POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre: Conception topologique de réseau cellulaire par une approche
Title: hybride de programmation par contraintes et de recherche locale

Auteur:
Author:

Date: 2003

Type: Mémoire ou thése / Dissertation or Thesis

Yanick Pomerleau

L, Pomerleau, Y. (2003). Conception topologique de réseau cellulaire par une
Référence: approche hybride de programmation par contraintes et de recherche locale
Citation: [Mémoire de maitrise, Ecole Polytechnique de Montréal]. PolyPublie.
https://publications.polymtl.ca/7153/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:) o
PolyPublie URL: https://publications.polymtl.ca/7153/

Directeurs de
recherche: Gilles Pesant, & Steven Chamberland
Advisors:

Programme:

Program: Non spécifié

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/7153/
https://publications.polymtl.ca/7153/

In compliance with the
Canadian Privacy Legislation
some supporting forms
may have been removed from
this dissertation.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the dissertation.

UNIVERSITE DE MONTREAL

CONCEPTION TOPOLOGIQUE DE RESEAU CELLULAIRE PAR UNE
APPROCHE HYBRIDE DE PROGRAMMATION PAR CONTRAINTES ET
DE RECHERCHE LOCALE

YANICK POMERLEAU
DEPARTEMENT DE GENIE INFORMATIQUE
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES (M.Sc.A.)
(GENIE ELECTRIQUE)
MALI 2003

© Yanick Pomerleau, 2003.

i~i

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

| Lol]

Canada

Your file Votre référence
ISBN: 0-612-86429-4
Our file Notre référence
ISBN: 0-612-86429-4

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la these ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé:
CONCEPTION TOPOLOGIQUE DE RESEAU CELLULAIRE PAR UNE

APPROCHE HYBRIDE DE PROGRAMMATION PAR CONTRAINTES ET
DE RECHERCHE LOCALE

présenté par: POMERLEAU Yanick

en vue de l'obtention du dipléme de: Maitrise ¢s sciences appliquées

a été diiment accepté ' par le jury d'examen constitué de:

Mme. CHERIET, Farida, Ph.D., président

M. PESANT Gilles, Ph.D., membre et directeur de recherche
M.CHAMBERLAND, Steven, Ph.D., membre et codirecteur de recherche
M.PIERRE Samuel, M.Sc.A., membre

v

REMERCIEMENTS

Je remercie d’abord mon directeur de recherche, M. Gilles Pesant, et mon codi-
recteur de recherche, M. Steven Chamberland. En plus du soutien financier, j’al
énormément appris sous leur supervision et ils ont su me donner le gotit de continuer
en recherche.

Je remercie également ma conjointe, Mme Chantal Vignola, qui m’a beaucoup
inspiré par son aide et son soutien. Je remercie M. Marc Brisson ainsi que tous les
membres du Qu’ossé Ca (Québec Optimization and Satisfaction Strategies Explor-
ing Constraint Algorithms) pour leur collaboration et pour 'ambiance agréable du
laboratoire.

Je remercie enfin mes parents qui m’ont toujours encouragé a persévérer et a

ne pas abandonner dans Patteinte de mes objectifs.

RESUME

Les opérateurs de réseau cellulaire investissent une portion importante de leur
budget pour acquérir, installer et entretenir leurs équipements tels que les interfaces
radios, les controleurs et les commutateurs. Considérant les cotts importants des
infrastructures de réseaux cellulaires, la planification et Uoptimisation deviennent
des éléments primordiaux pour demeurer compétitif.

Dans ce mémoire, nous proposons d’abord un modele de programmation par
contraintes pour le probleme de conception topologique de réseau cellulaire. Ce
probléeme consiste & choisir les sites pour installer les controleurs de station de base
(BSC) et les sites pour installer les centres de commutation radio mobile (MSC) et
leur type, ainsi qu’a définir la topologie du réseau et les types des liens et ce, selon
la localisation des stations de base (BTS). L'objectif est de concevoir le réseau de
cout minimum. Comme ce probléme est classé NP-difficile, nous ne pouvons pas
résoudre les exemplaires de réseau de taille réelle en un temps raisonnable. Nous
proposons donc une heuristique hybride de recherche locale et de programmation
par contraintes pour résoudre le probléme.

Afin d’évaluer la performance de 'heuristique, nous la comparerons avec une
approche tabou proposée par Chamberland et Pierre (2002) et avec une borne
inférieure obtenue en résolvant une version relaxée du modele. L’heuristique est
testée avec les jeux de données générés aléatoirement de Chamberland et Pierre
(2002). Les solutions trouvées avec notre approche se comparent tres bien a la
borne inférieure et améliorent par un facteur de plus de 2% les meilleures solutions

obtenues jusqu’a maintenant.

vi

ABSTRACT

Cellular wireless network operators set aside an important part of their budget
to acquire, install and maintain equipments like radio interfaces, controllers and
switches. Considering the cost of a cellular wireless infrastructure, network plan-
ning and optimization are important issues for those operators in order to remain
competitive.

In this thesis, we first propose a constraint programming model for the design
problem of cellular wireless communication networks. It consists of selecting the
location of the base station controllers (BSC) and mobile service switching centers
(MSC), selecting their types, designing the network topology and selecting the
link types, and considering the location of base transceiver stations (BTS). The
objective is to find the minimum cost network. Since this problem is NP-hard, it is
unlikely that real-size instances of the problem can be solved to optimality within
a reasonable amount of time. As a result, we propose a heuristic to find a good
solution of the model. This heuristic is based on a local search heuristic combined
with constraint programming techniques.

In order to assess the performance of the proposed heuristic, we compare it with
a tabu search algorithm proposed by Chamberland and Pierre (2002) and with a
lower bound obtained by solving a relaxed version of the model. The heuristic
was tested with the same set of randomly generated instances as Chamberland and
Pierre (2002). The solutions found with our approach are near the lower bound

and improve by more than 2% the best solution found so far.

vii

TABLE DES MATIERES

REMERCIEMENTS iv

RESUME v

ABSTRACT e vi

TABLE DES MATIERES vii

LISTE DES FIGURES o ... ix

LISTE DES NOTATIONS ET DES SYMBOLES X

LISTE DES TABLEAUX xi

LISTE DES ANNEXES o .. xii

CHAPITRE 1: INTRODUCTION 1

1.1 Définitions et concepts de base des réseaux cellulaires 1

1.2 Problématique. 3

1.3 Objectifs 5

1.4 Plandumémoire)
CHAPITRE 2: CONCEPTION TOPOLOGIQUE DE RESEAU CEL-

LULAIRE 7

2.1 Présentation du probleme 0oL 7

2.2 Revue des connaissances e e 8

2.2.1 Fondements de la programmation par contraintes 9

2.2.2 Résolution des problemes de programmation par contraintes 10

2.2.3 Fondements de la recherche locale 19

2.3 Revue de littérature oL oo 24
2.3.1 Méthodes de résolution du probleme global 24

2.3.2 Méthodes de résolution du probleme d’affectation 27

2.3.3 Méthodes de résolution du probleme de localisation 31
CHAPITRE 3: METHODOLOGIE 33
3.1 Méthode exacte : Modele de programmation par contraintes 33
311 Notation 34

312 Lescolts 35

3.1.3 Lemodele topologique 36

3.2 Méthode heuristique : Recherche Locale 38
3.2.1 Stratégies de recherche du modele de PC 38

3.2.2 Combiner le modele de PC et la recherche locale 43

3.2.3 Heuristique de recherche locale, . 46

3.24 Solution initialeo 51
CHAPITRE 4: RESULTATS ET DISCUSSION 54
4.1 Description desdonnées 54
4.2 Evolution de Iheuristique hybride 56
4.2.1 Stratégies derecherche 56

4.2.2 Ajout d’une heuristique combinée au modeéle de PC 63

4.2.3 Ajout de I'heuristique de recherche locale 64

4.2.4 Ajout des contraintes de conservation de flot 65

4.2.5 Ajustement de la solution initiale 66

4.3 Résultatsfinaux 69
CHAPITRE 5: CONCLUSION 73

1.1
1.2

2.1

2.2

2.3

3.1
3.2
3.3

3.4

LISTE DES FIGURES

Relation entre les composantes d'un réseau cellulaire

Exemple d’un réseau cellulaire typique

Branch and bound programmation mathématique (PM) vs program-

mation par contraintes (PC)

Réseau de contraintes

Recherche locale & descente simple vs recherche tabou

Modeles de programmation par contraintes

Combinaison de la recherche locale et du modele de PC

Mouvement de la recherche locale : le site de BSC le plus faiblement

connecté est enlevé de solution courante

Combinaison de la recherche locale et du modeéle de PC

1X

LISTE DES NOTATIONS ET DES SYMBOLES

BSC : Contoleur de station de base (Base Station Controller)

BT : Retour arriere (Back Track)

BTS : Station de base (Base Tranceiver Station)

CSOP : Probleme d’optimisation de contraintes (Constraint Satisfaction
Optimisation Problem)

CSP : Probleme de satisfaction de contraintes (Constraint Satisfaction Problem)
GA : Algorithme génétique (Genetic ALgorithms)

LS : Recherche locale (Local Search)

MSC : Centre de commutation radio mobile (Mobile Switching Center)
PC : Programmation par contraintes

PM : Programmation mathématique

SA : Recuit simulé (Simulated Annealing)

TS : Recherche tabou (Tabu Search)

VND : Descente & voisinage variable (Variable Neighborhood Descent)
VNS : Recherche a voisinage variable (Variable Neighborhood Search)

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

x1

LISTE DES TABLEAUX

Caractéristiques des typesde BTS 55
Caractéristiques des types de BSC (incluant les colts d’installation) 55
Caractéristiques des types de MSC (incluant les cotits d’installation) 55
Caractéristiques des types d’interfaces (incluant les cotits d’installation) 55
Caractéristiques des liens BTS-BSC (incluant les cotits d’installation) 55
Caractéristiques des liens BSC-MSC (incluant les colits d’installation) 56
Comparaison des stratégies de recherche pour des réseaux de petite
taille pour le modele sans les contraintes de conservation de flot . . 59
Comparaison des stratégies de recherche pour des réseaux de taille
réelle pour le modele sans les contraintes de conservation de flot . . 60
Résultats lorsque le nombre de sites de BSC constituant une solu-
tlon est limité par I'heuristique hybride utilisant le modele sans les
contraintes de conservationde flot 64
Résultats de I'heuristique hybride de recherche locale & descente sim-
ple combinée au modeéle de PC sans les contraintes de conservation
deflot 65
Résultats de ’heuristique hybride de recherche locale & descente sim-
ple combiné aux modeélesde PC 67
Parametres de heuristique initiale établis selon le nombre de BTS
dansleréseau 69
Résultats finaux de I'heuristique hybride de recherche locale & de-
scente simple combiné au modelede PC 71
Comparaison de la solution initiale (SI) pour notre méthode a la

solution finale {T'S) de 'heuristique tabou

Annexe I:

Annexe II:

LISTE DES ANNEXES

Modele A

Modele B

Xi11

CHAPITRE 1

INTRODUCTION

Les systemes de télécommunications mobiles prennent de plus en plus d’impor-
tance dans nos vies. En effet, quoi de mieux que de communiquer et naviguer sur In-
ternet sans restriction géographique ou temporelle? Pour répondre a une demande
croissante sans en augmenter les colits d’exploitation (Reed, 1993), les opérateurs
de réseaux cellulaires doivent sans cesse améliorer la conception et la gestion de leur
réseau. L’allocation de fréquence, la conception topologique, 'acheminement des
appels (routage) sont autant de domaines ot 'optimisation permet une meilleure
gestion des ressources et une réduction des cotits d’exploitation. Dans ce contexte,
un des aspects tres importants est la conception topologique des réseaux cellulaires
qui sera traitée dans ce mémoire. Dans ce premier chapitre, nous introduirons
les concepts de base qui définissent un réseau cellulaire, ce qui nous permettra de
décrire la problématique. Nous discuterons ensuite des objectifs a atteindre et nous

finirons par une description du plan du mémoire.

1.1 Définitions et concepts de base des réseaux cellulaires

Le réseau cellulaire est un réseau informatisé de communication sans fil, con-
stitué de transmetteurs radio circulant sur un territoire divisé en cellules. Chaque
cellule est desservie par une station de base (BTS, Base Transceiver Station) ser-
vant & relier les utilisateurs au réseau. La cellule est souvent représentée par un
hexagone dont la dimension est proportionnelle & sa zone de couverture comme
illustré a la figure 1.1. Chaque BTS est connecté a un contrdleur de station de
base (BSC, Base Station Controller), qui est un commutateur de grande capac-

ité. Le BSC est responsable de toutes les fonctions liées & la transmission radio,

L
R
i

R e
D=

LT res
(ot

~Public switches .
{ telephone network
~. (PSTN) 3

e
L

(Il ~ies

MSC

Figure 1.1: Relation entre les composantes d’un réseau cellulaire

comme la reléve simple, la gestion des ressources du réseau et les données rela-
tives a la configuration des cellules. 1l contréle également le niveau de puissance
des fréquences des BTS. Un transmetteur mobile en déplacement d’une cellule a
I'autre doit changer de BTS pour continuer a communiquer, on appelle ce pro-
cessus la releve (handoff). Elle est simple lorsque les deux BTS sont connectés au
méme commutateur. Chaque BSC est connecté a un niveau hiérarchique supérieur,
le centre de commutation radio mobile (MSC, Mobile Switching Center), qui est
aussi un commutateur de grande capacité. Le MSC assure le routage des appels
reliant deux utilisateurs mobiles ou un utilisateur mobile & un réseau fixe tel que
le réseau téléphonique public commuté (RTPC). Les MSC sont donc responsables
de la répartition et du transfert des appels et ils s'occupent aussi de la reléve com-
plexe. La releve complexe survient lorsqu’un transmetteur se déplace d’une cellule
a une autre mais cette fois le nouveau BTS est affecté a un commutateur différent

de celui du BTS d’origine.

Site potentie] BSC

Site potentiel MCS

@ BTS

Figure 1.2: Exemple d’un réseau cellulaire typique

1.2 Problématique

Lors de la conception d’un nouveau réseau cellulaire ou lors de la mise & jour de
la couverture d’un réseau existant, les opérateurs dotvent établir ot ils installeront
leurs équipements de facon a répondre a la demande et ce, a moindre cott. Ils font
d’abord des études pour connaitre les caractéristiques du trafic afin de déterminer
la localisation et la dimension des cellules. Par la suite, ils identifient les sites po-
tentiels pour installer les BSC et MSC. Leur travail devient plus complexe lorsqu’ils
doivent choisir parmi ces sites potentiels les endroits ou ils installeront réellement
leurs équipements. Ce choix est difficile puisque le nombre de combinaisons croit
exponentiellement avec le nombre de sites potentiels. Un mauvais choix de sites
peut entrainer une différence de plusieurs millions de dollars lors de la réalisation
du réseau. Les opérateurs doivent aussi déterminer quelle sera I'affectation entre
les BTS et les sites de BSC utilisés et 'affectation entre les sites de BSC et les sites
de MSC utilisés. Ces choix d’affectation sont aussi difficiles que ceux de localisation
des équipements et ont encore plus d’importance sur les cotits. Enfin, toutes ces
combinaisons sont sujettes aux contraintes de capacité des équipements utilisés.

La difficulté du probléme vient du fait que ces choix sont dépendants les uns

des autres. Par exemple, imaginons que le BTS #1 est affecté au site BSC #1.
Ce choix se justifie considérant que la distance qui les sépare est la plus petite
tel qu'illustré a la figure 1.2. Une des conséquences de cette affectation sera qu’il
faudra relier et installer un BSC au site BSC #1 méme si ce dernier est loin des sites
MSC disponibles. Ce choix contribue a diminuer les cotuts d’affectation BTS-BSC
mais a augmenter les cotuts d’affectation BSC-MSC. De plus, cette affectation a des
conséquences sur la localisation des BSC. En effet, il faudra maintenant installer
un BSC au site BSC #1 puisqu’il y a au moins un BTS qui sera connecté & celui-ci.
Toutes les décisions sont donc dépendantes les unes des autres. Nous devons par
conséquent explorer toutes les combinaisons pour trouver la meilleure solution. La
complexité du probléme vient du fait que le nombre de combinaisons augmente de
facon exponentielle avec la taille du probleme.

Le probleme de conception topologique est en fait une combinaison des prob-
lemes d’affectation, de localisation et de dimensionnement. Il réfere & deux prob-
lemes NP-difficiles notoires : le partitionnement de graphes (Merchant et Sengupta,
1995) et le probleme de localisation de commutateurs (Sohn et Park, 1998). Le
probléeme est donc NP-difficile et nous devons par conséquent utiliser une approche
heuristique dans le but de trouver de bonnes solutions aux instances de moyenne
et de grande taille. Une heuristique ne permet pas nécessairement de trouver la
solution optimale au probleme mais elle permet de trouver une bonne solution en
un temps raisonnable. Par contre, il n'y a généralement pas de garantie sur la qual-
ité de la solution trouvée. Dans le probléeme de conception topologique de réseau
cellulaire on parlera de temps raisonnable lorsque la solution est disponible apres
quelques heures de travail : étant donné que c’est un probléme de planification

stratégique, seule la qualité de la solution nous importe.

1.3 Objectifs

Le projet consiste & développer une heuristique hybride de recherche locale et
de programmation par contraintes (PC) pour résoudre le probleme de conception
topologique de réseau cellulaire. Le probléme a des caractéristiques intéressantes lui
permettant d’étre formulé en programmation par contraintes. En effet, il contient
de nombreux ensembles (sites potentiels, types des éléments), ce qui est propice
& Dlutilisation de variables & domaine fini. Les algorithmes de résolution de PC
ont démontré par le passé leur efficacité pour résoudre ce type de probleme. Par
contre, cette recherche de solution exacte ne permettra pas d’obtenir une solu-
tion de qualité pour les réseaux de taille réelle. Nous combinerons alors le modele
de programmation par contraintes & une recherche locale pour améliorer les solu-
tions de fagon heuristique. Nous commencerons donc par concevoir le modele de
programmation par contraintes pour résoudre le probléme de facon exacte. Nous
travaillerons ensuite les heuristiques d’affectation de ce modele pour obtenir la so-
lution optimale le plus rapidement possible pour les instances de petite taille. Par
la suite, nous combinerons ce modele & une heuristique de recherche locale & de-
scente simple pour Voptimisation d’instances de taille réelle. Nous chercherons,
plus particulierement, & définir une transformation locale de la solution qui mene
I’heuristique & un minimum local de bonne qualité et ce, en un temps raisonnable.
Pour ce faire, nous baserons cette transformation sur le choix des sites de BSC

constituant une solution.

1.4 Pilan du mémoire

Le mémoire contient six chapitres. Suite & ce premier chapitre d’introduction,
le chapitre 2 présente la formulation du probléme de conception topologique, la déf-
inition des contraintes et des données initiales. Nous discuterons aussi des travaux

antérieurs portant sur le sujet. Le chapitre 3 décrit le modele de programmation par

contraintes congu pour résoudre le probleme de fagon exacte. Nous retrouverons
également dans ce chapitre les fondements de la PC et I'importance des heuris-
tiques d’affectation de variables. Le chapitre 4 expose les principaux concepts de la
recherche locale et présente 'implantation de la recherche locale a descente simple
utilisée pour la résolution heuristique du probléme. L’évolution de I'heuristique
tout au long de ces travaux et les principaux résultats se retrouvent au chapitre
5. Enfin, le chapitre 6 conclut en faisant une synthése des travaux réalisés et des

résultats obtenus, en plus de discuter des possibilités de travaux futurs découlant

de cette recherche.

CHAPITRE 2

CONCEPTION TOPOLOGIQUE DE RESEAU CELLULAIRE

La conception topologique de réseau cellulaire est un probleme d’optimisation
trés important qui est amplement traité dans la littérature. Cependant, tres peu
de chercheurs se sont attardés au probleme dans son ensemble étant donné sa com-
plexité. Le chapitre débutera par la présentation du probleme. Nous discuterons
pas la suite des concepts de base nécessaires a la compréhension des travaux re-
liés a la conception topologique. Nous terminerons par la description des travaux

connexes de la littérature.

2.1 Présentation du probleme

On considére un probleme comportant m BTS, n sites potentiels pour installer
les BSC et p sites potentiels pour installer les MSC. Avant de procéder a la concep-
tion proprement dite du réseau, les opérateurs ont recueilli plusieurs informations.
Ils ont analysé le trafic dans chacune des zones de couvertures des BTS et ils ont
consigné les informations suivantes : (I1) la localisation des BTS et le type de
chacun; (12) le trafic entre chaque BTS et le réseau public; (I3) le trafic entre les
BTS; (14) les sites potentiels pour installer les BSC; (I5) les sites potentiels pour
installer les MSC; (I6) les types de BSC disponibles, le coit et la capacité de cha-
cun; (17) les types de MSC disponibles, le colit et la capacité de chacun; (I8) le
colit d’installation de chaque type de BSC; (19) les couts d’installation de chaque
type de MSC; (110) les cotits des liens et de leur installation.

Le probléme de conception topologique de réseau cellulaire est de :
e Déterminer la localisation des sites pour installer les BSC et les MSC;

e Déterminer les types des BSC et des MSC;

e Déterminer la topologie du réseau;

e Choisir le type des liens BSC-MSC.

L’objectif est de minimiser le colt du réseau tout en satisfaisant les demandes
de communication. Pour cela, on doit considérer les contraintes suivantes : (C1)
chaque BTS doit étre connecté a un BSC; chaque BSC doit étre connecté a un
MSC; (C3) chaque MSC doit étre connecté au réseau public; (C4) le nombre de
liens BTS-BSC connectés a un BSC doit étre plus petit ou égal au nombre maximum
d’interfaces BTS pouvant étre installé a un BSC; (C5) la somme des capacités des
liens BTS-BSC connectés & un BSC doit étre plus petite ou égale a la capacité
pouvant étre installée & un BSC; (C6) le nombre de liens BSC-MSC connectés a un
BSC doit étre plus petit ou égal au nombre maximum d’interfaces MSC pouvant
étre installé & un BSC; (C7) le nombre de liens BSC-MSC connectés a un MSC
doit étre plus petit ou égal au nombre maximum d'interfaces pouvant étre installé
a un MSC; (C8) la somme des capacités des liens BSC-MSC connectés a un MSC
doit étre plus petite ou égale a la capacité pouvant étre installée & un MSC; (C9)
un seul type de BSC peut étre installé a un site BSC; (C10) un seul type de MSC
peut étre installé a un site MSC; (C11) la conservation de flot dans le réseau doit
étre respectée.

C1, C2 et C3 sont des contraintes d’affectation, C4 & C8 sont des contraintes de
capacités des équipements, C9 et C10 sont des contraintes de localisation et C11

impose la conservation de flot.

2.2 Revue des connaissances

Afin de bien comprendre les avantages et inconvénients de 1'utilisation de la pro-
grammation, par contraintes nous allons dans cette section expliquer et discuter les

principaux concepts liés au sujet. Par la suite, nous expliquerons les fondements

de la recherche locale. Nous terminerons par une courte description des méta-
heuristiques de recherche locale telle que la recherche tabou (Glover et Laguna,

1997).

2.2.1 Fondements de la programmation par contraintes

La programmation par contraintes est un paradigme de programmation qui per-
met la modélisation d’un probléeme en faisant abstraction de la résolution. En fait,
il s'agit de décrire les relations qui existent entre les divers éléments du probleme
et non les algorithmes utilisés pour le résoudre. Le modele ainsi congu est ensuite
résolu par un solveur de contraintes qui, i, possede plusieurs algorithmes de ré-
solution. Ces algorithmes exploitent les caractéristiques du domaine des variables
utilisées dans la formulation du probleme.

Un avantage indéniable de la PC par rapport aux autres méthodes de modélisa-
tion est la facilité avec laquelle les contraintes sont définies. En effet, les contraintes
en PC ressemblent beaucoup & la fagon d’exprimer des contraintes en langage na-
turel. Par exemple, 'affirmation "Lorsque la tache i est suivie de la tache j, le
temps du début de la tache 7 plus sa durée doit étre inférieur au début de la tache
J" se traduit simplement en PC par ”S; = j = T;+D; < T;", ou S ,D et T représen-
tent respectivement la tache suivante, la durée et le temps de début de la tache. Il
est intéressant de noter qu’une telle implication est une fonction non linéaire, sou-
vent non convexe tres difficile & résoudre en programmation mathématique. Une
contrainte est donc une relation logique entre des variables : égalité, inégalité, im-
plication, union, etc. Plus formellement, une contrainte est une formule close batie
de variables et d’opérateurs définissant une relation.

Un modele en PC est construit en énoncant toutes les relations entre les vari-
ables qui définissent le probleme. Lors de la résolution, le modeéle est traité par
un solveur de contraintes, dans notre cas ILOG OPL Studio 3.5 (Ilog, 2001), qui

recherche toutes les solutions réalisables du probleme. Une solution réalisable est

10

obtenue lorsque chacune des variables est affectée a une seule valeur et que ces
affectations ne violent aucune contrainte. On parlera de probleme de satisfaction
CSP (Constraint Satisfaction Problem) lorsqu’on recherche une solution qui ne
viole aucune contrainte. Pour un probleme d’optimisation CSOP (Constraint Sat-
isfaction Optimisation Problem), Valgorithme de résolution recherche la meilleure
solution parmi 'ensemble des solutions réalisables, solution choisie selon un objectif
a améliorer. Enfin, il est extrémement important de bien choisir les variables et les
contraintes qui définissent le probleme puisque certains modeles se prétent a une
résolution beaucoup plus efficace que d’autres. Il faut donc bien connaitre les mé-

canismes de résolution de la PC afin de bien choisir les variables et les contraintes.

2.2.2 Résolution des problémes de programmation par contraintes

Un solveur de contraintes est spécifique aux types de contraintes et de variables
utilisés. Cela prend la forme de contraintes linéaires sur les réels, d’égalités sur les
arbres finis, de contraintes booléennes ou encore de contraintes sur domaines finis.

Un de ceux-ci se distingue et obtient de bonnes performances par rapport aux
techniques de résolution plus conventionnelles : il s’agit des problémes avec con-
traintes sur variables & domaine fini. En effet, les mécanismes de résolution de la
PC sont plus eflicaces pour ce type de probléme. Un domaine est dit fini lorsqu’il
est possible d’énumérer toutes les valeurs possibles d’affectation d’une variable. Ces
probléemes avec contraintes sur variables & domaine fini (FD) sont parmi les plus
communs et les plus difficiles a résoudre.

En programmation mathématique, il est possible de construire des modéles de
programmation en nombre entier (PNE) pour résoudre des problemes sur domaine
fini. Par contre, les mécanismes de résolution, tel le branch and bound, dépendent
souvent de la qualité de la relaxation ou des coupes. IIs sont généralement treés
coliteux & résoudre et la vitesse de résolution dépend des choix de relaxation du

modele et des coupes. Par exemple, dans le cas d’un branch and bound sur une

11

brancher pour devenir réalisable brancher pour identifier une solution

Résoudre uné Propager
relaxation v

Indéterminé

Non réalisable

PC

Propager
v

Indéterminé

relaxation

PM

Non réalisable

Figure 2.1: Branch and bound programmation mathématique (PM) vs program-
mation par contraintes (PC)

version relaxée de modele, I'objectif est de brancher pour obtenir une solution en
nombre entier qui satisfait les contraintes (figure 2.1). On ne peut pas prévoir le
nombre d’itérations qu’il faudra pour devenir réalisable. Le temps de recherche
sera alors fonction du colit d’évaluer la borne multiplié par 2V, oli V est le nombre
de niveaux & explorer. Dans le cas ou il y aurait 20 niveaux & explorer avant de
devenir réalisable le colit de recherche serait de 2%° multiplié par le coiit d’évaluer la
borne. Ceci est tres long, d’ot I'intérét d’exploiter d’autres méthodes de résolution
telle que la programmation par contraintes.

Il existe aussi un branch and bound en PC (figure 2.1). Il s’agit de fixer une
variable a la fois et de calculer le cout de la borne inférieure de la solution partielle
ainsi formée. Contrairement & la PNE, la solution est toujours réalisable tout au
long de la recherche. On coupe des branches lorsque la solution partielle donne un
colit supérieur a la borne préalablement trouvée. Le nombre d’explorations en PC
peut aussi devenir trés cotteux puisqu’il faut explorer toutes les branches de 'arbre
de recherche avant de garantir optimum. En PC comme en PE, la conception de

bons modeles s’acquiert avec Pexpérience car il est impératif de tirer avantage des
g

12

mécanismes de résolution propres a chaque technique.

Les problémes d’optimisation CSOP en PC tel que celui de ce mémoire sont en
fait des problemes de satisfaction auxquels on ajoute une contrainte supplémen-
taire. Aprés avoir trouvé la premiere solution réalisable, on ajoute une contrainte
stipulant que les prochaines solutions doivent avoir un cofit inférieur a la premiere
solution réalisable, le branch and bound. Chaque fois que la solution est améliorée

la contrainte est ajustée avec le coiit de la solution courante.
Un probleéme de satisfaction CSP se définit comme suit :
e un ensemble de variables X; = {z1,...,z,};

e un ensemble de contraintes C; = {c1,...,cm} qui régissent les valeurs que

peuvent prendre les variables X;;

e un domaine D qui fait correspondre a chaque variable X; un ensemble de

valeurs possibles D(X;).

La recherche de solutions pour un probléme donné se fait généralement en af-
fectant a chaque variable, une a la fois, une valeur de son domaine. L’ensemble
courant des variables fixées ainsi formé se nomme solution partielle. Donc, apres
chaque affectation, le solveur de contraintes vérifie si la solution partielle satisfait
bien les contraintes. Il propage I'information découlant de I'affectation courante et
filtre ensuite les domaines des variables non fixées. Cette vérification et cette réduc-
tion de domaine est nommée la propagation. Dans le cas ou la valeur d’affectation
courante viole une des contraintes, cette valeur est éliminée du domaine et le solveur
de contrainies reprend 'affectation a la valeur suivante pour la méme variable. Ce
mécanisme s’appelle le retour arriére (BT). Dans le cas ou la valeur d’affectation
ne viole aucune contrainte, il existe des mécanismes pour propager I'information
et ainsi filtrer les domaines des variables qui ne sont pas encore affectées. Ces

mécanismes retirent du domaine des variables non fixées les valeurs qui violeraient

13

une contrainte, en considérant I'ensemble des affectations courantes (solution par-
tielle). On appelle cohérences de noeud, d’arc et borne ces techniques de filtrage
de domaine.

Le choix des variables de modélisation a une importance capitale sur la rapidité
de résolution d’un probleme. Généralement, minimiser le nombre de variables et de
contraintes donne un meilleur modeéle. Effectivement, le nombre d’affectations sera
plus petit avant d’obtenir une solution et donc le temps résolution est plus court.
En fait, I'arbre de recherche est moins profond lorsque le nombre de variables
diminue et le temps de propagation diminue puisqu’il y a moins de variables sur
lesquelles propager. Dans le méme ordre d’idée, le temps de propagation diminue
aussi lorsqu’il y a moins de contraintes sur lesquelles propager. Par contre, nous
devons tenir compte de la dimension des domaines des variables puisqu’il est pos-
sible que la propagation ne puisse pas facilement les réduire. Par conséquent, il est
difficile de déterminer si un modeéle est bon en terme de variables et de contraintes.

Ce n’est qu’un indicateur de qualité.

2.2.2.1 Cohérences de noeud, d’arc et de borne

Les mécanismes de cohérence servent & trouver un CSP équivalent au probléme
original ayant des variables dont le domaine est réduit. La cohérence de noeud
n’est appliquée que sur les contraintes unaires, c’est-a-dire aux contraintes qui
n’ont quune variable. C’est la technique de réduction de domaine de moindre
cotit. Elle consiste a parcourir toutes les contraintes, & vérifier s'il n’y a qu’une
seule variable dans la contrainte pour finalement enlever du domaine de la variable
les valeurs incohérentes. Par exemple, imaginons que la variable X a un domaine
D(X) = {4,5,6,7}, la contrainte X < 6 et le mécanisme de cohérence de noeud
réduirait le domaine & D(X) = {4, 5} puisque l'affectation de X A 6 ou 7 violerait

/

la contrainte.

La cohérence d’arc agit sur toutes les contraintes de deux variables, contraintes

14

binaires. Considérons les variables X et Y de domaine D(X) et D(Y') respective-
ment. La cohérence d’arc consiste, pour toutes contraintes impliquant X et Y, a
retirer toute valeur de D(X) pour laquelle il n’y a pas de valeur dans D(Y') qui
satisfait la contrainte et vice versa. Par exemple, pour la contrainte X +Y < 6, les
domaines D(X) = {4,5,6} et D(Y) = {1,2, 3} seraient réduits & D(X) = {4,5} et
D(Y) = {1,2}, la valeur X = 6 n’ayant pas de support dans le domaine D(Y), de
méme pour Y = 3. 1l est intéressant de noter que I’hyper-cohérence d’arcs, impli-
quant plus de deux variables, pourrait étre appliquée pour réduire les domaines de
plusieurs variables a la fois. Par contre, déterminer 'hyper-cohérence d’arcs est un
probléme combinatoire qui croit de facon exponentielle avec le nombre de variables;
c’est donc un probleme NP difficile en soit.

La cohérence de borne est en fait une technique de filtrage particuliere aux
contraintes arithmétiques. Elle consiste a resserrer les extrémités du domaine des
variables impliquées dans une contrainte en déterminant les bornes supérieures et
inférieures menant a une solution réalisable. Pour ce faire, nous devons définir des
regles de propagation différentes pour chaque type d’opérateur. Par exemple, pour
laddition X = Y + Z, en raisonnant sur les valeurs maximum et minimum, la

cohérence de borne est résolue comme suit :

o X >minD(Y)+minD(Z) et X <mazD(Y)+ mazD(Z)
o Y > minD(X)—marD(Z) et Y < mazD(X)—minD(Z)
o 7 >minD(X)—mazD(Y) et Z < maxD(X)-minD(Y)

Ces réductions de domaines aident la recherche de solution en éliminant des
valeurs tout au long de la recherche. 1l y a un colt associé & ce travail de réduction
de domaine. Il est important que ces colts soient inférieurs au cout d’énumération
et vérification de toutes les combinaisons possibles (algorithme générer puis tester),

exploration de tout 'espace de recherche. En pratique, méme pour des problémes

15

de petite taille, les coiits de réduction de domaines sont toujours inférieurs. Par
contre, des mécanismes de propagation trés performants peuvent devenir coliteux
si leur gain est petit par rapport & leur temps d’exécution. Dans ce contexte, il
est important de bien choisir le moment d’utiliser la propagation (Comme nous le

verrons & la section 4.2.4).

2.2.2.2 Evénements de propagation

Les contraintes peuvent étre classées par type selon ['événement de propagation
qui leur est associé. Il est possible de faire la propagation chaque fois qu’une
valeur du domaine est retirée (événement domain), lorsqu’une borne inférieure ou
supérieure change (événement range) ou seulement si le domaine est réduit & une
valeur unique (événement value). Ces événements dont I'occurrence va du plus
fréquent, événement domain, au moins fréquent, événement wvalue, ont leur utilité
suivant le contexte. Par exemple, une contrainte de non égalité X # Y aura
avantage a utiliser I'événement value puisqu’on ne peut pas réduire le domaine de
X avant que Y soit fixé et vice versa. 1l ne sert donc a rien de propager plus souvent
sur ce type de contrainte.

Voici un exemple récapitulatif qui permettra de mettre en évidence les carac-
téristiques propres a la programmation par contraintes. Imaginons un probléme de

trois variables X, Y et Z de domaine{1,2,3,4} impliquées dans trois contraintes,

soit :
e C1: X =Y
e C2: X </

e (3:X+Y =127

L’espace de recherche est de 43 combinaisons, soit la multiplication de tous les

domaines. En utilisant la technique générer puis tester il y a 64 combinaisons a

16

Cl: X=Y

‘ C2: X<Z

V4 C3: X+Y=Z
Domaine X,Y,Z
{1,2,3,4}

X

Figure 2.2: Réseau de contraintes

explorer. En PC, les contraintes sont reliées via les variables qu’elles contraignent
tel qu’illustré sur la figure 2.2.

Nous constatons d’abord qu’il n’y aura pas propagation par la technique de
cohérence de noeuds puisqu’il n'y a aucune contrainte unaire. La contrainte C1
est cohérente d’arc puisqu’il existe pour chaque valeur de X une valeur dans Y
qui satisfait la contrainte et vice-versa. Par contre, la contrainte C'2 ne 'est pas
puisque pour X = 4 il n’y a pas de support dans Z; Z ne pouvant prendre de
valeur pour satisfaire la contrainte C2 avec X = 4. Conséquemment la valeur 4
sera retirée du domaine de X. Comme la contrainte C1 fait partie de la classe
d’événements domain, elle sera réveillée pour propager U'information fournie par la
réduction de domaine de X. La valeur 4 sera alors retirée du domaine de Y par la
technique de cohérence d’arc sur la contrainte C1. La contrainte C3 classée dans
Pévénement range s’éveillera a son tour puisqu’une valeur limite du domaine d'une
variable qu’elle comporte a changé de valeur. On applique alors & la contrainte
C3 la technique de cohérence de borne, ce qui réduit le domaine de Z a {2,3,4},
puisque Z > min D(X) +min D(Y'). La cohérence de borne n’a pas d’autre effet

sur les domaines, les domaines de X et de Y demeurent inchangés a {1,2,3}. 1l

17

est & noter que le Solveur procéde & une certaine optimisation du modele avant de
traiter les contraintes. Pour ce probléme, il aurait éliminé la contrainte X =Y et
remplacé Y par X dans toutes les contraintes. Le résultat étant que C3 devient
une contrainte binaire (Z = 2X) ou la cohérence d’arc est applicable. La valeur
Z = 3 serait retirée du domaine de Z n’ayant pas de support dans X et de méme
pour la valeur X = 3. Les domaines des variables sont donc finalement réduits
a7 ={2,4} et X =Y = {1,2}. 1l ne restera plus qu'a fixer une variable pour

trouver la valeur des deux autres.

2.2.2.3 QOrdre d’affectation des variables et des valeurs

Un autre facteur trés important est 'ordre d’affectation des variables. En fait,
pour un méme modele, un ordre de choix des variables & affecter peut faire en sorte
que le probléme soit résolu en quelques secondes ou en plusieurs heures. L’ordre
de choix des variables & affecter doit se faire selon les principes de la propagation.
Nous cherchons & réduire les domaines le plus rapidement possible et ce, sans se
diriger vers une solution non réalisable.

L’ordre de sélection des variables est important puisqu’il influence la topologie
de 'arbre de recherche. On parlera d’ordre statique lorsque 'ordre de sélection est
fixé a priori. Lorsque 'ordre d’affectation change selon I’état courant de la fouille,
il sera question d’ordre dynamique. Il est préférable d’utiliser 'ordre dynamique
mais en se rappelant qu’il y a un cotit associé a ce choix. Il intervient moins souvent
que les cofits de propagation (a chaque affectation de valeur) puisqu’il ne survient
qu'au changement de variable.

Il existe des heuristiques dynamiques qui suivent le principe d’échec d’abord
(first fail). Il s’agit de commencer par les variables les plus difficiles & affecter. On
veut savoir le plus rapidement possible si on se dirige vers une impasse. Effective-
ment, plus les variables susceptibles de mener a un échec sont fixées tard dans la

recherche, plus elles seront contraintes et plus il sera difficile de trouver une affec-

18

tation correcte. Dans le cas d’échec a ce niveau, toutes les affectations des niveaux
supérieurs seront a reprendre.

L’heuristique d’échec d’abord la plus populaire est celle du plus petit domaine
d’abord (ppdd). Son principe est que moins il y a de valeurs possibles pour une
variable, moins il y a de chances de trouver une affectation pour celle-ci. 11 faut
donc commencer par affecter les variables dont le domaine est plus petit en premier.

Une autre heuristique intéressante est celle du moindre regret. 1l s’agit de fa-
voriser 'affectation de la variable dont 'impact sur la fonction de cotit entre les deux
meilleures affectations est le plus grand. Cette heuristique en est une d’optimisation
plutdt qu'une d’échec d’abord. Effectivement, plus on retarde 'affectation des vari-
ables de grand regret, plus elles risquent un échec lors de son affectation : le cott
de la solution partielle sera fort détérioré puisque la deuxieme meilleure valeur de
son domaine a un impact négatif important. Il est donc intéressant de commencer
par affecter les variables de plus grand regret. Ainsi en cas d’échec et de retour
arriere, la qualité de la solution sera moins détériorée et le regret moindre.

Le choix de l'ordre des valeurs d’affectation des variables a aussi son importance.
Le choix de valeur n’influence pas la topologie de I'arbre de recherche mais seule-
ment 'ordre dans lequel les branches seront explorées. Par contre, un bon choix de
valeur peut faire en sorte qu’on se dirige vers une solution réalisable rapidement, ce
qui permet de couper dans 'arbre de recherche plus rapidement avec I'ajout de la
contrainte de borne supérieure sur la fonction objective pour les problemes CSOP
discutés a la section 2.2.2. Le principe sous-jacent a 'ordre d’attribution de valeur
est d’essayer d’abord de réussir. Les heuristiques qui en découlent s’inspirent sou-
vent de la structure méme du probleme. Il existe quelques heuristiques génériques

pour maximiser les chances de réussite, par exemples choisir d’abord :

e la valeur de plus grand support. Il y aura moins de réduction de domaine, ce

u augmente les chances d’étre réalisable;
q)

19

e la valeur avec le plus grand produit des tailles des domaines de variables
futures. Le principe est le méme soit de conserver un espace de recherche tres

grand pour avoir plus de chance de demeurer réalisable jusqu’a la fin.

e la valeur minimisant la proportion des domaines des variables futures qui
ne seront plus cohérentes. Le but est toujours le méme, obtenir une solu-
tion réalisable. Cette fois le type des contraintes est analysé pour assurer la

cohérence.

Il faut se rappeler que toutes ces heuristiques ont des cofits non négligeables. 1l

est donc important de bien juger de leur apport avant de les utiliser.

2.2.3 Fondements de la recherche locale

Considérons un ensemble fini S. Un probleme d’optimisation combinatoire con-
siste & trouver z,,; € X C S avec I'objectif de minimiser une certaine fonction de

cout:

min{f(z):z€ X, X C S} (2.1)

S, X,z et f sont respectivement P'espace de recherche, I'ensemble des solutions
réalisables, une solution réalisable et la fonction de coit.

Lors de P'utilisation d’une heuristique de recherche locale & descente simple (LS)
nous définissons N(z), 'ensemble des solutions voisines de z. Soit zj la solution
courante a l'itération k, la procédure de recherche commence a partir d’une solution
réalisable z1; a chaque itération k, la fonction de cotit est évaluée pour chaque voisin
z € Vi € N(zj). Lorsqu'une meilleure solution zy1 € Vj est trouvée, la procédure
se poursuit avec xy,1 comme solution courante. Dans le cas contraire, la recherche
se termine dans ce minimum local: il n’y a pas dans le voisinage N(zy) de meilleure
solution que la solution courante xj. Il est & noter que f(zx) peut étre beaucoup

plus grand que 'optimum global du probleme.

20

Cofit
o Ttération
de descente
simple

B Jtération
de recherche
tabou

Optimum local

Optimum global

Solutions

Figure 2.3: Recherche locale a descente simple vs recherche tabou

On appelle cette méthode heuristique, recherche locale a descente simple puisque
la recherche se termine lorsqu’on atteint le premier minimum local. En général, il
existe plusieurs minimums locaux pour une méme fonction de cott. La figure 2.3
représente une fonction de coit qui varie en fonction de la solution courante. La
recherche locale permet donc une descente le long de cette courbe. Lorsque le voisi-
nage de la solution courante ne peut plus améliorer la fonction de cofit, I’heuristique
a atteint un minimum local. Un probleme relié a l'utilisation de cette méthode est
que le cotit de la solution zj peut-étre loin de 'optimum global. En effet, comme on
se contente du premier minimum local rencontré, il est fort probable que 'optimum

global soit dans un autre minimum local tel qu’illustré a la figure 2.3.

2.2.3.1 Meétaheuristiques de recherche

Il existe des mécanismes qui permettent de rechercher au-dela de ce minimum
local et ainsi d’explorer d’autres minimums locaux. On parlera alors de métaheuris-
tiques de recherche (Gendreau, Laporte et Potvin, 1994). Parmi les plus populaires,
nommons la recherche tabou (TS), le recuit simulé (SA), les algorithmes génétiques

(GA) et la recherche & voisinage variable (VNS).

21

Comme dans le cas d’une heuristique LS, SA et TS débutent leur recherche a
partir d’une solution initiale x;; a chaque itération k, la solution courante change de
z), & une solution ;. faisant partie du voisinage N(zy). Par contre, f(zjy1) n'est
pas nécessairement plus petit que f(zy). Nous devons donc faire attention de ne pas
retomber sur z;, a U'itération suivante. Divers mécanismes ont été développés pour
pallier ce probléme. Par exemple TS utilise une liste de mouvements tabous. En TS
(Soriano et Gendreau, 1997), aprés les itérations de descente simple, lorsqu’il n'est
plus possible d’améliorer la solution zy, il est alors permis d’effectuer un mouvement
local qui dégrade le colit de la solution. Le danger est donc de revenir, a I'itération
suivante, sur la solution qu’'on vient de quitter puisqu’elle est nécessairement de
meilleur colit que la solution courante dégradée (figure 2.3, itération 5). Pour
éviter de cycler, TS conserve pendant un certain temps la liste des mouvements
récents, nommée la liste tabou. En SA (Kirkpatrick, 1983), le mécanisme utilisé est
différent. A l'itération k, la solution z est choisie de fagon aléatoire parmi N(zy).

Si f(z) < f(xzy), alors x4y égale & z, sinon

z selon une probabilité py
S
xr selon une probabilité 1 — py,

ol, habituellement, py est une fonction qui décroit avec k et f(z) — f(xk).
Souvent, py, est défini comme exp(—[f(z) — f(zx)]/O), o0t O est nommé la tem-
pérature de 'itération k. Typiquement, ©y décroit & chaque itération k : il y a
refroidissement de la température. La probabilité de choisir une solution de coiit
plus élevé décroit donc dans le temps ou si I'on préfere avec le refroidissement. Les
cycles sont évités puisque SA choisit ses mouvements de fagon aléatoire.

GA (Holland, 1975) évalue, a chaque étape, un ensemble de solutions nommé
population; chaque population provient des populations précédentes dont on a con-
servé les meilleurs éléments et rejeté les pires. GA utilise des populations de solu-

tions encodées comme des chromosomes, généralement avec une chaine de carac-

22

teres. Considérons une population X* = {z¥ ... 2%}, dont on a défini une fonction
d’aptitude f. L’heuristique cherche & optimiser cette fonction. A Ditération k, X*
est transformé en X**! en produisant de nouvelles solutions (descendants) & par-
tir des vieilles (parents), on remplace ces parents par leurs descendants. Cela est
accompli en conservant les caractéristiques des bonnes solutions de génération en
génération, le processus de sélection naturel se fait donc via les bonnes solutions. De
petites permutations aléatoires sont introduites dans les descendants pour assurer
une diversité des solutions d’une population.

Enfin, VNS (Hansen et Mladenovic, 2001) explore plusieurs structures de voisi-
nage Ny (t = 1, .., fmas) avec Ny(z) Pensemble des solutions du ™ voisinage de z.
Par exemple, la recherche locale a descente simple utilise seulement une structure
de voisinage (tmee = 1). VNS explore un & un les voisinages définis. Pour le voisi-
nage t, 'heuristique choisit d’abord, aléatoirement, une solution voisine ¢/ parmi
Ni(zi). On effectue la recherche locale & descente simple sur ce voisinage en util-
isant la solution 2’ comme solution initiale. Lorsqu’on atteint un minimum local,
si la solution z; est améliorée, on reprend la recherche, t = 1, avec cette nouvelle
solution a litération k + 1. Sinon, on continue au voisinage suivant, £ = ¢t + 1,
sur la solution z,. Plusieurs variantes sont possibles : par exemple, effectuer un
changement de voisinage durant la phase de descente de P’algorithme (VND). Ainsi,
a chaque itération de descente on explore les voisinages jusqu'a ce qu'il y en ait un

qui améliore le cotit de la solution.

2.2.3.2 Considérations sur la solution initiale et le voisinage

Idéalement la solution initiale ne devrait pas avoir d’effet sur la qualité de la
solution finale. L’heuristique doit étre assez robuste pour obtenir le méme résultat
final indépendamment de la solution initiale utilisée. Par contre, en pratique, étant
donné que les espaces de recherche sont trés grands, il arrive que ce ne soit pas le

cas. Une approche pour résoudre ce probléme est de lancer la recherche & partir

23

de plusieurs solutions initiales. On nomme cette technique la multi-relance (multi-
start).

La solution initiale peut avoir d’autres impacts sur la qualité des heuristiques.
Par exemple, pour la recherche locale a descente simple, une solution initiale tres
bonne peut étre dommageable si elle nous mene dans une région de ’espace de
recherche ou il est difficile d’améliorer la solution. Dans ce cas, il est mieux d’avoir
une solution initiale de moins bonne qualité et de laisser I'heuristique locale diriger
la recherche vers une meilleure région de minimum local. Il est & noter qu’il y a
autant de directions de descente possibles que de voisins explorés qui améliorent le
cotit de la solution & chaque itération.

Ce critere de voisinage est tres important dans le cas d’une recherche & descente
simple puisqu'il n’est pas possible de sortir d’'un minimum local. Nous devons donc
nous assurer que la descente n’est pas trop rapide pour que la recherche locale ne
passe pas outre la direction de recherche qui nous conduirait & une bonne solution.
Dans le cas d'une descente simple, il est souvent avantageux d’explorer un grand
voisinage, ce qui aide a de meilleures décisions dans le choix de la direction de
descente. Dans le cas des métaheuristiques, la philosophie de recherche est un peu
différente. Les métaheuristiques recherchent aussi de bonnes directions de descente.
Par contre, elles acceptent plus facilement de se commettre puisqu’il est possible de
sortir d’un minimum local. La recherche est moins exhaustive a chaque itération
mais le nombre d’itérations est plus grand. Ces techniques sont particuliérement
efficaces lorsque le temps d’évaluation du coiit et de la vérification de la réalisibilité

d’une solution est court. La strafégie consiste a visiter le plus de minimums locaux

possibles.

24

2.3 Revue de littérature

Plusieurs chercheurs ont proposé des heuristiques pour résoudre le probleme
dans son ensemble ou pour résoudre des parties de celui-ci. Nous décrirons dans
cette section les méthodologies de recherche qui comportent des éléments de réso-

lution du probléme de conception topologique de réseau cellulaire.

2.3.1 Méthodes de résolution du probléme global

Chamberland et Pierre (2002) ont étudié un probleme comme celui défini dans
ce mémoire. IIs ont résolu le probleme avec un modele de programmation mathé-
matique combiné & une heuristique de recherche tabou (Glover et Laguna, 1997).
Cox et Sanchez (2002) ont quant & eux considéré un probleme d’affectation et de
localisation défini de facon 1égerement différente : la localisation n’est effectuée
que pour les sites de BSC mais ils ajoutent des contraintes de fiabilité sur certains
éléments. D’autres auteurs ont résolu le probleme de fagon exacte dont Ahuja,
Magnanti et Orlin (2000). Leurs résultats serviront de base de comparaison pour

les réseaux de petite taille.

2.3.1.1 Méthode de recherche tabou

Chamberland et Pierre (2002) ont utilisé une approche tabou. Cette méthode
est trés importante pour notre recherche, notamment pour la comparaison des
résultats: nous avons utilisé les jeux de données de Chamberland et Pierre pour
évaluer notre heuristique. L’algorithme débute par la recherche d’une solution
initiale, solution qui sera améliorée a 'aide d’une recherche tabou. Une premiere
heuristique commence par fixer les types des BSC et des MSC & installer aux sites
potentiels. Apres avoir déterminé les types des BSC et des MSC, les affectations
BTS-BSC et BSC-MSC deviennent plus faciles et ce, tout comme le calcul du

cout associé au réseau. La difficulté est de faire un bon choix de types de BSC

25

et de MSC & installer aux sites. Afin de calculer le cotit d’une solution selon les
types choisis, Chamberland et Pierre ont décomposé le probléme en deux sous-
probleémes. Le premier consiste & affecter les BTS aux BSC tout en respectant les
contraintes de degré et de capacité des BSC. Le deuxieme sous-probleme consiste
a affecter les BSC aux MSC tout en respectant les contraintes de degré et de
capacité des MSC. Comme ces deux sous-problemes sont NP-difficiles : ils réferent
au probleme NP-difficile notoire de sac 4 dos. Chamberland et Pierre ont proposé
deux heuristiques correspondant aux deux sous-problémes pour trouver de bonnes
solutions rapidement. Ces heuristiques sont basées sur I'algorithme de résolution
de probleme d’affectation linéaire de Jonker et Volgenant (1987).

Avant de procéder a la description des mouvements de la recherche tabou, nous
devons décrire la recherche de la solution initiale. Soit une étoile BTS un sous-
réseau qui inclut un BSC (le centre de P’étoile) et les BTS qui lui sont reliés. La
grandeur et le colit d'une étoile BTS correspondent respectivement au nombre de
BTS et a la somme des coits des liens BTS-BSC de 'étoile BTS. De méme, une
étoile BSC est définie comme un sous-réseau de BSC connectés & un MSC (centre
de l'étoile). La grandeur et le cotit des étoiles BSC correspondent respectivement
au nombre de BSC et a la somme des cotits des liens BSC-MSC de I'étoile BSC.

L’heuristique initiale évalue des solutions pour des étoiles BTS de grandeur p
allant de 1 au nombre maximal de BTS pouvant étre connectés a un BSC. Pour
chaque valeur de p considérée, de nouveaux sites de BSC sont choisis en comparant
le coiit des étoiles BTS de grandeur p et ce, & "aide d’'une méthode vorace. Avec
la méme méthode, les MSC sont choisis en utilisant le coit des étoiles BSC. Une
fois les sites de BSC et de MSC choisis, il suffit d’utiliser les deux heuristiques
d’affectation BTS-BSC et BSC-MSC afin de déterminer la topologie et le cotit
du réseau. L’heuristique initiale termine lorsque toutes les valeurs de p ont été
explorées. De toutes ces explorations, la meilleure solution est choisie.

La recherche tabou consiste a changer I'état de la solution courante & chaque

26

itération de l'algorithme. L’heuristique cherche a améliorer une certaine fonction
de cotit associée au probléeme. A chaque itération, il s’agit de modifier I'affectation
d’un certain nombre de variables de la solution courante (mouvement local) et
d’analyser la qualité des solutions ainsi obtenues. Ainsi, 'heuristique décide du
meilleur mouvement possible pour le choix des sites de BSC et de MSC. Pour ce
faire, on utilise une liste tabou de mouvements et un critére d’aspiration. Le site
choisi demeure tabou pour un nombre déterminé d’itérations a moins que le critére
d’aspiration ne révele que ce site nous menerait & une meilleure solution.
Chamberland et Pierre ont calculé une borne inférieure pour un modele relaxé
des contraintes de conservation de flot. L’heuristique tabou est trés rapide (la
solution finale est obtenue en quelques minutes) et les résultats se comparent bien
a la borne inférieure. Par contre, les mouvements possibles de 'heuristique sont
limités. L’heuristique visite un espace de recherche petit et par conséquent la
recherche de solution d’optimum local est rapide mais celle-ci peut difficilement
étre améliorée. De plus, il est plus difficile de se rapprocher de la borne inférieure
pour les jeux de données dont le trafic est élevé (réseau de grande taille) puisque
la conservation de flot est négligée. Nous chercherons a améliorer les solutions
obtenues par Chamberland et Pierre méme si cela va au détriment de U'efficacité en
temps de calcul. Nous chercherons aussi a améliorer le cotlit des solutions pour les

réseaux de grande taille qui sont les moins bien optimisées avec la recherche tabou.

2.3.1.2 Méthode de recherche tabou combinée au probléme de sac 2

dos

Cox et Sanchez (2000) ont utilisé une heuristique taboue pour un probleme
défini de facon légerement différente. Ils étudient Paffectation entre les cellules et
les commutateurs (DS1, DS3) et la localisation de ces commutateurs. Ils ajoutent
des contraintes de fiabilité de connection dans le réseau. Les commutateurs doivent

tous étre connectés & au moins deux autres commutateurs pour assurer la fiabilité.

27

Par contre, le probléme ainsi formulé ne considere pas l'affectation et la localisation
des MSC. Malgré toutes ces différences, le coeur du probleme reste le méme soit
Vaffectation et la localisation de commutateurs. L’heuristique tabou utilise les sous-
problémes de sac & dos et de conservation de flot pour calculer le cofit du voisinage
exploré a chaque itération.

Pour les petits réseaux, les résultats obtenus en quelques secondes sont les
mémes que les solutions optimales obtenues en plusieurs heures avec le modele en
nombre entier de Ahuja, Magnanti et Orlin (2000). Pour des réseaux de moyenne
taille (150 BTS et 25 BSC), les résultats sont obtenus en quelques minutes. Une
limitation de ce modele vient du fait qu’il n’optimise pas la localisation et 'emplace-
ment des MSC. De plus, les coits obtenus avec ou sans les contraintes de fiabilité
sont environ les mémes. On peut en déduire que le nombre de liens total dans le
réseau n’a pas augmenté, seul le nombre d’affectations a augmenté. Cette conclu-
sion est intéressante puisqu’elle confirme que négliger les contraintes de fiabilité a

un impact faible sur la fonction de coft.

2.3.2 Méthodes de résolution du probléeme d’affectation

La majorité des chercheurs se sont concentrés sur des heuristiques pour résoudre
le probleme d’affectation de cellules aux commutateurs qui est une partie de notre
probléeme. Etant donné que la premiére étape de notre méthode est de résoudre
ce sous-probleme, ces recherches deviennent d’autant plus importantes. Les cofits
d’affectation de ces heuristiques correspondent aux cotlts de liaison additionnés
aux couts de reléves complexes, contrairement a la présente étude ol les cotts
correspondent aux colits de liaisons ajoutés aux coits des équipements. Dans la
littérature ce probleme est habituellement formulé a 'aide de modeles en nombre
entier. Toutefois, du a la complexité du probléme, la recherche de solution se fait a
I’aide de méthodes heuristiques lorsque le nombre de cellules et de commutateurs

augmentent significativement.

28

2.3.2.1 Meéthodes de recherche locale sur un grand voisinage

Les premiers a s’attarder au probleme d’affectation furent Merchant et Sen-
gupta (1994). Les auteurs ont utilisé une approche vorace qui tente autant que
possible d’éviter les minimums locaux. La méthode consiste & améliorer une solu-
tion initiale en effectuant une succession de transformations qui change I'affectation
d’une cellule d’un commutateur & un autre. A chaque itération, la méthode visite
plusieurs configurations avant de prendre la décision pour la transformation de la
solution courante. Nous avons utilisé un mécanisme similaire pour notre recherche
mais 'exploration des configurations se fait en programmation par contraintes. Le
critere de recherche a chaque itération est différent lui aussi puisque, pour notre
probléme, il faut considérer deux niveaux d’affectations BTS-BSC et BSC-MSC.

Pour de petits réseaux, les résultats obtenus par cette méthode se comparent,
avec ceux obtenus par une méthode de programmation en nombre entier. De plus,
les temps de calcul ont significativement été réduits. Par contre, les transforma-
tions utilisées n’exploitent qu’un nombre limité de possibilités, ce qui rend difficile
d’éviter les minimums locaux. Les transformations dépendent de la solution initiale
et ne menent pas nécessairement & une solution finale se rapprochant de la solution
optimale pour les réseaux de grande taille. Merchant et Sengupta furent les pre-
miers a utiliser une heuristique locale pour résoudre ce type de probleme. Ce qui
inspira plusieurs chercheurs a concevoir des heuristiques qui évitent d’étre piégées
dans les minimums locaux : recherche tabou, recuit simulé, voisinage variable,

algorithme génétique ou d’autres heuristiques de recherche locale.

2.3.2.2 Méthode de recherche tabou a voisinage double

Une autre heuristique intéressante d’affectation des cellules aux commutateurs
est celle de André, Pesant et Pierre (2002). Cette heuristique utilise un modele de

programmation par contraintes pour trouver une solution initiale et une heuristique

29

tabou & deux mouvements pour améliorer cette solution. Cette heuristique a permis
de réduire les temps de recherche par un facteur important. Un élément intéressant
de cette recherche est le double mouvement de 'heuristique tabou. Le principe de
base de cette heuristique est que la recherche tabou se fait sur un voisinage variable.
Ce double mouvement permet d’éviter les minimums locaux par deux mécanismes
distincts. Lorsque le premier ne permet plus d’éviter un minimum, 'heuristique
utilise le deuxieme mouvement afin de continuer la recherche. La difficulté est de
trouver ces deux mouvements complémentaires. Le deuxieme aspect intéressant est
la recherche de la solution initiale en programmation par contraintes. L’affectation
initiale est trouvée en un temps court et la solution est d’excellente qualité. La
qualité de la solution initiale est un facteur important en recherche locale afin
d’améliorer Pefficacité de 'heuristique. Nous retiendrons cet aspect d’affectation
rapide et la qualité de la solution fournie par la programmation par contraintes lors
de la conception de 'heuristique proposée dans ce mémoire.

Les auteurs ont comparé leur heuristique & d’autres approches bien connues
de la litérature. L’heuristique proposée par André Pesant et Pierre a amélioré
les meilleures solutions par un facteur d’environ 1%. De plus, Defficacité de la
recherche de solution a de beaucoup été améliorée, notamment grace a la qualité

de la solution initiale fournit par le modele de PC.

2.3.2.3 Méthode heuristique basée sur le regoupement de cellules

Saha, Mukherjee et Bhattacharya (2000) se sont fortement inspirés de Merchant
et Sengupta. Leur heuristique est basée sur la formation par étape de regroupement
de cellules. La cellule ol le commutateur est installé est nommée la racine du
regroupement. L’heuristique ajoute des cellules aux regroupements pour minimiser
le cotit global d’affectation.

Les résultats obtenus par cette méthode se comparent bien a la solution opti-

male pour les exemplaires de petite taille. Dans 95% des cas la solution trouvée

30

est optimale et pour les 5% restant, celles-ci sont & moins de 3% de l'optimum.
De plus, 'heuristique améliore substantiellement les solutions obtenues par Mer-
chant et Sengupta mais elle perd rapidement de son efficacité lorsque la taille des

exemplaires augmente.

2.3.2.4 Meéthode de recherche locale et de recuit simnulé

L’heuristique proposée par Der-Rong et Tseng (2002) s’applique plus parti-
culidrement aux réseaux sans fil ATM (Asynchronous Tranfer Mode). Les cellules
sont affectées aux commutateurs d’un réseau ATM dont la localisation est fixe et
connue.

Les auteurs ont développé deux approches différentes pour résoudre le probleme.
Ils proposent un algorithme heuristique et un algorithme basé sur une heuristique
de recuit simulé. La premiere approche est divisée en deux phases. Une premiere
qui recherche une solution initiale pour I'affectation de cellules aux commutateurs.
Une deuxiéme phase pour améliorer la solution initiale en exécutant une série de
permutations pour lesquelles deux cellules sont affectées a répétition a un commu-
tateur différent.

L’algorithme de recuit simulé utilise trois différentes transformations pour passer
d’une solution réalisable a une autre a chaque itération. Le premier type de trans-
formation choisit aléatoirement deux cellules connectées & des commutateurs dif-
férents et leur affectation respective est interchangée. Le deuxieme type choisit
aléatoirement deux commutateurs et réaffecte les cellules du commutateur 1 au
commutateur 2 et vice-versa. Finalement, le troisitme type de transformation
change l'affectation de plusieurs cellules connectées a différents commutateurs.

Les résultats obtenus par ces deux approches se comparent bien avec ceux
obtenus par les heuristiques plus conventionnelles. Par contre, ces deux heuris-
tiques n’évitent pas tres bien les minimums locaux. En outre, pour algorithme de

recuit simulé il est tres difficile d’ajuster les parametres pour toutes les transfor-

31

mations proposées.

2.3.3 Méthodes de résolution du probléme de localisation

Plusieurs chercheurs ont aussi étudié le probleme de localisation des commu-
tateurs. Ces heuristiques cherchent & minimiser le colit de liaison des cellules aux
commutateurs en déterminant la localisation des commutateurs dans le réseau.
Nous ne présentons qu’une seule recherche sur le sujet puisque pour notre prob-
leme les sites potentiels pour installer les commutateurs sont choisis parmi un en-
semnble restreint de possibilités. Par contre, pour déterminer 'ensemble des sites
potentiels ces recherches sont tres intéressantes. En réalité, les opérateurs de réseau
cellulaire sont limités dans le choix des sites potentiels puisqu’il est habituellement
plus économique d’installer un commutateur dans un endroit appartenant déja aux
propriétaires. Par conséquent, 'ensemble des sites potentiels peut étre construit a

partir des localisations déja disponibles.

2.3.3.1 Méthode exacte de programmation en nombre entier

Sohn et Park (1998) ont proposé un modele en nombre entier pour le probléme
de localisation de p commutateurs. Le nombre de commutateurs et le trafic entre
chaque paire de cellules sont donnés. Le probleme consiste a rechercher la locali-
sation des p commutateurs et d’assigner les cellules en minimisant le cofit total du
réseau.

Deux cas se présentent, celui ot chaque cellule peut étre connectée & plusieurs
commutateurs et celui ou chaque cellule peut étre connectée a un seul commuta-
teur; respectivement le probleme d’affectation multiple et le probleme d’affectation
simple de p commutateurs. Nous ne discuterons que du probleme d’affectation
simple puisqu’il correspond & Paffectation utilisée lors de I'implantation de notre

heuristique.

32

Pour le probleme d’affectation simple, le modele proposé par Sohn et Park ré-
duit de plus de la moitié le nombre de contraintes et de variables par rapport a la
formulation de Skorin-Karpov et al. (1998). Skorin-Karpov et al. avaient réduit
le nombre de contraintes & l'ordre de grandeur de 2n?®. La vitesse de résolution a
grandement profité de cette amélioration lors de la recherche de la solution opti-
male, seulement 20 des 74000 instances sont des solutions non entieres. Pour ces
instances, la méthode de branch and bound fournit les solutions optimales rapi-
dement. Cependant, comme toute méthode de recherche de solution exacte pour
les problemes NP-difficiles, cette méthode ne s’applique qu’aux instances de petite

taille.

33

CHAPITRE 3

METHODOLOGIE

Dans ce chapitre, nous proposons un modéle de programmation par contraintes
(PC) pour résoudre le probleme de conception topologique de réseau cellulaire.
Nous continuerons par la description de Pheuristique d’affectation de variables du
modele de PC. Nous introduirons le concept de sonde qui nous permet de combiner
la recherche locale au modele, pour terminer par la description du voisinage exploré

par la recherche locale, ainsi que I'heuristique de recherche de solution initiale.

3.1 Méthode exacte : Modele de programmation par contraintes

Ce choix de modlisation se justifie par le fait que plusieurs éléments de la prob-
lématique se transposent bien en programmation par contraintes. En effet, pour
résoudre un probleme de fagon efficace en PC, il est primordial de le décrire avec
des variables & domaines finis. Ainsi, lors de la résolution du probléme on profitera
des mécanismes de propagation pour réduire les domaines des variables tout au
long de la recherche (Marriott et Stuckey, 1998). Par exemple, supposons qu’apres
affectation du BTS#1 au BSC #1 il ne reste plus de capacité au BSC #1. Alors
toutes les variables d’affectation BTS ne pourront plus prendre la valeur BSC #1,
par conséquent, il faut enlever de leur domaine la valeur BSC #1. Les mécanismes
de propagation contribuent & résoudre le probléme sans explorer toutes les com-
binaisons en éliminant, lors de la recherche, des valeurs du domaine des variables.
Ainsi, il n’est pas nécessaire de parcourir toutes les branches de l'arbre de recherche

pour trouver 'optimum, les solutions non réalisables ayant été éliminées.

34

3.1.1 Notation
3.1.1.1 Les ensembles

D’abord définissons / comme 'ensemble des BTS (ol «; le nombre de circuits
du BTS 7 et 7; le nombre de liens partant du BTS 4); J, 'ensemble des sites de
BSC; et K Pensemble des sites MSC. Définissons L comme 'ensemble des types de
lien (ot G, le nombre de circuit du lien £); et S, Vensemble des types de BSC (ou
a, la capacité en circuit du BSC de type s, 5! le nombre d’interfaces BTS du BSC
de type s, n7 le nombre d’interfaces MSC du BSC de type s). Enfin, définissons T
comme 'ensemble des types de MSC (ol o; la capacité en circuit du MSC ¢, 7 le
nombre d’interfaces BSC du MSC de type t). Il est & noter que tous ces ensembles

sont disjoints.

3.1.1.2 Les demandes en communication

A V'aide des études de demandes de communication entre les cellules, les opéra-
teurs établissent la matrice de trafic entre chaque BTS et le réseau public et entre
les BTS. On nommera : g;; le volume d’appels par unité de temps (erlang) entre
le BTS 4 et le BTS 7/, g; p le volume d’appels par unité de temps (erlang) entre le
BTS i et le réseau public, gp; le volume d’appels par unité de temps (erlang) entre

le réseau public et le BTS 4.

3.1.1.3 Les coiits

D’abord a; ; est le colt des liens et des interfaces (incluant le colt d’installation)
du BTS ¢ au BSC j; by, le cot des liens et des interfaces (incluant le coiit
d’installation) reliant le site BSC j & un MSC pour des liens de type £. c; est
le colit du BSC de type s installé au site j; et d, le cout du MSC de type ¢ installé

au site j.

3.1.1.4 Les variables de topologie

Nous utilisons cing types de variable pour décrire I'ensemble du probleme de

[7] BTS, |J| sites potentiels de BSC et | K| sites potentiels de MSC:
e v; : Le site BSC auquel le BTS i est affecté
e w, : Le site MSC auquel le site BSC j est affecté

; + Le type du BSC installé au site j

e . : Le type du MSC installé au site k&

@

zj1 Nombre de liens de type [partant du BSC j

3.1.1.5 Les variables de conservation de flot

Ces contraintes fixent la topologie du réseau. Nous introduisons de nouvelles
variables afin de vérifier que les capacités des liens et des commutateurs sont suff-

isantes pour assurer la conservation du flot dans le réseau :

e ¢, : le volume d’appels par unité de temps (erlang) du BTS i au BSC auquel

il est affecté

e t; : le volume d’appels par unité de temps (erlang) du BSC j au MSC auquel

il est affecté

3.1.2 Les cotits

La fonction de colit est composée des cotits des liens et des interfaces et des

cotits des BSC et des MSC. Ces cotits incluent les coiits d’installation.

36

Le cofit des liens et des interfaces, noté Cp(v,w, 2}, est fourni par I'équation suiv-

ante:

CL(’U,’(U,Z) = Zaivi + Zzzjlbﬁwj- (31)

iel 7eJ felL

Le colt des BSC et des MSC, Cpga(z,y), est fourni par I'équation suivante:

Crem(z,y) = ¢’ +) dit. (3.2)
Ged keK

3.1.3 Le modele topologique

Les variables choisies satisfont déja quatre contraintes du design de réseau cel-
lulaire énoncées a la section 1.2 : les contraintes d’unicité et d’affectation (C1,C2,
C9 et C10). Par exemple, la variable v; garantit que le BTS ¢ ne pourra étre affecté
qu’a un seul BSC parmi son domaine.

Le modele de programmation par contraintes pour la conception topologique

de réseau cellulaire est formulé comme suit.

min Cp(v,w,z) + Cpgm(z,y) (3.3)

sujet aux contraintes :

Contraintes de capacité des BSC (interface BTS)

D (wi=gm) <m, (jeJ) (3.4)

iel

oll v; = j est une expression logique 0-1 Contraintes de capacité des BSC (capacité BSC)
> (v = J)ew) < oy (jeJ) (3.5)
el

Contraintes de capacité des BSC (interface MSC)

37
Z 2jg < ngj (jeJ) (3.6)
LeL
Contraintes de capacité des MSC (interface BSC)
S ((wi=k)> z6) < niv (keK) (3.7)
jed fel
Contraintes de capacité des MSC (capacité MSC)
D ((wj=Fk)Y zeB) oy (keK) (3.8)
jed Lel

Contraintes de capacité liens BTS-BSC

ti <o (iel) (3.9)
t; < Z zj e (FeJ) (3.10)
Lel,

Les contraintes de conservation de flot

ti= (=50 ((v#NGio+ i)+ (vi=5)ap+gr)) () (3.11)

iel oel el
ti=> (Gio+9iP)+ Y Goi+ gpi (iel) (3.12)
oel oel

Domaine des variables

vieJ (iel), wjeK (jeJ), x;eS (jeJ), yreT (keK), Z; N (jeJ, beL) (3.13)

La fonction de cotit (3.3) représente donc le cotit total du réseau. Ainsi, la contrainte
(3.4) spécifie que le nombre des liens BTS-BSC connectés au site BSC j doit étre in-
férieur au nombre maximum d'interfaces BTS du BSC installé a ce site. La contrainte
(3.5) spécifie que le nombre de communications provenant des BTS connectés au site
BSC j doit étre inférieur a la capacité du commutateur installé & ce site. La contrainte
(3.6) spécifie que le nombre des liens BSC-MSC connectés au site BSC j doit étre in-
férieur au nombre maximum d’interfaces MSC installées & ce site. La contrainte (3.7)
spécifie que le nombre des liens BSC-MSC connectés au site MSC k doit étre inférieur

au nombre maximum d’interfaces BSC installées a ce site. La contrainte (3.8) spécifie

38

que le nombre de communications provenant des BSC connectés au site MSC k doit étre
inférieur A la capacité du commutateur installé & ce site. Les contraintes (3.9) et (3.10)
sont respectivement les contraintes de capacité des liens BTS-BSC et BSC-MSC. Enfin,

les contraintes (3.12) et (3.13) assurent la conservation de flot dans le réseau.

3.2 Meéthode heuristique : Recherche Locale

Comme nous Pavons mentionné au premier chapitre, les heuristiques sont des algo-
rithmes efficaces utilisées pour résoudre des probléemes difficiles. Elles ont comme objectif
de trouver, en un temps raisonnable, une solution de bonne qualité sans toutefois garantir
que celle-ci soit la solution optimale. Les heuristiques de recherche locale ont fait leur
apparition au début des années soixante, elles s’appliquent aux problémes d’optimisation
combinatoire tel que celui du présent mémoire. Elles ont, entre autres, démontré leur
efficacité lors de la résolution de problemes difficiles classiques tels que ceux du commis
voyageur et du coloriage de graphes (Reeves, 1993).

La méthode choisie pour résoudre le probleme de conception topologique de réseau
cellulaire est une heuristique hybride combinant la recherche locale et la programmation
par contraintes. Avant de décrire la recherche locale nous devons tout d’abord analyser

ce qui est résolu avec les heuristiques du modele de programmation par contraintes.

3.2.1 Stratégies de recherche du modele de PC

Nous avons mentionné au chapitre précédent que l'ordre d’affectation de variables
et de valeurs constituait les heuristiques de recherche du modéle de programmation par
contraintes. L’objectif recherché de ces heuristiques est de fournir une bonne estima-
tion du colit pour un réseau qui utilise un sous-ensemble de sites de BSC donné. Nous
verrons qu’en séparant le modeéle en deux sous-modéles et qu’en utilisant les stratégies
d’affectation adéquates, le modele de PC fournit une bonne estimation du colit. Nous
séparons le modele proposé initialement en deux sous-modeles pour éviter de propager
sur la variable t; lors de I'affectation de la variable z;. Cette propagation est cotiteuse

en temps et ne fournit pas d’information supplémentaire. Nous en discuterons plus en

39

ycl

'
Modele 4

-Stratégie 1
-Stratégie 2

2 X

v
Mode¢le B
-Stratégie 3 >
-Stratégie 4)

Vi | l ke l Yo} Z
v v

Figure 3.1: Modéles de programmation par contraintes

détail & la section 4.2.4.

Les contraintes du modele sont conservées mais nous avons séparé celles relides a
Paffectation BTS-BSC (modele A) de celles reliées a V'affectation des sites BSC-MSC
(modéle B). Le modeéle A regoit en parameétre un sous-ensemble .J' de sites de BSC
qui seront utilisés pour constituer la solution (figure 3.1). Le modéle A commence par
Paffectation BT'S-BSC (v;) : puisqu’elle détermine environ 80% du cofit du réseau, il est
justifié de commencer par cette étape. Le choix du type & installer & chacun des sites
de BSC (z;) est étroitement lié & Paffectation BTS-BSC, cette étape fera donc partie du
modele A.

Le modele B recoit en parametre les résultats du modele A (figure 3.1) et détermine
les affectations BSC-MSC (w;), ainsi que le type & installer & chacun des sites de MSC
(yx) et finalement le nombre de liens BSC-MSC (z; ;) de chacun des types.

3.2.1.1 Modele A : affectation BTS-BSC

Les contraintes (3.4) et (3.5) sont utilisées dans ce modele, le colit & minimiser est

composé du coiit des liens BTS-BSC et du cotlit d’installation des BSC aux sites choisis.

40

L’heuristique d’affectation de variables commence par affecter les BTS aux sites de BSC
(voir stratégie 1). On essaie d’abord d’affecter chacun des BTS au site de BSC le plus
prés pour minimiser les coflits des liens. Il est possible qu'un BSC n'ait pas assez de
capacité pour recevoir la demande de tous les BTS qui aimerait s’y connecter. Dans ce
cas, les derniers BTS & étre affectés prendront la valeur du deuxieéme site de BSC le plus
prés. En ordonnant les variables v; en ordre décroissant de demande, on favorise les BTS
les plus coliteux en premier, ceux qui ont plus de liens (7;). 1l est possible que quelques
réaffectations BTS-BSC améliorent le coiit de la solution mais nous verrons un peu plus

loin que ce gain est petit.

Stratégie 1 : Affectation des BTS aux sites BSC

fOTa'”iEI ordered by decreasing 1;
tryallj&] ordered by increasing d; ;
(e _]

Cette étape complétée, nous pouvons déterminer les types a installer aux sites
de BSC, ceux de moindre coit respectant les demandes des BTS (voir stratégie 2).
En commencant par les types de moindre cott, la premieére solution qui satisfait
toutes les contraintes est celle de plus faible cofit pour les affectations BTS-BSC
déterminées par la stratégie 1. En effet, ces affectations sont indépendantes les unes
des autres. Nous pouvons donc installer, & chaque site de BSC, le plus petit type
qui satisfait les demandes des BTS connectés sans égard & ce qui sera installé aux
autres sites. On arréte donc la recherche aprés 'obtention de la premiere solution

(first solution).

Stratégie 2 : Affectation des types auz sites BSC

firstSolution(1)
foralles

tryallsss ordered by increasing cout,
T =8

41
3.2.1.2 Modele B : affectation BSC-MSC

Le modele B est sujet a 'ensemble des contraintes et a la fonction de coiit définis
dans le modele de la section 3.1.3. 1l est a noter que les variables v; et z; sont déja
fixées par le modele A. Dans le modele B, la stratégie d’affectation commence par
déterminer le type a installer a chacun des sites de MSC. L’objectif est de trouver
un sous-ensemble de sites de MSC qui minimisera le coiit des liens BSC-MSC. On
classe les variables y. en ordre décroissant de distance avec I'ensemble des sites
de BSC (voir stratégie 3). On commence par affecter les sites de MSC les plus
loins de plusieurs sites de BSC. Etant donné que le type de moindre colt est le
type NULL (pas de BSC installé & ce site), les sites les plus loin recevront cette
affectation de valeur. Les sites les plus prés de plusieurs BSC seront affectés en
dernier et auront comme affectation le plus petit type qui satisfait les demandes
des BSC. Nous voulons ainsi favoriser les sites de MSC qui minimisent le coit de
plusieurs liens BSC-MSC. On commence par installer & chaque site de MSC le type
de moindre colit pour que la premiére solution trouvée soit celle de moindre cofit.

Stratégie 3 : Affectation des types aux sites MSC

forallkeK ordered by decreasing Zje.] d; 1

t’f'yallteT ordered by increasing couty
Y=t

En déterminant le nombre de liens de chaque type entre les sites de BSC et
les sites de MSC, nous obtiendrons également les affectations BSC-MSC. En effet,
les mécanismes de propagation réduiront les domaines représentant les affectations
BSC-MSC & une seule valeur puisqu’il ne pourra y avoir d’affectation aux endroits
ou il n'y pas de liens. On essaie d’abord de ne pas installer de lien entre cha-
cun des sites (voir stratégie 4). Lorsqu’il y a insatisfaction de la contrainte de
flot, on ajoute un lien de moindre cotit. Pour les jeux de données considérés, on
n’utilisera pas plus de deux liens de moindre coiut. En effet, les deux types de

lien, DS1 et DS3, provenant de nos jeux de données ont respectivement des cofits

42

d’installation de 2000%/km et de 40003/km, des colits d’interfaces de 1000% et de
50003 et des capacités de 96 circuits et de 2688 circuits. On limite les affecta-
tions possibles pour les DS1 & deux puisqu’il est plus cher d’installer trois DS1
(60008 + 30008 /km)qu’unDS3(40008 + 50008/km) pour plus d’un kilométre. De
plus, la capacité de trois DS1 est de beaucoup inférieure a celle d’un DS3. 1l est
alors plus avantageux d’utiliser des DS3 lorsque le nombre de liens requis dépasse
deux DS1. C’est pourquoi nous introduisons maz,; qui spécifie le nombre maximum
de liens pour chacun des types. La premiere solution qui satisfait les contraintes est
celle de moindre cofit puisqu’on commence par les liens de moindre cout. En effet,
les types a installer sont indépendants entre eux. 1l suffit de connaitre les demandes
des BSC pour en déduire le plus petit type & installer. Cette fois, contrairement &
la stratégie 2, on ne peut pas spécifier d’arréter la recherche a la premiere solution
trouvée puisqu’il est possible qu’il n’y en ait pas étant donné les affectations des
stratégies précédentes. On utilise alors une limite de temps obtenue par expérimen-
tation (0.15 sec.). Ce temps a été ajusté pour permettre de trouver une premiere

solution, s’il y en a une, méme pour les plus gros réseaux.

Stratégie 4 : Affectation du nombre de liens de chaque type entre les BSC-MSC

timeLimit(0.15)
foralles

tryalléeL ordered by increasing couty

tryallnomb’re €0..max,
2L ¢ = nombre

On se rappellera que 'objectif recherché de ces heuristiques est de fournir une
bonne estimation du cotlit d’une solution pour un sous-ensemble de site de BSC.

Dans le modele A, seule I'affectation BTS-BSC n’est pas optimale. Ce manque
d’optimalité est di au fait que ce ne sont pas tous les BTS qui peuvent étre affectés
au site de BSC de leur choix, faute de capacité & ce site de BSC. 1l est donc
possible qu’en enlevant les derniers BTS affectés & un site de BSC pour en réaffecter

d’autres, nous améliorions le cout global d’affectation BTS-BSC. C’est & ce niveau

& .

que réside notre plus grande incertitude sur la qualité de la solution trouvée par
le modele A. Par contre, pour des réseaux réels, les BTS et les sites de BSC
sont géographiquement bien répartis et donc ils ne sont pas tous au méme endroit.
Dans ce contexte, il est possible qu’on dépasse la capacité d’un site de BSC mais
pas de fagon démesurée. Le petit nombre de BTS qui n’ont pu se connecter au site
le plus pres se connecteront au deuxieme site le plus pres. De plus, en donnant
priorité aux sites de plus fortes demandes nous favorisons les choix des BTS les
plus coliteux en premier. Le gain possible en permutant des affectations BTS-BSC
par d’autres est trés petit par rapport au cott de Pensemble du réseau (moins de
1% en moyenne). Enfin, le cotit du modele B est trés peu influencé par la perte
d’optimalité du modele A. Comme toutes les solutions possedent le méme ensemble
J*¢ de sites de BSC (ceux de 'ensemble de départ) les affectations BSC-MSC sont
& peu prés les mémes indépendamment des choix du modele A. Quelques fois, les
demandes des BSC découlant des affectations du modéle A nous conduisent a un
choix d’affectation BSC-MSC différent pour un méme sous-ensemble de sites mais
la plupart du temps ce n’est pas le cas.

Le modele B peut aussi causer une perte d’optimalité si on ne lui laisse pas
le temps nécessaire pour parcourir tout P'arbre de recherche. Pour éviter ce prob-
léeme nous avons décidé de rechercher les meilleures affectations possibles pour les
variables du modele B, ce qui se traduit par le fait de parcourir tout 'arbre de
recherche. Cette technique est tres longue mais elle garantit la qualité des affec-
tations des variables du modele B. Nous sommes alors certains que la solution

trouvée est la meilleure considérant les choix du modele A.

3.2.2 Combiner le modele de PC et la recherche locale

Le modele de programmation par contraintes fournit donc une bonne estimation
de la qualité d’une solution pour un sous-ensemble de sites de BSC. Nous devons

maintenant déterminer quel sous-ensemble de sites de BSC conduira a la meilleure

44

Sonde (PC) -
Modele 4

-Stratégie 1
-Stratégie 2

Recherche
locale (LS)

v, X,

Modéle B .

-Stratégie 3 ,
-Stratégie 4 73

v, X, w, Vi zy

v ﬁ A 4 A 4 %

Figure 3.2: Combinaison de la recherche locale et du modéle de PC

solution. Nous utilisons une recherche locale & descente simple pour le faire. Le
probléme résolu a l’aide de la recherche locale est un sous-probleme du probleme
global, soit de rechercher le sous-ensemble de sites de BSC qui conduira a un
optimum local.

Du point de vue de la recherche locale, le modele de programmation par con-
traintes ne sert qu’a évaluer le cott des différents voisins de la solution courante.
La recherche locale fait abstraction de toutes les décisions prises dans le modele
de PC pour ne considérer que le colt associé au sous-ensemble de sites de BSC
donné. Le modele de PC fournit donc un estimé de qualité d’une solution pour un
sous-ensemble de sites de BSC. C’est en fait comme si la recherche locale lancait
une sonde de ¢ secondes sur le modele de PC pour obtenir un estimé de la qualité
d’un sous-ensemble de sites de BSC (figure 3.2). Par exemple, imaginons que nous
voulons connaitre le cotit obtenu d’une solution composée de 3 sites de BSC donnés.
La sonde utilise le modele de programmation par contraintes pour rechercher, pour
ces 3 sites, la meilleure affectation possible apres t secondes et retourne le cout de

cette solution.

45
3.2.2.1 Concept de sonde

Nous utilisons un modele de PC pour explorer le voisinage N{z) de la solution
zx. Un avantage propre aux techniques de résolution en PC est U'élimination de
toute solution non réalisable au cours de la recherche. Il n’est donc pas nécessaire
d’affecter toutes les variables avant de s’apercevoir que la solution partielle n’est
pas réalisable. La recherche locale avec sondes exploite ce principe en laissant le
modele de PC évaluer le colit d’un voisin suite a un mouvement local en complétant
une solution partiellement spécifiée. Nous comparons les sondes entre elles pour
déterminer le mouvement local qui conduit au meilleur voisin estimé. Il est a noter
que le temps d’évaluation du colGt d’un voisin est long comparativement au temps
pris par une recherche locale sans sonde.

Habituellement, lors d’une recherche locale sans sonde, les variables qui ne sont
pas impliquées dans le mouvement conservent leur affectation. Le temps requis pour
évaluer le colt et la réalisabilité d’une solution est court puisque les affectations
sont completes. En outre, il suffit de vérifier qu’aucune contrainte n’est violée et
le cas échéant d’en calculer le cout. Par contre, il est possible dans un tel cas
que ’heuristique se bute sur de longues séries de solutions qui ne satisfont pas
les contraintes. La recherche est alors dans une zone de solutions non réalisables
voisines. Par exemple, pour un mouvement local qui enléve un site de BSC de la
solution courante, il est certain que la solution voisine n’est pas réalisable puisque
tous les BTS qui étaient connectés a ce site violent des contraintes de capacité.

Un premier avantage du concept de sonde est qu’il garantit de trouver un voisin
qui satisfait toutes les contraintes, s’il existe. Un deuxiéme avantage est qu’il réduit
Pespace de recherche aux variables sur lesquelles le mouvement local est appliqué.
Par exemple pour notre probléeme, la sonde réduit ’espace de recherche aux sites de
BSC faisant partie de la solution. Le cout de chacune des solutions correspond donc

a une certaine configuration de variables locales. Un probléme de cette méthode

46

est que la direction de descente dépend de la qualité du colit évalué pour un voisin
et donc du temps de recherche de la sonde. Le temps de recherche de la sonde doit
étre assez long pour assurer que le colit calculé pour un voisin est représentatif du
cout de la solution optimale pour ce voisin. Nous souhaitons donc qu’'un temps
de recherche plus long & l'itération k& nous meéne au méme choix de voisin pour
Vitération k£ + 1.

L’espace de recherche du probléme est de | S|!/I%|T|1x| J|11x| K [V} combinaisons
de solutions possibles; ce qui correspond respectivement aux combinaisons des types
pouvant étre installés aux sites de BSC, des types pouvant étre installés aux sites
de MSC, des affectations BTS-BSC et des affectations BSC-MSC. Par exemple,
pour un réseau typique de taille de 100 BTS, 30 sites de BSC et 10 sites de MSC,

0202

ce nombre s’éleve a 1 combinaisons : méme si chaque solution s’évalue en une

micro seconde, le temps de calcul serait 1017

milliards d’années pour comparer le
cotit de chaque combinaison. Il est & noter que ce calcul néglige la conservation
de flots. La recherche locale avec sonde diminue le nombre de combinaison & 21,
soit & utiliser ou non chacun des sites de BSC dans la solution courante. Pour
le probléeme de 30 sites de BSC cité plus haut, il y a 10° combinaisons possibles.
L’espace de recherche de 'heuristique locale avec sonde est donc diminué par un
facteur trés important de 'ordre de 102, Par contre, le temps d’évaluer un voisin
est augmenté par un facteur de 103. 1l sera ainsi plus facile de diriger la recherche

dans une bonne direction de descente lors de 'exploration mais chaque mouvement

prendra beaucoup de temps a évaluer.

3.2.3 Heuristique de recherche locale

Le concept de sonde diminue I'espace de recherche de 'heuristique locale mais
le temps pour évaluer un voisin est augmenté. Comme I'évaluation d’un voisinage
prend un temps considérable, nous avons donc décidé de limiter notre heuristique

a une recherche locale a descente simple. Conséquemment, nous utiliserons un

47

Site potentiel de BSC e BSC
£ Site potentiel de MCS o MSC
® BTS

Figure 3.3: Mouvement de la recherche locale : le site de BSC le plus faiblement
connecté est enlevé de solution courante

voisinage assez grand pour favoriser la prise de bonnes décisions & chaque itération.

Le choix d’un bon voisin est primordial puisqu’il décide de la direction de descente.

3.2.3.1 Mouvement de la recherche locale

Le choix du voisinage référe directement au probleme étudié. Nous cherchons a
améliorer la solution courante a chaque itération afin d’assurer une descente vers
un optimum local de qualité. Dans le cas du probléeme de conception topologique
de réseau cellulaire résolu & 'aide de la recherche locale avec sonde, nous utilisons
une technique se basant sur les sites de BSC utilisés dans la solution courante. A
chaque itération, un site de BSC est enlevé de la solution courante soit pour faire
place & un site de BSC qui était exclu ou soit pour tout simplement enlever ce site.
Ce qui caractérise une solution par rapport a une autre est donc les sites de BSC
utilisés.

Il est trop long de permuter tous les sites de la solution courante & chaque
itération. Pour accélérer la recherche dans le voisinage, nous permutons seulement

les sites de BSC les moins utilisés (en terme de nombre de BTS connectés) par

48

Sonde (PC) l

Modéle 4 Solution initiale
-Stratégie 1
-Stratégie 2
¢ % Phase 1
A4
MOd,ele B Phase 2
-Stratégie 3 ,
Stratégie 4 1)
Phase 3
¢ x; w; Y Zy
v v ¥ v A

Figure 3.4: Combinaison de la recherche locale et du modele de PC

d’autres sites qui ne font pas partie de la solution tel qu’illustré a la figure 3.3. Les
sites de la solution zy les plus fortement connectés sont bons puisqu’ils minimisent
le coiit des liens de plusieurs BTS, chaque BTS étant affecté au site de BSC le
plus pres. Nous cherchons donc les sites de BSC parmi ceux qui ne sont pas
dans la solution qui compléteront adéquatement les sites de BSC les plus fortement
connectés. L’heuristique de recherche locale est divisée en trois phases tel qu’illustré

a la figure 3.4.
Phase 1

L’heuristique de recherche locale commence par classer les sites de BSC de la so-
lution x en ordre croissant du nombre de BTS connectés (voir algorithme phase 1).
Les n sites les plus faiblement connectés sont ensuite remplacés, un & un, avec les
m sites qui ne font pas partie de la solution. De plus, 'heuristique essaie de simple-
ment enlever de la solution zx, un a un, les sites les plus faiblement connectés. Nous
lancons la sonde pour chacune des permutations et nous conservons la meilleure
solution pour l'itération subséquente. Il y a donc n * (m + 1) relances & chaque

itération. Il est important de noter que le nombre de sites utilisés ne peut pas

49

augmenter. La décision de diminuer le nombre de sites de BSC a des conséquences
tres grandes puisqu’elle élimine toutes les solutions qui contiendraient plus de sites
de BSC.

ALGORITHME PHASE 1 (void)

1 o+ nombre de sites utilisés par le modzle

2 J « tous les sites de BSC disponibles

3 n «— nombre de sites & enlever

4 m « nombre de sites a ajouter

5 repeter

6 trier J en ordre croissant de nombre de BTS connectés
7 J’ « les o premiers sites de J

8 J7« les autres sites de J

9 fori—1...ndo

10 enlever le 1°7¢ gite de J’

11 lancer la sonde pour déterminer le colit du voisin
12 for j—~1...mdo

13 remplacer le i*™¢ site de J’ par le ¢ de J”

14 lancer la sonde pour déterminer le cofit du voisin
15 endfor

16 endfor

17 comparer les sondes entre elles et conserver la solution de meilleur cofit

18 tant que JzeN(zi) telle que f(z) < f(zx)

Phase 2

La phase 2 commence lorsque 'heuristique a atteint un premier minimum local.
Nous augmentons alors le voisinage de la recherche pour sortir de ce minimum local
(voir algorithme phase 2). Le deuxiéme voisinage exploré se fait sur les mémes
criteres que le premier, soit sur les sites de BSC, mais le nombre de voisins visités

est augmenté de facon importante. En effet, la recherche ne se fait plus que sur les

50

sites les plus faiblement connectés mais sur tous les sites. Nous explorons donc un
deuxiéme voisinage exploitant le méme mouvement mais dont le nombre de voisins
visités est augmenté. Comme nous avons deux voisinages visités durant la descente,
la recherche s’apparente donc & un VND bien que les mouvements locaux soient
du méme type. La méthode proposée tente de sauter directement dans une autre
zone de minimum en mettant en doute les décisions prises pour les sites de BSC les
plus fortement connectés. Pour ce faire, 'heuristique permute, un a un, les sites
faisant partie de la solution z; avec tous ceux qui n’en font pas partie, en plus de
tout simplement enlever le site de la solution xx. Par conséquent, n et m prendront
respectivement la valeur du nombre de sites dans la solution z; et du nombre de
sites qui ne sont pas dans la solution zx. Nous croyons qu’il y a probablement un
site plus fortement connecté qui ne va plus avec ensemble des sites de la solution
x,. Comme cette étape est tres longue, 'heuristique n’utilise cette méthode qu’a
la premiere itération de la phase 2 et ce, pour changer de minimum local. Pour
les itérations subséquentes, la recherche continue avec les mémes parameétres que
ceux énoncés lors de la description de la phase 1. La phase 2 se termine lorsqu’on
atteint un deuxieme minimum local.

ALGORITHME PHASE 2 (void)

1 0« mnombre de sites utilisés par le modele

2 J « tous les sites de BSC disponibles

3 N0

4 m«card(J)-o

5 repeter

6 trier J en ordre croissant de nombre de BTS connectés
7 J7 « les o premiers sites de J

8 J” — les autres sites de J

9 fori—1...ndo

10 enlever le :*™° site de J’

11 lancer la sonde pour déterminer le colit du voisin

o1

12 fdrj«—l...mdo

13 permuter le i*7*¢ site de J’ par le 7° de J”

14 lancer la sonde pour déterminer le colit du voisin
15 endfor

16 endfor

17 n < nombre de sites a enlever de la phase 1
18 m « nombre de sites a ajouter de la phase 1
19 comparer les sondes entre elles et conserver la solution de meilleur cott

20 tant que JzeN(zp)telle que f(z) < f(xx)

Phase 3

La phase 3 sert & améliorer la dernitre solution trouvée & la phase 2. Les
modeles de PC utilisés trouvent de bonnes solutions pour un ensemble de sites
donnés mais on se rappelle que les solutions ne sont pas optimales. La phase 3
est particulierement utile pour les grands réseaux, ceux pour lesquels il n’est pas
possible de trouver le choix optimal de sites de MSC a utiliser pour une affectation
BTS-BSC donnée. 1I s’agit d’augmenter le temps de recherche de la sonde du
modele A pour améliorer le cout d’affectation BTS-BSC et surtout d’augmenter le
temps de recherche de la sonde du modele B pour assurer de trouver les sites de
MSC a utiliser de fagon optimale. Il s’agit donc de relancer une grande sonde sur le

dernier sous-ensemble de sites de BSC pour obtenir une solution de meilleur coit.

3.2.4 Solution initiale

I y a deux considérations importantes dans le choix de la solution initiale.
D’abord, plus elle est de bonne qualité, plus la recherche est rapide puisqu’on
est déja pres de la solution finale. Par contre, la qualité de la solution initiale
a un impact sur la descente de la recherche locale. Effectivement, une solution

comportant un nombre de sites de BSC avoisinant le nombre de sites de BSC

52

de la solution d’optimum local aura un trés bon coit. Par contre, il sera tres
difficile d’améliorer cette solution, la recherche locale terminera rapidement avec
un treés petit gain. Limiter le nombre de sites de BSC de la solution initiale c’est
aussi limiter le nombre d’itération de la recherche locale & descente simple puisque
le nombre de sites utilisés ne peut pas augmenter. Dans ce contexte, meilleur
est le colit de la solution initiale, plus il y a de décisions sur lesquelles il n’est
plus possible de revenir étant donné une recherche locale limitée. L’objectif est
d’obtenir une solution initiale d’assez bonne qualité pour ne pas perdre de temps
dans une recherche locale triviale. Par contre, la solution initiale ne doit pas prendre
des décisions importantes sur lesquelles nous ne pourrons plus revenir lors de la
recherche locale.

La recherche de la solution initiale se fait & 'aide de la sonde fournie par les
modeles de PC et des stratégies de recherche décrites dans la section précédente.
Pour obtenir une premiére solution, nous devons déterminer un ensemble compor-
tant o sites de BSC & fournir aux modeles. Plus le nombre de sites utilisés se
rapproche du nombre de sites totaux, moins la solution initiale confine le domaine
de la recherche locale. En fait, déterminer les sites utilisés est moins important que
de déterminer leur nombre. Les moins bons sites de la solution initiale pourront
étre permutés avec ceux qui n’en font pas partie lors de la recherche locale. Par
confre, I'heuristique de recherche locale ne permet pas d’augmenter leur nombre.
On fixe donc le nombre de sites de BSC utilisés & un nombre assez grand pour
s’assurer d’étre au-dessus du nombre de sites utilisés par la solution d’optimum
locale. Ce nombre a été déterminé par expérimentation comme nous le verrons a
la section 4.2.5.

Les sites de BSC qui composent la solution initiale ont aussi leur importance
puisque certains resteront dans la solution jusqu’a la fin de la recherche, la recherche
locale ne s’effectuant que sur les sites les moins utilisés. Nous devons donc nous

assurer de bien choisir les sites les plus utilisés. Nous classons d’abord tous les

53

sites de BSC en ordre croissant de somme de distances avec les p BTS les plus pres
(voir algorithme initial). On choisit ainsi les sites de BSC o environ p BTS se
connecteront a moindre colit. Nous conservons les o sites de plus petite somme de
distances avec p BTS et lancons une premiere sonde. Les sites de BSC ainsi choisis
ont une importance relative puisqu’on essaiera par la suite de les permuter avec
ceux qui ne sont pas dans la configuration initiale, ¢ sites a la fois.. On relance
la sonde a chaque permutation de g sites et on choisit la solution de moindre coiit
comme solution initiale. Cela assure de lancer la sonde pour que chacun des sites de
BSC se retrouve quelques fois dans 'ensemble des solutions évaluées. On remarque
que les sites faisant partie de la premiére configuration, ceux de meilleure somme
de distance avec les p BTS les plus prés, ont plus de chance de se retrouver dans la
solution initiale puisqu’on ne permute que g sites a la fois. Il y aura donc (o — g)
sites de BSC de la premiére configuration dans la solution initiale. Une discussion
sur le choix des valeurs pour les parameétres o, p et g se trouve A la section 4.2.5
ALGORITHME SOLUTION INITIALE (void)

1 0« nombre de sites utilisés par le modele

p < mnombre de BTS

g «+ nombre de sites & permuter

trier J en ordre croissant de distance avec p BTS

J’ « les o premiers sites de J

St s W N

lancer la sonde sur 'ensemble J’ pour déterminer le cofit de la configuration

7 repeter

8 permuter g sites de J’ avec ¢ sites qui ne sont pas dans J’

9 lancer la sonde sur 'ensemble J’ pour déterminer le cotit de la configuration
10 tant que J des permutations distinctes possibles

11 retourner J’ de meilleur cofit

54

CHAPITRE 4

RESULTATS ET DISCUSSION

Nous discuterons dans ce chapitre des principales constatations découlant de
I’analyse des résultats lors du développement de I'heuristique. Ces constatations
ont mené a des décisions importantes guidant nos travaux vers ’heuristique hybride
de recherche locale et de programmation par contraintes proposée. Nous débuterons
le chapitre par la présentation des données utilisées pour évaluer la performance
de 'heuristique. Par la suite, nous discuterons des choix de stratégies de recherche
du modele de PC et de 'ajout de la recherche locale. Pour terminer, nous com-
parerons les résultats finaux obtenus par notre heuristique avec ceux obtenus avec
I'heuristique tabou proposée par Chamberland et Pierre (2002).

L’heuristique a été implantée avec ILOG OPL Studio 3.5, un langage script
fournissant une interface pour 'utilisation du solveur de programmation par con-
traintes, ILOG Solver 5.2. Les tests ont été effectués sur un processeur Athlon de

ADM (1.6 GHz et 512 Mo de RAM).

4.1 Description des données

Nous avons utilisé pour nos tests trois types de BTS, trois types de BSC et
trois types de MSC. Leurs caractéristiques sont présentées respectivement dans les
tableaux 4.1, 4.2 et 4.3. De plus, nous avons utilisé des DS1 pour les liaisons BTS-
BSC alors que des DS1 et des DS3 ont été utilisés pour les liaisons BSC-MSC. Les
couts des interfaces sont donnés dans le tableau 4.4 et le coiit des types de lien
dans les tableaux 4.5 et 4.6.

Pour I'ensemble des tests, les problemes ont été générés en utilisant |I| coor-

données correspondant aux localisations de BTS, |J| coordonnées correspondant

Tableau 4.1: Caractéristiques des types de BTS

Type A | Type B | Type C
Capacité (circuit) 96 288 576
Nombre d’interfaces DS1 1 3 6

55

Tableau 4.2: Caractéristiques des types de BSC (incluant les cofits d'installation)

Type A | Type B | Type C
Capacité (circuit) 5000 10 000 | 15000
Nombre maximal d’interfaces BTS 15 30 60
Nombre maximal d’interfaces MSC 15 30 60
Cout ($) 50 000 | 90 000 | 120 000

Tableau 4.3: Caractéristiques des types de MSC (incluant les cotits d’installation)

Type A | Type B | Type C
Capacité (circuit) 100 000 | 200 000 | 300 000
Nombre maximal d’interfaces BSC 50 100 150
Cout ($) 200 000 | 350 000 | 500 000
Tableau 4.4: Caractéristiques des types d’interfaces (incluant les coiits
d’installation)
Type d’interface | Capacité (circuit) | Coit ($)
DS1 96 500
DS3 2688 2500

Tableau 4.5: Caractéristiques des liens BT'S-BSC (incluant les cofits d’installation)

Type de BSC | Nombre de liens DS1 | Capacité (circuit) | Cout ($)
A 1 96 2000
B 3 288 3000
C 6 596 4000

o6

Tableau 4.6: Caractéristiques des liens BSC-MSC (incluant les cotits d’installation)

Type de lien | Capacité (circuit) | Colt ($/km)
DS1 96 2000
DS3 2688 4000

aux localisations des BSC et | K| coordonnées correspondant aux localisations des
MSC. Ces coordonnées ont été générées aléatoirement a l'intérieur d’une région de
10 000 km?, selon une distribution uniforme. Les types des BTS ont été déterminés
de facon aléatoire entre les types fournis au tableau 4.1, selon une distribution
uniforme. Finalement, les demandes entre chaque paire de BTS et entre les BTS
et le réseau public ont été générées aléatoirement dans un intervalle de [0, 0.2] er-
lang, selon une distribution uniforme. Nous avons utilisé un ensemble de problemes
générés selon ces caractéristiques par Chamberland et Pierre (2002).

Tous nos résultats sur ces données seront comparés avec une borne issue d’'une
relaxation des contraintes de conservation de flot et avec I'heuristique tabou pro-

posée par Chamberland et Pierre (2002).

4.2 Evolution de Iheuristique hybride

Nous avons d’abord développé un modele de PC en omettant les contraintes
de conservation de flot. Déja nous avions pris une décision importante, celle de
définir la topologie du réseau pour ensuite vérifier que celle-ci satisfaisait bien les

contraintes de conservation de flot.

4.2.1 Stratégies de recherche

Nous avons décrit au chapitre précédent (section 3.2.1) les stratégies de recherche
que nous avons utilisées pour la résolution du probleme. Par contre, nous n’avons

pas décrit les constatations qui ont mené & ce choix.

57

Rappelons qu’un facteur important lors de la résolution de problemes en PC est
de déterminer quelle variable affecter en premier (Section 2.2.2.3, Ordre d’affectation
des variables et des valeurs). De ce choix découle la topologie de I'arbre de
recherche, la réduction des domaines et donc le temps de recherche avant d’obtenir
une solution. En outre, la premiére variable & étre affectée a une importance
capitale puisque 'ordre d’affectation des autres variables se fera conformément
4 ce choix. Nous pouvions commencer par déterminer (ordre des stratégies de

recherche):

e (1) les types installés aux sites de BSC (z;);
e (2) les types installés aux sites de MSC (yx);
e (3) les affectations des BTS aux BSC (v;);

o (4) les affectations des BSC aux MSC (w;).

4.2.1.1 Ordre d’affectation de variables entre les BTS et les BSC

Comme environ 80% du colit d’un réseau est relié & la section entre les BTS et les
BSC, les variables les plus intéressantes a fixer en premier sont celles reliées a cette
section du réseau : v; (affectation BTS-BSC) et z; (type installé au site de BSC).
De plus, ces variables sont étroitement liées. Par exemple, lorsque 'affectation
BTS-BSC est complétée, il devient plus facile de déterminer les types & installer
aux sites de BSC. Pour chaque site de BSC, le plus petit type (celui de moindre
cotit) qui satisfait les demandes des BTS sera installé. Le contraire est aussi vral,
lorsqu’on connait les types installés aux sites de BSC, il devient plus facile de
déterminer les affectations BTS-BSC. Elles se font selon les capacités des types
installés aux sites de BSC, ce qui limite grandement le nombre de combinaisons a
explorer. Chamberland et Pierre (2002) ont exploité cet aspect en fixant en premier

les sites utilisés. Pour de petits réseaux, la méthode consistant a fixer les types des

58

BSC en premier (stratégie 1) est la meilleure stratégie (tableau 4.7) pour trouver
la solution optimale mais pour des réseaux de taille plus réaliste cette méthode ne
fournit pas de bonnes solutions dans un délai raisonnable (tableau 4.8).

Les résultats des tests du tableau 4.7 correspondent a une moyenne de six essais
sur des réseaux de taille de dix BTS, de quatre sites de BSC et de quatre sites de
MSC. 1l est & noter qu’au moment des tests, nous comparions aussi les stratégies
correspondant & la section du réseau entre les BSC et les MSC (stratégies 2 et 4).
Comme nous avions associé les stratégies 1 avec 2 et 3 avec 4, nous pouvons quand
méme différencier 'effet de placer la stratégie 1 avant la stratégie 3 et vice-versa.
Lorsque 'ordre d’affectation n’est pas mentionné pour une variable, cela indique
que nous utilisons 'ordre par défaut pour les variables et les valeurs. Par exemple,
la stratégie 2-1-d-d (le d représente I'utilisation de stratégies par défaut) correspond
a affecter la variable y;, suivie par z; et & utiliser ordre par défaut pour les autres
variables. L’ordre par défaut correspond & 'ordre d’apparition des variables dans
le modele, soit la stratégie 1-2-3-4. Dans notre cas, lorsque nous ne le mentionnons
pas, la stratégie 1 sera avant 2 et la stratégie 3 avant 4. Il y a aussi un ordre
pour affecter les variables de méme type. Par exemple pour la stratégie 3, les
variables v; seront choisies en ordre décroissant du nombre de liens partant du
BTS i. L’ordre par défaut pour les variables de méme type est celui de plus petit
domaine d’abord. Il est a noter que V'ordre d’affectation de valeur a aussi un impact
sur efficacité de la recherche. L’ordre d’affectation de valeurs que nous utilisons
est basé sur le cotit : pour la stratégie 1 par exemple, nous commencgons par affecter
aux sites de BSC le type (valeur) de moindre coiit. Tout cela explique la différence
entre les résultats obtenus pour les stratégies 2-1-d-d et 2-1-3-4. Le détail sur les
heuristiques des choix de variables et de valeurs que nous avons utilisées se retrouve
a la section 3.2. Nous remarquons que les tests qui débutent en fixant le type a
installer aux sites (stratégie 1) sont plus rapides pour obtenir la solution optimale,

moins de 4 secondes comparativement a plus de 10 secondes lorsqu’on commence

59

Tableau 4.7: Comparaison des stratégies de recherche pour des réseaux de petite
taille pour le modele sans les contraintes de conservation de flot

I 1 13| K] || Optimum (k$) | Stratégie | Temps (sec)
10 4| 4 1333 2-1-d-d 1.26
101 4| 4 1333 2-1-3-4 2.08
101 4] 4 1333 1-2-d-d 2.48
1014 4 1333 1-2-3-4 3.38
101 4| 4 1333 | 3-4-d-d 10.52
101 4 | 4 1333 3-4-1-2 215.08

par Vaffectation BTS-BSC (stratégie 3).

Les résultats des tests du tableau 4.8 correspondent & la meilleure solution
obtenue par la stratégie de recherche aprés une heure. Nous comparons ces résul-
tats avec la borne inférieure (BI) relaxée des contraintes de conservation de flot.
Nous remarquons que les tests qui impliquent la stratégie 3 en premier se rap-
prochent davantage de la solution relaxée (moins de 12%) que ceux qui impliquent
la stratégie 1 en premier (a plus de 100%) et ce, apres une heure.

Une difficulté avec la méthode qui fixe les types des BSC (stratégie 1) en pre-
mier en programmation par contraintes est de déterminer un ensemble de types qui
conduit a une solution qui satisfait 'ensemble des demandes des BTS. Effective-
ment, pﬁisqu’on débute par affecter les plus petits types (capacités) aux sites pour
minimiser le colt, toutes les premiéres solutions n’auront pas assez de capacités
pour satisfaire la demande des BTS. Par exemple, la premiere solution partielle
ainsi formée fixera tous les sites de BSC au type de plus faible cotit (de plus faible
capacité). La capacité résultante pour I'ensemble des BSC sera loin d’étre suff-
isante pour satisfaire les demandes des BTS. 1l s’ensuivra une longue série d’échecs
avant d’obtenir la premiere solution réalisable, solution qui satisfait les demandes
des BTS. Cette perte de temps est bien visible dans les résultats des réseaux de

plus grande taille (tableau 4.8).

60

Tableau 4.8: Comparaison des stratégies de recherche pour des réseaux de taille
réelle pour le modele sans les contraintes de conservation de flot

11| 11J] | |K| || Borne inf.(k§) || Stratégies | Cotits (k$) | Temps(sec) | Ecart(%)
100 | 10 | 10 6860.9 3-4-d-d 6934.5 3600 1.07
1001 10 | 10 6860.9 4-3-d-d 7682.5 3600 11.98
160 | 10 ¢ 10 6860.9 2-1-d-d 14396.5 3600 109.83
100 | 10| 10 6860.9 2-d-d-d 15036.5 3600 119.16
160 |1 16 ¢+ 10 6860.9 1-2-d-d 15148.5 3600 120.79

Pour améliorer la méthode qui commence par fixer le type en premier (stratégie 1)
nous avons déterminé la capacité minimale a installer pour 'ensemble des sites de
BSC. Ainsi, 'heuristique coupe 'arbre de recherche aussitét que la somme des
capacités de la solution partielle conduit vers un échec. Nous avons ajouté une
contrainte redondante pour mettre en place ce mécanisme. Une contrainte redon-
dante ne contraint pas davantage le probleme : le probleme demeure le méme mais,
lors de sa résolution, les mécanismes de propagation utilisent cette contrainte pour
propager de I'information supplémentaire. Nous avons donc ajouté une contrainte
stipulant que la somme des demandes de 'ensemble des BTS doit étre plus petite

ou égale a la somme des capacités des types installés aux sites BSC.

Contrainte Redondante
Yo <y, (4.1)
iel jed
Cet ajout améliore considérablement (par un facteur de 10) efficacité de la
recherche lorsqu’on commence par la stratégie 1. Par contre, cette amélioration
n’est pas suffisante pour les réseaux de grande taille. Utiliser la stratégie 3 en

premier demeure la meilleure méthode pour obtenir une solution de bonne qualité

dans un délai raisonnable.

61

4.2.1.2 OQOrdre d’affectation de valeurs entre les BTS et les BSC

Le probleme qui demeure, méme avec 'ajout de la contrainte redondante, est
que nous n’avons pas de critere pour guider le choix des types a installer aux sites.
Il est difficile de définir les sites auxquels nous devons affecter une plus grande
capacité. Nous n’avons donc pas d’heuristique de choix de valeur pertinente pour les
variables ;. Au chapitre 3, nous avions discuté de 'importance de ces heuristiques.

Nous obtenons une meilleure solution (tableau 4.8) lorsque nous déterminons
les affectations BTS-BSC en premier (stratégie 3) pour des réseaux de taille réelle.
La raison est que nous avons un critére intéressant pour attribuer les valeurs aux
variables. On fixe chaque BTS au site de BSC le plus pres, ce qui aide grandement
la fonction coiit de la solution. De plus, commencer avec les variables d’affectation
BTS-BSC (v;) contraint moins les autres variables : du moins les implications sont
moindres pour les autres variables. C’est notamment le cas, pour la variable z;,
puisque dans le pire des cas 'affectation v; contraint les variables z; a prendre le
type de plus grande capacité. Par exemple, lorsque plusieurs BTS choisissent le
méme site de BSC, ce dernier est contraint, dans le pire des cas, a la valeur du
type de plus grande capacité. Contrairement, lorsqu’on commence par fixer le type
5 installer en premier (stratégie 1), ce choix influence grandement le domaine des
variables d’affectation BTS-BSC ;. Par exemple, les derniers BTS a étre affectés
prendront la valeur du site de BSC ou il y a encore de la capacité et ce, méme si ce
dernier est a une grande distance. La fonction de colt en sera grandement affectée.

Un probléme avec la méthode qui débute par la stratégie 3 est qu’on utilisera
presque tous les sites de BSC. En effet, lorsqu’on affecte & chaque BTS le site de
BSC le plus pres, il y a de fortes chances que chaque site de BSC ait au moins
un BTS assez pres pour 8’y connecter. La solution a donc un coit relativement
élevé puisqu’elle utilise tous les sites de BSC. Par contre, la solution est obtenue

rapidement et le cotit d’affectation BTS-BSC est minimisé. Dans le cadre d’une

62

recherche heuristique un critere trés important est la rapidité de I’évaluation d’une
solution. Nous avons donc choisi de commencer par la stratégie 3 suivie de la

stratégie 1.

4.2.1.3 Ordre d’affectation de variables entre les BSC et les MSC

La premiere partie des affectations, celles entre les BTS et les sites de BSC,
est terminée. Nous avons donc un nouveau probleme beaucoup plus petit. Ce
probleme consiste a déterminer 'affectation BSC-MSC et la localisation des MSC
connaissant les BSC utilisés et leurs demandes. Ce probleme est le méme que celui
que nous venons de discuter entre les BTS et les BSC. Par contre, les instances
pour cette partie du réseau sont plus petites. En effet, il y a toujours plusieurs BTS
pour un BSC et plusieurs BSC pour un MSC dans un réseau. Les affectations BSC-
MSC sont par conséquent plus faciles que les affectations BTS-BSC. Il est méme
généralement possible de trouver la solution optimale en un temps raisonnable pour
cette partie du probleme. Comme il faut peu de MSC pour satisfaire les demandes
de tous les BSC, il y aura peu de solutions non réalisables lorsqu’on commence par
affecter les types aux sites de MSC (stratégie 2). La capacité n’est pas un facteur
limitatif puisque souvent un ou deux MSC du type le plus petit suffira pour satis-
faire 'ensemble de la demande des BSC. Contrairement a ce que nous avions lorsque
nous déterminions les types & installer aux sites de BSC (stratégie 1) avant les af-
fectations BT'S-BSC (stratégie 3), il n’y a pas de longues séries d’échec lorsqu’on
commence par déterminer les types & installer aux sites de MCS (stratégie 2) avant
les affectations BSC-MSC (stratégie 4). On constate expérimentalement sur de pe-
tits réseaux du tableau 4.7 que fixer le type en premier est plus rapide que de fixer
Paffectation en premier pour atteindre la solution optimale pour le sous-probléme
entre les BTS et les sites de BSC. Il en va de méme avec la partie du réseau entre
les BSC et les sites de MSC : pour obtenir la solution optimale nous commencons

donc par fixer le type & installer aux sites MSC (stratégie 2) avant les affectations

63

BSC-MSC (stratégie 4).

L’ordre des stratégies d’affectation sera donc de déterminer les affectations
BTS-BSC (stratégie 3), les types a installer aux sites de BSC (stratégie 1), les
types & installer aux sites de MSC (stratégie 2) et enfin les affectations BSC-MSC
(stratégie 4).

4.2.2 Ajout d’une heuristique combinée au modele de PC

Nous avons mentionné que les stratégies de recherche trouvaient la solution
optimale plus rapidement en fixant en premier les sites BSC pour les petits réseaux
(tableau 4.7). Nous avons rejeté cette stratégie parce que la premiere solution
était longue & obtenir pour des réseaux de taille plus réaliste. Le probléme, méme
apres 'ajout de la contrainte redondante 4.1, était que nous n’avions pas de bonne
heuristique de choix de valeur pour les variables x;. Par contre, fixer le type des
BSC (stratégie 1) en premier permet de limiter le nombre des sites utilisés dans la
solution contrairement & fixer les affectations BTS-BSC (stratégie 3) en premier.
Nous aimerions retrouver cet aspect lors de la recherche de solution. Le moyen que
nous avons employé fut d’ajouter une heuristique au-dessus du modele de PC pour
limiter le nombre de sites utilisés. Ainsi, nous exploitons le fait que fixer les sites
BSC utilisés en premier nous mene vers I'optimum plus rapidement tout en évitant
le probleme de choix de valeur que nous avions en implantant cette stratégie dans
le modele de PC. Il est important de noter que la recherche heuristique choisit les
sites de BSC utilisés dans une solution mais ne choisit pas leur capacité (type).
Ceci est important puisque le nombre de BTS affectés a un site de BSC ne sera
contraint que par la capacité maximale pouvant étre installée & ce site. Les BTS
peuvent donc étre affectés au site de BSC le plus pres jusqu’a concurrence de la
capacité maximale d’un BSC.

Nous avons d’abord lancé la recherche sur le modele de PC en diminuant de un

le nombre de sites de BSC permis dans la solution a chaque itération. Les résultats

64

Tableau 4.9: Résultats lorsque le nombre de sites de BSC constituant une solu-
tion est limité par I'heuristique hybride utilisant le modele sans les contraintes de
conservation de flot

| MK | BI(k$) | # de BSC | Cotts (k$) | Temps(sec) | Ecart(%)
50 | 10 | 10 | 4051.50 6 4080.87 5000 0.72
50 | 10| 20 || 4147.98 9 4365.77 5000 5.25
100 | 10 | 10 } 6860.90 9 7040.98 5000 2.62
50 | 20 | 10 | 3316.61 10 3560.46 10 000 7.35
50 | 20| 20 || 3557.43 10 3746.25 10 000 5.31
100 | 20 | 10 | 6238.35 11 6684.98 10 000 7.15
100§ 20 | 20 || 6928.86 13 7272.43 10 000 4.96
50 | 30 | 20 || 3583.75 11 3893.79 15 000 8.65
100 | 30 | 10 || 6114.51 11 7279.26 15 000 19.05
150) 30 | 10 || 7711.31 18 8869.44 15 000 15.02

du tableau 4.9 montrent que la technique est prometteuse puisque les résultats sont

assez pres de la borne inférieure (BI) calculée sans les contraintes de conservation

de flot.

4.2.3 Ajout de ’heuristique de recherche locale

Nous décrivons dans cette section les constatations qui nous ont mené au choix
du voisinage exploré. Nous avons étudié les résultats obtenus (tableau 4.9) pour
constater que les sites de BSC les plus faiblement connectés (en terme de nombre
de BTS) étaient les moins intéressants d'une solution. Inversement, les sites qui ont
le plus de BTS connectés sont de bons candidats. En effet, comme chaque BTS se
connecte au site de BSC le plus pres, plus le nombre de BTS connectés a un site de
BSC est élevé plus il y aura de BTS qui auront un bon coiit de liaison BTS-BSC.
Les sites de BSC fortement connectés ont donc un impact positif sur la fonction
de cott. Il devient alors intéressant de réaffecter les BTS des sites de BSC les plus
faiblement connectés. Nous utilisons une heuristique locale & descente simple pour

explorer ce voisinage. Le mouvement entre deux solutions voisines se définit comme

65

Tableau 4.10: Résultats de Pheuristique hybride de recherche locale & descente
simple combinée au modele de PC sans les contraintes de conservation de flot

I 11K | BI(kS) || TS (k$) | # de BSC | Cotits (k$) | Ecart (%)
vs BI | vs TS
50 | 20| 10 | 3316.61 | 3321.10 7 3323.71 | 0.21 0.08
50 | 20| 20 || 3557.43 || 3583.20 8 3590.07 | 0.92| 0.19
100§ 20 | 10 | 6238.35 || 6651.10 9 6431.09] 3.09| -3.31
100 | 20 | 20 | 6928.86 || 7150.90 10 7096.34 { 2.42 1 -0.76
50 1 30 { 20 || 3583.75 || 3591.70 8 3628.38 | 1.25 1.02
100 1 30 | 10 | 6114.51 | 6217.30 10 6412.45 | 4.87 3.14
150 1 30§ 10 || 7711.31 |} 8417.60 18 8620.26 | 11.79 2.41

suit : soit permuter le site faiblement connecté par un autre qui ne fait pas partie
de la solution ou soit, enlever le site faiblement connecté de la solution. Il est &
noter qu’avec ce voisinage le nombre de sites utilisés ne peut pas augmenter.

Les résultats du tableau 4.10 démontrent bien que la recherche proposée améliore
substantiellement les résultats du tableau 4.9. Ce sont les premiers tests qui se
rapprochent tres bien de la borne inférieure (BI) et de la recherche tabou (TS) de
Chamberland et Pierre (2002). Par contre, nous devons rappeler que les résultats

obtenus font fi des contraintes de conservation de flot.

4.2.4 Ajout des contraintes de conservation de flot

Les contraintes de conservation de flot sont négligées dans le modele développé.
Pour en tenir compte, nous devons ajouter les contraintes (3.10) et (3.11) au modele.
On remarque que la propagation sur ces contraintes se fait lorsque les variables v;
(affectation BTS-BSC) sont fixées. A chaque affectation de valeur de la stratégie 3,
il y aura propagation de l'information pour diminuer le domaine de ¢; (le nombre
de communications partant du BSC j vers le MSC auquel il est connecté). Le lien
entre la variable v; et la variable ¢; n’étant pas tres évident, voici un exemple pour

Pexpliquer. Soient deux BTS qui ne sont pas connectés au méme site de BSC :

66

puisque la structure du réseau est en arbre, nous pouvons déduire que leur commu-
nication devra nécessairement étre transmise via des liens BSC-MSC. Autrement
dit, lorsque deux BTS sont connectés au méme site de BSC, leur communication se
fera sans lien BSC-MSC. Nous pouvons alors compter les communications partant
des BSC sachant quels BTS lui sont connectés. Par contre, cette propagation est
extrémement cotiteuse et n’améliore pas la recherche. Elle est coliteuse puisqu’elle
implique une double sommation a chaque affectation de v;. De plus, la propagation
sur la variable t; n’améliore pas 'efficacité de la recherche puisque aucune solution
ne sera éliminée. En effet, £; ne sera pas contraint puisque aucune limite de capac-
ité n’est encore affectée dans le réseau. Nous devons donc empécher la propagation
sur ces contraintes tant que les variables v; ne sont pas completement fixées. Suite
a cette affectation, nous pourrons calculer la valeur de tous les ¢; connaissant v;.
Pour pallier ce probleme nous avons décidé de diviser le modele en deux, un
premier modele pour fixer v; et z; et un deuxiéme modéle qui utilise le résultat du
premier pour compléter le réseau en fixant w;, y, et t;. Ainsi on évite de propager
sur la contrainte cofiteuse lors de l'instanciation de v; puisque ces contraintes se
retrouvent dans le deuxieme modele. Lorsque la recherche sur le deuxieme mod-
ele est lancée, les variables t; sont calculées connaissant les valeurs de v;. Le
tableau 4.11 démontre que cette méthode utilisant deux sous-modeles incorpore
bien les contraintes de conservation de flot. Les résultats se comparent bien aux

résultats obtenus avec le modeéle sans les contraintes de conservation de flot.

4.2.5 Ajustement de la solution initiale

Nous avons finalement fait des tests pour déterminer les caractéristiques d’une
bonne solution initiale. L’objectif est de choisir le nombre et quels sites de BSC
seront utilisés dans la solution initiale. Deux faits sont & considérer pour I'ajustement
de la solution initiale. Premierement, il est difficile de faire une corrélation entre

les sites utilisés dans la solution initiale et la qualité de solution finale obtenue

67

Tableau 4.11: Résultats de 'heuristique hybride de recherche locale a descente
simple combiné aux modeles de PC

[|13 K] | BI(kS$) || TS (k$) || # de BSC | Cotits (k8) | Ecart (%)
vs BI | vs TS
50 120 | 10 | 3316.61 || 3321.10 7 3323.71 1 0.21 0.08
50 | 20 | 20 | 3557.43 | 3583.20 8 3561.60 | 0.92 | -0.61
100 | 20 | 10 || 6238.35 || 6651.10 9 6602.28 | 6.61 | -0.73
100 { 20 | 20 || 6928.86 || 7150.90 10 711967 | 4.11 | -0.44
50 | 30 | 20 || 3583.75 || 3591.70 8 3594.34 | 1.98 ¢ 0.07
100 | 30 { 10 || 6114.51 || 6217.30 10 625449 | 5.19 0.59
150 1 30| 10 | 7711.31 || 8417.60 18 8453.82 | 15.02 0.43

par la recherche locale. Deuxiemement, nous savons que 'heuristique de recherche
locale converge souvent vers la méme solution finale indépendamment de la so-
lution initiale utilisée. Il est donc difficile de faire une corrélation, ce qui rend
Pajustement de heuristique de recherche de solution initiale difficile. Par con-
tre, comme I’heuristique de recherche locale converge bien, cet ajustement prend
moins d’importance. L’ajustement de la solution initiale sera donc important pour
Iefficacité de la résolution mais pas pour la qualité de la réponse finale.
L’heuristique initiale classe les sites de BSC en ordre croissant de somme des
distances avec les o BTS les plus prés. Les p sites de BSC ayant les plus faibles
sommes de distance avec les o0 BTS sont conservés dans la configuration initiale.
La configuration initiale est définie comme l'ensemble des p sites de BSC dont
la somme des distances avec les o BTS sont les plus petites. Nous avons testé
plusieurs valeurs de o afin de déterminer le bon nombre de sites & sommer. Cette
valeur représente le nombre moyen de BTS connectés a un site de BSC dans une
solution. Imaginons une solution ou tous les sites de BSC ont environ le méme
nombre de BTS qui leur sont connectés. En sommant le bon nombre o de BTS,
les sites de BSC ainsi choisis correspondraient aux meilleurs sites a utiliser. Ces

essais ont été peu concluants puisque le nombre de BTS connectés varie beaucoup

68

en réalité pour chaque site de BSC. La valeur o choisie n’a donc d'impact que sur
un nombre restreint de sites. Nous avons fixé o a quatre puisque, typiquement,
le nombre de BTS par site de BSC est plus grand ou égal a cette valeur. Ainsi,
pour les sites choisis, I'heuristique minimisera, en moyenne, le cofit d’affectation de
quatre BTS.

Le choix des sites de BSC de la configuration initiale n’est donc pas optimal.
Par exemple, il y a peut-étre un site de BSC qui minimiserait le cotut de liaison de
huit BTS que nous avons exclus de la configuration initiale. Rappelons que pour
réduire le temps de recherche il est important d’avoir la meilleure solution initiale
pour qu’elle converge plus rapidement. Il est donc intéressant de choisir de bons
sites dans la solution initiale. Comme nous n’avons pas d’indice pour déterminer
quels sites auront un impact positif sur la fonction de cotit, nous donnons autant de
chance a chacun des sites de se faire valoir. Pour mettre en place ce mécanisme, nous
permutons ¢ sites consécutifs de la configuration initiale par g sites qui n’en font
pas partie et ce, jusqu’a ce qu’il n’y ait plus de permutation possible. Par exemple,
pour une configuration initiale de 14 (p) sites sur les 20 (|J|) disponibles et de ¢ égale
2, il y aura alors 21 (14/2* (20 — 14)/2) configurations évaluées. Ainsi, chacun des
sites de la configuration initiale se retrouve dans p/q configurations évaluées et ceux
qui n’en faisaient pas partis dans (|.J| — p)/q configurations. La configuration finale
(solution initiale) est celle de meilleur colit de toutes les configurations explorées.

Nous devons aussi déterminer le nombre p de sites a utiliser dans la configuration
initiale. Des essais ont montré que lorsqu’on utilise un plus grand nombre de
sites dans la solution initiale, la recherche locale est plus longue et converge moins
rapidement. La raison est qu’on est trés loin du nombre de sites utilisés dans la
solution finale, celle de 'optimum local. Par contre, lorsque le nombre de sites est
en dessous d’un certain seuil, il est possible qu’on ne puisse plus converger vers ce
minimum local. Choisir le nombre p de sites a utiliser est difficile puisqu’il varie

d’un réseau a 'autre. Nous sommes donc conservateurs dans ce choix, il est mieux

69

Tableau 4.12: Parametres de 'heuristique initiale établis selon le nombre de BTS
dans le réseau

H o]l »lq
50 (41212
100 4[18]2
150 [4243
200 | 4 |28 (3

de prendre plus de temps et d’obtenir une meilleure solution finale. Ce nombre est

fixé selon le nombre de BTS présent dans le réseau (tableau 4.12).

4.3 Résultats finaux

Nous comparons dans cette section I'heuristique hybride (HS) de recherche lo-
cale et de programmation par contraintes que nous proposons a la borne inférieure
(BI) et & 'heuristique de recherche tabou (TS) de Chamberland et Pierre (2002). La
borne inférieure a été calculée sur un modele en nombre entier résolu avec CPLEX
Solver 7.1 (Ilog, 2001).

Pour évaluer Vheuristique, 28 tests ont été générés tel que défini au début du
chapitre. Les résultats sont présentés au tableau 4.13. Les colonnes 1 a 3 présentent
respectivement le nombre de BTS, de sites de BSC et de sites de MSC. La colonne 4
présente le colit de la borne inférieure relaxée (BI). Les colonnes 5 et 6 présentent
respectivement le colit et le temps CPU de résolution obtenu par Pheuristique
tabou de Chamberland et Pierre (2002). Enfin, les colonnes 7 & 10 présentent les
résultats obtenus par notre approche hybride; respectivement le cotit, le temps CPU
de résolution, I’écart avec la borne inférieure et ’écart avec I'heuristique tabou.

Mentionnons d’abord que les résultats sont assez prés de la borne inférieure.
De plus, les résultats obtenus avec notre approche confirment les solutions trouvées

par I’heuristique tabou de Chamberland et Pierre (2002). En fait, nous améliorons

70

leurs résultats en moyenne de 2%, seuls les cotits de déux réseaux n'ont pas été
améliorés. Pour les réseaux de grande taille, plus de 150 BTS, cette amélioration
peut atteindre plus de 6%. D’autre part, nous constatons que la différence entre
la borne inférieure et nos solutions s’accentue avec le nombre de BTS. Cela est
normal puisque la borne inférieure est relaxée des contraintes de conservation de
flot. Il n’y aura donc qu’un seul lien de colit et capacité minimale (DS1) pour
représenter chaque affectation BSC-MSC. En réalité, il devrait y avoir la capacité
nécessaire sur ces liens pour assurer la conservation de flot, soit un ou plusieurs
DS1 et DS3. Le coit relié & la conservation de flot s’accroit donc avec la demande
en communication des BTS. Il est donc normal que plus le nombre de BTS est élevé
plus le colt négligé par la relaxation est élevé. Ceci explique I'écart grandissant en
fonction du nombre de BTS entre le cotit de nos solutions et la borne inférieure.
Enfin, nous observons que pour un nombre fixe de BTS, les écarts ne changent pas
beaucoup avec le nombre de sites de BSC et de MSC disponibles.

11 est difficile de faire une comparaison des temps de calcul entre 'heuristique
de Chamberland et Pierre et celle que nous proposons. En effet, les tests ont
été effectués sur des ordinateurs de puissance différente: il y a environ un facteur
de quatre entre la vitesse du processeur Athlon que nous avons utilisé et le Sun
Ultra 5 utilisé par Chamberland et Pierre. Par contre, on remarque que la solution
initiale est souvent trés bonne (tableau 4.14) et qu’elle se compare assez bien avec la
solution finale obtenue avec I'heuristique tabou. Comme cette solution est améliorée
dans le temps, il est possible d’avoir une bonne idée du cott final d’un réseau assez

rapidement lors de la recherche.

71

Tableau 4.13: Résultats finaux de 'heuristique hybride de recherche locale & de-
scente simple combiné au modele de PC

MTRTIKIT Bl TS LS
OBJ | OBJ | CPU | OBJ | CPU | Ecart (%)

(k%) (k%) (sec) (k%) (sec) | vs BI'|vs TS
501 10| 10 4051.5 4083.5 233.4 4051.5 360.0| 0.007 -0.78
50 10 20 4148.0 4218.0 462.8 4177.7 681.01 0.721 -0.96

100 | 10} 10 6860.9 7192.8 335.3 7136.3 718.0 1 4.01| -0.79

100 10| 20 6566.8 6935.9 536.3 6861.0 5170 | 448 -1.08
50 201 10 3316.6 3321.1 323.6 332111 2033.01 0.14 0.00
501201 20 3557.4 3583.2 462.8 3559.1 [2445.0 0.05 | -0.67

1001 20 10 6238.4 6651.1 477.2 6576.9 | 4485.0| 543} -1.12

100§ 20| 20 6928.9 7150.9 787.0 7112.8 | 47300 2.65] -0.53

1501 201 10 8581.4 9847.1 696.0 9330.1 | 53748 | 873 -5.25

1501 20| 20 8181.6 92086 | 1099.3 862491 62100 9.09 | -4.02

200 1 20} 10 | 10562.6 || 12576.7 | 1030.3 || 11811.4 | 13827.0 | 11.82 { -6.09

2001 204 20 1 110496 || 12873.8 | 1402.2 || 122957 | 7533.0 11.28 | -4.49
50 | 30| 10 3518.3 3525.2 460.0 351831 6147.0] 0.00; -0.20
501301 20 3583.8 3591.7 615.8 3591.7 1 4092.0| 0.22 0.00

1001 30} 10 6114.5 6217.3 889.9 6157.9 | 1404901 0.71 | -0.96

1001 36} 20 5600.4 5773.0 | 11175 57379 1 11756.0) 2.461{ -0.61

150 1 30| 10 7711.3 84176 | 13915 82894 1 13903.0 | 750 | -1.52

150 1 30 20 7530.5 8394.0 1 1753.3 8109.3 1 17120.0 | 7.69 | -3.39

2001 30| 10 9233.2 1 10921.0 | 1430.4 | 10384.6 | 40764.0 | 1247 | -4.91

2001 30 20 || 102476 { 11631.6 | 18473 || 11312.0 | 25234.0 | 10.39 | -2.75
501401 10 3267.9 3304.2 611.0 3284.5 1 9968.0| 051} -0.60
50] 40| 20 3318.8 3366.1 858.9 3337.6 | 12076.0 | 0.57 | -0.85

100 | 40| 10 5398.1 5558.8 | 13427 5586.6 | 16400.0 | 3.49 0.50

100 | 401 20 5249.4 532281 18215 5364.8 | 18807.0 1 2.20 0.79

150 | 40 10 8218.2 8028.1 1 1342.73 8739.4 | 60179.0 | 6.34 1 -2.11

150 | 40| 20 7345.3 8161.7 | 1878.9 8064.9 | 41513.0 | 980 -1.19

200 40 10 09064.9 || 108724 | 22774 | 101234 | 87318.0 | 11.68 | -6.89

2001 40 20 0561.1 || 11249.1 | 2474.5 || 10549.0 | 55555.0 | 10.33 | -6.22

72

Tableau 4.14: Comparaison de la solution initiale (SI) pour notre méthode a la
solution finale (TS) de I'heuristique tabou

TR TS ST

OBJ OBJ | CPU | Ecart
(k$) (k$) | (sec) | %
50| 10 10| 4083.5§ 4199.8 7| 2.85
50 1 10| 20| 4218.0| 4281.3 71 1.50
100 | 10} 10| 7192.8 || 7T154.2 12| -0.54
100 | 10| 20} 69359 || 68974 12| -0.56
50120} 10| 3321.1) 350144 168 5.43
50 1 20| 20 || 3583.2) 3635.8| 168 1.47
100} 20| 10§ 6651.1) 68328 108| 2.73
1001201 20§ 71059 | 71509} 108 0.00
150 1 20| 10} 98471 | 9680.2 271 -1.69
150120} 20§ 9298.6 | 9305.6 271 0.08
200 | 20 | 10 | 12576.7 || 12304.0 42 1 -2.17
200} 20 | 20 | 12873.8 || 12625.2 421 -1.93
50130} 10| 3525.2 1 37969 | 378 | 7.71
50 {1 30| 20| 3591.7 | 38529 378 7.27
100 { 30 | 10 | 6217.35 || 6625.1 | 648 6.56
100 [30 ¢ 20} 5773.0 | 5990.9 | 648 3.77
150 | 30 | 10|} 8417.6 | 84264 | 432] 0.10
150 | 30| 20| 8394.0) 8581.4| 432| 2.23
200 | 30} 10 | 10921.0 |} 10743.5 | 1176 | -1.63
200 | 30| 20§ 11631.6 || 11958.2 | 1176 | 2.81
501 40| 10§ 3304.2 || 3491.0| 588 | 5.65
50 1 40| 20 3366.1 || 3650.2| 588 | 8.44
100 | 40 | 10 || 5558.8 | 6103.3 | 1188 | 9.80
100 | 40 | 20 | 5322.8) 5900.5 | 1188 | 10.85
150 1 40} 10 | 8928.1 || 9530.2 | 1080 | 6.74
150 | 40 | 20| 8161.7 || 8326.4 | 1080 | 2.02
200 | 40 | 10 || 10871.4 | 10675.9 | 1512 | -1.81
200 40 | 20 | 11249.1 || 11615.7 | 1512} 3.26

73

CHAPITRE 5

CONCLUSION

Dans ce mémoire nous avons étudié le probleme de conception topologique de
réseau cellulaire qui consiste a déterminer la localisation des commutateurs (BSC et
MSC) d’un réseau et leur type, ainsi qu’a définir la topologie du réseau et les types
des liens. Ce probléme combinatoire est classé NP-difficile. Nous avons proposé
une approche hybride de recherche locale et de programmation par contraintes pour
le résoudre.

Nous avons commencé par développer une méthode exacte pour la résolution du
probleme & I'aide d’un modele de PC. Les stratégies d’affectations du modele ont
été congues pour que la solution trouvée, lors d'un arrét de la recherche avant sa
fin, reflete bien le cofit d’utiliser tous les sites de BSC dans la solution. Le modele
de PC peut ainsi servir a évaluer une fonction de colit qui varie en fonction des sites
de BSC utilisés par le modele. Nous avons baptisé ce concept du nom de sonde. La
sonde sert donc a estimer, en quelques secondes, le colit d’une solution comportant
un ensemble de sites de BSC donné. Nous avons ensuite ajouté une recherche locale
a descente simple qui utilise le concept de sonde pour déterminer I'ensemble des
sites de BSC qui conduit & la meilleure solution. La recherche s’effectue donc sur
les sites de BSC utilisés et non sur Pensemble des variables. L’espace de recherche a
ainsi été diminué par un facteur tres important. Par contre, le temps pour évaluer
une solution du voisinage a été augmenté et nous devons considérer que le coiit
associé & cette solution n’est qu’un estimé.

Les résultats ont démontré que notre méthode donne d’excellentes solutions
comparativement aux bornes inférieures issues de la relaxation des contraintes de
conservation de flot et aussi aux résultats obtenus par approche tabou de Cham-

berland et Pierre (2002). En moyenne, 'heuristique hybride que nous avons pro-

74

posée améliore les meilleures solutions obtenues jusqu’a maintenant par un facteur
de plus de 2%. Ces résultats montrent aussi que la sonde estime bien le colt des
voisins lors la recherche locale.

Deux instances n’ont pu étre améliorées, toutes deux comptant 100 BTS et
40 sites de BSC. Le nombre de sites de BSC est tres élevé comparativement au
nombre de BTS pour ces instances. L’espace de recherche locale est donc tres grand
puisqu’il faudra peu de sites de BSC pour satisfaire Pensemble des BTS. L’ordre
de grandeur de Pespace de recherche correspond a choisir environ 15 sites parmi
40, soit 10?2 combinaisons. Nous avons analysé 1'évolution de la solution lors de la
recherche locale pour ces deux instances. Des le début de la recherche, I'heuristique
a fait un mauvéis choix de direction de descente en limitant rapidement le nombre
de sites de BSC dans la solution. Limiter le nombre de sites confine la recherche
dans une zone de minimum local ol il n’est plus possible de sortir puisqu’on ne peut
pas augmenter le nombre de sites lors de la recherche. Pour la premiere instance
fautive, les résultats font état d’une solution initiale utilisant 18 sites de BSC contre
14 sites lors de la premiere itération de recherche locale. 11 est effectivement possible
que le nombre de sites utilisés diminue de plus de un site a une itération. On se
rappelle que nous devons définir un sous-ensemble de sites a fournir au modele. La
stratégie de recherche du modele affecte, a chaque BTS, le site de BSC le plus pres.
Cette méthode ne garantit pas l'utilisation de tous les sites de BSC. En effet, dans
le cas ot il n'y aurait pas de BTS qui se connecte a un des sites de BSC celui-ci
ne fera pas partie de la solution. Il est fort probable, surtout lorsque le nombre de
sites fournis au modele est grand, que les sites ne soient pas tous utilisés dans la
solution retournée. Dans le cas de la deuxieéme instance, le nombre de sites de BSC
de la solution initiale passe de 18 sites a 16 sites des la premiere itération.

Pour éviter ce probleme, I'heuristique locale pourrait visiter des solutions avec
plus de sites de BSC lors de 'exploration du voisinage. Le nombre de sites de

BSC pourrait ainsi diminuer ou augmenter d’une itération a 'autre. Par contre, la

75

recherche serait beaucoup plus longue et n’améliorerait probablement pas la solu-
tion finale. En effet, Jorsqu’un site serait ajouté a la solution courante, il est fort
probable que ce site ait un effet négatif sur le coiit de la solution visitée. Dans ce
contexte, I’heuristique ne choisirait jamais une solution avec plus de sites de BSC
du voisinage. Pour améliorer les chances de choisir la solution avec plus de sites,
nous pourrions utiliser une permutation et un ajout de site lors de I'exploration
du voisinage. Ceci augmenterait considérablement le temps d’une itération et donc
serait néfaste pour le temps de recherche et la convergence de I'heuristique locale.
11 serait tout de méme intéressant de valider ces affirmations avec quelques expéri-
mentations. Un moyen plus pratique pour résoudre ce probleme est de permettre de
n’enlever qu'un seul site de BSC par itération. L heuristique visiterait ainsi plus de
voising avant de prendre les décisions de descente qui diminuent le nombre de sites.
Pour explorer plus de solutions en début de recherche, nous pourrions ajouter un
effet aléatoire lors du choix d’un voisin. Ce processus est inspiré par les heuristiques
de recuit simulé. L’heuristique ne choisirait pas nécessairement le voisin de meilleur
cotit pour l'itération subséquente mais un autre qui a de meilleures caractéristiques
telles qu'un nombre de sites de BSC plus élevé. Plus 'heuristique s’approcherait
de la solution finale, plus 'effet aléatoire serait diminué.

Outre les améliorations proposées précédemment, plusieurs autres aspects pour-
raient étre perfectionnés. D’abord, un ajustement plus adéquat des temps de
recherche pour les modeles et leurs stratégies selon la taille des instances amélio-
rerait substantiellement Vefficacité de 'heuristique locale. En effet, comme ces
temps sont ajustés pour le réseau de plus grande taille, il serait possible de ré-
duire le temps de recherche pour toutes les tailles inférieures de réseaux. Ce gain
a chaque itération pourrait nous aider & introduire efficacement une recherche a
voisinage variable, par exemple. Il suffirait de définir un deuxiéme mouvement
local qui compléete bien le premier pour permettre de sortir d’'un minimum local

et ainsi visiter plusieurs minimums locaux. Il serait aussi intéressant de modifier

76

la structure en arbre utilisée dans ce projet par une structure plus réaliste afin de
garantir une certaine fiabilité aux topologies des réseaux solutionnés.

Finalement, mentionnons que notre modele et le paradigme de programmation
par contraintes sont suffisamment flexibles pour permettre d’adapter le probleme a
des réseaux cellulaires tres différents. En outre, les réseaux cellulaires de troisieme

génération seraient des candidats idéaux.

[
2]

3]

8]
9]

77

BIBLIOGRAPHIE

Ahuja, R., Magnanti, T., et Orlin, J.,"Network Flows”, Prentice Hall, 1992.

André, M., Pesant, G. et Pierre, S., A Variable Neighborhood Search Al-
gorithm For Assigning Cells to Switches in Wireless Networks”, soumis pour

publication, 2002.

Bhattacharya, P.S., Saha, D. et Mukherjee, A., "Heuristics for assignment
of cells to switches in a PCSN: a comparative study”, IEEE International

Conference on Personal Wireless Communications, Jaipur, Inde, pp. 331-334,

1999.

Chamberland, S. et Pierre, S., "On the Design Problem of Cellular Wireless
Networks”, publication Centre de recherche sur les transports CRT-2002-38,
2002.

Cox, L.A. Jr. et Sanchez, J.R., "Designing least-cost survivable wireless back-

haul networks”, Journal of Heuristics, vol. 6, no. 4, pp. 525-540, 2000.

Der-Rong, D. et Tseng, S.S.,"Heuristic and simulated annealing algorithms for
solving extended cell assignment problem in wireless ATM networks”, Inter-

national Journal of Communication Systems, vol. 15, pp. 47-65, 2002.

Gendreau, M., Laporte, G. et Potvin, J.Y., "Metaheuristics for the Vehicle

Routing Problem”, publication Centre de recherche sur les transports CRT-

963, 1994.
Glover, F. et Laguna, M., "Tabu Search”, Kluwer Academic Publisher, 1997.

Hansen, P., Mladenovic, N. et Perez-Brito, D., "Variable Neighborhood De-
composition Search”, Journal of Heuristics, vol. 7, no. 4, pp. 335-350, 2001.

78

[10] Holland, J.H.,”Adaptation in Natural and Artificial Systems”, The University
of Michigan Press, Ann Arbor, Michigan, 1975.

[11] Hung, W.N.N. et Song, X., "On Optimal Cell Assignments in PSC Net-
works”, IEEE Conference on Performance, Computing, and Communications,

Phoenix, USA, pp. 225-232, 2002.
[12] ILOG, "ILOG OLP STUDIO 3.5 - User’s Manual”, 2001.
[13] ILOG, "ILOG OLP STUDIO 3.5 - The Optimisation Language”, 1999.
[14] ILOG, "ILOG CPLEX 7.1 - Advanced Reference Manual”, 2001.

[15] Jonker, R. et Volgenant T., ”A Shortest Augmenting Path Algorithm for Dense
and Sparse Linear Assignment Problems”, Computing, vol. 38, pp. 325-340,
1987.

[16] Kirpatrick, S., Gelatt, C.D. Jr. et Vecchi, M.P.,”Optimization by Simulated
Annealing”, Science, vol. 220, 1983, pp. 671-680.

[17] Klincewicz, J.G., "Heuristic for the p-hub location problems”, European Jour-

nal of Operational Research, vol. 53, pp. 25-37, 1991.

[18] Marriott, K. et Stuckey, P.J., "Programming with Constraints : An Introduc-
tion”, The MIT Press, 1998.

[19] Merchant, A., et Sengupta, B., "Multiway graph partitioning with applications
to PCS networks”, IEEE INFOCOM’94, vol. 2, pp. 593-600, 1994.

[20] Merchant, A., et Sengupta, B., "Assignment of cells to switches in PCS net-
works”, IEEE/ACM Transactions on Networking, vol. 3, no. 5, pp. 521-526,
1995.

[21] O’Kelly, M.E., "The location of interacting hub facilities”, Transportation Sci-
ence, vol. 20, no. 2, 92-106, 1986.

22]

[23]

[24]

[25]

[26]

[27]

28]

29]

79

Pierre, S. et Houéto, F., "Assigning Cells to Switches in Cellular Mobile Net-
works Using Taboo Search”, IEEE/ACM Transactions on System, Man and
Cybernetics, vol. 32, no. 3, 2002.

Quintero, A., Pierre, S., ”A Memetic Algorithm for Assigning Cells to Switches
in Cellular Mobile Networks”, IEEE Communications Letter, vol. 6, no. 11,
2002.

Saha, D., Mukherjee, A. et Bhattacharya, P., "A Simple Heuristic for Assig-
ment of Cell to Switches in a PCS Network”, Wireless Personal Communica-

tion, vol. 12, pp. 209-224, 2000.

Sohn, J. et Park S., "Efficient solution procedure and reduced size formulations

for p-hub location problems”, European Journal of Operational Research, vol.

108, pp. 118- 126, 1998.

Reed, D., "The Cost Structure of Personal Communication Services”, IEEE

Communications Magazine, vol. 31, pp. 102-108, 1993.

Reeves, C.R., "Modern Heuristic Techniques for Combinatorial Problems”,

Halsted Press, 1993.

Skorin-Kapov, D. et Skorin-Kapov, J., "On Tabu-Search for the location of
interacting hub facilities”, European Journal of Operational Research, vol. 73,

pp. 502-509, 1994.

Soriano, P. et Gendreau, M., "Fondements et applications des méthodes de

recherche avec tabous”, R.A.I.LR.O., vol. 31, no.2, pp. 133-159, 1997.

Annexe |

Modeéle A

setting searchStrategy = DFS;
Open int+ Nombre_BSC_NULL;
int NombreBSC = ...;
%DONNEES

V!

enum BTS = .

%alpha

int Cap_Circuit_BTS [BTS] = ...;
%on

int Nombre_Link Requis [BTS] = ...;

%d
enum BSC_Site = .. ;
%K
enum MSC_Site = ...;

Open int+ ForceNull|int+];
BSC_Site truc[0..NombreBSC-1] = ...;

%DONNEES FIXENT

%l

enum Link Types = DS1, DS3;

%obeta

int Cap_Circuit_Link [Link Types] = [96, 2688];

81

%BSC

%S

enum BSC_Types = {BSC_NULL, BSC_A, BSC_B, BSC_C};
%m bts

int BSC_Max_Interface_BTS [BSC_Types| = [0,15,30,60];

%m msc

int BSC_Max_Interface_MCS [BSC_Types| = [0,15,30,60];

%n bsc

int Cap_Circuit_Stwich_BSC [BSC_Types] = [0,5000,10000,15000];

%MSC

%T

enum MSC_Types = {MSC_NULL, MSC_A, MSC_B, MSC_C},
%m bsc

int MSC_Max Interface_BCS [MSC_Types] = [0, 50, 100, 150];
%n msc

int Cap_Circuit_Stwich_MSC [MSC_Types] = [0, 100000, 200000, 300000;

%COUTS

%Liens BTS-BSC

int+ Cout_Unitaire Link BTS_BSC [BTS| = ..,;
int+ Dist_Link BTS_BSC [BTS, BSC_Site] = ...;

T Interfaces

int+ Cout_Unitaire_Interface [Link_Types] = [500, 2500 |; %DS1 et DS3

%Liens BSC-MSC
int+ Cout_Unitaire_Link Type [Link_Types| = [2000, 4000},
int+ Dist_Link BSC_MSC [BSC_Site, MSC_Site] = ..,;

%Couts intallation BSC et MSC respectivement

82

int+ Cout_Unitaire BSC_Type [BSC_Types] = [0, 50000, 90000, 120000},
int+ Cout_Unitaire MSC_Type [MSC_Types| = [0, 200000, 350000, 500000];

%VARIABLES

%A quel BSC est associe le BTS
var BSC_Site BTS_Connection [BTS];

%Quel est le type de BSC a ce site (6) y
var BSC_Types BSC_Site_Types [BSC_Site];

var int+ Cout_Link BTS_BSC [BTS] in 0..1000000;

%CONVENTION : i pour BTS, j pour BSC, k pour MSC et | type de lien
minimize
%Cout des liens entre BTS et BSC_Site

sum(i in BTS) (Cout_Link BTS_BSC [i])

%Cout des liens entre MSC_Site et BSC_Site
+sum (j in BSC_Site) Cout_Link BSC_MSC [j]

%Cout d’installation d’un tel type au BSC_SITE
+sum (j in BSC_Site) Cout_Unitaire_BSC_Type
[BSC_Site_Types [j]]/100

%Cout d’installation d’un tel type au BSC_SITE
+sum (k in MSC_Site) Cout_Unitaire MSC_Type
[MSC_Site_Types [k]]/100

subject to {

forall (i in BTS)
Cout_Link BTS_BSC [i]=(Cout_Unitaire_Link BTS_BSC [i] *
Dist_Link_ BTS_BSC [i,BTS_Connection [i]]/1000 +

Nombre_Link_Requis[i] * Cout_Unitaire_Interface[DS1])/100;

forall (j in BSC_Site)
Cout_Link BSC_MSC [j] = (sum(l in Link Types)
(Nombre_Link BSC_MSC_Type [j,]]* Cout_Unitaire_Link Type [l
* Dist_Link BSC_MSC [j,BSC_Connection [j]]/1000 +
(Nombre_Link BSC_MSC_Type [j,]] * 2 *
Cout_Unitaire_Interface [1])))/100;

%Somme des liens requis de BTS connectes a un BSC

%<= Nombre interfaces BTS a ce BSC

forall(j in BSC_Site)
sum (i in BTS) ((BTS_Connection [i] = j) * Nombre_Link Requis [i])<=
BSC_Max_Interface_BTS [BSC_Site_Types [j]];

%Somme des capacites des BTS connectes a un BSC

%<= Nombre switch capacity BTS a ce BSC

forall(j in BSC_Site)
sum (i in BTS) ((BTS_Connection [i] = j)* Cap_Circuit_BTS [i])<=
Cap_Circuit_Stwich BSC [BSC_Site_Types [j]];

sum (j in BSC_Site) (BSC_Site_Types [j] = BSC_NULL)
>= Nombre_ BSC_NULL;

forall(no in 0..Nombre_BSC_NULL-1)
BSC_Site_Types [truc[ForceNull[no]]] = BSC_NULL;

%CONTRAINTES REDONDANTES

%La somme des capacites des BTS doit etre plus petite
%que la somme des capacites des BSC

sum (i in BTS) Cap_Circuit_BTS[i] <= sum (j in BSC_Site)

83

Cap_Circuit_Stwich_BSC [BSC_Site_Types [j]};

sum (i in BTS) Nombre_Link Requis [i] <= sum (j in BSC_Site)
BSC_Max_Interface_BTS [BSC_Site_Types [j]];

84

Annexe II

Modele B

setting searchStrategy = DF'S;
%DONNEES

%l

import enum BTS;

Yalpha

int Cap_Circuit_BTS [BTS] = .. ;
%%

int Nombre_Link Requis [BTS] = ..;

%J
import enum BSC_Site;
%K

import enum MSC_Site;

%DONNEES FIXENT

%l

import enum Link Types;

Tobeta

int Cap_Circuit_Link [Link_Types] = [96, 2688];

%BSC

%S

import enum BSC_Types;

%m bts

int BSC_Max_Interface_.BTS [BSC_Types] = [0,15,30,60];

%m msc

86

int BSC_Max_Interface MCS [BSC_Types| = [0,15,30,60];
%n bsc
int Cap_Circuit_Stwich_BSC [BSC_Types] = [0,5000,10000,15000];

%MSC

%T

import enum MSC_Types;

%m bsc

int MSC_Max_Interface_BCS [MSC_Types] = [0, 50, 100, 150};
%n msc

int Cap_Circuit_Stwich_MSC [MSC_Types| = [0, 100000, 200000, 300000,
Open int+ NbMaxMSC;
Open float+ tempsRecherche;

%COUTS

%Liens BTS-BSC

int+ Cout_Unitaire_Link BTS_BSC [BTS] = ..;
int+ Dist_Link BTS_BSC [BTS, BSC_Site] = ..,;

7

YoInterfaces
int+ Cout_Unitaire_Interface [Link Types] = [500, 2500 |;
%DS1 et DS3 %Liens BSC-MSC

int+ Cout_Unitaire_Link Type [Link_Types| = [2000, 4000];
int+ Dist_Link_ BSC_MSC [BSC_Site, MSC_Site] = ...;

%Couts intallation BSC et MSC respectivement
int+ Cout_Unitaire BSC_Type [BSC_Types] = [0, 50000, 90000, 120000];
int+ Cout_Unitaire MSC_Type [MSC_Types| = [0, 200000, 350000, 500000;

%TRAFIC DAT

%Got
int+ Communication BTS_BTS [BTS, BTS| = ...;

%Gip
int+ Communication BTS_NET [BTS| = ..;

%Gpi
int+ Communication. NET_BTS [BTS] = ..;

%A quel BSC est associe le BTS
Open BSC_Site BT'S_Connection[BTS];

%A quel MCS est associe le BSC
var MSC_Site BSC_Connection[BSC_Site;

%Quel est le type de BSC a ce site
Open BSC_Types BSC_Site_Types [BSC_Site;

%Quel est le type de MSC a ce site
var MSC_Types MSC_Site_Types [MSC_Site];

%VARIABLES
var int+ Nombre_Link BSC_MSC_Type [BSC_Site, Link_Types] in 0..60;

%ATTENTION LIMITE SUPERIEURE
var int+ Cout_Link BTS_BSC [BTS] in 0..1000000;
var int+ Cout_Link BSC_MSC [BSC_Site| in 0..24000000;

%TRAFIC

%Fij o

var int+ Trafic. BTS_BSC_FROM_BTS [BTS] in 0..20000;
%Fji o

87

var int+ Trafic. BSC_BTS_FROM_BTS [BTS, BTS] in 0..20000;
%Fji p
var int+ Trafic BSC_LBTS_FROM_NET [BTS] in 0..20000;
var int+ Trafic. BSC_MSC [BSC_Site] in 0..10000000;
%CONVENTION : i pour BTS, j pour BSC, k pour MSC et 1 type de lien
minimize
%Cout des liens entre BTS et BSC_Site
sum(i in BTS) (Cout_Link BTS_BSC [i])

%Cout des liens entre MSC_Site et BSC_Site
+sum (j in BSC_Site) Cout_Link BSC_MSC [j]

%Cout d’installation d’un tel type au BSC_SITE
+sum (j in BSC_Site) Cout_Unitaire BSC_Type
[BSC_Site_Types [j]]/100

%Cout d’installation d’un tel type au BSC_SITE
+sum (k in MSC_Site) Cout_Unitaire_ MSC_Type
[MSC_Site_Types [k]]/100

subject to {

forall (i in BTS)
Cout_Link BTS_BSC [i]=(Cout_Unitaire_Link BTS_BSC [i] *
Dist_Link BTS_BSC [i,BTS_Connection [iJ]/1000 +
Nombre_Link Requisli] + Cout_Unitaire_Interface[DS1])/100;

forall (j in BSC_Site)
Cout_Link BSC_MSC [j] = (sum(l in Link Types)
(Nombre_Link BSC_MSC_Type [j,]]* Cout_Unitaire_Link Type [
* Dist_Link BSC_MSC [j,BSC_Connection [j]]/1000 +

88

89

(Nombre_Link BSC_MSC_Type [j,]] * 2 *
Cout_Unitaire_Interface [1])))/100;

%Somme du nombre liens de chacun des MSC connectes a un BSC
%<= Nombre interfaces MSC a ce BSC
forall(j in BSC_Site)
sum (I in Link_Types) Nombre_Link BSC_MSC_Type [j,ll<=
BSC_Max_Interface. MCS [BSC_Site_Types [j|};

%Somme du nombre de liens de chaque type (Lien) des BSC connectes a un MSC
%<= Nombre interfaces BSC a ce MSC (Inverse de 9)
forall(k in MSC_Site)
sum (j in BSC_Site) ((BSC_Connection [j] = k) * (sum (1 in Link Types)
Nombre_Link BSC_MSC_Type [j,]]))<=
MSC_Max Interface_ BCS [MSC_Site_Types [k]];

%Somme du nombre de lien de chaque type associe a un MSC multiplie par la
Yocapacites en circuits de ce type de lien<=Capacite en circuits de ce MSC
forall(k in MSC_Site)
sum (j in BSC_Site) ((BSC_Connection [j] = k)*(sum (I in Link Types)
Nombre_Link BSC_MSC_Type [j,]]*Cap_Circuit_Link[l])) <=
Cap_Circuit_Stwich-MSC [MSC_Site_Types [k]];

MSC_Site_Types]MSC_Site_NULL]=MSC_NULL:

sum (k in MSC_Site) (MSC_Site_Types[k] <> MSC_NULL)
<= NbMaxMSC;

forall(j in BSC_Site)
Trafic. BSC_.MSC [j] = sum (i in BTS)sum (o in BTS)
((BTS_Connectionli]=j)*(BTS_Connection|o]<>})*

90

(Communication. BTS_BTS [i,0]+Communication_BTS_BTS[o,i]))
+ sum(i in BTS)((BTS_Connection[i]=j) *
(Communication BTS_NET [i] + Communication. NET_BTS [i}));

forall(i in BTS)
Trafic.BTS_BSC_FROM_BTS [i] +
sum (o in BTS) Trafic. BSC_.BTS_FROM_BTS [i,0o] +
Trafic. BSC_LBTS_FROM_NET [i] <= Cap_Circuit_BTS [i]*1000;

forall(j in BSC_Site)
Trafic.c BSC_MSC [j] <= sum (! in Link Types)
(Nombre_Link BSC_MSC_Type [j,l]*Cap_Circuit_Link]l]*1000);

forall (i in BTS)
Trafic. BTS_.BSC_FROM_BTS [i] =sum (iprim in BTS)
(Communication BTS_BTS [i, iprim]) + Communication. BTS_NET [i};

forall (i in BTS, o in BTS)
Trafic. BSC_BTS_FROM_BTS [i,0o] = Communication BTS_BTS |o,i];

forall(i in BTS)
Trafic. BSC_LBTS_FROM_NET [i] = Communication NET_BTS [i];

