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RÉSUMÉ

Le Role Mining (RM) extrait des structures de contrôle d’accès fondées sur des rôles (RBAC) à
partir des attributions de permissions aux utilisateurs afin de réduire la charge administrative.
Cependant, les approches existantes partent généralement du principe que les ensembles de
données utilisées pour miner des rôles sont propres, alors que les systèmes réels souffrent
d’anomalies telles que l’accumulation de privilèges, aussi appelé privilege creep.

L’approche proposée vise à détecter les utilisateurs susceptibles d’être concernés par
l’accumulation de privilèges et qui doivent être examinés en priorité, ainsi qu’à identifier les
attributions de permissions légitimes à exprimer en RBAC, réduisant ainsi la complexité
de la gestion. Cette approche consiste en une procédure à deux étapes : nettoyer la ma-
trice d’assignation des permissions utilisateur (UPA) à l’aide de clustering et d’une analyse
statistique, puis construire un état RBAC à l’aide d’un algorithme de role mining classique.

L’approche proposée permet d’obtenir une précision moyenne de 90 % dans la détection
de l’accumulation des privilèges et une correction de plus de 95 % de l’accumulation des
privilèges, évaluée sur des jeux de données synthétiques. L’évaluation sur des jeux de données
réels montre une réduction moyenne d’un facteur 4 des rôles requis tout en conservant une
couverture de la matrice User-Permission Assignment matrix (UPA) d’au moins 80 %.
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ABSTRACT

Role Mining (RM) extracts Role-Based Access Control (RBAC) structures from user-
permission assignments to reduce administrative overhead. However, existing approaches
generally assume that the datasets used for mining roles are clean, while real systems suffer
from anomalies like privilege creep (PC), the gradual accumulation of outdated permissions,
permissions that should have been revoked.

My approach aims to detect users affected by privilege creep for prioritized access review,
while identifying legitimate permission assignments that can be expressed in RBAC, thereby
reducing management complexity. This approach consists of a two-step procedure: cleaning
the User-Permission Assignment (UPA) matrix using clustering and statistical analysis, then
constructing an RBAC state using a conventional role mining algorithm.

The proposed approach achieves an average accuracy of 90% in detecting privilege creep and
is able to correct over 95% of privilege creep instances, as evaluated on synthetic datasets.
The evaluation on real-world datasets shows an average reduction by a factor of 4 in the
required roles while maintaining a UPA matrix coverage of at least 80%. This reduction in
role count is comparable to or exceeds the performance of established methods such as delta
RMP for the datasets evaluated.
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CHAPITRE 1 INTRODUCTION

1.1 Contexte de menace interne

Les menaces internes désignent des actes malveillants commis par des personnes qui possèdent
des autorisations d’accès légitimes au sein d’une organisation. Ces actes peuvent avoir des
conséquences graves sur les ressources numériques et physiques de l’entreprise.

Dans un livre de Stolfo et al [2], un acteur de menace interne désigne tout individu disposant
d’autorisations légitimes pour accéder aux systèmes et ressources numériques de l’organisation.
Cette catégorie comprend toute personne habilitée à consulter, modifier ou gérer les configura-
tions informatiques, les données ou les applications de l’entreprise, privilèges qui ne sont pas
accordés au public externe. Cette définition couvre non seulement le personnel permanent
de l’organisation, mais également les employés temporaires, les bénévoles et les prestataires
externes, la portée exacte dépendant du domaine d’activité spécifique de l’entreprise concernée.

On peut relier cette notion de personne malveillante interne à l’entreprise sous le terme
d’initié, "insider" en anglais, lorsque l’acte malveillant est intentionnel. Ces initiés peuvent avoir
plusieurs motifs comme le souligne Fortinet [3] : de nombreuses menaces internes intentionnelles
sont motivées par un désir de vengeance envers l’entreprise suite à un sentiment d’injustice ou
d’attentes insatisfaites, notamment l’absence de prime ou de promotion espérée. Cybersecurity
& Infrastructure Security Agency (CISA) [4] propose une perspective complémentaire en
identifiant les motivations d’initiés qui cherchent à porter préjudice à leur organisation
dans un objectif de gain personnel ou en réaction à un grief particulier. L’agence observe
notamment que plusieurs initiés sont poussés à la vengeance par un sentiment de manque
de reconnaissance perçu, qu’il s’agisse de promotions refusées, de primes non accordées,
d’opportunités de déplacement manquées ou encore de licenciements.

Cependant, cette définition n’inclut pas les acteurs de la menace interne qui agissent de façon
non intentionnelle. CISA [4] donne deux catégories de ces menaces internes :

• Négligence, un acteur de ce type expose une organisation à une menace par manque
de vigilance. Les employés négligents connaissent généralement les politiques de sécu-
rité et/ou informatiques, mais choisissent de les ignorer, créant ainsi un risque pour
l’organisation. Les exemples incluent le fait d’égarer ou perdre un dispositif de stock-
age portable contenant des informations sensibles ou ignorer les messages demandant
d’installer de nouvelles mises à jour et correctifs de sécurité.
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• Accidentel, un acteur de ce type cause par erreur un risque non intentionnel pour une
organisation. Les exemples incluent une erreur de frappe dans une adresse courriel et
l’envoi accidentel d’un document commercial sensible à un concurrent, cliquer sans le
savoir ou par inadvertance sur un hyperlien, ouvrir une pièce jointe dans un courriel
d’hameçonnage contenant un virus, ou éliminer de façon inappropriée des documents
sensibles.

Ainsi donc, un autre acteur intentionnellement malveillant tire profit des acteurs internes
dont les agissements non intentionnels mettent en péril la sécurité de l’entreprise.

1.2 Risques et impacts

Les incidents liés aux menaces internes, qu’ils soient intentionnels ou non, peuvent engendrer
des dommages considérables. Ces préjudices incluent le vol, la divulgation et la détérioration
de données sensibles, la désactivation malveillante des services critiques, la saturation des
réseaux ou des serveurs, l’interruption des processus métier essentiels, ou encore l’assistance
apportée aux attaquants externes par la création de points d’accès non autorisés.

Le coût total moyen des incidents de menace interne est passé de 8,3 millions de dollars US en
2018 à 16,2 millions de dollars US en 2023 selon le rapport global 2023 du Ponemon Institute
sur le coût des menaces internes [5], soit un doublement en seulement cinq ans.

En 2024, la situation s’est fortement dégradée par rapport à 2023 : Un rapport fondé sur
sondage de 467 professionnels de cybersécurité par Cybersecurity Insiders montre que 17%
des organisations ont déclaré n’avoir subi aucune attaque interne : incidents d’exposition,
de perte, de fuite et de vol de données causés par des acteurs malveillants [6]. C’est une
diminution significative par rapport aux 40% sondés en 2023.

On peut citer plusieurs cas célèbres pour se rendre compte de la gravité de certains accidents
qui ternissent l’image d’une entreprise en plus de faire peser de lourdes pénalités financières.

Le premier exemple est celui de la fuite de données de Capital One, perpétrée par une ancienne
employée de Amazon Web Services (AWS) qui a profité d’un pare-feu mal configuré, utilisé
par Capital One pour protéger son déploiement AWS. Ce pare-feu s’était vu accorder des
permissions excessives sur l’instance AWS (la capacité de lire tous les fichiers stockés) et était
vulnérable. L’attaquante a exploité la vulnérabilité en question pour dérober les données
de 100 millions de clients américains et 6 millions de clients canadiens de Capital One [7].
Suite à cet incident, l’entreprise a dû payer une amende de 80 millions de dollars US à l’Office
of the Comptroller of the Currency (OCC) [8] ainsi que 190 millions de dollars US suite à
un recours collectif [9] faisant s’élever la note totale à 270 millions de dollars US. C’est sans
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compter la perte de confiance des clients de Capital One qui a probablement eu un impact
financier impossible à calculer précisément.

Un cas plus récent qui n’a pas encore été jugé est celui de la fuite de données de Tesla ayant
eu lieu en 2023. Deux anciens employés de Tesla agissant en lanceurs d’alerte ont fait fuiter
plus de 23 000 documents internes à un média allemand [10] [11]. Les données confidentielles
incluaient les informations d’identification personnelle de plus de 75 000 employés, des secrets
de production et des informations financières des clients pour un total de 100 Giga-octets de
données. Les amendes potentielles en vertu du RGPD auraient pu atteindre des milliards de
dollars. L’entreprise fait également face à un recours collectif des employés toujours en cours
à la date d’écriture de ce mémoire [12].

Dans tous ces exemples, les acteurs malveillants ont utilisé des privilèges auxquels ils avaient
accès au sein de leur entreprise. Dans certains cas, c’est une conséquence directe d’un
phénomène souvent observé en contrôle d’accès : au fil du temps, la qualité des systèmes de
Gestion des Identités et des Accès (GIA) se dégrade, l’accumulation de privilèges représen-
tant une anomalie clé dans le contexte de menace interne : une accumulation progressive
d’autorisations résultant de transitions professionnelles, de changements organisationnels,
d’affectations temporaires, etc. Si ce problème peut être résolu manuellement dans les petites
organisations, sa complexité augmente considérablement dans les grandes entreprises, d’autant
plus que la revue des accès est souvent fragmentée et déléguée.

1.3 Solutions

Une étude récente par Marquis [13] énonce que les menaces internes constituent un défi
majeur pour la sécurité des bases de données organisationnelles, nécessitant des mesures de
protection robustes et adaptatives. Le contrôle d’accès basé sur les rôles Role Based Access
Control (RBAC) représente une solution prometteuse pour faire face à ces risques en limitant
l’accès aux données selon la fonction de chaque utilisateur au sein de l’organisation. Cette
recherche examine l’efficacité des systèmes RBAC pour réduire les menaces internes dans
différents secteurs d’activité, notamment la technologie, la finance, la santé et les organismes
gouvernementaux, en s’appuyant sur une approche quantitative utilisant une enquête auprès
de professionnels responsables de la sécurité des bases de données.

Les résultats révèlent que le RBAC contribue effectivement à diminuer les accès non autorisés
et les violations de données, réduisant ainsi considérablement les menaces internes. Cependant,
la mise en œuvre présente certains défis, notamment la complexité de la définition des rôles et
l’adaptation aux besoins d’accès évolutifs. L’étude souligne que l’efficacité du RBAC dépend
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de son amélioration continue, de l’intégration de technologies avancées comme l’apprentissage
automatique, et de son adaptation aux contextes organisationnels spécifiques, recommandant
ainsi des programmes d’amélioration continue et une formation spécialisée pour optimiser ces
systèmes de sécurité.

Les administrateurs système structurent aussi les permissions données aux utilisateurs pour
réduire les coûts liés à la GIA. Ils utilisent alors le modèle RBAC ou Attribute-Based Access
Control (ABAC), en regroupant les utilisateurs ayant des besoins similaires en matière d’accès
à l’information. Cela permet une configuration du contrôle d’accès plus extensible et plus
facile à maintenir. Le processus qui sert à construire cette structure s’appelle "role mining"
puisqu’on essaie d’inférer les rôles des utilisateurs en fonction de leurs permissions, attributs,
etc. Cependant, les approches récentes en matière de role mining se sont concentrées sur des
méthodes conçues pour des jeux de données propres, sans anomalies. Dans les systèmes de
contrôle d’accès réels, cette hypothèse est rarement vérifiée. Ceci crée un problème majeur :
les permissions anormales sont répliquées dans la structure RBAC et rendent donc le contrôle
d’accès inutile lorsque celui-ci ne correspond pas aux politiques de sécurité mises en place.

1.4 Objectifs de recherche

Mettre au point une méthode de role mining capable de détecter et de corriger les anomalies
principales rencontrées en GIA tout en proposant des recommandations pour former des rôles
et structurer la gestion des accès.

Développer un algorithme de génération de données synthétiques paramétrable qui prend en
compte l’ajout d’anomalies comme le bruit et l’accumulation de privilèges.

Évaluer les performances de la méthode de role mining avec détection de l’accumulation
de privilèges mise au point sur des jeux de données synthétiques générés, et sur des jeux
de données réels en combinant des métriques nouvellement développées avec des métriques
établies.
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1.5 Plan du mémoire

Le deuxième chapitre présente une revue de la littérature des approches explorées en role
mining et les techniques utilisées pour évaluer ces approches. Le troisième chapitre décrit
la méthode de génération de jeux de données synthétiques proposée. Le quatrième chapitre
explique la méthode de role mining proposée, capable de détecter et corriger les instances
d’accumulation de privilèges. Le cinquième chapitre est dédié à l’évaluation sur jeux de
données réels et synthétiques de la méthode de role mining proposée. Enfin le sixième chapitre
constitue la conclusion des travaux, incluant la limites, les pistes d’améliorations et les travaux
futurs.
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CHAPITRE 2 REVUE DE LITTÉRATURE

2.1 Role Mining

2.1.1 Définition formelle

Le National Institute of Standards and Technology (NIST) [14] apporte une définition formelle
au contexte commun du role mining :

• Soit U, P l’ensemble des utilisateurs et l’ensemble des permissions respectivement.

• Soit UPA ⊆ U × P la matrice binaire d’assignation utilisateur-permission, pouvant
être vue comme une fonction multivaluée [15] de U dans P. Cette matrice est, dans la
plupart des cas, vue comme une matrice binaire où un 1 indique une assignation de
permission à un utilisateur et un 0 indique l’absence d’assignation.

Le NIST formalise aussi le basic Role Mining Problem (RMP) en un problème de décomposition
matricielle binaire :

Étant donné le contexte commun du role mining, trouver un ensemble de rôles R et deux
matrices binaires UA ⊆ U × R, la matrice d’affectation utilisateur-rôle et PA ⊆ P × R, la
matrice d’affectation rôle-permission, où UPA = UA⊗ PA en minimisant |R|.

L’opération ⊗ n’est pas une multiplication matricielle au sens algébrique classique (produit
scalaire ou produit matriciel standard), mais une opération booléenne d’affectation, souvent
appelée produit booléen ou composition. On le calcule comme suit :

UPA[u, p] =
∨

r∈R

(
UA[u, r] ∧ PA[r, p]

)
(2.1)

Avec ∨ le OU logique sur un ensemble, ∧ le ET logique.

Par abus de langage, on désigne les assignations utilisateur-permission par le terme assignation.
De même, on désigne les affectations utilisateur-rôle et rôle-permission par le terme affectation.

2.1.2 Autres formulations et algorithmes

D’autres formulations du RMP existent et servent à gagner en pertinence de solution, en
temps de calcul, etc.
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Zhang et al. [16] proposent une formulation du problème par graphe biparti [17] où les
utilisateurs, les rôles et les permissions sont représentés comme des nœuds, et les assignations
entre eux sont représentées comme des arêtes. Le role mining devient alors un problème
d’expression de graphe biparti en graphe triparti. L’article explore une approche hybride où
les rôles sont partiellement définis au niveau de l’administration. L’objectif principal est de
minimiser le coût d’administration après que l’état RBAC a été construit. Cela se traduit par
un objectif de nombre minimal de rôles et d’arêtes dans le graphe biparti. Cette formulation
est particulièrement intéressante, car elle permet d’utiliser des techniques d’optimisation de
graphe. La figure 2.1 donne un exemple de cette approche.

u1

u2

u3

u4

u5

p1

p2

p3

p4

Utilisateurs (U) Permissions (P)

UPA

(a)

u1

u2

u3

u4

u5

r1

r2

r3

p1

p2

p3

p4

U Rôles (R) P

UA PA

(b)

Figure 2.1 Comparaison de l’expression d’une matrice UPA sous forme de graphe biparti 2.1a,
et forme de graphe triparti 2.1b.

Le problème s’énonce alors :
Étant donné le contexte commun du role mining, trouver un ensemble de rôles R et deux
matrices binaires UA ⊆ U × R et PA ⊆ P × R où UPA = UA ⊗ PA en minimisant
|R|+ ∥UA∥1 + ∥PA∥1.

Cette approche est améliorée par Vaidya et al. [18] en formalisant et en nommant le problème
edge-RMP. Ils montrent que ce problème est NP-complet et proposent une solution algorith-
mique pour le résoudre. Il s’agit toujours d’un problème visant à minimiser le nombre total
d’arêtes dans un graphe biparti, mais sans la contrainte sur les rôles. Le problème s’énonce
alors de façon similaire :
Étant donné le contexte commun du role mining, trouver un ensemble de rôles R et deux
matrices binaires UA ⊆ U × R et PA ⊆ P × R, où UPA = UA ⊗ PA en minimisant
∥UA∥1 + ∥PA∥1.
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Diverses approches algorithmiques sont utilisées pour trouver une solution à ces problèmes de
role mining, voici les plus connues encore utilisées à ce jour regroupées en trois catégories :

• La décomposition de matrice, visant à factoriser directement la matrice UPA. Au sein
de cette catégorie, CompleteMiner (CM) [19] offre une approche exhaustive en explorant
toutes les intersections des ensembles de permissions portées par les utilisateurs possibles
pour garantir l’identification de tous les rôles potentiels, au prix d’un coût de calcul et
de mémoire très élevé. Pour pallier ce problème, FastMiner (FM) [19] a été proposé
comme une alternative heuristique plus rapide : limiter la recherche de rôles à un sous-
ensemble d’intersections, ne prenant en compte que les intersections impliquant au plus
2 configurations utilisateur, et se concentrer sur les utilisateurs ayant des permissions
similaires. L’algorithme gagne en efficacité pour les grands systèmes, passant d’une
complexité exponentielle à polynomiale, bien que cette optimisation empêche parfois de
découvrir certains rôles optimaux.

• Basée sur le clustering, qui regroupe les utilisateurs ou les permissions selon une métrique
de similarité. HierarchicalMiner (HM) [20] se distingue en utilisant des techniques de
clustering hiérarchique pour identifier des rôles, mais aussi les organiser dans une
structure arborescente. Cette hiérarchie modélise plus fidèlement les relations entre les
fonctions au sein d’une organisation, bien que sa pertinence dépende fortement de la
mesure de similarité choisie. Pour enrichir davantage la signification des rôles découverts,
des approches comme Ontology-based Role-mining framework with Clustering Analysis
(ORCA) [21] combinent le clustering avec des ontologies, intégrant ainsi le contexte
organisationnel pour générer des rôles sémantiquement plus riches.

• Basée sur les graphes, offrant une modélisation flexible du problème. Des algorithmes
comme HPr [1] ou Graph-based Optimization (GO) [16] cherchent à identifier des
"communautés denses" d’utilisateurs, qui correspondent à des rôles potentiels. Cette
méthode transforme le role mining en un problème d’optimisation, permettant d’intégrer
diverses contraintes spécifiques au système.

Toutes ces approches visent une correspondance exacte entre la matrice UPA originelle et la
matrice reconstruite à partir des matrices UA et PA. Cependant, comme Vaidya et al. [22]
l’ont noté, cette méthode peut produire un nombre trop important de rôles, rendant l’avantage
administratif apporté par la structure RBAC moindre. C’est pourquoi la version généralisée
du RMP autorise des déviations.
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2.2 Noise Role Mining

On entend par déviation que la matrice UPA n’a pas à être exprimée entièrement, voire qu’on
peut rajouter des assignations préalablement non existantes. Cette approche permet de pallier
un premier type d’anomalie rencontré dans les systèmes de GIA : le bruit. Cette notion de
bruit est ce qui donne à la version généralisée du problème le nom de "Noise Role Mining" ou
role mining en présence de bruit.

2.2.1 Définition du bruit

Vaidya et al. [23] définissent le bruit observable sur la matrice UPA comme des permissions
qui ne sont pas enregistrées dans le système de GIA comme elles devraient l’être. C’est-à-dire,
soit une autorisation étant enregistrée comme un refus ou un refus étant enregistré comme
une autorisation. On appelle ces anomalies bruit général : des inversions de bits sur la
matrice UPA, essentiellement une permission incorrectement révoquée ou accordée par un
administrateur de sécurité. Ils classifient ensuite ce bruit en deux catégories :

• Bruit additif, qui désigne les permissions incorrectement ajoutées dans la matrice UPA
qui n’ont pas été supprimées. Habituellement, ces permissions sont accordées pour une
tâche temporaire et ont été oubliées.

• Bruit soustractif, qui désigne les permissions incorrectement supprimées de la matrice
UPA qui devraient y être ajoutées. Habituellement, ces permissions manquantes provien-
nent du processus d’approvisionnement (access provisioning) lorsque quelqu’un n’obtient
pas les permissions nécessaires pour accomplir ses tâches.

Il est clair que le bruit soustractif est habituellement moins fréquent que le bruit additif
en raison du problème de disponibilité qu’il cause. Molloy et al. [24] proposent une autre
classification comme suit :

• Bruit de correction : les assignations qui impactent la sécurité d’un système. Essentielle-
ment, ce bruit est défini comme les erreurs de type I (faux positifs) et de type II (faux
négatifs) qui correspondent respectivement au bruit additif et soustractif de Vaidya et
al. [23]

• Bruit d’applicabilité RBAC : les assignations que l’administrateur souhaite con-
server comme des exceptions, et qui ne devraient pas être exprimées dans le système
RBAC. Ceci découle du besoin de flexibilité dans le contrôle d’accès, permettant à
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l’administrateur d’adapter les permissions dynamiquement en fonction du contexte ou
des exigences temporaires. Ce ne sont pas à proprement parler des erreurs, mais elles
peuvent être indiscernables du bruit de correction sans contexte.

La définition de Molloy et al. [24] est donc plus large que celle de Vaidya et al. [23].

Il est important de noter que la quantité de bruit rajoutée sur un jeu de données quelconque,
traduit sous forme matricielle UPA, est généralement exprimée en pourcentage du nombre
d’assignations totales. Autrement dit, le nombre d’assignations "bruités" à rajouter sur le jeu
de données en fonction du pourcentage de bruit p est p × |UPA|. Par abus de langage, ce
pourcentage s’appelle fréquemment niveau de bruit. Les niveaux de bruit usuels introduits
sont de l’ordre de 1% à 15% pour Molloy et al. et jusqu’à 30% pour Vaidya et al.

2.2.2 Premières solutions

Vaidya et al. [23] proposent deux approches pour atteindre cet objectif : le δ Role Mining
Problem (δ-RMP) et le Minimal Noise Role Mining Problem (MinNoise). Ils permettent de
miner des rôles directement sur des données dites "bruitées" en autorisant l’expression partielle
de la matrice UPA, ce qui permet de tenir compte de potentielles anomalies. On appelle
divergence la différence binaires d’assignation entre la matrice UPA d’origine et la matrice
minée par l’algorithme. Le δ-RMP fixe le nombre maximal de divergences à δ, minimisant
ainsi le nombre de rôles produits, tandis que le MinNoise fixe le nombre de rôles et minimise
le nombre de divergences. Les deux approches proposées produisent moins de rôles que ce qui
serait nécessaire pour exprimer pleinement les assignations, ce qui facilite la gestion de l’état
RBAC résultant. Ainsi le problème de δ-RMP s’énonce :

Étant donné le contexte commun du role mining et un entier non nul δ, trouver un ensemble
de rôles R et deux matrices binaires UA ⊆ U ×R et PA ⊆ P ×R, où UPA = UA⊗ PA, tel
que ||UPA− UA× PA||1 < δ minimisant |R|.

Et le MinNoise-RMP :

Étant donné le contexte commun du role mining et un entier non nul k, trouver un ensemble
d’exactement k rôles R et deux matrices binaires UA ⊆ U ×R et PA ⊆ P ×R où UPA =
UA⊗ PA, en minimisant ||UPA− UA× PA||1

Le Disjoint Decomposition Model (DDM) [25] [26] par Frank et al. utilise des contraintes
d’expression afin d’orienter le role mining. En effet, avec cette approche les permissions sont
assignées aux utilisateurs à travers des rôles "métier" et des rôles "fonctionnels", structure
formalisée par Kern et al. [27]. Chaque utilisateur ne peut avoir qu’un seul rôle métier,
et chaque permission ne peut appartenir qu’à une seule fonction, de facto qu’un seul rôle
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fonctionnel. Les rôles fonctionnels peuvent en revanche être attribués à autant de rôles
métiers que nécessaire pour exprimer les permissions. Cette disjonction du problème permet
d’abstraire plus facilement l’attribution des rôles aux utilisateurs et permet aussi de corriger
les erreurs d’assignation dans la matrice originelle en regroupant les utilisateurs similaires
dans le même rôle métier. L’approche permet de corriger des niveaux de bruit uniformément
aléatoires jusqu’à 10% des assignations totales sur la matrice UPA.

Le Multi-Assignment Clustering (MAC), d’abord introduit par Streich et Frank et al. [28] [29],
exprime aussi partiellement la matrice UPA. Cette méthode s’inscrit dans la catégorie de
role mining probabiliste. L’approche groupe les utilisateurs selon leurs permissions dans des
clusters autorisés à se chevaucher. Des affectations probabilistes sont ensuite effectuées, en
utilisant l’information sur plusieurs clusters. Les affectations les moins probables sont écartées,
supprimant efficacement le bruit. Le MAC produit une suppression de bruit quasi parfaite
jusqu’à des niveaux de bruit de 40% évalués sur des données synthétiques utilisant un modèle
de bruit par inversion de bit. Cette approche obtient aussi de meilleurs résultats en termes de
stabilité de solution que d’autres méthodes générales de suppression de bruit sur matrices
binaires : Infinite Noisy-OR (INO) [30] une approche non supervisée probabiliste, Discrete
Basis Problem solver (DBPs) [31] un algorithme glouton de décomposition matricielle, et Binary
Independent Component Analysis (BICA) [32] une méthode variationnelle de factorisation et
suppression de bruit spécifique pour les matrices binaires.

D’autres approches préfèrent un processus en 2 étapes : nettoyer les données d’abord et miner
ensuite. L’approche de Molloy et al. [24] utilise des algorithmes de décomposition de matrice
binaire pour l’étape de nettoyage. Singular Value Decomposition (SVD), Non-Negative Matrix
Factorization (NMF), Binary Non-Negative Matrix Factorization (BNMF) et logistic Principal
Component Analysis (PCA) en tant qu’algorithmes servant au nettoyage des données, adjoints
d’un autre algorithme de RM exprimant la matrice UPA de façon exacte. Cette approche
est comparée au δ-RMP, DDM et MAC. La matrice UPA est d’abord décomposée, puis
reconstruite en format binaire en utilisant la transformation inverse de la décomposition
utilisée. Une fonction échelon assure des valeurs binaires lors de la reconstruction. Puisque
les décompositions ne sont pas exactes, certaines données sont détruites, supprimant ainsi le
bruit. Les rôles sont ensuite minés en utilisant deux algorithmes exacts : HPr [1] et HM [20].
L’évaluation de Molloy et al. [24] démontre que la méthode en 2 étapes produit de meilleurs
résultats de suppression de bruit sur des jeux de données synthétiques que les autres approches
mentionnées (δ-RMP, DDM, MAC).
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2.3 Évaluation

L’évaluation des performances des algorithmes de role mining nécessite l’utilisation de jeux de
données standards ou couramment utilisés qui sont référencés dans la plupart des articles, ou du
moins des jeux synthétiques bien définis. Les jeux de données du monde réel sont généralement
utilisés pour évaluer les approches de role mining classiques qui opèrent sur des données
propres, car elles sont évaluées sur leurs performances brutes (temps d’exécution, complexité
de la hiérarchie de rôles produite, etc.). Cependant, des jeux de données synthétiquement
bruités sont nécessaires pour évaluer les performances des approches conçues pour traiter des
données comportant des anomalies. De plus, les métriques utilisées pour l’évaluation doivent
être adaptées pour prendre en compte cette contrainte additionnelle.

2.3.1 Jeux de données réels

Les jeux de données réels provenant de configurations de systèmes de contrôle d’accès sont
rares, ils sont donc fréquemment fournis par un partenaire industriel lorsque cela est possible,
sans pour autant être divulgués. Cependant, certains jeux de données ont été rendus publics.

Ene et al. [1] aux côtés de membres d’Hewlett-Packard Labs ont publié un article sur des
méthodes exactes fondées sur des graphes utilisant des heuristiques pour aborder le problème
de role mining de manière plus efficace. Une des contributions notables de cet article est la
publication de jeux de données réels rendus disponibles par Hewlett Packard Labs. En raison
de la rareté des jeux de données réels de contrôle d’accès, ceux-ci sont rapidement devenus
la référence pour évaluer les algorithmes de role mining, et plus largement les approches de
GIA [33–43]. Les jeux de données sont les suivants :

• americas_large et americas_small qui proviennent de pare-feux Cisco authentifiant
et autorisant des utilisateurs externes sur le réseau interne de HP.

• apj et emea proviennent aussi de pare-feux, mais sont de taille moindre.
• healthcare provient de l’United States Veteran’s Administration. C’est une liste com-

préhensive des permissions à assigner aux professionnels de santé agréés.
• domino est le jeu de données le plus proche d’une Access Control List (ACL), c’est un

jeu de données de profils d’accès utilisateur d’un serveur Lotus Domino.
• customer provient à l’origine un graphe de contrôle d’accès du département informatique

d’un client Hewlett-Packard.
• firewall_1 et firewall_2 sont des jeux de données qui résultent d’un algorithme

d’analyse sur des pare-feux Check Point. L’analyse en question teste l’accessibilité sur
des services (c’est-à-dire SSH, HTTP ...) pour différents utilisateurs.
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Leurs dimensions sont renseignées sur la table 2.1.

Jeu de données Utilisateurs Permissions Assignations
americas_large 3,485 10,127 185,294
americas_small 3,477 1,587 105,205
apj 2,044 1,164 6,841
emea 35 3,046 7,220
healthcare 46 46 1,486
domino 79 231 730
customer 10,021 277 45,427
firewall 1 365 709 31,951
firewall 2 325 590 36,428

Table 2.1 Résumé des dimensions des jeux de données HP Labs [1]

2.3.2 Jeux de données synthétiques

Les jeux de données synthétiques fournissent un cadre flexible et précis pour évaluer les
algorithmes de RM. La génération est faite avec un objectif spécifique de RM, qui est ensuite
dérivé pour construire la matrice UPA. Les jeux de données synthétiques permettent donc
une comparaison directe entre la sortie d’un algorithme de RM et l’objectif sous-jacent utilisé
pour construire le jeu de données. Cette approche assure une évaluation plus ciblée et précise
de la performance d’un algorithme.

Une des premières méthodes utilisées pour générer de tels jeux de données fut inventée par
Vaidya et al. [19]. Elle est aussi connue sous le nom de Random Data Generator [33]. Ce
générateur fonctionne en 3 étapes :

1. Un ensemble de rôles est créé avec un nombre aléatoire de permissions attribuées entre
1 et un maximum. Le nombre maximum de permissions par rôle est un paramètre de
l’algorithme

2. Un ensemble d’utilisateurs est créé avec un nombre aléatoire de rôles entre 0 et un
maximum. Encore une fois, le nombre maximum de rôles qu’un utilisateur peut recevoir
est un paramètre de l’algorithme.

3. La matrice UPA est générée en traduisant Pour chaque utilisateur, les permissions
héritées des rôles qui leur ont été attribués.

Essentiellement, cette méthode construit les matrices UA et PA pour en dériver ensuite la
matrice UPA. La méthode fournit un objectif de role mining clair à retrouver bien qu’il ne
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soit pas minimal. Dans beaucoup de cas, il est possible de trouver un ensemble de rôles
plus petit que celui utilisé lors de la génération pour exprimer la matrice UPA, notamment
dans le cas où des rôles sont contenus dans d’autres et attribués aux mêmes utilisateurs.
Cependant, cette méthode est encore utilisée pour générer des jeux de données même très
récemment [39] [44], car elle permet une comparaison relative d’algorithme à algorithme.

Molloy et al. [33] proposent deux autres schémas de génération de données : Tree et Enterprise
Role Based Access Control (ERBAC). Avec le Tree Data Generator, le jeu de données est
généré pour imiter une organisation divisée en départements, sont divisés eux même en
bureaux, etc. Étant donné cette hypothèse, l’algorithme construit d’abord un arbre avec
une hauteur définie et des nœuds avec un nombre borné d’enfants. Ensuite, il assigne des
permissions à chaque nœud. Les enfants héritent des permissions de leurs parents, imitant des
permissions à l’échelle de l’organisation, du département, du bureau, etc. Cet arbre représente
les permissions possibles dans la structure sous-jacente. Pour produire le jeu de données final,
les utilisateurs sont assignés aux feuilles de l’arbre et leurs permissions sont choisies dans
l’ensemble réduit de permissions données par l’arbre et assignées en utilisant le Random Data
Generator. Une illustration de la structure formée par Tree est renseignée sur la figure 2.2.

P0
(p0,p1)

P1
(p2,p3,p4)

P3
(p5,p6,p9)

(u0)

P4
(p7)

(u1, u2)

P2
(p6,p8,p9)

(u3, u4, u5)

Figure 2.2 Exemple de structure générée par Tree

Ici l’utilisateur u1 peut hériter d’un sous ensemble des permissions
contenues dans les nœuds P0, P1 et P4, par exemple (p1, p2, p4, p7)

Avec le Générateur de Données ERBAC, le jeu de données est généré en s’inspirant du modèle
Enterprise RBAC conceptualisé par Kern et al. [27] pour aider à déployer les systèmes RBAC.
Ce modèle fut développé avec des insights pratiques obtenus grâce au déploiement de systèmes
RBAC dans des scénarios du monde réel. Le modèle requiert une hiérarchie de rôles à deux
couches : rôles fonctionnels et rôles métier. Chaque permission assignée à un nombre aléatoire
de rôles fonctionnels, les rôles métier fédèrent plusieurs rôles fonctionnels, et chaque utilisateur
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reçoit plusieurs rôles métier. Les règles d’héritage confèrent aux utilisateurs les permissions
rattachées aux rôles fonctionnels de leurs rôles métier. L’algorithme fonctionne donc en
quatre étapes : d’abord les rôles fonctionnels reçoivent un nombre aléatoire de permissions,
deuxièmement chaque rôle métier reçoit un nombre aléatoire de rôles fonctionnels, puis chaque
utilisateur reçoit un nombre aléatoire de rôles métier, finalement la matrice UPA est calculée
avec les règles d’héritage. Une illustration de la structure générée par ERBAC est renseignée
sur la figure 2.3.

u1

u2

u3

u4

u5

m1

m2

m3

f1

f2

f3

p1

p2

p3

p4

Utilisateurs (U)

Rôles métier

Rôles fonctionnels

Permissions (P)

Figure 2.3 Exemple de structure générée par ERBAC Data Generator

Ici u5 hérite des permissions p2, p3 et p4

Comme nous pouvons le voir, ces deux générateurs utilisent une certaine abstraction pour
construire un jeu de données qui ressemblerait davantage à un jeu de données du monde
réel. Cependant, les trois premières méthodes de génération mentionnées ne prennent pas
en compte le problème de l’accumulation des privilèges. Les jeux de données produits sont
ensuite bruités aléatoirement avec des assignations supplémentaires, ne respectant donc pas
de scénario réel. [19, 24,33]. Les jeux de données sont alors bruités de manière uniformément
aléatoire ou avec un processus avec une loi de Bernoulli avec une probabilité faible. Les
jeux de données produits sont alors en désaccord avec la réalité rencontrée dans le milieu
des entreprises, bien que les permissions légitimes soient "bien formées". Aussi, l’état partiel
utilisé pour construire la matrice UPA, contenant toute l’information hiérarchique, n’est pas
exploitée pour construire un objectif de role mining intéressant.
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Une autre méthode par Abolfathi et al. [45] utilise des modèles administratifs par Stoller
et al. [46] pour construire une matrice UPA crédible. Ce générateur produit un état RBAC
basé sur un modèle de contrôle d’accès en milieu universitaire. Il inclut les rôles typiques
présents dans un système universitaire comme étudiant, assistant d’enseignement, doyen,
directeur de programme d’honneur, etc. Il inclut aussi une hiérarchie de rôles imitant la
vraie hiérarchie de l’université. Le générateur prend alors un nombre donné d’utilisateurs
et de permissions et génère un état RBAC en attribuant les utilisateurs et les permissions
sur le template avant d’utiliser les règles d’héritage et d’attribution de rôles pour produire la
matrice UPA. Cette méthode est celle qui produit des jeux de données les plus réalistes dans
un cadre universitaire, mais perd en généralité si un autre template n’est pas proposé. De
plus, l’approche par Abolfathi et al. produit des jeux de données sans bruit ou accumulation
de privilèges par sa conception.

Parkinson et al. [47] proposent une approche pour introduire synthétiquement de
l’accumulation de privilèges dans des jeux de données de contrôle d’accès de systèmes de
fichiers. L’algorithme génère le jeu de données de système de fichier itérativement puis
ajoute des permissions relatives à un utilisateur et un répertoire dans le système de fichiers.
Ces permissions supplémentaires nommées "permission creep" sont directement données
aux utilisateurs (et non à leur groupe) par sélection pseudo-aléatoire. L’allocation est
ensuite appliquée au système de fichiers, et est également écrite dans un fichier texte pour
être utilisée comme connaissance de référence pour évaluer la performance de détection de
l’algorithme développé. Puisque ces permissions sont introduites de façon isolée sur des
utilisateurs spécifiques et non aléatoirement sur l’ensemble des utilisateurs, cette méthode
d’introduction d’anomalies est la plus réaliste rencontrée jusqu’à présent. Cependant, les
permissions additionnelles données lors de l’attribution de l’accumulation de privilèges sont
choisies dans l’ensemble total des permissions, ce qui peut être une hypothèse forte.

L’accumulation de privilèges est aussi désignée dans la littérature sous les termes "permission
creep" [47] ou "privilege creep" [48]. Par la suite dans ce mémoire, on désigne toute anomalie
qui relève de l’accumulation de privilèges par le terme "privilege creep" avec l’acronyme PC,
pour simplifier la terminologie et faciliter la lecture.
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2.4 Métriques

Les premières métriques utilisées pour évaluer les algorithmes de role mining exacts utilisent
généralement la sortie d’un algorithme directement. Le nombre de rôles produits et le temps
d’exécution sont quasi systématiquement rapportés, car ils permettent une interprétation
directe [19, 33,38,39,42,43,45,46,49–55].

Pour généraliser les métriques de minimisation et d’évaluation de plusieurs approches, Molloy et
al. [49] ont introduit une métrique paramétrée appelée Weighted Structural Complexity (WSC)
ou Complexité Structurelle Pondérée (CSP) :

Soit W = ⟨wr, wu, wp, wh, wd⟩ un vecteur de poids où chaque composante wr, wu, wp, wh, wd ∈
Q+ ∪ {∞} représente un paramètre de pondération pour la CSP. Ils correspondent re-
spectivement au poids sur le nombre de rôles, le nombre d’assignations utilisateur-rôle, le
nombre d’assignations rôle-permission, la complexité de la hiérarchie de rôles et le nombre
d’assignations directes. Alors la CSP d’un état RBAC γ est notée wsc(γ, W ), et est calculée
comme suit :

wsc(γ, W ) = wr · |R|+ wu · |UA|+ wp · |PA|+ wh · |t_reduce(RH)|+ wd · |DUPA| (2.2)

Où :

• |R| est le nombre de rôles de l’état RBAC

• |UA| et |PA| sont les normes de Manhattan de leur matrice correspondante

• |t_reduce(RH)| est le nombre minimal de relations qui traduit la hiérarchie des rôles
(réduction transitive). Un bon exemple est donné dans l’article avec une hiérarchie
simple : t_reduce({(r1, r2), (r2, r3), (r1, r3)}) = {(r1, r2), (r2, r3)}, car (r1, r3) peut être
inféré. On s’en sert de mesure de la complexité hiérarchique de l’état RBAC.

• |DUPA| est le nombre d’assignations directes ou exceptions qui peuvent survenir lorsque
la matrice UPA n’est pas entièrement reconstruite avec les matrices UA et PA. On
rajoute donc manuellement ces assignations hors RBAC.

Comme Molloy et al. [33] l’indiquent dans un autre article, plusieurs objectifs RMP peuvent
être dérivés si on minimise la CSP :

• BasicRMP [22] est atteint avec W = ⟨1, 0, 0, 0,∞⟩

• La variante de Vaidya [18] d’edge-RMP est atteinte avec W = ⟨0, 1, 1, 0,∞⟩



18

• La variante de Zhang [16] d’edge-RMP W = ⟨1, 1, 1, 0,∞⟩

• Une forme de δ-cohérence [22] peut être atteinte avec W = ⟨x1, x2, x3, x4, 1⟩ pour tout
(x1, x2, x3, x4), par exemple W = ⟨1, 0, 0, 0, 1⟩ est similaire au δ-RMP, minimisant les
rôles et les affectations directes d’utilisateurs.

• W = ⟨1, 1, 1, 1, 1⟩ est le vecteur proposé par Molloy et al. [33] pour comparer différents
algorithmes sur la minimisation de la complexité RBAC en autorisant les assignations
directes. L’intérêt de ce vecteur de poids est de pénaliser les algorithmes qui vont
surajuster (overfit) le jeu de données en produisant une hiérarchie de rôles trop précise,
réduisant alors l’avantage de gestion offert par RBAC.

Pour les approches de role mining inexactes qui visent une gestion simplifiée de l’état RBAC,
on compare généralement l’entrée UPA et la sortie UA et PA de l’algorithme de role mining
utilisé. On peut alors définir la distance de Jaccard, l’erreur de reconstruction, etc.

La distance de Jaccard Jδ compte le nombre de dissimilarités entre deux matrices booléennes.
Dans notre cas, elle est calculée comme suit :

Jδ(UPA, UA⊗ PA) = 1−
∑

u,p UPAu,p ∧ (UA⊗ PA)u,p∑
u,p UPAu,p ∨ (UA⊗ PA)u,p

(2.3)

Où ∧ représente le ET logique et ∨ le OU logique.

L’erreur de reconstruction Ereconstruction peut alors être exprimée en utilisant la distance de
Jaccard entre la matrice d’origine UPA et la matrice reconstruite UA⊗ PA :

Ereconstruction(UPA, UA⊗ PA) = Jδ(UPA, UA⊗ PA)
|UPA|

(2.4)

Ces métriques servent principalement pour évaluer la performance d’algorithmes qui prennent
en compte le bruit d’applicabilité RBAC afin de simplifier la gestion de l’état RBAC, mais
elles ne sont pas utilisées dans le cadre de role mining sensible au privilege creep pour en
évaluer la détection [39,50,51,55,56].

Vaidya et al. [23] introduit la notion de robustesse au bruit (noise robustness) pour les
algorithmes de role mining : la robustesse au bruit reflète à quel point un algorithme de RM
est affecté ou non par le bruit lorsqu’il opère sur un jeu de données. Vaidya et al. identifient
qu’une définition appropriée pour le degré de robustesse au bruit devrait prendre en compte à
la fois le bruit supprimé efficacement, et les erreurs commises par l’algorithme. On a alors
besoin d’une métrique qui varie positivement avec le pourcentage de bits bruités correctement
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reconstitués et négativement avec le pourcentage d’erreurs commises par l’algorithme. Vaidya
et al. utilisent donc la F-mesure.

Il est important de comprendre pourquoi cette mesure est appropriée. D’abord, il faut définir
deux classes sur les bits de la matrice UPA :

• Les bits dits originaux, ou vrais bits qui n’ont pas été inversés par le bruit.

• Les bits dits inversés, ou bits bruités qui doivent être corrigés par l’algorithme

On définit ensuite :

• Les vrais positifs (TP) : les bits bruités que l’algorithme a correctement identifiés et
corrigés pour les ramener à leur état original.

• Les faux positifs (FP) : les vrais bits que l’algorithme a incorrectement modifiés (a
introduit des erreurs là où il n’y avait pas de bruit).

• Les vrais négatifs (TN) : les vrais bits que l’algorithme a correctement laissés inchangés.

• Les faux négatifs (FN) : les bits bruités que l’algorithme n’a pas réussi à corriger (a
laissé le bruit non corrigé).

Pour construire la F-mesure, il faut définir le rappel et la précision en tant que métriques.

Le rappel mesure la complétude : comment les bits bruités ont été corrigés par l’algorithme.
Une valeur de rappel élevée signifie que la plupart des bits bruités ont été corrigés avec succès
:

Rappel = TP

TP + FN
(2.5)

La précision mesure l’exactitude/fidélité : De tous les bits qui ont été inversés par l’algorithme,
combien en avaient réellement besoin d’être inversés ?. Une valeur de précision élevée reflète
que l’algorithme n’a pas introduit de corrections inutiles :

Précision = TP

TP + FP
(2.6)

Enfin, la F-mesure est la moyenne harmonique de la précision et du rappel :

F = 2× Précision×Rappel

Précision + Rappel
(2.7)

Avec cette définition, il devient apparent que le choix de Vaidya et al. pour évaluer la
performance d’un algorithme de role mining, demande un processus de génération de jeu de
données synthétiquement bruité, auquel on a accès à l’étape intermédiaire sans bruit.
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Enfin Parkinson et al. [47] proposent une métrique simple pour évaluer la performance en
détection des instances de privilege creep, en définissant l’Exactitude (accuracy) comme suit :

Exactitude = tpr + tnr

tpr + tnr + fpr + fnr
= tpr + tnr

2 (2.8)

Avec :

• Taux de vrais positifs (tpr) ou Sensibilité : la fraction de permissions de privilege creep
correctement identifiées comme faisant partie d’une instance de privilege creep

• Taux de faux positifs (fpr=1-tnr) : la fraction des permissions régulières incorrectement
identifiées comme faisant partie d’une instance de de privilege creep

• Taux de vrais négatifs (tnr) ou Spécificité : la fraction des permissions régulières
correctement identifiées comme régulières

• Taux de faux négatifs False Negative Rate (fnr=1-tpr) : la fraction des permissions de
privilege creep incorrectement classifiées comme régulières.

On voit donc que la formule de Parkinson est la moyenne arithmétique de la sensibilité et la
spécificité de la détection des permissions de privilege creep.

Enfin une dernière métrique importante à mentionner est celle du score d’interprétabilité
de Kang et al. [55]. Cette métrique quantifie à quel point un rôle est interprétable en
fonction des attributs (hors permissions) des utilisateurs qui le portent. Plus les utilisateurs
portant un même rôle ont des attributs similaires, meilleur est le score pour ce rôle. Le score
d’interprétabilité d’un état RBAC est alors défini comme la somme arithmétique des scores
d’interprétabilité de tous les rôles. Il nécessite donc la présence d’attributs pertinents et
exploitables. Cette métrique est formalisée comme suit :

On définit l’expression d’un attribut toute règle qui décrit un profil type d’utilisateur, par
exemple "département=Finance ET ancienneté>5ans".

Le décalage MM (mismatch) entre une expression d’attribut e et un ensemble U d’utilisateurs
est défini par l’équation suivante :

MM(e, U) = |(Ue \ U) ∪ (U \ Ue)| (2.9)

Où U e est l’ensemble des utilisateurs qui satisfont e.

L’interprétabilité d’un rôle est ensuite exprimée comme le degré de décalage entre l’ensemble
des utilisateurs portant ce rôle assignU(r) et l’ensemble des expressions d’attribut e. Plus le
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degré de décalage est faible, plus l’interprétabilité du rôle est forte. L’interprétabilité d’un
rôle r nommée AMM(r), définie dans l’équation (2.10), dénote le décalage minimum atteint
par le rôle r.

AMM(r) = min
e∈E

(MM(e, assignU(r))) (2.10)

Où E est l’ensemble de toutes les expressions d’attributs, assignU(r) = {u | ⟨u, r⟩ ∈ UA}
représente l’ensemble des utilisateurs auxquels ce rôle est assigné. L’interprétabilité d’une
politique RBAC INT est alors :

INT =
∑
r∈R

AMM(r) (2.11)

Les avantages et inconvénients des différentes métriques d’évaluation utilisées dans la littérature
sont compilées dans le tableau 2.2. Dans le cadre de ma recherche, les inspirations prises de
ces métriques sont renseignées dans la section 5 dans le tableau 5.4.

2.5 Approches récentes

2.5.1 Méthodes de role mining

Durdag et Coskuncay [56] proposent une méthode pour reconfigurer les systèmes RBAC
spécifiques aux clients en regroupant les rôles similaires selon la similarité des permissions.
Leur approche utilise le Agglomerative Hierarchical Clustering (AHC) en utilisant la distance
de Jaccard sur des données RBAC réelles collectées auprès de dix clients d’une entreprise
de logiciels. Plutôt que de viser à remplacer directement les rôles existants, cette méthode
identifie des groupes de rôles qui servent de structures de référence pour soutenir la refonte
ou le nettoyage du système. Les résultats du clustering sont évalués à l’aide de la précision,
du rappel et de F-mesure. Les résultats montrent que les dendrogrammes produits produisent
des regroupements de rôles cohérents qui servent efficacement l’objectif de refonte de système,
améliorant l’interprétabilité et la gestion des configurations RBAC complexes. La méthode
proposée ne prend pas en compte la présence de privilege creep, bien que des données réelles
issues d’entreprise soient utilisées.

Un article de Zhu et al. [43] apporte une modification aux solutions du edge-RMP. En effet,
plusieurs algorithmes pour traiter ce problème n’affinent pas assez les affectations dans les
matrices UA et PA. De plus, lors du traitement de grands ensembles de données, les algorithmes
préexistants produisent beaucoup de rôles redondants. Il est donc essentiellement question
d’améliorer la performance d’algorithmes basés sur les graphes en proposant un algorithme
avec plus d’optimisations. La solution proposée ne prend donc pas explicitement en compte le
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privilege creep. Cependant, les résultats expérimentaux démontrent que l’algorithme amélioré
diminue efficacement les coûts de gestion tout en fournissant des temps d’exécution plus
courts.

Kang et al. [55] améliorent les algorithmes précédents de RM bruité en introduisant la notion
d’interprétabilité des rôles. Chaque rôle extrait se voit attribuer un score d’interprétabilité
basé sur les attributs des utilisateurs à qui on affecte ce rôle. Plus les attributs des utilisateurs
portant un même rôle sont similaires, plus le score d’interprétabilité est bas. Les rôles sont
ensuite sélectionnés afin de minimiser ce score. L’erreur de reconstruction est ensuite calculée
entre la matrice UPA originelle et la matrice minée pour évaluer le degré de permissions
non exprimées. Cette approche est ensuite évaluée avec des jeux de données synthétiques
générées avec le Random Data Generator et sur des jeux de données réels notamment firewall1
et healthcare [1]. Cette méthode prend en compte la notion de bruit, comme source de
complexification des jeux de données, mais pas celle de privilege creep en tant qu’anomalie à
identifier et supprimer.

Nobi et al. [57] introduisent une nouvelle technique : Deep Learning Based Access Control
(DLBAC). Cette méthode est fondée sur des réseaux de neurones qui apprennent directement
à partir des métadonnées brutes des utilisateurs et des ressources. Le prototype DLBAC_α

démontre une précision et une généralisation supérieures par rapport aux approches classiques
de role mining et d’apprentissage automatique, tout apportant une contribution additionnelle
: l’explicabilité, grâce à des techniques d’interprétation comme les "integrated gradients".
Cependant, DLBAC ne traite pas directement le problème d’accumulation de privilèges, car il
apprend à partir de données d’autorisation existantes qui peuvent déjà contenir des droits
d’accès anomaux. Cette limitation est reconnue par les auteurs, qui indiquent que des erreurs
dans les jeux de données utilisés pourraient introduire un biais dans le modèle entraîné.

2.5.2 Méthodes de détection de privilege creep

Parkinson et al. [47] présentent un outil non supervisé pour détecter les instances de privilege
creep dans les ACL de système de fichiers Microsoft NT. L’approche utilise une méthode
statistique : dans ce cadre, une irrégularité statistique dans l’ensemble des assignations de
permissions est considérée comme une instance de privilege creep. Les outils utilisés, l’analyse
χ2 et les ruptures naturelles de Jenks, permettent d’identifier automatiquement ces anomalies
en détectant respectivement les écarts significatifs par rapport à une distribution attendue
et les discontinuités naturelles dans les données d’assignation de permission. Cette méthode
est ensuite implémentée en C# sous le nom de "Creeper". Des tests empiriques sont réalisés
sur des jeux synthétiques contenant différents niveaux de privilege creep synthétiquement
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ajoutés. Une autre analyse empirique est ensuite réalisée sur 5 systèmes réels pour établir la
précision de Creeper par le biais d’une étude comparative entre un expert manuel (humain),
ntfs-r [52], et Creeper. La précision est ici définie comme la fraction de tous les échantillons
correctement identifiés. L’évaluation démontre que Creeper atteint une précision moyenne de
96% sur les jeux de données synthétiques, et une précision moyenne de 98% sur les systèmes
réels. De plus, l’analyse sur systèmes réels a démontré une amélioration significative de la
précision par rapport à deux autres techniques : expert manuel et ntfs-r. L’outil Creeper
fait partie des rares outils récents développés en role mining qui prennent en compte l’enjeu
du privilege creep dans les systèmes de contrôle d’accès. Bien que l’approche ne soit pas
directement un algorithme ou une méthode de role mining, la génération synthétique des
données faites dans cet article s’appuie sur une structure RBAC afin de créer le système de
fichier sur lequel l’approche de détection est évaluée. Parkinson et al. [58] proposent également
une approche basée sur la "fuzzy logic" pour identifier l’accumulation critique de privilèges
dans les politiques de contrôle d’accès en modélisant la confiance des utilisateurs, la sensibilité
des ressources et la puissance des permissions comme des ensembles flous plutôt que comme
des classifications binaires. Cette nouvelle approche s’appuie sur les journaux d’événements
de sécurité, produisant de meilleurs résultats que l’outil Creeper.

Alexander et Chikwarti [48] proposent un cadre d’intelligence artificielle basé sur des graphes
modélisant l’Identity and Access Management (IAM) d’entreprise comme un graphe de
connaissances. Ils appliquent des réseaux de neurones graphiques (GNN), des algorithmes
d’extraction de communautés (méthode de Louvain) et du clustering de graphes pour découvrir
des structures de rôles latentes à partir des modèles d’accès. Pour détecter les permissions
anormales, des autoencodeurs sont utilisés. Leur approche prétend réduire la redondance des
rôles de 38% et atteindre une précision de 93,5% dans la détection d’anomalies. Cependant,
l’évaluation a été faite exclusivement sur des ensembles de données synthétiques et la com-
paraison d’algorithme a été faite avec une référence inappropriée utilisant K-means, inadaptée
pour la détection d’anomalies, rendant ainsi l’amélioration rapportée de la F-mesure de 74,8 %
à 91,3 % potentiellement trompeuse.

2.5.3 Méthodes de détection d’anomalies générales

Dans d’autres domaines scientifiques, utiliser la réduction de dimensionnalité aux côtés du
clustering permet la détection d’anomalies tout en produisant des groupes avec des attributs
semblables. Cette approche pourrait être utilisée en RM pour supprimer le bruit, détecter les
anomalies d’utilisateurs et guider l’effort de construction des rôles.

Dans un article sur la détection de fraude [59], Massi et al. proposent une approche en deux
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étapes pour détecter la fraude en santé sur une base de données administrative hospitalière.
La première étape est la sélection de caractéristiques utilisant Principal Feature Analysis
(PFA) de Lu et al. [60]. La seconde étape est l’application de l’algorithme K-Means sur les
caractéristiques sélectionnées pour regrouper ensemble les hôpitaux similaires. Cette méthode
a efficacement identifié les outliers et a même indiqué les caractéristiques significatives qui
rendaient certains hôpitaux "anormaux", et les a donc signalés comme frauduleux.

Souza et al. [61] utilisent une approche semblable en deux étapes pour détecter les outliers
des espaces urbains intelligents. High-Order Singular Value Decomposition (HOSVD) [62]
est utilisée dans la première étape pour déterminer les composantes significatives, puis le
clustering est effectué sur les composantes utilisant K-means. Bien que la méthode nécessite un
grand nombre d’échantillons pour détecter les outliers, elle identifie les motifs spatio-temporels
sur les espaces urbains.

2.5.4 Lacunes

Comme le montre la revue de littérature, les approches de role mining, même récentes, se
concentrent principalement sur des jeux de données ou le privilege creep n’est pas présent. La
première amélioration possible est donc de prendre en compte le privilege creep comme étant
un phénomène présent dans les systèmes de contrôle d’accès qu’il faut retirer pour éviter de
les répéter en RBAC.

On pourrait imaginer que le bruit en tant qu’anomalie peut être considéré comme une
instance de privilege creep. Or, beaucoup d’articles font le choix de définir le bruit comme
uniformément aléatoire. Cet ajout gêne en partie l’effort de role mining, mais ne correspond
pas à un scénario crédible où du privilege creep pourrait avoir lieu, et ne correspond pas à la
réalité du privilege creep dans une organisation possédant déjà une infrastructure RBAC. En
effet, on devrait voir des ensembles de permissions reliés à d’anciens rôles qu’on a oublié de
révoquer, et non des permissions isolées. Une seconde amélioration serait donc de modifier la
génération de jeux de données synthétiques de sorte à injecter des instances de privilege creep
d’une nouvelle forme en plus du bruit.

Enfin, la littérature du role mining manque d’un cadre pour l’évaluation des approches qui
prennent en compte le privilege creep. Ce qui s’en rapproche le plus est la métrique de noise
robustness de Vaidya et al. [23] et la métrique d’exactitude de Parkinson et al. [47, 52, 58].
Cependant, la métrique de noise robustness n’est pas appropriée pour évaluer correctement la
détection ou la correction de privilege creep étant donné que le bruit est, lui aussi, présent
dans les jeux de données réels. Aussi, la métrique d’exactitude est biaisée par le fait qu’il y a
un déséquilibre entre les permissions légitimes et les permissions issues du privilege creep :
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dans un système typique, 90 à 95% des permissions sont légitimes tandis que 5 à 10% au plus
peuvent être attribués à du privilege creep.

En prenant un exemple concret pour comprendre le problème, imaginons un système avec
10,000 assignations : 9,500 légitimes et 500 anormales issues de privilege creep. L’algorithme
évalué détecte 450 vraies instances de privilege creep et 1,000 fausses alertes. On considère
normalement ce genre de sortie comme produisant trop de faux positifs.

La sensibilité/rappel = 450/(450+50) = 0,90, La spécificité = 8,500/(8,500+1,000) = 0,89
semble bonne, mais la précision = 450/(450+1,000) = 0,31 révèle une performance moindre
au vu du nombre écrasant de faux positifs. L’exactitude donnerait donc une valeur de 0,9
tandis que la F-mesure donnerait 0,46.

Tout ces éléments porte à croire qu’il y a besoin d’un cadre plus pertinent afin d’évaluer la
détection de privilege creep dans le domaine du role mining. D’où une partie de la contribution
finale de ma recherche qui est d’adapter le cadre d’évaluation, dont les métriques sont résumées
dans le tableau 2.2, pour tenir compte du privilege creep.
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Métrique Avantages et Inconvénients
Nombre de rôles (|R|)
et temps d’exécution

Avantages : Métriques directes et simples, faciles à
mesurer, permettent une interprétation immédiate de la
performance. Bonne métrique de comparaison Incon-
vénients : Ne considèrent pas la qualité des rôles pro-
duits, le temps d’exécution dépend de l’implémentation
et du matériel, le nombre de rôles peut être plus grand
pour une meilleure gestion des accès.

Complexité
Structurelle Pondérée
(CSP) d’un état
RBAC

Avantages : Métrique paramétrable très flexible, per-
met de cibler différents objectifs RMP selon les poids
choisis, couvre tous les aspects d’un état RBAC. Incon-
vénients : Nécessite de définir les poids appropriés selon
le contexte, peut être complexe à interpréter, ne prend
pas en compte la qualité sémantique des rôles.

Distance de Jaccard
(Jδ) entre entrée et
sortie d’algorithme

Avantages : Simple à calculer, mesure directement la
similarité entre matrices, intuitive à interpréter. Incon-
vénients : Ne distingue pas les types d’erreurs (faux
positifs vs faux négatifs), sensible à la taille des matrices,
ne considère que l’aspect binaire des permissions.

Erreur de
reconstruction
(Ereconstruction) entre
entrée et sortie
d’algorithme

Avantages : Normalise la distance de Jaccard par la
taille de la matrice, permet la comparaison entre dif-
férentes tailles de systèmes. Inconvénients : Hérite des
limitations de la distance de Jaccard, ne fournit qu’une
vue globale sans détails sur le type d’erreur. Inutile dans
le cadre de role mining avec privilege creep car cela gonfle
l’erreur de reconstruction si les permissions probléma-
tiques sont retirées

F-mesure pour le
calcul de robustesse
au bruit

Avantages : Équilibre précision et rappel, appropriée
pour évaluer la robustesse au bruit, métrique standard en
classification. Inconvénients : Nécessite des données
de référence (ground truth), plus complexe à calculer.

Exactitude pour la
détection de privilege
creep

Avantages : Simple à comprendre, moyenne équilibrée
de sensibilité et spécificité, métrique intuitive pour la
détection de privilege creep. Inconvénients : Nécessite
des données de référence (ground truth), peut être biaisée
si les classes sont déséquilibrées.

Interprétabilité (INT)
de politique RBAC

Avantages : Évalue la cohérence sémantique des rôles,
prend en compte les attributs utilisateur, favorise des
rôles compréhensibles pour les administrateurs. Incon-
vénients : Nécessite des attributs utilisateur pertinents
et exploitables, complexe à calculer, dépendant de la
qualité des expressions d’attributs définies.

Table 2.2 Récapitulatif des métriques d’évaluation d’algorithmes de role mining
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CHAPITRE 3 ROLE MINING SENSIBLE AU PRIVILEGE CREEP

Cette partie détaille l’approche de role mining sensible du privilege creep. Elle est organisée
autour des étapes principales suivantes : les prérequis, qui présentent les concepts de réduction
de dimension et de clustering ainsi que le prétraitement des données ; la réduction de
dimension, permettant de capturer les motifs principaux dans la matrice UPA ; le clustering
et l’identification des outliers, pour détecter les utilisateurs aux permissions atypiques ; le
nettoyage, qui prépare la matrice pour l’extraction fiable des rôles ; le role mining, étape où
les rôles sont extraits et assignés aux utilisateurs ; et enfin la réunification, qui réintègre les
outliers selon les approches omnisciente et heuristique.

3.1 Prérequis

3.1.1 Introduction des concepts de réduction de dimension et de clustering

Tous les concepts d’algèbre linéaire introduits par la suite opèrent dans notre cas sur des
matrices binaires sans perte de généralité.

SVD et Truncated Singular Value Decomposition (TSVD)

En mathématiques, la décomposition en valeurs singulières (SVD) est un procédé d’algèbre
linéaire de factorisation de matrices rectangulaires. Il peut être utilisé pour des calculs de
matrice pseudo inverse, traitement automatique des langues, etc. Dans le cadre de cette
recherche cependant, la SVD permet de créer des approximations de rang faible des matrices
UPA, réduisant ainsi la dimensionnalité des données tout en préservant les caractéristiques
les plus importantes. Cette propriété d’approximation est particulièrement utile pour la
réduction de bruit, et l’extraction des motifs principaux dans des ensembles de données de
grande dimension.
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Soit M une matrice binaire m× n dont les coefficients appartiennent à {0, 1} ⊂ R. Bien que
M soit binaire, sa décomposition en valeurs singulières s’écrit sous la forme classique :

M = UΣV T (3.1)

avec :

• U une matrice orthogonale m×m sur R.
• Σ une matrice m× n dont les coefficients diagonaux (σi) sont des réels positifs ou nuls et

tous les autres sont nuls.
• V T est la matrice transposée de V , matrice orthogonale n× n sur R.

Interprétation des composantes :

Vecteurs d’analyse (V ) : Chaque colonne de V représente un "profil type" ou une com-
binaison linéaire des variables binaires originales. Dans le contexte d’une matrice binaire,
ces vecteurs révèlent les associations sous-jacentes entre les variables. C’est-à-dire, quelles
variables binaires ont tendance à co-varier ensemble. Dans le cadre du role mining sur
une matrice (utilisateurs, permissions), chaque colonne de V identifierait un ensemble de
permissions qui sont typiquement accordées simultanément, révélant ainsi les rôles potentiels
du système.

Vecteurs de sortie (U) : Chaque colonne de U représente un "profil type" dans l’espace des
observations (lignes de la matrice). Ces vecteurs singuliers gauches caractérisent des groupes
ou des motifs d’observations qui présentent des comportements similaires vis-à-vis des variables
binaires. Dans le contexte d’une matrice de contrôle d’accès (utilisateurs, permissions), chaque
colonne de U identifierait un type de "rôle" avec un profil d’accès spécifique aux ressources du
système.

Valeurs singulières (σi) : Elles quantifient l’amplitude de chaque mode principal de
variation. Pour une matrice binaire, une valeur singulière élevée indique qu’un motif particulier
d’associations binaires est fortement présent dans les données et contribue significativement à
la structure globale de la matrice.

TSVD Pour calculer la version tronquée de SVD (TSVD) qui sert à la réduction de dimension,
il faut choisir un rang k. Ce rang peut aussi être appelé le nombre de composantes (components
en anglais) car il indique la dimension de l’espace visé pour la décomposition. Dans ce cas,
on constate que la solution est la suivante :

M ≊ UΣ̃V T (3.2)
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avec Σ̃ égale à Σ, si ce n’est qu’elle ne contient que les r plus grandes valeurs singulières,
les autres étant remplacées par 0. C’est d’ailleurs cette propriété qui explique les qualités
de réduction de bruit de cette transformation, car seuls les motifs les plus fréquents sont
exprimés. Cette solution minimise la distance entre M et son approximation au sens de la
norme spectrale.

Variance expliquée Lorsqu’on utilise TSVD, la variance expliquée permet de déterminer
combien de composantes singulières sont nécessaires pour capturer un pourcentage donné de
la variabilité totale de la matrice binaire.

La proportion de variance expliquée par la i-ème composante singulière est donnée par :

V ari(M) = σ2
i∑

j σ2
j

. (3.3)

Où ∑
j σ2

j représente la variance totale de la matrice M , obtenue en sommant les carrés de
toutes les valeurs singulières, notation simplifiée de ∑r

j=1 σ2
j avec r le rang de la matrice M .

La variance cumulée expliquée par les k premières composantes est donc :

TV ark(M) =
k∑

i=1
V ari(M) =

∑k
i=1 σ2

i∑
j σ2

j

(3.4)

Cette approche permet de réduire la dimensionnalité en ne conservant que les composantes qui
expliquent la majorité de la variance, facilitant ainsi l’analyse et l’interprétation des structures
latentes.

Sortie On appelle par la suite réduction de la matrice M ou décomposition de la matrice M

la sortie R obtenue suite au procédé TSVD avec un rang k donné. Cette matrice comporte
autant de lignes que la matrice originale, mais comporte k colonnes à valeurs réelles non
nulles. Mathématiquement, c’est :

R = UΣ̃ (3.5)

Dans la cadre du role mining avec une matrice UPA, la matrice R indique sur chaque ligne la
représentation réduite à valeurs réelles sur les composantes des permissions d’un utilisateur.
Plus les coordonnées des utilisateurs dans cet espace réduit sont proches, plus leurs permissions
sont similaires.
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Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN [63] est un algorithme de partitionnement de données aussi appelé algorithme de
clustering. Il utilise essentiellement deux paramètres : une distance ϵ et un nombre de points
minimum MinPts. Pour être considérés comme un cluster, un ensemble d’au moins MinPts

points doivent se trouver dans un rayon ϵ pour former un centre. Les paramètres d’entrée
sont donc une estimation de la densité MinPts/ϵ de points voulue pour former les clusters.
L’algorithme procède ensuite par expansion itérative en explorant l’ϵ-voisinage de chaque
nouveau point identifié, permettant ainsi de délimiter progressivement l’ensemble complet des
points constituant le cluster. Lorsque deux clusters communiquent par un point frontière,
les clusters sont fusionnés. Cette approche par propagation locale garantit la découverte de
clusters de formes arbitraires tout en identifiant automatiquement les points aberrants qui ne
satisfont pas les critères de densité requis [64]. Une illustration de l’algorithme est donnée sur
la figure 3.1.

Légende :
Point central
Point frontière
Outlier

Paramètres :
ϵ = rayon (cercles)
MinPts = 3

Figure 3.1 Illustration de l’algorithme DBSCAN avec un cluster identifié

Sortie La sortie de l’algorithme DBSCAN est une table à deux colonnes, la première ren-
seignant l’identifiant d’un point observé et la seconde indiquant à quel cluster le point
appartient. Les identifiants de clusters à valeurs d’entiers naturels correspondent à des
clusters, et la valeur -1 correspond à l’identifiant d’un outlier.

3.1.2 Prétraitement des données

Beaucoup de jeux de données de role mining, y compris les jeux de données réels de la
littérature (voir section 2.3.1) sont sous forme de table relationnelle. Une table relationnelle
est un format de données ou chaque colonne désigne un attribut donné et chaque ligne
représente une entrée valide dans le jeu de données. Les tables relationnelles rencontrées en
role mining comportent au minimum deux colonnes : identifiant d’utilisateur et identifiant
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de permission. Afin d’appliquer l’approche proposée, on a besoin d’une matrice binaire
d’assignation des permissions. On utilise alors la transformation pivot.

La transformation pivot réorganise les données en changeant leur orientation : elle fait passer
l’information contenue dans les valeurs des lignes vers les en-têtes de colonnes.

La transformation se divise en 3 étapes :

1. Identification des éléments dans la table relationnelle (utilisateur, permission), on
identifie trois composants :

• L’axe fixe : les utilisateurs qui deviendront les lignes de la matrice

• L’axe pivot : les permissions qui deviendront les colonnes de la matrice

• Les valeurs : la relation d’existence (présence/absence) qui remplira les cellules

2. Restructuration spatiale : Chaque valeur unique de la colonne "permission" devient une
nouvelle colonne, et chaque valeur unique de la colonne "utilisateur" devient une ligne
distincte dans la matrice UPA.

3. Remplissage : Pour chaque entrée (utilisateur, permission) valide dans la table rela-
tionnelle, on fixe l’intersection (utilisateur, permission) à 1 dans la matrice UPA et 0 si
l’entrée n’existe pas.

Pour éviter toute confusion, nous utiliserons l’écriture UPA pour désigner la structure de
données obtenue après prétraitement sur un jeu de données quelconque, par opposition au
concept plus général de matrice UPA.

Une illustration de la transformation est renseignée sur la figure 3.2.

utilisateur permission
123 A
123 B
123 D
456 B
456 C
789 D
789 E
789 C

⇒

A B C D E
123 1 1 0 1 0
456 0 1 1 0 0
789 0 0 1 1 1

Figure 3.2 Exemple de pivot d’une table relationnelle vers une matrice binaire UPA
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3.2 Réduction de dimension

La première étape de la méthode proposée est la réduction de dimension en utilisant TSVD.
Il faut d’abord déterminer la nombre de composantes à utiliser pour décomposer la matrice
UPA. Molloy et al. [24] fournissent un objectif clair, trouver le nombre de composantes k qui
permet d’obtenir une variance cumulée d’au moins 80%. C’est-à-dire, en reprenant l’équation
3.4 :

TV ark(UPA) =
∑k

i=1 σ2
i∑

j σ2
j

> 80% (3.6)

Cette condition seule a cependant tendance à produire un nombre écrasant de composantes
k si la matrice UPA est particulièrement bruitée. Puisque ce phénomène gêne la prochaine
étape de notre méthode, on rajoute une condition sur la variance expliquée de la dernière
composante courante k. C’est à dire, en reprenant l’équation 3.3:

V ark(UPA) = σ2
k∑

j σ2
j

< ϵ (3.7)

Lorsque la condition 3.7 est vérifiée, on considère qu’ajouter plus de composantes entraine
des rendements décroissants. Empiriquement, ϵ = 0.02 donne des résultats fiables. On utilise
donc la valeur de k obtenue lorsque la condition 3.6 OU 3.7 est vérifiée.

On obtient alors une réduction de rang k de UPA selon l’équation 3.5 qu’on note Rk.

3.3 Clustering et identification des outliers

Dans le cadre du role mining, l’approche proposée utilise DBSCAN pour identifier les utilisa-
teurs anormaux, ayant des motifs de permissions inhabituels, et de regrouper les utilisateurs
aux permissions similaires. On émet en effet l’hypothèse que les instances de privilege creep se
traduisent dans Rk, de sorte que les utilisateurs touchés se retrouvent éloignés des autres en
raison des permissions anormales qui leur sont assignées. Reste un problème : déterminer les
paramètres optimaux pour DBSCAN de sorte que l’algorithme ne fasse par rentrer d’instances
de privilege creep dans des clusters d’utilisateurs.

Parmi ces paramètres, MinPts correspond au nombre minimal de points (utilisateurs) pour
former un cluster. MinPts doit donc être fixé comme la taille minimale d’une équipe possédant
des permissions similaires qu’on peut rencontrer dans l’organisation. Ceci est directement lié à
la structure de l’entreprise divisée en départements, sections, équipes, etc. Des données issues
des ressources humaines ou des connaissances organisationnelles permettraient d’assigner une
valeur appropriée pour ce paramètre en environnement réel. Empiriquement, une valeur de
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MinPts ≥ 5 donne des résultats satisfaisants.

ϵ est plus difficile à déterminer efficacement. Pour cela, on opte pour une méthode algorith-
mique. On doit calculer la distance euclidienne du plus proche voisin (1-NN) de chaque point
(utilisateur) sur Rk. On ordonne ensuite les distances obtenues dans une liste par valeurs
croissantes. On considère la courbe C obtenue en prenant en abscisse les indices de la liste et
en ordonnée les distances correspondantes. La valeur de ϵ est alors donnée par l’ordonnée du
coude de la courbe. C’est-à-dire, l’endroit où la pente change brusquement.

L’identification du coude peut se faire de façon visuelle cependant on préfère une technique
automatisée qui va choisir une valeur optimale. Cette technique s’appelle Normalized Difference
Curve Technique (NDCT), et fonctionne en 3 étapes illustrées sur la figure 3.3 :

1. Normaliser les deux axes de la courbe C dans l’intervalle [0,1] et prendre comme courbe
de référence l’identité sur l’intervalle [0,1].

2. Calculer la différence entre la courbe C et la référence sur [0,1].

3. Trouver la valeur de différence maximale qui se trouve normalement au coude.
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Figure 3.3 Exemple d’utilisation de la technique NDCT

Une fois le ϵ optimal déterminé, on procède au clustering des utilisateurs en utilisant leurs
coordonnées sur Rk. On obtient alors une table qui renseigne pour chaque utilisateur, le
cluster auquel il appartient, qu’on appelle par la suite la table utilisateur-cluster (UCT ).
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3.4 Nettoyage

Afin de nettoyer la matrice UPA, on utilise conjointement UPA et UCT . L’objectif est
d’effectuer une analyse statistique sur chaque cluster pour déterminer quelles assignations de
permissions doivent être exprimées et surtout minées.

La première étape du nettoyage est la suppression des outliers identifiés. On assure alors la
qualité des rôles à miner, car on évite des potentielles instances de privilege creep. L’idée
est que les autres utilisateurs "sains" sont suffisants pour inférer les rôles nécessaires pour
structurer le contrôle d’accès. On crée donc une copie de la matrice UPA dans laquelle on
retire les outliers et on sauvegarde leur configuration pour plus tard.

La deuxième étape du nettoyage consiste en l’analyse statistique des clusters. Pour cela,
on calcule la prévalence de toutes les permissions dans chaque cluster. La prévalence d’une
permission dans un cluster est définie comme la proportion d’utilisateurs au sein de ce cluster
qui possèdent la permission en question. Par exemple dans un cluster de 20 personnes, si une
permission a est assignée à 18 personnes et une autre permission b est assignée à 3 personnes,
alors la prévalence de la permission a au sein du cluster est de 18/20 = 0,9, tandis que la
prévalence de la permission b est de 0,15. Comme discuté dans la partie 2.2.1, le bruit est
généralement minoritaire face aux permissions légitimes ce qui fait que les permissions issues
du bruit ont une prévalence plus faible que les permissions légitimes si l’étape de clustering
est réussie. L’utilisation d’un seuil permet alors de supprimer directement ces permissions
avec une prévalence trop faible pour chaque cluster.

En nommant le seuil de nettoyage (cleaning threshold) tc : pour chaque cluster, on supprime
les permissions avec une prévalence inférieure à tc et on conserve dans la matrice UPA les
permissions avec une prévalence supérieure à tc. En reprenant notre exemple précédent avec
les permissions a et b de prévalence 0,8 et 0,15 respectivement dans un cluster donné, en
fixant tc = 0, 8, alors les 18 utilisateurs portant la permission a gardent cette permission, mais
on supprime la permission b aux trois utilisateurs concernés.

La matrice obtenue après le processus de nettoyage est appelée CleanedUPA (CUPA).

3.5 Role mining

Une fois la matrice CUPA obtenue, on passe à l’étape de role mining. On réutilise des
algorithmes de décomposition exacte déjà existants : FM [19] et Optimal Boolean Matrix
Decomposition/RMP [65] pour la génération de rôles. On utilise ces algorithmes, car ce sont
ceux qui offrent la meilleure performance en temps d’exécution pour des jeux de données de
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taille importante (nombre d’utilisateurs supérieur à 100 et rôles minés supérieur à 100). En
particulier, Optimal Boolean Matrix Decomposition/RMP utilise une heuristique qui accélère
grandement le temps de calcul pour miner les rôles. L’utilisation d’un autre algorithme de
role mining aurait considérablement rallongé les temps de calcul, compte tenu du fait que
les algorithmes sélectionnés ont déjà requis 24 heures de calcul pour traiter le benchmark de
données synthétiques généré.

Une fois les rôles générés, on utilise une approche d’algorithme glouton pour assigner les rôles
aux utilisateurs sur la matrice CUPA. Pour chaque utilisateur, l’algorithme d’assignation
de rôles trouve le rôle qui couvre le plus grand nombre de permissions d’un utilisateur et lui
assigne. On répète ensuite cette étape autant de fois que nécessaires pour couvrir le reste des
permissions d’un utilisateur. L’algorithme s’arrête une fois que l’intégralité des permissions
d’un utilisateur sont couvertes. Encore une fois, c’est l’approche qui produit les résultats les
plus rapides en plus d’être une approche exacte.

Une fois l’algorithme de role mining et celui d’assignation roulé, on obtient donc des matrices
UP et PA incomplètes, ne contenant pas les outliers retirés lors du nettoyage.

3.6 Réunification

Si on s’arrête à l’étape de role mining, l’approche proposée est incomplète, car on n’a pas
réintégré les outliers à la matrice CUPA. En effet, en milieu réel, on ne cherche pas à supprimer
des utilisateurs du système de contrôle d’accès. Pour résoudre cette problématique, on
introduit deux concepts originaux : la réunification omnisciente et la réunification heuristique,
contributions spécifiques à cette recherche.

3.6.1 Réunification omnisciente

La réunification omnisciente est un processus fictif qui imagine l’existence d’un administrateur
système capable de nettoyer les permissions d’un utilisateur parfaitement : retirer bruit et
privilege creep en gardant les permissions légitimes. On utilise cette abstraction afin de
pouvoir évaluer les performances de l’approche proposée plus facilement. En effet, lorsqu’on
fait face à des jeux synthétiques, on utilise la réunification dite omnisciente pour nettoyer les
permissions des outliers, en prenant leur configuration légitime avant ajout de bruit et de
privilege creep lorsqu’on a généré le jeu de données. Cette limitation est prise en compte lors
de l’évaluation, car on pénalise les faux positifs de détection d’anomalies dans les métriques
d’évaluation.
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3.6.2 Réunification heuristique

La réunification dite heuristique est l’approche utilisée dans le cadre des systèmes réels pour
fournir une recommandation de réintroduction des outliers à un administrateur système. C’est
le cas dans lequel l’outil proposé est utilisé dans un contexte organisationnel chez le partenaire
industriel de cette recherche.

Deux approches concurrentes sont explorées :

• La première approche consiste à attribuer les rôles extraits aux outliers, même si toutes
leurs permissions peuvent ne pas être couvertes, en utilisant le même algorithme glouton
que pour le role mining. Cela donne une idée approximative des rôles potentiels que
les outliers pourraient avoir, et fait également ressortir les permissions potentiellement
problématiques qui ne sont pas couvertes.

• La deuxième approche utilise les informations sur les clusters. Plus précisément, le
barycentre de chaque cluster en utilisant les coordonnées binaires (qui correspond au
vecteur de prévalences). Chaque outlier est ensuite lié au barycentre le plus proche
de lui. Cela fournit un aperçu sur le cluster auquel pourrait appartenir l’outlier en
question.

En fin de compte, la décision de réunification doit être prise par un administrateur réel, chargé
de réviser les accès des comptes utilisateurs. En effet, les deux approches pourraient fournir
des informations contradictoires, qui pourraient être élucidées avec l’utilisation d’attributs
par exemple.
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3.7 Résumé

Mon approche de role mining sensible au privilege creep est résumée dans le diagramme
3.4. Les structures de données obtenues (matrices, tables, etc.) sont indiquées en vert et les
transformations successives pour obtenir ces structures sont renseignées en rouge. Dans les
boîtes hexagonales sont renseignées les informations importantes à prendre en compte lors du
role mining.

Données de contrôle d'accès 

Mise en forme avec transformation pivot si nécessaire

Matrice UPA

Calcul de TSVD de rang kCondition à vérifier :
TVark > 80 % OU Vark < 0.02

Matrice Rk (réduction de dimension k)

Calcul des distances 1-NN et détermination de ε avec NDCT

Calcul des clusters avec DBSCAN en utilisant ε comme paramètreFine tuner ε 

Table des clusters (UCT)

Role mining exact et assignation des rôles

Nettoyage de la matrice UPA :
- suppression des outliers 

- conserver seulement les permissions ayant une prévalence supérieure à tc

matrice UPA nettoyée CUPA

Fine tuner tc 

matrice UA et PA incomplètes

Réunification des outliers dans la matrice UPA

État RBAC final

Figure 3.4 Diagramme résumant l’approche de role mining sensible au privilege creep
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CHAPITRE 4 GÉNÉRATION DE JEUX DE DONNÉES SYNTHÉTIQUES

Ce chapitre présente la méthode de génération de données synthétiques utilisée pour évaluer
la méthode de role mining proposée. Il est divisé en quatre parties : la première définit une
nomenclature des anomalies identifiées et devant être ajoutées aux jeux de données générés, la
seconde énonce les hypothèses utilisées pour construire le générateur et qui ont motivé les choix
de la partie suivante, ensuite le générateur en lui-même est décrit en détail en commençant
par la génération d’assignations légitimes puis l’ajout d’anomalies, enfin l’approche au complet
est résumée à l’aide de diagrammes pour aider la compréhension.

4.1 Nomenclature des anomalies

On appelle anomalie toute assignation qui n’est pas une assignation légitime et/ou qui n’est pas
applicable. On désigne une assignation légitime comme toute permission dont un utilisateur
a besoin pour accomplir ces tâches. Pareillement, on appelle permission non applicable
toute permission, légitime ou non, qu’il n’est pas nécessaire d’exprimer dans la structure de
contrôle d’accès choisie : On préfère les exprimer sous forme d’exception. On rejoint la pensée
exprimée par Vaidya et al. [22] selon laquelle exprimer l’entièreté des assignations complexifie
grandement l’état RBAC résultant. Aussi notre approche de role mining n’est pas exacte et
vise le nettoyage du jeu de données rencontré, il est aussi nécessaire d’introduire cette classe
d’assignations dont l’objectif est de ne pas les exprimer.

Bien que d’autres anomalies puissent exister, on se limite à celles détaillées dans cette
nomenclature. En effet, toutes les anomalies rencontrées dans la revue de littérature sont
au moins incluses dans la nomenclature suivante. Il n’y a donc pas de perte de généralité
vis-à-vis des recherches précédentes.

4.1.1 Bruit

Pour mieux comprendre cette nomenclature, on suppose qu’on prend une structure de contrôle
d’accès RBAC.

• Bruit de correction : erreurs d’administration isolées qui surviennent généralement
lorsqu’un utilisateur passe par le processus de provisionnement d’accès (provisioning)
pour la première fois, n’affectant qu’un petit ensemble de permissions. Le bruit de
correction est généralement additif, c’est-à-dire qu’il entraîne des attributions de permis-
sions supplémentaires sur les utilisateurs affectés, en raison du problème de disponibilité
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que cause le bruit soustractif. Ces erreurs d’administration touchent principalement des
permissions qui sont légitimes pour d’autres utilisateurs, car on a surévalué le "need to
know" d’un utilisateur. D’autres raisons peuvent être trouvées pour ce type d’erreur,
mais ce qu’il faut retenir est le caractère isolé de ces permissions.

• Bruit d’applicabilité RBAC : permissions légitimes qui ne sont pas suffisamment
partagées entre les utilisateurs pour être utilement exprimées dans le modèle RBAC. En
effet, les exprimer augmenterait la complexité de l’état RBAC et compromettrait donc les
avantages de gestion liés au maintien de cette structure pour le contrôle d’accès. On peut
donner comme exemple de permissions non applicable à RBAC les permissions quasi
discrétionnaires d’accès aux dossiers personnels, puisque seuls la personne concernée par
ces permissions ainsi que l’administrateur du système y ont accès. Ce sont typiquement
ce genre de permissions qu’il faut considérer comme des exceptions. Une règle empirique
en role mining est la règle des 80-20 : 80% des assignations doivent être couvertes
en utilisant le modèle RBAC tandis que 20% peuvent être considérées comme des
exceptions.

Dans notre nomenclature, on fait le choix de désigner le bruit de correction comme un bruit
purement additif. En effet, le bruit soustractif ne pose pas un problème inhérent de sécurité,
mais un problème de disponibilité qui est généralement vite identifié et corrigé en conditions
réelles.

4.1.2 Accumulation de privilèges (privilege creep)

Ici, on désigne par le terme acteur de la menace interne une personne ayant des identifiants
valables dans le système de GIA d’une entreprise, comme un employé. Deux scénarios de
privilege creep sont alors considérés :

• Scénario 1 : un acteur de la menace interne change de poste au sein de l’organisation,
mais conserve un sous-ensemble de permissions assignées pour ses fonctions précédentes
en raison d’un déprovisionnement incomplet. Un autre exemple est lorsqu’un employé
démissionne, et qu’un autre employé se voit accorder les permissions additionnelles pour
accomplir les tâches de l’ancien employé, permissions qui ne seront pas ou partiellement
révoquées une fois un remplaçant trouvé. Appelons cela privilege creep de type I.

• Scénario 2 : un groupe d’acteurs de la menace interne s’est vu assigné à un projet
temporaire désormais terminé. Des permissions supplémentaires leur ont été accordées
pour accomplir leurs nouvelles responsabilités au sein de ce projet. Cependant, ces
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assignations supplémentaires n’ont pas été entièrement révoquées à la fin du projet.
Cela peut se produire en raison de registres de projets pas ou mal maintenus. Appelons
cela privilege creep de type II.

La différence clé entre ces deux types de dérive des privilèges est le sous-ensemble de permissions
impactées.

• Pour le privilege creep de type I : Les permissions impactées sont encore légitimes pour
d’autres employés. En effet, ceux qui occupent actuellement un poste similaire au poste
précédemment détenu par l’employé ayant subi une dérive des privilèges, ou l’employé
qui prend les responsabilités du poste vacant, ont un besoin valide de ces permissions
pour accomplir leur tâche.

• Pour le privilege creep de type II : Les permissions impactées ne sont pas légitimes pour
les employés extérieurs au projet. En effet, les permissions sont liées au projet et une
fois le projet terminé, aucun employé ne devrait les conserver.

D’autres scénarios peuvent se traduire par une combinaison de ces deux types de privilege
creep. Par exemple, lors de la fusion de deux entreprises pendant une acquisition, la période
d’intégration peut générer simultanément les deux types :

• Type I : Un employé de l’entreprise acquise conserve des privilèges administratifs de son
ancien rôle (par exemple, administration du système RH), alors que ces responsabilités
ont été transférées à quelqu’un d’autre. Ces privilèges restent légitimes et nécessaires
pour le nouvel administrateur.

• Type II : Le même employé garde également des accès aux outils temporaires créés
spécifiquement pour la migration (serveurs de test, plateformes de synchronisation des
données), qui ne sont plus nécessaires pour personne une fois l’intégration terminée.

Cette situation hybride est particulièrement problématique, car elle cumule les risques sur un
même individu.

Il existe aussi probablement d’autres types d’instances de privilege creep reliées à d’autres
scénarios, mais on ne considère que les scénarios décrits ici pour la génération de données
synthétiques.
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4.2 Hypothèses sur la génération des jeux de données

La génération d’une matrice UPA (voir 2.1.1) est l’objectif visé de la méthode de génération
de données synthétiques proposée. Les attributs des utilisateurs ne sont pas générés, car on
n’a tout simplement pas de connaissances préalables à utiliser pour les modéliser de manière
réaliste.

L’approche proposée se concentre sur les assignations de permissions persistantes, c’est-à-dire
à durée indéterminée, ignorant les privilèges Just-In-Time (JIT) et toute autre technologie qui
rend les assignations de permissions dynamiques vis-à-vis de certains paramètres (heure, lieu,
etc.). Les privilèges JIT sont en effet utilisés sur des plages de temps extrêmement courtes,
allant de quelques minutes à quelques heures et ne dépassant pas 48h, et expirent automa-
tiquement. On ne considère donc que des configurations statiques : soit une représentation
figée d’un système à un moment donné, soit une traduction statique d’un système dynamique
en prenant les permissions maximales accordées à chaque utilisateur sur une période donnée.
Cette approche permet de capturer l’ensemble des droits d’accès potentiels sans tenir compte
de leur variabilité temporelle.

On ne considère pas l’existence de comptes dormants, qui est un autre problème que celui
traité dans cette recherche et qui relève de la gestion lorsqu’un acteur de la menace interne
quitte l’organisation. De plus pour identifier un compte comme dormant, des attributs sur
les utilisateurs sont généralement nécessaires comme le temps de dernière connexion, les
informations de ressources humaines sur un employé, etc.

4.3 Générateur de jeux de données synthétiques

Le générateur de données synthétiques développé dans cette recherche prend inspiration
sur le générateur de données "Tree" de Molloy et al. [33]. Les principales modifications
portent sur la stratégie de propagation des nœuds utilisés pour générer les arbres, le processus
d’ajout de bruit, et le nouveau processus d’ajout d’instances de privilege creep. Une attention
particulière est portée sur la flexibilité du générateur de données, d’où l’introduction de
nombreux paramètres servant à créer des jeux de données diversifiés.

Cette section est organisée en trois parties qui traitent respectivement la génération des
permissions légitimes avec la structure d’arbre, l’ajout de bruit, et finalement l’ajout d’instances
de privilege creep.
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4.3.1 Générer les permissions légitimes

Pour générer les permissions légitimes, on propose d’utiliser une structure arborescente
qui mime une hiérarchie d’entreprise fictive. Chaque nœud représente une subdivision de
l’entreprise sur laquelle on assigne des permissions, et les utilisateurs sont assignés sur les
feuilles de cette structure arborescente. Le nœud racine représente donc les permissions à
l’échelle de "l’organisation", que tous les utilisateurs hériteront. Chaque nœud après le nœud
racine représente une subdivision de l’organisation : vice-présidence, départements, équipes
et ainsi de suite. Finalement, les nœuds feuilles représentent la plus petite subdivision de
l’organisation fictive. Les utilisateurs héritent alors des permissions assignées aux nœuds
aux dessus d’eux en cascade. On désigne par la suite cette structure arborescente avec des
permissions et utilisateurs sous le nom de modèle.

En tant qu’objectif de RM, les rôles minés doivent correspondre à la structure du modèle.
Sachant cela, les modèles sont utilisés pour créer des hiérarchies de permissions légitimes. Le
générateur proposé commence par le nœud racine, puis fait croître l’arbre en propageant les
nœuds enfants de manière itérative. On utilise six paramètres pour construire les arbres :

• min_depth et max_depth à valeurs dans N∗ avec min_depth ≤ max_depth, encodent
respectivement la profondeur minimale et maximale de l’arbre. Entre ces bornes, la
probabilité qu’un nœud cesse de se propager augmente linéairement avec la profondeur.
C’est-à-dire que jusqu’à min_depth, tous les nœuds continuent obligatoirement à se
propager (probabilité = 1). À partir de min_depth, la probabilité de propagation
diminue linéairement jusqu’à atteindre 0 à max_depth. La probabilité de propagation à
la profondeur d, p(d) est alors définie comme suit :

p(d) =


1 si d ≤ min_depth

max_depth− d

max_depth−min_depth si min_depth < d < max_depth

0 si d ≥ max_depth

(4.1)

À chaque tentative de propagation d’un nœud situé à une profondeur d, un tirage
aléatoire détermine si le nœud continue à se propager. En implémentation, un nombre
aléatoire u est tiré uniformément dans l’intervalle [0, 1]. Le nœud se propage si et
seulement si u ≤ p(d).
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• min_children et max_children à valeurs dans N∗ avec min_children ≤ max_children,
encodent respectivement le nombre minimum et maximum de nœuds enfants par nœud.

• avg_branch et std_dev à valeurs dans R∗, respectivement le facteur d’embranchement et
l’écart-type sur ce facteur d’embranchement, encodent comment les nœuds se propagent
dans l’arbre. Le nombre de nœuds enfants suit une distribution normale centrée autour
de avg_branch avec un écart-type de std_dev, ramené à des entiers. Avec une notation
probabiliste, le nombre de nœuds enfants Nenfants générés pour chaque nœud suit :

Nenfants ∼ ⌊N (avg_branch, std_dev2)⌋ (4.2)

où N (µ, σ2) représente une distribution normale de moyenne µ et de variance σ2, et ⌊·⌋
désigne la fonction partie entière. Les fonction min et max sont ensuite utilisées pour
borner le nombre obtenu entre min_children et max_children :

Nenfants ← max(min_children, min(max_children, Nenfants)) (4.3)

Ainsi, la propagation des nœuds enfants est probabiliste non uniforme. Aussi les arbres
produits peuvent ne pas être équilibrés, puisque la profondeur de l’arbre est, elle aussi,
soumise à un processus probabiliste. Avec ces paramètres, plusieurs structures d’arbres
différentes peuvent être créées. Par exemple, des arbres plats qui ne sont pas très profonds
(grand facteur d’embranchement et une profondeur faible) ou plutôt des arbres profonds avec
peu de branches (faible facteur d’embranchement et grande profondeur).

Un exemple de structure arborescente obtenue est renseignée sur la figure 4.1.

N1

N2

N3

N4 N5

N6 N7

N8

N9

N10 N11 N12

N13

Figure 4.1 Exemple de structure d’arbre avec numérotation itérative des nœuds
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Les utilisateurs et les permissions sont ensuite ajoutées de façon probabiliste sur les nœuds.
On utilise alors quatre paramètres :

• min_user et max_user à valeurs dans N∗ avec min_user ≤ max_user, qui encodent
respectivement le nombre minimal et maximal d’utilisateurs sur les feuilles.

• min_perm et max_perm à valeurs dans N∗ avec min_perm ≤ max_perm, qui encodent
respectivement le nombre minimal et maximal de permissions sur chaque nœud.

On assigne ensuite les permissions et les utilisateurs à l’aide d’une loi binomiale à valeurs
entre les extremums. Le nombre de permissions Nperm attribué aux nœuds suit alors la loi :

Nperm ∼ min_perm + B(max_perm−min_perm, 0.5) (4.4)

Où B(n, p) représente une loi binomiale avec n essais et probabilité de succès p = 0.5. Cette
formulation garantit que le nombre de permissions Nperm est compris entre min_perm et
max_perm. La probabilité p = 0.5 assure une distribution symétrique, permettant une
répartition équilibrée, mais aléatoire des permissions sur les nœuds de l’arbre.

De même, on a pour les assignations d’utilisateurs sur les feuilles, la formule :

Nuser ∼ min_user + B(max_user−min_user, 0.5) (4.5)

Ces choix mathématiques sont motivés par un argument statistique : Dans les organisations
réelles, le nombre de permissions par rôle ou d’utilisateurs par équipe résulte de multiples
facteurs indépendants (besoins métier, contraintes réglementaires, structure hiérarchique,
ressources disponibles, etc.). Qualitativement, cette multiplicité de facteurs produit un
comportement statistique caractéristique : la plupart des rôles ont un nombre "moyen" de
permissions (correspondant aux besoins standard), tandis que les cas extrêmes (très peu ou
beaucoup de permissions) sont naturellement plus rares. Il en va de même pour la taille des
équipes au sein d’une organisation. Une modélisation avec une loi binomiale, approchant une
loi normale, semble donc plus appropriée qu’une distribution uniforme.

Une fois les permissions et utilisateurs assignés, on obtient alors un modèle de permissions
légitimes. Un exemple est renseigné sur la figure 4.2.
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P1

P2

P4, P14

P9
(U1, U2)

P10
(U3, U4)

P5
(U5, U6, U7)

P6, P14
(U8)

P3

P7

P11
(U9)

P12
(U10, U11)

P13, P14
(U12, U13)

P8
(U14, U15, U16)

Figure 4.2 Exemple d’arbre de permissions légitimes générés

En rouge les nœuds portant des ensembles de permissions et en bleu des feuilles portant des ensembles de
permissions et des utilisateurs. En surligné, les ensembles de permissions transversales

Une dernière étape consiste à enrichir le jeux de données avec des ensembles de permissions
dites "transversales". Ce sont des ensembles de permissions légitimes qui sont partagés sur
différents nœuds de la hiérarchie, mimant par exemple des applications ou configurations
partagées entre plusieurs départements de l’organisation. On rajoute donc des ensembles de
permissions sur l’arbre généré entre plusieurs nœuds pris au hasard. Par exemple sur la figure
4.2 on a rajouté un ensemble de permission P14.

On fixe arbitrairement le nombre d’ensembles de permissions transversales à 2 ou 3. Ce choix
vise à éviter une croissance excessive du nombre total de permissions lorsque les paramètres
limitent fortement le nombre de permissions par nœud. En effet, un nombre plus élevé
d’ensembles transversaux entraînerait une multiplication importante des permissions, même
avec des contraintes restrictives au niveau local. Le nombre de permissions contenu dans ces
ensembles de permissions transversaux suit la même loi utilisée pour générer les ensembles sur
les nœuds, et le nombre de nœuds reliés ensemble à 2 ou 3, là encore pour les mêmes raisons
que citées précédemment.

Une fois ce processus achevé, on traduit ce modèle en matrice UPA avec les règles d’héritage
de permission énoncées précédemment. On appelle par la suite la matrice générée à cette
étape la matrice UPA légitime.
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4.3.2 Ajouter le privilege creep

Comme identifié dans la section 4.1.2, deux types de privilege creep sont ajoutés à la matrice
UPA légitime : le privilege creep de type I et celui de type II. Afin de contrôler les quantités
de ces instances, on introduit trois paramètres :

1. pI la proportion d’utilisateurs qui présentent des cas de PC de type I. Par exemple, si
pI = 0.05, alors 5% des utilisateurs vont être victime de privilege creep de type I.

2. cI la proportion d’assignations de permissions copiées d’un autre utilisateur dans une
instance de PC de type I. Par exemple, si cI = 0.2, alors 20% des permissions d’un
utilisateur sont utilisées pour créer une instance de PC chez un autre.

3. qII la quantité de permissions ajoutées pour les utilisateurs qui présentent une PC
de type II. Tous les utilisateurs affectés se voient alors accorder ces permissions. Par
exemple, si qII = 50, alors 50 permissions supplémentaires sont ajoutées à la matrice
UPA et assignées aux utilisateurs avec PC dans le même projet.

Afin d’avoir toujours un ensemble varié d’instances de PC, les règles suivantes sont utilisées :

• 30% des instances de PC de type I utilisent cI = 1. On appelle ces instances privilege
creep de type I total.

• 70% des instances de PC de type I se voient attribuer des valeurs de cI décroissantes
linéairement de 1 à 0. Par exemple, si 5 utilisateurs sont dans ce cas, la plage de valeurs
assignées pour cI est 1, 0.8, 0.6, 0.4 et 0.2. On appelle ces instances, privilege creep de
type I partiel.

• Le nombre d’utilisateurs dans chaque instance de PC de type II est fixé à 8, et le nombre
d’instances ninstances Type II est calculé en utilisant la formule suivante :

ninstances Type II = ⌊log10(nutilisateurs)⌋ (4.6)

Cette formule permet d’obtenir un nombre de projets temporaires qui croit de façon
logarithmique en le nombre total d’utilisateurs. En effet, empiriquement une croissance
linéaire a été testée, mais elle produisait trop d’instances pour les grands jeux de données.
Ainsi donc, plusieurs groupements d’utilisateurs sont créés au hasard et on leur assigne
un nombre qII de permissions additionnelles.
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Grâce à ces paramètres, il est possible de produire des instances de privilege creep de
fréquence et de magnitude variées. On injecte alors les assignations supplémentaires créées
par ce processus dans la matrice UPA légitime. On appelle la matrice à cette étape la matrice
UPA avec privilege creep (privilege crept UPA).

Détails d’implémentation

Lors de l’injection d’une instance de privilege creep de type I, on sélectionne aléatoirement
deux utilisateurs a et b issus de deux équipes distinctes, afin d’assurer que leurs ensembles de
permissions initiaux diffèrent. Cette anomalie émule le scénario suivant : l’utilisateur a, qui
appartient actuellement à l’équipe 1, faisait auparavant partie de l’équipe 2 où il détenait
les mêmes privilèges que l’utilisateur b. Lors de son changement d’équipe, a a conservé ses
anciens privilèges en plus de ceux de sa nouvelle équipe.

Concrètement, l’utilisateur a est celui qui est affecté par le privilege creep, tandis que
l’utilisateur b représente son profil d’autorisations passé. On sélectionne l’ensemble des
permissions assignées à b, puis, en fonction du paramètre cI pour cette instance, on en extrait
un sous-ensemble aléatoire. Ce sous-ensemble de permissions est ensuite assigné directement
à a, s’ajoutant à ses permissions actuelles. Le tirage des utilisateurs se fait avec remise.

Pour l’injection d’une instance de privilege creep de type II, on sélectionne 8 utilisateurs
distincts au hasard. On vient ensuite leur donner qII permissions additionnelles. Tous les
utilisateurs dans l’instance héritent du même ensemble de permissions.

Pour l’injection d’une instance de privilege creep de type II, on sélectionne aléatoirement
8 utilisateurs distincts. On assigne ensuite qII permissions additionnelles à chacun des 8
utilisateurs sélectionnés. Cette configuration émule un projet temporaire terminé dont les
participants ont conservé des permissions qui auraient dû être révoquées. Tous les utilisateurs
de l’instance reçoivent le même ensemble de permissions, reflétant leur participation commune
au projet temporaire.

On garde aussi une liste des utilisateurs touchés par le privilege creep afin d’avoir une
information de référence pour les résultats (voir chapitre 5). Les utilisateurs touchés par
plusieurs instances de privilege creep n’apparaissent qu’une fois dans cette liste, mais sont
décomptés individuellement dans le détail des instances.

Par exemple, avec 3 utilisateurs a, b et c :

• Instance 1 (Type I) : a reçoit des permissions de b.
• Instance 2 (Type I) : c reçoit des permissions de a.
• Instance 3 (Type II) : a accumule des permissions supplémentaires.
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Dans ce cas, la liste des utilisateurs anormaux est [a, c], mais le décompte par instance
montrerait 2 instances de type I et 1 instance de type II, pour un total de 3 instances de
privilege creep.

4.3.3 Ajouter le bruit

Pour rendre le jeu de données plus réaliste, du bruit est ajouté. Ceci suit la discussion de
la section 4.1.1 sur l’identification du bruit. Le bruit d’applicabilité RBAC se manifeste par
des permissions additionnelles sans impact sur les permissions légitimes tandis que le bruit
de correction touche seulement les permissions légitimes. Le bruit d’applicabilité RBAC est
ajouté en utilisant deux paramètres de quantité et de densité, et le bruit de correction est
ajouté en utilisant un paramètre de pourcentage :

• pbruit : le pourcentage de bruit désigne le ratio d’assignations de permissions issues du
bruit à ajouter à la matrice UPA avec privilege creep, exprimé comme une proportion du
nombre d’assignations légitimes. Supposons que le pourcentage de bruit soit fixé à 30% et
que la matrice UPA légitime ait 200 assignations, alors 60 assignations supplémentaires
doivent être ajoutées.

• dbruit : la densité de bruit désigne à quel point les assignations de permissions bruitées
ajoutées sont denses. Le nombre de permissions distinctes à ajouter Nperm bruit doit
être calculé pour correspondre au paramètre de densité de bruit. On exprime cette
contrainte avec une égalité du nombre d’assignations bruitées à ajouter :

nlegit · pbruit = Nperm bruit ·Nutilisateurs · dbruit (4.7)

Où nlegit est le nombre d’assignations légitimes et Nutilisateurs le nombre total d’utilisateurs.
À gauche de l’égalité, on a le nombre d’assignations calculées avec la définition de pbruit,
et à droite de l’égalité le nombre d’assignations calculées avec la définition de dbruit. En
remaniant l’égalité 4.7, on obtient la formule suivante :

Nperm bruit = Nlegit · pbruit

dbruit ·Nutilisateurs
(4.8)
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• plegit-bruit : le pourcentage de bruit sur les permissions légitimes indique le ratio
d’assignations supplémentaires à introduire relativement au nombre de permissions
issues du bruit déjà injectées. Le nombre d’assignations supplémentaires induites par le
processus de bruitage des permissions légitimes est calculé par :

nlegit-bruit = nlegit · pbruit · plegit-bruit (4.9)

où nlegit est le nombre d’assignations légitimes. Ces assignations sont purement addition-
nelles, ne faisant que transformer les 0 en 1 dans la matrice UPA avec privilege creep.
Supposons que ce paramètre soit fixé à 10% en utilisant le même exemple qu’avant : avec
200 assignations légitimes et 30% de bruit, on ajoute 200× 0.1× 0.3 = 6 assignations
supplémentaires sur les permissions légitimes.

On nomme la matrice obtenue après l’étape de bruitage la matrice UPA bruitée (noised UPA).

Détails d’implémentation

Les assignations de bruit d’applicabilité RBAC sont générées avec une expérience de Bernoulli
sur une matrice de taille (nutilisateurs, Nbruit) avec p = dnoise. Essentiellement, on a une
probabilité p qu’une permission donnée soit assignée à un utilisateur donné. Une fois cette
matrice binaire générée, elle est concaténée à la matrice UPA contenant le privilege creep.

Pour ce qui est du bruit de correction avec des assignations supplémentaires faites sur les
permissions légitimes, on sélectionne au hasard une permission légitime et un utilisateur. Si
l’assignation entre cet utilisateur et cette permission n’existe pas, on assigne cette permission
à cet utilisateur. Sinon, on sélectionne à nouveau un utilisateur et une permission légitime
au hasard. En répétant ce processus autant de fois que nécessaire pour assigner nlegit−bruit

permissions supplémentaires, on génère le bruit de correction voulu.
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4.4 Résumé

On renseigne dans le tableau 4.1 un résumé des anomalies de bruit et de privilege creep
ajoutées lors du processus de génération de jeux de données avec le détail de leur méthode de
génération.

Type d’anomalie Permissions touchées Méthode de génération
Privilege Creep
Type I - Total

Permissions légitimes
d’un autre utilisateur

Sélection aléatoire de deux utilisateurs dans
des équipes distinctes et copie complète des
permissions de l’utilisateur source vers
l’utilisateur cible. Représente 30% des
instances de Type I.

Privilege Creep
Type I - Partiel

Permissions légitimes
d’un autre utilisateur

Sélection aléatoire de deux utilisateurs dans
des équipes distinctes et copie partielle
(paramétrée par cI ̸= 1) des permissions de
l’utilisateur source vers l’utilisateur cible.
Représente 70% des instances de Type I.

Privilege Creep
Type II

Permissions
additionnelles communes
à un groupe

Sélection de 8 utilisateurs distincts au hasard.
Assignation de qII permissions additionnelles
identiques à tous les utilisateurs du groupe.
Nombre d’instances : ⌊log10(nutilisateurs)⌋.

Bruit
d’applicabilité
RBAC

Permissions
additionnelles bruitées
(distinctes des légitimes)

Expérience de Bernoulli sur une matrice de
taille (nutilisateurs, Nperm bruit) avec probabilité
p = dbruit. La matrice générée est concaténée
à la matrice UPA avec privilege creep.

Bruit de correction Permissions légitimes
existantes bruitées

Sélection aléatoire répétée d’un utilisateur et
d’une permission légitime jusqu’à générer
nlegit-bruit assignations supplémentaires.

Table 4.1 Récapitulatif des anomalies introduites dans la génération de jeux de données

Le processus entier de génération de jeux de données synthétiques est résumé sur le diagramme
4.3. Les structures de données obtenues sont indiquées en vert et les opérations successives
pour obtenir ces structures sont renseignées en rouge. On renseigne aussi les 16 paramètres
utilisés durant le processus de génération dans les encadrés hexagonaux.
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Création de la structure arborescente

Arbre vide

Remplissage de l'arbre avec des utilisateurs et permissions
+ Ajout des permissions transversales

Paramètres (arbre) :

Profondeur : min_depth, max_depth
Noeuds enfants : min_children, max_children
Propagation des nodes : avg_branch, std_dev

Modèle hiérarchique complet

Dérivation sous forme de matrice binaire

Ajout d'instances de privilege creep

Matrice UPA avec privilege creep

Paramètres (par noeud) :

Nombre d'utilisateurs : min_user, max_user
Nombre de permissions : min_perm, max_perm

Matrice UPA légitime

Ajout de bruit

Matrice UPA bruitée

Paramètres (privilege creep) :

Type I
proportion d'instances : pI
permissions copiées par instance : cI

Type II : 
nombre d'instances déterminés par nombre d'utilisateurs
nombre de permissions par instances : qII

Paramètres (bruit) :

Proportion de bruit  (non RBAC applicable) : pbruit
Densité de bruit  (non RBAC applicable) : dbruit
Proportion de bruit de correction  : plegit-bruit

Figure 4.3 Diagramme résumant le processus de génération des jeux de données
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CHAPITRE 5 ÉVALUATION

Le chapitre détaille le cadre de l’évaluation de la méthode de role mining proposée. Il
commence par la présentation des benchmarks de jeux de données synthétiques utilisés pour
l’évaluation, en détaillant les profils utilisés pour générer les jeux de données. Viennent ensuite
la présentation des jeux de données réels, incluant les jeux publics issus de la littérature et
les jeux du partenaire industriel provenant d’Active Directory, transformés en matrices UPA
pour l’évaluation. Le chapitre se termine par la description des métriques d’évaluation.

5.1 Benchmark de jeux de données synthétiques

Pour les jeux de données synthétiques, on procède à la création de deux benchmarks : l’un
avec des niveaux variables de bruit et de privilege creep, et l’autre avec des niveaux variables
de "tension", c’est-à-dire de limitation du nombre d’utilisateurs ou de permissions.

Afin d’avoir un benchmark complet et diversifié, on crée plusieurs profils pour la génération
de la structure de permissions légitimes utilisés. La table 5.1 définit les profils utilisés pour
construire les arbres modèles (voir section 4.3.1), sélectionnés pour avoir une variété de
profondeur et de ramification, imitant différentes structures organisationnelles.

Nom children depth avg_branch std_dev
min max min max

large_flat 2 4 2 4 3 1.5
small_flat 1 5 1 3 3 1

large_string 1 2 10 15 1.7 0.5
small_string 1 2 5 8 1.6 0.4
binary_tree 1 3 2 5 2 0

highly_random 1 6 2 5 2 2

Table 5.1 Profils pour générer les arbres modèles de permissions légitimes
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5.1.1 Niveaux variables de bruit et de privilege creep

Pour la première passe de génération de jeux de données, on propose de faire une évaluation
des performances de l’approche pour différents niveaux de bruit et de privilege creep. On se
restreint ici à cinq profils différents :

• un profil témoin sans bruit (no noise no pc)

• un profil avec une quantité et une densité de bruit faible (low noise, low density)

• un profil avec une quantité importante de bruit et une densité faible (high noise, low
density)

• un profil avec une quantité faible de bruit et une densité élevée (low noise, high density)

• un profil avec une quantité de bruit et une densité élevée (high noise, high density)

Une des hypothèses formulées lors de la création de ces profils est que le niveau de bruit et de
privilege creep croissent dans la même direction. Cette hypothèse est cohérente d’un point de
vue temporel de dérive dans la gestion des accès.

Nom Acronyme Bruit
pourcentage densité légitime PC

no noise no pc NN 0 N/A 0% 0%
low noise, low density LNLD 5% 1% 10% 3%
high noise, low density HNLD 15% 1% 15% 5%
low noise, high density LNHD 5% 4% 15% 5%
high noise, high density HNHD 15% 5% 20% 8%

par défaut / 15% 2% 10% 3%

Table 5.2 Profils de niveaux de bruit & privilege creep

Ces cinq profils servent à paramétrer l’ajout de bruit et de privilege creep aux permissions
légitimes, décrit dans la section 4.3.2 et 4.3.3. Les valeurs utilisées sont renseignées dans le
tableau 5.2. Enfin les paramètres manquants, c’est-à-dire la répartition des utilisateurs et
des permissions sur les nœuds de la structure des permissions légitimes est donné par le cas
par défaut renseigné sur la table 5.3 dans la partie suivante. Cette configuration par défaut
correspond à une configuration sans tension un peu plus large sur les minimum et maximum
de permissions par nœud. Les valeurs exactes pour ces profils sont choisies de sorte à rester
cohérentes avec celles rencontrées dans la littérature.
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5.1.2 Niveaux variables de tension sur les utilisateurs et permissions

De la même façon qu’on a défini des profils pour différents niveaux de bruit, on propose une
deuxième expérimentation qui évalue la performance de l’approche proposée lorsque le nombre
de permissions ou d’utilisateurs sont restreints. Cette idée est née d’une conjecture directe :
la clusterisation pourrait être moins bonne lorsque le nombre d’utilisateurs est faible, et aussi
lorsque les permissions communes aux utilisateurs se font rares. Afin d’évaluer la véracité
de cette conjecture, on propose donc quatre profils de tension mise sur les utilisateurs et les
permissions :

• aucune tension mise (no tension)
• tension sur les permissions
• tension sur les utilisateurs
• tension sur les utilisateurs et les permissions simultanément (tension sur les deux)

Nom Acronyme Utilisateur Permission
min max min max

no tension NT 15 25 10 40
tension sur permissions TP 15 25 2 6
tension sur utilisateurs TU 2 8 10 40

tension sur les deux TUTP 2 8 2 6
par défaut / 15 25 15 45

Table 5.3 Profils de tension sur les utilisateurs et les permissions

Les valeurs exactes sont renseignées sur le tableau 5.3. Afin d’évaluer les capacités de détection
de privilege creep et de correction de bruit, on donne pour ces différents profils la configuration
par défaut renseignée sur la table 5.2 précédemment. Cette configuration par défaut est un
compromis d’un bruit fort, mais avec une densité moyenne et un niveau de privilege creep
assez faible.

5.2 Jeux de données réels

Les jeux de données du monde réel fournis par Ene et al. [1] sont utilisés pour l’évaluation.
Il s’agit de : americas_large, americas_small, apj, customer, domino, emea, firewall1,
firewall2, healthcare. Malgré leur publication en 2008, ces jeux de données sont devenus des
références établies dans la littérature et continuent d’être utilisés dans des études récentes
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pour la comparaison des performances sur des instances réelles [40,42,43,55,66]. On les pivote
sous forme de matrice UPA avec une transformation expliquée dans la section 3.1.2.

5.3 Jeux de données réels du partenaire industriel

Le jeux de données fourni par le partenaire industriel se trouve sous forme tabulaire. Il est
extrait d’une configuration Active Directory sous la forme d’une table relationnelle. Chaque
ligne correspond à une association entre un compte utilisateur et une permission, tandis que
chaque colonne représente une variable ou un attribut descriptif. La structure initiale de la
table est composée des colonnes suivantes :

personal_id account_id group_id group_domain context1 ... contextn

Où :

• personal_id correspond à un identifiant d’une personne physique réelle.

• account_id correspond à un identifiant de compte Active Directory. Une personne
physique peut avoir plusieurs comptes liés à son identité.

• group_id correspond à un identifiant de groupe de sécurité Active Directory. Un
groupe de sécurité s’applique au compte Active Directory.

• group_domain fait référence au domaine dans lequel le groupe de sécurité s’applique.

• contexti renvoie à des informations supplémentaires sur la personne identifiée dans la
ligne (titre du poste, responsable, service, etc.).

Ce tableau est d’abord réduit à deux champs principaux :

• id qui prend la valeur de personal_id pour correspondre à un utilisateur sur le système.

• permission représente un groupe de sécurité au sein d’un domaine spécifié. Essentielle-
ment, cela correspond à group_id@group_domain. Une autre façon de définir ce
champ est de restreindre l’effort d’extraction de rôle à un seul domaine, le champ est
alors strictement égal à la valeur du champ group_id.

Il est possible de choisir l’identifiant du compte (account_id) plutôt que l’identifiant personnel
(personal_id). Cependant, dans le cadre du role mining, il est plus pertinent de regrouper
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toutes les permissions sous l’identité unique d’une personne plutôt que sous différents comptes
gérés par une solution de GIA. En effet, il est possible pour un utilisateur de changer de compte
tout en conservant l’ensemble de ses permissions. On forme alors une table relationnelle
réduite avec la structure de colonnes suivante :

id permission

Les valeurs contextuelles sont stockées dans une table avec cette structure de colonne :

id context1 ... contextn

La dernière étape du prétraitement consiste à faire pivoter la table relationnelle id-permission
afin d’obtenir une matrice UPA, qui représente le format standard des données utilisées en
role mining. Cette transformation est expliquée en détail dans la section 3.1.2.
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5.4 Métriques

L’objectif principal des métriques choisies est de mesurer la précision de détection des instances
de privilege creep et leur correction tout en préservant l’expression des permissions légitimes.
Les métriques retenues s’inspirent des travaux de la littérature, présentées dans le tableau 2.2.
On introduit les métriques suivantes :

1. Rétention des Permissions Légitimes (RPL) : La F-mesure (Voir l’équation 2.7) calculée
entre la matrice UPA nettoyée (CUPA) et l’UPA légitime de référence, en excluant les
outliers. Une valeur élevée reflète la précision de la rétention des permissions légitimes,
tout en minimisant la rétention du bruit et du privilege creep mal identifié.

2. Expression des Permissions (EP) : Le nombre d’assignations de permissions conservées
dans l’UPA nettoyée (CUPA) divisé par le nombre d’assignations dans l’UPA bruitée.
Un processus de nettoyage efficace donne une valeur d’expression des permissions se
rapprochant de celle calculée sur la matrice légitime.

3. Correction du Privilege Creep (CPC) : Le pourcentage d’assignations affectées par le
privilege creep qui ont été efficacement retirées. C’est une nouvelle métrique introduite.
Une valeur proche de 1 reflète l’efficacité du processus de nettoyage. Une valeur de 0
indique qu’aucune assignation issue de privilege creep a été retirée.

4. Précision de la Détection du Privilege Creep (PDPC) : Le F-mesure (Voir l’équation 2.7)
calculé entre l’ensemble des outliers identifiées et l’ensemble des utilisateurs anormaux
de référence. C’est une mesure de l’exactitude de la détection des utilisateurs atteints
de privilege creep.

5. Écart du Nombre de Rôles (ENR) : La différence entre le nombre de rôles idéaux,
identifié comme étant le nombre de feuilles dans le modèle (voir section 4.3.1) et le
nombre de rôles extraits, divisée par le nombre de rôles idéaux.

6. Proportions de privilege creep détecté : Pour chaque type de privilege creep rajouté
sur les jeux de données synthétiques, on relève la proportion d’instances correctement
identifiées par rapport au nombre réel d’instances rajoutées. Cela permet d’avoir une
vue plus large sur la détection de privilege creep et de voir quel type est plus facilement
détectable.

7. Temps d’exécution : Le temps d’exécution du processus de nettoyage en secondes.

8. Nombre de rôles : exclusivement utilisé pour les jeux de données réels.
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Le tableau 5.4 résume les inspirations et sources des métriques retenues, ainsi que leur
application sur des jeux de données synthétiques ou réelles. En effet, RPL, CPC, PDPC,
ENR et les proportions de privilege creep détectés, nécessitent l’existence d’une connaissance
de référence (ground truth). Elles ne peuvent donc être calculées que sur les jeux de données
synthétiques.

Métrique Inspiration/Source
utilisation
données
réelles

utilisation
données
synth.

Rétention des
Permissions
Légitimes (RPL)

Nouvelle métrique qui prend inspiration de la robustesse
au bruit de Vaidya et al. (voir le tableau 2.2). L’accent
est mis sur les permissions légitimes, puisqu’on veut non
seulement retirer le bruit, mais aussi le privilege creep
tout en retenant le maximum de permissions légitimes.
La F-mesure assure que le déséquilibre de classe entre
permissions légitimes et illégitimes n’influe pas sur les
mauvais résultats

✗ ✓

Expression des
Permissions (EP)

Métrique usuelle en role mining inexact, souvent for-
mulée différemment avec l’erreur de reconstruction
Ereconstruction. On préfère utiliser cette version, car sur
les jeux de données réels, on peut mettre en lumière
l’influence des outliers sur l’expression de permission
d’une façon plus interprétable.

✓ ✓

Correction du
Privilege Creep
(CPC)

Nouvelle métrique introduite qui permet, avec la réten-
tion de permission légitime, de quantifier si les assigna-
tions issues de privilege creep sont effectivement bien
retirées.

✗ ✓

Précision de la
Détection du
Privilege Creep
(PDPC)

Nouvelle métrique qui prend inspiration sur l’Exactitude
de Parkinson et al. (voir le tableau 2.2). On utilise la
F-mesure afin de ne pas biaiser les résultats à cause du
déséquilibre de nombre entre les instances de privilege
creep et les utilisateurs aux permissions légitimes (voir
explication dans la section 2.5.4)

✗ ✓

Écart du Nombre
de Rôles (ENR)

Nouvelle métrique adaptée du nombre de rôles, donne
plus d’information vis-à-vis de l’objectif de role mining
sur les jeux de données synthétiques lorsqu’on s’attend
à un nombre de rôles précis.

✗ ✓

Proportions de
privilege creep
détecté

Nouvelle métrique introduite puisqu’on a différents scé-
narios pour les instances de privilege creep

✗ ✓

Temps d’exécution
et nombre de rôles

Métriques usuelles de la littérature ✓ ✓

Table 5.4 Récapitulatif des métriques d’évaluation choisies

Pour les jeux de données réels, on relève également le nombre d’outliers détectés afin de le
comparer au nombre total d’utilisateurs. L’expression des permissions est calculée de deux
manières : avec et sans les outliers, ce qui permet de mieux interpréter le cas des outliers sur
certains jeux.
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CHAPITRE 6 RÉSULTATS

Ce chapitre détaille les résultats obtenus avec le cadre d’évaluation décrit précédemment.
On commence par vérifier la validité des jeux de données synthétiques servant l’évaluation.
Ensuite, on présente et interprète les résultats d’expérimentation sur les jeux de données
synthétiques générés et les jeux de données réels de la littérature. On propose également une
analyse comparative de la performance opérationnelle de la méthode développée, évaluée sur
des jeux de données réels fournis par le partenaire industriel. Enfin, le chapitre se conclut par
une discussion générale sur les résultats observés.

6.1 Validation

Avant de présenter les résultats, on veut s’assurer que ceux-ci sont valides. En particulier, on
veut s’assurer que la structure des jeux de données synthétiques produits correspond à une
structure de jeu de données réel.

6.1.1 Méthode de validation

Pour procéder à la validation, on part d’un constat sur les jeux de données réels : la
distribution du partage des permissions, c’est-à-dire le pourcentage d’utilisateurs portant
chaque permission, suit une courbe avec une forme particulière. Il en est de même pour la
distribution de la quantité de permissions détenues par les utilisateurs.

En règle générale, on observe que 70% à 80% des permissions ne sont partagées que par un
petit groupe d’utilisateurs tandis que les 30% à 20% restants concentrent la quasi-totalité des
assignations et sont grandement partagées. On aimerait retrouver cette tendance sur les jeux
de données générés synthétiquement.

Pour s’en rendre compte, on calcule deux quantités :

• Le nombre d’utilisateurs qui possède chaque permission.
• Le nombre de permissions que chaque utilisateur détient.

On vient ensuite ordonner par ordre croissant ces valeurs et normaliser par le nombre total
d’utilisateurs ou de permissions. Cette transformation revient respectivement à sommer la
matrice UPA sur les colonnes ou les lignes et trier par ordre croissant les valeurs obtenues
avant de les normaliser avec les dimensions de la matrice.
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On nomme respectivement les courbes obtenues :

• La courbe de concentration des utilisateurs sur les permissions (UsP).
• La courbe de concentration des permissions sur les utilisateurs (PsU).

Ce processus est appliqué aux jeux de données issus de la littérature ainsi qu’à l’échantillon de
jeux de données synthétiques généré pour l’évaluation. La comparaison des courbes obtenues
constitue une validation empirique : leur ressemblance atteste du réalisme et de la fidélité des
données synthétiques par rapport aux données réelles.

6.1.2 Comparaison

Pour faciliter la comparaison générale, on va utiliser les courbes de concentration médianes
qui montrent les tendances sur les jeux de données réels. Ainsi sur les figures 6.1 et 6.2, on
montre les courbes UsP et PsU superposées des jeux de données réels ainsi que la courbe
médiane avec les quartiles à 25% et 75%.

Il est important de noter que bien que ces courbes soient similaires, elles représentent deux
visions bien différentes des jeux de données. Avec la courbe UsP médiane en figure 6.1b On
retrouve par ailleurs le constat classique de la GIA qui est que 70% à 80% des permissions sont
partagées par un petit groupe d’utilisateurs tandis que les 30% à 20% restants concentrent la
quasi-totalité des assignations à exprimer en RBAC. Les permissions les plus partagées sont
par ailleurs partagées par au moins 80% des utilisateurs dans plus de la moitié des cas.
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Figure 6.1 Courbes de concentration UsP des jeux de données réels
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Sur la courbe PsU en figure 6.2b une tendance similaire peut être observée : les 20%
d’utilisateurs ayant le plus de permissions concentrent la majeure partie des permissions
octroyées. Cependant, on observe qu’en moyenne les utilisateurs ayant le plus de permissions
possèdent rarement plus de 20% du nombre de permissions totales. Cette propriété se
vérifie pour les jeux de données les plus volumineux comme americas_large, americas_small,
customer, apj. Les jeux de données qui échappent à cette règle possèdent au moins un
utilisateur administrateur qui concentre la quasi-totalité des permissions comme domino,
firewall1, firewall2, healthcare. On notera aussi à la vue des figures 6.1 et 6.2 que le jeu de
données healthcare est un net outlier vis-à-vis des courbes de concentration et de la petitesse
du jeux de données (46 utilisateurs pour 46 permissions différentes, cf. 2.3.1).

0 20 40 60 80 100
Part d'utilisateurs normalisée (%)

0

20

40

60

80

100

Po
ur

ce
nt

ag
e 

de
s p

er
m

iss
io

ns
 to

ta
le

s d
ét

en
ue

s (
%

)

americas_large
americas_small
apj
customer
domino
emea
fire1
fire2
hc

(a) Courbes multiples

0 20 40 60 80 100
Part d'utilisateurs normalisée (%)

0

20

40

60

80

100

Po
ur

ce
nt

ag
e 

de
s p

er
m

iss
io

ns
 to

ta
le

s d
ét

en
ue

s (
%

)

quartiles à 25%-75%
Médiane

(b) Courbe médiane

Figure 6.2 Courbes de concentration PsU des jeux de données réels

On trace désormais les courbes de concentration UsP et PsU médianes sur les jeux de donnés
synthétiques générés pour l’évaluation, soit un échantillon de 1080 jeux de données, le détail
de ce nombre est donné dans la section suivante 6.1.3. Sur la figure 6.3 on superpose les
courbes obtenues sur les jeux de données réels et sur les jeux de données synthétiques.

La comparaison des courbes UsP révèle une forte similitude entre les courbes des données
réelles et des données synthétiques. Les deux courbes présentent une allure similaire et leurs
quartiles respectifs se superposent, attestant d’une reproduction possible de la concentration
des utilisateurs sur les permissions. La courbe synthétique est cependant plus lisse du fait de
la taille de l’échantillon considéré.
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Les courbes PsU révèlent en revanche une divergence plus marquée. On observe un écart
quasi constant d’environ 10% entre les deux distributions, accompagné d’une séparation des
quartiles sur approximativement la moitié du domaine. Cependant, on est rassurés de voir
que le maximum atteint par la courbe PsU en moyenne se situe autour de 20%, comme sur la
courbe des jeux de données réels.
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Figure 6.3 Comparaison des courbes de concentration médianes des jeux de données

Ces observations permettent de conclure que les jeux de données synthétiques reproduisent
en moyenne fidèlement les distributions de concentration observées dans les jeux de données
réels de la littérature. Si les courbes médianes PsU présentent des divergences plus marquées,
celles-ci peuvent s’expliquer par la taille limitée de l’échantillon de données réelles, source
potentielle de biais dans l’estimation des distributions.

Cette conclusion est d’autant plus motivée qu’on peut trouver des jeux de données synthétiques
dont les distributions UsP et PsU sont très proches d’un jeu réel donné, au sens des moindres
carrés (MSE). Sur la figure 6.4, on renseigne quatre exemples des 10 courbes UsP ou PsU les
plus proches des distributions de jeux de données réels au sens des moindres carrés.

Ceci achève la validation, car on a établi une concordance statistique globale entre données
réelles et synthétiques, mais on démontre également la capacité du processus de génération des
données à reproduire fidèlement les caractéristiques spécifiques de jeux de données individuels
issus de contextes organisationnels variés.
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Figure 6.4 Exemples de courbes de concentration de jeux de données réels vs synthétiques
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6.1.3 Cadre d’évaluation sur données synthétiques

Les résultats d’expérimentation sont présentés sous forme de boîtes à moustaches, indiquant
la médiane, les quartiles à 25% et 75% et les valeurs considérées comme aberrantes pour les
métriques représentées. Chaque graphique illustre la distribution d’une métrique donnée,
pour différents profils (de bruit ou de tension) utilisés pour la génération des données.

Chaque couple de profils bruit-structure et tension-structure est utilisé 20 fois pour générer 20
jeux différents. Étant donné qu’il y a six paramètres de structure, chaque boite à moustache
décrit donc 120 échantillons différents. Ainsi par exemple, la boite à moustache "LNLD" de la
figure 6.5a, décrit les résultats de rétention de permissions légitimes de la méthode proposée
sur 120 jeux de données synthétiques différents générés avec le profil de bruit LNLD.

Pour l’évaluation en fonction du bruit et du privilege creep, cela veut dire que 600 échantillons
sont représentés sur chaque graphique. Pour l’évaluation en fonction de la tension, ce sont
480 échantillons qui sont représentées par graphique.



65

6.2 Sur jeux de données synthétiques

6.2.1 Niveaux variables de bruit et de privilege creep

La médiane pour l’EP idéale est indiquée par une ligne rouge sur la figure 6.5b.
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Figure 6.5 Performances sur différents niveaux de bruit et privilege creep
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Interprétation

Les figures 6.5a et 6.5b montrent simultanément que les assignations de permissions légitimes
ont été récupérées avec précision dans la majorité des cas, évitant l’expression d’assignations
bruitées ou issues de privilege creep. En effet, la RPL médiane est supérieure à 97,5% ce qui
veut dire qu’en moyenne, on a classifié efficacement les permissions retenues comme légitimes.

Pour ce qui est de l’EP, on observe les variations attendues en comparant la médiane d’EP
obtenue par rapport au cas idéal : l’EP diminue à mesure que le bruit et les instances de
privilege creep sont plus importantes. Cependant, on voit que notre algorithme a tendance à
exprimer moins de permissions en moyenne que le cas idéal, en particulier sur les jeux bruités.
Cette tendance semble ne pas être affectée par les niveaux de bruit, en effet lorsqu’on calcule
la différence d’EP entre la sortie de l’algorithme et le cas idéal, on obtient la table 6.6.
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Figure 6.6 Différence d’EP entre la sortie de l’algorithme de RM et le cas idéal en fonction du
bruit

On observe donc qu’en moyenne, l’algorithme exprime 2% de permissions en moins que le cas
idéal. Les cas les plus extrêmes dévient de 20%, ce qui est cohérent avec les cas extrêmes de
basse RPL. On comprend donc que dans ces cas isolés, l’algorithme a révoqué des permissions
légitimes lors du nettoyage.

Concernant le privilege creep, des informations contradictoires semblent provenir des figures
6.5c et 6.5d : la F-mesure de détection oscille autour de 80%, atteignant parfois des valeurs
inférieures à 50% lors des pires exécutions, tandis qu’une majorité d’assignations issues du
privilege creep sont corrigées avec des valeurs de CPC médianes à 100% sur tous les niveaux
de bruit. Pour comprendre ce phénomène, il faut raisonner de manière statistique et observer
les graphes 6.5g 6.5g et 6.5i. En effet, on observe que les instances de privilege creep de
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type I sont en moyenne mieux détectées que les instances de type II, qui rejoignent alors des
clusters valides. Or, comme les assignations de permission de privilege creep de type II sont
des permissions additionnelles uniquement valables pour les membres d’un projet, elles sont
aisément retirées avec le processus de nettoyage lorsque les autres utilisateurs d’un cluster ne
font pas partie du projet. Enfin, on remarque aussi que la détection de privilege creep est plus
ardue lorsque la quantité de bruit augmente, puisque la PDPC est bien moins bonne dans les
cas HNLD et HNHD (beaucoup de bruit indépendamment de la densité) sur la figure 6.5d.

Une dernière observation à faire sur la PDPC est de regarder la précision et le rappel qui la
composent afin de comprendre clairement comment on a détecté les instances de privilege
creep. En regardant les figures de précision 6.7a et de rappel 6.7b On se rend compte d’un
bon équilibre, bien que la précision soit en moyenne légèrement plus élevée. Cela indique
qu’on a en moyenne un peu plus de faux négatifs que de faux positifs avec les paramètres
déterminés automatiquement. Il est probable qu’avec du fine-tuning, on parvienne à faire
augmenter le rappel sans détériorer la précision en moyenne.
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Paramètre de bruit

0.0

0.2

0.4

0.6

0.8

1.0

(a) Précision PDPC

NN LNLD HNLD LNHD HNHD
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Figure 6.7 Comparaison entre la Précision et le Rappel pour la PDPC en fonction du bruit

La figure 6.5e révèle que l’approche proposée tend à produire moins de rôles qu’attendu,
probablement en raison de permissions légitimes étant effacées par le processus de nettoyage.

Le temps d’exécution moyen pour le processus de nettoyage est inférieur à 5 secondes, ne
dépassant jamais une minute comme le démontre la figure 6.5f. Des temps d’exécution plus
longs peuvent être attribués à des jeux de données exceptionnellement volumineux. En effet,
lorsqu’on représente graphiquement les données de temps d’exécution (figure 6.8) en fonction
des profils de génération de permissions légitimes, on se rend compte que les valeurs les plus
élevées sont détenues par les profils produisant les plus gros jeux de données.
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Figure 6.8 Temps d’exécution en fonction du profil de génération

Lorsque les jeux de données sont exempts de bruit et de privilege creep, les figures 6.5b, 6.5a
et 6.5e confirment que l’approche proposée récupère avec précision les assignations légitimes
sans dégrader le jeux de données, en exprimant la quasi-totalité des permissions présentes, et
trouve un nombre de rôles en moyenne très proche du cas idéal (pas de déviation du tout
pour 95% des cas). On a aussi très peu d’outliers identifiés voir aucun dans la majorité des
cas. Toutes ces informations portent à croire que l’approche proposée ne dégrade pas les jeux
de données de contrôle d’accès lorsque celui-ci ne présente pas d’anomalies.
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6.2.2 Niveaux variables de tension sur les utilisateurs et permissions

La médiane pour l’EP idéale est indiquée par une ligne rouge sur la figure 6.9b.
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Paramètre de tension

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

es
ur

e

(a) Rétention des Permissions
Légitimes (RPL)

NT TP TU TPTU
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Figure 6.9 Performances sur différents niveaux de tension
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Interprétation

Les figures 6.9a et 6.9b démontrent que les affectations de permissions légitimes ne sont
généralement pas récupérées avec précision lorsqu’une tension est exercée sur les utilisateurs.
En effet, la RPL chute à 0% sur plusieurs exécutions et est en moyenne plus faible dans les
cas ou la tension est mise sur les utilisateurs. L’EP est plus faible qu’attendue aussi, on voit
des écarts plus grands avec la médiane d’EP que sur l’expérience précédente. Le constat
est le même et plus fort que la dernière fois : les affectations légitimes ont été massivement
supprimées.

Ce phénomène peut s’expliquer en partie avec l’étape de clustering, notamment en regardant
la PDPC sur la figure 6.9d. La F-mesure diminue de 30% environ lorsque la tension est mise
sur les utilisateurs. Pour mieux comprendre ce qu’il se passe, il faut regarder les métriques de
précision et de rappel utilisées pour calculer la PDPC sur les figures 6.10a et 6.10b. Ici par
rapport à l’expérience précédente, c’est la précision qui est mauvaise et le rappel qui semble
plutôt bon. Pour une majorité des exécutions sous tension utilisateur, on a donc considéré
trop d’outliers que ce qu’on devait : Il y a plus de faux positifs. (voir les figures 6.7a et 6.7b
pour comparaison)
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Figure 6.10 Comparaison entre la Précision et le Rappel pour la PDPC en fonction de la
tension

Cette observation est logique : le clustering devient inefficace dans le cas ou trop peu
d’utilisateurs partagent les mêmes permissions, qui est une limite inhérente à la méthode.

En conséquence, le processus de nettoyage tend à supprimer un nombre plus élevé de permis-
sions en raison de clusters mal identifiés, ce qui mène à une surcorrection du privilege creep
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comme on peut le voir sur la figure 6.9c, ou la correction semble bonne. Idem pour les types
de privilege creep identifiés sur les figures 6.9g, 6.9h et 6.9i, où on croit à une amélioration de
la détection à mesure que le nombre d’utilisateurs diminue, interprétation illusoire au vu des
autres informations données.

Ces effets se propagent à l’étape d’extraction des rôles, aucun rôle ne peut être extrait lorsque
de grandes quantités de permissions ont été supprimées. La figure 6.9e illustre les cas où les
exécutions sous tension utilisateur produisent en moyenne la moitié des rôles qui seraient
normalement nécessaires pour exprimer les affectations (déviation avoisinant 60%), tandis
que le cas témoin possède des performances similaires à la première expérience.

Sur la figure 6.9f, on observe que les temps d’exécution du nettoyage sont plus rapides que
dans les expériences précédentes, avec une moyenne de 3 secondes en raison de la taille réduite
des jeux de données sous tension utilisateur et/ou permission.

Ainsi donc, la tension sur les permissions semble avoir un impact minime sur la RPL et
de PDPC, bien qu’un léger impact sur le role mining soit observé sur la figure 6.9e, où en
moyenne 20% de rôles en moins sont produits. Cependant, la tension sur les utilisateurs
représente un réel problème sur les performances de l’algorithme proposé.

On a observé sur les deux expériences précédentes que l’EP semblait ne pas varier ni en
fonction des niveaux de bruit ni en fonction de la tension. En regardant l’EP en fonction
des profils utilisés pour la génération de données sur la figure 6.11, on se rend compte que le
problème provient principalement de la taille des jeux de données : plus le jeu de données est
grand, plus il est difficile de l’exprimer. En effet, les profils générant les jeux de données les
plus volumineux sont les profils large_flat, large_string et highly_random.
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Figure 6.11 Différence d’EP entre la sortie de l’algorithme de RM et le cas idéal en fonction
de la structure
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6.3 Sur jeux de données réels

Les jeux de données réels permettent d’évaluer l’approche proposée dans un contexte où la
connaissance de référence (ground truth) n’est pas disponible. Les jeux de données réels de la
littérature évaluent principalement la capacité de l’approche à (1) maintenir une expression
de permissions élevée après nettoyage, (2) produire un nombre de rôles réduit et gérable, et
(3) identifier un nombre restreint d’utilisateurs outliers, permettant leur inspection manuelle
pour validation. Ce sont ici les trois objectifs d’évaluation. Cette évaluation valide donc
l’applicabilité pratique de l’approche dans des environnements réels.

Dans la mesure où l’ensemble des jeux de données réels est plus petit, les hyperparamètres
sont choisis plus finement grâce à un processus expliqué dans les sections 3.1.1 et 3.1.1.
Essentiellement, on vient fine-tuner r, le nombre de composantes pour TSVD, ϵ, le paramètre
pour DBSCAN, et tc, le seuil nettoyage pour les clusters.

Les valeurs pour ces hyperparamètres fine tunés sont rapportées dans le tableau 6.1 en même
temps que la variance expliquée cumulée après réduction de dimension.

Jeu de données r TV ar ϵ tc

americas_large 10 0.646 2 0.3
americas_small 7 0.807 1 0.5
apj 6 0.350 0.5 0.005
customer 12 0.500 1 0.02
domino 4 0.840 1 0.1
emea 12 0.815 16 0.05
firewall1 3 0.882 0.3 0.5
firewall2 1 0.832 0.03 0.5
healthcare 3 0.841 1.5 0.4

Table 6.1 Hyperparamètres déterminés pour les jeux de données réels

Pour une majorité des jeux de données (americas_small, domino, emea, firewall1, firewall2 et
healthcare), la condition sur la variance totale cumulée donnée par l’équation 3.6 est vérifiée
avec un nombre r de composantes inférieur à 12, en moyenne 5. Cependant, lors de la
recherche de r pour les jeux americas_large, customer et apj ; la condition sur la composante
courante explorée, donnée par l’inéquation 3.7 arrête le processus. La cause principale est la
taille de ces jeux de données, qui font partie des 4 plus gros de ce benchmark (Cf. tableau
2.1), mais aussi à la distribution des assignations de permissions sur les utilisateurs.
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Ensuite, le paramètre ϵ est fine tuné en prenant en compte la suggestion de l’algorithme NDCT.
Ce paramètre est ajusté notamment lorsque le nombre d’utilisateurs est relativement faible
comme sur les jeux de données healthcare, emea ou domino, car la technique automatique a
tendance à donner une valeur de ϵ qui marque un trop grand nombre d’utilisateurs comme
des outliers après clustering (de l’ordre de la moitié du nombre d’utilisateurs total). On
réajuste donc ce paramètre pour viser 5 à 10% d’outliers identifiés par rapport au nombre
total d’utilisateurs quand la méthode automatique échoue.

Enfin le paramètre tc est quant à lui fixé à 0,5 par défaut. Lorsque ce seuil donne des niveaux
d’EP trop bas (de l’ordre de moins de 10% de permissions exprimées) on considère qu’il faut
le diminuer. C’est pour cela que les jeux de données americas_large, healthcare et domino se
voient attribuer des seuils plus bas. Les seuils des jeux de données apj, customer et emea
sont cependant anormalement bas. Deux effets peuvent expliquer ce résultat :

1. Un petit nombre d’utilisateurs concentre la quasi-totalité des assignations, ce sont des
administrateurs et ils ont été retirés à l’étape du clustering, ce qui fait que l’ensemble
des permissions restantes est minime. C’est le cas pour les jeux emea et domino.

2. Le clustering a regroupé un gros nombre d’utilisateurs sans réel motif de permissions
communes entre eux, ce qui fait que le seuil requis pour ne pas retirer les permissions
légitimes est anormalement bas. C’est le cas pour les jeux apj, customer et dans une
moindre mesure americas_large et healthcare.

Les seuils tc renseignés donnent des valeurs de Permissions Exprimées (PE) supérieures
avoisinant 80% ou plus (voir tableau 6.2), afin d’assurer un role mining efficace.

Le Tableau 6.2 compile les résultats de l’approche. Le nombre optimal de rôles noptimal

utilisé pour la comparaison est fourni par HP Labs [1] et rapporté par Blundo et al. [42].
nrôles représente le nombre de rôles minés avec la méthode proposée dans cette recherche. Π
représente l’expression de permission régulière définie dans la section 5.4, et π l’expression de
permission calculée sans les outliers. Le nombre d’outliers détectés (nb out.) est rapporté
aux côtés du nombre d’utilisateurs |U| de chaque jeu de données pour calculer le pourcentage
d’outliers détectés parmi les utilisateurs (% out.).
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Jeu de données Π π |U| nb. out % out. nrôles noptimal

americas_large 0.755 0.841 3,485 45 1.29% 98 398
americas_small 0.881 0.913 3,477 31 0.89% 21 178
apj 0.727 0.759 2,044 13 0.64% 183 453
customer 0.798 0.812 10,021 58 0.58% 47 276
domino 0.171 0.919 79 7 8.86% 6 20
emea 0.615 0.799 35 4 11.43% 25 34
firewall1 0.905 0.974 365 14 3.84% 4 64
firewall2 0.994 1.000 325 7 2.15% 1 10
healthcare 0.881 0.946 46 4 8.70% 2 14

Table 6.2 Résultats sur des jeux de données du monde réel

Les jeux de données emea et surtout domino obtiennent des valeurs de permissions exprimées
très différentes en fonction qu’on prenne en compte ou non les outliers. En effet, on a
précédemment identifié que ces jeux de données sont caractérisés par un petit nombre
d’utilisateurs qui concentrent un grand nombre de permissions, et qui sont ensuite marqués
comme des outliers. L’approche proposée produit plus de 72% d’EP sur tous les autres jeux
de données.

En examinant la différence entre Π et π, il est clair que sur des jeux de données comme
domino et emea, le petit groupe d’outliers identifiées concentre la majorité des assignations de
permissions. En effet, π est supérieur à 80%, ce qui signifie que les utilisateurs appartenant à
un cluster ont 80% de leurs permissions exprimées en moyenne lorsqu’on ne considère pas les
outliers dans le compte. Ces utilisateurs marqués comme des outliers sont probablement des
administrateurs avec un nombre exceptionnellement élevé d’assignations de permissions, ce
qui expliquerait en partie pourquoi ils ont été détectés comme tel.

Dans l’ensemble, le nombre d’outliers identifiées se situe entre 0.5% et 12% du nombre
d’utilisateurs pour tous les jeux de données, avec un nombre absolu gérable par un humain,
qui ne dépasse jamais 60 utilisateurs.

De plus, l’approche a produit moins de rôles sur tous les jeux de données par rapport au
nombre optimal utilisé pour l’expression complète du jeu de données, divisant efficacement le
nombre de rôles par 4 en moyenne. Le nombre exceptionnellement faible de rôles produits
sur firewall1 et firewall2 est probablement dû aux jeux de données eux-mêmes, formés d’un
grand nombre d’utilisateurs similaires avec seulement quelques utilisateurs représentant des
exceptions.
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Évaluation critique des objectifs

Les résultats sur les jeux de données réels confirment partiellement l’atteinte des objectifs
d’évaluation fixés.

Expression des permissions élevée (1) : cet objectif est globalement atteint, puisque sept
jeux de données sur neuf maintiennent une expression de permissions Π > 0.72. Cependant,
domino (Π = 0.171) et emea (Π = 0.615) présentent des résultats problématiques. En excluant
les outliers, ces valeurs remontent à π = 0.919 et π = 0.799 respectivement, ce qui suggère
que l’approche fonctionne correctement pour les utilisateurs réguliers, mais que la présence
d’administrateurs fausse fortement la métrique globale. Cette limitation révèle que l’objectif
est atteint conditionnellement : l’expression est élevée pour les utilisateurs non-outliers, mais
la métrique agrégée s’avère trompeuse sur des jeux de données déséquilibrés.

Nombre de rôles réduit et gérable (2) : cet objectif est clairement atteint, avec une réduction
moyenne du nombre de rôles par un facteur 4 par rapport au nombre optimal. Les résultats
pour firewall1 (4 rôles vs 64) et firewall2 (1 rôle vs 10) sont particulièrement marquants, bien
que probablement attribuables à la structure particulière de ces jeux de données plutôt qu’à
une performance supérieure de l’approche.

Identification d’un nombre restreint d’outliers (3) : cet objectif est partiellement atteint. Le
nombre absolu d’outliers reste gérable (≤ 60 utilisateurs), mais le pourcentage varie consid-
érablement (0.58% à 11.43%). Pour les petits jeux de données (emea, domino, healthcare), le
taux d’outliers dépasse largement l’objectif de 5 à 10% initialement fixé lors du fine-tuning de
ϵ. Cette inconsistance suggère que l’approche manque de robustesse face aux jeux de données
de petite taille ou fortement déséquilibrés.

En synthèse, l’approche démontre son applicabilité pratique sur des jeux de données réels
de taille moyenne à grande, mais révèle des limitations sur les petits ensembles de données
ou ceux présentant de fortes concentrations de permissions. L’absence de connaissance de
référence empêche toutefois de valider définitivement la pertinence des outliers détectés.
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6.4 Sur jeux de données réels du partenaire industriel

Chez le partenaire industriel, la définition des rôles métiers constitue une étape essentielle dans
la gestions des identités et des accès. Les rôles décrivent les responsabilités professionnelles
des utilisateurs, et doivent regrouper l’ensemble des permissions nécessaires pour refléter
fidèlement leurs activités.

Dans la pratique, chez le partenaire, la définition de tels rôles repose sur des approches
combinant des analyses statistiques et une validation experte, visant à identifier des ensembles
de permissions représentatifs pour des groupes homogènes d’utilisateurs. Cette approche, bien
que pratique et efficace, présente de défis en termes de scalabilité, ce qui justifie l’exploration
de méthodes plus intelligentes et automatiques, telles que celles proposées dans ce travail.

La méthode de role mining proposée est évaluée en comparaison de cette méthode opéra-
tionnelle. Des recommandations de permissions sont formulées avec l’information statistique
sur les clusters. On attribue aux permissions un score égal à la prévalence de cette permission
au sein d’un cluster. On obtient alors un classement des permissions par ordre de prévalence
qu’on va comparer aux propositions humaines faites avec l’outil d’origine. On ne peut utiliser
les métriques définies dans la partie 5.4, car l’objectif évalué est différent.

L’évaluation est faite de la façon suivante pour quatre rôles métier à définir :

• Les propositions de permissions sont faites humainement avec la méthode opérationnelle
classique. On relève le nombre de propositions humaines NH faites pour chaque rôle.

• Les propositions humaines sont ensuite revues, et celles pertinentes pour la formation du
rôle métier sont relevées. On obtient alors le nombre de permissions retenues Nretenues.

• On utilise la méthode de RM proposée pour faire des recommandations de permis-
sions. Puisque les recommandations sont classées par score, on relève le nombre de
recommandations NRM à atteindre pour exprimer toutes les permissions retenues. Par
exemple si on a 5 permissions retenues qui figurent respectivement dans le classement
des recommandations aux places 1, 2, 4, 5 et 7, alors on relève NRM = 7.

• On calcule ensuite la précision d’acceptation pour la méthode opérationnelle
(Précision H) et la méthode de role mining (Précision RM).

On renseigne toutes ces informations dans le tableau 6.3.
On observe alors un net gain en précision avec la méthode de role mining proposée, qui est en
moyenne 22% plus précise que la méthode opérationnelle. Un autre avantage de la méthode
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Rôle NH NRM Nretenus Précision H Précision RM
Rôle 1 14 12 9 64% 75%
Rôle 2 34 16 12 35% 75%
Rôle 3 14 10 10 72% 100%
Rôle 4 15 13 10 66% 77%

Table 6.3 Résultats sur la formation de rôles métier chez le partenaire industriel

proposée est le gain de temps par rapport à la méthode conventionnelle, faisant gagner environ
10 minutes pour donner l’ensemble des permissions pour former un rôle métier.

Le champ d’évaluation comparative demeure restreint, ce qui nous a conduit à ajuster le
cadre d’évaluation initialement prévu. Les résultats présentés doivent donc être interprétés
avec prudence. Des analyses complémentaires, appuyées par des tests supplémentaires,
permettraient d’en confirmer la validité.

6.5 Discussion

L’approche proposée obtient ses meilleurs résultats sur des jeux de données tels
qu’americas_small, firewall1, firewall2, et de grands jeux de données synthétiques sans
tension utilisateur, en exprimant 90% des assignations de permissions et supprimant avec
précision le bruit et le privilege creep. Sur les jeux de données du monde réel, elle réduit
également le nombre de rôles requis d’un facteur de 10 dans les meilleurs cas, ce qui améliore
grandement la gestion des accès dans les grandes organisations. Toutes les exécutions
roulent en un temps acceptable de moins d’une minute avec une implémentation en Python,
probablement améliorable en utilisant un langage compilé qui roule plus vite.

Un avantage clé de l’approche proposée est sa nature préservatrice de sécurité (security
preserving) [44], puisqu’aucune nouvelle assignation de permission n’est ajoutée à l’UPA, la
rendant appropriée pour l’examen des accès critiques. On confirme cette propriété lorsqu’on
procède à la comparaison de la précision et du rappel utilisés pour calculer la RPL sur les
figures 6.12 et 6.13. En effet, on voit que sur tous les profils de bruit et une majorité des profils
sous tension, la précision descend rarement en dessous de 99%, indiquant que l’écrasante
majorité des permissions retenues sont bel et bien des permissions légitimes, les rares faux
positifs sont causées par des instances de bruit non supprimées. Cependant, on observe que le
rappel est lui moins élevé, influant sur les mauvais scores de F-mesure. On a donc trop de
faux négatifs qu’on pourrait corriger par fine tuning de la méthode.

Il convient également de noter que bien que le privilege creep de type I soit détecté avec
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une précision supérieure à 90%, les instances de type II tendent à être plus difficiles à
détecter à mesure que les niveaux de bruit augmentent, avec des scores de détection qui
descendent en dessous de 50%. Cela se produit lorsque des niveaux de bruit plus élevés
rendent les assignations de permissions additionnelles causées par le privilege creep de type
II indiscernables du bruit aléatoire. En effet, lorsque la densité de bruit surpasse la densité
d’assignations de privilege creep de type II, on observe une diminution significative de la
détection de ce type de privilege creep.

En raison du processus d’analyse statistique utilisé pour nettoyer le jeu de données, les
permissions issues de privilege creep de type II sont quand même effacées dans la plupart
des cas, même si elles ne sont pas détectées. Ce ne serait pas le cas si le seuil tc venait à
être trop bas, auquel cas, on ajouterait du bruit à la matrice nettoyée. Bien qu’on remplisse
l’objectif de nettoyage, une limitation dans la détection des instances de privilege creep liées
aux projets subsiste.

Les évaluations de performance soulignent une limitation inhérente : l’approche démontre une
efficacité réduite sur les jeux de données avec peu d’utilisateurs (c’est-à-dire <100) comme
sur domino, emea, healthcare, et les jeux de données synthétiques avec tension utilisateur.
En effet, la PDPC est en moyenne de 60%, et les permissions légitimes commencent à être
traitées comme du bruit et sont donc supprimées.

D’autres limitations proviennent des jeux de données produits synthétiquement, qui sont
intrinsèquement plus propres que ceux du monde réel, et présentent des motifs structurels
artificiels qui peuvent ne pas refléter la complexité et les irrégularités des environnements
d’entreprise réels.

La dépendance de la méthode de nettoyage à l’ajustement des hyperparamètres est une autre
limitation, même si des estimations proches sont automatiquement produites. Cette sensibilité
est particulièrement importante pour le seuil de nettoyage statique tc : la même valeur peut
produire différents résultats de nettoyage selon la taille du cluster.



79

NN LNLD HNLD LNHD HNHD
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Figure 6.12 Comparaison entre la Précision et le Rappel pour la RPL en fonction du bruit
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Figure 6.13 Comparaison entre la Précision et le Rappel pour la RPL en fonction de la tension
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CHAPITRE 7 CONCLUSION

7.1 Synthèse des travaux

Ma recherche aborde la question du role mining en présence de privilege creep à travers trois
contributions principales :

• Le développement d’une méthodologie de role mining efficace qui nettoie le bruit et dé-
tecte les instances de privilege creep dans les matrices UPA, atteignant 90% de précision
de détection et 95% de rétention des permissions légitimes en moyenne. Cette méthode
est non supervisée et n’utilise pas d’attributs la rendant agnostique aux domaines
d’application et facilement déployable dans différents environnements d’entreprise sans
nécessiter d’expertise spécialisée ou de données d’entraînement préalables. Elle fournit
aussi des recommandations pour la revue d’accès en indiquant les utilisateurs plus
probablement atteints de privilege creep.

• La construction d’un générateur de données synthétiques paramétrable qui vise à
créer des jeux de données de role mining réalistes, avec injection contrôlée de bruit et
d’accumulation des privilèges. Les paramètres utilisés dans le générateur sont facilement
dérivables pour générer un jeu de données semblable à une structure d’entreprise donnée.

• La proposition d’un nouveau cadre d’évaluation fournissant de nouvelles métriques pour
le role mining sensible au privilege creep. Ce nouveau cadre est par la suite utilisé pour
évaluer la méthode de role mining proposée dans ma recherche sur des jeux de données
synthétiques et réels.

L’ensemble de ma recherche a été compilée dans un article de conférence soumis et accepté à
2025 IEEE 24th International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom 2025), pour le workshop Data Security & Privacy (Data S&P).
Cet article est renseigné en annexe A. L’implémentation complète des algorithmes utilisés dans
cette recherche est disponible à l’adresse suivante : https://github.com/nymphargus/privilege-
creep-aware-role-mining.git.

7.2 Limitations

On peut séparer les différentes limitations entre la génération de données synthétique,
l’approche de role mining et le cadre d’évaluation.

https://github.com/nymphargus/privilege-creep-aware-role-mining.git
https://github.com/nymphargus/privilege-creep-aware-role-mining.git
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Pour ce qui est de la génération de données synthétiques, la limitation principale est le fait
que les jeux de données générés ne correspondent pas exactement à la réalité, et bien qu’on a
essayé de rendre les jeux plus réalistes, beaucoup d’hypothèses ont été faites :

1. Les distributions des utilisateurs et des permissions sur l’arbre légitime généré peuvent
ne pas suivre une loi binomiale et constituent donc une hypothèse forte sur la structure
des données synthétiques.

2. Les scénarios de privilege creep et la façon dont ils se traduisent dans la matrice UPA
sont limitées, d’autres scénarios pourraient être rajoutées.

3. Les jeux de données synthétiques générés sont plus propres que ceux du monde réel.
Même si nous avons explicitement ajouté du bruit et du privilege creep, les motifs de
permissions produits sont plus faciles à détecter que sur des jeux réels.

Cependant, on a bien validé les jeux de données générées vis-à-vis des distributions de
permissions et utilisateurs générales, ces limitations sont donc nuancées.

Pour ce qui est de la méthode de role mining à proprement parler, les limitations principales
viennent de la flexibilité donnée à la conception de la méthode. En effet, l’approche est
sensible aux paramètres utilisés tout au long du processus (entre autre : r pour TSVD, ϵ

pour DBSCAN, tc pour le nettoyage statistique des clusters). C’est un choix voulu afin de
permettre des ajustements par fine tuning. Bien qu’il existe des heuristiques assez précises
pour r et ϵ, on ne dispose pas d’une telle aide pour choisir le paramètre tc.

Cette limitation est d’autant plus flagrante lorsqu’on regarde les jeux de données réels comme
apj, customer, domino, et emea qui requièrent des seuils tc particulièrement bas pour obtenir
une expression de permission d’au moins 50%. Ce phénomène provient du couplage existant
entre ϵ et tc : En essayant d’obtenir environ 10% d’outliers sur les jeux de données réels,
ceci enfle les valeurs de ϵ, ce qui a comme conséquence de fusionner certains clusters. Ces
clusters plus gros requièrent alors des seuils de nettoyage tc plus faibles afin maintenir un
nettoyage adéquat. Ces observations révèlent un effet cascade sur les hyperparamètres, avec ϵ

et particulièrement tc qui montrent la plus haute sensibilité. Des visualisations de clusters
avec des outils comme t-distributed stochastic neighbor embedding permettraient de guider
la sélection des hyperparamètres.

Enfin la plus grande limitation du processus d’évaluation est la réduction à certains profils
de structure de données, de niveaux de bruit, privilege creep et tension. En effet, on a dû
former des profils types suffisamment diversifiés pour évaluer la méthode à cause du nombre
importants de paramètres utilisés pour la génération des données synthétiques.
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7.3 Améliorations futures

Les améliorations les plus directes de l’approche proposée incluent :

• l’exploration d’algorithmes de clustering alternatifs tels qu’Isolation Forest (IF) ou
Local Outlier Factor (LOF) pour le nettoyage des données permettrait d’améliorer la
performance sur les jeux de données de taille restreinte.

• Le développement de seuils tc adaptatifs basés sur les caractéristiques des clusters (par
exemple un seuil plus petit à mesure qu’un cluster est grand), pourrait être une solution
pour pallier la sensibilité particulière du paramètre tc.

• L’utilisation d’attributs utilisateur pour aider l’effort de clustering en s’inspirant de
l’interprétabilité de Kang et al. (voir section 2.5.1) afin de mieux guider le clustering et
la sélection de rôles en aval.

• L’enrichissement des jeux de données synthétiques, avec des modèles d’architectures
matricielles ou en réseau, en ajoutant des contraintes de separation of duties, permettrait
de modéliser des scénarios plus proches de la réalité en entreprise.

• Une évaluation comparative des performances de la méthode proposée avec des méthodes
de l’état de l’art adaptées complèterait la validation relative aux techniques existantes.



83

RÉFÉRENCES

[1] A. Ene, W. Horne, N. Milosavljevic, P. Rao, R. Schreiber et R. E. Tarjan, “Fast exact and
heuristic methods for role minimization problems,” dans Proceedings of the 13th ACM
Symposium on Access Control Models and Technologies. Association for Computing
Machinery, 2008, p. 1–10.

[2] S. J. Stolfo, S. M. Bellovin, S. Hershkop, A. D. Keromytis, S. Sinclair et S. W. Smith,
Insider attack and cyber security: beyond the hacker. Springer Science & Business Media,
2008, vol. 39.

[3] Fortinet. (2024) What is an insider threat? [En ligne]. Disponible: https:
//www.fortinet.com/resources/cyberglossary/insider-threats

[4] Cybersecurity and Infrastructure Security Agency. (2024) Defining insider
threats. [En ligne]. Disponible: https://www.cisa.gov/topics/physical-security/
insider-threat-mitigation/defining-insider-threats

[5] Ponemon Institute. (2023) 2023 cost of insider threats global report. [En ligne].
Disponible: https://www2.dtexsystems.com/l/464342/2023-09-15/3w7l7k/464342/
1694800570ZwvyrzsD/2023_Cost_of_Insider_Risks_Global_Report___Ponemon_
and_DTEX___Dgtl.pdf

[6] Cybersecurity Insiders, Securonix. (2024) 2024 insider threat re-
port. [En ligne]. Disponible: https://www.cybersecurity-insiders.com/
2024-insider-threat-report-trends-challenges-and-solutions/

[7] Capital One Data Breach Settlement Administrator. (2022) Notice of class action
settlement - in re: Capital one inc. customer data security breach litigation, mdl no.
1:19-md-2915. [En ligne]. Disponible: https://www.capitalonesettlement.com/Content/
Documents/Notice.pdf

[8] Office of the Comptroller of the Currency. (2020) Occ fines capital one $80 million
for 2019 cyber breach. [En ligne]. Disponible: https://www.occ.gov/news-issuances/
news-releases/2020/nr-occ-2020-101.html

[9] United States District Court for the Eastern District of Virginia. (2021) Order Granting
Final Approval of Class Action Settlement. [En ligne]. Disponible: https://www.
capitalonesettlement.com/Content/Documents/Final%20Approval%20Order.pdf

https://www.fortinet.com/resources/cyberglossary/insider-threats
https://www.fortinet.com/resources/cyberglossary/insider-threats
https://www.cisa.gov/topics/physical-security/insider-threat-mitigation/defining-insider-threats
https://www.cisa.gov/topics/physical-security/insider-threat-mitigation/defining-insider-threats
https://www2.dtexsystems.com/l/464342/2023-09-15/3w7l7k/464342/1694800570ZwvyrzsD/2023_Cost_of_Insider_Risks_Global_Report___Ponemon_and_DTEX___Dgtl.pdf
https://www2.dtexsystems.com/l/464342/2023-09-15/3w7l7k/464342/1694800570ZwvyrzsD/2023_Cost_of_Insider_Risks_Global_Report___Ponemon_and_DTEX___Dgtl.pdf
https://www2.dtexsystems.com/l/464342/2023-09-15/3w7l7k/464342/1694800570ZwvyrzsD/2023_Cost_of_Insider_Risks_Global_Report___Ponemon_and_DTEX___Dgtl.pdf
https://www.cybersecurity-insiders.com/2024-insider-threat-report-trends-challenges-and-solutions/
https://www.cybersecurity-insiders.com/2024-insider-threat-report-trends-challenges-and-solutions/
https://www.capitalonesettlement.com/Content/Documents/Notice.pdf
https://www.capitalonesettlement.com/Content/Documents/Notice.pdf
https://www.occ.gov/news-issuances/news-releases/2020/nr-occ-2020-101.html
https://www.occ.gov/news-issuances/news-releases/2020/nr-occ-2020-101.html
https://www.capitalonesettlement.com/Content/Documents/Final%20Approval%20Order.pdf
https://www.capitalonesettlement.com/Content/Documents/Final%20Approval%20Order.pdf


84

[10] Guidehouse Inc. (2023) State of maine office of the attorney gen-
eral - data breach notification - tesla. [En ligne]. Disponible:
https://www.maine.gov/agviewer/content/ag/985235c7-cb95-4be2-8792-a1252b4f8318/
014ae6db-4cb7-464b-b827-5d73f0bbc911.shtml

[11] Handelsblatt. (2023) Digitales Dossier: Das sind die Handelsblatt-Recherchen zu
den Tesla-Files. [En ligne]. Disponible: https://www.handelsblatt.com/unternehmen/
industrie/digitales-dossier-das-sind-die-handelsblatt-recherchen-zu-den-tesla-files/
29170110.html

[12] United States District Court for the Northern District of California. (2023) PAI v. TESLA,
INC. [En ligne]. Disponible: https://www.classaction.org/media/pai-v-tesla-inc.pdf

[13] Y. A. Marquis, “From theory to practice: Implementing effective role-based access
control strategies to mitigate insider risks in diverse organizational contexts,” Journal of
Engineering Research and Reports, vol. 26, no. 5, p. 138–154, 2024.

[14] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn et R. Chandramouli, “Proposed
NIST standard for role-based access control,” ACM Transactions on Information and
System Security, vol. 4, no. 3, p. 224–274, 2001.

[15] Contributeurs de Wikipédia. (2024) Fonction multivaluée. Wikipédia, l’encyclopédie libre.
[En ligne]. Disponible: https://fr.wikipedia.org/wiki/Fonction_multivalu%C3%A9e

[16] D. Zhang, K. Ramamohanarao et T. Ebringer, “Role engineering using graph optimi-
sation,” dans Proceedings of the 12th ACM Symposium on Access Control Models and
Technologies. Association for Computing Machinery, 2007, p. 139–144.

[17] (2022) Graphe biparti. Wikipédia. [En ligne]. Disponible: https://fr.wikipedia.org/wiki/
Graphe_biparti

[18] J. Vaidya, V. Atluri, Q. Guo et H. Lu, “Edge-RMP: Minimizing administrative assign-
ments for role-based access control,” Journal of Computer Security, vol. 17, no. 2, p.
211–235, 2009.

[19] J. Vaidya, V. Atluri et J. Warner, “RoleMiner: Mining roles using subset enumeration,”
dans Proceedings of the 13th ACM Conference on Computer and Communications Security.
Association for Computing Machinery, 2006, p. 144–153.

[20] Q. Guo, J. Vaidya et V. Atluri, “The role hierarchy mining problem: Discovery of optimal
role hierarchies,” dans 2008 annual computer security applications conference (ACSAC).
IEEE, 2008, p. 237–246.

https://www.maine.gov/agviewer/content/ag/985235c7-cb95-4be2-8792-a1252b4f8318/014ae6db-4cb7-464b-b827-5d73f0bbc911.shtml
https://www.maine.gov/agviewer/content/ag/985235c7-cb95-4be2-8792-a1252b4f8318/014ae6db-4cb7-464b-b827-5d73f0bbc911.shtml
https://www.handelsblatt.com/unternehmen/industrie/digitales-dossier-das-sind-die-handelsblatt-recherchen-zu-den-tesla-files/29170110.html
https://www.handelsblatt.com/unternehmen/industrie/digitales-dossier-das-sind-die-handelsblatt-recherchen-zu-den-tesla-files/29170110.html
https://www.handelsblatt.com/unternehmen/industrie/digitales-dossier-das-sind-die-handelsblatt-recherchen-zu-den-tesla-files/29170110.html
https://www.classaction.org/media/pai-v-tesla-inc.pdf
https://fr.wikipedia.org/wiki/Fonction_multivalu%C3%A9e
https://fr.wikipedia.org/wiki/Graphe_biparti
https://fr.wikipedia.org/wiki/Graphe_biparti


85

[21] J. Schlegelmilch et U. Steffens, “Role mining with ORCA,” dans Proceedings of the
Tenth ACM Symposium on Access Control Models and Technologies. Association for
Computing Machinery, 2005, p. 168–176.

[22] J. Vaidya, V. Atluri et Q. Guo, “The role mining problem: Finding a minimal descriptive
set of roles,” dans Proceedings of the 12th ACM Symposium on Access Control Models
and Technologies. Association for Computing Machinery, 2007, p. 175–184.

[23] J. Vaidya, V. Atluri, Q. Guo et H. Lu, “Role mining in the presence of noise,” dans Data
and Applications Security and Privacy XXIV - 24th Annual IFIP WG 11.3 Working
Conference, Proceedings, vol. 6166 LNCS. Springer Verlag, 2010, p. 97–112.

[24] I. Molloy, N. Li, Y. A. Qi, J. Lobo et L. Dickens, “Mining roles with noisy data,” dans
Proceedings of the 15th ACM Symposium on Access Control Models and Technologies.
ACM, 2010, p. 45–54.

[25] M. Frank, D. Basin et J. M. Buhmann, “A class of probabilistic models for role engineer-
ing,” dans Proceedings of the 15th ACM conference on Computer and communications
security, 2008, p. 299–310.

[26] M. Frank, J. M. Buhman et D. Basin, “Role Mining with Probabilistic Models,” ACM
Transactions on Information and System Security, vol. 15, no. 4, p. 15:1–15:28, 2013.

[27] A. Kern, A. Schaad et J. Moffett, “An administration concept for the enterprise role-based
access control model,” dans Proceedings of the Eighth ACM Symposium on Access Control
Models and Technologies. Association for Computing Machinery, 2003, p. 3–11.

[28] A. P. Streich, M. Frank, D. Basin et J. M. Buhmann, “Multi-assignment clustering for
Boolean data,” dans Proceedings of the 26th Annual International Conference on Machine
Learning. Association for Computing Machinery, 2009, p. 969–976.

[29] M. Frank, A. P. Streich, D. Basin et J. M. Buhmann, “Multi-assignment clustering for
boolean data,” J. Mach. Learn. Res., vol. 13, no. 1, p. 459–489, 2012.

[30] Z. Ghahramani et T. Griffiths, “Infinite latent feature models and the indian buffet
process,” Advances in neural information processing systems, vol. 18, 2005.

[31] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das et H. Mannila, “The discrete basis
problem,” IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 10, p.
1348–1362, 2008.



86

[32] A. Kabán et E. Bingham, “Factorisation and denoising of 0–1 data: a variational
approach,” Neurocomputing, vol. 71, no. 10-12, p. 2291–2308, 2008.

[33] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang et J. Lobo, “Evaluating role mining algorithms,”
dans Proceedings of the 14th ACM Symposium on Access Control Models and Technologies.
Association for Computing Machinery, 2009, p. 95–104.

[34] H. Huang, F. Shang, J. Liu et H. Du, “Handling least privilege problem and role mining
in RBAC,” Journal of Combinatorial Optimization, vol. 30, no. 1, p. 63–86, 2015.

[35] H. Lu, Y. Hong, Y. Yang, L. Duan et N. Badar, “Towards user-oriented RBAC model,”
Journal of Computer Security, vol. 23, no. 1, p. 107–129, 2015.

[36] B. Mitra, S. Sural, J. Vaidya et V. Atluri, “A Survey of Role Mining,” ACM Computing
Surveys, vol. 48, no. 4, p. 50:1–50:37, 2016.

[37] J. Jiang, X. Yuan et R. Mao, “Research on Role Mining Algorithms in RBAC,” dans
Proceedings of the 2018 2nd High Performance Computing and Cluster Technologies
Conference. Association for Computing Machinery, 2018, p. 1–5.

[38] M. Trnecka et M. Trneckova, “An incremental algorithm for the role mining problem,”
Computers & Security, vol. 94, p. 101830, 2020.

[39] C. Blundo, S. Cimato et L. Siniscalchi, “Role Mining Heuristics for Permission-Role-Usage
Cardinality Constraints,” Computer Journal, vol. 65, no. 6, p. 1386–1411, 2022.

[40] Q. Guo et M. Tripunitara, “The Secrecy Resilience of Access Control Policies and Its
Application to Role Mining,” dans Proceedings of the 27th ACM on Symposium on
Access Control Models and Technologies. Association for Computing Machinery, 2022,
p. 115–126.

[41] L. Dong, T. Wu, W. Jia, B. Jiang et X. Li, “Computable Access Control: Embedding
Access Control Rules Into Euclidean Space,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 53, no. 10, p. 6530–6541, 2023.

[42] C. Blundo et S. Cimato, “Role mining under User-Distribution cardinality constraint,”
Journal of Information Security and Applications, vol. 78, p. 103611, 2023.

[43] F. Zhu, C. Yang, L. Zhu et J. Gu, “Application of Matrix Factorization Role Mining
Algorithm in Role-Based Access Control for Edge RMP,” dans 2024 9th International
Conference on Electronic Technology and Information Science (ICETIS), 2024, p. 761–
767.



87

[44] J. Crampton, E. Eiben, G. Gutin, D. Karapetyan et D. Majumdar, “Generalized Noise
Role Mining,” dans Proceedings of the 27th ACM on Symposium on Access Control
Models and Technologies. Association for Computing Machinery, 2022, p. 91–102.

[45] M. Abolfathi, Z. Raghebi, H. Jafarian et F. Banaei-Kashani, “A Scalable Role Mining
Approach for Large Organizations,” dans Proceedings of the 2021 ACM Workshop on
Security and Privacy Analytics. Association for Computing Machinery, 2021, p. 45–54.

[46] S. D. Stoller, P. Yang, C. R. Ramakrishnan et M. I. Gofman, “Efficient policy analysis for
administrative role based access control,” dans Proceedings of the 14th ACM Conference
on Computer and Communications Security. Association for Computing Machinery,
2007, p. 445–455.

[47] S. Parkinson, S. Khan, J. Bray et D. Shreef, “Creeper: A tool for detecting permission
creep in file system access controls,” Cybersecurity, vol. 2, no. 1, p. 14, 2019.

[48] D. Alexander et D. K. Chikwarti, “Graph-Based AI Techniques for Role Mining and Access
Optimization in Complex Enterprises,” International Journal of Advanced Engineering
Technologies and Innovations, vol. 01, no. 03, 2023.

[49] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo et J. Lobo, “Mining
roles with semantic meanings,” dans Proceedings of the 13th ACM Symposium on Access
Control Models and Technologies. Association for Computing Machinery, 2008, p. 21–30.

[50] H. Lu, J. Vaidya et V. Atluri, “An optimization framework for role mining,” Journal of
Computer Security, vol. 22, no. 1, p. 1–31, 2014.

[51] S. Vavilis, A. I. Egner, M. Petković et N. Zannone, “Role Mining with Missing Values,”
dans 2016 11th International Conference on Availability, Reliability and Security (ARES),
2016, p. 167–176.

[52] S. Parkinson et A. Crampton, “Identification of irregularities and allocation suggestion
of relative file system permissions,” Journal of Information Security and Applications,
vol. 30, p. 27–39, 2016.

[53] S. D. Stoller et T. Bui, “Mining hierarchical temporal roles with multiple metrics,”
Journal of Computer Security, vol. 26, no. 1, p. 121–142, 2018.

[54] N. Gal-Oz, Y. Gonen et E. Gudes, “Mining meaningful and rare roles from web application
usage patterns,” Computers & Security, vol. 82, p. 296–313, 2019.



88

[55] H. Kang, G. Liu, Q. Wang, Q. Zhang, J. Niu et N. Luo, “An improved minimal noise
role mining algorithm based on role interpretability,” Computers & Security, vol. 127, p.
103100, 2023.

[56] O. Durdag et A. Coskuncay, “Reconfiguring Role-Based Access Control via Role Cluster-
ing,” IEEE Access, vol. 13, p. 72 984–72 993, 2025.

[57] M. N. Nobi, R. Krishnan, Y. Huang, M. Shakarami et R. Sandhu, “Toward Deep Learning
Based Access Control,” dans Proceedings of the Twelfth ACM Conference on Data and
Application Security and Privacy, ser. CODASPY ’22. Association for Computing
Machinery, 2022, p. 143–154.

[58] S. Parkinson et S. Khana, “Identifying high-risk over-entitlement in access control policies
using fuzzy logic,” Cybersecurity, vol. 5, no. 1, p. 6, 2022.

[59] M. C. Massi, F. Ieva et E. Lettieri, “Data mining application to healthcare fraud detection:
A two-step unsupervised clustering method for outlier detection with administrative
databases,” BMC Medical Informatics and Decision Making, vol. 20, no. 1, p. 160, 2020.

[60] Y. Lu, I. Cohen, X. S. Zhou et Q. Tian, “Feature selection using principal feature
analysis,” dans Proceedings of the 15th ACM International Conference on Multimedia.
Association for Computing Machinery, 2007, p. 301–304.

[61] T. I. A. Souza, A. L. L. Aquino et D. G. Gomes, “A method to detect data outliers from
smart urban spaces via tensor analysis,” Future Generation Computer Systems, vol. 92,
p. 290–301, 2019.

[62] G. Bergqvist et E. G. Larsson, “The Higher-Order Singular Value Decomposition: Theory
and an Application [Lecture Notes],” IEEE Signal Processing Magazine, vol. 27, no. 3, p.
151–154, 2010.

[63] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for discovering
clusters in large spatial databases with noise,” dans kdd, vol. 96, no. 34, 1996, p. 226–231.

[64] Wikipedia. (2025) Dbscan. [En ligne]. Disponible: https://fr.wikipedia.org/wiki/
DBSCAN

[65] H. Lu, J. Vaidya et V. Atluri, “Optimal Boolean Matrix Decomposition: Application to
Role Engineering,” dans 2008 IEEE 24th International Conference on Data Engineering,
2008, p. 297–306.

https://fr.wikipedia.org/wiki/DBSCAN
https://fr.wikipedia.org/wiki/DBSCAN


89

[66] L. Dong, T. Wu, W. Jia, B. Jiang et X. Li, “Computable Access Control: Embedding
Access Control Rules Into Euclidean Space,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 53, no. 10, p. 6530–6541, 2023.



A Privilege Creep-Aware Role Mining Method for
Enhanced Access Control Security

Vincent Bittard, Rim Ben Salem, Ahmed Bouzid,
Sara Imene Boucetta, Frédéric Cuppens, Nora Cuppens-Boulahia

Department of Software and Computer Engineering, Polytechnique Montréal, Montréal, Canada
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Abstract—Role Mining (RM) extracts Role-Based Access Con-
trol (RBAC) structures from user-permission assignments to
reduce administrative overhead. However, existing approaches
usually make the assumption of clean datasets, while real-world
systems suffer from anomalies like privilege creep, the gradual
accumulation of unnecessary permissions.

The proposed approach aims to detect potential privilege
crept users who should be reviewed first, and identify legitimate
permissions assignments to be expressed in RBAC, reducing
management complexity. It consists of a two-step procedure: clean
the User-Permission Assignment matrix (UPA) using a clustering
and statistical analysis, then build an RBAC state using a regular
role mining algorithm.

The proposed approach yields an average of 90% in privilege
creep detection accuracy and over 95% privilege creep correction,
evaluated on synthetically made datasets. Evaluation on real-
world datasets demonstrates an average 4-fold reduction in
required roles while maintaining at least 80% UPA coverage.

Index Terms—Role mining, RBAC, access control, clustering,
anomaly detection

I. INTRODUCTION

To alleviate Identity and Access Management (IAM) costs,
system administrators often structure permission assignments
using RBAC, grouping users with similar need-to-know. This
enables a more scalable and maintainable access control con-
figuration. Recent approaches to role mining have focused
on methods designed for clean datasets. In real-world access
control systems, this assumption rarely holds. Over time,
the quality of IAM systems degrades, with privilege creep
representing a key anomaly in insider threat contexts: an
incremental accumulation of permissions resulting from job
transitions, organizational changes, temporary assignments etc.
While this issue can be manually addressed in small organi-
zations, the complexity increases significantly in larger enter-
prises, especially since permission review is often fragmented
and delegated.

The process addressing this issue is known as Noise Role
Mining [1], [2], [3], [4]. Noise definitions commonly fall
under two categories : administration errors (wrongly granted
or revoked permissions, regardless of cause) or applicability
exceptions (legitimate but policy-complicating permissions).
Therefore, noise-aware role mining techniques can be viewed
as a subset of privilege creep-aware techniques, aiming to
remove noisy assignments directly, with the goal to improve
security or reduce management costs.

Historically, first approaches focused on mining roles di-
rectly on noisy data. Vaidya et al. [1] introduce the δ-Role
Mining Problem (RMP) and Minimal Noise RMP to fulfil
this goal, which allow partial UPA expression by tolerating
mismatches between the source UPA and the mined one, effec-
tively removing noise. Multi-Assignment Clustering (MAC) by
Frank et al. [5] similarly allows partial expression, and clusters
users with overlapping permissions, discarding low-probability
assignments to remove noise.

Other approaches use a 2-step method: clean the data first
and mine later. Molloy et al. [2] use binary matrix decomposi-
tion algorithms for the cleaning step. Singular Value Decom-
position (SVD), Non-Negative Matrix Factorization (NMF),
Binary Non-Negative Matrix Factorization (BNMF) and logis-
tic Principal Component Analysis (PCA) are compared to δ-
RMP and MAC. The UPA is decomposed and reconstructed in
binary form via inverse transformation, using a step function to
enforce binary values. Since the decompositions are not exact,
some data is destroyed, hence removing noise. The evaluation
by Molloy et al. [2] demonstrates that the 2 step-method yields
better noise-removing results on synthetic datasets than the
other previously mentioned approaches.

The main contributions of this paper are:
• A new parameterizable synthetic data generator that aims

to build realistic RM datasets, able to inject noise and
privilege creep related to common enterprise scenarios.

• A proposed approach to clean RM datasets by removing
potential noise and detecting instances of privilege creep,
in order to mine roles on the cleaned dataset.

• A thorough performance evaluation introducing new met-
rics to assess the accuracy of the privilege creep removal.

The remainder of this paper is structured as follows: Section
II reviews recent approaches relevant to the problem addressed
in this paper. Afterward, Section III and IV define the basis
of RM, the terminology, and the nomenclature for noise and
privilege creep used in this paper. Then, the proposed privilege
creep-aware role mining approach is explained in section V,
while the synthetic dataset generation method is described in
section VI. Next, section VII sets the evaluation metrics and
benchmark for validation. Section VIII then presents results on
synthetic and real-world datasets. Finally section IX provides
a discussion about the advantages, shortcomings, and potential
improvements of the proposed method.
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II. RELATED WORK

A. Recent role mining approaches

Kang et al. [4] improve previous noise RM algorithms
using role interpretability. The mined role set is given a user
attribute-based interpretability score to minimize alongside re-
construction error. This produces roles that more appropriately
fit business needs, ultimately used to reduce management
overhead. While the issue of noise is tackled explicitly in
this work, its nature remains unclear and privilege creep is
not directly addressed as the algorithm goal is to approximate
existing access patterns.

Durdag and Coskuncay [6] choose to reconfigure RBAC sys-
tems by clustering similar roles based on permission similarity
using Agglomerative Hierarchical Clustering (AHC). Identified
clusters serve as reference structures to support system re-
design or cleanup, improving manageability of complex RBAC
configurations. Their approach removes problematic data dur-
ing preprocessing and validates against expert expectations, but
lacks mechanisms to identify or correct anomalous permission
patterns.

Wang et Wu [7] propose a method to reduce role pro-
liferation in RBAC systems using formal concept analysis
and concept lattice factorization. The method first generates
an initial state, then optimizes by balancing user-role and
permission-role assignments while reducing the concept lattice
dimensionality. This allows the establishment of role mining
objectives before algorithm execution. However, the authors
note needs for benchmarking, scalability improvements, and
noise robustness testing against existing methods.

Nobi et al. [8] introduce Deep Learning Based Access
Control (DLBAC), neural networks that learn directly from raw
user and resource metadata, eliminating the need for manual
engineering of roles, attributes, and policies. The prototype
DLBAC α demonstrates superior accuracy and generalization
compared to classical policy mining and machine learning
approaches, while addressing explainability concerns through
interpretation techniques like Integrated Gradients. However,
DLBAC does not directly tackle privilege creep because it
learns from existing authorization data that may already con-
tain anomalous access rights. This limitation is acknowledged
by the authors, stating that errors in the datasets used could
introduce bias in the trained model.

The work in this paper differs from the recent approaches
by explicitly modeling privilege creep scenarios separately
from generic noise, and evaluating performance based on the
algorithm’s ability to structure legitimate permissions while
identifying and removing excessive permissions.

B. Recent privilege creep detection approaches

Parkinson et al. [9] present an unsupervised tool to detect
privilege creep instances in file system Access Control Lists
(ACL) using χ2 statistics, establishing an average 96% ac-
curacy in privilege creep detection on synthetic datasets. The
approach is scientifically sound but suffers from a key eval-
uation flaw: using accuracy instead of F-measure artificially

inflates performance since legitimate users greatly outnumber
anomalous instances, causing high true negative counts to skew
the metric despite an average 30% false negative rate in detect-
ing actual privilege creep. Parkinson et al. [10] also propose a
fuzzy logic-based approach to identify critical privilege creep
in access control policies by modeling user trust, resource
sensitivity, and permission power as fuzzy sets rather than
binary classifications. This new approach is reliant on security
event logs, producing better results than the Creeper tool but
still suffering from the same evaluation framework flaw.

Alexander and Chikwarti [11] propose a graph-based AI
framework that models enterprise IAM as a knowledge graph,
applying Graph Neural Networks (GNNs), community detec-
tion algorithms (Louvain method), and graph clustering to
discover latent role structures from access patterns, while using
Graph Autoencoders and Isolation Forests to detect privilege
creep and anomalous permissions. Their approach claims to
reduce role redundancy by 38% and achieve 93.5% precision in
anomaly detection. However, critical limitations include evalu-
ation exclusively on synthetic datasets, and comparison against
an inappropriate baseline using k-means, unsuited for anomaly
detection, rendering the reported F1-score improvement from
74.8% to 91.3% potentially misleading.

This paper diverges by introducing an unsupervised role
mining approach independent of user attributes or event data,
dedicated evaluation metrics, and a parameterizable synthetic
generator that realistically injects privilege creep, addressing
evaluation limitations and generic noise models in prior work.

III. DEFINITIONS

The National Institute of Standards and Technology (NIST)
[12] formally defines the common role mining context:

• Let U,P the set of users and the set of permissions
respectively

• Let UPA ⊆ U×P the binary user-permission assignment
matrix, a many-to-many mapping.

The NIST also formalized the Basic Role Mining Problem
(RMP) [12] as a binary matrix decomposition problem:
Given the common role mining context, find a set of roles
R and two binary matrices UA ⊆ U × R, the user-to-role
assignment matrix and PA ⊆ P × R, the permission-to-role
assignment matrix where UPA = UA×PA minimizing |R|.

In this paper, a permission refers to an existing column in the
UPA matrix, a user refers to an existing row in the UPA matrix,
and a permission assignment is defined as an existing mapping
in the UPA matrix. The concept of legitimate permission is
defined as permission assignments that should be mined during
the RM process, as opposed to noise or privilege creep that
should not be mined.

IV. IDENTIFYING NOISE AND PRIVILEGE CREEP

A. Noise

The proposed nomenclature draws inspiration on the types
of noise identified by Molloy et al. [2] and Vaidya et al. [1]:



• Correctness noise: isolated administration errors that usu-
ally occur when a user goes through access provisioning
for the first time, only affecting a small set of permissions.
Correctness noise is usually additive, meaning additional
permission assignments on affected users, because of the
availability issue subtractive noise causes.

• RBAC applicability noise: legitimate permissions that
are not sufficiently shared amongst users to be usefully
expressed into RBAC. Indeed, expressing them would
increase the complexity of the RBAC state and therefore
undermine the management advantages of maintaining
this structure for access control.

B. Privilege creep

Two privilege creep scenarios are considered:
• Scenario 1: an employee moves to a different position

within the organization but retains a subset of permission
assignments from their previous duties due to an incom-
plete deprovisioning. Let’s call this type I privilege creep.

• Scenario 2: a group of employees was assigned to a now
finished temporary project. The additional permissions
they were given to fulfil their responsibilities have not
been revoked entirely. This can occur due to unmaintained
records of projects. Let’s call this type II privilege creep.

The key difference between these two privilege creep types is
the subset of permissions impacted.

1) Type I: The impacted permissions are still legitimate
for other employees. Indeed, those currently in the same
position as the privilege crept employee previously held, or
the employee who takes the new vacant position, have a valid
need for these permissions to fulfil their task.

2) Type II: The impacted permissions are not legitimate
for employees outside the project. Indeed, the permissions are
project-bound and once the project ends, no employee should
retain them.

V. PRIVILEGE CREEP-AWARE ROLE MINING

As explained in section I, the proposed method uses a 2-
step approach : clean the dataset and then mine the roles with
a regular role mining algorithm.

A. Prerequisite

Translate the user-permission assignments into a standard
binary UPA matrix X as defined in section III.

B. Dimensionality reduction

The first step is to use a dimensionality reduction algorithm.
This is done using Truncated-SVD (TSVD). TSVD offers
faster computing times on sparse matrices, does not require
centered data, and its partial decomposition of X reduces the
impact of noise [2]. Indeed, the assumption that UPA matrices
are sparse usually holds true [1] [2] [13] [3].

Let k ∈ N∗ the rank of the TSVD decomposition of X,
where k represents the dimensionality of the reduced space.

The low-dimensional embedding Z of X is obtained by the
following equation :

Z = XV T
k (1)

Where Vk is the top k right singular vectors matrix of X.
For each component i ∈ J1, kK, Zi the i-th column of Z.

The empirical variance of the i-th component corresponds to
the variance of Zi :

V ar(Zi) =
1

n

n∑

j=1

(Zji − µi)
2
,where µi =

1

n

n∑

j=1

Zji (2)

The variance of X is computed with:

V ar(X) =

d∑

j=1

V ar(Xj) =

d∑

j=1

pj(1− pj) (3)

Where pj = 1
n

∑n
i=1 Xij is the fraction of ones in column

j. The total explained variance ratio Rk is computed using
the explained variance ratio ri for each component i ∈ J1, kK
using the following equation:

Rk =

k∑

1

ri =

k∑

1

V ar(Zi)

V ar(X)
(4)

The goal is to find a TSVD rank k that renders around 80%
total explained variance ratio [2]. Since this sole condition can
produce an overwhelmingly large number of components k for
the next step in the approach, another condition is added on
rk. The search stops when the following condition is met :

Rk > 0.80 OR rk < ϵ (5)

At this point, adding more and more components yields
diminishing returns. Empirically, setting ϵ = 0.02 provides
reliable results.

C. Clustering and outlier identification

Z should contain less noise than X and consists of real
valued components that capture the most important user-
permission relationships. Hence, clustering is performed on
the low-dimensional embedding Z.

Since the primary objective of the proposed method is
to detect privilege creep, choosing a clustering algorithm
capable of identifying anomalous users as outliers becomes
necessary. The selected clustering algorithm to fulfil this goal
is Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), which offers easily interpretable parameters to be
determined :

• minpoints the minimum number of points required to
form a cluster. Since clusters should identify users who
present similar permissions, which usually occurs in
teams of employees working together, minpoints is set
to the smallest team size detectable in the UPA.

• ϵ the radius of the neighborhood with respect to some
point. To determine an ideal value for ϵ the 1 Nearest-
Neighbor (1-NN) Euclidean distance of all users are



computed and plotted in ascending order. Then, ϵ is set to
the cutoff value corresponding to the elbow of the curve.
In the proposed approach, the elbow is detected automat-
ically using the normalized difference curve technique.
The ϵ value can still be overwritten manually using the
visual method.

Let’s call C, the user-cluster assignment table giving the
DBSCAN labels for each user including the outliers.

D. Cleaning and role mining

In order to clean the UPA C and X are used together by
performing a statistical analysis on each cluster to determine
which permissions assignments are to be expressed. Outliers
are first removed off of X to ensure role quality. Permission
prevalences are then computed for each cluster, defined as the
share of users within a cluster who possess a given permission.
Using a threshold tc the permissions with prevalence less than
tc are removed and the permissions with prevalence greater
than tc are kept. The matrix obtained after the cleaning process
is called the cleaned UPA K.

E. Role mining

FastMiner [14] and Optimal Boolean Matrix Decomposition
using BasicRMP introduced by Lu et al. [15] are used as the
role mining algorithm with a greedy approach. The algorithm
is run on K with the outliers removed. It expresses the
assignments entirely without approximations. After the role
mining is done, outliers need to be reintroduced into K.

F. Reunification

This step is a new addition from previous methods in the
literature that do not identify outliers. Two use cases are
considered:

1) Omniscient reunification: This is the case used for syn-
thetic datasets, adding the outliers back into the cleaned
UPA K with their known legitimate permissions. This
emulates the presence of an expert who is able to clean
the privilege creep and noise out of a user permission
pool perfectly.

2) Heuristic reunification: This is the case in which the
proposed tool will most likely be used in an organization
setting to provide recommendations for outliers. Two
concurrent approaches are used. The first one is to
assign mined roles to the outliers even though all their
permissions may not be covered. This gives a rough idea
of potential roles this user could have, and also brings
out the potentially problematic permissions that are not
covered. The second approach uses the information on
clusters: The barycenter of every cluster using the binary
coordinates of users is computed. Then, every outlier is
linked to the closest barycenter. This gives additional
insight on which cluster the identified outlier could be
part of and their potential legitimate permissions. Ulti-
mately the decision should be made by an administrator
in charge of reviewing user accounts as both approaches
could provide conflicting information.

The proposed approach is evaluated using the omniscient re-
unification. Thus, the metrics chosen in section VII-C account
for the accuracy of outlier detection. The following section
details the generation of synthetic datasets, which is another
contribution that this paper brings forth.

VI. SYNTHETIC DATASETS

Given that the proposed approach is evaluated on privilege
creep detection and noise correction, and that existing synthetic
dataset generators in the literature do not account for privilege
creep, a new dataset generation method is required. One of the
main contributions of this paper is a flexible generator with
adjustable parameters to produce synthetic datasets mimicking
real-world ones.

A. Generating legitimate permissions

To build the generator, inspiration was taken from the Tree-
Based Data Generator from Molloy et al. [16]. The main
changes are made on the propagation strategy to generate trees,
the process of adding noise, and the new process of adding
privilege creep instances. The proposed generator produces a
mock business organization hierarchy structure using a tree.

P0

P1

P3
(U0)

P4
(U1, U2)

P2
(U3, U4, U5)

Figure 1: Template example; U1,U2 inherit permission sets P0,
P1 and P4, U0 inherits permission sets P0, P1, P3 etc.

The tree structure, assigned with permissions and users, is
referred to as the template. As a RM objective, mined roles
should correspond to the template structure. Knowing this,
templates are used to create legitimate permission hierarchies.

The generator starts with the root node and then grows child
nodes iteratively, using six parameters to build trees:

• min depth and max depth, encode the minimum and
maximum depth of the tree, nodes stop propagating be-
tween these bounds with a linearly decaying probability.

• min children and max children encode the minimum and
maximum number of child nodes allowed per node.

• avg branch and std dev encode how nodes propagate in
the tree. The number of child nodes follows a normal
distribution centered around avg branch with a standard
deviation of std dev, brought back to integers.

Given a target number of permissions and users, a random
number of permissions is assigned to every node using a
binomial law. A random number of users is assigned to leaves
of the tree using the same binomial law method. Users then
inherit the permissions of the leaf node they are assigned to,
and all permissions assigned to parents nodes above them (see
example on figure 1). This process generates the legitimate
UPA matrix.



B. Adding privilege creep

As identified in section IV, two types of privilege creep are
added to the UPA matrix: type I and type II privilege creep.
Three parameters are introduced for this purpose:

1) pPC the portion of users who present cases of type I
privilege creep.

2) c the portion of permission assignments copied from
another user in a type I privilege creep instance.

3) r the number of added permissions for users who present
type II privilege creep. All affected users are then granted
these permissions.

In order to always have a varied set of privilege creep instances
the following rules are used:

• 30% of type I privilege creep instances use c = 1
• 70% of type I privilege creep instances are assigned

linearly decreasing values of c from 1 to 0.
• The number of users in each type II privilege creep

instance is fixed to 8, and the number of instances is
computed using this formula:

nType II instances = ⌊log10(nusers)⌋ (6)

Thanks to these parameters, it is possible to produce privi-
lege creep instances of varying frequency and magnitude. The
privilege crept UPA is then created by adding the privilege
crept permissions assignments to the legitimate UPA.

C. Adding noise

To make the dataset more realistic, noise is added to the
privilege crept UPA. This follows the discussion in section
IV on noise identification. RBAC applicability noise is added
using the first two parameters and correctness noise using the
third parameter :

• pnoise: noise percentage denotes the ratio of noisy per-
mission assignments to be added to the UPA matrix,
expressed as a proportion of the number of legitimate
assignments.

• dnoise: noise density denotes how dense the added as-
signments are. The number of distinct added permissions
Nnoisy must be computed to match the noise density
parameter. This is done using the formula:

Nnoisy =
Nlegitpnoise
dnoisenusers

(7)

Where Nlegit is the number of legitimate assignments.
The added noise assignments are then generated with a
Bernoulli experience on a matrix of size (nusers, Nnoisy)
with p = dnoise, concatenated to the privilege crept UPA.

• plegit−noise, noise percentage on legitimate permissions
indicates the ratio of additional assignments to introduce
relative to the number of already injected noisy permis-
sions. These assignments are uniformly distributed on the
legitimate permission matrix directly, only flipping zeros
into ones.

VII. EVALUATION

The synthetic dataset evaluation framework is first defined.
Then, the real-world datasets used for evaluation are men-
tioned. Finally, Metrics are listed at the end of the section.

A. Synthetic dataset benchmark

Since it is impossible to test every parameter combination
with the proposed dataset generation method, standard config-
urations are defined for a variety of problem sizes, general
hierarchy aspect of the legitimate templates, and privilege
creep & noise distributions using profiles:

• Table I defines profiles used to build template trees
(section VI-A), selected to have a variety of depth and
branching, mimicking different organizational structures.

• Table II defines profiles used to add noise and privilege
creep to the legitimate UPA (section VI-C), selected based
on the assumption that the number of privilege creep
instances increases with higher noise levels.

• Table III defines profiles used to assign users and permis-
sions to tree nodes (section VI-A), selected to restrict the
number of permissions assigned to nodes and the number
of users assigned to leaves.

Evaluation on noise levels (2), spans across the parameter
profiles from tables I and II, using the default tension parame-
ters from table III. Evaluation under tension (3), spans across
the parameter profiles from tables I and III, using the default
noise parameters from table II.

Name children depth avg branch std devmin max min max
large flat 2 4 2 4 3 1.5
small flat 1 5 1 3 3 1

large string 1 2 10 15 1.7 0.5
small string 1 2 5 8 1.6 0.4
binary tree 1 3 2 5 2 0

highly random 1 6 2 5 2 2

Table I: Profiles for generating legitimate permission trees

Name Acronym Noise
percent density legit PC

no noise no pc NN 0 N/A 0% 0%
low noise, low density LNLD 5% 1% 10% 3%
high noise, low density HNLD 15% 1% 15% 5%
low noise, high density LNHD 5% 4% 15% 5%
high noise, high density HNHD 15% 5% 20% 8%

default / 15% 2% 10% 3%

Table II: Profiles for noise and privilege creep levels

Name Acronym User Permission
min max min max

no tension NT 15 25 10 40
tension on permissions TP 15 25 2 6

tension on users TU 2 8 10 40
tension on both TUTP 2 8 2 6

default / 15 25 15 45

Table III: Profiles for tension on users and permissions

B. Real-world dataset benchmark

The real-world datasets provided by Ene et al. [17] are
used for the evaluation. Despite their publication in 2008,
these datasets have become established benchmarks in the



literature and continue to be referenced in recent studies for
performance comparison on real-world instances [4], [18],
[19], [20], [21]. These are: americas large, americas small,
apj, customer, domino, emea, firewall1, firewall2, healthcare.

C. Metrics

The main goal of the chosen metrics is to measure how
accurate the privilege creep detection and correction is without
compromising permissions flagged as legitimate.

1) Legitimate Permission Retention (LPR):
The F1-score computed between the cleaned UPA and
the reference legitimate UPA, excluding potential out-
liers. It reflects the accuracy of legitimate permission
recovery, while minimizing the retention of noise.

2) Permission Expression (PE):
The number of permission assignments retained in the
cleaned UPA divided by the number of assignments in
the noised UPA. An effective cleaning process would
result in a permission expression value that is close to
the one computed on the legitimate matrix.

3) Privilege Creep Correction (PCC):
The percentage of privilege crept assignments still
present in the cleaned UPA. A value close to 1 reflects
the effectiveness of the cleaning process.

4) Privilege Creep Detection Accuracy (PCDA):
The F1-score computed between the set of identified
outliers and the ground truth set of anomalous users.
It measures the accuracy of the anomaly detection.

5) Role Count Deviation (RCD):
The difference between the number of ideal roles, iden-
tified to be the number of leaves in the template (see
section VI-A) and the number of mined roles divided by
the number of ideal roles.

6) Runtime metric:
The runtime of the cleaning process in seconds.

On synthetic datasets, the proportion of identified privilege
creep instances is also recorded by type.

VIII. RESULTS

minpoints is set to 5 to ensure clusters represent meaningful
user groups (teams/departments) as explained in section V-C.
Empirical testing has shown that lower values produce frag-
mented clusters where the statistical threshold tc incorrectly
removes legitimate permissions, as small clusters exhibit high
variance in permission prevalence.

A. Performance using synthetic datasets

The results are given as box plots. Each plot renders the
distribution of a given metric evaluated on 20 runs of each
structure parameter defined on table I. Given that there are
6 structure parameters, each box plot contains 120 different
samples. Metrics are explained in section VII-C.

1) Experiment with varying noise levels: Figures 2a and
2b concurrently show that legitimate permission assignments
were accurately retrieved, avoiding the expression of noisy
assignments. Indeed, the median LPR is above 97.5% on all
noise levels and permission expression shows a proportional
decrease with increasing noise levels, as expected. About
privilege creep, conflicting information seem to stem from
figures 2c and 2d: the detection accuracy hovers around 80%,
sometimes reaching values below 50% on the worst runs,
while almost all privilege crept assignments are corrected with
median PCC values at 100% across all noise levels. This occurs
as type I privilege creep instances are accurately detected most
of the time, whereas type II instances are more difficult to
detect. The statistical analysis cleaning process then removes
undetected type II privilege creep permission assignments.
Figure 2e reveals that the proposed approach tends to produce
fewer roles than expected VI-A, probably due to legitimate
permissions being erased by the cleaning process. The average
runtime for the cleaning process is below 5 seconds, never
exceeding 1 minute as figure 2f demonstrates. Longer runtimes
can be attributed to exceptionally large datasets. When the
datasets are free from noise and privilege creep, figures 2b, 2a
and 2e confirm that the approach accurately retrieves legitimate
assignments with minimal false positive outlier occurrences,
and produces the expected amount of roles on average.

2) Experiment with varying tension levels: Figures 3a and
3b demonstrate that legitimate permissions assignments are
generally not accurately retrieved when tension is put on
users. Indeed, LPR plummets to 0% on several of these
datasets and PE is lower than expected, reaching values that
do not correspond to the amount of noise, meaning legitimate
assignments have been removed massively. Regarding privilege
creep, detection accuracy decreases by 30% when tension is
applied to users, with many false positives as shown in figure
3d. All of this can be explained when too few users are
present in the UPA matrix to form large significant groups: the
cleaning process removes larger amounts of permissions due to
wrongly identified clusters, which also causes a lot of users to
be wrongly flagged as outliers. These effects propagate to the
role mining step, no roles can be mined when great amounts
of permissions have been removed. This is shown in figure 3e
where runs under user tension produce half the roles that would
normally be needed to express the assignments on average.
Cleaning runtimes are faster than the previous experiments,
averaging 3 seconds due to the datasets reduced size under
user and/or permission tension.

B. Performance using real-world datasets

On real-world datasets, hyperparameters are determined
through a semi-automated process combining the algorithmic
methods from sections V-B and V-C with manual refinement.
The automated procedures provide initial recommendations
for ncomps, ϵ, and tc. These initial values are then manually
adjusted based on the following criteria: (1) maximizing the
explained variance ratio Rvar while respecting the diminishing
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returns threshold described in section V-B, (2) ensuring stable
cluster formation that effectively separates users with irreg-
ular permissions patterns from the others using T-distributed
stochastic neighbor embedding (t-SNE) projections, and (3)
optimizing the trade-off between permission expression cov-
erage and noise removal through tc calibration, guided by
the established 80-20 principle in access control management.
For each dataset, multiple parameter configurations near the
automated recommendations were evaluated, and the combi-
nation yielding the best balance between UPA coverage and
role quality was selected. Final hyperparameter values and
corresponding Rvar are reported in Table IV.

Dataset |U | ncomps Rvar ϵ tc
americas large 3485 10 0.646 2 0.3
americas small 3477 7 0.807 1 0.5
apj 2044 6 0.350 0.5 0.005
customer 10021 12 0.500 1 0.02
domino 79 4 0.840 1 0.1
emea 35 12 0.815 16 0.05
fire1 365 3 0.882 0.3 0.5
fire2 325 1 0.832 0.03 0.5
healthcare 46 3 0.841 1.5 0.4

Table IV: Determined hyperparameters

Table V compiles the results of the approach. The optimal
number of roles used for comparison is provided by HP Labs
[17] and reported by Blundo et al. [19]. Π represents regular
permission expression, and π permission expression computed
without outliers. The number of outliers is also reported.

Dataset Π π no. out. nroles noptimal
americas large 0.755 0.841 45 98 398
americas small 0.881 0.913 31 21 178
apj 0.727 0.759 13 183 453
customer 0.798 0.812 58 47 276
domino 0.171 0.919 7 6 20
emea 0.615 0.799 4 25 34
fire1 0.905 0.974 14 4 64
fire2 0.994 1 7 1 10
healthcare 0.881 0.946 4 2 14

Table V: Results on real-world datasets

First, americas large, apj and customer did not reach above
80% permission expression probably because of their sheer
size and noise levels. Therefore, they required lower than av-
erage tc to be expressed appropriately. The proposed approach
yields over 75% permission expression on all datasets. Looking
at the difference between Π and π, it is clear that on datasets
like domino or emea, the small pool of identified outliers
concentrate the majority of permission assignments, since π
is above 80%, meaning clustered users have 80% of their per-
missions expressed. These users are likely administrators with
an exceptionally high number of permission assignments, and
therefore they were flagged as outliers. Overall, the number of
identified outliers is between 1% and 10% of the number of
users for all datasets, with a manageable absolute number that
never exceeds 60 users. Also, the approach produced fewer
roles across all datasets compared to the optimal number used
for full expression, effectively dividing the number of roles by

4 on average. The exceptionally low amount of roles produced
on fire1 and fire2 is likely due to a great number of similar
users with a handful of exceptions.

IX. DISCUSSION AND CONCLUSION

This paper addresses the issue of role mining in the presence
of privilege creep through three main contributions:

• A parameterizable synthetic data generator that aims to
create realistic role mining datasets, with controlled noise
and privilege creep injection.

• An effective cleaning methodology that removes noise
and detects privilege creep in UPA matrices, achieving
90% detection accuracy and 95% legitimate permission
retention on average.

• A comprehensive evaluation framework providing new
metrics (LPR, PCC, PCDA, RCD) specifically designed
for privilege creep-aware role mining.

A. Performance and practical impact

The proposed approach demonstrates strong performance
on several datasets. On americas small, fire1, fire2, and large
synthetic datasets without user tension, the method expresses
90% of permission assignments while accurately removing
noise and privilege creep. Notably, the approach reduces the
number of required roles by up to a factor of ten, significantly
improving access control manageability in large organizations.
A key advantage of the proposed approach is its security-
preserving nature [3], as no new permission assignments are
added to the UPA, making it suitable for critical access review.
The reunification phase improves role quality by removing
potentially anomalous users out of the role mining phase.

Regarding privilege creep detection, Type I instances are
detected with an accuracy above 90%, demonstrating the
method’s effectiveness for this common scenario. Type II
privilege creep proves more challenging to detect as noise
levels increase, with PCDA scores frequently falling below
50%. This occurs because higher noise levels render Type II
privilege creep permission assignments statistically indistin-
guishable from random noise. However, due to the statistical
analysis process used to clean the dataset, Type II privilege
creep permissions are typically removed during the cleaning
phase, even when not explicitly detected as privilege creep.
While this maintains the cleaning objective, it highlights a
limitation in the detection of project-based anomalies.

B. Limitations and areas for improvement

Hyperparameter sensitivity: The method’s performance
depends on manually tuning key parameters (k, ϵ, tc). While
heuristic estimates are provided for k and ϵ, no such guidance
exists for tc. This limitation is particularly evident on real-
world datasets such as apj, customer, domino, and emea, which
required unexpectedly low cleaning thresholds (tc < 0.3)
to achieve permission expression scores above 50%. This
behavior stems from the interdependence of ϵ and tc: tar-
geting an outlier rate below 10% often necessitated inflated
ϵ values, which caused cluster to merge and consequently



required lower-than-typical tc thresholds to maintain adequate
cleaning. These observations reveal a cascading effect amongst
hyperparameters, with ϵ and especially tc exhibiting the high-
est sensitivity. Visualizations of clusters with tools like t-
distributed stochastic neighbor embedding (t-SNE) could guide
hyperparameters selection.

Performance degradation on small datasets: Both perfor-
mance evaluations reveal an inherent limitation: the approach
demonstrates reduced effectiveness on datasets with fewer than
100 users approximately, such as domino, emea, healthcare,
and synthetic datasets with user tension. On synthetic datasets,
privilege creep detection accuracy averages only 60%, and
legitimate permissions are erroneously removed. This degrada-
tion stems from the statistical properties of the clustering ap-
proach: DBSCAN requires sufficient sample density to reliably
distinguish meaningful clusters from outliers, and small user
populations provide insufficient data points, therefore flagging
more users are outliers. The statistical threshold tc, becomes
unreliable when clusters contain too few members, as small
anomalies within clusters are disproportionately represented.

Synthetic dataset generation: The data generator is based
on a hierarchical tree structure with binomial distribution
for users and permissions on nodes, which produces cleaner
datasets than real-world ones, and exhibit artificial structural
patterns that may not reflect the complexity and irregularities
of actual enterprise environments. As such, the evaluation
results on synthetic data are to be interpreted with caution.

Limited baseline comparison: Evaluation on real-world
datasets uses HP Labs ideal results to evaluate role number
reduction. However, it lacks comparison with state-of-the-
art role mining techniques. Future work should primarily
benchmark permission retention and privilege creep detection
against methods in the related work section.

C. Future work

On the approach itself, user attributes could be used to
enhance the clustering process by providing additional con-
text. To address the hyperparameter sensitivity issue, adaptive
thresholds based on cluster characteristics should be devel-
oped. Additionally, exploring alternative clustering algorithms,
such as Isolation Forest or Local Outlier Factor (LOF), may
improve performance on small datasets.

The synthetic data generator needs to be extended to model
matrix-style and network-style organizational architectures, as
well as separation of duties (SoD) constraints, enabling more
realistic test scenarios. A comparative assessment against state-
of-the-art role mining approaches would complete the vali-
dation of the method relative to existing techniques. Finally,
mechanisms to assess and mitigate the operational impact
of permission removal should be developed, to ensure the
method’s practical deployability in production environments.
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