POLYTECHNIQUE

PG LYPUBLIE

A [
UNIVERSITE o3

PO'YtGChnique Montréal D'INGENIERIE

Titre:

Title: Role mining sensible a I'accumulation de privileges

Auteur:
Author:
Date: 2025

Type: Mémoire ou thése / Dissertation or Thesis

Vincent Bittard

Référence: Blttarq, V (2025). RoIe_ mining ser,15|ble a I'accgmuIann de privileges [Mémoire
de maitrise, Polytechnique Montréal]. PolyPublie.

Citation: 'https://publications.polymtl.ca/70214/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . N
PolyPublie URL: https://publications.polymtl.ca/70214/

Directeurs de
recherche: Nora Boulahia Cuppens, & Frédéric Cuppens
Advisors:

Programme

Program:' génie informatique

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://publications.polymtl.ca/70214/
https://publications.polymtl.ca/70214/

POLYTECHNIQUE MONTREAL

affiliée a "Université de Montréal

Role mining sensible a ’accumulation de privileges

VINCENT BITTARD

Département de Génie informatique et génie logiciel

Mémoire présenté en vue de I'obtention du diplome de Maitrise és sciences appliquées

Génie informatique

Novembre 2025

© Vincent Bittard, 2025.



POLYTECHNIQUE MONTREAL

affiliée a ’Université de Montréal

Ce mémoire intitulé :

Role mining sensible a ’accumulation de privileges

présenté par Vincent BITTARD
en vue de 'obtention du dipléme de Maitrise és sciences appliquées

a été diment accepté par le jury d’examen constitué de :

Alejandro QUINTERO, président

Nora BOULAHIA-CUPPENS, membre et directrice de recherche
Frédéric CUPPENS, membre et codirecteur de recherche

Ranwa AL MALLAH, membre



1ii

DEDICACE

Je remercie mes colléques du laboratoire, Vi, Basile, Amine, Florian, Erwan, Maxime, pour

leur bienveillance et leur présence tout au long de ce parcours.

Je remercie profondément tous mes amis qui, chacun a leur maniere, m’ont soutenu,
encouragé et apporté de précieux instants de réconfort. Un merci tout particulier a Auriane et
Dorian, avec qui j’ai partagé cette aventure en maitrise au quotidien pendant deur années,

pour tous ces moments passés ensemble et leur aide inestimable.

Je remercie grandement ma famille et Julien pour leur soutien indéfectible, leur présence
attentive et leurs encouragements constants, qui m’ont permis de traverser les périodes de

doute, de surmonter les moments les plus éprouvants et de poursuivre ce travail avec confiance.

Enfin, je dédie ce mémoire de recherche a Sébastien Foucher.



v

REMERCIEMENTS

Je remercie mes directeurs de recherche Frédéric et Nora Cuppens pour m’avoir donné

I'opportunité de développer ce sujet de maitrise au sein du projet sur la menace interne.

Je remercie mes encadrants de recherche Jean-Yves Ouattara, Sara Imene Boucetta, et plus
particulierement Rim Ben Salem et Ahmed Bouzid pour m’avoir appuyé dans mon travail de

rédaction a maintes reprises.

Je remercie mes superviseurs industriels Adel Benlagra, Frangois Charest et en particulier
Mouna Selmi, qui a encadré pendant plus d’'un an I'implémentation de mon projet de recherche

et fourni une aide précieuse tout au long de mon stage.

Je tiens a exprimer ma gratitude envers MITACS, Banque Nationale, Desjardins, Mondata et

Qohash pour leur soutien et leur contribution inestimables a cette recherche.
Je remercie Sébastien Foucher pour ces travaux préalables qui m’ont aidé dans ma recherche.

Je remercie enfin le jury pour I'attention portée a I’évaluation de mon travail.



RESUME

Le Role Mining (RM) extrait des structures de controle d’acces fondées sur des roles (RBAC) a
partir des attributions de permissions aux utilisateurs afin de réduire la charge administrative.
Cependant, les approches existantes partent généralement du principe que les ensembles de
données utilisées pour miner des roles sont propres, alors que les systemes réels souffrent

d’anomalies telles que 'accumulation de privileges, aussi appelé privilege creep.

L’approche proposée vise a détecter les utilisateurs susceptibles d’étre concernés par
I’accumulation de privileges et qui doivent étre examinés en priorité, ainsi qu’a identifier les
attributions de permissions légitimes a exprimer en RBAC, réduisant ainsi la complexité
de la gestion. Cette approche consiste en une procédure a deux étapes : nettoyer la ma-
trice d’assignation des permissions utilisateur (UPA) a I’aide de clustering et d’une analyse

statistique, puis construire un état RBAC a 'aide d’un algorithme de role mining classique.

L’approche proposée permet d’obtenir une précision moyenne de 90 % dans la détection
de 'accumulation des priviléges et une correction de plus de 95 % de I'accumulation des
privileges, évaluée sur des jeux de données synthétiques. L’évaluation sur des jeux de données
réels montre une réduction moyenne d’un facteur 4 des roles requis tout en conservant une

couverture de la matrice User-Permission Assignment matrix (UPA) d’au moins 80 %.
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ABSTRACT

Role Mining (RM) extracts Role-Based Access Control (RBAC) structures from user-
permission assignments to reduce administrative overhead. However, existing approaches
generally assume that the datasets used for mining roles are clean, while real systems suffer
from anomalies like privilege creep (PC), the gradual accumulation of outdated permissions,

permissions that should have been revoked.

My approach aims to detect users affected by privilege creep for prioritized access review,
while identifying legitimate permission assignments that can be expressed in RBAC, thereby
reducing management complexity. This approach consists of a two-step procedure: cleaning
the User-Permission Assignment (UPA) matrix using clustering and statistical analysis, then

constructing an RBAC state using a conventional role mining algorithm.

The proposed approach achieves an average accuracy of 90% in detecting privilege creep and
is able to correct over 95% of privilege creep instances, as evaluated on synthetic datasets.
The evaluation on real-world datasets shows an average reduction by a factor of 4 in the
required roles while maintaining a UPA matrix coverage of at least 80%. This reduction in
role count is comparable to or exceeds the performance of established methods such as delta
RMP for the datasets evaluated.
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CHAPITRE 1 INTRODUCTION

1.1 Contexte de menace interne

Les menaces internes désignent des actes malveillants commis par des personnes qui possedent
des autorisations d’acces légitimes au sein d'une organisation. Ces actes peuvent avoir des

conséquences graves sur les ressources numériques et physiques de I'entreprise.

Dans un livre de Stolfo et al [2], un acteur de menace interne désigne tout individu disposant
d’autorisations légitimes pour accéder aux systemes et ressources numériques de ’organisation.
Cette catégorie comprend toute personne habilitée a consulter, modifier ou gérer les configura-
tions informatiques, les données ou les applications de ’entreprise, privileges qui ne sont pas
accordés au public externe. Cette définition couvre non seulement le personnel permanent
de l'organisation, mais également les employés temporaires, les bénévoles et les prestataires

externes, la portée exacte dépendant du domaine d’activité spécifique de I’entreprise concernée.

On peut relier cette notion de personne malveillante interne a ’entreprise sous le terme
d’initié, "insider" en anglais, lorsque I’acte malveillant est intentionnel. Ces initiés peuvent avoir
plusieurs motifs comme le souligne Fortinet [3] : de nombreuses menaces internes intentionnelles
sont motivées par un désir de vengeance envers l’entreprise suite a un sentiment d’injustice ou
d’attentes insatisfaites, notamment 1’absence de prime ou de promotion espérée. Cybersecurity
& Infrastructure Security Agency (CISA) [4] propose une perspective complémentaire en
identifiant les motivations d’initiés qui cherchent a porter préjudice a leur organisation
dans un objectif de gain personnel ou en réaction a un grief particulier. L’agence observe
notamment que plusieurs initiés sont poussés a la vengeance par un sentiment de manque
de reconnaissance percgu, qu’il s’agisse de promotions refusées, de primes non accordées,

d’opportunités de déplacement manquées ou encore de licenciements.

Cependant, cette définition n’inclut pas les acteurs de la menace interne qui agissent de fagon

non intentionnelle. CISA [4] donne deux catégories de ces menaces internes :

o Négligence, un acteur de ce type expose une organisation a une menace par manque
de vigilance. Les employés négligents connaissent généralement les politiques de sécu-
rité et/ou informatiques, mais choisissent de les ignorer, créant ainsi un risque pour
I'organisation. Les exemples incluent le fait d’égarer ou perdre un dispositif de stock-
age portable contenant des informations sensibles ou ignorer les messages demandant

d’installer de nouvelles mises a jour et correctifs de sécurité.



o Accidentel, un acteur de ce type cause par erreur un risque non intentionnel pour une
organisation. Les exemples incluent une erreur de frappe dans une adresse courriel et
I’envoi accidentel d’'un document commercial sensible a un concurrent, cliquer sans le
savoir ou par inadvertance sur un hyperlien, ouvrir une piece jointe dans un courriel
d’hameconnage contenant un virus, ou éliminer de fagon inappropriée des documents

sensibles.

Ainsi donc, un autre acteur intentionnellement malveillant tire profit des acteurs internes

dont les agissements non intentionnels mettent en péril la sécurité de I’entreprise.

1.2 Risques et impacts

Les incidents liés aux menaces internes, qu’ils soient intentionnels ou non, peuvent engendrer
des dommages considérables. Ces préjudices incluent le vol, la divulgation et la détérioration
de données sensibles, la désactivation malveillante des services critiques, la saturation des
réseaux ou des serveurs, 'interruption des processus métier essentiels, ou encore 1’assistance

apportée aux attaquants externes par la création de points d’accés non autorisés.

Le cofit total moyen des incidents de menace interne est passé de 8,3 millions de dollars US en
2018 a 16,2 millions de dollars US en 2023 selon le rapport global 2023 du Ponemon Institute

sur le cotit des menaces internes [5], soit un doublement en seulement cing ans.

En 2024, la situation s’est fortement dégradée par rapport a 2023 : Un rapport fondé sur
sondage de 467 professionnels de cybersécurité par Cybersecurity Insiders montre que 17%
des organisations ont déclaré n’avoir subi aucune attaque interne : incidents d’exposition,
de perte, de fuite et de vol de données causés par des acteurs malveillants [6]. C’est une

diminution significative par rapport aux 40% sondés en 2023.

On peut citer plusieurs cas célebres pour se rendre compte de la gravité de certains accidents

qui ternissent 'image d’une entreprise en plus de faire peser de lourdes pénalités financieres.

Le premier exemple est celui de la fuite de données de Capital One, perpétrée par une ancienne
employée de Amazon Web Services (AWS) qui a profité d’un pare-feu mal configuré, utilisé
par Capital One pour protéger son déploiement AWS. Ce pare-feu s’était vu accorder des
permissions excessives sur 'instance AWS (la capacité de lire tous les fichiers stockés) et était
vulnérable. L’attaquante a exploité la vulnérabilité en question pour dérober les données
de 100 millions de clients américains et 6 millions de clients canadiens de Capital One [7].
Suite a cet incident, I'entreprise a dii payer une amende de 80 millions de dollars US a 1’Office
of the Comptroller of the Currency (OCC) [8] ainsi que 190 millions de dollars US suite a

un recours collectif [9] faisant s’élever la note totale a 270 millions de dollars US. C’est sans



compter la perte de confiance des clients de Capital One qui a probablement eu un impact

financier impossible a calculer précisément.

Un cas plus récent qui n’a pas encore été jugé est celui de la fuite de données de Tesla ayant
eu lieu en 2023. Deux anciens employés de Tesla agissant en lanceurs d’alerte ont fait fuiter
plus de 23 000 documents internes & un média allemand [10] [11]. Les données confidentielles
incluaient les informations d’identification personnelle de plus de 75 000 employés, des secrets
de production et des informations financieres des clients pour un total de 100 Giga-octets de
données. Les amendes potentielles en vertu du RGPD auraient pu atteindre des milliards de
dollars. L’entreprise fait également face a un recours collectif des employés toujours en cours

a la date d’écriture de ce mémoire [12].

Dans tous ces exemples, les acteurs malveillants ont utilisé des privileges auxquels ils avaient
acces au sein de leur entreprise. Dans certains cas, c¢’est une conséquence directe d’un
phénomene souvent observé en contréle d’acces : au fil du temps, la qualité des systemes de
Gestion des Identités et des Acces (GIA) se dégrade, 'accumulation de privileges représen-
tant une anomalie clé dans le contexte de menace interne : une accumulation progressive
d’autorisations résultant de transitions professionnelles, de changements organisationnels,
d’affectations temporaires, etc. Si ce probleme peut étre résolu manuellement dans les petites
organisations, sa complexité augmente considérablement dans les grandes entreprises, d’autant

plus que la revue des acces est souvent fragmentée et déléguée.

1.3 Solutions

Une étude récente par Marquis [13] énonce que les menaces internes constituent un défi
majeur pour la sécurité des bases de données organisationnelles, nécessitant des mesures de
protection robustes et adaptatives. Le controle d’acces basé sur les roles Role Based Access
Control (RBAC) représente une solution prometteuse pour faire face a ces risques en limitant
I’acces aux données selon la fonction de chaque utilisateur au sein de I'organisation. Cette
recherche examine D'efficacité des systemes RBAC pour réduire les menaces internes dans
différents secteurs d’activité, notamment la technologie, la finance, la santé et les organismes
gouvernementaux, en s’appuyant sur une approche quantitative utilisant une enquéte aupres

de professionnels responsables de la sécurité des bases de données.

Les résultats révelent que le RBAC contribue effectivement a diminuer les acces non autorisés
et les violations de données, réduisant ainsi considérablement les menaces internes. Cependant,
la mise en ceuvre présente certains défis, notamment la complexité de la définition des roles et

I’adaptation aux besoins d’acces évolutifs. L’étude souligne que 'efficacité du RBAC dépend



de son amélioration continue, de I'intégration de technologies avancées comme ’apprentissage
automatique, et de son adaptation aux contextes organisationnels spécifiques, recommandant
ainsi des programmes d’amélioration continue et une formation spécialisée pour optimiser ces

systemes de sécurité.

Les administrateurs systéme structurent aussi les permissions données aux utilisateurs pour
réduire les cotits liés a la GIA. Ils utilisent alors le modele RBAC ou Attribute-Based Access
Control (ABAC), en regroupant les utilisateurs ayant des besoins similaires en matiére d’acces
a l'information. Cela permet une configuration du contrdle d’acces plus extensible et plus
facile & maintenir. Le processus qui sert a construire cette structure s’appelle "role mining"
puisqu’on essaie d’inférer les roles des utilisateurs en fonction de leurs permissions, attributs,
etc. Cependant, les approches récentes en matiere de role mining se sont concentrées sur des
méthodes congues pour des jeux de données propres, sans anomalies. Dans les systemes de
controle d’acces réels, cette hypothese est rarement vérifiée. Ceci crée un probléeme majeur :
les permissions anormales sont répliquées dans la structure RBAC et rendent donc le controle

d’acces inutile lorsque celui-ci ne correspond pas aux politiques de sécurité mises en place.

1.4 Objectifs de recherche

Mettre au point une méthode de role mining capable de détecter et de corriger les anomalies
principales rencontrées en GIA tout en proposant des recommandations pour former des roles

et structurer la gestion des acces.

Développer un algorithme de génération de données synthétiques paramétrable qui prend en

compte 'ajout d’anomalies comme le bruit et ['accumulation de priviléeges.

Evaluer les performances de la méthode de role mining avec détection de l’accumulation
de privileges mise au point sur des jeux de données synthétiques générés, et sur des jeur
de données réels en combinant des métriques nouvellement développées avec des métriques

établies.



1.5 Plan du mémoire

Le deuxieme chapitre présente une revue de la littérature des approches explorées en role
mining et les techniques utilisées pour évaluer ces approches. Le troisieme chapitre décrit
la méthode de génération de jeux de données synthétiques proposée. Le quatrieme chapitre
explique la méthode de role mining proposée, capable de détecter et corriger les instances
d’accumulation de privileges. Le cinquieme chapitre est dédié¢ a I’évaluation sur jeux de
données réels et synthétiques de la méthode de role mining proposée. Enfin le sixieme chapitre
constitue la conclusion des travaux, incluant la limites, les pistes d’améliorations et les travaux

futurs.



CHAPITRE 2 REVUE DE LITTERATURE

2.1 Role Mining

2.1.1 Définition formelle

Le National Institute of Standards and Technology (NIST) [14] apporte une définition formelle

au contexte commun du role mining :

e Soit U, P I'’ensemble des utilisateurs et ’ensemble des permissions respectivement.

e Soit UPA C U x P la matrice binaire d’assignation utilisateur-permission, pouvant
étre vue comme une fonction multivaluée [15] de U dans P. Cette matrice est, dans la
plupart des cas, vue comme une matrice binaire ou un 1 indique une assignation de

permission a un utilisateur et un 0 indique I’absence d’assignation.

Le NIST formalise aussi le basic Role Mining Problem (RMP) en un probleme de décomposition

matricielle binaire :

Etant donné le contexte commun du role mining, trouver un ensemble de roles R et deux
matrices binaires UA C U x R, la matrice d’affectation utilisateur-role et PA C P x R, la

matrice d’affectation réle-permission, o UPA = UA ® PA en minimisant |R)|.

L’opération ® n’est pas une multiplication matricielle au sens algébrique classique (produit
scalaire ou produit matriciel standard), mais une opération booléenne d’affectation, souvent

appelée produit booléen ou composition. On le calcule comme suit :

UPAJu,p) = \/ (UA[u,r] A PAlr,p)) (2.1)

Avec V le OU logique sur un ensemble, A le ET logique.

Par abus de langage, on désigne les assignations utilisateur-permission par le terme assignation.

De méme, on désigne les affectations utilisateur-role et role-permission par le terme affectation.

2.1.2 Autres formulations et algorithmes

D’autres formulations du RMP existent et servent a gagner en pertinence de solution, en

temps de calcul, etc.



Zhang et al. [16] proposent une formulation du probléeme par graphe biparti [17] ou les
utilisateurs, les roles et les permissions sont représentés comme des noeuds, et les assignations
entre eux sont représentées comme des arétes. Le role mining devient alors un probleme
d’expression de graphe biparti en graphe triparti. L’article explore une approche hybride ou
les roles sont partiellement définis au niveau de 'administration. L’objectif principal est de
minimiser le cotit d’administration apres que I’état RBAC a été construit. Cela se traduit par
un objectif de nombre minimal de roles et d’arétes dans le graphe biparti. Cette formulation
est particulierement intéressante, car elle permet d’utiliser des techniques d’optimisation de
graphe. La figure 2.1 donne un exemple de cette approche.

U Roles (R) P
Utilisateurs (U)  Permissions (P)

@\ D2 @ : To :
= - @ e Pa
Y2
@ ©,
UPA UA PA
(a) (b)

Figure 2.1 Comparaison de I’expression d’une matrice UPA sous forme de graphe biparti 2.1a,
et forme de graphe triparti 2.1b.

Le probleme s’énonce alors :

Etant donné le contexte commun du role mining, trouver un ensemble de roles R et deux
matrices binaires UA C U x R et PA C P x R ou UPA = UA ® PA en minimisant
|R| + [[UA||L + [ PA|1.

Cette approche est améliorée par Vaidya et al. [18] en formalisant et en nommant le probleme
edge-RMP. Ils montrent que ce probleme est NP-complet et proposent une solution algorith-
mique pour le résoudre. Il s’agit toujours d’un probleme visant a minimiser le nombre total
d’arétes dans un graphe biparti, mais sans la contrainte sur les réles. Le probleme s’énonce
alors de fagon similaire :

Etant donné le contexte commun du role mining, trouver un ensemble de roles R et deux
matrices binaires UA C U x R et PA C P x R, oun UPA = UA ® PA en minimisant
|UAll + | PAIL.



Diverses approches algorithmiques sont utilisées pour trouver une solution a ces problémes de

role mining, voici les plus connues encore utilisées a ce jour regroupées en trois catégories :

o La décomposition de matrice, visant a factoriser directement la matrice UPA. Au sein
de cette catégorie, CompleteMiner (CM) [19] offre une approche exhaustive en explorant
toutes les intersections des ensembles de permissions portées par les utilisateurs possibles
pour garantir 'identification de tous les roles potentiels, au prix d'un cotit de calcul et
de mémoire tres élevé. Pour pallier ce probleme, FastMiner (FM) [19] a été proposé
comme une alternative heuristique plus rapide : limiter la recherche de réles a un sous-
ensemble d’intersections, ne prenant en compte que les intersections impliquant au plus
2 configurations utilisateur, et se concentrer sur les utilisateurs ayant des permissions
similaires. L’algorithme gagne en efficacité pour les grands systemes, passant d’une
complexité exponentielle & polynomiale, bien que cette optimisation empéche parfois de

découvrir certains roles optimaux.

o Basée sur le clustering, qui regroupe les utilisateurs ou les permissions selon une métrique
de similarité. HierarchicalMiner (HM) [20] se distingue en utilisant des techniques de
clustering hiérarchique pour identifier des réles, mais aussi les organiser dans une
structure arborescente. Cette hiérarchie modélise plus fidelement les relations entre les
fonctions au sein d’une organisation, bien que sa pertinence dépende fortement de la
mesure de similarité choisie. Pour enrichir davantage la signification des roles découverts,
des approches comme Ontology-based Role-mining framework with Clustering Analysis
(ORCA) [21] combinent le clustering avec des ontologies, intégrant ainsi le contexte

organisationnel pour générer des roles sémantiquement plus riches.

o Basée sur les graphes, offrant une modélisation flexible du probleme. Des algorithmes
comme HPr [1] ou Graph-based Optimization (GO) [16] cherchent a identifier des
"communautés denses" d’utilisateurs, qui correspondent a des roles potentiels. Cette
méthode transforme le role mining en un probleme d’optimisation, permettant d’intégrer

diverses contraintes spécifiques au systeme.

Toutes ces approches visent une correspondance exacte entre la matrice UPA originelle et la
matrice reconstruite a partir des matrices UA et PA. Cependant, comme Vaidya et al. [22]
I’ont noté, cette méthode peut produire un nombre trop important de roles, rendant I'avantage
administratif apporté par la structure RBAC moindre. C’est pourquoi la version généralisée

du RMP autorise des déviations.



2.2 Noise Role Mining

On entend par déviation que la matrice UPA n’a pas a étre exprimée entiérement, voire qu’on
peut rajouter des assignations préalablement non existantes. Cette approche permet de pallier
un premier type d’anomalie rencontré dans les systemes de GIA : le bruit. Cette notion de
bruit est ce qui donne a la version généralisée du probleme le nom de "Noise Role Mining" ou

role mining en présence de bruit.

2.2.1 Définition du bruit

Vaidya et al. [23] définissent le bruit observable sur la matrice UPA comme des permissions
qui ne sont pas enregistrées dans le systeme de GIA comme elles devraient ’étre. C’est-a-dire,
soit une autorisation étant enregistrée comme un refus ou un refus étant enregistré comme
une autorisation. On appelle ces anomalies bruit général : des inversions de bits sur la
matrice UPA, essentiellement une permission incorrectement révoquée ou accordée par un

administrateur de sécurité. Ils classifient ensuite ce bruit en deux catégories :

o Bruit additif, qui désigne les permissions incorrectement ajoutées dans la matrice UPA
qui n’ont pas été supprimées. Habituellement, ces permissions sont accordées pour une

tache temporaire et ont été oubliées.

o Bruit soustractif, qui désigne les permissions incorrectement supprimées de la matrice
UPA qui devraient y étre ajoutées. Habituellement, ces permissions manquantes provien-
nent du processus d’approvisionnement (access provisioning) lorsque quelqu’un n’obtient

pas les permissions nécessaires pour accomplir ses taches.

Il est clair que le bruit soustractif est habituellement moins fréquent que le bruit additif
en raison du probléme de disponibilité qu’il cause. Molloy et al. [24] proposent une autre

classification comme suit :

o Bruit de correction : les assignations qui impactent la sécurité d’un systeme. Essentielle-
ment, ce bruit est défini comme les erreurs de type I (faux positifs) et de type II (faux

négatifs) qui correspondent respectivement au bruit additif et soustractif de Vaidya et
al. [23]

o Bruit d’applicabilité RBAC : les assignations que I'administrateur souhaite con-
server comme des exceptions, et qui ne devraient pas étre exprimées dans le systeme

RBAC. Ceci découle du besoin de flexibilité dans le contrdle d’acces, permettant a
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I’administrateur d’adapter les permissions dynamiquement en fonction du contexte ou
des exigences temporaires. Ce ne sont pas a proprement parler des erreurs, mais elles

peuvent étre indiscernables du bruit de correction sans contexte.

La définition de Molloy et al. [24] est donc plus large que celle de Vaidya et al. [23].

Il est important de noter que la quantité de bruit rajoutée sur un jeu de données quelconque,
traduit sous forme matricielle U PA, est généralement exprimée en pourcentage du nombre
d’assignations totales. Autrement dit, le nombre d’assignations "bruités" a rajouter sur le jeu
de données en fonction du pourcentage de bruit p est p x |[UPA|. Par abus de langage, ce
pourcentage s’appelle fréquemment niveau de bruit. Les niveaux de bruit usuels introduits

sont de l'ordre de 1% a 15% pour Molloy et al. et jusqu’a 30% pour Vaidya et al.

2.2.2 Premieéres solutions

Vaidya et al. [23] proposent deux approches pour atteindre cet objectif : le 6 Role Mining
Problem (6-RMP) et le Minimal Noise Role Mining Problem (MinNoise). Ils permettent de
miner des roles directement sur des données dites "bruitées" en autorisant I’expression partielle
de la matrice UPA, ce qui permet de tenir compte de potentielles anomalies. On appelle
divergence la différence binaires d’assignation entre la matrice UPA d’origine et la matrice
minée par l'algorithme. Le 6-RMP fixe le nombre maximal de divergences a ¢, minimisant
ainsi le nombre de roles produits, tandis que le MinNoise fixe le nombre de roles et minimise
le nombre de divergences. Les deux approches proposées produisent moins de roles que ce qui

serait nécessaire pour exprimer pleinement les assignations, ce qui facilite la gestion de 1’état
RBAC résultant. Ainsi le probleme de 6-RMP s’énonce :

Etant donné le contexte commun du role mining et un entier non nul d, trouver un ensemble
de roles R et deux matrices binaires UA C U x Ret PAC P x R, ot UPA=UA® PA, tel
que [|[UPA —UA x PA||; < § minimisant |R|.

Et le MinNoise-RMP :

Etant donné le contexte commun du role mining et un entier non nul k, trouver un ensemble
d’exactement k roles R et deux matrices binaires UA C U x Ret PAC P x Rou UPA =
UA® PA, en minimisant ||[UPA — UA x PA||;

Le Disjoint Decomposition Model (DDM) [25] [26] par Frank et al. utilise des contraintes
d’expression afin d’orienter le role mining. En effet, avec cette approche les permissions sont
assignées aux utilisateurs a travers des roles "métier" et des roles "fonctionnels', structure
formalisée par Kern et al. [27]. Chaque utilisateur ne peut avoir qu'un seul role métier,

et chaque permission ne peut appartenir qu’a une seule fonction, de facto qu’un seul role
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fonctionnel. Les roles fonctionnels peuvent en revanche étre attribués a autant de roles
métiers que nécessaire pour exprimer les permissions. Cette disjonction du probléme permet
d’abstraire plus facilement I'attribution des roles aux utilisateurs et permet aussi de corriger
les erreurs d’assignation dans la matrice originelle en regroupant les utilisateurs similaires
dans le méme role métier. L’approche permet de corriger des niveaux de bruit uniformément

aléatoires jusqu’a 10% des assignations totales sur la matrice UPA.

Le Multi-Assignment Clustering (MAC), d’abord introduit par Streich et Frank et al. [28] [29],
exprime aussi partiellement la matrice UPA. Cette méthode s’inscrit dans la catégorie de
role mining probabiliste. L’approche groupe les utilisateurs selon leurs permissions dans des
clusters autorisés a se chevaucher. Des affectations probabilistes sont ensuite effectuées, en
utilisant I'information sur plusieurs clusters. Les affectations les moins probables sont écartées,
supprimant efficacement le bruit. Le MAC produit une suppression de bruit quasi parfaite
jusqu’a des niveaux de bruit de 40% évalués sur des données synthétiques utilisant un modele
de bruit par inversion de bit. Cette approche obtient aussi de meilleurs résultats en termes de
stabilité de solution que d’autres méthodes générales de suppression de bruit sur matrices
binaires : Infinite Noisy-OR, (INO) [30] une approche non supervisée probabiliste, Discrete
Basis Problem solver (DBPs) [31] un algorithme glouton de décomposition matricielle, et Binary
Independent Component Analysis (BICA) [32] une méthode variationnelle de factorisation et

suppression de bruit spécifique pour les matrices binaires.

D’autres approches préféerent un processus en 2 étapes : nettoyer les données d’abord et miner
ensuite. L’approche de Molloy et al. [24] utilise des algorithmes de décomposition de matrice
binaire pour I’étape de nettoyage. Singular Value Decomposition (SVD), Non-Negative Matrix
Factorization (NMF), Binary Non-Negative Matrix Factorization (BNMF) et logistic Principal
Component Analysis (PCA) en tant qu’algorithmes servant au nettoyage des données, adjoints
d’un autre algorithme de RM exprimant la matrice UPA de fagon exacte. Cette approche
est comparée au 6-RMP, DDM et MAC. La matrice UPA est d’abord décomposée, puis
reconstruite en format binaire en utilisant la transformation inverse de la décomposition
utilisée. Une fonction échelon assure des valeurs binaires lors de la reconstruction. Puisque
les décompositions ne sont pas exactes, certaines données sont détruites, supprimant ainsi le
bruit. Les roles sont ensuite minés en utilisant deux algorithmes exacts : HPr [1] et HM [20].
L’évaluation de Molloy et al. [24] démontre que la méthode en 2 étapes produit de meilleurs
résultats de suppression de bruit sur des jeux de données synthétiques que les autres approches
mentionnées (6-RMP, DDM, MAC).



12

2.3 Evaluation

L’évaluation des performances des algorithmes de role mining nécessite 1'utilisation de jeux de
données standards ou couramment utilisés qui sont référencés dans la plupart des articles, ou du
moins des jeux synthétiques bien définis. Les jeux de données du monde réel sont généralement
utilisés pour évaluer les approches de role mining classiques qui operent sur des données
propres, car elles sont évaluées sur leurs performances brutes (temps d’exécution, complexité
de la hiérarchie de roles produite, etc.). Cependant, des jeux de données synthétiquement
bruités sont nécessaires pour évaluer les performances des approches congues pour traiter des
données comportant des anomalies. De plus, les métriques utilisées pour 'évaluation doivent

étre adaptées pour prendre en compte cette contrainte additionnelle.

2.3.1 Jeux de données réels

Les jeux de données réels provenant de configurations de systemes de controle d’acces sont
rares, ils sont donc fréquemment fournis par un partenaire industriel lorsque cela est possible,

sans pour autant étre divulgués. Cependant, certains jeux de données ont été rendus publics.

Ene et al. [1] aux cotés de membres d’Hewlett-Packard Labs ont publié un article sur des
méthodes exactes fondées sur des graphes utilisant des heuristiques pour aborder le probleme
de role mining de maniere plus efficace. Une des contributions notables de cet article est la
publication de jeux de données réels rendus disponibles par Hewlett Packard Labs. En raison
de la rareté des jeux de données réels de controle d’acces, ceux-ci sont rapidement devenus
la référence pour évaluer les algorithmes de role mining, et plus largement les approches de

GIA [33-43]. Les jeux de données sont les suivants :

« americas_ large et americas__small qui proviennent de pare-feux Cisco authentifiant
et autorisant des utilisateurs externes sur le réseau interne de HP.

« apj et emea proviennent aussi de pare-feux, mais sont de taille moindre.

» healthcare provient de I’United States Veteran’s Administration. C’est une liste com-
préhensive des permissions a assigner aux professionnels de santé agréés.

« domino est le jeu de données le plus proche d’'une Access Control List (ACL), c’est un
jeu de données de profils d’acces utilisateur d’un serveur Lotus Domino.

» customer provient a l'origine un graphe de contrdle d’acces du département informatique
d’un client Hewlett-Packard.

o firewall_1 et firewall 2 sont des jeux de données qui résultent d’un algorithme
d’analyse sur des pare-feux Check Point. L’analyse en question teste I'accessibilité sur

des services (c’est-a-dire SSH, HTTP ...) pour différents utilisateurs.



Leurs dimensions sont renseignées sur la table 2.1.

Jeu de données | Utilisateurs | Permissions | Assignations
americas_large 3,485 10,127 185,294
americas__small 3,477 1,587 105,205
apj 2,044 1,164 6,841
emea 35 3,046 7,220
healthcare 46 46 1,486
domino 79 231 730
customer 10,021 277 45,427
firewall 1 365 709 31,951
firewall 2 325 590 36,428

Table 2.1 Résumé des dimensions des jeux de données HP Labs [1]

2.3.2 Jeux de données synthétiques

Les jeux de données synthétiques fournissent un cadre flexible et précis pour évaluer les
algorithmes de RM. La génération est faite avec un objectif spécifique de RM, qui est ensuite
dérivé pour construire la matrice UPA. Les jeux de données synthétiques permettent donc
une comparaison directe entre la sortie d’un algorithme de RM et 'objectif sous-jacent utilisé

pour construire le jeu de données. Cette approche assure une évaluation plus ciblée et précise

de la performance d’un algorithme.

13

Une des premieres méthodes utilisées pour générer de tels jeux de données fut inventée par

Vaidya et al. [19]. Elle est aussi connue sous le nom de Random Data Generator [33]. Ce

générateur fonctionne en 3 étapes :

1. Un ensemble de roles est créé avec un nombre aléatoire de permissions attribuées entre

1 et un maximum. Le nombre maximum de permissions par réle est un parametre de

I’algorithme

2. Un ensemble d’utilisateurs est créé avec un nombre aléatoire de rdles entre 0 et un

maximum. Encore une fois, le nombre maximum de rdéles qu’un utilisateur peut recevoir

est un parametre de 'algorithme.

3. La matrice UPA est générée en traduisant Pour chaque utilisateur, les permissions

héritées des roles qui leur ont été attribués.

Essentiellement, cette méthode construit les matrices UA et PA pour en dériver ensuite la

matrice UPA. La méthode fournit un objectif de role mining clair a retrouver bien qu’il ne
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soit pas minimal. Dans beaucoup de cas, il est possible de trouver un ensemble de roles
plus petit que celui utilisé lors de la génération pour exprimer la matrice UPA, notamment
dans le cas ou des roles sont contenus dans d’autres et attribués aux mémes utilisateurs.
Cependant, cette méthode est encore utilisée pour générer des jeux de données méme tres

récemment [39] [44], car elle permet une comparaison relative d’algorithme a algorithme.

Molloy et al. [33] proposent deux autres schémas de génération de données : Tree et Enterprise
Role Based Access Control (ERBAC). Avec le Tree Data Generator, le jeu de données est
généré pour imiter une organisation divisée en départements, sont divisés eux méme en
bureaux, etc. Etant donné cette hypothese, 'algorithme construit d’abord un arbre avec
une hauteur définie et des nceuds avec un nombre borné d’enfants. Ensuite, il assigne des
permissions a chaque nceud. Les enfants héritent des permissions de leurs parents, imitant des
permissions a ’échelle de I'organisation, du département, du bureau, etc. Cet arbre représente
les permissions possibles dans la structure sous-jacente. Pour produire le jeu de données final,
les utilisateurs sont assignés aux feuilles de I'arbre et leurs permissions sont choisies dans
I’ensemble réduit de permissions données par I’arbre et assignées en utilisant le Random Data

Generator. Une illustration de la structure formée par Tree est renseignée sur la figure 2.2.

PO
(p0,p1)

P1 P2
(p2,p3,p4) (p6,p8,p9)

|

(u3, u4, ub)

P3 P4
(p5,p6,p9) (p7)

| |

(u0) (ul, u2)

Figure 2.2 Exemple de structure générée par Tree

Ici lutilisateur ul peut hériter d’un sous ensemble des permissions

contenues dans les neuds PO, P1 et P4, par exemple (p1, p2, p4, p7)

Avec le Générateur de Données ERBAC, le jeu de données est généré en s’inspirant du modele
Enterprise RBAC conceptualisé par Kern et al. [27] pour aider a déployer les systemes RBAC.
Ce modele fut développé avec des insights pratiques obtenus grace au déploiement de systemes
RBAC dans des scénarios du monde réel. Le modele requiert une hiérarchie de roles a deux
couches : roles fonctionnels et roles métier. Chaque permission assignée a un nombre aléatoire

de roles fonctionnels, les roles métier féderent plusieurs roles fonctionnels, et chaque utilisateur
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recoit plusieurs roles métier. Les regles d’héritage conferent aux utilisateurs les permissions
rattachées aux roles fonctionnels de leurs roles métier. L’algorithme fonctionne donc en
quatre étapes : d’abord les roles fonctionnels recoivent un nombre aléatoire de permissions,
deuxiemement chaque role métier recoit un nombre aléatoire de roles fonctionnels, puis chaque
utilisateur regoit un nombre aléatoire de roles métier, finalement la matrice UPA est calculée
avec les regles d’héritage. Une illustration de la structure générée par ERBAC est renseignée

sur la figure 2.3.

Utilisateurs (U) Permissions (P)
@ Roles métier
b1
. ™ )

= P2

@ >
’ / P3
@& m—a
4

@ Roéles fonctionnels

Figure 2.3 Exemple de structure générée par ERBAC Data Generator

Ici ub hérite des permissions p2, p3 et p4

Comme nous pouvons le voir, ces deux générateurs utilisent une certaine abstraction pour
construire un jeu de données qui ressemblerait davantage a un jeu de données du monde
réel. Cependant, les trois premieres méthodes de génération mentionnées ne prennent pas
en compte le probleme de l'accumulation des privileges. Les jeux de données produits sont
ensuite bruités aléatoirement avec des assignations supplémentaires, ne respectant donc pas
de scénario réel. [19,24,33]. Les jeux de données sont alors bruités de maniére uniformément
aléatoire ou avec un processus avec une loi de Bernoulli avec une probabilité faible. Les
jeux de données produits sont alors en désaccord avec la réalité rencontrée dans le milieu
des entreprises, bien que les permissions légitimes soient "bien formées'. Aussi, I’état partiel
utilisé pour construire la matrice UPA, contenant toute I'information hiérarchique, n’est pas

exploitée pour construire un objectif de role mining intéressant.
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Une autre méthode par Abolfathi et al. [45] utilise des modeles administratifs par Stoller
et al. [46] pour construire une matrice UPA crédible. Ce générateur produit un état RBAC
basé sur un modele de controle d’acces en milieu universitaire. Il inclut les roles typiques
présents dans un systeme universitaire comme étudiant, assistant d’enseignement, doyen,
directeur de programme d’honneur, etc. Il inclut aussi une hiérarchie de roles imitant la
vraie hiérarchie de l'université. Le générateur prend alors un nombre donné d’utilisateurs
et de permissions et génere un état RBAC en attribuant les utilisateurs et les permissions
sur le template avant d’utiliser les regles d’héritage et d’attribution de roles pour produire la
matrice UPA. Cette méthode est celle qui produit des jeux de données les plus réalistes dans
un cadre universitaire, mais perd en généralité si un autre template n’est pas proposé. De
plus, 'approche par Abolfathi et al. produit des jeux de données sans bruit ou accumulation

de privileges par sa conception.

Parkinson et al. [47] proposent une approche pour introduire synthétiquement de
I’accumulation de privileges dans des jeux de données de controle d’acces de systemes de
fichiers. L’algorithme génére le jeu de données de systeme de fichier itérativement puis
ajoute des permissions relatives a un utilisateur et un répertoire dans le systeme de fichiers.
Ces permissions supplémentaires nommées "permission creep" sont directement données
aux utilisateurs (et non a leur groupe) par sélection pseudo-aléatoire. L’allocation est
ensuite appliquée au systeme de fichiers, et est également écrite dans un fichier texte pour
étre utilisée comme connaissance de référence pour évaluer la performance de détection de
I’algorithme développé. Puisque ces permissions sont introduites de facon isolée sur des
utilisateurs spécifiques et non aléatoirement sur ’ensemble des utilisateurs, cette méthode
d’introduction d’anomalies est la plus réaliste rencontrée jusqu’a présent. Cependant, les
permissions additionnelles données lors de I'attribution de I'accumulation de privileges sont

choisies dans I’ensemble total des permissions, ce qui peut étre une hypothese forte.

L’accumulation de privileges est aussi désignée dans la littérature sous les termes "permission
creep' [47] ou "privilege creep' [48]. Par la suite dans ce mémoire, on désigne toute anomalie
qui releve de 'accumulation de privileges par le terme "privilege creep" avec 'acronyme PC,

pour simplifier la terminologie et faciliter la lecture.
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2.4 Meétriques

Les premieres métriques utilisées pour évaluer les algorithmes de role mining exacts utilisent
généralement la sortie d'un algorithme directement. Le nombre de roles produits et le temps
d’exécution sont quasi systématiquement rapportés, car ils permettent une interprétation

directe [19,33,38,39,42,43,45,46,49-55).

Pour généraliser les métriques de minimisation et d’évaluation de plusieurs approches, Molloy et
al. [49] ont introduit une métrique paramétrée appelée Weighted Structural Complexity (WSC)
ou Complexité Structurelle Pondérée (CSP) :

Soit W = (wy, Wy, wy, wp, wa) un vecteur de poids ot chaque composante wy., Wy, Wy, Wy, Wg €
Q" U {oo} représente un parametre de pondération pour la CSP. TIls correspondent re-
spectivement au poids sur le nombre de réles, le nombre d’assignations utilisateur-role, le
nombre d’assignations réle-permission, la complexité de la hiérarchie de roles et le nombre
d’assignations directes. Alors la CSP d’un état RBAC ~ est notée wsc(vy, W), et est calculée

comme suit :

wse(y, W) = w, - |R| + wy - [UA| + w, - |PA| +wy, - |t_reduce(RH)| 4+ wq - |[DUPA| (2.2)

Ou :
o |R| est le nombre de roles de I'état RBAC

o |[UA| et |PA| sont les normes de Manhattan de leur matrice correspondante

o |t_reduce(RH)| est le nombre minimal de relations qui traduit la hiérarchie des roles
(réduction transitive). Un bon exemple est donné dans I'article avec une hiérarchie
simple : t_reduce({(r1,rs), (re,73), (r1,73)}) = {(r1,72), (12, 73)}, car (r1,73) peut étre

inféré. On s’en sert de mesure de la complexité hiérarchique de 1’état RBAC.

o |DUPA] est le nombre d’assignations directes ou exceptions qui peuvent survenir lorsque
la matrice UPA n’est pas entierement reconstruite avec les matrices UA et PA. On

rajoute donc manuellement ces assignations hors RBAC.

Comme Molloy et al. [33] I'indiquent dans un autre article, plusieurs objectifs RMP peuvent

étre dérivés si on minimise la CSP :

« BasicRMP [22] est atteint avec W = (1,0,0, 0, co)

 La variante de Vaidya [18] d’edge-RMP est atteinte avec W = (0, 1,1, 0, co)
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 La variante de Zhang [16] d’edge-RMP W = (1,1, 1,0, c0)

o Une forme de §-cohérence [22] peut étre atteinte avec W = (xq, 9, w3, 14, 1) pour tout
(21, T9, x3,24), par exemple W = (1,0,0,0, 1) est similaire au §-RMP, minimisant les

roles et les affectations directes d’utilisateurs.

e W =1(1,1,1,1,1) est le vecteur proposé par Molloy et al. [33] pour comparer différents
algorithmes sur la minimisation de la complexité RBAC en autorisant les assignations
directes. L’intérét de ce vecteur de poids est de pénaliser les algorithmes qui vont
surajuster (overfit) le jeu de données en produisant une hiérarchie de roles trop précise,

réduisant alors I'avantage de gestion offert par RBAC.

Pour les approches de role mining inexactes qui visent une gestion simplifiée de 1’état RBAC,
on compare généralement 'entrée UPA et la sortie UA et PA de I'algorithme de role mining

utilisé. On peut alors définir la distance de Jaccard, I'erreur de reconstruction, etc.

La distance de Jaccard Js compte le nombre de dissimilarités entre deux matrices booléennes.

Dans notre cas, elle est calculée comme suit :

SupUPA, N(UA® PA),,
SupUPA,V (UA® PA)u,

Js(UPA,UA® PA) =1— (2.3)

Ou A représente le ET logique et V le OU logique.

L’erreur de reconstruction E,cconstruction PeUt alors étre exprimée en utilisant la distance de

Jaccard entre la matrice d’origine UPA et la matrice reconstruite UA @ PA :

Js(UPA,UA® PA)
UPA|

Ereconstruction(UPA: UA® PA) = (24)
Ces métriques servent principalement pour évaluer la performance d’algorithmes qui prennent
en compte le bruit d’applicabilité RBAC afin de simplifier la gestion de I’état RBAC, mais
elles ne sont pas utilisées dans le cadre de role mining sensible au privilege creep pour en
évaluer la détection [39,50,51,55,56].

Vaidya et al. [23] introduit la notion de robustesse au bruit (noise robustness) pour les
algorithmes de role mining : la robustesse au bruit reflete a quel point un algorithme de RM
est affecté ou non par le bruit lorsqu’il opere sur un jeu de données. Vaidya et al. identifient
qu’une définition appropriée pour le degré de robustesse au bruit devrait prendre en compte a
la fois le bruit supprimé efficacement, et les erreurs commises par ’algorithme. On a alors

besoin d’une métrique qui varie positivement avec le pourcentage de bits bruités correctement



19

reconstitués et négativement avec le pourcentage d’erreurs commises par I’algorithme. Vaidya

et al. utilisent donc la F-mesure.

Il est important de comprendre pourquoi cette mesure est appropriée. D’abord, il faut définir

deux classes sur les bits de la matrice UPA :

o Les bits dits originaux, ou vrais bits qui n’ont pas été inversés par le bruit.

o Les bits dits inversés, ou bits bruités qui doivent étre corrigés par I'algorithme
On définit ensuite :

 Les vrais positifs (TP) : les bits bruités que l'algorithme a correctement identifiés et

corrigés pour les ramener a leur état original.

» Les faux positifs (FP) : les vrais bits que 'algorithme a incorrectement modifiés (a

introduit des erreurs 1a ou il n’y avait pas de bruit).
o Les vrais négatifs (TN) : les vrais bits que 'algorithme a correctement laissés inchangés.

o Les faux négatifs (FN) : les bits bruités que l'algorithme n’a pas réussi a corriger (a
laissé le bruit non corrigé).
Pour construire la F-mesure, il faut définir le rappel et la précision en tant que métriques.
Le rappel mesure la complétude : comment les bits bruités ont été corrigés par ’algorithme.

Une valeur de rappel élevée signifie que la plupart des bits bruités ont été corrigés avec succes

TP
TP+ FN

La précision mesure l'exactitude/fidélité : De tous les bits qui ont été inversés par I'algorithme,

Rappel = (2.5)

combien en avaient réellement besoin d’étre inversés 7. Une valeur de précision élevée reflete

que l'algorithme n’a pas introduit de corrections inutiles :

TP
Précision = ——— 2.
récision TPLFP (2.6)

Enfin, la F-mesure est la moyenne harmonique de la précision et du rappel :

[ 2 X Précision x Rappel

2.7
Précision + Rappel (27)
Avec cette définition, il devient apparent que le choix de Vaidya et al. pour évaluer la
performance d’un algorithme de role mining, demande un processus de génération de jeu de

données synthétiquement bruité, auquel on a acces a I’étape intermédiaire sans bruit.
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Enfin Parkinson et al. [47] proposent une métrique simple pour évaluer la performance en

détection des instances de privilege creep, en définissant I'Exactitude (accuracy) comme suit :

tpr + tnr _ tpr +inr
tpr +tnr + fpr+ for 2

Exactitude = (2.8)

Avec :

o Taux de vrais positifs (tpr) ou Sensibilité : la fraction de permissions de privilege creep

correctement identifiées comme faisant partie d’une instance de privilege creep

o Taux de faux positifs (fpr=1-tnr) : la fraction des permissions réguliéres incorrectement

identifiées comme faisant partie d’une instance de de privilege creep

o Taux de vrais négatifs (tnr) ou Spécificité : la fraction des permissions régulieres

correctement identifiées comme régulieres

o Taux de faux négatifs False Negative Rate (fnr=1-tpr) : la fraction des permissions de

privilege creep incorrectement classifiées comme régulieres.

On voit donc que la formule de Parkinson est la moyenne arithmétique de la sensibilité et la

spécificité de la détection des permissions de privilege creep.

Enfin une derniére métrique importante a mentionner est celle du score d’interprétabilité
de Kang et al. [55]. Cette métrique quantifie & quel point un roéle est interprétable en
fonction des attributs (hors permissions) des utilisateurs qui le portent. Plus les utilisateurs
portant un méme role ont des attributs similaires, meilleur est le score pour ce role. Le score
d’interprétabilité d’un état RBAC est alors défini comme la somme arithmétique des scores
d’interprétabilité de tous les roles. Il nécessite donc la présence d’attributs pertinents et

exploitables. Cette métrique est formalisée comme suit :

On définit 'expression d’un attribut toute regle qui décrit un profil type d’utilisateur, par

exemple "département=Finance ET ancienneté>b5ans".

Le décalage M M (mismatch) entre une expression d’attribut e et un ensemble U d’utilisateurs

est défini par I’équation suivante :
MM(e,U) = [(U: \ U) U (U \ Ue)| (2.9)

Ou U* est I'ensemble des utilisateurs qui satisfont e.

L’interprétabilité d'un rdle est ensuite exprimée comme le degré de décalage entre ’ensemble

des utilisateurs portant ce role assignU(r) et I’ensemble des expressions d’attribut e. Plus le
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degré de décalage est faible, plus l'interprétabilité du réle est forte. L’interprétabilité d’un
role r nommée AMM(r), définie dans I’équation (2.10), dénote le décalage minimum atteint

par le role r.

AMM(r) = min(MM(e, assignU(r))) (2.10)

c€E

Ou E est I'ensemble de toutes les expressions d’attributs, assignU(r) = {u | (u,r) € UA}
représente ’ensemble des utilisateurs auxquels ce role est assigné. L’interprétabilité d une
politique RBAC INT est alors :

INT = Z AMM(r) (2.11)

reR

Les avantages et inconvénients des différentes métriques d’évaluation utilisées dans la littérature
sont compilées dans le tableau 2.2. Dans le cadre de ma recherche, les inspirations prises de

ces métriques sont renseignées dans la section 5 dans le tableau 5.4.

2.5 Approches récentes

2.5.1 Meéthodes de role mining

Durdag et Coskuncay [56] proposent une méthode pour reconfigurer les systéemes RBAC
spécifiques aux clients en regroupant les roles similaires selon la similarité des permissions.
Leur approche utilise le Agglomerative Hierarchical Clustering (AHC) en utilisant la distance
de Jaccard sur des données RBAC réelles collectées aupres de dix clients d’une entreprise
de logiciels. Plutét que de viser a remplacer directement les roles existants, cette méthode
identifie des groupes de rdles qui servent de structures de référence pour soutenir la refonte
ou le nettoyage du systeme. Les résultats du clustering sont évalués a l'aide de la précision,
du rappel et de F-mesure. Les résultats montrent que les dendrogrammes produits produisent
des regroupements de roles cohérents qui servent efficacement ’objectif de refonte de systeme,
améliorant I'interprétabilité et la gestion des configurations RBAC complexes. La méthode
proposée ne prend pas en compte la présence de privilege creep, bien que des données réelles

issues d’entreprise soient utilisées.

Un article de Zhu et al. [43] apporte une modification aux solutions du edge-RMP. En effet,
plusieurs algorithmes pour traiter ce probleme n’affinent pas assez les affectations dans les
matrices UA et PA. De plus, lors du traitement de grands ensembles de données, les algorithmes
préexistants produisent beaucoup de roles redondants. Il est donc essentiellement question
d’améliorer la performance d’algorithmes basés sur les graphes en proposant un algorithme

avec plus d’optimisations. La solution proposée ne prend donc pas explicitement en compte le
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privilege creep. Cependant, les résultats expérimentaux démontrent que l'algorithme amélioré
diminue efficacement les cotits de gestion tout en fournissant des temps d’exécution plus

courts.

Kang et al. [55] améliorent les algorithmes précédents de RM bruité en introduisant la notion
d’interprétabilité des roles. Chaque role extrait se voit attribuer un score d’interprétabilité
basé sur les attributs des utilisateurs a qui on affecte ce role. Plus les attributs des utilisateurs
portant un méme role sont similaires, plus le score d’interprétabilité est bas. Les roles sont
ensuite sélectionnés afin de minimiser ce score. L’erreur de reconstruction est ensuite calculée
entre la matrice UPA originelle et la matrice minée pour évaluer le degré de permissions
non exprimées. Cette approche est ensuite évaluée avec des jeux de données synthétiques
générées avec le Random Data Generator et sur des jeux de données réels notamment firewalll
et healthcare [1]. Cette méthode prend en compte la notion de bruit, comme source de
complexification des jeux de données, mais pas celle de privilege creep en tant qu’anomalie a

identifier et supprimer.

Nobi et al. [57] introduisent une nouvelle technique : Deep Learning Based Access Control
(DLBAC). Cette méthode est fondée sur des réseaux de neurones qui apprennent directement
a partir des métadonnées brutes des utilisateurs et des ressources. Le prototype DLBAC_«
démontre une précision et une généralisation supérieures par rapport aux approches classiques
de role mining et d’apprentissage automatique, tout apportant une contribution additionnelle
. Pexplicabilité, grace a des techniques d’interprétation comme les "integrated gradients".
Cependant, DLBAC ne traite pas directement le probléeme d’accumulation de privileges, car il
apprend a partir de données d’autorisation existantes qui peuvent déja contenir des droits
d’acces anomaux. Cette limitation est reconnue par les auteurs, qui indiquent que des erreurs

dans les jeux de données utilisés pourraient introduire un biais dans le modele entrainé.

2.5.2 Meéthodes de détection de privilege creep

Parkinson et al. [47] présentent un outil non supervisé pour détecter les instances de privilege
creep dans les ACL de systeme de fichiers Microsoft N'T. L’approche utilise une méthode
statistique : dans ce cadre, une irrégularité statistique dans I’ensemble des assignations de
permissions est considérée comme une instance de privilege creep. Les outils utilisés, ’analyse
x? et les ruptures naturelles de Jenks, permettent d’identifier automatiquement ces anomalies
en détectant respectivement les écarts significatifs par rapport a une distribution attendue
et les discontinuités naturelles dans les données d’assignation de permission. Cette méthode
est ensuite implémentée en C# sous le nom de "Creeper'. Des tests empiriques sont réalisés

sur des jeux synthétiques contenant différents niveaux de privilege creep synthétiquement
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ajoutés. Une autre analyse empirique est ensuite réalisée sur 5 systemes réels pour établir la
précision de Creeper par le biais d’'une étude comparative entre un expert manuel (humain),
ntfs-r [52], et Creeper. La précision est ici définie comme la fraction de tous les échantillons
correctement identifiés. L’évaluation démontre que Creeper atteint une précision moyenne de
96% sur les jeux de données synthétiques, et une précision moyenne de 98% sur les systemes
réels. De plus, 'analyse sur systeémes réels a démontré une amélioration significative de la
précision par rapport a deux autres techniques : expert manuel et ntfs-r. L’outil Creeper
fait partie des rares outils récents développés en role mining qui prennent en compte ’enjeu
du privilege creep dans les systemes de contréle d’acces. Bien que 'approche ne soit pas
directement un algorithme ou une méthode de role mining, la génération synthétique des
données faites dans cet article s’appuie sur une structure RBAC afin de créer le systeme de
fichier sur lequel 'approche de détection est évaluée. Parkinson et al. [58] proposent également
une approche basée sur la "fuzzy logic" pour identifier I’accumulation critique de privileges
dans les politiques de controle d’acces en modélisant la confiance des utilisateurs, la sensibilité
des ressources et la puissance des permissions comme des ensembles flous plutot que comme
des classifications binaires. Cette nouvelle approche s’appuie sur les journaux d’événements

de sécurité, produisant de meilleurs résultats que 1'outil Creeper.

Alexander et Chikwarti [48] proposent un cadre d’intelligence artificielle basé sur des graphes
modélisant I'Identity and Access Management (IAM) d’entreprise comme un graphe de
connaissances. Ils appliquent des réseaux de neurones graphiques (GNN), des algorithmes
d’extraction de communautés (méthode de Louvain) et du clustering de graphes pour découvrir
des structures de roles latentes a partir des modeles d’acces. Pour détecter les permissions
anormales, des autoencodeurs sont utilisés. Leur approche prétend réduire la redondance des
roles de 38% et atteindre une précision de 93,5% dans la détection d’anomalies. Cependant,
I’évaluation a été faite exclusivement sur des ensembles de données synthétiques et la com-
paraison d’algorithme a été faite avec une référence inappropriée utilisant K-means, inadaptée
pour la détection d’anomalies, rendant ainsi I’'amélioration rapportée de la F-mesure de 74,8 %

a 91,3 % potentiellement trompeuse.

2.5.3 Meéthodes de détection d’anomalies générales

Dans d’autres domaines scientifiques, utiliser la réduction de dimensionnalité aux cotés du
clustering permet la détection d’anomalies tout en produisant des groupes avec des attributs
semblables. Cette approche pourrait étre utilisée en RM pour supprimer le bruit, détecter les

anomalies d’utilisateurs et guider 'effort de construction des roles.

Dans un article sur la détection de fraude [59], Massi et al. proposent une approche en deux
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étapes pour détecter la fraude en santé sur une base de données administrative hospitaliere.
La premiere étape est la sélection de caractéristiques utilisant Principal Feature Analysis
(PFA) de Lu et al. [60]. La seconde étape est application de I'algorithme K-Means sur les
caractéristiques sélectionnées pour regrouper ensemble les hopitaux similaires. Cette méthode
a efficacement identifié les outliers et a méme indiqué les caractéristiques significatives qui

rendaient certains hopitaux "anormaux’, et les a donc signalés comme frauduleux.

Souza et al. [61] utilisent une approche semblable en deux étapes pour détecter les outliers
des espaces urbains intelligents. High-Order Singular Value Decomposition (HOSVD) [62]
est utilisée dans la premiere étape pour déterminer les composantes significatives, puis le
clustering est effectué sur les composantes utilisant K-means. Bien que la méthode nécessite un
grand nombre d’échantillons pour détecter les outliers, elle identifie les motifs spatio-temporels

sur les espaces urbains.

2.5.4 Lacunes

Comme le montre la revue de littérature, les approches de role mining, méme récentes, se
concentrent principalement sur des jeux de données ou le privilege creep n’est pas présent. La
premiere amélioration possible est donc de prendre en compte le privilege creep comme étant
un phénomene présent dans les systemes de controle d’acces qu’il faut retirer pour éviter de
les répéter en RBAC.

On pourrait imaginer que le bruit en tant qu’anomalie peut étre considéré comme une
instance de privilege creep. Or, beaucoup d’articles font le choix de définir le bruit comme
uniformément aléatoire. Cet ajout géne en partie 'effort de role mining, mais ne correspond
pas a un scénario crédible ou du privilege creep pourrait avoir lieu, et ne correspond pas a la
réalité du privilege creep dans une organisation possédant déja une infrastructure RBAC. En
effet, on devrait voir des ensembles de permissions reliés a d’anciens roles qu’on a oublié de
révoquer, et non des permissions isolées. Une seconde amélioration serait donc de modifier la
génération de jeux de données synthétiques de sorte a injecter des instances de privilege creep

d’une nouvelle forme en plus du bruit.

Enfin, la littérature du role mining manque d’un cadre pour I’évaluation des approches qui
prennent en compte le privilege creep. Ce qui s’en rapproche le plus est la métrique de noise
robustness de Vaidya et al. [23] et la métrique d’exactitude de Parkinson et al. [47, 52, 58].
Cependant, la métrique de noise robustness n’est pas appropriée pour évaluer correctement la
détection ou la correction de privilege creep étant donné que le bruit est, lui aussi, présent
dans les jeux de données réels. Aussi, la métrique d’exactitude est biaisée par le fait qu’il y a

un déséquilibre entre les permissions légitimes et les permissions issues du privilege creep :
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dans un systéme typique, 90 & 95% des permissions sont légitimes tandis que 5 & 10% au plus

peuvent étre attribués a du privilege creep.

En prenant un exemple concret pour comprendre le probléeme, imaginons un systeme avec
10,000 assignations : 9,500 légitimes et 500 anormales issues de privilege creep. L’algorithme
évalué détecte 450 vraies instances de privilege creep et 1,000 fausses alertes. On considere

normalement ce genre de sortie comme produisant trop de faux positifs.

La sensibilité/rappel = 450/(450+50) = 0,90, La spécificité = 8,500/(8,500+1,000) = 0,89
semble bonne, mais la précision = 450/(450+1,000) = 0,31 révele une performance moindre
au vu du nombre écrasant de faux positifs. L’exactitude donnerait donc une valeur de 0,9

tandis que la F-mesure donnerait 0,46.

Tout ces éléments porte a croire qu’il y a besoin d’un cadre plus pertinent afin d’évaluer la
détection de privilege creep dans le domaine du role mining. D’ou une partie de la contribution
finale de ma recherche qui est d’adapter le cadre d’évaluation, dont les métriques sont résumées

dans le tableau 2.2, pour tenir compte du privilege creep.



Métrique

Avantages et Inconvénients

Nombre de roles (|R|)
et temps d’exécution

Avantages : Métriques directes et simples, faciles a
mesurer, permettent une interprétation immédiate de la
performance. Bonne métrique de comparaison Incon-
vénients : Ne considerent pas la qualité des roles pro-
duits, le temps d’exécution dépend de I'implémentation
et du matériel, le nombre de roles peut étre plus grand
pour une meilleure gestion des acces.

Complexité
Structurelle Pondérée
(CSP) d’'un état
RBAC

Avantages : Métrique paramétrable tres flexible, per-
met de cibler différents objectifs RMP selon les poids
choisis, couvre tous les aspects d'un état RBAC. Incon-
vénients : Nécessite de définir les poids appropriés selon
le contexte, peut étre complexe a interpréter, ne prend
pas en compte la qualité sémantique des roles.

Distance de Jaccard
(Js5) entre entrée et
sortie d’algorithme

Avantages : Simple a calculer, mesure directement la
similarité entre matrices, intuitive a interpréter. Incon-
vénients : Ne distingue pas les types d’erreurs (faux
positifs vs faux négatifs), sensible a la taille des matrices,
ne considere que ’aspect binaire des permissions.

Erreur de
reconstruction
(Ereconstruction> entre
entrée et sortie
d’algorithme

Avantages : Normalise la distance de Jaccard par la
taille de la matrice, permet la comparaison entre dif-
férentes tailles de systémes. Inconvénients : Hérite des
limitations de la distance de Jaccard, ne fournit qu’une
vue globale sans détails sur le type d’erreur. Inutile dans
le cadre de role mining avec privilege creep car cela gonfle
I’erreur de reconstruction si les permissions probléma-
tiques sont retirées

F-mesure pour le
calcul de robustesse
au bruit

Avantages : Equilibre précision et rappel, appropriée
pour évaluer la robustesse au bruit, métrique standard en
classification. Inconvénients : Nécessite des données
de référence (ground truth), plus complexe a calculer.

Exactitude pour la
détection de privilege
creep

Avantages : Simple a comprendre, moyenne équilibrée
de sensibilité et spécificité, métrique intuitive pour la
détection de privilege creep. Inconvénients : Nécessite
des données de référence (ground truth), peut étre biaisée
si les classes sont déséquilibrées.

Interprétabilité (INT)
de politique RBAC

Avantages : Evalue la cohérence sémantique des roles,
prend en compte les attributs utilisateur, favorise des
roles compréhensibles pour les administrateurs. Incon-
vénients : Nécessite des attributs utilisateur pertinents
et exploitables, complexe a calculer, dépendant de la
qualité des expressions d’attributs définies.

Table 2.2 Récapitulatif des métriques d’évaluation d’algorithmes de role mining
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CHAPITRE 3 ROLE MINING SENSIBLE AU PRIVILEGE CREEP

Cette partie détaille I’'approche de role mining sensible du privilege creep. Elle est organisée
autour des étapes principales suivantes : les prérequis, qui présentent les concepts de réduction
de dimension et de clustering ainsi que le prétraitement des données ; la réduction de
dimension, permettant de capturer les motifs principaux dans la matrice UPA ; le clustering
et I'identification des outliers, pour détecter les utilisateurs aux permissions atypiques ; le
nettoyage, qui prépare la matrice pour 'extraction fiable des roles ; le role mining, étape ou
les roles sont extraits et assignés aux utilisateurs ; et enfin la réunification, qui réintegre les

outliers selon les approches omnisciente et heuristique.

3.1 Prérequis

3.1.1 Introduction des concepts de réduction de dimension et de clustering

Tous les concepts d’algebre linéaire introduits par la suite operent dans notre cas sur des

matrices binaires sans perte de généralité.

SVD et Truncated Singular Value Decomposition (TSVD)

En mathématiques, la décomposition en valeurs singulieres (SVD) est un procédé d’algebre
linéaire de factorisation de matrices rectangulaires. Il peut étre utilisé pour des calculs de
matrice pseudo inverse, traitement automatique des langues, etc. Dans le cadre de cette
recherche cependant, la SVD permet de créer des approximations de rang faible des matrices
UPA, réduisant ainsi la dimensionnalité des données tout en préservant les caractéristiques
les plus importantes. Cette propriété d’approximation est particulierement utile pour la
réduction de bruit, et I’extraction des motifs principaux dans des ensembles de données de

grande dimension.
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Soit M une matrice binaire m x n dont les coefficients appartiennent a {0,1} C R. Bien que

M soit binaire, sa décomposition en valeurs singulieres s’écrit sous la forme classique :
M=UxvVT (3.1)

avec .

o U une matrice orthogonale m x m sur R.
« ¥ une matrice m x n dont les coefficients diagonaux (o;) sont des réels positifs ou nuls et
tous les autres sont nuls.

o V7 est la matrice transposée de V', matrice orthogonale n x n sur R.
Interprétation des composantes :

Vecteurs d’analyse (V') : Chaque colonne de V représente un "profil type" ou une com-
binaison linéaire des variables binaires originales. Dans le contexte d’une matrice binaire,
ces vecteurs révelent les associations sous-jacentes entre les variables. C’est-a-dire, quelles
variables binaires ont tendance a co-varier ensemble. Dans le cadre du role mining sur
une matrice (utilisateurs, permissions), chaque colonne de V identifierait un ensemble de
permissions qui sont typiquement accordées simultanément, révélant ainsi les roles potentiels

du systeme.

Vecteurs de sortie (U) : Chaque colonne de U représente un "profil type" dans l'espace des
observations (lignes de la matrice). Ces vecteurs singuliers gauches caractérisent des groupes
ou des motifs d’observations qui présentent des comportements similaires vis-a-vis des variables
binaires. Dans le contexte d'une matrice de contrdle d’acces (utilisateurs, permissions), chaque
colonne de U identifierait un type de "role" avec un profil d’acces spécifique aux ressources du

systeme.

Valeurs singuliéres (o;) : Elles quantifient 'amplitude de chaque mode principal de
variation. Pour une matrice binaire, une valeur singuliere élevée indique qu’un motif particulier
d’associations binaires est fortement présent dans les données et contribue significativement a

la structure globale de la matrice.

TSVD Pour calculer la version tronquée de SVD (TSVD) qui sert a la réduction de dimension,
il faut choisir un rang k. Ce rang peut aussi étre appelé le nombre de composantes (components
en anglais) car il indique la dimension de 'espace visé pour la décomposition. Dans ce cas,

on constate que la solution est la suivante :

M=UsvT (3.2)
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avec 3 égale & 3, si ce n'est quelle ne contient que les r plus grandes valeurs singuliéres,
les autres étant remplacées par 0. C’est d’ailleurs cette propriété qui explique les qualités
de réduction de bruit de cette transformation, car seuls les motifs les plus fréquents sont
exprimés. Cette solution minimise la distance entre M et son approximation au sens de la

norme spectrale.

Variance expliquée Lorsqu’on utilise TSVD, la variance expliquée permet de déterminer
combien de composantes singulieres sont nécessaires pour capturer un pourcentage donné de

la variabilité totale de la matrice binaire.

La proportion de variance expliquée par la i-eme composante singuliere est donnée par :

Var,(M) = ;- (3.3)

Ou >, ojz représente la variance totale de la matrice M, obtenue en sommant les carrés de

toutes les valeurs singulieres, notation simplifiée de 377, 0']2» avec r le rang de la matrice M.

La variance cumulée expliquée par les k premieres composantes est donc :

k k 2
TVary(M) =Y Var,(M) = Z=100 (3.4)
i=1 Ej 7j

Cette approche permet de réduire la dimensionnalité en ne conservant que les composantes qui
expliquent la majorité de la variance, facilitant ainsi 'analyse et I'interprétation des structures

latentes.

Sortie On appelle par la suite réduction de la matrice M ou décomposition de la matrice M
la sortie R obtenue suite au procédé TSVD avec un rang k& donné. Cette matrice comporte
autant de lignes que la matrice originale, mais comporte k£ colonnes a valeurs réelles non
nulles. Mathématiquement, c’est :

R=UX (3.5)

Dans la cadre du role mining avec une matrice UPA, la matrice R indique sur chaque ligne la
représentation réduite a valeurs réelles sur les composantes des permissions d’un utilisateur.
Plus les coordonnées des utilisateurs dans cet espace réduit sont proches, plus leurs permissions

sont similaires.
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Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN [63] est un algorithme de partitionnement de données aussi appelé algorithme de
clustering. Il utilise essentiellement deux parametres : une distance € et un nombre de points
minimum MinPts. Pour étre considérés comme un cluster, un ensemble d’au moins MinPts
points doivent se trouver dans un rayon e pour former un centre. Les parametres d’entrée
sont donc une estimation de la densité MinPts/e de points voulue pour former les clusters.
L’algorithme procede ensuite par expansion itérative en explorant 'e-voisinage de chaque
nouveau point identifié, permettant ainsi de délimiter progressivement 1’ensemble complet des
points constituant le cluster. Lorsque deux clusters communiquent par un point frontiere,
les clusters sont fusionnés. Cette approche par propagation locale garantit la découverte de
clusters de formes arbitraires tout en identifiant automatiquement les points aberrants qui ne
satisfont pas les criteres de densité requis [64]. Une illustration de I’algorithme est donnée sur

la figure 3.1.

Légende :

! e ! e Point central
" K - e Point frontiére
AN N e OQutlier

\ \ -z / N .
/ o | oL h se 1 Parametres :
\ !
\ e = rayon (cercles)
e . N MinPts = 3

Figure 3.1 Ilustration de I'algorithme DBSCAN avec un cluster identifié

Sortie La sortie de 'algorithme DBSCAN est une table a deux colonnes, la premiere ren-
seignant l'identifiant d’'un point observé et la seconde indiquant a quel cluster le point
appartient. Les identifiants de clusters a valeurs d’entiers naturels correspondent a des

clusters, et la valeur -1 correspond a l'identifiant d’un outlier.

3.1.2 Prétraitement des données

Beaucoup de jeux de données de role mining, y compris les jeux de données réels de la
littérature (voir section 2.3.1) sont sous forme de table relationnelle. Une table relationnelle
est un format de données ou chaque colonne désigne un attribut donné et chaque ligne
représente une entrée valide dans le jeu de données. Les tables relationnelles rencontrées en

role mining comportent au minimum deux colonnes : identifiant d’utilisateur et identifiant
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de permission. Afin d’appliquer I’approche proposée, on a besoin d’une matrice binaire

d’assignation des permissions. On utilise alors la transformation pivot.

La transformation pivot réorganise les données en changeant leur orientation : elle fait passer

I'information contenue dans les valeurs des lignes vers les en-tétes de colonnes.

La transformation se divise en 3 étapes :

1. Identification des éléments dans la table relationnelle (utilisateur, permission), on
identifie trois composants :
o L’axe fixe : les utilisateurs qui deviendront les lignes de la matrice
o L’axe pivot : les permissions qui deviendront les colonnes de la matrice
o Les valeurs : la relation d’existence (présence/absence) qui remplira les cellules
. Restructuration spatiale : Chaque valeur unique de la colonne "permission" devient une

nouvelle colonne, et chaque valeur unique de la colonne "utilisateur" devient une ligne

distincte dans la matrice UPA.

. Remplissage : Pour chaque entrée (utilisateur, permission) valide dans la table rela-
tionnelle, on fixe I'intersection (utilisateur, permission) a 1 dans la matrice UPA et 0 si

I’entrée n’existe pas.

Pour éviter toute confusion, nous utiliserons 1’écriture U PA pour désigner la structure de

données obtenue apres prétraitement sur un jeu de données quelconque, par opposition au

concept plus général de matrice UPA.

Une illustration de la transformation est renseignée sur la figure 3.2.

’ utilisateur \ permission ‘

123
123
123
456
456
789
789
789

456
789

A
123 || 1
0
0

ol ||| T
=l
i k=]E=]INes!

Q= o Q| w| o] w| =
4

Figure 3.2 Exemple de pivot d’une table relationnelle vers une matrice binaire UPA
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3.2 Réduction de dimension

La premiere étape de la méthode proposée est la réduction de dimension en utilisant TSVD.
Il faut d’abord déterminer la nombre de composantes a utiliser pour décomposer la matrice
UPA. Molloy et al. [24] fournissent un objectif clair, trouver le nombre de composantes k qui
permet d’obtenir une variance cumulée d’au moins 80%. C’est-a-dire, en reprenant 1’équation
3.4 : L

TVar (UPA) = Z=171 < 0% (3.6)

2. 0;

Cette condition seule a cependant tendance a produire un nombre écrasant de composantes
k si la matrice U PA est particulierement bruitée. Puisque ce phénomene géne la prochaine
étape de notre méthode, on rajoute une condition sur la variance expliquée de la derniere

composante courante k. C’est a dire, en reprenant ’équation 3.3:

oF

Vary(UPA) = > <€ (3.7)

2
i%;
Lorsque la condition 3.7 est vérifiée, on considere qu’ajouter plus de composantes entraine
des rendements décroissants. Empiriquement, € = 0.02 donne des résultats fiables. On utilise

donc la valeur de k obtenue lorsque la condition 3.6 OU 3.7 est vérifiée.

On obtient alors une réduction de rang k& de UPA selon I'équation 3.5 qu’on note Rj.

3.3 Clustering et identification des outliers

Dans le cadre du role mining, I’approche proposée utilise DBSCAN pour identifier les utilisa-
teurs anormaux, ayant des motifs de permissions inhabituels, et de regrouper les utilisateurs
aux permissions similaires. On émet en effet 'hypothese que les instances de privilege creep se
traduisent dans Ry, de sorte que les utilisateurs touchés se retrouvent éloignés des autres en
raison des permissions anormales qui leur sont assignées. Reste un probleme : déterminer les
parametres optimaux pour DBSCAN de sorte que 'algorithme ne fasse par rentrer d’instances

de privilege creep dans des clusters d’utilisateurs.

Parmi ces parametres, MinPts correspond au nombre minimal de points (utilisateurs) pour
former un cluster. MinPts doit donc étre fixé comme la taille minimale d’une équipe possédant
des permissions similaires qu’on peut rencontrer dans 'organisation. Ceci est directement lié a
la structure de 'entreprise divisée en départements, sections, équipes, etc. Des données issues
des ressources humaines ou des connaissances organisationnelles permettraient d’assigner une

valeur appropriée pour ce parametre en environnement réel. Empiriquement, une valeur de
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MinPts > 5 donne des résultats satisfaisants.

e est plus difficile a déterminer efficacement. Pour cela, on opte pour une méthode algorith-
mique. On doit calculer la distance euclidienne du plus proche voisin (1-NN) de chaque point
(utilisateur) sur Rg. On ordonne ensuite les distances obtenues dans une liste par valeurs
croissantes. On consideére la courbe C' obtenue en prenant en abscisse les indices de la liste et
en ordonnée les distances correspondantes. La valeur de € est alors donnée par I'ordonnée du

coude de la courbe. C’est-a-dire, I’endroit ou la pente change brusquement.

L’identification du coude peut se faire de facon visuelle cependant on préfere une technique
automatisée qui va choisir une valeur optimale. Cette technique s’appelle Normalized Difference

Curve Technique (NDCT), et fonctionne en 3 étapes illustrées sur la figure 3.3 :

1. Normaliser les deux axes de la courbe C' dans 'intervalle [0,1] et prendre comme courbe

de référence l'identité sur 'intervalle [0,1].
2. Calculer la différence entre la courbe C et la référence sur [0,1].

3. Trouver la valeur de différence maximale qui se trouve normalement au coude.

Normalisation des distances Différence et valeur max Lecture de la valeur optimale
l ——r——= T 7 1 T T 1 T T
4 08— 1NN s 0.8 [ . Z oos |
< L 1, ° =
g L’ 1 (0.84,0.55) =
= 0.6 v — = 0.6 [ — = 0.6 [ —
5] , 5] 3
=] . \E‘) =]
e
L o4 . - B 04| . L 0.4 |- N
= /' Q é) optimal € = 0.29
< ,/ < Tt ===
%02 N 0.2 |- % 0.2 |- e
o= 4 o= I
A L7 A w
0 | | | 0 | | | | 0 | | L1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Indice normalisé Indice normalisé Indice normalisé

Figure 3.3 Exemple d’utilisation de la technique NDCT

Une fois le € optimal déterminé, on procede au clustering des utilisateurs en utilisant leurs
coordonnées sur K. On obtient alors une table qui renseigne pour chaque utilisateur, le

cluster auquel il appartient, qu’'on appelle par la suite la table utilisateur-cluster (UCT).
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3.4 Nettoyage

Afin de nettoyer la matrice UPA, on utilise conjointement UPA et UCT. L’objectif est
d’effectuer une analyse statistique sur chaque cluster pour déterminer quelles assignations de

permissions doivent étre exprimées et surtout minées.

La premiere étape du nettoyage est la suppression des outliers identifiés. On assure alors la
qualité des roles a miner, car on évite des potentielles instances de privilege creep. L’idée
est que les autres utilisateurs "sains' sont suffisants pour inférer les roles nécessaires pour
structurer le contrdle d’acces. On crée donc une copie de la matrice UPA dans laquelle on

retire les outliers et on sauvegarde leur configuration pour plus tard.

La deuxieme étape du nettoyage consiste en 'analyse statistique des clusters. Pour cela,
on calcule la prévalence de toutes les permissions dans chaque cluster. La prévalence d’une
permission dans un cluster est définie comme la proportion d’utilisateurs au sein de ce cluster
qui possedent la permission en question. Par exemple dans un cluster de 20 personnes, si une
permission a est assignée a 18 personnes et une autre permission b est assignée a 3 personnes,
alors la prévalence de la permission a au sein du cluster est de 18/20 = 0,9, tandis que la
prévalence de la permission b est de 0,15. Comme discuté dans la partie 2.2.1, le bruit est
généralement minoritaire face aux permissions légitimes ce qui fait que les permissions issues
du bruit ont une prévalence plus faible que les permissions légitimes si I’étape de clustering
est réussie. L’utilisation d’un seuil permet alors de supprimer directement ces permissions

avec une prévalence trop faible pour chaque cluster.

En nommant le seuil de nettoyage (cleaning threshold) ¢. : pour chaque cluster, on supprime
les permissions avec une prévalence inférieure a t. et on conserve dans la matrice UPA les
permissions avec une prévalence supérieure a t.. En reprenant notre exemple précédent avec
les permissions a et b de prévalence 0,8 et 0,15 respectivement dans un cluster donné, en
fixant . = 0,8, alors les 18 utilisateurs portant la permission a gardent cette permission, mais

on supprime la permission b aux trois utilisateurs concernés.

La matrice obtenue apres le processus de nettoyage est appelée CleanedUPA (CUPA).

3.5 Role mining

Une fois la matrice CUPA obtenue, on passe a ’étape de role mining. On réutilise des
algorithmes de décomposition exacte déja existants : FM [19] et Optimal Boolean Matrix
Decomposition/RMP [65] pour la génération de roles. On utilise ces algorithmes, car ce sont

ceux qui offrent la meilleure performance en temps d’exécution pour des jeux de données de
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taille importante (nombre d’utilisateurs supérieur a 100 et roles minés supérieur a 100). En
particulier, Optimal Boolean Matrix Decomposition/RMP utilise une heuristique qui accéleére
grandement le temps de calcul pour miner les roles. L’utilisation d'un autre algorithme de
role mining aurait considérablement rallongé les temps de calcul, compte tenu du fait que
les algorithmes sélectionnés ont déja requis 24 heures de calcul pour traiter le benchmark de

données synthétiques généré.

Une fois les roles générés, on utilise une approche d’algorithme glouton pour assigner les roles
aux utilisateurs sur la matrice CUPA. Pour chaque utilisateur, I’algorithme d’assignation
de rdles trouve le role qui couvre le plus grand nombre de permissions d'un utilisateur et lui
assigne. On répete ensuite cette étape autant de fois que nécessaires pour couvrir le reste des
permissions d’un utilisateur. L’algorithme s’arréte une fois que l'intégralité des permissions
d’un utilisateur sont couvertes. Encore une fois, ¢’est 'approche qui produit les résultats les

plus rapides en plus d’étre une approche exacte.

Une fois I'algorithme de role mining et celui d’assignation roulé, on obtient donc des matrices

UP et PA incompleétes, ne contenant pas les outliers retirés lors du nettoyage.

3.6 Réunification

Si on s’arréte a ’étape de role mining, ’approche proposée est incomplete, car on n’a pas
réintégreé les outliers a la matrice CU PA. En effet, en milieu réel, on ne cherche pas a supprimer
des utilisateurs du systéme de contrdle d’acces. Pour résoudre cette problématique, on
introduit deux concepts originaux : la réunification omnisciente et la réunification heuristique,

contributions spécifiques a cette recherche.

3.6.1 Réunification omnisciente

La réunification omnisciente est un processus fictif qui imagine 'existence d’un administrateur
systeme capable de nettoyer les permissions d’'un utilisateur parfaitement : retirer bruit et
privilege creep en gardant les permissions légitimes. On utilise cette abstraction afin de
pouvoir évaluer les performances de ’approche proposée plus facilement. En effet, lorsqu’on
fait face a des jeux synthétiques, on utilise la réunification dite omnisciente pour nettoyer les
permissions des outliers, en prenant leur configuration légitime avant ajout de bruit et de
privilege creep lorsqu’on a généré le jeu de données. Cette limitation est prise en compte lors
de I'évaluation, car on pénalise les faux positifs de détection d’anomalies dans les métriques

d’évaluation.
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3.6.2 Réunification heuristique

La réunification dite heuristique est 'approche utilisée dans le cadre des systemes réels pour
fournir une recommandation de réintroduction des outliers a un administrateur systeme. C’est
le cas dans lequel I'outil proposé est utilisé dans un contexte organisationnel chez le partenaire

industriel de cette recherche.

Deux approches concurrentes sont explorées :

o La premiere approche consiste a attribuer les roles extraits aux outliers, méme si toutes
leurs permissions peuvent ne pas étre couvertes, en utilisant le méme algorithme glouton
que pour le role mining. Cela donne une idée approximative des roles potentiels que
les outliers pourraient avoir, et fait également ressortir les permissions potentiellement

problématiques qui ne sont pas couvertes.

o La deuxieme approche utilise les informations sur les clusters. Plus précisément, le
barycentre de chaque cluster en utilisant les coordonnées binaires (qui correspond au
vecteur de prévalences). Chaque outlier est ensuite lié au barycentre le plus proche
de lui. Cela fournit un apergu sur le cluster auquel pourrait appartenir 'outlier en

question.

En fin de compte, la décision de réunification doit étre prise par un administrateur réel, chargé
de réviser les acces des comptes utilisateurs. En effet, les deux approches pourraient fournir
des informations contradictoires, qui pourraient étre élucidées avec 1'utilisation d’attributs

par exemple.
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3.7 Résumé

Mon approche de role mining sensible au privilege creep est résumée dans le diagramme
3.4. Les structures de données obtenues (matrices, tables, etc.) sont indiquées en vert et les
transformations successives pour obtenir ces structures sont renseignées en rouge. Dans les
boites hexagonales sont renseignées les informations importantes a prendre en compte lors du

role mining.

[Données de contréle d'acces ]

g

C Mise en forme avec transformation pivot si nécessaire

[ Matrice UPA ]

Condition a vérifier :
<TVark >80 % OU Var, < 0_02> ( Calcul de TSVD de rang k >

[ Matrice Ry (réduction de dimension k) ]

C Calcul des distances 1-NN et détermination de € avec NDCT )

< Fine tuner & > C Calcul des clusters avec DBSCAN en utilisant € comme paramétre )

[ Table des clusters (UCT) J

: Nettoyage de la matrice UPA :
< Fine tuner t; > - suppression des outliers
- conserver seulement les permissions ayant une prévalence supérieure a t.

[ matrice UPA nettoyée CUPA ]

C Role mining exact et assignation des roles )

[ matrice UA et PA incompléetes ]

( Réunification des outliers dans la matrice UPA )

[ Etat RBAC final

Figure 3.4 Diagramme résumant ’approche de role mining sensible au privilege creep
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CHAPITRE 4 GENERATION DE JEUX DE DONNEES SYNTHETIQUES

Ce chapitre présente la méthode de génération de données synthétiques utilisée pour évaluer
la méthode de role mining proposée. 1l est divisé en quatre parties : la premiere définit une
nomenclature des anomalies identifiées et devant étre ajoutées aux jeux de données générés, la
seconde énonce les hypotheses utilisées pour construire le générateur et qui ont motivé les choix
de la partie suivante, ensuite le générateur en lui-méme est décrit en détail en commencant
par la génération d’assignations légitimes puis ’ajout d’anomalies, enfin I’approche au complet

est résumée a ’'aide de diagrammes pour aider la compréhension.

4.1 Nomenclature des anomalies

On appelle anomalie toute assignation qui n’est pas une assignation légitime et /ou qui n’est pas
applicable. On désigne une assignation légitime comme toute permission dont un utilisateur
a besoin pour accomplir ces taches. Pareillement, on appelle permission non applicable
toute permission, légitime ou non, qu’il n’est pas nécessaire d’exprimer dans la structure de
contrdle d’acces choisie : On préfere les exprimer sous forme d’exception. On rejoint la pensée
exprimée par Vaidya et al. [22] selon laquelle exprimer 'entiereté des assignations complexifie
grandement ’état RBAC résultant. Aussi notre approche de role mining n’est pas exacte et
vise le nettoyage du jeu de données rencontré, il est aussi nécessaire d’introduire cette classe

d’assignations dont I'objectif est de ne pas les exprimer.

Bien que d’autres anomalies puissent exister, on se limite a celles détaillées dans cette
nomenclature. En effet, toutes les anomalies rencontrées dans la revue de littérature sont
au moins incluses dans la nomenclature suivante. Il n’y a donc pas de perte de généralité

vis-a-vis des recherches précédentes.

4.1.1 Bruit

Pour mieux comprendre cette nomenclature, on suppose qu’on prend une structure de controle
d’acces RBAC.

e Bruit de correction : erreurs d’administration isolées qui surviennent généralement
lorsqu’un utilisateur passe par le processus de provisionnement d’acces (provisioning)
pour la premiere fois, n’affectant qu’un petit ensemble de permissions. Le bruit de
correction est généralement additif, c’est-a-dire qu’il entraine des attributions de permis-

sions supplémentaires sur les utilisateurs affectés, en raison du probleme de disponibilité
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que cause le bruit soustractif. Ces erreurs d’administration touchent principalement des
permissions qui sont légitimes pour d’autres utilisateurs, car on a surévalué le "need to
know" d’un utilisateur. D’autres raisons peuvent étre trouvées pour ce type d’erreur,

mais ce qu’il faut retenir est le caracteére isolé de ces permissions.

o Bruit d’applicabilité RBAC : permissions légitimes qui ne sont pas suffisamment
partagées entre les utilisateurs pour étre utilement exprimées dans le modele RBAC. En
effet, les exprimer augmenterait la complexité de I’état RBAC et compromettrait donc les
avantages de gestion liés au maintien de cette structure pour le controle d’acces. On peut
donner comme exemple de permissions non applicable & RBAC les permissions quasi
discrétionnaires d’acces aux dossiers personnels, puisque seuls la personne concernée par
ces permissions ainsi que I'administrateur du systeme y ont acces. Ce sont typiquement
ce genre de permissions qu’il faut considérer comme des exceptions. Une regle empirique
en role mining est la regle des 80-20 : 80% des assignations doivent étre couvertes
en utilisant le modele RBAC tandis que 20% peuvent étre considérées comme des

exceptions.

Dans notre nomenclature, on fait le choix de désigner le bruit de correction comme un bruit
purement additif. En effet, le bruit soustractif ne pose pas un probléme inhérent de sécurité,
mais un probleme de disponibilité qui est généralement vite identifié et corrigé en conditions

réelles.

4.1.2 Accumulation de priviléges (privilege creep)

Ici, on désigne par le terme acteur de la menace interne une personne ayant des identifiants
valables dans le systeme de GIA d’une entreprise, comme un employé. Deux scénarios de

privilege creep sont alors considérés :

e Scénario 1 : un acteur de la menace interne change de poste au sein de 'organisation,
mais conserve un sous-ensemble de permissions assignées pour ses fonctions précédentes
en raison d’un déprovisionnement incomplet. Un autre exemple est lorsqu’un employé
démissionne, et qu’'un autre employé se voit accorder les permissions additionnelles pour
accomplir les taches de I’ancien employé, permissions qui ne seront pas ou partiellement

révoquées une fois un remplagant trouvé. Appelons cela privilege creep de type 1.

e Scénario 2 : un groupe d’acteurs de la menace interne s’est vu assigné a un projet
temporaire désormais terminé. Des permissions supplémentaires leur ont été accordées

pour accomplir leurs nouvelles responsabilités au sein de ce projet. Cependant, ces
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assignations supplémentaires n’ont pas été entierement révoquées a la fin du projet.
Cela peut se produire en raison de registres de projets pas ou mal maintenus. Appelons

cela privilege creep de type II.

La différence clé entre ces deux types de dérive des privileges est le sous-ensemble de permissions

impactées.

o Pour le privilege creep de type I : Les permissions impactées sont encore 1égitimes pour
d’autres employés. En effet, ceux qui occupent actuellement un poste similaire au poste
précédemment détenu par I’employé ayant subi une dérive des privileges, ou ’employé
qui prend les responsabilités du poste vacant, ont un besoin valide de ces permissions

pour accomplir leur tache.

o Pour le privilege creep de type II : Les permissions impactées ne sont pas légitimes pour
les employés extérieurs au projet. En effet, les permissions sont liées au projet et une

fois le projet terminé, aucun employé ne devrait les conserver.

D’autres scénarios peuvent se traduire par une combinaison de ces deux types de privilege
creep. Par exemple, lors de la fusion de deux entreprises pendant une acquisition, la période

d’intégration peut générer simultanément les deux types :

e Type I: Un employé de I'entreprise acquise conserve des privileges administratifs de son
ancien role (par exemple, administration du systéeme RH), alors que ces responsabilités
ont été transférées a quelqu'un d’autre. Ces privileges restent légitimes et nécessaires

pour le nouvel administrateur.

e Type II : Le méme employé garde également des acces aux outils temporaires créés
spécifiquement pour la migration (serveurs de test, plateformes de synchronisation des

données), qui ne sont plus nécessaires pour personne une fois I'intégration terminée.

Cette situation hybride est particulierement problématique, car elle cumule les risques sur un
méme individu.
Il existe aussi probablement d’autres types d’instances de privilege creep reliées a d’autres

scénarios, mais on ne considere que les scénarios décrits ici pour la génération de données

synthétiques.
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4.2 Hypotheses sur la génération des jeux de données

La génération d'une matrice UPA (voir 2.1.1) est I'objectif visé de la méthode de génération
de données synthétiques proposée. Les attributs des utilisateurs ne sont pas générés, car on
n’a tout simplement pas de connaissances préalables a utiliser pour les modéliser de maniere

réaliste.

L’approche proposée se concentre sur les assignations de permissions persistantes, c¢’est-a-dire
a durée indéterminée, ignorant les privileges Just-In-Time (JIT) et toute autre technologie qui
rend les assignations de permissions dynamiques vis-a-vis de certains parametres (heure, lieu,
etc.). Les privileges JIT sont en effet utilisés sur des plages de temps extrémement courtes,
allant de quelques minutes a quelques heures et ne dépassant pas 48h, et expirent automa-
tiquement. On ne considere donc que des configurations statiques : soit une représentation
figée d'un systeme a un moment donné, soit une traduction statique d’un systeme dynamique
en prenant les permissions maximales accordées a chaque utilisateur sur une période donnée.
Cette approche permet de capturer ’ensemble des droits d’acces potentiels sans tenir compte

de leur variabilité temporelle.

On ne considere pas l'existence de comptes dormants, qui est un autre probleme que celui
traité dans cette recherche et qui releve de la gestion lorsqu’un acteur de la menace interne
quitte I'organisation. De plus pour identifier un compte comme dormant, des attributs sur
les utilisateurs sont généralement nécessaires comme le temps de derniere connexion, les

informations de ressources humaines sur un employé, etc.

4.3 Générateur de jeux de données synthétiques

Le générateur de données synthétiques développé dans cette recherche prend inspiration
sur le générateur de données "Tree" de Molloy et al. [33]. Les principales modifications
portent sur la stratégie de propagation des nceuds utilisés pour générer les arbres, le processus
d’ajout de bruit, et le nouveau processus d’ajout d’instances de privilege creep. Une attention
particuliere est portée sur la flexibilité du générateur de données, d’ou l'introduction de

nombreux parametres servant a créer des jeux de données diversifiés.

Cette section est organisée en trois parties qui traitent respectivement la génération des
permissions légitimes avec la structure d’arbre, I'ajout de bruit, et finalement 1’ajout d’instances

de privilege creep.
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4.3.1 Générer les permissions légitimes

Pour générer les permissions légitimes, on propose d’utiliser une structure arborescente
qui mime une hiérarchie d’entreprise fictive. Chaque noeud représente une subdivision de
I’entreprise sur laquelle on assigne des permissions, et les utilisateurs sont assignés sur les
feuilles de cette structure arborescente. Le nceud racine représente donc les permissions a
I’échelle de "l'organisation’, que tous les utilisateurs hériteront. Chaque nceud apres le nceud
racine représente une subdivision de l'organisation : vice-présidence, départements, équipes
et ainsi de suite. Finalement, les nceuds feuilles représentent la plus petite subdivision de
I'organisation fictive. Les utilisateurs héritent alors des permissions assignées aux noeuds
aux dessus d’eux en cascade. On désigne par la suite cette structure arborescente avec des

permissions et utilisateurs sous le nom de modéle.

En tant qu’objectif de RM, les réles minés doivent correspondre a la structure du modele.
Sachant cela, les modeles sont utilisés pour créer des hiérarchies de permissions légitimes. Le
générateur proposé commence par le nceud racine, puis fait croitre 'arbre en propageant les

noeuds enfants de maniere itérative. On utilise six parametres pour construire les arbres :

e min__depth et mazx_depth a valeurs dans N* avec min_ depth < max_ depth, encodent
respectivement la profondeur minimale et maximale de ’arbre. Entre ces bornes, la
probabilité quun noeud cesse de se propager augmente linéairement avec la profondeur.
C’est-a-dire que jusqu’a min__depth, tous les nceuds continuent obligatoirement a se
propager (probabilité = 1). A partir de min_depth, la probabilité de propagation
diminue linéairement jusqu’a atteindre 0 a maz_depth. La probabilité de propagation a

la profondeur d, p(d) est alors définie comme suit :

1 si d < min__depth
max__depth — d

p(d) = si min_ depth < d < maz_ depth (4.1)

maz__depth — min__depth
0 si d > max__depth

~

A chaque tentative de propagation d’un nceud situé a une profondeur d, un tirage
aléatoire détermine si le noeud continue a se propager. En implémentation, un nombre
aléatoire u est tiré uniformément dans l'intervalle [0,1]. Le nceud se propage si et

seulement si u < p(d).
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e min__children et max_children a valeurs dans N* avec min_ children < max_children,

encodent respectivement le nombre minimum et maximum de nceuds enfants par nceud.

e avg_branch et std__dev a valeurs dans R*, respectivement le facteur d’embranchement et
I’écart-type sur ce facteur d’embranchement, encodent comment les nceuds se propagent
dans 'arbre. Le nombre de nceuds enfants suit une distribution normale centrée autour
de avg branch avec un écart-type de std__dev, ramené a des entiers. Avec une notation

probabiliste, le nombre de nceuds enfants Ney, fants générés pour chaque neeud suit :
Nenfants ~ [N (avg_branch, std_der?)] (4.2)

ott (11, 0?) représente une distribution normale de moyenne p et de variance o2, et |- |
désigne la fonction partie entiere. Les fonction min et max sont ensuite utilisées pour

borner le nombre obtenu entre min_ children et maz_children :

Nenfants <— max(min_children, min(maz_ children, Nepfants)) (4.3)

Ainsi, la propagation des nceuds enfants est probabiliste non uniforme. Aussi les arbres
produits peuvent ne pas étre équilibrés, puisque la profondeur de l'arbre est, elle aussi,
soumise a un processus probabiliste. Avec ces parametres, plusieurs structures d’arbres
différentes peuvent étre créées. Par exemple, des arbres plats qui ne sont pas tres profonds
(grand facteur d’embranchement et une profondeur faible) ou plutot des arbres profonds avec

peu de branches (faible facteur d’embranchement et grande profondeur).

Un exemple de structure arborescente obtenue est renseignée sur la figure 4.1.

Figure 4.1 Exemple de structure d’arbre avec numérotation itérative des nceuds
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Les utilisateurs et les permissions sont ensuite ajoutées de fagon probabiliste sur les nceuds.

On utilise alors quatre parametres :

o min_user et max_user a valeurs dans N* avec min_ user < max__user, qui encodent

respectivement le nombre minimal et maximal d’utilisateurs sur les feuilles.

o min__perm et mazx__perm a valeurs dans N* avec min_ perm < max__perm, qui encodent

respectivement le nombre minimal et maximal de permissions sur chaque nceud.

On assigne ensuite les permissions et les utilisateurs a ’aide d’une loi binomiale a valeurs

entre les extremums. Le nombre de permissions Ny, attribué aux nceuds suit alors la loi :

Nperm ~ min_perm + B(max__perm — min__perm, 0.5) (4.4)

Ou B(n, p) représente une loi binomiale avec n essais et probabilité de succes p = 0.5. Cette
formulation garantit que le nombre de permissions N, est compris entre min_perm et
max__perm. La probabilité p = 0.5 assure une distribution symétrique, permettant une

répartition équilibrée, mais aléatoire des permissions sur les nceuds de 'arbre.

De méme, on a pour les assignations d’utilisateurs sur les feuilles, la formule :

Nuser ~ min_user+ B(maz_user — min__user,0.5) (4.5)

Ces choix mathématiques sont motivés par un argument statistique : Dans les organisations
réelles, le nombre de permissions par role ou d’utilisateurs par équipe résulte de multiples
facteurs indépendants (besoins métier, contraintes réglementaires, structure hiérarchique,
ressources disponibles, etc.). Qualitativement, cette multiplicité de facteurs produit un
comportement statistique caractéristique : la plupart des roles ont un nombre "moyen" de
permissions (correspondant aux besoins standard), tandis que les cas extrémes (trés peu ou
beaucoup de permissions) sont naturellement plus rares. Il en va de méme pour la taille des
équipes au sein d’une organisation. Une modélisation avec une loi binomiale, approchant une

loi normale, semble donc plus appropriée qu’une distribution uniforme.

Une fois les permissions et utilisateurs assignés, on obtient alors un modele de permissions

légitimes. Un exemple est renseigné sur la figure 4.2.
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P2 P3

P5 P6, P14 P8
P4, P14 [(UE), Us, U7)J (U8) Pj [(UM, U15, U16)}

P10 } P11 P12

P9
(U1, U2)

P13, P14
(U12, U13)

(U3, U4) (U9) (U10, U11)

Figure 4.2 Exemple d’arbre de permissions légitimes générés

En rouge les neeuds portant des ensembles de permissions et en bleu des feuilles portant des ensembles de

permissions et des utilisateurs. FEn surligné, les ensembles de permissions transversales

Une derniere étape consiste a enrichir le jeux de données avec des ensembles de permissions
dites "transversales'. Ce sont des ensembles de permissions légitimes qui sont partagés sur
différents noeuds de la hiérarchie, mimant par exemple des applications ou configurations
partagées entre plusieurs départements de 'organisation. On rajoute donc des ensembles de
permissions sur 'arbre généré entre plusieurs noeuds pris au hasard. Par exemple sur la figure

4.2 on a rajouté un ensemble de permission P14.

On fixe arbitrairement le nombre d’ensembles de permissions transversales a 2 ou 3. Ce choix
vise a éviter une croissance excessive du nombre total de permissions lorsque les parametres
limitent fortement le nombre de permissions par nceud. En effet, un nombre plus élevé
d’ensembles transversaux entrainerait une multiplication importante des permissions, méme
avec des contraintes restrictives au niveau local. Le nombre de permissions contenu dans ces
ensembles de permissions transversaux suit la méme loi utilisée pour générer les ensembles sur
les nceuds, et le nombre de noeuds reliés ensemble a 2 ou 3, la encore pour les mémes raisons

que citées précédemment.

Une fois ce processus achevé, on traduit ce modele en matrice UPA avec les regles d’héritage
de permission énoncées précédemment. On appelle par la suite la matrice générée a cette

étape la matrice UPA légitime.
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4.3.2 Ajouter le privilege creep

Comme identifié dans la section 4.1.2, deux types de privilege creep sont ajoutés a la matrice
UPA légitime : le privilege creep de type I et celui de type I1. Afin de contrdler les quantités

de ces instances, on introduit trois parametres :

1. pr la proportion d’utilisateurs qui présentent des cas de PC de type I. Par exemple, si

pr = 0.05, alors 5% des utilisateurs vont &tre victime de privilege creep de type 1.

2. ¢y la proportion d’assignations de permissions copiées d’un autre utilisateur dans une
instance de PC de type I. Par exemple, si ¢; = 0.2, alors 20% des permissions d’un

utilisateur sont utilisées pour créer une instance de PC chez un autre.

3. qrr la quantité de permissions ajoutées pour les utilisateurs qui présentent une PC
de type II. Tous les utilisateurs affectés se voient alors accorder ces permissions. Par
exemple, si g;; = 50, alors 50 permissions supplémentaires sont ajoutées a la matrice

UPA et assignées aux utilisateurs avec PC dans le méme projet.

Afin d’avoir toujours un ensemble varié d’instances de PC, les regles suivantes sont utilisées :

o 30% des instances de PC de type I utilisent ¢; = 1. On appelle ces instances privilege

creep de type I total.

e 70% des instances de PC de type I se voient attribuer des valeurs de ¢; décroissantes
linéairement de 1 a 0. Par exemple, si 5 utilisateurs sont dans ce cas, la plage de valeurs
assignées pour ¢y est 1, 0.8, 0.6, 0.4 et 0.2. On appelle ces instances, privilege creep de

type I partiel.

o Le nombre d’utilisateurs dans chaque instance de PC de type II est fixé a 8, et le nombre

d’instances Ninstances Type 11 €St calculé en utilisant la formule suivante :

Ninstances Type I — Lloglo(nutilisateurs)J (46)

Cette formule permet d’obtenir un nombre de projets temporaires qui croit de fagon
logarithmique en le nombre total d’utilisateurs. En effet, empiriquement une croissance
linéaire a été testée, mais elle produisait trop d’instances pour les grands jeux de données.
Ainsi donc, plusieurs groupements d’utilisateurs sont créés au hasard et on leur assigne

un nombre ¢r; de permissions additionnelles.
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Grace a ces parametres, il est possible de produire des instances de privilege creep de
fréquence et de magnitude variées. On injecte alors les assignations supplémentaires créées
par ce processus dans la matrice UPA légitime. On appelle la matrice a cette étape la matrice

UPA avec privilege creep (privilege crept UPA).

Détails d’implémentation

Lors de I'injection d’une instance de privilege creep de type I, on sélectionne aléatoirement
deux utilisateurs a et b issus de deux équipes distinctes, afin d’assurer que leurs ensembles de
permissions initiaux different. Cette anomalie émule le scénario suivant : 'utilisateur a, qui
appartient actuellement a I’équipe 1, faisait auparavant partie de ’équipe 2 ou il détenait
les mémes privileges que 1'utilisateur b. Lors de son changement d’équipe, a a conservé ses

anciens privileges en plus de ceux de sa nouvelle équipe.

Concretement, l'utilisateur a est celui qui est affecté par le privilege creep, tandis que
I'utilisateur b représente son profil d’autorisations passé. On sélectionne I'ensemble des
permissions assignées a b, puis, en fonction du parametre ¢; pour cette instance, on en extrait
un sous-ensemble aléatoire. Ce sous-ensemble de permissions est ensuite assigné directement

a a, s’ajoutant a ses permissions actuelles. Le tirage des utilisateurs se fait avec remise.

Pour l'injection d’une instance de privilege creep de type II, on sélectionne 8 utilisateurs
distincts au hasard. On vient ensuite leur donner ¢;; permissions additionnelles. Tous les

utilisateurs dans l'instance héritent du méme ensemble de permissions.

Pour I'injection d'une instance de privilege creep de type II, on sélectionne aléatoirement
8 utilisateurs distincts. On assigne ensuite q;; permissions additionnelles a chacun des 8
utilisateurs sélectionnés. Cette configuration émule un projet temporaire terminé dont les
participants ont conservé des permissions qui auraient dii étre révoquées. Tous les utilisateurs
de l'instance recoivent le méme ensemble de permissions, reflétant leur participation commune

au projet temporaire.

On garde aussi une liste des utilisateurs touchés par le privilege creep afin d’avoir une
information de référence pour les résultats (voir chapitre 5). Les utilisateurs touchés par
plusieurs instances de privilege creep n’apparaissent qu'une fois dans cette liste, mais sont

décomptés individuellement dans le détail des instances.
Par exemple, avec 3 utilisateurs a, b et ¢ :

o Instance 1 (Type I) : a regoit des permissions de b.
o Instance 2 (Type I) : ¢ regoit des permissions de a.

« Instance 3 (Type II) : a accumule des permissions supplémentaires.
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Dans ce cas, la liste des utilisateurs anormaux est [a, |, mais le décompte par instance
montrerait 2 instances de type I et 1 instance de type II, pour un total de 3 instances de

privilege creep.

4.3.3 Ajouter le bruit

Pour rendre le jeu de données plus réaliste, du bruit est ajouté. Ceci suit la discussion de
la section 4.1.1 sur I'identification du bruit. Le bruit d’applicabilité RBAC se manifeste par
des permissions additionnelles sans impact sur les permissions légitimes tandis que le bruit
de correction touche seulement les permissions légitimes. Le bruit d’applicabilité RBAC est
ajouté en utilisant deux parametres de quantité et de densité, et le bruit de correction est

ajouté en utilisant un parametre de pourcentage :

* Duruit : le pourcentage de bruit désigne le ratio d’assignations de permissions issues du
bruit a ajouter a la matrice UPA avec privilege creep, exprimé comme une proportion du
nombre d’assignations légitimes. Supposons que le pourcentage de bruit soit fixé a 30% et
que la matrice UPA légitime ait 200 assignations, alors 60 assignations supplémentaires

doivent étre ajoutées.

o dy - la densité de bruit désigne a quel point les assignations de permissions bruitées

ajoutées sont denses. Le nombre de permissions distinctes a ajouter Nperm pruit doit

étre calculé pour correspondre au parametre de densité de bruit. On exprime cette

contrainte avec une égalité du nombre d’assignations bruitées a ajouter :

Miegit * Pbruit = Nperm bruit * Nutilisateurs : dbruit (47)

Ol nyegit est le nombre d’assignations légitimes et Nygilisateurs 1€ nombre total d’utilisateurs.
A gauche de 1'égalité, on a le nombre d’assignations calculées avec la définition de ppyuit,
et a droite de 1’égalité le nombre d’assignations calculées avec la définition de dyy;. En

remaniant 1'égalité 4.7, on obtient la formule suivante :

Nle . .

- git * Pbruit

Nperm bruit — d N, (48)
bruit * 4 Vutilisateurs
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* Diegit-bruit © le pourcentage de bruit sur les permissions légitimes indique le ratio
d’assignations supplémentaires a introduire relativement au nombre de permissions
issues du bruit déja injectées. Le nombre d’assignations supplémentaires induites par le

processus de bruitage des permissions légitimes est calculé par :

Niegit-bruit — Mlegit * Pbruit * Plegit-bruit (49)

Ol Nyegit €St le nombre d’assignations légitimes. Ces assignations sont purement addition-
nelles, ne faisant que transformer les 0 en 1 dans la matrice UPA avec privilege creep.
Supposons que ce parametre soit fixé a 10% en utilisant le méme exemple qu’avant : avec
200 assignations légitimes et 30% de bruit, on ajoute 200 x 0.1 x 0.3 = 6 assignations

supplémentaires sur les permissions légitimes.
On nomme la matrice obtenue apres 1'étape de bruitage la matrice UPA bruitée (noised UPA).

Détails d’implémentation

Les assignations de bruit d’applicabilité RBAC sont générées avec une expérience de Bernoulli
sur une matrice de taille (Nugiisateurss NVoruit) avec p = dpoise.- Essentiellement, on a une
probabilité p qu’une permission donnée soit assignée a un utilisateur donné. Une fois cette

matrice binaire générée, elle est concaténée a la matrice UPA contenant le privilege creep.

Pour ce qui est du bruit de correction avec des assignations supplémentaires faites sur les
permissions légitimes, on sélectionne au hasard une permission légitime et un utilisateur. Si
I’assignation entre cet utilisateur et cette permission n’existe pas, on assigne cette permission
a cet utilisateur. Sinon, on sélectionne a nouveau un utilisateur et une permission légitime
au hasard. En répétant ce processus autant de fois que nécessaire pour assigner negit—pruit

permissions supplémentaires, on génere le bruit de correction voulu.
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4.4 Résumé

On renseigne dans le tableau 4.1 un résumé des anomalies de bruit et de privilege creep

ajoutées lors du processus de génération de jeux de données avec le détail de leur méthode de

génération.

Type d’anomalie

Permissions touchées

Méthode de génération

Privilege Creep
Type I - Total

Permissions 1égitimes
d’un autre utilisateur

Sélection aléatoire de deux utilisateurs dans
des équipes distinctes et copie complete des
permissions de l'utilisateur source vers
I'utilisateur cible. Représente 30% des
instances de Type 1.

Privilege Creep
Type I - Partiel

Permissions 1égitimes
d’un autre utilisateur

Sélection aléatoire de deux utilisateurs dans
des équipes distinctes et copie partielle
(paramétrée par ¢; # 1) des permissions de
I'utilisateur source vers I'utilisateur cible.
Représente 70% des instances de Type 1.

Privilege Creep
Type 11

Permissions
additionnelles communes
a un groupe

Sélection de 8 utilisateurs distincts au hasard.
Assignation de ¢;; permissions additionnelles
identiques a tous les utilisateurs du groupe.
Nombre d’instances : [10g;(Ruilisateurs) | -

Bruit
d’applicabilité
RBAC

Permissions
additionnelles bruitées
(distinctes des légitimes)

Expérience de Bernoulli sur une matrice de
taille (nutilisateurs> Nperm bruit) avec probabilite
P = dpruit- La matrice générée est concaténée
a la matrice UPA avec privilege creep.

Bruit de correction

Permissions 1égitimes
existantes bruitées

Sélection aléatoire répétée d’un utilisateur et
d’une permission légitime jusqu’a générer
Niegit-bruit dSSignations supplémentaires.

Table 4.1 Récapitulatif des anomalies introduites dans la génération de jeux de données

Le processus entier de génération de jeux de données synthétiques est résumé sur le diagramme
4.3. Les structures de données obtenues sont indiquées en vert et les opérations successives
pour obtenir ces structures sont renseignées en rouge. On renseigne aussi les 16 parametres

utilisés durant le processus de génération dans les encadrés hexagonaux.



Paramétres (arbre) :

« Profondeur: min depth, max depth
« Noeuds enfants : min children, max children
- Propagation des nodes : avg branch, std dev

(Création de la structure arborescente)

Parameétres (par noeud) :

« Nombre d'utilisateurs : min user, max user . . .
+ Nombre de permissions : min_perm, max _perm + Ajout des permissions transversales

Remplissage de I'arbre avec des utilisateurs et permissions

[ Modeéle hiérarchique complet ]

( Dérivation sous forme de matrice binaire )

[ Matrice UPA Iégitime ]

Parameétres (privilege creep) :

o Typel

o proportion d'instances : p;
o permissions copiées par instance : c CAJOUt d'instances de privilege Creep)
o Typell:

o nombre d'instances déterminés par nombre d'utilisateurs | |

o nombre de permissions par instances : g

[ Matrice UPA avec privilege creep]

Parameétres (bruit) :

« Proportion de bruit (non RBAC applicable) : py,,; ¢ ; ;
. Densité de bruit (non RBAC applicable) : d,,,; + Ajout de bruit

« Proportion de bruit de correction : p; ;¢ it

[Matrice UPA bruitée]

Figure 4.3 Diagramme résumant le processus de génération des jeux de données
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CHAPITRE 5 EVALUATION

Le chapitre détaille le cadre de 1’évaluation de la méthode de role mining proposée. Il
commence par la présentation des benchmarks de jeux de données synthétiques utilisés pour
I’évaluation, en détaillant les profils utilisés pour générer les jeux de données. Viennent ensuite
la présentation des jeux de données réels, incluant les jeux publics issus de la littérature et
les jeux du partenaire industriel provenant d’Active Directory, transformés en matrices UPA

pour I’évaluation. Le chapitre se termine par la description des métriques d’évaluation.

5.1 Benchmark de jeux de données synthétiques

Pour les jeux de données synthétiques, on procede a la création de deux benchmarks : I'un
avec des niveaux variables de bruit et de privilege creep, et 'autre avec des niveaux variables

de "tension’, c¢’est-a-dire de limitation du nombre d’utilisateurs ou de permissions.

Afin d’avoir un benchmark complet et diversifié, on crée plusieurs profils pour la génération
de la structure de permissions légitimes utilisés. La table 5.1 définit les profils utilisés pour
construire les arbres modeles (voir section 4.3.1), sélectionnés pour avoir une variété de

profondeur et de ramification, imitant différentes structures organisationnelles.

children depth

Nom - - avg_ branch | std_ dev
min max | min max

large flat 2 4 2 4 3 1.5
small flat 1 5 1 3 3 1

large string 1 2 10 15 1.7 0.5

small_string 1 2 5 8 1.6 0.4
binary_tree 1 3 2 ) 2 0
highly random 1 6 2 5 2 2

Table 5.1 Profils pour générer les arbres modeles de permissions légitimes
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5.1.1 Niveaux variables de bruit et de privilege creep

Pour la premiere passe de génération de jeux de données, on propose de faire une évaluation
des performances de I’approche pour différents niveaux de bruit et de privilege creep. On se
restreint ici a cinq profils différents :

 un profil témoin sans bruit (no noise no pc)

 un profil avec une quantité et une densité de bruit faible (low noise, low density)

 un profil avec une quantité importante de bruit et une densité faible (high noise, low

density)
 un profil avec une quantité faible de bruit et une densité élevée (low noise, high density)
 un profil avec une quantité de bruit et une densité élevée (high noise, high density)
Une des hypothéeses formulées lors de la création de ces profils est que le niveau de bruit et de

privilege creep croissent dans la méme direction. Cette hypothese est cohérente d’un point de

vue temporel de dérive dans la gestion des acces.

Nom Acronyme Bruit
pourcentage densité légitime PC
no noise no pc NN 0 N/A 0% 0%
low noise, low density LNLD 5% 1% 10% 3%
high noise, low density HNLD 15% 1% 15% 5%
low noise, high density LNHD 5% 4% 15% 5%
high noise, high density HNHD 15% 5% 20% 8%
par défaut / 15% 2% 10% 3%

Table 5.2 Profils de niveaux de bruit & privilege creep

Ces cinq profils servent a paramétrer ’ajout de bruit et de privilege creep aux permissions
légitimes, décrit dans la section 4.3.2 et 4.3.3. Les valeurs utilisées sont renseignées dans le
tableau 5.2. Enfin les parametres manquants, c¢’est-a-dire la répartition des utilisateurs et
des permissions sur les nceuds de la structure des permissions légitimes est donné par le cas
par défaut renseigné sur la table 5.3 dans la partie suivante. Cette configuration par défaut
correspond a une configuration sans tension un peu plus large sur les minimum et maximum
de permissions par nceud. Les valeurs exactes pour ces profils sont choisies de sorte a rester

cohérentes avec celles rencontrées dans la littérature.
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5.1.2 Niveaux variables de tension sur les utilisateurs et permissions

De la méme facon qu’on a défini des profils pour différents niveaux de bruit, on propose une
deuxiéme expérimentation qui évalue la performance de 'approche proposée lorsque le nombre
de permissions ou d’utilisateurs sont restreints. Cette idée est née d’une conjecture directe :
la clusterisation pourrait étre moins bonne lorsque le nombre d’utilisateurs est faible, et aussi
lorsque les permissions communes aux utilisateurs se font rares. Afin d’évaluer la véracité
de cette conjecture, on propose donc quatre profils de tension mise sur les utilisateurs et les

permissions :

« aucune tension mise (no tension)
o tension sur les permissions
 tension sur les utilisateurs

« tension sur les utilisateurs et les permissions simultanément (tension sur les deux)

Utilisateur | Permission
Nom Acronyme . .

min max | min max
no tension NT 15 25 10 40
tension sur permissions TP 15 25 2 6
tension sur utilisateurs TU 2 8 10 40
tension sur les deux TUTP 2 8 2 6
par défaut / 15 25 15 45

Table 5.3 Profils de tension sur les utilisateurs et les permissions

Les valeurs exactes sont renseignées sur le tableau 5.3. Afin d’évaluer les capacités de détection
de privilege creep et de correction de bruit, on donne pour ces différents profils la configuration
par défaut renseignée sur la table 5.2 précédemment. Cette configuration par défaut est un
compromis d’un bruit fort, mais avec une densité moyenne et un niveau de privilege creep

assez faible.

5.2 Jeux de données réels

Les jeux de données du monde réel fournis par Ene et al. [1] sont utilisés pour I’évaluation.
Il s’agit de : americas_large, americas _small, apj, customer, domino, emea, firewalll,
firewall2, healthcare. Malgré leur publication en 2008, ces jeux de données sont devenus des

références établies dans la littérature et continuent d’étre utilisés dans des études récentes
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pour la comparaison des performances sur des instances réelles [40,42,43,55,66]. On les pivote

sous forme de matrice UPA avec une transformation expliquée dans la section 3.1.2.

5.3 Jeux de données réels du partenaire industriel

Le jeux de données fourni par le partenaire industriel se trouve sous forme tabulaire. Il est
extrait d’une configuration Active Directory sous la forme d’une table relationnelle. Chaque
ligne correspond a une association entre un compte utilisateur et une permission, tandis que
chaque colonne représente une variable ou un attribut descriptif. La structure initiale de la

table est composée des colonnes suivantes :

personal id | account_id | group_id | group domain | context; | ... | context,,

Ou :
« personal__id correspond a un identifiant d’une personne physique réelle.

o account__id correspond a un identifiant de compte Active Directory. Une personne

physique peut avoir plusieurs comptes liés a son identité.

o group__id correspond a un identifiant de groupe de sécurité Active Directory. Un

groupe de sécurité s’applique au compte Active Directory.
o group_ domain fait référence au domaine dans lequel le groupe de sécurité s’applique.

e context; renvoie a des informations supplémentaires sur la personne identifiée dans la

ligne (titre du poste, responsable, service, etc.).
Ce tableau est d’abord réduit a deux champs principaux :

e id qui prend la valeur de personal__id pour correspondre a un utilisateur sur le systéme.

e permission représente un groupe de sécurité au sein d'un domaine spécifié. Essentielle-
ment, cela correspond a group__id@group__domain. Une autre fagcon de définir ce
champ est de restreindre 'effort d’extraction de réle a un seul domaine, le champ est

alors strictement égal a la valeur du champ group__id.

Il est possible de choisir I'identifiant du compte (account__id) plutdt que I'identifiant personnel

(personal__id). Cependant, dans le cadre du role mining, il est plus pertinent de regrouper
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toutes les permissions sous I'identité unique d’une personne plutét que sous différents comptes
gérés par une solution de GIA. En effet, il est possible pour un utilisateur de changer de compte
tout en conservant I’ensemble de ses permissions. On forme alors une table relationnelle

réduite avec la structure de colonnes suivante :

id | permission

Les valeurs contextuelles sont stockées dans une table avec cette structure de colonne :

id | contexty | ... | context,

La derniere étape du prétraitement consiste a faire pivoter la table relationnelle id-permission
afin d’obtenir une matrice UPA, qui représente le format standard des données utilisées en

role mining. Cette transformation est expliquée en détail dans la section 3.1.2.
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5.4 Meétriques

L’objectif principal des métriques choisies est de mesurer la précision de détection des instances
de privilege creep et leur correction tout en préservant I’expression des permissions légitimes.
Les métriques retenues s’inspirent des travaux de la littérature, présentées dans le tableau 2.2.

On introduit les métriques suivantes :

1. Rétention des Permissions Légitimes (RPL) : La F-mesure (Voir I’équation 2.7) calculée
entre la matrice UPA nettoyée (CUPA) et I'UPA légitime de référence, en excluant les
outliers. Une valeur élevée reflete la précision de la rétention des permissions légitimes,

tout en minimisant la rétention du bruit et du privilege creep mal identifié.

2. Expression des Permissions (EP) : Le nombre d’assignations de permissions conservées
dans I'UPA nettoyée (CUPA) divisé par le nombre d’assignations dans I'UPA bruitée.
Un processus de nettoyage efficace donne une valeur d’expression des permissions se

rapprochant de celle calculée sur la matrice légitime.

3. Correction du Privilege Creep (CPC) : Le pourcentage d’assignations affectées par le
privilege creep qui ont été efficacement retirées. C’est une nouvelle métrique introduite.
Une valeur proche de 1 reflete l'efficacité du processus de nettoyage. Une valeur de 0

indique qu’aucune assignation issue de privilege creep a été retirée.

4. Précision de la Détection du Privilege Creep (PDPC) : Le F-mesure (Voir I’équation 2.7)
calculé entre 'ensemble des outliers identifiées et I’ensemble des utilisateurs anormaux
de référence. C’est une mesure de 'exactitude de la détection des utilisateurs atteints

de privilege creep.

5. Ecart du Nombre de Roles (ENR) : La différence entre le nombre de roles idéaux,
identifié comme étant le nombre de feuilles dans le modele (voir section 4.3.1) et le

nombre de réles extraits, divisée par le nombre de roles idéaux.

6. Proportions de privilege creep détecté : Pour chaque type de privilege creep rajouté
sur les jeux de données synthétiques, on reléve la proportion d’instances correctement
identifiées par rapport au nombre réel d’instances rajoutées. Cela permet d’avoir une
vue plus large sur la détection de privilege creep et de voir quel type est plus facilement
détectable.

7. Temps d’exécution : Le temps d’exécution du processus de nettoyage en secondes.

8. Nombre de roles : exclusivement utilisé pour les jeux de données réels.
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Le tableau 5.4 résume les inspirations et sources des métriques retenues, ainsi que leur
application sur des jeux de données synthétiques ou réelles. En effet, RPL, CPC, PDPC,
ENR et les proportions de privilege creep détectés, nécessitent 'existence d’une connaissance

de référence (ground truth). Elles ne peuvent donc étre calculées que sur les jeux de données

synthétiques.
utilisation | utilisation
Métrique Inspiration/Source données données
réelles synth.

Rétention des Nouvelle métrique qui prend inspiration de la robustesse X v
Permissions au bruit de Vaidya et al. (voir le tableau 2.2). L’accent
Légitimes (RPL) est mis sur les permissions légitimes, puisqu’on veut non

seulement retirer le bruit, mais aussi le privilege creep

tout en retenant le maximum de permissions légitimes.

La F-mesure assure que le déséquilibre de classe entre

permissions légitimes et illégitimes n’influe pas sur les

mauvais résultats
Expression des Meétrique usuelle en role mining inexact, souvent for- v v
Permissions (EP) mulée différemment avec l'erreur de reconstruction

Ereconstruction- On préfere utiliser cette version, car sur

les jeux de données réels, on peut mettre en lumiere

I'influence des outliers sur I'expression de permission

d’une fagon plus interprétable.
Correction du Nouvelle métrique introduite qui permet, avec la réten- X v
Privilege Creep tion de permission légitime, de quantifier si les assigna-
(CPC) tions issues de privilege creep sont effectivement bien

retirées.
Précision de la Nouvelle métrique qui prend inspiration sur I’Exactitude X v
Détection du de Parkinson et al. (voir le tableau 2.2). On utilise la
Privilege Creep F-mesure afin de ne pas biaiser les résultats a cause du
(PDPC) déséquilibre de nombre entre les instances de privilege

creep et les utilisateurs aux permissions légitimes (voir

explication dans la section 2.5.4)
Ecart du Nombre Nouvelle métrique adaptée du nombre de réles, donne X v
de Roles (ENR) plus d’information vis-a-vis de 'objectif de role mining

sur les jeux de données synthétiques lorsqu’on s’attend

a un nombre de rdles précis.
Proportions de Nouvelle métrique introduite puisqu’on a différents scé- X v
privilege creep narios pour les instances de privilege creep
détecté
Temps d’exécution | Métriques usuelles de la littérature v v
et nombre de roles

Table 5.4 Récapitulatif des métriques d’évaluation choisies

Pour les jeux de données réels, on reléve également le nombre d’outliers détectés afin de le
comparer au nombre total d’utilisateurs. L’expression des permissions est calculée de deux
manieres : avec et sans les outliers, ce qui permet de mieux interpréter le cas des outliers sur

certains jeux.
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CHAPITRE 6 RESULTATS

Ce chapitre détaille les résultats obtenus avec le cadre d’évaluation décrit précédemment.
On commence par vérifier la validité des jeux de données synthétiques servant 1’évaluation.
Ensuite, on présente et interprete les résultats d’expérimentation sur les jeux de données
synthétiques générés et les jeux de données réels de la littérature. On propose également une
analyse comparative de la performance opérationnelle de la méthode développée, évaluée sur
des jeux de données réels fournis par le partenaire industriel. Enfin, le chapitre se conclut par

une discussion générale sur les résultats observés.

6.1 Validation

Avant de présenter les résultats, on veut s’assurer que ceux-ci sont valides. En particulier, on
veut s’assurer que la structure des jeux de données synthétiques produits correspond a une

structure de jeu de données réel.

6.1.1 Méthode de validation

Pour procéder a la validation, on part d'un constat sur les jeux de données réels : la
distribution du partage des permissions, c’est-a-dire le pourcentage d’utilisateurs portant
chaque permission, suit une courbe avec une forme particuliere. Il en est de méme pour la

distribution de la quantité de permissions détenues par les utilisateurs.

En regle générale, on observe que 70% a 80% des permissions ne sont partagées que par un
petit groupe d’utilisateurs tandis que les 30% a 20% restants concentrent la quasi-totalité des
assignations et sont grandement partagées. On aimerait retrouver cette tendance sur les jeux

de données générés synthétiquement.
Pour s’en rendre compte, on calcule deux quantités :

e Le nombre d’utilisateurs qui possede chaque permission.

o Le nombre de permissions que chaque utilisateur détient.

On vient ensuite ordonner par ordre croissant ces valeurs et normaliser par le nombre total
d’utilisateurs ou de permissions. Cette transformation revient respectivement a sommer la
matrice UPA sur les colonnes ou les lignes et trier par ordre croissant les valeurs obtenues

avant de les normaliser avec les dimensions de la matrice.
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On nomme respectivement les courbes obtenues :

« La courbe de concentration des utilisateurs sur les permissions (UsP).

« La courbe de concentration des permissions sur les utilisateurs (PsU).

Ce processus est appliqué aux jeux de données issus de la littérature ainsi qu’a I’échantillon de
jeux de données synthétiques généré pour I'évaluation. La comparaison des courbes obtenues
constitue une validation empirique : leur ressemblance atteste du réalisme et de la fidélité des

données synthétiques par rapport aux données réelles.

6.1.2 Comparaison

Pour faciliter la comparaison générale, on va utiliser les courbes de concentration médianes
qui montrent les tendances sur les jeux de données réels. Ainsi sur les figures 6.1 et 6.2, on
montre les courbes UsP et PsU superposées des jeux de données réels ainsi que la courbe

médiane avec les quartiles a 25% et 75%.

Il est important de noter que bien que ces courbes soient similaires, elles représentent deux
visions bien différentes des jeux de données. Avec la courbe UsP médiane en figure 6.1b On
retrouve par ailleurs le constat classique de la GIA qui est que 70% a 80% des permissions sont
partagées par un petit groupe d’utilisateurs tandis que les 30% a 20% restants concentrent la
quasi-totalité des assignations a exprimer en RBAC. Les permissions les plus partagées sont

par ailleurs partagées par au moins 80% des utilisateurs dans plus de la moitié des cas.
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Figure 6.1 Courbes de concentration
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(b) Courbe médiane

UsP des jeux de données réels
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Sur la courbe PsU en figure 6.2b une tendance similaire peut étre observée : les 20%
d’utilisateurs ayant le plus de permissions concentrent la majeure partie des permissions
octroyées. Cependant, on observe qu’en moyenne les utilisateurs ayant le plus de permissions
possedent rarement plus de 20% du nombre de permissions totales. Cette propriété se
vérifie pour les jeux de données les plus volumineux comme americas_large, americas _small,
customer, apj. Les jeux de données qui échappent a cette regle possedent au moins un
utilisateur administrateur qui concentre la quasi-totalité des permissions comme domino,
firewalll, firewall2, healthcare. On notera aussi a la vue des figures 6.1 et 6.2 que le jeu de
données healthcare est un net outlier vis-a-vis des courbes de concentration et de la petitesse

du jeux de données (46 utilisateurs pour 46 permissions différentes, cf. 2.3.1).

100 100

americas_large quartiles a 25%-75%
americas_small —— Médiane
ap)

80 4 customer 80 -
domino
emea
firel
fire2

60 hc 60 4

40 - 401

20 A 20

) /

Pourcentage des permissions totales détenues (%)
Pourcentage des permissions totales détenues (%)

0 —_— z : : (0 0 i !
0 20 40 60 80 100 0 20 40 60 80 100
Part d'utilisateurs normalisée (%) Part d'utilisateurs normalisée (%)
(a) Courbes multiples (b) Courbe médiane

Figure 6.2 Courbes de concentration PsU des jeux de données réels

On trace désormais les courbes de concentration UsP et PsU médianes sur les jeux de donnés
synthétiques générés pour 1’'évaluation, soit un échantillon de 1080 jeux de données, le détail
de ce nombre est donné dans la section suivante 6.1.3. Sur la figure 6.3 on superpose les

courbes obtenues sur les jeux de données réels et sur les jeux de données synthétiques.

La comparaison des courbes UsP révele une forte similitude entre les courbes des données
réelles et des données synthétiques. Les deux courbes présentent une allure similaire et leurs
quartiles respectifs se superposent, attestant d’une reproduction possible de la concentration
des utilisateurs sur les permissions. La courbe synthétique est cependant plus lisse du fait de

la taille de I’échantillon considéré.
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Les courbes PsU révelent en revanche une divergence plus marquée. On observe un écart
quasi constant d’environ 10% entre les deux distributions, accompagné d’une séparation des
quartiles sur approximativement la moitié du domaine. Cependant, on est rassurés de voir
que le maximum atteint par la courbe PsU en moyenne se situe autour de 20%, comme sur la

courbe des jeux de données réels.
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Figure 6.3 Comparaison des courbes de concentration médianes des jeux de données

Ces observations permettent de conclure que les jeux de données synthétiques reproduisent
en moyenne fidelement les distributions de concentration observées dans les jeux de données
réels de la littérature. Si les courbes médianes PsU présentent des divergences plus marquées,
celles-ci peuvent s’expliquer par la taille limitée de I’échantillon de données réelles, source

potentielle de biais dans I’estimation des distributions.

Cette conclusion est d’autant plus motivée qu’on peut trouver des jeux de données synthétiques
dont les distributions UsP et PsU sont tres proches d'un jeu réel donné, au sens des moindres
carrés (MSE). Sur la figure 6.4, on renseigne quatre exemples des 10 courbes UsP ou PsU les

plus proches des distributions de jeux de données réels au sens des moindres carrés.

Ceci acheve la validation, car on a établi une concordance statistique globale entre données
réelles et synthétiques, mais on démontre également la capacité du processus de génération des
données a reproduire fidelement les caractéristiques spécifiques de jeux de données individuels

issus de contextes organisationnels variés.



63

100 100
— firel (référence) — emea (référence)
---- 0 (MSE=50.74) 0 (MSE=3.33)
---- 1 (MSE=53.97) ---- 1 (MSE=4.27)
---= 2 (MSE=54.41) i s ---= 2 (MSE=4.99)
S 804 - 3(MSE=64.36) < 804 ---- 3 (MSE=5.01)
z ---- 4 (MSE=64.82) g ---= 4 (MSE=5.09)
S ---- 5 (MSE=68.48) g ---- 5 (MSE=5.47)
£ 6 (MSE=69.51) s 3 6 (MSE=5.54)
‘g, 7 (MSE=69.59) 3‘: 5“’ 8 7 (MSE=5.62)
s 607 8 (MSE=70.91) i et £ 60 8 (MSE=5.67)
= 9 (MSE=76.58) } - 9 (MSE=6.08)
2 _ urgert .5
3 b 3
° A €
n Y £
S 40 i g 40
3 ) @
© ] @
[%] e
= ]
El g
e g
£ 204 g
I
0
0 100
Permissions classées de la moins a la plus partagée (%) Part d'utilisateurs normalisée (%)
(a) UsP firewalll (b) PsU emea
100 100
= americas_small (référence) - customer (référence)
---- 0 (MSE=19.18) 0 (MSE=3.17)
---- 1 (MSE=22.06) 1 (MSE=3.28)
---- 2 (MSE=22.13) 3 ---- 2 (MSE=3.28)
{ 807 -~ 3(MSE=23.26) S g0 - 3(MSE=3.49)
et —--- 4 (MSE=25.22) % ---- 4 (MSE=3.65)
% ---- 5 (MSE=25.56) ] --=- 5(MSE=
£ 6 (MSE=25.92) 3 6 (MSE=3.
@ 7 (MSE=26.72) 8 7 (MSE=
_ﬁ 60 8 (MSE=27.18) £ 601 8 (MSE=
= 9 (MSE=27.32) - 9 (MSE=4.70)
g s
& 4
° €
o £
5 404 & 401
3 s
3 S
= ]
El . g
3 i g
d
& 201 A £ 204
e 2
0 T — T 0 T T T T
0 20 40 60 0 20 40 60 80 100
Permissions classées de la moins a la plus partagée (%) Part d'utilisateurs normalisée (%)
(c) UsP americas_small (d) PsU customer

Figure 6.4 Exemples de courbes de concentration de jeux de données réels vs synthétiques
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6.1.3 Cadre d’évaluation sur données synthétiques

Les résultats d’expérimentation sont présentés sous forme de boites a moustaches, indiquant
la médiane, les quartiles a 25% et 75% et les valeurs considérées comme aberrantes pour les
métriques représentées. Chaque graphique illustre la distribution d’une métrique donnée,

pour différents profils (de bruit ou de tension) utilisés pour la génération des données.

Chaque couple de profils bruit-structure et tension-structure est utilisé 20 fois pour générer 20
jeux différents. Etant donné qu'il y a six parametres de structure, chaque boite a moustache
décrit donc 120 échantillons différents. Ainsi par exemple, la boite & moustache "LNLD" de la
figure 6.5a, décrit les résultats de rétention de permissions légitimes de la méthode proposée

sur 120 jeux de données synthétiques différents générés avec le profil de bruit LNLD.

Pour I’évaluation en fonction du bruit et du privilege creep, cela veut dire que 600 échantillons
sont représentés sur chaque graphique. Pour I’évaluation en fonction de la tension, ce sont

480 échantillons qui sont représentées par graphique.
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6.2.1 Niveaux variables de bruit et de privilege creep
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La médiane pour I'EP idéale est indiquée par une ligne rouge sur la figure 6.5b.
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Figure 6.5 Performances sur différents niveaux de bruit et privilege creep
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Interprétation

Les figures 6.5a et 6.5b montrent simultanément que les assignations de permissions légitimes
ont été récupérées avec précision dans la majorité des cas, évitant I'expression d’assignations
bruitées ou issues de privilege creep. En effet, la RPL médiane est supérieure a 97,5% ce qui

veut dire qu’en moyenne, on a classifié efficacement les permissions retenues comme légitimes.

Pour ce qui est de I'EP, on observe les variations attendues en comparant la médiane d’EP
obtenue par rapport au cas idéal : I’EP diminue a mesure que le bruit et les instances de
privilege creep sont plus importantes. Cependant, on voit que notre algorithme a tendance a
exprimer moins de permissions en moyenne que le cas idéal, en particulier sur les jeux bruités.
Cette tendance semble ne pas étre affectée par les niveaux de bruit, en effet lorsqu’on calcule

la différence d’EP entre la sortie de I'algorithme et le cas idéal, on obtient la table 6.6.

I T

—0.05 1

—0.101 T
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Parameétre de bruit

Figure 6.6 Différence d’EP entre la sortie de I'algorithme de RM et le cas idéal en fonction du
bruit

On observe donc qu’en moyenne, 1’algorithme exprime 2% de permissions en moins que le cas
idéal. Les cas les plus extrémes dévient de 20%, ce qui est cohérent avec les cas extrémes de
basse RPL. On comprend donc que dans ces cas isolés, I’algorithme a révoqué des permissions

légitimes lors du nettoyage.

Concernant le privilege creep, des informations contradictoires semblent provenir des figures
6.5¢ et 6.5d : la F-mesure de détection oscille autour de 80%, atteignant parfois des valeurs
inférieures a 50% lors des pires exécutions, tandis qu’une majorité d’assignations issues du
privilege creep sont corrigées avec des valeurs de CPC médianes a 100% sur tous les niveaux
de bruit. Pour comprendre ce phénomeéne, il faut raisonner de maniere statistique et observer

les graphes 6.5g 6.5g et 6.5i. En effet, on observe que les instances de privilege creep de
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type I sont en moyenne mieux détectées que les instances de type II, qui rejoignent alors des
clusters valides. Or, comme les assignations de permission de privilege creep de type II sont
des permissions additionnelles uniquement valables pour les membres d’un projet, elles sont
aisément retirées avec le processus de nettoyage lorsque les autres utilisateurs d’un cluster ne
font pas partie du projet. Enfin, on remarque aussi que la détection de privilege creep est plus
ardue lorsque la quantité de bruit augmente, puisque la PDPC est bien moins bonne dans les
cas HNLD et HNHD (beaucoup de bruit indépendamment de la densité) sur la figure 6.5d.

Une derniere observation a faire sur la PDPC est de regarder la précision et le rappel qui la
composent afin de comprendre clairement comment on a détecté les instances de privilege
creep. En regardant les figures de précision 6.7a et de rappel 6.7b On se rend compte d’un
bon équilibre, bien que la précision soit en moyenne légerement plus élevée. Cela indique
qu’on a en moyenne un peu plus de faux négatifs que de faux positifs avec les parametres
déterminés automatiquement. Il est probable qu’avec du fine-tuning, on parvienne a faire

augmenter le rappel sans détériorer la précision en moyenne.
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Figure 6.7 Comparaison entre la Précision et le Rappel pour la PDPC en fonction du bruit

La figure 6.5e révele que I'approche proposée tend a produire moins de roles qu’attendu,

probablement en raison de permissions légitimes étant effacées par le processus de nettoyage.

Le temps d’exécution moyen pour le processus de nettoyage est inférieur a 5 secondes, ne
dépassant jamais une minute comme le démontre la figure 6.5f. Des temps d’exécution plus
longs peuvent étre attribués a des jeux de données exceptionnellement volumineux. En effet,
lorsqu’on représente graphiquement les données de temps d’exécution (figure 6.8) en fonction
des profils de génération de permissions légitimes, on se rend compte que les valeurs les plus

élevées sont détenues par les profils produisant les plus gros jeux de données.
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Figure 6.8 Temps d’exécution en fonction du profil de génération

Lorsque les jeux de données sont exempts de bruit et de privilege creep, les figures 6.5b, 6.5a
et 6.5e confirment que 'approche proposée récupere avec précision les assignations légitimes
sans dégrader le jeux de données, en exprimant la quasi-totalité des permissions présentes, et
trouve un nombre de roles en moyenne trés proche du cas idéal (pas de déviation du tout
pour 95% des cas). On a aussi trés peu d’outliers identifiés voir aucun dans la majorité des
cas. Toutes ces informations portent a croire que 'approche proposée ne dégrade pas les jeux

de données de controle d’acces lorsque celui-ci ne présente pas d’anomalies.
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6.2.2 Niveaux variables de tension sur les utilisateurs et permissions

La médiane pour 'EP idéale est indiquée par une ligne rouge sur la figure 6.9b.
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Figure 6.9 Performances sur différents niveaux de tension
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Interprétation

Les figures 6.9a et 6.9b démontrent que les affectations de permissions légitimes ne sont
généralement pas récupérées avec précision lorsqu’une tension est exercée sur les utilisateurs.
En effet, la RPL chute & 0% sur plusieurs exécutions et est en moyenne plus faible dans les
cas ou la tension est mise sur les utilisateurs. L’EP est plus faible qu’attendue aussi, on voit
des écarts plus grands avec la médiane d’EP que sur 'expérience précédente. Le constat
est le méme et plus fort que la derniere fois : les affectations légitimes ont été massivement

supprimées.

Ce phénomene peut s’expliquer en partie avec ’étape de clustering, notamment en regardant
la PDPC sur la figure 6.9d. La F-mesure diminue de 30% environ lorsque la tension est mise
sur les utilisateurs. Pour mieux comprendre ce qu’il se passe, il faut regarder les métriques de
précision et de rappel utilisées pour calculer la PDPC sur les figures 6.10a et 6.10b. Ici par
rapport a l'expérience précédente, c’est la précision qui est mauvaise et le rappel qui semble
plutot bon. Pour une majorité des exécutions sous tension utilisateur, on a donc considéré
trop d’outliers que ce qu’on devait : Il y a plus de faux positifs. (voir les figures 6.7a et 6.7b

pour comparaison)
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Figure 6.10 Comparaison entre la Précision et le Rappel pour la PDPC en fonction de la
tension

Cette observation est logique : le clustering devient inefficace dans le cas ou trop peu

d’utilisateurs partagent les mémes permissions, qui est une limite inhérente a la méthode.

En conséquence, le processus de nettoyage tend a supprimer un nombre plus élevé de permis-

sions en raison de clusters mal identifiés, ce qui méne a une surcorrection du privilege creep
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comme on peut le voir sur la figure 6.9¢c, ou la correction semble bonne. Idem pour les types
de privilege creep identifiés sur les figures 6.9g, 6.9h et 6.91, ou on croit a une amélioration de
la détection a mesure que le nombre d’utilisateurs diminue, interprétation illusoire au vu des

autres informations données.

Ces effets se propagent a ’étape d’extraction des roles, aucun role ne peut étre extrait lorsque
de grandes quantités de permissions ont été supprimées. La figure 6.9e illustre les cas ou les
exécutions sous tension utilisateur produisent en moyenne la moitié des roles qui seraient
normalement nécessaires pour exprimer les affectations (déviation avoisinant 60%), tandis

que le cas témoin possede des performances similaires a la premiere expérience.

Sur la figure 6.9f, on observe que les temps d’exécution du nettoyage sont plus rapides que
dans les expériences précédentes, avec une moyenne de 3 secondes en raison de la taille réduite

des jeux de données sous tension utilisateur et/ou permission.

Ainsi donc, la tension sur les permissions semble avoir un impact minime sur la RPL et
de PDPC, bien qu'un léger impact sur le role mining soit observé sur la figure 6.9e, ot en
moyenne 20% de roles en moins sont produits. Cependant, la tension sur les utilisateurs

représente un réel probleme sur les performances de 1’algorithme proposé.

On a observé sur les deux expériences précédentes que I’EP semblait ne pas varier ni en
fonction des niveaux de bruit ni en fonction de la tension. En regardant 'EP en fonction
des profils utilisés pour la génération de données sur la figure 6.11, on se rend compte que le
probleme provient principalement de la taille des jeux de données : plus le jeu de données est
grand, plus il est difficile de 'exprimer. En effet, les profils générant les jeux de données les

plus volumineux sont les profils large flat, large string et highly random.
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Figure 6.11 Différence d’EP entre la sortie de I'algorithme de RM et le cas idéal en fonction
de la structure
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6.3 Sur jeux de données réels

Les jeux de données réels permettent d’évaluer I'approche proposée dans un contexte ou la
connaissance de référence (ground truth) n’est pas disponible. Les jeux de données réels de la
littérature évaluent principalement la capacité de 'approche a (1) maintenir une expression
de permissions élevée apres nettoyage, (2) produire un nombre de rdles réduit et gérable, et
(3) identifier un nombre restreint d’utilisateurs outliers, permettant leur inspection manuelle
pour validation. Ce sont ici les trois objectifs d’évaluation. Cette évaluation valide donc

I’applicabilité pratique de ’approche dans des environnements réels.

Dans la mesure ou I'ensemble des jeux de données réels est plus petit, les hyperparametres
sont choisis plus finement griace a un processus expliqué dans les sections 3.1.1 et 3.1.1.
Essentiellement, on vient fine-tuner r, le nombre de composantes pour TSVD, €, le parametre

pour DBSCAN; et t., le seuil nettoyage pour les clusters.

Les valeurs pour ces hyperparameétres fine tunés sont rapportées dans le tableau 6.1 en méme

temps que la variance expliquée cumulée apres réduction de dimension.

Jeu de données | r | TVar € t.
americas__large 10 | 0.646 2 0.3
americas small 7 | 0.807 1 0.5
apj 6 | 0.350 | 0.5 | 0.005
customer 12 | 0.500 1 0.02
domino 4 | 0.840 1 0.1
emea 12 | 0.815 | 16 0.05
firewalll 310882 0.3 0.5
firewall2 1 10832 003 0.5
healthcare 3 | 0841 | 1.5 0.4

Table 6.1 Hyperparametres déterminés pour les jeux de données réels

Pour une majorité des jeux de données (americas_small, domino, emea, firewalll, firewall2 et
healthcare), la condition sur la variance totale cumulée donnée par I’équation 3.6 est vérifiée
avec un nombre r de composantes inférieur a 12, en moyenne 5. Cependant, lors de la
recherche de r pour les jeux americas_large, customer et apj ; la condition sur la composante
courante explorée, donnée par l'inéquation 3.7 arréte le processus. La cause principale est la
taille de ces jeux de données, qui font partie des 4 plus gros de ce benchmark (Cf. tableau

2.1), mais aussi a la distribution des assignations de permissions sur les utilisateurs.
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Ensuite, le parametre € est fine tuné en prenant en compte la suggestion de ’algorithme NDCT.
Ce parametre est ajusté notamment lorsque le nombre d’utilisateurs est relativement faible
comme sur les jeux de données healthcare, emea ou domino, car la technique automatique a
tendance a donner une valeur de € qui marque un trop grand nombre d’utilisateurs comme
des outliers apres clustering (de l'ordre de la moitié du nombre d’utilisateurs total). On
réajuste donc ce parametre pour viser 5 a 10% d’outliers identifiés par rapport au nombre

total d’utilisateurs quand la méthode automatique échoue.

Enfin le parametre t. est quant a lui fixé a 0,5 par défaut. Lorsque ce seuil donne des niveaux
d’EP trop bas (de I'ordre de moins de 10% de permissions exprimées) on considére qu'il faut
le diminuer. C’est pour cela que les jeux de données americas large, healthcare et domino se
voient attribuer des seuils plus bas. Les seuils des jeux de données apj, customer et emea

sont cependant anormalement bas. Deux effets peuvent expliquer ce résultat :

1. Un petit nombre d’utilisateurs concentre la quasi-totalité des assignations, ce sont des
administrateurs et ils ont été retirés a ’étape du clustering, ce qui fait que I’ensemble

des permissions restantes est minime. C’est le cas pour les jeux emea et domino.

2. Le clustering a regroupé un gros nombre d’utilisateurs sans réel motif de permissions
communes entre eux, ce qui fait que le seuil requis pour ne pas retirer les permissions
légitimes est anormalement bas. C’est le cas pour les jeux apj, customer et dans une

moindre mesure americas_large et healthcare.

Les seuils t. renseignés donnent des valeurs de Permissions Exprimées (PE) supérieures

avoisinant 80% ou plus (voir tableau 6.2), afin d’assurer un role mining efficace.

Le Tableau 6.2 compile les résultats de 'approche. Le nombre optimal de rdles noptimal
utilisé pour la comparaison est fourni par HP Labs [1] et rapporté par Blundo et al. [42].
Nroles TePrésente le nombre de roles minés avec la méthode proposée dans cette recherche. II
représente 1’expression de permission réguliere définie dans la section 5.4, et 7 I'expression de
permission calculée sans les outliers. Le nombre d’outliers détectés (nb out.) est rapporté
aux cotés du nombre d’utilisateurs |U| de chaque jeu de données pour calculer le pourcentage

d’outliers détectés parmi les utilisateurs (% out.).
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Jeu de données IT T |U] nb. out | % out. || Nyles | Moptimal
americas_large 0.755 | 0.841 || 3,485 45 1.29% 98 398
americas_small | 0.881 | 0.913 || 3,477 31 0.89% 21 178
apj 0.727 | 0.759 || 2,044 13 0.64% 183 453
customer 0.798 | 0.812 || 10,021 58 0.58% 47 276
domino 0.171 | 0.919 79 7 8.86% 6 20
emea 0.615 | 0.799 35 4 11.43% 25 34
firewalll 0.905 | 0.974 || 365 14 3.84% 4 64
firewall?2 0.994 | 1.000 325 7 2.15% 1 10
healthcare 0.881 | 0.946 46 4 8.70% 2 14

Table 6.2 Résultats sur des jeux de données du monde réel

Les jeux de données emea et surtout domino obtiennent des valeurs de permissions exprimées
tres différentes en fonction qu’on prenne en compte ou non les outliers. En effet, on a
précédemment identifié que ces jeux de données sont caractérisés par un petit nombre
d’utilisateurs qui concentrent un grand nombre de permissions, et qui sont ensuite marqués
comme des outliers. L’approche proposée produit plus de 72% d’EP sur tous les autres jeux

de données.

En examinant la différence entre Il et m, il est clair que sur des jeux de données comme
domino et emea, le petit groupe d’outliers identifiées concentre la majorité des assignations de
permissions. En effet, 7 est supérieur a 80%, ce qui signifie que les utilisateurs appartenant &
un cluster ont 80% de leurs permissions exprimées en moyenne lorsqu’on ne considere pas les
outliers dans le compte. Ces utilisateurs marqués comme des outliers sont probablement des
administrateurs avec un nombre exceptionnellement élevé d’assignations de permissions, ce

qui expliquerait en partie pourquoi ils ont été détectés comme tel.

Dans l'ensemble, le nombre d’outliers identifiées se situe entre 0.5% et 12% du nombre
d’utilisateurs pour tous les jeux de données, avec un nombre absolu gérable par un humain,

qui ne dépasse jamais 60 utilisateurs.

De plus, 'approche a produit moins de réles sur tous les jeux de données par rapport au
nombre optimal utilisé pour I'expression compléte du jeu de données, divisant efficacement le
nombre de réles par 4 en moyenne. Le nombre exceptionnellement faible de réles produits
sur firewalll et firewall2 est probablement di aux jeux de données eux-mémes, formés d’un
grand nombre d’utilisateurs similaires avec seulement quelques utilisateurs représentant des

exceptions.
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Evaluation critique des objectifs

Les résultats sur les jeux de données réels confirment partiellement ’atteinte des objectifs

d’évaluation fixés.

Expression des permissions élevée (1) : cet objectif est globalement atteint, puisque sept

jeux de données sur neuf maintiennent une expression de permissions II > 0.72. Cependant,
domino (IT = 0.171) et emea (II = 0.615) présentent des résultats problématiques. En excluant
les outliers, ces valeurs remontent a m = 0.919 et 7 = 0.799 respectivement, ce qui suggere
que 'approche fonctionne correctement pour les utilisateurs réguliers, mais que la présence
d’administrateurs fausse fortement la métrique globale. Cette limitation révele que l'objectif
est atteint conditionnellement : ’expression est élevée pour les utilisateurs non-outliers, mais

la métrique agrégée s’avere trompeuse sur des jeux de données déséquilibrés.

Nombre de roles réduit et gérable (2) : cet objectif est clairement atteint, avec une réduction

moyenne du nombre de roles par un facteur 4 par rapport au nombre optimal. Les résultats
pour firewalll (4 roles vs 64) et firewall2 (1 role vs 10) sont particulierement marquants, bien
que probablement attribuables a la structure particuliere de ces jeux de données plutét qu’a

une performance supérieure de I'approche.

Identification d’un nombre restreint d’outliers (3) : cet objectif est partiellement atteint. Le

nombre absolu d’outliers reste gérable (< 60 utilisateurs), mais le pourcentage varie consid-
érablement (0.58% a 11.43%). Pour les petits jeux de données (emea, domino, healthcare), le
taux d’outliers dépasse largement 'objectif de 5 & 10% initialement fixé lors du fine-tuning de
e. Cette inconsistance suggere que 'approche manque de robustesse face aux jeux de données

de petite taille ou fortement déséquilibrés.

En synthese, 'approche démontre son applicabilité pratique sur des jeux de données réels
de taille moyenne a grande, mais révele des limitations sur les petits ensembles de données
ou ceux présentant de fortes concentrations de permissions. L’absence de connaissance de

référence empéche toutefois de valider définitivement la pertinence des outliers détectés.
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6.4 Sur jeux de données réels du partenaire industriel

Chez le partenaire industriel, la définition des roles métiers constitue une étape essentielle dans
la gestions des identités et des acces. Les roles décrivent les responsabilités professionnelles
des utilisateurs, et doivent regrouper I’ensemble des permissions nécessaires pour refléter

fideélement leurs activités.

Dans la pratique, chez le partenaire, la définition de tels roles repose sur des approches
combinant des analyses statistiques et une validation experte, visant a identifier des ensembles
de permissions représentatifs pour des groupes homogenes d’utilisateurs. Cette approche, bien
que pratique et efficace, présente de défis en termes de scalabilité, ce qui justifie I'exploration

de méthodes plus intelligentes et automatiques, telles que celles proposées dans ce travail.

La méthode de role mining proposée est évaluée en comparaison de cette méthode opéra-
tionnelle. Des recommandations de permissions sont formulées avec I'information statistique
sur les clusters. On attribue aux permissions un score égal a la prévalence de cette permission
au sein d’un cluster. On obtient alors un classement des permissions par ordre de prévalence
qu’on va comparer aux propositions humaines faites avec 1'outil d’origine. On ne peut utiliser

les métriques définies dans la partie 5.4, car I'objectif évalué est différent.

L’évaluation est faite de la fagon suivante pour quatre roles métier a définir :

o Les propositions de permissions sont faites humainement avec la méthode opérationnelle

classique. On releve le nombre de propositions humaines Ny faites pour chaque role.

o Les propositions humaines sont ensuite revues, et celles pertinentes pour la formation du

role métier sont relevées. On obtient alors le nombre de permissions retenues N, eienues-

e On utilise la méthode de RM proposée pour faire des recommandations de permis-
sions. Puisque les recommandations sont classées par score, on releve le nombre de
recommandations Ngys a atteindre pour exprimer toutes les permissions retenues. Par
exemple si on a 5 permissions retenues qui figurent respectivement dans le classement

des recommandations aux places 1, 2, 4, 5 et 7, alors on releve Ngy = 7.

e On calcule ensuite la précision d’acceptation pour la méthode opérationnelle

(Précision H) et la méthode de role mining (Précision RM).

On renseigne toutes ces informations dans le tableau 6.3.
On observe alors un net gain en précision avec la méthode de role mining proposée, qui est en

moyenne 22% plus précise que la méthode opérationnelle. Un autre avantage de la méthode
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Role | Ny | Nrar | Nyetenus || Précision H | Précision RM
Role 1 | 14 12 9 64% 75%
Role 2 | 34 16 12 35% 75%
Role 3 | 14 10 10 2% 100%
Role 4 | 15 13 10 66% 7%

Table 6.3 Résultats sur la formation de roles métier chez le partenaire industriel

proposée est le gain de temps par rapport a la méthode conventionnelle, faisant gagner environ

10 minutes pour donner I’ensemble des permissions pour former un réle métier.

Le champ d’évaluation comparative demeure restreint, ce qui nous a conduit a ajuster le
cadre d’évaluation initialement prévu. Les résultats présentés doivent donc étre interprétés
avec prudence. Des analyses complémentaires, appuyées par des tests supplémentaires,

permettraient d’en confirmer la validité.

6.5 Discussion

L’approche proposée obtient ses meilleurs résultats sur des jeux de données tels
qu’americas_small, firewalll, firewall2, et de grands jeux de données synthétiques sans
tension utilisateur, en exprimant 90% des assignations de permissions et supprimant avec
précision le bruit et le privilege creep. Sur les jeux de données du monde réel, elle réduit
également le nombre de roles requis d'un facteur de 10 dans les meilleurs cas, ce qui améliore
grandement la gestion des acces dans les grandes organisations. Toutes les exécutions
roulent en un temps acceptable de moins d’une minute avec une implémentation en Python,

probablement améliorable en utilisant un langage compilé qui roule plus vite.

Un avantage clé de l'approche proposée est sa nature préservatrice de sécurité (security
preserving) [44], puisqu’aucune nouvelle assignation de permission n’est ajoutée a 'UPA, la
rendant appropriée pour 'examen des acces critiques. On confirme cette propriété lorsqu’on
procede a la comparaison de la précision et du rappel utilisés pour calculer la RPL sur les
figures 6.12 et 6.13. En effet, on voit que sur tous les profils de bruit et une majorité des profils
sous tension, la précision descend rarement en dessous de 99%, indiquant que 1’écrasante
majorité des permissions retenues sont bel et bien des permissions légitimes, les rares faux
positifs sont causées par des instances de bruit non supprimées. Cependant, on observe que le
rappel est lui moins élevé, influant sur les mauvais scores de F-mesure. On a donc trop de

faux négatifs qu’on pourrait corriger par fine tuning de la méthode.

Il convient également de noter que bien que le privilege creep de type I soit détecté avec
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une précision supérieure a 90%, les instances de type II tendent a étre plus difficiles a
détecter a mesure que les niveaux de bruit augmentent, avec des scores de détection qui
descendent en dessous de 50%. Cela se produit lorsque des niveaux de bruit plus élevés
rendent les assignations de permissions additionnelles causées par le privilege creep de type
IT indiscernables du bruit aléatoire. En effet, lorsque la densité de bruit surpasse la densité
d’assignations de privilege creep de type II, on observe une diminution significative de la

détection de ce type de privilege creep.

En raison du processus d’analyse statistique utilisé pour nettoyer le jeu de données, les
permissions issues de privilege creep de type II sont quand méme effacées dans la plupart
des cas, méme si elles ne sont pas détectées. Ce ne serait pas le cas si le seuil ¢, venait a
étre trop bas, auquel cas, on ajouterait du bruit a la matrice nettoyée. Bien qu’on remplisse
I’objectif de nettoyage, une limitation dans la détection des instances de privilege creep liées

aux projets subsiste.

Les évaluations de performance soulignent une limitation inhérente : I’approche démontre une
efficacité réduite sur les jeux de données avec peu d’utilisateurs (c’est-a-dire <100) comme
sur domino, emea, healthcare, et les jeux de données synthétiques avec tension utilisateur.
En effet, la PDPC est en moyenne de 60%, et les permissions légitimes commencent & étre

traitées comme du bruit et sont donc supprimées.

D’autres limitations proviennent des jeux de données produits synthétiquement, qui sont
intrinsequement plus propres que ceux du monde réel, et présentent des motifs structurels
artificiels qui peuvent ne pas refléter la complexité et les irrégularités des environnements

d’entreprise réels.

La dépendance de la méthode de nettoyage a ’ajustement des hyperparametres est une autre
limitation, méme si des estimations proches sont automatiquement produites. Cette sensibilité
est particulierement importante pour le seuil de nettoyage statique . : la méme valeur peut

produire différents résultats de nettoyage selon la taille du cluster.



79

1.00
1ooo] — B9 —i—
0.9981 o 0.95 1
0.996 1 s T
0.90
0.994
0.85 1 T —+
0.992
0.9901 0.80
0.9881 0751 4
0.9861 4
1 0.70 ] 1
09844 , , , : , , : , ,
NN LNLD  HNLD  LNHD  HNHD NN LNLD HNLD LNHD  HNHD
Parametre de bruit Parametre de bruit
(a) Précision RPL (b) Rappel RPL
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CHAPITRE 7 CONCLUSION

7.1 Syntheése des travaux

Ma recherche aborde la question du role mining en présence de privilege creep a travers trois

contributions principales :

o Le développement d'une méthodologie de role mining efficace qui nettoie le bruit et dé-
tecte les instances de privilege creep dans les matrices UPA, atteignant 90% de précision
de détection et 95% de rétention des permissions légitimes en moyenne. Cette méthode
est non supervisée et n’utilise pas d’attributs la rendant agnostique aux domaines
d’application et facilement déployable dans différents environnements d’entreprise sans
nécessiter d’expertise spécialisée ou de données d’entrainement préalables. Elle fournit
aussi des recommandations pour la revue d’acces en indiquant les utilisateurs plus

probablement atteints de privilege creep.

e La construction d’un générateur de données synthétiques paramétrable qui vise a
créer des jeux de données de role mining réalistes, avec injection controlée de bruit et
d’accumulation des privileges. Les parametres utilisés dans le générateur sont facilement

dérivables pour générer un jeu de données semblable a une structure d’entreprise donnée.

e La proposition d’un nouveau cadre d’évaluation fournissant de nouvelles métriques pour
le role mining sensible au privilege creep. Ce nouveau cadre est par la suite utilisé pour
évaluer la méthode de role mining proposée dans ma recherche sur des jeux de données

synthétiques et réels.

L’ensemble de ma recherche a été compilée dans un article de conférence soumis et accepté a
2025 IEEE 24th International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom 2025), pour le workshop Data Security & Privacy (Data S&P).
Cet article est renseigné en annexe A. L'implémentation complete des algorithmes utilisés dans
cette recherche est disponible & I’adresse suivante : https://github.com/nymphargus/privilege-

creep-aware-role-mining.git.

7.2 Limitations

On peut séparer les différentes limitations entre la génération de données synthétique,

I’approche de role mining et le cadre d’évaluation.


https://github.com/nymphargus/privilege-creep-aware-role-mining.git
https://github.com/nymphargus/privilege-creep-aware-role-mining.git
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Pour ce qui est de la génération de données synthétiques, la limitation principale est le fait
que les jeux de données générés ne correspondent pas exactement a la réalité, et bien qu’on a

essayé de rendre les jeux plus réalistes, beaucoup d’hypotheses ont été faites :

1. Les distributions des utilisateurs et des permissions sur ’arbre 1égitime généré peuvent
ne pas suivre une loi binomiale et constituent donc une hypothese forte sur la structure

des données synthétiques.

2. Les scénarios de privilege creep et la fagon dont ils se traduisent dans la matrice UPA

sont limitées, d’autres scénarios pourraient étre rajoutées.

3. Les jeux de données synthétiques générés sont plus propres que ceux du monde réel.
Méme si nous avons explicitement ajouté du bruit et du privilege creep, les motifs de

permissions produits sont plus faciles a détecter que sur des jeux réels.

Cependant, on a bien validé les jeux de données générées vis-a-vis des distributions de

permissions et utilisateurs générales, ces limitations sont donc nuancées.

Pour ce qui est de la méthode de role mining a proprement parler, les limitations principales
viennent de la flexibilité donnée a la conception de la méthode. En effet, I'approche est
sensible aux parametres utilisés tout au long du processus (entre autre : r pour TSVD, e
pour DBSCAN; ¢t. pour le nettoyage statistique des clusters). C’est un choix voulu afin de
permettre des ajustements par fine tuning. Bien qu’il existe des heuristiques assez précises

pour r et €, on ne dispose pas d'une telle aide pour choisir le parametre ..

Cette limitation est d’autant plus flagrante lorsqu’on regarde les jeux de données réels comme
apj, customer, domino, et emea qui requierent des seuils t. particulierement bas pour obtenir
une expression de permission d’au moins 50%. Ce phénomene provient du couplage existant
entre € et t, : En essayant d’obtenir environ 10% d’outliers sur les jeux de données réels,
ceci enfle les valeurs de €, ce qui a comme conséquence de fusionner certains clusters. Ces
clusters plus gros requierent alors des seuils de nettoyage t. plus faibles afin maintenir un
nettoyage adéquat. Ces observations révelent un effet cascade sur les hyperparametres, avec e
et particulierement ¢, qui montrent la plus haute sensibilité. Des visualisations de clusters
avec des outils comme t-distributed stochastic neighbor embedding permettraient de guider

la sélection des hyperparametres.

Enfin la plus grande limitation du processus d’évaluation est la réduction a certains profils
de structure de données, de niveaux de bruit, privilege creep et tension. En effet, on a di
former des profils types suffisamment diversifiés pour évaluer la méthode a cause du nombre

importants de parametres utilisés pour la génération des données synthétiques.
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7.3 Améliorations futures
Les améliorations les plus directes de I'approche proposée incluent :

» l'exploration d’algorithmes de clustering alternatifs tels qu’Isolation Forest (IF) ou
Local Outlier Factor (LOF) pour le nettoyage des données permettrait d’améliorer la

performance sur les jeux de données de taille restreinte.

o Le développement de seuils ¢, adaptatifs basés sur les caractéristiques des clusters (par
exemple un seuil plus petit a mesure qu’un cluster est grand), pourrait étre une solution

pour pallier la sensibilité particuliere du parametre t..

o L’utilisation d’attributs utilisateur pour aider 'effort de clustering en s’inspirant de
I'interprétabilité de Kang et al. (voir section 2.5.1) afin de mieux guider le clustering et

la sélection de roles en aval.

o L’enrichissement des jeux de données synthétiques, avec des modeles d’architectures
matricielles ou en réseau, en ajoutant des contraintes de separation of duties, permettrait

de modéliser des scénarios plus proches de la réalité en entreprise.

o Une évaluation comparative des performances de la méthode proposée avec des méthodes

de I'état de I'art adaptées completerait la validation relative aux techniques existantes.
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Abstract—Role Mining (RM) extracts Role-Based Access Con-
trol (RBAC) structures from user-permission assignments to
reduce administrative overhead. However, existing approaches
usually make the assumption of clean datasets, while real-world
systems suffer from anomalies like privilege creep, the gradual
accumulation of unnecessary permissions.

The proposed approach aims to detect potential privilege
crept users who should be reviewed first, and identify legitimate
permissi i ts to be expressed in RBAC, reducing

t complexity. It istsof a t tep procedure: clean
the User-Permission Assignment matrix (UPA) using a clustering
and statistical analysis, then build an RBAC state using a regular
role mining algorithm.

The proposed approach yields an average of 90% in privilege
creep detection accuracy and over 95% privilege creep correction,
evaluated on synthetically made datasets. Evaluation on real-
world datasets demonstrates an average 4-fold reduction in
required roles while maintaining at least 80% UPA coverage.

Index Terms—Role mining, RBAC, access control, clustering,
anomaly detection

I. INTRODUCTION

To alleviate Identity and Access Management (IAM) costs,
system administrators often structure permission assignments
using RBAC, grouping users with similar need-to-know. This
enables a more scalable and maintainable access control con-
figuration. Recent approaches to role mining have focused
on methods designed for clean datasets. In real-world access
control systems, this assumption rarely holds. Over time,
the quality of TAM systems degrades, with privilege creep
representing a key anomaly in insider threat contexts: an
incremental accumulation of permissions resulting from job
transitions, organizational changes, temporary assignments etc.
While this issue can be manually addressed in small organi-
zations, the complexity increases significantly in larger enter-
prises, especially since permission review is often fragmented
and delegated.

The process addressing this issue is known as Noise Role
Mining [1], [2], [3], [4]. Noise definitions commonly fall
under two categories : administration errors (wrongly granted
or revoked permissions, regardless of cause) or applicability
exceptions (legitimate but policy-complicating permissions).
Therefore, noise-aware role mining techniques can be viewed
as a subset of privilege creep-aware techniques, aiming to
remove noisy assignments directly, with the goal to improve
security or reduce management costs.

Historically, first approaches focused on mining roles di-
rectly on noisy data. Vaidya et al. [1] introduce the J-Role
Mining Problem (RMP) and Minimal Noise RMP to fulfil
this goal, which allow partial UPA expression by tolerating
mismatches between the source UPA and the mined one, effec-
tively removing noise. Multi-Assignment Clustering (MAC) by
Frank et al. [5] similarly allows partial expression, and clusters
users with overlapping permissions, discarding low-probability
assignments to remove noise.

Other approaches use a 2-step method: clean the data first
and mine later. Molloy et al. [2] use binary matrix decomposi-
tion algorithms for the cleaning step. Singular Value Decom-
position (SVD), Non-Negative Matrix Factorization (NMF),
Binary Non-Negative Matrix Factorization (BNMF) and logis-
tic Principal Component Analysis (PCA) are compared to 0-
RMP and MAC. The UPA is decomposed and reconstructed in
binary form via inverse transformation, using a step function to
enforce binary values. Since the decompositions are not exact,
some data is destroyed, hence removing noise. The evaluation
by Molloy et al. [2] demonstrates that the 2 step-method yields
better noise-removing results on synthetic datasets than the
other previously mentioned approaches.

The main contributions of this paper are:

« A new parameterizable synthetic data generator that aims
to build realistic RM datasets, able to inject noise and
privilege creep related to common enterprise scenarios.

o A proposed approach to clean RM datasets by removing
potential noise and detecting instances of privilege creep,
in order to mine roles on the cleaned dataset.

« A thorough performance evaluation introducing new met-
rics to assess the accuracy of the privilege creep removal.

The remainder of this paper is structured as follows: Section
II reviews recent approaches relevant to the problem addressed
in this paper. Afterward, Section III and IV define the basis
of RM, the terminology, and the nomenclature for noise and
privilege creep used in this paper. Then, the proposed privilege
creep-aware role mining approach is explained in section V,
while the synthetic dataset generation method is described in
section VI. Next, section VII sets the evaluation metrics and
benchmark for validation. Section VIII then presents results on
synthetic and real-world datasets. Finally section IX provides
a discussion about the advantages, shortcomings, and potential
improvements of the proposed method.



II. RELATED WORK
A. Recent role mining approaches

Kang et al. [4] improve previous noise RM algorithms
using role interpretability. The mined role set is given a user
attribute-based interpretability score to minimize alongside re-
construction error. This produces roles that more appropriately
fit business needs, ultimately used to reduce management
overhead. While the issue of noise is tackled explicitly in
this work, its nature remains unclear and privilege creep is
not directly addressed as the algorithm goal is to approximate
existing access patterns.

Durdag and Coskuncay [6] choose to reconfigure RBAC sys-
tems by clustering similar roles based on permission similarity
using Agglomerative Hierarchical Clustering (AHC). Identified
clusters serve as reference structures to support system re-
design or cleanup, improving manageability of complex RBAC
configurations. Their approach removes problematic data dur-
ing preprocessing and validates against expert expectations, but
lacks mechanisms to identify or correct anomalous permission
patterns.

Wang et Wu [7] propose a method to reduce role pro-
liferation in RBAC systems using formal concept analysis
and concept lattice factorization. The method first generates
an initial state, then optimizes by balancing user-role and
permission-role assignments while reducing the concept lattice
dimensionality. This allows the establishment of role mining
objectives before algorithm execution. However, the authors
note needs for benchmarking, scalability improvements, and
noise robustness testing against existing methods.

Nobi et al. [8] introduce Deep Learning Based Access
Control (DLBAC), neural networks that learn directly from raw
user and resource metadata, eliminating the need for manual
engineering of roles, attributes, and policies. The prototype
DLBAC_a demonstrates superior accuracy and generalization
compared to classical policy mining and machine learning
approaches, while addressing explainability concerns through
interpretation techniques like Integrated Gradients. However,
DLBAC does not directly tackle privilege creep because it
learns from existing authorization data that may already con-
tain anomalous access rights. This limitation is acknowledged
by the authors, stating that errors in the datasets used could
introduce bias in the trained model.

The work in this paper differs from the recent approaches
by explicitly modeling privilege creep scenarios separately
from generic noise, and evaluating performance based on the
algorithm’s ability to structure legitimate permissions while
identifying and removing excessive permissions.

B. Recent privilege creep detection approaches

Parkinson et al. [9] present an unsupervised tool to detect
privilege creep instances in file system Access Control Lists
(ACL) using x? statistics, establishing an average 96% ac-
curacy in privilege creep detection on synthetic datasets. The
approach is scientifically sound but suffers from a key eval-
uation flaw: using accuracy instead of F-measure artificially

inflates performance since legitimate users greatly outnumber
anomalous instances, causing high true negative counts to skew
the metric despite an average 30% false negative rate in detect-
ing actual privilege creep. Parkinson et al. [10] also propose a
fuzzy logic-based approach to identify critical privilege creep
in access control policies by modeling user trust, resource
sensitivity, and permission power as fuzzy sets rather than
binary classifications. This new approach is reliant on security
event logs, producing better results than the Creeper tool but
still suffering from the same evaluation framework flaw.

Alexander and Chikwarti [11] propose a graph-based Al
framework that models enterprise IAM as a knowledge graph,
applying Graph Neural Networks (GNNs), community detec-
tion algorithms (Louvain method), and graph clustering to
discover latent role structures from access patterns, while using
Graph Autoencoders and Isolation Forests to detect privilege
creep and anomalous permissions. Their approach claims to
reduce role redundancy by 38% and achieve 93.5% precision in
anomaly detection. However, critical limitations include evalu-
ation exclusively on synthetic datasets, and comparison against
an inappropriate baseline using k-means, unsuited for anomaly
detection, rendering the reported F1-score improvement from
74.8% to 91.3% potentially misleading.

This paper diverges by introducing an unsupervised role
mining approach independent of user attributes or event data,
dedicated evaluation metrics, and a parameterizable synthetic
generator that realistically injects privilege creep, addressing
evaluation limitations and generic noise models in prior work.

III. DEFINITIONS

The National Institute of Standards and Technology (NIST)
[12] formally defines the common role mining context:

e Let U, P the set of users and the set of permissions
respectively
e Let UPA C U x P the binary user-permission assignment
matrix, a many-to-many mapping.
The NIST also formalized the Basic Role Mining Problem
(RMP) [12] as a binary matrix decomposition problem:
Given the common role mining context, find a set of roles
R and two binary matrices UA C U x R, the user-to-role
assignment matrix and PA C P x R, the permission-to-role
assignment matrix where UPA = UA x PA minimizing |R)|.
In this paper, a permission refers to an existing column in the
UPA matrix, a user refers to an existing row in the UPA matrix,
and a permission assignment is defined as an existing mapping
in the UPA matrix. The concept of legitimate permission is
defined as permission assignments that should be mined during
the RM process, as opposed to noise or privilege creep that
should not be mined.

IV. IDENTIFYING NOISE AND PRIVILEGE CREEP
A. Noise

The proposed nomenclature draws inspiration on the types
of noise identified by Molloy et al. [2] and Vaidya et al. [1]:



o Correctness noise: isolated administration errors that usu-
ally occur when a user goes through access provisioning
for the first time, only affecting a small set of permissions.
Correctness noise is usually additive, meaning additional
permission assignments on affected users, because of the
availability issue subtractive noise causes.

« RBAC applicability noise: legitimate permissions that
are not sufficiently shared amongst users to be usefully
expressed into RBAC. Indeed, expressing them would
increase the complexity of the RBAC state and therefore
undermine the management advantages of maintaining
this structure for access control.

B. Privilege creep

Two privilege creep scenarios are considered:

e Scenario 1: an employee moves to a different position
within the organization but retains a subset of permission
assignments from their previous duties due to an incom-
plete deprovisioning. Let’s call this type I privilege creep.

o Scenario 2: a group of employees was assigned to a now
finished temporary project. The additional permissions
they were given to fulfil their responsibilities have not
been revoked entirely. This can occur due to unmaintained
records of projects. Let’s call this type II privilege creep.

The key difference between these two privilege creep types is
the subset of permissions impacted.

1) Type I: The impacted permissions are still legitimate
for other employees. Indeed, those currently in the same
position as the privilege crept employee previously held, or
the employee who takes the new vacant position, have a valid
need for these permissions to fulfil their task.

2) Type 1I: The impacted permissions are not legitimate
for employees outside the project. Indeed, the permissions are
project-bound and once the project ends, no employee should
retain them.

V. PRIVILEGE CREEP-AWARE ROLE MINING

As explained in section I, the proposed method uses a 2-
step approach : clean the dataset and then mine the roles with
a regular role mining algorithm.

A. Prerequisite

Translate the user-permission assignments into a standard
binary UPA matrix X as defined in section III.

B. Dimensionality reduction

The first step is to use a dimensionality reduction algorithm.
This is done using Truncated-SVD (TSVD). TSVD offers
faster computing times on sparse matrices, does not require
centered data, and its partial decomposition of X reduces the
impact of noise [2]. Indeed, the assumption that UPA matrices
are sparse usually holds true [1] [2] [13] [3].

Let k£ € N* the rank of the TSVD decomposition of X,
where k represents the dimensionality of the reduced space.

The low-dimensional embedding Z of X is obtained by the
following equation :
Z=XVv7I )]

Where V}, is the top k right singular vectors matrix of X.
For each component i € [1,k], Z; the i-th column of Z.
The empirical variance of the i-th component corresponds to
the variance of Z; :
Var(Z) = LS (23— o) where i = L3 7, @
CLT’( z)*nZ( jl_,u‘l) W ereﬂl*nzl ji (2)
=

=1

The variance of X is computed with:
d d
Var(X) = Z Var(X;) = ij(l —pj) 3)
j=1 j=1

Where p; = L 377" | X;; is the fraction of ones in column
j. The total explained variance ratio Ry is computed using
the explained variance ratio r; for each component ¢ € [1, k]
using the following equation:

k * Var Z;
Ry = }1: =2 vT((X)) “)
The goal is to find a TSVD rank k that renders around 80%
total explained variance ratio [2]. Since this sole condition can
produce an overwhelmingly large number of components % for
the next step in the approach, another condition is added on
r,. The search stops when the following condition is met :

R, > 0.80 OR 7, < € (5)

At this point, adding more and more components yields
diminishing returns. Empirically, setting ¢ = 0.02 provides
reliable results.

C. Clustering and outlier identification

Z should contain less noise than X and consists of real
valued components that capture the most important user-
permission relationships. Hence, clustering is performed on
the low-dimensional embedding Z.

Since the primary objective of the proposed method is
to detect privilege creep, choosing a clustering algorithm
capable of identifying anomalous users as outliers becomes
necessary. The selected clustering algorithm to fulfil this goal
is Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), which offers easily interpretable parameters to be
determined :

e MiNpeints the minimum number of points required to
form a cluster. Since clusters should identify users who
present similar permissions, which usually occurs in
teams of employees working together, min,ints is set
to the smallest team size detectable in the UPA.

e ¢ the radius of the neighborhood with respect to some
point. To determine an ideal value for e the 1 Nearest-
Neighbor (1-NN) Euclidean distance of all users are



computed and plotted in ascending order. Then, € is set to
the cutoff value corresponding to the elbow of the curve.
In the proposed approach, the elbow is detected automat-
ically using the normalized difference curve technique.
The € value can still be overwritten manually using the
visual method.

Let’s call C, the user-cluster assignment table giving the

DBSCAN labels for each user including the outliers.

D. Cleaning and role mining

In order to clean the UPA C and X are used together by
performing a statistical analysis on each cluster to determine
which permissions assignments are to be expressed. Outliers
are first removed off of X to ensure role quality. Permission
prevalences are then computed for each cluster, defined as the
share of users within a cluster who possess a given permission.
Using a threshold ¢, the permissions with prevalence less than
t. are removed and the permissions with prevalence greater
than ¢, are kept. The matrix obtained after the cleaning process
is called the cleaned UPA K.

E. Role mining

FastMiner [14] and Optimal Boolean Matrix Decomposition
using BasicRMP introduced by Lu et al. [15] are used as the
role mining algorithm with a greedy approach. The algorithm
is run on K with the outliers removed. It expresses the
assignments entirely without approximations. After the role
mining is done, outliers need to be reintroduced into K.

F. Reunification

This step is a new addition from previous methods in the
literature that do not identify outliers. Two use cases are
considered:

1) Omniscient reunification: This is the case used for syn-
thetic datasets, adding the outliers back into the cleaned
UPA K with their known legitimate permissions. This
emulates the presence of an expert who is able to clean
the privilege creep and noise out of a user permission
pool perfectly.

2) Heuristic reunification: This is the case in which the
proposed tool will most likely be used in an organization
setting to provide recommendations for outliers. Two
concurrent approaches are used. The first one is to
assign mined roles to the outliers even though all their
permissions may not be covered. This gives a rough idea
of potential roles this user could have, and also brings
out the potentially problematic permissions that are not
covered. The second approach uses the information on
clusters: The barycenter of every cluster using the binary
coordinates of users is computed. Then, every outlier is
linked to the closest barycenter. This gives additional
insight on which cluster the identified outlier could be
part of and their potential legitimate permissions. Ulti-
mately the decision should be made by an administrator
in charge of reviewing user accounts as both approaches
could provide conflicting information.

The proposed approach is evaluated using the omniscient re-
unification. Thus, the metrics chosen in section VII-C account
for the accuracy of outlier detection. The following section
details the generation of synthetic datasets, which is another
contribution that this paper brings forth.

VI. SYNTHETIC DATASETS

Given that the proposed approach is evaluated on privilege
creep detection and noise correction, and that existing synthetic
dataset generators in the literature do not account for privilege
creep, a new dataset generation method is required. One of the
main contributions of this paper is a flexible generator with
adjustable parameters to produce synthetic datasets mimicking
real-world ones.

A. Generating legitimate permissions

To build the generator, inspiration was taken from the Tree-
Based Data Generator from Molloy et al. [16]. The main
changes are made on the propagation strategy to generate trees,
the process of adding noise, and the new process of adding
privilege creep instances. The proposed generator produces a
mock business organization hierarchy structure using a tree.

PO

N

P1 P2
P (U3, U4, U5)
P3 P4
(U0) (U1, U2)

Figure 1: Template example; U1,U2 inherit permission sets PO,
P1 and P4, UO inherits permission sets PO, P1, P3 etc.

The tree structure, assigned with permissions and users, is
referred to as the template. As a RM objective, mined roles
should correspond to the template structure. Knowing this,
templates are used to create legitimate permission hierarchies.

The generator starts with the root node and then grows child
nodes iteratively, using six parameters to build trees:

o min_depth and max_depth, encode the minimum and
maximum depth of the tree, nodes stop propagating be-
tween these bounds with a linearly decaying probability.

o min_children and max_children encode the minimum and
maximum number of child nodes allowed per node.

o avg_branch and std_dev encode how nodes propagate in
the tree. The number of child nodes follows a normal
distribution centered around avg_branch with a standard
deviation of std_dev, brought back to integers.

Given a target number of permissions and users, a random
number of permissions is assigned to every node using a
binomial law. A random number of users is assigned to leaves
of the tree using the same binomial law method. Users then
inherit the permissions of the leaf node they are assigned to,
and all permissions assigned to parents nodes above them (see
example on figure 1). This process generates the legitimate
UPA matrix.



B. Adding privilege creep

As identified in section IV, two types of privilege creep are
added to the UPA matrix: type I and type II privilege creep.
Three parameters are introduced for this purpose:

1) ppc the portion of users who present cases of type I
privilege creep.

2) c the portion of permission assignments copied from
another user in a type I privilege creep instance.

3) r the number of added permissions for users who present
type Il privilege creep. All affected users are then granted
these permissions.

In order to always have a varied set of privilege creep instances
the following rules are used:

e 30% of type I privilege creep instances use ¢ = 1

e 70% of type I privilege creep instances are assigned
linearly decreasing values of ¢ from 1 to 0.

o The number of users in each type II privilege creep
instance is fixed to 8, and the number of instances is
computed using this formula:

nType 1I instances — Uoglo (nusers)J (6)

Thanks to these parameters, it is possible to produce privi-
lege creep instances of varying frequency and magnitude. The
privilege crept UPA is then created by adding the privilege
crept permissions assignments to the legitimate UPA.

C. Adding noise

To make the dataset more realistic, noise is added to the
privilege crept UPA. This follows the discussion in section
IV on noise identification. RBAC applicability noise is added
using the first two parameters and correctness noise using the
third parameter :

o Dnoise: NoOise percentage denotes the ratio of noisy per-
mission assignments to be added to the UPA matrix,
expressed as a proportion of the number of legitimate
assignments.

o dpoise: Noise density denotes how dense the added as-
signments are. The number of distinct added permissions
Npoisy must be computed to match the noise density
parameter. This is done using the formula:

Nlegitpnoise

@)

Nnmsy dnoisenusers
Where Nicgi¢ is the number of legitimate assignments.
The added noise assignments are then generated with a
Bernoulli experience on a matrix of size (Nysers, Nnoisy)
with p = d,0ise, concatenated to the privilege crept UPA.

e Diegit—noise, NOise percentage on legitimate permissions
indicates the ratio of additional assignments to introduce
relative to the number of already injected noisy permis-
sions. These assignments are uniformly distributed on the
legitimate permission matrix directly, only flipping zeros
into ones.

VII. EVALUATION

The synthetic dataset evaluation framework is first defined.
Then, the real-world datasets used for evaluation are men-
tioned. Finally, Metrics are listed at the end of the section.

A. Synthetic dataset benchmark

Since it is impossible to test every parameter combination
with the proposed dataset generation method, standard config-
urations are defined for a variety of problem sizes, general
hierarchy aspect of the legitimate templates, and privilege
creep & noise distributions using profiles:

o Table I defines profiles used to build template trees
(section VI-A), selected to have a variety of depth and
branching, mimicking different organizational structures.

o Table II defines profiles used to add noise and privilege
creep to the legitimate UPA (section VI-C), selected based
on the assumption that the number of privilege creep
instances increases with higher noise levels.

« Table III defines profiles used to assign users and permis-
sions to tree nodes (section VI-A), selected to restrict the
number of permissions assigned to nodes and the number
of users assigned to leaves.

Evaluation on noise levels (2), spans across the parameter
profiles from tables I and II, using the default tension parame-
ters from table III. Evaluation under tension (3), spans across
the parameter profiles from tables I and III, using the default
noise parameters from table II.

Name v:‘hlldren - depth avg_branch | std_dev
min  max | min max

large_flat 2 4 2 4 3 1.5
small_flat 1 5 1 3 3 1

large_string 1 2 10 15 1.7 0.5

small_string 1 2 5 8 1.6 0.4
binary_tree 1 3 2 5 2 0
highly_random 1 6 2 5 2 2

Table I: Profiles for generating legitimate permission trees

Name Acronym Noise
percent  density legit PC
no noise no pc NN 0 N/A 0% 0%
low noise, low density LNLD 5% 1% 10% 3%
high noise, low density HNLD 15% 1% 15% 5%
low noise, high density LNHD 5% 4% 15% 5%
high noise, high density HNHD 15% 5% 20% 8%
default / 15% 2% 10% 3%

Table II: Profiles for noise and privilege creep levels

User Per
Name Acronym . -
min  max | min max
no tension NT 15 25 10 40
tension on permissions TP 15 25 2 6
tension on users TU 2 8 10 40
tension on both TUTP 2 8 2 6
default / 15 25 15 45

Table III: Profiles for tension on users and permissions

B. Real-world dataset benchmark

The real-world datasets provided by Ene et al. [17] are
used for the evaluation. Despite their publication in 2008,
these datasets have become established benchmarks in the



literature and continue to be referenced in recent studies for
performance comparison on real-world instances [4], [18],
[19], [20], [21]. These are: americas_large, americas_small,
apj, customer, domino, emea, firewalll, firewall2, healthcare.

C. Metrics

The main goal of the chosen metrics is to measure how
accurate the privilege creep detection and correction is without
compromising permissions flagged as legitimate.

1) Legitimate Permission Retention (LPR):
The Fl-score computed between the cleaned UPA and
the reference legitimate UPA, excluding potential out-
liers. It reflects the accuracy of legitimate permission
recovery, while minimizing the retention of noise.

2) Permission Expression (PE):
The number of permission assignments retained in the
cleaned UPA divided by the number of assignments in
the noised UPA. An effective cleaning process would
result in a permission expression value that is close to
the one computed on the legitimate matrix.

3) Privilege Creep Correction (PCC):
The percentage of privilege crept assignments still
present in the cleaned UPA. A value close to 1 reflects
the effectiveness of the cleaning process.

4) Privilege Creep Detection Accuracy (PCDA):
The Fl-score computed between the set of identified
outliers and the ground truth set of anomalous users.
It measures the accuracy of the anomaly detection.

5) Role Count Deviation (RCD):
The difference between the number of ideal roles, iden-
tified to be the number of leaves in the template (see
section VI-A) and the number of mined roles divided by
the number of ideal roles.

6) Runtime metric:
The runtime of the cleaning process in seconds.

On synthetic datasets, the proportion of identified privilege
creep instances is also recorded by type.

VIII. RESULTS

MiNpoints 1S et to 5 to ensure clusters represent meaningful
user groups (teams/departments) as explained in section V-C.
Empirical testing has shown that lower values produce frag-
mented clusters where the statistical threshold ¢, incorrectly
removes legitimate permissions, as small clusters exhibit high
variance in permission prevalence.

A. Performance using synthetic datasets

The results are given as box plots. Each plot renders the
distribution of a given metric evaluated on 20 runs of each
structure parameter defined on table I. Given that there are
6 structure parameters, each box plot contains 120 different
samples. Metrics are explained in section VII-C.

1) Experiment with varying noise levels: Figures 2a and
2b concurrently show that legitimate permission assignments
were accurately retrieved, avoiding the expression of noisy
assignments. Indeed, the median LPR is above 97.5% on all
noise levels and permission expression shows a proportional
decrease with increasing noise levels, as expected. About
privilege creep, conflicting information seem to stem from
figures 2¢ and 2d: the detection accuracy hovers around 80%,
sometimes reaching values below 50% on the worst runs,
while almost all privilege crept assignments are corrected with
median PCC values at 100% across all noise levels. This occurs
as type I privilege creep instances are accurately detected most
of the time, whereas type II instances are more difficult to
detect. The statistical analysis cleaning process then removes
undetected type II privilege creep permission assignments.
Figure 2e reveals that the proposed approach tends to produce
fewer roles than expected VI-A, probably due to legitimate
permissions being erased by the cleaning process. The average
runtime for the cleaning process is below 5 seconds, never
exceeding 1 minute as figure 2f demonstrates. Longer runtimes
can be attributed to exceptionally large datasets. When the
datasets are free from noise and privilege creep, figures 2b, 2a
and 2e confirm that the approach accurately retrieves legitimate
assignments with minimal false positive outlier occurrences,
and produces the expected amount of roles on average.

2) Experiment with varying tension levels: Figures 3a and
3b demonstrate that legitimate permissions assignments are
generally not accurately retrieved when tension is put on
users. Indeed, LPR plummets to 0% on several of these
datasets and PE is lower than expected, reaching values that
do not correspond to the amount of noise, meaning legitimate
assignments have been removed massively. Regarding privilege
creep, detection accuracy decreases by 30% when tension is
applied to users, with many false positives as shown in figure
3d. All of this can be explained when too few users are
present in the UPA matrix to form large significant groups: the
cleaning process removes larger amounts of permissions due to
wrongly identified clusters, which also causes a lot of users to
be wrongly flagged as outliers. These effects propagate to the
role mining step, no roles can be mined when great amounts
of permissions have been removed. This is shown in figure 3e
where runs under user tension produce half the roles that would
normally be needed to express the assignments on average.
Cleaning runtimes are faster than the previous experiments,
averaging 3 seconds due to the datasets reduced size under
user and/or permission tension.

B. Performance using real-world datasets

On real-world datasets, hyperparameters are determined
through a semi-automated process combining the algorithmic
methods from sections V-B and V-C with manual refinement.
The automated procedures provide initial recommendations
for ncomps, €, and t.. These initial values are then manually
adjusted based on the following criteria: (1) maximizing the
explained variance ratio R,., while respecting the diminishing
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returns threshold described in section V-B, (2) ensuring stable
cluster formation that effectively separates users with irreg-
ular permissions patterns from the others using T-distributed
stochastic neighbor embedding (t-SNE) projections, and (3)
optimizing the trade-off between permission expression cov-
erage and noise removal through t. calibration, guided by
the established 80-20 principle in access control management.
For each dataset, multiple parameter configurations near the
automated recommendations were evaluated, and the combi-
nation yielding the best balance between UPA coverage and
role quality was selected. Final hyperparameter values and
corresponding R,,, are reported in Table IV.

Dataset |U| Neomps | Rvar € te
americas_large 3485 10 0.646 2 0.3
americas_small 3477 7 0.807 1 0.5
apj 2044 6 0.350 0.5 0.005
customer 10021 12 0.500 1 0.02
domino 79 4 0.840 1 0.1
emea 35 12 0.815 16 0.05
firel 365 3 0.882 0.3 0.5
fire2 325 1 0.832 | 0.03 0.5
healthcare 46 3 0.841 1.5 0.4

Table IV: Determined hyperparameters

Table V compiles the results of the approach. The optimal
number of roles used for comparison is provided by HP Labs
[17] and reported by Blundo et al. [19]. II represents regular
permission expression, and 7 permission expression computed
without outliers. The number of outliers is also reported.

Dataset II ™

no. out. | 7oles Toptimal
americas_large 0.755 0.841 45 98 398
americas_small | 0.881 0.913 31 21 178
apj 0.727 | 0.759 13 183 453
customer 0.798 | 0.812 58 47 276
domino 0.171 | 0919 7 6 20
emea 0.615 | 0.799 4 25 34
firel 0.905 | 0.974 14 4 64
fire2 0.994 1 7 1 10
healthcare 0.881 | 0.946 4 2 14

Table V: Results on real-world datasets

First, americas_large, apj and customer did not reach above
80% permission expression probably because of their sheer
size and noise levels. Therefore, they required lower than av-
erage t. to be expressed appropriately. The proposed approach
yields over 75% permission expression on all datasets. Looking
at the difference between II and m, it is clear that on datasets
like domino or emea, the small pool of identified outliers
concentrate the majority of permission assignments, since 7
is above 80%, meaning clustered users have 80% of their per-
missions expressed. These users are likely administrators with
an exceptionally high number of permission assignments, and
therefore they were flagged as outliers. Overall, the number of
identified outliers is between 1% and 10% of the number of
users for all datasets, with a manageable absolute number that
never exceeds 60 users. Also, the approach produced fewer
roles across all datasets compared to the optimal number used
for full expression, effectively dividing the number of roles by

4 on average. The exceptionally low amount of roles produced
on firel and fire2 is likely due to a great number of similar
users with a handful of exceptions.

IX. DISCUSSION AND CONCLUSION

This paper addresses the issue of role mining in the presence

of privilege creep through three main contributions:

o A parameterizable synthetic data generator that aims to
create realistic role mining datasets, with controlled noise
and privilege creep injection.

o An effective cleaning methodology that removes noise
and detects privilege creep in UPA matrices, achieving
90% detection accuracy and 95% legitimate permission
retention on average.

o A comprehensive evaluation framework providing new
metrics (LPR, PCC, PCDA, RCD) specifically designed
for privilege creep-aware role mining.

A. Performance and practical impact

The proposed approach demonstrates strong performance
on several datasets. On americas_small, firel, fire2, and large
synthetic datasets without user tension, the method expresses
90% of permission assignments while accurately removing
noise and privilege creep. Notably, the approach reduces the
number of required roles by up to a factor of ten, significantly
improving access control manageability in large organizations.
A key advantage of the proposed approach is its security-
preserving nature [3], as no new permission assignments are
added to the UPA, making it suitable for critical access review.
The reunification phase improves role quality by removing
potentially anomalous users out of the role mining phase.

Regarding privilege creep detection, Type I instances are
detected with an accuracy above 90%, demonstrating the
method’s effectiveness for this common scenario. Type II
privilege creep proves more challenging to detect as noise
levels increase, with PCDA scores frequently falling below
50%. This occurs because higher noise levels render Type II
privilege creep permission assignments statistically indistin-
guishable from random noise. However, due to the statistical
analysis process used to clean the dataset, Type II privilege
creep permissions are typically removed during the cleaning
phase, even when not explicitly detected as privilege creep.
While this maintains the cleaning objective, it highlights a
limitation in the detection of project-based anomalies.

B. Limitations and areas for improvement

Hyperparameter sensitivity: The method’s performance
depends on manually tuning key parameters (k, €, t.). While
heuristic estimates are provided for k£ and ¢, no such guidance
exists for ¢.. This limitation is particularly evident on real-
world datasets such as apj, customer, domino, and emea, which
required unexpectedly low cleaning thresholds (¢, < 0.3)
to achieve permission expression scores above 50%. This
behavior stems from the interdependence of € and ¢.: tar-
geting an outlier rate below 10% often necessitated inflated
€ values, which caused cluster to merge and consequently



required lower-than-typical ¢, thresholds to maintain adequate
cleaning. These observations reveal a cascading effect amongst
hyperparameters, with € and especially ¢. exhibiting the high-
est sensitivity. Visualizations of clusters with tools like t-
distributed stochastic neighbor embedding (t-SNE) could guide
hyperparameters selection.

Performance degradation on small datasets: Both perfor-
mance evaluations reveal an inherent limitation: the approach
demonstrates reduced effectiveness on datasets with fewer than
100 users approximately, such as domino, emea, healthcare,
and synthetic datasets with user tension. On synthetic datasets,
privilege creep detection accuracy averages only 60%, and
legitimate permissions are erroneously removed. This degrada-
tion stems from the statistical properties of the clustering ap-
proach: DBSCAN requires sufficient sample density to reliably
distinguish meaningful clusters from outliers, and small user
populations provide insufficient data points, therefore flagging
more users are outliers. The statistical threshold ¢., becomes
unreliable when clusters contain too few members, as small
anomalies within clusters are disproportionately represented.

Synthetic dataset generation: The data generator is based
on a hierarchical tree structure with binomial distribution
for users and permissions on nodes, which produces cleaner
datasets than real-world ones, and exhibit artificial structural
patterns that may not reflect the complexity and irregularities
of actual enterprise environments. As such, the evaluation
results on synthetic data are to be interpreted with caution.

Limited baseline comparison: Evaluation on real-world
datasets uses HP Labs ideal results to evaluate role number
reduction. However, it lacks comparison with state-of-the-
art role mining techniques. Future work should primarily
benchmark permission retention and privilege creep detection
against methods in the related work section.

C. Future work

On the approach itself, user attributes could be used to
enhance the clustering process by providing additional con-
text. To address the hyperparameter sensitivity issue, adaptive
thresholds based on cluster characteristics should be devel-
oped. Additionally, exploring alternative clustering algorithms,
such as Isolation Forest or Local Outlier Factor (LOF), may
improve performance on small datasets.

The synthetic data generator needs to be extended to model
matrix-style and network-style organizational architectures, as
well as separation of duties (SoD) constraints, enabling more
realistic test scenarios. A comparative assessment against state-
of-the-art role mining approaches would complete the vali-
dation of the method relative to existing techniques. Finally,
mechanisms to assess and mitigate the operational impact
of permission removal should be developed, to ensure the
method’s practical deployability in production environments.
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