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RESUME

La méthode des éléments discrets est une méthode numérique déterministe
permettant [’analyse des écoulements granulaires. Les milieux granulaires sont
complexes et composés de milliers de corps en interaction. Calculer les forces qui
découlent de leurs collisions est excessivement long. Puisque ces procédés sont
transitoires, plusieurs secondes de simulation sont requises. Les utilisateurs doivent alors
s’armer de patience pendant que les stations de travail sont rudement mises a 1’épreuve.
L’accélération des temps de calcul passe premierement par [’optimisation des
algorithmes de détection de contacts adaptés aux besoins spécifiques de cette méthode.
A ce sujet, nous proposons un nouveau mode de représentation des surfaces solides,
combinant les avantages des outils de CAD et le moindre colit de détection des objets

sphériques.

Heureusement, avec I’émergence des grappes de calcul de type Beowulf, la
méthode des éléments discrets peut profiter de 1’utilisation concourante de plusieurs
unités de calcul. La parallélisation de la méthode des éléments discrets par
décomposition de domaine est d’ailleurs le principal sujet de ce mémoire. En effet, bien
implantée, elle permet en théorie de réduire linéairement les temps de résolution d’une
simulation. L’étude de nombreux sujets intimement reliés a cette parallélisation a été
réalisée. Nous avons constaté que I’équilibrage dynamique de tiches est crucial pour
assurer I'efficacité et 'utilisation intelligente des ressources disponibles. Nous avons
démontré qu’il était possible d’équilibrer les charges selon deux méthodes agissant a
deux niveaux : en modifiant la quantit€ de travail par processus ou en tentant de
rééquilibrer les processus occupés sur la grappe de calcul. Nous avons aussi abordé la
création d’objets non-sphériques a partir de particules élémentaires. Nous concluons que
cette représentation augmente la flexibilité sans les désavantages de la détection d’objets

polyédriques, De plus, elle ne constitue aucun obstacle a I’implantation paraliéle dont



vi

I’efficacité par décomposition de domaine est durement touchée lorsque le rapport des
tailles entre les objets augmente. Enfin, puisque les ordinateurs paralleles disponibles
pour ce mémoire étaient composés de nceuds multiprocesseurs, une implantation en
mémoire partagée a €té réalisée. Suite a ’analyse de nos résultats, il est difficile de
conseiller 1'utilisation de ce paradigme ainsi que son dérivé, le mode hybride. Peu
importe 1’architecture, la parallélisation de la méthode des éléments discrets par
décomposition spatiale du domaine est requise afin de diminuer les temps de calculs de
cette méthode numérique trés dispendieuse et permettre la simulation d’écoulements

granulaires comportant un nombre réaliste de particules.
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ABSTRACT

The Discrete Element Method (DEM) is a recent method to simulate the
behaviour of granular materials. By tracking the interactions and the collisions between
thousands of particles, this method can simulate complex phenomena that are unique to
granular materials and that are still poorly understood. Such simulations are however
very CPU-intensive and, consequently, high-performance computers and techniques are
needed for DEM to be efficient. In particular, the use of an optimal algorithm for contact
detection is required but, to get even faster results, the parallelization of DEM becomes

essential.

With the use of a Beowulf cluster built from commodity processors, a
parallelized DEM code has the potential to solve large problems. This thesis concerns
the optimization and the parallelization of DEM using in particular domain
decomposition techniques. Upon trying to reduce the communication cost between
processes, we quickly realized that the work load imbalance was an important source of
time waste. To achieve better speed-up, we investigated dynamic load-balancing by
means of two different techniques. The first one is based on the displacement of the sub-
domain boundaries to balance the work loads. The second method relies upon the
dynamic distribution of a quantity of processes larger than the number of processors in

the cluster.

Another topic that was investigated in this work concerns the simulation of the
flow of non-spherical particles. To this end, we developed a method that models a non-
spherical particle as a collection of spherical particles moving as a rigid body. One
advantage of the proposed scheme is that it can use the standard contact detection

schemes for spherical particles. Most importantly, the proposed method is compatible
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with domain decomposition parallelization because a macro-particle can be split on

many sub-domains.

Finally, we investigated the parallelization of DEM on SMP compute nodes
using OpenMP-MPI hybrid parallelization and observed that domain decomposition
based parallelization on a distributed memory system gives better results in the case of

the flow of non-cohesive spherical particles.
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1 Introduction

Automne 2003. Alors que les processeurs 64-bit sont proposés pour la premiére
fois au grand public, les défis technologiques a relever pour faire progresser la
fréquence sont de taille. Les constructeurs redoublent d’ingéniosité pour contourner le
probleme de la chaleur, qui atteindra bient6t le niveau de nos ampoules incandescentes.
Il est a se demander si Moore finira par avoir tort. Pendant que la science-fiction réve a
I’ordinateur quantique, les besoins en calcul augmentent plus rapidement que les
prouesses technologiques. Des modeles plus complexes nécessitent toujours plus de
ressources informatiques et I’ingénieur d’aujourd’hui peut difficilement se contenter

d’une seule unité de calcul.

Idée en vogue depuis une dizaine d’années, le parallélisme vient a la rescousse en
combinant la puissance de plusieurs ordinateurs. Les applications pouvant tirer profit de
cette nouvelle tendance sont nombreuses mais 1’opération n’est pas toujours €vidente.
On retrouve déja ces superordinateurs dans les centres météorologiques et
astrophysiques, mais, de plus en plus, l'utilisation de grappes de calcul fait son
apparition dans de nouveaux secteurs, dont les laboratoires pharmaceutiques, entre
autres pour le design de nouvelles molécules. Et bientot, les ordinateurs paralleles
deviendront essentiels a I’étude des mélanges de poudres entrant dans la fabrication de

médicaments sécuritaires et efficaces.

L’étude de ces procédés de mélange, bien qu’essentielle, est une entreprise tres
onéreuse. La simulation par ordinateur permet 1’optimisation de procédés industriels a
moindre cofit. Cependant, les modeles numériques conventionnels basés sur la

mécanique des milieux continus ne peuvent imiter le comportement unique des poudres :



avalanches, ségrégation, percolation. Ces modeles numériques permettent difficilement

la simulation de ce type de phénomene.

La méthode des éléments discrets permet de suivre individuellement chaque
particule et de simuler les phénomenes propres aux écoulements granulaires. Ces
procédés granulaires impliquent généralement des milliers voire des millions de
particules. Donc, des ressources informatiques trés importantes sont requises afin de
permettre d’effectuer des simulations dans des temps raisonnables. L’utilisation de
plusieurs ordinateurs de fagon concourante est de toute évidence souhaitable pour ce

type d’application.

1.1 Objectif genéral

Ce mémoire relate ma contribution au sein d’une équipe de recherche tentant de
concevoir un nouvel outil d’analyse des milieux granulaires. Etant le seul étudiant en
génie informatique du groupe, mon role principal a I’Unité de Recherche en Procédés
d’Ecoulements Industriels (U.R.P.E.]) était de trouver et implanter des algorithmes
efficaces dans le but d’accélérer le temps requis pour une simulation. En particulier,
I'objectif consistait a paralléliser la méthode des éléments discrets au moyen de
techniques de décomposition de domaine. La conception de I’application
Powder3D ayant débuté au début de ’année 2002, une étape d’optimisation sur la
version séquentielle de cette application fut requise. La validation des changements
apportés au code a été effectuée en collaboration avec les autres membres de 1’équipe.
Ces modifications visaient en premier lieu la rapidité d’exécution et I’ajout de flexibilité
du code de facon a faciliter son utilisation en rendant la parallélisation automatique et

transparente.



1.2 Contribution

Ce mémoire porte sur la conception d’une version parallele de la méthode des
éléments discrets pour la simulation d’écoulements granulaires. On y retrouve
notamment une description détaillée des algorithmes implantés ainsi qu’une discussion
des techniques utilisées pour réaliser une parallélisation efficace. Le travail a aussi
permis la simulation de cas de figure trés complexes qui n’avaient pas encore €té traités

avec la méthode des éléments discrets.



2 Revue de littérature

L’idée d’utiliser plusieurs ressources en parallele n’est pas nouvelle, elle a fait
son apparition dés 1’avénement de l’informatique moderne. Déja en 1947, Amdahl

dictait sa loi décrivant I’accélération potentielle A avec P processeurs :

_TIM _ M P

- - - Equation 2.1
T(P) M P+(] _ P)Xa quation
P

+(-a)xT(1)

ou T(1) est le temps séquentiel et a la fraction du code qui n’est pas parallélisable.
L’accélération maximale limitée a 1/(1- a) est atteinte lorsque le nombre de processeurs

(P) est infiniment grand. Il est primordial de réduire la valeur de a qui est unique pour

chaque application. Les techniques de parallélisation sont donc intimement reliées au
probléme a résoudre. Avant de discuter de la parallélisation de « Powder3D », nous

allons présenter la méthode des éléments discrets.

2.1 Introduction aux écoulements granulaires

Au milieu des années 70, quelques scientifiques ont commencé a chercher une
nouvelle approche pour I’analyse des milieux granulaires. Auparavant, les études étaient
seulement expérimentales et les tentatives pour les reproduire avec des méthodes
numériques de la mécanique des milieux continus n’arrivaient pas a simuler
correctement tous les phénomenes rencontrés. En 1979, Cundall et Strack (1979) ont
publié le premier article relatant la méthode des éléments discrets appliquée a I’étude des
sols rocheux. Cette méthode, comme son nom l’indique, est basée sur la discrétisation

individuelle des particules. Originale a 1’époque parce qu’elle était appliquée pour la



premiere fois a autre chose que des atomes, cette fagon de procéder n’était en fait qu une
extension de la dynamique moléculaire développée presque 30 ans plus tot. Comme
d’autres simulations physiques particulaires, telles ’astrophysique, les écoulements
granulaires font intervenir des milliers de corps (Warren, 1992). Cependant, la méthode
des éléments discrets (Discrete Element Method., DEM i) se démarque au niveau du
champ d’application. Aujourd’hui, la DEM trouve preneur dans de nombreux domaines
industriels impliquant de petites particules ou grains (< Icm de diametre). L’ordre de
grandeur des corps en interaction est encore beaucoup supérieur aux molécules mais, on
retrouve des applications de la DEM avec des poudres de plus en plus fines (Muzzio,
2002). De plus, la DEM se distingue dans la représentation des objets; alors que la
source ponctuelle (point) et la sphére sont largement utilisées en astrophysique et en
dynamique moléculaire respectivement, d’autres formes polygonales peuvent é&tre
générées pour représenter la multitude de formes de grains que 1’on retrouve dans la
nature. Cependant, le cercle et la sphere sont encore les plus étudiés. La méthode des
éléments discrets demeure applicable lorsque les forces de collision sont dominantes,
soit dans les environnements denses. A priori, les modeles simples ne supportent pas les
forces a rayon d’action entre les particules. Toutefois, comme en dynamique
moléculaire, des forces supplémentaires de cohésion (les forces de van der Waals, par
exemple) peuvent étre ajoutées lorsque les grains se rapprochent suffisamment. Il
devient ainsi possible grice a ce type de modele d’étudier les mécanismes

d’agglomération de particules (Yang et Yu, 2000).

D’autres méthodes numériques, de type probabiliste, peuvent étre utilisées pour
simuler les écoulements granulaires. Un algorithme basé sur la méthode Monte-Carlo a
permis par exemple a Vidal et al. (2001) d’étudier la sédimentation de mélanges
polydispersés dans le domaine du couchage du papier. Ces méthodes probabilistes ont

I’avantage d’étre extrémement rapides, souvent au détriment de la qualité des résultats

! DEM sera utilisé pour désigner la méthode des éléments discrets.



obtenus. Leur application est donc limitée et I’utilisation de la DEM pour simuler des

écoulements granulaires complexes reste inévitable.

2.2  Description de la méthode

La méthode des éléments discrets fait généralement intervenir des milliers de
corps indépendants, tous compris a 'intérieur d’un domaine de simulation défini par des
murs solides ou par des conditions périodiques. Grace a un bilan de force individuel,
I’application de la deuxieme loi de Newton conduit a une méthode itérative qui permet
de suivre la trace de chaque particule a tout moment :

d’x,

m——==r,,., Equation 2.2
i dtz totul i

avec laquelle on trouve I’accélération de la particule i en fonction de sa masse et des
forces qui s’exercent sur elle. Ces forces (F,,;) comprennent entre autres les interactions

de la particule i avec son entourage N(i) :

Frowi= ZF,, Equation 2.3
VieN )
La boucle de résolution comporte trois étapes : La détection des contacts, le

calcul des forces et le calcul du mouvement des corps.

2.2.1 Détection de contacts

Avant de pouvoir quantifier les forces résultant des collisions, il faut trouver les
paires de particules en contact. Cette recherche est treés dispendieuse si le nombre de
particules est élevé. Des algorithmes de localisation ont été développés dans le but de

réduire la recherche des O(n?) paires possibles aux paires probables seulement. Grilles,



tris et graphes, tous les moyens sont bons pour réduire ’ordre de complexité de la
recherche a 'ordre linéaire O(n). Le but de ces algorithmes est de déterminer s’il y a
collision entre chaque paire de particules et, le cas échéant, trouver le point de contact.
Du point de vue de la réduction des temps de calcul, cette étape est d’une importance
comparable a celle de la parallélisation de la DEM. Nous discuterons des différents

algorithmes au chapitre 3.

2.2.2 Force et collisions

La méthode des éléments discrets comprend deux écoles de pensée distinctes qui
se démarquent au niveau du modele de collisions. Le premier groupe affirme que les
particules sont indéformables et ne peuvent se chevaucher mutuellement (hard sphere
model) (Muller, 1996). Depuis son élaboration, cette technique n’a pas vraiment été
beaucoup utilisée car le fait que les contacts et les forces sont instantanés est beaucoup
trop contraignant. En pratique, ce modele devient tres difficile a utiliser pour des
simulations comprenant plusieurs milliers de corps et des mouvements lents comportant
des collisions tres rapprochées dans le temps. De plus, pour simuler correctement les
écoulements granulaires avec ce type de méthode, les calculs de détection doivent étre
classés en ordre chronologique de contacts, ce qui rend la parallélisation encore plus

ardue.

O
—

Figure 2-1 Représentation du contact entre deux particules pour le modéle des spheres déformables



Pour éviter cet inconvénient, il fallait éliminer la contrainte interdisant le
chevauchement et remplacer le modele de particules indéformables. C’est pourquoi la
seconde €cole instaura un modele de chevauchements munis d’une force de répulsion
simulée par des ressorts. Avec ce type de modele de spheres molles (soft spheres), deux
particules peuvent se chevaucher pendant une certaine période, sans dépasser une limite
raisonnable (maximum 1-10% du diametre). Les forces proviennent des ressorts qui sont
comprimés en fonction du chevauchement 3 « (Figure 2.1). Plusieurs modéeles de spheéres

déformables ont été proposés :

5302

e Lemodelede Hertz: F =k
ou k est la constante de rappel du ressort.

Dans ce modele les collisions sont €élastiques et il n’y pas d’énergie perdue.

¢ Le modele de Walton et Braun(1986):  F =k, 0 (pour le chargement)

F =k,(6— &,) (déchargement)
Ce modele est linéaire et propose deux coefficients différents afin d’imiter le

comportement plastique des particules.

e Le modele de Cundall et Strack (1979) : F =k d+cv
ou k : la constante de rappel du ressort
¢ : le coefficient d’amortissement

-

v : la vitesse relative des particules en collision

Ce modele couramment implanté, aussi connu sous le nom de « spring and dashpot »,
modélise un systéme de ressort et de piston. On y retrouve en plus de la composante
d’élasticité une composante d’amortissement qui est fonction du la vitesse relative pour

tenir compte de 1’énergie dissipée lors de la déformation.



La déformation n’est donc pas prise en compte exactement et les forces
dissipatrices sont souvent ajoutées pour simuler des systemes inélastiques. Remarquons
que l'utilisation de ressorts ayant des constantes de rappel élevées et un chevauchement

limité est équivalent a un modele de corps indéformables.

Ces modeles se ressemblent en quelques points. Par exemple, la gestion des
collisions multiples se fait habituellement en considérant individuellement chaque paire
de particules en interaction. De plus, conséquence de la troisieme loi de Newton : la

force appliquée sur deux corps est de méme intensité mais de direction opposée.

Enfin, la force appliquée sur une particule comprend une composante normale
mais aussi une composante tangentielle qui permet de tenir compte du frottement. Le
modele complet tel que celui de Cundall et Strack peut étre schématis€ comme a la
figure 2.2. On retrouve les forces de répulsion et d’amortissement normales (coefficients
k, et c,) et tangentielles (coefficients k; et ¢,) ainsi que le frottement exprimé par la loi de
Coulomb (n). Précisons qu’un bilan angulaire permet aussi de calculer la vitesse

angulaire des particules.

Cn

kn

Figure 2-2 Représentation du modéle de Cundall et Strack (1979)
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En résumé, lors de I’étape du calcul des forces, chaque particule accumule les
énergies de collision dans un vecteur approprié (Equation 2.3). Il est possible d’ajouter a
ce bilan de forces des forces externes telles la gravité qui s’applique sur tous les corps
selon une direction prédéfinie. La présence d’un fluide impliquera de plus la pouss€e
d’Archimede. Et, du déplacement relatif des particules par rapport a ce fluide, découlera

une force de trainée en fonction de la viscosité du liquide.

2.2.3 Calcul du mouvement et de la position

A la fin du processus de sommation des forces de contact, chaque particule a
accumulé les forces normales et tangentielles s’exercant sur elle. La dernicre étape
consiste a déterminer les nouvelles positions. En appliquant la deuxiéme loi de Newton
(équation 2.2), on déduit les accélérations. Il ne reste plus qu’a intégrer pour trouver les
vitesses de déplacement ainsi que les nouvelles positions. Le modele des corps
déformables est valide a condition de n’avoir que de petits chevauchements. Par
conséquent, le pas de temps doit étre suffisamment petit afin d’éviter des déplacements
relatifs exagérés. Pour conserver la stabilité du systeme, la valeur maximum oscille
autour de 10” secondes, mais il n’est pas rare d’utiliser un pas de temps 100 fois plus
petit pour des particules de quelques millimetres. Lorsque le pas de temps est grand, des
intégrateurs numériques d’ordre élevé plus coiiteux, tels ’algorithme de Runge-Kutta
d’ordre 4, sont conseillés. Mais, dans les conditions de la DEM, un simple algorithme
saute-mouton (leap frog, en anglais) du second ordre permet d’obtenir des résultats
convenables. Trés populaire, cet algorithme proposé par Verlet (1967) est économique
tout en €tant reconnu pour bien conserver 1’énergie du systeme. Le calcul des vitesses et

position se fait en trois étapes:
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a- At

e Calcul de la vitesse V. Y= V. yt 5 Equation 2.4
(Vi- %4 +Vi+1/) ,
e Calcul de la vitesse moyenne V.= ——2—5———/2— Equation 2.5
e Calcul de la position X =X+V, - At Equation 2.6
/2

La définition du pas de temps demeure problématique. Idéalement, il devrait étre
le plus grand possible et garantir la stabilité de la simulation en cours. Cundall et Strack

(1979) ont proposé d’utiliser le critere suivant :

AT cprioue =2Vmlk Equation 2.7

m = Masse de la plus petite sphére
k = Rigidité du ressort ~ module de Young

Dans Powder3D, sa valeur dépend de la vitesse maximale des particules du
systeme, V., de la valeur du chevauchement maximal, dmax, ainsi que du rayon de la
plus petite particule Ry :

o R

max min

ATCRITIQUE = "“‘7“‘“ Equation 2.8

max

En pratique, Cundall et Strack proposent de trouver le pas de temps critique et de
le diviser par un facteur typiquement compris entre 10 et 40. Donc, méme si cette
constante a beaucoup d’impact sur les temps de résolution et la stabilité de la simulation,
on constate que le choix du pas de temps est trés arbitraire. En fait, ’expérience de
I'utilisateur et quelques tentatives infructueuses sont souvent nécessaires pour
déterminer le pas de temps idéal. La prudence I’est aussi; il ne faut pas espérer un
résultat trop rapidement car il en va de la qualit¢ de la simulation. Quelques
chevauchements excessifs peuvent créer une réaction en chaine. Il n’est pas rare de voir

une sédimentation exploser lorsque la vitesse maximale est plus élevée que prévue et
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que le pas de temps n’a pas été ajusté en conséquence. A I’inverse, si le pas de temps est

beaucoup trop petit, les temps de simulations seront inutilement trop grands.

En résumé, il suffit de boucler autant de fois que nécessaire sur les trois étapes
présentées précédemment. Les particules se déplaceront en réaction aux forces externes
et de contact jusqu’au moment ou on atteint le temps réel de simulation voulu.
L’analyse de I’écoulement granulaire peut avoir lieu en post-traitement en combinant les

résultats récupérés a intervalles réguliers.

2.3  Extension du modéle et applications

Comme nous I’avons dit précédemment, les modeles sont nombreux et different
par leur fagon de gérer les contacts et le frottement. De plus, certains modeles plus
complexes integrent des forces capillaires ou de cohésion de type van der Waals.
Dominantes en présence d’humidité ou en présence de particules tres fines, ces forces de
cohésion sont la cause de la création d’agglomérats. L’étude sur la formation et la
destruction de ces amas particulaires devient cruciale, par exemple pour I’industrie

pharmaceutique.

A la limite de la dynamique moléculaire, d’autres s’intéressent a I’étude des
fissures d’amas granuleux (Owen, 2001). S’inspirant de cette technique, il est également
apparu depuis une dizaine d’années des modeles permettant I’écoulement de structures
de formes diverses composées de particules circulaires. Ces techniques permettent de
simuler de tels écoulements sans avoir a supporter le colit de la détection de contacts
pour des formes quelconques. Par exemple, une étude de la sédimentation de batonnets

(Figure 2-3) a été réalisée par Gallas et Sokolowski (1993) a I’aide de la DEM.
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Deux approches permettent de construire ces formes non-sphériques et gérer
leurs liens. La premiere les représente a l'aide d’un ensemble de spheéres qui se
chevauchent (Pelessone, 2003). Dans la méme optique, Favier (1999) a créé des objets
elliptiques a surface lisse en combinant des dizaines de spheres. Son modele de macro-
particules permet entre autres de générer des tores (Figure 2-4). La deuxiéme approche
est basée sur I'utilisation de forces d’attraction et de répulsion et considérent que les
spheéres composant une macro-particule sont en contact et sans chevauchement. Plus
simple a implanter, elle nécessite moins de particules élémentaires et la détection des

contacts a lieu sans avoir a apporter de changements aux algorithmes (Ferrez, 2001).

Grain composé avec centres de Grain composé avec centres de
masse colinéaires masse coplanaires

0D @y

Figure 2-3 Exemple d'objets non sphériques proposés par Gallas et Sokolowski (1993)

a) b) c)

Figure 2-4 Macro particules en 3D sans chevauchement (a) Ferrez (2001) et avec chevauchement
(b et c) Favier (1999)
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Le choix d’une méthode DEM dépend du type de simulation. De nombreux
parameétres doivent aussi €tre ajustés pour obtenir le comportement souhaité. Une étape
de validation et de comparaison avec des résultats expérimentaux est nécessaire avant de

pouvoir appliquer le méme modele a de nouveaux problemes.

2.4 Le calcul paralléle de haute performance

Par sa nature itérative, la méthode des éléments discrets est tres dispendieuse. Et
comme la plupart des simulations numériques, elle demande les meilleurs systémes
informatiques pour étre résolue dans des temps raisonnables. A 1’époque ou les
ordinateurs personnels en étaient encore a leurs premiers balbutiements, seulement les
grands centres de recherches pouvaient se procurer des ordinateurs massivement
paralleles (MPP). Ces derniers combinaient des centaines de processeurs dignes des
meilleures stations de travail de I’époque. Dans la catégorie des superordinateurs, on
retrouve aussi l’architecture a mémoire partagée (SMP) comprenant plusieurs
processeurs. Dans ce type de systeme, les temps d’acces pour modifier ou lire une zone
mémoire sont les mémes pour tous les processeurs. Ces architectures €taient toutefois
colteuses et vers 1994, on a assisté a la naissance d’une nouvelle classe de
superordinateur: les grappes de type Beowulf. Ces grappes de calcul composées de
processeurs indépendants reliées par un réseau tentent d’atteindre le niveau de
performances des grands systemes mais a une fraction du prix. Basés principalement sur
le systéme d’exploitation Linux, ce type de systeéme dispose aujourd’hui d’outils qui en
permettent la gestion simplifiée. Grace a la montée fulgurante en puissance des PC, cette
architecture a mémoire distribuée est devenue trés compétitive et gagne constamment en

popularité et en efficacité.

Aujourd’hui, 1l existe donc deux grandes familles d’ordinateurs qui sont offertes

aux groupes de recherche ayant des applications nécessitant le calcul haute performance.
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Pour les moins démunis, il y a les systtmes a mémoire partagée dont le colit peut
attetndre quelques millions de dollars. A T'opposé, on retrouve les grappes de calcul
Beowulf composées de centaines de noeuds propulsés par des processeurs puissants et

bon marché.

Si on exclut les processeurs vectoriels, les processeurs des superordinateurs
offrent une puissance de calcul comparable, qu’ils soient de type RISC ou CISC.
Cependant chaque architecture possede ses avantages et inconvénients. Ils se
démarquent principalement au niveau des temps d’acces aux données. Les systtmes a
mémoire distribuée sont trés abordables mais la communication inter-processus doit
passer par le réseau. Afin de limiter le ralentissement dii au transfert et a la
synchronisation, des supports plus performants ont été€ développés, Myrinet par exemple.
Les architectures SMP n’ont pas ce probleme, la mémoire étant partagée et accessible
par tous les processeurs. Le nombre de processeurs est toutefois limité. Pour cette raison,
les systemes a acces non uniforme (NUMA) sont devenus populaires car ils possédent
des temps d’acces moyens moins rapides que les systtmes SMP mais trés acceptables.
Cette architecture offre une meilleure évolutivité du nombre de processeurs et un prix
beaucoup moins €levé. Finalement, les ordinateurs & mémoire partagée (SMP ou
NUMA) sont plus simples a gérer et a utiliser que les grappes Beowulf mais le défi
demeure de les exploiter convenablement pour en tirer tout leur potentiel (et rentabiliser

I’investissement).

Les applications nécessitant la puissance de ces grappes de calcul sont
nombreuses. On en retrouve dans des domaines classiques tels la mécanique des fluides
numériques mais aussi pour de nouveaux domaines en expansion, par exemple le génie
génétique. On peut tout simplement se servir de chaque noeud individuellement et
exécuter plusieurs simulations indépendantes (Monte-Carlo). Les grappes de calcul
deviennent populaires pour agir en tant que serveurs en « Haute Disponibilité » pour les
systetmes téléphoniques par exemple. En fait, les nombreuses unités de traitement

peuvent recevoir des milliers de requétes simultanément et offrir un service rapide a



16

moindre colit. Cependant, les grappes Beowulf sont destinées principalement au calcul

de haute performance faisant intervenir des algorithmes paralleles.

On peut définir la puissance totale d’'une grappe en additionnant les statistiques
individuelles de chaque processeur. En pratique, il est toutefois difficile d’atteindre ce
niveau de performance sauf pour quelques applications dites parallelement
embarrassantes (embarassingly parallel, en anglais). Il existe donc des outils et des bancs
d’essai qui permettent d’évaluer la puissance réelle et exploitable des ordinateurs

paralleles. (Linpack par exemple)

2.5 Paradigmes de programmation

Il existe plusieurs types de parallélisme opérant a différents niveaux et dépendant
de I’architecture matérielle. Lorsqu’une grappe est composée de nceuds distincts ayant
chacun leur systeme d’exploitation, il doit y avoir plusieurs programmes s’affairant a la
méme tiche simultanément pour pouvoir parler d’exécution parallele. Deux familles
distinctes caractérisent les programmes paralleles, soit SPMD (Single Program Multiple
Data) et MPMD (Multiple Program Multiple Data). L’approche MPMD Ila plus connue
est le maitre-esclave ou client-serveur. Deux programmes distincts ou plus doivent étre
congus. Généralement, les deux entité€s différentes sont appelées a communiquer
ensemble; les esclaves, par exemple, ont rarement la possibilité d’échanger directement
entre eux. Ce type d’application est souvent parallelement embarrassant, c’est-a-dire que
les données sont faciles a distribuer et les dépendances entre les unités de traitement sont
minimales. Apres la distribution des données, les calculs se font en paralléle pendant que
le maitre attend une réponse d’un esclave. Lorsque ce dernier devient disponible pour le

calcul, une nouvelle tiche peut lui étre attribuée par le maitre.

L’autre paradigme, SPMD, permet la conception d’un programme parallele basé

sur un seul code source. A part le numéro unique qui sert a les différencier a I’exécution,
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tous les processus sont égaux et exécutent les mémes instructions. En s’identifiant, le
processus peut définir son domaine de travail unique, donc ses données de départ.
Normalement, I’interdépendance entre les données voisines amene un lot de problemes

et la communication entre voisins devient nécessaire.

Par la nature discrete et la localité géométrique de ses calculs, nous verrons que
la méthode des €léments discrets se préte bien a la parallélisation SPMD. Cependant,
certaines opérations telles la récupération des données sont naturelles pour I’architecture
maitre-esclave (MPMD). Heureusement, il est toujours possible d’imiter un programme
MPMD a P’intérieur d’un programme SPMD en créant des sections distinctes (Gropp,

1999).

2.6 Les communications inter processus

Pour permettre la communication entre des processus s’exécutant sur des
ordinateurs indépendants, plusieurs solutions existent. Dans le cas d’une grappe de
calcul, les nceuds sont reliés grace a des cartes réseau et un aiguilleur. Exploiter
directement le protocole TCP et/ou I’utilisation de « sockets » est possible, mais la
gestion des échanges entre plusieurs parties rendrait la programmation assez complexe.
L’utilisation d’une bibliotheque de plus haut niveau s’impose. Avec I’émergence des
ordinateurs paralleles, plusieurs produits ont vu le jour au début des années 1990. Il
s’agissait en fait de bibliotheques développées principalement par les constructeurs et
donc compatibles uniquement avec leur architecture matérielle. En 1993, PVM (Geist et
al., 1994) en a séduit plus d’un. Portable et efficace pour des communications point a
point, il est devenu largement utilisé pour les applications scientifiques paralieles sur des
réseaux de stations de travail. Par la suite, un ensemble de membres influents de
I’industrie a proposé 1’élaboration d’un nouveau standard. En 1995, les spécifications
MPI-1 sont devenues officielles. Particularité de MPI, il ne s’agit pas d’une implantation

comme PVM mais bien d’un ensemble de fonctions ayant un role défini et une syntaxe
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précise. Plusieurs implantations du standard ont vu le jour dont les deux principales sont
du domaine public: Mpich (www-unix.mcs.anl.gov/mpi/mpich/) et LAM (www.lam-
mpi.org). D’autres compagnies ont développé des versions commerciales telle celle
d’IBM qui est disponible sur le Réseau Etoile de I’Ecole Polytechnique. Ces versions
payantes peuvent offrir des caractéristiques uniques pour le déverminage et/ou de
meilleures performances pour certaines architectures. MPI est plus qu’une simple
standardisation des opérations de base en calcul parallele. De nombreuses fonctions
permettant la communication collective (broadcast) ont ét€ ajoutées ainsi que diverses
fonctions utilitaires. En 1997, la norme MPI-2 a permis de définir d’autres extensions
reliées aux fichiers partagés et a la mémoire partagée via MPIL. Cependant, ces
fonctionnalités ne sont pas toutes officiellement supportées par les implantations MPIL
Donc, un programme basé sur ces nouvelles extensions n’est pas nécessairement

portable.

2.7  Parallélisation de méthodes numériques

Pour résoudre un probléme important, plusieurs algorithmes adoptent I’approche
diviser pour régner. Par exemple, pour trier, il est souvent plus rapide d’exécuter une
opération sur des plus petits groupes de donnée et ensuite recombiner tous ces sous-
ensembles de fagon appropriée. Avec les grappes de calcul, il est naturel d’effectuer une
telle séparation et de distribuer le travail sur les unités de traitement disponibles. Pour la
méthode des éléments discrets, les données sont les particules et les calculs sont la
détection et la résolution des collisions. La dynamique moléculaire (Molecular
Dynamics, MD) ayant précéd€ la DEM, nous avons remarqué un décalage au niveau de
la parution d’articles sur la parallélisation des deux méthodes. En fait, le calcul parallele
est essentiel en MD parce que le nombre d’atomes est trés €levé, encore plus que dans le
cas d’écoulements granulaires. La taille des simulations augmentant plus rapidement que

la puissance des ordinateurs, une approche passant par la décomposition du travail est
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vite devenue la seule solution viable. Comme le précise Plimpton (1995), il existe trois
types de division du travail qui peuvent &étre appliqués a la dynamique moléculaire et

donc indirectement a la DEM :

- Distribution des particules;
- Distribution du calcul des forces;

- Décomposition spatiale du domaine.

2.71 Distribution des particules

Avec ce paradigme, I’ensemble des processeurs (P) a acces a ’ensemble des
particules (N) de la simulation. Indépendamment de leur position, chaque processeur
choisit arbitrairement un sous-ensemble d’objets dont il aura la responsabilité. Le défi
principal est de recombiner I'information pour qu’elle soit disponible lors de la
prochaine itération pour tous les processeurs. La quantité de données a échanger est tres
grande. Cette technique est applicable en MD parce que les forces ont un rayon d’action
infini. Une implantation SPMD est réalisable sans trop de modifications a la version
séquentielle. 11 suffit de concevoir un mécanisme de communication collective (en

O(logpN)) et de remplacer les boucles allant de / a N par des boucles allant de / a N/P.
2.7.2 Distribution du calcul des forces

La procédure ressemble beaucoup a la distribution des particules; elle est
toutefois contrainte a lutilisation d’un nombre carré de processeurs. Inspirée
d’algorithmes paralleles pour le calcul matriciel et appliquée pour la premiere fois par
Plimpton (1995) a la dynamique moléculaire, la séparation de la matrice des forces de

dimensions (NxN) se fait en blocs au lieu de se faire en rangée. La complexité du patron
de communication n’est plus de I’ordre linéaire mais réduit aO(N / JP ). Il en résulte un

gain non négligeable puisque, grace a la réduction de la taille des messages, on sauve
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beaucoup sur les communications qui sont le facteur limitant lors d’une parallélisation

par distribution de données.
2.7.3 Décomposition spatiale du domaine

Les deux méthodes précédentes font que chaque processeur a une vue de tout le
domaine de simulation, ce qui implique beaucoup de communications pour le réseau
d’une grappe de type Beowulf. Pour contourner ce probleme, la dynamique moléculaire
a recours a une hypothese réductrice : une approximation limitant le rayon d’action des
forces. Procéder ainsi permet de distribuer les particules selon une décomposition
géométrique du domaine de simulation (Figure 2-5). On génere de petits sous-domaines

qui regroupent des particules spatialement rapprochées.

Figure 2-5 Décomposition initiale de domaines sur 5 processeurs

Pour calculer correctement les forces appliquées aux corps en périphérie, des
communications avec les sous-domaines voisins directs doivent €tre effectuées avant le
début des calculs. Dans le pire des cas, soit en 3 dimensions, la quantité¢ de données

recues par chacun des processus est équivalente a (Clark, 1994) :

Total des données = (8k* + 12 k? + 6k) N/P Equation 2.9

ou k est le rayon d’action des forces (en unité de sous-domaines), N est le nombre de

particules et P le nombre de processeurs. Pour la DEM, k=1 est suffisant, on peut donc
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simplifier cette expression et la généraliser a toutes les décompositions

multidimensionnelles :
Total des données = ((2k + [)Nombrededimensions _ 1y % N/p Equation 2.10
Total des données = (3NomPrededimensions _ 1y 50 N/P Equation 2.11

Ici, on considére autant les voisins directs que diagonaux et les valeurs possibles
sont évidemment 2, 8 et 26. On remarque que plus P est grand, moins la quantité de
données a transférer par processeur est grande. Pour cette raison, il est tentant de
décomposer en 3 dimensions et mettre a contribution le plus de processeurs possibles. Il
faut étre toutefois trés prudent car la quantité totale de messages et de données
augmente, ce qui finit par réduire les performances. De plus, comme le transfert de
données se fait dans les deux sens, une quantité de données de I’ordre de 52 N/P est
échangée. Cependant il s’agit de la valeur maximale, atteinte seulement lorsque les
processus communiquent leur sous-domaine en entier aux voisins. Heureusement avec la
DEM, c’est rarement le cas, car les forces sont a court rayon d’action et seulement une
partie des données du sous-domaine nécessite d’étre transférée. Donc, mis a part cette
communication, les processus sont presque indépendants et peuvent exécuter les
opérations habituelles sur les particules de leur sous-domaine en parallele. Pour la

décomposition spatiale, le paradigme SPMD est préconisé car seules les données

différent entre les processus.

2.8 Parallélisation de la méthode des éléments discrets

La méthode des €éléments discrets possede des caractéristiques qui facilitent la
parallélisation a 1’aide de la décomposition de domaine. Le rayon d’action étant la

collision (donc nul), la quantité de données a échanger est réduite au minimum. Ces

données sont situées a l’intérieur d’une bande appelée «halo » partagée par des
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processeurs voisins. Ainsi, pour une décomposition 1D (Figure 2-6), deux vecteurs halos
sont crées pour chaque sous-domaine. La réception et I’envoi de données se font en
alternance et les nouvelles particules recues sont ajoutées a la fin de la liste de particules
locales (Henty,2000). Donc, a part les routines de communication, aucun changement
majeur a la version séquentielle est requis, un atout non négligeable. Les calculs se font
simultanément sur chaque processeur. Il n’y a qu’un léger supplément de travail
attribuable aux collisions de particules frontieéres de chaque halo qui sont calculées par

les deux processus.

VUE LOCALE POUR UN PROCESSEUR

(SOUS-DOMAINE J)
M.

ﬁIf.(iﬁ[l]]Iqum
Il

ES

wip’

Ty

Particules du halo recues de la gauche (sous-domaine J-1)

Particules du halo recues de la droite (sous-domaine J+1)

Particules du sous-domaine J a envoyer a gauche

Particules du sous-domaine J a envoyer a droite

Particules uniques au sous-domaine J

Figure 2-6 Exemple de halos
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Les accélérations obtenues par différents groupes de recherche démontrent que la
décomposition de domaine est la meilleure technique pour paralléliser sur des machines
a mémoire distribuée. Grace a un CRAY T3D et un pourcentage tres faible de code non
parallélisable, une équipe suisse a obtenu une accélération de 78 avec 128 processeurs
(Ferrez, 1996). Les accélérations sur les grappes de calculs Beowulf sont plus modestes
et parfois linéaires jusqu’a 16 processeurs. L’efficacité tombe sous la barre des 50 %
lorsque qu’un déséquilibre dans les tAches désynchronise les processus et/ou lorsque le
nombre de particules devient insuffisant (ratio temps-calcul/temps-communication trop

faible).

2.9 L’équilibrage dynamique de charge

Sur une chaine de montage dans une usine ol le travail est distribué, il est
important que la charge de travail soit bien équilibrée pour éviter les accumulations et
les goulots d’étranglement. La synchronisation et I’équilibrage des tiches permettront
d’optimiser le travail de chaque ouvrier et donc d’obtenir une meilleure production
totale. La parallélisation d’applications a I’aide de plusieurs ordinateurs bénéficie
directement de I’équilibrage de charge. L’analogie avec la chaine de montage n’est pas
applicable a la DEM parce que la méthode est itérative et que la parallélisation par
décomposition fonctionnelle est impossible. La parallélisation de la méthode des
éléments discrets étant trés sensible au déséquilibre, il est donc normal de tenter de

minimiser son impact.

Pour plusieurs méthodes numériques, 1’équilibrage statique effectué au début est
suffisant parce que les charges restent les mémes pour la durée de la simulation. Alors
qu’avec la méthode des éléments finis, on peut utiliser de librairies automatiques tels
Metis (www-users.cs.umn.edu/~karypis/metis) qui se charge de découper équitablement

le maillage, les méthodes particulaires se débrouille trés bien avec une décomposition
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cartésienne du domaine. Cependant, rien ne garantit que ces premicres estimations
seront valides pour toute la durde de la simulation. L’implantation du mécanisme
d’équilibrage dynamique des charges s’impose pour tenir compte des changements de

sous-domaines des particules en mouvement.

D’apres Hendrickson (2000), un bon systeme de rééquilibrage des charges pour

une application scientifique est caractérisé par :

- un équilibre efficace;

- de courts temps de communication pour redistribuer les charges;

- une exécution rapide en parallele;

- une utilisation de la mémoire modeste;

- une petite variation devrait impliquer seulement un petit changement dans la
décomposition;

- une détermination facile du patron de communication pour définir les voisins.
Dans ce cas, les décompositions géométriques simples ont un avantage versus

les plus complexes.

Une implantation maitre-esclave semble séduisante par sa simplicit€é et son
efficacité a équilibrer les charges. 1l est fort probable que cette approche combinée aux
sous-domaines permettrait de distribuer le travail et de maintenir une charge maximale
d’utilisation. Chaque fois qu’un esclave termine ses calculs pour un sous-domaine, il
peut en demander un nouveau au serveur. De plus, il est inutile d’attendre la complétion
d’une itération sur I’ensemble du domaine. Si des sous-domaines voisins ont tous
complété I’itération N, le maitre peut commencer a redistribuer ces sous-domaines pour
le calcul de I’itération N+1. Le probiéme de synchronisation est éliminé a condition que
le nombre d’esclaves soit inférieur au nombre de sous-domaines. Une vague orientée
comme la fleche a la figure 2.7 balayera le domaine et les esclaves travailleront

constamment.
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Progression de la vague pour une décomposition de domaine
combinée a Papproche distribuée maitre-esclave

o | e
processeur
présentement
occupé

Itération N calculée en se basant sur I’itération N-1

Sous-domaine en attente (Itération N terminée)

o
/% Itération N+1 calculée en se basant sur ’itération N

Sous-domaine en attente (Itération N+1 terminée)

Figure 2-7 Décomposition de domaine couplée a un paradigme maitre-esclave

Malheureusement, pour des raisons similaires a celles exprimées précédemment
a propos de la distribution des particules en dynamique moléculaire, cette approche
souffre d’un inconvénient majeur : I’énorme cofit des communications. Pendant que le
maitre regoit toutes les informations des particules d’un sous-domaine, un autre esclave
peut essayer de communiquer et devient sous-utilis€é pendant 1’attente. Un systéme a
plusieurs maitres repousserait temporairement le nombre maximum d’esclaves sans
toutefois régler le probleme complétement. De plus, le maitre doit avoir acces a
beaucoup de mémoire : non seulement il doit contenir I’ensemble des particules, il doit
aussi conserver au moins 2 itérations de chaque sous-domaine. Enfin, les algorithmes de
recherche des voisins doivent étre trés économiques car ces opérations (initialisation +

recherche) doivent étre faites a chaque réception contrairement a I’approche SPMD qui
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assigne un sous-domaine a un processus et qui suppose que la recherche restera valide

pour quelques itérations.

En résumé, pour des applications telles les simulations Monte-Carlo ou les
lancers de rayons en infographie, il est souvent pratique d’utiliser le paradigme maitre-
esclave pour sa simplicité a équilibrer la charge mais pour plusieurs autres applications,
il existe des méthodes qui nécessitent moins de communications et qui s’adaptent mieux

au paradigme SPMD.

Pour remédier au probleme d’équilibrage de tdche dynamique, Kohring (1995)
décrit une méthode plus appropriée a la parallélisation de la DEM: la technique
du « diffusion scheme ». Pour un systtme comprenant P processeurs, ou Wi(7T) est la
charge sur le processeur i, il suffit d’ajuster la charge au temps 7+/ de la facon

suivante :

WT+H)=W(T)+ Z W, (1)-W.(T))/2 Equation 2.12
VjeN (i)

ol N(i) est 'ensemble des domaines voisins du processeur i. Il est reconnu que cet
algorithme converge vers une solution équilibrée, mais tres lentement. Pour modifier la
charge, on déplace la frontiere des sous-domaines impliqués. Un certain nombre de
particules doivent étre transférées, ce qui implique un transfert de données pour chaque
déséquilibre détecté. Cleary et Sawley (1999) ont proposé une approche qui permet
d’économiser sur le colit de ces communications. Avec cette approche, le processeur

surchargé legue les particules du halo déja envoyées a son voisin.

Généralement, la décomposition initiale est raisonnable. Le but du systeme de
rééquilibrage est alors de trouver les fluctuations dans les temps de calcul et de modifier
les frontieres. Dans ce cas, 1’algorithme de rééquilibrage arrive a suivre ces mouvements
a condition d’étre appelé a un rythme plus élevé que les fluctuations elles-mémes. Une

problématique classique est de définir la fréquence idéale de vérification pour détecter le
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déséquilibre sans imposer trop de communications. Aucune formule magique ne
s’adapte 2 toutes les situations, ainsi une bonne connaissance du phénoméne a simuler
est souhaitable. Heureusement, comme les pas de temps sont généralement trés petits, il
s’écoule plusieurs itérations avant d’observer un déséquilibre. Cela permet donc de
considérer de faibles fréquences de rééquilibrage et directement réduire les cofits de

vérification.

2.10 La parallélisation et I'utilisation de grappes SMP

Avec I’aveénement des grappes de calcul Beowulf qui préconisent le calcul haute
performance a moindre colt, un autre phénomeéne s’est développé ces dernieres
années, soit celui des grappes composées de nceuds SMP. En effet, il est maintenant
commun de rencontrer des serveurs avec 2 ou 4 processeurs Xeon. Ces grappes de calcul
offrent la possibilité de développer du code parali¢le en utilisant la mémoire partagée
d’un noeud et/ou I’approche distribuée avec ses échanges explicites sur le réseau. Dans
le contexte de la dynamique particulaire, la combinaison des deux paradigmes peut
devenir avantageuse. En effet Smith (2001) dénombre quelques caractéristiques
intéressantes de la programmation hybride et certaines situations ot il est avantageux de

combiner les deux modes :

1. programmes a évolutivité faible avec MPI;
Quelques applications pour diverses raisons ont de la difficulté a bien utiliser les
bibliotheques de communications.

2. Probleme d’équilibrage de charge;
Les codes d’éléments discrets peuvent souffrir de la mauvaise répartition des
données alors qu’un programme en mémoire partagée équilibre automatiquement

la charge entre les processus légers.
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3. Programmes avec des données répliquées;
Une application typique est la dynamique moléculaire ou tous les corps sont
nécessaires pour le calcul des forces appliquées sur ceux-ci. Comme il est
mentionné plus haut, les communications globales sont trés contraignantes. De
plus, l'utilisation d’un ordinateur 2 mémoire distribuée implique beaucoup de
dédoublements de données, alors que les fils d’exécution d’un ordinateur a
mémoire partagée ont acces a la méme mémoire, ce qui permettra de simuler des
problémes de taille plus importantes tout en minimisant les communications.

4. Facilité d’implantation;
Les applications en mémoire partagée sont souvent plus simples a concevoir que
celles en mémoire distribuée. Une application basée uniquement sur MPI avec
une bonne évolutivité peut €tre plus complexe a concevoir qu’un code hybride de
performance similaire.

5. Toutes les situations ou la programmation en mémoire partagée est plus efficace.
Une version hybride d’un code d’éléments discrets nécessite la programmation
en mémoire partagée. La programmation parallele sur ces architectures est

relativement plus puissante puisque certains échanges se font par le bus mémoire

de I’ordinateur.

2.11 La méthode des eléments discrets et la programmation
en meémoire partagéee

Les avantages d’exploiter les capacités d’un ordinateur multiprocesseur pour un
code d’éléments discrets sont nombreux. Chaque processus a acces a toute la mémoire,
il n’y a donc pas de dédoublement di a I’utilisation des halos et aucune communication
réseau n’est nécessaire. La granularit€ de la parallélisation par processus légers est
beaucoup plus fine. Au lieu de distribuer des particules, on parallélise les sections ou les
boucles du code et 1’équilibrage de la charge se fait automatiquement a ce niveau. Donc,

Iattente pour le processeur surchargé n’est plus une problématique importante. 11 doit
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bien slr avoir une synchronisation des processus légers mais, il en va de méme de

I’approche de programmation en mémoire répartie.

Sur une machine multiprocesseur, la parallélisation est possible & condition que
la communication entre deux processus et la création de zones de mémoire partagée
soient permises. Au niveau le plus bas, on retrouve I’utilisation des sémaphores UNIX
fournies par le systtme d’exploitation. Encore une fois, 1’utilisation d’un code de haut
niveau est souhaitable et les pthreads (POSIX) permettent d’y arriver. D’autres
bibliotheques publiques ou commerciales facilitent la création de programmes sur
processus légers, mais dans le contexte d’applications scientifiques, ’API la plus
utilisée est OpenMP. Ce standard datant de 1997 est disponible sur les ordinateurs SUN,
SGI, IBM et les ordinateurs SMP de type Intel. OpenMP définit un ensemble de
directives ajoutées sous forme de commentaires avant les sections a paraliéliser. Ensuite,
les options de compilations appropriées permettent au compilateur supportant OpenMP
de retrouver ces balises et d’ainsi créer un programme ayant la possibilité de fonctionner
sur plusieurs fils d’exécution. Les changements au code séquentiel restent minimes et
par conséquent I’implantation de la parallélisation est souvent plus facile que la
parallélisation en mémoire répartie. Il faut tout de méme choisir de facon judicieuse les
sections a paralléliser car les opérations de création et de destruction des processus

1égers sont relativement onéreuses.

En regardant la littérature, on remarque que la plupart des premiéres
implantations paralleles de la méthode des éléments discrets utilisent la décomposition
de domaine parce qu’elle est naturelle et posséde une bonne évolutivité (Henty, 2000;
Ferrez, 2001). En réalité, on retrouve trés peu de chercheurs qui exploitent la mémoire
partagée de leurs stations de calcul multiprocesseurs. Plusieurs raisons pourraient
expliquer cette situation. Le nombre de processeurs reste assez limité (<<64), le prix est
exorbitant et les architectures a acceés non uniforme (NUMA) ne sont pas assez

performantes pour les calculs requis par la DEM. On suppose que les équipes de
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recherche préferent donc utiliser ces systeémes dispendieux pour lancer plusieurs

simulations simultanément plut6t que de faire une simulation en mode parallele.

Le constat général pour les implantations en mémoire partagée de la DEM est
que, peu importe I’architecture, 1’efficacité relative diminue trop rapidement avec 1’ajout
de CPU supplémentaires (Labarta, 2002). Apres plusieurs tentatives, Henty (2000), qui a
trait€ a fond le probleme, n’a pas réussi a tirer suffisamment profit du potentiel des
grappes de calcul SMP pour suggérer son utilisation en mémoire partagée et en mode
hybride. Le probléme provient du fait que certaines opérations doivent accéder de fagon
concourante a la mémoire. Des barrieres sont alors nécessaires pour garder I’intégrité
des données. Ces verrous sont de plus en plus problématiques a mesure que le nombre
de processus augmente. Ce goulot d’étranglement au niveau des verrous cause
I’effondrement des performances. Henty a conclu qu’il valait mieux utiliser les grappes
de calcul composées de nceuds SMP avec la décomposition de domaine oul les processus
communiquent via une interface comme MPI. En pratique, I’approche hybride pourrait
étre avantageuse dans les cas ou un réseau peu performant serait la principale cause de
dégradation. Cette technique permettrait alors de diminuer la quantité de messages 2

transmettre entre les nceuds SMP.

2.12 Résumé

Les articles concernant I’optimisation de la méthode des éléments discrets sont
beaucoup moins nombreux que les rapports expérimentaux qui utilisent cette méthode
numérique. Méme si la DEM est intense en calculs, la majorité des articles décrivent
rapidement les algorithmes utilisés mais ne discutent pas de leur implantation. Parfois,
on mentionne la parallélisation. Le peu de données a cet €gard provient du fait que
souvent c’est le résultat qui importe le plus et non le temps écoulé pour y arriver.

Pourtant, la performance de ces algorithmes est cruciale puisque des simulations de plus
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en plus importantes devront étre effectuées. Aujourd’hui, la DEM permet la simulation
de 10* particules, mais les besoins sont grandissants et les applications nécessiteront de
plus en plus de ressources. Pour I’instant, la parallélisation tente de réduire les temps de
calcul mais, a mesure que les simulations se complexifieront, elle sera encore plus

attrayante voire inévitable.
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3 Obijectifs spécifiques et organisation du mémoire

3.1 Objectifs du mémoire

L’objectif général de ce travail est de concevoir une méthode d’éléments discrets
parallele et performante pour la simulation des écoulements granulaires. Plus
spécifiquement, cette parallélisation se fera sur un logiciel existant, soit le code
séquentiel Powder3D développé a ’'U.R.P.E.I. depuis 1 an. Elle sera basée sur la
décomposition de domaine et implantée sur une grappe de calcul & mémoire distribuée

dont les caractéristiques sont les suivantes :

e Magnum : 12 serveurs biprocesseurs x330 d’IBM (Intel P3-866Mhz)
o 512 Mb de RAM par noeud
o Disques durs SCSI
o Ethernet 100Mbits/s
o Aiguilleur CISCO catalyst 6500
o Systeme d’exploitation : RedHat 7.3
o Mpich version 1.2.3

o Compilateur Intel Fortran version 7.1

Puisque chaque nceud de cette grappe comporte deux processeurs en mémoire
partagée, nous nous proposons de mettre au point un code hybride qui met a profit les
mémoires partagée et distribuée. Enfin nous allons nous appliquer a optimiser la version
séquentielle de Powder3D avant de procéder a sa réingénerie logicielle de
parallélisation. Pour plus de détails concernant la version séquentielle de Powder3D

ainsi que des précisions quant au modele physique, le lecteur pourra se référer au rapport

de Gange (2002) et a Zhou et al. (2001).
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3.2  Organisation de la suite de ce mémoire

Nous présenterons au chapitre 4 différents algorithmes de détection de contacts
impliquant les particules entre elles ainsi que les particules avec les surfaces solides du
domaine de caicul. Le cinquieme chapitre, le plus important, fera la description de la
méthode de décomposition de domaine. Le chapitre 6 discutera de la problématique du
déséquilibre de la charge et de I’équilibrage de charge dynamique. Ensuite, nous allons
explorer les possibilités de 1’approche hybride. Le paradigme de programmation en
mémoire partagée sera en fait testé sur différentes plateformes disponibles a

P'URPE.L:

e Polaris : superordinateur P690 d’IBM a 16 processeurs (1.1 Ghz)
o 32 Gbde RAM (Mémoire partagée)
o Systeme d’exploitation : AIX 5.1
o Mpich version 1.2.5
e Réseau Etoile : serveurs quadriprocesseurs P630 d’IBM (1 Ghz)
o 8 Gb de RAM par noeud
o Ethernet 100Mbits/s
o Aiguilleur CISCO catalyst 6500
o Systeme d’exploitation : AIX 5.1
e Hamsun: 8 serveurs quadriprocesseurs (Xeon 700Mhz)
o 1 Gbde RAM par neeud
o Ethernet 100Mbits/s
o Systéme d’exploitation : Adelie Linux (kernel 2.4.20)

o Mpich version 1.2.5

Le chapitre 7 traitera plus particulierement de cette implantation sur le nouveau
p690 d’IBM. Avant de conclure, nous discuterons des nombreuses améliorations

possibles et des corrections a apporter a Powder3D.
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3.3  Evaluation des performances

Dans ce travail, nos tests consistent généralement en une sédimentation d’un bloc
de particules pendant quelques centaines d’itérations. Dés la premiére itération, nous
imposons que toutes les particules demeurent en contacts avec leurs 6 voisines. Cette
contrainte est due a la nécessité d’avoir des temps de résolution en mode séquentiel
raisonnablement longs pour que la version parallele soit efficace. Puisque la disposition
des particules est ordonnée, le nombre de contacts est constant dans chaque sous-
domaine et, par conséquent, les charges de travail sont équilibrées. Comme on peut le
remarquer a la figure 3-1, des domaines de dimensions quelconques sont facilement

générés et permettent d’évaluer les performances qui proviennent de nos optimisations.

Figure 3-1 Exemple de simulations typiques pour évaluer les performances
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4 La détection des contacts

Dans toutes les simulations physiques particulaires, on recherche les interactions
entre les différents corps en mouvement. En général, pour les écoulements granulaires,
la principale force entre deux particules provient de la force de collision. La détection de
ces contacts est une étape importante du processus itératif de la DEM. Non seulement
parce que c’est la premi€re et qu’elle est donc nécessaire aux €tapes suivantes, mais
parce qu’elle peut devenir la plus coliteuse en temps CPU. En effet, une recherche
parmi toutes les paires possibles deviendra fastidieuse a mesure que le nombre de
particules augmentera puisque la complexité d’une telle vérification est en O(N*) ot N
est le nombre de particules. Pour accélérer le traitement, plusieurs méthodes sont
disponibles. Nous décrirons et comparerons brievement les principales tout en

expliquant notre choix pour I'implantation dans Powder3D.

4.1 Détection de contacts entre les particules sphériques

Pour I’école des corps déformables, dans le cas de particules sphériques, il y
contact lorsque la distance entre les centres de masse est plus petite que la somme des

rayons des particules ciblées.

\/(xl —x2) +(y1-y2) +(z1-22)° < R, +R, Equation 4.1

Toutes les méthodes de détection de contacts présentées plus bas ont un but,
définir un voisinage autour de chaque particule. En ayant rapidement acces aux objets
les plus proches, on effectue ensuite le test de détection de collision sur un ensemble

limité. Toutes ces méthodes contribuent directement a réduire les temps de simulation



36

puisque le nombre de tests inutiles est réduit. Les techniques décrites seront présentées

en 2D, mais habituellement, leur extension est naturelle en trois dimensions.
4.1.1  Méthode de localisation du quadrillage

La recherche des corps voisins est un défi qui passe par la localisation de chaque
particule. En quadrillant I’espace, on peut assigner a chacune des cases du quadrillage
une référence vers les particules qu’elles contiennent et, par la suite, facilement repérer
celles qui sont voisines (Figure 4-1). Cela permet de réduire grandement les
comparaisons inutiles avec des particules qui se situent au-dela de ces frontiéres. Les
implantations de la méthode du quadrillage se différencient par la taille de la grille et
leurs avantages dépendent des conditions de la simulation. Par exemple, une grille fine,
basée sur le plus petit rayon, impliquera beaucoup de recherches a travers des cases
vides si la concentration est faible et que les particules sont dispersées. On retrouve
I’emploi des méthodes de quadrillage trés souvent en dynamique moléculaire, ou le
rayon maximal est attribué a la largeur des cases de la grille. Pour la méthode des
éléments discrets, il peut y avoir un inconvénient a choisir un quadrillage trop grossier
basé sur le rayon maximal. Lorsqu’il y a un écart élevé entre les rayons moyen et
maximal, les cases contiennent beaucoup de particules et les tests inutiles sont réduits,

mais pas de facon optimale. Enfin, peu importe sa taille, le quadrillage doit &tre

fréquemment reconstruit si la vitesse des particules est élevée.

Recherche autour de la sphere

Cases parcourues

SEis

Spheres sélectionnées

Figure 4-1 Technique du quadrillage régulier statique (grid search)



37

4.1.2 Quadrillage adaptatif et dynamique

Avec une structure plus économique en mémoire, cette méthode dynamique
utilise les arbres quaternaires en 2D pour classer les spheres dans 1’espace. Elle s’ajuste
mieux aux différentes concentrations que I’on peut retrouver dans le domaine. Elle est
implantable en 3 dimensions et s’adapte a la parallélisation (Warren, 1993). Elle
s’applique un peu plus mal aux écoulements granulaires qui sont généralement assez
denses et semble trouver preneur dans d’autres domaines tels que I’astrophysique. Le

plus grand défaut des méthodes dynamiques, c’est qu’elles sont plus complexes a gérer.

4.1.3 Méthode du tri

Les difficultés de la premiere méthode de quadrillage surviennent lors de
simulations en milieu polydispersé ou le rapport des rayons maximum et minimum est
élevé, puisqu’il est alors plus difficile de définir une largeur de grille optimale. Pour
contourner cette problématique, O’connor (1996) a proposé une méthode de localisation
basée sur le tri en fonction de la position spatiale. Une deuxieme version plus récente,
proposée par Williams (2001), se démarque encore plus des méthodes conventionnelles
lorsque le ratio entre le rayon des spheres est important. Elle peut s’interfacer avec la
parallélisation par décomposition de domaine, mais le nombre de tris pourrait dégrader

les performances.
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4.1.4 Méthode de proximité (ou halo)

L’idée générale de cette technique est de maintenir une liste des plus proches
voisins potentiels autour de chaque objet, tout en tentant de réduire sa taille au
minimum. La principale difficulté est de définir la bonne fréquence de rafraichissement
en fonction de la largeur du halo (Figure 4.2). Une fréquence trop faible peut entrainer
des oublis de contacts pendant quelques itérations, donc de [D’instabilité dans la

simulation, alors qu’une largeur de halo inutilement trop grande sera moins performante.

Recherche autour de la sphere

Spheres sélectionnées

(On remarque que la liste est minimale)

Figure 4-2 Méthode de proximité avec halo

4.1.5 Méthode basée sur la triangulation de Delaunay

Une derniere méthode fort intéressante est basée sur la triangulation de
Delaunay. Apres avoir généré le diagramme de Voronoi (arétes reliant tous les corps
voisins entre eux), on s’assure que tous les quadrilateres formés de 4 centres de masses
rapprochés sont convexes et que la diagonale de ce quadrilatere est de longueur
minimum. Le coiit de construction du graphe ayant ces propriétés est élevé, mais le
maintien reste économique. A intervalles réguliers, on le parcourt et on effectue les
changements nécessaires. Les «flips » (Figure 4-3) permettent de conserver les
propriété€s du graphe et d’assurer une détection sans erreur. Cette technique obtient de
tres bons résultats puisqu’elle permet de limiter de facon optimale le nombre de voisins

potentiels. L’implantation en 3D est beaucoup plus contraignante (tétraédres au lieu de
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triangles), mais toujours performante (Ferrez, 2001). De plus, les algorithmes reliés au
parcours du graphe sont aussi parallélisables en mémoire partagée. A part la construction
du graphe qui demande quelques ajustements, la triangulation de Delaunay peut

s’adapter a la décomposition de domaine.

Recherche de collisions basée sur la triangulation de Delaunay

FLIP

a) b)

Figure 4-3 Technique de la triangulation de Delaunay et son opération de maintenance
a) Graphe obtenu grice aux triangulations, le nombre de voisins est réduit au minimum
b) opération de FLIP permettant de maintenir le lien entre les particules les plus proches
(diagonale la plus courte)

4.2 Le choix d’un algorithme de détection de contacts

Le premier argument pour choisir un algorithme devrait €tre la performance,
ensuite sa flexibilité, sa simplicité et sa facilit€ d’implantation dans un code parallele

basé sur la décomposition de domaine.

La premiere technique implantée dans ce travail fut le quadrillage de I’espace
avec une taille de cases d’environ 2,5 fois le rayon moyen. Le rafraichissement de cette
grille se faisait 2 intervalle régulier en fonction de la vitesse des particules. A chaque
itération, la boucle sur les particules parcourait les cases voisines afin d’effectuer les
tests de collision sur les paires retenues. Cette premiére implantation devait en théorie

réduire la complexité de la recherche a un ordre linéaire en fonction du nombre de
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particules. Procéder ainsi permettait d’atteindre cet objectif, mais la détection nécessitait
plus de 85% du temps total. Cette fraction était beaucoup trop importante car c’est le

calcul des forces qui devrait &tre dominant (Henty, 2000).

Pour accélérer la détection, il est souvent proposé d’exploiter le fait qu’un
contact implique toujours deux particules. Ainsi, seulement une des deux particules doit
détecter la collision. On peut alors garder les références aux particules ayant un numéro
d’identification strictement plus grand. Cela permet de simplifier la détection et diviser
de moitié les cofits associés au calcul des forces. Cependant, cette regle n’est plus
applicable dans le cas d’écoulements polydispersés. Pour des raisons pratiques, il est
primordial que ce soit la grosse sphere qui détecte ses voisines plus petites. L’algorithme
doit donc parcourir I’ensemble des cases et se limiter aux spheres ayant un indice plus

élevé et/ou un rayon strictement plus petit.

A la lumiere de premieres évaluations avec des outils de profilage, le choix d’un
nouvel algorithme de détection était souhaitable. La premic¢re méthode retenue fut la
triangulation de Delaunay. Malgré sa complexité apparente, elle réduit efficacement le
nombre de recherches infructueuses. Cependant, le besoin éventuel d’introduire des
forces supplémentaires dans le bilan de forces compliquait 1’implantation des
triangulations. En effet, dans le cas de poudres fines, les forces colloidales (capillaire ou
de Van der Waals) doivent étre prises en compte. Lorsque ces forces a grand rayon
d’action entrent en jeu, la triangulation de Delaunay pour la recherche des collisions
n’est plus adéquate. Elle permet d’identifier seulement les voisins immédiats. Enfin, la
difficulté d’utiliser cette méthode pour la détection de collisions entre des spheres et des
objets solides de type triangulaire (Muller, 1996, Ferrez, 2001) fait que cette méthode ne
correspond pas a nos besoins. Le manque de flexibilité de cette méthode nous aurait
obligé a utiliser deux méthodes de localisation, ce qui aurait nuit a la clarté du code ainsi

qu’a son uniformité.
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Le probleme rencontré avec notre premiere implantation de la méthode de
quadrillage est qu’elle était efficace avec peu d’objets, mais quand ce nombre
augmentait, le nombre de tests effectués sur des particules n’ayant aucune chance
d’entrer en collision devenait trop grand. Sans la conservation en mémoire des numéros
des particules dans le voisinage de chaque particule, cette implantation devait parcourir
I’espace quadrill€ et refaire les mémes tests négatifs continuellement. Dans son étude sur
les algorithmes associés a la dynamique moléculaire, Plimpton (1995) affirme que
combiner les techniques du halo et du quadrillage est tres efficace a condition que les
forces aient un court rayon d’action. Cette technique s’applique donc directement a la

DEM avec ou sans forces de cohésion.

Quadrillage statique liste_voisins (int)

' Cases ciblées par la méthode du
7 ( quadrillage autour de la sphere 5

_O Particules faisant partie du halo

ajoutées au vecteur liste_voisins

Figure 4-4 Description de la technique implantée (quadrilage + liste de proximité)

L’ajout d’une liste pour contenir les paires de voisins potentiels a permis une
accélération de 30%. De plus, cette liste exhaustive de voisins reste bonne pour plusieurs
itérations car elle repose sur un quadrillage qui est valide pendant une période
déterminée. Il n’est donc pas nécessaire de reconstruire la liste a toutes les itérations.
Une autre amélioration consiste a diminuer la taille de la liste de voisins en sélectionnant
les particules vraiment rapprochées afin de limiter les tests et I’espace supplémentaire
requis par la méthode (Figure 4-4). Ce test de proximité est effectué lors de la

construction de la liste des voisins.
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xl-x2) + yl—y2 *+(z1-z2)" <R + R, * facteur) Equation 4.2
1

Le facteur doit étre supérieur a 1 et il influence fortement la fréquence de
rafraichissement des structures. En faisant varier le halo en fonction du rayon de la
sphere j (autour de la sphere i), cette astuce permet de minimiser le nombre de liens
potentiels a stocker dans la structure [liste_voisins (Figure 4-5) dans les cas
polydispersés. Il faut le choisir avec prudence car s’il est trop petit et combiné a une
fréquence de rafraichissement faible, de nombreux contacts pourraient étre alors oubliés
et la simulation ne serait plus valide. Avec une fréquence de rafraichissement assez
élevé (moins de 50 itérations, 1,1 (10% du rayon) est une valeur qui n’a jamais posé de
probléme si la vitesse maximale est raisonnable (plus petite que 5 m/s). Evidemment,
dans le cas de force a rayon d’action plus important, le facteur multiplicatif devra étre

ajusté en conséquence.

Quadrillage Quadrillage + Quadrillage +
seulement Halo statique = 2,1 * Ri Halo variable = Ri + Rj*1,1

@ Particules sélectionnées Q Particules non sélectionnées

Figure 4-5 Comparaison du nombre de contacts potentiels pour des méthodes de détection

Ri : rayon de la particule centrale qui recherche la particule j
Rj : rayon de la particule sélectionnée dans le voisinage

L’algorithme de détection avec quadrillage et halos variables est trés performant.
Le coft relatif de la détection a chuté au point que c’est la résolution du contact qui est

devenue la plus dispendieuse (Tableau 4-2). La construction des listes est négligeable
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(moins de 2% du temps total). Cependant, le tableau 4-2 ne montre pas que la résolution
du contact est une fonction comprenant deux étapes : le calcul des forces précédé du test
de collision. Griace au pire cas (Tableau 4-1), correspondant & une simulation sans
contact, on estime a 30% le colit maximal de la détection. Pour y arriver, il suffit
d’additionner le temps passé dans les routines de détection (contact_detection) et de
résolution (contact_resolution) et une partie de la fonction puissance“. On remarque
aussi que les coflits de détection restent faibles par rapport au calcul du mouvement et de
la position (motion_egns_calc). Un algorithme de détection idéal pourrait donc au mieux
améliorer les temps d’environ 30%. Avec I’implantation de notre nouvel algorithme, des
optimisations supplémentaires deviennent difficiles a réaliser, car les opérations a
effectuer dans la section de résolution dépendent de la complexité du modele. En effet,
le seul moyen pour accélérer la simulation est d’implanter un modele moins complexe.
Mentionnons que la technique de la grille combinée au halo, en plus d’offrir de bien
meilleures performances, reste compatible avec la parallélisation par décomposition de

domaine présentée au chapitre 5.

Tableau 4-1 Profilage de 1'application pour une simulation sans contact
(Sédimentation de particules sur Magnum)

% Time | self seconds calls Name
23.70 116.25 2201 | motion_eqns_calc_
15.25 74.83 2201 | contact_resolution_
14.36 70.44 Pow.A
12.22 59.95 2201 [ memory_clean_
11.77 57.74 2201 | contact_detection_

2.55 12.52 FixFree
2.30 11.29 F90_allocatet
1.84 9.01 ___mcount_internal

Tableau 4-2 Profilage de I’application pour une simulation avec contacts
(Sédimentation de particules sur Magnum)

% Time | self seconds Calis Name
26.02 90.83 269 | contact_resolution_
10.49 36.62 pow.A

i En effet, la fonction instantanée pow.A est comptabilisée de facon indépendante et ce sont les routines de
résolution et de détection qui lui font le plus souvent appel.
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5.43 18.95 FixFree

5.27 18.40 268 | memory_clean_
4.61 16.11 __mceount_internal
4.06 14.16 F90_allocate1

3.99 13.94 269 | old_contact_It_
2.74 9.58 268 | motion_eqns_calc_
2.55 8.92| 224535670 | Cross_product_
1.42 497 269 | contact_detection_

4.3 Détection de collisions pour objets non-sphériques

La détection des collisions optimisée par la définition d’un voisinage est aussi
valide pour une simulation avec des objets polyédriques a condition de la combiner une
technique de détection appropriée comme les volumes englobants. Le volume englobant
est une forme géométrique simple (boite, sphere) qui contient tous les sommets d’une
forme géométrique plus complexe. Il y a donc une étape de pré-détection ou 1’on
sélectionne les volumes englobants en collision. Ensuite, le véritable calcul de la
distance et du point de contact peut avoir lieu comme prévu. Les vérifications inutiles
sont non seulement plus nombreuses, mais surtout plus complexes car elles impliquent

des objets a plusieurs faces (Hogue, 1998; Muller 1996).

Dans cette situation, il est possible d’utiliser une des bibliotheques de détection
commerciales ou « open-source » existantes. De nombreuses bibliothéques gratuites et
performantes se retrouvent sur le Web (Swift, [-Collide, H-Collide, V-Clip). Ces
bibliotheques ont bien sir leurs limites mais peuvent s’avérer utile. Certaines supportent
les objets a plusieurs faces et d’autres ne donnent pas la grandeur du chevauchement lors

de collision. Elles ne sont donc pas toujours appropriées a un code d’éléments discrets.
4.4  Algorithmes reliés a la géométrie

Avant de commencer la simulation d’un écoulement granulaire par la méthode
des éléments discrets, on doit définir un domaine de simulation pour les particules. Pour

des raisons pratiques, dans Powder3D, ce domaine est rectangulaire (boite 3D) et sa
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dimension, fournie par I'utilisateur, est utilisée pour la création la grille de détection.
Pour I’instant, la taille du domaine demeure statique et aucun objet ne doit en sortir.
Pour empécher un objet de quitter le domaine de simulation, il est possible d’imposer
des conditions périodiques. Aucune frontieére n’est solide et les spheres franchissant les
limites sont déplacées 2 la frontiere opposée. Evidemment, la détection via le quadrillage
doit gérer ce cas spécial, c’est-a-dire vérifier les bonnes cases et effectuer une translation
temporaire pour le test de collision. Les applications sans fronti¢res sont plutdt limitées.
En effet, la plupart des problemes intéressants telle la sédimentation impliquent au
minimum un mur. Une fonctionnalité permettant d’ajouter des surfaces solides en
laissant le plus de flexibilité aux utilisateurs de Powder3D était primordiale. Dans la
littérature, on retrouve, avant 1995, plusieurs équipes gérant analytiquement les murs.
Chaque ligne ou courbe décrivant un mur de la géométrie est définie par une équation.
Cette technique semble suffisante pour des géométries simples en 2D mais devient
moins pratique en 3D. On retrouve tout de méme quelques textes étonnants portant sur
I’étude du mélange granulaire a 1’aide d’un ruban hélicoidal défini par une fonction
(Kaneko et al., 2000), mais le code semble limité & cet exemple. De la méme fagon,
Ferrez (2001) a défini un ensemble d’objets 3D (cylindre, cone, boite), représentant soit

des obstacles ou contenants, a 1’aide de fonctions.

Dans leur article sur la simulation d’applications industrielles comportant des
mélangeurs de type « tumbling mill » (tambours rotatifs), Sawley et Cleary (1999) ont
utilis€ AUTOCAD pour créer les géométries du domaine de calcul. Un maillage de cette
géométrie permet alors de tenir compte des objets dans la simulation avec la DEM. Cette
approche permet a la méthode des éléments discrets d’offrir le niveau de flexibilité

souhaité pour devenir un outil sérieux pour I’étude de cas industriels.

Le méme principe fut adopté pour Powder3D et une interface avec le mailleur
commercial IDEAS a été réalis€ée. Une fois que I’objet solide a été modélisé, un
maillage de surfaces (peau) formé de triangles 2D peut alors étre généré. Les simulations

peuvent ainsi impliquer des objets immobiles pour contenir les particules (un réservoir
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par exemple) et d’autres mobiles pour représenter par exemple les pales d’un agitateur.
Cette facon de procéder est nommée MWM par Favier (2000). La méthode aux murs
multiples (Multi-Wall Method) est treés souple car chaque mur (plat ou courbe) possede
ses propres parametres. Ce dernier mentionne aussi la possibilité de créer des objets

solides réagissant aux forces provenant de leurs collisions avec les particules.
4.41 Algorithmes de détection de contacts avec la géométrie

Une fois la géométrie importée dans Powder3D, un algorithme doit &tre utilisé
pour la détection de contacts entre les spheres et les triangles des objets solides. Comme
pour le cas des collisions entre particules, le calcul des forces résultantes suit cette
détection et il y a sommation dans le méme vecteur accumulateur. La détection des
contacts entre les spheres et les triangles est sans aucun doute 1’opération la plus intense.
Si la géométrie est complexe et mobile, les temps de calcul peuvent rapidement
rejoindre et dépasser ceux de la détection entre les particules, méme si le nombre de
contacts avec la géométrie est inférieur. Ces algorithmes méritent donc d’étre
approfondis et optimisés afin de limiter leur impact. Rappelons d’abord qu’il y a

plusieurs types de contacts possibles entre les spheres et les triangles :

- contact avec la surface normale du triangle ;
- contact avec une des 3 arétes du triangle;

- contact avec un des 3 sommets du triangle.

Puisqu’il y a jusqu'a 7 possibilités de contact, la résolution d’un contact est
beaucoup plus dispendieuse que la simple comparaison de la distance entre deux centres
de masse de particules voisines. Pour empécher une dégradation des temps de calcul, il
faut encore opter pour une approche ayant pour but de limiter les recherches exhaustives

infructueuses.

Comme pour la localisation des spheres, le quadrillage dans lequel on place les

triangles de I’espace est essentiel. Cependant, la taille des triangles n’étant pas toujours
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constante ou proportionnelle a celle des particules, on ne peut pas se fier sur le
barycentre du triangle pour la localisation. Des calculs supplémentaires sont requis pour
bien identifier toutes les cases de la grille qu’un triangle touche. Cette grille devra elle
aussi étre rafraichie, mais cette fois-ci en fonction de la vitesse des objets mobiles.
Heureusement, dans le cas de géométries fixes, I’opération peut étre effectuée une seule

fois.

I;ﬁ\ %
\AL)| i
-

Figure 4-6 Comparaison entre ’espace utilisé dans une grille par une sphére et un triangle

L’étape de détection de contacts avec les murs de triangles se déroule comme
pour le cas des spheres. On parcourt les particules et on recherche les triangles du
voisinage tout en s’assurant de ne pas dédoubler les références puisqu’on peut les
retrouver dans plus d’une case a la fois (Figure 4-6). Une recherche de type halo est
encore applicable et essentielle pour réduire les cycles CPU qui seraient sinon gaspillés a
vérifier des contacts entre des objets tres éloignés. Lorsque deux objets sont assez
proches, il ne reste plus qu’a vérifier qu’ils se touchent vraiment en appelant une

fonction plus spécifique.

4.4.2 Deétection du contact entre une sphere et un triangle

Cette partie traite d’algorithmes géométriques utilis€s pour la détection des

contacts entre les spheres et les triangles. Les informations connues sont la normale du
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triangle et la position des deux objets. On peut retrouver les détails des algorithmes dans

le premier rapport sur Powder3D (Gange, 2002).

D’abord et avant tout, on doit évaluer la distance entre le plan du triangle et la
sphere. Pour trouver les deux points les plus rapprochés dans 1’espace tridimensionnel, il
suffit de projeter un des sommets du triangle et le centre de masse de la sphere sur la
normale du triangle. La distance entre ces deux points doit étre inférieure au rayon pour
continuer. Une fois la premiere condition remplie, il reste a savoir s’il y a vraiment
contact, plus précisément vérifier si le point de la sphere le plus proche du triangle est a
Pintérieur de celui-ci (Figure 4-7). 11 s’agit de la routine la plus souvent appelée et

cumulativement une des plus coliteuses.

Normale du plan |_
X

A

Figure 4-7 Opérations pour la détection de contacts entre les sphéres et les murs

a) Projection sur la normale du triangle et vérification de la distance entre le plan et la
sphere. La vérification continue au point b) si D <R
b) Vérification qui confirme si le point de contact est a Pintérieur du triangle

Finalement, lorsque le point de contact n’est pas inclus dans le triangle, on doit
vérifier les contacts possibles avec les arétes et les sommets. La détection de ces contacts
étant plus simple, ces algorithmes ne seront pas approfondis dans cette section mais
doivent étre toutefois implantés avec attention. Pour optimiser la détection des contacts

avec les murs, il faut donc réduire le temps passer dans la section la plus critique, ou on
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doit vérifier si le point de contact est a I'intérieur du triangle. Nous présentons trois
algorithmes qui ont ét€ implantés et testés afin d’obtenir les meilleures performances

possibles.

4.4.2.1 Méthode de I’aire

LLa méthode de I’aire repose sur la sommation des aires des trois triangles formés
a partir des sommets du triangle et du point de contact avec le plan de ce triangle. Il y a
collision si la somme de ces aires est égale a |’aire totale de ce triangle. C’est la premiere
technique implantée dans Powder3D. Elle nécessite principalement 4 produits

vectoriels.

Figure 4-8 Méthode de I'aire pour la détection de contact avec des triangles

4.4.2.2 Méthode des angles

De la mé&me facon, la méthode des angles valide un contact lorsque la somme des
angles internes donne 180 degrés. Cette technique est classique mais nécessite des
appels a des fonctions trigonométriques (arccos). Ces opérations sont dispendieuses,
surtout pour une application qui I’est déja beaucoup. N’offrant pas de meilleurs temps de

résolution qu’avec la méthode de I’aire, elle fut mise de c6té rapidement.
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4.4.2.3 Méthode CCW

Les deux premieres méthodes sont précises mais peu performantes parce qu’elles
impliquent trop d’opérations. Une recherche sur les algorithmes géométriques nous a
permis de découvrir une nouvelle technique de fonctionnement assez simple. Elle est
basée sur le fait qu’en parcourant les arétes d’un objet convexe, il y a contact seulement
si ce point est toujours du méme coté de chaque aréte (Figure 4-10). L’algorithme CCW
(Counter Clock Wise), présenté dans un ouvrage classique de I’algorithmique de
Sedgewick (1990), a pour but premier de vérifier si deux droites se croisent sur un plan
2D. Pour pouvoir utiliser cet algorithme, les coordonnées du point de contact et des
sommets doivent étre projetés sur le plan 2D le plus approprié, selon la normale du

triangle (Figure 4-9).
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Figure 4-9 Projection du triangle sur un plan 2D

Fonction CCW

Retourne -1 si C est a gauche
Retourne 0 si C est sur I’aréte
Retourne 1 si C est & droite

Contact si et seulement si
T les appels retournent tous < 0
ou tous 2 0

Figure 4-10 Méthode CCW pour détection de contact avec des triangles



51

Ensuite, en parcourant les cotés de 1’objet convexe, il reste a vérifier si la
projection du point se trouve toujours du méme c6té de chaque aréte. En s’inspirant de
cet algorithme, on a obtenu des résultats remarquables. L’algorithme CCW arrive a la
méme conclusion que la méthode des aires ou la méthode des angles, mais plus
rapidement (Tableau 4-3). Précisons que sauver sur la détection sphere-triangle rend
aussi le remplissage de la grille plus économique. La méthode CCW est plus
performante que la méthode de I’aire parce qu’on fait d’abord une simplification

(projection 2D).

Tableau 4-3 Comparaison des méthodes de détection avec un triangle
(Sédimentation de particules dans une cuve sur Magnum)

Methode | T () | le qwadriage ()
Aire 437 265 !
Angles 449 273 2
CCW 260 112 6

4.4.3

Extension du modeéle pour la génération des murs

A la lumiére des derniers résultats, la détection des contacts entre les triangles de
la géométrie et les particules sphériques est cofiteuse. Evidemment, d’autres tentatives
d’optimisation pourraient peut-€tre réduire les temps de calcul davantage mais une chose
est claire : ce probléme ne sera jamais aussi simple que celui de la détection des
collisions entre spheres. Et c’est en essayant de réduire la complexité de la détection a
celle des spheres que I’idée de combiner ces dernieres pour créer des murs nous est
venue. Cette approche n’est pas nouvelle; pour Gallas et Sokolowski (1993) et Mattutis

et al. (2000), la définition de la géométrie a I’aide de cercles est mise a contribution pour
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générer des murs (plus rugueux, certes), dans leur simulation 2D. Nous avons donc
repris cette idée en 3D, en I’appliquant & nos géométries définies par un maillage de

surface.

Le défi principal était de remplacer tous les triangles par un ensemble de sphéres
sans créer de trou et ce, peu importe la taille de maille. La facon de procéder est
fastidieuse mais, heureusement, ce travail ne doit étre fait qu’une seule fois. On remplit
récursivement [’aire du triangle en se basant sur son barycentre et ses sommets. Le
niveau de rugosité est inversement proportionnel au temps et a I’espace requis par I’ajout
de ces spheres. Les particules générées sont immuables a moins qu’elles appartiennent a
un objet solide mobile dont elles recoivent les propriétés. Evidemment, aucune inter-
détection n’est nécessaire car elles ont un statut spécial et une structure distincte des

vraies particules.

Le remplissage de chaque triangle du maillage est réalisé grace a un algorithme

simple paramétrable selon trois variables :

1. Ratio :Rayon des spheres des murs / Rayon de la plus petite sphere
2. Ecartl : Ecart entre les spheres alignées entre deux sommets

3. Ecart2 : Ecart entre deux spheres alignées selon I’axe sommet-barycentre

lére , 2eme ,
étape ECART 1 étape ECART 2
X .
»
\ Barycentre
Pour chaque paire de sommets On définit de nouveaux sommets

Figure 4-11 Technique implantée pour remplir la surface des triangles
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Le remplissage se fait parallelement aux arétes comme il est représenté a la
figure 4-11. Ensuite, on répete cette procédure en se déplagant vers le barycentre. On

boucle de cette fagon tant que le barycentre n’est pas atteint. A la fin, le triangle est
rempli de spheres (Figure 4-12).

Figure 4-12 Exemple du remplissage d’un triangle a I’aide de sphéres
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Figure 4-13 Exemple du remplissage des triangles pour un « Tumbling mill »
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En regardant la figure 4-13 et le nombre de spheres généré pour chaque triangle,
il est normal de se demander si cette fagcon de procéder est avantageuse. Quels sont les

réels avantages d’une telle représentation des géométries? Voici les principaux :

- La simplicité avec laquelle on peut placer les sphéres dans la grille de
focalisation;

- La possibilité d’utiliser des algorithmes de détection de contacts entre spheres
qui sont déja implantés;

- Un seul test de collision (au lieu de 7).
Les principaux inconvénients sont :

- Le nombre de particules supplémentaires a I’intérieur de chaque triangle;

- L’espace mémoire requis pour contenir toute cette information.

4.4.4 Evaluation et comparaison

Nous avons évalué les techniques présentées pour représenter un mur a l’aide
d’un test comportant tous les attributs d’une simulation complexe. Ce test consiste a
déposer 1900 spheres dans une cuve qui tourne. Ce test est idéal puisqu’il comporte :

- Peu de contacts inter-particulaires;

- Une fréquence de rafraichissement tres élevée;

- Un objet mobile.
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Figure 4-14 Représentation de la cuve i ’aide de a) sphéres et b) d’un maillage de triangles

Tableau 4-4 Comparaison des méthodes de représentation des murs
Conditions de simulation : 1900 particules, 950 contacts particules-mur (4750 itérations)

Contacts
Méthode inter- Temps (s)
particulaires
Aire (2700 triangles) 1011 704
CCW (2700 triangles) 1011 425
Spheres (28000 spheres) 2006 286

Malgré le nombre de spheres supplémentaires nécessaire pour composer les
murs, les résultats sont plutot surprenants (Tableau 4-4), si on considere qu’il y a deux
fois plus de contacts dans ce cas (2006) comparativement a la représentation a 1’aide
d’un maillage de triangles. On en conclut que placer des triangles dans la grille est trop
coliteux et tout simplement trop de temps est passé€ a vérifier les contacts probables avec
les arétes et les sommets de ces triangles. Donc, les temps de calcul sont réduits

lorsqu’on utilise les spheres pour représenter les murs et ce, suffisamment pour conclure
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qu’elle devrait étre plus rapide dans la plupart des systemes particulaires. Le Tableau 4-5
montre les coits en fonction de la rugosité définie par les trois parametres pour le test de

la cuve qui tourne.

Ces résultats mettent en lumiere quelques propriétés intéressantes de la nouvelle
méthode. Si on désire diminuer les aspérités, il vaut mieux augmenter le chevauchement
que d’augmenter le rapport de taille des rayons. La réduction du rayon fait ressortir les
défauts de I’algorithme de détection qui semble moins performant avec un mélange
polydispersé. Remarquons que si le nombre de spheres est quintuplé, il n’y a pas
nécessairement plus de contacts avec les murs (~2000); il y a seulement plus de tests
inutiles. Générer une surface beaucoup plus lisse est évidemment plus cofiteux, toutefois

son niveau d’efficacité est comparable aux méthodes basées sur les triangles.

Tableau 4-5 Influence du niveau de rugosité sur les temps de calculs

] Ecart Nombres de
Ratio héres pour les | Temps (s)
Rmur/Rmin °P ; i
(Let2) murs
4/5 2.0 28000 286
4/5 1.0 76200 351
3/5 2.0 46425 340
35 15 62000 360
3/5 1.0 122000 414
2/5 1.5 129000 455

4.5 Résumé des performances des nouveaux algorithmes de
détection de contacts

L’accélération des calculs de la méthode des éléments discrets devait d’abord
passer par 1’accélération du temps d’exécution en séquentiel. La détection peut étre mise

aux oubliettes car la section la plus contraignante est la résolution de contacts. Le
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Tableau 4-6 compare pour des cas pratiques notre version optimisée au cours de I’été

2003 et le code hérit€ un an auparavant (Gange, 2002). On remarque les importantes

diminutions de temps de calcul réalisées grice aux optimisations apportées aux

algorithmes de détection. Il est impossible de faire ressortir un facteur commun

d’accélération, toutefois le constat est assez €vident : la détection des collisions n’est

plus problématique.

Tableau 4-6 Comparaison des performances des nouveaux algorithmes de détection

Description de la simulation Nom'bre de | E€2002 ) Et¢2003
Particules | Temps (s) | Temps (s)
Sédimentation de pigments monodispersés 300 29 0,3
Sédimentation de pigments bidispersés (ratio 5) 3000 103 7
Sédimentation de pigments bidispersés (ratio 5) 9000 261 20
Objet solide (ruban hélicoidal + cuve) 9000 1380 31
Temps vs Nombre de particules
400
350 | | —e—Particules avec contacts P
300 |- -®m-Particules sans contact |
; @ 250 EE
é 200
2 150 +
100 -
50
0 -
0 50000 100000 150000 200000

Nombre de particules

Figure 4-15 Evolutivité des temps de calcul en fonction du nombre de particules
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Le graphique de la figure 4-15 montre que le calcul des forces est devenu la
section dominante. Les temps de simulation varient linéairement en fonction du nombre
de collisions. Malheureusement, méme apres toutes les optimisations présentées dans ce
chapitre, les temps requis sont toujours astronomiques pour des problemes le
moindrement complexes. Par conséquent, les techniques reliées au calcul de haute
performance, plus précisément la parallélisation, seront indispensables pour diminuer

ces temps de calcul.
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5 Parallélisation de la DEM

Ce chapitre ainsi que les prochains seront consacrés a la parallélisation de la
DEM et ses sujets connexes. La parallélisation est séduisante mais son implantation I’est
moins. Pour obtenir des performances hors du commun, il est préférable de compter au
préalable sur un code séquentiel optimal et c’est ce que nous avons fait dans un premier
temps et présenté dans le chapitre précédent. Ensuite, pour espérer une diminution de
temps supplémentaire, le travail en parallele devient inévitable. Notre support
informatique étant les grappes de calcul, la décomposition de domaine permet de
distribuer le calcul inhérent aux sous-domaines sur plusieurs processeurs en mémoire

distribuée.

Précisons que 1’accélération générée en créant ces sous-ensembles ne peut plus
provenir d’algorithmes non performants qui pourraient tirer avantage de cette
décomposition. Dans le cas de Powder3D, tous les algorithmes implantés sont de
complexité linéaire; 1’accélération sera donc, dans le meilleur des cas, linéaire avec le

nombre de processeurs utilisés.

Pour garantir la validité de la simulation, la parallélisation en mémoire distribuée
requiert a toutes les itérations I’échange de bandes de particules fantdmes communément
appelées les halos (ghost cells). Puisque les processus doivent communiquer
fréquemment, 'utilisation d’une bibliotheque de communications est requise. Dans ce

travail, le standard MPI a été choisi comme outil de parallélisation.

L’implantation choisie pour le développement de Powder3D est Mpich. Gratuit,
il peut €tre couplé facilement au compilateur Fortran 90 d’Intel, le compilateur de
Powder3D sur Linux (www.intel.com/developper). Méme si le standard MPI propose
plus d’une centaine de routines, un adage dit que seulement 6 fonctions sont nécessaires

pour paralléliser une application. La description des fonctions MPI utilisées débute cet
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important chapitre. Ensuite, nous aborderons la technique de décomposition de domaine
appliquée a la méthode des éléments discrets. Suivront I’analyse des performances de

notre implantation et quelques tentatives d’optimisation.

5.1 Fonctions basiques du standard MPI

Pour les programmes SPMD et plus particulierement ceux qui sont basés sur la
bibliotheque MPI, on doit initialiser une zone parallele dans laquelle les échanges auront
lieu. La création du communicateur principal MPI_COMM_WORLD permet d’abord
d’informer les processus du groupe de travail et de leur attribuer un identificateur
personnel unique. Pour la décomposition de domaine, le nombre de sous-domaines
correspond au nombre de processeurs dédi€s pour la simulation, soit la variable

numprocs. Les fonctions requises sont :

MPI_INIT() /* Initialisation du communicateur (MPI_COMM_WORLD) */
MPI_COMM_RANK(communicateur, id)

MPI_COMM_SIZE(communicateur , numprocs)

MPI_FINALIZE() /* Destruction du communicateur a la fin du programme */

Les communications « point a point » peuvent alors avoir lieu. Evidemment,
elles impliquent deux processus : un qui envoie et I’autre qui doit s’attendre a recevoir.
Les fonctions de base décrites plus bas sont MPI_SEND et MPI_RECYV. Leurs versions

non bloquantes sont similaires et ont I’avantage d’éviter les interblocages :

MPI_SEND(vecteur d’envoi, quantité, TYPE, destinataire, TAG, communicateur)

MPI_RECV(vecteur de réception, quantité, TYPE, source, TAG, communicateur, status)
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Ces fonctions MPI supportent par défaut les types de données conventionnels.
Cependant, il est possible d’ajouter des types plus spécifiques a une application. Dans le
cas de Powder3D, MPI_DATA_TYPE a permis de créer des vecteurs d’envoi et de
réception de type particule. Les éléments du vecteur contiennent environ une douzaine
de nombres réels, selon la complexité du modele. Il n’est pas nécessaire de prévoir
I’empaquetage et le dépaquetage des données et on diminue le nombre de messages a
envoyer. Plusieurs autres types ont été créés de la méme fagon afin de transférer plus

facilement par exemple les données concernant les forces et les contacts :
MPI_DATA_TYPE(nom du nouveau type, nombre d’éléments, type d’éléments)

En plus des communications directes, Mpich offre de nombreuses fonctions de
communications collectives. Ces derniéres sont tres efficaces pour répandre une
information rapidement ou mettre les processeurs en accord. Par exemple, lorsqu’on
veut obtenir la vitesse maximale des particules afin de vérifier la stabilité de la

simulation, il suffit de faire une réduction :
MPI_ALL_REDUCE(valeur locale, valeur globale, opération (MAX), communicateur)

Enfin, MPI offre un ensemble d’outils pratiques permettant de résoudre des
problemes classiques relatifs a la topologie de la décomposition de domaine (Figure

5-1):

MPI_CART_CREATE(communicateur, nb de dimension, topologie,
condition périodique, nouveau communicateur)
MPI_CART_GET(nouveau communicateur de topologie, nb de dimension,
condition périodique, coordonnées du sous-domaine)

MPI_SHIFT(nouveau communicateur de topologie, 1, axe, voisinl, voisin2)

Tous les processus font appel a MPI_CART_CREATE pour la création d’une

topologie fondée sur la décomposition cartésienne. Par la suite, ils font référence a une
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image globale de la décomposition du domaine en trois dimensions via le nouveau
communicateur. Avant de définir les frontieéres de son sous-domaine, chaque processus
doit trouver sa position dans la grille de processeurs grice a la fonction
MPI_CART_GET. De la méme facon, I’identification des six voisins potentiels se fait
grace a MPI_SHIFT qui supporte les conditions périodiques. Le lecteur pourra consulter

Using MPI (Gropp,1999) pour plus de détails.

® processus
lien
1D o9

Domaine initial / Tranche

2D

Boite

3D

Cube

Figure 5-1 Décompositions possibles et liens entre les processus voisins
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5.2 Ladécomposition du domaine

La parallélisation de la méthode des éléments discrets par décomposition de
domaine débute par la décomposition initiale du domaine de calcul. Cette dernicre
pourra étre conservée durant toute la simulation ou étre modifiée suite a un rééquilibrage
dynamique de la charge (chapitre 6). Pour les méthodes particulaires, une décomposition
cartésienne de 1’espace est recommandée. On divise tout simplement le domaine en
régions rectangulaires en fonction du nombre de processeurs disponibles. II n’est pas
obligatoire que le quadrillage de I’espace concorde avec le quadrillage utilisé pour la
détection des contacts; cela dépend de I’implantation. Les sous-domaines créés
contiennent toutes les particules situées a I’intérieur de leurs frontieres respectives. Un

mécanisme est toutefois nécessaire pour recréer les véritables conditions de simulation.

5.3  Halos et transferts de particules

La technique du halo permet de simuler correctement le comportement des
particules d’un sous-domaine. Pour calculer les forces agissant sur une particule a un
temps donné, il faut connaitre la position de ses voisines a I’itération précédente. Si la
particule voisine appartient a un sous-domaine voisin, c’est le processus correspondant &
ce sous-domaine voisin qui est chargé de transmettre I’information. Les particules recues
dites « fantdmes » correspondent aux particules frontalicres des sous-domaines voisins.
A chaque itération, tous les processeurs procédent i I’envoi de leurs particules
frontalieres et a la réception des particules fantdmes. Afin que tous les contacts soient
pris en compte pour garder la cohérence avec la méthode de détection, la largeur de la
région partagée est proportionnelle au rayon maximal des particules, plus précisément

2,1*Rmax (Figure 5-2).
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Les particules fantdmes sont ajoutées a la fin du vecteur de particules réelles qui
contient les particules exclusives et les particules frontalieres. On fait référence a une
particule en se basant sur sa position dans ce vecteur, qui correspond a la numérotation
locale. Une particule frontaliere se retrouve sur plusieurs processus et son numéro local
peut ainsi varier. Pour différencier chaque particule, une numérotation globale est aussi

utilisée; chaque particule traine son numéro unique d’identification.

Halo pour le sous-domaine J

sous-domaine J sous-domaine J+1

'S
v

2.1 * Rmax
) Particules frontalieres Particules exclusives du sous-domaine J
@ Particules Fantdmes @ Particules exclusives du sous-domaine J+1

U Particules réelles de J
@ U @ Particules réelles de J+1

Figure 5-2 Halo du point de vue d'un sous-domaine

Au cours d’une simulation, une sphére en mouvement peut dépasser les
frontieres de son sous-domaine. Une vérification est donc nécessaire pour détecter ce
déplacement et procéder au changement de sous-domaine. Précisons ici que c’est
toujours le processus propriétaire qui décide de se départir d’une particule et c’est lui qui

en informe le processus voisin.
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5.4  Description de l'implantation

Tel que mentionné dans la section précédente, un processus doit envoyer a ses

voisins deux informations :

- les particules quittant définitivement le sous-domaine (les particules léguées);

- DI’information des particules frontalieres.

Les premiceres tentatives de parallélisation par décomposition de domaine ont
permis de confirmer que 1’envoi de deux messages ralentissait 1’exécution. En effet, la
latence réseau inhérente a chaque message étant relativement grande, il est avantageux
de limiter le nombre de messages en augmentant la taille des vecteurs transmis. Une
version plus complete de la loi d’Amdahl précise d’ailleurs que les communications

peuvent nuire a I’accélération :

Ao I T1
T(P) [(T]xa)+

Equation 51
(I-a)x Tl} +TComm +TCasParticuliers

ou 7Comm équivaut au temps requis pour les communications comprenant la
latence et le transfert des données. Nous incluons aussi le temps écoulé pendant la
construction du message. Le traitement des cas particuliers (7TCasParticuliers)
regroupent toutes les autres opérations supplémentaires qu’un programme parallele
exécute mais que le programme séquentiel ne requiert pas. Par exemple, le mécanisme
de rééquilibrage de la tache (chapitre 6) comporte des cofits que I’on retrouve seulement
lors de ’exécution paralléle. Les communications sont en fait un cas particulier unique a

la parallélisation, mais nous les comptabilisons a part.
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5.5  Définition du patron de communication

Pour obtenir les meilleures performances, la parallélisation doit étre efficace. Les
cartes Ethernet 100Mbits/s n’ayant pas des caractéristiques exceptionnelles, il est
impératif de réduire le temps des communications afin d’améliorer I'efficacité. Les
prochaines sous-sections feront la description de notre implantation et présenteront

diverses tentatives d’optimisation.

5.5.1 Fusion des messages transmis

En réalisant que le contenu des 2 messages décrits précédemment demeurait de
méme nature, des structures de type particule, nous avons eu I’idée de fusionner les
deux messages. Nous pouvions alors espérer un gain relatif a la latence et la
synchronisation du deuxieme message qui était €liminé. Les résultats obtenus avec cette
premicre version parallele montre que la parallélisation de la DEM est naturelle et
efficace. Comme on peut le remarquer a la figure 5-3, une accélération acceptable

jusqu’a 6 processeurs a été obtenue lorsque les algorithmes de détection n’étaient pas

optimaux.
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Figure 5-3 Courbes d'accélération pour la premiére implantation avec messages fusionnés
(Sédimentation, Magnum)
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Les raisons pour lesquelles la premiere courbe fléchit sont d’abord, le colt
grandissant des communications par rapport aux calculs. Ensuite, avec I’utilisation de 10
processeurs, i1l y a presque deux fois plus de particules a gérer qu’en séquentiel,
conséquence directe de I'information dédoublée par les halos. Toutes les particules des
sous-domaines sont frontalieres; chaque processeur envoie tout son sous-domaine a ses
voisins. Il est donc impossible d’espérer de meilleures performances quand les

problémes sont trop petits.

Malheureusement, le temps de résolution en parallele avec cette version était
encore trop long. Nous sommes retournés a 1’élaboration de nouveaux algorithmes de
recherche tels que ceux présentés au chapitre 4. Une fois les algorithmes de détection
optimisés, les performances de I’exécution parallele sont devenues particulierement
décevantes (Figure 5-3). Ces résultats ont amené a la remise en question de notre
politique d’échange. Eliminer une communication aurait pu étre efficace mais, aprés
expérimentation, nous avons réalisé que la technique souffre d’un inconvénient majeur :
la construction du message a envoyer. En effet, il faut rebatir complétement un nouveau
message a chaque itération puisqu’on ne peut léguer deux fois la méme particule. 1l faut
alors porter une attention particuliére a I’ordre des particules qui peut changer et créer

des conflits au niveau de la numérotation locale et les grilles de localisation.

Pour limiter le cofit des communications et accélérer les performances, nous
avons tenté de réduire la fréquence des envois. Cela peut paraitre absurde car
I’information des halos n’est plus transférée systématiquement a chaque itération par les
processus propriétaires. En procédant ainsi, des la deuxieme itération, il y aura a la
frontiere de petites variations par rapport a ce qui se passe lorsque les halos sont
rafraichis a toutes les itérations. Ces variations se propageront lentement vers 1’ intérieur
du sous-domaine et les coordonnées de toutes les particules divergeront de celles
obtenues en séquentiel. Les problemes de différences entre les versions séquentielle et

parallele seront discutés plus en détail a la section 7.9.
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5.5.2 Deuxieme tentative

Certains articles sur la décomposition de domaine mentionnent que le legs de
particules réelles est un phénomene fréquent mais pas assez pour s’en préoccuper a
chaque itération (Henty, 2000). Par conséquent, il est souvent proposé de reporter
I’envoi des messages concernant les particules qui changent de sous-domaine. Le but est
de minimiser le cofit de transmission de ce message. Transférer des particules réelles
modifie la numérotation locale donc, on doit en profiter pour synchroniser I’opération de
transfert avec celle du rafraichissement des grilles de localisation. De plus, grice a cette
technique, on évite de nombreux tests répétitifs lors de la construction des messages.
Puisque la numérotation locale doit demeurer cohérente avec les grilles de localisation,
les messages contenant les particules fantdmes doivent rester les mémes pendant
plusieurs itérations. Au lieu de parcourir le vecteur de particules pour rechercher a
chaque fois les candidats faisant partie du halo, on peut stocker les numéros locaux dans
les tables prévues a cet effet. Tant que ces tables sont valides, on peut les utiliser pour

accélérer la construction des messages de particules fantomes.

Au besoin, c'est-a-dire lors du rafraichissement des structures de localisation,
chaque processeur boucle sur ’ensemble de ses particules réelles, rebétit une nouvelle

table et communique (voir pseudo-code).
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Pseudo code pour la politique d’échange (effectué au début de chaque itération)

// 1% message : traitement des particules changeant de sous-domaine
Si requis (taux de rafraichissement)
Pour chaque frontiére avec un sous-domaine voisin
Détermination des particules a léguer
Envoi des particules transférées au sous-domaine voisin
Réception des particules 1éguées par le sous-domaine voisin

/] 2°™ message : envoi et réception des particules faisant partie des halos
Pour chaque frontiére avec un sous-domaine voisin
Si requis (taux de rafraichissement)
Mise a jour de la table de transmission des particules frontalieres
Construction du message (en fonction de la table des particules frontalieres)
Envoi des particules frontalieres
Réception des particules fantdmes
Sinon
Construction du message (en fonction de la table des particules frontalieres)
Envoi des particules frontalieres
Réception des particules fantdmes

Comme on le remarque plus haut, ce nouvel algorithme permet une gestion plus
aisée des particules léguées et son extension pour les décompositions 3D est évidente.
Enfin, griace a ces meilleures performances, il n’est plus nécessaire de diminuer la

fréquence des communications, et on €vite de générer des différences entre I’exécution

de la version séquentielle et la version parallele.

5.5.3 Décomposition de domaine multidimensionnelle

La décomposition de domaine et [utilisation des halos impliquent
nécessairement un dédoublement de certaines données. Nous allons montrer qu’une
décomposition de domaine selon plusieurs axes peut étre envisagée et profitable.
L’objectif principal est de limiter la quantité de données partagée et la taille des
messages a transmettre. De plus, il y aura moins d’opérations relatives aux particules

fantomes et les dédoublements du calcul des forces seront limités. En effet, pour réduire



70

de moitié le temps consacré aux calculs des forces, le principe d’action-réaction est
exploité. Cependant, avec la décomposition de domaine, le calcul des forces de contact
entre les particules fantdmes et particules frontalieres ne peut tirer avantage de la
troisietme loi de Newton. Les opérations sont effectuées en double sur chaque
processeur. Lorsque le rapport entre les particules frontalieres et le nombre total de
particules réelles est trop €élevé, I'efficacité de la parallélisation demeure trés faible

(Figure 5-4).

sous- sous-
domaine domaine

533

393

Nombre de contacts pour I’exécution séquentielle : 9

Nombre de contacts pour le sous-domaine A: 6

Nombre de contacts pour le sous-domaine B: 6
Efficacité maximale de la parallélisation pour cet exemple : (9/6)/2 = 75%

Figure 5-4 Influence du dédoublement des calculs sur la parallélisation

Pour des décompositions rectangulaires cartésiennes, la forme du sous-domaine
optimale est le carré en 2D et le cube en 3D. En effet, ce sont des formes géométriques
offrant le meilleur rapport entre I’aire (volume) et le périmeétre (surface). Il s’agit donc
du meilleur rapport entre le nombre de particules locales et celui des particules
frontalieres. S’il y a moins de particules fantdmes, c’est moins de tests pour les placer
dans la grille de localisation ou pour vérifier les contacts potentiels. Le dédoublement
des calculs peut étre réduit significativement avec la décomposition de domaine sur plus

d’une dimension a condition que le domaine s’y préte bien. Dans le pire des cas, une
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décomposition d’un domaine en forme de cube, la quantit€ de données a transmettre

peut prendre diverses valeurs (Figure 5-5).
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Figure 5-5 Comparaison de la quantité de données a tranferérer selon la décomposition avec P

processeurs

Il s’agit ici de nombres indicateurs proches de la borne maximale puisque la quantité
exacte est variable car elle dépend de la disposition, de la concentration et de la taille des

particules.

Dans la littérature, bien qu’on ait essayé de décomposer selon plusieurs axes, on
conseille souvent de demeurer avec la décomposition 1D (Knecht, 1995), appelée

décomposition par bandes (strip decomposition). Souvent le patron de communication
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devient trop complexe lorsqu’on ajoute des voisins, ce qui dégrade les performances et
rend la décomposition multidimensionnelle a peine plus efficace que la décomposition

par bandes.

Nous savons que les temps de communication dépendent principalement du
nombre de messages et de la quantité de données a transférer. Pour une décomposition
3D, un processeur possede trois fois plus de voisins comparativement a une
décomposition 1D. Si on fait abstraction de I’optimisation des communications point-a-

point, le temps de communication est donné par (équation 5.3) :

Tcomm = Tlatence + Taille * Tdébit Equation 5.2

Tcomm Total = Nb de voisins * ( Tlatence + Taille moyenne * Tdébit)  Equation 5.3

On voit donc que la latence a intérét a étre négligeable par rapport au temps de transfert.
La parallélisation par décomposition de domaine étant caractérisée par une granularité
assez grossiere, la latence a donc relativement peu d’impact sur les performances
(Dimitrov et Skjellum, 2003). Ainsi, la quantité de données (Taille moyenne) doit &tre
suffisamment réduite pour remarquer une amélioration inhérente a la décomposition
multidimensionnelle. Nous devons donc compter sur un patron de communication peu

complexe et efficace.

La transmission des halos peut étre implantée de deux fagons : de point a point
avec des communications non bloquantes ou en bloc selon la méthode SHIFT. Ces deux
approches seront maintenant présentées avant d’analyser les performances de la

décomposition multidimensionnelle.

5.5.4 Communications non bloquantes

La stratégie de communication la plus simple est la communication directe entre

un sous-domaine et ses voisins directs et diagonaux. Malheureusement, dans une telle
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situation, il y a beaucoup de voisins et beaucoup de messages; les risques d’interblocage
sont donc tres élevés et un patron de communication utilisant seulement les
communications non bloquantes est privilégié. Un interblocage se produit lorsque la
politique d’échange est mal définie et en mode bloquant. Si deux processus en
communication tentent d’effectuer la méme opération, par exemple de recevoir de
I’autre, leur attente ne trouvera jamais preneur. La simulation se terminera car il n’y a

pas de moyen de sortir de cette impasse.

Grace aux routines MPI_ISEND et MPI_IRECV, il n’est plus nécessaire de
spécifier Iordre d’envoi. En terminant I’étape de communication par une barriere
d’attente MPI_WAIT, on s’assure que tous les messages ont été transmis. De plus, on
peut espérer de meilleurs temps de transfert. Les communications non bloquantes
permettent de prendre de 1’avance et d’effectuer les échanges de données en rafale
pendant que le processus le plus lent termine ses calculs. Enfin, en mode non bloquant,
les cartes réseau qui supportent la transmission full duplex peuvent théoriquement

atteindre un débit de 200Mbits/s.

Dans notre version non bloquante, on doit allouer autant de vecteurs de réception
et d’envoi que le nombre de voisins car les échanges sont tous indépendants. En 2D
(Figure 5-6), a chaque itération, {2X8}16 messages sont prévus et peuvent étre transmis
au méme moment. Ainsi, le niveau de performance pourrait €tre rehaussé car aucune
barriere implicite ne synchronise les envois. Malheureusement, cela ne s’est jamais
concrétis€ en pratique. Les messages diagonaux ne font qu’empirer le trafic et
augmentent les temps de communication de 60%. L’implantation 3D avec ses 26 voisins
et ses 52 vecteurs d’échanges par processus devrait empirer ce phénomene. Une

méthode plus performante en 2D et en 3D était requise.
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Particules frontalieres du
sous-domaine central

O

Particules fantbmes
appartenant aux 8 sous-
domaines voisins

Figure 5-6 Echanges nécessaires pour une décomposition 2D

5.5.5 Le patron de communication SHIFT

Le patron de communication SHIFT est une stratégiec mentionnée par Clark
(1994) pour transférer efficacement les données entre plusieurs sous-domaines. Les
communications se font par blocs selon chaque axe de décomposition. Son avantage
principal est de rendre la construction des messages moins complexe. Le SHIFT permet
de transmettre 1’information chez le deuxiéme voisin dans une direction de fagon
indirecte et en limitant le nombre de messages. A la figure 5-6 qui schématise une
décomposition 2D, les particules frontalieres doivent étre transmises aux 8 voisins pour
que les contacts aux coins soient bien pris en compte. Avec le SHIFT, seulement 4

messages sont nécessaires :

- 2 messages dans la premiere direction

- 2 messages dans la deuxieme direction

Le processus débute par la sélection d’un axe de décomposition afin de
construire les deux messages de particules frontali¢res a envoyer. Le processus peut

alors recevoir de la gauche et de la droite et concaténer les particules fantdmes a la fin de
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son vecteur de particules. La construction du halo dans la deuxiéme dimension peut
commencer mais il faut boucler jusqu’a la fin du vecteur pour tenir compte des
particules fantdmes du premier halo. Cela permet de faire des déplacements vers les
sous-domaines diagonaux en deux étapes. L’implantation en 3D est évidente; il faut
construire les halos en tenant compte des 4 messages précédemment recus. Comme
mentionné plus haut, il est conseillé de conserver les particules sélectionnées dans les
tables (6) prévues a cet effet pour éviter de reconstruire les messages a chaque itération.
Pour que ces tables demeurent valides, chaque transfert doit s’effectuer dans I’ordre

initial de construction.

Les routines MPI pour I’envoi et la réception de messages peuvent étre
bloquantes ou non. Avec I'implantation de communications bloquantes, il faut étre plus
prudent afin d’éviter les interblocages. Pour éviter un interblocage avec deux voisins,
une politique « pair-impair » a été implantée. Généralement dans une décomposition
1D, les processeurs ayant un numéro pair commencent a recevoir pendant que les autres
effectuent leur envoi. Cependant, comme la décomposition est multidimensionnelle
(Figure 5-7), deux processeurs avec des numéros d’identification de parité identiques
peuvent se retrouver cOte a cote. Grace aux outils fournis par MPI_Cart, on peut donc

effectuer un test sur les groupes colonnes et lignes pour définir les paires.

Décomposition 2D avec 12 processeurs

1(2|3(4|5,6

71819 (10 (11 |12

1 2 3 4 5 6
Groupe colonne

1
2 Groupe ligne

Figure 5-7 Exemple de numérotation des processus pour une topologie 2D
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Cette méthode permet d’alterner les opérations d’envoi et de réception des
processus selon leur position dans la topologie. Aucun conflit n’est possible et les

communications se font les une a la suite des autres.

L’autre approche consiste a utiliser les communications non bloquantes. Cela
permet de combiner les avantages des envois non bloquants et la simplicité de la
méthode SHIFT. Cependant, puisque que I'ordre d’envoi des messages doit étre
conservé pour assurer la consistance des messages diagonaux, les échanges sont
contraints a trois barrieéres de synchronisation implicite. Le seul avantage est donc la

transmission de données en mode full duplex.

5.5.6 Résultats et choix du patron de communication

Apres quelques tests, nous avons décidé d’effectuer les communications a I’aide
de la méthode SHIFT en mode bloquant. Simple d’implantation, elle est plus
performante que toutes les autres approches qui utilisent les routines de transmission en

mode non bloquant.

Nous allons donc tenter d’expliquer cette différence notable entre les deux modes
de transmission. Pour y arriver, il faut comprendre comment I’implantation de MPI fait
la gestion des communications non bloquantes. Pour éviter I’interblocage, le systeme
doit alterner entre les liens, regarder les tampons de lecture et d’écriture et lire ou écrire
au besoin. Cette gestion est une dépense supplémentaire et son colit augmente avec le

nombre de messages simultanés.

Dans le cas du SHIFT non bloquant, nous avons €été surpris de remarquer une
légere dégradation des performances. En réalité, la possibilit€ de communiquer en mode
full duplex aurait dii compenser pour les colits de gestion supplémentaires. Il faut alors

se demander si I’implantation MPI exploite vraiment les 200Mbits/s disponibles.
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L’information a ce sujet est rarissime et pourtant les communications sont la clé d’une
implantation parallele efficace et il y a intérét a les minimiser par tous les moyens. Si les
communications non bloquantes sont gérées par un mécanisme qui alterne entre les
messages a la maniere d’un Round Robin, il ne peut y avoir deux messages a travers le
fil au méme moment. Le mode bloquant effectue les échanges séquentiellement mais au
moins, quand ils ont lieu, la carte est dédiée, il n’y a aucune interruption et le débit est

maximal pour la durée de I’opération.

Afin de mieux comprendre les performances des communications, nous avons
mis au point un petit test (indépendant de Powder3D) pour vérifier la bande passante
réelle. Le débit théorique des cartes Ethernet full duplex ne peut étre atteint en mode
bloquant. En réalité, il faudrait que 2 processus légers soient créés et se chargent de la
réception et de I’envoi séparément. Cependant, la fonction MPI doit étre « thread safe »,
pour qu’aucun conflit ne survienne entre ces processus légers. Ce qui est le cas de la
plupart des fonctions de MPI-1 et MPI-2, mais pas nécessairement de leur implantation.
Ces tests ont permis de faire ressortir quelques particularités au niveau des différentes
architectures. Pour pouvoir exploiter le mode full duplex sur Magnum, il est nécessaire
de lancer quatre processus pour effectuer les deux échanges simultanément (Tableau
5-1). Ce tableau confirme clairement que le mode non bloquant, peu importe le nombre
de processus, ralentit Iégerement le taux de transfert. Cependant, les communications
non bloquantes de I’implantation fournie par IBM permettent la transmission et la
réception a plein débit avec seulement deux processus, ce qui serait en pratique

avantageux pour Powder3D (Tableau 5-2).



Tableau 5-1 Taux de transfert pour Magnum

nombre nombre bande bande

de de pa§sante palssgnte

noeuds processus reglle theo_r 'que

(Mbits/s) (Mbits/s)
Bloguant 2 2 87 100
non-bloguant 2 2 87 200
bloquant 2 4 165,5 200
non-bloquant 2 4 164 200
bloquant 2 8 162 400
non-bloguant 2 8 158 400

Tableau 5-2 Taux de transfert pour les serveurs de calcul du réseau Etoile

nombre nombre bande bande

de de pa§sante pa’ssgnte

noeuds processus réelle théorique

(Mbits/s) (Mbits/s)
Bloquant 2 2 94 200
non-bloquant 2 2 182 200
bloquant 2 4 179 200
non-bloquant 2 4 179 200
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Enfin, nous avons repris ce test lorsque les processus font partie du méme
serveur et les taux de transfert sont excellents. Encore une fois, I’architecture IBM, plus
élaborée détecte si les processus sont physiquement situés sur le méme noeud et utilise
le bus mémoire de la machine a sa pleine capacité; les p630 d’IBM atteignent le niveau
treés respectable des 3.3 Gbits/s (Tableau 5-3). Dans le cas de Mpich sur Magnum, il ne
semble pas y avoir de transfert sur le réseau mais le débit maximal n’atteint pas la
norme pour un bus a 133Mhz, soit 1,1 Gbits/s. Evidemment, ces valeurs ne sont jamais
atteintes en pratique, mais nous sommes persuadés qu’il serait possible de faire mieux
avec une bibliotheque optimisée pour les systemes SMP. A ce sujet, une version pour

des systtmes a mémoire partagée de Mpich, installée par moi-méme sur le Regatta
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(Polaris), a permis d’obtenir des performances similaires a celles du POWERA4, et nous

espérons faire encore mieux lorsque les bibliothéques officielles d’IBM seront installées.

Tableau 5-3 Performances des communications MPI entre processus d’un méme noeud

bande passante | bande passante
réelle (Mbits/s) idéale (Mbits/s)

MAGNUM SMP (Mpich chp4) 468 1100
IBM POWER4 3300 4000
IBM Regatta (Mpich shmem) 3400 35 000

Nous avons discuté des raisons pour lesquelles la transmission de messages par
des routines non bloquantes doit &tre mise de c6té, du moins tant qu’elle ne sera pas plus
performante. Dans ce travail, en ce qui concerne Powder3D, les communications
bloquantes en mode full duplex ont été utilisées, mais grice a la modularité de la
méthode SHIFT, il est toujours possible d’activer le mode non bloquant. Avant de clore
le débat sur les communications full duplex, précisons qu’il est toujours impossible
d’exploiter convenablement les 2 cartes Ethernet disponibles sur chacun des nceuds de
Magnum. La création de 8 processus n’est d’aucune aide et le débit théorique de 400
Mbits/s n’est pas atteint (Tableau 5-1). Il faudra trouver une autre utilité a cette

deuxiéme carte, autre que de servir de piece de rechange en cas de panne.

Dans cet ordre d’idée, le projet MP_lite (www.scl.ameslab.gov/Projects/MP_Lite)
propose une petite bibliotheque de communication qui peut exploiter le « channel
bonding ». Cette technique permet de décomposer un message en blocs, de le
transmettre en parallele sur plusieurs fils a ’aide de plusieurs cartes réseau et de le
recomposer chez le destinataire. Dans le cas de la parallélisation de la DEM, nous
croyons que la quantité de données a échanger serait suffisamment grande pour noter
une amélioration des temps de communication due au « channel bonding ». Cependant,
mous croyons qu’il serait mieux de pouvoir envoyer et recevoir des deux voisins

simultanément.



5.6 Influence de la forme du domaine sur I'accélération

Une fois la parallélisation de notre code de simulation d’éléments discrets

réalisée et optimisée grace a la méthode SHIFT et les communications en mode

bloquant, I’étape suivante a consisté a comprendre les phénomenes reliés au parallélisme

qui causent des dégradations. Les premicres courbes présentées au début du chapitre

faisaient piétre figure, mais maintenant, nous pouvons simuler sur plus de 20

processeurs lorsque le probleme s’y préte. Cette section traitera de I'influence de la

forme du domaine de simulation pour une décomposition unidimensionnelle.
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Figure 5-8 Accélération pour différentes formes de domaine sur Magnum
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La figure 5-8 montre I'influence de la forme du domaine sur les accélérations
obtenues avec la version parallele de Powder3D. Ci-dessous, on retrouve les conditions

de simulation pour les courbes du graphique (Tableau 5-4).

Tableau 5-4 Description des arrangements présentés a la Figure 5-8

Courbe | Nb de particules | Configuration | Nb de particules fantdmes par frontiere
A 80000 800x10x10 100
160000 400x20x20 400

C 320000 200x40x40 1600

D 512000 80x80x80 6400

E 512000 80x80x80 6400

Ce graphique montre deux tendances : les domaines allongés ont le méme profil
tandis que le domaine cubique est plus difficile & paralléliser. Les courbes (A,B,C)
correspondent a des situations théoriques (A : un béton de 10cm par 8m). La
décomposition se fait toujours dans le sens de la longueur mais la quantité de particules
transférée change; en fait, elle quadruple a chaque cas (A,B,C). Ces courbes démontrent
que pour compenser I’influence de messages plus volumineux, on doit augmenter la
charge de travail en doublant le nombre de particules. Entre d’autres mots, il est
primordial d’avoir un probléme suffisamment imposant pour que le ratio entre les

calculs et les communications reste élevé afin d’obtenir de bonnes accélérations.

La courbe la moins intéressante (E) provient d’'un domaine cubique avec un
nombre de particules insuffisamment élevé par rapport au nombre de particules
frontaliéres pour espérer pour rejoindre les trois autres. En fait, au moins 250 000
particules supplémentaires auraient ét€ nécessaires pour y arriver. Sa jumelle (D) a
cependant une bien meilleure allure. Il s’agit en fait d’un autre phénoméne; un effet de
super linéarité causé par le manque d’espace mémoire sur un nceud de la station de

travail. Etant a court de mémoire vive, le processus en mode séquentiel doit utiliser la
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mémoire virtuelle sur le disque dur et tombe alors en état de « trashing » et le processeur
travaille avec une efficacité de 60%. A la section 5.10, nous reviendrons sur la relation
entre la mémoire vive et la décomposition de domaine. La courbe E est en réalité une
extrapolation de ce qui serait obtenu si les nceuds de Magnum possédaient assez de

ressources pour cette simulation, soit environ 800 Mo de RAM.

Enfin, les courbes fléchissent a partir de 12 processeurs car, dans les conditions
actuelles, il y a alors deux processus par noeud qui partagent la méme carte réseau. Les
temps de communication sont doublés, I’efficacité de la parallélisation diminue et les
courbes d’accélération écopent. Comme nous 1’avons dit a la section précédente,
I’utilisation de la deuxieme carte Ethernet serait avantageuse et permettrait d’obtenir de

meilleurs résultats.

5.7  Accélération pour décompositions multidimensionnelles

Les géométries des problemes a résoudre avec la méthode des €léments discrets
sont variées et elles sont rarement de la forme idéale pour une décomposition
unidimensionnelle. Avec seulement quelques processeurs, on peut se permettre une
décomposition dans le sens de la longueur, mais rapidement les tranches deviennent trop

minces et I’information est exagérément dédoublée.
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Figure 5-9 Facteur d’accélération pour une décomposition multidimensionnelle

sur la grappe Hamsun (sédimentation de 500000 particules)

La figure 5-9 confirme que décomposer selon plusieurs axes est la meilleure
chose a faire quand le domaine est compact. La quantité de données a échanger est alors
minimisée et, par conséquent, les calculs relatifs au dédoublement le sont aussi. La
courbe de la décomposition 3D fait bonne figure dans tous les cas sauf un. La grappe
Hamsun contient 32 processeurs, il est difficile de respecter les conditions d’une
véritable décomposition 3D. En fait, seul ’arrangement avec 27 processeurs (3x3x3)
possede un sous-domaine central avec 6 voisins donc 6 messages a transmettre. Dans ce
cas, la politique d’échange SHIFT, qui impose trois barricres de synchronisation
implicites, ralentit les calculs car les processus sont fréquemment en attente. A ce
propos, comme 1’a précisé Plimpton (1995), la décomposition de domaine selon
plusieurs axes permet de réduire le nombre de spheres transférées, mais cette
synchronisation entre les étapes du SHIFT vient, dans certaines situations, annuler les
gains obtenus par la décomposition multidimensionnelle. Pour une décomposition 3D

avec 8 sous-domaines (2x2x2), les processeurs au coin du cube n’ont que 3 voisins, donc
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6 messages a échanger. Ces conditions sont presque idéales et cela explique pourquoi
I’accélération 1’est tout autant. Le cube est une topologie de choix car, méme si le
nombre de particules est faible et le domaine de forme compacte, il permet généralement

des accélérations raisonnables.

Finalement, le partage de la bande passante par les nombreux processus (4) d’un
méme nceud accentue la dégradation des performances. Une optimisation possible a
notre application consisterait a limiter 1’influence de ces communications en tentant de

réduire la quantité de donnée transférée. C’est le sujet de la prochaine section.

5.8 Optimisations complémentaires pour la transmission des
données

5.8.1 Retour sur la distribution du calcul des forces

L’envoi et la réception de I’ensemble des propriétés de chaque particule
frontaliere fait en sorte que la transmission des messages devient une opération
d’envergure. Une astuce visant un compromis entre performance du réseau et puissance
de calcul pourrait offrir de meilleures accélérations lorsque le réseau est considéré
comme une source importante de ralentissement. Lors de la présentation de la
décomposition spatiale, nous avons mentionné qu’il existait aussi une technique de
distribution de la charge de travail en fonction des forces. Nous croyons qu’une telle
approche permettrait d’économiser sur la longueur des messages en envoyant seulement
les vecteurs de forces aux voisins. Au lieu des 16 mots double précision avec 1’approche

standard, cette stratégie ne nécessiterait que des messages de 6 mots double précision.

Malheureusement, la technique de distribution des forces appliquée a la DEM a
un inconvénient majeur : elle requiert plusieurs changements a 1’implantation actuelle

basée sur les halos. Cependant, on peut reprendre 1’'idée générale en I’adaptant a notre
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version; au lieu d’un échange de particules frontalieres, nous allons effectuer un transfert

des forces.

Dans cette approche, chaque processeur échange uniquement les forces
accumulées par les particules frontalieres. Cette méthode suppose qu’aucune paire de
contacts entre particules fantdmes n’est calculée. Elle reste valide jusqu’au prochain
rafraichissement des structures (qui nécessite un nouvel envoi du halo)(Figure 5-10).
Cette économie réseau doit en contrepartie étre compensée par un travail supplémentaire
pour le calcul du mouvement car chaque processus doit alors calculer la nouvelle vitesse

et la position de ses particules réelles ainsi que des particules fantdmes.

Décomposition de domaine Distribution des forces
standard
> communication (halo) r = =" communication (halo)
|
v I v
détection des contacts : détection des contacts
2 : 2
calcul des forces I calcul des forces
|
2 v
calcul du mouvement : communication (forces)
1 v
1

Au besoi L calcul du mouvement
u besoin ==

Figure 5-10 Décomposition de domaine avec communication des forces

Nos tests nous ont montré que pour une grappe comme Magnum, I’idée de
réduire les temps de communication de cette fagon est s€éduisante mais le colt du calcul
du mouvement des particules fantdmes est encore trop élevé par rapport a 1I’économie
réelle (Tableau 5-5). De plus, ces opérations supplémentaires contribuent a agrandir le
déséquilibre et augmenter les temps de synchronisation. Donc, I’implantation du

transfert des forces n’est pas concluante. Son utilisation pourrait offrir un gain seulement
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si le déséquilibre entre le débit et fréquence CPU est grand, c’est-a-dire quand la grappe
de calcul est composée d’unités de calcul dernier cri et que le réseau est encombré.
Puisque cette condition est rarement rencontrée en pratique, I’approche de la distribution

des forces, dans sa forme actuelle, perd littéralement tout intérét.

Tableau 5-5 Comparaisons des temps de transfert

Original Distribution Mode allégé
(16 réels) | 968 TOrCes |5 el
) (6 réels)
Temps calcul (s) 200 215 200
Temps communication (s) 23 14 17
Temps synchronisation (s) 11 15 12
Temps total (s) 234 244 229

5.8.2 Transferts allégés

Méme si la derniere technique présentée n’a pas €té retenue, il n’en demeure pas
moins qu’on a quand méme intérét a réduire la quantité de données a transmettre, a
condition de ne pas augmenter le travail requis. Présentement, dans Powder3D, on
dénombre 16 champs d’information par particule, mais il n’y en a que 6 dont la valeur
ne change pas entre deux itérations (par exemple le rayon et la masse). Donc, un
nouveau type de données (MPI_DATA_TYPE) a été implanté dans Powder3D. Ce type
de données est utilisé seulement pour la transmission des particules frontalieres et

concerne uniquement les données qui peuvent changer entre deux itérations successives.

L’économie réelle est faible mais les temps de communication sont réduits de
33%, ce qui est proportionnel a la nouvelle taille du message (Tableau 5-5). On en
conclut que la latence est négligeable parce que la quantité de données est suffisamment
grande. Ici, c’est la synchronisation implicite qui est néfaste. Comme nous 1’avons dit

plus tot dans ce chapitre, le test utilisé consiste en un bloc rectangulaire de densité



87

constante dont la décomposition crée des sous-domaines de charge équivalente. Nous
sommes plutdt décus de constater que méme si la charge est équilibrée, les temps de

synchronisation sont comparables aux temps de communication.

5.9 Validation et traitement des cas particuliers

Cette section traite de certains cas particuliers reliés a la parallélisation de la
méthode des éléments discrets. Une attention particuliere doit étre portée a ces petits

détails afin de rester le plus fidele a la version séquentielle.
5.9.1 Périodicité et décomposition de domaine

Lorsque des conditions aux limites périodiques sont imposées sur les frontieres
du domaine, un mécanisme doit gérer différemment les communications et legs de
particules. Le standard MPI gere les communications entre voisins de fagon appropriée
toutefois, nous devons effectuer la translation des particules hors limites. Dans notre
premiere version parallele, cette opération était effectuée immédiatement apres le calcul

de la position, avant les communications, ce qui causait quelques problémes.
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Sous-domaines Itération 1
1 2 3 ... N (vue locale du processeur 1)
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Apres N itérations la sphere rejoint le sous-domaine N

%. 4 Attention!

Figure 5-11 Exemple d’exécution paralléle erronée avec des conditions périodiques

A la figure 5-11, lorsque le changement des coordonnées (translation) pour
respecter les conditions périodiques est effectué avant I’opération du legs, la particule a
I’extréme gauche du domaine est transférée au domaine de droite car elle se trouve a
droite de la frontiere maximale au moment du legs de particules. Une erreur de cette
nature devient difficile a détecter car la sphere assignée a un mauvais sous-domaine finit
généralement par retrouver son véritable propriétaire aprés quelques itérations sans
perturber la stabilité du systeme de fagon significative. Cependant, lorsque le nombre de
processeurs est €levé, beaucoup plus d’itérations sont requises et I’espace réservé a cette
particule peut étre occupé lorsque cette derniere retrouve son véritable propriétaire. Un
chevauchement excessif sera détecté et la simulation devra étre arrétée. Heureusement,
au lieu de complexifier la boucle de construction du message dédié au legs de particules,
il suffit de reporter 1’opération de translation des particules qui dépassent les limites

périodiques apres celle du legs. Grace a cette modification qui n’implique aucun coit
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supplémentaire de traitement, la version parallele ne differe plus de la version

séquentielle.

5.9.2 Communication des contacts

Dans plusieurs modeles physiques et plus particulierement celui de Zhou et al.
(2001), duquel notre modele est inspiré, il existe parfois un lien entre les calculs de
I’itération courante et ceux de I'itération précédente. Dans la méthode des €léments
discrets, la force de frottement provient du déplacement tangentiel entre deux particules.
Un contact pouvant durer une dizaine d’itérations, il faut donc conserver I’information
pertinente reliée a chaque contact. Afin d’accélérer les recherches relatives aux paires de
vieux contacts, deux structures de données ont été définies afin de retrouver rapidement
les anciennes collisions ainsi que la valeur des forces de frottement cumulatives. Ces
informations sont conservées localement par les processus qui gérent les particules

impliquées dans une collision.

Evidemment, lorsqu’une sphére doit changer de sous-domaine, son nouveau
processus ignore tout des anciens contacts de cette particule avec les autres particules de
I’ancien sous-domaine. Pour €tre cohérent avec la version séquentielle, nous avons
réalisé qu’il faut accompagner chaque particule transférée de ces détails essentiels. Les
données relatives aux contacts entre cette particule et ses voisines et ceux entre les
triangles de la géométrie doivent faire partie des communications. Heureusement, le coit
de ces communications est minimal car les changements de sous-domaines ne sont pas
fréquents, ayant lieu soit lors du rafraichissement des sous-domaines ou lors de

I’équilibrage de tache dynamique (chapitre 6).

Enfin, un changement de sous-domaine pour une particule veut aussi dire un
changement de numérotation locale pour tous les processus impliqués. Les structures de

données ou sont stockées les références vers les particules en contact ne sont plus
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exactes. Comment retracer rapidement deux particules qui étaient réellement en contact
a l'itération précédente afin de trouver leurs nouvelles positions? Lorsqu’il y a
changement de sous-domaine, le seul moyen de suivre le déplacement d’une particule a
travers plusieurs sous-domaines est d’utiliser une numérotation globale. De cette facon,
un processus peut gérer une particule fantdme qui est devenue sa propriété en cours de
route. Pour accélérer les opérations reli€es a la numérotation des particules, une table de
références a ét€ créée. Cette structure de données permet de trouver la position d’une
particule dans le vecteur local a partir de son numéro unique (Tableau 5-6). Si cette

particule ne fait pas partie d’un sous-domaine ou de ses halos, cette table retourne -1.

Tableau 5-6 Exemple de table de références

Numéro unique de la particule | 1 2 3 4 5 6

Position dans le vecteur local 1 556 |2 -1 4 -1

5.9.3 Validation des résultats

Un long processus itératif couplé a une intégration avec un pas de temps trés
court est une situation idéale pour faire diverger deux simulations. En effet, une petite
différence au niveau de la troncature des derniers chiffres peut s’accumuler pendant les
milliers d’itérations et se propager jusqu’aux chiffres dits « significatifs ». Pour ces
mémes raisons, la version séquentielle et la version parallele de Powder3D peuvent

donner des résultats différents.

Le test pour valider la parallélisation par la décomposition de domaines est de
simplement comparer les fichiers des résultats finaux apres une durée raisonnable. Avec
la concaténation des halos, la numérotation locale de chaque processus est différente de
la numérotation locale de la version séquentielle. Les opérations ne se font plus dans le
méme ordre et les valeurs apres arrondissement différent; un écart est créé et s’amplifie

par la suite.
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Pour obtenir le méme résultat avec les deux versions, une derniére modification a
été nécessaire. 1l a fallu forcer I’ordre des opérations pour qu’il soit le méme en parallele
et en séquentiel. En utilisant la table de numérotation inverse (Tableau 5-6), chaque
processus impose un ordre précis pour toutes les opérations, que ce soit pour placer les
particules dans le quadrillage de localisation ou détecter les collisions entre elles.
Heureusement, cette modification a pu €tre implantée sans altérer les performances de

facon significative.

Les trois modifications présentées ci-dessus illustrent que si la parallélisation par
décomposition de domaine de la méthode des éléments discrets semble a priori plutdt
simple, elle doit €tre faite avec minutie afin de garantir la cohérence avec le code

séquentiel.

5.10 Parallélisation et mémoire vive

La parallélisation de la méthode des éléments discrets par décomposition de
domaine a comme but premier d’accélérer les temps de résolution des simulations. Un
autre objectif est de permettre I’exécution de problemes nécessitant une mémoire plus
grande que celle disponible sur un seul ordinateur. Essentielle pour stocker toutes les
données et le programme lors de 1’exécution, elle était jusqu’a tout récemment tres
dispendieuse. La parallélisation par décomposition de domaine permet de faire des
simulations qui ne peuvent étre faites sur un seul nceud. Par exemple, dans le cas de
Magnum et ses 12 nceuds de 512 Mo, il est possible de faire une simulation nécessitant

6 Go, ce qui dépasse largement les limites de I’adressage 32-bits conventionnel (4 Go).

Une utilisation judicieuse de la mémoire est donc primordiale pour pouvoir
traiter des problemes d’envergure. Trois modifications au code ont permis de réduire de

fagon significative la mémoire requise lors de simulations.
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5.10.1 Allocation et réallocation dynamique

L’allocation dynamique des vecteurs contribue a I’évolutivité aisée d’un code de
calcul. Pour n’utiliser que les méga-octets nécessaires, chaque processus doit maintenir
des vecteurs de taille minimale. Cependant, plusieurs tests doivent étre réalisés pour
éviter les dépassements lors d’un ajout. On peut bien siir créer un nouveau vecteur et y
copier I’ancien. On parle alors d’un compromis o on économise de la mémoire en

échange de cycles CPU supplémentaires pour la gestion des structures de données.

En effet, lors de la communication du halo, le nombre de particules regues et
envoyées est variable, donc les vecteurs de réception doivent I’étre aussi. Au début, ces
vecteurs étaient de longueur proportionnelle au nombre total de particules. Pour

identifier le nombre d’éléments recus, on pouvait utiliser les appels MPI suivants :

MPI_RECV(vecteur de réception , nombre_max, type, voisinl, tag, status)

MPI_GET_COUNT(status , type, nombre véritablement regu)

St on alloue dynamiquement ’espace mémoire pour toutes les structures de
données, il faut pouvoir prévoir le nombre de données a recevoir et réajuster le vecteur
en conséquence. MPI_PROBE permet d’obtenir cette information avant la réception. On

peut alors réallouer I’espace mémoire au besoin :

MPI_PROBE (status , voisinl)
MPI_GET_COUNT (status , type, nb a recevoir)
/* REALLOCATION SI NECESSAIRE */

MPI_RECV(vecteur de réception , nb a recevoir, type, voisinsl, tag, status)
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5.10.2 Réingénierie de structures de données

Dans le cas de Fortran 90, quelques types de données semblent plus colteux que
d’autres. Par exemple, les pointeurs NULL pour créer une liste chainée consomment
beaucoup trop d’espace. Au lieu des 8 octets prévus, 48 octets sont nécessaires méme si
la liste est vide. Dans notre premiere implantation de la DEM, le quadrillage de I’espace
était principalement basé sur un tableau 3D couplé a une liste chainée. A mesure que
I’on diminuait le rayon des particules, la taille de la grille devait s’ajuster et cela avait
pour effet d’augmenter de fagon cubique le nombre de cases du quadrillage.
Rapidement, cette grille pouvait nécessiter a elle seule jusqu’a 400 Mo de mémoire. Les
pointeurs ont été remplacés par une structure de données plus économique et tout aussi

efficace.

5.10.3 Décomposition de domaine appliquée aux données

La décomposition de domaine implique une distribution des données. Elle
s’applique principalement aux particules et indirectement aux contacts dont le nombre
par sous-domaine est réduit lorsque le nombre de processeurs augmente. Des économies
additionnelles sont possibles si on tient compte de cette décomposition de domaine au
niveau des structures de données relatives aux particules. Par exemple, le quadrillage de
I’espace peut devenir encore moins coliteux méme apres les changements précisés a la
section précédente. En effet, le quadrillage n’a pas besoin de contenir tout le domaine,
mais seulement le sous-domaine correspondant ainsi que 1’espace occupé par ses halos.
Toutes ces structures doivent étre dynamiques car lors d’un rééquilibrage par le

déplacement d’une frontiere, la taille des sous-domaines est modifiée.
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De la méme fagon, il est possible d’appliquer la décomposition de domaine aux
données relatives aux obstacles. Un processus n’a pas besoin du maillage de triangles en
entier, il peut donc sélectionner le « sous-maillage » correspondant a son sous-domaine.
De plus, cette décomposition du maillage permet de réduire le temps consacré a placer

les triangles dans le quadrillage des objets solides.

Dans le cas ou les frontieres sont représentées a 1’aide de particules, la
décomposition permet de réduire significativement le nombre de sphéres et la mémoire

requise pour les stocker (Figure 5-12).

Décomposer la géométrie peut toutefois comporter des risques si la géométrie est
mobile. Pour éviter une erreur de ['utilisateur, le systtme permet seulement une
décomposition unidimensionnelle selon 1’axe de rotation de I’objet mobile. Si cette
condition n’est pas respectée, un objet mobile peut changer de sous-domaine. Pour
I’instant, aucun mécanisme n’est prévu pour traiter ce cas spécial, ce qui peut entrainer
des erreurs lors de la détection de contacts avec la géométrie. Enfin, pour des raisons
similaires, le rééquilibrage par le déplacement de frontiéres requiert quelques
ajustements supplémentaires pour demeurer compatible avec la décomposition de la
géométrie; une solution serait de garder une copie de la géométrie originale afin de la

redécomposer selon la nouvelle position des frontieres.
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Figure 5-12 Décomposition de domaine sur deux processus appliquée a une géométrie
définie par des murs particulaires (au fond, ¢’est le sous-domaine du 2° processeur)

5.10.4 Economies réalisées

Pour une simulation d’écoulements granulaires a 250 000 particules, la version
parallele de Powder3D basée sur I’allocation statique des structures de données
nécessitait typiquement 400 Mo par processus. Avec a peine 512Mo de mémoire sur
chaque nceud, cette implantation ne pouvait ainsi tirer profit des deux processeurs
disponibles sur chacun de ceux-ci. Cette facheuse situation a été résolue a I’aide des
modifications discutées plus haut. Pour le méme type de probléme, I’espace requis est
maintenant de 100 Mo. Le graphique de la figure 5-13 montre la relation entre I’espace
mémoire par processus et le nombre de particules et de processeurs. Il permet évaluer

I’espace nécessaire pour une simulation.
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Figure 5-13 Graphique de la mémoire requise en fonction du nombre de particules et de processeurs

Avec la décomposition de domaine et son colit supplémentaire relatif au
dédoublement des données, deux processus requierent environ 380Mo pour un probléeme
avec 500 000 particules au lieu des 600 Mo en mode séquentiel. Des simulations de
taille plus importante sont maintenant possibles et non contraintes par les limites
individuelles des nceuds de la grappe. Cependant, comme le montre la figure 5-13, cette
réduction n’est pas linéaire. L ajout de processeurs permet de réduire les ressources
requises sur chaque nceud, mais les dédoublements atténuent la réduction. Une
évaluation du nombre maximum de particules pouvant étre traitées sur Magnum a été
réalisée. Nous considérons que le systeme d’exploitation prend 60 Mo et nous supposons
qu’il n’y a pas de permutation de mémoire sur les disques (memory swapping). Avec

225 Mo par processeur, la limite est donc de {24 X 165000} ~ 4,0 millions de
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particules. Pour en faire autant en séquentiel, un processeur 64-bits avec 4,6 Go serait
nécessaire. Aucune simulation de cette taille n’a encore été exécutée avec Powder3D

mais de telles simulations sont envisagées.

5.11 Macro-particules et parallélisation

8

La plupart des travaux de la littérature concernant la DEM ont porté jusqu’a
maintenant sur des écoulements de particules sphériques. Certaines équipes ont simulé
des écoulements de particules 2D non circulaires, mais l’extension a la troisieme
dimension n’est pas triviale. Comme il a ét€ mentionné au chapitre 4, la détection de
contacts entre les spheres et les triangles de la géométrie est une opération complexe et
tres cofliteuse. La détection de contacts entre deux objets non sphériques peut €tre plus
complexe (Hogue, 1998). Malgré€ les résultats encourageants de ce chapitre obtenus avec
notre version parallele, des simulations de plusieurs dizaines de milliers de particules
non sphériques seraient irréalisables dans des laps de temps raisonnables. Remarquons
que, grace a tous ces calculs supplémentaires, les modeles d’objets non sphériques

auraient au moins 1’avantage de présenter des courbes d’accélération exceptionnelles et

ce méme pour des simulations comportant peu d’éléments.

Pour remédier au probleme de la détection entre particules non sphériques, une
solution plus abordable a ét€ proposée par Gallas et Sokolowski (1993). Ces auteurs
proposent de combiner plusieurs spheres pour créer une macro-particule qui représente
un objet de la forme souhaitée. Ces sphéres peuvent s’interpénétrer ou non. Le modele
physique implanté doit bien siir gérer différemment les interactions entre ces spheres. En
particulier, il force les spheres composant une macro-particule a se déplacer en bloc
(solid-body motion) en utilisant une force d’attraction interparticulaire dont la valeur est
suffisamment élevée. Les avantages de cette technique sont que la détection de contact

n’a pas besoin d’étre modifiée selon la forme des particules et que sa complexité est
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linéaire en fonction du nombre de particules. L’inconvénient majeur de cette technique

est le nombre élevé de particules sphériques requis.

La création de grains composés de particules élémentaires a un autre avantage
qui n’est jamais mentionné. Au début de ce chapitre, nous avons dit que la largeur du
halo est directement proportionnelle au rayon de la plus grosse particule (2,1 x Rmax).
De cette facon, on s’assure que pour un mélange polydispersé, une collision entre deux
grosses spheres chevauchant deux sous-domaines voisins pourra é€tre détectée
normalement. Si on pousse cette situation a I’extréme (boules de billard entourées de
grains de sable), la parallélisation par décomposition de domaine n’est plus appropriée
(Figure 5-14). Gérer ces grosses particules avec une mémoire partagée virtuelle serait
alors une option, mais apporter des modifications majeures a un code uniquement pour
ces cas spéciaux n’est pas une solution idéale. L’utilisation de macro-particules permet
de contourner ce probleme. Des petites particules liées peuvent générer de plus grandes
tout en étant distribuables sur plusieurs sous-domaines. En effet, s’il n’y a aucune
interaction autre qu’une grande force d’attraction entre deux particules voisines faisant
partie de 1a méme macro-particule, rien n’empéche de fractionner une macro-particule
sur plusieurs processus tant que les sous-domaines voisins envoient dans leur halo les

particules adéquates.

Figure 5-14 Sédimentation de grains autour d'une sphére (ratio 35) (Ferrez, 2001)
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5.11.1 Implantation

Nous présentons ici le modele que nous utilisons pour modéliser I’écoulement de
macro-particules et qui permet une parallélisation efficace par décomposition de

domaine.

Le modele physique est trés simple. Au départ, il a €t€ question de prendre
directement le modele proposé par Ferrez (2001) et qui s’inspire de la dynamique

moléculaire et du potentiel V de Lennard-Jones :

V= Axanﬂ, aet f>0 Equation 5.4

ou x est la distance entre les centres de masses des deux particules voisines composant la
méme macro-particule. Malheureusement, trouver des valeurs intéressantes pour les
variables A et B a été plus difficile que prévu, les macro-particules créées étant tres

instables; une macro-particule pouvait s’effondrer ou se déformer au moindre choc.

Comme solution de rechange, un modele artificiel, moins « physique » a été
esquissé pour générer des macro-particules stables. Nous avons pris le modele pour les
collisions et lui avons apporté quelques modifications pour que les spheres se déplacent
en bloc. D’abord, pour les spheres d’une méme macro-particule, il n’y a plus de
frottement interne et il n’y a plus de vitesse de rotation. Comme d’habitude, une force
de répulsion est appliquée lorsque deux particules s’interpénetrent et une force de rappel
les retient aussitot. Les forces découlent de la méme formule que celle utilisée pour les
contacts ordinaires mais elles ne sont comptabilis€es que lorsque la distance est
importante. Précisions que cette implantation n’a pas été validée mais qu’elle donne un
comportement qualitativement acceptable. Des tests de validation sont prévus et portent

sur le débit de particules a travers un orifice et les corrélations de Beverloo (1961).
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Pour faire la gestion des contacts interparticulaires au sein d’une macro-particule,

deux propriétés ont été ajoutées a chaque particule :

1. Groupe (type de liens)
e 0 : spheére ne faisant partie d’aucune macro-particule
e | : spheére faisant partie d’une macro-particule

2. Objet_id : numéro de la macro-particule

La disposition des spheres qui forment les macro-particules est trés importante et
cruciale pour leur stabilité. Puisque les sphéres sont indépendantes entre elles, il est
impossible de garder une forme structurée et rigide si celles-ci ne sont pas empilées en
bloc. Une ligne de spheres n’est pas considérée comme stable car des forces extérieures

peuvent tordre la macro-particule correspondante.

L
a) b)

Figure 5-15 (a) Tétraédre de 4 sphéres et (b) exemple de mélange de macro-particules

Le tétraédre de spheres posséde les bonnes propriétés (Figure 5-15). En ajoutant
une sphere au centre de trois autres, on génere une structure stable. Rien ne limite cette
technique & 4 particules (le losange n’est d’ailleurs pas vraiment plus difficile a générer),

mais construire des formes complexes nécessiterait 'utilisation d’un outil approprié.
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Pour cette raison, un autre agencement a été développé, soit le cube (Figure 5-16).
Composé de 9 spheres, ce cube reste stable parce que la petite sphére empéche
I’écrasement de la structure. A partir de ce cube, on peut générer des boites de
dimension désirée. Il faut préciser que, contrairement a la figure 5-16, le rapport des
diameétres entre la sphere centrale et les autres est en réalité beaucoup plus faible en 3D,

soit a peine 18%.

Objet rectangulaire de base +
extension

Figure 5-16 Cube de 5 spheres

Toutes ces contraintes ne seraient pas nécessaires si notre algorithme de détection
était basé sur les triangulations de Delaunay. Ferrez (2001) combine sans difficulté sa
méthode de détection aux objets non sphériques. Le graphe reliant les particules est
toujours le méme mais certaines arétes du graphe sont immuables. Les opérations de
maintenance (FLIPS) ne sont plus nécessaires (Figure 5-17) et il s’agit en fait d’une
« constrained Delaunay triangulation ». L’expérience nous permet de croire que
’utilisation d’une structure de données semblable serait bénéfique. En plus d’aider a
conserver la stabilité des macro-particules en empéchant les déformations irréversibles,
un autre avantage de I’utilisation des triangulations de Delaunay est d’économiser sur la
détection de contacts entre les particules de 1’objet. Son inconvénient majeur est que
méme si elle implantable en 3D, elle demeure toutefois complexe. Au lieu d’implanter
les triangulations, nous avons donc préféré conserver dans une liste toutes les

interactions entre les particules composant les macro-particules.
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Liens
permanents

Triangulations
non contraintes

Figure 5-17 Utilisation d'un graphe pour la création d'une macro-particule

5.11.2 Performances du modele de macro-particules

Afin de démontrer que la création de particules non sphériques a 1’aide de
particules élémentaires est une stratégie performante, un test spécifique a été développé.
L’expérience consiste a laisser tomber 2 gros objets sur un lit de 50000 petites billes de
2.5 mm de rayon (Figure 5-18a). La premicre partie de I’expérience a comme but de
vérifier I’accélération maximale de la parallélisation en fonction du diamétre des deux
objets. Les deux objets sont représentés par des spheres dont le rayon est un multiple du

rayon des billes qu couvrent le plancher.

La deuxieme partie de I’expérience consiste a mesurer 1’accélération maximale
lorsqu’on varie la taille des objets. Cependant ces objets sont maintenant des macro-
particules créées avec des particules élémentaires de 2.5mm de rayon. Pour simplifier la
création des macro-particules, nous avons préféré utiliser des cubes méme s’ils
contiennent plus de particules qu’une macro-particule sphérique de taille équivalente
(Figure 5-18b).



103

Figure 5-18 Test pour vérifier 1'efficacité de la parallélisation avec des macro-particules

Accélération T(1)/T(P)
Accélération T(1)/T(P)
w

0 2 4 6 8 10
Nombre de processeurs (P) Nombre de processeurs (P)

a) b)

Figure 5-19 Accélération en fonction du modéele de représentation des gros objets
(Magnum, 50000+ particules)
a) Accélération en fonction du rapport de rayon elevé
b) Accélération en fonction de la dimension des macroparticules
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Lorsque plusieurs processeurs sont utilisés, les accélérations sont décevantes
pour la premicre partie de I’expérience. Cette dégradation est causée par |’obligation
d’élargir les halos pour permettre la détection de collisions impliquant les plus grosses
spheres. La quantité de données a échanger a chaque itération augmente et les temps
transfert diminue 1’accélération. Si ces spheres étaient encore plus volumineuses, la

largeur des halos limiterait aussi le nombre de processeurs utilisables.

L’utilisation de macro-particules rend la parallélisation par décomposition de
domaine beaucoup plus performante. L’économie au niveau de la quantité de données a
échanger est significative et I’accélération est excellente. Cependant, ces deux
graphiques sur I’accélération ne donne aucune information a propos des temps réels de
résolution. En fait, quand le diametre de 1’objet est petit, les temps séquentiels (non
présentés ici) sont semblables peu importe le modele de représentation des gros objets.
Cependant, avec un cube de dimension 16R, il y a beaucoup plus de spheres a gérer :
25000 pour les objets et 75000 au total. C’est 50% de plus que les 50002 particules du
mode de représentation standard. Le colt de traitement pour les spheres supplémentaires
de I’objet est €levé (Figure 5-20). L’exécution séquentielle est beaucoup plus rapide sans
macro-particules. Toutefois, la meilleure évolutivité permet de compenser pour le travail
supplémentaire occasionné par les 25000 particules du cube. En résumé, les macro-
particules n’offrent aucune contrainte a la parallélisation et permettent de simuler des

phénomenes plus complexes impliquant des particules non-sphériques.
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Figure 5-20 Temps de calcul avec et sans macro-particules
(rapport de rayon elevé Rmax /Rmin = 16)

5.12 Conclusion

La décomposition de domaine a été étudiée et présentée sous plusieurs aspects.
De nombreuses optimisations ont permis une implantation parallele efficace de la
méthode des éléments discrets. Nous avons abordé des aspects reli€s a la parallélisation
comme la stratégie d’échange SHIFT et la transmission full duplex. Apres avoir discuté
de ce mode de transmission, nous n’avons trouvé aucune solution pour I’exploiter
convenablement sur toutes les plateformes. Nous avons aussi constaté que la complexité
du modele physique implanté peut nuire aux accélérations parce qu’il oblige a
communiquer plus souvent; il faut toujours tenter de réduire en taille des messages au
maximum. Enfin, nous avons montré que I’utilisation de macro-particules faites de
spheres plus petites ne nuisait pas a la parallélisation et qu’il était trées avantageux

d’utiliser cette technique.
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La décomposition multidimensionnelle et les communications non bloquantes
ont €t€ abordées dans le but de réduire les colits de communication, mais en pratique le
déséquilibre de la charge entre les processeurs est souvent plus néfaste. Pour cette

raison, le prochain chapitre y sera consacré entierement.



107

6 Equilibrage dynamique de la charge de travail

Pour simplifier, nous avons supposé au chapitre précédent que la décomposition
initiale du domaine était parfaite, que la concentration était uniforme dans tout le
domaine, donc que la charge de travail de chaque processus était équivalente.

Cependant, les deux remarques suivantes sont importantes :

- Si on n’effectue que quelques milliers d’itérations pour vérifier
I’efficacité de la parallélisation, il est normal que la concentration ne varie pas assez
rapidement pour créer un déséquilibre majeur. Mais, dans le cas général, la
concentration peut varier. Il est possible qu’une décomposition initiale adéquate se

détériore et que la derniere itération en temps soit exécutée par un seul processeur.

- Lors de son achat, une grappe de calcul est souvent homogene. Pour un
travail donné et distribué équitablement, tous les processus devraient terminer au méme
moment. Toutefois, lorsque des nceuds sont ajoutés a la grappe, celle-ci devient la
plupart du temps hétérogene par ce que ces nceuds sont différents de ceux de la grappe
originale. Si les sous-domaines de calcul sont de méme taille, les nouveaux processeurs
plus rapides sont alors sous-utilisés, le goulot d’étranglement provenant des nceuds les

plus lents.
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6.1 Introduction a I'équilibrage de charge pour la DEM

Toutes les courbes d’accélération sont directement touchées par les inégalités de
charge. On peut formuler la loi d’Amdahl pour en tenir compte (Horoi et Enbody,

2001) :

_TIa _ T(1)
T(P) Tixo)
nxpP

Equation 6.1
+(1-) X T(])} +TComm+TCasParticulier

ou # représente la charge moyenne des processus. Sa valeur est comprise entre 1 et 1/P.
Au chapitre précédent, en supposant un équilibre parfait, n valait 1. Dans le pire des cas,
la valeur de # peut atteindre 1/P, ce qui veut dire qu’un seul processeur effectue tout le

travail.

Le role d’'un mécanisme d’équilibrage de charge est de garantir que la charge de
travail de chaque processus soit le plus prés possible de la charge moyenne. Ce contrdle
devient essentiel pour plusieurs types de programmes paralleles, peu importe
I’architecture. Il pose quelques problémes supplémentaires pour une grappe de calcul en
mémoire distribuée. Pour les applications paralleles, il y a deux situations

embarrassantes a corriger :

- les processeurs sous-utilisés, qui sont des ressources perdues qui ne contribuent
pas a accélérer les temps de calcul;
- le processeur le plus lent (ou le plus occupé) fait attendre tout le groupe de travail

car la complétude d’une itération sur ce sous-domaine est tout simplement plus

longue.

Au cours de ce chapitre, des techniques permettant 1’équilibrage dynamique de
charge pour la décomposition de domaine appliquée a la méthode des éléments discrets

seront présentées. Ces méthodes se distinguent par leur granularité. La premicre est
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basée sur la modification dans le temps de la décomposition de domaine, ou chaque
processus se voit attribuer un nouveau sous-domaine dont la taille dépend de la
puissance de ce processus ainsi que du nombre de particules. Cette méthode équilibre la
charge au niveau des particules, mais nous verrons qu’il est possible de procéder a cet
équilibrage selon une granularité plus grossiere, ce qui nous conduira a une deuxieéme
méthode. Enfin, le prochain chapitre sur la mémoire partagée introduira I’équilibrage

implicite au niveau des boucles.

6.2 Implantation de I'équilibrage dynamique de la charge

Avec le paradigme SPMD, ol chaque processeur posseéde un sous-ensemble de
particules en fonction de la décomposition de domaine, il existe deux facons
d’augmenter la charge moyenne de travail : I’équilibrage global ou local. Effectuer ce
type de travail globalement est complexe et implique beaucoup trop de communications.
Tl faut redéfinir toutes les frontiéres et échanger des données avec tous les voisins. A la
fin de ’opération, la charge de travail de tous les processus est équivalente a la charge
moyenne. Il y a un grand intérét a effectuer cette vérification le moins souvent possible
puisqu’elle cofite trés cher. Heureusement, des milliers d’itérations sont souvent
nécessaires avant qu'un véritable déséquilibre ne survienne pour un systeme ou la

charge a été bien distribuée au départ.

Dans le cas d’une décomposition géométrique de domaines pour des systémes
particulaires, 1’équilibrage local est plus approprié. D’abord parce que, de par la nature
discreéte du probleme, il est trés difficile d’obtenir un parfait équilibre en utilisant la
technique de 1'équilibrage global. De plus, le colt de I’équilibrage ne dépend pas du
nombre de processeurs parce que la vérification ne se fait qu’avec les voisins directs. Le
but de cette politique est d’améliorer I’utilisation des ressources dans I’immédiat. Plus

précisément, réduire I’importance des cas extrémes : en soulageant les processus plus
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occupés et en donnant progressivement plus de travail aux moins occupés. En pratique,
minimiser la charge de travail du processeur le plus occupé est suffisant (a court terme)
et devrait réduire le temps calcul lors des prochaines itérations. Quelques appels
seulement sont nécessaires pour réduire le déséquilibre a un niveau acceptable. De plus,
il est possible d’imiter un rééquilibrage global avec plusieurs appels successifs a
I’équilibrage local. Généralement, cette technique est efficace pour gérer de petits

déséquilibres, mais nécessite des vérifications fréquentes.

6.2.1  Vérification 3D de la charge

L’équilibrage dynamique de la charge de travail débute par une vérification, celle
de s’assurer, a une certaine fréquence, que la charge de travail individuelle de chaque
processeur est équivalente a la charge de travail moyenne. Comparer les temps
d’exécution moyen pour un nombre d’itérations reste la meilleure technique pour
comparer le taux d’utilisation de chaque processeur, méme si elle ne tient pas compte de
facteur externes tels que les entrées/sorties réseaux. Si cette information n’est pas
disponible, le nombre de contacts peut donner une approximation acceptable de la

charge a condition que la grappe soit homogene.

L’équilibrage local minimise les communications puisque chaque processeur
compare sa charge avec celle de ses voisins immédiats. Les décisions relatives au
déplacement des frontieres sont évaluées pour chaque sous-domaine et doivent étre
compatibles avec les décisions des voisins immédiats. Toutefois, dans le cas d’une
décomposition multidimensionnelle, tous les processeurs alignés sur un mé€me axe
doivent se concerter, sinon la communication des halos pour la nouvelle décomposition

deviendrait trés complexe (Figure 6-1).
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a) b)

Figure 6-1 Exemple de décompositions 2D
a) compatible avec la stratégie d’échange SHIFT
b) incompatible avec la stratégie d’échange SHIFT

Tous les processeurs de deux tranches voisines doivent donc arriver a la méme
conclusion : réduire la charge du processeur le plus occupé des deux sous-groupes. Des
opérations collectives permettent ensuite d’échanger rapidement [’information

pertinente, peu importe le nombre de processeurs par tranches.

Enfin, nous devons spécifier un écart acceptable par rapport a la charge
moyenne, sur lequel le mécanisme de vérification se base pour détecter un déséquilibre.
Puisque I’équilibrage est local, on ne connait pas directement la situation par rapport a la
charge moyenne. Pour éviter une situation en escalier (Figure 6-2), on doit ajuster
dynamiquement la valeur de 1’écart acceptable en fonction de la charge locale et de la

charge moyenne.

Situation équilibrée pour un équilibrage local

Ecart insuffisant entre

* les charges locales pour
justifier un équilibrage

Charge des
processeurs

Figure 6-2 Problématique de la définition d'un écart par rapport a la charge moyenne
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6.2.2 Information échangée lors d’un déplacement de frontiéres

Lors d’une vérification de la charge, la décision d’un processeur doit &tre
I’inverse de celle de son voisin. En cas de déséquilibre, les processeurs ayant décidé de
modifier leurs frontieres doivent communiquer. Puisqu’il s’agit de particules changeant

de sous-domaine (5.9.2), chaque transfert implique I’envoi de trois messages :

- Les particules changeant de sous-domaine;
- Les contacts inter-particulaires;

- Les contacts particules-triangles.

6.3 Efficacité du mécanisme de rééquilibrage de la charge

Le rééquilibrage basé sur le déplacement de frontieres est une fonctionnalité
essentielle pour un code de simulation d’écoulements granulaires a I’aide la DEM. 1l est
a noter que son utilisation n’est pas toujours bénéfique puisque tout rééquilibrage
implique un colt qui peut nuire aux performances de fagon plus ou moins significative

selon les cas.

La vérification fait partie des opérations relatives a la parallélisation et est
inexistante dans la version séquentielle (TCasParticulier). De plus, il faut choisir la
fréquence de vérification qui dépend du probléme a résoudre. Un mécanisme
automatique permettant d’ajuster la fréquence de vérification serait souhaitable mais
n’est pas du tout facile a mettre au point. Notre approche dans ce travail a proné la
flexibilité. Par exemple, pour un systeme ou le mouvement général se fait vers le bas
selon I’axe des z (par exemple, une sédimentation de particules), I’algorithme vérifiera
de moins en moins souvent la charge dans les autres directions car un déséquilibre dans

ces directions est peu probable.
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L’expérience a démontré qu’il ne fallait pas déplacer les fronticres de facon
drastique. Cette opération doit se faire graduellement pour éviter des situations

facheuses. La figure 6-3 illustre un événement courant qui arrivait lors des premiers

tests.
1¥ équilibrage
A
Charge des
processeurs
1 2 3 1 2 3

"/ 2™ gquilibrage
Figure 6-3 Exemple de cas pathologique pour 1'équilibrage de charge

Il s’agit du cas d’un processeur (#2) ayant une plus grande charge de travail que
ces deux voisins immédiats (#1 et #3). Réalisant qu’il est surchargé, il modifie ses
frontieres et communique de facon appropriée avec ses voisins. Malheureusement, apres
I’opération, les deux voisins se retrouvent avec significativement plus de particules. Ala
prochaine occasion, ils retourneront les particules au processeur (#2) qui se retrouvera a

nouveau surchargé.

Ce dernier exemple montre comment peuvent survenir les oscillations néfastes
qui contribuent a réduire I’efficacité de la parallélisation. Mentionnons que ces
oscillations sont inévitables si tous les échanges se font simultanément. La solution
implantée consiste a alterner les opérations d’équilibrage. Au besoin, on peut faire
jusqu’a 6 appels a la fonction load-balancing. Procéder ainsi augmente évidement les
colits de vérification, mais il s’agit du prix a payer pour éviter ces oscillations. Dans cet
exemple, modifier la largeur de la zone transférée serait une solution efficace. Toutefois,
a cause de la nature discrete des données, il est difficile d’ajuster automatiquement cette

bande et d’extrapoler une largeur a partir de temps de calculs des itérations précédentes.
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Trouver le banc d’essai idéal pour vérifier I’efficacité de nos algorithmes
d’équilibrage de charge ne fut pas simple. Dans les cas pratiques ou le déséquilibre est
néfaste, I’équilibrage dynamique ne réussit pas toujours a améliorer les performances de
facon significative. La sédimentation de particules est une simulation idéale parce que la
charge varie rapidement. Il est évident que le processeur dédi€ au sous-domaine le plus
bas deviendra surchargé si aucun mécanisme ne se s’occupe de déplacer les fronticres.

Cet exemple comporte quand méme quelques défauts.

Si on fait disparaitre le mur du bas qui supporte ’ensemble de particules
sédimentées, celles-ci débutent leur descente. Avec I'équilibrage dynamique, la frontiere
monte vers le haut! Ce phénomene est dii a I’entassement de particules qui se dilate. Le
nombre de contacts interparticulaires et les temps de calcul sur le processeur du bas
diminuent; il demande alors des particules a son voisin plus haut. Bien sir, aprés un
certain temps, le déplacement des frontieres finit par s’effectuer vers le bas pour suivre
le mouvement général des particules. Malheureusement pendant cette période, les
particules sont en chute libre et ne se percutent que rarement. Ainsi, les temps de calculs
sont minuscules et par conséquent, I’efficacité de la parallélisation chute elle aussi. Pour
pallier a ce probleme, les particules sont collées et ne peuvent bouger qu’en direction du
bas. De cette fagon, la détection et la résolution des contacts ont un cofit constant
pendant toute la durée de la simulation, ce qui permet de mieux évaluer notre mécanisme

de rééquilibrage dynamique.

Nous avons tenté de définir la fréquence idéale de vérification pour la chute d’un
bloc de 32000 particules (20x20x80). Nos résultats montrent clairement qu’il vaut mieux
un systeme de rééquilibrage qui vérifie trop souvent que pas assez (Figure 6-4). Avec 4
processeurs, nous obtenons une accélération maximale de 3,44 avec une fréquence de 20
(rééquilibrage a toutes les 20 itérations). Le cofit de vérification pour une décomposition
1D est faible car il est a peine plus coliteux de vérifier a chaque fois que I’occasion se
présente. A partir d’un multiple supérieur 2 30, le systéme ne peut toutefois rattraper les

fluctuations et le déséquilibre affecte considérablement I’efficacité. La deuxieme courbe
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reprend le méme test pour une décomposition 2D. Dans cet exemple, la décomposition
multidimensionnelle souffre d’un inconvénient supplémentaire : la forme du bloc est
trop allongée. De plus, avec une fréquence élevé (<10) cette perte de performance
provient de la vérification de la charge en 2D qui est plus cofiteuse car il doit y avoir un

accord entre les processus de chaque tranche, donc plus de communications.
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Figure 6-4 Accélération en fonction de la fréquence de vérification du rééquilibrage de charge
(bloc de 32000 particules en chute libre, dans un domaine de hauteur équivalente a 4 fois la hauteur
du blec (figure 6.5))
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Figure 6-5 Représentation du déplacement de frontiéres pour le probléeme de la chute d'un bloc



116

6.4  Equilibrage de charge et décomposition
multidimensionnelle

Une autre situation moins courante peut se produire et rendre 1’équilibrage
dynamique de charge completement inutile. Imaginons un carré ou les particules sont
réparties dans les deux coins opposés. Essayons maintenant de décomposer ce domaine
en 4 sous-domaines (Figure 6-6). Le taux d’utilisation des processeurs sera nul pour
deux processeurs tandis que les deux autres feront tout le travail (a). La charge moyenne
tout comme I’efficacité de la parallélisation seront de 50%. Dans un tel cas, I’équilibrage
dynamique basé sur la vérification locale aboutirait dans une impasse car le systeme
semble équilibré dans toutes les directions. Un systéme plus « intelligent », capable de
déplacer deux frontieres a la fois, pourrait au mieux réduire le nombre de processeurs

inutilisés a 1 (b).

Impasse Meilleure décomposition

(a) (b)

Forte densité Densité nulle

Figure 6-6 Exemple ol un systeme d'équilibrage de charge demeure dans une impasse

Evidemment, dans cette situation artificielle, une décomposition 1D aurait suffit.
Ce cas illustre tout de méme un probleme qui pourrait survenir dans le cas de géométries

irrégulieres. Nous avons démontré au chapitre 5 qu’il est souvent avantageux d’utiliser
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une décomposition multidimensionnelle. Cependant, on doit tenir compte de la perte

d’efficacité occasionnée par des processus en « chomage forcé ».

L’équilibrage de la charge par déplacement de frontiére peut donc &tre inefficace
dans le cas d’une décomposition de domaine multidimensionnelle. Alors qu’elle semble
évidente et efficace pour une décomposition 1D, nous venons de démontrer qu’elle pose
quelques difficultés pour les domaines avec des concentrations irrégulieres de particules.

Heureusement, il existe d’autres mécanismes pour rééquilibrer la charge.

6.5 Stratégie d’équilibrage pour des domaines irréguliers

L’exemple de la section précédente a illustré que le rééquilibrage dynamique de
charge peut étre compliqué pour des domaines de calcul irréguliers. Alors, que faire par
exemple dans le cas de géométries concaves oul des processeurs seront éventuellement
assignés a des zones vides? La littérature reste assez muette sur cette problématique
appliquée a la méthode des €léments discrets. Cependant, Henty (2000) mentionne une
autre fagon de réaliser le rééquilibrage dynamique de charge sans modifier les frontiéres
initiales. L’idée générale est de décomposer le domaine afin que le nombre de processus
soit plus €levé que le nombre de processeurs. On espere alors qu’en générant assez de
petits blocs a forte concentration, ils se retrouveront sur des processeurs qui €taient
inutilisés auparavant. Les sous-domaines vides seront eux aussi plus nombreux mais leur
charge pratiquement nulie ne devrait pas nuire de facon significative a la performance.

Cette création de processus supplémentaires a toutefois plusieurs inconvénients :

- Mémoire requise plus grande, d’ou I’importance de « rationner »;
- Plus de communications (heureusement, certaines sont nulles);

- Gestion d’un nombre plus €levé de processus par le systeme d’exploitation.
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Tous ces inconvénients seront toutefois rapidement oubliés si cette stratégie
permet une redistribution efficace de la charge et que le gain en performance compense
pour I’effort supplémentaire di a I’augmentation du nombre de processus. Il ne faut pas
oublier que sans cette stratégie, un pourcentage relativement important des processeurs
peut étre sous-utilisé (jusqu’a 50%). On peut donc envisager une meilleure utilisation de
tous les processeurs s’il y a un grand nombre de petits processus qui s’exécutent au
méme moment. La prochaine section discute de ’implantation et des conditions a

respecter pour rendre cette technique efficace.

6.5.1 Décomposition excessive du domaine

La décomposition cyclique du domaine « Block cyclic decomposition » de
Henty (2000) reprend indirectement I'idée de maitre-esclave avec de petits domaines
telle que présentée a la figure 2-7. Toutefois, le rdle du processus maitre est joué par le
systeéme d’exploitation qui, via I’ordonnanceur, distribue les taches sur les processeurs
libres. La plate-forme idéale pour un tel travail est I’ordinateur multiprocesseur
puisqu’un seul systeme d’exploitation doit gérer les processus sur ’ensemble des

processeurs.

Le premier test de performance relatif a cette technique a été€ de vérifier si la
création de processus MPI supplémentaires dégradait la performance du code de calcul
Powder3D. A titre de banc d’essai, nous avons utilisé une simulation parfaitement
équilibrée. L’ordinateur utilis€é (Hamsun) est un ordinateur multiprocesseur a 4
processeurs Xeon. Magnum peut €tre aussi utilisé car la charge est équilibrée, mais a
condition d’occuper pleinement et équitablement les processeurs de chaque noeud. Le
graphique de la figure 6-7 nous indique que la dégradation est de plus en plus importante

a mesure que le nombre de blocs (sous-domaines) augmente par rapport au cas standard
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de 1 bloc par processeur. Le dédoublement du calcul des forces est de plus en plus

important et le nombre croissant de messages sur le réseau amplifie le phénomene.
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Figure 6-7 Graphique de I'efficacité en fonction du nombre de processus

Il peut paraitre étrange que la courbe soit moins intéressante sur le Xeon que sur
deux nceuds de Magnum alors que le serveur Xeon a acceés a des communications quasi-
instantanées entre les processus MPI. Nous attribuons la faute au nombre exagéré de

processus qui encombrent un seul systeme d’exploitation.

Notre deuxieme test, pratique cette fois-ci, reprend le probleme de la chute libre
sur un seul nceud quadriprocesseur de Hamsun. En doublant le nombre de processus, on
crée 8 sous-domaines qui décomposent €quitablement I’espace total. De cette fagon, a
tout moment, il y a 4 processus toujours trés occupés et 4 autres qui ne le sont pas du

tout (Figure 6-8). Le temps total devrait alors diminué d’un facteur 2 par rapport a une
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simulation sans équilibrage de la charge. A la section 6.5.4, on comparera cette approche

a la méthode classique du déplacement de frontieres.

Aucun mécanisme de rééquilibrage Décomposition excessive
Rapport B/P =1 Rapport B/P =2

EiiE

% m%
—

eeses

Processeurs perdus en moyenne : 2 Processeurs perdus en moyenne: 0

Figure 6-8 Exemple de décomposition excessive pour un cas pratique

Evidemment, dans cette situation, tous les processeurs sélectionnés ont un
nombre identique de processus supplémentaires. Cependant, sur une grappe
d’ordinateurs 8 mémoire distribuée, rien n’assure a priori que tous les nceuds sont bien
occupés. Par exemple sur Magnum, imaginons un dés€quilibre majeur sur 4 processeurs
(2 nceuds SMP). Si les deux processus occupés sont sur le méme noeud, la stratégie de
décomposition excessive sera totalement inutile. Elle séparera les deux processus

occupés a 100% en 4 processus a 50% et il n’en résultera aucun gain.

La granularité inhérente a la décomposition excessive est trés différente de celle
inhérente au rééquilibrage par déplacement de fronticre. Au lieu d’équilibrer la charge
des processus en jouant sur la taille des sous-domaines, la décomposition excessive vise
a équilibrer la charge des noeuds en leur associant un nombre de processus de fagon a

obtenir un taux d’utilisation le plus pres possible de 100%. Deux approches sont alors
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disponibles pour effectuer le partage des processus. La premiére méthode, dite statique,
sera présentée mais n’a pas €té implantée. Elle nécessiterait beaucoup trop de
changements et resterait limitée a quelques types de simulations. L’autre méthode, dite

dynamique, est plus naturelle et beaucoup plus flexible, mais un peu moins performante.

6.5.2 Décomposition statique du domaine

La décomposition statique du domaine est possible si la géométrie est connue et
ne change pas. Cette méthode a comme premier inconvénient d’étre basée sur une
décomposition définie par I'utilisateur. Une grille de dimension N par M doit étre
spécifiée dans un fichier de parametres dédié a un groupe de travail de X*Y processus.
Une matrice définie manuellement par I’utilisateur permet d’associer automatiquement
plusieurs sous-domaines vides a un ordinateur et de distribuer équitablement les

processus occupés sur les processeurs libres.

r 111 S ”J,O/
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ity 0l1]0 L
_|il oBoEY
%OC% 0|10 /5@ /
ol 111 %;r o
Kﬂ \h\ Matrice définie (s/ O \}h\
2 processeurs par Putilisateur 6 processus vides
inutilisés (cases hachurées)

(cases hachurées) Aucun processeur perdu

a) b)

Figure 6-9 Exemple de décompositions pour 9 processeurs

a) Décomposition classique avec autant de processus que de processeurs
b) Utilisation de la décomposition excessive pour s’adapter aux géométries
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La figure 6-9 montre que 1’utilisation de la décomposition excessive statique peut
étre bénéfique. Dans cet exemple, les 9 processeurs sont utilisés pleinement alors que 2
sont perdus avec une décomposition standard a un processus par processeur. Cette
technique est intéressante pour des géométries non mobiles de forme quelconque, mais
beaucoup moins dans le cas de problémes ou la géométrie est variable ou la

concentration de particules varie beaucoup a I’intérieur du domaine de calcul.

6.5.3 Gestion dynamique de processus sur une architecture a
mémoire distribuée

Pour analyser la performance de la stratégie d’équilibrage basée sur la
décomposition excessive du domaine, nous avons effectué les premiers tests sur un seul
noeud SMP Xeon. La raison est simple : sur une grappe Beowulf, rien n’assure que les
processus occupés et nuls seront en tout temps bien répartis sur I’ensemble des noeuds.
En fait, la décomposition excessive est possible sur les systemes a mémoire distribuée
grace a des outils spécialisés permettant d’émuler un ordinateur 2 mémoire partagée. Les
deux produits évalués dans le cadre de ce travail sont BProc et OpenMosix, et c’est ce

dernier qui fut choisi pour les tests.

OpenMosix (www.openmosix.org) est un ensemble logiciel gratuit permettant
de créer une super machine virtuelle a partir d’une grappe Beowulf. Initialement, il était
la version a code source libre de I’application Mosix. Maintenant, il est développé de
facon indépendante et integre de nouvelles fonctionnalités uniques. OpenMosix est une
modification au noyau du systéme d’exploitation Linux permettant la migration des
processus a travers la grappe. Par exemple, sur un « Magnum OpenMosix », on peut
lancer 24 processus sur le nceud principal. Le systeme intégré détectera la surcharge et
22 d’entre eux seront migrés vers les autres noeuds non utilisés. Cette opération
comporte évidemment des colits d’entretien et de vérification mais permet, du moins en

théorie, une utilisation optimale des nceuds de la grappe.
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Le principal avantage d’OpenMosix est qu’il n’implique aucune modification au
code et est compatible avec MPIL. De plus, Openmosix définit son propre systeme de
fichiers partagés, omFS qui permet la gestion de fichiers et garantit la cohérence des

données lorsqu’il y a migration de processus.

Pour maintenir des charges équilibrées, un ordonnanceur permet la migration de
processus a travers la machine virtuelle. Les criteres pour le rééquilibrage sont
paramétrables par 1’administrateur. Selon le type d’application, OpenMosix peut soit
tenter de minimiser les entrées/sorties ou soit maximiser le taux d’utilisation des

processeurs.

6.5.4 Analyse de performance

Pour vérifier concrétement ’efficacité d’OpenMosix dans le contexte de notre
stratégie de rééquilibrage par décomposition excessive, le test de la chute
unidirectionnelle de particules présenté a la section 6.3 a été effectué sur Magnum. Deux
nceuds ont été reconfigurés pour supporter OpenMosix; quatre processeurs entrent en jeu
tout comme sur le serveur Xeon. Nous avons comparé la technique de la décomposition
excessive avec celle basée sur le déplacement de frontiere (Figure 6-10). Les tests ont
donc ét€ effectués sur un vrai systtme SMP (Hamsun) et un systtme SMP virtuel sous

OpenMosix (Magnum).
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Figure 6-10 Equilibrage de charge par les techniques de la décomposition excessive et de
déplacement de frontiéres

Avec 4 processus, on sait que, cumulativement, seulement 2 processus seront
actifs au méme moment (Figure 6-8); pas de surprise puisque nous obtenons une
accélération se situant autour de 1,8. Nous constatons que la décomposition excessive
avec 8 processus sur 4 processeurs Xeon de Hamsun est relativement performante.
Comme prévu, I’accélération est inférieure a celle obtenue avec le rééquilibrage par le
déplacement de frontiére en raison de la nature du probléme simulé (sédimentation de
particules). Ce résultat est tres encourageant car nous savons que la stratégie de la
décomposition excessive peut aussi étre utilisée avec des décompositions

multidimensionnelles qui sont mieux adaptées aux géométries complexes.

L’analyse des courbes de la figure 6-10 confirme que ce systeéme de rééquilibrage
par décomposition excessive n’est pas encore tout a fait au point. Lorsque les processus

sont pré-distribués sur les deux machines, le hasard fait bien les choses et I’accélération
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ne subit qu’une petite perte d’efficacité inhérente a un systeme plus complexe.
Cependant, lorsque tous les processus sont démarrés sur le nceud principal (cas non-
distribué), I’efficacité chute de fagon importante & mesure que le nombre de processus
augmente. Enfin, une tendance commune a toutes les courbes est leur fléchissement

expliqué par le colit croissant du dédoublement des calculs et des communications.

Pour mieux comprendre ces résultats, il faut regarder en détail comment
OpenMosix équilibre et migre les processus sur les machines de la grappe de calcul.
Le probleme vient du but premier d’OpenMosix, c'est-a-dire migrer des processus de
facon totalement transparente. Le systéme se charge de tout et il n’y a aucune
coopération avec les processus migrés. De cette fagcon, le programme n’a pas besoin
d’étre recompilé et lorsqu’un processus se déplace, tout doit se faire de fagon
transparente. Pour y arriver, OpenMosix doit gérer toutes les entrées/sorties du processus
migré. Le systtme de fichier omFS est d’ailleurs la pour ca. Par contre, les
communications réseaux doivent étre gérées de facon transparente. Pour chaque envoi
de messages par un processus migré, les messages sont acheminés au nceud de départ
pour ensuite étre réacheminées au processus receveur qui lui aussi peut avoir migré.
Deux intermédiaires peuvent étre nécessaires avant d’atteindre le véritable destinataire,
ce qui ajoute au temps systeme (overhead) de 1’application. Puisque Powder3D est une
application intensive au niveau des communications, I'utilisation d’OpenMosix a un
impact significatif sur les performances obtenues. Pour ces raisons, méme si la
décomposition excessive semble prometteuse, nous ne conseillons pas son utilisation sur

les grappes de calcul de type Beowulf gérées par OpenMosix.

6.5.5 BProc : outil de gestion de processus sur des grappes de
calculs a mémoire distribuée

BProc (Beowulf Process space) est un autre systeme permettant la migration de

processus. Méme si son rdle semble similaire 2 OpenMosix, son mode d’opération ne
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I’est pas. BProc permet la gestion d’une grappe de calcul avec une seule image contenue
sur le noeud principal. Lors du démarrage, les nceuds de calcul sont appelés a obtenir le
systeme d’exploitation via le réseau. BProc permet de créer un espace de travail unique
ol I’on peut observer tous les processus actifs sur la grappe. La grande différence avec
OpenMosix, c’est que la migration n’est pas transparente. BProc redéfinit quelques
fonctions systémes (fork par exemple) et le processus migré connait son emplacement
dans la grappe. Il peut alors communiquer directement avec son voisin dans la topologie.
C’est évidemment trés avantageux pour toutes les application qui doivent communiquer
constamment. Les temps systémes sont presque négligeables et par conséquent, il s’agit
d’une plate-forme idéale pour les applications de calcul de haute performance. Gréce a
son démon unique (ce qui limite les conflits probables), BProc est extrémement rapide :
la création de 15000 processus se fait en moins de 3 secondes (Hendricks, 2002). BProc
propose une API pour la migration de processus, mais aucun systeme n’est responsable
de I’équilibrage des processus. Pour y arriver, on peut éventuellement utiliser des outils-
logiciels du domaine public. ClubMask (clubmask.sourceforge.net) combine
I’ordonnanceur MAUI (supercluster.org/maui) a BProc et pourrait créer, du moins en

théorie, un systéme approprié pour I’exécution en mode parallele de Powder3D.

Apres toutes ces louanges, il peut €tre surprenant qu’aucun test n’ait été effectué
avec BProc. A I'instar d’OpenMosix, BProc ne requiert pas de modification au niveau
du code source et seulement une recompilation est requise. Malheureusement, Mpich
doit &tre aussi recompilée pour utiliser les fonctions de BProc. Mpich fournit
théoriquement une option de compilation pour supporter BProc, mais cette option
demeure introuvable (version 1.2.5). Nous devions donc nous en remettre a des systeémes
basés sur BProc incluant des versions pré-compilées de MPI (Scyld (www.scyld.com) et
Clustermatic (www.clustermatic.org)). Clustermatic, €tant gratuit, a été installé, mais
I’impossibilité de compiler avec Mpich et le compilateur Fortran d’Intel nous ont forcés

a abandonner cette idée.
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7 Programmation parallele en mémoire partagée

L’équilibrage dynamique de charge et des temps de transmission courts pour des
communications interprocessus a l’intérieur d’'un méme nceud sont deux raisons pour
lesquelles I’utilisation d’un ordinateur a mémoire partagée SMP peut étre avantageux

lors de simulations avec la DEM.

Comme Magnum possede 2 processeurs SMP par nceud, le développement d’une
paraléllisation hybride de la DEM, basée sur MPI et OpenMP, a €été envisagé dans ce
travail. Le compilateur Fortran 90 d’Intel supporte les directives d’OpenMP et c’est ce
compilateur qui a été utilis€é sur Magnum. Ce chapitre est consacré a 1’exploitation
efficace des ordinateurs multiprocesseurs de différentes architectures (Intel SMP, IBM

P630 et P690) afin de vérifier si ce mode peut devenir avantageux pour la parallélisation

de la DEM.

Avant de spécifier les détails de ’implantation OpenMP de la DEM, voici un
bref rappel de quelques directives qui doivent étre suivies pour effectuer une

parallélisation en mémoire partagée efficace d’une application :

1. Déclarer les variables de travail temporaires privées;

2. Faire attention aux modifications de variables partagées, deux acces
concourants pouvant entrainer la perte d’information. Il faut prévoir un
mécanisme qui préserve I’atomicité des opérations;

3. Paralléliser uniquement les sections qui valent la peine. La distribution
d’une boucle trop simple ou trop courte n’est généralement pas rentable.
Il faut penser que la création d’un nouveau processus léger (thread) et

I’allocation des variables privées entrainent des colts.
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7.1  Implantation de OpenMP

Plusieurs modifications ont été requises pour exploiter OpenMP mais comme
pour le cas de la parallélisation par décomposition de domaine, le programme peut
toujours s’exécuter en mode séquentiel. Pour déterminer ou il fallait ajouter les
directives OpenMP compilées, il fallait identifier les sections les plus prometteuses.
Puisque la plupart des boucles dépendent du nombre de particules, cette version de

Powder3D sera d’autant plus performante que la taille du probleme sera grande.

La version de Powder3D avec détection optimisée (voir section 4.2) contient les boucles

suivantes :
o Boucle de création de la liste des voisins;
o Boucle de détection des contacts en fonction de la liste des voisins;
o Boucle de calcul des forces;
o Boucle de calcul du mouvement des particules.

Ces boucles ont été initialement sélectionnées pour la parallélisation avec
OpenMP parce qu’elles ont été jugées suffisamment complexes. La boucle de création
de la liste des voisins a finalement été soustraite a 1’ensemble car elle n’est pas
cumulativement assez importante. Les autres boucles ont été parallélisées normalement,
en faisant attention de déclarer les variables privées (environ une vingtaine) et de forcer

certaines opérations critiques a s’exécuter en mode d’exclusion mutuelle.

Les premiers tests sur deux processeurs n’ont pas offert des taux d’efficacité
raisonnables. Une revue de littérature nous a permis de découvrir un texte fort
intéressant sur la parallélisation d’un code d’éléments discrets avec OpenMP (Labarta et
Henty, 1999). Cet article décrit I'implantation d’un code parallele et les difficultés
reliées au paradigme de mémoire partagée. Il est mentionné que le goulot d’étranglement
de la méthode des éléments discrets se situe au niveau de la sommation des forces de

collision. En effet, il peut y avoir conflit lorsque deux processus veulent modifier la
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méme entrée du vecteur des forces (voir pseudo-code ci-dessous). Nous présentons ici
trois approches qui garantissent la cohérence de ce vecteur lors de la sommation des

forces. La boucle en question a la forme suivante :

Pour 1 a N (Nombre de contacts)
Particlel = contact.particlel
Particle2 = contact.particle2
Force = Calcul_force(Particlel, Particle2)
Force(Particlel ) = Force(Particlel) + Force

Force(Particle2) = Force(Particle2) - Force

Puisque des références a la Particule2 pourraient se retrouver sur plus d’un
processus parallele, il faut empécher la perte d’information qu’occasionneraient deux
acces simultanés au vecteur Force. La premiere méthode, la plus simple, est de créer une
zone d’exclusion mutuelle a I’aide des directives CRITICAL ou ATOMIC. La cohérence
est assurée mais les processeurs ne font qu’attendre que le verrou soit levé€. Les tableaux
7.1 et 7.2 ci-dessous montrent les données recueillies par I’outil de profilage (gprof)
pour les exécutions en séquentiel et en parallele sur un nceud de Magnum. Méme si cet
outil n’est pas tout a fait approprié pour étudier un programme parallele (a2 cause du
nombre d’appels différent dans chaque cas), il est clair que I’implantation OpenMP sur
Magnum souffre sérieusement du probleme des verrous. Le temps perdu a attendre la
levée du verrou (fast_lock) annule la réduction des temps de calcul de pow.A et

contact_resolution obtenue grace a la parallélisation.
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Tableau 7-1 Profil de I’exécution séquentielle de Powder3D
(Sédimentation 5000 particules)

% Self

time |Seconds |calls Name

27.91 | 54.28 800 | contact_resolution_
15.09 [29.35 pow.A

6.33 |12.31 FixFree

5.88 |11.44 Alloc64

5,63 |10.95 __mcount_internal

Tableau 7-2 Profil de I'exécution paralléle en mémoire partagée de Powder3D
(Sédimentation 5000 particules)

% Self

time |Seconds [Calis Name

42.92 (142.45 __fast_lock

11.64 | 38.63 1293 | _contact_resolution__103__par_region0
6.42 |21.29 __mcount_internal

5.84 119.39 pow.A

5.19 |17.23 Alloc64

Une deuxieme méthode, la réduction de vecteurs, permet de faire mieux. En
déclarant un vecteur d’accumulation de forces privé pour chaque fil d’exécution, aucune
barriere pour gérer la section critique n’est requise. Cependant, il faut prévoir un
mécanisme pour combiner les vecteurs a la fin de la boucle. La réduction de vecteurs
devait étre standardisée dans la version 2.0 de OpenMP, mais aucune des implantations a

notre disposition ne la supporte. Nous 1’avons donc implantée manuellement.

Une troisieme méthode, qui constitue la contribution principale de Labarta et
Henty(2002), est I’élaboration d’un agent inspecteur/exécuteur. Lors de la premiére
itération, I’inspecteur stocke les conflits potentiels et définit des intervalles ol aucune
section critique n’est nécessaire. Par la suite, a I’exécution, les verrous CRITICAL sont
utilisés selon les besoins. Cette méthode dynamique permet de gérer les quelques cas
problématiques sur les millions d’opérations reliées a la sommation des forces de
contact. Les résultats obtenus sont étonnants, 1’inspecteur/exécuteur offre un taux

d’efficacité supérieur, indépendamment de [Parchitecture (CRAY T3D, SUN
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UltraSparc2 et COMPAQ SMP). 1 serait tentant d’implanter une technique semblable
pour accélérer la sommation des forces. Cependant, comme nous le verrons a la section
7.3, les gains de performances escomptés en fonction de sa complexité d’implantation
sont plut6t faibles et nous avons préféré utiliser seulement la méthode de la réduction et

du verrou.

7.2  Optimisation de la version OpenMP de Powder3D

Une fois I’'implantation de base OpenMP réalisée, on doit généralement optimiser
plus finement le code. En effet, la programmation dite « naive » par la parallélisation des
boucles donne rarement des résultats exceptionnels (Krawezik et Cappello, 2003).
L’utilisation de directives spécialisées est conseillée. Certains changements, parfois trés
simples, peuvent permettre de diminuer le colit des verrous. Powder3D a été restructuré
en fonction de OpenMP pour permettre I’exécution parallele de processus légers.
Puisque les opérations a distribuer doivent étre suffisamment complexes, il a été
nécessaire de créer des boucles plus longues. Par exemple, la détection des contacts et le
calcul des forces ont ét€ fusionnés. Désormais, le code comprend trois boucles

principales :

o) Boucle de création de la liste des voisins;
o) Boucle de résolution des contacts;

o Boucle de calcul du mouvement;
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et le pseudo-code de la boucle de résolution des contacts est donné par :

Pour 1 a N (Contacts Potentiels)
Particlel = contact_potentiel.particlel
Particle2 = contact_potentiel.particle2
Si ( collision) alors

Force = Calcul_force(Particlel, Particle2)

/* MECANISME D’EXCLUSION */
Force(Particlel ) = Force(Particlel ) + Force
Force(Particle2) = Force(Particle2) — Force
/* MECANISME D’EXCLUSION */

Par exemple, voici quelques chiffres typiques pour ces opérations. La recherche
par quadrillage identifie premierement 200 000 paires de particules rapprochées.
Ensuite, environ 60 000 sont sélectionnées pour créer une liste temporaire de contacts
potentiels, parmi lesquels il peut y avoir jusqu'a 20 000 contacts réels. Procéder ainsi est
tres avantageux pour un programme parallele en mémoire partagée. Pendant que certains
processus parcourent la liste de collisions potentielles, un autre processus peut écrire
dans le vecteur de forces sans avoir a attendre la levée du verrou. Le nombre de conflits

en écriture est diminué.

Pour optimiser davantage, on doit aller jusqu’a restructurer I’ordre d’exécution
de certaines fonctions. Grice aux balises de sections (SECTION, SECTIONYS), il a été
possible d’effectuer la détection de contacts particule/particule et la détection de
contacts particule/mur a 1’aide de deux processus légers indépendants. Cette astuce est
évidemment limitée a deux processus, une situation idéale pour Magnum.
Malheureusement, les temps de calcul pour ces deux opérations sont rarement
identiques, ce qui fait en sorte qu’un des 2 processeurs peut demeurer inutilisé pendant
une longue période. On peut faire mieux en créant une seule région parallele composée

de plusieurs boucles consécutives. Ce travail a été effectué en collant I’étape de
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résolution des contacts avec celle du calcul du mouvement. Cette optimisation a

contribué a réduire le cofit associé a la création de processus paralleles.

Enfin, un autre point important consiste a s’assurer que le travail est bien
distribué et que la synchronisation des processus légers n’est pas trop cofiteuse. En
mémoire partagée, le rééquilibrage ne se fait pas par le déplacement de frontieres.
Certaines directives permettent de mieux distribuer le travail effectué dans les boucles.
La parallélisation consiste a distribuer par blocs la liste de contacts potentiels aux
processus légers. La directive SCHEDULE permet d’optimiser la répartition afin de
sauver quelques millisecondes perdues lors de la synchronisation. Les politiques de
répartition DYNAMIC et GUIDED ont été comparées mais aucune ne s’est démarquée
suffisamment pour la conseiller. Cependant, la politique GUIDED ne demande pas
d’intervention de la part de I’utilisateur. Elle s’adapte donc mieux a toutes les situations.
Par contre, précisons que, puisqu’il s’agit de contacts potentiels, la distribution statique
(STATIC) est proscrite car la charge de travail n’est pas forcément équilibrée entre deux

blocs de longueur identique.

7.3 Résultats

L’efficacité d’une implantation OpenMP doit étre évaluée lorsque le nombre de
contacts est grand. En effet, pour espérer un gain, les boucles doivent étre suffisamment
longues. Pour des fins de comparaison, nous avons aussi effectué quelques tests sans
protection (verrou) du vecteur des forces afin d’observer I’accélération maximale dans le

cas utopique d’un mécanisme de verrou idéal.

En ce qui concerne Magnum, nos changements n’ont pas eu d’impact. Tout

comme nos résultats précédents (Tableau 7-2), ces nouveaux tests ont confirmé que la



134

plateforme Intel SMP ne permet pas d’obtenir de résultats intéressants, peu importe la
taille des boucles. En effet, lorsqu’il y a peu de contacts (Tableau 7-3 et 7-4), on constate
que, comme prévu, le cofit des verrous (_fast_lock) est relativement minime. C’est plutot
I’influence de la synchronisation des processus qui est importante (kmp_wait_sleep).
Pour mieux comprendre les difficultés de la parallélisation OpenMP sur Magnum, il
faudrait utiliser un outil tel le Vrune Parallel Optimiser™ d’Intel. Cet outil pourrait

fournir des informations plus précises sur I’exécution paralléle.

Tableau 7-3 Profil de ’exécution séquentielle pour un petit probléeme
(5000 particules, () contact)

% Self

time |seconds |Calls Name

23.64 | 4.31 800 | contact_resolution_
17.88[3.26 pow.A

6.36 [1.16 Free64

5.81 [1.06 Alioc64

5.54 |1.01 FixFree

5.27 {0.96 __mcount_internal

Tableau 7-4 Profil de I’exécution OpenMP pour un petit probleme
(5000 particules, 0 contact)

% Self

time |[seconds |Calls Name

32.29(6.47 __kmp_wait_sleep

11.33]2.27 1252 | _contact_resolution__103__par_region0
10.48|2.10 pow.A

7.63 [1.53 __kmp_static_yield

599 [1.20 __fast_lock

3.44 |0.69 __kmp_x86_pause

Suite a ces résultats décevants, nous avons décidé de ne pas utiliser OpenMP sur
les plateformes Intel. Heureusement, la portabilité de la version OpenMP de Powder3D
nous a permis de faire des tests sur Polaris. Avec ses connections ultra-rapides et sa
bande passante uniforme pour les 16 processeurs, nous nous attendions a une réduction

des temps de synchronisation et une meilleure efficacité. Nous présentons au tableau 7.5
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un résultat de profilage ol nous pouvons constater que, contrairement a Magnum, le colit

des verrous est tres faible (pthread_mutex_lock) pour les sections critiques.

Tableau 7-5 Profil d'exécution sur Polaris en mode openMP
(verrous CRITICAL, 500 000 particules)

%time | Seconds | Calls Name

221 [115.45 996193762 | ._pow [4]

18.9 198.50 .__mcount {6]

15.7 |81.75 780641723 | .loginner2 [7]

15.1 [78.93 780641723 | .expinner2 [8]

9.7 50.52 80 | .contact_resolution [3]
2.9 15.03 184352000 |._sin [9]

2.5 12.93 523456000 | .modulus [5]

1.9 9.96 184352000 | ._acos [12]

1.9 9.91 .gincrement [13]

1.8 9.19 676608000 | .cross_product [15]
1.1 5.53 80 | .motion_eqns_calc [10]
0.4 1.96 .__stack_pointer [22]
0.3 1.78 3120008 | .cvtloop [23]

0.2 1.16 .call_pthread_init [25]
0 0.02 3194476 | .pthread_mutex_lock[47]

La courbe d’accélération pour une sédimentation de 390000 Particules, 1.2
millions de contacts est qualitativement acceptable (Figure 7-1). Cette implantation
OpenMP permet d’obtenir une accélération de 2,6 pour 4 processeurs. C’est évidemment
plus faible que la décomposition de domaine mais cette implantation en mémoire
partagée avec OpenMP devrait mieux se comporter dans des situations réelles ou la

charge est déséquilibrée.
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Figure 7-1 Accélération pour I’exécution en paralléle sur Polaris

Nous remarquons ainsi que 1’utilisation de la réduction est plus performante que
la section critique seulement lorsque le nombre de processus est élevé car il y a plus de
conflits pour I'unique verrou. Avec peu de processeurs, la différence entre les versions
avec ou sans verrous est petite. Pour cette raison, ’implantation d’un agent
inspecteur/exécuteur ne nous semble plus primordiale. Sur la figure 7-2, nous avons
comparé nous résultats a ceux obtenus par Henty (2000) pour les architectures Compaq
et SUN. On voit que le P690 se comporte bien puisque I’efficacité de notre implantation

se situe entre les deux meilleures courbes de ce dernier.
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Figure 7-2 Efficacité de la parallélisation OpenMP sur Polaris

Comme pour la méthode de parallélisation en mémoire distribuée, nous avons
constaté qu’augmenter le nombre de particules fait mieux paraitre la parallélisation car
on modifie indirectement la longueur des boucles. Nous pensions que I’utilisation des 32
Gigaoctets de Polaris permettrait d’exploiter les 16 processeurs et d’obtenir des taux
d’efficacité satisfaisants. Cependant, lorsque les besoins en mémoire dépassent 1,5
Gigaoctets, le nombre important d’accés & cette mémoire dégrade les performances et

semble étre la cause du ralentissement de I’exécution parallele.

La parallélisation en mémoire partagée d’une application basé€e sur la méthode
des éléments discrets est somme toute assez triviale, trés portable, et son efficacité avec
peu de processeurs est parfois comparable a I’approche distribuée. Mais pour combiner
tous ces avantages, il faut mettre le prix. Les défis techniques pour construire des
architectures a mémoire partagée sont plus grands que dans le cas d’architectures a
mémoire distribuée. Le colit de ces superordinateurs varie de fagon non linéaire avec le
nombre de processeurs. Généralement, les grappes de serveurs SMP sont avantageuses

car elles offrent le meilleur des deux paradigmes a un co(t plus raisonnable. Une étude

succincte de ces systémes hybrides (supportant le modele mémoire distribuée entre les
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noeuds via le réseau et le bus mémoire entre les processeurs de ces derniers) complétera

ce chapitre sur la méthode des éléments discrets et I’architecture 8 mémoire partagée.

7.4 Parallélisation hybride appliquée a la méthode des
éléements discrets

L’utilisation des deux paradigmes de programmation paralleles permet, du moins
en théorie, de combiner le meilleur des deux mondes. On peut alors profiter des
avantages des ordinateurs multiprocesseurs et de I’évolutivité des grappes de calcul. Le
mode hybride ne requiert aucun changement puisque les deux techniques de
parall€lisation sont indépendantes et facultatives (Figure 7-3). En effet, la décomposition
de domaine nécessite des communications au moyen de MPI qui sont réalisées avant

d’effectuer le calcul des forces et du mouvement, les deux boucles parallélisées avec

OpenMP.

Communications — MPI

Création de la liste des voisins
(Détection de contacts)

-

Résolution des contacts

‘ ‘ ‘ —  OpenMP

Calcul du mouvement

] |

Figure 7-3 Modeéle hybride pour un code DEM
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Les performances avec OpenMP sur les systeémes Intel SMP étant trop faibles, le
modgle hybride a été évalué sur les serveurs de calcul du Réseau Etoile (P630) et sur le
P690. Cependant, nous avons rapidement réalis€ que sur ces plateformes, 1’approche
hybride n’obtiendrait jamais de meilleurs temps que ceux obtenus avec |’approche
distribuée. Pour le P690, inutile de comparer : une implantation de Mpich optimisée
pour la mémoire partagée, rend ce dernier trés efficace pour la décomposition de
domaine. L’efficacité de la version OpenMP est toujours surclassée, peu importe le
nombre de processus. Les résultats sur les serveurs POWER4 du Réseau Etoile sont un
peu mieux a condition bien siir d’utiliser des nceuds différents pour chaque processus
MPI afin que les communications entre les processus ne reposent pas sur des
communications quasi-instantanées intra-serveurs mais passent par le réseau.

L’implantation hybride est dans le meilleur des cas 10% moins performante (Figure

7-4).

7
6 —eo— MPI seuiement P )
a " |
5 51" —w—MPl et2threadspar [ T T
F 4 | processus |
5
B3
Q
[&]
- G [ SR —————

0 . .

0 1 2 3 4 5 6 7 8 9

Nombre de processus (P)

Figure 7-4 Efficacité du mode hyride sur le Réseau Etoile (P630)
(sédimentation de 125000 particules (50x50x50))

Il y a selon nous deux situations prometteuses pour la parallélisation hybride. La
premiere application concerne les problémes ou I'utilisation de décompositions

multidimensionnelles devient intéressante quand les sous-domaines générés par une



140

décomposition unidimensionnelle sont trop minces. En effet, gridce a I’'implantation
hybride, il n’est plus nécessaire de décomposer les tranches obtenues par cette derniere
dans les autres directions. La décomposition peut étre faite selon un axe, générant donc
moins de messages. L’équilibrage de tache est implicite au niveau des boucles et un
mécanisme de déplacement de frontieres tres efficace en 1D pourrait étre appelé au
besoin. En reprenant ’exemple de la section 6.4 qui avait introduit la décomposition
excessive, nous montrons a la figure 7-5 que I’approche hybride peut profiter d’un

déséquilibre dans une direction secondaire.

7 Accélération pour 4 processeurs
A - Décomposition 2D (MPI) 02

Concentration =

faible de V /
particules A

Concentration

V élevée de
// levée d

/1 particules

Accélération pour 4 processeurs
Décomposition 1D MPI+OpenMP : ~4

N\

7

Figure 7-5 Situation artificielle oi1 le mode hybride serait plus performant

Le deuxiéme champ d’application prometteur pour la parallélisation hybride
concerne les programmes s’ apparentant aux données répliquées. Nous ciblons plus
particulierement la parallélisation de modeles particulaires se situant entre la DEM et la
dynamique moléculaire. Lorsque les forces ont une plus grande portée et ne nécessitent
pas de contacts, les halos doivent €tre €largis. Le graphique de la figure 7-6 montre que
I’efficacité de la décomposition de domaine diminue en fonction de la port€e pour des

forces de type colloidal. Le gain est faible mais mesurable.

L’approche hybride limite les inconvénients des problemes de données

répliquées car elle requiert moins de communications. En plus de limiter la quantité de



141

données a transmettre, la mémoire requise par la duplication des données est réduite par
I’utilisation de la méme information par les processus légers. Le gain par rappoft a une
exécution MPI pure reste toutefois limité. Par contre, si I’efficacité de I’implantation en
mémoire partagée est améliorée, le mode hybride pourrait devenir exploitable pour des

cas pratiques réels.
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Efficacité par rapport a MPI -4

Figure 7-6 Efficacité du mode hybride en fonction du rayon d'action par rapport a 4 processus MPI
(Réseau Etoile)

Les résultats précédents ne nous permettent pas de recommander |’utilisation de
la version OpenMP. Son évolutivité ne peut se comparer a I’implantation en mémoire
distribuée. Néanmoins, cette section a soulevé une problématique importante. Le
développement d’un mécanisme pour mieux gérer les acces irréguliers a une structure en
mémoire partagée est un défi qu'on peut retrouver dans plusieurs applications
scientifiques parallélisables en mémoire partagée. Il est donc primordial de continuer a
rechercher une solution efficace a ce probleme. Dans le cas de Powder3D, la

parallélisation hybride doit étre explorée plus sérieusement. Nos tests démontrent qu’une
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implantation OpenMP plus efficace sur les plateformes SMP bon marché pourrait €tre

avantageuse lors de 1’ajout des forces a long rayon d’action a notre modele.
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8 Conclusion et perspectives

8.1 Conclusion

Dans ce travail, la parallélisation par décomposition de domaine de la méthode
des éléments discrets a été présentée et évaluée. La méthode des éléments discrets
comme plusieurs autres méthodes numériques a grand intérét a profiter de la puissance
des grappes de calcul. Nous avons démontré que la décomposition spatiale, en créant de
petits sous-domaines indépendants, est idéale pour paralléliser efficacement un code
d’éléments discrets. De plus, plusieurs points importants ont été abordés. Parmi eux,
I’équilibrage de tiche dynamique. Ce mécanisme est essentiel pour maximiser
I’utilisation d’un ordinateur parallele. Au lieu de procéder uniquement par le
déplacement de la charge entre les sous-domaines, nous avons proposé une méthode dite
de décomposition excessive, par laquelle le nombre de sous-domaines est supérieur au
nombre de processeurs, ce qui permet au systeme de s’ajuster méme dans le cas de
géométries tres complexes. Cependant, cette technique a besoin d’un ordinateur en
mémoire partagée réelle (SMP) ou virtuelle (openMosix) pour fonctionner. L’utilisation
de plateformes multiprocesseurs a permis la programmation d’un code d’éléments
discrets a mode mémoire partagée et hybride. Toutefois, méme en oubliant le colt
exorbitant des architectures a mémoire partagée, ce paradigme appliqué a la DEM n’est
pas assez efficace pour étre recommandé; I’approche en mémoire distribuée avec les
grappes de calcul Beowulf est préférable. Enfin, la création d’objets non sphériques
composés de particules élémentaires a €ét€ abordée. Ces agglomérations statiques

pourront permettre la simulation d’écoulements granulaires complexes.
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8.2  Forces a long rayon d’action

La parallélisation a permis de diminuer les temps de calcul d’un processus itératif
tres cofiteux. Une des extensions prévues dans un futur rapproché sera d’intégrer dans le
code les forces de cohésion, forces a long rayon d’action qui deviennent de plus en plus
importantes a mesure que la taille des particules diminue. Comme pour certaines
applications en dynamique moléculaire, des hypotheéses simplificatrices aideront a
limiter les colits de communication supplémentaires et offrir des performances
acceptables. La largeur des halos sera directement touchée par ce nouveau modele et la

parallélisation devra s’adapter a cette nouvelle situation pour rester efficace.

8.3 Extension des modéles de programmation hybride

Plusieurs versions de programmation parallele de la DEM ont été congues dans
ce travail et présentées dans ce mémoire, y compris des modeles hybrides basés sur MPI
et OpenMP. La figure 8-1 inspirée de Rabenseifner (2003) résume les différents modeles

de programmation hybride possibles sur les grappes de calcul SMP.
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Solo Multiplel « Funneled » Multiple2
processus maitre messages communications messages
en dehors des simultanés par effectuées par un simultanés par
régions paralleles plusieurs seul processus plusieurs

processus légers

Calculs et communications
chevauchés
Communication MPI pendant les calculs
via un ou des processus légers dédiés

Calculs et communications
non simultanés
MPI hors des régions de calculs

MPI Hybrid MPI + OPENMP

Un processus MPI par MPI : communications internoeuds
processeur OpenMP : & I'intérieur de chaque noeud SMP

OPENMP

Processus légers et acces
a mémoire partagée

Figure 8-1 Modeles de programmation hybride

Dans la version hybride de Powder3D que nous avons développée, les
communications sont effectuées par un seul processus, le maitre, et les calculs sont
distribués sur plusieurs processus légers. En d’autres mots, notre travail s’est limité a un
mode d’exécution ou les communications et les calculs ne sont pas exécutés
simultanément (Figure 7-3). Lors de notre discussion sur les communications full
duplex, nous avons montré que I’utilisation de plusieurs processus et d’une implantation
thread-safe pourrait permettre de maximiser |’utilisation de la bande passante. Combiner

cette technique a notre approche hybride donnerait une application tombant dans la

catégorie Multiplel (Figure 8-2).
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Figure 8-2 Programmation hybride avec communication full duplex (mode Multiplel)

Le probleme de 1’approche distribuée conventionnelle sera toujours le méme : la
communication doit se faire apres la mise a jour des nouvelles coordonnées dans une
étape a part. Peu importe les astuces employées pour transmettre plus rapidement et peu
importe la qualité de I’architecture matérielle, les communications viendront toujours
nuire a I’évolutivité de 1’accélération en paraliele. Si les échanges de particules
frontalieres pouvaient commencer avant et/ou pendant les calculs (calculs et
communications chevauchés), nous pourrions obtenir avec notre programme paralléle

de meilleures courbes d’accélération.

Pour y arriver, une implantation MPI thread-safe serait requise pour permettre a
certains processus MPI de communiquer pendant que les autres calculent(Multiple2).
En réalité, les implantations non sécuritaires, par exemple MPICH, permettent quand
méme la programmation sur plusieurs processus légers. Cependant, un seul processus

doit étre dédié a la communication et on parle alors de « MPI funneled ».
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Une fois les détails de I'implantation réglés, il suffirait d’exploiter la localité€ des
calculs de la DEM. Dans notre cas, la décomposition spatiale du domaine utilise d€ja la
localité des collisions dans la définition du halo afin d’économiser sur la quantité de
données a transmettre (largeur minimum). Pour faire mieux, il faudrait exploiter le
concept de localité au maximum. Il suffirait de compléter les calculs attribués aux
particules frontalieres avant d’effectuer les calculs attribués aux particules centrales
(Figure 8-3). Pendant que ces derniers sont complétés, un autre processus pourrait
débuter les communications. Il s’agit d’une modification importante qui aurait un impact
sur tous les algorithmes (détection, calcul des forces, communications) mais qui pourrait

permettre de masquer le colit des communications.

Principe de localité Calculs et communications chevauchés
00000000 O0 -~ Détection
OCO0O0OOO®OOO®O g I
COO® 666600 Calcul des forces ()

OO0 e ®e &6 OO l
CO®e6660O0 Calcul du mouvement (@
ONIIN N N N N NN
OCOO0OOODLOOODO
O0000000O0 <« 2 threads ou plus =
Y A 4
(@ Particules frontalieres Envoi et Calcul forces*
réception des
@ Particules centrales halos (MPI)
. . Calcul du mouvementq
O  Particules fantémes |

Figure 8-3 Calculs et communications chevauchés dans le cas de la parallélisation de la DEM
(MPI Funneled ou Multiple2)
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8.4 Importance de la qualité de Ia définition du pas de temps
sur la parallélisation

Le pas de temps est une des constantes les plus importantes de la DEM. 1l est
primordial pour la stabilité du systeme et c’est lui qui définit le nombre d’itérations a
effectuer pour atteindre le temps réel voulu. En fait, nous estimons que définir sa valeur
maximale est un défi ayant autant d’impact sur les temps de résolution que la

parall€lisation ou I’optimisation de la détection des contacts.

Pour I’instant, dans Powder3D, le pas de temps est estimé au départ et demeure
fixe. Quelques tests nous ont montré qu’il est profitable de pouvoir le modifier
dynamiquement en fonction de la vitesse maximale courante. Mais les inconvénients

d’un pas de temps dynamique sont dissuasifs.

La problématique de la fréquence idéale pour la vérification est encore une fois
soulevée. De plus, méme si on arrive dans la plupart des cas a estimer correctement le
pas de temps, un mécanisme automatique de retour en arriere doit étre implanté dans le
cas ou un chevauchement excessif a eu lieu. En effet, ce mécanisme permet, lors de la
détection d’un chevauchement trop important, la récupération de toutes les valeurs
conservées lors du dernier point de sauvegarde. Un tel mécanisme pourrait étre implanté
dans un programme parall¢le, mais ce changement devrait étre effectué avec prudence
afin de ne pas augmenter les colts de communication. L’utilisation d’un broadcast non

bloquant pourrait étre envisagé.

La parallélisation et la définition dynamique du pas de temps ne sont pas des sujets
totalement déconnectés. La décomposition de domaine pourrait méme étre adaptée pour
exploiter la localité de la vitesse maximale. En effet, dans plusieurs procédés, il y a
souvent des régions mortes ol le mouvement moyen est presque nul. Malgré tout, c’est
la région la plus active qui définit le pas de temps pour le domaine en entier. Un sablier

est un bon exemple ou la vitesse maximale est atteinte par seulement quelques grains.
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Effectuer la décomposition de domaine en fonction du pas de temps dynamique est
une idée qui mériterait d’étre approfondie (Figure 8-4). Toutefois, cela impliquerait un
nouveau lot de problemes dont la désynchronisation des communications. En effet, si
deux sous-domaines voisins ont des pas de temps différents, il est essentiel que la valeur
de ces derniers soit transmise afin de déterminer la fréquence des communications entre

chaque processus.

Décomposition de domaine en
fonction du pas de temps avec
2 processeurs

Décomposition de domaine
classique avec 3 processeurs

< 0.0
\Q 2x 107 sec —> o0
%) o?’ - 0°00

%0

5 Oo

OO +—— 1x107sec —> OO

@) @)
Pas de temps
pas de temps global pas de temps locaux
Accélération : 3 Accélération : 3

Figure 8-4 Exemple de décomposition de domaine en fonction du pas de temps
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