
Measuring Software Process Activities in Student Settings

Éric Germain Michaela Dulipovici Pierre N. Robillard

École Polytechnique de Montréal
Laboratoire de recherche en génie logiciel

C.P. 6079 succ. Centre-ville
Montréal, QC H3C 3A7 Canada

+1 (514) 340-4711 ext. 4815

{ eric.germain, mihaela.dulipovici, pierre-n.robillard } @ polymtl.ca

Abstract
The recent emergence of various software processes facilitates
process activity measurement and provides an opportunity for
improving project planning as well as estimating related activities.
As such, process measurement of effort spent during each activity
is required to better understand the relationship between the
various activities. The measurement of activity effort can lead to
better understanding of the roles of these activities within the
process discipline. Measurement of activity effort can also help to
validate the prescribed activities and enable some modifications of
the process disciplines.

However, direct measurement of activities performed can lead to
measurement interference with the experiment. Predefinition of
activities to be used by participants for data recording can only be
made under the hypothesis that they will restrict their actions to
the prescribed activities. Also, use of activity as a basis for
measurement leads to process data that cannot be compared
directly between different processes. Therefore, a classification is
needed that will allow easy data entry and map naturally to many
different process activity sets while avoiding interference.

This paper describes the process measurement that takes place
every winter semester in the Software Engineering Studio class at
École Polytechnique de Montréal. Each project lasts 675
hrs-pers. and is completed in parallel by teams of 5 students. Each
of the three to five teams, depending on enrolment, base their
work on the same formal specification and use a well-defined
software process.

The paper presents the activity classification that was used in the
2001 setup. The software process used was a variation of the
Unified Process for EDUcation (UPEDU), derived from the
Rational Unified Process (RUP) in collaboration with Rational
Software. Challenges and difficulties encountered are presented
with a brief overview of the findings from the measurements
taken.

Keywords
Software process discipline, software process activity, workflows,
software life cycle, software measurement, experimental software
engineering, project planning and estimating

1. Introduction
The purpose of a software engineering process is to improve the
software development cycle by defining the various activities that
are being done and by specifying the various artifacts that are
being built. A well-defined software process specifies clearly the
interrelationship between the activities and the artifacts. Some
large software development organizations have a dedicated
software engineering process group to define and maintain an
efficient process.

One model that is gaining wider acceptance within the software
industry is the Rational Unified Process (RUP). This model of
software process is based on disciplines and their corresponding
activities. Commercial processes like the Rational Unified Process
(RUP) define all the disciplines and activities that are likely to be
needed in a software development project [3]. The software
process engineer will then customize the process to the needs of
the project. Appropriateness of the new derived process is
appraised by the level of acceptance of the activities by the team
members and by the quality of the resulting product.

The ultimate goal of any software process is to improve the
management of the software development project and the quality
of the resulting software product. In defining a software process it
is often assumed that the most important task is to identify the
activities to be performed by the team. Process designers have a
comprehensive view of the process activities and can see readily
where each activity fits within the ensemble. However, software
developers have rarely such a wide view and see activities only as
needed. Developers may not see readily the purpose of each of a
set of activities whenever these are closely related. One can see
that there is no point of defining a process composed of many
activities if developers get confused on the meaning or the
purposes of these activities.

Empirical studies are needed to validate the prescribed activities
proposed in a software process. This paper presents a case study
where three projects are analyzed in order to validate the activities
that compose the software process. This case-study was done in
an university environment. Three teams of five (5) students
developed a software product from the same formal specification.
Each team used a software process specifically designed for the
project and derived from the Unified Process for EDUcation
(UPEDU), a software process based on the Rational Unified



Process (RUP). Effort spent on each activity defined by the
process was carefully recorded. A comparative study was
performed between the three teams [5]. All the teammates had a
specific training on every activity of the process. All the projects
were successful in the sense that they met all the requirements,
succeeded customer tests and delivered the completed set of
artifacts required by the software process. Challenges and
difficulties encountered are presented with a brief overview of the
findings from the measurement process.

2. Project Description
The application in which present measurements were taken was
carried out within the framework of the bachelor level course
“Studio in Software Engineering” given at École Polytechnique
de Montréal. This course is different from a conventional one by
its objective and its teaching method. The general objective of the
studio is to learn software development through a project-oriented
product. The teaching method is based mainly on work teams. All
the teams are in competition on the same project and have to
follow the same software development process, i.e. UPEDU. [7]
This course does not contain a final exam but a class presentation
and a formal acceptance test session.

The 13-week project is a Client-Server application programmed in
Java software language, representing a Time Monitoring Tool
(TMT) for software development teams. TMT could be used by
any software development team. Depending on the users of the
recorded data, the purpose of the TMT is to help developers
record the time spent on various software development activities
and managers to validate their planning, budgets and schedules
and produce various reports. The TMT system to be developed is
a stand-alone tool that is integrated within the organization's
Intranet. The tool consists of four major components: a Developer
Client Module, a Manager Client Module, a Server Module, and a
Database. All components must execute on a Windows NT
environment. The specifications were presented according to the
IEEE std 830-1993: IEEE Recommended Practice for Software
Requirements Specifications [2].

Each student was responsible for filling out his records capturing
the time spent by a teammate student on a specific activity. One
team member was responsible for collecting every week their
teammates’ completed records and for integrating the data into the
team’s database. The main fields of effort recording information
are presented in Table 1.

Table 1. Format of effort recording information

For each record the students
inserted a short description of the
entered data. The duration of the
activity was automatically
calculated. All the data presented
in this article were obtained
through analysis of these team
databases.

The students attending this course
are seniors and should have
completed the required software
engineering courses. Each student

was expected to spend at least 135 hours on this project for a total
of 675 person-hours for a 5-person team. The class included 3

teams. Team A and Team B were composed of 5 students each.
Team C was composed of 4 students. Figure 1 shows the
distribution of the time spent by each team for the project
duration. It must be noted that Team C members have offered a
quite steady effort pattern through the semester and were able to
complete their project easily within the time frame prescribed,
Team A and B members showed a more “student classic” pattern
with a significant break in the middle and lots of work in the very
last weeks. Nevertheless, all three end products conformed to the
specifications.

1 2 3 4 5 6 7 8 9 10 11 12 13

Team A

Team B

Team C

Figure 1. Effort distribution for each team

3. Process Definition
The process used for this project course is an adaptation of the
UPEDU (pronounced Yoopeedoo), an acronym for Unified
Process for EDUcation [7], which is derived from RUP [3].
UPEDU introduces students to the proper software process
activities and will enable them to understand the role of processes
in software development projects and to select activities, which
are more specific to a given task. Most students have little
industrial software development experience, and many of the
process activities have little meaning for them. However, this
behavior could be similar to any professional developer that joins
a new team or a new project. The difficulty in adapting a process
is to maintain a good balance in the process activities in terms of
the various conceptual viewpoints they represent. The presence of
too many activities can make some activities perceived as
redundant while there should be enough activities to build a good
software process. Software professionals designed the process
used in this project. They had good experience in both software
engineering process and course projects. This process was
believed to be well adapted until the results of this case study
were known.

UPEDU is made of 4 engineering disciplines (Requirements,
Analysis & Design, Implementation, and Testing) and 2
management disciplines (Configuration & Change Management,
and Project Management). A discipline is also composed of
artifacts and roles.

UPEDU is also based on an iteration approach. An iteration is a
time frame defined by a milestone for delivering some of the
artifacts. It is expected that activities from each of the disciplines
are performed in each iteration. Table 2 presents the milestones
of each of the four iterations and their duration in weeks.

Worker Name

Worker

Activity

Artifact

Date

Start Time

End Time

Duration



Table 2. Distribution of
iterations during
project duration

This study focuses on validating
the activities that composed the
process. Each activity is
composed of three different
cognitive tasks. For example
activity “Define Use Case” is
made of the intellectual task of
thinking about the Use Case and
the specification. The second
intellectual task is to draw these
Use Cases or to write the
documentation related to this
activity. The last intellectual task
related to this activity is to
participate in a technical review
meeting on the Use Case.

The activities as defined by the
UPEDU are concerned only by
the intrinsic intellectual task of
this activity. Thus, all tasks
involving document writing or
modification have been extracted

from basic-level activities and grouped into a single, cross-
discipline “Write Documentation” activity. Also, all “Review”
activities from every discipline have been merged into a new
generic “Review Artifact” activity.

4. Results Overview
An initial analysis step has been performed on recorded activities.
Basic extraction and grouping of activities has been performed in
order to better reflect the three cognitive tasks of activities as
discussed in section 3. Thus, all “Review” activities from every
discipline have been merged into a new generic “Review Artifact”
activity. Also, all tasks involving document writing or
modification have been extracted from recorded activities and
grouped into a single, cross-discipline “Write Documentation”
activity. Figure 2 shows a pie chart displaying the contribution of
each discipline to the whole project based on the recorded
activities. This chart shows that most of the effort is spent on the
implementation and the review activities. Each other activity
account for less that 10% of the effort.

Figure 2. Effort repartition by discipline, initial data

It is expected that all teams will have performed some amount of
effort in every activity. However, analysis shows that this
expected and prescribed behavior was not the case. Some
activities that were qualified as coherent were well understood
and performed by every team. Some other activities were well
performed by only two of the teams, meaning that one team did
not see the purpose of these activities, which were call confused.
Finally some other activities were performed by only one team
and completely neglected by the two other teams; these activities
were labeled as ambiguous. Each activity was assigned a quality
status attribute based on one of these situations. Table 3 shows
classification of every activity.

Table 3. Quality Status by Activity

Discipline Activity Quality Status

Obtain Client
Requirements Coherent

Find Actors and Use
Cases

Coherent

Structure Use Case
Model

Ambiguous

Requirements

Detail Use Case Confused

Architectural Analysis Confused

Use Case Analysis Coherent

Use Case Design Coherent

Analysis &
Design

Class Design Coherent

Plan System
Integration

Ambiguous

Implement Component Coherent

Fix Defect Confused

Perform Unit Test Confused

Implementation

Integrate System Ambiguous

Plan Test Coherent

Design Test Confused

Execute Test Confused

Implement Test
Component

Ambiguous

Testing

Evaluate Test Ambiguous

Create Baseline Coherent

Create Workspace Ambiguous

Define CM
Environment

Confused

Configuration &
Change

Management

Make Changes Coherent

Project
Management

Plan Phases and
Iterations

Coherent

Review Artifacts Coherent
(cross-discipline)

Write Documentation Coherent

Week Iteration

1

2

3

1
Validate

requirement
And

Plan project

4

5

6

2
Complete

analysis and
build

architecture

7

8

9

10

3
Build

product

11

12

13

4
Test and
deliver



4.1 Coherence
Coherence is established for a given activity when effort has been
recorded for every team within that activity. Activity “Find
Actors and Use Cases” is a typical example of coherence (see
figure 3). Effort distributions of coherent activities clearly show
that this activity is well understood by team member and they
know what they are doing when recording this activity.

1 2 3 4 5 6 7 8 9 10 11 12 13

Team A

Team B

Team C

Figure 3. Effort patterns for activity
"Find Actors and Use Cases"

(max. = 5 pers.*hr)

4.2 Confusion
An activity is labeled confused when only two of the three teams
have recorded any effort. Confusion can take one of two forms.
The first confusion form occurred when the effort patterns shows
some similarity. The second confusion form occurred when the
effort patterns are not similar. The “Architectural Analysis”
activity is an example of first confusion form (see figure 4). Peak
efforts for Team A and Team C occur at week 4 and 5
respectively, which is a short time period within iteration no 2.
The “Execute Test” activity is an example of second confusion
form (see figure 5). Peak efforts for Team A and Team C occur at
week 13 and 10 respectively. That represents a three week period
that spans across two iterations. It is unlikely that such a lag is
due only to short-term scheduling or productivity variations.

1 2 3 4 5 6 7 8 9 10 11 12 13

Team A

Team B

Team C

Figure 4. Effort patterns for activity "Architectural Analysis"
(max. = 10 pers.*hr)

1 2 3 4 5 6 7 8 9 10 11 12 13

A

B

C

Figure 5. Effort patterns for activity "Execute Test"
(max. = 10 pers.*hr)

4.3 Ambiguity
Pattern ambiguity occurs when, for a given activity, no effort has
been recorded at all for two out of the three teams. This situation
occurs when participants misperceive the nature of an activity,
assign the work for which the activity was prescribed to another
activity and do not assign any other effort to the former.

Activity “Integrate System” (see figure 6) is an example of
activity ambiguity since only team B recorded any occurrence of
that activity through the project.

1 2 3 4 5 6 7 8 9 10 11 12 13

Team A

Team B

Team C

Figure 6. Effort patterns for activity "Integrate System"
(max. = 20 pers.*hr)

The following comments the ambiguous activities found in this
case study. It is believed that the low challenge level in
component integration in the project compared to component
development brought participants to record integration related
work under activity “Implement Component”. The same
reasoning also applies to activity “Implement Test Component” in
relation to activity “Execute Test”. In the case of activity
“Evaluate Test”, it is suspected that this activity may have been
simply overlooked by two teams in their struggle to deliver a
complete, yet bug prone software product before the prescribed
deadline. Even though it is not a recommended approach, activity
“Structure Use Case Model” may have been performed implicitly
during the realization of activity “Detail Use Case”. Finally, the
purpose of activity “Create Workspace” may not have been
understood at all considering the fact that participants had been
exposed very little to the concepts of Configuration Management
in their curriculum.



4%

84%

12%

Ambiguous

Coherent

Confused

Figure 7. Effort distribution of raw activities among categories

It must be noted that confused and ambiguous activities are not
the result of a bias team. All teams contribute to these activities in
no systematic ways.

Figure 7 shows the distribution of actual effort among categories.
Coherent activities represent 84% of the total. However, as
shown in Figure 8, this percentage drops to 58% when the first
five more effort-intensive activities are removed from the set.
Thus, 19 process activities have a level of incoherence of 42% on
average. This illustrates the fact that a vast majority of process
activities are not very well understood by the developers.
Nevertheless, the end products delivered by all the teams were
conforming to the original requirements. Therefore we must
question the relevance of the activity classification and reconsider
the process implementation methodology itself.

There is actually no easy path to the identification of the right
activities to be part of the software process. In particular, a
problem seems to lie with our measurement methodology. Direct
measurement of activities performed can lead to measurement
interference with the experiment. This phenomenon is likely to
occur whenever one tries to measure some activity for which some
attributes are already explicitly defined in the process. People
performing the activities might tend to alter the data they are
entering in the system if they depart too much from the prescribed
process, just to show they act accordingly with the instructions
they were given.

In our experiment, students had to submit artifacts at specified
dates, and those artifacts were the basis for their evaluation.
However, it was probably unclear for them whether the process
activities were mandatory. In fact, we presumed that the natural
way to generate or modify the prescribed artifacts was to perform
the activities that are related to these artifacts in the scope of the
process. Our results bring a significant doubt about this
assumption.

5. Conclusion
Empirical studies on process activities are a keystone element of
process improvement. These studies should go in parallel with the
formalization and standardization of software engineering
process.

17%

58%

25%

Ambiguous

Coherent

Confused

Figure 8. Effort distribution of activities among categories,
without the five most effort-intensive ones

Effort measurement is a challenging task that must performed with
great care. It is sometimes insufficient to implement a very well
defined process as it may indeed be misunderstood. As we have
shown, a well-defined process like UPEDU can be implemented
while the proportion of activities that are not well understood by
the developers remains significantly high.

There are some ways that should be investigated in order to
overcome this situation. One is to pay special attention to
defining activities in a greater level of detail than what is usually
encountered, especially when it comes to defining the boundaries
between activities that are closely related (e.g. Analysis vs
Design). For some of these activities, that task may seem very
difficult to achieve because of their inherent confusion. Another
possibility is to define activities that are independent of process
disciplines but are rather related to fundamental human cognitive
activity. Such an approach can however be implemented only in
the context of a paradigm shift in what is used for process
measurement purposes. The use of artifacts as the sole basis for
process execution control may bear many advantages over the use
of activities in that context.

As a note of caution, the results of this study are derived from
student projects realized in a very well defined context. The goal
of the study is to show the necessity of defining an adequate
measurement context when performing process measurement.
Therefore generalization of these results to industrial projects can
only be made with great care.

6. Acknowledgments
This project would of course not have been possible without the
participation of all the students who took the Software
Engineering Studio course at Winter 2001. We are grateful to
Houcine Skalli for his work as Teaching Assistant during the
course, and to Martin Robillard who provided the formal
specification for the software to be built.

This work was supported in part by National Sciences and
Engineering Council of Canada under grant A0141.



7. References
[1] El Emam, K, Drouin, J-N and Melo, W. SPICE: The Theory

and Practice of Software Process Improvement and
Capability Determination. IEEE CS Press, 1998.

[2] IEEE Std 830-1993. Recommended Practice for Software
Requirements Specifications. 32 pp.

[3] Kruchten, P. The Rational Unified Process: An Introduction.
Addison-Wesley, 2000.

[4] Paulk, M. C., Curtis, B., Chrissis, M. B. and Weber, C. V.
Capability maturity model for software, version 1.1.
Technical Report CMU/SEI-93-TR-024, Software

Engineering Institute, Carnegie-Mellon University, February
1993.

[5] Robillard, P.N. Case study analysis of Measuring Effort in a
Software Engineering Process. Proceedings of
MCSEAI’2000 (Fes, Morocco, November 2000).

[6] Robillard, P.N. The Role of Knowledge in Software.
Communications of the ACM, 42, 1 (January 1999), 87-92.

[7] Robillard, P.N., Kruchten, P. and d'Astous, P.
YOOPEEDOO (UPEDU): A Process for Teaching Software
Process. Proceedings of CSEET (Charlotte, NC, USA,
February 2001), 18-26


