en calculant uniquement la diffusion dans la direction de la lumiére. Par la

suite, la diffusion simple vers I’observateur est ajoutée :

E. =8+ Ty *Epy, 1<k<N
Se=ar*n*p(Q) *Iy/4rx

ou E;: Lumiére sortant de la particule pg
Sk Lumiére dispersée
Ty: Transparence de la particule
T *Eig: Lumiére non absorbée
6: Angle entre la direction de I’observateur et celle du rayon
p(o : Fonction de phase
T Coefficient d’extinction (1/longueur) du nuage de
profondeur t
ai Albedo
I Intensité de la lumiére

La Figure 2.27 illustre un exemple de nuages obtenus par Harris et Lastra [9]. Les
auteurs utilisent un coefficient d’extinction 7= 8,0 et un albedo a = 0,9. De plus, une

illumination globale du ciel est modélisée par de multiples sources de lumiére.
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Figure 2.27 Nuages avec diffusion multiple*

2.3.2 Méthodes statistiques

La méthode statistique la plus utilisée pour la modélisation de phénomeénes gazeux est
’algorithme de Monte-Carlo. Son principe consiste & simuler de maniére aléatoire les
phénoménes lumineux a ’intérieur du gaz. Il s’agit d’un algorithme non déterministe.

Plusieurs chemins a travers le médium sont parcourus pour simuler la diffusion simple.

Pattanaik et Mudur [21] présentent une technique de simulation de Monte-Carlo pour
calculer I’'illumination & travers un médium gazeux. Un nombre fini de particules est
généré a différentes positions sur la surface (ou sur le volume pour une simulation en
3D) émettant la lumiére et différentes directions de propagation leur sont assignées.
Pour chaque particule, on calcule la surface d’intersection la plus prés. A ce point, la
particule est aléatoirement absorbée ou diffusée avec une probabilité basée sur le
coefficient d’extinction, 1’albedo et la fonction de phase. Le processus est poursuivi
pour chaque particule jusqu'a ce qu’elles soient toutes absorbées ou qu’elles aient

parcouru tout 1’environnement.

32 Harris et Lastra [9]
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Pour que I’algorithme de Monte-Carlo génére un rendu réaliste, il faut que le nombre de
lancers de photon soit trés grand, sinon des erreurs visuelles restent présentes. Une

simulation réaliste nécessite un cofit de calcul trés élevé.

2.3.3 Méthodes zonales

Les méthodes zonales divisent I’espace du volume gazeux en voxels afin de simuler les
échanges d’énergie par radiosité. Sillion [17] présente une technique pour le calcul de la
radiosité dans un volume complexe ou s’effectue une diffusion d’énergie. La stratégie
consiste a construire une hiérarchie ascendante (« bottom-up ») regroupant les surfaces
proches. L’algorithme utilise une procédure hiérarchique : considérant deux volumes,
soit qu'il est décidé que le transfert d’énergie est correctement représenté au niveau
actuel, soit qu’un des deux volumes est subdivisé. Le transfert d’énergie est calculé en
traversant la structure hiérarchique et en accumulant ’opacité le long du parcours.
Chaque volume posse¢de une densité et un albedo. L’image finale est générée par lancer
de rayon. La Figure 2.28 montre un exemple d’illumination obtenue par la méthode

zonale.

Figure 2.28 Calcul de I’illumination d’un nuage par radiosité®

33 Siltion [17]
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Les méthodes zonales peuvent engendrer des résultats intéressants, mais requicrent des
colits en calcul trés élevés qui ne permettent pas une visualisation fluide. De plus, le
découpage en voxels peut créer des problémes de crénelage (« aliasing ») s’il n’est pas

suffisamment fin, ce qui en diminue la performance.

2.3.4 Méthode des ordonnées discrétes

La méthode des ordonnées discretes divise 1’espace en voxels et sépare 1’espace
angulaire en angles solides élémentaires. Max [20] utilise cette méthode pour simuler la
diffusion multiple. Un ensemble de M directions discrétes est utilisé pour propager
I’intensité lumineuse entre les voxels. Si le volume est divisé en N=n’ voxels, il y a NM
intensités a calculer, formant un systéme d’équations linéaires. Chaque voxel possede

une densité uniforme et ses coefficients d’absorption et de diffusion sont constants.

L’algorithme se divise en trois grandes étapes. Premiérement, I’énergie environnante est
captée par la surface du volume gazeux. Cette énergie est ensuite diffusée a 1’intérieur
du milieu. Pour restreindre les artéfacts des rayons, le flux entrant chaque voxel est
multiplié par sa transparence et ensuite distribué a quatre voxels adjacents. Les
itérations sont effectuées jusqu’a I’atteinte de la convergence. Finalement, 1’énergie

résultante de la propagation est ré-émise vers la scéne.

Encore une fois, plus le découpage en voxels est fin, moins de crénelage sera engendré.
Par contre, il faut en payer le prix en performance. La Figure 2.29 a été obtenue en

utilisant I’algorithme des ordonnées discrétes.
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Figure 2.29 Simulation de diffusion multiple

2.3.5 Méthodes de rendu ontogénétiques

Taxen [4] considere que la diffusion simple n’est pas suffisante pour le rendu de nuages.
Pour pallier aux temps de calcul trop importants dus a la diffusion multiple, "auteur

propose un rendu ontogénétique. Il divise la couleur en deux catégories :

]

(Re, G, Bo)

La couleur du nuage ombragé : = (R, G, By

La couleur du nuage éclairé : I

Ces deux couleurs sont fournies par 1’usager. I. et I sont alors combinées avec la

couleur de I’arriere-plan.

Ibg = (Rbg: Gbg; Bbg) ;
I = kog(0)lsg + ko)1, + ksf0)I,

ou kpe(0), kc(0) et ky(o) sont des fonctions de poids de I’opacité
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0=1—ex;{—1<l]p(s)dsj

ou Kk est une constante fournie par I'usager
a et b sont les points d’entrée et de sortie du rayon dans le nuage

p(s) est la densité au point s
Les fonctions de poids suivent une spline d’Hermite de la forme :
k(t) = (28 =38 + Dpog + (<26 + 3%)p; + (=26 + Oro + (F - E)r,

ou po et p; dénotent la valeur de k(?) a =0 et t=1

ro et r; dénotent la dérivée de k(1) a =0 et t=1

Etant donné que les parties basses d’un nuage sont souvent ombragées,  est modifiée

par une couleur fournie par 1’usager 7.

I=((1-a)l~+ (a *a)];
a=alt*

ou ay et a, sont des constantes fournies par I’usager
alt est 1’altitude normalisée tel que altr=0 au bas du nuage et alt = I au

dessus du nuage.

2.3.6 Méthodes hybrides

Plusieurs méthodes pour calculer I’illumination ont été¢ développées et ne peuvent pas
étre restreintes aux catégories décrites précédemment. La combinaison de plusieurs
algorithmes a souvent été utilisée afin d’obtenir un équilibre plus juste entre I’efficacité

en calculs et le réalisme du rendu.
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Max et Crawfis [3] simulent la diffusion multiple de la lumiére du soleil et de la lumi¢re
atmosphérique dans un nuage. Des densités de gouttelettes sont d’abord définies dans
une grille 3D par une texture 3D provenant d’un bruit de Perlin juxtaposé a trois densités
ellipsoidales. Une fonction de phase de Henyey-Greenstein est utilisée pour spécifier la
probabilité directionnelle de diffusion. Pour chaque voxel, le flux total propagé dans 96
directions est comptabilisé. A chaque itération, le flux est propagé aux voxels pouvant
étre atteints, et ce une couche a la fois. Chaque voxel intercepte une fraction du flux
déterminée par la densité de gouttelettes. L’autre fraction est re-diffusée selon la
fonction de phase. La propagation est amortie afin que les calculs se limitent a un ordre
de O(N?) plutot que O(NlogN) (ou N est le nombre de voxels). Une fois le flux total
déterminé, 1’'image résultante est produite par lancer de rayon. Un exemple de rendu

calculé par cette méthode est présenté a la Figure 2.30.

Figure 2.30 Diffusion multiple obtenue aprés 15 itérations**

Da Dalto [25][26][27] simplifie les calculs de diffusion multiple en calculant la diffusion
entrante pour certains points du médium pour en déduire la valeur des autres points.

L’algorithme utilisé présente deux étapes : le processus d’illumination et celui du rendu.

3% Max et Crawfis [3]
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L’illumination du volume gazeux s’effectue par calcul de radiosité. Premiérement, la
distance entre la source lumineuse et le gaz permet d’évaluer la perte d’énergie due a la
traversée de ’air. Ensuite, si la quantité d’énergie est suffisante, la diffusion entrante
pour la premiére particule frappée par le rayon est calculée. L’auteur assume que toutes
les particules voisines de celle sélectionnée posséde la méme taille et les mémes
propriétés. La diffusion entrante est obtenue par un algorithme de convergence.
Initialement, seule 1’énergie provenant de la source lumineuse est emmagasinée.
Ensuite, la lumiére de la particule est diffusée dans certaines directions échantillonnées
vers les particules voisines. Ces particules mettront & jour leur fonction de diffusion
multiple et les itérations se poursuivront ainsi jusqu’a ce que la diffusion atteigne une
valeur minimale. Ces étapes sont effectuées pour chaque source de lumiére a certains

points de I’enveloppe gazeuse.

Lors du processus de rendu, des rayons sont lancés de 1’observateur vers la scéne. Si un
rayon traverse le volume gazeux, sa couleur sera modifiée en calculant la variation
d’énergie. Le rayon traversant le gaz est échantillonné selon des espaces réguliers le
long de son parcours. La valeur de chaque propriété¢ du médium (émission, absorption,
diffusion entrante et diffusion sortante) est évaluée pour chaque point d’échantillonnage.

La régle de Bouguer exprime ’atténuation A entre les points P et P’ :

AP, P) =™
»
AP, P)= [K(P")dP"
P
K=a+o
ou rest la profondeur optique entre P et P’

a est le coefficient d’absorption

o est le coefficient de diffusion
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Pour tenir compte de la diffusion entrante, une interpolation est utilisée pour la valeur de
chaque point d’¢échantillonnage le long du rayon afin d’en additionner la diffusion. Pour
chaque point d’échantillonnage, un rayon est lancé vers chaque source de lumiére afin
de calculer la perte d’énergie et I’émission de lumiére jusqu’a ce point. La Figure 2.31
illustre un calcul de diffusion multiple pour un médium gazeux en utilisant la méthode
de Da Dalto [25][26][27].

Figure 2.31 Diffusion multiple de la lumiére dans un gaz*®

La méthode de Da Dalto [25][26][27] est facile a utiliser et son coflit en mémoire est
raisonnable. Par contre, 1’échantillonnage des rayons lors du calcul de rendu doit étre

suffisamment fin.

De son c6té, Fedkiw [15] reprend la méthode proposée par Stam [12] en simulant le flux
de gaz dans une grille 3D. Pour chaque intervalle de temps, la densité et la température
de chaque voxel sont calculées, mais en utilisant des équations d’Euler plutdét que des
équations de Navier-Stokes afin de diminuer le colit en calcul. Deux méthodes de rendu

tenant compte de 1’illumination sont proposées.

33 Da Dalto [25][26]
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La premiére, qui permet d’obtenir un temps de calcul plus rapide, utilise un algorithme a
deux étapes. La quantité de lumiére atteignant chaque voxel de la grille est calculée par
un lancer de rayon. Initialement, la transparence de chaque rayon est fixée & 1 (Tray = 1).
Ensuite, chaque fois qu’un voxel est atteint, la transparence est calculée en fonction de la

densité par une relation exponentielle :

Tvox =exp(p™ h)
ou h est 'espacement de la grille

pest la densité

Ensuite, la luminosité de chaque voxel est définie, alors que la transparence du rayon est
multipliée par la transparence du voxel. La transparence du rayon diminue pendant son

parcours de la densité, engendrant ainsi 1’effet d’ombrage sur la fumée.

Lyox = albedo * Llight * (1—"Tx) * Tray
Toay = Tray * Toox

La deuxi¢me étape consiste & faire afficher les voxels d’avant en arriére par la carte
graphique. La grille est décomposée en une série de plans semi-transparents alignés
selon I’axe de direction du regard. La couleur et l'intensité de chaque sommet

correspond a Ly, et (1 — T,,) respectivement.

Le deuxiéme algorithme, appelé «tracé de photons » tient compte de la diffusion
multiple. Il modélise I’interaction des photons avec le médium gazeux. A chaque
interaction, le photon est soit diffusé, soit absorbé. Deux étapes de calculs composent
cet algorithme. Dans un premier temps, un volume est construit en émettant des photons
a travers le médium et en les emmagasinant au fur et a8 mesure de leur interaction avec ce
dernier. Seuls les photons correspondant a I’illumination indirecte sont conservés.

Ensuite, dans la phase de rendu, un lancer de rayon est effectué.



L, @)= Ln-1(xn-1,8)+&™ " Asen( @*V') Lo (%1,D)
(@9 )L )= Q01(x) 1,35 ko e
¥4

ou (Xn)= .fmdx correspond a la profondeur optique (opacité du médium)

s
L est la fraction de la luminosité diffusée dans la direction @
Axn>0 est le pas, x,+; = x, + 4x,

x’, est une localisation aléatoire sur le n'“™ segment

La luminosité diffusée L; est divisée en deux termes: la diffusion simple (Ly) et la
diffusion multiple (L,). La diffusion simple est calculée par lancer de rayon. La
diffusion multiple, quant a elle, est calculée a partir du volume de luminosité estimé par

tracé de photons (premiere étape) en localisant les n, photons voisins :

(a.v)zm(x,@kiﬂ—ﬁ——)" 2l : ﬂ:f"?’

ou v est la puissance du p“™ photon

r est la plus petite sphere englobant les 7, photons

La fumée illustrée a la Figure 2.32 a été obtenue en utilisant I’algorithme de tracé de

photons.
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Figure 2.32 Illumination de fumée par tracé de photons™

Nishita [19] propose un algorithme pour calculer la diffusion multiple dans un nuage.
Premiérement, la grille 3D contenant le champ de densité est parcourue pour calculer
I’intensité de la lumiére diffusée a chaque voxel par les autres voxels (premier ordre).
Seuls les voxels dont la contribution est supérieure a un seuil minimal sont considérés.

La fonction de phase utilisée provient d’une fonction d’Henyey-Greenstein :

A 9,g)=2( 3(1—g211+c0520)

2+g? Il+ g2—2gco§}’/2

ou g est un facteur d’asymétrie déterminé par le type de nuage

Le ratio d’atténuation est ensuite enregistré dans chaque voxel. Pour chacun d’eux, la
lumiere diffusée dans la direction de 1’observateur (deuxieéme et troisiéme ordre) est
calculée en tenant compte de I’atténuation. Finalement, pour chaque pixel, 1’intensité est

obtenue en intégrant linéairement la grille. L’intensité de la diffusion de premier ordre

36 Fedkiw [15]
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pour un point sur le rayon de la vue est obtenue en utilisant le ratio d’atténuation et les
intensités de deuxiéme et troisiéme ordre sont interpolées. La Figure 2.33 montre un

exemple de résultat obtenu par Nishita [19].

Figure 2.33 Diffusion multiple (3 ordres) dans des nuages®’

37 Nishita et al. [19]



58

CHAPITRE 3 - SOLUTION ADOPTEE

3.1 Objectifs visés

Pour que notre modélisation soit considérée comme étant adéquate, elle devra répondre a
trois critéres principaux : le réalisme du rendu, I’exactitude des résultats et

I’interactivité.

Le réalisme du rendu doit permettre a 1’observateur de croire a la scéne visualisée. Que
le phénomeéne étudié soit de la fumée ou un nuage, I’image affichée devrait étre

semblable au phénomene se déroulant normalement dans un milieu réel.

Tel que mentionné dans la section 1.4, les simulations numériques effectuées par FDS
fournissent la densité et la composition chimique pour une discrétisation de 1’espace.
Notre modélisation doit étre le reflet des données numériques et afficher une image qui

corresponde exactement a ces résultats.

L’interactivité entre 1’observateur et la modélisation est un critére important dans un
contexte de visualisation scientifique. L’usager doit pouvoir se déplacer autour du
phénomeéne observé, le faire pivoter et s’en rapprocher arbitrairement dans le but
d’étudier les tendances de la simulation et d’effectuer les vérifications désirées. La
modélisation doit donc pouvoir €tre générée de facon rapide en tenant compte des
ressources informatiques actuelles. De méme, ’affichage de I’'image doit pouvoir étre
effectué¢ & une fréquence suffisante pour permettre une fluidité lors de I’interaction.
Idéalement, 1’évolution du phénomeéne dans le temps devrait également pouvoir étre

tenue en compte.
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3.2 Retour sur la revue de littérature

I1 est clair que certains compromis devront étre établis entre les trois critéres précédents.
En effet, certaines modélisations permettant un rendu trés semblable & la réalité ne
respectent aucunement 1’exactitude des données, puisqu’elles utilisent des variables
aléatoires. De méme, calculer avec précision I’illumination d’un gaz nécessiterait des
temps de calcul beaucoup trop €levés qui ne permettraient pas d’interaction fluide de la
part de 'usager. Dans le but de mieux définir les avenues possibles, nous allons
reprendre briévement les techniques de modélisation présentées dans le chapitre

précédent en départageant celles qui pourraient satisfaire nos objectifs.

Champs vectoriels : Cette technique doit étre rejetée, puisqu’elle ne présente

aucun réalisme du rendu.

Surfaces iso-densité : Cette modélisation n’offre pas assez d’exactitude par rapport

aux données numériques, car il y a perte d’information par

rapport aux densités non affichées.

Mcéthode des nuées : Cette méthode pourraient convenir a nos besoins, a

condition de porter une attention spéciale a la performance.

Lancer de rayon : Le lancer de rayon est la méthode offrant le meilleur rendu.

Par contre, compte tenu des ressources informatiques
actuelles, elle n’est pas suffisamment rapide pour permettre

une interaction adéquate.

Systéme de particules : Cette méthode pourrait étre envisageable, mais elle présente

deux faiblesses majeures : les particules restent visibles si on

les regarde de pres, et le nombre requis de particules pour



Hvpertextures :

Méthode des ellipsoides :

Méthodes de projection :
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obtenir une image réaliste doit étre trés grand, ce qui limite

la performance.

Considérant que les cartes graphiques récentes sont
optimisées pour le calcul de textures, cette avenue semble

toute adéquate a condition que les textures correspondent

bien aux données numériques.

Jusqu’a présent, cette méthode est associée & 1’utilisation de
variables aléatoires pour le calcul de rendu, ce qui demeure
pour nous inacceptable au niveau de [’exactitude des

résultats.

Semblables aux méthodes utilisant les textures, ce type de
modélisation pourrait s’avérer efficace. Par contre, elle perd
un peu de sa raison d’étre dans une situation ol I’on désire

visualiser le phénoméne sous différents angles.

Au niveau du calcul de I’illumination, il est clair que les phénoménes d’absorption et de

diffusion doivent é&tre considérés pour obtenir le réalisme désiré. Par contre, la diffusion

multiple s’avére étre un obstacle majeur, puisque son calcul ne peut étre réalisé qu’a un

colit élevé en ressources informatiques. Certains compromis devront donc étre

envisages.

Le Tableau 3.1 dresse un sommaire des différents types de méthodes a des fins

comparatives. Pour chacune d’elles, nous avons évalué leur capacité de répondre aux

criteres de réalisme, d’exactitude et d’interactivité selon une échelle subjective :

mauvais, moyen ou bon.



Tableau 3.1 Evaluation des techniques de modélisation

Mod¢lisation Réalisme Exactitude Interactivité

Champs vectoriels Faible Bonne Bonne

Surfaces iso-densité Moyen Faible Bonne
Max et Crawfis [3]

Méthode des nuées Bon Bonne Moyenne
Stam [16] Moyen Faible Faible
Stam et Fiume [10][11] Bon Bonne Bonne
Stam [14] Bon Bonne Faible
Barrero [28] Bon Bonne Faible

Lancer de rayon Bon Bonne Faible

Systéme de particules Moyen Bonne Moyenne

Hypertextures Bon Moyenne Bonne
King [7] Bon Faible Bonne
Ebert [22][23] Bon Faible Bonne
Heidrich [8] Bon Faible Bonne
Stam [12] Bon Faible Bonne

Méthode des ellipsoides Moyen Faible Moyenne
Gardner [1] Moyen Faible Bonne
Elinas et Stuerzlinger [2] Moyen Faible Bonne
Taxen [4] Moyen Faible Bonne
Rasmussen [18] Bon Faible Faible

Méthodes de projection Bon Moyenne Moyenne
Dobashi [5] Bon Moyenne Moyenne
Heinzlreiter [6] Moyen Faible Faible
Harris et Lastra [9] Bon Moyenne Bonne
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La méthode des nuées et celle des hypertextures constituent les modélisations qui
satisfont le plus a nos critéres d’évaluation. La différence se situe surtout au niveau de
I’interactivité et du réalisme. La plupart des auteurs ayant utilisé la méthode des nuées

font appel & une procédure de lancer de rayon pour obtenir le rendu final. Toutefois, il
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serait envisageable d’utiliser OpenGL ou DirectX afin d’obtenir une meilleure
interactivité. En ce qui concerne les hypertextures, les auteurs générent leurs textures
par des méthodes stochastiques. Si elles étaient congues a partir des données

numériques, cette lacune s’en trouverait remédiée.

3.3 Hypothéses soulevées

Pour ce travail, nous nous sommes fixé comme objectif de déterminer une méthode de
modélisation pouvant s’avérer €tre un compromis idéal entre la performance et le
réalisme. Nous assumons qu’il n’est pas essentiel que le calcul de la diffusion multiple
soit exact pour que les besoins de la visualisation soient comblés. Plus encore, nous
prétendons qu’il est possible de simplifier le processus de diffusion en des calculs
d’approximation. Nous supposons également que la modélisation doit pouvoir étre

construite a ’aide de ressources informatiques a la portée du grand public.

Nous avons opté pour l'utilisation d’hypertextures comme structure de notre
modélisation. Nous croyons que cette avenue, compte tenu des développements au
niveau des cartes graphiques, s’avere étre un moyen simple et flexible permettant de
visualiser différents types de gaz. Nous posons comme hypothése que tous les types de
phénomenes gazeux peuvent étre modélisés par une procédure commune utilisant les
textures 3D, et que la différence au niveau du rendu peut étre prise en compte

uniquement par I’utilisation de quelques variables.

Nous allons décrire notre modélisation permettant d’effectuer les compromis visés, puis
nous présenterons différents résultats que nous avons obtenus. Finalement, nous serons
plus en mesure de critiquer cette modélisation en la comparant avec d’autres

applications de visualisation.
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3.4 Structure de la modélisation

Notre modélisation utilise les textures 3D d’OpenGL comme structure de base. Etant
donné qu’au niveau des données numériques 1’espace est divisé en petits hexaédres,
cette structure convient particuliérement bien, puisque les textures 3D possédent une
division orthogonale 3D. La taille de la texture est donc reliée au nombre de divisions
du domaine. Pour chaque voxel (unité de volume) de la texture, des valeurs d’intensité
(GL_LUMINANCE) et d’opacité (GL_ALPHA) sont déterminées a partir des données
de densité. Finalement, tel qu’illustré a la Figure 3.1, une série de plans orthogonaux a

la direction du regard de I’observateur est créée sur laquelle la texture 3D est appliquée.

Figure 3.1 Application d’une texture 3D sur des plans orthogonaux

Chaque polygone regoit une valeur de texture correspondant aux données du volume.
Les rotations et les interpolations tri-linéaires sont calculées automatiquement par
OpenGL. Il est a noter que la performance dépend du nombre de plans utilisés. Un
nombre élevé de plans engendrera plus de temps de calcul, mais générera un raffinement
plus précis au niveau de I’interpolation de la texture. Il est donc possible de faire varier

ce paramétre en fonction des besoins.
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Lors d’un changement de direction de la caméra, les plans doivent étre pivotés afin de
demeurer orthogonaux a la direction du regard. Pour conserver la position du gaz dans
la scéne, une rotation égale mais de sens opposé doit étre appliquée au niveau de la
texture. Les matrices de transformation d’OpenGL permettent d’effectuer ces opérations
facilement. Finalement, il est & noter que la taille des plans doit étre supérieure & celle

du domaine afin que la texture n’exceéde pas a I’extérieur lors des rotations.

Nous avons mentionné que la texture 3D était composée de deux paramétres : I’intensité
et I’opacité. Les deux sections suivantes expliquent comment ces valeurs sont calculées

a partir des données numériques.

3.5 Calcul de la transparence

Nous avons essayé trois différents types de relation entre les valeurs de densité et celles
de transparence pour déterminer laquelle offre le rendu le plus réaliste : la relation
linéaire, la relation exponentielle et la relation logarithmique. Une image pour laquelle
une relation linéaire a été utilisée est illustrée a la Figure 3.2, tandis que la Figure 3.3
représente une relation logarithmique. On peut voir que toutes deux offrent un rendu
similaire relativement uniforme, la fumée obtenue par relation logarithmique étant
toutefois légérement plus opaque. On observe une plus grande variation d’opacité
lorsque la relation exponentielle est utilisée, comme le montre la Figure 3.3. Ainsi, la
relation exponentielle nous a donné des résultats plus convaincants que les deux autres,
car elle permet d’accentuer d’avantage les valeurs de densité supérieures, laissant plus
de transparence aux valeurs inférieures. D’ailleurs, la relation exponentielle était celle
préconisée par de nombreux auteurs (Stam [13][16], Ebert [22][23], Rasmussen [18],
Taxen [4], Fedkiw [15]).
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Figure 3.2 Relation linéaire d’opacité Figure 3.3 Relation logarithmique d’opacité

Figure 3.4 Relation exponentielle d’opacité

Pour calculer la transparence a partir des valeurs de densité, 1’'usager doit spécifier des
seuils de densité minimale et maximale. Le rapport entre chaque valeur de densité (p) et
les seuils (ValMin et ValMax) est transposé dans !’intervalle [0, 1] par une relation

directe.

__ p-ValMin
P=ValMax—ValMin

Il arrive pour certaines simulations que les valeurs de densité se retrouvent massivement

trop prés d’une des bornes de I’intervalle. 11 est alors préférable de les décaler de fagon
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arbitraire le long de la courbe exponentielle pour obtenir un meilleur rendu (Figure 3.5).
Malheureusement, le décalage nécessaire peut varier beaucoup d’une simulation & une
autre et est fonction du type de phénomeéne gazeux a générer. Par exemple, un rendu de
brouillard correspondra & des valeurs de densité prés du seuil minimal, tandis qu’une
épaisse fumée, au contraire, pourra posséder des valeurs de densité €levées. De plus, le
niveau de dispersion des valeurs de densité a I’intérieur de 'intervalle [ValMin, ValMax]
peut limiter la possibilité¢ de décalage. Si la répartition posséde une allure gaussienne, il
est plus facile de déplacer les valeurs le long de la courbe. Autrement, si les valeurs sont
trés dispersées sur la courbe, le jeu de décalage s’en trouve réduit. Compte tenu de ces
paramétres difficilement controlables, nous n’avons pas automatisé le décalage des
valeurs de densité, laissant & 1’'usager la responsabilité de le spécifier en fonction du

rendu désiré.

2 / 2
" / )
1"/ |

05 05

0 0.2 04 06 0.8 1 0 02 04 0.6 08 1

Figure 3.5 Exemple de décalage des valeurs de densité

Le calcul de "opacité est effectué sous forme de rapports de valeurs exponentielles afin

d’obtenir un résultat situé entre [0,1].

exp(p)—exp(0) _exp(p)-1
exp(l)—exp(0) 1,718

Opacité=
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Afin que I’opacité totale du gaz ne soit pas affectée par le nombre de plans utilisés par
la texture, nous divisons ’opacité par le rapport entre le nombre de plans et la
profondeur du gaz. L’opacité est multipliée par un facteur de 255 afin d’obtenir une

opacité finale située dans I’intervalle [0,255].

Opacité*255,0
(float)NombrePlans/(float)Dim_z

Opacité=

Une fois I’opacité calculée, il est également facile d’en déduire la transparence située
dans l’intervalle [0,255].

Transparence = 2535,0 — Opacité

Le calcul de la transparence est donc simple et rapide, mais doit étre effectué pour
chaque valeur de densité située & l’intérieur de ’intervalle désiré, les valeurs a
I’extérieur de ’intervalle étant considérées comme nulles. Outre cet intervalle, une
seconde contrainte doit étre satisfaite : la composition chimique (Z). La composition
chimique indique la proportion de gaz pour chaque coordonnée de 1’espace. Une
composition chimique nulle correspond & de I’air pur, tandis qu’une valeur de 1 indique
du carburant pur. Un mélange stoechiométrique correspondra & 1’affichage d’une
flamme. Habituellement, cette valeur est fixée 4 Z=0,147. Etant donné que nous nous
préoccupons uniquement du rendu de gaz et non pas de celui du feu, seules les valeurs

situées dans ’intervalle 0<Z<0,147 recevront une valeur d’opacité non nulle.
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3.6 Calcul de la luminosité

Calculer I’illumination multiple réelle ne permettrait pas d’atteindre la rapidité de calcul
souhaitée. D’autre part, la diffusion simple ne permet pas de rendu suffisamment
réaliste pour la modélisation de gaz doté¢ d’un albedo élevé. C’est pourquoi nous
utilisons un algorithme qui effectue un compromis entre la performance et le réalisme.
La méthode est inspirée de celle proposée par Harris et Lastra [9] et décrite & la section
2.3.1.

L’algorithme que nous proposons pour déterminer I’intensité du gaz utilise deux étapes
de calculs. Dans un premier temps, nous effectuons une itération de la propagation de la
lumiére provenant de la source de lumiére principale a travers le medium gazeux. Pour
y parvenir, un lancer de rayon passant par chacun des voxels de la grille de la texture 3D
est effectué et la position d’intersection sur le plan de voxel suivant est calculée (Figure
3.6). Il est a noter que la texture 3D doit déja contenir les valeurs de transparence
(GL_ALPHA). Les premiers voxels interceptés par les rayons regoivent l’intensité
maximale de 255 (lumiére blanche). On s’éloigne graduellement jusqu’a ce que toute la
texture soit parcourue. Chaque voxel regoit comme valeur de luminosité la quantité de

lumiére qu’a laissé passer le voxel précédent suivant le vecteur direction de la lumiére.

Li = Li.[ *Alpha,--1



Figure 3.6 Lancer de rayon pour calculer I’illumination
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La seconde phase de 1’algorithme calcule I’illumination diffuse dans la direction des

rayons de vue. On tient compte uniquement de la diffusion vers I’observateur, comme

I’illustre la Figure 3.7.

Lumiére incidentg
Y

Diffusion entrante

5

Diffusion sortante
vers l'observateur 4

b Oservateur

Figure 3.7 Diffusion de la lumiére vers Pobservateur
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Pour chaque voxel de la grille 3D, I’intensité lumineuse issue de la propagation de la
lumiére (obtenue par la premiére étape de 1’algorithme) est multipliée par la fonction de
phase et par la constante de 1’albedo. Nous avons vu dans la section 1.5.3 que le type de
fonction de phase a utiliser était lié & la grosseur des particules du gaz. Pour de petites
particules, le régime de Rayleigh était prépondérant, tandis que pour des particules plus
volumineuses, le régime de Mie était plus adéquat. Ainsi, le choix de la fonction de
phase devrait normalement étre dépendante du type de phénoméne modélisé. Toutefois,
Harris et Lastra [9] ont montré qu’il était possible d’utiliser une approximation de la
régle de Rayleigh plutdt que la fonction de phase de Mie sans que le résultat visuel en
soit grandement affecté (voir section 2.3.1). Etant donné que I’utilisation de la fonction
de phase de Mie ne satisferait pas nos objectifs de performance au niveau du temps de
calcul et dans le but d’utiliser une procédure commune pour tous les types de
phénoménes gazeux, nous avons adopté le calcul de fonction de phase proposé par
Harris et Lastra [9]. Ce calcul est tres facile d’implémentation et suffisamment rapide
pour étre répété pour chaque coordonnée de la grille 3D contenant une valeur de densité

non nulle.

Li=L; *% (I + cos’ () * Albedo
ou G est ’angle entre la direction incidente et la direction vers I’observateur

L, est la luminosité du voxel i

3.7 Implémentation de ’algorithme de rendu

Cette section décrira plus en détail la procédure adoptée telle qu’implémentée dans notre
outil de visualisation. Nous traiterons uniquement des algorithmes utilisés au niveau du
rendu du phénomene gazeux. La description de I’interface et du design de I’application

fera I’objet de la section suivante.
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Pour chaque fichier de simulation numérique correspondant a 1’état du phénomeéne
gazeux pour un temps déterminé, le traitement a effectuer se divise en deux parties. La
premiere consiste a initialiser la structure de données, alors que la seconde calcule le
rendu final.

3.7.1 Initialisation de la structure de données

Pour que !’initialisation de la structure de données puisse étre effectuée, différents

parametres doivent étre fournis par 1’usager :

¢ Nom du fichier de données;

o Position de début de lecture dans le fichier pour les valeurs de densité;

e Position de début de lecture dans le fichier pour les valeurs de composition
chimique;

e Nombre de discrétisations en x, y et z de ’espace 3D (nj, n;, ng);

e Dimensions de I’espace selon les axes x, y et z;

e Nombre de plans a utiliser pour la texture 3D;

e Seuils de densité minimal et maximal;

e Valeur maximale de Z (composition chimique);

e Position de la source de lumiére principale;

e Couleur de la lumiére incidente;

e Valeur de décalage des données de densité;

e Valeur d’albedo du gaz.

Une fois ces valeurs fixées, il est possible de créer la texture 3D modélisant le
phénomeéne gazeux. Cette texture est composée d’une intensité et d’une transparence.
La transparence est indépendante de 1’éclairage et de la position de I’observateur, car

elle est calculée uniquement a partir de la valeur de densité. Elle est donc évaluée une
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seule fois, lors de la lecture du fichier contenant les valeurs de densité. Toutefois, il faut
également tenir compte de la composition chimique. Si la valeur Z ne se situe pas dans

’intervalle d’acceptation ]0,Znyax], 1’ opacité est fixée a 0.

Algorithme 1 — Calcul de la transparence

Calculer la plus petite puissance de 2 supérieure a la diagonale de 1’espace subdivisé
Créer la texture avec les dimensions calculées
ImageText = new GLubyte[TailleTex_x*TailleTex_y*TailleTex_z*2]
Créer un tableau 3D pour les valeurs de transparence (nombres réels)
Initialiser le tableau de transparence a 0
Ouvrir le fichier de données
Se positionner au début des données de composition chimique
Tant que les valeurs de composition chimique ne sont pas toutes lues
Lire la valeur de Z
Convertir Z en petit boutiste ou grand boutiste si nécessaire
Si0<Z=<Znax
Mettre la valeur de transparence a 1.0
Fin Si
Fin Tant
Se positionner au début des données de densité
Tant que les valeurs de densité ne sont pas toutes lues
Lire la valeur de densité p
Convertir p en petit boutiste ou grand boutiste si nécessaire
Si ValeurMin <= p <= ValeurMax
Situer p entre [0,1]
Décaler p dans I’intervalle
// Calcul de I’opacité selon la relation choisie par ’interface

Si on veut une relation linéaire
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Opacité = p
Sinon si on veut une relation exponentielle (intervalle [1,6])

exp(p*5,0+1,0)—exp(1,0)
exp(6,0)—exp(1,0)

Opacité=

Sinon si on veut une relation logarithmique (intervalle [1,6])

log(p*5,0+1,0)
10g(6,0)

Opacité=

Fin Si
Multiplier I’opacité par la valeur de transparence déja calculée (0 ou 1)
Calculer I’opacité en fonction du nombre de plans utilisés

Opacité*255,0
(float)NombreTranches/(float)Dim_z

Opacité=

Ecrire la valeur d’opacité dans le tableau de transparence
Sinon mettre la valeur de transparence a 0
Fin Tant que

Fermer le fichier de données

3.7.2 Calcul du rendu final

Une fois le parameétre de transparence déterminé, il est possible de calculer I’intensité
par les deux phases de calculs de I’illumination présentées précédemment. Le calcul de
la propagation de la lumiére dans le gaz dépend de la position de la source de lumiére
par rapport au médium. Il doit donc étre effectué chaque fois qu’il y a déplacement d’un
de ces deux éléments. Par contre, il n’est pas affecté par un déplacement de
I’observateur. L’algorithme utilisé afin de simuler la propagation du flux lumineux a

I’intérieur du gaz est décrit ci-dessous.
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Algorithme 2 — Calcul de la propagation de la lumiére

Initialiser la texture 3D avec les valeurs de transparence et une intensité de 255,0
Trouver la position de la lumiére
Déterminer les huit sommets du plus petit cube autour de la lumiére
Tant que toute la texture 3D n’est pas parcourue
Pour chacune des faces du cube entourant la source de lumiére
Si il y a encore un plan d’intersection possible dans cette direction
Si on a atteint une zone occupée par la texture
Pour chaque voxel de la face (vy)
Calculer la direction du rayon de la source vers le voxel vr
Calculer le point d’intersection v; sur le plan un pas plus loin
Si le voxel v; est situé dans une zone valide
Déterminer la coordonnée de v; dans la texture 3D
Calculer la lumiére atteignant le nouveau voxel
Luminosité de v; = Luminosité de v¢ * transparence de v¢
Ecrire ’intensité calculée dans la texture
Fin Si
Fin Pour
Fin Si
Fin Si
Déplacer les coins de la face traitée un pas de distance plus loin de la source
Fin Pour

Fin Tant que

La seconde partie du calcul de I’intensité considére la diffusion simple en direction de
’observateur. Ceci implique que I’intensité doit étre recalculée a chaque déplacement et
rotation de la caméra par rapport a la scéne, et ce pour chaque point de la texture. Ce
traitement engendre un cofit en calculs trop élevé pour étre implémenté en langage C ou

par OpenGL. Par contre, en utilisant directement les nuanceurs de sommets et de pixels,
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il est possible d’obtenir une bonne performance. Ainsi, la seconde phase du calcul de
I’illumination a été¢ implémentée en utilisant le langage Cg afin de profiter de la
performance du GPU. Le facteur de dispersion est calculé au niveau du nuanceur de
sommets et 1’intensité finale de la lumiére atteignant 1’observateur est obtenue au niveau

du nuanceur de pixels.

Le nuanceur de sommets regoit en entrée les matrices de transformation, la position de la
source de lumiére et celle de la caméra, la constante d’albedo du gaz ainsi que la couleur
de la lumiére incidente et celle du gaz. Il retourne la position des sommets et des
coordonnées de texture apres 1’application des matrices de transformation ainsi que la
couleur des pixels selon l’intensité de dispersion de la lumiere dans la direction de

I’observateur.

Algorithme 3 — Opérations effectuées par le nuanceur de sommets

Calculer la coordonnée de texture apres 1’application des transformations
Out. TexCoord0 = mul(TextureMatrix, In. Texture0);

Calculer la coordonnée du sommet apres 1’application des transformations
Out.Position = mul(model ViewProjection, In.Position);

Calculer la position de la lumiére aprés 1’application des transformations
PositionLum = mul(modelViewProjection, PositionLum);

Calculer la position de la caméra aprés 1’application des transformations

PositionVue = mul(modelViewProjection, PositionVue);

Calculer I’angle entre la direction de la lumiére incidente et celle de la caméra
Calculer I’approximation de la fonction de phase de Rayleigh
Q =% (I + cos’ (8)) * Albedo
Calculer le facteur multiplicatif de la couleur du sommet tenant compte de la
dispersion

CouleurSortie = CouleurLumiére * CouleurGaz * Q
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Le traitement effectué au niveau du nuanceur de pixels est simple. A partir de la texture
3D contenant la transparence et l’intensité de la lumiére issue d’une itération de
propagation (premiére phase de calculs), la couleur finale du pixel est calculée. La
couleur RGBA issue de la texture est simplement multipliée par la couleur de sortie du

nuanceur de sommets. Le code suivant est effectué par le nuanceur de pixels :

Algorithme 4 — Code effectué par le nuanceur de pixels

struct inputs

{
float4 Texture0 : TEXCOORDO;

float4 Couleur : COLORO;
¥

struct outputs

float4 Couleur : COLORO;
IR
outputs main(inputs In, uniform sampler3D TextureNuage )
{
outputs Out;

// calcule la couleur du pixel selon la texture
Out.Couleur.rgba = tex3D(TextureNuage, In.Texture0 ).rgba;

// multiplie par facteur obtenu du nuanceur de sommets
Out.Couleur.rgba = In.Couleur * Out.Couleur;

return Out;

Afin que le gaz soit toujours bien visible peu importe la position et ’orientation de la
caméra, il est essentiel que les plans sur lesquels est apposée la texture 3D soient
toujours placés de fagon orthogonale a la direction de la caméra. Ainsi, a chaque
rotation de la part de I’observateur, une rotation doit également étre appliquée au niveau

de ces plans. De fagon conséquente, une rotation égale mais dans le sens opposé doit
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étre effectuée au niveau de la texture 3D. Finalement, la série de plans doit également
étre soumise a autre transformation. En effet, la texture 3D posséde comme dimensions
le pas d’échantillonnage de 1’espace, ce qui ne correspond pas nécessairement aux
dimensions du volume. Une mise a I’échelle doit donc étre appliquée aux plans pour
respecter les bonnes proportions. Ces transformations sont effectuées par des

instructions OpenGL lors de la procédure d’affichage du gaz.

Algorithme 5 — Affichage des plans pour la texture 3D

// en mode de transformation GL_MODELVIEW

Appliquer la mise a I’échelle DimensionsEspace / DimensionsTexture

Se placer au centre du cube formé par la texture 3D

Calculer les angles de rotation selon les axes y et z

Effectuer les rotations

Se replacer a I’origine

// en mode de transformation GL_TEXTURE

Se déplacer au centre de la texture

Appliquer les rotations égales, mais de sens contraire a celles des plans

Se replacer a I’origine

// en mode de transformation GL_ MODELVIEW

Activer les programmes de Cg pour les nuanceurs de sommets et de pixels
Etablir les matrices et les autres paramétres d’entrée pour les programmes de Cg

Afficher la série de plans
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3.8 Interface et design du logiciel de visualisation

Notre logiciel de visualisation a été implémenté en langage C++ sous Linux avec
OpenGL et Cg comme librairies graphiques. Il pourrait toutefois étre facilement
supporté par Windows, qui permet également 1’utilisation de ces librairies. De plus, une
interface personne-machine a €té construite afin de permettre a I’usager de contrbler la
visualisation du phénoméne gazeux. Il est & noter que le design de ’ensemble de
I’application est grandement indépendant des algorithmes utilisés au niveau rendu et
décrits dans les sections précédentes. Ainsi, la structure du programme ainsi que la
présentation graphique auraient pu étre bien différentes de celles que nous avons
adoptées. Nous allons néanmoins la décrire afin de démontrer I’interactivité et la

souplesse d’utilisation permises par notre modélisation.

Premiérement, nous allons exposer les principales fonctionnalités offertes a I’usager par
I’entremise de notre interface personne-machine. Cette interface a été congue en
utilisant la librairie Qt. Cette dernieére produit de belles présentations graphiques, est
facile d’utilisation et peut étre utilisée en combinaison avec le langage C++. De plus,
elle est compatible avec un grand nombre de systémes d’exploitation dont Linux et
Windows. La section suivante traitera du design de I’application. Nous nous limiterons
a une description générale de la structure du programme sans entrer dans les détails

d’implémentation.
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3.8.1 Fonctionnalités de I’outil de visualisation

% Evolution de la visualisation dans le temps

Un fichier de simulation contient les informations de 1’état du phénomeéne gazeux pour
un instant précis. Or, il peut s’avérer avantageux d’étre capable de visualiser 1’évolution
du phénomeéne dans le temps. Ainsi, il est possible de sélectionner une liste de fichiers
de simulation qui sera parcourue afin de permettre une animation automatique de 1’état
du gaz. La Figure 3.8 illustre une vue de I’application ou une liste de trois fichiers de

simulation est sélectionnée.

La modélisation proposée permet d’obtenir un résultat suffisamment rapide pour pouvoir
afficher facilement un état de simulation par seconde sur un ordinateur disposant d’un
processeur et d’une carte graphique commune de nos jours. En ce qui nous concerne,
nous avons effectué nos visualisations sur une station AMD Athlon XP1600+ disposant
d’une carte graphique NVIDIA GeForce3. L’usager peut spécifier la fréquence

d’affichage désirée selon ses besoins et des ressources informatiques a sa disposition.



Fichier Vue
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Fichier de données:
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Intervalle de temps {sec.) : [1 ,,,,,,,, |

fusagers/etcha/Data/cuisine/t0130_6.516885.vubin

2
g

Générer

Init camera

Figure 3.8 Sélection de plusieurs fichiers de simulation
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s Controle des parameétres

Un onglet permet a 1’usager de spécifier les endroits de début de lecture pour les valeurs
de densité¢ de gaz et de composition chimique a 'intérieur des fichiers de données. Il
permet également de choisir des valeurs de densité minimale et maximale ainsi que de

Zmax. Cette vue est illustrée a la Figure 3.9.

Edvisuatisateur de fumee

; ; | |
Début de lecture ;16608 i valeuwr min: (0362 |

Conversion Littie Endian / Big Endian Valeurmax: (1198 || || Générer
Tenir compte de ia compasition du gaz

~ Compaosition chimigue init camera’

Début de lecture . | 875621 i

[ B P |

Z max:

Figure 3.9 Spécification des paramétres de lecture des fichiers

Un onglet permet de définir les paramétres a utiliser lors de la construction de la texture
3D et de son affichage (Figure 3.10). Ces valeurs contrdlent 1’aspect du gaz selon le
type de phénoméne a observer. Elles influencent le degré de transparence et d’intensité

de la texture.
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Figure 3.10 Spécification des paramétres de la texture 3D
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La Figure 3.11 présente l’onglet permettant & l’utilisateur de modifier la couleur de

I’éclairage, la couleur du gaz et de spécifier la position de la source lumineuse principale

pour laquelle I’illumination du gaz est calculée.

b dVisualisateur de fumee

Couleur amére plan (RGB). ’
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Couteur de f'eciairage (RGB): 5 1 1

Position de la source lumineuse: 25 jes  ijo 0 Lo e
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Figure 3.11 Spécification des paramétres d’illumination
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2

« Edition d’environnement

Afin de rendre la simulation plus vraisemblable, il convient de pouvoir afficher, en plus
du phénomene gazeux, I’environnement dans lequel évolue la simulation. En effet, le
milieu peut parfois étre indissociable du phénomeéne gazeux. Par exemple, dans une
simulation de fumée se propageant dans une piece, il est nécessaire de reproduire les
objets, puisque ces derniers sont des obstacles que le gaz doit contourner. Pour la bonne
compréhension de la visualisation, nous avons ajouté des fonctionnalités a 1’application
permettant a ’utilisateur d’éditer des murs (Figure 3.12 et Figure 3.13) et des objets

(Figure 3.14) a I’intérieur de la scéne.

& dVisualisateur de fumes

I £ Coat g . v’
X | ®Codewrrgp 1L | 796078 paises| | o o 0o o
_x | O Texture (tga) Couleur... L1 v
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M+ ¢ Couleur RGB i ' ! 3 ‘ ! E -' | [nuages_cg_qt/Textures/Tuile.tga |
-Y @ Yexture (.1ga) 1 Fichier.., Init cameral
[J+z - Plancher ; : (- ]
© Coulewr RGB | L L. | <g-qyTextures/Tapisserie10.1ga |
-2 ; ; -
®

N UV P

Figure 3.12 Edition de murs externes
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Figure 3.13 Edition de divisions internes

L dvicualisateur de fumes
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Figure 3.14 Edition d’objets

Il est également possible d’incorporer un maillage représentant la géométrie de la scéne.
Nous avons utilisé le méme format de fichier que pour les géométries pouvant étre

visionnées par le logiciel VU [41].
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3.8.2 Design de I’implémentation

La Figure 3.15 présente les principaux objets composant la structure du programme.

Nous allons en faire une breve description. Des diagrammes plus complets sont insérés

a [’annexe 1.
COb®ts L
Feu Texture
{__ Mabon Thteface
Geometre - N I
- GRAPHRQUE
| CHuUl <
j O bserateur
I \
Soki Nuage

Figure 3.15 Principaux objets du programme
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Classe GRAPHIQUE .

Classe Nuage :

Classe Observateur .
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La classe Interface permet de recevoir les informations
provenant de l'usager et de les retransmettre aux classes
concernées : GRAPHIQUE, Maison et Nuage. Elle
implémente I’interface graphique de ’application en utilisant
la librairie Qt. Elle initialise une entité de la classe
GRAPHIQUE pour ensuite établir le lien entre 1’utilisateur et

les différentes fonctionnalités de 1’application.

La classe GRAPHIQUE gére ’ensemble de la visualisation.
Utilisant les librairies OpenGL et Cg, elle est responsable de
I’affichage de I’image en appelant les procédures d’affichage
des différents éléments de la scéne, notamment celle du
phénomene gazeux, ainsi que celle de I'illumination de la
scéne. Elle capte les événements de la souris et du clavier
pour permettre a l’utilisateur de déplacer la caméra dans le

monde virtuel.

La classe Nuage représente le phénoméne gazeux & visualiser.
Elle encapsule les opérations effectuant la construction de la
texture 3D ainsi que de la série de plans. Cette classe est
également responsable du calcul de la transparence et de la

propagation de la lumiére dans le gaz.

La classe Observateur encapsule la caméra dans le monde
virtuel. Elle calcule les déplacements et rotations de la caméra
en fonction du point de vue demandé par l’usager. Elle
permet également d’obtenir les informations sur les propriétés

de la caméra.



Classe Soleil :

Classe Muaison :

Classe Geometrie :
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La classe Soleil est une classe trés simple permettant de
représenter la source de lumic¢re & partir de laquelle
I’illumination du gaz sera calculée. Elle est un attribut de la

classe Nuage.

La classe Maison contréle 1’ensemble des éléments de la
scéne, a I’exception du gaz. Elle posséde une liste d’objets,
hérités de la classe CObjetGL dont elle contrdle ’affichage.
Elle permet également |’affichage de murs, de feu et de
I'instance de la géométrie, selon les indications de

I’utilisateur.

La classe Geometrie forme un maillage de scéne obtenu par le
parcours d’un fichier contenant une liste de surfaces. Le
format de fichier est le méme que celui supporté par le logiciel
VU. Une liste d’affichage OpenGL est créée contenant cet

ensemble de sommets afin d’en accélérer le rendu.
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CHAPITRE 4 - RESULTATS ET DISCUSSION

4.1 Exemples d’images obtenues

Nous nous sommes servis de notre application pour visualiser différentes simulations.
Les premiéres portent sur la modélisation de fumée engendrée par un incendie. Une
autre porte sur une explosion dans un milieu fermé, tandis que les derniéres modélisent

des nuages. Voici quelques exemples d’images obtenues.

4.1.1 Modélisation de fumée

La premiére simulation illustre un feu prenant naissance sur un poéle dégageant une
fumée qui se propage graduellement a I’intérieur de la cuisine. La cloison séparant les
deux pieces a été enlevée pour permettre de mieux voir la fumée. Les parametres
utilisés lors de cette simulation se retrouvent dans le Tableau 4.1. La Figure 4.1 illustre
I’état de la fumée aprés 100 secondes, tandis que la Figure 4.2 et la Figure 4.3

correspondent a des temps de simulation de 160 et 250 secondes respectivement.



Tableau 4.1 Paramétres de simulation pour P’incendie dans une cuisine

Simulation : Fumée dans une cuisine
Seuil de densité minimale : 0,362

Seuil de densité maximale : 1,198

Décalage sur la courbe d’opacité : |0,0

Type de relation d’opacité : Exponentielle

Nombre de plans de projection: {200

Dimensions de la texture : 48x64x48

Valeur d’albedo : 0,7

Créateur des données numériques : | Jean-Philippe Hardy
Créateur de I’environnement : Etienne Lefort

Figure 4.1 Etat de la fumée aprés 100 secondes
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Figure 4.2 Etat de la fumée aprés 160 secondes

Figure 4.3 Etat de la fumée aprés 250 secondes
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La seconde simulation présente également un rendu de fumée dans une cuisine. Cette
fois, la scéne est formée par 1’incorporation d’une géométrie cubique. La Figure 4.4 et
la Figure 4.5 montrent la fumée se propageant graduellement dans la piéce. Le Tableau

4.2 regroupe les parametres de simulation utilisés.

Tableau 4.2 Paramétres de simulation pour I’incendie dans une cuisine

Simulation : Fumée dans une cuisine
Seuil de densité minimale : 1,19848
Seuil de densité maximale : 4,3605

Décalage sur la courbe d’opacité : |+0,7

Type de relation d’opacité : Exponentielle

Nombre de plans de projection : 128

Dimensions de la texture : 65x65%x65

Valeur d’albedo : 0,3

Créateur des données numériques : | Jean-Philippe Hardy

Créateur de I’environnement : Daniel Barrero




Figure 4.4 Fumée aprés 3 minutes

Figure 4.5 Fumée aprés 15 minutes
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La Figure 4.6 et la Figure 4.7 illustrent des images prises lorsque la caméra se déplace a

I’intérieur de la fumée. Les paramétres utilisés se retrouvent dans le Tableau 4.3.

Tableau 4.3 Parametres de la simulation de la pié¢ce enfumée

Simulation : Piéce enfumée
Seuil de densité minimale : 1,1985

Seuil de densité maximale : 1,6

Décalage sur la courbe d’opacité : [+0,8

Type de relation d’opacité : Exponentielle
Nombre de plans de projection: 200
Dimensions de la texture : 76x73%x65
Valeur d’albedo : 0,5

Créateur des données numériques :

Jean-Philippe Hardy

Créateur de I’environnement :

Daniel Barrero

Figure 4.6 La fumée atteint la caméra
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Figure 4.7 La caméra se déplace dans la fumée

Finalement, la Figure 4.8 ainsi que la Figure 4.9 montrent une simulation dans laquelle
une maison est incendiée. Il est & noter que notre projet portant uniquement sur le rendu
de phénomeénes gazeux, nous avons délaissé le rendu de flammes. Les parameétres de la

fumée sont inscrits dans le Tableau 4.4.



Tableau 4.4 Paramétres de la simulation de la maison incendiée

Simulation : Maison incendiée
Seuil de densité minimale : 1,19848

Seuil de densité maximale : 1,4

Décalage sur la courbe d’opacité : |+0,8

Type de relation d’opacité : Exponentielle
Nombre de plans de projection :  [250

Dimensions de la texture : 61x81x61

Valeur d’albedo : 0,7

Créateur des données numériques :

Jean-Philippe Hardy

Créateur de I’environnement :

Juan Abanto

Figure 4.8 Maison incendiée au temps de 85 minutes
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Figure 4.9 Maison incendiée au temps de 135 minutes

4.1.2 Modélisation d’explosion

La Figure 4.10 et la Figure 4.11 montrent de la fumée dégagée par le début et la fin
d’une explosion. La simulation se déroule dans un milieu fermé, mais un mur a été
supprimé de la visualisation pour mieux dévoiler le comportement du gaz. Le Tableau

4.5 renferme les différents paramétres de simulation.



Tableau 4.5 Parametres de la simulation d’explosion

Simulation : Explosion
Seuil de densité minimale : 0,0

Seuil de densité¢ maximale : 100

Décalage sur la courbe d’opacité : |+0,9

Type de relation d’opacité : Logarithmique
Nombre de plans de projection: |200
Dimensions de la texture : 32x32x32
Valeur d’albedo : 0,9

Créateur des données numériques :

Jean-Philippe Hardy

Créateur de ’environnement :

Etienne Lefort

Figure 4.10 Début d’explosion
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Figure 4.11 Fin de ’explosion

4.1.3 Modélisation de nuages

La Figure 4.12, la Figure 4.13 ainsi que la Figure 4.14 illustrent différentes
modélisations de nuages. Comme ’indique le Tableau 4.6, la constante d’albedo utilisée
est plus élevée que pour I’ensemble des simulations de fumée précédentes, ce qui lui

attribue une intensité plus élevée.



Tableau 4.6 Parameétres de simulation de nuages

Simulation : Nuages

Seuil de densité minimale : 1,19848

Seuil de densité maximale : 4,3605

Décalage sur la courbe d’opacité : |+0,7

Type de relation d’opacité : Exponentielle
Nombre de plans de projection: |200

Dimensions de la texture : 65x65x65

Valeur d’albedo : 0,9

Créateur des données numériques : | Jean-Philippe Hardy

Figure 4.12 Modé¢lisation de nuages
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Figure 4.13 Modélisation de nuages légérement ombragés

Figure 4.14 Modélisation de nuages
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4.2 Avantages et limites de la modélisation proposée

A présent, nous pouvons reprendre les trois critéres déterminés initialement, soit le
réalisme du rendu, ’exactitude des résultats et 1’interactivité, afin d’évaluer notre

modélisation,

Au niveau du réalisme du rendu, certains compromis ont été effectués pour obtenir une
bonne performance. Ceux-ci ont été appliqués au niveau du calcul de I’illumination.
Premi¢rement, ’illumination est calculée en tenant compte d’une seule source de
lumiere, considérée comme étant la source d’éclairage principale. Cette simplification
peut étre adéquate dans le cas de rendu de nuages ou la source de lumiére dominante est
sans contredit le soleil. Par contre, pour des milieux de dimensions plus restreintes,
comme des pieces ou des phénoménes de vapeur ou de fumée ont lieu, I’illumination
pourrait s’avérer plus réaliste si plusieurs sources d’éclairage étaient prises en compte.
Au niveau de I’implémentation, cette modification engendrerait peu de répercussions,
car la premiére phase de calcul concernant la propagation de la lumiére n’aurait qu’a étre
effectuée a plusieurs reprises. Evidemment, le colit en calcul supplémentaire serait
proportionnel au nombre de sources lumineuses. Si le niveau d’interactivité n’était pas a
prendre en considération, ces calculs additionnels vaudraient la peine d’étre effectués,
car le rendu s’en trouverait grandement amélioré. En effet, en utilisant une seule source
d’illumination, une partie du gaz se retrouve illuminée, laissant 1’autre partie
inévitablement ombragée. L’utilisation de plusieurs sources d’illumination comblerait

cette lacune et créerait des effets d’illumination plus convaincants.

Une autre simplification concerne également le calcul de la propagation de la lumiére.
Notre mod¢lisation réduit le calcul de la diffusion multiple en considérant uniquement
deux directions de propagation de la lumiére : celle de la direction des rayons lumineux
et celle vers 1’observateur. Il ne s’agit donc pas d’une véritable diffusion multiple. Pour

obtenir un rendu plus réaliste, il faudrait effectuer plusieurs itérations de diffusion. Cela
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permettrait d’obtenir une meilleure répartition de la lumiére dans le cas de gaz disposant
d’une valeur d’albedo élevée. Toutefois, I’effet serait beaucoup moins notable pour des
albedos faibles. Quoiqu’il en soit, notre approximation de la diffusion multiple permet
quand méme d’obtenir un rendu qui se rapproche de la réalité et un observateur moyen
ne devrait pas étre dérangé par cette simplification. D’ailleurs, cette derniére était
essentielle pour pouvoir conserver une interactivité fluide, car les colits en calcul pour

augmenter le nombre d’itérations de diffusion sont trés élevés.

Au niveau de 1’exactitude des données, notre modélisation s’avére représentative des
résultats numériques. Aucune variable aléatoire n’intervient dans le calcul de rendu,
tout reposant sur les données de densité et de composition chimique. Le réalisme de la
visualisation dépend donc du raffinement de I’échantillonnage de I’espace. Un
échantillonnage trop grossier engendrera une image de gaz dont la structure semblera

trop délimitée.

Sur le plan de I’interactivité, notre modélisation permet une performance suffisante pour
qu’un utilisateur puisse visualiser le phénoméne gazeux de fagon intuitive. Les cartes
graphiques sont optimisées pour les calculs de textures, de sorte qu’une texture 3D
raisonnablement volumineuse peut facilement é&tre supportée par 1’application.
L’observateur peut effectuer des déplacements et des rotations a la scéne sans que des
délais viennent troubler la visualisation. Finalement, les approximations apportées au
calcul de la luminosité permettent au calcul de rendu d’étre suffisamment rapide pour

supporter I’animation d’une simulation a travers le temps.

De fagon générale, nous pouvons conclure que nos objectifs initiaux ont été atteints.
Evidemment, cette évaluation ne peut s’effectuer que par des jugements subjectifs. Le
Tableau 4.7 illustre les cotes d’atteinte des objectifs au niveau du réalisme, d’exactitude

et d’interactivité que nous nous sommes attribuées.
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Tableau 4.7 Evaluation de ’atteinte des objectifs

Réalisme Exactitude Interactivité

Bon Parfaite Parfaite

4.3 Comparaison avec d’autres approches

Si beaucoup de recherches ont été effectuées ces derniéres années au niveau de la
modélisation des phénomeénes gazeux, les applications permettant leur visualisation sont
peu répandues. Nous pouvons tout de méme en relever deux. La premicre, VU, est fort
utilisée dans le domaine de la recherche pour le domaine de la visualisation en général.
La seconde, Smokeview, a ét¢ développée spécialement pour la visualisation de fumée.
Dans cette section, nous allons comparer ces deux logiciels avec 1’application que nous

avons développée.

4.3.1 Comparaison avec VU

VU est un programme congu pour la visualisation de solutions numériques. Toutefois,
VU n’est pas spécialisé pour la visualisation de données portant sur des gaz. La
visualisation de ces derniers ne peut étre effectuée que par la création d’iso-surfaces ou
par des plans semi-transparents représentant les champs de densité. La Figure 4.15

illustre un exemple de fumée obtenue par VU.
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Figure 4.15 Fumée formée de plans semi-transparents créée par VU

La modélisation utilisée par VU nécessite peu de temps de calcul et offre des
informations basées sur les résultats de densité. Par contre, elle offre peu de réalisme de

rendu, aucun calcul d’illumination n’étant effectué.

4.3.2 Comparaison avec Smokeview

Smokeview est une application développée pour visualiser les résultats de calculs
numeériques générés par FDS [40]. Si elle vise spécifiquement la modélisation de fumée,
elle utilise néanmoins des méthodes semblables a celles de VU. Trois méthodes
principales sont suggérées & I’'usager. La premiére compresse les résultats de densité en

une série de plans semi-transparents. Un exemple est donné a la Figure 4.16.
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Figure 4.16 Fumée formée de plans semi-transparents créée par Smokeview

La deuxiéme méthode utilisée par Smokeview consiste a représenter la fumée par un
ensemble de particules pouvant étre animées dans le temps. La Figure 4.17 en présente

un résultat.

Figure 4.17 Fumée formée de particules créée par Smokeview

Finalement, tout comme VU, Smokeview permet de représenter la fumée par des iso-

surfaces. La Figure 4.18 en donne un exemple.
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Figure 4.18 Fumée formée d’iso-surfaces créée par Smokeview

Comme nous pouvons le constater, Smokeview, & I’instar de VU, permet d’explorer les
résultats numériques, mais reste limité au point de vue du réalisme visuel. L’application
permet de comprendre le comportement de la fumée, mais ne représente pas sa véritable
apparence. Notre application permet d’effectuer un pas de plus en tenant compte de

I’illumination & un cofit en ressources trés acceptable.

Le tableau Tableau 4.8 reprend les types de modélisations suggérées par la littérature
ainsi que celles supportées par VU et Smokeview a des fins comparatives. Les valeurs
sur fond rouge ont trait & la modélisation que nous avons développée. Nous pouvons
nous apercevoir que cette derniére répond plus adéquatement & nos trois critéres
d’évaluation que les autres méthodes proposées. Il est a noter toutefois que la méthode
des nuées, si elle était implémentée autrement que par lancer de rayon, pourrait

probablement engendrer des résultats comparables a ceux que nous avons obtenus.
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Tableau 4.8 Comparaison avec les autres approches

Type de modélisation  Implémentation  Réalisme  Exactitude Interactivité

Champs vectoriels Littérature Faible Bonne Bonne
Littérature Moyen Faible Bonne
Surfaces iso-densité VU Faible Faible Bonne
Smokeview - | Faible | Faible |  Bonne
Méthode des nuées Littérature - Bon Bonne Moyenne*
Lancer de rayon Littérature Bon Bonne Faible
Littérature Moyen Bonne Moyenne
Systéme de particules o ‘ :
Smokeview | Faible .| - Bonne | - Bonne
Littérature Bon \Moyenné | Bonne
Hypertextures _— v
Méthode des ) ]
Littérature Moyen Faible Moyenne
ellipsoides
Méthodes de Littérature Bon Moyenne Moyenne
projection VU Moyen Bonne Bonne
Smokeview - | Moyen | Bonne | Bonne

* Dépend de la méthode de rendu’ utilisée
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CONCLUSION ET TRAVAUX FUTURS

L’objectif de notre projet consistait & déterminer une méthode de modélisation pour les
phénoménes gazeux permettant d’effectuer un bon compromis entre le réalisme de
rendu, ’exactitude des données et la performance. Or, nos résultats indiquent que la
méthode utilisant les textures 3D pouvait allier ces trois exigences. L’approximation de
la diffusion multiple par la diffusion vers deux directions permet d’obtenir un rendu
supérieur a la diffusion simple. Cet algorithme donne des résultats intéressants surtout
au niveau de la fumée. Toutefois, I’approximation devient plus grossiére dans le cas ou
I’albedo est plus élevé, comme c’est souvent le cas avec les nuages. Pour ce type de
gaz, notre modélisation pourrait ne pas combler les besoins d’une visualisation ou les

attentes au niveau du rendu seraient particulierement élevées.

De fagon générale, nous avons vérifié ’hypothése avangant que la visualisation des
différents phénomenes gazeux pouvait étre soumise a une méme procédure. En utilisant
uniquement deux variables, le décalage sur la courbe de transparence et 1’indice
d’albedo, un utilisateur peut obtenir différents types de rendu pour un méme fichier de

données.

Evidemment, puisque notre modélisation diminue le niveau de réalisme au profit de la
performance, le développement constant du matériel informatique laisse présager de
nouvelles ouvertures a la visualisation. Il est probable que d’ici peu, il sera envisageable
d’effectuer plus d’une itération pour le calcul de la propagation de la lumieére tout en
conservant la méme fluidité d’interactivité. De méme, des dimensions de textures 3D de
plus en plus volumineuses pourront étre utilisées. Toutefois, les algorithmes de base que

nous avons décrits pourront continuer a étre utilisés.

Suite aux résultats que nous avons obtenus, nous avons décidé d’implémenter notre

modélisation pour un environnement d’immersion. A cette fin, la CAVE (« Cave
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Automatic Virtual Environmnent ») a été utilisée et nous avons obtenu des résultats trés
intéressants. Hormis une certaine latence causée par les calculs onéreux au niveau de la
transparence, la méme qualité d’image était obtenue que sur une station Linux

conventionnelle. Il s’agit donc d’une option intéressante pour des fins de visualisation.

Nous avons mentionné qu’en raison de considérations de performance, nous avons dil
effectuer certains compromis au niveau du réalisme. Puisque la majorité du temps de
calcul est consacré a parcourir une grille 3D et & effectuer des traitements itératifs, il
pourrait étre envisagé de paralléliser notre application et de faire appel a plus d’un
processeur. Ces gains en performance pourraient éventuellement permettre de calculer
I’illumination & partir de plusieurs sources de lumiére et d’accroitre ainsi le niveau de

réalisme du rendu.
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LISTE DES CLASSES PRINCIPALES
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interface GRAPHIGQUE
Affiche Nuage : bool
Interfacs() Affiche Hull © bool
Interface() ' _
<ovittual>> fileOpen() Affiche Lum : boal

<<virtual>> fileSave()
<<virttual>> fileExit()

<<virtua>> resizeEvent{)
<wvitugl>> vueTexture3D()
<virtual>» vueH ul()
<<virtual>> vuelLum()
<avitual>> vueMurs()
<<virtual>> vusObijets()
<<wvirtua>> vueG eometrie()
<<«virtual>> slotGenerer()
<wvitual>> setvaleurs()
<<virtual>> getvalsurs()
<<virtual>> slotParcourir()
<<virtual>> siotCouleurBack()
<<virtual>> slctCouleurNuag ef)
<<virtua>> slotCouleurbum()
<«virtual>> editer Murs()
<<virtual>> editer fafond()
<<virtual>> editer Mancher()
<<virtual>> editer DiviX()
<<virtual>> editer DivY()
<<virtua>> editer DivZ()
<<virtual>> slotCoulsurMurs()
<<virtual>> slotCouleurPlafond()
<<virtual>> slotCouleurPlanchert)
<<virtual>> slotTexture Murs()
<<virtual>> slotTexture Plafond()
<<virtual>> slotTexture Plancher()
<<virtual>> slotTexture DiviX()
<<virtua>> slotTexture Divyr()
<<virtua>> slotTexture DivZ()
<<virtual>> afficherMursExt()
<<virtual>> afficherMursint()
<<virtua>> slotCouleurDivX()
<<virtua>> slotCouleurDvY ()
<<virtual>> siotCouleurDivZ()
<evirtual>> getPositionLum()
<<virtual>> slotldlef)
<<virtua>> slotFe u()
<<virttual>> slotFe uFoyer()
<<virtual>> siotTable(}
<<virtual>> slotEtagers()
<wvirtual>> slotlampe1()
<<virtual>> siotLampe2()
<<vittual>> slotlampe3()
<<virtual>> siotBureau()
<evitual>> siotChemineel)
<<virtua>> slotCasserole()
<<virtual>> slotComptoir()
<<virtual>> siotTapis()
<<virtual>> gjoute rFichier()
<<virtual>> supprimer Fichier{)
<<vitual>> effacerliste()
<<virtual>> avancerSimulaton{)
<«virtual»> enregistrer Config()
<<virtual>> ouvrirConfig()
<<vintual»> slotintCamera()
<<vitual>> slotGeometrie{)
<<virtyal>> pause Sim()
<<virtual>> playSim(}
<<vitua>> reculersSimf)
<<virtual>> avancersim()
<<virtugl>> debutSim()
<avitual>> inSim{)
<<virtua>> sauverimags()
<<virtual»> obtenirMax()

tnversion : bool
g_MouseX:int

g_MouseY :int

g_PointZ : float

context | CGcontext
vertexProgram : CGprogram
vertexProfite : CGprofile
fragmentProgram : CGprogram
fragmentProfile : CGprofile

M odelviewProj : CG parameter
TextureMatrix | CGparameter
Texture Nuage : CGparameter
PosLum : CG parameter
Posvue : CGparameter
Albedo : CGparameter
CouleurLum : CGparameter
CouleurGas : CGparameter

Nuage

GRAPHIQUE)
“GRAPHIQUE()
paintG L()
resizeGL()

idle()

initCamera()
setPositionCamera()
getPositionCamera(}
setAngleCamera()
getAngleCamera()
getElevationCamera()
AfficherNuagel()
AfficherHull{)
AfficherLum()
setPositionLum{)
getLurmPosX()
getlLumPosY()
getLumPosZ()
setDImGeo()
getNuage()

gstHull()
getMaison()
sauverimagef)
initializeGL{)

initCg()
cgErrorCallback()
DessinerNuage()
deplacerCamera()
iuminer()
keyPressEvent()
keyRelsaseEvent()
rmouse MoveEvent(}
rnouse Press Event()
mouseReleassEvent()
cleanExit()

NomFichier : QString
DebutDonnees : long
DebutComposition : long
Dim_x :int

Dirn_y :int

Dim_z :int
NombreSlices | int
ValMin : float

ValMax : float
CompositionMax : float
ConversionEndian : bool
CompositionChimigue : bool
Facteur_alpha : float
Albedo : float
NomTexture . GLuint
ImageText : GLubyte *
TabTransparence : float ***
TailleTex_x :int
TailleTex_y :int
TailleTex_z :int

CG :bool

Nuags()

init()

Display()
setLumiere()
Hlurminer()
UtiliserCG()
setCouleurLumiere()
getCouleurLumR()
getCouleurLumG()
getCouleurLumB()
obtenirMax()
CreerMaillage()
CreerTexture()




Maison

Observateur Soleil
Angle : float Modif : bool
Elevation : float
VitesseTranslation : float  [Soleil()
VitesseRotation : float Display()

setPosition()

calculerCible() getPosition()
QObservateur() getPositionX()
setPosition() getPositionY ()
setPosition() getPositionZ()
getPosition() getCouleurR()
getPositionX() getCouleurG()
getPosition () getCouleurB()
getPositionZ() setModification()
translater() getModification()
translater() setCouleur()
avancer)
deplacer()
rmonter()
rotater Positif()
rotaterNegatif()
Elever()
Pencher()
setangle()
getAngle()
getElevation()
getCible()
getDirection()

afficherExt()
afficherDivisions()
Maison()

init()

Display()
setDimensions()
setFacteurEchelle()
creerGeometrie()
afficherMursExt()
afficherMursint()
afficherFeuComptoir()
afficherFeuFoyer()
afficherTable()
afficherEtagers()
afficherLampeSalon()
afficherLampeCuisine()
afficherLampadaire()
afficherBureau()
afficherCheminee()
afficherCasserole()
afficherComptoir()
afficherTapis()
afficherMurs()
afficherObjets()
afficherGeometrie()
setCouleurmMurs()
setCouleurPlancher()
setCouleur Plafond()
setCouleur DivX()
setCouleur DivY(}
setCouleur DivZ()
setTextureMurs()
setTexturePlancher()
setTexturePlafond()
setTextureDiviX()
setTexture DivY{)
setTextureDivZ()
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CObjetGL

m_Largeur BoundingBox : double
m_LongueurBoundingBox : double
m_HauteurBoundingB ox: double
m_AngleRotationX : double
m_AngleRotationY : double
m_AngleRotationZ : double
m_EchelleXX : double

m_Echelle : double

m_EchelleZ : double
m_DisplayList: G Luint

CObjetG L)

CObjetG L)

<<virtual>> “CObjetGL()
operator=()

<<virtual>> CreateDisplayList()
<<abstract>> Afficher()
setPosition()

getPosition()

getFositionX()

getPositionY ()

getPositionZ()

<<const> GetangleRotationX()
SetAngle RotationX()

<<const>> GetAngleRotationY])
SetAngle RotationY ()

<<const> GetAngleRotationZ()
SetAngle RotationZ()

<<const>> GetEchelleX()
SetEcheleX])

<<const> GetEchelieY{)
SetEcheleY])

<zconst>> GetEchelleZ()
SetEcheleZ()

<<gonst>> Prepare ModelviewMatr

Geometrie

Feu

Geometrie()
creer()

afficher()
setDimensions()

Allume :bool
Force : float
id :int

Feu()

Feu()
Display()
illuminer{)
Eteindre()
setPosition()
getPosition()
getPositionX()
getPosition ()
getPositionZ()
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