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RESUME

L’objectif premier de cette these est de développer un code d’optimisation du
controle actif de la couche limite par aspiration. L’aspiration a pour effet de changer
la structure de la couche limite en réduisant son épaisseur et en augmentant sa
stabilité. Cela a deux effets essentiels sur I’écoulement :

— le retard de la transition laminaire-turbulent
— modification de l'intensité et de la position du choc dans les écoulements trans-

soniques

Pour des débits d’aspiration faibles d’une dizaine de ¢cm?®/s (pour 1 m d’enver-

gure), I'impact sur les performances aérodynamiques d’un profil est significatif.
y q g

Le temps de calcul élevé de la prédiction du point de transition nous a contraint
a choisir une stratégie utilisant trois codes couplés (un code de calcul des équations
d’Euler, un code de correction couche limite, un code de prédiction de la transition).
Ces trois codes doivent pouvoir dialoguer automatiquement entre eux afin de les

utiliser au sein d’un algorithme d’optimisation.

La méthode proposée de prédiction de la transition fait appel a la théorie de la
stabilité. Nous avons utilisé le code SCOLIC développé a la Chaire Bombardier qui

permet de résoudre les équations compréssible de la stabilité linéaire parallele.

Dans un souci d’amélioration de la qualité des résultats, nous avons également
travaillé & ’élaboration d'un code de prediction de la transition faisant appel aux

équations parabolisées de la stabilité (PSE) en compressible.

Pour le calcul de I'écoulement, nous avons modifié un code Euler developpé a

la Chaire afin de le coupler a un code de correction de couche limite (CLDF -
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ONERA).

Enfin nous avons developpé une méthode originale d’optimisation de I’aspiration
couplée aux résultats des codes précédemment décrits. Nous avons pour cela utilisé

le Krigeage et un algorithme d’apprentissage.

Le présent mémoire résume les théories et les algorithmes mis en place pour cette
optimisation. Pour terminer, nous présentons les résultats de cette optimisation sur

un profil laminaire, et formulerons quelques conclusions.
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ABSTRACT

The primary objective of this thesis is the development of an optimization code
for the active control of the boundary layer by suction. Suction changes the struc-
ture of the boundary layer by reducing its thickness and increasing its stability.
This has two essential effects on the flow :

— delay of the laminar-turbulent transition

- modification of the intensity and position of the shock in transonic flows.

For low rates of suction of ten cm?®/s (for 1 m of scale), the impact is significant

on the aerodynamic performances of a profile.

The large computing time for the prediction of the transition point has compelled
us to carry out the calculations by using three coupled codes (a code for solving the
Euler equations, a code for boundary layer correction and a code for the prediction
of the transition). In order to use them within an algorithm of optimization, these

three codes must be able to communicate automatically with each other.

The proposed method of transition prediction uses the stability theory. We used
the SCOLIC code, developed at the Bombardier Chair, which solves the Orr-

Sommerfeld equations.

In our concern to improve the quality of the results, we have also worked at the

developement of a code for the prediction of the transition using the compressible

Parabolized Stability Equations (PSE).

For the calculation of the flow we have modified an Euler code, developed at the
Chair, in order to couple it to a boundary layer code (CLDF-ONERA). Finally

we have developed an original method for the optimization of the suction, coupled



with the results of the codes previously written. For that we have used Kriging and

a learning algorithm.

The present thesis summarizes the theories and the algorithms set up for this
optimization. Finally, we present the results of this optimization on a laminar

profile.
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INTRODUCTION

En 1883, O. Reynolds étudiait ’écoulement de 'eau dans une conduite cylin-
drique. Il observa qu’a faible vitesse, un filet de fluide coloré reste rectiligne et
parallele a la direction moyenne de [’écoulement. Lorsque la vitesse augmente, les
filets de fluide perdent progressivement de leur régularité et finissent par diffuser
dans l'ensemble de ’écoulement. Ces observations 1'ont amené a définir deux types

d’écoulement.

L’écoulement laminaire est un écoulement dans lequel les couches de fluide glissent
les unes sur les autres sans échange de particules tandis que l’écoulement turbu-
lent est par opposition un écoulement dans lequel les filets de fluide se mélangent,
prenant un caractere aléatoire et chaotique. Reynolds avait ainsi mis en évidence
un phénomene de transition entre I’écoulement laminaire et turbulent dépendant
étroitement du nombre sans dimension portant son nom qui compare les forces

visqueuses aux forces d’inerties.

Depuis un siecle, I'intérét porté par les chercheurs au phénomeéne de transition
n'a jamais faibli et le probleme est loin d’étre résolu. De nombreuses théories
ont été avancées afin de comprendre les mécanismes complexes qui font passer

un écoulement de 'état laminaire a turbulent.

Cet intérét s’explique par les changements notables des caractéristiques de 1’écou-
lement, lorsqu’il passe d’un état a l'autre. Dans I’écoulement turbulent, le fait que
les couches de fluides se mélangent permet un échange d’énergie accri entre elles.

En particulier une couche limite regoit un apport énergétique supplémentaire de



I’écoulement externe ayant deux effets principaux :

a) une forte augmentation du flux de chaleur

elle peut dans certains cas nécessiter un revétement de protection thermique comme
dans le cas de la pénétration d’une navette spatiale dans 'atmosphere. Elle a
également une forte influence sur la formation de givre sur les ailes d’avion

b) une forte augmentation du frottement parietal

Ce phénomene est illustré par I’évolution typique du coefficient de frottement
pariétal C; le long d’une aile.(voir Figure 1)

Cette augmentation de la trainée de friction est liée & une augmentation de la

o Coefficient de friction

TEDY

------- Cf laminaire
— Cf avec transition

B.E-03

5.E-0%

O 4E-oz
3.EB-03

2E:03 \ /
1,509 \\//

3.8+00.

F1G. 1 Coefficient de friction sur une plaque plane (U, = 50 m/s)

dérivée de la vitesse moyenne dans la direction normale & la paroi. La turbulence
augmente également ’épaisseur de la couche limite (cf. figure 2) ce qui permet de

retarder le phénomene de décollement.

La prédiction de la transition est donc un élément primordial pour la prédiction

des performances d’un avion. La figure 3 illustre un exemple de calcul tridimension-
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Fic. 2 RAE2822 a M = 0,78 : Evolution de I’épaisseur de couche limite,
profil de vitesse pour £ = 0,1 et 0,4

nel complet pour une incidence de 0, et une vitesse a l'infini Q = 105 km/h avec
couche limite et montre ['étendue de laminarité réalisable sur les plans porteurs et

le fuselage du planeur biplace Marianne. !,

Des études ont prouvé lefficacité d’un contréle de la transition par aspiration
de la couche limite [1, 3]. La chaire Bombardier a développé des méthodes de
prédiction numérique de la transition basées sur les équations de Orr-Sommerfeld
1907. L’objectif de cette these est le développement d’un outil d’optimisation du

controle actif de la couche limite par aspiration.

Le chapitre 1 consiste en une revue bibliographique des principaux travaux tou-
chant a la stabilité de la couche limite et la transition laminaire turbulent. Les
chapitres suivants s’attachent au développement de la théorie de la stabilité. Le cha-
pitre 2 explique les fondements de la théorie dite paralleéle conduisant aux équations

d’Orr-Sommerfeld, le chapitre 3 considere la formulation non parllele (PSE). Aux

1La figure 3 est issue du site de Alain BUGEAU -Aérodynamicien chez Dassault Aviation-
http ://inter.action.free.fr/
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chapitres 4, 5 et 6, on présente les outils numériques développés pour le calcul de
I’écoulement moyen, celui des petites perturbations et enfin 'algorithme d’optimi-
sation. Dans le septieme et dernier chapitre nous effectuons une étude de cas sur

un profil laminaire & Mach = 0.3.



CHAPITRE 1

TRANSITION DE LA COUCHE LIMITE LAMINAIRE

1.1 Concept de base

Un écoulement autour d’un profil d’aile peut se diviser en deux régions :

- Une région éloignée du profil, ou 'écoulement obéit aux lois des fluides non vis-

queux (cf.annexe I), en noir sur la figure 1.1

- Une région proche du profil, out I’écoulement peut étre approximé par un écoulement

de type couche limite (cf.annexe II) en gris sur la figure 1.1

0,08
0,08
0,04

0,02

-0,02
-0,04

-0,06

-0,08

Fic. 1.1 Couche limite sur un RAE 2822



L’écoulement Euler accompagné d’une correction couche limite nous permet d’ob-
tenir ’écoulement moyen (similaire & la solution des Equations de Navier-Stokes
stationnaires). L'influence entre l'écoulement externe et la couche limite est mu-
tuelle. Afin de tenir compte de celle-ci, nous devons effectuer un couplage Euler-
Correction couche limite (cf. section 4.5.1). Sur la figure 1.1 on remarque que la

couche limite sur 'extrados n’est pas calculée au dela du point

(e 1]

~ (.5, car la
correction de couche limite qu’on a utilisée n’est pas capable de prévoir 'influence
du choc sur la couche limite. On modélise pour l'instant une épaisseur de couche

limite constante apres le choc.

1.2 Transition de la couche limite laminaire

Théoriquement, la turbulence est due a 'influence grandissante des termes non-
linéaire de convection dans les équations de Navier-Stokes. Cette influence est bien
évaluée par le nombre de Reynolds basé sur I'épaisseur de déplacement §* :

Resg = % L’épaisseur de déplacement est définie par :

6
U
5*=/ 1- >4 1.1
0( peUe)y (1.1)

Ou, ¢ est I’épaisseur de couche limite définie par :

U(8) = 0.99.U, (1.2)

Typiquement on parle d’un Reynolds critique (Res-),. = 1000 a partir duquel la

couche limite laminaire est instable, elle a alors des chances de devenir turbulente.



Les couches limites laminaires ne résistent pas aux grands nombres de Reynolds.
Nous pouvons avoir une idée de sa cause en analysant la solution analytique de
Blasius (cf. le cours de P. Huerre [4]) pour une plaque plane. Nous pouvons ainsi

estimer Reg, en effet pour Blasius

5 =1.72 % (ﬁ>1/2 (1.3)
Qoo

d’ou

1/2
Rese = 1.72 x <—Qf5£> =1.72% \/nge (1.4)

Ainsi pour des nombres de Reynolds élévés le (Res-),. est atteint plus tét.
z 1
-) o~ = 1.5
< C ) cr Re ( )

On est encore incapable de prédire analytiquement la transition. Le passage en
régime turbulent est observé expérimentalement. Les études expérimentales ont
cependant permis de déduire I'influence de certains parametres caractéristiques de

la couche limite.

1.3 Critére de transition

Le principe des critéres de transition est de comparer une quantité issue du cal-
cul laminaire & un seuil (déterminé généralement de maniere expérimentale) et de
définir le point de transition comme le point ol ce seuil est atteint. En écoulement
bidimensionnel, incompressible, sur paroi lisse, les deux parametres essentiels agis-
sant sur la transition sont le gradient de pression longitudinal et le niveau de
turbulence a l'extérieure de la couche limite. Les criteres semi-empiriques suivants

sont parmi les plus importants, ils sont respectivement basés sur :



-Gradient de Pression :

Critéres de Granville, de Michel, de Cebeci-Smith
Critéres C1 de 'ONERA

Deuxiéme critére de Van Driest et Blumer

- Turbulence extérieure :

Critere d’Arnal-Habiballah-Delcourt

Criteres C2 de 'ONERA

Premier critere de Van Driest et Blumer

- Etat de la paroi :

Critére de Gibbings, de Von Doenhoff

1.4 Historique de la théorie de la stabilité de la couche limite

Rayleigh fut le premier a étudier l'instabilité de la couche limite entre 1880 et
1913 et a trouver des résultats sur les instabilités inflexionnelles.
Théoréeme
Pour un écoulement non-visqueux, il est nécessaire pour avoir l'instabilité que le

profil de vitesses U(y) présente un point d’inflexion.

Ce théoreme avait pour longtemps conduit les chercheurs a penser qu’un écoule-
ment visqueux avec un profil de vitesse sans point d’inflexion était stable. Ce n’est
qu’en 1921 que Prandtl a montré que la viscosité peut avoir un effet déstabilisateur.
En 1930 les travaux de Tollmien et Schlichting ont montré que la transition est due
a l'amplification de petites perturbations introduites dans la couche limite. Ces
perturbations, appelées ondes T-S, initialement infinitésimales, se propagent dans

la couche limite en s’amplifiant dans le temps et dans l'espace, jusqu’a atteindre



une amplitude suffisamment élevée pour qu’apparaisse-la turbulence. Orr et Som-
merfeld ont proposé quelques bases mathématiques pour étudier ces perturbations
en écoulement bidimensionnel incompressible (cf. chapitre 2). En 1933, Schlichting
calcule le rapport des amplitudes des perturbations les plus instables en fonction
du nombre de Reynolds pour un profil de Blasius. Il trouve que le logarithme de ce

rapport au moment de la transition reste compris entre 5 et 9.

Les premieres expériences en soufflerie menées par Burgers et Dryden ne révélerent
aucune onde d’instabilité mais confirmerent le méme début de transition (les expé-
riences étaient en fait contaminées par un taux de turbulence élevé et des problemes

acoustiques propres aux souffleries de I’époque).

En 1933, Squire montre que la transition apparait puis se propage le long du
profil dans la direction de I’écoulement. La théorie de la stabilité dictée par Toll-
mien - Schlichting n’a que peu de succes en dehors de I’Allemagne en raison de sa
complexité mathématique et physique (aucun instrument de mesure de 'époque
ne peut détecter les ondes de Tollmien - Schlichting responsables des instabilités).
L’expérience de Schubauer et Skramstad (1941, publiée apres la guerre)[13] met en
evidence l'existence des ondes TS ainsi que leur influence directe sur les instabilités

et la transition et confirme ainsi la théorie de Tollmien et Schlichting.

A la suite de ces expériences, des études plus approfondies furent menées. Lin
(1945) étudia la stabilité des écoulements tridimensionnels paralléles incompres-
sibles , puis développa avec Lees la théorie de la stabilité en écoulement com-
pressible non visqueux. En 1955, Dunn et Lin montrerent que l'instabilité d’'un
écoulement tridimensionnel & I’égard d’une perturbation se propageant dans une

direction quelconque peut étre étudiée en deux dimensions en projetant le long de
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la direction de la perturbation. En 1956, Smith et Gamberoni[14] (Etats Unis) et
Van Ingen [16] (Europe) proposent une méthode semi empirique permettant de re-

lier la théorie de la stabilité a la prédiction de la transition : la méthode du facteur

N\T
Y
AN,

A partir des années 1950, avec 'apparition des calculateurs puis des ordinateurs,
les théories ont pu étre explorées sur le plan numérique. Thomas (1953) emploie la
théorie de la stabilité linéaire pour I’écoulement de Poiseuille et réussi a confirmer
le résultats de Lin en utilisant un schéma aux différences finies. Le calcul dura cent
cinquante heures. Brown (1954-1965) a effectué des calculs numériques pour les
écoulements pour une vaste plage de nombre de Reynolds. Mack [7] effectue les

premiers calculs numériques en compressible.

Le cas 3D compressible a été étudié par Malik (NASA, Langley) par une méthode
temporelle. Le méme probléme a été étudié par Arnal (ONERA) et Cebeci (Douglas

Aircraft) par une approche spatiale.

Nous verrons le detail de cette théorie dans le chapitre 2

1.5 Controle actif de la couche limite

En principe la conservation du caractére laminaire de la couche limite et le retard
de la transition s’obtient par une augmentation de la courbure négative du profil

de vitesse. Reshotko [11] démontre que cette courbure vérifie

2
d%u oP (Uw 8u8T<O)>8u0

Mwa—yz(o) =57 T T T oy 8_y( ) (1.6)
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oll I'indice w indique la valeur de la variable a la paroi.
A partir de cette équation, on peut remarquer que le membre de droit devient plus
négatif en :
- Créant un gradient de pression favorable %—f <0
aT

- Refroidissant la paroi 3~ > 0 (car d’apres Sutherland % > 0)

- Aspirant la couche limite a la paroi v, < 0

On obtient une répartition des pressions (gradient de pression favorable) sur
I'extrados telle que le point de dépression maximale, auquel est lié la position
du point de transition, est situé plus vers l'arriere du profil par un recul de la
position de I’épaisseur maximale (& 50-60% de la corde au lieu de 30% sur les
profils traditionnels). Ce procédé ne représente un gain sur la trainée que pour une
faible plage d’incidence (1 & 4 degrés). Au dela de cette incidence, les dépressions
augmentent pres du bord d’attaque, d'ol1 une brusque avancé du point de transition
et une augmentation de la trainée qui est souvent plus forte que pour un profil

classique de méme épaisseur.

Le refroidissement de la paroi est tres efficace pour laminariser la couche li-
mite, mais demeure dispendieux sur le plan de la réalisation technique, rendant ce
procédé efficace seulement pour les avions a moteur cryogénique ol une source de
refroidissement est déja disponible sur 'appareil. De plus un tel systéme rentre en

conflit avec les besoin de chauffer la paroi pour la dégivrer.

L’aspiration de la couche limite a une influence stabilisatrice. Elle réduit I’épais-
sissement de la couche limite, elle permet également de retarder le décollement

de la couche limite (laminaire ou turbulente). Le débit d’aspiration nécessaire est
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relativement faible. Toutefois ce procédé est moins efficace pour les ailes en fleche
ol un autre type de transition appelé ”contamination du bord d’attaque” risque
d’entrer en jeu. Dans ce type de transition, la turbulence de ’écoulement sur le
fuselage contamine le bord d’attaque de l'aile et crée une transition accélérée qui

réduit l'éfficacité de 'aspiration.
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CHAPITRE 2

THEORIE LINEAIRE DE LA STABILITE PARALLELE

2.1 Description du phénomene physique

Comme nous 'avons vu dans le chapitre 1, I'idée de base de cette théorie est
que la transition est causée par 'amplification sélective d’ondes d’instabilité in-
finitésimales initialement présentes dans l’écoulement et produites par des ondes
acoustiques, des vibrations de la paroi, la turbulence extérieure ou des irrégularités
de surface. La vie de ces ondes (T-S) peut étre grossiérement divisée en trois phases.
La premiere phase correspond a leur naissance, nous I’étudions par les théories dites
de réceptivité. La deuxiéme phase (celle que nous étudions) est bien modelisée par
la théorie de la stabilité linéaire. Un peu plus en aval, leur amplitude cesse d’étre in-
finitésimale et les ondes entrent alors dans une troisieme phase caracterisée par des
phénomenes non linéaires. Cette phase précede finalement I’apparation du premier

spot turbulent.
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2.2 Approche de la théorie de la stabilité linéaire

2.2.1 Equations générales du mouvement

Pour I'étude de la stabilité d’'une couche limite compressible, nous partons des

équations de Navier-Stokes.

- équation de continuité :

-
% 1V.(pV)=0

- équation vectorielle de la conservation de la quantité de mouvement :
ov =25 = - - = = :;—')t
PG +p(VV)V ==-VP+V I XNV.V)T +([VV]+[VV])
(2.1)

- équation pour 'énergie interne e = C,. T :
v

P VeV v v

Le terme ®p représente la fonction de dissipation et s’exprime par :

oy = (A(VV)? + u(ﬁ?) + [?W)) oV

Le terme —-)\c?T représente le flux de chaleur par conduction ou A, désigne le
coefficient de conduction du fluide (loi de Fourier). Le ® exprime le produit tensoriel

contracté deux fois (cf. notations et symboles)

- équation d’état des gaz parfaits :

P = pRT (2.2)
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2.2.2 Propriétés physiques

La pression étant assez faible et la température assez grande, on peut suppo-
ser que les interactions entre les molécules interviennent seulement pendant les
collisions, ainsi le gaz peut étre modélisé comme un gaz idéal calorifiquement et

thermiquement parfait. La chaleur massiqueC,, est alors supposée constante.

Par ailleurs on adopte I'hypothese classique suivante : les coefficients thermody-
namiques A., A et u sont supposés ne dépendre que de la température. La viscosité

w(T') suit la loi de Sutherland.

3
T\*1Ty+ 95

T)=po | = 2.3

w(T) “°<T0> TS (2.3)
ol, pour l'air :

Ty =273K
po = 1.716 x 107 5kg.m.s71 (2.4)
S =111K

De plus, les coefficients A(T') et u(T") sont supposés sastifaire '’hypothese de Stokes :

3A(T) +2u(T) = 0 (2.5)

2.2.3 Technique des petites perturbations

La technique des petites perturbations est réguliérement utilisée dans les théories
de stabilité. Elle suppose que les mécanismes d’instabilité peuvent étre représentés
par I’évolution d’une perturbation superposée a un écoulement de base. Une étude

de réceptivité permet de connaitre les mécanismes générateurs des perturbations.
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Nous ne ferons pas d’étude de réceptivité; nous supposerons a priori l'existence
des perturbations. L’écoulement général est alors décomposé en la somme d’un
écoulement moyen stationnaire et d’une perturbation instationnaire. Le prin-

cipe n’est pas de comprendre la naissance de la perturbation mais de suivre son

évolution : ) —
— —
V(Z,t) = V (T)+uX7T,t)
P(Z.t) = P(T)+py(T,1)
p(T.t) = p(T)+p5(7T,0)
{ T(T,t) = T(T)+T5T,1) (2.6)
w(@,t) = p(T)+u(7 )
ATt = X(T)+X(T,0)
| A(Tt) = X(T)+ M, (T 1)

Remarque, on note X* les variables avec dimensions de ’écoulement moyen et

des petites perturbations

On reporte cette décomposition dans le systeme d’équations 2.1. On simplifie
I’équation en tenant compte du fait que l'écoulement moyen en est une solution

particuliere. On obtient :



17

- équation de continuité :

x 7%

dp; S, 5
St V(P + oLV +pLugT) =0

- équation vectorielle de la conservation de la quantité de mouvement :

7 f’gﬁ + 7 (?ﬁ;?;).?* + (gﬁ*)fﬁ; + (?7;).7;)
+0% <(v VOV + (Tv";?;).?* + (?7).?;) -V
ETY T VT )T
VT F TR + TV 1+ 7 1)
- équation pmi i’énergie interne e = C,.T : 27)
L g ((?(CUT;)).V +(V(C,T)). 7% + (ﬁcv:r;)).?;;)

o, ((?(oj*».x‘/* +(V(CT). 7 + (?(cv:r;».%)
= PVG - V.V —piVay + &y — V(X VTE + NV T)
Le terme ®p représente la fonction de dissipation et s’écrit :

—x* - = =
op = (N (V.3) + 0(V.V ) + (V5] = [V

RV 1+ RV )TV +((©.T)
TV 1+ BT 1o Vo

- équation d’état des gaz parfaits :

L s
B¥ — FF + =%
P T p

Ce systeme d’équations est elliptique donc presque aussi difficile & résoudre
que les équations de Navier-Stokes. Il constitue cependant le point de départ des

théories d’Orr-Sommerfeld et PSE qui vont étre développées par la suite.
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2.3 Modele d’Orr-Sommerfeld pour des écoulements incompressibles

La théorie locale parallele est appelée ainsi a cause des hypothese utilisées (cf. sec-
tion 2.3.2). Elle conduit a la célebre équation d’Orr-Sommerfeld pour un écoulement

bidimensionnel et incompressible ol la courbure a la paroi est négligée.

2.3.1 Systéme de coordonnées

. \ 2’ . ——_§ _» ——} ~ H . 14
On part d’un repere cartésien fixe (O, X,Y, Z) o X est aligné avec la corde de
— —
l'aile (dans axe de I'avion),Y est selon la verticale et le Z complete le repere
orthonormé direct. Pour résoudre les équations de la couche limite on se place dans

ﬁ
le repere local (M, T, %, Z). Nous effectuons le changement de variable suivant,

Fi1c. 2.1 Repere fixe, repere lié a la paroi
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afin de se placer sur le repére lié a la paroi :

X = zcos(8) — ysin(6)
Y = zsin(8) + ycos(6) (2.8)
Z=z

Du coup intervient un terme de courbure dans les équations noté K(= —g—z). Ce

terme permet de prendre en compte la déformation des axes de coordonnées liés

au corps étudié. Une analyse simple permet de montrer que K = —m, mais
celui-ci sera négligé par un souci de clarté (d’autant que dans les domaines d’étude
classique le rayon de courbure R est grand). L'influence de la courbure est explicitée

plus en détail dans la these de H.Salinas [12].

2.3.2 Hypotheéses

Nous réduisons le probleme de la stabilité a un probleme local. Plus précisément,
la stabilité d’un écoulement est recherchée dans une section infiniment mince de
la couche limite, entre deux abscisses = et r + dr indépendamment des variations
des caractéristiques de ’écoulement en amont ou en aval de la section considérée.
On néglige ainsi localement la dépendance en x de I'écoulement moyen; le profil
de vitesse ne dépend plus que de y. On suppose que localement la couche limite ne

s'épaissit pas, ce qui revient a négliger la vitesse verticale moyenne. On note :

”

U
1.7/ _ o
QTCV = 1%
X W (2.9)
P = POC-Q?x:
p= i
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On a )
U = Uly)
V= 0
W = W) (2.10)
P = Py
L7 = B
La perturbation est cherchée sous la forme :
__)* * * * * *
Qs 2] = [ugp(a’17 y? Z? t)? /ng(a:’ y’ Z) t)) w(p(‘r'/ y? z? t)ﬂp(p(x7 y? Z? t)) p@(‘r'/ y? Z? t)] (2 11)
?;:; - ¢*(y>e(iax+iﬁz—z’wt)
ou,
_>* ~ * ok Ak Ak A%
¢ *(y) = [a(y)", 0" (y), w*(v), p*(v), ()] (2.12)
on adimensionne par
( 5ok
= (5&
=&
§ W= é"x (2.13)
ﬁ = poog?gc
a ﬁ*
\ p - Poc
De méme pour l'espace et le temps (c représente la corde).
4
T=1¢
— — g
YT (2.14)
z=1%
4
7= 1Q=
\ c

avec q = ?\—:, g = ?\—: et w = 27f olt A\, et A\, sont les longueurs d’ondes des

perturbations dans les directions z et z et f est la fréquence physique de la per-
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turbation.

Nous introduisons la forme du champ moyen ainsi que celle des perturbations
dans les équations de Navier-Stokes linéarisées 2.7, en particulier nous annulons

toutes les dérivées en z et 2z du champ moyen ainsi que V.

2.3.3 Equations de stabilité

En utilisant le nombre de Reynolds basé sur la corde Re = Qjc, les équations

de stabilité de la théorie parallele pour un écoulement incompressible sont :

’

1ot + —g—-—g + 18w =0

) —iwi+iaTa+igWa 0 = —iop+ Fl(~a? ~ 57+ A (2.15)
—iwd + iaTd + i3Wo = 124 L{(-a?- )0+ &

| —iwd +iald +ifWa +057 = —ifp+ £ [(—a? - )@ + 5¥]

En général les conditions aux limites du probléme sont une perturbation nulle & la

paroi et a U'infini soit :

5(0)=0 lim &(F) =0 S (2.16)

Dauns le cas d’Orr-Sommerfeld, le systéme peut s’écrire plus simplement par ma-

nipulation des équations 2.15. En dérivant par y et en recombinant les équations

v

de quantité de mouvement en x et z (sachant que 3 a = —i(al + fw)) on exprime

% en fonction de ¢, 'équation de quantité de mouvement selon y nous donne alors
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le systéme :

(.L(D2 — (& + 82))2 = (aU + W — w)(D? = (a® + ) + (U + W )0 =0

JRe

v

opérateur L

- 277 2147
avec D = ;9%, U’ %_% et W’ ayw
L doit étre singulier pour que les petites perturbations existent, on en déduit une

relation de dispersion.

F(oa,B,w,Re) =0 (2.17)

2.3.4 Théorie temporelle, théorie spatiale

A priori les nombres «, [ et w sont complexes ce qui fait six parametres dont
deux sont fixés par la relation de dispersion. On peut toutefois diminuer le nombre
de parametres en appliquant soit la théorie temporelle soit la théorie spatiale. La
premiere suppose une évolution au cours du temps de 'amplitude des différentes
perturbations en un point donné de l'espace. La seconde suppose une évolution
spatiale de 'amplitude des différentes perturbations en un instant donné. On notera

pour un nombre complexe X = X, +¢.X;

Théorie temporelle Dans la théorie temporelle a et [ sont réels et w est

_—§
complexe. La forme mathématique de ¢, s’écrit alors :

—

¢ — E( ) zax+zﬁz fwrt) (2.18)



23

w; représente le facteur d’amplification temporelle. La perturbation s’amplifie si

w; > 0, s’amortit si w; < 0 et est neutre si w; = 0.

Théorie spatiale Dans la théorie spatiale w est réel, a et 3 sont complexes. On

prend comme hypothese que la partie imaginaire de 3 est nulle, d’ol1 :

—

6, = B (y)eeliterattri—ert) (2.19)

%
Cette écriture représente une onde caractérisée par le vecteur d’onde k&, dont le
M

module est égal & (a2 + 32)%°. avec pour direction I'angle ¢ = tan=!(5,/a,) et pour

vitesse, la quantité ¢ = w/|k|.

Dans le cas de 'étude de la stabilité de la couche limite, il est plus naturel de
considérer la théorie spatiale. Deux cas sont alors a distinguer :
- zone stable (a; > 0).

- zone instable (a; < 0).

2.4 La méthode du facteur N

Soit une perturbation donnée d’amplitude Ag en X; (début de la couche limite

instable) et qui va s’amplifier pour donner naissance a la turbulence en Xy .Son

amplitude A va croitre dans le temps et dans l'espace. Le rapport ln(%) est
appelé facteur N : N(z) = ln(%) ;on aainsi N(X;) =0 et N(Xy) = Ny,

Cette méthode permet de détecter les perturbations instables ainsi que leur

évolutions dans le temps et dans l'espace. Il reste a déterminer la valeur de Ny,
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pour laquelle la transition apparait. A ce point, il est nécessaire de faire appel a
I'expérience pour pouvoir relier 'amplification des ondes instables a la transition.
En 1956, Smith et Gamberoni ont constaté, qu’au point de transition, la valeur
critique de Ny, était proche de 9 pour un écoulement compressible et de 5 pour
un écoulement incompressible. Ce critére sera confirmé par Van Ingen en 1956.
Cela signifie que 'amplitude d’une onde doit étre multipliée par e soit 8100 en

compressible pour qu’elle donne naissance a la turbulence.

2.4.1 Calcul du facteur N

Sur le plan pratique, il est important de déterminer (ou d’estimer) l’abscisse de
transition. En théorie spatiale pour un écoulement bidimensionnel (= § = 0), une
fluctuation de fréquence w qui a pour taux d’amplification «; permet de définir une

amplitude A(7',w) = HELH (cf. équation 2.19) par :

_ 1 OA(T ,w)
YETAZT. W o (2:20)

2 - [ -adee 2.21)

ol l'indice 0 indique que la quantité est prise a l'abscisse de la premieére instabilité

représente par rj.

L’idée de la méthode du facteur N consiste a supposer qu'il existe une valeur
critique Ny, = N(zr,) telle que pour x > zr, U'écoulement n’est plus laminaire.

Mack [7] a affiné cette estimation en introduisant le taux de turbulence extérieur



T'u pour la détermination de N, avec la relation suivante :
Np, = =8.43 — 2.4In(Tu) (2.22)

Cette relation semi-empirique intégre une étude de réceptivité a travers le taux de

turbulence extérieure Tw défini comme

(<U>+<V2>+<W?>)
3.Q%

Tu= (2.23)

Notons que pour Tu = 2.98.1072, on obtinet ny, = 0; ceci signifie que la transition
se produit au point d’instabilité x = x;. En réalité pour des taux de turbulence
trop élevés, la théorie de la stabilité n’est plus valable, car I'expérience montre que

la turbulence apparait avant le point d’instabilité.

Pour résoudre cette équation on fixe w et on peut adopter pour & l'une des
stratégies suivantes :
- G fixé
- méthode enveloppe : on effectue un balayage en 3, et on retient pour chaque valeur
de x la valeur de 3 la plus instable, c’est & dire celle qui correspond au coefficient
o; le plus négatif. En deux dimensions [, est nulle, mais ce n’est pgs le cas en trois

dimensions d’ou l'existance de plusieures techniques d’intégration.
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CHAPITRE 3

THEORIE LINEAIRE NON PARALLELE

Le développement du code PSE (Parobolized Stability Equations) a commencé
a la chaire en 1996, avec un premier programme developpé par Marc Langlois [6]
pour des écoulements incompressibles. Cependant, afin de pouvoir introduire les
effets non paralleles et les effets de courbure pour les écoulements transsoniques il

est important de développer un code de résolution compressible PSE.

3.1 Hypotheses

On suppose que l'écoulement moyen ne subit pas d’évolution suivant z (hypothese
d’une aile d’envergure infinie). Comme pour les autres théories dites non paralléles,
I’épaississement de la couche limite est pris en compte, en considérant notamment
la vitesse normale & la paroi V. En outre, on tient compte de la dépendance en z

du champ moyen. On considere alors un champ moyen de la forme :

(z,9)
V* = V*(Ia y)

< Wi N K*(z v) (3.1)
P =P (z,y)
T =T (z,y)
o =7 (z,y)

\

A comparer avec les hypotheses du modele d’Orr-Sommerfeld (cf. Equations 2.10)
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De méme on considere que la perturbation adimensionnée a la forme :

7:; = [u;‘,(:v,y,z,t),v:‘o(x,y,z,t),w;(x,y,z,t),pw(x,y,z,t),p;(x,y,Z,t),T$(x,y,z,t)]
7 = T (o) g A6 DD
(3.2)
ou :
s ~ % A~k ~ % A% A% Tk
¢ = [0 (x,y), " (z,y), & (z, ), 0"(z, ), " (z,9), T"(z, y)] (3.3)

A comparer avec les hypotheses du modele Orr-Sommerfeld (cf. Equations 2.11)

L’abscisse z; désigne la station initiale du calcul PSE (ou se développe la premiere
instabilité), a,5,w... ont les mémes définitions que dans la théorie de Orr-Sommerfeld.
Cependant « ainsi que les fonctions d’amplitudes dépendent explicitement de z
contrairement a la théorie parallele développée precédement. Toutefois on suppose
que cette dépendance en fonction de x est faible c’est pourquoi on ne tiendra compte

que des ordres 0 et 1 dans le développement des équations.

3.2 Les coefficients thermodynamiques

Les coefficients thermodynamiques X*,,&*,X, I et \ sont directement reliés au fluc-
tuation de la température. En les notant génériquement &* pour 5\*,/1*,5\2 et ® pour

A, I,A., NOUS avons ainsi :
dR »

= T 3.4
K=o (3.4)
Ok  di 0T
X ~ 77X (3.5)
ox*  d?% OT .. drOT*
e el A i .
X — 470 0X T T ax (3.6)
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3.3 Equations de stabilité

En reprenant les équations de Navier-Stokes, on introduit le champ moyen et la
nouvelle forme des petites perturbations.
- équation de continuité

—iwp* —I-,b'*[%; + o0 + 28 6y +iF*w*]

+( %+ &)+ T (L + oY) (3.7)
+u*%ﬁ; +V ap +A*8p +Zﬁ*A*W =0

- équation de quantité de mouvement suivant Ox

p* it U 8u +ia* +u*8U +V*8u +®*8U + ﬁ*W
By

+pr U8+ *8U Sy = —iarp* + —( +2 )‘98:2 ot + j%*aa%(g +18"w")
(/\ +om )( 02 g +2m*‘9“ @) + X (G5 +iat G

'+‘)\ ’Lﬁ*( Oz + ZOZ*'lZ]*) + dT 8y ( 90" + 'LOé*'lAJ*) +7 o (c?Ty* + g;gy + Za*av )

(-0 +iB7 (% + it )) + —————d(’\d;g“ (ia*’f"*)%
dXx . xrfy OV 2T a1 * 02U di* : s 80U
dT*(W'f‘lCYT)'E‘;“{‘(dT*zT ETLay) d%T _8y2 +ETL*Z TW
(3.8)
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- équation de quantité de mouvement suivant Oy

”ﬁ*[-—zw*@ (U el -‘rZO[*A*) +U*6V +V*81V A>o<8V +25*W ]
+ [V = +Lf”a§; o+ DT +ia*a*+z‘ﬁ*w*)
—x\ 20 *
+(/\ + 20 )(M +X (6zay+za %)

dg* oT" ~ ~ 2 A
_|_>\ i * OW* o* oT " ( +ZOZ* *)+/'L (amay_a*au +,Laa *_i_QZa*av —a* ’U*)

9y dT" oz
+a (=670 +zﬁ*( "+ o)) + (BRI | A0 ) or
_i_(d(/\ +207) i 82V a2v + d a2T T*aa? ;1; aaf;)aa_z*
+o T*g::ay T ‘:w*T*a’W*
HELT G+ B + i T) L+ BTG
(3.9)
- équation de quantité de mouvement suivant Oz
ﬁ*[—-z’w*w* + (U*Q@ +iar) + @G + VT 4 -8 4T 0]
+p [T *BW Syl = —i07D *+)\*z[3*( - it )+/\z *6”
-\ + 21 )5*2 b+ ETMg; (i8=t* + ia*w*) +ﬁ*(iﬁ*@*(— + za*ﬂ*)) (3.10)

ES ! 2 K * Nk
+(122 0" + 2602 — o 1)) dT ay (zﬁ 42 )
— % OU* B28%\ dX - pwrPx av"
+N(Zﬁ* -+ 8;2 )dT*/LB T (W + Oy )

d*g* *__L W™ | —x 8w~ dB* - kP OW
+(E T E) O + w5 + it T2

— 2

dr

- équation de I’énergie

E*C (—iw*T* (U (8T —|—ZOZ*T*) *BT )+ V*ET* +1)*8T Zﬁ*W T*)
*BT *BT o @ kK ] ® Ak A QU
+pC (U G +V ) = P((——I—zau)—i—i—f-zﬁw) + (P 3m+—5;c—)
+q) + %3T (ZOé*T*) 8)\ (Za*T*)aT 4 )\*( da T* _f_QZa*aT a*z’f‘*)

aT
akx __3_T__8T* d/\z i ST dix ot *82T _(Q\j_ *82T YL
5 G+ (T + T+ NG + BT \peT

(3.11)
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ou : -
g = 2N + 27) | % (ia7d7) + G- 2]
PG (G 100) + G (Gr +iat@) =g g
+20 (G (55 +ia™0) G + (1870° + G5 G- + (18707 + da™i™) B
A3 +27%) [ 57" X w80 OV A o 90U Y2 (V"
+2d0 2 (972 o g e[ O 9B e ()22 2]
- équation d’état )

S==t = 3.13
P T P (313)

Il est & noter que toutes les variables sont dimensionnelles. Le systéme peut se

mettre sous la forme d’un systeme différentiel aux dérivées partielles :

[A"]q +[C]a—y+B =0 (3.14)
ou
7= [, 0t w57, 67, T (3.15)

3.4 Conditions aux limites

Les conditions aux limites sont du méme type que pour Orr-Sommerfeld. Le

domaine d’intégration des équations de stabilité est de forme rectangulaire dans le

plan (z,y).

Ce sont les conditions d’adhérence a la paroi, et loin de la

Conditions limites
paroi, on impose que toutes les grandeurs fluctuantes soient nulles.
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- sur la paroi,vVz,

4 (3.16)

- a l'infini,Vz,

~

lim ¢ (3.17)

y—oc

3.5 Normalisation

Les équations de stabilité avec les conditions aux limites précisées ci-dessus ne
constituent pas un probleme fermé. Il reste a déterminer une loi d’évolution pour la
fonction a(x). Cette derniere doit étre telle que l'essentiel de la dépendance en x de
la perturbation se situe dans le terme exponentiel. Herbert a proposé une équation
de fermeture appelée normalisation. Elle est basée sur les fonctions d’amplitudes

et s’exprime par l'intégrale suivante :

o0 aA* aA* aA* A T* t o
/ o D07 00 00 0T 00" o (3
0

C e T e Y e T e TP s

ou 2! désigne la quantité conjuguée de z.
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3.6 Mesure des amplitudes

Les amplitudes sont ensuite calculées a §* constant a l'aide du facteur N, déja
décrit dans les sections précédentes. Une redéfinition des amplitudes est cependant

nécessaire.

3.6.1 Redéfinition des amplitudes

Les grandeurs physiques mesurées par le code PSE le sont en fonction de x et de
y. Pour exploiter ces résultats, on élimine la dépendance en y en définissant une
amplitude dont il éxiste plusieurs définitions :

- Double de I'énergie cinétique des fluctuations

A((L’) = \//0‘oo pmoy(‘u:‘o(z;y) %ms - IU:;(ﬁ, y) 72"ms + !w;(l‘ y) %ms)dy (319)

- Maximum de la fluctuation de quantité de mouvement

A(z) = |Umoypy + PmoyUplrms (3.20)

- Maximun de u
Alz) = |[ug (2, Ymaz)|rms (3.21)

- Maximun de v
A(x) = [v3(Z, Ymaz) |rms (3.22)

- Maximun de w
A(z) = |wi (T, Ymaz)|rms (3.23)

- Maximun de v a yrey

A(x) = lu;(x>yref)lrms (3.24)
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Yrey €st une distance a la paroi initialement fixée et rms représente la valeur effi-

cace .

7@ )lme = \/ 7| o (325

ici T désigne la période.
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CHAPITRE 4

CALCUL NUMERIQUE DE L’ECOULEMENT MOYEN

Nous savons que l’écoulement loin du profil peut étre approximé par celui d'un
fluide parfait. Une analyse dimensionnelle nous prouve que cette hypothése est
raisonnable pour un nombre de Re élevé. On peut faire I'hypothese de "fluide
parfait” ; pour un nombre de Mach faible, et un rapport des températures faible,

on peut faire ’hypothese de ”fluide incompressible”.

4.1 L’écoulement potentiel

Dans le cas d’un écoulement potentiel on fait I'hypothese que le fluide est parfait
incompressible et que I’écoulement est irrotationnel. Les développements mathéma-

tiques permettant la résolution d’un tel écoulement sont expliqués dans ’annexe

L.

Comme démontré dans 'annexe, ’hypothese d’écoulement potentiel est limitée.
D’une part 'hypothése d’incompressibilité n’est pas justifié pour les écoulements
transsoniques, d’autre part I’hypothese irrotationelle obligeant 'introduction de la
condition de Kutta est limitée. Des que l'écoulement dépasse un nombre de Mach
de 0.3 les effets de compressibilité ne sont plus négligeables, les équation d’Euler
sont alors plus adéquates que 'écoulement potentiel. Ces équations permettront

également de résoudre les écoulements transsoniques.
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4.2 Régime transsonique

On définit un écoulement transsonique comme étant un écoulement dans lequel on
retrouve juxtaposées des zones subsoniques et des zones supersoniques. La juxta-
position de ces deux régimes donne lieu a 'apparition d’ondes de chocs qui créent
des discontinuités dans 1'écoulement. On note l'existence d’'un nombre de Mach
critique, & partir duquel I'écoulement est sonique (i.e Miyeq = 1) en un point. Ce
nombre de Mach critique est défini pour une géométrie et un angle d’attaque donné.
Bien que 'écoulement a l'infini ne soit pas sonique, c’est l'accélération provoquée
par la cambrure du profil qui amene le nombre de Mach a étre supérieur a 1 loca-
lement.

De nos jours, il est devenu impératif d’étudier un tel régime afin de pouvoir ”des-
siner” correctement les avions volant juste en dessous de la vitesse du son. Par
exemple, le nombre de Mach de croisiere d’un avion de type Airbus A320 est d’en-

viron 0,78.

4.3 Equations d’Euler

On définit les équations d’Euler comme les équations de Navier-Stokes avec une
viscosité négligeable; elles sont developpées dans 'annexe I. Ces derniéres sont

résolues par le schéma de Jameson

4.4 Schéma de Jameson

Afin de décomposer le domaine de calcul, on utilise un maillage structuré de type O

et la discrétisation spatiale est effectuée par l'intermédiaire d’'une formulation aux
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volumes finis. Le principe de cette méthode étant justement d’intégrer les lois de
conservation sur chaque cellule élémentaire, elle s’applique donc bien au probléme

donné. Ainsi, sur chaque cellule (4, j) I'équation (I.14) s’écrit :

ow
Q—é?—i—Q(w) =0 (4.1)

ou () représente le flux convectif de la cellule & travers les cotés, i.e 'intégrale de

bords définie par le second terme de l'équation (1.14).

Soit Az et Ay les incréments suivant les axes z et y suivant le coté k de chaque

cellule (7, 7). L’équation (4.1) va devenir :

ow 2
Q>+ ;Q’“ =0 (4.2)

avec

Qr = ftAyr — geAzy

Les flux fr et gr sur chacun des cotés d’une cellule donnée sont évalués comme
la moyenne entre les valeurs de f et g dans chacune des cellules adjacentes. Afin
de résoudre numériquement l'équation (4.1), il faut choisir un schéma numérique
qui permettra d’approcher les flux en fonction de l'inconnue. Pour cela, on utilise
une méthode FTCS (Forward Time Centered Space) que l'on rend stable pres des
régions de fort gradient de pression en ajoutant un terme de dissipation artificielle
dans la définition du flux. Ainsi, le flux est séparé en une partie convective et
une partie dissipative. Ce schéma est connu sous le nom de schéma centré avec
dissipation de Jameson-Schmidt-Turkel [5]. On note D ce terme de dissipation
artificielle (ou flux dissipatif), et la nouvelle équation & résoudre est alors de la

forme :
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ow
QE +Q(w) —D(w) =0 (4.3)
Ce terme dissipatif est constitué de termes du second ordre qui jouent le role de
viscosité artificielle pres des chocs et de termes du quatrieme ordre qui réduisent

I'effet de la viscosité artificielle dans les zones ou la solution est naturellement

stable.

4.5 Notions de couche limite

Nous présentons dans cette section le principe de couplage entre un code non
visqueux et un code de calcul de couche limite ainsi que des notions sur le controle

de la couche limite laminaire.

4.5.1 Couplage visqueux - non visqueux

L’écoulement Euler accompagné d’'une correction couche limite nous permet d’ob-
tenir I’écoulement moyen (équivalent a la solution des équations de Navier-Stokes
stationnaires). Afin de mieux rendre compte des effets de la couche limite sur
I’écoulement externe et en particulier de l'interaction choc-couche limite ainsi que
I'influence de l'aspiration de la couche limite sur I’écoulement externe, nous pou-
vons effectuer un couplage entre le code Euler et un code de correction de couche
limite. En effet, la présence d’une couche limite peut amener a un décallage de la
position du choc de 'ordre de 20% de la corde entre un calcul visqueux et un calcul
non visqueux [2].

Pour modéliser les conséquences de la couche limite sur I’écoulement non visqueux,

nous avons effectué un calcul Euler a partir du profil initial auquel nous avons ajouté



I’épaisseur de déplacement ¢* ajoutée a 'épaisseur de quantité de mouvement 6.

5 = / 1= gy (4.4)

PeUe
e—fs U - 2y (45)
o PeUe peUe '

ou ¢ 'épaisseur de la couche limite définie telle que U(J) = 0.99U, est de 'ordre de
grandeur de do qui nous a servi a adimensionner les équations de la couche limite

(cf. équations I1.6)

4.6 Maillage automatique

(o]
IR EAERA RRASE LRRER

V2
o

T

fary

[¢]
o l]llllllllil]l‘!l

3
L
'O

Fia. 4.1 Maillage autours du profil pour le calcul Euler

Afin de pouvoir mailler le nouveau profil (avec 1'épaisseur de couche limite),
nous avons tavaillé a l'élaboration d’'un mailleur automatique. Le mailleur codé

utilise la technique de Poisson. Le maillage constitué est un maillage structuré en 0
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F1G. 4.2 Zoom du maillage

autour du profil, avec des fonction de concentration prédéfinies. Les mailles sur le
profil sont concentrées au bord d’attaque, et au bord de fuite. Enfin dans I’espace
les mailles sont concentrées autour du profil (cf. figures 4.1 et 4.2). Il faut choisir
judicieusement le nombre de maille sur le profil (i), vs le nombre dans ’espace (j)

afin d’obtenir des cellules a faible allongement. Un maillage 90x60 est un bon choix.

Aprés une résolution du code Euler on lance le code CLDF afin de calculer les
épaisseurs de couche limite. On redéfinit ainsi un nouveau profil prenant en compte
I'effet de la couche limite, on remaille autours de ce profil puis on relance le code

Euler.
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4.7 Correction couche limite

La correction "couche limite” est effectuée grace au code CLDF, développé a
I'ONERA, qui permet de résoudre les équations de la couche limite développées
dans 'annexe II. Comme déja illustré par la figure 1.1 la correction de couche li-

mite ne modélise pas le passage de la couche limite a travers le choc.

Ce code permet d’obtenir les profils de vitesses dans la couche limite ainsi que
les grandeurs caractéristiques de la couche limite comme 6, 6%, Cy.... Le code CLDF
permet de calculer la transition en utilisant quatre critéres différents’ :

— le critere longitudinal ” Arnal-Habiballah-Delcourt”, qui prend en compte les in-
fluences du taux de turbulence extérieure et du gradient de pression longitudinal ;

— le critére longitudinal ” Arnal-Vialle-Jelliti”, qui se base sur un calcul approché
de 'amplification totale des ondes les plus instables;

— le critere transversal C1, qui compare la valeur locale du Reynolds basée sur
I’épaisseur de déplacement transversal a une valeur critique fonction du pa-
rametre de forme longitudinal incompressible ;

— le critére transversal C2, qui cherche la direction la plus instable de I’écoulement,
et compare ensuite le Reynolds basé sur 1'épaisseur de déplacement dans cette

direction & une valeur fonction du taux de turbulence extérieure.

Le couplage Euler-couche limite n’a pas été installé au sein du code d’optimisa-
tion. Bien qu’il donne des résultats encourageants (cf. la figure 4.3), d’une part il

ne prédit pas le passage de la couche limite a travers un choc transsonique, d’autre

10n pourra consulter le manuel de CLDF pour obtenir une liste de références sur les criteres
de transition cités.



41

part il prévoit la transition grace au critére propre a CLDF (cf. ci-dessus) et n’utilise
pas la théorie de stabilité. Actuellement le code d’optimisation ne prévoit donc pas
I'influence de la couche limite et donc en particulier de l’aspiration sur I’écoulement

externe a la couche limite.

Euler 2D
données expérimentaleos
Euler-CLDF

&I
|

F1G. 4.3 Comparaison entre ’experience, le code Euler sans et avec couplage couche
limite '
4.7.1 Principe général du couplage

L’ensemble de l'algorithme est finalement illustré par 'organigramme 4.4

L’ensemble de ce travail sur le code Euler a été réalisé en collaboration avec
Romain Prunieéres, et afin d’avoir plus de précisions vous pouvez vous référer & son

rapport [10].



Maillage du profil

A d

Code Euler

A 4

Code CLDF

|

Remaillage

k4

Code Euler

Fi1G. 4.4 Organigramme du principe de couplage

42
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CHAPITRE 5

CALCUL NUMERIQUE DE LA PERTURBATION

5.1 Résolution Orr-Sommerfeld

Nous avons montré comment obtenir les équations de stabilité avec les hypotheéses
d’Orr-Sommerfeld (cf. les équations 2.10,2.11,2.15). Apres une discrétisation clas-
sique en différence finie selon y, les équations obtenues peuvent se mettre sous forme

matricielle
(w[My] + a[My] + Q2[Ms] + B[M] + B[ Ms] + [Me]) @ = 0 (5.1)

—
ou le vecteur ® represente les vecteurs propres (@, 7,%...) en chaque point du

maillage a une station donnée.

Dans la théorie temporelle (cf. section 2.3.4), ou « et 3 sont supposés réels et
donnés, le systéme matriciel 5.1 se ramene a un systeme a valeur propre linéaire en

w de la forme

P)® = w[M]T

(5.2)
Ol : [P] = —(a[M,] + o?[Ma] + B[My) + B2[Ms] + [Ms))

Un tel systéme peut se résoudre par des algorithmes numériques classiques. Ces
méthodes peuvent se diviser en deux categories : les méthodes globales et les
méthodes locales. Les méthodes globales sont cofliteuses en temps de calcul (ty-

piquement ordre ©{n®} oli n 'ordre des matrices), mais ne necessitent pas d’initia-
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lisation. En revanche les méthodes locales convergent rapidement mais nécessitent
une estimation initiales des valeurs propres. SCOLIC utilise un algorithme global
sur un maillage grossier afin d’obtenir une estimation de 3 qui sert d’éstimé pour
une méthode locale sur un maillage raffiné. SCOLIC utilise une approche hybride
théorie temporelle, théorie spatiale, ou une approche temporelle ”pure”. Pour plus

de détail on se référera a la these de M. Mirshams [9].

5.2 Résolution PSE

Conditions d’entrée Le systeme d’équations PSE est un systéme aux dérivées
partielles parabolique dans la direction z. Des conditions aux limites (ou conditions
‘initiales’, par analogie aux problémes temporels) sont requises au départ du calcul
de stabilité en z = zy. Elles portent sur le nombre complexe a* et 4*, 0%, 0*, p*, T
On choisit de les initialiser avec la solution des équations d’Orr Sommerfeld qui est
calculée par SCOLIC, un code développé par M. Mirshams [9] en 1994 et M. Lan-
glois [6] en 1996. L’ensemble des équations et la construction du systéme matriciel
est explicitée dans la these d’H. Salinas [12]. Nous présentons ici succintement le
principe de résolution numérique. Nous commencons par adimensionaliser le vec-

teur ®* des petites pertubations.
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5.2.1 Adimensionalisation

On utilise les caractéristiques de I’écoulement externe a la premiere station de calcul

comme valeur de référence. Nous avons ainsi pour 'espace et le temps :

=5
V=575
1 - 0 F (5.3)
LEFD
I _ t.U,,.ef
\ t= 5*(x)

Pour les variables physiques de 1'écoulement moyen nous prenons

— _ U*
U Uref
v _ V
V - Uref
— . —W-*
W=
? _ P "Y'M‘I?Ef
pref~UTef
¢ (5.4)
T =&
Tref
-_ 7
p Pref
- _
/’l’ Href
—_ Y
N, = 2
\ ¢ Acref
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Pour les variables physiques des petites perturbations

4

~ g

=1

A @-*

v= Uref

A ’LE'*

w= Uref 5

p= P -')/-Jlb}f;ef
Pref.

< X Tff ref (5.5)

T =7
Tref

N

p Pref

N

M Href

A A*

A — c

\ ¢ Acref
Pour les variables des ondes )
a = a*§*(z)
$ B =p56"(z) (5.6)

w*§*(x)

W= =

\ UTef

Il apparait alors dans les équations :

Re — prerrefé*
Href

TEe C H
Pr 1

Ure
Mref — —Zref

vV 'YRTref

On suppose le Pr constant d’ott A, = . L’hypothese de Stokes permet de calculer
A=-In

5.2.2 Algorithme et organigramme

Construction du systéme matriciel On exprime le systéeme d’équations de

Navier-Stokes ou les petites perturbations sont introduites sous la forme matri-
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cielle :

oD
[A]® + [C]— + [B] =0 (5.8)
dy
et .
0u 9 9 of,
7ayaay7 ayv ay

A~

O = [a,0,0,p,T,p

C’est un systeme 5 x 10 (les 5 équations de Navier-Stokes)

Obtention du systéme matriciel 8 x 8 On obtient ensuite un sytéme 8 par
8 en supprimant la variable p et la dérivée v par rapport a y en recombinant les

équations d’état et de continuité (cf. thése de H. Salinas [12]) :

oo
G]— = [F]® + [H] (5.10)
Ay
avec )
. Ot Ow OT
&= [0, 0,0, 5T, 22 LY Ty 5.11
00,51, 20,92, 2 (5.11)
Les 3 nouvelles équations relient @, %, 7 et g—z, g—‘j, % par l'intermédiaire de [G] et
[F]

On inverse ensuite la matrice [G], pour obtenir un systéme de la forme :

M) = 6] [F] (5.12)
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On discrétise ensuite en y selon un schéma compact d’ordre 4 dit de Hirsch et
on obtient :

[E]foF + [G)fe*! = [F)* (5.13)

oli [E]¥, [G]* et [F]* dépendent de [M] [N]

Contruction du systéme global Les matrices [E}¥, [G]* et [F]* sont calculées
en chaque noeud du maillage et on forme ensuite la matrice tridiagonale par bloc

8 x 8 du systeme global.

Résolution du systéme On inverse ensuite le systéme tridiagonal par blocs

composé des matrices 8 X 8 a chaque noeud.

5.2.3 Organigramme

On avance la solution dans la direction z. Le point de départ est donné par une
condition initiale en x calculée par la théorie paralléle (code SCOLIC). Pour les
stations suivantes on procéde par itérations. Pour initialiser la procédure on prend

a; = oo et @ = Py ol ag et $y proviennent de la station précédente. En fixant

p

aj, on trouve les fonctions d’amplitude <I>§7+1. La normalisation N = 0 permet de

p+1

corriger a? pour obtenir a

(p+1) _ . (p) (p)
o 7 =af + Ao (5.14)
ou
= (p+1
w__ N @)
A’ = —i — 5 S0 (5.15)
Ao, @57)

ﬁ
® est le vecteur des petites perturbations défini par 5.11
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La solution (a;,q;) du systeme d’équations PSE converge lorsque l'on satisfait
le critere :

S < (5.16)

L’ensemble de ce travail a été réalisé en collaboration avec Guillaume Matile. On

pourra se reporter a son rapport pour plus de renseignement [8]

Condition initiales
vecteurs propres calculées par scolic

:

Estime deccala station] IQ——————

[
Nouveau ¢ | ———— I Caleul de nouveaux vecteurs propres 1
4
|

4’—&| Normalisation verifies ] LN

FiG. 5.1 Organigramme du code PSE compressible

5.3 Proposition de calcul de ’équation de dispersion

Dans la résolution des équations on modélise les petites perturbations par des

fonctions linéaire par morceaux. Nous utilisons la définition décrite par les équations
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2.11. Pour la résolution numérique nous avons :

-5/@ — g(y)e(iax—}—i,ﬁz—iwt)

avec

N
6 (y) =Y ¢xCily)

k=1
ou
ok = [U(yr), O(yr) L(yx). B(yr), A(yx)] (5.17)
et

( 0 s1Y < Yk-1

Y=Yk-1

Culy) = { W Sl Yk-1 <Y < Uk
k ety

. _ YUk 3
1 viiee St Uk Sy <Yk

0 Sl Ype1 < Y

\

Nous nous proposons de changer d’espace vectoriel :

-gw — g(y)e(iax—}—iﬁz—iwt)

ol

J\T
oy =e> GrE(y)
k=1

. (5.18)

Pk = Uk, Ok, Wk, Dk, Pr]
et
Ey(y) = e™"*y

Dans ce cas ci (équations 5.18) il y aurait N+1 inconnues pour chaques variable
contrairement aux équations 5.17 qui implique uniquement la valeur de la fonc-
tion a chaque noeud. Nous pensons que nous pouvons obtenir des solutions aussi
bonnes avec bien moins d’inconnues étant donné la forme typique des perturba-

tions. L'avantage de cette méthode vient du fait que les fonctions Ey(y) forment
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une base orthogonale puisque

27 2w
/ E_«(y)E;(y) = / e” MV = & % 27 (5.19)
0 0
ol
1sii=j
d;,; represente le symbole de Kronecker §; ; = (5.20)
Osit#7

Les dérivées par rapport a y donnent

N N

8g(y) — _are—ayzgke—iky 4w Z _ikgke—iky
Y
k=1 N k=1 (521)
3—* — _ e S
W = —dg(y) e VY ik g e
k=1

ainsi pour ’équation de la continuité nous avons

15}
iou, + =L +iBuw, = 0 (5.22)
dy
N N N N A
e W (iaZuke‘iky — akae"’ky + Z — ikupe” Y 4+ iﬁZwke”’ky> =0 (5.23)
k=1 k=1 k=1 k=1

Nous multiplions par e®¥*%¥ puis intégrons sur [0,27] : on a

vVie|l,N
j €L N] (5.24)
2% 7 (tou; — av; —ijv; +ifw;) =0
Ainsi la matrice resultante est donc tout aussi creuse que celle de la formul ;ation

classique 5.17.
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CHAPITRE 6

L’OPTIMISATION

On évalue la qualité d'une configuration d’aspiration grace a une fonction cofit
qu’on va chercher a maximiser ou a minimiser. Une fonction coiit est une fonction
qui va d'un espace E (de dimension quelconque mais finie) dans R. Dans notre cas
I’espace E décrit les configurations a optimiser. Cet espace dit de Design décrit
la position, la taille et le débit des panneaux d’aspiration. Nous avons décidé de
réduire le nombre de variables de design en conservant une vitesse d’aspiration
constante sur tous les panneaux d’aspiration. La dimension de E reste cependant
directement reliée au nombre de panneau (2 variables par panneaux (taille et posi-
tion) auxquelles on ajoute le débit. Comme nous ne savons pas faire d’optimisation
a partir d’espace de dimensions variables, nous sommes obligés de fixer le nombre
de panneaux pour effectuer notre optimisation. Nous faisons 'optimisation a di-
mension fixée, mais il est possible de faire plusieurs optimisations pour différentes

dimensions.

Dans ce chapitre nous allons décrire le principe de l'optimisation, la paramétrisa-
tion des configurations d’aspiration choisies, ainsi que les outils algorithmiques

utilisés.

6.1 Principe de 'optimisation

Apres un calcul de la position de la transition sur le profil sans aspiration, nous

déduisons une limite raisonnable de la position des panneaux d’aspiration Dans un
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premier temps nous cherchons a obtenir une bonne idée du phénomene. Nous cher-
chons donc a couvrir au mieux ’espace de Design en un nombre limité de points (cf.
la section 6.4). Choisir un nombre de point 3 de I'ordre de trois fois la dimension
de l'espace de Design semble raisonnable pour se faire une premiere idée des varia-
tions de la fonction cotlit. Une fois la fonction calculée sur ces points nous effectuons
une interpolation par krigeage (cf. I'annexe III), nous réduisons la distance entre les
points d’'un facteur environ 2, en ne conservant que ceux qui semble intéressants a
calculer (cf. section 6.4.2). Sur ces nouveaux points nous calculons la fonction coiit
ce qui nous permet d’affiner son interpolation. Le schema de ’algorithme d’appren-

tissage est illustré a la figure 6.1 Cette technique d’optimisation puisqu’elle ne fait

Caleul de la transition sans aspiration

Caleul d'un Design d'sxperience

Caleul de Ja fonction colt des cas proposés

&

Interpoialation

Calcul de lafonction codt des nouveaux cas

+

Optimisation sur-fa fonction colt interpolé Nouveaux cas

F1G. 6.1 Algorithme d’Optimisation

pas appel au gradient permet d’optimiser des fonctions non-continues a plusieurs
optimums locaux. Cependant du fait du passage par 'interpolation (construction
d’une fonction continue), la fonction ne doit pas représenter de trop fortes discon-

tinuités. Nous représentons ’architecture du code a la figure 6.2
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Design.f

/ ‘ K//I Alphaf |

Optim.f > suction.f
P N - Fac_Nf
h Krige.f "l Trainéef

F1G. 6.2 Architecture du programme

Le fichier "Optim.f” contient le programme principal ainsi que celui du calcul
de la fonction cofit. Il fait appel aux sous-routines de "Design.f”,”suction.f” et

"Krige.f”.

Le fichier ”"Design.f” contient les sous-routines nécessaires au calcul automa-
tique du Design (cf. section 6.4), il fait appel aux sous-routines de ”Krige.f” pour

I'élimination des points sans interét (cf. section 6.4.2).

Le fichier "Krige.f” contient les sous-routines nécessaires a la conception d’une
fonction d’interpolation par Krigeage (cf. 'annexe III) ainsi que ’évaluation de sa

qualité (cf. section 6.4.2).

Le fichier "suction.f” contient les sous-routines nécessaires au calcul des per-
formances aérodynamiques du profil. Cette sous-routine fait d’abord appel a la
sous-routine "raffine.f” qui raffine le maillage et impose les conditions d’aspiration
au code de correction de couche limite CLDF. Ensuite par l'intermédiaire de "al-

pha.f”, nous recherchons la premieére station instable avant de calculer le facteur N
grace a "facn.f”. Finalement, le facteur N étant évalué, nous calculons la trainée

en imposant & CLDF la transition prévue (fichier "trainee.f”).
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6.2 Paramétrisation

L’aspiration sur le profil va s’effectuer par des panneaux d’aspiration constitués
de tole perforée au LASER. La taille des trous est typiquement de l'ordre de
0,05 mm et la porosité d'un panneau d’aspiration est de l'ordre de 0,35%. Nous
positionnons les zones d’aspiration grace a la coordonnée curviligne de début et de
fin de panneaux. Nous caractérisons les zones d’aspiration comme suit : Exemple

avec N panneaux d’aspiration.

de s1 & 8 Localisation du premier panneau d’aspiration

de s3 & s4 Localisation du deuxiéme panneau d’aspiration

de syy_1 & say  Localisation du N%*™¢ panneau d’aspiration

D Debit volumique linéique

débit pour un métre d’envergure en m3.s”1.m~1

N

La taille totale de la zone d’aspiration sur le profil est donc T = Z Sok — Sok—1-
k=1

La vitesse d’aspiration est donc de vgs = % Cette paramétrisation nous impose

quelques contraintes :

Smin < 81 < 83 < ... < Son < Smaz contraintes géometriques

(6.2)

Diin €t Dpge sont choisis par 'utilisateur. Sy, €t Smee sont choisis par le pro-

gramme d’optimisation en fonction des caractéristiques du profil sans aspiration.



96

F1G. 6.3 Paramétrisation des panneaux d’aspiration

En réalité nous allons étre plus restrictifs et imposer :

Vi€ [|]1,2N -1

1,28 - 1] .
Si+1 — Si 2 Opmin

Car nous savons que pour des dimensions de panneaux trop faibles l'effet est mi-

nime.

Pour une meilleure optimisation, il faut donner dans la mesure du possible aux

variables de l'espace E le méme ordre de grandeur. Nous adimensionnons la pa-
—— Ly

ramétrisation de I'aspiration en introduisant du vecteur §* caractérisant le k*me

cas d’aspiration. 8F représente la %™ variable du k*™¢ cas d’aspiration.
4 A

of

- ok

88y
L 92N+ )
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Nous récupérons les s; et D grace a :

S]f — Smin = 5m2n + 6]16(A8 — 2]\/?5mzn)

Vi € [’1,2]\/ - 1|]

S?—i—l - Sf = Omin + 5?_‘_1(A3 - 2]\76mm)

soit Vi € [|1,2N]]

Y SF = Smin + 8.6min + (As = 2NGpi) Y 6 (6.5)

j=1
et D= sz’n + 5§N+1(Dmam - Dmm)

Vi€ [|1,2N + 1] 6F € [0,1]
2N

PO
j=1

En notant As = S,az — Smin la taille maximale d’une zone d’aspiration, .., sa

Les contraintes deviennent

\

taille minimale, D,;, et Dyee les débits minimum et maximum.

—
L’espace E de dimension 2N + 1 décrit par les & * est appelé espace de Design.

6.3 Les fonctions cofit

Le programme codé a la chaire propose une optimisation a partir de plusieurs

fonctions cofit, l'utilisateur choisira sur quelle fonction il désire effectuer son opti-
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misation.

fonction & maximiser
ﬁ
Fl( J ) = Strans

fonction & minimiser

[
Fy(6) =14
—

notons Sepj = Spat + 0.1 % (Snat — Sarret)

Strans —Sobj )2

Snat—Sarret

81 Strans < Sepi 400 *
F4(?) = Jan + i 7 (

si Strans > Sobj 0

— Si Strans < Sobi 1—521\7
F5(6) =dov + rane ’

si Strans =~ Sobj 0
La fonction F; permet de maximiser la zone laminaire. On note S4.4ns la coordonnée
curviligne de la transition
La fonction Fy permet de minimiser la trainée de friction (notée Ty)
La fonction F5 permet de minimiser la consommation en Kérosene du systeme. Pour
des avions a turboréacteur, la consommation de Kérosene est une fonction linéaire
de la poussée. Typiquement, la consommation spécifique A\; d’un turboréacteur est
de l'ordre de 1 kg de Kérosene par heure et par Newton de poussée.Or en régime
de croisiere la poussée est égale a la trainée d’oll une consommation égale a A\, T%.
Une pompe consomme typiquement 10 Wh pour 1 m?®/h d’air. Un kg de Kéroséne
permet typiquement d’obtenir 12 kWh. Pour un debit de 1 m?®/s on consomme
donc 3kg/h de Kerosene. On a donc choisi Ay =1 et A, = 3
La fonction Fy permet de minimiser le débit avec un terme de pénalité sur le re-
cul de la transition. Pour la pénalisation nous avons choisi comme critére limite
Sobj = Snat + 0.1 % (Spqt — Sarrer) C'est-a-dire 10% au-deld de la transition sans as-
piration noté s,. (On note Sgpret, la coordonnée curviligne du point d’arrét). Si la

transition est au-dela de cet objectif noté s, le terme de pénalité est nul, si la
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transition est en-deca de cet objectif le terme de pénalité est de 400 * (%ﬁ)2

Etant donnée que doy € [0, 1] on peut aisément espérer que la transition soit au-

dela de :

400 * (2enemin"0b)2 — 1 goit

Snat—Sarret (67)

— Snat—38arret
Stransmm = Snat + == 20 *

La fonction F5 permet de minimiser le débit avec un terme de pénalité sur le recul
de la transition. Cette fois-ci nous avons choisi un terme de pénalité strict de fagon
que la transition soit strictement au-dela de sq;

Les deux dernieres fonctions ont été ajoutées afin de pouvoir tenir compte des

contraintes structurelles.

Etant donné le temps important de calcul nécessaire pour calculer la transition ainsi
que la trainée (de 'ordre de 'heure avec les ressources informatiques disponibles a
I'école), il faut choisir une méthode d’optimisation qui demande peu d’appels a la

fonction cofit.

6.4 Calcul automatique du Design d’expérience

Le but du calcul automatique d’expérience est une couverture maximale de l'espace

de Design défini par les équations 6.5. Pour cela on va chercher a maximiser M :
H

la distance minimum entre deux vecteurs d . Pour un calcul avec C cas dans un

espace de dimension 2N -+ 1.

avec i,7,k € N3
- =
M= min t o°, 57H
i,J€[1,C)3,i#]
- IN+1 ‘
ol “5 5J‘H = 3 -
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6.4.1 Premier calcul de Design

._._é
Nous utilisons une méthode itérative pour obtenir les vecteurs § * qui maximisent

M (cf. definition 6.8).

Initialisation

Comme toute méthode itérative une bonne initialisation permettra une conver-

gence plus rapide.

Etant donné que l'on cherche a écarter les points au maximum les extrema de
I’espace de Design feront partie de la solution.

Si Dpin = Dmas 'espace est de dimension 2N on fixe alors arbitrairement tous les

lsii=y
don = 1.0n note 6; ; le symbole de Kronecker ¢; ; = ’
Osii#j
( \
01,k
02,k
vke[1,2N)] 55¢ ) (6.9)
02Nk
1
\ /
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auxquels on ajoute les vecteurs

{ 3
0
sy
0
1 (6.10)
. 4 / \
L
N
1
N
ot 8 2N+2 o\
1
N
1
\ J
Ainsi, dans un cas a deux dimensions :
ot
ﬁn 23
§F =23 ok (6.11)
1

Dans ce cas 13, les contraintes sont :

(81,67) € [0,1]?

(6.12)
0 +6 <1
Les vecteurs initiaux sont alors :
1 0 0 0,5
Ti={ AP SRR I A 0,5 (6.13)
1 1 1 1

A partir de 1a on complete 'initialisation en ajoutant les vecteurs un a un jusqu’a
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obtention du nombre requis. On ajoute un vecteur a partir du couple de vecteur

(1,7) parmi les C vecteurs déja crées vérifiant

=, = ) -
H 5', 5]‘ = max min H 5% 6 H (6.14)
kel1,C] \1€[1,C.I#k

C’est-a dire les deux vecteurs cote a cote les plus éloignés, on ajoute alors le vecteur

o = %(E’i + 3 (6.15)
En reprenant 'exemple on ajoute donc :
0.75 0.25 0.25
<5 =6 =7
6°=14¢ 025 p,6°=4¢ 075 p,0 " =¢ 025 ¢ .. (6.16)
1 1 1

Si Dpin # Dpae V'espace est alors de dimension 2N+1 en gardant les méme nota-
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tions

( 3

01,k
02,k

Vke[|1,2N] 65 .Y

02N k
1

\ /

1sii=j

ol §;; represente le symbole de Kronecker §;; =
Osii#j

auxquels on ajoute les vecteurs
( 3

sy (6.17)

ot ?2N+2< s

auxquels on ajoute les vecteurs identiques mais cette fois-ci

avec 52N+1 =0

A partir de la on complete U'initialisation de la méme maniere.
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Calcul et projection des gradients

Nous maximisons ensuite M a l'aide de la méthode du gradient conjugué. Pour

chaque vecteur nous calculons le gradient de M définie par (6.8).

aM
déF
= o
VM= %2 % (6.18)

oM
Sk
\ 802N+l /

H
Nous calculons ensuite les nouveaux vecteurs d ** comme suit :

VEk € [|1,C]
— — —
k= 5k 4 i{\.V M*~
A est le pas

— —
Nous avons projeté A.V M* de facon que & ** reste dans l'espace de Design (c’est-
a-dire vérifie les contraintes définies par les équations 6.5). La projection s’effectue

de la maniere suivante

Vk € [|1,C]
( 2N )
A
max {min (z\g—dlf ; 1— Z ‘(m) >_5f}
=1
(6.20
proj{)\.eMk} = < OM 2N ( |
max {min (x\aé—]c P 1— Z '5ﬂ> ,—5§N}
2N j=1
. oM
max {mm (/\&Sk— ;1 — 5§N+1> ,—5§N+1}
\ ON+1 J



2N

oM :
La quantité T; = min (AW ;1 — Z ’5;‘) assure que

J=1

2N
O <let Y & <1

J=1

La quantité G; = max (ﬂ ; —5;”) assure que
5 >0
oM

de méme la quantité Toyy1 = min (Aaék— ;11— 5§N+1> assure que
2N+1

k *
doney <1
La quantité Gon.1 = max (T ; —65y_ ) assure que

k% sk
Oons1 =gy + Gangr >0

Calcul du pas optimum

65

On sait que la méthode du gradient conjugué converge & coup str si les Ap (P

désignant les itérations) vérifient

]\T
lim Ap=0et li Ap =
P—lg-loo P © N—lg—loo Pz—:l P T

(6.21)

Parmi les séries respectans ces conditions, celle qui donnait les meileurs résultat

etait :
Ao

Ap = In(10 + P)

(6.22)
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NN

0.7+

034, .

N )
N > Pas

_——)
FiG. 6.4 Evolution des § au cours des premieres itérations

1

0.9 4
0,8 4
2,7+
D& 4 —)
0,54 &
04
R G
i=1
wl » "

a4

o

o 0,2 04 9.8 o8 1

N
F1c. 6.5 Evolution des § au cours des derniéres itérations

Afin d’accélérer la convergence nous choisissons A\g = 10 mais toutes les 25 itérations
si M n’a pas augmenté nous divisons Ag par 1.25. Les figures 6.4,6.5 illustrent le
déplacement des vecteurs ? dans un cas en 2D a 10 vecteurs. Nous avons representé
les vecteurs 6 par les points de coordonnées (§;, §2). Nous pouvons voir la vitesse de
convergence de ’algorithme choisi grace a ’évolution du résidu (cf. figure 6.6) ainsi

que I’évolution de la distance minimum (cf. figure 6.7) en fonction des itérations.

Nous pouvons juger de la justesse de la solution obtenue grace aux figures 6.8.

Sur la premiere figure nous avons representé les vecteurs solutions entourés d’un
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] fl
M \-“-\.‘_
-5 .-""“—_I_

™

FIG. 6.6 Evolution du AV M (cf. équation 6.19) en échelle logarithmique en fonction
du nombre d’itération

cercle de rayon 0.3 (Comme l'illustre la figure 6.7, la distance minimale entre les
vecteurs est d’environ 0.3083), nous pouvons voir la bonne équidistance entre les
points. Pour mieux visualiser cette équidistance, nous avons representé en noir sur

la deuxieme figure les zones qui n’appartiennent a aucun cercle.

6.4.2 Calcul de Design suivant

Apres le calcul de la fonction colit sur les cas proposés, nous allons chercher a
affiner la connaissance de notre fonction colit sur 'espace de Design en particulier
son optimum. Nous cherchons a resserrer la couverture de notre espace de Design.
Pour cela on augmente le nombre de vecteurs 3 dans le but de diviser par 2 environ
la distance M définie par 'équation 6.8. Dans cette opération nous conservons
intacts les vecteurs pour lesquels on connait exactement la valeur de la fonction
colit. Afin d’éviter de calculer la fonction cott, nous allons effectuer une sélection

parmi les nouveaux vecteurs proposés.



68

035 C 030

0,3085
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F1G. 6.7 Evolution du M (cf.définition 6.8) en échelle logarithmique en fonction du
nombre d’itération

Amélioration de 'optimum

Nous conservons les vecteurs dont la fonction colit interpolée est optimum. Afin de
bien explorer toutes les directions autour des optima déja calculés, nous conserve-

rons un nombre de points égal a la dimension de l'espace de Design.

Amélioration de l’'interpolation

Une méthode connue pour évaluer la justesse d’une interpolation est d’effectuer
du Krigeage croisé (cf. le cours de F. Trochu [15]). Nous conservons des points
autour des endroits ol notre interpolation est mauvaise. Comme cette priorité est
moins importante que I'amélioration de 'optimum nous conservons un nombre de

points égal & la moitié de la dimension de 'espace de Design (arrondi & 'inférieur).

Le Krigeage croisé consiste a évaluer la qualité de 'interpolation en chacun de ses
points. Pour cela, suposons que nous connaissons la valeur exacte de la fonction cofit

en 10 points, nous effectuons 11 interpolations notées Fy, F1, ..., Fio. La fonction Fj
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F1G. 6.8 Cercles de rayon R=0.3 tracés autours des points solutions et zones n’ap-
partenant a aucun des cercles

. . ’ N . . b4 3 ———> __—)
est la fonction interpolée & partir de tous les points d’évaluation (81, ..., § 19)).
Les fonctions suivantes F; (i € [|1,10|]) sont les fonctions interpolées a partir des
. ., . — —_—, —_—, — . — ,

points d’évaluation (46 *,..., 671, § ¥t ..., §10)). En chaque point & on évalue la
qualité de l'interpolation par la valeur

— — —
) ) )

E(d) = max F;( ) — min Fi(

1=1,10 i=1,10 ) (6'23>
Dans le cas particulier des points d’evaluation nous avons

. —,
Y

E(3Y) = |F(3") - Fy(37) (6.24)

Puisque le krigeage est exact aux points d’évaluation, nous avons

—(—5-» —

Vi F# 4, Fi(6°) = Fo(d") (6.25)

Plus E sera grand, plus la zone autour de ce point est mal renseignée. Il est donc

intéressant de raffiner nos connaissance sur la fonction de colt autour de ce point.
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CHAPITRE 7

RESULTATS

7.1 Présentation du cas d’étude

Le cas d’étude est un profil laminaire nommé BE50 1. Nous avons calculé I'écoule-
ment d’Euler pour des angles d’attaque (o = —1°,0°,1°,2° 3°,5°% 7°,9%)sur un
maillage 90x60 présenté aux figures 4.1 et 4.2. Nous avons décidé de nous placer
a la limite de la compressibilité, les calculs sont donc effectués pour Mach = 0.3,
pour une Température de —20°C' (& cette temperature Mach = 0.3 correspond a
une vitesse de 95.7 m/s. Nous nous sommes placés a une pression de P = 700 kPa
soit la pression typique a 3000m d’altitude. Nous avons choisi un facteur N a la
transition N;. = 4 puis Ny = 5.5; ce qui correspond a un taux de turbulence de

0.56% et 0.30% respectivement (cf. relation de Mack 2.22)

7.2 L’écoulement Euler

Nous avons fait converger tous les cas avec des résidus inférieurs & 1071, nous
présentons ici les résultats (cf.figures 7.1 et 7.2) Nous avons décidé d’effectuer
des optimisations du controle actif pour les angles d’attaque spécifiques au vol de

croisiere (o = 0° et 1°).

ltrouvé sur le site http ://a190754.free.fr/PROFILS.HTM
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Fi1G. 7.2 Coefficient de trainée de pression

7.3 La stabilité de la couche limite

Nous remarquons que plus 'angle d’attaque a augmente, moins la couche li-
mite est stable. Cela peut se comprendre par un %;— (cf. figure 7.3) de plus en
plus défavorable pour la stabilité de la couche limite (cf. section 1.5). De méme
on s’apercoit que la premiere station instable correspond au moment ol la vitesse

extérieure & la couche limite U, commence a décroitre. Cette remarque nous fait
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bien saisir qu’il est important de rapidement ajouter le module de couplage pour
prédire correctement la transition. En effet d’une part I'aspiration augmente ’ap-
port d’énergie de I’écoulement externe vers la couche limite et d’autre part diminue
I’épaisseur “percue” du profil par I’écoulement Euler. La vitese extérieure est donc
moins ralentie en présence d’une aspiration, favorisant ainsi la stabilité de la couche

limite.

-1.0 7

084 = Cp {alpha=-1%}
-—Cp {alpha=10°)

0.6 N =—Cp{alpha="1")

Q440 T

FiG. 7.3 Coefficient de pression

Comime le montre le tableau de la page suivante, la transition sur ’extrados est
d’autant plus précoce que I'angle d’attaque est élevé. Nous remarquons également

que les fréquences critiques sont de plus en plus élevées. Nous avons d’ailleurs
Qx

trans

remarqué que le rapport de F're, sur quelque soit l'angle d’attaque reste
proche de 13 pour Tu = 0.58%, de 13.7 pour Tu = 0.30%. En admettant que
I'onde critique se déplace a la vitesse Qs pour le cas Tu = 0.58%, elle a parcouru

13 longueurs d’onde avant de déclencher la turbulence.
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FiG. 7.4 Tu = 0.58%,& = 0°; Tu = 0.58%., 0 = 1°

008

Fic. 7.5 Tu = 0.30%,a = 0°; Tu = 0.30%,a = 1°

angle d’attaque « -1° 0° 1° 2° 3°

Tu=0.58% point de transition Tirans 0.2736 0.2557 0.2336 0.2156 0.2001
Frequence critigue Fre, (Hz) | 4750 4800 5450 5925 6250

Tu=0.30% point de transition x/c 0.2986 0.2759 0.2513 0.2318 0.2153
Frequence critigue Fre, (Hz) | 4550 4800 5350 5800 6150

Nous avons effectué des optimisations de la trainée pour un débit constant de
4.107*m3/s.m~1 pour un panneau d’aspiration. Les résultats sont présentés dans
le tableau ci-dessous, le gain présenté ne correspond qu’au gain sur la trainée vis-

queuse sur I'extrados du profil.

angle d’attaque « 0° 1°

Tu = 0.58% | Gain sur la trainée visqueuse | 5.2% 4.8%

Tu = 0.30% | Gain sur la trainée visqueuse | 5.7% 4%

Nous avons representé sur les figures 7.4, 7.5, les zones d’aspiration optimisées,

pour les différents cas. Nous remarquons que lorsque 'angle d’attaque augmente,



74

.08
0,07
0,08
0,08
2,04
003
0.02
6,01

-0.0%
02

F1G. 7.6 Tu = 0.30%,0 = 0°; Tu = 0.30%,00 = 1°

F1G6. 7.7 Tu = 0.30%,a = 0°; Tu = 0.30%,a = 1°

il faut augmenter la taille de la zone d’aspiration. Lorsque le taux de turbulence

diminue, il faut reculer la zone d’aspiration. Nous avons également comparé une

optimisation entre un ou deux panneaux d’aspiration. Dans ce cas ci nous avons

conservé un taux de turbulence de 0.30%. Nous rappelons que ces résultats corres-

pondent au gain pour un metre d’envergure.

angle d’attaque « Q° 1°
1 panneau de succion | Gain sur la trainée visqueuse | 5.7% 4%
2 panneaux de succion | Gain sur la trainée visqueuse | 5.7% 4.4%

Nous avons representé sur les figures 7.6 et 7.7, les zones d’aspiration optimisées,

pour les différents cas. Nous remarquons qu’en passant de un a deux panneaux la

zone d’aspiration optimale reste la méme en revanche la taille de la zone d’aspiration

diminue.
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F1a. 7.8 Influence du contrdle actif : Cf(x/c)

Enfin nous avons effectué une optimisation a débit constant en minimisant la
consommation de kéroséne. Nous rappelons qu'’il faut 3kg/h pour faire fonctionner

une pompe & 1m?/s, et 1kg/h pour 1 N de poussée. (cf. section 6.3)

angle d’attaque « ge  1°

Economie de Carburant en kg/h | 0.7 0.5

Nous avons pu réaliser un gain sur la trainée visqueuse en provoquant un retarde-
ment de la transition, nous pouvons voir cet effet a la figure 7.8 oll on a representé
en trait plein le Cf sans controle actif de la couche limite en pointillé avec controle

actif (la zone d’aspiration est matérialisée par le trait gras horizontal).

Nous nous apercevons que malgré la variation de l'angle d’attaque ou du taux de
turbulence extérieure, le systéme peut réduire la trainée visqueuse d’environ 4% ce
qui correspond & une économie de carburant de 0.5kg/h en prenant en compte le

fonctionnement de la pompe. Ces résultats ne sont qu'un ordre de grandeur de ce
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qu'il est possible de faire grace au controle actif de la couche limite. La technique
de prédiction du point de transition et de la trainée n’est pas encore compleéte et

mérite de nombreuses améliorations.

7.4 Qualité de l’'interpolation

Comme expliqué dans la section 6.4.2, nous poursuivons un double objectif,
I’amélioration de la fonction colit et de la qualité de 'interpolation telle que me-
surée par "l'erreur” (cf.équation 6.23).Nous illustrons notre propos par le cas d'un
angle d’attaque o = 0° avec un taux de turbulence extérieure Tu = 0.30%. Nous
présentons une optimisation 2D (un panneau d’aspiration, débit constant 4.107*
m?3/s.m™!) Nous avons representé sur les graphiques 7.9 & 7.14 I’évolution ty-
pique d’une fonction d’interpolation et de son "erreur”, en fonction du nombre
d’évaluation directe de la fonction colit. Pour tous les graphiques, nous avons
conservé la méme échelle de couleurs, elles représentent a droite la valeur de la
fonction colt (c’est-a-dire la trainée), & gauche "erreur” (cf. équation 6.23).En
abscisse et ordonnée nous avons respectivement d; et d;. Nous rappelons que la
coordonnée curviligne du début de la zone d’aspiration s; et la Tazlle de la zone

d’aspiration sont (cf. Définition 6.5) :

S1 A Smin T 51‘(3mam - Smm) (7 1)

Taille = S9— 8 = 52-<3maz - Smin)
Ces graphiques permettent d’illustrer la réalisation du double objectifs. Nous

pouvons voir que 26 cas sont largement suffisants a 'obtention d’un bon optimum

(24h de calcul).
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-11.25
-11.28
-11.31
-11.34
-11.37
-11.4
-11.43
-11.46
-11.49
-11.52
-11.56
-11.58
-11.61
-11.64
-11.87
-11.7
-11.73
-11.76
-11.79
-11.82
-11.85
-11.88
-11.91
-11.94
-11.97
-12

Fi1a. 7.9 6 cas

-11.25
-11.28
-11.31
-11.34
-11.37
-11.4

1-11.43
7 -11.46

-11.49
-11.52
-11.55
-11.58
-11.6t
-11.64
-11.67
1.7
1173
-11.76
-11.79
-11.82
-11.85
-11.88
-11.8t
-11.84
-11.97
-12

Fic. 7.10 10 cas
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Fic. 7.11 14 cas

Fic. 7.12 18 cas
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Fic. 7.13 22 cas

-11.25
-11.28
-11.31
-11.34
-11.37
-114
-11.43
-11.46
-11.49
-11.52
-11.55
-11.58
-11.61
-11.64
-11.67
117
-11.73
-11.76
-11.79
-11.82
-11.85
-11.88
-11.91
-11.94
-11.87
-12

Fia. 7.14 26 cas
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CONCLUSION

L’objectif principal de cette these, qui était la mise en place d'un outil d’opti-
misation, a ét¢ atteint. Cependant l'outil est encore perfectible en bien des points.
Apres avoir fait une revue du travail réalisé, nous proposons quelques perspectives

de travaux futurs, enfin nous commenterons brievement les résultats obtenus

Réalisations

Prédiction de ’écoulement moyen
Afin d’améliorer le calcul de 1'écoulement moyen, nous avons travaillé sur le code
Euler developpé a la chaire.D’une part nous avons amélioré la convergence et la
convivialité du code et d’autre part mis en place un couplage Euler-couche limite.
Nous avons programmé un mailleur qui & terme sera adaptatif. Les résultats ont

permis de prévoir I'influence de la couche limite sur la position du choc.

Prédiction de la transition
Afin de rendre plus convivial le code SCOLIC, nous avons mis en place une au-
tomatisation du code avec CLDF (le code de correction de couche limite) avec
la possibilité d’installer des zones d’aspiration. Par ailleurs nous avons travaillé a
I'élaboration d’un code de résolution des équations de la stabilité parabolisées en

compressible, ce travail est malheureusement inachevé.

Mise en place d’un processus d’optimisation
C’est la partie qui a necessité le plus de travail. Nous avons essayé plusieurs tech-

niques d’optimisation (génétique, gradient conjugué) afin de choisir celle qui sem-
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blait la plus adaptée a la spécificité de notre probléme. Ce travail a nécessité
la création de plusieurs modules d’interpretation automatique des résultats de
SCOLIC, Euler et CLDF. Nous avons également travaillé sur I'implémentation de

différents algorithmes dont un de calcul automatique de Design et un de Kriegeage.

Suggestion de travaux futurs

Prédiction de ’écoulement moyen

Deux travaux essentiels restent a faire avant de pouvoir implémenter les nouveaux

modules au sein du processus d’optimisation.

— L’adaptativité du maillage : elle permettra de mieux capter les phénomenes au-
tour du choc, des zones d’aspiration, bords d’attaque et de fuite, tout en facilitant
la convergence.

— Interaction Choc-couche limite : il faudra trouver un moyen de modéliser l'in-
fluence du choc sur la couche limite afin de prévoir les caractéristiques complétes

en écoulement transsonique.

Prédiction de la transition

Dans le domaine de la prédiction de la transition, deux axes de travaux pourraient

étre suivis

— PSE compressible : nous devrons achever le travail commencé pour rendre le
code opérationnel.

— Nouvelle approche du calcul des vecteurs propres : nous pourrions essayer de
programmer la nouvelle approche mathématique présentée dans ce mémoire afin

de voir si nous pouvons gagner en précision et en vitesse de calcul.
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Mise en place d’un processus d’optimisation
Dans ce domaine, nous pouvons complexifier un peu le code afin de permettre
une paramétrisation plus complexe en particulier un débit variable pour chaque
zone d’aspiration. Par ailleurs la vitesse du calcul automatique de Design peut
étre grandement améliorer en vitesse de convergence d'une part par la méthode de

calcul des gradients mais surtout sur l'initialisation.

Conclusions

Les résultats obtenus par 'optimisation ont démontré 'interét du controle actif
de la couche limite. Nous prédisons une réduction de la trainée visqueuse sur 1’ex-
trados de l'ordre de 5%. Cependant l'impact de l'aspiration sur les performances
aérodynamiques d'un profil est encore mal prédit. Il y a encore beaucoup d’hy-
potheses fortes, il faut donc interpréter ces résultats avec prudence. Il va donc
falloir améliorer les outils de prédiction sans pour autant perdre trop de temps de
calcul. La méthode originale d’optimisation a fait ses preuves. Nous pouvons ce-
pendant travailler encore un peu sur l’algorithme pour le rendre plus rapide et plus
souple. A terme il sera possible de capter les effets du contréle actif de la couche

limite aussi bien sur la turbulence de ’écoulement que sur le choc.
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ANNEXE I

CALCUL DE L’ECOULEMENT EXTERNE

I.1 L’écoulement potentiel

85

L’écoulement potentiel est un écoulement stationnaire incompressible irrotation-

nel d’un fluide parfait, homogene soumis a des forces de volumes conservatives.

Remarque

La théorie des écoulements potentiels permet un calcul instationnaire mais cela ne

nous intéresse pas pour notre étude.

Puisque les forces de volumes sont conservatives on peut écrire

- —
F=-Vd
ﬁ . .
V.V = écoulement incompressible
— = = — L
p((V.V)V + V®) = —VP quantité de mouvement
VA ‘_/) = .(T écoulement irrotationnel

—

—
5 - N N ‘72
(V.VV=(VAV)AV + V([

2

)

(L1)
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d’ot —_—— — =
p(V.V)V +Vd) =-VP
— Ty —
V(45 +9) =-VE (1.4)
P = Cte — p(Z2 + @)

2

- -
De plus VA V = 0 nous permet décrire
- =
V=Vy (1.5)

On peut donc calculer intégralement un écoulement potentiel par le potentiel de

vitesse ¢ vérifiant I’équation de Laplace

4

Ap =0
on déduit les variables physique par :
— -
V =V
172
P =C"—p(YF +9)

. (1.6)

\

Les conditions aux limites sont des conditions de glissements, ajouté aux condi-

tion a l'infini constitue un probléeme dit de Neumann

>

p =0
¢'7=W-Wsurs (L.7)

P(7) = K, [Tl — o0

<Al

L’équation de Laplace 1.6 est linéaire; ainsi une somme de solutions vérifie
toujours l’équation différentielle. L’écoulement potentiel a le méme formalisme
mathématique que ’electro-statique. Les champs electro-statiques induits par des
charges ponctuelles sont donc des champs de vitesses admissibles. Cette constata-

tion a conduit a l'élaboration de la technique des panneaux. On cherche 'intensité
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de singularités (charge, doublet, triplet...) placées judicieusement afin de verifier la
condition de tangence sur des points de controle sur le profil ainsi que la condition
de Kutta (cf. I1.2) qui impose l'existence d’'un point d’arrét au bord de fuite du
profil. Cette méthode permet de calculer rapidement et simplement 1’écoulement

potentiel autour d'un profil.

I.2  Les écoulement cyclique et condition de Kutta

Definition

Un fluide est barotrope lorsque sa pression ne dépend que de la masse volumique

Dans un fluide barotrope, les isochores et les isobares coincident. Un fluide ho-
mogene incompressible est barotrope (p est constant quelque soit la pression).
D’apres l'équation bilan de la vortricité

oW ==

— — - 1

€l

VoAVP+Y A (%v?) (L8)
Les sources de vortricité sont :

 les forces de volume non conservative V A F

nulles dans le cas de I'hypothese d’écoulement potentiel

- les effets baroclines p%?p AVP

nuls dans le cas de I'hypothese d’écoulement potentiel (fluide barotrope)

- les effets visqueux €7> A <%V$>

nuls dans le cas de 'hypothese d’écoulement potentiel (fluide parfait)

N

. . . s 7 — Ey4
- Etirement et gauchissement des tube de vortricité (VV). w — (V.- V)w

nuls dans le cas d’un écoulement initialement irrotationnel
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La condition d’irrotationnalité est donc justifié par :
Théoréme de Lagrange
Dans un fluide parfait barotrope, soumis a des forces de volume conservatives, tout
écoulement irrotationnel & un instant particulier demeure irrotationnel aux instants

ultérieurs.

Definition
Une courbe fermé est dite réductible dans un domaine donné lorsqu’on peut la
réduire a un point par une déformation continue sans sortir du domaine. Dans le

cas contraire elle est dite irréductible.

On montre que dans un écoulement irrotationnel la circulation le long de toute
courbe réductible est nulle. Dans un domaine doublement connexe (ex : écoulement
autour d'un obstacle d’envergure infinie), la circulation est la méme le long de toutes
les courbes irréductibles & une boucle (ne faisant q'une fois le tour de l'obstacle).

On l'appelle la constante cyclique de ’écoulement.

Or en partant de 7o un point quelconque dans I’écoulement on peut écrir sachant
o
quedp=V.dl

— —
Tot)+ | V. dI (1.9)
L

Dans un domaine doublement connexe si on revient a o par une courbe L
irréductible on s’apergoit que ¢ admet une infinité de determination dont les valeurs
en tout point 7 different d’un multiple de la constante cyclique I'. Bien entendu, le

— —
champs de vitesse calcule par V' = V reste défini en tout point de ’écoulement.
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On montre que dans un domaine simplement connexe (& condition que le fluide
soit au repos a l'infini), il existe une solution unique ¢ & une constante additive

pres au probleme de Neumann 1.7

On montre que dans un domaine doublement connexe (a condition que le fluide
soit au repos a l'infini), il existe une solution unique ¢ & une constante additive prés
au probleme de Neumann 1.7 si et seulement si la constante cyclique ' est connue.
Dans le cas d’'un écoulement autour d’un profil d’aile la constante est déterminée

par la condition de Kutta.

1.3 Ecoulement Euler

L’écoulement Euler est un écoulement stationnaire non-visqueux solution des équa-
tion de Navier-Stokes avec une viscosité négligeable. L’écoulement peut étre rota-
tionnel, compressible les hypotheses sont donc moins restrictive que 1’écoulement
potentiel et refletent mieux la réalité La forme conservative des ces équations s’écrit

en deux dimensions de la maniére suivante ;

ow df Jg
R Wit 11
ot " or oy 0 (1.10)
ou :
4 \ 4 3\ 4 \
p pu pv
2
pu pu? +p puv
pv puv pv? +p
pe puhg pvhg
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et

ho

_ETR_ (2P

1
p po— + —(u® 4+ v?) (1.12)

o 2

On note : v le rapport des chaleurs spécifiques (pour l'air v=1.4) et hg 'enthalpie
totale.

Dans le reste du probléme, on suppose que 'écoulement satisfait 'hypothese d’homo-
énergicité. Ainsi, on a hg = cte = h, dans tout le fluide et on peut remplacer la

quatrieme équation du systeéme par la relation suivante :

ho = ( i )B—!——;-(uQ—&-vz) = cte (I.13)

Le systeme des équations d’Euler constitue un systeme d’équations hyperboliques
non linéaires. Une propriété importante d'un tel systeme est le fait que, méme avec
des conditions initiales et aux limites parfaitement réguliéres, il peut apparaitre
au bout d’un temps fini des solutions discontinues. La solution n’étant plus alors
différentiable en tous points, I’équation(1.10) n’a plus de sens sur la discontinuité.
Cependant, la forme intégrale des équations reste valable, et c’est donc forme que
nous allons utiliser pour la résolution.

Soit une surface quelconque €2 de frontiere 0€2, les équations d’Euler peuvent s’écrire

sous forme intégrale de la fagon suivante :

5 [ waady+ [ (fay=gdr) =0 (114)

A partir de cette équation, on va pouvoir appliquer le schéma de Jameson décrit

dans la section 4.4.
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ANNEXE II

CORRECTION COUCHE LIMITE

Pour I'établissement des équations nous utilisons le repére lié a 'aile suivant éxplicité

a la section 2.3.1. Par un souci de clarté nous négligeons les termes de courbure.

—

V.(

. (IL1)
o(V.

pV)
- = — — — —
V)V = —VP+u(AV +1V(V.V))

En notant U, V et W les composantes de la vitesse selon z, y et z, P la pression,

p est la densité de 'air, pu sa viscosité

Z(PU)+ £ (V) + £(W) = 0

UE+VE+WEU 1 y(Er+ e+ U LR+ L+ 9L
UE+VE+WLZ)W 1P (G + e+ LV R+ L+ Y
UE+VE+WEW = 1224+ S+ LW +12(% + 9 + 4Ly

(T_m
:
v o=
: =3
<E:€_°c (I1.2)
Vo= 5
W= s
Po=
\ﬁzpogic
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avec ¢ la corde, b 'envergure, do 'épaisseur caractéristique de la couche limite (a
déterminer), Q la vitesse a Uinfini, Uy = Qo cos(a), Wy = Qo sin(a), a Pangle
de fleche, V4 échelle de la vitesse verticale (a déterminer) pg la densité de l'air au

repos. Regardons ce que devienne les équations de Navier-Stokes adimensionnées.

a) L’équation de continuité

(11.3)

£09x (U 0 (577) 4 S 0(57) 4 W 0 (5TF)) = 0

[

8
Q
&

or 7 est le rapport de forme et il est raisonnablement compris entre 2 et 20. D’autre

part ‘c}gvf: = sin o depend de ’angle de fleche o en particulier pour un angle de fleche

Wy
Qs

soit triviale, elle doit donc comporter deux termes prépondérant. Nous concluons

nulle = (. Il ne faut pas que dans ce cas particulier I'équation de continuité

que :
Vo
— =1 I1.4
50@00 ( )
et I’équation de continuité devient alors
0 ,_— 0, _—. ¢ o
—(p. —(p. - sina—(p. = II.
cosaaf(pU)-i-8y(pV)+bsmaaz(pW) 0 (IL.5)

Par ailleurs en remarquant que la couche limite est par définition la zone telle

que les forces de viscosité Fyiscosite = "‘—?% sont comparable aux forces d’inertie
C

2 . . 2 T
Fertie = p%&, nous pouvons choisir d¢ tel que % = pQ%. Nous avons donc en

notant Re = %

¢ Qoo

0o = et Vp =
c 0 iR

(IL6)

Nous en déduisons que pour Re > 1 on a % < 1, % < let C% <1
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b) L’équation de mouvement selon x

) _ QY Uy (U T7OU Vo 77.¢ U | WaeTi7c U
((UZ+VE+ W = Lol (L=TL 4 12V D o LTy e
) S e e =
= QTCC cos ar{cos aU%% -+ V%% + ¢sin aW%—%)
_1ép — %(_lé’f)
pB:v T ¢ DO
gc U 2 ., 6% 52 52 82, 92 \77
U(Gm+ie+50) =Lgaia(EE+&H+5&8)0)
Q2% 2 8% 92 9t | %% 9t 77
< = G (G~ + B E) L)
) _
= QTxcosa%—Z#
d Q%4 1/8 (U 80 Vi Wae OW
fa(G + 5+ %)) =g (B (% 6CQ000 &+ =)
2, 11/8 ou oW
= QTEE(B_E(COSQ% + 9 + Zsina%gy)
2 82U
L <K o cosagm
soit :
—oU 90U ¢ —oU 1P U
CoS o cosaU—+V—+—31na = ——— + COSO—5 I1.8
( oz dg b GQ) p 0T o> (IL8)
c) L’équation de mouvement selon y
_ Q% Vb (U 7Féc 8V TFOV | WaTirdc 8V
((Ug+VE+W2)W =%l (=Tl + LTE . Uxipied,
S TR >
%Cﬁﬁ(cos aU%E + V%—y + ¢sinalWL)
_19P — %(_;@)
pBy T b ? o7
92 2 v 8 52 3 & 9 \TF
{ U +E+&)V) =Fias(EL+S+%55)Y) (I.9)
— Q% 1 9%V
" 8¢ Re Oy
) _ Q2 178 (Ux 68U Vo 8V Woe W
Su(E T T 5) = ToknGEE 5CCQOcc3_y + tox o)
Q% 11,8 aU W
\ = = q:3(5(cosafm + % —|— £ sin a%2)

soit :
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oP
— =0 (11.10)
Yy
d) L’équation de mouvement selon z
( 9 d 9 QA W (Use77b9U | Vo 77 b OU | WoTir U
(U& + Va—y + VVEE)W = —bia:f(roUE% + Q%V%Fy + wasg)
= %= sin a(cos 2TE + V& +sinaW)
_1lap — %(_lﬁ)
p Oz ) p Oz
&? 9* 9? 2 o b (95 82 82 | 6% 32 \1i7
(G +5p +32W) =S gn g (G + 5 +55=W)
Q% 2 b0 52 | %% 82 \vi7
< = Rz (Fam T op T )W)
2 . 2717
= Qngsmaaa?—
8 /80U | 8V | W _ Q% 1¢ 8 (Usx 8U Vo 8V Woo W
i@ Tyt ) T o m T e T s o)
2 3 8 | oV oW
= %—ﬁ%(a_z cosadg + a_‘y/ + ¢sina )
) _
\ < Q—gﬁsinaa;yvy
(IL.11)
soit :
b—oU b-0U —oU 10P 02U
sina{cosa-U—+ -V— +sinaW—) = ~—=— + cosa—= I1.12
( c 0T ¢ Oy az) 7 0T oy* ( )

e) Les équations de couche limite
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Les équations I1.5,11.8,11.10,11.12 nous donnent le systeme :

7700 | U | ¢ _ _10P i
cos acos alU = T V—g 7 sin 1! 5= = =% + cosaey (IL13)
9P = 0 '
oy -
b7700 | bY790 7700 . _19P U
sin a(cos agU 5z + Vg Tsin W) = 7oz T Cosagr
cas incompressible
p=1
( 0 (TF\ L 8(T o (T
c
cosa%(U)-i-a—y(V)—{—gsma%(W) = 0
T LTV L csinagWdl) = _2& ey
) cosa(cosalU% + Vg +isinaWg) = —& +cosagzr
oP —
5 = 0
; b778U | bY790 s T7oUy . __OP 82U
| sin a(cosagUss + Vo +sinaWg) = -5 +cosagmz
cas 2D
a=10
W=20
op.U | 8.V
oF + gy = 0
gou LU _ _19P | 92U
U?&%’ + V'a_y - y e + 72
8P —-
Er 0
cas 2D, incompressible
p=1
a=20
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or | &V _
wTyg =0
779U | 778U _9P , 92U
U85+Vay - 8E+6§]2
aP —
oy = 0

Pour un complement d’information, on pourra consulter le cours de P. Huerre [4]
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ANNEXE III

KRIGEAGE

Le krigeage est une méthode d’interpolation d’origine statistique. D. C. Krige en
fut linstigateur en 1951 en l'utilisant pour estimer les réserves des mines d’or en
Afrique du Sud a partir d’échantillons.A la fin des années 60, le mathématicien
francais G. Matheron a établi le formalisme mathématique de la méthode. Par
la suite, les techniques de krigeage se sont améliorées et les domaines d’applica-
tions se sont diversifiés. Le principe du krigeage consiste a établir une fonction
aléatoire dans l'espace a partir d’'un certain nombre de points de mesure. La fonc-
tion aléatoire est décomposée en somme de deux termes : une valeur moyenne au
sens des moindres carrés et un terme de correction tenant compte des fluctuations
autour de cette moyenne. Le krigeage est donc une méthode d’interpolation qui
généralise la méthode des moindres carrés. En effet, le terme de correction permet
au modele de passer ou non par les points de mesure. Cette méthode s’applique a

un espace de dimension n. Cette théorie est expliqué en détail dans le cours de Mr

F. Trochu [15]

I1I.1  La théorie du Krigeage

Ce chapitre traite des fondements mathématiques de la méthode de krigeage. Dans
un premier temps le krigeage dual est présenté, puis la démarche pour obtenir le

systéme d’équations linéaires du krigeage sous la forme primale est développée.
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I1I.1.1 La philosophie du Krigeage dual

On s’interesse ici a l'interpolation par krigeage de la fonction de cotlit en fonction

—)
des parametres de Design 4 ; = (6},62,---,6")

[ AR A

—%
Le principe du krigeage consiste & établir une fonction U( ¢ ) & partir d'une série de
—_—
points de mesure ¢ ; , ou i varie entre 1 et N le nombre de points d’échantillonnage.
—)
La fonction U( § ) est aléatoire, d’olt son origine statistique, et est décomposée en

la somme de deux termes :

H
De plus la fonction aleatoire U( ¢ ) doit vérifier les propriétés suivantes :

—
J .

z) = Fcout(

—
J

— La fonction doit passer par les points de mesure soit U( i), pour

1<i<N

R
— a( § ) représente la dérive. C’est une estimation, ou valeur moyenne de la fonc-
— —
tion aléatoire U( & ) au sens statistique. Ainsi espérance mathématique de U( §)
— —

peut s’écrire a( 6 ) = E[U( 4 )]
—_)
4]

— de plus, comme a( § ) est une valeur moyenne, son espérance mathématique cor-

respond & E[a(?)} = a(?)

Généralement le choix de la dérive est dicté par I'idée que 1'on se fait du phénomene.
On choisira en général parmi deux possibilités, soit une dérive polynomiale, soit

une dérive trigonométrique dans le cas des phénomenes périodiques. Dans le cas
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polynomial, on doit de plus choisir le degré du polynome, et dans le cas trigo-
nométrique, on doit choisir la pulsation w. Dans notre cas d’etude on choisira une

dérive polynomiale :

Voici donc les dérives les plus utilisées :

— /.
a(Z') = ap dérive constante

— — — Z - sz
a(Z)=ap+ a1 dérive linéaire

— — = s = ‘o .
a(T)=ap+ @17 + a2 T? | dérive quadratique

I11.2 Le systeme d’équations linéaires du Krigeage

Avant de développer le krigeage dual, il est nécessaire de d’abord formuler le kri-
geage sous sa forme primale. La facon la plus simple d’estimer la fonction U(7Z)

est par une combinaison linéaire finie des observations U, soit

U*(z) = Z NU(z;)

U*(z) est un estimateur de U(z)
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111.2.1 La condition de non-biais

La condition de non-biais signifie que l'espérance mathématique de la fonction

aléatoire doit étre la méme que celle de l'estimation de la fonction. Ainsi on a :

ElU(z)] = E[U*(x)] (II1.1)
N N
EU(x)] = ED_AU(x))=> NE[U(z:)] (111.2)
i=1 i=1
I11.2.2 Minimisation de l'erreur d’estimation
Le krigeage sous sa forme primale consiste a déterminer les coefficients A; de facon
a minimiser 1’écart quadratique. On peut dans un premier temps écrire la variance

de l'erreur d’estimation.

Soit €, lerreur associée a 'estimateur U*(z). On a :

var(e;) = FE|(ex — Ele,)?] = E 2] = E[(U*(z) — U(z))?]

= E Z M U(zs) U(:rj)——QZ)\i(z)‘U(zi).U(I)+U(x)2
= DD ANEU@)U()] =23 M) EU().U()] + E [U()’]

(111.3)

La variance de l'erreur d’estimation doit étre minimisée en fonction des degrés de

liberté A;(x) tout en respectant la condition de non-biais. Habituellement on choisit
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de minimiser la demi-variance de 'erreur d’estimation pour simplifier 'expression
finale des équations. La recherche du meilleur estimateur linéaire peut donc étre

résumée pour tout = € (o, 3] :

Minimiser pour (A, -+, \y) € RY
% Z Z Aid; E[U(z:).U(z;)] — Z Xi(z)E[U(x;).U(x)] + %E [U(z)?]

sous la contrainte

ElU(x)] = Z ME[U ()]

Dans 'expression & minimiser ainsi que dans la condition de non-biais, on rencontre
des termes de la forme E[U(z)], E[U(2;)], E[U(x:).U(z;)], E[U(x;).U(x)], dont on
ne connait pas la valeur. On va donc poser des hypotheses afin d’étre en mesure de

résoudre le probleme de minimisation.

Reformulons la condition de non-biais appliquée a notre hypotese fondamentale

que nous rappelons :

Ulz) = a(z) + W(x)
p—
dérive  fluctuation

Puisque 'on souhaite que la dérive représente le comportement moyen du phénomene,

on doit avoir
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La condition de non-biais peut donc s’exprimer de la sorte :

ElU(z)] = Z NEU(z)] Z Ni(z).a(2;) = a(z)

Nous avons vu que 'on choisissait généralement une dérive polynomiale, dont le
degré depend de I'idée que 'on se fait du phénomene.

Pour toute fonction a appartenant a l’espace de fonctions choisi pour representer
la dérive du phénomene,une dérive de degré p nous permet donc d’exprimer la

condition de non-biais sous la forme :

N p . p N ‘
Z/\I(CE) < a@f) = ;%4 = Z (Z Az(l')l'z - 3:]> ay = 0
=1 j=0 j=0 \i=1
qui doit étre vérifiée quelque soit les coefficients (a;)o<j<p d'ou :
N .
Z Ni(z).x] = 2pour0 < j <p
i=1

Les conditions de non biais s’adaptent aux cas de dérive évoqués précédemment.

Dérive Constante a(z) = ag
N
SIS
i=1
Dérive Linéaire a(z) = ag + a1.x
]\T
S
i=1
N
i=1
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Dérive Quadratique a(z) = a, + a1 T + asx?

I11.2.3 La covariance généralisée

Nous avons évoqué un peu plus haut que dans 'expression a minimiser, les termes
E[U(z)], E[U(z;)], ElU(2;).U(z;)], E[U(x;).U(z)] n'etaient pas facile a déterminer.
Pour cela nous allons evoquer la notion de covariance qui permet de quantifier le

degré de corrélation entre deux variables aléatoires X et Y. Par définition on a :
C(X,Y)=FE[(X +E[X).(Y -E]Y])]=EXY]- EX]E[Y]

On a donc, pour tout z,y € [a, )] :

Ainsi on peut remarquer que le terme E[U(z).U(y)] est donc relié a la covariance
C(U(z),U(y)). On va alors faire 'hypothese, appelée hypothése intrinséque, que le

terme E[U(x).U(y)] dépend uniquement d’'une fonction de distance entre x et y de

sorte que :

EU(z).U(y)] = K(|x — y|) = Hypothése intrinséque
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La fonction K est appelée fonction de covariance généralisée et generalement

elle est choisie parmi les fonctions suivantes :

Covariance Forme

Linéaire K(h)= h
Cubique K(h)= h3
Logarithmique | K(h) = h?In(h)
Trigonométrique | K(h) = sin(wh)

I11.2.4 Le systeme de krigeage

La minimisation sous contrainte peut étre reformulée grace aux notions de dérive et
de covariance généralisée. Dans le cas d'une dérive linéaire on obtient les équations

suivantes :



N | —

Minimiser pour (A, -+, Ay) € RY

3 A K (= 23]) = Yo A@)K (i — o)

Jj=1

N

i=1
sous les contraintes

( N

ZAi—1=0

1=1

N

\ =1
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Nous allons ajouter & l'expression a minimiser les contraintes pondérées par des

coefficients u;, I'expression obtenue est appelée Lagrangien. On se rameéne ainsi a

un probléme de minimisation sans contrainte :

N —

Minimiser pour (Ag, -

N N
ZZ K|z — x5

}:A

AN, Ho, 1) € RVF2

N N
K(|z; — z]) + to. (ZA —1>—|—u1 (Zx\ xl—w>

On dérive alors le Lagrangien obtenu par rapport a chacune des variables

AL,

, AN, tho, (41 €t on obtient le systeme suivant :
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(
ZIL K(|zi — z;]) Mj(x) + po + pra; = K|z — x3]) pourl <i <N

N
L Z)\j(m).zj =z

qui peut aussi étre écrit sous la forme matricielle suivante :

Lo | [ @ | | EGe-a) ]
K(|zi — ;) :
1 zy |- | Av(2) | = | K(Jz —zn]|)
1 1 0 0 po(x) 1
K2 zy 0 0 1L p1(x) | I x |

La matrice M de ce systéme linéaire est symétrique.
Une fois le systeme résolu pour un x donné, les coefficients A;(x) sont connus, et la

valeur interpolée u(x) peut finalement étre obtenue a partir des réalisations connues

des variables aléatoires U(z;). On obtient alors :
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II1.3 Le passage au krigeage dual dans le cas d’'une dérive linéaire

La fonction krigée de 1'équation II1.2.4 peut s’écrire sous la forme :

N N
u(z) = Z Ai(z).u; = Z Ai(@). i + po.0 + 1.0
i=1

i=1

U1

< ulz) = M) An(@) polz) ()] | uy
0
0

L =

Or le vecteur u(x) = [A1(z) ... An(x) po(x) p(x)] est solution du systeme de kri-

geage défini précédemment. On peut donc réécrire u(x) sous la forme :

by

u(z) = [K(lz —z1]).. . K(lz —zn|) L 2] M7 | by

Qg

a

Notons maintenant [by ...by ag a1] le vecteur tel que :
b1
u(z) = [K(jJz —z1]) ... K(Jx —zn|) 1 2]. | by

0

a
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ou encore sous la forme suivante :

N

u(z) = ap + ar.x + Zbi.K(!x — ;)

Ot le vecteur [by ...by ag ;] est solution du systéme linéaire de krigeage dual :

| 1 o 11 bi(z) ] [ Uy ]
K(|z: = x5()
1 zy |- | bn(z) | = | un
1 1 0 0 ao() 0
REs! zxy 0 O | _al(x)_ I 0 |

On remarque bien que la fonction krigée s’écrit comme la somme d'un terme de
dérive dans notre cas linéaire et d’une perturbation exprimée en fonction de la co-
variance généralisée. Les N premieres équations du systeme de krigeage reviennent

a écrire u(x;) = u;, c’est a dire que le modéle passe par les points de mesure.



