
Session S3G

0-7803-7444-4/02/$17.00 © 2002 IEEE November 6 - 9, 2002, Boston, MA
32nd ASEE/IEEE Frontiers in Education Conference

S3G-7

PROCESS ACTIVITIES IN A PROJECT BASED COURSE
IN SOFTWARE ENGINEERING

Éric Germain1, Pierre N. Robillard2, Mihaela Dulipovici3

This work was supported in part by National Sciences and Engineering Research Council of Canada under grant A0141.
1 Éric Germain, École Polytechnique de Montréal, Laboratoire de recherche en génie logiciel, eric.germain@polymtl.ca
2 Pierre N. Robillard, École Polytechnique de Montréal, Département de génie informatique, pierre-n.robillard@polymtl.ca
3 Mihaela Dulipovici, École Polytechnique de Montréal, Laboratoire de recherche en génie logiciel, mihaela.dulipovici@polymtl.ca

Abstract  "Studio in Software Engineering" is a
curriculum component for the undergraduate-level software
engineering program at École Polytechnique de Montréal.
The main teaching objective is to develop in students a
professional attitude towards producing high quality
software. The course is based on a project approach in a
collaborative learning environment. The software
development process used is based on the Unified Process
for EDUcation, which is customized from the Rational
Unified Process. An insight into the dynamics of three teams
involved in the development of the same project allows us to
present and interpret data concerning the effort spent by
students during particular process activities. The
contribution of this paper is to illustrate an approach
involving qualitative analysis of the effort spent by the
students on each software process activity. Such an
approach may allow the development of a model that would
lead to effort prediction within a software process in order
to designate the actions for improving academic projects.

Index Terms  collaborative learning environment, effort
monitoring, project based course, software engineering
education, software process discipline.

INTRODUCTION

Delivering quality software is no longer an advantage but a
necessity for companies to be successful. The Internet
changed the main software development priority from what
to when. The new business environment demands that
software products be delivered more quickly, but also that
they offer greater functionality and stand higher quality
levels. Increased software quality in a reduced time-to-
market has become now one of software engineering’s most
important missions. As the context of software development
is changing, software engineering education has to face these
rapid changes [1].

The software process is becoming a major concern in
most software development organizations. There are
different viewpoints on the meaning of software
development. Essentially, a software process is a set of
activities and artifacts that must be performed and completed
by individuals having different roles in the software’s life
cycle, as presented in the conceptual model using the UML

notation for class representation [2]. Identifying these
distinct roles, providing specific abilities for each and
developing in students a professional attitude towards
producing high quality software are challenges faced by
software development process teaching.

Efficiently controlling and improving a software
engineering process implies monitoring the effort involved
in the development of a software product in order to better
understand how the effort is distributed [2]. The measure of
effort (the amount of staff-hours spent on any given activity)
allows identification of effort spent by students (as software
developers) on various tasks such as programming or
documenting. This, in turn, allows introspection into the
software process and could help identify the benefits and
weaknesses of the process in order to help improve it.

The process used is based on the UPEDU (pronounced
Yoopeedoo), which is an acronym for Unified Process for
EDUcation, which is customized from the Rational Unified
Process (RUP) [3]-[4]. UPEDU introduces students to the
software process activities and their corresponding artifacts
and enables them to understand the roles played in software
development.

This paper presents the results of the effort
measurements carried out within the framework of the
undergraduate-level, one-semester course “Studio in
Software Engineering” at École Polytechnique de Montréal.
The objectives are twofold: to characterize the patterns of
effort over the project duration, and to evaluate the
similarities of a given discipline’s effort pattern across
various projects developed in a collaborative learning
environment. The qualitative analysis of the effort spent by
the students on each software process activity may allow the
development of a model that would lead to effort prediction
within a software process, in order to designate the actions
for improving academic projects.

PROJECT DESCRIPTION

The course “Studio in Software Engineering” at École
Polytechnique de Montréal is different from a conventional
software engineering course in its goal and teaching method.
The general objective of the studio is to teach software
development through a project-oriented course. The teaching
method is based mainly on teamwork. The collaborative

Session S3G

0-7803-7444-4/02/$17.00 © 2002 IEEE November 6 - 9, 2002, Boston, MA
32nd ASEE/IEEE Frontiers in Education Conference

S3G-8

aspect of the teamwork is often a key issue in software
development. All the teams are in competition on the same
project and have to follow the same software development
process. This course does not contain a final exam but a
class presentation and a formal acceptance test session.

The 13-week project is a Client-Server application
programmed in Java software language, representing a Time
Monitoring Tool (TMT) for software development teams.
The TMT system to be developed is a stand-alone tool that is
integrated within an organization's Intranet. The tool consists
of four major components: a Developer Client Module, a
Manager Client Module, a Server Module, and a Database.
All components must be executed on a Windows NT
environment.

Most students have little industrial software
development experience, and many of the process activities
have little meaning for them. The UPEDU enables them to
select activities, which are more specific to a given task. The
difficulty is to maintain a good balance in the process
activities in terms of the various conceptual viewpoints they
represent. The presence of too many activities can reduce the
learning process to a boring experience. On the other hand,
there should be enough activities to build a good software
process, which is of academic interest.

The UPEDU process has been adapted to the student
projects. The main objective for the students in this study
was to realize their project by using that process. The
students were asked to use UPEDU in order to help define
their software’s life cycle and to create the appropriate
artifacts for each activity. They were also encouraged to
adapt the different roles proposed by UPEDU.

The total duration of the project was spread into four
iterations, which proceeded according to an established plan
and ended in an internal release. Table I illustrates time
allocation for each iteration:

TABLE I

DISTRIBUTION OF ITERATIONS DURING PROJECT DURATION

Week 1 2 3 4 5 6 7 8 9 10 11 12 13
Iteration 1 2 3 4

The students attending this course were supposed to
have completed the required software engineering courses
and already had some level of computing skills. However,
some of the students had little experience in Java
programming. Each student was expected to spend at least
135 hours on this project for a total of 675 person-hours for
a 5-person team. The class included 3 teams, two of them
(team A and B) being composed of five students and the
other one (team C) being composed of four. It was later
found that two of three teams had exceeded the allotted time,
as shown in Figure 1.

Effort was measured by requiring the students to record
the time spent on each of UPEDU’s software development
activities. Analysis of the data shows the variability and the
similitude in the process disciplines for the various teams. It

also shows were and how the effort is involved in
developing software. The main fields of effort recording
information are presented in Table II.

0

675

Team A Team B Team C

hours

FIGURE 1
T OTAL EFFORT FOR EACH T EAM (IN PERSON-HOURS)

TABLE II
EFFORT RECORDING INFORMATION

Worker
Name

Worker Activity Artifact Date Start
Time

End
Time

Duration

For each record, the students inserted a short description

of the entered data. The duration of the activity was
automatically calculated. All the data presented in this article
were obtained through analysis of these team databases.
Many diagrams are presented showing the distribution of the
effort over the time according to the various disciplines, for
the three teams. Discussions of the results highlighted salient
features of the software process.

RESULTS

Effort Distribution within a Discipline for Each Team

Table III shows the maximum deviation to the mean
cumulative effort made by any team for each discipline. It
must be noted that the maximum deviation is found to be
around 0.20 for 4 of the 6 disciplines, whereas the other two
disciplines have figures that are significantly higher. Table
IV shows the standard deviation of weekly effort for each
team.

TABLE III
MAXIMUM DEVIATION TO THE MEAN CUMULATIVE EFFORT BY DISCIPLINE

Discipline Week Deviation
Requirements 2 0.20
Analysis & Design 6 0.20
Implementation 11 0.19
Test 12 0.28
Configuration & Change
Management 2 0.33

Project Management 4 0.20

Figures 2 to 7 illustrate the effort distribution within
each discipline for each team. Comparison of effort

Session S3G

0-7803-7444-4/02/$17.00 © 2002 IEEE November 6 - 9, 2002, Boston, MA
32nd ASEE/IEEE Frontiers in Education Conference

S3G-9

distribution between teams is required to bring some
measure of pattern convergence and to discuss the relevance
and validity of using an aggregate model for further analysis.
Totals have been normalized with the total effort for a team
within a discipline so that the effects of overall productivity
variations between teams are removed.

TABLE IV

STANDARD DEVIATION OF WEEKLY EFFORT BY DISCIPLINE

Discipline Team A Team B Team C Mean
of teams

Requirements 0.15 0.14 0.10 0.13
Analysis & Design 0.06 0.13 0.09 0.09
Implementation 0.08 0.11 0.08 0.09
Test 0.16 0.16 0.07 0.13
Configuration &
Change Management

0.10 0.23 0.09 0.14

Project Management 0.10 0.13 0.09 0.11

1 2 3 4 5 6 7 8 9 10 11 12 13

no
rm

al
iz

ed
 e

ffo
rt

Team A

Team B

Team C

FIGURE 2
EFFORT COMPARISON – REQUIREMENTS

Comparative analysis of effort by team for the

Requirements discipline shows a similar pattern for all three
teams. The pattern consists of intensive effort at the
beginning of the project with 60% to 80% of total work
completed at the end of the first iteration and 70% to 90% of
total work completed after four weeks. Maximum work done
by a team during a single week is approximately 45% for
weeks #2 and #3.

The Analysis and Design discipline is more uniformly
spread along the time span, with maximum work done by a
team within a single week peaking at 25% of the total work
on that discipline, with the exception of week 6 for team B
with a burst of 40%. Nonetheless, the average standard
deviation for weekly team effort is 0.09, which is the lowest
of the six disciplines. Effort emphasis is put on weeks 3 to 6.

Work in the Implementation discipline has a quite
similar to the Analysis & Design discipline effort
distribution among the three teams, with an average standard
deviation also equal to 0.09. Work is performed most
intensively throughout the second half of the project.

Patterns for the Test discipline are less uniform between
the three teams than for the preceding disciplines. This

discipline shows a maximum deviation to cumulative
average of 0.28, which represents the second greatest
deviation, second to the one for the Configuration & Change
Management discipline. Figure 5 illustrates that teams A and
B follow a similar pattern of intermittent work in the first 5
to 6 weeks of the project, absence of work for the following
5 to 6 weeks, and intensive work in the last two weeks.
Work in team C has been much more uniformly spread, with
a weekly effort standard deviation of 0.07.

1 2 3 4 5 6 7 8 9 10 11 12 13

no
rm

al
iz

ed
 e

ffo
rt

Team A

Team B

Team C

FIGURE 3
EFFORT COMPARISON – ANALYSIS & DESIGN

1 2 3 4 5 6 7 8 9 10 11 12 13

no
rm

ali
ze

d e
ffo

rt
 Team A

Team B

Team C

FIGURE 4
EFFORT COMPARISON – IMPLEMENTATION

1 2 3 4 5 6 7 8 9 10 11 12 13

no
rm

al
iz

ed
 e

ffo
rt

Team A

Team B

Team C

FIGURE 5
EFFORT COMPARISON – T EST

The Configuration & Change Management discipline

shows the most important variations between the three
teams, with the only common point being medium-to-high

Session S3G

0-7803-7444-4/02/$17.00 © 2002 IEEE November 6 - 9, 2002, Boston, MA
32nd ASEE/IEEE Frontiers in Education Conference

S3G-10

work intensity during week 2. This is especially true for
team B, which performed 80% of their work in that sole
week. In comparison, team C had performed only 40% of
their total work in that discipline after week 4.

As for the Requirements discipline, the Project
Management discipline offers much similarity between
teams and shows uneven effort distribution over time. Much
effort is spent at the beginning of the project, amounting to
60% or more after the first four weeks. For two of the teams,
significant work is performed in the last two weeks of the
project.

1 2 3 4 5 6 7 8 9 10 11 12 13

no
rm

al
iz

ed
 e

ffo
rt

Team A

Team B

Team C

FIGURE 6
EFFORT COMPARISON – CONFIGURATION & CHANGE MANAGEMENT

1 2 3 4 5 6 7 8 9 10 11 12 13

no
rm

al
iz

ed
 e

ffo
rt

 Team A

Team B

Team C

FIGURE 7
EFFORT COMPARISON – PROJECT MANAGEMENT

Convergence of data for all three teams

For data analysis purposes an aggregate model combining
the results for all three teams can be used to illustrate the
typical patterns of effort during a project. Figure 8 illustrates
the non-normalized, aggregate effort distribution for the six
disciplines.

Limitations of such a model can be analyzed in the light
of the relative effort made on each discipline. For instance,
even though the maximal deviation from average cumulative
effort amounts to 0.33 for the Configuration & Change
Management discipline, that effect is reduced because of the
small total amount of work that has effectively been
performed on that discipline relatively to the other
disciplines.

The total relative effort for each discipline is illustrated
in Figure 8. Effort spent in the Implementation discipline
constitutes by itself 45% of the total time, and the
Implementation and Analysis & Design disciplines
combined make up almost two-thirds of that total time.

Implementation
45%

Configuration &
Change

Management
6%

Test
9%

Project
Management

9%

Requirements
11%

Analysis & Design
20%

FIGURE 8
Distribution of Effort through Disciplines for All Teams

1 2 3 4 5 6 7 8 9 10 11 12 13

no
rm

al
iz

ed
 e

ff
or

t
R equirement

s
Analysis &
Design

Implementatio
n
Test

Configuration
Managemen
t
Project
Managemen
t

Iteration 1 Iteration 2 Iteration 3 Iteration 4

FIGURE 9
COMPARISON OF EFFORT FOR EACH DISCIPLINE FOR ALL T EAMS

(SCALE = MAXIMUM 200 PERS*HR FOR EVERY CURVE)

Table V shows the total effort for each discipline. It can

be observed that the four most effort intensive disciplines
(Requirements, Analysis & Design, Implementation, Project
Management) correspond to the most stable ones according
to Table III. We can therefore conclude that the aggregate
model can be used with proper precaution to evaluate
patterns that will not diverge by more than 20% for the most
effort intensive disciplines.

TABLE V

T OTAL EFFORT PER DISCIPLINE

Discipline Total effort
(pers*hr)

Requirements 210
Analysis & Design 400
Implementation 900
Test 170
Configuration & Change Management 110
Project Management 180

Session S3G

0-7803-7444-4/02/$17.00 © 2002 IEEE November 6 - 9, 2002, Boston, MA
32nd ASEE/IEEE Frontiers in Education Conference

S3G-11

Aggregate disciplines by week

Figure 8 shows that the teams have successively
concentrated their works on the three most effort intensive
disciplines. More specifically, weeks 1 to 3 have been
focused on the Requirements discipline, weeks 3 to 6 on the
Analysis & Design discipline, and weeks 8 to 13 on the
Implementation discipline. It must be noted that both the
magnitude and time span of those focus areas rise
chronologically from one discipline to another. In contrast,
effort on the three other disciplines (Test, Configuration &
Change Management, Project Management) is both smaller
and more evenly dis tributed. Due to the relatively small
amount of work, spikes detected in the normalized figures
for the latter have a much lesser amplitude than for the three
most effort intensive disciplines.

Aggregate disciplines by iteration

Figure 10 illustrates the cumulative work by iteration for
each discipline. It can be observed that work on the
Requirements discipline is clearly concentrated in the first
iteration and that the same is true for the Analysis & Design
Discipline with the second iteration. The Implementation
discipline dominates by far the third and fourth iterations in
a very similar fashion.

FIGURE 10
EFFORT BY ITERATION

Work on the other disciplines, while not completely

even among the iterations, does not show as many spikes
due to the relatively low absolute amount of work involved.
More effort has been put on tests at iteration #4 and on
configuration management at iteration #1, and project
management tasks seem not to have been much performed at
iteration #3.

DISCUSSION

Even though the process used is based on the concept of
iterations, one can find behaviors that are related to the
classic waterfall software process model, particularly within
the engineering disciplines. This is shown for instance in
figure 10, where the Requirements, Analysis & Design and
Implementation disciplines dominate clearly one or two
iterations. However, the Test discipline offers a behavior
that is very different from the waterfall model. Much effort
is spent on tests at the beginning of the project, but very few
activities are performed during weeks 8 to 10. It must be
noted that, in UPEDU, the unit test activity is not part of the
Test discipline but rather of the Implementation discipline.
In the first two iterations, the process requires a lot of test
planning effort. In particular, use-case construction requires
the availability of proper test plans. Meanwhile, validation
and acceptance tests are performed only at the very end of
the project (week 13).

The Configuration Management discipline shows a very
unusual profile. One would expect the effort to be made in a
continuous fashion. It has rather been found that much of the
effort was concentrated in iteration #1. A lot of effort was
required for the construction of the Configuration
Management Plan, as students are not familiar with that
concept. In fact, except for the effort spent on configuration
management planning, the overall effort for this discipline is
very low.

The Project Management discipline shows a quite
similar situation, whereas a uniform distribution was
expected but not found. High effort during the first iteration
was due to overall planning activity as well as to the mutual
familiarization of the team members, which were not used to
work together. Also, a lot of effort has been made in project
management activities during iteration #4 in order to plan for
the last steps of the projects, which faced very strong
deadlines. Even though every team invested an important
amount of effort throughout the project, it has been found
that the effort spent during iterations #2 and #3 was
significantly lower than for the rest of the project, possibly
because of the absence of any perceived need to do more
management activity.

The comparison of all disciplines over the 13 weeks
offers the following observations:
• The Requirements and Analysis & Design disciplines

constitute the major part of the effort spent during the
first half of the project. In particular, the activities of the
requirement discipline are executed in parallel with the
other activities, since many tasks must be performed at
the very beginning of the project in order to conform to
the process.

• The Implementation discipline constitutes by far the
most important component of the project. It is especially
prominent during weeks 8 to 10. When work on
implementation issues begins, it monopolizes all the

R
eq

ui
re

m
en

ts

A
&

D

Im
pl

em
en

ta
tio

n

Te
st

C
C

M

PM

Iteration 1

Iteration 2

Iteration 3

Iteration 4
0

100

200

300

400

500

Session S3G

0-7803-7444-4/02/$17.00 © 2002 IEEE November 6 - 9, 2002, Boston, MA
32nd ASEE/IEEE Frontiers in Education Conference

S3G-12

team’s energy and very few other activities occur
simultaneously.

• The construction of a prototype required in order to
complete the requirements specification shows up as an
effort burst during week #3 in the Implementation
discipline.

• The results show that the use of this particular process
(UPEDU) might have enforced the beginning of the
implementation work only at the middle of the project.
According to that interpretation, in the case where this
process would not have been used, the implementation
work would have started much earlier. Even though
implementation effort is important, it is well cut-out and
starts only when the prerequisites have been fulfilled.
The comparison of all disciplines over the four

iterations that have been considered offers the following
observations:
• As expected by the process, some effort has been spent

within each discipline and iteration.
• Some disciplines dominate one or many iterations.

Specifically, the Requirements discipline dominates
iteration #1 and the Analysis & Design discipline
dominates iteration #2, while the Implementation
discipline dominates iterations #3 and #4. It must be
noted that the Test discipline does not dominate any
iteration.

• As expected by the process, the Configuration &
Change Management and Project Management
disciplines’ effort does not dominate any particular
iteration.

CONCLUSION

This work shows that the study of activities and of their
corresponding disciplines may allow the development of a
model that would lead to the prediction of effort spent within
each discipline and iteration. Such a model would be very
useful for planning, scheduling and reporting tasks.

Some process activities can be confusing or ambiguous
for some students [5]. This can be overcome by adequate
training or by redefinition of some activities. In particular, it
is important that the activities considered for effort
measurement be relevant and well understood by the
development teams. Effort recording is a difficult task. Some
participants are not well disciplined to record all their
activities or to assess correctness of entered values. We have
passed over that difficulty by assigning a person that was in
charge of ensuring accurate recording. It is also important
that the process be defined as to be appropriate and tailored
to the specific project.

The way the teaching techniques are used in the course
“Studio in Software Engineering” allowed students not only
to gather new knowledge but also to develop abilities that
can be directly applied in their soon-to-come professional
projects. Furthermore, students are well prepared for
independent lifelong learning with relevant skills.

UPEDU allows students to “play” different roles in the
process, which is a good practice in specialization by level
of responsibility. [6]

The goal of the study is to show the feasibility of
measuring activity effort within a process with the objective
of building a model. As a note of caution, the results of this
study are derived from student projects realized in a very
well defined context. Therefore, it would be inappropriate to
generalize to industrial projects the results presented in this
paper on that basis.

ACKNOWLEDGMENT

This project would not have been possible without the
participation of all the students who enrolled in the “Studio
in Software Engineering” course at the winter 2001
semester. We are grateful to Houcine Skalli for his work as
Teaching Assistant during the course, and to Martin
Robillard who provided the formal specification for the
software to be built. We would also like to thank to John
Slavich for his helpful advice.

REFERENCES

[1] Robillard P.N., D’Astous, P. Kruchten, P. Software engineering

process with UPEDU, Addison Wesley, August 2002.

[2] Robillard P. N., “Case study analysis of Measuring Effort in a
Software Engineering Process ”, Third Maghrebian Conference on
Computer Sciences (MCSEAI’2000), Fes, Morocco, 2000.

[3] Robillard P. N., Kruchten P., d'Astous P., “YOOPEEDOO (UPEDU):
A Process for Teaching Software Process”, 14th Conference on
Software Engineering Education & Training, Charlotte, NC, USA
February 2001,pp 18-26.

[4] Kruchten P., “The Rational Unified Process: An Introduction”,
Addison-Wesley, 2000.

[5] Germain É., Dulipovici M., Robillard P.N., “Measuring Software
Process Activities in Student Settings”, Proceedings of the 2nd ASERC
Workshop on Quantitative and Soft Computing Based Software
Engineering (QSSE 2002), February 18th-20th, Banff, Alberta, Canada,
pp 44-49.

[6] Shaw M., “Software Engineering Education: A Roadmap”, The
Future of Software Engineering, ACM, 2000, pp373-380.

