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RESUME

Cette thése est consacrée a I"étude et au développement d"algorithmes de remaillage
dans le cadre de la simulation d’écoulements a surface libre en milieu poreux. Ces
écoulements se rencontrent en particulier dans la phase de remplissage d’un moule pour
piéces en matériaux composites par le procédé RTM (Resin Transfer Moulding ou
moulage par transfert de résine), pour lequel la majorité des applications de cette
recherche ont été faites. Les méthodes de remaillage présentées ici sont basées sur le
crittre de Delaunay pour les triangulations. Une adaptation aux surfaces courbes
discrétes est proposée. Cette adaptation permet de s"affranchir de la représentation CAO
exacte des surfaces et de n’utiliser qu’une représentation approchée par une triangulation
sommaire. En effet, la possibilité de générer des maillages anisotropes surfaciques sans
garder le lien avec I'outil ayant servi pour modéliser ces surfaces permet un interfagage
aisé avec les solveurs par éléments finis. Cette partic a donné lieu & une premiére
publication. Pour les problémes pratiques rencontrés en RTM, les idées de cette
premiére partie on été réutilisées et modifiées pour permettre de générer un maillage
anisotrope. Le critére de Delaunay considéré ici est donc anisotrope. En effet, la
méthode de remaillage présentée dans cette thése permet de mieux simuler I"évolution
du front de matiére en permettant I"aplatissement des éléments dans le sens de
propagation de I'écoulement. Ainsi, la représentation de la frontiére de I'écoulement est
trés réguliére et lisse, ce qui n’était pas le cas des simulations faites sur un maillage fixe
et isotrope 4 nombre de degrés de liberté égal. Pour I’évolution de la surface libre dans
le temps, la méthode de remaillage a été couplée originalement avec une approche par
level-sets de fagon a contrdler le pas de temps indépendamment du maillage utilisé.
Cette partie a donné lieu a une seconde publication. L’adaptation aux simulations
thermiques est proposée dans la troisiéme partie de cette thése. En effet, le remaillage
permet aussi de mieux contrdler la diffusion numérique (artificielle) induite par les

méthodes de résolution en représentation Eulerienne utilisées lorsque des phénoménes
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de transport sont en jeu. Cette diffusion est liée au pas de discrétisation spatial. Dans le
cas du RTM, il arrive fréquemment que, au voisinage du front de résine et quand la
température differe de celle du moule et des fibres, la diffusion numérique soit un
obstacle au calcul précis des condition thermiques dans le moule. Les équations de
transport requiérent aussi la satisfaction d’une condition sur le pas de temps afin de
rendre le schéma numérique stable dans le cas d’une résolution sur grille Eulerienne.
Une approche & pas de temps variable pour les seuls calculs de transport est proposée.
Une étude visant a prouver la possibilité de générer un maillage unique pour I’ensemble
de la simulation est tentée pour les géométries bidimensionnelles (planes). Un
estimateur d’erreur basé sur la matrice Hessienne en pression est utilisé pour permettre
la génération d’un maillage rendant I’erreur d"interpolation uniforme. En paraliéle, un
heuristique est congu pour étirer les éléments en fonction des positions successives du
front déterminées a priori, afin de permettre une meilleure approximation du front lors
de la simulation. Enfin, une étude analytique d’un cas d'injection montre les
difficultés 3 générer un maillage satisfaisant deux conditions : uniformité de I'erreur
d’interpolation et uniformité du nombre de Courant (minimisation de la diffusion dans
les équations de transport et condition de stabilité). Ceci a donné lieu a la publication
d’un troisiéme article. La derniére partie de cette thése est I'application aux surfaces
courbes de I'estimateur d’erreur. Les surfaces considérées ici sont discrétes et il est en
effet nécessaire de discriminer I'erreur d’interpolation de I'erreur géométrique, afin
d éviter de raffiner inutilement le maillage 4 chaque « cassure » de la géométrie. Une
application sur une géométrie issue de I’industrie est présentée. Cette partie a donné lieu
a un quatriéme article. Enfin, une discussion sur I’ensemble de la recherche menée dans

cette thése est présentée.
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ABSTRACT

This thesis focuses on the study and development of remeshing algorithms for the
simulation of free surface flows in porous medium. This kind of flow is coming up with
the mould filling phase when manufacturing composite parts with the RTM process
(Resin Transfer Moulding), for which the majority of the applications of this research
have been done. Remeshing methods presented here are based on the Delaunay criterion
for triangulations. An adaptation for curved surfaces is proposed here. This adaptation
avoid to keep the link with an exact representation of the CAD surface, and allows the
use of a simple tessellation, instead. In fact, the ability to generate anisotropic surface
meshes without keeping the link with the tool used to model those surfaces allows to
interface finite element solvers with ease. A first publication has been made, based on
this part. For practical problems arising in RTM, the ideas coming from the first part
have been adapted to the goal of generating anisotropic elements. Thus, the Delaunay
criterion considered here is anisoptropic. In fact, the remeshing method presented in this
thesis allows a better simulation of the advancing flow front by using anisotropic
elements flattened in the direction of the flow. Thus, the resolution of the flow front is
high an shows a smooth and regular front. This was not the case with simulations made
on a fixed and isotropic mesh, with the same number of degree of freedom. For the
evolution of the free surface in time, a level-set approach was originally combined with
the remeshing algorithm in order to control the time step independently to the mesh. A
second publication has been based on this part. An adaptation of the remeshing
algorithm is proposed for thermal problems in the third part of this thesis. In fact, the
remeshing allows a better control of the numerical (artificial) diffusion that arise while
solving a transport phenomenon. This diffusion is related to the spatial discretisation
step. In the case of RTM it happens frequently, in the vicinity of the flow front and
when temperature differ notably to the temperature of the mould and the fibres, that the

numerical diffusion is an obstacle preventing to achieve a precise simulation of the



thermal behaviour in the mould. Transport equations require also a condition on the
time step to stabilize the numerical scheme when solved on an Eulerian grid. A variable
time-stepping for the sole calculation of transport phenomenon is proposed. A study
aimed to prove the possibility of generating a fixed mesh for the whole simulation is
proposed for planar geometries. An error estimator based on the Hessian matrix in
pressure is used to generate a mesh that will make the interpolation error uniform in the
domain. At the same time. an heuristic is built to stretch elements in function of the
successive positions of the mesh, determined a priori. This is improving the
approximation of the front that is made during the simulation. Finally, an analytical
study of a injection case is done, showing the difficulty to generate a mesh satisfying
two conditions : uniformity of the interpolation error, and uniformity of the Courant
number (which is shown to minimize the numerical diffusion in transport equations).
This work was published in a third article. The last part of this thesis focuses on the
application of the error estimator to curved surfaces. The surfaces considered here are
discrete, it is necessary to separate the interpolation error from the geometrical error.
This is done to avoid useless refinement of the mesh near angles in the geometry. An
sample case from industry is studied. This part composes the fourth article. Finally, a

discussion on the whole research made in this thesis is presented.
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INTRODUCTION

Les méthodes numériques sont aujourd'hui appliquées dans les domaines les plus variés,
en raison de leur grande souplesse. Les progrés constants de l'informatique et des
ordinateurs permettent de traiter des problémes de plus en plus complexes. 11 est courant
de nos jours de traiter des problémes de simulation non stationnaires, c'est-a-dire dans
lesquels I'aspect temporel intervient. Dépendamment de leur taille, ces demiers peuvent
nécessiter de grosses capacités et de longs temps de calcul. De tels problémes a plusieurs
centaines de millions de degrés de liberté sont. une fois discrétisés, calculables en
quelques semaines sur une machine paralléle. Un des aspects qui influent beaucoup la
qualité des solutions obtenues est la discrétisation du probléme. Une discrétisation trés
fine et uniforme dans l'espace et le temps permet généralement d'obtenir une solution de
bonne qualité. en autant que la méthode de calcul converge, mais les temps de calcul
seront trés longs. Il est alors bien souvent nécessaire d'effectuer une discrétisation
judicieuse du domaine. dans laquelle seules les zones a fortes variations sont finement
représentées. les autres I'étant de fagon beaucoup plus grossiére. En améliorant ainsi le
taux de convergence (rapport entre l'erreur et la taille du probleme discret), on gagne
plusieurs ordres de grandeur sur le temps de calcul et par conséquent. sur la qualité de la

solution & temps de calcul constant.

La fagon de discrétiser un probléme dépend de la méthode numérique utilisée. La
méthode des différences finies par exemple ne suppose qu'une discrétisation spatiale
(maillage) et non fonctionnelle puisque la notion d'interpolation ne fait pas partie de la
formulation. De plus. elle implique que le maillage soit structuré et dispose d'une
connectivité (voir la Figure 0.1 partie supérieure). Cette derniére propriété la rend trés
peu souple. D'autres méthodes admettent une discrétisation non seulement géométrique
mais aussi fonctionnelle. comme la méthode des intégrales de frontiéres ou la méthode

des éléments finis (MEF) qui est au centre de ce travail. Dans cette derniére, le maillage



peut trés bien ne pas disposer de connectivité et de notion de voisinage implicites, on
parle alors de maillage non structuré (voir la Figure 0.1 partie inférieure). C'est une
caractéristique trés appréciable lorsque l'on doit traiter des problémes de géométrie

complexe, qui sont fréquemment rencontrés dans I'industrie.

Ce maillage sert de support a I'espace fonctionnel dans lequel la solution du probléme
est recherchée. Chaque élément du maillage (triangle, quadrilatére etc...) sert de support
a I'interpolation et on associe un ensemble de fonctions de forme qui vont permettre
d'approcher la solution exacte du probléme dans cet élément. Le maillage est donc une
composante a part entiére de la méthode numérique. et le respect de certaines régles lors

de sa construction permet de minimiser les erreurs lors du calcul.

Figure 0.1: Maillage structuré sur la moitié supérieure du domaine: la connectivité est
implicite. En bas : maillage non structuré, dans lequel la connectivité est explicite

Il existe de nombreuses variantes de maillages selon la nature du domaine étudié et sa
dimension. Pour des problémes unidimensionnels un maillage est constitué par une
succession triviale de segments reliant des sommets consécutifs entre eux. En deux

dimensions, on peut trouver des maillages formés d'éléments triangulaires, d'éléments a



quatre cotés (quadrilatéres) ou d'une combinaison des deux. En trois dimensions les
éléments peuvent étre des tétraédres, des pyramides, des prismes. des hexaédres.
Actuellement les maillages les plus répandus sont constitués de simplexes, i.e.
d'éléments les plus simples et de volume (surface en deux dimensions) non nul. En
fonction de la dimension, il s'agit de triangles ou de tétraédres. Il est en effet beaucoup
plus facile de paver un domaine a l'aide de simplexes. plutét qu'a I'aide d'éléments non

simpliciaux (quadrilatéres ou autres).

Dans la MEF, il est possible d'augmenter ou de mieux répartir le nombre de degrés de
liberté d'une simulation dans l'objectif de réduire Verreur d'approximation. Ceci est
réalisé en enrichissant la base fonctionnelle par des fonctions polynomiales d’ordre p
supérieur. Celle ci sert a mieux approcher la solution dans chaque élément géométrique
et on parle alors de raffinement "p". On peut aussi augmenter le nombre d'éléments dans
le maillage, en diminuant leur taille A. On parle alors de raffinement "A". 1l reste une
alternative : déformer le maillage de fagon a mieux répartir les degrés de liberté. sans en
augmenter le nombre total : c'est le raffinement "r". Le raffinement "p" permet
d'améliorer la précision des simulations dans le cas de phénoménes de nature continue.
mais est totalement impuissant face a des phénoménes aux variations brutales tels les
chocs aérodynamiques ou le suivi de front. Ceci est du a la nature continue de la base
fonctionnelle; au sein d'un élément on ne peut en effet pas rendre compte correctement
d'une discontinuité (phénoméne de Gibbs lié a la projection L°. voir la Figure 0.2). Il est
de plus trés difficile d'orienter la base fonctionnelle de fagon a "capter” des effets
directionnels. Les raffinements "h" et "r" sont par contre trés adaptés a ce style de
simulation, et ils permettent de plus d'imposer une anisotropie dans le maillage (voir la
Figure 04). C'est la solution généralement retenue pour traiter les chocs et

discontinuités.
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Figure 0.2: Phénoméne de Gibbs unidimensionnel. Cet effet se produit lorsque I'on
essaie de faire la projection d'une fonction discontinue (ici la marche en trait plein)
dans un espace fonctionnel polynomial. Le projeté est la courbe oscillante

Dans le cadre de phénoménes non stationnaires, ces chocs et ces discontinuités et d'une
fagon générale les caractéristiques de la solution, vont se déplacer avec le temps. Il est
donc nécessaire de modifier la discrétisation en cours de calcul pour tenir compte de
I'évolution du phénoméne. Cette adaptation de la discrétisation permet d'éviter des
durées de calcul prohibitives (ou des résultats peu précis) liés a l'utilisation d'une
discrétisation fixe, et d'obtenir de bons taux de convergence. Le développement de
méthodes de maillage et de remaillage adaptées aux phénoménes non stationnaires et en
particulier aux phénoménes impliquant un front mobile, par exemple la frontiére entre

deux fluides non miscibles. constitue I'un des objectifs de cette thése.



Figure 0.3: Front de matiére en Figure 0.4: Maillage non structuré qui

mouvement (en deux dimensions) "suit” le front de matiére (utilisation
d'éléments anisotropes et adaptés en
taille)

Le Chapitre | est une étude bibliographique mettant en valeur les travaux précédents
dans le domaine de la génération et I'adaptation de maillages. L'objectif de cette étude
est de situer le travail dans le cadre des développements les plus récents, notamment sur
les aspects anisotropes et les frontiéres mobiles. Le Chapitre 2 présente I'organisation
générale de la thése par articles. Le Chapitre 3 présente un algorithme de génération de
maillage pour surfaces courbes et discrétes. Le Chapitre 4 présente un algorithme de
génération de maillages adaptés aux écoulement a frontiére libre rencontrés dans le
procédé RTM. L’évolution du front est gouvernée par un algorithme basé sur les level-
sets originalement associé a I'algorithme de remaillage. Le Chapitre 5 présente une
extension dans le cas d’un probléme de transport (simulations thermiques), et un
algorithme permettant de générer un maillage unique pour I’ensemble de la simulation a
I'aide d’un estimateur d'erreur. Le Chapitre 6 présente une extension aux surfaces
courbes de I’estimateur d'erreur du Chapitre 5. et une application pour une piéce réelle
provenant de I'industrie. Enfin, une discussion générale sur I’ensemble le la recherche

présentée dans ce mémoire clot la thése.



CHAPITRE 1
REVUE BIBLIOGRAPHIQUE

1.1 Introduction

Les techniques de maillage et de remaillage sont trés diverses. Historiquement. les
premiéres a faire leur apparition sont les méthodes fondées sur la décomposition
manuelle du domaine en zones plus simples a mailler, le maillage de chacune de ces
zones (souvent des quadrilatéres en 2D et des hexaédres en 3D) étant effectué
automatiquement selon un schéma prédéfini. On ne pouvait alors pas parler de maillage

automatique, puisque I'essentiel du travail était effectué manuellement.

Les méthodes utilisées pour générer des maillages structurés (maillages obtenus par
résolution d'équations aux dérivées partielles principalement) ne permettent pas
d'atteindre une souplesse suffisante pour les problémes que nous rencontrerons. Nous ne
nous attarderons donc pas plus sur ces méthodes (Camarero et Reggio, 1983: Thomson

et al, 1985; Winslow, 1967).

Aujourd’hui, il n'existe que quelques grands types de mailleurs automatiques : ceux
utilisant la méthode dite de Delaunay (Borouchaki et al., 1997: Cigoni et al, 1998;
Delaunay, 1934; George et Borouchaki. 1997) (probablement la plus répandue), ceux
fondés sur I'avance de front (Cuilliére, 1998; Frangois. 1998; Lohner et Parikh, 1988),
les méthodes opérant par décomposition spatiale (énumération exhaustive (Thacker et
al., 1980), quadtree et octree (Yerry et Shephard, 1984)), et enfin les méthodes basées
sur la compaction de sphéres (Shimada, 1993) ("sphere packing” ou encore "bubble
packing”). Chacune de ces méthodes se distingue par un grand nombre de variantes.

Dans ce qui suit, nous ne nous intéressons qu'aux mailleurs entiérement automatiques et



aux méthodes de remaillage existantes. Dans chaque cas. nous étudierons les

développements les plus récents concernant I'aspect anisotrope et le suivi d'un front.

1.2 Méthodes de maillage existantes

1.2.1 Mailleurs de Delaunay

Les mailleurs dits "de Delaunay" permettent de trianguler (dans le sens de paver a I"aide
de simplexes) un domaine isomorphe a R". A priori le domaine doit étre convexe, mais
c’est une condition extrémement contraignante. Les éléments du maillage sont des
simplexes (triangles en deux dimensions, tétraédres en trois dimensions. etc). Il est bien
entendu possible de généraliser ces méthodes de maillage aux domaines non convexes et
en respectant des contraintes (arétes et faces devant faire partie de la triangulation). La
fagon de générer les simplexes est fondée sur les résultats de Dirichlet (1850). Voronoi
(1908) et bien entendu Delaunay (1934). Dirichlet montre que F'on peut. en deux
dimensions, faire une partition du plan en cellules convexes (et polygonales) a partir
d'un nuage de points en se basant sur des critéres de proximité. Voronoi €étend cette
partition en dimension quelconque, on parle alors de partition en cellules (ou d-
polytopes, d étant la dimension de I'espace) de Voronoi. La triangulation de Delaunay
d'un nuage de points est en fait le dual de cette partition en cellules convexes. L'idée qui
sous-tend tous les mailleurs dits "de Delaunay" est qu'il faut construire le maillage en
respectant a chaque étape le critére de Delaunay appelé "critére de la sphére vide". Un
maillage qui est "de Delaunay" posséde des propriétés intéressantes comme nous le

verrons par la suite, en particulier en deux dimensions.



1.2.1.1 Théorie sous jacente

Soit un ensemble de points V ={v,,...,v,},n2d+l dans l'espace euclidien EY (cet

espace est de dimension d). Si disl(v,,v,) désigne la distance euclidienne entre les
points v,et v . la région V(i)={\'eE"|disl(v,,x)S dist(v,,vj),j:l...n} qui est le lieu
des points plus proches de v, que tout autre point de ¥ est appelée le d-polytope de

Voronoi (ou cellule de Voronoi ) associé au point v, . Si d=2 nous sommes ramenés dans

le cas bidimensionnel, plus commode pour les schémas (voir la Figure 1.1). Si on relie le
nceud interne a chaque cellule de Voronoi aux nceuds des cellules immédiatement
voisines, on obtient le maillage appelé triangulation de Delaunay (voir la Figure 1.2).
Cette construction est unique si les points sont en configuration générale, i.c., I'ensemble
V n'admet pas ¢+2 points cocycliques. Dans le cas contraire il existe plusieurs maillages

équivalents qui seront abusivement appelés "triangulations de Delaunay".

Figure 1.1: Diagramme de Voronoi en Figure 1.2: Diagramme de Voronoi et
deux dimensions triangulation de Delaunay



Le critére de Delaunay, ou critére de la sphére vide, dit que pour un maillage de
Delaunay, la sphére ouverte circonscrite a chaque simplexe ne contient strictement
aucun point de ¥. Comme nous le verrons par la suite, ce critére est intimement lié a la
notion de distance dans I"espace considéré. Pour le moment, nous en restons a la notion

de distance euclidienne.

Le lemme général de Delaunay démontré en 1934 (Delaunay, 1934) est a l'origine des

algorithmes de génération de maillages de Delaunay.

Lemme général de Delaunay. Si 7T est une triangulation quelconque de I'enveloppe
convexe d'un nuage de points ¥ . alors si la propriété de la sphére vide est vérifiée pour
toute configuration de deux simplexes adjacents de T, elle est vérifiée globalement et T

est une triangulation de Delaunay.

A partir de ce lemme il est facile de montrer que, en deux dimensions. on peut passer
d'une triangulation d'un ensemble convexe de points @ une autre par retournement
d"arétes (George et Borouchaki. 1997: Cherfils et Hermeline 1990). Ceci n’est toutefois
pas établi en trois dimensions (par exemple, une modification de la topologie sans ajout
ni retranchement de sommets permet de modifier le nombre de tétraédres du maillage),
ni a fortiori en d dimensions. Il est a noter que le retournement d'aréte est le seul
opérateur topologique en deux dimension (autrement dit, tous les opérateurs se raménent
a une série de retournements d"arétes). Pour des maillages en dimension supérieure, il
existe plusieurs opérateurs topologiques (en trois dimensions, retournements d’aréte et

de face par exemple) qui rendent délicates les manipulations de ce type de maillage.

Dans le plan. la triangulation de Delaunay maximise I'angle minimal formé par les arétes
des triangles, ce qui la rend trés apte a étre utilisée pour un calcul par éléments finis. En

dimension supérieure, un probléme survient, car il est possible d'avoir des éléments de
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volume nul qui respectent toutefois le critére de Delaunay (tétraédres plats appelés
"slivers" (Cavendish et al., 1985). Ces éléments sont tout a fait incompatibles avec un
calcul par éléments finis. lls doivent étre éliminés aprés la génération du maillage par

une phase d'optimisation.
1.2.1.2 Principe de génération

La plus commune. appelée méthode incrémentale. consiste a insérer les points un a un
dans la triangulation, en partant de la triangulation triviale (ne dépendant que de la
dimension) d'une boite englobant tout le domaine considéré. A chaque étape. on cherche

a déterminer la triangulation DT(V,,) contenant n+/ points a partir de la triangulation
DT(V,) des n points obtenus a I'étape précédente. Le probléme élémentaire consiste a

insérer un point dans une triangulation qui respecte le critére de Delaunay. de fagon a ce
que la triangulation issue de cette opération le respecte aussi. Ceci constitue le noyau de
Delaunay. L'algorithme dit "de Watson" (Watson. 1981) permet d'effectuer trés
efficacement cette opération. Cet algorithme consiste en la destruction des simplexes qui
ne respectent pas le critére de Delaunay vis a vis du point P a insérer. Ces simplexes sont

déterminées a partir de la mesure de Delaunay définie de la fagon suivante :

Soit r, le rayon du cercle circonscrit au simplexe K. soit dist(P.0O,) la distance entre P

et le centre O,. de ce cercle. Alors a(P.K) défini par :

dist(P.O,.)

ry

a(P.K)= n

est la mesure de Delaunay et la condition d'appartenance du simplexe K a la cavité C,

associée a P est :
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a(P,K) <1 )

Tous ces simplexes forment une cavité connexe (Watson, 1981). La cavité C,, doit étre
vidée de tous ses éléments, il suffit alors d'étoiler le point P avec les frontiéres de C).
pour obtenir la triangulation de B, que 'on doit alors réinsérer dans la triangulation.

Formellement, ces étapes se résument en :
DT\, )=DT¥V,)-C, +B, 3)

Ces étapes sont représentées dans les figures ci-dessous.

N

Figure 1.3: Cercles Figure 1.4: Simplexes Figure 1.5: Simplexes de
circonscrits et le point P a de C, détruits B, construits et ajoutés a
insérer dans la triangulation la triangulation  pour
DT\,) former DT(I',.,)

On applique ce schéma pour tous les points a insérer pour obtenir finalement la
triangulation de Delaunay non contrainte de |I'ensemble des points. en plus des points de
la boite englobante. Il suffit de retirer les éléments contenant au moins un point
appartenant a cette boite pour obtenir le maillage de I'enveloppe convexe de 'ensemble
des points de V. Il existe plusieurs autres méthodes de génération de maillages dites "de
Delaunay”. L'approche consistant a "diviser pour régner” (Cigoni et al.. 1998: George et

Borouchaki, 1997) permet la génération de triangulations de Delaunay quand les points a
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insérer sont connus a priori. Cette méthode est plus rapide mais du méme ordre en

nLog(n) que la méthode précédente.

Les domaines que l'on veut mailler ne sont pas nécessairement convexes. De plus. il est
parfois intéressant d'imposer des contraintes sur le maillage, i.e.. d'imposer que le
maillage passe par certains endroits (en 2D il peut s'agir d'arétes et en 3D d'arétes ou de
faces). La frontiére non convexe et les contraintes n'ont aucune raison de faire partie du
maillage obtenu a l'aide des procédures décrites plus haut, tout simplement parce qu'a
aucun moment dans cet algorithme on ne tient compte des relations entre les points que
I'on insére (relations d'appartenance a une arréte par exemple). Il existe plusieurs fagons
de le faire. La premiére méthode, dite de "forgage des contraintes”. consiste a faire
apparaitre les contraintes dans le maillage uniquement par des opérations topologiques
(par exemple retournement d'arétes en deux dimensions). Poussée a I'extréme. sans
méme parler d'insertion de points selon la méthode de Delaunay, on retrouve la méthode
de Coupez (1991). Cette récupération des frontiéres fonctionne bien en deux dimensions.
En trois dimensions les choses se compliquent car il n'est pas prouvé que l'on puisse
passer d'une triangulation a une autre en faisant des inversions de faces ou d'arétes
(Georges et Borouchaki, 1997). 1l existe d'autres méthodes qui consistent en un cassage
des contraintes, qui a 'avantage d'étre valable quelque soit la dimension de I'espace.
L'idée est de découper les contraintes qui ne font pas partie de la triangulation finale en
chaque point oa elles croisent une arréte du maillage. Ceci assure qu'elles feront partie.
au moins sous une forme "découpée”, de la triangulation finale. Ce cassage est effectué
en générant des points a I'intersection de toutes les entités qui coupent [a contrainte. et en
insérant ces points a l'aide de la méthode classique de Delaunay. Il existe une autre
méthode (proposée dans (Pébay et Frey, 1998)) qui consiste i rendre les contraintes et la
frontiére Delaunay-admissibles a priori, c'est 4 dire avant de commencer 4 mailler.
toutefois elle n'est pour linstant pleinement valable qu'en deux dimensions. En
conclusion, un mailleur purement "Delaunay” en 3D ne respecte pas forcément les

frontiéres de I'objet 4 mailler, ce qui peut poser quelques problémes.
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1.2.2 Mailleurs frontaux

Les mailleurs frontaux n'existent que pour des espaces isomorphes 2 #"avec n =2 ou 3.
Il n'existe pas de théorie unifiée concemant ce type de mailleur, car la méthode est
fortement empirique et ne repose que sur des notions trés intuitives. En deux
dimensions. I'application de cette méthode est simple, et elle est généralement reconnue
comme fiable. En trois dimensions, peu de recherches ont abouti car il y a beaucoup de
problémes de convergence des algorithmes, en partie a cause du grand nombre de
paramétres dont ils dépendent. On peut toutefois citer les travaux de Lhner et Parikh
(1988) et de Peraire et al. (1988) qui, bien qu'incomplets ont le mérite d'étre les premiers
dans ce domaine. Par la suite (et par ordre chronologique), (Golgolab, 1989 : Lo, 1991 ;
Rassineux, 1997) ont développé et stabilisé les algorithmes reposant sur cette approche.
Il existe assez paradoxalement une grande variété de principes utilisés lors de I'avance
d'un front. Plus curieusement encore, ceux-ci sont parfois totalement antagonistes. Il
s'agit la d'une des conséquences de I'aspect empirique de la méthode. Une des aspects
intéressants de cette approche est quelle conserve naturellement les frontiéres,
contrairement a la méthode de Delaunay dans laquelle il faut effectuer un traitement
particulier. Toutefois. cette méthode est une des plus lentes, ceci est di aux nombreux
tests d'intersections nécessaires pour tenter d'assurer un maillage valide (cela ne marche

malheureusement pas systématiquement !)
1.2.2.1 Principe de génération

L'idée principale est de couvrir le domaine de calcul Q par des triangles (2D) ou des
tétraédres (3D), en progressant par couches successives d'éléments a lintérieur du
domaine. La frontiére entre la partie de Q qui est maillée et le reste de Q constitue le
front. Ce front est initialisé au début de la procédure de maillage par la frontiére du

domaine Q. En 2D, un front est constitué de segments de droite (voir la Figure 1.6),
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alors qu'en 3D il est constitué de triangles. Les étapes de la progression de I'algorithme
sont les suivantes (Frangois, 1998 ; Golgolab, 1989 ; Lohner et Parikh, 1988):

. Initialisation du front sur la frontiére de Q.

Classement du front selon un critére (taille, qualité... dépend de la dimension de

I'espace).

3. Sélection du premier élément du front.

Calcul de la position du sommet idéal P.

5. Recherche de la liste des sommets les plus proches existants (nceuds pré-générés

ou faisant partie du maillage).

Classement des nceuds (selon critére a déterminer).

7. Création d'un élément valide (pas d'intersection avec d'autres éléments, volume

8.
9.

positif...) avec le premier sommet qui le permet.
Mise a jour du front et reclassement

Si le front n'est pas vide (€2 non totalement recouvert). passer a I'étape 3.

10. Etape de lissage et de régularisation du maillage.

Ces étapes sont représentées dans les figures ci-dessous. Elles constituent le canevas

d'un grand nombre de méthodes.

Figure 1.6 : Front initial Figure 1.7 : Quelques Figure 1.8 : Maillage
sur un polygone en 2D étapes de l'avance de front  final. Deux points

internes ont été créés



Les différences entre les approches se situent au niveau des heuristiques choisies pour
assurer la convergence du mailleur et la génération de simplexes de bonne qualité. Les
étapes 2, 4, 6 et 7 de lalgorithme précédent sont implémentées de fagons trés variables
selon les auteurs :

Etape 2 : En 3D, le classement des éléments du front est fait dans I'ordre croissant de
leur taille par Rassineux (1995 et 1997), et dans l'ordre croissant de leurs tailles
pondérée par leur qualité par Golgolab (1989). En 2D, selon Frangois (1998), il est

acquis de classer les segments du front par ordre de longueurs croissantes.

Etam 4 : Les sommets peuvent étre générés soit a priori (avant la connexion) (Lo, 1991;
Rassineux, 1995), soit pendant (Chae 1989; Golgolab. 1989: Cuilliére 1998).

Etape 6 : Golgolab (Golgolab, 1989) propose de classer les neuds du front selon un

critére de proximité topologique (voir Figure 1.9) avec I'élément de base.
A : Points adjacents v v
L : Points liés SR i S o
V : Points voisins

Figure 1.9 : Classification des nceuds selon (Golgolab.
1989)

Frape 7 : Il est nécessaire d'éviter les cas de blocage. En 2D. les blocages sont résolus

‘ trés simplement (par la réduction de la distance entre le point idéal et le segment
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considéré). Il n'existe pas de cas de blocage topologique en 2D. En 3D, la situation est
toute autre. Si aucun des nceuds de I'étape 6 ne convient, alors il faut prendre le neud
idéal. Si le nceud idéal ne convient pas, il faut en prendre un autre un peu plus proche du
triangle, et recommencer Fopération. Si a l'issue de cette opération, il est toujours
impossible de mailler, on a affaire en 3D au cas du polyédre de Schonhart (1928) (voir la
Figure 1.10) et qui constitue un exemple de blocage topologique. Celui-ci n'est en effet
pas triangulable dans le cas général sans génération d'un ou plusieurs points internes
dits points de Steiner (voir la Figure 1.11). Pour contrer ce genre de situation, Golgolab
(1989) et Rassineux (1995) proposent de détruire des éléments du maillage, en espérant
de se retrouver par la suite dans une configuration non dégénérée. Toutefois, il est clair
que cette action peut entrainer le bouclage de l'algorithme (destruction. puis création
d'une configuration semblable en un lieu légérement différent). Ce bouclage est trés
génant car il est difficile a détecter. Le mailleur peut en effet faire se déplacer la cavité

dans I'ensemble du domaine et ne jamais arriver a la refermer complétement.

Figure 1.10 : Exemple de polyédre de Figure 1.11 : Ajout d'un point de Steiner.
Schonhart (non triangulable) décomposition en huit tétraédres
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1.2.3 Autres méthodes

Les autres méthodes de maillage sont principalement les méthodes de décomposition
spatiale. Selon les cas, la décomposition est faite en cases de taille réguliére
(énumération exhaustive de Thacker et al. (1980) qui imposent de facto une
discrétisation fixe ou selon une décomposition plus apte a saisir les détails géométriques
du domaine (octree en 3D. étudié par Yerry et Shephard (1984), quadtree en 2D). Ces
méthodes ont I'avantage d'étre extrémement simples a coder, rapides et robustes. Leurs
principaux inconvénients sont leur manque de flexibilit¢ quant a la génération de
maillages adaptés. et le fait que les éléments générés prés des frontiéres du domaine a
mailler sont de mauvaise qualité et souvent trop petits. De plus, il semble trés difficile
d'adapter ces méthodes a une génération de maillages anisotropes, car les notions de
distance et d'orientation ne font pas intimement partie de la méthode de maillage. Ces
méthodes reviennent en fait a se ramener a un probléme de topologie simple, soit le
maillage trivial d'un carré ou d'un cube. Les problémes sont rencontrés principalement
lors du maillage des éléments de la frontiére du domaine, ol la complexité et le nombre
de situations particuliéres augmentent grandement, et a un point tel qu'en 3D il faut

parfois utiliser d'autres méthodes pour effectuer ce maillage.

La méthode de compaction de sphéres est en fait un cas particulier de méthode de
Delaunay. Elle consiste en un positionnement optimal des sommets, les connexions entre
eux (génération de la triangulation du nuage de points a4 proprement parler) étant
effectuées par une méthode de Delaunay par la suite. De par sa nature, elle posséde donc
certains des inconvénients de la méthode de Delaunay, inconvénients particuliérement
critiques en 3D (récupération des frontiéres du domaine a mailler par exemple). Elle
permet toutefois de générer des maillages extrémement réguliers, sans la nécessité de
lissage. Elle permet de plus de générer des maillages anisotropes, au méme titre que la

méthode de Delaunay (Shimada, 1997).



1.2.3.1 Principe de génération - méthode de quadtree et d’octree

La méthode de quadtree modifiée suit le principe exposé en détail dans les Figure 1.12
a-h. De a a f, on montre la génération de la grille (subdivision de chaque cellule en
quatre), étape par étape. En g, une subdivision supplémentaire est imposée de fagon a ce
que deux cellules voisines ne puissent avoir un rapport de taille supérieur a deux. Ceci
est effectué pour limiter le nombre de cas différents lors de la transformation des cellules
en triangles. En g, on montre précisément le début de cette transformation; elle consiste
a paver chaque cellule intérieure selon son type (cellule simple. avec 1 c6té découpé, 2
cotés découpés, etc) a l'aide d'un schéma prédéfini (ou patron. template). Les cellules
situées sur la frontiére sont traitées a part. Si elles font partie d'une des configurations
simples (toujours le cas en 2D) alors elles sont maillées de nouveau a I'aide d'un schéma
prédéfini. Dans le cas contraire (rencontré parfois en 3D). il faut faire appel a d'autres

méthodes de maillage. Enfin. les cellules situées en dehors du domaine sont éliminées.
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Figure 1.12 : Construction d'un quadtree. puis génération d'un maillage (partiel ici)

1.2.3.2 Principe de génération - méthode de compaction de spheéres.

Cette méthode doit son origine a Shimada et Gossard (1993 et 1995). Shimada s'est basé
sur des analogies physiques avec des réseaux de bulles. afin de générer un maillage le
plus régulier possible. Le fondement de cette méthode revient en fait & générer tous les
points du maillage et a les positionner correctement avant de générer la connectivité. En
fait cela correspond a placer la phase de lissage (laplacien ou autre) avant de générer les
éléments du maillage. Ceci est a opposer aux méthodes précédemment décrites. dans
lesquelles les points sont générés le plus souvent en méme temps que les éléments. le
lissage intervenant a la fin du processus. Les différentes étapes d'un mailleur par

compaction de sphéres ("sphere packing”) sont les suivantes:

I. Détermination de la taille des éléments souhaitée en certains points clefs du
domaine Q.

2. Interpolation sur une grille (réguliére ou quadtree et octree) de la carte de taille.
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3. Génération de sommets et des sphéres. Les sommets sont générés avec une
densité en rapport avec la taille de maille locale déterminée a I’étape 2. Le rayon
des sphéres suit la méme régle, i.e. a forte densité, petit rayon et inversement
(voir la Figure 1.13).

4. Déplacement des sommets par un processus itératif, en vue d'aboutir a
I'équilibre du réseau de bulles. (Figure 1.14 a Figure 1.16). Les bulles sont
soumises entre elles a des forces de contact tel qu'indiqué dans la Figure 1.18.
Eventuellement des bulles sont ajoutées ou éliminées.

5. Création du maillage a partir du réseau de points a F'aide d'une méthode de

Delaunay contrainte (voir la Figure 1.17)

Figure 1.13: Génération Figure 1.14: Premiére Figure 1.15: Deuxiéme
des bulles et des sommets itération du processus de itération
initiaux "sphere packing”

&Eg)
Q- 0S({cre 4}

Figure 1.16: Sixiéme Figure 1.17: Triangulation Figure 1.18: Force
itération. La triangulation finale exercée entre deux bulles
de Delaunay est indiquée en fonction de leur

distance. r0 correspond a
I'état d'équilibre
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1.3 Adaptation anisotrope

Les simulations numériques impliquent souvent des géométries courbes (surface d'un
solide par exemple), et certaines méthodes de maillage s'appliquent a partir de la
représentation paramétrique des surfaces. Il convient donc de faire en sorte que le
maillage dans l'espace réel posséde les caractéristiques voulues. La transformation qui
fait passer de I'espace paramétrique a l'espace réel ne conserve pas, dans la plupart des
cas, les angles et les distances. Un maillage isotrope dans I'espace de référence peut
donc trés bien ne plus I’étre une fois transporté dans |'espace réel (Cuilli¢re. 1998,;
Tristano, 1998). On peut pallier a cet inconvénient en maillant judicieusement de fagon
anisotrope dans I'espace paramétrique pour obtenir un maillage isotrope dans I'espace
réel. C’est une premiére raison. géométrique, qui justifie les maillages anisotropes.
méme si 'on désire obtenir un maillage isotrope dans l'espace réel. Ceci conceme

principalement le maillages des surfaces paramétriques de type CAO.

Dans le cadre des calculs d*écoulements, des phénoménes trés directionnels comme les
couches limites, les chocs et les déplacements de fronts de matiére sont courants. Afin
de traiter correctement ces phénoménes. les maillages doivent posséder des
caractéristiques d anisotropie particuliéres, aptes a rendre compte des variations rapides
de la solution dans ces zones (Vallet. 1992). Ces caractéristiques sont dictées
principalement par un calcul d’erreur (matrice Hessienne d'un champ solution dans la
plupart des cas). Ceci constitue la seconde raison d’étre des maillages anisotropes : de
leur adéquation dépend la précision de la résolution du probléme physique. Dans ce
cadre, les perspectives d'application des maillages anisotropes sont vastes, aussi bien en

2D qu'en 3D.
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1.3.1 Notion de métrique

De fagon a pouvoir générer un maillage anisotrope, il est nécessaire de redéfinir la
notion de distance dans l'espace considéré. Ceci est généralement effectué en
considérant la notion de métrique. La métrique est définie en tout point P du domaine
d'étude Q, et elle n'est généralement pas constante. Toutefois, si elle est continue, cela
définit un espace riemannien (Schutz, 1980). Elle est représentée par une matrice
d xd (notée M dans la suite). Elle est symétrique, définie positive et dépend de la
position du point P dans le cas général. En deux dimensions. la matrice prend la forme

suivante :
a b ,
M(P)=|:b :' telle que (ac-b")>0:a>0;¢ > 0. @)
C

La notion de distance est définie a I'aide de cette métrique par une intégrale selon une

géodésique I parcourue pour aller d'un point 4 i un point B :

1
dist(AB) =I(1) = [{'s'@)-M(s()))-s' ()t (5)

ol s(7) représente une paramétrisation du chemin telle que s(0) = OA et s(l)= OB. La
notation s'() représente le vecteur tangent a ce chemin. Il existe une infinité de chemins
pour aller d'un point 4 a un point B, mais la distance entre deux points correspond au
plus court chemin dans la métrique considérée: la géodésique. Ce chemin particulier est
difficile a déterminer dans le cas général, ce qui impose de se restreindre en considérant
des métriques localement constantes (métrique du plan tangent). On peut prendre

comme référence un point G qui se trouve dans le voisinage de A et de B. Dans ce cas,
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les géodésiques sont des droites, localement I'espace est euclidien, et la distance est alors

définie dans le voisinage de G selon la formule:

dist, (4B)=V ' AB-M(G)- 1B (6)
car il est maintenant possible d'intégrer I'expression (5).

De la méme fagon. on peut définir un produit scalaire et sa norme associée. entre

deux vecteurspetq:

(p.q),='p-M(G)-q (M

bl =(p-p)., (8)

Ceci permet de redéfinir de fagon tout a fait classique la notion d'angle entre deux

vecteurs:

Dans le cas de I'anisotropie géométrique, le tenseur métrique peut étre trouvé a partir des

relations suivantes en fonction des relations entre les coordonnées (x,y,z) de l'espace

réel et les paramétres (u,v) de Pespace paramétrique (premiére forme fondamentale):

a= (6_x)’ +(@)2 +(a—z)2 (10)
Ou Cu cu
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,,{2) +(2) +(2) an
ov ov ov

c:.a_x.éi.pﬂ.ay_.pﬂ_al (12)
oudv Oudv Oudv

1.3.2 Adaptation du mailleur de Delaunay

En utilisant les notions de métriques anisotropes, il est possible selon (Borouchaki et al..
1997; George et Borouchaki, 1997; Remacle, 1999) de construire un mailleur de
Delaunay qui respecte une métrique anisotrope, tout en conservant larchitecture
générale du noyau de Delaunay vue a la section § 1.2.1.2. Il faut néanmoins redéfinir la

mesure de Delaunay qui dépend de la fagon dont on mesure les distances :

a(,_(pJ():d'L?(P’_Q‘LZ (13)
rx
avec r, =dist;(0,,K,) (14)

ou K, est un des d+1 sommets du simplexe K et O, le centre du cercle circonscrit

(cercle au sens de la métrique considérée, c’est a dire un ellipsoide dans I’espace réel).

Le point faible de cette méthode est I'approximation de la métrique au moment de la
détermination des simplexes a éliminer, en particulier au début de la procédure
d'insertion car les simplexes traversent en effet tout le domaine. Il existe plusieurs
possibilités pour approcher cette métrique. On peut par exemple considérer la métrique

au point que l'on veut insérer dans le maillage, et la supposer bonne pour tout le



25

voisinage (Remacle, 1999). La condition d'acceptation du triangle dans la cavité définie

au §1.2.1.2 reste valable dans la métrique du point P:
a,(P,K)<I (15)

Ceci présente clairement des difficultés au début du processus d'insertion. Une bonne
méthode (Borouchaki et al., 1997) semble étre de considérer la métrique de deux points,
en l'occurrence le point P a insérer et le point P, correspondant a l'aréte qui serait
formée avec P si le triangle a tester était retenu. Ceci implique une autre condition

d'acceptation du triangle dans la cavité :

a, (P.K)+a,(P.K)<2 (16)

Cette derniére condition est judicieuse puisqu'elle permet d'affirmer que les arrétes
créées par étoilement avec le point P seront intrinséquement acceptables, a la condition
que la métrique soit monotone entre les deux extrémités. Ceci impose certaines

restrictions sur les variations de la densité du maillage.

Cette adaptation est faite en ne modifiant quasiment pas le noyau de Delaunay, tout
simplement en considérant que le maillage a générer est isotrope et de taille normalisée a

1. C'est le champ de métrique qui permet de faire les calculs de distance.

1.3.3 Adaptation du mailleur frontal

Trés peu de travaux traitent de l'adaptation anisotrope des mailleurs frontaux. On peut
citer Cuillére (1998) et Tristano (1998) qui réussissent a générer des maillages sur des

surfaces paramétriques. Le maillage anisotrope est donc effectué dans le plan. A notre
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connaissance, en trois dimensions, il n'existe pas de mailleur frontal commercial capable
de suivre une carte d'anisotropie. Seul Golgolab (1989) propose "d'étirer” les éléments
prés des frontiéres et de tenir compte des chocs dans le cadre d'un calcul
d'aérodynamique. Le probléme principal rencontré dans la génération de maillages
anisotropes ou adaptés en taille avec une méthode frontale semble étre la difficulté de
faire converger l'algorithme. comme le souligne Frangois (Frangois, 1998) pour le suivi

d'une carte de taille isotrope.

Cuilliére et Tristano proposent de traiter le cas de I'anisotropie géométrique en 2D en
reformulant la position du sommet idéal dans la métrique considérée. En 2D isotrope, le
sommet idéal doit étre généré sur la médiatrice du segment du front considéré, i.e., a
angle droit. C'est aussi le cas lorsque I'on a affaire a2 une paramétrisation isotherme d'une
surface. Dans la paramétrisation de surfaces gauches, cette direction n'est plus, dans le
cas général. selon un angle droit. Il faut donc trouver l'angle 8 selon lequel générer le

sommet. Si les coordonnées des extrémités du segment considéré sont A(u,,v,) et

B(u,.v,) dans I'espace paramétrique (voir la Figure 1.19) . cet angle est solution de :

(a—b)u, ~u, Xv, "":)“"((“z ‘“1)2 =(v,-v, )2) : (7

tan(@) = -
a(u2 —u, )‘ +b(v: -v, )2 + 2c(u2 —u, sz -v,)

avec les notations du §1.3.1 concernant les composantes a., b et ¢ du tenseur métrique.
De plus. comme dans le cas du mailleur de Delaunay. il faut calculer des distances selon
une expression de la forme de l'intégrale (5). On approche cette distance directement en
suivant une droite dans l'espace paramétrique. Cela ne correspond pas dans le cas

général a la distance la plus courte dans I'espace réel.
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dans I'espace réel

Figure 1.19 : Distorsion dans [I'espace
paramétrique

Un angle de décalage @ est calculé de fagon semblable. et les calculs de distance entre
deux points 4 et B sont effectués a I'aide de la moyenne des distance mesurées par

rapport a la métrique en chacun des deux points si la surface est suffisamment réguliere :

dist,,, (ﬁ): dist (ﬁ); dist (A_é) (18)

Si la surface ne I'est pas. il faut effectuer une intégration numérique le long du segment

de droite (A4B). en utilisant n points d'intégration {F,...P, }. Ce segment n'est toutefois

pas une géodésique. comme indiqué plus haut:

dist,, (AB) Z,di.s’l, 19
=l

dist, = dist (P ,,,) (20)



28

Curieusement, cette fagon de procéder ne tire pas parti de toutes les généralisations qui
peuvent étre induites par l'utilisation des tenseurs métriques. En effet, la génération du
maillage reste anisotrope. Nulle part il n'est utilisé d'espace "de référence” dans lequel le
maillage serait isotrope et de taille fixe. Pour pouvoir imposer au maillage de respecter
une carte d'anisotropie, c'est pourtant la solution la plus élégante car elle n'impose pas le
calcul d'expression compliquée concernant l'angle 8. Tout se fait naturellement par le
changement de métrique. Somme toute, si I'on devait générer un maillage anisotrope
dans un domaine plan, on ne se servirait de la métrique que comme guide pour la
création des mailles, l'algorithme de maillage étant anisotrope et donc différent de celui

utilisé auparavant pour générer un maillage isotrope.

1.3.4 Adaptation des autres mailleurs

A notre connaissance, il n'existe de mailleurs par décompositions spatiale ou quadtree et
octree capables de traiter des cas anisotropes. L'adaptation du mailleur par compaction
de sphéres existe, pour le moment uniquement en 2D (Shimada. 1997). Le principe
consiste a utiliser des ellipsoides en lieu et place des sphéres. et de relier les centres des
ellipsoides pour former le maillage final par une méthode de Delaunay anisotrope.
comme décrite plus haut. Bien entendu la formule schématisée sur la Figure 1.18 doit
étre modifiée car les relations entre les différents "bulles” (ellipsoides) impliquent des
forces (voir la Figure 1.18) qui ne sont plus indépendantes de leur orientation relative.
Ceci mis a part, le schéma de construction est rigoureusement le méme que dans le cas

isotrope (voir Figure 1.20 a Figure 1.23)
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Figure 1.20: Bulles dans l'espace Figure 1.21: Triangulation dans l'espace
paramétrique paramétrique

P
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Figure 1.22: Bulles dans l'espace réel. Figure 1.23: Triangulation dans l'espace
réel.

1.4 Suivi de front

La génération de maillages pour des problémes a frontiére et / ou front mobile a fait
I'objet de peu de résultats. Il existe deux approches. Il est a noter que le choix de I'une ou

de 'autre n'est pas dénué de conséquences pour l'aspect de la génération de maillages.

La plus courante consiste en une discrétisation de type éléments finis pour l'espace. alors
que le temps est discrétisé selon un schéma de différences finies. Dans cette voie, on

peut citer Hassan et al. (1998) qui traite du probiéme de I'adaptation de maillages pour
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les calculs de fluides compressibles lors de modifications de la géométrie (pi¢ces en
mouvement). Si la géométrie est peu changeante (faibles oscillations autour d'une
position moyenne par exemple), la modification du maillage est faite par un simple
déplacement de points et lissage (I'analogie avec un réseau de ressorts est employée).
Dans le cas de mouvements de grande amplitude ou de changements de topologie, il est
nécessaire de remailler certaines zones autour des frontiéres. Hassan effectue cette
opération par ajout et retrait automatique de points selon une méthode de Delaunay. Le
probléme est la récupération de la frontiére de la zone remaillée qui n'est absolument pas
évidente avec une méthode de Delaunay. en particulier en 3D. Hassan précise qu'il est
nécessaire de récupérer exactement les frontiéres du sous-domaine remaillé, de fagon a
éviter les complications lors de sa connexion au reste du maillage. La méthode proposée
n'est pas implémentée pour les maillages anisotropes, mais I'adaptation semble ne pas
poser de problémes particuliers. Li (1998) propose un algorithme basé sur le principe de
construction d'un maillage régulier considérant un empilement compact de sphéres.
L'idée principale de Li est de proposer un algorithme général permettant de traiter le cas
des maillages évolutifs, cas plus général que les problémes de front mobile. Pour ce
faire. il propose de traiter simultanément le cas du raffinement (par exemple en amont
d'un front). et le cas du déraffinement (en aval du front). La force de son approche est
qu'il controle de fagon rigoureuse la position des sommets de fagon a générer un
maillage respectant au mieux une carte de taille changeante. La connexion des points est
faite par une méthode de Delaunay. Cet algorithme n'est implémenté que pour des
maillages isotropes, bien qu'il existe une version anisotrope de la méthode de

compaction de sphéres (Shimada et Gossard, 1995).

La seconde approche est l'utilisation d'éléments finis espace-temps. Ceci implique de
mailler le domaine constitué par les d dimensions d'espace. plus la dimension
temporelle. Dans le cas de simulations en trois dimensions (spatiales), le support de
calcul aura quatre dimensions. Ceci pose un probléme de maillage évident. étant donné

qu'il n'existe pas actuellement de mailleur opérant en quatre dimensions. Un approche
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adaptée aux volumes finis (et uniquement en deux dimensions spatiales) est proposée
par Zwart et Raithby (1998). Un inconvénient de cette méthode est la nécessité de
redévelopper tout un ensemble d'outils d'adaptation de maillage, car il n'est absolument
pas assuré que le premier maillage généré permette d'obtenir des résultats précis.
Comme dans le cas de la simulation d'un probléme stationnaire, il est parfois nécessaire
d'effectuer plusieurs fois la boucle mailleur-résoluteur afin d'obtenir un bon résultat. De
plus. il faut modifier la formulation des problémes qui étaient auparavant résolus a l'aide
de méthodes classiques découplées du temps. [l existe quelques travaux sur I"adaptation

de maillages espace-temps pour I’équation des ondes (Collino. 1998).

1.5 Procédé d’injection de résine sur renforts

Le procédé d'injection de résine sur renfort est utilisé pour produire des piéces
composites a une cadence soutenue comparativement aux autres méthodes telles que
I"'imprégnation manuelle ou I"utilisation de prépregs. En contrepartie. les performances
mécaniques ne sont évidemment pas du méme ordre. La principale difficulté est la
prédiction du positionnement des points d’injection et des évents. de fagon a éviter la
présence de zones séches. La phase de cuisson (polymérisation) a aussi une grande
influence sur la qualité des piéces obtenues par ce procédé. La Figure 1.24 schématise le
procédé. On peut référer a (Cauchois. 1997; Rudd et al.. 1997) pour une description

exhaustive.
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Figure 1.24 : Procédé RTM

1.6 Conclusion

On peut constater dans cette étude bibliographique qu'un grand nombre de travaux
existent dans le cadre de la génération de maillages non structurés et isotropes. Ces
travaux s'appuient sur des méthodes diverses, dont les plus importantes sont la méthode
d'avance de front et la méthode de Delaunay. Ces demiéres offrent une souplesse
incomparable aux (quelques) autres méthodes. Toutefois, les travaux impliquant des
maillages anisotropes sont plus rares et relativement récents. De méme, pour ce qui a
trait a I'adaptation de maillages dans le cadre de frontiéres mobiles, les travaux sont

encore plus récents et partiels. Ceux ci dépendent souvent trés fortement de I"application
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envisagée. Notre recherche implique ces deux aspects pour I'application au moulage par
injection de résine sur renfort. A notre connaissance, il n'existe pas encore de travaux

dans ce domaine.
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CHAPITRE 2
ORGANISATION GENERALE

La thése présentée ici est sous la forme d'une thése par articles. Quatre articles Ia
composent et sont reliés logiquement entre eux. Les résultats et discussions des travaux
réalisés dans cette étude sont présentés en détail dans les articles. Ces articles sont
présentés aux chapitres trois, quatre, cinq et six et ont été soumis pour publication dans
des revues internationales reconnues dans leurs domaines respectifs (modélisation
géométrique pour le premier article, modélisation numérique des matériaux composites
pour les trois suivants). Au moment ou ce texte est rédigé. le premier article est déja
publié, le second est accepté est sera publié dans les mois qui suivent. et les deux
derniers sont soumis et en processus actif de révision. Afin de faire ressortir la
complémentarité des articles, nous présentons briévement une synthése de la recherche
proposée, puis a la suite de celle ci, nous présentons d’un mani¢re intégrée les quatre

articles.

2.1 Recherche proposée

La recherche proposée ici concerne la génération de maillage pour améliorer les
simulations numériques d’un procédé de fabrication de structures en matériaux
composites. Ce procédé est appelé RTM pour Resin Transfer Moulding, et consiste en
I"injection de résine dans un moule fermé contenant un renfort poreux composé de tissus
de fibres de carbone ou de verre. Il s’agit donc d’un écoulement a frontiére libre
obéissant a la loi de Darcy des milieux poreux saturés. L°objectif de la thése est de
proposer un algorithme de remaillage visant a rendre la simulation des écoulements de
Darcy dans les renforts pour matériaux composites plus précise et plus rapide que ce qui

est actuellement fait sur une maillage fixe et isotrope.
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2.2 Maillage surfacique (article 1)

Dans un premier temps, une méthode de génération de maillage surfaciques est
proposée. supposée connue une triangulation particuliére de la surface (sous forme de
fichier STL). Cette contribution vise 4 montrer la possibilité de générer un maillage
surfacique respectant une carte de taille (isotrope dans un premier temps) sans connaitre
la surface réelle (celle ci est définie auparavant dans un module de CAO, mais
inaccessible pour diverses raisons). De nombreux exemples montrent que les
algorithmes proposés fonctionnent bien. Le lien avec le sujet de la thése est le suivant :
dans le cadre de la simulation d’injection sur renfort, on dispose comme données de base
d’un maillage surfacique et de conditions d’injection. D’une fagon ou d’une autre, les
conditions d'injections et la position du front de résine déterminent la carte de taille d’un
maillage désirable pour poursuivre la simulation. Cette partie traite donc précisément de

ce cas.
2.2.1 Présentation

Le Chapitre 3 est consacré a la génération de maillages surfaciques a partir de fichiers de
CAO usuellement dédiés a la stéréo-lithographie. En fait. ces fichiers (fichiers « STL »)
sont constitués d’une triangulation de la surface d’une géométrie solide. Toutefois. celle
ci est basée uniquement sur des critéres d’approximation géométriques. Ceci exclut
toute utilisation en |"état pour effectuer des calculs par éléments finis. En particulier, les
éléments peuvent étre extrémement allongés selon les courbures principales de la surface
de 'objet. L intérét de I"approche est de pouvoir utiliser n’importe quel modeleur solide
pour générer un maillage qui soit directement utilisable pour des calculs numériques de
coques. Dans ce cas, les éléments du maillage doivent respecter un facteur de forme
compatible avec un calcul par éléments finis. Il est aussi possible de se servir de ce
maillage comme point de départ pour générer un maillage volumique a I"aide d"un autre

programme. Toutefois, ce demier requiert une triangulation de la surface du solide qui
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respecte les mémes contraintes que précédemment, car le facteur de forme des éléments
volumiques généré dépend fortement de celui de la surface, au moins dans son voisinage

immédiat.
Cet article a été soumis. accepté et publié dans la revue « Computer Aided Design ».

E. Béchet, J.C. Cuilliére, F. Trochu, 2002, Generation of a finite element mesh from

stereolithography (STL) files, Computer Aided Design 34, pp.1-17.
2.3 Suivi de front, maillage adaptatif et anisotrope (article 2)

Dans cet article. les algorithmes présentés précédemment sont repris et une extension de
la méthode de maillage est proposée pour les cartes de tailles anisotropes arbitraires.
Ensuite. une carte de taille anisotrope adaptée au probléme de |'écoulement est
construite pour chaque pas de temps de la simulation numérique. Cette carte de taille
définit un nouveau maillage, obtenu par I’utilisation des méthodes de maillage décrites
précédemment. Un algorithme de progression de front par level-set est implémenté, et
permet de faire évoluer la position de la frontiére libre en fonction de la résolution du
probléme (elliptique) en pression. Dans le cas présent, il n’y a pas de phénomeénes de
transport, il s agit juste de faire évoluer une surface libre. Ainsi, comme le montre la
validation menée dans I"article il est possible de réduire considérablement le nombre de
pas de temps de la simulation en orientant préférentiellement les éléments du maillage,

et en produisant pour chaque pas de temps un maillage adapté en taille.

2.3.1 Présentation

Le Chapitre 3 a montré la possibilité de modifier dans de grandes proportions un

maillage surfacique sans connaitre la base géométrique (CAO) dont il est issu. Dans le
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Chapitre 4, ces aspects sont enrichis par la prise en compte de cartes de taille anisotropes
afin de pouvoir traiter des problémes exhibant des directions privilégiées
(aérodynamique, équations de transport). Ensuite, le couplage avec un solveur est
effectué afin de générer des maillages anisotropes et adaptatifs pour résoudre un
probléme d'écoulements a surface libre en milieux poreux. Des études précédentes on
montré Iutilité dutiliser des éléments linéaires non conformes; c’est dans ce cadre que
cette recherche s’inscrit. L objectif est de permettre de raffiner spécifiquement le
maillage dans le voisinage de la surface du fluide. Deux buts sont poursuivis :
améliorer la précision dans I'évolution de la surface libre. et permettre une amélioration
de la précision des simulations thermiques. Ces derniéres sont en effet trés dépendantes
de la discrétisation au voisinage de la surface libre. Une approche par level-set pour
I"évolution de la surface libre est avantageusement couplée a I’algorithme de génération
de maillage. Les résultats obtenus sont ensuite comparés avec des résultats d’expérience

et de simulation provenant d"un logiciel de calcul spécialisé pour fins de validation.

Cet article a été soumis. accepté et sera publié prochainement (~janvier 2003) dans la

revue « Journal of Reinforced Plastics and Composites ».

2.4 Phénomeénes de transport thermique et génération d’un maillage optimal

partie 1 — cas bidimensionnel (article 3)

Dans un premier temps, les algorithmes de I"article 2 sont adaptés aux phénoménes de
transport thermique (transport et diffusion thermique, et transport du taux de conversion
de la résine). On montre qu’il n"est pas possible de conserver de grands pas de temps a
cause de la condition sur le nombre de Courant pour les méthodes Euleriennes. Une
adaptation de 1 algorithme est proposée qui. spécifiant un pas de temps différent pour la
résolution de 1"avancée de la surface libre et la résolution des équations de transport,
permet d’assurer la stabilité du schéma numérique. Par la suite. un algorithme pour

générer un maillage optimisé a priori est proposé. Ce maillage doit borner |'erreur
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d’interpolation en pression (afin d’assurer une évolution précise de la surface libre dans
le temps), et assurer la condition de Courant pour la stabilité du schéma associé¢ aux
équations de transport. On montre théoriquement que ces deux condition peuvent étre

antagonistes pour un cas particuliers d’injection centrale.

2.4.1 Présentation

Le Chapitre 5 est constitué de trois volets. Une premicére partie montre la possibilité
d’effectuer de I’adaptation a priori en vue d'éviter le remaillage durant la simulation
proprement dite. Ceci implique le développement d un estimateur d’erreur qui tienne
compte a la fois de I’aspect diffusif de I"équation de Darcy (variable de pression), et de
I"aspect convectif. En somme, un maillage intégrant toutes ces caractéristiques est
généré et utilisé tout au long d’une simulation. Une validation bidimensionnelle est
présentée, sur une géométrie identique a celle du Chapitre 4. La seconde partie de ce
chapitre montre [’adaptation de [Ialgorithme de remaillage du Chapitre 4 aux
phénoménes thermiques, en particulier au probléme de transport-diffusion. La nécessité
de tenir compte de la condition CFL est mise en avant. et une modification de
I"algorithme de simulation est proposée. Enfin. des résultats de simulation montrant que
I’on réduit la diffusion au voisinage de la surface libre sont présentés. La troisi¢éme partie
est une analyse théorique d"un cas d’injection centrale. Le but est de montrer qu’il peut
étre difficile de générer un maillage unique pour résoudre de fagon optimale un
probléme de convection, car les critéres de raffinement sont antagonistes selon que I'on
considére un maillage uniformisant I’erreur d’interpolation en pression ou un maillage

optimal pour résoudre le probléme de transport.

Cet article a été soumis a la revue « Composites Part A: Applied Science and

Manufacturing ».
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2.5 Phénoménes de transport thermique et génération d’un maillage optimal
partie 2 — estimateur d’erreur adapté aux surfaces discrétes et extension aux

surfaces courbes (article 4)

La procédure présentée dans I'article 3 est étendue aux cas des surfaces gauches. Dans la
recherche menée ici, les surfaces considérées sont discrétes et la surface de référence
définie en CAO n’est pas accessible. Un estimateur d"erreur est donc dérivé. qui tient
compte de I'aspect discret des surfaces en découplant I’erreur purement fonctionnelle de
I'erreur géométrique commise lors de la discrétisation du domaine. Enfin. une

simulation sur une piéce réelle montre la validité de’approche.

2.5.1 Présentation

Le Chapitre 6 est la suite directe du Chapitre 5. Il s’agit d’une adaptation aux surfaces
courbes de I'estimateur d’erreur présenté dans le Chapitre 5. Les estimateurs d"erreur ne
sont en général utilisables que si la géométrie est lisse et que 1’on connait exactement le
modéle géométrique sous jacent. En effet, I'emeur d’interpolation intégre |'erreur
fonctionnelle au sens des éléments finis ainsi que I'erreur géométrique induite par
I"aspect discret des éléments utilisés (en général linéaires). Dans le cas de surfaces
discrétes. cela induit un artifice : le raffinement aux alentours d"arrétes inexistantes dans
le modéle réel. mais présentes dans la version discréte de la géométrie. Le but ici est de
montrer que 1"on peut s affranchir de ces limites et utiliser un estimateur adapté qui ne

tient compte que de |"erreur fonctionnelle. Une application sur une piéce industrielle est

présentée.

Cet article a été soumis a la suite de I'article du Chapitre 5 dans la revue « Composites

Part A: Applied Science and Manufacturing »
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CHAPITRE 3
GENERATION OF A FINITE ELEMENT MESH FROM
STEREOLITHOGRAPHY (STL) FILES

E. BECHET'2, J.-C. CUILLIERE? F. TROCHU'

(1) Centre de Recherches Appliquées Sur les Polyméres (CRASP), Département de Génie
Meécanique, Ecole Polytechnique de Montréal, H3C 347, Canada

(2) Laboratoire de productique, Département de Génie Mécanique, Université du Québec a
Trois-Riviéres, G94 5H7, Canada

Email: bechett@meca.polymtl.ca

3.1 Abstract

The aim of the method proposed here is to show the possibility of generating adaptive
surface meshes suitable for the finite element method, directly from an approximated
boundary representation of an object created with CAD software. First, we describe the
boundary representation. which is composed of a simple triangulation of the surface of
the object. Then we will show how to obtain a conforming size-adapted mesh. The size
adaptation is made considering geometrical approximation and with respect to an
isotropic size map provided by an error estimator. The mesh can be used “as is” for a
finite element computation (with shell elements), or can be used as a surface mesh to
initiate a volume meshing algorithm (Delaunay or advancing front). The principle used
to generate the mesh is based on the Delaunay method, which is associated with
refinement algorithms. and smoothing. Finally, we will show that not using the
parametric representation of the geometrical model allows us to override some of the

limitations of conventional meshing software that is based on an exact representation of

the geometry.
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triangulation.

3.2 Interface with CAD

3.2.1 CAD-based data sets

Most CAD software on the market can generate STL files. and these are generally used
for prototyping and rendering purposes. These files represent a triangulation boundary of
the solid. Algorithms for the generation of STL triangulation are highly efficient, and the
surface can be approximated very precisely if very large data sets are accepted.
However, this is not an accurate representation of the real geometry model because the
STL file format is composed only of an extensive list of triangle facets. These facets are
composed of the coordinates of the 3 vertices of the triangle, in addition to the
coordinates of the normal oriented to the exterior of the solid. This triangulation is built
to minimize a geometric approximation criterion that is related to the real boundary of

the solid.
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Solid AutoCAD
facet normal 0.0000000e+000

oy Oww

mom

outer loop

vertex 1.0000000e+001
vertex 1.0000000e+001
vertex 0.0000000e+000

endloop
endfacet

facet normal 0.

outer loop

vertex 1.
vertex 0.
vertex 0.

endloop
endfacet

facet normal 1.

outer loop

vertex 1.
vertex 1.
vertex 1.

endloop
endfacet

endsolid AutoCAD

0000000e+000

0000000e+001
0000000e+000
0000000e+000

0000000e+000

0000000e+001
0000000e+001
0000000e+001

0.

0.
1.
1.

—

0000000e+000

0000000e+000
0000000e+001
0000000e+001

.0000000e+000

.0000000e+000
.0000000e+001
.0000000e+000

.0000000e+000

.0000000e+001
.0000000e+001
.0000000e+000

1
1
1
1
1
1

1
1

0

.0000000e+000

.0000000e+001
.0000000e+001
.0000000e+001

.0000000e+000

.0000000e+001

.0000000e+001
.0000000e+001

.0000000e+000

.0000000e+000
.0000000e+001
.0000000e+000

Figure 3.1: Example of an ASCII STL file (there is also a binary file format, which

contains the same information). Please note the redundancy of vertices A, B and C

d=n_13)2<(d,) and p=

3.2.2 Characteristics of STL triangulation

Yd

1=0

i

i = 0..2 represents the length of each side of the triangle. We assume:

STL triangulation cannot be used directly in the finite element method (FEM). mainly
because it requires specific characteristics in the geometrical description of the domain
to be computed. In FEM. the geometric and functional support is provided by the
elements (triangles or others), and they must have a specific shape, i.e. the proper size
and the proper quality factor for the error estimator of the calculation to be as low as

desired. In this work, we used the following quality factor for triangles. where d, ,
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The quality factor is then:

2h

This quality factor is bounded between 0 for all kinds of degenerated triangles and | for
equilateral triangles. Of course, these requirements are related to the application. For
example, in fluid mechanics it is very common to use anisotropic elements in boundary
layers and/or shocks. It is clear that a mesh obtained by minimization of a geometric
criterion cannot fit FEM requirements because, depending on the curvatures and
topology of the surface, the triangles generated can be greatly stretched in a certain

direction. (see Figure 3.2 & Figure 3.3). However, the mesh obtained is generally

conforming'.

! STL files are theoretically conforming even if this is not always the case in practice. However, if the
solid to be meshed is designed propesly (no overlapping between surfaces, no gaps, holes etc.), the STL
file is usually conforming, and therefore can be used "as is". In this paper we always consider conforming

STL triangulations as input.
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Figure 3.2: "Wire frame" representation Figure 3.3: Hidden face representation
of a STL mesh. Notice the stretched of the STL mesh of a cylinder
triangles near the hole
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Figure 3.4: Histogram of the quality factor of the
triangles in Figure 3.3. All of them are below 0.2

3.2.3 Recovering the geometry in an STL mesh

The contents of an STL file consists of the vertex coordinates of each triangle and the

associated normal. In order to achieve a complete meshing of the surface, we need to
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have some data on the topology and the curvatures of the surface to be meshed. The
topology and connectivity between triangles is obtained by avoiding redundancy
between vertices in the STL file. This is done by using a binary tree in which the
vertices are stored and sorted according to a lexicographic order. At the end of this
procedure. we have a mesh of the object’s surface. with all the types of connectivity

needed for the re-meshing, particularly the connectivity used for adjacency searches.

Then, as many industrial artefacts have edges. we need to determinate where they are
located. if any. This is done using an edge detection process, considering the

connectivity between entities in the triangulation.

The search for the model’s edges is very important since they have to be kept intact in
the re-meshing. i.e. they must not be cut by the Delaunay re-meshing strategy. The
search is based on angle calculations between adjacent triangles. The common segment
of two triangles is considered to be an edge if the angle between the normal vectors of
the two triangles is greater than a specific value (typically 20°). It should be mentioned
that, in addition. we can handle specific edges. such as the contact area between two
different parts in an assembly (in order to apply boundary conditions, for example).

These segments will be considered as edges. and will be kept in the final mesh.
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Figure 3.5: Recovering the edges (black lines)

The curvature is then evaluated at each element of the triangulation by seeking the other
triangles connected to it and by examining their normal vectors (see 6). The following

procedures are used: For every triangle 7,. we iterate on its three vertices V,.(j =0...2).
At each vertex, there are two sides. S , (k =0...1). and the associated triangles adjacent
toT,, T,.If S,is a sharp edge. we define a parameter r, as 0: otherwise it is I. The

curvature C, is evaluated as follows:
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4
11 (22)
7=0.2 S/O + S/I .|Sin(0] l:[ 1k
’

Where 6, is the angle between S  and S ,, 8 is the angle between the normal vectors
of T, and T,,. After this, the curvature is extrapolated at each vertex V, (C.). using
the maximum curvature for the » triangles connected to V,:

C,. = max|C, ) (23)

1=0..n-1 !
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Figure 3.6: Graph of the curvatures obtained on the triangles by linear interpolation
of the curvatuies corresponding to the vertices. The most curved areas are shown in

black

We should mention that the curvature considered here is a norm of the tensor of
curvatures related to the surface (i.e. we do not care about the directions along which the
effects of the curvature take place), and it should be noted that the curvatures obtained

are not very accurate. This is because of the discrete geometrical representation of the

surface (set of planes).

In fact, these curvatures will only drive an optional adaptive mesh retinement. The result
is a coarser mesh in less curved areas, and refined elsewhere. Figure 3.6 illustrates the

mesh resulting from a linear interpolation of the curvature across each triangle using the

equations mentioned above.
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At this stage, the information we need to begin the mesh generation procedure is the
information about the isotropic size map of the target mesh. Since this is not the aim of
the present research work we assume either that a constant size map is provided by the
user, or that a size map based on an error estimator has been provided (from a previous
FEM calculation). We also consider the case where the density map is based on a
geometric criterion (controlling the maximum distance between the STL mesh and the

triangulation).

3.3 Refinement method

The triangies of the mesh are sorted with respect to a reduced size ratio (ratio between
the actual size and the target size). The worst triangles (the biggest ones) are the first to
be handled using the bisection algorithm described in the sequel. At each stage. the
sorting is updated (since there are new triangles and some have been destroyed) and the
process continues as long as all the triangles do not meet the criterion. When all the
triangles match the criterion, we apply a smoothing procedure. The resulting mesh is

ready to deal with the FEM.

3.3.1 Bisection algorithm

The new vertices are generated by bisection of a line segment that already exists in the
mesh. The vertices are generated successively on segments in the mesh. They are not
necessarily part of the surface. so the vertices must be projected onto the initial STL

mesh.
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Figure 3.7: Before bisection of the Figure 3.8: After bisection. The new
segment S vertex V has been created

The line segment on which we will generate the vertex is found using the algorithm that
follows, which is taken from [9]: First, we search for the triangle T to be refined. the one
that least respects the target size, as described above. Then we search for a path

composed of triangles that have a side longer than T. This defines a sequence (T).

Let S, be the longest segment of the triangle T,. The triangle T, is adjacent to the
triangle T, along its longest segment S,. The sequence stops provided that S, and Sy,
are the same segments. The sequence begins, of course. with To=T. The first segment to
be bisected is the last segment in the sequence (S,). The algorithm is repeated until the
first segment we considered, So, is bisected. This leads to a correct refinement of the
area considered. The sequence described here is valid if one uses a triangle-based
refinement procedure. If instead, segments are classified according to their size and will
then be refined, it is useless to construct such a sequence as the longest edge is already

known.
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Figure 3.9: Sequences of triangles and Figure 3.10: Bisection of the last
segments, before bisection of the segment of the sequence. Sy
segment S,

3.3.2 Respecting the Delaunay criterion

After each bisection, the mesh must be handled locally in order to achieve better
regularity. This is done by respecting the Delaunay criterion. which is well-known for
2D meshes. However, we are dealing with curved surfaces and therefore the
conventional Delaunay criterion must be changed. This is in fact essential in order to
deal with the curvature of the surface and, of course, its discrete representation. Let us

return to the original definition of a Delaunay triangulation, in two dimensions [4.5.10]:

Def. 1: Property of the empty circle: Let T be an arbitrary triangulation of the
convex hull of a set of vertices S. If the property of the empty circle is verified
for every configuration of two adjacent triangles of the triangulation T. then this
means that it is verified for the whole triangulation. The triangulation T is

referred to as a Delaunay-conforming triangulation.

This definition can be adapted to curved surfaces, taking into consideration their
curvatures. It is important to note that if we change the definition of the metric. the

‘ Delaunay criterion is still valid [2,6). We should consider a new definition of the
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circumcircle. In this case the circumcircle is the location of all points on the surface
whose curvilinear distance to the centre is the same, namely the radius. The curvilinear
distance is calculated using an integral. In the parametric space (if it can be locally
considered as constant), the image of the circumcircle as defined just above is generally
an ellipsis. Unfortunately, as the surface is only known through the STL triangulation,

such a parametrization is not well defined.

We propose using another criterion, which is of course less accurate than the former
criterion, but is still good enough for testing topologically near triangles. This forms the

basis for definitions 2 and 3, which are taken from [8].

Def. 2: Property of the empty sphere: Let T be an arbitrary triangulation of the
convex hull of a set of vertices S located on a surface. If the property of the
empty circumscribed sphere is verified for every configuration of two adjacent
triangles of the triangulation T, then T is referred to as a weak Delaunay-

conforming triangulation. -

Def 3: If, in addition, the property of the empty sphere is verified for the whole
triangulation, then T, is referred to as a strong Delaunay-conforming

triangulation on the surface.

Def 4: The circumscribing sphere to a triangle is the sphere with the same centre

and the same diameter as the circumscribing circle.

It should be noted that triangulations that are weakly Delaunay-conforming in the sense
of Definition 2 generally do not respect the empty sphere criterion for the whole surface,
i.e. they are not strongly Delaunay-conforming in the sense of Definition 3. This is not
an obstacle when dealing only with surface meshing, but if subsequently we have to
generate a volume mesh using a 3D Delaunay method, then some triangles will

eventually have to be cut [8). If we are dealing with planar geometry, Definition 2 comes
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to Definition 1 with no more conditions, and we can affirm that in this case the
triangulation is Delaunay-conforming provided that it is weakly Delaunay-conforming,

as in Definition 2.

In Definition 2. the distances are measured in the 3-dimensional Euclidean space. Thus,
instead of testing a node with an exact Delaunay criterion, we verify only if it is not in
the circumscribing sphere of the triangles located in the vicinity of the node. This
vicinity is related to the topology of the mesh. It is, in fact, the connectivity relationship

between the triangles that defines the vicinity (the shell concept, [6]).

—_———————————

Figure 3.11: Cylinder. designed using Figure 3.12: STL mesh of the surface
Autodesk AutoCad generated by AutoCad (side view)

The local remeshing algorithm is based on diagonal swapping [1]. The diagonals to be
swapped are determined by searching for triangles that do not respect the modified
Delaunay criterion relative to the new vertex. We perform a kind of "star" remeshing of
the convex domain that is composed of the triangles found previously, by connecting the
added node to the corers of the convex domain. This is the "Watson" algorithm [11]. In

order to avoid poor geometrical approximation, the search for triangles that do not
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respect the modified Delaunay criterion is done only on triangles whose orientation does
not overly differ from the orientation of the triangles in the immediate vicinity of the
new vertex, a difference of about 15° to 60° being normal, see Figure 3.13 and Figure
3.14 (same cylinder than in Figure 3.12). To avoid destruction of the edges of the object,
in the algorithm it is forbidden to swap segments that belong to the list of edges, as
defined above.

\ /////

TF\}
/\

Figure 3.13: Several meshing steps. with  Figure 3.14: Several meshing steps, with
a threshold angle of 45° (4 vertices a threshold angle of 20° (8 vertices
inserted) inserted)
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Figure 3.15:  Poor geometrical Figure 3.16: Good approximation:
approximation of the surface: threshold threshold angle of 20°
angle of 45°

Figure 3.13 to Figure 3.16 show the effect of the threshold angle on the quality of the
surface approximation during the initial meshing steps. As anticipated. the edges are not

destroyed.

The fact that not all the triangles that do not respect the modified Delaunay criterion are
taken into account is not a problem because the original STL mesh will be highly
refined. Indeed, from a certain point of advancement of the algorithm. triangles that do
not respect the modified Delaunay criterion will all be taken into account because at that
point the difference in orientation between all the triangles will be below the angle
threshold. At the end of the refining step. the triangulation will be weakly Delaunay-
conforming. This is the key in adapting the algorithm described in [9] to curved

surfaces.
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3.3.3 The projection algorithm

As we see in Figure 3.15, Delaunay remeshing leads to poor geometric approximations.
Often, when we generate a node on a segment that is not part of the original STL mesh,
it is not located on the original STL model. This is because of the remeshing that occurs
around every inserted node (Watson algorithm). Consequently. we need a projection
algorithm to relocate the node onto the surface as described by the original STL

triangulation.

This operation is time-consuming because the target triangle on the initial STL mesh on
which the vertex will be projected is not known a priori. An adjacency search algorithm
is used to avoid testing all the triangles of the initial STL mesh. This algorithm is also
useful when the solid to be meshed features very thin volumes (see example 3.4:
interleaved tetrahedrons). We should avoid the projection of a node belonging to the
inner surface onto the outer surface. The projection algorithm is based on the fact that
each new node is created on a segment (due to the bisection algorithm). In fact. we know
the STL triangle where a new node is created. Using information in the vicinity between
the STL triangles. it is easy to test a limited number of triangles. In order to do so. we
start by testing an STL triangle that corresponds to one of the nodes of the segment that
is bisected. We then test all neighbouring triangles and proceed until we find the proper
triangle onto which the new triangle will be projected. Simple geometric algebra is used
for the actual projection. A similar approach is used for mesh smoothing. When a node
is moved during the smoothing process, its new location should be on the STL
triangulation. This, of course, implies that the information about the initial STL

triangulation has to be kept throughout the whole process.
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3.3.4 Smoothing

We implemented a kind of "laplacian” smoothing, obtained by moving the vertices at
the location of the barycentre of the connected vertices. without relaxation. This
operation is repeated for each “free” vertex of the mesh. Of course, we have to re-project
the vertices onto the STL surface. Again, we are not concerned with vertices that are
situated on edges (they are not free to move). It should be noted that the laplacian
smoothing of a surface without limits or edges (such as a sphere) can't converge, because
the mesh is to move indefinitely. This is a poorly formulated problem, somewhat similar
to a laplacian problem without boundary conditions. However, our aim is to obtain a
local smoothing so that we do not have to wait until complete convergence is achieved.
In most cases. ten iterations are sufficient. By local smoothing, we mean that the
regularity of the mesh is related to how the nodes are set relative to each other; clearly.
the influence of nodes farther away is much less than nodes in the immediate vicinity, so

we don't need to wait until complete convergence is achieved to obtain a regular mesh.
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Figure 3.17: Before smoothing Figure 3.18: After smoothing (10
iterations)

3.3.5 Respecting a size map

As shown in the examples below. algorithms have been implemented in order to respect
different types of size maps that are imposed a priori. Since nodes are generated on
existing triangles using bisection techniques (as long as the length of the sides of the
triangle are locally greater than the prescribed size), the actual mesh size is about 0.6

times the prescribed size.

The size map consists of either a constant size map, an arbitrary size map provided by
the user or by an error estimator, or a size map that will lead to a good geometric
approximation of the solid's boundary. In the latter case. mesh density is driven locally
by the maximum geometric error (theoretically the gap between the target mesh and the
boundary of the original solid model). As the original solid model is not available (we
only start from the STL triangulation). we use the curvatures defined above in order to

approximate the solid boundary locally and calculate the gap. The gap considered here,
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for a given triangle T, is the maximum distance between 7, and the sphere that passes
through the vertices of the triangle, with R, being the radius of the sphere (sce Figure

3.19):

(24)

Figure 3.19: Definition of the gap between
the sphere and the triangle

3.3.6 User input

The only parameters that have to be provided by the user of our mesh generation process

are the following:

- the STL file
- the target size or the size map

- the threshold angle for the edge detection algorithm, represented by 7. In the

examples shown below T, has been set to 45°.



- the threshold angle for avoiding poor geometric approximation during the

Delaunay remeshing process, represented by 7,. In the examples shown below
T, has been set to 25°. It should be mentioned that 7, and 7, are closely related.

If T,< T,, the edges detected with T, will not be destroyed anyway.

3.3.7 The advantages of using STL instead of CAD patches

In a mesh generation process based on CAD patches, the patches that make up the solid’s
boundary are meshed individually. Consequently, the edges shared by adjacent patches
are kept in the resuiting mesh. Most of the time, patches in CAD designs are not related
to any physical meaning and generally there is no point in keeping patch edges in the
resulting mesh for FEM calculation purposes. Moreover, keeping patch edges often
leads to a stretched triangle because they contribute to constraining the resulting mesh.
In our mesh generation system the only edges that are kept are "true” edges and edges
that are needed to apply the boundary conditions. The following example (see Figure

3.20) illustrates the concept of "patch independent” mesh generation.

.

T
N '

Pty t

Figure 3.20: CAD model of a fillet Figure 3.21: Resulting mesh obtained
from the STL fille (patch independent)



3.4 Validation examples

3.4.1 Cylinder
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Figure 3.22: Original STL mesh. 252
triangles. 128 vertices. Height: 30 mm
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Figure 3.24: Histogram of the length of
segments corresponding to Figure 3.23.
The target size is 3 mm

Figure 3.23: Refinement: constant target
size: 3mm. Smoothing. 2302 triangles,
1153 vertices
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Figure 3.25: Histogram of the quality
factor of the triangles in Figure 3.23
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Figure 3.26: Adaptive refinement:
maximum imposed geometric error:

0.005mm. maximum imposed triangle
size: 4 mm for low curvature regions.
Smoothing. 7086 triangles, 3545 vertices.

62

Figure 3.27: Refinement: constant target
size: 7Tmm, coarsening (not described
here): constant target size: 5 mm.
Smoothing. 314 triangles. 159 vertices.



3.4.2 Revolution solid
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Figure 3.28: Original STL mesh. 1386
triangles. 695 vertices. Size: 150 mm
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Figure 3.30: Histogram of the length of
segments corresponding to Figure 3.29.
The target size is 8 mm

Figure 3.29: Refinement: constant target
size: 8 mm. Smoothing. 4040 triangles,
2022 vertices
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Figure 3.31: Histogram of the quality
factor of the triangles in Figure 3.29



refinement:
maximum imposed geometric error: 0.1
mm, maximum imposed triangle size: 20

Figure 3.32: Adaptive

regions.
3219

curvature
triangles.

low
6434

mm for
Smoothing.
vertices.

Figure 3.33: Refinement: constant target
size: 8 mm . except on a plane: 2 mm.
Smoothing. 8622 triangles, 4313
vertices.



3.4.3 Power supply fan
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Figure 3.34: Original STL mesh. 1908
triangles, 932 vertices. Size: 100 mm
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Figure 3.36: Histogram of the length of
segments corresponding to Figure 3.35.
The target size is 2 mm
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Figure 3.35: Refinement: constant target
size: 2mm. Smoothing. 59196 triangles,
29576 vertices
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Figure 3.37: Histogram of the quality
factor of the triangles in Figure 3.35.
Thin blades imply quality factors under
0.1
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Figure 3.38: Adaptive refinement:
maximum imposed geometric error: 0.01
mm. maximum imposed triangle size: 10
mm for low curvature regions.
Smoothing. 75696 triangles, 37826
vertices.

Figure 3.39: Adaptive refinement:
maximum imposed geometric error: 0.1
mm. maximum imposed triangle size: 10

mm for low curvature regions.
Smoothing. 13730 triangles. 6843
vertices
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3.4.4 Interleaved tetrahedrons

The difficulty comes from the fact that there are 5 tetrahedrons touching each other
(distinct solids). The projection algorithm could project vertices onto the wrong solid,
and this is avoided by adjacency relations used in the projection algorithm described
above.

Figure 3.40: Original STL mesh. 480 Figure 3.41: Refinement: constant target
triangles. 220 vertices. Size: 60 mm sizez 2mm. No smoothing. 7920
triangles, 3940 vertices
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Figure 3.42: Histogram of the length of Figure 3.43: Histogram of the quality
segments corresponding to Figure 3.41. factor for triangles in Figure 3.41. Same
In this case, the histogram is not properly remark as for Figure 3.42.

smoothed. This is due to the fact that the

geometry heavily constrains the shape of

triangles and the length of segments. The

target size is 2 mm.

0 0.2 0.4 0.8 0.8 1

3.4.5 Guitar

Figure 3.44: Original STL mesh. 3470 Figure 3.45: Refinement: constant target
triangles. 1737 vertices. Size: 20 inches size: 0.2 in. Smoothing. 45602 triangles,
22803 vertices
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Figure 3.46: Histogram of the length of Figure 3.47: Histogram of the quality
segments corresponding to Figure 3.45. factor for the triangles in Figure 3.45
The target size is 0.2 inches

Figure 3.48: Adaptive refinement: maximum imposed
geometric error: 0.02 in., maximum imposed triangle
size: 0.8 in. For low curvature regions. Smoothing.
27550 triangles, 13777 vertices
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Figure 3.50: Original STL mesh. 1330
triangles. 655 vertices. Size: 377 mm

Figure 3.51: Refinement: constant target
size: 5Smm. Smoothing. 30208 triangles,
15094 vertices

refinement:

Figure 3.52: Adaptive
maximum imposed geometric error:
0.05 mm, maximum imposed triangle
size: 13 mm for low curvature regions.
Smoothing. 26432 triangles. 13206
vertices
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Figure 3.53: Histogram of the length of Figure 3.54: Histogram of the quality
segments corresponding to Figure 3.51. factor for the triangles in Figure 3.51.
The target size is 5 mm.
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34.7 Aneurysm

Figure 3.55: STL mesh from a medical Figure 3.56: Refinement : constant
scanner. 10494 triangles, 5245 vertices. target size : 3 1/10mm ). Smoothing.
Size: 278 1/10mm Courtesy of Dr. M.L. 21462 triangles, 10729 vertices
Raghavan. Department of Biomedical

Engineering. University of lowa, lowa

City. 1A
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Figure 3.57: Closeup of Figure 3.56.
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Figure 3.58: Histogram of the length of
segments corresponding to Figure 3.56.
The target size is 3 mm
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Figure 3.59: Histogram of the quality
factor for the triangles in Figure 3.56.
Because of tiny details on the original
model, there are still some stretched
triangles
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3.5 Conclusions

In this paper, we have shown the possibility of directly re-meshing (i.e. without knowing
the actual exact geometry) not only meshes from STL files. but more generally all
surface meshes, provided that they are conforming. For example. this can be done when

using a FEM adaptive remeshing loop and a size map provided by an error estimator.

The method described can mesh a solid without being restricted by the CAD
representation (patches), i.e. two patches can be meshed without their common boundary
being in the resulting mesh. The result is a patch-independent mesh. which can be
advantageous for very complex parts composed of many small patches. In addition. the
mesh procedure is independent of any exact CAD file format. We currently mesh

geometry that originates with many CAD systems. such as AutoCAD and Catia.

Further work on anisotropic mesh generation using the same basis will be carried out.
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4.1 Abstract

In injection moulding processes such as Resin Transfer Moulding (RTM) for example,
numerical simulations are usually performed with a fixed mesh. on which the
displacement of the flow front is predicted by the numerical algorithm. During the
injection, special physical phenomena occur on the front, such as capillary effects inside
the fibre tows or heat transfer when the fluid is injected at a different temperature than
the mould. In order to approximate these phenomena accurately. it is always better to
adapt the mesh to the shape of the flow front. This can be achieved by implementing re-
meshing algorithms. which will provide not only more accurate solutions, but also faster
calculations. In order to represent precisely the shape of the saturated domain in the
cavity, the mesh needs to be non isotropic in the vicinity of the flow front. The size of
the elements along the front is connected to the overall accuracy needed for the
simulation (as interpolation error); also it is also connected with the curvature of the
front (one need more elements along the front if it is very curved). The size in the
perpendicular direction governs the accuracy on the position of the moving boundary in
time. Since these two constraints on element size are not related. the need for non

isotropic mesh refinement is crucial if one want to optimise simulation time versus
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simulation error. In the approach proposed here, the mesh is changed at each time step
from a coarse background mesh used as starting point in the refinement algorithm. The
solution needs to be projected on the new mesh after each re-meshing. This amounts to
adopting a new filling algorithm, which will be validated by comparison to a standard

simulation (without re-meshing) and with experimental data.

Keywords: Resin transfer moulding, simulation, finite elements, anisotropic mesh

generation, level sets.
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4.2 Introduction

The numerical schemes used in mould filling simulations are usually based on a time
dependent resolution of an unsteady (free surface) boundary value problem. Because the
boundary of the filled area in the mould cavity is constantly evolving, it is difficult to
generate a fixed mesh suitable for all the successive calculation steps of a filling
simulation. This leads to numerical difficulties in capturing some physical phenomena
that occur on the flow front, such as in the RTM process the heat exchanged between
heated fibres and the resin. Other related problems concern the calculation time and
computer memory needed to perform accurate flow predictions for complex geometries.
In existing standard numerical procedures, a fine mesh is required everywhere in the
mould cavity. This means that the solution time grows at an exponential rate with the

desired accuracy, usually in the following way:

1 = k(d)-s*' (25)

where s is the density of the mesh (in arbitrary units). and d stands for the topological
dimension of the domain (2 or 3), provided that the semi-bandwidth of the linear system

remains stable when the mesh density increases. Parameter k(d) is a constant

independent of s .
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Figure 4.1: Filled elements (in grey) in a mould filling simulation on a fixed mesh
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As shown in Figure 4.1, the front position cannot be approximated with a fine precision
on a fixed mesh. However, this simulation performed with LCMFlot software [26]
presents the advantage of conserving the volume of resin in the mould, because the
numerical scheme is based on linear non conforming finite element approximation with
degrees of freedom defined at the middle of the edges. These have the mathematical
property of conserving the resin flow rate across inter-element boundaries (for a
discussion about this choice, see [27]). The time stepping mechanism considered here is
simple as there is no dependence between time steps (the problem here is quasi-static at
each time step, so there is no need of a specific time integration scheme). In order to
avoid a poor representation of the flow front, it is necessary to refine the mesh at each
calculation step. In such an adaptive scheme. there is no need for the tangential node

density (d,) along the front to be the same as the normal density (d,). In fact. d, is
related only to the spatial accuracy of the resolution at each time step. whereas d,, has

an influence on the accuracy of the position in time of the flow front during the whole
simulation. As a consequence, a non isotropic mesh generation algorithm is required
here. Moreover, the use of an adaptive refinement scheme will lower dramatically the

need of computational resources for a given numerical accuracy.

Chang and Kikuchi [14] have used a re-meshing procedure in their simulation of the
RTM process. This work was focused on the numerical solution of Darcy's equation at
each time step in the saturated domain, but no assumption was made on the accuracy of
the flow front. The objective of this paper is to develop a non isotropic re-meshing
algorithm that will follow the moving boundary and allow to predict its evolution. This
article is divided into three main parts: (1) non isotropic mesh generation: (2) the
creation of a suitable metric field to control the mesh size; and (3) the update of the front
flow after each time step. Finally, the re-meshing algorithm is interfaced with the mouid
filling simulation software LCMFlot to study the performance and accuracy of the
numerical solution. The re-meshing algorithm is compared with an experiment and with

the results of the commercial software LCMFlot (cf. www.esi-group. com).
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4.3 Surface mesh generation

An initial mesh must be provided, that will be fine enough to represent the geometry of
the part. typically a STL file most of the time. A standard bisection algorithm will be

used to refine the original mesh [13].

4.3.1 Isotropic scheme

New vertices are generated by bisection of a line segment already existing in the mesh.
A new vertex is created near the middle of the longest line segment (hence increasing
the density of the mesh). This vertex must be inserted topologically and projected on the

initial mesh (see Figure 4.2).

Figure 4.2: Insertion of a new vertex "V’ on an existing edge S’

Afier each bisection, the mesh must be modified locally in order to achieve a better
regularity in the size of the elements. This is done by respecting the well-known
Delaunay criterion for 2D meshes [23]. However, since in the general case we deal with

curved surfaces, the conventional Delaunay criterion must be adapted here to the



discrete representation of a curved surface with the initial background mesh. Let us
return to the original definition of Delaunay triangulation in two dimensions

(18][19][29].

Def. 1 - Property of the empty circle: Let T be an arbitrary triangulation of the
convex hull of a set of vertices S. The property of the empty circle means that
the circumscribed circle to a triangle of the mesh does not contain any other node
than those of that triangle. If this property is verified for every configuration of
two adjacent triangles. then it is verified for the whole triangulation T which will

be referred to as a Delaunay-conforming triangulation.

This definition leads to the most regular mesh obtainable from a given set of nodes (the
mesh which minimizes the maximum angle in all triangles). This criterion can be
adapted to curved surfaces by taking their curvature into account. However, a
parametric representation of the surface is needed, which is not available in the general
case. Therefore a modified criterion is proposed, which is of course less accurate than
the former one. but that will allow to test to test topologicaily nearby triangles. This

leads to definitions 2 and 3. taken from [22].
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Def. 2 - The circumscribing sphere to a triangle is the sphere with the same

centre and the same diameter as its circumscribing circle.

Def. 3 - Property of the empty sphere: Let Ts be an arbitrary triangulation of the
convex hull of a set of vertices S located on a surface. The property of the empty
circumscribed sphere means that the circumscribed sphere to a triangle does not
contain any other node than those belonging to that triangle. If it is verified for
every configuration of two adjacent triangles. then the triangulation Ts is referred

to as a weak Delaunay-conforming triangulation.

Def. 4 - If. in addition. the property of the empty sphere is verified for the whole
triangulation. then Ts is referred to as a strong Delaunay-conforming

triangulation of the surface.

Note that triangulations that are weakly Delaunay-conforming in the sense of Definition
2 generally do not respect the empty sphere criterion for the whole surface. i.c., they are
not strongly Delaunay-conforming. However. this does not represent a problem here, as
no 3D mesh needs to be generated. The local re-meshing algorithm is based on
Watson's algorithm, which consists of a local improvement of the mesh by edge
swapping without having to consider the whole mesh [30]. In order to avoid a poor
geometrical approximation and a destruction of the real edges of the geometric object,
the algorithm forbids to swap edges belonging to sharp angles as well as to boundaries
of the surface. The insertion of new vertices stops when the size of the longest segment
becomes of the desired size. Figure 4.3 shows an example of surface mesh generation

using this method.
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Figure 4.3: Examples of isotropic surface triangular meshes

4.3.2 Non isotropic extension

As we need here to deal with anisotropy. the refinement algorithm must be adapted to
generate a mesh related to a non isotropic size map. A non isotropic size map indicates
how stretched triangles should appear everywhere on the surface. It is defined by the
desired size in orthogonal directions and by the orientations of these directions. In two-
dimensions, three independent parameters are required to define a non isotropic size
map. This can be summarized with a 2x2 symmetric positive definite matrix. called the
meltric, or a similar metric field (function of position) if the element size is non constant
over the computational domain. The notion of distance between two points is then

redefined as follows [20]:

1
dist(4B)=1(T) = [y's'()-M(s(D)-s'(1)c (26)

where 4 and B are the points considered. s(f) is a parametric representation of the path
followed on the surface to go from A to B (usually a straight segment). and M s the

‘ metric field. The desired size at every position depends on the metric field. In fact.



when evaluated with the proposed metric, the length of any line segment of the mesh is
set close to one by the refinement algorithm. This allows to choose the longest segment

(with respect to the size map in the metric field) to be refined first.

In our work, this distance is approximated by Simpson’s integration scheme. However,
if the metric is locally constant along the line segment AB. the following quadrature

formula can be used:

dist(AB) = f AB-M(A)-AB; AB-M(B)- AB n

Of course. the latter expression is faster to compute. but less accurate if there are great
variations in the metric. The above formula cannot be used at the beginning of the
meshing algorithm because line segments of the background mesh cross all the domain
(and the moving boundary). Note that the numerical scheme may degenerate if these

distances are not calculated with enough accuracy.

Finally, definitions 1 to 4 of Delaunay triangulations must be changed. The structure
remains the same, but, of course, circles are changed to ellipses. and spheres to
ellipsoids. Figure 4.4 shows two non isotropic meshes generated by two arbitrary
analytical size maps. Both provide a constant isotropic mesh. except in the vicinity of a
sinusoidal path. The first size map is stretched normally above the sine wave. and

stretched tangentially under. The second one is only stretched tangentially.
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Figure 4.4: Examples of 2D non isotropic meshes

4.3.3 Determination of a Non isotropic size map

The mesh generation algorithm needs a size map in order to create a suitable mesh. This
size map is generated from physical parameters (current front positions, geometry of the
mould) and computational parameters (required accuracy, efficient usage of

computational resources, calculation speed).

N\

Figure 4.5: Zones in the mould cavity (thick black lines denote the positions of the
flow front)
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As shown in Figure 4.5, there are 3 different zones to consider:

(1) the fully saturated zone. where the solution of Darcy’s boundary value problem is
computed (isotropic mesh);

(2) the fromt neighbourhood, where high thermal gradients may exist (non isotropic
mesh);

(3) the empty zone. where almost nothing happens, apart from heat exchanged by

conduction (isotropic mesh).

A filling factor F between 0 and 1 is usually associated to each element of the mesh. It
represents the ratio of resin volume contained in an element to the pore volume. This
factor can segregate easily between regions (1) and (3). However. a constant-by-
element filling factor is not precise enough to represent a continuous front. Therefore a
continuous nodal representation will be adopted here in order to model the position of
the front. In order to define the front neighbourhood (2), a scalar field is needed that
will represent the distance to the front. The position of the moving boundary is
determined by taking the 0.5 iso-value of the filling factor (0 represents an empty pore,
and | a fully saturated volume). The distance of each node of the (previous) mesh to the

front will be calculated by the fast marching method described later.

The next question is related to the motion of the flow front from one position to the other
at each calculation step. For this purpose, an efficient filling algorithm is needed to
update the position of the resin front. It is not computationally efficient to recalculate
the pressure and velocity fields after each new layer of elements is filled up with resin.
An improved algorithm to predict the position of the resin front at each calculation step
is needed here. For that purpose, a time field representing the arrival time of the resin at
each node of the mesh must be calculated. This time field requires the knowledge of
extrapolated velocities in the empty zone and of a distance field representing for every

node the "distance” to the front.
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4.3.4 Representation of the filling factor

The filling factor F associated to the nodes of a finite element mesh is a discontinuous
variable (i.e., F = | if a node lies in the filled region; F = 0 if it is in an empty region).
Standard finite element approximations cannot represent such a field if the discontinuity
does not match with element boundaries. This is the case in a mould filling problem,
because during the simulation there is no a priori information on where the flow front
will move from its current position. Instead, a continuous representation designed to

keep track of the exact position of the front shall be used here.

For the sake of clarity, this will be illustrated in Figure 4.6 for a one-dimensional
example. Elements are numbered from left to right (E1) to (E6). and the nodes of the
"mesh" are denoted from (a) to (f). The discontinuity is located at A between nodes (c)
and (d). The figure shows the "theoretical" discontinuous filling factor above. which
cannot be represented directly on a finite element mesh. The continuous approximation
is plotted below as a piecewise linear continuous function in each element. By
convention, the 0.5 iso-value will be taken as the exact position of the moving front in
time. Note. however. that this kind of approximation does not allow an exact
conservation of the fluid mass as it is. In the next equation. let F be the "true” filling

factor (discontinuous), and F_ the continuous approximation of F. With these notations,

the filled volume ¥, can be defined as :

V,= [ Fex)-de=[l-de= [ F (x)-d (28)

where Q is the whole volume of the mould. and Q,is the volume such that

F'(x) > 0.5. The volume of fluid calculated with the continuous nodal representation F *
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of the filling factor F is not necessarily equal to the exact fluid volume V,. This

approach is also valid in the two- and three-dimensional cases.

El E2 E3|d E4 e ES

[ R

ES

¢

Figure 4.6: Filling factor

4.3.5 Notion of level set

Sethian et al. [12][24][{25] developed a mathematical tool to describe time-evolving
phenomena. including moving boundary problems. Let w(X.r) denote the normal
velocity to the front at a position X and time . Basically, a level set is a function

u(X.t), which is solution of the following "initial value" problem :
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2Kt} vul =0 in 0 29
u(X,t)=0 on I'(¢) (30)
r,)=T, Gh

where I'(1) denotes the moving boundary at time 1, I'(¢,) being the initial position of the

front. Equation (29) is derived from the transport equation of a scalar field u(X.1):

%+V(X,t)-Vu —0inQ (32)

where V(X.t) is the velocity vector of the fluid. If n denotes the normal vector at time ¢

and position X on the interface, we have the following identities :

V(X.t)-Vu-

[Va

v(X.1)-|Vul = V(X,1)-n-|Vu| = V| = V(X.t)- Vu (33)

The velocity vector V(X.f) is supposedly defined everywhere in Q. In moving
boundary problems, it is not necessary to know the tangential component of the velocity
to the interface: only the normal component v(X,) plays a role. The function u(X.,r)
provides a mathematical mean to follow the moving position of the interface in time. It
is an arbitrary function of position and time, with some constraints. A distance function
to the front at a given time (see corresponding paragraph) will meet the requirements.
These requirements are that this function must be continuous so that its gradient will be

defined at the interface and it must vanish along the front (interface). In fact. w(X.r)



plays a similar role for an interface as the characteristic function of a set. [I(¢)
represents the shape of the front (interface) at instant 7. It needs to be known at an
initial time 1,. as well as the normal velocity function v(X,) in the whole spatial and
temporal domain. These equations are valid for any v, both positive and negative.
Every point X where u(X.7)=0 lies on the boundary at time ¢, thus allowing to track its

successive positions by taking the iso-value u = 0 at related time steps {to.t, s .01, ).

4.3.6 Eikonal equation

In the case of a monotonous evolution of the moving boundary (which is true for the
resin front in RTM). this investigation can be restricted to the more specific case of the

so-called Eikonal equation :

v(X)-|Vu|=1in Q (34)

u=g(X)onT (35)

These equations define a "boundary value” problem at time ¢,, the solution of which is

u(X) and has here a physical meaning (unlike the solution u(X.r) of the level-set

equations). It represents the time when a point X will be reached by the moving
boundary. if the displacement of the front is extrapolated from its current position. This

is also called the relative "arrival time" at position X. The reference time for the current
position of the front is set to zero. Clearly, u(X) must be single-valued, thus the
restriction to positive values for v(X). Physically, this means that the front cannot

revert itself once it has reached a certain position. Once the assumption on positive
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values for v(X) is made. the evolution of the moving boundary becomes monotonic,

thus permitting a time independent solution scheme.

When dealing with a flow in a porous medium (Darcy's law), there are no dynamic
effects need to be considered. so the sign of the normal pressure gradient remains
constant along the front. Thus. the front cannot move backwards. This is sufficient to
prove that the latter mathematical background of the Eikonal equation is appropriate,

with the normal velocity function to the front v(X) being always positive.

We are now going to solve the Eikonal equation to evaluate a "distance function” of

every node to the front.

4.3.7 Distance function

Solving the Eikonal equation for a unitary normal speed v(X) =1 and an homogeneous
boundary condition # =0 on T leads to a solution u = d(X)which can be considered as
a distance function from the point X to the curve I'. namely the current position of the
flow front. In a discrete computational domain. this function will be extremely useful to
locate the nodes of the mesh with respect to the moving boundary. Note that this
distance is not Euclidean. This will be illustrated easily in the next section. which

describes how the distance of any node to the front is calculated.

4.3.8 Computation of the distance field

The solution of the Eikonal equation in a triangulated discrete domain is described in
detail in [25]. This is an hyperbolic problem, in which the "information” is transmitted

from the boundary conditions to the whole domain. Hence. a solution scheme based on
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the displacement of a moving front can be used here. much similar to the fast marching
method described in [21].

Empty zone

Figure 4.7: Distance evaluation scheme

The geometrical approach developed here is illustrated in Figure 4.7. which shows in
bold the position of the moving boundary at a given time. The mesh displayed here and
in similar graphics in the sequel is isotropic for readability purpose only. Nodes situated
on the front have a distance value equal to zero (for example at node "A". d;=1,=0). In
the first layer of elements. the distance associated to each node is the length of the
segment perpendicular to the iso-value (nodes concerned in Figure 4.7 are B. C. D, E, F,
G, H). For example. dc = Ic at node "C". For any subsequent layer. the algorithm

proceeds layer by layer until all nodes have been processed. Hence the distance d; for

any node "K" is evaluated by the following equation:

dy =(ax dy, +(l Qg )'dx, )+IA‘ (36)
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where d,, and d, are the distances associated to the nodes of the previous layer and
I, denotes the Euclidian length of the projection of node "K" on the segment N N,.
Parameter a, is the relative position of this projection on the segment N N, (i.e.. if the

projection lies in the first quarter. a, =0.25). Naturally. for each layer of elements,

nodes are sorted relatively to their distance. The zone affected by these computations
grows in the same way as distance iso-values do. If a node is encountered with a
distance already known (for example. if layers collide). the new distance will be
computed anyway. The shortest value will be chosen as new distance for this node. This
ensures the construction of a consistent and continuous distance field. which can be
considered as a piecewise linear interpolation of the "real” distance inside each triangle.
Figure 4.8 shows the distance field determined from a given flow front position on an
isotropic mesh. The distance field allows to locate each node in the mesh with respect to
the flow front. Based on this approach. a non isotropic size map adapted to the flow can

now be constructed.
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Figure 4.8: Filling factors on isotropic mesh and
corresponding distance field

4.3.9 The size map

The size map described here consists of an approximation of the anticipated
displacement of the fluid front for the next few time steps. As illustrated in Figure 4.9,
a difference exists here between the tangential and normal density factors that govern the

element size in the new mesh. This will allow to select separately the element density
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factors in the tangential and normal directions (thus the need to create non isotropic
elements). In Figure 4.9, a typical density pattern is displayed, where / is simply a

parameter of position (taken here along section AA' in Figure 4.5 for example).

1 normal density * tangential density

g | [
A A A A

Figure 4.9: Normal and tangential densities along axis AA” (see Figure 4.5 ).

The tangential size is determined at the beginning and will not change during the whole
simulation. The normal size s, (inverse of the normal density r,) depends on the time
increment Ar and the number k of finite element layers that will be considered for each
calculation step. It is defined relatively to the normal velocity field V-n near the
moving front. In a local coordinate system defined by the normal to the front and a

tangent vector, s, and s, can be expressed as follows:

Lol Ve -
z, k
l
s, =—=cst (38)
4

These equations are valid in the vicinity of the fluid front. i.e., in a layer of thickness e.

This thickness e corresponds to the distance (44') in Figure 4.9 and is calculated as

follows:



e=(A4')=3-V-n-A1 (39)

Anywhere else. except in a transition layer surrounding the refined layer, the mesh will
be isotropic with a size factor corresponding to s,, eventually with some variations from
place to place depending on the complexity of the geometry. From these assumptions,
the metric M used in equations (2) and (3) to define the size map can be computed

locally in the global coordinate system (O.x.y) as follows:
M="R -[’(") 02]- R (40)

Here R is a rotation matrix. used to change the expression of the metric field from a

local base attached to the front geometry to a global base. and @ is the angle formed by

the normal to the front and the direction Ox :

8 i — -
R co.s sin@d .0=(Ox.n) @l
—-sinf coséd

This metric is a quadratic form. With this metric field and the mesh generation
algorithm described above. the local mesh refinements of Figure 4.10 have been

obtained in a planar mold with obstacles.
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Figure 4.10: Examples of adaptive meshes generated at different time steps in order
to follow the moving front.

So an adaptive mesh has been generated, able to follow a moving boundary and respect
non isotropic geometrical constraints. Moreover. based on the theory of level sets and
on the notion of “distance to the flow front™ introduced here. this mesh can be structured
to include a given number of finite element layers in the vicinity of the moving
boundary. It is now time to include this mesh refinement scheme in the calculation

process and implement the algorithm for RTM mould filling simulations.

4.4 Update of the flow front position

The size map introduced in the previous section is used to generate a mesh that will
reflect the positions of the moving front. Two meshes have been constructed from the

background mesh, one defined at the current time step ¢ =¢, and the other at the next

time step 7 =1,,,. The scalar fields of velocity and filling are defined at the current time

123
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step 1. The location of the flow front at the next time step must be extrapolated in order

to update the simulation between two successive time steps. A new notion is introduced
for this purpose: the time field. It is defined as the time at which a point of the domain is
reached by the resin front. Using this information, it is possible to evaluate new filling

factors for the next time step and thus, close the simulation loop.

4.4.1 Computation of the time field

The fast marching algorithm mentioned before is used to solve the related Eikonal
equation that will lead to the time field. The time is set at 0 on the front. As in equations

(5) and (9), v(X) is the normal velocity to the moving boundary at position X (scalar).
v(X)-|Vu| =1 in Q (whole domain) 42)
u =0 on I'(t,) (current front) (43)

The same approach as for the distance field is used to solve the above problem. We
compute the arrival time at each node of the domain layer by layer. starting from the
front vicinity. One can refer again to figure Figure 4.7 for notations. The time at any

node K is evaluated by the following recursive formula which replaces equation (10):

ty =(ax”y..+(l‘ax)"4v, )+A’x (44)

where

\%
Aty =\!.jd'(dx_(ax'd,vo*’(l-ax)’d‘w» (435)




is the time increment in one element. Here d is the distance field, d, is its value at node

"K" and V is the velocity vector at this node.

Solving these equations leads to a solution # =¢(X), known as the time field, which

indicates for any point in the cavity the time of arrival of the resin front. However. one

problem remains with this approach. A knowledge of the velocity function V(X) is
needed in the whole domain Q. Afier calculating the current time field, the velocity is

known only in the filled region Q. It is therefore necessary to extrapolate the velocity

in the vicinity of the flow front from the saturated domain to the empty domain.

44.2 Determining the extrapolated velocity field

unknown

1“

Figure 4.11: Velocity extrapolation scheme

The velocity field is projected layer by layer, starting from elements crossing the current
flow front position (0.5 iso-value in the filling field). Jumping from one layer to the

‘ other with the help of the distance field (all elements in one layer have approximately
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the same distance values), the missing velocity vectors can be generated based on the

following heuristics:

(1) When there is only one adjacent triangle, simply translate the velocity vector, for

example V. =V, inFigure 4.11.

(2) When there are two adjacent triangles (triangles "4" and "B" are adjacent to triangle

"C" in Figure 4.11). first do :

v‘=VJ+V,,

46
( 5 (46)

We need to conserve the norm |V(.| of the velocity to ensure conservation of the resin

mass (for a constant flow front). This can be achieved easily by imposing the following

condition:

v, | = 2 @

The direction of vector V,. remains of course unchanged. It is clear that this approach

represents a first approximation and does not ensure a perfect conservation of the resin
mass "far" from the flow front. In principle, the resin flow rate should remain constant if
integrated along any cross section. This is not the case here, but as the front moves by
small increments. the numerical experiments reported in the sequel have shown that

fairly accurate results can still be obtained.
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4.5 Description of the algorithm

The algorithm of the whole computation writes as follows:

(1) Generate a background mesh “as coarse as possible™. which will be used as
fixed reference input in the re-meshing algorithm. This mesh must represent
accurately the geometry of the part (it can be a 3D surface or curved boundaries
can exist). as well as the boundary conditions (Typically, an STL mesh from
any CAD software is appropriate here. provided that it can represent boundary
conditions that will be set later on)

(2) Generate a finer initial mesh from a size map based on the boundary conditions
at the beginning of the injection. then begin the filling calculation for the first
time step (can be isotropic and uniform. or the result of an initial adaptation
scheme)

—» (3) LOOP: based on the previous filling factors and injection boundary conditions,
calculate with non conforming linear finite elements the new velocity field. as
well as the other fields requested (pressure. temperature. etc...).

(4) Save results for this time step.

(5) Calculate the distance and extrapolated velocity fields. then the time field.
Based on this. a non isotropic size map is generated. then the new mesh is
created from the coarse background mesh by a remeshing technique similar to
the one described by the author in [13].

(6) Update the flow front based on a fixed or automatic time step and the time field

- determined in (5).
(7) Test if the cavity is filled: if not. perform an additional loop by going back to
3).
(8) Display filling results.
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4.6 Resuits

Some comparison has been made, first with standard calculations carried out for a fine
mesh (numerical standard), then with experiments in the planar mould with obstacles of
Figure 4.13. The cavity is injected by a line injection located on the right side. In order
for this two-dimensional test to be as general as possible. the mould includes a zone of
convergent flow, i.e. a narrowing channel followed by a zone of divergent flow, and a
circular insert. The injection is performed along a line on the right side of the mould in

order to obtain a nearly regular flow front at the beginning of the experiment [31].

500
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70 . 100 30 1o N

Figure 4.12: Dimensions of the test mould

The experimental results were obtained in the following conditions:

- constant temperature;

- viscosity of the calibrated silicon oil: 4 =0.1Pa-s:

- permeability of the isotropic fabric: K =5.2-107"° m* (measured in a separate

experiment);
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pressure driven injection: the (non constant in time) injection pressure is
measured at the inlet gate and used as boundary condition in the simulation;
pictures were taken with a digital camera, when the flow front crosses the lines
drawn on the glass cover of the mould;

time was recorded precisely when the fluid front crosses these lines.
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Figure 4.13: Experimental results

Figure 4.14 shows the injection pressure measured during this experience. There are

’ two sudden rises in the curve, as pressure was increased twice to accelerate mould
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filling. Note that the constant pressure plateau is not instantaneous, as there is always
some delay before a new pressure level is reached. As long as the injection pressure is
recorded in time, a simulation based on Darcy’s law will reproduce accurately the

experimental results of Figure 4.13.
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Figure 4.14: Measured pressure at injection gate

Using the same experimental conditions (viscosity, permeability, injection pressure in
time), a series of "numerical experiments” was performed by varying the number of
calculation steps. Figure 4.15 shows the filling of the mould in time calculated by
LCMFilot.
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Figure 4.15: Numerical results for a 61 time steps simulation.

Figure 4.16 shows a comparison between the experiment, the numerical simulations with
re-meshing and a reference calculation performed by LCMflot with 700 computation
steps. This is done on a fixed and highly refined mesh (the approximate element size is
half of the size of the elements situated far from the front in Figure 4.15). The flow
front position is the position of previously determined points where time is recorded as
the front reaches that position. Same points are used in the simulation for that
comparison. When compared with the experiment, the reference calculation shows a

very accurate validation of the finite element approximation based on Darcy’s law to
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model mould filling. Re-meshing simulations have also been carried out for an
increasing number of time steps from 30 to 300. The results show that the re-meshing
algorithm converges rapidly to the reference solution. For 61 re-meshing steps, the
approximate positions of the fluid front in time are superposed with the reference

solution. Clearly, the re-meshing algorithm allows to reduce the number of calculation
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Figure 4.16: Comparison of numerical and experimental results

Note that a gap is observed on the graph between the experiment and the re-meshing
calculation for 30 time steps. This can be explained from the shape of the pressure
curve. Pressure rises around 200s first, then at 330s. This cannot be accurately taken
into account when the number of calculation steps is too low, because it leads to a delay
during which the simulation is not yet aware that the injection pressure has risen. In
fact. when reducing the number of time steps, one must be aware of the loss of accuracy.

especially when there is a sudden change of boundary conditions. This happens in
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industrial applications when the pressure or the flow rate is controlled to "optimise”

mould filling.

4.7 Conclusion

The numerical results show that a good accuracy can be obtained with the re-meshing
algorithm even for relatively few time steps. The shape of the flow front is respected by
the re-meshing algorithm, even if the number of degrees of freedom in the finite element
formulation remains low. In standard simulations on a fixed mesh, the number of new
elements to be filled at each calculation step is closely related to the time increment,
because one cannot update the flow front for more then one layer of elements at a time.
In fact. in order to ensure a good approximation, in theory only one new filled element
should be added to the saturated domain at each calculation step. This kind of constraint
means that extensive calculations are required to simulate the progression of the moving
front in the mould cavity. Moreover, a very fine mesh is neceded to apply precise
thermal boundary conditions on the flow front. - All these reasons explain why the

computational cost of mould filling simulations is usually high.

In conclusion. it is clear that re-meshing allows to reduce significantly the number of
calculation steps. each of them including a complete finite element computation of the
pressure and velocity fields in the saturated domain. As shown in this paper, this does
not hinder the ability to predict accurately the evolution of the flow front in time.
Furthermore. although each calculation is performed on a different mesh, the number of
degrees of freedom is reduced significantly for each finite element calculation. However,
there is a computational cost associated with re-meshing and with the generation of the
non isotropic size map. Therefore it is not guaranteed that the computer time will also

be reduced in the case of "simple" injection moulding simulations.
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5.1 Abstract

In injection moulding processes such as Resin Transfer Moulding (RTM) for example.
numerical simulations are usually performed on a fixed mesh. on which the numerical
algorithm predict the displacement of the flow front. The adaptive algorithm can be
used also together with a-priori error estimations to optimise the mesh for the finite
element analysis. This optimisation can be implemented during mould filling in order to
adapt the mesh to the shape of the moving boundary. However. in order to minimize
computer time, it is preferable to optimise the mesh before carrying out the filling
calculation. This approach is applied in this paper to resin transfer moulding, a process
used to manufacture composites by injection of a polymer resin through fibrous glass or
carbon reinforcements: (1) the adaptive algorithm is implemented with error estimations
in a mould with obstacles to generate a initial mesh; and (2) non isothermal filling
simulations are carried out in a rectangular mould to illustrate the stability conditions
that arise from the convective heat transfer problem. An analytical study on the radial

injection case is also carried out to illustrate issues related to four types of different mesh
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refinement procedures: (1) a mesh allowing for a constant time step. (2) a mesh with
constant radial density (thus allowing a constant progression of the flow front at each
time step), (3) a mesh providing a constant Courant number, in order to ensure stable

thermal simulations; and (4) finally, a mesh for which the interpolation error is constant.

Keywords: Resin transfer moulding, finite elements, thermal analysis. Darcy equation,

anisotropic mesh generation, mesh adaptation, error estimator.

5.2 Introduction

Injection moulding simulations are carried out for a variety of industrial processes such
as metal casting. thermoplastic injection, liquid composite moulding, etc. This type of
analysis requires the combination at each time step of a finite element approximation of
the partial differential equation that governs the flow together with a filling algorithm to
advance the fluid front in the cavity. This paper is concerned with the application of
mesh refinement strategies to the numerical solution of mould filling problems.
Although adaptive finite elements have been widely used to solve a large variety of
engineering problems, little work has been done on their implementation to moving
boundary problems. The numerical approximation of such problems requires generally
using a rather fine mesh. If automatic mesh refinement is desired. it should be adapted
to the shape of the flow front. A previous article by Bechet et al. [34] has shown how
non-isotropic mesh adaptation algorithms can be used efficiently to solve mould-filling
problems. This novel approach is discussed here with an application to Resin Transfer

Moulding (RTM).

Several computer simulations have been developed in the case of RTM simulations.
Bruschke and Advani [36] have combined control volumes with finite elements (FE/CV

method) to simulate mould filling in RTM. Young et al. [60] have also developed a
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similar numerical model to solve RTM flow problems. Later, Trochu et al. [56]
proposed a different approach in which the finite element was also the control volume.
In this latter case, using non-conforming finite elements ensures a local conservation of
the fluid volume in the cavity. Mould filling calculations are usually costly in terms of
computer time, because of the large number of elements required to model the cavity
and eventually the mould. This is especially true when non-isothermal analyses need to
be carried out. In the work of Lin et al. [49] for example, the heat transfer equation is
solved by coupling finite elements in the plane with finite differences through the
thickness. Bruschke and Advani [37] have also modelled by finite elements non-
isothermal convective mould filling for the RTM process. Trochu et al. [54] has also
proposed an algorithm to model non-isothermal problems by Taylor-Galerkin. which
was able to reduce, but not eliminate completely the numerical instability that is
generally observed in convective heat transfer problems. Non-isothermal RTM flow
simulations have been extensively validated by several authors. including Young et al.
[59] and Calhoun et al. [39] for mould filling and Guyonvarch et al. [44] for heat
transfer. However. a high level of mesh refinement is always necessary to track
accurately the motion of the moving boundary in time and a large number of calculation
steps is required to model the transient heat transfer as well as the chemical reaction in

the case of thermosetting resins.

The numerical schemes used in mould filling simulations are usually based on a time
dependent resolution of an unsteady (free surface) boundary value problem. In RTM,
Eulerian schemes are generally implemented together with the FE/CV method
developed by Maier et al. [46). The boundary of the filled area in the mould cavity is
constantly evolving, and it is difficult to generate an isotropic mesh suitable for all the
successive calculation steps of a filling simulation. The fluid front cannot be
approximated with a fine precision on an isotropic mesh. Such a mesh would have to be
very fine everywhere in the geometrical domain in order to provide an accurate

approximation. This leads to relatively time consuming calculations, although a fine
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mesh would be required only in the vicinity of the flow front and near the inlet gates.
For this reason, several researchers have proposed to construct a new mesh of the fluid
saturated domain at each time step (Bechet et al. {34] for Eulerian scheme, Mutin,
Coupez et al [50] for Lagrangian schemes). This kind of formulation is long in terms of
computer time; it is also rather complex. especially in the case of obstacles. merging
flow fronts or three-dimensional problems. A new approach is proposed in this article,
based on error estimators calculated during a simulation of the resin flow in the fully
saturated cavity. This allows an optimisation of the mesh before launching the filling

and thermal calculations and results in improved accuracy and reduced computer time.

Figure 5.1: Fluid saturated elements (in grey) in a filling simulation on a fixed mesh

Figure 5.1 illustrates a numerical problem connected with mould filling simulations: it is
difficult to track a smooth flow front on a fixed mesh. One major difficulty arises from
this kind of approximation in non-isothermal resin transfer moulding. when the
temperatures of the resin and of the fibre bed are different at the beginning of resin
injection. A thermal boundary condition must be specified on the front to solve the heat
convection problem during mould filling. Bechet et al. [34] developed an adaptive
algorithm capable of generating a new non-isotropic mesh in the vicinity of the flow
front. A new filling algorithm was also devised, based on the fast marching approach
developed by Sethian [52] and on the theory of level sets developed by Kimmel et
al.[45]. Adalsteisson et al. [32], and Sethian [53]. By implementing this approach, the
number of calculation steps could be reduced considerably, while preserving the same

overall accuracy of the numerical calculations. This works well for quasi-static
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problems, when there is no functional dependence between the time steps. However, as
discussed in this article, it becomes less easy to implement when numerical instability
problems arise in convective thermal simulations. The time step must be reduced
significantly (at least in the thermal analysis). This decreases considerably the gain that

can be expected from adaptive meshing algorithms.

These problems can be avoided when an a-priori adapted fixed mesh is considered.
Most existing software packages rely on a fixed mesh strategy to simulate mould filling.
Some are based on the control volume approach. For example, Bruschke and Advani
[36] have adopted a node-based representation of filling factors. Trochu et al. [56]
followed a different approach and implemented an element-based representation of
filling factors. When adaptive procedures are used, remeshing is usually performed for
each new position of the flow front, which makes the simulation quite expensive in
terms of computer time. For example, Chang and Kikuchi [40] have used a remeshing
procedure to simulate the RTM process. This work was focused on the numerical
solution of Darcy's equation at each time step in the saturated domain. but no
assumption was made on the accuracy of the flow front. This paper proposes a new way
to improve at the same time the accuracy and efficiency of mould filling simulations.
The adaptive algorithm is used here to generate a pre-optimised mesh that will take into
account the geometry of the part and the material properties of the reinforcement in
order to decrease numerical errors. The filling simulation is carried out on a fixed. but
adapted mesh, with all the computational advantages derived from this approach. The
shape of the flow front is rendered with much more accuracy with an adapted mesh. The
resulting gains include an improved stability of thermal simulations and a reduced
computer time required to carry out the filling calculations. For uniform filling of
cavities with no time dependence of the injection conditions, Chen et al. [41] proposed a
one-shot injection prediction. This represents a good alternative to time-explicit

simulations. However, when non-linear phenomena are taken in account (such as in
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curing analyses for example). the need for several convergence loops does not make this

approach more computationally efficient than usual time-explicit simulations.

In Part 1 of this contribution, the adaptive algorithm is presented in the two-dimensional
case. The main novel features of this investigation are the following: (1) a-priori error
estimations are implemented in a mesh generation algorithm to optimise isothermal
RTM mould filling calculations (in particular, non-isotropic material properties of the
fibrous reinforcement are taken into account); (2) adaptive meshing is also applied to
non-isothermal RTM flow analysis; (3) finally, different ways of creating optimal
meshes are illustrated and discussed for the RTM process in the case of a radial
injection. Part |l expands these concepts to three-dimensional shell geometries, which
represent the most common examples of composite parts currently made by resin

injection through fibrous reinforcements (RTM process).

5.3 Surface mesh generation

An initial mesh must be provided, that must be fine enough to represent the geometry of
the part. typically a STL file most of the time. A standard bisection algorithm is used to
refine the original mesh. This methodology was described in Béchet et al. [33] for the
isotropic scheme. It is briefly summarized in the next subsection in the isotropic and

non isotropic cases.

5.3.1 Isotropic scheme

New vertices are generated by bisection of a line segment already existing in the mesh.
A new vertex is created near the middle of the longest line segment (hence increasing
the density of the mesh). This vertex must be inserted topologically and projected on the

initial mesh. After each bisection, the mesh must be modified locally in order to achieve



a better regularity in the size of the elements. This is done by respecting the well-known

Delaunay criterion for 2D meshes [42] [51].
5§.3.2 Non isotropic extension

As we need here to deal with anisotropy, the refinement algorithm must be adapted to
generate a non isotropic mesh. This can be achieved by constructing a non isotropic size
map that will indicate how stretched triangles should be everywhere on the surface. A
new notion of distance will be associated to this non isotropic size map. The refinement
algorithm described above in the isotropic case will produce a non isotropic mesh when
implemented with this new distance. This information on the desired size of the
elements needs to be provided in two orthogonal directions. The orientation of these
directions must also be specified. In two-dimensions, three independent parameters are
required to define a non isotropic size map. This can be summarized with a 2x2
symmetric positive definite matrix, called the metric, or a similar metric field function of

position if the element size is not constant over the computational domain:

M(x)=[“(x) c(X)] 48)

c(X) b(X)

The notion of distance between two points is then redefined as follows [43]:

1 [
dist(AB)=1(T") = j\[ (a’a_(”)).m(s(:))-(a—sa%'—))d: (49)

where A and B are the points considered, s(¢) is a parametric representation of the path
followed on the surface to go from A to B (usually a straight line) and M is the metric

‘ field. The desired size at every position depends on the metric field. In fact. when
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evaluated with the proposed metric, the length of any line segment of the resulting mesh
should be close to one. The longest segments (with respect to the size map in the metric

field) are to be refined first.

In our work. this distance is approximated by Simpson’s integration scheme. However,
if the metric is locally constant along the line segment AB, the following simplified

quadrature formula can be used:

dist(AB) = J AB-M(4)- AB ;J AB-M(B)- AB 50)

Of course. the above expression is faster to compute, but less accurate if there are great
variations in the metric. This formula cannot be used at the beginning of the algorithm.
because line segments of the background mesh cross all the domain (and the moving
boundary). Note that the numerical scheme may degenerate if these distances are not
calculated with enough accuracy. To overcome this, an automatic adaptive integration
scheme is used. It adapts the discretization step along the path to the variations of the

metric and avoids the degeneracy of the mesh generation algorithm.

\
iR

Figure 5.2: Two anisotropic meshes generated with analytical metrics
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5.4 Error estimation

5.4.1 Anisotropic error estimator and metric

An error estimator will be described here for discrete three dimensional continuous
surfaces. composed of triangular patches. Recently, mesh adaptation became popular
with the ability to use a posteriori error estimations based on the energy related to each
element. and/or gradients of higher order of the solution field. This allowed to solve
complex problems (in terms of numerical complexity) with a good quality versus
computer time ratio. This approach reduces also to a great extent the number of degrees
of freedom needed for each time step in non stationary problems. In that specific case,
the adaptation can be made from one calculation step to the next without requiring a full
convergence of the adaptive procedure for each iteration. If the time step is short
enough. it is not a bad approximation to take the error computed previously to determine
the new mesh for the current time. This leads to an economy of additional convergence
loops. and hence of computer time. This is valid only if the problem does not show
discontinuities in time. which is usually the case in resin transfer moulding. However, if
this happens. the strategy is still valid if one uses a time stepping scheme able to adapt to
steep variations of the conditions of the simulations (boundary conditions among

others).

The error estimator considered here is based on the second derivatives of the primal
variable of the finite element formulation (pressure p for a Darcy flow, temperature T for
a heat transfer problem. etc..). The Hessian matrix that will act as error estimator is

defined as follows in a two-dimensional space:
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@p Op
| &t dyox
H(p)= Fp 3p (51)
oxoy '

Except at material boundaries (where there is a sudden change of physical properties),
the field p is continuous and derivable in the physical space. making this matrix
symmetrical. From the Hessian matrix, it is easy to define a related metric. However,
its eigenvalues must be all strictly positive in order to derive a distance from it. The
Hessian matrix is dependent on the sign of the second derivatives. whereas a metric just
needs to know the “size™ of elements (obviously positive numbers) in two different

directions. The transformation here consists of finding eigenvalues and eigenvectors

{v,} of the Hessian matrix. which becomes then diagonal :

A4 0
A= 0 A (52)

We denote E = {v,} the eigenvectors such that :

H="E-A-E (53)

By replacing the eigenvalues by their absolute values. we have :

|A|= Al o (54)
0 |4,

The following metric can be defined :
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M(p)=TE-|A|-E-—;- (55)

This metric will drive the mesh generation algorithm to produce a mesh that will lower
the absolute interpolation error at a constant value £ over the whole computational

domain. Of course, the factor £ can be tuned also to match a constant relative error

(relative to the value itself of the unknown variable. p . or of its first derivative "V_p"

depending on the application).

5.4.2 Evaluation of the Hessian matrix for linear finite elements

2

o'p

X, ’

cannot be made separately over each element. In our case. the

The evaluation of

finite element interpolant is linear. so the second derivatives vanish inside an element.
Instead, information from neighbouring elements is used to define a local approximation
used to recover the second derivatives. In two references [38]{47] this approximation is
made with the help of Galerkin method to evaluate the first derivatives at each node k of
the triangulation (E, is the /" element around node k. and ¥ is the volume of that

element):

»
295

: (56)

It is then easy to calculate a piecewise constant approximation for each element E_ of

the mesh with the help of the inverse J™' of the Jacobian matrix used to change

‘ coordinates in the element considered:
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for a linear interpolation over the element considered. Subscript "/" stands for the node
defining the origin of the local coordinates in the element. and "k" denotes the other

local nodes of the element.

5.4.3 Application to mould filling simulations

After having defined the error estimator, an adaptive finite element procedure can be

constructed to solve mould filling problems as follows :

i) A fixed mesh is used for the whole simulation.
i) At each time step, a solution of the flow problem is found.
iti)  This solution is used to update the filled region and advance the flow front for

the next iteration.

The accuracy of the simulation depends on the initial mesh used to calculate the solution
of each time step. The filling algorithm considered here [SS] depends also on the mesh.
The size of the elements determines in fact the duration of the time step. because at least
one new element must be filled up in order to move the flow front for the next iteration.

Therefore, the new mesh generated by the adaptive algorithm must be suitable not only
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to solve the flow problem, but also to approximate the flow front. In addition. as shown
later, the mesh should respect specific conditions on the time step or the spatial
discretization if it will be used to perform a thermal analysis with transport terms as

well. In the latter case, there are restrictions due to the CFL condition.
5.4.4 Application to Darcy’s law

Darcy's law govern flows in porous media. It is an elliptic PDE which is expressed

from the conservation of mass:

v, =—E-Vp (59)
u

where :
is the permeability tensor of the porous medium (m*)
is the cinematic viscosity of the fluid ( pa-s)

P is the total pressure ( pa )

v, is Darcy"s velocity (m-s™")

For an incompressible fluid of constant density and a steady flow without dynamic
effects as in Darcy’s case, the conservation of the fluid mass implies the divergence

identity:

Vv, =0 (60)

which yields when combined to Darcy’s law (59) an elliptic partial differential equation:
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V-(-‘—(--Vp)=0 (61)

for an uncompressible fluid and a steady flow without dynamic effects. The effective

velocity v, (m-s™") of the fluid or average particle velocity is connected with Darcy’s

velocity though the local porosity of the reinforcement. ¢ (%) by the relation :

A
v, =—% 62)
¢

In fact, v, represents also the velocity of the fluid front for particles near the front. Itis

larger than Darcy’s velocity because the porosity ¢ is always smaller than one.

The equation is solved at each time step using non conforming linear finite elements on
triangles or tetrahedron. which are chosen for their ability to conserve of the resin flow
rate along inter-clement boundaries (for a discussion about this choice, see [56]).
Equations (59) and (61) yield the velocity and pressure in the saturated domain at each
time step. The effective velocity is used to update the front position. The filling
algorithm determines the time increment needed to fill up completely at least one new
element, then the boundary condition is updated and the flow front is advanced for the

next iteration.
5.4.5 Adaptive algorithm

Adaptation of the mesh is made using a convergent adaptation loop. This is done by
calculating the solution of the flow in a completely filled cavity as many times as

necessary, until convergence of the numerical scheme and low interpolation error. In the
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loop, once the solution of the flow is known, the mesh for the next iteration is generated.
The last adapted mesh obtained will be used during the simulation of the “true” injection
process. The aim is to improve “a priori” a fixed mesh by performing a small series of
simulations on a completely filled cavity. Thus, we must define a numerical error that

will drive the mesh refinement algorithm.

The error considered here is based on the norm of the Hessian matrix of the pressure
field. This norm defines an error estimator suitable for linear finite elements. A metric is

then defined as follows:
|
M(p)=—-{H(p} (63)

Recall here that the notation [H(p) refers to the same matrix. but with the absolute

value of its eigenvalues as defined in equation (55). This metric is generally anisotropic.
If the reinforcement is isotropic, there is no need for anisotropic mesh generation as the
diffusion of the fluid in the cavity is generally isotropic. For that purpose. the following

metric will be used:
1
M,(p):;- I m,ax(j,i,l) (64)

In the above equation, 4, are the eigenvalues of H(p). and I is the identity matrix.

The user provides an upper bound & of the error, which controls the adaptation
algorithm in order to generate a mesh that will guarantee a given accuracy in the filling
simulation. It is assumed that the upstream flow does not depend much on the position

of the front. For example, this means that we admit that the flow around a sharp edge
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will exhibit the same behaviour during the complete filling of the mould. If this
hypothesis is acceptable, a fixed adapted mesh can be used advantageously to lower the

interpolation error.

However, the problem involves also the convection of chemical species and heat when
non isothermal injection conditions are set. Zaki [61] found that the stretching of
elements along the flow directions may be useful to lower the numerical diffusion
brought by various numerical schemes (Lesaint-Raviart in particular). Therefore, the
metric defined above for a strictly diffusive problem must include some information
regarding the hyperbolic aspect of the true physical problem. Besides the “elliptic™
metric of equation (63). a new “hyperbolic™ metric, based on the local velocity v of the

flow. is introduced below :

| 1
—— of|z ©
M,(VER| IV | “ | I'R (65)
: 0 | 0 3
p
where R is a rotation matrix:
cosd sind
R=| | (66)
—sin@ cosé

In this matrix, @ is the oriented angle between the velocity and the Ox axis. It is

determined by its sine and cosine:

9|

cosé = (67)

M
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|'6|T:|vl (68)

sinf =

The constants @ and B in equation (65) are respectively a scale factor related to the
norm of the velocity (it represents a time step between two layer of elements) and the
density of elements in other directions than the velocity vector. They can be manually
set or determined by an adequate global error estimator. In particular, @ can be set
easily as it has a very explicit meaning. The factor # can be set to fit many purposes.
One can set it to get an isotropic mesh, or to meet specified anisotropy factor. Also, it

can be set directly by an error estimator.

A combined metric M_(p.v) suited for the whole problem (diffusive for the Darcy

problem. and convective for the evolution of the front) is constructed to take the highest

mesh density in each direction based on the metrics M,(v) and M_(p). Using the
eigenvalues of M, (v). it is easy to reconstruct a hew metric with these requirements.
Obviously. the matrix composed of the eigenvalues of M,(v) is taken from its

expression in equation (65) :

! 3 0
A= W 01 |a? IV -a* (69)
o 1|0 H 0 .

Thus. the expression of the compound metric becomes :
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| |
m&‘{n—w, ; m'aX(ll, l)} 0
11
0 max(;? = m'axq,l, |))_

M_(p.vE="R- ‘R (70)

In addition. a global density factor 7, is defined for each loop of the algorithm, which

will be used to control the adaptive algorithm. This factor prevents the generation of
meshes that are over-refined at the early stages of the remeshing loop. It prevents also
the oscillations of the solution while converging to the adapted mesh. The metric is

modified as follows :

Mc(p'v) (7])

t

M’ (p.v)=

At each step. 75, is modified to fit with the increase of accuracy in the solution (and

increase in the accuracy of the error estimator with regard to the exact solution). The

initial value 7, is given (we have chosen S in the latter example), but this parameter

may be defined also by users. A good value is in the range between 5 and 15. Then. the

following updating scheme is implemented:

_n
o= 2 lr"v >2 (72)

"nl =. if"l $2
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5.4.6 Results of the mesh adaptation

The precedent formulas were implemented to drive a mesh adaptation algorithm on a
planar geometry with some features requiring locally a more refined mesh : sharp
angles. narrowing channel, obstacle etc.. The adaptation algorithm used here gradually
increases the overall mesh density factor until the desired accuracy is reached. This
prevents to over-refine the mesh in the first iterations when the solution is not yet
accurate enough. Figure 5.3 shows the results of a calculation carried out for a desired

maximum relative error of 0.35 .
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Figure 5.3: Several stages of mesh adaptation are carried out for a steady Darcy flow
simulation. Shaded bands show the variations of the pressure field. The inlet is on the

left side, outlet on the right
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Figure 5.4: Based on the adapted mesh obtained in the last picture of Figure 5.3, a
filling simulation was carried out. The results are shown at time 121, 242, 363 and
426 seconds. respectively. The inlet is on the left side, outlet on the right.

5.5 Remeshing for thermal analysis

The remeshing procedure of Bechet et al. [34] was developed originally with the goal of

improving the thermal analysis for RTM simulations. The main idea was to control the
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numerical diffusion near the flow front. In fact. numerical methods tend to add in heat
convection problems a fictive diffusion to the physical problem. Tucker [58] has

expressed this diffusion by considering the following parameter:

vil- Ax
wrid = Mz— (73)
which is added up to the governing equations in the isotropic case as a term like :
Dnum = agml 'Vzr (74)

One way to decrease this diffusion is to decrease Ax, the size of the elements. Ideally,
one can decrease it only in the direction of the flow. thus generating anisotropic finite
elements. The advantages of adaptive finite elements remain the same : reduction of
computer time. and increase or at least control of the accuracy of the numerical
simulation. However. the implementation of adaptive remeshing strategies is not
straightforward. The successive time steps of a thermal simulation are inter-dependent.
This implies a re-interpolation of the solution fields (temperature. degree of cure) in the
same iteration loop. while a simple Darcy problem does not have this requirement. As
one can expect. this may add again numerical diffusion to the original problem. This is
addressed in out implementation by avoiding to change the whole mesh from one time
step to another. Thus. it keeps the diffusion as low as possible in most of the
computational domain. Another problem arises from the use of remeshing. Much
longer time steps are allowed which increase the Courant and Fourier numbers. This
leads eventually to numerical instabilities in the algorithms used to solve the convection-
diffusion problem. These concems are addressed in the sequel using a different time

step for thermal simulations and Darcy’s flow simulations.
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After recalling the heat equation for a porous flow, the remeshing algorithms will be
implemented for a thermal analysis carried out for two model problems : (1) a line
injection in a rectangular mould; (2) a radial injection in a circular mould. Since many
RTM injections are carried out from a circular inlet port. it is appropriate also to analyse
the behaviour of the remeshing algorithm for a radial injection. These two configuration
of injection ports are, with the peripheral injection. the major ways of injecting a RTM

part (an example of peripheral injection is presented in part [I).
§.5.1 Thermal problem

The original thermal formulation considered here is the following [35][57] :

(e 20 p e, (0501 =

(75)
Vv (1))- p, a0 L2y
where
subscript /" denotes “fluid™.
(--) denotes a spatial averaging in the control volume.
T is the temperature( K ),
P is the pressure ( Pa ).
v is the velocity vector of the fluid (m-s™").
X is the reaction factor of the resin ( % ).
k is the effective thermal conductivity tensor (J- K™ -m™").
p is the density (kg-m™),

c is the calorific capacity(J-K ™' -kg™').
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AH is the enthalpy of reaction of the resin (J-kg™')

The numerical scheme used to solve the thermal formulation is a standard Galerkin
method [35] for diffusion and Lesaint-Raviart [48][61] for convection.  The time
discretisation used here is Euler’s scheme for diffusion (Galerkin). and Gear’s implicit
scheme for convection (Lesaint-Raviart). The choice of those scheme is discussed in

[35]). For the sake of simplicity, the source term arising from the chemical reaction

d
p,AH % is not considered (i.e.. there is no chemical reaction). and the viscous

dissipation term (v)V(p) is negligible when compared to diffusion and transport. This

leaves us with a simplified formulation of the heat equation. the parameters a. b and k

being obviously related to the physical constants of equation (75) :

a%+b-v-vr=v(k.vr) (76)

5.5.2 Line injection in a rectangular mould

Thermal simulations are carried out of a line injection in a rectangular mould. and are
compared in the following cases: (1) fixed mesh: (2) adaptive remeshing: (3) fixed mesh
with larger time steps; (4) modified remeshing algorithm. The adimensional Courant
number governs the stability of the numerical algorithm. By respecting some conditions

on the time step used in the iterative calculations. it is possible to ensure stability.
5.5.2.1 Fixed mesh simulation

A standard simulation in a simple geometry (L=1m. [=0.Im) was performed with

Lemflot, for the parameters a=6=2,01.10°J-K™'-m™ and k=025 J-K™'-m™ in
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equation (76). At each time step, the velocity v is computed before the thermal problem
using a Darcy formulation with non conforming linear finite elements, see equation (61).
Resin is injected from the left side; a vent is located at the right side. The other

conditions of the simulation stand as follows :

Puy (injection pressure) : 2,0.10° Pa.

T, (temperature of the injected resin) : 340 K, except at the beginning
H (resin viscosity) : 0.1Pa-s.

K (permeability of the fabric) : 10°m* .

T, (temperature of the mould walls) : 400 K.

T! (initial temperature of the fibres) : 340 K.

It must be mentioned here that the initial temperature of the fibres has little effect on the
simulation. because we deliberately choose a very low thermal capacity factor for the
fibres. Along with that. the fibre content is less than 1%. These assumptions have been
chosen to help clarify the effect of transport on the simulation (i.e.. there is not much
influence on the fibre bed on the resin evolution). The injected resin shows a sudden
drop in temperature just at the beginning of the injection. It helps to “destabilize™ the
numerical scheme. but it has little effect on the final injection results. The results are
shown in Figure 5.5 for a few time steps. There are 254 time steps. so the average time

step is around 1 s.
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Figure 5.5: Temperature calculated with a fixed mesh, taken at 50s, 100s and 200s
after the beginning of injection

As one can expect with such condition, the flow is fully developed and a thermal
boundary layer is developed at the inlet of the mould (left side) because of the difference
in temperature between the injected resin and the walls of the mould. Normally. at the
flow front, there should be a sudden drop of temperature from 400 K to 340 K.
However. because of numerical diffusion, the thermal front has stretched a little. This is

what we would like to improve with remeshing algorithms.

5.5.2.2 Simulation with remeshing

The same parameters as previously for the fixed mesh are used in this simulation. As
shown in [34] for Darcy problem, the number of time steps can be strongly decreased. It
has been set to 50, thus the average time step is about 5 s. There are 4 layers of element
in the front. Each time step includes one calculation of Darcy’s tlow (Eq. (61)), followed

by one calculation of the thermal field as described above (Eq (76)).



138

BRI AN S IR AR AR AR RN T RNTRAIIIN B AR

e e e A AATATA " A ATA 747w ATAYAVAVAVATAYATATA A A B m e

Figure 5.6: Temperature calculated with an adaptive mesh at 50s. 100s and 200s after
the beginning of injection

The results shown in Figure 5.6 are not satisfactory. The thermal boundary layer is not
stable, and the temperature in the mould drops far below 340 K in some places and rises
slightly above 400 K elsewhere. which are the physical limits in the problem considered
here. This observed numerical instability is connected with conditions on the Courant
number that will be discussed in the sequel. Let us return to the fixed mesh simulation.
The only differences between this simulation and the current one on an adaptive mesh

are the time step, and the re-interpolation that occurs at each time step.

5.5.2.3 Results with a fixed mesh for fewer (larger) time steps

The next simulation is performed by forcing the filling algorithm to use longer time
steps. The number of time steps is around 45. The duration of each time step is 7s. This
value is close to the value used in the moving mesh simulation. The only difference is
that the mesh is now fixed. In that specific case, there is no numerical diffusion added

by mesh re-interpolation between each time step.
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Figure 5.7: Temperature calculated with longer time steps on a fixed mesh at 50s.
100s and 200s after the beginning of injection

As one can see in Figure 5.7, similar features as in the remeshing simulation appear also
in that case. The thermal boundary layer is not developed. In other regions of the mould.
the temperature exceeds the physical limit of 400 K and drops below 340 K. A new
“feature™ is noticeable here, namely the presence of “bubbles™ of different temperature
carried along by the flow. These oscillations in the temperature field are due to the value

of the time step used for the simulation. The local Courant number is defined by :

b o
T Ax

where Ax is the characteristic length of the element. In general. this length is evaluated

by:
Ac=4V (78)

where d is an integer denoting the dimension of the element; V is the volume of the

element (its surface for 2D elements, and length for 1D ones), and Aris the time step.
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Courant number is the ratio between the time step, and the time needed for the flow to
come across one layer of elements. In the above simulation as well as in the one

involving remeshing, C, =1.5. This mean that the “information™ on the thermal field is

transmitted across more than one new element at a time at each calculation step. For
example, if the numerical scheme was a centered finite difference, the actual stability

requirement would be C, <0.5, among other requirements over the Peclet grid number

Pe,, for example which is defined by :

po M4 79
«
a
and the factor a . namely the thermal diffusivity defined by :
v-k-v
a=——— (80)
M-p-e,

The Peclet grid number is not involved as the numerical scheme used here [48] can deal
with purely convective flows (which is not the case for standard Galerkin formulations).
Moreover. Peclet number does not depend on the time step, which is the only parameter
to vary from the parameters of the previous simulations. In the first simulation. the

Courant number was around 0.25.

5.5.2.4 Modification of the remeshing algorithm

To cope with the problems arising with the longer time steps used in the previous

examples, shorter time steps were used in the thermal problem. The time step was
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reduced in order to obtain a Courant number lower or equal to C;™ =0.5. This means

that the maximum time step must be lower than :

= Ax

A’max =7 n
M

t2))

Depending on the refinement in the vicinity of the flow front, this leads to a time step 4
to 5 times shorter than the value used in the second simulation. Thus, for each
resolution of Darcy s problem. giving the velocity v and updating the front position, four
sub-time steps are necessary to solve the thermal problem. Figure 5.8 shows no
instability. despite the small perturbation at the beginning of the injection. In addition,
there is a relatively narrow thermal boundary layer in the vicinity of the flow front when
compared to the fixed mesh simulation. This was a kind of result expected from a

remeshing approach.

However. one of the initial objectives of remeshing, namely to reduce computational
effort [34]. is not fully met. It is clear that in a thermal mould filling simulation. most

of the computer time is used to solve the convection-diffusion heat exchange problems.
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Figure 5.8: Temperature calculated with longer time steps (and S sub-time steps for
thermal analysis) at 50s. 100s and 200s after the beginning of injection

5.6 Adapted mesh for radial injection

Figure 5.9 shows a radial injection configuration where R, is the radius of the injeciion
port. and R, is the external radius of the mould. The injection pressure is P;, and the vent
pressure is set to zero. At time 1 the front is at position r. For symmetry reasons, the
solution is radial and only half of this part needs to be simulated. In this example, the
analytical solution is known. First. we shall recall the filling equations for this simple

geometry. Then an analysis that covers four ways to generate a mesh is presented.
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Figure 5.9: Central injection at constant pressure. The grey portion represents the
fluid saturated region at time ¢

5.6.1 Analytical solution of Darcy’s equation in radial coordinates

The front is moving towards the periphery of the mould. An analytical solution will be
determined for comparison with numerical results. Darcy’s in radial coordinates writes

as follows in the saturated domain:

dr K dp 82)

dt - pp dr

Along with the condition of mass conservation. assuming K constant in the saturated

domain yields a radial differential equation :

Tdp ,d°p_, 83)
rdr dr°
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Solving this equation yields the well known logarithmic expression of the pressure field

’
In—
r,
plr)=p|1-—
In 1
ri
From equation (84) we have
d___ L
r
dr rin--
’

(84)

(85)

Using Darcy’s law, i.e. equation (82), this gives the velocity of the resin inside the

saturated domain :

ar_K__F
’
a p¢ rin-—-
r,
Thus, at the flow front,r =r, :
dr, K P

(86)

(87
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Integration of this differential equation can be carried out to get #(r,). Separation of

variables gives

which leads to

Finally.

Ir, In r—’dr, = I%dt +C,
T

5.6.2 Mesh adaptation for a radial injection

(88)

(89)

(90)

Assuming that the filling algorithm progresses one layer of elements between each

simulation loop, the relation between the time stepAs and the size of the elements Ar

near the flow front (r =r,) is Ar = %Al .

1

Now we shall determine a size map suitable for mesh generation. In this radial problem.

the tangential size of the elements, namely S,, can be chosen arbitrarily. In the sequel.

it will always be “as coarse as possible™, with respect to the curvature of the front. The

radial size S,, however, depends on the use of the mesh. Four equally valid mesh
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adaptation strategies will be presented. Two of them refer to “user friendly” parameters,
namely a constant time step (for an isochrone mesh), and a constant radial mesh size
(isoparametric mesh). Both the other two strategies refer to numerical errors. When a
transport equation is involved, one can desire a mesh which levels the Courant number
(iso-Courant mesh). Or, one can choose to level the interpolation error on the pressure
variable p. This leads to a different mesh (iso-error mesh). The aim of this study is to
show that one can generate many different meshes with a single thermal injection

problem, and those mesh requirements are not necessarily compatible.
5.6.2.1 Isochrone mesh

In this case, we expect the time step to remain constant. Thus. a simulation conducted

with this mesh will show results at regularly spaced times. Equation (87) gives for r=r :

ar __Kp, 1N

r

'

A first order approximation here gives the following radial size mesh for an isochrone

adaptation:

S (r)= Ar = ———- At 92)

5.6.2.2 Isoparametric mesh

In this case, the mesh is expected to be have a constant radial size. For consistence with

. the isochrone mesh and in order to make comparisons possible. the actual parameter
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describing the size map will still be the time step Ar. This time the ratio & will be
evaluated at an average position between r, and r, in the circular mould:
r+

r . . . . . .
r=r =T. This convention will be used also in the further cases studied of the iso-

Courant and iso-error meshes. At r, =r,, equation (87) gives:

" per
r
so the size map for an isoparametric mesh is:
s:’"’"“(r)=Ar=—KL'r—-Az (94)
ugr,, In—=

r

1

5.6.2.3 Iso-Courant mesh

In this case, the adapted mesh is expected to provide a constant Courant number when a
transport equation is solved. The «im here is to help stabilize the numerical scheme used
to solve the transport equation and to minimize numerical diffusion. The filling
algorithm is supposed again to fill one layer of elements at each time step. The

definition of the Courant number is taken from equation (77):

= e
Cg(r,l)=—Z;z;)—-=C (95)
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Again, the time increment Ar is set for r, =7, , the average radial positon in the mould.

Equation (86) gives then for any r:

% = _KL"_r_ (96)
" ugrin=
r,
Along with the constant Courant number, this yields:
Ar= __5”'_r.ﬁ 97)
pgrin™= ©
’

If one layer of element is filled at each time step, obviously C =1 near the front. Since

this parameter must remain constant, the size map for an iso-Courant mesh is:

_Kp, | At (98)

pdrin=

!

S'cuumnl (r)= Ar=

It should be mentioned that this result is valid at any time and anywhere in the domain.
In addition. it is possible to make a simulation while keeping an almost constant
Courant number, provided that 1) the physical properties are uniform. 2) the flow front
remains unique and 3) there are no discontinuities in the boundaries of the mould. In
some specific cases, as the one exposed here, the courant number can be strictly kept

constant.
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In this case. we expect the mesh to provide a constant interpolation error for the pressure

field. Of course. because the mesh is fixed and the pressure field changes much. it is

impossible to ensure a constant interpolation error in time in the case of a pressure

driven injection. Again, we shall set the time increment As for r, =r, . This gives Ar

at that position and the relative error that must remain constant (when the cavity is

completely injected) :

From equation (84). we have :

dp__»
dr’ r
riinL-
r,
So the relative error is:
Kp’ AP

By setting this value to be the error at any radius r we get:

99

(100)

aom)
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el B Y (102)

(ar) =—=% : (103)

ue 4( r, )-

- | In
r,
Finally, the size map for an iso-error mesh is
S:""'(r):Ar:-lip—’- ri (|04)
Hé rimi
’

1

5.6.3 Numerical results and discussion

The geometry selected in these tests has the following internal and external radii: r, = 2.

r,=10. (r, =6). The physical constants are such that ﬂ= 1.0. The resuits are

ug

0.25r
r

'

shown here for Ar =1.5 s. The tangential size is set to S,(r)= . and the radial

size S, (r) is derived from equations (92), (94). (98) and (104).
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Figure 5.10: Meshes generated to fit particular purposes : (a) isochrone mesh (1802
clements); (b) isoparametric mesh (1264 elements); (c)- iso-Courant mesh (1386
clements) and (d)- iso-error mesh (1522 elements). The dashed line denotes the
average of the cavity at which every mesh has the same density.

From Figure 5.10 it is clear that a mesh generated to lower the interpolation error.
typically designed to optimise filling simulations such as mesh (d) is not appropriate to
solve the heat transport equation in thermal problems. In that case. the time step is

constrained by the CFL condition, and will be very small because of tiny elements near
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the injection gate (where the velocity is the highest). For such a calculation, mesh (c) is
the most adapted one. This sets some limits to the improvement in accuracy that can be
expected from a mesh adaptation in a coupled filling and thermal analysis. Meshes (d)
and (c) are clearly not compatible because one is generated with the smallest size
satisfying a CFL condition, given a time step, while the other is generated as the coarsest
mesh allowing a given interpolation error. On the other hand. meshes (a) and (b) are
more “user friendly” and could be generated for the user’s convenience more than for
their numerical suitability. An isochrone mesh is not practically suitable for central
injections because the error is too high at the beginning of the injection. The
isoparametric mesh (b) represents a good compromise between an iso-Courant and an
iso-error mesh. but is not optimal. There is no optimal mesh if one want to simulate non

isothermal filling. instead one should have compromises.

5.7 Conclusion

This paper describes a non isotropic remeshing algorithm and its application to RTM
simulations. First. we show the need for a specific error estimator to generate a priori
adapted meshes. Then the remeshing algorithm was implemented to simulate non
isothermal mould filling. The result obtained was not satisfactory at first because the
numerical method used to solve the thermal problem was not able to consider large
Courant numbers. The time step must be adapted to keep the Courant number
sufficiently small, thus limiting the gain in computational cost that can be achieved with
adaptive algorithms. However, the algorithm allows to decrease considerably the
numerical diffusion near the flow front. This represents a definite improvement brought
about by adaptive remeshing procedures in the simulation of convective heat transfer
mould filling problems. Another positive outcome of this analysis is connected with the
kind of mesh refinement that can be performed in the vicinity of a radial inlet port.
Among the four cases considered, the iso-Courant and iso-error schemes provide very

different mesh refinements. A reduction in the size of the elements is suitable to reduce
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the approximation error on pressure in mould filling simulations. However, such a mesh

is not suited to perform a convective thermal analysis. A compromise can be found by

using an isoparametric mesh, i.e., a mesh of constant radial increment. Part Il of this

investigation concerns the application of adaptive remeshing to inject shell-type parts,

that can be modelled by three-dimensional surfaces.
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CHAPITRE 6
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WITH APPLICATION TO RESIN TRANSFER MOULDING - PART II: CASE
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6.1 Abstract

Adaptive algorithms for two-dimensional anisotropic mesh generation have been
described in Part I of this contribution. The purpose was to lower the computational cost
of RTM (Resin Transfer Moulding) simulations and improve the accuracy of mould
filling calculations by implementing an a-priori adapted mesh generation algorithm. In
this part. these ideas are generalized to three dimensional shells, which represent the
most common type of composite parts manufactured by RTM. In particular. an error
estimator generally used in planar or volumetric geometries is extended to curved
surfaces. The extension consists of a projection of the solution field in the tangent plane
to avoid problems related to the locally curved geometry of the part. [In order to
illustrate these concepts. the adaptive algorithm is implemented in the case of RTM flow

simulations. Finally, a simulation is carried out on a real part.

Keywords: Resin transfer moulding, finite elements, Darcy equation, anisotropic mesh

generation, mesh adaptation. error estimator, surface mesh generation.
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6.2 Introduction

This paper proposes a new way to improve at the same time the accuracy and efficiency
of mould filling simulations. The adaptive algorithm is used to generate a pre-optimised
mesh that will decrease the numerical errors by taking into account the geometry of the
part and the material properties of the reinforcement. Part | of this article was focused

on the two-dimensional case. This work is now extended for curved surfaces.

Most of the industrial parts manufactured by Resin Transfer Moulding (RTM) are three-
dimensional thin shells. Since the thickness of those parts is usually small compared to
the other dimensions, a surface mesh can be used to perform complex mould filling
simulations as shown by Bruschke and Advani [66]. When a fixed mesh is involved as
in most simulation methodologies developed in the last decade (Bruschke and Advani
[65], Youg et al. [74] and Trochu et al.[71]), no specific issues related to surface mesh
generation are involved apart from the generation of the mesh itself. This is usually
done in a CAD system prior to the simulation. This leads generally to an isotropic mesh
with does not take into account the particular features of the numerical problem that is
solved. When mesh adaptation is performed as proposed by Béchet et al. [64], special

care is needed in order to deal with curved surfaces.

Error estimators in the finite element method have been widely used in many
engineering fields, including structural analysis (Lagrangian formulation), computational
fluid dynamics (CFD) (Eulerian formulation), electromagnetism, among many others. A
comprehensive overview can be found in Ainsworth and Oden [62], as well as in
Verfiirth [73). Most of the error estimators (eg. Zienkiewicz and Zhu, [75] and [76])
actually include the geometrical error and the functional error “all in one™. This is
desirable when the exact geometry is known. because the mesh adaptation will bound
the overall approximation error. no matter if it is of functional or geometrical origin.

However, one issue arises when the geometry is not smooth. One has to provide special
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treatment of discontinuities in order to avoid useless increase in mesh density in their
vicinity. The typical example is a flow in a folded rectangular shape. as illustrated in
Figure 6.1. The exact solution is linear along the lateral edge, for example. The error
induced by the linear finite element approximation is zero. provided that the fold is part
belongs to the discrete model (i.e., it is located along the edges of finite elements). This
is always the case, since both patches located on either sides of the fold are meshed

independently, and then joined in the CAD system.

fold

N

C outlet

inlet A

oressure

!

A B C

Figure 6.1: lllustration for a folded plate. The pressure is linear along the shape
(arbitrary units)
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However, the error indicated by a common error estimator won't vanish in the vicinity
of the fold, because the gradient of the controlled variable (pressure in this case) is not
continuous. The origin of this discontinuity is not functional, but rather purely
geometrical. Because the finite element approximation can handle such geometrical
discontinuities, there is no need of mesh refinement. The error estimator presented in

the sequel will address this issue.

Particular aspects of surface mesh generation will be briefly described. Then. new
results on non-isotropic error estimation will be presented, as well as an extension in the
particular case of discrete curved surfaces. The error estimator presented in the sequel
will allow to use a discrete geometry to perform adaptive mesh generation in the case of

RTM simulations. Finally, an industrial part will be tested to illustrate this approach.

6.3 Surface mesh generation

An initial mesh must be provided, that must be fine enough to represent the geometry of
the part. typically a STL file. The only requirement of this mesh is the conformity.
Elements need not be of any prescribed size, except for geometry and boundary
condition to be well represented. A standard bisection algorithm is used to refine the
original mesh. This methodology was described in Béchet et al. [63] for the isotropic
scheme. An extension has been made since for anisotropic mesh generation [64]. It is
briefly summarized in the part | of this article. When dealing with 3-dimensional
surfaces, however, some modifications had to be done to the mesh generation scheme.
The new nodes have to be projected on the original surface that serves as a geometrical
basis. to preserve the mesh from degenerating and loosing much of its geometric
information. The algorithm used here is based on a proximity search to avoid to check
the whole surface for the locus of the projected node. Also, the conventional Delaunay

criterion must be adapted here to the discrete representation of a curved surface with the
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initial background mesh [63][68). Figure 6.2 shows example of surface meshes

generated with those algorithms.

Figure 6.2: A Moebius band with an isotropic mesh (top) and an anisotropic mesh
(bottom)

6.4 Error estimation for discrete surfaces

6.4.1 Anisotropic error estimator and metric

An error estimator has been described in Part | of this article for the 2-dimensional case.

We shall recall briefly the results here.

The error estimator considered here is based on the second derivatives of the primal
variable of the finite element formulation (pressure p for a Darcy flow, temperature T for
a heat transfer problem, etc..). The Hessian matrix that will act as error estimator is

defined as follows in a tree-dimensional space:
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o'p dp &p]
x* Odyox Ozox
a’p o'p op
xdy oy’ oy
a’p d'p 9'p
| Ox0z  Oyoz oz?

(105)

H(p)=

This matrix is symmetrical for a continuous pressure field. From the Hessian matrix, it is
easy to define a related metric as described in Part I. We use the eigenvalues and

eigenvectors {v,} of the Hessian matrix, which becomes then diagonal :

4 0 O
A=|0 4, O (106)
0 0 4
We denote E = {v,} the cigenvectors such that :
H="E-A-E (107)
By replacing the eigenvalues by their absolute values. we have :
4] 0 o
Al=| 0 4] o (108)
0 0 W

The following metric can be defined :
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This metric will drive the mesh generation algorithm to produce a mesh that will bound

the absolute interpolation error by a constant £ over the whole computational domain.

6.4.2 Evaluation of the Hessian matrix for linear finite elements

2

a'p

x,0x

The evaluation of cannot be made separately over each element as shown in Part

ISI

I. Thus. the relation is used to get the 1* derivatives at the nodes of the considered

element :

. (110)

It is then easy to calculate a piecewise constant approximation for each element E  of

the mesh with the help of the inverse J™' of the Jacobian matrix used to change

coordinates in the element considered:
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azp _ g-l axn
5;3:’ RACRar> (h
: lEo k
Ml - a—”‘ ‘—‘ (112)
u,| u,,|

Ou,

for a linear interpolation over the element considered. Subscript "I" stands for the node
defining the origin of the local coordinates in the element, and "k" denotes the other
local nodes of the element. In the sequel. the Jacobian is augmented by the normalized
vector product of the 2 base vectors (u,v) of the element. Of course. the normal
component of the gradients to the element is considered (and determined) to be zero. For

atriangle in the (x,.x,) plane, the Jacobian writes at follow :

_éﬂ_ ox, 0 ]
Ou, Ou,
P T R (113)
Ou, Ou,
0 0 lor-l

6.4.3 Adaptation to a discrete surface geometry

The error estimator described above is standard for planar and solid geometries.
However. if one uses this error estimator without modifications on a discrete surface
geometry (i.e. a surface in W’ made from triangular patches), it will lead to several

artefacts as shown in Figure 6.3. This is due to the lack of smoothness of the underlying
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geometry that supports the finite element space. This leads to singularities in the mesh if
a minimal size is not set for the elements (the error is not scaled with the size of the

elements. but remains roughly constant as the mesh is refined).

Figure 6.3: Original geometry and refined mesh for error adaptation (the isotropic
case is shown here for more clarity)

The total error estimator e, includes in fact two distinct errors :
e, =e; +6€ (14)

where e is the part of the error arising from the geometry because the triangular

patches are not coplanar. and e, is the part of the error coming from the interpolation

itself.

There are two ways to avoid this problem. The first one is to construct a smooth C'
geometry from the triangulated surface. This would require an interpolation with Nurbs
[69] or other high order surface interpolation schemes such as kriging [70] for example.
Information on the boundary conditions would need to be preserved. This means
"creating” information from a model which is clearly an approximation of the real

geometry (an STL file for example is not an exact representation for example, see [63]).
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In order to avoid complex and possibly troublesome manipulations in order to define
such a C' geometry, a second solution has been adopted. A new error estimator is
constructed that is able to represent only the term e, of the interpolation error. For this

purpose the error estimator is calculated in a different way.

The gradient of the primary variable \7p|E is determined on every element E, of the

mesh. This is straightforward as the interpolation considered here is linear, thus Vp is

piecewise constant on each element of the domain :

B | .
p' =Je, au (H5)

g
(4 =p|_'_p{L=p|l-p|I (116)
—u)|,

As before. subscript "/" stands for the node defining the origin of the local coordinates,

and "k" denotes the other local nodes of the element.

Let E, denote the element considered here. For each of its neighbours E, . k=1..3, we

will "rotate" the corresponding gradient vectoerIE so that it lies in the plane
1N

containing element E, (i.e.. to make it fit into the vector subspace of element E;). In

Figure 6.4. n, is the normal vector to element E,. n, is the normal vector to element E;

and 8, is the axis of rotation of the gradient for element E, are determined as follows:

n,"n, AB a17)

8 =
"I " JaB
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The signed angle of rotation is determined by its sine and cosine:

cosf, = o M (118)
© -]

sing, = M M Be (119)
C el

Figure 6.4: Original geometry and local gradient vectors of the primary variable (p)

Let R, denote the rotation matrix of angle 8, and axis 8, . The new gradient V' piE in

the plane of element E, is then computed for each element E; around E, by the following

formula :

" =R, -Vp|, (120)
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where

5,,8,,(1-cos8 5.5 (1-cosf.)
5f|+(|-5,f,)c050, udirl ‘) 101 —cosb,)

-8,;sin6, +8,,sing,

5,25,3(l—c050‘)
-8, sing, (121)

$,6,,(1-cosé,)

52’ 1—51-,
R, =| +8,sin6, "~+( ‘-)cosak

sﬁlskS(I_cosok) 6,,25,‘3“—6059‘)

82, +(1-82. Jcos@
-$,,siné, +9,,sinf, 43 ( ‘J)COS k

The Hessian matrix can now be calculated from the new values of the gradient for each
neighbouring element of E,. In particular the gradients being known on both sides of
each edge of the element E,, the next few steps will allow to calculate the Hessian

matrix:

1. The jump A,(Vp) of the gradient trough each of the edges is defined as :

A,(Vp)=V"p|, -V, (122)
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Figure 6.5: Original and locally flattened geometry. The arrows denote : (a) the
gradient of the primary variable p; (b) its jump set at the middle of each edge of
element E,.

2. The jump is assigned to the midpoint of each edge k of element E,. A new element
E’, is defined from those midpoints. On this element. we can interpolate the jump

A,(Vp) as a linear function of space.

3. The differentiation of this approximation of the gradient in element E’, gives a
constant 3-by-3 matrix. (Differentiation over each variable for each component of a

vector leads to 9 independent second derivatives)

4. This approximation is extended from element E°, back to the whole element E..
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ox,

Cu,

_ Ay (VP), ~ AI(VP).

u‘|‘ —u,‘ll

=A,(Vp), - A,(Vp),
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(123)

(124)

Again here, subscript "/" stands for the node defining the origin of the local coordinates,

and "k" denotes the other local nodes of the element. In the triangular shell elements

considered here, k=1 and 2 as illustrated previously in Figure 6.5.

5. Finally, the Hessian matrix is simply :

_op| _ &p]

Coxex, | onox

H(p),

(125)

The above Hessian matrix is generally not symmetric, because of the successive

approximations from the original scalar function p. This approach leads also to an

approximation that does not satisfy the following condition:

vA(Vp)= 0

(126)

In fact, the information needed in the computation (one central element plus up to 3

neighbours) makes it more prone to deviate from the nature of the “real” second
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derivatives of a continuous scalar function. If needed. one can take the symmetrical part

of the approximate Hessian matrix to be consistent with equation (126) as done in [67] :

! H(p]E__ +H(p),
2

H(p)" = (127)

6.4.4 Results obtained with this error estimator

For a problem which admits a linear solution in pressure (for example, a solution of
Darcy flow in a porous medium of constant section and shape). the finite element
estimator should give a zero error everywhere because a linear finite element
approximation is able to represent the exact solution. In this case. the error estimator has
no influence. The correction of the estimator to account for the non planar geometry of
the mesh yields now a uniform mesh. The remeshing algorithm generated a constant
sized mesh (as prescribed) to avoid too large elements, which was not the case in the

example of Figure 6.3.

Figure 6.6: Original geometry and refined mesh for error adaptation with a corrected
error estimator (isotropic case)
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6.4.5 Application to mould filling simulations

After having defined the error estimator for curved surfaces. the adaptative finite

element procedure used to solve mould filling problems is the same as in Part | :

iv) A fixed mesh is used for the whole simulation.
v) At each time step, a solution of the flow problem is found.
vi)  This solution is used to update the filled region and advance the flow front for

the next iteration.

We shell recall that the size of the elements determines in fact the duration of the time

step due to the filling algorithm used here [72].
6.4.5.1 Application to Darcy’s law

In shells, Darcy's law governs flow in the porous media the same way it does for two-
dimensional cavities. The only difference is that the permeability tensor of the porous
media might depend much on the geometrical properties of the shape. when draping is

involved for example, and show more anisotropical aspects.
6.4.5.2 Adaptive algorithm

Adaptation of the mesh is made using a convergent adaptation loop as in Part I. This is
done by calculating the solution of the flow in a completely filled cavity as many times

as necessary. until convergence and low error.

The error considered here is based on the norm of the modified Hessian matrix of the

pressure field. This norm defines an error estimator suitable for linear finite elements.
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For arbitrary curved surfaces, equation (127) is used to define the metric for the pressure

field p:

(128)

1 sym
M(p) =—[H(p);]

Recall here that the notation |H(p]:“'| refers to the same matrix, but with the absolute

value of its ecigenvalues as defined in equation (109). This metric is generally
anisotropic. If the reinforcement is isotropic, there is no need for anisotropic mesh
generation as the diffusion of the fluid in the cavity is generally isotropic. For that

purpose. the following metric will be used:

M,(p)=%-|-m?xq,1,|) (129)

=™, and I is the identity matrix.

In the above equation, 4, are the eigenvalues of H(p]E

The user provides an upper bound & of the error, which controls the adaptation
algorithm in order to generate a mesh that will guarantee a given accuracy in the filling

simulation.

As in part I, the problem involves also the convection of chemical species and heat
when non isothermal injection conditions are set. The stretching/compression of
elements along the flow directions may be useful to lower the numerical diffusion
brought by various numerical schemes (Lesaint-Raviart in particular). Therefore, the
metric defined above for a strictly diffusive problem must include some information

regarding the hyperbolic aspect of the true physical problem. Besides the “elliptic”



174

metric of equation (128), a new “hyperbolic™ metric, based on the local velocity v of the

flow, is introduced below. This is valid in a global referential for curved surfaces :

1 0o o
vl *
M,(VE'R-[ 0 1 0[]0 — 0 |R (130)
0 0 I F
1
0 0 —
L 41 ﬂ-_

where R is a rotation matrix very similar to R, introduced in equation (121) :

8 +(1-87 )coso
8,6,(1-cosd)
+d8,sind

8,6,(1-cosd)
-9,siné

[ 5,8,(1-cos8)

-8,sind

82 +(1-92)coso

8,8,(1-cos8)
+9,siné

8,8,(1-cosf)

+9,sind

8,8,(1-cos8)
-&,sind

8 +(1-8: )cosO

In the above matrix. the rotation axis & is determined as follows:

o=

Ox"v

Ox" v

and @ is the angle of rotation determined by its sine and cosine:

131)

(132)
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—

Ox-v

v

(133)

cosf =

sing ="V 5 (134)
M

The constants @ and £ in equation (130) are respectively a scale factor related to the
norm of the velocity (it represents a time step between two layers of elements) and the
density of elements in other directions than the velocity vector. They can be manually
set or determined by an adequate global error estimator (for example. how many layers
of elements between an injection runner and a vent). In particular. a can be set easily
as it has a very explicit meaning. The factor £ can be set to fit many purposes. One can
set it to get an isotropic mesh. or to meet specified anisotropy factor. Also. it can be set

directly by an error estimator.

A combined metric M_(p.v) suited for the whole problem (diffusive and convective) is

constructed to take the highest mesh density in each direction based on the metrics

M,(v) and M,(p). Using the eigenvalues of M, (v). it is easy to reconstruct a new

metric with these requirements. Obviously. the matrix composed of the eigenvalues of

M ,,(v) is taken from its expression in equation (130). which are written for the three

dimensional case :

ool o o] ! -
M a’ M -
A=l o 1ollo L o5 0o L o (135)
0 0 1 B I s l
- L B ] | B
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The expression of the compound metric becomes :

1 1
max("vuz g ,;m,ax(]l,D] 0 0

M_(p.v="R:| 0 max(#%ma (],l|)) 0 |-R (136)

0 0 max(—’;—zé m‘ax(]i.,|)]

Like for the two-dimensional case. a global density factor 7, is defined for each loop of
the algorithm to prevent the generation of over-refined meshes at early stages of the re-
meshing loop, and prevent spurious oscillations while converging to the adapted mesh.

The metric is modified as follows :

M7 (p.v)=M’*—") (137)

i

The initial value 7, is given (we have chosen 5 in the latter example). but this parameter

may be user-defined. Usually. for curved shells. the initial mesh must contain enough
elements to represent correctly the geometry. so that one can choose a lower value but a
good value has been found to be between 5 and 15. The following updating scheme is

implemented as for two-dimensional case:

"nl = lf,’l >2 (|38)

"nl =l if’ll Sz
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6.4.6 Results of the mesh adaptation and discussion

The above formulas were implemented to control the mesh adaptation algorithm on a
curved geometry. Figure 6.7-up shows the mesh of an ambulance roof manufactured by
resin infusion under a flexible membrane. This is the base geometry used for the
subsequent mesh adaptation (no reference is made to the original CAD model). The
mould is considered completely filled and a Darcy problem is solved to obtain the
pressure field and velocity of the resin in the mould under the normal manufacturing
conditions. Then, these are used to generate an adapted mesh Figure 6.7-bottom) with
the algorithms describes above. The new mesh is used to perform the real filling
simulation shown in Figure 6.8-bottom. As a comparison. an isotropic mesh with

approximately the same accuracy for this example (Figure 6.9) is shown.
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Figure 6.8: Simulations performed with the original mesh (top) and on the adapted
mesh of Figure 6.7 (bottom). These figures show the filled part 30 seconds after the
beginning of injection
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Figure 6.9: Simulation performed with a highly refined mesh, with the same accuracy
as in the simulation with the adapted mesh. However, this mesh has 30700 elements

In this simulation, the results obtained with an adapted mesh containing around 11000
elements are comparable with those obtained with an isotropic mesh containing more

than 30000 elements. When compared with results obtained with the initial mesh. it
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shows narrower front, thus making thermal simulations more stable and accurate. In
Part I, the same results of narrowing the diffusive region near the flow front were
obtained. However, in that case, remeshing was made only around the flow front (each

time step having a different mesh).

6.5 Conclusion

A remeshing procedure adapted to realistic RTM simulations is presented. First. the
need for a specific error estimator is shown. Then, the expression of the hessian error
estimator presented in Part | is modified to fit discrete surfaces encountered in finite
element simulations. These are often used in RTM simulations because many industrial
RTM parts are shells. Finally, a sample geometry from a real industrial part is used to
demonstrate the gains that can be achieved with such an approach. Advantages are a
lower computational requirement, and an improved front accuracy (at constant number
of elements). Compared to the remeshing algorithm presented in [64]. the drawback is
that the mesh must be handled separately for adaptation purposes before the simulation

takes place.

6.6 Acknowledgements

This work was supported financially by the National Science and Engineering Research
Council of Canada (NSERC) and the Fonds Québécois de Recherche sur la Nature et les
Technologies (FQRNT). A partial financial support was also received from Auto 21 to
perform the validation for the ambulance roof. The authors also thank ESI-Group for
the support concerning the software simulations performed with LCMFlot, and the
companies Fibres Design (Chambly, Quebec) and Kaizen Technologies (Boucherville.
Quebec) for allowing to publish the results of the numerical simulations performed for

the ambulance roof. All these contributions are gratefully acknowledged.



182

6.7 References

[62]

[63]

[64]

[65]

[66]

(67}

[68]

[69]

[70]

(71

M. Ainsworth, J.T. Oden, 2000, A posteriori error estimation in finite element
analysis, Wiley.
E. Béchet. J.C. Cuilliére, F. Trochu, 2002, Generation of a finite element mesh

from stereolithography (STL) files, Computer Aided Design 34, 1-17.

E. Béchet. E. Ruiz, F. Trochu, J.C. Cuilliere, 2003, Re-Meshing Algorithms
Applied to Mould Filling Simulations in Resin Transfer Moulding, to appear in

Journal of Reinforced Plastics and Composites.

M.V. Bruschke. S.G. Advani. 1990, A Finite Element/Control Volume Approach
to Mold Filling in Anisotropic Porous Media, Polymer Composites, 11 (6). 398-
405.

M.V. Brushke. S.G. Advani, 1991, Filling simulations of complex three
dimensional shell-like structure, SAMPE Quarterly 2-11.

G.C. Buscaglia. E.A. Dari, 1997, Anisotropic mesh optimization and its
application in adaptivity, Int. J. Num. Meth. Eng. 40 (22), 4119-4136.

P.P. Pébay. P.J. Frey. 1998, A priori Delaunay-conformity, Proceedings of the
7th International Meshing Roundtable, Dearborn (MI), 321-333.

L. Piegl. 1991, On NURBS: A Survey, IEEE Computer Graphics and
Applications 11 (1), 55 -71.

F. Trochu. 1993, A contouring Program Based on Dual Kriging Interpolation,
Engineering with Computers 9,160-177.

F. Trochu, R. Gauvin, D.M. Gao, 1993, Numerical Analysis of the Resin
Transfer Molding Process by the Finite Element Method, Advances in Polymer
Technology 12 (4) , 329-342.



[72]

[73]

(74]

(75

[76]

183

F. Trochu, P. Ferland. R. Gauvin, 1997, Functional Requirements of a Simulation
Software for Liquid Molding Processes, Science & Engineering of Composite

Materials 6 (4), 209-218.

R. Verfiirth, 1996. A review of a posteriori error estimation and adaptive mesh-

refinement techniques. Wiley-Teubner (Chichester, Stuttgart).

W.B. Young. K. Han. L.H. Fong. LJ. Lee. 1991,Flow Simulations in Moulds
with Preplaced Fibre Mats. Polymer Composites 12 (6), 391-403.

0O.C. Zienkiewicz. J.Z. Zhu. 1987. A simple error estimator and adaptive
procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24,

335-357.

O.C. Zienkiewicz. J.Z. Zhu. 1992, The superconvergent patch recovery and
adaptive finite element refinement. Comput. Meth. Appl. Mech. Eng. 101 (1-3),
207-224.



184

CHAPITRE 7
DISCUSSION GENERALE

L’ objectif général de cette thése était de proposer une méthode de remaillage pour les
problémes a surface libre. au travers d’une application aux problémes de remplissage de
moules du procédé RTM pour les piéces en matériaux composites. En premier lieu, cet
objectif a nécessité le développement d"un algorithme de maillage capable de travailler
sur des surfaces courbes. sans avoir nécessairement |'information sur la surface exacte
provenant de la CAO. L'idée était de pouvoir intégrer ce noyau de maillage dans un
algorithme de remaillage par la suite. L algorithme de maillage présenté ici est basé sur
la méthode de Delaunay. Ce choix est dicté par le fait que I'on dispose a Iorigine d"une
triangulation de la surface. Dans le cadre restreint de I'article. il s’agit d"un fichier
STL, et dans le cadre plus général de cette recherche. il s’agit d'un maillage initial
fourni au début dune simulation. Les autres méthodes ne sont pas applicables
pratiquement car elles ne permettent pas de modifier continiment la triangulation ; il
faudrait en effet reconstruire une surface analytique afin de les appliquer. ce qui est
faisable mais peu efficace. Un autre critére est la rapidité puisque I"algorithme de
remaillage doit étre utilisé tout au long de la simulation: et dans ce cas. la méthode
utilisée ici est un bon compromis avec une souplesse que les autres méthodes de
maillage n"offrent pas. Les résultats de cette partie de la thése (voir Chapitre 3) ont
validé I'approche. Le point délicat est d’éviter de perdre de I'information sur la
géométrie lors de la génération du maillage. La méthode de génération employée a été
étendue au cas anisotrope en modifiant la fagon avec laquelle les distances sont
calculées. L'originalité de I'approche présentée ici est le postulat que I'on peut générer
un maillage pour quelque application que ce soit a partir d’un fichier STL., que n'importe
quel logiciel de CAO peut générer. Une question reste toutefois en suspens. En effet,
I'évolution des logiciels de CAO tend & permettre une intégration toujours plus poussée

entre les moyens de modélisation et les moyens de calcul. Pour ce faire, une



185

communication entre ces deux poles est indispensable. par exemple en ce qui concerne
les types de matériaux, les conditions aux limites. etc. Or, un fichier STL ne permet pas
d’avoir d’information autre que géométrique. En Iétat, une nouvelle saisie est donc
nécessaire pour récupérer Iinformation perdue lors du transfert. Heureusement. ce n"est
pas grave ; il est toujours possible d’adjoindre aux fichiers contenant la géométrie
triangulée un fichier contenant de I'information supplémentaire qui serait alors utilisée
directement dans la phase de calcul. et dans la phase de maillage (dans le cas de pre-

optimisation de maillage).

Comme annoncé précédemment, les travaux de génération de maillage du Chapitre 3
sont utilisés afin de coder un algorithme de remaillage appliqué aux problémes a
frontiére libre, en particulier pour le probléme de remplissage en RTM. Pour ce faire.
une carte de taille anisotrope a été construite pour chaque pas de temps. en fonction des
conditions physiques locales. Cette carte de taille contient I'information sur la taille.
I'allongement et Iorientation des éléments devant étre générés. Le but €tant de réduire
la charge de calcul a précision constante. il fallait a tout prix éviter d"augmenter trop le
nombre de pas de temps. L évolution du front est donc gérée par une méthode de level-
sets. Cette derniére permet de découpler 1"algorithme davance de front et le maillage
(en permettant de choisir le pas de temps). En effet. dans le code tel qu’implémenté. le
pas de temps était choisi de fagon a ne « remplir » qu'un nouvel élément & chaque pas de
temps. ce qui induit une discrétisation temporelle trés fine (et des simulations plus
longue). L' originalité de I’approche présentée ici est le couplage entre une méthode de
remaillage (permettant d’augmenter la précision des simulations dans le voisinage du
front) et une méthode d’évolution de front par level-sets (permettant un contrdle
« utilisateur » du pas de temps), ainsi que I"application de ces approches a la simulations
du procédé RTM. Dans le Chapitre 4, les résultats sont présentés et montrent que |’on
peut réduire le nombre de pas de temps d'un facteur 4. sans entacher notablement
d’erreur le résultat du calcul. Mais savoir si I’on gagne également un facteur 4 dans le

temps de calcul n’est pas évident a formuler car le remaillage a un coat non négligeable.
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Toutefois, les gains constatés dans la régularité du front et du profil de pression dans son
voisinage restent sans commune mesure avec ce que I'on pourrait obtenir en faisant un
raffinement de maillage isotrope et uniforme. Dans ce dernier cas. la durée du calcul
serait beaucoup plus longue. Le nombre d’ éléments croit en effet avec le carré de la
précision demandée (pour une simulation bidimensionelle). alors qu’il ne devrait croitre

en théorie que proportionnellement dans le cas ou des éléments anisotropes sont utilisés.

Une extension au cas de simulations avec phénoménes de transport est présentée par la
suite. Un aspect considéré ici est le comportement de la méthode numérique assurant le
transport dans le cadre de phénoménes thermiques, en RTM. par exemple. Dans ce
dernier cas, la température et le taux de conversion de la résine (lors de la
polymérisation) doivent étre transportés; et il est alors prouvé que |I'on ne peut choisir
arbitrairement le pas de temps. Une condition sur le nombre de Courant est imposée :
celui ci ne doit en principe pas dépasser I'unité. En termes physiques. cela signifie que
I'on ne peut pas transporter la grandeur scalaire de plus d’une couche d’éléments a la
fois. Dans le cas contraire, la méthode numérique utilisée ici (Lesaint-Raviart pour le
transport suivie de Galerkin standard pour la diffusion) nest pas stable et I'on voit
apparaitre des oscillations (voir Chapitre 5). Dans le cas du remaillage tel qu'appliqué
dans le Chapitre 4, le pas de temps est généralement trop grand pour assurer la stabilité
du schéma de transport. L’‘idée retenue ici pour éviter des résultats erronés est
d’effectuer plusieurs calculs de transport entre deux « grands » pas de temps du
remaillage. Ceci évite de remailler & chaque pas de temps thermique. et assure la
stabilité du schéma. Toutefois, le fait d'avoir a calculer plusieurs pas de temps
thermiques a |'intérieur d’un pas de temps de remplissage oblitére les gains en temps de
calcul que I'on peut attendre du remaillage, d’autant plus que les calculs de transport et
de diffusion thermiques sont grands consommateurs de ressources. En revanche. un net
gain est visible pour ce qui est de la diffusion numérique (diffusion parasite liée au

schéma numérique ). Cette deriére est en effet proportionnelle a la taille des éléments
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utilisés pour résoudre I’équation de transport, et ceux ci sont aplatis dans le sens de

I’écoulement au voisinage du front.

Afin de minimiser I'impact du remaillage en cours de calcul. il est toujours possible de
tenter de générer un maillage adapté a priori a la simulation compléte. L°idée est de
pouvoir tenir compte de deux erreurs : I’erreur d’interpolation de 'a solution en pression
du probléme de Darcy. et I'erreur liée a I'algorithme de remplissage pour la mise a jour
du front a chaque pas de temps. Ceci implique d’une part de générer des éléments
allongés en fonction de la vitesse du front « au moment ou il passera a cet endroit » et
dautre part de tenir compte d'un estimateur d'erreur classique pour [lerreur
d’interpolation. Dans le cas des surfaces courbes. il est montré que I"estimateur n’est
pas applicable tel quel car il inclut I’erreur de discrétisation géométrique. Cette derniére
est en effet une donnée du probléme (dépendante de ce qui est fait en relation avec le
Chapitre 3). L’'adaptation faite a I"estimateur d"erreur consiste a considérer la géométrie
localement plane et a effectuer une rotation correspondante des vecteurs gradient afin de
les faire coincider avec le plan tangent. [l est a noter que ceci permet aussi de faire un
calcul d"erreur d’interpolation au voisinage d"une arréte « réelle » d"un solide. sans étre
faussé par le fait que les éléments utilisés pour le calcul d’erreur ne sont pas coplanaires.
Les calculs montrés dans le Chapitre 5 et le Chapitre 6 tendent a montrer la validité de
cette approche. Toutefois. I'étude d’un cas analytique d’injection centrale en montre les
limites. Pour ce cas, il est possible de générer un maillage adapté a priori en considérant
deux contraintes distinctes : soit on force I’erreur d’interpolation a étre constante dans le
domaine, soit on se place dans le cas oi I'on cherche a rendre le nombre de Courant
constant dans le domaine. La comparaison des deux maillages obtenus est éloquente :
on ne peut pas a la fois satisfaire les deux conditions. car une faible erreur
d'interpolation impose de diminuer la taille du maillage, en opposition avec le fait que
pour diminuer le nombre de Courant, il faut augmenter la taille des éléments dans le sens
de I'écoulement. ou diminuer le pas de temps (ce que I'on cherche a éviter). Pour ce cas

analytique, il n'existe pas de maillage fixe optimal en termes de calcul. Le remaillage



semble donc nécessaire, au moins théoriquement. En pratique, il est toujours possible
de nuancer cette affirmation si 'on évite de prendre des pas de temps trop grands, au

prix de temps de calcul plus longs.
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CHAPITRE 8
RECOMMANDATIONS

Quelques recommandations sont énoncées dans cette partie. Elles visent a proposer

quelques idées pour poursuivre la recherche initiée dans cette thése.

Les résultats présentés ici ont été menés pour des géométries planaires et
surfaciques (courbes). Une extension de ce travail dans le cas tridimensionnel
est souhaitable : il n'y a pas d’obstacles théoriques a cela si ce n’est la plus
grande complexité des algorithmes de maillage tridimensionnels. Dans la lignée
du Chapitre 3, la construction d'un maillage tridimensionnel respectant une carte

de taille a partir d’un fichier STL est proposée.

L approche par level-sets proposée ici pour I'évolution du front de résine dans le

" cadre du RTM est trés souple; elle doit étre étendue dans le cas tridimensionnel.

Toutefois, pour des raisons d’ordre théorique. il serait avantageux de considérer
une autre formulation que celle dHamilton-Jacobi. Cette formulation alternative
est présentée dans (Gomes, 1999). Cette derniére permettrait de rendre compte
de phénomeénes plus complexes quun écoulement en milieu poreux
(écoulements ne dérivant pas d'un potentiels, par exemple avec effets

dynamiques).

L imposition des conditions aux limites en pression sur la frontiére libre est faite
de fagon approchée aux nceuds immédiatement voisins. Ceci induit une légére
erreur au sens fonctionnel sur la position réelle de la frontiére. Il serait
avantageux d’utiliser une approche permettant d’imposer cette condition

précisément méme si la surface libre n’est pas exactement a la frontiére entre
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deux éléments. Ceci est possible en ajoutant des multiplicateurs de Lagrange
pour chaque élément contenant la surface libre, ou par une technique

d’enrichissement des éléments finis (Moé&s, 2000), entre autres.

Dans le cas de moulage par RTM de piéces en matériaux composites comportant
un insert interne (p.ex. intérieur en mousse d’une planche a voile). il arrive
fréquemment qu’il y ait déplacement de ce dernier si la progression du front de
résine n"est pas uniforme. Ce déplacement induit a son tour des modifications de
la perméabilité des fibres I'entourant. Un champ de recherche encore ouvert est
la simulation compléte de ce déplacement. Si le déplacement est grand. il sera en
effet nécessaire de remailler de fagon a conserver un maillage conforme pour
pouvoir mener la simulation a4 son terme. Les level-sets peuvent étre
avantageusement utilisés pour permettre ce remaillage et représenter le
déplacement de I'insert sur un maillage qui reste globalement eulerien. Une
autre approche pourrait de passer 3 une formulation lagrangienne pour le

déplacement de I'insert..

Dans le cas de simulations thermiques, tenir compte d"un estimateur d"erreur sur
la température. en plus de celui sur la pression, permettrait certainement de
controler mieux la précision. Toutefois, il faut aussi tenir compte du nombre de

Courant. Une analyse plus poussée est souhaitable dans ce cas particulier.

La simulation des phénoménes de transport est faite avec une approche purement
Eulerienne. Deux conséquences en découlent: la présence de diffusion
numérique, et la contrainte CFL sur le pas de temps qui doit étre respectée. En
remplagant I'approche Eulerienne par une approche semi-Lagrangienne. il est
possible d’effectuer des simulations moins diffusives et a plus grand pas de
temps. Ceci permet d'exploiter les avantages liés a I'utilisation d"algorithmes de

remaillage et level-sets sans perdre au niveau du temps calcul. Dans le cas de la



191

simulation de phénoménes thermiques et de cuisson en RTM, cela permet de
rendre les simulation thermiques moins dépendante du maillage utilisé pour
résoudre 1"écoulement de Darcy. Il faut toutefois vérifier que I utilisation
de I'approche semi-Lagrangienne proposée ici ne se fait pas au détriment de la
conservation de la quantité transportée; ce qui constitue un inconvénient
documenté de la méthode semi-Lagrangienne. Il serait intéressant d’étudier la
valeur maximale du pas de temps autorisé afin que la conservation soit vérifiée

dans des proportions admissible pour le cas de figure traité ici.
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CONCLUSION

Cette thése a montré I'utilité des méthodes de remaillage appliquées a I'évolution de
surfaces libres. Une étude préliminaire sur le maillage de surfaces discréte a été
présentée. Celle ci montre la faisabilité d”un mailleur découplé de la géométrie exacte
telle que définie dans la CAO. Une extension naturelle aux maillages anisotropes a été
faite. L application aux simulations de remplissage de moules par RTM (Resin Transfer
Moulding) nécessite en effet de considérer des surfaces discrétes de fagon a éviter
I"interaction avec la CAO qui est a I'origine du modéle géométrique exact (inconnu en
pratique). Les probléemes de surfaces libres sont habituellement traités sur un maillage
fixe et invariant dans le temps (Eulerien). ce qui peut poser des problémes
d’approximation au voisinage de la frontiecre mobile. Une approche originale de
remaillage adaptatif associé¢ i la formulation de |"évolution de la surface libre par level-
sets est présentée ici. et une validation tant expérimentale que numérique est effectuée.
Les simulations d’écoulement impliquent souvent le transport de grandeurs-scalaires
(température. etc.) dans le domaine. Une application du remaillage adaptatif est
effectuée pour un cas de simulation thermique et une condition sur le pas de temps
(condition CFL) est nécessaire afin d assurer la stabilité du schéma de transport. Par la
suite une adaptation de maillage effectuée a priori est proposée. Ceci permet de
n"utiliser qu“un seul maillage pour toute la simulation. L’adaptation est faite en tenant
compte de deux critéres : erreur d’interpolation et nombre de Courant. Une étude
théorique démontre ensuite la difficulté de combiner les deux dans certains cas (injection
centrale). L’estimateur d’erreur présenté ici est basé sur le Hessien d’une variable
scalaire pour la partie « erreur d"interpolation ». Une extension est proposée dans le cas
des surfaces courbes. visant i découpler I'erreur géométrique de Ierreur fonctionnelle.
Cette derniére est utilisée seule. car I'erreur géométrique est une donnée du probléeme et

ne peut a ce stade étre diminuée. La validation de cette approche est ensuite faite pour
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une piéce industrielle complexe qui montre que 1°on peut énormément gagner en nombre

d’éléments par rapport a une simulation a maillage isotrope.
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ANNEXE 1
REGLES SEMANTIQUES DE LA LIBRAIRIE DE MAILLAGE

1.1 Introduction

Il n'est pas inutile de metire le doigt sur les conventions utilisées lors de
I"'implémentation de la librairie de maillage. En effet. celles ci sont inspirées d’un
paradigme de programmation. appelé « programmation générique », qui fut a Iorigine
d'une des abstractions les plus fécondes en programmation C++. Cette fagon de
programmer n'est pas a proprement parler exclusive au C++. elle a toutefois été
rapidement intégrée dans ce langage car elle répondait a un certain besoin. Une partie
de la plus récente norme C++ i ce jour [77] est basée entiérement sur ce paradigme: il
s'agit de la « standard template library » (STL par la suite) [79]. Cette librairie n’est en
fait qu'une formalisation de la notion de structure de donnée (dans le sens premier
d objet qui sert a contenir des données). Cette formalisation est construite a I'aide de
toutes les possibilités offertes par le langage C++: la programmation orientée objet
(POO) bien sur. mais aussi et surtout la notion de classe patron (template class) [78].
Ainsi, les concepteurs de la STL ont réussi a rendre leur librairie totalement abstraite, en
ce sens que mis a part quelques contraintes sur les objets que cette librairie doit
manipuler, elle ne dépend pas de leur implémentation précise. Les contraintes sur les
objets sont liées précisément a la nature de la STL : stocker de diverses fagons
I'information. On peut ajouter qu’elles ne sont pas superflues. mais plutot nécessaires.
Par exemple, il faut bien définir une relation d”ordre entre objets si on veut les classer
(selon cette méme relation d"ordre). Si le but n’est pas de classer les objets. alors il nest
pas nécessaire de fournir de relation d*ordre. On peut conclure par cette phrase : « La
finalité d’une construction de programmation générique impose quelques contraintes

minimales sur les types d’objets manipulés ».
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1.2 Exemple d’utilisation de la STL

La STL est extrémement simple dutilisation, c’est pourquoi il est de bon ton de la
présenter avant de passer a la librairic de maillage. qui. comme indiqué dans
I'introduction, est basée sur le méme paradigme. [l est bon de mentionner deux entités
importantes qui sont a la base de la philosophie utilisée dans la STL. Par la suite.

quelques exemples d’utilisation sont exposés.

1.2.1 Container

Un « container » est un genre de contenant d’information dans la STL. Ces derniers sont
de plusieurs types et comme on peut s'en douter, il existe plusieurs containers adaptés a
chaque utilisation particuliére. et pas un container adapté a toutes les sortes d"utilisation.
lis sont principalement au nombre de 7: vector. list. set. multiset. map.
multimap. deque. mais rien n’empéche le développement futur d"autres types dans
de futures révisions de la norme C++. lIs prennent la forme suivante si I"on passe

comme paramétre de template le type du contenu T:

type du_container<T> nom_du_container ;

Pour une description exhaustive chacune de leurs caractéristiques. voir [79] ou [80].

1.2.2 [térateur

Dépendamment de la nature du container. le parcours dans celui ci est restreint a
certaines opérations uniquement. Pour une liste (1ist). on ne peut que passer d’un
élément a un autre immédiatement suivant ou précédent (accés séquentiel). Pour un

vecteur (vector), I'accés est aléatoire. Par conséquent. dans la STL. il est nécessaire



construire des pointeurs un peu particuliers permettant / restreignant le parcours selon le
type de container. Ce sont les itérateurs (iterator). lis s'utilisent comme les
pointeurs en C/C++ , mais ,de plus, permettent les opérations de parcours associées a
chaque container. Généralement, les opérateurs suivants sont définis sur les pointeurs.

tout comme sur les itérateurs :

*1 : déréférencement ( accés a la donnée pointée)
++I ou I++ :élément suivant
--IouI-- :élément précédent

I(k] : acces direct a I'élément suivant k fois |'élément pointé par I.

1l faut néanmoins noter que pour certains containers. seules certains opérateurs sur les
itérateurs associés sont définis. En particulier. il n’existe pas d’accés direct pour les
listes chainées. et donc pas d’opérateur « []». Pour conclure, les itérateurs constituent
de fait une généralisation de la notion de pointeur en C. permettant une syntaxe trés
simple lors de la manipulation des classes de la STL. lls sont déclarés comme des types

associés au container. de ce fait on peut récupérer leur type par une syntaxe du style :

container<T>::iterator

1.2.3 1 exemple : une liste chainee

I existe dans la STL la notion de liste chainée. Une liste chainée est une structure dans
laquelle les objets sont stockés en chaine, les uns aprés les autres. Il n"est possible
d*accéder a un objet de la liste qu'en la parcourant depuis le début (1°" objet). On parle

d"accés séquentiel. La liste se déclare dans le cas général :

1list<T> ma_liste;
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ou T est le « paramétre de template », i.e. le type d’objets que la liste « ma_liste »
est censée contenir. Comme tout objet, « ma_1liste » est muni de fonctions membres.
Les plus importantes ici sont reliées a la nature de liste chainée : insertion d’éléments en
1 position, en fin de liste, derriére ou devant un élément identifié de la liste
(respectivement  fonctions push_front(), push_back(), insert()).
Délétion d'éléments dans les mémes conditions (respectivement fonction
pop_front(), pop_back(), delete()), etc. . Les contraintes sur T sont
assez restreintes pour une liste chainée; ils doivent simplement étre assignables
(posséder I'opérateur « = »). N'importe quel objet assignable peut €tre membre, en
particulier tous les types par défaut du C++ (intégraux int, long, char.... réels

float, double, ...).

Le petit programme suivant insére une séquence croissante de nombre entiers dans la

liste et I'affiche a I'envers :

list<int> ma_liste; // une liste d'entiers
for (int 1=0 ; 1i<15 ; ++1i) // pour les 15 premiers..
{
ma_liste.push_front(i); // insertion au debut
cout << I << " "; // affichage
}
cout << endl;

list<int>::iterator it // un literateur
it=ma_liste.begin(}; // au debut de la liste
while (it!=ma_liste.end()) // tant que pas a la fin
{
cout << *it << " "; // affichage de l’element
++it; // passage a l’element suivant

}

cout << endl;

affichage :

0123456 7891011 12 13 14
14 13 12 11 10 9876543210
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1.2.4 2" exemple : une entité de classification

Il est possible dans le cadre de la STL d’utiliser un des container (set, multiset,
map, multimap) qui conserve en permanence une classification selon un certain
critére de leur contenu. Le set est le plus simple. c’est une séquence ordonnée unique
(i.e. chaque élément est unique). En passant le type d objet T en paramétre de template,

il se déclare simplement :

set<T> ma_classif;

Le container set est muni de certaines opération d"insertion/délétion, dont insert ().
erase (), mais contrairement a la liste chainée. I'ordre d’insertion n’a pas de
conséquence sur I'ordre dans lequel les éléments sont stockés. C'est la présence de
I’opérateur « < » entre éléments de type T qui induit un ordre dans le set. Ainsi, le
type paramétre T doit comporter un opérateur « < » afin de pouvoir étre utilisé avec
n"importe lequel des containers cités plus haut. 1l s"agit de la contrainte évoquée dans
I"introduction. En plus de celle ci. I'objet doit étre assignable. donc posséder I"opérateur
«=». L’exemple suivant montre une possible utilisation. ou il s agit de classer des

entiers a la volée. en interdisant les doublons.

set<int> ma_classif ; // un set d’entiers

for (int i=0 ;i<15 ;i++)

{
int elem=rand()<10; // nb au hasard entre 0 et 10
cout << elem << " " ; // on 1l'affiche
ma_classif.insert(elem); // insertion dans le set

}
cout << endl ;

set<int>::interator it ; // un iterateur ad-hoc
it=ma classif.begin(): // au debut
while(it!=ma_classif.end()) // tant que pas a la fin
{

cout << *it << " ; // affiche l’entier
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++it; // element suivant

}
cout << endl ;

affichage :

ow
-\
w
FRv
o
-

On voit bien que la seconde liste de nombre contient tous les éléments de la premiére,
classés dans I'ordre défini par 1’opérateur « < » sur les entiers (croissant). et ne contient

chaque élément qu’une seule fois (d’ou sa taille réduite).

1.3 Structures de maillage

Les structures de maillages considérées ici se sont inspirées de la philosophie de la
programmation générique dont la STL briévement présentée plus haut est le meilleur
représentant. Le but est de définir une classe template et tous les « accessoires» qui vont

avec afin de représenter une géométrie de maillage.

Un maillage constitue une relation topologique entre des nceuds d’une part. et des
éléments. De fagon interne, il est possible de gérer dautres entités pour diverses raisons
(parcours rapide des relations de voisinage entre éléments, raffinement de maillage. etc.)
Les entités de base sont les nceuds et les éléments. ce sont eux qui « générent » les
caractéristiques d’un maillage. Nous allons donc les décrire succinctement. Elles seront
construites au fur et a mesure, ainsi, le nceud ne peut étre défini que si I'on connait sa

finalité. En conséquence, il faut lire séquentiellement les parties qui suivent.
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1.3.1 Les nceuds

Un nceud est un point défini dans I’espace, typiquement R”. n étant la dimension de
I"espace. Pour décrire un nceud, il faut donc spécifier dans quel espace il se trouve, et
chacune des coordonnées qui lui donnent sa position. La classe template suivante fait

pour le moment I"affaire :

template<int dim> class vertex;

Le paramétre entier dim sert  donner une dimension a I"espace d’accueil du nceud. De
fagon interne. la classe vertex stocke les coordonnées dans un tableau de taille fixe
(peu importe comment, a ce niveau). L’espace d’accueil n'est pas nécessairement
euclidien : il peut s’agir d'un manifold quelconque (un patch en CAO par exemple),

auquel cas les coordonnées sont données dans une base locale.

1.3.1.1 Contraintes sur les paramétres de template

Le paramétre dim doit étre un entier strictement positif.

1.3.2 Les éléments

1.3.2.1 Elément générique

Par élément il est entendu un groupe de neeuds et des connectivités permettant
d’identifier une partie finie de 1'espace (« élément fini »). Donc, I"élément dépend de

I'espace daccueil et du type de neeud. La declaration est la suivante :

template<int dim, class V=vertex<dim> > class element;
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le paramétre V posséde un paramétre template par défaut « vertex<dim>». Il est
parfaitement possible de déterminer un autre type de nceud, en le faisant dériver de
vertex et l'utiliser a sa place. L’élément ne contient pas les nceuds en tant que tels,
mais il y référe par I'intermédiaire d’itérateurs (ou de pointeurs). Ceci a une implication

sur la définition des nceuds comme décrit ci-aprés.

1.3.2.1.1 Contraintes sur les paramétres de template

Le paramétre de template « dim » doit étre strictement positif. V doit étre une classe
assignable. et doit contenir le membre Iterator. (pointeur/itérateur sur un objet du
type de V). Cette contrainte s"ajoute donc a la définition du nceud au §1.3.1, et la

modifie ainsi :

template<int n> class vertex
{

public :
typedef vertex<n> *Iterator; // pointeur (EXEMPLE)

b:

1.3.2.2 Simplexes

Dans la plupart des cas. la génération de maillage s’intéresse a des €éléments simplexes
pour d'évidentes raisons de simplicité et de généralité. Un d-simplexe est un élément
comportant d+1 nceuds et évoluant dans un espace de dimension au moins égale a d. 1l
s"agit de I'élément le plus simple constructible avec d+1 nceuds. Exemples : le triangle
dans le plan (2-simplexe dans un espace de dimension 2), le tétraédre (3-simplexe dans
I'espace de dimension 3), un segment de droite dans le plan (1-simplexe), etc.. Comme

le type élément, le type simplexe est construit a I"aide du nceud et de la dimension de
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I"'espace d’accueil. 1l comporte en plus le nombre de neeud qui le définit, puisque celui
ci est indépendant de la dimension de I'espace. mais en aucun cas supérieur a d+1. La

définition est la suivante :

template<int n,int d,class V=Vertex<d> > class Simplex
: public element<d,V> ;

Le paramétre de template n est le nombre de neeuds du simplexe, d est la dimension de

I"espace. et V est le type de nceud considéré (méme remarques que dans le §1.3.2.1).

1.3.2.2.1 Contraintes sur les paramétres de template

Le paramétre d est un entier strictement positif. n est supérieur a 2 et inférieur a d+1.

La classe V doit respecter les mémes conditions qu’au §1.3.2.1.1.

1.3.3 Faces topologiques

Cette entité est destinée a formaliser les relations de topologie entre les éléments d'un
maillage (relation élément - élément). 1l s"agit d"une face commune a deux éléments (ou
plus dans le cas de géométries non-manifold). La face est identifiée par ses neeuds, et
accessoirement contient I'information sur le ou les éléments qui s’y rattachent. La

déclaration est la suivante :

template<class Vit,class Eit> class Topological Face
: public Topology Entity<Vit,Eit> ;

Cette classe prend deux paramétres de template. Le type Vit est de type itérateur sur

les nceuds. et Eit Iest sur des éléments.
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1.3.3.1 Contraintes sur les paramétres de template

Ils doivent étre des itérateurs, c’est a dire étre déréférengables a I'aide de I'opérateur *,
tout comme les pointeurs du C. Par conséquent mais indirectement, ceci implique
I’existence d’itérateurs sur les eléments (de type *Eit). IIs seront naturellement

déclarés dans la classe correspondante.

1.3.4 Bipoints

Cette entité est destinée a représenter comme son nom |'indique. un bipoint. c’est a dire
un segment reliant deux nceuds. Ceci est dans le but de mesurer la longueur dans une
métrique et de permettre la génération de maillages par bissection. La déclaration est

trés similaire a celle des faces topologiques :

template<class Vit,class Eit> class Bipoint
: public Topology Entity<Vit,Eit>

1.3.4.1 Contraintes sur les paramétres de template

Les contraintes sont les mémes que pour les faces topologiques. §1.3.3.1. De plus . ils
doivent contenir le membre value type qui est un membre standard des itérateurs de
la STL et qui renseigne sur le type de I"objet pointé. 1l est parfaitement possible de se
passer des itérateurs de la STL et dutiliser des pointeurs « intelligents » a la place. mais

il faudra penser a spécifier cc membre dans la classe support de ces pointeurs.
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1.3.5 La classe contenant le maillage

1.3.5.1 Introduction

Pour le moment, cette entité est construite pour contenir un maillage uniforme de
simplexes. Elle prend en paramétre la dimension de I'espace d"accueil. le nombre de
neuds des simplexes, et éventuellement un type de simplexe « usager ». dans la

déclaration suivante :

template<int n,int d,class E=Simplex<n,d,Vertex<d> > >
class Simple Mesh : public Mesh ;

La classe mére Mesh ne contient presque rien dans ce cas ci. et n'est pas de valeur
explicative particuliére. Au sein dela classe Simple Mesh sont instanciés les
containers qui servent a stocker toutes les entités utilisées (décrites plus haut). Cette
classe contient toutes sortes de méthodes pour ajouter des nceuds. des éléments. faire du
raffinement de maillage...etc. Il est  noter qu’elle fonctionne de fagon trés similaire a
un container de la STL. puisque toutes les opérations sur des éléments internes se font
grice a des itérateurs. Ces itérateurs sont nécessaires car ils « informent » en quelque
sorte |'usager externe de la fagon avec laquelle les données sont stockées en interne. On
pourrait penser que cette philosophie est en contradiction avec la POO (voir §1.1). mais
il n"en est rien car ces itérateurs ne sont en fait que des indicateurs sémantigues. a
I'instar des itérateurs de la STL. lIs ne servent donc qu’a guider le compilateur et a lui
permettre d’optimiser plus efficacement les accés aux containers. (exemple : on peut
retirer directement un élément d’un container connaissant un itérateur. mais pas si I"on
ne dispose que d'un simple pointeur C). Dans les paragraphes précédents. il est
mentionné quelques contraintes sur les paramétres de template. en particulier sur la
notion d’itérateur. En fait ce n’est pas tout, car les itérateurs étant en principe associés

aux containers, il est nécessaire de définir le container pour pouvoir définir | itérateur.
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En conséquence, les diverses entités devant étre stockée dans cette classe devront fournir

cette information aussi.

1.3.5.2 Containers

Chaque type d’entité « apporte » avec lui la fagon avec laquelle les entités de ce type
vont étre stockées. Cela se matérialise par la présence d’'un membre
Container Type déclaré public dans le corps de la classe concernée (nceud. élément.
faces topologiques et bipoints). Typiquement, et tel que cela a été implémenté dans la
librairie actuelle. il s'agit dune liste chainée, permettant les ajouts et les retraits
rapidement. et surtout sans invalider aucun autre itérateur que celui pointant sur I’objet
retiré. le cas échéant. Cette derniére propriété est trés importante car. par exemple. un
élément est construit directement a partir des itérateurs sur les nceuds le composant (voir

§1.3.2). Voici un exemple de déclaration d’un tel container pour les éléments :

template<int n,int d,class E=Simplex<n,d,Vertex<d> > >
class Simple Mesh : public Mesh
{
public :
/// type d’elements (synonyme}
typedef E Element_ Type;

/// Iterateur vers un element (type synonyme)

typedef typename Element Type::Iterator Element Iterator;
private :
/// containers {(type synonyme)

typedef typename Element Type::Container_Type

Element Container_ Type;

/// Instance du container

Element Container_Type Elements;

Par la suite, il suffit d"accéder au membre container nommé Elements comme avec

n’importe quel container de la STL. De plus, les méthodes de la classe Simple_Mesh
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communiqueront avec I’extérieur avec une philosophie proche de celle de la STL, qui
est de ce point de vue, remarquable. Bien entendu, la classe Simple_Mesh est bien
plus complexe qu'un simple container car elle doit contenir 4 type d’entités distinctes.
Ceci a quelques conséquences sur les fonctions membres d’insertion par exemple, qui ne
peuvent étre nommées simplement « insert » ou « push_front »comme dans la
STL. Ceci n’est pas le propos de cette explication ; le lecteur peut se référer au site

internet décrivant la librairie pour des détails sur I"'implémentation actuelle.

1.3.5.3 CQlassifications

Les structures de données (« containers ») de la classe de maillage ne sont pas supposées
étre performantes pour autre chose que pour faire du stockage d’information. Or. il est
bien souvent nécessaire d'avoir recours a des recherches selon divers critéres. comme on
peut I'imaginer dans une base de données. Pour ce faire, il est nécessaire de construire
des structures de données internes capables d"effectuer ces recherches de fagon efficace.

La recherche d’entités peut étre menée pour plusieurs raisons :

- Imposer I'unicité des nceuds. auquel cas il faut faire une recherche avant
I'insertion d’un nouveau nceud.

- Classer les bipoints selon leur longueur (pour faire du remaillage et ne couper
que ceux qui sont plus longs qu°un certain critére).

- Connaissant un élément, trouver les faces topologiques le concernant (on les

construit a partir des nceuds de 1"élément).

La classification de chaque type d"entité est indépendante, et tous n’en ont pas besoin :

- Pour les neeuds ; classement lexicographique des coordonnées.

- Les éléments ne sont pas classés (juste ajoutés un a un dans leur container)
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- Les faces topologiques sont classées uniquement en fonction des nceuds les
composant (connaissant ses nceuds, il est alors facile de retrouver une face)

- Les bipoints doivent étre classés selon les mémes critéres que les faces (selon
les nceuds), mais en plus il faut les classer par longueur pour les algorithmes

de raffinement.

Puisque chaque type d’entité contient déja I'information sur le container I"accueillant
(voir § pour une implémentation possible), il semble logique d’inclure I'information sur
la ou les classifications associées. Par conséquent. les déclarations supplémentaires dans
la classe Simple Mesh ressembleront a celles exposées au §1.3.5.2, et se présentent

ainsi (présenté uniquement pour les nceuds pour plus de clarté) :

template<int n,int d,class E=Simplex<n,d,Vertex<d> > >
class Simple Mesh : public Mesh
{
public :
/// type d’elements (synonyme)
typedef E Element_ Type:
/// type de noeud (synonyme)
typedef typename Element Type::Vertex Type Vertex Type;
/// Iterateur sur un noeud
typedef typename Vertex Type::Iterator Vertex Iterator;
private :
/// type de containers pour noeuds
typedef typename Vertex Type::Container_ Type
Vertex_Container_Type;
/// type de container pour la classification
typedef typename Vertex Type::Classification_Type
Vertex_Classification_Type;
/// iterateur dans le container sur la classification
typedef typename Vertex Type::Classification_Iterator
Vertex Classification_Iterator;
/// Instance du container pour les noeuds
Vertex Container Type Vertices;
/// Instance de la classification
Vertex_Classification_Type Classification_Vertices;
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Il est 4 noter que la classification détaillée ici reste de nature interne a la classe
Simple Mesh (mode d'accés « private »). De plus, la classification stocke des

itérateurs, et non les objets directement (qui sont stockés dans un autre container).

1.3.5.4 Contraintes sur les types inclus dans la classe de maillage et les paramétres

de template

Le paramétre d est un entier strictement positif. n est supérieur a 2 et inférieur a d+1.
La classe E (ou son synonyme Element Type) est une classe représentant un
élément. Elle est optionnelle : si elle est omise, une classe par défaut est utilisée. Dans

le cas ou elle est spécifiée, elle doit contenir I’information sur :

- Le type de nceud sur lequel I"élément est construit (E: : Vertex_Type)
- Le type de face topologique associé a I élément
(E::Topological Face_Type)
- Le type de bipoint associé a I'élément (E: : Bipoint_Type)
- Le type de container utilisé pour le stockage des éléments
(E::Container_ Type)
- Le type d’iterateur associé au container (membre E: : Iterator)

- Eventuellement une classification (non implémentée pour le moment)

En addition, le type Vertex_Type déclaré dans la classe E doit impérativement

fournir les informations suivantes :

- Le type de container utilisé pour le stockage des naeuds
(Vertex Type::Container_Type)
- Le type d'itérateur de ce container (Vertex Type::Iterator). imposé

enoutre au §1.3.2.1.1.
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Le type du container de classification
(Vertex Type::Classification_Type)
Le type d"itérateur associé a la classification

(Vertex_Type::Classification_Iterator)

Le type Topological Face_ Type doit fournir quand a lui :

Le type de container utilisé pour le stockage des faces
(Topological Face Type::Container_ Type)
Le type d’itérateur pour ce container
(Topological_Face Type::Iterator)
Le type du container de classification par les nceuds (pour recherche rapide et
éviter les doublons)
(Topological Face_Type::Classification_Type)
Le type d’itérateur associé a la classification

(Topological_E;ace_Type ::Classification_Iterator)

Le type Bipoint_Type doit fournir :

Le type de container utilisé pour le stockage des faces
(Bipoint_Type::Container_Type)
Le type d"itérateur pour ce container
(Bipoint Type::Iterator)
Le type du container de classification par les nceuds (pour recherche rapide et
éviter les doublons)
(Bipoint Type::Classification A_Type)
Le type d'itérateur associé a cette la classification

(Topological Face_Type::Classification_A_ Iterator)
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- Le type du container de classification par longueur
(Bipoint_Type::Classification_B_Type)
- Le type d’itérateur associé a cette la classification

(Topological Face Type::Classification B_Iterator)

Ces contraintes se matérialisent dans les classes correspondantes de la fagon suivante

(exemple de classe de nceud) :

template<int N> class Vertex : public Vertex_Base<N>
{

public :
/// type de container (ici une liste chainee)
typedef list<Vertex<N> > Container_Type;
/// iterateur assccie
typedef typename Container Type::iterator Iterator;
/// type de classification (set)
typedef set<Iterator,Less Ptr Type<Iterator> >
Classification_Type:;
/// iterateur associe a la classification
typedef typename Classification_Type::iteratof
Classification Iterator;

Dans I'exemple ci dessus. Less_Ptr_Type<Iterator> est un des « functor » qui permet de
comparer les objets pointés par les itérateurs stockés dans le container de classification.
Il est hors du propos de cette introduction de les décrire en détail ; pour une référence
plus compléte. le lecteur est invité i consulter la documentation de la STL [80] ou celle

du code de la libraire de maillage (81].

[
En conclusion. cela peut sembler beaucoup de contraintes, mais il s’agit bien du
minimum. Une version antérieure de la librairie en comportait bien plus ! Toutes ces
contraintes correspondent a une déclaration dans la classe simple_mesh. Il serait trop

fastidieux de les présenter toutes ici, de plus cela n’est pas d'une grande puissance



218

explicative. Un exemple type pour les nceuds existe dans les paragraphes §1.3.5.3 et
§1.3.5.2.

1.4 Utilisation de la classe de maillage

Ce document n'a pas I'intention d’étre un tutorial de la libraire. mais il est bon de
présenter un exemple d"utilisation du code tel que présenté montrant la similitude qui
peut exister avec la STL. Dans I'exemple qui suit. on insére successivement quelques
triangles dans un maillage et |'on effectue un raffinement isotrope de la surface ainsi

constituée.

// déclarations
// champ de metrique (ici taille constante)
Constant Isotropic_Metric<Vertex<2Z> > CIField(0.05);

/* un maillage utilisant la metrique et utilisant le type
d’élement par défaut (3 noeuds=triangle, et dimension=2)*/
Simple Mesh<3,2> M(CIField);

// un noeud de ce maillage
Simple Mesh<3,2>::Vertex_Type V;

// un element de ce maillage
Simple Mesh<3,2>::Element_Type E;

// des iterateur sur des noeuds du maillage
Simple Mesh<3,2>::Vertex_Iterator VI[4};

// des iterateur sur des elements du maillage
Simple_Mesh<3,2>::Element_lterator EI[Z2]:

// création des noeuds

V[0}=0.; V[1]=0.:; // premier noeud
VI[0]=M.Add Vertex(V): // stocké dans le maillage
v[Q]l=1l.; V[1]=0.; // second nceud
VI[1]=M.Add Vertex(V);

V[0]=0.; v(ill=1l.; // troisieme noeud
VI[2]=M.Add Vertex(V};

vV[0]l=1.: V(l]=1l.:; // quatrieme noeud

VI{3]=M.Add Vertex(V}:;

// création des éléments
E[0]=VI[O0); E(1}=VI[1]; E[2]=VI[2]:
EI[0]=M.Add_Element (E); // ler element dans le maillage
E[0}=VI[1l]; E[1]=VI[2]; E[2])=VI[3];
EI[1]=M.Add_Element (E}; // 2nd element dans le maillage
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// création des connectivités
M.Attach(EI([0])~
M.Attach(EI[1]);
M.Save PLT_File("init.plt"); // sauvegarde du maillage
// initial
// maillage

M.Do_Mesh(1.3,0.0); // on fait le maillage
M.Save_ PLT_File("rest.plt"); // sauvegarde du maillage
// final

Le résultat de ce programme est donné dans la figure suivante :

EI[1]

EI[0] | %

Figure 1 : Maillage d origine et maillage résultat

1.§ Conclusion

Cet bréve introduction avait pour but de montrer I"originalité de la structure de la
librairie de maillage. Cette structure de programmation générique est un paradigme
fondamentalement différent de celui de la programmation objet généralement acceptée.
Le propos de ce chapitre n’est pas de montrer que cette derniére n’est pas adaptée. bien
au contraire. On peut d"ailleurs comprendre la programmation par templates comme une

forme cachée d’héritage statique. En effet. on impose aux paramétres de template des
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classes décrites ici des contraintes d’ordre sémantique (i.e. telle classe doit contenir tel
membre ou telle fonction membre pour s’interfager avec la classe de maillage). Ces
contraintes sont exactement du méme ordre que celles que 1"on obtient lorsque I"on fait
dériver une classe B d’une autre classe A: on doit coder un certain nombre de méthodes
de la classe B déja présentes dans la classe A. Ceci est obligatoire pour rendre la classe
B compatible avec I'interface (commune) foumie par la classe A. Cette demiére
posséde dailleurs en général des méthodes virtuelles pures que I'on doit coder de toute
fagon. On peut se demander oi se trouve la différence conceptuelle entre une
programmation orientée objet classique et cet exercice de programmation générique :
puisque en suivant ce raisonnement, les deux approches (suivant des sémantiques fort
différentes) en arrivent au méme point. [l y a en fait une différence de taille : la ouen
programmation orientée objet classique le type des objets manipulés n’est connu qu’a
I'exécution, dans le cadre de la programmation par template. il est impérativement
connu a la compilation. Ceci a deux conséquences : premiérement. la programmation
objet classique est plus souple en termes d"utilisation (du fait de la présence de méthodes
virtuelle et du mécanisme d'héritage). Deuxiémement. la programmation par template
est la plus performante en termes de vitesse d’exécution (car le compilateur connait tout
des objets qu'il manipule : il est ainsi capable d’utiliser des mécanismes d optimisation
qui autrement ne seraient pas efficaces). La morale de cette conclusion est la suivante :
pour de grosses application ne nécessitant pas de performance numériques. il est plus
facile de programmer en utilisant le paradigme orienté objet. Pour des applications au
contraire sensibles a la vitesse de calcul, mieux vaut s’orienter dans la programmation

générique par template ( dans la mesure du possible !)
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ANNEXE 2
DIAPOSITIVES DE LA PRESENTATION

Résolution d'un probléme aux
limites a frontiére libre au moyen
d'un algorithme de remaillage
adaptatif et anisotrope

Eric Béchet

Ecole Polytechnique de
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Trois-Riviéres
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Plan

1- Introduction 6- Simulations non-
2- Analyse des besoins isothermes
3- Génération de maillage  7- Autres stratégies

. d’adaptation
4- Evolution du front de adap
matiére 8- Conclusion

5- Simulations isothermes  9- Recommandations

1- Introduction

Procédé RTM
- Renfort fibreux placé dans le moule
- Fermeture et verrouillage du moule ar (évent) Arr (évent)

- Injection de résine sous pression

Objectifs de la simulation : \
-> Eviter les zones séches front
-> Optimiser le temps de cycle
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Exemples

Piéce automobile :
aile de camion

Progression du front de
résine dans le temps

Modélisation

vpP Equation de Darcy (2D ou 3D)

milieu poreux

u=—= (_ -—-) Equation de Darcy (en 1D)

u : vitesse dans la direction X.
K : Permeabilité du milieu poreux
H : Viscosite de la résine.

oP . ) }
porex  Fy Gradient de pression (dir. X)
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2- Analyse des besoins
Simulations actuelles :
- Maillage fixe
- Progression du front de résine par « contact »

Conséquences :

-Aucun contrdle sur le nombre de pas de temps d'une
simulation, et donc sur la précision (dépend directement
du maillage)

-Temps calkcul de l'ordre de n3, n étant le nombre de
ddl.

-Conditions aux limites mal approchées (au front)

Simulations actuelles

VAT PAYATCFAYaTAYATAY
R RIEL R

<ATRY AT T
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Besoins

- Possibilité de jouer indépendamment sur la
discrétisation temporelle et la discrétisation spatiale

- Tendre vers un temps de calcul d’ordre inférieur
- Améliorer limposition des conditions aux limites

- Adapter localement la discrétisation pour tenir compte
des:

> effets de bord

> fronts thermiques

Solution envisagée

a) Utilisation de méthodes de remaillage sur coques 3D
- adaptatives
- anisotropes

b) Couplage avec un méthode d’évolution de font par
surfaces de niveau (Level Set)

c) Application au RTM
- isotherme, non isotherme
d) Génération de maillage initial optimisé a priori
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3- Génération de maillage

- Maillage surfacique pour coques 3D
- Extensions anisotropes
- Construction d’'une métrique

Base géométrique
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Base géométrique

- Représentation géométrique inexacte

— - Les triangles sont étirés arbitrairement
selon les courbures de la surface

+ Ne dépend pas du systtme CAO

+ Peut approcher la surface avec tout
niveau de précision requis

Ne peut pas étre

utilisé avec les

éléments finis

—

Bissection
- Les nouveaux nceuds sont générés par bissection des

segment existant (par ordre de longueur)

- La localisation du noeud repose sur le rapport taille
courante / taille voulue :

_(d
St
2L if g is0dd
=272 " @
7=0.5 else
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Bissection
Etape 1: d=3*d, 0 ; =17 Exempie 1

L o—t+— €
I Etape 2: d=2*d,, . ; =12
0

Etape 1: d=5'dtm ; =41

Exemple 2

Etapes 2: d=3"d,, ., ; v=1/3 (schéma connu)

Etape 3: d=2"d,, . ; v=1/2 (schéma connu)

- Le noeud doit étre projeté sur la
surface dorigine
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Remaillage Delaunay

- Nous utilisons le critére de Delaunay (du cercle
circonscrit vide), en 2D.

- Nous remaillons le voisinage du noeud inséré a laide
d‘un algorithme de "De Bowyer-Watson"” et de
retoumements d‘arétes pour conserver localement le
critére de Delaunay

w7

Comme nous travaillons sur des surfaces courbes, il
faut:

a) Changer le critére du cercle vide
b) Eviter les dégénérescences géométriques

Nouveau critdre de Delaunay

- Au lieu du cercle, nous utilisons la sphére
équatoriale.

- Chaque noeud du triangle est sur la sphére et
son centre appartient au plan formé par le
triangle.

- Le méme algorithme de remaillage est
utilisé par la suite
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Nouveau critére de Delaunay

Delaunay:-conformité étendue ainc.domaines...

—
= ltmﬁm....
ey a3l : L .
oo iy IR Ly
i | sax.T . e e
! ( . S L RNV S ]
< l £y
— !
— l Y gt - - I ".‘ £.% (s A ——
. SAe o o - s
ot € A T WU T LR R Bt

Géométrie conservée

- Nous utilisons un angle limite pour les retournements
de segments dans lalgorithme de “De Bowyer-

Watson” Une bonne valeur est 20°.

- Evidemment, il est interdit de retourner les arétes

physiques de f'objet dé inées a priori

45°
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Exemples - Ventilateur

04 0.6 0.8 1
Factewr de qualité
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Exemples — Piece mécanique

7,

Je X
3;.; \%@éé

Source : Pr. V. Francois,
Dept. Génie Mécanique,
UQTR, Trois Riviéres,
Québec.

Exemples - Piéce mécaique

ND éiéments
1600
1400 1
1200 1
1000
800 1
600 4
400 1
200 4

0 0.2 0.4 06 08 1 Factewr de qualité
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Exemples — Anévrisme
%

Source : Dr. M.L. Raghavan,
Department of Biomedical
Engineering,
University of lowa
Iowa City, IA

Nb éléments

1200

1000
800
600
400

200

!
=Y

RS

0.2 (X} 0.6 0,8 1
Facteur de qualité

o,
s,

as,
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Anisotropie : nouvelle notion de distance

a, a, a, X B
M(P)=|a, a, ax A (1)

!
G Gn G gis(4B)= 1) = [{'s'()-M(sn))- s (1)a

- Nous calculons la longueur du segment par un
schéma d'intégration de Simpson-

- ou utilisons la quadrature suivante si la métrique M
est monotone le long de A8 :
dist(aB)= Y AB-M(A)-AB;\[ 4B-M(B)- B

Nouveau critére de Deléunay (2)

Critére de la sphére vide -> Maillages isotropes

La notion de métrique « distord » I'espace, les sphéres
deviennent donc des ellipsoides.

Le critére modifié est donc un critére basé sur les
ellipsoides vides (dans l'espace réel).




236

Maillages anisotropes “partiels"”

L.

T
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Définition de la métrique

Densités normales et tangentielles: sont utilisées pour
déterminer la métrique dans un base locale

=1

| V- 1
s, =—= s, =—=cst
t" A"k t'

Ces densités sont valides au voisinage d‘épaisseur e du
front:

e=(A4)=3-V-n-M

Rotation de la métrique'

Définition de la métrique et transfert dans la
base globale (cas 2D):

M=TR°{rS oz]R

Matrice de rotation :

cos@ sinéd —
R= 6=\Ox,n
[— sin@ cos 0] ( )
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Génération du maillage

Le nouveau maillage est généré en utilisant la
métrique, a l'aide des algorithmes de bissection.

4~ Evolution du front
- Surfaces de niveau (Level-Sets)

- Transport de la vitesse dans le domaine
sec

- Génération d'un champ de distance
d(x,y,z) | front

- Génération d'un champ de temps

- Mise a jour du front
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Surfaces de niveau (Level Sets)
Méthode générale d’évolution de front
G W(X,1)- V=0 in © X L V(X,1)-Vu=0
cl ct
u(X,1)=0 on [(t)
re,)=T,

- La vitesse normale v est quelconque
- Probléme a valeur initiale

- Résolution par une méthode de transport;
implémentation relativement lourde.

Surfaces de niveau (Levél Sets)

RTM - évolution du front monotone

-> chaque point n'est « atteint » par le front qu’une fois.

-> utilisation d'une méthode simplifiée: équation eikonale
wX) Vu=1inQ u=g(X)onT

- La vitesse normale v est toujours positive
- Probléme aux limites

- Résolution par « fast marching », implémentation
plus légére (schéma « upwind »).




240

Transport du champ de vitesse

- Connu originellement uniquement dans la région
saturée de résine (par simulation numérique), il est
par conséquent nécessaire de l'extrapoler.

- Champ vectoriel, constant par éléments

- L'extrapolation se fait couche d’éléments par couche
d'éléments, a partir du champ trouvé dans les
éléments situés juste en arriére du front.

-> tenir comte des perméabilités

Transport du champ de vitesse

IR 4 AT A
s SIRLUTA,
L

Mt N/
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Génération d'un champ de distance

Il est construit couche par couche a partir des
éléments traversés par le front , iso-valeur de
remplissage =0.5. Cette iso-valeur est construite a
partir du pas de temps précédent

- C'est un champ scalaire
- Continu et linéaire par élément

- Il représente la distance « topologique » entre un
nceud du maillage et le front

Génération d'un champ de distance
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Génération d'un champ de distance

Le champ de distance permet de « s’y retrouver » par
rapport au front de résine dans un maillage non structuré

Génération du champ de temps

Il est construit couche par couche a partir des
éléments traversés par le front, trés similairement
au champ de distance

- C'est un champ scalaire
- Continu et linéaire par élément

- Il représente une estimation pour chaque noeud du
temps au bout duquel il sera « touché » par le front
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Génération du champ de temps

I

= (ax Ly, "'(l'ak)"h" )+ Aty

v g e )
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Mise a jour du front

La position du front pour t., ,=t+dt est mise a
jour sur le nouveau maillage en utilisant le
champ de temps - il suffit de prendre l'iso-
valeur dt du champ de temps et de

« remplir » les éléments situés en amont.

5- Simulations isothermes

-Pas de phénoménes thermiques pris en compte
-> pas de phénomeénes de transport
-> pas d'effets dynamiques
Les paramétres sont fondés sur une expérience réelle :
- Injection contrélée en pression
- Tissu isotrope K=5,2.10'10 m?2
- Huile de silicone, viscosité dynamique p=0,1 N.s.m>
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Pression d'injection

100000 1
90000 1
80000 1
70000 A
60000 1
50000 1
40000 A
30000 -
20000 A
10000 -

npcion Prassure Py

0

100

200 300 400
Time [sac]

500

Résultats - comparaison
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Résultats - comparaison

[E3rad e S0t At AR Yo st
ey ’t. }mﬁ'\&z“\‘fj-’ NN
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T=435s

Résultats - comparaison
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Autre Résultat

Flng

LELLE}

T

rearone
~

oy

Analyse

- Forte diminution du nombre de pas de temps
- Front trés lisse

- Meilleure imposition des conditions aux limites
mais

- Chaque pas de temps est plus lourd a calculer
( remaillage + résolution du pb de Darcy)
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6- Simulations non isothermes

- Une résine de température diff. de celle du moule
- Polymérisation - exothermie

- Phénoménes de transport (espéces chimiques ,
température)

(</x'>)5((T’T>_ +p,c, (v)-V(T)=

V(kV(T))- p,AH if—i;g- —(v)¥(p)

Aspects particuliers

- Equation de la chaleur:
- Diffusion (Galerkin std) . Implicite.
- Transport (Lesaint-Raviart)
- Taux de polymérisation *
- Intégration (Runge-Kutta o. 4)
- Transport (Lesaint-Raviart)
-> la temp. doit étre conservée sur plusieurs pas de
temps (ti-ZIti-llti)
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Simulations

Température résine injectée : 340 K

Viscosité dynamique : 0.1 Pa.s

Température moule : 400 K

Température fibres : 340 K

Pression d‘injection : 2.10° Pa

Pas de réaction-> pas d’exothermie

Cp fibres << Cp résine

a=b=2,01.10°J.Klm?3

k=025 J.mLK! a—él—+b-v-VT=V(k-VT)

Simulation dassique
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Simulation avec remaillage interactif

4
.
& X7 Wiezwlavﬂbgﬂﬂw

R RN oR

YT SETANLYS,
g ?15'4'4'-2%
R

Problemes
Unique changement : le pas de temps
Formulation purement eulerienne
-> condition Courant-Friedrichs-Lewy (CFL) a respecter
pour Lesaint-Raviart
- Transport de la température
- Transport du taux de polymérisation

La condition CFL impose que le nombre de Courant
C=(v.At)/Ax soit inférieur a une fraction de lunité.

CFL=0.25 sans remaillage vs. CFL = 1.5 avec
remaillage.




Instable, CFL =1.5

Pas de temps adaptatif

Stabilisation du schéma : pas de temps différents pour
le probléme de Darcy (évolution du front) et le
probléme thermique :

- Darcy : pas de condition sur le pas de temps
(toutefois contraintes de précision)
- Thermique : respect obligatoire de la condition CFL

Cas présent : 3 pas de temps en thermique pour 1 pas
de temps de Darcy.
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Pas de temps adaptatif

Analyse

- Réduction de la diffusion artificielle au front

- Meilleure imposition des conditions aux limites
thermiques au front

- Contréle du pas de temps (on peut minimiser la
diffusion numérique)

mais
- Chaque pas de temps est plus lourd a calculer

- Grand nombre de pas de temps thermiques
(méthodes Euleriennes)
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7- Autres stratégies d'adaptation

Maillage unique pour toute la simulation, généré a
priori. La cavité est remplie, et un calcul est fait en
régime permanent.

- Adaptation en erreur d'interpolation
- Adaptation par rapport au déplacement du front
- Adaptation en nombre de Courant (eq de transport)

- Comparaisons
n »
Erreur dinterpolation

Estimateur ap f"p f‘-'fr
d’erreur g-}" (évﬁx c:.: X
. . _{¢p cp cp
Matrice hessienne H(p)= ey o &y
Valeurs propres/vecteurs &ép &p e-{;
oxcz oyés oz

propres H="E-A-E L & ‘ =
Métrique uniformisant l'erreur a la valeur s:
M(p)="E-A]-E-

Dans le cas d’'un probléme elliptiquee, on peut
avantageusement prendre la norme (isotrope)

M. (p)= 2 -1-max(4)
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Erreur dinterpolation en 2D

Calcul de la matrice hessienne par « lissage des
contraintes »

vl v /.'.’ \\.\ L
\\ araiy’ N TE
R SN
\ S ) ~'\\
[N
A\ .
- &p &p
H(p)= ?p ?an
¢ &y ov°
Erreur d'interpolation en 2D

Convergence
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Erreur d'interpolation en 2D

vav
RS
N

r" e W4\
SN\ OS5
;.L LI "

s

Application de l'estimateur
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Erreur d'interpolation en 3D (surfaces)

Changer I'évaluation de l'erreur
Le champ de pression est
directement représentable a

21N
Vs \ . P . o
/< N aide d'éléments linéaires.
PR IAN Mais
te Pt L’estimateur 2D renvoie une
47 P erreur non nulle au voisinage
g P du pili.

p\ e

. AA
I

Erreur d'interpolation en 3D (surfaces)
Changer l'évaluation de l'erreur
L'estimateur de l'erreur € vaut :
€, = &, + & incluant erreur géométrique et erreur
fonctionnelle.
-> ['erreur géométrique peut étre soit :
- déterminée par d‘autres moyens
- imposée par le maillage de fond (fich. STL p. ex.)
Seule I'erreur fonctionnelle importe ici.
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Erreur d'interpolation en 3D (surfaces)

L'erreur fonctionnelle € se calcule en ramenant dans
le plan les gradients cakulés dans les éléments
Voisins:

Il

S

Q)
i a)

9]

A
-

Erreur d'interpolation en 3D (surfaces)

Résulats
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Déplacement du front

But : un maillage épousant les positions successives du
front

Hypothése : prédiction par une simulation d’écoulement en
régime permanent .. T~

Déplacement du front

La métrique gouvernant le maillage est (2D) :

| L 0 i
o~ 3 0 0
m"(vk'n-{:vu' O]- ° o |R A "=[_c:-s.,e ::oJ

7

a est le délai désiré entre deux pas de temps (couche
d’éléments)

B est la taille désirée dans le plan normal a la vitesse
(tangent au front)
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Déplacement du front

B choisi pour obtenir un maillage isotrope

3653 éléments

B choisi pour obtenir un maillage anisotrope

.
. A ) PRI
DRI+ P

1388 éiéments
Déplacement du front
a, B bornés par l'estimateur d’erreur
max —l——.—.lmwcﬂ}.,l)] 0
M (p.vE'R. [(Hv"a)' ¢ ! ‘R

0 {3 Lmanl)
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Déplacement du front
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Nombre de Courant

connaissant le pas de temps A¢ et le

nombre de courant désiré

.
4

2

Similaire au cas 7

»

exprimee :

étrique peut étre

la m

)

s
g

J:o

L4

I-ar
0

C

M, (vE="R [(

Nombre de Courant

Résultat
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A %

7 7
ey
=IO

Point d’injection
(pression
constante)

a- At constant

el
5
B
S
o8
bmn
=58
5 C
33 8
CC
So5
cdm
X O
g c o
FE

Compara

ibilité entre
llage rendant l'e

Incompat

rreur d'interpolation uniforme

= un mat

- un maillage rendant le nombre de Courant uniforme
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8- Conclusion

- Méthode de maillage anisotrope indépendante de la
représentation géométrique exacte (fichier STL) — article 1.

- Déplacement du front par une méthode de surfaces de
niveaux (level-sets) combiné avec remaillage interactif et
anisotrope - article 2.

- Application au procédé RTM et validation expérimentale (cas
isotherme) - article 2.

8- Conclusion

- Application au procédé RTM (cas non isotherme) : Problémes
de stabilité - article 3.

- Maillage initial adapté selon un critére d’évolution du front —
article 3.

- Maillage initial améliorant la condition CFL pour les problémes
de transport — articles 3 et 4.

- Estimateur d’erreur adapté aux surfaces discrétes — article 4.
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9- Recommandations
- Extension tridimensionnelle (mailleur, level-sets)
- Conditions aux limites au niveau du front
- Conservation de la quantité de resine
- Présimulation rapide

- remaillage si déformation du domaine (inserts,
moule flexible...)

- Estimateur d'erreur en thermique
- Approche semi-lagrangienne pour le transport.




