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RESUME

Les opérations d’assemblage constituent souvent la majeure partie des coiits de
fabrication d’un produit. Le choix d’une bonne séquence d’assemblage est donc une décision
centrale tant lors du développement de nouveaux produits que pour améliorer les gammes
existantes. Il serait trés utile pour les industriels de disposer d’un logiciel capable de générer
rapidement et de fagon automatique I'ensemble des séquences d’assemblage d'un produit
quelconque. Pour nous dans ce projet, une séquence d’assemblage est définie par I'ordre et la

direction dans laquelle on assemble chacun de ses composants.

Ces derniéres années de nombreuses études ont €té menées pour générer des séquences
d’assemblage et les évaluer. Nous avons réussi a obtenir ces résultats directement a partir des
modéles avec lesquels la majorité des industriels travaille, c’est a dire avec les dessins des
produits dans CATIA ou AutoCAD. Le logiciel développé se nomme Polyassemblage. Il génére
les séquences d’assemblage d’un produit a partir de sa modélisation solide, et les évalue. Il est

compatible avec CATIA V5 sous Windows et AutoCAD (les versions supérieures a 14).

Polyassemblage a été programmé en Visual Basic. Il est donc de type Windows, avec
des fenétres et des barres de menus dont I utilisation est connue de tous. Il est convivial et facile
a utiliser. Enfin d’aprés les essais effectués sur des assemblages d'une dizaine de composants, il
donne de trés bons résultats et permet darriver rapidement aux meilleures séquences.
Polyassemblage utilise les interfaces d’automatisation offertes par CATIA et AutoCAD pour
extraire les informations gé€ométriques de l'assemblage. Ces deux interfaces sont assez
différentes, mais elles permettent toutes les deux a Polyassemblage d'agir sur I’ensemble des
éléments du dessin. Polyassemblage peut alors rechercher des chemins d'assemblage en
déplagant pas a pas chaque solide dans une direction donnée, et a chaque pas en vérifiant que ce
solide n’est pas entré en collision avec les autres solides du dessin. Avec ces données,
Polyassemblage peut générer les séquences d’assemblage. L’algorithme est basé sur la méthode
de Ghosh et Gottipolu (1995). Le programme assemble les composants en essayant toutes les
combinaisons possibles. Il géneére ainsi tous les €tats possibles, et le produit se construit

progressivement. Avec |’algorithme original, la génération des séquences d’assemblage n’était
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possible que lorsque les composants s’assemblaient selon les axes X, Y ou Z. Aguilar (1996) I'a
amélioré pour autoriser I’assemblage de composants dans des directions quelconques du plan.
Dans ce projet, nous avons rendu possible la génération de séquences avec toutes les directions
de I'espace. Enfin, pour évaluer les séquences trouvées, le logiciel utilise des critére basés sur les
informations contenues dans le dessin : regroupement des directions d’assemblage identiques
pour minimiser les réorientations du produit, préférence de débuter par I’élément le plus gros,
etc. Les criteres d’évaluation se divisent en deux familles :

- Ceux pour réduire le nombre de séquences en éliminant celles qui ne respectent

pas certaines contraintes;

- Ceux pour noter et classer les séquences restantes.

11 existe un certain nombre de restrictions sur la géométrie de I'assemblage pour que le
logiciel fonctionne correctement. Il existe donc encore de grandes possibilités d’amélioration
pour étendre son champ d’applications et le rendre ainsi un jour, pourquoi pas, indispensable

dans I’industrie.




ABSTRACT

Assembly operations account for a large proportion of the manufacturing cost. The
choice of a good assembly sequence is a very important step in development of new products, or

improvement of the existing production processes.

It would be very useful for industry to make use of a software that is able to generate
and evaluate automatically all the feasible assembly sequences of any product, i.e. to find the
order and direction of assembling each of its components. Over the years, several studies have
been undertaken to generate and evaluate assembly sequences. In this project, we have obtained
the above directly from the assembly drawing in AutoCAD or CATIA. We have chosen these

two CAD softwares because they are very commonly used in industry.

The application that we have developed is called Polyassemblage. It is able to generate
and evaluate all feasible assembly sequences of a product given its solid representation. It is
compatible with CATIA V5 on Windows and AutoCAD (releases after 14). Polyassemblage was
written in Visual Basic. It looks like any other Windows based applicaiion. It has windows and
menu bars, so everybody knows how it works. It is user friendly and gives good results for the
examples we tested (assemblies with around 10 components). Polyassemblage uses the
automation interfaces provided with CATIA and AutoCAD to extract the information about the
geometry of the assembly. These interfaces are very different, but both allow Polyassemblage to

act on the elements of the drawing.

The program can look for means of disassembly: it moves each element step by step in a
given direction and checks that it does not collide with any of the other solids. With this
information the program is able to generate all the assembly sequences. It uses the algorithm
developed by Ghosh and Gottipolu (1995). The program tries to build the subassemblies starting
with the individual components, and subsequently adds a component or a previously formed
subassembly, until it gets the final assembly. With the original algorithm, it was possible to

generate assembly sequences only if the components were assembled in the X, Y or Z directions.



Aguilar (1996) improved it by allowing the insertion of components in any planar direction. In

this project, it is possible to generate assembly sequences with any direction in the space.

Finally, to evaluate the sequences that have been found, Polyassemblage uses criteria
based on the geometry of the assembly: minimisation of the number of reorientations,
requirement to begin with the largest solid, etc. There are two families of criteria:

- Those to reduce the number of sequences by eliminating the sequences which

do not respect the constraints;

- Those to evaluate and tabulate the results.

The geometry of the assembly has to respect some restrictive conditions so that
Polyassemblage works correctly. So there are still possibilities to improve it and, one day, to

make it essential to the industry!
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INTRODUCTION

Les pressions toujours plus fortes de la concurrence obligent les entreprises a développer
des produits toujours mieux adaptés au marché, plus performants et moins chers. L’ingénierie
simultanée a été présentée ces derniéres années comme une solution pour atteindre ce but. Elle
permet de concevoir des nouveaux produits plus rapidement et mieux adaptés aux besoins des
consommateurs. Les équipes de développement sont devenues des équipes pluridisciplinaires.
Elles sont constituées de membres de tous les secteurs de I'entreprise : ingénieurs de
développement bien siir, mais aussi membres de la production, du service des ventes, etc. Le
développement des nouveaux produits est ainsi réalisé en tenant compte a tous les niveaux de

toutes les contraintes, et en particulier pour ce projet des coiits de fabrication.

L’assemblage d’un produit intervient dans 70 2 80% des coiits totaux de production
(Boothroyd, 1994). Pour obtenir un produit a meilleur coit, il est trés important de savoir choisir
une bonne séquence d’assemblage, c’est a dire de connaitre I’ordre et la direction d’assemblage
des composants qui minimise les coiits d’assemblage. Les équipes pluridisciplinaires doivent
tenir compte .de ce probléme trés tot dans le processus de développement. Beaucoup de travaux
ont été réalisés ces derni¢res années pour générer toutes les séquences d’assemblage d’un
produit de mani¢re rapide et automatique. Les programmes développés sont généralement aussi
capables d’évaluer ces séquences, et aident 2 identifier les meilleures. Le plus souvent les
données nécessaires pour faire fonctionner ces programmes sont fournies directement par

I’utilisateur et portent sur la géométrie de I’assemblage et sa structure.

Il serait utile d’obtenir ces résultats directement a partir du dessin d’assemblage dans son
format d’origine, c'est-a-dire obtenu a partir d’un logiciel de Conception Assistée par Ordinateur
(CAO) répandu dans I'industrie. Nous proposons dans ce projet un programme qui réalise cette
tiche : il génere et évalue toutes les séquences d’assemblage d’un produit i partir de son dessin
dans CATIA ou AutoCAD. Le résultat est presque immédiat, donc il peut étre utilisé en temps
réel par I’équipe pluridisciplinaire.



Ce programme, nommé Polyassemblage, ne peut pas remplacer I’expertise humaine ni
ses connaissances. Mais il peut apporter une bonne idée de ce 2 quoi ressemblera la séquence
d’assemblage finale, et mettre tot en évidence des problémes qui pourront géner I’assemblage du
produit. Il n’est donc pas 1a pour remplacer I'ingénieur qui décide des gammes d’assemblage,
mais pour le supporter dans sa démarche. L’outil développé foumit un élément de réflexion
supplémentaire pour encourager une décision rationnelle et éclairée puisque celle-ci sera basée

sur des données objectives et non subjectives.

Polyassemblage a été développé en Visual Basic 6.0. Il utilise les interfaces
d’automatisation offertes par les plus récentes versions d’ AutoCAD et de CATIA pour extraire
les informations sur la géométrie et la structure des composants. Pour générer les séquences
d’assemblage a partir de ces trajectoires I'algorithme de Ghosh et Gottipolu (1995) a éé
programmé. Cet algorithme a été€ amélioré par Aguilar (1996) et adapté au programme dans ce
projet. Enfin, Polyassemblage est capable d’évaluer et de classer les séquences trouvées selon
plusieurs criteres de base. Ce tri facilite grandement le choix d’une séquence finale par

I’ utilisateur.

Dans ce rapport, nous allons présenter les différents aspects théoriques et pratiques qui
décrivent le logiciel. Le plan du rapport suit les étapes franchies pour mettre au point
Polyassemblage :

- Dans le chapitre |, nous allons tout d’abord présenter une série de travaux qui
ont été effectués a travers le monde ces derniéres années dans le domaine de la
génération des séquences d’assemblage.

- Dans le chapitre 2, nous allons montrer comment il est possible, d’un point de
vue informatique, d’utiliser les fonctionnalités de CATIA et d’ AutoCAD depuis
un programme extérieur, dans notre cas écrit en Visual Basic.

- Dans le chapitre 3, nous allons expliquer précisément comment fonctionne
I’algorithme pour générer les séquences d’assemblage.

- Dans le chapitre 4, nous allons montrer comment trouver des chemins
d’assemblage ou de désassemblage pour les différents composants. Ces données

sont nécessaires pour générer les séquences d’assemblage.



Ensuite dans le chapitre 5, nous présenterons les différents critéres programmés
pour trier et classer les séquences trouvées précédemment.

Dans le chapitre 6, nous présenterons d’autres aspects de Polyassemblage et des
outils supplémentaires qui rendent le programme plus convivial, plus facile 2
utiliser et qui simplifie la compréhension des résultats et le choix d’une
séquence finale.

Enfin dans le chapitre 7, nous montrerons les résultats obtenus avec différents
exemples de la vie courante : un alternateur d’automobile et le systéme de frein
d’un vélo. Nous accompagnerons ces résultats d’observations sur le
fonctionnement du programme et les temps de calculs.

Nous conclurons avec un bilan des performances et des limites du programme.
Nous parlerons aussi des différentes voies d’amélioration qu’il sera intéressant

d’explorer dans le futur.



CHAPITRE 1 - REVUE DE LA LITTERATURE

1-1 Introduction

La sélection d’une séquence d’'assemblage efficace est une activité importante dans la
planification du processus d’assemblage. Beaucoup de recherches ont été effectuées et sont
encore effectuées pour permettre de générer les séquences possibles d'un produit et de les

évaluer.

Généralement, le processus est organisé en 3 étapes. Ces étapes sont plus ou moins

indépendantes selon I’ approche développée.

Acquisition des données de
I'assemblage

v

Génération des séquences
d'assemblage

v

Evaluation des séquences
trouvées

Figure 1.1 : Etapes du processus de génération des séquences d'assemblage

L ‘acquisition des données : les données a recueillir doivent permettre de générer toutes
les séquences d’assemblage. Beaucoup d’informations sont nécessaires et elles dépendent de
Ialgorithme programmé : on peut avoir besoin des relations de précédence (définies plus bas),

du type de liaison entre les composants, de la description géométrique des solides, etc.

La génération des séquences d'assemblage : un trés grand nombre d'approches

différentes coexistent, comme nous allons le voir plus bas.



L’évaluation des séquences trouvées et leur sélection : cette étape peut étre réalisée en
méme temps que la génération des séquences (en particulier avec certains algorithmes

génétiques), mais elle en est le plus souvent indépendante.

1-2 Acquisition des données sur I’assemblage

1-2.1 Acquisition manuelle

Dans la plupart des articles identifiés, les données sont entrées manuellement par
l'utilisateur. La collecte manuelle des données est plus facile a mettre en ceuvre dans la mesure
ol elle met de coté tout I’aspect li€ a I’analyse automatique de la géométrie et de la structure de

I’assemblage. Seul I’algorithme de génération des séquences est développé.

1-2.2 Acquisition mixte

Dans d’autres cas, la collecte des données est mixte :

- Extraction automatique d’un certain nombre de renseignements géométriques
directement a partir du dessin de I'assemblage;

- Indication des autres renseignements par l'utilisateur (par exemple au sujet du
processus de fabrication, des outillages nécessaires ou du type de liaison entre

les composants).

Dans ces cas, I'assemblage est modélisé avec un logiciel de CAO particulier. Nous
pouvons citer par exemple :
- L'interface graphique utilisée par Mascle et Balasoiu (2001) se nomme « 3D
Tool Kit » . Cet outil de modélisation utilise la représentation B-rep (Boundary
Representation, représentation des solides par leurs frontiéres) qui est bien
adaptée a l'algorithme développé.
- Le programme présenté par Romney et al. (1995) pour la génération des

séquences est lui-méme capable de modéliser les solides.



1-2.3 Acquisition automatique et directe

Dans aucun des articles recensés, l'extraction des données n'a été faite directement
depuis un logiciel de CAO répandu dans I’industrie comme AutoCAD, CATIA ou ProEngineer.
Les approches développées sont donc en général peu pratiques a utiliser dans I'industrie.

Les auteurs Pandey et Sarvananthen (1999) ont utilis€ les données contenues dans un

fichier ".dxf" (créé par AutoCAD), mais le programme a été limité aux assemblages qui

sseédent une symétrie centrale autour d’un axe, en I’occurrence Faxe X.
y

1-3 Génération des séquences d'assemblage

Il existe une trés grande variété d'approches pour générer les séquences d'assemblage.

Elles se différentient par exemple par :

Les informations nécessaires pour générer les séquences : utilisation de la
géométrie des solides (Romney et al. (1995)), des connecteurs (Tsen et Li
(1999)), des relations de précédence (Bourjault (1984))...

La représentation interne des données : utilisation de matrices (Ghosh et
Gottipolu (1995)), de graphes (Senin et al. (2000)), stockage des séquences sous
forme « génétique » (Fujimoto et Sebaaly (2000))...

L'approche du point de vue informatique: éEventuellement recours a
I'intelligence artificielle (Choi et al. (1998)).

La complétude des résultats: les approches générent toutes les séquences
(Ghosh et Gottipolu (1995)) ou seulement quelques-unes (ce qui est moins

coliteux en temps, comme Senin et al. (2000)).

Ces différents aspects sont développés dans les parties suivantes. Nous allons tout

d’abord montrer les schémas les plus courants pour représenter la structure des produits et leurs

séquences d’assemblage. Ensuite nous décrirons les différentes approches qui existent pour

générer ces séquences d’assemblage.



1-3.1 Représentations de la structure des produits et de leurs
séquences d’assemblage

Le diagramme de liaison

Le diagramme de liaison permet de représenter la structure d’un assemblage. Les neeuds
représentent les composants, et les traits indiquent les contacts entre eux. Le diagramme de
liaison d’une roue de vélo est montré a la figure 1.2. Les rayons de la roue et leurs vis ont été

considérés comme des composants uniques pour simplifier le diagramme.

Vis de rayons Pneu

O—O0—C—C_C—0

Axe de la roue Rayons Jante Chambre a2 air Bouchon

Figure 1.2 : Diagramme de liaison pour une roue de vélo

Historiquement, Bourjault (1984) a été I'un des premiers a utiliser ce diagramme pour
générer des séquences d’assemblage. Il a pu le faire avec les relations de précédence du produit.
Les relations de précédence sont des relations qui indiquent quelles liaisons doivent étre
réalisées en priorité pour permettre aux autres de se faire (par exemple il faut mettre la chambre
a air dans le pneu avant de monter le pneu sur {a jante). De Fazio et Whitney (1987) ont ensuite

amélioré sa méthode et réduit le nombre de questions posées de 2" a 2n (n est le nombre de

composants).

Le « AND/OR Graph »

Pour représenter les séquences d’assemblage Homem de Mello et Sanderson (1990) ont
proposé¢ un graphe nommé AND/OR Graph. Ce graphe représente I'ensemble des séquences

d’assemblage d'un produit.



Chaque nceud représente un état, c'est-a-dire un sous-assemblage intermédiaire constitué
d’un ou de plusieurs composants. Ce graphe devient vite trés grand en taille car le nombre de
nceuds augmente de fagon exponentielle avec le nombre de composants. Par contre ses
principaux intéréts sont :

- Il regroupe a lui seul toutes les séquences possibles;

- Il est possible d’identifier trés rapidement les sous-assemblages impliqués dans

les séquences d’assemblage.

Ci-dessous se trouve un exemple de AND/OR Graph publié par Senin et al. (2000).

g

74 g] ABCD

Figure 1.3 : And/Or Graph pour I'assemblage { A, B, C. D}

Le « Cluster graph »

Les auteurs O’Shea et al. (2000) ont présenté un autre type de graphe pour représenter
les séquences d’assemblage. Le graphe est structuré en niveaux qui correspondent chacun 2 une
« enveloppe » du produit.

- Niveau | : liste des composants qu'on peut désassembler directement,

- Niveau n: liste des composants qu'on peut désassembler lorsque ceux des

niveaux antérieurs ont été otés,



Nous pouvons illustrer la notion de cluster graph avec I'exemple ci-dessous.
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Figure 1.5 : Cluster Graph pour I’agrafeuse

Ce graphe peut contenir aussi d'autres informations: liste des contraintes de

précédence, procédure pour opérer le désassemblage d’un composant, liste des outils et des
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équipements nécessaires, etc. Il permet de lire facilement les séquences d’assemblage et de

les comparer entre elles.

Autres graphes

Il existe beaucoup d’autres représentations possibles :

- Lanham et Dialami (2001) ont défini /’Assembly State Vector (vecteur qui décrit
chaque étape de la séquence d’assemblage). Ce vecteur permet de coder de
maniere unique chaque séquence. Avec cette représentation les ingénieurs de
production peuvent opérer facilement des « micro changements » a I’intérieur
d’une séquence sans que cela n’ait trop de répercussions sur la « macro
séquence ».

- Zha et al. (1998) ont aussi cité le graphe de connectivité, le graphe des

contraintes d’assemblages, et bien d’autres encore.

Les différents graphes sont des outils pour visualiser la structure d’un produit ou sa
séquence d’assemblage. Le graphe le plus utile est donc celui qui s'adapte le mieux a
I"algorithme développé dans la recherche. De nombreux graphes sont spécifiques a certaines

approches, et tous ne peuvent pas €tre décrits dans ce projet.

1-3.2 Les systémes experts

Nous allons présenter dans cette partie les algorithmes de génération et d’évaluation des
séquences d’assemblage basés sur les systémes experts. Les systémes experts sont une branche
de I'intelligence artificielle. Ils permettent de stocker I’expertise humaine dans des bases de
données pour la réutiliser. Les algorithmes mis en ceuvre avec les systémes experts sont

actuellement les plus proches des raisonnements humains.

Choi et al. (1998) ont présenté la base de données qui contient toutes les informations
relatives a I’assemblage étudié. La KALG (Knowledge Assembly Liaison Graph) contient la liste

des liaisons et leur type, la liste des contraintes géométriques et de stabilité, les différents coiits,



etc. Ces informations sont enregistrées sous la forme suivante (ot cl, c2 et ¢3 sont des
composants de I’assemblage) :
- Renseignements sur la structure de I’assemblage : “connect (cl, c3)” ; “before
(cl, c2)” ; “right (c2, c3)"...
- Problemes liés a certains états ou séquences : “unstable ([cl, c2, c3])”...
- Renseignements pour I'évaluation des séquences trouvées : “‘fime_consuming
(cl, [c2, c3])”, “cost_effective (cl, c2)”...
A partir de ces données, le programme écrit en Prolog détermine automatiquement les

séquences possibles et les évalue.

Osetrov (1998) a utilisé la logique des prédicats pour générer les séquences
d’assemblage. Les données a indiquer initialement au programme sont, par exemple, la
géométrie de I'assemblage, le nom et la position des composants, etc. Ce programme est
aussi capable de trouver des séquences d’assemblage non linéaires, c'est-a-dire qui passent

par des sous-assemblages.

1-3.3 Regroupement en familles de produits

Dans cette partie, les algorithmes présentés utilisent les analogies entre les produits

d’une méme famille pour obtenir des bonnes séquences avec un minimum de calculs.

Tous les éléments d’une méme famille se ressemblent. Ils ont la méme structure et
souvent les mémes composants. Les séquences d’assemblage sont donc nécessairement
voisines. Pour chaque produit, il est possible de dériver la séquence d’assemblage de la

séquence « modele » de la famille.

Wolter et Chakrabarty (1997) ont présenté une « librairie de structures prédéfinies ».
Lorsqu’un produit a des ressemblances avec un produit déja enregistré, il n’est pas nécessaire de
recalculer sa séquence optimale car elle est similaire a une séquence enregistrée. Avec ce
procédé d’autres informations sur la gamme d’assemblage sont aussi disponibles, telles que les

temps d’assemblages, les outils nécessaires, etc.



La figure ci-dessous donne un exemple de diagramme de liaison représentant la structure

de deux produits d'une méme famille.

. ab,cdef, abcdet. Legend

a cap
ahcde b.. by mbs
¢ mb head
d inner body
e outer body
£ f refills

bycde

(a) b, ¢ d ¢ f, a b, ¢ d © f.

(b)

Figure 1.6 : Diagramme de liaison pour 2 stylos

a) Deux diagrammes séparés b) Un diagramme commun

Gupta et Krishnan (1998) ont développé un nouveau diagramme pour obtenir des sous-
assemblages communs a toute la famille, le PFID (Product Family Interconnection Diagram).
Les noeuds du diagramme représentent les composants de tous les éléments de la famille, et ses
arcs représentent leurs liaisons. Le programme supprime les arcs qui ne sont pas associés a tous
les éléments de la famille. Il ote ensuite les nceuds déconnectés. Si les sous graphes restants
peuvent étre assemblés en respectant toutes les relations de précédence, alors ils représentent des

bons sous-assemblages communs.

Fouda et al. (2001) ont présenté un algorithme pour générer un unique AND/OR Graph
par famille de produits. Chacun des éléments de la famille posséde des composants propres qui

apparaissent aussi dans le AND/OR Graph.

Enfin Martinez et al. (2000) ont proposé de créer un produit « virtuel » qui ressemble le

plus possible a tous les autres éléments de la famille de produits.Une fois ce produit choisi, le
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logiciel ISASG (Integrated Software for Assembly System Generation, Logiciel intégré pour la
génération des séquences d’assemblage) génére toutes les séquences d’assemblage possibles et
I"utilisateur choisit la meilleure séquence a I’aide de critéres programmés.

- Minimum de réorientations,

- Modularité,

- Temps d’assemblage.

1-3.4 Utilisation des connecteurs

Les connecteurs sont des composants qui servent a faire tenir d’autres composants de
maniéere stable (vis, rivets, etc.). C'est d’ailleurs généralement leur seule utilité. Il est possible de
décrire la structure de la plupart des assemblages uniquement a partir des connecteurs. Des
recherches existent donc qui utilisent ces connecteurs pour générer les séquences d’assemblage.
Ces composants sont alors plus considérés comme des caractéristiques de I'assemblage, que

comme des composants a part entiére.

L’algorithme de génération des séquences d’assemblage présenté par Tsen et Li (1999)

est enticrement basé sur I'utilisation des connecteurs. Les trois étapes de l'algorithme sont :

- Définition des connecteurs : chaque connecteur représente une connexion et a
pour parametres les composants impliqués dans la connexion. Chaque
composant de I’assemblage est associ€ a un et un seul connecteur.

- Recherche d’une séquence d’assemblage linéaire : le programme crée les
séquences d'assemblage possibles en se basant sur la liste des connecteurs. Ci-

dessous se trouve une illustration de cette approche.
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Figure 1.7 : Assemblage adapté a I'approche des connecteurs

Connecteur | > Connecteur 2

Figure 1.8 : Graphe d'une séquence d'assemblage basé sur les connecteurs

- Recherche d’une séquence non linéaire: a partir des séquences obtenues
précédemment l'algorithme cherche quels connecteurs pourraient étre assemblés

en parallele.

Van Holland et Bronsvoort (1996) n’ont pas basé la génération des séquences sur les
connecteurs, mais ils les ont utilisés pour trouver des relations de précédence supplémentaires.
Le but est de faciliter la génération des séquences et de réduire leur nombre final. Les données a
indiquer au programme se regroupent en deux catégories.

- « Caractéristiques de tenue » : liste des préhenseurs possibles, positions de saisie

des composants...

- « Caracténistiques des connexions » : liste des composants tenus par la

connexion, points d’insertion, types de connexion, directions d’assemblage...
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L'approche présentée par Zhao et Masood (1999) est aussi une approche mixte. Les
données de base de I'algorithme sont stockées dans 4 graphes différents qui indiquent :

- La liste des composants et des liaisons, les types de liaison, les directions de
désassemblage, etc;

- La liste des connecteurs, leur type et le nombre de composants impliqués dans
chaque connexion;

- Des informations sur le processus de production (calibrages, tests, etc.);

- Des informations sur les tolérances de I’assemblage.

L’identification de la meilleure séquence d’assemblage se fait ensuite en 2 étapes :
1) Pour chaque composant, calcul du « coefficient de contrainte »;
2) Recherche de la séquence qui a la plus petite somme des coefficients de

contrainte (c'est la séquence optimale).

1-3.5 Le NDBG (Non Directional Blocking Graph)

Le NDBG (Graphe des directions non bloquantes) est une représentation introduite par
Wilson (1992) qui contient I'ensemble des directions de désassemblage localement pour
Fensemble des composants d'un produit. Cette approche est limitée aux composants

polyédriques.

Romney et al. (1995) ont présenté l'utilisation de ce concept pour développer STAAT,
un programme qui permet de trouver des séquences d'assemblage et de désassemblage. Le
programme construit le NDBG du produit a partir du dessin tridimensionnel de 'assemblage,

puis il en génere les séquences possibles.

Latombe et Wilson (1995) ont pu générer des séquences d’assemblage pour des produits
comportant des tolérances. L'algorithme est limité 4 un certain nombre de cas. It ne fonctionne
que pour les assemblages en deux dimensions et les tolérances sont données uniquement sur la

longueur des cotés. Deux cas se présentent :
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- La procédure d’assemblage / désassemblage est possible a
séquences sont alors générées a l'aide d'un NDBG modifié, le « strong NDBG ».

- Pour certaines dimensions I'assemblage est impossible. Le programme cherchera

coup sir. Les

alors dans quels cas il est possible d'assembler le produit et dans quels cas il ne
I'est pas. L’algorithme utilise une autre version du NDBD, appelée « weak
NDBG ».

1-3.6 Utilisation des matrices de contact et de translation

L'intérét des approches qui utilisent les matrices de contact et de translation est qu'elles

sont rigoureuses d’un point de vue mathématique et faciles a comprendre et a programmer.

Ghosh et Gottipolu (1995) ont développé un algorithme pour générer des séquences
d'assemblage 2 partir de ces deux types de matrices. A chaque paire de composants (Comp,
Comp,) sont associées une valeur de contact (C(Comp, Comp) = I si les composants se
touchent, 0 sinon) et une matrice de translation 7. T(Comp, Comp,) indique si Comp, peut se
déplacer sans rentrer en collision avec Comp, dans chacune des 6 directions principales de

l'espace : X+, Y+, Z+ et X-, Y-, Z-.

Matrices de contact :

\\ C(a.b)=l
////\ Ca.c)=1
C.c)=0

i\b }Q | |
////\ \\\c Matrices de translation
\ \

Ta b)=(1.00000)
Tac)=(1.002000)
Tth.c)=(1, 11,01 1)

Figure 1.9 : lllustration de I’algorithme de Ghosh et Gottipolu

. A partir de ces matrices, le programme est capable de générer toutes les séquences
d'assemblage du produit. L’algorithme sera présenté en détails dans le chapitre 3. Aguilar (1996)
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a amélioré la méthode en permettant de générer les séquences aussi lorsque des composants

doivent étre assembliés selon des directions quelconques du plan.

Eng et al. (1999) ont présenté un programme qui utilise une variante de cette méthode.
Leurs matrices contiennent 12 données : 6 degrés de liberté pour les translations et 6 pour les
rotations. A I"aide de ces matrices, ils ont pu déterminer la « meilleure » séquence d’assemblage
d’un produit. A chaque étape le programme cherche quel composant est le meilleur candidat a
désassembler selon les critéres suivants :

- Facilité a manipuler,

- Regroupement des composants de méme type (pour éviter les changements

d’outils),
- Stabilité du sous-assemblage obtenu.
L’article suppose implicitement qu’en enlevant chaque fois le meilleur composant on

obtient la meilleure séquence de désassemblage, et donc la meilleure séquence d'assemblage.

Enfin, S. Smith et G. Smith (2001) ont perfectionné la méthode en donnant d’autres
valeurs possibles aux éléments de la matrice de contact :
- Ossi il n’y a pas de contact,
- 1 si il y a un simple contact,
- 2 si le contact est «fort », c'est-a-dire si les composants peuvent tenir de
maniére stable entre eux.
Cette information supplémentaire permet de ne générer que des séquences qui

contiennent des assemblages stables.

1-4 Evaluation des séquences

Lorsqu’on ne tient compte que des contraintes géométriques, on obtient facilement un
grand nombre de séquences d’assemblage pour le produit. Il est donc nécessaire de développer

des procédures pour le réduire.
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Certaines approches consistent a évaluer completement toutes les séquences pour ensuite
faire le bon choix :
- En supprimant les séquences qui ne correspondent pas i certains critres;
- En évaluant et triant les séquences restantes, qui peuvent encore étre
nombreuses !
D’autres consistent a trouver simplement des séquences presque optimales. Dans ces
cas, toutes les séquences ne sont pas évaluées (Giingor et Gupta (2001), et plus généralement

tous les algorithmes génétiques).

Nous allons présenter ci-dessous les criteres les plus répandus pour évaluer les
séquences d’assemblage. Ensuite nous décrirons plusieurs approches qui permettent d’identifier

les meilleures d’entre elles.

1-4.1 Différents critéres d’évaluation

Les criteres d'évaluation qu'on rencontre le plus fréquemment dans la littérature sont
regroupés en deux catégories : les facteurs qualitatifs et les facteurs quantitatifs. Certains de ces

facteurs ont €té déja vus. Zha at al. (1998) en ont proposé une liste non exhaustive.

Parmi les facteurs qualitatifs on trouve :
- La fréquence des réorientations;
- La stabilité des sous-assemblages;

- La modularité des sous-assemblages.

Et parmi les facteurs quantitatifs :
- Le temps total incluant les opérations d’assemblage, de manutention, de
changement d'outils;

- Le coiit total incluant la main d’ceuvre, les outillages, etc.

Souvent les criteres d’évaluation sont intégrés au programme qui génére les séquences

d'assemblage. 1l existe aussi des programmes dédiés a I'évaluation des séquences.
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1-4.2 Le programme Archiméde

Décrit par Jones et al. (1998), le programme permet de sélectionner les séquences

d’assemblage qui répondent 2 une liste de contraintes fixées par I'utilisateur.

Ces contraintes sont de deux types :

- Contraintes d'interdictions (par exemple, interdiction de certains sous-
assemblages ou certaines opérations);

- Contraintes d’obligation (forcer une direction d’assemblage, passer par un sous-
assemblages spécifique, etc.).

L'utilisateur affine la liste des contraintes au fur et 3 mesure que le projet avance.

Lorsque toutes les contraintes sont fixées, I'utilisateur choisit la ou les séquences finales
par optimisation :
- Maximisation (de la linéarité de la séquence...);

- Minimisation (des coiits, du nombre de réorientations nécessaires...).

Le choix final revient toujours a I'utilisateur. Nous sommes encore trés loin de pouvoir -
modéliser tous les critéres qui entrent en compte pour trouver la meilleure séquence (dont
l'expérience de travail). Les outils actuels restent des outils qu'il est nécessaire de bien

comprendre pour les utiliser de maniére pertinente.

1-4.3 Programmation d’un réseau de Pétri
Les réseaux de Pétri sont des outils d'optimisation qui ont été programmeés par Yee et

Ventura (1999) pour évaluer les séquences d'assemblage.

L’algorithme détermine tout d’abord le réseau de Pétri a partir du AND/OR Graph et

des informations qui lui permettront d’optimiser les séquences d’assemblage.
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Ces données sont stockées sous forme matricielle, et le probléme revient a un
probléme d’optimisation mathématique : il faut minimiser la fonction de cout tout en

respectant les contraintes fixées par I’ utilisateur.

1-4.4 Les algorithmes génétiques

Ce domaine de I'intelligence artificielle est de plus en plus utilisé pour évaluer les
séquences d'assemblage. Les résultats obtenus jusqu'a maintenant indiquent que les algorithmes
génétiques sont légérement moins fiables que I'approche combinatoire pour trouver la meilleure
séquence, mais ils sont capables d'identifier des solutions trés proche en un temps record lorsque

la taille du probléme augmente.

Principe de fonctionnement

Comme indiqué par Senin et al. (2000), les algorithmes génétiques sont des méthodes
d'optimisation qui adoptent des stratégies de recherche imitant les mécanismes de la sélection
naturelle. De méme que les étres vivants ont leurs caractéristiques physiques codées dans leurs
genes, les algorithmes génétiques codent chaque séquence d'assemblage dans le génome d'un

individu virtuel.

Initialement, on part dun petit nombre de séquences d'assemblage générées

aléatoirement, mais toutes possibles. L'ordinateur fait ensuite les opérations suivantes :

- Reproduction : a chaque itération, il génére une nouvelle séquence A partir de
deux séquences parentes. La séquence générée aura peut-étre les pires
caractéristiques des deux parents, auquel cas elle sera oubliée par le programme.
Elle en aura peut-étre les meilleures, auquel cas nous nous serons rapprochés de

la solution optimale ;

- Chevauchement : apres la reproduction I’'ordinateur mélange certaines portions

des meilleures séquences filles entre elles. De nouveau si le résultat est pire, il
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sera aussi oublié. Sinon nous nous serons encore approchés de la meilleure

solution;

- Mutation : le programme modifie aléatoirement certaines séquences. Le but est
d'éviter d'échouer dans des optimums locaux (au cas ol certaines portions de la

meilleure séquence n'étaient pas présentes dans la population initiale).

Pour évaluer les séquences générées, il existe une fonction appelée « fonction
d’évaluation ». Cette fonction permet d’évaluer les séquences utilisées et de savoir si les
nouvelles séquences générées sont meilleures ou moins bonnes que les séquences d’origine,

selon une liste de critéres définis dans le programme.

Apres un certain nombre d'itérations, l'algorithme s'arréte et le meilleur individu trouvé

selon la fonction d’évaluation représente la séquence définitive.



L’algorithme fondamental des algorithmes génétiques est présenté ci-dessous.

Déparnt

Génération aléatoire de séauences

v

Fonction d'évaluation

Reproduction

I

Chevauchement

Mutation

Figure 1.10 : Algorithme génétique pour I’évaluation des séquences d’assemblage

Variantes

Senin et al. (2000) ont essay€é plusieurs méthodes. Iis ont entre autres :
- Remplacé complétement a chaque génération I’ancienne génération;

- Introduit des restrictions basées sur la ressemblance entre les individus.
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Fujimoto et Sebaaly (2000) ont introduit le concept de blocs. L'algorithme vérifie si les
meilleurs individus d'une génération peuvent étre composés de sous-assemblages avec un

opérateur de blocs ("block operator”™).

De Lit et al. (2001) comparent les individus en utilisant une méthode d'aide a la décision
multi - criteres appelée Prométhée II. L'utilisation de cette méthode évite de fusionner les
nombreux critéres techniques d’évaluation en une seule fonction d'évaluation, comme c'est

généralement le cas.

Enfin, Dini et al. (1999) ont réussi a aussi générer les séquences d'assemblage avec un
algorithme génétique. Le codage des génes n’est pas exactement le méme que dans les exemples
précédents. Les auteurs ont ajouté :

- Des geénes correspondant aux directions d’assemblage,

- Des genes correspondant aux outils utilisés pour tenir les composants instables.

Ces geénes ont permis d'évaluer les séquences en méme temps qu'elles étaient générées.
L’échantillon initial était constitué de suite d’opérations d’assemblage qui se sont ordonnées au

fil des itérations pour constituer des séquences d’assemblage faisables.

1-5 Conclusion

Il existe un trés grand nombre d’approches pour générer et évaluer les séquences
d’assemblage. Ces approches sont plus complémentaires que concurrentes car elles ont toutes

leurs avantages et leurs limites.

Pour faire avancer la recherche dans ce domaine, il nous a semblé intéressant de créer un
programme pour générer les séquences d’assemblage directement a partir du dessin

d’assemblage dans un logiciel de CAO répandu dans I'industrie.

Pour générer les séquences d’assemblage, nous avons choisi I’approche qui utilise les

matrices de contact et de translation pour les raisons suivantes :
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- L’algorithme de Ghosh et Gottipolu permet d’obtenir toutes les séquences
d’assemblage géométriquement possibles ;

- Il est trés facile 2 programmer, sans nécessiter de bonnes connaissances en
Génie Informatique (comme pour les systémes experts) ;

- Il permet d’identifier trés facilement les sous-assemblages intermédiaires qui
menent au produit final (voir explications au chapitre 3) ;

- Il permet de générer les séquences d’assemblage a partir de la géométrie des
solides directement (I’utilisation des connecteurs oblige I'utilisateur a les
identifier manuellement et le NDBG se borne aux composants polyhédriques).

La principale limite de I’algorithme est qu’il nécessite de longs temps de calculs lorsque

le nombre de composants augmente. Mais la puissance de calcul des ordinateurs étant toujours

plus importante, il me semble que cette faiblesse est négligeable par rapport a ses forces.

Pour évaluer les séquences trouvées, nous avons préféré I’approche « classique ». Nous
avons évalué toutes les séquences trouvées et nous laissons le soin a I'utilisateur de choisir la
séquence finale. Aussi plus longue en temps de calculs, cette approche permet cependant

d’obtenir a coup siir la meilleure séquence possible.
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CHAPITRE 2 —- ACQUISITION DES DONNEES
GEOMETRIQUES DE L’ASSEMBLAGE

2-1 Introduction

Comme nous I’avons déja dit plus haut, il nous a semblé utile d’obtenir les données
géométriques de I'assemblage de fagon entierement automatique pour générer les séquences

d’assemblage. Nous allons expliquer dans ce chapitre comment nous avons fait.

En méme temps que Polyassemblage fonctionne, le dessin d’origine de I’assemblage
doit étre ouvert avec une version de AutoCAD supérieure a 14 ou CATIA V5, sous Windows.
Polyassemblage est capable d'entrer en communication avec le logiciel de CAO et de lui faire
faire & peu pres tout ce qu'il veut :

- Obtenir des informations sur les propriétés des éléments géométriques (volume,

dimensions...),

- Rendre des objets visibles ou invisibles et les déplacer,

- Faire des tests de collision pour la recherche de chemins de désassemblage.

Ces fonctions sont nécessaires pour générer les séquences d’assemblage, et elles sont
déja programmées dans les logiciels de CAQO. Il nous a semblé important d’essayer de les utiliser

plutét que de développer des nouveaux outils indépendants.

Tout d'abord, nous allons présenter le fonctionnement «classique » des logiciels de
CAO, et expliquer pourquoi nous avons besoin d’automatiser certaines procédures. Ensuite nous
expliquerons les principales possibilités qui existent pour automatiser des procédures avec

AutoCAD et CATIA. Nous pourrons alors comparer ces possibilités et sélectionner la meilleure.
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2-2 Automatisation

2-2.1 Nécessité d’automatisation

Fonctionnement classique d'une application

Un logiciel est un programme qui regoit des informations et des ordres de l'utilisateur,
via le clavier et la souris. Il réagit en fonction de ces données et retourne un résultat a I'écran (ou

I'imprimante) comme indiqué sur la figure 2.1 :

Saisie de commandes Clics de la souris
au clavier
Logiciel
‘ Dessin a I'écran
"A:ﬁchag.e Résultat d'un calcul
d n C)'rfrlatlons Animation graphique
a l'écran

Figure 2.1 : Utilisation courante des logiciels de CAO

2-2.2 Nécessité d’automatisation

Il est extrémement utile de pouvoir automatiser la saisie de commandes et la lecture des
résultats. Pour I'exemple aussi simple que celui présenté sur la figure 2.2, le nombre de tests de
collision nécessaires a Polyassemblage pour générer les séquences d’assemblage se compte en

centaines, voire milliers... Impossible de tous les faire a la main !
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Figure 2.2 : Exemple simple d’assemblage analysé par Polyassemblage

Il existe plusieurs types d’approches pour automatiser des procédures avec Catia et
AutoCAD. Nous allons voir dans la partie suivante quels ont €té les critéres qui ont été pris en

compte pour développer Polyassemblage.

2-2.2 Critéres de sélection

Contraintes nécessaires

Quelle que soit la solution retenue, elle devait absolument répondre aux deux contraintes

suivantes :

- Capacité a envoyer une grande série d’ordres aux logiciels de CAO (en
particulier des ordres pour déplacer des solides dans I'espace) ;

- Capacité a lire et comprendre les indications émises par les logiciels de CAO.

Criteres pour choisir la meilleure approche
A partir du moment ou les deux contraintes ci-dessus sont respectées, il est possible de
développer un logiciel tel que Polyassemblage. Mais il existe de nombreux critéres de sélection

qui permettent de déterminer, 3 mes yeux, la meilleure approche.

Sur le plan technique, idéalement la solution retenue doit :
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- Etre compatible avec AutoCAD et Catia. Sinon, il faudra créer deux versions
différentes de Polyassemblage, I’'une adaptée a AutoCAD et I'autre a Catia ;
- Permettre d’obtenir des renseignements complémentaires pour améliorer les

performances du programme (comme la taille des solides, leur nom, etc.) ;

Pour faciliter le travail des utilisateurs, il faut de plus :

- Que le résultat soit facilement compréhensibles par I’ utilisateur (représentation
graphique disponible, logiciel facile d’ utilisation, etc.) ;

- Que [’utilisateur puisse utiliser Polyassemblage sans connaitre nécessairement

bien les logiciels de CAO et le langage de programmation utilisé.

Enfin, pour que le logiciel soit facile a développer et 4 améliorer par la suite, nous
préférons utiliser un langage de programmation facile a utiliser, bien adapté a la conception

logicielle et bien adapté a la « communication » avec les logiciels de CAO.

2-3 Revue des outils disponibles

2-3.1 Automatisation d’AutoCAD

Les macros

Les macros sont des outils simples qui existent avec la plupart des logiciels (de CAO ou
non). Elles permettent de répéter une suite d’opérations de maniére automatique. Le probleme
est que la suite des opérations est toujours la méme. La macro ne peut pas s'adapter aux cas
particuliers comme peut le faire un langage de programmation et ses possibilités sont trés

limitées.
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AutoLISP

AutoLISP est un langage de programmation qui dérive de LISP. Il a été mis au point
spécialement pour AutoCAD et existe depuis la version 10. Avec l'arrivée d’ AutoCAD 2000,
AutoLISP est devenu Visual LISP mais le langage lui-méme est resté a peu prés inchangé. La

principale différence est que I'environnement de programmation a été rendu plus visuel.

AutoLISP, comme LISP est un langage basé sur les listes. Il est trés bien adapté a
AutoCAD. Par exemple un point peut étre stocké dans une unique variable constituée de la liste

des 3 coordonnées (X, Y, Z). Ci-dessous se trouvent deux exemples de code AutoLISP.

Création du point pt de coordonnées (X, Y, Z) :
(setq pt (list X Y 2))

La ligne suivante appelle la commande move de AutoCAD pour déplacer element selon
le vecteur défini par l'origine et le point pt :
(command "move" element "* "0,0,0" pt)

Les routines écrites en AutoLISP sont appelées depuis AutoCAD, au méme titre que
n‘importe quelle autre fonction. D’ailleurs parmi les fonctions existantes plusieurs sont

programmées dans ce langage.

AutoLISP est trés utile pour personnaliser des fonctions d’AutoCAD, ou en créer de
nouvelles. Il aurait été trés bien adapté pour toute la partie acquisition de données de
Polyassemblage. Mais il est trés peu pratique a utiliser dés qu'on souhaite développer un
programme complexe comme celui pour générer des séquences d’assemblage. Par exemple la

boucle for...next n'est méme pas définie en AutoLISP !

ActiveX

Depuis la version 14, il existe dans AutoCAD une interface nommée ActiveX (la

technologie ActiveX est plus ancienne et portait auparavant le nom de OLE). Cette interface
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fournit un mécanisme pour permettre la manipulation d’objets AutoCAD par des programmes
appartenant au « monde extérieur ». Elle met ces objets a la disposition d’autres applications,

comme I’indique la figure ci-dessous extraite du menu d’aide d’ AutoCAD.

Word

VBA

AutoCAD

VBA Excel

VBA

Objets d’ AutoCAD exposés par ActiveX

Application AutoCAD
Dessin ouvert

Figure 2.3 : Applications compatibles avec la technologie ActiveX

Les objets sont la base de toute application qui utilise ActiveX. Chaque objet exposé
représente une partie d’AutoCAD. Il y a de nombreux types d’objets dans I'interface ActiveX
d’AutoCAD :

- Les objets graphiques tels que les lignes, les arcs, les solides et les cétes;

- Les paramétres de style comme les types de ligne ou les styles des textes;

- Les structures graphiques tels que les calques, les groupes et les blocs;

- Les types d'affichage du dessin comme les différentes vues;

- Le fichier ouvert et I’application AutoCAD sont aussi considérés comme des

objets.

. La liste compléte de ces types d’objets et leur hiérarchie pour AutoCAD se trouvent dans

I’annexe 1.
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2-3.2 Automatisation de CATIA

CATIA ne posséde pas d’interface ActiveX comme AutoCAD, mais propose aussi un
portail d’automatisation. Comme indiqué dans le menu d’aide de CATIA, il est donc aussi

possible de programmer des procédures d’automatisation entre autres :

- En Basic Script lorsque CATIA est installé€ sur une station UNIX
- En Visual Basic lorsque CATIA est installé sous Windows.

De méme que pour AutoCAD (vois ci-aprés), la fonction qui capture I’application
CATIA sous Windows est la suivante :
Set CATIA = GetObject( , "CATIA.Application”)
Set document = CATIA.ActiveDocument
Set produit = document.Product
Set dessin_assemblage = produit.Products
Set solide = dessin_assemblage.ltem(i)

L’objet document représente le dessin ouvert. L’objet produit représente le produit
racine du dessin, et I’objet nommé dessin_assemblage représente I’ensemble des composants qui
constituent ce produit. L’objet solide tel que défini ci-dessus représente 1'élément qui se trouve a

la i*™ position dans I’arbre qui représente la structure de produit.

Comme AutoCAD, CATIA expose donc un certain nombre d’objets au monde extérieur
a travers son portail d’automatisation. Ces objets permettent de retrouver la plupart des fonctions
de CATIA, mais pas toutes. Il existe par exemple une fonction qui permet d'envelopper les
solides dans une « Bounding Box » (cette notion est décrite plus précisément dans le chapitre 4).

Mais a notre connaissance, il n’est pas possible de I’automatiser.

Dans I’annexe | se trouve aussi une liste générale des types d’objets exposés par CATIA

au « monde extérieur ».
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2-4 Comparaison et sélection

2-4.1 Sélection pour AutoCAD

Comme indiqué plus haut, les macros et le langage AutoLISP ne sont pas bien adaptés
au développement de Polyassemblage. En particulier, AutoLISP ne peut pas s’intégrer a un
langage de programmation plus général. Nous ne pourrions donc pas développer d’application
vraiment efficace et pratique a utiliser. Nous allons donc discuter des différents langages de

programmation qui permettent d’ utiliser I’interface ActiveX d’AutoCAD.

Word VBA, Excel VBA

Ces deux langages sont intégrés 2 Word et Excel et sont trés pratiques a utiliser
lorsqu’on cherche a faire interagir de maniére automatique ces deux logiciels avec AutoCAD. Ce

n’est pas notre cas, donc nous n’allons pas développer plus en détails cette approche.

VBA (Visual Basic for Application) pour AutoCAD

Microsoft VBA est un environnement de programmation qui fournit de riches
possibilités pour développer de nouvelles applications (similaires a celles de Visual Basic). La
principale différence réside dans le fait que VBA « roule » dans le méme espace qu’ AutoCAD,
ce qui fournit un environnement de programmation trés rapide d’exécution lorsque VBA et
AutoCAD doivent interagir. VBA permet aussi une trés bonne intégration avec d’autres
applications, comme Word ou Excel, au point qu'AutoCAD pourrait méme controler ces

applications !

VBA aurait été un excellent langage de programmation pour ce projet. Cependant deux

aspects de VBA sont génants pour nous :
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VBA est basé sur certaines applications Windows, et CATIA n’en fait pas
partie. Nous n’aurions donc pas pu écrire un programme en VBA exécutable
depuis CATIA.

VBA est développé a I'intérieur &’ AutoCAD et est lancé depuis AutoCAD. Il
nous semble important d’avoir un programme indépendant des logiciels de
CAQO, en particulier pour les phases de génération et d’évaluation des séquences

qui ne les font a peu prés plus intervenir.

Delphi et Java

Ce deux langages de programmation sont relativement peu connus par la plupart des

étudiants de Génie Industriel, dont moi-méme. II me semblait important de développer

Polyassemblage dans un langage de programmation répandu. Ainsi, le code développé sera

facile 4 comprendre et a améliorer pour les futurs étudiants qui participeront aux

développements futurs du logiciel.

C++

C++ aurait pu étre un excellent langage de programmation pour Polyassemblage. Il est

tres performant, trés répandu et tres bien connu de tous les programmeurs. Mais il a, dans notre

cas, deux gros défauts :

Il est beaucoup plus difficile de développer un affichage graphique des résuitats
en C++ qui soit accueillant, que avec un autre langage de programmation tel que
Visual Basic. Avec ce dernier, par exemple, I'affichage des fenétres et des
barres de menus se fait entiérement automatiquement et le concepteur du
logiciel peut de consacrer aux problémes liés a sa spécialité : la génération des
gammes d’assemblage.

Il est aussi beaucoup plus difficile d’utiliser I’interface ActiveX avec le C++. Le
langage de base de ActiveX est VBA. Ce langage est trés proche de Visual
Basic, et la transposition de VBA en Visual Basic est trés simple, contrairement

a la transposition de VBA en C++.
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Visual Basic

Comme wvu sur la figure 2.3, les objets d’AutoCAD sont aussi disponibles pour les
programmes écrits en Visual Basic. 1l est donc possible de créer un programme en Visual Basic
parfaitement autonome qui, lorsqu'il en a besoin, va pouvoir agir sur les objets exposés par
AutoCAD.

Comme indiqué dans le menu d’aide d’AutoCAD, la fonction en Visual Basic qui

« capture » I’application AutoCAD est :
Set Acad = GetObject( , "AutoCAD.Application”)

L’objet Acad défini ci-dessus représente 1"application AutoCAD au complet. A travers
lui, le programme accéde i tous les objets du dessin :
Set document = acad.ActiveDocument
Set dessin_assemblage = document.ModelSpace
Set element = dessin_assemblage(0)

L’objet document représente le document ouvert; dessin_assemblage représente
I’ensemble des éléments du dessin. Enfin element représentera le premier élément du dessin (une

ligne, une surface ou un solide).

Avec ce systeme, le nouveau mode d’utilisation d’AutoCAD est celui indiqué sur la

figure ci-dessous.
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Saisie de commandes Clics de la souris
au clavier

\/

AutoCAD —®| Programme écrit en
4+— Visual Basic

o T

Affichage
d'informations
al'écran

Figure 2.4 : Fonctionnement d’ AutoCAD avec ActiveX

AutoCAD peut ici aussi afficher des informations a I'écran (comme dans la figure 2.1),

mais il ne le fera que si le programme en Visual Basic le lui demande.

Cette solution est moins efficace du point de vue temps de calculs qu’un programme
écrit en VBA. Mais nous avons choisi de développer Polyassemblage en Visual Basic car ses

autres avantages pour nous sont plus importants.

2-4.2 Sélection pour Catia

Vu qu'on souhaite de préférence avoir le méme programme pour Catia et pour
AutoCAD, et que I'interface d’automatisation de Catia sous Windows ne fonctionne qu’avec
Visual Basic, nous n’avons pas d’autre choix que d’utiliser ce langage pour la programmation de

Polyassemblage. C’est d’ailleurs une solution trés avantageuse pour nous.

2-4.3 Les objets avec la programmation en Visual Basic

Cette partie explique de maniére détaillée comment sont structurés les objets en utilisant
le langage Visual Basic et comment ils doivent étre utilisés. Elle met aussi en évidence des

différences importantes qu’il y a parfois entre CATIA et AutoCAD dans ce domaine. Il m’a
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semblé important de I'intégrer dans ce chapitre car ce domaines de I'informatique n’est pas

toujours bien connu des non-informaticiens.

Propriétés et méthodes

Chaque objet est associé a des propriétés et des méthodes. Les propriétés décrivent les
attributs des objets considérés, et les méthodes sont des actions qui peuvent étre effectuées sur
ces objets. Dés qu’un objet est créé ou identifié, il est donc possible de le « consulter » ou le

modifier selon ses besoins.

Figure 2.5 : Liste des méthodes et des propriétés des objets de la classe 3DSolid de AutoCAD

Certaines propriétés sont accessibles seulement en lecture (volume d’un solide par
exemple), et d’autres peuvent étre modifies (couleur de trait, style d’affichage, etc.). Les
méthodes sont constituées de deux groupes : les fonctions (functions) et les sous-routines (subs).

Les premiéres renvoient un résultat (nombre, booléen, solide, etc.) mais pas les secondes.

Dans AutoCAD, voici quelques propriétés et méthodes pour un élément nommé solide
de la classe 3DSolid :
- Parmi les propriétés :
e La couleur : solide.Color = 5 change la couleur de I'objet solide a la couleur
numéro 5;
e La visibilité : solide.Visible = True rend solide visible;
e Le volume : solide.Volume retourne le volume de solide.
- Parmi les méthodes :
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e solide.Move (pt_départ, pt_arrivée) est la sub qui déplace solide.
o solide.Checkinterference(autre_solide, True) est la fonction qui retourne le

solide qui représente I’intersection de solide et autre_solide.

Il est aussi possible d’agir 2 un niveau plus général. Dans CATIA, voici quelques
propriétés et méthodes pour I’ objet document défini plus haut :
- Parmi les propriétés :
e Document.FullName indique le nom du dessin ouvert;
o Document.Saved indique si le dessin a été sauvegardé.
- Et un exemple de méthode :

o Document.Save effectue la sauvegarde du dessin.

La frontiére entre propriétés et méthodes est parfois floue car une propri€té pourrait
aussi bien étre programmée comme une méthode et vice versa. De méme certaines sous-routines
pourraient étre programmeées comme des fonctions et inversement. Le paragraphe suivant illustre
ce phénomene en comparant des structures d'objets différentes qui permettent d’obtenir le méme
résultat avec CATIA et AutoCAD.

Comparaisons entre CATIA et AutoCAD

AutoCAD est un logiciel de CAO simple a utiliser et il n’est pas dédié a la modélisation
solide en particulier. Les objets exposés sont donc plus basiques et assez simples a utiliser. Par
contre CATIA est un logiciel de CAO dédié a la modélisation solide. Il est trés puissant et
posséde un éventail de fonctions extrémement étendu. La structure des objets exposés est

nécessairement plus complexe.

Les fonctions présentées ci-dessous ont toutes été obtenues des menus d’aide de CATIA

et AutoCAD.

Déplacement de solides
Avec AutoCAD la méthode est :
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solide.Move (pt_départ, pt_arrivée)

Avec CATIA :
solide.Move.Apply vecteur_deplacement

Pour déplacer des éléments dans le dessin, la différence est minime. Mais pour faire un

test d’interférence, la différence est plus importante.

Test d’interférence
Avec AutoCAD, comme vu précédemment la méthode est :

solide.Checkinterference(autre_solide, True)
Cette fonction crée un nouveau solide qui est I'intersection des deux. Si ce solide est

vide alors il n’y a pas d’interférence entre solide et autre_solide, sinon il y en a une.

Avec CATIA, nous devons d'abord créer un nouvel objet de classe Clash (collision).
Nous devons ensuite définir ses propriétés, et utiliser une méthode pour en faire I’analyse. La
méthode pour créer I'objet rest_interference de type Clash et le rajouter a la liste des objets de
type Clash est :
Set I_interference = produit. GetTechnolegicalObject(*Clashes”)
Set test_interference = liste_interferences.Add
Les propriétés de départ sont :
test_interference.FirstGroup = solide
test_interference.SecondGroup = autre_solide
test_interference.ComputationType =

catClashComputationTypeBetweenTwo

Méthode qui lance I’analyse :
test_interference.Compute
Propriété qui indique la collection des conflits identifiés :
Set Conflits = Test_interference.Conflicts
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Si la collection des conflits est vide, alors les solides ne se touchent pas. Si il y a des
conflits et si la valeur de ces conflits est nulle, alors il y a juste contact entre les deux solides. Si
elle n’est pas nulle, alors il y a une véritable interférence :

if Conflicts.Count > 0 then
‘ Présence de conflits
if Conflicts.ltem(1).Value>0 then
‘ Interférence
else
* Simple contact

2-5 Conclusion

Plusieurs possibilités existent pour automatiser des procédures avec CATIA et
AutoCAD. Seule la programmation en Visual Basic permet d'atteindre tous les objectifs fixés car
elle est trés performante, autant pour I'acquisition des données géométriques que pour la
programmation du reste du logiciel. De plus elle est compatible avec les deux logiciels de CAO
choisis pour le projet, méme si I’interface a Catia ou AutoCAD est complétement différente, et

elle permet d’atteindre tous les objectifs que nous nous sommes fixés.

Le principal probléme est que la maniere d’utiliser les différentes fonctions de Catia et
AutoCAD en utilisant les objets n'a rien a voir avec l'utilisation conventionnelle de ces deux
logiciels, et elle est trées peu documentée. Ceci m’a causé quelques difficultés lors du

développement de Polyassemblage.

Nous allons décrire dans le chapitre suivant I’algorithme qui permet de générer toutes les
séquences d'assemblage possibles d’un produit. Nous saurons alors exactement quelles données

sont nécessaires pour générer ces séquences et nous pourrons les calculer.
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CHAPITRE 3 - GENERATION DES SEQUENCES

D’ASSEMBLAGE

3-1 Introduction

La théorie présentée dans cette partie est basée sur I'algorithme de Ghosh et Gottipolu
(1995). Elle permet de générer toutes les séquences d'assemblage d’un produit connaissant les
chemins d'assemblage pour toutes les paires de composants. Ces chemins doivent étre rectilignes

etselonles axes X, YetZ.

En 1996 I'algorithme a été amélioré par Aguilar pour permettre de générer des

séquences a partir de directions d’assemblage quelconques du plan.

Enfin, cet algorithme a été complété dans le cadre de ce projet pour :

- Permettre la génération de séquences a partir de directions d'assemblage
quelconques;

- Offrir plus de détails sur les séquences trouvées. L’algorithme de Ghosh et
Gottipolu ne définit les séquences d’assemblage que par I'ordre d’assemblage

des composants. Nous avons rajouté la notion de direction d’assemblage.

3-2 Algorithme de Ghosh et Gottipolu

3-2.1 Données nécessaires

Les données nécessaires pour pouvoir générer les séquences sont :
- Les relations de contact entre toutes les paires de composants (stockées dans les

matrices de contact),
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- Les directions de désassemblage possibles pour tous les composants (stockées

dans les matrices de translation).

Ces données peuvent étre acquises de maniére automatique avec un logiciel de CAO (tel
que PADL - 2, utilisé par Ghosh et Gottipolu), manuellement (moyen utilisé par Aguilar), ou
calculées directement a partir du dessin de I'assemblage dans AutoCAD ou CATIA. Cette
derniére méthode est la méthode développée dans ce projet et elle est décrite dans le chapitre 4.

Nous allons illustrer le calcul de ces matrices avec I'exemple de la figure ci-dessous.

~
K S
/

Figure 3.1 : Assemblage pour illustrer I'algorithme de génération des séquences

L'axe X est I'axe de la tige et Z est I’axe vertical. Les différents composants de

I’assemblage sont :

N

w0 8

Base Dessus Tige Bouchon_droit  Bouchon_gauche

Figure 3.2 : Liste des 5 composants de I’assemblage

Les matrices de contact

Les matrices de contact permettent de savoir quels composants sont en contact avec
quels autres dans l'assemblage. Il est nécessaire de connaitre ces données, car lors de

I'assemblage on ne peut ajouter que des composants qui ont un contact avec l'assemblage
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principal. L’algorithme de Ghosh et Gottipolu prend d’ailleurs pour hypothése que cette
condition est suffisante. Nous supposons que s'il y a un contact alors ce contact permettra au
composant de tenir sur I’assemblage. Cette condition n’est bien siir pas toujours vérifiée dans la

réalité, mais le programme ne fonctionne que dans ce cas la.

Pour chaque paire de composants, la valeur de contact est | s'il y a contact, O sinon.

Evidemment pour deux composants comp, et comp, on a C(comp, comp,) = C(comp, comp,).

Les matrices de contact pour I’exemple choisi sont :
C(Base, Dessus) = 1
C(Base. Tige) = 1
C(Base, Bouchon_gauche) = 0
C(Base, Bouchon_droit) = 0
C(Dessus. Bouchon_gauche) = 0
C(Dessus. Bouchon _droit) = 0
C(Dessus, Tige) = 1
C(Tige. Bouchon_droit) = |
C(Tige. Bouchon_gauche) = |
C(Bouchon_gauche, Bouchon_droit) = 0

Les matrices de translation

Les matrices de translation permettent de connaitre les directions de désassemblage
possible pour tous les composants pris deux par deux. Les directions essayées sont les 6

directions principales de l'espace : X+, X-, Y+, Y-, Z+, Z-.
T(comp , comp) = (libre_X+, libre_X-, libre_Y+. libre_Y-, libre_Z+. libre_Z-)

La valeur libre_X+ sera | si comp, peut se désassembler de comp, selon la direction X+,

0 sinon. De méme pour les autres valeurs. Nous obtenons pour notre exemple :
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T(Base, Dessus) = (0, 0, 0,0, 1, 0)

T(Base, Tige) = (1, 1, 0, 0, 0, 0)

T(Base, Bouchon_gauche) = (0. 1. 1, 1. 1. 1)

T(Base, Bouchon droit) = (1.0. 1, 1. 1. 1)

T(Dessus, Bouchon_gauche) = (0. 1, 1, 1. 1. 1)
T(Dessus, Bouchon_droit) = (1.0, 1. 1. 1. 1)
T(Dessus, Tige) = (1, 1, 0. 0. 0. 0)

T(Tige, Bouchon_droit) = (1, 0. 0. 0. 0. 0)

T(Tige. Bouchon_gauche) = (0. 1. 0. 0. 0. 0)
T(Bouchon_gauche, Bouchon _droit) = (1. 0. 1. 1. 1 1)

Comme avec la matrice de contact, il existe ici aussi une symétrie entre T/comp,. comp,)

et T(comp, comp) :

T(comp,,comp ) =(a,b,c,d,e, f)=> T(comp,,comp,) = (b,a.d,c, f .e)

3-2.2 Génération des séquences d'assemblage

Cette section décrit un algorithme systématique qui traduit les matrices de contact et de
translation en séquences d'assemblage complétes. L'idée générale est de partir de paires de
composants et de leur ajouter des composants ou des sous-assemblages déja formés au fur et a
mesure, jusqu'a obtenir I'assemblage final. Si les composants sont assemblés un par un, la
séquence est dite linéaire. Si on ajoute au moins une fois un sous-assemblage déja formé de

plusieurs composants, la séquence est dite non linéaire.

L'algorithme se divise en deux procédures, qui ont €té décrites par Ghosh et Gottipolu
(1995) selon cette structure :

Procédure | : génération de toutes les paires de composants.

Cette étape est relativement simple. Pour chaque composant comp, et comp,, si C(comp,.

comp,) =1 alors on est sir qu'on peut créer le sous-assemblage (comp, comp,.
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Avec notre exemple nous obtenons a la fin de cette premiére procédure les paires (Base,

Dessus). (Base. Tige). (Dessus, Tige). (Tige. Bouchon_droit) et (Tige, Bouchon_gauche).

Procédure 2 : génération des sous-assemblages de niveau supérieur.

Dans cette procédure on cherche a ajouter un autre composant ou un sous-assemblage
déja formé a tous les sous-assemblages existants :

Etape | : pour pouvoir ajouter un nouveau composant ou un sous-assemblage, il doit

avoir au moins un contact avec le sous-assemblage de départ. Voici l'algorithme qui fait ce test

Prendre une paire de composants : un par
sous-assemblages

v
/ Sont-ils en contact? /
yd Oui
l Non

Y a til d’autres paires a
tester?

de contact :

Oui

Non

Figure 3.3 : Algorithme pour déterminer s'il y a un contact entre deux groupes de composants

La présence d'un contact est une condition nécessaire, mais pas suffisante. Par exemple
si nous considérons la paire (Base, Tige). nous ne pourrons pas lui assembler le composant
Dessus. L'étape 2 fait le test pour savoir si I'assemblage est finalement possible :

Etape 2 : I'assemblage est possible s'il existe une direction d'assemblage libre pour les

deux groupes de composants a assembler. Il faut donc qu’il existe une direction telle que pour
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chaque composant du premier assemblage, et pour chaque composant du second, leur fonction

de translation ait la valeur 1 pour la direction spécifiée.

L'algorithme qui fait ce test est le suivant :

Choisir une des 6 directionsd  [€

v

Prendre une paire de composants : un par
» sous-assemblage
‘ O
Le désassemblage est- Y a-t-il d’autres
il possible selon a? directions a tester?
Non
l Oni Non
Y a t il d’autres paires a
Oni tester?

Assemblage
possible selon d

Assemblage
impossible

Figure 3.4 : Algorithme pour déterminer s'il est possible d'assembler deux groupes de
composants

La procédure 2 se poursuit tant que toutes les combinaisons possibles n’ont pas été

essayées. L’algorithme général du programme est indiqué sur la figure ci-dessous :
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Procédure 1 : Création des paires de composants

v

Choisir un sous-assemblage

v

Choisir un composant extérieur au sous-assemblage |q

v

/ Etape 1 : Sont-ils en
Non / contact?
l Oui

Etape 2 : Sont-ils
Non assemblables?

‘Oui

Création du nouveau sous-assemblage

v

Y-a-t-il d’autres composants?
l Non
/ Y-a-t-il d’autres sous-assemblages? /4-

Non Oui

Oui

Figure 3.5 : Algorithme général de I’algorithme de Ghosh et Gottipolu

Nous ne gardons en mémoire finalement que les sous-assemblages complets, et leur

séquence constitue une séquence d'assemblage possible pour le produit.
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3-3 Améliorations proposées par Aguilar

Aguilar a élargi le champ d'action de l'algorithme précédent. Il a programmé la
génération des séquences d'assemblage avec des directions «cylindriques », c'est a dire des

directions quelconques du plan XY, YZ ou XZ.

Vue 3D Vue de dessus

Figure 3.6 : Exemple extrait de Aguilar (1996)

Aguilar a proposé de faire tourner le repére principal autour de I'axe X, Y ou Z pour que
les composants soient toujours désassemblés selon un axe principal. Cette opération permet de se
ramener toujours au cas développé par Ghosh et Gottipolu. Dans I’exemple de la figure 3.6 le

repére va devoir tourner autour de Y, pour que C et D puissent étre désassemblés selon les

directions X- et Z-.
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Tableau 3.1 : Fonctions de contact et de translation avec des composants cartésiens et

non cartésiens
Paire Anglede | Fonction | Fonction
rotation contact | translation

AB - 1 111110
AC) 45 1 010000
A(D) 60 0 111011
B(C) 45 0 it
B(D) 60 1 000001
(CXD) 60 0 RRRRN
BA -- i 111101
(OA 45 1 100000
(D)A - 0 110111
(C)B - 0 111111
(D)B 60 1 000010
(DXO) 45 0 1t

Dans le tableau' ci-dessus, les composants « non cartésiens » (ceux dont la direction
d’insertion n’est pas selon un axe principal) sont présentés entre parenthéses. Le composant qui

est a droite de chaque paire est toujours celui qui bouge.

Comme l'indique Aguilar, la fonction de translation d'une paire de composants (comp,
comp,) n'est plus forcément symétrique avec celle de la paire (comp, comp,). L'algorithme de
génération des séquences d'assemblage est aussi Iégérement plus complexe, car la
programmation n'est pas la méme selon qu'on assemble des composants « cartésiens » (comme

A ou B) avec des composants « non cartésiens » (comme C ou D) et inversement.

1. L'ordre des chiffres pour les fonctions de translation différe ici de ceux indiqués dans le mémoire de
Aguilar. La raison est qua l'origine Ghosh et Gottipolu ont défini la fonction de translation par Ticomp, comp,) =
dibre_X+. libre_Y+. libre_Z+. libre_X-, libre Y-, libre_Z-). Pour simplifier la programmation de la recherche de
directions d’assemblage. nous avons été amenés 3 modifier Fordre des paramétres.
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3-4 Autres modifications

Dans cette partie, nous proposons plusieurs modifications de I’algorithme décrit ci-

dessus pour le rendre mieux adapté a la programmation.

3-4.1 Simplification de I'algorithme

Au début, I'algorithme de Ghosh et Gottipolu génére toutes les patres de solides qu’il est
possible d’assembler deux a deux. C’est la procédure I. Ensuite, au cours de la procédure 2, il
construit les sous-assemblages de taille supérieure en combinant ces paires avec d’autres
composants. Nous n’avons pas programmé la procédure 1. La procédure 2 construit les sous-

assemblages de taille supérieure en combinant directement les éléments pris individuellement.

3-4.2 Génération des séquences avec des directions
d'assemblage quelconques

Dans notre projet, le programme n’a pas besoin de faire de rotation du repére autour d'un
axe principal pour se ramener a I'algorithme de Ghosh et Gottipolu. Au lieu de ne travailler
qu’avec les directions X, Y et Z (comme précédemment), le programme va étre capable de
travailler avec n’importe quelle direction, du moment qu’elle permet d’assembler des

composants.

L'algorithme de génération des séquences reste inchangé. Seule la liste des directions a

essayer est modifiée dans I’algorithme de la figure 3.4. Cette méthode est illustrée ci-dessous :

Figure 3.7 : Assemblage de la figure 3.1 réorienté dans une direction quelconque
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L’ensemble des composants de I'assemblage de la figure 3.7 peut s’assembler selon

deux directions :
- L’axe Z pour désassembler Dessus et Base (La direction Z+ pour désassembler

Dessus de Base, et Z- pour désassembler Base de Dessus);
- L’axe d’insertion de la tige : cet axe forme un angle de 30° avec I'axe X dans le
plan XY. Il est défini par le vecteur (cos 30, sin 30, 0), soit approximativement

(0.866, 0.5, 0).

Les directions sont enregistrées sous la forme d’un vecteur. Nous expliquerons plus loin

comment le programme les identifie automatiquement. L’ensemble des directions avec

lesquelles il travaille est :

Tableau 3.2 : Liste des directions de désassemblage

Direction n° X Y Z
1 0 0 !
2 0 0 -1
3 0.866 0.5 0
4 -0.866 05 0

Les fonctions de translation ont presque la méme définition que en II-2.1 :

Ttcomp . comp,) = (libre_dirl, libre_dir2, libre_dir3, libre_dir4. libre_dir3.
libre_dir6...)

La valeur libre_dirl sera | si comp, peut se désassembler de comp, selon la direction
n°l, 0 sinon. De méme pour les autres valeurs. Nous obtenons pour notre exemple, ol seulement

4 directions ont €t€ utilisées :
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T(Base, Dessus) = (1, 0, 0,0)

T(Base, Tige) = (0, 0, 1, 1)

T(Base, Bouchon_gauche) = (1, 1, 0, 1)

T(Base, Bouchon_droit) = (1, 1, 1, 0)

T(Dessus, Bouchon_gauche) = (1, 1, 0, 1)
T(Dessus, Bouchon_droit) = (1, 1. 1. 0)
T(Dessus. Tige) = (0, 0, 1. 1)

I(Tige. Bouchon_droit) = (0. 0, 1, 0)

T(Tige, Bouchon_gauche) = (0, 0, 0. 1)
T(Bouchon_gauche. Bouchon_droit) = (1, 1, 1. 0)

Le programme ne tient pas du tout compte des axes X et Y, car ils ne permettent
I’assemblage d’aucun composant. La mani¢re dont le programme identifie les directions 1, 2, 3

et 4 comme bonnes directions d’assemblage est décrite dans le chapitre 4.

Ici la symétrie entre T(comp, comp,) et T(comp, comp, est conservée, nous n’avons pas
besoin de recalculer les fonctions de translation pour les paires symétriques. Ceci représente un
important gain de temps lors de I'exécution du programme, car le calcul des matrices de

translation est une opération trés longue (voir exemples au chapitre 7).

Le nombre de directions d’assemblage est born€. Dans le cas le plus défavorable, chaque

composant amene deux nouvelles directions, et le nombre total de directions d’assemblage sera :

N <2 x(n,. , oo —=1)

directions _

-.a

La génération des séquences se fera exactement selon le méme principe qu’indiqué
précédemment. Pour assembler deux groupes de composants, le programme vérifiera :

- s’il existe un contact entre les deux groupes,

- s'il existe une direction d’assemblage parmi les 4 qui permet d’assembler les

deux groupes.
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3-4.3 Application de critéres pour éviter I’explosion du nombre
de séquences

Pendant les différents tests, nous nous sommes rendus compte que le programme arrive
a trouver des dizaines de milliers de séquences pour certains assemblages. Dans ces cas, les
calculs ont été longs (lh pour générer 24000 séquences) et n’apportent pas grand-chose :
I’utilisateur connait souvent a ! 'avance certains des critéres qu’il est siir d’appliquer, et la plupart

des séquences générées I'ont été inutilement.

Il nous a donc semblé utile d’appliquer certaines contraintes dés la génération des
séquences. Aguilar en avait déja proposé quelques-unes (forcer le composant par lequel la
séquence débute, forcer la premiére liaison, etc.). Dans ce projet, nous avons programmé des

contraintes basées sur la géométrie des composants.

Séquences linéaires et séquences non linéaires

L’utilisateur peut choisir dés le départ de ne générer que des séquences lindaires. Les
avantages et les désavantages d’avoir des séquences non linéaires sont évoqués en détails dans le

chapitre 5.

Si I'utilisateur choisit a ce niveau de ne générer que des séquences linéaires (c’est le
choix fixé par défaut par le logiciel), alors la génération des séquences d’assemblage sera

beaucoup plus rapide.

Par contre, il existe des cas pour lesquels il n’existe pas de séquence d’assemblage
linéaire. L’utilisateur sera obligé de générer les séquences d’assemblage non linéaires pour

trouver des bonnes séquences d’assemblage. La figure ci-dessous en montre un exemple :
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Composant 2

Composant 3

Composant 4

Figure 3.8 : Cas ol il est nécessaire de générer les séquences non linéaires

Pour assembler ces 4 composants, nous sommes obligés d’assembler les composants 1 et

2 d’une part, et les composants 3 et 4 d’autre part avant de les assembler entre eux.

Débuter 'assemblage par I'élément le plus volumineux

Cette option n’est pas activée par défaut : I'utilisateur doit lui-méme I"activer s’il le
souhaite. Si elle est activée, le programme ne générera que les séquences qui commencent par

I’élément le plus volumineux du dessin.

Interdire 'assemblage de composants depuis la direction Z-

Cette option n’est pas non plus activée par défaut. L’ utilisateur doit lui-méme I'activer
s’il le souhaite. Si elle est activée, le programme ne générera que les séquences d’assemblage
pour lesquelles aucun composant n’est assemblé selon la direction Z- (direction qui, en pratique,

représente le bas).

Les assemblages qui se font selon cette direction sont souvent peu pratiques a réaliser
car:
- les composants ainsi ajoutés sont instables tant qu'ils ne sont pas fixés

définitivement;
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- lorsque I’opération est manuelle, I'opérateur doit se mettre dans une position
inconfortable (téte levée vers le haut, dos courbé) ou avec peu de visibilité sur

ce qu’il fait.

3-4.4 Génération de séquences en tenant compte des directions
d’assemblage

Avec I'algorithme de Ghosh et Gottipolu, seul l'ordre d’assemblage des composants
intervient. Lorsqu’un méme composant peut étre assemblé dans plusieurs directions différentes,
cela n’apparait pas dans la séquence finale. Cependant la direction d’insertion des composants

est importante car elle a une grande influence sur I’efficacité globale de la séquence.

Dans toute la suite du projet, nous tiendrons compte de la direction d’assemblage des
composants : deux séquences pour lesquelles I'ordre d’assemblage est le méme mais un
composant peut s’insérer dans deux directions différentes sont deux séquences différentes. Par
exemple, la séquence (Base, Dessus, Tige, Bouchon_droit, Bouchon_gauche) correspond en fait
a deux séquences :

1) (Base, Dessus-1, Tige-3, Bouchon_droit-3, Bouchon_gauche-4)

2) (Base, Dessus-1, Tige-4, Bouchon_droit-3, Bouchon gauche-+)

L’algorithme de la figure 3.4 est légérement modifié. Auparavant nous avions juste
besoin de savoir si nous pouvions assembler deux groupes de composants entre eux. Maintenant,
nous avons besoin de connaitre toutes les directions selon lesquelles les deux groupes de

composants peuvent s’assembler entre eux.

Au lieu de s’arréter dés qu’une direction d’assemblage est trouvée, le programme doit

donc essayer |I'ensemble des directions connues.
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Choisir une direction d ¢

v

Prendre une paire de composant : un par

> sous -assemblage
Oni
Le désassemblage est- / Autres directions
il possible selon d? / N a tester?
on

Non

Y at il d’autres paires a
Oni tester?
l Non
Assemblage possible pour les 2 groupes '

selon d

Figure 3.9 : Algorithme pour déterminer I’ensemble des directions d’assemblage possibles pour
deux groupes de composants

3-5 Conclusion

Nous avons présenté dans ce chapitre un algorithme qui permet de générer toutes les
séquences d’assemblage d’un produit, compte tenu d’informations trés simples : les matrices de
contact et de translation pour chaque paire de composants de I'assemblage, et la liste des
directions d’assemblage possibles. Nous allons présenter dans le chapitre suivant comment
obtenir ces données directement a partir de la géométrie de I'assemblage dans CATIA ou
AutoCAD.
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CHAPITRE 4 - CALCUL DES MATRICES DE
CONTACT ET DE TRANSLATION ET RECHERCHE
DE NOUVELLES DIRECTIONS D’ASSEMBLAGE

4-1 Introduction

Comme vu dans le chapitre 3, le programme a besoin de connaitre les matrices de
contact et de translation pour chaque paire de solides pour générer toutes les séquences

d’assemblage du produit.

L’objectif de ce chapitre est d’obtenir ces matrices directement a partir du dessin
d’assemblage. Nous allons voir comment les calculer et comment trouver des nouveaux chemins

d’assemblage lorsque c’est nécessaire.

Comme indiqué dans le chapitre 2 le programme utilise I'interface ActiveX pour

AutoCAD et le portail d’automatisation offert par CATIA pour interagir avec ces deux logiciels.

4-2 Calcul des matrices de translation

Ces matrices indiquent pour chaque paire de composants la liste des directions de
désassemblage ou d’assemblage possibles entre eux. Il y a un certain nombre de contraintes a
respecter pour pouvoir obtenir ces données :

- Les directions de désassemblage doivent étre rectilignes;

- Les composants ne peuvent pas étre déformés pour le désassemblage (les fils

€lectriques, les clips et les ressorts sortent du cadre de ce projet);

- Les composants ne peuvent pas étre tournés pour étre désassemblés (les pas de

vis sont interdits);
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- Les composants ou groupes de composants sont désassemblés un par un;

- Seules les contraintes d’assemblage géométriques sont prises en compte;

- S’il est possible de désassembler une paire de composants, alors il sera possible
de I'assembler de la méme maniére : trouver un chemin de désassemblage est

équivalent a trouver un chemin d’assemblage.

Soit n le nombre de directions d’assemblage connues. Si n n’est pas nul, les matrices de

translation sont stockées sous la forme :

T(comp,,comp )=(T.T,,....T,,....T,)

Avec :

T,= I sicomp, peut étre désassemblé de comp, dans la direction n°d/

0 sinon

La partie suivante indique comment obtenir la valeur de 7, pour une paire donnée
(comp, comp,) et une direction donnée d. Chaque direction est définie par un vecteur directeur

(d,, d,, d,) de norme 1.

4-2.1 Calcul de T(comp;. comp;) pour une direction donnée

Le principe est le suivant : le programme déplace comp, selon la direction essayée, et

regarde si au cours du déplacement le composant est entré en collision avec comp,.

rd rd
s z
7’

Vi ’ /

Ve 7

e I'4 I'e 7’
’ Ve s
7 4 ’ 7
s s Ve /
d ’ s 4 ’,
' 7 / /
v s ’ s
s 7 e s,
s ’ ’ s
Ve ’ s s
’ e ’ s

7 g

7 ’

’
d
comp |y e
s
s
’

d

4 comnp !

Figure 4.1 : Calcul de Tfcomp, comp,) avec deux directions d et d’
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Dans le premier cas il n’y a pas de collision au cours du désassemblage. Par contre dans

le second il y en a une : d’ n’est pas une direction de désassemblage possible pour la paire

(comp, comp,).

Fonctionnement de l'algorithme

Le programme déplace pas a pas comp,, et s’arréte s’il se rend compte qu’aprés un

déplacement élémentaire comp, et comp, sont entrés en collision :

b) Aucune collision détectée

Figure 4.2 : Test pas a pas pour essayer les deux directions det d’

L’algorithme qui fait le test est indiqué ci-dessous. Toutes les étapes sont expliquées en

détails dans les pages suivantes.
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Déplacement élémentaire
*
de comp;
l Oni
Non

/ Collision? // % Continuer? /

nlli Nnn
Replacement de comp; Replacement de comp;

Figure 4.3 : Algorithme du test pour connaitre T(comp, comp, selon la direction d

Début
Au départ, les éléments du dessin sont dans leur position initiale. Polyassemblage utilise
donc directement le dessin d’origine de I'assemblage, sans modifier la position des solides au

préalable.

Déplacement élémentaire de comp, :

On déplace comp, avec un pas élémentaire dans la direction d. Le vecteur de
déplacement (V,, V,, V,) est donné par :

V: = pas_elementaire . d,

V, = pas_elementaire . d,

V. = pas_elementaire . d.

Comme (d,, d, d,) est normé, le solide sera déplacé d’une distance égale exactement a

pas_elementaire.
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Plus ces déplacements sont petits et moins I’algorithme a de chances de « sauter » une

collision éventuelle. Par contre, le temps de calculs est rallongé.

pas_elementaire est calculé de la fagon suivante :

- Avec AutoCAD : pas_elementaire = largeur_minimale_du_plus_petit_solide /
10;

- Avec CATIA :pas_elementaire = taille_du_dessin / 50 car nous n’avons pas été
capables de calculer la largeur des différents solides du dessin.

L’utilisateur peut modifier manuellement ce pas s’il le juge nécessaire.

Collision?

Tout au long du projet, nous avons utilisé le plus possible les fonctionnalités de CATIA
et d’ AutoCAD déja existantes. Pour savoir s’il y a collision, nous avons simplement utilisé les
fonctions d’interférences proposées par ces deux logiciels. Nous n’avons jamais cherché a créer

de nouveaux outils quand nous pouvions nous satisfaire des outils existants.

S’il y a collision, il est inutile de continuer le test. Nous sommes siirs que la direction

choisie n’est pas une direction possible pour désassembler comp, de comp,.

Continuer?
Ce test indique si le programme doit continuer les déplacements. Si les deux solides sont

suffisamment é€loignés I'un de I'autre alors la direction essayée est une bonne direction de

désassemblage.

Il est nécessaire de définir le terme « suffisamment éloigné » :

- Avec CATIA, Tl'utilisateur doit indiquer la dimension maximale du produit
assemblé. « Suffisamment éloigné » signifie que comp, a parcouru au moins
cette distance.

- Avec AutoCAD, il est possible d’envelopper chaque solide dans une boite avec
une fonction enveloppe (GetBoundingBox) comme indiqué sur la figure ci-

dessous. Cette fonction permet de connaitre les points extrémes du solide.
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Enveloppe de Dessus Enveloppe de la Tige

Figure 4.4 : Enveloppe de deux solides de I'assemblage de la figure 3.7

Dés que le point le plus a gauche de comp, est passé a droite de comp, alors nous
sommes siirs qu’il est inutile de poursuivre le test. De méme dans les autres directions : le

déplacement de comp, s’arréte dés qu’il passe « hors du champ » de comp..

Replacement de comp,

Pour pouvoir continuer les tests avec les autres directions et les autres paires de solides,

le programme doit repositionner comp, dans sa position initiale.

Performances de la méthode

Temps de calculs
Cette méthode nécessite un grand nombre de tests de collision. Il faut en faire plusieurs

dizaines pour essayer entierement chaque direction. Ces tests sont des opérations assez longues a
I’échelle des autres opérations (de I a 1.5 centiémes de seconde par test pour AutoCAD etde | a
4 pour CATIA), donc ils sont responsables de quasiment tout le temps de calcul passé dans cette

premiere partie.

Fiabilité des résultats
Prendre un pas trop large peut mener a ne pas voir certaines collisions. Ceci se produit
surtout lorsque I’assemblage contient des piéces trés fines comme des plaques. On peut voir ce

phénomene sur la figure ci-dessous :
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Ptaque 1 j oé¢place
a
déplacer

: /
Composant o {\

Ptaque 2

Figure 4.5 : Probleme possible en cas de présence de plaques

Dans ce cas précis le programme ne verra pas la collision : le pas de déplacement est
égal au dixieme de la largeur minimale des deux solides, et cette valeur est supérieure a leur

épaisseur.

Lorsqu’il y a des composants tres fins, il faut toujours veiller a ce que pas_elementaire
soit strictement inférieur a la somme des deux plus petites épaisseurs présentes dans la structure.
Il est important d’ére conscient du probleme s'il se présente pour pouvoir y remédier en

choisissant un pas élémentaire plus petit.

Améliorations possibles

Avec CATIA, nous pourrions essayer de connaitre la largeur des plaques de fagon
automatique lorsqu’il y en a. Nous pourrions ainsi modifier le pas de déplacement selon le type

de solides déplacé.

Par contre avec AutoCAD, les possibilités d’amélioration sont plus limitées car ce

logiciel offre moins de fonctionnalités (dans sa version actuelle et pour la modélisation solide).

4-2.2 Calcul de T(comp;. comp;) pour toutes les directions

Pour terminer le calcul de Trcomp, .comp,). le programme vérifie toutes les directions

pour obtenir les autres valeurs de translation de la paire.
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Si il n’existe pas de direction connue qui permet de désassembler les deux composants
(T4=0 pour toutes les directions), alors Polyassemblage est capable de rechercher par lui-méme
d’autres directions de désassemblage, i condition qu’elles respectent les conditions évoquées

dans I’introduction (rectilignes, sans rotation ni déformations des solides...).

4-3 Recherche d’une nouvelle direction
d’assemblage

4-3.1 Algorithme général

La recherche d’une nouvelle direction se fait par étapes. Le programme essaye d’abord

les directions X, Y et Z.

Si les composants ne peuvent pas se désassembler selon I'un de ces 3 axes, il cherche
ensuite des directions faciles a connaitre et trés probablement bonnes : les directions principales

des deux composants a assembler (c’est a dire ses axes de symétrie).

Si ces directions ne conviennent toujours pas, le programme en cherche d’autres «en
aveugle » : il essaie le plus de directions possibles dans le plan (recherche en « coordonnées

cylindriques »), puis dans I’espace (« coordonnées sphériques ») jusqu’a en trouver une bonne.

S’il n’en trouve définitivement pas, le programme s’arréte car il sait qu'il ne sera pas

capable d’assembler le produit par la suite.



s
La recherche parmi les axes X, Y
et Z a-t-elle réussi? /
l Non

Oui
La recherche parmi les directions /
principales a-t-elle réussi? /
l Non
/ Oui
La recherche parmi les directions
cylindriques a-t-elle réussi? /
l Non
/ Oui
La recherche parmi les directions
sphériques a-t-elle réussi? /

Arrét général du
programme

Direction trouvée

Figure 4.6 : Algorithme pour trouver une nouvelle direction de désassemblage

Lorsqu’une nouvelle direction d’assemblage est trouvée, le programme la rajoute a la

liste des directions d’assemblage initiales.
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4-3.2 Recherche parmi les axes X, Y et2Z2

Le programme déplace comp, dans les 6 directions X+, X-, Y+, Y-, Z+ et Z-, et regarde
si I’'une de ces directions est une bonne direction de désassemblage avec I’algorithme décrit

précédemment.

4-3.3 Recherche parmi les directions principales des solides

Les directions principales d’'un composant sont ses axes de symétrie (AutoCAD), ou les

axes dans lesquels le composant a €té dessiné€ pour la premiére fois (CATIA).

Figure 4.7 : Insertion d’un composant selon I’un de ses axes principaux

Ces directions principales sont trés faciles 4 connaitre dans CATIA et AutoCAD. Cette
opportunité nous est extrémement utile car dans la pratique, les composants sont le plus souvent

insérés selon une de ces directions.

4-3.4 Recherche dans le plan

Cette option permet d’essayer toutes les directions du plan pour savoir si elles sont des
bonnes directions de désassemblage. Le programme peut fonctionner dans les plans XY, YZ ou
XZ, mais par défaut il recherche des directions dans le plan XY. L’ utilisateur doit indiquer avant
de lancer le programme s’il souhaite que la recherche se fasse plutot dans un des deux autres

plans.



Le programme essaie chaque direction en partant de I’axe X avec un pas angulaire de 5
degrés. L2 aussi, I'utilisateur peut modifier ce pas s’il le souhaite. Le programme s’arréte

automatiquement lorsqu’il a trouvé une bonne direction.

rr

-

-—//

Figure 4.8 : Différentes directions essayées pendant la recherche en cylindriques

L’algorithme est le suivant :

Début
Angle=0

Incrémenter Angle

l Non

Non
La direction est-elle Angle < 360°?

bonne?
Oni l Oui

Direction trouvée @ direction lrouD

. Figure 4.9 : Algorithme pour trouver une direction de désassemblage en cylindriques
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Le principal probléme est qu'on n’est pas sir de trouver la direction d’insertion, méme
si elle existe et qu’elle est bien dans le bon plan. Le pas angulaire est réglé a 5 degrés par défaut
et est modifiable par I'utilisateur. Mais méme en prenant un pas trés petit (qui rallongera les

temps des calculs), le programme ne pourra jamais essayer tous les angles possibles.

4-3.5 Recherche dans I'espace

Si aucune direction n’a été trouvée, dans le plan la recherche se poursuit en essayant
toutes les directions de I’espace. Pour chaque valeur de y (de 0 a 180 degrés), ¢ tourne de 0 a
360 degrés. Les pas angulaires de ¢ et y ont la méme valeur par défaut (5 degrés), et sont
modifiables. Par exemple sur la figure 4.10 b, le pas angulaire a été fixé a 18 degrés pour

éclaircir la figure.

/ o X
Y

a) Les directions essayées sont définies par (¢. y)

b) Les points d’intersection des lignes sont les directions essayées par Polyassemblage

avec dans ce cas un pas angulaire de 18 degrés pour ¢ et y

Figure 4.10 : Directions essayées en coordonnées sphériques

L’algorithme est le méme que précédemment, sauf qu’on incrémente les deux parametre

¢ et y pour parcourir toute la sphére. Mais nous avons le méme probléme que précédemment :
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méme en prenant un pas trés petit le programme ne pourra jamais essayer tous les angles

possibles.

Nous ne proposons pas de solution pour ce probléme dans ce projet. Mais avec CATIA
il est possible de connaitre I'importance de la collision pendant un test. Parmi les directions
essayé€es il serait peut-étre possible de rechercher le couple (@, y) qui minimise cette valeur.
Nous pourrions ensuite nous rapprocher par approximations successives de la bonne direction

d’assemblage. Mais cette proposition serait trés coiiteuse en temps de calculs.

4-3.6 Mise a jour des données aprés avoir trouvé une nouvelle
direction d’assemblage

Rajout de deux directions a la liste des directions

Lorsqu’une nouvelle direction d’assemblage a €té trouvée, le programme I'ajoute a la
liste des directions connues. Il ajoute aussi la direction opposée, car nous savons déja qu’elle

sera la bonne direction de désassemblage pour la paire symétrique (comp, comp,).

Calcul des matrices de translation pour ces deux directions

Le programme doit ensuite calculer les matrices de translation pour toutes les paires de

solides avec ces deux nouvelles directions.

4-3.7 Exemple

Pour illustrer cet algorithme, nous allons prendre pour exemple la figure ci-dessous et

suivre le programme pas i pas.
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-

a) Produit assemblé

@
O
Base

Dessus Tige
b) Liste des composants

Figure 4.11 : Exemple repris de la figure 3.7 sans les bouchons

Initialement le programme ne connait aucune direction d’assemblage. Les 3 paires de
solides sont (Base, Dessus), (Base, Tige) et (Dessus, Tige). Nous allons voir ci-dessous quelles

sont leurs valeurs de contact et de translation.

Premiére paire (Base, Dessus)

Le programme commence par rechercher une direction pour désassembler la paire parmi
les axes X, Y et Z. X et Y ne sont pas des bonnes directions pour désassembler Base et Dessus.
Par contre la direction Z+ est une bonne direction de désassemblage (aucune collision n’est
détectée lors du déplacement de Dessus selon la direction Z+). La liste des directions devient
donc :

Direction n°l : (0. 0. 1)

Direction n°2 : (0. 0. -1)

Dessus peut se désassembler de Base selon la direction | (Z+) mais pas selon la
direction 2 (Z-). Nous obtenons donc pour 7(Base, Dessus) :

T(Base. Dessus) = (1. 0)



70

Seconde paire (Base, Tige)

Ni la direction 1, ni la direction 2 ne permet de désassembler 7Tige de Dessus.

T(Base, Tige) = (0. 0)

Le programme doit donc chercher une nouvelle direction d’assemblage pour
désassembler les deux composants. X et Y ne conviennent toujours pas. Par contre la direction
principale de la tige (définie approximativement par le vecteur (0.866, 0.5, 0), comme vu plus
haut) est une bonne direction d’assemblage. Le programme est trés facilement capable de la
trouver avec I'algorithme de la figure 4.6. Il la rajoute donc, avec la direction opposée, i la liste
des directions :

Direction n°l : (0, 0, 1)

Direction n°2? : (0, 0. -1)

Direction n°3 : (0.866. 0.5, 0)

Direction n°4 : (-0.866, -0.5. 0)

Calcul final de T/Base. Tige) : les directions 3 et 4 permettent toutes les deux de
désassembler Tige de Base. Leur valeur de translation vaut donc | pour les deux directions.
T(Base. Tige) = (0, 0. 1. 1)

Calcul de TvBase. Dessus) avec les deux nouvelles directions (3 et 4) :
T(Base. Dessus) = (1. 0. 0, 0)

Troisiéeme paire (Dessus, Tige)
On obtient sans probleme :
T(Dessus, Tige) = (0. 0. 1. 1)

Solution finale

Les matrices de translation sont :
T(Base, Dessus) = (1. 0. 0, 0)
T(Base, Tige) = (0.0, 1. 1)
T(Dessus, Tige) = (0.0, 1. 1)

Et par symétrie :
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T(Dessus, Base) = (0, 1, 0, 0)
T(Tige, Base) = (0,0, 1, 1)
I(Tige, Dessus) = (0,0. 1, 1)

La liste finale des directions d’assemblage est :
Direction n°l : (0, 0, 1)

Direction n°2 : (0, 0, -1)

Direction n°3 : (0.866, 0.5, 0)

Direction n°4 : (-0.866, -0.5, 0)

4-4 Calcul des matrices de contact

Ces matrices indiquent pour chaque paire de composants (comp, comp,) s’ils se touchent
ou non. Le calcul se fait difffremment, selon que le programme travaille avec AutoCAD ou
CATIA.

4-4.1 Avec AutoCAD

Le programme déplace comp, d’un pas élémentaire selon chacune des 6 directions X+,
X-, Y+, Y-, Z+ et Z-. Ce pas élémentaire a été fixé au dixieme du pas_elementaire présenté dans
la partie précédente. Si comp, entre en collision avec comp, dans I'un de ces 6 cas, alors c’est

qu’il y a contact.

Solide 7N\

Solide

Figure 4.12 : Test de contact avec AutoCAD
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Dans I’exemple ci-dessus, le contact sera repéré lorsque le solide 1 sera déplacé selon la

direction Y+ ou X+.

Dans tous les cas, il est suffisant de ne déplacer les solides que selon que ces six

directions.

X
Figure 4.13 : Contact entre deux solides orienté dans une direction quelconque

Sur cette figure, les solides S1 et S2 sont en contact selon une surface orientée dans une
direction quelconque. On voit qu’il y aura quand méme une collision au cours des déplacements

selon les axes Xet Y.

La principale limite de cette approche est qu’il peut y avoir un espace libre trés petit
entre deux composants qui ne se touchent pas. Le programme verra un contact si cet espace est

inférieur au dixieme de pas_elementaire. Mais ces cas sont trés rares.

4-4.2 Avec CATIA

La fonction qui calcule les interférences entre deux solides présentée dans le chapitre 2
indique aussi s’il y a simple contact entre deux solides. Nous avons juste a faire ce test pour

chaque paire de composants.
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4-5 Conclusion

Ce chapitre nous a permis de comprendre comment a partir de la description
géométrique de I’assemblage, il est possible de retrouver la valeur des matrices de contact et de
translation pour toutes les paires de solides de I’assemblage. Le programme est aussi capable de

chercher et de trouver des nouvelles directions d’assemblage pour assembler le produit.

Ce chapitre a aussi mis I'accent sur les limites et les imprécisions des résultats,
phénoméne inévitable lorsqu’on travaille directement sur des objets physiques (méme s’ils sont

virtuels).

Nous avons donc maintenant tous les éléments en main pour générer toutes les
séquences d’assemblage possibles. Le programme calcule d’abord les matrices de contact et de
translation pour toutes les paires de solides, en cherchant éventuellement des nouvelles
directions. Ensuite il génére toutes les séquences d’assemblage du produit avec I'algorithme

présenté dans le chapitre 3.

Il existe souvent un trés grand nombre de séquences possibles et I'utilisateur a besoin de
faire un choix rapide. Nous allons donc voir dans le chapitre suivant comment réduire le nombre

de séquences d’assemblage trouvées, les évaluer et les classer.
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CHAPITRE 5 — EVALUATION DES SEQUENCES
D’ASSEMBLAGE

5-1 Introduction

L’exemple trés simple de la figure ci-dessous posséde 96 séquences d’assemblage, dont
8 sont linéaires. Il est indispensable de pouvoir réduire ce nombre et de classer les séquences

restantes pour rendre le logiciel utilisable dans la pratique.

Figure 5.1 : Assemblage pour illustrer les critéres d’évaluation programmes

Les criteres programmés dans le cadre de ce projet sont basés uniquement sur les
données disponibles dans la géométrie du dessin. Aucun ne nécessite la saisie de données
complémentaires par l'utilisateur : les contraintes de production ou d’outillages sont donc
absentes, de méme que I’évaluation des séquences d’aprés leur coiit. Ces critéres sont des

critéres classiques d’évaluation des séquences d’assemblage.

IIs se regroupent en deux types : d’une part les critéres d’évaluation attribuent des notes
a chaque séquence et permettent d’effectuer un premier tri pour ces séquences. D’autre part les
filtres permettent de « supprimer » toutes les séquences qui ne respectent pas le critére

programmé.
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Les séquences ne sont jamais vraiment supprimées : elles restent en mémoire mais ne
sont plus affichées. Ainsi, si Iutilisateur change d’avis et décide de désactiver un filtre qu’il

avait activé, il peut le faire trés facilement.

5-2 Evaluer les séquences trouvées

Pour chacun des 6 criteres d’évaluation qui ont été programmés, Polyassemblage

attribue une note a chaque séquence, de 0 a 10.

5-2.1 Taille du premier élément

-

La note attribuée a chaque séquence pour ce critere est d’autant meilleure que le
composant de départ est plus volumineux. Le but de ce critére est de favoriser les séquences qui
débutent par les éléments les plus gros. Ces séquences sont généralement meilleures, car la
manipulation de ces éléments est peu pratique : ils sont lourds, plus difficiles 3 manipuler et plus

encombrants.
La formule pour calculer la note est :

N Volume _ premier _element

NO’e Débuter _ par _le _ plus _ gros = lO

Volume _ plus _ gros

5-2.2 Nombre de directions identiques

Ici, la note est d’autant meilleure qu’il y a peu de directions d’assemblage différentes.

Pour chaque séquence, la formule pour calculer la note est :

Nombre _ min_directions _assemblage

Note =10
Nombre _ direct: 1de z . .
oM - Clreclions - demtiques Nombre _ directions _ assemblage

Le but de ce critere est de réduire au minimum le nombre de réorientations du produit

lors de I'assemblage.
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Mais attention ! Les meilleures notes pour ce critére seront souvent attribuées aux

séquences non linéaires, si elles sont générées :

Meilleures séquence non linéaire :

Etape 1

Figure 5.2 : Séquence non linéaire

Deux directions d’insertion sont suffisantes : c’est le minimum possible pour cet

assemblage et la note attribuée i cette séquence sera [0.

Meilleure séquence linéaire :

W L
Frape | Etape 2

Figure 5.3 : Séquence linéaire

Pour les séquences linéaires au minimum trois directions d’assemblage sont nécessaires.

Leur note sera au mieux :

2
N ote Nombre _ directions _ identiques = lo X 3 = 6'67 = 7

I1 faut donc utiliser ce critére pour comparer des séquences qui ont le méme degré de

linéarité (la méme note pour le critére suivant).
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5-2.3 Nombre de sous-assemblages

Si l'utilisateur a choisi de générer toutes les séquences (lin€aires et non linéaires) ce

critere évaluera leur linéarité et donnera les meilleures notes aux séquences les plus linéaires.

Il est possible de calculer le nombre de sous-assemblages qui interviennent dans chaque
séquence. Le programme peut donc calculer la note avec la formule :

Nombre _ min_ sous _ assemblages

Note =10x

Nombre _ sous _ assemblages

Nombre _ sous _ assemblages

I est souvent utile dans I'industrie de passer par des sous-assemblages pour simplifier le
processus de production. Mais lorsque c’est le cas, le concepteur les fait apparaitre clairement
dans la structure générale du produit. Dans les autres cas, la gamme d’assemblage la plus
linéaire est aussi la plus simple, car elle évite les préassemblages (qui peuvent en outre se révéler
instables tant que I’assemblage n’est pas termin€). C’est pourquoi Polyassemblage n’a pas a
essayer de créer de nouveaux sous-assemblages, sauf bien siir si c’est indispensable pour la

génération des séquences.

Par exemple ci dessous se trouve la structure d'un alternateur qui contient un sous-
assemblage nommé Ensemble frontal. Polyassemblage va tenir compte automatiquement de

cette structure, mais ne va pas créer de nouveaux sous-assemblages lors de I"analyse du produit.
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Figure 5.4 : Produit constitué d’un sous-assemblage

5-2.4 Stabilité des assemblages partiels

Les composants qui apportent la cohésion du produit (vis, tiges, etc.) ne sont pas
forcément assemblés directement aprés les composants qu'ils sont sensés tenir. Dans ce cas ces
composants ne sont pas bien fixés et les états associés sont dits instables. Le but de ce critére est

de favoriser les séquences dont les assemblages partiels sont les plus stables.

Pour calculer la stabilité¢ d’un assemblage partiel le programme compte le nombre de
degrés de liberté de chaque composant (excepté le premier qui sert de base) par rapport aux
autres. Le premier composant qui sert de base n’intervient pas car il est supposé étre fixé sur

I’établi.
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En fait le programme calcule plutét I'instabilité des états et non leur stabilité, comme

I’indique I’algorithme ci-dessous :

Sélection d’un solide
Sélection d’une direction d

Le solide est-il bloqué par /
les autres solides selon d‘/

Non

Oui
/ Reste-t-il d’autres

Incrémenter
I’ instabilité

/ directions a tester?

Non

‘ Reste-t-il d’autres solides
a tester?

Figure 5.5 : Algorithme pour calculer le degré d’instabilité d’un état

Ensuite le programme calcule le degré d’instabilité de chaque séquence en additionnant

les degrés d’instabilité de chaque état qui la constitue.
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Enfin, la note finale attribuée a chaque séquence est :
Degré _min_d’instabilité
Degré _ d’instabilité

Noteg, .. =10x%

Toutes les séquences linéaires de notre exemple habituel ont la méme note pour ce

critere. Nous allons donc I'illustrer avec I’exemple ci-dessous :

Séquence 1 :

ik
N§ -

‘\\\\i/
Figure 5.6 : Séquence stable
Pour calculer I’instabilité de la séquence, le programme calcule I’instabilité de son seul
état intermédiaire, c'est-a-dire de I’état (Cube_du_bas: Tige). Cube_du_bas est supposé étre fixé

sur I'établi. Tige peut se déplacer selon Z+ et Z- mais elle est bloquée dans les autres directions.

Son degré d'instabilité est donc 2. C’est le degré d’instabilité total de la séquence.
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Séquence 2 :

Figure 5.7 : Séquence moins stable

Avec cette séquence le seul état intermédiaire est I°état (Cube_du_bas. Cube_du_haut).
De méme que précédemment, Cube_du_bas est supposé étre fixé sur I’établi. Rien n’empéche
Cube_du_hawt de se déplacer selon les 4 directions horizontales et 1 direction verticale. Le degré

d’instabilité de I’état, et donc de la séquence, est donc 5. La note attribuée a cette séquence sera

donc :

Note 1 = lOX% =4

Mais attention ! Ici aussi les meilleures notes pour ce critére seront forcément attribuées
aux séquences non lin€aires. Pour chaque sous-assemblage, I’un des composants est supposé étre
lié a I’ établi, donc les sous-assemblage sont forcément plus stables. Ce critére est par contre utile

pour comparer les séquences qui ont le méme degré de linéarité.

5-2.5 Regroupement des directions d’assemblage identiques

Ce critere favorise les séquences qui regroupent les différentes directions d’assemblage

entre elles. La formule pour calculer cette note est :

Nombre _ min_directions _ assemblage

=10x
Nombre _de _ changements _ de _direction

N ole Re groupement _ directions _ identiques
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L’intérét de ce critére est aussi de minimiser les réorientations du produit. L’exemple ci-

dessous compare deux séquences presque équivalentes, mais qui ont deux notes différentes :

Figure 5.8 : Séquence linéaire avec 3 changements de direction

La note de cette séquence sera :

N ole Re groupement _ direction _ identiques

= l0x§=6.67 =17

Figure 5.9 : Séquence linéaire avec 4 changements de direction

La note de cette séquence sera :

N ole Re groupement _ direction _ identiques

=le3=5
4

5-2.6 Note générale

Aprés avoir calculé les notes pour tous les critéres mentionnés ci-dessus, le programme
en calcule la moyenne. Les coefficients de pondération a, B, 8, y et A sont égaux a | par défaut et
I'utilisateur peut les modifier.

_ @Note, + pNote, + dNote, + jNote ; + ANote,

Note, ot =
wéméral a+B+0+y+A
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Finalement les séquences sont classées selon cette note finale. Les meilleures se trouvent

en haut de la liste.

§-3 Critéeres pour réduire le nombre de séquences

Le but des criteres présentés dans cette partie est de réduire le nombre de séquences
affichées : le programme met de cité toutes les séquences qui ne respectent pas chacun des

critéres activés.

5-3.1 Interdire l'insertion de composants depuis le bas

Cette fonction interdit les séquences qui contiennent des composants insérés depuis le
bas (direction Z-). Ce critére ne peut étre activé que si I’assemblage de composants depuis le bas
n’a pas été interdit lors de la génération des séquences. Il est tres facile a programmer : dés qu'au
cours d’une séquence un composant est inséré selon la direction Z-, la séquence est

automatiquement mise de cOté.

Interdit Autorisé

Figure 5.10 : Exemple de séquence interdite et de séquence autorisée

Ce critére ne doit pas toujours étre actif, surtout lorsque certains composants sont
volumineux ou difficiles a retourner (par exemple dans la fabrication automobile ou
aéronautique). Dans ces cas il amrive souvent que des composants doivent étre insérés depuis le

bas.



5-3.2 Débuter par I'élément le plus volumineux

Lorsque ce critére est actif, seules les séquences qui débutent par I'élément le plus
volumineux sont affichées. Ce sont les séquences dont la note pour le critére « Taille du premier

élément » est 10.

5-3.3 Minimum de directions d’assemblage

Lorsque ce critére est actif, seules les séquences dont la note est 10 pour le critére

« Nombre de directions identiques » sont affichées.

5-3.4 Minimum de sous-assemblages

Lorsque ce critére est actif, seules les séquences dont la note est 10 pour le critere
« Nombre de sous-assemblage » sont affichées. Ce sont les séquences linéaires s’il y en a, sinon

ce sont celles qui ont le minimum de sous-assemblages.

5-3.5 Interdire une séquence spécifique

L’utilisateur peut aussi interdire certaines séquences parmi les séquences affichées. Il le
fait «a la main », éventuellement aprés les avoir visualisées. Il le fait en tenant compte de
contraintes qui n’ont pas encore été programmées dans Polyassemblage (contraintes d’outillage,

de production...), ou pour n’importe quelle autre raison.

11 pourra bien siir revenir en arriére par la suite en vidant la liste des séquences interdites.

5-3.6 Interdire un état spécifique

Polyassemblage propose aussi la représentation des séquences trouvées avec le And/Or
Graph (voir chapitre 6). Comme écrit dans le chapitre 1, ce graphe permet a I'utilisateur de voir

tous les états intermédiaires qui meénent a I'assemblage final.
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L’utilisateur peut visualiser certains de ces états dans AutoCAD ou CATIA et les

interdire. Polyassemblage met de c6té automatiquement toutes les séquences qui les contiennent.

Comme précédemment, il sera possible de revenir en arriére en vidant la liste des états

interdits.

5-4 Conseils d’utilisation

Nous avons présenté ici de nombreux critéres d’évaluation. Nous conseillons de les

appliquer un par un, pour aller progressivement vers la meilleure séquence.

Les critéres d’évaluation ne sont pas indépendants entre eux. Les cas ou une séquence
aura 10/10 partout sont rares (en particulier lorsqu’on considére les séquences non linéaires,
aucun séquence n'aura 10 a la linéarité, 10 a la stabilité et 10 au minimum de directions
différentes). Il est possible de jouer avec les coefficients de pondération pour identifier la

meilleure séquence en fonction de chaque cas particulier.

Enfin il est important de visualiser les séquences et les états pour bien les comprendre et

les comparer (cet outil est présenté dans le chapitre 6).

5-5 Conclusion

Nous avons présenté dans ce chapitre tous les critéres d’évaluation qui ont été
programmés dans Polyassemblage. Il sera possible de programmer d’autres critéres pour
perfectionner le logiciel. Ces critéres pourront étre basés sur des informations extraites de la

géométrie uniquement, ou prendre en compte d’autres informations.

Nous allons maintenant présenter d’autres outils destinés a simplifier la tiche de

Iutilisateur, pour lui permettre d’identifier plus facilement la meilleure séquence d’assemblage.



86

CHAPITRE 6 — AFFICHAGE DES SEQUENCES ET
AUTRES OUTILS PRATIQUES

6-1 Introduction

Dans ce chapitre nous allons montrer comment sont affichés les résultats trouvés par
Polyassemblage. Cet affichage est sous deux formes :
- La «fenétre des séquences » affiche les séquences trouvées;

- La «fenétre des états » affiche le And/Or Graph.

Ensuite nous montrerons les autres outils programmés dans Polyassemblage qui servent
a aider I’ utilisateur du programme :

- Visualisation des €tats intermédiaires et des séquences trouvées;

- Réglage des paramétres de I'étude;

- Autres outils : sauvegarde, impression des résultats, etc.

6-2 Affichage des séquences

6-2.1 Affichage des séquences d’assemblage

Les séquences d’assemblage sont présentées dans la « fenétre des séquences ». Seules
les séquences qui respectent les filtres activés sont montrées. Comme indiqué dans le chapitre S,

elles sont classées selon leur note générale (les meilleures sont en haut).
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Figure 6.1 : Fenétre des séquences

Cette fenétre est montrée plus claire dans I’annexe 2. Dans la colonne de gauche de la
fenétre se trouve la description détaillée de chaque séquence. Dans les 5 colonnes suivantes sont
affichées les notes pour les 5 critéres d’évaluation programmés dans Polyassemblage, et a droite

se trouve la moyenne de ces notes (7° colonne).

Description détaillée des séquences

Pour une séquence linéaire
L’affichage est de ce type :
5_(Base, Dessus — dir1, Tige ~ dir3, Bouchon_droit — dir3, Bouchon_gauche — dir4)

Le chiffre du début (5) représente le numéro de la séquence : chaque séquence est
identifiée de maniére unique a un nombre. Ensuite, les noms représentent les noms des solides a

insérer et les numéros suivis de «dir » représentent le numéro de la direction d’insertion. Le
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premier solide n’a pas de direction d’insertion car c’est le solide qui sert de base. La formule ci-

dessus représente la séquence illustrée dans la séquence 6.2 :

Figure 6.2 : Séquence d’assemblage décrite par une formule linéaire

Pour une séquence non linéaire :
L’ affichage est du méme type sauf que le nom d’un ou plusieurs composants peut étre
remplacés par un ou plusieurs sous-assemblage :
6_(Bouchon_gauche, Tige - dir3, (Base, Dessus -~ dir1) — dir3, Bouchon_droit — dir3)

Figure 6.3 : Séquence d’assemblage décrite par une formule non linéaire

6-2.2 Affichage du And/Or Graph

Il est possible de visualiser I'ensemble des séquences avec le And/Or Graph décrit dans
le chapitre 1. Celui-ci est visible dans la fenétre « Fenétre des états » accessible en cliquant sur la

barre de menus « Fenétre ».
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Figure 6.4 : Fenétre des états

Il y a aussi un exemplaire plus clair de cet affichage dans I’annexe 2.

6-3 Outils de visualisation

6-3.1 Visualisation des séquences

La séquence courante est par défaut la séquence de téte sur la figure 6.1. Il est possible
de sélectionner n’importe quelle autre séquence en cliquant dessus. Pour visualiser la séquence
courante dans CATIA ou AutoCAD, l'utilisateur doit appeler la fonction « Visualiser la
séquence courante » dans le menu « Visualiser », et aller dans CATIA ou AutoCAD pour voir

les solides se déplacer comme indiqué dans la séquence.



6-3.2 Visualisation des états

L’état courant est I'état surligné en blanc sur la figure 6.4. Il est possible de sélectionner
un autre €tat en cliquant dessus. Pour visualiser I’état courant dans CATIA ou AutoCAD,
Iutilisateur doit appeler la fonction « Visualiser I'état courant » et aller dans CATIA ou
AutoCAD pour voir I’état.

6-4 Parametres de I'étude

Nous avons vu tout au long des chapitres précédents qu’il était possible de modifier un
certain nombre de paramétres. Nous allons récapituler dans cette partie la liste de ceux que

I'utilisateur peut modifier, et dans quels cas il est conseillé de le faire.

6-4.1 Parametres concernant I’extraction de données

La feuille qui récapitule tous ces paramétres se trouve dans I'annexe 3. Elle est

n’accessible a I’utilisateur qu’avant de commencer I’étude.

Choix des directions a tester

Pour accélérer la recherche de nouvelles directions de désassemblage. 1"utilisateur peut
choisir de ne pas rechercher certains types de directions (directions principales, cylindriques ou
sphériques). Par exemple, s’il est sir qu'il n'y aura pas de directions d’assemblage en
coordonnées sphériques, alors il peut annuler cette option. Par défaut tous les types de recherche
sont installés. Pour la recherche de directions en cylindriques, I'utilisateur doit aussi indiquer
Paxe principal : par défaut c’est 'axe Z (c'est-a-dire que les directions testées sont toutes

contenues dans le plan XY).



91

Pas angulaire

Le pas angulaire a été défini dans le chapitre 4. Il est réglé par défaut a 5 degrés. 1l doit

étre modifi€ si des composants sont insérés avec des angles qui ne sont pas multiples de 5

degrés.

Pas des déplacements

La valeur des pas de déplacements a aussi €té définie dans le chapitre 4. L utilisateur

peut :
- Soit le laisser a sa valeur par défaut;
- Soit lui donner une valeur fixe, donnée dans la méme unité que le reste du
dessin,
- Soit la régler a un certain rapport de :
o La largeur minimale des solides du dessin avec AutoCAD

o Ladimension du dessin avec CATIA

S’il n’y a pas de solide spécialement fin (plaque...) dans I'assemblage. il est possible
d’augmenter le pas élémentaire, et les calculs seront beaucoup plus rapides. Par contre, il doit

étre diminué€ en cas de présence de solides trés fins.

6-4.2 Paramétres concernant la génération des séquences
La feuille qui s’affiche pour modifier ces paramétres est aussi dans I’annexe 3. Elle n’est

aussi accessible qu’au tout début de I'étude.

Séquence linéaires ou non

Par défaut le programme ne générera que des séquences linéaires. S'il n’en existe pas
(nous en avons vu un exemple dans le chapitre 3) alors I'utilisateur devra générer toutes les

séquences possibles.
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Débuter par le solide le plus volumineux

Par défaut cette contrainte n’est pas activée. Si I'utilisateur décide de I’activer, seules les

séquences débutant par I’élément le plus volumineux seront générées.

Interdire Fassemblage de composants depuis Z-

Par défaut cette contrainte n’est pas non plus activée. Si I'utilisateur décide de I’activer,

seules les séquences dont aucun solide n’est assemblé depuis la direction Z- seront générées.

6-4.3 Parameétres concernant ’évaluation des séquences

La fenétre affichée pour modifier ces données se trouve aussi dans I’annexe 3.

Coefficients de pondération des notes

Ces coefficients correspondent aux paramétres a, B, v, 8 et A présentés dans le chapitre 5.
lls permettent d’augmenter ou de diminuer |'impact de certaines notes dans le classement

général des séquences.

6-5 Outils supplémentaires

D’autres outils ont été programmés pour simplifier I'utilisation du logiciel. Rappelons
que le but de Polyassemblage est de permettre de trouver la meilleure séquence d’assemblage.
Tous les moyens doivent étre mis en ceuvre pour rendre cette opération la plus rapide et la plus

facile possible pour I’ utilisateur.

6-5.1 Renommer les solides dans AutoCAD

AutoCAD ne permet pas d’attribuer des noms aux solides, 3 moins de passer par des

blocs, des groupes ou des calques mais ces possibilités ne sont pas standardisées.
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Polyassemblage permet donc a I'utilisateur de renommer chaque solide. Ainsi il pourra
mieux comprendre la description des séquences et des états. Sinon par défaut les solides sont
nomm¥és « Solide 1 », « Solide 2 », ..., « Solide n ».

Dans CATIA les solides sont déja nommés : Polyassemblage est capable de récupérer

leurs noms et de travailler avec.

6-5.2 Sauvegarde des résuitats

Pour ne pas perdre le travail effectué, le programme est capable de sauvegarder les
résultats. L’extraction des données depuis AutoCAD ou CATIA est une opération longue. Il est

donc trés utile d’enregistrer ces données apres la premiére utilisation.

L’enregistrement se fait dans un fichier binaire, donc plus compact qu’un fichier texte. Il
enregistre I’ensemble des informations nécessaires pour reproduire le document de maniére

identique (mémes séquences, mémes critéres actifs, méme classement) :

Matrices de contact et de translation

Le programme enregistre les matrices de contact et de translation plutot que la liste des
séquences générées. Le désavantage est qu’il faut recalculer ces séquences a chaque fois qu’on
ouvre le document (I’ opération peut prendre un peu de temps). Mais les données occupent moins

de place dans le fichier de sauvegarde.

Nom des solides
Le programme enregistre aussi le nom de tous les solides de I’assemblage.
Liste des directions d’assemblage

Chaque direction d’assemblage est enregistrée comme expliqué dans le chapitre 4, sous

forme de trois données de type double qui définissent le vecteur directeur de la direction.



Liste des filtres actifs, liste des séquences et des états interdits

Le programme écrit dans le fichier de sauvegarde les numéros des filtres actifs, ainsi que

les numéros des séquences et des états interdits par I’utilisateur manuellement.

Volume des solides

Ces donnée permettent de recalculer les deux critéres d’évaluation qui s’y rapportent :

« Débuter par I’élément le plus gros volumineux » et la note relative a la taille du premier

€lément.

Paramétres pour I'évaluation des séquences

Le programme enregistre les différents coefficients de pondération a. B, y. 6 et A.

Dimension maximale

Le programme enregistre la dimension maximale du dessin pour éviter de la redemander

a I'utilisateur s’il interagit avec CATIA.

6-5.3 Ouverture d’une étude existante

Il est possible d’ouvrir n’importe quelle étude sauvegardée. Le programme sera capable
de générer a nouveau toutes les séquences actives et de reproduire le document comme

I utilisateur I’avait laissé au moment de I’enregistrement.

Par contre pour pouvoir visualiser les séquences et les états, I'utilisateur doit penser a

ouvrir a nouveau le dessin d’origine dans le logiciel de CAO.
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6-5.4 Impression

Il est possible d’'imprimer le And/Or Graph ainsi que la liste des séquences si

I’utilisateur le souhaite (voir I’annexe 2).

6-6 Conclusion

Nous avons vu dans ce chapitre des outils qui permettent d’aider [I'utilisateur de
Polyassemblage a identifier les meilleures séquences :
- La visualisation des résultats est la plus claire et la plus compléte possible avec
le double affichage des séquences et des états;
- Les paramétres réglables permettent d’accélérer la recherche ou de rendre les
résultats plus fiables si leurs valeurs par défaut ne sont pas satisfaisantes;
- Les outils de visualisation et d’autres outils propres au programme ont été aussi

présentés.

Pour finir nous allons tester le programme avec plusieurs exemples et analyser les

résultats.



CHAPITRE 7 - RESULTATS

7-1 Introduction

Nous allons présenter dans ce chapitre différents exemples testés avec Polyassemblage :
- Terminer I'étude de I’exemple simple vu dans les demiers chapitres;

- Un altemnateur modélisé dans CATIA;

- Un systéme de freins de vélo modélisé dans AutoCAD.

Tous les calculs ont été faits sur un Pentium III 3 700MHz avec 256 Mo de RAM et

munis de Windows 2000 Professional.

7-2 Comparaisons CATIA — AutoCAD sur un
exemple simple

Dans cette premiére partie nous allons détailler les résultats obtenus avec I’'assemblage

présenté tout au long du projet :

Z
Y‘V X

Figure 7.1 : Assemblage testé par Polyassemblage
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7-2.1 Acquisition des données

Les pas des déplacements ont été laissés a leurs valeurs par défaut : un dixieme de la

largeur du solide le plus fin avec AutoCAD et un cinquantiéme de la taille maximale du dessin

avec CATIA.

Avec AutoCAD

Le solide le plus fin est la tige avec une hauteur de 10mm. Les pas des déplacements

sont donc de Imm. Les calculs ont duré environ 22s. Ce temps se répartit comme suit :

- Chargement des données initiales : 0.5s. Les opérations faites pendant cette étape sont :

o]

(o]
o
(o]

Identification des €éléments solides du dessin;

Calculs de leur volume;

Calculs de leurs dimensions limites;

Test d’interférence initial (pour vérifier qu’il n’y a pas d’interférence dans le

dessin de départ).

- Calcul des matrices de contact et de translation : 22s. Ceci comprend :

(o]

o}

Avec CATIA

449 tests d’interférence dont 28 se sont révélés positifs;

499 déplacements.

La dimension maximale du dessin est de 60mm. Les pas des déplacements sont donc

1.2mm. Le temps total de cette partie a été environ de 278s (4.5min). Ce temps se répartit

comme suit :

- Chargement des données initiales : 2s. Les opérations faites pendant cette étape sont :

o

o

o]

(o}

o]

Création des paires de composants;

Création des objets de type collision pour chaque paire;
Calcul du volume des solides;

Lecture du nom des solides;

Test d’interférence initial et calcul de la matrice de contact.

- Calcul des matrices de translation : 275s.
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o 1512 tests d’interférence dont 26 se sont révélés positifs;

o 1464 déplacements.

Les temps de calcul avec CATIA sont beaucoup plus longs pour deux raisons :
- Plus de tests sont nécessaires car il est impossible d’envelopper les solides dans
des espaces restreints comme avec AutoCAD (les Bounding Box);

- Les déplacements de solides, tests de collision, etc. sont toujours plus lents avec

CATIA.

Résultats

Les résultats ont déja été décrits dans les chapitres précédents.

7-2.2 Génération des séquences

Dans cette partie et les parties suivantes les résultats sont identiques entre CATIA et
AutoCAD car Polyassemblage n’interagit plus avec les logiciels de CAO. Nous n’avons généré
que les séquences linéaires : le programme en a trouvé 8. La génération des séquences a été

quasiment instantanée.

Les séquences trouvées sont montrées ci-dessous, dans I'ordre proposé par

Polyassemblage :

Séquence 1 :

Figure 7.2 : Séquence classée numéro |



Séquence 2 :
&

Séquence 3 :

Figure 7.5 : Séquence classée numéro 3 ex-aequo
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Séquence 5 :

4 /S
i Y

Figure 7.6 : Séquence classée numéro 5

Séquence 8 :

¥

Figure 7.9 : Séquence classée numéro 7 ex-aequo



Enfin, le AND/Or Graph de

I’assemblage est le suivant :

7-2.3 Evaluation des séquences

Figure 7.10 : And/Or Graph pour les séquences linéaires de I’assemblage
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La valeur des notes pour les 8 séquences est indiquée dans le tableau ci-dessous :

Tableau 7.1 : Notes attribuées aux séquences trouvées

Séquence | Taille du Nbre de Nbre de sous- | Stabilité | Regroupement | Moyenne
I directions | assemblages des directions
élément | identiques identiques
1 10 10 10 10 10 10
2 10 10 10 10 10 10
3 10 10 10 10 8 9.6
4 10 10 10 10 8 9.6
5 4 10 10 10 10 8.8
6 4 10 10 10 10 8.8
7 4 10 10 10 8 84
8 4 10 10 10 8 84

Toutes les séquences ont le méme nombre de directions d’insertion, la méme stabilité et

bien siir le méme degré de linéarité.
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Seuls deux critéres nous permettent de différentier ces séquences :

- Volume du premier élément : Base a un volume de 42462mm’ et celui de
Dessus n’est que de 17252mm’. Les 4 séquences qui commencent avec Base
sont donc meilleures pour ce critére.

- Le facteur « regroupement des directions identiques » permet d’identifier deux
séquences parmi les 4. Ces deux derniéres séquences sont d’ailleurs identiques

car I’assemblage est symétrique.
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7-3 Etude de Palternateur

7-3.1 Description de ’alternateur

L’altemnateur est constitué de 9 composants principaux et 4 vis. L’axe de I’alternateur est

I’axe X (par construction).

Figure 7.11 : Alternateur



[ Y
\10

1
2)
3)
4)
5)

Ecrou
Rondelle
Poulie
Ventilateur

Bague 2

6)
N
8)
9)
10)

Ensemble frontal
Bague 1

Rotor

Couvercle postérieur
Vis (4)
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Figure 7.12 : Premiere décomposition de I’alternateur, extrait du mémoire de Aguilar (1996)

L’ensemble frontal est lui méme constitué d’autres composants mais Polyassemblage les

considére chacun comme un unique élément, comme expliqué dans le chapitre 5.

Enfin 4 vis servent i assembler le couvercle postérieur et I'ensemble frontal. Elles ne

sont pas modélisées pour Polyassemblage, car il est évident qu’elles seront ajoutées directement

aprés le composant qu’elles sont censées tenir. Il est inutile donc d’alourdir les calculs pour

elles.

7-3.2 Acquisition des données

Le pas des déplacements élémentaires a dii étre réduit 2 3mm. Sa valeur originale était

de 168mm/50 = 3.36mm et cette dimension était supérieure a I'épaisseur de la plaque du

ventilateur (3mm). Le programme aurait pu ne pas détecter certaines collisions.
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Comme toujours avec CATIA les calculs ont été relativement longs : 9min et 7s.

Le programme a pu désassembler tous les composants en ne considérant que les
directions X+ et X-. Pour chaque paire de composants les matrices de translation ne contiennent

donc que deux valeurs : la possibilité de désassemblage selon X+ et selon X-.

7-3.3 Génération des séquences

Seules les séquences linéaires ont été générées. Le programme en a trouvé 256. Le

temps nécessaire pour générer toutes ces séquences est négligeable.

Le And/Or Graph de I’ alternateur pour ces séquences est le suivant :

A e

Figure 7.13 : And/Or Graph pour toutes les séquences lincaires de I’alternateur

7-3.4 Evaluation des séquences

Pour nous la premiére étape est de réduire le nombre de séquences trouvées :
- Il est inutile d’interdire I'assemblage de composants depuis le bas : tous sont

déja insérés selon I’axe X.
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- Nous sommes obligés de terminer I’assemblage par le couvercle postérieur, car
sinon il serait impossible de bloquer le rotor pendant le vissage de I’écrou : il
reste 128 séquences.

- Nous ne souhaitons pas assembler la poulie, le ventilateur etc. si le rotor et
I’ensemble frontal ne sont pas déja assemblés. Nous ne gardons que les états qui
contiennent ces deux composants lorsque c’est possible : il reste 4 séquences.

- Parmi les 4 séquences deux commencent avec la bague 1. Ce composant est trop

petit pour débuter I’assemblage, nous supprimons donc ces séquences.

Voici le And/Or Graph de I’ alternateur lorsqu’il ne reste que ces 2 séquences :

Figure 7.14 : And/Or Graph aprés I’ activation des critéres d’évaluation pour I’alternateur
Maintenant il ne nous reste plus qu’a choisir entre les 2 séquences restantes.
Séquence 1 :

Rotor - Bague 1 - Ensemble frontal — Ventilateur — Poulie — Rondelle — Ecrou —

Couvercle postérieur



Séquence 2 :
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Ensemble frontal — Bague 1 - Rotor — Ventilateur — Poulie - Rondelle — Ecrou —

Couvercle postérieur

Les notes pour ces deux séquences sont :

Tableau 7.2 : Notes attribuées aux deux séquences finales de |’ alternateur

Séquence | Tailledu | Nbrede Nbre de Stabilité | Regroupement | Moyenne
" directions sous- des directions
€lément | identiques | assemblages identiques
1 10 5 10 9 5 7.8
2 5 5 10 10 3 6.6

Ces deux séquences se ressemblent beaucoup. Apres les avoir visualisées, notre choix se

porterait sur la premiere séquence, choix qui est aussi celui de Polyassemblage.
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7-4 Etude du systéeme de freins

Notre troisiéme exemple est un systéme de freins de vélo. Cet assemblage a été modélisé
avec AutoCAD 2000.

7-4.1 Description et fonctionnement du systéeme de freins

Description

Le systeme de freins est montré sur la figure ci-dessous.

Figure 7.15 : Systeme de freins
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L’assemblage est constitué de 10 composants.

4
Z

Ve T ~ X

l \1’///
1) Support principal 6) Ecrou
2) Ressort 7 Rondelle
3) Cache du ressort 8) Bague inférieure
4) Plaquette 9) Bague supérieure
5) Tige 10)  Cache de latige

Figure 7.16 : Systeme de frein décomposé

L’axe d’insertion de la plaquette est dans le plan XY et forme avec I'axe Y un angle de §
degrés. Tous les autres composants s’insérent selon la direction Z. L’axe X est ’axe principal du

support principal (le composant 1).
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Fonctionnement général
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Figure 7.17 : Vue de profil de la roue avec le systéme de freins fonctionnel

Lorsque le cable de freins est tiré, le haut des deux systemes de frein se déplace vers le
centre (fleches du haut). Comme la partie inférieure du systéme est fixée, les deux plaquettes de
freins entrent en contact avec la jante de la roue, ce qui la freine. Lorsque le cible est reliché, le

ressort (composant 2) du systeme replace le systeme dans sa position initiale (fleches du bas).

7-4.2 Acquisition des données

Le pas des déplacements a €t€ laissé a sa valeur par défauts : un dixieme de I'épaisseur
de la rondelle, soit 0.Imm. Il aurait pu sans probléme étre changé a 1mm, mais méme avec un

pas de 0.1mm les calculs ne sont pas trop longs (62s, soit 1min).

7-4.3 Génération des séquences

La génération des séquences d’assemblage a été plus longue. Nous avons dii nous
restreindre aux assemblages linéaires commengant par I’élément le plus volumineux (I'élément

support). Finalement les calculs ont duré 4min et 12s.



Le And/Or Graph pour les 9792 séquences trouvées est :
I

Figure 7.18 : And/Or Graph pour toutes les séquences linéaires du systéeme de freins

Les états sont trop nombreux. llIs ne rentrent pas tous sur I’écran. Notre but est donc
maintenant de réduire le nombre de séquences pour arriver a éliminer celles qui ne sont pas

satisfaisantes.

7-4.4 Evaluation des séquences

L’ attribution des notes a pris Imin et 40s.

Les critéres « débuter par I’élément le plus volumineux » et « minimum de sous-
assemblages » ne sont pas utilisables car ils ont déja été activés pour la génération des
séquences. Nous ne pouvons pas non plus interdire I’insertion de composants depuis le bas car

plusieurs composants ne peuvent étre insérés que dans cette direction.
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Activer le critere « minimum de directions d’assemblage » permet d’enlever toutes les
séquences pour lesquelles des composants sont ajoutés depuis Y+ (la direction opposée de la
plaquette) : il reste 7056 séquences.

Seulement 4 séquences ont 10/10 pour les deux demiers critéres « stabilité des sous-
assemblages » et « regroupement des directions d’insertion ». Le And/Or Graph pour ces 4

séquences est :

Figure 7.19 : And/Or Graph du systeme de frein pour 4 séquences finales
Sur cette figure, on ne voit pas le graphe en entier car il ne rentre pas a I'écran. C’est le
choix que j’ai effectué en développant Polyassemblage. Je préfere que ce soit ainsi plutét que le

And/Or Graph soit illisible.

Ces 4 séquences sont 4 variantes de la séquence suivante :
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Figure 7.20 : Séquence d’assemblage proposée pour le systeme de freins

Variante 1 :
Il est possible d’insérer la bague supérieure avant ou aprés la tige (intervertir les
opérations 1 et 2). Nous choisissons ce second cas car la bague supérieure peut glisser facilement

sur le support si elle n’est pas tenue par la tige.

Variante 2 :
Il est possible de regrouper I’assemblage de la rondelle et de I'écrou d’une part et du
ressort et de son cache d’autre part ou bien d’alterner les opérations 7 et 8. Nous préférons la

premiere solution. La séquence choisie finalement sera la séquence de la figure 7.20.

Autres possibilités :
Des séquences qui n’ont pas 10 a tous les critéres peuvent aussi se révéler trés bonnes.
Par exemple la séquence classée 23 termine I’assemblage par les deux caches, ce qui est souvent

le cas de tels produits dans la pratique.

7-5 Conclusion

Les exemples montrés dans ce chapitre illustrent le fonctionnement de Polyassemblage.

lls en montrent aussi les limites. Les temps de calculs deviennent longs dés qu’il existe plusieurs
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milliers de séquences. Pourtant des assemblages comme le systeme de frein restent des petits

assemblages : A peine une dizaine de composant.

Dans des versions futures de Polyassemblage il sera intéressant de réduire encore le
nombre de séquences générées. On pourrait par exemple :
- Tenir compte des connecteurs (comme indiqué dans le chapitre 1) pour ne
jamais perdre du temps avec les vis et les composants de ce type.
- Introduire d’autres contraintes dés la génération des séquences d’assemblage

pour éviter I’explosion du nombre de séquences.
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CONCLUSION

Nous avons présenté dans ce rapport le logiciel Polyassemblage. Ce programme est
capable de générer et d’évaluer toutes les séquences d’assemblage d’un produit, et ce a partir
uniquement de sa modélisation solide dans AutoCAD ou CATIA.

Apres avoir identifi€ les principaux courants de recherche dans ce domaine, nous avons

expliqué les bases du programme :

D’abord nous avons utilisé les interfaces d’automatisation proposées dans les demiéres
versions d’ AutoCAD et CATIA sous Windows pour obtenir toutes les données nécessaires a la
génération des séquences d’assemblage. Le programme a été testé avec CATIA VSRS et
AutoCAD 2000.

Ensuite les séquences d’assemblage ont été générées avec un algorithme développé

initialement en 1995, et qui a été modifié et amélioré pour ce projet.

Polyassemblage est aussi capable d’évaluer I’ensemble des séquences trouvées avec des

critéres basés sur les informations contenues dans le dessin.

Enfin les autres outils programmés dans Polyassemblage rendent le programme trés
convivial, et permettent a I'utilisateur de trouver facilement une bonne séquence, la bonne

séquence.

De plus son champ d’application est trés étendu. Il peut étre utilisé dans le cadre de
I'ingénierie simultanée par les concepteurs de nouveaux produits, par le bureau des méthodes ou
par les responsables de la production. I est trés simple d’utilisation et donne des résultats en
quelques minutes seulement. I représente un outil efficace pour réduire les coiits d’assemblage

présents et futurs.
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Enfin Polyassemblage fonctionne avec les logiciels de CAO les plus connus. La
principale limite est que la version de CATIA la plus répandue aujourd’hui dans I’industrie est
encore la version 4. Il faudra attendre quelques années avant que Polyassemblage puisse étre

appliqué a la majorité des entreprises.

Par contre Polyassemblage mérite encore d’étre développé. Dans plusieurs types
d’assemblage assez fréquents, il ne sera pas capable de trouver des séquences d’assemblage. Les
conditions pour que le programme fonctionne sont :

- Les composants doivent étre indéformables : les ressorts, les clips, les courroies

sont hors du champ d’utilisation de Polyassemblage;

- Ils ne doivent pas étre tournés pour étre assemblés ou désassemblés : avec cette
version de Polyassemblage, les pas de vis ne doivent pas étre modélisés sur le
produit.

- Les seuls chemins de désassemblage ou d’assemblage pris en compte sont
rectilignes et unidirectionnels;

- La possibilit¢ d’assembler ou de désassembler un composant doit apparaitre
dans la géométrie de I'assemblage. Aucune autre contrainte n’est prise en

compte.

Dans d’autres cas I'utilisateur de Polyassemblage doit étre mis en garde sur d’éventuels
problemes de fiabilité, en particulier s’il y a présence de solides trés fins (plaques, etc.) ou de

fils.

Ces limites nous aménent a proposer des améliorations qui permettront de disposer d’un
logiciel vraiment efficace. Pour la partie « recherche de chemins de désassemblage » nous
pourrions essayer de :

- Rechercher des chemins non linéaires;

- Rechercher des maniéres de désassembler les composants en les tournants (pour

les pas de vis);

- Désassembler des composants déformables.
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Pour la partie « génération des séquences d’assemblage », la durée de I'opération
augmente vite lorsqu’on arrive a plusieurs milliers de séquences d’assemblage. Nous pourrions :
- Eviter d’atteindre ce nombre en appliquant d’autres contraintes d’assemblage
dés la génération des séquences (en ce moment la plupart des contraintes ne

s’applique qu’apres);
- Considérer les connecteurs (vis, rivets...) comme des caractéristiques de
I’assemblage, plutot que comme des composants a part entiére (comme expliqué

dans le chapitre 1).

C’est la partie « évaluation des séquences trouvée » qui laisse le plus de place aux

améliorations. Nous pourrions par exemple :

- Programmer des critéres d’évaluation basés sur d’autres renseignements que
juste ceux contenus dans le dessin. L’utilisateur devrait alors rentrer ces
informations manuellement;

- Intégrer Polyassemblage a des logiciels de calcul des coiits d’assemblage

comme celui développé par Boothroyd (1994);
- Augmenter le nombre d’informations extraites du modele de CATIA. Ce

logiciel contient énormément d’informations supplémentaires sur la géométrie
du produit qui pourraient étre réutilisées pour évaluer les séquences avec

d’autres critéres.

Dans I’annexe 4, la structure des données utilisées par le programme est expliquée. Ces
renseignements seront utiles pour modifier et améliorer le programme tel qu’il existe

actuellement.

Néanmoins ses avantages et ses capacités actuelles sont des bases solides pour des

développements futurs et une implantation assez rapide en situation industrielle.
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ANNEXE 2: AFFICHAGE DES RESULTATS
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Fenétre des séquences
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Fenétre des états
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ANNEXE 3 : FENETRES POUR MODIFIER LES
PARAMETRES
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Parametres pour la génération des séquences

arainetres concernant la qeneranon des sequenccs
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ANNEXE 4 : STRUCTURE DES DONNEES DU
PROGRAMME

Nous allons décrire dans cette annexe comment sont modélisées les données a I’intérieur
du programme. Seulement les données principales sont décrites et a travers elles on peut
comprendre comment est organisé le programme.

Ces données concement les trois étapes principales du logiciel : la création des matrices

de contact et de translation, la génération des séquences d’assemblage et leur évaluation.

Données relatives a la géométrie de I'assemblage

Eléments du dessin

Les solides du dessin sont accessibles par la collection nommée dessin_assemblage. Le
programme utilise cette collection pour les déplacer, obtenir leurs propriétés et les modifier.

Nous avons indiqué dans le chapitre 2 comment I’ obtenir.

Avec AutoCAD

Les solides sont numérotés de / a n_solides (n_solides est le nombre de solides). Le
dessin peut contenir aussi des éléments non solides. La collection solide_acad permet de pointer
les éléments solides uniquement : dessin_assemblage(solide_acad(1)) représente le solide le plus
ancien de la base de données et dessin_assemblage(solide_acad(n_solides)) représente le plus

récent.
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Avec CATIA

Les solides sont numérotés de / a n_solides : dessin_assemblage.ltem(]) représente le
solide qui se trouve en haut de I'arbre de la structure du produit et

dessin_assemblage.ltem(n_solides) représente celui qui est en bas.

Caractéristique des éléments

Enveloppe des solides (seulement pour AutoCAD)

Déclaration : Public dim_ext As New Collection
Role :

Chaque élément de la collection dim_ext contient les points inférieurs et supérieurs de la
boite qui enveloppe le solide, comme indiqué dans le chapitre 4.
Exemple :
Dim_ext(1) représente les dimensions extérieures du solide dessin_assemblage(solide _acad(1)).
Dim_ext(n_solides) représente les dimensions extérieures du solide

dessin_assemblage(solide_acad(n_solides)).

Volume des solides

Déclaration : Public volume_solide As New Collection
Réle :

Chagque élément de la collection volume_solide contient le volume du solide associé.
Exemple :

volume_solide(i) est le volume de dessin_assemblage(solide_acad(i)) pour AutoCAD et

dessin_assemblage.ltem(i) pour CATIA.
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Nom des solides

Déclaration : Public nom_solide(! to n_solides) As String
Role :
Les noms des solides sont enregistrés dans ce tableau.

Exemple :
nom_solide(i) est le nom de dessin_assemblage(solide_acad(i)) pour AutoCAD et

dessin_assemblage.ltem(i) pour CATIA.

Matrices de contact et de translation

Matrice de contact

Déclaration: Public M_contact(] to n_solides, 1 to n_solides) as Boolean
Role :
Cette matrice contient les valeurs de contact de chaque paire de solides, comme définies

dans le chapitre 3.

Matrice de translation

Déclaration :
Public M _translation(l To n_solide, | To n_solide, 1 To n_directions) as Boolean

Role :

Cette matrice contient les valeurs de translation de chaque paire de solides et de chaque

direction, comme définies dans le chapitre 3.

Liste des directions d'assemblage possibles

Déclaration : Public Liste_Directions As New Collection
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Chaque élément de la collection contient un tableau de 3 parametres définissant le

vecteur directeur de la direction.

Données nécessaires pour la génération des
séquences

Liste des états

Déclaration : Public etat_solide() As New Collection
Role :

Chaque élément de cette collection représente un état qui résulte de I’assemblage de
deux autres états. Comme indiqué dans le chapitre 3, tous ces états ne permettront pas forcément
de terminer la séquence d’assemblage.

Description :

etat_solide(i) représente I'état n°i. Cet état est représenté par une collection qui contient
les informations suivantes :

[nombre_solides: liste_ordonnée_des_solides; liste_des_assemblages_qui_ménent_a_cet_état)
nombre_solides - c’est le nombre de solides que I'état contient.

liste_ordonnée_des_solides : c’est la liste des numéros des solides que I’€tat contient.
liste_des_assemblages_qui_ménent_a_cet_état : c’est la liste des maniéres d’assembler deux

autres états pour former I'état n°i.

Exemple :
(2. 1,3,(3,.8, 7). (4, 8, 7). (4,9, 12)] représente |’état constitué des 2 solides n°1 et n°3.

Pour former cet état on a 3 possibilités :
1) Assembler les états n°8 et n°7 selon la direction n°3;
2) Assembler les états n°8 et n°7 selon la direction n°4;

3) Assembler les états n°9 et n°12 selon la direction n°4.

Taille des états

Déclaration : Private n_etats() As Integer
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Role :
Ce tableau permet d’accéder directement aux états d’une taille donnée dans etat_solide.
Exemple :

L’ensemble des états contenant i solides est 'ensemble des éléments de etar_solide dont

les indices sont compris entre n_etats(i-1)+1 et n_etats(i).

Caractéristique des états

Déclaration : Public etat_caract(l to n_etats(n_solides). 0 to 2) As Variant
Role :
Ce tableau indique 3 caractéristiques des états :
- etat_caract(i, 0) indique si I'état i permet de terminer 1’'assemblage. Si ce n’est
pas le cas I’état pourrait étre est supprimé. Sinon :
- etat_caract (i. 1) indique si il existe une séquence qui passe par I'état i et qui est
active (c’est a dire si elle respecte tous les filtres activés).

- etal_caract (i, 2) indique I"abscisse de I'état i sur le And/Or Graph.

Liste des séquences

Déclaration : Public liste_sequence As New Collection
Role :

Le tableau erat_solide contient toutes les informations nécessaires pour retrouver toutes
les séquences d’assemblage. Mais le programme stocke aussi ces séquences de maniere explicite
pour simplifier la suite du programme dans liste_sequence.

Description :

Chaque séquence est enregistrée sous la forme d’un tableau de 3 lignes et n_solides
colonnes :

- Chaque colonne représente I'insertion d’un nouveau composant dans la

séquence;

- La premiére ligne représente le numéro du solide inséré;

- La seconde représente la direction d’insertion:
P
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- La troisieme indique le nombre de solides insérés a la fois (pour les séquences

non lin€aires).

Le tablean ci-dessous représente la séquence linéaire de la figure 6.2 :

Solide de 1° solide 2° solide 3° solide 4° solide
base inséré inséré inséré inséré
Solide n° 1 2 3 4 5
Direction n° 1 3 3 4
Nombre de 1 1 1 1
solides insérés

Nous avons les correspondances :

- Base = solide n°1;

- Dessus = solide n°2;

- Tige = solide n°3;

- Bouchon_gauche = solide n°4;

- Bouchon_droit = solide n°S.

Le tableau ci-dessous représente la séquence non linéaire de la figure 5.2 :

Solide de 1° solide 2° groupe de 3° solide 4° solide
base inséré solides inséré inséré inséré
Solide n° 5 3 1 2 4
Direction n° 3 3 1 3
Nombre de 1 2 1 l
solides
insérés

Liste des états contenus dans chaque séquence

Déclaration : Public etat_dans_sequence As New Collection

Role :
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Cette collection permet de retrouver rapidement tous les états qui font partie d’une
séquence donnée. Chaque élément de la collection est un tableau qui contient la liste des états et
leurs états peres (cette demiére information sera nécessaire plus tard pour construire le And/Or
Graph).

Pour une séquence donnée on dit qu’un état est I’état pére de deux autres états si il est
égal a I’'assemblage des deux. Pour chaque état (excepté celui qui correspond au produit final) et
pour chaque séquence il y a un et un seul état pére.

Description :
elal_dans_sequence(sequence) = ((etat,, etat_pere,), (etat,, etat_pere), ... . (elal, etal_pere,))

Liste des séquences associées a chaque état

Déclaration : Public sequence_dans_etat() As New Collection
Role :

Ce tableau permet de retrouver rapidement toutes les séquences qui passent par un état
donné (c’est le tableau symétrique du tableau précédent). Chaque élément du tableau correspond
a un €tat et contient la collection des séquences qui le contiennent.

Sequence_dans_etal(etat) = ((seq,. etat_pere,), (seq,, etal_pere ). .... (seq, etat _perned)

Données nécessaires pour I’évaluation des
séquences

Liste des filtres qui ne sont pas associés a une note

Déclaration : Public filtre_dur(l To 1) As Boolean
Réle :
Ce tableau contient la liste des filtres pour lesquels aucune note n’est attribuée. Dans

notre projet il n’y en a qu’un : «interdire I'assemblage depuis le bas ».
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Liste des filtres et des critéres associés a une note

Déclaration : Public filtre_note(l To 5) As Boolean
Role :

Ce tableau contient la liste des critéres pour évaluer les séquences. Comme vu dans le
chapitre S, ils sont utilisés de deux maniéres :

- Pour attribuer des notes aux séquences;

- Pour supprimer celles qui n’ont pas 10 si le critére correspondant est actif.

Liste des états interdits et des séquences interdites

Déclaration :
Public liste_seq_interdit As New Collection
Public liste_etat_interdit As New Collection
Role :
Ces deux collections contiennent respectivement la liste des séquences et des états qui

ont été interdits manuellement par I’ utilisateur.

Notes attribuées aux séquences

Déclaration : Public notes_sequences(1 1o n.quences 1 10 2+nyp) As Variant
Role :

Ce tableau contient les notes de chaque séquence pour chacun des filtres. Pour le seul
filtre qui n’admet pas de note le tableau indique si la séquence respecte ou non le critere.

Enfin la derniére colonne indique si la séquence respecte I'ensemble des critéres activés
et donc si elle peut étre affichée.
Séquence | Filtre sans Note .- Note Note Séquence a

note critere | critére n moyenne afficher?

i True/False Note, ... Note, Moyenne | True/False
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Liens entre les états

Déclaration : Public liens() As New Collection
Role :
Ce tableau indique pour chaque état actif quels sont les états péres qui sont aussi actifs.

Il permet de savoir quels traits dessiner entre quels états dans le And/Or Graph.



