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Résumé

Le théme central de cette thése est la stabilisation des algorithmes de génération
de colonnes et de Kelley. Des approches unifiées pour les méthodes de stabilisa-
tion qui suivent le schéma des méthodes de faisceaux ont été proposées récemment.
Nous introduisons une approche unifiée pour les méthodes de stabilisation de type
proximal. Quoique les travaux aient été developpés indépendamment, l'idée que nous
proposons rentre dans le cadre des travaux de Frangioni [20] et présente certaines
ressemblances avec I'approche de Neame [67]. Nous proposons également deux algo-
rithmes de stabilisation de 'algorithme de génération de colonnes basés sur des cas
particuliers de l'approche unifiée proposée que nous appliquons a trois problemes

connus.

Au chapitre 1, nous présentons les deux approches connues pour la résolution des
problémes de grande taille : décomposition de Dantzig-Wolfe/génération de colonnes
et relaxation lagrangienne/méthodes d’optimisation non-différentiable. La premiere
approche résoud ce que nous appellerons le probléme primal et la deuxiéme résoud
son dual. Nous faisons une synthése des développements les plus récents concernant
ces deux méthodes. Les problemes de dégénérescence primale et duale causent de
I'instabilité dans le comportement de ces algorithmes dont Deffet est plus grand
pour les problémes de grande taille. Les premiéres approches de stabilisation ont
été regroupées en deux classes : méthodes du type faisceaux et méthodes du type

proximal. Un survol des approches unifiées récentes a été inclu a la fin du chapitre.

Nous introduisons une approche unifiée pour les méthodes de stabilisation de
I’algorithme de Kelley de type proximal au chapitre 2. Nous considérons le probleme

de maximisation d'une fonction concave. Nous suivons l'idée de Kim et al.(1994)
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qui est elle-méme une généralisation du principe de I’algorithme du point proximal
di & Rockafellar (1976). Cet algorithme consiste & résoudre une suite de problemes
pénalisés autour du point dual courant. Nous proposons des fonctions de pénalité
qui s’annulent sur des régions de confiance contenant le point dual courant que nous
appelons centre de stabilité. Les problémes pénalisés, appelés problémes stabilisés.
sont résolus par un algorithme de plans coupants. La convergence est étudiée en
utilisant des régions de confiance de pleine dimension. L’utilisation de ce type de
régions de confiance permet de prouver la convergence finie de l'algorithme meme
pour des fonctions non-polyédrales en supposant la résolution exacte des problémes
stabilisés. Nous motivons également le choix de fonctions de pénalité linéaires par

morceaux pour la stabilisation de 'algorithme de génération de colonnes.

La premiére approche de stabilisation de I'algorithme de génération de colonnes
est présentée au chapitre 3. Nous proposons la pénalisation du dual par une fonction
linéaire a cinq morceaux. Le probleme résultant est appelé dual stabilisé et son dual
est appelé primal stabilisé. L’algorithme utilise deux types d'itérations. Une itération
majeure correspond & la résolution d’une paire de problémes stabilisés primal et dual
par un algorithme de plans coupants. Les itérations de cet algorithme sont appelées
itérations mineures. L’utilisation des pénalités permet de limiter les déplacements
dans I’espace dual et d’assurer une croissance de l'objectif dual a chaque itération
majeure. Du point de vue primal, la stabilisation correspond a la pénalisation du
lagrangien du primal pour les multiplicateurs qui sont & !'intérieur de la région de

confiance.

Nous montrons d’abord qu'une solution optimale duale peut étre utilisée pour
calculer une solution primale optimale de base. L'efficacité de la technique résultante
est justifiée par des arguments mathématiques et est vérifiée sur un probleme de

grande taille. La convergence finie vers une paire de solutions primale et duale est
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assurée par l'utilisation de régions de confiance de pleine dimension. Nous montrons
également qu'il est possible d'enrichir les directions fournies sans compromettre la

convergence de ['algorithme.

La stabilisation par des inégalités valides sur le polyedre des solutions optimales
duales est décrite au chapitre 4. Deux types d'inégalités sont définis : inégalités va-
lides sur le polyédre optimal dual appelées [négalités Valides Duales-Optimales et
inégalités valides sur un sous-ensemble de ce polyédre appelées Inégalités Partiel-
lement Valides Duales-Optimales. Ces deux types traduisent en fait la qualité de
l'information disponible sur 'optimalité duale. Les deux types d'inégalités valides
préservent 'optimalité duale, mais la réalisabilité primale peut étre compromise vu
que des variables sont ajoutées a la formulation du primal. Nous proposons un moyen
général pour retrouver la réalisabilité (et l'optimalité) primale. Nous obtenons ainsi
une méthode en deux phases. Dans le cas des inégalités valides duales-optimales.
nous profitons du fait que ces contraintes sont vérifiées par toutes les solutions op-

timales duales pour obtenir une paire de solutions primale et duale en une seule

étape.

Le chapitre 5 est consacré & l'application de la stabilisation par une fonction de
pénalité linéaire par morceaux au probleme de tournées de véhicules multi-dépot
(MDVSP) formulé comme un probléme de partitionnement. Nous montrons d’abord
comment cette formulation est obtenue & partir de la formulation multiflots en appli-
quant le principe de décomposition des problémes en nombres entiers vu au chapitre
2. Nous proposons une procédure d’initialisation qui fournit des estimations pour
les variables duales, une borne inférieure sur la valeur optimale de la relaxation
linéaire, une solution primale entiére ainsi qu'une borne supérieure sur la valeur op-
timale du probléme en nombres entiers. Nous présentons des résultats numériques sur

des problémes de moyenne et grande tailles. Nous testons plusieurs types de stratégie



de mise a jour de la fonction de pénalité. quelques astuces d'implantations et des

directions de déplacement supplémentaire des centres de stabilité. Les résultats sont

trés satisfaisants.

Dans le chapitre 6. nous montrons que la technique d’accélération de la résolution
du probléme de découpe binaire (BCSP) qui consiste & agréger les contraintes de cou-
verture des items de méme longueur est en fait un cas particulier de la stabilisation
par des inégalités partiellement valides duales-optimales. Nous testons deux facons

d'implanter la stabilisation afin de montrer l'apport intrinseque de cette derniere.

La stabilisation du probleme de découpe unidimensionneile | C. SP! est traitée au
chapitre 7. Nous montrons que des coupes duales déja utilisées dans la littérature sont
en fait des inégalités valides duales-optimaies pour CSP. Nous justifions également
l'eficacité de l'utilisation de ces inégalités dans le cadre de la génération de co-
lonnes. Les résultats montrent une amélioration impressionnante du comportement
de la génération de colonnes. Nous tesions également une apprache de stabilisa-
tion autour d'estimations initiales des valeurs duales calculées & partir des poids des

itemns. Les résultats confirment {'apport considérable de la stabilisation de l'évolution

des variables duales.



Abstract

This thesis mainly studies stabilization techniques of the column generatior and
Kelley algorithms. Unified frameworks have been recently proposed for methods that
follow the bundle algorithm scheme. We propose a unified framework for stabilization
approaches that follow the proximal point algorithm scheme. Even though this work
has been independently done, our idea fits in the works of Frangioni [20] and has
similarities with the work of Neame [67]. We describe two algorithms for column

genration stabilization. These algorithms are then tested on well known optimization

problems.

We describe the two widely used large scale problem solution approaches, D-
W decomposition/column generation and lagrangean relaxation/non-differentiable
optimization methods, in chapter 1. The former solves what we’ll call the primal
problem and the latter solves its dual. We give a comprehensive synthesis of the
recent results related to these approaches. Primal and dual degeneracy affect the be-
haviour of these methods and this causes instability to the (primal and dual) conver-
gence process. Many techniques have been developed in order to make these methods
more efficient especially for large problems. Such techniques are called stabilization
methods. We distinguish two classes : bundle type and proximal type stabilization
approaches. Methods of the former class follow the bundle algorithm scheme while
using more general penalty functions (see Neame 1999 and Frangioni 2002). Methods
of the latter class follow the proximal point algorithm (Rockafellar 76) while using
more general penalty functions. A survey of recently developed unified approaches

is presented at the end of the chapter.

A unified approach for proximal type stabilization methods is introduced in chap-
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ter 2. We generalize the idea of Kim & al. (1994) which is itself an extension of the
proximal point algorithm of Rockafellar (1976). The method is presented in the case
of the maximization of a concave function. We use functions that take the value 0
over a convex closed set containing the stability center (trust region) and are ne-
gative elsewhere. Convergence is studied in the case of full-dimension trust regions
containing stability centers in their interior. This condition allows proving finite
convergence even for nonpolyhedral functions. However, this requires the stabilized
problems to be solved to optimality at every major iteration. We also motivate our
choice of a piecewise linear norm penalty function for column generation algorithm

stabilization.

In chapter 3, we study a first special case of the method introduced in chapter 2.
We propose a 5-pieces linear penalty function to stabilize linear programs solution
by column generation. The penalty is added to the dual objective function to give
the stabilized dual problem. Its dual is called the stabilized primal. The algorithm
uses two types of iterations. Each major iteration corresponds to the entire solution
process of a stabilized problem by a cutting plane algorithm. The iterations of this
algorithm are called minor iterations. The use of a penalty function aims to “restrict”
the set of possible multipliers and to ensure an increase in the dual lower bound at
the end of every major iteration. From a primal point of vue, this corresponds to

penalizing the lagrangean for multipliers in the trust region.

We first show that the knowledge of an optimal multiplier can be used to obtain
a primal (basic) optimal solution by solving an easy problem by column generation.
We give mathematical arguments in favour of the efficiency of this technique. Results
obtained on a large MDVSP instance confirm this efficiency. Finite convergence to
a pair of primal-dual solutions is ensured by using trust regions that are boxes of

width greater than a fixed positive value . We also prove that it’s possible to enhance
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the computed ascent directions while preserving convergence.

In chapter 4, we study another special case of the unified framework. We use
penalty functions that are defined by two types of polyhedral inequalities. Dual-
optimal partial valid inequalities are satisfied by a subset of dual optimal solutions (or
at least, this is all what we would be able to prove). Dual-optimal valid inequalities
are satisfied by every dual optimal solution. The two types of inequalities preserve
dual optimality, but primal feasibility can be lost since variables are added to the
primal. We propose a general way to recover primal feasibility. This leads to a 2-stage
method. In the case of dual-optimal valid inequalities, we take advantage from the
fact that every dual optimal solution satisfies the added inequalities to obtain a pair

of primal and dual optimal solutions by slightly modifying the stabilized problemns.

In chapter 5, we apply the piecewise linear penalty function stabilization al-
gorithm developed in chapter 3 to the linear relaxation of the Multidepot Vehicle
Scheduling Problem (MDVSP) formulated as a set partionning problem. We first
show how to obtain this formulation from a multiflot formulation using integer-
decomposition principle (see chapter 2). We also suggest an initializing procedure
that gives a lower bound on the linear relaxation optimal value, initial dual variables
estimations, a primal integer solution and an upper bound on the integer problem op-
timal value. Numerical tests are performed using 6 problems (2x 400 tasks-problems,
2 x 800 tasks-problems and 2x 1000 tasks-problems). Results are comapred to those
obtained by standard column generation. Moreover, several acceleration techniques

are tested. Results were very satisfactory.

Stabilization of the Binary Cutting Stock Problem (BCSP) using dual-optimal
partial valid inequalities occures in chapter 6. We first prove that the famous aggrega-

tion technique of items of same weight is equivalent to add, to the dual formulation,
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constraints saying that dual variables corresponding to items of same weight have to
be equal. We also show that there always exists a dual optimal solution satisfying this
property. The aggregation technique being an implicit way to implement stabiliza-
tion constraints, we consider an explicit way to impose the stabilization constraints.
This lets us point out the real contribution of the stabilization to the efficiency of

the solution process.

In chapter 7, we apply our stabilization techniques to the Cutting Stock Problem
(CSP). We prove that dual cuts already used in the litterature are dual-optimal
valid inequalities for CSP. We discuss efficiency issues for primal problem solving
by column generation and present computational results that confirm the power of
these valid inequalities. We also used a stabilization technique with a piecewise linear
penalty function defined around dual values computed directly from item weights.

We obtain very good results.
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Introduction

La résolution des problémes d’optimisation de grande taille qui proviennent des
applications industrielles a souvent été & l'origine du developpement de plusieurs
méthodes d’optimisation. Ces méthodes sont souvent basées sur des techniques
simples, astucieuses mais efficaces. Parmi les méthodes qui furent utilisées avec succés
dans de nombreuses applications, I'algorithme de génération de colonnes [9, 28, 53]
et I'algorithme de Kelley [42] sont deux formes duales I'une de I'autre d’'une méme
idée. Quoique ces algorithmes soient basés sur des concepts linéaires, leur apport a
été intéressant méme pour des problémes non-linéaires. Leur simplicité joue un role

trés important dans leur efficacité pratique.

Avec |'accroissement de la taille des entreprises et par conséquent de la taille des
problémes considérés, cette méthode a rencontré certaines difficultés. Quelques-unes
parmi ces difficultés ont pu étre surmontées grace a la puissance de plus en plus
grande des calculateurs. Cependant, les difficultés liées aux aspects algorithmiques
et mathématiques n'ont pu étre résolues par cette puissance. Afin de pousser en-
core plus loin ces limites, une approche mathémathique basée sur des techniques

d’optimisation est nécessaire.

Les problémes de convergence de l'algorithme de génération de colonnes sont
dues essentiellement & la dégénérescence primale, & la qualité des colonnes générées,
a l'oscillation des valeurs duales durant le processus de génération de colonnes et
surtout & la dégénérescence duale. Le comportement pathologique causé par ces
phénomenes, qui se voit par exemple sur ’évolution des valeurs des variables duales
d’une itération a l'autre, est appelé instabilité. C’est la raison qui a fait que la plupart

des approches qui visent & remédier a ce comportement sont dites de stabilisation.



Ces approches consistent, généralement & modifier le probleme dual afin de guider
I’évolution des multiplicateurs, et par conséquent de forcer la génération de certaines
colonnes particulieres qui seraient de meilleure qualité. Cette modification tend aussi
A restreindre le dual de facon a éviter des déplacements inutiles dus au manque
d’information sur le probléme dual autour des multiplicateurs courants. C’est ainsi
que plusieurs techniques de stabilisation de I'algorithme de génération de colonnes
basées sur des idées variées firent proposées. Le travail décrit dans cette thése va
dans cette méme direction. Nous proposons une approche unifiée de stabilisation
pour l'algorithme de génération de colonnes basée sur les concepts de région de
confiance ( Trust Region) et de pénalisation. Nous nous concentrons sur deux idées
principales : la premiére basée sur une pénalisation linéaire par morceaux de l'objectif
dual et la deuxieme sur la restriction du domaine réalisable dual par deux types
d’inégalités valides sur le polyédre des solutions duales optimales. Les deux approches

développées seront appliquées a trois probléemes connus.

La these est organisée en trois parties. La premiére partie, composée par le cha-
pitre 1, présente les méthodes classiques de résolution des probléemes de grande taille.
La deuxiéme partie est consacrée aux dévelopements théoriques des méthodes pro-
posées dans les chapitres 2, 3 et 4. La derniére partie est quant & elle consacrée
aux applications des méthodes développées. Chacun des chapitres 5, 6 et 7 présente

I'application d'une approche de stabilisation & un probléme connu.

Nous consacrons le premier chapitre & la présentation des méthodes de résolution
des problemes de grande taille. Nous y présentons une synthése des principales mé-
thodes de résolution des problémes (convexes) de grande taille. Dans la premiere
partie, nous présentons les méthodes qu'on peut qualifier de primales vu qu’elles
consistent & combiner le principe de décomposition de Dantzig-Wolfe avec 1'algo-

rithme de génération de colonnes. Nous faisons également une revue des dévelop-



pements dans la généralisation du principe de décomposition de Dantzig-Wolfe aux
problémes A variables entiéres et nous présentons les principaux résultats qui y sont
liés. Dans la deuxiéme partie, nous présentons les méthodes duales basées sur la
relaxation lagrangienne et les méthodes classiques d'optimisation non-différentiable.
Puis, nous montrons les difficultés de ces approches classiques et les différents aspects
d’instabilité dans leur comportement. Ensuite, nous faisons une revue des principales
approches de stabilisation récentes. Nous distinguons deux classes : les méthodes du
type faisceaux qui suivent le schéma de ’algorithme de faisceaux [45, 37] (Bundle
Algorithm) et les méthodes du type proximal qui suivent le schéma de 'agorithme du
point proximal {76] (Prozimal Point Algorithm). Nous faisons également un survol

des approches unifiées développées récemment.

Dans le deuxiéme chapitre, nous introduisons une méthode proximale pour la
résolution des problémes d’optimisation convexe non-différentiable. Dans le cas ou
les sous-problémes sont résolus par l'algorithme de Kelley, on obtient une approche
unifiée pour les méthodes de stabilisation de type proximal. L’approche est basée sur
le principe de région de confiance autour d’un centre de stabilité a I'extérieur de la-
quelle une pénalité est appliquée. Les résultats de convergence de l'algorithme général
sont présentés pour une région de confiance de pleine dimension contenant le centre
de stabilité dans son intérieur. Cette hypothése permet d’assurer la convergence fi-
nie méme dans le cas des fonctions non-polyédrales. Cependant, les sous-problémes
doivent étre résolus exactement & chaque itération majeure. Nous présenterons des
cas particuliers de la fonction de pénalité et nous justifierons notre choix d’une
pénalité linéaire par morceaux pour la stabilisation de I’algorithme de génération de

colonnes.

Le troisieme chapitre est consacré & I'étude de la stabilisation des algorithmes de

génération de colonnes et de Kelley par une pénalité linéaire par morceaux. La fonc-



tion de pénalité comporte cinq morceaux et présente la particularité que la région de
confiance est un pavé non-vide de pleine dimension contenant le centre de stabilité
dans son intérieur. Cette propriété permet de montrer un résultat fort intéressant
sous des hypothéses faibles. Ce résultat affirme que si une solution optimale duale
est connue, la résolution des problémes stabilisés autour de cette solution assure
I'obtention d’une solution optimale primale de base. Nous présentons ensuite des
arguments mathématiques qui plaident en faveur de l'efficacité de cette résolution.
Celle-ci est vérifiée sur une instance de grande taille du probleme de tournées de
véhicules multi-dépéts. Ensuite, nous établissons les liens entre les problémes origi-
naux et les problemes stabilisés avant de présenter I'algorithme. La convergence de
I'algorithme vers une paire de solutions optimales primale et duale est établie. En
particulier, I’obtention d’une solution primale optimale de base est garantie par la
propriété évoquée ci-dessus. Nous donnons également !'interprétation de la pénalité
du point de vue primal en faisant le lien entre notre approche et la relaxation la-

grangienne et discutons de quelques aspects liés & I'implantation de I'algorithme.

Un autre cas particulier de la fonction de pénalité présentée au chapitre 2 est
étudié dans le quatriéme chapitre. Nous y introduisons une notion de validité pour
des coupes duales (Dual Cuts) basée sur la validité de ces contraintes pour le polyedre
optimal dual. Deux types de ces inégalités sont définis : inégalités valides sur le
polyédre optimal dual appelées Inégalités Valides Duales-Optimales (Dual-Optimal
Valid Inequalities) et inégalités valides sur un sous-ensemble de ce polyedre appelées
Inégalités Partiellement Valides Duales-Optimales (Dual-Optimal Partial Valid In-
equalities). Ces deux types traduisent en fait la qualité de I'information disponible sur
'optimalité duale. Nous analysons l'effet de I'utilisation des contraintes résultantes
sur les problémes primal et dual et nous montrons comment obtenir une paire de so-
lutions optimales primale et duale en deux phases. Quand les inégalités sont valides

sur tout le polyédre optimal dual, nous montrons comment modifier les problémes



pour que l'obtention d’une solution optimale primale de bas: se fasse en une seule

phase.

Dans le chapitre 5, nous appliquons la stabilisation par une fonction de pénalité
linéaire par morceaux au probléme de tournées de véhicules multi-dépots (MDVSP).
Nous donnons d’abord les formulations connues en probléeme de multiflots et en
probléeme de partionnement. Nous montrons l'équivalence entre les deux formula-
tions en nombres entiers et entre leur relaxations linéaires en appliquant le principe
de décomposition généralisé introduit au chapitre 1. Nous présentons ensuite les
résultats obtenus en résolvant la relaxation linéaire du probléme de partionnement
par génération de colonnes. Puis, nous montrons comment appliquer l’algorithme de
stabilisation a ce probleme. La procédure d'initialisation proposée permet de calculer
une estimation réalisable pour les variables duales, une borne inférieure sur la va-
leur optimale de la relaxation linéaire, une solution primale réalisable entiére et une
borne supérieure sur la valeur optimale du probléme en nombres entiers. Nous tes-
tons ensuite plusieurs stratégies de mise a jour de la fonction de pénalité, des astuces
d’implantation et des directions de déplacement supplémentaire du centre de stabi-
lité. Les résultats montrent 'apport considérable de l'utilisation de la stabilisation

pour 'efficacité de la résolution.

Dans le chapitre 6, nous présentons une application des inégalités partielle-
ment valides duales-optimales. Nous considérons le probleme de découpe binaire
( BCSP) et nous montrons qu'il existe une solution optimale duale pour laquelle deux
items de longueur identique ont leurs variables duales correspondantes égales. Ces
contraintes ont déja été utilisées dans la littérature par plusieurs auteurs sous une
forme implicite. Les contraintes correspondant a des items de longueur identique sont
agrégées en une seule contrainte dont le second membre n’est plus égal & 1. Ceci réduit

considérablement la taille des problémes résolus et les rend trés faciles a résoudre.



Dans le but de montrer 'apport intrinseque de la stabilisation, nous avons imposé
les contraintes explicitement dans les problémes a résoudre. Les résultats viennent
confirmer la pertinence de I'utilisation de I’information duale pour I'accélération et

la stabilisation de la résolution par génération de colonnes.

Le chapitre 7 est consacré a l'application des inégalités valides du deuxiéme type
au probleme de découpe unidimensionnelle (CSP). Nous montrons que des coupes
duales qui ont déja été utilisées pour CSP sont des inégalités valides sur le domaine
optimal dual (inégalités valides duales-optimales). Nous montrons aussi a I'aide d’un
exemple que ces inégalités coupent effectivement le domaine dual réalisable. Nous
expliquons également comment les colonnes correspondant & ces contraintes dans le
primal permettent d’accélérer sa résolution. Les tests sont réalisés sans 'utilisation
d’heuristiques primales connues pour fournir des solutions qui a défaut d’étre op-
timales, sont trés proches de l'optimalité en particulier pour les problemes réputés
difficiles. Les résultats viennent confirmer que l'utilisation de ces inégalités valides
est d'un apport considérable pour l'efficacité de I'algorithme de génération de co-
lonnes. Nous testons également la stabilisation par une fonction de pénalité linéaire
par morceaux définies autour de valeurs initiales calculées a partir des poids des
items. Sachant que ces estimations sont généralement proches d’une solution opti-
male duale surtout pour les problémes les plus difficiles (ayant une perte tres faible),
les résultats viennent confirmer que l'information duale peut étre trés utile pour

I'efficacité de l'algorithme de génération de colonnes.

Finalement, nous résumons les contributions de notre travail ainsi que les travaux
futurs qui lui sont reliés dans le chapitre 8. Nous y donnons également les conclusions
que 'élaboration de ce travail nous a permis de tirer sur I'optimisation des problemes
de grande taille et les méthodes de stabilisation des algorithmes de Kelley et de

génération de colonnes.



Premiére partie

Résolution des problémes de grande
taille



Chapitre 1

Résolution des problemes de
grande taille

La résolution des problémes pratiques provenant de l'industrie a été l'une des
principales motivations derriére le développement des techniques avancées de l'op-
timisation. Les problémes de fabrication d’itinéraires de véhicules ou d’horaires du
personnel reviennent souvent dans l'industrie du transport aérien, ferroviaire ou
urbain [12, 14, 22, 38, 83, 97]. Les problémes d’ordonnancement trouvent leurs ap-
plications dans la gestion des chaines de production dans les ateliers [85, 80]. Les
problemes de logistique servent dans les applications militaires et ’optimisation des
coiits dans les grandes entreprises [54]. Les domaines de I’économie, des finances et
de l'environnement fournissent aussi des applications intéressantes pour |'optimisa-
tion. Le point commun entre ces applications est que les modéles correspondants
fournissent des problemes de grande taille qui se raménent souvent a la résolution

de programmes linéaires.

Ces problémes sont souvent résolus par la technique de génération de colonnes
[9, 28, 53] ou les techniques apparentées tel que la méthode de Kelley [42], l'al-
gorithme du sous-gradient [29, 35, 77] ou d’autres méthodes d’optimisation non-
différentiable [44, 36, 37, 72]. Mais, ces probléemes sont généralement obtenus a la
suite de I'application des techniques de décomposition [9, 10, 11] ou de relaxation
lagrangienne [21, 27, 59] aux modéles de départ. Ainsi, ces problémes prennent des

formes adéquates pour la résolution par génération de colonnes ou par des métho-



des d’optimisation non-différentiable ; d’ot le lien étroit entre la décomposition et la
génération de colonnes d’un coté et entre la relaxation lagrangienne et les méthodes

d’optimisation non-différentiable de 1'autre.

La génération de colonnes et les méthodes classiques d’optimisation non-diffé-
rentiable ont affiché certaines limites suite a 'accroissement des tailles des problemes
résolus. Alors, plusieurs méthodes de résolution dites stabilisées ont vu le jour dans
le but de remédier aux difficultés et défauts des méthodes classiques. D'une part.
plusieurs modifications ont été proposées pour 'algorithme du sous-gradient et 'al-
gorithme de Kelley pour donner les méthodes de faisceaux [45, 37] et les méthodes
de centres (16, 60, 86, 32]. D’autre part, des algorithmes de génération de colonnes
stabilisée ont été proposés. Nous reviendrons sur ces méthodes & la fin du présent

chapitre.

Le contenu du chapitre constitue une syntheése des principaux développements
dans les méthodes classiques de résolution des probléemes (convexes) de grande taille.
La premiére partie est consacrée a l'approche primale qui associe la décomposition
de Dantzig-Wolfe et la génération de colonnes. Nous faisons une revue des travaux
généralisant ce principe aux problémes a variables entiéres et nous décrivons les deux
approches utilisées : convexification et discrétisation. La deuxieme partie décrit I'ap-
proche duale de la premiére. Nous y présentons le principe de la relaxation lagran-
gienne et les méhodes d’optimisation non-différentiable classiques. Nous discutons
ensuite du comportement de ces approches et des aspects d'instabilité qu’elles af-
fichent. Par la suite, nous présentons les méthodes dites stabilisées. Nous décrivons
le principe général des méthodes de centres et des méthodes de faisceaux avant de
présenter les principales approches de stabilisation connues. Parmi ces dernieres. nous
distingons deux classes : les méthodes suivant le schéma des méthodes de faisceaux

et les méthodes suivant le schéma de 1’algorithme du point proximal.
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1.1 Génération de colonnes et décomposition de
Dantzig-Wolfe

Le principe de décomposition a été introduit par Dantzig et Wolfe en 1960
(9] dans un des plus importants articles sur la programmation linéaire. Les au-
teurs y proposent la résolution du probléme maitre par génération de colonnes.
Indépendemment, Gilmore et Gomory proposérent en 1961 (28] la résolution par
génération de colonnes du probléeme de découpe unidimensionnelle {( CSP). Nous in-
troduisons 1'algorithme de génération de colonnes indépendemment de la décompo-

sition de Dantzig-Wolfe. Les liens entre les deux concepts seront clairs 4 la fin de la

présente section.

1.1.1 Génération de colonnes

On considére le probléeme linéaire suivant, appelé probléme maitre (master pro-

blem),
Min z = ch/\j

JEP

Y M o= b (L.1)

SCy jepP

ot le nombre de colonnes M; (j € P) est soit trés grand soit pratiquement impossible
a énumérer préalablement. Lors de la résolution de ce probléeme par l'algorithme du
simplexe, 1’évaluation des coits réduits des variables A; est trés cotiteuse en temps
de calcul a cause du nombre trés élevé de colonnes. Si 7 est le vecteur des variables
duales actuelles, trouver min{Z; = ¢; — 7' M;,j € P} requiert O(|P|) évaluations.
Si I’ensemble des colonnes peut étre décrit & 'aide de I’ensemble 2 et la fonction de

coiit c(M) (M € Q), il suffit alors de résoudre le probléeme d’optimisation suivant
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appelé sous-probléme ou oracle :

Min ¢(M) - =T M N
sc{ Meq. (1.2)

L’efficacité de la résolution du sous-probléme dépend de la structure de 2 et de la
fonction c(M). Si la fonction c(Af) est linéaire et Q est un polyedre, (1.2) est un
programme linéaire et sa résolution est beaucoup moins coiteuse que I'énumération
de toutes les colonnes. Si le nombre de colonnes est fini, 2 est un ensemble discret.
Dans certains cas, la structure de Q permet de résoudre efficacement (1.2) en nombres
entiers. Par exemple, pour le probléme de découpe unidimensionnelle, I'ensemble des
colonnes est le domaine du probléeme de sac-a-dos (Gilmore et Gomory 61 [28]) ou
du probléeme de plus court chemin avec contraintes de ressources (Ben Amor 97 [4]).
Dans certains cas, on peut décrire les colonnes de (1.1) comme les points extremes
d’un certain ensemble convexe S. Le sous-probléme (1.2) est résolu en remplagant (2
par S. Mais, afin d’assurer que la solution obtenue est un point extréme de S, c(Al)

doit étre concave. Ceci est bien sir vérifié dans le cas ou ¢(M) est linéaire.

Afin d’éviter de manipuler toutes les colonnes lors de la résolution du simplexe (ou
dans le cas ol il n'’est pas possible de connaitre toutes les colonnes au préalable), on
résoud itérativement une suite de programmes linéaires qui ne tiennent compte que
d’un sous-ensemble des colonnes. A chaque itération K, un probleme M Py, appelé
probléme maitre restreint (restricted master problem) est résolu par l'algorithme
du simplexe. La recherche d’une colonne & colt réduit négatif (pricing) se fait en
résolvant le probléeme (1.2). Si le minimum est non-négatif (en fait égal & zéro a cause
de la présence des variables de base), les cotits réduits des variables hors-base sont
tous non-négatifs et la solution de M Py est optimale pour (1.1). Si le minimum est
négatif, la solution du sous-probléme est une colonne a cofit réduit négatif. Elle est
donc ajoutée au probléme maitre restreint pour obtenir le probleme M Px 4 qui sera
résolu & son tour, et ainsi de suite. L’opération consistant & optimiser le probleme

maitre restreint et a résoudre le sous-probleme est appelée itération de génération



de colonnes.

Convergence : Si [Q] est fini ou S est choisi de fagon qu’il ait un nombre fini
de points extrémes et de rayons extrémes (polyédre), le nombre de colonnes suscep-
tibles d’étre générées par le sous-probléme est fini. Comme toute colonne ajoutée
au probléme maitre aura son coiit réduit supérieur ou égal a 0 a l'optimalité du
probléme maitre restreint, chaque colonne sera générée au plus une fois. Donc, le
processus converge aprés un nombre fini d'itérations de génération de colonnes vers

une solution optimale de (1.1).

Dans le cas ot le nombre de colonnes que peut générer le sous-probléme est
infini, la procédure converge aussi, mais le nombre d’itérations requises peut étre
infini. Des schémas particuliers doivent étre développés pour obtenir des solutions

quasi-optimales.

Encadrement de la valeur optimale de (1.1) : Le probleme maitre résolu
a l'itération A étant une restriction de (1.1), la valeur optimale Zx est une borne
supérieure sur la valeur optimale z* de (1.1). De plus, si L est une borne supérieure

sur la valeur de Z A; a optimalité du probleme maitre (1.1) et sachant que g =
j€P
7Tb, on peut écrire

ZK + fminL < 27 < 2K (1.3)

ol fmin €st la valeur optimale du sous-probleme (1.2).

Il est intéressant de noter que la borne supérieure Zx est non-croissante alors que

la borne inférieure 776 4+ frminL n’est pas nécessairement non-décroissante.

Cette borne inférieure est aussi appelée borne lagrangienne. Dans certains cas,
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la borne L peut évoluer avec les itérations K. Dans le cas de CSP, I'objectif est
Z/\j; L peut ainsi étre remplacée par z*. La substitution permet d'obtenir une
j€P

borne intéressante connue sous le nom de borne de Farley [4, 19)].

1.1.2 Principe de décomposition de Dantzig-Wolfe

On considére le programme linéaire suivant :

Min z= 'z
Az =)

sc{ Cz=d
z2>0.

(1.4)

Soit S = {z : Cr = d,z > 0}. S étant un polyeédre convexe, tout élément de S
peut s’écrire comme une combinaison convexe (finie) des points extrémes de S plus
une combinaison linéaire non-négative de ses rayons extrémes. Soit p* (i € I) et r?
(j € J) respectivement, les points extrémes et les rayons extrémes de S (sachant que

|| et |J| sont finis). Tout point z € S s'écrit :

1‘=Zz\ipi+z;zjr"

i€l jeJ
Y ox=1 (1.5)
el

A>0,>0

En substituant dans (1.4), et en utilisant les notations suivantes : ¢; = c'p', M; = Ap*

(i€l), cj=clri,M; = Ari (j € J), on obtient le probléeme maitre suivant [9, 53] :

Min Zc"\‘ + chuj

el jeJ
MM+ piM; = b
,-GZ, = (1.6)
sc Z'\‘ = 1
el

/\i Z Ovl-Lj Z 0.
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Le nombre de contraintes dans le probléme maitre est m + 1, mais le nombre de
colonnes est souvent treés élevé (nombre de points extrémes et de rayons extrémes
d'un polyédre). De plus, il est pratiquement impossible de connaitre tous ces points

et rayons extrémes a priori. Le probléme est donc résolu par génération de colonnes.

Supposons qu’a 'itération courante de la procédure de génération de colonnes, on
a résolu le probléme maitre restreint avec les sous-ensembles des points extrémes et
des rayons extrémes J. Soit 7 le vecteur des variables duales optimales correspondant
au premier ensemble de contraintes dans (1.6) et « la variable duale optimale associée

a la contrainte de convexité. Le sous-probléme s’écrit alors

Min (T —#zTA)r —a
c Cx=d (1.7)
z20.

Si le sous-probléeme n'est pas réalisable, il en est de méme pour le probléeme maitre

et le probleme original. Cette situation est détectée lors de l'initialisation de la

génération de colonnes.

Si le sous-probléme admet une solution optimale de valeur f;», 'optimalité du
probléme de départ (1.4) est atteinte si fpin > 0. Si fmin < 0, la solution courante
du probléme maitre restreint n’est pas optimale pour le probléme maitre (1.6). La
solution du sous-probléme, un point extréme p*, est alors ajoutée a I’ensemble . La

colonne ajoutée au probléeme maitre est
M* = [T | (4p")T 1T

Si le sous-probléme est non-borné, alors on a identifié un rayon extréme r* qui est

ajouté a I'ensemble J. La colonne ajoutée au probléme maitre est

M* =[cTr | (Ar)T, 0T
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Convergence : A l'optimalité du probléme maitre restreint, toutes les colonnes
déja générées ont des coits réduits non-négatifs. Donc, une colonne ne peut etre
générée plus qu'une fois. L’ensemble S étant un polyedre convexe, le nombre de
points extrémes et de rayons extrémes est fini. Donc, le nombre d’itérations de

génération de colonnes ne peut dépasser |I| + [J].!

Encadrement de la vaieur optimale de (1.4) : Supposons que le sous-probléme
posséde une solution optimale finie et que sa valeur optimale est fnin. On peut écrire
fmin = €min + ¢ (le minimum est atteint en un point extréme). Soit (A*,x") une

solution optimale de (1.6). En utilisant la contrainte de convexité, on obtient :

K+ Emin(l+ Y1) +a S 2" S Xk
jed
Si L est une borne supérieure sur le nombre de colonnes a 'optimalité du probléme

maitre, on obtient une borne inférieure semblable a celle obtenue pour la génération

de colonnes (cf. 1.1.1).

Le terme E u; est dit a la présence de colonnes qui sont des rayons extrémes du

lej 3 . -~ . -~
domaine du sous-probleme S. Cependant, si on consideére les points extrémes et les
rayons extrémes séparément, on obtient une meilleure borne. Soit f2,. =&, +aet
T in = Comin les coiits réduits minimum des points extrémes et des rayons extrémes,

respectivement. On peut alors écrire

2K+Efnin +f;11nzu; +a <2 <z
jeJ

Mais, dans le cas ot le sous-probléme est fini, fl;, = 0 et frin = fh.,. On obtient

11 est possible de ne garder toutes les colonnes générées dans le probléme maitre restreint qu'a
partir d’un certain nombre d’itérations de génération de colonnes tout en préservant la convergence
de I'algorithme.
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alors la relation : 2

Zx + fmin < z* < K- (18)
Cette relation peut s’écrire sous la forme
0 < Zx — z* < -fmin-

Ainsi, la valeur optimale du sous-probléeme, fnmin, est une mesure de la qualité de
la solution actuelle. Notons enfin, que cette relation peut étre étendue au cas ou le

sous-probléme n’est pas fini, i.e. fmin = —00.

Problémes a structure bloc-angulaire : On considére un probléme ayant une

structure bloc-angulaire (1.9) ou la matrice B est diagonale par blocs et la matrice

A = [A]Ag] ... |Aq].

Q
Min Y clz,
q=1
Q
ZA‘IIq = b, (19)
sc{ g=l1

Bz, =b q=1,...,Q
2,20, ¢g=1,...,Q.

L’application du schéma de décomposition sur le probléeme (1.9), en définissant un

seul sous-probléme a I'aide de la matrice B, conduit au sous-probleme séparable

Q
Min Z(cf —aTA)z, -
q=1

sc Byxg=1bq, gq=1,...,Q
20, ¢g=1,...,Q.

Donc, Q problémes sont résolus séparément, chacun conduisant a la valeur optimale

(1.10)

9 atteinte aux points p*¥(g=1,....Q):

min
g T T a
min — mzn{(cq -7 Aq)xq - —Q—
2Cette relation est connue pour le cas ou le domaine du sous-probléme est un polytope (Lasdon
72 [53]).

: Byzy = bg, x4 > O} (1.11)
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Q
Si fmin = Z f1.. <0, l'optimalité du probleme de départ n’est pas atteinte et la

q=1
colonne correspondante est ajoutée au probléme maitre ; celle-ci est donnée par :

Q
[Z P ( ZAqP or I]T

i
Si le sous-probleme génére un rayon extréme, la variable p; correspondante n'appa-

raitra pas dans la contrainte de convexité.

Si le sous-probleme (1.10) est fini, I'encadrement de la valeur optimale s’exprime

par :
I+ Zf;,,, <2 < g (1.12)

En pratique, pour la plupart des apphcatlons du principe de décomposition aux
problémes & structure bloc-angulaire, chacun des sous-problémes est considéré sé-
parément. On note p; (i € Ig) et rl (j € Jg) les points extrémes et les rayons
extrémes de S, = {z; = 0 : Byzy = b,}. Le problénie maitre contient @ contraintes
de convexité, une pour chacun des sous-problémes. Sa formulation est donnée par

(53] :

Q
Min z = ZZ I\l + Zcp]

q=1 i€l, Jj€Jq
r @
SO MIN Y M) =0, (1.13)
4 q=1 i€l J€J,
s¢ Z/\?=1, g=1,...,@Q
i€l
\ )‘qzonuqzot q=11"'7Q

L’encadrement de la solution optimale est aussi :

Q
B+ ) [l <2<k (1.14)
q=1
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Remarque : Les deux schémas de décomposition sont équivalents et fournissent
la méme borne inférieure. Mais, les procédures de résolution résultantes peuvent
avoir des comportements différents en pratique. En fait, I'ajout de @ colonnes au
probléme maitre a tendance a diminuer davantage l'objectif. De plus, le nombre
total de points extrémes et de rayons extrémes dans la formulation utilisant un seul

sous-probléme est beaucoup plus élevé que dans la formulation (1.13). En effet, le
Q

nombre total de colonnes dans la premiére formulation est Z(|Iq| + |Jgl) alors que
q=1
dans la formulation & un seul sous-probleme, il est de l'ordre (l'IqQ=1|Iq| + [IqQ=IiJ,,|).

Ceci peut avoir des conséquences d’ordre numérique importantes. La premiére est
qu'il faudrait, normalement, moins de colonnes générées pour la formulation (1.13)
pour atteindre 'optimalité. De plus, la présence de colonnes correspondant chacune a
un sous-probléme permet au probléme maitre restreint de les combiner de plusieurs
manieres différentes. Cette flexibilité permet de prendre en compte implicitement

plusieurs points (ou rayons) extrémes de S sans qu’ils soient explicitement générés.

1.1.3 Décomposition des problemes a variables entieres

L’application de la relaxation lagrangienne a la programmation linéaire en nom-
bres entiers a permis d’obtenir des bornes meilleures que celles fournies par I'appli-
cation de la décomposition de Dantzig-Wolfe a la relaxation linéaire du probleme.
Cependant, le principe de décomposition est souvent utilisé en enrichissant le sous-
probléme par les contraintes d’intégrité ce qui permet d’obtenir les mémes bornes
que la relaxation lagrangienne. Des présentations de schémas de décomposition pour
les problémes a variables entiéres sont faites dans Vanderbeck 2000 [92] et Ville-
neuve 99 [93]. Les deux principes sous-jacents ont déja été utilisés pour plusieurs
types de problemes. Desrosiers et al.95 [14] ont utilisé une convexification du do-

maine de sous-probléeme (plus court chemin avec contraintes de ressources) dans la
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décomposition du probléeme de tournées de véhicules avec fenétres de temps. Le prin-
cipe de discrétisation a été utilisé par Ben Amor 97 [4] pour la décomposition du
probléme de découpe unidimensionnelle formulé comme un probléme de tournées de
véhicules avec contraintes de capacité. Ben Amor 97 [4] a également utilisé la convexi-
fication du domaine du sous-probléme (sac-a-dos) afin de montrer I'équivalence entre
la premiére formulation du probléme de découpe unidimensionnelle (CSP)( Kanto-
rovich 39 [40]) et la formulation de Gilmore et Gomory (Gilmore et Gomory 61
[28]).

Considérons le probléeme a variables entieres suivant :

Min 'z

sc Az =b (1.15)
€S
ou S = ENZ? avec E C R". Les résultats connus concernent les cas ot |S| est fini ou

E est un polyédre. Nous présentons les deux approches possibles : la convexification

de S et la discrétisation de S.

Approche de convexification :

Supposons que S peut étre écrit S = ENZT ou E est un polyedre. Cette condition
englobe des cas ou S = FNZ} avec F convexe non-polyédral, mais n’englobe pas
tous les cas ot |S| est fini. Par exemple, si S est formé par I’'union de deux pavés
disjoints de Z". Les points extrémes de conv(S) sont des points de S et les rayons
extrémes peuvent étre choisis entiers. Le probléme (1.15) peut étre reformulé comme
suit :

Min Tz
Az =)
sc z € conv(S)
TeZy.

(1.16)
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La présence de la derniére contrainte assure que les deux problémes ont le méme
ensemble de solutions. L’approche de décomposition par convexification consiste a
appliquer le principe de décomposition de Dantzig-Wolfe 4 la relaxation linéaire de la
formulation (1.16). Si 7 est le multiplicateur généré par le probléme maitre restreint,

le sous-probleme est alors

Min (c— ATm)Tz
sc {z € conv(S). (1.17)

Vu que l'objectif est linéaire, une solution finie de (1.17) est atteinte en un point
extréme de conv(S) qui est un point de S. Soient {p* : i € I'} 'ensemble des points
extrémes de conv(S) et {r’ : j € J} 'ensemble de ses rayons extrémes (/ et J sont

finis). Alors, tout = € conv(S) s’écrit

z= Z/\ipi '*‘Zl‘j"j

iel jeJ
Z/\i =1
i€l

A20,u>0.

En substituant dans (1.16), on obtient le probléme maitre

Min Z di/\,' + Zdj/\j

) iel jed
Y MM+ piM;=b,
el jed
D M=l (L.18)
i€l
s A>20,p20,
=Y Ap'+ Y ur,
iel jeJ
\ reZ}

Une solution entiére de (1.15) ou de (1.18) est obtenue via un processus de branche-
ment. A chaque nceud de 'arbre de branchement, la relaxation linéaire du probleme
maitre est résolue par génération de colonnes. Au nceud 0 de I'arbre de branchement,
la relaxation linéaire de (1.18) est obtenue en éliminant les contraintes d’intégrité

sur les variables z et les contraintes d’identification associées. Ce probleme fournit la
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méme borne lagrangienne connue en optimisation combinatoire et obtenue en dua-
lisant les contraintes Az = b dans (1.15). Ceci résulte du fait que les contraintes
d’intégrité sont prises en compte dans la formulation du sous-probléeme. Il est aussi
important de noter que les contraintes d’intégrité restent toujours sur les variables
originales. Il est parfois possible d’établir 1'équivalence entre l'intégrité de r et
I'intégrité de X et pu. Ceci est vrai en particulier quand S C {0.1}". Les décisions
de branchement peuvent étre exprimées en fonction de la variable z ou des variables
A et p. Dans le premier cas, il est généralement facile d'imposer ces décisions dans
le sous-probleme et dans le probléme maitre. Par contre dans le deuxiéme cas. les

décisions seront plus difficiles & imposer dans le sous-probleme.

Approche de discrétisation :

Nous considérons deux cas : S fini et E est un polyedre. Le deuxiéme cas prend
en considération le cas o S = F NZ% avec F convexe quelconque, mais peut étre
défini avec un polyédre E. C’est le cas si F est un ensemble convexe borné. Le cas ou
E est borné est inclu dans le premier cas qui prend en compte tout type d’ensemble

fini de Z7.

Nous considérons d’abord le cas olt S est un ensemble fini. Si |S]| est fini, c’est-
a-dire S = {p': ¢ € I'}, alors = € S si et seulement si

Ir = Z /\,'pi

i€l

Y h=1 (1.19)

iel
A € {0,1}, 1€l

Le cas ot S = ENZ" utilise un résultat de Nemhauser et Wolsey 86 [68]. Si E est

un polyedre alors il existe deux ensembles finis Q = {p :i € [} et R={r/:j €



L)
(8]

J} C Z% tels que z € S si et seulement si

z=ZA.~p‘+Zu,~7J

i€l jeJ
don=1 (1.20)
iel

/\;G{O,l},ﬂJeZ+. ZGI,JEJ-

R est l'ensemble des rayons extrémes (entiers) de E et Q est défini a partir de

I’ensemble des points extrémes de E, {p* : k € K}, et de I’ensemble R par :

Q={zeZi:z=) M+ . ) M=1M200<y <1}
keK Jjed keK

En utilisant les relations (1.19) ou (1.20) dans (1.15), on obtient une formulation

du type

A[m z d,’/\;’ + Z d]'ﬂj

i€l Jed
/\iA’[i + [l,jl"[j = b,
,EZ, JEZJ (1.21)
sc Z’\‘ =1,
iel

Ai € {0,1},p; € Zs..

Les formulations (1.18) et (1.21) présentent beaucoup de ressemblance, mais les
ensembles [ et J ne sont pas les mémes dans les deux cas. De plus dans (1.21),
les contraintes d'intégrité sont imposées aux variables A et p. Une solution entiére
est obtenue via un processus de branchement ou & chaque nceud les contraintes
d’intégrité dans (1.21) sont relaxées et la relaxation linéaire résultante est résolue
par génération de colonnes. Au nceud 0, la formulation du sous-probléme est

Min (c— ATn)Tz

sc{zeS (122)

ol 7 est le multiplicateur généré par la résolution du probléme maitre restreint. Les

relaxations continues de (1.18) et (1.21) sont équivalentes puisque toute solution
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optimale produite par I'un est aussi optimale pour l'autre. Les mémes remarques
faites pour I'approche de décomposition par convexification concernant les décisions

de branchement s’appliquent & 'approche par discrétisation.

1.1.4 Remarques sur l’implantation

Certains sous-problémes permettent d’obtenir une multitude de colonnes en ré-
solvant le sous-probléme. Il est donc profitable de générer plusieurs colonnes en méme
temps relativement au méme sous-probléme. Ceci permet d'enrichir le probléeme
maitre dans le but d’accélérer la convergence. Cependant, si le nombre de colonnes
devient trés grand, le probléme maitre restreint devient difficile & manipuler. Ainsi,
la taille du probléme maitre restreint est généralement limitée. Ceci ne pose pas de
problémes de convergence en pratique. En fait, une fois que I'objectif du probleme
a assez diminué, le nombre de colonnes générées est de plus en plus petit et ce sont

les “bonnes” colonnes qui sont générées.

Généralement, la résolution du probléme maitre est une sous-routine d’un proces-
sus récursif de séparation et d’évaluation. A chaque nceud de I'arbre de branchement,
le probléme maitre est résolu par génération de colonnes. Dans certains cas, il peut
étre possible de n’utiliser que des bornes inférieures et supérieures fournies par cette
résolution. De plus, chaque probléme maitre résolu doit tenir compte des contraintes
de branchement. Il y a donc une part importante de modélisation dans I'obtention

d’une formulation adéquate.



1.1.5 Notes bibliographiques

Les résultats de base sur la génération de colonnes et la décomposition de Dantzig-
Wolfe ainsi qu’une liste exhaustive des références sur les travaux reliés a ces deux
thémes peuvent étre trouvés dans Lasdon 72 [53] et Minoux 84 [65]. Une synthese
des développements récents concernant la décomposition est présentée dans Soumis

97 [82).

1.2 Relaxation lagrangienne et méthodes d’opti-
misation non-différentiable

La relaxation lagrangienne est pour les méthodes d’optimisation non-différen-
tiable ce qu’est la décomposition pour la génération de colonnes. Elle consiste a
reformuler un probléme en une formulation adéquate pour la résolution par ces
méthodes. Nous commencons la présente section par la présentation du principe de
la relaxation lagrangienne [18, 2] avant de donner un apergu des méthodes classiques

d’optimisation non-différentiable.

1.2.1 Relaxation lagrangienne

Considérons le probléme de programmation mathématique (LP) suivant

Min f(:z:)
gi(z)sov i=1,...,m )
sc{ hj(z)=0, j=1,....p (1.23)
r €S,

ol f,gi(i=1,...,m)et hj (j=1,...,p) sont des fonctions définies de R" — R.
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Notons par G(z) la fonction de R® — R™ dont les composantes sont g;(r)
(i = 1,...,m) et par H(z) la fonction H(z) de R®* — RP dont les composantes

sont hi(z) (j=1,...,p).

A chaque contrainte explicite h; (j =1,...,p) et g; i = 1,..., m, on associe deux
réels v; et u; > 0 appelés multiplicateurs. On définit le lagrangien du probléme (L P)

par [23]
p m
L(z;v,u) = f(z) + Zv,-hj(x) + Zuig.-(x) : z€ S,ve R, u e RY,
qu’on peut écrire sous la forme
L(z;v,u) = f(z) + v H(z) +uTG(z): r€ S,veRP,ueR}
On définit la fonction duale par
O(v,u) = Minges L(z;v,u).

Le probléme dual (LD) consiste alors & maximiser la fonction ©, i.e.

Maz O(v,u)
u>0,v

Ce probléme peut s’écrire
Maz,>0 Minzes L(z;v,u). (1.24)
Remarquons aussi que le probléme primal (LP) s'écrit sous une forme semblable
Minzes Mazy>o0, L(z;v,u). (1.25)
A partir de la définition du lagrangien, on peut affirmer que

Maz,>0,Minzes L(z;v,u) < Minges Mazy>0. L(z;v,u). (1.26)



26

On peut voir aussi que la valeur de la fonction ©(v, u) est une borne inférieure sur

la valeur optimale de (LP) ou encore Vz € S,G(z) <0,H(z) =0, Yu > 0,v € RP,
e(vvu) S f('r)

Cette derniére relation établit la dualité faible entre (LP) et (LD). La différence
entre les deux valeurs optimales est appelée saut de dualité (Duality Gap). Il existe
des conditions sous lesquelles les deux problémes ont la méme valeur optimale. La
résolution de (L D) fournit alors la valeur optimale de (L P). C'est le cas en program-
mation convexe différentiable sous certaines conditions de régularité [2]. Cependant,
il reste une autre difficulté & surmonter. La résolution de (L D) fournit des multiplica-
teurs optimaux v* et u* et un vecteur z{v*, u*) associé. Ce vecteur n'est généralement

pas réalisable pour (LP).

L’existence d’un point col du lagrangien signifie que les deux probléemes (LP) et
(LD) ont la méme valeur optimale, c’est-a-dire que le saut de dualité est nul. La

résolution de (L D) fournit alors la valeur optimale de (LP).

Notons d'abord que le lagrangien est une fonction concave (linéaire par morceaux)
en v et u. La fonction ©(v,u) est convexe. Donc, le probleme dual (LD) est un
probleme d’optimisation convexe. Si f,g; (i = 1,...,m) et S sont convexes et h;(j =
1,...,p) sont affines ((LP) est un programme convexe), le lagrangien est alors une
fonction convexe en z. L'évaluation de la fonction © revient a l'optimisation d’un

probleme convexe.

L’existense d'un point col de L n’est pas garantie. Dans le cas d'un probléme
convexe, ou f,g;(i = 1,...,m) sont différentiables, et sous certaines conditions de
qualification des contraintes (e.g. condition de Slater [81]), un point de Karush-
Kuhn-Tucker (K-K-T) de (LP) [2] est un point col du lagrangien. En optimisation

non-différentiable, d’autres conditions sont requises afin d’assurer I’absence de saut
T
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de dualité. En plus de la convexité du probleme (L P), d’autres conditions telles que S
borné ou l'existence d'un multiplicateur optimal vérifiant la propriété de remplissage
(Filling Property) (Lemaréchal 2000 [59]). Heureusement, dans le cas ou f, k;, g, sont
affines ou quadratiques (ou des normes [,), le saut de dualité est nul [59]. Dans ce
qui suit, nous illustrons le principe de la relaxation lagrangienne sur un programme
linéaire que nous utiliserons dans la suite de la thése et nous établissons le lien entre

la relaxation lagrangienne et le principe de décomposition.

Cas d’un programme linéaire : Soit le programme linéaire
Min c'z

Az =b
s¢ T 20,

ou A est une matrice m x n et r € R™.

Le dual lagrangien de ce probléme est le méme que celui fourni par la dualité en
programmation linéaire. Nous allons écrire le lagrangien sous une forme particuliere

qui sera utilisée plus loin dans la thése.

Si on définit S = R7 et on associe le multiplicateur # € R™ aux contraintes

linéaires Az = b, le lagrangien s’écrit pour r > 0 et # € R™,
L(z;m) = Tz + 77 (b — Az).

On peut également |’exprimer de la maniére suivante

L(z,yty~im)=cTe+nT(y* —y")
yt—y =b- Az
z>0,y" >0,y >0.

Cette nouvelle forme introduit des variables non-négatives qui mesurent la non-

réalisabilité de z pour le programme linéaire défini ci-dessus.
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Si z° est une solution optimale du programme linéaire considéré et * est un

multiplicateur optimal, alors (z*,7*) est un point col de L. Ce qui implique que
L(z*;7") < L(z;7*),Yz > 0.

Sous la nouvelle forme du lagrangien, (z*,0,0;7") est un point col et la derniere
relation s'écrit
L£(z*,0,0;7*) < L(z,y*,y~;7")
y* —y =b-Az
>0,y >0,y" >0.

Nous reviendrons sur cette forme plus loin dans la thése pour illustrer la stabilisation

.....

Cas d’un probléme a objectif et contraintes linéaires. Considérons le cas
ou f,g; sont affines. La formulation du probleme (LP) est la suivante :

Min 'z

Az =} (1.27)
s¢ T €S.

Le lagrangien s'écrit
Liz;m) =Tz +77(b— Az),z € S.
Le calcul de la fonction © se fait a4 1’aide de la résolution du probléme
O(r) = Min {(c = ATm)Tz +bTn: z € S}.

Ce probléme est en fait le sous-probléme de la génération de colonnes ou de la
décomposition de Dantzig-wolfe. Ainsi, la relaxation lagrangienne et la décomposi-
tion sont deux applications d’'un méme principe mais de deux points de vue différents.
Le principe de la relaxation lagrangienne qui ne requiert pas une structure polyédrale
de S est plus général. Le principe de décomposition peut étre généralisé a des cas ou

S n’est pas un polyédre. Cependant, si l'objectif n’est pas linéaire et S est convexe,
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la résolution du sous-probléme n’assure pas la génération d’un point extréme ou d’un

rayon extréme a chaque itération de génération de colonnes®.

Une des différences principales est que la relaxation lagrangienne requiert juste
que l'oracle génére un sous-gradient de la fonction © au point dual fourni et non
forcément un point extréme ou un point minimum. De plus la décomposition donne
la formulation du probléeme maitre a résoudre pour le calcul des multiplicateurs.
alors que la relaxation lagrangienne requiert juste qu'un multiplicateur soit calculé

sans spécifier une méthode pour le faire.

La relaxation lagrangienne a donné naissance a plusieurs méthodes d’optimisa-
tion non-différentiable. Nous décrivons les deux principales méthodes classiques : les

méthodes du sous-gradients et la méthode de Kelley.

1.2.2 Méthodes du sous-gradient

Dans le but d’alléger la présentation, nous considérons la formulation suivante
g p

du probléme primal

Min f(z)
gi(z) <0, i=1,....m (1.28)
¢ Tz €S.

Le lagrangien correspondant est alors
L(ziu) = f(z) + ) _wgi(z), z€Su20.
i=1

On peut écrire aussi

L(z;u) = f(z) + uTG(z),z € S,u>0.

30n peut dire que du point de vue de la reformulation utilisée, la relaxation lagrangienne est
une approche convexe alors que la décomposition de Dantzig-Wolfe est une approche concave. Ces
deux approches, duales 'une de 'autre, coincident bien sir quand le probléeme traité est a la fois
convexe et concave, c’est-a-dire linéaire.
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La fonction duale est définie pour u > 0 par
©(u) = Min,es L(z;u).

Le probléme dual consiste alors & maximiser la fonction ©, i.e.

Maz O(u)
u>0.

L’algorithme du sous-gradient [94, 27, 21] est une généralisation de 'algorithme du
gradient 4 I'optimisation non-différentiable*. L’algorithme est initialisé par le calcul
d’'un point de départ ue. A chaque itération k, un sur-gradient gi de la fonction
duale © au point u est généré par un oracle qui prend en entrée le point u;. Le
point suivant ui., est obtenu en se dépagant dans la direction de gi avec un pas ¢.
C’est-a-dire que

g

k

Le calcul d'un sur-gradient est une fonctionnalité de l'oracle utilisé. Aucune hy-
pothése sur le choix ou le calcul n’est faite. Une fagon classique de calculer un sur-
gradient est ’évaluation de O(ux) = Min,esL(z;ux) = L(xr;us). Le sur-gradient

fourni est g, = G(zx).

Généralement, un sur-gradient g n’est pas une direction de montée pour © en
uk. Cependant, g est une direction de descente de la fonction distance entre u; et

un multiplicateur optimal u*. par exemple 1|lu — u*|| (Lemaréchal 2000 (59]).

L’algorithme est arrété si la meilleure solution courante est jugée acceptable,
puis renvoie cette solution. Plusieurs critéres d’arrét sont utilisés. Certains tiennent
compte de la variation du vecteur u ou de 'amélioration de la valeur de ©(u} entre

deux itérations successives. Pour une précision souhaitée € > 0, on teste si |{ugi1 —

4Nous utilisons le nom sous-gradient pour I'algorithme méme si dans le cas du probleme que
nous considérons (maximisation d’une fonction concave), l'algorithme calcule des surgradients de
la fonction . Il suffit juste de se rappeler que si s est un sous-gradient de la fonction convexe f
en r, alors —s est un surgradient pour la fonction concave —f au méme point r.
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ug|| < € ou si |O(urs1) — O(uk)| < €. Sachant qu'un point u est optimal pour
(LD) si et seulement si 0 est un sur-gradient de © en u, si ||gk+1 — g&l| < € ou
llgrl| < €, la solution est jugée acceptable. D'autres criteres plus généraux testent
I’évolution de l'optimisation sur un certain nombre d’itétrations. Par exemple, si
lors des N derniéres itérations la valeur de la meilleure solution n’a pas sensiblement
diminuée, le processus est arrété. Une autre approche consiste a fixer a priori le
nombre total d’itérations a effectuer, et retourne 2 la fin la meilleure solution obtenue.
Cette derniére idée profite de I'efficacité affichée par I’algorithme sur des problémes

pratiques de petite et moyenne taille.

L’efficacité de l'algorithme est trés sensible au choix de la suite ¢. Plusieurs choix
ont été proposés.

Pas constant : t, = ty, Vk. C’est le choix le plus simple possible. La convergence
est souvent lente et peut afficher de l'instabilité.

Méthode de la série divergente 73, 17] : limg_ooti = 0 et 3,0ty = 0c. La
convergence de t; vers 0 assure que le pas devient de plus en plus petit pour
que ux4; soit plus proche de I'optimum u*. La divergence de la série assure la
convergence de I'algorithme quelque soit le point initial choisi. Cependant, ce
choix risque de ralentir la convergence en pratique. En effet, il a été montré
que le taux de convergence de la méthode avec un tel choix de pas n’est pas
géométrique [29].

Métrique variable : Ce concept consiste a dilater I’espace dans une certaine direc-
tion &. Une direction Bygi avec un choix spécifique du coefficient de dilatation
conduit & I'algorithme de Vellipsoide [78, 70, 41]. Si & = gk — gk-1, on obtient
le r-algorithme [78].

Meéthode de la série convergente [77, 29] : t, = Mp*, M > 0,0 < p < 1. Ce
choix assure une convergence géométrique. Mais, dans plusieurs cas la valeur de

M doit étre tres grande et celle de p proche de 1 afin d’assurer la convergence



globale. Ceci ralentit la convergence sensiblement.

Méthode de relaxation de Polyak [74, 35] : Si © est une estimation de la va-

leur optimale de ©(u), le pas est calculé par

b = pe(uk) -0
[1g%]

Ce choix de ¢, est une version approchée d'un choix qui utilise ©(u*) au lieu
de ©. Comme la valeur optimale n'est pas connue en général, c'est la suite
t. décrite ci-dessus qui est utilisée quoiqu’il n’y ait pas de résultat théorique
concernant la convergence de 'algorithme qui en découle. Cependant, les tests
effectués ont montré que la méthode est efficace et qu'il n'est pas difficile de

trouver une bonne valeur de 6.

Plusieurs autres approches ont été développées dans le but d’accélérer la méthode
du sous-gradient [78, 30, 70]. Il a également été montré (Nemirovskii 94 [69]) que la
méthode posséde un taux de convergence optimal pour un certain choix des pas tx.

Cependant, le comportement de la méthode en pratique s’est avéré moyen.

1.2.3 Méthode des plans coupants de Kelley

Chaque fois que 1'oracle est appelé avec le multiplicateur courant ug, il fournit
la valeur de O(ug) et un sous-gradient gx de © en ce point. Ce qui permet d’écrire
'inégalité

O(u) < O(uk) — g’ (u — ux), VYu >0.
Le membre de droite est une approximation affine de © qui coincide avec © au point
ur. Connaissant la paire (©(ux), gx) en K points ux (kK = 1,..., K), on définit le

modele d’approximation affine par morceaux ©K qui sur-estime © : pour u € R™,

O(u) < 6K (u) := Maz{f(w) +gf (u —w) : k=1,...,K}.
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Le prochain point ug.,, est calculé en maximisant ©X . Ceci revient 4 la résolution
du programme linéaire suivant, appelé probléme de Kelley [42],

ng = Min 7
O(w)+gi(u—w)=2n k=1,....K (1.29)
SC
u>0.

L’oracle est appelé avec le point ug,; pour fournir (©(ug41), gk+1) Ol g1 €St un

sur-gradient de © en ug ;. Le modéle est alors enrichi en ajoutant la coupe
O(uks1) + ghr (v = uks1) 2 1.

Si l'oracle génére 0 comme sur-gradient, 'optimalité est atteinte.

Lors de la résolution du programme linéaire (1.29), le nombre de contraintes peut
devenir tres élevé, ce qui rendrait la résolution difficile. Généralement. une solution
de ce probléeme est obtenue en résolvant son dual par génération de colonnes. La

formulation de ce probléme est donnée par
K
nxg = Min Z Ak(—gfm- + O(ux))
k=1

K
Z,\k=1
k=1

&=
Z/\kgk <0
k=1

M20, k=1,....K

4

sc ¢

\

On voit ainsi le lien évident entre I'algorithme de Kelley et I'algorithme de génération
de colonnes. Les sur-gradients générés a chaque itération correspondent aux colonnes

générées par le sous-probléme de génération de colonnes.

Enfin, si la variable u est contrainte & étre dans un certain domaine D, la formu-
lation du probléeme de Kelley nécessite une approximation de ce domaine. Du point
de vue primal, ceci se traduira par I'ajout de colonnes qui ne contriburont pas aux

contraintes de convexité.
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Convergence. La convergence globale de la méthode de Kelley est assurée si le
probléme a résoudre est convexe. Cependant, elle posséde un taux de convergence au
pire cas désastreux. Nimerovski 94 [69] a montré que dans le pire cas, pour obtenir
une solution avec une précision relative €, et si m est le nombre de contraintes

explicites dans le primal, le nombre d’itérations requis est de l'ordre
o(1/=T).

Cependant, en pratique cette méthode présente un taux de convergence moyen nette-
ment meilleur que ne laisse prévoir le résultat ci-dessus, surtout dans le cas ot la fonc-
tion objectif est affine par morceaux. Les problémes d’instabilité et de dégénérescence

demeurent I’handicap essentiel de la méthode pour les probléemes de grande taille.

1.2.4 Notes bibliographiques

Une étude exhaustive de la minimisation des fonctions convexes y compris les
méthodes de descente, les méthodes du sous-gradient, l'algorithme de Kelley et les
méthodes de faisceaux sous leurs formes primale et duale est présentée dans Hiriart-
Urruty et Lemaréchal 91 {36, 37]. Lemaréchal 2000 [59] présente une synthése sur
la relaxation lagrangienne, les méthodes des sous-gradients, les conditions d’optima-
lité primales et duales et le lien avec la génération de colonnes. Une synthese des

développements reliés 4 la méthode du centre analytique est donnée dans Goffin et

Vial 99 [32].

1.3 Difficultés et instabilité

Nous avons déja vu que I'algorithme du sous-gradient présente I'inconvénient que

ce n’est pas un algorithme de descente vu qu’un surgradient n’est pas forcément une
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direction de montée pour la fontion © au point courant. Cependant, c’est une direc-
tion de descente pour la fonction qui mesure la distance entre un multiplicateur u
et un multiplicateur optimal u*, 3||u — u°||*(Lemaréchal 2000 [59]). Ceci assure que
pour un pas de déplacement assez petit, ux4; est plus proche de u* que ug. Pour
profiter de cette propriété, les pas de déplacement doivent étre suffisament petits ce
qui peut compromettre sérieusement 'efficacité de l'algorithme. La question de trou-
ver une solution optimale primale une fois ’algorithme arrété revient généralement

a résoudre le probléme primal en ’enrichissant par les colonnes déja générées.

L’'une des caractéristiques principales du comportement de 'algorithme de gé-
nération de colonnes est la lenteur de la convergence a la fin de l'algorithme. La
figure 1.1 montre un comportement typique de l'algorithme. Elle représente la va-
leur de l'objectif en fonction du nombre d’itérations. On y voit clairement l'effet
de queue pour les derniéres itérations. Le nombre d’itérations nécessaires pour une
amélioration minime de l'objectif est trés élevé. Ceci est di essentiellement a la

dégénérescence du probléme primal.

Un autre aspect du comportement de l'algorithme de génération de colonnes est
les oscillations fréquentes et grandes observées dans |'évolution des valeurs des varia-
bles duales. Ceci traduit des déplacements de grande amplitude dans 'espace dual.
Ces déplacements sout généralement inutiles vu que le modéle utilisé autour de ug
n’est aucunement précis loin de ce point. Donc, un déplacement vers ux+; qui est tres
loin du point courant serait inutile et méme nuisible pour la convergence. L’idée qui
consiste a restreindre la résolution & un domaine prés du point courant est derriere le
développement des méthodes de faisceaux [37] et d’autres approches de stabilisation.
L'utilisation d’une pénalité permet entre autre de limiter les déplacements possibles
du prochain multiplicateur par rapport a ug et de corriger la valeur du modele

6K (u) loin de ug.
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Objectif

Valeur

optimale

Nombre d’itérations

Figure 1.1 - Comportement typique de 'algorithme de génération de colonnes.

La non-croissance de la borne inférieure fournie par le point dual courant est
également un défaut de la génération de colonnes. En fait, la borne supérieure primale
est décroissante alors que la borne inférieure (lagrangienne) peut croitre ou décroitre
d’une itération a l'autre. De plus, la distance entre le point dual courant et ’optimum
de la fonction © n'est pas décroissante et on remarque de l'instabilité dans son
évolution. Un exemple célébre a été présenté dans [37]. Il s’agit de minimiser la
fonction ©(u) = Lu? sur R. Si u; = 1 et u; = —¢, alors uz = § — 3¢. Si ¢ diminue,
us est plus proche de I'optimum 0. Mais, le point suivant ug est alors plus loin de 0.
Ainsi, si le point courant est meilleur (plus proche de I'optimum), le point suivant

est pire (plus loin de 'optimum).
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1.4 Méthodes de résolution stabilisées

Plusieurs méthodes ont été développées dans le but de remédier a linstabilité
des méthodes des plans coupants. Nous commencons par un survol des méthodes
de centres avant de présenter plus en détails les méthodes de faisceaux qui ont des
ressemblances avec ’approche unifiée que nous proposons. Nous présentons ensuite
les principales approches récentes de stabilisation de l’algorithme de génération de

colonnes.

1.4.1 Méthodes de centres

Ces méthodes profitent de la stabilité affichée par les méthodes des points in-
térieurs dans la résolution des programmes linéaires. A la différence de I'algorithme
de Kelley, les méthodes de centres déterminent un ensemble de localisation (borné,
convexe et fermé) et calculent un point & 'intérieur de cet ensemble. Les points
calculés sont appelés centres. L’ensemble (ou domaine) de localisation, noté L, est
déterminé par les approximations externes courantes de la fonction objectif et du

domaine réalisable, et par une borne supérieure sur la valeur optimale du probléme.

Les méthodes élaborées different principalement par les propriétés du centre cal-
culé. La méthode d’Elzinga et Moore [16] trouve le prochain point comme étant
le centre de la plus grande hypersphére contenue dans £. La méthode du centre
de gravité [60], comme son nom l'indique, trouve le prochain point en calculant le
centre de gravité de I'ensemble de localisation £. Cette méthode possede un taux
de convergence optimal & une £—solution. Mais, vu que le calcul d'un centre de
gravité est plus difficile que la résolution du probléme original, cette méthode n'est

pas efficace en pratique. La méthode volumétrique [86] calcule le prochain point
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(centre volumétrique) en minimisant une fonction barriére logarithmique (stricte-
ment convexe). Initialement congue pour un probléme de réalisabilité, cette méthode
converge en O(nL) itérations, ol L est la constante de Lipschitz de la fonction op-
timisée. Pour contourner la difficulté qui résulte de la résolution optimale de la
fonction barriére, ce probléme est résolu approximativement en O(30{n(2¢~*?)) ou
O(30ln(4¢~?)). Enfin, la méthode ACCPM (Analytic Center Cutting Plane Method)
[32, 49] trouve le point suivant en calculant un centre analytique (Analytic Cen-
ter) de I'ensemble de localisation £. Les études de la convergence vers une solution
c—optimale par I'algorithme ACCPM ont été faites en imposant quelques restrictions
sur I'implantation. Goffin et al.93 [31] ont établi des résultats de convergence pour
le probléeme de réalisabilité sous certaines conditions de centrage. De plus, le centre
analytique n’est pas calculé exactement. La complexité estimée de I'algorithme est
O(?;—) Ce résultat est généralisé quand o coupes sont générées par l'oracle. La com-
plexité devient O(%‘i) [95]. Kiwiel [47] a étudié une variante plus restreinte et a

montré que la complexité est O(-"?[ji)

1.4.2 Méthodes de faisceaux

Les méthodes de faisceaux (Bundle Methods) [37] ont été proposées par Le-
maréchal [56, 57] et Wolfe [94] dans le but de remédier aux carences observées sur
la méthode des plans coupants de Kelley et sur les méthodes du sous-gradient. Les
travaux de Kiwiel ( [45], [46], [47]) complétérent ces études. Dans le premier cas, on
a remarqué qu’un grand nombre des contraintes (ou colonnes) générées n’améliorent
pas réellement 'approximation de la fonction au voisinage de I'optimum. De plus,
la qualité du prochain point généré peut évoluer dans le sens inverse de la qualité
du point actuel [37]. Dans le cas des méthodes du sous-gradient, méme si on choisit

le “meilleur” sous-gradient, la direction choisie, trés bonne du point de vue local.
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devient de plus en plus mauvaise du point de vue global (maximisation de la fonc-
tion). Les méthodes de faisceaux visent a stabiliser les méthodes de plans coupants
en considérant a chaque fois la meilleure solution trouvée, appelée centre de stabilité
(Stability Center). A partir du centre de stabilité, un nouveau point est calculé en
résolvant un probléme quadratique & contraintes linéaires. Si le peint trouvé est assez
prometteur, il devient le nouveau centre de stabilité. Dans le cas contraire, le centre

de stabilité reste le méme mais 'approximation linéaire de la fonction est enrichie.

Pour présenter la méthode, nous utilisons le probléme suivant :
Maz,5o O(u).

Les méthodes de faisceaux requiérent que le nouveau point maximise le modeéle
linéaire ©K | mais également qu'il ne s'éloigne pas trop du centre de stabilité. Ainsi,
cette approche requiert que la relaxation linéaire constitue une bonne approximation
de la fonction © au voisinage du centre de stabilité. Soit ug le centre de stabilité
courant. Le probléme résolu est obtenu en ajoutant a la relaxation linéaire un terme
quadratique qui correspond  la distance au centre courant. Ce qui définit le probleme

quadratique (@B)x

Maz (n - 3pxllu — uk|l?)
{ O(uk) + gf (u—w) >

SC
u>

n, Yvk=1,...,.K (1.30)
0.

pr > 0 est un parameétre choisi de fagon a ce que le nouveau point vx 4 qui résoud
(QB)k reste dans le voisinage de uy ot la relaxation linéaire approche assez bien la
fonction ©(u). Si l'objectif a suffisament augmenté (O(vix4+1)—O(uk) > v(nk+1—1x)
pour une tolérence prédéfinie v > 0), alors ug 4, = vk devient le nouveau centre
de stabilité. On parle alors de “pas de montée” (Serious Step). Sinon, le centre de
stabilité ne change pas (ux+1 = ug), mais un nouveau plan coupant défini par
(Vk+1,gK+1) est généré et 'approximation linéaire de © est enrichie. Dans ce cas,

on parle de “pas nul” (Null Step).
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Le choix du paramétre pg a chaque itération est déterminant dans le comporte-
ment et |'efficacité de la méthode. Un poids constant px = g pourrait conduire a des
cas extrémes ol la convergence est trés lente. Si p est trés grand, il y a toujours des
pas réels. Si p est petit, il y a une multitude de pas nuls. D’une maniére générale. il
serait intéressant de choisir py,; de fagon & conserver une interpolation quadratique
de la courbure de O entre ug et vg..;. Cette approche a permis de réduire de maniere

significative le nombre d'itérations (Kiwiel [46]).

Plusieurs points de vue sont possibles pour des méthodes de faisceaux [37]. Sous
la forme présentée ci-dessus, une méthode de faisceaux représente une méthode de
plans coupants stabilisée par pénalisation quadratique. Mais, elle peut étre vue
comme une méthode de plans coupants avec région de confiance (7Trust Region)
ou le point vk, est restreint a rester dans une boule centrée en uy et d’un rayon
prédéterminé. Le point de vue de relaxation considére une méthode de faisceaux
comme une méthode de plans coupants avec stabilisation de niveau (Level Stabiliza-
tion), c’est-a-dire qu'elle correspond & l'optimisation d’'un probléme ot la fonction ©
doit étre au dessus d’un niveau spécifié & I’avance. Enfin, d’un point de vue dual, une
méthode de faisceaux est une méthode de plans coupants avec stabilisation duale
(Dual Stabilization). Cette approche est utile quand le probleme de recherche de la
direction de déplacement comporte un grand nombre de contraintes. Nous présentons

plus en détails ce dernier point de vue ci-apres.

Pour déterminer le dual lagrangien du probléme (QB)g, on dualise toutes les

contraintes (y compris les contraintes de non-négativité) et on écrit les conditions
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d’optimalité du premier ordre :

K
S =1
k=1

K
—pr(u—ug) + Z Mg +a=0
k=1
A>0,a>0.
La premiére relation élimine la variable n de 'expression du lagrangien et la deuxieme

relation donne I’expression explicite de u a 'optimalité du lagrangien (par rapport a

n et u). En substituant dans (1.30), on obtient la formulation suivante pour le dual :

K K
o1 5 .
Min Ep—k” E Akgr + a“- + E ’\k(ei\ - @(UK)) + QTUK
¥ k=1 k=1

K (1.31)
sc ;Ak:l
A>0,a>0,

ot ef = O(ug) + (6(ur) + gf (ux — u)) est erreur résultant de la linéarisation de
O(u) au point ug.

K

En multipliant Pobjectif par px et en remarquant que le terme pK(Z (el —
k=1

O(ur)) + aTug) est la dualisation d’une contrainte du type
K
z/\k(ei‘ — O(uk)) +a’ug <,
k=1
le probleme dual peut s’écrire

K
1
Min §|I Z/\kgk +a?

k=1
,

K
Z’\k =1 2
k=1 (13.‘)

S S K T
A(eg — Oug)) +o'ug <e¢

i

L /\20,&20.
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Ce probléme est appelé probleme de faisceaux. En fait, il utilise le faisceau d’in-
formation Frx = {(gr,ef,ux),k = 1,..., K} afin de déterminer une direction de
montée (ou e —montée {36]) dans une approximation du sous-différentiel (ou £—sous-
différentiel [36]). Dans une approche plus générale, les méthodes de faisceaux se
déplacent dans la direction trouvée d'un certain pas tx calculé pour l'itération K.
Ensuite, suivant la qualité du nouveau point obtenu, le centre de stabilité est changé

(Serious Step) ou seulement le faisceau est enrichi (Null Step).

Pour cette approche, les choix de € et du pas de descente ¢ sont critiques pour
l'efficacité de la résolution. Plusieurs schémas sont possibles [37]. Enfin, ce point
de vue dual a été appliqué par Tachefine [84] dans le cadre de la planification des
opérations dans une mine & ciel ouvert. Les résultats obtenus sont trés satisfaisant

du point de vue de la qualité de la solution et du temps de calcul.

1.4.3 Approches de stabilisation récentes

Les premiéres approches de stabilisation peuvent étre regroupées en deux classes
[43]. Les méthodes du type faisceaux suivent le schéma de I'algorithme de faisceaux.
Elles consistent & pénaliser I’approximation courante de la fonction duale O par une
fonction autre que la norme ||.||2 et & résoudre le probleme résultant. En fait, elles
modifient le probleme sur lequel est exécutée une itération de génération de colonnes.
Un pas de descente (Serious Step) est exécuté chaque fois que la croissance de la va-
leur de la fonction objectif est jugée suffisante. Cette croissance est assurée au moyen
de plusieurs pas nuls (Null Steps). Cette classe contient les méthodes de faisceaux,
Papproche de Schramm et Zowe 92 [79] et la méthode hybride [64]. Les méthodes
du type proximal suivent quand a elles le schéma de 'algorithme du point proximal.
Elles consistent & pénaliser la fonction duale © et a calculer un optimum du probléme

résultant qui sera le prochain centre de stabilité. Une itération d’optimisation d’un
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probléme pénalisé sera appelée itération majeure (Major Iteration). Les itérations de
plans coupants a l'intérieur de chaque itération majeure seront appelées itérations
mineures (Minor Iterations). Cette classe contient la méthode Boz Step [61, 62] et

la méthode de Kim et al.[43].

Ces derniéres méthodes peuvent étre vues comme des méthodes de type faisceaux.
Il suffit de garder la méme fonction de pénalité pour les pas nuls (Null Steps) a
l'intérieur d'un pas de descente (Serious Step) donné. Un tel pas est alors exécuté

seulement a I'optimalité du probléeme stabilisé.

Nous considérons le probléme de maximisation d'une fonction concave
Maz, O(u). (1.33)

Les itérations des approches de type proximal seront indexées par { alors que celles

des approches de type faisceaux seront indexées par K.

La méthode Box Step : (Marsten et al.1975 [61, 62])

Le probléme (1.33) est résolu sur un hyper-cube centré au point courant y;. La
longueur de I'aréte de I’hypercube reste constante le long des itérations. Le probleme

résolu a chaque itération [ est le suivant :

uttl € Argmaz, O(u)
sc{ |lu—ullw < B. (1.34)

Il est également possible de faire varier la taille de 'hypercube en définissant a
chaque itération un terme B,. La résolution peut étre ramenée a la résolution d’'un

programme linéaire par génération de colonnes grace a l'utilisation de cette norme.
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Une variante des méthodes de faisceaux : (Schramm et Zowe 1992 [79])

La variante Trust Region des méthodes des faisceaux (cf. 1.4.2) proposée par

Schramm et Zowe résoud le probléme suivant a chaque itération :
Kt e Argmaz{©X(u) - #]]u —uf3}). (1.35)

Le paramétre de proximité ay est mis a jour au fil des itérations de facon a mieux

estimer la courbure de la fonction.

Pénalisation par norme linéaire :

Kim et al.1995 [43] proposent l'utilisation d’une norme ||.||, (p € [0, +oc]). Le

probléme résolu a chaque itération [ est
utte  Argmar{©(u) - :|lu - ul,}- (1.36)

Dans le cas p € (1,00}, le probleme (1.36) se reformule comme un programme
linéaire. Dans le cas de la norme ||.||;, le probleme a l'itération K s’écrit sous la

forme suivante

Mazx, ., n—¢ Z;’;le
uj._ul. < wy, V] =1,...,m (137)

J
sc u’j—u_,- wj, Vy=1,...,m

<
n+T (M, —=b) < di, Yh€ L.
Notons que cette approche part de I'idée de 1'algorithme du point proximal (Prozimal

Point) proposé par Rockafellar 76 [76].

Une méthode hybride : (du Merle et al.1998 [64])

Cette approche tient compte parallelement des deux problemes primal et dual,

c’est-a-dire le probléme maitre restreint (génération de colonnes) et son dual (algo-
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rithme de Kelley). On notera la ressemblance entre la fonction de pénalité utilisée
dans cette méthode et celle utilisée dans la méthode de Kim et al.[43] quoique les
deux méthodes n'utilisent pas la méme approche de stabilisation. Le probléme primal

pénalisé se formule comme suit :

Miny - y+ (Z dihe) — 07 py™ + 67 gyt

) kel
Z[\/sz\k—y_+y+ = b
o o< ek (1.38)
sc $ yt < en
Yo =1
kelx
\ Ayo,yt > 0.

y~ et y* sont des variables de surplus et d'écart, c_ x et £, x sont les bornes
surpérieures sur ces variables et d_ x et 8, x sont les colits associés aux variables de

surplus et d’écart.

Le dual de ce probleme est alors

T - T +
AIGxn,u,w‘.u*‘ n-— 6—,Kw — €L KW

n+AIEu—bTu < d;,Vk e Ik
—u—w- < -k (1.39)
u—wt < 5+.K
wtw > 0.

SC

Du point de vue dual, [0_ k,d, k] est le pavé dans lequel la pénalité est nulle. £_ x
et £, x sont les vecteurs des pénalités correspondant a chacune des composantes de

u suivant qu’on se trouve & gauche ou a droite de l'intervalle associé.

Sid,x =0_x =upeteyg =E_k = (€k,..-,€x), on obtient une méthode de
faisceaux utilisant la norme linéaire ||.||;. Par contre, si 6, y — ux = ug —0_x =
(B,...,B)ete,p =€e_g = (00,...,00), on obtient une variante de la version Trust
Region des méthodes de faisceaux utilisant la norme ||.||o. C’est pour cela que la

méthode est dite hybride.



46

1.4.4 Approches unifiées

D’autres approches plus générales ont été proposées par Neame 99 [67], Kiwiel

99 [51] et Frangioni 2001 [20].

Neame [67] propose de pénaliser le modéle linéaire résolu & chaque itération de
I'algorithme de Kelley a l'aide d’une fonction convexe qui s’annule au centre de sta-
bilité courant. Le terme ajouté a l'objectif du probléme (1.29) est —g"*(u — u"™*) ol
g™t est une fonction convexe non-négative vérifiant g™(0) = 0 et u™ est le centre
de stabilité courant. Les indices r et t représentent deux types d’itérations exécutées
par l'algorithme (r : itération majeure (Null Step); t : itération mineure (Serious
Step)). Ces derniéres itérations sont exécutées lorsque la valeur de la fonction ©
au point calculé coincide avec son approximation actuelle 0. Le point obtenu est
alors optimal pour la fonction © pénalisée par la fonction g™* a l'itération cou-
rante. Cependant, la fonction de pénalité peut changer d'une itération majeure
(Null Step) a l'autre. La convergence finie de I’algortihme est démontrée pour les
fonctions de pénalité suffisamment plate en 0 (g™* £—plates au voisinage de 0, i.e.,
Je > 0 : Vu € B(0,¢),dg9(u) € B(0,€), ot £ dépend de la fonction optimisée).
Les voisinages correspondant doivent étre assez larges pour contenir une solution

optimale du probleme (1.33).

Kiwiel [51] propose une généralisation des méthodes Bregman-proximales en
permettant la résolution approximative des problémes pénalisés. Les fonctions de
stabilisation étudiées sont strictement convexes. L’utilisation de fonctions du type
,—l;g(ﬁK :u), oll tx est le paramétre de proximité, permet d’obtenir les résultats de
convergence sous des conditions plus faibles. Ce travail génralise plusieurs études de
l'algorithme du point proximal au moyen de fonctions spéciales (e.g. les D—fonctions

et les ¢—divergences)[6, 15, 39, 50].
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Frangioni [20] propose une généralisation des méthodes des faisceaux qui en-
globe la plus part des approches de stabilisation citées ci-haut. Il propose deux
algorithmes. Le premier algorithme, & deux niveaux, représente le schéma général
des méthodes de faisceaux. Cet algorithme généralise la plus part des approches de
stabilisation connues ainsi que d’importantes classes des méthodes d’optimisation
non-différentiable de type faisceaux. Le deuxiéme algorithme, a trois niveau, permet
d’affaiblir les conditions requises sur les fonctions de stabilisation pour assurer la
convergence de I'algorithme. Une des caractéristiues intéressantes des algorithmes
proposés est qu'ils assurent la convergence vers une paire de solutions optimales
primale et duale dans le cas ou la fonction de stabilisation est différentiable en 0.
Pour plus de détails sur la description de l'algorithme, ainsi que pour une étude des
liens des algorithmes proposés avec les méthodes de faisceaux connues, le lecteur est

référé au travail de l'auteur [20].

L’idée de stabilisation que nous traitons rentre dans le cadre des approches pro-
posées dans [67] (dans le cas des fonctions polyédrales) et [20]. L’algorithme pro-
posé est du type proximal et utilise des fonctions de stabilisation (éventuellement
non-différentiables) ayant une région de confiance de pleine dimension définie au-
tour du centre de stabilisation courant. La convergence de l’algorithme est assurée
grace a cette caractéristique. Cette derniére permet d’'établir la convergence finie
de I'algorithme méme dans le cas ou la fonction optimisée n’est pas polyédrale, en
supposant que les problémes stabilisés sont résolus exactement. L’extension de l'idée
aux méthodes de faisceaux proximales fera 'objet de recherche futures. L’approche

proposée sera présentée plus en détails au chapitre 3.
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1.5 Conclusion

Nous avons présenté une synthése des méthodes classiques de résolution des pro-
blemes (convexes) de grande taille. Nous avons d’abord décrit I'approche primale
composée de la décomposition de Dantzig-Wolfe et de la génération de colonnes.
Une revue des travaux concernant la généralisation du principe de décomposition
aux problémes a variables entiéres a également été faite. Puis, nous avons présenté
I'approche duale qui part de la relaxation lagrangienne pour obtenir des reformula-
tions des problémes originaux qui peuvent étre résolues par les méthodes d’optimi-
sation non-différentiables classiques. Nous y avons mis les développements les plus
récents concernant la relaxation lagrangienne et ces méthodes. Ensuite, nous avons
fait un survol des difficultés rencontrées par ces approches de résolution ainsi que
les aspects d'instabilité qu’elles affichent. Enfin, nous avons présenté les approches
récentes de stabilisation de 1'algorithme de Kelley. Ces méthodes simples peuvent
étre regroupées en deux classes dépendamment du schéma général de l'algorithme
proposé. Nous avons fait également un survol des approches généralisant les prin-
cipes des méthodes de faisceaux et de I’algorithme du point proximal. Les méthodes
de faisceaux proximales généralisées ainsi obtenues englobent plusieurs classes im-

portantes des méthodes de résolution stabilisées.



Deuxi€me partie

Stabilisation des méthodes des plans
coupants
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Chapitre 2

Une méthode proximale pour
I’optimisation convexe
non-différentiable

Les méthodes proximales sont des généralisations de I'algorithme du point proxi-
mal introduit par Rockafellar en 1976 [76, 55, 33]. La plupart de ces méthodes
utilisent des fonctions de Bregman [15] ou des fonctions ¢—divergences [39]. Leur
application a I'optimisation convexe produit des régulations de Moreau-Yosida [66]
utilisant des fonctions différentiables strictement convexes comme terme de stabi-
lisation. Kiwiel [45] généralisa ces idées au cas ou les fonctions utilisées sont non-
différentiables mais toujours strictement convexes. Lorsque les problémes stabilisés
sont résolus par une méthode de plans coupants, ces méthodes produisent des algo-
rithmes de plans coupants stabilisés. De tels algorithmes fiirent ptoposés par Marsten
75 [61] et par Kim et al.[43]. Ils pénalisent le probléme dual original et utilisent sa
solution comme prochain centre de stabilité ou pour déterminer une direction de
montée pour l'objectif. Notons que ces algorithmes sont des cas particuliers des

méthodes de faisceaux généralisées [20].

Nous étudions une méthode proximale pour la maximisation d’une fonction
concave. Une application de cette méthode a l'algorithme de Kelley sera traitée
au chapitre suivant. Le schéma général est semblable a celui proposé par Kimet
al.95 [43] pour lequel les fonctions de pénalité sont positives partout sauf au point

courant (centre de stabilité) ol elles s’annulent. Les fonctions que nous proposons
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utilisent une région de confiance contenant le centre de stabilité. Les pénalités sont
encourues a l'extérieur de cette région. Nous considérons des régions de confiance
de pleine dimension au centre de stabilisation courant. L’étude de la convergence
suppose la résolution exacte des problémes stabilisés & chaque itération (majeure).

La convergence finie est établie méme pour des fonctions non-polyérales.

Nous présentons d’abord le principe général de la méthode ainsi que les idées
qui ont motivé notre étude de cette approche. Nous étudions la convergence de la
méthode pour des régions de confiance de pleine dimension et donnons quelques cas
particuliers des fonctions de pénalité. Nous discutons ensuite de l'extension de la
méthode au cas contraint, du cas ou les problemes stabilisés sont résolus approxi-
mativement ainsi que des avantages de I'utilisation de régions de confiance de pleine
dimension. Enfin, nous regardons plus en détails le cas ou la fonction a optimiser est
affine par morceaux et le domaine réalisable est un polyedre et nous motivons notre
choix de fonctions de pénalité linéaires par morceaux pour ce genre de probléemes. Ce
cas correspond a la résolution d'un programme linéaire par génération de colonnes
pour lequel nous proposons, au prochain chapitre, une approche de stabilisation

basée sur la méthode que nous développons dans ce chapitre.

2.1 Principe

Nous considérons le probléeme de maximisation d'une fonction concave sur R™

que nous notons (D) :

Maz ©(u)

f)
u € R™. (2.1)

La méthode se généralise facilement au cas ol le domaine réalisable est un ensemble

convexe ). Normalement, ce probleme est résolu par une méthode de plans coupants
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de Kelley. A chaque itération K, un modéle linéaire par morceaux de la fonction ©
noté ©X est maximisé. La résolution de ce probleme restreint est facile et revient
a la résolution d’un programme linéaire. Cependant, le processus de convergence
vers une solution optimale de (D) présente beaucoup d’instabilité. L'évolution des
variables duales d’une itération & ’autre n'assure pas une amélioration stricte de

I'objectif de (D).

L’idée que nous proposons consiste & résoudre une suite de problémes dits sta-
bilisés définis autour d’un point appelé centre de stabilité. Ce centre est déplacé a
la fin de la résolution du probléme stabilisé tout en s’assurant d’une amélioration
stricte de l'objectif de (D). Un autre probleme stabilisé est défini avec une nouvelle
fonction de pénalité, et ainsi de suite jusqu’a la convergence de I'algorithme. Ainsi,
la méthode profite de la simplicité de I'algorithme de Kelley [42] tout en s’assurant
de 'amélioration de 1'objectif défini par (2.1) a chaque déplacement du centre de
stabilité. ! Les fonctions que nous utilisons seront définies a l'aide d'un ensemble
appelé région de confiance ( Trust Region). A Pextérieur de cette région, une pénalité

sera appliquée afin d’empécher un grand déplacement inutile dans I'espace dual.

Chaque itération de résolution d’un probléme stabilisé est appelé itération ma-
jeure (Major Iteration). Chaque probléme stabilisé est résolu par un algorithme de
plans coupants. Les itérations de cet algorithme pour résoudre le probléme stabilisé
sont appelées itérations mineures (Minor Iterations). Il faut noter qu’un probleme
stabilisé peut étre résolu par une méthode de plans coupants stabilisée de type fais-

ceaux. Cependant, nous allons voir plus loin que dans le cas linéaire, ces problémes

1Quand le probleme pénalisé est résolu par l'algorithme de Kelley, la méthode peut étre vue
comme une méthode de type faisceaux dont les pas de montée (Serious Step) sont exécutés seule-
ment 3 l'optimalité des problémes pénalisés. Toutefois dans le cas ol les problémes stabilisés
sont non-linéaires et/ou difficiles, leur résolution par une méthode de plans coupants stabilisée de
type faisceaux serait d'un apport intéressant a l'efficacité de I’optimisation. En utilisant une seule
itération majeure, on obtient alors une méthode de plans coupants stabilisée de type faisceaux.
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pénalisés sont souvent plus faciles i résoudre que le probléeme original et que la
résolution par l'algorithme de Kelley moyennant quelques astuces d’implantation
est satisfaisante. Nous nous intéressons donc plus aux itérations majeures et a la

gestion des centres de stabilité.

2.2 Pénalisation du probléme dual

Nous définissons la fonction de pénalité et le probleme stabilisé pour une itération
majeure l. @/ est le centre de stabilité courant et T; est la région de confiance courante.
Nous supposons que T; est convexe fermé et que 4! € T;. Le probleme (D) sera

pénalisé par un terme —g'(u) ot ¢’ est une fonction convexe qui vérifie les propriétés

suivantes :
gd(u)=0, st veT (2.2)
gdu)>0, si ug¢T. -
Le probléme stabilisé a I'itération [, noté (SD;), est alors défini comme suit
Maz O(u) — ¢'(u) (2.3)

ueR™.

Notons d’abord que si © est bornée, et admet donc un ensemble de solutions op-
timales non-vide, le probléme stabilisé (SD;) admet un ensemble de solutions opti-
males également non-vide. Cependant, il est possible que (D) soit non-borné alors
que (SD;) ait un ensemble de solutions optimales non-vide. Nous ferons notre étude
en supposant que le probléme (D) est fini et que son ensemble des solutions opti-
males est non-vide. Pour un programme mathématique (P), nous notons sa valeur
optimale par v(P). Sous les hypothéses que nous venons d’énoncer, nous pouvons

affirmer que

w(SDy) < v(D). (2.4)
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Nous noterons également une solution optimale de (D) par u* et une solution opti-

male de (SD;) par u'.

2.3 Etude de la convergence

Chaque itération majeure de la méthode proposée correspond a la recherche
d’une direction de montée pour la fonction ©. La proposition suivante montre que
si la solution de (SD;) n'est pas dans la région de confiance, alors elle fournit une

direction de montée pour le probléme (D).

Proposition 2.1 Soit u! la solution optimale de (SD;). Si u' & Ty, alors
i) O(t) > (@)

i) d' = u' — i est une direction de montée pour ©.

Preuve:

i) Puisque u! est une solution optimale de (SD;), alors
o(d!) - ¢'(u') 2 O(&') - ¢'(@).

Comme @' € Tj et u ¢ T;, on a nécessairement g'(d') = 0 et g'(u') > 0.
Par conséquent,
o) > o).

{

ii) © étant concave, on déduit directement de i) que d' = u — ! est une direction

de montée pour la fonction O.g
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Pour les propositions qui suivent, ’hypothése que T; est de pleine dimension est

nécessaire. Elle peut étre représentée par la condition suivante :
int(Ty) # 0. (2.5)

L’intérét de cette condition est que toutes les directions possibles sont réalisables en
! pour (SD;). Une conséquence de cette condition est que pour tout u € int(T;), il
existe une boule centrée en u et incluse dans 7;. Et ainsi toutes les directions seront

admissibles en u.

La prochaine proposition permet de conclure a l'optimalité de u’ pour (D) s'il

est a 'intérieur de Tj.

Proposition 2.2 Soit u' la solution obtenue par l'optimisation de (SD;). Si u' €

int(T), alors u' est une solution optimale de (D).

Preuve: La condition (2.5) assure que int(7;) n’est pas vide. Supposons que ul €

int(T;). Comme g'(u) = 0 Yu € T;, alors u' maximise © sur T;.

De plus, on peut définir n > 0 tel que B(u!,n) C T;. Donc, u! maximise © sur
B(u!,n). On en déduit que u! est un maximum local de ©. Cette derniére étant

{

concave, ©' maximise © sur R™. g

La proposition suivante traite le cas ol u' est sur la frontiére de T;.

Proposition 2.3 Supposons que la solution optimale u! obtenue par l'optimisation
de (SDy) est sur la frontiére de T;. Alors, l'une des deuz assertions suivantes est

vrae :
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i) O(uf) > O(i) et d* = u! — @ est une direction de montée pour (D).
i) Ou!) = O(i) et tout u appartenant au segment (4',u') est une solution

optimale de (D).

Preuve: Soit u' la solution optimale obtenue par la résolution de (SD;). Supposons
que u appartient 2 la frontiére de T;, c’est-a-dire que u' € T; — int(T;). Sachant que

v(SD;) < u(D) et que g'(#&') = ¢g'(u') =0, on peut écrire
o) > 0(d).

Le cas i) est trivial & montrer. Nous supposons donc que ©(u!) = ©(&'). Par

{

conséquent, u' et @ maximisent © sur T;. Donc, & maximise © sur B(i@,p) et

est une solution optimale de (D).

Sachant que O est concave, Va € [0, 1]
O(at + (1 — a)u) > aO(@") + (1 - a)e(!) = v(SDy) = v(D).

Donc, tout point du segment (&, u') est aussi une solution optimale de (D). g

Ces deux proposition affirment que soit u! est optimal soit qu'il définit une di-
rection de montée pour (D). La proposition qui suit examine ce qui se passe quand

T; contient une solution optimale de (D).

Proposition 2.4 Si T; contient une solution optimale u* de (D), alors v(SDy) =

v(D) et toute solution optimale u' de (SDy) est optimale pour (D) et vérifie ul e T,

Preuve: Sachant que v(SD;) < v(D) et que u* € Ty, on conclut que v(SD;) =

‘ O(u*) - ¢'(u) = v(D).
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De plus tout u ¢ T; vérifie O(u) — ¢'(u) < O(u) < O(u*). D'olt toute solution

optimale de (SD;) sera dans T; et sera optimale pour (D). g

Ce résultat permet d’affirmer que si la région de confiance ne contient pas de
solution optimale, la résolution du probléme stabilisé détermine une direction de
montée pour le probléme (D). Par contre, si la région de confiance contient une
solution optimale différente de @', on ne peut pas conclure & l'optimalité de u! apres
la résolution de (SD;). La proposition suivante affirme que la résolution du probleme
stabilisé (SDy.1) défini autour du centre de stabilisation 4'+! = u' permet de conclure

a l'optimalité de u'*! pour (D).

Proposition 2.5 Supposons que T; contient une solution optimale u* de (D) et sout

u! la solution optimale obtenue par la résolution de (SDy).

La résolution de (SDyy,) défini autour de i+ = u' produit une solution utt qui
vérifie

i) soit u'*! € int(Ty),

ii) soit u*! est sur la frontiére de Ty et O(u't') = B(a'*1).

Dans les deuz cas, on peut conclure i l'optimalité de u'+! pour (D).

Preuve: L'hypothése que T; contient une solution optimale de (D) permet d’affir-
mer (proposition 2.4) que ¢! est une solution optimale de (D) et que u! € T;. Puisque
le probleme (SD;; ) est défini autour d’une solution optimale de (D), d’apres la pro-

position 2.4, O(ult!) = O(a!*!) et u'tl € Ty

Si u'*! € int(T}), la proposition 2.2 permet de conclure & I'optimalité de u'*!

pour (D).
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Si u'*! est sur la frontiére de Tj, le fait que O(u!*!) = ©(#!*!) permet de conclure

a l'optimalité de u'*! pour (D) (proposition 2.3 ii)).g

L’intérét de cette proposition est qu’elle traduit I'aptitude de l'algorithme a trou-
ver une solution optimale de (D) en au plus 2 itérations majeures si la région de

confiance contient une solution optimale de (D).

Nous sommes donc en possession de tous les éléments nécessaires pour écrire un

algorithme qui converge vers une solution optimale de (D).

2.3.1 Algorithme

Nous donnons l'algorithme général pour la maximisation d’un fonction concave.
Nous discuterons apres des étapes non détaillées.
Etape 0 : Initialisation
Choisir un point initial #°, une région de confiance Ty (@° € int(To)) et une
fonction de pénalité ¢% [ =0
Calculer ©(°)

Etape 1 : [tération majeure
1.1 Résoudre (SDy)
u' € Argmaz{O©(u) — ¢'(u)}
1.2 Calculer ©(u!)
1.3 Si u! € int(Ty) ousi v € Ty — int(Ty) et O(u') = O(2'), u' est une solution
optimale pour (D); STOP.
Sinon, aller a 1’étape 2
Etape 2 : Déplacement du centre de stabilité

2.1 d' = u' — @ est une direction de montée pour (D)



2.2 Déterminer un pas oy >0
2.3 a* =a + ad.

2.4 Définir Tiy et g'+L. Aller a I'étape 1

A partir d'un point initial quelconque, une direction de montée est déterminée en
résolvant un probléme stabilisé autour du centre courant @‘. Si on ne peut conclure

a 'optimalité de u', le centre est alors déplacé dans la direction déterminée.

La convergence de 'algorithme est assurée par la condition suivante :

3p>0:V.,B@. p)CTy, (2.6)

Théoréme 2.1 S:
i) les problémes stabilisés (SD;) sont résolus ezactement d chaque étape 1.1 de
l'algorithme,
i1) la condition (2.6) est vérifiée et
i) le probléme (D) posséde une solution optimale finie,

alors

Ualgorithme, implanté avec a; = 1 a U'étape 2.3, converge vers une solution opti-

male de (D) en un nombre fini d’itérations (majeures).

Preuve: Nous prouvons le théoreme en deux étapes. D’abord, nous prouvons en a)
que la suite ©(#') converge vers la valeur optimale de (D). Ensuite, nous prouvons
la convergence finie en b).
a) Silalgorithme s’arréte aprés un nombre fini d'itérations majeures en 1.3, alors
il fournit une solution optimale de (D).
Considérons la suite ©(#!)(I = 1,2,...). D’aprés les propositions 2.1-2.3, cette

suite est strictement croissante (tant que l’algorithme ne s’arréte pas en 1.3).
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L’hypothese iii) permet d'affirmer que cette suite est bornée. Donc elle converge

vers une valeur finie notée ©. Si ©* est la valeur optimale de (D), alors
e <o
Définissons 1'ensemble de niveau
L={ueR™:0(u)=06}#0.
Pour un entier [ suffisamment grand et un certain @ € L,

d(zll, ) < p.

21

L’hypotheése ii) (i.e la condition (2.6)) permet d’écrire
u € intT;.

En utilisant la proposition 2.4 (et les précédentes), on peut affirmer que :
si @ n'est pas optimal pour (D) (i.e. © < ©*), alors 4'*! = u! calculé a I'étape
1.1 est tel que
o+ > o(a) = .
Ceci contredit le fait que la suite ©(@') est croissante et converge vers ©.
On en déduit que la suite ©(d') converge vers la valeur optimale de (D) ©".

b) Un raisonnement similaire avec l’ensemble de niveau
L*={ueR™:0(u)=0"}#0

conduit a l'existence d'un entier [ et de u* € L* (i.e. u* solution optimale de
(D)) tel que
d(ﬁ',u‘) < p,
et par conséquent
u* € int(Ty).
La proposition 2.5 assure alors que I'algorithme terminera au plus a l'itération

[ + 1 svec une solution optimale de (D).g
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La convergence finie de I’algorithme peut étre prouvée pour tout choix des pas
aq qui assure une augmentation stricte de la valeur de la fonction © (i.e. ©(d'*!) >
(). Ceci est vrai en particulier si a;1]0, 1], VI. Une variante d’intérét pratique de

la direction de déplacement choisie est étudiée au chapitre suivant.

2.3.2 Remarques

Conditions de convergence de 1’algorithme

La condition (2.6) est relativement forte pour assurer la convergence de l'algo-
rithme. Afin d’assurer la convergence finie, il suffit que 7; soit de pleine dimension
pour tout ! et que la convergence de la suite (©(d')); soit plus rapide que la conver-

gence du diametre des régions de confiance T; vers 0 (si c’est le cas).

D’autres conditions assurant la convergence de la suite (@'); (éventuellement en
un nombre infini d’itérations) vers une solution optimale de (D) existent dans [67]
et [20]. Remarquons également que la condition (2.6) peut étre liée a conditions sur
les pas de déplacements utilisées dans les méthodes procimales (voir par exemple

[15] et [51]).

Choix du point initial :

L’algorithme converge indépendemment du choix de @° et T en autant que @° €
int(Tp). Cependant en pratique, une bonne estimation d’une solution optimale est
d’une grande utilité pour l'efficacité de la méthode. Une telle estimation dépend gé-
néralement du probléme résolu. Nous verrons dans les prochains chapitres que ceci

peut jouer un role dans 'efficacité de ’'optimisation.



Choix du pas :

Un choix trivial pour o est la valeur 1. Le prochain centre de stabilité est alors
I'optimum obtenu pour (SD;). Il est également possible d’effectuer une recherche
linéaire pour le meilleur pas dans la direction d'. Autrement. toute valeur de ¢; €]0. 1]

assure une augmentation de 'objectif.

Résolution des problemes stabilisés :

Chaque probleme stabilisé est lui-méme un probléme de maximisation d une fonc-
tion concave. Mais, ce probleme pénalisé est supposément plus facile a résoudre grace
a la pénalité imposée. La pénalisation a un effet de restriction de I'espace des points
admissibles ce qui réduit le déplacement nécessaire pour atteindre l'optimalité. Le
choix de la fonction g' est déterminant pour ['efficacité de la résolution de (SDy). Ce
choix dépend bien siir de la fonction © et de la méthode de résolution utilisée. Le
probléme stabilisé est généralement résolu par une méthode de plans coupants. L'uti-
lisation d’une pénalité linéaire par morceaux permettra de résoudre un programme

linéaire a chaque itération mineure.

Résolution approximative :

Si la fonction © n'est pas affine par morceaux, la résolution du problemes sta-
bilisés produira des solutions approchées. Généralement, si on désire une solution
e—optimale du probléme original, les problémes stabilisés doivent étre résolus avec
une précision n << €. Mais, I’utilisation de régions de confiance de pleine dimension
permettrait de s'assurer que ’optimum d’un probléme stabilisé est a l'intérieur de la

région de confiance du probléme stabilisé suivant. Les problémes stabilisés pourront
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alors étre résolus avec une precision égale A la précision désirée pour la solution du
probléme original (i.e. n = €). Des résultats apparentés concernant les méthodes de
faisceaux proximales peuvent étre trouvés dans {50, 51]. Notons enfin que I'étude
de convergence dans ce cas peut étre faite en suivant les schémas des méthodes de

faisceaux généralisées ([20]).

Cas contraint :

Si le probléme a résoudre est contraint par u € Q2 convexe, la région de confiance
T; doit étre de méme dimension que Q. Notons qu'il n’est pas nécessaire que chaque
centre de stabilité appartienne & 'intérieur de Q2. Toutefois, si on veut se déplacer a
I'intérieur du domaine réalisable, il faut choisir &° pour qu'il soit a l'intérieur de
et que le pas a; soit choisi de fagon que le prochain centre 4'*! soit & l'intérieur de

Q. Un pas o; €]0, 1[, par exemple, permet de vérifier cette condition.

2.4 Maximisation d’une fonction concave affine par
morceaux

Dans le cas ot © est une fonction concave par morceaux (avec un nombre fini
de morceaux), la convergence finie de I'algorithme est assurée par le nombre fini de
morceaux de la fonction et par la résolution exacte des problémes stabilisés a chaque
itération. De plus, le cas linéaire présente beaucoup de particularités qui font que
les conditions requises pour la convergence de l'algorithme sont plus faibles. Nous
morceaux pour stabiliser ’algorithme de génération de colonnes pour la résolution

des programmes linéaires. L’utilisation de telle fonctions de pénalité permet de garder
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des problémes stabilisés linéaires dont la résolution par génération de colonnes est
plus facile que celle du probleme original. Les conditions sur le déplacement du centre
de stabilité sont plus souples et 'enrichissement de la direction de montée trouvée

est possible sans compromettre la convergence de l’algorithme.

La fonction de pénalité linéaire que nous proposons dans le prochain chapitre
est en fait une combinaison de la fonction utilisée dans la méthode Boz Step [61] et
de la fonction de norme linéaire proposée par Kim et al.95 [43]. La fonction de la

méthode Boz Step est la suivante

[0 s fu-idfe<B
gi(u) = {oo si Jlu-i'le > B,

alors que la fonction utilisée par Kim et al.est définie par
0 si u=14
gu) = { ;l;||u —dal, si u#d
La méthode utilise conjointement le concept de région de confiance autour du centre
de stabilité et I'idée de pénalisation de I’éloignement du centre courant. La figure 2.1
représente les trois fonctions de pénalité et montre comment le type de fonctions que
nous utilisons combine les fonction de pénalité de la méthode Boz Step et la méthode
de la norme linéaire. Notre fonction est différentiable autour du centre de stabilité
et représente une meilleure approximation extérieure de la norme euclidienne que
la fonction de la méthode Bozstep. La fonction de Kim et alest quant a elle une

approximation intérieure (localement).

Le chapitre suivant est consacré a I’étude compléte de la méthode définie par
une fonction linéaire & cinq morceaux. L’utilisation de cinq morceaux vise a mieux

approcher une pénalité quadratique.
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g(x)
—— Boz Step

e=a= Kimetal

Pénalité linéaire & 5 morceaux

Figure 2.1 - Stabilisation : Illustration du type de fonction de pénalité utilisée.

2.5 Conclusion

L’approche de stabilisation présentée dans ce chapitre une généralisation de I'idée
de l'algorithme du point proximal pour la maximisation d’une fonction concave.
L'idée est basée sur les concepts de région de confiance et de pénalisation. La région
de confiance correspond & un ensemble défini autour du centre de stabilité courant,
oll aucune pénalité n’est appliquée. A Dextérieur de cette région, une pénalité est
encourue. Le but est d’empecher le prochain centre de stabilité de trop s’éloigner
centre courant tout en procurant une certaine flexibilité a I'algorithme. La résolution
d’un probléme stabilisé correspond a une itération majeure (étape de montée). Cette
résolution est effectuée par une méthode de plans coupants. Les itérations de plans
coupants sont appelées itérations mineures. Notons enfin que la différence principale

avec I'approche de Kim et al.95 [43] est que dans cette derniére la région de confiance
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est réduite au singleton formé par le centre de stabilité. Dans notre cas, le fait que
la région de confiance soit de plus grande dimension peut donner de la flexibilité a
I'algorithme surtout dans le cas ou les problemes stabilisés sont résolus approxima-
tivement. Ce choix permet aussi d’assurer la convergence vers une solution primale
comme nous le verrons dans le chapitre suivant pour la résolution des programmes

linéaires par génération de colonnes.

La convergence de l'algorithme est étudiée sous la condition que la région de
confiance soit de pleine dimension. Ceci assure la convergence finie de 'algorithme
méme quand la fonction optimisée est non-polyédrale a condition que les problémes
stabilisés soient résolus exactement. Dans le cas contraint, la dimension doit étre
la méme que la dimension du domaine réalisable. Dans le cas linéaire (maximisa-
tion d’une fonction concave affine par morceaux sur un polyedre), la pénalisation
par une fonction affine par morceaux permet la convergence finie sans conditions
supplémentaires. Nous traitons le cas d’une pénalité linéaire a cinq morceaux dans
le chapitre suivant. L'étude peut étre généralisée a toute fonction de pénalité linéaire

par morceaux.



Chapitre 3

Stabilisation par une fonction de
pénalité linéaire par morceaux

Dans une procédure de génération de colonnes et dans l'algorithme de Kelley,
le probléeme maitre qu'il faut résoudre est un programme linéaire. Ce probleme est
généralement le résultat de la décomposition d'une certaine formulation dite origi-
nale. Le dual de ce probléme peut étre aussi obtenu par relaxation lagrangienne de
la méme formulation originale. Il correspond alors a la maximisation d’une fonction
concave linéaire par morceaux sur un polyédre. Les contraintes qui définissent ce

polyédre sont des colonnes du probleme primal.

Dans la suite de ce texte, nous utilisons une formulation générale pour un pro-
gramme linéaire sous forme matricielle. La matrice A est de dimension mx n, c € R"

et b € R™. Le probleme maitre primal est noté (P) et son dual est noté (D).

(P) (D)
Min Tz Maz bTr
Az =b sc{ ATr <c
s€q . >0

L’approche que nous développons dans ce chapitre s’applique & tout programme
linéaire. Cependant, elle est surtout utile dans le cas d’un programme linéaire qui
est difficile & résoudre. C’est souvent le cas des probléemes résolus par génération de
colonnes ot le nombre de colonnes est trés élevé et ou toutes ces colonnes ne peuvent

étre connues préalablement & la résolution du probleme.
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A chaque itération de génération de colonnes, un probléme maitre restreint est
résolu. Ce probléme est défini a I'aide d’une sous-matrice de A notée Ax (m X ng) ol
K est le numéro de I'itération courante de génération de colonnes. Les formulations

du probléme maitre restreint et de son dual sont alors les suivantes :

(Px) (Dk)
Min Tz Maz bTw
oo d AkT=1b sc{ Akr <c
¢ z20

Le probleme (P;) est une restriction de (P). La fonction objectif est la méme pour
les deux problémes alors que le domaine réalisable de (Px) est une restriction du
domaine réalisable de (P) : certaines colonnes de la matrice A ne sont pas prises en
compte dans la formulation de (Px). Par contre, le probleme (Dg) est une relazation
de (D) étant donné que seulement un sous-ensemble des contraintes de (D) sont
prises en compte. Aprés chaque résolution de (Pk}, on obtient une paire de solutions
optimales primale et duale (z%, 7%). £ est une solution réalisable pour le probleme
(P) alors que 7X ne lest pas pour (D), sauf & optimalité. c'z% fournit une borne
supérieure pour (P) qui décroit a chaque itération, alors que la borne inférieure
fournie par 7¥ peut croitre ou décroitre d’une itération de génération de colonnes a

'autre (cf. chapitre 2).

La méthode que nous proposons est un cas particulier de I'approche unifiée pré-
sentée au chapitre 2. Elle consiste & résoudre une suite de problémes dits stabilisés
jusqu’a la convergence de I'algorithme vers une paire de solutions optimales primale
et duale de la paire de problemes ((P), (D)). Chaque paire de problémes stabilisés
primal et dual est obtenue en pénalisant le dual (D) par une fonction concave linéaire
par morceaux. Il est important de noter des le début que la procédure de stabili-
sation prcposée ne modifie pas directement la résolution du probléme maitre res-
treint ou la résolution du sous-probléme comme les méthodes de faisceaux [37]. Elle

consiste & appliquer plusieurs fois la méme procédure de génération de colonnes a des
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problémes plus faciles dans le but de converger plus rapidement vers des solutions op-
timales des problémes primal et dual. Chaque résolution compléte des problémes sta-
bilisés est appelée itération majeure (Major Iteration). A Pintérieur d’une itération
majeure, plusieurs itérations de génération de colonnes sont nécessaires pour at-
teindre 'optimalité des problémes stabilisés. Ces itérations sont appelées itérations
mineures (Minor [terations). L'utilisation d'une fonction linéaire par morceaux per-
met de préserver la linéarité des probléemes résolus a chaque itération. La premiére
contribution importante de ce chapitre est la preuve d'un résultat puissant sous
des hypothéses assez faibles qui fournit une maniére simple de calculer une solu-
tion optimale primale de base pour tout programme linéaire connaissant un multi-
plicateur optimal dual. L'efficacité de cette technique, justifiée par des arguments
mathématiques, est vérifiée sur une instance de grande taille du probléme de tournées
de véhicules multi-dépots (MDVSP). L'analyse des solutions des probléemes stabi-
lisés établit ’amélioration de I'objectif dual a chaque itération majeure. Ceci assure
la convergence vers une solution optimale duale. L’optimalité primale est obtenue
grace au résultat mentionné ci-dessus. Ceci est di a l'utilisation d’une région de
confiance de pleine dimension autour des centres de stabilité. La convergence de
I'algorithme prouvée, nous discutons de quelques aspects de I'implantation. Nous
montrons également qu’il est possible d’enrichir la direction de montée par n'im-
porte qu’elle direction sans compromettre la convergence de l'algorithme sous des

conditions simples et assez faibles.

Nous commencons ce chapitre par la présentation des idées principales derriere
notre méthode et la définition de la fonction de pénalité proposée. Puis, nous étudions
les propriétés des problemes stabilisés en montrant leurs liens avec les problémes ori-
ginaux (P) et (D). Nous étudions ensuite le cas particulier ol une solution optimale
duale est connue. Par la suite, nous examinons les propriétés des solutions optimales

des problémes stabilisés, avant de présenter l'algorithme de stabilisation proposé



pour lequel nous étudions la convergence et I'implantation.

3.1 Pénalité linéaire a cinq morceaux

Vu l'instabilité observée dans la convergence des variables duales dans les algo-
rithmes de génération de colonnes et de Kelley (cf. chapitre 2), nous allons essayer
de guider I'évolution des variables duales afin d’assurer une convergence plus rapide.
Les idées principales derriére 'approche de stabilisation sont décrites ci-apres.

- Résoudre une suite de problémes stabilisés ((SF;), (SD:i)) dont les solutions
convergent vers des solutions optimales de (P) et de (D). Chaque itération [
(itération majeure) correspond a l'application d’une procédure de génération
de colonnes compléte qui permet de résoudre les problémes stabilisés.

- La paire de problémes stabilisés est formée par le primal et le dual obtenus
suite a la pénalisation du dual (D). La pénalité, linéaire par morceaux. est
construite autour d'une estimation d’une solution optimale duale (centre de
stabilisation ou de stabilité)!. Ceci permet d’éviter les oscillations et les grands
déplacements inutiles et nuisibles dans 'espace dual vu que I'information dis-
ponible n’est pas forcément pertinente loin du centre de stabilisation.

- S’assurer de ’amélioration de la qualité de la solution duale apres la résolution
du probléme stabilisé. Le nouveau centre de stabilisation présente une crois-
sance stricte de I'objectif de (D) par rapport au précédent. Ainsi, la pénalité
sera placée autour d’'un meilleur ensemble de multiplicateurs de (P).

- La pénalité linéaire assure que les problémes stabilisés sont des programmes
linéaires et on n'introduit pas ainsi une difficulté supplémentaire dans la ré-

solution de ces problémes.

IL’appelation centre de stabilité est utilisée dans les méthodes de faisceaux. C'est cette appela-
tion que nous utiliserons en général quoique nous pensons que l’appelation centre de stabilisation

‘ est aussi convenable.
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v(P)
bT*J cmcmeemana .--.&_
Itération majeure 3
bT &3
Itération majeure 2
6T #!

Itération majeure 1

Itérations de génération de colonnes

Figure 3.1 - Evolution de l'objectif primal et des bornes inférieures.

- Les problemes pénalisés sont plus faciles a résoudre que le probléeme original.
La pénalisation entraine que la résolution du dual se fait sur un domaine “plus
restreint” et que la solution obtenue n’est pas trés loin du centre de stabilisa-
tion. Le primal est ainsi une relaxation de (P).

La figure 3.1 montre I’évolution de I’objectif primal (des problémes stabilisés) dans
un processus a trois itérations majeures. La valeur optimale de chaque itération est
une borne inférieure sur la valeur optimale de (P). La figure illustre la croissance

stricte de cette borne avec les itérations majeures.

3.1.1 Fonction de pénalité

Nous présentons la fonction de pénalité utilisée avec un indice ! qui correspond

a litération majeure courante. La fonction, notée —g'(m) (x = [m1,...,Tm]7), est
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définie par :
g'(m) =) _di(m) (3.1)
=1
ou
(Cl-,i + 5‘—,;‘)(75.,;‘ -m) si —oo<m < ‘Yl_,,-
et (8L —m) siy;<m<e,
g(m) = 0 sid,<m<é, (3.2)
e i(m = 8%.) si 6 <m <Y

(it )m—,) sivh,<m< +oo

Afin que la définition de la fonction soit cohérente, on doit avoir

v, 28 26 >4 (3.3)
Pour que, ¢ (i = 1,...,m) soit concave, les conditions suivantes doivent étre
vérifiées :
{ 1
>2e_>0
TIi 2, (34)
¢, =2¢e, >0

Nous verrons plus tard que les fonctions les plus utiles vérifient en plus la condition

§L < 8.

La région de confiance correspond au pavé défini par les vecteurs &' et &', c’est-

a-dire l'ensemble {r € R™ : ¢ <7< 61} Ainsi pour chaque composante ,,

on tolére sans pénalité les valeurs a l'intérieur de 'intervalle [6’_ i Jf,,‘,-]. Une pénalité

unitaire égale a —eﬂ,'i(respectivement —E‘_‘i) est appliquée dans 'intervalle (6%, vl
(respectivement [y* ;6" ;]). Pour m; > 4 ; (respectivement m; < 7L;), la pénalité

est —(ef; + Cﬂ_'i) (respectivement —(g*_; + ¢ ).

La figure 3.2 illustre la fonction g!(m) autour de la composante 7! du centre de

stabilisation #!.



—(e+ +¢4+)

' —g(~)

Figure 3.2 - Fonction de pénalité linéaire a cinq morceaux.

3.1.2 Formulation des problémes stabilisés

Le probléeme dual pénalisé ((SD;)) est formulé comme suit :
Maz bTm - g'(m) (3.5)
sc{ ATr <c

La fonction g'(m) étant linéaire par morceaux et convexe, (SD;) peut étre écrit

comme un programme linéaire. Son dual est appelé probléeme primal stabilisé (SF).



Les formulations des deux problémes sont les suivantes :

(SP)

Min Tz —~Tz7 = 6Ty +6Ty+ + 41z
Az —z -y +yt+zt=b

27 SC Yy Seo

yt <ep, 2zt <G
z,z7,y",y%,zt >0

sC

(SDv)

Maz bTr — (Tv= = eTu™ = Tut — (Tt
ATr <c

. —u <n<éd.+ut
y-—v T <+t
v™,u",ut, vt >0.

SC

Notons que (SP,) a 4m variables et 4m contraintes de borne de plus que (P) et que

(SD,) a 4m variables et 4m contraintes de plus que (D).

Nous étudions maintenant le comportement des probléemes stabilisés par rapport

au comportement des problemes (P) et (D).

Relations entre (P) et (SP): Si (P) est réalisable et fini, (SF) l'est aussi. Par

contre, (SP)) peut étre réalisable et fini alors que (P) est non-réalisable.

Si (SP,) est non-borné, alors (P) est forcément non-borné. La réciproque est

vraie si £} + ¢ < oo.

Si (SP,) est non-réalisable, (P) est nécessairement non-réalisable. Par contre. (P)

peut étre non-réalisable alors que (SP) est réalisable.
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Relations entre (D) et (SD;) : Le domaine réalisable de (SD;) est le méme
que celui de (D) (voir la formulation (3.5) de (SD;)). Donc, (D) est réalisable si et
seulement si (SD;) est réalisable.

De plus, si (SD;) est non-borné, (D) est aussi non-borné. Le contraire n’est pas

forcément vrai. Le résultat dépend des parameétres de la pénalité.

Simin{c" ;+¢ ;} > mazi{—bi: b; < 0} et min{e', ;+C4;} = mazi{b; : b; > 0}.

alors méme si (D) est non-borné, (SD;) est réalisable et fini.

Si maz{el +C.,} < min{=b; : b; < 0} et maz;{c', ,+¢} ,} < min,{b; : b; > 0},

alors si (D) est non-borné, (SD;) 'est aussi.

3.2 Propriétés des problemes stabilisés

Dans cette section, nous supposons que (P) et (D) sont réalisables et finis. Nous

noterons par ' et = des solutions optimales de (SD;) et (SF;) respectivement.

3.2.1 Analyse duale

Il est clair que le probléme (SD;) differe du probleme (D) seulement par la
pénalisation de I'objectif. Nous notons par v(P) la valeur optimale d'un probléme

(P) donné. On peut alors écrire I'inégalité
v(P) =v(D) > v(SDy).
De plus toute solution réalisable = de (SD;) est réalisable pour (D) et vérifie

x> bTr — g(m).



76

Donc, si 7! est une solution optimale de (SD;), alors b7’ est une borne inférieure
sur v(D) = v(P) meilleure que v(SD;) = bTn' — g'(x'). En résumé, nous avons la

relation suivante :

v(P) = v(D) > b¥x' > v(SDy) = v(SP). (3.6)

Le résultat suivant montre que sous certaines conditions relativement faibles sur

la fonction ¢', les deux probléemes (D) et (SD;) ont la méme valeur optimale.

Proposition 3.1 : Soit ©* une solution optimale de (D) qui vérifie &' < w* < 4.
Alors (D) et (SD;) ont la méme valeur optimale, i.e. v(D) = v(SD;). De plus, toute

solution optimale de (SD,) est aussi optimale pour (D).

Preuve: D’aprés la relation (3.6), on a v(D) > v(SD;). De plus , nous savons
qu’une solution optimale de (SD;) w est réalisable pour (D). Etant donné que 7* €
[6°,8%], ¢'(=*) = 0. Donc, v(D) = bTn* = v(SD;). De méme, toutes les solutions

optimales de (SD;) étant réalisables pour (D), elles sont optimales pour (D). g

Le résultat est aussi vrai si on sait que D*, I'ensemble des solutions optimales
duales de (D), est inclu dans la boite [6°, 4% ]. Mais dans ce cas, on peut avoir un
résultat plus fort en élargissant les bornes du pavé de fagon a englober toutes les

solutions duales optimales.

Proposition 3.2 : Si D* €6, 8. [, alors les solutions optimales de (SDy) et (SP)

sont optimales rour (D) et (P).
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Preuve: Soient (7!, v+, u*t!, u=* v™!) une solution optimale de (SD;) ainsi oue
(2. 2+, y*!, 44, z7*) une solution optimale de (SP). D’aprés la proposition précé-

dente, on sait que 7* est une solution optimale de (D). En plus, puisque D* CJé"..d%[.
& <nt<dt,

et vl =yt = 4y~ = y~! = 0; par complémentarité, on déduit que =+ = y*! =

y~t = z=t = 0. Donc, z* est réalisable pour (P) et en est par conséquent une solution
optimale.g
Un cas particulier de cette proposition correspond a avoir 6 = . = —Al

o =4 =+Met el = = +M, avec M — oo. En pratique, ceci correspond
a pénaliser la non-réalisabilité par des coiits trés élevés (méthode du grand A).
Mais, quoique cette méthode est fréquemment utilisée pour la vérification de la
réalisabilité d’un probléme, elle n’est point efficace pour la résolution des problémes

a 'optimalité.

3.2.2 Analyse primale

Le domaine réalisable de (SF;) est une relaxation de celui de (P). En effet,
on permet une relaxation limitée par les valeurs de €',e', ¢\ et ¢\. Par contre,
la fonction objectif de (SP) peut étre supérieure ou inférieure a celle de (P). Si
¥ > 0,8 >0, <0et+, <0, l'objectif est relaxé et la valeur optimale de
(SD;) est en général strictement inférieure & celle de (P). Elle fournit une borne

! n’est généralement pas réalisable pour (P). Si

inférieure et la solution obtenue z
v <0,6 <0,6, >0et 7L > 0, 'objectif est pénalisé, ce qui ne permet pas de

conclure directement vu que le domaine est relaxé.

La formulation du probleme primal (SF,) utilise des variables qui modélisent la
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non-réalisabilité. Notre étude va donc se baser sur l'analyse de la non-réalisabilité

du probleme.

Nous formulons d’abord le lagrangien de (P) sous une forme particuliére qui
sera utile 4 I'analyse des solutions de (SP) et (SD;).? En effet, nous verrons que la

formulation de (SP,) revient & pénaliser le lagrangien de (P) autour de {z : b— Az =

0}.
Le lagrangien du probléeme (P) est défini par
L(z;7m)=cTr+ 77 (b— Az), >0, 7 € R™

On peut I'écrire de maniere équivalente comme suit :

l:(r,z*,y*,y“,z“,.)—c z+rl(zt+yt -y —27)
b— A:r—**-f-y -y -z (3.7)
z,ztyt,y~,27 >0, 7 € R™.

En utilisant cette notation, on peut écrire la relation suivante qui traduit le fait que
pour x* solution optimale de (P) et 7* solution optimale de (D), (z*,#") est un

point de selle pour le lagrangien du probléme (P) :

£(z*,0,0,0,0;7) < £(z*,0,0,0,0; ") < L(z, 2", y*,y~,27;7")
t+yt—y " —z27=b-Ar (3.8)
Yr>0 2t>0, y*20, y= 20, 2~ >0,r e R™

Et par conséquent on peut écrire

b'n* = maz {£(z*,0,0,0,0;) : m€R™}
Tz = min {L(z,z%,yT,y7,277%) @ T2yt YT, 2T 20, (3.9)
b-Arx =zt +yt —y —z"}

2Nous faisons la méme analyse que celle faite au chapitre 2 mais nous modélisons la non-
réalisabilité par 4 variables.
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Notons que pour 7 € R, le probleme (SF;) peut s'écrire

Min L(z,zt,yty~,27;7)+
(v —®@) Tzt + (8 —7)Ty* +
(7 —6L) Ty~ + (7 —2L)T 2"
Az —z -y +yT+:zt=0b
27 <G,y <e-
yt <eg 2t < (¢
z,z7,y .yt 2t 20
Il est intéressant de noter que pour @ 6]5'_,65,[, 'objectif correspond a une pénali-
sation de L(z,z*,y*,y~, 27 %) lorsque Az # b. De plus, ceci est vrai pour tous les

multiplicateurs dans la boite ]6*, &, .

Le prochain théoréme établit I'’équivalence entre la résolution des paires de pro-
blemes ((P), (D)) et ((SP),(SD:)) sous certaines conditions assez faibles sur la

fonction de stabilisation g'.

d . . - , - vy . -l -l
Théoreme 3.1 : Si la fonction g' vérifie les conditions (3.3) et (3.4) et 0_ < 0%,
et si 3n* solution optimale de (D) qui vérifie & < w* < &%, alors toute solution
optimale de (SB) (2!, =+ ytt y~t 27 vérifie :H =yt =y~ = 27 = 0; ce qui

implique que z' est une solution optimale de (P).

Preuve: Soit z* une solution optimale de (P). La relation (3.9) stipule que

Tz =min {L(z,z%,y",y",27557%): =zt yt,y,27 20,
b—Ar=:t+yt -y~ —-:z"}

Soit maintenant (z!, !, y*¢,y*, z~*) une solution optimale de (SF,); on a :
y e,y p

et
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Par conséquent,

c'z" = £(2",0,0,0,0;7%) < L{z, =",y y~! 27 7).
Or,
v(SP) = L(z, 2, y*, y“ z=hw)
+(h — a4 (8 — 7)) Ty + (n = 6) Ty~ + (70 = AT

Donc, si 4 < 6% < 7* < &, < 4% et sachant que (z*,0,0.0,0) est une solution

réalisable de (SF;), on a les relations suivantes :
v(P) = cTz* = £(2°,0,0,0,0;7") < L(z', =+, y*, y~! z7hw!) < v(SR) < T2,
Il en résulte que v(P) = v(SF) et
(A = 7) Tt 4+ (8L — a1 Ty+ + (n - S )Ty~ + (=" =4 )Tz~ =0
Donc si v <6 <7 < o4 <+, alors (Y, — %) > (8, —7*) > Oet (7" — Ay >
(m* = 6L) > 0.

On peut en déduire que zH =y*! =y~ =71 =0.

Par conséquent z‘ est une solution optimale réalisable pour (P). g

3.2.3 Remarques importantes

Afin de mieux comprendre la preuve présentée et de voir graphiquement les
implications de la formulation de (SP), nous faisons les remarques suivantes :

1. Comme nous l’avons noté dans la preuve, la fonction objectif de (SP;) peut

s’écrire comme

L(x,z+,y+,y",z';7r)+[('yf,_-7r)Tz++(6‘+—7r)Ty++(ﬂ'—5l) y~+(r—7)T7]
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et ce pour tout 7 € R™. Sachant que z*,y*,y~ et 2~ représentent une mesure
de la non-réalisabilité de z (b— Az = y* —y~+2+-2z7),si7L <6 <7 <&, <
7., le terme entre crochets représente alors une pénalité convexe de la non-
réalisabilité de z. C’est-a-dire que si b — Az # 0, les valeurs correspondantes
(> 0) de z*,y*,y~ et z~ sont prises en compte dans le colt, en plus du

lagrangien. La pénalité correspondante est illustrée par la figure 3.3.

(F=8_)+(r—=9_) e =)+ (14 —7)

(= 8_) (64 — x)
b- Ar

Figure 3.3 - Pénalité ajoutée au lagrangien de (P) autour de 7 €]0_, d.|.

2. Les modifications résultantes sur (SF;) peuvent aussi étre interprétées en fonc-
tion des solutions optimales duales. Pour une solution optimale 7* de (D). I'en-
semble des solutions z pour lesquelles L(z, 2%, y*,y~, z7;7%) = b7n" = v(P)
est I'intersection de {z : Tz = bTn*} avec {z : 7*T(b — Ar) = 0}. La figure
3.4 montre bien que si T n'est pas réalisable (b — Az # 0), une quantité stric-
tement positive est ajoutée a bTm* = v(P). Ainsi, un r vérifiant ¢Tx = b77" et
7*T(b — Az) = 0 ne peut étre optimal pour (SP) s'il n’est pas réalisable pour
(P).

3. Il est important de noter que le résultat du théoréme 3.1 est vrai si un #*
quelconque est dans |8’ , 8" [. C’est-a-dire que c'est vrai méme si le polyédre

des solutions optimales duales n’est pas borné.
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(x —d) 4 (e =y | Er TR Oe =)

(#* —46_) (b, - =)

T x*

| ) ) b~ Az
1 T o T l
—(e- +<-) —-€- €4+ € +Co

[ ATR‘)T: =0

Figure 3.4 - Quantité ajoutée a bT 7" en fonction de la réalisabilité avec(> 0) ou sans
stabilisation(= 0) pour les z tels que 7*7(b— Az) = 0 et Tz = bTn".

Idéalement, il faut localiser ou estimer n'importe quelle solution optimale duale
et on pourra obtenir une solution primale optimale (réalisable) pour (P).

4. Contrairement & la résolution d’un probléme par génération de colonnes qui

prend en considération tout l'ensemble des réels afin d’y trouver un multi-
plicateur optimal, la résolution de (SP,) revient & considérer seulement les
multiplicateurs qui sont dans [6*,8"]. Le multiplicateur trouvé (optimal pour
(SP,)), s'il n’est pas optimal pour (P), est meilleur que les multiplicateurs qui
sont dans [, ']
Si 6,6 [ contient une solution optimale 7 de (D), la résolution de (SF)
revient & faire tout le processus de relaxation lagrangienne en pénalisant les
multiplicateurs qui sont trop loin de 7* (& I'extérieur de l'intervalle [6L,8L]) et
fournira une solution primale optimale de (P).

5. La résolution de la paire de problémes ((SP,), (SD;)) devrait étre plus facile
que celle de ((P), (D)) pour deux raisons principales. La premiére est que la
pénalisation du dual empéche les grands déplacements et oscillations inutiles

des multiplicateurs durant la résolution en plus de restreindre I’ensemble des
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multiplicateurs admissibles. La deuxiéme est la facilité de résolution de (SF,)
vu que l'objectif descend plus vite étant donné qu’on tolére la non-réalisabilité.

Ceci est illustré par la figure 3.5.

v .
y=ch—1_l' -8 _y~ + 8Tyt -7’:"’

v=ecTs

b~ AX

~(eL + (o) = S €. e +Ch

Figure 3.5 - Effet de la non-réalisabilité sur I'objectif du primal c¢”z dans le cas ol
v->0,0_>0,6,>0et vy, >0.

6 Il faut noter que notre approche de stabilisation devrait étre utilisée pour
des problémes ayant un grand nombre de contraintes. Donc si le nombre de
contraintes m est élevé, on risque de se trouver a ajouter un nombre assez
élevé de colonnes, soit 4m. Ceci peut diminuer 'efficacité de la résolution du
simplexe durant la génération de colonnes. Il sera donc important de trouver

un moyen de limiter le nombre de colonnes ajoutées.

3.3 Cas ou une solution duale optimale est connue

Dans la présente section, nous montrons d’abord comment la résolution de (SF)

est trées avantageuse par rapport a la résolution de (P) quand on connait une so-
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lution optimale duale. Ceci constitue la premiére motivation pour l'algorithme de

stabilisation que nous présenterons par la suite.

Soit 7* une solution optimale de (D). On choisit les paramétres de la fonction g’
de maniere a avoir
o <t <.
Ainsi, & l'optimalité de (SP), on obtient une paire de solutions (z', 7') optimales

pour (P) et (D) respectivement (Théoreme 3.1).

Regardons d’abord le cas ou la fonction g’ consiste juste & imposer que 7 soit
dans la boite [, 8% ]. Ceci revient & avoir des pénalités e = ¢*. = ¢} =€}, — +oc.
La proposition suivante donne des arguments qui plaident en faveur de l'efficacité

de la résolution de (SD,) ainsi défini par génération de colonnes.

Proposition 3.3 Supposons que g' est définie autour de ©* de fagon que :
oL < <8

Lol =gl =&, - +oo.

E_
Alors,
- Pendant le processus de génération de colonnes, seules les colonnes qui coupent
la boite 16", 8", [ sont générées.
- La solution primale de départ est x = 0, y7 =b; si b; > 0, et y_ = —b; st
b; <0.
- Les multiplicateurs sont définis par m; = 6" ; sib; <0 et m; = & sibi > 0.
- La valeur de lobjectif au départ est
m
> d b - D 6L be
i:b,>0 itb,<0
- Le saut d’optimalité initial est

Y@ —mnbl+ Y (w - 8L )bl

i:b;>0 1:b;<0
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Ainsi, on peut dire que plus la boite est petite plus la résolution est efficace. On peut
également réduire graduellement la largeur de la boite, au fur et a mesure que les

colonnes sont générées.

Remarque : Le comportement est le méme pour le cas ot la fonction g’ posséde
cinq morceaux, avec £_; = €, ; > |bi| (i = 1,...,m). On peut aussi répartir les
quantités |b;| de fagon a avoir &' ; + ¢L; > |bi| et €\ ; + ¢4 ; > |b|. Enfin, une fois

que la réalisabilité est atteinte, ces bornes n'ont plus aucun effet.

Cette derniere approche permet d’éliminer graduellement les variables de sta-
bilisation. Ceci est d’autant plus utile que dans le cas général, on ne connait pas
une solution optimale duale. On doit alors utiliser une fonction de pénalisation plus

souple afin de pouvoir avancer plus loin quand c’est vraiment pertinent.

Nous allons vérifier ceci sur une instance d’un probléme de tournées de véhicules
pour lequel la résolution de la relaxation linéaire est trés coliteuse en temps de
calcul. La description détaillée de ce probléme se trouve dans le chapitre consacreé a

'application de la présente approche de stabilisation sur ce méme probléme.

Les tests sont effectués sur une instance du probléme de tournées de véhicules
multi-dépots (MDVSP)[75]. Les tests utilisent une fonction g' linéaire & cinq mor-
ceaux. Nous avons utilisé une instance a 800 clients (contraintes) et 4 dépots. Le
tableau 3.1 présente les résultats obtenus par une procédure de génération de co-
lonnes standard (qui s’est avérée trés efficace pour la majorité de problemes résolus
avec un nombre de contraintes réduit : < 300), noté standard. Pour chacune des

versions stabilisées, nous donnons la largeur de la boite [6_,d,). La ligne Sol Opt
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donne la valeur optimale du probleme résolu alors que la colonne Sol Init donne
la solution initiale avec laquelle commence la procédure de génération de colonnes.
cpu est le temps de calcul total en secondes, itr GC est le nombre d’itérations de
génération de colonnes nécessaires pour atteindre I'optimum, col SP est le nombre
total de colonnes générées, et itr MP est le nombre total d’itérations du simplexe

effectuées. Les résultats sont aussi présentés en pourcentage.

Tableau 3.1 - Stabilisation : résultats obtenus quand 7* est connu.

Méthode Sol Init | cpu(s) | itr GC | col SP | itr MP
standard 800000000 | 4178.4 509 | 37579 | 926161
0 —0_ |

200.0 2035590.5 | 835.5 119 9368 | 279155
20.0 1927590.5 | 117.9 35 2789 | 40599
2.0 1915710.5 52.0 20 1430 8744
0.2 1915710.5 47.5 19 1333 8630

Sol. Opt. 1915589.5
I 0, —é_ || Saut initial (%) [ (%)] (%) (%) (%)
200.0 6.26 20.0 23.4 24.9 30.1
20.0 0.63 2.8 6.9 7.4 4.4
2.0 0.063 1.2 3.9 3.8 0.9
0.2 0.0063 1.1 3.7 3.5 0.9

Le tableau montre trés clairement |'effet bénéfique que peut avoir la connaissance
d’information trés précise sur une solution optimale du dual (D) pour 'obtention
d’une solution optimale primale de (P). Notons que dans la formulation de (SF)
il n’est point question de 7*. Seulement les valeurs de §' et &’ sont nécessaires.
Donc si on peut encadrer assez précisément une solution optimale duale, I'obtention
d’une solution optimale primale devient facile. Dans 'exemple précédent, une boite
de +100 autour d'une solution optimale accélére le temps de calcul par un facteur

de 5 alors que le facteur atteint presque 100 pour une boite a £0.1.
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3.4 Analyse des solutions des problémes stabilisés
dans le cas général

Considérons maintenant une fonction g' quelconque et soit (zf, z*4, y*, y=4, 27)
et (m!, vt utt u~t v™*) les solutions optimales obtenues pour (SP;) et (SDy).
Nous allons étudier les propriétés de ces solutions ainsi que les informations qu’elles
peuvent fournir. Notre étude sera basée sur la solution optimale #' de (SD;) obtenue
a la fin de l'itération majeure [. Dépendamment de la position de =’ par rapport a
la boite [6', 6% ], nous déduirons soit I'optimalité des solutions z* et 7' pour (P) et

(D), soit 'amélioration stricte de la borne inférieure b7 n'.

La premiére proposition traite du cas trivial ot z! est réalisable pour (P).

Proposition 3.4 : Si zt! = ytt =y~ =71 = 0, alors z' et 7 sont des solutions

optimales pour (P) et (D) respectivement.

Preuve: Si z* =yt = y=! = 27! = 0, alors 7' est réalisable pour (P). De
plus, les contraintes de bornes supérieures sur les variables de stabilisation sont
satisfaites strictement. Par complémentarité, v** = ut! = y= = v/ = 0. D'ott =
est réalisable pour (D). Ainsi cTz! = bT7' et on déduit que z' et w' sont optimales

pour (P) et (D), respectivement. g

La proposition qui suit concerne un cas idéal pour la solution w!, c’est-a-dire

!
quand §* < 7l < &3

Proposition 3.5 : Si ! est tel que 8 < w < 8%, alors ©' et z* sont des solutions

3Cette proposition a été montrée pour le cas d’une pénalité a trois morceaux dans {61] et [64].
Le principe est le méme dans notre cas.
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optimales pour (D) et (P) respectivement.

Preuve: Sid <nl< i, vH =ut! =u™! = v~ =0 et les contraintes reliant

mt vt utt uf v~ ne sont pas actives. Par la complémentarité linéaire, 2 =

] +

yt! =y~ = 27! = 0. Par conséquent, =’ et 7' sont réalisablables pour (P) et (D)

et vérifient cTz! = bTxt. Le résultat en découle directement.a

Si une ou plusieurs composantes de 7 sont sur la frontiére de la boite [d_.d,].
alors les composantes correspondantes de z+,y+!, y™!, z=! peuvent ne pas étre
nulles. Dans ce cas, z* n’est pas réalisable pour (P). Par contre, 7* peut étre optimal

pour (D). L'exemple suivant en donne une illustration.

Exemple 3.1 Supposons quee, > b > 0 et [0_,d,] touche le polyédre des solutions
optimales en 6. 8, est alors la solution optimale obtenue pour (D). Dans ce cas. la
solution primale de (SP,) consistant ¢ avoir y** = b et les autres variables nulles est
optimale pour (SP,), mais z* = 0 n’est pas réalisable pour (P). Cependant, d'apreés
le théoréme 3.1, aucune solution optimale duale ne peut se trouver a lintérieur de

]6—7 6+['.

Regardons maintenant ce qu’on peut tirer comme information des solutions ob-
tenues pour (SP) et (SD;) si les conditions des propositions précédentes ne sont
pas vérifiées. Une premiére information est que b” 7! est une borne inférieure sur la

valeur optimale v(P) = v(D).

Proposition 3.6 : Si n! est une solution optimale de (SD;), alors
b'n! < v(D) = v* = v(P),

c’est-a-dire que bT ! est une borne inférieure sur v(P).
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Preuve: Le résultat découle directement du fait que 7* est réalisable pour (D).g

Le théoréme suivant résume les résultats précédents et montre que si @' n'est pas
un multiplicateur optimal pour (P), il est un meilleur multiplicateur pour (P) que

tous les 7 €]6", 64 .

Théoréme 3.2 : Soit & €)6',4%[ réalisable pour (D) et 7! la solution optimale
obtenue pour (SD;). Alors
i) siw! €]6',8L], alors ' est une solution optimale de (D).
ii) siw' ¢ [0L,8L], alors
bTn! > b7,
iii) si @t € [84, 0] mais w* ¢]6", 8, [ (au moins une composante de 7' est sur la
frontiére), alors ezactement l'une des deuzx propositions sutvantes est vrate :
- 7! est optimal pour (D).
- bTal > 677
i) sin! ¢J6L, 8L, alors

|t = 7|l = A= Min{A_,A,} >0

ou
A, = MinZ {&, ; - 7},
A_ = Min™ {7 - &L}

Preuve:
i) Le résultat découle directement de la proposition 3.5.

ii) 7 est un maximum de (SD;), donc
b nt + g'(xt) > b7 7 + ¢'(7).
Mais # € [8*,6%], donc ¢'(#) = 0. Dot

Tl + g'(x') > b7
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Or, n* ¢ [8*,6%]. Donc, au moins une composante 7, est & I'extérieur de I'in-

tervalle |8 ;, 6% ;[. Ce qui veut dire que

- b

gi(m}) < 0.

Par conséquent,
() <o.

D’ol on peut déduire que
bTrt > o7
iii) On sait que g'(z!) = ¢'(#) = 0 et bTx' > bT#. L’hypothese = € [¢*..d%] veut
dire que la résolution de ((SP),(SD;)) est équivalente a I'utilisation d'une
pénalité infinie & I'extérieur de la boite [6', 8] (restriction du dual a la boite
[6L,8L).
Pour démontrer les résultats escomptés, nous séparons les deux cas suivants :
-casl:bTnl >bT#
Rien a démontrer.
- cas2: bTnt =bT#
Notons d’abord que dans ce cas, b (vecteur coit du dual) est orthogonal au
segment [7, 7] C {r: ATm < c}.
Etant donné la convexité du polyedre {r : ATr < ¢}, scit le segment (7, 7]
est sur une face optimale, soit il existe une direction de montée a partir d’'un
point du segment vers l'intérieur du polyédre. Dans ce dernier cas et vu que
6L < & < 8., il existerait un point réalisable dans |64, 6% [ meilleur que =*. Ce
qui contredit I'optimalité de #! pour (SDy).
On conclut alors que 7! et # sont des solutions optimales pour (D).
iv) Le résultat découle directement de la condition de iv).
-
Supposons qu’a I'itération majeure /,on a construit la fonction de pénalisation g

autour du centre de stabilisation #'. Si m! n’est pas un multiplicateur optimal, on a
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nécessairement une croissance stricte de b7 x.

De plus, on s’assure qu'il y a eu un déplacement d’au moins
Al = Min{A', AL} >0

ol
AL = Minf, (8, - 71,
Al = Min,-";l{frf- — 6’_".}.

On a maintenant en possession tous les résultats qu'il faut pour écrire un algo-
rithme de stabilisation et prouver sa convergence dans le cadre d’une procédure de

génération de colonnes.

3.5 Algorithme

L’algorithme donné ci-dessous représente la forme la plus simple de 'approche
de stabilisation proposée. Nous y ferons référence par Ag. Certaines étapes peuvent
paraitre triviales. Cependant elles sont incluses par souci de complétion et dans le
but de pouvoir expliquer leurs détails et les modifications apportées dans la suite du
chapitre. Nous ne présentons pas d’algorithme générique vu que mis & part quelques

précisions spécifiées pour chaque étape, 'algorithme serait le méme que Ay.

L’algorithme effectue deux types d’itérations : majeures et mineures. Une itéra-
tion majeure [ consiste a résoudre la paire de problemes ((SP,), (SD;)) a I'optimalité.
Les itérations mineures K sont les itérations de génération de colonnes nécessaires
pour effectuer une itération majeure (. A la fin d’une itération majeure [, si r‘ est
réalisable pour (P), 'optimalité est atteinte et l'algorithme s’arréte. L’algorithme

s’arréte aussi si 'un des problémes (SP;) ou (SD,) est non-réalisable ou non-borné.
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Si les deux problémes sont réalisables et finis, mais que ’optimalité n’est pas atteinte,
P

le centre se stabilisation ainsi que la fonction de pénalisation sont mis a jour.

Algorithme Ay

0. Initialisation : Définir #° et g'(x); { = 0.
1. Itération majeure [

Résoudre ((SP), (SD;)) par génération de colonnes :

1.1 itération mineure K :
Résoudre le K éme probléme maitre restreint (RSP, k)
— les solutions obtenues sont (g%, 74K,

1.2 test d’arrét de l'itération mineure & :
Résoudre le sous-probléme avec le multiplicateur ="

Si aucune colonne de coit réduit négatif n’est générée, Retourner ' et '.
Aller a 2.

1.3 mise a jour du probléme maitre restreint :
Ajouter les colonnes générées au probléme maitre restreint — (RSF x+1).
Aller a 1.1.

2. Test d’arrét de 'algorithme
2.1 Si (SP,) et (SD;) sont réalisables et finis, alors

Si 2+ = y+l =y~ = 27! =0, ' et #! sont optimales pour (P) et (D). STOP
Sinon, Aller a 3.
2.2 Sinon, (P) ou (D) est non-réalisable ou non-borné.
3. Déplacement et mise a jour de la pénalité
3.1 7+l =7
3.2 Définir g'*!.
3.3 Aller a 1.
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3.5.1 Etude de la convergence

Nous allons traiter les quatre cas possibles :
i) (P) et (D) réalisables et finis

ii) (P) non-réalisable et (D) non-borné

iii) (P) et (D) non-réalisables

iv) (P) non-borné et (D) non-réalisable.

i) Dans ce cas (D) posséde au moins une solution optimale 7* telle que b <

+00.

Nous reprenons la condition (2.6) ici :
3p > 0: V., B(&,p) C [6",64] (3.10)

En suivant le méme raisonnement que la preuve du théoréme 2.1, on prouve
que sous I'hypotheése i) et la condition (3.10), l'algorithme converge vers une
solution optimale duale 7* aprés un nombre fini d’itérations majeures.

Nous aurons, au bout d’un nombre fini d'itérations majeures [,
7" = @'l < p.
Sachant que B(#, p) € [6%.,6%], on peut affirmer que
&<t < 8.

Et d’aprés le théoréeme 3.1, cette itération retournera £t et 7 qui sont des
solutions optimales pour (P) et (D), respectivement.

ii) Si (P) est non-réalisable et (D) est non-borné, (SP,) et (SD;) peuvent étre
réalisables et finis. Nous montrons dans ce qui suit que si la suite de fonctions

g' vérifie une certaine condition, I’algorithme pourra conclure correctement que

‘ (P) est non-réalisable et (D) est non-borné.
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Nous traitons le cas ot1 b # [0,...,0]T. Le cas trivial b = [0,....0]T ne pose
aucun probléme de ce genre, car le probléeme {P) est alors réalisable et (D) est
alors borné.

Soit a; (respectivement 3;) (i = 1,...,m) la limite de (¢ ; + ¢ ;) (respective-
ment (¢, ; + ¢} ;)) quand | — oo.

Supposons que
a; < —b,', b,‘ <0
Bi < +bi, b; > 0.

Apres un nombre fini d’itérations majeures, nous aurons

(3.11)

e+ ¢l < —bi, b <0,
e+ <+bi, bi>0.

Alors, (D) non-borné = (SD;) non-borné. (SP) est alors non-réalisable.
Ceci permet a ’algorithme de conclure correctement que (P) est non-réalisable

et que (D) est non-borné.

iii) Si (P) et (D) sont non-réalisables, le premiére itération majeure donnera

(SD;) non-réalisable. Donc, soit que (SF;) est non-réalisable soit qu'il est non-
borné. Le deuxiéme cas voudrait dire que (P) est aussi non-borné. La premiére
itération majeure donnera que (SF,) et (SD;) sont non-réalisables.

On conclut alors que (P) et (D) sont tous les deux non-réalisables.

iv) Si (P) est non-borné, il en est de méme pour (SF,). Si (D) est non-réalisable,

(SDy) Vest aussi. La premiére itération majeure permettra alors de conclure

que (P) est non-borné et que (D) est non-réalisable.

Le théoréme suivant résume l'analyse de la convergence de I'algorithme qui vient

d’étre présenté.

Théoréme 3.3 :
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i) Si (D) et (P) sont réalisables et finis, et si la condition (3.10) est vértfice,
alors l'algorithme Ay termine en 2.1 avec des solutions optimales pour (P) et
(D).

ii) Si (P) est non-réalisable et (D) est non-borné et sileso; et 3 (i =1.....m)
vérifient (3.11), alors Ualgorithme Ao termine en 2.2 avec la conclusion que
(P) est non-réalisable et (D) est non-borné.

ui) Si (P) et (D) sont non-réalisables, alors l'algorithme termine apreés la pre-
miére itération majeure avec la conclusion que (P) et (D) sont non-réalisables.

w) Si (P) est non-réalisable et (D) est non-borné, alors l'algorithme termine
aprés la premiére itération majeure & l'étape 2.2 avec la conclusion que (P)

est non-réalisable et que (D) est non-borné.

3.5.2 Stratégies de mise a jour de la fonction de pénalité

Toutes les stratégies vérifiant les conditions du théoréme 3.3 assurent la conver-
gence de l'algorithme. Cependant, la question de savoir si (P) est réalisable ne
présente aucune difficulté. Les problémes résolus sont réalisables et finis. En fait,
la non-réalisabilité du probléme (P) est détectée facilement aprés un petit nombre
d’itérations de génération de colonnes (phase I). Donc, I'implantation de I'algorithme
doit tenir compte surtout du cas i). Plusieurs stratégies de mise a jour de g' sont pos-
sibles. On peut se baser sur des idées intuitives et suivre 'une des lignes directrices
suivantes :

- garder la fonction de pénalisation constante autour des centres de stabilité ;

- modifier ¢’ indépendemment de 7’;

- modifier ¢' en fonction de la position de 7! par rapport a la région de confiance.
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Il ne faut pas négliger I'importance du probléme & résoudre dans 1'élaboration de la
stratégie. Nous verrons un exemple quand nous aborderons I’application au probléeme

de tournées de véhicules multi-dépots.

Dans I'algorithme proposé, le nouveau centre de stabilisation #/*! est toujours la
solution optimale 7! de (SD;). Cependant, on tient compte seulement des parametres
de la fonction ¢'*! dans l'itération majeure suivante. En effet, ce qui est important
est que 7* soit a l'intérieur de la boite ], .. Cette derniére condition peut n’étre
imposée qu’'a partir d'un certain nombre d’itérations majeures. Ceci est vrai si on
remplace 1'étape 3.3 de Ag par

3.1) #*! = 2l + ad,

ol d; est une direction de déplacement et a; > 0 est le pas de déplacement

correspondant. Ces suites doivent cependant vérifier
Ha,d,“ — 0, [ — oc. (3.12)

Nous donnons quelques exemples de directions intéressantes :
-di=beta — 0.

L_#let g — 0.

-di=m
- dy=(n' = 7Yt et o — 0.
-di=b-Axt et oy — 0.

~d=(b-Az")* et oy — 0.

Ceci nous permet d’énoncer le théoreme suivant :

Théoréme 3.4 : Si on remplace l’étape 3.1 par 3.1’ dans l'algorithme Ao, en res-
pectant la condition (3.12), alors les résultats de convergence sont les mémes que

pour le théoréme 3.5.
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3.5.3 Quelques aspects de I'implantation

Initialisation :

L’algorithme converge quelque soit le vecteur initial #°. Méme si #° n’est pas

réalisable, 7! sera réalisable. Et pour tout [ > 1, 7! sera réalisable.

Le choix d’un vecteur initial assez proche de 'optimum permet d’accélérer la
résolution de maniére significative. Par contre, un mauvais choix nécessiterait plus

d’itérations majeures et donc plus de temps de calcul.

Un choix trivial est le vecteur nul (0, ... ,0)T. Dans certains cas, ce vecteur est
réalisable pour (D). Il peut constituer une assez bonne approximation initiale comme
tout vecteur réalisable de (D). Il faut cependant noter que pour I'objectif, il présente
une erreur relative de 100%, et pour des problémes ol l'ordre de l'objectif est grand,

il est généralement trés loin de la face optimale.

Si on peut obtenir une estimation, réalisable ou non, d'un optimum de (D) par
une approche heuristique, la résolution peut étre accélérée significativement. On peut
aussi obtenir juste un encadrement heuristique, vu que la valeur de #% n’intervient

pas dans l'expression de ¢°.

Arrét prématuré du processus de génération de colonnes :

Vu que la définition de g' autour de #' utilise une boite d'intérieur non vide. il
n'est pas nécessaire de se rendre exactement jusqu'a l'optimalité de ((SF), (SDi))
avant la fin de 'algorithme, notament lors des premiéres itérations majeures. La

premiére itération majeure en particulier peut nécessiter beaucoup d’itérations mi-
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neures et de temps de calcul. Il serait bénéfique de fixer un nombre maximum
d’itérations mineures par itération majeure. Les derniéres itérations majeures pren-
nent trés peu d’itérations mineures et donc, I’algorithme convergera en pratique avec
cette régle. On peut également imposer un nombre maximum d’itérations mineures

pour les premiéres itérations majeures seulement.

Gestion des colonnes de stabilisation :

La procédure de stabilisation proposée vise a résoudre efficacement des problemes
ayant un nombre élevé m de contraintes. (SP;) aurait alors 4m colonnes de stabili-
sation présentes dans le probléme maitre restreint. Ceci peut allourdir la résolution
du simplexe durant les itérations mineures. Plusieurs idées peuvent étre exploitées
pour éviter ces inconvénients éventuels.

- utilisation d’un seul cété de la pénalité : Pour une itération majeure [.
si la composante m augmente, la pénalisation du coté gauche est “inutile”.
Seule la pénalisation du c6té droit a influencé 'optimum de (SD;). Ainsi si on
utilise seulement un c6té de la pénalité, on diminura le nombre de colonnes de
stabilisation. Ceci peut étre implanté en vérifiant si la composante «! évolue
dans le méme sens pour un certain nombre d’itérations majeures successives.

- élimination des colonnes non-utilisées : Si 4 la fin d’une itération majeure
I, ! €]6L ;, 8. ], on peut estimer que la composante est stabilisée, au moins
momentanément, et éliminer toutes les variables de stabilisation associées. Bien
slir si on remarque une grande variation dans la valeur de n! dans les itérations
suivantes, la stabilisation serait réintroduite dans le probleme. Ceci peut étre
appliqué pour les autres intervalles, mais il faut tenir compte des valeurs des
pénalités correspondantes.

- élimination des variables de stabilisation inutilisées : Nous avons noté

que le nombre de variables de stabilisation utilisées dans les solutions optimales
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des (SP,) décroit strictement avec les itérations majeures . Ce qui suggere
d’éliminer toutes ou certaines colonnes non-utilisées par la solution optimale

de (SP).

Mise a jour de la fonction g :

Une modification de la fonction g' modifie le probleme (SF) qui est résolu a
chaque itération majeure. La réoptimisation du probléme maitre restreint pourrait

étre couteuse en temps de calcul.

Pour ce qui est des coiits des colonnes de stabilisation, ils sont définis autour du
nouveau centre de stabilisation. Ils seront donc modifiés a chaque itération majeure.
Concernant les bornes supérieures sur les colonnes de stabilisation, on a le choix de

les modifier ou non.

3.6 Conclusion

Nous avons proposé une approche de stabilisation des algorithmes de génération
de colonnes et de Kelley a 'aide d’une fonction de pénalité linéaire par morceaux
du dual. Ceci permet de préserver la linéarité des probléemes a résoudre a chaque
itération de génération de colonnes. Nous résolvons une suite de problémes stabilisés

dont les solutions convergent vers une paire de solutions primale et duale.

Nous avons d’abord montré que si le pavé de confiance contient strictement un
multiplicateur optimal, la résolution des problémes stabilisés est équivalente a la
résolution des problémes originaux. L’application de ce résultat a la résolution d’une

instance de MDVSP par génération de colonnes a démontré une trés grande effi-
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cacité. Cette efficacité était prévisible grace aux résultats théoriques liés au saut
d’optimalité initial et aux colonnes générées durant cette résolution. Ensuite, nous
avons montré que la résolution des probléemes stabilisés fournit un vecteur de mul-
tiplicateurs meilleur que le précédent, s'il n'est pas optimal. Ceci nous a permis de
prouver la convergence de 1’algorithme que nous avons proposé, indépendemment du
vecteur initial de multiplicateurs. Il est important de noter que le fait que la région
de confiance contient le centre de stabilité dans son intérieur est indispensable pour
la convergence de la méthode vers une solution primale du probléme original. Nous
avons également expliqué pourquoi la résolution des problémes stabilisés devrait étre
plus facile que celle des problémes originaux. Enfin, nous avons proposé plusieurs
stratégies de mise a jour de la fonction de pénalité a chaque itération majeure qui as-
surent la convergence de I’algorithme ainsi que plusieurs techniques d’accélération.
En particulier, nous avons montré comment la direction de montée peut étre en-
richie par n'importe qu'elle autre direction sans compromettre la convergence de
I'algorithme. Cependant, il faut choisir ces directions de fagon qui tend a augmenter
I'objectif dual ou & se rapprocher d’une solution optimale pour espérer accélérer la

convergence de l'algorithme en pratique.

L'application de I’approche de stabilisation proposée au probléme de tournées de
véhicules multi-dépots (MDVSP) fera I'objet d’un chapitre dans la suite de la these.
Nous y montrerons |'apport bénéfique de la stabilisation pour une résolution plus

efficace de ce probléme.
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Chapitre 4

Inégalités valides sur le polyedre
optimal dual

L’approche que nous traitons dans ce chapitre se base sur la meéme idée que les
inégalités valides utilisées pour les problémes & variables entieres. L'objectif de la
résolution du probléeme est de trouver un point du polyédre des solutions optimales
duales (avec une solution optimale primale bien sir). Ainsi, si nous connaissons
une inégalité valide sur ce polyédre ou un sous-ensemble non-vide de ce polyedre,
on peut I'ajouter & la formulation du dual tout en garantissant l’obtention d’une
solution optimale du dual original et de la méme valeur optimale. Ceci permettra de
restreindre le domaine dual et par conséquent, réduira I’ensemble des multiplicateurs
possibles durant la génération de colonnes. Cependant, la réalisabilité primale n’est
plus garantie vu que le domaine du primal est relaxé. Une difficulté importante
qui doit étre surmontée par une méthode utilisant des inégalités valides optimales-
duales est de trouver une facon d’assurer ’obtention d’une solution optimale primale

de base.

Valério de Carvalho 2000 [88] a proposé 'utilisation de coupes duales (Dual Cuts)
afin d’accélérer la résolution du probléme de découpe unidimentionnelle (CSP). La
notion de validité des coupes est déduite des travaux de Gilmore et Gomory 60 (28]
sur le méme probléeme. Elle est introduite d’un point de vue primal et aucun lien
n’est fait avec le polyedre des solutions optimales duales. De plus, contrairement a ce

qu’affirme 1'auteur, le fait d’avoir le second membre des contraintes nul ne garantit
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pas la valeur optimale pour les problémes originaux et les problemes modifiés. Nous

reviendrons sur ces travaux quand nous traiterons la stabilisation de CSP.

Nous analysons deux cas de figure possibles des inégalités valides sur le polyédre
optimal dual. Le premier correspond a la restriction du polyédre des solutions op-
timales duales. C’est le cas ol I'on sait qu'il existe au moins une solution optimale
duale qui vérifie certaines contraintes. Ces inégalités sont appelées inégalités par-
tiellement valides duales-optimales (Dual-Optimal Partial Valid Inequalities). Nous
les modélisons par des contraintes linéaires d’égalité. Le deuxiéme cas de figure cor-
respond a une meilleure connaissance du probleme. Les contraintes ajoutées sont
vérifées par tout le polyédre des solutions optimales duales. Elles sont appelées
inégalités valides duales-optimales (Dual-Optimal Valid Inequalities). Nous utili-
serons des contraintes d’inégalités, et ainsi nous aurons traité les deux types de

contraintes linéaires possibles.

Nous analysons d’abord l'effet de I'ajout des contraintes dans le dual sur la
résolution du probléme dual et sur la résolution du primal. Pour le premier type
d’inégalités valides, nous montrons la convergence vers une solution optimale duale
et proposons une méthode générale pour calculer une solution optimale primale de
base. Cette méthode peut étre appliqué aussi au deuxiéme type de contraintes. Nous
proposons aussi une modification des contraintes ajoutées au dual qui profite de
la qualité de l'information duale disponible afin d’obtenir directement une solution
optimale primale de base. La fin du chapitre est consacrée a la discussion de 1'im-

plantation des contraintes afin de garantir une résolution la plus efficace possible.



103

4.1 Inégalités partiellement valides duales-opti-
males

Nous considérons la formulation d'un programme linéaire avec contraintes d’é-
galité et son dual. Ceci correspond & l'application au probléme de découpe binaire
(BCSP) que nous traitons dans les chapitres suivants. Nous redéfinissons les formu-
lations considérées ici par souci de complétion. Le primal sera noté (P) et le dual

(D).

Il s’agit d'un cas particulier de la fonction de pénalité définie dans 'approche
unifiée. La région de confiance sera définie a |'aide d'égalités vérifiées par certaines
solutions optimales duales. L'objectif de la stabilisation est alors de guider ou de
pousser les multiplicateurs vers cet ensemble de solutions optimales duales. Ceci
permettra d'éviter certaines oscillations dans I'évolution des muitiplicateurs duaux
durant la génération de colonnes, en plus de restreintdre |'espace des solutions duales
admissibles. L’approche sera présentée dans une version trés simple par souci de
clarté. Plus loin dans le chapitre, nous reviendrons sur les aspects plus complexes

reliés a I'implantation.

Nous commencons d’abord par la présentation détaillée de cette approche de
stabilisation ainsi que 'effet sur les problemes (P) et (D). Ensuite, nous étudions la
convergence du processus de génération de colonnes vers des solutions des problémes

originaux.

Dans certains problemes modélisés par (P), certaines solutions optimales de (D)
ont des propriétés particuliéres. L’idée que nous proposons ici consiste a utiliser
ces propriétés afin d’accélérer le processus de convergence vers des solutions opti-

males primale et duale. Nous modélisons ces propriétés sous la forme de contraintes
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d’égalité. D’autres formes sont, bien sir, possibles mais, cela dépend des propriétés

considérés et des problémes étudiés.

L’approche de stabilisation proposée consiste a ajouter ces contraintes d’égalité
dans la formulation du dual (D). Ceci se traduira alors par la restriction du domaine
de (D). Mais, il est important de noter que I’ensemble de solutions optimales de
(D) peut aussi étre restreint. Nous présentons cette approche sous forme statique.
c’est-a-dire que toutes les contraintes seront ajoutées & la formulation du dual au

début de la résolution. Les problémes stabilisés seront notés (SP) et (SD).

4.1.1 Effets sur les probléemes originaux

Supposons que les contraintes que nous considérons sont définies a l'aide d’une

matrice E et d’un vecteur colonne e de la maniére suivante :
ETr =e.
La fonction de pénalisation correspondante est définie par
(1) = 0, ETr=e
g - +o00, ETn #e

Les formulations résultantes pour les problemes stabilisés sont données par :

(SP) (SD)
Min Tz + €Ty Maz b
Ai +Ey=b sc{ ATsec
sc >0 F'r=e

Si les contraintes ajoutées sont trop générales, le domaine dual ne changera pas.
Afin que le domaine dual soit restreint, les contraintes ajoutées doivent étre vérifiées

‘ seulement par un sous-ensemble des solutions duales. Dans le cas de contraintes
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vérifiées par un sous-ensemble des solutions optimales duales, ’ensemble des solu-
tions optimales ainsi que le domaine réalisable seront restreints. Ces inégalités sont
appelées inégalités partiellement valides duales-optimales. Il est important de no-
ter qu’il n'est pas sir que de telles inégalités restreignent ’ensemble des solutions

optimales duales. En effet, c’est I'information disponible qui est incompléte.

La figure 4.1 montre de quelle maniére le domaine réalisable dual est restreint sur
un exemple dans R3. Le polyedre représenté est ’ensemble des solutions optimales
duales. L'hyperplan qui supporte la contrainte ajoutée coupe le domaine dual et

aussi le polyedre des solutions optimales.

Domaine réalisable de D

w2

%
%%’

Polyédre optimp

Domaine résultant : {r : ATr<emy-m <0

Figure 4.1 - Restriction du domaine réalisable dual par des contraintes d’égalité
valides sur un sous-ensemble du polyédre optimal dual.

La figure 4.2 montre comment la contrainte

Ty = To
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coupe le polyédre des solutions optimales D*. Ce polyédre est représenté dans le

plan 77, dans le but d’avoir une meilleure représentation.

%32
Polyedre optimal réduit : D* N {r : 7y — 3 = 0}

Polyédre optimpl

my

Figure 4.2 - Restriction du polyédre optimal dual par des contraintes d’égalité valides
sur un sous-ensemble des solutions optimales duales.

Il faut noter également que puisque les contraintes ajoutées restreignent l'en-
semble des solutions duales optimales des problemes maitres, I’ensemble des multi-

plicateurs possibles durant la génération de colonnes est également restreint.

L’ajout de ces contraintes au dual résulte en l'ajout de variables (colonnes sta-
tiques) au méme nombre que ces contraintes dans le primal. Ces variables peuvent
étre positives ou négatives et leur coit est donné par e. Ceci peut affecter la réa-
lisabilité de la solution primale obtenue a la fin de la résolution de (SP) et (SD).

Nous reviendrons sur ce point dans la section suivante.
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4.1.2 Etude de la convergence

Nous considérons la résolution des problémes stabilisés (SP) et (SD). Nous sup-
posons évidemment que 'ensemble {1 € R™ : ATr < ¢, ETn = e} n'est pas vide.
En fait, cet ensemble, par la définition de la matrice E et du vecteur e, contient
au moins une solution optimale de (D). Ceci sous-entend aussi que (P) et (D) sont

réalisables et finis.

La premiére proposition énonce le résultat trivial qui dit que si les contraintes
ajoutées sont vérifées par au moins une solution optimale, le dual original et le dual

stabilisé ont la méme valeur optimale.

Proposition 4.1 : Si l'ensemble D* N {n : ETr = e} # 0, alors (D) et (SD) ont la

méme valeur optimale et toute solution optimale de (SD) est optimale pour (D). g

Les propositions qui suivent montrent des cas particuliers ol la solution optimale

obtenue pour (SP) fournit aussi une solution optimale au probléme (P).

Proposition 4.2 : i la solution optimale (Z*,y*) obtenue pour (SP) vérifiey® =0,

alors 7* est une solution optimale pour (P). [ |

Proposition 4.3 : Soit (Z*,y") la solution optimale obtenue pour (SP). Si on peut
obtenir & partir de cette solution un vecteur z* réalisable pour (P) dont le cott vérifie

cTz* < cT# + eTy*, alors * est une solution optimale pour (P).
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Preuve: Notons d’abord que toute solution réalisable pour (P) est aussi réalisable
pour (SP). Donc
T +ely* < u(P).
Puisque z* est réalisable pour (P) et cTz* < cT&* + eTy*, on déduit que
cTz* <v(P).

et par conséquent, z* est optimal pour (P).g

La proposition qui suit résume les précédentes et donne un cas général ol la

résolution de (SP) et (SD) fournit des solutions optimales pour (P) et (D).

Proposition 4.4 : Si la matrice E et le vecteur e vérifient
i) Uensemble des solutions optimales de (D) vérifiant ETm = e n'est pas vide
ii) de toute solution (Z,y) réalisable pour (SD) on peut déduire une solution
réalisable pour (P) de moindre coiit (i.e. Tz + €Ty > c’z),!
alors, en notant (*,y*) et #* les solutions optimales obtenues pour (SP) et (SD),
on peut affirmer que :
i) ©* est une solution optimale de (D)

i) la solution =* obtenue de (Z*,y") suivant i) est optimale pour (P). s

La deuxieme condition du probléme parait forte, mais en pratique pour certains
problémes, les contraintes ajoutées au dual se traduisent dans le primal par des
colonnes trés particuliéres et qui ont un lien trés étroit avec les colonnes générées

par P'oracle. Nous verrons ceci dans le cas des problemes BCSP et CSP dans les

chapitres qui suivront.

1V .de Carvalho utilise une telle condition pour montrer la validité des coupes duales qu'il propose
pour CSP (88].
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Si cette condition n’est pas vérifiée, il est possible de retrouver une solution

optimale primale a l'aide du théoréme 3.1. Il suffit alors de construire une boite

trés petite autour de la solution optimale duale obtenue et de résoudre le probleme

restreint correspondant.

Si 7* est la solution optimale obtenue pour (SD) et n € R™.n > 0 raisonnable-

ment petit, le nouveau primal stabilisé et son dual sont formulés comme suit :

{Ai’— “+yt=
sc o>

Maz bT#

{ AT <e¢
sc

(NSP)
Min Tz —(F =)y~ + (7 +0)Ty*

F_p<FL<A +0

Le théoréme qui suit énonce le fait que la résolution de la paire ((NSP),(NSD))

fournit une solution optimale de (P).

Théoréme 4.1 : Soit (z*,y*) et ©* les solutions optimales obtenues pour (SP) et

(SD). Et soit (Z*,y~*,y**) une solution optimale de (NSP).

Alors, y=* =y** =0 et * est optimale (de base) pour (P).

Preuve: Comme 7 > 0, la stabilisation correspond & une fonction de pénalisation

du type introduit dans le chapitre 3. De plus, 7* qui est une solution optimale de (D)

(d’apres la proposition 4.1) est strictement compris dans la boite utilisée. D’aprés le

théoreme 3.1, toute solution optimale de (NS P), en particulier Z*, est optimale (de

base) pour (P).g
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Cette deuxiéme phase est trés efficace (cf. chapitre 5), d’autant plus que le
probléme maitre est déja riche en colonnes générées lors de la résolution de (SP) et

(SD).

Nous reviendrons a la gestion dynamique des contraintes ajoutées ainsi que leur
interprétation plus loin dans le chapitre apres la présentation du cas ou les contraintes

ajoutées sont vérifiées par toutes les solutions optimales duales.

4.2 Inégalités valides duales-optimales

L’approche de stabilisation proposée dans cette section est trés proche de la
précédente. Elle est moins générale dans le sens ol elle vise tout I'espace dual opti-
mal au lieu d’un sous-ensemble. Elle s’applique quand !'information duale disponible
est plus compléte. Vu que ces inégalités sont vérifiées par toutes les solutions opti-
males duales, elles seront appelées inégalités valides duales-optimales. Ces inégalités
peuvent étre traitées de la méme maniére que les égalités dans la section précédente.
Cependant, dans la présente approche, nous profitons de la complétion de I'informa-
tion afin d'obtenir une solution optimale primale directement. Nous redéfinissons les

problémes primal et dual (P) et (D) de la méme maniére.

(P) (D)
Min Iz Maz bTrw
Az = sc{ ATr <c
€Y 230

L’approche de stabilisation sera présentée de maniére simple et les aspects plus
complexes reliés & I'implantation seront discutés a la fin de la présentation. Nous
commencerons par la présentation de l'idée de stabilisation et de son effet sur les

formulations de (P) et (D). Ensuite, les résultats de convergence sont présentés.
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Le polyédre des solutions optimales duales est généralement petit par rapport au
polyedre des solutions réalisables. La résolution du probléme se fait sur ce dernier et

peut prendre en considération des multiplicateurs trés éloignés du polyedre optimal.

Si on dispose d’inégalités valides sur le polyédre optimal, mais qui ne sont pas
vérifiés par une partie du domaine réalisable, on peut limiter le nombre de multipli-
cateurs intermédiaires possibles dans une procédure de génération de colonnes. Et

plus ces inégalités sont précises (serrées), plus on évite des itérations inutiles.

Ainsi, si on peut prouver que certaines contraintes sont satisfaites par I'ensemble
des solutions duales optimales et qu’elles ne sont pas redondantes, on peut les ajouter
4 la formulation du dual afin de stabiliser ’évolution des multiplicateurs duaux

pendant la génération de colonnes.

4.2.1 Effets sur les problémes originaux

Soient la matrice E (m x q) et le vecteur e € R? qui définissent les & contraintes
qu’on désire ajouter a la formulation du dual. Nous supposons que toute solution
optimale duale 7 vérifie

ETrn <e,
et que ces contraintes ne sont pas redondantes par rapport aux contraintes définies
par ATm < c. L’ajout de ces contraintes au dual revient a utiliser une pénalité linéaire

constante définie par la fonction suivante :

(1) = 0, ETr <e
g - +oc, sinon.



Les formulations résultantes pour les problémes stabilisés sont données par :

(SP) (5D)
g T~
Min ¢Ti + €Ty Ma:z;-b 7‘—
Af+Ey=b Arsec
sc{ . y= ¢\ ETi <e
z,y20

Nous supposons que ces contraintes réduisent le domaine réalisable dual de maniére
assez significative car dans le cas contraire elles seraient inutiles, voire nuisibles. Ceci
est le cas si ces contraintes sont des faces ou des facettes du domaine réalisable et/ou

du polyedre des solutions optimales duales.

La figure 4.3 montre un exemple ol la contrainte 73 — 4m < 0 est vérifiée par
toutes les solutions optimales et coupe le domaine dual considérablement. On voit
clairement comment l'ensemble des solutions réalisables duales est réduit, alors que le
polyédre optimal dual est intact. La coupe ajoutée permet aussi de réduire 'ensemble

des multiplicateurs duaux possibles durant la génération de colonnes.

L’ajout de ces contraintes au dual se traduit par 'ajout de colonnes au primal.
Ces colonnes, dont les variables correspondantes doivent étre non-négatives, joueront
le méme role que dans la section précédente. Elles donnent plus de flexibilité au

primal et, en général, leur présence peut affecter la réalisabilité du primal.

Enfin il est important de noter que la résolution se fait en une seule itération
majeure(cf. chapitre 3). C'est-a-dire qu’il s’agit de résoudre les probléemes stabilisés

par génération de colonnes.
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x3

w3 = 472

Domaine réalisable de D

&

™2

Domaine résultant : {r: ATx < ¢, m3 — 473 < 0)

Figure 4.3 - Restriction du domaine réalisable a l'aide une inégalité valides sur le
polyedre optimal dual.

4.2.2 Etude de la convergence

Nous supposons que (P) et (D) sont réalisables et finis. Nous notons D* le
polyedre des solutions optimales de (D). Une hypothése principale est que I'ensemble
{r € R™: ATxr < ¢, ETw < e} soit non-vide. Ainsi, (SD) sera réalisable et fini,
de méme que (SP). Cette hypothése découle directement du fait que toute solution

optimale duale vérifie ETm < e.

Nous énoncons d’abord une proposition sur I'égalité de la valeur optimale des
problémes originaux et celle des problémes stabilisés dans le cas ou 'ensemble des

contraintes ajoutées au dual est tel que précisé plus haut.

Proposition 4.5 : Si D* C {r € R™ : ETx < e}, alors (D) et (SD) ont le méme
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ensemble de solutions optimales et la méme valeur optimale.g

Ainsi, si les contraintes ajoutées sont des inégalités valides sur le polyedre des
solutions optimales duales D*, la résolution de la paire ((SP), (SD)) fournit la méme
valeur optimale que la résolution de la paire ((P),(D)). De plus, les solutions opti-

males 7* de (SD) sont toutes des solutions optimales pour (D) et vice versa.

Par contre, la solution z* de (SP) n’est pas forcément réalisable pour (P), et par
conséquent, peut ne pas étre une solution optimale. Mais, si y* est tel que (Z°,y")
est une solution optimale de (SP), on a I'égalité

Tz +eTy" = v(P).
De plus, toute solution réalisable £ de (P) est réalisable pour (SP). Donc.
Tz +efy* <z

On peut alors énoncer la proposition suivante qui affirme que si Z* est réalisable

pour (P), il en est une solution optimale.

Proposition 4.6 : Soit (*,y*) la solution optimale obtenue pour (SP). Siy" =0,

alors * est une solution optimale pour (P). ]

La proposition qui suit donne un cas particulier ol on peut obtenir une solution
optimale de (P) & partir d'une solution optimale de (SP). Les mémes arguments qui

ont précédé la proposition précédente permettent de prouver cette proposition.

Proposition 4.7 : Soit (z*,y*) la solution optimale obtenue pour (SP). Si on peut
construire z* réalisable pour (P) et vérifiant cTz* < cTi* + eTy", alors z* est une

solution optimale pour (P). ]
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La proposition qui suit résume les précédentes et donne un cas général ou la

résolution de (SP) et (SD) fournit des solutions optimales pour (P) et (D).

Proposition 4.8 : Si la matrice E et le vecteur e vérifient :
i) Uensemble des solutions optimales de (D) vérifiant ETw < e n'est pas vide
ii) de toute solution (Z,y) réalisable pour (SD), on peut déduire une solution
réalisable pour (P) de moindre coit (i.e. cTZ +eTy < c'z),
alors, en notant (Z*,y*) et ©* les solutions optimales obtenues pour (SP) et (SD).
on peut affirmer que :
i) ©° est une solution optimale de (D)

ii) la solution z* obtenue de (I*,y*) suivant i) est optimale pour (P). s

Les mémes remarques faites pour la premiére approche reviennent ici. Ainsi, les
colonnes ajoutées au primal lui procurent une certaine flexibilité, ce qui fait que sa
résolution est plus facile. Mais, il y a aussi I'inconvénient que la solution obtenue
pour (SP) peut ne pas étre réalisable pour (P). Le théoréme 3.1 peut étre utilisé afin
d’obtenir une solution optimale de (P) de la méme maniére que pour les inégalités

partiellement valides duales-optimales.

Cependant, pour cette approche I'information disponible est plus compléte. Nous
pouvons en profiter afin d’avoir un résultat plus fort pour la convergence vers une

solution optimale primale.

Le théoréme qui suit donne une fagon d’appliquer cette approche de stabilisation
tout en assurant 'obtention de solutions optimales de (P) et (D) sans hypothese

supplémentaire.
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Théoréme 4.2 : Supposons que la matrice E et le vecteur e vérifient
D*c{reR™: ETr <e}.

Si les contraintes ajoutées au dual sont de la forme ETn < e+, ot n > 0 (raison-

nablement petit), alors
toute solution (z*,y*) optimale pour (SP) vérifie y* = 0 et T est une solution

optimale pour (P).

Preuve: Soient (Z*,y*) et #* les solutions optimales primale et duale obtenues
pour (SP) et (SD) avec les contraintes décrites dans I'énoncé du théoréme. Comme

7* est optimale pour (D), alors
ETi*<e<e+n.

Par complémentarité, y* = 0. Donc, £* est réalisable et optimal pour (P).g

Remarque : Dans le cas de contraintes d’égalité, c’est-a-dire
ETr =e,
on doit les modifier de la maniére suivante :
e-n<ETr<e+n,

ou 1 > 0. Bien siir, il faut noter que le nombre de contraintes (et colonnes) ajoutées
est doublé. Cependant, dans le cadre d'une implantation efficace, ceci ne devrait pas

poser de probléemes a 'efficacité de la stabilisation. s
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Remarques générales

Les deux approches étudiées sont similaires mathématiquement. Elles con-
sistent toutes les deux & ajouter un ensemble de contraintes linéaires au dual
dans le but de restreindre son domaine réalisable. Nous avons introduit cha-
cune sur un type de contrainte différent (égalité ou inégalité) afin d’avoir une
vue plus compléte sur la modification du probléme. L'approche développée
pour les inégalités partiellement valides duales-optimales peut étre utilisée
pour des contraintes d’égalité valides sur tout le polyédre optimal dual. Sous
les conditions de la proposition 4.4, cette approche permet d'ajouter la moitié
du nombre de colonnes au probléme maitre que la deuxieme approche.
Toutefois, les idées derrieres ces deux approches les différencient de maniere
claire. La premiére consiste a restreindre le polyédre optimal dual. C’est le cas
quand on réussit seulement & prouver qu'il existe des solutions optimales duales
qui vérifient un ensemble de contraintes donné. Pour la deuxieme approche, les
contraintes sont vérifiées par toutes les solutions optimales duales. Ceci permet
d’obtenir des solutions optimales pour le dual et le primal dés la premiere
optimisation. Ceci n'est pas le cas pour la premiére approche qui nécessite une
autre optimisation. Cette deuxieéme optimisation est néanmoins efficace comme

nous l'avons déja noté.

. L'application de I'approche de stabilisation proposée est conditionnée par la

connaissance de propriétés d'un sous-ensemble des solutions optimales duales
exprimées par la matrice E et le vecteur e. C’est le cas pour quelques problémes
pratiques. Nous traiterons les probléemes BCSP et CSP dans les chapitres
qui suivent et montrerons que la connaissance d’une seule propriété permet
d’accélérer considérablement la résolution des problémes.

L’utilisation de I'une ou 'autre de ces deux approches dépend tout d’abord

du type d’information disponible. Si on peut prouver que les contraintes sont
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des inégalités valides sur le polyédre optimal dual, on utilisera la deuxieme
approche. Si on peut prouver seulement I’existence de variabes duales vérifiant
les contraintes, ce sera la premiére approche qu'il faudra utiliser.

Cependant, il est plus probable que, pour un méme probléeme, les contraintes
du deuxiéme type (inégalités valides duales-optimales) soient moins serrées
que celle du premier type. Alors, dépendament de la difficulté du probleme. le
choix de 'approche & utiliser doit étre déterminé aprés avoir pris en compte
plusieurs aspects reliés a 'optimisation du probléme en question.

4. Le type de contraintes utilisées peut varier selon le probleme résolu et selon les
variables duales visées. Dans certains cas, ceci permettrait de briser la symétrie
existante entre plusieurs solutions optimales duales. Ainsi, les multiplicateurs
“intermédiaires” possibles ne seront plus quelconques et 'ajustement de ces
derniers se fera tout en éliminant les symétries du dual.

5. Il est généralement possible que le nombre de contraintes soit trés élevé. Ce-
pendant, toutes ces contraintes ne jouent pas le méme réle dans l'accélération
de la convergence. Il serait intéressant soit d’ajouter les contraintes progressi-
vement au probléme maitre soit de les imposer, si possible, implicitement dans

la formulation du primal.

4.4 Conclusion

Nous avons proposé deux approches de stabilisation basées sur la disponibilité
d’information sur le polyédre des solutions optimales duales. Deux types d’inégalités
valides sont introduits : inégalités partiellement valides duales-optimales et inégalités
valides duales-optimales. Les premiéres sont des contraintes vérifiées par au moins
une solution optimale duale et les derniéres sont des contraintes vérifiées par toutes

les solutions optimales duales. Ces contraintes traduisent la qualité de I'information
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duale disponible. L’ajout de ces contraintes dans la formulation du dual se traduit par
’ajout de colonnes dans la formulation du primal. Nous montrons que dans les deux
cas, l'obtention d’une solution optimale duale est garantie alors que la réalisabilité
primale peut étre compromise. Nous proposons alors une méthode générale simple
et efficace pour obtenir une solution primale optimale de base. Cette méthode en
deux phases peut étre appliquée avec I’'un ou l'autre des types d’inégalités valides.
Cependant dans le deuxiéme cas, le fait que les contraintes sont vérifiées par toutes
les solutions optimales duales nous permet d’obtenir une paire de solutions optimales
primale (de base) en une seule phase : il suffit de modifier légérement les contraintes
utilisées. L'efficacité de la résolution n’est pas affectée vu que les contraintes sont

modifiées tres légerement.

Enfin, nous avons discuté quelques aspects reliés 4 I'implantation des approches
proposées. Nous illustrerons ces approches sur les problemes BCSP et CSP dans la

suite de la theése.
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Applications
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Chapitre 5

Stabilisbation du probleme de
tournées de véhicules multi-dépots

Le probleme de tournées de véhicules multi-dépots (MDVSP) [75, 34] est la ver-
sion de base d’'une importante classe de problémes dans le domaine de tournées
et d’horaires. Les version les plus générales utilisent des fenétres de temps et de
ressources afin de modéliser diverses contraintes difficiles. Etant donné que le but
de notre étude est la stabilisation de I’évolution des variables duales du probléme
maitre, nous considérons le cas sans ressources ni fenétres de temps afin d’avoir
la version la plus simple des sous-problémes. Une solution entiére de MDVSP est
généralement trouvée par une procédure de branchement 75, 34]. A chaque nceud
de l'arbre de branchement, les contraintes d’intégrité sont relaxées et la relaxation
linéaire résultante est résolue par génération de colonnes [75]. Cette résolution de-
vient tres difficile et coliteuse lorsque la taille du probléme est assez grande. Nous
nous proposons d’appliquer 'approche de stabilisation par une pénalité linéaire par
morceaux a la relaxation linéaire obtenue au nceud 0 de ’arbre de branchement dans

le but de rendre sa résolution plus efficace.

Nous donnons d’abord la formulation de MDVSP en probléme mutiflots. Puis,
nous présentons la formulation compacte en probléme de partitionnement. Nous
montrons comment obtenir la formulation compacte & partir de la formulation multi-
flots en appliquant le principe de décomposition généralisé aux problémes a variables

entiéres (cf. chapitre 2). Nous présentons ensuite les résultats de la résolution de la re-
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laxation linéaire de la formulation compacte par génération de colonnes. Aprés, nous
décrivons en détails I'approche de stabilisation appliquée & MDVSP. Nous proposons,
en premier lieu, une procédure d’initialisation basée sur une relaxation de MD V'SP
qui fournit une estimation initiale des variables duales, une borne inférieure sur la va-
leur optimale de la relaxation linéaire, une solution réalisable primale entiere et une
borne supérieure sur la valeur optimale du probléme en nombres entiers. Par la suite.
nous testons plusieurs types de stratégie de mise & jour et quelques astuces d’implan-
tation basées sur l'arrét prématuré des itérations majeures et sur l’élimination des
colonnes de stabilisation inutilisées par les solutions optimales des problémes sta-
bilisés. Nous utilions également plusieurs directions de déplacement supplémentaire
des centres de stabilité dans l'espoir d’accélérer la convergence. Nous présentons en-
fin les résultats numériques obtenus sur six instances de MDVSP et discutons de

Iefficacité de I'approche proposée.

5.1 Formulation

Il s’agit de couvrir un ensemble de taches {T},T3,. .., T} par des tournées des
véhicules disponibles aux dépéts Dy (k € K), tout en respectant un certain nombre
de contraintes opérationnelles. Chaque tache T; commence au temps a; et se termine
au temps b;. Si le temps de déplacement entre i et j est ti;, la paire (T, T;) est
compatible si b; +¢;; < a;. D’autres contraintes peuvent étre imposées dans le graphe
de compatibilité. Les nceuds de ce graphe sont les taches et les dépots. Les arcs
existent entre deux taches compatibles et entre les taches et les dépots. Une tournée
réalisable est une suite de taches (couvertes par un méme véhicule) ot deux taches
consécutives forment une paire compatible. Elle doit commencer et se terminer au

meéme dépot.
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Une affectation des taches aux véhicules est dite réalisable si :

- le nombre de véhicules qui partent de chaque dépot Dy (k =1,2,...,|K]) ne
dépasse pas sa capacité ny,

- chaque tache est couverte par une seule tournée de véhicule,

- et chaque véhicule qui part de D retourne au méme dépot apres avoir effectué
sa tournée.

Afin de formuler le probleme MDVSP comme un probléme multi-flots {75, 34],

nous introduisons les notations suivantes :

- V : ensemble des sommets du graphe de compatibilité. Les sommets sont les
taches (i =1,...,n) et lesdépots (i =n+1,...,n+ |K]|).

- A : ensemble des arcs du graphe de compatibilité. Les arcs sont notés (i, j, k)
ol k est le numéro du dépot d’oli part la tournée qui utilise cet arc. L’arc
peut relier deux taches (i = 1,...,n;j = 1,...,n), le dépot Dy a une tache

(i=n+k;j=1,...,n) ou une tache au dépot Dy (i = 1,...,n;j =n+k).

- §*(i)(i = 1,...,n) : ensemble des successeurs de , c’est-a-dire {j : 3k, (i, j, k) €
A}

- 6= (i)(i = 1,...,n) : ensemble des prédécesseurs de i, c’est-a-dire {j : 3k, (j, i, k)
€ A}.

-¢j(i=1,...,mj=1...,n) : coit encouru si la tiche j suit immédiatement

la tache i sur une méme tournée. Ce coiit est indépendant du dépét origine du
véhicule qui couvre la tournée.
~ Caski(i = 1,...,n) : colit encouru si T; est la premiere tache d’une tournée
partant du dépot D.
— Ciask(i = 1,...,n) : coit encouru si T; est la derniére tache d’une tournée se
terminant au dépot Dy.
Le probléme consiste a trouver une affectation réalisable des tournées aux véhicules
(dépéts) qui soit de coitt minimum. Le coit d'une tournée est la somme des cotts

de tous les arcs qui la composent. Afin d’écrire une formulation en nombres entiers
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du probleme MDVSP, on définit les variables binaires X,-"j (k =1,....|K|; (i,j) €
{(s,t) : 1< s,t < m}U{(s,n+k):1 < s <nju{(n+k,t): 1<t <n}). X} prendla
valeur 1 si et seulement si l'arc (2, j, k) est utilisée dans une tournée qui commence et
se termine au dépot Di. On obtient alors la formulation suivante(Ribeiro et Soumis

[79]) :

Min Z ci,-X,-kj (5.1)
(1,5.k)eA
SC
Z Z Xt=1 i=12...,n (5.2)
keK jeé+(i)
Y XkjSm keK (5.3)
j=1
z Xk - Z XE=0 keK,i=12...,n,n+k (5.4)
Jj€S(3) jEs* (i)
Xke {01} V(j k€A (5.5)

L’objectif (5.1) calcule le coiit d’une affectation des tournées aux véhicules en som-
mant les coiits de toutes les tournées. Les contraintes (5.2) stipulent que chaque
tache doit étre couverte exactement une fois et le nombre maximum de véhicules
par dépot est respecté grace aux contraintes (5.3). Les contraintes de conservation
de flot (5.4) assurent la réalisabilité des tournées pour chaque dépot k. Enfin, les

contraintes (5.5) assurent l'intégrité de la solution.

Remarque : Lorsque |K| = 1, c’est-a-dire qu'il y a un seul dépdt, le probleme
est noté SDVSP [14]. Ce probléeme est en fait un probléme de flot & cout minimum
qui peut étre résolu en temps polynomial. I faut noter que le probleme MDVSP
peut étre transformé pour donner un probléme de SDVSP qui en est une relaxation.
Nous reviendrons plus loin sur ce probléme quand nous traiterons l'implantation de

'approche de stabilisation pour MDVSP.
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5.2 Résolution par génération de colonnes

Le nombre de variables et de contraintes dans cette formulation est trés élevé et
une résolution directe ne serait pas réaliste pour n et | /| assez grands. La formulation
couramment utilisée est une formulation en un probléme de partitionnement (Set
Partitionning) [75). Cette formulation est résolue par une procédure de séparation
et dévaluation progressives. A chaque nceud de I'arbre branchement, une relaxation

linéaire de ce probléme est résolue par génération de colonnes.

Notons par Q2 Iensemble des tournées réalisables. Pour p € €, ¢, est le cout de
la tournée p, la constante binaire a;, est égale a 1 si et seulement si la tournée p
couvre la tache T; et la constante binaire b’; est égale a 1 si et seulement la tournée p

commence et se termine au dépot Dy. On peut alors formuler le probleme MDVSP

comme suit :
Min ) c,6, (5.6)
pEN
SC

Y ap®p=1 i=12...n (5.7)

peQt
Yoo, <m k=12 K| (5.8)

pEN
6,€{0,1} VpeQ (5.9)

11 est facile de voir I’équivalence entre ces deux formulations en nombre entiers. Il
est également possible de montrer directement I’équivalence entre leur relaxations
linéaires. Nous montrons dans ce qui suit comment la formulation (5.8)-(5.9) s'ob-
tient & partir de la formulation (5.1)-(5.5) en appliquant le principe de décomposition

généralisé (cf. chapitre 2).



5.2.1 Décomposition en nombres entiers

Afin de décomposer la formulation (5.1)-(5.5), le domaine du sous-probléme sera
défini par les contraintes de conservation de flot (5.4). Ce domaine posséde la pro-
priété d’intégrité (flot & colit minimum). Donc, on peut tenir compte ou non des
contraintes d’intégrité (5.5) dans la formulation du sous-probléme. La décomposition
en nombres entiers du probléme MDVSP et la décomposition de sa relaxation linéaire

fournissent la méme relaxation linéaire et la méme borne inférieure.

Si on tient compte de ces contraintes dans la définition du sous-probléme, le
domaine défini par (5.4)-(5.5) sera borné. Les colonnes sont alors les points extrémes
de ce domaine. Ces points extrémes ne sont pas seulement les chemins réalisables
originant et se terminant au méme dépot Dy. Il faut aussi tenir compte des points
extrémes formés par plusieurs chemins distincts. La formulation résultante n’est pas
(5.6)-(5.9). Elle doit étre transformée en agrégeant les colonnes pour donner cette

formulation.

Si on ne tient pas compte des contraintes d’intégrité (5.5), le domaine du sous-
probléme sera défini seulement par les contraintes (5.4) en plus des contraintes de
non-négativité. Ce domaine est non-borné et posséde un seul point extréme qui
correspond au flot nul. Les rayons extrémes sont les chemins (réalisables) originant
de et se terminant au méme dépét Dj. Les colonnes correspondant a des tournées

sont ces rayons extrémes (chemins).! Soient Q I’ensemble indexant tous les chemins

ID’un point de vue plus général, on peut différentier les deux choix du sous-probléme par le type
de contraintes d'intégrité incluses dans la formulation du sous-probléme. La formulation qui décrit
les colonnes utilise les contraintes X* binaire (k = 1,...,|K]) alors que celle qui les décrit par des
rayons extrémes utilise les contraintes d’intégrité X* entier (k = 1,...,n). Cette discussion est
mieux illustrée dans le cas des problémes de tournées de véhicules avec contraintes de ressources.
Dans ce cas, on doit toujours tenir compte des contraintes d’intégrité dans le sous-probléeme. La
description de son domaine par des points extrémes ou par des rayons extrémes dépendra du type
des contraintes d’intégrité inclues dans le sous-probléme ; c’est-a-dire inclure dans le sous-probléeme
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réalisables z, et les constantes binaires b’; (k € K,p € Q) qui prennent la valeur 1 si

le chemin p commence et se termine au dépot Dy. Alors, toute solution X* (k € K)

est définie par
Xk =Y "t-0,1,, k€K,
=7 (5.10)
0,20, pefl

En substituant dans (5.1)-(5.3), on obtient (5.6)-(5.8) avec
Cp = Z Cijbﬁzpijv D € Q

(i.j.k)EA
aip = Z bﬁxp,-j, peEi=1,...,m.
(ij.k)EA

Nous nous intéressons a la résolution de la relaxation linéaire de (5.6)-(5.9) qui
intervient au noeud 0 de la procédure de branchement utilisée pour I'obtention d’une
solution entiere. Les formulations de cette relaxation (M P) (Mdvsp Primal) et de

son dual (M D) (Mdvsp Dual) sont les suivantes :

(MP)
Min Zcpep

peN

Zaipep =1, i=1,...,m

pe?
sc Zb’;ep <m, k=12,...,|K|

pEN

0,20, pe

(M D)
Maz Zbgm - an/\k

i=1 keK

Zai,ﬂri - Zb’;,\k <c¢, pEN
€Y =1 keK

A>0.

A partir de la relation (5.10) et sachant que les composantes des z, (p € ) sont

binaires et que chaque tache doit étre couverte exactement une fois, on peut affirmer

‘ X* entier ou X* binaire (k = 1,...,|K]|).
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que si X* (k € K) est réalisable pour (5.2)-(5.4) et ©, (p € Q) est réalisable pour
(5.7)-(5.8)2, alors

X* binaire,k = 1,...,|K| & ©, binaire, p€ Q.

Dépendemment des décisions de branchement prises, la formulation du probleme
maitre peut changer. Cependant, notre approche de stabilisation s’applique & n'im-
porte quel programme linéaire et pourra tenir compte de ces changements dans une

étude plus générale.

5.2.2 [Expérimentation

Les probléemes utilisés pour les tests sont générés aléatoirement suivant une distri-
bution uniforme [5, 75, 34]. Une fois le nombre de dépdts et le nombre de clients choi-
sis, les coordonnées des clients sont générés dans un carré de coté 60. La procédure de
choix des dépdts détermine deux types de problémes. Pour les problémes de type A,
les coordonnées des dépots sont générées aléatoirement. Pour les problémes de type
B, les 4 premiers dépéts sont placés sur les sommets du carré et les coordonnées
des autres sont générées aléatoirement a l'intérieur du carré. Nous considérons 6
problémes désignés par pmTd_i ott m est le nombre de clients (m € {400, 800, 1000}),
T est le type des problemes (T € {A, B}), d est le nombre de dépéts (d € {4,5}) et
i est le numéro de I'instance générée. Le tableau 5.1 présente les instances utilisées
et leur caractérisques. Le nombre de contraintes par probleme est m + d dont m
contraintes de couverture. Le nombre de sous-problémes est d vu qu’'une tournée
valide doit débuter et se terminer au méme dépét. La colonne arcs donne le nombre

d’arcs dans le réseau d’un sous-probléme.

2Ce résultat est aussi vrai pour tout probléme de partionnement a condition que les composantes
des colonnes soient binaires.



Tableau 5.1 - MDVSP : caractéristiques des instances résolues.

Probléeme || T m!d arcs
p400A4.0 || A| 400 | 4| 206696
p400B40 | B | 400 | 4| 210328
p800A4.0 || A| 800 (4| 785880
p800B4.0 || B| 800| 4| 816780
p1000A5.0 | A | 1000 | 5 | 1273435
pl000B5.0 || B [ 1000 | 5| 973260

Le tableau 5.2 donne les résultats obtenus en résolvant les relaxations linéaires
des problémes du tableau 5.1 par génération de colonnes non-stabilisée. La résolution
est faite par 'optimiseur GENCOL(voir [13]). Les problemes de plus court chemin
sont résolu par un algorithme de programmation dynamique [14]. Les problémes
maitres restreints sont résolus par l'optimiseur Cplex6.6 [7]. Plusieurs colonnes de
colit réduit négatif sont ajoutées au probléme maitre a chaque itération de génération
de colonnes. Les tests sont effectués sur une machine SUN Ultra-10/440 (int95=18.1,
fp95=22.7, 640M).

Les résultats sont présentés dans le tableau (5.2). Ir(s), mp(s) et sp(s) donnent les
temps de calcul nécessaires pour la résolution de la relaxation linéaire, du probléme
maitre et du sous-probléme, respectivement, pour chacun des problémes considérés.
itr est le nombre d’itérations de génération de colonnes nécessaires pour ’obtention

d’une solution optimale de la relaxation linéaire.

Les résultats montrent que les problémes ayant un grand nombre de taches sont
difficiles & résoudre. Le nombre d'itérations de générations de colonnes et le temps de
calcul total sont plus grands. Le temps de résolution du sous-probléme est quasiment
le méme a chaque itération. Ceci s’explique par ’absence de ressource et que l'algo-

rithme est alors polyndmial. Le temps de résolution des problémes maitres restreints
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Tableau 5.2 - MDVSP : résolution par génération de colonnes.

Probléme Ir(s) | mp(s) | sp(s)| itr
p40044.0 || 203.5| 125.9 77.6 | 149
p400B4.0 || 2852 | 180.5| 104.7 | 196
p800A4.0 || 4178.4 | 3149.2 | 1029.2 | 509
p800B4.0 [ 3561.9 | 2676.2 | 885.7 | 422
p1000A45.0 || 2883.4 | 1641.3 | 1242.1 | 380
pl000B5.0 || 1428.9 | 779.7 | 649.2 | 259

est plus élevé que le temps de résolution des sous-problémes. Il prend plus de 60%
du temps total méme pour les petits problemes (n = 400). Le nombre d’itérations de
génération de colonnes est trés élevé pour tous les types de problemes ce qui laisse
présager un apport important de la stabilisation. Les problemes ayant 800 taches
semblent étre plus difficiles que ceux ayant 1000 taches. Ceci n'est probablement pas
vrai pour toutes les instances. Les instances ayant 800 taches que nous considérons

semblent étre particulierement difficiles pour la résolution par génération de colonnes.

5.3 Stabilisation

L’approche de stabilisation sera appliquée a la relaxation linéaire de la formu-
lation compacte (5.6)-(5.9) qui est résolue par génération de colonnes. Dans cette
approche, la pénalisation est appliquée seulement aux variables duales correspon-
dant aux contraintes de couverture. Deux raisons ont motivé ce choix : d’une part,
la difficulté de la résolution de ces problemes est due au nombre élevé de contraintes
de couverture étant donné que le nombre de dépét est généralement petit et varie
trés peu; d’autre part, le nombre de véhicules étant largement suffisant pour cou-
VvTir toutes les taches, les multiplicateurs de ces contraintes sont nuls & 'optimalité et

s’ajustent facilement une fois que les autres multiplicateurs sont stabilisés. L'absence
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des termes de stabilisation pour une contrainte se traduit dans la fonction de pénalité
par des bornes infinie et des pénalités nulles. Les formulations qu’on obtient pour

le probleme primal stabilisé (SM P) et son dual (SM D) a une itération majeure {

sont :
(SI‘IP)I
Min 0, + ( vl -0l + 8Ly +9%E)
Cp +.
pEN i=1
( Zaip p— % —Yi +yr+f=1 i=L....m
peN
Y oBe, <mi, k=1,2,...,|K]|
SC ¢ peQ
‘<C-,y‘<s-
Yyt <en <Gy
\ 0,z27,y7,y",:7 >0
(SMDi)

Mazx Z bim; — vy —e_qul —epul —Cpavl) — Z niAf

kekK
[ S-Sk sa, pe
keK
S¢ 4 o_,,--u, <m <bi+ul, i=1,...,
"/_,,’—vi-SWl‘S'Y.'.'i‘{"U?-, i=11-"y
Mvo,um,ut, vt > 0.

3 3

Les problemes (M P) et (M D) seront résolus & l’aide de I'algorithme donné au
chapitre 3. Chaque itération majeure consiste a résoudre par génération de colonnes

la paire de problémes stabilisés ((SM P), (SMDy)).

Notons d’abord qu’une particularité importante de MDVSP est que tous les b;
(i =1,...,m) sont égaux & 1. En fait, c’est une caractéristique de tous les problemes
de partitionnement. Ce qui veut dire que les résultats que nous obtiendrons ici don-

neront une bonne idée sur ce qu’on obtiendrait sur un probleme semblable.
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La fonction de pénalité utilisée g' vérifie que pour au moins un certain i €

{1,....,m}3:
e_i+(-i>1
£ritCei> 1 (5.11)

Dans le cas contraire, la pénalité n’aura pas d’effet de restriction. L'objectif sera

toujours croissant dans la direction de

1
b=
1
Les intervalles de confiance vérifient
04 — ™ > 10,
7 —6_; > 10.

Ceci assurera la convergence de l'algorithme vers une paire de solutions optimales

primale-duale de ((M P), (M D)).

Nous nous penchons maintenant sur les caractéristiques de I'implantation de la

stabilisation.

5.3.1 Initialisation

Le choix du centre de stabilité initial #° peut avoir un impact significatif sur
I'efficacité de la résolution. En effet, plus #° est proche de l'espace optimal dual,
plus la convergence se fera rapidement. De plus, une solution primale initiale permet

d’enrichir le probleme maitre par des colonnes réalisables et de fournir une borne

3La méme condition devrait étre utilisée dans le cas d’un probléme de partitionnement et peut
étre généralisé au cas ol les membres de droite ne sont pas forcément égaux a 1. [l suffit de remplacer
1 par b;.
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supérieure sur la valeur optimale. Nous discutons de ces deux aspects dans ce qui

suit.

Choix de #° : Un choix trivial de #° est le vecteur nul. Ce choix ne fournit pas
d’information particuliére au probléme et suppose implicitement la symétrie entre

les variables duales. Il est toutefois réalisable pour (M D).

0

Nous proposons dans ce qui suit une estimation de #° & partir du probleme

SDVSP.

Supposons que les dépots k (k = 1,...,|K]) sont agrégés en un seul dépot Do

auquel on associera le nceud 0. Ce dépot a une capacité suffisante pour couvrir toutes

les taches. On définit le coit de ’arc (0,i) (i = 1,...,m) comme étant le minimum
des coiits ki (K = 1,...,|K]). De méme, on définit le cout de l'arc (0,i) par
co; = min {Cinsx,k = 1,...|K|}. On obtient alors un probléme de tournées de

véhicules a un seul dépot qu'on note SDVSP. Ce probléme, qui est une relaxation de
MDVSP, est en fait un probleme de flot a coiit minimum sur le graphe modifié tel
qu'expliqué ci-dessus (I'ensemble V' devient {0,1,...,m} et 'ensemble A est formé

par des arcs du type (4,) (0 < i,j < m)). En modifiant la formulation de MDVSP,

on obtient la formulation suivante pour SDVSP :

Min Y ;X (5.12)
(i.j)eA
SC

Y Xy=1i=12....n —=->% (5.13)

Jje&* (i)
Y Xi- Y X;=0i=01...n -—>a (5.14)

j€s—(¥) j€s* (i)
X;€{0,1} V(j)eA (5.15)

Le dual de ce probleme (duquel on enléve les contraintes d’intégrité (5.15)) est une
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restriction du dual de la relaxation linéaire de MDVSP. La résolution de SDVSP
produit donc un vecteur de multiplicateurs réalisable pour (M D). Par conséquent, un
multiplicateur optimal de SDVSP fournit une estimation pour une solution optimale

de (M D) et une borne inférieure sur sa valeur optimale.

Notons par # le vecteur des multiplicateurs optimaux associés a 1'ensemble des

contraintes (5.13). On peut alors énoncer le résultat suivant :

Proposition 5.1 # vérifie les deuz propriétés suivantes :
i) & est réalisable pour (M D)

ii) bT# est une borne inférieure sur la valeur optimale de (M P).g

Une formulation alternative consisterait a remplacer les contraintes (5.13)-(5.14)

par
Y Xy=1i=12...,n -->7 (5.16)
JjESH(i)
Y Xi=1 i=12...n -->35 (5.17)
jes=(i)
ZXOi "'ZX;‘0=0 -——>a (5.18)
=1 =1

Si on note par 7 et & les vectenrs de multiplicateurs optimaux associés aux contraintes
(5.16) et (5.17) respectivement. La proposition suivante donne une estimation pour

des multiplicateurs optimaux de (M P).

Proposition 5.2 7 et & vérifient :

‘ i) ® + & est réalisable pour (M D)
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ii) bT (7 + &) est une borne inférieure sur la valeur optimale de (M P).g

En résolvant les deux problémes par la procédure netopt de Cplex6.6 [7]. nous
avons remarqué que la deuxiéme formulation se résoud plus rapidement que la

premiére. Cependant, les temps de résolution restent trés petits dans les deux cas.

Solution primale initiale : La solution primale de SDVSP peut étre transformée
en une solution primale réalisable pour MDVSP. Il suffit de construire, pour chaque
colonne de la solution de SDVSP, |K| colonnes partant chacune d’'un dépot tout
en recalculant correctement le coiit. En choisissant le meilleur dépot pour chaque
colonne tout en tenant compte des capacités des dépots,* on obtient une solution

réalisable entiére ainsi qu'une borne supérieure pour MDVSP.

5.3.2 Calcul d’'une borne inférieure aprés une itération mi-
neure

Si le coit d'une tournée comporte un cout fixe suffisament grand. le nombre
de colonnes a 'optimalité de (M P) est minimum [34]. De plus, toutes les tournées

unitaires sont réalisables. On peut donc affirmer qu’a la fin d’une itération mineure,

ZIJ+Z +y1 —:x—)

4La solution fournie dépend de 'ordre dans lequel les colonnes sont traitées. Un critére glouton
est nécessaire pour le choix d’un dépét pour une colonne.
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est une borne supérieure sur le nombre de véhicules & optimalité de (M P). Par

conséquent, si Emin st le coiit réduit minimum calculé a fin de cette itération mineure,
U(SMDy;) + Emin(Y_ 35+ (5 + 47 =47 — 7))
7 H

est une borne inférieure sur la valeur optimale de (M P).

Remarque : En pratique, il n'est pas trés utile de calculer la borne inférieure
aprés chaque itération mineure. Pour les tests, la borne est calculée toutes les dix

itérations. De plus, cette borne permet trés rarement d’arréter une itération majeure.

5.3.3 Choix de la fonction de pénalité

Le choix des parametres de la fonction de pénalité est déterminant pour 'efficacité
de I'algorithme. D'une part il faut que la résolution des problémes stabilisés soit assez
facile, et d’autre part le nombre d’itérations majeures doit étre assez petit de fagon a
ce que la résolution des problémes originaux par 'approche de stabilisation soit plus
efficace que la résolution par génération de colonnes non-stabilisée. Nous discutons
dans ce qui suit des choix des intervalles de confiance (v+ et d+), des pénalités £
et (+, du prochain centre de stabilité (#'*!) et des stratégies de mise a jour des

parametres.

Largeurs des intervalles : L’utilisation d’intervalles trop petits résulterait en
un trés grand nombre d’itérations majeures. Ces itérations permettraient des dép-
lacements minimes du centre de stabilité. La convergence serait alors tres lente et
la résolution serait moins efficace que la résolution par génération de colonnes. Par

contre, si 'intervalle de confiance est trop grand, une seule itération majeure sera
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nécessaire et le probléme est résolu au complet. La stabilisation est alors équivalente
a la résolution par génération de colonnes. Un choix raisonnable qui tient compte des
valeurs optimales des variables duales optimales s’impose. Dans notre cas, le choix
des largeurs des intervalles dépend des estimations initiales des variables duales ainsi
que de la taille des problémes (i.e. le nombre de taches m). Nous avons testé plusieurs
intervalles possibles qui ont donné des résultats assez réguliers. Pour l'intervalle
[0-,04], la largeur minimale est 10 et la largeur maximale est 1000. Pour I'intervalle

[¥-,¥+], la largeur minimale est 50 et la largeur maximale est 10000.

De plus, dépendemment du type des contraintes stabilisées et du signe du second
membre associé, on peut utiliser un seul ou deux cétés de la fonction de pénalité.
L’élimination du coté gauche, par exemple, revient soit & imposer des bornes infinies

sur les variables duales soit & utiliser des pénalités nulles.

Pénalités : Des pénalités trop élevées limitent le déplacement du centre de sta-
bilité a l'extérieur de la boite [d_,d,] alors que des pénalités faibles facilitent ce
déplacement. Par exemple, si €_ et £, sont faibles, la fonction de pénalité permet
d’élargir D'intervalle de confiance mais avec une légere perturbation. Le choix des
pénalités dépend des largeurs des intervalles et de 'étape ou l'optimisation est ren-
due. Pour les tests, nous avons utilisé les valeurs 0.3,0.5 et 0.8 pour 4 et la valeur

1 pour (:. Les résultats présentent une variance tres faible.

Mise a jour du centre de stabilité : La version standard de 'approche de stabi-
lisation proposée consiste & centrer la fonction de pénalité g' autour de la solution du
probléme dual stabilisé. Cependant tel que nous l'avons montré dans le chapitre 3, il
est possible de déplacer ce centre dans n’'importe quelle direction sans compromettre

la convergence de I’algorithme grace & un choix adéquat des pas de déplacement.
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Nous utilisons cinq directions dans le but de voir leur impact sur I'efficacité de la

résolution.

Stratégies de mise A jour : La stratégie la plus simple a implanter consiste
a garder une fonction de pénalité inchangée autour du centre de stabilité courant.
Ainsi, le probléme maitre subit peu de changement ; seuls les coits des variables
de stabilisation sont modifiés. Le comportement de ce genre de stratégie dépend

fortement des largeurs des intervalles et des pénalités choisies.

Nous testons aussi une stratégie qui consiste & modifier les parametre de la fonc-
tion de pénalité en fonction de la position de la solution du probléme stabilisé par
rapport aux intervalles [6_, 04| et [y_,v+]. Ceci résulte en des changements impor-

tants dans le probléme maitre qui pourrait devenir coliteux a réoptimiser.

Nous testons également une stratégie qui consiste en des modifications limitées
des parameétres de stabilisation et qui garde la fonction de pénalité inchangée a la

fin du processus.

5.3.4 Quelques astuces d’implantation

Nous décrivons quelques astuces d’implantation que nous avons utilisées pour

nos tests.

Arrét prématuré des premiéres itérations majeures : L’obtention d'une so-
lution optimale des problémes stabilisés au début de la résolution n’est pas indispen-

sable pour la convergence de ’algorithme. Sachant que ceci peut étre particuiérement
8 g q p p
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coiiteux, il serait utile d’éviter de gaspiller du temps de calcul a chercher I'optimalité

des problémes stabilisés pendant les premieres itérations majeures.

Limitation du nombre d’itérations mineures d’une itération majeure :
Les tests effectués ont montré que le nombre d’itérations mineures a la fin du pro-
cessus est trés petit. On peut donc imposer une limite sur le nombre d’itérations
mineures pour chaque itération majeure sans compromettre la convergence de l'al-

gorithme en pratique. Cette idée est en fait une généralisation de la précédente.

Elimination des colonnes de stabilisation a la fin d’une itération majeure :
Les tests nous ont permis d’observer que le nombre de variables de stabilisation
utilisées dans la solution du probléme stabilisé décroit avec le nombre d’itérations
majeures. L’élimination des variables de stabilisation inutilisées (de valeur nulle et
hors-base) permettrait d’alléger le probléme maitre dont la résolution serait plus effi-
cace. Nous avons aussi remarqué qu’une fois la solution du probléeme primal stabilisé
est réalisable pour (P), aucune variable de stabilisation n’est utilisée par la suite.
Ces variables peuvent donc étre éliminées une fois que la réalisabilité primale (de

(P)) est atteinte.

5.4 Résultats numériques

Nous présentons dans cette section les résultats obtenus en appliquant I’approche
de stabilisation présentée au chapitre 3 et expliquée plus haut a la relaxation linéaire
de MDVSP. Nous commencons par tester trois stratégies de mise a jour. Puis, nous
présentons les résultats de l'utilisation de quelques astuces d'implantation. Nous nous

pencherons ensuite sur 'effet de 1'utilisation de certaines directions particulieres pour
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un déplacement supplémentaire du centre de stabilité. Enfin, nous présentons les

résultats obtenus en utilisant simultanément plusieurs techniques d’accélération.

5.4.1 Stratégies de mise a jour

La premiére stratégie, dite statique, consiste a conserver la fonction de pénalité
inchangée par rapport au centre de stabilisation. La deuxieme, dite dynamique,
consiste & modifier les paramétres de la fonction de pénalité en fonction de la po-
sition de ' par rapport aux intervalles de confiance. Enfin, la derniére stratégie,
dite hybride, consiste & applatir la fonction entre 6, et 7+ a chaque itération tout
en gardant 1 plus grand que 10~*. Les intervalles [d4,v+] sont élargis si m est a

I’extérieur de [v_,7,]. La largeur de cet intervalle ne doit pas dépasser 2 x 10*.

Le tableau 5.3 contient les résultats de l'utilisation de ces différentes stratégies.
Nous y reportons les résultas de la résolution par génération de colonnes sous les
colonnes STD. STAT désigne la stratégie de mise & jour statique, DYN désigne la
stratégie de mise a jour dynamique et HYB désigne la stratégie de mise a jour
hybride. Ir(s), mp(s) et sp(s) sont les temps de calcul de la relaxation linéaire,
du probléme maitre et du sous-probléme, respectivement. itr est le nombre to-
tal d’itérations de génération de colonnes (itérations mineures) et ! est le nombre

d’itérations majeures.

Les trois stratégies permettent d’améliorer les performances de la génération
de colonnes d’'une maniére significative. Le nombre d’itérations de génération de
colonnes et le temps de résolution du probléme maitre présentent les améliorations
les plus nettes. Le temps de résolution du sous-probléeme est quasiment proportionnel
au nombre d’itérations pour les mémes raisons évoquées dans la section précédente.

L’apport de la stabilisation est plus grand sur les problémes ayant 800 taches. Ces
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Tableau 5.3 - MDVSP : stabilisation par une fonction de pénalité linéaire par mor-
ceaux avec 3 stratégies de mise a jour différentes.

Pb pA00A40 p400B40
Stratégie] STD|STAT| DYN| HYB| STD]STAT| DYNJHYB
Ir(s) | 203.5| 43.6] 40.5 42.2] 285.2] 46.4] 49.5 44.9
mp(s) || 125.9] 7.8 7.3 13.7] 180.5| 10.6| 12.4| 20.0
sp(s) || 77.6| 35.8 33.2| 28.5| 104.7 35.8 37.1) 24.9

itr 1490 74 69 52 196 72 75 53
] 1 11 10 3 118 130
Pb [ p800B4.0 pR00A40 T

Stratégie| STD|STAT| DYN| HYB|| STD|STAT| DYN[HYB
Ir(s) [[4178.4 670.0| 951.4| 595.5|13561.9{ 361.0{ 399.4/306.4
mp(s) ||3149.2| 203.2| 187.4| 216.2)2676.2 165.0; 179.8/141.9
sp(s) (|1029.2] 466.8 764.0| 379.3] 885.7| 196.0] 219.6{164.5

itr 509| 223 359 196] 422| 90| 102] 80
! J 30 95 29 1 3 6 5
Pb pl000A50 B p1000B5.0

Stratégie| STD|STAT| DYN| HYB| STD{STAT| DYN/HYB
Ir(s) |[{2883.4[1213.2{1529.4{1223.5(1428.9} 969.1(1107.7|837.1

mp(s) [[1641.3| 639.2| 872.1} 610.9] 779.4| 388.8| 585.3|1479.6
sp(s) |[1242.1] 574.0; 657.3| 612.6 649.2| 580.3{ 522.4[357.5

itr 380| 178 203| 178 259 236] 212 145

[ - 10 6 12 -1 25 23 8
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problémes sont les plus difficiles et présentent probablement plus d’instabilité que
les autres. Enfin, la stratégie hybride semble étre la plus robuste et offre le meilleur
comportement pour l'algorithme. Pour les problémes de 400 taches, le temps de
calcul est divisé par un facteur de 4.8 pour le probleme de type A et un facteur
de 6.4 pour le probléeme de type B. Pour les problemes de 800 taches, ces facteurs
sont 7.0 et 11.6. Enfin, pour les probléemes de 1000 taches, ces facteurs sont 2.4 et
1.7. Le facteur de réduction du nombre d’itérations de génération de colonnes pour
les problémes & 400 taches est de 2.9 pour le probleme de type A et de 3.7 pour le
probléme de type B. Ces facteurs sont 2.6 et 5.3 pour les probléemes a 800 taches et

2.1 et 1.8 pour les problemes & 1000 taches.

5.4.2 Effet de I'utilisation des astuces

Nous avons testé |'effet de ['utilisation de quelques astuces sur le comportement
de la stabilisation. Les deux premiéres astuces consistent a fixer un nombre maxi-
mum d’itérations mineures a I'intérieur d’une itération majeure. Pour la premiere
astuce, notée Stopl, ce nombre maximum est imposé seulement aux deux premieres
itérations majeures alors que pour la deuxiéme astuce, notée Stop2, ce nombre maxi-
mum est imposé a toutes les itérations majeures. La troisiéme astuce, notée Elim,
consiste a éliminer les colonnes de stabilisation inutilisées par une solution optimale
de (SP)). Les résultats sont présentés dans le tableau 5.4. Ces astuces sont utilisées
avec la stratégie de mise & jour hybride qui s’est avérée la plus robuste (cf. tableau

5.3). Les notations utilisées sont les mémes que les tableaux précédents.

Les résultats montre que l’arrét prématuré d'une itération mineure peut causer
une augmentation du temps de calcul total par rapport a la stratégie de mise a
jour hybride. Cependant dans les cas ou ceci est vrai (problemes a 800 taches), le

nombre d’itérations de génération de colonnes diminue. Le fait que 'arrét prématuré
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ne garantit pas une direction de montée pour le dual est probablement la cause de
la détérioration possible du temps de calcul. De plus, la fonction peut ne pas étre

bien définie autour de ce point et alors I'itération majeure arrétée est alors inutile.

Tableau 5.4 - MDVSP : utilisation des astuces dans 'implantation de la stabilisation
par une fonction de pénalité linéaire par morceaux.

Pb pd00A4.0 p400B40
Astuce| STD| HYB| Stopl| Stop2| Elim| STD|HYB|Stopl|Stop2| Elim
Ir(s) || 203.5] 42.5] 33.9] 35.5{ 37.0] 285.2| 44.9| 43.1] 43.5 48.8
mp(s) || 125.9{ 13.7| 12.3| 12.3] 12.1 180.5( 20.0{ 20.7] 19.9| 18.1
sp(s) | 77.6| 28.5| 21.6| 23.2| 24.9| 104.7| 24.9| 22.4| 23.6 30.7
itr 149 52| 44| 44| 48] 196| 53| 45 45 88
[ - 3 3 3 3 -1 4 3 3 3
Pb p80084.0 p800A4.0
Astuce]| STD| HYB][Stopl| Stop2| Elim| STD|{HYB|Stopl|Stop2| Elim
Ir(s) [(4178.4] 595.5] 968.6] 730.7| 501.2|13561.9!306.4{ 353.1{335.1{256.0
mp(s) [13149.2| 216.2| 575.1{ 375.9] 166.2[|2676.2{141.9|210.5/201.1{113.9
sp(s) [11029.2] 379.3| 393.5 354.8] 335.0| 885.7|164.5| 142.6{134.0|142.1
itr 509 196| 197 166 160 422 80| 68 68 72
l I 29 17 17 9 4 3§ 4 4 3

Pb p1000A45.0 p1000B5.0
Astuce]| STD| HYB]|Stopl| Stop2| Elim|| STD{HYB|Stop1|Stop2| Elim
Ir(s) [12883.4]1223.5[1129.7{1155.6{1068.3[]1428.9/837.1| 815.4| 837.7|757.2
mp(s) 11641.3| 610.9| 663.2] 656.4| 593.4 779.4/479.6| 358.3| 349.5(272.0
sp(s) [1242.1] 612.6] 466.5] 499.2| 474.9 649.2{357.5{457.1| 488.2/485.2
itr 380 178 152| 152 145 259| 145 194| 194 194

) - 12 13 13 9 - 8 23] 23] 22

Contrairement aux deux premieres, la troisitme astuce s’est avérée bénéfique
pour tous les problemes. Généralement, le temps de calcul est amélioré et le nombre
d’itérations de génération de colonnes (itérations mineures) reste raisonnable. Pour
les problémes ayant plus que 1000 taches, le nombre d’itérations majeures augmente.

Cependant, ces derniéres deviennent plus faciles et le temps de calcul total n’est pas
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détérioré.

5.4.3 Enrichissement des directions de déplacement

Nous testons cinq directions de déplacement supplémentaires dans le but d’ob-
tenir un “meilleur” centre de stabilité a I'itération majeure suivante. L’'implantation
de cette modification obéit aux conditions du théoreme 2.4. Ceci permettra entre
autres de réduire le nombre d’itérations majeures requis pour atteindre I'optimalité
de (M P). Les cinq directions utilisées sont décrites dans ce qui suit :

- d' = b : Au lieu de prendre 7! comme prochain centre de stabilité, on fait
un déplacement supplémentaire dans la direction du gradient de la fonction
objectif en espérant que 'optimisation de (SF;) et (S D;) fournira une meilleure
borne inférieure.

- d? = 7! — #' . Sachant que 7 — & est une direction de montée pour le dual,
on effectue un déplacement supplémentaire dans cette méme direction. Ceci
revient & utiliser un pas de déplacement 1+ a; dans cette direction a partir de
.

- d® = (x! — #)* . Parmi les composantes de la direction précédente, on garde

seulement celles ayant le méme signe que b;. Dans notre cas b = 1(i =
1,...,m). Donc, on se déplace seulement suivant les composantes positives
de &2

- d* = b— Az! : Sachant que b— Az! est un sous-gradient de la fonction duale au
point 7!, cette direction est une direction de descente pour la fonction qui cal-
cule la distance entre un multiplicateur optimal et un vecteur de multiplicateur
quelconque (cf. chapitre 2).

- d® = (b— Az')* : Cette direction est calculée a partir de la direction d* de la

méme maniére que la direction d® est calculée a partir de la direction d°.
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Les résultats sont donnés dans le tableau 5.5. Les notations sont les mémes que

celles uitilisées dans les tableaux précédents. Les performances de la stabilisation

avec déplacement supplémentaire pour les différentes directions & (p = 1...,5)

sont comparées a la performance de la stabilisation utilisant une stratégie de mise

a jour hybride ; cette derniére étant la stratégie ayant produit les meilleurs résultats

du tableau 5.3. Les résultats montrent l'effet bénéfique de 'enrichissement de la

direction de déplacement par les directions proposées ci-dessus. Pour le probléeme

pl000A5.0, cet effet n’est pas tres sensible. Ceci est dii probablement a la difficulté

de résolution du probléme maitre apres chaque déplacement.

Tableau 5.5 -~ MDVSP : déplacement supplémentaire des centres de stabilité.

Pb p400A4.0 p400B4.0
d | HYB] dY 44 4 dY SHYB] d[ & & 4] &£
Ir(s) || 42.2] 36.0] 35.7] 37.1 37.4] 40.0] 44.9] 45.4] 45.5] 46.0] 48.5[ 48.2
mp(s)|| 13.7] 11.9{ 12.6] 12.5] 12.1| 14.2} 20.0[ 17.6] 19.4| 18.0[ 17.7| 18.1
sp(s) [ 28.5 24.1 23.1 24.6] 25.3] 25.8) 24.9| 27.8 26.1| 28.0| 30.8| 30.1
itr 52| 47| 471 50| 49| 49| 53| 56| 53] 56| 50 57
] 3 3 3 3 3 3 4 3 3 3 3 3
Pb p800B4.0 p800A4.0 ]
d | HYB] 4V 44 4 4 d&O[AYB] 4 & d& 4] &
Ir(s) || 595.5| 465.3] 458.7| 452.5] 480.2] 477.5]306.4]268.4/260.4[253.2|251.4[252.9
mp(s)|| 216.2 148.9| 157.2 167.4| 153.9| 157.1/[141.9[111.2/114.7{111.0/114.9|114.5
sp(s) || 379.3| 316.4] 301.5 285.1| 326.3| 320.4/[164.5{157.2{145.7|142.2136.5]138.4
itr | 196| 158 157 147 156 152] 80| 73[ 71| 69 69 70
I 290 13 9 of 13 1] 5[ 3 3 3 3 3
Pb p1000A5.0 p1000B5.0
d | HYB[ 4 & dY dY d&HYB] d| 4 d&Y 4 &
Ir(s) [|1223.5[1110.3[1164.1|1058.9{1139.2|1111.5[]837.1{726.2[740.5/730.7/679.3]740.5
mp(s)|| 610.9| 619.5( 634.0] 616.7| 598.4| 633.0[479.6254.8/282.6(272.0[331.6/270.8
sp(s) || 612.6] 490.8 530.1| 442.2 540.8| 478.5(357.5/471.4457.9/458.7|347.7469.7
itr || 178] 195 171{ 143 165 146 145( 191| 192| 190] 133 189
] 12 22| 12 9 11 of 8 22 22| 22| 11] 22
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5.4.4 Utilisation simultanée de plusieurs techniques d’accé-
lération

Le but de ces derniers tests est d’illustrer l'effet de la stabilisation sur lefficacité
de la résolution de MDVSP par génération de colonnes. Nous présentons maintenant
les résultats obtenus en utilisant simultanément plusieurs techniques d’accélération
parmi celles présentées.

— Stratégie : Nous utilisons une stratégie hybride vue qu’elle a le comportement

le plus stable.

- Astuces : Nous utilisons seulement la troisime astuce qui consiste a éliminer
les colonnes de stabilisation inutilisées & 'optimalité d'un probléme stabilisé.
Les autres astuces n'apportant pas d'amélioration des performances de la sta-
bilisation ne sont pas utilisées.

- Choix de la direction : Nous combinons deux directions parmi celles utilisées
plus haut. Si 'itération majeure courante est arrétée a I’optimalité du probléeme
stabilisé courant, la direction utilisée est d®. Par contre si 'arrét est du a
la borne inférieure, le déplacement se fait dans la direction du gradient de
I'objectif dual b.

Les résultats sont présentés au tableau 5.6. Les colonnes de ce tableau sont les
mémes que pour les tableaux précédents. Les lignes portant les noms des problemes
donnent les résultats de la résolution de ces problémes par génération de colonnes.
La ligne Stab donne les résultats de la résolution par I'implantation de stabilisa-
tion décrite ci-dessus et la ligne Rapport donne les facteurs de réduction di a la

stabilisation.

L’apport de la stabilisation est impressionnant. Les facteurs de réduction pour le
temps de calcul total, le nombre d’itérations de génération de colonnes et le temps du

probléme maitre illustrent une plus grande stabilité du probléme. Notons que 'utili-



Tableau 5.6 - MDVSP : utilisation simultanée de plusieurs techniques d’accélération
dans l'implantation de la stabilisation.

Probleme Ir(s) | mp(s) | sp(s) | itr| [
p400A44.0 203.5| 125.9 776 (149 | -

Stab 32.7 9.4 23.3| 43| 3
Rapport 6.2 13.4 33| 35| -
p40084.0 285.2 180.5| 104.7 | 196 | -
Stab 38.6 17.0 216 | 46| 2
Rapport 74 10.6 48| 43| -
p800A4.0 |l 4178.4 | 3149.2 | 1029.2 [ 509 | -
Stab 490.0| 2188 | 271.2|135| 5
Rapport 8.5 14.4 38|38} -
p800B4.0 || 3561.9 | 2676.2 | 8835.7 | 422 | -
Stab 2409 | 1103} 1306 | 63| 2

Rapport 14.8 24.3 6.8 6.7 -
pl000AS50 || 2883.4 | 1641.3 | 1242.1 | 380 | -

Stab 996.7 | 630.3 | 366.4 | 107 | 13
Rapport 29 2.6 34|36} -
pl000B5.0 || 14289 7794 | 649.2 259 -
Stab 627.1| 2502 3769|143 | 13

Rapport 2.3 3.1 1.7 1.8 -
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sation de la borne inférieure n'est pas trés utile pour 'optimisation. Elle arréte tres
rarement une itération majeure. Par contre, le choix du point initial, et & un degré
moindre une solution primale initiale, peuvent avoir un effet sensible sur I'efficacité

de la procédure de stabilisation.

Une stratégie de mise a jour qui modifie fréquemment le probléme maitre n’est
pas le meilleur choix. Une stratégie qui tient compte du résultat de l'optimisation du
probléme stabilisé sans trop modifier le probléeme a résoudre et qui garde une fonction
de pénalité constante autour du centre de stabilité est a conseiller. Des intervalles
plus larges permettent de réduire le nombre d’itérations majeures. Cependant, il y a
un compromis a faire avec le colit de la résolution des problémes stabilisés et le cott

de la réoptimisation.

L’élimination des colonnes de stabilisation inutilisées & |'optimalité d'un probléme
stabilisé permet de nettoyer le probléme maitre et force en quelque sorte l'utilisation
des autres variables de stabilisation en cas de besoin. Par contre, 'arrét des itérations
majeures aprés un certain nombre d’itérations n'est pas trés bénéfique. Un critere
d’arrét qui tient compte de la qualité de la solution pourrait donner de meilleurs
résultats. Enfin, l'enrichissement de la direction de déplacement par des directions
qui tendent & augmenter 'objectif ou a se rapprocher d’une solution optimale se sont

avérés d'un apport appréciable a l'efficacité de la stabilisation.

5.5 Conclusion

Nous avons consacré ce chapitre a I'application de 'approche de stabilisation pro-
posée au chapitre 3 au probleme de tournées de véhicules multi-dépéts (MDVSP)

[75, 34]. Nous avons d’abord donné les deux formulations de probléeme : probleme
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de multiflots et probléme de partitionnement. Nous avons démontré 1'équivalence
entre les deux formulations en nombres entiers et entre leur relaxations linéaires en
utilisant le principe de décomposition de Dantzig-Wolfe généralisé (cf. chapitre 2).
Nous avons également montré que dépendemment du type des contraintes d’intégrité
prises en compte dans la formulation du sous-probléme, la formulation obtenue peut
nécessiter des transformations supplémentaires afin d’aboutir a la formulation com-
pacte connue. La relaxation linéaire de la formulation compacte, notée (M P), et son
dual (M D) sont résolus par génération de colonnes. Les résultats de la résolution
de problemes générés aléatoirement ont été présentés pour servir de référence pour

I'appréciation de la qualité de I'algorithme de stabilisation utilisé.

Ensuite, nous avons appliqué l'algorithme de stabilisation du chapitre 3 a la paire
de probléemes ((M P), (M D)). Nous avons commencé par donner les formulations des
problémes stabilisés et une condition sur les pénalités qui seront utilisés dans I'im-
plantation de l'algorithme. Puis, nous avons proposé une procédure d'initialisation
basée sur un probléme de tournées de véhicules & un seul dépot (SDVSP) obtenu a
partir de MDVSP. Cette procédure fournit un multiplicateur initial réalisable pour
le dual (M D), une borne inférieure sur la valeur optimale de (A P) et (M D), une so-
lution primale initiale en nombres entiers ainsi qu'une borne supérieure sur la valeur
optimale du probléme en nombres entiers de MDVSP. Nous avons également pro-
posé une borne inférieure sur la valeur optimale de (M P) calculée a chaque itération
de génération de colonnes lors de la résoltuion d’un probléme stabilisé. Plusieurs
stratégies de mise & jour ont été testées afin d’en choisir une pour les tests qui ont
suivi. Des astuces basées sur I'arrét prématuré de la résolution des problémes sta-
bilisés par génération de colonnes et sur I'élimination des colonnes de stabilisation
inutilisées a I'optimalité des problémes stabilisés ont été testées dans le but de voir
leur effet sur |'efficacité de 'algorithme. Comme derniére technique d’accélération,

nous avons enrichi la direction de déplacement du centre de stabilité en utilisant cinq
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directions calculées a partir de directions de montée de l'objectif dual ou a partir

d’un sous-gradient de la fonction duale au point optimum du probléme stabilisé.

Par la suite, nous avons testé l'algorithme sur les six problémes utilisés pour la
résolution par génération de colonnes. Les résultats ont montré qu’une stratégie de
mise & jour qui modifie légérement la fonction de pénalité au début du processus et
la garde constante autour du centre de stabilité a la fin du processus est la plus ro-
buste et procure un comportement plus stable a I'algorithme. La stratégie qui garde
la fonction de pénalité constante autour du centre de stabilité a donné de meilleurs
résultats que la stratégie qui consiste & modifier les parameétres de la fonction de
pénalité & chaque itération majeure dépendemment de la position de la solution
optimale duale des problémes stabilisés par rapport aux intervalles de confiance.
Parmi les astuces proposées, 1'élimination des colonnes inutilisées & l'optimalité des
problémes stabilisés s'est avérée bénéfique pour l'efficacité de I'algorithme. L’arrét
prématuré d’une itération majeure basé sur le nombre d’itérations mineures n’a pas
permis d’accélérer I'algorithme de fagon réguliére. Un critére d’arrét basé sur la qua-
lité de la solution produirait probablement de meilleurs résultats. L'enrichissement
de la direction de déplacement du centre de stabilité par les cinq directions pro-
posées a été d’un apport appréciable a l'algorithme : le temps de calcul est réduit et

le nombre d'itérations de génération de colonnes est diminué.

Enfin, les tests de l'algorithme ol nous avons intégré plusieurs techniques de
stabilisation ont montré I'apport significatif de la stabilisation a la stabilité de la

résolution par génération de colonnes.
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Chapitre 6

Stabilisation du probleme de
découpe binaire

Le probleme de découpe binaire (BCSP) se définit comme suit. Etant donné un
ensemble de rouleaux de longueur L, il s’agit de les découper en items de longueurs
l; (i = 1,...,m). La demande pour chacun de ces items est égale a 1. Une fagon
de découper un rouleau en un sous-ensemble d’items tout en respectant sa capacité
est appelé patron réalisable. L’ensemble de tous les patrons réalisables est noté (2. Il
s’agit de satisfaire les demandes de tous les items i (i = 1,...,m) a 'aide des patrons
réalisables. Afin d’écrire la formulation de BCSP, nous définissons les variables bi-
naires z, (p € Q) : z, compte le nombre de rouleaux coupés suivant le patron p. Les
constantes binaires a;, (i = 1,...,m;p € Q) comptent le nombre de fois que l'item
i est découpé dans le patron p. L'objectif est de minimiser le nombre de rouleaux
découpés. Dans le but de réduire la symétrie du probléme, les items sont nunérotés

suivant |'ordre décroissant de leur longueur.

Nous donnons la formulation continue du primal ainsi que celle de son dual afin

de pouvoir observer 'effet de la stabilisation.

(BCSP) (BCSD)
Min Zl‘p Mazx Zm
peEQN i=1
ai, I, =1, 1=1,...,m =
sc }; PP sc{ Zaipﬂ',-ﬁl, pEQ
0<z,<1, peq =1
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Les approches les plus intéressantes pour la résolution de BCSP ont été proposées
par Vance et al.95 1], Vanderbeck 96 [90], Valério de Carvalho 97 (87] et Ben Amor
97 [4]. Ces auteurs ont tous remarqué que l’agrégation des items est tres bénéfique
pour la résolution de la relaxation linéaire. Les temps de calculs ainsi que le nombre

d’itérations de génération de colonnes sont réduits d'une maniere tres significative.

La premiére contribution de ce chapitre est de situer 1'idée de 'agrégation dans
le cadre de la stabilisation par les inégalités partiellement valides duales-optimales
introduites dans le chapitre 4. Nous montrerons aussi que l'agrégation est en fait
une implantation implicite de certaines contraintes sur les variables duales. Cepen-
dant, 'agrégation des items de longueur identique réduit grandement la taille des
problémes résolus et rend leur résolution extrémement facile. La deuxiéme contribu-
tion principale de ce chapitre consiste a tester I'approche de stabilisation en imposant
explicitement les contraintes de stabilisation dans le but de déterminer 'apport in-
trinséque de la stabilisation. Nous décrivons les modifiations subies par les problemes
primal et dual avant de détailler I'implantation de la stabilisation. Les résultats des
deux facons d’imposer la stabilisation sur des problemes connus dans la littérature
sont comparés aux résultats de la résolution par génération de colonnes. Ces résultats
permettent de conclure a la grande utilité des inégalités valides utilisés dans la sta-

bilisation de la résolution par génération de colonnes.

6.1 Résolution par génération de colonnes

Une solution entiére au probleme est obtenue par une procédure de branche-
ment. A chaque nceud de ’arbre de branchement, le probleme maitre est résolu
par génération de colonnes. A chaque itération de génération de colonnes, un sous-

probléme est résolu dans le but de générer des colonnes de cout réduit négatif.
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Le sous-probléme peut étre formulé comme un probléme de sac-a-dos unidimen-
sionnel de capacité L [40, 1, 90] ou comme un probléeme de plus court chemin avec
contraintes de ressource [4]. D’autres formulations sont également possibles. La for-
mulation du sous-probléme dépend de la formulation originale qu'on décompose pour
obtenir la formulation donnée plus haut. Pour une revue exhaustive des principales

formulations du probléme de découpe unidimensionnelle, voir Ben Amor [4].

Nous considérons la formulation du sous-probléeme en plus court chemin avec
contraintes de capacité (SPC). Les résultats obtenus avec cette formulation [4] et
ceux par la formulation en probléme de sac-a-dos (1] montrent que la formulation du
sous-probléme n’influence pas la rapidité de résolution du probléme maitre. De plus,
la formulation du sous-probleme en SPC permet de garder les mémes formulations

pour le probléeme maitre et le sous-probléme dans tous les nceuds de branchement.

Les résultats que nous présentons ici ont été obtenus sur des problemes générés
aléatoirement. Certains de ces problémes proviennent de la librairie OR [3]. Cing
classes de problémes sont considérées. Les quatre premieres classes sont composées de
problémes générés suivant des distributions uniformes. Pour la derniére classe, les tri-
plets, les problémes sont générés suivant une procédure particuliére. Nous décrivons
dans ce qui suit ces cinq classes.
- u50020100 : La longueur des rouleaux L = 150. Les longueurs ; (i = 1,...,500)
des items sont générés uniformément dans {20, 100].

- u100020100 : La longueur des rouleaux L = 150. Les longueurs /; (i = 1, ..., 1000)
sont générées uniformément dans [20, 100].

- u5001100 : La longueur des rouleaux L = 150. Les longueurs ; (i = 1,. .., 500)
des items sont générés uniformément dans (1, 100].

- ul0001100 : La longueur des rouleaux L = 150. Les longueurs ; (i = 1...., 1000)

sont générées uniformément dans (1, 100].
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- t501 : Ces problémes sont construits de fagon que la solution optimale soit
formée par des patrons ayant exactement trois items et que la perte soit nulle.
Pour chaque classe, dix instances sont générées. Les instances des classes u50020100,

1100020100 et t501 sont prises dans la librairie de problémes d’optimisation OR [3].

Une procédure de pré-traitement diie & Martello et Toth [63] permet de réduire le
nombre d’items en moyenne de 49.7% pour u50020100, de 53.5% pour u100020100, de
37.0% pour u5001100 et de 41.1% pour ul0001100. Pour les triplets, cette procédure
n'élimine aucun item. Le tableau (6.1) présente les caractéristiques des problemes
résolus. L, IMIN et IMAX désignent respectivement la longueur des rouleaux, les
longueurs minimale et maximale d'un item. nBP est le nombre d’items dans la version
initiale des problémes et nPrepBP et le nombre d’items restants aprés |'application
de la procédure de pré-traitement. Les données sont calculées en prenant la moyenne

sur 10 problémes.

Tableau 6.1 — BCSP : Caractéristiques des problémes résolus.

Probleme L | IMIN | IMAX | nBP | nPrepBP
150020100 150 1 100 | 500 251.2
ul00020100 150 1 100 | 1000 465.4
u5001100 150 1 100 | 500 314.8
ul0001100 150 1 100 | 1000 589.0
t501 1000 250 500 | 501 501.0

Nous présentons les résultats obtenus sur ces instances dans le tableau (6.2). Ir,
mp et sp désignent le temps de calcul moyen (en secondes) de la relaxation linéaire
(BCSP), du probleme maitre et du sous-probléme, respectivement. itr est le nombre
d'itérations de génération de colonnes nécessaires pour l'obtention de la solution
optimale continue de (BCSP) et col est le nombre total de colonnes générées. Ces

résultats ont été obtenus sur une machine SUN Ultra-10/440 (int95=18.1, {p95=22.7,
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640M).

Tableau 6.2 — BCSP : résolution par génération de colonnes

Probléeme Ir(s) | mp(s) | sp(s) itr col
150020100 27.2 70 202 | 63.9| 46923.0
ul00020100 || 242.9 | 63.2|179.6 | 94.6 | 152521.5
u5001100 || 105.2 288 76.4| 66.4 3556.9
ul0001100 { 1040.3 | 409.9 | 630.4 [ 92.3 7380.7
t501 || 522.4 57.2 | 465.2 | 239.3 | 194944.9

L’analyse de ces résultats a permis de noter le nombre élevé d’items de longueur
trés petite dans les instances des problémes générés uniformément. De plus, parmi ces
items, plusieurs sont de longueur identique. Ceci entraine beaucoup de symétrie entre
les solutions primales et surtout duales. Nous montrons dans la suite comment nous
pouvons briser la symétrie entre les items identiques afin d’accélérer la résolution de
la relaxation linéaire de (BCSP) en utilisant des propriétés de certaines variables

duales a l'optimalité.

6.2 Stabilisation

Nous allons montrer que le dual (BCSD) posséde des solutions optimales ayant
une propriété particuliére qui permettra de briser la symétrie entre les items iden-
tiques. Le théoréme suivant montre que les variables duales des items identiques

peuvent étre “identiques” dans une solution optimale de (BCSD).

Théoréme 6.1 : Il existe une solution optimale v* de (BCSD) qui vérifie :

L=l=r=n. (6.1)
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Preuve: Soit i et j deux items de longueur identique, c’est-a-dire que l; = [; et soit
7 une solution réalisable de (BCSD). Remarquons d’abord que les contraintes qui
définissent le domaine de (BCSD) correspondent aux patrons réalisables. Comme
les longueurs des items sont identiques, i et j sont présents dans les mémes patrons
réalisables. Donc ; et w; figurent avec les mémes variables dans les contraintes du

dual.

Considérons maintenant la solution duale 7 définie par :

w=m, si ¢ {i.j}
f; = T; = maz{m;, m;}.

D’aprés les remarques précédentes, cette solution est forcément réalisable. De plus.

les colts étant positifs (= 1), 7 est de meilleur coit que =.

Donc, pour toute solution réalisable de (BC'S D), il existe une solution de meilleur
colit vérifiant (6.1). D’oll on peut déduire que (BCS D) admet au moins une solution

optimale 7 vérifiant : [; ={; = m; = T, g

Ce théoreme nous autorise a résoudre les problemes (BCS P) et (BCSD) tout en
visant les solutions duales vérifiant la propriété (6.1). Nous proposons deux maniéres
d'imposer ces contraintes dans le probleme. Nous présentons d’abord l'imposition

explicite des contraintes.

6.2.1 Implantation explicite de la stabilisation

Il s'agit d’ajouter au dual I'ensemble de contraintes suivant :
-+ T = 0, Vv (Z,]), li = lj (62)

Pour chacune de ces contraintes, une colonne ayant un coefficient —1 a la ligne i, 1 a

la ligne J et 0 ailleurs est ajoutée au probléeme maitre. Cette colonne est de la forme



suivante
[01---y0v—1107--'101+1101"'90]T-

La variable y;; correspondante peut étre positive ou négative et a un coiit nul. Afin

d’éviter les répétitions, les contraintes (et colonnes) sont incluses seulement pour

i> ]

Les formulations résultantes pour les problemes stabilisés sont :

(SBCSP)
Min Zl’p
peQN
Za,-pa:p-i- Z Yij — Z Y = 1, i = 1,...,7”
SC Y pen j>il=l, j<ily=l,
0<z, <1, pe
(SBCSD)

Mazx i T
i=1

m
Y apm <1, pe

=1

71',‘—71'J‘=0, (2,_]) li=lj, ]>2

SC

Notons que le nombre de contraintes possibles dans le dual peut étre trés élevé.
Le nombre de colonnes ajoutées au primal serait alors trés élevé et pourrait affecter
I'efficacité de la résolution. A 'image de 'idée qui consiste & utiliser 'ordre sur les
items afin d’éviter d’inclure une contrainte (ou une colonne) deux fois, plusieurs
techniques permettraient de réduire le nombre de colonnes ajoutées au probléme
maitre. Nous en énumérons quelques-unes ci-apres.

- Au lieu d’inclure les contraintes pour chaque item, on trouve un ensemble

minimum de contraintes pour un ensemble d’items identiques. Supposons que
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les items de longueur /; sont les items i,i + 1,...,7 + k. Alors, k contraintes
sont suffisantes pour imposer les conditions sur les variables duales. On ajoute

les contraintes

Tl’,'=7l','+[,[=1,...,k

ou les contraintes

7T[=W[+1,l=i,...,i+k—1.

Le nombre de colonnes (contraintes) ajoutées est alors O(m).

Vu que ce sont les petits items qui présentent le plus grand nombre d’items
identiques, on pourrait juste s’intéresser aux items de grande taille. Ainsi. le
nombre de colonnes ajoutées ne serait pas trés élevé. Cependant, l'instabilité
des variables duales correspondant aux petits items peut causer de la difficulté
a la résolution vu leur grand nombre.

Généralement, ce sont les petits items qui présentent un grand nombre d’items
identiques. Pour les variables duales correspondantes, on peut ajouter seule-
ment un sous-ensemble des contraintes. Apres la résolution du probléme maitre
restreint, si deux variables duales correspondant & deux items identiques ne
sont pas égales {(ou ont des valeurs trés différentes), les contraintes correspon-
dantes sont ajoutées au dual.

On peut ainsi commencer avec un nombre limité de contraintes ajoutées pour
chaque groupe d’items identiques, par exemple 2, et ajouter les contraintes
seulement quand elles ne sont pas vérifiées par la solution du probléme maitre
restreint.

Afin de rendre I'idée précédente plus efficace, on peut éliminer certaines co-
lonnes “inutiles”. Par exemple, si une variable est nulle pour un certain nombre
d’itérations de génération de colonnes (tout en vérifiant la contrainte associée),
on peut juger qu'elle est inutile et éliminer la colonne correspondante du

probleme maitre.
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Obtention d’une solution primale réalisable : Les colonnes ajoutées au primal
permettent la surcouverture de certains items et la sous-couverture d’autres. Or, les
colonnes de stabilisation lient les items de longueur identique entre eux. Il est donc
possible de substituer les items couverts plus d’une fois par des items de méme

longueur non-couverts. Et on obtient une solution primale réalisable pour (P).

6.2.2 Imposition implicite de la stabilisation

Les contraintes (6.2) peuvent étre imposées implicitement dans les problémes
(BCSP) et (BCSD). Si on définit I I'ensemble des items de longueurs différentes
notées [ (e € I), b. (e € I) la demande des items de longueur [, et a., (e € I,p € Q)
le nombre d’items de longueur [, dans le patron p, les formulations du primal et dual

stabilisés deviennent :

(ACSP) (ACSD)
Min Z.’L‘p Mazx Z beTre
peEN eel
Zaepx,,:be, eel sc{ Zaepwes 1, pefl.
sc pEN ecl
1,20, pe

Une solution réalisable de (CSD) dans laquelle toutes les variables duales corres-
pondant 4 des items de longueur identique ont la méme valeur fournit une solution
réalisable de (ACSD). 1l suffit d’affecter & . (e € I) la valeur des variables duales
correspondants aux items de longueur /.. La valeur de 'objectif est la méme vu que

b est le nombre d’items de longueur /..

Réciproquement, étant donnée une solution réalisable = de (ACSD), il suffit
d’affecter la valeur 7, & toutes les variables duales de (CSD) correspondant aux

items de longueur I.. Le coiit est le méme pour la méme raison évoquée ci-dessus.
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De plus, la correspondance est injective. D’ott I’équivalence des deux fagons d’im-

poser les contraintes de stabilisation.

Cette fagon d'imposer les contraintes sur les variables optimales duales permet
de réduire le nombre de contraintes dans le primal sans ajouter des colonnes sup-

plémentaires. La taille du probléme est alors réduite.

Enfin, étant donné une solution réalisable de (ACSP), on obtient une solution
réalisable de (CSP) en distribuant les b, (e € I) items de longueur [, sur les patrons

qui couvrent l'item e.

6.3 Résultats numériques

Nous présentons les résultats obtenus sur les instances de probléemes présentés
précédemment. D’abord, nous donnons les résultas obtenus en imposant les contraintes
implicitement vu que nous nous attendons que cette approche fournira les meilleurs
résultats numériques. Nous présenterons ensuite les résultats dans le cas ou les
contraintes sont imposées explicitement. Ces résultats permettrons de conclure sur
'apport intrinséque des contraintes ajoutées. Les résultats sont obtenus en calculant

la moyenne des résultats de 10 problemes de chaque classe.

6.3.1 Imposition implicite de la stabilisation

Le tableau (6.3) donne les nouvelles tailles des problemes suite a l'agrégation
des items de méme longueur. Il est clair que les tailles des probléemes sont réduites

de maniére trés significative ce qui devrait faciliter énormément leur résolution. Les
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notations utilisées sont les mémes qu’au tableau (6.1). En plus, nCS et nPrepCS
désignent le nombre d’items résultant de l'agrégation des items de méme longueur

et le nombre restant d’items suite a I'application de la procédure de pré-traitement.

Tableau 6.3 - BCSP : caractéristiques des problémes avec l'utilisation implicite des
inégalités partiellement valides duales-optimales.

Probleme L | IMIN | IMAX | nBP | nCS | nPrepBP | nPrepCS
150020100 150 1 100 | 500 | 80.7 251.2 51.7
ul00020100 || 150 1 100 | 1000 | 81.0 465.4 53.7
u5001100 150 1 100 [ 500 | 98.9 314.8 71.5
ul0001100 150 1 100 | 1000 | 99.0 589.0 71.7
t501 1000 | 250 500 | 501.0 | 194.3 501.0 194.3

Le tableau (6.4) contient les résultats pour la génération de colonnes sans stabi-
lisation (Std) et avec stabilisation imposée implicitement (Stab Imp). Pour chaque
classe de problémes, nous donnons le temps de calcul moyen (en secondes) pour la
résolution du probléeme (Ir), du probléme maitre (mp) et du sous-probléme (sp). Le
nombre moyen d’itérations de génération de colonnes est désigné par itr et le nombre
moyen de colonnes générées est désigné par col. Ces résultats ont été obtenus sur le

méme type de machine (SUN Ultra-10/440, int95=18.1, fp95=22.7, 640M).

L’effet de la stabilisation est clairement bénéfique pour la résolution des problémes
sur tous les aspects. Le temps de calcul et le nombre d’itérations de génération de
colonnes sont réduits considérablement. La réduction du temps de calcul du sous-
probléme est quasiment proportionnelle a la réduction du nombre d’itérations. Ce-
pendant, le temps de calcul du probléme maitre est réduit de maniére extraordinaire.
Ce temps est moins d'une seconde pour les problémes uniformes et moins de 3 se-

condes pour les triplets. Ces résultats viennent confirmer les résultas obtenus par
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Tableau 6.4 - BCSP : utilisation implicite des inégalités partiellement valides duales-
optimales.

Probleme Version Ir(s) | mp(s) | sp(s) itr col
u50020100 Std 27.2 70| 20.2| 63.9| 46923.0
u50020100 |} Stab Imp 0.3 0.1 02] 128 2053.5

ul100020100 Std 242.8 | 63.2]179.6 | 94.6 | 152521.5
ul00020100 || Stab Imp 0.3 0.1 02| 13.1 2364.1
u5001100 Std 105.2 288 764 | 66.4 3556.9

u5001100 | Stab Imp 1.3 0.1 1.2 153 6643.9
ul0001100 Std 1040.3 | 409.9 [ 630.4 | 92.3 7380.7
ul0001100 | Stab Imp 1.4 0.1 1.3 10.2 4246.6
t301 Std 522.4 | 57.21465.2 | 239.3 | 194944.9
t501 Stab Imp 20.6 24| 1821242 | 20812.8

Valério de Carvalhd 97 [87] et Ben Amor 97 [4] par I'agrégation des contraintes dans

BCSP.

La différence entre les performances de la stabilisation sur les deux types de
problémes s’explique par le fait que le nombre d’items de longueur égale dans les
problémes uniformes est beaucoup plus élevé que dans le cas des triplets. Ceci montre
un lien direct entre le type de contraintes ajoutées et 'efficacité de la résolution
ainsi que la stabilité du processus de convergence des variables duales. Ceci se voit
surtout dans la réduction du nombre d’itérations de génération de colonnes ainsi que

I'efficacité de résolution du probléme maitre.

Dans le cas des classes u50020100 et 1100020100, le nombre d'items de longueur
différentes est plus petit que 80. Dans le cas des classes u5001100 et ul0001100, ce
nombre est plus petit que 100. Dans le cas des triplets, il est plus petit que 200. Ceci
explique la rapidité de la résolution des sous-problémes et peut avoir une certaine
influence sur l'efficacité de la résolution du probléme maitre. L’analyse des résultats

obtenus avec l'imposition explicite des contraintes dans ce qui suit montrera I’apport
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intrinséque de la stabilisation.

6.3.2 Imposition explicite de la stabilisation

Nous testons cette fagon d’imposer la stabilisation en ajoutant toutes les colonnes
de stabilisation possibles au probléme maitre (primal). Nous considérerons les mémes
instances testées plus haut afin de pouvoir comparer les deux fagons d'imposer la sta-
bilisation et de mesurer 'efficacité des contraintes ajoutées. Les problemes résultants

ont le méme nombre d'items mais ont plus de colonnes.

Le tableau (6.5) contient les mémes informations que la tableau (6.4) pour la
résolution sans stabilisation (Std), la version implicite de la stabilisation (Stab Imp)
et la présente version explicite (Stab Exp). La colonne m contient le nombre moyen
de contraintes dans le probléme maitre pour chaque version. Notons également que
le probléme maitre de la version Stab Exp contient en plus O(m) colonnes de stabi-

lisation.

L’effet bénéfique de la stabilisation dans sa version explicite est tres clair a tous
les niveaux. Le pourcentage de réduction du temps de calcul total est de 80.9% pour
150020100, 88.4% pour u100020100, 85.3% pour u5001100, 94.2% pour u10001100
et de 47.0% pour les triplets.

Les mémes remarques faites pour I'imposition implicite de la stabilisatior: sont
valables pour l'imposition explicite des contraintes de stabilisation. Nous notons
cependant que la stabilisation implicite est plus performante que la stabilisation
explicite. Mais, I'apport intrinséque de la stabilisation se mesure sur la réduction du
nombre d'itérations de génération de colonnes et 'efficacité de résolution du probléme

maitre. Ces apports sont semblables pour les deux fagons d’imposer la stabilisation
PP p



optimales.

Probleme Version m Ir(s) | mp(s) | sp(s) itr col
u50020100 Std 251.2 27.2 7.0 20.2| 63.9| 46923.0
u50020100 || Stab Imp | 51.7 0.3 0.1 02| 128 2053.5
ub0020100 || Stab Exp jj 251.2 5.2 0.2 50| 14.5 7126.9
1100020100 Std 465.4 | 242.9 | 63.2|179.6 | 94.6 | 152521.5
ul00020100 || Stab Imp || 53.7 0.3 0.1 02| 13.1 2364.1
u100020100 || Stab Exp || 465.4 28.8 04| 284 14.4] 153529

u5001100 Std 314.8| 105.2| 28.8| 764 | 66.4 3556.9

u5001100 | Stab Imp || 71.5 1.4 0.1 1.2] 153 6643.9

u5001100 | Stab Exp || 314.8 15.5 05| 15.0| 109 | 15189.2
110001100 Std 589.0 | 1040.3 | 409.9 | 630.4 | 92.3 7380.7
ul0001100 || Stab Imp | 71.7 1.4 0.1 1.3} 10.2 4246.6
ul0001100 | Stab Exp || 589.0 60.7 0.7} 60.0 7.8 | 16459.9

t501 Std 501.0 | 5224 | 57.2 (4652 239.3 | 194944.9
t501 Stab Imp |f 194.3 20.6 25| 18.21124.2 | 208128
t501 Stab Exp || 501.0 | 276.7 6.1 | 270.6 | 133.1 | 88651.8

164

Tableau 6.5 - BCSP : utilisation explicite des inégalités partiellement valides duales-
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avec une légere différence due a la différence des tailles des problemes. La grande
différence dans la résolution du sous-probleme est due a la grande différence entre les
tailles des réseaux. Les réseaux résultant de l'imposition implicite (par agrégation)
des contraintes des items sont considérablement plus petits que ceux utilisés quand

la stabilisation est imposée de maniére explicite (par I'ajout de colonnes).

6.4 Conclusion

Nous avons montré que l'idée de l'agrégation des items identiques, utilisée par
plusieurs auteurs pour accélérer la résolution de la relaxation linéaire de BCSP,
revient en fait & I'imposition dans le dual de contraintes qui stipulent que des va-
riables duales correspondant & des items de longueur identique doivent étre égales.
En prouvant I'existence d’une solution optimale duale vérifiant cette condition, nous
avons en effet montré que l’agrégation est en fait une fagon implicite d'implanter
des inégalités partiellement valides duales-optimales (cf. chapitre 4). Cependant,
I'agrégation réduit grandement la taille des problémes résolus et ne permet pas de
déduire clairement le role joué par la stabilisation dans ['efficacité de la résolution.
Dans le but de montrer I'apport intrinseque des inégalités valides établies, nous avons

résolu les mémes problémes en implantant explicitement ces inégalités valides.

Les résultats obtenus par I'agrégation sont supérieur a ceux obtenus par |'im-
plantation explicite de la stabilisation. Cependant, les améliorations du nombre
d’itérations de génération de colonnes et du temps de calcul du probléme maitre
sont semblables dans les deux cas. Ceci montre que les contraintes utilisées apportent
une grande stabilité au processus de résolution par génération de colonnes. On peut
également affirmer que les inégalités valides utilisées apportent la plus grande part

d’efficacité dans le cas de 'agrégation : la différence des temps de résolution du sous-
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probléme est due a la différence des tailles des réseaux inhérents. On peut conclure
ainsi a l'effet bénéfique de I'utilisation de contraintes polyédrale dans le but de viser

des multiplicateurs duaux particuliers pour lesquels 'information est disponible.
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Chapitre 7

Stabilisation du probleme de
découpe unidimensionnelle

Le probléme de découpe binaire (BCSP) est un cas particulier du probleme
de découpe unidimensionnelle (CSP). Dans ce dernier cas, les demandes b; (i =
1,...,m) peuvent étre plus grandes que 1 et toutes les longueurs /; (i = 1,...,m)
sont supposées distinctes. Un patron réalisable est défini de la méme maniére que
dans le cas de BCSP avec la possibilité qu'un item de longueur /; puisse figurer

plusieurs fois dans un méme patron.

Nous utilisons les mémes notations que dans la section précédente. L’ensemble
de tous les patrons réalisables est noté 2 et les variables qui comptent la fréquence
d’un patron p (p € Q) sont notées z,. Il faut noter que ces variables ne sont plus
contraintes a étre binaires vu qu’un patron peut étre utilisé plus d’une fois dans une
solution réalisable. a;, (i = 1,...,m;p € Q) compte la fréquence de I'item 7 dans le
patron p. Bien évidemment, a, prend une valeur entiére qui peut étre plus grande
que 1. L’objectif du probléme est bien siir la minimisation du nombre de rouleaux

découpés tout en satisfaisant les demandes pour chaque item.

Avant de donner la formulation de CSP, remarquons qu'un probléeme de découpe
unidimensionnelle peut étre vu comme un probléme de découpe binaire dans lequel
on a agrégé les demandes des items de méme longueur. De méme, si dans un probléme

de découpe unidimensionnelle on considére chaque unité de demande conime un item
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séparé, on obtient un probléme de découpe binaire équivalent.

Etant donné les notations introduites précédemment, le probléme primal (CSP)

et son dual (CSD) peuvent étre formulés comme suit :

(CSP) (CSD)

Min Z T, Mazx Z b;m;
=1

peEN
m
) a,m; <1, €N
Za,-p:cpzbi, i=1,...,m sc Zx: o= p
1=
S€Y e m >0, i=1,....m

£, 20, pe

Les contraintes d’intégrité ont été omises vu que la procédure de résolution consiste

a résoudre un probléme continu a chaque nceud de 1'arbre de branchement.

Dans la formulation précédente, les contraintes de demande sont des inégalités qui
exigent que le nombre d’items ¢ découpés soit au moins égal a b;. Ceci n’affecte pas la
valeur optimale du probléeme. En effet, Gilmore&Gomory 61 [28] ont montré que pour
la formulation présentée ci-dessus, il existe toujours une solution ou les contraintes
de demande sont toutes satisfaites a égalité. L’utilisation des contraintes d’'inégalité
revient A exiger que les variables duales correspondantes soient non-négatives. Cette
modification du probléme a été utilisée par la majorité des approches de résolution
de CSP (90, 87, 4]. Les résultats montrent une certaine amélioration par rapport
a I'utilisation des contraintes d’égalité. Ces contraintes sont en effet des inégalités

partiellement valides duales-optimales présentées dans le chapitre 4.

Valério de Carvalho 2000 [88] a utilisé d’autres coupes duales afin de stabiliser
la résolution de CSP par génération de colonnes. L’auteur justifie la validité de ces
coupes d’un point de vue primal et aucun lien n’est fait avec le polyedre optimal

dual.
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Nous considérons les mémes contraintes utilisées par Valério de Carvalh62000
[88]. Notre contribution théorique principale est de prouver que ces contraintes sont
des inégalités valides sur le polyédre optimal dual de (CSP). Nous aurons ainsi
un cas particulier des inégalités valides duales-optimales présentées dans le chapitre
4. Nous montrons par un exemple que ces inégalités valides coupe effectivement le
domaine réalisable dual. Ceci a pour conséquence de réduire I'ensemble des multipli-
cateurs admissibles durant la résolution et rend plus efficace la convergence vers un
multiplicateur optimal. L'efficacité de l'obtention d'une solution optimale primale de
base est justifée par des arguments mathématiques. Les résultats de la résolution de
problémes de petite, moyenne et grande taille comparés aux résultats de la résolution

par génération de colonnes standard viennent confirmer ces déductions.

Nous testons également une approche de stabilisation par une fonction de pénalité
linéaire par morceaux définie autour d'estimations initiales des variables duales
calculées & partir des poids des items. Ces estimations sont en fait trés proches
d'une solution optimale duale. En particulier, nous montrons que pour les probléemes
ayant une perte nulle, ces estimations fournissent des variables optimales duales. Les
problémes les plus difficiles étant ceux ayant une perte trés faible, ces estimations
devraient permettre de stabiliser fortement leur résolution. Les résultats numériques

viennent confirmer nos prédictions.

Dans la section qui suit, nous donnons les résultats obtenus pour la résolution
de CSP par génération de colonnes sans stabilisation. Ensuite, nous donnerons les
détails de I’approche de stabilisation que nous appliquerons a ce probléme. Par la

suite, nous présenterons les résultats numériques obtenus.



7.1 Résolution par génération de colonnes

L’obtention d’une solution entiére optimale de CSP est assurée via une procédure
de branchement. A chaque nceud de I'arbre de branchement, un programme linéaire
est résolu par génération de colonnes. Le sous-probléme de génération de colonnes est
formulé soit comme un probléeme de sac-a-dos [40, 89, 90|, soit comme un probleme
de plus court chemin sur un graphe en grille [87], soit comme un probléme de plus
court chemin avec contraintes de capacité [4]. Une revue exhaustive des formulations
de CSP qui donnent la formulation donnée plus haut par décomposition est présentée

dans [4].

Nous avons résolu les relaxations linéaires des problemes (CSP,CSD) par gé-
nération de colonnes en formulant le sous-probléme comme un probleme de plus
court chemin avec contraintes de capacité (SPC). Le réseau sur lequel les colonnes

(chemins) sont définies est décrit dans [d].

Pour les tests, nous avons d’abord utilisé les problémes obtenus suite a I'agrégation
de problémes utilisés pour BCSP (cf. chapitre 5). Ces problemes étant devenus
trés faciles suite & 1'agrégation des items de méme longueur, nous avons considéré
les trois types les plus difficiles : u5001100, ul0001100 et t501. Vu que les temps
de calcul sont trés petits, le gain principal qu'on peut espérer est au niveau du
nombre d’itérations. Nous avons ensuite généré des problémes de plus grande taille
et de difficulté supérieure. Nous avons généré ces problémes a partir des problemes
u5001100 et ul0001100 de la maniere suivante. Pour chaque longueur d’item /[,
nous regardons la demande totale d. Si d < 10, nous construisons d items de lon-
gueurs 10l +4,i = 0,...,d — 1. Si d > 10, nous construisons 10 items de longueur
10{ +4,i = 0,...,9 et un item de longueur 10! avec une demande égale a d — 10.

Ces problemes sont notés hba5001100 et hbal0001100. Le nombre moyen d’items
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différents par probléeme est élevé, respectivement de 492.7 et 861.3. La procédure de

pré-traitement réduit ce nombre & 396.4 (80.5%) et 479.1 (55.6%) respectivement.

Le tableau 7.1 donne les caractéristiques des problémes résolus. L, IMIN et IMAX
désignent, respectivement, la longueur des rouleaux, la longueur minimale et la lon-
gueur maximale d’un item. nBP est le nombre d’items dans la version BCSP du
probléme, nCS est le nombre d’items dans la version CSP, nPrepBP est le nombre
restant d’items apres I’application de la procédure de pré-traitement [63] & la version
BCSP et nPrepCS est le nombre restant d’items aprés l'application de la procédure

de pré-traitement a la version CSP.

Tableau 7.1 - CSP : caractéristiques des problémes.

Probléeme L | IMIN | IMAX | nBP | nCS | nPrepBP | nPrepCS
u5001100 150 1 100 | 500} 98.9 314.8 71.5
ul0001100 150 1 100 | 1000 | 99.0 589.0 71.7
to01 1000 250 500 | 501 | 194.3 501 194.3
hba5001100 | 1500 10 999 | 500 | 492.7 314.8 396.4
hbal0001100 {| 1500 10 999 | 1000 | 861.3 589.0 479.1

Les résultats de la résolution de ces problémes par génération de colonnes sont
présentés dans le tableau (7.2). Les colonnes du tableaux sont les mémes que celles

utilisées pour BCSP.

Les problémes hba5001100 et hbal0001100 sont nettement plus difficiles que
les autres. Leur nombre de contraintes ainsi que la taille de leurs sous-problémes
sont la cause principale de ce comportement. Etant donné le nombre d’itérations de
génération de colonnes et la taille des sous-problémes (nombre de nceuds et nombre
d’arcs), le temps moyen d’une résolution du sous-probléme (SPC) est de autour de

10s pour hba5001100 et de 30s pour hba10001100. La résolution du sous-probléme est
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Tableau 7.2 - CSP : Résolution par génération de colonnes.

Probléme Ir(s) || mp(s) | sp(s) itr col
u5001100 14 0.1 1.3 153 6643.9
ul0001100 14 0.1 1.3 10.2 4246.6
t501 20.6 24 18.2 | 124.2 | 20812.8
hba5001100 || 1153.7 || 64.8 | 1088.9 | 129.6 | 325601.2
hbal0001100 || 4301.4 || 190.1 | 4111.3 | 138.3 | 452500.1

particuliérement coliteuse pour les derniéres itérations de génération de colonnes. La
moyenne sur les 20 derniéres itérations est supérieure a 40s pour hba5001100 avec un
maximum autour de 50s et supérieure a 180s pour hbal0001100 avec un maximum
prés de 190s. Ceci est dit a la corrélation entre les valeurs optimales des variables

duales et les longueurs des items qui servent dans le calcul des valeurs cumulées de

la ressource (capacité) [4].

7.2 Stabilisation

Nous utilisons des inégalités valides duales-optimales introduites dans le chapitre
4. Le théoréeme suivant montre qu’a l'optimalité, il existe un lien entre les poids
des sous-ensembles d'items et les sous-ensembles de variables duales associées. En
particulier, I'ordre sur la longueur des items doit étre respecté par les valeurs des

variables duales correspondantes a I’optimalité.

Théoréme 7.1 : Soit SC {1,...,m} etk € {1,...,m} tels que Zl,- < k.
i€S

Alors, toute solution optimale ©* de (CSD) vérifie :

> <. (7.1)
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Preuve: Soit 7* une solution optimale de CSD. w* est réalisable pour CSD, c’est-

a-dire qu’elle vérifie :
720, d=1,....,m

iaipn',-‘ <1, peq.

i=1

Soit S et k tels que Z l; < lk. Tout patron réalisable p contenant l'item A peut étre
) ) i€S
représenté par

(lk; l]v.] € Rp)v
oll R, est I'ensemble des items restant qui constituent le patron réalisable p. La

contrainte correspondante dans le dual est

ﬂ'k+Zﬂ']’SI.

JERp

Puisque Z l; < li, il existe des patrons réalisables du type
i€s

(i€ S; 1] €Ry).

Les contraintes correspondant a ces patrons s’écrivent
E m + E mj S 1.
i€S j€Rp

Supposons maintenant que

Zn’{ > Ty

Sachant que 7* est réalisable, on a
7r,:+27r;<21r:+27r;51.
j€Rp i€S J€Rp
Ainsi pour tout patron réalisable p contenant 1'item £,

T + Z m <L
JERp
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Par complémentarité linéaire, toutes les variables primales correspondant aux pa-

trons réalisables p contenant I'item k seront nulles (i.e. z, = 0). Par conséquent,

-

aucune solution primale complémentaire a 7* ne peut étre réalisable. Donc, #* ne

peut étre optimale (et réalisable). On en déduit alors que toute solution optimale

E m; < 7.

duale 7* doit vérifier

Remarque : Le résultat du théoreme permet d’affirmer que toute solution opti-
male vérifie que deux variables duales correspondant & des items de méme longueur
doivent avoir leur valeurs égales. Ainsi, les contraintes d'égalités utilisées pour BCSP
au chapitre précédent sont vérifiées par toutes les solutions optimales. Cependant,
'approche utilisée pour BCSP utilise I'information disponible et peut étre appliquée

pour les deux types d’inégalités valides (cf. chapitre 4).

Valério de Carvalho [88] a utilisé ces mémes contraintes pour I'accélaration de
la résolution de CSP. La notion de validité utilisée est différente de celle exprimée
dans le théoreme 7.1. L’auteur montre qu’a partir d’une solution du probléeme primal
obtenu en ajoutant ces contraintes au dual (CSD) il est possible de construire une
solution réalisable pour (CSP) de méme coiit. Le fait que ’ajout des contraintes au
dual entraine une relaxation du primal et que le second membre des contraintes est

nul permet de conclure que la solution ainsi construite est optimale pour CSP.

Les deux corollaires suivants donnent des résultats qui sont des cas particuliers
du théoreme 7.1. Le premier montre qu’a 'optimalité les variables duales doivent

étre ordonnées suivant les tailles des items correspondants.

Corollaire 7.1 : Suppsosons que les items sont ordonnés dans l'ordre décroissant



sutvant leur taille,i.e.

L2L2>... 2621
Alors toute solution optimale * de (CSD) doit vérifier

T 2 Mg 2. T 2y 2 T

Preuve: Il suffit de considérer les ensembles S de cardinalité 1. Sachant que [; >
li+1 pour tout i = 1,...,m — 1, toute solution optimale 7* doit vérifier n{ > 7{,,.

L’ordre sur les valeurs des variables duales en découle directement. =

Le deuxiéme corollaire présente le cas particulier o |S| = 2.

Corollaire 7.2 Si les items i, et k sont tels que
l; + l_,' < g,
alors toute solution optimale ©* de CSD wvérifie

. = *
o+ ST

Le choix des contraintes a utiliser sera discuté ultérieurement. Il faut cependant

noter que plus |S| est grand, plus le nombre de contraintes possibles est élevé.

7.2.1 Effet sur la formulation du dual

L’ajout de contraintes & la formulation du dual (CSD) sera utile seulement
si elles permettent de restreindre effectivement le domaine dual tout en conser-

vant des solutions optimales du probléeme. Le deuxiéme point est assuré par le
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théoreme 7.1 ci-dessus. Concernant le premier point, il suffit de montrer que cer-
tains points réalisables pour (CSD) ne vérifient pas ces contraintes. Ceci est illustré

dans 'exemple suivant.

Exemple 7.1 Considérons l'inégalité valide définie par k et S C {1,...,m} tels

Yok <

i€S

que

et soit j un élément de S.

Définissons le multiplicateur = par m; = 0 si i # j et w; = 1. Ce multiplicateur
est réalisable pour CSD, mais ne vérifie pas l'inégalité considérée. En effet
Zm =1
i€S
et
e = 0.

Ceci est vrai aussi pour tout multiplicateur réalisable défini de fagon ¢ avoir 3, s mi =

1 et 7; =0 pour j ¢ S. s

Ainsi, I'utilisation des contraintes (7.1) permet de restreindre le domaine réalisable
dual de maniére assez significative. L’ensemble des multiplicateurs admissibles du-
rant la génération de colonnes sera également restreint. Par conséquent, il y aura
moins d’oscillations et d’instabilité dans le processus de convergence des variables

duales.

Il est également possible de déduire une maniére de choisir les contraintes pour
un k donné. Tout d’abord, pour un ensemble S; C S, la contrainte définie par S; est

redondante (dominée) par celle définie par S.
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De plus, sachant qu'il s’agit d'un probléme de maximisation dont les coiits sont
positifs et que les variables doivent étre non-négatives, ;. devrait prendre la valeur
la plus élevée possible. Il est avantageux de considérer des contraintes (7.1) qui four-
niraient la meilleure borne inférieure pour 7, ou encore ’ensemble S qui assurerait

la plus grande valeur de Z .
i€S

Ainsi, si S) est un ensemble d’items qui peut étre partitionné en sous-ensembles

i.i € S qui vérifient E l; < l;, on aura nécessairement a l'optimalité
JES}

Z Ty S T
JES}
Et on peut en déduire qu'il est préférable d’utiliser la contrainte définie par S. Ceci

est illustré par I'exemple suivant.

Exemple 7.2 Supposons que k =2, S = {4,6,7}, S; = {5,8,9,10} et que ls + 1y <

l¢ (les items sont ordonnés dans l'ordre décroissant sutvant leur taille).

On peut affirmer qu’a l'optimalité 75 < 74, T3 + Mg < 7 €t Mo < 7. Donc, on

aura nécessairement
T3+ Mg+ w7+ g ST+ My + 75 < Mo

Et donc, la contrainte définie par S, est dominée par celle définie par S. p
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7.2.2 Effet sur la formulation du primal

L’ajout d'une contrainte (7.1) a la formulation du dual se traduit par l'ajout

d’une colonne C dans le primal. Cette colonne est définie par

1, :€S
C; = -1, i=k
0, sinon.

La variable correspondant a cette colonne aura un coiit nul et sera astreinte a étre

non-négative.

L'effet bénéfique de la présence d’une telle colonne peut étre vu comme suit.
Sachant que Ziesli < I, chaque fois qu'on remplace l'item k par I'ensemble S des
items dans un patron réalisable, on obtient un autre patron réalisable. Supposons
qu’a une itération de génération de colonnes, I’ensemble des colonnes présentes dans
le probléme maitre et contenant k est E;. La présence d’une colonne de stabilisa-
tion définie par 'ensemble S et A dans le probleme maitre permet de considérer
implicitement toutes les colonnes correspondant aux patrons réalisables obtenus en
remplacant l'item k par l'ensemble d’items S dans tous les patrons de Ei. Afin

d’illustrer ceci, reprenons la représentation d'un patron réalisable contenant & par
(leiljyJ € Ry).

La colonne correspondante est définie par

l, i€R,
Cl=(1, i=k
0, sinon.

La colonne de stabilisation définie par S et k est définie par

1, 1€8
C; = -1, i=k
0, sinon.



En calculant C? + C, on obtient la colonne C¥ définie par
1, teR,

C3=<1, ieS
0, sinon.

Il est clair que cette colonne correspond au patron réalisable par

(li;i€ S;lj,j € Ry).

Remarque : Ce developpement nous fournit une fagon d’obtenir une solution
primale réalisable pour (P) & partir d’une solution réalisable de (SP). Le coit de
la solution de (P) obtenue est le méme que le coiit de la solution correspondante de
(SP), cette procédure permet d’obtenir une solution optimale de base pour (P) a

partir de toute solution optimale (de base) de (SP).

7.2.3 Remarques sur 'implantation

Le nombre de contraintes du type (7.1) peut étre trés grand. Il serait raison-
nable de considérer seulement un sous-ensemble de ces contraintes. Nous formulons
quelques remarques sur les types de contraintes possibles dépendemment de la car-
dinalité de 'ensemble S.

1. Quand |S| =1, il y a potentiellement L";—l—) contraintes. En effet pour chaque

k, on a les contraintes

-+ m; <0
pour j = k + 1,...,m. Cependant, il est possible dans ce cas de réduire le
nombre de contraintes & considérer sachant que plusieurs sont redondantes. Si

on garde seulement les m — 1 contraintes

—M + Ty <0
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pour k = 1,...,m — 1, toutes les contraintes pour lesquelles |S| = 1 seront
vérifiées par transitivité.

La vérification implicite des contraintes redondantes se traduit dans le primal
par la prise en compte implicite des colonnes correspondantes. Prenons par
exemple la contrainte

—Tk + k2 <0

qui est obtenue en sommant les équations
—k + k41 S0

et
— Tkt + Tre2 S 0.

. . . , L a0 8
Les colonnes correspondant & ces trois contraintes sont notées CH¥+2 Ck4+1

et Ck+14+2 respectivement. Elles sont définies par

-1, i=k
ck = 1, i=k+2
0, sinon,
-1, i=k
CHl ! 1, i=k+1
0, sinon,
et
-1, i=k+1
CHIk+2 -0 1, i=k+2
0, sinon.

On peut voir alors que
Ck.k-{-l + Ck+l.k+—2 = Ck,k+2

11 est donc possible d’affecter une valeur de o & la colonne C**+2 en affectant

la valeur § & chacune des colonnes Chk+l g Ch+LE+2
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2. Quand |S| = 2, le nombre de contraintes (colonnes) possibles est encore plus

élevé, surtout si les demandes b; (i = 1,. .., m) sont élevées. Il est important de
faire un choix parmi les ensembles |S| possibles pour un item & (k < m—2). Par

exemple, Valério de Carvalho 2000 [88] choisit, pour un item £, la contrainte
-Mp+ M + 75 <0

pour laquelle 7 est le plus grand item pouvant définir une telle contrainte et j
le plus grand item vérifiant {; > [; + ;. Ceci revient a choisir les premiers 7 et
J {(dans 'ordre lexicographique) qui satisfont une telle contrainte. Cette fagon
est la plus simple vu l'ordre utilisé sur les items. Comme une seule contrainte
est définie pour un k& donné, le nombre de contraintes possibles ainsi définies
est O(m).

Le méme raisonnement de la remarque précédente justifie la prise en compte
implicite des contraintes (colonnes) redondantes. Cependant, il faut noter que
le nombre de contraintes prises en compte implicitement est beaucoup plus

élevé dans le cas de la remarque 1.

. L’utilisation simultanée des colonnes (contraintes) définies pour |S| < 2 per-

met de prendre en considération implicitement plusieurs autres colonnes définies
pour |S| = 3 ou |S| = 4. La combinaison de 2 colonnes définies pour |S| = 2
ou de 2 colonnes définies pour |S| = 1 avec une colonne définie pour |S| = 2
permet dc prendre en compte implicitement une colonne définie avec |S| = 3.
La combinaison de 3 colonnes définies pour |S| = 2 permet de prendre en

compte implicitement une colonne définie pour |S| = 4.

. Une autre idée consisterait a choisir, pour un item k, un ensemble S de cardina-

lité maximum. Il est possible de considérer un seul ensemble S de la cardinalité
trouvée. Bien sir, il faut s’assurer que les contraintes considérées ne sont pas
dominées ou redondantes. Parmi ces ensembles, on peut choisir en priorité les
ensembles S dont le poids total est le plus proche de /; ou choisir les plus gros

items possibles dans l'ordre de leur taille. Ce dernier cas revient a remplir un
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rouleau fictif de longueur l; avec les items suivants dans l'ordre A+ 1,....m.

5. L’utilisation d'un ensemble S dont le poids total est le plus proche de {; permet

de considérer implicitement les patrons qui seraient proches des patrons maxi-

maux. Ce qui est potentiellement bénéfique pour la résolution de la relaxation

linéaire vu que la solution optimale est un combinaison convexe des points

extrémes du polyedre du sous-probléeme de génération de colonnes (patrons
maximaux).

Notons enfin que 'ajout des colonnes de stabilisation permet au probléme maitre de

prendre en considération des colonnes correspondant a des patrons non-extrémaux

et qui ne seraient pas générés par le sous-probléme de génération de colonnes [4. 93].

7.3 Résultats numériques

Nous considérons les mémes problémes qui ont été décrits dans le tableau 7.1.
Deux types de contraintes sont utilisées. Nous les distinguons, dans le tableau 7.3,

par la cardinalité de I'ensemble S. *

- |8} €1 correspond & l'ajout des contraintes
T+ T <0, k=1,...,m—1.

Il y a (m — 1) contraintes de ce type.
- |S] < 2 correspond a I'utlisation des contraintes définies pour S| = 1 et |S| =2

conjointement. En plus des contraintes ci-dessus, on utilise les contraintes
— M + T + 7 <0, Ik Zli-i-lj, k=1,....m

telles que définies dans la remarque 1. Le nombre total de contraintes utilisées

est < 2m — 3.

'Valério de Carvalho [88] utilise les mémes contraintes pour les tests.
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Les résultats sont présentés dans le tableau 7.3. Les notations sont les méme que

pour les tableaux précédents.

Tableau 7.3 - CSP : stabilisation par des inégalités valides duales-optimales.

Probleme |S| Ir(s) | mp(s) | sp(s) itr
u5001100 0 14 0.1 1.3 153
u5001100 1 1.1 0.1 1.0 9.6
u5001100 2 1.0 0.1 0.9 8.7
ul0001100 0 1.4 0.1 1.3 10.2
ul0001100 1 1.2 0.1 1.1 8.1
ul0001100 2 1.1 0.1 1.0 8.3
t501 0 20.6 2.4 182 1124.2
t501 1 19.3 2.2 17.3 | 113.3
t501 2 19.2 2.2 17.0 | 113.3
hba5001100 || O |f 1153.7 | 64.8 | 1088.9 | 129.6
hba5001100 1 813.5 269 7866 | 30.5
hba5001100 2 7479 | 26.1| 721.8| 25.0
hbal0001100 || O | 4301.4 | 190.1 | 4111.3 | 138.3
hbal0001100 || 1 | 2539.3 | 43.1|2496.2| 25.1
hbal0001100 || 2 || 2324.8 | 41.9 {22829 | 20.4

Le tableau montre une amélioration des performances de la génération de co-

lonnes sur tous les niveaux. Pour les problémes faciles u5001100 et ul0001100, les

temps de calculs restent du méme ordre (1s) et le nombre d’itérations est réduit de
maniére assez significative (37.3% et 43.1%). Pour les triplets (t501), 'amélioration

des temps de calcul est de l'ordre de 6%. Le nombre d’itération de génération de

colonnes est réduit de 8.8% dans les deux cas. L’apport relativement faible de la sta-

bilisation dans le cas de ces problemes s’explique par leur structure particuliere qui

entraine que le nombre de colonnes de stabilisation ajoutées du deuxieme type est

tres petit. De plus la structure de leurs solutions optimales fait que les substitutions

fictives des items dans les colonnes présentes dans les problemes maitres restreints

n'est pas tres fructueuse.
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Dans le cas des problémes les plus difficiles, hba5001100 et hbal0001100, l'a-
mélioration du temps de calcul total est de 'ordre de 41.0% pour |S] < 1 et de
46.0% pour |S| < 2. Le temps des problémes maitres est réduit de 77.3% et 78.0%
respectivement. Le temps des sous-problémes est réduit de 39.3% et 44.5% respecti-
vement. Enfin, le nombre d’itérations de génération de colonnes est réduit de plus de
80% dans les deux cas. Ceci, ainsi que I'amélioration au niveau du probléme maitre,
témoignent de la robustesse de 'approche de stabilisation utilisée. Les temps de cal-
cul des sous-problémes restent néanmoins trés élevés. Ceci s'explique par les mémes
arguments utilisés pour la génération de colonnes sans stabilisation. La corrélation
forte entre les valeurs des variables duales vers lesquels converge la génération de
colonnes (l;/L, i = 1,...,m) et les consommations de la capacité sur les arcs
(l;, i = 1,...,m) empéche la dominance des étiquettes et le nombre détiquettes
gardées durant la résolution de SPC est alors énorme. Une méthode d’accélération
de la résolution de SPC s'impose dans de tels problemes. Des idées qui permettraient
d’accélérer la résolution du sous-probléme de génération de colonnes dans le cas de

CSP sont suggérées dans Ben Amor 97 [4].

En conclusion, I'approche de stabilisation de CSP par des inégalités valides sur
le polyédre optimal s’est avérée fructueuse. Les performances de la génération de
colonnes ont été améliorées dans tous les problémes traités. Ces performances va-
rient d’un type de problémes a 'autre. Ceci est tout a fait normal vu les structures

particuliéres des contraintes ajoutées.

Notons enfin que les performances des méthodes proposées par Vanderbeck 96
[90] et Valério de Carvalho 2000 [88] sont en grande partie dues a 'utilisation d’heu-
ristiques pour l'initialisation du probleme. Ces heuristiques résolvent une suite de
problémes de sac-a-dos pour générer successivement les colonnes les plus remplies.

Ces colonnes générées, les problémes sont alors trés proches de 'optimalité des le
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départ et la majorité des colonnes d'une base optimale sont déja présentes dans le
probléme maitre restreint. Pour les triplets, vu que la perte est nulle, ces heuristiques
générent trés souvent une solution optimale dés le départ. En plus, pour Valério de
Carvalho [88], le temps de calcul pour les triplets sans l'utilisation de la stabilisation
est de l'ordre de 3s, ce qui est trés petit pour voir I'apport de la stabilisation. Pour
d’autres problémes plus difficiles, 'amélioration des temps de calcul est claire. Il est
intéressant de remarquer que la plus grande part de temps de calcul est passée sur la
résolution du probléme maitre restreint, ce qui est contraire a ce qu’on peut observer

dans nos résultats.

Stabilisation par une fonction de pénalité linéaire par morceaux : Il est
répandu que les problémes de découpe unidimensionnelle les plus difficiles sont ceux
pour lesquels la perte est trés petite, voire nulle. Ceci est di principalement au
fait que la résolution des sous-problemes ne prend pas en compte le remplissage
des patrons correspondants aux colonnes générées et que l'écart entre les solutions
initiales est assez grand. Cependant, on peut montrer un résultat intéressant pour
ce genre de probléme. La proposition suivante montre que si la perte d'un probléme

de CSP est nulle, alors on en connait une solution optimale duale.

Proposition 7.1 Si (CSP) est telgue sa perte est nulle a l'optimalité, alors le mul-

tiplicateur défini par
L.
1r,-'=z,z=1,...,m (7.2)

est une solution optimale pour le dual (CSD).
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Preuve: Pour un patron réalisable P, on

D b
Zn{: iez <L

ieP

Donc #* est réalisable pour (CSD).

De plus,

Le deuxiéme terme est le rapport de I'espace 1'espace minimal nécessaire pour décou-
per tous les items sur la longueur d’un rouleau. Il constitue donc une borne inférieure
sur la valeur optimale de (CSP) et (CSD). On conclut alors que 7* défini par (7.2)

est une solution optimale pour (CSD). g

Les problemes de triplets ont une perte nulle a 'optimalité. Nous nous attendons
donc a ce que I'application de la stabilisation par une fonction de pénalité linéaire
par morceaux réduise trés significativement le nombre d’itérations nécessaires pour
atteindre l'optimalité(cf. chapitre 3). De plus, pour la plupart des problémes de
découpe que nous avons expérimentés, les valeurs des variables duales optimales
obtenues sont tres proches de %,i = 1,...,m. Nous allons tester une approche de
stabilisation par une pénalité linéaire par morceaux définie initialement autour de
7* défini par (7.2) sur les problémes que nous avons considérés dans ce chapitre.
Pour les problémes les plus difficiles (hba5001100 et hba 10001100), la résolution
des sous-problemes risque d’étre colteuse méme pour les premieres itération a cause
de la corrélation entre les valeurs des variables duales et les consommations des
ressources sur les arcs. Le tableau 7.4 contient les résultats obtenus. Les notations
sont les mémes que celles des tableaux précédents. Pour chaque classe de problemes,

la premiere ligne donne les résultats de la résolution par génération de colonnes (cf.
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tableau 7.2) et la deuxiéme ligne donne les résultats de l'utilisation d'une fonction

de pénalité linéaire par morceaux pour la stabilisation.

.....

Probleme Ir(s) || mp(s) | sp(s) itr

u5001100 1.4 0.1 1.3 153
1.0 0.1 0.9 6.5

t501 20.6 24 18.2 | 124.2
7.9 0.5 74| 122

hba5001100 |f 1153.7 64.8 | 1088.9 | 129.6
1087.3 31.1 | 1056.2 | 27.0
hbal0001100 || 4301.4 || 190.1 | 4111.3 | 138.3
2378.5 23.4 1 2355.1 | 155

Les résultats montrent une amélioration nette dans le nombre d’itérations de
génération de colonnes nécessaires pour la résolution des probléme a 'optimalité. Les
temps de calculs sont aussi améliorés de maniere significative. Nous remarquons tou-
tefois que les sous-problémes des problémes hba sont tres coiteux (voir I'explication
plus haut). De plus, sachant que les intervalles utilisés sont petits et centrés autour
des multiplicateurs (%),-=l'_"'m, la résolution du sous-probléme est trés couteuse dés
la premiere itération.

Pour les triplets, une seule itération majeure est nécessaire vu que @ = (%)izl,,_.,m
est optimale pour (CSD). Pour les autres types de problémes, au plus deux itérations
majeures sont nécessaires pour l'obtention d’une solution optimale pour (CSP). Le

vecteur 7 défini ci-dessus est trés proche de 'optimalité duale.

Nous avons également testé la stabilisation en utilisant simultanément les inégalités

valides sur le polyedre optimal dual et une pénalité linéaire par morceaux autour de

‘ T = (515),-=1',,__m. Les résultats sont donnés dans le tableau 7.5. Pour chaque classe
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de problémes, la premiére ligne donne les résultats de la résolution par génération
de colonnes (cf. tableau 7.2) et la deuxiéme ligne donne les résultats de l'utilisation

T LI

(IS < 2).

Tableau 7.5 - CSP : stablisation simultanée par des inégalités valides duales-
optimales et une pénalité linéaire par morceaux.

Probleme Ir(s) || mp(s) | sp(s) itr
u5001100 1.4 0.1 1.3 153
1.0 0.1 09| 6.3

t501 20.6 24 18.2 | 124.2
6.8 04 6.4] 11.2

hba5001100 || 1153.7 64.8 | 1088.9 | 129.6
928.8 323 | 896.5| 23.7
hbal0001100 || 4301.4 || 190.1 | 4111.3 | 138.3
2189.6 27.1 121625 | 14.4

Les remarques sont les mémes que pour la stabilisation par une fonction de
pénalité lindaire par morceaux. On note toutefois la légére amélioration sur tous les
aspects die au surplus d’information disponible grace a l'utilisation des inégalités

valides.

Le tableau (7.6) résume tous les résultats de la stabilisation de CSP par les
différentes techniques proposées. L'effet bénéfique de la stabilisation y est trés clair.
Les inégalités valides éprouvent cependant certaines difficultés dans la réduction du
nombre d'itérations pour les triplets dont la structure particuliére réduit l'efficacité
de ces contraintes. Par contre, la pénalisation par une fonction linéaire par morceaux
réduit de maniére significative le nombre d’itérations de génération de colonnes.
Toutefois, elle peut causer certaines difficulté liées a la méthode de résolution du

sous-probleme.



Tableau 7.6 - CSP : résumé des résultats de 1'utilisation de la stabilisation.

Probleme |S| Ir(s) | mp(s) { sp(s) itr
us001100 Std 1.4 0.1 1.3 153
1S| <1 L1{ 01| 10| 96

S| < 2 1.0 01| 09| 87

pwlpf 10/ 01| 09| 65

|S| < 2 et pwlpf 1.0 0.1 09| 63

t501 Std 20.6 24 18.2 | 124.2
S| <1 19.3 2.2 17.3 | 113.3

[S] <2 19.2 2.2 17.0 | 113.3

puwlpf 7.9 0.5 741 12.2

IS| < 2 et pwlpf 6.8 0.4 6.4 11.2

hba5001100 Std 1153.7 64.8 | 1088.9 | 129.6
1S <1 813.5| 269| 786.6| 30.5

1S| <2 7479 | 26.1| 721.8| 25.0

pwlpf 1087.3 | 31.1|1056.2| 27.0

IS| < 2et pwlpf | 9288 | 323| 896.5| 237

hba10001100 Std 4301.4 | 190.1 | 4111.3 | 138.3
1S <1 2539.3 43.1 | 2496.2 | 25.1

IS| <2 23248 | 41.9|2282.9| 204

pwlpf 2378.5 23.412355.1| 15.5

IS| < 2 et pwlpf || 2189.6 27.1 121625 144

189
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7.4 Conclusion

Dans ce chapitre, nous avons appliqué la stabilisation par des inégalités valides
duales-optimales (chapitre 4) au probléme de découpe unidimensionnelle (CSP). Les
contraintes ajoutées ont déja été utilisés dans la littérature. Cependant, nous avons
montré que ces contraintes, qui traduisent un certain lien entre les poids des items
et les valeurs des variables duales correspondantes, étaient en effet des inégalités va-
lides sur le polyedre optimal dual de (C'SP). Nous avons également expliqué par une
discussion mathématique pourquoi la résolution des problémes stabilisés est plus fa-
cile que celle des problémes originaux. L'utilisation de ces inégalités valides a permis
d’améliorer de maniére significative les performances de la génération de colonnes.
Les tests ont montré que cette approche de stabilisation permet une réduction sen-
sible des temps de calcul et surtout le nombre d'itérations de génération de colonnes

pour tous les problémes résolus.

Nous avons également testé une approche de stabilisation par une fonction de
pénalité linéaire définie autour d’une approximation initiale des variables duales cal-
culée & partir des poids des items correspondants (cf. chapitre 3). La stabilisation
permet de réduire le nombre d'itérations de génération de colonnes d'une maniere ex-
traordinaire, méme pour les problémes pour lesquels la stabilisation par des inégalités
valides ne réduit que légérement le nombre d'itérations. Pour ces problémes (les tri-

plets), les approximations initiales des variables duales sont, en effet, optimales.

L’utilisation simultanée de ces deux techniques de stabilisation a permis de
réduire encore plus le nombre d’itérations de génération de colonnes. Les améliorations
sont cependant légéres ce qui témoigne de la puissance de chacune des approches
utilisée séparément. Néanmoins, une technique qui rendrait plus efficace la résolution

de SPC[14, 4] s'impose afin d’éviter des temps de calculs énormes lorsqu’il existe une
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corrélation forte entre les valeurs de variables duales 4 I'optimalité et les consomma-

tions des ressources utilisées par I'optimiseur du sous-probléme.



Chapitre 8

Conclusion

L’élaboration de ce travail nous a permis d’approfondir les connaissances dans
les domaines de la résolution de problémes de grande taille, des méthodes de décom-
position et des méthodes de résolution des problémes convexes non-différentiables.
Ce travail représente une contribution & la fois a la programmation linéaire, a la
résolution des problémes de grande taille, aux méthodes de stabilisation, a 'optimi-

sation non-différentiable ainsi qu’aux méthodes de descente en général.

L'une des conclusions principales de notre travail est que dans le cadre de la
génération de colonnes, l'information duale peut étre d'une grande utilité pour
résoudre efficacement le primal. Nous avons montré ceci tant sur le plan théorique
que sur le plan pratique en appliquant les méthodes développées sur des problemes
connus de la littérature. En particulier, nous avons prouvé que la pénalisation du
lagrangien d’un programme linéaire autour d'un multiplicateur optimal permet d'ob-
tenir une solution optimale primale de base. Une autre conclusion importante est
que la stabilisation de 1'évolution des multiplicateurs duaux a un effet bénéfique
sur la stabilité de la résolution du probleme primal. Ces développements viennent
entre autre illustrer les liens trés forts entre un probleme et son dual. Nous avons
également établi des résultats intéressants pour les problémes étudiés, c’est-a-dire
MDVSP, BCSP et CSP. Nous détaillons dans la prochaine section les contributions
de notre travail et consacrons la section suivante aux perspectives et aux travaux

futurs basés sur cette these.
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8.1 Contributions

Le premier chapitre a été consacré a une synthése des résultats connus sur la
résolution des problémes de grande taille en utilisant le principe de décomposition et
la génération de colonnes ou en utilisant la relaxation lagrangienne et les méthodes
d'optimisation non-différentialble. Nous avons fait une revue des principaux déve-
loppements liés & la généralisation du principe de décomposition de Dantzig-Wolfe
aux problémes & variables entiéres ainsi qu‘un survol des diffcultés rencontrées par
les méthodes classiques face & ’accroissement de la taille des problemes résolus. Nous
avons présenté les premiéres approches de stabilisation que nous avons regroupées en
deux classes. Elles different par le schéma général de I’algorithme, soit les méthodes
de type faisceaux et les méthodes de type proximal. Nous avons également présenté

un survol des approches de stabilisation unifiées récentes.

Dans le chapitre 2, nous avons proposé une méthode proximale pour les problémes
d’optimisation convexe non-différentiable. Nous avons généralisé I'idée proposée par
Kimet al.95 [43] qui est elle-méme une généralisation du principe de l'algorithme
du point proximal (Rockafellar 76 [76]). La méthode consiste & résoudre une suite
de problémes dits stabilisés jusqu’a la convergence vers une solution optimale. Les
problémes stabilisés sont définis en pénalisant le probléme original a l'extérieur d'un
domaine convexe fermé appelé région de confiance. La résolution d’un probléme
stabilisé fournit une direction de montée qui sert & calculer un point appelé centre de
stabilité. Cette résolution définit une itération majeure. Les itérations de 'algorithme
utilisé pour la résolution d’'un probléeme stabilisé sont appelées itérations mineures.
Dans les travaux de Kim et al.[43], cette région est réduite au centre de stabilité
courant. Nous avons étudié la convergence de la méthode dans le cas ou la région
de confiance est de pleine dimension et contient le centre de stabilité courant dans

son intérieur. Ainsi, la convergence finie est prouvée méme dans le cas des fonctions
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non-polyédrales si les problémes stabilisés sont résolus exactement a chaque itération
majeure. Cette condition peut étre utile dans le cas non-linéaire ou la résolution
des problémes stabilisés produit des solutions approchées. Méme si ces solutions ne
sont pas optimales, un choix approprié de la largeur des boites utilisées permettra
de s’assurer que l'optimum du probléme stabilisé est a I'intérieur de la région de
confiance. Etant donnée la précision visée pour la solution du probléeme original. les
problémes stabilisés peuvent alors étre résolus avec cette méme précision. Elle peut
étre utile aussi pour assurer la convergence dans le primal comme dans le cas d'une

fonction affine par morceaux.

Nous avons utilisé un cas particulier de cette approche pour la stabilisation des al-
gorithmes de génération de colonnes et de Kelley dans le chapitre 3. Afin de préserver
la linéarité des problemes résolus, nous utilisons une fonction de pénalité linéaire par
morceaux. La convergence duale découlant de la convergence de la méthode générale,
la convergence primale est assurée grice & 'utilisation d'un pavé de pleine dimension
comme région de confiance. La fonction de pénalité a cinq morceaux utilisée peut
également étre vue comme une approximation linéaire externe d'une fonction de
pénalité quadratique. Le type des régions de confiance utilisées permet également de
montrer qu'il est possible de calculer une solution optimale primale de base a partir
d’une solution optimale duale en résolvant un programme linéaire facile. Cette affir-
mation a été vérifiée sur un probléme pratique de grande taille résolu par génération
de colonnes. Nous avons enfin montré que la direction de déplacement calculée a
chaque itération majeure peut étre enrichie par n'importe quelle autre direction
sans compromettre la convergence de l'algorithme sous certaines conditions. Bien
str, ces directions doivent étre choisies adéquatement pour accélérer 1'évolution des

centres de stabilité vers des points proches de l'optimum.

L’approche de stabilisation ainsi développée a été appliquée a la résolution de
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la relaxation linéaire de MDVSP par génération de colonnes. Nous avons d’abord
montré comment l'application du principe de décomposition généralisé a la formu-
lation multiflots de MDVSP donne la formulation compacte en nombres entiers.
L’implantation de la stabilisation est sujette & quelques conditions reliées a la for-
mulation du probléme. La procédure d’intialisation proposée permet de fournir des
estimations initiales pour les variables duales, une borne inférieure sur la valeur
optimale de la relaxation linéaire, une solution primale entiére ainsi qu'une borne
supérieure sur le probléeme en nombres entiers. Les résultats ont confirmé l'efficacité
prédite pour la méthode. Des directions d’enrichissement du déplacement des centres
de stabilité, basées sur I'augmentation de 1'objectif dual ou sur un surgradient de la

fonction duale, se sont avérées bénéfiques pour l'efficacité de la méthode.

Nous avons étudié un autre cas particulier de fonction de pénalité pour la sta-
bilisation de la génération de colonnes. Les développements théoriques de cette ap-
proche sont faits au chapitre 4. Nous avons introduit deux types d’inégalités valides
sur le polyédre des solutions optimales duales. Les inégalités du premier type, ap-
pelées inégalités partiellement valides duales-optimales (Dual-Optimal Partial Valid
Inequalities), sont vérifiées par au moins une solution optimale duale. Les inégalités
du deuxiéme type, appelées inégalités valides duales-optimales (Dual-Optimal Valid
Inequalities), sont vérifiées par toutes les solutions optimales duales. L'utilisation de
ces inégalités restreint I’ensemble des multiplicateurs admissibles et relaxe le domaine
primal, ce qui rend sa résolution plus facile. Cependant, bien que I'optimalité duale
ne soit pas compromise, la réalisabilité primale n'est plus assurée. Nous proposons
une méthode en deux phases qui permet d’obtenir une paire de solutions optimales
primale et duale. La deuxiéme phase utilise une fonction de pénalité définie autour
de I'optimum dual fourni par la premiere phase. Cette méthode est applicable aux
deux types d’inégalités valides. Pour le deuxiéme type, nous profitons de la richesse

de I'information duale pour obtenir une paire de solutions optimales primale et duale
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en une seule phase : il suffit de modifier légérement les contraintes utilisées.

L’approche de stabilisation développée au chapitre 4 a été appliquée a deux
problemes : BCSP et CSP. Dans le premier cas, nous avons montré que la tech-
nique connue d’agrégation des items de longueur identique revient a l'utilisation
d’'inégalités valides duales du premier type. Nous avons, en effet, montré que la
relaxation linéaire de BCSP admet une solution optimale duale dans laquelle des
variables duales associées a des items de longueur identique ont leur valeurs égales.
L’agrégation étant une fagon implicite d’implanter ces contraintes, elle réduit la
taille des problémes résolus & tel point qu’il n'est pas facile de décider si I'efficacité
de résolution observée est due a la stabilisation ou a la petite taille des problemes
résolus. Nous avons alors effectué les tests en imposant explicitement les contraintes
de stabilisation. Ceci nous a permis de conclure a l'apport considérable de I'utilisa-
tion de ces contraintes et de l'information duale en général dans le but de stabiliser
l'algorithme de génération de colonnes. Dans le cas de CSP, nous avons d'abord
montré que des coupes déja utilisées dans la littérature sont en effet des inégalités
valides du deuxiéme type. Nous avons également montré pourquoi la résolution des
problémes stabilisés est plus facile que celle des problémes originaux. Les problémes
test connus étant trés faciles, nous avons générés d’autres problemes dont les relaxa-
tions linéaires se sont avérées treés difficiles a résoudre. Notons que nos tests n’utilisent
pas les heuristiques connues pour générer des solutions primales trés proches de I'op-
timalité pour des problémes difficiles ; ceci dans le but de montrer I’apport intrinseque
de la stabilisation. Les résultats viennent confirmer 'effet fortement bénéfique des

contraintes de stabilisation pour le comportement de la génération de colonnes.



8.2 Perspectives et travaux futurs

8.2.1 Approche unifiée

Nous avons prouvé la convergence de l'algorithme proposé au chapitre 2 dans
le cas ol tous les problemes sont résolus & I'optimalité. Ceci est possible dans le
cas des programmes linéaires résolus par génération de colonnes que nous avons
étudié au chapitre 3. Dans le cas des problémes non-linéaires, la résolution approxi-
mative des problémes stabilisés produit des solutions approchées. La précision des
problémes stabilisés est généralement beaucoup plus petite que la précision globale.
Ainsi, si on vise une solution e—optimale, on doit résoudre les problémes stabilisés
avec une précision 1 << e. Cependant, 'utilisation de largeurs adéquates des boites
(diameétres des régions de confiance) permet de s’assurer que la nouvelle région de
confiance contient une solution optimale du probléeme stabilisée. Il est alors possible

d'utiliser la méme précision 7 = € pour la résolution des problemes stabilisés.

Une autre question qui mérite d’'étre étudiée est la généralisation de I'étude de la
convergence a d’autres type de région de confiance. L'utilisation de la méthode pour
la résolution de programmes convexes non-linéaires permettrait de mieux apprécier

son efficacité.

8.2.2 Utilisation d’un multiplicateur optimal dual pour le
calcul d’une solution optimale primale de base

Le théoreme 3.1 affirme qu’étant donné un multiplicateur dual optimal pour un
programme linéaire, il est possible d’obtenir une solution optimale primale de base

en résolvant un programme linéaire. Ce programme linéaire est le dual du probléme
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obtenu en restreignant le dual original & une boite autour du multiplicateur en
question (cela revient aussi a pénaliser le lagrangien défini 4 I'aide ce multiplicateur).
La proposition 3.3 suggere que cette résolution est efficace, ce que nous avons vérifié
sur une instance de MDVSP (cf. chapitre 3) et sur les problemes de triplets (cf.
chapitre 7). Cette technique peut étre utilisée dans une procédure a deux phases
pour remplacer la génération de colonnes. Il s’agit de calculer, assez rapidement, un
multiplicateur dual optimal (ou e—optimal) par une méthode d’optimisation non-
différentiable ou par une méthode de points intérieurs. Ensuite, le programme linéaire
défini & partir du multiplicateur trouvé est résolu par génération de colonnes dans

le but de déterminer une solution optimale primale de base.

Ce résultat peut aussi étre utilisé pour remplacer les procédures de Crossover.
Dans le cas de programmes linéaires de trés grande taille, il est souvent utile de
résoudre le probleéme par une méthode de points intérieurs qui fournit une solution
optimale duale et éventuellement une solution primale au centre de la face opti-
male. A partir de ces solutions, une procédure de Crossover est exécutée dans le
but d’obtenir une solution optimale primale de base. Cette deuxiéme phase peut
étre remplacée par la technique simple et efficace que nous proposons. Afin d’avoir
une idée préliminaire du comportement d'une telle méthode, nous avons effectué des
tests avec 5 problémes pour comparer les procédures de Crossover de Cplex6.6 7]
avec notre technique. Les tailles des problémes sont données aux lignes Contraintes
et Variables du tableau 8.1. La ligne Primopt indique les temps de calcul obtenus en
résolvant les problemes par l’algorithme primal du simplexe implanté dans cplex6.6.
La ligne Baropt donne les résultas de la résolution par ’algorithme barriere implanté
dans Cplex6.6 [7]. Les lignes CO Primopt et CO Dualopt donnent les temps de cal-
cul du Crossover de Cplex6.6 & partir des solutions fournies par l'algorithme Baropt
utilisant, respectivement, un algorithme primal et un algorithme dual. Les lignes CO

10~* donnent quant a elles les résultats de Putilisation de notre procédure avec une



199

boite de largeur 2 x 10~* & partir de la solution optimale duale fournie par Baropt.
Chacune des colonnes Pb: donnent les temps de calcul obtenus pour le probléme

correspondant.

Tableau 8.1 — Résultats préliminaires du Crossover.

Pbl Pb2 Pb3 pbd Pb5

Contraintes 12354 | 12313 | 13344 | 13453 | 13269
Variables 126329 | 129349 | 151665 | 156841 | 148040

Primopt(s) || > 10000 | > 10000 | > 10000 | > 10000 | > 10000
Barop(s) 1055.6 | 1011.1| 1341.9| 13827] 1171.3

CO Primopt(s) 13.3 | 3427.3 | > 10000 96.6 | 6659.3
CO Dualopt(s) 49.6 | 697.4| 1875.7| 686.3| 777.7
CO 107 1(s) 1889 | 291.3| 670.7| 631.0| 4174
CO 107%(s) 99.5 | 120.7| 554.4| 557.1| 379.9
CO 1073(s) 90.9 | 102.1| 407.2| 3960| 3529
CO 1074(s) 87.3 92.2| 350.1| 346.8| 284.5

Les résultats obtenus sur ces problémes indiquent que la procédure simple de
Crossover que nous proposons est trés prometteuse. Sur les problemes résolus, elle
affiche une certaine stabilité dans les performances par rapport aux deux procédures
de Cplex6.6 [7). De plus, on peut dire que plus la boite est petite, plus notre méthode
est efficace. Cependant, il faut tenir compte de la précision des valeurs des variables
duales fournies par l’algorithme Baropt surtout qu’il s’agit de problemes de tres

grande taille.

Les variables de stabilisation peuvent aussi servir de tolérance sur la réalisabilité

du primal. On leur impose alors des bornes supérieures qui seront des colits de

.....

Enfin, nous visons & rendre notre méthode encore plus efficace en utilisant la pro-

position 3.3. En effet, cette proposition nous autorise a éliminer toutes les colonnes



pour lesquelles on est sir que le couit réduit ne sera pas négatif.

8.2.3 Stabilisation par une fonction de pénalité linéaire par
morceaux : utilisation pour la résolution des probléemes
en nombres entiers

Les problemes résolus par génération de colonnes sont souvent les relaxations
linéaires d'un probléme en nombres entiers qui est résolu par séparation et évaluation
progressives. Etant donné que I'algorithme fournit une solution optimale primale de
base, les décisions de branchement classiques sont applicables et aucune procédure
spéciale de décision n’est nécessaire. Cependant, pour passer d’un nceud a un de ses
descendants, on peut profiter de I'information duale a 'optimalité du nceud parent
pour initialiser la stabilisation du descendant. Ceci peut permettre une résolution
rapide du descendant vu que la différence entre la valeur optimale du nceud parent

et ses descendants directs n'est généralement pas grande.

Le probleme MDVSP constitue un candidat intéressant pour appliquer la sta-
bilisation a la résolution d'un probléme en nombres entiers vu que la résolution de
sa relaxation linéaire par I’approche proposée au chapitre 3 s’est avérée tres efficace
(cf. chapitre 5). D'autres procédures d'intialisation sont a envisager dans le but de
stabiliser seulement certaines variables duales “importantes”. De plus, la solution
primale entiére fournie par la procédure d'initialisation que nous avons utilisée peut
étre utilisée pour effectuer une élimination de plusieurs arcs du réseau en appliquant
le résultat de Hadjar et al.2001 [34]. Il serait également intéressant d’étendre 'étude
au probléme avec fenétre de temps qui modélise plusieurs problémes pratiques. Dans
ce cas, il faut définir une procédure pour l'intialisation du probleme. Notons enfin
que la connaissance d'une solution primale réalisable peut étre utilisée pour le calcul

d’un solution duale réalisable.



8.2.4 Inégalités valides duales-optimales

Dans le but de rendre la résolution de BCSP et CSP la plus efficace possible,
une technique d’accélération de la résolution du sous-probleme de plus court chemin
avec contraintes de capacité est nécessaire. Des idées ont été proposées dans [4]. Il
serait intéressant de tester ces idées ou de développer des idées qui évitent les temps

de calcul énormes observés (cf. chapitre 7).



™)
o
(%]

@
Bibliographie

[1] BARNHART, C., JOHNSON, E.L. et NEMHAUSER, G.L. et VANCE, P.H.
(1994). Solving Binary Cutting Stock Problems by Column Generation and
Branch-and-Bound. Computational Optimization and Applications Vol. 3.

111-130.

[2] BAZARAA, M.S., SHERALI, H.D. et SHETTY, C.M. (1993). Nonlinear

Programming : theory and algorithms. John Wiley & Sons, Inc.

[3] BEASLEY, J.E. (1990). OR-Library : Distributing test problems by elec-
tronic mail. Journal of the Operational Research Society Vol. 41, 1060-1072.

(http ://www.ms.ic.ac.uk)

[4) BEN AMOR, H. (1997). Résolution du Probléme de Découpe par une
Méthode de Génération de Colonnes. Mémoire de maitrise, Département de
Mathématiques et de Génie Industriel, Ecole Polytechnique de Montréal,

Canada.

[5] CARPANETO, D., DELL’AMICO, M., FISCHETTI, M. et TOTH, P. (1989).
A Branch and Bound Algorithm for the Multiple Depot Vehicle Scheduling
Problem. Networks, 19 531-548.



203

[6] CHEN, G. et TEBOULLE, M. (1993). Convergence Analysis of a Proximal-Like
Minimization Algorithm using Bregman Functions. SIAM J. Optim. 3, 538-543.

[7] ILOG. ‘ILOG CPLEX 6.6 : User’s Manual.

[8] DANTZIG, G.B. et VAN SLYKE, R.M.(1971). Generalized Linear Program-
ming. D. A. Wismer (ed.), Optimization Methods for Large-Scale Systems...with

applications, McGraw-Hill, 75-120.

[9] DANTZIG, G.B. e¢ WOLFE, P. (1960). Decomposition Principle for Linear

Programs, Operations Research Vol. 8, No 1, 101-111.

[10] DANTZIG, G.B. (1963). Linear Programs and Extensions. Princeton University

Press.

[11] DANTZIG, G.B. (1968). Large Scale Linear Programming. Dans Mathematics

in The Decision Sciences, Vol. 11 of Lectures in Applied Mathematics, American

Mathematical Society.

[12] DESAULNIERS, G., DESROSIERS, J.,, DUMAS, Y., MARC, S., RIOUX,B,,
SOLOMON, M.M. et SOUMIS, F. (1997). Crew Pairing at Air France,
European Journal of Operational Research 97, 245-259.



[13]

[14]

[15]

[16]

[17]

[18]

204

DESAULNIERS, G., DESROSIERS, J., IOACHIM I., SOLOMON, MM,
SOUMIS, F. et VILLENEUVE, D. (1997). A Unified Framework for Determi-
nistic Time Constrained Vehicle Routing and Crew Scheduling Problems. In
T.G. Crainig and G. Laporte (eds.), Fleet Management and Logistics, Kluwer,
Norwell, MA, 57-93.

DESROSIERS, J., DUMAS, Y., SOLOMON, M.M., et SOUMIS, F. (1995).
Time Constrained Routing and Scheduling. In M.O. Ball et al. (eds.), Network
Routing, Handbooks in Operations Research and Management Science 8.

Elsevier Science, Amsterdam, 35-139.

ECKSTEIN, J. (1993). Nonlinear Proximal Point Algorithms Using Bregman
Functions with Apllications to Convex Programming. Math. Oper. Res. 18,

202-226.

ELZINGA, J. et MOORE, T.G. (1973). A central cutting plane algorithm for

the convex programming problem. Math. Program. 8, 134-145.

ERMOLIEV, Y.M. (1966), Methods of solution of nonlinear extremal problems.

Cybernetics 2 4, 1-17.

EVERETT, H. (1963). Generalized Lagrange multiplier method for solving

problems of optimal allocation of resources. Operations Research Vol. 11,



399-417.

(19] FARLEY, A.A. (1990). A Note on Bounding a Class of Linear Programming
Problems, Including Cutting Stock Problems. Operations Research Vol. 38,

922-923.

[20] FRANGIONI, A. (2002). Genralized Bundle Methods. SIAM J. On Opt. (to

appear).

[21] FISHER, M.L. (1981). The Lagrangean Relaxation Method for Solving Integer

Programming Problems. Management Sci. 27, 1-18.

[22] GAMACHE, M., SOUMIS, F., MARQUIS, J. e¢ DESROSIERS. J. (1997).
A Column Generation Approach for Large Scale Aircrew Rostering Problem.

Operations Research 47(2), 247-262.

[23] GAUVIN, J. (1995). Legons de programmation mathématiques. Editions de

I’Ecole Polytechnique de Montréal.

[24] GEOFFRION, A.M. (1968). Primal Resource-Directive Approaches for Opti-

mizing Nonlinear Decomposable Systems. Operations Research, 18, 375-403.

[25] GEOFFRION, A.M. (1971). Large-Scale Linear and Nonlinear Programming.

Dans D. A. Wismer (ed.), Optimization Methods for Large-Scale Systems...with



applications, McGraw-Hill, 47-74.

[26] GEOFFRION, A.M. (1972). Generalized Benders Decompsition. J. Optim.
Theory Appl. 10, 237-260.

[27] GEOFFRION, A.M. (1974). Lagrangean Relaxation for Integer Programming.
Math. Program. Study 2, 82-114.

[28] GILMORE, P.C. et GOMORY, R.E. (1961). A Linear Programming Approach
to the Cutting Stock Problem. Operations Research Vol. 11, 849-859.

[29] GOFFIN, J.-L. (1977). On the Convergence Rates of Subgradient Optimization
Methods. Math. Program. 13, 329-347.

[30] GOFFIN, J.-L. (1981). Convergence Results in a Class of Variable Metric
Subgradient Methods, O.L. Mangasarian, R. R. Meyer et S.M. Robinson (ed.),

Nonlinear Programming 4 (Academic Press, New York).

[31] GOFFIN, J.-L., LUO, Z. et YE, Y. (1993). Complexity Analysis of an Interior
Cutting Plane Method for Convex Feasibility Problem, manuscrit, McGill

University, Canada. To appear in SIAM J. Optimization.

[32] GOFFIN, J.-L. et VIAL, J.,P. (1999). Convex Nondifferentiable Optimization :

A survey Focused on the Analytic Center Cutting Plane Method. Cahiers du



[33]

[34]

[35]

[36]

37]

[38]

GERAD, G99-17.

GULER, O. (1991). On tne Convergence of the Proximal Point Algorithm for
Convex Minimization. SIAM J. Control. Optim. 29, 403-419.

HADJAR, A., MARCOTTE. O. et SOUMIS, F. (2001). A Branch-and-Cut
Algorithm for the Mutiple Depot Vehicle Scheduling Problem. Cahiers du
GERAD G-2001-25.

HELD, M. , WOLFE, P. et CROWDER, H.P. (1974). Validation of Subgradient

Optimization. Math. Program. 6, 62-68.

HIRIART-URRUTY, J. et LEMARECHAL, C. (1991). Conver Analysis and
Minimization Algorithms I : fundamentals. A Series of Comprehensive Studies

in Mathematics, Springer, New York.

HIRIART-URRUTY, J. et LEMARECHAL, C. (1991). Convez Analysis and
Minimization Algorithms II : Advanced Theory of bundle methods. A Series of

Comprehensive Studies in Mathematics, Springer, New York.

IOACHIM, [ (1994). Planification des Itinéraires d'un Flotte d’Avions
avec Contraintes de Synchronisation. Ph.D. Dissertation, Département de

Mathématiques et de Génie Industriel, Ecole Polytechnique de Montréal,



Montréal, Canada.

[39] IUSEM, A. N. et TEBOULLE M. (1995). Convergence Rate Analysis on
Non-Quadratic Proximal Methods for Convex and Linear Programming. Math.

Oper. Res. 20, 657-677.

[40] KANTOROVICH, L.V. (1960). Mathematical Methods of Organizing and
Planning Production. Management Science Vol. 6, No 4, 366-393.

[41] KHACHYIAN, L.G. (1979). A Polynomial Algorithm in Linear Programming.
Doklady Akademiia Nauk SSSR 244, 1093-1096.

[42] KELLEY, J.E, Jr. (1960). The Cutting-plane Method for Solving Convex
Programs. SIAM J., Vol. 8, No 4, 703-712.

[43] KIM, S., CHANG, K.-N. et LEE, J.-Y. (1995). A Descent Method with Linear
Programming Subproblems for Nondifferentiable Convex Optimization. Math.

Program. 71, 17-28.

[44] KIWIEL, K.C. (1985). Methods of Descent for Nondifferentiable Optimization.

Lectures Notes in Economics and Mathematics, Springer-Verlag, Berlin.

[45] KIWIEL, K.C. (1989). A Survey of Bundle Methods for Nondifferentiable

Optimization. M. Iri et K. Tanabe (ed.) Mathematical Programming : Recent



Developments and Applications KTT/Kluwer, Tokyo, 263-282.

[46] KIWIEL, K.C. (1989). Exact Penalty Functions in Proximal Bundle Methods
for Constrained Convex Nondifferentiable Minimisation. Technical Report of

Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland.

[47] KIWIEL, K.C. (1994). A Bundle Method for Minimizing a Sum of Convex
Functions with Smooth Weights. Working Paper o IIASA’, A-2361 Laxenburg,

Austria.

[48] KIWIEL, K.C. (1997). Approximations in Proximal Bundle Methods and
Decomposition of Convex Programs. JOTA 84(3), 529-548.

[49] KIWIEL, K.C. (1996). Complexity of Some Cutting Plane Methods that Use
Analytic Centers. Math. Program. 74(1).

[50] KIWIEL, K.C. (1997). Proximal Minimization Methods with Generalized
Bregman Functions. STAM J. Control. Optim. 35, 1142-1168.

[51] KIWIEL, K.C. (1999). A Bundle Bregman Proximal Method for Convex
Non-Differentiable Optimization. MAth. Prog. 85, 241-258.

[52] LASDON, L.S. e¢ MACKEY, J.E. (1968). An Efficient Algorithm for the
Multi-item Scheduling. Systems Research Center Report SRC 689, Case



210

Westrern University.

[63] LASDON, L.S. (1972). Optimization Theory for Large Systems. Macmillan

[54]

[55]

[56]

[57]

[58]

Series in Operations Research.

LEE, H.L. et NAHMIAS, S. (1993). Single-Product, Single-Location Models.
Dans S.C. Graves, A.H.G. Rinnooy Kan, P.H. Zipkin Handbooks in Operations
Research and Management Science : Logistics of Production and [nventory,

Elsevier Science Publishers B.V. (North-Holland), 3-55.

LEMAIRE, B. (1989). The Proximal Algorithm. Dans International Series of
Numerical Mathematics. J.P. Penot eds. 87, 73-87.

LEMARECHAL, C. (1974). An Algorithm for Minimizing Convex Functions.
Proceedings IFIP '74 Congress, J.L. Rosenfeld (ed.), North-Holland, Amster-
dam, 552-556.

LEMARECHAL, C. (1975). An Extension of Davidon Methods to Nondiffe-
rentiable Problems. Math. Program. 3, 95-109.

LEMARECHAL, C. (1989). Nondifferentiable Optimization. In G.L. Nemhau-
ser, A.H.G. Rinooy Kan et M.J. Todd (eds) Handbooks in Operations Research

and Management Science : Optimization, 1 Elsevier Science Publishers B. V.



[59]

[60]

f61)

f62)

[63]

[64]

[65]

(North-Holland), 529-572.

LEMARECHAL, C. (2000). Lagrangean Relazation. INRIA.

LEVIN, A.Y. (1965). On an algorithm for the minimization of convex functions

over convex sets. Soviet Mathematical Doklady 6, 286-290.

MARSTEN, R.E., HOGAN, W.W. et BLANKENSHIP, J.W. (1975). The
BOXSTEP Method for Large-scale Optimization. Operations Research, Vol. 23
NO 3, 389-405.

MARSTEN, R.E. (1975). The Use of Boxtep Method in Discrete Optimization.
Math. Program. Study 3, 127-144.

MARTELLO, S. e¢ TOTH, P. (1990). Knapsack Problems : Algorithms and
Computer Implementations. Wiley-Interscience in Discrete Mathematics and

Optimization.

du MERLE, O., VILLENEUVE, D., DESROSIERS, J. et HANSEN, P. (1998).

Stabilized Column Generation. Discrete Mathematics 194, 229-237.

MINOUX, M. (1984). Programmation mathématique : théorie et algorithmes,
2 Durod (Bordas), Paris.



212

[66] MOREAU, J. J. (1965). Proximité et Dualité dans un Espace Hilbertien. Bull.
Soc. Math. France 93, 273-299.

[67) NEAME, P. (1999). Nonsmooth Methods in Integer Programming. Ph.D.

Dissertation, University of Melbourne, Australia.

(68] NEMHAUSER, G.L. et Wolsey, (1988). Integer Programming and Combinato-

rial Optimization, J. Wiley & Sons, New York.

[69] NEMIROVSKII, A. (1994). unpublished lecture notes

[70] NEMIROVSKII, A. et YUDIN, D.B. (1983). Problem Complezity and Method

Efficiency in Optimization, Wiley Interscience.
[71] NESTEROV, Y. and NEMIROVSKII, A. (1994) Interior-Point Polynomial

Algorithms in Conver Programming. SIAM Studies in Applied Mathematics,

Pensylvania.

[72] NESTEROV, Y. (1999) Introductory Lectures on Convez Programming.

(73] POLYAK, B.T. (1966). A General Method of Solving Extremum Problems.
Soviet Mathematics 8, 593-597.



213

[74] POLYAK, B.T. Minimization of Unsmooth Functions. USSR Computationnal

Mathematics and Mathematical Physics 9, 14-29.

[75] RIBEIRO, C.C. et SOUMIS, F. (1994). A Column Generation Approach to
the Multi-Depot Vehicle Scheduling Problem. Dans Oprations Research. Vol.

42, No. 1, 41-52.

[76] ROCKAFELLAR, R.T. (1976). Monotone Operators and The Proximal Point
Algorithm. SIAM J. Control and Optimization Vol.14, No. 5. 877-898.

[77] SHOR, N.Z. (1968). On the Rate of Convergence of the Generalized Gradient
Descent Method. Cybernetics 4 3, 79-80.

[78] SHOR, N.Z. (1970). Convergence Rate of the Gradient Descent Method with
Dilatation of Space, Cybernetics 6 2 94-96.

[79] SCHRAMM, H. et ZOWE, J. (1992). A Version of the Bundle Idea for
Minimizing a Nonsmooth Function : Conceptual Idea, Convergence Analysis,

Numerical Results. SIAM J. on Optimization 2, 121-152.

[80] SHAPIRO, J.F. (1993). Mathematical Programming Models and Methods for
Production Planning and Scheduling. Dans S.C. Graves, A.H.G. Rinnouy Kan,
P.H. Zipkin Handbooks in Operations Research and Management Science :

Logistics of Production and Inventory, Elsevier Science Publishers B.V.



(81]

(82]

[83]

[84]

[85]

86]

(North-Holland), 333-370.

SLATER, M. (1950). Lagrange Multipliers Revisited : a Contribution to
Nonlinear Programming. Cowles commission discussion paper, Mathematics,

403.

SOUMIS, F. (1997) Decomposition and Column Generation. Dans Annotated
Bibliographies in Combinatorial Optimization, M. Dell’Amico, F. Maffioli and
S. Martello (ed.), John Wiley & Sons, Ltd.

STOJKOVIC, M., Soumis, F. et Desrosiers, J. (1997). The Operational Airline
Crew Scheduling Problem. Transportation Science, 32(3), 232-245.

TACHEFINE, B. (1997). Méthode d’Optimisation pour la Planification dans
une Mine a Ciel Ouvert. Ph.D. Dissertation, Département de Mathématiques

et de Génie Industriel,Ecole Polytechnique de Montréal, Montréal, Canada.

THOMAS, L.J. et McLAIN, J.O. (1993). Production Planning and Scheduling.
Dans S.C. Graves, A.H.G. Rinnooy Kan, P.H. Zipkin Handbooks in Operations
Research and Management Science : Logistics of Production and I[nventory,

Elsevier Science Publishers B.V. (North-Holland), 333-370.

VAIDYA, P. (). A New Algorithm for Minimizing Convex Functions over
Convex Sets. AT&T Bell LAboratories, Murray Hill, NJ 07974.



[87]

[88]

[89]

[90]

[91]

VALERIO de CARVALHO, J.M. (1997). Eract Solution of Bin-Packing
Problems Using Column Generation and Branch-and-Bound. Working paper.
Dept. Produgao e Sistemas, Universidade de Minho, 4709 Braga Codex.
Portugal.

VALERIO de CARVALHO, J.M. (2000). Using extra dual cuts to accelerate
column generation. Working paper, Jan 2000. Dept. Produgao e Sistemas,

Universidade de Minho, 4709 Braga Codex, Portugal.

VANCE, P.H. (1996). Branch-and-Price Algorithms for the One-dimensionl
Cutting Stock Problem. Rapport de recherche, Department of Industrial

Engeneering, Auburn University, Auburn, Alabama 36849-5364.

VANDERBECK, F. (1996). On Integer Programming Decomposition and Ways
to Enforce Integrality in the Master. Rapport de recherche, Judge Institute
of Management Studies, Cambridge University, Trumpington St., Cambridge

CB2 1AG, UK.

VANDERBECK, F. (1997). Computational Study of a Column Generation
Algorithm for Bin Packing and Cutting Stock Problems. Rapport de recherche,
Judge Institute of Management Studies, Cambridge University, Trumpington

St., Cambridge CB2 1AG, U.K.



216

[92] VANDERBECK, F. (2000). On Dantzig-Wolfe Decomposition in Integer Pro-
gramming and Ways to Perform Branching in a Branch-and-Price Algorithm.

Operations Research, Vol. 48, No.1, 111-128.

[93] VILLENEUVE, D. (1999). Logiciel de Génération de Colonnes. Ph.D. Disser-

tation, Ecole Polytechnique de Montréal, 1999.

[94] WOLFE, P. (1975). A method of Conjugate Gradients for Minimizing Nondif-
ferentiable Convex Functions. Math. Program. 3, 145-173.

[95] YE,Y. (1994). Complexity Analysis of the Analytic Center Cutting Plane
Method that Uses Multiple Cuts. Technical Report.

[96] YE,Y. (1997). Interior Point Algorithms : Theory and Analysis, Wiley-

Interscience Series in Discrete Mathematics and Optimization, Wiley, New

York.

[97] ZIARATI, K. (1996). Affectation de Locomotives au Train. Ph.D. Dissertation,
Département de Mathématiques et de Génie Industriel, Ecole Polytechnique

de Montréal, Montréal, Canada.



