
What Cognitive Activities Are Performed in Student Projects?

Éric Germain and Pierre N. Robillard
École Polytechnique de Montréal

{ eric.germain, pierre-n.robillard @ polymtl.ca }

Abstract

Software processes are being increasingly taught to software engineering students.

Previous studies have however shown that actual activities performed in the course of student

projects differ widely from what students had been taught. This study defines a new cognitive

activity classification scheme that has been used to record effort spent by six student teams

producing parallel implementations of a same software requirements specification. Three of

the teams used a process based on the UPEDU, a teaching-oriented process derived from the

Rational Unified Process. The other three teams used a process built around the principles of

the Extreme Programming (XP) methodology. Results show that coding-related activities

dominate the effort distribution for all the teams. Also, variations in the relative emphasis put

on each activity between processes are low and limited to a small number of activities. The

study provides lessons that may be useful when evaluating the importance of specific software

processes.

1. Introduction

There seems to be an increasing interest about the teaching of software processes (see for
instance [1-4]). But this interest does not translate into the acceptance of a common set of
process principles. In particular, two main software development philosophies seem to
emerge. The first one promotes the utilization of a very well defined process involving
precise definition of roles to be played, activities to be performed and artifacts to be
produced. Such an approach generally involves the production of artifacts which purpose is to
support early decision making on requirements and design matters, effective communication,
knowledge reuse and mutual work inspection. The main principle here is that efforts made in
upfront planning activities and in artifact production will result in lower overall cost, timely
product delivery and better software quality. The Rational Unified Process (RUP) [5] is an
example of a process that fits this approach. The UPEDU [6-8] constitutes the adaptation of
the RUP for teaching the software processes in software engineering and computer science
programs.

The other philosophy, called “Agile Software Development” [9-10], promotes quick
response to changes in requirements as well as extensive and ongoing collaboration between
the development team and the customer. The approach specifically downplays the importance
of formal processes and comprehensive documentation. It is based on the assumption that one
cannot truly anticipate project requirements right at the beginning of a software development
project, and that the proper way to deliver timely, quality software in a cost-effective manner
is instead to build flexibility within the development activities. The “Manifesto for Agile
Software Development [10]” provides the basic values of agile development in detail. Some
methodologies derived from this approach include Adaptive Software Development, Scrum,
the Crystal family, Feature-Driven Development, Dynamic System Development Method and
Extreme Programming.

In addition to such methodological variety, it is reasonable to consider that a generic
process will have to be adapted to each organization and project that requires one. There is no

Proceedings of the 16th Conference on Software Engineering Education and Training (CSEET’03)
1093-0175/03 $17.00 © 2003 IEEE

such thing as a universal process. For instance, users of the RUP are provided with tools that
allow them to build their own subset of the proposed activities and artifacts.

Students enrolled in a software engineering program and who have received training on
software processes are expected to be, at the end of the program, more sensitive to issues
affecting software quality, cost and lifecycle. This does not mean however that those
individuals will apply everything they learned as is. Previous studies [11-13] in the context of
the “Software Engineering Studio”, a project-oriented course for senior-level students, have
shown a significant gap between theory as taught and practice. Those studies were using
effort slips as an indicator of relative activity intensity. Analyses performed were however
limited by the activity and artifact classification of the UPEDU-based process used, which
was reflected in the effort tracking tool used. It was thus rather difficult to determine exactly
which cognitive activities had been performed.

Using those studies as a foundation, we defined a set of cognitive activities that aims at
accurately recording the various activity states of a software developer in the course of a
project. The utilization of such a classification allows us to study the impact of software
process notions learned on the cognitive activities actually performed by the students during a
project course.

We do not expect our results to be ready for immediate generalization to industrial
practices because of the academic nature of the setting and of the impact of the particular
project, lifecycle and technology chosen. Meanwhile, repeating such an experiment in an
industrial setting would be quite difficult because of the need to record individual cognitive
activities at developer level. However, we think that the study presented in this paper provides
clues that may be useful when evaluating the importance of a specific software engineering
process.

2. The Software Engineering Studio

The Software Engineering Studio is an optional project-oriented course offered to senior-
year students in computer engineering at École Polytechnique de Montréal. Its purpose is to
allow students to get a practical experience of software development by participating in a
small-scale, complete software development project. Teams of students must develop a
complete implementation based on software requirements specifications provided by the
instructors. They also must use a well-defined software engineering process. Participants thus
get an early experience in building an operational software project from A to Z through
design, implementation, testing and management activities. This project course teaches them
the realities of teamwork and of project completion within schedule. As a secondary
objective, students get more familiar with a specific application domain or set of
technologies. An earlier version of the Studio has been presented in [14]. The Studio has also
served as a testbed for the study of development effort and artifact quality. Some individual
studies performed using data generated in the course of a Studio edition have been
documented in [2-4].

The Winter 2002 edition of the Studio featured the development of a Web-based meeting
management system aimed at organizers of meetings where the number and geographic
dispersion of participants make scheduling difficult. The software system to be developed
would allow meeting coordinators to send availability requests to a set of individuals so that
each one can specify their personal availability periods. The set of availability periods would
then be graphically represented using a special calendar tool that would allow a coordinator to
visualize the relevant information at a glance, making the scheduling decision easier to take.

Proceedings of the 16th Conference on Software Engineering Education and Training (CSEET’03)
1093-0175/03 $17.00 © 2003 IEEE

The decision would then be transmitted electronically to all participants. The software system
would be responsible, among other things, for ensuring proper data storage, update and
communication between all participants. All communications would be performed using
standard e-mail. Figure 1 shows a screenshot from one of the software products delivered.

The main feature of the Winter
2002 edition was the use of two
different software engineering
processes. One of the goals of the
study was to determine the influence
of the software process on the
participants’ behaviour. The
instructors therefore chose to assign
each half of the class to one of the two
software processes selected. Thus,
three of the teams were assigned a
process based on the Unified Process
for EDUcation (UPEDU) [8], which
is derived from the Rational Unified
Process [5]. The other three teams
were assigned a process built around

the Extreme Programming methodology (XP) [15]. Figure 2 illustrates the prescribed
software lifecycle calendar. The diagram shows the iterations prescribed for each process.
Iterations with the form “XP*” relate to the XP-based process, while those with the form
“UP*” relate to the UPEDU-based process.

A common release-level framework was used to define the lifecycle for both processes.
Thus, for all the teams, an initial specification was provided at the beginning of the semester.
A complete implementation of that specification was due after 45 days. Thereafter, a second
specification was issued that requested a moderate architectural change to the system.
Implementation of that change was due after an additional 15-day period. Iterations XP1
through XP5 and UP1
through UP3 belong to the
initial development cycle,
while iterations XPM and
UPM belong to the end-of-
semester maintenance phase.

At the iteration level, the
lifecycle was customized for
each of the process used.
Since iterations in an XP
project are usually shorter
than in the typical UPEDU
project, the lifecycle for the
XP process included a
greater number of iterations
covering the same time
frame. The iterations targeted by this alteration are those at the middle and at the end of the
development cycle. It was however not obvious that the first iteration should be shorter for
the XP teams, since this initial iteration is crucial for laying out the skeleton of the system.

Figure 1. Screenshot from one completed
product

0 10 20 30 40 50 60

UPEDU

XP

UP1

XP1

(day)

EQ1 EQMEQ3EQ2Equivalent

UP2 UP3 UPM

XP2 XP3 XP4 XP5 XPM

Figure 2. Software lifecycle calendar

(in working days)

Proceedings of the 16th Conference on Software Engineering Education and Training (CSEET’03)
1093-0175/03 $17.00 © 2003 IEEE

Also, the instructors wanted to leave enough time for every participant to get used to the
development environment provided and to get minimal comfort with the language and
technologies, to which most students had not been exposed previously. The initial iteration
has therefore been kept identical in length for both processes. Also, the maintenance cycle has
been limited to a single iteration due to general agreement by the students that this would be
sufficient considering the limited scope of the changes requested. The remaining iterations
have been set out so as to get a ratio of two XP iterations to one UPEDU iteration. The
correspondence of UPEDU iteration end dates to XP iteration end-dates was required for the
purpose of facilitating the analysis of the resulting data on effort spent. Figure 2 illustrates the
equivalent iterations EQ1, EQ2, EQ3, EQM, that have been defined for that matter.

The team and individual evaluation grid for the course is shown at Table 1. 75 points out of
100 were attributed to each team as a whole. 25 points were allowed on an individual basis.

3. Cognitive activity classification

In previous editions of the Studio, students were asked to record effort spent under each
process activity. This approach has the benefit of allowing a direct measurement of the
process itself. However such a classification can only be used under the assumption that the

list of activities defined in
the process covers every
possible work situation
without bringing
excessive overlap. Such
an assumption has not
been confirmed. Indeed,
an analysis performed
using data from the 2001
edition of the Studio

showed possible presence of ambiguity and confusion among participants in relation with the
process activities as defined by the instructors [11]. Another problem with the approach was
that the presence of two separate software processes prevented the utilization of a single
process-based scheme that would allow comparison of effort spent for all the teams. An
alternative approach was to use a process-independent classification that lead to implicit
assignation of effort to the proper activity. A classification based on the evaluation of explicit,
mutually exclusive cognitive activities constituted an interesting path to this target.

Table 2 illustrates the classification that
was used for the purpose of the study. The
classification includes 14 activities that
are grouped into four categories.
Participants were presented all 14
activities without the category framework,
which has been defined strictly for
analysis purposes.

Although most activity names are self-
explanatory, we provide below a short
description of some of them. Category
“Preparation” encompasses cognitive
activities that are related to activities that may be considered as prerequisites for coding.
Activity “Think” refers to the process of self-reflection and thus encompasses every effort

Table 1. Evaluation grid

Scope Criterion Weight

Product quality 25 %
Artifact quality and
timeliness

25 %
Team-level
evaluation

Effort slip quality,
completeness and timeliness

25 %

Individual
evaluation

Contribution to the team 25 %

Table 2. Cognitive activity classification

Preparation Implementation

Think
Read

Browse / Search
 Draw
Write

Discuss

Code
Code & Test

Test
Integrate & Test

Control Support
Inspect / Review Tech. Administration

Training
Other

Proceedings of the 16th Conference on Software Engineering Education and Training (CSEET’03)
1093-0175/03 $17.00 © 2003 IEEE

spent by a stand-alone participant for which no input nor output was present. Activity “Read”
refers to the action of reading a specific document such as a textbook or an article for the
purpose of assimilating a well-defined block of information, while activity “Browse / Search”
was aimed at the action of reading documents or web pages in a non-specific order, as when
searching for documents that will eventually be read. Activities “Draw” and “Write” refer to
the respective production of diagrams and text of all kinds. Activity “Discuss” refers to every
discussion taking place between a team member and one or more persons that may or not be
team members.

Category “Implementation” was aimed at those activities that are central to the coding
process. This category was especially important from an experimental point of view since
coding-related activities constitute the vast majority of the effort spent under strict
implementation of the Extreme Programming methodology. The classification had to reflect
the fact that, under XP, coding, integrating and testing often occur as intertwined activities.
Activities “Code”, “Test” and “Code & Test” have therefore been defined in order to take
account of the possible combinations of coding and testing. Activity “Integrate & Test”
reflects the fact that, presumably, integration is a short duration activity that leads
immediately to testing.

Category “Control” was aimed at the quality assurance actions that were likely to take
place after every preparation or implementation step. It encompasses one single activity
called “Inspect / Review” which refers to the technical review activities that may be
performed after the initial production of any artifact. Category “Support” included other
activities which occurrence would be interpreted as merely accidental and weakly linked to
fundamental behavioural characteristics of the participants.

4. Analysis of cognitive activities performed

Figure 3 illustrates effort spent on each cognitive activity as a percentage of total effort
spent in each of the three following grouping: XP-based projects, UPEDU-based projects,
total (sum of the six projects). The three most important contributors to effort are the same for
all groupings: “Code”, “Code & Test” and “Write”. Those activities, along with “Draw”, are
the most output-oriented of the activity classification. They amount to 57% of total effort
spent under the total grouping. Coding-related activities alone amount to nearly half (47%) of
total effort under that same grouping. This shows clearly that, beyond central analysis, design
and testing skills that are, rightly, promoted within the software engineering community, this
discipline remains a coding-intensive one, even when performed by students aware of the

importance of software
process activities. This
finding might provide a part
of the answer to the question
raised by McConnell: “How
important is software
construction?” [16]
Software construction is
indeed a very important
matter, at least in terms of its
intensity relatively to other
disciplines.

A Pareto analysis [17] of
figure 3 shows that half of

0%

20%

40%

60%

80%

100%

UPEDU Total XP

Other

Technical Administration

Brow se / Search

Draw

Read

Integrate & Test

Test

Training

Inspect / Rev iew

Discuss

Think

Write

Code & Test

Code

Figure 3. Effort distribution by activity (%)

Proceedings of the 16th Conference on Software Engineering Education and Training (CSEET’03)
1093-0175/03 $17.00 © 2003 IEEE

the activities (7 / 14) cover 80% of the total effort spent under the general grouping.
Meanwhile, a thorough look at the center of the Pareto distribution shows that 7 activities
gather between 3% and 5% each. Support activities encompass only 7% of the total effort,
most of it being spent in training.

Figure 4 illustrates the
same distribution, but
modified to help analysis of
the central activities. Coding
activities and less relevant
support activities have thus
been removed from this
activity distribution analysis.
Activity distribution within
this partial set does not
follow a typical Pareto
distribution. The first 2
activities (starting from the
bottom) account for 40% of
the effort, instead of an
expected 80% using the Pareto principle. It is necessary to add up effort spent on the first six
activities to reach that 80% level. This is an interesting result since it shows that our
classification fills out its purpose of acting as a powerful discriminating criterion for activity
classification. Some activity merging would however have to be performed so to help provide
a clearer picture of which activities predominate among those performed by the participants.

First, output-producing
activities “Write” and
“Draw” differ only by the
type of output generated. We
chose to merge them into a
single “Write / Draw”
composite activity. Also,
activities “Integrate & Test”
and “Test” cover essentially
the same kind of work. We
chose to merge them into one
“Test” composite activity,
encompassing only testing
made outside of a coding
task. Finally, activities
“Think”, “Discuss”, “Read”

and “Browse / Search” all cover tasks that are performed as preliminary steps to the output of
any artifact, while not producing artifacts themselves. We therefore chose to merge them into
a single composite activity.

Figure 5 illustrates the results of the merging operation. Under this reclassification, the
output-less composite activity becomes the second most effort-intensive one, right after the
coding-related activities. It is interesting to note that this particular set of activities amounts to
39% of the total non-coding and non-support effort. Also, coding-related and output-less
activities amount to 70% of all effort spent.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UPEDU Total XP

Brow se / Search

Draw

Read

Integrate & Test

Test

Inspect / Rev iew

Discuss

Think

Write

Figure 4. Effort distribution by activity, partial set
(%)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UPEDU Total XP

Inspect / Rev iew

Test

Write / Draw

Think / Discuss / Read /

Search

Coding-related

Figure 5. Effort distribution by composite

activity, partial set (%)

Proceedings of the 16th Conference on Software Engineering Education and Training (CSEET’03)
1093-0175/03 $17.00 © 2003 IEEE

5. Concluding remarks

Developing software is an open problem. There can be as many solutions as there are
individuals or teams. In this study, all the teams provided acceptable software products in
relation to the requirements specification issued. All were also constrained by the common
lifecycle and met all deadlines.

Even though the software process used seemed to have an impact on the importance of
some cognitive or composite activities, we did not observe any significant relation between
the process used and the overall effort magnitude. Effort spent by XP teams as a whole
indeed exceeded effort spent by UPEDU teams by a whopping 29%. However, external
factors that may have affected this figure are numerous and thus make it highly questionable.
The only three-participant team was a UPEDU team and showed the smallest total effort of
the six teams. We may interpret this as the expression of the fact that those students had to be
more productive than the other teams to reach their objectives, or that they may have
benefited from their size in terms of reduced required interactions.

The project required quick learning of the Java Servlet technology by the
participants. Since the XP teams had to start coding almost immediately, they faced
technological difficulties earlier than the UPEDU teams. We observed significant
technology-related knowledge transfers from the XP teams to the UPEDU teams at the
time when the latter started producing code. It must be noted that other kinds of
knowledge transfers, for instance ones related to architectural decisions, seem not to
have occurred on a large scale. Traces of such transfers have not been found in the
resulting artifacts, except in the form of common reuse of a few key external
components. Total absence of knowledge transfer would have been very difficult to
achieve in practice. However, the use of a project definition that is less challenging
from a technological point of view than the one actually implemented would possibly
have downplayed the importance of this particular factor.

This study illustrates a basic observation of team software development based on two
different software engineering processes. In spite of the limited scope of the study, a few
general conclusions can be drawn. These conclusions need more experimentation in order to
be validated.

The effort spent on core activities within each development project are more or less
independent of the software engineering process used. The process will just bring more
emphasis on one type of activity rather than another. This shifted emphasis does not have a
spectacular effect on the overall distribution of the cognitive activities performed. One
possible interpretation is that some core activities will require a minimal effort investment
regardless of the software process used.

We observe that a well defined software process such as the UPEDU will put more
emphasis on the engineering aspects of the software implementation by stressing the pre-
coding activities while the XP-based process will put more emphasis on testing and ad hoc
communications. While these observations are totally in line with the definition of the
processes involved, what is most interesting is that these differences between processes are
simply not as great as one may have expected and do not impact the effort-intensive coding
activity family.

Proceedings of the 16th Conference on Software Engineering Education and Training (CSEET’03)
1093-0175/03 $17.00 © 2003 IEEE

6. Acknowledgements

We are grateful to Mihaela Dulipovici who participated in the preparation of the semester,
acted as teaching assistant for the course and was deeply involved in artifact and effort slip
quality evaluation. Also, this project would not have been possible without the participation
of all the students enrolled in the “Software Engineering Studio” course during the Winter
2002 semester. We would also like to thank Alexandre Moïse and Martin Robillard for their
insightful comments while we were building the requirements specification for the semester
project.

This work was partly supported by the National Sciences and Engineering Research
Council of Canada (NSERC) under grant A0141.

7. References
[1] M. Halling, W. Zuser, M. Köhle, and S. Biffl, “Teaching the Unified Process to Undergraduate Students”,
Proceedings of the 15th Conference on Software Engineering Education and Training (CSEET'02), IEEE
Computer Society, 2002, pp. 148-159.

[2] D. Umphress and J.A. Hamilton, Jr., “Software Process as a Foundation for Teaching, Learning, and
Accrediting”, Proceedings of the 15th Conference on Software Engineering Education and Training (CSEET'02),
IEEE Computer Society, 2002, pp. 160-169.

[3] M. Höst, “Introducing Empirical Software Engineering Methods in Education”, Proceedings of the 15th
Conference on Software Engineering Education and Training (CSEET'02), IEEE Computer Society, 2002, pp.
170-179.

[4] El Emam, K., “Software Engineering Process”, SWEBOK – A Project of the Software Engineering
Coordinating Committee (trial version 1.00), IEEE, Los Alamitos, CA, 2001, pp. 9-1 – 9-18

[5] Kruchten P., “The Rational Unified Process: An Introduction”, Reading, MA, Addison-Wesley, 2000.

[6] Robillard, P.N., and P. Kruchten, “Software Processes with the Unified Process for Education (UP/EDU)”,
Addison Wesley, Boston, MA, 2002

[7] École Polytechnique de Montréal, « UPEDU », http://www.upedu.org

[8] P.N. Robillard, P. Kruchten, and P. d’Astous, “YOOPEEDOO (UPEDU): A Process for Teaching Software
Process”, Proceedings of the 14th Conference on Software Engineering Education and Training (CSEET ’01),
IEEE Computer Society, 2001, pp. 18-26.

[9] Cockburn, A., “Agile Software Development”, Addison Wesley, 2002

[10] Agile Alliance web site, http://www.agilealliance.org.

[11] É. Germain, M. Dulipovici, and P.N. Robillard, “Measuring Software Process Activities in Student Settings”,
Proceedings of the 2nd ASERC Workshop on Quantitative and Soft Computing Based Software Engineering
(QSSE 2002), Banff, AB, Canada, 2002, pp. 44-49.

[12] É. Germain, P.N. Robillard, and M. Dulipovici, “Process Activities in a Project Based Course in Software
Engineering”, Process Activities in a Project Based Course in Software Engineering, IEEE, 2002, pp.S3G-7 –
S3G-12.

[13] P.N. Robillard, “Measuring Team Activities in a Process-Oriented Software Engineering Course”,
Proceedings of the 11th Conference on Software Engineering Education and Training (CSEET ‘98), IEEE
Computer Society, 1998, pp. 90-101.

[14] P.N. Robillard, “Teaching Software Engineering through a Project-Oriented Course”, Proceedings of the 9th
Conference on Software Engineering Education (CSEE), IEEE Computer Society, 1996, pp. 85-94.

[15] K. Beck, “Embracing Change with Extreme Programming”, Computer, 10/1999, pp. 70-77.

[16] S. McConnell, “I Know What I Know”, IEEE Software, 05-06/2002, pp. 5-7.

[17] Juran J.M., F.M. Gryna, Jr., and F.M. Bingham, “Quality Control Handbook. Third edition”, McGraw Hill,
New York, 1979; cited in Fenton, N. and Ohlsson, N., “Quantitative Analysis of Faults and Failures in a Complex
Software System”, IEEE Transactions on Software Engineering, 08/2000, pp. 797-814.

Proceedings of the 16th Conference on Software Engineering Education and Training (CSEET’03)
1093-0175/03 $17.00 © 2003 IEEE

