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RESUME

Les propriétés mécaniques des polymeéres thermoplastiques peuvent E&tre
améliorées par 'incorporation de fibres. Bien que leurs propriétés mécaniques soient
inférieures a celles des composites a fibres continues, les polyméres chargés de fibres
courtes sont trés utilisés car ils possédent I’avantage d’étre préparés par des procédés
classiques de mise en forme des polymeéres a 1’état fondu. La rhéologie de tels matériaux
composites joue un role majeur dans I’optimisation des conditions du procédé de mise en
forme et elle ne peut étre séparée de la microstructure du matériau. En effet, les
propriétés des composites fibres courtes dépendent fortement de I’orientation des fibres
qui est influencée par les propriétés intrinséques de la matrice et celles des fibres en
suspension. La plupart des matériaux composites commerciaux a fibres courtes se situent
en régime concentré. Lorsque la concentration des fibres est importante, les interactions
fibre-fibre ne peuvent plus étre négligées car elles influencent le comportement

rthéologique du composite et orientation des fibres dans les pieces fabriquees.

Le premier objectif de ce travail porte sur la compréhension des propriétés
théologiques des suspensions concentrées de fibres courtes, en particulier dans les
écoulements transitoires. Le second objectif était de développer un modéle adéquat pour

décrire le comportement rhéologique de telles suspensions.

Le comportement rhéologique du polypropylene chargé de fibres courtes a été
étudié dans un écoulement en cisaillement simple. En raison des restrictions dans les
mesures rhéologiques et du comportement complexe de la matrice, nous avons opté pour
’utilisation des suspensions modeles de fibres dans deux matrices différentes: un
polybuténe newtonien et un fluide de Boger. La viscosité établie du polybutene
newtonien augmente avec le taux de fibres et le comportement des suspensions de fibres
reste essentiellement newtonien. Cependant, des différences de contraintes normales non-
nulles ont été mesurées comme une fonction linéaire de la vitesse de cisaillement pour

ces suspensions de fibres. Le fluide de Boger, le deuxieme fluide modeéle que nous avons
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utilis€, a €t€ obtenu en ajoutant un polyisobutyléne de haut poids moléculaire au
polybuténe newtonien. Dans la gamme de vitesse de cisaillement considérée, ce fluide est
défini par une viscosité constante. Cette viscosité augmente lorsqu’on ajoute des fibres.
Cependant, les suspensions de fibres dans le fluide de Boger exhibent un comportement
rhéofluidifiant, et de Ja méme facon que le fluide de Boger non-chargé, les différences de

contraintes normales sont une fonction quadratique de la vitesse de cisaillement.

Le comportement transitoire de tous les types de suspensions de fibres (matrices
viscoélastique, newtonienne et le fluide de Boger) a été étudi€ dans un écoulement en
cisaillement. Pour les expériences en démarrage, la viscosité des suspensions augmente
graduellement ou immédiatement suivant la nature de la matrice, et passe par un pic
avant d’atteindre un plateau correspondant au régime établi. Ce pic dépend fortement de
Porientation initiale des fibres dans I’échantillon. Le pic a été attribué a la réorientation
des fibres, initialement réparties de facon aléatoire, dans la direction de I’écoulement. La
différence de contraintes normales correspondante présente également un pic a une
déformation plus élevée que celle du pic de viscosité, avant d’atteindre le plateau du

régime établi.

Suite a la premiere déformation, ’échantillon a été cisaillé dans la direction
opposée et le pic de viscosité, nommé « pic de retour », est situé 2 une déformation plus
élevée que celle du pic primaire de viscosité. Le pic de retour a ét€ attribué au
basculement des fibres qui n’étaient pas totalement orientées dans le sens de I’écoulement
méme aprés une trés longue période du temps. Quand I'écoulement est inversé, la
différence de contraintes normales reste a des valeurs minimales puis passe par un pic
positif plus petit avant de rejoindre le plateau du régime permanent. Suivant la nature de
la matrice et du délai entre deux essais successifs, la valeur minimale de la différence de
contraintes normales peut &tre positive ou négative. Les valeurs minimales de Ia
différence de contraintes normales ont €té attribuées 2 la structure transitoire des fibres-

alignées (cristalline). La forme et la grandeur des pics dépendent du taux de fibres, de la
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nature de la matrice, des conditions du pré-cisaillement de I’échantillon et également du

délai entre des essais consécutifs.

Deux modeles ont ét€ utilis€s pour simuler le comportement rhéologique des
suspensions de fibres. Le premier modele est basé sur le modele de Folgar et Tucker et
I’équation constitutive de Lipscomb. Qualitativement, ce modele décrit bien le
comportement des suspensions de fibres dans les deux directions de 1’écoulement.
Pourtant, le mouvement des fibres prédit par le modele est plus rapide que celui déduit
expérimentalement. Une tentative d’explication de ce phénomeéne est proposée, en
supposant une déformation non-affine et des contacts directs entre les fibres voisines qui
réduisent la rotation des fibres. Le modele de Folgar-Tucker-Lipscomb a été
empiriquement modifi€ en incluant un parametre de glissement afin de réduire la vitesse
de rotation des fibres. Une autre alternative pour ralentir le mouvement des fibres et
contrdler la taille des pics était de considérer le paramétre A du modele de Jeffery, comme
un parametre d’ajustement pour des suspensions non-diludes. Avec A > 1 et de faibles
valeurs du parametre d’interaction, Cj, le mouvement des fibres peut étre ralenti. Cela
peut étre encore amélioré avec un parametre de glissement. D’excellentes prédictions
pour le comportement du régime établi et transitoire ont ¢té obtenues pour les

suspensions de fibres dans un milieu newtonien.

Le second modele étudié, développé par Grmela et al. (2003), généralise le
modele de Jeffery, en incluant des interactions fibre-fibre ainsi que le moment angulaire
et I'inertie effective des fibres. En choisissant adéquatement 1’énergie libre, le modele
décrit, en principe, le comportement rhéologique des suspensions de fibres. Pourtant, la
fonction utilisée pour I'énergie libre ne semble pas appropriée, puisque le modele prédit
un comportement rhéofluidifiant trés prononcé et une différence de contraintes normales
indépendante de la vitesse de cisaillement. C’est pourquoi, I’équation constitutive du
modele a €té remplacée par celle de Lipscomb (1987). Le comportement rhéologique des

suspensions de fibres dans une matrice newtonienne est alors mieux décrit. Les



prédictions sont comparables a celles obtenues avec le modéle modifié de Folgar-Tucker-

Lipscomb, au prix de I'emploi d’un plus grand nombre de parametres ajustables.
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ABSTRACT

Short fibers are incorporated to thermoplastics to improve their mechanical
properties, which are nevertheless inferior to those of continuous fiber composites.
However, short-fiber-filled polymers can be processed with the usual or high-automated
processing methods. This advantage makes them widely used material composites. The
rheology of fiber composites plays a major role in the optimization of processing
conditions and cannot be separated from the microstructure of material. The properties of
short-fiber composites are highly dependent on the fiber orientation, which is influenced
by the intrinsic properties of the matrix and the suspended fibers. Most of the commercial
grade fiber composites are in the concentrated regime, for which fiber-fiber interactions
influence the rheological behavior of fiber composites as well as the orientation of fibers

in the final product.

The first objective of this work was to improve the comprehension of the
rheological properties of concentrated short-fiber suspensions, in particular for transient
flows. The second objective was to develop an adequate model to describe their

rheological behavior.

The rheological behavior of short-fiber polypropylene has been studied in shear
flow. Because of some restrictions in the measurement and the complex behavior of the
matrix, we chose to use model fiber suspensions in two different types of matrix, a
Newtonian polybutene and a Boger fluid. The steady-state viscosity of the Newtonian
polybutene increased by adding fibers and the behavior of the fiber suspensions
essentially remained Newtonian. However, non-negligible normal stress differences have
been measured as a linear function of shear rate for these fiber suspensions. The Boger
fluid was obtained by adding a high molecular weight polyisobutylene to the Newtonian
polybutene. In the used range of shear rate it had a constant viscosity that increased by

adding fibers. However, the fiber suspensions in the Boger fluid exhibited a shear-
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thinning behavior, and as for the unfilled Boger fluid, their normal stress differences were

a quadratic function of the shear rate.

The transient behavior of all types of fiber suspensions (with the viscoelastic, the
Newtonian and the Boger fluid matrices) in shear flow has been investigated. For stress
growth experiments, the viscosity of the fiber suspensions increased gradually or
immediately dependent to the nature of the matrix, and exhibited an overshoot before
reaching the steady-state plateau. This overshoot depended strongly to the initial fiber
orientation of the sample. The overshoot was attributed to the orientation in the flow
direction of initially random fibers. The corresponding normal stress difference exhibited
also a large overshoot, which occurred at a slightly larger strain in comparison with the

viscosity overshoot, before reaching the steady state plateau.

Following a first deformation, the sample has been sheared in the reverse
direction and a viscosity overshoot called the “reverse overshoot” was measured at a
larger strain in comparison with the primary viscosity overshoot. The reverse overshoot
has been attributed to tumbling of fibers that are not totally aligned with the flow
direction even after a very long time. When the flow was reversed, the normal stress
difference took initially minimum values and depicted a smaller positive overshoot
before reaching the steady-state plateau. Depending on the nature of the matrix and the
delay between two successive experiments, the minimum value of normal stress
difference could be positive or negative. The undershoot and the negative values for the
normal stress difference has been attributed to a transient fiber-oriented (crystailine)
structure. The shape and the size of these overshoots depended on the fiber content,
nature of the matrix, pre-shearing conditions of sample and also time delay between

consecutive experiments.

Two models have been used to simulate the rheological behavior of fiber
suspensions. The first model is based on the Folgar and Tucker equation for fiber motion

and Lipscomb constitutive equation. This model describes qualitatively well the transient
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behavior of fiber suspensions in both forward and reverse direction flows. However, the
fiber motions predicted by the model are faster than deducted from the experiments. This
was tentatively explained by non-affined deformation and direct contacts with
neighboring fibers, reducing fiber rotation. The Folgar-Tucker-Lipscomb model has been
empirically modified by including a slip parameter to reduce the fiber rotation speed.
Another alternative for slowing down the fiber motion and controlling the size of the
overshoots was to consider the parameter A of the Jeffery model, as a fitting parameter
for the non-dilute suspensions. With A > 1 and small values of the interaction parameter,
C;, the fiber motion could be slowed down. More improvement could be obtained by
applying A > 1 and small Cj, combined with the slip parameter. Excellent predictions of
the transient and steady-state behavior could be obtained for fiber suspensions in

Newtonian media.

The second model investigated was the extended Jeffery model developed by
Grmela et al. (2003) who generalized the Jeffery model, to include fiber-fiber interactions
via angular momentum and effective inertia of fibers. With a correct choice for the free
energy, the model can describe, in principle, the rheological behavior of fiber
suspensions. However, more efforts should be devoted to obtain a more appropriate free
energy function since the model has been shown to predict a too pronounced shear-
thinning behavior and a normal stress difference that is independent of the shear rate.
That was why the extra stress tensor equation of the model was replaced by the
constitutive equation of Lipscomb (1987). The rheological behavior of fiber suspensions
in Newtonian matrix has been well described by this model. The predictions are
comparable to those obtained with the modified Folgar-Tucker-Lipscomb model, by at

the expense of using a large number of parameters.
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LISTE DES SIGLES ET ABREVIATIONS

a b Axes (petit et grand) de Vellipse apparentes sur la surface

provenant de la coupure des fibres (Annexe C)

ag by Parametres dépendants des propriétés des fibres en suspension
4, B Paramétres ajustables de la théorie de PPT (Eq. 2.19)

An Notation contractée pour décrire le a4

A, a; Tenseur d’ordre 2 d’orientation (Eq. 2.10)

A4, Ajj Tenseur d’ordre 4 d’orientation (Eq. 2.11)

b, b Tenseur d’ordre 3 du moment angulaire (Eq. 6.6)

B Fluide de Boger sans fibre

B03 Fluide de Boger avec 1.58% en volume de fibres

B10 Fluide de Boger avec 3.27% en volume de fibres

B20 Fluide de Boger avec 7.06% en volume de fibres

C Tenseur de conformation

C, Paramétre d’ajustement (Eq. 6.11)

Comi Coeflicient utilisé pour décrire les approximations de fermeture

orthotrope (Eq. 4.13)

G Coefficient de l'interaction (Eq. 2.16)

o Coefficient de diffusion (Eq. 2.20)

D Diameétre moyenne des fibres (m)

det( ) Déterminant du tenseur

D, Coefficient de diffusion

D, Coefficient de diffusion des suspensions concentrées (Eq. 2.26)
Dy Coefficient de diffusion d'une suspension diluée (Eq. 2.26)

E Energie nécessaire pour l’orientation des fibres par unité de

volume (kJ/m®)
F Force normale agissante sur le plateau (N)

f Parametre scalaire de 'orientation
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Energie libre de Gibbs (Eq. 2.28) ou Fonction du rapport de forme
des fibres (Eq. 4.19)

Module élastique (Pa)

Module visqueux (Pa)

Distance moyenne entre deux fibres (m)

Entrefer entre deux disques dans la géométrie du rhéomeétre (m)
Tenseur diagonal de P'inertie effective de ’ensemble des fibres
dans un systéme non-dilué (Eq. 6.7)

Constante de ’équation de Carter (Eq. 2.5) ou la rigidité de haltére
(Eq. 2.37)

Constante de Boltzmann (1.3805x10™% J/°K)

Longueur moyenne des fibres (m)

Constante empirique dans I’équation (2.4)

Moment angulaire d’une fibre

Masse moléculaire moyenne en nombre (g/mol)

Masse moléculaire moyenne en poids (g/mol)

Concentration en nombre des fibres (-)

Concentration en nombre du maximum tassement de fibres (-)
Premicre différence de contraintes normales (Pa)

Deuxiéme différence de contraintes normales (Pa)

Concentration en nombre effective (-)

Nombre des particules (-)

Probabilité de la présence d’une fibre orientée (Eq. 2.8)

Vecteur unitaire dans la direction de I’axe de la particule

Pression isotrope (Pa)
Mouvement rotationnel du vecteur p (s™)

Polybuténe sans fibre
Polybuténe avec 1.58% en volume de fibres

Polybuténe avec 3.27% en volume de fibres



CHAPITRE [ - INTRODUCTION

De plus en plus souvent, les matériaux plastiqgues remplacent les matériaux
traditionnels notamment grice a leur faible masse volumique et leurs prix compétitifs. De
ce fait, leurs propri€tés mécaniques doivent étre comparables. L’introduction de charges
permet de renforcer les polyméres. Les charges fibrillaires sont connues pour donner les

meilleurs résultats et sont donc souvent employées.

Parmi ces composites, on peut nommer les thermoplastiques chargés de fibres
courtes mis en forme par extrusion, par injection et par thermoformage ainsi que les
GMT (glass-mat-reinforced thermoplastics) de fibres courtes. Les fibres courtes sont
également utilisées pour renforcer des matrices métalliques et céramiques, mais ici nous

nous intéressons uniquement aux composites 2 matrices polymeres.

Les propriétés mécaniques des composites fibres courtes ne sont pas aussi
performantes que celles des composites renforcés par des fibres continues. Pourtant, les
composites thermoplastiques fibres courtes sont une classe importante des matériaux
« haute performance » qui comble I’écart entre les matériaux non-renforcés et ceux
renforcés avec des fibres continues. Ces matériaux présentent ’avantage d’étre mis en
forme avec le méme type d’équipement que les polymeres non chargés. Les propriétés
mécaniques des pieces en composite fibres courtes sont intimement lides au procédé de
mise en forme utilis€. Ces propriétés sont anisotropes et le renfort maximum est obtenu
dans la direction de I’orientation des fibres dans la pigce. Pendant I’écoulement 3 travers
les différentes géométries de la machine de mise en forme, les fibres transportées par le
fluide subissent des contraintes, se cassent, s’orientent et se figent lors du

refroidissement.

Pour concevoir des pieces de composites fibres courtes, on doit connaitre la facon
dont le procédé influence I'orientation des fibres. Dans un scénario simple (Tucker et

Advani 1994), une piece préliminaire doit étre congue, puis le procédé de la mise en forme
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doit étre simul€. Les données de la simulation seront dans un premier temps utilisées pour
calculer le sens de 1'orientation des fibres dans la piece moulée. Ces données concernant
Vorientation des fibres seront ensuite employées pour caractériser les propriétés
mécaniques en chaque point de la piéce. Ces propriétés vont donc servir pour I’analyse des
contraintes en fonction desquelles on peut juger si la piéce correspond 2 la performance
désirée. Enfin, a partir des données issues de la simulation, le procédé de mise en forme, le
matériau et la géométrie de Ia piece peuvent alors €tre ajustés. Dans cette optique, des
logiciels sont déja commercialisés (Akay et Reifschneider 1990, Friedl et Brouwer 1991).
Plusieurs modeles ont déja €té€ développés pour décrire le comportement rhéologique de
composites fibres courtes, cependant, la description reste qualitative pour des systémes
concentrés de fibres. Tl est donc nécessaire de développer ou de modifier un modele pour

avoir une meilleure corrélation entre les prédictions du modele et les résultats

expérimentaux.

La rhéologie des suspensions de fibres joue un rdle fondamental dans I’optimisation
d’un procédé de mise en forme et elle ne peut pas étre séparée de la microstructure interne
des matériaux. Chaque €lément du matériau se déforme lors de la mise en oeuvre, ce qui
modifie la microstructure et les propriétés rhéologiques de ce demier. Les propriétés
intrinseques de la matrice (son comportement rhéologique) et celles des fibres en
suspension (le rapport de forme, la flexibilité, la concentration de fibres, la distribution de
la longueur des fibres, etc.) ont une grande influence sur I’orientation des fibres et donc, sur
la structure finale et les propri€iés des pitces fabriquées. Pour obtenir une pitce de bonne
qualité, on utilise habituellement des concentrations élevées de fibres. Dans ce cas, les
interactions fibre-fibre influencent significativement le comportement rhéologique du
composite. II est donc nécessaire de bien connaitre Ja fagon dont ces interactions peuvent
influencer le comportement rhéologique des systémes chargés de fibres, pour ensuite

pouvoir le décrire a partir d’un modéle adéquat.

Cette ¢tude comprend deux objectifs principaux : la compréhension de

I’écoulement de ces suspensions avec plusieurs types de matrice (viscoélastique,



newtonienne, €lastique) et la description du comportement rhéologique par un modele

approprié.

Dans la premitre partie de ce ftravail, le comportement rhéologique des
composites polypropylene fibres de verre courtes est étudié et décrit par le modele de
Folgar et Tucker (1984), couplé avec I’équation constitutive de Lipscomb (1987). Ce
modele prédit, qualitativement, de maniére satisfaisante le comportement des suspensions
de fibres mais il présente un inconvénient : le mouvement prédictif des fibres apparait

plus rapide que dans la réalité. Ce modele a donc été modifié.

Afin de mieux appréhender et comprendre les effets résultant de la présence de
fibres dans des milieux de nature différente, la matrice viscoélastique du composite
commercial (un polypropyléne) a ét€ remplacée par une matrice newtonienne (un
polybuténe) ainsi que par une matrice €lastique avec une viscosité constante (un fluide de
Boger). Les propriét€s rhéologiques de ces suspensions modeles ont été étudides dans la

deuxieme partie.

Afin de modifier d’une maniére élégante le modele de Jeffery, Grmela et al.
(2003) ont développé un modele incluant le moment angulaire et I'inertie des fibres afin
de ralentir le mouvement des fibres. Dans la derniére partie de notre travail, les
prédictions d’une version modifiée de ce modele ont ét€ comparées a celles du modele de
Folgar et Tucker pour décrire le comportement rhéologique des suspensions non-diluées

de fibres dans un milieu newtonien.



CHEAPIT

2.1. Introduction

Les composites fibres courtes sont renforcés par des fibres ayant une longueur
faible par rapport aux dimensions de la piece. Ils peuvent étre considérés comme des
suspensions uniformes de cylindres caractérisées (Tucker et Advani 1994) soit par la
fraction volumique des particules ¢ et le rapport de forme r=L/D, ou L est la longueur des
fibres et D est leur diametre, soit sous forme de densité en nombre » (particules par unité

de volume). Une suspension est diluée st :

1
¢<<—7~ ou n<<— (2.1)
re r
Dans ces suspensions, les particules sont indépendantes de facon
hydrodynamique, ce qui équivaut 2 ce que les champs de vitesse de ces différentes
particules ne se chevauchent pas. Pour des fibres longues et minces (r >> 1), cela

implique une fraction volumique tres petite. Si la fraction volumique des fibres augmente,
la suspension est dite semi-diluée :
i 1

1 1
— << P << — ou — << <<
r r r I’'D

2.2)

Dans ce régime, les fibres se touchent rarement, mais les interactions
hydrodynamiques existent entre les fibres dues aux perturbations de la vitesse du fluide
causées par des fibres voisines. Si la fraction volumique augmente encore, on atteint le

régime concentré :

¢ > ! ou n> 2.3)

r I*’D



Dans ce cas, la distance moyenne inter-fibre est de 1'ordre du diameétre des fibres,
donc chaqgue fibre peut toucher ses voisines avec des forces de contact agissant entre
elles. La figure 2.1 montre les différents régimes en fonction de la fraction volumique et
du rapport de forme et permet de constater que la plupart des composites commerciaux

sont dans le régime concentré (Tucker et Advani 1994).
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Figure 2.1. Plan des régimes de concentration et du nombre de particules N,
pour des suspensions de fibres. La zone hachurée correspond aux composites de fibres

courtes les plus utilisés, (Tucker et Advani 1994).

Pour des concentrations trés élevées, les forces de contact entre les fibres
deviennent dominantes et les interactions hydrodynamiques négligeables. Dans ce cas, le
composite présente une contrainte seuil (White 1979; Kitano et Kataoka 1981a) qui est
due aux forces de friction entre les fibres. La raison pour laquelle ces forces de friction
existent, est due au fait que, dans ce cas, la fraction volumique dépasse la fraction
volumique de tassement (packing) maximum des fibres rigides. En conséquence, les

fibres doivent se courber de facon élastique et elles s’exercent des forces normales aux



points de contact avec les autres. Quand une déformation est appliquée sur un tel réseau
de fibres, les fibres glissent les unes sur les autres, produisant des forces de friction. Dans
cette these, nous nous sommes intéressé€s a des suspensions semi-diluées (1.6 et 3.3 %
volumique) et modérément concentrées (7 et 11.5 % volumique) ou des forces

hydrodynamiques ainsi que des forces de contact fibre-fibre sont présentes.
2.2. Propriétés rhéologiques des suspensions de fibres courtes
2.2.1. Régime permanent

Des suspensions de particules dans des milieux newtoniens ou non-newtoniens
peuvent fournir une dissipation visqueuse supplémentaire et augmenter le comportement
non-newtonien de la matrice durant 1’écoulement. L’ amplitude de ces changements dépend

des propriétés ainsi que de I’orientation des fibres.
2.2.1.1. Viscosité en cisaillement

Pour des suspensions de particules solides, la viscosité relative (), = n/m, avec 1 la
viscosité de la suspension et 1, la viscosité de la matrice) est souvent une fonction de la
fraction volumique du solide. Une grande variété des équations a été suggérée, par de
nombreux auteurs, pour décrire la variation de la viscosité en fonction de la concentration
(Metzner 1985). Une des expressions empiriques sous une forme trés simple est 1’équation
de Maron et Pierce (1956) qui a ¢té évaluée d’une fagon précise par Kataoka et al. (1978) et
Kitano et al. (1981):

n, =[- (/M) 24
avec la constante empirique M qui a une valeur de 0.68 pour des spheres lisses.

Maintenant qu’est-ce qui arrivera si les particules solides ne sont plus sphériques?
La figure 2.2 présente la viscosité relative en fonction de la concentration de différentes
suspensions de particules solides dans des polymeres fondus. Les valeurs numériques de

chaque courbe caractérisent le paramétre M de 1’équation 2.4. Ces données montrent que la



viscosité d’une suspension peut généralement étre prédite sur une grande plage de
concentration a I’aide du paramétre M. Kitano et al. (1981) ont démontré que le paramétre
M diminue linéairement avec le rapport de forme pour des suspensions de fibres courtes (7~
=6 a 27) dans des polyméres fondus. Kitano et Kataoka (1981b) ont aussi affirmé 1’effet
important du rapport de forme de fibres plus longues (» = 45 2 120) sur la viscosité relative
des suspensions de fibres de Vinylon dans du polyacrylamide. IIs ont également démontré
que le diamétre des fibres jouait un r6le important dans les suspensions de fibres. Goto ef
al. (1986b) ont observé les mémes effets du rapport de forme et de la concentration sur la
viscosité relative pour des suspensions de fibres de verre, de nylon et de Vinylon dans de la
glycérine. Ils ont également observé que la viscosité relative est une fonction croissante de

la flexibilité des fibres, une observation qui a ét€ confirmée par Kitano ef al. (1984b).

Billes de verre;

Carbonate de calcium naturel;
Tale;

Carbonate de calefum précipité;
Fibres de verre; r = 6;

Fibres de verre; r = §;

Fibres de carbone; r = 18;

Fibres de verre; r = 23;

Fibres de verre; r=27.

{Kitano, Kataoka et Shirota, 1981)

&

X4 4+ 00k > 0 @

Relateee  Viscosdy

Figure 2.2. Viscosité¢ relative en fonction de la concentration de différentes
suspensions de particules solides dans des polymeres fondus. Les valeurs numériques de

chaque courbe caractérisent le paramétre M de I’équation 2.4 (Metzner 1985).

D’autre part, pour les suspensions de fibres, en plus de la fraction volumique et des
propriétés des fibres, les fonctions rhéologiques relatives sont également fonction de
Porientation des fibres et des propriétés de la matrice. Un trés grand nombre d’expressions

est disponible pour exprimer la viscosité des suspensions de fibres. La plupart des



expressions, en plus de la fraction volumique prennent en compte le rapport de forme des
particules, et pour quelques-unes, le nombre de Peclet, noté¢ Pe (Pe=7y/D_ avec D, le
coefficient de diffusion en rotation et 7 est la valeur scalaire du tenseur du faux de

déformation).

En augmentant la viscosité de la matrice, Kitano et Kataoka (1981b) ont démontré
que la viscosité relative diminuait pour des suspensions de fibres dans des solutions de
différentes concentrations de polyacrylamide dans de I’eau. D’autres résultats (Charrier et
Rieger 1974, Han et al. 1978, Crowson et al. 1981, Kitano ef ai. 1981, Chan er al. 1983)
indiquent que, notamment pour des polymeéres fondus et des solutions concentrées de
polyméres, la viscosité de la suspension s approche de celle de la matrice (c’est-a-dire, 1, =
1). Les effets de la présence des fibres sont moins marqués pour des suspensions & matrice

viscoélastique.

Czarnecki et White (1980) ont étudi¢ le comportement d’un polystyréne sans fibre
et d’un polystyréne chargé de fibres. Leurs résultats indiquent que la viscosité en
cisaillement a une augmentation plus marquée a bas taux de cisaillement avec le taux de
fibres pour le polymeére chargé, tendance confirmée par Kitano ef al. 1980, Crowson et
Folkes (1980), Kamal et Mutel (1985), Becraft et Metzner (1992). A bas taux de
cisaillement, le plateau newtonien tend 2 disparaitre, donc le domaine pseudoplastique
s’étend vers les faibles taux de cisaillement (Crowson et Folkes 1980). Pour des fractions
volumiques importantes ou des rapports de forme élevés de fibres, on observe la disparition
totale du plateau newtonien et méme une augmentation de la pente de la courbe de viscosité
a bas taux de cisaillement (Kitano er al. 1980, Kitano et Kataoka 1981a, Laun 1984). Goto
et al. (1986b) ont également remarqué que les influences de la fraction volumique et du
rapport de forme diminuaient avec le taux de cisaillement, ce qui doit étre le résultat d’un
changement dans [’état de I’orientation des fibres lors de la mesure. Plusieurs auteurs ont
apporté les mémes conclusions pour des suspensions avec une matrice viscoélastique
(Chan et al. 1978, Czarnecki et White 1980, Kitano et al. 1984b, Ganini et Powell 1986,
Greene et Wilkes 1995).



Milliken er al (1989) ont ¢évalué P'influence de l'orientation des fibres sur la
viscosité d’une suspension de fibres. Ils ont utilisé la technique de la bille tombante. Leurs
résultats en comparaison avec ceux de Mondy et al. (1990) montrent que la viscosité d’une
suspension avec des fibres réparties d’une fagon aléatoire au début de la mesure, est plus

importante que lorsque les fibres deviennent alignées selon la vitesse de la bille.
2.2.1.2. Viscosité en élongation

Les fibres résistent trés peu a un mouvement de cisaillement paralléle ou
perpendiculaire a leurs axes. L'écoulement en cisaillement tend a aligner les fibres de fagon
paralléle au plan du cisaillement, ou elles exercent alors une résistance minimale a la
déformation. Cependant, dans une suspension, les fibres résistent 4 I'étirement du fluide
tout au long de leurs axes. Le champ d'écoulement aligne les fibres dans la direction de
I'étirement, ou les fibres exercent dans une résistance maximale au mouvement en
¢longation (Batchelor 1970). Les suspensions de fibres ont des viscosités en élongation
¢levées dans la direction des fibres, et encore plus grandes pour une élongation uniaxiale
¢tablie. Les suspensions de fibres ont une viscosité beaucoup plus faible dans un
cisaillement simple établi que dans une ¢longation uniaxiale établie. Dans ce cas, le rapport
de la viscosité en élongation sur la viscosité (dit rapport de Trouton, ne/n) est nettement

supérieur a 3.

Gibson and McClelland (1986) se sont servis de la méthode de Cogswell (1972)
pour calculer la viscosité en €longation des polymeres renforcés de fibres longues. Selon
ces auteurs, la viscosité en élongation peut devenir cent fois plus élevée que la viscosité en
cisaillement lorsqu’on ajoute des fibres longues. Il montre également que les viscosités de
polypropylénes chargés de fibres longues ou de fibres courtes sont voisines. D’apres
Thomasset (1994), la viscosité en élongation calculée par la méthode de Binding (1988) est
supérieure de 10 % a celle obtenue par la méthode de Cogswell (1972). Le rapport de
Trouton (no/n) de Pordre de 50 a ét€ obtenu pour des polypropylénes renforcés de 30 % de

fibres longues. Thomasset (1994) a également observé que la viscosité en élongation
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augmente de facon importante avec la concentration en fibres, et également avec la

longueur des fibres.
2.2.1.3. Différences de contraintes normales

Un certain nombre d’effets importants sur I’écoulement des polymeéres fondus peut
étre attribué au fait que des polymeéres fondus présentent des différences de contrainte
normales dans des écoulements en cisaillement. Les différences de contraintes normales,
une propriété rhéologique tres courante pour les polyméres fondus, se présentent dans
d’autres types de fluides comme les suspensions de particules sphériques et non-
sphériques. Certaines théories (Dinh et Armstrong 1984, Altan er al. 1989, Malamataris et
Papanastasiou 1991) prédisent que les différences de contraintes normales dans un
cisaillement simple sont trés faibles ou nulles sauf dans le cas des périodes transitoires ol
I’orientation des fibres n’a pas encore atteint le régime permanent. Pourtant, plusieurs
auteurs ont observé qu’en cisaillement permanent, la premiére différence de contrainte
normale, notée N, des suspensions non diluées de fibres & base d’un fluide newtonien est

non nuile.

Carter (1967), ainsi que Carter et Goddard (1967) ont mesuré des premiéres
différences des contraintes normales non nulles pour des suspensions de fibres de verre (r =
57, 114 et 228; ¢ = 0.005 — 0.02) dans un polybuténe newtonien (u = 18.6 Pa.s). Carter
(1967) a démontré que la premicre différence des contraintes normales varie presque
linéairement avec le taux de cisaillement et la concentration des fibres dans une échelle log-
log. Kitano et Kataoka (1981), Goto et al. (1986), Zimask et al. (1994) ont observé que la
premiére différence des contraintes normales de suspensions semi-diluées et concentrées de
fibres augmente avec la concentration, le rapport de forme et la flexibilité des fibres tandis

que la pente de V; versus 7 diminue avec I’augmentation de ces paramétres.

Carter (1967) a proposé un modéle pour des suspensions non-diluées de fibres a

grand rapport de forme dans un fluide newtonien, en supposant que les collisions entre
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les fibres étaient la cause majeure pour avoir des contraintes normales non nulles dans un
écoulement établi. On a alors N; qui vaut :

. ¢r3/2
Ny =Kn,) ——— @.5)

in2r-1.8
ol M, est la viscosité de la matrice et X est une constante. Un grand nombre d’auteurs ont
appliqué ce modéle a leurs résultats expérimentaux (r = 40 — 430) et leurs résultats
normalisés par les constantes de cette équation se regroupent dans une méme plage de X
variant de 0.04 a 0.27 (Carter 1967, Kitano et Kataoka 1981, Goto ef al. 1986, Zimask et
al. 1994, Petrich et al. 2000b). 1l a €té rapporté également que la plage des valeurs de X
peut changer en fonction de la flexibilité ou en fonction du rapport de forme des fibres (sl

est petit).

Malgré les premiéres différences de contraintes normales mesurées, aucun
déphasage entre la contrainte et la déformation n’a été détecté lors des essais en
cisaillement oscillatoire. Plusieurs auteurs ont conclu que la premiére différence de
contrainte normale observée ne pourrait pas &tre considérée comme des propriétés
élastiques de la suspension, mais seulement comme un phénomene lié aux interactions
entre les fibres durant 1’écoulement, due a I’anisotropie de I’orientation et de la forme des
particules. D’aprés leurs études, Zirnsak ef al. (1994) ont déduit que, malgré le fait que les
suspensions de fibres a base d’un fluide newtonien montrent un effet Weissenberg, elles ne
présentent pas pour autant les autres propriétés viscoélastiques (par exemple la diminution
du gonflement en sortie de filiere). Chan et al. (1978), Czarnercki et al. (1980), Kitano et
al. (1984) Greene et Wilkes (1995), ainsi que Barbosa et al. (1995) ont apporté les mémes

conclusions pour des suspensions a base de polymeéres fondus.
2.2.2. Régime dynamique

Le cisaillement oscillatoire des polymeéres est utilisé de fagon extensive pour
caractériser leurs propriétés viscoélastiques et pour les relier a leurs structures (Ferry 1970).

Pour cela, il est approprié de séparer le comportement linéaire et non-linéaire. Le régime
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linéaire correspond 2 des déformations si petites que la valeur de Pamplitude de
déformation, y,, n’affecte pas les propriétés et la structure du polymére. Le cisaillement
oscillatoire de faible amplitude est par conséquent, une bonne technique en rhéométrie pour
Pobtention du spectre viscoélastique linéaire des matériaux. Pourtant, les fluides complexes
comme les cristaux liquides et les suspensions de fibres non-browniennes (caractérisés par
une orientation ou une distribution de [Dorientation préférenticlle) montrent un
comportement complexe en cisaillement oscillatoire. En particulier, ’orientation du
matériau peut se développer lentement aprés un certain nombre de cycles a une
configuration préférentielle par le cisaillement oscillatoire. Comme la rhéologie de ces
matériaux est trés sensible a leur orientation, leurs propriétés viscoélastiques apparentes

changeront lentement avec le temps.

Kitano ef al. (1984) ont exploré les propriétés viscoélastiques linéaires des
suspensions concentrées de polyéthyléne et de fibres de verre pour une échelle de temps
importante (avec une déformation v, = 0.035 et ® = 0.01 — 10 rad/s). Ils ont montré que les
modules élastique (G’) et visqueux (G”) augmentent avec le taux de fibres et cette
augmentation diminue avec ’augmentation de la fréquence de sollicitation. Les travaux de
Greene et Wilkes (1995) appuient les derniéres conclusions de Kitano ef al. (1984). IIs ont
également remarqué que les fibres augmentent la composante élastique (G') plus que la
composante visqueuse (G”) a de basses fréquences et de maniére moindre a hautes
fréquences. De plus, les fibres augmentent les valeurs de G & basses fréquences tandis
qu’a hautes fréquences, elles deviennent plus alignées et contribuent de facon moins
marquée a modifier les valeurs du module. Greene et Wilkes (1995) ont remarqué que,
comme pour les résultats du régime permanent, les fibres augmentent la nature élastique et
visqueuse des composites & basses fréquences, ce qui est moins sensible a de hautes
fréquences; pourtant, le principe de Cox-Merz ne s’applique pas aux suspensions étudiées.
Selon les auteurs, cette différence est due 2 la formation d’une structure a faible fréquence

qui est différente de celle induite par un écoulement en régime permanent.
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Kim et Song (1997) ont étudié P’influence de P"amplitude de déformation de la
fréquence d’oscillation et du temps de précisaillement sur la viscosité complexe d’une
suspension de polystyréne. Ils ont associé leurs études rhéologiques avec des observations
en microscopie optique pour mesurer ’orientation des fibres. IIs ont pu conclure que
Porientation des fibres, spécialement pour des fractions volumiques et des temps de

cisaillement élevés, est la raison de la diminution de la viscosité.

Harlen et Koch (1997) ont modélisé une suspension diluée de fibres non-
browniennes dans un fluide d’Oldroyd B. En P’absence de contact de corps rigides, il
n’existe pas de changement net dans ’orientation des fibres dans un fluide newtonien pour
des cycles complets de cisaillement oscillatoire. Cependant, le comportement non-linéaire
d’un fluide viscoélastique peut donner la possibilité d’un changement net de I’orientation
des fibres dans un cycle. Dans une suspension diluée, sous un cisaillement en régime
permanent, les fibres suivent initialement les orbites de Jeffery, puis dérivent lentement
jusqwa ce qu’elles s’alignent selon 'axe de rotation. Dans le cas d’un cisaillement
oscillatoire, des cisaillements permanents multiples ont été observés sur des points fixés au
long des axes d’écoulement et de rotation. L’ orientation préférentielle de longue durée qui
est fonction de I’amplitude de déformation et de D'orientation initiale de la fibre, est
déterminée par la rotation de la fibre durant un cycle d’oscillation. Quand les fibres sont
soumises 4 de grands changements de leur orientation durant un cycle complet, elles

tendent & s’orienter selon ’axe de rotation comme dans le cas d’un cisaillement permanent.

Kim et Song (1997) ont observé un changement selon ’axe de I’écoulement dans
leurs études des effets du cisaillement oscillatoire sur ’orientation des fibres et la viscosité
des polyméres fondus renforcés de fibres. Mais leur travail n’est pas comparable aux
prédictions de Harlen et Koch (1997), en raison de la nature trés ¢lastique du polymere
fondu et de la présence d’interactions hydrodynamiques entre les fibres. Petrich ef al.
(2000a) ont poursuivi les travaux théorigues de Harlen et Koch (1997) au niveau
expérimental, en étudiant une suspension diluée de fibres de proprionate d’acétate de

cellulose (CAP) (» = 13) et de carbone (r = 60) dans un fluide de Boger (PB/PIB). La
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théorie prédit correctement 'ordre de grandeur de [orientation des fibres mesurée

expérimentalement.
2.2.3. Régime transitoire

Lors des essais en régime transitoire réalisés avec des suspensions de fibres, la
viscosité mesurée passe par un maximum trés marqué précédant la valeur stationnaire
(Laun 1984, Bibbo 1985, Mutel et Kamal 1986, Ausias 1991, Greene et Wilkes 1995). La
premiére différence des contraintes normales montre également un maximum encore plus
marqué et 4 une déformation encore plus élevée que pour la viscosité (Laun 1984). Ces
maxima de la viscosité et de la premigre différence des contraintes normales sont quasi
inexistants pour un polymeére non chargé ou pour un polymeére chargé de particules
sphériques. Ils sont donc caractéristiques de la présence des fibres, de I’évolution de leur
distribution d’orientation et des contacts mécaniques entre les fibres (Laun 1984). Ce
dernier a également étudié la relaxation de la contrainte de cisaillement aprés le régime
permanent. Il a observé que 1’ajout de fibres de verre tout comme celui de billes de verre,
n’a aucun effet sur 75, le temps nécessaire pour que la contrainte arrive a 50% de sa valeur

initiale.

Laun (1984) et Ausias (1991) montrent qu’a cause de I’écoulement en cisaillement,
le pic de viscosité est li¢ au passage d’une orientation désordonnée des fibres (mais pas
nécessairement isotrope) & un alignement dans la direction de I’écoulement. Laun (1984)
interpréte le pic de viscosité de facon suivante : lors d’une déformation, comme la fibre est
rigide, elle ne se déforme pas avec le fluide, et cela constitue une source de dissipation
d’énergie qui n’existe pas dans le cas d’un fluide non chargé. Cette dissipation d’énergie
supplémentaire est trés inférieure quand la fibre est orientée selon 1’axe de rotation ou la
direction de I’écoulement. On peut donc s’attendre a ce que la viscosité soit maximale pour

des fibres orientées a 45° par rapport 4 la direction de I’écoulement.

Bibbo et al. (1985) montrent que la viscosité transitoire est une fonction de la

déformation et non pas du temps et de la vitesse de cisaillement séparément. Ils utilisent
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une suspension semi-concentrée de fibres rigides dans une matrice newtonienne. Un
échantillon précisaillé ne présente plus de pic de viscosité (Mutel et Kamal 1987) car les
fibres, au départ de [P'essai, sont déja orientées dans la direction de I’écoulement.
L’amplitude de pic de viscosité est fonction du rapport de forme (Laun 1984), de la
concentration (Laun 1984, Ausias er al. 1992) et de la distribution d’orientation initiale des
fibres (Souloumiac 1996). La taille de ’entrefer de la géométrie du rhéomeétre affecte
PPamplitude du pic de viscosité : quand celle-ci diminue, "amplitude du maximum de
couple diminue également et la déformation au maximum de couple augmente

(Souloumiac 1996).

Pour Cohen (1987), les propriétés viscoélastiques du fluide impliquent que les
fibres finissent par s’orienter dans I’axe de rotation. L’élasticité de la matrice se manifeste
d’autant plus que le taux de cisaillement est élevé, ce qui expliquerait que les fibres
agissent peu ou pas du tout sur la viscosité, a taux de cisaillement élevé. Mais cette
orientation n’a pas été observée pour des composites thermoplastiques fibres courtes. Pour
ces matériaux, le cisaillement oriente principalement les fibres dans la direction de
I’écoulement (Laun 1984, Ausias 1991). En fait, une fibre qui quitte la position orientée
dans le sens de I’écoulement pour commencer une nouvelle rotation, augmente la distorsion
des lignes de courant (Laun 1984). Cette distorsion est pour ce demier, la cause d’une
contrainte normale dans la matrice viscoélastique qui maintient la fibre dans la position
orientée dans le sens de I’écoulement. Donc les fibres, & fort taux de cisaillement, restent
alignées dans la direction de I’écoulement ce qui explique que l’augmentation de la

viscosité est faible.

A plus faible taux de cisaillement, la position orientée dans le sens de 1’écoulement
n’est plus stable car la contrainte normale évoquée par Laun (1984) est trop faible. Les
fibres tournent de facon périodique, et celles qui ne sont ni dans la direction de
I’écoulement, ni dans la direction de rotation, mais qui ont un certain angle avec le sens de

I’écoulement, augmentent la viscosité du composite. L interprétation de Laun a ’avantage
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d’expliquer le rdle des fibres & taux de cisaillement élevé comme 2 faible taux de

cisaillement.

Certains auteurs comme Yamane ef al. (1994) parlent d’agrégation des fibres a
faibles taux de cisaillement et pour les thermoplastiques fortement chargés. Kamal et Mutel
(1985) émettent ’hypothése d’une structure, voire d’un réseau, formé par les fibres. Ces
deux interprétations sont complémentaires de celle formulée par Laun pour expliquer, a
faible taux de cisaillement, la forte contribution des fibres & la viscosité, mais deviennent

indispensables pour expliquer I’existence d’un seuil d’écoulement.

Ganini et Powell (1986) observent un second pic de viscosité lors de I’application
d’un second démarrage dans le sens opposé du premier pour des suspensions semi-
concentrées et concentrées avec une matrice newtonienne. Plus récemment, Ramazani ef al.
(1999) ont étudié des solutions semi-concentrées et concentrées de fibres de verre en
suspension dans un fluide de Boger. Ils observent qu’un échantillon précisaillé expos€ une
nouvelle fois au méme taux de cisaillement atteint directement sa viscosité permanente
tandis que le pic de viscosité est toujours visible pour un cisaillement avec un taux différent
de celui du précisaillement. Ces derniers résultats tendent a montrer que 'état de
Porientation finale, induit par un cisaillement dépend non seulement de la déformation

mais aussi du taux de cisaillement.
2.2.4. Effets de entrefer de la géométrie du rhéométre

Les suspensions de fibres sont responsables de difficultés expérimentales dues a
leur grande microstructure & I’échelle des fibres. Les fibres ont souvent une taille d’ordre
du millimétre et donc elles peuvent interférer avec les dimensions de la géométrie du
rhéométre. Pour les théométres a géométrie plan-plan ou cne-plan, la couche voisine de la
surface ne représentent pas la réponse réelle. Cette derniére dépend de I’angle du cone pour
une géométrie cOne-plan et de la taille de Uentrefer pour une géométrie plan-plan. C’est
pourquoi, cet entrefer doit étre suffisamment important pour que les effets induits par les

parois de la géométrie soient négligeables.
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Des études ont montré que le rapport entre la taille de entrefer de ’appareil de
mesure et la longueur des fibres doit étre supérieur & trois pour que les effets de parois
n’affectent pas la réponse réelle. Attanasio ef al. (1972) et Blakenay (1966) ont confirmé ce

résultat numérique 2 la fois pour une suspension diluée et pour une suspension semi-diluée.

D’aprés certains auteurs, un entrefer trop faible peut générer un comportement
rhéofluidifiant. Kitano et Kataoka (1981) rapportent ce type de comportement pour des
suspensions non-diluées de fibres de Vinylon dans une huile silicone, en utilisant un
rhéométre cone-plan avec un entrefer plus faible que la longueur des fibres. Alors que
Ganani et Powell (1986) ont obtenu un comportement newtonien pour des suspensions de
fibres de verre dans un fluide newtonien en utilisant un rhéométre plan-plan avec un
entrefer plus grand que la longueur des fibres. Bibbo ef al. (1985 et 1988) ont examiné les
effets de la paroi en utilisant des géométries plan-plan et cone-plan pour des suspensions
non-diluées de fibres dans une matrice newtonienne. Ils ont conclu que les effets de paroi
deviennent minimes pour un entrefer 1.2 fois plus grand que la longueur des fibres. Petrich
et al. (2000b) ont respecté le rapport de 3 sur 1 tout en mesurant la différence de contrainte
normale pour différents entrefers, afin de s’assurer que les effets de parois n’influencaient

pas leurs mesures.
2.3. Théorie
2.3.1. Définitions et propriétés de base

On suppose que chaque fibre est une particule axisymétrique rigide, comme un

cylindre avec une longueur et un diamétre uniformes (figure 2.3).



Figure 2.3. Orientation d'une particule axisymétrique décrite soit par deux

angles 1 et 7 soit par un vecteur unitaire p dirigé dans l'axe de la particule.

La discussion présente est restreinte 4 une concentration de fibres (nombre de fibres
par unité¢ de volume) uniforme dans ’espace, mais ’orientation des fibres peut ne pas
I’étre. Avec ces hypothéses, l'orientation d'une telle particule peut étre décrite par deux
angles 1 et y ou un vecteur p dans la direction de l'axe de la particule. Ces deux

descriptions sont reliées de la facon suivante :
p, =sinicosy; p, =sinisiny; p; =cCOS1 (2.6)

ou (p;, p2, p3) sont les composantes cartésiennes de p. Le choix du sens de p est
arbitraire, puisque la téte et la queue de la particule sont identiques. Donc [’orientation

des particules ne change pas si on remplace :
P =P 1> T > T—Y 2.7)

Dans plusieurs composites, les fibres peuvent étre courbées. Pour décrire ce type
de fibres, une description plus détaillée est nécessaire. Enfin, la plupart des modéles ne

considérent que des particules axisymétriques rigides.

Dans un composite, les fibres ne sont jamais alignées dans une méme direction,

méme localement. Une description réaliste de 'état d'orientation doit tenir compte de
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l'orientation de plusieurs fibres. Une approche consiste 4 considérer les fibres comme un
échantillon d’une population infinie. On peut caractériser cette population avec une
fonction de distribution d'orientation, (i, ) ou y(p). La probabilité, P, de la présence

d'une fibre orientée entre la plage 1; et 1;+dv, et ;1 et ¢ +dy est définie avec :
Pusigy+d, g, <y <y +dy)=vwly,,y, )sini,didy (2.8)

Puisque chaque fibre doit avoir une certaine direction, l'intégrale de cette fonction sur

I’ensemble des angles peut étre normalisée :

2n ©

I _a' \!1(1, x)sin wddy = f \y(p)dp =1 (2.9)
x=0 1=0
Ici dp montre l'intégrale sur toutes les valeurs possibles de p, c'est-a-dire dans toutes les

directions.
2.3.2. Tenseur d’orientation

Une autre alternative est de calculer une sorte d'orientation moyenne. On
considére un petit volume dans le composite. Ce volume est assez grand pour contenir
plusieurs fibres. Dans ce volume, il existe plusieurs fibres, avec chacune leur orientation.
Pour décrire I'orientation de cette population de fibres, il est plus facile d’utiliser les
moments de y(p). Pour définir la structure microscopique du fluide, un tenseur d’ordre
deux ou d’ordre quatre correspondant, respectivement, au deuxiéme ou au quatriéme
moment de D'orientation peut €tre introduit. Ces tenseurs sont définis en formant un
produit dyadique du vecteur p et ensuite en intégrant ce produit avec la fonction de

distribution sur toutes les directions possibles, soit :
a,=(p.p,)={p,pv(p)dp =a, (2.10)

ay =(p.p,pip)) = PP, PP (DD = 2, @.11)
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i, ], ket!lontdes valeurs de 1, 2 et 3 dans toutes les combinaisons possibles. Les quantités
ay et ayy sont, respectivement, des fenseurs d'ordre deux et quatre, nommés les tenseurs
d'orientation. L'interprétation physique des composantes du tenseur a; est trés semblable

a celle du tenseur de contrainte. La figure 2.4 en donne quelques exemples.

(2)

- b

<

— - ©

Figure 2.4. Exemples de différents états d'orientation : (a) orientation aléatoire
en 3D, isotrope, (b) orientation aléatoire en 2D, (c) orientation alignée en 1D, (d’aprés

Tucker et Advani, 1994).

La nature tensorielle de ay et a;; est évidente dans leur définition. Elle est de sorte
que leurs composantes peuvent étre transformées d’une coordonnée & une autre en

utilisant les lois habituelles de transformation. Ces tenseurs sont complétement

symétriques (@, = a, ) et en normalisant les conditions de ’équation (2.9) on peut obtenir
la trace égale a un: g, =1. De plus, on peut écrire les tenseurs d’ordre supérieur en

. , e : ' _ _
fonction des tenseurs d’ordre inférieur de fagon suivante : a,, =a, et ay,,, =a,, .

2.3.3. Dynamique de ’orientation

Considérons le mouvement des fibres dans un fluide en mouvement. L'analyse

classique de Jeffery (1922) traite une particule rigide unique dans un fluide newtonien
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infini. On suppose que la vitesse non perturbée du fluide est une fonction linéaire de la
position et que l'inertic et les forces du corps sont négligeables. Jeffery a résolu ce
probléme pour une particule ellipsoidale. Un bilan des moments sur le centre de gravité
de la particule nous conduit & I’équation du mouvement en rotation du vecteur de

Porientation p :

_ 1 - :
P =-5Q;,»p,- +5x (o2, ~1uper 2 2.12)

Les tenseurs du taux de déformation et de la vorticité sont définis par :

ov, o

j, =t L (2.13)
ox, Ox
v, o,

Q,=—-— (2.14)
ox, Ox

ot v; représente la vitesse non perturbée du fluide. L’équation (2.12) montre que le

vecteur p bouge comme un élément du fluide (}'/U. p; ), sauf qu’il ne peut pas étre étiré,
donc on soustrait la partie d’étirement du mouvement (3'/ WDy D) D ) La particule tourne

autour de l'axe p. A est une constante qui dépend de la forme de la particule,
A=(*-1)/(r* +1). Pour une sphére, A = 0, tandis que pour une particule mince X tend
vers 1. L'équation de Jeffery permet donc de prédire le mouvement des fibres
cylindriques ou de toute autre particule semblable a une fibre. Cette équation prédit
qu'une particule unique dans un écoulement en cisaillement simple aura une rotation
périodique. Dans un €coulement en cisaillement pour une suspension diluée sans
interaction fibre-fibre, le mouvement de la particule sera délimité dans I'espace 1 — ¢, et la
particule repassera continuellement sur la méme courbe nommée l'orbite de Jeffery.
Plusieurs facteurs peuvent alors intervenir et changer la prédiction de [orientation
comme, par exemple, un comportement non-newtonien du fluide, des particules au

environ de la paroi, des particules flexibles, etc. Ces facteurs sont généralement
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mesurables mais ils affectent faiblement ['orientation. Par contre, 4 cause de I'interaction
fibre-fibre, les fibres ne suivent plus les rotations de Jeffery et 1’équation de Jeffery ne
permet alors plus de décrire les concentrations plus élevées. Les interactions fibre-fibre
ont €té reconnues (Manson et Manley, 1957), mais leur modélisation méme entre deux
particules, est difficile, alors que les problémes réels impiiquent des interactions entre

plusieurs fibres.

Plusieurs modeles tiennent compte des interactions liées a la théorie du
mouvement brownien en rotation. Les effets de ce mouvement sur 'orientation des fibres
ont ét¢ modélisés par une €quation de I'évolution dans le temps de la fonction de

distribution d’orientation y(p) (équation de Fokker Planck) :

62
ﬂ=—i(w, )+Dr Li_}
dt P, p;

(2.15)

ot D, est le coefficient de diffusion avec comme unité [1/temps] et il dépend de la taille
des particules, de la viscosité et de la température du fluide. Le premier terme décrit
Peffet du champ de I’écoulement macroscopique, et le second donne leffet du

mouvement brownien sur la fonction de distribution. Le mouvement moyen en rotation
de la fibre est montré par p, . Sans la déformation pour déplacer les fibres, p, =0, le
terme de diffusion se réduit aux gradients de y conduisant les fibres vers une orientation
aléatoire. Si la suspension est déformée, p, tend a aligner les fibres alors que le terme de

diffusion en rotation s’oppose a l'alignement; des fibres individuelles continuent a
bouger, alors que la fonction de distribution y(p) a atteint le régime établi. Plus
I'écoulement est fort, plus les fibres s'alignent en régime permanent. Plus les taux de
déformation sont faibles et les diffusions en rotation grandes, moins les fibres
s’aligneront en régime établi. Un résumé des différents modéles tenant compte du terme

de diffusion est présenté dans le tableau 2.1.
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Folgar et Tucker (1984) ont proposé¢ d'adopter 1’équation 2.15 en posant A =1

dans I'équation de Jeffery et en supposant :
D =Cy (2.16)

avec Cy le paramétre du coefficient de l'interaction qui mesure l'intensité des interactions

dans une suspension et ¥ la valeur scalaire du tenseur du taux de déformation.

Tableau 2.1. Différentes valeurs de D, et de A des équations de Fokker Planck et de
Jeffery correspondant aux différentes théories représentant le mouvement de particules

dans un fluide newtonien.

Modele Parameétres des Matériaux
rr—1

Jeffery (1922) D=0, =—
re+1

Dinh et Armstrong (1984) D.=0,A=1

Folgar et Tucker (1984) D =Cy,A=1

Kamal et Mutel (1989) ont proposé un modele avec une valeur constante pour le
D, pour modéliser la variation transitoire de la fonction de distribution de I’orientation.
Ils n’ont pas isolé la dépendance du coefficient de diffusion avec le taux de cisaillement
et leurs résultats prédisent différentes orientations en régime €tabli pour différents taux de
cisaillement. Par contre, les résultats expérimentaux rapportés par Bibbo et Armstrong
(1988) indiquent que pour des suspensions avec des fractions volumiques modérées, le
taux de déformation n’affecte pas I’orientation en régime établi. La raison pour laquelle
la viscosité des suspensions ne dépend pas des résultats du régime établi, est que les
particules sont trop grandes pour que le mouvement brownien soit important. Folger et

Tucker (1984) ont proposé un modele dans lequel le degré d'alignement des fibres en
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régime établi est indépendant du taux de cisaillement, alors que, dans le modéle de Kamal

et Mutel (1989), 'orientation est fonction du taux de cisaillement.

Avec les équations (2.10) et (2.11), Advani et Tucker (1987) ont transformé
I’équation du y en une équation dynamique pour ay. L’équation de Jeffery peut étre

exprimée en fonction des tenseurs d’orientation :

;1
— = ”“(szakj - aikaj)
be 2 2.17)

+ ”1;“7” ("l/ikalg‘ +a,vy, - 2“./1«1%1(1)“‘ 2C, 3"(‘311 - O‘oay‘)

0l est une constante introduite pour satisfaire la trace unitaire de a,. Elle est égale a 2
pour une orientation en 2D et 3 pour une orientation en 3D. Cette approche tensorielle
présente les avantages d’une représentation compacte et de I’efficacité des calculs. Par
contre, le tenseur d’ordre quatre gy apparait dans I’équation de a; et les informations sur
ce tenseur d’ordre quatre ne sont pas disponibles car on utilise un tenseur d’ordre deux
pour représenter 1’état d’orientation. La seule fagon d’arriver & un ensemble fermé
d’équations, pour rapprocher les moments inconnus aux moments connus, est

'approximation de fermeture dont nous discuterons dans la partie suivante.

Dans I’approche phénoménologique suggérée par Folgar et Tucker (1984),
peut augmenter avec la fraction volumique ou le rapport de forme des fibres, car les
interactions fibre-fibre deviennent plus fortes et plus fréquentes, ce qui est vérifié dans la
plage des systémes semi-dilués. Dans le régime concentré, les données montrent que C;
diminue avec l'augmentation de la concentration. Dans une suspension fortement
concentrée de particules cylindriques, chaque particule sous l'effet de la contrainte de sa
voisine tourne avec une vitesse similaire vers une orientation similaire. L'augmentation

de la concentration implique donc un alignement plus important.

Le modele de diffusion en rotation est strictement un modéle phénoménologique

et la seule fagcon de trouver la valeur de C; est de I’ajuster aux données expérimentales.
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Plusieurs chercheurs se sont demandés s’il existe une base fondamentale pour utiliser le
terme de diffusion en rotation pour modéliser les effets des interactions fibre-fibre. A
partir d’un grand nombre d’expériences, d’observations et de simulations numériques sur
des plaques injectées en thermoplastiques, Bay (1991) a proposé le modéle empirique

suivant pour le coefficient de ’interaction Cy:

C, = 0.0184 exp(~0.7148¢r) (2.18)

Fan ef al. (1998) ont proposé un terme de diffusion qui ne soit pas isotrope, car les
phénoménes d’interactions ne sont pas les mémes suivant le plan dans lequel on se situe
par rapport au plan de cisaillement. Le coefficient de I'interaction n’est alors plus un
scalaire, mais un tenseur. Phan-Thien et al. (2002) ont déterminé une équation empirique
pour le coefficient de I'interaction en fonction du taux de fibres et de leur rapport de

forme :
C, = A[1.6 - exp(~Bor)] (2.19)

ot 4 et B sont deux paramétres qu’ils déterminent empiriquement a partir de résultats
d’expériences réalisées sur I’écoulement de systeémes ayant différents taux de fibres et

différents rapport de forme en cisaillement simple. Ils obtiennent 4 = 0.03 et B = 0.224.

Ranganathan et Advani (1991) montrent comment une simple dépendance de C;
aux espaces inter-fibres affecte I’orientation transitoire des fibres en cisaillement simple.
La diffusion dépendant de I’orientation affecte le temps nécessaire pour le passage de
I’orientation initiale a celle de 1’état établi final. Le comportement transitoire est important
pour modéliser le procédé, car plusieurs zones du produit final ne se déformeront jamais
assez pour atteindre un régime établi. Ranganathan et Advani (1991) ont évalué la
distance moyenne entre fibres en fonction de I’état d’orientation et ils ont proposé un

coefficient de I'interaction proportionnel & cette distance moyenne entre fibres :

*

Cl
(/L)

I

(2.20)
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ou C, est un coefficient de I’interaction et 4 la distance moyenne entre deux fibres,
calculée en fonction de la géométrie et de I’état d’orientation des fibres. Des expériences
effectuées par Ranganathan (1992) sur des écoulements en cisaillement simple en régime

¢tabli pour des suspensions semi-diluées confirment cette hypothése.

Ait-Kadi et Grmela (1994) évaluent cette distance moyenne a partir d’un

coefficient ftel que :

h=a +bf (2.21)
f=1-(27deta, )" (2.22)
aveg :
ED2
a = "™ (2.23)

b= P2, (2.24)
1 44) 1 .

Ramazani et al. (1997) ont repris C; de I'équation (2.20) et ont utilisé 'équation (2.21)
pour déterminer 2 (Ait Kadi et Grmela, 1994).

Shagfeh et Koch (1990) ont calculé la distribution de l'orientation des fibres en
régime établi dans un écoulement uniaxial élongationnel planaire, en incluant les
interactions hydrodynamiques, pour des régimes dilués et semi-dilués. IIs ont utilisé la
théorie des corps minces et ont tenu compte des effets d’écran hydrodynamique, ¢’est-a-
dire que les particules voisines d’une particule limitent D’effet des particules plus

¢loignées.

Pour des concentrations plus élevées de fibres, une théorie hydrodynamique ne
prend pas en compte les autres types de force, comme les forces de contact fibre-fibre

mais cette théorie ne suffit pas & décrire la rhéologie des suspensions concentrées. La
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description de ces forces n’est pas triviale, mais la contribution des particules dans une
suspension concentrée peut étre considérée en deux parties : la contribution due aux
interactions hydrodynamiques particule-particule et particule-fluide et celle due aux

forces non-hydrodynamiques entre les particules.

White (1979) ainsi que Kitano et Kataoka (1981) ont effectué des observations de
contrainte seuil apparente, en prenant en compte les forces de friction. Dans une autre
approche, Doi (1981) a développé I’équation de Fokker Planck aux suspensions
concentrées en ajoutant le terme qui tient compte de I’effet du potentiel de I’interaction

du « liquide cristallin » entre les cylindres sur le mouvement brownien :

7

_ & _
WO (yp)+D, S 2 LI (2.25)
dt op, ap;  op, kT op,

ou kg et 7 sont respectivement, la constante de Boltzmann et la température absolue, V' le
potentiel d’alignement. Pour des suspensions concentrées, le coefficient de diffusion D,

devient une fonction de I"orientation des particules. Les interactions sont décrites par un
champ potentiel moyen qui est créé par les particules voisines sur la « particule

échantilion ».

-2

_ . 3

D, =v D,(nl’) 2(1 - a,f) (2.26)
2

v, est une constante numérique, D,y le coefficient de diffusion d’une suspension diluée de

cylindres, # et L respectivement la concentration en nombre et en longueur des cylindres.

Toll et Manson (1993, 1994) ont développé une analyse complémentaire non-
hydrodynamique, qui, contrairement a la théorie hydrodynamique, s’intéresse aux forces
de contact en négligeant les interactions hydrodynamiques en raison de concentrations de
particules tres €levées. Ils ont proposé des équations de mouvement des particules et des
contraintes basées sur un bilan de forces de friction au contact. Sundararajakumar et

Koch (1997) ont étudié les collisions et les forces de friction associées aux suspensions
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de fibres semi-concentrées, en négligeant les interactions hydrodynamiques. IIs ont
démontré les effets des contacts mécaniques entre les fibres sur la viscosité et
I’orientation des fibres. Petrich et Koch (1998) ont, quant a eux, essayé de combiner les

forces de friction et de lubrification, pour des systémes aux concentrations assez ¢levées.

Servais et al. (19992) ont étudié des systtmes a trés hautes concentrations
(thermoplastiques renforcés par des nattes de verre). lis ont proposé un modéle en tenant
compte des interactions fibre-fibre. Ils ont supposé que toutes les interactions ont lieu aux
points de contact entre les fibres. Ce contact peut étre causé soit par des collisions dues a
I’inertie, soit par des forces de tassement élastique ou encore par la combinaison de ces

deux phénomenes. Il est a noter que les effets d’inertie sont généralement négligeables.

Une autre alternative intéressante pour décrire 'orientation des fibres et la
rhéologie des suspensions de fibres est de partir de la modélisation hamiltonienne
(Grmela, 1986). Dans les modeles basés sur le modele de Jeffery, une fibre supposée
comme un cylindre rigide avec la position et la vitesse du centre de gravité, est
représentée avec un vecteur unitaire dans !’axe de la fibre et une vitesse angulaire.
Cependant, il existe un autre point de vue. On peut considérer une fibre comme deux
billes avec un ressort rigide sans masse qui les connectent. Pour une fibre isolée, ces deux
hypothéses et leurs cinématiques paraissent équivalentes. Par contre, pour une suspension
de fibres, elles ne le sont plus. Les deux approches commencent par deux différents
cheminements qui résultent des descriptions mésoscopiques €t macroscopiques,
respectivement pour le cas du ressort rigide et celui du cylindre rigide. Les résultats finals
issus de ces deux descriptions, c’est-a-dire les descriptions mésoscopique et
macroscopique, sont différents. Pour des suspensions avec des concentrations ainsi que
des forces agissantes sur les fibres relativement faibles, I’approche du cylindre est la plus
appropriée. Pour le cas de concentrations plus élevées, la rotation des fibres est génée et

dans ce cas, I’approche du ressort est plus adéquate.

Cette derniére approche avec le ressort nous conduit a la description d’un tenseur

de conformation au lieu d’un tenseur d’orientation dans P’approche du cylindre. Le
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tenseur de conformation C est choisi comme une variable de I’état interne, il est supposé
étre symétrique et défini positif. A l'aide d'une fonction de distribution (R, 1), le tenseur
de conformation peut étre considéré comme le second moment d’un vecteur bout a bout

R de ia conformation :
C(R.1)= [y(R,/RRIR 2.27)

On suppose un systéme homogeéne en 3D, c’est-a-dire que C ne dépend pas de la

position.

Ghosh ef al. (1995) ont présenté un modéle hamiltonien pour décrire I’ orientation
des fibres et la rhéologie des thermoplastiques chargés de fibres en utilisant le tenseur de
conformation des fibres. Ils ont ainsi pu éviter la nécessité d’introduire des
approximations de fermeture et également d’autres problémes numériques associ€s aux
autres modeles. D’aprés Grmela (1986), on peut proposer une équation qui détermine

I’évolution du tenseur de conformation dans le temps de la fagon suivante :

D 1 REESEN dG
—C)=—{2 - -C+C- —-= -C+C-w - AC)-C— 2.28
o (t) 2( i)[K +C - x ] 2[1( + K] ( ) P ( )

ot k" est le tenseur du gradient de vitesse déja défini dans ’équation 2.13 et 2.14 et G
I’énergie libre de Gibbs tenant compte de la restriction spatiale des fibres dont les trois
composantes du fonctionnel de I’entropie: le "mouvement brownien", la "semi-
flexibilité" et le "volume exclu" des fibres (Ghosh er al, 1993). A(C) représente la
mobilité qui, en général, est anisotrope et une fonction de C. Enfin, & est le parameétre du
glissement du modele Phan-Thien-Tanner (1977). Ghosh et al. (1995) ont négligé ce
paramétre du glissement. On peut noter que I’évolution du tenseur de conformation est
composée d’une partie convective (dépendant du champ de I’écoulement) et d’une partie
dissipative (ou de diffusion). Pour des solutions modérément concentrées, en ajustant les
paramétres du modéle avec les résultats expérimentaux, Ghosh ef al (1995) ont pu

prédire le comportement du composite, ainsi que orientation des fibres a I'aide du
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tenseur de conformation. Mais pour une bonne prédiction, ils ont dii choisir un nombre
effectif de concentration de fibres (n.5) dun ordre de grandeur de 10° 2 10" fois plus
élevée que le nombre de concentration réelle. Cette déviation de #n peut étre due & l'effet

d'ajustement de la théorie moléculaire avec des fibres macroscopiques.

Grmela et al. (1998) ont, quant a eux, proposé un modéle pour des suspensions de
fibres rigides. Ils ont caractérisé les états de la suspension premic¢rement & ’aide du
champ global des moments, secondement des fonctions de distribution de la
configuration dans I’espace des fibres et des macromolécules (ou des champs alternatifs
des tenseurs de conformation des fibres et des macromolécules), et troisiémement du
champ du moment angulaire des fibres. Les équations d’évolution de ces champs dans le
temps ont été écrites a partir de la modélisation hamiltonienne (GENERIC). IIs ont
généralisé ou adapté les équations de Jeffery décrivant des suspensions dans des fluides
simples aux équations décrivant des suspensions dans des fluides polymériques. L un des
avantages de ce modeéle est que ’application des approximations de fermeture n’est plus
nécessaire et que les équations décrivent dans ce cas précisément les états de la

suspension.
2.3.4. Approximations de fermeture

Les problémes liés a I’apparition du tenseur d’ordre quatre a;% dans 1’équation de
ay et au manque d’information sur ce tenseur d’ordre quatre peuvent étre résolus 4 ’aide
de I’approximation de fermeture. Une approximation de fermeture pour a,u peut étre
formée en prenant I’approximation d’un tenseur d’ordre quatre en terme d’un tenseur
d’ordre deux et en la remplagant dans I’équation (2.17). Plusieurs approches ont été

jusqu’alors effectuées. On peut trouver un résumé de quelques unes de ces approches

dans le tableau (2.2).

Une approximation de fermeture pour ayy peut étre formée en considérant les
produits de a; avec le tenseur unitaire &y Hand (1962) a proposé une formule

d’approximation de fermeture lin€aire comme le résultat de ce produit :
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1
341 = aykll = ~§g(5u'6kf +8,8, + 6”§fk)

. (2.29)
+ —«(aijﬁk, + aikSﬂ + a,.lﬁjk + 6y.ak, + 6ikaﬂ +8,a

Jk
Mais P’approche la plus simple est de prendre une approximation de fermeture

quadratique qui est le produit dyadique de tenseur d’ordre deux avec lui-méme, soit
a,” =a," ~a,a, (2.30)

L’approximation de fermeture linéaire est correcte pour une distribution isotrope
(ou aléatoire) de [orientation. Alors que la fermeture quadratique montre un
comportement dynamique stable pour des fibres parfaitement alignées, elle ne permet pas
de prédire un comportement transitoire, ni des valeurs précises du régime établi
(spécialement pour des orientations presque aléatoires a moyennement alignées et pour

des champs d’écoulement en rotation).

D’autres approximations de fermeture ont été proposées pour améliorer les
prédictions aux deux limites. Hinch et Leal (1976) ont proposé un certain nombre
d’approximations de fermeture dans leur travaux concernant des suspensions de fibres
avec des mouvements browniens. Les fermetures proposées par ces derniers fonctionnent
trés bien pour des alignements faibles & moyens, mais une des formes (HL2) montre des

oscillations fictives dans un écoulement en cisaillement simple pour de forts alignements.
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Advani et Tucker (1990) ont proposé I’approximation de fermeture hybride pour

une orientation 3D, formée en modifiant la mesure scalaire d’alignement de fibres :
a, ~ faj +(1- f)a, (23

ol f est une mesure scalaire de I’orientation, égale a zéro pour une orientation aléatoire

3D et égale a ’unité pour des fibres parfaitement alignées :
f=1-(pdeta,)" (2.32)

B est égale a 4 pour des orientations en 2D et a 27 pour des 3D. B a été choisi de fagon &
normaliser f entre 0 et 1 correspondant respectivement aux orientations aléatoires et
alignées. Avec m = 1, I’équation (2.32) se réduit a celle de Advani et Tucker (1990), dans
ce cas, f est moins sensible au fort alignement. Quand m = 0.2, cela permet de montrer
que la variation de I’état d’orientation avec 1’espace inter-fibre est plus efficace dans le

cas d’alignement élevé que dans le casoum = 1.

Cette approximation de fermeture est en effet une approximation qui ne manifeste
jamais des oscillations fictives. Dans ce cas, les prédictions en régime établi sont
meilleures que celles de la forme quadratique dans le cas d’un écoulement en cisaillement
et elles fonctionnent mieux dans le cas d’un écoulement combiné en
cisaillement/étirement sur une vaste plage d’orientation. Mais les erreurs numériques qui
en résultent sont loin d’étre négligeables pour certains conditions, selon Bay et Tucker
(1992b). Bay (1991) a donc propos¢ une approximation alternative de fermeture basée
sur le travail de Hand (1962).

Les deux familles d’approximations de fermeture les plus récentes sont les
approximations orthotropes (Cintra et Tucker 1995, Wetzel et Tucker 1999) et
I’approximation dite naturelle (Verleye et Dupret 1993). Elles procédent d’une méme
démarche. Les invariants de a, sont utilisés pour calculer a4. Les axes principaux de a4
sont les mémes que ceux de a;. Quand a4 est exprimé dans le repere de ses axes

principaux, un certain nombre de ses composantes sont nulles tandis que celles non nulles
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sont exprimées en fonction des valeurs propres de a;. Sa trace étant unitaire, seules deux
valeurs propres A; et A,, sont indépendantes. Utilisant certaines propriétés de a4, Cintra et

Tucker (1995) proposent d’utiliser une notation contractée : 4,, < a,,. Chaque paire

d’indices est remplacée par un indice unique allant de 1 a 6 suivant le tableau 2.3.

Tableau 2.3. Relation entre les indices des tenseurs et les notations contractées.

B moun ij ou kf
1 11
2 22
3 33
4 23 ou 32
5 310ul3
6 12 o0u 2l

Dans la notation contractée, un tenseur d’ordre quatre représenté dans ses axes

principaux a nécessairement douze composantes non nulles. En utilisant d’autres
propriétés de ay, il peut étre décrit a I’aide de trois termes indépendants 4;,, 4,, et 4,

dans le repére des axes principaux. Ces trois termes indépendants sont ensuite écrits
comme des fonctions polynomiales de A, et A,. Différentes stratégies ont été utilisées

pour déterminer les coefficients de ces polyndmes (VerWeyst, 1998).

L'approximation de fermeture naturelle proposée par Verleye et Dupret (1993,
1995) est en accord avec les solutions analytiques de la fonction de distribution de
Porientation en supposant que les interactions fibre-fibre sont négligeables. Pour C; 2
0.01 et pour certaines types d’écoulements, la fermeture orthotrope ajustée (Cintra et
Tucker, 1995) tout comme la fermeture naturelle donne les solutions les plus précises par
rapport aux autres approximations. La fermeture orthotrope ajustée est la plus précise en
terme des mesures moyennes transitoires et en régime ¢établi. Cette fermeture donne des
comportements physiquement plausibles pour plusieurs types d’écoulements. Au
contraire, certaines autres fermetures peuvent &tre précises pour certains écoulements
mais physiquement donnent des comportements non réels (HL.1 et HL2) (Hinch et Leal,
1976); ou encore certaines d’autres peuvent étre plausibles pour tous types d’écoulements

mais alors sans précision (quadratique (Hand, 1976) et hybride (Tucker, 1990)).
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Toutefois la fermeture orthotrope ajustée est moins précise que la HL2, que la
quadratique et que ’hybride, dans un écoulement élongationnel uniaxial. La fermeture

orthotrope ajustée est Iégérement plus précise que la naturelle.

Une faiblesse de la fermeture ajustée orthotrope est son comportement dans un
écoulement en cisaillement simple, pour un petit coefficient d’interaction. Le probléme
s’aggrave quand C; diminue. La fermeture ajustée oscille fortement quand C; = 0, alors
que la fermeture naturelle ne manifeste pas ce genre de comportement. Des versions
modifiées des approximations de fermeture ajustées ont été¢ proposées par Chung et
Know (1999, 2000a) dans lesquelles, les oscillations non-physiques ont disparu dans le
cas de champs d’écoulement homogénes et non-homogénes et ce, méme pour des valeurs
faibles de C. 11 est & noter que 1’usage de toutes ces approximations alourdit beaucoup les
calculs. C’est pourquoi certains auteurs comme Chung et Know (2002) proposent des

versions moins lourdes.

Han et Im (1999) ont proposé des approximations de fermeture hybrides
modifiées qui décrivent bien les distributions aléatoires dans I’espace et dans le plan,
ainsi que les distributions uniaxiales. Leurs approximations répondent bien a des champs
d’écoulements homogeénes et non-homogénes pour une vaste plage de C;. Mais ¢lles ne
permettent pas de satisfaire les critéres établis par Edward et Ottinger (1997) pour que
Papproximation de fermeture agisse de facon physique : la normalisation des conditions,
la condition de la symétric et le critére de [!invariance temps-structure. Les
approximations proposées par Cintra et Tucker (1995) ainsi que celles de Chung et Know
(1999, 2000, 2002) ne satisfont pas non plus ces critéres alors que c’est le cas de
I’approximation naturelle. Un autre point critique est dii au fait que les approximations de
fermeture proposées par Han et Im (1999) sont reliées au modele de Folgar et Tucker
(1984). Dans le cas ou d’autres modeles d’interaction fibre-fibre sont utilisés, les

approximations utilisées sont loin d’éire satisfaisantes.



2.3.5. Equations constitutives

Une équation constitutive {ou équation rhéologique) est une relation
mathématique qui décrit les contraintes en fonction de l'histoire de déformation et/ou en
fonction du taux de déformation dans un matériau donné (Carreau et al., 1997). Pour
modéliser un procédé, il est donc intéressant d'avoir ['€quation constitutive générale, qui
représente le comportement du matériau dans toute sorte d'écoulement établi ou non
établi : en cisaillement, en ¢longation ou un mélange des deux. Il est également important
de tenir compte des effets de l'orientation des fibres. Une suspension dans un champ
d'écoulement donné montrera différents comportements si l'orientation des fibres est

différente.

En négligeant la compressibilité du fluide et des fibres, la contrainte totale @ est

séparée en une pression isotrope P et un champ de contrainte T
6=-Pd+1 (2.33)

Le champ de contrainte peut &tre relié a l'orientation des fibres, au taux de

déformation et & des paramétres de suspension, comme la fraction volumique des fibres,
leur rapport de forme ou la viscosité¢ de la matrice. Le champ de contrainte T est la

somme des contributions des tenseurs du champ de contrainte dii aux fibres et 4 la

matrice :
= T(matrz’ce) + ‘t( Jibres) (2.34)

Plusieurs théories existent pour prédire la viscosité des suspensions de fibres dans
un fluide newtonien. Toutes peuvent étre écrites sous la forme ci dessous (Tucker et

Advani 1994) :

T =M, 00T T e, + Yo, va, 7]+ 20,0, ) (2.35)
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ou vy est le tenseur du taux de déformation défini dans I’équation (2.13), n,, la viscosité

de la matrice, ¢ la fraction volumique de la particule, et ol iy, po, p3 et pa sont les

constantes du matériau. Le champ de contrainte T est une fonction linéaire du taux de

déformation, excepté pour D,. Ce terme est généralement négligeable pour des

suspensions de fibres longues. Le tableau 2.4 représente un résumé des exemples de

modeéles basés sur ’équation (2.35).

Tableau 2.4. Différentes constantes de 1’équation (2.35) correspondant aux différentes

théories pour prédire la viscosité des suspensions de fibres dans un fluide newtonien.

Modéle Paramétres des Matériaux
. ’ 61n2r -11
Hinch et Leal (1972) m=2 p,=—————) |, = ——————
2[n(2r) ~1.5] r?
8r?
Evans (1975) p=0,p, = , u3=0
31n(r)
r2
My =——
* 31n(2/D)
' 2h T . o
Dinh et Armstrong (1984) —l—)~ = g Fibres alignées
g—h~ =L Fibres aléatoires
D 2¢r
7"2
Lipscomb (1988) m=2,p,=—7,H1=0,1=0
21n(r)

Shagfeh et Fredrickson (1990)

16r° 6634
N r [l_lnln(l/¢)+0663 }

3 In(1/9) in(/¢)  In(/)

Hand (1961) et Giesekus (1962) ont utilisé la solution de Jeffery pour le champ de

vitesse, autour des particules ellipsoidales, pour calculer les viscosités en cisaillement de

suspensions diluées. Leurs résultats ont été développés dans une équation constitutive
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générale sous forme de 1'équation (2.35) par Hinch et Leal (1973) ainsi que Lipscomb ef

al. (1988).

Une autre approche consiste & utiliser la théorie du corps mince, suivant le travail
de Burgers (1938). Batchelor (1971) a utilisé cette théorie pour modéliser la contrainte
dans une suspension de fibres, sous un écoulement en ¢longation uniaxiale en supposant
que les fibres sont toutes alignées dans la direction de I'étirement. Batchelor (1971) a
modélisé l'interaction hydrodynamique entre les particules, en traitant chaque fibre dans
une cellule créée par les fibres voisines, et il a donc développé sa théorie au-dela de la
plage diluée (avec l'idée de I'effet d’écran hydrodynamique). Les résultats de cet auteur
ont été développés sous forme d'une équation constitutive générale, ayant la forme de
I'équation (2.35), par Evan (1975 a et b). Dans ces modéles, u, dépend de I'état
d'orientation des fibres. Dinh et Armstrong (1984) ont utilis€é la méme approche de
Batchelor, et ils ont adopté les idées de la théorie des cristaux liquides pour la distance
entre une fibre et sa voisine la plus proche, pour déterminer la grandeur de la cellule. Ils
ont seulement prévu des solutions pour des orientations alignée et aléatoire. Bibbo er al.
(1985) ont incorporé un facteur de correction pour tenir compte du diamétre des fibres et

ils ont ainsi obtenu de meilleures prédictions.

Shagfeh et Frederickson (1990) ont développé une théorie qui donne des résultats
pour une orientation 3D dans une suspension diluée. Ils ont utilisé la théorie du corps
mince pour représenter les interactions hydrodynamiques entre les fibres. Ce traitement
donne d’assez bons résultats pour le cas des régimes dilués et semi-dilués de particules
ayant un trés grand rapport de forme. Leur théorie indique que le coefficient w, ne varie
pas beaucoup avec le changement de I'état d'orientation des fibres. Il existe une différence
entre les deux théories venant de la fagon différente dont la distance d’écran
hydrodynamique est calculée. Dinh et Armstrong (1984) ont basé la grandeur de la
cellule sur la distance de la voisine la plus proche, tandis que Shaqgfeh et Frederickson
(1990) utilise un modele explicite sur les interactions hydrodynamiques entre plusieurs

fibres.
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Goddard (1976 et 1978) a repris la démarche de Batchelor (1971) pour prédire les
propriétés €longationnelles d’une suspension de particules longues dans un fluide ayant
un comportement de type loi de puissance. Pour les polyméres a I’état fondu, I’indice de
pseudo-plasticité varie de 0.3 & 0.6. Dans ce cas, le comportement rhéofluidifiant diminue
la viscosité élongationnelle de la suspension par rapport & un comportement newtonien.
Gibson et Toll (1999) ont pris les mémes idées que Dinh et Armstrong (1984) pour
modéliser des suspensions de fibres continues, dans des matrices non newtoniennes. Leur
analyse se limite 3 décrire le régime quasi établi, pour prédire les comportements en
régime transitoire, la viscoélasticité négligée dans leur approche doit cependant y étre

intégrée.

Metzner ef al. (Doraiswamy et Metzner, 1986 ; Becraft et Metzner, 1992) ont
utilisé la théorie de Doi (1981) pour décrire les dynamiques d'orientation de fibres en
suspension. Ils ont employé des équations rhéologiques constitutives pour des
suspensions de cylindres rigides d'ordre de grandeur « moléculaire » (Doi, 1981) afin de
représenter le comportement de suspensions concentrées de fibres. Ils ont ainsi calculé
l'orientation des fibres et le comportement contrainte/taux de déformation de suspensions,
dans des écoulements en cisaillement. Ils ont surmont¢ les différences entre I’échelle des
molécules de polymeéres cristaux liquides et celle des fibres macroscopiques. Ils ont
¢galement modifié I'équation constitutive de contrainte de Doi (1981) en tenant compte

du terme de dissipation visqueuse pour des taux de cisaillement élevés.

D’aprés Grmela (1985, 1986, 1989) ainsi que Grmela et Carreau (1987), Ghosh et
al. (1995) ont proposé I’équation reliant le tenseur de la contribution des fibres au champ

(fibres)

de contrainte © au tenseur de conformation, de la fagon suivante :

) = 2p(l - §) figic—)e (2.36)
dC

ou n est la densité en nombre des fibres. En spécifiant que les fibres sont en moyenne

non-extensibles et en introduisant et en tenant compte de cette hypothése dans le calcul
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de I’expression de I’énergie libre a ’aide du multiplicateur de Lagrange, Ghosh ef al.
(1995) ont supposé que la matrice agissait comme un fluide newtonien pour une premicre
approximation. En choisissant des paramétres appropriés, on remarque une analogie entre

le modéle de Becraft et Metzner (1992) et celui de Ghosh et al. (1995).

Toutes les études effectuées avec hypothése que la matrice a le comportement
d’un fluide newtonien ne sont correctes que dans le cas pour des cas de productions des
composites impliquant des taux de cisaillement faibles. Pourtant la viscoélasticité joue un
r6le majeur dans les régions de hauts taux de cisaillement ou d’¢élongation. Il n’y a eu
gu’une modeste attention au comportement viscoélastique de la suspension a I’exception
des travaux de Ait-Kadi et Grmela (1994) et Azaiez (1996). Lors d’une ¢tude sur des
écoulements dans des contractions soudaines pour des systémes dilués et semi-dilués,
Azaiez et al. (1997) comparent les modeles de FENE-CR, PTT et le modéle de Carreau
avec un fluide newtonien dans les simulations en utilisant le modéle de Folgar et Tucker
(1984). Ils ont observé que les effets visqueux sont les facteurs les plus importants dans
Porientation des fibres. Toutefois, I’orientation des fibres proche de la paroi dépend de la
nature de la matrice avec le plus grand degré de I’orientation pour la matrice polymére.
La taille du vortex dans I’angle est plus grande pour le modéle de FENE-CR (décrivant
bien un fluide de Boger) que pour un fluide newtonien, et ils ont noté que plus le vortex
est grand moins les fibres sont alignées. Le coefficient de C; et les approximations de

fermeture affectent beaucoup les résultats.

Ramazani er al (1997) ont développé un modeéle rhéologique pour des
suspensions de fibres courtes qui prend en compte 1'orientation des fibres ainsi que les
interactions fibre-fibre et fibre-matrice. La contribution des fibres est introduite a4 ’aide
de ’équation de Jeffery exprimée en fonction des tenseurs d’orientation (1’équation 2.17)
et celle de la matrice par des équations de I’évolution du tenseur de conformation dans le
temps et du tenseur de la contrainte. A ’aide des expressions de 1’énergie libre de
Helmholtz basées sur le modéele de FENE-P et le modéle hookien, ils ont introduit a la

fois les interactions fibre-matrice et les forces browniennes non isotropes, dans la
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contribution de la matrice. L’équation suivante développée & I’aide du modé¢le FENE-P,
est I’équation de I"évolution du tenseur de conformation qui tient compte des interactions

fibre-matrice :

L _1p-crcq)-12(@-c-C-0)

ot
KR} KR;
-—Ag[a,( 0 C—2kBT6j—oc2( 0 [C-a2+a2-C—kBTaz]H

1—-tC 1—trC
(2.37)

ol K représente la rigidité de I'haltére et Ry sa longueur maximale. o; et o, sont des
constantes ou des fonctions de la concentration et des caractéristiques des fibres. Un des
avantages de la formulation hamiltonienne est sa flexibilité qui permet de développer un
modele adapté (Grmela, 1990). En réinterprétant différents paramétres ou en choisissant
des termes convenables pour la mobilité et 1’énergie libre, il est possible de décrire la

rhéologie de plusieurs systémes polymeéres complexes.
2.4. Conclusion

L’ajout de fibres aux fluides newtoniens et non-newtoniens augmentent leur
viscosité en cisaillement simple, et cette augmentation est plus marquée 2 faibles taux de
cisaillement. En plus des propriétés intrinseques de la matrice, le comportement
rhéologique des suspensions de fibres dépend des propriétés des fibres (rapport de forme et
flexibilité), de la fraction volumique ainsi que de l'orientation des fibres. La viscosité
relative des suspensions est une fonction croissante du rapport de forme, de la fraction
volumique et de la flexibilité des fibres. On note que la viscosité d’une suspension de fibres

alignées est plus faible que celle d’une suspension de fibres réparties de fagon isotrope.

Malgré la premiére différence de contraintes normales non nulle, aucun déphasage
entre la contrainte et la déformation n’a été détecté lors des essais en cisaillement

oscillatoire. La premiére différence de contraintes normales observée n’est donc pas
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considérée comme des propriétés élastiques pour une suspension de fibres, mais comme un

phénomeéne li€ aux interactions entre les fibres durant I’écoulement.

La viscosité en élongation relative augmente avec la fraction volumique des fibres
et elle diminue en fonction du taux de déformation, de la méme facon que la viscosité en

cisaillement.

Lors des essais transitoires, la viscosité mesurée passe par un maximum induit par
P’évolution de orientation des fibres. La premicre différence des contraintes normales
présente également un pic dont le maximum se situe & une déformation plus élevée que
celle du pic de la viscosité. L’amplitude des pics augmente avec la fraction volumique des

fibres, et ’orientation initiale des fibres affecte de fagon significative cette amplitude.

Le comportement rhéologique d’une suspension de fibres peut &ire décrit 4 ’aide
d’une équation d’évolution de 1’orientation des fibres et couplée a une équation constitutive
décrivant les contraintes en fonction de I’histoire et/ou du taux de déformation dans la
suspension. Depuis le début des années 1920, plusieurs auteurs ont proposé différents types
de modeles pour décrire le comportement des suspensions de fibres, dans des milieux
newtoniens et non-newtoniens. Les modéles basés sur le modéle de Jeffery (1922) pour des
suspensions concentrées de fibres, décrivent qualitativement bien le comportement de ces

suspensions mais pour une meilleure prédiction, il est nécessaire de les améliorer.
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CHAPITRE III - SYNTHESE DES ARTICLES

Dans le premier article intitulé « Propriétés rhéologiques d’un polypropyleéne
chargé de fibres courtes dans un écoulement en cisaillement simple transitoire », le
comportement d’un polypropyléne commercial chargé de fibres de verre courtes a été
étudi€. Il est bien connu qu’un polymere thermoplastique chargé de fibres courtes avec
une orientation aléatoire montre, a I’état fondu, un pic de viscosité lors d’un cisaillement
dans un rhéometre de géométrie disques concentriques. Dans ce travail, aprés une
premiere déformation, I’échantillon a ét€ cisaillé dans la direction opposée et un pic de
viscosité plus réduit a ét€ mesuré. De facon similaire, aprés une petite déformation, un
grand pic de différence de contraintes normales a été observé. Quand I’écoulement est
inversé, la différence de contraintes normales est caractérisée par des valeurs négatives
pour ensuite montrer un faible pic positif. Un modele a ét€ utilisé pour prédire ces pics de
viscosité et de différence de contraintes normales. Le modele est basé sur I’équation de
Folgar et Tucker pour le mouvement des fibres et I’équation constitutive de Lipscomb.
Cette équation a été modifiée de fagon empirique pour une prédiction convenable des

pics en fonction de I’augmentation du taux de fibres.

Afin de mieux comprendre les effets caus€s par la présence des fibres dans le
comportement rhéologique des polymeres viscoélastiques, le polypropyléne a &ié
remplacé par deux matrices différentes : un fluide newtonien et un fluide de Boger. Le
deuxieme article intitulé « Propriétés rhéologiques de suspensions modeles de fibres
courtes », porte sur le comportement rhéologique de deux séries de suspensions modeles,
dans un polybuténe newtonien et un fluide de Boger, contenant les mémes fibres de verre
courtes. La viscosité en régime établi des deux types de suspension augmente avec le
taux de fibres, mais les suspensions dans un fluide de Boger deviennent rhéofluidifiantes,
Les deux types de suspension possédent des contraintes normales non-négligeables. La
viscosité et la différence de contraintes normales en régime établi des suspensions dans le

polybuténe sont bien prédites par I’équation de Lispcomb (1987) couplé avec le modele



44

de Folgar et Tucker (1984). Les deux types de suspensions sont caractérisés par des pics
de viscosité et de différence de contraintes normales dans les expériences en démarrage.
Dans un éconlement inversé, le pic de viscosité est observé a une déformation plus élevée
que celle du pic primaire. Le pic de retour a été attribué au basculement des fibres qui ne
sont pas totalement alignées dans la direction de I’écoulement méme aprés une trs
longue durée de cisaillement. Quand 1’écoulement est inversé, la différence de contraintes
normales passe initialement par des valeurs minimales (valeurs négatives dans e cas du
polybuténe) et ensuite exhibe un plus petit pic positif avant de rejoindre la valeur du
régime établi. Cette contrainte minimale a été€ attribuée & une structure transitoire de
fibres-alignées. L’allure et I'amplitude de ces pics dépendent du taux de fibres, de la

nature de la matrice, des conditions du pré-cisaillement de I’échantillon ainsi que du délai

entre des expériences consécutives.

Le comportement rhéologique des suspensions de fibres ayant été caractérisé, notre
derniére €tude porte sur le choix d’un modele adéquat pour le décrire, en confrontant les
prédictions des modeles aux résultats expérimentaux. Le troisiéme article intitulé :
« Comparaison des propriétés rhéologiques des suspensions modeles de fibres courtes
avec les prédictions de modeles », présente la corrélation entre le comportement
rhéologique des suspensions modeles de fibres dans une matrice newtonienne et les
prédictions de deux familles de modgles. Le modele de Folgar-Tucker couplé avec
I"équation constitutive de Lipscomb a été utilisé et comparé avec le modele généralisé de
Jeffery développé€ par Grmela et al. (2003). Le comportement fortement rhéofluidifiant et
la différence de contraintes normales constante prédits par ce dernier pour des
suspensions de fibres dans une matrice newtonienne exigent des modifications.
L’équation constitutive de ce modele a ainsi été remplacée par celle de Lipscomb. Le
comportement en régimes établi et transitoire des suspensions de fibres dans un
polybuténe newtonien a été€ correctement prédit par ces deux familles de modeles. Les
pics de viscosit€ et de contraintes normales des essais de démarrage dans les deux sens de
cisaillement sont quasiment bien décrits par le modele de Folgar et Tucker, surtout

lorsqu’un parametre de glissement et un A plus grand que 1 sont utilisés. Les prédictions
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du modele généralisé¢ de Jeffery sont comparables a celles obtenues avec le modele
modifi€ de Folgar-Tucker-Lipscomb, au prix de l'emploi d’un plus grand nombre de

parametres ajustables.
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CHAPITRE IV - RHEOLOGICAL PROPERTIES OF SHORT FIBER

FILLED POLYPROPYLENE IN TRANSIENT SHEAR FLOW#*

Le but du premier article est d’étudier le comportement rhéologique d’un
polypropyléne chargé de fibres de verre courtes en cisaillement simple. Des suspensions
concentrées de fibres ont été étudides pour des essais en régime transitoire, soit en fluage
soit en démarrage. Ces essais rhéologiques consistent en des essais consécutifs dans les
deux directions du cisaillement, en utilisant une géométrie de disques concentriques. Un
modele basé sur le modele de Folgar et Tucker et I’équation constitutive de Lipscomb a
été employé€ pour décrire le comportement transitoire de ces composites. Ce modele a été
modifié de fagon empirique pour obtenir une meilleure corrélation entre la théorie et les

résultats expérimentaux.

# Cet article a été soumis au: Journal of Non-Newtonian Fluid Mechanics
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RHEOLOGICAL PROPERTIES OF SHORT FIBER FILLED

POLYPROPYLENE IN TRANSIENT SHEAR FLOW

M. Sepehr " G. Ausias ® and P.J. Carreau™

(1)CRASP, Chemical Engineering Department, Ecole Polytechnique, PO Box 6079,
Stn Centre-Ville, Montreal, QC, H3C 3A7, Canada.

(2)LG2M, Université de Bretagne Sud, Rue de §' Maudé, BP 92116,
56321 Lorient Cedex, France

Abstract

The behavior of a commercial short glass fiber filled polypropylene has been
studied. It is well known that a thermoplastic polymer filled with short fibers with an
initial isotropic orientation state exhibits a viscosity overshoot when sheared in parallel
plate geometry of a rheometer in the molten state. In this work, following a first
deformation, the sample has been sheared in the reverse direction and a small viscosity
overshoot has been measured. Similarly after a small deformation a large normal stress
overshoot was observed. When the flow was reversed the normal stresses were initially
negative and then exhibited a small positive overshoot. A model has been used to
simulate these viscosity and normal stress overshoots. It is based on the Folgar-Tucker
equation for fiber motion and Lipscomb constitutive equation. This equation has been

empirically modified to correctly simulate the overshoots with increasing fiber content.
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4.1. Iniroduction

Plastics are more and more replacing conventional materials, mainly due to their
low production costs and their lower density. Fibers and other fillers are added to plastics
to improve their mechanical properties and hence their competitiveness with metallic
materials. Short-fiber-filled thermoplastics represent a major class of growing importance
since conventional equipment (extruder and injection machines) can be used to produce
final parts. The mechanical properties of the produced parts depend strongly on the
process itself, on the rheological properties of the filled polymer and on the orientation of

fibers during processing.

The rheology of fiber-filled polymers is quite complex due to fiber-fiber, fiber-
matrix and wall-fiber interactions, fiber breakage and migration. These add considerable
complexities to the already complex rheology of the polymer matrix. Hence, the study of
the rheological properties of concentrated suspensions in polymer melts remains most

challenging.

The flow of fiber filled thermoplastics in the molten state is modified by the
presence of fibers and reciprocally the fiber motion and rotation is affected by the flow.
Relations between flow and fiber orientation can be studied using a rheometer equipped
with a parallel-plate geometry. A thermoplastic sample containing initially isotropic
fibers sheared between two plates exhibits a viscosity or stress overshoot (Laun 1984,

Ausias et al. 1992).

The pioneering work on the flow of fiber suspensions by Jeffery (1922) was
followed by those of Batchelor (1970), Cox and Brenner (1971), Hinch and Leal (1975)
and many others. These studies were restricted to dilute suspensions. Fiber-fiber
interactions have been introduced in models developed for elongational flows of aligned
fibers in Newtonian (Batchelor, 1971} and non-Newtonian fluids (Goddard, 1978). Later,
Dinh and Armstong (1984) developed a model with interactions for random fibers in a

Newtonian fluid and which was extended by Gibson and Toll (1999) to a non-Newtonian
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matrix. Following Jeffery (1922), Hand (1961) and Giesekus (1962), Lipscomb (1987)
has proposed a constitutive equation for dilute suspensions of ellipsoidal particles with

large aspect ratio.

For non-dilute fibers suspensions, interactions between fibers modify their
motions. For dilute and semi-dilute suspensions, Sundararajakumar and Koch (1997)
proposed a simple model predicting that collision between two fibers shortens the fiber
rotation cycle. This model prediction was found to be in agreement with experiments
(Petrich et al., 2000), although Ranganathan and Advani (1991) believed that interactions
between fibers should slowdown their rotational motion. This is taken into account by a

diffusion term incorporated by Folgar and Tucker (1984).

In this paper, we will review the main problems associated with the measurements
of rheological properties of fiber-filled polymers. Typical results obtained for creep and
stress growth experiments with a commercial glass fiber filled polypropylene will be
presented. Simulation results based on a modified Folgar-Tucker (1984) model will be

presented and compared with experimental data.

4.2. Model

4.2.1. Orientation tensors

A fiber orientation can be described with an orientation vector p, a unit vector
parallel to the main axis of the fiber. For a population of fibers, a statistical orientation
distribution function Y(p) can be used to describe the average state of orientation in a

fluid element. A second- and a fourth-order orientation tensors have been defined by

Advani and Tucker (1987):

a, & a, = ipip,-w(p)dp, @.1)

a, & dy, = ip;p_,‘pkpz\’r’(p)dps 4.2)
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where a; is a symmetric tensor with trace equal to one. A closure approximation is

necessary to evaluate the fourth-order orientation tensor.
4.2.2. Fiber motion

The time derivative (D/Dt) of a; can be derived from that of p established by
Jeffery (1922). For dilute suspensions of ellipsoids in a Newtonian fluid under simple

shear and at low Reynolds numbers, one obtains:

_Da,
Dt

. 1 1.,. 3 .
a, =—E(Qa2 —aZQ)+57L('ya2 +a,7-27:a,), (4.3)

where A = (r* =1 /(r* +1) and r is the ellipsoid aspect ratio. ¥ and € are respectively

the rate of strain and the vorticity tensor defined by ¥ =k’ +x and £ =’ —k where x

is the transpose of velocity gradient tensor. For large ellipsoid aspect ratios, A tends
toward 1. Fibers in filled polymer composites are considered to be ellipsoids having an
aspect ratio of r. This model is valid for dilute suspensions of fibers, i.e. it is assumed that

there is no interaction between neighboring fibers.

For non-dilute suspensions, Folgar and Tucker (1984) took in account the

interactions between fibers by adding a diffusion term to the Jeffery equation as:

_ Da,
Dt

1 1
a, = - (Qa, —a,Q)+ 5 Mya, +a,y -2y :a, )+ 2C, (1 - 3a,),(4.4)

where 7 is the second invariant of the rate of strain tensor and C; a phenomenological

coefficient. Based on many experiments, Bay (1991) suggested the following expression

for Cr.

C, = 0.0184 exp(~0.7148¢r), 4.5)
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where ¢ is the fiber volume fraction. Ranganathan and Advani (1991) evaluated the inter-
fiber spacing as functions of orientation, fiber aspect ratio and volume fraction. They
proposed an interaction coefficient that is inversely proportional to the average distance
between the fibers. Phan-Thien e al. (2002) proposed the following empirical equation
for the interaction coefficient as functions of volume fraction of the fibers and their

aspect ratio:
C, = Al1.0 - exp(—Bor)] (4.6)

where A and B were obtained by best fits of the model predictions with direct simulation
results for systems with different fiber aspect ratios and volume fractions in simple shear.

They obtained A = 0.03 and B = 0.224.
4.2.3. Closure approximations

Many closure approximations have been proposed to evaluate the fourth-order
orientation tensor. The hybrid closure approximation determined from quadratic and

linear approximations is defined by:
h | 1 _ { q 4
a; Say =(1-Fla, +j,, 4.7

where

1
a, &a, = = (8,8, +8,8,+8,8,)
(4.8)
+ ajkﬁiz)

ik

1
+ . (@84 +a,8, +a,8, +a,d, +a,d

q q _
a, & ay =aa,, (4.9)

in which fis given by Advani and Tucker (1990) as:
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f= 5 7 27al.jaﬁ + 18aijajkak,.). 4.10)

The two most recent developments in closure approximations are the orthotropic
(Cintra and Tucker 1995, Wetzel and Tucker 1999) and the natural (Verleye and Dupret,
1994) closure approximations. They are similar in philosophy. The invariant of the
second-order tensor are used to calculate the fourth-order tensor. Inherent in the
formulation of the orthotropic closure, the principal axes of a4 are the same as those of a,.
When a4 is expressed in its principal axes, some of its components are constrained to
zero, while the remaining components are functions of the eigenvalues of a,. a; having a
trace of one; hence, only two of the eigenvalues, Ay and A, are independent. Since ag is a
symmetric tensor, Cintra and Tucker (1995) used a contracted notation. Each pair of

indices in ayy is replaced by a single index that ranges from one to six: A, < a,

where m is related to ij and n is related to &/ according to Table 4.1.

In the contracted notation, an orthotropic fourth-order tensor represented in its
principal axes has necessarily twelve non-zero components. Using other properties,

Cintra and Tucker (1995) have shown that only three independent components remain in

this tensor: A, A, 233. Then it follows that the matrix A in its principal axes can be

written as:
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1-24 1-24 +
- - _ _ _ _ 0 0 0
24 = ~A +A_—A A —-A —A (ZA)
n Z 33 11 33 33
1—2/11+
0 0 0 o 0 0
A ~A ~A
1 22 33
1-24,
0 0 0 0 - 0
~A +A —A
n 22 3
i-24
0 0 0 0 0 o
-A —-A_+A
1 2 3/ ]
(4.1hH)

Then, the components have to be written in terms of the eigenvalues of a,, i.e.:

A) (4.12)

Wetzel and Tucker (1999) has proposed the following polynomial equation to

calculate the components:

A = Con + Cluphi + Cuphy + Clshi Ay + Cppshs” + Cpehs”

+ C(m)7}\‘12}\'2 + C(m)87\‘17\'22 + C(m')9}\‘13 + C(m)mkz3 + C(m)117“127"22 (4'13)
3 4 4

+ C(m)lZ}\'I }Lz + C(m)137\'1;‘23 + C(m)]47\'! + C(m)ls}“z

Here m ranges from 1 to 3 and the bar over the index indicates no summation. This
equation has a general form and it can be used to describe any orthotropic or natural

closure approximation. Some values of the coefficients C,, are given in VerWeyst

i

(1998) for different closure approximations. We have tested the orthotropic smooth
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closure (ORS), the two orthotropic fitted closures (ORF and ORL) of Cintra and Tucker
(1995) and the orthotropic fitted closure (ORT) of Wetzel and Tucker (1999) that is
equivalent to the natural closure proposed by Verleye and Dupret (1994). Some of the

results are reported in Section 4.5.
4.2.4. Constitutive equation

Following Jeffery (1922), Hand (1961) and Giesekus (1962), Lipscomb et al.
(1988) have proposed a constitutive equation for dilute particles suspensions, which can

be written for ellipsoids with high aspect ratio, as:
G = —PI+T]I11’Y+nn1¢{LtI’Y+u2’Y . 34}’ (4'14)

where 1, 18 the matrix viscosity and [; and i, are rheological coefficients. The last term
of Eq. 4.14 describes the coupling between hydrodynamic forces and fiber orientation,
hence we call W, the coupling coefficient. Following Lipscomb ez al. (1988) we use for

large aspect ratios the following coefficients:

W=2, (4.15a)

2
r

W, = (4.15b)

- 2inr ‘
Evans (19754, b) extended the slender-body theory of Batchelor (1970) to obtain:

_ 8r°
" 3In(r)

K, (4.16)

All slender-body theories, including the Evans theory, give y; = 0. Dinh and Armstrong
(1984) used also an approach similar to Batchelor’s (1970) and adopted ideas from a
crystal theory about the distance between a fiber and its nearest neighbors to determine

the cell size. Their theory gives:
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* 3in2k/D)’
2k =T for aligned fibers (4.17)
D ¢
gﬁ = I for random fibers
2¢r

Another contribution in this area is by Shagfeh and Fredrickson (1990) for the
dilute and semi-dilute regimes. They used a slender-body theory and a multiple scattering
expansion to represent the hydrodynamic interactions between fibers. For a very large

aspect ratio of fibers with isotropic orientation their result reduces to:

L {1_1n1n(1/¢)+0-6634} @18)
3n(l/o)] (/o)  In(i/o)

Their result for aligned fibers is nearly same. Hence, the Shagfeh and Fredrickson theory
indicates that the coefficient [, does not change much as the fiber orientation state

changes.

Phan-Thien and Grahams (1991) suggested the following modified expression:

L r’(2-9/0) _ (4.19)
2(n 27 - 1.5)1~ ¢/0)

with O = 0.53-0.013r.

4.2.5. Model calculations for simple shear

This model has been used to simulate the composite properties under simple shear
conditions. For a concentric disk geometry, the shear rate is given ¥=wr/H where r is

the radial position, H is the gap between the two disks and ® is the angular velocity of
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one disk. The torque for a given strain v, exerted by the material on the disks can be

calculated by:
T = g s, (r)dr (4.20)

The viscosity is then obtain using Eq. 4.14:
c
n=—%=m0,(1+200+,a,,)) 4.21)
Y

For this geometry the primary and secondary normal stress differences are given

using Eq. 4.14 by:
N, =06, =0y = 2N, 1,0¥d),1, — dyp0) (4.22a)
N, =06y — Oy = 20, 1,0V(ap; — d3310) (4.22b)

The normal stress differences are functions of ¥, which depends on the radial position 7.

From Carreau et al. (1997) the net axial force acting on the plate is expressed by:

R2
=2

Tx . o\ e
— [V = ND) vy (4.23)
Yr
where ¥, is the shear rate evaluated at » = R (disk radius). The difference between the

normal stresses 1s given by the following expression:

. N 2F(  1dinF
N (1) =N,y (1) == T+ ——— (4.24)
TR 2diny,



4.3. Experiments

A commercial unfilled polypropylene (PP, Targor PPN 0160D1) and a filled
polypropylene containing 30 wt.% short glass fibers (PP30, Targor Hostacom G3 NOIL)
have been used. Other fiber suspensions with different fiber contents were also prepared.
They consisted of same treated glass fibers with a density of 2.5 g/mL and of same
polypropylene with a melt density of 0.76 g/mL at 200°C. The glass fibers had an average
diameter of 14 pm. Their nominal length was 500 pm, but the average length measured
after blending using an internal mixer was 300 pm for PP30. The aspect ration for the
fibers was then L/D = 20. As the study was realized in the molten state of the polymer
composites, the volume fractions are given for this state. PP30, PP20, PP10 and PP0O5
contained respectively 11.5, 7.06, 3.27 and 1.58 volume % of fibers. It can be implied
from the criteria (0<<1/r> for dilute suspensions, 1/r’<<¢o<<1/r for semi
concentrated suspensions, ¢ >1/r for concentrated suspensions) that PPO5 and PP10
corresponded to semi concentrated and PP20 and PP30 to concentrated suspensions. A
model suspension of glass beads, PPB11, was also prepared with the same volume
fraction as PP30 i.e. 11.5 volume %. It consisted of hollow glass beads (10 um of
diameter) with a density of 1.1 g/mL and of the same polypropylene. First, the materials
were mixed in a Brabender internal mixer at 40 rpm at 200°C under nitrogen atmosphere
for 4 min. Then, disk shaped samples were compression molded at 200°C. All samples
have been prepared following the same procedure. We assumed that the fiber orientation
was isotropic throughout the samples, which has already been verified using an optical

microscope (Ausias ef al., 1992).

Experiments have been conducted with two stress-controlled rheometers, a
Rheometric Scientific SR 5000 and a Bohlin CSM. Also a controlled rate ARES
(Rheometric Scientific) was used for stress growth experiments. Parallel plates fixtures

were used and the temperature was set at 200°C and experiments carried out under
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nitrogen. The plate radius R was equal to 12.5 mm and the gap between the two plates H

was varied between 1.4 and 1.5 mm for all the experiments except for those of Fig. 4.1.

It was essential to verify first that the polypropylene and the filled polypropylene
had an acceptable thermal stability. Experiments were carried out for PP without and with
a stabilizer, Irganox B225, under nitrogen using dynamic time sweep test for a frequency
and strain of 0.0628 rad/s and 0.05, respectively. The unfilled PP without any stabilizer
had a viscosity reduction of 4.3 % for a period of 1 h. To reduce the thermal degradation
a stabilizer, Irganox B225 (Ciba Specialty Chemical Inc.), was added to the materials
before blending in a Brabender internal mixer. The content of the stabilizer should be
optimized for a good thermal stability without significant lubrication effects due to the
stabilizer. The optimized stabilizer content was found to be 1 mass %. The viscosity
showed a reduction of 0.4%/h for a period of 17 h. In spite of the good thermal stability
of the matrix, the viscosity reduction increased by adding fibers to 1.1%/h for PP30 for a
period of 11 h. This is quite acceptable and all samples have been prepared with 1 mass

% stabilizer with respect to PP.
4.4. Experimental results

First, it was crucial to verify that the rheological results were independent of the
gap used to carried out the experiments. The absence of slip at the wall has been verified
by Mobuchon (2002) using the same material. Moreover, several creep tests have been
carried out for three different gaps, 1.1 mm, 1.4 mm and 1.9 mm. Figs. 4.1 show the
creep viscosity as a function of strain for PP30 for experiments carried out at 1000 Pa. In
Fig. 4.1a we report the transient data for three different samples for positive creep
experiments. As expected we observe large overshoots with peaks at a strain of about 10.
The strain used in this and following figures is that at the edge of the concentric disk, i.e.

Y =0R/H where 6 is the angular displacement of the upper disk. The effect of the gap

is insignificant, less than the reproducibility of the data estimated to be within £ 5 %. In

Fig. 4.1b we report the corresponding data for creep experiments conducted in the reverse
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direction immediately following the first positive creep experiments of Fig. 4.1a. The
strain is taken as zero at the beginning of the reverse flow experiment. We observe a
smaller overshoot occurring at a larger deformation of about 20. We observe an
acceptable superposition of the results obtained for the three different gaps. The forward
viscosity overshoot is less reproducible because it depends on the initial orientation state

of the fibers, which may vary from sample to sample.

Figs. 4.2 report the transient viscosity in creep as a function of strain for fiber
suspensions in PP at various loadings. Also shown are the results for a suspension of
glass beads, PPB11. The volumetric fraction of glass beads was 0.11, which was the same
volume fraction as PP30. We note in Fig. 4.2a that the creep viscosity for the fiber
suspensions goes to a maximum at a deformation of about 10 as shown in Fig. 4.1a and
that the overshoot increases with fiber content. No overshoot is observed for the unloaded
PP and the suspension of glass beads (PPB11). Hence, the overshoot is attributed to the
presence of the fibers. Initially the orientation of the fibers is isotropic and under
deformation in simple shear flow, the fibers orient themselves to the flow direction. The
peak corresponds to an average fiber orientation of 45° (Laun, 1984) and the fibers
become highly oriented under steady state conditions. For the data presented in Fig. 4.2b,
a negative stress of 100 Pa was applied immediately following the first creep positive
experiment of Fig. 4.2a. We note then with interest that the large overshoot is replaced by
a smaller overshoot for PP30 and also a very small one for the PP20 observed at a larger
deformation of about 20. We call these smaller overshoots “reverse peaks” that we
attribute to tumbling of some of the fibers. Barbosa ez al. (1994, 2000) have reported a
similar behavior for Nylon fiber suspensions in PDMS. Even after reaching steady-state
conditions in a positive creep experiment, some fibers are not totally aligned with the
flow direction. When reversing the flow, these fibers will experience a rotation close to
180°. The forward overshoot size increases with the fiber content as reported in Table 4.2
in strain units as a function of fiber weight fraction. We observe that viscosity overshoot
width is large, approximately 50 for PP30, and slightly decreases with decreasing fiber

content.
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The reduced creep viscosity, 1(Y)/M(7..), as a function of the strain is reported in

Fig. 4.3 for a first positive creep experiment for PP30, followed by a second positive
creep experiment and then by a third experiment in the reverse direction. The absolute
value of the strain is used for this figure and the strain is taken as zero at the beginning of
the first test. The first test was stopped at a strain of about 125 and followed by an
immediate start of the test in the forward direction. At a strain of about 260 the second
test was stopped and followed immediately by the reverse flow experiment. As expected,
the creep viscosity for the second positive experiment does not exhibit any overshoot and
the viscosity reaches the same plateau value under steady-state conditions, which
indicates that the first overshoot has been produced by fiber rotation (Laun 1984, Ausias
et al. 1992). For the third and negative creep experiment, we observe again a small

reverse overshoot, of the same magnitude as that depicted in Fig. 4.2b.

Figs. 4.4 compare the stress growth behavior of PP30 to PPO (unfilled polymer)
for a stress growth expg:riment carried out at 0.1 s”'. We note in Fig. 4.4a that the transient
viscosity does not exhibit an overshoot for the unfilled PP, whereas a large overshoot is
observed for the first positive stress growth experiment with PP30. The peak for the
overshoot occurs at a strain slightly larger than 1, smaller than observed in creep
experiments. Again, for the following reverse flow experiment, in contrast to PPO, a
smaller and delayed overshoot is observed for PP30, confirming the behavior observed in
creep experiments (Figs. 4.1 and 4.2). Fig. 4.4b presents the transient behavior for the
normal stress differences, N1 — N,. We assumed that a shear rate of 0.1 s! was low
enough to take the normal stress differences proportional to > and take the slope
dinF/diny, =2 in Eq. 4.21. For the unfilled PP, N; — N, increases monotonously to
reach a low value plateau. For the following reverse flow experiment, PP0O did not show
any changes in N; — N, with respect to the steady-state plateau reached in the forward
experiment (data not shown). As expected, a very large overshoot in N; — N, is observed

for the first positive stress growth experiment with PP30. The magnitude of the normal

stress overshoot is much larger than the viscosity overshoot and the peak is somewhat
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delayed. Ramazani ef al. (2001) have reported similar results. For the following reverse
flow experiment, N, —N, goes negative before increasing and depicting a small positive
overshoot, corresponding to the reverse overshoot observed for the viscosity. The

negative normal stresses are attributed to the non-affined deformation when the flow field

is reversed.

Narumi et al. (2002) studied concentrated suspensions of beads in transient shear
flow similar to this work. They have suggested that the particles tilted over when
reversing the flow direction as predicted by the Phan-Thien theory (1995) for
concentrated suspensions of beads, assuming that the particles are linked together and

form non-spherical particles. At the beginning of the reverse flow (N,—N,) has a

negative value. Kolli et al. (2002) also obtained a negative normal stress values for
suspensions of PS beads in a Newtonian matrix. However, none of them found any
reverse overshoot, as we have observed. The peak corresponds to an average fiber
orientation of 45° Laun (1984), i.e. the fibers become parallel to the maximum
extensional direction as shown by the rate of strain tensor written in coordinates rotated

by 45° with respect to the 1 and 2 coordinates:

=2 2 (4.25)

In the case of agglomerated spheres, the extension flow components must break
down the structure and prevents the appearance of any overshoot. Narumi et al. (2002)
also observed that the width of the measured transient zone is much more larger than that
of the simulation results obtained by the Phan-Thien theory (Kolli er al., 2002),

confirming our findings.

The strain effect on the reverse overshoot is illustrated in Fig. 4.5 for creep results

with PP20. Fig. 4.5a reports the reduced creep viscosity for experiments carried out at
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600 Pa for three different times, 1000, 6000 and 10000 s on three different samples. The
difference in the overshoot between the second and the other two experiments is
indicative of the reproducibility of these data, probably due to a slightly different initial
orientation state. Fig. 4.5b reports the reduced viscosity as a function of strain for the
following reverse flow experiments conducted immediately after the first positive flow
experiments. For the first positive experiment stopped at 1000 s, the reverse flow depicts
a large reverse overshoot whereas for the other two experiments the reverse overshoots

are much more smaller with a very different shape.
4.5. Model predictions

The model predictions have been calculated for a single point in simple shear for
forward and reverse stress growth experiments. The fiber initial orientation was assumed

to be isotropic. The strain was taken asy = ¢, where ¥ is the shear rate. The viscosity of

matrix was taken to be 1Pa.s and the other parameters were r = 20, ¢ = 0.1, g, = 300.
Using the hybrid closure approximation we obtained a non-physical forward viscosity
overshoot but a correct reverse viscosity overshoot whereas the quadratic closure
approximation gave a good forward viscosity overshoot but a non-physical undershoot at
the beginning of the reverse flow (simulation results not shown). Orthotropic and natural
closure approximations have been tested and results are reported in Fig. 4.6. Using
different values for C; some closure approximations can describe well experimental

results. With €, =0.01, the ORS closure yields similar results as the quadratic closure.

The overshoot for the forward experiment is well described but non-physical oscillations
are observed for the reverse flow. Other closure approximations gave correct overshoot
shapes except for small undershoots following the overshoots. The ORT closure
approximation appears to be a good compromise because it yields the smallest
undershoot for the forward case (Fig. 4.6a). Very similar results were obtained using the
ORL approximation (results not shown). With C; = 0.001, the ORS closure gives the
correct overshoot shape for the reverse flow with a small delay in the beginning (Fig.

4.6b). With the same value of Cj, the other approximations yield non-physical oscillations
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for both forward and reverse flows. The ORS closure approximation shows a good
agreement with observations as it yields accurate overshoot shapes for both forward and
reverse flow; whereas the other closure approximations cannot describe the delay of the

overshoot for the reverse flow (Fig. 4.6b).

The fiber orientation state has been calculated and visualized using ellipses
calculated from the eigenvalues and the eigenvectors of the second-order orientation
tensor. The variations of the second-order orientation tensor components with strain are
reported in Fig. 4.7a (the arrows show the flow direction). The orientation state
represented by ellipses is shown in Fig. 4.7b for the forward and the reverse flow

conditions. Tumbling is predicted in the initial part of the reverse flow.

The fiber rotation (Eq. 4.4) is based on both convection (Jeffery, 1922) and
diffusion (Folgar and Tucker, 1984). The convection term is perfectly reversible as
shown in Fig. 4.8 for the viscosity as a function of strain for C; = 0 (no diffusion). In this
case the fibers for large strains tend to be perfectly aligned in the direction of flow and

the viscosity reaches 1 = (1 + 2¢)n,, predicted by the Lipscomb model (Eq. 4.14). For the

reverse flow the overshoot is exactly that predicted for the forward case. The diffusion
term, Cj, adds “noise” around the Jeffery fiber trajectory and simulates interactions
between the fibers. As shown in the figure for 2 values, C; does not modify strongly the
shape and width of the first viscosity overshoot. Nevertheless, diffusion modifies the
orientation state for large deformations. Larger is the coefficient ), less oriented in the
flow direction are the fibers and larger is the viscosity in steady state (Fig. 4.8a). When
we apply a reverse flow immediately after the forward flow, we note that the reverse
overshoot intensity and position strongly depend on coefficient C;. We note also that in
Figs. 4.6 and 4.8 the forward viscosity overshoot width is approximately equal to 10 and
is not strongly modified by the coefficient C,. The amplitude of the viscosity overshoot is

directly linked to the coupling coefficient ;.
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The experimental results of Fig. 4.5 have been simulated and the predictions are
presented in Fig. 4.9. Fig. 4.9a reports the calculated stress growth viscosity
corresponding to the forward direction. The parameters were i}, = 1 Pa.s, C; = 0.01, r =
20, ¢ = 0.1, Yo = 300 and with the ORT closure approximation was used. The results for
the situation corresponding to the reverse direction for the simulated experiments initially
carried in the forward direction and stopped after 2 to 12 strain units are reported in Fig.
4.9b. For experiment stopped at strain of 2, a large overshoot with oscillations 1s
observed. As the strain of the previous experiment is increased the reverse overshoot
becomes smaller and the oscillations disappear. The simulation results are qualitatively in
agreement with the experimental data reported in Fig. 4.5 although no oscillations were
observed for our composites. Similar experimental oscillations have been reported by

Barbosa et al. (1994).

The normal stress differences have been also calculated for forward and reverse
simple shear flows with the same parameters as used for the results shown in Fig. 4.9.
The assumption is that the matrix is Newtonian and does not exhibit any normal stress
differences. Then, the normal stress differences obtained in the simulation are only due to
the presence of the fibers. Fig. 4.10 shows the variation of the normal stress differences
with strain. For the forward direction a large overshoot is observed for N; and a much
smaller one for N, (Fig. 4.10a). Both normal stress differences are positive, but their
values are very small. For the reverse flow situation a very small overshoot is observed
for both N; and N,. N; is initially negative before increasing and depicting the small
overshoot. We note that the model can correctly describe the initial negative normal

stresses differences when reversing the flow.

4.6. Discussion

The simulation results presented in Section 5 have shown that the Folgar-Tucker
and Lipscomb model can qualitatively describe the transient viscosity and normal stress

differences of glass fiber filled polymers. In all the simulation results the width of the
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first overshoot was 10 or smaller and smaller viscosity and normal stress difference
overshoots have been predicted (Ausias et al., 1992). Industrial composites contain a
large quantity of fibers well above the semi-dilute suspension limit. Also the
experimentally observed reverse viscosity overshoot width was quite large (about 50
strain units). This is, to our opinion, due to fiber-fiber interactions. Fibers are close to
their neighbors and their rotational motion is slowed down compared to that of an
isolated fiber predicted by the Jeffery equation. Tucker and Huynh (2001) have shown
that in injection molded parts there was a transition zone after the injection gate, which
was larger in the experiments compared to that predicted by a finite element method
simulation using the same model. In the experiments the fiber rotation in the transition
zone appeared to be slower than predicted by the Jeffery or the Folgar-Tucker model. In
the Jeffery model, fibers of infinite aspect ratio are assumed to follow an affine
deformation. Fibers of finite aspect ratio should follow a quasi-affine deformation. The
results reported in this paper suggest that the fiber motion is considerably slower than
expected for affine deformation. In the light of these considerations, we empirically
modify the model for simple shear by introducing a slip deformation defined by the

following:
v, = o (4.26)

where o is the slip coefficient. The modified model contains three adjustable parameters,
W2, Cy and o. The first parameter, [, is the coupling coefficient relating stresses to the
orientation of the fibers. Based on experimental results, some expressions have been
proposed to calculate this coefficient. We note that these expressions have been
established for dilute or semi-dilute fiber suspensions and as mentioned before the
studied materials are concentrated suspensions of fibers of large aspect ratio and of large
distribution of aspect ratio. In this work , is hence taken as a fitting parameter. The
second parameter, C;, i1s a diffusion coefficient added to the Jeffery model to take into
account the interactions between fibers in semi-dilute suspensions. Values for this

coefficient have been established using injection-molding experiments by Bay (1991)
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who has also proposed an empirical equation (Eq. 4.5). Our experiments are completely
different from the injection molding situation and we also take this coefficient as a fitiing
parameter. The third parameter, o, is a factor representing slip. Its value should be
between 0 and 1. Physically it represents a direct effect of fiber-fiber interactions such as

solid contact.

The model predictions with these three adjustable parameters have been
calculated in order to obtain the best fits with both ORT and ORS closure approximations
for the PP20 and PP30 data and results are presented in Figs. 4.11 and 4.12. The coupling
coefficient controls the overshoot amplitudes, the diffusion coefficient controls mainly
the reverse overshoot shape and amplitude and the slip factor controls the overshoot
width. The polymer, fiber characteristics and parameters are reported in Table 4.3.
Reasonable predictions are shown in these figures mainly for the stress growth viscosity
(Fig. 4.11) for the ORS closure. The ORT closure cannot describe well the large width of
the forward overshoot and the delay of the overshoot for the reverse flow (Fig. 4.11a).
The predictions using the ORT closure are not reported in Figs. 4.11 b and 4.12. The
predictions for both PP30 and PP20 are very similar but using slightly different values for
C; and 0. As shown in Table 4.3 for the ORS closure, C; decreases as physically
expected from 0.007 to 0.005 and o increases from 0.33 to 0.38 as the fiber content goes
down from 30 to 20 %. Using the same parameters the normal stress differences (Fig.
4.12) are qualitatively described but the overshoot for the reverse flow is overpredicted
by the model and the predicted reverse overshoot occurs too soon. The deviations
between the model predictions and the experimental results could be in part due to the
assumption of a Newtonian matrix used for the model since polypropylene has a
viscoelastic behavior. However, we note with interest that the initially negative normal

stress differences when reversing the flow is qualitatively predicted.

It is interesting to know that with the ORS closure approximation the values
obtained for the C; coefficient are of the same order of magnitude as obtained by Folgar

and Tucker (1984) and as calculated by the Phan-Thien et al. (2002) expression. With the
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ORT closure the values of C; reported in Table 4.3 are much larger than calculated for the
proposed expressions of the literature. This is shown in Fig. 4.13. We note, however, that
our values for C; were obtained by fitting transient shear data, under completely different
conditions compared to Folgar and Tucker (1984) and Bay (1991). Their coefficients

were obtained from measurements of fiber orientation in injected parts.

Also, a comparison between the values obtained for U,, the coupling coefficient,
for the aspect ratio of r = 20 and values from various expressions proposed in the
literature are showed in Fig. 4.14. As we can see, all expressions except those of Shagfeh
and Fredrickson (1990) and Phan-Thien and Graham (1991) give nearly the same trend
and values for [, With the ORS closure approximation, the value obtained for y, is of
the same order of magnitude as calculated by Lipscomb er al. (1988) and Dinh and
Armstrong (1984) for aligned fibers. We note that with the ORT closure, the values of
2000 and 1000 are near the values obtained by the expression of Shaqgfeh and Fredrickson
(1990) and that of Phan-Thien and Grahams (1991). All of these expressions have been
established for dilute and semi-dilute suspensions and in Fig. 4.14 they have been

extrapolated to the concentrated zone, corresponding to our suspensions.

4.7. Conclusion

The rheological properties of short glass fiber filled polypropylene have been
studied under transient shear flow in parallel plate geometry of a rheometer in the molten
state. An acceptable thermal stability was obtained by adding 1 mass % of Irganox B225

to the polymer and the absence of slip at the walls has been verified.

Experiments were carried out in the forward and reverse directions for creep and
stress growth experiments. Viscosity and normal stress overshoots have been observed
and attributed to fiber orientation under flow. A viscosity overshoot was observed each
time the flow direction was reversed, and this was explained by fiber tumbling even if
most the fibers are well aligned in the flow direction before reversing the direction. Large

normal stress overshoots were also observed at a deformation slightly larger than that for
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the viscosity overshoot. However, when the flow was reversed, the primary normal stress
differences took initially negative values before depicting a positive overshoot and
decreasing to a steady-state value. Also in the case of flow reversal, we detected in many
instances a pseudo plateau for the viscosity lower than the steady-state value. This
suggests non-affined deformation when most of the fibers are oriented in the flow

direction.

A model based on the Lipscomb et al. and Folgar-Tucker equations can
qualitatively describe the rheological behavior. The simulations carried out with this
model predicted viscosity overshoot width smaller than those measured. This is
tentatively explained by non-affined deformation and direct contacts with neighboring
fibers, reducing fiber rotation. In an extended model, a slip parameter has been
empirically included to reduce the fiber rotation speed. Overshoots have been well
described with this model showing that it is capable of simulating fiber dynamic in
concentrated solutions. Such a model could be quite useful to describe the push-pull
process with short fiber filled polymers, where the flow direction is reversed. Fiber-fiber
contacts and non-affined deformation play a major role on the rheological properties of

concentrated suspensions of fibers.
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Table 4.1. Relationship between indices in contracted and tensor notation.

morn ijorkl
1 11
2 22
3 33
4 23 or 32
5 3tor13
6 12 0r 21

Table 4.2. Forward overshoot width versus fiber weight fraction.
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PP5 PP10 PP20 PP30
Fiber weight fraction (%) 5 10 20 30
Overshoot width 33 44 48 50
Table 4.3. Polymer and fiber characteristics and parameter values.
PP PP30 PP20
Fiber aspect ratio, r 21.4
Fiber density, g/mL 2.500
Polymer melt density,
0.760

g/mL
Fiber weight fraction 0.300 0.200
Fiber volume fraction ¢ 0.115 0.071
Closure approximation ORS ORT ORS ORT

Calculated (Eq. 4.5) 0.0035 0.0035 0.0067 0.0067
Interaction coeff., (;

Fitted (Fig. 4.11,4.12)  0.007 0.021 0.005 0.026

Calculated (Eq. 4.15b)  118.05 118.05 118.05 118.05
Coupling coeff., {i»

Fitted (Fig. 4.11, 4.12) 80 2000 80 1000
Ship factor, o 0.33 0.33 0.38 0.38
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Figure 4.1. Creep viscosity in forward and reverse flows for different gap sizes

for PP30 under an applied stress of 1000 Pa. (a) Forward flow. (b) Reverse flow.
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Figure 4.2. Creep viscosity in forward and reverse flows for different fiber

contents and with sphere filled PP (applied stress of 1000 Pa). (a) Forward flow. (b)

Reverse flow.



72

-0+ Forward }
-0+ Forward 2
~-4a-- Reverse

nmm(..)

200 250 300

Figure 4.3. Reduced creep viscosity for two successive forward flows and a

reverse flow for PP30 under an applied stress of 1000 Pa.



73

PP30 Forward
- PP30 Reverse
o -+ &+ PPO Forward
. Q_.jg%.»’ oo PPQ }{everse

L 1 ] I}

0.001 0.01 0.1 1 10 100 1000

10

- PP30 Forward
- PP30 Reverse
- PPO Forward

- PPO Reverse

o9

$

(N, - N,)" (kPa)

0.001 0.01 0.1 1 10 100 1000
Ivl

(b)

Figure 4.4. Stress growth data for experiments carried out at 0.1 s” for PP30
and PPO, in forward and reverse flows. (a) Start-up viscosity as a function of strain. (b)

Start-up normal stress differences as a function of strain.
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Figure 4.5. Reduced creep viscosity as a function of strain measured for a 20 wt
% glass fiber/ PP in forward and reverse flows with different duration of the forward flow

under an applied stress of 600 Pa. (a) Forward flow. (b) Reverse flow.
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Figure 4.6. Simulation of the viscosity variations with strain in forward and

reverse flows for orthotropic and natural approximations. The parameters are 1,, = 1 Pa.s,

r =20, ¢ =0.1, 4o = 300 and C; = 0.01, except for the ORS closure with C; = 0.001. (a)

Forward flow. (b) Reverse flow.



76

Y

Forward

»

Deformation

_— _— _— \w
4

Reverse

(b)
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Figure 4.8. Simulation of the viscosity variations with strain in forward and
reverse flows for different values of using the ORT closure approximation. The other
parameters are M), = 1 Pa.s, r = 20, ¢ = 0.1 and y,; = 300. (a) Forward flow. (b) Reverse

flow.
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Figure 4.9. Simulation of the reduced viscosity variations for different
maximum forward strain using the ORT closure approximation. The parameters are 1}, =

I Pas, r=20, ¢ =0.1, ip = 300 and C; = 0.01. (a) Forward flow. (b) Reverse flow.
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Figure 4.10. Simulation of the primary and secondary normal stress difference
variations for forward and reverse flows using the ORT closure approximation. The

parameters are 1},, = I Pa.s, r =20, ¢ = 0.1, g, = 300 and C; = 0.01. (a) Forward flow. (b)

Reverse flow.
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Figure 4.11. Comparison between the model predictions and the experimental

reduced viscosity. The parameters are reported in Table 4.3. (a) PP30. (b) PP20.
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Figure 4.12. Comparison between the model predictions and the experimental
reduced normal stress differences. The parameters are reported in Table 4.3, (a) PP30. (b)

PP20.
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CHAPITRE V - RHEOLOGICAL PROPERTIES OF SHORT FIBER

MODEL SUSPENSIONS#*

Ce deuxitme article a pour objectif d’étudier le comportement rhéologique des
suspensions de fibres courtes a partir de deux systémes de matrices modeles : une matrice
newtonienne et une matrice €lastique idéale. Les effets dus a la présence des fibres en
suspension ont ét€ €tudi€s en régime €tabli ainsi qu’en régime transitoire dans les deux
sens de I’écoulement. La nature de la matrice, le taux de fibres, le pré-cisaillement de
I’échantillon ainsi que la durée du délai entre les expériences consécutives influencent le
comportement de ces suspensions de fibres. Leur comportement transitoire nous a permis
de mettre en évidence la présence d’une structure transitoire de fibres-alignées avec un

certain angle dans la direction de I’écoulement.

* Cet article a 6t€ soumis au: Journal of Rheology
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Abstract

The rheological behavior of two series of model suspensions containing the same
glass fibers in a Newtonian polybutene and in a Boger fluid has also been investigated.
The steady-state shear viscosity of both suspensions increased with fiber content, but the
suspensions in the Boger fluid became shear-thinning. Both types of suspension
exihibited non-negligible normal stresses. The steady-state viscosity and normal stress
difference of the suspensions in the polybutene are well predicted by the Lipscomb
(1987) equation coupled with the Folgar-Tucker (1984) model. Both types of fiber
suspensions were shown to exhibit shear and normal stress overshoots in stress growth
experiments. Under flow reversal, a shear stress overshoot was observed at a larger
deformation compared to the primary overshoot. The reversal overshoot has been
attributed to tumbling of fibers that are not totally aligned in the flow direction even after
a very long time. When the flow was reversed, the normal stress difference took initially
minimum values (negative values in the polybutene case) and then depicted a smaller
positive overshoot before reaching a steady-state value. The normal stress undershoot has
been attributed to a transient fiber-oriented structure. The shape and the magnitude of
these overshoots depend on the fiber content, nature of the matrix and time delay between

consecutive experiments.
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5.1. Introduction

Short fiber-filled composites are widely used materials in highly automated
processing such as injection or compression molding. The pressure-driven flow induces a
microstructure, which has profound effects on the rheological behavior of the filled melt,
as well as on the mechanical, thermal, and electrical properties of fiber composites. The
fiber orientation and distribution are functions of the imposed flow field, fiber
concentration, fiber geometry, fiber-fiber interaction and the rheology of the suspending

fluid.

Jeffery (1922) determined the motion of a single ellipsoid in the Stokes flow of a
Newtonian fluid. His calculations show that a particle rotates around the vorticity axis by
retracing the same paths called Jeffery’s orbits. In the absence of Brownian motion effect
and fiber interactions, a fiber remains in the same orbit forever. In real fiber suspensions,
fiber-fiber interactions are present, hence playing a major role on their rheological

properties.

Hydrodynamic interaction results when one fiber is placed in the vicinity of the
flow field of another. In a suspension of fibers, hydrodynamic interaction is the
mechanism by which fibers change orbit before a steady-state orbit is established. When
the fiber content increases, contacts between fibers become probable. Petrich et al. (2000)
showed that the dominant forces between fibers in the semi-dilute regime are the
hydrodynamic interactions. Petrich and Koch (1998) have shown that, in concentrated
fibers suspensions, the viscosity increases much more rapidly than predicted for purely
hydrodynamic interactions. This increased viscosity has been attributed to mechanical
contacts between fibers. The existence of normal stress difference is the evidence that
fibers do not interact by purely hydrodynamic means and fiber contacts are present
(Sundararajakumar and Koch 1997). For highly concentrated suspensions, Servais et al.

(1999) assumed that at each contact point there are three forces: a normal force of
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elastostatic origin, a Coulombic friction force and a lubrication force due to shearing of

the thin film of liquid separating the fibers around the point of actual contact.

For dilute and semi-dilute regimes, many models have been developed based on
the presence of hydrodynamic interactions (Dinh and Armstrong 1984, Shagfeh et
Fredrickson 1990, Rahnama et al. 1995). At higher concentrations, in semi-dilute and
concentrated fiber suspensions, Sundararajakumar and Koch (1997) simulated the
dynamic evolution of the suspension structure by neglecting the hydrodynamic
interaction and taking into account the direct fiber contacts. Petrich ef al. (2000), who
worked on several fiber suspensions in Newtonian matrices, demonstrated that the
microstructure and the rheology measurements of the semi-dilute fiber suspensions was
in good agreement with a theory including hydrodynamic interactions (Rahnama et al.
1995). However, by increasing fiber concentration, this hydrodynamic model (Rahnama
et al. 1995) underestimates the measured viscosity, which is in good agreement with

mechanical contact simulation results (Sundararajakumar and Koch 1997).

The transient viscosity of concentrated suspensions of short fibers in a molten
polymer, measured in creep or stress growth experiments, exhibits an overshoot, which
increases with fiber content. Large normal stress difference overshoots were also
observed at a deformation slightly larger than that for the viscosity overshoot (Ramazani
et al. 2001). These overshoots are attributed to the presence of the fibers. Initially the
orientation of the fibers is isotropic and under deformation in simple shear flow, the
fibers orient themselves in the flow direction. The peak of the overshoots corresponds to
an average fiber orientation of 45° (Laun 1984), i.e. the fibers become parallel to the
maximum extensional direction, and the fibers become highly oriented under steady-state
conditions. The following transient viscous response depends on whether the shear is
reapplied in the same or in the opposite direction. When the flow is restarted in the same
direction, the viscosity and the normal stress difference rapidly attain their previous
steady-state values. However, when the flow is restarted in the opposite direction, the

viscosity exhibits a reversal overshoot at a deformation larger than that for the first
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viscosity overshoot. (Ganini and Powell 1986, Barbosa and Bibbo 2000). The strain-
dependent reversal peak is explained by fiber tumbling even if most of the fibers are

largely aligned in the flow direction before reversing the direction.

Narumi et al. (2002) studied concentrated suspensions of beads in transient shear
flows as in this work. They have suggested that the particles tilted over when reversing
the flow direction as predicted by the Phan-Thien theory (Phan-Thien 1995) for
concentrated suspensions of beads, assuming that the particles are linked together and
form non-spherical particles. At the beginning of the reverse flow the normal stress
difference has a negative value. Kolli et al. (2002) also obtained negative normal stress
values for suspensions of polystyrene beads in a Newtonian matrix. However, none of
them found any reverse overshoot, as we have observed for glass fiber suspensions in
polypropylene. In the case of agglomerated spheres, the extensional flow components

must break down the structure and prevent the appearance of any overshoot.

Haan and Steif (1998) simulated using finite elements interparticle contacts in the
slow flow of a concentrated planar suspension of cylinders. They incorporated particle
roughness into their calculations by fixing the minimum distance that two interacting
cylinders could approach each other. Their simulation results revealed the development
of a distinct particle-phase pressure under an applied simple shear. The particle-phase
pressure is defined as the difference between the isotropic part of the average stress in the
suspension and the isotropic part of the average stress in the interstitial fluid surrounding
the particles. They attributed the particle-phase pressure to two sources: the anisotropic
arrangement of the particles and the contacts between particles due to their surface
roughness. They made also some calculations for flow reversal experiments and they
found that the relative viscosity of the suspensions started at a value lower than the
previous steady value. They also predicted that the particle-phase pressure was negative
at first and increased passing through zero until it reached a positive steady-state value
equal to that obtained in the previous (opposite) direction of flow. This is similar to the

transient behavior observed for spherical particle suspensions (Kolli ez al. 2002).
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In the case of fiber suspensions, the fiber orientation and the fiber-fiber
interaction complicate the transient behavior. Inferactions between particles have a
profound effect on the microstructure of a suspension, and hence on its macroscopic
properties. In semi-dilute and moderately concentrated fiber suspensions, depending on
concentration and fiber microstructure, both the hydrodynamic interactions and contacts
between fibers play major roles. The purpose of this work is to clarify the transient
behavior of fiber suspensions undergoing simple shear flow and to determine the role of
the matrix elasticity on the transient behavior. This paper presents results of a series of
consecutive transient experiments for short fiber non-dilute suspensions. These results are
interpreted in light of interaction between fibers, their orientation and the anisotropic

structure formed by the fibers and the properties of the matrix.

5.2. Experimental

5.2.1. Preparation of suspensions

For a better understanding of the role of the viscoelastic properties of the matrix,
the widely used polypropylene was replaced in the first case by a Newtonian matrix and,

in the second case, by an elastic matrix (Boger fluid).

Glass fibers were recovered from a commercial filled polypropylene containing
30 wt.% short glass fibers (PP30, Targor Hostacom G3 NOIL). To prevent thermal
degradation during rheological measurements, an antioxidant was added to these
composites using an internal mixer. During mixing, fibers broke and a different fiber
length distribution was obtained in comparison with the initial one. In order to keep the
same fiber rigidity, average length and length distribution as in the used commercial
polypropylene composites, PP30, we used the same glass fibers obtained by calcination at
600°C for 30 min of the polypropylene composite mixed in an internal mixer. The glass
fibers had an average diameter of 14 pm and their nominal length was 500 pum but the
measured average length after blending was 300 um. The aspect ratio for the fibers was

then r = L/D = 20. Using the Forgacs and Mason (1959) expression for fiber bending in
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shear flow, it was found that the flexibility of the fibers was negligible for our glass fiber
with this aspect ratio in moderately low viscosity medium as used here. Calcination
removed the original surface treatment of the fibers and the addition of some surfactant
might be required to improve the dispersion of the fibers in the Newtonian and Boger
fluids. That is why it was crucial to verify that the matrix wetted the glass fibers. Using
an optical microscopic, we did not observe any micro-bubbles on the surface of the fibers
and the dispersion of the fibers in the matrices was homogeneous. We assumed, then, that
there was a suitable compatibility between the glass fibers and both the Newtonian and

Boger fluids.

The Peclet number, (hydrodynamic forces/Brownian forces), given by

Pe=9/D, with D, the rotary diffusion coefficient, can be estimated as:
Pe=mn, yrl’ / 3kpTInr (Chaouche and Koch 2000). 1, is the matrix viscosity, L is the

length of fibers, kz 1s Boltzmann’s constant and 7 is the absolute temperature. The Pe
calculated at the lowest rate (0.1 S‘l) for both Newtonian and the Boger fluids are,
respectively, 3.4x10° and 1.5x10°. Since the Pe is larger than 10%, the fibers can be

considered as non-Brownian.

The first series of the model suspensions was composed of a Newtonian matrix
and of the short glass fibers, obtained by calcination. The selected Newtonian matrix was
a polybutene (PB, Stanchem Indopol H100) with a molecular mass of 920 g/mol, a
density of 0.89 g/mL and a viscosity of 24 Pa.s at 25°C. This matrix is not volatile at the
test temperature (25°C). In order to compare directly the behavior of the model
suspensions with the commercial polypropylene composites used in our previous work,
we keep the same fiber volume fractions. PBO5, PB10 and the PB20 are the suspensions
in PB containing respectively 1.58, 3.27 and 7.06 vol % of fibers. Table 5.1 lists the
different suspensions and their fiber volume fraction, ¢. It can be implied from the

criteria of ¢ << 1/# for dilute sus ensions, 1/ << ¢ << 1/r for semi-dilute suspensions
P p
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and ¢ > 1/r for concentrated suspensions, (Tucker and Advani 1994), that PB05 and

PB10 correspond to the semi-dilute and PB20 to the concentrated regime.

The second series of model suspensions had an elastic matrix. For this purpose,
we chose a Boger fluid, called B, which is composed of 91.0 mass % of the same PB, 0.6
mass % of polyisobutylene (PIB) with high molecular weight (M,, = 1x10°g/mol, of
Sigma-Aldrich) and 8.4 mass % of kerosene (Mighri et al. 1997). The elastic solution, B,
was prepared using a low-speed mixer at room temperature, to avoid the degradation of
high molecular weight polymer. A period of five days was proven to be sufficient to
ensure a good dissolution (Boger and Binnington 1977). To avoid evaporation or
degradation, the solutions was hermetically kept at approximately 5°C. The Boger fluid,
B, had a density of 0.98 g/mL and a viscosity of 10 Pa.s at 25°C.

The model suspensions are composed of the Boger fluid, B, and the short glass
fibers obtained by the calcination of polypropylene composites. B0O5, B10 and the B20
are respectively the suspensions in B containing 1.58, 3.27 and 7.06 vol % of fibers (see
Table 5.1). With the mentioned criteria above, both BOS and B10 correspond also to the

semi-dilute and B20 to the concentrated regime.

The suspensions were prepared by hand mixing using a spatula to avoid breakage
of the fibers. The difference between glass fibers and the matrices density can cause
sedimentation of fibers in these suspensions. However, the fiber sedimentation time scale,
T;, (the time required for a fiber parallel to the vertical direction to sediment over its

length) was calculated using the expression proposed by Chaouche and Koch (2000),
T, = 8n, L/ApgD*(In2r —0.72) . We obtained T, ~ 2h and = 1h for the PB and the Boger
fluid, respectively. To minimize the effect of sedimentation, the rheological experiments

were carried out in periods of time shorter than the sedimentation time of the

suspensions. The suspensions were remixed prior to rheological measurements.
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5.2.2. Rheological measurements

The rheological properties of the fluids and fibers suspensions have been
measured using a stress-controlled rheometer, AR2000 of TA Imstruments. Also a
controlled rate ARES (Rheometric Scientific) was used for stress growth experiments.
Parallel plate fixtures were used for all experiments with fibers suspensions. A cone-and-
plate geometry was also used for the fluids, with a plate radius of 25 mm, a cone angle of
0.4 radians and a gap of 51 um. For the model suspensions, the plate radius R was 25
mm. For all measurements except those mentioned a 1.4 — 1.5 mm gap was used. The
value of the gap-to-fiber length ratio was much larger than 3:1, which has been suggested
as the minimum value to prevent wall effects on measurements (Blakeney 1966,
Attanasio et al. 1972). It was necessary to apply a thin film of silicone oil of low
viscosity on the edge of the free surface of the sample during rheological measurements
to prevent the evaporation of the kerosene. This technique was used by Mighri et al.

(1997).

All experiments were carried out at 25°C, using a Pelletier device or a parallel-
plate with a thermocouple in contact with the base of the lower plate, the temperature was

measured. The variation of temperature was negligible (& 0.1°C).

In this study, we carried out consecutive stress growth experiments with and
without time delay between each experiment. The time delay of the rheometer for
immediate successive experiments was not a really zero but it was estimated to be about

0.1s(1;£0.15).

It was crucial to verify that the rheological results were independent of the gap
used in carrying out the experiments. To verify the absence of slip and wall effects for the
model fiber suspensions, we glued a waterproof sand paper of mesh 80 to both plates of
the rheometer. Several stress growth experiments have been carried out using the ARES

for three different gap sizes of 2.1, 1.4 and 1.0 mm with and without sand paper glued to
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the plates. The two largest gaps with and without sand paper gave the same values
estimated to be within = 5 %, that is less than the reproducibility of the data. These
experiments confirmed the absence of slip and the gap was therefore maintained at 1.4 —

1.5 mm, without the use of sand paper, for the rest of the experiments.
5.2.2.1.  Polybutene

The steady-state, 1, and complex viscosity, i{", data of the polybutene are reported
in Fig 5.1a. Both functions are equal and independent of the shear rate or frequency, in
the experimental range investigated. The behavior is Newtonian and this was confirmed
by the absence of significant normal stress differences. The relaxation time, Ag, was

calculated using the Maxwell relation (Carreau ef al. 1997):

Ap = (5.1)

where N, is the primary normal stress differences. For N; measured at the larger shear
rates of 5 and 10s™ Ar is found to be in order of 0.004 s for the PB, which is negligible.
The high temperature dependency of the viscosity of polybutene could generate an error

in the measured values. The viscosity — temperature relationship can be expressed by:
n=exp(mT +a) (5.2)

where T is the temperature in °C and m and a were determined using regression. Typical
values for the PB were m = —0.0898 °C™" and a = 5.425. During viscosity measurements,
the temperature was recorded and the above-mentioned correlation used to account for

small temperature fluctuations.
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5.2.2.2.  Boger fluid

Fig. 5.1a compares the steady-shear viscosity and normal stress differences of the
Boger fluid to its complex viscosity, | and storage and loss moduli, respectively, G’ and
G”. Both the steady-shear and complex viscosities are essentially those expected for
Boger fluids. The incorporation of the polyisobutylene/kerosene solution in the
polybutene decreases the viscosity of the polybutene and the behavior becomes slightly
shear-thinning but the long chains of the PIB increases the elastic properties. As expected
the primary normal stress difference is quadratic with respect to the shear rate. The

storage modulus, G, is related to N, at low frequency or shear rate (Carreau ef al. 1997):

Iim—(—;— =—Jim— (5.3)

The values for the relaxation time calculated via Eq. 5.1 are reported in Table 5.2;
Az of the Boger fluid is about constant and equal to 0.06 s in comparison to 0.004 s for

the polybutene.

The stress growth behavior of the Boger fluid was measured using both parallel
plate and cone-and-plate geometries. For the cone-and-plate geometry, the primary
normal stress differences N; can be obtained from the normal force F' tending to separate

the two surfaces, measured by a force transducer and calculated by (Carreau et al. 1997):

2F

le_(an_azz): -
TR~

(5.4)

where R is the radius of the cone and the plate. For the parallel plate geometry, the
viscosity and normal stress differences can be obtained from the measurements of the
torque, 7, and the normal force, F, respectively, as functions of the shear rate at the rim,

Y » via the following two expressions (Carreau et al. 1997):
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. T dinT
N(Yp) = ——F—|3+—— (5.5)
2RR Y, dlnvy,
: : 2F I dinF
Ni(YR)_N2<7R):( 2) 1+ — . (5.6)
R 2dIny,

For a Boger fluid, the shear viscosity is constant and the normal force is quadratic with
dinT dln F

respect to the shear rate. Hence, L8 —1 and LY Using rate sweep
dln vy, dln v,

experiment results, corrected values of N, - N, were obtained and values of N, for this

Boger fluid are compared to values of N; in Table 5.2. Our results confirm the rare

literature data that NV, is about — 10 % of N; (Bird et al. 1987).

Fig. 5.1b compares the stress growth viscosity and normal stress differences of the
Boger fluid for both (opposite) shear directions defined in this paper by the clockwise
(CW) and counterclockwise (CCW) flow directions, at a shear rate of 10 s, The data for
the polybutene is also shown for reference. The transient shear stress and normal stress
data of the polybutene show that it is slightly elastic but of negligible importance with
respect to the Boger fluid. For the Boger fluid, the stress growth behavior is typical of a
viscoelastic fluid with gradual increases of the viscosity and normal stress difference
before steady-state plateaus are reached. Steady state for the Boger fluid has been reached
after about 5 and 30 s for the viscosity and of the normal stress difference, respectively,
in comparison of 0.1 s for both the viscosity and normal stress difference of the
polybutene. After 1000 s of stress relaxation, the direction of shear was reversed for the
Boger fluid. The viscosity increases gradually and reaches a steady-state plateau with the
same value. As seen in Fig. 5.1b, Ny - N, reaches also a steady-state plateau, although a
difference of almost 7% between the steady-state plateaus of the CW and the CCW flow
directions can be observed. We ruled out the possibilities of miscalibration of the normal

force and torque transducers, of error in parallelism of the plates and also of inequality of
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the rotational speeds in the clockwise and counterclockwise directions. This difference
appeared to be inherent to the instrument. However, it became negligible at larger values

of the normal stresses.

Fig. 5.1c reports the shear stress and normal stress relaxation for both the PB and
Boger fluids. We note that for the polybutene the shear stress and normal stress relaxation
functions decrease much faster in comparison to the relaxation functions for the Boger
fluid. These results were expected from the differences in relaxation time obtained for
both fluids. The time, 1, necessary for the shear stress to decay to 1% of the initial value,
is 0.15 and 6 s for the PB and the Boger fluid, respectively, whereas the corresponding
time for the normal stress is 0.06 and 5.5 s, respectively. The very short relaxation time
(0.06 s) for the PB is indicative of its very low elasticity. For both fluids, the stress
relaxation is considerably longer than predicted from the previously determined

relaxation time using an upper-convected Maxwell or Oldroyd-B model.

5.3. Experimental results and discussion

5.3.1. Steady-state regime

The literature on fiber filled suspensions shows that introducing fibers in both
Newtonian and non-Newtonian fluids increases the zero shear viscosity and the first
normal stress difference of the suspending fluids. Fig. 5.2a compares the reduced steady-
state viscosity (1,=%/MN.) as a function of shear rate for the fiber suspensions in the
polybutene and the Boger fluid in the shear rate range of 0.1 — 10s”. Steady state is
reached when the fibers are aligned in flow direction; that means the viscosity is
determined from this orientation state. Each curve represents an average of three sets of
steady-state data for which enough time was allowed for each measurement to reach the
steady state. In Fig. 5.2a, we note that by adding fibers to the polybutene, the viscosity of
the suspensions increases slightly with fiber content but the behavior remains Newtonian.
Petrich et al. (2000), who measured the dynamic viscosity of several suspensions of glass

fibers in Newtonian matrices, found a similar behavior for suspensions at low
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concentration and aspect ratio, r¢ = 0.5. For a similar r¢ (= 1.5) as our PB20, they found
a modest shear-thinning region at lower frequency (< 0.3 rads™), the shear-thinning
effects increasing with r¢. Ganini and Powell (1985) have reviewed most of the literature
in this area and found that the dependence of the suspension viscosity on shear rate
increased with increasing fiber aspect ratio and concentration. For an aspect ratio of 35 —
45, a Newtonian plateau exists at shear rates above 10 s, with very weak shear-thinning
at lower rates. For aspect ratio larger than 100, strong shear-rate dependency for the
viscosity was observed over 0.1 — 100 s™. Kitano and Kataoka (1981), who measured the
shear-rate dependence of suspensions of vinylon fibers with r = 45 in a silicon oil, found
a significant shear-thinning in the 0.0—0.1s" range, but the relative viscosity was
constant above 1s™. Petrich er al. (2000) suggested that this steady shear viscosity
measurements were just part of the high-shear Newtonian regime, which may explain
why such modest shear-thinning was observed in their measurements for lower r¢. In
contrast to the suspensions in the polybutene, the viscosity of the fiber suspensions in the
Boger fluid increases markedly with fiber content and the suspensions are shear-thinning
(Fig. 5.2a). It seems that the high-shear Newtonian regime is shifted to higher shear rates

for the fiber suspensions in the Boger fluid.

The reduced viscosity as a function of fiber content for the suspensions in the
Newtonian matrix in the used range of shear rates, is fairly well described by the
Lipscomb equation established for dilute suspensions (Jeffery’s hypothesis) of high
aspect ratio fibers (Lipscomb 1987):

6
n= ——2‘1' =N (I + 2001+ [y, )) 5.7
v

where aj212 is the orientation tensor component in the shear plane (= 0.0177 using the

Folgar and Tucker model (1984) with the interaction coefficient C;=0.0028, the ORT
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closure approximation defined by Wetzel and Tucker (1999)) and u, the coupling

coefficient taken as 150.

Fig. 5.2b shows the reduced steady shear viscosity as a function of fiber volume
fraction for the suspensions in the PB and the Boger fluids. The sensitivity of the
transducers did not permit us to measure the rheological properties of these suspensions
for lower shear rates, hence we could not verify if a low shear rate plateau for the
suspensions in the Boger fluid could be reached. We compare the reduced viscosity of the
behavior of both families of the fiber suspensions, determined at the shear rate of 1 st
We note that the reduced steady shear viscosity is a linear function of the fiber volume
fraction for the PB as predicted by Eq. 5.7 (with the above value of the parameters) and is
independent of the shear rate. In the Boger fluid, the increase of the reduced viscosity
with fiber content is much more pronounced than that in the Newtonian matrix. This
behavior suggests that fiber-fiber interaction (contacts) dominates, tentatively explained
by some adsorption of the high molecular weight polyisobutylene chains on the glass
fibers. The adsorbed PIB chains are long enough to form entanglements in the suspending
fluid and hence, increase interactions between the neighboring fibers. However, more

work is needed to determine the polymer adsorption and elucidate this effect.

Fig 5.3a compares the normal stress differences as functions of the shear rate for
the polybutene and the fiber suspensions in the Boger fluid. The normal stress difference
of the suspensions in the PB has a slope of unity whereas the Boger fluid depicts a
quadratic behavior with the respect to the shear rate, as observed for the Boger fluid
without fibers. For both fluids, but the magnitude of the normal stress difference
increases with fiber content, but the increase is more pronounced for the suspensions in

the PB.

Normal stress differences predicted for simple shear are generally small or zero,

except for transient experiments when the particles has not yet oriented in the flow
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direction (Dinh and Armstrong 1984, Altan ef al. 1989). However, the Lipscomb

equation (Lipscomb 1987) gives the following relation :

Ny =N, =20m, 10,01, =2y, +ayy) (5.3)

Using the Folgar and Tucker model (1984) with the same parameters as for the
predictions of the viscosity (Fig. 5.2b), the components of the orientation tensor are non
zero and Fig. 5.3b shows an excellent agreement between the predictions of this equation

and the normal stress data of the fiber suspensions in PB.

A few authors have reported also non-zero normal stress differences in steady-
state shear flow for non-dilute fiber suspensions in Newtonian fluids (Carter 1967, Carter
and Goddard 1967, Christensen 1981, Goto et al. 1986, Zirnsak et al. 1994). Carter
(1967) found that “truly” dilute suspensions of elongated particles would not exhibit
steady non-zero normal stresses for simple shear flow. However, for non-dilute fiber
suspensions in Newtonian fluids where the fibers are of large aspect ratio the following
equation was presented to correlate the first normal stress difference to the fiber content

and aspect ratio:

. q)r3/ 2
N,=Kn, {— 59
: nmyanr—l.S G-
where K is a constant that must be determined experimentally. This equation is based on

the assumption that collisions between fibers are the major cause for non-zero normal

stresses in steady flow.

Assuming N, negligible in comparison to N;, the normal stress difference scaled
according to the model of Carter (1967) were calculated and are presented in Fig. 5.4 as a
function of the shear rate for the suspensions in the polybutene. The slope is equal to 1 in
agreement with the literature data (Carter 1967, Carter and Goddard 1967, Christensen
1981, Goto et al. 1986, Kitano and Kataoka 1981, Zirnsak et al. 1994) for fiber
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suspensions in Newtonian fluids. Using carbon, nylon, vinylon and glass fiber, Goto ef al.
(1986) measured slopes of N; versus shear rate varying between 0.5 and 1.2 for fiber
suspensions with different fiber concentrations and aspect ratios. They found that an
increase in aspect ratio increased the observed values of N;, but decreased the value of
the slope observed on the log-log plot. They observed also that increasing the

concentration of fibers at a given aspect ratio had exactly the same effect. Hence, it is
probably the effect of flexibility that has caused N; to vary with ¥" where n is less than

unity and may vary with the shear rate. The value of K obtained in the present work

(average value of 0.25) is in the same range of those reported in the literature.

We could not apply or generalize the model of Carter (1967) for the fiber
suspensions in the Boger fluid. The normal stress difference of the Boger fluid is a
quadratic function of shear rate and by adding fibers it remains quadratic with respect to
the shear rate. Moreover, the dependence of the normal stress difference with fiber

content is not linear for the suspensions in the Boger fluid.

We attempted to measure the storage modulus of the fiber suspensions but, as
observed by Kim and Song (1997), the linear viscoelastic properties of fiber suspensions
depend strongly on fiber orientation and fiber-fiber interaction (contacts). That is why no
good reproducibility could be obtained for small amplitude oscillatory shear flow. From a
review of the available literature, the predicted and observed storage modulus of dilute
and semi-dilute fiber suspension do not show a significant difference from the storage
modulus of the matrix, indicating that fibers do not cause the suspension to become more
elastic. Hence, our finite normal stress differences measured for suspensions in the
Newtonian fluid (PB) are not the reflect of elastic properties but caused by fiber-fiber

interactions.
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5.3.2. Stress relaxation functions

Stress relaxation experiments after the cessation of steady-state flow were carried
out for several initial shear rates for the fiber suspensions in the polybutene and the Boger
fluid. Figures 5.5a and 5.5b compare the reduced shear stress relaxation and the normal
stress relaxation function, respectively, of the various composites for an initial shear rate

(’YO) of 10's™'. The results for the unfilled PB and B are also shown for comparison. Fig.

5.5a shows that the shear stress relaxation of both fluids is not significantly affected by
the presence of fibers. Laun (1984) reported similar observations for SAN (polystyrene-
acrylonitrile) unfilled and filled with 15 to 35 mass % glass fibers. Fig. 5.5b shows also
that the transient behavior for the normal stress differences is also not significantly
affected by the presence of fibers, although the steady-state values increase linearly with
the fiber content, as shown in Fig. 5.3. These results indicate that the elasticity of the

matrix is not affected by the presence of fibers.
5.3.3. Stress Growth functions

The stress growth behavior of the fiber suspensions in the polybutene and the
Boger fluid was studied for various conditions and the results are presented in Figs. 5.6-
5.11. The strain used in all the figures is calculated at the edge of the concentric disk, i.e.

v=06R/H where 0 is the angular displacement of the upper disk. The absolute value of

the strain is used and the strain is taken as zero at the beginning of each test.

Fig. 5.6 reports stress growth data of the model suspension, PB20, for two values
of the applied shear rate, 0.1 and 5s°'. In Fig. 5.6a, the first stress growth experiment in
clockwise (CW) direction is followed by a second one in the same direction (CW) and
then by a third one in the reverse direction (CCW) at 0.1 s™. The first stress growth
experiment yields a typical large overshoot for the viscosity. Note that the matrix, PB, is
essentially Newtonian, its stress growth is very rapid without overshoot as shown in Fig.

5.1b. Hence, the stress overshoot observed in Fig. 5.6a is due to the presence of the
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fibers. However, as it was difficult to achieve an isotropic orientation for the fibers during
the loading of the sample in the rheometer, the results of the first stress growth
experiment could vary drastically from one sample to another, as shown the shaded area
in the figure. The results of the following experiments were reproducible and the first
stress growth experiment was used to pre-condition the sample. In the following, the
discussion will be focused on results obtained for experiments following the first one.
The first test was stopped and followed immediately by a second test in the same
direction (CW). As expected, no overshoot is observed for this second test and the
viscosity reaches rapidly a pseudo-platean before getting eventually to a steady-state
value. The first transition plateau is attributed to the crystalline structure of aligned fibers
in the flow direction. The absence of the overshoot for the second test indicates that the
first overshoot has been produced by fiber rotation (Laun 1984, Ausias et al. 1992). The
second test was stopped and followed immediately by the reverse flow experiment in the
counter clockwise (CCW) direction. For this third, CCW, consecutive stress growth
experiment, we note clearly the first transition plateau at the same level as observed for
the second CW stress growth experiment, and then a very large delayed overshoot, which
we called “reversal overshoot”, is observed for a deformation of about 20. This overshoot

is attributed to tumbling of some of the fibers.

The results of Fig. 5.6b, obtained for a larger applied shear rate (5 s™), confirm
the pattern for the effect of the flow reversal, but no transition plateau is observed for the
second CW stress growth experiment. The results are reproducible as seen by the third
and fourth experiments and by the second and fifth experiments. A reproducible
overshoot is observed each time the flow is reversed. Note that a pseudo-plateau appears
during the third and four experiments, i.e. each time the flow is reversed. The
corresponding results for the normal stress difference are reported in Fig. 5.6¢. For the
first CW stress growth experiment, N;—N, reaches rapidly a plateau of value
significantly different from zero. Then at a strain larger than 10, a large overshoot is
observed and finally Ny — IV, decreases to a constant value that is identical to the first

plateau. The second CW stress growth experiment yields the same behavior except for
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the overshoot, which has disappeared as expected. For the third CCW stress growth
experiment, N; - N, initially takes negative values, then increases and exhibits a small
positive overshoot at strain of about 40 and finally reaches a steady-state value identical
to that obtained in the CW direction. The initial behavior depicted by the normal stress
difference is similar to that of liquid crystalline polymers (Marrucci and Maffettone 1989,
1990). Oriented fibers do form a crystalline structure responsible for the peculiar

transient behavior.

Fig. 5.7 presents reduced stress growth results as a function of strain for fiber

suspensions in PB. In all tests, the initial and subsequent applied shear rates were of the

same value |7, /¥, | = 1. Fig. 5.7a shows the reduced viscosity, 1}'/1], of the subsequent
a I3 y

experiments in the same direction as the previous one carried out at shear rates ranging
from 0.1 to 10s" for PB20. We observe a pseudo-plateau in the response of the
suspension to short times, mainly visible for low imposed shear rates. The transition
between the pseudo-plateau and the steady-state plateau occurs at a strain of about 0.1
independent of the shear rate. Increasing the shear rate reduces the difference between the
pseudo-plateaus and the steady-state and no pseudo-plateau could not be observed for
shear rate larger than 2s™. Fig. 5.7b presents the reduced viscosity of the subsequent
experiments in the opposite direction with respect to the previous one for PB20. We
notice that the reversal peaks are located in the same range of strain and the reverse
overshoot width is independent of the applied shear rate. However, the maximum in the
reverse overshoot shifts to larger strain and, surprisingly, its magnitude decreases with
increasing shear rate. Fig. 5.7c compares the reversal peaks of PB0OS, PB10 and PB20 for
an applied shear rate of 10 s'. The magnitude of the reversal peaks increases
considerably with fiber content of the suspensions. The viscosity reverse overshoot
width, approximately 50 for PB20, is about independent of fiber content. The maximum
of the reverse overshoot shifts to smaller strain when increasing the fiber content. We
note also that the significant pseudo-plateau observed for PB20 almost vanishes for the

PBO0S5 suspension.
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The behavior of the fiber suspensions can be explained in light of microscopic
observations as discussed in Sepehr ef al. (2002). During a transient simple shear of
concentrated suspensions, fibers began to move and follow the flow due to hydrodynamic
forces. In a semi-diluted suspension, fibers rotate with a short or longer period depending
on their aspect ratio or the fiber concentration in the suspension. The short fibers (up to
50 wm) never stop rotating in semi-diluted neither in moderately concentrated
suspensions. While in a concentrated suspension, due to the presence of neighbors and
packing effect, the fibers remain oriented in the flow direction. The aligned fibers formed
a crystalline structure of less resistance to flow. When we restarted a test immediately
after, in the same or opposite direction, this lower resistance can explain the pseudo-
plateau observed at the beginning of each experiment in both directions. Restarting the
test in the same direction at low applied shear rate or shear stress, the viscosity for PB20
shows a transition from the pseudo-plateau to steady-state values at strain of 0.1.
Restarting the test in the reverse direction, an aligned fiber structure formed during the
previous experiment has to tilt over in the new flow direction to form its mirror image.
That is why for PB20, following a pseudo-plateau, a reversal peak for the viscosity is
observed at a strain of 20. After the reverse overshoot, the fibers orient in the flow
direction corresponding to the steady-state value of the viscosity obtained in the initial
experiment. In lower concentration fiber suspensions, as the formed fibers structure is
less dense, the fibers can move more easily. That is why the first transition plateau

disappeared for the semi-diluted suspension of PB05 (Fig. 5.7c).

Fig. 5.8a reports stress growth data of the model suspension, B20, for the applied
shear rate of 1s”. In this figure, the first CW stress growth experiment yields a typical
large overshoot for the viscosity. Note that the matrix B is elastic with a constant
viscosity in the range of 0.1 —20's” and the stress growth increased gradually compared
to the Newtonian PB, but no overshoot was observed (Fig 5.1b). A large overshoot is
observed for B20 at a deformation of around 3, then a small undershoot is observed at a
larger strain. For the second CW experiment, no overshoot is observed as expected. For

the second experiment in the same direction flow, the pseudo-plateau cannot be observed.
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For the third CCW stress growth experiment, we see clearly the first transition plateau,
and then a small reversal overshoot is observed for a deformation value of 30. Fig. 5.8b

compares the reduced viscosity of the subsequent experiments in the opposite direction of

the previous one for B20 (|},/¥; | = 1). The magnitude of the reversal overshoot is

smaller than those observed for the fiber suspensions in PB; it decreases with increasing
shear rate similarly to PB20, and the peak becomes too small to be detected at high shear
rate. Also, we note that the reversal overshoot and its maximum shifts to larger strain

with increasing shear rate; however its width is independent of the applied shear rate.

The reversal overshoot of fiber suspensions depends on the relaxation time of the
matrix and, hence, on the delay between consecutive start-up experiments. The results of
consecutive stress growth experiments carried out at 10 s with and without time delay
are illustrated in Fig. 5.9 for PB20 and in Fig. 5.10 for B20. The results for the first CW
start-up experiment are also shown for reference in all these figures. Large shear stress
and normal stress overshoots are observed for the first experiment. We chose to give
enough time delay between consecutive experiments to detect the effect of stress
relaxation on the fiber orientation. A time delay of 200 s was enough to ensure the
maximum recovery of the PB. For the fiber suspensions in the Boger fluid, we chose a
time delay of 1000 s between consecutive experiments, which was long enough without
encountering problems due to the evaporation of the kerosene present in the Boger fluid
and to the sedimentation of the fibers. Fig. 5.9a compares the viscosity data for the
successive experiments in the same and in the opposite direction. The start-up
experiments carried out immediately without any time delay confirm the results obtained
in Fig. 5.6 for PB20. By giving a time delay of 200 s between the first and second
experiment (2" CCW) in the reverse direction, a large overshoot at slightly larger
deformation in comparison with the primary overshoot is observed. This is comparable to
the results of Fig. 5.6 obtained without delay (¢, < 0.1 s). Keeping the same flow direction
(3™ CCW experiment), the stress growth viscosity exhibits a very small overshoot at

about the same deformation as the primary overshoot. The pseudo-plateau due to the
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crystalline structure disappears with the time delay between the experiments. Both the
small overshoot and the disappearance of the transition plateau are due to some recovery
and lost of fiber orientation for this suspension. For the following experiments without
time delay, the results are identical to those presented before, i.e. no overshoot for the
consecutive experiment in the same direction (4th CCW) and a large overshot for the

following reversed experiment (5" CW).

The corresponding normal stress difference results for PB20 are reported in Fig.
5.9b. For the first CW experiment, the normal stress difference exhibits a large overshoot
at a strain of about 12. For the second experiment carried out in the reversed direction
after a delay of 200 s, the normal stress difference initially takes negative values, then
increase to depict a small overshoot before reaching a steady-state value. This behavior is
almost identical to that observed in absence of delay (Fig. 5.6¢). For the same experiment
carried out after a time delay of 200 s (3rd CCW experiment), N; - N, shows a small
undershoot followed by a small overshoot suggesting some recovery of the structure. For
following experiment, restarted immediately in the same flow direction (4" ccw
experiment), Ny - N, reaches immediately the steady-state value. Finally, when the
experiment is restarted immediately in the opposite direction (5th CW experiment), N; -

N, behaves as shown for reversed flow in Fig. 5.6c.

The stress growth data are reported in Fig. 5.10 for B20. The first experiment
shows similar results as reported in Fig. 5.8. For the second experiment in the opposite
direction after a delay of 1000 s the stress growth is very similar to the initial behavior
with a large overshoot compared to the results of the reversed flow without delay of Fig.
5.8. The consecutive start-up test carried out in the same direction flow with time delay
of 1000 s (3" CCW experiment) shows again a large overshoot instead of reaching the
steady-state value right away. As for the fiber suspensions in PB, the pseudo-plateau due
to the crystalline structure disappears with time delay between the experiments. The 4"
experiment without delay in the same direction shows no transient behavior as expected.

In the 5™ experiment without delay but in the opposite direction, we observe a slow
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increase of the viscosity with a very small reverse overshoot as expected according to

results show in Fig. 5.8b for larger applied shear rate.

The corresponding normal stress difference results of the above experiments with
B20 are reported in Fig. 5.10b. The results of this figure confirm the pattern of
consecutive experiments carried out in the same direction flow and the effect of the time
delay. However, the magnitude of the overshoots for the second and following
experiments is comparable to that of the first experiment in contrast with the results for
PB20 presented in Fig. 5.9 that shows very small overshoots for the 2" and following
experiments. We note that the transient behavior is controlled by the properties of the
elastic matrix with a normal stress difference values always positive. The overshoots,
however, are still due to the presence of the fibers since the unfilled Boger fluid did not
exhibit any overshoot (Fig. 5.1b). By reversing the flow direction, for the immediate
consecutive test (5th CCW experiment), N; - N, restarts from the steady-state value,
decreases to a minimum before increasing, depicting a very small overshoot and reaching
the steady-state value. Here the time delay of the rheometer responses did not affect the
results, because of the longer relaxation time of the suspension. For the same experiment
with a time delay of 1000 s (2™ CCW), N; - N, restarts from zero increases gradually to
show a large overshoot before reaching the steady-state plateau. This behavior was also
observed for the lower fiber concentrations in the Boger fluid, although at larger shear

rate, the reverse overshoot amplitude was too small to be detected.

After the cessation of steady shear flow, the chains of the polymeric matrix
recover during stress relaxation. Those of the Boger fluid recover rapidly. The polybutene
used in this work is not totally inelastic and its chains can partially recover during stress
relaxation. The non-Brownian fibers are affected by the recovery of the polymeric chains
of the matrix and loose partly or totally their orientation depending on the elasticity of the
matrix. The crystalline structure is totally or partly destroyed during stress relaxation.

This is why the transient behavior of the suspensions in the Boger fluid in consecutive
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experiments with a long time delay is comparable to the behavior observed in the first

experiment.

Fig. 5.11 compares three consecutive stress growth experiments carried out at an
applied shear rate of 1 s for PB20 and B20. A stress growth experiment in CW direction
was immediately followed by two consecutive CW and CCW ones. The open symbols in
this figure correspond to the results of B20 and the filled symbols to those of PB20. We
noticed the difference between the responses of the elastic and polybutene matrices. The
stress growth for the polybutene-based suspension is very rapid compared to the gradual
stress growth for the elastic based suspension. A large overshoot for B20 at a strain of 5
is compared with a smaller overshoot for PB20 located at a strain of 10. We can also note
a large undershoot of the viscosity for B20 after the overshoot and before the steady-state
plateau, which is non-existent for PB20. For both second CW experiments, the viscosity
reaches the steady-state value without any overshoot. A pseudo-plateau and a transition at
a strain of 0.1 are apparent for PB20. The pseudo-plateau cannot be detected for B20 in
the second CW flow but it is present in the third CCW flow as seen in Fig 5.8a. The level
of this transition plateau before the reversal overshoot of the viscosity is of the same
magnitude for both suspensions. However, this reversal peak is larger for PB20 than B20.
The energy per unit volume, E, required for tumbling the fibers in the opposite direction

is given by:
E = [ody= [nydy (5.10)

where ¢ is the shear stress. For stress growth experiment, the energy can be easily
calculated from the area under the overshoot, § = jndy. The calculated values of E, are
reported in Fig. 5.12. The figure shows that the energy for tumbling the fibers increases
linearly with the applied shear rate for PBOS, PB10 and PB20. We note that the energy

required for tumbling increases, as expected, with fiber content. For B20 the energy is not

a linear function of the shear rate, but considerably less energy is required to tumble the
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fibers or considerably less fibers are tilted over in the case of the elastic matrix. The
reverse overshoot magnitudes for the lower fiber content suspensions in the Boger fluid

were too small to be measurable.

5.4. Conclusion

The rheological properties of glass short fiber suspensions have been studied
under transient shear flow using a parallel plate geometry. A polybutene as a Newtonian
matrix and a Boger fluid as an elastic matrix were used for this study. The absence of

wall effects has been verified.

The steady-shear viscosity for fiber suspensions in the Newtonian and the Boger
fluids was shown to increase with fiber content, but the increase in the Newtonian matrix
was light and no shear-thinning effects could be detected. The Lipscomb (1987) equation
combined with the Folgar and Tucker (1984) model could be used to predict the steady-
shear viscosity and normal stress difference of the fiber suspensions in the Newtonian
matrix. However, the viscosity of the fiber suspensions in the Boger fluid increased
markedly with fiber content and the suspensions were found to be shear-thinning,

suggesting stronger fiber-fiber interactions in the Boger fluid.

It has been found that the steady-state normal stress differences are approximately
linear with shear rate and fiber volume fraction for suspensions in the polybutene. For
fiber suspensions in the Boger fluid, the normal stress difference was found to be a
quadratic function of the shear rate, as observed for the unfilled Boger fluid. No influence
of fibers could be detected on the stress relaxation behavior of the suspensions in both

fluids, indicating that the presence of fibers did not affect the elasticity of the matrix.

Stress growth experiments were carried out in the forward and reverse directions
and viscosity and normal stress overshoots have been observed and attributed to fiber
orientation under flow. A viscosity overshoot was observed each time the flow direction

was reversed, and this was explained by fiber tumbling even if most of the fibers were
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aligned in the flow direction prior to the flow reversal. Large normal stress overshoots
were also observed at a deformation slightly larger than that for the viscosity overshoot.
However, when the flow was reversed, the normal stress difference took initially
minimum value before depicting a positive overshoot and decreasing to a steady-state
value. Also in the case of flow reversal for all concentrated suspensions, we detected a
pseudo-plateau for the viscosity lower than the steady-state value. For successive
experiments in the same direction, this pseudo-plateau could be detected only for the
polybutene-based concentrated suspensions at low shear rates. This was attributed to the

presence of a fiber-oriented (crystalline) structure with less resistance to flow.

When long time delays were considered between consecutive stress growth
experiments for the elastic based suspensions, the reversal overshoot disappeared and the
behavior became very similar to that observed for the first stress growth experiment. This
was attributed to recovery of the polymeric chains in the Boger resulting in the lost of
fiber orientation. The energy required to tumble the fibers could be calculated by using
the area under the reversal overshoot. It was found that considerably less energy was

required in the case of the suspensions in the Boger fluid.
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Table 5.1. The properties of the suspensions in polybutene and Boger fluid.

PB based suspensions B based suspensions

PB0OS PBI10 PB20 BOS B10 B20

Fiber aspect ratio, r 20 20

Fiber density, g/mL 2.5 2.5

Polymer melt density, g/mL 0.89 0.98

Fiber weight fraction 4.3 8.70 17.6 3.92 7.93 16.2
Fiber volume fraction ¢ 1.58 3.27 7.06 1.58 3.27 7.06

Table 5.2. Steady state normal stress difference of the Boger fluid, B, for various shear

rates in parallel-plate and cone-and-plate geometries.

Shear rate N; - N, (Pa) Ni(Pa) N, (Pa)
(s'l) [Parallel plates] [Cone and plate] Calculated N/NiAe ()
1.00 2.1 1.7 -0.4 -0.10  0.089
1.26 2.8 2.3 -0.5 -0.10 - 0.079
1.58 4.0 3.2 -0.8 -0.14 0.068
2.00 5.8 4.6 -1.2 -0.14  0.063
2.51 9.4 7.4 -2.0 -0.17  0.064
3.16 13.3 10.5 -2.8 -0.15 0.058
3.98 20.2 15.0 -5.2 -0.23  0.053
5.01 28.6 21.7 -6.9 -0.20  0.049
6.31 452 35.2 -10.0 -0.17  0.050
7.94 22.2 56.2 -16.0 -0.17  0.051

10.00 115.2 913 -23.9 -0.14  0.054
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Figure 5.1. Rheological properties of the polybutene and the Boger fluid. (a)
Comparison of the steady shear and dynamic behaviors; (b) Shear stress and normal
stress growths in CW and CCW directions for an applied shear rate of 10s™; (¢) Shear
stress and normal stress relaxations following steady shear flow with an initial shear rate

of 105
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Figure 5.2. Reduced steady shear viscosity fiber suspensions in PB and B. (a)
Reduced steady shear viscosity as a function of shear rate; (b) Reduced steady shear for
viscosity measured at the shear rate of 1 s as a function of fiber volume fraction. The

results of the suspensions in PB can be predicted by the model of Lipscomb (1987), Eq. 5.7.
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Figure 5.3. Normal stress differences as a function of shear rate. (a)
Experimental data for the fiber suspensions in PB and B; (b) Predictions with the model

of Lipscomb (1987), Eq. 5.8.
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Figure 5.4. Normal stress differences scaled using the model of Carter (1967) as

a function of shear rate (Eq. 5.9) for fiber suspensions in the Newtonian fluid (PB).
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Figure 5.5. Stress relaxation data for suspensions in PB and B for various
loadings of fibers and initial shear rate of 10 s'. (a) Reduced stress relaxation as a

function of time; (b) Normal stress relaxation as a function of time.
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Figure 5.6. Stress growth behavior as a function of strain for consecutive
growth experiments in CW and CCW directions for PB20. (a) Viscosity function for
experiments carried out at 0.1s; (b) Viscosity function for experiments carried out at

55 (c) Normal stress difference for experiments carried out at 5 s,
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Figure 5.7. Normalized stress growth results as a function of strain for fiber
suspensions in the polybutene matrix. (a) Reduced viscosity for subsequent experiments
in the same direction as the previous one carried out at shear rate of 0.1 to 10s™ for
PB20; (b) Reduced viscosity for subsequent experiments in the opposite direction with
respect to the previous one carried out at shear rate of 0.1 to 10 s for PB20; (¢) Reduced
viscosity for subsequent experiments in the opposite direction with respect to the

previous one for PB0S, PB10 and PB20 for an applied shear rate of 10 s
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Figure 5.8. Stress growth behavior as a function of strain for B20. (a) Viscosity
function for three consecutive experiments in CW and CCW directions carried out at 1 s

(b) Reduced viscosity for subsequent experiments in the opposite direction with respect

to the previous one carried out at shear rate of 1 to 10 s
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Figure 5.10. Stress growth behavior of series of consecutive experiments carried
out at 10 s for B20 with and without time delay between the experiments. (a) Viscosity

function versus strain; (b) Normal stress difference as a function of strain.
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CHAPITRE VI - COMPARISON OF RHEOLOGICAL PROPERTIES OF

FIBER SUSPENSIONS WITH MODEL PREDICTIONS#*

Le but de ce dernier article est de comparer les prédictions de deux familles de
modeles, le modele de Folgar et Tucker et le modele généralisé de Jeffery développé par
Grmela et al. (2003) pour décrire le comportement des suspensions de fibres dans un
milieu newtonien. Ces modeles ont ét€ combinés a 1’équation constitutive de Lispcomb
pour définir les propriétés rhéologiques des suspensions. Ces modeles ont alors été
modifiés afin de mieux prédire le comportement rhéologique des suspensions de fibres

courtes dans une matrice de polybuténe newtonien.

* Cet article a €t€ soumis ait: Journal of Polymer Engineering
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COMPARISON OF RHEOLOGICAL PROPERTIES OF FIBER
SUSPENSIONS WITH MODEL PREDICTIONS

M. Sepehr D pJ. Carreau'™ M. Grmela ", G. Ausias ?, P.G. Lafleur W

(1)CRASP, Chemical Engineering Department, Ecole Polytechnique, PO Box 6079,
Stn Centre-Ville, Montréal, QC, H3C 3A7, Canada

(2)LG2M, Université de Bretagne Sud, Rue de S' Maudé, BP 92116,
56321 Lorient Cedex, France

Abstract

The rheological behavior of fiber suspensions in a Newtonian fluid is compared
with the simulation results of two families of models. The well-known Folgar-Tucker
model for fiber motion, combined with the Lipscomb constitutive equation, was used and
compared to an extended Jeffery model developed by Grmela et al. (2003). The extended
Jeffery model predicts too much shear-thinning and constant normal stress differences.
Hence, the stress tensor equation of the extended Jeffery model was replaced by the
Lipscomb equation. The steady-state viscosity and normal stress difference of fiber
suspensions in a Newtonian polybutene are well predicted by both Folgar-Tucker-
Lipscomb and the extended Jeffery-Lipscomb models. The transient behavior and
viscosity and normal stress overshoots observed during stress growth experiments are
fairly well described by both models, mainly when using a slip parameter and A larger
than 1 in the Folgar-Tucker-Lipscomb model. The extended Jeffery has more potential to
describe properly the behavior of concentrated fiber suspensions, but this is achieved by

using a large number of parameters.



129

6.1. Introduction

Short-fiber-filled thermoplastics represent a class of materials of growing
industrial importance. This is partially because conventional equipments (extruders and
injection molding machines) can be used to process them. Properties of such short-fiber
composites are found, however, to depend strongly on the rheological properties of the
filled polymer, and on the orientation of fibers during processing that is controlled by the
processing conditions. So in the design of products made of the short-fiber composites,
one must anticipate the influence of the processing-induced fiber orientation on the
properties of final products (Tucker and Advani 1994). Models relating the flow

properties, fiber orientation, and properties of the final product are thus needed.

The pioneering work done by Jeffery (1922) describes the motion of an ellipsoid
in a Newtonian fluid. This investigation has been then followed by Goettler ef al. (1979,
1981), Givler et al. (1983). Lipscomb er al. (1988) showed that the streamlines are
affected by the presence of the fibers even at fiber concentration less than 0.1 volume
percent. Several authors suggested also other approaches. Among them, Batchelor (1970)
and Cox and Brenner (1971) obtained evolution equations for dilute suspensions of rigid
ellipsoids by using volume averages of Jeffery’s results. The extension due to Hinch and
Leal (1972, 1973) took into account the Brownian motion. The corresponding
expressions for the extra stress tensor have been derived by Evans (1975) and later by
Dinh and Armstrong (1984). Gibson and Toll (1999) have extended the formulas to the

case when the fibers are suspended in a non-Newtonian matrix.

In another approach the Jeffery equation is modified by adding a diffusive term.
For non-dilute suspensions, interactions between fibers modify their motions and Folgar
and Tucker (1984) added a diffusive term, which was a function of the strain rate. Many
other authors followed the Folgar and Tucker approach and defined various interaction
coefficients depending on the concentration regime and the nature of interactions

(Ranganathan and Advani 1991, Bay 1991, Phan-Thien ef al. 2002). Kamal and Mutel
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{(1989) used the same model as Folgar and Tucker (1984) but with a constant value for
the diffusivity. If the diffusive term is taken as proportional to the strain rate, then the
fiber orientation changes only when the suspension is ongoing deformation (Folgar and
Tucker 1984). If this diffusivity is constant the orientation is changing all the time,
tending towards randomness when there is no deformation. Also, in the Folgar and
Tucker model the degree of alignment under steady state is independent of the strain rate,
whereas in the Kamal and Mutel form the steady state orientation is a strong function of

the strain rate.

Instead of starting with the microscopic analysis of Jeffery (1922), Grmela et al.
(2003) begin their analysis of fiber suspension by identifying a general framework for the
governing equations (Grmela 1984, 1986, Beris et Edwards 1994, Grmela and Oettinger
1997, Oettinger and Grmela 1997). The framework guarantees that solutions to the
governing equations proposed to describe experimental observations are compatible with
thermodynamics in the absence of external forces. The governing equations of the
rheological model of fiber suspensions are then obtained by filling the framework with
physical insights acquired in the microscopic analysis and in the experimental
observations. In the present work, we concentrate on the comparison of model predictions
with experimental data obtained for short glass fiber suspensions in a Newtonian fluid
(Sepehr et al. 2003b). We will restrict to the recent models developed by Grmela ef al.
(2003) and the Folgar-Tucker-Lispcomb model that has been shown to be quite effective
in predicting the complex transient behavior of filled polypropylene (Sepehr er al.
2003a).

6.2. Models

A fiber can be described by a vector p, a unit vector in the direction of the longer
axis of the fiber and the average state of fibers by y(p, 1), the fiber orientation distribution

function. The moments of the distribution functions give the orientation tensors defined

as (Advani and Tucker 1987):
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a; () = Epip_;w(p,t)dp (6.1)

Ay (t) = _Epip PP PP, Hdp (6.2)

where a;; is a symmetric orientation tensor with trace equal to one. The fourth-order
orientation tensor, a;, does not serve in fact as an independent state variable. A closure

relation expressing it in terms of the second-order moment a; is needed.
The well-known Folgar and Tucker model (1984) can be written as:

. Day 1 | ) ) .
a; = Dt = "2‘ (Qikakj - aikaj ) + “2“ k(yikakj +ayYy — ZYkIaUkl)+ ZCI'Y(B,] - 3%‘)

(6.3)

where y and £ are respectively the rate of strain and the vorticity tensor defined by
v =k +x and Q=« - x where ' is the velocity gradient tensor. ¥ is the scalar
magnitude of the strain rate, i.e. the second invariant of the rate-of-strain

tensor, ¥ = /2 ¥,. V., 5 C1 is a phenomenological coefficient. For large ellipsoid aspect

ratios, A = (r*=1)/(#* +1) tends toward 1.

For the constitutive equation, we choose to use the Lipscomb equation (1987).
Following Jeffery (1922), Hand (1961) and Giesekus (1962), Lipscomb et al. (1988) have
proposed a constitutive equation for dilute particles suspensions, which can be written for

ellipsoids with large aspect ratios, as:
;= _Paij + ﬂm"Yij +T]m¢(1117,~j +“27k1aiﬂc!) (6.4)

where Li; and L, are rheological coefficients, 1},, is the viscosity of the matrix and ¢ is the
volume fraction of fibers. The last term of Eq. (6.4) describes the coupling between the

hydrodynamic forces and the fiber orientation; hence we call Y, the coupling coefficient.
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Following Lipscomb et al. (1988) we use for large aspect ratios W; =2 and we find s
empirically. The simulation results of the Folgar-Tucker and Lipscomb (FTL) model can
qualitatively describe the transient viscosity and normal stress differences of fibers
suspensions. In our previous work (Sepehr et al. 2003a), we found that the model
predictions are faster than the experimental transient results. This is, to our opinion, due
to fiber-fiber interactions. Fibers are close to their neighbors and their rotational motion is
stowed down compared to that of an isolated fiber predicted by the Jeffery equation.
Tucker and Huynh (2001) have shown also that in injection molded parts there was a
transition zone after the injection gate, which was larger in the experiments compared to
that predicted by a finite element method simulation using the same model. In the
experiments the fiber rotation in the transition zone appeared to be slower than predicted

by the Jeffery or the Folgar-Tucker model (1984).

In order to slowdown the fiber motion, two methods are used in this paper. First,
we used the empirically modification done to Folgar and Tucker model (1984) by Sepehr

et al. (2003a) who introduced a slip deformation defined for simple shear by:

Y, = Ot (6.5)

where o is a slip coefficient. Its value should be between 0 and 1. Physically it represents
a direct effect of fiber-fiber interactions such as solid contact. In a second method,
extended Jeffery models were developed by Grmela er al. (2003) with the main objective

of slowing down the fiber motion with respect to the Jeffery equation.

The models introduced in Grmela et al. (2003) are formulated first on the level of
a kinetic theory. States of fibers are characterized by (W(p, 1), M(p, 1)), where M(p, #) is
the average angular momentum of the fibers. The new physics expressed in the models is
the effective inertia (that arises due to the collective nature of the behavior of the fibers)
and the fiber-fiber interactions. We call the models extended Jeffery models since they

reduce to the classical Jeffery model if the relaxation time of the angular momentum is
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very small (i.e. the effective inertia is neglected), the fiber-fiber interactions are
neglected, and also the dissipative processes taking place in the suspensions are
neglected. In order to simplify the work involved in calculating predictions of the models,
Grmela et al. (2003) introduced also reduced models in which only several moments of
the distribution functions serve as state variables. The moments that have been chosen for

this purpose are the second and fourth order orientation tensors, a;; and a;, and:
by (1) = [dpp,p,M (p.1) 6.6)

where the tensor b is symmetric with respect to the first two indices. Note that the third-
order tensor by that is related closely to the average angular momentum, does serve as an

independent state variable.

The governing equations of the extended Jeffery model (on the level on which the

tensors a; and b serve as state variables) are:

da, 1 I 1 -1
dt — ——-—z—aijik — 2 a Q gmlllmblnm gjnlIIm bmm
R 22 L9 sy L qe 22 s — Ay S g,
aakj 3 \da, )" 3 da, aaz |
(6.7)
and
db, 1 oD L od ] )
E == bz’;’Ile . Znaklmaijln - A(b)y[‘—“" - xeklmaiinl Vo ] (6.8)
d 2 da,, by 2

We use the summation convention. The symbols arising in Eq. (6.7) and (6.8)
have the following meaning: € is the alternative unit tensor, I represents the effective

inertia tensor and @ is the free energy; » is the fiber density and A is a function of the

fiber aspect ratio as in the Jeffery equation; A9 s a mobility tensor that we choose to be
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given by A% = A“qa v; A and A? are phenomenological parameters characterizing

the dissipation. The last three terms in Eq. (6.7) represent the contribution to the

dissipation.

We choose a simplified expression for the free energy (the parameter K of Grmela
et al., 2003, is taken to be zero) and we obtain:
1 4 1 3
D(a,,b) =—b, I, b, ——k,T In(deta,) +—k,T(tra, — 1) (6.9)
2 2 2
The first term represents the kinetic (rotational) energy, the second term is the classical
expression for the entropy of an ideal gas. The last term is added in order to guarantee the
equilibrium (i.e. for a3 that is solution of 8(1)/ da, =0), and the tensor a, is diagonal with
173 as its entries. By kz we designate the Boltzmann constant and 7 denotes the

temperature. The derivatives of the free energy entering the governing equations thus

equal to:
J0
=7 b, (6.10a)
by, '
od 1 3
——:~——kBTa; +—k, T3, (6.10b)
da, 2 2

y

By inserting (6.10b) into Eq. (6.7) we obtain for the dissipative term:
1 : -1
_Ca(aij -gfs,y)YtTaz 6.1D)

where C, = k,TA'” /6. This is indeed a term that comparable with the dissipation term

that Folgar and Tucker (1984) added to the right hand side of the projected Jeffery

equation excepted for the tra;’ function of the dissipation term. Summing up, we have
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shown that the dissipation terms that we have added to the right hand side of Eq. (6.7)
guarantee that the free energy (without any restriction on its choice) does not grow during
the time evolution and moreover, take a similar form of the dissipation term introduced
by Folgar and Tucker (1984) provided the free energy is chosen to be the one given in
(6.11).

The extra stress tensor (for K = 0) from Grmela et al. (2003) is given by:

1 1 1 4

f — - -1 o —1 .
o = kTn( > ay Gy + 30, A Ay + Q@ + =30,

o

1 1
~1 -1 -1
- 5 Ay Ay +3ay — ‘2” Ay Ay +a4,A,, — 3ajli1)

Jm mlil

(6.12)

The extra stress tensor is function of the second and the forth order orientation
tensors and also a strong function of fiber density or in other word the volume fraction of

fibers. The total extra-stress tensor is considered as:
6=0" +o’ (6.13)

where © is the sum of the contribution of the extra-stress tensor due to the fibers ¢/ and

to the matrix ¢". We assume the matrix to be Newtonian (¢" =m,,7, ).

Many closure approximations have been proposed to evaluate the fourth-order
orientation tensor, ag4, in terms of lower order tensors. The linear closure approximation
was first introduced by Hand (1962) and it can exactly represent the state of an isotropic
orientation distribution. The quadratic closure approximation is formed by taking the
dyadic product of the second order tensor with itself (Doi 1981, Lipscomb 1984). It is
exact for a perfectly aligned orientation distribution. Advani and Tucker (1987, 1990)
proposed a hybrid closure by mixing the quadratic and the linear approximations

according to a scalar measure of the orientation. Verleye and Dupret (1994) proposed a
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natural closure approximation, in which a4 is obtained in term of a, and §; by fitting data
calculated from the analytical solutions. This approximation is correct only when the
fiber-fiber interaction is neglected. Cintra and Tucker (1995) developed an orthotropic
fitted (ORF and ORL) closure approximation by assuming that the principal directions of
the fourth order orientation tensor are the same as those of the second order orientation
tensor. And also the principal values of the fourth order orientation tensor are functions
of eigenvalues of the second order orientation tensor. These approximations perform
quite well in terms of their prediction capability for many types of flows. Chung and
Kwon (1999, 2001, 2002) have proposed improved and optimal versions of the
orthotropic fitted closure approximation in which the nonphysical oscillations were
removed even at low values of the interaction coefficients, Wetzel and Tucker (1999)
introduced another version of orthotropic fitted closure approximation, ORT, in which,
with a similar procedure as Verleye and Dupret (1994), the analytical solutions

correspond to C;=0and A = 1.

In Grmela ez al. (2003) we have tested the orthotropic smooth closure (ORS), the
two orthotropic fitted closures (ORF and ORL) of Cintra and Tucker (1995) and the
orthotropic fitted closure (ORT) of Wetzel and Tucker (1999) that is equivalent to the
natural closure proposed by Verleye and Dupret (1994). We have retained here the ORT

and ORF approximations since the predictions appear to be more physical.
6.3. Comparison with experimental results

The models discussed here are based on the hypothesis that the matrix is a
Newtonian fluid. So we choose a set of experimental results obtained for fiber
suspensions in a Newtonian matrix for transient and steady state shear flows (Sepehr ef
al. 2003b). We did not use any sophisticated optimization technique to find the best

parameters. Hence, we do not claim that the fits are the best ones.
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6.3.1. Experiments

The Newtonian matrix was a polybutene (PB, Stanchem Indopol H100) with a
molecular mass of 920 g/mol, a density of 0.89 g/mL and a constant viscosity of 24 Pa.s
at 25°C. No significant normal stress differences could be measured for this PB.
However, the stress growth and stress relaxation data showed response times of the order
of 0.01 s, indicating that the PB had some weak elastic character. We added 1.6 — 7.1 vol.
% of short glass fibers with an average length of 300 um and an average diameter of 14
um to matrices. We prepared the fiber suspensions by hand mixing of fibers in the matrix
with a spatula in order to prevent the breakage of the fibers. We used a controlled rate
rheometer, an ARES (Rheometric Scientifics) in parallel-plate configuration. The gap
was held constant at 1.4 — 1.5 mm (more than three times of the fiber length) and the
diameter of the plates was 50 mm. The experiments were carried out at 25°C and a
thermocouple in contact with the base of the lower plate was used to measure the
temperature. The variation of temperature was negligible. We designed a set of
consecutive stress growth experiments performed in both clockwise (CW) and counter
clockwise (CCW) directions. The applied shear rate was in the range of 0.1 — 10 5. The
steady-state viscosity and normal stress difference have been measured for the fiber
suspensions from stress growth experiments, using the steady state plateau value for each

shear rate.
6.3.2. Comparison with the Folgar — Tucker — Lipscomb model predictions

The FTL (Folgar-Tucker-Lipscomb) model defined by Egs. (6.3) and (6.4)
contains 4 parameters, A, C;, t; and Uy. The aspect ratio of the glass fibers used in this
work is approximately 20; hence we set A equal to 1 and |y equal to 2. The other two
parameters are obtained by fitting the steady state and transient data using the ORT
closure approximation (Wetzel and Tucker 1999). For simple shear flow, the rheological

functions are given by:
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G
n= —21— =M (} +2¢(1 + Hzamz)) (6.14)
v

Ny =N, =20, 1,7(a;,1, =204, +a3,) (6.15)

Fig. 6.1 reports the steady shear viscosity and normal stress difference data for the
suspension of 20 wt % fibers in PB and the FTL model predictions. We note first that the
viscosity is slightly shear-thinning and the normal stress difference (V; —N,) is significant
and increases linearly with the shear rate. We could not obtain the first normal stress
difference, N;, using parallel plates (Carreau et al. 1997), but since N,, the second normal
stress difference, is believed to be much smaller, Ny — N, is comparable to N;. Using
C;=10.0055 and y, = 100 we obtain excellent predictions for both functions as shown in
Fig. 6.1. Since the orientation tensor does not depend on shear rate, the model is not
capable of predicting the slight shear-thinning for the viscosity. However, the linear

dependence of the normal stress differences with shear rate is perfectly predicted.

The predictions of the FTL model using the same parameters are compared to the
stress growth data of PB20 as functions of the deformation in Fig. 6.2 for an applied
shear rate of 1s”. This first stress growth experiment yields a typical large viscosity
overshoot (Laun, 1984) (Fig. 6.2a). This overshoot is highly dependent on the initial fiber
orientation and distribution, and was found to vary from one sample to another. The
normal stress difference (Fig. 6.2b) exhibits an overshoot at a slightly larger deformation
in comparison with the viscosity function. Note that initially both functions grow
exponentially, as expected for a slightly elastic matrix. The model qualitatively predicts
the observed transient behavior; however, the viscosity and normal stress difference
overshoots are not correctly predicted and the deformation for the overshoots is
underestimated. This lack of fit can be largely corrected by using the slip parameter,

o, = 0.24, defined by Eq. (6.5). However, the magnitude of the overshoot is not affected

by .
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We remark also that the initially predicted viscosity function is much larger than
the experimental data. Fiber suspensions containing randomly distributed fibers are
expected to have larger viscosity than the suspensions containing fibers aligned in the
flow direction (Milliken er al. 1989, Mondy er al. 1990). Thus this prediction is
physically correct and, obviously, the initial isotropic fiber assumed for the predictions is
not really representative of the real fiber distribution. Another possible cause is a non-
homogeneous distribution of fibers in the gap of the parallel plate geometry of the
rheometer, leading to a non-homogenous flow and reduced viscosity values (Ferec et al.
2003). In addition, the transient behavior predicted by the model is strongly dependent on
the closure approximation used. The effect of the closure approximation on the stress
growth predictions have been discussed by Sepehr et al. (2003a) and one additional

illustration is discussed below.

Fig. 6.3 reports the data and the FTL model predictions for a second stress growth
experiment on PB20 conducted immediately after the first experiment of Fig. 6.2, but in
the opposite (CCW) direction for the same applied shear rate of 1 s™. The viscosity and
normal stress data are reported as functions of the absolute value of the deformation,
taken to be zero at the beginning of the test. We note in Fig. 6.3a that the viscosity
function increases initially to reach a transition plateau, and then exhibits a delayed
overshoot, which we call “reverse peak” at a larger deformation. Finally the viscosity
reaches the steady state plateau attained in the first experiment. This reverse overshoot
that is quite large compared to the overshoot of the first stress growth experiment and
occurring at a larger deformation is attributed to the tumbling of fibers as the flow is
reversed. The FTL model predicts qualitatively well this reverse overshoot, but the size
of the overshoot and the deformation at which the overshoot is observed are
underpredicted. Using the slip parameter o= 0.24, the deformation for the overshoot is
well predicted, but the size of the overshoot is unchanged. Note also that the FTL and the
modified model cannot predict the pseudo-plateau observed in the initial part of the
suspension’s response, attributed to non-affined deformation (Sepehr ef al. 2003a, b). The

transient normal stress difference behavior is quite different as shown in Fig. 6.3b. The
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normal stress difference goes initially to negative values, then increases and depicts a
small positive overshoot before reaching the steady-value (identical to that obtained in
the first experiment). The FTL model qualitatively predicts the observations, i.e. initial
negative normal stress data, then the increase and the positive overshoot. However, the
size and the deformation for the overshoot are underestimated. The use of o0 =0.24 gives
the correct deformation, but as for the viscosity the normal stress overshoot is not

affected by «.

The predictions of the FTL model using the same parameters are compared to the
stress growth data of PB20 as functions of the deformation in Fig. 6.4 for an applied
shear rate of 10s”. In this figure we have combined the data for the first growth
experiment in the CW direction and the data obtained for the second growth experiment
in the CCW direction, following immediately the first experiment. We have only shown
the predictions for the modified FTL model, i.e. with the slip parameter, o, equal to 0.24.
The observations and the model predictions are quite similar to those reported in Figs. 6.2
and 6.3. We note again that the modified FTL model predicts fairly well these complex

transient data, except for the size of the overshoots for the first growth experiment.

In the FTL model, A is taken to be a function of the fiber aspect ratio (Jeffery,
1922) given by:

kzﬁﬂg‘);:—]— (6.16)

(L/D) +1
where A is smaller or equal to 1. For large aspect ratios, as it is the case here, A should be
theoretically equal to 1. However, the theory has been developed for dilute fiber
suspensions, and for semi-dilute or concentrated suspensions, fiber-fiber contacts play a
major role and we consider A as a fitting parameter, possibly larger than 1. The

predictions of the FTL model with A =1.0222, using the ORF closure approximation
(Cintra and Tucker 1995), C;=0.001 and y, = 195, are compared with the predictions of
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the modified FTL model with o« equal to 0.5 using the ORF approximation in Figs. 6.5
and 6.6 for the stress growth data of PB20 at an applied shear rate of 1s™. The
parameters were chosen to fit first the steady-shear viscosity and normal stress difference.
Fig. 6.5 compares the data and the FIL model predictions for a first stress growth
experiment in the clockwise direction. Fig. 6.6 illustrates the same functions for the
second stress growth experiment carried out immediately after the first experiment of Fig.
6.5, but in the opposite (CCW) direction. With these fitting parameters, the stress growth
viscosity function is still overpredicted compared to the experimental data, but predicted
normal stress overshoots (Fig. 6.5b) are comparable to the experimental one in two cases
although the deformation at which the overshoot occurs is underpredicted. The reverse
overshoots (Fig. 6.6) are well predicted by the model using A > 1 and o < 1 with the ORF
approximation. By using the ORF approximation, the predictions of the model show a
larger normal stress overshoot in comparison with the ORT approximation. Although
taking A larger than 1 can slowdown the fiber motion, this improvement is not as good as
the use of the slip parameter, o. For both Figs. 6.5 and 6.6, we used the same slip
parameter (00 =0.5) to show the correct deformation, quite different than for the cases

illustrated in Figs. 6.2 and 6.3 (o = 0.24).

The predictions of the FTL modified model using the same parameters as in Figs.
6.5 and 6.6 are compared to the stress growth data of PB20 in Fig. 6.7 for an applied
shear rate of 105", We compare the data for the growth experiment in the CW and CCW
directions with the modified model predictions, i.e. with the slip parameter, o, equal to
0.5. The observations and the model predictions are quite similar to those reported in
Figs. 6.5 and 6.6. We note again that in this case the modified FTL model predicts well
these complex transient data, except for the size of the viscosity overshoot for the first

growth experiment.

In this work, we chose the ORT and ORF closure approximations since we

believe these are the most appropriate for A = 1 and A > 1, respectively, for describing the
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steady-state and also the complex transient behavior of fiber suspensions. Like most of all
the orthotropic closure approximations, the ORT and ORF closure approximations
predict an initial value for the transient viscosity (related to a;212) for a random (isotropic)
state of fibers larger than that of the aligned state. On the contrary, the quadratic closure
approximation gives an isotropic zero a;z;, smaller than the aligned state value. Fig. 6.8
compares the stress growth viscosity in both CW and CCW directions calculated with the
ORT and the quadratic closure approximations, using the same parameters as used in the
Figs. 6.2 and 6.3. For the quadratic approximation the startup value of the predicted
viscosity is smaller than the steady state value and quite a large primary viscosity
overshoot is predicted compared to that obtained using the ORT closure approximation.
However, the viscosity calculated with the quadratic approximation for the CCW
direction exhibits an undershoot before showing a positive overshoot and reaching a
steady state plateau. This behavior is not believed to be physical and hence, the quadratic
approximation was rejected. Nevertheless, this figure stresses how the choice of the
closure approximation can affect the predicted transient behavior of fiber suspensions.
Obviously, more work is required to clarify this choice, possibly guided by numerical

solutions.

The experimental data for the reversed growth experiments are highly
reproducible and do not depend on the initial fiber orientation of the sample. Fig. 6.9
shows the reverse growth viscosity function of PB0S5, PB10 and PB20 with strain for an
applied rate of 1s™'. Using the same parameters obtained to fit the steady state behavior
for each suspension for both ORT and ORF approximations, the predictions of the
modified FTL model for the transient viscosity function in the reverse flow are quite
good. Fig. 6.9a and b show the comparison of the data with the model predictions using
the ORT approximation (A = 1) and the ORF approximation (A > 1), respectively. We can
note an improvement in the prediction of the reverse overshoot for PB20. However, for
both cases, the FTL model underestimates the reverse viscosity overshoot of the
concentrated fiber suspension, PB20, and overestimates those of the semi-dilute

suspensions, PB10 and PB0S5. Note also that the model cannot predict the pseudo-plateau
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at low strain, which is quite visible for PB20. Table 6.1 reports the parameters used to fit

the data. In both cases, we note that C; increases with fiber content while 11, decreases.
6.3.3. Extended Jeffery model

The extended Jeffery model contains several adjustable parameters: C,, A(b), n, A,
I, and an adequate closure approximation has to be chosen. In principle, the fiber density
is known, but n will be treated as an adjustable parameter. From the simulations
presented in Grmela et al. (2003) we have retained the ORF closure approximation and
the effect of the other parameters can be summarized by the following. The coefficient,
C,, gives the weight to the diffusion term in the time evolution equation (Eq. 6.7). By
increasing C,, the fibers are less oriented in the flow direction, thus the steady state
viscosity and normal stress difference increase. The magnitude of the viscosity and
normal stress overshoots decrease with the increase of this parameter and they occur at
smaller strain. The variation of A®’ does not change significantly the steady state material
functions. However, the increase of A® increases the magnitude and the width of the
viscosity and normal stress difference overshoots. The calculation time becomes very
large for large A©). The fiber density, n, appears in the fiber-fiber interaction term of the
evolution equation (6.8) and in the constitutive equation (Eq. 6.12). In the constitutive
equation, the shear stress is under-estimated by several orders of magnitude (10° — 10'%).
Ghosh er al. (1993) observed the same difficulty with their mesoscopic Hamiltonian
model with the same order of magnitude difference between the predicted and
experimental results and solved the problem by using an “effective fiber number
concentration” instead of the real number concentration. Becraft and Metzner (1992) used
a similar idea to define an effective fiber concentration. The inertia has an important
effect on the transient as well as the steady shear behavior of the fiber suspensions.
Larger are the normal components ;; and I»;, more oriented are the fibers and smaller are
the steady state viscosity and normal stress difference. These two components of the
inertia tensor can control the magnitude and the width of the viscosity and the normal

stress difference overshoots. An increase of /); and I, increases the magnitude of the
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viscosity overshoot but decreases that of the normal stress difference. The third

component, f33, was kept constant.

Fig. 6.10 compares the simulation results of the extended Jeffery model and stress
growth viscosity function data in both CW and CCW direction flow for PB20 for the
applied shear rate of 1 s”. The calculations have been done with the ORF closure
approximation, C, = 0.035, A” = 10°, I, = I, = 10°, I1; = 10°, A = 0.994, = 10'%% (see
Table 6.2 for a list of the parameters used in the calculations). As we note, the overshoots
are qualitatively described by this model. The growth viscosity function for the reverse
flow exhibits lower viscosity values than that of the matrix at the beginning of the flow

before raising and showing an overshoot. This does not appear to be physically correct.

The predictions of the steady state viscosity of PB20 using the extended Jeffery
model, with the same set of parameters used to predict the transient behavior of PB20 is
shown in Fig. 6.11. The extended Jeffery model predicts a shear-thinning behavior for
fiber suspensions, which is not correct for fiber suspensions in Newtonian media. The
viscosity of the fiber suspensions tends to that of the matrix at the high shear rates. This
model incorrectly predicts a steady state normal stress difference that is not a function of
the shear rate. Obviously too much shear-thinning effects are associated with the stress

equation (6.12).
6.3.4. Extended Jeffery —Lipscomb model

We choose to replace Eq. (6.12) by the simpler and more “physical” constitutive
equation of Lipscomb et al. (1988). The predictions of the extended Jeffery model and
the Lipscomb constitutive equation (EJL model) for the steady-state behavior of the fiber
suspensions in PB are reported in Fig. 6.12. Fig. 6.12a shows the steady state viscosity of
PBO5, PB10 and PB20 and the corresponding normal stress difference is illustrated in
Fig. 6.12b. The closure approximation is ORF, A® = ]05, Ih=lh= 108, I3 = 10°. Here

we used the real fiber density, n, and A varies with the fibers content as well as C, and L.
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Physical and fitting parameters are reported in Table 6.3. As we can note the steady state

viscosity and normal stress difference are well predicted by this model.

The transient behavior of PB20 is illustrated in Figs. 6.13 and 6.14 for shear rate
of 1 and 105, respectively. In these figures, the predictions are shown for the same set
of parameters used for fitting the steady state behavior (Fig. 6.12). The agreement
between the predictions and the experimental data is demonstrated for both CW and
CCW direction flows. As we remark in Figs. 6.13a and 6.14a, both primary and reverse
viscosity overshoots are well described by this model. We note that the initial high
viscosity in the CW stress growth experiments that is the characteristic of the Lipscomb
model is evident here. The stress response in the beginning of the reverse flow is now
physical. The transient normal stress difference, illustrated in Figs. 6.13b and 6.14b,
exhibits large overshoots, which they are well described by the EJL. model. The normal
stress difference in the CCW direction flow begins from negative values confirming by

the experimental data before showing a small positive reverse peak.

The correlation between the simulation results of EJL model and the experimental
data of the stress growth viscosity of suspensions with different fibers content in
polybutene are illustrated in Fig 6.15 for the second CCW reverse flow experiment. As
we can note this model can describe the reverse overshoots as well as the FTL model, but
at the expense of a large number of parameters, which makes the finding of the optimum

set of parameters quite difficult.
64. Concluding remarks

In this paper, we did not use any sophisticated algorithm to find the optimum
parameters and obtain the best fits for the predictions of models based on the Jeffery
equation. Our goal was to demonstrate the potential of these models to describe the
steady state and the highly complex transient behavior of concentrated fiber suspensions,
mainly overshoots for the viscosity as well as for the normal stress difference, for both

forward and reverse flows.
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The FTL model describes well the steady state behavior of fiber suspensions in a
Newtonian matrix. The transient behavior is qualitatively predicted but the fiber motion
is faster than that deduced from experimental data. By introducing an empirical slip
coefficient, o (Sepehr ef al. 2003a), the fiber motion can be reduced and the transient
behavior is better described. By applying A > 1 with small values of C;, we have the
possibility to slowing down the fiber motion in the Folgar and Tucker model (1984) and
that combined with the use of a slip parameter, excellent predictions of the transient

behavior of the fiber suspensions can be obtained.

In the extended Jeffery model, the angular momentum or the effective fiber inertia
has been introduced as a state variable to reduce the fiber motion. The extended Jeffery
model predicts a strong shear-thinning behavior and a constant normal stress difference
with respect to the shear rate. To improve the steady-state predictions of fiber
suspensions in a Newtonian matrix, the constitutive equation of the extended Jeffery
model has been replaced by the equation of Lipscomb. This modified model describes
well the steady-state and the transient behavior of the fiber suspensions in Newtonian
fluids. The predictions are comparable to those obtained with the modified Folgar-

Tucker-Lipscomb (FTL) model, by at the expense of a large number of parameters.
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Table 6.1. Parameters used in the predictions of the modified FTL model for different

fiber suspensions in polybutene (see also Fig. 6.9).

Fiber volume fraction, ¢

Parameter

0.0158 0.0327 0.0706
A 1 1 1
G 0.002 0.0045 0.0055
W ORT 2 2 2
U 150 110 100

0.31 0.26 0.24

A 1.0222 1.0222 1.0222
C; 0.0003 0.0008 0.001
Wi ORF 2 2 2
ih) 280 210 195
o 0.7 0.6 0.5

Table 6.2. Parameters and material characteristics of the fiber suspensions used for the

model predictions.

Parameters Numerical value Description

L (m) 300x10°° Average length of fibers

D (m) 14x10°° Average diameter of fibers

L/D =20 Fiber aspect ratio

A 0.994 Phenomenological parameter, A = (FP=DI(+1)

0 0.0706 Fiber volume fraction

n 1.77x10" Number concentration of fibers

Nm (Pa.s) 24 The viscosity of the Newtonian polybutene matrix
kg (J/°K) 1.3805x10™ Boltzmann constant

T (°K) 298 Absolute temperature
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Table 6.3. Parameters used in the calculations with the EJL model for different fiber

suspensions in the polybutene matrix (see also Fig. 6.15).

Fiber volume fraction, ¢

Parameters

0.0158 0.0327 0.0706
C, 0.00008 0.00025 0.00025
A® 10° 10° 10°
Iy =1 108 10% 108
Iss 10° 10° 10°
n 3.935x10" 8.164x10"! 1.765x10"
i 2 2 2
i 80 170 190
A 1.28 1.242 1.24
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Figure 6.1. Steady-state behavior of PB20 predicted by the Folgar-Tucker-

Lipscomb model. Calculations done using the ORT closure approximation, C;=0.0055
and y, = 100.
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Figure 6.2. Stress growth data of PB20 as functions of the deformation for an
applied shear rate of 1 s (in CW direction) predicted by the Folgar-Tucker-Lipscomb
model (ot = 1) and the modified FTL model (o = 0.24). Calculations done using the ORT
closure approximation, C; = 0.0055 and i, = 100. (a) Stress growth viscosity; (b) Stress

growth normal stress difference.
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Figure 6.3. Stress growth data of PB20 as functions of the deformation for an
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model (0. = 1) and the modified FTL model (a = 0.24). Calculations done using the ORT
closure approximation, C;=0.0055 and p, = 100. (a) Stress growth viscosity; (b) Stress

growth normal stress difference.
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Figure 6.4. Stress growth behavior of PB20 in CW and CCW direction flows as

a function of strain at an applied shear rate of 10s™ predicted by the modified Folgar-

ORT closure

Tucker-Lipscomb model

(o0 =0.24). Calculations done using the

approximation, C;=0.0055 and p, = 100. (a) Stress growth viscosity; (b) Stress growth

normal stress difference.
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Figure 6.5. Stress growth data of PB20 as functions of the deformation for an
applied shear rate of 1 s (in CW direction) predicted by the FTL model and the modified
FTL model (o= 0.5). Calculations done using the ORT closure approximation, A =1,
C;=0.0055 and y, = 100 or using the ORF approximation, A = 1.0222, C;=0.001 and

tiy = 195. (a) Stress growth viscosity; (b) Stress growth normal stress difference.
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predictions for stress growth

viscosity data of suspensions with different fiber contents in polybutene. Stress growth

experiments carried out at 1 s™ immediately after a first stress growth experiment in the

opposite direction. The parameters used to make the calculation are summarized in Table

6.1. (a) ORT approximation, A = 1; (b) ORF approximation, A = 1.0222.
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are given in Table 6.2.
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the extended Jeffery-Lipscomb model

predictions and the experimental stress growth data of PB20 for an applied shear rate of

10 s™". Calculations done using the ORF approximation and the parameters given in Table

6.3. (a) Stress growth viscosity as a function of strain; (b) Stress growth normal stress

difference as a function of strain.
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Figure 6.15. Comparison between the extended Jeffery-Lipscomb model
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first stress growth experiment in the opposite direction. Calculations done using the ORF

approximation and the parameters given in Table 6.3.
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CHAPITRE VII - DISCUSSION

Dans la plupart des procédés de mise en forme, les matériaux sont soumis a une
combinaison d’écoulements en élongation et en cisaillement. Les essais en cisaillement
ont souvent €té utilisés dans I’étude du comportement rhéologique des composites. Des
essais en cisaillement peuvent &tre effectués en cisaillement oscillatoire et en continu.
Des essais transitoires fournissent des informations indispensables pour les matériaux
dont la structure évolue au cours d’un écoulement, comme c’est le cas pour les polymeres
chargés de fibres courtes. Afin d’obtenir le plus de renseignements, des essais transitoires

consécutifs avec et sans délai entre les expériences ont €€ effectués.

Le comportement rhéologique des composites de polypropylene chargé de fibres
de verres courtes a €t€ étudié en rhéométrie disques concentriques, essentiellement a
travers une série d’essais transitoires consécutifs dans les deux directions possibles de
cisaillement (essais aller/retour). Afin de mieux évaluer les effets de la présence des
fibres ainsi que pour faire face aux limites expérimentales, la matrice viscoélastique de
polypropylene a été remplacée par une matrice newtonienne, un polybuténe, ainsi que par
une matrice élastique idéale, un fluide de Boger. Les deux séries de suspensions modeles
sont composées du fluide newtonien et du fluide de Boger avec des fibres de verre
courtes obtenues par la calcination du composite polypropylene fibres de verre.
Différentes concentrations de fibres, comparables avec celles des composites de
polypropyléne se situant dans les régimes semi-dilués et concentrés, ont €té préparées et
étudiées. Tout d’abord, I’étude de plusieurs parametres pratiques a été effectuce, afin de
s’assurer de la fiabilité des méthodes de mesure et de bien cerner les effets de
I’orientation et des interactions entre les fibres. Les matériaux utilisés ont été€ étudiés de
fagon a éliminer les effets de la dégradation thermique, du changement de la température
lors de I’essai, de la sédimentation des fibres et de la paroi. Les effets du conditionnement
en cisaillement oscillatoire et continu des échantillons ont été également étudi€s. Dans ce

chapitre, la discussion portera principalement sur les parametres influencant la fiabilité
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des expériences, les problemes rencontrés au cours des expériences ainsi qu’une bréve
discussion sur le comportement rhéologique en régime transitoire des suspensions de

fibres.
7.1.  Effets de la dégradation et du changement de la température

Les matériaux utilisés ont €té étudiés de facon 2 éliminer les effets de la
dégradation thermique et du changement de la température. Méme sous une atmosphere
d’azote, les polymeres fondus comme le polypropyléne se dégradent rapidement surtout a
une température élevée comme celle utilisée dans cette étude (7 = 200°C). Comme les
essais rhéologiques considérés dans cette étude peuvent durer trés longtemps (presque 5
h), des essais de stabilité thermique de longue durée ont été effectués pour vérifier la
stabilité thermique de la matrice. La viscosité complexe du polypropylene diminuait de
4.3% pendant la premi¢re heure d’essai. Pour éliminer l'effet de la dégradation
thermique, un stabilisant adéquat (Irganox B225, Ciba) a ét€ ajouté. Cependant, un exces
de stabilisant peut jouer le rdle de lubrifiant et réduire ainsi la viscosité du polymere.
Aprés de nombreux essais, 1% en masse de stabilisant a été jugé convenable pour
stabiliser le polypropylene étudié, sa viscosit€é ne diminuant ensuite que de 0.4%/heure

pour un essai de 17 heures.

Le polybuténe, stable a la température ambiante, est toutefois trés sensible & une
variation de la température. Un bon contrble de la température est donc nécessaire. La
température mesurée de ’ARES a €t€ vérifiée avec un thermometre sensible et un écart
de 1.2°C a été mesuré a 25°C. La température corrigée est prise en compte lors des essais
mais elle peut toujours varier avec la température du laboratoire. Celle-ci est toujours
gardée en dessous de 20°C, pour minimiser les changements de température dans le
rhéometre. Dans ces conditions control€es la variation de la température reste de ’ordre

de 0.1°C/heure, ce qui est satisfaisant.

Le fluide de Boger constitué d’un solvant volatil (du kéroséne) et de longues

chaines de polyisobutene pose des problémes d’ordre pratique de la préparation
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jusqu’aux mesures rhéologiques. Afin de réduire la volatilisation du solvant lors de la
préparation du fluide de Boger ainsi que pour éviter toute dégradation thermique des
longues chaines de polymere (PIB), le mélange a ét€ effectué 2 la température ambiante
dans un récipient fermé avec un mélangeur a faible vitesse de rotation. Le fluide a été
ensuite conservé dans un récipient hermétiquement fermé, a une température d’environ
5°C. L’incorporation des fibres dans la matrice a été effectuée manuellement 2 I’aide
d’une spatule pour éviter toute dégradation des chalnes longues de polymere ainsi que
celle de la longueur des fibres. Pour éviter I’évaporation du solvant lors des essais, une
mince couche d’huile de silicone de faible viscosité a été appliquée au bord des disques

concentriques du rhéometre.
7.2.  Effet de la sédimentation des fibres

Les expériences effectuées dans cette étude peuvent durer longtemps. Il est donc
nécessaire de tenir compte de la sédimentation des fibres au cours des essais. Le temps

nécessaire pour qu’ait lieu la sédimentation des fibres verticales sur leur longueur a été

calculé a l’aide de la formule suivante: T, =8ulL/Apgd*(In2r —0.72) (Chaouche et

Koch 2000). 1, représente le temps de sédimentation, | la viscosité de la matrice, L, D et
r sont respectivement la longueur moyenne, le diametre et le rapport de forme des fibres.
Ap représente la différence entre les masses volumiques des fibres et de la matrice. Le
temps de sédimentation des fibres de verre dans le polypropyléne fondu (& 200°C) est de
I"ordre de 48 jours, tandis que pour les mémes {ibres, il diminue jusqu’a I et 2 heures
dans le fluide de Boger et le polybuteéne, respectivement. Afin de minimiser 'effet de
sédimentation, les expériences rhéologiques sont effectuées dans une période plus courte
que le temps de sédimentation des suspensions. Les suspensions ont été mélangées avant

toute mesure rhéologique.
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7.3.  Effet de paroi

Le rapport entre Uentrefer de la géométrie du rhéometre et la longueur des fibres
joue un réle majeur dans le comportement rhéologique mesuré. Pour éliminer les effets
liés aux parois, en sachant que la longueur nominale des fibres est de 500 um et la
longueur moyenne mesurée est de 300 um, un rapport de 3:1 a été respecté soit un

entreferde 1.4 2 1.5 mm.

7.4. Effet du conditionnement des échantillons

L’orientation initiale des fibres dans les échantillons moulés de polypropyléne est
aléatoire et plus ou moins reproductible d’un échantillon a I’autre. Cette reproductibilité
ne peut &tre atteinte dans les échantillons fluides de fibres (le cas du polybuténe et du
fluide de Boger). C’est pourquoi le tout premier essai effectué sur les suspensions fluides
de fibres est considéré comme un conditionnement de I’échantillon. Seulement les essais

suivants peuvent étre exploitables.

L’ orientation initiale des fibres dans I’échantillon affecte la grandeur et la forme
des pics de viscosité et de contraintes normales. Le pré-cisaillement ou le
conditionnement des échantillons en cisaillement oscillatoire comme en continu changent
I’orientation initiale et les contacts entre les fibres. Dans un essai en cisaillement continu,
la déformation de I’échantillon influence !'orientation des fibres. Celles-ci deviennent
alignées a une grande déformation. Dans un essai en régime dynamique, la fréquence et
P’amplitude de la déformation imposée influencent 1’orientation et les interactions entre
les fibres. Avec une grande déformation, les fibres ont plus de chance de s’orienter et une
grande fréquence accélere cette orientation. Pour de petites amplitudes de déformation,
les fibres perdent contact sans s’orienter dans une direction préférentielle. Toutefois le
comportement des suspensions de fibres en régime dynamique est trés complexe et mérite

une €tude approfondie.
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7.5. Probleme non-résolu du rhéomeétre

Lors des essais consécutifs transitoires avec ’ARES dans les deux sens de
cisaillement (dans le sens trigonométrique et le sens oppos€) sur un méme échantillon, les
valeurs de contraintes normales du régime établi ne se superposent pas dans un sens et
dans I’autre. Ce probleme existe pour un fluide simple comme un polybuténe et devient
plus perceptible pour des systémes complexes comme des suspensions de fibres. Pour
trouver I’origine de ce probleme, différents polybuténes de haute viscosité et un fluide de
Boger ont €ié utilisés. Le parallélisme et la coaxialité des plateaux ont &té vérifiés avec
une précision de 2 pm. La vitesse du moteur dans les deux sens a également été vérifiée.
De nombreux essais ont €t€ effectués avec des capteurs de pression ayant différentes
sensibilités. La différence entre les valeurs de contraintes normales en régime établi dans
les deux sens de cisaillement diminuent avec des capteurs plus sensibles mais elle ne
disparait pas. Finalement, nous avons adopté pour les valeurs obtenues par les
cisaillements effectués dans le sens opposé du sens trigonométrique et seulement les

résultats des cisaillements inversés effectués dans ce sens ont €t€ utilisés.
7.6. Comportement transitoire des suspensions de fibres

Apres avoir établi les conditions appropriées, des mesures en rhéométrie ont été
effectuées. A 'aide des résultats obtenus en rhéométrie, et également a aide de la
microscopie optique couplée avec un rhéométre 2 contraintes imposées (voir les

annexes), le comportement des suspensions de fibres a pu étre expliqué.

Les suspensions de fibres montrent des pics de viscosité et de contraintes
normales dans les essais en démarrage qui sont dus aux effets de I’orientation des fibres
dans le sens de P’écoulement. A P’aide des suspensions de fibres dans une matrice
newtonienne, nous avons pu observer que lors des essais consécutifs effectués dans le
méme sens que celui du précédent, a une faible vitesse de déformation, la viscosité
montre un pseudo-plateau avant de rejoindre le plateau du régime établi. Ce pseudo-

plateau disparait pour de plus hautes vitesses, pour des suspensions semi-diluées de fibres
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ainsi que pour des suspensions dans un polypropyléne et un fluide de Boger. Dans les
essais consécuiifs effectués dans le sens opposé que celui du précédent, la viscosité
atteint un pseudo-plateau avant le pic de retour, pour des suspensions de fibres avec
différentes natures de matrice. Le pseudo-plateau est au méme niveau que celui obtenu
dans D’essai successif dans le méme sens de cisaillement. La différence de contraintes
normales passe par des valeurs minimales, puis un faible pic positif avant le plateau du

régime établi.

Dans un cisaillement simple transitoire, les fibres commencent a bouger et suivent
I’écoulement di aux forces hydrodynamiques. Dans une suspension semi-diluée, les
fibres tournent avec des périodes plus ou moins longues dépendant du rapport de forme et
de la concentration des fibres. Dans une suspension concentrée, due a la présence des
fibres voisines et des effets d’encombrement, les fibres restent orientées plus longtemps
dans la direction de 1’écoulement. Les fibres alignées forment une structure cristalline
avec une plus faible résistance a I’écoulement. Lors d’un essai consécutif immédiat dans
le méme ou le sens opposé de celui du précédent, cette plus faible résistance a
I’écoulement explique le pseudo-plateau observé au début de chaque expérience dans les
deux sens de cisaillement. La structure dense de fibres alignées pour des suspensions
concentrées devient moins dense pour des suspensions semi-diluées pour disparaitre pour
les concentrations les plus faibles. C’est pourquoi le pseudo-plateau tend a disparaitre

pour des suspensions semi-diluces.

Lors des essais consécutifs immédiats dans le sens opposé, le réseau de fibres
alignées s’écroule au niveau du pic de retour de la viscosité ol la plupart des fibres
commencent a basculer dans le sens opposé. La différence de contraintes normales
diminue et passe par un minimum qui, selon la nature de la matrice, peut avoir des
valeurs négatives ou positives. Cette diminution de différences de contraintes normales
est due 2 la présence de la structure des fibres alignées qui agit comme une structure

nématique de cristaux liquides avec des différences de contraintes normales négatives.
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En donnant assez du temps a la suspension de fibres alignées, cette structure
disparait, de facon différente suivant la nature de la matrice. Pour une matrice élastique,
(le fluide de Boger), la recouvrance des chaines polyméﬁques entrainent les fibres, et ces
dernieres perdent leur orientation. Dans un essai consécutif avec un long délai, la
viscosité montre un pic similaire en amplitude au premier pic de viscosité, a une méme
déformation. Avec une matrice newtonienne caractérisée par une trés faible élasticité, la
recouvrance des chaines étant alors trés faible, les fibres ne perdent leur orientation que
partiellement. Dans un essai consécutif avec un délai assez grand, la viscosité passe par
un maximum avec une amplitude beaucoup plus faible que le premier pic de viscosité, a
une méme déformation. Ce pic ne peut €tre observé que pour des concentrations élevées
de fibres. L’allure et ’amplitude des pics dépendent du taux de fibres, de la nature de la

matrice, des conditions de pré-cisaillement ainsi que du délai entre les essais consécutifs.
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CHAPITRE VIII - CONCLUSIONS

Notre projet apporte une contribution a la rhéologie des suspensions non diluées
de fibres courtes, que ce soit au niveau de la mesure, de la compréhension et de la

description de ces systemes.
L’originalit€ du projet est décrite par ces grandes lignes :

~ Caractérisation rhéologique de suspensions de fibres pour différents types de matrice,
soit un fluide newtonien, un fluide de Boger et une matrice viscoélastique,
essentiellement a I’aide d’essais transitoires consécutifs dans deux directions opposées
de I’écoulement en cisaillement.

— Proposition de deux modeles rhéologiques afin de décrire le comportement

rhéologique des suspensions non-diluées de fibres.

Un polypropylene chargé de différents taux de fibres de verre courtes a été étudié
en rhéométrie de disques concentriques, a I’aide des essais transitoires consécutifs dans
les deux directions de cisaillement. Quelgue soit la concentration de fibres, la viscosité
transitoire (en fluage comme en démarrage) et également la différence de contraintes
normales exhibent un pic avant de se stabiliser au plateau du régime stationnaire. Le pic
est dii a la présence des fibres. Au départ, les fibres ont une orientation aléatoire, et sous

un écoulement en cisaillement elles s’orientent dans la direction de ’écoulement.

En arrétant I’essai pour le reprendre immédiatement dans le méme sens que celui
du précédent, les fonctions du matériau rejoignent rapidement le plateau du régime
stationnaire. Les fibres déja orientées dans la direction de ’écoulement, suivent

P’écoulement dans le second essai.

En reprenant Pessai dans le sens opposé de celui du précédent, la viscosité
augmente, atteint un pseudo plateau avant de passer par un pic plus petit a une

déformation plus élevée que le premier pic de viscosité, pour rejoindre finalement le
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plateau du régime stationnaire. La différence de contraintes normales est initialement
négative, puis elle augmente, passe par un pic plus petit que celui du premier essai, et
rejoint le plateau du régime stationnaire. La plupart des fibres orientées dans le sens
opposé basculent pour se réorienter dans la nouvelle direction de I’écoulement. Ce
basculement des fibres est a ’origine de I’apparition du petit pic que nous avons nommé

« le pic de retour ».

Ce comportement complexe des composites a fibres en régime transitoire a été
décrit qualitativement par le modele de Folgar et Tucker (1984) et Péquation de
Lipscomb (1987). L’orientation prédite des fibres est plus rapide que dans la réalité. Le
modele a ét€ modifié de facon empirique par I’ajout d’un parameétre de glissement afin de
ralentir le mouvement des fibres. En appliquant ce modele, une bonne corrélation a été

obtenue entre les données des simulations et les résultats expérimentaux.

Pour mieux comprendre effet de la présence des fibres dans des milieux moins
complexes que le polypropyléne viscoélastique, la matrice a été remplacée par une
matrice newtonienne (un polybuténe) et une matrice élastique avec une viscosité

constante pour la gamme de taux de cisaillement étudi€e (fluide de Boger).

La viscosité établie des suspensions de fibres dans une matrice newtonienne
augmente avec le taux de fibres et leur comportement reste newtonien. La différence de
contraintes normales établie mesurée est une fonction linéaire du taux de cisaillement.
Dans un fluide de Boger, la viscosité des suspensions de fibres augmente également avec
le taux de fibres, mais un comportement rhéofluidifiant a €té constaté, qui devient plus
prononcé avec le taux de fibres. La différence de contraintes normales de ces suspensions

reste une fonction quadratique du taux de cisaillement et dépend de la matrice utilisée.

Comme dans le cas du polypropylene fibres courtes, ces deux types de
suspensions modeles de fibres montrent des pics de viscosité et de contraintes normales
dans les essais en démarrage. Pour les essais consécutifs effectués dans le sens opposé a

celui du précédent, la viscosité atteint un pseudo-plateau avant le pic de retour. Le
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pseudo-plateau a éié également repéré pour une suspension concentrée de fibres dans du
polybuténe, a une vitesse de déformation faible, dans I’essai successif dans le méme sens
opposé de cisaillement. La différence de contraintes normales passe par des valeurs
minimales, puis un faible pic positif avant le plateau du régime établi. Le pseudo-plateau
de la viscosité ainsi que le minimum de la différence de contraintes normales ont été
attribués a la structure transitoire des fibres alignées. En donnant assez de temps & une
suspension de fibres alignées, cette structure disparait, selon la nature et la recouvrance
de la matrice. La recouvrance des chaines polymériques entrainent les fibres, et ces
dernieres perdent totalement leur orientation pour un fluide de Boger ou partiellement

pour le polybutene.

Un modele a été développé par Grmela et al. (2003) pour modifier d’une fagon
plus élégante le modele de Jeffery. Ce modele a été€ défini pour des suspensions non-
diluées et peut tenir compte explicitement des interactions fibre-fibre dans 1’équation
d’évolution. Le moment angulaire et I’inertie effective des fibres ont €t¢ introduits dans le
modele afin de ralentir le mouvement des fibres. Ce modele peut définir qualitativement
le comportement transitoire des suspensions de fibres dans une matrice newtonienne,
mais il entraine un fort comportement rhéofluidifiant et des contraintes normales qui ne
sont pas fonction du taux de cisaillement. Ce modele a donc €té modifi€ en remplagant

son équation constitutive par celle de Lipscomb (1987).

Les modeles modifiés de Folgar et Tucker (1984) et de Jeffery généralisé (Grmela
et al. 2003) utilis€ avec I'équation de Lipscomb (1987) prédisent correctement le
comportement rhéologique des suspensions de fibres dans un fluide newtonien. Les pics
de viscosité et de contraintes normales sont convenablement décrits, surtout dans le cas
du modele de Folgar et Tucker utilis€ avec un C; petit et un A plus grand que unité. Ces
pics peuvent étre également prédits correctement par le modele de Jeffery généralisé mais

au prix de I’application de plusieurs parametres d’ajustement.
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PERSPECTIVE

Ce travail devrait étre continué essentiellement sur les points suivants :

e En sachant que toute information supplémentaire sur le comportement rhéologique
des suspensions aidera a établir un modele les décrivant correctement, sur le plan

expérimental il serait intéressant de :

— FEtudier I'effet du délai entre des essais consécutifs transitoires sur les composites de
polymeres moins dégradables et avec une plus faible viscosité que le polypropyléne
(par exemple : le polystyréne). La stabilité thermique est importante pour des essais de
tres longue durée, et une faible viscosité est importante pour mettre en évidence les
effets dus a la présence des fibres.

~ Essayer de trouver des matériaux avec lesquels les essais puissent s’effectuer a une
méme vitesse de cisaillement pour que I’on puisse comparer les effets de la matrice
d’une facon plus quantitative. Dans ce travail, la gamme de la vitesse de cisaillement
est restreinte. Une vitesse de cisaillement de 0.1 s™ pour le polypropylene fondu donne
des résultats exploitables (a une vitesse plus grande I’échantillon peut étre expulsé),
tandis que cette vitesse se situe a la limite inférieure de la gamme de vitesse de
cisaillement applicable (0.1 — 10 s™) pour les fluides. A cause de la sensibilité des
capteurs, i des plus faibles vitesses (0.1 s™), les résultats obtenus avec beaucoup de
bruits sont peu exploitables.

— Utliser une géométrie cOne-plan avec une cavité au milieu du plateau inférieur
(Zarraga et al. 2000) pour éviter toute accumulation de fibres dans ’entrefer de la
géométrie (le probléme des suspensions de fibres avec un cdne-plan conventionnel) et
avoir une vitesse de cisaillement constante dans la géométrie (le probléeme avec des
disques concentriques). Grice a une pareille géométrie, la premiere différence de
contrainte normale pourrait &tre mesurée et en utilisant les résultats obtenus avec les
disques concentriques, la seconde différence de contrainte normale pourrait étre

calculée.
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Caractériser le comportement rhéologique des systémes chargés de fibres est
complexe en régime dynamique. D’aprés les résultats obtenus, un cisaillement
oscillatoire avec une faible déformation imposée contribue a une perte de contact entre
les fibres pour un échantillon ayant des fibres réparties de facon aléatoire. Pour un
échantillon avec des fibres alignées ot les contacts entre les fibres sont moins
importants, la viscosité augmente. Une étude plus approfondie est nécessaire pour
comprendre le phénomene en fonction de I’ orientation initiale des fibres.

Caractériser le comportement des suspensions des fibres dans un écoulement radial
sous un « squeezing flow ».

Caractériser le comportement des suspensions de fibres dans un écoulement
orthogonal en régime continu et dynamique. Ce type d’écoulement peut également
donner des informations intéressantes sur ’orientation des fibres et les interactions

entre elles.

Sur la partie théorique :

Les contacts entre les fibres (les interactions entre elles) dans un milieu non-dilué
empéchent le mouvement des fibres. Donc les fibres tournent et s’orientent plus
difficilement dans un milieu non-dilué mais une fois les fibres orientdes, elles restent
orientées plus longtemps. Il serait donc utile d’introduire une déformation non-affine
aux termes convectifs afin de ralentir le mouvement des fibres dans les modéles basés
sur le modele de Jeffery.

Dans le modele de Folgar et Tucker (1984), le terme dissipatif est une fonction de la
vitesse de déformation. Le couplage de ce modele avec le modele de Lipscomb (1987)
prédit un comportement newtonien des suspensions de fibres. Dépendamment du taux
et le rapport de forme des fibres, le comportement de ces suspensions peut devenir
rhéofluidifiant. En donnant un exposant inférieur a I’unité a la vitesse de déformation
dans le terme dissipatif, nous pourrions contrbler le degré du comportement
rhéofluidifiant des suspensions de fibres dans des milieux newtoniens. Cette puissance

peut étre une fonction du taux de fibres et des propriéiés intrinseéques des fibres.
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Dans un modele basé sur celui de Jeffery, comme le modele de Folgar et Tucker, la
recouvrance des suspensions ne peut pas &tre prédite a cause de la vitesse de
déformation présente dans le terme dissipatif. Comme cette recouvrance n’est pas due
a la présence des fibres mais 2 la nature de la matrice, il serait donc préférable
d’utiliser un modele adéquat décrivant le comportement de la matrice dans I’équation
constitutive comme le proposent Ramazani ef al. (2001) en tenant compte des
interactions fibre-matrice.

Dans le modele généralisé de Jeffery, il est nécessaire de trouver une expression de
I’énergie libre représentant correctement les suspensions de fibres non-browniennes et

les interactions entre elles.
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ANNEXE A - EFFECTIVE INERTIA IN THE ADVECTION OF FIBERS
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Abstract

Collective behavior of fibers in moderately concentrated suspensions is expressed
through the concept of effective inertia. Rheological models involving this concept are
derived, by using GENERIC, on three levels of description: (i) the level suitable for
direct simulations, (ii) the level of kinetic theory, and (iii) the level on which only one or
two tensors play the role of internal state variables. The models arising on the third level
include as particular cases the Jeffery model and its extensions known from the literature.

Rheological predictions are calculated only on the third level.

* Corresponding author; e-mail: miroslav.grmela@polymtl.ca
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A.l. Introduction

Fiber-fiber interactions, both direct and those mediated by the medium in which
the fibers are suspended, are expected to play an important role in determining
theological properties of moderately concentrated and concentrated suspensions.
Jeffery’s (1922) analysis does not take into account the fiber-fiber interactions. How can
the Jeffery model be extended to higher concentrations? First, we realize that this
question does not have a single answer. The extended theories may vary in dependence
on the strategy taken to investigate it and on the amount of details involved in the
investigation. In this paper we follow the strategy developed in one particle kinetic theory
where the motion of only one fiber is followed explicitly and the influence of other fibers
is taken into account by mean-field type interactions (as for example in the Vlasov kinetic
theory of a gas composed of electrically charged particles) or mean-field type constraints
(as for example in the reptation theory). In this paper we suggest to express the mean-
field type interactions in a new way. The physical picture on which our considerations are
based is the following. Due to the fiber-fiber interaction, the representative fiber whose
motion we follow does not respond immediately to external forces applied on it. It
behaves as having inertia. We do not mean the mechanical inertia caused by the mass of
the fiber but an effective inertia brought about by the collective behavior of the fibers.

How shall we express this physical picture in the governing equations?

There are essentially two different routes that can be followed. The point of
departure on the first route is a detailed microscopic analysis of the processes involved.
For example, this is the route that has been taken by Jeffery (1922) in his mathematical
formulation of the motion of a single fiber suspended in a fluid. The investigations that
follow the second route (a phenomenological route) begin with an overall framework for
the governing equations that guarantees that their solutions agree with results of certain
selected experimental observations of fundamental importance. The investigation then
continues by filling the framework with a specific physical insight. Classical

hydrodynamics is a well-known example of a theory derived by following the second
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route. The overall structure is in this case the structure of local conservation laws
(guaranteeing the conservations of the total mass momentum and energy). The process of
filling the framework with the specific physical insight is called in this context a search
for constitutive relations. The second route, with a different framework than the one used
in the classical hydrodynamics, has also been followed for example by Hinch and Leal

(1975) in their investigation of suspensions.

In this paper we take the second (i.e. the phenomenological) route on which the
overall framework for the governing equations is the Hamiltonian framework introduced
in Grmela (1984, 1986), Beris and Edwards (1994), Grmela and Oettinger (1997),
Qettinger and Grmela (1997). The framework guarantees: (i) agreement with the
fundamental conservation laws, (ii) compatibility with thermodynamics, and (iii) the

compatibility with the Hamiltonian nature of the underlying microscopic dynamics.

In Section A.2 we derive equations governing the time evolution of a single fiber
(both Jeffery’s equation and its extension involving inertia), in Section A.3 we derive
kinetic equations, again both the Jeffery kinetic equation and its extension involving
inertia. Finally, in Section A.4, we discuss reduced descriptions in which states of the
fibers are described only by certain moments of the one-fiber distribution function.

Rheological predictions are presented in Section A.5.
A.2. Particle Description

Let p be a unit vector in the direction of the longer axis of the fiber and m the
angular momentum of the fiber (in the coordinate system rotating with the fiber). In the
absence of external forces, the time evolution of (p,m) is governed by Hamilton’s

equations of rigid body dynamics (Sudarshan and Mukunda, 1974):

Wi —_(pxo) (A1)
di
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fgﬁ = —(mx m)i - (p X QE—’E] (A2)
dt dp ),

where i =1, 2, 3, E(p, m) denotes the energy, ® ::gﬁ_ is the angular velocity and X
m

denotes the vector product (we recall that (mx®); = €m0y, € 1s the alternating tensor, we

use hereafter the convention that appearance of repeated indices means summation).

If the fiber is suspended in a fluid and the fluid is forced to flow, Egs. (A.1) and
(A.2) take the form:

dp, I

b —(p X 0)); ——{(px0); (A.3)
dt 2

E'fl”’_i:_(mxm)i_ pxa—E —l(mxg)i——A(”“’”(coi+—1—7u<1.) (A.4)
dt ap ). 2 2

where { is the vorticity vector (i.e. {, =g, —v,, v(r) is the imposed velocity field, r

¥

denotes the position vector); the vector x is the simplest nontrivial vector of the same
nature as angular momentum and vorticity that can be constructed from the symmetric

velocity gradient ¥, and vector p, X, =¢€,p,p,¥;; ¥, =—v, +—v; AP >0 as

¥, arj

well as A are phenomenological parameters. In Jeffery’s microscopic analysis, the
parameter A arises in as a specific expression involving dimensions of the fiber. This

parameter will get its physical interpretation in the section A.2.2 in the context of

art) .__

. : 1.
Jeffery’s theory. The parameter AP0 has a clear physical meaning: " = —— s the
A part

relaxation time of the angular momentum m. If 179 _5 O then there is no inertia in the

(part)

motion of the fiber. On the other hand, if © remains finite, the time evolution
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experiences inertia. It is therefore in the parameter A””” where in the effective inertia is

expressed in the context of the particle description.

The influence of other fibers on the fiber with coordinates (p, m) can be expressed
by letting the energy E to depend also on the distribution function of the fibers. This will

be discussed in Section A.3.
A.2.1. Derivation of Egs. (A.3) and (A.4)

The second term on the right hand side of (A.3) and the third term on the right
hand side of (A.4) express the influence of the imposed flow. In order to explain their
origin, we recall first the more familiar setting in which (p,m) is replaced by (r,u),
where r is the position vector and u the momentum. In this case Egs. (A.1) and (A.2) take
r, dE du; oFE

i

d
the familiar form — =—, and =——/ E(r,u) is the particle energy. If the
dr Ou, dt or;

particle is subjected to a flow (v(r) denotes the flow field) then these equations are

dr, _JE  dy, du, oE  ov,

modified and take the form —-=—+ r,, ——=-—-——"u,. It has been
dt  du, or, dt ar, o,

i

demonstrated in (Grmela 1993) that if we consider a system composed of the particle and
the fluid (i.e. the state variables of such system are (r,u,v(r))) the above modified
particle time evolution equations together with the standard nondissipative hydrodynamic
equations in which the extra stress tensor is given by the Kirkwood expression
(Kirkwood 1967) (i.e. the extra stress tensor is expressed in terms of the particle
coordinates r,u) are together Hamilton’s equations. In fact, the modified equation
together with the Kirkwood expression for the extra stress tensor can be derived by
requiring that the coupling of the nondissipative particle dynamics to the nondissipative
hydrodynamics (both possessing the Hamiltonian structure) preserves the Hamiltonian

structure of the equations. This is the essence of the derivation reported in (Grmela 1993).
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Equations (A.3) and (A.4) (without the dissipative term) are the modified
equations in the rigid body dynamics. They can be derived in exactly the same way as the
equations discussed in the previous paragraph (i.e. as Hamilton’s equations that couple
the rigid body dynamics to hydrodynamics). The derivation is presented in Grmela and
Dlugogorski (1996). Equations (A.3) and (A.4) have also been used in simulations in
Dlugogorski et al. (1994) (the multiplicative factor 1/2 in the third term on the right hand
side of (A.4) is incorrectly replaced in Dlugogorski er al. (1994) by the multiplicative
factor 1).

The dissipative term, i.e. the fourth term on the right hand side of (A.4), is chosen
in such a way that the kinetic theory version of Egs. (A.3) and (A.4) that is derived in the
next section is compatible with thermodynamics and that solutions to (A.3) and (A4)

converge, as t — oo, to Jeffery’s equation (see Section A.2.2).
A.2.2. Jeffery’s Equation

In this section we show that Egs. (A.3) and (A.4) extend Jeffery’s equations, 1.e.
that Jeffery’s equation is included in (A.3) and (A.4) as a limiting case. Indeed, if A?“"”

—» oo then the forth term on the right hand side of (A.4) dominates this equation and

) I .. .
consequently solutions of Eq. (A.4) are m, = ——Ax, . If this is inserted into Eq. (A.3) we

2

obtain Jeffery’s equation:

dp, 1 | .

—=—p L, +— 7‘(7,'1\- Py — PPy Pl'Ykl) (A.5)

dr 2 2

;o : .
where Q,_.,. = —é—— ——a—— (the readers who want to follow the calculations will find useful
f r.f

the well known identity g€, =8,8,, —6,,6,).
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Equations (A.3) and (A.4) together with their reduction to (A.5) that is described

above can be therefore seen as a phenomenological derivation of Jeffery’s equation (A.5).
A.2.3. Applications

There is no place in (A.5) where the fiber-fiber interactions can be put. There is,
however, such place in Egs. (A.3) and (A.4). It is clearly the second term on its right hand
side of Eq. (A4). An example of the interaction potential between two ellipsoids, that
extends to ellipsoids the Lennard-Jones potential between two spheres, is the Gay-Berne
potential (Gay and Berne 1981). This potential has been used in the simulations reported
in Dlugogorski et al. (1994). Another type of interesting simulations involving fibers has
been reported in Chiba et al. (2001). These simulations are based on Jeffery’s equation
(A.5). It should be interesting to extend the simulations reported in Chiba et al. (2001) by
replacing (A.5) with (A.3) and (A.4). The energy entering Egs. (A.3) and (A.4) could also
be seen as a mean-field type of energy that depends on the distribution function of the
fibers. In such simulations it would be possible to observe the influence of the fiber-fiber
interactions {expressed for example by a mean-field type version of the Gay-Berne

potential).
A.3. Kinetic Theory Description

The state variable used in one particle kinetic theory is the distribution function f
(p, m, £). We shall limit ourselves here only to spatially homogeneous suspensions so that
we do not consider the dependence on the position coordinate r. As for the imposed flow

with the velocity v(r), we shall assume that its gradient is independent of r.

Our problem now is to write the kinetic equation, i.e. the equation governing the
time evolution of f (p, m, ?). We shall proceed as in Grmela and Lafleur (1998) where
such equation has already been written (but only in the absence of the imposed flow). We
recall the steps that have to be taken and write down the resulting kinetic equation. The

first step is to identify the kinematics of f (p, m, f). Since kinematics is expressed in a
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Poisson bracket, we have to therefore identify the bracket. The Poisson bracket
expressing kinematics of (p, m) is well known (see e.g. Sudarshan and Mukunda, 1974).
The transformation of the Poisson bracket from (p, m) to the Poisson bracket for f (p, m)
is routine (see Marsden, 1992 for a general procedure and Grmela and Lafleur, 1998 for
the resulting bracket). Having found the Poisson bracket, we can write in a

straightforward manner the corresponding nondissipative kinetic equation.

Below, we shall write explicitly only the kinetic equations describing the time

evolution of two moments Y(p, 1), M(p, £) defined by:
y(p,0) = [dmf (p,m,1), M(p.1):= [dmmf (p,m, 1) (A.6)

The moment y(p) is, from the physical point of view, the configuration space
distribution function, M(p) is the average angular momentum. The Poisson bracket
expressing kinematics of f (p,m, ) can be, again in a straightforward manner, (see
Grmela and Lafleur, 1998 for details) reduced to the Poisson bracket expressing
kinematics of y(p, ), M(p, t). We can thus write equations governing the nondissipative
time evolution of y(p,?), M(p, 7). Finally, such equations are supplemented with a
dissipative term that is compatible with the rest of the equations. The resulting kinetic

equations are:

W@ _ 9 (ypX @), +l—§—(\;fp><<2)k +i(“mw—a_(§?]) "
ot ap, 2 9p, ap, dp, \ Sy
aMi(p’t) — ‘(an)l —l(MXC)i +_;a_.(M,p><55)k

ot 2 op,
(A.8)

— px_a__@ _Mk px__a_j?i_ _A(M)(ai +‘]‘7\4K1]
ap by ). p oM, 2
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od
where @(p,f) = g——-—w is the average angular velocity that is conjugate to the average
M(p, 1)

angular momentum M (compare with the definition of the angular velocity ® - see the
text after Eq. (A.2) - that is conjugate to the angular momentum m). By A™ 50 and AW
> 0 we denote phenomenological parameters proportional to the inverse of the relaxation
time of M and v, respectively. A® and AW play the analogical role in (A.7) and (A.8) as
the parameter A% plays in (A.4). The energy E(p, m) arising in the particle description
is replaced by the free energy P(y,M). We assume that the suspension under
consideration is kept under constant temperature. Since both y and M are functions, the

free energy @ is a functional and the partial derivatives used in £ have to be replaced by

o

the Volterra functional derivatives -§— , =
oy oM
The last two terms on the right hand side of (A.7) and (A.8) represent dissipation.

These terms guarantee that solutions to (A.7) and (A.8) approach, as t — oo, states that

D 1
are solutions of —2—- =0 and ® +—Ax = 0. This is best seen by writing the dissipative
W 2

o P
et et

———— and the dissipative term in (A.8) as — ————
o 50 5(29)
Sy oM
(o0 50) g1 0 (500 (50

Sy M 2 dp, \ Sy jop, \ dy

X ;de§A<M)(§;%Mj[gg.%m}

term in (A.7) as — , where:

(A9)

= is the so-called dissipation potential (a concept introduced originally by Rayleigh,
1945; its physical significance has been recently demonstrated in Grmela, 2002). If the

dissipation terms are written with the use of the dissipation potential Z then the
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compatibility of dynamics with thermodynamics is directly visible. Indeed, Egs. (A.7)

< 0. The Hamiltonian

and (A.8) imply that @:— jdp éq_) 62 + 50 8=
dr Sy 5(52} o, f 5o
oy M,

. dd . . I : :
part does not contribute to — precisely due to its Hamiltonian nature and the inequality
dt

is a consequence of the following three properties of the dissipation potential: Z(0,0) = 0,
= reaches its minimum at (0,0), and E is a convex function in a neighborhood of (0,0).
The choice of E that we have made in (A.9) is only the simplest choice satisfying the

above three properties. There are certainly other choices of Z that can be explored.

Now, we proceed to show, as we did in Section A.2.2 in the context of the particle
description, that under certain conditions, solutions of (A.7) and (A.8) approach solutions

to Jeffery’s kinetic equation. Indeed, we observe that if AM 5 oo then solution of (A.8)

1
is @ = —— Ak which, if inserted into (A.7), implies Jeffery’s kinetic equation:
2
dyp.n) 9 . 0 J (&
R (7N ———{~—)) (A.10)
ot Ip, dp, dp, \ By

where pis given in (A.5). The equation derived by Jeffery is Eq. (A.10) with AY =0,

Equations (A.7) and (A.8) can be thus indeed seen as governing equations of an extension
of Jeffery’s kinetic theory. The extension takes into account the effective inertia of fibers,
allows to include explicitly into the analysis the direct fiber-fiber interactions, and

includes dissipation that guarantees the compatibility with thermodynamics. The effective

inertia of the fibers is expressed in the relaxation time Tt = of the average

A(M)

angular momentum M(p, 7).
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Next, we turn our attention to the extra stress tensor ¢. In the context of the
Hamiltonian formulation in which the velocity field v(r) is included into the set of state
variables, the expression for the extra stress tensor arises always automatically together
with the time evolution equations. Since we have not written explicitly all the Poisson
bracket involved, we shall derive the expression for ¢ by using the arguments introduced
in Grmela, 1985 (see also Grmela, 2002). The physical basis for the arguments is again
the compatibility with thermodynamics but the Hamiltonian structure is not used. First,
we recall the general formula derived in Grmela (1985). Let ¢ be a variable
characterizing the internal structure (in this section ¢ is a pair of functions y(p) and
M(p)) and:

99 _ pom gy, gy -

ot 5 §9
¢

is the equation governing its time evolution. The first term and the second term on the

(A1)

right hand side governs the nondissipative and the dissipative contribution, respectively,
to the time evolution of ¢. The extra stress tensor that is compatible with the time

evolution equation (A.11) is given by:

3P SF U )
o, = |dpl-— - ] (A.12)

") {2
or; or;

If we apply this formula to the setting of this section, we obtain:

i _ _ 1 ~ ) .
G, = J.dP\V[ - ”7: A(M)X(gb.k Wy p;pr €5 03117‘,'1%) - ;‘ AN (p PV T PPV )]
(A.13)

for the extended Jeffery equation (A.7) and (A.8), and
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a(@@] a(ﬁ‘p}

1 & O

Gii = hgdp\p‘[——?& hd p; + hd P; "2pipjpk
2 | 9p, p, ap,

J

(A.14)

for the Jeffery equation (A.10).

We have thus arrived at two complete rheological models. The first one consists
of the time evolution equation (A.10) (the standard Jeffery equation to which an
appropriate, i.e. guaranteeing compatibility with thermodynamics, dissipative term has
been added) and corresponding to it expression (A.14) for the extra stress tensor (we
recall that the expression (A.4) is also a consequence of the requirement of the
compatibility with thermodynamics). What remains to be specified in the model is the
free energy @ (a real valued functional of the distribution function y(p)) and two
parameters A and AW 1t is in these quantities where the individual nature of the

suspension is expressed.

The second rheological model, an extended Jeffery model, is the main result of
this paper. Its set of state variables is extended by adopting the average angular
momentum M(p), its time evolution equations are Egs. (A.7) and (A.8), and the
corresponding expression for the extra stress tensor is given by (A.13). The quantities
that remain to be specified are: the free energy @ (a real valued functional of y(p) and

™ and AY. Again, these are the

M(p)) and three phenomenological parameters A, A
quantities through which the individual nature of the suspensions is expressed. In
particular, the effective inertia enters the parameter A, Finally, we note that the particle
description presented in Section A.2 can be combined with the kinetic theory description
presented in this section to represent a Lattice-Boltzmann type setting (see e.g. Chen and
Doolean, 1998) that is suitable for solving the kinetic equations. We shall explore this

idea in a separate paper.
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Before leaving the kinetic theory, we shall make a comment about the formula
(A.14). Expressions for the extra stress tensor that are suitable for fiber suspensions have
been derived previously on the basis of considerations that are different from those that
we have used in the derivation of (A.14). All the formulas (see for example Dinh and

Armstrong, 1984, Lipscomb ef al, 1988) derived previously have the form

C, = f dp\;fK[jk,j/k, , where the forth order tensor, K, involves various combinations of

p:p;p.p,- We shall show that a linear approximation of (A.14) (linear in the velocity

gradient) has the same form.

First, we emphasize that the extra stress tensor ¢ expressed in terms of the
distribution function y is physically meaningful only when it is accompanied by the
kinetic equation determining Y. The stress tensor observed in rheological measurements
is always calculated by, first, solving the kinetic equation, and then inserting the solution
into the formula for ¢. Let the process of solving the kinetic equation be organized into
several stages. In every stage the set of candidates for the solution is narrowed down or
simply restricted as an approximation. After every stage, we insert the partial solutions to
the formula for ¢. This will result in many expressions for ¢ that look differently but are
all either equivalent, if the stages in the solution of the kinetic equation do not involve

approximations, or closely related if the stages are not rigorous.

In order to transform (A.14) into the form appearing in (Dinh and Armstrong,
1984, Lipscomb et al., 1988), we, first, solve the kinetic equations (A.10) for small
velocity gradients and then insert the solution to (A.14). If ¥ = 0 then solutions to (A.10)

are solutions of —29 =(. This, as we immediately see from (A.14), implies that 6 =0. If

Y

v # 0 but small, then, in the linear approximation, — = Y, p, p, . If this is inserted into
4

(A.14) we obtain a formula having the same form as the formulas that appear in (Dinh

and Armstrong, 1984, Lipscomb ef al., 1988). We thus see that the formula (A.14) for the
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extra stress tensor includes as special cases the formulas derived previously. Limits of the

validity of (A.14) are the same as the limits of the validity of the Jeffery equation (A.10).
A4, Reduced Descriptions

The extended Jeffery model represented by the governing equations (A.7), (A.8)
and (A.13) is the main result of this paper. After expressing the particularity of the
suspension under consideration in the free energy @ (a real valued functional of y(p) and
M(p)) and in the kinetic coefficients A, A™, AY, Egs. (A.7), (A.8) and (A.13) can be
solved and the results compared with results of observations. There are, however,
incentives for continuing with the reduction process and arriving at simpler governing
equations. The incentives are the following: (i) while it is certainly feasible to solve
numerically Egs. (A.7), (A.8) and (A.13) for a given imposed overall flow (i.e. the field
v(r) entering them is considered to be a given quantity), it is practically impossible to
solve numerically the coupled system of equations (A.7), (A.8) and (A.13), and the local
conservation law of the overall momentum (i.e. the equation governing the time evolution
of the overall velocity v(r)). This means that Egs. (A.7), (A.8) and (A.13) cannot be seen
as a rheological model that can be implemented into numerical investigation of, say,
flows arising in processing operations. (i) The distribution functions serving as state
variables in the models are not directly measurable (at least with the present-day
experimental equipment). They therefore contain more information than we need to relate
to experimental observations. This becomes an additional source of difficulties in
particular when we decide to apply the models to calculate flows of fiber suspensions.

What boundary conditions shall we use for the distribution functions?

For these and many other reasons, we would appreciate if it would be possible to
reduce the models. By a reduction we mean a replacement of the full set of state variables
by a much smaller set. The smaller set consists usually of some moments of the
distribution functions. Let @ denote the state variables used in the original (unreduced)

model (i.e. in the models introduced in the previous section @ stands for the distribution
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functions y(p), M(p)) and 8(¢) denote their moments. For example, we shall use later in

this section 8 = (a3, b) where

a; (1) = ﬁ dpp,p W(p. 1) (A.15)
and

by ()= [dpp,p;M,(p,1) (A.16)

To reduce a model means to identify a submanifold in the space of the state

variables @ (we shall denote its elements by the symbol ¢"***? := 5 (p; 8)) and equations

% F(p;:©) (A17)

ot

governing the time evolution of the moments (¥ in (A.17) is just a symbol for the right
hand side of the equation) such that ¢"“““(1) = g (p; 8(f)), where 0(¢) is a solution to
(A.17), approximates well solutions @(f) to the time evolution equations of the original
model. The classical example of such reduction (we shall call it hereafter a rigorous
reduction) is the Chapman-Enskog analysis of solutions of the Boltzmann kinetic
equation. In this analysis the Boltzmann kinetic equation (in this example the equation
governing the time evolution of @) is reduced to the governing equations of
hydrodynamics (that play in this example the role of Eq. (A.17)). Recall that the
hydrodynamic fields that serve as state variables in hydrodynamics are moments of the
one particle distribution function. The rigorous reduction is in fact a qualitative analysis
of solutions of the kinetic equations (i.e. equations governing the time evolution of ¢). Its
outcome consists of the identification of the moments 0 that are the most appropriate for

the situation under investigation and equations (A.17) governing their time evolution.
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The rigorous reduction is well defined but very difficult to realize. The
information about solutions of kinetic equations that is needed in the investigation is
qualitative and thus of different nature than the information obtained, for example, in
numerical solutions of the kinetic equations. We have not attempted to approach the
kinetic equations (A.7), (A.8) or even Eq. (A.10) in this way. What shall we do in the
absence of the rigorous reduction? We can still resort to, what we shall call, an empirical
reduction. This type of reduction consists of two steps: (i) selection of moments, and (ii)
projection of the kinetic equations on the chosen moments. The step (i) is guided by
certain experience but it is essentially an ad hoc suggestion. The step (ii) does not lead to
one-time evolution equations for the moments but to a large family of such equations.
The equations in the family are parameterized by the so-called closures. This is because
the projection, in general, cannot be achieved completely. There always remains a part of
the kinetic equation that contains the distribution function rather then just the moments.
The closure is the way how this remaining part is expressed in terms of the moments.
Viewing this from the perspective offered by the rigorous reduction, the closure is
essentially the distribution function (p;0). While g@(p;0) arises as a result in the
rigorous reduction, it remains to be an unspecified function in the empirical reduction.
The step (ii) can be also made indirectly by finding the kinematics (i.e. the Poisson
bracket expressing it) of the moments chosen in step (i). This is indeed sometimes
possible (for example it was possible in the passage from the distribution function f(p, m)
to the moments (A.6)). In general, there is however no known procedure leading to
reduced Poisson brackets. For example, we are unable to find the Poisson bracket

expressing the kinematics of the moments (A.15) and (A.16).

At this point, it is useful to realize why the modeling that led us to the models
presented in the previous section is physically sounder and more useful for gaining
understanding than the modeling involving the empirical reduction. Let R be a set of
experimental (rheological) data that we want to organize and understand with the help of
a model. The following two features of the models introduced in the previous section are

important. First, the models are based on a clear physical insight. The parameters
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involved in them have a clear physical meaning. They can be therefore determined by a
combination of physical considerations and fitting the experimental data. We have to
recall, however, that predictions of the models are not easily produced due to the
difficulty of solving the governing equations. Extensive numerical calculations are
needed in order to be in position to compare consequences of the models with results of
rheological measurements. Second important feature of the models of Section A.3 is that
the set of the experimental data & can be enlarged by adopting results of observations,
which constitute the experimental basis of thermodynamics. We are certain that the
models will agree with the added experimental data. This is a very important proof of the
physical soundness of the models. If we now look at the models that use the empirical
reductions, we see that the second feature is at lest partially absent and that an infinite
number of new, unspecified and lacking a direct physical interpretation, parameters (the

parameters involving the closure) have been added.

Nevertheless, it is very attractive to try to formulate simple, even if empirical,
models (Folgar and Tucker, 1984). There is always a possibility that a simple but at the
same time faithful to reality physical picture emerges. Below, we shall make an attempt
of this type. To begin, we have to decide what moments shall we choose. We suggest the
moments (A.15) and (A.16) for the following reasons. The moment a, (see Eq. A.15), we
call it an orientation tensor, is a very common choice (Hand, 1962, Folgar and Tucker,

1984), which proved to be useful many times before. The moment b defined in (A.16)
combines both the average angular momentum (note that b, = Ja’pM ; 1 the average
angular momentum) and the correlation between the orientation and the angular
momentum (note that in the absence of such correlations the relation b, = a,;b,, would

always hold). We expect that both the average angular momentum and its correlation to

the orientation play an important role.

We shall now project Egs. (A.7) and (A.8) on the moments (A.15) and (A.16). We

begin with the nondissipative part of (A.7) (i.e. we assume for a moment that AY = 0).
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We multiply (A.7) by pip; and integrate over p. In the second term we will use the fact
—1
i

MIZ'M .
that the free energy ® involves the kinetic energy part |dp ——>—=, where I is the
; 2
Y

inertia tensor of the fiber. We shall assume that the rest of the free energy is independent

of the angular momentum. We obtain in this way:

daij- 1 i —1 -1
dl‘ = —Eajkgik - Eaiijk - einlllmbjnm - 8_/'nlllmbinm
A ok 1 | 0D 1 |~ 0D 1 - D
A T ] T 5, |+~ A TS, - — (AP i LA
da, 3 \oa,) | 3 da, | 9 da,

(A.18)

The last three terms represent the dissipative part of the time evolution. We have
added them after the projection was completed. It expresses the same physics as the
dissipation terms that we have introduced before on the level of kinetic theory but now
the physics is expressed on a different level. The dissipative term is constructed so that

the free energy @ does not grow and tr a; remains equal to one (see (A.15) and recall that

~

p is the unit vector) during the time evolution. The new tensorial parameter A')

introduced in it is, in general, restricted only by the requirements on the dissipation
potential that are listed in the text that follows Eq. (A.9) and by the requirement that the
three terms on the right hand side of (A.18) are symmetric with respect to the interchange

i «> j. The dissipation potential Z for which the last three terms on the right hand side of

o
o
brwd

0
IH—)

(A.8) equal — is clearly (compare with A.9)

5-3:(;ag_itrﬁ?;&k]l&(g)[g?__ltré?_g,li] (A.19)
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We see easily that all the requirements on the dissipation potential Z are satisfied for
(A.19) provided the matrix A is nonnegative. In section A.S where we present

rheological predictions of the models derived in this section, we shall make the following

choice: 1&({;) =A%a, ¥, where A®>0 is a phenomenological parameter and
V= %yﬂﬁ . The multiplication of the phenomenological dissipation coefficient by ¥ is

an idea introduced by Folgar and Tucker (1984). They observed that with such choice a
better agreement of predictions of Jeffery-like models with results of observations can be

obtained.

We continue now and project the nondissipative part of Eq. (A.8). We shall
assume that the angular momentum M is small and thus we neglect all terms that are
quadratic and higher order in M. This means that we neglect the first, the third and the

fifth terms on the right hand side of (A.8). The projected equation becomes as:

db, 1 oD | od 1 .
LB Q, - ZnSkIma,.ﬂn —— A(b>>{___ — —2- kgklmaun,ymn} (A.20)

a2 da b,

mn

where:
Ay = Idppipjpk Y. 1) (A2

As in (A.18), the last term on the right hand side of (A.20), i.e. the dissipative
term that has been added after the projection was completed. The physics behind it is the
same as the physics behind the dissipative term in (A.8) but it is now expressed with the
state variables (az, b). The new phenomenological parameter A® >0 introduced in it
plays the same role as the parameter A™ in (A.8). 1t is in this parameter where the
effective inertia enters the model. By multiplying the phenomenological dissipation

coefficient by the strain rate, ¥, we are extending Folgar and Tucker’s suggestion (1984)
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to the models involving the tensor b. The dissipation potential for which the last term on

the right hand side of (A.20) equals — 83 o is clearly (compare with A.9 and A.19).
O(—)
ab,,
. d® 1 ' 1 .
- ( - }\’sklm ynl mn ) A(l )( - A‘Eklmaijnl Ymn ) (A22)
Bb,jk 2 biik 2

The dissipation potential corresponding to the Eqs. (A.18) and (A.20) is thus the
sum of the potential (A.19) and (A.22).

Summing up, we have introduced two state variables (az, b); a; is a symmetric
second order tensor, called an orientation tensor, and b is a third order tensor that is
symmetric in its first two indices. By projecting Egs. (A.7) and (A.8), we have arrived at
the time evolution equations (A.18) and (A.20). They involve the parameters of the same
type as the parameters involved in kinetic equations (A.7) and (A.8) and in addition the
quantity a4 that requires to be closed, i.e. expressed in terms of the state variables (az, b).
Before discussing the closures, we will investigate the relation of (A.18) and (A.20) to

the projected Jeffery equation.

1
It A? in (A.20) is large, or in other words 1f the relaxation time ¥ = — of the
A

: . 0b 1 ., o
tensor b is small, then the solution of (A.20) is — =—2Ag,, a,,Y,,  If the kinetic
b, 2
ik

energy, constituting a part of the free energy @ that depends on the tensor b, equals

1

5 —by 1 k,’b,], (compare with the kinetic energy expressed in terms of M that appears in the

oD i i
text before Eq. A.18) then we obtain P T == A0 Vo + = M40 @i V- T
b, 4 4 '
ik

this is inserted into {A.18) we obtain:
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da, 1 1 1 ) . . )
i E a; 82y —— 7"(‘ QY — C¥a T BV + aﬂkink)

_A(;) ﬁqi_ltr ,_ag); 8y +Et jg(m;ag 5{}, —-E-tr(f&‘a’)tr ;8?; 51]
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(A.23)

If we omit the last three terms on the right hand side, this equation indeed
becomes the projected Jeffery kinetic equation. This we easily see if we use the

symmetry of the tensor a4 and realize that (A.21) implies:

=y = [dpp,p, PPy ®) = [dpp, Py (P) =, (A24)
since p,;p, = 1.

Now, we make an important observation. While (A.24) is certainly true if we look
at a4 as defined in (A.21), it may not be true if we look at a4 as a quantity that has to be
closed (i.e. expressed in terms of a; and b). This is because the closures (for example
those suggested in Advani and Tucker, 1990) routinely violate the symmetries of a4 (note
that a4 as defined in (A.21) is symmetric with respect to the interchange of any
combination of all four indices) and consequently the satisfaction of (A.24) is not
guaranteed for all closures. We thus claim that (A.23) is the formulation of the projected
and unclosed Jeffery kinetic equation that is the correct point of departure for

investigating the consequences of various closures.

In order to complete the rheological model that uses the tensors a; and b as state
variables, we need an expression for the extra stress tensor. We can find it in exactly the
same way as we found them in the previous section. Application of the formula (A.12) to
(A.23) (it means that ¢ =(a;, b) and Eq. A.11 is now Eq. A.23) leads to the following

result:
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G, = —nA — Gyt — 2 Ay Ay Ty s A
2 ay, A G i dy, Ay a

mi
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mf

(A.25)

By n we denote the density of fibers. As we have seen above, Eq. (A.23) is an
approximation of Egs. (A.18) and (A.20) representing the extended model (i.e. a model

that takes into account the effective inertia) on the reduced level of description discussed

in this section. The small parameter in the approximation is CE Since we are limiting

ourselves only to small values of XL’T’ we shall use the expression (A.25) also in the

context of the extended model.

What remains now is to discuss the choice of the free energy @ and the closure

expressions for the fourth order tensor ay.

First, we turn our attention to the free energy, ®. Following Grmela and

Dlugogorski (1996) and Grmela and Lafleur (1998), we suggest the following expression:

1 1 I 3
®(a,,b) = —b, I,'b, ——k,T In(deta,) + —k,TK(1 — tr(a, -a,)) + —k,T(tra, — 1)
2 S 2 2 2

(A.26)

The first term on the right hand side represents the kinetic energy, the remaining
terms represent the entropy. The second term is the classical expression for the entropy of
an ideal gas (recall that det a; has the physical interpretation of the volume associated
with the fibers). The second term is the Meier-Saupe (1960) entropy used in the liquid
crystal theory to express the topological constraints among the fibers. The
phenomenological parameter K is proportional to the fiber concentration. It is in this term
where the fiber-fiber interactions enter the free energy. The last term on the right hand

side of (A.25) is added in order to guarantee that at the equilibrium (i.e. for b and a; that
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oo

are solutions of 5—— =0 and %%? =0) and for small value of K the tensor a; is diagonal
a,

with 1/3 as its entries. By kz we denote the Boltzmann constant, T denotes the

temperature. The derivatives of the free energy entering the governing equations thus

equal to:
ap
= Ikllbijl
ob,,
od 1 3
——=——kyTa; —k;TKa,; +—k,Td, (A.27)
da, 2 ) '

If we insert (A.27) and A = A“Ya,¥ into the last two terms on the right hand

side of (A.18) we obtain:

41 1 1 1 I
A9k, T ———(aij ——ng(tra;') - K(— aua, +—a; +-—(tl‘(az va2)~-)6i,.
6 3 3 3 3/

(A.28)

Summing up, we have shown that the dissipation terms that we have added to the right
hand side of the projected Jeffery equations (A.18) and (A.20) guarantee that the free
energy (without any restriction on its choice) does not grow during the time evolution,
that the trace of a; remains unchanged during the time evolution, and moreover, the
dissipation terms take a form of the dissipation term introduced by Folgar and Tucker
(1984), provided the free energy is chosen to be the one given in (A.25) with K =0 and
A¥ is chosen appropriately. We have also identified the additional dissipation term

arising due to the appearance of the fiber-fiber interaction in the free energy (i.e. in the

1
case when K #0). If K=0 then (A.28) reduces to —C,(a, ——8;)tra;, where
T
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1 .
C, = —k,TA""¥. This is indeed a term that is comparable with the dissipation term that
6

Folgar and Tucker (1984) added to the right hand side of the projected Jeffery equation.

Now, we turn attention to the extra stress tensor. If (A.27) is inserted into (A.25),

we arrive at:

1 1 1
1 b _ R _
G; = Ak Tn( 5 ay ay — Kagay, +3ay, ay 4 — Kagay,

+a’la . +2Ka. a . —3a

im ™ mijl im™ mijl

|

1
-1 ~1
Ty Gy T Kalkaljik +3a,, ——ay ay, — Kaygay,

il

(A.30)

-
+a,a,, +2Ka,a,, —3a,)

Finally, we turn to the closure expressions for the fourth order tensor a4 (see Eq.
A.20). In this section, we consider it to be a phenomenological quantity that is eventually
chosen by fitting the experimental data (we have already discussed this point at the

beginning of this section). We only require that a;i = a;x; holds. This property is needed

in order that the symmetry of b, in the first indices is preserved in time (see Eq. A.20).

Another way to choose the appropriate expression for the tensor a4 is by fitting the
tensors a; and b, calculated by solving the kinetic equations (A.7) and (A.8) and using

(A.15) and (A.16).
A.5. Model predictions

In this section we present simple shear material functions predicted by our
models. We impose the flow field and look for solutions of the reduced descriptions of
the models, the extended Jeffery model (Egs. A.18 and A.20) and the modified Jeffery
model (Eq. A.23), and then evaluate Eq. (A.30) to obtain the material functions. The

ordinary differential equations describing the evolution of the orientation tensor and the
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average angular momentum were solved simultaneously by using an explicit Runge-

Kutta (4,5) formula (Hanselman and Littlefield, 2001).

The initial conditions, 7 = 0, for the orientation tensor aj, and the average angular

) ey ) i od oD
momentum b, are their equilibrium values, i.e. solutions of — and — equal to zero.

da, db
1
We can easily verify that a,.jf[:O =—3, for small K, (i.e. for the isotropic phase of the

3

fibers (Grmela and Ly, 1987), and bifk,t:o =0 are the equilibrium values and thus the

universal initial conditions.

In the remaining part of this section we examine the effect of different parameters,
C,, A(b), K, A, n, I and different closure approximations on the material functions. We
observe the evolution of the stresses until they reach steady state values. The total extra

stress tensor ¢ has the form:
6=06"+¢' (A.31)

where o is the fiber contribution and to ¢” the matrix contribution. We assume the

matrix to be Newtonian (i.e. " =1,7,).

A.5.1. Steady state simple shear flow

The model predictions are calculated for a simple shear flow. The fiber initial
orientation is assumed to be isotropic. In all cases, we consider suspensions of fibers with
an aspect ratio of L/D = 20, a length of L = 300 um and a volume fraction of 0.071. If we
assume the viscosity of the matrix to be equal to AnksT = 5.452x107 Pa.s, the viscosity is
under-estimated by several orders of magnitude (10°-10"). Ghosh er al. (1993) found a
same kind of problem with their mesoscopic Hamiltonian model with the same order of

magnitude difference between the predicted and experimental results (10° for 30 wt%
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short glass fibers in polypropylene and 10" for 9.54 wt% carbon fibers in polyethylene).
They solved this problem by using an “effective fiber number density” instead of the real
density, obtained by fitting experimental data. Becraft and Metzner (1992) used a similar
idea to define an effective fiber concentration. Here we choose to use ngy= 107 in the
equation of extra stress tensor. Thus, for the predictions we assumed the viscosity of the
matrix to be equal to AngksT (= 5.45 Pas) so that o™ is of the same order as o. The
calculations have been done using the ORF closure approximation (Cintra and Tucker,

1995) and the constants or parameters used are listed in Table A.1.

The modified Jeffery model (A.23), predicts a steady-state viscosity that exhibits
a shear-thinning region with the slope of —1, followed by a high shear plateau. Like some
other models (Hinch and Leal 1972), the normal stress difference calculated with this

model remains independent of the shear rate.

The extended Jeffery model (A.18, A.20) predicts also a similar shear-thinning
behavior and first normal stress difference that is independent of the shear rate for a large
range of shear rate. However, as shown in Fig. A.1 the predictions are affected by the
model parameters. Fig. A.la shows the effect of A® on the steady viscosity for the
extended Jeffery model, for I;,=lhy=I3=10", A=0.994, C,=0.001 and K=0.
Increasing A® delays the shear-thinning behavior and increases the zero-shear viscosity.
The high-shear-rate plateau is predicted for lower rates for larger A®. Fig. 10 illustrates
the corresponding first normal stress coefficient. The model predicts a unique slope of —2
(on the log-log plot) for high shear rates, indicating that the primary normal stress
difference is independent of the shear rate. A® affects the transition from the zero-shear

plateau, which increases with increasing A,

Fig. A.2 reports the effect of C, on the steady-state for I,y =In=0I= 107,
AY = 10® and K = 0. The effect of C, is not pronounced, but the shear thinning and the
zero-shear viscosity decrease with increasing C,. The high-shear-rate value is unaffected

by C,. The slope of the corresponding first normal stress coefficient versus the shear rate
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remains equal to —2 for any C,; however, the zero-shear plateau is lower for larger values

of C, (not shown here).

As explained in the previous section, I, present in Eq. (A.18), is the inertia tensor
of the fibers. Using the dynamics of rigid bodies (Routh, 1960), for ellipsoids, the

diagonal tensor for the inertia, I, can be defined as:

(D/12)* +(L/12)°
m
5

I, =1y

(D/2)*
5

I, =2m
(A.32)

where m is the mass of the ellipsoid. Using these expressions to calculate I for the fibers
used in our experiments (the length L = 300%x10°° m, the diameter D = 15x10°® m, and the
density of fibers, p = 2500 kg/m?), we obtained unrealistic predictions. We have to recall
here that the use of inertia in the extended Jeffery model serves to express the collective
behavior of the fibers. The inertial tensor I has to be regarded as an adjustable parameter.
Fig. A.3 shows the effect of two different scalar values of the inertia for A = 10’6,
C,=0.001 and K=0. The change of the inertia from lyy=In=Ix= 107 to
Iy =Ty =13 =10 significantly affects the predicted steady state behavior. The slope of
the shear-thinning region is reduced for the large value of the inertia and the zero-shear

plateau vanishes, predicting a solid-like behavior at low stresses.

Fig. A.4 illustrates the effect of the fiber content (¢) on the steady-state viscosity.
As expected, shear-thinning effects increase with fiber content. The zero-shear plateau
increases also with the volume fraction of fibers, but unrealistically the high-shear-rate
value is unaffected by the presence of fibers and is that of the matrix. Fig. A.5 shows that
increasing A reduces the shear-thinning effects and both the low-shear viscosity and high-

shear viscosities increase.
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A.5.2. Stress growth functions

Here we show how the parameters affect the predictions of the extended Jeffery
model (A.18, A.20) for the stress growth functions. The shear rate is set to be 1 s' and

the strain is takenas y=+Vf.

First we wish to show how the closure approximations affect the predictions. For
this investigation we set A? = 10°, K= 0, I; = Iy = I13 = 107 and A = 0.994. For low C,
(C,=0.001), and using the quadratic (Doi 1981, Lipscomb 1984) or hybrid closures
(Advani and Tucker 1987, 1990), we obtained non-physical oscillations in both the
transient viscosity and normal stress differences. For large value of C,, the overshoots for
the viscosity and normal stress differences disappear. For C, = 0.1, the quadratic closure
describes well the overshoot for the viscosity as well as the overshoot for the normal
stress differences. With this closure we are, however, restricted to a very narrow range of
C, and we preferred to use hybrid closure approximations. Fig. A.6 shows the predictions
for the stress growth functions using different closures with C, = 0.001. We note in Fig.
A.6a that the ORT (Wetzel and Tucker, 1999), ORS, ORL and ORF (Cintra and Tucker,
1995) closures predict viscosity overshoots occurring at a strain of about 2. The ORF
closure decreases the steady state viscosity more than the other three closures, which
exhibit almost the same steady state viscosity. The response using ORL is close to that of
ORT for the transient response. By using ORS, the magnitude of the viscosity overshoot
decreases and the predictions calculated with ORF shows a large viscosity overshoot. Fig.
A.6b compares the corresponding transient first normal stress difference. We note first
that the steady-state normal stress difference is smaller in the case of ORS. The transient
normal stress difference is delayed in comparison with the corresponding viscosity. No
overshoot of the first normal stress coefficient is predicted by ORT and ORS. The ORF
and ORL closures predict an overshoot for the first normal stress coefficient and the
magnitude of this overshoot is larger in the case of ORF. However, ORF exhibits more
oscillations for very low C,. As we can note, the choice of a closure approximation can

affect significantly the response of the model. Even if some closure approximations are
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more representative of the real distribution function the choice of a closure approximation
should be governed by the capacity of a given model to correctly describe experimental
data. Here, we choose for the extended Jeffery model (A.18, A.20) the ORF closure
approximation of Cintra and Tucker (1995) because of the good description of the

viscosity and first normal stress coefficient overshoots.

Now, we examine the influence of the model parameters on the material
functions. We set Jy; =lp=1h3=10"7, A=0.994, A” =10° and K=0 and the ORF
closure. Fig. A.7 shows the influence of C,. A large value of C, resuits in less fiber
orientation in the flow direction. This effect has also been observed with the large values
of the interaction coefficient C; in the Folgar and Tucker model (1984). As expected, a
decrease of C, decreases the steady-state value of the viscosity and increases the
magnitude and the width of the overshoot. We note also that the viscosity overshoot
almost vanishes for C, = 0.1. The modified Jeffery model (A.23) is affected in the same

way by the variation of C,.

Fig. A.8 compares the effect of A® on the stress growth viscosity of fiber
suspensions for the extended Jeffery model (A.18, A.20) with K=0 and C, = 0.001. The
increase of A® decreases the steady-state value of the viscosity. We notice that the size
of the viscosity overshoot increase by increasing AP With C, = 0.001 and A®) = 10°®, the
effect of K, the coefficient of the fiber-fiber interaction, on the stress growth viscosity is
reported in Fig. A.9 for the extended Jeffery model. The interaction term in Eq. (A.18)
tends to orient the fibers like liquid crystals. This effect is introduced also in the diffusion
terms of Egs. (A.20) and (A.23). The increase of K has a very small effects on the stress
growth viscosity for K < 1, but it decreases the steady state viscosity for larger values of
K. The viscosity overshoot increases with the increase of this parameter and we notice
oscillations for the larger value, K= 5. The increase of K favors fiber orientation and a
smaller steady-state viscosity is predicted. The increase of K makes also the components
a;3 and ax of the orientation tensor different from zero. These changes affect the

orientation of the fibers in the successive reverse shear flow. If we apply an opposite flow
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in the counter clockwise (CCW) direction, immediately after a shear stress growth
experiment in the clockwise (CW) direction, the viscosity exhibits a smaller overshoot
(reverse overshoot) at a larger strain (compared to the overshoot of the first experiment)
before reaching the steady state value of the first experiment. Fig. A.10 shows the stress
growth viscosity for both CW and CCW flow directions for K = 0 and K # 0 as a function
of the absolute strain. We note that the steady state viscosity does not have the same
value for both forward and reverse flow, in the case of K # 0. The influence of the fiber-
fiber interaction term in the free energy and in Eq. (A.20) needs to be more fully

investigated. We shall assume for the other simulations that K = 0.

Fig. A.11 shows how the inertia affects the transient predictions of the extended
Jeffery model (A.18, A.20) for C,=0.001 and K =0. Here the effect of two different
values of the inertia Jy =y =133 = 107 with A” =10, and I}; = In = I3 = 107 with
A® =10% are compared. The inertia slightly affects the predicted stress growth viscosity
A larger value of the inertia implies a smaller value of the steady-state viscosity and a
relatively larger viscosity overshoot. By keeping I33 = 107 or /53 = 107 and decreasing the
value of I} = I, from 107 to 10° (or from 107 to 10°) we note a slight increase of the
steady-state viscosity. For larger value of I;; and I, the viscosity decreases and the
transient viscosity shows oscillations (not shown here). The value of the components of
the effective inertia tensor is taken 11 =l =13 = 107 for all calculations done in this

paper except for those of Fig. A.11.

In Fig. A.12 we show the effect of fiber content or ¢ on the stress growth
viscosity, for A® = 10° and C,=0.001. As expected and shown before for the steady-
state viscosity, the viscosity overshoot increases markedly with the fiber content. The
parameter A, introduced originally as a phenomenological parameter in Eq. (A.4), takes a
clear physical interpretation in the context of the Jeffery (1922) investigation (see Eq.
A.5). In our analysis, dealing with non-dilute suspensions, we consider A as an adjustable

parameter. Its influence on the rheological predictions is shown in Fig. A.13. For a
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A =10.994 calculated from its Jeffery’s interpretation (for the aspect ratio of A.20), the
steady-state viscosity has the smallest value shown in Fig. A.13. We also note a larger
overshoot for this case. By increasing A, the steady-state viscosity and normal stress
increase and the overshoots vanish. Fibers become less oriented for the case of large A. In
order to predict correctly the transient behavior of fiber suspensions, we need to change A
from its theoretical (Jeffery) value. We keep its value, however always near to 1 and in

all calculations done in this paper, A = 0.994, except for those of Fig. A.13.

The effects of the shear rate on transient behavior are reported in Figs. A.14 for
the extended Jeffery model (A.18), (A.20) with A® =10°, C,=0.001 and K =0. The
stress growth viscosity and normal stress differences are shown in Fig. A.14a and b,
respectively. The steady-state predictions have been discussed in the previous section.
The viscosity overshoot is shown in Fig. A.14a to decrease with decreasing shear rate and
no overshoot is predicted for very large shear rate. In contrast, a larger overshoot for the
first normal stress difference is predicted for the larger applied shear rate and no

overshoot could be detected for the lower shear rate (Fig. A.14b).
A.6. Concluding Remarks

The main results of this paper are the kinetic equations (A.7) and (A.8) together
with the expression for the extra stress tensor {A.14). The main new features of this
rheological model are the following: (i) As t — oo, solutions to the kinetic equations are
shown to approach the distribution functions characterizing thermodynamic equilibrium
states. The proof of the compatibility of the model with thermodynamics serves also as a
basis for obtaining the expression for the extra stress tensor. (ii) From the physical point
of view, the model expresses the collective nature of the suspension. This is achieved by
including into the model an effective inertia of the fibers and by introducing in an explicit
manner the fiber-fiber interactions. The parameters entering the model are those

introduced the free energy and in the dissipation potential. In this paper we do not solve
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the kinetic equations (A.7) and (A.8) and do not calculate thus their rheological

predictions.

In order to simplify the task of solving the governing equations of the model, we
have also introduced reduced models in which the internal structure of the suspended
fibers is expressed in a few orientation tensors (i.e. moments of the distribution
functions). If we assume the spatial homogeneity and impose only the rheometric flows,
the equations to be solved numerically are the ordinary differential equations. In these
simpler models there are however new phenomenological parameters that appear. They
are the parameters involved in the closures (i.e. in the formulas allowing to express
higher order moments in terms of the lower order moments that serve as state variables in
the model). There are two models that we have introduced in this way: the extended
Jeffery model (A.18, A.20), and the modified Jeffery model (A.23). The new features of
this type of models, if compared with the models developed previously by other authors,
is the explicit involvement of the effective inertia and fiber-fiber interactions. Moreover,
the expression for the extra stress tensor is obtained from the requirement of the

compatibility of the model with thermodynamics.

In the recent work, Sepehr ef al. (2003) have clearly shown that fiber dynamic is
slower than predicted by classical models established for diluted or semi-diluted
solutions. Slower fiber rotation is certainly due to fiber-fiber interactions. Our principal
objective for introducing the extended Jeffery model was to slowdown the orientation of
fiber. We have demonstrated in this paper that the inclusion of the angular momentum or
fiber inertia in the model does indeed modify the predictions in the direction seen in

experiments.
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Table A.1. The parameters and the specification of the fibers suspension used for the

model predictions.

Parameters Numerical value  Description

L (m) 300x10° Average length of fibers

D (m) 15%10° Average diameter of fibers

L/D 20 Fiber aspect ratio

A 0,994 Phénomenologicai parameter as function of aspect
ratio

) 0.071 Fiber volume fraction

n 1.77x10" Fiber number density

Hefr 1.77x10! Effective fiber number density

N (Pa.s) 5.452 The viscosity of a Newtonian matrix

kg (J/K) 1.3805x10% Boltzmann constant

T (K) 298 Absolute temperature
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Figure A.1. Effect of A® on the steady state behavior as a function of shear rate
for the extended Jeffery model. Calculations done using the ORF closure approximation
with C,=0.001 and K=0. (a) Steady-state viscosity; (b) Steady-state primary normal

stress coefficient.
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for the extended Jeffery model. Calculations done using the ORF closure approximation

with A® =10% and K = 0.
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Résumé

Le comportement rhéologique d’une suspension modele de fibres courtes dans du
polybuténe a été étudié en cisaillement simple aller-retour. Un des rhéometres équipé
d’un microscope optique a permis d’observer le mouvement des fibres pendant
I’écoulement. L’évolution de la viscosité et des forces normales transitoires du composite
en fonction de la déformation de I’échantillon a été mesurée. Cette €volution est liée aux
mouvements et a Porientation des fibres. Pour des suspensions concentrées, I’observation
du mouvement des fibres a montré que celui-ci est limit€ par la présence des fibres
voisines induisant des comportements macroscopiques particuliers en terme d’évolution

de viscosité et de différences de contraintes normales.
Abstract

The rheological behavior of a model suspension of short glass fibers in
polybutene has been studied under forward and reverse simple shear flow. One of the
rheometers equipped with an optical microscope was used to observe the motion of fibers
during shear flow. The variations of the transient viscosity and the normal force with
deformation have been measured. The fiber motion and orientation for concentrated are
resiricted by the presence of neighboring fibers, leading to a particular macroscopic

behavior in terms of viscosity and normal stress.
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B.l. Introduction

Les composites thermoplastiques de fibres courtes sont une classe importante de
matériaux haute performance qui comble ’écart entre les matériaux non-renforcés et
ceux renforcés avec des fibres continues. Les propriétés mécaniques des piéces de
composite fibres dépendent fortement du procédé de mise en forme et la rhéologie des
suspensions de fibres joue un rdle fondamental pour optimiser ce procédé. Les fibres
ajoutées aux thermoplastiques posent des problémes supplémentaires pour décrire le
comportement rhéologique du composite. Ils sont liés a I’orientation et la dégradation des
fibres, aux interactions fibre-fibre et fibre-paroi ou a la migration des fibres qui peut créer
une concentration hétérogéne dans I’écoulement. Les relations entre I'écoulement et
P’orientation des fibres peuvent étre étudices 4 1’aide des rhéometres et des observations

en microscopie optique.

Les premiers travaux sur la mécanique des suspensions de fibres ont été effectués
par Jeffery (1922) et suivis par Batchelor (1970), Cox & Brenner (1971), Hinch & Leal
(1975) et plusieurs autres chercheurs, pour des systémes trés dilués. Des modeles tenant
compte des interactions entre fibres sont apparus au début, pour les écoulements en
élongation, pour des fibres alignées, dans des fluides newtoniens (Batchelor 1970) et non-
newtoniens (Goddard 1978). Plus tard, Dinh et Armstong (1984) ont proposé un modéle
avec interactions, pour des fibres orientées aléatoirement dans un fluide newtonien.
Suivant les travaux de Jeffery (1922), Hand (1961) et Giesekus (1962), Lipscomb et al.
(1988) a proposé une équation constitutive pour des suspensions diluées de particules
ellipsoides avec un grand rapport de forme. Sepehr er al. (2003a) ont utilisé le modéle de
Folgar et Tucker (1984) et I’équation constitutive de Lipscomb en ajoutant un parametre
de glissement pour décrire la déformation non-affine des écoulements des composites de

fibres.

Dans cette étude, seront abordés les problémes liés aux mesures des propriétés

rhéologiques des polymeres chargés de fibres en solutions concentrées. Une observation
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de Porientation des fibres effectuée a I'aide du RheoScope sur la suspension modele, le
polybuténe chargé de fibres de verre, sera également présentée. Cette étude réalisée dans

le plan de cisaillement sera complétée avec des observations en microscopie optique.

B.2. Expériences
B.2.1. Matériaux

Pour mieux pouvoir comprendre le comportement rhéologique des composites et
P’effet de 'orientation des fibres, des suspensions mod¢les ont été préparées. Elles sont
composées d’une matrice newtonienne et des mémes fibres de verre courtes obtenues par
la calcination d’échantillons de composite industriel du polypropyléne fibres de verre
courtes. La matrice newtonienne choisie est un polybuténe (PB, Stanchem Indopol H100)
avec une masse moléculaire de 920 g/mol, une densité de 0.89 g/ml et une viscosité de 22
Pa.s a 25°C. De plus, il n’est pas volatil a la température ambiante a laquelle les essais
seront effectués. Les fibres de verre ont un diamétre moyen de 14 pm. Leur longueur
nominale est de 500 pum, mais la longueur moyenne mesurée apres Etre mélangé dans un
mélangeur interne est de 300 pm. Le rapport de forme des fibres est donc L/D=20. Le
PBO05 et le PB20 sont respectivement des suspensions de polybuténe et de 4.3% et de

17.6% en masse de fibres de verre.

B.2.2. Mesures rhéologiques

Les expériences ont été effectuées avec des rhéométres a contrainte imposée le
RheoScope (ThermoHaake) et & déformation imposée I’ARES (Rheometric Scientific).
Une géométrie de disques concentriques a été choisie et utilisée dans cette étude. Le
diametre des plaques utilisées est de 50 mm, et I’entrefer entre les deux plaques varie de
1.8 4 2 mm. La configuration de c6ne-plan n’est pas idéale pour des suspensions de fibres
a cause de I’entrefer faible en comparaison avec la longueur des fibres. Malgré cela, pour
une meilleure observation en microscopie sur le RheoScope, le plateau supérieur a été

remplacé par un cone tronqué de 35 mm de diamétre avec un angle de 4° et Pentrefer est
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de 0.140 mm. Les essais ont ét¢ effectués a une température de 25°C pour ces composites

4 matrice polybuténe.

B.2.3. Etude morphologique avec le RheoScope 1

Afin de mieux comprendre [’évolution de [orientation des fibres dans ces
systémes chargés de fibres, une ¢tude morphologique a ét¢ réalisée en paralléle avec des
mesures rhéologiques. Le rthéométre rotationnel RheoScope 1 est muni d’un microscope
optique dont le montage est présenté a la figure B.1. Le rhéométre est constitué d’un
mobile tournant qui sera mis en contact avec un échantillon préalablement disposé sur un
plan de mesure inférieur en borosilicate, lui-méme vissé sur une plaque thermostatisée.
Le microscope est inclus sous la cellule et il peut étre déplacé selon le rayon de la
géométrie rotative ce qui modifie ’épaisseur d’échantillon observé dans le cas du cone.
Pour une observation de P’échantillon, une obturation est effectuée dans la plaque afin de
laisser un champ d’observation assez large pour faire converger le faisceau de lumicre.
Le rotor supérieur avec une surface en inox 316L ou en titane est considéré comme un

miroir optique permanent.

La configuration du montage microscopique impose que ’on traverse 3 mm de
verre. Le microscope est donc équipé d’un objectif long frontal pour des grossissements
de 5 fois qui permet un travail & 17 mm de I’échantillon pour une profondeur de champs
de 13 um. La résolution permet de discriminer des particules supérieures & une dizaine de

micrometres.

La qualité d’inertic optique et thermique du plan inférieur est un des points
essentiels pour I'obtention d’une image microscopique sans artefact. Le borosilicate a
permis de garantir une non-biréfringence. Une régulation homogéne est garantie au

dixiéme de degré pres.

Le générateur de lumiére excite un filament avec une puissance constante de 150

watts qui émet des photons principalement dans la gamme du visible. Le spectre de
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longueurs d’onde balayé est non homogéne. L histogramme des longueurs d’onde montre
que 40% des ondes générées sont comprises entre 500 et 570 nm. La source produit aussi
des infrarouges qui sont immédiatement filtrés pour éviter le chauffage de 1’échantillon
observé. Le signal optique est récupéré sur une caméra CCD de 1/3 de pouce. Ainsi un
signal digital de 680x420 vpixels est exploitable pour des analyses d’images

ultérieurement.

Dans I’étude effectuée, nous avons di repérer la position du point de focalisation
pour pouvoir interpréter correctement la position des fibres observées dans le champ de

vitesse.

B.3. Résultats et discussion

B.3.1. Etude rhéologique

La figure B.2 montre les données en démarrage (en géométrie plan-plan) pour la
suspension modele, PB20, pour deux valeurs de vitesse de déformation imposée, 0.1 et 5
s7. A la figure B.2a, pour le premier essai positif 3 0.1 s, notez que le démarrage est trés

rapide et la viscosité atteint un maximum 2 une déformation de 10.

Le pic de viscosit¢ est dii & la présence des fibres puisque le polybuténe est
newtonien. Au départ les fibres ont une orientation aléatoire, et sous un écoulement en
cisaillement elles s’orientent dans la direction de I’écoulement. Le pic de viscosité est dii
a la rotation et I’orientation privilégiée des fibres dans le plan de cisaillement. La plupart
des fibres passent par un angle de 45° au sommet de ce pic (Laun 1984) pour s’orienter
dans le plan de cisaillement en arrivant au palier du régime permanent. Dans un second
essai consécutif positif, une vitesse de déformation positive a ét¢ immédiatement
appliguée apres le premier essai positif. On remarque qu’aucun pic de viscosité n’est
observé et la viscosité atteint rapidement un pseudo-plateau avant d’atteindre le plateau
du régime établi. Dans un (premier) essai consécutif négatif en démarrage, une vitesse de
déformation négative a été¢ immédiatement appliquée apres 1’essai positif. On note

clairement que le premier plateau transitoire est au méme niveau que celui du deuxiéme
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essai consécutif positif. Le premier plateau transitoire est attribué i la déformation non-
affine pour des fibres alignées dans la direction de ’écoulement. Ensuite un trés grand
pic de viscosité le suit & une déformation de presque 20. Ce pic de retour est dl au
basculement de la plupart des fibres dans le sens opposé. Un méme comportement a été
obtenu pour les composites de polypropyleéne fibres de verre courtes (Carreau et al.
2002). Barbosa et al. (2000) ont également obtenu un comportement similaire pour le
PDMS chargé de fibres de nylon. Méme si les fibres sont orientées en arrivant au plateau
du régime établi de I’essai positif, mais elles ne sont pas totalement alignées dans e sens
de I’écoulement. En changeant le sens de ’écoulement, les fibres se tournent avec un
angle plus petit que 180° et elles se réorientent & nouveau dans le sens opposé. En
continuant I’expérience dans la méme direction et la direction opposée, comme on peut
observer I’allure des courbes sont reproductibles. A une grande vitesse de déformation
imposée (5s7), les résultats de la figure B.2b confirment ’allure des courbes pour
I’écoulement de retour, mais le plateau transitoire ne peut étre observé pour le second

essai consécutif positif.

La figure B.2¢ présente un comportement peu normal pour les différences de
contraintes normales, N; — N,. Pour le premier essai positif en démarrage, N; — N, atteint
rapidement un plateau 4 un niveau différent de zéro. Ensuite & des déformations plus
grandes que 10, un grand pic est observé et finalement N; — N, diminue & une valeur
constante qui est identique a celle du premier plateau. L’amplitude de ce pic de contrainte
normale est beaucoup plus grand que celui de la viscosité et plus décalé dans le temps.
Ramazani ef al. (1997) reportent des résultats similaires. Le deuxiéme essai positif en
démarrage montre un méme comportement sauf que le pic disparait. Pour un essai
consécutif négatif en démarrage, N; — N, a une valeur négative avant I’augmentation et
montre un petit pic positif, correspondant au pic de retour observé pour la viscosité avant
d’atteindre une valeur de régime établi. Les valeurs négatives des contraintes normales
sont attribuées a une déformation non-affine lors du changement de direction de

P’écoulement. En changeant une autre fois le sens d’écoulement (le troisiéme essai
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positif), le méme comportement est observé. Pour un quatriéme essai sans changer le sens
d’écoulement un comportement établi sans aucun pic est observé. Une suspension semi-
diluée, le PB0S5, montre un comportement similaire avec des amplitudes de pic et de pic

de retour plus faibles que celles du PB20.

La figure B.3 présente les résultats normalisés en démarrage en fonction de la
déformation pour le PBOS et le PB20 a de différentes vitesses de cisaillement. Pour
démontrer la reproductibilité, plusieurs résultats d’une méme vitesse de déformation ont
été reportés dans ces graphiques. La figure B.3a montre la viscosité réduite des essais de
retour pour le PB05. On remarque que les pics de retour se produisent dans une méme
plage de déformation de 35, a une déformation plus élevée que celui du PB20. Les deux
différents niveaux entre le pseudo-plateau et le plateau du régime établi respectivement
avant et aprés le pic de retour dus a la déformation non-affine disparaissent dans le cas
d’une suspension moins concentrée. La figure B.3b montre la viscosité réduite des essais
de retour pour le PB20. On peut constater que les pics de retour se situent dans une méme
plage de déformation, et leur amplitude diminue avec la vitesse. On pourrait donc
supposer qu’un seul mécanisme domine au niveau du pic de retour, le basculement des
fibres dans le plan de cisaillement. La figure B.3¢c montre la viscosité¢ réduite des
deuxiémes essais positifs pour le PB20. On peut remarquer qu’une courbe maitresse peut
étre tracée dans laquelle la transition entre le pseudo-plateau et le plateau du régime établi

se situe a une déformation de 0.1 quelle que soit la vitesse de déformation imposée.

La figure B.3d présente la force normale réduite en fonction de la déformation
pour des essais de retour. Les pics de force normale se situent dans une méme plage de

déformation quelle que soit la vitesse de cisaillement.

B.3.2. Etude morphologique

La figure B.4 montre des échantillons du PB20 observés a 1’aide du microscope
optique du RheoScope avec une géométrie cone-plan. Dans cette figure on observe

’échantillon a une position radiale de » = 11 mm et une épaisseur de z = 0.060 mm dans
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un entrefer local de & = 0.80 mm. Les fibres les plus distinctes sont celles les plus proches
de la paroi fixe voisine du microscope. La figure B.4a présentant un échantilion non-
cisaillé du PB20 montre les fibres réparties de facon aléatoire. Sur le RheoScope, lors
d’un cisaillement en transitoire des suspensions concentrées, dii aux forces

hydrodynamiques, les fibres commencent a bouger et suivre I’écoulement.

Elles tournent avec une période trés courte pour les fibres les plus courtes (jusqu’a
une longueur de 50 pum) et une période plus longue pour les plus longues fibres. Les
courtes fibres ne s’arrétent pas de tourner dans une suspension semi-diluée aussi bien que
dans une suspension concentrée. Dans une suspension semi-diluée, elles tournent avec
une période plus ou moins longue qui dépend au rapport de forme des fibres et leur
concentration dans le systéme. Tandis que dans une suspension concentrée, sous [’effet
d’encombrement des voisines, les fibres s’alignent suivant les lignes du courant. Comme
les fibres sont des fibres rigides orientées selon des lignes de courant courbées, il existe
donc un certain angle entre ces derniéres et les fibres. La figure B.4b présente
P’échantillon du PB20 cisaillé en fluage a une contrainte imposée de 10 Pa pendant 1000
secondes au niveau du plateau du régime établi. Lors de cette étude, deux couches du
matériau avec deux comportements de fibres ont été remarquées. Un effet de paroi existe
dans la couche proche de la paroi inférieure sur les fibres. Elles peuvent rester collée 2 la
paroi ou bouger a une vitesse inférieure au champ de vitesse appliqué. Les fibres les plus
distinctes dans I’image 4b sont les fibres proches de la paroi inférieure et comme on peut
le constater, elles ne sont pas orientées tandis que la plupart des fibres situées au coeur de

I’échantillon sont alignées dans le sens de I’écoulement.

En arrétant le cisaillement et en le reprenant immédiatement dans la direction
opposée, le réseau de fibres orientées formé lors du cisaillement précédent doit se
réorienter dans le sens de I’écoulement en retrouvant son image miroir. A cause de ce
réseau, les fibres se basculent difficilement dans la suspension concentrée et c’est

pourquoi un premier pseudo-plateau est observé avant le pic de retour.
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A une concentration moins élevée, au niveau des pics de retour, indépendamment
du réseau de fibres moins dense formé, les fibres se réorientent dans le sens de
I’écoulement en retrouvant leurs images miroirs. C’est pourquoi les deux niveaux de
plateaux dus a la déformation non-affine disparaissent pour les suspensions semi-diluées.
Au niveau d’une déformation de 20 pour le PB20, le pic de retour, les fibres se basculent
dans le plan de rotation avec chaque changement de direction du cisaillement. Aprés le
pic de retour I’écoulement est redevenu quasi-affine et le nouveau réseau de fibres suit
I’écoulement avec une viscosité & un niveau du plateau du régime établi. Cette
explication est aussi valable dans le cas ol le sens du cisaillement ne serait pas changé

dans un essai consécutif a de faible contrainte ou vitesse de déformation.
B.4. Conclusion

L’utilisation de fibres courtes en suspensions concentrées dans les
thermoplastiques industriels est courante. La présence de ces fibres provoque des
comportements rhéologiques complexes. Leur mouvement dans les écoulements est
difficile & ¢tudier car il faut travailler en température et parce que le matériau est opaque.
Cette étude sur un fluide modéle transparent et fluide a température ambiante a permis
d’observer les mouvements des fibres et mesurer les caractéristiques rhéologiques a
I’aide d’un rhéométre équipé d’un microscope optique. Les observations en suspensions
concentrées montrent que la rotation d’une fibre est ralentie ou bloquée par les fibres

voisines. Le lien entre la rotation des fibres et la mesure de pics a été clairement établi.

Les essais transitoires ont €té effectués dans la direction d’aller et de retour. Les
allures des courbes de viscosité et de différence de contraintes normales mesurées sont
les mémes que celles mesurées pour des thermoplastiques chargés (Carreau er al. 2002),
excepté pour le premier pic aller qui est directement fonction de 1’état d’orientation dans
I’échantillon initial. Ceci nous améne a penser que les mouvements de fibres dans les

composites industriels sont semblables.
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L’étude dynamique de I’orientation des fibres effectuée a ’aide du RheoScope 1
est réalisée dans le plan de cisaillement seulement, donc une étude complémentaire dans
le plan de vorticité doit etre effectuée sur les composites du polypropyléne a aide des

microscopes optique et électronique a balayage.
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Figure B.1. Schéma de principe du microscope inséré sous la cellule cone-plan

du RheoScope.
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Figure B.2.  Essais consécutifs en démarrage sur un méme échantillon du PB20.
(a) Viscosité en fonction de la déformation pour des essais effectués a 0.1 s'; (b) Viscosité
en fonction de la déformation pour des essais effectués a 5 s; (c) Premiére différence de

contraintes normales en fonction de la déformation pour des essais effectués a 5 st
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Figure B.3. Résultats normalisés des essais consécutifs en fonction de la
déformation en démarrage sur des échantillons du PB0S et du PB20 a de différentes
vitesses imposées de 0.1 a 10s™. (a) Viscosité réduite pour des essais de retour sur le
PBO05 ; (b) Viscosité réduite pour des essais de retour sur le PB20 ; (c) Viscosité réduite
pour des deuxiémes essais positifs sur le PB20 ; (d) Force normale réduite pour des essais

de retour sur le PB20.
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(a) PB20 non-cisaillé

(b) PB20 au niveau du plateau du régime permanent
Figure B.4. Echantillons du PB20 observés & I’aide du microscopie optique du
RO1 avec un objectif de x5. (a) PB20 non-cisaillé; (b) PB20 cisaillé en fluage a une

contrainte de 10 Pa pendant 1000 secondes au niveau du plateau du régime établi.
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ANNEXE C -ETUDE MORPHOLOGIQUE

C.1. Imtroduction

L’ étude rhéologique des suspensions de fibres courtes ne peut &tre séparée d’une
étude morphologique en parallele. Dans ce travail, la plus grande importance a été
attribuée a I’étude rhéologique suivie du développement et la modification des modeles et
I’étude morphologique n’a pas été approfondie. Pourtant, une étude morphologique a été
effectuée sur des composites du polypropyléne fibres courtes et également sur les
suspensions fluides de fibres. Dans cette annexe, les distributions de longueur et de

I’orientation des fibres seront présentées.
C.2. Longueur des fibres

Les fibres utilisées dans la préparation des composites et des suspensions de fibres
étudides dans ce travail, sont des fibres de verre courtes avec une méme distribution de
longueur. Afin de bien décrire les suspensions, les fibres utilisées doivent Etre
caractériser. La distribution de la longueur et la longueur moyenne des fibres ont ét€ donc
mesurées. La longueur nominale des fibres donnée par le fournisseur des composites
(Société Basell) est de 500 um, mais selon les observations effectuées, des fibres d’une

longueur de 800 pm ont été mesurées.

Les composites de polypropyléne - fibres de verre courtes utilisé (Hostacom G3
NOI1L, Société Basell) lors de I’étude rhéologique ont été mélangés avec un antioxydant
(Irganox B225, Ciba Co.) a I'aide d’un mélangeur interne (Brabender) afin de prévenir la
dégradation thermique. Le procédé du mélange (avec une vitesse de rotation de la vis de
40 rev/min, un temps de séjour de 4 min et une température du mélangeur de 200 °C)
peut briser les fibres. Dans la mesure de la longueur des fibres, les matériaux mélangés
dans le mélangeur interne ont €t€ utilisés. Ces échantillons ont ét€ calcinés dans un four a

600 °C pendant 30 & 35 min afin d’éliminer la matrice thermoplastique. Un logiciel
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d’analyse d’image (Visilog) nous a permis d’effectuer des mesures a partir de clichés

obtenus en microscopie optique. L’ histogramme de distribution de longueur des fibres est

donnée dans la figure C.1. La longueur moyenne en masse, L, = Zinilgf / Z,-”iLi , et la
longueur moyenne en nombre, L, = Z,—niLi / Zl_ni , ont ét€ également calculées et sont

respectivemnent €gales a 385 et 300 um (L,/L, = 1.28).
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Figure C.1. Histogramme de distribution de longueur de fibres d’un échantillon
de PP30, cisaillé dans le mélangeur interne avec une vitesse de rotation de la vis de 40

rev/min, un temps de séjour de 4 min et une température du mélangeur de 200°C.
C.3. Orientation des fibres

Afin de mieux comprendre !’évolution de lorientation des fibres dans du
polypropyiéne chargé de fibres, une étude morphologique préliminaire a €t€ réalisée en
paraliele avec des mesures rhéologiques. Des échantillons moulés, pastilles de 25 mm de
diametre et de 1.8 mm d’épaisseur, ont €t€ préparés en effectuant une cryofracture.

Comme une plus grande déformation est appliquée au bord des pastilles lors du
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cisaillement dans une géométrie de disques concentriques dans un rhéomeétre, les
fractures ont €té effectuées sur le bord de la pastille & % du rayon (figure C.2). Une partie
des échantillons a été préparée pour des observations en microscopie ¢lectronique en
balayage (MEB). Pour cela on doit plaquer les échantillons d’une fine couche d’or —
platine. Cette couche est déposée au rythme de 50 A/min durant 7 min, donc 350 A au
total. .e MEB a ét€ utilis€ pour I’observation globale des échantillons (un grossissement

de 100X).

/r\Plan de cryofracture

Figure C.2. Plan de cryofracture des pastilles de 25 mm de diamétre.

La partie opposée de chaque échantillon utilisé lors des observations en MEB, a
été utilisée pour des observations en microscopie optique et les mesures de I’ orientation.
Pour mesurer Porientation des fibres, les échantillons ont été polis selon la méthode
métallographique jusqu’a I'obtention d’un fini miroir. La derniére étape de polissage de
la surface des échantillons coulés dans I’époxy, doit se faire & I’alumine de 1 micron. A
P’aide des micrographes prises en microscopie optique (Snappy) et une table digitalisante,

les axes des ellipses et leurs angles peut étre calculés.
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Figure C.3. Systéme d’axes pour la mesure des angles o et B.

La méthode d’analyse la plus utilisée pour la mesure de !’orientation se base sur la
mesure des ellipses apparentes sur la surface provenant de la coupure des fibres. En
utilisant le facteur de forme de I’ellipse (grand axe/petit axe) et la direction du grand axe,
on peut retrouver 1’orientation en trois dimensions de la fibre originale. Les définitions
des angles a et b sont utilisées a la figure C.3 et la figure C.4 présente le plan de polissage
d’un échantillon coupé et la définition des longueurs utilisées pour mesurer ’angle B. a et
b sont respectivement le petit et le grand axes de Pellipse. L’angle o est défini comme

étant I’angle dans le plan de P'ellipse et sin B = a/b.

Plan de polissage b B

Figure C.4. Définition des longueurs utilisées pour mesurer I’angle .
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La prise des mesures d’orientation peut générer une erreur importante lorsque les
fibres s’orientent selon une direction préférentielle, car la probabilité de couper une fibre
perpendiculaire au plan de coupe est beaucoup plus grande que d’en couper une parallele
au plan. Afin de s’assurer d’obtenir des mesures fiables, certains auteurs ont proposé des
corrections (Fischer et Eyerer 1988, Bay et Tucker 1992, Thiery 1991). Dans ce travail, la

correction de Thierry (1991) a été choisie et utilisée. Cette correction est établie sur un

facteur de correction bas€ sur I'aire des ellipses : Facteur de correction = §, / ZZS ;- Cette

surface §; est a la fois dépendante du diamétre de la fibre et de la concentration des fibres.

Pour mieux connaitre 1'état d’orientation des fibres dans un échantillon, le tenseur
de D'orientation doit étre calculé. A partir des angles a et b mesurés, le vecteur unitaire

directeur des fibres, p, a des composants égaux a :

Py =sinP
p, =cosPcosa

p. =cosPsina

Le calcul des termes du tenseur se réduit a une somme sur les fibres (Ausias

1991) :

1 .

Qoo = iPePe‘i’(p)dP =~ sin’ B,
n
1

a, = iPrPT\P(P)dp == cos’ B, cos’ o,
n
1

a, = [p.p¥(®)dp ==Y cos’B,sin’ a,
n

ou W est la fonction de distribution de I’orientation des fibres et n est le nombre des

fibres.

Des échantillons, cisaillés a de différentes conditions dans un rhéometre, ont été

utilisés pour des observations en microscopie. Une étude similaire a été effectuée
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également sur des suspensions modeles de fibres a I'aide du rhéometre RheoScope 1
(ThermoHaake) qui est muni d’un microscope optique (voir annexe B). Dans ce travail
préliminaire sur les composites du polypropyléne, un seul échantillon sur une seule
concentration (PP20) pour chaque condition a été étudié et la reproductibilité des mesures
n’a pas été vérifiée. Par la suite, un exemple de micrographe prise en microscopie optique
a été uniquement présenté pour I’échantillon non-cisaillé du PP20. Le tableau C.1 résume

les résultats obtenus par cette étude préliminaire.

Tableau C.1. Résultats obtenus pour le PP20 par la mesure de I’orientation pour

différentes conditions de cisaillement 4 T = 200°C.

Conditions du cisaillement Nombre
Contrainte  Durée  Correspondance sur la courbe d’ellipses a(® BO
(Pa) (s) de viscosité transitoire mesurées
0 0 - 1563 28 28
600 100 Pic de viscosité 179 28 53
600 7000 Plateau du régime établi 860 34 56
600 7000

Pic de retour - - -
-600 2400

C.3.1. Echantillon non-cisaillé de PP20

Afin de connaitre I’orientation des fibres dans une pastille moulée avant tout essai
rthéologique, un échantillon non-cisaillé de PP20 a été préparé pour la mesure de
’orientation. Exceptionnellement, cet échantillon a ét€ fracturé au milieu de la pastille
pour permettre un balayage complet en rayon et également en €paisseur. Les figures C.5
et C.6 montrent respectivement le PP20 observé au MEB et a la microscopie optique.
Dans la figure C.5, le bord de I’échantillon a été donné comme repere. Dans ce
micrographe, les fibres et les cavités apparentes dans le polymére (dus aux fibres

arrachées lors de la cryofracture), nous montrent une orientation aléatoire des fibres dans
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I’échantillon. Cette observation étant qualitative, doit &tre quantifiée par la mesure des

angles des fibres pour nous donner plus d’information sur 1’état d’orientation des fibres.

. ' iy ot
Figure C.5. FEchantillon PP20 non-cisaillé observé a 1'aide de MEB.

Figure C.6. FEchantillon PP20 non-cisaillé observé a I’aide de la microscopie

optique. Les ellipses observées ont servi pour la mesure de I’ orientation.
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La figure C.6 montre une micrographe utilisé pour mesurer I’orientation des fibres
dans I’échantillon. A I’aide de la méthode expliquée dans le chapitre C.3, les mesures des

angles o et B ont été effectuées tout en balayant le rayon et I’épaisseur de 1’échantillon.

120
Or=105-125mm

100 + 9 Br=84-105mm
HBr=63-84mm

Br=42-63mm
Br=21-42mm
Br=0-21mm

xR
=
T

Nombre de fibres
=28
=]

-9 86 -70 -6 -50 -40 -30 -20 -1¢ O 106 20 30 40 50 o0 70 806 90
o, (degré)

(@)

Br=10.5-12.5mm
Br=84-105mm
Br=63-84mm
Br=42-63mm
Br=21-42mm
Er=0-21mm

Nombre de fibres
&
(=]

30
20
19
o
© S 10 15 20 25 30 35 40 45 58 55 60 65 70 75 80 85 90
B (degré)
(b)

Figure C.7. Histogramme de distribution de [Porientation des fibres de

I’échantillon de PP20 non-cisaillé. (a) Angle «; (b) Angle B.

La figure C.7 présente I’histogramme des angles o et B dans cet échantillon non-

cisaillé. Comme on peut le constater dans la figure C.7a, la plupart des fibres ont un angle
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o de #30°. L angle moyen en nombre de o est 28°, ce qui confirme que les fibres ont
tendance a s’orienter dans le plan de compression des pieéces moulées par la compression.
La figure C.7b montre la distribution des angles B des fibres. Pour un grand nombre
mesuré de fibres (plus de 1500) un angle moyen de 28° a été calculé. Pour mieux
connaitre D’état d’orientation des fibres, les composants du diagonal du tenseur

d’orientation, a;, ont été également calculés :

gy = 0.489
a, =0252
a. =0258

En comparant ces valeurs calculées avec les valeurs théoriques pour un état
isotrope des fibres,a,, = a, =a_ = 0.333, nous constatons une différence entre ces

valeurs pour I’état initial des fibres. Cette différence peut étre due a la facon de préparer
les échantillons (moulage par compression) et également les mesures des angles qui ne
sont que des mesures préliminaires sur un seul échantillon. Dans les calculs, 1’état initial

de V'orientation des fibres est considéré comme étant isotrope en 3D (Ausias 1992).

C.3.2. Echantillon cisaillé de PP20 (pic de viscosité)

Pour mieux connaitre I’orientation des fibres au niveau du pic de viscosité un
échantillon cisaillé a une contrainte de 600 Pa pendant 100 s a été prélevé. La figure ¢.8
montre le PP20 observé au MEB. Comme on peut constater sur cette micrographe, la
plupart des fibres ont un angle trés petit, sauf pour celles qui sont arrachées de la résine.
Pour avoir des informations quantitatives une mesure a été effectuée et les angles o et
sont respectivement égaux a 28° et 537 (voir le tableau C.1). Le tenseur de I’orientation

calculé pour cette condition est :

ag = 0.585
a, =0.332
a_ =0.083
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= S

Figure C.8. FEchantillon PP20 cisaillé sous une contrainte de 600Pa pendant

100 s (au niveau de pic de viscosité), observé a I’aide de MEB (150X).

Ces valeurs du tenseur d’orientation nous montrent que les fibres sont déja
orientées dans la direction de 1’écoulement. Un plus grand nombre de mesures doit €tre
effectué sur plusieurs échantillons pour avoir des données plus fiables, afin de pouvoir en

déduire de conclusions correctes.

C.3.3. Echantillon cisaillé de PP20 (plateau du régime établi)

L’orientation des fibres, au niveau du plateau du régime permanent dans les
mesures rhéologiques, a été étudiée avec le prélevement d’un échantillon cisaillé a une
contrainte de 600 Pa pendant 7000 s. La figure C.9 montre le PP20 observé au MEB. Le
bord de I’échantillon est montré comme repére. A Pexception des fibres libres arrachées
lors de la fracture, nous constatons que la plupart des fibres ont une orientation
préférentielle. La figure C.10 montre I'histogramme de la distribution des angles b des
fibres pour cet échantillon cisaillé. La mesure effectuée pour cet état d’orientation montre

des angles o et B respectivement égaux a 34° et 56°.
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Le tenseur de I’orientation calculé pour cette condition est :

gy = 0.612
a, =0307
a, =008l

Ces valeurs pour le tenseur d’orientation nous montrent que les fibres sont
orientées dans la direction de I’écoulement et cette orientation est plus prononcée en
comparaison avec I’état des fibres au niveau du pic de viscosité. Pourtant il existe une
différence avec une orientation préférentielle totale dans le sens de I’écoulement avec le
composant age = 1. Cette différence peut étre due a la courbure de I'échantillon et les
fibres rigides assez grandes pour donner un systeme idéal de I’écoulement en cisaillement
simple. Pour avoir plus de précision, plus de mesures doivent &tre réaliser sur plusieurs

échantillons pour chaque condition.

C.3.4. Echantillon cisaillé de PP20 (pic de retour)

Au niveau du pic de retour sur la courbe de la viscosité transitoire, un échantillon
de PP20 a été prélevé. L’échantillon a €t€ & une contrainte de 600 Pa, pendant 7000 s
suivi d’une méme contrainte pendant 2400 s dans le sens inverse. La figure C.11 montre
le PP20 observé au MEB. De fagon qualitative, on constate que la plupart des fibres
semblent orientées avec un faible angle o. A cause de la dégradation de la matrice,
évidente dans la micrographe, la préparation de I’échantillon au polissage n’a pas €té

possible et aucune mesure de I’orientation n’a pas pu étre effectuée pour cette condition.



275

Figure C.11. Echantillon PP20 cisaillé sous une contrainte de 600Pa pendant
7000 s suivi d’une contrainte de 600 Pa pendant 2400 s dans le sens inverse (au niveau du

pic de retour), observé a I’aide de MEB (100X).
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ANNEXE D — CODES DE PROGRAMMES

Les modeles ont €té programmés en Matlab, dans cette partie, les programmes
des modeles généralisé de Jeffery et Folgar et Tucker ont été résumés. Comme dans le
MatLab, tous les produits tensoriels et vectoriels n’existaient pas, ils ont été définis dans

des « subroutines » dont le programme principal les utilise.
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D.1. Equations d’évolution de a; et b (modéle généralisé de Jeffery)

function dB = EvolutionExtJef(t, Av, flag, L, closure);

% DB compute a 6x1 column vector of derivatives for the conformation tensor where
% t=time (not used, but must be present for the MatLab ODE integration)

%  Av = the current orientation (in 24x1 column vector form)

% flag = a character string used by MatLab ODE integrators

% L = the velocity gradient tensor (3x3 matrix form)

% closure = the closure approximation (e.g., 'E' for ORE closure)

global AT

global I

global lamb

global Lb

global Lc

global K

global kbT

global power

global FractionVolfibre
global neff

Avl=Av(1:18);
Av2=Av(19:24);

Al = vec2tens3(Avl);
A2 = vec2tens(Av2);
A4 = ortho(A2, closure);
W = (L-L);

D =(14+L";

gammadot = sqrt(0.5*trace(D*D));

% Velocity tensor in 3x3x3 tensor form
% QOrientation tensor in 3x3 matrix form
% 4th-order orientation tensor (6x6)

% Vorticity tensor

% Strain rate tensor

% Scalar strain rate

dFdA = neff * kbT * (- 0.5%inv(A2) - K¥A2Z + 1.5%eye(3)); % F = Free Energy

IB = product2x3(A1.1I);

E1 = product3x2(AT,D);
E2 = permute(E1,[3 2 1]);

ATD= tens323vec6b(E2);

ATGD = product6x1(A4, ATD);
E3 = product3x2(AT,dFdA);
E4 = permute(E3,[3 2 1]);

ATA=tens323vec6(E4);
TRIC = trace(inv(A2));
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9% ---- Extended Jeffery's model + Interaction fiber-fiber ----
% ---- Equation (20) ----

dA(1:18) =tens32vec( - 0.5 * product2x3(A1,W) ... % Convection terms
- 2 * product6x1(A4, ATA) ... % F-F Interactions
- Lb * peff * gammadot * ( IB - 0.5 * Jamb * product6x1(A4, ATD) ) );
% Dissipative terms

% ---- Equation (18) ----

dA(19:24) =tens2vec( 0.5 * ( AZ*W + (A2*W)') .. % Convection terms
- ( product3x3(AT,IB) + (product3x3(AT,IB))' ) ...
+ Lc*kbT*neff * gammadot *...
(- (TRIC/6) * ( A2 - (eye(3)/3) ) ...
-K* (- A2*¥A2 + (A2/3) + (trace(A2*A2))/3 - (eye(3)/9) ) ) );
% Dissipative terms
dB =dA"

return % return derivative in 6x1 column vector form
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D.2. E'quaﬁem d’évolution de a; (modéle modifié¢ de Jeffery)

function dB = EvolutionModlef(t, Av, flag, L, closure);

% DB compute a 6x1 column vector of derivatives for the conformation tensor where
% t = time (not used, but must be present for the MatLab ODE integration)

% Av = the current orientation (in 24x1 column vector form)

% flag = a character string used by MatLab ODE integrators

% L =the velocity gradient tensor (3x3 matrix form)

% closure = the closure approximation (e.g., E' for ORE closure)

global lamb

global Lc

global kbT

global K

global power

global alpha

global FractionVolfibre
global neff

A2 = vec2tens(Av); % Orientation tensor in 3x3 matrix form
A4 = ortho(A2, closure); % 4th-order orientation tensor (6x6)

R4 =diag([111222],0); % used for contracted-notation products
W = (L-LY; % Vorticity tensor

D=({+L"; % Strain rate tensor

gammadot = sqrt(0.5*trace(D*D)); % Scalar strain rate

TRIC = trace(inv(A2));

% ---- Modified Jeffery's model (Equation 23)

dB =tens2vec ( 0.5 * ( A2*W + (A2¥W) ) .. 9% Convection terms
-0.5 % lamb * ... % Convection terms
( vec2tens(A4*R4*tens2vec(D)) + ( vec2tens(A4*R4*tens2vec(D)) )' ...
- { product4x2bis(A4,D) + ( product4x2bis(A4,D) ) ) ) ...
+ Lc*kbT*neff * gammadot * ... % Diffusion terms
(- (TRIC/6) * ( A2 - (eye(3)/3) ) ...
K (- A2*A2 + (A2/3) + (trace(A2*A2))/3 - (eve(3)/9) ) ) );

return % return derivative in 6x1 column vector form



280

D.3. Equaﬁ@n d’évolution de a, (modéle de Folgar et Tucker)”

function dB = EvolutionJef(t, Av, flag, L, CI, closure);

9% DB compute a 6x1 column vector of derivatives for the conformation tensor where
% t=time (not used, but must be present for the MatlLab ODE integration)

% Av = the current orientation (in 24x1 column vector form)

% flag = a character string used by MatLab ODE integrators

% L = the velocity gradient tensor (3x3 matrix form)

% closure = the closure approximation (e.g., 'E' for ORE closure)

global lamb

global alpha

A2 = vec2tens(Av); % Orientation tensor in 3x3 matrix form
A4 = ortho(A2, closure); % 4th-order orientation tensor (6x6)

R4 =diag([111222]},0) % used for contracted-notation products
W =(L-L'); % Vorticity tensor

D =(0L+L"Y; % Strain rate tensor

gammadot = sqrt(0.5%trace(D*D)); % Scalar strain rate

% ---—- Folgar-Tucker-Jeffery's model ----

dB = tens2vec( 0.5%(A2*¥W - W*A2) ...
+ 0.5*lamb*(A2*D + D*A2 - 2*vec2tens(A4*R4*tens2vec(D))) ...
+ 2*CI*gammadot®(eye(3)-3*A2) );

% ---- Introduction of the slip coefficient alpha ----
dB = alpha*dB;

return % return derivative in 6x1 column vector form

* Les programmes décrivant le modgle de Folgar et Tucker ont été développés par Pr. Charles L. Tucker 111
que j aimerai remercier pour nous les avoir communiqués.
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D.4. Equation constitutive (modéle généralisé de Jeffery)

function sigma = ContrainteModJef( A2, closure, L );

global eta0
global lamb
global Lc
global kbT
global K
global neff
global n

A4 = ortho(A2, closure); % 4th-order orientation tensor (6x6)

R4 =diag([111222],0); % used for contracted-notation products
W =(L-L'); % Vorticity tensor

D =(L+L"; % Strain rate tensor

gammadot = sqrt(0.5*trace(D*D)); % Scalar strain rate

dFdA = kbT * (- 0.5%inv(A2) - K¥A2 + 1.5%eye(3)); % F = Free energy
TRAFdAA = trace(dFdA);

DA=diag(A2);

Dia=DA(1)+DA(2)+DA(3);

TA = inv(A2);

% ---- Equation (25) Suitable for all approximations ----

sigma = - eta0*D + lamb * kbT * neff * ...
(1.5 * ((TransfLLIJ(A4)) + (TransfLLL(A4)) ...
- (TransfILJL(A4)) - (TransfILIJL(A4))') ...
+ ( (product4x2bis(A4,IA)) + (productd4x2bis(A4,IA)) ...
- (vec2tens(A4*R4*tens2vec(IA)) + (vec2tens(A4¥R4*tens2vec(IA)))' ) ) ...
+ K * ( (product4x2bis(A4,A2)) + (product4x2bis(A4,A2))' ...
- ( vec2tens(A4*R4*tens2vec(A2)) + (vec2tens(A4*R4*tens2vec(A2))) ) ) )

return % return derivative in 6x1 column vector form



D.5. Equaﬁ@n constitutive (modéle de Lipscomb)

function sigma = Lipscomb (A2, closure, L);

global etal
global FractionVolfibre
global mul
global mu2

A4 = ortho(A2, closure); % 4th-order orientation tensor (6x6)

R4 =diag([111222},0); % used for contracted-notation products
D =@L+L"Y; % strain rate tensor
gammadot=sqrt(0.5*trace(D*D)); % scalar strain raie

sigfibre = vec2tens(A4*R4*tens2Zvec(D));

sigma = -eta0*(D + FractionVolfibre*(mu1*D + mu2*sigfibre));
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D.6. Programmes exécutables

D.6.1. Régime établi

% THIS VERSION CALCULATES AND PLOTS THE STEADY STATE BEHAVIOR

forj=1:61; % At each shear rate:
if j==1

L=zeros(3);
strain=0.001;
L(2,1)=strain, % Simple shear flow
%1.(1,1) = - 0.5%strain; % Elongational flow
P%142,2) = - 0.5%strain; % Elongational flow
%1.(3,3) = 1*strain, % Elongational flow

% ---- Modified Jeffery ----
Azero=eye(3)/3; % a(i,j) initial-isotropic status

% ---- Extended Jeffery ----
Y% Avzero = zeros(24,1);
P%oAvlzero= Avzero(1:18); % b(i,j,k) initial
Yo Avzero(19)=1/3;
Yo Avzero(20)=1/3;
Y% Avzero(21)=1/3;
%o Av2zero= Avzero(19:24); % a(i,j) initial-isotropic status
Y% Avzero=cat(l, Avlzero, Av2zero);

else
strain=10"N(log10(strain)+0.1);
1(2,1)=strain, % Simple shear flow
%1.(1,1) = - 0.5%strain; % Elongational flow
%1.(2,2) = - 0.5%strain; % Elongational flow
%1.(3,3) = 1*strain, % Elongational flow

% ---- Modified Jetfery --—-
Azero=AZ;

% ---- Extended Jeffery ----
Yo Avzero= Av;

end
W = (L-L"); % Vorticity tensor
D =(L+L"; % Strain rate tensor

gammadot = sqrt(0.5*trace(D*D)); % Scalar strain rate [}=1/s



time=100/gammadot;
tspan=[0 time];

% ---- Integrate the ODE ----
odeset('RelTol', 1e-6, 'AbsTol', 1e-9);

% ---- Folgar and Tucker --—
[T,Av] = oded45('EvolutionJef', tspan, tens2vec(Azero), [], L, CI, closure);

% ---- Modified Jeffery ----
[T,Av] = ode45(EvolutionModJef’, tspan, tens2vec(Azero), [], L, closure);

% ---- Extended Jeffery ----
[T,Av] = ode45(EvolutionExtef, tspan, [Avlzero; Av2zero], [], L, closure),

for i = length(T);
A2 = vec2tens(Av(i,:)"); % for Jef. and Mod. Jef.
Av2= Av(i,19:24);
Avl= Av(i,1:18);
Al = vec2tens3(Avl);
A2 = vec2tens(Av2); % for Ext. Jef.
A4 = ortho(A2, closure); % re-compute A4 at each time

% ---- Extended & Modified Jeffery ----
sigma = ContrainteModJef( A2, closure, L );

% ---- Lipscomb ----
sigma = Lipscomb (A2, closure, L);

% ---- Rheological properties ----
eta = -( sigma(2,1)/(gammadot) );
nl = (sigma(1,1) - sigma(2,2));
n2 = (sigma(2,2) - sigma(3,3));
etaclong = -(sigma(3,3) - sigma(l,1))/gammadot;
N1 _N2 =nl-n2;
Gama = T * gammadot;
TR = trace (A2),
Eta(i) = eta;
Ni@d) =nl;
Etaelong(i) = ctaclong;
end
Results(j,:) = [gammadot, eta, nl, n2};
end
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save Results.txt Results -ascii

figure(1);
semilogx(gammadot,Eta,b-);
xlabel('shear rate');
ylabel("Viscosity');

hold on;

figure(2);
semilogx(gammadot,N1,'b-");
xlabel('shear rate');
ylabel('N_1 - N_2);

hold on;
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D.6.2. Régime transitoire (aller)

% THIS VERSION CALCULATES AND PLOTS VISCOSITY, NORMAL
% STRESSES, Aij AND Bijk

odeset('RelTol', 1e-6, 'AbsTol', 1e-9);
% Integrate the ODE

% ---- Extended Jeffery model ----
[T,Av] = ode45('EvolutionExtef, tspan, [Av1zero; Av2zerol, {], L, closure);

% ---- Modified Jeffery model ----
[T,Av] = ode45('"EvolutionModJef', tspan, (Avzero), [, L, closure);

% ---- Folgar and Tucker model ----
[T,Av] = ode45('EvolutionJef, tspan, tens2vec(Azero), [], L, CI, closure);

AG66 = zeros(size(T));
for i = I:length(T);

% ---- Extended Jeffery model ----
Av2= Av(i,19:24);
Avl= Av(i,1:18);
Al = vec2tens3(Avl);
A2 = vec2tens(Av2);

% ---- Modified Jeffery or Folgar and Tucker model ----
A2 = vec2tens(Av(i,)");

A4 = ortho(A2, closure); % re-compute A4 at each time
A66(1) = A4(6,6); % and save the desired component

% ---- Extended Jeffery model ----
sigma = ContrainteModJef( A2, closure, L );

% ---- Lipscomb constitutive equation ----
sigma = ContrainteJef( Av, closure, L );

eta = -( sigma(2,1)/(gammadot) );

%etaclong = -(sigma(3,3) - sigma(1,1))/gammadot;
nl = (sigma(l,1) - sigma(2,2));

n2 = (sigma(2,2) - sigma(3,3));

Ni_N2 =nl-n2;
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Eta(i,:) = eta;
N1@,:) = nl;
N2(,:) =n2;
NIN2G,:) = N1_N2;
%Etaelong(i,:) = etaclong;
Gama = T * gammadot;
TR(i) = trace (A2),

end

Avlretour=Avl;
Av2retour=Av2;

if i==length(T)
etainf=eta;
else
eta=eta;
end
for i=1:length(T);
Etaadd(i,))=Eta(i,:)/etainf;
end

%if i==length(T)

% etaelonginf=etaelong;
Joelse

% etaclong=etaelong;
Yoend

Pfor i=1:length(T);

% Etaelongadd(i,:)=Etaelong(i,:)/etaclonginf;

Y%end

if i==length(T)
NIiN2inf=N1_N2;

else
Ni_N2=NI1_N2;

end

for i=1:length(T);

NIN2add(i,))=N1N2(i,:)/N1N2Zinf;

end

if i==length(T)
Nlinf=nl;
else
nl=ni;
end
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for i=1:length(T);
Niadd(,)=N1(,:)/N1linf;
end

if i==length(T)
N2inf=n2;
else
n2=n2;
end
for i=1:length(T);
N2add(i,:)=N2(i,:)/N2inf;
end

% ---- Plot with line only ----

% ----Plot A1212 vs strain ----

figure(1)

plot(T,A66,b-");

xlabel('Gama');

ylabel('Fourth-order component A_{1212}");
hold on;

aa = [Gama,A66];

save A66.txt aa -ascii

% ---- Plot viscosity vs strain ----
figure(2);

plot(Gama,Etaadd,'r-");
xlabel('Gama');

ylabel('Viscosite reduite’);

hold on;

% ---- Plot elongational viscosity vs strain ----
Dofigure(3);

%oplot(Gama,Etaelong,'b-');

%xlabel('Gama');

%ylabel('Viscosite elongationelle reduite');
%hold on;

%Elongl1Cal = [Gama, Etaclong, Etaclongadd];
%save Elongl.txt Elong1Cal -ascii

% ---- Plot N1-N2 vs strain --—--
figure(4);
plot(Gama,N1N2add,'r-');
xlabel('Gama');



ylabel('N1-N2');
hold on;

% ---- Save the results ----
Aller1Cal = [Gama, Eta, Etaadd, N1, Nladd, N2, N2add, NIN2, N1N2add];
save Allerl.txt Aller1Cal -ascii

% ---- Plot Aij vs strain -
figure(5);

% ---- Modified Jeffery model ----
plot(Gama,Av(:,1), Gama,Av(:,2), Gama,Av(:,3),
Gama,Av(:,4), Gama,Av(:,5), Gama,Av(:,0));

% ---- Extended Jeffery model ----

plot(Gama,Av(:,19), Gama,Av(:,20), Gama,Av(:,21), ...
Gama,Av(:,22), Gama,Av(;,23), Gama,Av(:,24));

xlabel('Gama');

ylabel('Aij");

legend('A_{11},'A_{22},'A_{33},'A_{23},'A_{31},'A_{12}',-1);

hold on;

yy = [Gama,Av(:,1), Av(:,2), Av(:,3), Av(:,0)];
yy = [Gama,Av(:,19), Av(:,20), Av(:,21), Av(:,24)];
save A2aller.txt yy -ascii

% ---- Plot Bijk vs strain for Extended Jeffery model ----
figure(6);
plot(Gama,Av(:,1), Gama,Av(:,2), Gama,Av(:,3),'+, ...
Gama,Av(:,4),'p', Gama,Av(:,5),'0, Gama,Av(.,6), ...
Gama,Av(:,7), Gama,Av(.,8), Gama,Av(:,9), ...
Gama,Av(:,10),'p', Gama,Av(;,11), 'd', Gama,Av(;,12), ...
Gama,Av(:,13),'+', Gama,Av(:,14),'d’, Gama,Av(:,15), ...
Gama,Av(:,16), Gama,Av(;,17), Gama,Av(:,18), MarkerSize', 2);
xlabel('Gama');
ylabel('Bijk');
legend('B_{111}', 'B_{221})', ' B_{331}, 'B_{231}", ' B_{311}’, ' B_{121}/, ...
B_{112}, B_{222},'B_{332}', ' B_{232}, 'B_{312}, 'B_{122}, ...
B_{113},'B_{223},'B_{333}, 'B_{233}, 'B_{313}, B_{123}',-1);

zz = [Gama,Av(:, 1), Av(:,2), AV(,3), Av(:,4), Av(.S), Av(.,6), ...
Av(:, 7, Av(:.8), Av(:,9), Av(:,10), Av(.,11), Av(:,12), ...
Av(:,13), Av(:,14), Av(:,15), Av(:,16), Av(:,17), Av(:,18)];
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save Baller.txt zz -ascii

D.6.3. Régime transitoire (retour)

% THIS VERSION CALCULATES AND PLOTS VISCOSITY, NORMAL
% THIS VERSION CALCULATES AND PLOTS REDUCED VISCOSITY, Aij AND
Bijk

odeset('RelTol’, 1e-6, 'AbsTol', 1e-9);

% Integrate the ODE

% ---- Extended Jeffery model ----

[T,Av] = ode45('EvolutionExtlef’, tspan, [Avlzero; Av2zero], [}, L, closure);

% ---- Modified Jeffery model ----
[T,Av] = ode45('EvolutionModJef', tspan, (Avzero), [], L, closure);

% ---- Folgar and Tucker model ----
[T,Av] = ode45('EvolutionJef, tspan, tens2vec(Azero), [], L, CI, closure);

A66 = zeros(size(T));
fori= l:length(T);

% ---- BExtended Jeffery model ----
Av2= Av(1,19:24);
Avl= Av(1,1:18);
Al =vec2tens3(Avl);
A2 = vec2tens(Av2);

% ---- Modified Jeffery or Folgar and Tucker model ----
A2 = vec2tens(Av(i,:)");

A4 = ortho(A2, closure); % re-compute A4 at each time
A66(1) = A4(6,6); % and save the desired component

% ---- Extended Jeffery model --—-
sigma = ContrainteModJef( A2, closure, L );

% ---- Lipscomb constitutive equation ----
sigma = ContrainteJef( Av, closure, L );

etaR = -( sigma(2,1)/(gammadot) );
nlR = (sigma(l,1) - sigma(2,2));
n2R = (sigma(2,2) - sigma(3,3));



N1_N2R =niR-n2R;
EtaR(i,:) = etaR;
NIRG,:) =nlR;
N2R(i,:) = n2R;
NIN2R(,:) = N1_N2ZR;
GamaR =T * gammadot;
%TR() = trace (A2),

end

Avlretour=Avl;
Av2retour=Av2Z;

if i==length(T)
ctainf=eta,
else
eta=eta;
end
for i=1:length(T);
EtaRadd(i,:)=EtaR(i,:)/etainf;
end

if i==lengih(T)
NIN2inf=N1_N2,
else
NI_N2=N1_N2;
end
for i=1:length(T);
NIN2Radd(,: )=NIN2R(,:)/N1N2inf;
end

if i==length(T)
Niinf=nl;
else
ni=nl;
end
for i=1:length(T);
Ni1Radd(,:)=N1R(4,:/Nlinf;
end

if i==length(T)
N2inf=n2;
else
n2=n2;
end
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for i=1:length(T);
N2Radd(i,:)=N2R(,:)/N2inf;
end

% ---- Plot with line only ----

% ---- Plot A1212 vs strain ----

figure(1)

plot(GamaR,A66,'b-;

xlabel('Gama');

ylabel('Fourth-order component A_{1212}");
hold on;

aa = [GamaR,A66];

save A66r.txt aa -ascii

% ---- Plot viscosity vs strain ----
figure(2);

semilogx(GamaR EtaR,'b-');
xlabel('Gama');

ylabel("Viscosite reduite');

hold on;

% ---—- Plot N1-N2 vs strain ----
figure(4);
plot(GamaR,NIN2Radd,'b-);
xlabel('Gama');
ylabel('N1-N2%;

hold on;

% . ---- Save the results --—-

Retour1Cal = [GamaR, EtaR, EtaRadd, NIR, NI1Radd, N2R,
NINZRadd];

save Retourl.txt RetourlCal -ascii

9% ---—- Plot Aij vs strain ----
figure(5);

% ---- Modified Jeffery model ----
plot(GamaR,Av(:,1), GamaR,Av(:,2), GamaR,Av(:,3), ...
GamaR,Av(:,4), GamaR,Av(:,5), GamaR,Av(:,6));

% ---- Extended Jeffery model ----
plot(GamaR,Av(:,19), GamaR,Av(:,20), GamaR,Av(:,21), ...
GamaR,Av(:,22), GamaR,Av(:,23), GamaR,Av(:,24));

N2Radd,
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xlabel('Gama');

ylabel('Aij');
legend(A_{11},'A_{22},'A_{33},'A_{23},'A_{31},'A_{12},-1);
hold on;

vv = [GamaR,Av(:,1), Av(:,2), Av(:,3), Av(:,6)];
vv = [GamaR,Av(:,19), Av(:,20), Av(:,21), Av(:,24)];
save A2retour.txt vv -ascil

% ---- Plot Bijk vs strain for Extended Jeffery model -
figure(6);
plot(GamaR,Av(:,1), GamaR,Av(:,2), GamaR,Av(:,3), ...
GamaR,Av(:,4), GamaR,Av(:,5), GamaR,Av(:,6), ...
GamaR,Av(:,7), GamaR,Av(:,8), GamaR,Av(:,9), ...
GamaR,Av(:,10), GamaR,Av(:,11), GamaR,Av(:,12), ...
GamaR,AV(:,13), GamaR,Av(:,14), GamaR,Av(:,15), ...
GamaR,Av(:,16), GamaR,Av(:,17), GamaR,Av(:,18));
xlabel('Gama');
ylabel('Bijk’);
legend('B_{111}','B_{221}, 'B_{331}, B_{231}, 'B_{311}", 'B_{121}, ...
B_{112},'B_{222},'B_{332}, 'B_{232}, 'B_{312}, 'B_{122}, ...
"B_{113}, 'B_{223}, 'B_{333}, 'B_{233}", 'B_{313}, 'B_{123},-1);

ww = [GamaR,Av(:,1), Av(:,2), Av(:,3), Av(:,4), Av(:,5), Av(;,0), ...
AV(:,7), Av(:,8), Av(.,9), Av(:,10), Av(:,11), Av(;,12), ...
Av(:,13), Av(:,14), Av(.,15), Av(;,16), Av(;,17), Av(:,18)];
save Bretour.txt ww -ascii
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D.7. Conditions initiales pour un écoulement en cisaillement simple

D.7.1. Aller

% Set up initial data, for simple shear flow in reverse flow
clear all

global AT
global I
global Lb
global L¢
global lamb
global eta0
global K
global kbT
global alpha
global mul
global mu2
global power
global neff
global closure
global FractionVolfibre

global xi

Lfibre = 260e-06; % Average length of fiber [|=m;
Dfibre = 14e-06; % Average diameter of fiber [}=m
LsurD = Lfibre/Dfibre; % Aspect ratio of fibers
Densitefibre=2500; % Density of glass fibers []=kg/m3;
DensiteMatrice=760; % Density of PP at 200C []=kg/m3
FractionMassfibre=0.20; % Mass fraction of fibers;

FractionMassMatrice=1-FractionMassfibre; % Mass fraction of PP

FractionVolfibre=(FractionMassfibre/Densitefibre) ...
/((FractionMassMatrice/DensiteMatrice) ...
+(FractionMassfibre/Densitefibre));
% Volume fraction of fibers;

FractionVolPP=(FractionMassMatrice/DensiteMatrice) ...
/((FractionMassMatrice/DensiteMatrice) ...
+(FractionMassfibre/Densitefibre));
% Volume fraction of PP
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rphi=(LsurD)*FractionVolfibre; % rd

VolumeMoyenfibre=(pi*Lfibre*Dfibre”2)/4, % Average volume of fibers [J=m’
n=FractionVolfibre/VolumeMoyenfibre; % Number concentration [J=m"

kb=1.3805¢-23; % Boltzmann constant [}=J/K;
Temp=25+273.15; % Absolute temperature [}=K
kbT = kb*Temp;

no=2/((30.5)y*Lfibre*Dfibre”2); % Max numbre concentration []=m’3
FractionVolfibreMax=0.32; % Max Volume fraction

% Metzner (1985, JoR) for =18
NsurNo=FractionVolfibre/FractionVolfibreMax; % ratio of n Metzner (1985, JoR)

% ---- Inertia ----
Deff = 15e-6; % Effective dimension of fiber
Leff = 300e-6;

VolumeMoyenfibreeff=(pi*Leff*Deff*2)/4; % Effective volume of fibers []=m3

neff = FractionVolfibre/VolumeMoyenfibreeft;
% Effective number concentration []=m'3
neff = neff*1°10 % Effective number concentration-phenomenology.

meff = neff*VolumeMoyenfibreeff*Densitefibre; % Mass fraction of fibers
I =zeros(3);

% ---- For Ellipsoid with the axis d, d, |
I(1,1) = ((Deff/2)"2 + Leff 2)*(meff/5);
1(2,2) = (Deff/2)"2 + Leff2)*(meft/5);
1(3,3) = ((Deff/2)"2)*(2*meft/S);

% ---- For Cylinder with the diameter d and lenght |
I(1,1) = 3*(Deft/2)"2 + Leff"2)*(mefl/12);

1(2,2) = 3*(Deft/2)"2 + Leff"2)*(meff/12);

1(3,3) = (Deft/2)*2)*(metf/2);

% ---- For Cylinder elliptic with the axis a and b and lenght I
I(1,1) = B3*(Deft/2)*2 + Leff"2)y* (meff/12);

1(3,3) = (3*(Deff2/2)"2 + Leff*2)*(meff/12);

1(2,2) = (Deft/i2)2 + (Deff2/2)"2)*(mefl/4);

% ---- Fitting parameters



I(1,H) = le-7;
1(2,2) = Le-7;
I(3,3) = 1e-7;
II =inv(D);

AT=cat(3,/000;001,0-10],J00-1;000;1 00L,[0 1 0;:-1 0 0;0 0 0});
% Alternative tensor;

% ---- For modified Jeffery and Folgar and Tucker model ----
Avzero = zeros(6,1); % a(i,j) initial-isotropic status
Avzero(1)=1/3; Avzero(2)=1/3; Avzero(3)=1/3;

Azero = eye(3)/3;

% --—- For extended Jeffery model ----

Avzero = zeros(24,1);

Avlzero= Avzero(1:18); % b(i,j,k) initial
Alzero=vec2tens3(Avlzero);

Avzero(19)=1/3; Avzero(20)=1/3; Avzero(21)=1/3;

Av2zero= Avzero(19:24); % a(i,j) initial-isotropic status
A2zero=vec2tens(Av2zero);

% ---- Model Parameters -—--

tamb = (LsurD?2 - 1)/(LsurD"2 + 1);

C =0.00L;

Lec = 6*C/(kbT); % Kinematic coefficient
CI=0.0028; % FT interaction coefficient
Lb = le-6; % Kinematic coefficient
K=0; % Interaction coefficient
alpha = 0; % slip factor

mul =2; % 1.ipscomb parameter

mu2 = (LsurD*2)/(2*(log(LsurD))); % Lipscomb parameter

mu? = 190; % Lipscomb parameter (fitting parameter)

% ---- Choose between : 'Q', 'L, H', 'P,'S", L', ' F', N, 'E’

% ---- Quadratic, Linear, Hybrid, Peaked, Smooth, Low-Cl, Fitted, Natural, Ortho

296



closure = 'F',
eta0 = lamb*kbT*neff;

L=zeros(3);

strainrate = 1;

L(2,1) = strainrate;
%L.(1,1) = - 0.5%strainrate;
%1.(2,2) = - 0.5%strainrate;
- %1.(3,3) = 1*strainrate;
W= (L-L);

D=(0+L");

% Viscosity of the matrix []=Pa.s

% Shear flow

% Elongational flow
% Elongational flow
% Elongational flow
% Vorticity tensor
% Strain rate tensor

gammadot = sqrt(0.5*trace(D*D)); - % Scalar strain rate
%gammadot = abs(strainrate)*(3/0.5),

time = 100/gammadot;
tspan = [0 time];

Parameters = [neff, lamb],
fprintf('Parameters = [111, 122, 133, L(b)]');

Parameters = [I(1,1), 1(2,2), I(3,3), Lb},
fprintf('Parameters = [Ca, K, eta0, strainrate, mul, mu2]');

Parameters = [C, K, etaQ, strainrate, mul, mu2],
fprintf('Read to run "fiber2"\n');

fprintf('Parameters = [neff, lambdal]');

D.7.2. Retour

% Set up initial data, for simple shear flow in reverse flow

L=zeros(3);

L2, 1) =-1;

W =(L-L); % Vorticity tensor

D =(@L+L"; 9% Deformation rate tensor

gammadot = sqrt(0.5%trace(D*D)); % Scalar strain rate

% ---- In the case of modified Jeffery or Folgar and Tucker model ----
Azero = A2Z; % a(i,}) initial-isotropic status

% ---- In the case of extended Jeffery model ----
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Avzero = zeros(24,1);
Avlzero = Avlretour’;
Av2zero = AvZretour’;

time = 300/gammadot;
tspan = [0 time];

fprintf('Read to run "fiber2Retour"\n');
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D.8. Produit tensoriel

1. Aagk,Bjk
function prod2x3 = product2x3(TENS1, TENS2);

% Prod3x2 = Product3x2 (TENS1, TENS2) compute a product of a tensor of 3" order
% with a tensor of 2nd order in the form of TENS1(aik). TENS2(jk);

Pl=permute(TENS1,[2 3 1]);
P2=permute(TENS2,{2 1]);

Pla="PI1(,;,1) * P2;
P2a=PI1(:,:,2) * P2;
P3a="PI1(;,:,3) * P2;
Pa = cat(3,P1a,P2a,P3a);

P = permute(Pa,[1 3 2]);
prod2x3 = permute(P,[2 1 3]);

% The result is a 3" tensor 3x3x3.
2. Aiun-Bumjk
function prod2x3bis = product2x3bis(TENS 1, TENS2);

% PROD3x2 = PRODUCT3x2 (TENS1, TENS2) compute a product of a tensor of 2
% order with a tensor of 3" order in the form of TEN S1(im). TENS2(mjk);

Pla=TENS1 * TENS2(:,.,1);
P2a=TENS1 * TENS2(:,:,2);
P3a=TENS1 * TENS2(:,:,3);
prod2x3bis = cat(3,P1a,P2a,P3a);
% The result is a 3™ tensor 3x3x3.

3. AuiBy;

function prod3x2 = product3x2(TENS1, TENS2);
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% PROD3x2 =PRODUCT3x2 (TENS1, TENS2) compute a product of a tensor of 3%
% order with a tensor of 2™ order in the form of TENS1(aik). TEN S2(kj);

Pl=permute(TENSL,[2 3 1]);
Pla=PI(:,:,1) * TENSZ;
P2a=P1(:,:,2) * TENS2;
P3a=PI1(:,:,3) * TENSZ;
Pa = cat(3,P1a,P2a,P3a);
prod3x2 = permute(Pa,[3 1 2]);
% The result is a 3" tensor 3x3x3.
4. Ag;-Buij
function prod3x3 = product3x3( TENS1, TENS2 );

% PROD3x3 = PRODUCT3x3 (TENS1, TENS2) compute a product of two tensor of
% 3" order (3x3x3) in the form of TENS 1(ai)). TENS2(bij);

Q1 = TENSI(:,:,1) * TENS2(:,;,1);
Q2 = TENS1(:,:,2) * TENS2(:,:,2);
Q3 = TENSI(:,:,3) * TENS2(:,:,3);

prod3x3 = QI + Q2 + Q3;
% The result is a 2™ tensor 3x3.
5. Aju-Bun
function prod4x2 = product4x2( TENS1, TENS2 );

% PROD4x2 = PRODUCT4x2 (TENS1, TENS2) compute a product of a tensor of 4™
% order (in the form of 6x6 matrix) with a tensor of 2" order in the form of
% Resultat(ijml) = TENS1(3jnl). TENS2(mn);

T2a = cat(3,[TENS2(1,1) TENS2(1,6) TENS2(L,5); ...
TENS2(1,6) TENS2(1,2) TENS2(1,4); ...
TENS2(1,5) TENS2(1,4) TENS2(1,3)]....
[TENS2(1,6) TENS2(6,6) TENS2(5,6); ...
TENS2(6,6) TENS2(2,6) TENS2(4.,6); ...



TENS2(5,6) TENS2(4,6) TENS2(3.6)]....
[TENS2(1,5) TENS2(5,6) TENS2(5,5); ...
TENS2(5,6) TENS2(2,5) TENS2(4,5); ...

TENS2(5,5) TENS2(4,5) TENS2(3,5)]);

T2b = cat(3,[TENS2(1,6) TENS2(6,6) TENS2(5,6); ...
TENS2(6,6) TENS2(2,6) TENS2(4,6); ...
TENS2(5,6) TENS2(4,6) TENS2(3,6)]....
[TENS2(1,2) TENS2(2,6) TENS2(2,5); ...
TENS2(2,6) TENS2(2,2) TENS2(2,4); ...
TENS2(2,5) TENS2(2,4) TENS2(2,3)],...
[TENS2(1,4) TENS2(4,6) TENS2(4,5); ...
TENS2(4,6) TENS2(2,4) TENS2(4,4); ...

TENS2(4,5) TENS2(4,4) TENS2(3,4)1);

T2¢ = cat(3,[TENS2(1,5) TENS2(5,6) TENS2(5,5); ...
TENS2(5,6) TENS2(2,5) TENS2(4,5); ...
TENS2(5,5) TENS2(4,5) TENS2(3,5)]....
[TENS2(1,4) TENS2(4,6) TENS2(4.5); ...
TENS2(4,6) TENS2(2,4) TENS2(4.4); ...
TENS2(4,5) TENS2(4,4) TENS2(3,4)]....
[TENS2(1,3) TENS2(3,6) TENS2(3,5); ...
TENS2(3,6) TENS2(2,3) TENS2(3,4); ...

TENS2(3,5) TENS2(3,4) TENS2(3,3)]);

T2A = cat(4, T2a, T2b, T2c);
T2 =permute(T2A,{32 14]);

P11 =TENSI*T2(,:,1,1);
P21 = TENS1*T2(:,;,2,1);
P31 = TENSI*T2(:,:,3,1);
P1 =cat(3,P11,P21,P31);

P12 = TENSI*T2(:,,1,2);
P22 = TENS1#T2(:,:,2,2);
P32 = TENS1*T2(:,:,3,2);
P2 = cat(3,P12,P22,P32);

P13 =TENSI*T2(:,;,1,3);
P23 = TENS1*T2(:,:,2,3);
P33 = TENS1*T2(:,:,3,3);
P3 =cat(3,P13,P23,P33);

P = cat(4, P1,P2,P3);
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prod4x2 = ipermute(P, [3 2 1 4]);
% The resultat is a 4™ tensor 3x3x3x3.
6. Aa-By
function prod4x2 = product4x2bis( TENS1, TENS2 );

% PROD4x2 =PRODUCT4x2BIS (TENS1, TENS2) compute a product of a tensor of
% 4™ order (in the form of 6x6 matrix) with a tensor of 2" order in the form of
% Resultat(i)) = TENS1(IkD)*TENS2(k);

T1 = [TENSI(1,)+TENSI(6,6)+TENSI(5,5) ...
TENS1(1,6)+TENS1(2,6)+TENS1(4,5) ...
TENS1(1,5+TENS1(4,6)+TENS1(3,5); ...
TENS1(1,6)+TENS1(2,6)+TENS1(4,5) ...
TENS1(6,6)+TENS1(2,2)+TENS1(4,4) ...
TENS1(5,6)+TENS1(2,4)+TENS1(3,4); ...
TENS1(1,5+TENS1(4,6)+TENS1(3,5) ...
TENS1(5,6)+TENS1(2,4)+TENS1(3,4) ...
TENS1(5,5)+TENS1(4,4)+TENS1(3,3)];

prod4x2 = T1 * TENS2',

% The result is a 2™ tensor 3x3.

20me 3™ ordre

7. Tenseur de ordre avec un tenseur de

function prod6x1 = product6éx1( TENSI, TENS2 );

% PROD6x1 =PRODUCT6x1 (TENSI, TENS2) compute a product of one tensor of
% 6x6 with a vector of 6x1x3;

M1 =TENS1 * TENS2(:,.,1);
M2 = TENS1 * TENS2(:,;,2);
M3 =TENSI1 * TENS2(:,:,3);

PM1 = vec2tens(M1);
PM2 = vec2tens(M2);
PM3 = vec2tens(M3);

prod6x1 = cat(3, PM1, PM2, PM3);



303

% The result is a 3™ tensor 3x3x3.

D.9. Conversion

1. Tenseur de 2 ordre & un vecteur 6x1

function Vec = tens2vec(Tens);
% Convert symmeltric 2™ order tensor Tens (in 3x3 matrix) form to 6x1 column vector

Vec = [Tens(1,1), Tens(2,2), Tens(3,3), Tens(2,3), Tens(3,1), Tens(1,2)]

Tenseur de 3 ordre & un vecteur 18x1

function Vec = tens32vec(Tens);

% Convert symmetric 3™ order tensor Tens (in 3x3x3 tensor) form to 18x1 column
% vector

Vec = [Tens(1,1,1), Tens(2,2,1), Tens(3,3,1), Tens(2,3,1), Tens(3,1,1), Tens(1,2,1), ...
Tens(1,1,2), Tens(2,2,2), Tens(3,3,2), Tens(2,3,2), Tens(3,1,2), Tens(1,2,2), ...
Tens(1,1,3), Tens(2,2,3), Tens(3,3,3), Tens(2,3,3), Tens(3,1,3), Tens(1,2,3)]";

2. Tenseur de 3™ ordre & un autre tenseur de 3™ ordre
function Vec = tens323vec6(Tens);

% Convert symmetric 3" order tensor Tens (in 3x3x3 tensor) form to three 6x1 column
% vector (in 6x1x3 tensor)

Vecl=[ Tens(1,1,1), Tens(2,2,1), Tens(3,3,1), (Tens(2,3,1)+Tens(3,2,1)), ...
(Tens(1,3,1)+Tens(3,1,1)), (Tens(1,2,1)+Tens(2,1,1)) I';

Vec2= [ Tens(1,1,2), Tens(2,2,2), Tens(3,3,2), (Tens(2,3,2)+Tens(3,2,2)), ...
(Tens(1,3,2)+Tens(3,1,2)), (Tens(1,2,2)+Tens(2,1,2)) 1

Vec3= [ Tens(1,1,3), Tens(2,2,3), Tens(3,3,3), (Tens(2,3,3)+Tens(3,2,3)), ...
(Tens(1,3,3)+Tens(3,1,3)), (Tens(1,2,3)+Tens(2,1,3)) I';

Vec = cat(3, Vecl, Vec2, Vec3);

3. Vecteur 3 tenseur de 2™ ordre



function Tens = vec2tens(Vec);
% Convert 6x1 contracted SYMMETRIC tensor to 3x3 matrix form
Tens = [Vec(1), Vec(6), Vec(5); ...
Vec(6), Vec(2), Vec(4); ...
Vec(5), Vec(4), Vec(3)];
4. Vecteur 2 tenseur de 3™ ordre
function Tens = vec2tens3(Vec);
% Convert 18x1 contracted SYMMETRIC tensor to 3x3x3 matrix form
Tens(:,.,1) = [Vec(1), Vec(6), Vec(5);
Vec(6), Vec(2), Vec(4);
Vec(5), Vec(4), Vec(3)];
Tens(:,:,2) = [Vec(7), Vec(12), Vec(11);
Vec(12), Vec(8), Vec(10);
Vec(11), Vec(10), Vec(9)];
Tens(:,:,3) = [Vec(13), Vec(18), Vec(17);
Vec(18), Vec(14), Vec(16),
Vec(17), Vec(16), Vec(15)];
Tens = cat(3, Tens(:,:;,1), Tens(:,:,2), Tens(:,:,3));

D.10. Transformation

1. Aij=ij

function Transformation = TransfLLIJ( TENS1 );
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% TRANSFORMATION convert a tensor of 4 order (in the form of 6x6 matrix) in the

% form of 2™ order tensor in form of Result(ij) = TENS1(1lij);

Transformation = [TENS1(1,D)+TENS1(2,1)+TENS1(3,1) ...
TENS1(1,6)+TENS1(2,6)+TENS1(3,6) ...
TENS1(1,5)+TENS1(2,5+TENS1(3,5); ...
TENS1(1,6)+TENS1(2,6)+TENS1(3,6) ...
TENS1(1,2)+TENS1(2,2)+TENS1(3,2) ...
TENSI(1,4)+TENSI(2,4)+TENS1(3,4); ...
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TENSI(1,5+TENS1(2,5)+TENSI(3,5) ...
TENSI(1L4)+TENS1(2,4)+TENS1(3,4) ...
TENS1(1,3)+TENS1(2,3)+TENS1(3,3)];

% The result is a 2™ tensor 3x3.
2. Ay=Bay
function Transformation = TransfILJL( TENSI );

% TRANSFORMATION convert a tensor of 4™ order (in the form of 6x6 matrix) in the
% form of 2" order tensor in form of Result(ij) = TENS1(iljl);

Transformation = [TENS1(1,1)+TENS1(6,6)+TENS1(5,5) ...
TENS1(1,6)+TENS1(2,6)+TENS1{4,5) ...
TENS1(1,5)+TENS1(4,6)+TENS1(3,5); ...
TENS1(1,6)+TENS1(2,6)+TENS1(4,5) ...
TENS1(6,6)+TENS1(2,2)+TENS1(4,4) ...
TENS1(5,6)+4TENS1(2,4)+TENS1(3.4); ...
TENS1(1,5+TENS1(4,6)+TENS1(3.,5) ...
TENS1(5,6+TENS1(2,4)+TENS1(3,4) ...
TENS1(5,5)+TENS1(4,4)+TENS1(3,3)];

% The result is a 2™ tensor 3x3.
D.11. Inverse d’un tenseur de 3¢me ordre

function Inv = INV1x1x3(Tens);

% Calculate the inverse of a 3 order tensor Tens (in 3x3x3 tensor) form.
% The tensor is a scalar in each page.

Invl = inv(Tens(:,:,1));
Inv2 = inv(Tens(:,:,2));
Inv3 = inv(Tens(:,:,3));

Inv = cat(3, Invi, Inv2, Inv3);



