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Résumé

Les systéemes de Mesures de Soutien Electronique (MSE) radar sont exposés i
des environnements électromagnetiques qui sont de plus en plus denses et complexes.
Cette these explore le potentiel des réseaux de neurones artificiels (RNA) pour clas-
sifier des signaux radars dans ces systémes. La thése comporte quatres contributions
qui sont organisées en deux volets. Le premier volet (lié aux trois premiéres contribu-
tions) concerne le triage métrique rapide d’impulsions radars, tandis que le deuxiéme
volet (lié & la derniére contribution) concerne 1'identification des types de radar.

Dans la premiére contribution, quatre RNA auto-organisateurs de type appren-
tissage compétitif ont été comparés en termes de leur qualité de catégorisation et de
leur effort de calcul. Des résultats de simulation avec un ensemble de données radar
et des estimations de complexité ont permis de conclure que deux de ces réseaux —
le Self-Organizing Feature Mapping et le Fuzzy Adaptive Resonance Theory (ART)
— sont d’excellents candidats pour le triage métrique rapide d’impulsions.

La deuxieme contribution est la proposition d’une architecture de systéme intégré

a tres grande échelle (VLSI), qui permet la mise en oeuvre du RNA fuzzy ART pour
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des applications de triage métrique rapide. Cette architecture modulaire partitionne
la fonctionalité de fuzzy ART sur plusieurs ASIC cascadables. Son traitement est
pipeliné grace a une architecture systolique en anneau pour la comparaison rapide
entre entrées et poids. Un modéle d’estimation AT pour cette architecture a permis
d’isoler un ensemble de configurations d’architecture qui peuvent supporter un taux
de traitement trés élevé, tout en occupant une surface acceptable.

La troisiéme contribution est la proposition d’une technique pour gérer la maniére
dont les patrons d’un séquence d’entrée sont appris par un systéme de catégorisation.
Selon cette technique, un patron d’entrée qui meéne i une décision ambigué est em-
magasiné dans une file, et son apprentissage est retardé pendant un délai fixe. Des
résultats de simulation obtenus avec un ensemble de données radars et deux RNA
(ART2A-E et fuzzy ART) ont permis de conclure (1) que le nombre de patrons
d’entrée qui méne a une décision ambigué est indicatif de la dégradation des résultats,
et (2) que ce traitement offre une alternative intéressante aux autres techniques en
termes du compromis entre la qualité des catégorisations et le temps de réponse.

Dans la quatriéme contribution, un RNA a fusion “what-and-where” a été proposé
pour l'identification rapide des types de radar associés aux impulsions interceptées.
Les parametres “what” forment I’entrée pour le RNA classificateur qui prédit les
types de radar associés aux impulsions. Les parametres “where” forment l'entrée
pour le sous-systéme de catégorisation en-ligne qui sépare les impulsions transmises

par différents émetteurs. Cette séparation permet d’accumuler les réponses du clas-



sificateur pour chaque émetteur, et donc de prédire le type de radar d’un émetteur
actif d’aprés une séquence d’impulsions. Des simulations effectuées pour une mise-
en-oeuvre particuliere du RNA a fusion “what-and-where” et pour un ensemble de
données radars, ont démontrées une amélioration significative des performances par

rapport a un classificateur seul.



Abstract

Electronic Support Measures (ESM) systems are being exposed to electromag-
netic environments that are increasingly dense and complex. This thesis explores
the potential of artificial neural networks (ANNs) for the classification of radar sig-
nals within these systems. It comprises four contributions. The first three concern
ANNSs for fast metric sorting of radar pulses, whereas contribution four concerns the
identification of radar types.

The first contribution presents a comparison of four competitive learning neural
networks in terms of clustering quality and computational efficiency. Simulation
results, obtained using radar pulse data, and complexity estimates have indicated that
two of these ANNS, Self-Organizing Feature Mapping and Fuzzy Adaptive Resonance
Theory (ART), are excellent candidates for fast metric sorting of radar pulses.

The second contribution proposes a VLSI system architecture that can implement
the fuzzy ART neural network for high throughput metric sorting applications. This
modular architecture partitions the fuzzy ART algorithm onto several cascadable

ASICs. It employs a systolic ring architecture for rapid comparison between input



patterns and synaptic weights. An area-time estimation model has allowed to isolate
a set of architecture configurations that can sustain a very high data rate, yet occupy
an acceptable silicon area.

The third contribution proposes a technique to manage the way a stream of input
patterns are learned by an on-line clustering system. According to this technique,
input patterns that lead to ambiguous decisions are stored for fixed time before being
learned. Simulation results obtained using a radar pulse data set, and the ART2A-E
and fuzzy ART ANNs, have allowed to conclude that (1) the number of patterns
leading to ambiguous decisions are indicative of poor clustering quality, and that
(2) this technique offers an interesting alternative to other techniques, in terms of a
compromise between clustering quality and response time.

Finally, the fourth contribution presents a “what-and-where” fusion ANN for fast
identification of radar types associated to intercepted radar pulses. The “what” pulse
parameters are fed to an ANN classifier that predicts the radar types linked to pulses,
whereas “where” pulse parameters are fed to an on-line clustering system that sorts
pulses transmitted from different active emitters. This separation allows to accumu-
late the classifier’s responses for each emitter, and thus predict corresponding radar
types from a sequence of pulses. Simulation results on a particular implementation of
the “what-and-where” fusion ANN, using a radar pulse data set, has shown significant

improvements over the performance of a classifier alone.
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Introduction

Un systeme de Mesures de Soutien Electronique (MSE) radar a pour but la
détection et 'identification passive de signaux radars pour des fins militaires. Son
traitement se résume (1) a détecter les impulsions liées aux signaux radars qui sont
interceptés et puis & mesurer certains parametres; (2) a regrouper les impulsions qui
sont pergues comme similaires d’apres leurs parametres; et (3) a identifier les types
d’émetteurs associés aux groupes formés. La réponse d’un systéme de MSE radar
est critique en guerre électronique, puisqu’elle permet de prévoir les menaces dans
un environnement, pour ensuite entreprendre des contre-mesures appropriées. Dans
le contexte actuel, les systémes de MSE radar sont confrontés a des environements
électromagnetiques qui sont de plus en plus denses et complexes. En méme temps, nos
attentes pour la vitesse, la précision et la fiabilité des ces systémes augmentent. Ces
tendances motivent la recherche d’approches alternatives plus puissantes qui peuvent
prévenir contre les menaces futures.

Les systémes de MSE modernes évoluent vers des systémes autonomes et adaptat-

ifs, qui peuvent traiter la plupart des signaux interceptés avec un minimum d’interact-



N

ion humaine. Les réseaux de neurones artificiels (RNA) peuvent jouer un réle impor-
tant dans cette évolution. Un RNA est une structure pour le traitement d’'information
qui s’inspire du modele biologique. Cette structure peut étre implantée de fagon
massivement paralléle. Elle est alors constituée d’'un grand nombre de processeurs
élémentaires simples (neurones) qui sont trés interconnectés. Les connaissances ac-
quises (poids synaptiques) sont distribuées a travers la structure. a ’endroit des in-
terconnexions. En général, on spécifie un RNA par son modéle de neurone, par sa
topologie d’interconnexion, et par sa loi d’apprentissage pour ajuster les poids synap-
tiques.

Le traitement neuronique est fondamentalement différent des approches conven-
tionnelles pour le MSE radar. Un élément qui distingue les RNA des approches
conventionnelles est la capacité d’apprendre, de rappeler et de généraliser a partir
d’exemples, les régles nécessaires pour (par exemple) classifier des signaux radars.
Cet attribut est avantageux lorsqu'il est difficile de modéliser un environnement com-
plexe de fagon explicite. De plus, étant donnée I’architecture paralléle, un RNA peut
donner un traitement trés rapide et robuste s’il est realisé avec un circuit approprié.
La performance d’'un RNA se dégrade alors progressivement en présence de données
bruitées, corrompues et incomplétes.

Cette these porte sur I'application des RNA aux MSE radar. Plus spécifiquement,
elle explore le potentiel des RNA pour effectuer deux fonctions critiques: le triage

métrique d'impulsions radar et I'identification des types d’émetteurs radars.



Cet ouvrage comporte cinq chapitres. Le premier est un chapitre de synthese.
tandis que les quatres derniers contiennent les contributions de la these. Le premier
chapitre présente un sommaire bref d’un systéme de MSE conventionnel, dans le but
de faciliter la compréhension des chapitres subséquents. Les défis rencontrés par ces
systemes dans le contexte actuel, ainsi qu’un survol des quatres contributions con-
tenues dans cette these, sont aussi décrits. Les quatres contributions sont organisées
en deux volets. Le premier volet (lié aux trois premieres contributions) traite des
RNA pour le triage métrique rapide d’impulsions radars, tandis que le deuxieme (lié
a la derniére contribution) traite des RNA pour l'identification des types de radar.

Le chapitre deux entame la description de la premiére contribution. C’est une
comparaison entre quatre RNA auto-organisateurs de type apprentissage compétitif,
qui peuvent supporter le triage rapide de séquences d’'impulsions. La performance de
ces RNA a été examinée sous trois angles différents: la qualité des catégorisations, le
temps de convergence et la complexité de calcul. L’ensemble de données utilisées pour
les simulations est dérivé d’impulsions radars recueillies dans le champ par le Centre
de Recherches pour la Défense Ottawa (CRDO). Afin d’observer la variabilité des
résultats de catégorisation face a I’ordre de présentation, les patrons de cet ensemble
ont été organisés selon trois ordres de présentation statistiques. Les résultats de
simulation, ainsi que les estimations de complexité ont été analysées pour le triage
rapide en MSE radar.

Le chapitre trois contient une description de la deuxiéme contribution. C’est



la proposition d’une architecture de systéme intégré a trés grande échelle (VLSI)
qui permet la mise en oeuvre du RNA fuzzy Adaptive Resonance Theory (ART)
pour des applications de triage rapide. L’architecture proposée pour le systéme est
modulaire et cascadable en fonction des besoins de I'application. Elle comprend un
comparateur global, ainsi qu'un ensemble de modules élémentaires identiques, qui
permettent chacun d’émuler un certain nombre de neurones. A 'intérieur de chaque
module élémentaire, le traitement est pipeliné grace i une architecture systolique en
anneau pour la comparaison rapide entre entrées et poids. Un modéle pour 'analyse
du coit AT été développé pour cette architecture dans le but d’évaluer I'impact
du choix d’une configuration sur sa surface semiconducteur (A) et son temps de
traitement (T). Le modéle a été utilisé pour estimer la performance de I’architecture
fuzzy ART pour le triage métrique rapide en MSE radar.

Le chapitre quatre décrit la troisitme contribution. C’est la proposition d'une
technique, nommée traitement par ré-ordonnancement, pour gérer la maniere dont
les patrons d’un séquence d’entrée sont appris par un systeme de catégorisation.
Lorsqu’un patron d’entrée méne a une décision ambigué, il est emmagasiné dans une
file, et son apprentissage est retardé pendant un délai fixe. Ce traitement est un com-
promis entre le traitement séquentiel (de base) qui est le plus rapide, et le traitement
par lots qui donne les meilleurs résultats. La qualité et la latence requise pour effectuer
des catégorisations en ligne ont été comparées pour un systéme de catégorisation qui

utilise le traitement séquentiel, par lot et par ré-ordonnancement. Des simulations



ont ¢été effectuées avec le meme ensemble de données radar qu’au chapitre deux, ainsi
que deux RNA auto-organisateurs de type apprentissage compétitif. Des mises en
oeuvre typiques des techniques de traitement par lot et par ré-ordonnancement ont
été développées. Enfin, la théorie sur 'option de rejet a permi de dériver deux modeéles
pratiques pour faire la détection des cas ambigus.

Finalement, le chapitre cinq décrit la quatrieme contribution. C’est la propo-
sition d'un RNA a fusion "what-and-where,” qui permet I'identification rapide du
type d’émetteur radar associé a chaque train d’impulsions. L’architecture de ce RNA
est constituée de trois sous-systemes: un RNA classificateur, un sous-systéme de
catégorisation en-ligne, et un sous-systeme d’accumulation de réponses. La séquence
d’'impulsions interceptées est partitionnée en deux séquences distinctes, qu'on nomme
“what” et “where.” Les parametres “what” forment I’entrée pour le RNA classifica-
teur qui prédit les types de radar associés aux impulsions. Entre temps, les parameétres
“where” forment 'entrée pour le sous-systéme de catégorisation en ligne, qui sépare les
impulsions transmises par différents émetteurs. Le sous-systéme d’accumulation de
réponses permet de fusionner les réponses du RNA classificateur avec celles du sous-
systéme de catégorisation. L’accumulation permet d’identifier les émetteurs d’apres
une séquence d'impulsions, pour améliorer la précision. Des simulations ont été ef-
fectués pour une mise-en-oeuvre particuliere du RNA A fusion “what-and-where.”
Elle combine une variante du RNA fuzzy ARTMAP (pour faire la classification), et

un algorithme qui exécute une association du type plus-proche-voisin et le filtrage de



Kalman (pour faire la catégorisation en-ligne), avec le sous-systéme d’accumulation.
Encore une fois. I'ensemble de données radars qui a été utilisé lors de ces simulations

a été collecté dans le champ par le CRDO.
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Chapitre 1

Mesures de soutien électronique

1.1 Le systeme de MSE conventionnel

Le terme Mesures de Soutien Electronique (MSE) radar fait référence a la recherche,
'interception, la localisation et I’analyse de signaux radars dans un contexte de
surveillance militaire [63] [121] [139]. Il existe plusieurs types de systémes de MSE
radar qui s’appliquent a différents contextes. A haut niveau, certaines propriétés
fonctionnelles sont consistantes pour la plupart de ces systémes. Cette section décrit
la structure et le fonctionnement a haut niveau d’un systéme de MSE typique. (Il
serait difficile de le décrire a plus bas niveau dans le cadre de cette thése.) Cette
bréve description sert comme point de référence pour les travaux de la thése.

Le diagramme bloc a la figure 1.1 présente I'organisation globale d’un systéme de

MSE radar conventionnel. Ce systéme intercepte des signaux de 'environnement, puis
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Figure 1.1: Diagramme bloc d'un systéme automatique pour le MSE radar.

il affiche (par 'entremise d’une interface homme-machine) les résultats d’une analyse
de la quantité et des propriétés des émetteurs actifs. Il affiche aussi la ressemblance
de propriétés des émetteurs a ceux de modeles radars qui sont connus. En général, la
fonctionnalité d’un tel systeme peut étre décomposée en trois tiches [40]: la réception
des signaux radars, le regroupement des impulsions, et l'identification des types de

radar.

1.1.1 Reéception des signaux radars

Selon la figure 1.1, le systéme capte passivement les signaux radars d’un en-
vironnement a l'aide de la banque de récepteurs. Dans un environnement typ-
ique, les signaux radars interceptés représentent un mélange complexe d’'impulsions!
electromagnétiques qui sont transmises par plusieurs sources. On peut dire que
le train d’impulsion qui est transmis par un émetteur est entrelacé avec celui des

autres émetteurs actifs. Les signaux traités par le récepteur sont alors des séquences

'Dans cette thése, on fait abstraction des composantes de type continue (communément appelée
CW pour “continuous wave”) qui peuvent exister dans les signaux radars interceptés.



d’impulsions presque aléatoires en apparence.

Lorsqu’une impulsion est détectée. un récepteur a large bande mesure la valeur
de parametres standards, tels que I'amplitude (PA pour “pulse amplitude”), la durée
(PW pour “pulse width”), et le temps d’arrivée (TOA pour “time-of-arrival’) de
Pimpulsion, et la fréquence de porteuse (RF pour “radio frequency™). Un récepteur
a recherche de direction mesure aussi I'angle d’arrivée (Brg pour “bearing”). tandis
qu’un récepteur avancé mesure aussi la modulation de I'impulsion (MOP pour “mod-
ulation on pulse™). Une fois que ces paramétres ont été mesurés. ils sont quantifiés

et concatenés pour former un mot binaire qu'on nomme le “Pulse Descriptor Word?”

(PDW).

1.1.2 Regroupement d’impulsions

La séquence de PDW générés par la banque de récepteurs est transmise au module
de regroupement. Ce module cherche & répérer les trains d’impulsions individuels,
ce qui implique un regroupement progressif des PDW qui semblent provenir d’un
méme émetteur?. Chaque groupe est associé i une piste. Une piste est constituée de
parametres statistiques du PDW (e.g., la valeure moyenne du RF), et de paramétres
dérivés a partir du groupe de PDWs (e.g., I'intervalle de répétition d’impulsions ou
bien PRI pour “pulse repetition interval”). Des plages de parameétres sont associées

aux pistes. Elles sont mise-a-jour pour représenter 1’évolution dans le temps des
P P!

2Notez que chaque émetteur représente une instance d’un type de radar, et puis chaque type de
radar peut fonctionner sous plusieurs modes afin d’effectuer différentes tiches.
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caractéristiques d’émetteurs. Alors, la formation de pistes permet de dériver certains
parametres pour l'identification de I’émetteur, et de réduire la densité des données
qui sont traitées par le module d’identification.

Il y a trois classes de techniques classiques qui permettent d’effectuer le regroupe-

ment d’impulsions [31]:

1. le désentrelacement selon le temps d’arrivée [40] [100] [139]: Cette tech-
nique consiste a chercher des consistances dans le TOA de chaines d’impulsions.
Une chaine est un ensemble de PDW qui ont un ou plusieurs parametres trés
semblables (e.g., operent a la méme fréquence RF). L’analyse par histogramme
du TOA est un exemple de méthode qui permet de découvrir des consistances
dans le TOA d’une chaine quelconque de PDW. Si on retrouve un patron con-
sistant dans le TOA et que ce patron est correlé avec une des définitions qui
est compilée dans la bibliotheque de MSE, alors les PDW correspondants sont

regroupés sur la base du PRI

2. le triage en cellules [31] [40] [117] [124]: Cette technique est basée sur
I'utilisation de cellules qui sont addressables dans un sous-domaine de ’espace
de parameétres comme RF, PW, et Brg. Un “Window Addressable Memory”
(WAM) [124] est un exemple de méthode pour le triage par cellule. Clest
un filtre numérique constitué d’'un ensemble de comparateurs qui sont fixés
sur des combinaisons de paramétres. Les PDW sont comparés avec I'étendue

des parameétres de cellule, chacun correspondant aux paramétres plausibles
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pour un émetteur. On assigne a chaque PDW une cellule active (identifiée
antérieurement). Une nouvelle cellule est créée pour des PDW avec une combi-
naison trop différente de parameétres. Les cellules peuvent avoir une définition

fixe [40] ou variable [31] [L17].

. le triage par techniques métriques [3] [43] [45] [140]: Avec cette tech-
nique, le regroupement est formulé comme un probléme de catégorisation: une
catégorie (i.e., mode d’un émetteur actif) est assignée a chaque patron (i.e.,
PDW). La version en-ligne de k-means [45] est un exemple de méthode pour
effectuer le triage métrique d’une séquence de PDWs. Comparé au triage en
cellules, les PDW sont regroupés sans aucune information a priori des émetteurs.
La formation de catégories est basée principalement sur I’utilisation d’une mesure
de proximité entre PDW dans I'espace de parametres comme RF, PW, et Brg.
On utilise souvent cette forme de triage avec des parametres non-standards

comme le MOP, afin de résoudre des environnements plus complexes.

Un module de regroupement peut exploiter simultannément une ou plusieurs tech-

niques de regroupement. Un exemple d’architecture qui permet de réduire la latence

pour identifier de nouveaux émetteurs est présentée a la figure 1.2 [118] [124] [143).

Sachant que certains PDW appartiennent & des émetteurs qui ont déja été iden-

tifiés par des MSE, il cst possible de réduire le débit, car le regroupement des PDW

“connus” n’est pas nécessaire. L’architecture de la figure 1.2 permet au systeme de

concentrer ses efforts sur les PDW “inconnus,” ce qui permet de supporter des débits
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Figure 1.2: Structure interne d’'un module de regroupement.

plus élevés et (possiblement) d’améliorer ses performances.

Dans la figure 1.2, un détecteur de nouveauté est réalisé par une technique de triage
en cellules. Les PDW correspondants aux émetteurs déja identifiés sont redirigés vers
un moniteur. Ce dernier module suit I'évolution des émetteurs et fait la mise a
jour de certains parametres (e.g., Brg). Les PDW “inconnus” sont regroupés par un
processus en deux temps. Premiérement, un désentrelacement selon le TOA permet
de regrouper les PDW avec un PRI qui est identifiable (selon la bibliothéque de MSE).
Ensuite, le résidu du désentrelacement est traité par un triage par technique métrique.

Celui-ci caractérise les pistes d’émissions plus complexes.
p
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1.1.3 L’identification des types de radar

Le module d’identification analyse les pistes qui ont été formées par le module de
regroupement. Une bibliotheque de MSE, qui contient les descriptions paramétriques
de modeles radars connus, interagit avec le module d’identification. On tente alors
d’assigner un type de radar dans la bibliothéque a chaque piste.

Dans une bibliotheque de MSE, I'étendue des parameétres qui décrivent les types
de radar peut conduire 4 des chevauchements. Alors, le module d’identification
produit souvent plusieurs types de radar pour une méme piste. On suit souvent
I'évolution d’une liste des types probables qui est générée avec le niveau de confiance
des prédictions, la menace qu’ils posent, la derniére valeur du Brg, etc. Ces résultats
sont ensuite transmis et affichés a l'interface homme-machine.

Un module d’analyse tactique de situation (pas inclus sur la figure 1.1) peut
révéler des changements dans le mode des émetteurs, des liens entre émetteurs, ainsi
que des plateformes dans ’environnement. Finalement, le systéme de MSE fournit la

signalisation requise pour entamer des contre-mesures.

1.2 Problématique

L’efficacité globale d’un systéme de MSE radar conventionnel dépend des tech-
niques employées pour le traitement des signaux, ainsi que la qualité de la bibliothéque

de MSE. Peu importe le systéme spécifique, la complexité et la prolifération croissante
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des signaux radars compliquent la tache.

Dans le contexte actuel, les systemes de MSE peuvent étre confrontés a des envi-
ronnements qui évoluent rapidement, avec un nombre croissant d’émetteurs. De plus
en plus d’émetteurs transmettent des ondes & haute densité. Dans certaines bandes
de fréquence. on peut s’attendre & intercepter jusqu’'a 10° impulsions par seconde.
L’augmentation de la densité des signaux radars implique une diminution du temps
de réponse pour la reconnaissance d’émetteurs. Cependant, le temps de réponse pour
un systeme de MSE est un facteur critique pour la prévention des menaces.

Les systemes de MSE sont illuminés par une diversité croissante d’émetteurs, d’un
méme ou de plusieurs types différents, qui peuvent fonctionner avec plusieurs modes
différents. Avec les avancements technologiques, I'agilité et le chevauchement de
parametres comme RF et PRI contribuent davantage a la dégradation du processus de
regroupement. Ceci méne a des pistes qui sont mal caractérisées, et a des ambiguités
dans I'identification de types.

Finalement, il est devenu difficile et colteux de maintenir des bibliothéques de
MSE qui peuvent refléter avec précision chaque environnement opérationnel. La con-
struction d’une bibliothéque de MSE consiste a modéliser la distribution paramétrique
de systémes radars connus & partir de connaissances et de données a priori. Puisque
certains types de radar deviennent difficiles a décrire, cette tiche s’avére plus com-
plexe, et plus susceptible & I'erreur. De plus, la multiplication des modes d’un radar

implique des descriptions plus complexes et volumineuses. Les bibliothéques ont alors
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de plus en plus tendance a contenir des descriptions incomplétes ou erronnées.

Etant donné les tendances actuelles. les systéemes de MSE doivent tenter d’améliorer
la précision, la vitesse ct la robustesse de leurs traitements. La recherche d’approches
alternatives pour la reconnaissance d'émetteurs radars est importante afin de prévenir

les menaces futures.

1.3 Contributions de la thése

Des nouvelles approches, qui s’inspirent de techniques en intelligence artificielle,
comme les algorithmes génétiques, les systémes experts, la fusion de données, la
logique floue, et les réseaux de neurones artificiels, sont prometteuses pour la recon-
naissance d’émetteurs [123]. A date, deux approches principales ont été appliquées au
traitement en MSE radar: les systémes experts et les réseaux de neurones artificiels.

Les systemes experts, i.e., les techniques 4 base de connaissances (“knowledge
based”), effectuent I’association des pistes aux émetteurs (dans un module d’identifica-
tion), et des émetteurs aux plateformes (dans un module d’analyse tactique de situa-
tion). Ces techniques permettent de combiner des sources supplémentaires d’information
— plateformes présentes dans I’environnement, histoire de comportement de I'émetteur,
etc. — aux connaissances standards lors de 'identification d’un émetteur. Elles peu-
vent représenter et combiner des informations acquises graduellement afin de réduire
I'ambiguité des décisions [2] {115] [116] [134] [137].

‘ Pour leur part, les réseaux de neurones artificiels (RNA), sont utilisés pour ef-
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fectuer le triage (dans un module de regroupement) et la classification (dans un mod-
ule d’identification) d’impulsions. L’utilisation d’un RNA implique un traitement des
signaux par une structure qui peut devenir massivement paralléle. Les connaissances
distribuées d'un RNA sont acquises par un processus d’apprentissage d'exemplaires.
Les RNA sont tres bien adaptés pour résoudre plusieurs problémes complexes en
reconnaissance de formes [4] [79] [96] [101] [116] [124] [135].

Cette these de doctorat s'inscrit dans le cadre d’une étude sur le potentiel des
RNA? pour faire la classification rapide d’impulsions radars dans les systemes de MSE.
Elle est organisée en deux volets et quatres contributions. Le premier volet (A) traite
de I'application des RNA de type apprentissage non-supervisé (pour la catégorisation
en-ligne) au triage métrique rapide de séquences continues d’impulsions radars. Le
deuxiéme volet (B) traite de l'application des RNA de type apprentissage supervisé
(pour la classification) a I'identification des types de radar. On suppose ici l'existence
d’un ensemble de données pour entrainer un RNA supervisé.

En particulier, cette thése comporte les quatre contributions suivantes:

1. la comparaison de RNA auto-organisateurs a apprentissage compétitif qui peu-

vent supporter le triage métrique rapide de séquence d’impulsions radars [55];
g q q p

2. la proposition d’une architecture VLSI qui permet la mise en oeuvre du RNA

fuzzy Adaptive Resonance Theory (ART) pour des applications de triage métrique

3La litérature concernant les RNA est abondante. Etant donnée la richesse du domaine de
recherche, on cite seulement les ouvrages classiques de Christopher Bishop [11], de Simon Haykin [72)]
et de Jacek Zurada {145] comme références.



a haute vitesse [54];

3. la proposition d'une technique — nommée le traitement par re-ordonnancement
- qui gére la maniére dont les patrons d’entrée sont apprises dans un systeme

de catégorisation, pour améliorer la qualité des résultats [62];

4. le développement d’'un RNA classificateur a fusion ”what-and-where” qui per-

met |'identification rapide du type d’émetteur radar [60].

Les trois premiéres contributions — 1, 2 et 3 — découlent du volet (A). tandis que
la derniére contribution — < — découle du volet (B).

Les quatres prochains chapitres de cette thése décrivent, respectivement, ces qua-
tres contributions. Quatre articles publiés ou soumis dans des revues scientifiques
décrivent les travaux liés & chacune des contributions. Chaque chapitre contient une
mise en situation, un sommaire des travaux accomplis, I'article de revue correspon-
dant et une synthése des résultats. Etant donnée la nature d’une these par articles,
afin d’éviter la redondance dans le contenu, la revue de litérature liée i chaque con-

tribution est réservée aux chapitres correspondants.
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Chapitre 2

Une comparaison de divers réseaux

de neurones auto-organisateurs

Dans le premier volet de cette these, les RNA non-supervisés sont appliqués au
triage (par technique métrique) d’impulsions radars selon leur émetteur. On suppose
que ces impulsions arrivent a un débit élevé, et qu'elles doivent étre traitées sans
connaissance a priori des émetteurs actifs. Plus précisement, un RNA est requis pour
effectuer I'apprentissage en ligne de catégories (i.e., modes d’émetteurs) a partir d’une
séquence continue de patrons (i.e., impulsions radars).

Les RNA auto-organisateurs basés sur 'apprentissage compétitif [72] [145] sont
trés bien adaptés a ce type de probleme. En effet, ils peuvent catégoriser des patrons
d’entrée en ligne, sans information a priori sur le nombre et les caractéristiques des

catégories a former. Leur apprentissage non-supervisé de patrons se fait séquentiellem-
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ent, ce qui se traduit par une définition adaptative des dimensions, du nombre et du
placement des catégories. La représentation des catégories par des prototypes signifie
qu’on peut éviter le stockage a long-terme des patrons a catégoriser. Finalement,
ces algorithmes se pretent bien a des mises en ocuvres paralléles, ce qui favorise le
traitement en temps réel rapide.

Ce chapitre présente la premiére contribution du premier volet — la comparai-
son entre RN A auto-organisateurs de type apprentissage compétitif qui peuvent sup-
porter le triage métrique rapide de séquences d'impulsions. sans connaissance a pri-
ori. Une étude approfondie de ce type de RNA a permi d’isoler quatre réseaux —
le “Fuzzy Adaptive Resonance Theory” (FA) [21], le “Fuzzy Min-Max Clustering’
(FMMC) [126], le “Integrated Adaptive Fuzzy Clustering” (IAFC) [84] et le “Self-
Organizing Feature Mapping” (SOFM) [86] — qui sont prometteurs.

En MSE radar, un systeme idéal pour le triage métrique rapide se sert d’'un algo-
rithme efficace pour produire des catégorisations trés précises. Le temps de réponse
du systeme de catégorisation est aussi pertinent que la précision des résultats. Dans
la comparaison entreprise, la performance des quatres RNA a donc été examinée sous
trois angles différents — la qualité des catégorisations, le temps de convergence et la
complexité de calcul. Les deux derniers angles donnent une idée de I'effort de calcul
qui est requis pour obtenir une certaine qualité de catégorisation. La qualité des
catégorisations et le temps de convergence ont été déduits a partir de simulations,

tandis que la complexité de calcul a été estimée par le temps de pire-cas de traite-
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ment d’un patron. La qualité des catégorisations a été mesurée avec les mesures de
similarité Rand Adjusted [76] et celle de Jaccard [43]. Le temps de convergence a été
mesuré par le nombre de présentations des données avant que les poids synaptiques
ne se stabilisent.

L’ensemble de données pour les simulations est constitué d’impulsions radars re-
cueillies! dans le champ par le Centre de Recherche pour la Défense d’Ottawa. Avant
chaque simulation, les patrons de I’ensemble ont été organisés selon un des trois
ordres de présentation - un ordre aléatoire, et deux ordres représentatifs d’un envi-
ronment radar. Ceci a permi d’observer la variabilité des résultats de catégorisation
face a 'ordre de présentation statistique. Les résultats de plusieurs simulations ont
été combinés pour donner des valeurs moyennes pour la qualité de catégorisation et
le temps de convergence. Les résultats de simulation, ainsi que les estimations de
complexité ont été analysées pour des applications cibles (le triage rapide en MSE

radar).

Des détails plus extensifs sur cette comparaison sont exposés dans I’article suivant:

GRANGER, E,, SAVARIA, Y., LAVOIE, P., et CANTIN, M.-A.,
“A comparison of self-organizing neural networks for fast clustering of radar pulses,”

Signal Processing, 64:3, 249-269 (1998).

Une copie de cet article est reproduite ici. Afin d’améliorer la compréhension, 1’énoncé

spécifique des algorithmes utilisés lors de la comparaison a été ajouté comme annexe C

!Cet ensemble représente des impulsions avec paramétres de type MOP qui peuvent étres utilisés
en MSE radar pour le triage métrique sans information a priori.
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de I'article en question. Ensuite, la derniere section du chapitre aborde une discussion

sur I'impact des résultats de cette contribution.
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Abstract

Four self-organizing neural networks are compared for automatic deinterleaving of
radar pulse streams in electronic warfare systems. The neural networks are the Fuzzy
Adaptive Resonance Theory, Fuzzy Min-Max Clustering, Integrated Adaptive Fuzzy
Clustering, and Self-Organizing Feature Mapping. Given the need for a clustering
procedure that offers both accurate results and computational efficiency, these four
networks are examined from three perspectives — clustering quality, convergence
time, and computational complexity. The clustering quality and convergence time

are measured via computer simulation, using a set of radar pulses collected in the
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field. The effect of the pattern presentation order is analyzed by presenting the data
not just in random order. but also in radar-like orders called burst and interleaved.
Estimation of the worst-case running time for each network allows for the assessment

of computational complexity.

2.1 Introduction

The purpose of radar electronic support measures (ESM) is to search for, intercept,
locate, and analyze radar signals in the context of military surveillance [10] [63] [121].
When a radar ESM system is illuminated by several radars, it typically relies on pulse
repetition interval (PRI) parameters to deinterleave the intercepted pulse trains. Un-
fortunately, the multiplication of intricate PRI patterns in about every radar model
has spurred an inordinate complexity in deinterleaving algorithms. Alternative ap-
proaches for clustering radar pulses are thus needed, ones that rely on direction of
arrival, frequency, pulse width and other such parameters that can be obtained from
individual pulses. The selection of parameters can vary greatly from one ESM sys-
tem to the next due to installation, cost, size, tactical and other considerations. Yet,
beyond parameter choice, clustering the intercepted radar pulses constitutes a chal-
lenging problem. This clustering must sustain a very high data rate since, in certain
radar bands, the signal densities encountered can reach up to 10° radar pulses per
second.

Self-organizing neural networks (SONNs) appear very promising for this type of
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clustering application. since they can cluster patterns autonomously, and lend them-
selves well to very high speed. parallel implementation [4] [79] [87]. Several innova-
tive SONNSs have been reported in the literature, each one demonstrating unique and
interesting features. This paper presents a comparative study of four of them, all po-
tentially suitable for solving very high throughput clustering problems. They are the
Fuzzy Adaptive Resonance Theory [21], Fuzzy Min-Max Clustering [126], Integrated
Adaptive Fuzzy Clustering [84]. and Self-Organizing Feature Mapping [86].

The performance of these four neural networks is examined from three points of
view — clustering quality, convergence time, and computational complexity. Indeed,
in many practical applications, the accuracy of clustering results, and the compu-
tational efficiency of the clustering procedure are equally important. In this paper,
clustering quality refers to the degree of similarity between the partitions (clusters)
produced by a SONN, and a reference partition based on known category labels.
This similarity is assessed by applying the Rand Adjusted [76] and the Jaccard [43]
measures to partitions obtained by computer simulation. Convergence time is de-
fined as the number of successive presentations of a finite input data set needed for
a SONN'’s weight set to stabilize. This time is easily determined from computer sim-
ulation. Computational complezity is estimated from the maximum execution time
required by a SONN algorithm to process one input pattern. In order to estimate this
worst-case running time, we assume that the algorithm is implemented as a computer

program running on an idealized random access machine (RAM) [37].
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The main data set used in our simulations describes electromagnetic pulses trans-
mitted by shipborne navigation radars. These pulses were collected from ashore by
the Defence Research Establishment Ottawa (DREO) using a directional antenna,
a superheterodyne tuner, a high-accuracy I/Q demodulator [90], and a two-channel,
10-bit digital oscilloscope. The radars were observed one at a time to ensure that
cach file contained pulses from a single radar. The identity of each ship was obtained
from a harbor control tower and used to label each file. These labels can serve as
references to measure the effectiveness of clustering techniques for the application.

In this study, the outcome of numerous computer simulations are combined to
yield an average similarity measure and convergence time. In addition to the Radar
data set described above, two other sets, called Wine Recognition and Iris, are used for
comparison. For each set, the patterns are presented in three statistically different
orders: random, by burst, or interleaved in a radar-like manner. The data sets
and presentation orders were selected to illustrate the commonalities and differences
between the four neural networks. Simulation results and complexity estimates are
analyzed with very high data rate clustering applications in mind.

The rest of this paper is organized as follows. In the next section, the main
features of the four SONNS selected for this study are briefly outlined. In Section 2.3,
the methodology used to compare these SONNs (namely, the performance measures,
data sets, and data presentation orders) is described. Finally, the results are analyzed

and discussed.



2.2 Self-organizing neural networks

A clustering method suitable for radar ESM should have the following proper-
ties. First, it should not require prior knowledge of the number or characteristics
of categories to be formed. Second, since the variable input arrival rate may reach
10% patterns per second, it should be able to cluster non-stationary streams of input
patterns sequentially, without requiring their long-term storage. Lastly, the sequence
of operations needed for implementing the method using current technology should
lend itself well to high speed hardware realizations. Given that most of the popular,
well-established classical (3] [43] [45] [130] and fuzzy [9] [10] clustering algorithms re-
quire prior knowledge on either the number or the characteristics of clusters sought,
several iterations with the whole data set, or storage of the entire data set in memory,
none of them were considered for this comparison.

The unsupervised learning paradigm used in self-organizing neural networks (SONNs)
is related to clustering, since it permits the assignment of adaptively defined cate-
gories to unlabeled patterns [87] [72]. SONNs appear promising for high data rate
sequential clustering applications, since they can cluster patterns autonomously, in
most cases without prior knowledge of the number of categories. Moreover, they do
not require long-term storage of the input patterns, and permit adaptive determi-
nation of the shape, size, number, and placement of categories, while operating in
parallel [126]. Self-organizing “neuro-fuzzy” networks have recently been developed,

where fuzzy logic concepts are integrated into the SONN framework. Categories are
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then modeled as fuzzy sets that allow encoding the input scene’s vagueness [91].

An important family of SONNs is derived from the basic idea of competitive
learning [65] [66] [99], a type of unsupervised learning. In short. competitive learning
neural networks seek to determine decision regions in the input pattern space. The
most elementary of these networks consists of a single laver of identical output neu-
rons, each one fully connected to the input nodes with feedforward excitory weights,
which encode the categories learned by the network. A category label is associated
with each output neuron, whose features are represented by the numerical values of
the set of weights connecting it to all input nodes. When a pattern is presented to
the network’s input nodes, it is propagated through the weights to output neurons,
which enter a winner-take-all competition. The one with the strongest activation (the
winner) is allowed to adapt its set of weights to incorporate the input’s novel charac-
teristics. Through this process, output neurons become selectively tuned to respond
differently to given input patterns, and therefore learn to specialize for regions of the
input space: they become feature detectors [119].

Four SONNSs that are based on competitive learning were selected for this study:
Fuzzy Adaptive Resonance Theory (FA) [21], Fuzzy Min-Max Clustering (FMMC) [126],
Integrated Adaptive Fuzzy Clustering (IAFC) [84], and Self-Organizing Feature Map-
ping (SOFM) (86]. Although the classical ISODATA clustering method [5] [43] {45] [130]
does not offer a practical solution to the problem (since it requires significant prior

knowledge of the data), it is included as a reference point for clustering quality com-



parison, given its widespread use in statistical multivariate data analysis.

2.2.1 Overview of the four neural networks

The first three SONNs (FA, FMMC and IAFC) subscribe to the basic Adaptive
Resonance Theory (ART) [20] control structure. Essentially, ART networks categorize
familiar inputs by adjusting previously learned categories, and create new categories
dynamically in response to inputs different enough from those previously seen. A
vigilance parameter p regulates the maximum tolerable difference between any two
input patterns in a same category. Each one of these three SONNs integrates fuzzy
logic concepts into the binary input ART1 [20] neural network processing framework.

Structurally, the FA neural network, proposed by Carpenter, Grossberg and Rosen
[21], consists of two layers of neurons that are fully connected: an input layer F1 with
2M neurons (two per input feature) and an output layer F2 with NV neurons (one
per category). An adaptive weight value wy;, represented as a real in the interval
[0,1], is associated with each connection. The indices i and j denote the neurons that
belong to the layers F1 and F2 respectively. For each neuron j of F2, the category
prototype vector w; = (wj;, wj2, ..., Wjzap) contains the set of characteristics defining
the category j. When complement coding is used, this vector may be interpreted as
a hyperrectangle in the M-dimensional input space.

The FMMC neural network, proposed by Simpson [126], consists of 2 layers of

neurons: an input layer F'1 with M neurons (one per input pattern feature), and an
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output layer F2 with N neurons (one per category). Two weighted connections link
every F'l neuron to an F2 neuron. For the F'2 output neuron j (j = 1,2,....N),
the 2 sets of M connected weights encode a min (u; = (u;1, uj2, ..., ujar)) and a max
(vj = (vj1.v)2, ..., vjar)) point. These two points define a hyperrectangle fuzzy set B;,
the network’s representation of category j.

FA and FMMC are both fuzzy min-max clustering networks, whereby category
prototype vectors are represented as fuzzy set hyperrectangles in the Af-dimensional
input space, each one entirely defined by a min and a max point [82]. Both ac-
complish fuzzification of the ART1 network by essentially replacing crisp logic AND
operators with fuzzy logic AND (min) operators. Despite a superficial resemblance to
FA, FMMC is a somewhat different network, yielding categories associated to hyper-
rectangles that never overlap one another. A contraction procedure is used to prevent
the occurrence of hyperrectangle overlap.

IAFC is a fuzzy clustering algorithm proposed by Kim and Mitra [83] [84]. As
with FMMC, IAFC contains an M neuron input F'1 layer (one per feature), and an N
neuron output F'2 layer (one per category). These neurons are fully interconnected by
bottom-up and top-down weights. The categories formed, however, are hyperspherical
in shape and are represented as centroids in the M-dimensional input space. Two
prototype vectors, v; = (vj1,j2,...,Ujpa) and b; = (bj1, bjz, ..., bjar), are associated
with category j’s centroid. The network’s top-down weights v;; encode the actual

cluster centroids, whereas each bottom-up weight b;; is a normalized mirror of vji, for
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t=1,2.....,Mand j=1,2..... V.

The objective of IAFC is to obtain improved nonlinear decision boundaries among
closely located cluster centroids by introducing a new vigilance criterion and a new
learning rule into ART1 processing. The new vigilance criterion combines a fuzzy
membership value and the Euclidean distance to form more flexible categories. The
new learning rule uses a fuzzy membership value, an intracluster membership value,
and a function depending on the number of data set iterations with a Kohonen-type
learning rule.

For our purposes, Kohonen’s Self-Organizing Feature Mapping (SOFM) [85] [86]
defines a mapping from the M-dimensional input space onto a two-dimensional grid of
output neurons, whose size is user-defined. The SOFM method creates a vector quan-
tizer within the neural structure by adjusting the weights of connections linking the
M input neurons of the F'1 layer to all the N’ output F'2 map neurons. A prototype
vector w; = (wj;, wja, ..., wjpr) is associated with every one of these map neurons.
When an input pattern is presented, each map neuron computes the Euclidean dis-
tance of its prototype vector to the input. The closest prototype corresponds to the
best-match map neuron. The weights connected to this neuron, as well as those of
the other neurons in its neighborhood are adjusted to learn from the input. If the
lateral map distance from the best-match neuron to the location of another one falls
within the perimeter defined by the neighborhood radius, then this other neuron be-

longs to the neighborhood. Throughout learning, the neighborhood’s radius, r(t),
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and the learning rate, «a(t). are progressively decreased in a linear way from their
initial values, 7(0) and «(0). until they become equal to 1 and 0, respectively.

As learning evolves, weights become organized such that topographically close map
neurons are selectively tuned to inputs that are physically similar. SOFM clustering
is characterized by the formation of a topographic feature map in which the spa-
tial coordinates of its neurons correspond to intrinsic features of the input patterns.
Therefore, SOFM can be seen as a network producing an unsupervised nonlinear pro-
jection of the probability density function of the high-dimensional input data onto a

two-dimensional display [86].

2.2.2 Modifications for radar pulse clustering

Neither one of the four networks in its original form is suitable for sequential
clustering of radar pulses in practical ESM systems. The aim of this subsection is to
propose appropriate modifications.

FA, FMMC, and IAFC are ART-type networks, whereby output neurons are se-
lected using a potentially demanding search process. The computational cost of the
iterative category choice and corresponding expansion testing, through N output neu-
rons, is O(N?). However, performing the category expansion test on all N output
neurons, prior to a direct category choice, can significantly accelerate processing in
cases where several output neurons would fail the expansion test. The computational

cost of the resulting search process is O(N).
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The plasticity of ART-type networks like FA and FMMC has been well docu-
mented. When an input resembles none of the stored prototypes, an output neuron
is committed, which amounts to creating a new category with the input as its pro-
totype. For radar ESM applications, this implies that these networks can learn a
new category from a single, or very few radar pulses. One drawback is that they can
produce artifact categories, and thus possibly trigger false alarms, if corrupt pulses
are encountered. In practice. some means of managing such false alarms would be re-
quired. Notice that IAFC is also an ART-type network, where plasticity is controlled
by a learning rate parameter, A, which varies with the number of data set iterations,
and with the mismatch between inputs and winning category prototypes.

Since the environment around an ESM system changes over time as radars come
and go, categories that have not been activated for a long time must be freed. In
this paper, the data sets are sufficiently small that we need not bother with category
removal. [n practice however, category reuse would be necessary for maintaining an
up-to-date representation of the environment, for accuracy, and for making efficient
use of computing resources.

SOFM, and to some extent IAFC, permit stable learning of categories by progres-
sively decreasing plasticity, that is, by reducing the influence of subsequent inputs on
existing weights. Plasticity is controlled by the parameters r(t) and a(t) in SOFM,
and A(!) in IAFC. In both cases, the parameter values are gradually decreased over

time, and the networks eventually loose their ability to react to new information.
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This approach is acceptable for batch data processing like in this paper. In practice,
however, new radars can appear in the theater of operation at any time, and both
[IAFC and SOFM would require modification to learn continuously.

In FA, FMMC, and IAFC, input patterns are regrouped into a variable number of
categories, each one represented by a prototype vector associated with a single output
neuron. By contrast, SOFM clusters inputs into a fized number of output neurons,
organized into a 2-dimensional topographic map. During training, the network adapts
the prototype vectors for all its map neurons. and assigns an actual data cluster to a
region in the map, which may contain one or more map neurons. This process raises
the problem of locating categories in the map. Besides, it can be difficult to specify a
feature map size when the potential solutions have a relatively small number (2 or 3)
of clusters [104]. A number of interpretation procedures have been proposed to assist
SOFM for clustering [79] [104]. In order to ease the interpretation of the feature maps
in this paper, and to permit a fair comparison with the other ART-type SONNs, an
additional mechanism was incorporated into SOFM'’s processing. This mechanism is
activated after the initial topographical ordering phase has ended, when the map is
being fine-tuned for statistical accuracy. Define a category center as a map neuron
which has been assigned to more than ¢ input patterns. All the other map neurons
can be related to the category centers using a minimum Euclidean distance criterion.
Thus, when an input pattern selects one of these other neurons as the best-match,

the label of the category center neuron with the closest prototype vector is output
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by the modified network. This modification makes it possible to locate and count

categories, whose number may vary as learning unfolds.

2.3 Comparison method

The methodology used is based on three different performance measures — clus-
tering quality, convergence time, and computational complexity. This methodol-
ogy is different from that of other comparisons reported in literature (for exam-
ple, [81] [82] [108] [109] [136] [138]), in which clustering speed and response time are

less critical than in our application. These measures are defined in this section.

2.3.1 Clustering quality

A partition of n patterns into K groups defines a clustering. This can be rep-
resented as a set A = {ay,a,...,an}, where a, € {1,2,..., K} is the category label
assigned to pattern h. The degree of match between two clusterings, say A and B,
may be compared by constructing a contingency table, as shown in Table 2.1. In this
figure, c11 (c22) is the number of pattern pairs that are in a same (different) cluster
in both partitions. The value c;; is the number of pattern pairs that are placed in a
same cluster by A, but in different clusters by B. The value ¢,, reflects the converse
situation. The sum of all elements m = ¢;; + ¢12 + ¢21 + 2 = n(n — 1)/2 is the
total number of combinations of two out of n patterns. The four variables within the

contingency table have been used to derive measures of similarity between two clus-



Tableau 2.1: Contingency table used to compare two clusterings.

Clustering A

same different

same Ciy C12

different Cay Cy9

Clustering B

terings A and B [3] [43]. These measures are known in pattern recognition literature
as external criterion indices, and are used for evaluating the capacity to recover true

cluster structure. Based on a previous comparison of these similarity measures [102],

the Rand Adjusted [76], defined by:

2(611622 - 012021)
. (2.1)
2ci1€22 + (c11 + c2)(C12 + €21) + 2, + B,

Sra(4,B) =
and Jaccard statistic [43], defined by:

S)(A,B)=—1 (2.2)

iy +ci2+ e

have been selected to assess clustering quality for this study. It is worth noting that

variable cy; does not appear in S;(A, B).

Since correct classification results are known for the data sets used, their patterns
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are all accompanied by category labels. These labels are withheld from the SONN
under test, but they provide a reference clustering, R. with which a clustering pro-
duced by computer simulation, A, may be compared. Then. variables ¢;; and c¢,; in
Table 2.1 represent the number of pattern pairs which are properly clustered together
and apart, respectively, while ¢), and c¢;; indicate the improperly clustered pairs. In
this case, Eqs. 2.1 and 2.2 yield scores that describe the quality of the clustering
produced by a SONN. Both the Rand Adjusted and Jaccard measures vield a score
ranging from 0 to 1, where 0 denotes maximum dissimilarity. and 1 denotes equiva-
lence. The closer a clustering 4 is to R, the closer the scores are to 1. Notice the

dependence of these scores on the number of clusters in A and R.

2.3.2 Convergence time

During a computer simulation, each complete presentation of an input data set to
a SONN is called an epoch. Convergence time is conveniently measured by counting
the number of epochs needed for a SONN to converge. Once convergence is reached,
weight values remain constant during subsequent presentations of the entire data set
in any order. This measure is independent from computational complexity (as defined
in the following subsection), since an algorithm may require several epochs to converge
using very simple processing, or vice-versa. The product of the two measures provides
useful insight into the amount of processing required by each SONN to produce its

best asymptotic clustering quality, while sustaining a desired clustering rate.



2.3.3 Computational complexity

A first order approximation of the computational complexity for the SONN algo-
rithms may be obtained by assessing their execution time on an idealized computer.
Thus, the time complexity, T, combined with a fixed computing area C, allows for
comparison of area-time complexities, CT. To that effect, assume that the SONN
algorithms are implemented as computer programs running on a generic, single pro-
cessor, random access machine (RAM) [37], where instructions are executed one after
the other. This generic machine is capable of no more than one operation per cycle
(i.e., neither VLIW or superscalar). Using the RAM model avoids the challenging
task of accurately determining the performance of specific VLIW or superscalar ma-
chines, which is beyond the scope of this analysis.

Time complexity can be estimated from the maximum execution time required
to process a single input pattern. The result is a total worst-case running time
formula, T, which summarizes the behavior of a SONN algorithm as a function of
two key parameters: the dimensionality of the input patterns, M, and the number of
F2 output neurons, N. Specifically, T can be defined as the sum of the worst-case

running times T}, for each operation p that is required to process an input [37]:
T=YT,=) 0,1, (2.3)
P

where o, is the constant amount of time needed to execute an operation p, and n, is



38

the number of times this operation is executed.

For simplicity, we assume that p can take one out of two values. 1 or 2, where o, is
the time required to execute an elementary operation such as: z+y, r —y, max(z,y),
min(z,y), 1 — z, < y, etc., and o, is the time needed to compute a division z/y, a
multiplication r - y, a square root /T, or an exponent e*. In addition, z and y are
assumed to be real numbers represented by an integer with a b bit resolution, where &
corresponds to the number of bits needed to represent each SONN’s elementary values
(i.e.. synaptic weights, input pattern elements, and parameters) with a sufficient
precision. Operations of type p = 2 are more complex than those of type p = 1, and
their complexity, which is a function of b, depends on their specific implementation.
Nevertheless, to simplify the analysis, we presume that 0y ~ F(b) -0, = F - 0;, where

F remains as an explicit parameter in the complexity formulas.

2.3.4 Data set

The data gathered by DREO consists of 800 radar pulses from 12 different ship-
borne navigation radars. As with any field trial, the recorded signals show imperfec-
tions in the radar transmitters, and exhibit distortion and noise due to the propa-
gation channel and the collection equipment. For instance, the signal-to-noise ratio
varies greatly from pulse to pulse, and from file to file (from 15 to 45 dB). This is
due to the circular scan of the radaré, and their varied power and distance from the

collection site. Also, one file contains pulses with unusual characteristics indicative of
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a radar operating with a defective magnetron tube. These pulses were not removed,
for they reflect anomalies sometimes encountered in the field.

After the trial, DREO reduced the dimensionality of the data to simplify computer
simulation and eventual implementation of the clusterer. Thus, 16 real-valued features
were extracted from each radar pulse. The feature extraction algorithm has its own
limitations, and produced a few outliers, which were not removed. The final data set
was then normalized using a linear transformation so that values in every dimension
range between 0 and 1.

Note that special attention was paid to ensure that clustering the data set would
be difficult enough to fully exercise the algorithms. One should therefore focus on
their relative, rather than absolute, performance.

The number of pulses per file is nominally 50, but two files contain 100 and
200 pulses, respectively. An uneven number of pulses per radar is typical of the
application. Indeed, some radars can transmit in excess of 300000 pulses/second in
their pulse Doppler mode, and even a few thousand pulses/second in their medium
PRI mode. The small number of pulses per file in the data set is a consequence of the
collection equipment capabilities. Nevertheless, a train of 50 pulses corresponds to a
few beam illuminations by a radar in medium PRI mode, and should be sufficient for
ESM detection.

Figure 2.1 shows the result of a two-dimensional principal component analysis

(PCA) and linear discriminant analysis (LDA) projections for the data set. Although
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Figure 2.1: Two-dimensional projections for the Radar data set.

both PCA and LDA are linear projection methods, LDA benefits from a priori cluster
label information. Clearly, the clusters cannot be described by the same statistics.
Some are not Gaussian distributed, and they sometimes overlap one another in 2D.
The Radar set described above represents data from a stream of pulses collected
for one realistic scenario, under which a SONN would be called upon for automatic
deinterleaving. Even though the data set is representative, it is far from comprehen-
sive: there are several types of radar ESM systems, numerous different theaters of
operation, and an ever growing variety of radar sources. Consequently, two standard
data sets, called Wine Recognition and Iris, were used to broaden the scope of this
research. A brief description, and the simulation results obtained on these sets can

be found in Appendix A.
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2.3.5 Data presentation order

Since sequential clustering results depend on the order of presentation of the
patterns, three types of presentation orders are considered in this comparison.

A random presentation order consists of random permutations of the input data
set patterns, regardless of the class.

A burst presentation order is defined by a random sequence of groups of patterns
called bursts, where each burst contains patterns from the same class. The specific
patterns which form the burst. and the class associated with the burst are both
selected at random (from classes with remaining patterns). The burst size is a random
variable with a normal distribution, whose average is equal to 5 and whose standard
deviation is equal to 3. Bursts of negative size are ignored.

A radar-like interleaved presentation order is obtained as follows. First, the pat-
terns in each class are permuted at random. Then, four fictitious radar parameters
are chosen at random for each class. Initial scan time (/S) and scan period (SP)
are chosen from a uniform distribution between 0 and 1. Beamwidth (BW) and
pulse repetition interval (PRI) are selected from uniform distributions between 0
and 0.25 - SP, and between 0 and 0.25 - BW, respectively. These parameters allow
the computation of a time of arrival (TOA) for every pattern of each class. Sorting

the patterns by TOA yields an interleaved, radar-like, order of presentation.



2.4 Comparison results

2.4.1 Clustering quality and convergence time

For simulation purposes, MATLAB programs were written for FA, FMMC, IAFC,
and ISODATA algorithms. SOFM simulations were done using the *SOM_PAK” soft-
ware?. Prior to each simulation, the normalized input patterns of the data set were
organized according to one of the three statistical orders (random, burst or inter-
leaved). The sequence of patterns was then repeatedly presented to the algorithms
under test until weights remained stable for two successive epochs, yielding the clus-
tering A. The data set presentation order was kept constant from one epoch to the
next. After the simulation, the Rand Adjusted and Jaccard scores were computed,
using the reference clustering, R, available for the data. The scores were stored along
with the number of epochs needed for convergence. The results of 20 distinct sim-
ulations were combined to extract central tendencies, and to determine the effect of
presenting the input patterns in different orders.

Simulation results for the Radar data set are given in Table 2.4.1. (Similar results
obtained using the Wine Recognition, and Iris data are given in Appendix A.) The
table contains the mean and standard deviation of the best scores that can be obtained
from the four SONNs and ISODATA for all three statistical presentation orders.

Convergence time, and parameter values® as obtained by trial and error are also

2This software was obtained via anonymous FTP from cochlea.hut.fi.
3The reader is referred to the notation used for parameters in the original papers describing
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shown. These parameter values always reflect the least amount of processing needed
to produce the best clustering score.

For Table 2.4.1, the Rand Adjusted and Jaccard scores appear to describe similar
trends. ISODATA confirmed our expectations by yielding the highest scores for all
but one simulation, and thus offers a realistic performance target for the SONNs.

SOFM is the SONN that achieves the best overall scores, or rather score, since
this network produces consistent clusterings that are the same across all presentation
orders. This is a direct consequence of its slow convergence, combined with the map
interpretation post-processing. This excellent score (Sg4(A, R) = 0.95) is comparable
to those of ISODATA, but it is obtained after no less than 50 epochs. Remember
that convergence speed is under user control, and it was set to yield the best possible
score.

FA usually scores second best, achieving results that are significantly better with
the interleaved presentation order (Sga(A4, R) = 0.80) than with either the random
(Sra(A, R) = 0.61) or the burst (Sga(A, R) = 0.59) presentation orders. These scores
are significantly lower than those of SOFM and ISODATA, but they are obtained after

only 3 to 4 epochs, indicating that it is a very responsive network.

ISODATA, FA, FMMC, IAFC, and SOFM.
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FMMC converges even faster than FA, and this may explain that it yields mixed
results. Noteworthy is the low Rand Adjusted score (Sg.(A. R) = 0.45) obtained
for the random order of presentation, in contrast to the corresponding Jaccard score
(Ss(A, R) = 0.92), which is not as bad. Scores for the burst and interleaved orders
are comparable to those of FA.

[IAFC takes from about 17 to 22 epochs to converge, but vields scores that are
no better than those of FA and FMMC. Nonetheless, the standard deviation of the
scores is low, meaning that the results obtained are consistent from one simulation
to the next.

An attempt was made to improve FA scores by means of a post-processing mecha-
nism somewhat similar to SOFM'’s map interpretation procedure. Unfortunately, this
did not yield higher overall scores, and thus the results are not shown in Table 2.4.1.
It did, however, allow good scores to be obtained over a broader range of vigilance
parameter values.

The results in Table 2.4.1 clearly indicate that the data presentation order has
a significant impact on performance. With the exception of SOFM, the algorithms
usually perform better as the input presentation order moves from the completely
random case to the more structured ones, where patterns from a category may be
presented together. The standard deviation of the scores are also dependent on the
data presentation order. Forinstance, with FA and FMMC, the scores often vary more

for the interleaved than for the burst, and more for the burst than for the random
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orders. In most cases, high scores appear to be correlated with high variance for the
burst and interleaved presentation orders. With these orders, sequences are defined
by mixtures of bursts of patterns from the same cluster. If we accept that scores
depend on the size of the bursts, then the randomly defined burst sizes may explain

the high variance of the scores. Burst sizes have no notable effect on convergence

time.

2.4.2 Computational complexity

For brevity, only the final results of our analysis are shown here. The reader
is referred to Appendix B for further details. Table 2.3 shows the total worst-case
running times per input pattern in a normalized format (T/o,), when parameter F
is the same for all operations of type p = 2. The corresponding growth rates, valid
when the parameters M and N > 1, and the parameter F’ is constant, are also given.
It turns out that the complexity of all SONNs is described by the same asymptotic

growth rate, O(NM).

Tableau 2.3: Summary of the computational complexity estimations

SONN: COMPUTATIONAL COMPLEXITY

Worst-case running time (7/o,) Growth rate
FA: 6NM + NF +4MF + 3N +5M O(NM)
FMMC: INMF +25NM +2NF -~ MF + 2N — 11M O(NM)
IAFC: NMF + NM +7NF +2MF +5N +9F +9 O(NM)
SOFM: [ 3N'MF +4N'M +5N'F — MF +6N'— M +3F +3 O(N'M)
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Overall. the results in Table 2.3 indicate that FA's worst-case processing is the
least sensitive to the parameters M. NV and F'. Its processing time is consumed mainly
by the winner-take-all competitions between output neurons (choice function compu-
tations). Among the other networks, IAFC has the second lowest worst-case running
time per input pattern, followed by SOFM and FMMC. Although FA, FMMC, and
[AFC have similar ART-type control structures, FMMC incurs an overlap test and
contraction procedure to eliminate hyperrectangle overlap, whereas IAFC incurs two
membership measures (fuzzy and intra-cluster), and a supplementary category choice
procedure based on Euclidean distances. SOFM processing is more straightforward
than that of ART-type SONNSs, since there is no category expansion test, nor search
process. The selection of a winning map neuron has a complexity comparable to
FMMC and IAFC choice functions, even though the number of map neurons, N', is
usually greater than N (several map neurons may be needed to represent a single cate-
gory with SOFM). However, the weight update step may involve several map neurons,
instead of only one with ART-type SONNs. This m-learn strategy is compounded by
the map interpretation post-processing.

The worst-case processing time as a function of the number of neurons N is an
important consideration for implementation. As an example, suppose that one wishes
to implement a SONN having M = 16 dimensions using a factor F' = 10. Figure 2.2
shows T'/o, versus N for all four SONNs. The number of map neurons in SOFM is

assumed to be three times the number of categories (N’ = 3N). FA is clearly the
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Figure 2.2: Worst-case running time (7'/o;) versus /N, assuming that M = 16 and
F' = 10. The number of map neurons in SOFM is set to N' =3 - N.

fastest to process an input, followed by IAFC, SOFM and FMMC.

Another consideration is storage of weight values. FA and FMMC require 2M Nb
bits for storage of their weights. IAFC needs only half of that memory when input
patterns are normalized. A memory size of N'Mb bits is required with SOFM, but
N' is normally greater than N (we have assumed a ratio of 3 to 1 so far).

Although this complexity analysis is based on a generic single processor random
access machine, all these networks are suitable for parallel implementation using a
multitude of VLSI architectures. The time complexity estimations obtained in our

analysis then provide an indication of the semiconductor area required by the parallel
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hardware to meet a desired input pattern rate.

2.4.3 Discussion

Simulation results on Radar data show that SOFM can vield excellent clustering
scores if it is granted sufficient convergence time. By contrast, FA converges much
faster, is computationally inexpensive, but yields lower scores than SOFM. In the
case of FNMMC and IAFC, the clustering quality is comparable to FA, but their pro-
cessing requirements are significantly higher. These fundamental differences suggest
that SOFM and FA could be attractive alternatives suitable for different radar ESM
applications.

Consider the following example. The highest clustering score for the Radar data
presented in the interleaved order is obtained using SOFM (Sg4(A, R) = 0.95). This
is a very satisfactory score for radar ESM. However, SOFM converges very slowly
and is computationally intensive. Assuming M =16, F = 10and N'=3-N =30
map neurons, it requires approximately 18000 elementary operations (T'/0,) for every
input pattern. FA, on the other hand, achieves the second highest score for the
interleaved radar data (Sga(A, R) = 0.80). This is significantly lower than that of
SOFM. But, assuming M = 16, F = 10 and N = 10 output neurons, FA requires just
2500 elementary operations per input pattern, and converges with almost 14 times
fewer input pattern presentations than SOFM (3.6 epochs instead of 50).

Based on such numbers, SOFM could be well suited for radar ESM systems em-
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ployed for long-range surveillance, intelligence. or targeting. In these tasks, accuracy
prevails over timing: some delay can be tolerated in exchange for enhanced precision.
Also, the high computational cost of SOFM may be less of a problem in shipborne or
landbased installations, where equipment of some weight and size can be accommo-
dated.

As for FA, it could better address the requirements of radar ESM systems used
for threat alert. In such systems, reaction time must be minimized in order to engage
timely protection measures against missiles, anti-aircraft artillery, intercept aircraft
and other threats. The fast convergence of FA would thus be an indisputable asset.
Also, the low computational complexity of FA would permit its use where space is

scarce, and cost must remain low, like in small aircraft radar warning receivers.

2.5 Conclusion

A comparison of four self-organizing neural networks (SONNSs) that are potentially
suitable for high throughput clustering of radar pulses in ESM systems has been
presented. These SONNs are the Fuzzy Adaptive Resonance Theory (FA), Fuzzy
Min-Max Clustering (FMMC), Integrated Adaptive Fuzzy Clustering (IAFC), and
Self-Organizing Feature Mapping (SOFM).

The SONNs have been compared from three standpoints — clustering quality,
convergence time, and computational complexity. Computer simulations have been

fed with a Radar data set presented in several statistical orders. Convergence time has
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been measured by counting successive presentations of the data set prior to weight
stabilization. Clustering quality has been assessed using the Rand Adjusted and
Jaccard similarity measures.

Simulation results have shown that: (1) SOFM usually yields the best scores
followed by FA, FMMC. and IAFC, (2) FMMC and FA converge the fastest, followed
by IAFC and SOFM, (3) the data presentation order has a significant impact on the
scores of ART-type networks, and their variability. and (4) SOFM, when granted a
long convergence time, is insensitive to the data presentation order. The SONNs have
then been studied from an algorithmic perspective to estimate worst-case running
times, and consequently, computational complexity. Of the four SONNs, FA has
been shown to have the lowest complexity, followed by IAFC, SOFM, and FMMC.

SOFM and FA emerge as suitable candidates for sorting pulses in radar ESM,
albeit for different reasons. On the one hand, SOFM can achieve excellent clustering
scores at the expense of a high complexity and potentially long convergence time. It
would therefore be well suited for long range surveillance, intelligence and targeting.
On the other hand, FA has the potential be to fast enough for use in threat alert
systems. The selection of either SONN would ultimately depend on the specifics of the
ESM application, and effect a tradeoff between clustering accuracy and computational

efficiency.
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2.A Simulation results for the Wine Recognition

and Iris data sets

The Wine Recognition data set? is the result of a chemical analysis of wines from
3 different cultivars. The problem consists in determining the origins of 178 wine
samples, where 13 attributes characterize the constituents found in each sample.
The well-known Iris data set [46] contains 150 flowers belonging to 3 species of iris
flowers: satosa, versicolor and virginica. Each species contains 50 flowers that are
characterized by 4 features: petal and sepal length and width.

Simulation results for the Wine Recognition and Iris data sets are given in Ta-
bles 2.A and 2.A, respectively. As with the Radar data, SOFM most often achieves
the highest SONN scores, usually followed by FA. The only exceptions are found
when the Wine and Iris data are presented in the interleaved order, in which case

FA scores the best. IAFC performs almost as well as FMMC for the Wine data, and

4This set was obtained from the UCI Machine Learning Repository (www.uci.edu/~mlearn).
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surpasses FMMC for the Iris data. In this last case, [AFC almost ties FA for second
best. Overall, IAFC appears to be more sensitive than the others to the distribution
of the patterns in input space.

It is worth noting that the gap between SOFM scores and those of the other three
SONNSs is not as wide as with the Radar data. Besides, the three ART-type networks
usually perform better when data are presented in more structured, radar-like orders.
This holds true to the extent that FA scores slightly higher than I[ISODATA for Iris
data presented in the interleaved order.

The SONN convergence times appear to vary in a proportional manner from one
data set to the next: FMMC always converges with the least amount of epochs, fol-
lowed closely by FA, then by IAFC and SOFM. On average, FA and FMMC converge
slightly faster for the Iris data than with the Wine data, and faster with the Wine
data than the Radar data. [AFC and SOFM converge in much fewer epochs with
the Wine data than either the Iris or Radar data. This discrepancy may be due to
a sensitivity to data structures with overlapping clusters. This is especially true for
IAFC, whose learning rate, A, scales according to fuzzy and intra-cluster membership
functions [84]. Notice that its convergence for the Iris data requires more epochs
than for the Radar data set. In any case, there seems to be little correlation between

convergence time and presentation order.
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2.B Analysis of computational complexity

In this appendix, details of a computational complexity analysis are presented® for
each SONN algorithm. First, the maximum time required to execute every operation
of type p is derived (T, = 0,-n,). Table 2.6 gives a breakdown of time complexities,
organized according to algorithm steps. The time complexity of a step is equal to the
product of its cost per iteration and the number of iterations it needs. Notice how
the values for some of these steps are obtained by adding the contribution of several
sub-steps (shown directly below). Then, the sum of these time complexities yields
a total worst-case running time per input pattern, T = ¥p Ty, and a corresponding
growth rate. The resulting complexity polynomial is expressed in a normalized format,
T/o1, in terms of network parameters M, N and F, and provides an estimate of
computational complexity. The following cost values o, are used throughout the

analysis:

® 0;: the time required to execute elementary, low-level operations (i.e., z + v,
T —y, max(z,y), 1 —z, z < y, etc.). The values z and y are real numbers

represented with a b bit resolution.

® 0;,: the time needed to compute a division z/y (04,), a multiplication z-y (022),

a square root y/z (0,3), or an exponent e® (094). Notice that operations of type

SA similar type of analysis has been conducted by Lawrence et al. [89] to approximate the
computational complexity of various tasks done by a face recognition system. This type of analysis
is important in the context of implementing real-time systems, where complexity scales according

‘ to system parameters.
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p = 2 are subdivided into operations of type ¢ = {1,2,3,4} on account for their
dissimilar complexities. The complexity of these operations is a function of b
(024 = 024(b)). and they differ according to specific implementations. However,
in order to ease the analysis and the comparison of results, we assume that
021 = 022 ™= 023 =~ 024 =~ F(b) -0, = F - 01, where parameter F reflects the use

of higher complexity operations in the analysis. This is a reasonable assumption

if dedicated hardware is available to support the requested operations.

As explained previously, this complexity analyvsis assumes that the SONN algo-
rithms are implemented using a random access machine (RAM) model of computa-
tion [37]. They are also supposed to be executed in an order permitting efficient
reuse of data (e.g., no values are computed twice). Input patterns are considered to
be normalized, and all weight and parameter values are presumed to be initialized
prior to the presentation of any data. The time associated with these last two oper-
ations is ignored since it is comparable for all the SONNs. The SONNs form clusters
progressively by sequential processing of input data patterns. ISODATA is an itera-
tive procedure that requires all the input data at once to form a predefined number
of clusters. Since ISODATA cannot be analyzed in the same way as the SONNS, it is

omitted from the complexity analysis.
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SONN TIME COMPLEXITY
Steps of the algorithm: Cost per iteration | Iteration count
FA
A. Complement coding: o M 1
B. Choice functions: 01(6M + 1) + 02, N
C. Search process:
C.1. vigilance test 01 N
C.2. category choice 0y N
D. Prototype vector update: 4M(0) + 0232) 1
FMMC
A. Membership functions: M(90, + 2022) + 02 N
B. Search process:
B.1. erpansion test 3oy M + 0y + 033 N
B.2. hyperrectangle choice 0] N
C. Hyperrectangle expansion: 201 M 1
D. Overlap test: 1200 M N -1
E. Hyperrectangle contraction: M(oy +02,1) N -1
IAFC
A. Pre-computations:
AL jla—vjlf, Vj Moy +072,1) + 023 N
A.2. 1(|la=v;l®), Vi 021 + 02,2 N
A3 T 1/(lla= vl o1 N
B. Choice functions 002 M N
C. Search process:
C.1. vigilance test 201 + 02,1 + 022 + 024 N
C.2. membership test o1 + 02 N
C.3. category choice 01 N
D. Centroid vector update: 2092 M + 901 + 302, + 6022 1
SOFM
A. Map neuron selection:
A.l. Euclidean distances M(o; + 02,1) + 023 N'
A.2. best-match choice 01 N’
A.3. increment its input count 01 N’
B. Update prototype(s):
B.1. define neighborhood 301 +202,) + 023 N'
B.2. adjust weights M (201 + 022) N’
C. Modify a(t) and r(t): 2(01 + 02,1 +0272) 1
D. Map interpretation:
D.1. find category centers 01 N’
D.2. relate neurons M(oy + 02,1) + 023 N -1
D.3. category choice 0] 1




2.B.1 Fuzzy ART (FA)

In Table 2.6. the breakdown of time complexities shows that operation B, the
computation of the output neuron choice functions. is potentially the most costly
with FA. The sequence of the FA search process (operation C) has been modified
according to Subsection 2.2. The vigilance test is computed only once for all NV
output neurons prior to category choice. Similar modifications to FMMC and [IAFC
were also assumed. The total worst-case running time Tg4 corresponds to the sum

of the elements multiplied in the “Time complexity” column:

Tp,‘ = OlA/[ + IV[OI (6."[ + 1) + 02,1] + 2011V + 41‘!(01 + 02‘2)
= NAM(601) + N(30, + 021) + M(50; + 40, )

= 0 (6]Vl‘{ + 3N + 5."/[) + 02'1(1\/) + 02‘2(41‘[)

If parameter F is comparable for all type p = 2 operations, 0o 2 0,9 >~ F - 0, then:

Tra =0, - [6NM + NF + 4MF + 3N + 5M] (2.4)

The rate of growth of Tr,4 when F is constant and M, N > 1is O(NM).

2.B.2 Fuzzy Min-Max Clustering (FMMC)

As with FA, the computation of output neuron membership functions (opera-

tion A) is potentially very demanding. FMMC’s simple hyperrectangle expansion
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procedure (operation C) is equivalent to FA's fast learning rule (with 4 = 1). How-
ever, its combination of overlap test and contraction procedure (operations D and E),

are also notably time consuming. The total worst-case running time Trararc is:

Temarc = N[M(90; + 2022) + 02,1] + N[3oi M + 20, + 02,1] + 20/ M +

(N - 1)1201M + (N - 1)[M(01 +02'1)]

NA/[(2501 +o091 + 202'2) + 2N(0| +024) — A’I(llol + O-gvl)

01(25NM + 2N — LIM) + 02 ) {(NM + 2N — M) + 022(2N M)

If parameter F is comparable for all type p = 2 operations, 02| = 022 =~ F - 0}, then:

Trammc =01 - [BNMF +25NM + 2NF — MF + 2N — 11M] (2.5)

The rate of growth of Trararc when F is constant and M, N > 1 is O(NAM).

2.B.3 Integrated Adaptive Fuzzy Clustering (IAFC)

The computation of the Euclidean distances and related values in operation A
(between input a and the prototype vectors v;) is potentially very time consuming.
These values are needed at several instances in IAFC’s processing. For example,
fuzzy membership values are needed for an alternate choice procedure (see operation
C.2). The complexity required for the choice functions and the search process is

comparable to that of FMMC. Its centroid update (operation D) is as costly as the
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prototype vector update of FA. The total worst-case running time T} yp¢ is:

Trarc = N[M(o\ +02,1) + 01 + 021 + 022 + 023] + N{o22M] +
N[do, + 209, + 022 + 02,4] + 2022M + 90y + 3021 + 6022
= NM{(o; + 031 + 022) + N(501 + 3021 + 2002 + 023 + 02.4) + M(2022) +
90 + 302, + 6022

01(NM + 5N +9) + 09| (NM + 3N +3) + 022(NM + 2N + 2M + 6) +

i

023(N) + 02,4(N)

<y

If parameter F' is comparable for all type p = 2 operations, 02 =~ 022 =~ 023 =~ 03 4 =

F' - 0y, then:

Trapc =01+ [2NMF + NM + 7TNF + 2MF + 5N + 9F + 9| (2.6)

The rate of growth of T;.4rc when F is constant and M, N > 1 is O(NM).

2.B.4 Self-Organizing Feature Mapping (SOFM)

The SOFM processing is more straightforward than that of the ART-type SONNs,
since there is no search process. Most of the workload is concentrated in 3 operations:
A, B and D. The selection of a winning map neuron has a complexity comparable
to the FMMC and IAFC choice functions, even though N’ is usually greater than

N (several map neurons may be needed to represent a single category with SOFM).
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Notice also the weight update required for several map neurons, instead of just one

with ART-type SONNs. The total worst-case running time Tsopyy is:

TsorFy = N'[M(Ol + 02‘1) + 201 + 02'3] + N'[Af(?ol + 02,2) + 3o0; + 202'1 + 02'3] +
2(01 + 02,1 + 022) + N'[M(01 + 02.1) + 01 + 023] — M (01 + 021) + 01 — 023
= 1V'M(401 + 202'1 + 02;_)) + N’(ﬁol + 2021 + 302,3) — Moy + 02‘1) + 30, +

2001 + 2022 — 023

= oj(4N'M +6N' =M +3) + 00, (2N'M +2N' = M + 2) + 005(N'M +2) +

023(3N' - 1)

If parameter F' is comparable for all type p = 2 operations, 07 >~ 092 ~ 023 =~ F -0y,

then:

Tsoras =01 - [BN'MF +4AN'M +5N'F — MF +6N' — M + 3F + 3] (2.7)

The rate of growth of Tsora when F is constant and M, N’ > 1 is O(N'M).



63

2.C Summary of SONN algorithms

2.C.1 Fuzzy ART (FA)

The FA’s functionality can be described as a five steps algorithm:

1. Weights and parameters initialization: Initially, all the neurons of F2 are
uncommitted, and all weight values wj;; are initialized to 1. An F2 neuron becomes
committed when it is selected for an input a, then the corresponding weights wj; can
take real values in the interval [0,1].

2. Input vector complement coding: When a new M-element input vector
a = (a,as,...,ap) (where each element a; is a real number in the interval [0,1])
is presented to the network, it undergoes a preliminary complement coding [21].
This gives a network input vector I of 2M elements such that: I = (aj;a) =
(ay,as, ..., an; af, @5, ..., a$y), with a§ = 1 —a;. This coding is recommended to prevent
a category proliferation problem that may occur in analog ART networks [103].

3. Category choice: With the presentation of an input I to F1, the choice
function T;(I) is calculated for each neuron j in F2:

_ Aw;|

= 2.8
a + |wj (2.8)

T;()
where |- | is the norm operator (|w;| = 2 |w;;[), A is the fuzzy logic AND operator
(IAw; = (min(fy,w;,1), min(lz2, w;2), ..., min(l2pr, wj2a))), and a is a user-defined

choice parameter such that @ > 0. F2 is a winner-take-all competitive layer, where
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the winner is the neuron j = .J with the greatest value of activation T} for the input
I (T, = max{T; : j = 1...V}). If the same T, value is obtained by two or more
neurons, the one with the smallest index j wins. The winning neuron J is retained
for Step 4.

4. Vigilance test: This step serves to compare the similarity between the pro-
totype vector of the winning neuron w; and input I, against a user-defined vigilance
parameter p, through the following test:

[I—/II—T—VLI >p (2.9)

where p = [0,1]. This comparison is carried out on layer F1: the winning neuron J
transmits its learned expectation, w, to F1 for comparison with I. If the vigilance
test (Eq. 2.9) is passed, then J becomes selected, and it is allowed to adapt its
prototype vector (Step 5). Otherwise, J is deactivated for I: T, is set equal to -1
for the duration of the current input presentation. The algorithm searches through
the remaining F2 layer neurons (Steps 3 and 4), until some other neuron J passes
the vigilance test. If no committed neuron from the F2 layer can pass this test, an
uncommitted F2 neuron is selected to undergo prototype vector update, and becomes

committed.
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5. Prototype vector update: The prototype vector of the winning neuron .J

is updated according to:
w, = J(IAwW,) + (1 - B)w, (2.10)

where 3 is a user-defined learning rate parameter such that 3 = [0,1]. The algorithm
can be set to slow learning, with 0 < 3 < 1, or to fast learning, with 8 = 1. Once this
update step is accomplished. the network reactivates all F2 neurons, and can process

a new input vector.

2.C.2 Fuzzy Min-Max Clustering (FMMC)

The FMMC network’s algorithm may be described with four steps:

1. Category hyperrectangle and parameter initialization: All the category
neurons of F2 are considered to be uncommitted, and all hyperrectangles B; are
initialized such that u; =1 and v; = 0.

2. Hyperrectangle expansion: Let B; = {a,uj,v;,b;} define the category
hyperrectangle fuzzy set for F2 neuron j, where a = (ay, a, ..., aps) is an input pattern,
and b; = b;(a, u;,v;) € [0, 1] is a membership function defined by:

M

bj(av ujvvj) = %kz:[l - f(ak - vjk)'Y) - f(ujk - ak77)] (211)
=1
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The ramp threshold function f(-) is defined such that f(z.v) = 1ifzx-v > 1,
flz,y)=x-7vif0<r-v<1 and f(x.v) =0if -y < 0. When a new input vector
a = (a;,ay,....apr) is presented to the network, function b; measures the degree to
which it belongs to hyperrectangle j. The closer a is to the hyperrectangle points, the
closer b, is to 1, subject to a sensitivity parameter . For a set of committed category
neurons in F2, the closest hyperrectangle B; that can expand (if needed) to include
a is identified. The winner j = J is the category in which a yields the greatest degree
of membership (b; = max{b; : j = 1...V}). This selected category hvperrectangle is

then submitted to an expansion test:

1 M

” > _[max (v, ar) — min(ux, ax)} < 6 (2.12)
k=1

where 6 € [0,1] is a user-defined mazimum hyperrectangle size parameter. If this
last constraint is met, then expansion learning takes place: the min and max points
of the selected category hyperrectangle are adjusted so that v/, = min(uy,ax) and
v = max(uvyg,ax) for k = 1,2,..., M. Otherwise, alternate committed category
hyperrectangles may be selected. If all else fails, a new category hyperrectangle is
committed, and is assigned a.

3. Overlap test: A hyperrectangle represents the portion of a category fuzzy set
to which the corresponding patterns have full membership. Hyperrectangles are not
allowed to overlap, although the portions of the fuzzy sets with partial membership do

overlap. After each hyperrectangle expansion process, the overlap of Bj is quantified
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with respect to the other existing hyperrectangles B, (h = 1,2,..., N.h # J) for the
following 4 cases, along each of the M dimensions with (a): vpe > vy > upke > uyi,
(b): vyk > v > uyk > upk (for partial hyperrectangle overlap), (c): vy > Upx >

unk > gk, and (d): vpe > vyr > ugp > up (for full hyperrectangle overlap), where

4. Hyperrectangle contraction: Overlap between the selected hyperrectangle
B; and another one, By, is eliminated using a contraction process on a dimension-by-
dimension basis. For the I cases described in Step 3, the overlap is eliminated with
(a): uhe = vl = (unk + vsk)/2, (b): whye = vhy = (usk + vak)/2, (¢): uly = vhk. (d):
Ve = upk, for k = 1,2,..., M. Then, the network reactivates all F2 neurons, and is

ready to repeat steps 2 to 4 with a new input pattern.

2.C.3 Integrated Adaptive Fuzzy Clustering (IAFC)

The TAFC network’s algorithm can be summarized with the following four step
procedure:

1. Weights and parameters initialization: Initially, all the neurons of F2
are uncommitted, and all weight values vj; and b;; are initialized to 0. An F2 neuron
becomes committed when it is selected for an input a, then the corresponding weights

v;; can take real values greater than 0. The weights b;; are always normalized versions

of the vj;.
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2. Category choice: When a new input pattern a = (a,.a.. .... ayy) is presented,
it is normalized. The resulting input pattern I = (I,, [,..... [ ;) is applied to the net-
work’s F1 neurons, through bottom up weights b;. and a winner-take-all competition

occurs among F2 neurons. The dot product Y, is found for each F2 neuron j:

M
Y, =Y L-b;=I-b] (2.13)

1=1

The output neuron j = .J that receives the largest activation is selected (Y; =
max{Y; : 7 =1,2...., N}). By using this correlation-type choice function, the winner
is decided by the angle between I the b;s. This may cause misclassification since
the input-centroid distance is not considered. In such cases, the Euclidean distance
may be a better alternative for category choice. For a category choice, IAFC uses the
following combined similarity measure. After using Eq. 2.13, and selecting a winner
J, the fuzzy membership value p; of the input pattern in cluster J is computed:

1

1 m-1
Uy = (“8-"1“2) - (214)

N( 1 )r‘n-—n
J=1 \Jla-v;||?

where m € [1,00) is the weight exponent (experimentally set to 2 [84]), and || - {|
is the Euclidean distance. If p; is less than o, the algorithm activates an alternate
procedure to find a winner: a cluster whose centroid v; is closest to a according to
the Euclidean distance (Y; = min{|la — v;|| : = 1,2,..., N}). Therefore, if o is set

low, the angle between I and the b;s becomes dominant in the choice of a winner,
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otherwise the Euclidean distance is dominant in this choice.
3. Vigilance test: The choice of winning cluster .J is validated according to the

following test:

e T la-wvyl|<T (2.15)

where v is a factor that controls the shape of clusters formed (normally set to 1 [84]),
and 7 is the vigilance parameter. This similarity measure considers the Euclidean
distance between a and v, and the relative degree of belonging of a to every com-
mitted category. If the winning ./ satisfies the test, this cluster’s centroid is updated
(Step 4). Otherwise, neuron J is deactivated, and another cluster is selected as win-
ner (Steps 2 and 3). If no cluster can pass the vigilance test, an uncommitted F2
neuron is selected for centroid update.

4. Update the winning centroids: The centroid of the selected category is

updated according to:

vi=(1=-A)-vy+XA-a (2.16)

where A = f(l)-m(a, v, 7)-u3. The value ! is the number of iterations of the data set,
f() = 1/{k(l-1)+1} is a decreasing function of [, and 7(a, v, 7) is the intra-cluster

membership value of a to the winner .J, defined by:

( 1-2(la=vy||/7)? if 0<]la—v,||<T/2;

m(a, vy, 7) = 2(1 - |la—v,||/7)? if 7/2<|la=-vy||<T; (2.17)

0 if [la—vyl|>7.

\
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A normalized version of v/, (b’;) is also calculated for subsequent processing. The pre-
viously deactivated output neurons are enabled. and a new input pattern is accepted

at Step 2.

2.C.4 Self-Organizing Feature Mapping (SOFM)

The SOFM algorithm used in this paper is summarized in terms of the following 4
steps:

1. Weights and parameter initialization: Weights w;(0) = (w;,(0), w;»(0), ...,
wjp(0)) from each map neuron to all the input neurons are initialized to small ran-
dom numbers. The initial learning rate «(0) and neighborhood radius r(0) are also
set prior to training. For every neuron j of the map, the assigned input count c(j) is
reset to 0.

2. Map neuron selection: At time ¢, the input pattern a(t) = (a,(t), as(t), ...,
ap(t)) is compared with each map neuron prototype vector w;(t) using the Euclidean
distance ||a(t) — w;(t)[]. The best-matching map neuron J, the one that minimizes

the Euclidean distance, is selected according to:

J = argmin{||a(t) — w;(t)|| : 5 = 1,2,..., N} (2.18)

The assigned input count of the best-match map neuron is incremented (c(J) =

c(J) +1).
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3. Weights updating: The input a(t) is mapped onto the neuron .J relative to
all other w;(¢t) values. During learning, the neurons that are topographically close to
neuron J’s location in the map (within a neighborhood) activate each other to learn
from the input. Weights connected to J and to other neurons in its neighborhood
become more alike through learning [104], thus more responsive to a(t). They are

adjusted according to the learning rule:

w;(t +1) = w;(t) + ny;(t)[a(t) — w;(t)] (2.19)

where n,;(t) is the neighborhood kernel that is a function defined over time, and
the map neurons. The kind of kernel used in this paper is named bubble, whose
definition considers a set of map neurons neighboring the best-match neuron J. This
set is denoted N;(t), and it contains the set of map neurons considered to be in
the neighborhood of map neuron J at time ¢. Then, ny;(t) = a(t) if neuron j
belongs to N,(t), and ny;(t) = 0 otherwise, where a(t) is the learning rate parameter
(0 < a(t) < 1). Specifically, the set N,(t) is a function of dj; = |r; — r,], the
lateral map distance of neuron J to neuron j, which is a Euclidean measure in the R?
output space. The size of the set N,(t) is regulated by the threshold parameter r(t).
If dj; < r(t), the map neuron j belongs to J's neighborhood, and it is allowed to
learn from a(t). Then, parameters a(t) and r(t) are adjusted: they are progressively
decreased in a slow and linear way from their initial values, r(0) and «(0), to 1 and 0,

respectively. If a(t) > 0.5 - a(0), then the feature map may be interpreted (Step 4).



72

4. Map interpretation: Everv map neuron j whose assigned input count ¢(3)
is greater than (. a user-defined category assignment parameter, is interpreted as a
category center. If c(J) is smaller, or equal to ¢, find the closest category center K

according to:

1\'=argmkin{Hwk(t-i-l)—wj(t+1)||} (2.20)

At this stage in training, this search may be bound to .J’s adjacent map neurons, given
the topographical relationships. Then, input a(t) is implicitly assigned to K without
additional weight updating. The integer discrete-time coordinate ¢ is incremented,
and Steps 2 to 4 are repeated with data set patterns until a(t) is reduced to 0, and

the weight values are fixed, at which time a feature map has been formed.



2.6 Synthese et impact des résultats

Dans I'article précédent, quatre RNA auto-organisateurs de type apprentissage
compétitif ont été comparés en termes de la qualité de catégorisation et de I'effort de
calcul requis. Les résultats des simulations et des estimations de complexité ont permi
la mise en évidence des conclusions suivantes. Premiérement, les résultats de simula-
tion (avec un ensemble de données représentatif en MSE radar) ont révélé que le réseau
SOFM procure habituellement la meilleure qualité de catégorisation, suivi le plus
souvent par FA. FNMC et IAFC. Les réseaux FMMC et FA convergent les plus rapi-
dement, suivis par [AFC et SOFM. Lorsqu’on lui accorde une période suffisante pour
converger, SOFM devient insensible 4 'ordre de présentation des données. Cepen-
dant, 'ordre de présentation a un impact considérable sur la qualité et la variabilité
des catégorisations générées par FA, FMMC et IAFC. Deuxiémement, les résultats
d’estimation de complexité ont révélé que FA est défini par une procédure moins
complexe que les trois autres réseaux. C’est-a-dire qu’on estime (dans le pire cas) que
Ialgorithme du RNA FA demande le plus petit temps de traitement pour un patron,
suivi par IAFC, SOFM et FMMC.

Selon ces résultats, on peut conclure que les réseaux SOFM et FA sont les plus con-
venables pour le triage métrique rapide de séquences d’impulsions, sans connaissance
a priori. En fin de compte, le choix d’un ou de I'autre dépend des besoins spécifiques
de l'application en MSE radar, et fait apparaitre un compromis entre la qualité des

catégorisations et I'efficacité des calculs. SOFM produit des catégorisations trés
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précises. mais peut exiger un long délai pour converger et est caractérisé par une
complexité de calcul élevée. Alors, celui-ci serait plus approprié pour des svstemes de
surveillance, d’intelligence et de ciblage a longue portée, ou la précision est plus cri-
tique. En revanche, FA produit des catégorisations un peu moins précises que SOFM,
mais il possede un grand potentiel pour le traitement a haute vitesse. Celui-ci serait
plutot désirable pour des systemes d’alerte contre les menaces, ou le temps de réaction
et/ou la compacité du systeme est plus critique.

Il est & noter que ni SOFM ni FA ne sont pratiques. comme tels, pour le triage
métrique en MSE radar. En effet, SOFM perd progressivement sa capacité d’apprendre
de nouvelles informations, ce qui est acceptable dans le contexte d’apprentissage d’un
lot d’impulsions radars. Une version modifiée de SOFM serait souhaitable pour retenir
un certaine pasticité face a ’environment, ou pour fusionner des résultats obtenus
avec différents lots de données. D’autre part, un mécanisme supplémentaire (pour
localiser et compter le nombre de catégories formées) a du étre congu afin de faciliter
I'interprétation des résultats avec SOFM.

FA n’est pas limité par ces derniers facteurs, mais plutét par son manque de
précision, ainsi que par la dépendance de ses résultats sur I’ordre de présentation des
données. Il serait intéressant de mener une étude plus approfondie concernant I’effet
de 'ordre de présentation des données sur les résultats d’'un RNA de type ART.
Finalement, il serait utile de développer des critéres pour pouvoir re-initialiser les

neurones correspondant aux émetteurs qui ne sont plus actifs. Une telle modifica-
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tion peut réduire le montant de resources requises, et offrir un vue plus précise des
émetteurs dans |'environnement.

Les deux prochains chapitres présentent des travaux qui font suite aux résultats
de I'étude comparative précédente. Ces contributions élaborent des concepts qui sont

liés au triage métrique rapide basé sur le RNA FA.



Chapitre 3

Une architecture VLSI pour le

réseau de neurones fuzzy ART

Selon la comparaison au chapitre 2, le RNA fuzzy ART a un grand potentiel pour
supporter le triage rapide d’impulsions radars. Une réalisation du RNA fuzzy ART
avec un circuit dédié VLSI peut permettre d’atteindre une cadence de traitement
élevée. Le reste de ce chapitre contient une description de la deuxiéme contribution
du premier volet. C’est la proposition d'une nouvelle architecture de systéeme intégré
a trés grande échelle (VLSI) qui permet la mise en oeuvre de 'algorithme fuzzy ART
pour le triage en temps réel rapide.

Une réalisation convenable en MSE radar devrait supporter un débit élevé, tout
en garantissant un controle sur la précision, une tolérance adéquate au bruit, et des

strategies fiables pour le test. Ceci nous conduit & proposer une approche VLSI



numérique pour la mise en oeuvre. Afin d’obtenir des solutions efficaces quant a la
mise en oeuvre d'un circuit dédié VLSI numérique. I'algorithme du RNA fuzzy ART
a été reformulé. Cette reformulation séquentielle permet de contourner les exigences
d’un algorithme massivement paralléle, et donc d’éviter les colits excessifs associés
aux interconnexions. De plus, la séquence des opérations a été modifiée afin d’éviter
la redondance de calculs, d’exploiter la ré-utilisation des résultats et d’augmenter
'efficacité de traitement des données.

Une architecture de systeme VLSI a été proposée pour la mise en ocuvre de
I'algorithme reformulé dans des applications a débit élevé. Etant donné les con-
traintes qui s'imposent sur la technologie VLSI actuelle, ainsi que les dimensions du
probléme et la vitesse de traitement qui sont ciblées!, un systéme numérique multi-
puces a été choisi pour cette mise en oeuvre. L’architecture proposée pour le systéme
est modulaire et cascadable en fonction des besoins de 'application. Elle comprend
un comparateur global, ainsi qu'un ensemble de modules élémentaires identiques.
Chaque module élémentaire permet d’émuler un certain nombre de neurones de sor-
tie, chacun associé a une catégorie, et est réalisé par un circuit integré ou ASIC
cascadable. L’architecture d’'un module élémentaire est constituée d'un comparateur
local, de diviseurs, de processeurs neuroniques et d’'un bloc de mémoire SRAM.

Lorsqu’une impulsion est présentée au systéme, chaque module élémentaire pro-

duit indépendamment un neurone vainqueur au niveau local (parmi les neurones qu’il

'0n s’est fixé une capacité maximum de 250 catégories d’émetteurs, une densité maximum entre
10° et 106 impulsions par seconde et des patrons d’entrée a M = 16 dimensions.
P p p
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contient). A Pintérieur de chaque module élémentaire. le traitement est pipeliné grace
a une architecture systolique en anneau pour la comparaison rapide entre entrées
et poids. L’ensemble des fonctions d’activation est donc généré tres rapidement.
L’architecture systolique permet d’émuler le traitement massivement parallele des
RNA avec de la circuiterie numérique. De plus, 'utilisation de mémoire SRAM a
I'interne du ASIC minimise le temps d’acces aux poids neuroniques. Le comparateur
global choisit le neurone vainqueur au niveau global (entre les vainqueurs locaux),
puis il active le module élémentaire correspondant pour la phase d’apprentissage.
La configuration systolique de ce module élémentaire permet d’ajuster les poids du
neurone gagnant.

Un modeéle pour I'analyse du coiit AT été développé pour cette architecture dans
le but d’évaluer 'impact du choix des parameétres (e.g., le nombre de neurones par
processeur neuronique) sur sa surface semiconducteur (A) et son temps de traitement
(T). Etant donné des contraintes de performance pour 'application, ainsi qu'un choix
de configuration d’architecture, ce modele permet d’estimer rapidement la complexité
surface-temps. Le modéle a été utilisé pour estimer la performance de I'architecture
fuzzy ART pour le triage rapide en MSE radar.

De plus amples détails sur cette proposition sont présentés dans I’article suivant:

GRANGER, E., BLAQUIERE, Y., SAVARIA, Y., CANTIN, M.-A., et LAVOIE, P,
“A VLSI architecture for fast clustering with the fuzzy ART neural network,”

Journal of Microelectronic Systems Integration, 5:1, 3-18 (1997).



Une copie de cet article est fournie ici. Ensuite, la derniere section du chapitre aborde

une discussion sur 'impact des résultats de cette contribution.
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Abstract

Hardware implementation of the fuzzy ART neural network applied to a demand-
ing real time radar signal clustering problem is investigated. To obtain efficient so-
lutions for the implementation of this neural network with dedicated digital VLSI
hardware, the network’s algorithm is reformulated. A novel fuzzy ART system archi-
tecture which can implement this reformulated algorithm for high speed clustering
problems is then proposed. This system architecture is composed of a global com-

parator and several identical elementary modules (EMs), each of which emulates a
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number of neurons. The general architecture of each EM consists of a local compara-
tor, dividers, neural processors, and a block of memory. This paper also outlines a
cost analysis model for the estimation of area and processing time required with the
proposed system architecture. This model offers a framework for rapid estimation
of area-time complexity, given a VLSI system architecture configuration and a set
of application constraints. As an illustration, this model is employed to estimate
the performance of fuzzy ART hardware applied to the clustering of radar pulses in

electronic warfare systems.

3.1 Introduction

On-line clustering of intercepted radar pulses is important for data reduction in
electronic support measures (ESM) systems. The purpose of radar ESM is to search
for, intercept, locate, and analyze radar signals in the context of military surveillance.
It is an important preliminary step in all electronic warfare systems, which allows the
evaluation of the countermeasures to be undertaken for self-protection [63]. The
need for data reduction in radar ESM arises from the signal densities encountered
in some theaters of operation, which can reach up to 10° radar pulses per second.
Grouping radar pulses into categories corresponding to active radar emitters at the
early stages of processing could considerably reduce the processing requirements,
as well as the hardware cost of ESM systems [4] [39] [79]. Since the number and

description of the radar emitters are a priori unknown, the radar pulses must be
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grouped into categories based on their perceived similarity, a process which is called
clustering [3] [43]. This process is hindered by the fact that pulses from one emitter
are different from each other because of noise, and because of receiver, environmental
and emitter variability [4].

In this paper, a neural network called fuzzy ART [21] is considered for clustering.
The network is capable of fast, stable, and unsupervised learning of categories in
response to non-stationary sources of arbitrary binary or analog patterns. This net-
work is attractive for ESM applications. since it can cluster patterns autonomously,
in real-time, without prior knowledge of the categories.

This paper presents a flexible and modular digital VLSI architecture for fuzzy
ART neural networks suitable for very high data rate clustering applications. Flexi-
bility and modularity allow adjusting system parameters to trade off area and speed.
Also, due to the modularity, systems derived from the proposed architecture can be
partitioned into several identical modules, which can be implemented in individu-
ally packaged chips, or as separate semiconductor dies interconnected in a multi-chip
package. An area-time estimation model is provided to ease parameter selection, and
to assess achievable semiconductor areas and data rates. Radar ESM is used as a
case study to demonstrate the architecture and the use of this estimation model.

The paper is organized as follows. Fuzzy ART is reviewed as a neural network and
then as an algorithm in the next section. In Section 3.3, the algorithm is reformulated

to permit more efficient implementation without entailing a clustering performance
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degradation. In Section 3.4, a multi-chip VLSI system architecture based on the
reformulated algorithm is proposed. Finally, Section 3.5 outlines a model for the
rapid estimation of semiconductor area and processing time, given a VLSI system

architecture configuration and a set of application constraints.

3.2 Fuzzy ART neural network

Adaptive Resonance Theory (ART) neural networks [20] can develop stable recog-
nition capability on-line by self-organization, in response to arbitrary sequences of
input patterns. Several different neural models based on ART have been proposed:
ART1, ART2, ARTMAP, ARTS3, etc. [23]. The fuzzy ART neural network proposed
by Carpenter, Grossberg and Rosen [21] introduces modifications to ART1 (replaces
crisp logic AND operators (intersection: () with fuzzy logic AND operators (min-
imum: A)), which allow for processing of analog input patterns, as well as binary

ones.

3.2.1 Neural network model

The general structure of the fuzzy ART neural network is shown in Figure 3.1.
It consists of two layers of neurons that are fully connected: a 2M neuron input or
comparison layer (F1) and an N neuron output or competitive layer (F2). A weight
value wj; is associated with each connection, where the indices 7 and j denote the

neurons that belong to the layers F1 and F2 respectively. The set of weights W =
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{wji:i=1,2,...,2M;j=1,2,.. N } encodes information that defines the categories
learned by the network. These can be modified dynamically during network operation.
For each neuron j of F2, the vector of adaptive weights w; = (wjy, wjs, ..., Wjanr)
corresponds to the subset of weights (w; C W) connected to neuron j- This vector
w; is named prototype vector, and it represents the set of characteristics defining the
category j. Each prototype vector w; is formed by the characteristics of the input
patterns to which category j has previously been assigned through winner-take-all
competitions. Figure 3.1 shows that the fuzzy ART neural network dynamics are
governed by 2 subsystems. The attentional subsystem is responsible for proposing
a winning category neuron, whereas the orienting subsystem accepts the proposed
candidate or else reorients the search. Further details on these 2 subsystems, as well
as on various gain control signals can be found in the literature [20], and are not

discussed in this work.

Attentional subsystem Orienting subsystem

F2:
Competition | € B €& -
G=1.N) ' 3 Reset
weights: {w;} {
F1: .
Comparison ® ¢9 6 - D —>
(i =1..2M) ..
| A +

FO: T
Complement Coding
Input l F=(@a)

I

Figure 3.1: The fuzzy ART neural network.
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3.2.2 Algorithmic description of fuzzy ART

The fuzzy ART network’s functionality may be described by an algorithm [103]

(as shown in Figure 3.2). This algorithm can be divided into five execution steps:

1.

o

Weights and parameters initialization: I[nitially, all the neurons of F2 are
uncommitted, and all weight values wj; are initialized to 1. An F2 neuron
becomes committed when it is selected for an input a. Then, the corresponding

weights w;; can take values expressed by a real number in the interval [0,1].

Input vector coding: When a new input vector a = (a;,as,....apr) of M
elements (where each element q; is a real number in the interval [0,1]) is pre-
sented to the network, it undergoes a preliminary coding at layer FO. Com-
plement coding of a results in a network input vector I of 2M elements such
that: I = (a;a°) = (ay, a9, ...,ax; a5, a5, ..., a5,), with a¢ = 1 —q;. This coding is
recommended [21] to prevent a category proliferation problem that may occur

in analog ART networks [103].

Category choice: With each presentation of an input I to F1, the choice

function T;(I) is calculated for each neuron j in F2:

LA w;l
TAT) = il 3.1
;1) a + [wj] (1)
where |- | is the norm operator (|w;| = 2™ |w;;|), A is the fuzzy logic AND

operator (I A wj = (min(l,,w;, ), min(ly, w;2), ..., min(Jopr, wjan))), and « is
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a user-defined choice parameter such that a > 0. F2 is a winner-take-all com-
petitive layer, where the winner is the neuron j = J with the greatest value of
activation T; for the input I (T; = max{T; : j = 1....V}). If the same T value
is obtained by two or more neurons, the one with the smallest index j wins.

The winning neuron .J is retained for Steps 4 and 5.

. Vigilance test: This step serves to compare the similarity between the pro-
totype vector of the winning neuron w; and input I, against a user-defined
vigilance parameter p, through the following test:

II/\W]I

] >p (3.2)

where p = [0, 1]. This comparison is carried out on layer F1: the winning neuron
J transmits its learned expectancy, w;, to F1 for comparison with I. If the
vigilance test (Eq. 3.2) is passed, then neuron J becomes selected and is allowed
to adapt its prototype vector (Step 5). Otherwise, neuron J is deactivated for
the current input I: T} is set equal to -1 for the duration of the current input
presentation. The algorithm searches through the remaining F2 layer neurons
(Steps 3 and 4), until some other neuron J passes the vigilance test. If no
committed neuron from the F2 layer can pass this test, an uncommitted neuron

is selected and undergoes prototype vector update.
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5. Prototype vector update: The prototype vector of the winning neuron .J is

updated according to:

w,=8IAw;)+(1-03)wy (3.3)

where 3 is a user-defined learning rate parameter such that 3 = [0.1]. The
algorithm can be set to slow learning, with 0 < 3 < 1, or to fast learning, with

3 = 1. Once this update step is accomplished, the network can process a new

input vector (Step 2).

The flowchart representation in Figure 3.2 summarizes the fuzzy ART algorithm. It
is assumed that the number of neurons NV in layer F2 is fixed but arbitrary.

The fuzzy ART algorithm was simulated with real radar signal data. The data
set used was collected by the Defence Research Establishment Ottawa, and it con-
tains 800 radar pulses from 12 different emitters. Each radar pulse in this set is
characterized by 8 complex features. The network inputs a therefore have A = 16
elements in the interval [0,1]. Based on these functional simulations, the following
set of network parameters: § =1, a = 1 and p = [0.75,0.9] was determined. These
values correspond to a satisfactory trade-off between clustering quality and algorithm
simplicity. Setting # = 1 in Eq. 3.3 allows for fast learning with a simple prototype
vector update equation. Considering the intended application, and the simulation re-

sults, it was decided that the network would only be implemented for the fast learning
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Figure 3.2: Flowchart representation of the fuzzy ART algorithm.

case. Moreover, since our objective is to obtain an effective, resolution-limited digital

hardware implementation, it was also determined that the minimum word length b

required to represent the values wj;, I;, and p is b = 11 bits. This produces errors

within 2% of the clustering results obtained with floating-point values.
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3.2.3 Hardware realizations of ART neural networks

The authors could find no reference to previous efforts to realize the fuzzy ART
neural network in hardware. However, several attempts were made to implement
the ART1 [20] (binary input) neural network and, as mentioned earlier, ART1 and
fuzzy ART processing is very similar. Different classes of ART1 realizations have
been reported. The first class fully or partially implements the time-domain non-
linear differential equations that were originally used to describe ART1 (for exam-
ple. [93] [131] [132]). Indeed. according to the original modeling of ART1, a set of
differential equations describe the dynamics of each neuron and synapse [20]. This
network formulation and the derived realizations demand a great deal of computa-
tional power. The second class of realization consists in replacing the differential
equations of the original model with a set of steady-state nonlinear algebraic equa-
tions, which can be executed sequentially to produce the exact same result (for ex-
ample, [29] [112] [113] [125] [144] for ART1, and [80] for ART2). These algorithmic
descriptions require artificial sequencing of the events in the original model, but they
are less computationally expensive, allowing for a higher potential throughput. Some
of the implementations are based on analog, or mixed analog/digital circuitry (for
example [93], [125] [131], [132]). Others are optical based implementations (for exam-
ple [29], [80] {144]). Yet others are realized as software executing on existing hardware
(for example [114]).

Our goal is to realize a class 2 implementation of fuzzy ART with a dedicated
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digital VLSI svstem for maximum throughput with a high degree of accuracy. Rao et
al. [112] [113] have reported on a class 2 ART1 network implementation based on digi-
tal hardware. The authors exploit a multiplexing technique that permits simultaneous
matching of inputs to prototype vectors, and generation of F2 activation values. They
reduce ART1’s processing to a linear search, best match algorithm. The search’s func-
tionality is implemented with a pipelined associative memory architecture: a pipeline
of identical, back-to-back processing elements, capable of simultaneously matching
several inputs against stored prototype vectors. The architecture achieves a temporal
parallelism (since many inputs can be processed at once), which results in a very high
throughput for small scale problems (16 possible categories, 9 bit input vector, etc.).
This architecture is not appropriate for the target ESM applications where the num-
ber of categories is in the hundreds, and where input and prototype vectors contain
2M x b = 32 elements x 11 bits = 352 bits. Moreover, the architecture is somewhat
incomplete since it lacks the mechanism needed for the update of already committed
categories. These shortcomings have motivated our desire to propose a new system
architecture capable of high throughput with a minimum dependence on the number

of categories, which incorporates all features of fuzzy ART processing.

3.3 Reformulated fuzzy ART algorithm

It would be possible to directly implement the fuzzy ART neural network’s algo-

rithm as described in Figures 3.1 and 3.2. However, neuron interconnections would
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occupy excessive semiconductor area (O(M - N)), and would eventually limit the size
of a feasible digital hardware implementation of the network. Furthermore, simula-
tions with real radar data have shown that a large proportion of the prototype vectors
remain unchanged during the update operations. Prior to its implementation in ded-
icated hardware, the fuzzy ART algorithm (given in Figure 3.2) was reformulated to
circumvent its massively parallel processing requirements, and to exploit its inherent
potential for re-use of data. The reformulated fuzzy ART algorithm helps to max-
imize throughput, to minimize communication costs, and is easier to implement in
digital VLSI hardware for high throughput applications.

Although the reformulated algorithm is functionally equivalent to the original one,
it is expressed as a stream of operations that can be carried out sequentially. Other
modifications to the original algorithm are based on observations of the fuzzy ART
algorithm. Computation of the choice functions (a division, T}, for every committed
neuron j), and their components (]I A w;| and |wj|), constitutes a substantial pro-
portion of the total processing effort. Fortunately, once the elements [I A w;j| and
|w;| have been computed, their values can be re-used on several occasions. This per-
mits a more efficient organization of the algorithm’s processing. In addition, there
is no need to compute the choice function T of a neuron j that would not pass the
vigilance test. This modification circumvents the original algorithm’s search process,
since the neuron j = J with the greatest T, value that can pass the vigilance test

is readily selected. The vigilance test should thus occur as soon as the component
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|I A w;| is available for a neuron j. Further. since complement coding is an input
normalization such that, by definition, [I| = |(a:a)] = M [21], the vigilance test
reduces to [IAw;| > p- M. In parallel with the vigilance test. it is convenient to
carry out a subset test, since it depends only on the elements [IA w;| and |w,|. This
test detects when a prototype vector w; is a subset of I. that is, when |[IAw;| = [w,].
If this neuron j is chosen and passes the vigilance test, then its prototype vector w;
remains unchanged during the learning phase, since w/, = IAw,; = w; in fast learn-
ing mode (3 = 1). Therefore, the learning phase can be bypassed. and the network
speed increased.

These observations lead to a reformulation of the fuzzv ART algorithm, as shown
in Figure 3.3 for the fast learning case. The algorithm sequentially processes com-
mitted neurons only, and N now represents the number of committed neurons, which
starts from 1 and increases progressively as learning takes place. The reformulated
algorithm is divided into two parts: a recall phase and a learning phase. During the
recall phase, the values T; and S; are computed for all committed neurons. If a neuron
J is a subset choice of I, then S; is set equal to 1. If a neuron j passes the vigilance
test for I, then the choice function is computed and T; > 0, otherwise T; is set equal
to 0. At the end, the winning neuron J is chosen. During the learning phase, in the
case where T; > M/(a + 2M), the winning neuron J corresponds to a committed
category that passes the vigilance test. If .J is a subset choice for I (S; = 1), then

the prototype vector update is bypassed; otherwise (S; = 0), the prototype vector
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w is updated according to Eq. 3.3. In the case where T, < M/{a + 2A[). no com-
mitted category has passed the vigilance test. If the maximum number of neurons
is not attained (N < V), then an uncommitted neuron J = N + 1 is assigned to
I; otherwise (N = N), the network is unable to categorize I because its memory

is saturated. After the learning phase, the network is ready to accept another input

vector.

3.4 Fuzzy ART system architecture

In this section, we present a dedicated VLSI system architecture for the refor-
mulated fuzzy ART algorithm of Figure 3.3. Our main objective is to execute this
algorithm at high speeds. It is true that analog implementations can be more compact
(since neuron interconnections consume less semiconductor area), and have greater
potential for high speed processing. However, digital implementations offer higher
computational accuracy, more flexibility in design, better resistance to noise and
interference, more reliable testability methods, and less susceptibility to process vari-
ations among devices [111]. It is prohibitively costly or not currently feasible to
construct a relatively large massively parallel digital network on a single integrated
circuit, as with the analog case. Therefore, any attempt to achieve a high degree
of parallelism results in very large circuits, whose area is dominated by interconnec-
tions [112]. Given the nature of the application, a multi-chip digital implementation

was selected in order to ensure that the required accuracy can be maintained.
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The actual number of neurons is not necessarily the predominant constraint when
considering a digital system implementation, since a neural processor (NP) can se-
quentially process, and thus emulate, many neurons. Yet, the system performance
deteriorates as the number of neurons emulated per NP grows (due to increased pro-
cessing time and memory size). The parallel nature of the intensive computations
carried out by this neural network means that they execute very slowly on sequential
processor architectures [77]. The potential for success in terms of throughput of the
digital system approach thus highly depends on the feasibility of the required level of
parallel execution [88].

Bearing in mind ESM applications, we seek a fuzzy ART network with the fol-
lowing parameters: 2A/ = 32 neurons in the F'1 layer, N, > 250 category neurons
in the F2 layer, fast learning (8 = 1), and b = 11 bit word length. For proof-of-
concept, the fuzzy ART network should accept and categorize a new input vector
every 2us (500000 patterns per second). Given the constraints imposed by current
VLSI technology, the high speed processing requirements, and the number of category
neurons needed, a dedicated digital VLSI hardware implementation of the network’s
processing should preferably be distributed over several integrated circuits. For the
remainder of this section, a multi-chip fuzzy ART system architecture is presented.

In the next section, a detailed area-time estimation shows the performance achievable

with the proposed system.
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3.4.1 Proposed system architecture

Global Winner

[ -
Input: a ? Output: v,

Figure 3.4: Architecture of fuzzy ART system.

The proposed fuzzy ART system architecture (Figure 3.4) is composed of a global
comparator, a global controller, and C identical elementary modules (EMs), each of
which emulates N = N,,,/C neurons. The C EMs can be implemented either in indi-
vidually packaged chips, or as separate semiconductor dies interconnected together in
a multi-chip package. Each EM determines the T7 of its local winner J*, for an input
a of M elements, considering the N r;eurons it emulates. The global comparator
then selects the global winner J, and enable;s the corresponding EM for update. The
general data path architecture of an EM (shown in Figure 3.4.2) consists essentially
of a local controller, a local comparator, D fixed-point dividers, P neural processors
(NPs) - each emulating N/P category neurons -» P/D NPs per divider, and D blocks
of random access memory (RAM) for storage of the N prototype vectors.

To reduce the control burden, an entire EM is considered to be committed if any
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one of the NV neurons it emulates is committed. Recall that uncommitted neurons have
been initialized such that |w,| = 2M (since w,; = 1Vj,7). When needed, a new EM is
activated, and computes its local T; based on the results from all its internal neurons,
even though these neurons may not all be committed. This emulates fuzzy ART’s
orderly selection of uncommitted neurons: the first uncommitted neuron in an EM
is selected only when T; < M/(a + 2M) for all committed neurons (Vi=1,2,.,N).
That is, according to Eq. 3.1, an uncommitted neuron cannot be selected unless all

committed neurons have failed the vigilance test or are less active than M/(a+2M).

= P/D
Local - r=pf
Comparator |6 s=(D-1)-(P/D)+1
A T T [
TJ

| 5
Vigilance Te-t: Subset Test | ---. Viéiléucg ;‘né Subset Test .
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gr#‘ 28 A____/ A28 .
L MUX (Ol' bus) \\ cese L M(]x (Ol' busR & lel

-

Systolic Ring

Configuration

(b- 5) x (X - 2M) bits (b §) x (% -2M) bits

Figure 3.5: Architecture of an elementary module (EM).
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The speed of such a system depends mostly on the number of neurons emulated,
and on access time to the prototype vectors [111]. Storage of 352-bit prototype vectors
for Ny, = 250 neurons requires about 88kbits of RAM. In general, internal memory
is preferred for fast access to weights and moderate [/O pin count, whereas external
memory is preferred to obtain a maximum number of emulated neurons. Considering
that memory is only one part of the system, for a proof-of-concept implementation
with the desired number of neurons, it would be preferable to use a cascade of several
identical chips with their own internal RAM. If there are C EMs. then each EM
stores the weights of N = N, /C neurons (with an area N - 2M - b - Apemp); and
if there are P NPs per EM, then the memory associated with each NP contains the
weights of N/P neurons. On-chip storage permits very fast processing distributed
over C identical EMs with moderate I/O bandwidth requirements. This also allows
to balance areas devoted to memory and to functional circuit [111].

Figure 3.6 presents the basic structure of a NP module. In agreement with the
reformulated algorithm, a NP can operate in the recall phase or the learning phase.
During the recall phase, the value |[w;AI] is calculated for every committed F2 neuron
7, and during the learning phase, the prototype vector w'; (and [w';|) of the globally
winning neuron is updated. Therefore, the system architecture performs the recall
and learning phases of the reformulated fuzzy ART algorithm sequentially using the
same hardware. The system’s behavior is described for both of these phases in the

following subsections.
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Figure 3.6: The basic structure of a NP module consists of a “min” comparator (A),
an adder-accumulator (37), and registers to compute the values [IAw,|, w/, and |wil.
Note the dual labels for recall (top) and learning (bottom) phases respectively.

3.4.2 Recall phase

Complement coding is done inside each EM circuit to reduce I/O requirements
since it is a relatively simple operation. This coding has little impact on the system
throughput, since the sequential complement coding of the M elements of input vector
a overlaps the NPs processing. Accordingly, the delay is equal to ¢, and corresponds
to the complement coding of the first element of a. As an input a is being encoded
inside an EM, the recall phase forms a data processing pipeline starting from the
systolic ring configuration, and ending with the global comparators.

A systolic ring configuration [76] [77] is proposed for the NPs, to exploit the repet-



itive and regular nature of the |[I A w,| computation, and to increase the potential
for parallel execution with VLSI technology. This configuration pipelines processing
through a chain of locally connected NPs linked with unidirectional connections (see
Figures. 3.4.2 and 3.7). The shifting of data between NPs offers a high total inter-NP
throughput by using local communications only, vielding a better balance between
communications and computations [87]. Further, such regular communications mini-
mize 1/O requirements, which allows to implement a large number of NPs per EM. It
also simplifies the connections between each neuron and the rest of the circuit. Each
systolic ring is connected to one divider.

Values |/ A w;| and ||

$¢<T

y b -

. —_—T - => 0 0 ¢ > - -
I=(Il,..., 12[")___

RAM:
(- £) x (2M - &) bits

Figure 3.7: Systolic ring configuration used with NPs.

Every NP occupies an area Ayp, and communicates with a local memory that
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contains the prototype vectors of .V/P category neurons of the F2 layer. The 21/
clements of the complement coded input vector I are shifted right, in natural order
sequence (I, I, etc.), through the NPs in a ring, while the 2)/ elements of every
prototype vector, the weights, are sequentially read from RAM and shifted upwards.
Respective input vector and weight elements for each neuron j are combined in a series
of 2 minimum operations, [, Awj;, so that each NP can accumulate its output value,
LA w;|. After 2M + (P/D — 1) cycles, all the output values of the systolic rings are
ready.

Figure 3.7 shows the interaction between I and the prototype vectors in one sys-
tolic ring. Table 3.1 shows an example of NP processing during the recall phase with
M =16, P/D = 4 and N/P = 5. Notice that for each input I, N/P cycles around
each ring are required to process the entire set of emulated neurons. Figure 3.6
shows that the value |w;| (computed during the learning phase) is also generated
from the NPs in the same sequence as its respective [w; A I|. The total time re-
quired to process the N/D neurons associated with a divider D is no longer than
[2M(N/P) + (P/D — 1)] - t;¢p. The systolic ring response time, t,p, is defined by
trep = Max{tmem,tnp}, Where t,.m is the memory access time and typ is the time
needed to compute a “min” comparison (/; A wj;) and an addition in a NP. For sim-
plicity, we assume for the memory access time that tmem = t,eaa =~ tue- The factor
2M(N/P) is the number of cycles required to compute the norms |[IA w;| in the NPs

for N/ D neurons, whereas P/D —1 is the latency for filling the pipe of the D systolic
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rings. We suppose that 1 < P/D < 2/. thus the divider used cannot accept results
faster than they are produced by the ring of NPs. The block of memory required
for each set of P/D NPs linked to a divider is 21/ - N/P words deep. each of which
contains P/D elements of b bits wide. Each NP requires a datapath with a minimum
width of B = b+1log,(2A/) bits to prevent overflows with the norm values [IAw;| and
|w;|, since there are 2\ accumulate operations to be done on b bit words. Consider-
ing the relative simplicity of the NPs, and the sequential nature of the processing they
perform, several NPs can be assigned to a divider (Figure 3.5). Globally broadcasted
signals to each NP control the sequence of operations in the ring.

The values |w;AT| and |w;]| are transferred from each NP to its respective divider,
after passing through vigilance and subset tests, which can conveniently be carried
out in parallel. If t,ep > teomp = max{tyig, tsus}, the delay needed for these parallel
tests (f,;, and ¢,,) can be absorbed as a simple overhead cycle in the data processing
pipe. Each vigilance test module contains the value p - A/ needed to perform the
required comparison. It is possible, during processing, to adjust the value p in the
range [0, 1] to adapt category discrimination as a function of the input environment.
If the value |w; A I] of a neuron j passes the vigilance test, then this value is passed
on to the divider; otherwise, T} is set to 0, eliminating j from the competition. The
corresponding value S; is retained for use during the learning phase. The results of
the subset test for an entire EM can be stored, for example, in the local controller

with D registers of N/D bits each.
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Fixed-point dividers are used to compute the choice functions from the numerator
|w; AT} and the denominator (|w;| + «). Note that the value (|w,| + a) is computed
as a preliminary step in parallel with the subset and vigilance tests. The numerator
|w; AI| and the denominator ([w;| + ) are represented with B = b + log,(2M) and
B + 1 bits respectively, and the final result T} is b bits wide.

The division efficiency is very important to the system’s performance: it must
be reasonably fast, without sacrificing the accuracy of the results. To maximize
throughput, each divider (of delay tp and area Ap) contains E pipeline stages (of
delay (f4iy + tiaecn)) to reduce the clock period. Evenly spread levels of pipelining
registers (of delay ¢4, and area Aj.,e) ensure that the divider’s critical path delay
satisfies (tgiy + tiaeen) = tp/E < trep, where E' is the number of pipeline stages. With
such a pipelining, the NP results are fed sequentially to dividers having E pipeline

levels, generating a result T} after a delay of tp = E - t,ep.
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Following the divisions, the resulting Tjs are fed to a local comparator. The
maximum 77 in the current cycle is compared to the maximum 7} of the previous
cycles, until all the T's have been compared, and a local winner J* has been found.
The index J* and the value T7; of the local winner are passed on to the local controller
for global comparison, yielding a global winner .J. The EM containing this global
winner J is then activated for the learning phase. The local and global comparisons
can be implemented using [log,(D)] and [log,(C)] level binary trees of (D — 1) and
(C —1) comparators, with a processing time that grows as O(log,(D)) and O(log,(C))
respectively. If comparison trees are used, the worst case processing delay for finding

a local winner is [log,(D)] - ticom, and for finding a global winner, [log,(C)] - tgcom-

3.4.3 Learning phase

Rather than recomputing the |w;| for all the neurons in use at every recall phase,
only the |w,| of the updated neuron is recomputed, using the existing NP hardware.
This |w;| updating operation is done during the learning phase, while updating the
actual w;. During this phase, the prototype vector w; of the winning neuron is
updated by its respective NP in 4M cycles: the weights w; (with i = 1,2,...,2M)
are loaded from memory, processed in the NP, and then written back to memory.
This update is bypassed when .J is a subset choice for I (that is, if S; = 1). The
processing of the learning phase is similar to that of the recall phase, except that only

the winning neuron’s prototype elements are shifted upwards through the associated
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NP, in sequence with I, to compute w/, = w; A I: all the other NPs simply shift the
input through. At the same time, the elements w’; are sequentially shifted outwards
from the NP (as shown in Figure 3.6), out of the EM, and then out of the system
on a b bit bus (see Figure 3.4). This allows external monitoring of new and updated
categories, in real time. This feature is essential if the clustering results are to be
communicated to the rest of the system for real time decision making.

For the learning phase, the architecture requires, at most, a delay of tiern =
[4M + [P/D —1]] - t,ep. where (P/D — 1) - t,.p is an additional latency due to input
vector shifting through P/D NPs (in the worst case, J is a multiple of P/D). To
reduce the delays of this phase, the EMs can begin updating their local winners while
the global comparison is being done. The local results w’, can be stored temporarily.
If the local winner is not the global winner, the update procedure is interrupted, and
the local winner’s weights remain unchanged. Otherwise (i.e. if the local winner is the
global winner), the w’;, which is being held in a temporary buffer, can be transferred
to replace w;. This minimizes the influence of the number of chips, C, on the system’s

performance, but entails additional EM controller complexity and memory.

3.5 Choice of system configuration

This section presents an area-time estimation model for the system architecture
described above, and shows its application to a radar ESM problem. The development

of this model was motivated by a desire to determine the impact of parameter choices
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on the system’s processing rate and area. Given the performance constraints of an

application, this model allows fast analysis of trade-offs, resulting in the selection of

an appropriate system configuration.

3.5.1 Area-time estimation model

A cost function, Ay - tie, that we wish to minimize, is used to assess the system
architecture considering a given set of parameters. This function is the product of
Atar, the area of the system’s datapath, and ¢,,, the time required to process an M

element input vector a.
The area A, corresponds to the sum of global and local comparator areas, divider
areas, NP areas, and the area of the memory for prototype vectors. The interconnect

area, and a few small modules are neglected. The equation for computing .4,,, is:

"llol = '4Global Comp. + C [ALocal Comp. + ADividcrs + ‘-1NPs + AMemory]
= (C - I)Agcom + C[(D - I)A[com + D(AD + EAleuel) +

PAxp + 2MNbAmemM¢] (34)

The time ¢t,, is approximated by making abstraction of communication time and
chip I/O delays. It is equal to the sum of the delays associated with the recall and
learning phases: ¢t = trecait + tiearn- The parameter t,...qq consists essentially of the

sum of the delays required for the norm computations in the NPs (]I A w;|) and the
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latency of the complement coding of one element of a, one subset or vigilance test,

one complete division, one local and one global comparison:

N P
trecall = tcc + [21‘[[51 + ([5] - 1) : trep + tcomp + E(tdiu + tlatch) +

ﬂOgQ(D)] : thmn + I—logz(cﬂ . tgcom

The parameter t;.qrn consists of the delay associated with the prototype vector up-

dating operation in the corresponding NP (w/, = I A wy):
tiearn = [(4M + [£] = 1)] - trep

In a single clock synchronous system, the processing rate can be analyzed using
a clock period teyele = max{ tees ma-x{tmem’ tNP}a max{t,,,-g, tsub}’ (tdiv + tlatch)’ Licom,
tgcom }- In the worst case, processing of an input vector a starts with complement

coding, and ends with the update of the global winner’s prototype vector:

tiot = trecall + tiearn

= toue [242M[ 51+ (51 = 1) + B + [logy(D)] + [logg(CY]] +
tcycle . [41” + [§] -1

= taue [2M(T 51 +2) +2T5) + B+ [logy(D)] + [logn( @] (39)

Notice that ceiling functions are used with the N/P and P/D ratios in Eq. 3.5, since

these ratios are only valid as integer values. Clearly, Eqs. 3.4 and 3.5 can be very
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useful for the analysis of performance trade-offs in critical applications. For example,
they show that. for a constant number of neurons Ny, and chips C, an increase in the
number of dividers D decreases P/D (and/or N/D), and consequently decreases the
number of cycles needed for processing, but it also increases the area of an EM. For an
input vector a of M elements, N/P is a critical factor for the system’s performance:
indeed t,,, grows rapidly with V/P. Eq. 3.5 also justifies the need for internal memory
in fast on-line applications. If the memory’s access time also includes chip [/O delays,
the system’s performance is significantly degraded (since t,em is associated with the
factor N/P - 2M in trecqu). A relatively large number of neurons N, may also be
emulated by cascading several EM chips, since C is a less significant factor in the
system’s overall speed. Preliminary results on estimated delays (see Table 3.2) led
us to believe that: fteye = max{tmem, (taiv + tiaten)} = max{tmem,tp/E}, where
trep = tmem is the largest fixed delay, and (t4, + tiaeen) varies with E. Beyond some
value E' = Eiimit = [tp/(tcycte — tiatcn)]s teyete is minimized since it depends entirely

on the fixed value tmem (tcycte = tmem > (tdiv + tiaten))-

3.5.2 Application to radar ESM systems

By estimating the system’s performance for a range of feasible configurations, we
wish to obtain appropriate values for: N, P, D, N/P, P/D, N/D, when M = 186,
N 2 250, b = 11 bits, § = 1, and the input processing speed is t,,; = 2us. The

simulation results also offer a better understanding of the design trade-offs associated
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Tableau 3.2: Delay and area measures used for the performance estimation

Module Delay (nsec) Area (min?)
Fixed-point divider tp=75.2 Ap=0.468
Neural processor (NP) tnp=4.93 Avp=0.192
RAM for prototype vectors || tpem=>5.0 Amemsie=0.000337
Local and global comparator || tcom=3.96 Aeorn=0.0372
Pipeline register latch tiatcn=1.23 Alatcnsie =0.000463

with the implementation of the fuzzy ART system architecture.

Table 3.2 presents preliminary area and delay measures for the system modules
used within the cost function. These measures were obtained through synthesis using
Synopsis design tools, with Nortel's 0.8um BiCMOS technology [70], for a library
of cells developed by the Canadian Microelectronics Corporation (CMC). Note that
these measures are highly dependent on the technology used and on the degree of
optimization invested in each module. Any conclusions drawn on results from the
area-times estimation model must consider these factors. A nonrestoring division
array [30] was implemented to compute the divisions. With this divider, we estimated
the area of a level of pipelining registers to be Ayt = [(2B = 1)+ (E +1)/2]- Atatchbir-
The area of a bit A,,empie Was estimated using a BICMOS 1-Port SRAM block provided
by the CMC [36], Aicnbie Was obtained from an 11 bit shift register, and ¢y, was
obtained by circuit simulation of a rising edge D flip-flop.

Since the delays and areas shown do not account for the effects of interconnects,

and the only available parameters are for typical process as opposed to worst case, the
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Figure 3.8: Cost (A - tioe) simulation results: (a) Cost versus P for N = 64 (with
different D values); (b) Cost versus P for D = 4 (with different N values).

final delay values used were all conservatively doubled when used for cost estimation.
Areas were used directly but similar doubling should be expected. For example,
during the simulations tcyce = 2 X tmem = 10ns is used. To achieve a minimum
processing time and area (i.e,. a minimum value E- A, in Eq. 3.4), we set £ = Ejimi,
and toyge = tmem = (taiv + tiaeen). Then, memory access time e, is the system’s
processing speed bottleneck.

Figure 3.8 presents examples of the cost simulation results (from Eqs. 3.4 and
3.5) that can be used to deduce an appropriate set of system parameters for C = 4,
P > D, N > P,and E = Ejm;: = 20 levels. Figure 3.8(a) shows the effect of

varying P and D on cost values when N = 64. The results show that a smaller
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Figure 3.9: Contour plot of NV versus P for chip configurations meeting the constraints
Awe/C = 20mm?, t,,, = 2us, and teycte = 10ns. The number of dividers is given by
the diagonal lines.

number of dividers D does not always yield a lower cost. It was also observed that
minimum cost values are obtained for lower P/D ratios as the value D grows. For
instance, the minimum costs range from P/D ~ 20 with D = 1, to P/D ~ 2 with
D = 20. This indicates that lower costs can be attained with smaller P values as D
grows. Figure 3.8(b) shows the effects of varying N and P on the cost values, when
D = 4. Small N values give lower costs, and optimal N/P ratios grow slowly with
N. Specifically, the minimum costs range from N/P ~ 2 with N =10,to N/P~25
with N = 100. This result emphasizes the importance of selecting a relatively small

ratio of neurons per NP, N/P.
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Figure 3.9 shows the contour plot of :V versus P obtained from Egs. 3.4 and 3.5,
assuming the processing rate constraints to,q. = 10ns and ¢, = 2us, and the area
constraint A,,,/C = 20mm?. As a general rule, when teycte 1s reduced or ¢y, grows,
more neurons per NP and/or more NPs per divider still allow meeting area and
delay requirements. The rather small area limit per chip was selected since module
interconnections and pad frame are expected to double it. The region inside the
contour plot of Figure 3.9 corresponds to values of V, P, and D that can meet these
area-time constraints.

The diagonal lines shown correspond to the number of dividers D, ranging from 2
to 17. Figure 3.9 shows that at least 2 dividers and 14 neural processors are required
to meet the speed constraint. As for the area constraint, no more than 17 dividers or
60 neural processors can fit in a chip. Since our system design goal is to maximize the
number of neurons per chip, N, or minimize the number of chips (C = N, /C), the
upper portions of the region corresponds to good parameter choices. The maximum
number of neurons that can be put on one chip while meeting the speed and area
requirements is 93. This is obtained by choosing 4 dividers and 31 neural processors.
Chip control may be complicated with this setup since not all dividers would have
the same number of neural processors, and not all neural processors would emulate
the same number of neurons. If P is constrained to be a multiple of D, then 92
neurons can be emulated by using 4 dividers and 32 neural processors. Moreover, if

N is constrained to be a multiple of P, than 88 neurons can be emulated by using
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2 dividers and 44 neural processors. Both configurations lead to a 3 chip system
capable of categorizing 500000 patterns per second. A proof-of-concept, digital VLSI
implementation is currently under development at Ecole Polytechnique de Montréal.
The design has been described with VHDL, and is being targeted to BiICMOS 0.8 um

technology [35], using Cadence, and the Synopsys simulation and synthesis tool.

3.6 Conclusion

In this paper, the fuzzy ART neural network’s algorithm has been reformulated
to offer more efficient solutions for its digital VLSI hardware implementation. A ded-
icated system architecture that partitions this reformulated algorithm into several
identical integrated circuits has then been proposed. This system architecture is suit-
able for high throughput clustering applications where a high degree of accuracy must
be maintained. It is currently being considered for on-line clustering of intercepted
radar pulses in ESM systems (i.e., data reduction). An area-time estimation model
has also been presented for this system architecture. This model may help designers
of rapid clustering systems in the selection of an appropriate system configuration
(or system parameters), given the constraints of their application. An example of
system configuration choice is demonstrated for a radar signal clustering problem.
The estimation results support the general approach, and the practicality of a digital
VLSI implementation.

The VLSI system architecture presented is just one among many possible archi-
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tectures for the fuzzy ART algorithm. For example, it would be possible to distribute
bit-serial dividers in each NP, rather than having global dividers for a group of NPs.
Another option would be to replace the division by another operation. It would also
be useful to include a mechanism to collect statistics relative to the categories cre-
ated (i.e. time elapsed since last choice, selection, update, etc.). This would permit
rapid reinitialization of infrequently selected categories and reduction of the system’s
global processing requirements. The results of our current implementation, and future
exploration should offer greater insight into the trade-offs involved in a fuzzy ART
system'’s implementation, and uncover an even broader range of effective architectural

solutions.
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3.7 Synthese et impact des résultats

Dans l'article précédent. I'algorithme du RNA fuzzy ART a été reformulé pour
faciliter sa mise en oeuvre numérique. Une architecture de systéeme VLSI dédiée a été
proposée pour partitionner la fonctionalité de cet algorithme sur plusieurs ASIC. Ce
systeme a été ciblé au triage métrique d'impulsions radars a débit élevé. Le modele
d’estimation AT pour cette architecture a permi d’isoler un ensemble de configurations
qui peuvent accomoder plus de 250 catégories et traiter bien au-dela de 10° impulsions
par seconde, tout en occupant une surface acceptable.

Il existe plusieurs variantes intéressantes de I'architecture de systeme VLSI. Pour
une gestion intelligente des resources, I’architecture peut intégrer un mécanisme qui
emmagasine des statistiques sur les catégories formées. Les catégories associées aux
émetteurs non actifs peuvent alors étre re-initialisées. D’autre part. puisque la divi-
sion T; = |w; AI|/(|w;| + a) est un élément critique de 'architecture, remplacer le
diviseur par un multiplicateur (de |w; AI| et (jw;| +a)~!) peut avoir un impact con-
sidérable sur la performance. Il est aussi possible de distribuer des diviseurs bit-sériels
dans chaque processeur neuronique, plutot qu’avoir un diviseur global lié & plusieurs
processeurs. Finalement, pour augmenter la vitesse des traitements, chaque module
élémentaire peut effectuer une phase d’apprentissage préemptive pendant qu’il at-
tend le résultat du comparateur global. Les poids neuroniques peuvent ensuite étre
modifiés officiellement pour le module qui contient le vainqueur global.

Afin de démontrer le concept, I'architecture d’'un module élémentaire a été concue
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et validée, principalement par Marc-André Cantin et Bruno St-Pierre [17] [18] [19].
Plusieurs autres étudiants du Groupe de Recherche en Microélectronique ont aussi
contribués a la réalisation de ce ASIC. La version la plus récente de I’architecture a
été décrite en VHDL, et la description a été ciblée vers la technologie CMOS 0.35 um
avec les outils de conception Synopsys et Cadence. Quelques douzaines d’ASIC ont
été fabriqués a travers de la Société Canadienne de Microélectronique.

Chaque ASIC contient 71k transistors dans un surface d’environ 24 mm?2. Un
patron d’entrée peut étre traité a chaque 6 psec avec une fréquence horloge de 50
MHz. Le circuit VLSI accepte des patrons d’entrée & M = 16 dimensions?, et per-
met d’émuler jusqu’a N = 32 neurones de sortie, i.e., categories. Toutefois, selon les
besoins de I’application, le nombre total de neurones de sortie (V,,;) peut étre aug-
menté en interconnectant plusieurs de ces ASIC en cascade. (Par exemple, un circuit
imprimé qui contient ces ASIC peut s’interfacer avec un CPU hdte qui s’occupe du
controle et de choisir le vainqueur global.)

Cette réalisation de I'architecture est composée de P = 8 processeur neuroniques,
ou chacun émule N/P = 4 neurones de sortie, de comparateurs, d’un diviseur & point
fixe de 17 bits, et d’une mémoire pour les poids neuroniques (11 blocs de SRAM
de 128mots x 8bits). Les poids neuronique wj; et les éléments du patron d’entrée

a; qui sont manipulés par le circuit ont un format fixe. Ils sont représentés avec

2Cette version du circuit a été concu pour traiter des impulsions radars qui ont la méme
représentation que celle définie au chapitre précédent ou dans [55], dans I'ensemble de données
Radar.
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une résolution de b = 11 bits. Les parametres et les poids neuroniques du RNA
fuzzy ART sont programmables. Finalement, pour effectuer des tests structurels.
trois sous-circuits ont été insérés — (1) un “JTAG boundary scan” compatible avec
la norme [EEE 1149.1, (2) un “scan chain” avec une couverture de panne d’environ
97%, et (3) un “memory scan” pour la SRAM.

L’algorithme reformulé a aussi été réalisé sur deux différentes plate-formes — la
carte XCIM de MiroTech et le TMS320C40 de Texas Instruments {18 [110]. Ces
réalisations ont permi d’explorer les alternatives en termes du temps de traitement,
du cout de conception et de fabrication, ainsi que de I’espace mémoire pour accomoder

les neurones, etc., dans une mise en oeuvre du RNA fuzzy ART.
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Chapitre 4

La catégorisation en-ligne par le
ré-ordonnancement de patrons

ambigus

A haut niveau, un systeme pour faire 'apprentissage en-ligne de catégories com-
prend un module de catégorisation qui utilise une technique de traitement. Cette
technique gére la maniére dont les patrons de la séquence d’entrée sont appris par le
module de catégorisation.

Dans ce chapitre, on suppose que le module de catégorisation est un RNA auto-
organisateur tel que le fuzzy ART. Celui-ci appartient 4 I’ensemble des réseaux i
apprentissage compétitif dont le taux d’apprentissage demeure constant. Si le systéme

de catégorisation consiste tout simplement d’'un RNA de ce groupe (c’est le cas par
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défaut), on peut dire qu'il utilise le traiternent séquentiel pour faire la catégorisation
en-ligne d’'une séquence de patrons d’entrée. Lorsqu’un patron d’entrée se présente
au systeme, il est appris immédiatement par le RNA. Pour ce faire, le patron est
comparé au prototype de chaque catégorie. La catégorie dont le prototype est le plus
semblable (selon la fonction d’activation des neurones du RNA) se voit assigné le
patron. Le prototype de cette catégorie est immédiatement adapté pour apprendre les
caractéristiques de ce patron. En catégorisant une séquence de patrons, les prototypes
apprennent a se spécialiser pour différentes régions de I'espace des entrées. On peut
dire qu’ils définissent implicitement les bornes de décision entre catégories.

Grace au traitement séquentiel et au taux d’apprentissage constant du RNA
fuzzy ART, le systéme réussit a conserver sa plasticité face & l’environment, une
propriété intéressante pour le triage métrique en MSE radar. Cependant, la com-
paraison présentée au chapitre 2 indique que la qualité et la variabilité (selon I'ordre
de présentation des données) des catégorisations du RNA fuzzy ART laissent a désirer.
Ces limitations sont en partie liées aux décisions ambigués et au traitement séquentiel
des patrons d’entrée qui tombent pres de la borne de décision entre deux ou plusieurs
categories. L’apprentissage immédiat et irréversible a comme effet de perpétuer
I'impact de cette décision, car seulement une des catégories sera assignée a un tel
patron. La qualité des catégorisations obtenues avec les RNA comme fuzzy ART
peuvent donc varier considérablement selon I’ordre de présentation des patrons.

L'utilisation du traitement par lot permet généralement d’améliorer la qualité
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des catégorisations en dépit du temps de réponse. Dans ce cas. les patrons de la
séquence d’entrée sont accumulés dans une pile de longueur fixe. Lorsque la pile
est pleine, le RNA apprend les patrons correspondants, jusqu'a convergence, avec
plusieurs présentations du lot de données. L’apprentissage par le RNA de lots suc-
cessifs se fait de fagon incrémental. Le fait de laisser converger un lot de données
sur plusieurs passes de traitement séquentiel permet de minimiser (de fagon locale
ou globale) la fonction de coiit du RNA! Ce traitement permet aussi au RNA de
compenser les effets dis a 'ambiguité. Le traitement par lot occasionne toutefois
un temps de traitement par patron qui est plus important que celui du traitement
séquentiel. De plus, ce temps est variable selon les données du lot.

Puisqu’on cible une application a débit élevé, le temps de réponse associé a une
technique de traitement est critique. Ce chapitre présente la troisieme contribution
du premier volet de cette these. Il s’agit de la proposition d’une nouvelle approche
pour faire la catégorisation en ligne d’une séquence de patrons. Le traitement par ré-
ordonnancement est une alternative au traitement par lots pour 'amélioration de la
qualité des catégorisations, mais qui permet aussi de controéler le temps de réponse du
systeme. Un RNA d’un systeme qui exploite ce traitement est modifié afin de pouvoir
détecter un patron d’entrée qui mene a une décision ambigué. Lorsqu’un tel patron

est détecté, il est emmagasiné dans une file, et son apprentissage est retardé pendant

1] est & noter que le traitement par lot a été utilisé pour obtenir les résultats de la comparaison
au chapitre 2. Dans ce cas, la longueur de la pile est de 800 patrons, soit le nombre de patrons de
I’ensemble de données Radar.
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un délai fixe. Apres ce délai, le patron est appris pour de bon par le RNA. Avec le
traitement par ré-ordonnancement, I’ambiguité est alors utilisée comme critere pour
modifier 'ordre d’apprentissage des patrons par le RNA.

Pour démontrer la validité du concept, la qualité obtenue et la latence requise pour
effectuer des catégorisations ont été comparées pour un systéme de catégorisation qui
utilise le traitement séquentiel, par lot et par ré-ordonnancement. Des simulations
ont été effectuées avec I’ensemble de données Radar (présenté au chapitre 2), ainsi que
deux RNA auto-organisateurs de type apprentissage compétitif — le ART2A-E [48]
et le fuzzy ART [21]. La mesure de similarité Rand Adjusted a été employée pour
comparer la qualité des résultats. Afin de comparer le temps de réponse, des bornes
inférieures ont été dérivées sur la latence requise pour la catégorisation en ligne avec le
traitement séquentiel, par lot et par ré-ordonnancement. Une mise en oeuvre typique
des techniques de traitement par lot et par ré-ordonnancement ont été développées,
et leur latence a été comparée aux bornes inférieures. Enfin, la théorie sur 'option
de rejet a permi de dériver deux modeéles pratiques pour faire la détection des cas

ambigus.

L’article suivant contient plus de détails sur le traitement par ré-ordonnancement:

GRANGER, E., SAVARIA, Y., et LAVOIE, P,
“A pattern reordering approach based on ambiguity detection for on-line
category learning,” IEEE Trans. Pattern Analysis and Machine Intelligence,

soumis pour publication, I'article a été resoumis pour une 2e phase de revision
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(novembre 2001).

Une copie de cet article est reproduite ici. Enfin, la derniére section du chapitre
aborde une discussion sur 'impact des résultats de cette contribution.

Il existe une version longue de cet article sous forme d’un rapport technique [61].
Ce rapport fournit en annexe A contient plus de details sur les dérivations mathéma-
tiques permettant d’appliquer 'option de rejet 4 la détection des cas ambigus. Il
contient aussi des resultats de simulations plus extensifs obtenus avec (1) des données

distribuées de fagon Gaussienne et (2) I'ensemble de données Iris [46].
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Abstract

Pattern reordering is proposed as an alternative to sequential and batch process-
ing for on-line category learning. Upon detecting that the categorization of a new
input pattern is ambiguous, the input is postponed for a predefined time, after which
it is reexamined and categorized for good. This approach is shown to improve the

categorization performance over purely sequential processing, while yielding a shorter

This research was carried out while E. Granger was a scientist at the Defence Research Estab-
lishment Ottawa. His corresponding address is: 98 Sweetland Ave., Ottawa, Ontario, KIN 7T8,
Canada, email: eric.granger@rogers.com, phone: 1-613-230-8418.
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input response time, or latency, than batch processing. In order to examine the re-
sponse time of processing schemes, the latency of a typical implementation is derived,
and compared to lower bounds. Gaussian and softmax models are derived from re-
ject option theory, and are considered for detecting ambiguity and triggering pattern
postponement. The average latency and Rand Adjusted clustering score of reordered,
sequential and batch processing are compared through computer simulation using two

unsupervised competitive learning neural networks and a radar pulse data set.

4.1 Introduction

A number of pattern recognition applications involve high throughput category
learning from continuous streams of input patterns. In pattern recognition literature,
partitional clustering techniques [3] [43], such as on-line versions of the k-means [97]
and leader [71] algorithms, are proposed for on-line category learning. Other algo-
rithms include on-line versions of adaptive vector quantization (AVQ) [51] [64] (e.g.,
generalized Lloyd [95] and Linde-Buzo-Gray (LBG) [92] algorithms) in communica-
tion theory, and unsupervised competitive learning (UCL) [65] [66] [86] (e.g., standard
UCL networks [1] [119] and Adaptive Resonance Theory (ART) networks [20]) in neu-
ral network theory. These algorithms learn input patterns autonomously on the fly,
some without prior knowledge of the number and characteristics of the categories.

A common trait of these algorithms is that they process inputs sequentially. When

an input pattern is presented, it is compared to the prototype of every category. The
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category with the best matching prototype is assigned to the input, and the proto-
type of this category adapts to novel characteristics of the input. Over a succession
of inputs, category prototypes become tuned to different parts of the input space,
and implicitly define inter-category decision boundaries. Since a final decision is
taken upon presentation of every input, only information from prior input patterns
is available. In addition, the fact that prototypes are stored rather than prior input
patterns implies that learning — the consequence of each decision — is irreversible.
Information is therefore lost in the process.

Limitations of such sequential processing are obvious, particularly if the structure
of input data clusters tends to be scattered and/or overlapping. For instance, if upon
its presentation, an input pattern lies close to a decision boundary separating two
or more categories, the clusterer is forced to make a final decision, despite the ambi-
guity. Irreversible learning for such decisions yields category structures and decision
boundaries that vary significantly according to the pattern presentation order.

The quality of results is generally improved with batch processing. This consists
in accumulating one batch of patterns from the input stream, while the clusterer con-
verges on a previously-accumulated batch of patterns. Batch processing can diminish
or eliminate sensitivity to the input presentation order by allowing the clusterer to
recover from early miss-assignments. However, it entails some delay for the accumu-
lation of patterns into batches, and may require data buffering if the computational

effort is variable.
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In this paper, an alternative called reordered processing is proposed for on-line
category learning. As a clusterer assigns categories to input patterns, it is granted
the ability to postpone, or delay, category assignment and learning when it detects
an ambiguity. Delayed patterns are queued, and their categorization is deferred for
some fixed time. The overall effect is a modification to the order in which inputs
are categorized. Aside from allowing to control the maximum response time, pattern
postponement offers the opportunity to circumvent learning for ambiguous decisions.

The rest of this paper is organized as follows. In order to compare the response
time of clustering systems, lower bounds on the latency required for on-line category
learning are developed for sequential, batch and reordered processing in Section 2.
Practical issues are also discussed, and architectures are proposed. In Section 3,
elements of reject option theory are briefly reviewed and developed for the detection
of ambiguous decisions, as required by reordered processing. Finally, the experimental
methodology, and proof-of-concept computer simulations are presented and discussed
in Section 4. It is shown that the proportion of patterns that are declared ambiguous
is a good indicator of poor clustering quality; and that a modification of the order in

which input patterns are processed can indeed enhance clustering quality.

4.2 Latency in on-line category learning

On-line category learning of a continuous stream of patterns is performed by a

clusterer (e.g., an on-line k-means algorithm) which is exploited through one of several
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data processing schemes. Let input patterns to be categorized arrive one at a time
from some source that provides them at a rate that need not be constant. The latency
L of the category learning is defined as the number of input patterns necessary before
a final decision (category assignment) y(a) can be made for input a.

The basic approach to learning a continuous data stream is through sequential
processing. Upon observation of each input pattern a, a category is assigned to a
without waiting for subsequent patterns. Batch processing consists in categorizing
the input patterns {a} in fixed-size batches of k patterns. Once k successive patterns
have been collected and stored, the following patterns are buffered while the k patterns
are being learned. Batches of £ patterns are learned iteratively, over several epochs,
until convergence is attained, that is, until the prototypes remain constant for two
epochs (complete presentations of data in the batch). Categories are assigned once
convergence has been detected, i.e., after the last one of these epochs. Reordered
processing consists in postponing the learning of input patterns for which category
assignment is deemed ambiguous. Each postponed pattern is queued, and following
a fixed latency of d patterns is categorized once and for all.

Assuming an infinitely fast clusterer, the minimum latency Lin for all three

schemes must satisfy:

Lipin 20 - (41)

This lower bound corresponds to a being the last pattern in a batch with batch pro-

cessing, or a not being postponed with reordered processing. The maximum latency
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Lmax must satisfy:

0; sequential processing,
Lmax 2 k —1; batch processing,

d; reordered processing,

where & is the number of patterns per batch, and d is the user-defined queue size.
This bound corresponds to a being the first pattern in a batch with batch processing,
or a being postponed with reordered processing. Lastly, it is straightforward to show

that the average latency L must satisfy:

(
0; sequential processing,
> J 1g 4.3
L> EZ(k — 1) ; batch processing, (4.3)
i=1
pr(a)-d; reordered processing,

where p,(a) is the pattern rejection, or postponement rate. This rate depends on
the data and the rejection criterion. Reordered processing constitutes a compro-
mise between sequential processing and batch processing. Indeed if d = (k — 1) and
p-(a) = 50%, then the lower bounds on Lmax and L are equal for batch and re-
ordered processing. If, on the other hand, d = 0, then reordered processing reduces

to sequential processing.
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Figure 4.1: Clustering system architectures.

To characterize the latency of practical clustering systems, it is convenient to
assume that inputs arrive at a regular interval 7,. With batch processing, the number
of batch epochs. d, required to attain the state of convergence varies from one batch
to the next according to the queue length k, and to the structure of the data in the
batch. The computational effort is therefore variable and somewhat unpredictable.
Detection of convergence requires at least one whole batch epoch of overhead and
thus 6 > 2. To circumvent this delay, one can bound the number of batch epochs to a
constant value across all batches, § > 2. A final decision y(a) can then be produced
immediately after processing of a as part of the last epoch.

One possible batch processing architecture is shown in Figure 4.1(a). It consists
of two identical fixed-length queues of k registers that operate concurrently, and a
clusterer that can process each pattern within a fixed time 7.. Each queue alternates
between a collection (A) and a processing (B) mode. While one of the queues tem-
porarily buffers £ incoming patterns from the input stream (A), the other queue stores

a batch of k patterns being learned by the clusterer (B). The processing rate must
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satisfy 7. < 7,/6, which imposes a processing rate constraint on the clusterer that is
proportional to d, and prevents overflows of the queue operating in collection mode.
Once a queue is switched to the collection mode (A), a pattern a from the input
stream is stored every 7, seconds inside its registers. After k7, seconds, the registers
are full, and the queue is switched into processing mode (B). In this mode, patterns
are shifted right through the clusterer every 7. seconds. A feedback loop allows re-
peated presentations. After § epochs, the registers are reset prior to switching back
to collection mode. The latency of the batch processing architecture of Figure 4.1(a)
is the sum of the delays incurred in both modes. In the best case. when a is the last
of a batch,

Liin =% (4.4)

and in the worst case, when a is the first of a batch,
d—Dk+1
Lmax = (k1) + [ (%} , (4.5)

The average latency of this architecture is:

Z:%_l{(k-in[wu , (46)

i=

It is easily verified that (4.4), (4.5) and (4.6) satisfy, but do not meet, the lower
bounds (4.1), (4.2) and (4.3).

With reordered processing, a pattern having been postponed by d patterns is given
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priority over a pattern from the input stream. This ensures a fixed worst-case response
time of d patterns, but leads to the accumulation of up to d incoming patterns. Also,
a clusterer embedded within this system requires additional functionality to detect
ambiguity.

One possible reordered processing architecture is shown in Figure 4.1(b). It con-
sists of a fixed-length queue composed of d registers, and a clusterer capable of de-
tecting ambiguous category assignments. If an input pattern a is deemed ambiguous,
it is diverted towards the queue and labeled a*. Shifting this pattern through the
queue is equivalent to a fixed delay that changes the presentation order. Each pat-
tern b that is processed by the clusterer is either a new input pattern, b = a, or a
previously-rejected and therefore delayed pattern, b = a*. A simple way to sched-
ule processing is to assume that the clusterer’s processing time is partitioned into
interleaved time slices: odd slices reserved for input patterns {a}, and even slices
reserved for previously-rejected patterns {a*}. To alternate between the two sources,
the augmented clusterer must be able to process a pattern b within a fixed time of 7,
that satisfies 7. < 7,/2. This speed constraint is similar to that of batch processing

with § = 2. With this architecture, the lower bounds (4.1), (4.2) and (4.3) are met.

4.3 Ambiguity in competitive learning assignments

With reordered processing, ambiguity is employed as a criterion for postponing

pattern categorization. In statistical pattern recognition, the reject option [33] [34] [49]
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provides a framework for detecting ambiguous classifications. The Bayes decision
procedure assigns one-of-V possible classes to input a using the maximum a posteriori
probability decision rule, J = argmax{p(j |a) : j =1,2,..., N}, where 0 < p(j | a) <
1 and Zf’zlp(j | a) = 1. The a posteriori probability p(j | a) that class j generated
input a is computed according to the Bayes theorem [45] [50].

The degree of ambiguity regarding this decision rule can be measured in terms of
the conditional error given input a, r;(a) = 1 —max{p(j | a) : j = 1.2,..., N} [33] [34]
[44] [49]. Assignment of class J to input a is defined as ambiguous if r;(a) is greater

than or equal to a rejection threshold ~, v € (0. ‘VT“‘] This criterion can be rewritten:

1—7>> P; p(a|J) L7
( v - 23"\,:1,]'¢J P; p(a| j) ’ *.7)

where P, is the a priori probability of class j, with 0 < P; < 1and &, P; = 1,
and p(a | j) is the conditional probability density function (p.d.f.) of the input a
given class j. Eq. (4.7) defines a region in the input space where class assignments
are considered to be ambiguous. The size of this region grows as v is decreased. For
a given v, the size of the region also depends on the shape of r;(a) at the decision
boundary of class J, and hence on the class distribution in the input space.

In practice, the probabilities required to implement the reject option are often
unknown. For on-line clustering applications, these probabilities must be estimated
from the clusterer’s response to input patterns. A clusterer may be subjected to

different environments, with more or less prior information on the underlying data
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structure. Eq. (1.7) is now developed for two possible environments.

In the Gaussian rejection model, the data are assumed to be generated by sources
with the same Gaussian noise and with equal a priori probabilities P;, and all variables
are assumed to be statistically independent and to have equal variance o?. Then,
data clusters are modeled explicitly as hyper-spherical normal distributions centered

at mean vectors {u;}. For this model, Eq. (4.7) becomes

(1 _7> N exp{—”aE—ffz’l”i_} _ (4.8)
g DY exp{— e }

When implemented as part of a clusterer, u; is equal to the prototype vector of
category j. The variance o? is required, either from prior knowledge or from on-line
estimation. The Euclidean distance ||a — ;|| is a core component of the prototype
matching function commonly used by clusterers when prototypes represent mean
patterns.

In the softmaz rejection model, no prior assumption is made regarding the underly-
ing data structure, and data clusters are modeled implicitly. During on-line category
learning, the prototype matching function provides the response strength for each
category with respect to a. The match strength ¢, between input and prototype can
be interpreted as an estimate of the a posteriori probability p(j | a). To ensure that
the ¢; values are valid probabilities (i.e., sum up to 1 and range from 0 to 1), the
softmaz activation function (15, y; = exp{¢;}/ i, exp{d#}, from neural network

literature can be applied. Assuming that y; can be used as an estimate of p(j | a),
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the rejection rule r;(a) = (1 — y;) > v can then be expressed in a form similar to

that of Eq. (4.7):

(122) > onles w9)
>

9 ;‘v=l,j¢.l exp{¢;} .
The reader is referred to [59] for details of the mathematical derivation of Egs. (4.7) -

(4.9).

4.4 Simulation results and discussion

4.4.1 Experimental methodology

Unsupervised competitive learning (UCL) [65] [66] [86] [119] neural networks were
used as clusterers for computer simulation of sequential, batch, and reordered pro-
cessing. In order to compare the performance of the clustering systems, simulations
were repeated over several independent trials. Prior to each trial, input patterns were
shuffled into a random presentation order. The patterns were then learned by the
clustering system under test. After every trial, clustering quality was measured.

The UCL neural networks selected for computer simulations are ART2A-E [48]
and fuzzy ART [21]. ART2A-E is well suited for Gaussian type environments, where
clusters are explicitly modeled as mean vectors. Fuzzy ART is appropriate for en-
vironments where clusters are modeled implicitly. Programs emulating these neural
networks were written in the Matlab language for all three data processing schemes.

For reordered processing, each network was granted the capacity to detect ambiguity.
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The Gaussian rejection model (Eq. (4.8)) was used in the ART2A-E network, whereas
the softmax rejection model (Eq. (14.9)) was used in the fuzzy ART network. In the
second case, ¢; = T; [21], for j = 1,2,..., N, such that the vigilance test is passed,
was substituted in Eq. (4.9).

The data set employed for computer simulations was collected in the field by the
Defence Research Establishment Ottawa. It consists of radar pulses from 12 shipborne
navigation radars. Fifty pulses were collected from each radar, with the exception of
radars #7 (100 pulses) and #8 (200 pulses). The pulses were preprocessed to yield 800
patterns with 16 real-valued features. Data clusters in this set set cannot be described
by the same statistics — some are not Gaussian distributed, and they sometimes
overlap one another [55]. This Radar data set is representative of a continuous pulse
stream intercepted by a radar electronic support measures (ESM) system. Within
these systems, automatic sorting of pulses according to emitter is very challenging due
to the density and complexity of signals encountered in modern environments [40].

The Rand Adjusted similarity measure [76] was selected to assess clustering qual-
ity. This type of measure is known in pattern recognition literature as an external
criterion index, and is used for evaluating the capacity to recover the true cluster
structure (3] [43] [76]. A partition of n patterns into K groups defines a clustering.
This can be represented as a set A = {a, as,...,an}, where ay € {1,2,..., K} is the
category label assigned to pattern h. In our context, the correct classification results

are known for the data sets used, and their patterns are all accompanied by cate-
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gory labels. These labels provide a reference clustering, R, with which a clustering
produced by computer simulation, 4, may be compared. The Rand Adjusted mea-
sure now represents a score, Sga(, R), that describes the quality of the clustering
produced by the network. Sg4(A, R) ranges from 0 to 1, where 0 denotes maximum

dissimilarity (worst), and 1 denotes equivalence (best) [55].

4.4.2 Correlation of ambiguity with clustering quality

The clustering quality achieved can be examined as a function of the degree of am-
biguity observed. Patterns from the Radar data set were categorized by the ART2A-E
and fuzzy ART networks using reordered processing. Network parameters were fixed
to values that produce a high Rand Adjusted score Sg4(A, R) using fast learning
and sequential processing. For a same randomly-selected presentation order, the re-
Jection threshold v was varied from trial to trial. Rejected patterns were counted,
yet processed without postponement. After each trial, the score Sp.4(A, R), and the
empirical rejection rate p, were stored. The empirical rejection rate p, is the ratio of
the number of rejected patterns to the total number of patterns (the size of the data
set). The linear correlation between score and respective rate was computed from a
series of 1000 independent presentation orders, with v ranging from 0 to 1.

Results show that both clustering systems display a significant negative correlation
between p, and Spa(A, R), albeit in different ranges of values for the threshold 4. For

a given value of v, an increase in ambiguous category assignments corresponds to a
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decline of the clustering score. For example, when using fuzzy ART and softmax
rejection, the peak negative correlation coefficient of about -0.65 is obtained when

v = 0.95, which corresponds to p, = 14%.

4.4.3 Clustering quality obtained using reordered processing

Having shown that the Gaussian and softmax rejection models detect ambiguous
category assignments, and that these assignments lead to poor clustering performance,
the effect of delaying ambiguous assignments is now examined. ART2A-E and fuzzy
ART parameters were fixed to provide high Rand Adjusted scores Sg4(R, A) with
fast learning and sequential processing. Rejected patterns were delayed by d patterns.
Two different delay values, d = 25 and 50, were tried. After each trial, Sp4(A, R) was
stored. Average Sp4(A, R) values were obtained from 20 independent presentation
orders, with v ranging from 0 to 1.

Figure 4.2 shows the average Sga(4, R) as a function of 7. In both cases, reordered
processing increases the clustering score over sequential processing alone. For exam-
ple, if patterns are presented to the clustering system with fuzzy ART and d = 25,
then reordered processing improves the score Sg4(A, R) by about 30% over a wide
range of vy values. In the example given above, scores of about Sps(A, R) = 0.52
are obtained for v € [0.2,0.9], corresponding to p, = 45%. For 0 < v < 0.2, the
performance approaches that of sequential processing since p, — 0%. For v values

close to 1, the performance also declines because of the large number of rejections.
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Figure 4.2: Average Rand Adjusted scores Sg4(A, R) versus rejection threshold « for
simulations with the Radar data set. Error bars show standard error.

Fuzzy ART using softmax rejection shows strong negative correlation between 5, and
Sra(A, R) across a wide range of v values, and appears to benefit from reordered

processing more than ART2A-E.

4.4.4 Clustering quality and latency

Sequential, batch and reordered processing are now compared in terms of cluster-
ing quality and latency. For a same randomly-selected presentation order, the queue
lengths k and d were varied between 5 patterns and half the number of patterns in the
data set, over successive trials. This range guarantees a minimum of two batches of k

patterns for batch processing. With the batch architecture, the neural networks were
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Figure 4.3: Average Rand Adjusted scores Sg.4(A, R) versus average latency L of the batch
and reordered processing architectures for simulations with the Radar data set. Error bars
show the standard error. The standard error for values of , always ranges from 0% to 2%.
The batch architecture requires between 2 and 5 epochs for convergence on each batch of

patterns.

left to converge for each batch of £ patterns, until prototype weights were identical
for two consecutive epochs. Network parameters were fixed a priori to provide high
Rand Adjusted scores Sgp4(R, A) with batch processing when k is one half the data
set size. With the reordered architecture, the network parameters were set a priori
to provide high scores Sgpa(R, A) with sequential processing. The value of v was
set equal to 0.65 for ART2A-E and 0.95 for Fuzzy ART. After each trial, the score
Sra(R, A) and the average latency L of the processing architectures were stored. The
empirical rejection rate, p,, was used as a fixed estimate of the variable rejection rate

pr(a), and was substituted into Eq. (4.3). Simulations were repeated 20 times for
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every k and d value in order to yield representative results.

The average scores Sg4(4, R) as a function of the average latency L for batch
and reordered processing are shown in Figure 4.3. Both achieve significantly higher
scores than sequential processing. However, reordered processing requires a much
lower average latency than batch processing. For instance. using fuzzv ART and
reordered processing with v = 0.95 yields a score of Sp,(A, R) = 0.52 for p, = 32%,
d = 118 and an average latency of L = 40 patterns. By comparison, batch processing
yields a comparable level of performance for & = 231 and an average latency of
L = 400 patterns, ten times that of reordered processing. Results also reveal that
the peak performance obtained with reordered processing often occurs for relatively
small values of d, indicating that it is suitable for high speed applications. Beyond
this peak, increasing d does not necessarily yield a higher score Sp4(A4, R). This may
be due to our emulation of an infinite data stream with a fixed-size data set. Indeed,
if an input a among the last d patterns of a data set is rejected, then it is postponed to
the end of the data set, that is, for less than d patterns. The reader is referred to [59]
for simulation results obtained on Gaussian distributed data and on the standard Iris

data set.

4.5 Conclusions

A clustering system applied to on-line category learning would traditionally con-

sist of a clusterer that processes input patterns sequentially. Despite the fast response
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time obtained when using this data processing scheme, the quality and consistency
of the results remain an issue. By contrast, batch processing vields higher clustering
quality, but incurs longer delays. In this paper, an alternate approach has been pro-
posed. It consists in postponing for a fixed time the learning of patterns for which
category assignments are ambiguous. The reject option from statistical pattern recog-
nition literature has been applied to the detection of ambiguous category assignments.
Reordered processing alters the original pattern presentation order, and therefore in-
troduces latency in the system. This latency has been defined and used to compare
sequential, batch and reordered processing.

Computer simulations performed by presenting patterns from a radar pulse data
set to ART2A-E and fuzzy ART neural networks with sequential, batch and reordered
processing show that (1) the number of category assignments detected as ambiguous
is correlated with poor clustering quality; (2) reordered processing improves clustering
quality over sequential processing; and (3) it offers an attractive alternative to batch

processing for trading off clustering quality versus response time.
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4.6 Syntheése et impact des résultats

En MSE radar, il est important de détecter les menaces aussi rapidement que
possible. Le temps de réponse du triage métrique est alors un élément aussi critique
que la qualité des catégorisations. Un systéme de catégorisation qui s’applique au
triage métrique a débit élevé contient généralement d’un module de catégorisation
en ligne qui utilise une technique de traitement appropriée. Dans I'article précédent,
le traitement par ré-ordonnancement a été proposé pour améliorer la qualité des
catégorisations obtenues avec le traitement séquentiel (technique par défaut), tout
en permettant de controler le temps maximum de traitement d'un patron. Il s’agit
de retarder I'apprentissage d’un patron pour un temps fixe quand on juge qu'une
décision est ambigué. C’est le cas lorsque le module de catégorisation ne détient pas
assez d’informations pour assigner une seule catégorie & un patron. Le traitement
par ré-ordonnancement s’applique & une grande famille d’algorithmes qui effectuent
la catégorisation en ligne de séquences de patrons (e.g., version en ligne de k-means).

Les résultats de simulations obtenus avec ’ensemble de données Radars et deux
RNA qui utilisent le traitement sequentiel, par lot et par ré-ordonnancement ont
permis de tirer les conclusions suivantes. Premiérement, il existe une corrélation
négative forte entre le degré d’amiguité qui est détecté (mesuré avec le taux de rejet
empirique, p;), et la qualité des catégorisations (mesuré avec la métrique Rand Ad-
Justed, Spa(A, R)). Le nombre de patrons d’entré qui méne & une décision ambigué est

alors indicatif de la dégradation des résultats. Deuxiémement, un RNA qui utilise le



144

traitement par ré-ordonnancement peut produire une qualité de catégorisation plus
élevée qu’'un méme RNA qui utilise le traitement séquentiel. Ce gain en qualité
s’obtient avec un temps de réponse supplémentaire qui est peu cotiteux. Finalement,
le traitement par ré-ordonnancement offre une alternative intéressante au traitement
par lot en termes du compromis entre la qualité des catégorisations et le temps de
réponse.

L’ambiguité dans le choix d’une catégorie par patron est un élément qui contribue
a la dégradation des résultats d’'un RNA comme fuzzy ART. Ce type d’ambiguité
dépend de l'ordre de d’apprentissage des patrons d’entrée et de la complexité de
I'environnement a traiter (dispersion, chevauchement, etc., des données). Dans ce
chapitre, 'ambiguité a été utilisée comme critére pour modifier 'ordre d’apprentissage
des patrons d’entrée. Un autre type de stratégie pour réduire 'impact des décisions
ambigués consiste a se servir de ’'ambiguité plus directement pour modifier la précision
des bornes de décision. Il s’agirait d’explorer différentes représentations de catégories,
fonctions de choix, lois d’apprentissages qui permettent de raffiner les bornes de
décision selon I’ambiguité. Le reste du chapitre décrit un exemple d’approche de
ce type pour fuzzy ART.

Supposons que chaque catégorie j qui devient commise se voit allouée un vecteur
de vigilance p; = (pj1, pj2, ..., pjpr) qui est adaptatif. Un élément pji du vecteur est
spécifique a la dimension i = 1, 2, ..., M de I'espace d’entrée. Chacun est initialisé avec

une valeur fixe égale au parametre de vigilance original, p;; = p. Lorsqu'un patron



145

d’entrée mene a une décision ambigué, I'ensemble des catégories j qui participent au
conflit sont retenues. Leurs parameétres p;; sont alors augmentés localement selon une

fonction de coiit C; qu’on cherche 4 minimiser:

Pji = Pji = N35—, (4.10)

ol 7 régle la vitesse d’augmentation de p;;. Cette fonction de coiit peut dépendre de
plusieurs facteurs, tels que la proximité de la dimension i de I'hyperrectangle j au
patron d’entrée, le fait que p;; correspond a la catégorie j = .J, etc. Ensuite, le test de
vigilance de fuzzy ART est modifié pour utiliser le vecteur de vigilance p;. Puisque
la sélection finale des catégories J est contrdlée par ce test, cette approche permet de
représenter, dans ’espace d’entrée, des régions qui comportent de 'ambiguité. Les
catégories sont apprises avec différentes résolutions, selon I'ambiguité qui est percue
dans I'environment. Il est a noter que cette stratégie permet aussi d’éliminer une

catégorie si on observe trop d’ambiguité.
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Chapitre 5

Un réseau de neurones avec fusion
“what-and-where” pour la

reconnaissance d’émetteurs radars

Dans le deuxieme volet de cette thése, les RNA basés sur I'apprentissage supervisé
(classificateurs) sont appliqués a I'identification des types de radar associés aux impul-
sions interceptées. On suppose I'existence d’informations a priori (sous la forme d’un
lot de données) qui décrit le type d’émetteur qu'on est susceptible de rencontrer dans
I'environment. Plus précisément, un RNA est requis pour effectuer la classification
de patrons (i.e., impulsions) selon leur type de source (i.e., type de radar).

Un systéme de MSE radar qui exploite un RNA classificateur peut prendre plusieurs

formes différentes. Dans ce chapitre, on suppose que le RNA classificateur se charge
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de prédire le type de radar qui émet une impulsion quelconque. Il fait partie d'un
systeme de reconnaissance qui assigne un numéro de piste aux PDW qui n’en n’ont pas
recu lors d’une phase préliminaire de désentrelacement. Les types d’émetteurs radars
sont alors identifiées directement, sans triage, ni recherche dans une bibliotheque de
MSE.

Evidemment, cette approche est complémentaire aux systémes de MSE radar tra-
ditionnels, puisqu’elle s’applique seulement aprés que des plateformes de collection
ont été déployées dans l'environment. Dans ce contexte, les données sont analysées
et peuvent servir pour l'entrainement d’'un RNA classificateur. Le fait d'entrainer
un RNA avec des données extraites du théatre d’opération peut offrir une meilleure
précision que les systémes conventionels. De plus, il n’est plus nécessaire de construi-
re, ni de maintenir une bibliothéque de MSE pour décrire explicitement les types de
radar qu’on peut rencontrer dans I'environement. Cette tiche est généralement tres
complexe et couteuse. Finalement, avec un RNA classificateur qui apprend de fagon
incrémentale, il est possible de raffiner les descriptions, et d’en ajouter de nouvelles,
sans devoir refaire ’entrainement sur le lot de données au complet.

Ce chapitre résume la seule contribution! du deuxiéme volet — la proposition
d’'un RNA a fusion “what-and-where” pour la reconnaissance du type d'émetteur

radar associé a chaque train d’impulsions. L’architecture de ce RNA est basée

!Les travaux pour cette contribution ont été entamés lors d’un stage au Department of Cognitive
and Neural Systems de I'Université de Boston, avec la collaboration du Prof. Stephen Grossberg et
du Dr. Mark Rubin.
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sur 'agencement de trois sous-systemes: un RNA classificateur, un sous-systeme de
catégorisation en-ligne, et un sous-systeme d’accumulation de réponses.

La séquence de PDW traitée par le RNA a fusion “what-and-where” est parti-
tionnée en deux séquences distinctes qu’on nomme “what” et “where”2. Les parametres
“what” forment I’entrée pour le RNA classificateur qui prédit les types de radar as-
sociés aux impulsions. Entre temps. les parametres “where” forment I’entrée pour
le sous-systéme de catégorisation en-ligne qui sépare les impulsions transmises par
différents émetteurs. Ce dernier assigne alors un numéro de piste (i.e., de catégorie)
a chaque impulsion. Le sous-systéme d’accumulation de réponses permet de fusion-
ner les réponses du RNA classificateur avec celles du sous-systéme de catégorisation.
L’accumulation de réponses est réalisée par un ensemble de modules d’accumulation,
un module par piste. Lorsqu’une piste est assignée 4 un PDW, le module d’accumulation
correspondant est activé, et il accumule la prédiction du classificateur. L’accumulation
de ces prédictions, selon chaque piste, permet d’identifier les émetteurs d’aprés une
séquence d’impulsions, pour améliorer la précision.

Une mise-en-oeuvre particuliere du RNA a fusion “what-and-where” a été choisie
pour démontrer le concept. Elle combine une variante du RNA fuzzy ARTMAP [24]
pour faire la classification, avec un algorithme qui exécute une association du type

plus-proche-voisin et le filtrage de Kalman [12] pour faire la catégorisation en-ligne.

2Les paramétres de type “what” qu’on retrouve dans les PDWs sont les caractéristiques in-
trinseques de modeles radars (e.g., la fréquence). Ces paramétres peuvent servir a l'identification
des types d’émetteurs. Les paramétres de type “where” sont liés a 1'état d’un émetteur spécifique
dans I’environnement (e.g., angle d’arrivée), mais ils ne sont pas compilés dans un bibliotheque de
MSE.
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Afin de simuler le RNA a fusion *what-and-where,” ces deux blocs ont été connectés
avec le sous-systeme d’accumulation de réponses. Le lot de données radars utilisé lors
de ces simulations a été collecté dans le champs et analysé par DREO. Il est constitué
d’environ 52 000 impulsions qui appartiennent a 15 différents types de radar. Les
parametres “what” des PDW sont le PRI, PW et RF, tandis que les parametres
“where” sont Brg et PA.

Le fuzzy ARTMAP est un bon candidat pour le RNA classificateur car il permet
d’effectuer un apprentissage incrémental. Cependant, quelques modifications ont due
étre incorporées afin de I'appliquer aux MSE. En effet,. un probleme de cohérence
existe, car un lot d’entrainement peut contenir des impulsions quasi-identiques, mais
qui appartiennent a différents types de radar. D’autre part, le RNA classificateur
peut étre confronté a des données incomplétes, lors de I'entrainement ou du test.
Le RNA doit pouvoir traiter des impulsions avec des parameétres absents, et qui
n’appartiennent pas a des types de radar représentés dans le lot d’entrainement.

L’article suivant contient plus de détails sur le RNA & fusion “what-and-where”

pour la reconnaissance d’émetteurs radars:

GRANGER, E., RUBIN, M.A., GROSSBERG, S., et LAVOIE, P.,
“A What-and-Where fusion neural network for recognition and tracking of multiple

radar emitters,” Neural Networks, 14:3, 325-344 (2001).

La suite de ce chapitre reproduit cet article. La derniére section du chapitre porte

‘ sur I'impact des résultats de cette contribution.
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Abstract

A neural network recognition and tracking system is proposed for classification
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information is combined with position-specific information from active emitters in a
scene. Type-specific parameters of the input pulse stream are fed to a neural network

classifier trained on samples of data collected in the field. Meanwhile, a clustering
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algorithm is used to separate pulses from different emitters according to position-
specific parameters of the input pulse stream. Classifier responses corresponding to
different emitters are separated into tracks, or trajectories, one per active emitter,
allowing for more accurate identification of radar types based on multiple views of
emitter data along each emitter trajectory. Such a What-and-Where fusion strategy
is motivated by a similar subdivision of labor in the brain.

The fuzzy ARTMAP neural network is used to classify streams of pulses accord-
ing to radar type using their functional parameters. Simulation results obtained with
a radar pulse data set indicate that fuzzy ARTMAP compares favorably to several
other approaches when performance is measured in terms of accuracy and compu-
tational complexity. Incorporation into fuzzy ARTMAP of negative match tracking
(from ARTMAP-IC) facilitated convergence during training with this data set. Other
modifications improved classification of data that include missing input pattern com-
ponents and missing training classes. Fuzzy ARTMAP was combined with a bank
of Kalman filters to group pulses transmitted from different emitters based on their
position-specific parameters, and with a module to accumulate evidence from fuzzy
ARTMAP responses corresponding to the track defined for each emitter. Simulation
results demonstrate that the system provides a high level of performance on complex,

incomplete and overlapping radar data.
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5.1 Introduction

Radar Electronic Support Measures (ESM) involve the search for, interception,
location, analysis and identification of radiated electromagnetic energy for military
purposes. ESM hereby provide valuable information for real-time situation awareness,
threat detection, threat avoidance, and for timely deployment of counter-measures [16]
[40] [63] [121] [122] [123] [133] [139].

A critical function of radar ESM is the real-time identification of the radar type
associated with each pulse train that is intercepted. Current approaches typically
involve sorting incoming radar pulses into individual pulse trains, then comparing the
pulse train characterizations with a library of parametric descriptions, which yields a
list of likely radar types. This task is challenging owing to increases in environment
density (e.g., pulse Doppler radars that transmit hundreds of thousands of pulses
per second); dynamically changing environments; multiplication and dispersion of
the modes for military radars; agility in parameters like pulse repetition interval,
radio frequency and scan; unknown and reserve modes for which no ESM library
entry exists; overlaps between the parameters of different radar types in the ESM
library; and noise and propagation effects that lead to erroneous or incomplete signal
characterization. These aspects of the problem place severe stress on current ESM
systems.

It this paper, an alternative approach is examined. A new recognition system

combines diverse sources of information in order to predict the most likely radar type
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for each intercepted pulse. Type-specific parameters of the input pulse stream are
used to classify pulses according to radar type, while environment-specific parameters
are used to separate pulses corresponding to active emitters. Such separation allows
the system to accumulate the classifier’s responses for each emitter, and therefore to
predict an emitter’s identity based on one or multiple responses.

A key component of the new recognition system is a neural network classifier that
is trained to determine the types of radar emitters present in the environment. The
syvstem learns autonomously, directly from data collected in the field, to identify pulse
parametric ranges corresponding to specific radar types. Aside from avoiding some
of the pulse sorting, training on data from the actual environment to approximate
an unknown mapping function may deliver greater predictive accuracy. Furthermore,
the need for by-hand construction of an emitter library is obviated.

From an ESM standpoint, training a system directly on radar data is a radical
departure from current practice. At present, data are collected, analyzed, combined
with prior information, and distilled into ESM libraries off-line by skilled analysts.
New libraries, containing explicit radar type descriptions, are disseminated to the field
as needed. One inconvenience of the conventional approach is that it is very complex,
time-consuming, and does not allow for rapid modifications of ESM libraries upon
discovery of new radar modes in the field. Using a neural network able to learn
incrementally offers a framework for refining familiar, or adding unfamiliar, radar

type descriptions on the fly.
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In a particular realization of the recognition system, fuzzy ARTMAP [21] [24]
is considered for neural network classification of pulses from their type-specific pa-
rameters, whereas nearest-neighbor matching with a bank of Kalman filters 7] [12]
is considered for separation of pulses from their environment-specific parameters.
The features of the system include: (1) By virtue of the fast-learning capabilities
of ARTMAP neural networks {21]- [24], new information from familiar or unfamiliar
radar type classes can be learned incrementally without retraining on the whole data
set. (2) Classification decisions can be made on the basis of single pulses or, for greater
accuracy, on the basis of streams of pulses that have been determined to come from
a given emitter. This determination is performed either by a time-of-arrival (TOA)
deinterleaver or, when TOA deinterleaving is not practical, by a Kalman filter that
tracks the bearing and amplitude of the pulses. The system is thus an example of a
neural system combining temporal — When — and positional — Where — informa-
tion with featural — What — information to arrive at its decision. It is well-known
that the mammalian brain also divides What and Where computations into separate,
but mutually interacting, cortical processing streams. Our What-and-Where model
shows how this strategy can generate higher accuracy in identifying radar emitters.
(3) The “familiarity discrimination” extension of fuzzy ARTMAP, called ARTMAP-
FD [26] [27], allows the system not only to detect pulses from unfamiliar radar type
classes (not presented during training), but to determine the threshold for rejection

based on all of the training data, without the need for holding back a portion for a
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validation set. This ability to determine the reject threshold on-line makes possible
on-line learning of pulses from unfamiliar classes (LUC) [58]. (4) New extensions to
fuzzy ARTMAP permit both training and testing on data with missing components,
and the use of unlabeled training data [58].

Conventional approaches to, and challenges of, radar type identification in radar
ESM systems are reviewed in the next section. A system-level overview of our novel
neural network recognition system is provided in Section 5.3. A radar pulse data set
used for proof-of-concept simulations is presented in Section 5.4. The three main com-
ponents that form a specific implementation of the recognition system are described
in Sections 5.5 through 5.7. In Section 5.5, the fuzzy ARTMAP neural network is
applied to the classification of pulses according to radar type from functional, type-
specific parameters. Then, aspects of this network for dealing with incomplete radar
data are proposed and tested. In Section 5.6, a module for clustering incoming pulses
by emitter based on environment-specific parameters is described. In Section 5.7,
a module that accumulates evidence from fuzzy ARTMAP responses corresponding
to the tracked emitters is proposed. Finally, these three components are connected,
and global simulation results using this particular realization of the entire recognition

system are presented and discussed.
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5.2 Radar Electronic Support Measures

5.2.1 Overview

The basic functionality of current radar ESM approaches can be decomposed into
three tasks: reception of radar signals, grouping of pulses according to emitter, and
identification of corresponding radar types.

Radar signals are passively intercepted by the receiver portion of the ESM system.
In typical theaters of operation, intercepted signals are a mixture of electromagnetic
pulses transmitted from, typically, several sources. Simultaneous illumination by
these sources causes overlap and interleaving of the received pulses. Upon detection
of a radar pulse, most receivers measure the pulse amplitude (PA), pulse width (PW),
radio frequency of the carrier wave (RF) and time-of-arrival (TOA). Direction-finding
receivers also measure the bearing (Brg), while advanced receivers also measure the
modulation on pulse (MOP). Once parameter values have been measured for a pulse,
they are digitized and assembled into a data structure called a Pulse Descriptor Word
(PDW). For the reader’s convenience, a list of the radar ESM abbreviations used in
this paper is given in Table 5.1.

The stream of successive PDWs is fed to a grouping module, which performs
either TOA deinterleaving, or sorting, or both. In short, this module seeks to recover
pulse trains and their inter-pulse structure prior to further analysis. This involves

progressively grouping pulses that appear to have been transmitted from the same



Tableau 5.1: List of ESM abbreviations

Abbreviations | Definition

Brg bearing

ESM electronic support measures
EW electronic warfare

MOP modulation on pulse
PA pulse amplitude

PDW pulse descriptor word
PPI pulse-to-pulse interval
PRI pulse repetition interval
PW pulse width

RF radio frequency

TOA time of arrival

emitter. An emitter is an instance of a radar type, and it is not uncommon to observe
several emitters of a same type all being active in a theater of operation. A single type
of radar can also operate under several different modes to perform various functions.
To each group of pulses is associated a track. A track consists of statistical PDW
parameters, plus other parameters that are derived from the sequence of grouped
PDWs, like the pulse repetition interval (PRI).

Pulse grouping techniques either exploit the difference in TOA between pulses, or
the actual parameters in the PDWs. Parametric ranges are associated with tracks,
and updated to reflect changes in the emitter’s characteristics over time. TOA dein-
terleaving attempts to discover consistent patterns in the TOA of pulses using tech-
niques such as TOA difference histogramming [40] [100] [139]. If TOA consistencies

are found, and these correlate with radar definitions compiled in an ESM library,
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then the corresponding pulses are grouped based on PRI, and stripped away from the
input stream of PDWSs. Sorting attempts to group pulses based on the likeliness of
their PDW parameters such as RF, PW and Brg. Gating [31] [40] [117] or clustering
(3] [43] [140] techniques are commonly used to this end.

I[dentification makes use of an ESM library where are stored the parametric de-
scriptions of known radar types, and attempts to assign a single radar type to each
track. Incidentally, the parametric ranges of various types can overlap in the library,
and multiple candidates can appear plausible for the same track, a situation known
as an “ambiguity.” Therefore, a list of likely radar types is often displayed and mon-
itored over time for every track, along with a confidence rating, threat level, latest
bearings, and so on. Further analysis can assist an ESM operator in revealing mode

changes in emitters, links between emitters, and inferred platforms.

5.2.2 Challenges

Pulse grouping and radar type recognition keep evolving in response to the fol-
lowing defense trends: radar signals are more agile; power management and low
probability of intercept waveforms in advanced threats reduce response time; ESM
libraries are expensive to maintain; and unmanned platforms require autonomous
ESM. These trends motivate this work, and call for more powerful ESM approaches.

The multiplication of radar modes is the result of computer control and the ease

with which parameters such as RF and PRI can be changed. From an ESM stand-
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point, this means libraries that grow larger and more complex. Agility in parameters
like RF and PRI can make pulse grouping very difficult.

A shorter response time requires faster pulse grouping, as well as identification
using fewer pulses. In addition, the occurrence of low power waveforms implies that
pulses near the receiver detection threshold may be dropped. and hence that pulse
grouping must work satisfactorily on sparse data. Response time is critical if threats
are to be avoided, or self-protection measures such as chaff dispensing, maneuvering,
or electronic jamming, are to be successful.

[t is difficult and expensive to maintain comprehensive ESM libraries that accu-
rately reflect each specific operational environment. Library construction requires
explicit modeling of known radar systems, based on prior information and data that
is not necessarily extracted from the local environment. This task is complex, tedious,
and prone to error because some radar types are difficult to describe. Owing to the
multiplication of modes, it is not uncommon for a library to be incomplete and to
contain erroneous data. In addition, threats could deliberately reserve some of their
modes for use during war time. Radar type identification must therefore be tolerant
to such shortcomings. For instance, classical parametric approaches to pattern clas-
sification [45] [50] are generally less effective when the underlying radar type class
distributions are incomplete and/or uncertain.

Personnel reduction in the Armed Forces, as well as the deployment of ESM on

autonomous platforms such as unmanned aerial vehicles raises the expectations for
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ESM. Without an operator to interpret ESM output and provide discernment, ESM
systems must achieve enhanced accuracy and reliability. In light of these trends,

alternative approaches are sought for pulse grouping and radar type identification.

5.3 A neural network for radar type identification

5.3.1 Adaptive learning and ESM

In this section, a new approach is described for radar type recognition. When col-
lection platforms are brought into a theater of operations prior to military interven-
tions, data from radars of interest can be collected and analyzed. Collection platforms
include in-theater tactical aircraft and ships, unmanned aerial vehicles, and stand-off
assets like electronic warfare (EW) aircraft. Data is collected prior to, or during, the
conflict and analyzed either on-line (e.g., on a ship) or off-line from electronic intelli-
gence readings. Whereas the data are normally combined with prior information from
other environments, and distilled by analysts into library entries, this paper explores
their use for training an artificial neural network recognition system. Once trained on
the data, the network can classify the pulses without the grouping process, thereby
making use of a priori information early in the processing chain. As discussed in the
following, this approach offers several potential advantages.

Firstly, training on real data gathered in the field may yield higher classification

accuracy. Adaptive learning algorithms used to train neural network classifiers con-
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stitute an interesting alternative to the explicit modeling currently employed in ESM
libraries, since they can estimate unknown input-to-class mapping functions directly
from the training set. Their supervised learning process involves a prescription to
combine some prior assumptions (i.e., a set of possible mapping functions) with the
training data set, to approximate an unknown mapping function. This mapping is
then used to generalize, that is, predict output classes (radar types) for unlabeled
input patterns (pulses).

Secondly, an attractive feature of neural networks is the convenience of handling
incomplete radar type descriptions and incomplete data. Since it is impossible to have
an exhaustive data set to train a network, recognition of new radar types encountered
during operations is important. Neural network classifiers that allow on-line incremen-
tal learning provide a consistent framework for automatically refining the description
of familiar radar types, as well as for detecting unfamiliar radar types and learning
their description as operations unfold.

Lastly, although it is not the focus of this paper, the massively parallel architec-
ture of neural networks, when implemented on appropriate hardware, can provide
extremely fast and fault tolerant processing of PDWs. Such a response would also
be somewhat tolerant to incomplete and noisy data, yielding graceful performance
degradation. The on-line nature of the networks also eliminates the need to collect
batches of pulses prior to processing, as in current approaches.

Neural network techniques have previously been applied to several aspects of
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Figure 5.1: High level block diagram of a radar ESM system that uses a neural
network recognition system. Brackets indicate that the corresponding field may be
empty for some pulses.

radar ESM processing [123] {124], including parameter measurement [124], PDW
sorting [4] [79] [101] [105] [135], and radar type recognition [96] [98] [116] [128]. A
new neural network recognition and tracking system for classification of radar pulses

is described next.

5.3.2 Overview of ESM model

One possible embodiment of a neural network recognition system into an ESM
system is depicted in Figure 5.1. First a TOA deinterleaver uncovers periodicities
in the TOA of input PDWs. Whenever grouping pulses is straightforward, it forms
tracks and assigns a track number and a PRI to each grouped pulse. TOA deinterleav-
ing continues to play an important role in ESM since it suffices to group the pulses
of emitters having simple PRI patterns, like many high duty cycle Pulse Doppler
radars. Besides, the PRI parameters themselves are useful for classification of pulses

according to radar type.
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The neural network recognition system receives all the PDWs, some of which have
track numbers and PRI parameters. It has already been trained off-line on data from
known radar types. The neural network weights replace the ESM library, and can be
periodically updated by learning from radar data collected during operations. The
neural network outputs a prediction of the radar type for every PDW, and assigns a
track number to the PDWs that did not get one from the TOA deinterleaver. Track
assignment is autonomous, and takes place regardless of the radar type classification.
The radar type classification does, however. take into account track assignment.

The remaining module in Figure 5.1 is a signal separator, which receives all the
PDWs along with their track numbers, radar types, and, whenever available, PRI
parameters. The signal separator is responsible for the final track assignment and for
distilling the stream of PDWs into emitter reports that are periodically updated. The
final assignment takes into account the radar type recognition previously performed
by the neural network. Emitter reports contain, for instance, the type of each emitter

with its latest bearing.

5.3.3 What-and-Where model architecture
5.3.3.1 What and Where data streams

The PDW stream may be partitioned into two data streams called What and
Where. This division is motivated by a similar subdivision of parallel processing in

the primate cerebral cortex into a What stream for recognizing objects, and a Where
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stream for localizing their position in space. See [68] for a theoretical discussion of
these processing streams. Here the What data stream consists of parameters that
characterize the functional aspects of radar systems. Such parameters include RF,
PW and PRI. Since these parameters correspond to data typically compiled in ESM
libraries, they are directly useful for radar type recognition. The Where data stream
consists of context-specific parameters. This stream is defined by parameters, such
as Brg and PA, that indicate the status (e.g., position) of specific emitters in the
environment. These parameters are less useful than What parameters for radar type
recognition, but are important for grouping pulses into tracks, or trajectories. The
definition of Where parameters can be extended to include emitter specific parameters
that cannot be recorded a priori due to practical or physical considerations. Such
parameters may prove effective for pulse grouping, irrespective of their value for
radar type recognition. Some MOP parameters could, for example, be assigned to

this processing stream.

5.3.3.2 Distinct What and Where data processing

The internal architecture of a neural network recognition system is shown in Fig-
ure 5.2. It is composed of three subsystems: neural network classification, clustering
and evidence accumulation. These subsystems cooperate to predict the most likely
radar type for each incoming pulse.

Prior to on-line operation, the neural network classification module is trained, via
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Figure 5.2: Internal architecture of the neural network recognition system.

supervised learning, using a data set of radar pulses collected in the field, and labeled
with their respective radar type. Only What parameters are employed for training.
PRI may be supplied if it is available.

During on-line operation, the recognition system accepts the stream of PDWs
corresponding to intercepted radar pulses, as well as the track number and PRI of
each pulse grouped by the TOA deinterleaver. Since each PDW is composed of
predefined What and Where parameters, these can be automatically separated and
fed to the neural network classification and clustering subsystems, respectively.

For each pulse, the neural network classification subsystem accepts What param-
eters, including PRI when available, and yields a prediction of the radar type. This
prediction takes the form of a response pattern denoted by y®® (refer to Figure 5.2).

Meanwhile, the clustering subsystem attempts to group pulses into tracks based on
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Where parameters. If a track number is supplied by the TOA deinterleaver, then the
output of this subsystem is bypassed. Whetker the subsystem produces the track
number itself, or receives it from the TOA deinterleaver, it maintains an up-to-date

picture of the number and activity of radar emitters illuminating the ESM system.

5.3.3.3 Evidence accumulation

In conventional radar ESM systems, Where information is employed early in the
processing chain (i.e.. during track formation) to reduce data and subsequent com-
putational costs. The neural network recognition system embodies an alternative ap-
proach that integrates both What and Where information streams for better recogni-
tion prior to the data reduction. Fusion of responses from the classification subsystem
and the clustering subsystem is accomplished via evidence accumulation, which em-
ulates the brain process of working memory; e.g., [13], and [14]. Response patterns
y? obtained from classification are hereby accumulated over time according to tracks,
that is, groupings determined from Where data.

Track numbers obtained from the clustering module dictate the emitters to which
PDWs are associated, and drive the evidence accumulation. This evidence accumu-
lation is implemented as a set of evidence accumulation fields, with each field Ff
corresponding to a track h = 1,2,..., R. Assignment of a track h = H to a PDW
activates an evidence accumulation field F§; that accumulates the classification mod-

ule’s response pattern y*®. Such accumulation produces a radar type response pattern
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for each PDW, denoted by y* (see Figure 5.2). which is obtained from one or more
responses y*. As discussed in Section 5.7, exploiting both What and Where infor-

mation sources can thereby enhance the system’s classification accuracy.

5.4 Radar pulse data

The data set used for the computer simulation contains approximately 100,000
consecutive radar pulses gathered over 16 seconds by the Defense Research Establish-
ment Ottawa during a field trial. After the trial, an ESM analyst manually separated
trains of pulses coming from different emitters. Each pulse was then tagged with
two labels: a radar type number and a mode number. Since ESM trials are complex
and never totally controlled, not all pulses could be tagged and a sizable residue was
obtained. Residue pulses were discarded for this study.

The parameters used are Brg, PA, PRI, PW and RF (refer to Table 5.1). From
this point on, a PDW is denoted by (a;b). Patterns in the What and Where data
streams are defined by a = (PRI, PW, RF) and b = (Brg, PA), respectively. The
two Where parameters, Brg and PA, are specific to the environment, and thus are
not employed for training the neural network classification module.

Brg, PA, PW and RF are automatically produced by the receiver on each indi-
vidual pulse, whereas PRI is derived from the difference in time-of-arrival (TOA)
between pulses from the same emitter. For simplicity, it is assumed that, as a part

of the preprocessing, a simple TOA deinterleaver has grouped the pulses belonging
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to each active emitter mode, and then computed their respective PRI values. Note
that, since at least two successive pulses are required to compute a PRI value, the first
pattern from each active emitter mode was omitted from the simulations. Also, owing
to the circular scanning action of some radar emitters, pulses are recorded in bursts.
The first pulse of each scan (or burst) was also omitted. Finally, the parameters were
linearly normalized so that a;,b; € [0,1], for i =1,2,3 and j = 1,2.

Once tagged and deinterleaved, the data used to train and test the neural network
recognition system contain 52,192 radar pulses from 34 modes, each one belonging
to one of 15 different radar types. The data feature bursts of high pulse densities,
multiple emitters of the same type, modes with overlapping parametric ranges, radars
transmitting at different pulse rates, and emitters switching modes. The sophistica-
tion of the radar types range from simple (constant RF and PRI) to fairly complex
(pulse-to-pulse agility in RF and PRI). Figure 5.3 displays a 0.5 second sample of
the radar pulse data set used for simulations. This particular example contains 1123
pulses from 8 emitters belonging to 7 different radar types, with agility and overlap

of parameters, and an emitter switching modes.

5.5 An ARTMAP neural network for classification

An enhanced ARTMAP neural network is used to classify incoming radar pulses
according to radar type from parameters in the What data stream. ARTMAP refers

to a family of neural network architectures capable of fast, stable, on-line, unsu-
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(a) What parameters (RF and PW) vs TOA. (b) Where parameters (Brg and PA) vs TOA.

Figure 5.3: A sample of the radar pulse data set used for simulations.

pervised or supervised, incremental learning, classification, and prediction (22] [24].
ARTMAP networks have several attractive features for applications such as electronic
support measures (ESM). Because they can perform fast, stable, on-line, incremental
learning, they can learn from novel events encountered in the field. Neural network
classifiers such as the popular Multilayer Perceptron (MLP) [120] and Radial Ba-
sis Function (RBF) [32] require off-line retraining on the whole data set, through a

lengthy iterative slow-learning procedure, to learn new patterns from existing radar
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type classes or a new radar type class. ARTMAP networks can also perform famil-
iarity discrimination to avoid meaningless guesses on patterns from unfamiliar radar
types classes [26] [27] [56]. Furthermore, they can represent radar type classes us-
ing one or more prototypes, which appears desirable for handling radar types having
several modes of operation. The k-Nearest-Neighbor (kNN) [38] and Probabilistic
Neural Network (PNN) [129] classifiers would usually require greater computational
resources to store all the training set patterns, and to yield on-line predictions. Fi-
nallyy, ARTMAP networks lend themselves well to high speed parallel processing,

which is critical for real-time identification.

5.5.1 Fuzzy ARTMAP

ARTMAP is often applied using the simplified version shown in Figure 5.4. It is
obtained by combining an ART unsupervised neural network [20] with a map field.
Fuzzy ARTMAP ([24] can process both analog and binary-valued input patterns by
employing fuzzy ART [21] as the ART network.

The fuzzy ART neural network consists of two fully connected layers of nodes:
an M node input layer, Fi, and an N node competitive layer, F,. A set of real-
valued weights W = {w;; € [0,1] : 1 = 1,2,...,M; j = 1,2,..., N} is associated with
the Fj-to-F, layer connections. Each F; node j represents a recognition category
that learns a prototype vector w; = (w,j, wej, ..., war;). The F3 layer is connected,

through learned associative links, to an L node map field F°®, where L is the number
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Figure 5.4: An ARTMAP neural network architecture specialized for pattern classi-
fication.

of classes in the output space. A set of binary weights W% = {w? € {0,1} : j =
1,2,..,N; k =1,2,..,L} is associated with the Fy-to-F°® connections. The vector
wit = (wi}, wl, ..., wi}) links F; node j to one of the L output classes.

During training, ARTMAP classifiers perform supervised learning of the mapping
between training set vectors a = (ay, a3, ...,an) and output labels t = (¢, ¢s, ..., L),

where tx = 1 if K is the target class label for a, and zero elsewhere. The following

algorithm describes fuzzy ARTMAP learning:

1. Initialization. Initially, all the F; nodes are uncommitted, all weight values
w;; are initialized to 1, and all weight values w;-"’ are set to 0. An F, node becomes
committed when it is selected to code an input vector a, and is then linked to an

F node. Values of the learning rate 8 € [0, 1], the choice @ > 0, and the baseline

vigilance g € [0, 1] parameters are set.



172

2. Input pattern coding. When a training pair (a, t) is presented to the network,
a undergoes a transformation called complement coding, which doubles its number
of components. The complement-coded input pattern has M = 2m dimensions and
is defined by A = (a,a‘) = (a;,az,...,am, af,ds, ...,at,), where af = (1 — q;), and

a; € [0,1]. The vigilance parameter p is reset to its baseline value .

3. Prototype selection. Pattern A activates layer F} and is propagated through
weighted connections W to layer F,. Activation of each node j in the F, layer is

determined by the Weber law choice function:

[AAW;

T(a) = AAW] (5.1)
@+ |w;]

where | - | is the norm operator, |w;| = M, |w;|, A is the fuzzy AND operator,

(A Aw;); = min(4;, w;;), and « is the user-defined choice parameter. The F; layer
produces a binary, winner-take-all pattern of activity y = (y1,y2, ..., y~) such that
only the node j = J with the greatest activation value J = argmax{T; : j =
1,2,..., N} remains active; thus y; = 1 and y; = 0,7 # J. If more than one T;
is maximal, the node j with the smallest index is chosen. Node J propagates its
top-down expectation, or prototype vector w,, back onto F} and the vigilance test is

performed. This test compares the degree of match between w; and A against the
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dimensionless vigilance parameter p:

'A/\W_/l S

M - (5:2)

If the test is passed, then node J remains active and resonance is said to occur.
Otherwise, the network inhibits the active F; node (i.e., T; is set to 0 until the
network is presented with the next training pair (a, t)) and searches for another node
J that passes the vigilance test. If such a node does not exist, an uncommitted F; node
becomes active and undergoes learning. The depth of search before an uncommitted

node is selected is determined by the choice parameter a.

4. Class prediction. Pattern t is fed directly to the map field F°¢, while the F,
category y learns to activate the map field via associative weights W. The F?® layer
produces a binary pattern of activity y2® = (y2, 32, ...,y%) in which the most active
F® node K yields the class prediction (K = k(J)). If node K constitutes an incorrect
class prediction, then a match tracking signal raises the vigilance parameter p just
enough to induce another search among F5 nodes in Step 3. This search continues
until either an uncommitted F> node becomes active (and learning directly ensues
in Step 5), or a node J that has previously learned the correct class prediction K

becomes active.

5. Learning. Learning input a involves updating prototype vector wy, and, if J

corresponds to a newly-committed node, creating an associative link to F%. The
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prototype vector of F, node J is updated according to:

w,=3(AAW;)+ (1 - 3wy, (5.3)

where 3 is a fixed learning rate parameter. The algorithm can be set to slow learning
with 0 < 3 < 1, or to fast learning with 3 = 1. With complement coding and fast
learning, fuzzy ART represents category j as an m-dimensional hyperrectangle R; that
is just large enough to enclose the cluster of training set patterns a to which it has
been assigned. A new association between F, node .JJ and F® node K (k(J) = K)
is learned by setting w% = 1 for k = K, where K is the target class label for a,
and 0 otherwise. Once the weights W have converged for the training set patterns,
ARTMAP can predict a class label for an input pattern by performing Steps 2, 3 and
4 without any vigilance or match tests. During testing, a pattern a that activates

node J is predicted to belong to class K = k(J).

5.5.2 Comparative simulations

Fuzzy ARTMAP and three other ARTMAP neural networks — ART-EMAP
(Stage 1) [25], ARTMAP-IC (28] and Gaussian ARTMAP [141] [142] - have been
compared using computer simulations. The kNN and RBF classifiers were included
for non-parametric, and semi-parametric [11] reference, respectively.

Prior to each simulation trial, the radar pulse data described in Section 5.4 was

partitioned into training and test subsets. 50% of the data from each radar type was
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selected at random to form the training subset. Then, the training vectors a, along
with their radar types labels t, were repeatedly presented, until convergence. The
same random order was used across presentations. Emitter mode labels were ignored
since this paper concerns the classification of pulses according to radar type. Con-
vergence was reached when the sum-squared-fractional-change (SSFC) of prototype
weights W was less than 0.001 for two successive epochs. An epoch is defined as a
presentation of the training subset to a classifier in TOA order. The RBF classifier
used in this comparison selects training subset patterns one by one to encode hidden
layer nodes [32]. Convergence was reached when the sum-squared-error between ac-
tual outputs (resulting from training set patterns) and target outputs fell below 0.01.
After convergence, the test subset was presented to the trained classifier for predic-
tion. Throughout this paper, average results are obtained from several independent
simulation trials, each one with a different random selection of the training data.
The What patterns consist of 3 parameters: a = (PPI, PW, RF). It is assumed
that a TOA deinterleaver has correctly grouped the n, pulses belonging to each active
emitter mode k, and then computed the pulse-to-pulse intervals: PPI;(z) = TOA(7)
-TOA(i—1) for i = 2,3, ..., nk. Using the PPI to estimate the PRI allows for simple
training and testing of neural network classifiers without concern for the PRI agility

of some emitters.
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The performance of each classifier was assessed in terms of both the amount of
resources required and predictive accuracy. The amount of resources allocated during
training is measured in the 3 following ways. Compression refers to the average ratio of
training patterns to committed F; layer nodes. Memory is the number of normalized
registers needed to store the set of learned prototype vectors, a normalized register
being a fixed-size register whose number of bits suffices to store the classifier’s real
values such as a;, w;i, p, and so on. Convergence time is the number of epochs
required for the classifier to converge. The predictive accuracy on the test subset is
measured using the classification rate - the ratio of correctly classified patterns over
all test patterns.

Average results from 20 simulation trials of fuzzy ARTMAP are given in Table 5.2,
along with the standard error of the sample mean (in parentheses). Parameter settings
were selected through trial and error to achieve the best classification rate for the least
memory and convergence time during training. Results indicate that fuzzy ARTMAP
and Gaussian ARTMAP consistently achieve the highest average classification rates,
followed by ARTMAP-IC and ART-EMAP (Stage 1). The classification rates of fuzzy
ARTMAP and Gaussian ARTMAP are comparable to those obtained using the kNN
and RBF classifiers. ART-EMAP, ARTMAP-IC and fuzzy ARTMAP attain their
classification rates with greater compression (and thus require less physical memory
to store prototype vectors, and deliver faster fielded performance) than the other

classifiers, and take fewer training epochs to converge than Gaussian ARTMAP and
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RBF. Overall, fuzzy ARTMAP performs at least as well as the other classifiers in
both accuracy and computational complexity, and better than each of them in at
least one of these aspects of performance. The reader is referred to Appendix A and

to Granger et al. [57] for further details of these simulations and the classifiers used.

5.5.3 Convergence and negative match tracking

A convergence problem occurs with the above fuzzy ARTMAP algorithm whenever
the training subset contains identical patterns that belong to different classes. In the
present application, this corresponds to radar pulses in a same resolution cell that
belong to different radar types. The problem is aggravated because ARTMAP tends
to segment the overlapping parts of classes into several tiny, often minimum-sized
prototypes. The consequence is a proliferation of identical prototypes for certain
training set patterns.

Consider the following example. Assume that in the first training epoch, fuzzy
ARTMAP learns two completely overlapping, minimum-sized prototypes, w4, (linked
to class A) and wpg; (linked to class B), for two identical pulse patterns, a; and a,. In
a subsequent epoch, w4 is initially selected to learn a,, since T4 ; = T and w4,
was created prior to wpg; (index A.l is smaller than B.1). Since w4, is not linked
to class B, mismatch raises the vigilance parameter p to (|A; A w41|/M) + €, where
|As A wai| = |Ay Awpg,y|. As a result, wg; can no longer pass the vigilance test

required to become selected for a,, and fuzzy ARTMAP creates another minimum-



179

sized prototype wgo = wpg ;. From epoch to epoch, the same phenomenon repeats
itself, yielding ever more identical prototypes wgn = wg, for n = 3,4, ..., 00.

This phenomenon was observed while training fuzzy ARTMAP, ART-EMAP and
Gaussian ARTMAP on the radar data set. Resultsin Table 5.2 were obtained through
manual termination by: (1) detecting, from epoch to epoch, the repeated creation of
identical prototypes for the same training patterns, (2) pruning non-unique prototypes
from memory, and (3) defining the convergence time as the number of epochs leading
to the creation of non-duplicate prototypes only.

ARTMAP-IC converged incrementally, by itself, on the radar data. The feature
of ARTMAP-IC that circumvents the convergence problem is called negative match
tracking, denoted MT-, which consists of using a negative e value [28]. In the above
example, mismatch raises p but wpg; would still pass the vigilance test. This allows
learning of fully overlapping non-unique prototypes for training set patterns that
belong to different classes. Asshown in Table 5.2, fuzzy ARTMAP with MT- performs
as well, to within standard error, as without MT-, yet circumvents the convergence
problem. As pointed out by Carpenter and Markuzon 28], MT- is a better algorithmic

approximation to the continuous-time version of fuzzy ARTMAP.

5.5.4 Classification of incomplete data

A neural network classifier applied to radar ESM may be subjected to data, either

during training or testing, that is incomplete in one or more of the following ways [58]:
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1. Limited number of training cases. Collecting and analyzing ESM data
from the field of operation to train a neural network can be a costly undertaking.
Yet, if the number of training cases is insufficient, the classifier may not achieve
good generalization during operations. It is therefore of interest to know how the
performance of the classifier declines as the amount of training data is decreased, so
that, e.g., more training data may be gathered. if necessary, before the classifier is
fielded. The effect on fuzzy ARTMAP performance of reducing the amount of training
data from each radar type was characterized by Granger et al. [58]. Overall, fuzzy
ARTMAP achieves a high level of accuracy when training with very few pulses from

each radar type.

2. Missing components of the input patterns. The information in the different
components of the PDW comes from a number of sources. Absence of components
in radar ESM processing arises due to sensor limitations and/or delay in deriving
parameters (e.g., PRI). This implies that the classifier may encounter partial input
patterns. A strategy is presented later in this section that allows fuzzy ARTMAP to

effectively process partial input patterns during both training and testing.

3. Missing class labels during training. The task of analyzing radar ESM data
collected in the field can be difficult owing to the complexity and lack of control of
the environment. Expertise and experience are required for manual separation and

labeling of pulse trains transmitted by different emitters. This problem raises the
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question of whether the classifier may benefit from training on data with missing
class labels. Training on such data is referred to as “semi-supervised learning” [41]
or “partially supervised clustering” [8] [107]. To assess the effect on performance of
training fuzzy ARTMAP using data with missing class labels, the network was trained
in two phases [58]. During the first phase, involving supervised learning, the network
was trained as usual until convergence with a fixed amount of labeled training data
from each radar type. During the second phase, involving unsupervised learning, the
network was presented with a varying percentage of unlabeled data from each radar
type until the weights W converged once again. Using fuzzy ARTMAP without the
class prediction (i.e., without Step 4 of the fuzzy ARTMAP algorithm), plus other
modifications discussed by Granger et al. [58]), the network associated each unlabeled
training pattern with one of the already-existing F, category nodes and adjusted the
corresponding prototype vectors through slow learning (0 < 3 < 1). In all simulations
with the radar data, the classification rates observed were never greater than those
achieved by simply discarding all unlabeled data [58]. Such an approach is most
effective to the extent that clusters of data from different emitters are separable and

well clustered, which is not necessarily the case for radar ESM data.

4. Missing classes during training. New radar types (not represented in the
training set) may be encountered during operations. When the classifier receives a
pattern transmitted by an new radar type, it would be desirable to “flag” the pattern

as unfamiliar, rather than make a meaningless guess as to its class label. This may be
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implemented by familiarity discrimination [26] [106]. The importance in radar ESM
of familiarity discrimination during operations is evident: radar emitters can exhibit
new modes at any time. The ability to learn unfamiliar classes is anticipated to be
just as important. Presently, the task of providing training data to a neural network
classifier requires time from an ESM analyst, so it cannot be expected that more than
a small fraction of the large amount of available data would be labeled for training.
Furthermore, it cannot be assumed that all of the unlabeled training data belongs
to one of the radar types identified by the ESM analyst. (Although not explored
here, this would involve performing familiarity discrimination during semi-supervised
training on unlabeled data.) The modifications presented later in this section enable
fuzzy ARTMAP to mitigate performance degradation due to missing class labels,
while allowing it to benefit from learning information hidden in unlabeled data about
as-yet unfamiliar classes.

Modifications to fuzzy ARTMAP with MT- are now introduced for dealing with
missing components of the input pattern (Section 5.5), and missing classes during
training (Sections 5.6 and 5.7). Performance obtained with these modifications is
assessed via computer simulation using the methodology, evaluation criteria and radar

pulse data described in Sections 5.4 and 5.5.1.
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Tableau 5.3: Algorithmic modifications to fuzzy ARTMAP required for implemen-
tation of the indicator vector (IV) strategy. (Refer to fuzzy ARTMAP equations in

Table 5.A.1.)

Algorithmic step || fuzzy ARTMAP | fuzzy ARTMAP with IV
Prototype selection:
A A ANANS
- choice function T,(A) = Iw; A Al Ti(A,d) = [w, AAN
a+ |wj a+ |w; A
- vigilance test lw; AA| > p|A] [w; AAAGS| > plANG
Learning:
- prototype update wi,=0(AAW,) .. | W, =03((AVE)AWw,).
e+ (1= B)wy e+ (1= B)wy

5.5.5 Indicator vector strategy for missing components

A strategy to address missing components in the input patterns consists in using
indicator vectors [52] [58] [94]. An indicator vector § = (d;,0,,...,dsr) informs the
fuzzy ARTMAP network about the presence or absence of each component in an
input pattern: d; = 1 if component ¢ is present, and §; = 0 if component ¢ is missing,
with 8;;,, = §; for 2 = 1,...,m. Unlike strategies that involve replacement by “0”
or by “1” [58], the indicator vector strategy modifies the prototype vectors as well as
the input pattern in response to missing components. This approach circumvents a
bias in the order of prototype selections by F> nodes. The adjustments to the fuzzy
ARTMAP algorithm that realized the indicator vector strategy are summarized in
Table 5.3.

To verify the effectiveness of this strategy, fuzzy ARTMAP with MT- and indicator

vector was trained using a randomly-selected 0.5% of the available training set from
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each radar type class. (Recall from Section 5.5.2 that the available training subset
consists of a random selection of 50% of the pulses from each class. The remaining
data forms the test set.) For each class in the training set, a variable percentage,
between 0% and 70%, of the components were randomly removed from the patterns
and declared to be “missing” (although, if a particular choice of missing components
would have left the pattern with no components, another random choice was made).
The classification rate and compression are shown in Figure 5.5 for the indicator
vector strategy, as well as for replacement by 17 and replacement by “0.” Also
shown are the results obtained when components are removed from the test set.
Whether components are missing during training or testing, the indicator vector
strategy provides a simple and effective means of handling the absence of components,
as its performance degrades gracefully with the percentage of missing data.

Also noteworthy are the results obtained when there are no missing components.
With a randomly-selected 0.5% of the available training data from each class (about
130 pulses total), the classification rate on the test set is 91.4%, compared to 99.6%
when all the training data (about 26000 pulses total) are used. The slow decline in
accuracy is in part due to the uneven distribution of pulses among radar type classes

in the data set.
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5.5.6 Familiarity discrimination

An extension to fuzzy ARTMAP that allows for detection of patterns from unfa-
miliar classes is called ARTMAP-FD. The ARTMAP-FD algorithm has been shown
to effectively perform familiarity discrimination on simulated radar range profiles [26],
and radar pulse data [56]. In addition to the classification rate on patterns from fa-
miliar classes, the performance of the classifier can be measured in terms of a hit rate
(H) — fraction of familiar-class test patterns correctly predicted to belong to one of
the familiar classes — and a false alarm rate (F') — fraction of unfamiliar-class test

patterns incorrectly predicted as familiar by the classifier.

5.5.6.1 ARTMAP-FD algorithm

With complement coding and fast learning (3 = 1), the A-dimensional proto-
type vector w; = (wj1, Wjs, ..., W;ar) associated with F; layer category node j of fuzzy
ARTMAP defines a hyperrectangle in the m-dimensional space of input pattern com-
ponents, with edges parallel to the coordinate axes. Such a hyperrectangle records the
largest and smallest component value of the training set patterns assigned category j.
A pattern that is associated with an F, node during testing is “completely familiar”
if it falls within the hyperrectangle, and “less-than-completely familiar” to the extent
that it falls outside. This notion can be quantified by the fam:liarity measure:

_TyA) JAAw,]|
A= T = T

(5.4)
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where TMaX =| w; | /(a+ | w; |). The maximal value of T, = T/ is attained

for an input a if it lies inside the hyperrectangle associated with node .J, for then
| AAw, |=| w;|. In other words, an input a that is assigned category J during
testing has the maximum familiarity value ¢(A) = 1 if and only if a lies within
hyperrectangle R;.

ARTMAP-FD is identical to fuzzy ARTMAP during training. During testing,
¢(A) is computed for each input pattern a after fuzzy ARTMAP has selected node
J, and tentatively predicted class K = k(J). An input a is declared to belong to a
familiar class if the value of the familiarity measure ¢(A) is greater than a decision
threshold . In this case, ARTMAP-FD outputs the prediction of class K for a.
Otherwise (¢(A) < 7), input a is flagged as belonging to an unfamiliar class, and

ARTMAP-FD makes no prediction.

5.5.6.2 Familiarity threshold selection

The choice of a particular familiarity threshold v = I' for use during operations
depends upon the relative cost of errors due to misses (patterns belonging to famil-
iar classes that the network flags as unfamiliar) and false alarms. Since familiarity
discrimination involves placing an input into one of two sets, familiar or unfamiliar,
the Receiver Operating Characteristic (ROC) formalism [74] can be used to measure
the effectiveness of ARTMAP-FD. Optimizing I' corresponds to choosing a point on

the parameterized ROC curve that is close to the upper left-hand corner of the unit
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square. This maximizes correct selection of familiar patterns (H) while minimizing
incorrect selection of unfamiliar patterns (F). Two methods for predicting a famil-
iarity threshold I' value are described in [27]. A variant of the “on-line threshold
determination” method has been chosen for this work and is now described.

During the first ARTMAP-FD training epoch, every time a category node J wins
the competition for a pattern a, fast learning expands R, just enough to enclose a.
Before learning takes place, #(A) is be computed, and can have a value less than
one. The degree to which ¢(A) is less than 1 reflects the distance from the training
pattern to R;. A training pattern successfully coded by a category node (without
reset) is taken to be representative of familiar test-set patterns. The corresponding
familiarity measure ¢(A) contributes to the generation of a training hit rate curve,
where H() equals the fraction of training inputs with ¢(A) > 7. In contrast, a reset
event during the first training epoch resembles the arrival of an unfamiliar pattern
during testing, where reset occurs when a category node J that predicts class K wins
the competition for a pattern that actually belongs to a different class k, k # K.
The set of #(A) values corresponding to these events are used to generate a training
false-alarm rate curve, where F'(v) equals the fraction of match-tracking inputs with
$(A) > 7.

After training, the predicted familiarity threshold is given by I' = arg max, { H(y)~
F(v)}. Predictive accuracy is improved by use of a reduced set of ¢(A) values in the

training-set ROC curve construction process; namely, training patterns that fall inside
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a hyperrectangle (¢(A) = 1), are not used because these exemplars tend to distort
the miss-rate curve. In addition, the first incorrect response to a training input is
the best predictor of the network’s response to an unfamiliar testing input, since se-
quential search will not be available during testing. Finally, giving more weight to
events occurring later in the training process improves accuracy. In this paper, this
is accomplished by computing the training curves H(7y) and F(v), and predicting the
threshold I', from the data presented only after the system has created a number
of category nodes equal to L (the number of training set classes). Note that this
threshold determination method requires storage of all of the training patterns, so
as to obtain H(v) and F(y) and thereby predict I". For the sake of computational
efficiency, it should be possible to approximate H(vy) and F(y) from a reduced set of

#(A) values which would be updated incrementally as new data are obtained.

9.5.7 Learning of unfamiliar classes

With Learning of Unfamiliar Classes (LUC), a classifier continues during the test-
ing phase to adjust its weights via semi-supervised learning. The criteria for famil-
iarity discrimination is also adjusted on-line, and when a test pattern is flagged as
unfamiliar, the classifier defines a new class. Subsequent test patterns may be declared
by the classifier to be “familiar” and classified as belonging either to classes encoun-
tered during training (i.e., training-set classes) or to the “newly-minted” classes; or

they may be declared to be “unfamiliar,” in which case another new class is defined.
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The hit rate for an LUC classifier (H*) can be defined as the fraction of test pat-
terns from training-set classes that are correctly declared to belong to one of the
training-set classes. The false alarm rate for an LUC classifier (F'*) is the fraction
of unfamiliar-class (i.e., not encountered during the training phase) test patterns not
either flagged as unfamiliar nor assigned to a “new” class defined during testing. An
additional figure of merit for an LUC classifier is a “purity measure,” such as the
Rand clustering score [76], which rewards the classifier for learning the right number
of unfamiliar classes, and correctly assigning them to unfamiliar patterns.

The algorithm for fuzzy ARTMAP was modified as follows to incorporate LUC.
First, in order to focus on the effects of LUC (as opposed to learning with missing
class labels), the weights associated with F, category nodes allocated during the
training phase (training classes) are kept at fixed values during testing. Only “new”
F; category nodes created during the test phase are allowed to change through slow
learning (0 < 8 < 1).

In addition, to prevent the generation of an excessive number of new F; nodes,
patterns that are declared to be unfamiliar are given a “second chance” to be associ-
ated with an already-existing new F5 node before defining a new class. Specifically, a
pattern a declared unfamiliar by the network is subjected to a vigilance test at each
of the new nodes. If it passes the test for one or more of these nodes, it is associated
with the node j,., among these new nodes which has the strongest activation Tj,,.

If the pattern cannot in this way be associated with an already-existing new node,
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and the node .J to which the pattern was tentatively assigned is not a new node, then
a coactivation test is performed. If the activation level T, of node .J is not stronger
than the activation level Tj ., for all of the new nodes j,.. by a sufficient amount —

that is, if T, — T},., < €, — then the pattern is associated with the node j,., for

new

which T; — T;,., is smallest. If either of these two tests is passed, then no weight

Jnew
adjustment takes place for w; .. Only if neither of these options for association with
an already-existing new node succeeds is a new class defined.

When a new class is defined, a new F, category node .J,., is allocated to encode
the input (w,,,, < A), and linked to a new F** map node K,... through w%_. Slow
semi-supervised learning subsequently adjusts the prototype weights of new F; nodes
upon their assignment to familiar patterns. Notice that newly-defined classes are
interpreted differently: each new F; or F® node represents a fragment of data from
an emitter mode that belongs to an unfamiliar radar type.

Finally, fuzzy ARTMAP-LUC extends the on-line method to allow for enhance-
ment of the familiarity threshold I from test-set patterns. If pattern a is declared
familiar, ¢(A) is added to the {¢} values used to generate the training set hit rate
curve H'(7); otherwise ¢(A) is added to the {4} values used to generate the false
alarm rate curve F*(vy). The threshold I'* = argmax,{H*(y) — F*(~)} is recomputed

following each input pattern assignment. For faster execution, it is possible to adjusts

[' every time a pattern is assigned a new F, node; that is, when W is modified.
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Tableau 5.4: Average results, over the same 20 simulation trials, using ARTMAP-FD
with and without LUC. (Numbers in parentheses are the standard error of the sample

mean.)

Evaluation criteria

fuzzy ARTMAP
with FD

fuzzy ARTMAP
with FD and LUC

Hit rate

99.60% (0.07%)

99.63% (0.05%)

False alarm rate

7.46% (4.25%)

Classification rate

(
14.33% (8.89%)
99.51% (0.05%)

99.49% (0.05%)

Memory

806.2 (40.1)

931.1 (41.4)

Rand clustering score

N/A

0.7640 (0.0597)

5.5.8 Simulations with familiarity discrimination and

unfamiliar classes

In computer simulations, 13 out of the 15 radar types were declared to be familiar
(thus training classes). Familiar class selection was performed at random, with the
restriction that an insufficient number of unfamiliar-class data patterns (less than a
thousand) was not allowed. A randomly-selected 50% of the data from each of the
13 training classes were presented to the network during the training phase. The
familiarity threshold I' was determined during the training phase using the on-line
method described in Section 5.6.2. Patterns remaining from the 13 training classes,
plus all the patterns from the 2 unfamiliar radar type classes formed the test set.

Average results obtained for fuzzy ARTMAP with FD (pure ARTMAP-FD) and
for fuzzy ARTMAP with FD and LUC are shown in Table 5.4. Overall results indi-

cate that fuzzy ARTMAP with FD has a high hit rate (99.60%), but only marginal
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performance with regards to avoiding false alarms: 14.33% of patterns belonging to
unfamiliar classes are mistakenly assigned familiar training classes. This is a conse-
quence of the overlap, scattering, and uneven mixture of pulses from different radar
types. By defining new classes and assigning them to unfamiliar-class patterns, LUC
reduces this false alarm rate by about half, to 7.46%, without loss of accuracy.

On average, fuzzy ARTMAP with FD and LUC requires an additional 124.9 reg-
isters to store the prototype vectors, and thus about 21 new F, (plus F°®) nodes
to represent the different emitter modes from the 2 unfamiliar classes. Despite the
creation of these additional nodes, the network’s predictive accuracy on data from
familiar classes is not significantly degraded. The moderate Rand score, 0.7640, in-
dicates the ability of LUC to recover some of the true cluster structure in data from

the 2 unfamiliar classes.

5.6 Pattern clustering

The objective of pattern clustering in the What-and-Where recognition archi-
tecture shown in Figure 5.2 is to group patterns from the Where data stream into
tracks. Impinging signals contain information about emitter status, which may change
in time. Desirable features for such on-line clustering include the ability to initial-
ize new tracks whenever new emitters are detected, to adjust tracks in response to
emitter maneuvers, and to delete tracks as emitters leave or stop transmitting.

Several techniques can perform on-line sequential clustering. For instance, adap-
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Figure 5.6: Pattern clustering system based on nearest-neighbor matching and
Kalman filtering.

tive vector quantization [64] algorithms may be used if parameter values vary slowly.
More sophisticated tracking algorithms 7] [12] are needed to update tracks for pa-
rameters that exhibit rapid linear or nonlinear variations. In this section, on-line
clustering of Brg and PA parameters is implemented by combining nearest-neighbor
matching with linear Kalman filtering. A breakdown of the recursive processing re-
quired for on-line clustering is given in Figure 5.6. The three basic functions — data

association, track maintenance, and filtering and prediction — are now examined.

5.6.1 Data association

An incoming pattern b from the Where data stream is initially considered for
association with existing tracks. This association involves computing a match s,(b)
between input b and the nezt predicted position of every track (h = 1,2,..,R) in
the Where environment. Assume that track positions are drawn independently and
identically from a mixture of Gaussian distributions, in which one distribution is

associated with each track. Then, the match can be taken to be a probability, and
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written:

— 1 1 e \TA-lUh _ 3 =
sn(b) = (27r)%lz\hl%exp{ 5(b = %a)"A; (b~ Xh)} (5.5)

where M is the number of dimensions in the Where space, and X, and A, are, respec-
tively, the predicted position and covariance matrix for track h. Assuming that all
tracks have equal prior probabilities, the track h = H that maximizes Equation 5.5

is associated with b:
H = arg m'inc{sh(b) ch=12,..R} (5.6)

Kalman filtering [7] [12] is employed to predict the next position X, and covariance
matrix A, of each track h. Recall from Section 5.3 that the usual clustering is bypassed
when b corresponds to a PDW that has been assigned a previously-established track
through TOA deinterleaving. In this case, b retains its track, and does not perform
data association, nor track maintenance. Kalman filtering and prediction are however
still performed in order to sustain a consistent description of all active emitters in the

environment.

5.6.2 Track maintenance

Once associated with pattern b, track H undergoes two tests. In the first, the
match sg(b) is compared to a threshold ¢, that regulates the creation of new tracks,

d: € [0,1]. If syg(b) > 4, then the test is passed. In the second test, the cumulative



196

average of match value Sy is computed:

Sy = =21b) ;’;(b) : (5.7)
where Qg is the number of patterns to which track H was assigned. Sy is compared to
another threshold &, that regulates the overall quality of existing tracks, &4 € [4, 1].
If Sy > 44, then the test is passed. If both tests are passed, then track H is assigned
to b.

[f either test is failed, then a new track is initiated for pattern b. When a new
track H is initiated, sy(b) = 1, Xy is set equal to b and Ay is set equal to %[y,
where Ir is the identity matrix, and o = (01,09, ...,0)) represents the resolution
of Where parameter measurements. Furthermore, if the second test is failed (i.e.,
Sy < d4), then the previously-established track H is deleted.

After assignment of H to either an existing or newly-initiated track, any track
h that has not been assigned to an input pattern for a time greater than an ageout

parameter 7 > 0 is deleted. That is, a track is deleted if:
TOA(b) — TOA, > 7, (5.8)

where TOA, is the time at which track h was last assigned to an input. Deleting
a track frees up resources, and reduces the chances of future miss-assignments. The

track number H is the output from track maintenance.



197

A high quality track is one that is assigned pulses transmitted, to a large extent,
from the same emitter. To ensure high quality tracks, new tracks are initiated rapidly
by setting d. close to 1, whereas poor quality tracks are deleted more slowly (as Sy
progressively declines). This reduces ambiguity during track assignment, but may
lead to the initiation of a greater number of tracks, and thus predictions K* based

on the accumulation of short sequences of pulses.

5.6.3 Kalman filtering and prediction

Kalman filtering and prediction is implemented with a bank of standard Kalman
filters, one per track. Every track h is associated with a Kalman filter, and is repre-
sented by a unimodal Gaussian distribution. Upon the assignment of a track H to b,

the filter of H is employed to predict its next position and covariance matrix.

5.7 Sequential evidence accumulation

Sequential evidence accumulation exploits Where information by combining the
responses of pattern clustering with neural network classification. In short, the clas-
sifier’s responses are accumulated according to track, thus offering predictions from

multiple views of an emitter.
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5.7.1 Fusion of What and Where information

As mentioned in Section 5.6, clustering produces a track number h = H for each
pattern b from the Where data stream. The track number indicates the specific
emitter assigned to b.

Sequential evidence accumulation is implemented by means of identical evidence
accumulation fields F¥, F7, ..., F§, where each field Fy is connected to a track h, and
replicates the neural network classifier’s output field, that is, contains L nodes, one
per radar type class. The classifier’s output nodes are linked to their respective nodes
in all fields F¢, h = 1,2,...,R. Each field F} incorporates a short-term memory
capable of accumulating its input patterns. The memory for Ff is characterized by a
field accumulation pattern T§ = (T, T)%, .-, TL) -

Upon initiation of a track h, T§ is set equal to 0. When track h = H is assigned
to pattern b, F§ becomes active. The activity pattern y*® output by the classifier

accumulates onto Fj; according to:

(Tq) =Ty +y* . (5.9)

Accumulation of activity patterns in Ff continues until track A is deleted.

For a given input PDW, the activity pattern y© output from evidence accumulation
gl
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is equal to T¢,. The radar type is predicted to be:
K*® = arg rr}czzlx{Tf,k, 1kf=1,2,..,L} (5.10)

Besides discrete prediction, evidence accumulation fields can be used to feed an emit-
ter table in the signal separator of Figure 5.1. The fields can also describe multiple
radar types associated with same Where features, for instance the same location,

which can assist in linking emitters to platforms.

5.7.2 Prediction from multiple views

Sequential evidence accumulation may improve the overall classification rate of
the recognition system, since the accumulated prediction K is tolerant to errors
committed by the neural network classifier (prediction K'). The concept of predicting
classes from multiple “views” of a source, that are accumulated through time, has
been successfully developed in a number of neural network architectures [6] [14] [25].
In the present case, information on the origin of input patterns is provided through
clustering of the Where data. The effectiveness of evidence accumulation here depends

on the quality of the tracks that are computed as in Section 5.6.

5.7.3 Simulations with evidence accumulation

This section summarizes simulations of how the entire What-and-Where system

performs on the radar pulse data set. Software was written in the Matlab language
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to implement the neural network classification, clustering and evidence accumulation
modules, as well as their integration. The parameter settings used for clustering were
d. = 0.98. 64 = 0. + 0.01, and 7 = 10 ms. The neural network classifier was fuzzy
ARTMAP with negative match tracking (MT-), indicator vector strategy (IVS), fa-
miliarity discrimination (FD) and learning of unfamiliar classes (LUC), as described
in Section 5.5. The vigilance and coactivation parameters used for associating unfa-
miliar patterns with already-existing new nodes in LUC were p = 0.8 and ¢, = 0.05.
A learning rate of 3 = 0.5 was used for semi-supervised adjustment of prototype
weights for new nodes.

Patterns presented to the fuzzy ARTMAP classifier contained 3 What parameters
— namely PRI, PW and RF — whereas patterns presented to the clustering module
contained 2 Where parameters — namely Brg and PA. The system normally receives
the track number and PRI value for PDWs to which a track was assigned by the TOA
deinterleaver. TOA deinterleaving is a difficult task due to the agility (jitter, stagger,
etc.) of the PRI in modern radar systems. For simulation purposes, it was assumed
that TOA deinterleaving can, during on-line operation, be reliably achieved only for
constant PRIs. Approximately 30,000 pulses from the data set belong to constant
PRI emitters, and the rest (about 22,000 pulses) belong to complex PRI emitters.

During fuzzy ARTMAP training, all What patterns had a PRI component. For
emitters with complex PRI patterns, the PRI values were computed as in Section 5.5.

During testing, the PRI components were declared missing from test-set patterns that
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belonged to emitters with complex PRI patterns. In addition, a randomly-selected
10% of the What components from each emitter mode were also declared missing.
The IVS was used by fuzzy ARTMAP to deal with missing components.

For emitters with constant PRI, the PRI values used for both training and test-
ing were mean PRI values, estimated using a moving average that accounts for
dropped pulses. Assume that the TOA deinterleaver has correctly sorted the ny
pulses belonging to emitter mode k. and computed the PPI(:) and gx(z) values for
i =2,3,...,n, where qc(7) is the closest multiple of the nominal PRI, value (taken
from a PRI table for emitter mode k) to the PPI(z) value; namely g (i) = arg ming{q :

|g - PRIx — PPIi(?)|: ¢ = 1,2,3...}. The moving average is:

p_RIk(i)Z% Z PPli(m)

(5.11)
m=ia+y (M)

where A is the number of pulses in the moving average window. Observing the PPI
of pulses inside a window defined by the last 5 consecutive PRIs is consistent with
the clustering parameter 7 = 10ms, which corresponds to 5 times the longest nominal
PRI value that is expected. If the PPI elapsed for a pulse goes beyond this window,
the pulse is assumed to belong to the next burst of pulses from the emitter.

To account for the chronological evolution of the environment, the training set
was formed by selecting the first 0.5% of data encountered from each emitter mode in
TOA order. Furthermore, this training data was taken only from the emitter modes

corresponding to 13 of the 15 radar types selected at random, and declared to be
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familiar. In practice, this could correspond to training the neural network classifier
on the first few bursts of pulses intercepted from each familiar-class emitter. After
training, all the remaining data from the 13 familiar classes (99.5% from each emitter
mode), plus all the patterns from the 2 unfamiliar classes, were presented to the
recognition system in TOA order for prediction. To deal with missing classes during
training, FD and LUC (as described in Section 5.5) were used. When applied with

the IVS, the familiarity measure of Equation 5.4 becomes:

CJAAW,AG|

o(A) = "W AD] (5.12)

When using fuzzy ARTMAP with FD alone, evidence accumulation of responses y2*
onto field F§; occurs only if the input a is declared familiar. Using fuzzy ARTMAP
with FD and LUC, evidence accumulation always occurs since new classes are defined
for unfamiliar-class patterns. To support the ability to accumulate unfamiliar-class
patterns, whenever a new class is defined, a new node is initialized within each evi-
dence accumulation field F¢, h = 1,2, ..., R, as well as in the F; and F layers.

The performance of the What-and-Where system as a function of the amount of
data used for training is summarized in Figure 5.7. The amount of data is a randomly-
selected percentage of patterns from each emitter mode in the training subset. This
percentage was varied between 10% and 100% of the training data (between 0.05%
and 0.5% of the entire data set). Results obtained with the fuzzy ARTMAP with MT-

and IVS, and with kNN classifiers, are included for comparison. When components
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Figure 5.7: Average performance, over 20 simulation trials, of the What-and-Where
system. (Error bars are standard error of the sample mean.)

(b) Memory requirements during training.

are missing, test-set patterns are classified with kNN on the basis of parameters that
are present.

Figure 5.7(a) indicates that the What-and-Where system, and thus the fusion
of What and Where information, significantly improves the classification rate of
fuzzy ARTMAP with MT-/IVS on familiar-class patterns by about 2%. The sys-
tem achieves a classification rate of about 98% with a training set consisting of as
little as 0.15% of the whole data set, or about 80 pulses. This level of performance is
attained along with a capability for detecting and learning patterns from unfamiliar
classes. When trained on just 0.5% of the data per familiar class, the recognition
system yields an average hit rate of H* = 96.9% and a false alarm rate of F* = 12.9%

on the test subset.
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The notion that additional training examples beyond a certain point become “re-
dundant” is borne out of Figure 5.7(b), which shows memory growing as the number
of training patterns is increased. The figure also shows memory cost due to defining
new classes during testing. When trained on 0.5% of the data per familiar-class emit-
ter modes, the system creates on average 5 new nodes on F», F%, and all F§ layers.
The Rand clustering quality score of the unfamiliar-class patterns assigned to these
nodes is on average 0.73. This is a slight improvement to the score of 0.70 obtained

with fuzzy ARTMAP with MT-/FD/LUC.

5.8 Conclusions

A novel What-and-Where architecture has been proposed for recognition and
tracking of radar emitters for Electronic Support Measures (ESM). This architec-
ture combines a neural network classifier, an on-line clustering algorithm, and an
evidence accumulation module. Once trained on samples of data gathered in the
field of operation, the neural network classifier can predict the radar type of inter-
cepted pulses based on their What parameters. Meanwhile, the clustering algorithm
separates these pulses according to emitter based on their Where parameters. The
evidence accumulation module permits fusion of the classifier’s What responses with
the clustering algorithm’s Where estimates, and thus allows prediction of the radar
type from classifications along an entire emitter trajectory. For proof-of-concept com-

puter simulations using a radar data set, a particular realization of the recognition
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system has been considered. It consists in using a variant of fuzzy ARTMAP for clas-
sification, and nearest-neighbor matching with a bank of Kalman filters for on-line
clustering.

Simulations results show that fuzzy ARTMAP with negative match tracking, MT-
, a core concept of the ARTMAP-IC algorithm [28], consistently delivers a high level
of accuracy and compression on the radar pulse data set. even when the amount of
training data is limited. Compared to several other ARTMAP variants, as well as the
reference RBF and kNN classifiers, it yields one of the best classification rates, yet
requires among the least resources (shortest convergence time and least storage for
prototypes) and computational complexity for on-line predictions. The MT- feature
allows fuzzy ARTMAP to converge naturally, by circumventing a node proliferation
problem that can arise when identical or nearly-identical input patterns in the training
data correspond to different classes. Modifications of fuzzy ARTMAP with MT-
have also been introduced for dealing with missing components of the input pattern,
and missing classes during training. The indicator vector strategy (IVS) provides
an effective means of processing partial input patterns, whenever components of the
data set are missing during training or testing. Familiarity discrimination (FD) allows
fuzzy ARTMAP to detect patterns belonging to unfamiliar classes during training and
testing, and enables learning of unfamiliar classes (LUC) to take place during testing.

Computer simulations that test the entire What-and-Where system improve accu-

racy significantly over those obtained with fuzzy ARTMAP with MT- and IVS, and



206

with kNN, while also detecting and learning patterns from unfamiliar classes. These
results support the general approach of integrating What and Where information via
evidence accumulation, and offer promise for application in autonomous ESM systems

which may be subjected to complex, incomplete, and overlapping radar data.
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5.A Appendix A

5.A.1 ARTMAP neural network classifiers

ART-EMAP (Stage 1) and ARTMAP-IC extend fuzzy ARTMAP to produce a
distributed activation of coded F, nodes during testing. Furthermore, ARTMAP-IC
biases distributed test set predictions according to the number of times F, nodes are
assigned to training set patterns. It also uses negative match tracking (i.e., negative
€ values), to address the problem of inconsistent cases, whereby identical training set

patterns correspond to different classes labels. After an incorrect prediction during
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training, the vigilance parameter is raised just enough to induce a search for another
internal category node J. and then lowered by a small amount ¢ > 0.

Gaussian ARTMAP represents each category j as a separable Gaussian density
function, defined by its mean p; = (yj1, fj2, ..., pjar) and its standard deviation o; =
(0j1,0j2, ...,05ar) vectors. During training, the number of committed F, nodes, iV,
grows. All committed F; nodes that pass the vigilance test for pattern a activate, and
distribute a pattern of activity y = (y1, y2, ..., yn.). Match tracking and learning are
performed according to the relative activation over the “ensemble” Ex of F, nodes
linked to the predicted F% node K. The relative activation over Eg is defined by
the distributed pattern y* = (y7,y3,...,yp.), where Y; = Yj/ Tieg, w1 only if j € Ek,
and y; = 0 otherwise. Finally, the learning rate of category j is gradually decreased
according to y;/n;. Table 5.5 highlights the main algorithmic differences between

fuzzy ARTMAP and Gaussian ARTMAP.

5.A.2 Distributing and biasing test set activation

Simulation trials showed that the Q-max rule [28] for distributing F, layer acti-
vation in the ART-EMAP (Stage 1) and ARTMAP-IC classifiers gives better results
than either power or threshold rules [25] with the radar data. The following choice of
@ was found to give good results: Q = min{[N./2L],2L}, where L is the number of
classes (15 in this study) and NV, is the number of committed F} nodes. In particular,

bounding @ to be below 2L reduces performance fluctuations.
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Regardless of distributed activation, fuzzy ARTMAP performs better than its two
extensions, ART-EMAP (Stage 1) and ARTMAP-IC, on the radar data; see Table 5.5.
Distributed activation of the test patterns (in ART-EMAP, for example) yields more
prediction errors because radar types in the data set can be dispersed, fragmented,
and overlap one another. These data properties work against class predictions that
are based on the distribution of strongly activated F» nodes among radar types,
rather than on the most active F; node. Indeed, an F* class node k that receives a
very strong activation from one F, node may have weaker overall activation than an
F“ class node h that receives a moderately strong activation from several F, nodes.
Perhaps this explains why kNN gives its best performance for £ = 1, and degrades
slowly as k is increased. For example, its classification rate is 0.992 for £k = 9 and
dcilyblock'

Gaussian ARTMAP (Table 5.5) involves training and testing with a distributed
pattern of activity. F, layer activation is distributed among nodes that pass the
vigilance test. When training, each category j € Fg learns according to its relative
activation for a. The learning rate of each category j is also gradually decreased
as a function of n;. F, nodes learn a Gaussian mixture model of the input space.
Although computationally intensive, this learning strategy allows Gaussian ARTMAP

to achieve high classification rates.
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ARTMAP-IC and Gaussian ARTMAP accumulate weighting factors that depend
on the quantity of training subset patterns assigned to each F; node. This frequency
information is used to bias predictions towards classes assigned the most training
patterns. This is a problem in radar ESM since some critical radars transmit very
few pulses, while others transmit hundreds of thousands of pulses per second. Biasing
prototype choices according to patterns in the TOA of pulses would, for instance, be
more appropriate.

Fuzzy ARTMAP with MT- breaks ties (during prototype selection) by choosing
the F, node with the smallest index. Even though it is not necessarily appropriate in
our context, it may be useful on other data sets for fuzzy ARTMAP with MT- to use
instance-weighted outputs only in the case where winning nodes are “inconsistent-case
siblings,” since in this case a basis on which to choose one of the winning nodes over
another may be the frequency with which they were winning nodes during training.
When using fuzzy ARTMAP with “limited instance counting,” instances are still
counted for all F; nodes. However, it distributes activation weighted by the instance
counts if and only if nodes J are a set that code for the same test pattern but map

to different classes. Limited IC does not harm accuracy on the radar data set [57].

5.A.3 Prototype representations

Given the quantization of parameter measurements, intercepted radar pulses fall

into resolution cells. The measurement uncertainty of the three parameters used (RF,
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PRI and PW) is uncorrelated. therefore the radar type definitions are essentially
rectangular. ART-EMAP, ARTMAP-IC and fuzzy ARTMAP use hyperrectangles to
represent prototypes in the input space, and appear to be a better match for this
type of data. Gaussian ARTMAP and RBF, on the other hand, represent prototypes
with Gaussian density functions. This results in substantial fragmentation of radar

type classes, and in low compression for these two classifiers.
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5.10 Synthése et impact des résultats:

Dans I'article précédent, un RNA a fusion “what-and-where” a été proposé pour
I'identification des types de radar associés aux impulsions interceptées. Ce RNA fu-
sionne deux sources d’information d’apres les séquences d’impulsions. Les parametres
de type “what” dans les PDWs servent a classifier les impulsions radars selon leur
type, tandis que les parameétres “where” servent a séparer les impulsions correspon-
dant aux émetteurs actifs. Cette séparation permet d’accumuler les réponses du clas-
sificateur pour chaque émetteur, et donc de prédire le type de radar d’'un émetteur
actif selon plusieurs réponses.

Des simulations ont été effectuées pour une mise-en-oeuvre particuliere du RNA
a fusion “what-and-where” et pour un ensemble de données radars. Avec cette mise-
en-oeuvre, le RNA classificateur est réalisé par une variante du fuzzy ARTMAP,
tandis que le sous-systéme de catégorisation est réalisé par un algorithme qui exécute
’association du type plus-proche-voisin et le filtrage de Kalman.

La performance du RNA fuzzy ARTMAP a été comparée avec celle de quelques
autres variantes de ARTMAP, ainsi qu’avec le kNN et le RBF. Les résultats de sim-
ulations ont révélé que le fuzzy ARTMAP permet d’obtenir un des meilleurs taux de
classification parmi ces approches. De plus, fuzzy ARTMAP est parmi les classifica-
teurs qui sont les plus efficaces en termes du temps de convergence, de la mémoire pour
stocker les prototypes et de la complexité des calculs. Son niveau élevé de performance

a été obtenu avec les données radars, méme quand la taille du lot d’entrainement est
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limitée. Lors de simulations, 'utilisation de la partie MT- (pour “negative match
tracking”) de ARTMAP-IC [28] a facilité la convergence du RNA fuzzy ARTMAP
quand le lot d’entrainement contenait des impulsions dont les parametres “what”
sont quasi-identiques, mais qui sont liées a différents types de radar. Les simula-
tions ont aussi montré que l'utilisation des vecteurs indicateurs est une stratégie tres
efficace pour traiter des PDWs quand des parametres “what” sont absents. Finale-
ment, une extension du ARTMAP-FD [26] a permi non seulement de détecter des
impulsions émises par des types de radar non-familiers, mais d’apprendre les classes
correspondantes en temps réel. Il est & noter que ce dernier RNA peut aussi servir au
triage par cellules avec information a prior: (sur les émetteurs qu’on est susceptible
de rencontrer) [47].

Les résultats de simulations pour le RNA & fusion “what-and-where” en entier
ont démontré une amélioration significative des performances par rapport au fuzzy
ARTMAP modifié seul. Le systéme obtient un taux de classification d’environ 98%
avec un lot d’entrainement formé d’aussi peu que 0.15% de I’ensemble au complet des
données. On peut anticiper des performances encore meilleures si le systéeme proposé
exploitait des parametres “where” plus puissants, comme le MOP.

Il existe plusieurs aspects qui seraient intéressant de développer pour le RNA
a fusion “what-and-where.” En ce qui concerne la détection de nouveauté, il serait
souhaitable de comparer les performance de I'approche qui est proposée avec plusieurs

autres méthodes comme le " Near-Enough-Neighbor” [56]. La performance de cette
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composante du RNA devient de moins en moins bonne avec le chevauchement des
classes. (Dans ce cas, les erreurs de classification donnent souvent lieu a des valeurs
de nouveauté tres élevées.) Il serait souhaitable d’améliorer la mesure qui détecte les
nouveautés pour tenir compte du chevauchement entre les classes qui sont apprises.

Une considération importante pour les systemes de MSE radar est la classification
de signaux qui sont émis par des émetteurs inconnus. Le RNA a fusion “what-and-
where” permet de raffiner les connaissances du réseau dans le champs face a ces
¢metteurs. Malgré des résultats prometteurs, I’approche proposée pour modifier les
poids synaptiques et le seuil pour la détection de nouveauté mérite plus de recherche.
En fait, il serait pertinent d’entreprendre une étude approfondie des différents al-
gorithmes d’apprentissage qui permettent d’apprendre de nouvelles informations de
facon incrémentale.

Finalement, il serait utile d’observer les performances de ce RNA pour d’autres
données radars. De plus, afin d’isoler les cas problématiques, il serait utile d’observer

la distribution des erreurs de classification dans le temps et selon les différentes classes.
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Conclusion et discussion générale

Discussion générale

Les systéemes de Mesures de Soutien Electronique (MSE) radars sont employés
dans un contexte de guerre électronique, pour détecter et identifier les émetteurs
dans un environement électromagnétique. Dans les environements modernes, ces
systemes peuvent s’attendre & traiter une densité et une complexité croissante de
signaux radars. On cherche alors des technologies plus rapides, plus précises et plus
fiables pour les concevoir.

Les travaux abordés dans cette thése s'inscrivent dans le cadre d’une étude sur
le potentiel des techniques de réseaux de neurones artificiels (RNA) pour effectuer
deux fonctions critiques en MSE radar: le triage métrique d’impulsions radar et
I'identification des types d’émetteurs radars. Cet ouvrage comporte quatres contri-
butions qui sont organisées en deux volets. Le premier volet est lié aux trois premiéres
contributions et traite des RNA pour le triage métrique rapide d’impulsions radars. Le

deuxiéme volet est lié a la derniére contribution et traite des RNA pour I’identification
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des types de radar.

En MSE radar, il est important de détecter les menaces aussi rapidement que
possible. Le temps de réponse du triage métrique est alors un élément aussi critique
que la qualité des catégorisations. Dans la premiére contribution, quatre RNA auto-
organisateurs de type apprentissage compétitif ont été comparés en termes de leur
qualité de catégorisation et de leur effort de calcul. Les résultats des simulations
avec un ensemble de données radar et des estimations de complexité ont permi de
conclure que deux de ces réseaux, le Self-Organizing Feature Mapping (SOFM) et le
fuzzy Adaptive Resonance Theory (ART), sont d’excellents candidats pour le triage
rapide de séquences d’impulsions, sans connaissance a priori. Le SOFM produit des
catégorisations trés précises, mais peut exiger un long délai pour converger et est
caractérisé par une complexité de calcul élevée. Alors, celui-ci serait plus approprié
pour des systemes de surveillance, d’intelligence et de ciblage 4 longue portée, ou la
précision est plus critique. En revanche, fuzzy ART produit des catégorisations un
peu moins précises que le Self-Organizing Feature Mapping, mais il posséde un grand
potentiel pour le traitement & débit élevé. Celui-ci serait plutét désirable pour des
systémes d’alerte contre les menaces, ou le temps de réaction et/ou la compacité du
systéme est plus critique. Les contributions deux et trois élaborent des concepts liés
au triage métrique rapide avec le RNA fuzzy ART.

Dans la seconde contribution, la mise en oeuvre VLSI du RNA fuzzy ART a été

étudiée pour des applications de triage rapide. L’algorithme fuzzy ART a été refor-
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mulé pour faciliter sa mise en oeuvre avec la technologie VLSI numérique. Ensuite,
une architecture de systéme VLSI dédiée a été proposée pour partitionner la fonction-
alité de cet algorithme sur plusieurs ASIC. Cette architecture est modulaire et cas-
cadable selon les besoins de I’application. Elle comprend un comparateur global, ainsi
qu’un ensemble de modules élémentaires identiques, qui permettent chacun d’émuler
un certain nombre de neurones. Le systéme a été ciblé au triage métrique d’impulsions
radars a débit élevé en MSE. Un modéle d’estimation AT pour cette architecture a
permi d’isoler un ensemble de configurations qui peuvent accomoder plus de 250
catégories et traiter bien au-deld de 10° patrons par seconde, tout en occupant une
surface acceptable. Une mise-en-oeuvre VLSI d’un module élémentaire réalisée par
des étudiants du Groupe de Recherche en Micro-électronique & démontré les perfor-
mances potentielles d’une telle architecture.

Un systéme de catégorisation qui s’applique au triage métrique a débit élevé com-
prend généralement un algorithme de catégorisation en ligne, qui utilise une tech-
nique de traitement appropriée. Dans la troisi¢éme contribution, le traitement par re-
ordonnancement a été proposé pour gérer la maniére dont les patrons d’un séquence
d’entrée sont appris par P'algorithme de catégorisation. Avec cette technique, chaque
patron d’entrée, qui méne a une décision ambigué, n’est appris qu’aprés un temps fixe.
La théorie sur I'option de rejet a permi de dériver deux modeles pratiques pour faire
la détection des cas ambigus. La latence requise pour effectuer des catégorisations

en ligne a été dérivée pour un systéme de catégorisation qui utilise le traitement
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séquentiel (le cas par défaut), par lot et par ré-ordonnancement.

Les résultats de simulation obtenus avec un ensemble de données radars et deux
RNA (ART2A-E et fuzzy ART) qui utilisent le traitement séquentiel, par lot et par
ré-ordonnancement, ont permis de tirer les conclusions suivantes. Premiérement,
le nombre de patrons d’entrée qui méne a une décision ambigué est indicatif de la
dégradation des résultats. Deuxiémement, un RNA qui utilise le traitement par ré-
ordonnancement, produit une qualité de catégorisation plus élevée qu’'un méme RNA
qui utilise le traitement séquentiel. Ce gain en qualité s’obtient avec un temps de
réponse supplémentaire qui est modeste. Finalement, le traitement par ré-ordonnancem-
ent offre une alternative intéressante au traitement par lot en termes du compromis
entre la qualité des catégorisations et le temps de réponse. Ce traitement permet
alors d’améliorer la qualité des catégorisations, tout en permettant de contréler le
temps maximum de traitement d’un patron.

Dans la quatriéme contribution, un RNA a fusion “what-and-where” a été proposé
pour l'identification rapide des types de radar associés aux impulsions interceptées.
Les parametres “what” forment 1’entrée pour le RNA classificateur, qui prédit les
types de radar associés aux impulsions, tandis que les parameétres “where” forment
P’entrée pour le sous-systeme de catégorisation en-ligne, qui sépare les impulsions
transmises par différents émetteurs. Cette séparation permet d’accumuler les réponses
du classificateur pour chaque émetteur, et donc de prédire le type de radar d’un

émetteur actif d’aprés une séquence d’impulsions (pour améliorer la précision).
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Des simulations ont été effectuées pour une mise-en-oeuvre particuliéere du RNA
a fusion “what-and-where” et pour un ensemble de données radars. Avec cette mise-
en-oeuvre, le RNA classificateur est réalisé par une variante du fuzzy ARTMAP,
tandis que le sous-systéme de catégorisation est réalisé par un algorithme qui exécute
I'association du type plus-proche-voisin et le filtrage de Kalman. Les résultats de
simulation ont démontré une amélioration significative des performances par rap-
port au fuzzy ARTMAP modifié seul. Le systéme obtient un taux de classification
d’environ 98% avec un lot d’entrainement formé d’aussi peu que 0.15% de I’ensemble
de données complet. On peut anticiper des performances encore meilleures si le
systéeme proposé exploite des parameétres “where” plus puissants, comme le MOP.

La performance du RNA fuzzy ARTMAP a été comparée avec celle de plusieurs
autres classificateurs. Les résultats de simulation ont révélé que le fuzvzy ARTMAP
permet d’obtenir un des meilleurs taux de classification parmi ces approches. De plus,
fuzzy ARTMAP est parmi les classificateurs qui sont les plus efficaces en termes du
temps de convergence, de la mémoire pour stocker les prototypes et de la complexité
des calculs. Des extensions au fuzzy ARTMAP original lui ont permi (1) de converger
quand le lot d’entrainement contenait des impulsions dont les parametres “what”
sont quasi-identiques, mais qui sont liées a différents types de radar, (2) de traiter des
PDWs dont les parametres “what” sont absents, (3) de détecter des impulsions émises
par des types de radar non-familiers, et (4) d’apprendre les classes correspondantes

en temps réel.
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Suggestions de travaux futurs

Les RNA SOFM et fuzzy ART comparés dans la premiére contribution ne sont
pas pratiques, comme tels, pour le triage métrique en MSE radar. Par exemple, des
modifications sont requises pour permettre au SOFM de supporter I’apprentissage
continu de nouvelles informations dans un environnement dynamique. De plus, un
mécanisme est nécessaire pour faciliter I'interprétation de ses résultats. Par contre,
le fuzzy ART est plus directement applicable au triage métrique. Cependant, ses
résultats manquent de précision et varient selon ’ordre de présentation des données.
Il serait pertinent de mener une étude plus approfondie concernant l’effet de 'ordre
de présentation des données sur les résultats de fuzzy ART. Cette étude peut indi-
quer des ordres de présentation qui ménent généralement a de bonnes performances.
Finalement, il serait utile de développer des critéres pour pouvoir re-initialiser les
neurones correspondant aux émetteurs qui ne sont plus actifs.

Il existe plusieurs variantes architecturales qui peuvent influencer la performance
et la surface de P'architecture VLSI présentée dans la deuxiéme contribution. Par
exemple, il serait possible avec cette architecture de re-initialiser les neurones s’il ne
sont pas actifs pour un certain temps. Il serait aussi possible de remplacer le diviseur
global par un multiplieur et de la mémoire supplémentaire, ou bien de distribuer
des diviseurs bit-sériels localement. Finalement, il serait possible d’effectuer la phase
d’apprentissage de fagon préemptive.

Dans le cadre de la troisieme contribution, il est certain que I’ambiguité dans le
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choix d’une catégorie a un impact sur la performance d’'un RNA comme fuzzy ART. Il
serait intéressant d’observer I’effet du traitement par re-ordonnancement sur d’autres
algorithmes qui effectuent la catégorisation en ligne de séquences de patrons (e.g.,
version en ligne de k-means). L’ambiguité dans le choix d’une catégorie dépend du
contexte, e.g., de 'ordre d’apprentissage des patrons d’entrée et de la complexité
de I'environement a traiter. Une stratégie qui peut réduire 'impact des décisions
ambigués consiste a utiliser ’ambiguité comme critére pour ajuster la précision des
bornes de décision. Il serait intéressant d’explorer différentes représentations de
catégories, fonctions de choix, et lois d’apprentissages, qui permettent de raffiner
les bornes de décision en fonction de I'ambiguité.

Il existe plusieurs aspects qui seraient intéressant de développer pour le RNA
a fusion “what-and-where.” En ce qui concerne la détection de nouveauté, il serait
souhaitable de comparer les performance de 1'approche qui est proposée avec plusieurs
autres méthodes. Il serait aussi souhaitable d’améliorer la mesure qui détecte les nou-
veautés pour tenir compte du chevauchement entre les classes qui sont apprises. Une
considération importante pour les systemes de MSE radar est la classification de sig-
naux qui sont émis par des émetteurs inconnus. Le RNA A fusion “what-and-where”
offre la possibilité de raffiner les connaissances du réseau dans le champs face a ces
émetteurs. Malgré des résultats prometteurs, ’approche proposée pour modifier les
poids synaptiques et le seuil pour la détection de nouveauté mérite plus de recherche.

En fait, il serait pertinent d’entreprendre une étude approfondie des différents al-
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gorithmes d’apprentissage qui permettent d’apprendre de nouvelles informations de
fagon incrémentale.

Le regroupement et I’identification de signaux radars sont présentement des taches
trés exigeants pour les systemes de MSE modernes. (Malheureusement, il est im-
possible de présenter et de comparer les performances obtenues avec ces systémes
conventiennels.) Cet ouvrage démontre néanmoins les avantages du traitement neu-
ronique, comme supplément aux approches conventionnelles, pour effectuer ces deux
taches. Les RNA comme ceux de la famille ART peuvent effectivement jouer un réle

important dans les systémes MSE autonomes et adaptatifs du futur.
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