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Microstructural study of liquefaction in highly polydisperse granular media

Carolina Castro-Malaver1,2,3,∗, Manuel Cárdenas-Barrantes1,2, David Cantor1,2, Mathieu Renouf3, Carlos Ovalle1,2,∗∗,
and Emilien Azéma1,3,4

1Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Québec, Canada
2Research Institute on Mines and Environment (RIME) UQAT-Polytechnique, Québec, Canada
3LMGC, Université de Montpellier, Montpellier, France
4Institut Universitaire de France, France

Abstract. During earthquakes, rapid loading on loose, water-saturated silty sands can lead to undrained (con-
stant volume) conditions that induce high pore water pressures. This process, known as liquefaction in geotech-
nical engineering, involves a loss of stress in the solid phase (effective) and can result in structural failures, such
as frequent mine tailings dam collapses. Understanding the particle-scale mechanisms behind liquefaction is
crucial for predictive modeling. However, this aspect remains poorly explored due to experimental limitations.
In this study, we use discrete element method (DEM) simulations on one highly polydisperse granular material
to investigate liquefaction. Samples of varying density are prepared by removing different amounts of floating
particles (rattlers) after consolidation. The samples are then sheared under constant volume to the critical state.
The results show that loose samples lose all strength, medium-loose samples temporarily liquefy but regain
strength at large strains, and denser samples do not liquefy and exhibit continued shear strain hardening. At the
micro-mechanical scale, permanent liquefaction is linked to heterogeneous solid fraction distributions (macro-
pores), while samples with uniformly distributed local solid fraction either resist liquefaction or recover from
it.

1 Introduction

Mine tailings are usually generated as slurries composed
of silt and sand, which are deposited into a Tailings
Storage Facility (TSF) through hydraulic filling. In this
state, tailings stay saturated and unconsolidated, poten-
tially leading to disastrous mudflows. Numerous TSF fail-
ures were documented throughout the 20th century and
continue to occur today [1, 2].

TSF failures occur primarily by liquefaction after rapid
loading, such as during earthquakes. Saturated soil liq-
uefaction is defined as an increase in pore water pressure
that leads to vanishing effective stresses and, therefore, a
loss of shear strength [3, 4]. This phenomenon occurs in
loose soils that exhibit a contractive response when ex-
posed to shear. Under rapid loads, the material behaves
undrained (constant volume) and the contractive tendency
is restricted, leading to increased pore pressure and ulti-
mately triggering liquefaction [5].

With the aim of better understanding the particle-scale
mechanisms that trigger soil liquefaction, in this study
we use Discrete Element Method (DEM) simulations of
highly polydisperse granular materials. We shear samples
of varied density to identify loose liquefiable behavior and
dense non-liquefiable cases, along with the transition be-
tween them. The analyses are presented in terms of macro-
mechanical behavior and micro-structural descriptors.
∗e-mail: lady-carolina.castro-malaver@polymtl.ca
∗∗e-mail: carlos.ovalle@polymtl.ca

2 Numerical method

We simulated static liquefaction in a granular medium us-
ing strain-controlled constant volume shear tests. The
simulations were carried out with the Contact Dynamics
(CD) method, as implemented in the open-source platform
LMGC90 [6].

In its standard formulation, the CD method treats par-
ticles as perfectly rigid and enforces non-overlapping con-
tact conditions. However, under constant-volume shear,
large stress concentrations can locally violate the non-
overlap constraint, leading to numerical instabilities. To
address this, we employed a hybrid contact model that in-
troduces a linear elastic repulsion force, allowing for min-
imal controlled overlaps. This elastic extension of CD fol-
lows the formalism introduced by [7], which integrates
particle elasticity into the rigid-body framework without
compromising its core assumptions. The repulsion stiff-
ness is chosen to be significantly higher than the stress lev-
els involved, thereby preserving the rigid-particle approx-
imation while ensuring numerical robustness. The numer-
ical procedure comprises three stages: (1) sample gener-
ation, (2) uniaxial consolidation, and (3) constant-volume
shearing.

3 Sample preparation and numerical test

We built two-dimensional samples of disks with a high
size-polydispersity. The size span parameter S = (dmax −
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Figure 1. Initial arrangement of particles for loose (β = 0.0)
and dense sample (β = 1.0) after uniaxial consolidation at P0.
Colors refers to number of contacts per particle (Nc); purple color
indicates floating particles (Nc ∈ [0, 1]). vx is the velocity of the
shear-strain.

dmin)/(dmax + dmin) accounts for the range variability of the
maximum (dmax) and minimum particle size (dmin). We set
S = 0.7. A total of 17000 particles were uniformly dis-
tributed in volume within this range of sizes. The rigid
disk particles were deposited into a square container of
height h = 48dmax, following a potential-based proto-
col [8]. The inter-particle friction coefficient was set to
µ = 0.4, and was kept constant throughout all stages.

Once the particles were deposited, an uniaxial consol-
idation pressure of P = 10kPa was applied at the bot-
tom and top boundaries of the sample. Consolidation
continued until the density stabilized, defined as the ra-
tio between two consecutive values of packing fraction
lower than ∆ϕ = 10−4, with the packing fraction ϕ =
Vgrains/Vtotal; Vgrains is the volume occupied by the par-
ticles and Vtotal is the total volume of the sample.

To generate samples of varied solid fraction or solid
density, a fraction of floating particles were randomly re-
moved after the consolidation stage. Floating particles re-
fer to particles with fewer than two contacts and, therefore,
do not belong to the force network. Thus, the mechanical
stability of the sample reached at the consolidation stage
is unaffected by removing them. The parameter β refers to
the ratio of floating particles remaining in the sample over
the original floating particles. β = 0.0 means that no float-
ing grains remain in the sample, representing the loosest
sample. In contrast, β = 1.0 is the densest one. We cre-
ated a set of eleven samples by varying β uniformly from
0 to 1. Each sample had the same initial stress-engaged
microstructure but different packing fractions and initial
number of floating grains. The packing fraction after con-
solidation was ϕ0 = 0.865, which corresponds to the sam-
ple with β = 1.0. The densities reached after the removal
process varied up to ϕ = 0.806 for the loosest samples
(β = 0.0). Figure 1 shows the loosest and densest samples
created for this study.

Before shearing the consolidated samples, the lateral
walls of the container were replaced with periodic bound-
aries, meaning that any particle reaching one boundary
reappears at the opposite side, allowing large shear strain
to ensure critical states. Additionally, the top and bot-

tom walls were roughened by fixing some of the previ-
ously deposited particles, ensuring that deformation did
not localize at these boundaries but was instead homo-
geneously distributed throughout the sample. The con-
stant volume tests were performed by fixing the position
of the upper and bottom plates along the y-axis [9]. The
samples were strain-controlled sheared by moving these
fixed plates along the x-axis. The strain rate was set to
γ = 4.5 × 10−5, which ensures an inertial number of
I = 2.5 × 10−5 meaning quasi-static flow.

4 Macroscopic response

The macroscopic response of the granular assemblies
is described in terms of the deviatoric stress, q =(
σ′1 − σ′2

)
/2, and the effective mean stress, p′ =(

σ′1 + σ
′
2

)
/2. σ′1 and σ′2 are the principal stresses of the

granular stress tensor, σ′i j, defined as:

σ′i j =
1
V

∑
∀c

f c
i lcj, (1)

where i and j run over the x and y components, f c
i is the

i-th component of the contact force at contact c, lcj is the
j-th component of the branch vector and V is the sample
volume. The branch vector, lc, is the vector joining the
particles’ mass centers interacting at contact c [10].

Figure 2 shows the macroscopic response for all of the
samples tested. These results are presented as a function
of the shear strain γ = ∆x/h, where ∆x is the deforma-
tion in the x direction. The granular assemblies exhibited
three types of behaviors. First, a continuous increase of
stress up to a critical strength (i.e. non-liquefaction) for
samples with β ≥ 0.7. Second, a drop followed by an
increment of the stresses (i.e. temporary liquefaction) in
sample β = 0.6. And third, vanishing of q and p′ (i.e.
liquefaction) showed in samples with β ≤ 0.5. This com-
plete loss of strength under monotonic loading is known
as static liquefaction.

The logarithmic scale in Figure 2 allows evidencing
the early occurrence of liquefaction in loose samples (β ≤
0.5). In fact, β ≤ 0.5 corresponds with a transition point
on density, where the system is not able to recover or gain
resistance and liquefy. Further increases in density (β) de-
layed the occurrence of liquefaction. Besides, it can be ob-
served that the higher the density, the greater the strength
at critical state for the cases that do not exhibit liquefaction
(β ≥ 0.6). All of the samples have reached their critical
strength value at γ ≥ 0.18 regardless of the density.

5 Microstructure and connectivity

The mechanical coordination number (zM), as defined in
Eq. 2, quantifies the connectivity in granular assemblies
by averaging the number of contacts per engaged parti-
cles (i.e.,those in the force network). Thus, zM excludes
floating particles, particles with 1 and 0 contacts (N1,2).
Two-dimensional assemblies of rigid and frictional parti-
cles achieve mechanical stability at 3 ≤ zM ≤ 4; values of
zM below this range indicate mechanical instability [11].
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Figure 2. (a) Deviatoric q and (b) mean stress p′ normalized by
the initial compaction pressure P0 against the shear strain γ for
all initial proportion of floating particles β.
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Figure 3. Mechanical coordination number zM as function of
shear strain γ in logarithmic scale for S = 0.7

Therefore, static liquefaction may be assessed by analyz-
ing the evolution of zM as a function of shear strain, as
shown in Figure 3.

zM =
2Nc − N1

Np − N0 − N1
(2)

Each sample began with the same zM , which re-
mained nearly constant in the early shear stage, zM(γ ≤
10−3) ≈ 3.5. This indicates their initial mechanical
stability. Subsequently, zM gradually increased in non-
liquefaction cases, whereas it suddenly dropped with the
liquefaction cases. In the latter cases, zM remained below
2.5. The increase in β delayed the abrupt decline below
zM ≤ 3.3. The temporary liquefaction cases exhibited a
sudden decrease to zM ≤ 3.4 followed by a gradual re-
covery to values above 3.4. Note that the stress recov-
ery of β = 0.5 sample did not extend enough to exceed
zM ≤ 3.4, resulting in its remaining liquefied state. The
instability point at zM ≈ 3.4 seems to represent the lique-
faction threshold.

6 Local density

Despite the strength and connectivity loss at liquefaction,
the mechanism of recovery from liquefaction remains un-
clear [12]. Therefore, we perform a spatial analysis to find
any variations in the sample’s density along the shear de-
formation. We discretized the sample space with a mesh

to compute the density in each of the cells. The mesh
has ∆x = ∆y = 1.04dmax cell sizes, considering that
∆x ≥ dmax. The local cell density (ϕL) was computed for
each time step to assess its evolution through the deforma-
tion. Figure 4 shows the distribution of the normalized lo-
cal density (ϕL/⟨ϕL⟩) and its variability through the strain
γ. Three cases were analyzed: liquefaction (β = 0.0),
temporary liquefaction (β = 0.6), and non-liquefaction
(β = 1.0).

In the non-liquefied case at the beginning of the
shear, the local density distribution ranges around 0.8 ≤
ϕL/⟨ϕL⟩ ≤ 1.2. The distribution of ϕL is similar over
the strain, indicating an homogeneous density distribution
during shearing. Similar behavior is exhibited by the tem-
poral liquefied sample. In contrast, the distribution of ϕL

in the liquefied case shifted towards lower values, indi-
cating the occurrence of lower density cells in the sample.
The three cases follow a normal distribution function, with
p-values=according to a Shapiro-Wilk test

Every case was further analyzed by plotting the stan-
dard deviation of the local density (STDϕL/⟨ϕL⟩) against
shear strain γ (Figure 4b)). The STD in the non-liquefied
and temporary liquefied samples slightly varied through
the shear, accounting for the density homogeneity in the
sample. This differs from the liquefied case in which STD
fluctuated, suggesting the density heterogeneity. In fact,
the change in the STD for the liquefaction case is consis-
tent with the decrease in the local density below the mean
value ⟨ϕL⟩. The above results indicate that the homogene-
ity preserved in the local density is crucial to recover from
the liquefied state.

7 Conclusions

In this study, we systematically investigated the influ-
ence of material density on static liquefaction using two-
dimensional numerical simulations based on an extended
Contact Dynamics (CD) method. This adapted framework
incorporates contact elasticity following the approach of
[7], enabling us to model highly polydisperse granular as-
semblies and to apply constant-volume shear conditions
that emulate undrained loading. Eleven samples were cre-
ated with the same initial micro-structure and different ini-
tial packing fractions, which varied as a function of the
remaining proportion of floating particles (β) in each sam-
ple. The samples with the same particle size distribution
(high size-polydispersity) were sheared exceeding 30% of
shear strain.

The samples exhibited three behaviors: liquefaction,
temporary liquefaction or non-liquefaction. Those sam-
ples that did not liquefy exhibited high values of the devi-
atoric stress at large deformations; the higher the amount
of initial floating particles, the higher the critical deviatoric
stress. On the other hand, low initial proportion of floating
grains (β ≤ 0.5) resulted in liquefaction. Temporary liq-
uefaction took place in the sample with 60% of the initial
floating grains.

By conducting a multi-scale analysis we observed that
those samples underwent liquefaction exhibited an aver-
age number of contacts below 3, regardless of the initial
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col [8]. The inter-particle friction coefficient was set to
µ = 0.4, and was kept constant throughout all stages.

Once the particles were deposited, an uniaxial consol-
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lower than ∆ϕ = 10−4, with the packing fraction ϕ =
Vgrains/Vtotal; Vgrains is the volume occupied by the par-
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is unaffected by removing them. The parameter β refers to
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the original floating particles. β = 0.0 means that no float-
ing grains remain in the sample, representing the loosest
sample. In contrast, β = 1.0 is the densest one. We cre-
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0 to 1. Each sample had the same initial stress-engaged
microstructure but different packing fractions and initial
number of floating grains. The packing fraction after con-
solidation was ϕ0 = 0.865, which corresponds to the sam-
ple with β = 1.0. The densities reached after the removal
process varied up to ϕ = 0.806 for the loosest samples
(β = 0.0). Figure 1 shows the loosest and densest samples
created for this study.
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walls of the container were replaced with periodic bound-
aries, meaning that any particle reaching one boundary
reappears at the opposite side, allowing large shear strain
to ensure critical states. Additionally, the top and bot-

tom walls were roughened by fixing some of the previ-
ously deposited particles, ensuring that deformation did
not localize at these boundaries but was instead homo-
geneously distributed throughout the sample. The con-
stant volume tests were performed by fixing the position
of the upper and bottom plates along the y-axis [9]. The
samples were strain-controlled sheared by moving these
fixed plates along the x-axis. The strain rate was set to
γ = 4.5 × 10−5, which ensures an inertial number of
I = 2.5 × 10−5 meaning quasi-static flow.

4 Macroscopic response

The macroscopic response of the granular assemblies
is described in terms of the deviatoric stress, q =(
σ′1 − σ′2

)
/2, and the effective mean stress, p′ =(

σ′1 + σ
′
2

)
/2. σ′1 and σ′2 are the principal stresses of the

granular stress tensor, σ′i j, defined as:

σ′i j =
1
V

∑
∀c

f c
i lcj, (1)

where i and j run over the x and y components, f c
i is the

i-th component of the contact force at contact c, lcj is the
j-th component of the branch vector and V is the sample
volume. The branch vector, lc, is the vector joining the
particles’ mass centers interacting at contact c [10].

Figure 2 shows the macroscopic response for all of the
samples tested. These results are presented as a function
of the shear strain γ = ∆x/h, where ∆x is the deforma-
tion in the x direction. The granular assemblies exhibited
three types of behaviors. First, a continuous increase of
stress up to a critical strength (i.e. non-liquefaction) for
samples with β ≥ 0.7. Second, a drop followed by an
increment of the stresses (i.e. temporary liquefaction) in
sample β = 0.6. And third, vanishing of q and p′ (i.e.
liquefaction) showed in samples with β ≤ 0.5. This com-
plete loss of strength under monotonic loading is known
as static liquefaction.

The logarithmic scale in Figure 2 allows evidencing
the early occurrence of liquefaction in loose samples (β ≤
0.5). In fact, β ≤ 0.5 corresponds with a transition point
on density, where the system is not able to recover or gain
resistance and liquefy. Further increases in density (β) de-
layed the occurrence of liquefaction. Besides, it can be ob-
served that the higher the density, the greater the strength
at critical state for the cases that do not exhibit liquefaction
(β ≥ 0.6). All of the samples have reached their critical
strength value at γ ≥ 0.18 regardless of the density.

5 Microstructure and connectivity

The mechanical coordination number (zM), as defined in
Eq. 2, quantifies the connectivity in granular assemblies
by averaging the number of contacts per engaged parti-
cles (i.e.,those in the force network). Thus, zM excludes
floating particles, particles with 1 and 0 contacts (N1,2).
Two-dimensional assemblies of rigid and frictional parti-
cles achieve mechanical stability at 3 ≤ zM ≤ 4; values of
zM below this range indicate mechanical instability [11].
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Therefore, static liquefaction may be assessed by analyz-
ing the evolution of zM as a function of shear strain, as
shown in Figure 3.

zM =
2Nc − N1

Np − N0 − N1
(2)

Each sample began with the same zM , which re-
mained nearly constant in the early shear stage, zM(γ ≤
10−3) ≈ 3.5. This indicates their initial mechanical
stability. Subsequently, zM gradually increased in non-
liquefaction cases, whereas it suddenly dropped with the
liquefaction cases. In the latter cases, zM remained below
2.5. The increase in β delayed the abrupt decline below
zM ≤ 3.3. The temporary liquefaction cases exhibited a
sudden decrease to zM ≤ 3.4 followed by a gradual re-
covery to values above 3.4. Note that the stress recov-
ery of β = 0.5 sample did not extend enough to exceed
zM ≤ 3.4, resulting in its remaining liquefied state. The
instability point at zM ≈ 3.4 seems to represent the lique-
faction threshold.

6 Local density

Despite the strength and connectivity loss at liquefaction,
the mechanism of recovery from liquefaction remains un-
clear [12]. Therefore, we perform a spatial analysis to find
any variations in the sample’s density along the shear de-
formation. We discretized the sample space with a mesh

to compute the density in each of the cells. The mesh
has ∆x = ∆y = 1.04dmax cell sizes, considering that
∆x ≥ dmax. The local cell density (ϕL) was computed for
each time step to assess its evolution through the deforma-
tion. Figure 4 shows the distribution of the normalized lo-
cal density (ϕL/⟨ϕL⟩) and its variability through the strain
γ. Three cases were analyzed: liquefaction (β = 0.0),
temporary liquefaction (β = 0.6), and non-liquefaction
(β = 1.0).

In the non-liquefied case at the beginning of the
shear, the local density distribution ranges around 0.8 ≤
ϕL/⟨ϕL⟩ ≤ 1.2. The distribution of ϕL is similar over
the strain, indicating an homogeneous density distribution
during shearing. Similar behavior is exhibited by the tem-
poral liquefied sample. In contrast, the distribution of ϕL

in the liquefied case shifted towards lower values, indi-
cating the occurrence of lower density cells in the sample.
The three cases follow a normal distribution function, with
p-values=according to a Shapiro-Wilk test

Every case was further analyzed by plotting the stan-
dard deviation of the local density (STDϕL/⟨ϕL⟩) against
shear strain γ (Figure 4b)). The STD in the non-liquefied
and temporary liquefied samples slightly varied through
the shear, accounting for the density homogeneity in the
sample. This differs from the liquefied case in which STD
fluctuated, suggesting the density heterogeneity. In fact,
the change in the STD for the liquefaction case is consis-
tent with the decrease in the local density below the mean
value ⟨ϕL⟩. The above results indicate that the homogene-
ity preserved in the local density is crucial to recover from
the liquefied state.

7 Conclusions

In this study, we systematically investigated the influ-
ence of material density on static liquefaction using two-
dimensional numerical simulations based on an extended
Contact Dynamics (CD) method. This adapted framework
incorporates contact elasticity following the approach of
[7], enabling us to model highly polydisperse granular as-
semblies and to apply constant-volume shear conditions
that emulate undrained loading. Eleven samples were cre-
ated with the same initial micro-structure and different ini-
tial packing fractions, which varied as a function of the
remaining proportion of floating particles (β) in each sam-
ple. The samples with the same particle size distribution
(high size-polydispersity) were sheared exceeding 30% of
shear strain.

The samples exhibited three behaviors: liquefaction,
temporary liquefaction or non-liquefaction. Those sam-
ples that did not liquefy exhibited high values of the devi-
atoric stress at large deformations; the higher the amount
of initial floating particles, the higher the critical deviatoric
stress. On the other hand, low initial proportion of floating
grains (β ≤ 0.5) resulted in liquefaction. Temporary liq-
uefaction took place in the sample with 60% of the initial
floating grains.

By conducting a multi-scale analysis we observed that
those samples underwent liquefaction exhibited an aver-
age number of contacts below 3, regardless of the initial
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Figure 4. a) Probability distribution functions and b) standard deviation of local density ϕL normalized by the average local density
⟨ϕL⟩ throughout shear-strain γ for three cases: liquefaction (β = 0.0), temporary liquefaction (β = 0.6), and non-liquefaction (β = 1.0).

floating grains. The liquefied cases displayed the aver-
age connectivity continuously decreasing reaching their
ultimate state without particles connected, whereas the
non-liquefied cases’ connectivity remained constant. This
suggests that under undrained conditions the inter-particle
connectivity loss caused liquefaction.

We present a possible microstructural explanation of
the macromechanical observations. Since the overall solid
fraction within a sample remains constant during our shear
tests, the causes of liquefaction should be tracked at the
local density. As expected, the analyses show that non-
liquefiable materials maintain a homogeneous local den-
sity throughout the volume. On the other hand, liquefied
samples exhibit heterogeneous local densities, with the ap-
pearance of local macropores that hinder structural reorga-
nization between particles, resulting in vanishing stresses.
Surprisingly, if a liquefied sample can maintain a homoge-
neous local density distribution, further shear deformation
will prompt structural reorganization followed by stress in-
creasing, allowing recovery from the liquefied state. Al-
though computationally expensive, future work could be
addressed for polydispersity in size by systematically con-
sidering the S parameter, polydispersity in shape, along
with tridimensional grains in order to compare the results
with experimental work on real soils.
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