POLYPUBLIE e |

PO'YtGChnique Montréal D'INGENIERIE

Titre:
Title:

Auteur:
Author:

Date:
Type:

Référence:
Citation:

POLYTECHNIQUE

A [
UNIVERSITE o

Implémentation d'un modele de communication transactionnel dans
une plate-forme en SystemC

Olivier Benny

2004
Mémoire ou these / Dissertation or Thesis

Benny, O. (2004). Implémentation d'un modele de communication transactionnel
dans une plate-forme en SystemC [Mémoire de maitrise, Ecole Polytechnique de

Montréal]. PolyPublie. https://publications.polymtl.ca/7223/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . S
PolyPublie URL: https://publications.polymtl.ca/7223/

Directeurs de
recherche: Guy Bois, & Francois-Raymond Boyer

Programme:

Advisors:

Program: Non spécifié

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/7223/
https://publications.polymtl.ca/7223/

UNIVERSITE DE MONTREAL

IMPLEMENTATION D’UN MODELE DE COMMUNICATION
TRANSACTIONNEL DANS UNE PLATE-FORME EN SYSTEMC

OLIVIER BENNY
DEPARTEMENT DE GENIE INFORMATIQUE
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE ELECTRIQUE)

JANVIER 2004

(©) Olivier Benny, 2004.

i~i

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-89179-8
Our file Notre référence
ISBN: 0-612-89179-8

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé:

IMPLEMENTATION D’UN MODELE DE COMMUNICATION
TRANSACTIONNEL DANS UNE PLATE-FORME EN SYSTEMC

présenté par: BENNY Olivier

en vue de 'obtention du diplome de: Maitrise s sciences appliquées

a été diiment accepté par le jury d’examen constitué de:

Mme NICOLESCU Gabriela, Doctorat, présidente

M. BOIS Guy, Ph.D., membre et directeur de recherche

M. BOYER Francois-Raymond, Ph.D., membre et codirecteur de recherche
M. KHOUAS Abdelhakim, Doctorat, membre

a Genevieve

iv

REMERCIEMENTS

Je tiens d’abord a remercier mon directeur de recherche, Guy Bois, pour sa pers-
picacité a propos du projet et sa confiance qu’il a portée envers moi.

Une mention spéciale va a mon codirecteur, Francois-Raymond Boyer, ainsi qu'au
professeur El Mostapha Aboulhamid, pour avoir partagé leur expérience et beau-
coup de leur temps au soutien de mes travaux.

Au sein du groupe, je remercie plusieurs collegues qui m’ont aidé de preés ou de
loin, soit Bruno Lavigueur, Mame Maria Mbaye, Luc Filion, Marc Bertola, Francois
Deslauriers et Anh Tuan Nguyen.

Finalement, ce projet n’aurait pas de sens sans Mathieu Rondonneau et Jérome
Chevalier. Je vous dois une bonne partie de ce mémoire ainsi que de bons moments

passés ensemble.

vi

RESUME

Au niveau systéme, la conception d’une application embarquée peut étre amorcée
en premier lieu par P'élaboration d’un modeéle purement fonctionnel, ot 'on ex-
prime la fonctionnalité désirée d’une application en termes de modules, de ports,

d’interfaces, de processus et de canaux.

Un projet actuel au sein du groupe de recherche en microélectronique de IEcole
Polytechnique de Montréal a pour but la conception d'une plate-forme en SystemC
(une bibliotheque d’objets en C+-+ qui permet de modéliser & haut niveau et de
simuler des systémes matériels et logiciels) qui pourra servir a la fois d’architecture
de base et d’outil d’aide a la coﬁception des systemes numériques. L’objectif primor-
dial de notre méthodologie est de permettre aux concepteurs de profiter pleinement
de la plate-forme pour pouvoir développer leurs applications, sans avoir a modi-
fier le systeme d’exploitation ou les composants généraux de la plate-forme. Cette
derniere facilite étape du partitionnement des modules; c'est-a-dire de décider
de la nature matérielle ou logicielle que prendra ces différents modules lors de la

synthese.

Dans ce travail, nous nous concentrons sur le développement d’un modele de com-
munication a plusieurs niveaux d’abstraction pour la plate-forme. Un des objectifs
important est le raffinement des communications qui devra se faire le plus possible

de fagon transparente.

L’avantage majeur de SPACE (le nom de notre plate-forme) est sans doute ses
niveaux d’abstraction, qui permettent au concepteur de choisir le niveau de détail
voulu pour ses simulations. L’inconvénient majeur est le fait qu’il n’y ait pas pour

Pinstant d’implémentation RTL équivalente au modele raffiné.

vii

ABSTRACT

At the system level, embedded application design can be started initially by creating
a functional model, where one expresses the desired functionality of an application

in terms of modules, ports, interfaces, process and channels.

An actual ongoing project inside the microelectronics research group at Ecole Po-
lytechnique de Montréal has for goal the creation of a SystemC platform consisting
of a base architecture surrounded by helping tools for digital design conception.
SystemC is a language based on C++ that makes it possible to model at a high
abstraction level and to simulate hardware and software systems. The final ob-
jective of our methodology is to make it possible to the system designers to fully
benefit from the platform to be able to develop their applications, without having
to modify the operating system or the general components of the platform. Our tool
helps in the step called module partitioning; i.e. when we decide which modules

will be hardware and others software.

This work enphases on the development of a multi-level communication model for
the platform. Communication refinement will be performed as much as transparent

as possible for the designer.

The major advantage of SPACE (our platform’s name) is undoubtedly its levels
of abstraction, which make it possible for the designer to choose the right level of
wanted details for his simulations. The main disadvantage is the fact that for the

moment there is no RTL equivalent implementation of the refined model.

TABLE DES MATIERES

DEDICACE
REMERCIEMENTS o
RESUME
ABSTRACT
TABLE DES MATIERES
LISTE DES FIGURES o
LISTE DES TABLEAUX o i
LISTE DES NOTATIONS ET DESSYMBOLES
LISTE DES ANNEXES
INTRODUCTION

CHAPITRE1 REVUE DE LITTERATURE ET PREALABLES

1.1 Modélisation de systeémes et techniques orientées objet
1.2 SystemC
1.2.1 Composants de base pour la modélisation
1.2.2 Exemples e
1.23 Lacumes Lo
1.3 Modélisation architecturale et raffinements
1.3.1 Niveaux d’abstraction avec SystemC 2.0
1.3.2 Abstraction de protocoles L.

viii

1v

vi

vii

viii

xXii

xiv

XV

XX

ot

e ~3 O

ix

CHAPITRE 2 PRESENTATION DE LA PLATE-FORME 22
2.1 Objectifs de la plate-forme 22
2.2 Description sommaire de notre solution 23
2.3 Justifications deschoix 25
2.4 Fonctionnement et concepts 26

2.4.1 Caractéristiques des modules de 'usager 26
2.4.2 Communication 27
2.4.3 Niveaux d’abstraction 31
2.5 Structure de la plate-formeo o000 33
2.5.1 Composants matériels fournis 33
2.5.2 Composants logiciels fournis 37
2.5.3 Iustances de plates-formes 39
2.6 Flot de conception (mode d’emploi pour un utilisateur) 44

CHAPITRE 3 IMPLEMENTATION DES COMMUNICATIONS 50

3.1 Fonctionnement général L. 50
3.1.1 D’un point de vue de Putilisateur 50
3.1.2 Communication module & module (UTF) 50
3.1.3 Communication module & périphérique (UTF) 53
3.1.4 Communication module 4 module (TF) 53
3.1.5 Communication module & périphérique (TF) 54

3.2 Imterfaces L. 55

3.3 Composants pour la communication 58
3.3.1 Composant glue.channel 59
3.3.2 Composant space_base.module 60
3.3.3 Composant space_basedevice 60
3.3.4 Composant module.adapter 61

3.3.5 Composant spacechannel 63

3.3.6 Composant spacechannel xbar 64
3.3.7 Composant space_channel bus 65
3.3.8 Composant null. device 66

3.4 Support logiciel sur la plate-forme 67
3.4.1 Composant irqmanager 68
3.4.2 Composant timer 71
3.4.3 Composant device_adapter 73
3.4.4 Composant iss.adapter 74
CHAPITRE 4 RESULTATS, ANALYSE ET DISCUSSION 78
4.1 Exemple d’'utilisation de la plate-forme 78
411 NiveauUTF o 79
41.2 Niveau TF-Crossbar 80
41.3 NiveauTF-Bus 82
4.1.4 Niveau TF - Partitionné avecle Bus 83

4.2 Outils de mesure de performance 84
4.2.1 Outil dans le gluechannel 85
4.2.2 Outil dans le spacechannel 86
4.2.3 Outil dans le module_adapter 87

4.3 Présentationdesrésultatso 89
4.3.1 Comparaison entre SPACE et d’autres modeles existants . . 89
4.3.2 Tests paramétriques de performance 92

4.4 Variantes dans 'implémentation 95
441 Typesdeprocessuso v .. 95
4.4.2 Optimisations dans la communication 96
4.4.3 Fonctionnalités des périphériques 98

CONCLUSION o e 105

REFERENCES

ANNEXES . .

................................

FiGure 1.1
FI1QURE 1.2
Ficure 1.3
FIGURE 2.1
FiGURE 2.2
FIGURE 2.3
Ficure 24
FiGURE 2.5
FIGURE 2.6
FIGURE 2.7
FIGURE 2.8
F1GURE 2.9
Ficure 3.1
FIGURE 3.2
FIGURE 3.3
Fi1cure 34
FIGURE 3.5
FIGURE 3.6
Ficurg 3.7
FIcUurE 3.8
FIGURE 4.1
F1GURE 4.2
FiGURE 4.3
FIGURE 4.4
FI1GURE 4.5

FIGURE 4.6

LISTE DES FIGURES

Notation graphique pour SystemC

Exemple SystemC #1
Exemple SystemC #2

Schéma de principe de la plate-forme
Schéma d'un pagquet Lo
Comparaison : communication bloquante et non bloquante .
Restrictions sur les adresses des périphériques
Schéma du Glue Channel
Schéma bloc de la partie logicielle
Connexions UTF

Connexions TF
Apercu des composants de la plate-forme au niveau TF

Interfaces SystemC pour la plate-forme
Architecture matérielle générale pour SPACE
Fonctionnement du périphérique module_adapter

Fonctionnement du module_adapter avec processus

Algorithme d’arbitrage du space_channel_bus

Schéma bloc du gestionnaire d’interruptions
Domaines d’adresses pour le processeur et le device_adapter
Fonctionnement du périphérique iss_adapter

Schéma de principe de 'exemple

Exemple avec le Glue Channel

Exemple avec le Space Channel Crossbar

Exemple avec le Space Chapnel Bus.

Exemple partitionné aveclebus

Performances comparatives SPACE / SOCP / Simple Bus .

xii

74

FIGURE 4.7
FIGURE 4.8

FIGURE 4.9

Performances paramétriques, cas #1
Performances paramétriques, cas #2

Performances paramétriques, cas #3

TABLEAU 1.1
TABLEAU 2.1
TABLEAU 3.1
TABLEAU 3.2
TABLEAU 3.3
TABLEAU 3.4
TABLEAU 3.5
TABLEAU II.1
TaBLEAU 1.2
TABLEAU 11.3
TABLEAU 114

TaBLEAU 115

xiv

LISTE DES TABLEAUX

Niveaux d’abstraction (couches) pour SOCP 18
Exemple de division de la plage mémoire 31
Interface space_moduledf o000 55
Interface space_devicedf 57
Interface space_adapterdf 57
Interface space_channeldif 57
Interface decoder dataif 58
Performances comparatives (P111-667 MHz) 122
Performances comparatives (Sun Blade 100) 123
Performances paramétriques, cas #1 124
Performances paramétriques, cas #2 125

Performances paramétriques, cas #3 126

XV

LISTE DES NOTATIONS ET DES SYMBOLES

Les termes techniques et acronymes suivants seront utilisés dans ce document. Il
. . . e
s’agit de termes techniques propre au domaine ou encore des définitions propres au

projet.
ACK Acknowledge, en frangais accusé de réception.

AMBA Advanced Microcontroller Bus Architecture, une architecture de bus com-

merciale.

API SystemC L’acronyme APT remplace 'expression anglophone Application
Programmable Interface. L’API SystemC est donc interface SystemC dispo-
nible au concepteur pour modéliser son application. Dans notre plate-forme,
nous employons ce terme plus spécifiquement pour représenter la coucher
logicielle qui fait le pont entre les modules usagers logiciels et le systéme

d’exploitation.
ARM Advanced RISC Machine, un processeur embarqué.

ASIC Application-specific Integrated Circuit, en francais circuit intégré dédié a

une application.
C++ Langage de programmation orienté objet pour le logiciel.
DMA Direct Memory Access.

Etat blogqué On dit qu’un processus est bloqué lorsque son exécution est sus-
pendue et que Pordonnanceur attend qu’un événement se produise pour le
remettre en exécution.

FIFO First-In-First-Out, en francais premier entré premier sorti. Par contre,

¥

I'acronyme PEPS n’est pas utilisé; on dit souvent "file” ou "queue” a la

place.

XVi

FIQ Fast Interrupt Request. Il s’agit d’une seconde broche d’entrée pour les in-
terruptions sur un processeur. On peut utiliser ce port pour les interruptions

qui doivent étre traitées tres rapidement.

HAL L’acronyme HAL désigne Hardware Abstraction Layer. Il s’agit du code du
systeme d’exploitation qui interagit avec les périphériques matériels. Cette
partie du systéme d’exploitation est aussi appelée le port et est dépendante

de Parchitecture utilisée.

ID Tous les modules de 'usager ont un identificateur unique. Cet identificateur est
un nombre entier non signé de 32 bits et est utilisé pour identifier les modules
émetteurs et récepteurs lors d’'une communication. Nous allons utiliser le

terme ID comme contraction du mot identificateur.

Instance La définition d’un module en SystemC est unique ; cependant il est pos-
sible de créer plusieurs objets distincts a partir d’une méme définition, tout

comme en C++ nous disons que les objets sont des instances de classes.

Interblocage En anglais, Deadlock. Situation connue en logiciel ot plusieurs pro-
cessus sont, en attente d’événements, de la part des autres processus, qui ne

peuvent plus survenir étant donné I’état bloqué.

ISS Instruction Set Simulator. Il s’agit d’un programme qui simule 'exécution
d’un processeur. Dans notre projet, le processeur cible choisi est le ARM?7,
et donc nous avons I'ISS de ce processeur intégré dans un SC_MODULE de

SystemC, ce qui fait de 'ISS un composant de la plate-forme.

ISR Interrupt Service Routine. En francais on dit routine d’interruption. C’est le

code logiciel qui s’exécute lorsqu’'une interruption survient.
IRQ Interrupt Request. Requéte d’interruption.

Modules Entités SC_.MODULE de SystemC congus par I'utilisateur de la plate-

forme pour modéliser & haut niveau son application. Les modules sont des

xXvil

maitres et peuvent communiquer entre eux en s’envoyant des messages et ils

peuvent lire et écrire dans les périphériques.

Nature des modules Lorsqu’il est question de la nature des modules, nous fai-
sous référence a la partie a laquelle le module appartient, ¢’est-a~dire la partie

matérielle ou la partie logicielle.

OCP Open Core Protocol, un protocole standard pour la communication dans les

systemes intégrés.
OO Orienté objet, traduit de 'anglais (Object-Oriented).

Partitionnement Effectuer le partitionnement d’une application consiste a
décider quels modules seront implantés en logiciel ou en matériel. Avec
SPACE, il est possible & tout moment de changer le partitionnement, de

recompiler le code SystemC pour obtenir un autre choix de partitionnement.

Périphériques Tous les périphériques essentiels sont fournis avec la plate-forme.
Ces entités posseédent une plage d’adresse via laquelle on peut les accéder.
Les principaux périphériques inclus sont les mémoires, le gestionnaire d’in-
terruption et la minuterie pour 'horloge temps réel. Ce sont des esclaves qui
ne peuvent pas initier de transactions, ils ne font que répondre aux requétes

de lecture ou d’écriture initiées par les maitres.

Plate-forme Architecture de base modulaire configurable fournie avec notre
méthodologie de conception. Le terme plate-forme désigne aussi les instances
architecturales composées de modules et de périphériques propres a chaque

application.

Préemption La préemption dans un systeme d’exploitation consiste en la suspen-
sion de l'exécution de la tache courante par une autre tache, causé par un
événement. La préemption est effectuée sans 'intervention des taches elles-
mémes, ¢’est 'ordonnanceur du noyau du systeme qui effectue le changement

de contexte. Parfois, le mot préemption est aussi utilisé pour le cas ou les

Xviil

taches se suspendent elles-mémes et rendent la main volontairement, pour
laisser 'exécution & une autre tache. C’est ce mécanisme qui est utilisé dans
le simulateur de SystemC. Dans ce document, le mot préemption sera donc
employé pour désigner une cause de changement de téche (la cause d'un

changement de contexte).

RAM Random Access Memory, une mémoire a acces aléatoire. On dit de la
mémoire vive qu’elle est une mémoire & acces aléatoire parce qu’elle auto-

rise Pécriture ou la lecture des données selon leurs adresses.
RISC Reduced Instruction set Computer, ordinateur a jeu d’instruction réduit.

ROM Read-Only Memory.

RTOS 1l s’agit de Real Time Operating System, en francais Systéme d’Exploita-

tion Temps Réel.

SoC System-On-Chip, ou System-on-a~-Chip, en francais, systéme sur puce. Un
systeme sur puce est un systéme électronique complexe qui comprend habi-
tuellement un ou des processeurs, de la mémoire, un ou des réseaux d’in-
terconnexions plus ou moins complexes, des périphériques d’entrée/sortie et
souvent des parties qui ont été congus spécifiquement pour une application

particuliere (ASIC), le tout sur une seule puce.

SOCP Signifie SystemC OCP.

SPACE SystemC Partitioning of Architectures for Co-design of Embedded sys-
tems, en francais Outil de Partitionnement d’Architectures en SystemC pour
le Codesign des Systémes Embarqués. Il s’agit du nom de notre outil et de

sa méthodologie.
SystemC Langage de modélisation au niveau systéme, basé sur le C++.

Tache Une tache est un processus en boucle qui exécute du code usager. La notion
de tache peut étre attribuée au contexte SystemC ou au contexte du systeme

d’exploitation : dans SystemC, une tache est un processus SC.THREAD ou

Xix

SC_CTHREAD et dans le cas du systéme d’exploitation, une tache est un
processus du RTOS.

UTF/TF Avec SystemC il est facile de coder & plusieurs niveaux d’abstraction.
Il est également facile de mélanger les niveaux. A haut niveai, nous avons
le choix d’inclure les notions de temps dans le code des processus. Nous
parlons alors de code SystemC fonctionnel minuté ou non (en anglais, Timed

Functional et Untimed Fonctional).
VCI Virtual Component Interface, un protocole de communication.

VHDL Very High Speed Integrated Circuit Description Language ou langage de

description des circuits intégrés a trés haute vitesse.

VSIA Virtual Socket Interface Alliance.

LISTE DES ANNEXES

ANNEXE I CO-SIMULATION DU MATERIEL ET DU LOGICIEL . 114
L1 Motivationso oo 114
[.2 Parallélisme versus concurrence L. 115
1.3 Temps d'exécution zéro 116
1.4 Enchalnement d’événements 116
L5 Delta~cycleso 117
1.6 Variableset signaux 118
17 Cohérence 119
1.8 Synchronisation logicielle/matérielle 119
L9 Communication logicielle/matérielle 119
.10 Ordonnancement 120

ANNEXE II DETAILS DES RESULTATS EXPERIMENTAUX 122
II.1 Tests de performance comparatifs 122

II.1.1 Résultats sur un Pentium 11 667 MHz 122
I1.1.2 Résultats sur un Sun Blade 100 123
I1.2 Tests de performance paramétriques 124
21 Cas#1 e 124
1122 Cas#2 125
.23 Cas #3 e 126

ANNEXE III REGLES D'IMPLEMENTATION DE SPACE 127

I11.1 Composants réutilisables & instancier 127
IIT.1.1 Périphériques oL 127
II.1.2 Signaux o 128

I11.1.3 Autres considérations 128

xxi

I11.2 Regles structurelles pour les modules 129
12,1 Niveau UTF 0 0 0 o000 0o 129
N1.2.2 NiveauTF oo ... 130
I11.2.3 Structure des périphériques, niveaux UTF et TF 131

I11.3 Regles architecturales 131
IML3.1 UTFet TF o 0 o o o oo 131
I11.3.2 Regles architecturales UTF 132
111.3.3 Regles architecturales TF 132

ANNEXE IV EXEMPLES AVEC SYSTEMC 134

IViExemplel. o 134
IV.1.1 Fichierprodh 134
IV.1.2 Fichiercons.h 135
IV.1.3 Fichiertop.h oo 136
IV.1.4 Fichier main.cpp. 137

IV2Exemple 2.o 137
IV.2.1 Fichier mychannelifh 137
IV.2.2 Fichier mychannelh 138
IV.2.3 Fichierprod.ho 139
IV.2.4 Flchiercons.h oo 140
IV.25 Flchiertop.h o oo 141

IV.2.6 Flchier main.cpp 142

INTRODUCTION

Les systémes embarqués sont de plus en plus présents dans notre vie quotidienne
et malgré 'augmentation des cotits de production des circuits intégrés, plusieurs
de ces bijoux technologiques sont offerts & des prix accessibles a tous. Bien que la
concurrence agressive soit au profit des utilisateurs, elle rend la vie difficile aux
manufacturiers qui doivent investir des sommes d’argent énormes pour suivre la
vague technologique et assurer leur survie. Par exemple, les frais non récurrents de
fabrication pour un circuit intégré numérique complexe a été multiplié par un fac-
teur de 10 en seulement trois générations de technologies du silicium, soit 10 a 100
millions de dollars pour la technologie 0,13 micrometres [41]. Nous en sommes ren-
dus a un point ou il est théoriquement faisable d’intégrer par exemple plus de 1000
microprocesseurs a usage général sur la méme puce. L’utilisation de processeurs sur
puce nous permet de profiter de la flexibilité qu’offre le logiciel. On choisit habituel-
lement d’implémenter des fonctionnalités d'un systéme en matériel lorsque celles-
ci nécessitent une haute vitesse d’exécution; souvent méme, une implémentation
matérielle de cette fonctionnalité consomme moins d’énergie qu’une version logi-

cielle exécutée par un processeur [22].

Il est clair que des changements importants tant au niveau des méthodes de
conception que des méthodes de fabrication des systémes sur puce s’imposent.
Une stratégie importante & adopter au niveau de la conception est celle de P’abs-
traction de la spécification. Cela implique le rehaussement du niveau d’abstraction
avec lequel les concepteurs doivent travailler, la réutilisation de blocs préconcus
et de bancs d’essais, 'utilisation des protocoles normalisés et la simulation de la

spécification fonctionnelle exécutable.

Dans cet ordre d’idée, la version 2.0 de la bibliothéque SystemC [35] prend de plus

en plus de popularité en ce moment. Basé sur le langage C++, SystemC n’est
pas une méthodologie de conception en soi, mais son utilisation suggere divers
niveaux d’abstraction qui sont utiles pour établir un modele fonctionnel ou un
prototype au début d’un cycle de développement. Malgré le fait que nous pouvons
qualifier SystemC de langage au niveau systéme, plusieurs lacunes concernant la
modélisation de la partie logicielle d’une application subsistent. Les détails seront

vus au chapitre 1.

Nous avons créé une plate-forme en SystemC, nommée SPACE (SystemC Parti-
tioning of Architectures for the Co-design of Embedded systems) [10, 4] qui veut
répondre a ce probléme en incluant un systeme d’exploitation temps réel dans une
simulation en SystemC. Notre principale contribution réside dans la méthodologie
qui vient avec notre plate-forme. Nous proposons deux niveaux d’abstraction
différents : un qui permet d’étre indépendant de toute architecture et un autre,
constitué cette fois d’une partie logicielle et d'une partie matérielle, qui permet de
fournir une simulation plus détaillée et qui donne des informations au concepteur,
le guidant ainsi dans ses choix architecturaux. L’usager peut prendre ses modules
congus et vérifiés au premier niveau (nommé UTF) et les connecter a la plate-forme
(niveau TF) sans modifications majeures. L’avantage de ces deux niveaux est qu'il
est possible de revenir en arriére sur un choix de partitionnement logiciel /matériel
et d’en essayer plusieurs. Néanmoins, notre premiére implémentation comporte plu-

sieurs faiblesses étant donné qu’il ne s’agit que d'un premier prototype.

Ce mémoire s’intéressera a la mise en oeuvre des moyens de communication sur
cette plate-forme. Concrétement, le travail réalisé consiste a la définition de deux
niveaux d’abstraction et des regles invariantes pour un utilisateur qui en découlent,
a la conception et 'implémentation des interfaces pour la communication, des ca-
naux de communication, des périphériques de la plate-forme et des mécanismes de

communication logicielle/matérielle.

On attribuera ainsi les deux principales contributions suivantes au travail réalisé

dans le cadre de ce mémoire :

— Une plate-forme qui consiste en une série de périphériques réutilisables et de
regles d’implémentation, laissant I'usager créer des architectures adaptées a ses
applications ;

— Des interfaces de communication unifiées qui peuvent étre utilisées pour
différents niveaux d’abstraction et pour des modules logiciels et matériels,
simplifiant le raffinement et 'exploration architecturale d’une application en

SystemC.

Mathieu Rondonneau et Jérome Chevalier ont contribué au projet SPACE, res-
pectivement & la conception et au développement de la partie logicielle [42] et &

I'intégration d’un simulateur de processeur dans la simulation SystemC [9].

Au premier chapitre, nous rappellerons 'importance de la spécification unifiée & un
seul langage, le C++ dans notre cas, et nous verrons les concepts de base du langage
SystemC. Une bréve analyse de celui-ci fera ressortir les lacunes en ce qui concerne
la simulation du logiciel. Nous présenterons ensuite plusieurs niveaux d’abstraction
qu'un utilisateur de SystemC peut exploiter et finalement nous verrons plusieurs

approches au raffinement d’une spécification en SystemC.

Le chapitre 2 est consacré a la description de la plate-forme SPACE, notre so-
lution au probléme du partitionnement logiciel /matériel. Nous y verrons le fone-
tionnement et les concepts généraux, détaillerons la structure de la plate-forme et

présenterons le flot de conception pour décrire son utilisation.

C’est, au troisieme chapitre que nous détaillerons le fonctionnement interne des ca-

naux de communication de la plate-forme. D’abord, le sujet sera abordé avec une

vue d’ensemble. Ensuite les multiples interfaces pour permettre 'échange de mes-
sages entre les différents composants de 'usager et périphériques seront exposées.
Nous terminerons le chapitre par la description détaillée d’abord des composants
qui participent a la communication matérielle puis finalement, des blocs congus

pour assurer le support logiciel dans SPACE.

Le dernier chapitre discute des résultats de performance de SPACE en compa-
raison avec d’autres modeles de communication existants et aussi & travers une
série de tests paramétriques qui ont pour but de montrer les forces et les fai-
blesses de notre implémentation. Un exemple d’utilisation de la plate-forme en
quatre versions y est également présenté. Ensuite, nous expliquons les variantes
dans implémentation qui pourraient améliorer les performances au niveau de la

communication matérielle.

Nous concluons ce mémoire en effectuant un survol des améliorations et ajouts qui
pourraient étre portés sur la plate-forme pour en faire un outil de codesign plus

complet.

CHAPITRE 1

REVUE DE LITTERATURE ET PREALABLES

1.1 Modélisation de systéemes et techniques orientées objet

La programmation orientée objet (OO) fait partie de la vague de changement au
niveau des méthodologies de conception dans le monde des systémes intégrés (ou
systémes sur puce, ou encore systémes embarqués). L’OO s’intégre aux méthodes
existantes de spécification a plus haut niveau. Ces techniques qui rehaussent le ni-
veau d’abstraction peuvent nous permettre de spécifier la fonctionnalité d’une ap-
plication sans définir & prime abord ce qui sera implémenté en logiciel et en matériel.
L’orienté objet ne s’applique pas vraiment pour ce qui est de la spécification
non fonctionnelle, & savoir les contraintes de temps réel (temps de réponse), les
fréquences minimales d’exécution, la puissance maximale d’énergie & dissiper ou
consommer, la durée de vie souhaitée d’une pile, la surface consommeée sur une

puce électronique, etc.

La spécification fonctionnelle est souvent exprimée par un ensemble de processus
ou taches communicantes [22, 12]. Les réseanx de processus de Kahn (Kahn Process
Networks) [25] ont "avantage de posséder la propriété d’ordancement déterministe
lors des multiples exécutions en simulation. Rappelons-le, les réseaux de proces-
sus de Kahn sont des processus concurrents, munis de canaux de communica-
tion unidirectionnels de type FIFO de tailles infinies. Chaque processus s’exécute
séquentiellement et de fagon privée par rapport aux autres processus et la syn-
chronisation est implicite a la communication. Les lectures sur les canaux sont blo-

quantes, c’est-a-dire qu'un processus attend d’avoir assez de données disponibles

pour compléter Popération de lecture dans le cas ol le canal serait vide de mes-
sage. Les écritures sont non bloquantes au sens ou les FIFO sont infinis et donc
les processus n’ont pas a se soucier si les canaux sont pleins. De plus, il n'y a pas
d’accusés de réception sur les écritures. L'ordonancement des processus de Kahn
est en effet déterministe, car 'ordre des échanges de données dépend des entrées
et non de P'ordre d’exécution des processus. Par contre, on ne peut pas modéliser
un systeme réactif complet, avec interaction de 'usager par exemple. De plus, d'un
point de vue pratique, il est impossible d’implémenter un systéme avec des canaux

de longueur infinie.

Néanmoins, la spécification fonctionnelle d’un systéme numérique est toujours
faite en pratique avec un langage qui permet de définir les mémes concepts.
La spécification est divisée en modules ou entités qui contiennent des éléments
d’exécution actifs ou réactifs, sensibles & des événements ou a des signaux externes
et qui communiquent entre eux par des canaux dédiés ou des canaux implicites. Tel

est le cas de Verilog [23], VHDL [24], Cynlib [15, 16], Syslib [14] et bien d’autres.

SystemC [35, 45, 36, 20, 37] est un de ceux la et probablement le plus populaire en
ce moment. SystemC offre Pavantage d’étre basé sur le langage C++ [13] et donc
met a profit les concepts orientés objet pour la spécification au niveau systeme.
De plus, dans un contexte de conception des systémes matériels/logiciels, le fait
de spécifier la partie logicielle du systeme avec le C++ rend instinctivement cette

partie du systeme facile a raffiner.

1.2 SystemC

Nos travaux utilisent SystemC et il est important de le décrire, ne serait-ce que

briévement.

1.2.1 Composants de base pour la modélisation

Avec sa version 2.0.1, SystemC fournit les éléments essentiels a la modélisation
au niveau systeme : les modules, les ports avec fonctionnalités étendues, les
événements, la sensibilité dynamique, les interfaces et les canaux définis par 'utili-

sateur, et bien plus. Voici une breve description des caractéristiques intéressantes.

Modules (SC_.MODULE) Les modules sont les entités ou composants de base
pour décrire de facon regroupée et hiérarchique un ensemble de fonctionnalités

communes. Les modules sont des éléments structurels.

Processus (SC_.THREAD, SC_.CTHREAD, SC_ METHOD) Les processus
sont des éléments fonctionnels. Ils peuvent étre perpétuels (SC_THREAD),
perpétuels synchrones (SC_CTHREAD) ou momentanés (SC_METHOD). Tous les
processus décrivent des exécutions séquentielles. Les processus perpétuels
peuvent étre interrompus et réactivés, tandis que les SC_METHOD s’activent,

s’exécutent et se terminent sans interruption.

Interfaces (sc_interface) Une interface définit de fagon abstraite un sous-
ensemble de méthodes (ou fonctions) qui peuvent étre utilisées par les mo-

dules pour communiquer avec les autres modules, en utilisant les canaux.

Canaux définis par 'usager (sc_channel) Les canaux sont des entités de type
SC_MODULE spéciaux, car ils implémentent la communication entre les mo-

dules, en fournissant une implémentation aux interfaces.

Port (sc.port) Un port donne & un module un acces externe, via une interface.
Pour connecter un module & un canal, on doit utiliser un port compatible
avec le canal. La compatibilité assure que le port utilise la méme interface

que celle qui est implémentée dans le canal.

Synchronisation (wait()) La fonction wait () suspend I'exécution d'un proces-

sus perpétuel de SystemC qui appelle cette fonction. L’argument passé a la

fonction dépend du type de processus perpétuel et sert & déterminer la condi-
tion qui dicte quand le processus pourra reprendre son exécution (notation

temporelle ou événement prédéterminé).

Evénements (sc_event) Les événement sont utilisés pour la synchronisation in-
terprocessus dans un méme module. Ils sont utilisés pour suspendre et activer

les processus de SystemC.

1.2.2 Exemples

A Paide de deux exemples tres simples, nous allons présenter un résumé des fonc-
tionnalités utilisées dans le cadre de notre projet. L’annexe IV rassemble le code
complet des deux exemples. La figure 1.1, inspirée de [20], montre une notation

graphique qui est souvent utilisée pour SystemC.

Module processus Canal élémentaire
(msc)%a{\g?)Dg;Ean SC_CTHREAD ou Connexion port-interface
! SC_METHOD
[Port unidirectionnel 2] Port bidirectionnel
E Port d’horloge @ interface

Ficure 1.1 Notation graphique pour SystemC

La premiere version de Pexemple, celle de la figure 1.2, utilise deux modules qui
contiennent chacun un processus de type SC_THREAD. Le processus de prodl envoie

des données au processus consl, par le biais d'une queue de message de type

sc_fifo. Le code du module prod1 est le suivant :

SC_MODULE(prod)
{
sc_fifo_out<int> port;
void thread(void) {
for (int i = 1; i<=10; i++) {

port->write(ix100);

}
SC_CTOR(prod) {
SC_THREAD (thread) ;

+;

Nous pouvons voir que le code est en fait du C++ avec des macros et des objects
spéciaux. La macro SC_MODULE permet de construire une classe qui hérite de type
la classe de base sc_module. Le constructeur de la classe est également créé a
partir d’une macro : SC_CTOR. Dans le constructeur, on déclare la méthode membre
thread() comme étant un processus de SystemC de type SC_THREAD. Le port du
module est déclaré comme un aggrégat de la classe prod et la méthode write()

est utilisée pour écrire une donnée dans le fifo.

Les deux objets prodl et consl sont des instances des classes prod et cous,
construit dans le module de plus haut niveau que nous avons appellé topl. Cet
objet est simplement le module qui contient tous les autres composants pour la

simulation. Le code de la classe top est le suivant :

SC_MODULE (top)

10

{
prod* prodil;
cons* consi;
sc_fifo<int>* fifol;
SC_CTOR(top) {
prodl = new prod("prodli");
consl = new cons("consl");
fifol = new sc_fifo<int>(1);
prodil->port(xfifol);
consl->port(*fifol);
+
s

On peut remarquer la fagon dont on connecte un port a un canal : il suffit
d’utiliser la notation module-;port(*canal). Afin de simuler 'exemple, il suffit de
construire un objet de la classe top et de lancer la simulation en utilisant la fonction

sc_start() :

int sc_main(int argc, charx*argv)

{
top topl("topl");
sc_start(-1);
return 0;

}

Le deuxieme exemple est une variante du premier pour expliquer d’autres construc-

tions de SystemC. 1l faut se référer a la figure 1.3. Au lieu d’utiliser un canal de type

11

top1
prodt const

thread

[}
B
1

i

L

Ficure 1.2 Exemple SystemC #1

sc_fifo, nous avons construit un canal sur mesure. Pour ce faire, il faut d’abord

établir Uinterface, c’est-a-dire les méthodes permises pour accéder au canal :

class mychannel_if: public sc_interface

{
public:
virtual void mychannel_read(int& value) = 0;
virtual void mychannel write(int value) = O;
+;

Ensuite, nous pouvons créer le canal, qui fournit une implémentation aux méthodes
de I'interface. Le canal est un module, il doit hériter de la classe de base sc_module

(ou sc_channel, qui est la méme) :

class mychannel: public sc_channel, public mychannel_ if
{

/L]

sc_event write_event;

sc_event read_event;

virtual void mychannel _read(int& value) {

12

if (empty)

wait(write_event);

value = internal;

empty = true;
read_event.notify();
}
virtual void mychannel write(int value) {
if (lempty)
wait(read_event);
internal = value;
empty = false;

write_event.notify();

};

Nous pouvons remarquer 'utilisation des événements read_event et write_event
ainsi que de la fonction d’attente wait() pour synchroniser les processus a méme

le canal.

Pour cet exemple, nous avons remplacé les processus SC_THREAD par des proces-
sus SC_CTHREAD. Par conséquent, les modules doivent avoir un port d’entrée pour
I'horloge, qui est désormais nécessaire. Voici & quoi ressemble le code du module

prod2 pour cet exemple :

class prod : public sc_module
{
public:

sc_port<mychannel_if> port;

sc_in_clk clock;

13

SC_HAS_PROCESS (prod) ;

void cthread(void) {
for (int i = 1; i<=10; i++) {

port->mychannel_write(i*100);

}

prod(sc_module_name name_) : sc_module(name_) {

SC_CTHREAD (cthread, clock.pos());

};

La macro SC_HAS_PROCESS indique au simulateur que la classe prod contient des

processus. Cela nous permet d’utiliser un constructeur avec d’autres arguments que

ce qu’impose la macro SC_CTOR, tout en pouvant déclarer des processus.

top2

prod2 cons2

—Eﬂ cthread m channel2

m cthread

F1GURE 1.3 Exemple SystemC #2

Il existe une documentation relativement complete [38, 35, 45, 36, 20, 7, 37] pour

le lecteur intéressé & en connaitre davantage sur SystemC.

14

1.2.3 Lacunes

Malgré le fait que SystemC 2.0 se veut un outil de modélisation au niveau systeme,
il n’en demeure pas moins qu’il est plus approprié pour la modélisation du matériel.
A haut niveau, SystemC permet de séparer 'application en plusieurs modules
hiérarchiques qui contiennent des processus décrits dans le méme langage pour
le matériel et pour le logiciel. Par contre, tous les dispositifs sont en place pour
permettre le rafinement du matériel, mais pas pour le logiciel. Le raffinement est

par conséquent freiné.

Le probléme vient du fait que 'ordonnanceur est le méme pour le logiciel et pour le
matériel lors des simulations [30, 7]. On ne peut donc pas modéliser les propriétés
du logiciel. La concurrence n’est pas modélisée, ni 'ordonnancement préemptif,
ni le support des priorités. Il est donc impossible de gérer les systémes avec des
contraintes de temps réel dures (i.e. des contraintes critiques de temps). Pourtant,
les systémes temps réel sont beaucoup utilisés dans les systemes sur puce, notam-
ment dans les systémes réactifs. Pouvoir les modéliser en tant que parties d'un
systéme complet est un atout stratégique évident pour le codesign [6]. Ces fonc-
tionnalités manquantes dans SystemC devraient étre comblées par la prochaine
version, pour laquelle un support pour la modélisation des systéemes d’exploita-
tion temps réel, offrant ainsi un environnement pour la conception logicielle des

systémes embarqués, sont attendues [7].

Pour Vinstant, plusieurs solutions ont été suggérées, notamment 'utilisation de
modeles pour les RTOS [18] ou encore l'intégration de ISS dans SystemC [3, 38].
Ceci implique qu’il faut trouver des techniques pour effectuer de la simulation

conjointe du matériel et du logiciel pour contrer les lacunes.

Pour le lecteur intéressé, 'annexe I traite de la co-simulation plus en détails.

15

1.3 Modélisation architecturale et raffinements

En plus de pouvoir modéliser et simuler des systémes logiciels/matériels, nous de-
vons pouvoir raffiner les spécifications. Cela permet au concepteur d’ajouter des

détails a son modele, tant au niveau structurel, fonctionnel que temporel.

1.3.1 Niveaux d’abstraction avec SystemC 2.0

SystemC & lui seul supporte une modélisation avec des sous parties a différents
niveaux d’abstraction. On peut commencer a spécifier une application au niveau
fonctionnel, ensuite ajouter des notions de temps et ainsi tendre petit a petit vers
le niveau RTL (ou BCA) [44]. Le raffinement des communications peut s’effectuer
en partant de canaux abstraits (c’est-a-~dire de faire une implémentation purement
fonctionnelle des interfaces) et tendre vers un modeéle qui intégre le canal de com-
munication complet, tant du point de vue de la structure que de la précision au
niveau des cycles, en respectant un protocole par exemple. Le raffinement en Sys-
temC permet aussi de partir des types de données implicites du C++ (int, float,
char) et de les spécialiser vers des types de données plus spécifiques (nombres a

virgule fixe comme sc_fix, vecteurs de bits de longueur définie comme sc_1v).

Kurt Schwartz [44] propose les étapes suivantes pour le raffinement :

1. Raffinement du canal de communication ;

2. Insertion d’adaptateurs, pour permettre de garder les modules a haut niveau
et le canal a un niveau plus raffiné, c¢’est-a-dire d'une part de détailler au ni-
veau des signaux et des broches la communication qui était définie auparavant

par les méthodes de l'interface ;

3. Validation du systeme;

16

4. Raffinement des interfaces au niveau des modules, en supprimant les adap-
tateurs et en insérant & méme les processus des modules les détails de la

communication ;

5. Validation du systéme.

Dans [39], on y présente les avantages de la modélisation au niveau transactionnel,
ou TLM (Transaction Level Modeling). Une transaction est un échange de données
ou d’événements entre deux composants. Au niveau TLM, il est plus facile de
modifier le partitionnement logiciel /matériel qu’au niveau RTL. D’autres avantages

sont attribuables au TLM :

— Développement rapide de modeles ou prototypes fonctionnels;
— Exécution de la spécification ;

— Simulation rapide;

[

Possibilité de faire une premiere estimation de performance;

I

Mécanismes (métriques) pour supporter 'exploration architecturale ;

Réutilisation des composants d’un systeme a un autre.

Dans [31, 39], on y présente aussi trois niveaux différents d’abstraction notables :

1. Le niveau fonctionnel, qui est indépendant de 'architecture, est composé de

constructions comportementales ;

2. Le niveau architecture, dépendant de 'implémentation, oli on peut distinguer
les logiciel et le matériel, mais oli on conserve un niveaun d’abstraction assez
élevé;

3. Le niveau microarchitecture, précis au niveau des cycles avec les broches et

les signaux.

Le niveau TLM correspond donc au deuxieme niveau présenté. Il est a noter que

17

Pauteur ne présente pas toutefois comment passer d'un niveau a 'autre. A ce sujet,
le chapitre 3 de [7] discute assez en détails du raffinement avec SystemC. On y
présente un flot de conception comparable & [39]. Voici un résumé des étapes du

raffinement :

UTF (Untimed functional) Ce niveau permet de définir les interfaces et de
donner une premiere implémentation fonctionnelle des canaux de communi-

cation.

TF (Timed Functional) Le raffinement débute & ce niveau, oli on commence
par ajouter des délais dans les processus. Pour ce faire, il faut transfor-
mer les SC_METHOD en SC_THREAD ou SC_CTHREAD. Il faut parfois modifier
les algorithmes a 'intérieur des processus pour pouvoir mieux les évaluer. On
peut aussi raffiner les types de données du C-++ vers des types de données
propres & SystemC. Au niveau des communications, on peut essayer d’évaluer
grossierement le temps d’attente et insérer des délais correspondants, au ni-

veau des fonctions d’entrées/sorties.

BCA (Bus-Cycle Accurate) A ce niveau on raffine maintenant le modele de
communication. On passe d’une synchronisation par événements en communi-
cation synchrone sur le front de 'horloge. Il peut étre alors pratique d’insérer
des adaptateurs pour conserver la méme interface au niveau des modules,

mais avec un raffinement au niveau du canal, un peu comme le propose [39].

PA (Pin Accurate) Comme son nom le sous-entend, & ce niveau on décompose
les interfaces en signaux et données élémentaires. Les comportements sont
ainsi décomposés en controleurs et chemins de données, en vue de la syntheése
comportementale et logique. La partie controleur est implémentée comme une
machine & état et souvent il faut ajouter des ports pour la synchronisation

entre les parties de controle et de calcul.

CA (Cycle-Accurate) Ce niveau résulte de la fusion des modifications entre les

18

niveaux BCA et PA. En d’autres mots, les adaptateurs qui servaient de pont
entre les modules et le canal sont supprimés et tout le systeme résultant est

précis au niveau des cycles et au niveau de la structure.

Une autre approche de raffinement a été proposée, mais cette fois, de fagon
étroitement liée avec un protocole qu’ils nomment SOCP [21] (pour SystemC OCP).
OCP [33] est un protocole de communication standard dans I'industrie, que I'on

peut comparer avec VCI, de VSIA [34, 11, 22].

Le raffinement proposé se divise en quatre niveaux distincts avec SystemC. Encore
une fois, par contre, tout 'aspect logiciel est négligé. Le raffinement matériel se
compare beaucoup a notre approche, ¢’est pourquoi il est important ici de bien
décrire les niveaux un par un. Le tableau 1.1, tiré de [21], présente les couches (ou

niveaux) ainsi que les détails qui y sont abstraits.

TABLEAU 1.1 Niveaux d’abstraction (couches) pour SOCP

| Acronyme [Couches | Ce qui est abstrait
L3 Couche message Partage des ressources, temps
L2 Couche transaction Horloges, protocoles de communication
L1 Couche transfert Fils, registres
Lo Couche RTL Portes logiques, délais dans les fils et portes

LO Il s’agit du fameux niveau RTL bien connu. Ace niveau, la description comporte
assez de détails pour étre précise au niveau des broches, des bits, des cycles
et du contenu des registres. 11 s’agit d’un code final prét pour le processus de
synthése (VHDL, Verilog ou SystemC synthétisable). Il ne faut pas exclure
qu’il faudra optimiser le circuit résultant, faire le placement/routage, faire la

distribution des horloges, de Palimentation, etc.

L1 Le niveau 1 est précis au niveau des cycles (Cycle-True), c’est-a-dire que le

19

systeme a le méme comportement que le code RTL. La précision dans les com-
munications permet de respecter le protocole choisi et les entrées/sorties. Ce-
pendant, 'utilisation des interfaces limite la précision des données échangées
au niveau des octets ou mots. Les avantages sont que les interconnexions
sont plus simples et la simulation plus rapide, étant donné qu’on supprime

des signaux et qu’on les remplace par des événements.

L2 Le niveau 2 fait abstraction des signaux d’horloge. La notion de temps peut
toujours exister, mais il n’y a pas de précision au niveau des cycles. La syn-
chronisation est assurée par des événements avec des annotations temporelles,
ce qui permet de paramétrer les canaux de communication pour faire des ajus-
tements assez précis au niveau des performances. Ce niveau est idéal pour

Iestimation de performance en vue du partitionnement logiciel /matériel.

L3 Le plus haut niveau est fonctionnel sans notion de temps. On y trouve comme
avantage la facilité du partitionnement fonctionnel. Ce niveau est abstrait
de toute architecture, donc les canaux de communication implémentent le

minimum, a la maniére du point a point.

1.3.2 Abstraction de protocoles

Comme nous venons de le voir, le raffinement peut étre lié & un protocole de com-
munication. Cela permet entre autre de s’assurer que le systéme pourra étre raffiné
peu a peu pour tendre vers un protocole existant, standard, que les ingénieurs pour-
ront réutiliser et pour lequel le processus de synthese ne posera pas de problemes

majeurs.

En ayant un protocole défini, on peut aussi définir des interfaces SystemC unifiées et
il est alors possible d’utiliser les mémes interfaces a plusieurs niveaux d’abstraction.

Cela permet de mixer les niveaux ou encore de raffiner le canal progressivement sans

20

avoir & toucher au code des modules, en utilisant des adaptateurs. Si les niveaux
d’abstractions sont eux aussi bien définis, les adaptateurs peuvent étre concus une

seule fois et réutilisés dans plusieurs desiguns.

Nous avons expliqué le raffinement en quatre couches avec SOCP. Une plate-forme
nommeée StepNP [41] utilise aussi un protocole avec le méme nom. SOCP signifie
encore " SystemC OCP”, pour la méme raison qu’ils ont abstrait le niveau d’abs-
traction de OCP. Par contre, le premier objectif de leur plate-forme n’est pas le
raffinement, ils fournissent plutoét une série d’outils et de composants sous forme
de plate-forme plus ou moins générique pour les applications réseaux. L’emphase
est mise sur I'intégration d’un certain nombre de processeurs RISC dans une méme
architecture. Les interconnexions avec SOCP sont de niveau TLM et plusieurs

modeles sont supportés.

Parfois, on peut définir un protocole & haut niveau (TLM) sans pour autant étre
basé sur un protocole de bas niveau existant. Un exemple est Simple Bus, bien
décrit dans [20]. Ce bus transactionnel est synchrone sur 'horloge et utilise les
deux fronts (montants et descendants) pour faciliter 'arbitrage. Il est & remarquer
que cela n’est qu'une technique de modélisation ; le systeme final raffiné pourrait

étre doté d’une seule horloge qui active la logique sur le front montant seulement.

Simple Bus comporte trois jeux d’interfaces, certaines pour les blocs maitres,

d’autres pour les blocs esclaves et une interface pour Uarbitre du bus.
Pour les esclaves (par exemple les mémoires et les périphériques) :

— Interface normale;

~ Interface directe.

Pour les maitres (par exemple les processeurs ou DMA) :

21

— Interface bloquante;
— Interface non bloquante;

- Interface directe.

On utilise Vinterface de P'arbitre pour se renseigner sur quel maitre obtiendra l'acces
au canal. Les interfaces maitres et esclaves directes servent a ignorer le protocole, a
titre informatif ou pour des fins de déverminage. Il est possible de verrouiller le bus
pour plusieurs cycles par un maitre, pour simuler un transfert en rafale (burst). Au
niveau des esclaves, il est possible d’ajouter des cycles de latence pour simuler un

délai de traitement.

Le probleme avec Simple Bus, c’est qu’il n’existe pas de modele raffiné équivalent
au niveau RTL. Une bonne approche serait de modifier le modeéle pour modéliser la
structure et les caractéristiques temporelles d'un protocole de bus semblable, mais

standard, comme AMBA [2, 5] par exemple.

22

CHAPITRE 2

PRESENTATION DE LA PLATE-FORME

2.1 Objectifs de la plate-forme

La plate-forme SPACE [10, 4] peut remplir plusieurs fonctions. Les objectifs sont :

1. Permettre la conception et la simulation a haut niveau de plusieurs configu-

rations logicielles/matérielles d’une application de codesign ;

2. Fournir des composants réutilisables comme base pour les concepteurs, pour

éviter de recommencer de zéro la conception pour chaque application ;

3. De permettre 'exploration architecturale afin de pouvoir changer la nature

d’un module en cours d’exploration ;

4. Produire des résultats de simulation sur lesquels le concepteur pourra évaluer

ses choix de partitionnement.

Une application de codesign est une application qui est composée a la fois de parties
logicielles et de parties matérielles. Le codesign concerne surtout la phase de mise
en fonction des deux parties simultanées, ¢’est-a-dire lorsque les parties logicielles

et matérielles doivent interagir.

Lors de la phase de spécification de Papplication, il faut effectuer un partition-
nement en modules. Ceci consiste a diviser en plusieurs entités, blocs, parties,
composants ou encore modules la fonctionnalité du systéeme. Cette phase établie

un partitionnement structurel. Il faut encore ensuite décider quels modules doivent

23

étre implantés en logiciel ou en matériel. 1l s’agit alors du partitionnement logi-
ciel/matériel. On nomme configuration logicielle/matérielle ou partition chacune

des possibilités architecturales issues d’un partitionnement.

Pour concevoir un modele exécutable de la spécification d'une application de co-
design, nous utilisons le langage de modélisation SystemC version 2.0. Le niveau
d’abstraction choisi est élevé, ce qui nous permet au besoin d’omettre les détails
architecturaux et structurels afin de rester au niveau purement fonctionnel. Avec
la plate-forme SPACE, un concepteur systéme réutilise les composants de base que
nous avons congus. Ces composants génériques et configurables définissent une ar-
chitecture de base et permettent de réduire le temps de conception. Le but premier
de la plate-forme est de permettre 'exploration architecturale d'une application
ou d'un modele décrit en langage SystemC de haut niveau. La plate-forme facilite
le travail du concepteur lorsque ce dernier désire essayer différentes configurations
logicielles/matérielles, car & ce niveau il est possible de déplacer les modules de la
partie logicielle vers la partie matérielle et inversement, avec un effort mineur et
un temps minimum de la part du concepteur. Pour guider le concepteur dans son
partitionnement, il lui est possible d’effectuer des simulations de son application. A

partir des résultats, il peut réitérer et converger vers un partitionnement optimal.

2.2 Description sommaire de notre solution

Afin de rendre compte de ces objectifs, nous avons choisi de batir un environne-
ment de simulation séparé pour la partie logicielle et pour la partie matérielle. Les
deux simulations doivent par contre étre cohérentes et synchronisés. Pour ce faire,
nous avons décidé d’intégrer un ISS dans une plate-forme en SystemC. Cet ISS se
retrouve dans un module et donc SystemC s’occupe de faire exécuter les processus

matériels et I'ISS. Comme I'ISS est également lui-méme un simulateur, un second

24

>. Logiciel

ffodule %
Usger | \
Nedule || APl RTOS \\
tsager 11 SystemC \
,, \
i
\

o ~ o % R
~ N Ada f : Module
ptateur | i
\\ , Adaptateur . Usager
RM
S ARMN 1| Décodewr | | canairR) |- WModule
. ISS Adapiateur
-~ A - | Usager
\ 5
Mémoire .
% 1 Adaptateur

Matgriel .<

FIGURE 2.1 Schéma de principe de la plate-forme

domaine de simulation est possible comme l'illustre la figure 2.1. Pour linstant,
SPACE ne posséde qu'un seul modele d’ISS : celui du ARM7 [1]. Nous pourrions
faire exécuter n’importe quel code sur cet ISS; cependant, Pastuce de SPACE est
de faire exécuter sur le processeur du code SystemC. Ce code SystemC n’est pas
exécuté par le méme simulateur que le code SystemC de la partie matérielle. Ainsi

nous avons deux simulateurs de SystemC.

SystemC n’est pas un systéme d’exploitation; ce n’est qu’une bibliotheque d’ob-
jets en C++. Par conséquent, il nous faut un systeme d’exploitation pour pouvoir
simuler du code congu avec SystemC. C’est ainsi que fonctionne la simulation de

la partie matérielle. Ce n’est toutefois pas le cas pour la partie logicielle. Nous

25

avons plutot choisi d’utiliser un systeme d’exploitation temps réel, MicroC/OS-11
[26], muni d’une bibliotheque qui permet de fournir 'interface de programmation
de SystemC sur un processeur ARM. Ainsi, au lieu d’utiliser un systéme d’exploi-
tation complet (comme Windows ou Unix) avec la bibliotheque SystemC, nous
avons opté pour une solution plus appropriée pour les systémes embarqués. Au
lieu d’avoir recours & un simulateur dédié pour ordonnancer les processus de Sys-
temC, c’est 'ordonnanceur du micronoyau de MicroC/OS-II qui gére les processus
de SystemC. Par exemple, lorsque le concepteur incorpore un SC_CTHREAD dans un
de ses modules, il y a véritablement une tache de MicroC/OS-1I qui est crée et
exécutée. L'interface de programmation permet d’émuler la plupart des éléments

de modélisations fournis traditionnellement avec la bibliotheque SystemC.

Nous devons également assurer les communications entre les parties logicielles et
matérielles, pour que les modules puissent s’envoyer des messages, peu importe leur

nature.

2.3 Justifications des choix

Nous avons choisi le langage de modélisation SystemC d’une part parce qu’il s’agit
présentement du langage le plus populaire pour la modélisation et la simulation
de systémes et aussi parce que le code source est ouvert. Cette deuxieme propriété
nous a permis de concevoir rapidement I’API SystemC en logiciel & partir du code
existant de SystemC. Le choix du processeur s’est arrété sur le ARM7. Cest un
des plus utilisés dans les systémes embarqués et nous avions le code source de son
ISS, gracieuseté de GNU [19]. De plus, nombreux sont les outils de développement
et les systémes d’exploitation qui supportent le ARM. MicroC/OS-II a été choisi
comme systéeme d’exploitation principalement parce que le groupe de recherche

était familier avec celui-ci. De plus, nous avons le code source complet et certains

26

ports ont déja été concus pour le ARMY7.

2.4 Fonctionnement et concepts

Nous allons maintenant expliquer le fonctionnement général de la plate-forme et
les concepts nécessaires pour comprendre le contexte d’interaction des canaux de

communications.

2.4.1 Caractéristiques des modules de 'usager

Tout le code de l'utilisateur est en SystemC. La plate-forme SPACE est elle-méme
décrite en majorité en langage SystemC, a Pexception de certains composants
comme le systéme d’exploitation et le coeur de I'ISS. Le code de utilisateur se
retrouve seulement dans la description en SystemC des modules et dans la descrip-
tion des interconnexions. Les modules doivent hériter d’'une classe de base définie
dans SPACE. 1l y a deux classes de base, dépendamment du niveau d’abstraction
ot on désire simuler. Chaque instance de module possede un numéro d’identifica-
tion unique donné par le concepteur et un port de communication qui utilise une
interface spécifique & SPACE. Certains numéros d’identification (comme le zéro)
doivent étre réservés pour un usage interne de la plate-forme. Ces numéros jouent
le role des adresses pour les modules; cependant, en ayant des numéros uniques
qui définissent les modules, il est plus facile de changer la nature des modules tout
en garantissant la communication. Lorsque les modules sont bougés dans la partie
matérielle de I'application, il a y toujours une adresse ou les modules logicielles
doivent envoyer leurs messages pour garantir la communication. Néanmoins, cette
transformation est faite automatiquement a I'interne a partir d’une adresse définie

dans la configuration de la plate-forme et le concepteur n’a pas a s’en soucier.

27

2.4.2 Communication

Voici une description de Pinterface de communication des modules, soit les

méthodes avec leurs parametres, accompagnées d'une bréve description.

read() et write() (unsigned long MyID, unsigned long TargetID, unsigned long
Priority, void* Data32, unsigned long DataLength8) : A Taide de son
port unique, le module peut appeler une fonction de lecture ou d’écriture
bloquante, c’est-a-dire que la fonction retourne uniquement aprés que la
réception du message est confirmée. Dans les deux cas, le module qui fait
une requéte doit s’identifier (MyID) et spécifier a quel module est adressée la
requéte. Le module qui fait la requéte peut étre vu comme le maitre et celui

qui répond comme 'esclave.

nb_read() et nb_write() (unsigned long MyID, unsigned long TargetID, unsi-
gned long Priority, void* Data32, unsigned long Datalength8) : Lecture et
écriture avec comme seule différence qu’elles sont non bloquantes. On peut
savoir qu’une opération s’est bien terminée en analysant le code de retour des

méthodes.

mem _read() et mem write() (unsigned long MyID, unsigned long Address, un-
signed long Priority, void* Data32, unsigned long DataLength8) : Ces deux
fonctions (toujours bloquantes) constituent Pinterface utilisée par un mo-
dule pour communiquer avec les périphériques esclaves du systeme. Tous les

périphériques sont adressables comme une mémoire.

Nous avons défini une interface unique pour permettre aux modules usager de
communiquer entre eux et avec les périphériques de la plate-forme. Tous les modules
usager possedent un port de communication qui utilise cette interface, détaillée au

tableau 2.1. A I'aide des méthodes membres, il est possible d’envoyer et de recevoir

28

des messages. La communication entre les modules fonctionne un peu comme dans
un réseau. Les données sont encapsulées dans des paquets qui contiennent aussi
une entéte avec les numéros d’identification du module émetteur et du récepteur

ainsi que la taille du message. Un tel paquet est illustré a la figure 2.2.

32 bits
~<af} B
ID origine -
ID destination -

Taille du message (oclets)

L

Message

SHQ 2€ 9P J1811US IGQUON

\J

FIGURE 2.2 Schéma d’un paquet

Le concepteur a le choix d’utiliser la communication bloquante ou non bloquante.
Nous désignons bloquante une communication oli 'émetteur attend que le récepteur
ait pris connaissance du message avant de continuer a s’exécuter. Dans le cas d’une
écriture, I'émetteur attend que le récepteur ait lu le message envoyé. Pour le cas
d'une lecture, la communication bloquante signifie que le module qui effectue la
lecture doit attendre que le message soit émis avant de continuer a s’exécuter, & la
maniére d'une synchronisation par rendez-vous [46]. Cela semble bien trivial, par
contre on peut toutefois vouloir utiliser la lecture non bloquante dans le cas Pou

désire vérifier si un message a été envoyé et agir différemment selon le cas. L’écriture

29

non bloquante, quant a elle, est souvent utilisée dans le cas oll un module doit en-
voyer simultanément des messages a plusieurs modules. Lorsque la communication
bloquante est utilisée, la synchronisation est assurée par les composantes fournis de
la plate-forme. Le concepteur peut cependant ajouter par lui-méme des attentes ex-
plicites (wait) ou bien utiliser les objets de synchronisation de SystemC 2.0 comme
les verrous ou les sémaphores. La figure 2.3 compare un cas de communication blo-

quante implicite avec un cas explicite.

' Communication bloguanie T GCommunication non bloguanie]

while (true) while {(Erue)
CS R {
g m_port->write{...); m_port->nb_write(...};
21} if {(optionel)
B4 {
= wait (delai);
0.

}
I

while {true) while (true)

{ {
int code = m_port->read(...); while (m_port->nb_read(...) == ERR)

} {

wait (delai);
}

onsommatelr

F1GURE 2.3 Comparaison : communication bloquante et non bloquante

L’acceés aux périphériques est également possible avec U'interface du port de com-
munication des modules. L’acces en lecture ou en écriture vers un périphérique est
toujours bloquant, ¢’est-a-dire que le module qui effectue 'acces mémoire est bloqué
jusqu’a ce que la requéte soit traitée. Les instances de périphériques occupent tous
une plage de Pespace mémoire de la plate-forme. Les adresses de début et de fin
qui définissent ces plages mémoires sont des entiers non signés de 32 bits, doivent
avoir un multiple entier de 32 bit de largeur et 'adresse de début de la plage doit
étre alignée sur 32 bits. Les plages d’adresses des périphériques ne peuvent pas
se chevaucher, mais il peut y avoir des zones mémoires non définies, occupées par

aucun périphérique. L’acces a ces zones cause évidemment des erreurs. La figure

30

2.4 résume ces regles d’adressage.

Espace d’'adressage (0x00000000a OxFFFFFFFF)

Adresse de début divisible par 4
exemple :0x05000000

Périphérique 3

Adresse de fin divisible par 4 (- 1)
v exemple :0x050003FF
P SO, ST S—

N

FIGURE 2.4 Restrictions sur les adresses des périphériques

Certaines adresses doivent étre réservées pour les périphériques essentiels du
systeme d’exploitation; ces adresses peuvent heureusement étre changées d’une
application & Pautre et doivent aussi étre mises a jour lorsque la configuration de la
plate-forme est changée (changement de processeur, ajout d’un périphérique, etc.).
De plus, les processeurs RISC actuels utilisent souvent 32 bits pour 'adressage,
et peuvent effectuer des accés mémoires limités a 32 bits également. Dans 'op-
tique d’une compatibilité logicielle/matérielle des modules, une bonne idée est de
restreindre la taille de la donnée lue ou écrite en mémoire a partir des modules &

maximum 32 bits.

Le tableau 2.2 illustre un exemple de division de ’espace mémoire pour une instance

de plate-forme.

31

TABLEAU 2.1 Exemple de division de la plage mémoire

| Périphériques | Adresse de départ | Adresse de fin | Taille |

RAM (code) 0x00000000 Ox01FFFFFF 32 Mo
RAM (données) 0x02000000 0x03FFFFFF 32 Mo
RAM (vidéo) 0x04000000 Ox047FFFFF 8 Mo
Adaptateur du processeur 0x04800000 Ox04FFFFFF 8 Mo
Adaptateur des périphériques | 0x05000000 OxFFFFFFFF -
Minuterie 0x05000000 0x050003FF 1 Ko
Gestionnaire d’interruptions | 0x05000400 0x050007FF 1 Ko
Périphérique d’arrét OxFFFFFFFC OxFFFFFFFF 1 Ko

2.4.3 Niveaux d’abstraction

La plate-forme SPACE se situe au niveau d’abstraction TF. Notre méthodologie
supporte également un niveau d’abstraction plus élevé : le niveau UTF. Le but est
de minimiser les changements du code usager lors du passage du niveau UTF au
niveau TF. Ceci accélere grandement le processus de raffinement. Le concepteur
peut ainsi profiter du bienfait des deux niveaux d’abstraction sans avoir a adapter
son code. L’avantage du niveau UTF est que la simulation est beaucoup plus ra-
pide, car il n’y a pas tout arsenal pour faire exécuter le logiciel, ni la notion de
temps de transfert des communications au niveau matériel. En fait, & ce niveau, il
n’y a tout simplement pas de partitionnement logiciel/matériel. Tous les modules
et les périphériques de 'application sont connectés ensemble sur un méme canal :
le Glue Channel (voir la figure 2.5). Comme & ce niveau il n’y a pas de distinction
entre les instances de modules logiciels et matériels, la plate-forme ne requiert pas
le systeme d’exploitation, ni tout les éléments et périphériques qui n'avaient aucune
raison d’étre mise a part d’assurer un bon fonctionnement de la partie logicielle :
le gestionnaire d’interruption, la minuterie temps réel, le décodeur de I'ISS, 'adap-

tateur pour la communication ISS/modules, Padaptateur pour la communication

32

ISS/périphériques et la mémoire vidéo congue spécialement pour le logiciel. C’est
d’ailleurs en partie grace a cette simplicité que la simulation au niveau UTF est

plus rapide.

é @) Mémoire
¥’ (Périphérique esclave)
‘B Autre périphérique
Glue
Channel
(Canal UTF)
E 8 = Autres
périphériques
File de Vodul
messages odule Usager
Q:D _ Module Usager
= Z
N
B E B Autres
modules

FIGURE 2.5 Schéma du Glue Channel

Un autre facteur qui accélere la simulation avec le Glue Channel est que les com-
munications sont abstraites & un niveau ol tout est intemporel. En effet, il n'y a au-
cun délai de transfert dans le Glue Channel, les lectures ou écritures sont effectués

immédiatement et les processus ne sont bloqués que sur les événements d’envoi

33

ou de réception. La synchronisation demeure assurée. Evidemment, Pexécution ne
respecte pas les cycles d’horloges, mais tel n’est pas 'objectif de ce niveau d’abstrac-
tion. Le niveau UTF est plutot utile pour vérifier la fonctionnalité de application.
Cest d’ailleurs 'approche que nous suggérons : une premieére conception de 'ap-
plication peut étre faite et vérifiée avec le Glue Channel. Lorsque la vérification
fonctionnelle (validation) est terminée, le concepteur peut ensuite commencer & ex-
plorer les configurations logicielles/matérielles. Notre plate-forme SPACE procure
Pavantage que les modules usagers n’ont pas besoin d’étre modifiés pour passer du
niveau UTF au niveau TF. Ceci demeure encore vrai pour revenir du niveau TF
au niveau UTF : par exemple, il est possible que le concepteur veuille modifier son
application en cours de route. A ce moment, il peut revenir au niveau UTF, faire
ses modifications, vérifier que I’application fonctionne toujours et finalement refaire

un partitionnement et continuer son exploration architecturale au niveau TF.

2.5 Structure de la plate-forme

Dans cette section nous allons décrire la structure de la plate-forme, en commencant,

par décrire les composants réutilisables préconcus et accessibles au concepteur.

2.5.1 Composants matériels fournis

Nous fournissons & I'utilisateur un choix de périphériques qu’il peut connecter pour
construire son architecture. La figure 2.9 (placée a la fin du chapitre, a la page 49)

présente 'ensemble des composants que nous allons décrire ici.

Processeur

Actuellement, notre choix s’est porté pour un ISS en langage C du ARMT.

34

Cet ISS est une version modifiée par GNU du Armulator de ARM [1]. Le
fait d’utiliser un ISS de GNU a deux avantages : le premier est que la licence
est gratuite et le code est ouvert. Le second est que GNU fourni un certain
nombre d’ISS qui sont facilement interchangeables les uns les autres. Nous
avons encapsulé le coeur de P'ISS dans un module SystemC (SC_MODULE).
Cet ISS exécutera des instructions assembleur en un nombre précis de cycles
d’horloge, de fagon & respecter la spécification du processeur. Pour l'instant

le signal d’horloge du processeur est le méme que celui de la plate-forme.

Décodeur du processeur
Le processeur travaille en mode aligné et peut adresser un octet (8 bits), un
mot (16 bits) ou un double mot (32 bits). Comme nous 'avons déja men-
tionné, l'espace d’adressage est divisé entre les périphériques, qui occupent
un intervalle d’adresse et les modules, qui ont un numéro d’identification avec
une adresse équivalente. Le décodeur sert de multiplexeur et dirige les appels

de fonction des interfaces SystemC vers le bon périphérique.

Adaptateur de modules du processeur
Pour faire communiquer notre ISS en C avec les modules matériels en Sys-
temC, il faut un module effectuant la conversion entre les deux protocoles
de communication. C’est-a-dire qu’il faudra passer d’une communication
par adresses physiques et bits a une communication par messages et ports.
L’adaptateur du processeur jouera ce role. Si les modules logiciels veulent en-
voyer des messages & des modules matériels, le décodeur active 'adaptateur
du processeur. Ce périphérique occupe tout 'espace d’adressage des modules,
et donce toutes les lectures ou écritures vers les modules passent par Padapta-
teur. Comme le processeur ne peut pas envoyer ou recevoir plus de 32 bits 4 la.
fois, adaptateur sérialise (ou parallélise) les mots (ou les messages) et utilise
des queues d’envoi ou de réception pour faire la conversion. De plus, dans le

cas ol le processeur et le simulateur SystemC de la plate-forme n’utilisent

35

pas le méme ordre des octets dans les demi mots et mots (incompatibilité
big-endian/little-endian), 'adaptateur du processeur pourra faire les conver-
sion nécessaires (dans une version future, cela n’est pas implémenté pour

I'instant).

Adaptateur de périphériques du processeur
Tout comme pour le cas des modules, les périphériques eux aussi sont adressés
par un adaptateur qui se branche sur le décodeur du processeur. Lorsque
les modules logiciels adressent les périphériques tels que la minuterie ou le
gestionnaire d’interruptions, le décodeur active Padaptateur, car il possede

une plage d’adresse qui englobe toutes les adresses des périphériques du canal.

Adaptateurs des modules
Tous les modules de 1'usager possedent un port de communication pour en-
voyer et recevoir des messages. Cependant, la gestion des files de messages
et de la mémoire pour les transferts bloquants et non bloquants est transpa-
rente pour le concepteur. Ce n’est pas a lui de gérer le tout, c’est la tache
des adaptateurs de modules. Pour chaque instance de module matériel, un

adaptateur de module est nécessaire.

Mémoire de code
Elle contient le code binaire, qui regroupe le code du systeme d’exploitation,
de l'interface SystemC et des modules et taches logiciels. La mémoire de code
est chargée a partir d’'un fichier lors de Uinitialisation de la simulation. La
mémoire de code n’est pas accessible via le canal de la plate-forme. Seul le

processeur peut avoir acces a cette mémoire via le décodeur.

Mémoire de données
Cette mémoire est utilisée pour stocker les informations dynamiques du logi-
ciel. La mémoire de données possede a la fois Uinterface du décodeur et des

périphériques, du c6té du canal. Ainsi, le processeur a acces & la mémoire en

36

passant par le décodeur, mais les modules matériels branchés sur le canal ont
eux aussi acces aux données. Il est donc possible d’utiliser la mémoire & double
port comme espace de rangement partagé. La cohérence des acces concurren-
tiels et les problémes de corruption des données demeurent par contre une
responsabilité du concepteur.
Mémoire vidéo

Nous avons congu une mémoire vidéo qui permet au code logiciel d’envoyer
des informations de déverminage a I’écran de Vordinateur hote ou se déroule
la simulation SystemC. Cette mémoire peut afficher des chaines de caractéres
ou bien convertir des mots de 32 bits en chaines numériques hexadécimales.
Cette mémoire se branche sur le décodeur du processeur et aussi sur le canal,
si le concepteur le désire. Cela permet entre autre aux modules d’utiliser un

périphérique dédié pour 'affichage et le déboguage.

Gestionnaire d’interruptions
On insére ce périphérique entre les éléments qui émettent des interruptions
et le processeur. En plus d’agir comme concentrateur (car il n’y a habituel-
lement pas beaucoup de broches dédiées aux interruptions), cela centralise le

traitement logiciel requis dans un seul périphérique.

Minuterie
Elle fournit les interruptions servant de base de temps au systéme d’exploita-
tion temps réel qui s'exécute sur 'ISS. Les tics d’ordonnancement sont indis-
pensables pour avoir un noyau préemptif tel celui de MicroC/OS-11. L’horloge
source de la minuterie est 'horloge globale de la plate-forme.

Périphérique d’arrét
Ce périphérique spécial permet de terminer la simulation. Un simple acces
mémoire dirigé a 'adresse de ce périphérique engendre 'exécution de la fonc-

tion sc_stop() de SystemC.

37

Canal de la plate-forme
Il permet de raccorder tous les modules matériels et les périphériques de la
plate-forme et assure les communications. Il est possible d’instancier plusieurs
modeles (versions) du canal, pour émuler a haut niveau diverses structures

ou protocoles. Entre autre, il est possible d’instancier un bus avec un arbitre.

2.5.2 Composants logiciels fournis

En plus des différents éléments matériels disponibles, nous offrons un support logi-
ciel, composé de deux parties : le systéme d’exploitation MicroC/OS-II porté pour
le ARM7 et linterface SystemC qui émule le simulateur de SystemC dans lequel
est implanté le gestionnaire de communication qui procure Uinterface de communi-
cation SPACE aux modules logiciels. La figure 2.6 présente bien 'agencement des
différents composants logiciels fournis. Voici donc une breve description des roles

de ’API, du gestionnaire de communication et du RTOS :

Interface SystemC
L’interface SystemC sert d'intermédiaire entre deux programmes, soit les mo-
dules usager de la plate-forme décrits en SystemC et le systéme d’exploitation.
Cette interface a donc comme role principal d’interpréter le code d’une ap-
plication et de convertir les appels SystemC en appels de fonctions systémes
propres au systéme d’exploitation. Par exemple, la création d’un processus
SystemC se traduira par la création d’une tache dans le systéme d’exploita-

tion,

Gestionnaire de communication
Cette partie émule le comportement du canal matériel, pour les modules logi-
ciels. C’est en fait le gestionnaire de communication qui implante la commu-

nication entre les taches logicielles et entre les taches logicielles et matérielles.

38

(Modules SystemC pour)
I'application de 'usager

AP SystemC RTOS HAL
Module é i Gestionnaire des
Usager I . commiinications
N J
AY 14
g
= % / Ve
> A} / //
=~ s
> A &
o P 7
Mo Fichier de code biraire o
== '
~ e

Fi1GURE 2.6 Schéma bloc de la partie logicielle

La synchronisation et le stockage des messages sont également assurés par le
gestionnaire de communication, pour que 'environnement des modules logi-

ciels soit le méme que pour le cas des modules matériels.

Systéeme d’exploitation
Il permet d’ordonnancer les différentes taches des modules logiciels sous la
forme de processus roulant sur 'ISS. De plus, nous avons également écrit des
pilotes pour gérer et programmer les différents périphériques utilisés par le
logiciel. Finalement, le port du systeme d’exploitation permet de traiter les

interruptions.

39

2.5.3 Instances de plates-formes

Le concepteur peut instancier une plate-forme en connectant des instances de
périphériques, des signaux de controle ou temporels, un processeur, mais aussi des
instances de ses propres modules qu’il a congu. Au niveau TF, les modules doivent
étre matériels ou logiciels. Pour chaque instance de plate-forme, il faut définir la
configuration. Cette configuration comprend le partitionnement logiciel/matériel
des modules, les ID des modules, les adresses des périphériques ainsi que certaines

valeurs de configuration a fixer.

Au niveau UTF, I'application doit étre partitionnée en un ou plusieurs éléments
SC_MODULE et chacun des modules doit hériter d’une classe de base, définie pour le
niveau UTF. Chaque module peut contenir un ou plusieurs SC_THREAD, cependant,
dans le dernier cas chacun de ces processus doit communiquer avec d’autres modules
différents (ou en d’autres mots, deux processus différents d'un méme module ne
peuvent pas communiquer avec un autre méme module). Cette restriction vient du
fait que les interfaces permettent de faire communiquer les modules entre eux et

non pas les processus individuellement.

Au niveau TF, le concepteur peut réutiliser son code du niveau UTF sauf pour
les exceptions qui suivent : au lieu d’utiliser des SC_THREAD, le concepteur doit
utiliser des SC_CTHREAD et au lieu d’hériter de la classe de base space_base_module
définie pour le niveau UTF, les modules de 'usager doivent hériter de la classe de
base space_base_module définie pour le niveau TF. Comme le type de processus
differe au niveau UTF et au niveau TF, le concepteur doit utiliser la méthode
isHighLevel() pour que son code ne soit pas modifié lors du passage UTF vers

TF et vice-versa. Voici de quelle fagon il doit procéder :

if (isHighLevel())

40

wait({nombre}, SC_NS); // valide pour les SC_THREAD
else

wait({nombre}); // valide pour les SC_CTHREAD

Ainsi, selon le niveau d’abstraction, I'une ou I'autre des fonctions wait() est ap-
pellée. Cela permet de réutiliser le méme code pour les deux niveaux d’abstraction
tout en respectant la syntaxe permise dans les processus de type SC_THREAD et
SC_CTHREAD. Malheureusement, la condition est évaluée a I'exécution et non au

moment de la compilation.

Nous allons donner ici un exemple d’instance de plate-forme au niveau UTF pour
une application simple qui ne contient que deux modules. Ensuite nous verrons
comment créer une plate-forme matérielle au niveau TF pour la méme application.
Cela va permettre d’expliquer par un exemple I'essentiel des regles architecturales

pour les deux niveaux. Le détail sera donné a 'annexe IV.

Le bout de code ci-apres présente les connexions de deux modules de P'usager,
soit "producer” et "filter”, branchés sur le canal Glue Channel. L’utilisateur doit
d’abord définir I'unité de temps par défaut pour la simulation (1), ainsi que la
résolution temporelle du simulateur. Ensuite, on instancie le canal et les modules
de T'usager (2). Puis, on instancie un périphérque (3) : la mémoire de données. 11
suffit ensuite de connecter les modules de 'usager au canal et de connecter le canal

a la mémoire (4) pour pouvoir finalement démarrer la simulation (5).

// (1) Configuration temporelle
sc_set_time_resolution(1l, SC_NS);
sc_set_default_time_unit(l, SC_NS);
// (2) Modules

glue_channel glue_channell("glue_channell");

41

producer producerl("producerl”, ID_PRODUCER);

filter filter1("filteril", ID_FILTER);

// (3) Périphériques

ram_data ram_datal("ram_datal’, RAM_START_ADDR, RAM_END_ADDR);
// (4) Connexions

produceri.m_port(glue_channell);
filtertl.m_port(glue_channell);
glue_channell.m_DevicePorts(ram_datal);

// (5) Début de la simulation

sc_start(-1);

La figure 2.7 présente une version graphique des connexions.

producer filter

H— 4 —

ram_data

Ficurg 2.7 Connexions UTFEF

Pour la méme application, U'instance de la plate-forme au niveau TF pourrait res-
sembler & ce qui suit (plusieurs détails sur 'implémentation de la partie matérielle

seront vus au chapitre 3). La configuration temporelle (1) est la méme qu’au ni-

42

veau UTF. Il faut ici ajouter le signal d’horloge ainsi qu'un signal pour une ligne
d’interruption (2). Ce signal est requis, car nous avons ajouté & la plate-forme (4)
l'adaptateur de modules du processeur (iss_adapterl). Toujours en (4), il faut
aussi ajouter un composant bidon afin de pouvoir connecter le signal d’interrup-
tion inutilisé (voir la figure 2.8). Le canal Glue Channel a été remplacé par un canal
TF de type bus. Nous voyons que les connexions requises (5) sont plus nombreuses,
notamment parce qu’il faut connecter les modules de 1'usager, les adaptateurs de

module, le canal et 'adaptateur du processeur au signal d’horloge.

// (1) Configuration temporelle

sc_set_time_resolution(l, SC_NS);

sc_set_default_time_unit(i, SC_NS);

// (2) Signaux

sc_clock clk("clk", (i, SC_NS), 0.5);

sc_signal< bool > n_irq_iss_adapter;

// (3) Modules

producer producerl("producerl”, ID_PRODUCER);

filter filteri("filterl", ID_FILTER);

// (4) Périphériques

module_adapter module_adapteri("module_adapteri", ID_PRODUCER);

module_adapter module_adapter2("module_adapter2”, ID_FILTER);

iss_adapter iss_adapterl("iss_adapterl”,
ISS_ADAPTER_START_ADDR,
ISS_ADAPTER_END_ADDR) ;

ram_data ram_datal("ram_datal®, RAM_START_ADDR, RAM_END_ADDR):

space_channel_bus space_channell("space_channell”);

dummy dummyl("dummyl") ;

// (5) Connexions

43

producerl.m_port(module_adapterl);
producerl.clock(clk);
filterl.m_port(module_adapter2);
filterl.clock(clk);
module_adapterl.m_PortToChannel(space_channell);
module_adapterl.m_Clock(clk);
module_adapter2.m_PortToChannel(space_channell);
module_adapter2.m_Clock{(clk);
iss_adapter!l.m_PortToChannel (space_channell);
iss_adapterl.clk(clk);
iss_adapterl.n_IRQ(n_irq_iss_adapter);
space_channell.m_AdapterPorts(module_adapterl);
space_channell.m_AdapterPorts(module_adapter2);
space_channell.m_DevicePorts(ram_datal);
space_channell.m_SoftwarePort(iss_adapterl);
space_channell.m_ClockPort(clk);
dummy1.m_DummyBoolPort(n_irq_iss_adapter) ;

// (6) Début de la simulation

sc_start(-1);

Comme mentionné précédemment, nous n’avons présenté ici qu’un sommaire des
regles principales qui contraignent Putilisateur, I'annexe II1 contient plus d’infor-

mations sur les regles d'implémentation.

44

EE___
EEL__

producer filter
Zn

24
E

module_adapter module_adapter

&

space_channel_bus

[
J |

=4
-}

jas)
®
g
=
(]
o)

O

ram_data dummy

iss_adapter

FiGURE 2.8 Connexions TF

2.6 Flot de conception (mode d’emploi pour un utilisateur)

La méthodologie SPACE est une approche descendante, ¢’est-a-dire que la concep-
tion d’une application débute avec une spécification, une implantation de haut
niveau et des raffinements itératifs. Plus spécifiquement, un flot de conception avec

approche descendante, dans la philosophie du codesign, ressemble & ceci :

1. Spécification fonctionnelle et non fonctionnelle du systeme, exploitation d’'un

45

langage permettant d’exprimer le parallélisme intrinseque;

[N

Choix de Parchitecture cible;

3. Affectation des taches aux ressources de 'architecture choisie;
4. Synthese des communications;

5. Synthese logicielle ;

6. Synthese matérielle.

Notre projet s’intéresse plus particulierement aux étapes 1 a 4. L'étape 2 est re-
lativement imposée par notre plate-forme et P'étape 3 est laissée aux mains de

Vutilisateur.

Une fois les spécifications fonctionnelles écrites, le concepteur peut diviser son ap-
plication en modules et en processus et implémenter une premiere version a haut
niveau en SystemC. Le concepteur doit suivre la méthodologie SPACE des le départ,
en suivant les regles de conception précédemment décrites. Une fois la premiere ver-
sion de 'application écrite, le concepteur effectue le branchement de ses modules
avec le Glue Channel, le canal UTF de SPACE. 1l doit également y connecter
les périphériques requis et diviser 'espace d’adressage entre les périphériques. Les
simulations UTF permettent au concepteur de vérifier la fonctionnalité de son ap-

plication, de corriger ses erreurs de synchronisation, de conception et de syntaxe.

Une fois que le concepteur est en mesure de simuler correctement son application
avec le Glue Channel, il doit procéder a un premier choix de partitionnement. Cette
étape consiste simplement a choisir, au meilleur de sa connaissance les modules qui
seront implémentés en logiciel et les autres qui seront en matériel. Ce choix n’est pas
définitif ; au contraire, il pourra changer autant de fois que le concepteur le désire.
Une fois le premier partitionnement établi, le concepteur doit créer une instance

de plate-forme. Pour ce faire, il doit instancier ses modules matériels ainsi que tous

46

les autres périphériques nécessaires pour supporter le matériel et le logiciel. 1l n’a
qu’a instancier les éléments en SystemC, effectuer les branchements et compiler
le tout. Concernant les modules logiciels, il doit les connecter a 'émulateur de
SystemC (API SystemC). Le concepteur peut jouer sur les parameétres logiciels,
par exemple Uadresse du gestionnaire d’interruptions ou bien celle de la minuterie.
Ensuite il doit compiler le systeme d’exploitation ainsi que la couche API SystemC
avec sa configuration. Une fois tout le logiciel compilé, un fichier binaire exécutable
est obtenu. Ce fichier est utilisé en parametre de la simulation de la plate-forme
matérielle. Il est alors possible d’exécuter Papplication qui est désormais matérielle

et logicielle.

Lorsque la simulation est lancée, cette fois au niveau TF, les parties logicielles et
matérielles s'initialisent et exécutent le code de 'application. SystemC exécute le
code matériel et donne la main au processus de 'ISS pour lui permettre d’exécuter
le code binaire passé en parametre. Cette fois les notions de temps sont prisent
en considération lors de la simulation, ce qui permet de fournir des résultats
intéressants au concepteur. Par contre, le temps d’exécution est affecté. La com-
munication qui était vérifiée au niveau UTF fonctionne toujours, car notre plate-
forme s’occupe automatiquement de la synthese (limitée) des communications. La
synthese des communications proprement dite consiste a implémenter les canaux
de communications permettant les échanges de données entre les processus [22, 11].
Notre méthodologie est limitée au niveau TF et la synthése des communications

s’arréte a ce niveau.

Pour le moment, la métrique choisie pour évaluer le choix de partitionnement est le
nombre de cycles d’horloge pour exécuter 'application ou une partie de 'applica-
tion. Bien souvent, une application embarquée n’a pas de fin, elle s’exécute de facon
perpétuelle. Dans ce cas, le concepteur doit utiliser une condition pour mettre fin

a la simulation. Il doit choisir cette condition de fagon a ce qu’elle soit valide peu

47

importe le partitionnement logiciel/matériel choisi et peu importe le niveau de la
simulation (i.e. UTF ou TF). Le concepteur peut par conséquent définir un endroit
olt application s’interrompt et mesurer le nombre de cycles d’horloges utilisés jus-
qu’a ce moment précis. Le nombre de cycles peut étre comparé a des contraintes
temps réel définies dans la spécification. Dans le cas ou le partitionnement choisi
ne respecte pas les contraintes de temps, il est possible de le changer et de refaire
des simulations avec la nouvelle configuration logicielle/matérielle. Pour ce faire, il
suffit de reprendre les étapes de partitionnement et de refaire des simulations. Ce
processus n’est pas ardu, mais peut prendre un peu de temps et peut aussi étre
une source d’erreur. Si les contraintes de temps sont respectées, le concepteur peut

tenter de réduire le nombre de modules matériels en les transférant du coté logiciel.

En ayant en téte une future implémentation physique de I'application, nous pou-
vons comprendre que augmentation du nombre de modules logiciels n’accroit pas
autant la surface que 'augmentation du nombre de modules matériels de 'appli-
cation. En effet, peu importe le nombre de taches logicielles que pourra comporter
I'application, il n’y aura jamais plus d’un processeur pour exécuter tout ce code.
L’augmentation du nombre de modules logiciels n’augmente principalement que la
quantité de mémoire requise pour 'exécution. Neanmoins, la puissance dissipée du
processeur pourrait varier, selon le nombre de taches logicielles et le type d’appli-
cation. Il y a des études [17, 27] qui montrent que le type de programmation peut

avoir un impact sur la puissance dissipée d’un processeur.

Par opposition, 'addition de modules matériels requiert 'ajout de connections
matérielles vers le canal, 'augmentation de puissance électrique consommée, ajoute
des tampons mémoires cotteux en surface en plus de la surface pour placer ces
modules sur le systéme sur puce. Ainsi, nous pouvons définir le partitionnement lo-
giciel /matériel optimal comme étant la configuration pour laquelle les modules sont

le plus possible dans la partie logicielle, tout en laissant les modules qui assurent

la rencontre minimale des contraintes de temps en matériel.

48

interface Systeme
SystemC | d'exploitation

Gestionnaire de
communication

Modules

logiciels
Processeur
Mémoire |..! Décodeur du] 4 Mémoire de
vidéo = processeur I code

s

WS

Ar?]i%talte:;Se Acéizp:laétzur d;’ Mémoire de Gestionnaire
u'e peripnerique données d’interruptions
processeur du processeur

T

it

Canal de la plate-forme

Périphérique Adaptateur de| | Adaptateur de
d'arrét module module

Minuterie

Modules
matériels

FI1GURE 2.9 Apercu des composants de la plate-forme au niveau TF

90

CHAPITRE 3

IMPLEMENTATION DES COMMUNICATIONS

3.1 Fonctionnement général

Il est maintenant temps de décrire le fonctionnement des communications sur la
plate-forme. Dans un premier temps, nous allons aborder le sujet d’un oeil d’utili-

sateur et ensuite nous entrerons dans les détails d’implémentation.

3.1.1 D’un point de vue de P'utilisateur

Les cycles d’horloges ne sont pas apparents pour P'utilisateur, car ils sont encapsulés
dans les appels de fonction pour la communication. De plus, Pordre d’exécution
des processus n’est pas controlé par le concepteur, c’est donc la responsabilité
du canal de communication d’assurer la synchronisation. Rappelons-nous que le
simulateur de SystemC exécute de fagon concurrente les processus, mais émule un
comportement parallele, de facon identique & n’importe quel simulateur matériel
(exemple ModelSim [28] pour le VHDL). Voir 'annexe I et [30, 7] pour les détails

sur le comportement du simulateur de SystemC.

3.1.2 Communication module & module (UTF)

Prenons Pexemple d’une application trés simple : un module producteur et un
module consommateur. Chacun de ces modules ne contient qu’un seul processus

(SC_THREAD). Le module producteur effectue une écriture, c’est-a-dire qu'il envoie

51

une donnée et ensuite se met en attente pour la prochaine exécution. Le module
consommateur n’est guere plus complexe; il effectue une lecture pour recevoir la
donnée et se met en attente pour la prochaine exécution. Si ces modules sont congus
en SystemC et que les modules sont connectés ensemble avec une file de message
bloquante (FIFO) d’une profondeur de 1 (c’est-a-dire qu’un seul message peut
voyager du producteur vers le consommateur & la fois), nous obtenons 'application
producteur/consommateur Ja plus simple. Si les communications sont bloquantes,
le consommateur sera interrompu si la donnée n'est pas produite lors d’une lecture
(FIFO vide) et le producteur sera également interrompu si la donnée n’a pas été
consornmée (FIFO plein). Nous voyons que le simulateur de SystemC assure la

synchronisation entre les processus.

Maintenant, si nous prenons nos deux modules et que nous les branchons sur le

canal UTF avec d’autres modules, qu’arrivera-t-il 7

Puisque les modules ont été congus de facon & étre synchronisés par les commu-
nications, nous proposons comme solution que 'exécution des taches se fasse sans

préemption entre deux appels de fonction de communication :

read(...)
Exécution sans préemption

write(...)

Notre motivation pour ce type de modele est la suivante. L’exécution du code des
modules logiciels va consommer des cycles d’horloge, parce que le processeur pren-
dra un nombre précis de cycles pour chaque instruction assembleur. Les modules
matériels sont considérés comme de puissantes unités de calcul et leur exécution
consommera des cycles lorsqu’ils commmuniqueront ou lorsque le concepteur em-

ploiera explicitement la fonction wait() de SystemC. Dans tous les autres cas, le

52

concepteur n’aura pas a spécifier de latence d’exécution entre les appels de com-

munication.

Une autre chose & considérer est 'ordre d’exécution. Il faut tenir compte du fait
que n’importe quel module peut s’exécuter en premier et il faut s’assurer que la
synchronisation est respectée. Pour ce faire, nous avons défini une structure interne
particuliere (une queue de messages). Dans ce qui suit, nous allons expliquer le tout

avec un exemple.

La situation est celle de plusieurs producteurs et de plusieurs consommateurs. Un
producteur envoie une donnée a un consommateur précis grace au numéro d’identi-
fication unique de ce dernier. Ce message est écrit dans la file du canal de commu-
nication. Lorsque le consommateur demande une lecture avec la fonction read(),
il identifie lui aussi le numéro du producteur visé ainsi que son numéro d’iden-
tification unique. Si la file de message du canal possede déja un message qui est
destiné & ce consommateur particulier et qui est en provenance du bon producteur,
alors le message est directement transmis au consommateur qui peut poursuivre
sont exécution. Cependant si aucun message n’est disponible, alors la requéte de
lecture est placée dans la file d’attente et le consommateur bloque en attendant
une réponse. La méme chose se produit si un producteur écrit un message pour
lequel aucun consommateur n’est en attente, c’est-a-dire que le message provenant
du producteur est placé dans la file d’attente et que le producteur se bloque en at-
tendant que son message soit consommé. [l s’agit donc d’une communication sans

horloge synchronisée sur les données.

93

3.1.3 Communication module & périphérique (UTF)

La communication entre un module et un périphérique est plus simple puisqu’il
s’agit d’une relation de maitre a esclave ol le périphérique ne fait que répondre a

des requétes. Il n’y a donc pas de problemes liés a la concurrence.

3.1.4 Communication module & module (TF)

Nous savons que les modules peuvent passer d'une nature logicielle a matérielle tres
facilement, avec tres peu d’effort de la part du concepteur. La communication doit

cependant étre garantie et nous allons voir comment tout cela peut étre possible.

Les modules matériels ne sont pas connectés sur le canal de la plate-forme directe-
ment, il y a toujours un adaptateur qui doit se placer entre les deux. Ce composant
contient une liste de messages qui joue le role de cache de messages ou boite de
réception de messages. En comparaison avec le canal UTF, le canal TF ne contient
pas de listes. Le canal effectue le routage des messages et c’est dans les adaptateurs

que s’entreposent les messages.

Les files de messages n’ont pas été placées & méme les modules de 'usager parce
que les listes sont traitées différemment dans le cas du logiciel et dans le cas du
matériel. I fallait donc les extraire pour ne pas laisser le traitement des messages
a l'usager et rendre le tout transparent. Bien que les files de messages auraient
pu étre implantées directement dans le canal, nous désirions avoir des mémoires
séparées pour chaque module, de fagon a pouvoir mieux estimer la quantité de
mémoire requise pour chaque module et aussi pour avoir une approche modulaire,
question d’extraire une fonctionnalité du canal et d’en simplifier sa conception.

Contrairement au niveau UTF, au niveau TF il est intéressant de pouvoir changer le

54

modele du canal en conservant les adaptateurs intacts. Pour développer un nouveau
protocole de communication, le concepteur n’a pas a refaire les boites de réception
de message (adaptateurs). Par contre, s’il le désire, il peut bien changer le modele

des adaptateurs sans toucher a la fonctionnalité du canal.

Lorsqu'un module de application effectue une lecture, 'adaptateur vérifie s’il vy
a un message dans la boite. S'il n’y a pas de message, la fonction de lecture re-
tourne un message d’erreur ou bloque la tache et se met en attente d’un message,
dépendamment si le concepteur a utilisé une fonction bloquante ou non. Si la boite
a messages n’'est pas vide, le module fait la lecture du message directement dans
la boite. Si le module effectue une opération d’écriture, ¢’est & ce moment qu’une
transaction sur le canal est initiée. Le canal fait son travail et le message se re-
trouve dans la mémoire de messages du module récepteur. Nous voyons donc que
seules les opérations d’écriture produisent des transactions sur le canal. Ceci nous
permet d’attribuer au matériel un comportement similaire au logiciel. Chaque mo-
dule matériel aura sa mémoire de messages et chaque tache logicielle aura sa file de
messages, gérée par le systeme d’exploitation. De plus, nous réduisons le trafic sur

le canal en laissant les adaptateurs se charger de retenir les opérations de lecture.

3.1.5 Communication module & périphérique (TF)

L’accés aux périphériques avec le canal TF fonctionne de la méme facon qu’avec
le canal UTF. Cette fois par contre, les accés mémoire consomment des cycles
d’horloge (temps de transfert dans le canal) et sont toujours bloguants, c¢’est-a-dire
que le module qui fait un acceés vers un périphérique doit attendre que ce dernier

lui réponde avant de pouvoir continuer a s’exécuter.

95

3.2 Interfaces

La définition des interfaces dans SPACE nous permet de déterminer les roles, les
permissions et les compatibilités entre les différentes entités de la plate-forme.
Chaque interface reflete les fonctionnalités disponibles d'un port ou d’un com-
posant, i.e. que les modules usager peuvent faire des lectures, des écritures,
des opérations bloguantes, non bloquantes et des accés mémoire, tandis que les
périphériques ne font que répondre aux acces mémoire, les adaptateurs sont la
pour retenir les lectures et laisser passer les écritures et finalement sur le canal
il n’y a que les écritures qui voyagent. Avec ces quelques régles simples, on peut
définir toutes les interfaces. 11 y a aussi une interface pour le processeur (I'ISS),
puisque le processeur fonctionne par adresses et données. La figure 3.1 présente

Pensemble des interfaces de SPACE.

Nous allons présenter les différentes interfaces en détails avec chacune leur appar-
tenance pour les ports et pour 'implémentation (i.e. quel composant peut avoir un
port de ce type d’interface et quel composant peut implémenter une interface de

ce type), le jeu de méthodes qui compose chacune des interfaces ainsi qu'une bréve

description.
TABLEAU 3.1 Interface space_module_if
[space_module_if
Description Interface disponible aux modules de 'usager
Port Modules de 'usager
Implémentation | glue_channel, module_adapter
Méthodes read(), write(), nb.read(), nb_write(), mem read(),
mem_write()

Dans les tableaux, nous pouvons comprendre que les composants listés dans la

section ”Port” peuvent étre connectés a ceux qui sont listés dans la section

o6

Processeur

{158}

decoder_data if , .
Lsager

space_module_if

space_channel_if

space_device_jf
space_adapter_[f pace. -

FicURrE 3.1 Interfaces SystemC pour la plate-forme

" Implémentation”. En d’autres mots, il est possible de brancher un port P d’un
module A & une interface I du module B si le port du module A utilise 'interface

I et que le module B implémente 'interface I

Nous pouvons comparer nos interfaces avec celles de SOCP de StepNP [40]. Les
deux utilisent les constructions de SystemC 2.0 et permettent d’opérer au niveau
fonctionnel /transactionnel. Avec SOCP, toutes les transactions sont interrompues
ou divisées (splitted) par défaut. Avec SPACE, rien de tel n’a été prévu, c’est-

a-dire que le canal peut implémenter cette fonctionnalité, mais I'usager n’a pas a

57

TABLEAU 3.2 Interface space_device_if

space_device_if {

Description Interface que doivent implémenter les périphériques

Port glue_channel, space_channel

Implémentation | space_base_device (tous les périphériques), device_adapter

Méthodes mem _read_from_channel(), mem_write_from_channel(),
start_address(), end_address()

TABLEAU 3.3 Interface space_adapter.if

B

space_adapter_if

Description Interface que doivent implémenter les adaptateurs qui se
branchent sur le canal

Port space_channel

Implémentation | module_adapter (adaptateurs de tous les modules),
iss_adapter

Méthodes write_from_channel(), nb_write_from_channel()

faire deux appels de fonction pour envoyer une requéte et récupérer la réponse ; tout

cela peut étre caché dans les adaptateurs. Une autre fonctionnalité qui differe est

le support des maitres et esclaves multi processus (multithreaded). Cela se reflete

au niveau des interfaces de SOCP avec la présence d’identificateurs de processus

(thread) en plus des identificateurs d’entités (ID numbers). Ce support multi pro-

cessus permet a un module d’envoyer une requéte a un autre module en s’adressant

TABLEAU 3.4 Interface space_channel if

space_channel_if

Description Interface que fournit le canal; tous les composants qui s’y
branchent doivent utiliser un port de ce type

Port device_adapter, iss_adapter, module_adapter

Implémentation | space_channel

Méthodes write(), nb_write(), mem read(), mem_write()

o8

TABLEAU 3.5 Interface decoder_data_if

l decoder_data_if]

Description Interface qu'utilise le processeur ('ISS) pour les acces
mémoire ; tous les composants qui peuvent se brancher sur
le décodeur doivent implémenter cette interface

Port iss, decoder

Implémentation | decoder, device_adapter, iss_adapter, ram_data, ram_code,
video_ram

Méthodes readword(), writeword(), readhword(), writehword(), read-

byte(), writebyte(), start_address(), end_address()

précisément a un seul processus membre de ce module destinataire. Bien que cette
fonctionnalité soit intéressante, elle ajoute un degré de complexité non négligeable
dans l'implémentation des communications. Pour cette raison, nous avons omis
cette caractéristique de la définition de nos interfaces. Finalement, une derniere
fonctionnalité disponible dans les interfaces de StepNP est manquante dans notre
implémentation de SPACE : le mode rafale. Cela permet & un module d’envoyer
plusieurs requétes successives. Avec une implémentation de canal de type bus, le
mode rafale consiste a verrouiller I'acces au bus par un seul maitre. Apres avoir fait
ses requétes en rafale, le verrou est relaché et 'arbitre du bus peut donner Pacces

a un autre maitre. Tel est le fonctionnement de Simple Bus [20].

3.3 Composants pour la communication

Cette section décrit un par un les composants essentiels pour la communication, en
donnant leur spécification et en survolant rapidement leur fonctionnement interne.
Le lecteur peut se référer a la figure 3.2, qui présente une instance assez générique

de la plate-forme, contenant les éléments que nous allons décrire.

59

Module 5
Usager

EY"

!z space_channel

0

decoder E b

ram_code Q Q} ram_data Q

FIGURE 3.2 Architecture matérielle générale pour SPACE

module_adapter

3.3.1 Composant glue_channel

Le glue_channel est le canal de communication pour le niveau UTF. Il sert a faire
la liaison entre les modules, en assurant une communication fonctionnelle (voir la
figure 2.5 au chapitre 2). Pour 'utiliser, il faut simplement connecter les modules

de I'usager et les périphériques voulus.

Comme nous I'avons mentionné déja, les modules de 'usager sont les seuls qui
o . . o
peuvent initier des transactions. Quand une requéte de lecture ou d’écriture est
envoyée, le glue_channel utilise une liste de requétes interne pour savoir s'il s’agit
d’une nouvelle requéte ou pour répondre a une requéte qui était déja en attente.

La synchronisation est assurée par des événements de SystemC (sc_event).

60

3.3.2 Composant space_base_module

Aux niveaux UTF et TF, les modules usager doivent hériter de cette classe. Cela
permet d’'imposer des éléments structurels communs et obligatoires & tous les mo-
dules, dépendamment du niveau d’abstraction. Alors qu’au niveau UTF, il faut
connecter le module sur le glue_channel, au niveau TF il faut le brancher a un
adaptateur de module. Ces deux composants sont compatibles avec le port défini
dans space_base_module. De plus, au niveau TF, il faut connecter le module sur
I'horloge globale. Dans le cas ol 'on désirerait avoir un comportement différent
au niveau UTF et au niveau TF, on peut utiliser la méthode isHighLevel() qui

retourne vrai (true) au niveaun UTF et faux au niveau TF (false).

A Plinterne, le port unique de communication pour les modules est défini dans la
classe de base. Il y a véritablement deux versions de classe space_base_module :
une pour le UTF et 'autre pour le TF. La différence entre les deux (mis & part le
fait que la méthode isHighLevel () retourne une valeur différente) est qu’au niveau
TF il y a en plus le port pour 'horloge. Ce port permet de créer des processus de

type SC_CTHREAD.

3.3.3 Composant space_base_device

Tout comme pour les modules, les périphériques doivent eux aussi hériter d'une
classe de base : space_base_device. Lors de 'instanciation d’un périphérique, il
faut passer en parametre du constructeur 'adresse de début et Padresse de fin
de la plage d’adresse voulue du périphérique. Le concepteur doit implémenter les
méthodes de U'interface des périphériques, pour définir les comportements en cas

de lecture ou d’écriture.

61

Il est possible d’ajouter aux périphériques un port d’horloge, si désiré, car la
classe de base n'en contient pas. Dans le cas ou on désirerait avoir un compor-
tement différent au niveau UTF et au niveau TF, on peut utiliser la méthode
isHighLevel() qui retourne vrai (true) au niveau UTF et faux au niveau TF

(false), comme cela a été expliqué pour le cas des modules.

3.3.4 Composant module_adapter

Les figures 3.3 et 3.4 décrivent respectivement les vues internes des deux versions
possibles du module_adapter : sans processus et avec processus, dont les différences
sont expliquées un peu plus loin. Le concepteur peut choisir 'une ou Pautre des

versions au moment de la compilation.

Ecritures Lectures
(par les autres modules (pat le module)

File de

in{erface'space_‘ééé;;t;r_ifp
messages

Connexion au module

Y

iﬁléﬂécesbade!mbdﬂéﬂif

Connexion au canal

port space_channel if

/

Ecritures
{par le module)

F1GURE 3.3 Fonctionnement du périphérique module_adapter

L’adaptateur de module sert a effectuer la synchronisation entre les différents mo-
dules matériels de 'usager. Sur ces mémes figures, on observe bien qu’il n’y a que
les écritures qui voyagent sur le canal ; les adaptateurs servent a stocker ces requétes

d’écriture.

62

Signal d'horloge

e

Eoritures

{par Vadaptateur) Ecritures

(par fe module)

File de
messages

[s

Connexion au module

Interfacespace_module_if

File de
messages

Lectures
(par le moduie)

Z.
Ecritures
(par les autres modules)

FIGURE 3.4 Fonctionnement du module_adapter avec processus

L’interface space_adapter_if permet de brancher le canal vers 'adaptateur, i.e.
que les requétes provenant du canal (des autres modules) "arrivent” par cette
interface. L'interface space_module_if permet de connecter un module usager a
I'adaptateur. L’adaptateur est muni d'un port de type space_channel_if, pour
brancher I’adaptateur au canal, lui permettant d'initier des requétes vers le canal,
pour faire des écritures vers d’autres modules. Si on choisit la version avec processus
(figure 3.4), un port d’horloge est aussi présent. Cela permet & 'adaptateur d’avoir

a1 processus S_YIlChI' one.

Les deux versions du module_adapter se comportent de la méme fagon pour les
requétes de lecture et pour les opérations d’entrées/sorties sur la mémoire, c’est-a-
dire pour les méthodes mem_read() et mem_write(). Ces dernieres sont toujours
directes au canal et 'adaptateur ne fait que passer la requéte du module vers le

canal.

Lors d’une requéte de lecture, I'adaptateur consulte sa liste interne de requétes. Si

63

une requéte d’écriture correspondante est déja dans la liste en attente, Padaptateur
transmet le message dans la réponse a la lecture. Si la requéte correspondante n’est
pas encore arrivée, 'adaptateur retourne un code d’erreur si la lecture était non
bloquante, sinon on attend le cycle suivant pour consulter la liste, dans le cas

bloquant.

En comparant les schémas des figures 3.3 et 3.4, nous voyons que le fait d’ajou-
ter le processus synchrone outgoingWriteThread() permet d’envoyer les requétes
d’écriture de facon indépendante des modules. En fait, comme le canal effectue
des appels a la fonction de synchronisation wait(), le concepteur peut vouloir
éviter que les modules soit bloqués pour quelques cycles d’horloge durant un appel
d’écriture non bloquante. En utilisant la version avec processus, ¢’est 'adaptateur
qui se charge d’initier la transaction en effectuant lui-meéme 'appel de méthode
nb_write() ou write(), évitant a ce moment de bloquer le processus du module

qui avait initialement fait une requéte.

3.3.5 Composant space_channel

Le canal TF est construit sur une base qui facilite 'expansion et Pexploration
architecturale. Une classe space_channel est donc fournie comme classe de base
et plusieurs canaux avec des protocoles ou architectures différents peuvent étre
construits a partir de ce squelette. De cette fagon, tous les canaux qui sont construits
respectent les interfaces fournies et cela assure une compatibilité entre les différents

canaux, les rendant interchangeables.

La classe de base comporte deux multi-ports, un pour y brancher les adaptateurs
et un autre pour y brancher les périphériques. Des méthodes membres permettent

de retrouver les éléments connectés a ces ports lors de Uinitialisation en simulation,

64

pour les indexer dans une table ou cache interne. Des méthodes sont aussi fournies
pour ensuite les retrouver a partir des ID (dans le cas des adaptateurs de module)

ou des adresses (dans le cas des périphériques) :

void scanDevices(void);

unsigned long getDeviceNumber(const unsigned long Address);

void scanAdapters(void);

unsigned long getAdapterNumber(const unsigned long ID);

L’implémentation actuelle de SPACE fournie deux canaux : un réseau point a
point complet (crossbar) et un bus. Leurs caractéristiques seront décrites aux deux

prochaines sous-sections.

3.3.6 Composant space_channel xbar

Il s’agit d'un canal qui modélise un réseau ou tous les modules ont un acces point
a point avec les autres modules. On peut y brancher un adaptateur spécial, le
périphérique iss_adapter, qui & son tour permet de brancher un modele de pro-
cesseur au canal. Dans ce cas, il a été défini qu’on attribut le numéro unique (ID)
de valeur zéro a 'iss_adapter. C’est pour cette raison que les modules de 'usager
ne devraient pas utiliser ce numéro. Le réseau modélise une largeur de 32 bits et
donc un délai (latence) de 1 cycle est attribué au transfert de chaque bloc de 32
bits qui est transféré, que ce soit avec une écriture bloquante, une écriture non

bloquante, une lecture ou une écriture en mémoire.

65

3.3.7 Composant space_channel_bus

Contrairement au réseau point a point, le bus possede un port dédié pour le
périphérique iss_adapter. Pour des raisons de compatibilité entre les deux types
de canaux, 'usager ne devrait tout de méme pas utiliser le numéro d’identification

zéro pour ses modules, méme s’il utilise le bus.

Une autre différence structurelle avec le bus est 'ajout d’'un arbitre intégré. L’ar-
bitre posséde un processus synchrone (SC_CTHREAD), ¢’est pourquoi un port d’hor-
loge a été ajouté au canal. La figure 3.2 illustre comment le tout est connecté. Le
fait d’ajouter un arbitre complexifie le traitement des requétes dans le canal. Voici

plus de détails sur comment sont traités les requétes d’écriture.

1. D’abord, il faut demander a arbitre 'acces au bus. Ceci s’effectue au moyen
d’un appel de fonction qui se bloque si le canal est occupé. Cela a pour effet
de mettre le processus qui fait la requéte en attente. A chaque front montant
du cycle d’horloge, la fonction vérifie si le processus a obtenu le droit de

transfert.

2. L’arbitre possede un processus synchrone qui est actif sur le front descendant
de I'horloge, un peu comme cela a été fait dans Simple Bus [20]. L’algorithme
d’arbitrage dicte que chaque processus doit attendre au moins un cycle pour
avoir le bus, pour simuler un délai de traitement. Lorsqu'un processus de-
mande le droit d’acceés a ’arbitre, il fourni son ID ainsi qu’un nombre corres-
pondant & une priorité. L’arbitre classe alors les requétes d’accés en ordre de
priorité dans une queue. A chaque cycle d’horloge (au front descendant), tous
les ID des processus qui ont fait la demande d’acces ont été classés dans la
queue de priorités. Les requétes ordonnées sont alors déplacées a la fin d’une

liste simple des requétes existantes. Lorsqu’une requéte se termine et libére

66

le bus, I'arbitre en est informé et récupere la requéte qui se trouve en début
de liste et donne le bus au demandeur correspondant, qui pourra commencer
le transfert au front montant suivant. De 13 vient la latence d’arbitrage d'un
cycle. La figure 3.5 illustre cette étape (I’étape 2) en 4 sous étapes.

Pour résumer, les requétes sur le bus qui surviennent au cours du méme cycle
d’horloge sont classées en ordre de priorité. Elles sont alors placées dans une
liste qui est conservée de cycle en cycle, et les requétes sont élues en ordre

FIFO a ce moment.

3. L’étape suivante consiste a notifier a U'arbitre que la transaction a commencé.
Ceci permet de verrouiller le canal pendant le transfert (modélisation d’un

acces exclusif).

4. 11 faut alors simuler la latence de transfert. La latence dans le bus est calculée

de la méme facon que dans le cas du space_channel_xbar.

5. Enfin, le message est transmis dans ’adaptateur cible et I'arbitre est informé

que le transfert est terminé.

3.3.8 Composant null_device

Le null_device est simplement un périphérique qui procure une implémentation
a la classe space_base_device, donc qui posséde une interface space_device_if,
mais sans toutefois fournir aucune fonctionnalité. Il peut étre utilisé sur le canal
glue_channel, space_channel_xbar ou space_channel_bus lorsque le concep-
teur n’a pas besoin de périphérique dans son architecure matérielle. Les canaux
doivent avoir au minimum un périphérique de connecté, le null_device sert a

assurer cette présence minimale.

CYCLE N

Demande d’accés l 16

Demande d'accés | 2
Demande d’'accés | 13
Demande d’acces | 23
Demande d'accés | 27

Demande d'accés 2

Demande d'acces | 13

Demande d'accés | 16

Demande d’acces | 23

Demande d'accés | 27

A} Les demandes
d'acces artivent dans un
cerlain ordre au front
montant dun cycle
d'harioge. Elles sont
rangeées selon lewr
priorite,

| Demande d'accés | 42 |

Reqguétes

Demande d’accésJ 2

Bj Au front dherloge
descendant sulvani le
oohteny de la queue de

prioiilé sl vidé el déplacea

la fin dune aubie lisie. Cetlle

liste et perpetuelie de ovele

en cycle,

CYCLEN + 1

67

CYCLEN+1/2

Requétes existantes

Demande d'accés | 2
Demande d'accés | 13
Demande d'acces | 16
Demande d'accés | 23
Demande d’acceés | 27

G Au frcmi d'horioge montant suivam,‘si i& Bus est libre, 12
requéte qui se trouve au somimet de la liste est exiraile et élue.

3} Pendani ce temps, d'auttes demandes d'accés peuvent
stvenit. Le cycle d aibitrage continu alors comme & I'élape 1.

Fi1curg 3.5 Algorithme d’arbitrage du space_channel_bus

3.4 Support logiciel sur la plate-forme

Cette section présente les périphériques utilisés pour la simulation du logiciel dans

SPACE. 1l est & noter que le modeéle du processeur, le décodeur ainsi que les

mémoires ont été concus et implémentés par un autre membre de Péquipe [9],

c¢’est pourquoi nous n’allons pas les détailler.

68

3.4.1 Composant irg_manager

Le role du gestionnaire d’interruptions est de permettre a plusieurs périphériques
de profiter du mécanisme d’interruption du processeur, méme si ce dernier n’a
habituellement qu’une seule broche dédiée aux interruptions. Certains processeurs,
le ARM par exemple, sont munis de deux broches de la sorte : nIRQ (interruption)
et nFIQ (interruption rapide). Dans ce cas, si seulement deux périphériques utilisent
les interruptions dans I'application, il est possible de se passer d'un gestionnaire
d’interruptions. Dans tous les autres cas, il faut un module qui fait la gestion de

tous les signaux d’interruption des périphériques.

IRQ_n[0]
IRQ_n[1]

IRQ_n(2]
32 entrées max.

irg_manager E]}

IRQ_nfi] space_device_if

IRQ_n[31]

{¥]

IRQQCut_n

FIGURE 3.6 Schéma bloc du gestionnaire d’interruptions

La figure 3.6 illustre bien la structure du périphérique. Nous avons opté pour une
architecture des plus simples. Le gestionnaire est asynchrone et est composé essen-
tiellement d’une méthode de SystemC (SC_METHOD) qui est sensible aux signaux
d’entrées. Le nombre d’entrées peut varier entre 1 et 32, car le registre d’inter-
ruptions interne doit tenir sur 32 bits étant donné qu’il est représenté par une
variable entiere. Les entrées et le port de sortie pour l'interruption sont tous actifs

bas, ce qui permet de mettre en cascade plusieurs gestionnaires d'interruptions. Le

69

nombre total de lignes d’interruptions n’est donc pas limité & 32; de toute fagon,

il est difficile d’imaginer un cas ot plus d'un gestionnaire serait requis.

Le bit le moins significatif du registre d’interruption (i.e. le bit 0) est associé au
périphérique qui émet 'ITRQ 0, le bit 1 est associé a 'IRQ 1 et ainsi de suite. Le
registre ne représente pas 'état actuel des signaux d’interruptions, mais contient
plutot de Vinformation au sujet des IRQ qui ont été activées depuis un certain
moment. 11 s’agit donc d'une mémoire qui retient toute activité des signaux d’in-
terruption. Lorsqu’un signal IRQ) est activé, c’est-a-dire que le signal passe a 1’état ”
faux 7 (logique négative), le bit correspondant & cet IRQ) est mis & 1 dans le registre

3

d’interruption. Si le signal I’IRQ passe a ” vrai 7, le bit du registre d’interruption

demeure & 1.

Il est possible d’accéder au irq_manager en lecture, comme s’il s’agissait d'une
mémoire de 32 bits. Dans ce cas le gestionnaire d’interruption retourne son registre
d’état. Lorsqu’une écriture est faite a 'adresse du gestionnaire, celui-ci remplace
la valeur de son registre d’interruption par la nouvelle valeur donnée du mot de 32
bits. A tout moment, lorsque I'état du registre d’interruption change, le gestionnaire
ajuste la valeur de son port de sortie. Il place la valeur ”fausse” si au moins 1 des
bits du registre d’interruption est & 1 et la valeur ”vraie” si le registre d’interruption

ne contient que des zéros (logique négative).

Voici un exemple d’enchainement des opérations qui pourrait étre réalisé pour
programmer et utiliser le gestionnaire d’interruption depuis la partie logicielle de
SPACE. Nous supposons que le systeme d’exploitation connait Padresse du ges-

tionnaire d’interruption.

1. Le systeme d’exploitation initialise le gestionnaire d’interruption en lui

écrivant un entier de 32 bits qui a la valeur nulle (0x00000000).

10.

11.

12.

13.

70

A un moment donné, un périphérique émet une interruption. Attention, le

périphérique doit utiliser la logique négative pour émettre son interruption.
Le gestionnaire regoit U'interruption et met a jour son registre.

En mettant a jour son registre, le gestionnaire constate qu'au moins 1 des
bits est activé, par conséquent, il active (met a 0) la broche d’interruption de
sortie (IRQOut_n).

Quand le processeur sera a I’écoute des interruptions (car il peut les masquer),

il verra que le gestionnaire d’interruptions lui envoie un signal.

Le systeme d’exploitation entre dans la routine de traitement des interrup-
tions (ISR).

Dans 'ISR, une des premieres choses qui devraient étre faite est de désactiver
les interruptions. Normalement le processeur désactive les interruptions lui-

meéme avant de commencer ’exécution de la routine.

. Connaissant 'adresse du gestionﬁaire d’interruption, le systeme d’exploita-

tion fait une lecture de 32 bits & cette adresse.

Le gestionnaire d’interruption lui répond et lui envoie le contenu de son re-

gistre.

Le systeme d’exploitation analyse la valeur recue et choisie le numéro d’IRQ
qui sera traité, par un algorithme qui peut implémenter n’importe quelle
politique d’arbitrage.

Dans certains cas, il faut faire une lecture ou une écriture a 'adresse du
périphérique que l'on a choisi de traiter, pour lui indiquer un accusé de

réception (ACK). Cela dépend du fonctionnement du périphérique.

Le RTOS doit mettre le bit correspondant a 'IRQ qui sera traitée a zéro dans

la variable de 32 bits.

Cette valeur doit ensuite étre écrite a 'adresse du gestionnaire.

71

14. Ce dernier mettra a jour son registre a la nouvelle valeur recue et ajustera la
valeur de la broche d’interruption de sortie en conséquence. Il est & noter que
méme si le périphérique maintient a ”faux” la valeur du signal d’interruption,
le gestionnaire n’en voit rien, car il doit y avoir un changement d’état sur le

signal pour que le gestionnaire d’interruption mette & jour son registre.

15. Le systeme d’exploitation traite la demande du périphérique qui a produit
Pinterruption choisie. C’est & ce moment que le périphérique risque de re-
mettre & "vraie” la valeur de sa broche d’interruption, pour signaler qu’on
lui a répondu (& moins que cela ne soit pas déja fait, & 'étape de PACK).

16. Le systeme d’exploitation termine son traitement (ISR) et réactive la sensi-

bilité aux interruptions.

17. La boucle recommence a I’étape 2.

3.4.2 Composant timer

La décision d’utiliser un RTOS sur la plate-forme implique que nous avons besoin
d’une minuterie pour produire un signal d’horloge temps réel. La minuterie est un
périphérique de la plate-forme, par conséquent elle est branchée sur le canal et il
est possible de 'accéder comme une mémoire. Elle posséde un port d’entrée pour
I'horloge ainsi qu’un port de sortie pour produire son interruption (un signal qui

est actif bas et donc directement compatible avec le gestionnaire d’interruptions).

Lors de I'instanciation de la minuterie, le concepteur peut spécifier son décompte
initial, i.e. le nombre de départ pour le compte a rebours. Ensuite, en cours de
simulation, une lecture retourne le décompte interne actuel de la minuterie et une
écriture permet d’envoyer des commandes a la minuterie. Il faut absolument utiliser
une structure de données prédéfinie pour envoyer des commandes. Cette structure

comporte un champ pour une commande (un nombre entier) et un champ pour une

72
valeur (aussi un nombre entier) et est envoyée & la minuterie & une seule adresse.

Les commandes possibles sont :

TIMER_RESTART Un redémarrage de la minuterie;
TIMER_LOAD Le chargement d'une nouvelle valeur pour le décompte initial;

TIMER TOGGLE_ENABLE L’arrét ou le départ du compte a rebours. Cela
peut servir a arréter puis repartir la minuterie quelques instants plus tard,

tout en conservant le méme décompte.

Le champ "valeur” de la structure n’est donc pertinent que lorsque la commande
est un chargement. Le chargement d’une nouvelle valeur initiale engendre automa-
tiquement un redémarrage de la minuterie. Il est aussi possible de demander a la
minuterie de redémarrer sans changer la valeur actuelle de son décompte initial.
Pour ce faire, il faut utiliser la commande TIMER_RESTART. La troisiéme commande,

TIMER_TOGGLE_ENABLE, active ou désactive la minuterie.

La minuterie contient un seul processus synchrone (SC_CTHREAD). Si elle est activée,
le compte interne de la minuterie est décrémenté a chaque cycle d’horloge, sinon le
décompte reste constant. Lorsque le décompte atteint zéro, le signal d’interruption
est levé et rebaissé au cycle suivant. Aprés étre arrivé a zéro, le décompte est remis

au compte initial automatiquement.

Pour utiliser la minuterie depuis le coté logiciel, nous supposons que le systéme
d’exploitation connait son adresse. De plus, la minuterie doit étre branchée sur le
canal, sur le port des périphériques. Ceci permet aux autres modules de communi-
quer avec elle. De plus, la broche de sortie pour 'interruption devrait étre branchée
dans le gestionnaire d’interruption. Les quelques étapes suivantes décrivent la fagon

typique d’utiliser la minuterie depuis le ¢6té logiciel.

73

1. Au départ, la minuterie est inactivée. Il est mieux de laisser le systeme d’ex-

ploitation démarrer avant d’activer la minuterie.

2. Ensuite, la premiére chose a faire est de configurer la minuterie. Pour ce faire,
il faut lui envoyer une commande de chargement (TIMER_LOAD) et de spécifier

le nombre de cycle d’horloge pour le décompte.

3. Ensuite il faut activer la minuterie. Pour ce faire, il suffit d’envoyer la
commande d’activation (TIMER_TOGGLE_ENABLE). La minuterie se met &
décompter et émet une interruption & la fin de son cycle, puis recommence a

décompter.

3.4.3 Composant device_adapter

Lorsque le processeur effectue des opérations sur la mémoire, les appels sont redi-
rigés vers le décodeur. Le décodeur examine l'adresse et retransmet 'appel vers le
bon périphérique : celui pour qui la plage d’adresse contient 'adresse de destination
de I'accés mémoire. Un de ces périphériques peut étre le device_adapter. Son role
est de retransmettre les requétes d’entrées/sorties mem_read () et mem_write() sur
le canal TF. Ainsi, le device_adapter implémente 'interface du processeur et du

décodeur (decode_data_if) et posséde un port de type space_channel_if.

Du point de vue du processeur, le device_adapter possede une certaine plage
d’adresse visible. Cette plage d’adresse définie la ”fenétre” ou plage mémoire que
pourra accéder le processeur concernant les périphériques sur le canal TF. La fi-
gure 3.7 illustre le concept. Sur cette figure, nous voyons pourquoi 'adaptateur de
périphérique doit avoir une plage d’adresse qui contient les trois plages d’adresses
des périphériques sur le canal, sans quoi le processeur ne pourra pas les accéder,

en passant par le décodeur.

74

Autre ;
périphérique | Périphérique
“{ branché sur le L sur le canal
décodeur
,) Adaprateur | | oo L L] periphérique
Décodeur | des ; T e 3 sur Ie canal
“ périphérigues!
Autre 3’
] périphérique -+ Périphérigue
“tbranché sur le ? sur le canal
décodeur
Périphériques visibles Périphériques visibles
depuis le processeur par Padaptateur de
\ (ISS) } \ périphériques)

FI1GURE 3.7 Domaines d’adresses pour le processeur et le device_adapter

3.4.4 Composant iss_adapter

Sur la figure 3.2, nous voyons qu’un autre périphérique fait le pont entre le décodeur
et le canal : 'iss_adapter. C’est ce périphérique qui s’occupe principalement de
la, communication entre les modules logiciels et matériels de 'usager. L’adaptateur
du processeur possede les deux interfaces, celle qui permet de brancher le décodeur
et celle qui permet de brancher le canal. De plus, un port vers le canal lui permet
d’initier des transactions write() et nb_write(), tout comme les adaptateurs de
modules. Finalement, il est équipé d’un port d’entrée pour 'horloge et d'un port

de sortie pour émettre une interruption.

Les événements externes qui peuvent survenir pour stimuler I'iss_adapter sont les
suivantes : une lecture ou une écriture de la part du processeur et une écriture blo-
quante ou non bloquante de la part du canal. Les lectures depuis le canal sont impro-

bables, car selon notre conception il n’y a que les opérations d’écriture qui voyagent

75

par le canal TF. De plus, une autre restriction nous a simplifié 'implémentation de
ce périphérique : il n'y a que les accés mémoire de 32 bits qui peuvent étre dirigés
vers ’iss_adapter a partir du processeur. Les autres acces de 8 bits et de 16 bits

sont considérés invalides.
La figure 3.8 présente un apercu du fonctionnement de I'iss_adapter.

Lorsqu'un module matériel de l'usager désire envoyer un message a un module
logiciel, son message passe par le canal et aboutit dans 'iss_adapter. S’il s’agit
d'une écriture non bloquante, adaptateur crée une requéte et l'insere dans une
liste (m_RequestsFromChannel). S'il s’agit d'une écriture bloquante, on Uinsére
aussi dans la liste, mais en plus on doit attendre que le message soit transmis au

cOté logiciel avant de continuer.

Un processus nommé decoder_side_thread (), un SC_CTHREAD, s’occupe de trans-
mettre ces requétes. Le processus commence par vérifier s’il v a quelque chose &
transmettre et si oui, on récupere le premier message et on le place dans un tampon
d’envoie. On ajoute une entéte au message a envoyer dans le tampon, pour infor-
mer le coté logiciel de 'identité de 'émetteur, de I'identité du destinataire ainsi que
de la taille du message. Lorsque le tampon est prét a étre envoyer, I'iss_adapter
place a "faux” (logique négative) sa broche d’interruption. Le processus se place
alors en attente d'un événement qui consiste en la fin de la transmission. Lors de
Parrivée de cet événement, on supprime le tampon rendu inutile et le processus

recominence sa boucle.

Du c6té logiciel, la communication provenant du matériel débute avec linter-
ruption. Suite & un certain traitement logiciel en cas d’interruption que nous ne
détaillons pas ici [42], le logiciel veut maintenant venir chercher le message qui Iui

est destiné. A ce moment, I'ISS effectue une série de lectures en mémoire a l'adresse

76

Adaptateur de 1SS
Mots de

32 bits

Vers le Message
Message

décodeur
&

Versle
canal

?ﬁessage
. Message

Mots de D

32 bitg

De ce ¢bté, la
communication se
fait par messages

De ce c6té, la
communication se
fait par données et
adresses de 32 bits

horloge

FiGURE 3.8 Fonctionnement du périphérique iss_adapter

de 'iss_adapter. Lorsque ce dernier recoit la premiere requéte de lecture, il com-
prend que le logiciel a recu l'interruption et donc 'iss_adapter la désactive. Le
logiciel lit alors 32 bits par 32 bits le tampon qui contient 'entéte et le message.
Lorsque le tampon est entierement lu, le processus decoder_side_thread en est

informé par un événement.

La communication dans 'autre direction, c’est-a~-dire du logiciel vers le matériel, est
un peu plus simple et ne nécessite pas I'utilisation des interruptions. Les requétes
d’écriture sont décomposées en blocs de 32 bits du coté logiciel, simplement parce
que le processeur a un bus de données de cette largeur. Les écritures passent ensuite
par le décodeur et arrivent dans I’iss_adapter. Encore une fois, 'ajout d’un entéte
au message permet a Uadaptateur de savoir & Pavance combien de mots de 32 bits lui
seront transmis. Un tampon mémoire de la bonne taille peut ainsi étre créé et utilisé
pour recevoir les données pendant plusieurs cycles. Quand le message est recu au
complet, une requéte est créée et stockée dans une liste (m_RequestsFromDecoder).

Le tampon mémoire peut ensuite étre effacé.

77

Un autre processus SC_CTHREAD est utilisé dans l'iss_adapter, cette fois pour
envoyer les messages re¢us depuis le coté logiciel vers le canal TF. Le processus
channel_side_thread récupére une requéte de la liste m_RequestsFromDecoder et
Penvoie deés que possible, de fagon analogue au processus outgoingWriteThread ()
présent dans les adaptateurs de modules quand ceux-ci sont configurés pour fonc-

tionner avec processus (voir la figure 3.4).

78

CHAPITRE 4

RESULTATS, ANALYSE ET DISCUSSION

4.1 Exemple d’utilisation de la plate-forme

Pour bien illustrer notre approche, afin de montrer les transitions d’un niveau
& P'autre dans SPACE, nous jugeons nécessaire de détailler les étapes une apres
l'autre de notre méthodologie a 'aide d'un petit exemple simple. L’application en
question comporte a la fois un flot de données continu, quelques taches de controle
et une boucle de rétroaction qui veut simuler un certain asservissement. Nous avons
congu cet exemple pour exprimer la faisabilité d’utiliser notre plate-forme pour une

application qui exploite cette diversité de domaines d’application.

La figure 4.1 présente les modules de 'usager qui vont interagir dans I'exemple.

Les réles qu’on leur attribut sont les suivants :

Producteur Il génere des données périodiquement. Pour ce faire, un processus
attend sur une condition temporelle. Au moment venu, il envoie une donnée

entiere (32 bits) au Filtre.

Filtre Ce module effectue une lecture bloquante vers le Producteur, pour attendre
la donnée. Lorsqu’elle est recue, le Filtre la modifie en fonction de trois coef-
ficients entiers qui lui sont propres. Ces coeflicients ont une valeur initiale et

il est possible de les changer en envoyant une commande spéciale au Filtre.

Sélecteur Le Sélecteur regoit les données modifiées par le Filtre et les range en

mémoire, dans une plage d'adresse définie.

79

Contréleur Périodiquement, le Controleur se réveille, demande d’abord au

Sélecteur de changer de plage mémoire pour ranger les données. Cela laisse les

données déja écrites en mémoire dans un état siir. Le Controleur demande en-

suite au module Analyseur d’aller effectuer un calcul sur ces données. L’Ana-

lyseur lui retourne un résultat de calcul et ce résultat est utilisé pour calculer

des nouveaux coefficients a envoyer au filtre.

Analyseur Comme mentionné, I’Analyseur se met en attente d’une écriture de

la part du Contréleur. Ce dernier lui envoie des informations sur la plage

mémoire 3 analyser.

Producteur

|

Filtre

Sélecteur |= Controleur
4
A

Mémoire Le » Analyseur

FI1QURE 4.1 Schéma de principe de 'exemple

Les nurmnéros sur la figure 4.1 illustrent graphiquement Pordre des transactions qui

ont été exprimées ci haut.

4.1.1 Niveau UTF

La premieére version exécutable de la spécification consiste en une description en

SystemC au nivean UTF. Les modules sont congus avec les regles architecturales

de SPACE et sont connectés au canal glue_channel. Comme une mémoire est

requise pour le stockage des données, le périphérique ram_data peut étre utilisé.

Les connexions sont simples et directes, comme le montre la figure 4.2.

80

Producteur Filtre Sélecteur Conirdleur Analyseur
1|
o 5 4 o
@ @ L Y
glue_channel

FiGURE 4.2 Exemple avec le Glue Channel

4.1.2 Niveau TF - Crossbar

Une fois que Papplication de 'usager fonctionne correctement apres 'avoir simulée
avec le glue_channel, I'étape suivante est de convertir 'application au niveau TF.
Le premier canal TF qui devrait étre essayé est le réseau point a point (Crossbar,

ou X-Bar) parce que c’est le plus simple & utiliser.

La figure 4.3 illustre la nouvelle version de 'exemple, cette fois au niveau TF en
utilisant le canal Crossbar. En plus de devoir remplacer le glue_channel par le
space_channel_xbar, l'usager a la responsabilité de remplacer la classe de base
des modules, pour utiliser celle qui a été définie pour le niveau TF. Cette modi-
fication nous oblige a convertir les processus SC_THREAD utilisés au niveau UTF
par des SC_CTHREAD. Une autre modification consiste a instancier autant d’adap-
tateurs de modules qu’il y a de modules usager. Dans notre exemple, il nous faut
donc 5 adaptateurs de module. I’usager a le choix d’activer ou non les processus
a Pintérieur des adaptateurs. Nous avons choisi le cas ol les adaptateurs n’ont pas

de processus. En plus de la structure des modules et des périphériques, un certain

81

o

Producteur Filtre Sélecteur Contrdleur Analyseur

Y

module_adapter module_adapter

module_adapter module_adapter

space_channel_xbar

¥

3

ram_data

F1GURE 4.3 Exemple avec le Space Channel Crossbar

nombre de connexions doivent étre ajustées. Les modules de I'usager ont mainte-
nant un port d’horloge et il faut les connecter & un signal d’horloge global pour
toute l'architecture. Les modules de 'usager doivent en plus étre branchés sur leurs
adaptateurs respectifs. Au niveau du canal, il y a maintenant un multi-port pour
les adaptateurs et il faut brancher ce port a toutes les interfaces des adaptateurs.
Ces derniers doivent a leur tour étre branchés sur le canal. Il est & remarquer que
nous avons simplifié le schéma de la figure 4.3 en affichant les multi-ports comme
des ensembles de ports distincts. Cette simplification veut seulement ajouter de la

clarté au schéma.

82

4.1.3 Niveau TF - Bus

Un raffinement trivial qui suit la version TF avec le Crossbar de I'exemple est

d’utiliser un canal de type Bus.

A

Producteur Fittre Sélecteur Controleur Analyseur

module_adapter
&)y
it
arbn_; e space_channel_bus
irf
1] &3l
] 18 4} A

.____@,_.*

ram_data iss_adapter

£ A
b

ah
=4 L 4
module_adapter module_adapter module_adapier

—O-—

vy

o]

Fi1GURE 4.4 Exemple avec le Space Channel Bus

La nouvelle version de 'exemple avec le space_channel_bus est illustré a la fi-
gure 4.4. Un arbitre est présent dans le canal et il posséde un SC_CTHREAD. Par
conséquent, un port d’horloge vient s’ajouter au canal. Il faut le connecter au
méme signal d’horloge que celui des modules. Le space_channel_bus possede un
port dédié pour 'iss_adapter. Cependant, la version actuelle de Pexemple est
encore 100% matérielle et donc nous n’avons pas besoin d’utiliser 'iss_adapter.

Néanmoins, nous sommes obligés de I'instancier pour respecter les regles architec-

83

turales de SystemC, qui dictent qu’'un port doit toujours avoir un minimum de 1
connexion. I.’iss_adapter se connecte au canal de la méme facon qu’un adaptateur
de module, sauf qu'il faut en plus connecter son port d’horloge au signal d’horloge
global de I'architecture et brancher aussi un signal booléen a son port d’interrup-
tion. Les interruptions ne sont pas utilisées, car nous n’avons pas de processeur,
ni de gestionnaire d’interruption. Il faut cependant connecter le signal a un port
quelconque. L'utilisation d’un module bidon (nommé ”dummy” sur la figure 4.4)

regle le probleme.

4.1.4 Niveau TF - Partitionné avec le Bus

Jusqu’a maintenant nous avons raffiné 'exemple du niveau UTF jusqu’au niveau
TF, mais seulement en conservant les modules en matériel. L’étape subséquente

consiste donc & essayer un premier partitionnement logiciel /matériel.

Comment peut-on choisir architecture SPACE cible ? Evidemment, la structure
architecturale reflete le choix du partitionnement. L’idée est de débuter en faisant
un choix d’un certain partitionnement qui semble logique. L’exemple partitionné
en deux modules logiciels (Contrdleur et Analyseur) et trois modules matériels
(Producteur, Filtre et Sélecteur) qui utilisent le canal de type bus est illustré a la
figure 4.5. Nous justifions ce choix de partitionnement en se basant sur le fait que
le producteur, le filtre et le sélecteur communiquent en chaine a chaque fois qu’une
donnée est produite. La fin de la chaine se termine par une écriture en mémoire.
Notre idée est donc de les implémenter en matériel. Les modules Controleur et
Analyseur consistent principalement en unités de controle. Nous avons choisi de
les implémenter en logiciel afin de profiter du parallélisme logiciel /matériel et aussi
parce que les calculs que doive exécuter I’Analyseur sont tres simples et ne deman-

deront donc pas beaucoup de cycles d’exécution de la part du processeur ARM.

84

Des modifications assez majeures s’imposent pour ajouter une partie logicielle &
Parchitecture. D’abord, notons I'ajout du processeur (ou plutoét de I'ISS) et des
périphérigues essentiels pour son utilisation : le décodeur, la mémoire de code, la
minuterie, le gestionnaire d’interruptions, Padaptateur du processeur et Padapta-
teur des périphériques. La minuterie et 'ISS doivent étre connectés sur 'horloge et
les sources d’interruptions (c’est-a-dire la minuterie et Padaptateur du processeur)
doivent étre connectées au gestionnaire d’interruption. Le port d’interruption de
sortie de ce dernier doit étre branché au port d’entrée pour les interruptions sur
le processeur. L’ISS a aussi un port d’entrée pour les interruptions rapides (FIQ)
et pour la remise & zéro (reset). Nous avons créé un module bidon spécial pour y
connecter ces deux ports qui ne sont pas utilisés lors de la simulation. Ce module
n’est pas inclus sur la figure 4.5 pour simplifier le schéma. Il faut également remar-
quer que la mémoire de données est connectée & la fois au canal et au décodeur.

Cela permet a la partie matérielle et a la partie logicielle d'utiliser la mémoire.

Nous omettons ici les explications concernant la configuration logicielle pour per-
mettre la simulation complete du systeme. Ce sujet dépasse le cadre de ce mémoire

et le lecteur pourra y trouver de I'information dans [42].

4.2 QOutils de mesure de performance

L’utilisateur doit étre guidé par des résultats de simulation pour fixer le partition-
nement logiciel /matériel ainsi que les autres parametres de SPACE, comme la taille
des mémoires, des piles de taches en logiciel, etc. Pour ce faire, I'utilisateur peut
utiliser des outils inclus dans SystemC ou encore d’autres mécanismes que nous

avons concus.

Les bibliotheques de base du langage C/C++ permettent de calculer le temps

85

d’exécution d'un programme. Cela peut donner une idée de la performance qu’ap-
porte un certain algorithme ou une certaine optimisation. Cependant, la notion de
temps & ce niveau fait référence au temps pour exécuter I'application de 'usager

en SystemC et non pas au temps simulé.

En SystemC, il est plus pertinent de considérer une autre dimension temporelle :
celle qui est propre a la simulation. Pour obtenir le temps de simulation qui s’est

écoulé jusqu’a un certain moment, on peut utiliser les fonctions suivantes [37] :

sc_simulation_time() Cette fonction retourne le temps de simulation actuel dans
I'unité de temps définie par défaut en une valeur de type ”"double” (nombre
flottant en double précision sur 64 bits). L'utilisateur peut lui-méme définir
Punité de temps par défaut avant la phase d’élaboration du modele, lors du
lancement du programme. Dans SPACE, 'unité de temps par défaut est la

nanoseconde.

sc_time_stamp() Il s’agit d'une autre fonction disponible avec SystemC pour
obtenir le temps actuel de la simulation. La seule différence avec la fonction
sc_simulation_time() est que la valeur de retour est de type sc_time, une

classe de SystemC.

Dans les sous-sections qui vont suivre, nous allons présenter les outils pour récolter
des statistiques que nous avons ajoutés aux composants de SPACE pour recueillir

des informations sur les performances dynamiques en cours de simulation.

4.2.1 Outil dans le glue_channel

Au niveau UTF| la notion de cycles d’horloge n’est pas importante pour le concep-

teur. Par conséquent, nous n'avons pas jugé pertinent I'ajout d’estimateurs de per-

86

formance perfectionnés. Seul un compteur de requétes a été ajouté dans le but de
pouvoir facilement calculer les performances comparatives entre le glue_channel
et le space_channel. A chaque fois qu'une opération reliée a la communication se
termine, en d’autres mots envoie d'un message ou d’une requéte d’entrée/sortie
read(), write(), nb_read(), nb_write(), mem_read() ou mem_write(), une va-

riable membre dans la classe du canal est incrémentée.

4.2.2 Outil dans le space_channel

Dans le cas des canaux TF, soit le Bus et le Crossbar, nous avons implémenté des

mécanismes différents de récolte de statistiques pour refléter des modeles différents.

Pour le canal space_channel_xbar, il y a deux méthodes disponibles :

getBusyCycles() Nombre de cycles d’horloge total pour lequel le canal était oc-

cupé a envoyer des messages.

getNumReq() Il s’agit du méme mécanisme que dans le cas du glue_channel

pour récolter le nombre de transactions effectuées en simulation.

Dans le cas du Bus, la méthode getBusyCycles() retourne le nombre de cycles
pour lequel le canal était occupé, c’est-a-dire soit qu’il était en train de transférer
un message ou soit qu’il était en train de procéder au cycle d’arbitrage. Cette
méthode permet donc de fournir des informations sur le pourcentage d’utilisation

du Bus.

En plus d'un compteur de requétes, au cours de la simulation, des informations
statistiques sont collectées a I’aide d'un objet nommé moniteur. Le moniteur fournit
un rapport dans la console. Les informations qui y sont données sont fournies par

les méthodes suivantes :

87

double getWaitingRequestsAvr(void);

unsigned long getWaitingRequestsMax(void);
unsigned long getWaitingRequestsCount(void);
double getNbWaitingCyclesAvr(void);
unsigned long getNbWaitingCyclesMax(void);

unsigned long getNbWaitingCyclesCount(void);

Les noms des méthodes sont formés par des combinaisons de 2 préfixes et de 3

suffixes différents. Les préfixes indiquent le type d’information qui est donné :

WaitingRequests Il s’agit du nombre de processus en attente de l'arbitre. A
chaque cycle d’horloge (au front montant), le bus connait le nombre de pro-

cessus SC_CTHREAD qui sont en attente et ce nombre est envoyé au moniteur.

NbWaitingCycles Pour chaque requéte, le nombre total de cycles d’horloge d’at-
tente apres arbitre est envoyé au moniteur. Cela donne donc un indice sur

Pimportance des situations de contention sur le canal.

Les suffixes Count, Avr et Max symbolisent respectivement le nombre d’échantillons

pour calculer la statistique, la moyenne et le maximum parmi les échantillons.

4.2.3 QOutil dans le module_adapter

Le périphérique module_adapter possede aussi un moniteur intégré ; toutefois 'uti-
lisateur a le choix d’instancier ou non le moniteur au début de la simulation. Lorsque
le destructeur est appelé, Padaptateur vérifier si le moniteur existe et si oui, lui de-
mande de fournir un rapport. Ce rapport statistique est obtenu par 'appel des

méthodes suivantes :

38

virtual double getWaitingRequestsAvr(void);

virtual unsigned long getWaitingRequestsMax(void);
virtual unsigned long getWaitingRequestsCount(void);
virtual double getNbWaitingCyclesAvr(void);

virtual unsigned long getNbWaitingCyclesMax(void);
virtual unsigned long getNbWaitingCyclesCount(void);
virtual double getMemoryUsageAvr(void);

virtual unsigned long getMemoryUsageMax(void);

virtual unsigned long getMemoryUsageCount(void);

Ces méthodes donnent les renseignements que nous décrivons ici :

WaitingRequests 1l s’agit du nombre de requétes provenant du canal qui sont en
attente de réponse dans 'adaptateur. A chaque cycle, le nombre de requétes

en attente est envoyé au moniteur.

NbWaitingCycles Cette mesure est le temps d’attente total d’une requéte dans

un adaptateur, exprimé en cycles d’horloge.

MemoryUsage A lintérieur du module_adapter, les messages qui arrivent du
canal sont stockés dans une liste. Pour chaque nouvelle requéte, la taille du
message est envoyée au moniteur, ce qui donne une approximation de la

mémoire requise pour contenir les requétes.

Les suffixes ci-dessus ont les mémes significations que pour le cas du canal (voir
space_channel). Il est & noter que chaque adaptateur fournit un rapport qui lui
est propre, donnant ainsi plus de détails au concepteur. Finalement, les outils de
mesure qui sont actuellement implémentés supposent que le concepteur utilise Ia

version du module_adapter sans processus.

89

4.3 Présentation des résultats

Cette section est dédiée a la présentation de résultats concernant des tests de
performance avec SPACE. Tous les tableaux de résultats qui ont permis de produire

les graphiques que nous allons présenter se trouvent a annexe I

4.3.1 Comparaison entre SPACE et d’autres modeéles existants

Nous avons tenté de comparer les canaux de SPACE avec d’autres modeles de
canaux existants. Nous avons choisi les deux plus pertinents, soit SOCP [40] et
Simple Bus [20]. Le code source de StepNP a été obtenu grice & une entente entre le
Groupe de Recherche en Microélectronique de I'Ecole Polytechnique de Montréal et
la division System-on-Chip Platform Automation Group chez STMicroelectronics,
localisée a Ottawa. Le code source de Simple Bus fait partie des exemples fournis

avec la bibliotheque SystemC 2.0.1 [20] que tous peuvent télécharger a méme le

site Web.

Les tableaux II.1 et I1.2 en annexe donnent les résultats expérimentaux issus de
Pexécution de plusieurs bancs d’essais réalisés avec SPACE, SOCP de StepNP et
Simple Bus. Notre objectif était de partir de deux exemples donnés avec SOCP et
de reconstruire des bancs d’essais similaires avec SPACE et Simple Bus. Le but

était de laisser le code de SOCP intact.

L’application utilisée est celle de 8 maitres et 8 esclaves. La version originale est le
programme funcTest originalement concu pour évaluer la performance du canal
SOCP fonctionnel. Les maitres exécutent un processus en continue qui contient
deux boucles finies qui s’exécutent, 'une apres 'autre. D’abord, la premiere boucle

consiste en l'écriture en mémoire (les esclaves sont en réalité des modeles de

90

mémoires) de données entiéres du début jusqu’a la fin d'une plage mémoire d’une
certaine taille. Ensuite, 'autre boucle consiste simplement en des lectures sur toute
la plage mémoire. Le maitre vérifie que les données qui y sont lues correspondent

a celles qui avaient précédemment été écrites.

Dans SPACE, les maitres ont été implémentés comme des modules de 'usager
et les esclaves sont des mémoires de données. Les modules de 'usager utilisent
les méthodes bloquantes mem_read() et mem_write() pour communiquer. Avec
Simple Bus, les écritures et lectures sont effectuées avec les méthodes burst_write
et burst_read et les esclaves sont des instances de la classe simple_bus_fast_mem,

tres similaire & notre mémoire ram_data.

Voici maintenant une courte description des différentes versions de bancs d’essais
utilisés pour produire les résultats qui ont été regroupés sur le graphique de la
figure 4.6. Sur ce graphique, k-op./sec est un raccourci pour milliers d’opérations

d’entrée/sortie par seconde.

PT1T 8 maitres et 8 esclaves connectés sur le space_channel_xbar, les adapta-

teurs de modules ont des processus.

PTINT 8 maitres et 8 esclaves connectés sur le space_channel_xbar, les adap-

tateurs de modules n’ont pas de processus.

PT2T 8 maitres et 8 esclaves connectés sur le space_channel_bus, les adapta-

teurs de modules ont des processus.

PT2NT 8 maitres et 8 esclaves connectés sur le space_channel_bus, les adapta-

teurs de modules n'ont pas de processus.

PT3 8 maitres et 8 esclaves connectés sur le glue_channel, il n’y a pas d’adap-

tateurs de modules.

PT4 8 maitres et 8 esclaves connectés au canal Simple Bus, Iinterface blogquante

91

est utilisée. Cette version n’est pas compatible avec SPACE; elle a été écrite

pour étre directement compatible avec Simple Bus.

PT5 8 maitres et 8 esclaves connectés au canal SOCP fonctionnel. Il s’agit de la

version originale du banc d’essai nommé funcTest.

PT6 1 seul maitre et 1 seul esclave connectés ensemble sans canal. Les ports
d’un module (maitre ou esclave) sont directement connectés aux interfaces de
Pautre module (esclave ou maitre). Ce programme nommé nullModem était
fourni avec la distribution de StepNP que nous avons recu. Nous aurions
pu la modifier pour qu’elle comporte 8 maitres et 8 esclaves; cependant nous

aurions modifié StepNP et cela allait & 'encontre de nos contraintes imposées.

Comme nous pouvons le remarquer, deux machines différentes ont été utilisées
pour les tests. La premiere est un Sun Blade 100 avec Solaris et CDE d’installés.
La deuxiéme machine est un PC équipé d’'un processeur Intel Pentium Il cadencé

a 667 MHz avec Microsoft Windows 2000 Professional SP4.

Il est a noter que le code de StepNP (et par conséquent tout ce qui concerne SOCP)
n’est pas compatible avec les systemes d’exploitation Windows, c’est pourquoi nous
avons d’abord fait des tests sur une machine de type Unix. Les résultats sous
Windows n’incluent donc pas les tests PT5 et PT6. Nous avons tout de méme jugé
pertinent de présenter les résultats sur PC, car plus loin dans ce chapitre nous
présenterons d’autres résultats de performance sur cette architecture. Le lecteur
intéressé pourra ainsi comparer les différents résultats qui ont été obtenus sur le

méme poste de travail.

Comme le montre la figure 4.6, le canal le plus rapide est le glue_channel et
le plus lent, le space_channel_bus. Cette derniére version, avec son algorithme
d’arbitrage qui implique les deux fronts de I'horloge, les adaptateurs de modules

et les processus synchrones SC_CTHREAD, est plus lente que la version UTF de plus

92

de deux ordres de grandeur. Le glue_channel est d’ailleurs méme plus rapide
que la version nullModem de SOCP, méme si cette derniére ne comporte aucun
canal et seulement 1 maitre et 1 esclave. Un autre fait intéressant & noter est
que les adaptateurs de module peuvent contenir des processus ou non sans faire
varier significativement les performances. Notre version avec le Crossbar est a toute
fin pratique assez équivalente en performance avec 'implémentation simpliste et
incompléte ("simple functional implementation”) de SOCP (PT5 versus PT1T et
PTINT). En fait, les deux modeles sont trés semblables a propos de leurs niveaux

d’abstraction, de leurs caractéristiques et de leur modéle.

4.3.2 Tests paramétriques de performance

En plus de comparer les canaux de SPACE avec d’autres modeles de communica-
tion existants, nous voulions déterminer le comportement en simulation de notre
implémentation face a des variations sur les parameétres suivants : le type de canal
utilisé, le type d’application qui est implémentée par 'usager, le nombre de mo-
dules présents et finalement la taille moyenne des messages qui transigent dans les

canaux de communication.

Une breve description de ces parametres s’impose.

Type de canal Pour chaque application, nous avons congu une version différente
qui utilise un canal différent, le Glue Channel, Crossbar et Bus. Il est de

coutume d’utiliser le mot X-bar a la place de Crossbar.

Types d’applications Nous voulions savoir comment réagit SPACE face a des
applications totalement différentes. Nous avons donc congu les trois applica-

tions suivantes :

Ring Dans cette application, tous les modules de 'usager envoient un mes-

93

sage & leur module voisin et recoivent un message de leur autre voisin.
Les voisins sont déterminés par les ID des modules. Pour éviter les in-
terblocages, le dernier module qui est créé est différent des autres : il

débute par une lecture ou lieu d’une écriture.

War Cette application nécessite que le nombre de modules soit pair, car il
s’agit simplement d’une application producteur/consommateur. Chaque
module producteur envoie a répétition un message a un consommateur
désigné. Lors de l'instanciation des modules de I'usager, des parametres
dans les constructeurs permettent de déterminer quel producteur va en-

voyer des messages a quel consommateur.

Stress Tous les modules de Papplication Stress sauf 1 envoient a répétition
un message a un méme module, qui ne fait que lire I'un aprés 'autre
les messages recus. Pour N modules, il y a ainsi N-1 producteurs et 1

consommateur.

Nombre de modules Dans tous les cas, pour toutes les applications, aucun
périphérique n’est utilisé, il n’y a seulement que des modules de I'usager.
Comme les canaux nécessitent qu’au moins un périphérique soit connecté,

nous avons utilisé le null_device.

Taille des messages Pour toutes les applications, les modules s’échangent des
messages. Nous avons rendu paramétrique la taille de ces messages, qui est
exprimée en nombre d’entier de 32 bits qui le composent. Par exemple, une
taille de 10 signifie que la taille du message est de 10 fois 32 bits, soit 40

octets.

Nous avons congu neuf programmes différents, soit la combinaison des trois ap-
plications possibles avec les trois types de canaux possibles. Chaque programme
prend trois arguments en parametre : le nombre de modules, la taille des messages

et une variable qui sert a controler Paffichage (ON ou OFF) en cours de simulation.

94

Evidemment, nous avons choisi Poption de ne pas rien afficher en cours de simu-
lation pour les fins de Vexpérience, car I'affichage d’informations de déverminage

aurait trompé les résultats de simulation.

Les tableaux de résultat I1.3 I1.4 et IL5 & l'annexe Il contiennent les résultats
numériques qui ont servi & tracer les histogrammes des figures 4.7, 4.8 et 4.9. Dans

tous les cas, la machine de test était un Pentium III & 667 MHz.

Le premier cas qui est présenté a la figure 4.7 illustre les performances de SPACE en
milliers d’opérations par seconde en fonction du type de canal et du type d’applica-
tion. Le nombre de modules était constant & 100 et la taille des messages était de 1
entier. La premiére constatation est que le type d’application semble influencer da-
vantage les performances au niveau TF qu’au niveau UTF. Il est intéressant de no-
ter que les performances de War avec le glue_channel et le space_channel_xbar
sont dans le méme ordre de grandeur. Egalement, les applications Ring et Stress

semblent donner les méme performances pour un canal donné.

Pour la deuxiéme série de tests paramétriques que nous avons effectués, nous avons
gardé constant le type d’application & War et la taille des messages était encore
constante & 1 entier. Nous avons testé les trois types de canaux et fait varier le
nombre de modules participants. Outre le fait que les performances diminuent en
fonction du nombre de modules, il y a deux remarques intéressantes a souligner
au sujet des résultats de la figure 4.8. D’abord, nous pouvons remarquer que les
performances comparatives entre le canal Bus et les deux autres canaux s’éloignent
de plus en plus au fur et a mesure que le nombre de modules augmente. Ensuite,
nous pouvons également constater que les performances du space_channel_xbar
deviennent meilleures que celles du glue_channel lorsque le nombre de modules
augmente significativement (quelque part entre 100 et 500 modules). Pour expli-

quer ce phénomeéne étrange, nous avons une hypothese basée sur le fonctionnement

95

interne. En effet, le glue_channel contient une liste STL qui est utilisée pour
stocker les requétes de tous les modules et la recherche se fait linéairement. Le
space_channel_xbar ne contient pas de liste, les messages sont plutot stockés
dans les adaptateurs de module. Comme il y a un seul adaptateur pour chaque
module, au lieu d’avoir une longue liste dans le canal, nous avons plusieurs petites
listes de requétes locales dans chacun des adaptateurs. Lorsqu'un module effectue

une requéte de lecture, le temps de recherche est par conséquent plus court.

Le cas #3 est semblable au cas #2, sauf qu’au lieu de faire varier le nombre de
modules, nous 'avons fixé & 10 et fait plutot varier la taille des messages. L’ap-
plication utilisée est War. Les résultats de simulation sont présentés & la figure
4.9. Nous remarquons que le glue_channel est assez insensible & la variation de
la taille des messages, contrairement aux canaux TF. Ceci peut s’expliquer par le
fait que le glue_channel ne simule pas de latence de transfert, ce qui permet & un
message, peu importe sa taille, de se rendre dans la liste interne au canal en un seul
delta-cycle. Dans les deux autres cas, appel de la fonction wait () pour simuler la
latence de transfert provoque inévitablement des changements de contexte dans le

simulateur de SystemC, résultant en une baisse de performance.

4.4 Variantes dans I'implémentation

4.4.1 Types de processus

I’ensemble des résultats a montré que les performances d'une simulation avec Sys-
temC diminuent significativement lorsque le nombre de modules augmentent. Dans
nos bancs d’essais, tous les modules de 'usager contenaient un processus SC_THREAD
ou SC_CTHREAD, ce qui consomme beaucoup de ressources dans le simulateur [20].

Une idée de raffinement serait de remplacer les processus perpétuels par des proces-

96

sus momentanés (SC_METHOD) dans les périphériques, les adaptateurs et les canaux,
1& ou cela est possible. Ce remplacement ne peut pas se faire dans les modules de
I'usager ; n’oublions pas que les SC_METHOD ne peuvent pas contenir de fonction
d’attente dynamique (wait). En utilisant ce type de processus, notre plate-forme
serait plus adaptée a la synthése logique étant donné que les SC_METHOD semblent

étre les seuls types de processus supportés par certains compilateurs SystemC [37].

Un changement dans la méthodologie pourrait simplifier le passage du niveau UTF
vers le niveau TF. En effet, nous pourrions demander a I'utilisateur de continuer
d’utiliser des processus SC_THREAD au niveau TF et d’adapter avec un effort rai-
sonnable notre architecture pour palier & ce changement. Dans la littérature [37],
on prévoit peut-étre éliminer les SC_CTHREAD de SystemC. Nous avions opté origi-
nalement pour les processus synchrones parce qu’ils semblaient bien modéliser ce
que nous souhaitions. En plus d’assurer une meilleure probabilité de compatibilité
avec les futures versions de SystemC, ce changement réduirait au minimum les

modifications architecturales nécessaires pour changer de niveau d’abstraction.

4.4.2 Optimisations dans la communication

Une autre optimisation possible serait de remplacer autant que possible la synchro-
nisation sur 'horloge par de la synchronisation par événements. Par exemple, les
adaptateurs, la minuterie et 'arbitre du bus contiennent des processus qui s’ac-

tivent a chaque cycle d’horloge pour effectuer un traitement.

Nous avons déja mentionné que la conception de SPACE était basée sur le fait
que les modules de l'usager n’avaient qu'un seul processus communicant. Pour
éliminer cette restriction, plusieurs modifications devraient étre apportées, notam-

ment au niveau des adaptateurs de module. Ces derniers connaissent le numéro

97

unique d’'identification du module qui lui est connecté. De cette fagon, le canal
peut rediriger les messages vers le bon adaptateur assez facilement, en identifiant
I'index du milti-port qui pointe vers 'adaptateur désiré, comme le montre ce bout

de code simplifié du space_channel_xbar :

[...]
unsigned long port_num = getAdapterNumber(TargetID);
if (port_num '= SOFTWARE)
{
// Adaptateur correspondant trouvé

m_AdapterPorts [port_num]->write_from_channel(...);

else

// 0On peut conclure qu’il s’agit d’un module logiciel
P q g g

m_AdapterPorts [getAdapterNumber(0)]->write_from_channel(...);

Cet algorithme devrait étre modifié. Une solution serait de dresser automatique-
ment une liste des 1D des modules dans 'adaptateur en début de simulation. Les
adaptateurs pourraient ensuite envoyer ces listes au canal et un systéme de rou-
tage plus perfectionné qu’actuellement pourrait assurer la communication durant
la simulation. Cette technique permettrait non seulement d’avoir des modules usa-
gers multi processus (multithreaded), mais aussi de créer des hiérarchies de canaux
& plusieurs niveaux. La communication logicielle/matérielle pourrait aussi profi-
ter de cet ajout fonctionnel pour permettre d’étendre la plate-forme a plusieurs

processeurs.

98

Les résultats de la figure 4.8 nous ont permis de montrer que le temps de recherche
des requétes dans les listes peut devenir un facteur important de réduction de
performance. Tous les périphériques, adaptateurs et canaux utilisent des listes pour
stocker les requétes et les messages et & notre avis il serait possible d'utiliser d’autres
structures qui accéléreraient la recherche et donc la simulation. Une étude de ce
qu’offre STL par exemple pourrait nous permettre de construire quelques bancs
d’essais et par analyse de performance, nous pourrions remplacer les listes par
d’autres structures plus appropriées comme des arbres ou des tables de hachage.
Nous avons opté pour la simplicité des listes dans notre premiere implémentation,

car la performance n’était pas le but visé par notre premier prototype.

4.4.3 Fonctionnalités des périphériques

En plus d’optimiser les canaux de communication, nous pourrions améliorer les
performances et les fonctionnalités de SPACE en optimisant les périphériques. Par
exemple, le gestionnaire d’interruption a été congu tres simplement, mais il serait
possible de réduire la latence des interruptions du RTOS en incorporant 1’algo-
rithme d’arbitrage des interruptions dans le gestionnaire matériel. Une facon rapide
et efficace de procéder serait de traiter les interruptions en prenant comme priorité
leur numéro d’IRQ. Cette solution simplifie les choses, mais ne permet pas d’avoir
des priorités dynamiques ni de partager une méme priorité a deux périphériques
différents. Il serait aussi possible d’y ajouter plusieurs autres fonctionnalités, comme
un masque des interruptions par exemple. Nous avons voulu garder le périphérique
simple et ces modifications pourront étre effectuées ultérieurement si cela est jugé

nécessaire.

Concernant la minuterie, pour Uinstant il n’est pas possible de questionner le

périphérique de quelque facon que ce soit pour lui demander s’il est actif ou non,

99

pour la simple et bonne raison que cette fonctionnalité a été jugée impertinente
pour le moment. Nous pourrions également imaginer d’autres modes de fonction-
nement ; ils n'auront qu’a étre ajoutés si l'utilisation de la minuterie démontre un
manque de fonctionnalités. Finalement, 'ajout d'une seconde minuterie de type

”one shot” pourrait étre intéressant.

b i =t

Producteur Filtre Sélecteur
il

£)
By

space_channel_bus

module_adapter

module_adapter

arbitrer

Epl
bl

é)
T =
a
Bl
decoder # armiss n_reset
n_fig

FiGURE 4.5 Exemple partitionné avec le bus

100

K-op. /sec

101

10000

100

10

FIGURE 4.6 Performances comparatives SPACE / SOCP / Simple Bus

PTIT PTINT

11967

|

1280

#1758

PT2T PT3
Bancs d'essais
L % Sun Blade 100 - Solaris & Pentium 3 & 667 MHz - Windows 2000 |

102

1000000

100000

0
10
1

1000 -
10

10000 -

(oes/doy) avuewIo)iad]

Space Channel Xbar Space Channel Bus

Gilue Channel

[1Ring =War = Stress|

Type de canal

, cas #1

trigques

é

FiGURE 4.7 Performances param

103

i
.

1000000

100000

10000
1000 -
100

(oes/do)) eoue wiolled

500 1000

100

Nombre de modules
#1Space Channel Xbar % Space Channel Bus

50

10

|

Glue Channel

i

FIGURE 4.8 Performances paramétriques, cas #2

Perfomance (kop/sec)

1000000

100000

10000

1000

100

10

10 50 100 500 1000
Taille des messages

[C1Glue Channel % Space Channel Xbar % Space Channel Bus i

FiGURE 4.9 Performances paramétriques, cas #3

104

105

CONCLUSION

Au courant des dernieres années, les avancements technologiques dans le domaine
des semi-conducteurs, particulierement au niveau de la densité des transistors, ont
permis la conception de systémes sur pucé de plus en plus complexes. Ces derniers
contiennent plusieurs blocs logiques, tels des processeurs, des bus et de la mémoire,
que Pon retrouvait habituellement sur une carte et qui peuvent facilement contenir
quelques dizaines de millions de transistors. De nos jours, les systemes embarqués
sont de plus en plus réalisés sur des systemes sur puce (SOC). Cette nouvelle réalité,
combinée aux pressions toujours présentes d’augmenter la productivité et de dimi-
nuer le temps de mise en marché, a favorisé apparition de nouvelles méthodes de
conception, visant a rehausser le niveau d’abstraction des spécifications et favori-
sant le développement de prototypes fonctionnels lors de la phase de conception.
SystemC est actuellement le langage le plus populaire concernant la spécification

unifiée des systemes numériques logiciels/matériels.

Notre projet nommé SPACE veut fournir une solution aux lacunes de SystemC 2.0
concernant la modélisation logicielle. Un concepteur peut ainsi utiliser notre plate-
forme et concevoir une application logicielle/matérielle en SystemC et simuler avec
plus de précision les deux parties simultanément. Ce mémoire a présenté une partie
du projet SPACE, c’est-a~dire 'implémentation des communications sur la plate-
forme. L’avantage majeur de SPACE est sans doute ses niveaux d’abstraction, qui
permettent au concepteur de choisir le niveau de détails voulu pour ses simulations.
La principale lacune est le fait qu’il n'y ait pas vraiment d’implémentation RTL
équivalente au modele raffiné. Citons également que nos interfaces ne correspondent
pas vraiment a un standard existant, comme SOCP par exemple. Enfin, comme
nous 'avons déja mentionné, la synchronisation est trop souvent basée sur un signal

d’horloge et non basée sur des événements dynamiques.

106

Nous avons implémenté la plate-forme avec comme premier objectif son fonction-
nement, il est donc évident que plusieurs améliorations pourraient y étre apportées
afin de rendre de meilleures performances en simulation et pour faire de SPACE
un outil de codesign plus complet. Comme nous en avons déja discuté, le raffi-
nement du modele de communication pourrait étre un bon point de départ. A
notre avis, la premiere fonctionnalité a ajouter serait le support des multi proces-
sus au niveau des interfaces de communication. Concretement, cela impliquerait
que les méthodes des interfaces devraient contenir des identificateurs (comme des
numéros par exemple) pour spécifier le processus d’origine et celui de destination.
Pour I'instant il est seulement possible d’adresser un certain module usager, sans
pouvoir adresser individuellement tel ou tel processus qu'il contient. En ajoutant
cette caractéristique, il faudrait inévitablement changer Varchitecture de SPACE,
notamment les adaptateurs de modules et les canaux pour implémenter un algo-
rithme de routage de messages plus perfectionné. Toutefois, apres avoir effectué
ces modifications, SPACE pourrait supporter de nombreuses autres fonctionnalités
sans trop d’efforts de conception, comme la possibilité d’instancier plusieurs canaux
et processeurs dans la méme simulation. En effet, la plate-forme ne supporte pas
plusieurs instances d’ISS dans la méme simulation et ceci constitue une restriction
qui va a 'encontre de la tendance actuelle des systemes sur puces : ces derniers

contenant de plus en plus d’unités de calcul RISC sur la méme puce.

En ayant 'opportunité d’instancier plusieurs canaux, nous pourrions créer un
périphérique spécial pour les relier, sous forme d'un adaptateur. De plus, le
développement d’un autre type d’adaptateur, qui posséde les interfaces SPACE
d’un c6té et les ports et interfaces de SOCP de 'autre, pourrait nous permettre de

connecter les applications de 'usager sur la plate-forme StepNP.

Pour Pinstant, le concepteur qui utilise SPACE peut se fier aux résultats de si-

mulation pour obtenir le temps simulé (en cycles) afin de guider son choix de

107

partitionnement. Bien que le code des modules de 1'usager n’ait pas a étre mo-
difié pour passer d’une configuration architecturale & une autre, P'utilisateur doit
tout de méme refaire de nouveaux fichiers qui définissent les connexions logicielles
et matérielles de chacune de ces configurations. Cette opération prend un certain
temps qui peut étre non négligeable, car elle est propice a Uerreur d’inattention.
Un programme informatique simple pourrait étre congu pour faciliter cette tache
qu’est le branchement des instances de modules et de périphériques pour instan-
cier une nouvelle plate-forme SPACE : nous avons envisagé le développement d’un
outil (éventuellement avec support graphique) pour assister le concepteur dans
ses changements architecturaux. Un tel outil pourrait ainsi rehausser le niveau de
détail des modifications a effectuer. L’utilisateur pourrait rapidement choisir son
partitionnement, les adresses des périphériques et les connexions désirées et 'outil
pourrait générer les fichiers d’élaboration et effectuer des vérifications simples sur
la configuration, comme par exemple vérifier que les ID des modules sont uniques
ou encore s’assurer que les périphériques respectent les regles d’adressage (celles

que nous avons présentées a la figure 2.4).

En plus des cycles d’horloges, nous avons vu que plusieurs autres informations
sont accessibles au concepteur en fin de simulation, comme la quantité de mémoire
requise dans les adaptateurs de module, le temps d’attente des processus apres 1'ar-
bitre ou encore le pourcentage d’utilisation du bus. D’autres criteres d’évaluation,
en plus de ceux qui concernent la performance, devraient étre considérés. Il serait
possible de faire une évaluation de la consommation de puissance a haut niveau.
L’évaluation pourrait étre statique, c’est-a-dire que les calculs seraient basés sur
le choix des composants qui participent & la simulation, comme le type de canal
choisi, le nombre de modules ou d’adaptateurs. A cette analyse pourrait s'ajouter
un mécanisme d’évaluation de la puissance dynamique. Nous pourrions imaginer in-

clure des méthodes d’évaluation de puissance dans chague module ou périphérique

108

[8]. Chaque entité de la plate-forme pourrait alors envoyer de P'information sur la

puissance dissipée a un noyau central.

Bien que nous travaillons au niveau TLM et non au niveau RTL, le temps
d’exécution pour les simulations peut tout de méme s’avérer relativement long,
plus particulierement pour celles qui impliquent 'utilisation de I'ISS qui est précis
au cycle pres. N'oublions pas que ce dernier est précis au niveau des instructions et
cela consomine beaucoup de ressources en simulation. Si dans les versions futures de
SPACE nous désirons supporter plusieurs instances de processeurs dans une meéme
architecture, il faudra songer & une solution pour distribuer la simulation sur phi-
sieurs postes de travail. Un prototype nommé "dsim” a déja été congu pour SOCP
[40] et une implémentation semblable dans SPACE pourrait étre réalisée. Une simu-
lation distribuée apporte malheureusement des temps de transfert non négligeables

et il faut donc éviter de distribuer des taches qui communiquent fréquemment.

Toutes ces modifications et ajouts concernent les niveaux existants UTF et TF
pour lesquels la plate-forme a été concue. Un raffinement intéressant dans notre
méthodologie serait d’'y ajouter d’autres niveaux d’abstraction. Le niveau sous-
jacent au niveau TF serait le plus intéressant. Le raffinement matériel implique ‘la
transformation des mécanismes TLM vers le RTL. Les interfaces de communication
doivent alors étre remplacées par un ensemble de signaux et de ports élémentaires.
Ceci impliquerait aussi de raffiner notre méthode d’adressage ID. Une fagon de faire
est d’assigner des adresses non utilisées aux modules et ainsi de faire disparaitre
les numéros d’identification au profit des adresses mémoire, plus appropriées a
Uimplémentation physique finale. De plus, tous nos mécanismes qui impliquent des
listes STL (i.e. les listes de requétes) devront étre raffinés, car cela ne refléte pas
une implémentation matérielle, mais constitue plutot une astuce de modélisation
abstraite. Ces listes pourraient devenir des mémoires de messages, formées d’un

controleur et d'un espace de stockage.

[1]

2]
[3]

109

REFERENCES

ARM LiMITeD. [En ligne]. http ://www.arm.com/. (Page consultée le 15

janvier 2004).

ARM LiMitep. AMBA Specification (Rev. 2.0). 1999.

BenNini, L., BErrozzi, D., Bruni, D., DrAacO, N., Fummi, F. T PON-
CINO, M. Legacy SystemC Co-Simulation of Multi-Processor Systems-on-
Chip. IEEE International Conference on Computer Design : VLSI in Compu-

ters and Processors, 2002.

BENNY, O., RONDONNEAU, M., CHEVALIER, J., Bois, G., ABOULHAMID,
E.-M. T BOYER, F.-R. SoC software refinement approach for a SystemC
platform. Design & Verification Conference & Exhibition (DVCon), 2004.

BerTOLA, M. ET BoIs, G. A methodology for the design of AHB bus master
wrappers. Euromicro Symposium on Digital Systems Design, Turquie, Sep-

tembre 2003.

BESANA, M. T BORGATTI, M. Application Mapping to a Hardware Plat-
form through Automated Code Generation Targeting a RTOS : A Design Case
Study. Design, Automation and Test in Europe Conference and Exhibition

Design Forum, Allemagne, Mars 2003.

Bois, G., FiLion, L., TSIKHANOVICH, A. ET ABOULHAMID, E.
Modélisation, raffinement et technigues de programmation orientée objet avec

SystemC. Publication en cours, 2004.

CaLpari, M., ConTi, M., CopproLA, M., CriprA, P., OrRCIONT, S., PIE-
RALISI, L. BT TurcHETTI, C. OSystem-Level Power Analysis Methodology
Applied to the AMBA AHB Bus. Design, Automation and Test in Europe
Conference and Exhibition, Mars 2003.

[9]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

110

CHEVALIER, J. Partitionnement, estimation et raffinement de systeme lo-
giciel /matériel congu & haut niveau en System(. Ecole Polytechnique de

Montréal, Montréal, These en préparation.

CHEVALIER, J., RONDONNEAU, M., BENNY, O., Bois, G., ABOULHAMID,
E.-M. ET BOYER, F.-R. SPACE : A Hardware/Software SystemC modeling

platform including an RTOS. Forum on specification & Design Languages

(FDL), 2003.

CYR, G. Interface configurable pour un processeur ARM basée sur le protocole

VCI. Université de Montréal, Montréal, Février 2001.

pE Kock, E. A., EssiNnk, G., SMiTs, W. J. M., vaN DER WOLF, P.,
BRUNEL, J.-Y., KrunJTZER, W. M., LIEVERSE, P. ET VISSERS, K. A.
YAPI : Application Modeling for Signal Processing Systems. Design Automa-

tion Conference, 2000.

DerreL, H. M. et DEITEL, P. J. C++ How to Program, 4//E. Prentice
Hall, Décembre 2002.

Fivion, L., Bois, G. BT ABOULHAMID, E. M. Syslib : A System-Level
Library Extended from Cynlib for SoC. HDIL Conference and Exhibit, Ltats-
Unis, 2002.

FORTE DESIGN SYSTEMS. Cynlib Language Reference Manual. [En ligne].
CynApps Suite Release 1.0, http ://www.cynapps.com/. (Page consultée le
15 janvier 2004).

FoRrRTE DESIGN SYSTEMS. Cynlib Users Manual. [En ligne]. CynApps Suite

Release 1.0, http ://www.cynapps.com/. (Page consultée le 15 janvier 2004).

GAILHARD, S., INGREMEAU, O., DicueT, J.-P., JULIEN, N. ET MARTIN,
E. Une méthode probabiliste pour estimer la consommation a un niveau algo-

rithmique. Collogque CAQ circuits et systémes, Villars de Lans, 1997.

111

[18] GERSTLAUER, A., YU, H. ET GAJskl, D. RTOS Modeling for System Level
Design. Design, Automation and Test in Europe Conference, Mars 2003.

[19] GNU. [En ligne]. http ://www.gnu.org/. (Page consultée le 15 janvier 2004).

[20] GROTKER, T., L1ao, S., MARTIN, G. ET SWAN, S. System Design with
SystemC. Kluwer Academic Publishers, EtatS—Unis, Mai 2002.

[21] HAVERINEN, A., LECLERCQ, M., WEYRICH, N. ET WINGARD, D. White
Paper for SystemC based SoC Communication Modeling for the OCP Protocol.
Octobre 2002.

[22] HomMmals, D. Une méthode d’évaluation et de synthése des communications
dans les systémes intégrés matériel-logiciel. Université de Paris VI, France,
Septembre 2001.

[23] IEEE. IEEF Standard Verilog Hardware Description Language. [En ligne].
http ://www.verilog.com/TEEEVerilog.html. (Page consultée le 15 janvier
2004).

[24] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE Computer
Society Press, 1988.

[25] Kaun, G. The Semantics of a Simple Language for Parallel Programming.
IFIP Congress, 1974.

[26] LABROSSE, J. J. MicroC/0OS-1I, the Real-Time Kernel, Second Edition. CMP
Books, 2002.

[27] LAURENT, J., JULIEN, N. ET MARTIN, E. High Level Power Analysis for
Embedded DSP Software. IREE TCCA Newsletter, 2001.

[28] MENTOR GRAPHICS. ModelSim. [En ligne]. http ://www.model.com/, 2003.
(Page consultée le 15 janvier 2004).

[29] MENTOR GRAPHICS. Seamless CVE. [En ligne].

http ://www.mentor.com/seamless/, 2003. (Page consultée le 15 janvier

2004).

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

112

MupLLER, W., Rur, J., HorFMANN, D., GERLACH, J., Kroprr, T. ET
ROSENSTIEHL, W. The Simulation Semantics of SystemC. Design, Automa-

tion, and Test in Furope, Allemagne, Mars 2001.
NicoLescu, G., Yoo, S., BOUCHHIMA, A. ET JERRAYA, A. A. Validation
n a component-based design flow for multicore SoCs. ACM Press, 2002.

NutT, G. Operating Systems, A Modern Perspective, Second Edition. Addison
Wesley, 2000.

OCP-IP AssocCIATION. Open Core Protocol Specification. 2001.

ON-CHip Bus DEVELOPMENT WORKING GRroup. Virtual Component In-

terface Standard (OCB 2 2.0). VSI Alliance, Aottt 2000.

OSCI. Functional Specification for SystemC 2.0.1. [En ligne]. Open Sys-
temC Initiative, http ://www.systemc.org/, 2002. (Page consultée le 15 janvier
2004).

OSCI. SystemC Version 2.0.1 User’s Guide. [En ligne]. Open SystemC Ini-
tiative, http ://www.systemc.org/, 2002. (Page consultée le 15 janvier 2004).

OSCI. SystemC 2.0.1 Language Reference Manual Revision 1.0. [En ligne].
Open SystemC Initiative, http ://www.systemc.org/, 2003. (Page consultée le
15 janvier 2004).

Oussorov, 1., Raa, W., HACHMANN, U. T KRAVTSOV, A. Integration
of Instruction Set Simulators into SystemC High Level Models. Euromicro

Symposium on Digital System Design, 2002.

PASRICHA, S. Transaction level modeling of SoC with SystemC 2.0. Synopsys
User Group Conference, Inde, Mai 2002.

PauLin, P. G., PILKINGTON, C. ET BENSOUDANE, E. StepNP : A System-
Level FEzxploration Platform for Network Processors. IEREE Design and Test of
Computers, Novembre 2002.

[41]

[43]

[44]

[48]

[49]

113

PauvLiN, P. G., PiLkINGTON, C., BENSOUDANE, E. ET LANGEVIN, M.
Domain-specific Multi-Processor SoC’s : Platforms, Tools and Methods. Inter-
national Workshop on Software and Compilers for Embedded Systems, Aus-
tralie, Septembre 2003.

RONDONNEAU, M. Intégration d'un RTOS dans une plate-forme SystemC
destinée a [’exploration architecturale. Ecole Polytechnique de Montréal,

Montréal, Mémoire en préparation.

RowsoN, J. Hardware-software co-simulation. Design Automation Confe-

rence, Juin 1994.

ScHWARTZ, K. Modeling with SystemC 2.0. International HDL Conference
and Exhibition, Mars 2002.

SWAN, S. An Introduction to System Level Modeling in SystemC 2.0. Open
SystemC Initiative, http ://www.systemc.org/ [En ligne], Mai 2001. (Page
consultée le 15 janvier 2004).

TANENBAUM, A. S. Modern Operating Systems. Prentice Hall, 1992.

WIND RIVER. VzSim Datasheets. [En ligne].
http ://www.windriver.com/products/vxsim/, 2003. (Page consultée le

15 janvier 2004).

WIND RIVER. VeWorks 5.z Datasheet. [En ligne].
http ://www.windriver.com/products/vxworks5/, 2003. (Page consultée
le 15 janvier 2004).

ZivoiNnovi, V. BT MEYR, H. Compiled hardware-software co-simulation.

Design Automation Conference, Juin 1996.

114

ANNEXE 1

CO-SIMULATION DU MATERIEL ET DU LOGICIEL

1.1 Motivations

SystemC inclut un simulateur qui s’apparente beaucoup a d’autres simulateurs
matériels, comme les outils de simulations pour le VHDL par exemple [28]. Dans
le méme ordre d’idées, il existe également des simulateurs pour le logiciel. Ces
simulateurs permettent d’exécuter du code logiciel qui suit une philosophie temps
réel et qui utilise des constructions propres & un RTOS choisi (par exemple les
outils de WindRiver [48, 47]). Pour exécuter la partie logicielle comme faisant partie
d’'un systeme complet, on peut décider d’inclure ou non un modele de processeur.
Dans le dernier cas, exécution est plus rapide puisqu’elle s’effectue sur la machine
héte directement. Nous voyons que les deux types de simulateurs, soit matériels et
logiciels, ne sont pas congus de la méme fagon et utilisent des techniques différentes
pour simuler du code qui de toute maniere modélisent des systémes de natures
différentes. Un probleme se pose lorsque nous désirons effectuer une simulation

d’un systéme composé de parties & la fois matérielles et logicielles [43, 49].

Il existe plusieurs facons de faire de la co-simulation. Une premiere facon est de
prendre les deux types de simulateurs et d’essayer de les connecter ensemble, de les
synchroniser, comme c’est le cas pour 'outil Seamless CVE de Mentor Graphics

[29].

Une autre fagon de faire, soit 'approche de co-simulation avec SystemC, est tout

simplement de fusionner les deux simulateurs en un seul. La co-simulation est donc

115

une simple simulation. Ceci est possible, car le langage de description est le méme.
Par contre, pour bien respecter le comportement du logiciel, il faudrait ajouter des
éléments de construction logiciels dans SystemC ou encore modifier 'ordonnanceur

pour qu’il se comporte différemment avec les processus logiciels.

Notre approche vise un peu a tirer avantage de ces deux méthodes, afin d'une part
de séparer les simulateurs pour mieux modéliser les comportements différents du
logiciel et du matériel, tout en conservant le méme langage de description pour les

deux parties, soit du code C++ 1ié & SystemC.

Il y a plusieurs problémes a résoudre pour pouvoir effectuer correctement une co-
simulation logicielle/matérielle. Nous allons ici décrire briévement les principaux

problemes, car notre solution doit les affronter.

1.2 Parallélisme versus concurrence

En matériel, les processus s’exécutent généralement en paralléle, tandis qu’en lo-
giciel ils s’exécutent de fagon séquentielle. Avec 'utilisation d’un systeme d’ex-
ploitation, plusieurs processus peuvent étre en cours d’exécution simultanément.
Néanmoins, un seul est actif a la fois. On parle alors de concurrence pour une res-
source partagée, qui est le processeur. Pour modéliser le parallélisme, on exécute
plusieurs processus avant d’augmenter le temps de simulation, tandis que pour
modéliser la concurrence, on doit augmenter le temps de simulation pour chaque

processus exécuté.

116

I.3 Temps d’exécution zéro

Souvent pour modéliser une latence d’exécution, on exécute une série d’opérations
d’un seul coup, et ensuite on spécifie le délai pour ce groupe d’opérations. Il faut
alors s’assurer qu’on ne compromet pas la cohérence dans le calcul du temps de
simulation et étre str que le processus ne peut pas étre interrompu entre le moment
ou 'exécution des opérations débute et le moment ou le délai est spécifié. Aussi, &
un certain niveau d’abstraction, on peut vouloir enlever le plus possible les notions
de délai, souvent pour accélérer la simulation. Il faut alors recourir a 'utilisation des
événements pour synchroniser le tout. Souvent en matériel on utilise le delta-cycle
pour respecter quand méme Pordre d’exécution (voir plus loin pour un explication

sur les delta-cycles).

1.4 Enchalnement d’événements

Un processus peut vouloir une donnée qui n’est pas disponible, ou encore doit
attendre un certain moment venu pour s’exécuter. On utilise les événements pour
synchroniser les processus et pour leur signaler des changements d’états externes.
Si on connait d’avance le temps d’attente nécessaire, on peut alors spécifier un délai
et de facon implicite on met le processus en attente sur un événement de ’horloge.
Les notions d’attente active et d’attente inactive entrent alors en compte. On dit
qu’une attente inactive consiste a endormir un processus (le mettre hors exécution)
jusqu’a ce qu'un événement se produise. Le processus est alors réveillé et Pattente,
terminée. L’attente inactive est celle qui est toujours préconisée dans les simulateurs
matériels. L’attente active, quant & elle, consiste a laisser le processus en exécution
jusqu’a ce que le délai d’attente soit atteint. Cela ne fait pas vraiment de sens en

matériel, mais est possible en logiciel. Au niveau de la simulation, I'attente active est

117

souvent transformée en attente inactive, c’est-a-dire que 'exécution du processus
sera interrompue par l'arrivée d’'un événement externe. On appelle souvent cette

technique le pilotage événementiel [22].

Pour résumer, nous disons que les processus matériels doivent “rendre la main”
pour informer le simulateur que leur exécution ponctuelle est terminée, tandis qu’en
logiciel les processus peuvent soit rendre la main (systéme non préemptif) ou alors
étre interrompus par Uarrivée d'un événement externe (systéme préemptif). Plus

de détails seront donnés plus loin, voir Ordonnancement.

1.5 Delta-cycles

Le concept de delta-cycle est devenu une connaissance triviale pour les concepteurs
matériels. Le delta-cycle est une astuce de simulation pour permettre d’ordonnancer
les processus par rapport a leurs dépendances de données ou d’événements. Pour
un méme cycle d’horloge fixe, le temps de simulation est figé, mais il peut y avoir
plusieurs delta-cycles. Pour chacun de ces delta-cycles, plusieurs processus peuvent
étre exécutés. Ainsi, il est possible de respecter 'ordre d’exécution des processus

(ordonnancement séquentiel) qui normalement sont simulés de facon parallele.

Cela pose probleme lors de affectation des variables partagées entre plusieurs
processus. Par exemple, si plusieurs processus veulent modifier une certaine variable
dans le méme delta-cycle en lui affectant différentes valeurs, cette variable ne peut
pas prendre toutes les valeurs de fagon effective (séquentiellement), car les processus
sont simulés de fagon simultanée (parallele). Cependant, pour résoudre 'affectation
finale de la variable a la fin du cycle d’horloge, il faut garder un historique des
affectations multiples attribuées a la variable lors de tous les delta-cycles du cycle

courant.

118

La fagon de résoudre le probleme est de conserver toutes ces valeurs dans le simu-
lateur de fagon & avoir les valeurs actuelles et futures pour les variables partagées.
1l est ainsi facile de voir que la notion de delta-cycle n'est pas censée pour la
modélisation de logiciel. En logiciel, les variables partagées doivent étre affectées

effectivement par tous les processus.

.6 Variables et signaux

La notion de signal est propre au monde matériel. L’utilisation des delta-cycles,
comme nous venons de le voir, est utilisée de paire avec les signaux dans les simu-

lateurs matériels.

Les signaux non plus n’ont pas vraiment d’équivalent en logiciel [45]. D’abord, les
signaux ont des valeurs logiques qui représentent des états électriques (comme ”X”
ou ”Z”) en plus des valeurs logiques ("0” ou ”1”). Ensuite, les signaux peuvent
étre pilotés par plusieurs sources et une fonction de résolution peut alors calculer
la valeur effective du signal. En logiciel, une variable qui est modifiée par plusieurs
processus changera tout simplement de valeur. Finalement, comme les signaux sont
compatibles aux environnements de simulation avec des delta-cycles, I'affectation
de nouvelles valeurs ne prend pas effet immédiatement. Cela permet entre autre de
modéliser deux registres qui s’échangent leurs valeurs sur un coup d’horloge. En
logiciel, intervention d’une troisieéme variable temporaire est indispensable pour

effectuer une telle opération.

119

1.7 Cohérence

Lorsqu’une co-simulation est effectuée au moyen de deux simulateurs distincts, cer-
taines informations dans un simulateur peuvent vouloir étre connues dans Uautre.
L’état interne d’un simulateur est donc 1'état externe de 'autre. Certaines parties
de I'état interne des simulateurs doit pouvoir étre accessible de 'extérieur pour
assurer la cohérence. Un exemple typique est celle d'une mémoire qui est partagée

entre le logiciel et le matériel.

1.8 Synchronisation logicielle/matérielle

La synchronisation entre les deux simulateurs est aussi un probleme qu’il faut
résoudre. Une approche simple est de faire avancer les deux simulateurs cycle par
cycle. Evidemment cela engendre un coiit assez important en temps de synchronisa-~
tion. Une facon plus performante de procéder est de fonctionner sur événements. Les
simulateurs se synchronisent alors que sur des changements d’états qui impliquent
le logiciel et le matériel. Dans le cas ol le simulateur logiciel (ISS, [38]) est précis
au cycle pres, la synchronisation par événements revient a la synchronisation au
cycle prés. La synchronisation logicielle/matérielle se complique davantage lorsque
les deux simulateurs doivent fonctionner dans des domaines d’horloge différents,

i.e. & des fréquences d’opérations différentes.

1.9 Communication Jogicielle/matérielle

Pour assurer la communication logicielle/ matérielle, il y a plusieurs facon de
procéder. Il est possible de recourir a des techniques assez simples qui consistent &

partager des espaces mémoires d’un simulateur a un autre. Certaines astuces n’ont

120

pas vraiment de sens au niveau modélisation ; elles ne font que permettre une si-
mulation fonctionnelle. Il peut étre intéressant d’avoir recours a des mécanismes
qui pourront éventuellement étre réutilisés durant le raffinement, donc qui s’appa-
rentent plus & la fonctionnalité que Pon veut modéliser. Dans ce cas, la commu-
nication logicielle/matérielle fait donc partie du modeéle et non pas seulement des

simulateurs.

En logiciel, la communication fonctionne habituellement avec des queues de mes-
sages, ou encore avec des variables partagées qui sont protégées par des sections
critiques. En matériel, la communication peut se faire a petite échelle a I'aide de re-
gistres, mémoires tampons duales, queues de messages matérielles et 4 plus grande
échelle a I'aide de protocoles de bus ou de réseaux sur puce. Les mécanismes les
plus souvent utilisés pour I'intercommunication logicielle Jmatérielle sont les queues
de messages parce qu’elles ont un équivalent dans les deux mondes. De plus, on
tente souvent de remplacer les mécanismes d’attente active (polling) par une com-

munication par interruptions (pour le logiciel) ou par signaux (pour le matériel).

I.10 Ordonnancement

Au niveau matériel, lorsque plusieurs processus ont & étre exécutés dans le méme
delta-cycle, les simulateurs ont 'habitude d’exécuter les processus selon un certain
ordre souvent issu de la structure interne du simulateur, par exemple provenant
de la phase d’initialisation du simulateur, lors de la création des listes de sensi-
bilités. Le résultat est que 'ordre d’exécution des processus est déterminé par le
simulateur et non par la spécification. Ceci est parfois corrigé par un ordonnance-
ment basé sur 'exécution aléatoire. Le role du simulateur est toutefois de rendre
transparent 'ordre d’exécution, car la simulation doit respecter la cohérence des

entrées/sorties des processus, alors que leur exécution interne reste privée. Apres

121

tout, la spécification de processus paralléles évite de dicter un ordre d’exécution

quelconque.

Awu niveau du logiciel, sur un méme processeur, nous savons que U'exécution des pro-
cessus doit se faire de facon séquentielle. A 'aide d'un systéme d’exploitation temps
réel, nous pouvons par exemple choisir entre 'ordonnancement de type tourniquet,

FIFO de priorités, préemptif basé sur les priorités, etc. [32]

Au niveau de la co-simulation, 'ordonnancement du logiciel et du matériel doit
évidemment étre respecté, c’est pourquoi nous disons que les algorithmes d’ordon-

nancement du matériel ne sont pas appropriés pour le logiciel.

ANNEXE II

122

DETAILS DES RESULTATS EXPERIMENTAUX

II.1 Tests de performance comparatifs

Les tableaux II.1 et I1.2 présentent les résultats des tests comparatifs entre plusieurs

implémentations de TLM : SPACE, SOCP et Simple Bus. Dans ces tableaux, k-

op/sec est un raccourci pour milliers d’opérations d’entrée/sortie par seconde et

N.D. signifie que les résultats ne sont pas disponibles.

11.1.1 Résultats sur un Pentium I 667 MHz

TABLEAU 1.1 Performances comparatives (PIII-667 MHz)

Cas Description Transactions | Exécution | Performance
(nombre) (sec) (k-op/sec)

PTIT | X-Bar (avec processus) 10105740 10,14 996
PTINT | X-Bar (sans processus) 9571480 9,89 967
PT2T | Bus (avec processus) 326898 9,96 32
PT2NT | Bus (sans processus) 325935 10,10 32

PT3 Glue Channel 56716253 9,90 5726

PT4 Simple Bus 3254140 10,06 323

PT5 SOCP fonctionnel N.D. N.D. N.D.

PT6 SOCP sans canal N.D. N.D. N.D.

11.1.2 Résultats sur un Sun Blade 100

123

TABLEAU 11.2 Performances comparatives (Sun Blade 100)

Cas Description Transactions | Exécution | Performance
(nombre) (sec) (k-op/sec)

PTIT | X-Bar (avec processus) 2571537 9,79 262
PTINT | X-Bar (sans processus) 2604960 10,01 260
pPT2T Bus (avec processus) 137289 9,89 13
PT2NT | Bus (sans processus) 144540 10,31 14

PT3 Glue Channel 30959784 10,15 3050

PT4 Simple Bus 659559 10,00 65

PT5 SOCP fonctionnel N.D. 9,93 519

PT6 SOCP sans canal N.D. 10,07 1759

I1.2 Tests de performance paramétriques

11.2.1 Cas #1

Les parametres sont :

— Type d’application versus performance;
— Type de canal versus performance;

— Invariants : Modules = 100, Taille = 1.

TABLEAU I1.3 Performances paramétriques, cas #1

Application Type de Canal Performance
(k-op/sec)
Ring Glue Channel 164861
Ring Space Channel X-bar 7432
Ring Space Channel Bus 1697
War Glue Channel 141045
War Space Channel X-bar 88515
War Space Channel Bus 2731
Stress Glue Channel 139735
Stress Space Channel X-bar 7432
Stress Space Channel Bus 1687

124

11.2.2 Cas #2

Les parametres sont :

— Nombre de modules versus performance ;

— Type de canal versus performance;

— Invariants : Taille = 1, Application = WAR.

TABLEAU 11.4 Performances paramétriques, cas #2

Type de Canal Nombre de modules | Performance
(k-op/sec)
Glue Channel 10 322983
Glue Channel 50 224888
Glue Channel 100 141045
Glue Channel 500 44601
Glue Channel 1000 24010
Space Channel X-bar 10 189665
Space Channel X-bar 50 163450
Space Channel X-bar 100 88515
Space Channel X-bar 500 49716
Space Channel X-bar 1000 40905
Space Channel Bus 10 33634
Space Channel Bus 50 7457
Space Channel Bus 100 2731
Space Channel Bus 500 303
Space Channel Bus 1000 124

125

11.2.3 Cas #3

Les parametres sont :

— Taille des messages versus performance ;

— Type de canal versus performance;

— Invariants : Modules = 10, Application = WAR.

TABLEAU IL.5 Performances paramétriques, cas #3

Type de Canal Taille des messages | Performance
(entiers de 32 bits) (k-op/sec)
Glue Channel 10 310579
Glue Channel 50 276244
Glue Channel 100 259717
Glue Channel 500 175147
Glue Channel 1000 122746
Space Channel X-bar 10 71933
Space Channel X-bar 50 19132
Space Channel X-bar 100 9953
Space Channel X-bar 500 4655
Space Channel X-bar 1000 2347
Space Channel Bus 10 7754
Space Channel Bus 50 1754
Space Channel Bus 100 893
Space Channel Bus 500 180
Space Channel Bus 1000 90

126

127

ANNEXE III

REGLES D’IMPLEMENTATION DE SPACE

III.1 Composants réutilisables a instancier

Les utilisateurs de SPACE doivent se conformer aux regles de structurelles pour
concevoir leurs propres blocs (modules ou périphériques) et aux régles architectu-
rales afin de respecter la méthodologie et les limtes imposées de la plate-forme.

Nous présentons ici ce qui peut constituer chacune des instances de SPACE.

III.1.1 Périphériques

L’assemblage de périphériques pré-congus permet de construire rapidement une
architecture. Voici une liste des périphériques avec le nombre d’instances minimales
et maximales possibles pour chacun des périphériques entre crochets. Le parameétre

n est un nombre entier strictement positif.

- Mémoire de code [0, n} (lorsque I'ISS est utilisé) ;

|

Mémoire de données [0, n];

Mémoire vidéo [0, n};

Adaptateur du processeur [0, 1] (lorsque I'ISS est utilisé);

|

Adaptateur des périphériques [0, 1] (lorsque I'ISS est utilisé) ;
— Minuterie [0, 1] (lorsque V'ISS est utilisé) ;

Gestionnaire d'interruptions [0, 1} (lorsque I'ISS est utilisé) ;
— Périphérique d’arrét [0, n];
- ISS [0, 1];

128

~ Décodeur [0, 1] (lorsque I'ISS est utilisé) ;

— Adaptateur de module [1, n] (autant qu’il y a de modules, 1 minimum);
~ Modules de 'usager [1, n];

— Canal [1];

— Plusieurs SC_MODULE bidons pour éviter les ports non connectés.

[M1.1.2 Signaux

Les signaux nécessaires sont toujours de type sc_signal<bool>, sauf pour le si-
gnal d’horloge, qui est de type sc_clk. Les nombres entre crochets représentent le

nombre d’instances minimales et maximales possibles pour chacun des singaux.

— Horloge systeme [0, 1] (pour une simulation TF seulement) ;
~ Signaux d’interruptions [0, 32 4+ 1] (la ol nécessaire, TF seulement) ;
— Remise a zéro pour le processeur [0, 1] (lorsque IISS est utilisé) ;

~ Signaux bidons pour éviter les ports non connectés.

I11.1.3 Autres considérations

Une considération importance lors de l'instanciation des périphériques est le respect
des regles d’adressage. Chaque périphérique peut occuper une quantité de mémoire
précise dans la plage mémoire. Voici la quantité de mémoire occupée par chacun des

ériphériques (indiquée par Uexpression entre erochets, ou n est un entier positif).
b

— Mémoire de code [64kn] (plages de 64 Ko);
~ Mémoire de données [64kn] (plages de 64 Ko);
~ Mémoire vidéo [4];

~ Adaptateur du processeur [4];

129

— Adaptateur des périphériques [4n];
~ Minuterie [12];
- Gestionnaire d’interruptions [8];

— Périphérique d’arrét [4].
Finalement, il y a d’autres parameétres a fixer pour instancier une plate-forme, soit :

— Le fichier binaire source pour la mémoire de code (si ce périphérique est utilisé)
doit étre construit pour former la partie logicielle;
— La période de la minuterie (si ce périphérique est utilisé) doit étre fixé;

— Les ID des modules de I'application doivent étre choisis.

111.2 Regles structurelles pour les modules

En plus de respecter les regles de configuration, le concepteur a la responsabilité de
respecter les regles de codage et de conception, ainsi que les limitations de SPACE

par rapport aux constructions de SystemC.

I11.2.1 Niveau UTF

— L’application doit étre partitionnée en un ou plusieurs éléments SC_MODULE;

- Chacun des modules doit hériter d’une classe de base : space_base_module,
définie pour le niveau UTF;

— Chagque module peut contenir un ou plusieurs SC_THREAD. Si le module contient
plusieurs SC_THREAD, chacun de ces processus doit communiquer avec d’autres
modules différents (ou en d’autres mot, deux processus différents d’'un méme
module ne peuvent pas communiquer avec un autre méme module). Si le module

possede au moins un processus, on doit inclure la macro SC_HAS_PROCESS dans

130

la définition de la classe du module;

— Les modules doivent utiliser le port de communication unique fourni avec la
classe de base pour communiquer avec d’autres modules;

— Le concepteur peut utiliser des mots clés wait de SystemC. Cependant, s'il le
fait, il doit utiliser la signature suivante :
wait({nombre}, SC.NS);
Cette forme de wait doit étre remplacée ensuite par la signature suivante au
niveau TF :
wait({nombre});
Par conséquent, le concepteur doit utiliser la méthode isHighLevel() pour que
son code ne soit pas modifié lors du passage UTF vers TF et vice-versa. Voici

de quel fagon il doit procéder :

if (isHighLevel())
wait({nombre}, SC_NS); // valide pour les SC_THREAD
else

wait({nombre}); // valide pour les SC_CTHREAD

111.2.2 Niveau TF

Les mémes regles de codage s’appliquent sauf pour les exceptions qui suivent :

— Au lieu d'utiliser des SC_THREAD, le concepteur doit utiliser des SC_CTHREAD ;
~ Au lieu d’hériter de la classe de base space_base_module définie pour le
niveau UTF, les modules de 'usager doivent hériter de la classe de base

space_base_module définie pour le niveau TF.

131

I11.2.3 Structure des périphériques, niveaux UTF et TF

— L’usager peut concevoir lui-méme des périphériques, §'il le fait il doit hériter
d’une classe de base : space_base_device;

— Le concepteur doit implémenter les méthodes :

-~ mem_write_from_bus()

— mem_read_from_bus()

Ces méthodes seront appelées lorsqu’un acces en lecture ou en écriture sera initié
vers le périphérique;

— S’il le désire, le concepteur peut ajouter un port d’horloge a son périphérique.
Dans ce cas il doit connecter ses instances de périphérique au signal d’horloge et
il lui sera impossible de simuler son application au niveau UTF;

— S’il le désire, le concepteur peut créer des processus dans son périphérique. Dans
ce cas il doit inclure la macro SC_HAS_PROCESS dans la définition de la classe du
périphérique. La méthode isHighLevel() lui permettra de faire des wait dans
SON Processus;

— Pour Pinstant la structure logicielle de la plate-forme ne supporte pas ’ajout de
modules ou de périphériques congus par l'utilisateur qui utilisent les interrup-

tions. Cela pourra éventuellement étre ajouté comme une fonctionnalité dispo-

nible.

II1.3 Regles architecturales

[I1.3.1 UTF et TF

— Le nombre d’instances différentes d’'un méme module n’est pas limité;
— Chaque instance de module doit avoir un 1D différent ;

— Le ID zéro est réservé pour 'adaptateur du processeur.

132

I11.3.2 Regles architecturales UTF

— Le concepteur doit instancier un seul canal UTF;

— 'Tous les ports de communication des modules doivent étre connectés a U'interface
du canal UTF;

— Le multi-port des périphériques du canal UTF doit étre connecté & Uinterface de
chacun des périphériques;

— Dans le cas oli le concepteur n’a pas besoin de périphérique, une instance de
périphérique nul doit étre créée et connectée au multi-port du canal UTF. Ce

périphérique nommé null_device est simplement un SC_MODULE bidon.

IT1.3.3 Regles architecturales TF

— Le concepteur doit instancier un seul canal TF;

— Il doit y avoir un signal d’horloge de période 1 ns, avec 50% de rapport de phase;

— Pour chaque instance de module, le concepteur doit instancier un adaptateur de
module ;

— Tous les modules de 'usager doivent étre connectés a ['horloge et & leur adapta-
teur respectif;

- Tous les adaptateurs de modules doivent étre connectés a ’horloge et au canal
TF;

— Le canal TF doit étre connecté au signal d’horloge si le type de canal possede un
port d’horloge. Dans tous les cas, le multi-port des périphériques du canal TF
doit étre connecté & Vinterface de chacun des périphériques et le multi-port des
adaptateurs de module doit étre connecté a l'interface de chacun des adaptateurs;;

— Tous les modules logiciels doivent étre connectés & 'émulateur de SystemC (les
ports de communication doivent étre connectés & 'API);

— L’adaptateur du processeur et la minuterie sont des sources d’interruption. Il

133

faut brancher les signaux d’interruptions dans le gestionnaire d’interruption.

134

ANNEXE IV

EXEMPLES AVEC SYSTEMC

V.1 Exemple 1

IV.1.1 Fichier prod.h

#include <systemc.h>

#ifndef PROD_H
#tdefine PROD_H

SC_MODULE (prod)
{

sc_fifo_out<int> port;

void thread(void) {
for (int i = 1; i<=10; i++) {

port->write(i*100);

¥
SC_CTOR(prod) {
SC_THREAD(thread) ;

135

#endif // PROD_H

IV.1.2 Fichier cons.h

#include <systemc.h>

#ifndef CONS_H
fidefine CONS_H

SC_MODULE(cons)

{
sc_fifo_in<int> port;
void thread(void) {
int input;
for (int i = 0; i<10; i++) {
port->read(input);
cout << "input = " << input << endl;
}
h
SC_CTOR(cons) {
SC_THREAD (thread) ;
}
+;

#endif // CONS_H

136

IV.1.3 Fichier top.h

#include "prod.h"

#include "“cons.h"

#ifndef TOP_H
#define TOP_H

SC_MODULE (top)

{
prod* prodl;
cons* consli;
sc_fifo<int>* fifol;
SC_CTOR(top) {
prodl = new prod("prodi");
consl = new cons("consl");
fifol = new sc_fifo<int>(1);
prodi->port(xfifol);
consi->port(*fifol);
}
I

#endif // TOP_H

IV.1.4 Fichier main.cpp

#include "top.h"

int sc_main(int argc, char*xargv)

{
top topi{("topl");
sc_start(-1);
return O;

}

IV.2 Exemple 2

IV.2.1 Fichier mychannel_if.h

#include <systemc.h>

#ifndef MYCHANNEL_IF_H
#define MYCHANNEL_IF_H

class mychannel_if: public sc_interface

{

public:
virtual void mychannel_read(int& value) = 0;
virtual void mychannel write(int value) = 0;

};

137

138

#endif // MYCHANNEL_IF_H

IV.2.2 Fichier mychannel.h

#include "mychannel_ if.h"

#ifndef MYCHANNEL_H
#define MYCHANNEL_H

class mychannel: public sc_channel, public mychannel_if
{

int internal;

bool empty;

sc_event write_event;

sc_event read_event;

public:

mychannel (sc_module_name _name)
: mychannel_if (), sc_channel(_name) {
internal = 0;
empty = true;

}

virtual void mychannel_read(int& value) {
if (empty)

wait(write_event);

value = internal;
empty = true;

read_event.notify();

139

}
virtual void mychannel write(int value) {
if (lempty)
wait(read_event);
internal = value;
empty = false;

write_event.notify(Q);

};

#endif // MYCHANNEL_H

IV.2.3 Fichier prod.h

#include "mychannel if h"

#ifndef PROD_H
#define PROD_H

class prod : public sc_module

{
public:
sc_port<mychannel_ if> port;

sc_in_clk clock;

SC_HAS_PROCESS(prod) ;

void cthread(void) {

140

for (int i = 1; i<=10; i++) {

port->mychannel_write(i*100);

+

prod(sc_module_name name_) : sc_module(name_) {

SC_CTHREAD (cthread, clock.pos());

};

#endif // PROD_H

IV.2.4 Flchier cons.h

#include "mychannel_ if.h"

#ifndef CONS_H
#tdefine CONS_H

class cons : public sc_module

{
public:
sc_port<mychannel_if> port;

sc_in_clk clock;

SC_HAS_PROCESS(cons) ;

void cthread{(void) {

int input;

141

for (int i = 0; i<10; i++) {
port->mychannel_read(input);

cout << "ipput = " << input << endl;

}

cons(sc_module_name name_) : sc_module(name_) {

SC_CTHREAD (cthread, clock.pos());

+;

#endif // CONS_H

IV.2.5 Flchier top.h

#include "prod.h"
#include "cons.h"

#include "mychannel.h"

#ifndef TOP_H
#define TOP_H

class top : public sc_module
{
public:

prod* prod2;

cons* cons2;

mychannel* channel2;

sc_clock clk;

top(sc_module_name name_) : sc_module(name_) {
prod2 = new prod("prod2");
cons?2 = new cons("cons2");

channel? = new mychannel("channel2");

prod2->port (*channel2);
prod2->clock(clk);
cons2->port (*channel2);

cons2->clock(clk);

+;

#endif // TOP_H

IV.2.6 Flchier main.cpp

#include "top.h"

int sc_main(int argc, charx*argv)
{
top top2("top2");
sc_start(-1);

return O;

142

