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La scoliose est une déformation tridimensionnelle de la colonne vertébrale, qui implique
une rotation transversale des vertébres pouvant entrainer une cyphose thoracique et /ou
une lordose lombaire. Afin de réduire le risque de cancer 1ié 2 une dose cumulative de
rayons X infligée au patient pour la détection de cette anomalie et le suivi de sa
progression, des méthodes non invasives basées sur I’observation de I'asymétrie de la
surface externe du tronc ont été explorées. Cependant, il a été difficile de déterminer la
nature de la relation complexe et non-linéaire entre les déformations intrinseques de la
colonne vertébrale et celles propagées 2 la surface externe du tronc 2 travers les tissus
mous. La meilleure approche de solution a ce probleme est la méthode GA-ANN
proposée par Jacob Jaremko qui a utilisé I’algorithme génétique (GA) et les réseaux de
neurones artificiels (ANN) pour interpréter la relation complexe entre les déformations de
la surface externe et celles des structures osseuses sous-jacentes. Le GA a servi au choix
d’un ensemble d’indices parmi tous ceux qui ont été extraits a partir du modele de la
surface externe du tronc. Ensuite les ANN ont été utilisés pour corréler ces indices avec
la valeur de l’angle de Cobb mesuré sur les radiographies pour caractériser la
déformation de la colonne vertébrale. Bien que la méthode GA-ANN s’avere
expérimentalement excellente, il subsiste tout de méme certaines limites, dues a la phase
indispensable d’extraction d’indices et a I’utilisation des ANN. Pour pallier a ces limites
une approche de solution plus générale au probléme est proposée dans le cadre de ce
mémoire de maitrise. Les Machines 3 Vecteurs de Support (SVM) sont utilisées pour la
classification des déformations de la colonne vertébrale & partir des données de
topographie de surface décrivant le modele surfacique du tronc. Les différences
fondamentales entres la méthode proposée et celle de Jacob Jeremko sont, en premier
lieu, la méthode proposée n’extrait aucun indice, et en deuxieme lieu, une approche
SVM plutdt que ANN est utilisée pour obtenir de meilleures performances de

généralisation. Les données acquises sont approximées par une B-Spline définie par un
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ensemble de points de contrdle. Une technique linéaire de réduction de dimension,

analyse des composantes principales, est également utilisée.

La méthode proposée a été évaluée sur deux d’ensembles de données: la surface décrivant
la géométrie de la matrice de pression utilisée pour mesurer I’effet d’un corset sur un
patient et la surface externe du tronc de patients acquise & partir de caméras laser a
Calgary. Le premier ensemble contient les données de 41 patients et le second contient
115 acquisitions de surfaces dont certaines concernent le méme patient examiné a
différents instants. Les patients ont été regroupés en plusieurs classes suivant la valeur de
I’angle de Cobb mesuré. Sur ’ensemble des données de corset, deux classes ont été
définies suivant le critére Seuil: angle de Cobb moyen de tous les patients dans
Pensemble des données. Sur I’ensemble des données de Calgary, trois classes ont €t€
définies (angle inférieur a 30°; compris entre 30° et 50°; supérieur a 50°) qui
correspondent aux différents cas de gravité: patients de déformation légere, moyenne et
grave. Les meilleurs résultats obtenus sur I’ensemble des données de corset étaient 0%
pour Perreur d’entrainement et 29.27% pour I’erreur de test avec le noyau de ERBF. Sur
I’ensemble des données de Calgary, les meilleurs résultats obtenus étaient 9.71% pour
’erreur d’entrainement et 32.97% pour I’erreur de test avec le noyau RBF. Ce résultat est
donc relativement faible par rapport aux résultats de la méthode GA-ANN. Nous pensons
que la cause principale provient du fait que les points de contrble ne sont pas une
représentation invariante de la géométrie externe des patients et qu’ils ne caractérisent
pas la déformation externe aussi efficacement que les indices calculés a partir des
données brutes. L‘effet de sur-apprentissage qui apparait dans les résultats obtenus est 1i€
3 la petite taille de I’échantillon de données et pourrait probablement &tre réduit si plus de
données de patients sont collectées. De plus, les divers bruits existants dans les données
ont sérieusement affecté la performance de la méthode proposée. Par exemple, des
corsets ont été prescrits 2 la majorité des patients considérés, et le traitement par corset

peut altérer biomécaniquement la relation normale entre la déformation de la colonne
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vertébrale et celle du tronc. Enfin, une méthode de construction d’un ensemble de SVMs
a été également développée et évaluée sur des données disponibles & P'université de
Californie pour tester des techniques d’apprentissage. Les résultats obtenus sont
prometteurs et indiquent qu’une approche basée sur un ensemble de SVMs pourrait

améliorer les résultats de classification.



ix

ABSTRACT

Scoliosis is a common 3D spinal deformity that is biomechanically coupled with a
transverse rotation of the vertebral bodies and may be accompanied by abnormai
kyphosis of the thoracic spine and /or lordosis of the lumbar spine. In order to reduce the
cancer risk associated with the series of full-torso X-rays which are used for the detection
of this disease and monitoring its progress, non-invasive methods which make use of the
torso surface asymmetry caused by scoliosis have been introduced. However, the nature
of the complex, non-linear relation between surface and spinal deformities has been
difficult to determine. The most successful method on this subject in the past was the
GA-ANN method introduced by Jacob Jaremko, in which he utilized genetic algorithms
(GA) and artificial neural networks (ANN) to interpret the complex relations between
surface scans and spinal deformity. GA was used to select most suitable features that
were extracted from the surface model, and ANN was used to correlate these features to
Cobb angle (the measurement of spinal deformity). Although GA-ANN method achieved
excellent performance in experiments, the limitations existing in feature extraction and
ANN turned us to look for other more general solutions to the problem. This project
approached the old problem of estimating the severity of scoliotic deformity from torso
surface with Support Vector Machine (SVM), a type of novel learning methodology. The
main differences between our method and Jaremko’s were that firstly, we did not extract
any feature from torso surface; secondly, we employed SVM instead of ANN in order to
have better generalization performance. The scanned data points were represented by the
control points of the surface that fitted to these scanned raw points. A linear dimension

reduction technique, principal component analysis, was also involved.

We tested our method on two types of datasets: Brace dataset and Calgary dataset

(containing 41 and 115 data, respectively), on which we committed the classification



experiments. The patients were divided into several classes according to their Cobb
angle. On Brace dataset, two classes were defined by using the mean Cobb angle of all
patients in the dataset as the threshold. On Calgary dataset, three classes (Cobb angle <
30°, 30-50°, and > 50°, respectively) were defined which corresponded to patients having
mild, moderate, and severe spinal deformity, respectively. The best results obtained on
Brace dataset were 0% training error and 29.27% test error with ERBF kernel. The best
results obtained on Calgary dataset were 9.71% training error and 32.97% test error with
RBF kemel. Comparing to the result of GA-ANN method, this result is relatively poor.
We think the main cause is from the nature of control points that are not a steady and
invariant representation of surface deformities, and it does not capture the deformity
information as accurately as features. The ‘overfirting’ effect in our results is common
with small sample sizes and would likely be reduced as more patients’ data are collected.
The various ‘noises’ existing in the datasets seriously affected the performance of our
method too, for instance, most patients in the datasets were braced, while bracing
mechanically altered the normal relation between torso surface and spinal deformities.
When more patients’ data of better quality will be collected, our method can be expected
to perform better. We also developed a method of constructing an ensemble of SVMs and
test it on some artificial data sets. The results were rather promising and showed potential

for a future study.
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CONDENSE

Introduction

Dans le cadre de ce projet de maitrise une nouvelle méthode d’estimation de la
déformation de la colonne vertébrale 4 partir de la géométrie externe de la surface du
tronc de patients atteints de scoliose a été développée. La scoliose est une déformation
tridimensionnelle de la colonne vertébrale, essentiellement visible grace a une courbure
latérale de la colonne et est associée a une asymétrie du tronc et de la cage thoracique.
Les patients sont actuellement suivis en mesurant la progression de la courbure de la
colonne vertébrale (elle est mesurée a 1’aide 1’angle de Cobb) a partir d’une série de
radiographies. Plusieurs chercheurs ont révélé qu’une dose cumulative de rayons X peut
augmenter de maniére significative les risques de plusieurs types de cancer pour les
enfants atteints de cette maladie. Donc, il est indispensable de réduire ce risque en
clinique, par exemple en faisant appel & une évaluation non invasive de la progression de
la courbe & partir des changements visibles sur la surface externe du tronc. La
déformation du torse est généralement le premier indice qui pousse a diagnostiquer une
scoliose et reste le signe le plus important de scoliose pour les patients. Cependant la
relation entre le tronc et la déformation de la colonne vertébrale est complexe et difficile
a décrire analytiquement. La méthode GA-ANN (Genetic Algorithm - Artificial Neural
Network), développée par Jacob Jaremko & I’Université de Calgary, est I’approche la plus
compléte et récente, dans laquelle 1a sévérité de la scoliose, mesurée par I’angle de Cobb,
est estimée grice & un réseau de neurone artificiel. Un algorithme génétique est utilisé
pour sélectionner le meilleur sous-ensemble d’indices & présenter 2 ’entrée du réseau a
partir d’un ensemble d’indices décrivant I’asymétrie de la surface du torse. Le réseau de
neurone catégorise 83 parmi 89 données d’entrainement (93%) et 24 parmi 26 données
testées (92%) comme ayant des courbes 1égéres, modérées ou séveres (angle de Cobb

<30°, 30-50°, >50° respectivement). Leurs résultats suggérent que la mesure de
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Pasymétrie du torse est suffisante pour évaluer la sévérité de la maladie des patients

atteints de scoliose 8 1aide &’ un réseau de neurone artificiel.

Bien que la méthode GA-ANN est trés prometteuse et a amélioré les tentatives
précédentes, explorées par d’autres chercheurs, pour établir une relation entre le tronc et
la déformation de la colonne vertébrale, elle posseéde encore des limites. Les principales
sont reliées & Vutilisation d’un réseau de neurone et l'extraction d’indices pour
caractériser la déformation de la surface externe du tronc. L’entrainement efficace d’un
ANN requiére des indices qui décrivent la déformation de la surface aussi précisément
que possible. Méme aprés avoir intégré des milliers de points acquis du tronc dans
plusieurs douzaines d’indices d’asymétrie, nous sommes encore face au défi de la
sélection des indices les plus appropriés comme entrée au ANN. D’autres limitations
incluent, par exemple, ’entrainement du réseau de neurone et 1’algorithme génétique sont
trés cofiteux; le temps nécessaire pour la sélection de I’index dans I’algorithme génétique
est inacceptable lors d’une utilisation clinique de cette méthode ; le réseau de neurone
peut seulement trouver un minimum local, mais pas le minimum global. Pour pallier aux

limites citées une nouvelle approche a été explorée dans le cadre de ce projet de maitrise.

Objectif

L’objectif de ce mémoire est de développer un schéma général, visant a éviter les
limitations de la méthode GA-ANN, pour estimer les déformations scoliotiques & partir
de la surface externe du tronc sans une procédure préalable d’extraction d’indices. Nous
remplagons ANN par SVM (Support Vector Machine) pour établir un lien entre la
géométrie 3D de la surface externe du tronc et la déformation de la colonne vertébrale.
L’objectif & long terme de notre étude est de réduire 'utilisation des rayons X et

d’augmenter la fréquence du suivi de la progression de la scoliose en clinique.
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Meéthode

Au lieu d’extraire des indices 2 partir des données acquises, nous proposons des
techniques d’approximation de surfaces afin de réduire I’ensemble des données acquises.
Les points de contrble de la surface d’approximation peuvent décrire la surface d’intérét,
et par conséquent remplacer les nombreux points acquis. Avec cette technique, la
dimension des données peut étre réduite de centaines de milliers 4 quelques centaines
(cela dépend du niveau de précision avec lequel nous souhaitons représenter la surface).
Nous pouvons aussi réduire davantage la dimension de I’ensemble des points de controle
en utilisant une technique d’analyse par composantes principales (PCA: Principal
Component Analysis). Avec la technique PCA, la dimension des données peut €tre
réduite 2 quelques douzaines et méme moins (cela dépend de la variabilité que nous
souhaitons conserver). Aprés la réduction de 1’espace des données le résultat obtenu est
soumis & une machine a vecteurs de support (SVM) pour la classification des données.

Dans ce qui suit, nous décrirons de fagon détaillée chaque étape de notre méthode.

L’approximation de la surface

Nous avons utilisé 1’algorithme d’approximation globale aux moindres carrés. Nous
avons modélisé une surface NURBS (Non Uniform Rational B-Splines) de degré (p,q)
pour approximer les données acquises. Ayant un nombre fixe de points de controle (n),
nous avons estimé la courbe (ou la surface) approximative décrivant les données. La
procédure d’approximation est formulée comme un probléme d’optimisation non-linéaire
ayant comme variables les points de contrdle, les noeuds, ou les poids, afin de minimiser
un type d’erreur (par exemple, les moindre carrés ou le maximum). Dans notre cas, les
seules variables sont les points de contrbles dont le nombre total est fixé, et la technique
des moindres carrés est utilisée pour résoudre le probléme d’optimisation obtenu. La

courbe non-rationnelle de degré p vérifiant la relation ci-dessous:
Clu)=>N,,w)P ueloi]
=0

est déterminée en considérant:
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& QO = C(O) et Qm = C(l)’
e et O, s’expriment au sens des moindres carrées, comme la solution qui réalise le

minimum de

m—1

ZIQk ”k)i

par rapport aux (n+1) variables, F,; les {uk} sont les valeurs des parametres calculé

préalablement. Alors :

R, =0, “No,p(ﬁk)Qo “Nn,p(il-k)Qm k=1--m-1

Et
f:ZiIQk*C(ﬁk)iz :msz—iNi‘ (ﬁ )Pz

—f[R ‘R, -—221\7 (@ R, -P)+ (211\/ ) ](ZN ) H
i=1
f est une fonction des variables P,---,P,_,. Nous appliquons la technique standard
lindaire des moindres carrées afin de minimiser la fonction f. Les dérivés de f par
rapport aux n—1 variables, P, , sont supposées nulles. La [° dérivée est
o _
E‘Z‘:( 2N, , (@, )R, +2N,,p(uk);N,.,p(uk)gj

ce qui implique que

- :Z;(Nz,p (@, )R, + Z: Zj N, @ N, (@, )P;) -0
Par conséquent

I =1,---,n—1 forment le syst¢me de n—1 équations avec n—1 inconnues
(N'N)P=R

O N est la matrice de dimensions (m—1)x (n ~1)
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Nl,p(it—l) Nn—l,p(it—l)
N = : .. :

Nl,p (Zl_m‘}) Nn—l,p(”_[m—l)
R est le vecteur de n—1 points
Nl,p (”71 )Rl + o + Nl,p (ﬁm—l )Rm——l Pi
R= 5 et P=
Nn-l,p (ﬁl )RI e Nn—l,p (i[m—l )Rm~1 Pn~l

Les points de contrdle & déterminer sont la solution de I’équation décrite ci-dessus.

Analyse par composantes principales
Le but de I’analyse par composantes principales est de déterminer une base orthogonale
de vecteurs (des vecteurs propres) pour décrire un nouvel espace de représentation des
données. La premiére composante représente la variabilité maximale des données. La
deuxiéme orthogonale & la premiére représente la variabilit€ de seconde importance, et
ainsi de suite. Dés que quelques composantes sont jugées suffisantes pour représenter la
variabilité de I’ensemble des données, on peut ignorer les autres. Cela permet d’effectuer
une réduction des dimensions de 1’espace de représentation. Les composantes sont les
vecteurs propres de la matrice de covariance de ’ensemble des données. Maintenant, on
va décrire briévement comment calculer les composantes principales. Supposons qu’on a
une population x aléatoire, ou
x= (X X, )
et la moyenne de cette population est
K, = E{x}
et la matrice de covariance de ces données est
C,=E{(x-p)x—p)"}

Les composantes de C, , dénotées par Cyis représentent les covariances entre les variables

aléatoires x, etx;. La composante ¢, est la variance de la variable x;. Si les variables x;
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et x; ne se correlent pas, leur covariance est zéro(c; = c; =0). La matrice de covariance

est toujours symétrique. Etant donnée une matrice symétrique comme la matrice de
covariance, on peut calculer une base orthogonale puis trouver ses vecteurs propres et les

valeurs propres associées. Les vecteurs propres e, et les valeurs propres correspondantes
A, sont les solutions de I’équation

Ce =4Ae, i=1..n
Si on met les vecteurs propres en ordre décroissant, on pourra former une base
orthogonale. Le premier vecteur propre aura la direction de la plus grande variance de
données. Donc, on peut trouver les directions selon lesquelles I’ensemble des données a

la valeur d’énergie la plus significative.

Etant donné un ensemble de données dont on a déja calculé la moyenne de I’échantillon
et la matrice de covariance. Soit A est une matrice composée des vecteurs propres de la
matrice de covariance. La transformation d’un vecteur x dans le nouvel espace de
représentation est décrite comme suit :
y=Alx-4,)
Les composants de y sont les coordonnées dans la base orthogonale. Au lieu d’utiliser
tous les vecteurs propres de la matrice de covariance, on peut représenter les données
sous forme de quelques vecteurs de la base orthogonale. Si la matrice A, est restreinte
aux K premiers vecteurs propres, la transformation est formulée comme suit :
y=Ag(x—4,)
Alors, on projette le vecteur original sur le systéme de coordonnées de dimension K. Cela
minimise I’erreur par moindre carrée entre les données originales et leur représentation

dans le nouvel espace.

Si les données se concentrent dans un espace linéaire, une réduction de ’espace des

données sera effectuée sans trop de perte d’information. En choisissant un nombre fixe
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des vecteurs propres, et leurs valeurs propres associées, on peut obtenir une
représentation consistante, ou une abstraction des données. Dans le cadre de ce projet, un
taux de variabilité de 80% et 90% a été retenu. Nous avons aussi effectué les expériences

sans PCA afin d’évaluer I'impact de cet étape sur le processus de classification.

Machines a vecteurs de support
Dans cette section, nous décrivons ’algorithme de classification binaire non séparable a

I’aide d’un SVM linéaire. Le cas séparable est seulement un cas particulier. Etant donnés

un ensemble de points x, € R"avec i = 1, 2,..., N. Chaque point appartient a l'une ou
l'autre des deux classes et ceci est exprimé par y, € {-1, +1} . Le but est d'établir

'équation d'un hyperplan qui divise I’ensemble des points de fagon 2 laisser tous les
points de la méme classe du méme coté tout en maximisant la distance entre les deux
classes et I'hyperplan. L'équation de 1'hyperplan de séparation peut étre écrite de la fagon

suivante w-x+b =0 (voir la figure suivante):

Hi: wex+b=-1

B

H1 et H2 sont des hyperplans paralleéles & 1'hyperplan de séparation. L'hyperplan de
séparation se situe au milieu de H1 et de H2. Ainsi les équations décrivant les plans H1 et
H2 sont respectivement : w-x+b =—-letw:x+5 =+1. Nous tenons compte du bruit, ou
de la séparation imparfaite. C'est-2-dire, nous n'imposons pas strictement des points de

repéres entre H, et H,, mais nous voulons plutot pénaliser les points de repéres qui
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croisent les extrémités. La pénalité C sera finie (si C = oo, on revient au cas séparable).

Nous considérons des variables de relaxation non négatives {, =20 pour tenir compte du
bruit. Le but des variables ¢, est de tenir compte d'un nombre restreint de points mal
classifiés. Si les points de repéres sont linéairement séparables, alors ¢, est nul. Puis les

équations des plans H1 et H2 deviennent:
wex, +b2+1-, fory, =+1,
w-x,+b<-1+(, fory, =-1,

g, =0, Vi
et nous ajoutons a la fonction objective une limite de pénalité:
S m
minimize W w+ C(Z )
oll m est habituellement placé a 1, ce qui nous donne
miaigize % wiw+ C(ZL &)

sujet de  y,(w'x, —b)+{,—120, 1<i<N
£, 20, 1<i<N

En utilisant les multiplicateurs de Lagrange &, , le lagrangien est:

N
(b i) = SwweCYY,
i=l
N - N
- Zai[yi(w x, =b)+ gf —1]= Z/uzgz
i=] i=1
1 N
= Ivwadc-a-me
i=1
N N N
- (Z(Ziyixf)w - (Z%)ﬂ)b +> e,
i=1 i=1 i=1

Ni les ¢,'s, ni leurs multiplicateurs de Lagrange n'apparaissent dans le probiéme dual de

Wolfe:
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1
max(ilmize‘gp =22 —‘zfzaiaj)’z)’jxi "X
i i,j

sujet a

0o, <C,
Zaiyi =0.

La seule différence avec le cas parfaitement séparable est que «, est maintenant borné

par C au lieu de «. La solution est de nouveau donnée par

N
w = Zaiyi‘xi
=1

La plupart des «, sont nuls, donc le vecteur w est une combinaison linéaire d'un faible

pourcentage de I’ensemble des points originaux. Ces points se nomment des vecteurs de
support parce qu'ils sont les points les plus proches de I'hyperplan de séparation et les
seuls points requis pour déterminer 'hyperplan de séparation. Etant donné un vecteur de
support x; , le paramétre b peut étre obtenu a partir des conditions de KKT tel que

b=y, -w-x,

Le probléme de classifier un nouveau point est maintenant simplement résolu en
Cconsidérant
w-x+b
Par conséquent, les vecteurs de support contiennent toute l'information nécessaire pour

classifier de nouveaux points.

Résultats

Nous avons effectué des expériences pour deux ensembles de données: les données de
surface de la matrice de pression acquises a4 1’Hopital Saint Justine et celles de surface
externe du tronc acquises 2 ["université de Calgary. Nous avons effectué des expériences

en appliquant une technique PCA et sans appliquer une technique PCA sur les données
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soumises au SVM. Dans les cas ou PCA a été appliquée, nous avons retenu un taux de
80% et 90% de variabilité des données. Nous avons effectué sur les données de la matrice
de pression des expériences d’entralnement et de test, ainsi que celles de la validation
croisée et la stratégie ‘Leave one out’. Nous avons constaté que la stratégie ‘Leave one
out’ est meilleure que la validation croisée pour les petits groupes de données. Par
conséquent, la stratégie ‘Leave one out’ a été retenue pour les données de surface du
tronc de Calgary. En ce qui conceme les données de la matrice de pression, les résultats

sont décrits ci-dessous:

Kernel | Erreur d’entralnement| Erreur de test| Vecteurs de support
Linéaire 3.12% 65.85% 58.72%
Polynomiale 0% 39.02% 92.5%
RBF 39.39% 78.05% 80%
ERBF 0% 29.27% 100%

Table: Les résultats de classification avec 90% PCA et la stratégie ‘Leave one out’.

Kernel | Erreur d’entrainement| Erreur de test| Vecteurs de support
Linéaire 19.88% 53.66% 91.95%
Polynomiale 0% 34.15% 98.11%
RBF 37.99% 75.61% 94.15%
ERBF 0% 29.27% 100%

Table: Les résultas de classification sans PCA mais avec la stratégie ‘Leave one out’.

En ce qui concerne les données acquises a Calgary, les résultats obtenus sont décrits ci-

dessous :
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Kernel Erreur d’entrainement | Erreur de test | Vecteurs de support
Polynomial 16x8 6.29% 34.07% 73.52%
RBF 16x8 9.71% 32.97% 73.89%
Polynomial 41x11 3.2% 47.25% 76.32%
RBF 41x11 5.69% 45.05% 76.57%
Polynomial 61x31 0% 42.86% 73.38%
RBF 61x31 0% 41.76% 72.82%

Table: Les résultats de classification sans PCA avec la stratégie ‘Leave one out’

Discussion

Les résultats obtenus ne sont pas aussi bons que ceux de Jaremko pour les données de
Calgary. Il y a plusieurs raisons pour cela. Le probléme principal vient du fait que les
points de contrble sont utilisés comme représentation de la surface. Les résultats des
expériences nous montrent que les points de contrdle n’ont pas pu caractériser la surface
aussi bien que les indices calculés par Jaremko. Nous nous sommes aussi rendus compte
que coordonnées 3D des points de contrdle ne sont pas invariantes par rapport aux
différentes tailles de patients. Les dimensions de l'ensemble de données étaient
relativement grandes. Bien que nous avons utilis€é une technique de réduction des
dimensions, le PCA, nous n’avons pas réussi a résoudre le probléme. Noua avons aussi

perdu des informations pendant la procédure de la réduction des dimensions.

Nous avons proposé une nouvelle méthode pour résoudre le probleme d’estimation de la
sévérité de la déformation de la colonne vertébrale & partir de données de la surface
externe du tronc. La méthodologie proposée n’effectue aucune extraction d’indices, mais
utilise les points de contrble du modele surfacique du tronc comme représentation. Un

SVM est utilis€ pour la classification des déformations scoliotiques.
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INTRODUCTION

Scoliosis is a lateral curvature, greater than 10 degrees, of the spine. The lateral deviation
is biomechanically coupled with a transverse rotation of the vertebral bodies and may be
accompanied by abnormal kyphosis of the thoracic spine and /or lordosis of the lumbar
spine (Haasbeek 1997). In clinics, scoliosis is primarily measured by the Cobb angle. The
propagation of scoliosis on the external surface of patient’s trunk is the asymmetry of the
trunk and rib cage. Most curves can be treated nonoperatively if they are detected before
they become too severe. However, 60% of curvatures in rapidly growing prepubertal
children will progress and can cause pain, osteoarthritis, disability or even respiratory
collapse if untreated. Therefore, scoliosis screening and monitoring are necessary and
patients should be examined every 6 — 9 months. Currently, the progression of scoliosis is
mostly monitored by physical exam and radiography. Radiation exposure in girls with
adolescent idiopathic scoliosis has been reported to increase their risk of reproductive
pathology. Multiple X-rays can significantly increase the risk of several types of cancer
for these children with scoliosis (Levy et al., 1996). Although new low-dose digital X-ray
devices have been shown to significantly reduce radiation exposure (Kalifa et al., 1998),
new non-radiographic, non-invasive techniques that can be used in conjunction with
radiographs may serve to further decrease associated radiation risks and hence have very

important significance for the clinic.

The deformation appearing on the torso surface of the scoliotic patient gives people a
heuristic that the torso asymmetry may be used to assess the severity of the scoliosis. In
fact this is a pattern recognition problem. Numerous methods, such as Moire
photography, modeling and imaging tools, knowledge discovery from scoliosis database,
local centroids evaluation, Quantec analysis which uses contour mapping methods etc.,
have been developed to quantify scoliosis from this approach (Denton 1992; Sakka et al.

1997). However, the precise relation between spinal and surface deformity i1s unknown.



This relation is very complex and difficult to describe analytically because the spinal
deformity is translated into surface asymmetry via the rib cage, with its incompletely
understood mechanical properties, as well as spinal muscles, viscera, fat, and skin
(Closkey et al., 1993; Stokes et al., 1989; White et al., 1990). Therefore, this complex
spine-surface relation is extremely difficult to model directly (e.g., through a finite
element model). So, it will not be surprising that all these methods have their own
strength and weakness, and none of them have gained domination in popularity after

taking into account all sorts of factors, such as performance, cost, complexity etc.

In very recent years, a type of novel and innovative methodology has been introduced
into the field of scoliosis research. Dr. Jacob Jaremko and his team from the University of
Calgary used learning methodology to approach the solution of this problem, ie.,
estimating scoliosis severity from surface asymmetry. Classical programming techniques
cannot solve this problem, since no mathematical model of the problem is available.
Under this kind of situation, the learning methodology is of strategic importance and
could provide the key to its solution. In the method used by Jacob Jaremko, an artificial
neural network, a type of learning system, was used to relate torso asymmetry to spinal
deformity. They acquired X-rays and 115 360-degree torso surface scans from 48
scoliosis patients to develop a genetic algorithm-artificial neural network (abbreviated as
GA-ANN from now on). That network would recognize and predict the Cobb angle of
scoliotic spinal deformity in patients. They used various indices such as age, curve
direction, and bracing status as inputs for the neural network. The neural network using
the indices selected by genetic algorithm estimated the Cobb angle within 5° in 65% of
the test set and 84% of the training set, and within 10° in 85% and 99% respectively. The
neural network also categorized 83 out of 89 training-set records (93%) and 24 out of 26
test-set records (92%) as having mild, moderate or severe curves (Cobb angles <30°, 30-
50°, >50° respectively). Their results suggest that determination of torso asymmetry

alone, through use of an artificial neural network, appears to be effective to assess



severity of disease in patients with scoliosis. This technique may also help to reduce the

need for the spinal x-rays often necessary in these patients.

Although the GA-ANN method has been very successful and outperformed previous
attempts to relate surface and spinal deformity, there still exist some limitations in it. The
main limitations are related to the ‘natural born’ constraints existing in the mechanism of
the neural network and the use of features (i.e., indices) to represent the surface
deformity. Effective ANN training requires a set of input indices that describes the
surface deformity as completely and as efficiently as possible. Even after integrating
thousand of raw torso surface data points into several dozen asymmetry indices, we are
still faced with the challenge of selecting the most appropriate of these indices to use as
ANN inputs. Some other limitations include, for instance, both neural network training
and genetic algorithm are very time-consuming; the extra processing time required for
genetic-algorithm index selection would be undesirable in clinical use of this method;
neural network can only find local minima, not global minima; and etc. So, although the
GA-ANN method was very successful, we still would like to try other approaches to the

scoliosis estimation problem.

Hence, based on these facts, another kind of method whose starting point was to avoid
the above-mentioned constrains of GA-ANN method was developed, for the goal of
estimating scoliosis severity-from trunk surface deformity. Firstly, we did not want to do
feature extraction, i.e., we wanted to make full use of the raw torso geometrical data
points directly. Secondly, we wanted to replace neural network by other sort of learning
machine which does not have those ‘natural-born’ constraints existing in the mechanism
of neural network. With these two considerations, we came to our project — estimation of
scoliosis severity from the torso surface by support vector machine. Support vector
machine (SVM) is a type of novel and extremely powerful learning machine. It meets

many of the challenges confronting machine learning systems. The four problems of



efficiency of training, efficiency of testing, overfitting and algorithm parameter tuning

are all avoided in the design of SVM.

This thesis is organized into five chapters. Introduction section gives a general
introduction to the investigated problem, the difficulties, our general objective and the
methodology we employed to solve it. Chapter 1 introduces the basic background
knowledge of scoliosis. Literature investigation of previous attempts on our problem and
the comparison of those methods and the proposed method are also included. Chapter 2
aims at describing the techniques involved in our project, including principal component
analysis, and support vector machine. Chapter 3 deals with experiments we committed
and results we obtained. In chapter 4 we present an investigative study which is our
preliminary try on constructing the ensemble of SVMs. Conclusion is the final section
presenting the overall conclusions and suggestions for future development of the

described work.



CHAPTER 1-STATE OF THE ART

1.1 Sceliosis

1.1.1 Definition

On an X-ray taken from behind, a normal spine appears straight. However, a spine
affected by scoliosis looks like an “S” or a “C”, showing a lateral deviation of the normal
vertical line of the spine (Figure 1.1). This condition of side-to-side spinal deformity is
called scoliosis. Some of the bones in a scoliotic spine also may have rotated slightly,

making the person's waist or shoulders appear unbalanced.
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Figure 1.1: Posterior-anterior (PA) view of normal and scoliotic spine (SRS Patient

Handbook, 2002)

Scoliosis is a kind of widely existing disease. According to past research, one in 10
persons will have Scoliosis. Two to three persons in every 1000 will need active
treatment for a progressive condition. In one out of every 1000 cases, surgery may be
necessary (NSF, 2002). Due to the prevalence of this disease, many efforts have been

spent on the research from different points of view.



1.1.2 Spinal Anatomy
For the convenience of narration, we introduce the terminologies used in the spinal
anatomy at first. A human spine is composed of 24 vertebrae, plus the sacrum and

tailbone (Figure 1.2). These 24 vertebrae can be divided into cervical, thoracic, and

lumbar sections.
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Figure 1.2: Spinal anatomy (taken from www.espine.com)

These characteristics of spine can be concluded in the following table:

Term # of Vertebrae| Body Aresg Abbreviation
Cervical 7 Neck C1-C7
Thoracic 12 Chest Ti-T12
Lumbar 50r6 Low Back L1-1L5
Sacrum 5 (fused) Pelvis S51-85
Coceyx 3 Tailbone None

Table 1.1 Characteristics of spine (Keith Bridwell, 2001)




1.1.3 Signs and Symptoms

The following are the most common symptoms of scoliosis. However, each individual

may experience symptoms differently. Symptoms may include:

o Unbalanced shoulders

» Prominent shoulder blade or shoulder blades
¢ Unbalanced waist

o FElevated hips

s Leaning to one side

These symptoms can be Visuéﬂly percepted at clinics, as shown in the following figures:

(a) (b) (©) (d © ()

Figure 1.3: Comparisons of normal and scoliotic patients (NSF resources)

(a) Normal (b) Scoliotic (¢) Normal (d) Scoliotic (¢) Normal (f) Scoliotic

1.1.4 Types of Scoliosis

The types of scoliosis can be divided into three main categories (Julie Joncas, 2000).

e Idiopathic scoliosis



In more than 80% of the cases, a specific cause is not found and such cases are termed
idiopathic, i.e., of undetermined cause. This is particularly so among the type of scoliosis
seen in adolescent girls.

¢ Congenital scoliosis

This type of scoliosis exists from birth and is visible on an X-ray film. It is secondary to a
vertebral deformity.

o Other types of scoliosis

Comparing to the above two types, other types of scoliosis are relatively rare to be
observed at clinic, so we can include all of them as one type, such as neuromuscular

scoliosis, traumatic scoliosis, and iatrogenic scoliosis.

1.1.5 Causes

As we have mentioned above, in most (80 to 85 percent) cases, the cause of scoliosis is
unknown - a condition called idiopathic scoliosis. This is particularly so among the type
of scoliosis seen in adolescent girls. Conditions known to cause spinal deformity are
congenital spinal column abnormalities, neurological disorders, genetic conditions and a
multitude of other causes. Scoliosis does not come from carrying heavy things, athletic

involvement, sleeping/standing postures, or minor lower limb length inequality (SRS).

1.1.6 Type of Curve Patterns

According to the location of the curvature occurred on the spinal curve line, four common
types of curve patterns seen in scoliosis may be defined:

e Thoracic — 90% of the curves occur on the right side.

Apex of curve is between T2 and T11.

e Lumbar — 70% of the curves occur on the left side.

Apex of curve is at L2 or L3.

e Thoracolumbar — 80% of the curves occur on the right side

Apex of curve is at T12 or L1.



e Double major — 90% of the curves have a right thoracic convexity along with a left
lumbar convexity.

There are two large structural curves in both the thoracic and lumbar spine.

@ (b) (© (d)
Figure 1.4: Four types of curve patterns (taken from www.espine.com)

(a) Thoracic (b) Lumbar (c) Thoracolumbar (d) Double major

1.1.7 Scoliosis Classification

There are a number of criteria existing in scoliosis classification. King’s criterion is the
most commonly accepted one in clinics. King developed a classification scheme for
idiopathic thoracic and combined thoracolumbar scoliosis (King et al., 1983). It was
based on the curves described by Moe (Moe, 1958) and is used to help guide
management including placement of Harrington rods. The definition of each category of

scoliosis and its features are summarized in the following table:
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Curve Vertebra Other Type
Features
S-shaped with both | both curves cross midline with lumbar | flexibility index I
thoracic and curve larger than the thoracic curveon | <0
lumbar curves standing X-rays
both curves cross midline with lumbar | flexibility index II
curve smaller than or equal to the >=0
thoracic curve on standing X-rays
thoracic curve crosses midline but 111
lumbar curve does not ("overhanging")
single long L5 centered over sacrum; LA tilts into v
thoraco-lumbar curve
curve
S-shaped primarily | T1 tilts into the convexity of upper upper curve v
involving thoracic | curve; L2-L5 centered over sacrum structural on
curve bending
Table 1.2: King’s classification
Flexibility index:

* The flexibility of the thoracic and lumbar curves is measured on maximum lateral
bending.

¢ Subtracting the correction of the thoracic curve from the correction of the lumbar curve

is termed the flexibility index.

The following figure illustrates the five categories of scoliosis according to King’s

classification scheme.
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Figure 1.5: King’s classification (King et al., 1983)

1.1.8 Curve Progression

Although most scoliosis is of unknown cause, there does appear to be a developmental
connection in many cases. Most cases of scoliosis occur just before and during
adolescence, when children are going through a growth spurt. Risk factors for curve
progression include (Stuart L. Weinstein):

Curve pattern

In general, double curve patterns are at greater risk for progression than single curve
patterns. Lumbar curves tend to have the least risk of progression of all curve patterns.
Age

The younger the child when scoliosis appears, the greater the chance of curve
progression.

Menarche

A curve detected prior to menarche has a much greater chance of progression (66%) than
one detected post menarche (33%).

Curve magnitude

The larger the initial curvature at detection, the greater the chance of progression.

Sex

Girls are 10 times more likely to experience curve progression than boys.



12

1.1.9 Clinical Treatment

Treatment choice in adolescent idiopathic scoliosis is determined by a complex equation
which includes the patient's physiologic (not chronologic) maturity, curve magnitude and
location and potential for progression. The goal of treatment is to stop the progression of
the curve and prevent deformity. Treatment may include:

e Observation and repeated examinations

Small curves measuring less than 20-25 degrees that do not require brace treatment
should be observed during periodic examinations of four to six months or 1 year intervals
based on their size. Observation remains a form of treatment because any 5 degree
increase in the size of the curve may change the course of treatment.

o Bracing

Bracing may be used when the curve measures between 25 to 40 degrees on an x-ray, and
during skeletal growth. The type of brace and the amount of time spent in the brace will
depend on the severity of the condition.

o Surgery

Doctors typically recommend surgical treatment for patients whose curves are greater
than 40 to 50 degrees.

o Other approaches

Some cliniciens have tried electrical stimulation of muscles, chiropractic manipulation
and exercise as ways to treat scoliosis. There's no evidence that any of these methods will

prevent spinal curvature from progressing (SRS).

1.2 Analysis of Internal Spinal Deformity

For the purpose of analysis, a set of indices which are used to quantify the deformity of

the spine have been developed (Jaremko, 2001).
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1.2.1 Cobb Angle and Its Variants

Cobb angle is the most commonly used index in the quantification of scoliosis. It is
measured from a 2D X-ray. Cobb angle measures the angle of curvature of the spine. To
use the Cobb method, one must first determine which vertebrae are the end-vertebrae of
the curve. These end-vertebrae are the vertebrae at the upper and lower limits of the curve
that tilt most severely toward the concavity of the curve. Once these vertebrae have been
selected, the angle between intersecting lines drawn perpendicular to the upper endplate
of the superior vertebrae and the lower endplate of the inferior vertebrae is the Cobb

angle (see figure 1.6).

-
.
I
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Figure 1.6: Cobb method for measurement of scoliosis (Michael L. Richardson, 2000)

In the above figure, the Cobb angle of the spine is 58 degree.

An important problem with the Cobb angle is that it is measured on the frontal or lateral
plane projection of a spine. That is to say, it reflects only the 2D shape of the spine. As
we have known, scoliosis is a 3D deformation problem. It is primarily a lateral deviation
asymmetry, but accompanied with axial rotation produced by some inherent mechanism

in intervertebral joints (motion segments) of the spine (Stokes et al.). So it is not
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surprising that the Cobb angle cannot sufficiently and accurately reflect the spinal
deformity. While the Cobb angle is the current gold standard of scoliosis monitoring, it
must be remembered that it is not fundamental to the curve but is only an incomplete and

imprecise measure derived from the true 3D shape of the spine.

Another alternative to the Cobb angle is the “computed Cobb angle”. A smooth
mathematical curve is first fitted through the frontal plane projections of the coordinates
of the centers of the vertebral bodies. Inflection points of this curve are located, and the
angle subtended by perpendiculars to the curve at these inflection points is measured as
the “computed Cobb angle” (stokes et al. 1987). An advantage of the computed Cobb
angle is its low variability measurement which is 1.2°, compared to up to 9" for the

manual Cobb angle (Labelle et al., 1995a).

Figure 1.7: Computer Cobb angle (Jaremko, 2001)

1.2.2 Apex Location

The apex of a scoliotic curve is defined as the vertebrae with maximal lateral deviation.
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1.2.3 Vertebral Rotation

One may estimate the degree of rotation of the vertebra at the apex of the curve by

N
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looking at the relation of the pedicles to midline.
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Figure 1.8: Measurement of rotational component of scoliosis (Michael L. Richardson,

2001)

1.2.4 Posterior Rib Rotation

Posterior rib rotation is measured from 3D reconstruction of the shape of the ribs, which
are calculated from the digitized stereo radiograph images of the midlines of the ribs by
the method of Dansereau and Stokes (Dansereau and Stokes, 1989). This method uses an
iterative computer program to find a line whose projection onto the two radiographic
planes best matches the digitized midlines. Posterior rib rotation is measured at each
anatomical level as the axial rotation relative to the frontal plane of a line drawn
tangentially to the projection of each pair of ribs onto a horizontal plane. This index of rib

asymmetry is analogous to back surface rotation.

1.2.5 Rotation of Plane of Maximum Curvature

The “rotation of plane of maximum curvature” of the part of each spine defined by the
end vertebrae of the scoliosis curve can be found by projecting the spine sequentially
onto planes rotated about a vertical axis. A computer program calculates the spinal
curvature, based on the perpendiculars to the curve at the end vertebrae, at each rotation.

The axial rotation at which this curvature becomes a maximum is noted, with the
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patient’s sagittal plane as the origin for measurement. This index is used to describe the

rotation of the spine.

1.3 Analysis of External Trunk Deformity

For the purpose of analysis, a set of indices which are used to quantify the deformity of

the trunk has been developed (Jaremko, 2001).

1.3.1 Back Surface Rotation

Adam's forward bending test is used for detecting rotational asymmetries on the back
surface of scoliotic patients by clinicians. It requires no additional equipment (such as a
scoliometer or humpometer) and can help to identify scoliosis. The test is accomplished
by having the patient bend forward at the waist standing with feet together and the knees
straight. The patient's arms are dependent and the hands are held with the palms opposed.
The examiner looks along the horizontal plane of the spine from the back and side to
detect an asymmetry in the contour of the back. A rotational deformity known as a “rib

hump” (arrow) can be easily identified.

e
e

a
e

Figure 1.9: Adam's forward bending test (Gilbert M. Gardner, 2001).
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Back surface rotation describes the rotation of a horizontal plane cross section made
through the back surface at the level of each vertebra. It is defined as the angle of the line
between thoracic rib humps or tangent to the lumbar midline. As illustrated in the
following figure (Figure 1.10), by projecting a segmental level which consists of a
vertebra, the ribs and the back surface onto a horizontal plane, the back surface rotation is
measured about a vertical axis, with positive value assigned to clockwise rotations as

seen from above (Stokes, 1989).

pastorior db rotation
bl et Fobion i

Figure 1.10: Back surface rotation, rib rotation, and vertebra rotation (Stokes, 1989)

The maximum vertebra rotation, back surface rotation, and posterior rib rotation all occur
close to the apex of the scoliosis. The vertebra having the greatest axial rotation is at the
apex of the scoliosis curve, or within two vertebral levels of it, as is also the maximum
posterior rib rotation. The maximum back surface rotation is found to be at a level

between two vertebrae above the apex and three vertebrae below it (Stokes, 1989).
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1.3.2 Apex Level

Surface asymmetry is greatest near the apex of spinal deformity in scoliosis, generally
speaking within two vertebral levels of the radiographic curve apex (Scutt et al., 1996;
Stokes and Moreland, 1989). This maximal lateral deviation of the trunk is termed as the
apex level of the surface. It can be used in surface topography to estimate spinal apex

location relatively accurately.

1.3.3 Spinous Process Line

The line of spinous processes, palpable just below the surface of the back and usually
visible in slender patients, is the most direct available evidence of the position of the
underlying spine. The “spinous process angle” can be calculated from this line by the
same method as the computer-Cobb angle (section 1.2.1). This angle is smaller than the
Cobb angle, likely because forces in the posterior spinal ligaments and muscles straighten
the spine from behind by encouraging vertebrae to rotate into the concavity of a scoliotic
curve. Still, the spinous process angle correlated closely in most cases to the Cobb angle
with r = 0.77 — 0.94 (Drerup and Hierholzer, 1996; Herzenberg et al., 1990; Letts et al.,
1988; Turner-Smith et al., 1988; Weisz et al., 1988; Wong et al., 1997). The spinous
process angle has been described as the best single index of scoliosis available from

surface topography (Turner-Smith et al., 1988).

1.3.4 Trunk Indices

While most study of surface deformity in scoliosis has focused on the shape of the back,
the recent availability of 360° full-torso surface scan data has enabled study of torso
cross-sectional asymmetry. Many indices might be extracted from these horizontal slices
of the trunk. For example, one group defined the angle formed analogously to the Cobb
angle from the line of trunk cross-section centroids as the “torsographic angle”, and they
found that it correlated well to the Cobb angle (r = 0.69 — 0.87) in 93 patients (Dawson et
al., 1993). Other indices, such as trunk centroid offset, intrinsic cross-sectional rotation,

shear, and size asymmetry can also be defined as features used in surface topography.
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1.4 Scoliosis Assessment

There are primarily two types of approaches in assessing the severity of scoliosis. One
approach is to check the spine directly. X-ray is the typical representative of this type of
method. The other approach is to try to estimate the interior spinal deformity by
analyzing the external torso surface deformity which is caused by the interior deformity.

Both approaches have their own advantages and disadvantages.

1.4.1 X-ray Evaluation

Today, in clinics scoliosis is mostly evaluated by measuring the lateral curvature of the
spine on an X-ray that is taken with the patient facing the X-ray film (the anterior to
posterior, or AP view — as opposed to a lateral view). When a curve is present, it is
measured and discussed in terms of Cobb angle. The severity of the spinal deformity of
patient with scoliosis is determined by the Cobb angle. The main advantage of X-ray
method is its accuracy of measuring the severity of the scoliotic deformity since the shape
of the spine can be presented directly. A possible upper limit to the accuracy of Cobb
angle estimation is its wide measurement variability of up to 9° between different
observers and up to 5° with the same observer (Goldberg et al., 1988). The disadvantages
of X-ray are also evident. The first limitation of X-ray assessment to the scoliosis is from
the Cobb angle index employed by the X-ray method. There are some 1ssues existing
today about the completeness and representativeness of this index. The main problem
with the Cobb angle is that it is only a two dimensional measurement, nevertheless
scoliosis is a three dimensional deformity. But basing on the reality that no other better
indices have been invented so far, Cobb angle is still the most widely accepted and the
most important index used in clinics. So, in our work we still adopted the Cobb angle as
the measurement of the severity of the scoliotic deformity. There are still some other
limitations of X-rays. For instance, the X-rays are costly and risky. High exposure to
ionizing radiation particularly in adolescents is not acceptable since there is strong

evidence of increased carcinogenic risk (Nash et al., 1979). In a study of women with
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scoliosis seen between 1935 and 1965, the incidence of breast cancer was nearly double
that of the general population (Hoffman et al., 1989). Although radiation exposure to the
breasts, thyroid and gonads has been reduced by modern X-rays that use lower doses of
radiation and are taken from behind the patient (posterior-anterior, PA) rather than from
in front (anterior-posterior, AP), the lings and bone marrow receive more radiation by PA
X-ray than by AP X-ray (Levy et al., 1996; Pope et al., 1984). Scoliosis patients typically
receive an average of 12 full spinal X-rays during their adolescent growth years,
increasing the incidence of cancer of the breast, thyroid, lung, ovary and bone marrow by
up to 2.4 cases per 1000 AIS patients (Levy et al., 1996). The limitations of radiographic
evaluation of scoliosis, and the high cost and current limited availability of magnetic
resonance imaging (MRI), have encouraged research into surface assessment of scoliotic

deformity.

1.4.2 Surface Topography Evaluation

Surface Topography is rapidly becoming an essential component in the comprehensive
assessment of 3D spine deformities. It has long been accepted that conditions such as
scoliosis are 3D in nature and that traditional methods of measuring spinal curvature such
as Cobb angle using X-rays do not give a 3-D measure of the back surface. The use of
surface topography for the assessment of scoliotic deformity in the clinic depends firstly
on the quality of measures which reliably characterize deformity of the back, and

secondly on the easiness and speed with which these measures can be applied.

Many non-invasive methods have been developed to measure and assess back shape and
posture. These can be divided into two categories: tactile and non-tactile. Tactile methods
are low in cost and simple to use but are limited in the measurements that can be made
and generally can only document curves either in the sagittal or transverse section of the
back. The contour tracer (Thulborne et al., 1976), Bunnell scoliometer (Bunnell, 1984),
spinal pantograph (Willner, 1981) and flexirule (Lovell et al., 1989) are the most

common tactile methods in widespread use. Non-tactile methods are more costly because
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they are generally based on optical techmiques. Although accurate they tend to be
cumbersome to move and expensive to maintain. Moiré (Moreland et al., 1983; Tartaro et
al., 1986), ISIS (Oxford metrics, 1987; Turner-Smith, 1988) and Quantec (Wojcik et al.,
1994) are the most widely used however, owing to their cost and complexities are usually
only accessible to specialist units. Many clinicians who would benefit from such a system

currently still have to rely on qualitative visual methods to assess posture and shape.

Methods of quantifying scoliosis deformity from back or trunk surface asymmetry have
been introduced since the 1970’s. Moiré Fringe Contouring was the first one of them and
was widely applied in various applications. Moiré fringes are formed when one line or
grid pattern is superimposed upon a similar line or grid pattern, as shown in the figure

below:

Figure 1.11: Superimposed gratings (taken from www.scoliosis-world.com)

A grating is projected onto the object and an image of the object formed in the plane of a
reference grating. The interaction of the superimposed projection grating lines with the
reference grating causes moiré fringes to be produced which appear superimposed on the

surface of the object being measured. As the projected grating is distorted by the



22

irregularities in the shape of the object’s surface, the resulting fringe pattern describes

surface contours.

Figure 1.12: Moiré fringes (taken from www.scoliosis-world.com)

The use of moiré fringes to acquire 3D surface shape information was well established.
Their application to the measurement of areas of the human body began with the work of
Hiroshi Takasaki as early as 1973 when he successfully applied moiré topography to the
measurement of the human body for medical purposes. In 1994, two researchers from
Algeria built a computer vision system for diagnosing scoliosis (Batouche M and
Benlamri R., 1994), in which moiré images of the patient’s back are extracted using the
infinite size symmetric exponential filter first, then image interpretation, i.e., scoliosis
diagnosing, is performed using some relevant features and the three dimensional surfaces
that are reconstructed from the contour fringes by applying a parallel relaxation operator.
In order to have a real-time vision system, most of the system’s components are
implemented in a parallel fashion. The experimental results have shown that this system
is robust to noise and is reliable for the recognition of most scoliosis deformities. Many
works have been carried out in scoliosis research by using moiré fringes. Asymmetric

Moiré topography is a sensitive marker of scoliosis, but the false-positive rate can go as
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high as 505 (Stoke and Moreland, 1989; Willner and Willner, 1982), the patterns

produced changed easily with small changes in patient position (Moreland et al., 1981).

Besides Moiré contour topography, another category of surface topographic method is the
back surface raster scan. The principal idea of this method is to record the intersection
lines of a horizontal beam of projected light and the back surface first, then compute
cross-sectional back surface coordinates. The scan results can be manipulated by
computer to generate back surface asymmetry indices for the purpose of evaluating
internal spinal deformity. This process was once extremely time-consuming by manual
measurement (Thulbourne and Gillespie, 1976), but modern raster photogrammetric

methods are rapid and accurate (Vandegriend et al., 1995) (Figure 1.13).

Figure 1.13: Back surface raster scan (Stokes and Moreland, 1989)

A widely used example system of this approach was ISIS, the Integrated Surface Imaging
System (Theologis et al., 1997; Tredwell and Bannon, 1988; Turner-Smith et al., 1988;
17 Upadhyay et al., 1988; Weisz et al., 1988). It was used for screening programs and for
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research into the nature of scoliosis. The scanning of the entire back can be done in <2 8
(Turner-Smith et al., 1988). A recent commercial raster system is the Quantec scanner,
acquiring back surface 3D coordinates in "voxel" form via a single charged-coupled-
device (CCD) camera (Goldberg et al., 2001a; Liu et al., 2001; Thometz et al., 2000). The
latest one is perhaps the SYDESCO, a new 3D laser-video scanner developed for trunk
surface topography (Treuillet et al., 2002). It associates a fast video camera with a laser
stripe light and uses the principle of triangulation-based range sensing, which is
commonly used in vision machine to infer 3D shape. The trunk is scanned by vertically
moving both camera and laser on a linear rail controlled by computer. Then an
asymmetry index is calculated from the 3D data to detect the scoliosis. This is only a

preliminary study for 3D scoliosis evaluation.

The third category of surface topographic evaluation method is the full-torso scan
approach. Previous works mostly focused on the back of the surface since most
deformities appear on the back. However, the value of quantifying not just the back
surface but the 360° deformity of the entire scoliotic trunk is beginning to be recognized.
Such a trunk scan would be most useful if it covered the entire trunk with a high
resolution of data points. Not many researches have been done in this approach. The
earliest one was a group in Japan using a single rotating scanner to capture the entire
torso shape, though scan range was limited to 10 cross-sections in 27 cm (Dawson et al.,
1993; Ishida et al., 1987; Ishida et al., 1982). Another device rotated the subject 360° on a
turntable for a complete scan, but the system was slow (30 s per scan) and results of tests
and correlation studies were not published (Gomes et al., 1995). A group in France made
360° torso scans using four raster cameras, but their research was intended predominantly
for brace design instead of internal spinal deformity (Sciandra et al., 1995). The most
recent and complete one is the scan system developed by Jaremko’s group at the
University of Calgary. They used four laser scanners mounted on a ring to acquire the
entire torso of each patient (Poncet et al., 2000a). After the full-torso scanning was done,

a comprehensive study of the features of the external shape and the correlation with the
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internal spinal deformity was carried out. With the measured information from the
scanned surface model, they successfully estimated the scoliotic deformity. More details

about their scanning process and estimation method will be presented in later sections.

The introduction of the optical surface topography method opened new methods of
description and registration of the spine status, provided possibility of examination of a
large number of children during a short time. Each new technology — X-ray, Moiré-
fringe and raster scans, handheld digitizers, 360°-torso scans — enables a different
approach to understanding scoliosis via a different set of data describing the spine and
trunk. They may be applied both for mass screening of patients with scoliosis for early

detection of spinal deformity, and for following treatment monitoring.

1.5 Machine Learning in Scoliosis Research

The construction of machines with the capability of automatically learning from
experience is of strategic importance, as there are many tasks which cannot be solved by
classical programming techniques, since no mathematical model of the problem can be
built. For example, it is not known how to write a computer program to perform
handwriting character recognition, though there are plenty of examples available. It is
therefore natural to ask if a computer could be trained to recognize the letter ‘A’ from
examples — after all this is the way humans learn to read. This approach to problem
solving is referred as the learning methodology. Machine learning (ML) provides
methods, techniques, and tools that can help solving diagnostic and prognostic problems
in a variety of medical domains. ML is being used for the analysis of the importance of
clinical parameters and their combinations for prognosis, e.g. prediction of disease
progression, extraction of medical knowledge for outcome research, therapy planning and
support, and for the overall patient management. ML is also being used for data analysis,
such as detection of regularities in the data by appropriately dealing with imperfect data,

interpretation of continuous data used in the Intensive Care Unit, and intelligent alarming
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resulting in effective and efficient monitoring. The successful implementation of ML
methods can help the integration of computer-based systems in the healthcare
environment providing opportunities to facilitate and enhance the work of medical

experts and ultimately to improve the efficiency and quality of medical care.

Scoliosis research is certainly a sub-field of medical research. But so far, scoliosis
research is not a much explored discipline yet by ML researchers. Not many ML methods
have been applied into scoliosis research as in other medical applications. In this section,

we summarize the main ML methods adopted in the scoliosis research so far.

1.5.1 Knowledge Discovery

Some researchers tried to solve the scoliosis classification problem with the approach of
data mining (Man et al., 2000). Their method was to discover knowledge from scoliosis
database using evolutionary algorithms. Two different representation of knowledge,
namely rules and causal structures, were learned. Rules capture interesting patterns and
regularities in the database. Causal structures represented by Bayesian networks capture
the causality relationships among the attributes. Evolutional algorithms, including generic
genetic programming, genetic algorithms, evolutionary programming, and evolutionary
strategy, were employed to conduct the learning tasks. From the scoliosis database, they

discovered knowledge about the classification of scoliosis.

According to their research, the largest effect on the clinicians from the data mining
analysis of the scoliosis database was the fact that many rules set out in the clinical
practice were not clearly defined. The usual clinical interpretation depends on subjective
experience. This data mining effort revealed quite a number of mismatches in the
classification on the type of King’s curves. Their results demonstrated that the knowledge
discovery process can find interesting knowledge about the data, which can provide novel

clinical knowledge as well as suggest refinements of the existing knowledge.



27

1.5.2 Linear Discriminant Function

In 2001, a group of researchers reported a novel technique for automating human
scoliosis detection by computer based on moiré topographic images of human backs
(Hyoung et al., 2001). In their method, displacement of local centroids is evaluated
statistically between the left-hand side regions and the right-hand side regions of the
moiré images with respect to the extracted middle line. The local centroid displacement is
calculated in several regions and the mean and the standard deviation of the displacement
values are chosen as two features. A linear discriminant function (LDF) is defined on the
two dimensional feature space based on the Mahalanobis distance and the features are
classified into two categories, i.e.., normal and abnormal cases, by the LDF. The
classification accuracy was 88.3% by training and testing on 120 real moiré images.
Despite the relatively simple mechanism, the advantage of this technique is that it realizes
simpler analysis of moiré image and, therefore, achieves much shorter processing time

than any other previous method.

1.5.3 Linear Regression

A linear regression model assumes that the regression function E(Y|X) is linear in the
inputs X;, ..., X,. In the scoliosis case, the output variable Y can be understood as the
Cobb angle, the input X can be understood as weighted linear combination of torso
asymmetry indices, with weights calculated to give the least squared error between the
estimated and actual output. Such regression is often carried out in a stepwise logistic
manner which tests all input indices one at a time, adding an index to the model if its
contribution is significant and removing any indices whose contributions become non-
significant (Jefferson et al., 1997). When the output is predicted not as a continuous
variable but as a category (e.g., category 1 = mild curvature, category 2 = severe
curvature), an equivalent technique called discriminant analysis can be employed (Liu et
al., 2001). Linear regression method is simple and often provides an adequate and

interpretable description of how the inputs affect the output. For prediction purpose it can
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sometimes outperform fancier nonlinear models, especially in situation with small
numbers of training cases, low signal-to-noise ratio or sparse data. However, given the
non-linearity of many relations within the torso (e.g., ligament strains, thresholds of
rotation established by bony geometry), use of linear combinations of surface indices

may not be sufficient.

1.5.4 Genetic Algorithm and Neural Networks

An important contribution to scoliosis evaluation from torso surface is the work of Jacob
Jaremko and his colleagues. While many investigators have focused on indices describing
the asymmetry of the back surface, they found that the use of indices describing the
deformity of 360° torso cross-sections improved the prediction of the Cobb angle. In their
study, scoliosis severity, measured by the Cobb angle, was estimated by artificial neural
networks from indices of torso asymmetry using the genetic algorithm to select the
optimal set of input torso indices. The network structure they used was a 3-layer feed-
forward neural network training with the standard back-propagation method. Three types
of index selection techniques were applied: they were linear methods, principal
component analysis, and genetic algorithm, respectively. Best performance was obtained
on genetic algorithm. Basing on a data set of 115 scans of 48 scoliotic patients, they
conducted two sorts of experiments: regression and classification. In the regression
experiment, the neural network using the indices selected by genetic algorithm estimated
the Cobb angle within 5° in 65% of the test set and 84% of the training set, and within 10°
in 85% and 99% respectively. In the classification experiment, the neural network
correctly classified 83 out of 89 training-set records (93%) and 24 out of 26 test-set
records (92%) as having mild, moderate or severe curves (Cobb angles <30°, 30-50°,
>50° respectively). Their experiments showed promise for future longitudinal studies to

detect scoliosis progression without use of X-rays.
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1.6 Limitations of Jaremko’s Approach and another Direction

From the review of literature in scoliosis research, we have noticed that not many
machine learning methods have been introduced into this field. But basing on the state of
that the precise relation between spinal and surface deformities is unknown and this
relation cannot be accurately mathematically modeled, machine learning methods are
appropriate tools for this type of problems. In this project, we investigated the old
problem of estimating scoliosis severity from trunk surface data basing on the hypothesis
that changes in spinal curvature in scoliosis are related to systematic and measurable
changes in trunk surface topography. Jacob Jaremko’s approach is the most
comprehensive and successful one so far comparing to previous works in this field. His
system gives the ability for the first time of accurately predicting the severity of the spine
of the patient with scoliosis, and the possibility of massively non-invasively monitoring
the progression of the scoliosis. His work has significant contribution to the clinic. But
some limitations still exist in his method. In order to clarify the fundamental differences

between our work and his work, we discuss these limitations first.

1.6.1 Limitations of Jaremko’s Approach

In his approach, he trained an ANN with a collection of input indices, which describe the
torso surface asymmetry, to estimate the Cobb angle of spinal deformity for a group of
scoliotic patients. There are mainly two sorts of limitations with this approach. One lies

in the feature extraction, another in the neural network.

1.6.1.1 Limitations of Feature Extraction

In his method, firstly more than 250 features of torso asymmetry were collected. After
optimizing the zone of calculation of each of >250 variations of torso asymmetry features
and removing redundant features, 47 features of torso asymmetry (e.g., back surface
rotation, apex level, and spinous process line) and clinical descriptors (e.g., age, sex,

height, weight, and bracing status) remained. Then a Genetic Algorithm was utilized to
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find out the ‘most suitable’ set of 17 features of torso asymmetry and clinical
characteristics out of the previous 47 features and clinical descriptors. Two limitations
exist with this approach. Firstly it is very complicated to define and calculate these
features from torso model reconstructed from the scanned spatial geometrical points;
secondly even after integrating hundreds of thousands of raw torso surface data points
into 17 asymmetry features, still it is not guaranteed that the remaining features represent
the torso surface deformities completely and exactly. The challenge of selecting the most
appropriate features to use as classifier inputs always exists there. Feature extraction also
requires extremely carefully positioning of patients. A slight move of patient’s posture
can lead to significant change to some feature values. This is obviously disadvantageous
in practice. The feature selection step by GA is extremely time-consuming in the GA-
ANN method. As Jaremko mentioned in his PhD thesis: on a 650 MHz IBM PC, each
neural network run took ~15 s and each generation of a genetic algorithm took ~90 min,
the GA generally converged between 20 to 80 generations. That is to say, the feature
selection step took 30 to 120 hours. However, we also have to point out that although
some limitations exist in feature extraction approach, methods using features in pattern
recognition tasks usually give better accuracy than methods which do not make use of
features. This is simply because features capture information of an object more accurately

than non-feature representation of the same object.

1.6.1.2 Limitations of Neural Network

Neural network is a very powerful learning machine and achieved excellent performance
in Jaremko’s experiments, but some limitations naturally existing in the mechanism of
NN made us to consider replacing it by another type of learning machine which does not
suffer from these limitations. Generally speaking, in order to acquire good generalization
performance, plenty of data are usually needed for NN training and testing. But this is not
our case. In reality it is very hard to collect plenty of scoliotic data for research. For

instance, Jaremko’s data set was from 5 data collection sessions, each of which last half a
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year and it contained only 48 patients. As we know, the performance curve of a typical
NN can be illustrated as in the following figure:
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Figure 1.14: Neural Networks learning curve (Duda et al., 2001)

In order to have NN generalize well, usually a validation set has to be used in order to
stop the training of the network before it becomes over adapted to the training set. The
adding of a validation set makes the situation harder but unavoidable when available data
are very limited. This is an undesirable characteristic of NN. Some other undesirable
characteristics of NN include, for instance the fact that NN can only find out the local
minimum on the error surface, it cannot find out the global minimum; each run can lead
to different result; it is hard to maintain steady architecture of the NN in order to obtain
optimal performance etc. These characteristics have been embedded in the design of NN.
However, we also have to point out that with these limitations existing in NN does not
mean at all that NN cannot perform well in practice. In fact GA-ANN method performed
excellently on the Calgary scoliosis data set which is relatively small. We are merely
discussing these limitations from the theoretical point of view of machine learning

techniques.



32

1.6.2 Another Direction

Support vector machine (SVM) is a type of novel leamning method. The foundation of
SVM has been developed by Vapnik (Vapnik, 1995) and is gaining popularity in recent
years due to many attractive features, and promising empirical performance. The
formulation of SVM embodies the Structural Risk Minimization (SRM) principle, as
opposed to the Empirical Risk Minimization (ERM) approach commonly employed
within statistical learning methods. SRM minimizes an upper bound on the generalization
error, as opposed to ERM which minimizes the error on the training data. This upper
bound of the generalization error is the sum of the training error and a term which
depends on the Vapnik-Chervonenkis dimension of the classifier. By minimizing the sum
of both quantities, high generalization performance can be achieved. Moreover, unlike
other machine learning methods, the number of free parameters in the SVM does not
depend explicitly on the input dimensionality of the problem, which suggests that SVM
can be especially useful in problems with a large number of inputs. Experimentally, SVM
has also achieved superior performance. For example, it outperformed radial basis
networks on recognizing the US postal service database of handwritten digits (Scholkopf
et al., 1996) and improves the best-known result on a time series benchmark in the Santa
Fe Competition by a factor of 37% (Muller et al., 1997). Besides these, it has also been
successfully applied to a number of applications, ranging from time series prediction
(Fernandez, 1999), to face recognition (Tefas et al., 1999), to biological data processing
for medical diagnosis (Veropoulos et al.,, 1999). Its theoretical foundations and its
experimental success encouraged us to think about the feasibility of applying SVM into
our problem, i.e., estimating scoliosis severity from surface deformity. SVM has not
successfully been applied into other medical applications. In this section, firstly we
briefly summarize some medical applications to which SVM has been applied; then we

make a comparison between SVM and ANN.
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1.6.2.1 SVM in Medical Applications

The paper (Veropoulos et al., 1999) proposes an application of SVM classifiers to
medical diagnosis of Tuberculosis from photomicrographs of Sputum smears. Except the
fact that this is the first time that SVMs are used in a medical problem, another
interesting point was the introduction of two methods that can be used for controlling the
performance of the system on a particular class of the data (that is, force the SVM to
better classify the data from one of the two classes of the classification task). In most
medical problems, medical experts must have the ability to put more weight on one of the
classes of the problem (usually the class on which the diagnosis is 'heavily' based).
Another common problem in a wider area of applications is the presence of unbalanced
data sets (the set of examples from one class is significantly larger than the set of
examples from the other class). For these reasons, controlling the performance of a
system on a particular class of the data is practically very useful. To do so, (Veropoulos
et al., 1999) used a slightly modified version of the standard SVM formulation — the same
idea was suggested in (Osuna et al., 1997). The idea is to use different regularization
parameter C for each of the two classes. This translates in the following SVM
formulation:
i lilr & 2670 2

subject to: yif(x) 21 - &, foralli &=0

By changing the ratio Ci/C,, (Veropoulos et al., 1999) showed how to influence the
performance of the SVM toward one of the classes, therefore altering the false negative
vs false positive ratio for one of the classes. A different approach for dealing with the
problem of unbalanced data or to putting more weight on one of the classes is also

discussed in (Veropoulos et al., 1999).

The paper (Song et al., 2001) presents a novel landmark-based shape deformation method

which provided effective solution to two problems inherent in landmark-based shape
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deformation in the medical image segmentation field: (a) identification of landmark
points from a given input image, and (b) regularized deformation of object shape
embedded in a template. The second problem was solved using the constrained SVM
regression technique, in which a thin-plate kernel was utilized to provide non-rigid shape
deformations. The proposed method was applied to extract the scalp contours in
cryosection head images with very encouraging results. The experiments also showed
that this method was especially suitable for segmenting 3D images slice by slice, where

there are only small shape variations across the neighboring slices.

In the drug design field, (Burbidge et al., 2001) reported that the SVM classification
algorithm has promising potential for structure-activity relationship analysis. In a
benchmark test, the SVM was compared to several machine learning techniques currently
used in the field. The classification task involves predicting the inhibition of
dihydrofolate reductase by pyrimidines, using data obtained from the UCI machine
learning repository. Three artificial neural networks, a radial basis function network, and
a C5.0 decision tree were all outperformed by the SVM. The SVM is significantly better
than all of these, except a manually capacity-controlled neural network, which takes

considerably longer to train.

In the paper (Chris et al., 2001), the authors studied several important issues in protein
fold recognition in the context of a large number of folds, i.e., multi-class case, using
support vector machines and neural networks. Most current discriminative methods for
protein fold prediction use the one-against-others method, which has the well-known
“false positives” problem. In this paper, the authors investigated two new methods
handling with multi-class cases: the unique one-against-others and the all-against-all
methods. SVM and ANN were utilized as base classifiers. Their results showed that SVM

converges faster and leads to higher accuracy comparing to ANN.
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1.6.2.2 SVM vs. ANN

Many classical algorithms of machine learning are able to represent any function (as for
neural network, a neural network of just two hidden layers is sufficient to represent
arbitrary function) and for difficult training sets will give a hypothesis that behaves like a
rote learner. By a rote learner we mean one that correctly classifies the data in the
training set, but makes essentially uncorrelated predictions on unseen data, i.e.,
overfitting. Generally speaking, both SVM and ANN are very powerful learning
algorithms. But the formulation of SVM embodies the Structural Risk Minimization
(SRM) principle, which has been shown to be superior (Gunn et al., 1997), to traditional
Empirical Risk Minimization (ERM) principle, employed by conventional neural
networks. Traditional neural network approaches have suffered difficulties with
generalization, producing models that can overfit the data. This is a consequence of the
optimisation algorithms used for parameter selection and the statistical measures used to
select the ‘best’” model. SVM are trained by solving a constrained quadratic optimization
problem. Among others, this implies that there is a unique optimal solution for each
choice of the SVM parameters. This is unlike other learning machines, such as standard

Neural Networks trained using back-propagation.

ANN also suffers from the difficulty of model selection and are relatively heavy time-
consuming; especially on large-scale dataset or high-dimensional dataset, the training
procedure of an ANN is typically extremely slow. Comparing to ANN, SVM training is
very fast. The only factor which can give limitation to SVM learning is the number of
training data, this is because training of SVM leads to a quadratic optimization problem
with bound constraints and one linear equality constraint. For large learning tasks with
many training examples, off-the-shelf optimization techniques for general quadratic
programs quickly become intractable in their memory and time requirements. But in
recent years, some techniques have been invented which make large-scale SVM learning

practical (Joachims 1999).
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Besides the widely observed excellent accuracy of SVM, another characteristic of SVM
is that it does not include a priori knowledge about the problem, unlike the other high

performance classifiers.

At the side of experimental performance, SVM also outperforms ANN in most
applications. For instance, in last section we have seen that (Burbidge et al., 2001) and
(Chris et al., 2001) all reported better performance found on SVM than on ANN in drug
design and protein fold recognition applications, respectively. However, there is no
guarantee at all that SVM can always outperform ANN. In fact, specially designed ANN
can outperform SVM. For instance, the long-term competition carried out at AT&T
laboratory between ANN and SVM on NIST database shows that specially designed
ANN can achieve better performance than SVM (for details see Vapnik 1998). Generally
speaking the performances obtained by ANN and SVM respectively are usually very

close, the difference between them is really not significant.

The successfulness of SVM in both theoretical and empirical sides encouraged us to

apply it into our application, i.e., estimating scoliosis severity from surface deformities.

1.7 Research Question

1.7.1 Objective

We want to develop a kind of general method, which can avoid the limitations existing in
the GA-ANN method used by Jacob Jaremko, for the goal of estimating scoliosis severity
from trunk surface deformity. Specifically speaking, first, we do not want to do feature
extraction, namely, we want to make full use of the raw torso geometrical data points
directly. Second, we want to replace neural network by other learning machine which
does not have those ‘natural born’ constraints existing in the mechanism of neural
network. We employed Support Vector Machine, a type of novel learning algorithm, to

try to find out this complex non-linear relationship between spine and surface. This



37

project is mainly an exploratory work. The main goal is to test the feasibility and
usefulness of our approach to the scoliosis estimation problem which is fundamentally
different from the GA-ANN approach. The objective can be illustrated by the following

figure:
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Figure 1.15: Objective illustration

1.7.2 Long-term Goal

Scoliosis is a 3-D deformity of the spine, commonly assessed and monitored by a series
of harmful X-rays in growing adolescents. The long-term goal of our method is to help to
reduce the use of X-ray, and can be massively and frequently used in screening and

monitoring the progression of scoliosis in clinic.

1.7.3 Difficulties
The trunk data were collected by using multiple scanners scanning patient's trunk, such
that a very dense set of 3D coordinates of points of the trunk were obtained. These points

uniquely represent the trunk of the patients. Theoretically, different type of deformity of
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spine leads to different deformation trend on the trunk surface, hence it is possible to
classify deformed internal spine from external trunk data. And theoretically, we can
simply send all of these points into a classifier with unlimited computing power to do the
classification. But in practice, since the data points sampled from trunk are so dense, e.g.
there might be up to 65,000 points for a complete 360" full-torso scan, we have to look
for data reduction processing of these points. Another difficulty is that the available
amount of training data is usually very limited, as well as the dimension of each data is

very high. Dimensionality reduction techniques must be involved.
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CHAPTER 2 - METHODS

Instead of doing feature extraction from the scanned raw data points, we used surface
fitting technique as the data reduction technique for the original dense set of points. The
control points of the acquired surface can uniquely determine this surface, and
consequently represent the original dense points too. With this technique, the dimension
of the data can be drastically reduced from hundreds of thousands to a few hundreds (it
depends on how accurate we want the surface fitting to those points). Based on the fact
that the size of our data set is very small, the dimension of a few hundreds is still too
high. We can continually reduce the dimension of the data set of control points by
utilizing Principal Component Analysis (PCA). With PCA, the dimension of the data can
be reduced to a few dozen or even less (it depends on how much variation we want to
reserve). After the data set is prepared, we then send it into the SVM. The whole scheme

can be illustrated by the following figure:

Scanned raw > Surface PCA s SVM Cobb
data points fitting - angle
v
Training
mode

Figure 2.1: Scheme of process

In this chapter, we will describe each step of our method in detail.

2.1 Raw Data Acquisition

By comparing to the data which are finally fed into the SVM to estimate the scoliosis

deformity, we address the original scanned data as the raw data, since they are acquired
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directly from the surface of trunk and there was no any process imposed to them. These
raw data are composed of two parts: one part is the surface data which describes the
geometry of the trunk of scoliotic patients; another part is the spinal data which describes
the geometry of the spine of scoliotic patients. Both data have to be recorded at the same
time, i.e., when being scanned by a kind of laser scanning camera, the patient is also X-
rayed at the same time. Only with this setting, each trunk shape precisely corresponds to
its spinal shape. Any slight move or change in posture can cause change in the trunk
shape of the patient. In order to get accurate scanning of the torso, patient’s clothes
should be removed, though an alternative solution, for instance a tight-fitting white top,

can be available for extremely shy patients.

At the beginning of this project, we had no full-torso scanning data. We had only the
brace data which can be seen as a kind of simulation of real full-torso 3D scanned data
from Sainte Justine hospital, Montreal. Preliminary experiments were committed on the
brace data. Later we got the real full-torso scanned data from Calgary University which
was the same as Jaremko used in his work. So we had two sets of data in all and we
committed experiments on both of them. We address them as Raw Brace data and Raw
Calgary data, respectively. By contrast to the raw data, we address the processed data
which were finally fed into the SVM as Brace data and Calgary data, respectively. In this
part we briefly introduce how these raw data were acquired and some of their

characteristics.

2.1.1 Raw Brace Data

2.1.1.1 Acquisition Technique

Patients were braced when taking X-ray. The brace was first adjusted on the patient
according to the surgeon’s prescription. Then a flexible latex mat was inserted at the
brace-torso interface and the brace straps were tightened. 192 very thin (<Zmm)

polymeric pressure sensors (Verg Inc., Winnipeg, Canada) are mounted on the mat and
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are used to acquire the pressure generated by the brace on the entire torso (figure 2.2).
The electric wires connecting the pressure sensors were also digitized and reconstructed
in 3D in order to get a 3D geometric model of the torso-brace interface for pressure area
localization, and then the coordinates of the surface points were interpolated from these
reconstructed wires. Thus, since the electric wires were tightly in touch with the torso
surface, the points from the wires could be viewed as having the same geometrical
coordinates as the surface points located right under the electric wires. These acquired

points can honestly represent the shape of the trunk of the scoliotic patient.

Patient with brace Mat

Figure 2.2: Brace illustration

The acquisition of the patient’s torso internal geometry was performed using a
positioning apparatus and a calibration frame. Three radiographs were taken: a standard
posterior-anterior (PA), a PA with a 20° angle down pitch and a lateral view.
Radiographs were taken after the brace was put on. Anatomical landmarks (6 per vertebra
and 11 per ribs) were digitized and reconstructed in 3D using the direct linear
transformation (DLT) algorithm adapted for the spine and thorax (Dansereau et al, 1990,

Marzan 1976). A geometric modeling technique that uses an atlas of already meshed
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generic vertebrae was deformed to fit the reconstructed points, and used to complete the
geometry (Aubin et al., 1995). These reconstructions allowed the calculation of 3-D
indices characterizing their deformity (Label et al., 1996; Label et al., 1995)
(computerized Cobb angles, apical axial rotation, rib hump, kyphosis, lordosis,

orientation of the plane of maximum deformity, and etc.).

2.1.1.2 Characteristics

We received 41 data from Sainte Justine Hospital at the beginning. The internal
deformity of the scoliotic spine was characterized by the clinical Cobb angle. The Cobb
angle of right-oriented spine (viewing from the back of the patient) was defined as
positive; the Cobb angle of left-oriented spine was defined as negative. There are
maximally 120 points per wire, and maximally 12 wires per patients (depends on the
height of the patients). Some data points on each wire may be missing. The reason was
various, for instance, the mat could not be 100 percent tightened onto the patient’s trunk,
which led to that some sensors did not get data. The sensor wire was divided as left half
and right half. In a few extreme cases, the whole right half part of the sensor wire was
missing; hence we had completely no information about the surface part under the
missing sensor wire. The characteristics of these brace data were summarized in the

following table.
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No. Wire Cobb angle | King Class | Class No. of | Thoracic Thoracical | Lumbar Apex
numbers (PA2) Label PA laumbar
1 11 right 7.8 K2 -1 4 7.8 -6 T6
2 10 right 32.1 K1 1 3 32.1 -34.2 Li
3 11 right 13.6 K1 -1 3 13.6 -17.8 12
4 12 right 18.8(" Ki -1 5 18.8 -18.9 L2
5 12 right 36.0 K2 i 3 36 -24 T9
6 10 right 40.0 K3 or K2 i 4 40 -24.1 T8
7 % right 30.7 K2 or K4 1 3 30.7 -30.1 T12
8 12 right 41.8 K2 1 3 41.8 -314 T9
9 9 right 25.9 K3 or K2 -1 3 25.8 -144 T8
10 12 right 23.5(%) K1 -1 5 23.5 -32.3 L1
11 9 right 39.6 K2 1 3 39.6 -35 T8
12 10 right 357 K2 1 3 357 -34.8 T10
13 10 right 19.1 K1 -1 3 19.1 -333 L3
14 10 right 32.6 K2 1 3 32.6 -32.8 T9
15 9 right 32.9 K2 1 3 329 -29.9 T10
16 11 right 419 K2 1 3 419 -36.8 T8
17 11 right 275 K2 -1 4 27.5 -20.7 T8
18 12 right 4.6 K1 -1 4 4.6 -10.2 L1
19 10 right 279 K2 -1 3 279 -18.6 T7
20 10 right 14.7 K1 -1 4 14.7 -29.7 L2
21 10 left 23.8 K2 -1 3 23.8 -23.6 T9
22 12 right 27.1 K1 -1 3 27.1 -34.6 12
23 12 right 44.4 K2 1 3 444 -37.7 T8
24 10 right 16.8 K2 -1 3 16.8 -19.7 T10
25 9 right 40.7 K2 1 3 40.7 -28.7 T10
26 12 right 23.2 K1 -1 4 23.2 -24.7 L1
27 10 right 26.1 K2 -1 3 26.1 -28.6 T9
28 9 right 46.1 K2 1 3 46.1 -42.7 T8
29 9 right 64.6 K2 1 3 64.6 -32.1 T9
30 9 right 38.5 K2 1 3 38.5 -34.6 T10
31 12 right 11.4 K2 -1 3 114 -8 Ti2
32 9 right 30.7(7 K2 1 4 -40.2 357 Ti2
33 10 right 24.9 K1 -1 3 249 -32.3 12
34 10 right 28.8 K2 -1 3 28.8 -21.6 T10
35 9 right 18.7 K1 -1 4 18.7 -23.2 L2
36 10right 28.9 K2 -1 4 28.9 -26.5 T8
37 12 right 315 K2 or K3 1 3 315 -28.5 T8
38 11 right 29.2 K2 =1 3 29.2 -23.4 T8
39 10 right 29.9 K2 1 3 29.9 -304 Ti2
40 12 right 40.1 K2 1 3 40.1 -30.2 T10
41 12 right 33.7 K2 1 3 33.7 -34.3 T7

Wire numbers = number of available sensor wires, left or right indicates that the last wire contains only the
left half (left) or both left and right half (right). Cobb angle (PA2) = the second Cobb angle calculated from
the spine from PA (posterior-anterior) view. King class = to which category according to King’s
classification of scoliotic spine the shape of the spine belongs (The explanation of King’s classification will
be given in later sections). Class label = to which class sach patient’s spine was assigned according to the
classification criteria (given in later sections). No. of PA: number of Cobb angles calculated from the spine
from PA view. Thoracic = Cobb angle at thoracic part. Thoracic lumbar = Cobb angle at thoracic lumbar

part. Lumbar = Cobb angle at lumbar part. Apex = apex location.

Table 2.1: Characteristics of raw brace data
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2.1.2 Raw Calgary Data

2.1.2.1 Acquisition Technique

The laser imaging system (jointly developed by the National Research Council of
Canada, The Alberta Research Council, and Clynch Technologies Inc., Calgary)
consisted of four BIRIS laser scanners mounted on a mobile ring and connected to a
computer camera-control and data acquisition system (Figure 2.3). The four laser
scanners were placed around the patient. Each of them captured 3D coordinates of parts
of the patient’s torso-surface by projecting a low-power (15mW) laser beam onto the
torso, scanning points in sequence along each horizontal row. A customized package of
computer programs was written to transform raw 3D points from four torso surface
scanners into a 360° surface model. Some post-processing operations, e.g., rectification,
registration, and cleansing of spurious points, were carried out too. Detailed description
about the laser scanned data acquisition technique can be found in (Jaremko, 2001). Once
registered in the same coordinate system the images were merged together. Contour lines
were then created using surface interpolation. All interpolated points were computed
from contour lines. The data we received from Calgary University was the interpolated
data instead of the raw scanned data. But in order to distinguish from the data which was
eventually sent into the SVM, we still gave it the name of raw Calgary data. Basically
speaking, these raw Calgary data were very similar as the raw brace data. Taking out of
the factor of different ways of acquisition, the only difference was that the raw Calgary
data was more accurate in representing the surface shape of the patient than the raw brace

data.
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Figure 2.3: Illustration of synchronous laser scan and X-ray process (Jaremko, 2001)

2.1.2.2 Characteristics

We received 115 patients’ data in all from Calgary. Data collection was done once per six
months between May 1998 and May 2000. Usually the same range (75 cm) of zone of the
torso of patient was scanned no matter the patient size but then the part below the PSIS
dimples and above T1 (or C7) was cut. Thus, Small patients had less contour lines. The
range of number of contour lines varied from 31 to 47. Each contour line contained
exactly 360 points. Therefore, the scanned number of points for each patient varied from
11,160 to 16,920. Since all points on the same contour line were interpolated from the

contour line, they were all computed to get the same Y (up direction) coordinates.

Arm removal operation was done to each patient. During the scanning and X-ray
procedure, each patient stood in the positioning frame with arms raised to shoulder height
(figure 2.4). Due to asymmetric arm positioning and non-horizontal camera orientation,
contours in the upper thoracic region often captured more of one arm of the patient than
the other, causing errors in calculation of left-right asymmetry indices (used in Jaremko’s

method). So arm removal operation was taken. This caused that some data points on the
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contour lines crossing the arm part were missing, and thus these contour lines contained
less than 360 points. In order to get ‘rectangular’ data point matrix, the removed points
were replaced by NaN (Not a Number) value in the data matrix so there was always 360

components for each contour line.

Figure 2.4: Positioning device for scanning and X-rayed (Poncet et al., 2000a)

Similarly to the Brace data, right-deformed spine (from PA view) was defined as having
positive Cobb angle, left-deformed spine was defined as having negative Cobb angle.
Four Cobb angles were involved in our experiments, they are Cobb angle of primary
curve (mclincobbl), absolute value of the Cobb angle of primary curve (mclincobblabs),
Computer-Cobb angle of curve best matched to primary curve from chart (mmtlcobbl),
absolute value of computer-Cobb angle of curve best matched to primary curve from
chart (mmtlcobblabs), respectively. mclincobbl and mclincobblabs are clinical Cobb
angle and were calculated from curve chart of scoliotic spine by clinician. mmtlcobbl
and mmticobblabs are computer Cobb angle and were generated at Ste-Justine Hospital
along with the 3D spine reconstruction. There were 24 data with negative Cobb angle, the
other 91 data with positive Cobb angle. The magnitude range of these Cobb angle varied
from -57 degree to 75 degree. The histograms of these four Cobb angle are given out in

the below (X-axis represents Cobb angle, Y-axis represents the number of patients):
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Figure 2.5: Histogram of mclincobbl

Figure 2.6: Histogram of mmtlcobbl
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Figure 2.7: Histogram of mclincobblabs

Figure 2.8: Histogram of mmtlcobblabs
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From these histograms we can see that most patients had a Cobb angle in the range of 10
~ 40 degrees. The histogram of clinical Cobb angle and the histogram of computer Cobb
angle were very similar. This feature implied the strong correlation between clinical

Cobb angle and computer Cobb angle.

2.2 Surface Fitting

Theoretically speaking, we can simply send all of these data points into the learning
machine to estimate the deformation of the spine if the machine had unlimited
computational power. But due to the practical difficulties, manipulating these hundreds of
thousands of point-cloud data is difficult and tedious. For instance, the Calgary data we
had can have up to 16,920 points, and these points are 3D points which means they have
3 coordinates (in X, Y, and Z direction, respectively), thus the dimension of the Calgary
data can go up to about 50,000. In fact, the laser imaging system of Calgary can capture
as many as 65,536 points if higher density is required (Jaremko, 2001). We have to look
for a compact representation of these vast rows of digitized 3D points. Since our starting
point was to avoid doing feature extraction, our approach was to fit a smooth and
continuous surface to these geometrical points, then the set of the control points of this
surface could be used to represent the original data points which honestly represent the

spatial structure of the torso of the patient.

2.2.1 Fitting Method Selection

Fitting techniques deal with the problem of using a few data items, e.g., coefficients,
weights, to uniquely specify the entire object. These objects are usually represented by a
dense set of sampling. Logically, we can rewrite this problem as:

Input: 3D data points

Process: fitting techniques

Output: curve or surface, i.e., the control points and the knots of this obtained curve or

surface.
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In order to choose an appropriate fitting algorithm for our problem, we had to deal with
several considerations. The first consideration is about interpolation or approximation
fitting. There are two types of fitting techniques: interpolation and approximation. In
interpolation, the constructed curve or surface satisfies the given data precisely, i.e., the
curve or surface passes through all of data points. In approximation, the constructed
curve or surface usually only approximates those data points under a certain norm, e.g.,
the least square minimization, instead of passing through them precisely. Interpolation is
usually used in theoretical analysis and in the application of few data points. In real-
world applications, since the data points collected via a digitizing process can contain
measurement or computational noise, and usually their number is huge, it is almost
impossible and impractical to “wiggle” a curve or surface through all of the data. It is
more practical to find a curve or surface which best fits the data. Another consideration is
about global or local algorithm. Theoretically, in the curve or surface constructed by the
global algorithm, a change to any one input data point can change the shape of the entire
curve or surface, but the magnitude of the change decreases while the affected data point
keeps “fleeing” away. Local algorithms construct curve or surface in a segment-wise
fashion, using only local data for each step. Consequently, a change to a data point has
only local effect on the entire curve or surface. However, achieving desired levels of
continuity at the joint of segments is a headache, and local algorithms often result in
multiple interior knots. A nice property about global algorithms is that when the degree,
knots, and weights have been pre-selected, and the control points are the only unknowns,

then the system of equations is linear and easy to solve.

Based on the above two considerations, we decided to adopt the global least squared
approximation method (Piegl and Tiller, 2000). A degree (p, q) NURBS (Non Uniform
Rational B-Splines) surface was sought to approximate the data. The advantage of this
algorithm is that it can handle data points of arbitrary topology other than the traditional

“rectangular point carpet” one.
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2.2.2 NURBS Notations
For convenience, we introduce NURBS curve and surface definitions first.

ZNi,p (ww,F,
e A pth-degree NURBS curve: C(u) = = a<u<b

>N, (ww,
i=0

e A NURBS surface of degree p in the u direction and degree g in the v direction:

i i Ni,p (U)Nj,q (V)WiPij

S(u,v) =2 0<u,v<1

Id i3

Z Z Ny, (u)Nj,q (V)Wi

i=0 j=0

Where P, are the control points, and N are the base functions.

2.2.3 Least Square Approximation

A central ingredient in the approximation method is that given a fixed number of control
points, say n, we fit an approximating curve (surface) to the data. There are many ways to
do this. For example, a nonlinear optimization problem can be set up, with the control
points, knots, or the weights as unknowns. The objective is to minimize the error in some
way, e.g., least squares or maximum deviation (see Laurent-Gengoux et al., 1993). At this
part, we present a curve and surface fitting method in which a fixed number of control
points are the only unknowns, and they are solved using least squares technique. We seek

a pth degree non-rational curve

satisfying that:
e Q,=C(0)and Q, =C(1);

e the remaining O, are approximated in the least squares sense, i.e.

:Z:IQI( - C(iZk Hz
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is a minimum with respect to the n+1 variables, P ; the {i, | are the pre-computed

parameter values; the Q are the actual data points. We emphasize that the resulting curve

generally does not pass precisely through O, , and C(ﬁ‘k) is not the closest point on C(u)

toQ,. Let
szQk NOp(ﬁk)QO.—-an(i[k)Qm kzl’ 7m_l
Then
m-1 N2 m=1 n=l _ 2
f= IQk_C(ukx ZRk" N,p(uk)Pt
k= k=1 =1

k=1 i=1 i=l

n—1 n—1
-5 8k 28, R 2)+ (S, w8 ){ S, e
i=1
f is a scalar-valued function of the n~—1 variables, P,---,P,_, . Now we apply the
standard technique of linear least squares fitting to minimize f we set the derivatives of
f with respect to the n—1 points, P, , equal to zero. The [thderivative is
m—1 n—1
Z( “k R +2N k)ZNi,p(iZk)PiJ
i=1
which implies that

m=1 n-1 n-1
Z( lpuk Rk"’ZZsz )R):O

k= i=l i=1

It follows that

n=1 { n-1 m—l

Z(ZNW uk )jPl ”ZNz,p (i[k )Rk

i=1 k=1
Letting /=1,---,n—1 yields the system of n-1 equations in n-1 unknowns
(N'N)P=R
where N is the (m—1)x(n~—1) matrix of scalars

Nl,p(lz) Nn—],p(!’_[l)
N = ; :

Nl,p (ﬁm—l ) o Nn—l,p (iim—l )
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R is the vector of n—1 points

Nl,p (ﬁl )Rl o + Nl,p (I’Tn‘hl )Rm—l E
R= : and P=| !
Nn—l,p (ﬁl )Rl et Nn—l,p (Z’—im~1 )Rm—} Pn—l

The solution of this equation gives the desired control points.

The surface approximation scheme, builds upon our least squares curve scheme, is very
simple, but is quite adequate for most applications. We simply fit curves across the data
in one direction, and then fit curves through the resulting control points across the other
direction. A comprehensive discussion about NURBS and curve and surface fitting

techniques can be found in (Piegl and Tiller, 1994).

2.2.4 Algorithms

The two algorithms given below were the algorithms used in our fitting process to the

raw data points with the least square approximation method.

2.2.4.1 Least Square Curve Approximation
The main idea of this algorithm is given out as below:
Input:

e 3D coordinates of data points O, i=0,...,k

e Curve degree: p

e Number of control points: n

e Set the weights to 1, in order to avoid the nonlinear problem
e Constrain matrix of data points

e Derivative matrix of data points

e Constrain matrix of the derivatives

Satisfying:
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k-1
e Minimize —C(t) * with respect to the control points P, RO
i i p p I n-1
i=1

Output:
e The 3D coordinates of those n+] control points of the curve which approximates
those data points in the least square sense.

e Knot vector U

The pseudocode of this algorithm is given in figure 2.9

WCLeastSquaresCurve(Q,r,Wgq,D,s,I,Wd,n,p,U,P)
{ /* Weighted & constrained least squares curve fit *#/
/¥ Input: Q,r,Wq,D,;s,,Wdnp *
/*  Output: UP */
m=-1; rc=-1;
for (i=0; i<=r; i++)
if (Wq[i] > 0) ru =ru+l;

else rc =rc+l;

for (1=0; j<=s; j++)

if (Wd[j]1>0) su=su+l;

else sc =sc+l;
mu = ru+su+l; mc =rc+sct+l;
if (mc >=n || mc+n >= mu+1) return(error);
Compute and load parameters 1;,: into ubl];
Compute and load the knots into U[];

/* Now set up arrays NW,S,TM */
1=0; /* current index into I[] */
mu2=0; mc2=0; /* counters up to mu and mc ¥/
for (i=0; i<=r; 14++)

{
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span = FindSpan(n,p,ub[i],U);

dflag = 0;

if (j<=53)

if I==1Ifj]) dflag=1;

if (dflag == 0) BasisFuns(span,ubli],p,U,funs);

else DersBasisFuns(span,ubli],p,1,U,funs);
if (Wqli] > 0)
{ /* Unconstrained point */
Wimu2] = Wq[i];
Load the mu2th row of N[][] from funs[0][];
S[mu2] = Wmu2}*Q[i];
mu2 =mu2 +1;
}
else
{ /* Constrained point */
Load the mc2th row of M[]{] from funs[0][];
Tlme2] = Qlil;
Mc2 = mc2+1;
}
if (dflag==1)
{/* Derivative at this point */
if (Wd[j] > 0)
{ /* TUnconstrained derivative */
Wimu2] = Wd[j];
Load the muZ2th row of N{|{} from funs[1}{];
S[mu2} = Wmu2]*D[iL;
Mu2 = mu2+1;
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else
{ /* Constrained derivative */

Load the mc2th row of M[]{] from funs{1][1;

Timc2] = D[j];
Mce2 = me2+1;
}
j=i+L

}
} /* End of for-loop i=0,...,r */

Compute the matrices N'WN and N'WS ;
LUDecomposition( N'WN ,n+1,p);
If (mc <0)

{ /* No constraints */

Use ForwardBackward() to solve the control points P[],

Equation N"WNP+M"A=N'WS reduces to
(N"WN)P = N"WS.

return;

}
Compute the inverse (N"WN)™', using ForwardBackward();

Do matrix operation to get: M(N'WN)"'M" and
M(N"WN)Y" (N"WS)-T,
Solve equation M(N"WN) "' M"A=M(N"WN)"' N"WS -T for
the Lagrange multipliers, load into A[l;
Then P=(N"WN) (N"WS)-M" A),

Figure 2.9: Pseudocode of curve fitting algorithm
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2.2.4.2 Least Square Surface Approximation
The main idea of this algorithm is given out as below:
Input:

e 3D coordinates of (r+1)*(s+1) set of data points Q,, k=0,...,randl=0,..s
e Pre-computed parameters ¢, i=0,...,k

e Degree of u direction, p, and degree of v direction, g.

e Number of control points: (n+1)¥(m+1)

e Set the weights to 1, in order to avoid the nonlinear problem
Satisfying:

e Interpolate the four corner points O, ,,0Q, ;.0O, .0, precisely.

o Fit curves across the data in one direction, and then fit curves through the resulting
control points across the other direction. Both use the least squares curve approximation
algorithm.

Output:

e The 3D coordinates of those (n+1)*(m+1) control points of the surface which
approximates those data points in the least square sense.

e Knotvectors Uand V

The pseudocode of this algorithm is given out as below:

GlobalSurfApproxFixednm(r,s,Q,p,q,n,m,U,V,P)

{ /* Global surface approx with fixed number of control points */
/* Input:  1,5,Q,p.gnm */
/¥ Output: UV,P */
SurfMeshParams(r,s,Q,ub,vb);

Compute knots U by equations: d = _mtl and

n—p+l1
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i=int(jd) a=jd-—i
u, =(-um+am j=l.,n-p’
Compute knots V by the same equations as above;
Compute Nu[][] and NTNu[}[] using equation:
N, ) ... N, ()
N=| : : ;
Ny, (wt) oo N, ()
LUDecomposition(NTNu,n-1,p);
For (j=0; j<=s; j++)
{ /* udirection fits */
Temp[01(jl = Oy ;; Temp[n][jl= O, ;;
Compute and load Ru[] with equations:
R, =Q,—N,, )0, — N, ,w)Q, k=1..,m~-1
N,, @R, +-+ N, (n1)R,_,
R= :

N, @R ++N,_ (tn1)R,_

n-1,p
Call ForwardBackward() to get the control points
Temp[1][j],..., Temp[n-1][jl;
}
Compute Nv[][] and NTNv{][] using equation:
N, @) ... N, (u1)
N=| : : ;
N, (n1) . N, ()
LUDecomposition{NTNv,m-1,g);
For (i=0; i<=n; i++)

{ /* v direction fits */
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P[i][0] = Temp[i]l[0];  Plil[m] = Temp[i][s];

Compute and load Rv[] with the same equations as in computing
Rull; .

Call ForwardBackward() to get the control points
Plij{1],....Plillm-1];

Figure 2.10: Pseudocode of surface fitting algorithm

2.3 Data Nermalization

Data normalization is required for particular kernels due to their restricted domain, and
may also be advantageous for unrestricted kernels. To determine if normalization
(isotropic or non-isotropic) of the data is necessary, consideration of the input features is
required. Additionally, normalization will improve the condition number of the Hessian
in the optimization problem. In our experiments, since attributes of our data were in large
ranges, and the ranges of attributes of different patients were significantly different due to
the difference of size and height between patients, we committed normalization operation
on all of our data sets before sending them into PCA or SVM. We merged the two
datasets: training set and test set, as one and scaled it. We then split them again for
training and testing. The normalization was implemented in the following manner
(libsvm2.36):

Lower = -1;
Upper=1;
[MaxV, Il=max(Data);
[MinV, [J=min{Data);
[R,Cl= size(Data);
scaled=(Data-ones(R,1)*MinV).*(ones(R,1)*((Upper-Lower)*ones(1,C)./(Max V-
MinV))#+Lower;

In the experiments, we set the normalization range of data between [-1, 1].
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2.4 Principal Component Analysis

After doing the surface fitting, we obtained a compact representation of the original raw
data points with the set of control points. Compared to the number of raw points, the
number of control points was much less. From the point of view of using these control
points instead of raw points as input to the learning machine, the dimension of the data
set was drastically reduced which made the computation practical and more efficient. For
instance, a raw brace data contains about 120*11=1320 points. By applying surface
fitting we obtained 8*8*2=128 control points. Therefore, the dimension of each data was
reduced from 1320*3= 3960 to 128*3=384 (each point was a 3D point, so we must
multiply by 3). In the case of raw Calgary data, the dimension of data was reduced from
360%46%3=49680 to 41*11*3=1353. Data with this size can be directly sent into the
learning machine. In fact, we did it. But based on the very limited available data (41 data
in brace case, 115 data in Calgary case), we still wanted to continually reduce the
dimension of data with the hope that learning machine could perform better on dataset
with less dimensions. For this purpose, we investigated the method of principal

component analysis (PCA).

The multivariate statistical method of PCA is a very useful tool for reducing the number
of variables in a data set. In many data analysis application, we are faced with
contradictory goals: On one hand, we should simplify the problem by reducing the
dimension of the representation. On the other hand we want to preserve as much as
possible of the original information content. PCA offers a convenient way to control the
trade-off between losing information and simplifying the problem at hand. The main idea
of PCA is to find an orthogonal set of basis vectors (eigenvectors) for the feature space,
subject to the requirement that the new features have zero correlation with each other.
First basis -- data projected on which will have the maximum variance, the second basis
captures the second maximum variance that is orthogonal to the first one, and so on and

so forth (figure 2.11). Once the variances are sufficiently captured by some bases, the
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subsequent bases can be discarded. This helps us to achieve dimensionality reduction.

Principal components are the eigenvectors of the covariance matrix of the data set.

| g

Figure 2.11: Illustration of eigenvectors of an artificially created dataset

2.4.1 Calculation of Principal Components

PCA is based on the statistical representation of a random variable. Suppose we have a

random vector population x, where
X = (X e X, )T
and the mean of that population is denoted by
K, = E{x)
and the covariance matrix of the same data set is
C,=E{(x—p,)x-u)"}
The components of C,, denoted by ¢, , represent the covariances between the random
variable components x; and x;. The component ¢; is the variance of the component ;.

The variance of a component indicates the spread of the component values around its

mean value. If two components x, and x i of the data are uncorrelated, their covariance is
zero(c; =c¢; =0). The covariance matrix is, by definition, always symmetric. From a

sample of vectors x,,..., x,, , we can calculate the sample mean and the sample covariance

matrix as the estimates of the mean and the covariance matrix. From a symmetric matrix
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such as the covariance matrix, we can calculate an orthogonal basis by finding its

eigenvalues and eigenvectors. The eigenvectors ¢, and the corresponding eigenvalues A,

are the solutions of the equation

Ce =Ae, i=1..,n
By ordering the eigenvectors in the order of descending eigenvalues (largest first), one
can create an ordered orthogonal basis with the first eigenvector having the direction of
largest variance of the data. In this way, we can find directions in which the data set has

the most significant amounts of energy.

Suppose one has a data set of which the sample mean and the covariance matrix have
been calculated. Let A be a matrix consisting of eigenvectors of the covariance matrix as
the row vectors. By transforming a data vector x, we get

y=Alx-u,)
which is a point in the orthogonal coordinate system defined by the eigenvectors.
Components of y can be seen as the coordinates in the orthogonal base. We can
reconstruct the original data vector x from y by

x=A"y+pu,
using the property of an orthogonal matrix A = A”. A" is the transpose of a matrix A.
The original vector x was projected on the coordinate axes defined by the orthogonal
basis. The original vector was then reconstructed by a linear combination of the

orthogonal basis vectors.

Instead of using all the eigenvectors of the covariance matrix, we may represent the data
in terms of only a few basis vectors of the orthogonal basis. If we denote the matrix
having the K first eigenvectors as rows by A, , we can create a similar transformation as
seen above

y=Ac(x—p,)

and
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x=Agy+ i,
This means that we project the original data vector on the coordinate axes having the
dimension K and transforming the vector back by a linear combination of the basis
vectors. This minimizes the mean-square error between the data and this representation

with given number of eigenvectors.

If the data is concentrated in a linear subspace, this provides a way to compress data
without losing much information and simplifying the representation. By picking the
eigenvectors having the largest eigenvalues we lose as little information as possible in the
mean-square sense. One can for instance choose a fixed number of eigenvectors and their
respective eigenvalues and get a consistent representation, or abstraction of the data. This
preserves a varying amount of energy of the original data. Alternatively, we can choose
approximately the same amount of energy and a varying amount of eigenvectors and their
respective eigenvalues. This would in turn give approximately consistent amount of
information in the expense of varying representations with regard to the dimension of the

subspace.

2.4.2 How Many Principal Components?

The major objective in many applications of PCA is to replace the p elements of x by a
much smaller number, m, of PCs, which nevertheless discard little information. It is
crucial to know how small m can be taken without serious information loss. Various rules
have been proposed for determining a suitable value of m (Jolliffe, 1986). We chose the
rule of cumulative percentage of total variation. The idea of it is to select a (cumulative)
percentage of total variation, which it is desired that the selected first m PCs should
contributes, say 80% or 90%. Since the PCs are organized in a descend order, the
required number of PCs is then the smallest number for which this chosen percentage is

exceeded.
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2.5 Support Vector Machine

In fact, SVM is motivated by the consideration of training linear machines with margins,
but reply on pre-processing the data to represent patterns in a high dimension - typically
much higher than the original feature space. With an appropriate nonlinear mapping to a
sufficiently high dimension, data from two classes can always be separated by a
hyperplane. In this part, we will first briefly recall the mechanism and the characteristics

of SVM, then describe how we applied it into our problem.

2.5.1 Optimal Separating Hyperplane

We consider only 2-dimension 2-class problem first. Given a set of points that belong to
either of two classes on the plane, how to separate them according to their class labels is a
crucial problem in the field of pattern recognition. There are many approaches existing

currently to it. For instance, in the following illustrated example:

Figure 2.12: Separating hyperplane

In the above figure, the data points are linearly separable. Both separating hyperplane
(the straight lines in the figures) perfectly separate these two classes, namely, the error is
0. In fact, any random straight line that passes through the zone clamped by these two
lines can perfectly separate these two sets of points. Now, a question arises: which one to

choose among these infinite set of separating lines? Certainly we want the best one, but a
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new question is how to evaluate the performance of each separating hyperplane.
Fortunately we have answer for the latter question. From the point of view of pattern
recognition, the best separating hyperplane is the one who gains the best performance on
the test set, i.e. the future-coming data. The currently available data is termed as the
training set, which is used to train our decision function. This answer implicitly responds
to the first question too, namely, we should always choose the separating hyperplane that
has the best performance on the test set. At this moment, the problem turns to how to
compute such kind of ‘optimal’ separating hyperplane. The working principle of SVMs is
to find the hyperplane leaving the largest possible fraction of points of the same class on
the same side, while maximizing the distance of either class from the hyperplane. The
following figure is an intuitive illustration of the idea of SVM. The dash line is the SVM

solution to this data set:

Figure 2.13: Optimal separating hyperplane

According to [Vapnik, 1995], given fixed but unknown probability distributions, this
hyperplane — called Optimal Separating Hyperplane (OSH) — minimizes the risk of
misclassifying not only the examples in the training set but also the yet-to-be-seen

examples of the test set.

In the above linearly separable case, the SVM we obtained is called the linear SVM.
While the data set is not linearly separable, namely, both classes of data points are mixed

together. A linear separating hyperplane usually cannot get satisfying performance. At



66

this time we need a nonlinear SVM which can create a nonlinear decision boundary. The
idea of nonlinear SVM remains simple and beautiful. It transforms the input data points
using a nonlinear mapping function (termed kernel function), in other words, transforms
the instance space into a new space (Hilbert space) such that the data points will be
linearly separable there. With a nonlinear mapping, a straight line in the new space
doesn’t look straight in the original instance space. A linear model constructed in the new
space can represent a nonlinear decision boundary (i.e. nonlinear SVM) in the original

space. The following figure is an intuitive illustration of the idea of nonlinear SVM:

X = f(X)

\ 4

Figure 2.14: kernel function and nonlinear SVM

2.5.2 Soft Margin and Support Vectors

The OSH is called the hard margin classifier as well, since it searches for the hyperplane
which can separate all the points of the same class on the same side, namely, it does not
tolerate any mislabeled point or noise. Therefore at the presence of classification noise,

the decision boundary created by a hard margin classifier will become too complex and
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‘sticked’ on the training data (in order to correctly classify all training data), ie. it

overfits! The following figure illustrates this problem:

Figure 2.15: Hard margin and overfitting

The three graphs show the maximum margin hyperplane found on three datasets,
respectively: on reliable data (left), on data with an outlier (middle) and on data with a
mislabeled pattern (right). This figure shows that the hard margin implies noise
sensitivity; only one pattern can spoil the whole estimation of the decision boundary. So
the mechanism of hard margin classifier certainly has to be generalized to the so-called
soft margin mechanism, which can handle with both the perfect and noisy data set, and

the perfect case is only a special case of the noisy case.

2.5.3 Support Vector Classification

At this part we give out the algorithm of the linear SVM for binary non-separable

classification case. The binary separable case is only its special case. We assume we are

given a set of points x, € R"with i = 1, 2,..., N. Each point x, belongs to either of two

classes and this is given a label y, € {~1, +1}. The goal is to establish the equation of a
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hyperplane that divides the points leaving all the points of the same class on the same
side while maximizing the distance between the two classes and the hyperplane in the soft
margin sense. Recall that the equation of the separating hyperplane can be written as

w-x+b =0 (see following figure):

Hl: wex+b=-1

Ll

Figure 2.16: Separating hyperplane and margin

H1 and H2 are the furthest hyperplane parallel to the separating hyperplane. They are
called the margin plane. The separating hyperplane locates in the middle of H1 and H2.
So the equation of the margin plane can be considered as w-x+b =—landw-x+b = +1.
We allow for noise, or imperfect separation. That is, we do not strictly enforce that there
be no data points between H, and H,, but we definitely want to penalize the data points
that cross the boundaries. The penalty C will be finite (If C ==, we come back to the
separable case). We introduce non-negative slack variables {; > 0to deal with the noise.

The purpose of the variables ¢, is to allow for a small number of misclassified points. If
the data points are linearly separable, then ¢ is null. Then the margin plane Hl and H2
become:
wex, +b2+1-¢, fory, =+l
w-x, +b<-1+{, fory, =-1,
g =20, Vi

and we add to the objective function a penalizing term:
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1 m
nﬁniglizefiwrw +C(Q.¢)
where m is usually set to 1, which gives us

1
minimize —2—wTw + C(le ¢)

w,b,§;
subjectto  y,(w'x, =b)+{ -120, 1<i<N
£ 20, 1<i<N

Introducing Lagrange multipliers &, § , the Lagrangian is:
N
w,b,¢ e, B) = %WTW-F N4
i=1
N r N
- Zai[yi(w X = b) + ;i —-1]- le’ligi
i=1 i=1
I, il
= oW w+ > (C—a,—u,)],
i=1

N N N
- (Zaiyixirjw - (Zaiyi)b + Zaz'
i=1 =1 =1

Neither the £ 's, nor their Lagrange multipliers appear in the Wolfe dual problem:

maxnmze Z“ _”ZO‘:“JY Y%

subject to:

0<e, <C,
Zaiyi =0.

The only difference from the perfectly separating case is that ¢, is now bounded above

by C instead of «. The solution is again given by

N
w= Zai YiX;
i1
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To train the SVM, we search through the feasible region of the dual problem and

maximize the objective function. The optimal solution can be checked using the Karush-

Kuhn-Tucker (KKT) conditions. Most of the ¢, are usually null, therefore the vector w is

a linear combination of a relatively small percentage of the original points set. These
points are termed support vectors because they are the closest points from the separating
hyperplane and the only points of the original points set needed to determine the
separating hyperplane. All support vectors locate on the margin planes. Given a support
vector x; , the parameter b can be obtained from the corresponding KKT condition as
b=y, —-w-x;
The problem of classifying a new data point x is now simply solved by looking at the
sigh of
w-x+b
Therefore, the support vectors condense all the information contained in the training set

which is needed to classify new data points.

2.5.4 Multi-Class Classification

SVM was originally designed for two-class classification. In order to extend it to process
multi-class problem, several methods have been proposed so far where typically we
obtained a multi-class SVM by combining several binary SVM. Some methods which
consider all classes at once have also been proposed. Based on the fact that multi-class
SVM is still an on-going research issue, we introduce only two popular methods here

which are based on binary SVM combination: “one-against-all” and “one-against-one”.

e One-against-all
The main idea of “one-against-all” is that it constructs ¥ SVM solutions where « is the
number of classes. The original dataset used to construct the ith SVM is modified by that

all of the examples in the ith class are labeled positive, and all other examples are labeled
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negative. Thus given [ training data (X, y1),-..,(Xs, y1), where x; € RYi=1,.,Jandy, €
{1,...,k}is the class of x;, the ith SVM solves the following problem:

EHE.H ‘Zf(wi)TWi + ngj
j=

Wb L
W) ox)+b,21-4, if ¥, =4,
W) ) +b =148, if ¥, #i,
C; =0, j=1..,1
where ¢ is the kernel function which maps the training data into a higher dimensional

feature space. C is the penalty parameter. After solving the above problem, there are k

decision functions:

(W) ¢(x) + b,

(w,)" () +b,.

Then, a new example x is in the class which has the largest value of the k& decision

function:

,,,,,

¢ One-against-one
The “one-against-one” method computes the optimal separating hyperplane (OSH)
associated to each pair of classes i and j, and store them. Thus k(k-1)/2 SVM solutions
where each one is trained on data from only two classes are constructed. For training data
from the ith and the jth classes, we solve the following binary classification problem:
En,,l? —;;(WU)TWU. + CZ 4

W) () +b, 21-07, if y, =i,

) 9x)+b, <147, if v, =,

g7 z0.
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There are different approaches for doing the future testing. One way is to employ the
rules of tennis tournament to deal with the testing. Each class is regarded as a player; all
players are paired off to play matches. In each match the system temporarily classifies a
test data as in a class according to the OSH relative to the pair of players involved in the
match. At each round the half losing players are out, and the half winners advance to next
round. Repeating the previous procedure until the final round, then the test data is

classified as the champion’s class.

e Which one is better?
Past research shows that “one-against-one” method is more suitable for practical use than
the other methods (Hsu and Lin, 2002). So in this project, we adopted “one-against-one”

method.

2.5.5 Kernel Functions

SVM constructs a mapping into a high dimensional feature space by the use of
reproducing kernels. The idea of the kernel function is to enable operations to be
performed in the input space rather than the potentially high dimensional feature space.
Hence the inner product does not need to be evaluated in the feature space. This provides
a way of addressing the curse of dimensionality. However, the computation is still
critically dependent upon the number of training patterns and to provide a good data

distribution for a high dimensional problem will generally require a large training set.

Briefly speaking, an inner product in feature space has an equivalent kernel in input
space, K(x,y) = k(x)-k(y),provided certain conditions hold. If K is a symmetric positive

definite function, which satisfied Mercer’s Conditions,
K(xy) =) ay®p®), «,20
m=}

[[KG »eg(dxdy >0, [g* (x)dx <o
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then the kernel represents a legitimate inner product in feature space. We utilized linear,
polynomial, Gaussian radial basis function, exponential radial basis function, and

sigmoid in our experiments. We give out their function in the below.

2.5.5.1 Polynomial
A polynomial mapping is a popular method for non-linear modeling,
Kx,y)=(x-y)" or K(xy)=(x-y+D?, d=1...
The second kernel is usually preferable as it avoids problems with the Hessian becoming

zero. When d=1, the polynomial kernel becomes linear kernel.

2.5.5.2 Gaussian Radial Basis Function

Radial basis functions have received significant attention, most commonly with a

Gaussian of the form,

2
.x —
K(x,y) = exp(- 22
20
2.5.5.3 Exponential Radial Basis Function
A radial basis function of the form,
lx-y|
K{x,y)=exp(———
(x,y) = exp( Py )

produces a piecewise linear solution which can be attractive when discontinuities are

acceptable.

2.5.5.4 Kernel Selection

The obvious question that arises with kernels is that with so many different kernels to

choose from, which one is the best choice for our problem? The upper bound on the VC
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dimension is a potential avenue to provide a means of comparing the kernels. However, it
requires the estimation of the radius of the hypersphere enclosing the data in the non-
linear feature space. Even if a strong theoretical method for selecting a kernel is
developed, unless this can be validated using independent test sets on a large number of
problems, methods such as bootstrapping and cross-validation will remain the preferred
method for kernel selection. Due to the lack of theoretical analysis of the characteristics
of the scoliosis datasets, we simply test the above-mentioned kemels, i.e. linear,
polynomial, RBF and ERBF kernel, with cross-validation method to check out which one
worked the best on the scoliosis datasets. These kernels are the most popular choices in

common SVM classification applications.

2.6 Training and Testing Criteria

What we are interested in a classifier is its likely future performance on new data, not the
past performance on old data. Error rate on the training set is not likely to be a good
indicator of future performance, since the classifier has been learned from the very same
training data, any estimate of performance based on that data will be optimistic, and may
be hopelessly optimistic. So it is very important to set down the appropriate criteria for

the training and testing of a classifier beforehand.

If lots of data are available, it will be easy to determine the training and testing criteria:
we take a large sample and use it for training, then another independent large sample of
different data and use it for testing. The commonly used way in ML community is to
leave one third of total available data as the testing data, and the left two third as the
training data. Provided both samples are representative, the error rate on the test set will
give a true indication of future performance. Generally speaking, the larger the training
sample the better the classifier, although the returns begin to diminish once a certain
volume of training data is exceeded. And the larger the test sample, the more accurate the

error estimate.
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The real problem occurs when there is not a vast supply of data available. Unfortunately
our case falls into this range. Our data is extremely limited. The problem becomes how to
make the most of a limited dataset. There is a dilemma here: to get a good classifier, we
want to use as much of the data as possible for training; to get a good error estimate, we
want to use as much of it as possible for testing. The widely used methods for dealing

with this dilemma are cross validation and leave-one-out.

2.6.1 Cross Validation

In practical terms, it is common to hold one-third of the data out for testing and use the
remaining two-thirds for training. In the case that we have sufficient data at hand, this
criterion works well. But in the case of limited data, we may be unlucky: the sample used
for training (or testing) may not be representative. If, by bad luck, all examples with a
certain class were missed out of the training set, we could hardly expect a classifier
learned from that data to perform well on the examples of that class — and the situation
would be exacerbated by the fact that the class would necessarily be over-represented in
the test set since none of its instances made it into the training set! Instead, we should
ensure that the random sampling is done in such a way as to guarantee that each class is
properly represented in both training and testing sets. For doing this, a technique called
cross validation has been invented. In k-fold cross-validation, we divide the data into k
subsets of (approximately) equal size. We train the classifier k times, each time leaving
out one of the subsets from training, but using only the omitted subset for testing. The

final result is averaged over k invokes.

Now a new question appears: how to decide the fold number k? The standard way is to
use 10. Why ten? Extensive tests on numerous different datasets, with different learning
techniques, have shown that ten is about the right number of folds to get the best estimate
of error, and there is also some theoretical evidence that backs this up. Although debate
continues in machine learning circle about what is the best scheme for evaluation, 10-fold

cross validation has become the standard method in practical terms.
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A single 10-fold cross validation might not be enough to get a reliable error estimate.
Different 10-fold cross validation experiments with the same learning scheme and dataset
often produce different results, because of the effect of random variation in choosing the
folds themselves. When going for an accurate error estimate, it is standard procedure to
repeat the cross validation process ten times — that is, ten 10-fold cross validations — and
average the results. This involves invoking the learning algorithm one hundred times, on
datasets that are all nine-tenths the size of the original one. Getting a good measure of

performance is a computation-intensive undertaking.

2.6.2 Leave-One-Out

10-fold cross validation is the standard way of measuring the error rate of a learning
scheme on a particular dataset; for reliable results, ten times 10-fold cross validation. But
many other methods are used instead. Leave-one-out is particularly prevalent when the
size of dataset is extremely small. Leave-one-out is simply n-fold cross validation, where
n is the number of instances in the dataset. Each instance in turn is left out, and the
learning scheme is trained on all the remaining instances. It is judged by its correctness
on the remaining instance, 1 or O for success or failure. The results of all # judgments,
one for each member of the dataset, are averaged, and that average represents the final

error estimate.

This procedure is an attractive one for two reasons. First, the greatest possible amount of
data is used for training in each case, which presumably increases the chance that the
classifier is an accurate one. Second, the procedure is deterministic: no random sampling
is involved. There is no point in repeating it ten times, or repeating it all: the same result

will be obtained each time.
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2.7 Parameter Tuning

To obtain a good performance, some parameters in SVM have to be chosen carefully.
These parameters include:

e The regularization parameter C, which determines the tradeoff between minimizing
the training error and minimizing model complexity;

e Parameter gamma or d of the kernel function that implicitly defines the nonlinear

mapping from input space to some high dimensional feature space.

Different setting of these parameters can cause significant difference in performance.
Therefore, choosing optimal hyperparameter values for SVM is an important step in
SVM design. Some works have been done on this subject during the past few years
(Keerthi, 2001; Duan et al, 2001). Tuning these hyperparameters is usually done by
minimizing the estimated generalization error such as the k-fold cross-validation error or
the leave-one-out error, or some other related performance measure. In our experiments,
a simple grid search was carried out by minimizing the estimated generalization error

with cross-validation method for the optimal C and gamma on the datasets.

2.8 Data Sets

2.8.1 Class Labelling Criterion

After having obtained the data sets of control points which are the approximation to the
raw brace or scanned data points, we have to assign a class label to each set of control
points. The control points set of a patient corresponds o one data in the data set. How to
decide the value of the class label depends on the spinal characteristics of patient since
the purpose of our experiments is to correlate the external surface shape to the internal
deformed spine. King’s classification criterion of the spine is well accepted in clinics, but
a main issue about it is that it classifies the scoliotic spine based only on the shape of the

spine, in other words, it does not take into account the magnitude of the deformity of the
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spine, which is more concerned by clinicians. So a magnitude concerned classification
criterion should be a more appropriate choice in labeling the class of each data than
King’s criterion. Basing on the fact that Cobb angle is the in-fact gold standard in clinic
in determining the severity of deformity of the spine, we utilized it as the class labeling
criterion. The class label of each data is a category number (e.g., 1, 2, 3 or 1, -1) other
than actual Cobb angle, but the determination of the category number was still based

upon the actual Cobb angle of that data.

For Brace data, we had only 41 data with positive clinical Cobb angle. There were still 5
other data with negative Cobb angle, but since their number was too low to set a class for
them. We simply discard these 5 data. The average Cobb angle of these 41 patients =
29.4°, For the purpose of feasibility test, we decided to separate these data into two
classes. Using this average Cobb angle as the threshold, for those whose Cobb angle were
larger than it, we set them in class +1; for those whose Cobb angle were smaller than it,

we set them in class -1.

For Calgary data, we had two types of Cobb angle: clinical Cobb angle and computed
Cobb angle. The right-deformed spine (viewing from the back of patient) was defined as
having positive Cobb angle and the left-deformed spine was defined as having negative
Cobb angle. Since only a few patients in our dataset had negative Cobb angle, it is hard to
set a specific category for them in our training and testing procedure. But we did not want
to waste these data either since the size of our dataset was already so limited, so an
alternative choice was to use the absolute value of the Cobb angle as the Cobb angle of
the patients. Therefore, we had four Cobb angles for each patient: clinical Cobb angle,
absolute clinical Cobb angle, computer Cobb angle, and absolute computer Cobb angle.
Patients were assigned into three classes according to their Cobb angle (Cobb angle<30°,
30°-50°, and >50°, respectively). These three classes correspond to patients with mild,

moderate, and severe spinal curves, respectively.
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2.8.2 Characteristics

2.8.2.1 Brace Data

We fitted a surface with 8x8 control points net to each half raw Brace data (each Brace
data was separated into left and right half). The degree of continuity of the surface in both
u and v direction was set as 3. So for a complete surface fitting to a raw Brace data had
8x8x2 = 128 control points. Each control point has three dimensions (x, y, and z
coordinates). Therefore, after doing surface fitting to these 41 raw Brace data, we
obtained a new dataset of 41 data that each data was the 8x8x2 control points net to its
corresponding raw data. And the dimension of each new data = 8x8x3x2 = 384. This new
dataset was the one that was going to be fed into the dimension reduction tool (PCA) or
into SVM directly. We called this control point dataset as Brace dataset, as opposite to

the previous mentioned raw Brace dataset.

In the classification experiments, according to our class labeling criterion for Brace data,
we got 21 data in class -1 (whose Cobb angle < average Cobb angle) and 20 data in class
+1 (whose Cobb angle > average Cobb angle). The distributions of data in two classes

were balanced.

2.8.2.2 Calgary Data

Theoretically speaking, the best way to decide how many control points are required to
approximate a batch of scattered points is to compute the approximation error, and then
increase the number of control points iteratively until the error is under a given threshold,
say 5% or 10%. Nevertheless, the method can work only with the case of one patient,
other than a batch of patients. In our case, we had 115 patients, and each patient had
different size and height, namely, each patient had drastically different number of raw
scanned points. In fact, the contour line number of each patient varied from 31 to 47,
which corresponded to that the number of raw scanned points of each patient varied from

approximately 11,160 to 16,920. Thus, it is never possible to set a global threshold for all



80

the patients. For example, let’s say that we want the approximation error is below 5% for
all the patients, then for patient A we might get a control points set of 20x13, but for
patient B we might get another set of 30x20. Thus each patient might have different
number of control points which makes the dimension of each data in the control point
dataset becomes unequal. This will increase the complexity when processed by SVM,
because SVM can handle only ‘recrangular’ dataset, which means that all data must have
the same dimension. As a tradeoff, we fitted surfaces with fixed number of control points
to all the patients in order to make the data in the control point dataset have the same
dimension. So we fitted a surface with 16x8, 41x11, and 61x31 control points net,
respectively, to each raw Calgary data. These three sets of control points net correspond
to loose, moderate, and tight manner of fitting, respectively. So the dimension of the
control point dataset was 16x8x3 = 384, 41x11x3 = 1353, and 61x31x3 = 5673,
respectively. These control point datasets were the one that was going to be fed into the
dimension reduction tool (PCA) or into SVM directly. We called this control point

dataset as Calgary dataset, as opposite to the previous mentioned raw Calgary dataset.

In the classification experiments, according to our class labeling criterion for Calgary
data, we got 59 data in class 1 (whose Cobb angle < 30°), 41 data in class 2 (whose Cobb
angle was between 30 — 50°), and 15 data in class 3 (whose Cobb angle > 50°). The

distributions of data in three classes were highly unbalanced.
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CHAPTER 3 - RESULTS

3.1 Benchmark Test

Before proceeding to the real-world scoliosis data, we committed a benchmark test firstly
in order to evaluate the correctness and performance of the SVM software we utilized.
The SVM software package we chose was Libsvm 2.36, a simple and easy-to-use support
vector machine tool for classification. Iris Plants Database from UCI Machine Learning
Repository (url of it: http://www.ics.uci.edu/~mlearn/MLRepository.html) is perhaps the
best known database to be found in the pattern recognition literature. The data set
contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One
class is linearly separable from the other 2; the latter are not linearly separable from each
other. Many researchers committed classification experiments on it with all kinds of
different classifiers, and they all reported very low classification error rates (Dasarathy,
1980; Gates, 1972). Since this is an exceedingly simple domain, we did not commit on
parameter tuning for SVM. We simply set C = 1, Gamma = 1, Degree = 3. Error rates

were computed with 10-fold cross validation training and testing method.

Kemel Training error Testerror
Linear 2.52% 4%
Polynomial 2.67% 5.33%
RBF 2.44% 4.67%

Table 3.1:; Iris benchmark test results

Besides the Iris dataset, we tested the SVM algorithm on another benchmark dataset:
Thyroid gland data, which is from UCI Machine Learning Repository too. This is a
medical dataset. In (Coomans et al., 1983), this dataset was used for comparing 16
different discriminant techniques, each trying to predict the state of the thyroid gland. In

(Coomans & Broeckaert, 1986), the data was used to compare different kernel density
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methods. Some achieved 100% correct classification. This is also a 3-class set with 215

Kernel Training error Test error
Linear 4.91% 8.71%
Polynomial 1.19% 3.9%
RBF 3.82% 7.81%

Table 3.2: New-thyroid benchmark test results

From the above two results tables, we can see that our SVM package worked properly.

The results we achieved are close the results reported by other researchers.

3.2 Surface Fitting Results

In all the committed fitting experiments, the degrees of continuity in both u and v
direction were set to 3, i.e., p=q=3. Degree 3 of continuity is sufficient for most
applications, including ours. High degree of continuity might cause strange properties

and is hard to control.

3.2.1 Fitting Results on Raw Brace Data

After testing our algorithms on those artificial ‘foy’ problems, we got back to our real-
world data, i.e., raw brace data. We chose a contour line that was composed of 60 points
from the raw brace data set, and then tested our curve approximation algorithm on it with
setting to using 7 control points. After that, we chose two sets of raw points, which
represented the half torso and the complete torso of the same patient, and applied our
surface-fitting algorithm on them. The control points set n x m means that there is n
control points in the u direction and m control pints in the v direction. The fitting results

are listed out below:
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Figure 3.5: Surface approximation to
figure 3.4 with an 8x8 control points
set for each half torso.

Figure 3.6: Surface approximation
to figure 3.4 with an 11x8 control
points set for each half torso.
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3.2.2 Fitting Results on Raw Calgary Data

Figure 3.7: Raw data of a complete Figure 3.8: Surface approximation
torso of 360x46, i.e., 46 contour to figure 3.7 with a 41x11 control
lines and 360 points per line. points set.
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3.3 PCA Results

After fitting a surface to the two sets of raw points, we then applied the PCA technique to
the obtained control points to reduce dimension by keeping 80% and 90% variance,
respectively. For the data composed of control points set, we call it control point data; for
the data processed by PCA technique, we call it PCA data. One thing we have to mention
is that when applying PCA algorithm onto the datasets of 61x31 control point sets with
115 data, the algorithm failed to give resulis. By carefully checking, we found that it was
because the memory requirement of the algorithm had exceeded 2G bits. We could not
solve this problem because 32-bits windows program can maximally access no more than
2G bits memory. We tested a dataset of 61x31control point set with 89 data, the PCA
algorithm worked. But after exceeded that limit, it always failed. Therefore, in the
following results tables, the result on datasets of 61x31 control point set when applying

PCA was obtained on the test dataset with 89 data, not on the full dataset with 115 data.

Data set Control Variance Dimension of | Dimension of
points net reservation | control point PCA data
ratio data

Brace data 16x 8 80% 384 15

Brace data 16x 8 90% 384 22
Calgary data 16x 8 80% 384 4
Calgary data 16 x 8 90% 384 9
Calgary data 41x 11 80% 1353 4
Calgary data 41 x 11 90% 1353 7
Calgary data 61x31 80% 5673 4
Calgary data 61 x31 90% 5673 5

Table 3.3: PCA results
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3.4 Parameter Tuning Results

On scoliosis dataset we committed parameter tuning experiments only on Calgary data
with absolute clinical Cobb angle. We did not commit on parameter tuning on Brace data
since it was only used for the purpose of the feasibility test of our method. We had three
types of Calgary datasets. Each of them corresponded to different ‘tightness’ of fitting to
the original raw data. There were datasets with 16x8, 31x11, and 61x31 control points,
which represent loose, moderate and highly tight fitting, respectively. We give the
optimal parameter values and their accuracy in the figures below.

On 16x8 dataset, the optimal values found were: C = 2”, gamma = P
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Figure 3.13: Performance accuracy with different parameters setting on 16x8
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On 41x11 dataset, the optimal values found were: C= 26, gamma = o1
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Figure 3.14: Performance accuracy with different parameters setting on 41x11
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e On 61x31 dataset, the optimal values found were: C= 21, gamma = 21
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Figure 3.15: Performance accuracy with different parameters setting on 61x31

3.5 Classification Results

We committed classification experiments on two kinds of datasets: Brace dataset and
Calgary dataset on both cases utilizing PCA and not utilizing PCA before sending data
into SVM. When utilizing PCA, two cases were tested: 80% variation of the dataset was
kept and 90% variation of the dataset was kept. Both training and testing criteria, cross
validation and leave-one-out, were tested on Brace data. For Calgary data, since from the
experience on Brace data leave-one-out worked better on small data set than 10-fold

cross validation, we utilized only the leave-one-out criteria.
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3.5.1 Brace Classification Results

For RBF kemel, we utilized the parameter tuning technique, and obtained that the optimal
values were: C = 128, gamma = 1/2048. For all the others, we just randomly tested a
number of values of the parameters and then chose the ones which performed the best.
We obtained that C = 10, d = 3, gamma = 3. The percentage of support vectors among the

training data (37 and 40, respectively) is also reported in the following tables.

e Keeping 80% variation when applying PCA

Leave-one-out:

Kernel Training error | Test error | Support vectors
Linear 6.8% 43.9% 70.18%
Polynomial 0% 46.34% 75.67%
RBF 9.45% 48.78% 80.37%
ERBF 0% 34.15% 98.11%

Table 3.4: Brace classification result with 80% PCA and leave-one-out

10-fold cross validation:

Kernel Training error | Test error | Support vectors
Linear 5.3% 50.5% 67.13%
Polynomial 0% 45.5% 75.32%
RBF 46.6% 78% 79.92%
ERBF 0% 36% 98.09%

Table 3.5: Brace classification result with 80% PCA and 10-fold cross validation

e Keeping 90% variation when applying PCA

ILeave-one-out:

Kernel Training error | Test error | Support vectors
Linear 3.12% 65.85% 58.72%
Polynomial 0% 39.02% 92.5%
RBF 39.39% 78.05% 80%
ERBF 0% 29.27% 100%

Table 3.6: Brace classification result with 90% PCA and leave-one-out




10-fold cross validation:

Kernel | Training error | Test error | Support vectors
Linear 1.9% 55.5% 60.4%
Polynomial 0% 40.5% 91.87%
RBF 46.61% 78% 79.65%
ERBF 0% 33.5% 99.45%

Table 3.7: Brace classification result with 90% PCA and 10-fold cross validation

e Without applying PCA

Leave-one-out:

Kernel Training error | Test error | Support vectors
Linear 19.88% 53.66% 91.95%
Polynomial 0% 34.15% 98.11%
RBF 37.99% 75.61% 94.15%
ERBF 0% 29.27% 100%

Table 3.8: Brace classification result with no PCA and leave-one-out

10-fold cross validation:

Kernel |Training error | Test error | Support vectors
Linear 16.6% 58% 91.83%
Polynomial 0% 38.5% 98.37%
RBF 46.61% 78% 93.48%
ERBF 0% 35.5% 100%

Table 3.9: Brace classification result with no PCA and 10-fold cross validation

3.5.2 Calgary Classification Results

By applying the parameter tuning method, the optimal parameter set was found:
Datasets with 16x8 control point net: C = 2“, gamma = 21 , epsilon = 0.001, degree = 3.

Datasets with 41x11 control point net: C = 26, gamma = 2"”, epsilon = 0.001, degree = 3.
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Datasets with 61x31 control point net: C = 2", gamma = 2755, epsilon = 0.001, degree= 3.
For each control point net setting, we got different datasets by using different Cobb angle
to determine the class label value. The explanations are as follows:

Clincobbl: use the value of the primary clinical Cobb angle to determine the class label.
Clincobblabs: use the absolute value of the primary clinical Cobb angle to determine the
class label.

Clincobbl_positive: we took out those data with negative clinical Cobb angle and kept
only the data with positive clinical Cobb angle in the dataset. This dataset was only used
in the classification experiments, not in the regression experiments. The purpose of doing
this was that we hoped to see better performance by eliminating the affection of the data
with negative Cobb angle.

Mitlcobbl: use the value of the primary computer Cobb angle to determine the class label.
Mtlcobblabs: use the absolute value of the primary computer Cobb angle to determine
the class label.

Mtlcobbl_positive: same as in Clincobbl_positive.

A recent result by Keerthi and Lin (Keerthi and Lin, 2002) shows that if RBF is used with
model selection, then there is no need to consider the linear kernel. In our case, the
mechanism of scoliositic deformity transforming to surface deformities is very complex.
Linear kernel is obviously too simple for this problem. Hence, in the following
experiments, we didn’t consider linear kernel any more. The percentage of support

vectors among the training data (114) is also reported.

e Keeping 90% variation when applying PCA

Same as we discussed in the section of principal component analysis (2.3.3.), when
applying PCA algorithm onto the datasets of 61x31 control point sets with 115 data, the
algorithm failed to give results due to limitation of memory. Therefore, in the following
results tables, the results on datasets of 61x31 control point set when applying PCA are

not given.



Clincobbl_positive:

Kernel Training error | Test error | Support vectors
Polynomial 16x8 29.66% 36.26% 67.41%
RBF 16x8 30.2% 40.66% 68.93%
Polynomial 41x11 29.26% 50.55% 69.71%
RBF 41x11 28.96% 51.65% 71.5%

Table 3.10: Calgary classification result with 90% PCA on Clincobbl_positive

Clincobblabs:
Kernel Training error | Test error | Support vectors
Polynomial 16x8 28.9% 36.52% 59.79%
RBF 16x8 29.8% 37.39% 60.94%
Polynomial 41x11 27.19% 42.61% 62.3%
RBF 41x11 29.05% 46.09% 63.49%

Table 3.11: Calgary classification result with 90% PCA on Clincobblabs

Mtlcobbl _positive:

Kernel Training error | Test error | Support vectors
Polynomial 16x8 34.1% 45.05% 44.41%
RBF 16x8 34.32% 46.15% 46.67%
Polynomial 41x11 26.67% 54.95% 47.72%
RBF 41x11 28.73% 54.95% 49.3%

Table 3.12: Calgary classification result with 90% PCA on Mtlcobbl_positive

Mtlcobblabs:
Kernel Training error | Test error | Support vectors
Polynomial 16x8 30.36% 45.22% 44.1%
RBF 16x8 32.15% 46.96% 44.74%
Polynomial 41x11 28.73% 50.43% 47.26%
RBF 41x11 28.99% 51.3% 48.33%

Table 3.13: Calgary classification result with 90% PCA on Mitlcobblabs




Without applying PCA
Clincobbl_positive:

Kermel Training error | Test error | Support vectors
Polynomial 16x8 6.29% 34.07% 73.52%
RBF 16x8 9.71% 32.97 % 73.89%
Polynomial 41x11 3.2% 47.25% 76.32%
RBF 41x11 5.69% 45.05% 76.57%
Polynomial 61x31 0% 42.86% 73.38%
RBF 61x31 0% 41.76% 72.82%

Table 3.14: Calgary classification result with no PCA on Clincobb1_positive

Clincobblabs:
Kernel Training error | Test error | Support vectors
Polynomial 16x8 10.83% 33.91% 64.28%
RBF 16x8 10.78% 33.91% 67.27%
Polynomial 41x11 3.38% 40% 70.22%
RBF 41x11 7.13% 36.52% 71.27%
Polynomial 61x31 0% 34.78% 65.93%
RBF 61x31 0% 34.78% 65.91%

Table 3.15: Calgary classification result with no PCA on Clincobblabs

Mtlcobbl_positive:

Kernel Training error | Test error | Support vectors
Polynomial 16x8 5.37% 40.66% 44.54%
RBF 16x8 8.75% 42.86% 46.42%
Polynomial 41x11 1.97% 40.66% 49.73%
RBF 41x11 4.77% 40.66% 49.83%
Polynomial 61x31 0% 36.26% 48.5%
RBF 61x31 0% 36.26% 48.46%

Table 3.16: Calgary classification result with no PCA on Mtlcobbl_positive
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Mtlcobblabs:
Kernel Training error | Test error | Support vectors
Polynomial 16x8 9.47% 43.48% 46.54%
RBF 16x8 12.04% 42.61% 46.48%
Polynomial 41x11 3.49% 38.26% 47.28%
RBF 41x11 7.76% 36.52% 49.14%
Polynomial 61x31 0% 36.52% 48.01%
RBF 61x31 0% 36.52% 48.15%

Table 3.17: Calgary classification result with no PCA on Mitlcobblabs

3.5.3 Prediction Simulation Results

In order to evaluate the performance of the SVM method we developed on the future
coming new patients, we committed this preliminary prediction simulation experiment.
The idea is as below: from the 115 scans of 48 patients at hand, we took out all the scans
of three patients, each patient fell in one of the three classes respectively. The scans of
these three patients composed of the prediction set (i.e., the test set), all scans of patients
left composed of the training set. With this setting, the three patients never appeared in
the training procedure, thus they could be viewed as the future coming new patients. In
fact, we picked out patient 2213591, 4340957 and 9133211 (patient’s ID). The 4 scans of
patient 2213591 fell in class 2, the 5 scans of patient 4340957 fell in class 1, and the 2
scans of patient 9133211 fell in class 3. Thus, the size of test set was 11, and the size of
training set was 104. Parameter tuning was carried out and the optimal values found for C
and Gamma were C=1 and Gamma=1/64, respectively. The performance of the system is

given in the following table:

Clincobblabs:
Kernel Training error | Test error
Linear 16x8 0% 61.54%
Polynomial 16x8 0% 57.69%
RBF 16x8 18.18% 51.92%

Table 3.18: Prediction result without PCA on Clincobblabs
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3.5.4 GA-SVM Classification Results

Our method does not involve any feature extraction process. The disadvantage of it is that
its performance is usually worse than the performance of methods which use features.
After hading finished the experiments with our method, we had a new idea. We wanted to
replace ANN in the GA-ANN method by SVM in order to test how SVM would perform
on Jaremko’s data. Since this time SVM worked on the 17 features selected by GA, we
called this new method GA-SVM. The only difference between GA-ANN and GA-SVM
was that we used SVM instead of ANN to do the final classification task. In order to keep
fairness, we set the experimental environment same as in the GA-ANN, i.e., the first four
collections of 89 data were used as the training set; the fifth collection of 26 data was
used as the test set; this test set was never involved in the training procedure; each data
contained 17 features which were the same as used in GA-ANN; the data were divided
into 3 classes according to their absolute clinical Cobb angles (<30, 30 ~ 50, and >50,
respectively). These were exactly the same settings as in Jaremko’s experiments.
Parameter tuning was carried out on the training set. We obtained the following optimal

parameter values and classification accuracy:

C Gamma
Linear 2
Polynomial 27 2
RBF 2’ 214

Table 3.19: Parameter tuning results of GA-SVM

GA-SVM GA-ANN
Kernels Training Accuracy/Test accuracy/Training accuracy Test accuracy
Linear 95.51% 80.77%
(85/89) (21/26)
Polynomial 94.38% 80.77% 93% 92%
(84/89) (21/26) (83/89) (23/26)
RBF 88.76% 80.77%
(79/89) (21/26)

Table 3.20: Classification results of GA-SVM with comparison to that of GA-ANN
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3.6 Results Analysis

In learning tasks, what people care about more is the generalization performance, i.e., the
test performance other than the training performance, because a learner who can perform
excellently on the training data, but poorly on the future-coming data (i.e., test data), is
almost useless. This kind of overfitting effect is what we always want to avoid. So, in the
evaluation of the performance of each SVM learner on our two datasets: Brace dataset
and Calgary, we compare them based on two principles: accuracy on test set and less

overfitting.

3.6.1 Brace Results Analysis

The SVM which obtained the lowest test error was the one with ERBF kernel. The same
results were obtained in both cases of applying PCA by keeping 90% variation and
without applying PCA; the training method was leave-one-out. Under this setting, the

training error was 0, and the test error was 29.27% (Table 3.6, Table 3.8).

As the pilot study of experimenting on Calgary data, we tested all of our methods
(including surface fitting, PCA, SVM classification) on these Brace data. The test error
rate was high on the Brace dataset. The reasons were various. The first source of the high
test error rate was the overfitting effect. SVM performed much better on the training set
than on the test set, e.g., in most classification experiments with any kernel, the training
errors were commonly zero, nonetheless the test errors were much higher than zero. This
is obviously an overfitting effect. The possible reason is that we encountered the well
known phenomenon of "the curse of dimensionality”, i.e., when the dimensionality of the
inputs is high, the numbers of data that are needed to guarantee good results are huge,
unless we impose some restrictions on the class of function to be approximated. Since the
dimension of our data was very high (384 in our experiment) nonetheless we had only 41

data for both training and testing, it is not surprising that the results were overfitted. The
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overfitting effect is common with small sample sizes and would likely be reduced as

more patients’ data are collected.

The second source of the high test error rate was the labeling of the data. As we explained
before, the labeling was done by looking at the Cobb angle of each patient. But the
problem is that one patient may have up to 5 Cobb angles from the PA view. What we did
was simply picking one of them (usually was the Cobb_PA_2) and comparing it to the
threshold to decide that patient’s class. Obviously this method was rough and imprecise.
By carefully checking those data, we found that there were so much diversity among the
data of same class, namely, dividing these data into more classes is undoubtedly

necessary.

The third source of the high test error rate was the chaotic status of the original scattered
points. When these 3D digitized points were collected, many of them were missing or
misplaced (we can clearly see this phenomenon from the surface fitting figures in section
2.2), which directly led to the inaccuracy of the surface fitted to these points. In a word,
the original data was full of heavy noise. No classifier could perform well under this kind

of situation.

The last source of the high test error rate, which was also the most fundamental one, was
that the patients in the Brace datasets were all braced, which means their torso surface
were drastically ‘corrected’, while the internal scoliotic spine were not. Bracing
mechanically altered the normal relation between torso surface and spinal deformities

(Labelle et al., 1996), we risked degrading our correlation.

3.6.2 Calgary Results Analysis

The SVM which obtained the lowest test error was the one with RBF kernel on the 16x8
Clincobbl_positive dataset without applying PCA. The training error was 9.71% and the
test error was 32.97% (Table 3.14). The second best result was still obtained by RBF



100

kernel on the 16x8 Clincobblabs dataset without applying PCA either. The training error
was 10.78% and the test error was 33.91% (Table 3.15), which were very close to the

best results.

Similarly to the Brace data case, the test error rate was high on Calgary data too.
Overfitting effect also occurred here. One possible reason was still the same as in the
Brace data case, i.e., the small sample size leaded to overfitting. Although the size of
Calgary dataset (115 data) was larger than the size of Brace dataset (41 data), it was still
too small for efficient training and testing at the presence of high dimensionality of each
data (384, 1353, and 5673, respectively). Especially in the classification experiment of
Calgary data, we had three classes other than two classes in the Brace data case. At the
part of data characteristics we had seen that the data in these three classes were highly
unbalanced (see 2.5.2.2). There were 59 data in class one; however, there were only 11
data in class three. 11 data was obviously not enough for sufficient training and testing.
The high percentage of support vectors also demonstrated the fact that the size of
available data was far from being sufficient for training. Typically speaking, if the SVM
captures the distribution of the data well, the percentage of support vectors should be

relatively low.

According to the description of the characteristics of the Calgary data in (Jaremko, 2001),
among the 115 Calgary data:

e 63 were from braced patients, the other 52 were not.

As we know, bracing mechanically altered the normal relation between torso surface and
spinal deformities (Labelle et al., 1996), we risked degrading our correlation. So these 63
data in fact played a role of ‘noise’ in the learning procedure.

e 91 patients had rightward curve, 24 patients had leftward curve.

When committing experiments with the absolute Cobb angle to determine the class label
value of each patient, all the 24 patients with leftward curve were treated as having same-

magnitude rightward curve. So these 24 data in fact played a role of ‘noise’ in the
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learning procedure, because the SVM was trying to learn that the leftward curve was the
same as the rightward curve.

e 60 patients were under 13 years of age, 55 patients were above 13 years of age.

Most scoliotic patients in our dataset were girls (same thing in general). Generally
speaking, for the girls above 13, their breasts made their frontal torso surface very
different from the girls below 13. Nonetheless, we took the 360° full torso into account.
Thus, the surface fitted to the girls above 13 would rather different from the surface fitted
to the girls below 13. This phenomenon also played a role of ‘noise’ in the learning
procedure.

e Correlations among data

The data set consisted of multiple scans of the same patients (115/48 = an average of 2.4
scans per patient). While scans were separated by intervals of at least 6 months and
involved differences in patient growth and posture, they were still not entirely

independent. This kind of correlation would also cause problems.

In the raw data points of Calgary data, shoulder part of each patient was cut, which
introduced problems into our surface fitting procedure. We can clearly see the effect of
cutting from the figures of surface fitting (see 2.2.6.3). The cutting leaded to non-
continuity at the upper part of each patient’s data, the fitted surface could not correctly
and precisely pass through this part. What we did was to let the fitted surface smoothly
approximate these discontinuous points in the least mean square sense. This made us
have almost the same shape at the shoulder part for all the patients. But in fact patients
with different severity of deformed spine have drastically different shape on the surface at
the shoulder part. So the missing points around should part also played a role of ‘noise’ in

the learning procedure.

Another factor which affected the accuracy of our experiments was the reliability of the
Cobb angle. According to past research, an important problem with the Cobb angle is
inter- and intra-observer variability in its measurement. For example, the standard

deviation of inter-observer variability between four readers of 30 X-rays of scoliosis



102

patients was 2.5° (Goldberg et al.,, 1988), for a 95% confidence interval of nearly

+5° (assuming a symmetric normal distribution), while Cobb angle measurements on 50
X-rays differed by 7.2° between four orthopaedic surgeons when they were allowed to
select curve endpoints individually. These variations in Cobb angle measurement made it
inaccurately reflect the class label of each patient. For those patients whose Cobb angle
were around the class thresholds (i.e., 30° and 50°), they could have been fallen into
another neighbouring class if the variation of its Cobb angle was taken into account. This

phenomenon also played a role of ‘noise’ in the learning procedure.

Another main reason was probably our method. Because Jaremko worked on the same
raw data set, this means that he suffered from the same difficulties as we mentioned
above too. However, his GA-ANN method obtained excellent results from it. Since from
the GA-SVM experiment we have seen that SVM can acquire almost the same
performance as ANN on the same data set, the only possible explanation to why our
method performed worse than the GA-ANN method should be that the methods making
use of features suffered from those ‘noises’ existing in our data sets much less than the
methods which do not make use of features at all (e.g., our method). We also realized
afterward that the control points of a surface model were probably not the best
representation of the surface deformities. We will come back to this subject in more

details in the discussion section.

3.6.3 Prediction Simulation Resulit Analysis

The result of the prediction simulation experiment was consistent with the results we had
in other experiments, i.e., polynomial kemel performed better but was overfitted, RBF
kernel performed less accurately than polynomial but was not overfitted. Since we simply
randomly chose three patients as the test data, the results obtained on these three patients
could not represent the general performance of the SVM method we developed. Choosing
different patients can lead to different training and testing accuracy. This was just a

preliminary test of our system. The kernel point of this experiment was that we did not
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want to see the same patient appear in both training and testing sets. This is different from
the performance evaluation experiment Jaremko committed. In his experiment, he
utilized the fifth collection of data as the test set, and the data of the test set was never
used in the training procedure. However, the problem with his approach was that most
patients in the test set also appeared in the training set, i.e., these patients took several
scans at different data collection periods. By carefully checking the original data, we
found that the Cobb angle of most patients didn’t significantly changed among different
scans. This means that the scans from different period were in fact almost the same. Thus,
one potential problem that Jaremko’s evaluation method might bring is that the same data
used in the training will be used again in the test procedure. This is obviously an affect
we don’t want to have. The purpose of our prediction simulation experiment was to try to

check the performance of the system by avoiding this problem.

3.6.4 GA-SVM Results Analysis

The training accuracy of the GA-SVM is almost the same as that of the GA-ANN, but the
test accuracy of the GA-SVM is slightly worse than that of the GA-ANN. SVM correctly
classified 21 out of 26 data, only 2 data less comparing to ANN’s performance on the
same data set. This is reasonable. Because according to (Jaremko, 2001), the GA-ANN
performance reported was the result of the best run of many runs, and the same ANN
which was used to classify the test data was used as the fitness function of the GA, which
means that this ANN was optimized for this data set. Therefore, it is normal that slightly
better result was obtained on the test set by ANN other than by SVM. But generally
speaking we may say that these two results are almost the same. The significance of the
GA-SVM experiment is that it proved that the SVM method we utilized in our approach
is as powerful as the ANN Jaremko utilized in his GA-ANN approach; it also indirectly
showed the control points did not capture the surface deformities as efficiently as those

17 features, which implied other better representation should be sought for.
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3.7 Discussion

From the experiments and results on the above experiments, we had following findings
and discussions:

e Under the condition of small sample set, leave-one-out training method can usually
lead to better results than 10-fold cross validation.

This is consistent with the theoretical analysis we discussed before (section 2.4.7). From
the experimental results we obtained on Brace data by using both training methods, we
also found that leave-one-out worked better than 10-fold cross validation. Basing on the
reality that it is usually very hard to collect plenty of scoliotic patients in short term, we
think leave-one-out is more appropriate to be used in our problem. That is why we
utilized only leave-one-out other than 10-fold cross validation method on the Calgary
data. However, there is a price to pay for this benefit. Leave-one-out is much more time-
consuming than 10-fold cross validation, since its iteration times is equal to the number
of the total data. As SVM is a type of very fast learning machine, the degree of time
consumed on the data set of scale of hundreds of data points is still acceptable.

e By keeping more variation when applying PCA dimension reduction technique, better
results can be obtained than keeping less variation.

This is also consistent with the theoretical analysis, because keeping more variation
means more information is reserved. This is certainly beneficial. Our results also
supported this conclusion. However, we also have to point out that PCA does not always
help in improving the performance. The advantage of PCA is that it helps to reduce the
dimension of the data. Handling low-dimension data is usually easier and faster. The
disadvantage is that some information of the original data will be lost during the
procedure of dimension reduction. This can sometimes lead to the decline of the
performance. Both phenomenons were observed in the experiments on the Brace data.
From the experience with the Brace data, we still tested both settings of applying PCA
and without applying PCA on the Calgary data. But when applying PCA, only the setting
of keeping 90% variation was adopted, since from the experiences on Brace data we

learned that it is unnecessary to try by keeping 80% variation any longer. From the
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experimental results on the Calgary data we observed that both the best and the second
best results were obtained by without using PCA technique. This is reasonable. Because
at the surface fitting step, we had already lost a part of information of the original raw
data (this is simply because fitted surface can’t 100 percent pass through all of those data
points), by using PCA more information were lost. The advantage of PCA was also
observed in the experiments with the Calgary data, namely, PCA significantly reduced
the time required by the learning procedure, especially on the extremely-high-dimension
data. For instance, on the 61x31 data sets, SVM needed about 10 minutes to finish the
learning and testing without using PCA. By using PCA, since the dimensionality of data
was drastically reduced that SVM needed only a few seconds to finish the learning and
testing. In clinic, the above-all requirement is the accuracy of the method. Therefore, we
can say PCA didn’t work successfully in our case and we suggest not using it in the
future study.

e Increasing the density of the control points did not significantly improve the
classification performance in out method. Both the best and the second best performance
were obtained on 16x8 data sets. At the first look, this conclusion seemed irrational, since
increasing the density of the control points should consequently increase the quality of
the surface fitted to the raw scanned data, and hence more precise representation (the
fitted surface) should lead to better classification performance. In fact, from the view
point of the quality of the fitting surface, increasing the density of the control points will
surely lead to better result; but from the view point of learning, that is not certain.
Because the problem that increasing the density of the control points introduced was that
it increased the dimension of the dataset. For example, on the Calgary data, we tested
three sets of density of control points; they were 16x8, 41x11, and 61x31, respectively.
The quality of the fitted surfaces with these three sets of control points were given in
section 2.2.6.3. The quality of the surface increased with the increasing of the number of
control points. But the dimension of dataset varied from 384, 1353, to 5673. At the
presence of having only 115 data for both the training and the testing, these

dimensionalities were really too high. Therefore, it was not surprising that increasing the
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density of the control points did not consequently increase the classification and
regression performance. Another severe problem caused by high-density control points
set was the distortion at the non-continuous part. For example, when the number of
control points was increased to 61x31, the surface at the shoulder part was distorted (see
figure 3.12), this was because the arm removal operation eliminated many points at the
shoulder part. On smoothly continuous data this phenomenon should vanish.

However, we must point out that the fundamental problem was not originally caused by
increasing the density of the control points. As we discussed before, the fundamental
cause was from using control points as the representation of the surface deformities. The
control point is not a sort of steady representation, it is variable and very sensitive to any
slight changes occurred on its corresponding surface model. For instance, the same
patient takes surface scans at two different times (e.g., an interval of half a year), the
shape of patient’s trunk might have some small changes such as the patient becomes
slightly fatter, or thinner, or taller, these changes highly possibly happen since most of
scoliotic patients are teenagers. Then the spatial location of the control points of the
patient’s surface models can vary significantly due to the change on the surface model.
But the deformities of the inner spines in most cases stay rather steadily in this relative
short period. In the extreme case, even the same patient takes two scans at the same day
could have different control points set simply because the patient did not stand with the
same posture during the two scanning. This is a serious problem of using the control
points as the representation of the surface deformities. Hence, more steady and invariant
representations of the surface deformities should be sought for in a future study.

e Performance on all the datasets: Clincobbl, Clincobblabs, Clincobbl_positive,
Mtlcobbl, Mtlcobblabs, Mtlcobbl_positive, were similar.

This is consistent with Jaremko’s results. The correlation between clinical Cobb angle
and computer Cobb angle was very high (Jaremko, 2001), so setting class label with
clinical Cobb angle or computer Cobb angle did not matter much. As for Clincobblabs
and Mtlcobblabs, i.e., using the absolute value of the Cobb angle to determine the class

label, because the ratio of negative Cobb angle was rather low in the whole dataset (for
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instance, in Clincobbl, there were only 24 data with negative Cobb angle, the ratio was
only 24/115 = 21%), they could not significantly affect the result either.

e  On Calgary data, the performance of polynomial kernel and RBF kernel were very
close, although RBF kernel performed generally slightly better than polynomial kernel.
This is consistent with SVM theory, namely, different choice of kernels in applying SVM
to classification problem should not cause significant change in the performance. In the
case of without using PCA, both polynomial and RBF kernels obtained zero training error
on the 61x31 data sets, this was due to the extremely high dimensionality of the data sets.
So the decision hyperplane found on these training sets was overfitted and this leaded to
the high test error. Thus, basing on the experimental results on the Calgary data, we
suggest using RBF or ERBF kernel as the choice of kernel function of SVM for the future
study. It could obtain good performance and less overfitting at the same time. When more

patients’ data are collected, the performance of SVM can be expected to be improved.

In recent years, researchers in machine learning domain found that the ensemble of a
group of learners often outperformed than the single base learner. This kind of new
methodology is call ensemble learning. Based on the fact that our SVM did not perform
well enough in our experiments, we would like to know whether the ensemble of SVMs
could work better or not. So, we did an investigative study in constructing an ensemble of
SVMs, and tested its performance on some artificial data. The test results were quite
promising. We did not test the ensemble of SVMs on our scoliosis dataset, because the
ensemble of SVMs is usually designed for large-scale learning problem, our scoliosis
datasets (Brace dataset and Calgary dataset) are not suitable for it. When more data are
collected, we can utilize this new methodology. We presented the details of constructing
an ensemble of SVMs in the next chapter. This is an independent chapter and can be read

separately from other chapters.
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CHAPTER 4 - INVESTIGATIVE STUDY: THE ENSEMBLE OF SVMs

The ultimate goal of designing pattern recognition systems is to achieve the best possible
classification performance for the task at hand. Support vector machines and ensemble
methods, e.g. boosting, are two major new research directions toward this goal. As a
novel and promising learning technique, SVM has shown its superiority to most
traditional learning methods, such as decision tree, nearest neighbor etc., in diverse
applications. An ensemble of classifiers is a set of classifiers whose individual decisions
are combined in some way (typically by weighted or unweighted voting) to classify new
examples. The idea is not to rely on a single decision making scheme. Instead, all the
designs, or their subsets, are used for decision making by combining their individual
opinions to derive a consensus decision. Recent research has revealed from both
theoretical and empirical aspects that ensembles can, more often than not, increase
predictive performance over a single model (Dietterich, 2000; Schapire et al., 1998;
Breiman, 1996). Various classifier combination schemes have been devised, such as
bagging, boosting, stacking, error-correcting output codes etc. Generally people construct
the ensemble over relatively weak learners, such as decision stump and C4.5. The
ensemble of strong learners has been studied too. For instance, the combination of
ensembles of neural networks (based on different initializations) has been studied in the
neural network literature (Cho and Kin, 1995; Hansen and Salamon, 1990; Hashem and
Schmeiser, 1995; Krogh and Vedelsby, 1995; Rogova, 1994). There are two severe
problems existing in the ensemble methods carried out so far:
1. They don’t perform well on noisy data

2. Sometimes they lead to over fitting.

As we know, SVM is a strong learner, it has excellent performance on all kinds of
datasets compared to other learners, including on the above two ‘bad’ cases, i.e. it is
robust to noise and it less likely leads to over fitting. So naturally we are wondering if it

is possib]é to integrate the strengths of ensemble methods and SVM together, i.e., if we
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can construct an ensemble by using SVM as the base. In fact, the idea of an SVM mixture
1s not new. Previous attempts include Kwok’s work on Support Vector Mixtures for
classification and regression problems, in which he did not train the SVMs on part of the
dataset but on the whole dataset and hence could not overcome the time complexity for
large datasets (Kwok, 1998). In order to overpass this limitation existing in Kwok’s
method, namely, to extend the ability of the ensemble of SVMs can handle very large
scale problems, e.g., a dataset of hundreds of thousands examples, a group of researchers
proposed a new mixture of SVMs very recently that can be easily implemented in parallel
and where each SVM is trained on a small subset of the whole dataset (Collobert et al.,
2002). Fernandez’s work also revealed that training many local SVMs instead of a single
global one can lead to significant improvement in the performance of a learning machine

in a time series prediction application, as shown in (Fernandez, 1999).

An interesting issue in the research concerning classifier ensembles is the way they are
combined. What is the best approach to constructing an ensemble of classifiers? In
principle, there is no single best ensemble method, just as there is no single best learning
algorithm. However, some methods may be uniformly better than others. Although some
ways of constructing the ensemble of SVMs already exist, we noticed that the widely
used combining method, AdaBoost, which is simple but very efficient, has not been
tested yet in the assembling of SVMs. As a preliminary and investigative test, we tried to
use construct the ensemble of SVMs with the standard AdaBoost method. Due to the past
big success of ensemble methods, it can be expected that the ensemble of SVMs could
outperform than a single SVM, and could overcome the above two problems. Motivated
by this hypothesis, we investigated the applicability of the ensemble of SVMs with
AdaBoost.

4.1 AdaBoost

In this part, we briefly review the algorithms and characteristics of AdaBoost. The

algorithm we give out here is for the two-class case.
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Given: m examples (x;, ¥, )y....(X,,y,) where x,€ X,y, € Y ={-1,+1}
Initialize D, ({)=1/m foralli=1...m

Fort=1,..T:

e Train base classifier using distribution D,.

e QGet a hypothesis &, : X — {~1,+1} with error

g, =Pr_,[h(x)#yl= > DG

ih (%)Y,

1-¢

r)'

e Choose ¢, =—;—ln(

e Update:
D, (i) " e ™ if h(x)=y,
Z, e’ ifh(x)#y,

— Dt (l) CXp(-O(t yiht (.X[ ))
Z

D, ()=

t

where Z, is a normalization factor (chosen so that D, will be a

distribution).

Output the final hypothesis:

H(x)= sigrz(i o, h, (x)).

Figure 4.1: Pseudocode of AdaBoost

The main idea of this algorithm is to maintain a distribution or set of weights over the
training set. Initially, all weights are set equally, but in each iteration the weights of
incorrectly classified examples are increased so that the base classifier is forced to focus

on the ‘hard’ examples in the training set. For those correctly classified examples, their
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weights are decreased so that they are less important in next iteration. Note that the error
is the sum of weights of the misclassified instances divided by the total weights of all

instances, instead of the fraction of instances that are misclassified.

The basic intuition why ensembles can improve performance is that uncorrelated errors
made by the individual classifiers can be removed by voting. Another cause is that our
hypothesis space H may not contain the true function f. Instead, H may include several
equally good approximations to f By taking weighted combinations of these
approximations, we may be able to represent classifiers that lie outside of H. The

following figure illustrates this idea:

Figure 4.2: llustration of boosting

In this example, a two-dimensional two-category classification task is shown at the top.
The middle row shows three component (linear) classifiers trained by LMS algorithm,
where their training patterns were chosen through the basic boosting procedure. The final
classification is given by the voting of the three component classifiers and yields a

nonlinear decision boundary, as shown at the bottom.
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Because AdaBoost focuses on difficult training patterns, the training error of each
successive component classifier (measured on its own weighted training set) is generally
larger than that of any previous component classifier. Nevertheless, so long as the
component classifiers perform better than chance (e.g. have error less than 0.5 on a two-
category problem), the weighted ensemble decision ensures that the training error will
decrease. It is often found that the test error decreases in boosted system as well, as

shown in the following figure:

I 2 %2 4 5 6 T kB ¢ in i 1} 13 14 15

Figure 4.3: Characteristics of boosting

4.2 Constructing the Ensemble of SVMs

Now the question is: How to construct the ensemble of SVMs? We use a greedy
optimization procedure to construct the ensemble of SVMs. We start with the case where

weak features are linear decision rules

¢, (x) =sign{(x-w, )+ b}

Our goal is to find N optimal hyperplanes that in greedy fashion minimize the functional

R(w,b) = exp{-y, > d,signl(x, - w,) + b1}

i=1 k=l
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and then using these linear decision rules as the features to construct the desired

ensemble.

4.2.1 Constructing the Features

To construct N features we need to specify in the general scheme described in the

i
previous section only the method for minimizing the functional R(¢) = —Z cFy.d(x)

i=1

in the set of linear decision functions:
@, (x) = sign{(x-w,)+b,}
(Defined by the optimal hyperplane).

As before, we replace this problem with the following problem: Minimize the functional

I
R(wk)=%(wk-wk)+C2ci" i", c}=1 (1)

i=1

subject to constraints

y,((w,-x)+b)y=21-CF, (F =20

The only difference in the problem of constructing this hyperplane compared to the

problem of constructing the soft-margin hyperplane described before is that in the case of
the soft-margin hyperplane all coefficients ¢/ were equal to 1. Now the second term in

(1) is a weighted sum.
We solve this optimization problem using the same technique with Lagrange multipliers.

We obtain the following solution:
{
Wy = z y ia,z'k x;
j=1
where the coefficients ¢ maximize the functional

! 1 i
W =20 -5 3 oy x) @

i j=t

subject to the constraints
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0<e, <Ccf

and the constraint
!
Z y iaicik =0
j=1

The coefficient b, can be defined from Kuhn-Tucker conditions

o, (y(w, x; +b)~-1+{F)=0
Therefore, the difference in decision rules is defined by the coefficients c/. these
coefficients are calculated iteratively in a greedy optimization procedure:

cl=1, i=1..1

1

o =exp(-y, 2 d,¢,(x)}=cf exp{-y,d, 4, (x))},

r=1

where

k
d — 11 Z{i3Yi¢k(xi)=1}ci
T oin %
2T €
{iyide (x)=—1}
Differences: The coefficients ¢/ also play a role of the weight of the data here, which is

the same as in AdaBoost. It is still used in the constrain condition for solving the dual
problem, i.e. it affects the construction of decision boundary. So it has been used twice in
each iteration. This is the different point between the ensemble of SVMs and the

AdaBoost.

Analysis of the usefulness of ¢ : in SVM, the constant C plays a role of the
regularization parameter; a larger C corresponds to assigning higher penalty to errors.
Now by multiplied by ¢f, Ccf can ‘adaptively’ vary with the error rate of the classifiers,
and since Cc| is used in the constrain conditions for solving equation (2), it will surely

affect the solution of the Lagrange multipliers, and eventually affect the construction of
SVM. The higher error rate a SVM make, the higher weight it will be assigned. These
weights ‘force’ the SVM of next iteration to focus on those ‘difficult’ examples. It’s

exactly the same as in AdaBoost.
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4.2.2 Constructing the Decision Rule
To obtain the decision rule one constructs the optimal hyperplane in N-dimensional
binary space
Z2 = (@, (X),..c., @y ().
Using the given set of training data one obtains the new set of training data
(31521 ) (3,5 2))
(z, = (¢,(x;),....0y (x,)), based on which one constructs the optimal hyperplane. So the

final decision rule is

H(x)= sign[z d. ¢, (x)j
d=1

1t is simply a weighted voting as in AdaBoost.

4.2.3 Ensemble of Nonlinear SVMs

In the case where decision function is not a linear function of the data, we need to employ
a so-call “kernel function” K. What this kernel function does is a mapping of the data
from original space to a (possibly infinite dimensional) feature space H, i.e. Hilbert
space. In Hilbert space, data are linearly separable, so we still construct a linear SVM in
Hilbert space to separate mapped data. This linear SVM in Hilbert space is corresponding
to a nonlinear SVM in the original space.

We can use features of the form
1
9, (x)= sign[Z v, K(x,x, )J
i=1

where the Lagrange coefficients ¢, are solution of the following optimization problem:

Maximize the functional

i 1 !
W(a) :Zai *EZ%%)’J;K(% 'xj)

i, j=1

subject to the constraints
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0<a, £Ccf

!
k
Z viae; =0
i=1

We can see that this is almost the same as in the linear SVM case. The only difference is
the kernel function. In fact, linear SVM is just a special case of the nonlinear SVM,

where the kernel function is a polynomial kernel and degree is one.

Using obtained N features ¢, (x), k =1,...,N , we can construct the final decision rule,

which is simply a weighted voting as in AdaBoost, i.e.
N
H(x)= sz-gn(z a9, (x)]
d=1

We can see that in the ensemble of nonlinear SVMs case, every step is the same as in the

construction of the ensemble of linear SVMs case, except the use of a kernel function.

4.3 A Further Improvement

In the above-discussed method for constructing the ensemble of SVMs, we use the
standard AdaBoost algorithm to reweigh training data at each iteration and produce the
final decision rule with a weighted majority voting. Recently the concept of margin was
drawn into the research of the efficiency of boosting, and it shows that the margin
distribution of AdaBoost resembles the one of SVMs for the separable case. In fact,
AdaBoost achieves a hard margin asymptotically, such as the SVMs for the separable
case. But at the presence of classification noise, the decision boundary created by a hard
margin classifier will become too complex and ‘sticked” on the training data (in order to
correctly classify all training data), i.e. it overfits!

The following figure illustrates this problem:
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Figure 4.4: Hard margin

The three graphs show the maximum margin hyperplane found one three dataset,
respectively: on reliable data (left), on data with an outlier (middle) and on data with a
mislabeled pattern (right). This figure shows that the hard margin implies noise
sensitivity, only one pattern can spoil the whole estimation of the decision boundary. In

fact, most observed poor performance of AdaBoost was also found on noisy datasets.

A variety of AdaBoost, which is call regularized AdaBoost, suggested a nice solution to
this problem. It analogously used the idea of soft margin as in SVM research. Firstly we

define the margin for an input-output pair z, = (x,,y,;),i =1...,m)by

T
mg(z;,¢) = yizctht(’xi)
=1

which is between ~1 and +1. The quantity c is simply the normalized version of weight b
of the hypothesis A, i.e. c=b/|bl The larger the margin the better generalization
performance the combined classifier has. Taking a close look at mechanism of AdaBoost,
we will see that what AdaBoost does is actually an asymptotical minimization to a

function of the margin:

g(b) = zeXp{- tlz-)?-lmg(zi,C)}
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where | b |= th, . Interestingly, we have

w,(z,) = ;Ejg(bH) /amg(zi b))
Zj:l ag b1 57’”8(2]. . bt_l)

which is a gradient of g(b, ) with respect to margins. This w,(z;) will give a hypothesis

h, which is an approximation to the optimal hypothesis h, that would be obtained by
minimizing g(b) directly. Therefore, AdaBoost is essentially an approximate gradient
descent method which minimizes g(b) asymptotically. As g(b) is minimized, the
minimum margin of the patterns, o, is maximized, i.e. we have reached the optimal
hyperplane. This is exactly same as in the SVMSs. At that moment

mg(z,,e)2 p foralli=1,..,m.

In order to avoid overfitting and to get a good generalization performance, we must put

penalty on those high weights for the difficult training patterns which lead to overfitting,
i.e. we need to do weight decay operation. We introduce a slack variable {7 :

é’it = (Z Crwr (Zi ))2

r=1

where the inner sum is the cumulative weight of the pattern in the previous iterations.

This £ gives difficult patterns big weights which are far from the average. We want

mg(z,e)2 p-C¢ >0
so that some classification errors would be allowed. Then
mg(z;,¢) +C{}
is called soft margin. It reflects a tradeoff between the margin and the importance of a
pattern in training process. Consequently, we derive a new error function with the soft
margin:

8rplcis|b, = ZeXp{~th—l(mg(zp€,) +C é”f)}

and compute the derivation of g,,, subject to margin mg(z;,5, ), we get the weight
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08, (B1)
dlme(z,¢,) +CE)
CXP{_ |6, | (mg(z,c )+ Cévit—l)/z}
Z’; exp{- |6, | (mg(z,,c,)+ CLMY 2}

wi(z,) =

4.3.1 Regularized AdaBoost

Now we give out the regularized AdaBoost algorithm.

Given: m examples Z = {(x,, ¥, ),..,(x,,, ¥,,)}

Initialize: w\(z,)=1/m foralli=1...m

Fort=1,...,T:

e Train classifier on weighted sample set {Z, wt} and obtain hypothesis
h ix—=[-1,+1]

e Find the weight w,(z,) of the hypothesis:

. 1
b, :argmmZexp{—E[p(zi,b()'*'C‘bt 9

b,20 =0

where p(z,,b) =y, " ch,(x,)
abort if
by=0o0rb 2T,

where I' is a large constant
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e Update:

Woi(z) = W’;") eXp{—%[p(zi,b’) +Cb |71}

¢

where Z, is a normalization constant, such that z:’; w,,(z,)=1

Output final hypothesis:

H{x)= sign(ibtht {(x)).
t=i

Figure 4.5: Pseudocode of regularized AdaBoost

C is regularization constant. While C = 0, this algorithm is equivalent to standard

AdaBoost.

4.4 Performance Evaluation

In order to evaluate the performance of the ensemble of SVMs, we made a comparison
between SVM and standard AdaBoost based on SVM. In the boosting algorithm, the
kernel of the base SVM was the same as that of the single SVM, only with this setting
that we could compare the difference of performance between the single SVM and the

committee of SVMs.

4.4.1 Datasets

The reason for that people usually use only weak learner as the base of ensemble is that
when the base learner has high accuracy on the training set, the benefit of ensemble will
be small. For example, if a single SVM has 95% accuracy on a given dataset, then even if
the ensemble of SVMs could reach the accuracy of 96% or 97%, it wouldn’t make much
significant sense, because the single SVM has almost reached the ‘ceiling’ of the
performance, in other word, it is already good enough. So, in order to test the efficiency

of the ensemble of SVMs, we must choose those datasets on which the single SVM
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performs relatively poorly, e.g. a 70% accuracy. In those cases, the developing space for

the ensemble of SVMs is still rather large.

For simplicity, we did not perform experiment on the standard UCI datasets. We only test
the algorithm on two-dimensional two-class datasets, i.e. planar point classification
problem. Each instance is represented by two attributes (X and Y coordinates), and
belongs to one of two classes (represented by +1 and -1, respectively), as illustrated in

the following figure:
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Figure 4.6: Data illustration

Note: in our experiments, the ‘circle’ points have class label *-1’, and the ‘square’ points

have class label “+1°.

In fact, looking at the nature of the UCI data, we can see that they are actually the same
as our artificial data, because in UCI case, an instance can also be represented as a point
in a high-dimensional space. So the results we obtain on current datasets keep the

correctness and usefulness on more complex datasets.

We used five above-like artificial datasets. We named them 4_comers, checkers_9,

T_noise, the_letter_S and xor_200, respectively. The distributions of their data points
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reflect different degree of difficulty. The geometric appearance of the distribution and

statistical characteristics are listed out in the following:

1. 4_Corners

Figure 4.7: 4 Comers

Characteristics: 250 circle points clustered in the central part, 200 square points

scattered at the four corners. There are 450 instances in all.

2. Checkers 9

O g
9y %’?i@

Figure 4.8: Checkers 9

Characteristics: 250 circle points, 200 square points. Each cluster of points of one class
is tessellated by a cluster of points of another class. No clusters of points of same class

are neighboured. There are 450 instances in all.
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3. T noise

Figure 4.9: T noise

Characteristics: 300 circle points, 250 square points. There are 550 instances in all.

Circle points distribute in a “T” shape, and some square points are mixed in the ‘T’ area.

4. The_letter S

2 LR

Figure 4.10: The letter S

Characteristics: 150 circle points, 180 square points. There are 330 instances in all.

Circle points distribute in an ‘S’ shape.
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5. Xor_ 200

Figure 4.11: Xor 200

Characteristics: 100 circle points, 100 square points. There are 200 instances in all. This

is obviously an XOR problem.

4.4.2 Implementation

The algorithm that uses the standard AdaBoost method to combine multiple SVMs has
been implemented. The regularized AdaBoost algorithm has not been implemented. The

implementation and experiments were done on the platform of Matlab 6.0.

Training set: We did not use the k-fold cross validation. This is because of the
characteristics of our datasets. For example, taking a look at the distribution figure of
Xor_200 dataset, the data points are distributed in four separated areas. If we do k-fold
cross validation, it is very possible that the data points in the test fold all come from the
same area, while few point of same class falls in the training set, such that the test error
might go up to near 100%. In order to avoid this problem, we used sampling method
which randomly draws points from the original dataset. This can guarantee that all data
points have the same chance to appear in both training set and test set. 2/3 of each dataset
are drawn to form the training set, the remaining forms the test set. When training error is

equal to zero or larger than Y4, training will have to be stopped.
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Test set: After the training set is taken out, the remaining 1/3 of the whole dataset is used

as test set.

Kernel function of SVM: we employed SVM of polynomial kernel as the base classifier
in our experiments. Three different degree of polynomial kernel function were used: d =
1 (i.e. linear SVM), d = 2 and d = 4. However, the complexity of the problem might be
out of our expectation, the distribution of those data points in the high-dimension vector
space might be very complex, in order to improve recognition accuracy, employing
nonlinear kernel functions, such as the Gaussian Radial Basis Function, might be
necessary in future works. For constant C, we tried different values from low to high, the
results given out below corresponds to C = 1000 and C = 10. These two C values
represent the case of low tolerance of error and the case of high tolerance of error,

respectively.

4.4.3 Results

We used the SVM with polynomial kernel as the base of AdaBoost, which is the same as
the single SVM classifier. The comparison between two methods: single SVM, standard
AdaBoost basing on the same SVM. The generalization error (in %) and iteration
numbers are listed out in the following tables. The iteration number reflects how many

single SVM are combined into the formation of the ensemble of SVMs.



d=1 SVM Ensemble of SVMs
C=1000 Testerror | Testerror | Iteration no.
4_corners 42 36 2
Checkers_9 46,7 46.7 1
T_noise 31.1 31.1 1
The_letter_S 41 41 i
Xor_200 44.8 44.8 5
d=2 SVM Ensemble of SVMs
C=1000 Test error | Testerror | Iteration no.
4 _corners 14.7 14.7 8
Checkers_9 35.3 32 16
T_noise 13.7 13.7 8
The_letter_S 26.4 23.6 21
Xor_200 104 104 10
d=4 SVM Ensemble of SVMs
C=1000 Test error Test error Iteration no.
4 _corners 6.7 6.7 17
Checkers_9 10 9.3 28
T_noise 12.6 12.6 16
The_letter_S 13.6 5.4 13
Xor_200 14.9 14.9 14
d=1 SVM Ensemble of SVMs
C=10 Test error Test error Tteration no.
4_corners 40 30.7 18
Checkers_9 40.7 38.7 3
T_noise 23 23 3
The_letter_S 41.8 38.2 17
Xor_200 37.3 26.9 12
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Table 4.1: Performance of ensemble of SVMs on artificial data

4.4.4 Results Analysis

From the above results, we can see an interesting feature: the performance of the

ensemble of SVMs is at least equally good as that of the single SVM. That is to say, it



127

will not be worse than SVM. The feature is probably from the following fact: during the
procedure of constructing multiple SVM, the SVM solution obtained in the first iteration
is in fact the same as the single SVM (because the weight of all data points is 1 in the first
iteration), and the weight of the first SVM is the largest in all of SVMs (this is because
the first SVM has the lowest error rate). Since the final hypothesis is a weighted
combination of these SVMs, the one with the largest weight will obviously give most
affect to the decision of final hypothesis. In fact, some other researchers had the same
observation: the performance of a parallel mixture of SVMs is at least as good as one

SVM (Collobert et al, 2002).

Another feature is that we did not get large amount of iteration numbers, unlike in other
combining methods, such as the AdaBoost using decision stump as the base, usually
those methods can combine up to thousands of base learners. The reason for this feature
is that since in the experiments we used hard margin SVM algorithm, not the soft margin
one, it treats the error so strictly that the error rate increases very fast with the increase of
iteration numbers. When the error rate overcomes Y2, the ensemble procedure had to stop
immediately. So that is why we did not get many iteration numbers. This also gives
another explanation from lateral why the ensemble performs at least equally well as a
single SVM, because the weighted decision of the first-iteration SVM is much bigger

than the sum of all other weighted decisions, since we have only a few iterations.

From the 4™ table we can see that while C takes a small value, the results of the ensemble
method are significantly better than that while C take a big value. As we know, C is the
regularization parameter in SVM; smaller C corresponds to more tolerant to the error that
SVM makes. So it is not surprised that we can obtain better results on noisy data when

setting C small.
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4.4.5 Discussion

Our preliminary experiments showed that the ensemble of SVMs is promising. It might
have a big potential in classification problem research. Although we did not implemented
the regularized AdaBoost yet, we could foresee that it could perform better than our
current ensemble method used in this experiment, because the essence of this method is
to achieve a soft margin (through regularization term and slack variables) in contrast to
the hard margin classification. The soft-margin approach allows controlling how much
we trust the data, so we are permitted to ignore noisy patterns (e.g. outliers) that would
otherwise have spoiled our classification. Thus, it can avoid overfitting and get better
generalization performance. The benefits of ensemble methods are quite attractive, but
there is no free lunch! The disadvantages of it are also quite obvious. There are mainly
two disadvantages about the ensemble of SVMs comparing to the single SVM:

e Much larger memory is required

e Much longer computation time is needed

These are due to the fact that in the ensemble method we have to construct N SVM
solutions on N different weighted dataset. This limitation may sometimes make it

impractical on large-scale dataset.
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CONCLUSION

This project is mainly an exploratory and preliminary study of the scoliosis estimation
problem by making using of the surface deformity information. We proposed a new
method to the old problem of estimating the severity of scoliotic spinal deformity from
the external trunk surface. Our starting point was to avoid the two limitations in the GA-
ANN method, so we did not make any feature extraction and utilized the control points of
the surface model of the trunk as the representation, and we replaced ANN by SVM. But
unfortunately our results were not as good as Jaremko’s on the Calgary data set. The
reasons were various. From the GA-SVM experiments, we proved that SVM performed
as well as ANN. So we think the main problem was from using the control points as the
representation of the surface deformities. As we discussed (see section 3.7), control point
is not a kind of invariant and steady representation of the surface deformities. And
experimental results showed that control points did not capture the surface deformities as
accurately as the features used by Jaremko. We took into account the control points of the
whole trunk. In fact this is not necessary. Many control points were redundant and should
not be kept as a part of the data, but the practical difficulty was that we could not tell
which control point was important and which was not. A possible refinement is to use
only the control points of the part of trunk between arm-pit and waist. GA-ANN method
firstly also suffered from the problem of taking in account the features of the whole trunk,
later Jaremko focused only on the features extracted from the part between arm-pit and
waist, and then he obtained the optimal results. Another possible refinement is to use only
the control points of the back of the trunk. This is because most significant deformities
appeared on the back instead of the front, and the breast part of female patients can lead

to very different control points from male patients.

The other main reason was the small dataset and the data set was full of all kind of noises
(see section 3.2). The feature extraction method used in Jaremko’s GA-ANN approach

can less suffer from these noises, but our method cannot, because we made full use of all
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the data points directly and the control points do not capture the surface deformities as
accurately as the features. With our approach, the dimensionality of the data set was very
high. Although we utilized a type of dimensionality reduction technique, PCA, the
problem was still not solved. Some information was lost during the dimension reduction
procedure. When more patients’ data of better quality will be collected, our method can
be expected to perform better. The ideal way is to divide patients into as more subgroups
as possible with differing age, gender, curve severity, curve type and bracing status. Thus
each subgroup categorizes precisely a sort of curve type of the spine, and there are
enough data in each subgroup. But this is only feasible under the a priori condition of
having sufficient data. The advantages of our method are mainly as we discussed in
(section 1.6.2), i.e., that it is general and applicable in practice; it can avoid the two main
limitations in the GA-ANN method (see section 1.6.1); and it is very fast in training and
testing compared to GA-ANN method. The main disadvantage is that it predicted the
Cobb angle less accurately than the GA-ANN method. SVM classification was very fast
in both training and testing, even when the PCA was not applied onto the datasets. But
our parameter tuning procedure was quite slow, for instance, on the 61x31 dataset the

algorithm took hours of computation time to get the optimal parameter value.

In this project, several techniques have been tried and their usefulness in our problem has
been discussed. These experiences can be used as a reference and guide for a future

study.

As for the future study, we think the main direction is to seek for another type of steady
and invariant representation of the surface deformities other than the control points. For
instance, the derivative of the surface model is relatively much steadier than the control
points. It is invariant to proportional changes to the surface model. Thus, even though a
young patient might become taller or stronger at the second scanning in half a year, the
derivatives (of several important regions, for example) of his trunk surface very possibly
remains unchanged or only slightly changed if his spine did not progress significantly

during this period.
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Another important need to be solved is to determine how many control points are
sufficient for representing the raw geometrical points. In our experiments, we tried three
sets of density: 16x8, 41x11, and 61x31. These three types of density correspond to loose,
moderate, and tight fitting, respectively. We found that increasing the density of control
points did not improve the classification accuracy. On the contrary, the best and the
second best results were found on the loosest density, i.e., the 16x8 datasets. But even
16x8 might not be the optimal number for the density of control points. We need to
develop a kind of method which can automatically search the optimal number of control
points, like in the parameter tuning procedure, if we still continue in the direction of using
control points as the mere representation of surface deformities. But if we go another
direction in which we employ other type of steady and invariant representation such as
the derivatives of the surface model, then the problem of determining how many control
points are sufficient can be solved. What we have to do now is to increase control points
until we fit the surface to a user-specified tolerance range, for example, 5% error. Repeat
this procedure on each patient and the maximum number of control points is the optimal

number for all the patients for that user-specified tolerance.

Instead of the linear PCA method employed in our method, other types of dimension
reduction methods are also worth exploring. For instance, nonlinear PCA, Mult-
Dimensional Scaling (MDS), Locally Linear Embedding (LLE) etc. Low-dimensional

representation of data is also beneficial.

Instead of the SVM kernels utilized in our experiments (including linear, polynomial,
RBF, and ERBF), other kernels, such as sigmoid, Fourier series, B splines, additive
kernels, tensor product kernels etc., are also worth exploring, although the ones we
utilized are the most popular ones. A method which can automatically find out the

optimal kernel basing on our dataset is demanded too.
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In constructing the ensemble of SVMs, in addition to these general-purpose ensemble
methods, such as boosting and bagging, there are several other algorithm-specific
methods for generating ensembles reported.

e Rosen (1996) trains several neural networks simultaneously and forces the networks
to be diverse by adding a correlation penalty to the error function that back-propagation
minimizes. He reports substantial improvements in three synthetic tasks.

e Opitz and Shavlik (1996) take a similar approach, but they employ a kind of genetic
algorithm to search for a good population of neural network classifiers. In a comparison
with bagging, they found that their method gave excellent results in four real-world
domains.

¢ Bayesian model averaging (Madigan et al. 1996)

e Averaging over models output by a randomized learning algorithm

e LocBoost

e etc.

It would be worth exploring the applicability and efficiency of these methods in
combining SVMs.
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