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RÉSUMÉ

Les récents progrès en intelligence artificielle, notamment au travers des grands modèles de
langage, ont suscité un intérêt croissant pour l’application de l’apprentissage automatique
à la mécanique des fluides. Parmi les différentes approches, les réseaux neuronaux informés
par la physique ont attirés une attention particulière. Cependant, leurs dépendance aux
contraintes imposées par les équations aux dérivées partielles ou équations différentielles
ordinaires limitent souvent leur applicabilités à des systèmes complexes et chaotiques, tels
que les écoulements turbulents cisaillés. Cela est en particulier le cas pour l’étude des jets
axisymétriques parsemés de particules, qui demeure un sujet de recherche difficile en raison
de la forte tridimensionnalité de ces jets et des interactions entre les différentes phases.

Cette étude explore le potentiel de l’apprentissage automatique pour la modélisation de jets
axisymétriques parsemés de particules par la construction de trajectoires fluides. D’autres
travaux se sont penchés sur ce sujet, se limitant à des données 2D et à l’analyse de statis-
tiques de petit ordre, telles que les champs moyennés. L’objectif concerne l’exploration de
l’application de l’apprentissage automatique à l’étude des jets axisymétriques, au travers de
l’architecture moderne la plus fondamentale que sont les réseaux de neurones artificiels. Les
models d’apprentissage sont entraînés sur une banque de données issue d’une campagne ex-
périmentale de vélocimétrie indépendante par suivi de particules tridimensionnelle d’un jet
à nombre de Reynolds de Taylor de 230. Les modèles sont optimisés pour la reconstruction
de trajectoires de particules et pour capturer des propriétés globales du jet au travers des
statistics Eulériennes jusqu’au troisième order.

Les résultats constituent une preuve de concept et montrent que le cadre d’apprentissage
automatique proposé permet de reproduire des trajectoires fluides tout en respectant les
propriétés intrinsèques du jet, observées ici au travers des statistics Eulériennes jusqu’au
troisième order, et ce sans contrainte explicite sur la physique de l’écoulement. Ils indiquent
que les modèles d’intelligence artificielle peuvent apprendre des structures d’écoulement si-
gnificatives directement à partir de données brutes. Plus largement, ce travail se distingue
des réseaux neuronaux informés par la physique comme paradigme de référence pour l’in-
telligence artificielle en mécanique des fluides, et suggère que des approches plus classiques,
purement fondées sur les données mais pouvant inclure un pré- et post-traitement tenant
compte de la physique, pourraient offrir une voie plus directe vers des modèles d’appren-
tissage automatique capables de développer leurs propres représentations de la turbulence,
menant à de meilleures performances.



v

ABSTRACT

Recent advances in Artificial Intelligence, notably through Large Language Model, have fu-
eled growing interest in applying Machine Learning to fluid mechanics. Among the various
approaches, Physics-Informed Neural Networks have received particular attention. How-
ever, their reliance on Partial Differential Equation (PDE) or Ordinary Differential Equa-
tion (ODE) constraints often limit their applicability to more complex and chaotic systems,
such as turbulent free shear flows. In particular, particle-laden axisymmetric jets remain a
challenging research topic due to their strong three-dimensionality and multiphase interac-
tions.

This study investigates the potential of Machine Learning for modeling particle-laden axisym-
metric jets through the reconstruction of fluid trajectories. Previous studies have explored
this topic primarily with 2D data and low-order statistics such as mean flow fields. In this
study, the objective is relative to the use of Machine Learning for the study of axisymmetric
jets, through the use of the most basic modern Machine Learning architecture that are Arti-
ficial Neural Networks. The Machine Learning models are trained on a 3D Particle Tracking
Velocimetry dataset of a 230 Taylor-scale Reynolds number jet, obtained from an experimen-
tal campaign conducted independently of the present study. The models are optimized to
reconstruct particle trajectories that capture global properties of the jet through the Eulerian
statistics up to the third order.

The results constitute a proof of concept and show that the proposed Machine Learning
framework is able to reproduce fluid trajectories while preserving the intrinsic properties
of the jet, observed here through Eulerian statistics up to third order, and this without
any explicit constraint on the flow physics. They further indicate that artificial-intelligence
models can learn meaningful flow structures directly from raw data. On a broader level, this
work questions the dominance of Physics-Informed Neural Networks as the default paradigm
for Artificial Intelligence in fluid mechanics and suggests that more conventional data-driven
strategies, possibly paired with appropriate physics-aware pre- and post-processing, may
offer a more scalable path toward Machine Learning models capable of developing their own
representations of turbulence for improved performance.
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CHAPTER 1 INTRODUCTION

Particle-laden axisymmetric jets appear in numerous natural and industrial contexts, such
as condensation trails, propulsion systems, carbon powder injection in electric arc furnaces
for steel-making and volcanic eruptions [5, 6]. Beyond their scientific interest, the study of
particle-laden jets is thus of high importance for industrial and environmental implications.
An improved understanding of these flows can contribute to the optimization of combustion
efficiency, pollution control, or condensation trails minimization. Despite their apparent ax-
isymmetry, these jets remain intrinsically three-dimensional. Characterizing their full three-
dimensional behavior is therefore crucial for improving our understanding of their dynamics.

The interest of particle-laden axisymmetric jets for the research community can be brought
back as early as 1851 with the introduction of the Stokes drag [7]. However, their study
using conventional methods, such as Computational Fluid Dynamic (CFD) or through ex-
perimental campaigns, remains a challenge, especially in a Lagrangian framework. The im-
pressive growth of Artificial Intelligence (AI) in recent years has lead many to explore its
application in fluid mechanics. An interesting approach is through Physics-Informed Neural
Networks (PINNs) that incorporate physics into the training process. Although they have
shown promising results, the interest they generated has diminished as their structure limits
the form of their output and their performances, especially for highly turbulent flows.

In this study, the attention is brought back towards more common Machine Learning (ML)
algorithms, specifically through the use of Artificial Neural Networks (ANNs), focusing on
a Lagrangian approach of axisymmetric jets. This approach has started to be explored
by other researchers, showing promising results, and inviting us to continue exploring these
methods and applications. Axisymmetric jets are chosen for the challenges they present, both
for the modeling in realistic settings and the collection of experimental data, making AI a
promising research direction. A ML model is herein fed experimental data using techniques
from supervised and self-supervised learning. The used dataset is from Particle Tracking
Velocimetry (PTV) measurements of an axisymmetric jet, using tracers and different inertial
particles. The aim is to create a model capable of producing realistic data similar to what
could have been collected experimentally.
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1.1 Definitions and Basic Concepts

In the following, two main concepts are studied: turbulence and Artificial Intelligence (AI).
A more detailed review is presented in the literature review (see chapter 2).

1.1.1 Turbulence

Turbulence is broadly the chaotic motion of a fluid, involving rapid fluctuations in velocity and
pressure, and characterized by the presence of eddies over a wide range of scales. Turbulent
flows are the opposite of laminar flows, which are characterized by smooth motion in parallel
layers with little or no mixing between them. Turbulence can be observed at every scales
and in many fields. Its study has been going on for many years and is still relevant today,
as attested by the Navier–Stokes existence and smoothness being part of the Millennium
Prize Problems. Turbulent free shear flows are fluid flows that develop turbulence as a
consequence of the mean-velocity differences, without being confined by solid walls. Among
these, free jets are produced when a fluid issues from an aperture into an otherwise quiescent,
infinite expanse of fluid. If the jet possesses an axis of symmetry about its centerline, it is
referred to as an axisymmetric jet. Axisymmetric jets are primarily theoretical constructs.
Experimentally, they are typically realized as round jets, which are jets issuing from a circular
aperture. By their nature, turbulent free shear flows are highly canonical. A testament to
this is that many of those flows develop a self-similar region, defined as the region in which
the profiles of properly normalized measured quantities no longer depend on the distance
from the origin.

To experimentally study turbulence, it is often necessary to seed the flow with tracer par-
ticles. These particles should be small and light enough to faithfully follow the turbulent
motion, as characterized by a low Stokes number. The Stokes number represents the ratio of
the particle’s response time to a characteristic time scale of the flow. The number of particles
is also of importance, as it characterizes the interaction of particles with the flow. Those are
classified as 1-way coupling (when the particles do not affect the turbulence), 2-way coupling
(when the particles have an impact on the turbulence structures), and 4-way coupling (when
particle-particle collision are significant and have an impact). Among the most commonly
used non-intrusive measurement approaches are Doppler anemometry (e.g., Phase Doppler
Anemometry (PDA) and Laser Doppler Anemometry/Velocimetry) and imaging-based tech-
niques (e.g., Particle Tracking Velocimetry (PTV)). The former relies on light interference
to create a small measurement volume with light fringes, within which the particles’ velocity
components and sizes can be measured. The latter uses high-speed cameras to track the posi-
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tion of the particles at each time step, from which trajectories are constructed and velocities
can be deduced. The use of experimental methods to study turbulence is limited by their
implementation limitations and by the fidelity with which theoretical tools can be produced
in a laboratory.

Numerically, the study of turbulence is dominated by CFD. At its core lies Direct Numerical
Simulation (DNS), where the discrete form of the Navier-Stokes equations is solved on a suf-
ficiently dense grid to resolve all turbulent scales. However, this approach is computationally
expensive, as the required grid resolution increases rapidly with the Reynolds number. To
reduce this cost, model-based approaches are used. In Large Eddy Simulation (LES), only
the large energy-containing eddies are resolved, while the effects of the smaller, subgrid-scale
motions are modeled. Another approach, referred to as Reynolds-Averaged Navier–Stokes
(RANS) simulations model, is to resolve the entire scale spectrum through statistical averag-
ing. Still, the use of CFD simulations remains often too expensive for the study of complex
turbulent flows.

1.1.2 Artificial Intelligence

With regard to its ability to characterize and learn the intrinsic rules of a complex system
from a large quantity of data, the use of AI is starting to be seen as an alternative or a
complementary tool to CFD and experimental campaigns.

Even though there is no universally accepted definition, Artificial Intelligence (AI) broadly
refers to intelligent models or machines that can think or act like humans, or at least think
or act intelligently. AI systems are commonly classified as weak AI, which perform as expert
systems in small, limited, and well-defined domains, or strong AI, which would be capable
of general human-level intelligence. The study of AI can be traced back to 1943, with early
theoretical work on artificial neurons by McCulloch and Pitts [8], later inspiring the concept of
the perceptron, also called artificial neuron. The term “artificial intelligence” first appeared in
1955 in the Dartmouth proposal by McCarthy et al. [9], marking the formal birth of the field.
AI research between the mid-1950s and the 1970s is now referred to as Good Old-Fashioned
AI (GOFAI), characterized by symbolic reasoning and logical computation. This was followed
by the development of expert systems, in which humans had to manually encode rules and
knowledge bases. The rise of Machine Learning (ML) began in the mid-1980s and continued
through the 2010s, as systems started learning rules and patterns from data rather than
relying on hand-coded logic. The concept of ML itself was first introduced in 1959 by Arthur
Samuel [10], who defined it as a computer’s ability to learn from experience. We are now in
the era of deep learning, characterized by the availability of massive datasets and powerful
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computational tools, which have enabled AI applications to spread across nearly all fields.
Throughout its history, optimism toward AI has fluctuated sharply. Two major periods
of stagnation, known as the AI winters, occurred when interest and funding significantly
declined. The first AI winter (mid-1960s to mid-1970s) was caused by overly optimistic
expectations that failed to materialize. The second AI winter (late 1980s to early 1990s)
resulted from the difficulty and expense of maintaining expert systems and the tedious process
of manually encoding rules.

From the early developments in AI emerged the perceptron, the fundamental building block
that laid the groundwork for modern machine learning. Perceptrons are the computational
equivalent of biological neurons: they act as simple functions that take multiple numerical in-
puts, apply a weighted sum followed by a nonlinear activation, and output a single value. The
simplest modern ML architectures are ANNs, also known as Multi-Layer Perceptrons (MLPs)
or Feed Forward Neural Networks (FFNNs). These consist of a sequence of fully connected
layers of perceptrons that map a set of inputs to a set of outputs. More advanced archi-
tectures have since been developed, including Convolutional Neural Networks (CNNs) (net-
works specifically designed for processing high-dimensional structured data such as images),
Recurrent Neural Networks (RNNs) (networks specialized for sequential or time-dependent
data), encoder–decoder architectures (which project data into a latent space where tasks
such as reconstruction or translation become easier to perform), and probabilistic generative
models (which use probabilistic formulations to model data distributions and can generate
new, coherent samples).

Recent advancements in ML have been driven by Transformers, normalizing flows, Generative
Adversarial Networks (GANs), and diffusion models. Transformers extend the principle of
RNNs by introducing a self-attention mechanism that adaptively weighs the relevance of dif-
ferent inputs when producing each output. They form the backbone of modern large language
models (LLMs) such as ChatGPT. Normalizing flows are models that learn an invertible map-
ping between the original data space and a simpler latent space (usually Gaussian). Because
the transformation is invertible, they can both generate new data and evaluate how likely
a given sample is under the model. GANs consist of a generator, which produces synthetic
data, and a discriminator, which attempts to distinguish generated samples from real data;
the two networks are trained adversarially, leading to highly realistic outputs. Diffusion
models generate data through a multi-step denoising process, gradually transforming pure
Gaussian noise into coherent samples that follow the data distribution.

Often, models are created at the junction of different architectures families, making use of
the most attractive properties of each.
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1.1.3 Turbulence and Artificial Intelligence

Work has been carried out to combine ML with turbulence modeling. One interesting ap-
proaches has been through Physics-Informed Neural Networks (PINNs). These models treat
the neural network as a surrogate CFD solver that predicts the entire flow field, optimizing its
parameters by minimizing the residuals of the governing Partial Differential Equation (PDE)
or Ordinary Differential Equation (ODE), typically the Navier-Stokes equations. The residu-
als are efficiently computed through standard ML training procedures, in which the gradients
of a loss function with respect to the model parameters are computed by backpropagation
and used in a gradient-descent update.

Other more conventional ML models that learn directly from data without explicitly en-
forcing physical equations are also of high interest and have shown promising results. In
this approach, performance improvements are achieved by designing better architectures and
training strategies that allow the model to infer its own physical laws implicitly from the
data, in a so-called "black-box" manner.

1.2 Problem Statement

The multi-scale and chaotic nature of turbulence makes it inherently difficult to study. When
a large number of particles is added, the problem becomes even more complex due to the
coupling between the particles and the flow. Traditional CFD methods remain prohibitively
expensive for accurately resolving all relevant scales of motion, and forecasts for future com-
putational advances, even with the rise of quantum computing, are pessimistic in this re-
gard [11]. Thus, experimental approaches remain essential, they are however also constrained
by strong implementation hypothesis and measurement challenges. For instance, Particle Im-
age Velocimetry (PIV) requires tracer particles within each interrogation window to move
with the same velocity, PTV relies on predictor–corrector schemes subject to failure, and
Laser Doppler Anemometry (LDA) assumes a statistically uniform particle distribution and
a stable flow over long durations [3, 12]. The difficulty increases further when measuring all
three velocity components, as measurements become more prone to error. More fundamen-
tally, the procedure of going from theory to experiment always comes with induced bias in
the implementation of theoretical tools. For example, in the creation of an axisymmetric
jet, the turbulence level inside the nozzle, the shape of the nozzle, and the quiescence of the
environment fluid can never be perfect.

The recent development of ML offers a promising alternative path for the study of tur-
bulence. Through approaches such as PINNs, it was shown that monitoring the physical
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accuracy of the model can be fast and easy, and, using a more classical ML approach, more
recent advancement seem to point towards very interesting performances [13]. ML methods
have shown great potential for uncovering hidden structures and trends in high-dimensional
flow data, enabling faster and potentially more accurate predictions of complex turbulent
phenomena. The nature of ML to construct its own representation of the data, either by
building a reduced-order representations, or by combining data in a certain way, represents
an interesting aspect, possibly leading to new discoveries in the field. Moreover, with ongoing
progress in neural architectures and computational hardware, including prospective advances
in quantum computing, further improvements in ML-based flow modeling are expected in
the coming years [11].

Although promising, the application of ML to fluid mechanics is not without challenges and
has often been rationally questioned. The absence, or weak formulation, of explicit physical
constraints removes the safeguard of physically legitimate predictions, making purely data-
driven models prone to non-physical outcomes. In contrast, regardless of their accuracy,
experimental measurements remain intrinsically faithful to the underlying physics, and CFD
simulations derive credibility from their direct foundation in the governing equations, taken
directly for the pure theory of fluid dynamics. Because ML models rely primarily on data,
their validity is limited to the distributions represented in their training datasets. Although
several studies have reported encouraging generalization capabilities [13], it remains uncertain
whether ML can robustly and efficiently capture the full complexity of turbulent flows in a
physically consistent manner. Moreover, ML models require large quantities of high-fidelity
data, which are both costly and difficult to obtain due to the intrinsic limitations of CFD and
experimental techniques. This data scarcity arguably represents one of the main barriers to
the widespread adoption of ML in fluid mechanics. Finally, both experimental measurements
and CFD simulations involve transformations of the true physical system into finite and
often filtered representations of reality. Consequently, the data used for ML training may
not retain all the information necessary to fully characterize turbulent flows, introducing
potential measurement and representation biases into the learned models.

ML has already demonstrated promising capabilities in various fluid mechanics applications,
including turbulence closure modeling, the recovery of missing information in inverse prob-
lems, and flow-field reconstruction. However, among many other complex flows, the use of
ML for axisymmetric jets, particularly in particle-laden regimes with a Lagrangian approach,
remains largely unexplored due to the difficulty of acquiring sufficiently rich datasets and the
intrinsic complexity of such flows originating from the strong turbulence and the particle-
fluid interactions. Yet, this very complexity makes particle-laden axisymmetric jet flows a
particularly compelling test case for assessing the potential and limitations of ML in fluid
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mechanics. Successfully modeling such flows would not only represent a new approach for
their analysis and industrial optimization, but also provide valuable insights into the ability of
data-driven methods to capture multiscale and multiphase dynamics, while helping establish
the conditions under which ML can complement or even enhance traditional experimental
and numerical techniques. Existing studies on axisymmetric jets often rely on models with
few perceptrons and focus primarily on low-order statistics, such as mean velocity fields,
while neglecting higher-order turbulent quantities, limiting their performances and use cases.

To better assess the potential of ML in this context, it is necessary to begin with a base-
line model, exploring the influence of various design choices and the integration of physical
constraints into the learning process. This study aims to contribute in that direction.

1.3 Research Objectives

The overarching goal of this thesis is to assess the opportunities and limitations of ML for
modeling particle-laden axisymmetric jets, and to evaluate its potential as a complement to
experimental and numerical approaches in fluid mechanics.

Specifically, we aim at developing a ML framework to study particle-laden axisymmetric
jets by modeling fluid trajectories via an Artificial Neural Network (ANN) that respect the
Eulerian turbulence statistics. This involves defining the ANN formalism in term of structure
and design, and selecting appropriate performance metrics. It also requires performing a
detailed exploratory analysis of the available data to identify relevant trends and physical
structures that may guide model design. A baseline ANN architecture is first developed and
optimized, followed by the introduction of physics-based constraints.

1.4 Thesis Outline

In a first part, an extensive literature review present the useful concepts, for both axisymmet-
ric jets and Artificial Intelligence, necessary for the good understanding of what is presented
(see chapter 2). The chosen ML models approaches are proposed and explained in chapter 3,
examining the preprocessing and the method for the developed ML models. In the next
section, chapter 4, the results from the application of model from the precedent chapter are
presented and discussed. Finally, broad conclusion are drawn in chapter 5.
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CHAPTER 2 LITERATURE REVIEW

The study of particle-laden axisymmetric jets remains a challenge to this day [3,14,15]. CFD
simulations often remain too computationally expensive for real-life applications, dimensional
analysis do not yield satisfactory results [16,17], and even experimental investigations present
significant difficulties [12].

In parallel, ML has been gaining momentum. Its application in fluid mechanics, and physics
in general, dates back to the early 1990s [18]. As research in AI advanced, so too did its
use in physics, with early demonstrations of deep learning in fluid mechanics appearing in
2002 [19]. More recently, some work has focused on PINNs, neural networks trained to satisfy
the governing PDEs or ODEs of the system [20]. Although the concept of PINNs was first
proposed in 1995 [21], their widespread introduction into fluid mechanics is often dated to
2019 [22]. While the success of PINNs is noteworthy, more conventional ML architectures,
such as ANNs, continue to be actively explored, showing strong potential, particularly in
Lagrangian frameworks.

In this review, we first outline the fundamental theory of axisymmetric jets and the exper-
imental techniques used to study them. We then turn to Machine Learning (ML) with a
focus on the use of ANN models and an examination of ML’s applications in fluid mechanics
through Physics-Informed Machine Learnings (PIMLs).

2.1 Axisymmetric jets

Herein, an introduction to the theory behind axisymmetric jets is first constructed before
looking into experimental measurement. Since particles have to be added in order to perform
non-intrusive measurements, we first introduce how to characterize said particles and their
potential impact on the flow before exploring some experimental methods, with a focus on
PTV.

2.1.1 Theoretical construct

An axisymmetric jet, which is a kind of free jet, is part of the family of turbulent free
shear flows. As imaged in figure 2.1 on the next page in which every mean is a statistical
mean, axisymmetric jets can be described by the diameter of a nozzle (d), from which a fluid
exists with a velocity Uj in an otherwise quiescent infinite span of fluid. The axisymmetric
nature calls for a centerline axis and cylindrical coordinate system with axial z, radial r, and
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azimuthal θ directions. Along the centerline, the mean velocity U0 evolves according to the
velocity decay constant B [1]. At each axial coordinate, the half-width r1/2 is defined as the
radial coordinate at which the mean axial velocity uz is half of that at the centerline U0. r1/2

spreads in the axial coordinate by the spreading rate S, thus tracing a cone, whose apex is
located at a distance x0 behind the nozzle’s exit [1].

Figure 2.1 Generic form and definition of an axisymmetric jet

Like many turbulent free shear flows, axisymmetric jets are highly canonical flows, mostly
due to the fact that their turbulent structure are formed internally only from the viscosity of
the fluid. This can be imaged by the fact that both B and S are sensibly the same for any
experimental measurements [1, 3].

Another way to see that is from the turbulent velocity fluctuations to their statistical means
u′

i = ui − ui with i=z, r, θ. Those can be used to construct the Eulerian statistics, defined
as the moments of those velocity fluctuations giving way to the following metrics [3]:

- based on the Reynolds Stresses (or based on the components of the turbulent kinetic
energy and the turbulent shear stress) : u′2

z , u′2
r , u′2

θ , u′
zu

′
r,

- based on the transport of turbulent kinetic energy : u′3
z , u′3

r , u′2
z u

′
r, u′

zu
′2
r , u′

zu
′2
θ , u′

ru
′2
θ .

We will refer to the mean velocity components as first-order statistics, the statistics relative
to the Reynolds Stresses as second-order statistics, and the ones relative to the transport
of turbulent kinetic energy as third order statistics. The canonical nature of axisymmetric
jets here appears from the development of a self-similar region for those quantities. A self-
similar region is defined as the region far enough from the nozzle’s exit from which correctly
normalized and represented quantities become independent of the axial coordinate z. This
region can start at around 15 diameters downstream of the nozzle exit, though this depends on
which statistics are of interest, as well as the nature of the jet. Indeed, for some measurements,
this region only starts at 100 diameters downstream [23]. The existence of a self-similar region
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is given by the hypothesis of universal similarity. The first time this hypothesis was used is
unclear but can be traced back to the paper of Blasius [24]. The hypothesis has sometimes
been questioned [3, 25–27], mostly concerning its validity for different nozzle types like (for
example, pipe exit or contoured smooth contraction nozzles). Still, it has also been validated
by many [28–30] and will be assumed for the remainder of the manuscript.

In the case of the Eulerian statistics, a normalization by U0 and a representation as a function
of the normalized radial coordinate η = r

(z−x0) is used to show self-similarity. Since η = S r
r1/2

,
choosing η or r

r1/2
as the normalized axial coordinate is of little importance, only changing

the values by a factor of S. Through their self-similar curves, the Eulerian statistics offer a
window of the intrinsic properties of jets, making them very interesting to verify the realism
of a simulated jet.

Empirical equations have been developed from experimental data to describe the self-similar
curves of the Eulerian statistics [1, 3]. In the cased of the first-order, those are:

- f(η) = 1
(1+aη2)2 ,

- h(η) = η−aη3

2(1+aη2)2 ,

with a =
√

2−1
S2 , f = uz

U0
, and h = ur

U0
. figure 2.2 on the following page shows what these curves

look like, along with the ones for U0 and r1/2, using d = 4 mm, Uj = 7.24 m.s−1, x0 = 6.00d,
B = 5.26, and S = 0.0962. The self-similar curves of higher order Eulerian statistics are
shown in figure 2.3 on page 12, computed with the experimental data of Viggiano [2]. It is
observed that the distribution of the Eulerian statistics around their mean is nearly Gaussian,
whose value as a function of the normalized radial coordinate can be fitted by a curve, allowing
for the construction of the probability density functions around the self-similar curves.

Those curves are valid for any axisymmetric jet, making it possible to combine data from
different measurements and transpose results from one jet to another. To further compare
those flows, the time-related units can be normalized by the Lagrangian macro-time scale
TL. Here, TL is a measure of the average time over which a fluid particle moves in the same
direction [31]. As such, it is often used as the time scale for velocity updates [31].

When using Lagrangian data to construct the Eulerian statistics, local means performed
in bins on both the axial and radial coordinates have to be first performed. Without this
binning, the distribution around the self-similar curves is no longer Gaussian. Interestingly
though, when looking at the distribution of the velocity components inside each local bin,
Gaussian distributions are observed. Retrieving the local standard deviation of those Gaus-
sian distributions (which are images of the local variance of the velocity components), yields
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Figure 2.2 Main theoretical curves as described in Pope [1] using d = 4 mm, Uj = 7.24 m.s−1,
x0 = 6.00d, B = 5.26, and S = 0.0962

another self-similar curve, as imaged in figure 2.4 on the following page.

When using experimental data to build the Eulerian statistics, a bias can be observed due
to a preferential drop-in position of the particles. For example, if the trajectories are only
recorded for particles that originate from inside the jet, the information from the entrained
fluid is not fully recorded. This induces an overestimation of the mean radial and axial
velocities [4,32] as imaged in figure 2.5 on page 13. For the axial velocity, the main difference
is found in the vicinity of η = 0.2. The difference is much more pronounced for the radial
velocity. In such a case, the theoretical mean radial velocity profile should be used when
computing the statistics instead of the biased measured mean radial velocity profile. This
should also be the case of the axial velocity, however, since the difference is small, localized,
and at a position of little importance, it can be ignored.

2.1.2 Impact of adding particles to the flows

In order to make measures in an axisymmetric jets, particles are used. The first important
property of those particles is their ability to follows the fluid. A particle that fully follows
the flow is called a "tracer." This is reflected by the Stokes number, an dimensionless number
defined as the ratio of the particle’s relaxation time to a relevant time scale of the fluid. The
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Figure 2.3 Second- and third-order statistics of an axisymmetric jet; made from experimental
data from [2]

Figure 2.4 Standard deviation of the distribution of the axial velocity component in each
local bins throughout the jet, imaged by its self-similar curve

relaxation time τ is a measure of a particle’s response time to changes in the flow, function of
the particle’s diameter dp, its density ρp, and the fluid’s dynamic viscosity (µ) [5, 16,33,34]:

τ =
ρpd

2
p

18µ (2.1)

For the time scale of the fluid, many possibilities exist, leading to many definitions of the
Stokes number, a few of them are presented in table 2.1 given:

- ω = U0
4.5r1/2

the flow fluctuation rate [1],

- τn =
√

ν
ε

the Kolmogorov time scale [1],

- ρf the density of the fluid,

- Rep = d
√

<u′2>
ν

the particle Reynolds number [35] (normally defined from the slip ve-
locity, but used like so as an order of magnitude estimation),
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Figure 2.5 Differences in the average axial and radial velocities between the measured exper-
imental [2] and the theoretical velocity profiles due to the seeding bias

-
√
< u′2 > =

√
k

TL
the Root Mean Square of turbulence fluctuation [1, 5, 35],

- k = (11 × 10−4)U0d the Eddy diffusivity, also called the turbulent diffusivity or the
fluid diffusivity [35,36],

- TL = r1/2
U0

the Lagrangian macro-time scale [37] (or, as approximated by Lilly, TL ≈
0.12 z

U0
[31]).

Table 2.1 Stokes number definitions

Definition Interpretation tracer limit
NS

[33]=
√

ωd2
p

ν
For LDA measurement < 8

K
[5]= τ

√
u′2 Response time to turbulence fluctuation ≪ 1

St0
[37,38]= 2τUj

dp
Fidelity to follow the flow O(1)

StLES
[14]= 2ρp/ρf +1

36
1

1+0.15Re0.687
p

(dp

µ
)2 LES particle approach < 0.2

StL
[37]= τ

TL
Particle inertia < 0.2

St
[3, 5]= τ

τn
Kolmogorov time scale ≪ 1

The limits on the stokes number presented in table 2.1 for the definition of a tracer are only
indicative. Indeed, it depends on the level of fidelity to the flow needed, which itself depends
on the measurement method and on the quantities that are of interest [37]. This explains
the large number of definitions of Stokes number, which root themselves in any meaningful
timescales for a particular study. As such, it is also possible to compare the particle response
time to many other timescales of the flow, be it τ0 = r1/2

U0
, the reference timescale, τJ , the

mean flight time from the virtual origin, τm, the entrainment rate, τa, the axial strain rate,
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τs, the strain rate, τd, the turbulence decay rate, τp, the turbulence-production rate, τη, the
timescale of the small eddies, τϕ, the analogous scalar timescale, τEI , the timescale of the
big eddies, or any other meaningful timescale [1]. The main idea is to quantify how well
the particles mimic what happens in the flow. As such, it is possible to use many different
stokes numbers or even the Schmidt number (which characterizes dispersion), to determine
if a tracer acts as one [5, 39, 40].

When dealing with particles in a flow, it is also important to consider the relation the
particles have with the flow and with one another. Those interactions are referred to as 1-
way coupling (the particle doesn’t affect turbulence), 2-way coupling (the particles influence
the turbulence structure), and 4-way coupling (particle-particle collisions are significant) and
are characterized by the volume fraction. The limits between those regimes are 10−6 and
10−3 in terms of the volume fraction of the particles to the fluid [41,42]. The Stokes number
is also a way to characterize 4-way coupling, when defined as τ

τn
[37, 41], which indicates

clustering when approaching unity, thus making the limit of 4-way coupling at least 2D [42].
The limit of 4-way coupling can be seen as when the distance between neighboring particles
is superior to ten times the particles’ diameters [35]. As seen just above, the limit between
1-way coupling and 2-way coupling is also highly dependent on the Stokes number.

Adding particles to a flow have many consequences concerning the turbulence energy budget,
due to the drag on the particles and their spatial distribution. Effects have been reported
on apparent viscosity [35], turbulent kinetic energy (turbulence levels) [14,17,42], turbulence
production, distortion, and dissipation [14], and diffusivity and dispersion rates [5, 35, 43].
Effects have also been observed on the drag experienced by particles [14,16,34], which in some
cases can destabilize the flow [34], and on their spatial distribution (clustering/preferential
concentration) [5,14,15,41]. Although the coupling of mass, momentum, and energy between
the particles and the fluid is happening, there are still many disagreements on their reasons
and effects [14,41].

2.1.3 Experimental measurements

Getting high quality and reproducible experimental data is a big challenge for fluid mechanics
[12, 14, 44]. Indeed, the characteristics of the jet is quite sensitive to parameters such as the
geometry of the nozzle [26, 27, 45]. Similar experiments can display different curves [3].
This is especially true for higher-order statistics as imaged in figure 2.6 on the following
page, comparing data presented in Hussein et al. [3] to data from Viggiano et al. [2]. Note
that, all the curves are data collected in the self-similar region of a high-Reynolds-number,
momentum-conserving, axisymmetric, turbulent jet, the difference between the curves is thus
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only from the use of different experimental setups, using different measurement techniques.

Figure 2.6 Some third-order statistics from experiments presented in the papers from Hussein
et al. [3] and Viggiano et al. [2]

There exists many techniques to perform measurements in flows, including Hot-Wire Anemom-
etry (HW), Doppler anemometry (LDA and PDA), and imaging-based approaches such as
Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV). This list is
not extensive, as many other techniques exist, however, they present the most established
measurement techniques within the research community.

For the case of PTV is was developed as a variant to PIV in the sense that it uses high-
speed cameras to retrieve information from flows seeded with particles. Unlike PIV, in
which the velocity field is computed from the cross-correlation of intensity patterns between
consecutive images over small interrogation windows, PTV identifies and tracks individual
particles over time. From the tracked trajectories and time stamps of the images, velocities
are obtained by discrete differentiation of particle positions with respect to time. To retrieve
three-dimensional velocity measurements, three cameras are typically used to reconstruct the
spatial position of each particle. The use of multiple cameras facilitates the identification
and matching of particles between images.

Experimental studies of particle-laden jets have improved our understanding of the underlying
physical mechanisms involved in dispersion and turbulence–particle interactions. At the same
time, they highlight opportunities where traditional analysis tools may reach some practical
limits. In light of this, machine-learning approaches are gaining attention as complementary
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tools that can help extract additional structure and insight from experimental measurements.

2.2 Machine Learning

Machine Learning (ML) represents a new method to study turbulence through data. Broadly
speaking, ML is a branch of Artificial Intelligence (AI) that focuses on algorithms that try
to generalize from data. The goal is to learn a trend from given data to then be able to
generalize to unknown data.

In order to introduce ML, the most basic architecture, namely the ANN, is first introduced,
going over how it is constructed, how it is trained, and how it can be used. Other architectures
are then quickly explored. Finally, the formalism of PINNs is explored.

2.2.1 Artificial Neural Network

In order to understand ANNs, their basic architecture is first presented before going over
the training principle. Understanding when to stop training is explored through regulariza-
tion and the optimization through defining the properties of the model architecture is then
explained. Finally, some general properties of the models are presented. In this last part,
some examples are taken from other architectures, mostly from those use for Large Language
Models (LLMs). Results easily transpose to ANNs as they constitute the building blocks of
those more complexe architectures.

Basic architecture

Artificial Neural Network (ANN) also called Multi-Layer Perceptron (MLP) or Feed Forward
Neural Network (FFNN) are one of the most basic, and famous, model architectures of ML.
As the name suggest, they describe a network made up of artificial neurons, also called
perceptrons.

A perceptron is a computational tool, as represented in figure 2.7 on the next page, that
takes n inputted numbers (x1, x2, . . . , xn) and outputs one number (o). It consists of n+ 1
learnable parameters (a bias b and n weights w1, w2, . . . , wn), a transfer function (a(_)),
and an activation function (g(_)). In the transfer function, each input xi is multiplied by its
corresponding weight wi, outputting a single number a(X) = ∑

i xiwi +b. This is then passed
into the activation function, which is a simple non-linear function, to get a single output
o = g(a(X)). While the transfer function combines all the inputs, the role of the activation
function is then to describe the activation rule of the perceptron (given an input, what should
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the outputted value be) while inducing non-linearity. The most common activation functions
are Rectified Linear Unit (ReLU) (reclin(a) = max(0, a)), sigmoid (sigm(a) = 1

1+e−a ), and
hyperbolic tangent (tanh(a)) but others exist like Gaussian Error Linear Unit (GELU) or
Swish (swishβ(x) = x sigm(βx) with β a constant or trainable parameter) [46], those are
represented in figure 2.8.

Figure 2.7 Generic form of a perceptron (artificial neuron)

Figure 2.8 Common activation functions

Organizing those perceptrons into a network means forming layers of perceptrons, called
"hidden layers", connecting all of them together, and using this to map a set of inputs to a
set of outputs. This is imaged in figure 2.9 on the next page, in which the biases are omitted
for clarity, for three hidden layers and ReLU activation functions for all the perceptrons. The
last layer of perceptrons has the output’s activation functions, does not count as a hidden
layer. The inputs and outputs are numbers that represent the task the ANN is set to do. For
example, for Language Models (LMs), the input can be a vector of numbers representing one
word in a sentence, and the output is the vector representing the next word in the sentence.
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Figure 2.9 Example of an ANN with 3 hidden layers

Training procedure

Training an ANN on a dataset implies finding the best set of parameters (weights and biases)
to produce the intended output. To do so, the data is first shaped into inputs-outputs pairs,
representing what the model is tasked to do. An input is passed into the model, creating an
output. A function called the "loss function" is then used to assess the quality of the output.
This is done through a regression between the model’s output and the prescribed intended
output. If intrinsic properties of the output are known, the loss function can be also function
of it, which is referred to as a structural component of the loss function. The loss function
thus outputs a number called the "loss" l, which acts as a metric of the model’s performances
on one input, representing the value to minimize.

In its formulation, for an input-output pair, the loss is a function of every single parameter of
the model. It is thus possible to trace the loss as a function of one parameter wi, as depicted
in figure 2.10 on the following page. The idea is there to minimizer the loss by following
its gradients with respect to every parameter and updating the parameters accordingly. Ef-
fectively, every ∆wi = −η ∂l

∂wi
is computed and winew = wiold

+ ∆wi is applied, aiming for
w∗

i = arg minwi
l(wi). Here, η is a constant called the learning rate. This is performed by

what is called the "optimizer". The one presented in this paragraph is the Stochastic Gra-
dient Descent (SGD) optimizer, which is at the basis of all the others. The most famous
optimizer is Adam, which takes steps in the weight space adjusting, parameter-wise, both
their directions and norms based on previous first- and second-order moments of the gradient
estimates.

The presented parameter updates are performed again with new data until convergence. In
order to better estimate the loss l, it should be computed over the whole available data.
This is too computationally expensive, instead, the loss and its gradients are computed for
a smaller portion of the training data called a mini-batch (sometimes just referred to as a
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Figure 2.10 Stochastic Gradient Descent’s working principle

batch). One update in the parameters space is, as such, done for each mini-batch, this is
why SGD has the word "stochastic" in it. Once the whole training set has been seen, it is
said that one epoch has been performed.

In order to have a representation of the training process, it is possible to use figures similar to
figure 2.10. However, as many of them as the number of parameters would be needed. This
is unworkable, as this number easily ranges in the thousands, sometimes reaching billions.
Looking at random directions in the parameter space can be useful, but is not very reliable.
Rather, the loss is evaluated on the model perturbed in the weight space along the two main
eigenvectors of the Hessian of the loss. Indeed, the eigenvectors of the Hessian represent
the principal directions of curvature in parameter space, while the eigenvalues reflect the
intensity of curvature in said direction. Thus, drawing the loss along the two eigenvectors
of the Hessian with the largest associated eigenvalues allows a representation of the hardest
directions to optimize in the learning space. This is called a "loss landscape". The span
over which a loss landscape is drawn can be fixed to twice the standard deviation of the
distribution of the model’s weights.

It is easy to imagine that the optimizer works best if the loss landscape shows a smooth
landscape with a clear minimum that is not too sharp [47, 48]. Sharp minimum are defined
as places in the loss landscape where the loss function increases rapidly in a small neighboring
region. Ideally, no local minimum should exist except for the global minimum. Indeed, the
optimization could get stuck in a suboptimal local minimum.

Regularization and optimization

While the goal of the ANN is to understand the structure of the data to generalize to unseen
data, ANN are observed to be extremely good at memorizing the data [49]. To have a vision
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on the capacity of the model to generalize without memorizing during training, the data is
spitted into two, one bigger part called the "training set" used to update the parameters,
and a smaller part called the "validation set" on which the model is tested during training.
Another subset of the data is also left untouched, namely the "test set", which will be used
to compare models from different studies together. The splitting between those three parts
is often 64% for the training set, 16% for the validation set, and 20% for the testing set.
During training, to observe the state of the model between generalization and memorization,
the value of the loss on both the test and validation set are compared. This is imaged in
figure 2.11. While both the losses on the test and validation set are decreasing, the model is
still learning, which is referred to as an "underfitting" state. When the loss on the validation
set starts to increase, the model is starting to memorize the training set and is said to "overfit".
The sweet spot between the two is what is aimed for, defining the final trained model. The
fight between generalization and memorization is also reflected by a fight between bias and
variance. The variance is a measure of the variation of the model’s output when the training
set changes, the bias is a measure of the distance between the average model and the optimal
model. Having a minimal bias on the training set often implies overfitting and memorizing
of the training data. On the other side, having too much variance implies that the model
has not been trained enough. As such, the generalization error is defined as the sum of this
variance and bias.

Figure 2.11 Underfitting and overfitting of the data through the lens of the validation loss

In this aspect, to help with generalization, regularization techniques are often used. The most
used are L2 regularization (penalizes big weights), L1 regularization (provides a constant push
on the parameters to zero), early stopping (stop the training earlier), dropout (randomly
deactivate perceptrons), and learning rate decay (decrease the learning rate throughout the
learning).

As previously presented, a given model admits an optimal set of parameters, corresponding
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to a single best achievable loss. Optimization is thus in part to make sure that this best
performance is reached at the end of training. However, a big part of the optimization is
also to vary the model in the hope of achieving a better best achievable performance. This is
done by varying the constants and properties defining our model, called the hyperparameters,
training many different combinations of them, and picking the best performing one. Here
again, the validation set is used to compare the models to one another.

The main hyperparameter are the learning rate, the mini-batch size, and the size of the
model. Others are relative to the regularization techniques, such as the number of epoch or
the value of the dropout.

Another interesting hyperparameter is the use of a normalization over the perceptrons before
applying the non-linearity (i.e., the activation function). The most common one is Batch
Normalization (BN), that applies a normalization on each perceptron’s output across a mini-
batch. Another trendy normalization method is Layer Normalization (LN), which consists
in normalizing the outputs of the perceptrons across each hidden layers for each sample.

General observed properties

A recurrent theme in optimization is the induction of noise into the training process. A clear
example is through the batch size. Indeed, theoretically, for a better estimation of the loss,
the whole training data should be used to estimate it. However, better performances are
often observed with the use of a relatively small batch size, often chosen between 128 and
512. This means that rougher estimations of the "true" direction of optimization perform
better. The effect of this added "noise" can often be peaked through the loss landscape. In
the case of the batch size, it is observed that larger mini-batch size leads to the convergence
to sharper minimum in the loss function which hurts generalization [50,51].

All in all, the largest improvements in performance often come from increasing both the
size (or capacity) of the model and the amount of training data [52]. Several phenomena
illustrate this trend. For instance, the so-called "blessing of dimensionality" refers to the
fact that, as the number of parameters increases, the loss landscape tends to contain fewer
poor local minima, a trend attributed to the transformation of most critical points into
saddle points [53, 54]. Another striking observation is that overfitting appears to diminish,
or even disappear, when extremely large models are trained on sufficiently large datasets, a
behavior sometimes described within the framework of double descent [55]. Double descent
refers to the improvement in generalization performance that occurs beyond the classical
overfitting regime. A related phenomenon is that of "emergent abilities," where sufficiently
large models exhibit strong performance on tasks they were not explicitly trained for [56].
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This begs the question on how to allocate between model and training data size. In the
well studies case of LLM, the dataset is limited by what is available on the internet and the
capacity is limited by computational power. Indeed, recent models are now training on all
the available data for months on end. What limits the training of AI models is the FLoating-
point OPerationss (FLOPs) budget. Indeed, the training of a model will require a certain
number of FLOPs, which depends on the number of training tokens and on the size of the
model. The number of training tokens is the number of data points the model sees during
training, it is thus not necessarily equal to the size of the training dataset. On the hardware
part, there is a fixed computational speed of FLOPs per seconds. Setting a training time
thus impose a limit on the model size and number of training tokens. For LLMs, a good rule
of thumb is to have twenty times more training tokens then parameters [57,58]. For smaller
models, choosing the relation between the two is mostly done by choosing a model size and
setting the number of training tokens by monitoring generalization.

Another interesting setting property is the distribution of the perceptrons within the layers.
According to the universal approximation theorem, "a single hidden layer neural network
with a linear output unit can approximate any continuous function arbitrary well, given
enough hidden units" [59]. However, many hidden layers are often used. Indeed, this helps
the learning as each layer creates features from its inputs by "shaping" the inputs in a relevant
way. Each layer will create more and more complex features creating a meaningful path to
the output in an analogous way as to what happens in the brain [60]. The fact that having
a deeper network allows to learn more representation is an observed fact that has not been
proved.

Finally, it remains deciding on the organization of the data, setting what to feed as inputs to
the model, what to expect as an output, and how to articulate that in the greater goal of the
model. For sequential task, a next-token prediction approach is the get-go. This is indeed
the case for most LMs [61–63], or even for AI video generation. This view is based on the
nth order Markov assumption depicted in equation (2.2), which represents the prediction of
a sentence (sequence of works w1, . . . , wT ) as the sequential prediction of the next word (wt)
given the previous context (wt−(n−1), . . . , wt−1). This easily extends outside of LMs.

p(w1, . . . , wT ) =
T∏

t=1
p(wt|wt−(n−1), . . . , wt−1) (2.2)
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2.2.2 Other architectures

As briefly presented in chapter 1, although they are built on the same basic principles, more
complex architectures than standard ANNs exist. These architectures were designed to better
handle certain types of data, being, for example, high-dimensional structured data such as
images using CNNs, or sequential data using RNNs and, more recently, Transformers. Beyond
these, encoder-decoder architectures have emerged as powerful frameworks for mapping data
into a latent space where tasks such as reconstruction or translation become easier to perform.
Furthermore, probabilistic generative models, such as normalizing flows and diffusion models,
aim to learn the underlying data distribution itself, enabling inherently non-deterministic
approaches.

To go into more detail on some of these architectures, namely Long Short-Term Memo-
rys (LSTMs), Transformers, Graph Neural Networks (GNNs), and diffusion models: The
LSTM is a reference RNN architecture that encodes the inputs into different states called
‘gates’ that structure the information stored in a cell state representing the memory of the
sequence. It includes an input gate, which decides how much new information to write into
the cell, a forget gate, which determines which past information to discard, and an output
gate, which selects which part of the cell state to expose as the output. Transformers, like
LSTMs, are built for sequence modeling, but rely on a self-attention mechanism rather than
recurrence. This mechanism learns how each element of the sequence should weigh all others,
extracting long-range relationships and allowing the model to focus selectively on the most
relevant parts of the input. GNNs extend this idea to data naturally represented as nodes
connected by edges. Instead of dynamically learning attention weights, the relationships be-
tween elements are fixed through the input graph structure, which dictates how information
flows between nodes. Each node aggregates messages from its neighbors through learnable
update functions, allowing the model to capture both local interactions and global topology.
Diffusion models provide a powerful probabilistic generative framework. During training,
they gradually corrupt data with noise and learn how to reverse this diffusion process step
by step. At inference time, they start from pure Gaussian noise and iteratively denoise it to
produce new, realistic samples drawn from the learned distribution.

Those architectures, and their generic architecture-relative advantages and inconvenient, are
summed-up in table 2.2.

Next up, PIML, which represents an interesting method to implement physics into theoreti-
cally any model architecture is now presented.
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Table 2.2 Advantages and inconvenient of different ML models architectures

Architecture
Advantages Inconvenient

ANN Fundamental building block for
most architectures

Low-dimensional inputs

CNN Captures spatially local features ef-
fectively

Needs grid/regular data

GNN Naturally handles unstructured
meshes and complex geometries

Need to input fixed relationships
through model design, making
this task difficult and problem-
dependent

LSTM Designed for sequential dependen-
cies

Training can be unstable and long-
term accuracy easily degrades

Transformers Learns long-range and multiscale de-
pendencies

Data-hungry and computationally
expensive

Neural oper-
ators

Learn mappings between function
spaces

Prone to spectral bias that hin-
ders small-scale turbulence recon-
struction

Diffusion
models

Generate high-fidelity, realistic look-
ing turbulent fields

Evaluation of physical accuracy re-
mains challenging, operate on fixed-
size grid data

2.2.3 Physics-Informed Neural Networks

As the name suggests, Physics-Informed Neural Networks (PINNs), sometime referred more
generally as Physics-Informed Machine Learnings (PIMLs), are ML models that make use of a
loss function based on the physics as represented by a PDE or ODE. This added information
allows to make for the small number of training data often available [64]. The physical loss
function is computed effectively using the automatic differentiation performed naturally in
the training process of neural networks [65]. This constrains PINNs to be imputed coordinates
and output elements of the PDE or ODE. The applications of PINNs are still very broad
and can be divided into two families: forward and backward problems [22, 66, 67]. Forward
problems are more classical, often dealing with the prediction of fields such as pressure,
velocity, vorticity, or concentration fields [66, 68, 69]. Inverse problems distance themselves
a bit more from classical CFD in the sense that inputs to CFD simulation are unknown,
for example, the viscosity of the fluid or even the whole velocity field, having only access to
the temperature field [70]. To do so, the parameters that are initially unknown are left as
free variables during training, allowing the model to optimize them so they approach their
physical values. A classical application is with the closure problem [71], which has been
known to be of particular complexity for CFD [72]. In that, PINNs are aimed at providing
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an alternative, or support, to CFD simulations.

PINNs define a concept, they are thus not limited to a single model architecture or method-
ology [73]. PINNs can, for example, take the form of GANs, CNNs, or GNNs. In PINNs, the
learning is often done through both a regression loss function and a structural loss function
(a loss function that does not depend on the expected output) based on the physics of the
problem. This is often taken to be the residual of the Navier-Stokes equation, making use of
the automatic gradients computations [65] in ANNs. The structural loss function can also be
a function of the boundary conditions (BC) and/or initial conditions (IC). The loss function
thus has the following general form:

L = λregressionLregression + λresidueLresidue + λBCLBC + λICLIC . (2.3)

The constrain of the mesh in CFD is changed to providing enough points for the field function
that is a PINN to converge to an accurate enough solution [11].

Although this is the general formulation, it is still possible to design a Reinforcement Learning
(RL) PINNs that doesn’t use experimental data [71]. In a sense, this approach reflects better
the idea behind PINNs relative to the two hypotheses RL is constructed on:

- reward hypothesis: "That all of what we mean by goals and purposes can be well thought
of as the maximization of the expected value of the cumulative sum of a received scalar
signal (reward)."

- reward is enough hypothesis: "Intelligence and its associated capabilities can be under-
stood as subserving the maximum of reward by an model acting in its environment." [74]

Following this logic and those hypotheses, a loss function based on the Navier-Stokes equa-
tions seems indeed to be a good idea as it perfectly describes the physics, allowing the model
to take strategies that were never thought of, possibly performing better than solutions de-
veloped by humans [75].

Although this vision is enticing, the non-discrete, non-linear nature of fluid mechanics and
the fact that it follows complex, high dimensional, multi-scale laws make it a real challenge
for AI [73,76]. This is amplified by the sparse quantity of good quality experimental data [76].
For now, PINNs perform well with laminar problems but struggle with the study of complex
flows [73, 77]. Indeed, even though it sometimes performs well, PINNs suffer from stability
and accuracy in their predictions [47, 78], and have shown trouble generalizing. This can be
imaged by the complexity of the loss landscapes, through which the optimization seems to
have a hard time navigating [47,79].
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In a broader sense, PINNs remain a very peculiar implementation of ML to fluid mechanics.
Indeed, although their goal is to generalize, the focus of PINNs is not on generalization of
inferred data as commonly defined for ML. Although they have proven to be quite helpful,
their applications are limited to the specific problem they have been trained on, lacking any
bigger generalization to fluid mechanics in general. This is a consequence of the formulation
of their loss function that contains information on the specific properties of the problem.
Since the loss function appears only during training, one model trained on one problem
can most of the time not be generalized to another. Consequently, the focus of PINNs is
more on the training time than on the inference time, calling for smaller models with easy
hyperparameters setting, further limiting their spectrum [66]. This dimensionality limitation
is what distance PINNs from the current age of AI of which LLMs are at the center. PINNs
are currently closer to what AI used to be before the second AI winter. This is also reflected
by the fact that most PINNs developed have two hidden layers which used to be the norm
back in the early days of ANNs [76].

A useful way to view this distinction is that while ML models aim to learn the underlying
rules hidden inside the data, PINNs aim to make the known PDEs and/or ODEs correspond
to a situation of which few information is known. Through the PDEs and/or ODEs, the
rules governing the evolution of properties of the fluid through time and space are already
known. PINNs already have what most ML models aim to obtain. This strong constraint
of trying to encode a known equation into a ML model may be at the origin of the limited
performances of PINNs. Instead of trying to adapt fluid mechanics to ML, PINNs have been
constructed as a simple mimic of CFD solvers in a ML formalism.

Another difficulty of PINNs, is relative to the difficulties in setting the weighing of the
different loss components (the different λ parameters in equation (2.3)). This can be linked
to the failure modes encountered in RL due to the formulation of the reward. An example
of this is with the paperclip scenario [80] in which an AI, whose sole goal is to manufacture
paperclips, ends up destroying everything in the process. Another famous example is one
relative to with the CoastRunners game [81] in which the model find a loop in the game to
amass many points without completing the circuit.

With all that, it is no surprise that PINNs’ legitimacy is getting challenged by more conven-
tional ML approaches. The most significant example is in the inverse problem with the paper
from Du et al. [13]. Their model, CoNFiLD, departs from the PIML paradigm and instead
relies on conventional, data-driven loss functions. CoNFiLD has shown an unprecedented
advance in ML models for fluid mechanics, showcasing the kind of performances that made
LLM what they are today. Indeed, CoNFiLD can operate as a zero-shot model, capable
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of reconstructing flow fields from sparse sensor measurements. The same framework also
generalizes to corrupted data and enables resolution upscaling.

2.3 Related Work and research gaps

Similar research has been performed in jets or sprays, limiting itself to one or two velocity
components and looking only at the mean velocities, or mean particle sizes at a few fixed
positions [82–84]. Although these studies were conducted with very small models, using fewer
than 15 neurons, and trained on limited data, some trends seem to point to the legitimacy of
using ANNs when applying ML to jets laden with particles. Even though it doesn’t deal with
jets, a recent study of Li et al. [85] is of particular interest. It uses a diffusion model based on
a U-net architecture to create trajectories in homogeneous, isotropic turbulence, conditioned
on the Stokes number, by gradually denoising pure Gaussian noise using only the upper
bound of the negative log-likelihood as the training loss. It shows impressive qualitative and
quantitative performances. On a broader scale, more conventional PINNs has been used to
study jets in other studies. Oommen et al. [86] used a diffusion model with neural operators
to predict the evolution of the 3D velocity field and of the 2D density gradient field in a jet,
monitoring the energy spectra. Concerning the inverse problem, Rudenko et al. [70] used a
PINN to reconstruct the velocity field with a 10% accuracy within an axisymmetric jet from
experimental measure of the temperature field. Steinfurth et al. [87] used a PINN to increase
the density of PTV velocity field measurements in a pulse jet.

In this regard, our goal is to further explore the capability of a ML model to capture the
physics of a particle-laden axisymmetric jet. This will be assessed using the simplest ML
architecture, the ANN, through both the Lagrangian behavior of particle trajectories and
the Eulerian statistics of the resulting flow. We thus aim to model fluid trajectories and
predict Eulerian statistics up to third order in an axisymmetric jet using an ANN. To
achieve this, we will develop a method for modeling jet trajectories with an ML model based
on the ANN architecture, define appropriate metrics to assess its performance, identify how
physical constraints can be incorporated to guide learning, and optimize the resulting model.
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CHAPTER 3 ML METHODOLOGY

Our goal is to train an ML model capable of generating trajectories of variable length from
point-wise measurements. By normalizing the relevant quantities so that the results can be
extended to any jet, as presented in chapter 2, the global ‘context’ of the flow, referring
by that to the statistical structure of the velocity field surrounding the trajectories, can be
implicitly encoded in the model. This makes it possible to generate trajectories one by one,
without needing to predict the entire flow field.

The chosen form taken by the model and the way to organized the data are first presented
together with the used loss function. The dataset used for the training is then introduced to
then explore the optimization, going over the chosen hyperparameters.

3.1 Models

Since the objective is not to reconstruct snapshots of the entire flow field which would require
a spatial discretization, CNNs are naturally ruled out. Moreover, because the trajectories
evolve unidirectionally with limited dependence on past states, architectures designed to
capture complex relational or long-range dependencies, such as GNNs and Transformers,
are not ideal candidates for this task. Although a stochastic model is an appealing long-
term direction, the difficulty of the problem suggests first exploring simpler deterministic
architectures. In this regard, an LSTM might appear attractive. However, its architectural
complexity and susceptibility to training instabilities make it, much like stochastic models,
too elaborate for a first approach. A simple ANN architecture is therefore selected, enabling
general conclusions to be drawn about the intrinsic ability of ML methods to encode generic
physical behavior.

As images in figure 3.1 on the next page, the chosen structure of the ANN model is to have
the components of the position and of the velocity of a particle at a time t (xt = (z, r, θ)|t,
and ut = (uz, ur, uθ)|t) as well as a timestep ∆t for inputs, and to retrieve as outputs the
components of the position and of the velocity of the same particle after the time ∆t has
elapsed (xt+∆t = (z, r, θ)|t+∆t, and ut+∆t = (uz, ur, uθ)|t+∆t).

In order to construct trajectories, two formalisms are adopted, namely "next-token" and
"direct-token". As represented in figure 3.2 on the following page. In the "next-token" repre-
sentation, the output of the model is fed back into the output, iteratively building the tra-
jectory, while in the "direct-token" representation, the imputed particle is always the same,
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Figure 3.1 Chosen structure of our ANN model, with xt the components of a particle’s
position (z, r, θ) at a time t, and ut the components of the particle’s velocity (uz, ur, uθ) at a
time t

and the imputed timestep is used to inquire different time stamps to form the trajectory. As
presented in chapter 2, the next-token approach is based on the nth order Markov assumption
and is a very classical approach. The direct-token approach is interesting as it requires the
model to encode whole trajectories into its structure.

Figure 3.2 The two explored formalisms for the construction of trajectories using our ANN
model; the next-token approach iteratively construct trajectories by sending the outputs back
into the inputs while the direct-token approach always use the same imputed particle and
use the time-step to inquire along the trajectory

During training, as explained in chapter 2, the model is mainly directed through a loss func-
tion based on the comparison, through a regression, between the outputted value and the tar-
geted outputted value from the dataset. This is performed with the standard SmoothL1Loss()
regression loss from the torch library. However, since the model will ultimately be evaluated
on the Eulerian statistics, an added structural loss function based on them is explored.

The structural loss function is based on the mean, or expected value, of the error on the
Eulerian statistics. This is represented for the normal Reynold constraint, which is a second
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order Eulerian statistic, on figure 3.3 on the next page. This loss uses the known theoretical
curves of the mean velocity components presented in chapter 2 to compute the velocity
fluctuation. In figure 3.3 on the following page, this gives u′

z,o = uz,o − uz(zo, ro) with _o

to indicating it comes from the model’s output. Using the known theoretical curves of the
Eulerian statistics presented in chapter 2, we get the value of the Eulerian statistics. The loss
is then defined as the difference between the computed velocity fluctuations of the model’s
output combined in the form of the Eulerian statistics and the expected Eulerian statistics
at the output’s radial position. In the case represented in figure 3.3 on the next page this
would give l(o) = u′

z,ou′
z,o

U2
0,o

− u′
zu′

z

U2
0

(ηo) with U0,o = U0(zo) and ηo = η(zo, ro). The idea is that, if
the normalized radial position of the outputs is fixed, noting in this case the outputs as oη,
averaging this over a sufficient number of data N would lead to zero:
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Since this is the case for every normalized radial position, it is not necessary to discriminate
by it. It still lead to zero if the number Mη of outputs oη at every single η position is
sufficiently high:
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In order to change this mean error to an expected value of the error, we use the known
distribution of the statistics at different axial positions around the self-similar curve to draw
the probability density function. Since the profiles are almost Gaussian as presented in
chapter 2, we use the normalized probability density function p(x) = exp

(
− (x−µ)2

2σ2

)
∈ [0, 1]

with µ the mean and σ the standard deviation. The normalizing constant is as such 1√
2πσ2 .

We then multiply the errors by one minus the normalized probability density function, as
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presented in figure 3.3 in the case of the normal Reynold constraint, in which case we have

p(o) = exp
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−
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)2
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)
with σ(ηo) the standard deviation for one

normalized radial coordinate η of the statistic computed at different axial position. This
form still converges to zero with enough outputs, here shown when every outputs have the
same η:
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As seen just before, this extends to outputs over the whole normalized radial coordinate
distribution.

Figure 3.3 Image of the structural loss function, represented for the normal Reynold constraint
u′

zu′
z

U2
0

; the white dot represent the value computed from the model’s output, while the white
arrow represent the value of the structural loss when computing it for the mean error on
the statistic; the color represents the multiplicative coefficient of this error to turn it into an
expected value
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3.2 PTV Dataset for Model Training

The dataset used in to train the model originates from 3D PTV measurements acquired at
a sampling frequency of 6, 000 Hz in a vertically oriented, axisymmetric jet issued from a 4
mm nozzle, characterized by a Reynolds number Red = 28,000 and a Taylor-scale Reynolds
number Reλ = 230. The experiments, performed outside of the bounds of the present study,
were conducted with two types of seeding particles: polystyrene and glass. The polystyrene
particles have a nominal Stokes number of 0.49. Since the latter is O(1), the polystyrene
particles are considered tracers and can be assumed to perfectly follow the flow [37]. On the
other hand, the glass particles, with a nominal Stokes number of 29.7, will herein be referred
as inertial particles. More than half a million trajectories longer or equal to 20 time steps are
available for each particle. For more information concerning the dataset, refer to Viggiano
et al. [2] and to the other studies that used it [79,88].

Figure 3.4 Representation of some trajectories near the nozzle

Before using the data, a preprocessing is first performed. It is organized as follows:
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Constants: The constants Uj, x0, B, and S for our jet are determined.

Statistics: The statistics are computed, fitted, and compared with theory.

Preparation: The data is normalized to facilitate the learning and organized
in input-target pairs.

Other analysis: Other properties of our data are computed to help with the
interpretation of the results.

3.2.1 Constants

The first step is to recover Eulerian properties of the jet from the Lagrangian dataset, requir-
ing an initial binning. A grid is thus drawn along the axial and radial coordinates with 150
bins in the axial coordinate and 100 bins in the radial coordinate. The bins have been created
so that there are the same number of points in each one. No discretization has been applied
in azimuthal coordinate, meaning that each tile is in fact a torus. In each tiles of the grid, the
average velocity components are computed, allowing to obtain the velocity variations to their
mean, which are then combined and average in each bin to retrieve the statistics presented in
chapter 2. This is done in one take, using x′y′ = xy−x y and x′y′y′ = xy2−x y2−x y′2−2y x′y′

with x ∈ X and y ∈ Y two random variables, (_) to indicate the mean over X or Y and _′

to indicate the variation to the mean (x = x+ x′ and y = y + y′). The statistics are at this
stage only computed for later comparison, as they will have to be recomputed as explained
in what comes. Through the center of the first bin where the axial speed is less than or equal
to the centerline velocity, the half-width is retrieved.

Only points in the self-similar region of the jet are being looked at, that region is determined
through the superposition of the plots of the statistics and with the value of the normalized
axial velocity variation at the center-line. Points at the end of the measurement region are
also discarded as their distribution is biased. The self-similar region is thus fixed between
either 20 and 28 or 25 and 48 diameters downstream of the nozzle exit, depending on the
dataset. This can be visualized by plotting the distribution of the initial z

d
positions of the

streamlines as imaged in figure 3.5 on the next page.

We then use the parametrized functions of U0(z|Uj, x0, B) (as per equation (3.11)) and f =
uz

U0
(z, r|x0, S) (as per equation (3.12) or equation (3.13)) to create an objective function that

calculates the errors (based on the smooth L1 loss for U0 and on the means for uz

U0
) of the

parametrized values to the real values for different sets of Uj, x0, B, and S. Here, a fit on
uz

U0
is used instead of on r1/2. This is theoretically equivalent but allows for a more precise

fitting of uz

U0
, as the latter is used in the computation of the statistics. Another reason is that

the binning induces an error on the position of the measured quantities (taken as the center
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Figure 3.5 Distribution of initial z/d positions of streamlines for the varying length trajecto-
ries tracers dataset; the two dash lines represent the edges that define the self-similar region

of the bins), resulting in a potential error on r1/2 and U0. For the mean axial and radial
velocities, the functions from Basset [4] and from Pope [1] are compared.

U0 = UjBd

z − x0
, (3.11)

fBasset(η) = e−aη2 , (3.12)

fP ope(η) = 1
(1 + aη2)2 , (3.13)

with a =
√

2−1
S2 and η = r

(z−x0) .

The optimization yields the fits presented in figure 3.6 on the following page. The functions
from Pope are thus used:

f(η) = fP ope(η) = 1
(1 + aη2)2 (3.14)

h(η) = hP ope(η) = 1
2
η − aη3

(1 + aη2)2 (3.15)

The minimization of the objective function from Pope gives us Uj = 8.16, x0 = 3.82d,
B = 5.30, and S = 0.0905 for the length 20 trajectories tracers dataset, Uj = 6.10, x0 = 6.24d,
B = 6.19, and S = 0.0970 for the varying length trajectories tracers dataset, and Uj = 6.34,
x0 = 2.91d, B = 5.99, and S = 0.1056 for the inertial particles dataset. Those fall within
acceptable ranges [1, 3, 89].

The azimuthal mean velocity is taken to be zero. We observe the following errors from the
fitted curves to the measured values (see figure 3.7 on the next page). Not that the errors
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Figure 3.6 Fitted curves for the varying length trajectories tracers dataset, using the functions
from either Pope or Basset et al. [4]

shown are from both the fitting of f(η) or h(η)) and of U0. The small values found far from
the centerline of the jet induce high computed errors. This region being of little interest,
high errors are acceptable there. In general, the errors are deemed reasonable.

Figure 3.7 Percentage error on uz/U0 due to the fitting for the length 20 trajectories tracers
dataset, clipped between 1% and 10%

Note that, as explained in chapter 2, due to the fact that our data come from Lagrangian
measurements taken with tracers injected in the jet, the theoretical mean radial and axial
velocities are different from the classical theory. This has been studied and explained in a
previous study [4,32]. Since this bias also appears for the mean axial velocities, it renders our
method to compute the constants erroneous. This cannot be averted but has little impact,
given that the difference between the theoretical mean axial velocity and the measured one
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is mostly near the border of the jet (at around η = 0.2). Still, the theoretical mean velocities
will be used as the true mean velocities from here on out.

3.2.2 Statistics

To account for the seeding bias leading to false measured mean velocities, the statistics are
recomputed using the theoretical mean velocities.

The resulting curves for the statistics, and their analogous from other works presented in
Hussein’s paper [3], are presented in figure 3.8 on the following page. A good agreement
between the different curves is observed, while still showcasing the noise coming from different
experimental setups.

Using the theoretical mean velocities instead of the real ones has its impact on the values
taken by the statistics, this is especially the case for high-order statistics. Here, comparing
the statistics computed using the real velocity averages in an axial-radial grid to the statistics
computed using the theoretical velocity averages yields figure 3.9 on page 38. The statistics
that do not have a term relative to the radial velocity are here compared. Indeed, unlike
for the axial and azimuthal velocities, the difference between the real and measured radial
velocities due to the seeding bias are too big for a meaningful comparison.
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Figure 3.8 Second- and third-order statistics from experiments presented in the papers from
Hussein [3] and from the varying length trajectories tracer dataset from Viggiano et al. [2]
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Figure 3.9 Differences in the statistics computed using the real velocity averages in an axial-
radial grid and computed using the theoretical velocity averages from the varying length
trajectories tracer dataset
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3.2.3 Preparation

It is interesting for different parts of the jet to be similar to one another to help the learning
model. This is also an opportunity to incorporate prior knowledge into the training model
and would allow to use data from different jets. As such, the velocities are each divided by the
centerline axial velocity U0, the radial coordinates are divided by the half width r1/2, and the
axial coordinated are divided by the nozzle diameter d. To further help the learning model,
the frame numbers, which is the metric relative to the time axis in our case, are normalized by
the Lagrangian Turbulence Scales TL as approximated in the paper from Lilly [31]. Indeed,
the Lagrangian macro-time scale is a measure of the average time over which a fluid particle
moves in the same direction. It can be used as the time scale for velocity updates and allows
to normalize the velocity variations. It can be argued that, since in the inputs, ∆(frame/TL)
is given and that TL depends on the outputted axial velocity and radial position, a bias is
induced. This is true but of little importance since the play between the velocity components
is of high interest, and not their individual values.

It is also explored replacing the normalized velocities (referred to later as instantaneous
velocities) by the normalized velocity variation to their mean (referred to later as prime
velocities) or, for the output ones, by the velocity variation (referred to later as variation
velocities). The prime velocities are directly in a form suitable for statistics computation,
which might help in this regards together with making the learning faster when using our
structural loss function. The variation velocities represents better what the model is really
trying to do, which is to understand how the surrounding fluid will impact the trajectories.

3.2.4 Other analysis

As shown in this section, jets are highly canonical yet exhibit substantial intrinsic variance.
To quantify this variability in a way that is meaningful for ML models, mean velocity and
higher-order statistical estimates are computed from data samples of varying sizes. For each
sample size, this process is repeated 100 times to obtain the mean and standard deviation
of the estimation error relative to the “true” values computed over the full dataset. The
results are presented in figure 3.10 on the following page, where the mean error plus three
standard deviations is plotted as a function of sample size for different statistical quantities
(indicated by color). Using the mean plus three standard deviations provides an estimate of
a “worst-case scenario,” since 99.7% of the data falls below this threshold under a normality
assumption.

The corresponding variance as a function of sample size is also shown. Variance is a crucial
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quantity in ML, as it affects the consistency of gradient updates. In this context, the sample
size serves as an analogue of the batch size. The figure therefore illustrates that, even within
the range of mini-batch sizes typically used (on the order of 102–103), the data itself exhibits
relatively small variability. Still, said variance substantially decreases with increased batch
size, raising the question of whether significantly increasing the mini-batch size could benefit
learning in the case of axisymmetric jets.

Figure 3.10 Variance of the raw data on the Eulerian statistics of order 1, 2, and 3 as a
function of the number of samples considered from the varying length trajectories tracer
dataset

3.3 Optimization

As presented in chapter 2, given that the training is correctly performed, the optimization
consists in exploring different hyperparameters combinations and selecting the best perform-
ing one.

To classify relative model performances, the final and evolution during training of the per-
formances on the validation set, both regarding the values of the loss and the statistic of
a created jet, are recorded. To do so, the Mean absolute percentage error (MAPE) and
the Pearson correlation coefficient (r2) are computed throughout the training. For the final
model, the self-similar curves are also traced for visual comparison, showing also the gaus-
sian distribution of different axial positions around them. In addition, the loss landscapes of
the trained models are constructed. As explained in chapter 2, the directions chosen in the
parameter space to draw the loss landscape are based on the eigenvectors of the Hessian of
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the loss in the parameter space. With this, to improve performance, a sequential setting of
the hyperparameter is chosen.

In order to create a jet of any trajectory size from the model, roll out functions are used. Those
are straightforward, except for the imputed values of ∆(frame/TL). In order to compute it, it
is reasonably assumed that the TL of both the input and the output are close to one another.
For the next-token formalism, this gives ∆(frame/TL) = framet/TL,t − framet−1/TL,t−1 ≈
∆frame/TL,t−1. For the direct-token formalism, it yields ∆(frame/TL) = t/TL,t − 0/TL,0 ≈
t/TL,t−1.

We choose a sequential exploration of the hyperparameters, starting from the most important
ones. This approach is chosen instead of using a numerical sweeping tool for three main
reasons. The first is that some explored hyperparameters are not mainstream and thus have
to be added by hand, the second reason is that the parameters to be explored are setted
along the way, responding to analyses of the best model performances. The last third reason
is that the performances of a model is hard to characterize using only one numerical values.
The latter would indeed need to describe and weigh the importance of not only the final loss
on the validation set, but also the order of magnitude, evolution, and distribution about the
self-similar curve of the predicted Eulerian statistics as compared to the ones from the data.

Before all the size of the model, defining the number of parameters, as well as the number of
layers and the number of perceptrons per layer has been fixed with the training time in mind,
aiming for a one hour training time for the simplest regression loss. The training is performed
on either an NVIDIA GeForce RTX 3080 or an NVIDIA RTX 4000 Ada Generation. The
explored hyperparameter are presented in table 3.1, some of which are herein defined.

Table 3.1 Hyperparameter explorations

Hyperparameter Explored values
Learning rate scheduler (3, 0.5), (2, 0.5), (1,0.5)

Learning rate Auto, 1e-02, 5e-3, 1e-3, 1e-4
Batch size 256, 512, 2048, 8192, 1024, 4096, 8192

Batch η clustering With, without
Normalization Nothing, BN, LN

Optimizer Adam, rAdam
Scheduler with restart With, without

Dropout 0, 0.1, 0.3, 0.5
Activation function GELU, ReLU, tanh, sigmoid, Swish
Loss function order Regression, + mix order 1, 2, 3

Sequential representation Next-token, direct-token
Velocities representation Instantaneous, prime, variation
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First of all, concerning the learning rate, the scheduler is characterized by a pair (N, γ), where
N represents every how many epoch it is applied, and γ is the multiplicative factor applied to
the learning rate every time it is applied. Then, used before training, the automatic learning
rate finder is the one presented by Smith et al. [90]. The idea is to track the loss for different
learning rate, as computed on a small subset of the training dataset, and picking the learning
rate where the slope of the loss drop is maximum. With the importance of the learning rate
and given the chosen sequential approach for the hyperparameter exploration, an automatic
selecting method is enticing as it will adapt to future hyperparameter choices. Using this
scheduler with restart denotes restarting from the best performing model every-time the
scheduler is activated, allowing to make use of the noise from a higher learning rate.

Concerning the batch sizes, the wide exploration is based on the idea that the model is
evaluated on the global properties of the jet through the Eulerian statistics, but is trained
only on a point to point prediction. Allowing it to optimizer on a greater percentage of
the dataset could be helpful. As previously explained in this chapter through figure 3.10 on
page 40, even if the variance is surprisingly low, increasing the batch size can significantly
reduce it. Staying on the batch size, as glimpsed with the definition of the loss function
earlier in this chapter, to help with smaller batches, it is explored forming batches to contain
points close to the same normalized radial position η.

Finally, dropout is a widely used method, it refers to a percentage of the perceptrons that
are deactivated at all time during training. Which perceptrons are affected is random, and
it changes at every batch seen by the model. Effectively, this is similar to training many
models and combining them into an ensemble of model during inference. As such, it often
shows improved performances.
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CHAPTER 4 THEORETICAL AND EXPERIMENTAL RESULTS

As explained in chapter 3, it is theorized that the most impactful metric in our case is the
variance of our data, which comes from the fact that we want our model to learn global
Eulerian properties from point to point Lagrangian data. Indeed, in the way optimization
operates, AI models are very sensitive to variance which could throw the gradients in a
suboptimal direction for poor mini-batches.

Another very impactful choice is the loss function and its relative loss landscape. Indeed,
just as for PINNs, we explored the use of physically informed loss functions. Just as was
the case for PINNs [20, 47, 79], we observed that they make the loss landscape bumpy and
noisy, leading to poor performances with the mainstream optimization methods. Trying to
implement physics into ML has, for now, led to the failure of the blessing of dimensionality.

The steps and choices made during the hyperparameter setting presented in chapter 3 are
first explored. The chosen parameters and the observed results are explained before reviewing
the performances of the best performing model.

4.1 Optimization

The initial model is a simple ANN with 4 hidden layers of 64, 128, 100 and 50 perceptrons.
The output layer is adapted to the output type for the positions, using a soft-plus for the
radial coordinate, forcing it positive, a sigmoid on the azimuthal coordinate to bound it
between 0 and 2π, and using a soft-plus on the radial coordinate to force the trajectories to
move downstream. No normalization or dropout is at first used, and the activation functions
are ReLU. A batch size of 256 is at first used.

The hyperparameter choices from the explored values presented in chapter 3 are summarized
in table 4.1 on the next page, leading to the architecture presented in figure 4.1 on the
following page. Although, the exploration was sequential as explained in chapter 3, the
trajectory construction method, using either a next-token or direct-token formalism where
at every step both trained. The same goes with the exploration of a few batch sizes as
it represents an important parameter and, unlike the learning rate, was not automatically
selected.

A main theme of improvement throughout optimization is noise reduction of the metrics’
evolution during training, which is especially true for the next-token formalism. The first
method to reduce this is through regularization, with the use of a learning rate scheduler,
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Table 4.1 Hyperparameter explorations and choices

Hyperparameter Explored values Chosen value
Learning rate scheduler (3, 0.5), (2, 0.5), (1,0.5) (2, 0.5)

Learning rate Auto, 1e-02, 5e-3, 1e-3, 1e-4 Auto
Batch size 256, 512, 2048, 8192, 1024, 4096, 8192 512

Normalization Nothing, BN, LN LN
Optimizer Adam, rAdam Adam

Scheduler with restart With, without Without
Dropout 0, 0.1, 0.3, 0.5 0

Activation function GELU, ReLU, tanh, sigmoid, Swish GELU
Loss function order Regression, + mix order 1, 2, 3 Pure regression

Sequential representation Next-token, direct-token Next-token
Velocities representation Instantaneous, prime, variation Instantaneous

Figure 4.1 Architecture of the best performing ANN

to reduce the learning rate throughout training. The best performances were observed with
reducing the learning rate by half every two epochs. In that, for the setting of the initial
learning rate, a learning rate finder is used [90]. Testing for different learning rate has
shown that the learning rate finder is always close to the best performing one, which is often
around 5 × 10−3. Its use is thus kept, as it will adapt to other hyperparameter changes.
As an improve to the learning rate scheduler and to make use of the noise, a restart at
the previously best performing model is explored. Even if the performances were close, this
did not yield satisfactory results, possibly due to the fact that, even if performances do not
improve, new representations are created that increase performances in the long run. Other
regulation techniques such as early stopping were not explored as, surprisingly, no overfitting
was observed, with a typical learning curve represented in figure 4.2 on the next page. This
can be attributed to the stochastic nature of the data clashing with the deterministic nature
of the model, not giving the latter the ability to memorize.
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Figure 4.2 Evolution of the loss on the test and validation set throughout training, showcasing
no overfitting

For the next most important hyperparameter after the learning rate, the impact of the batch
is then explored, increasing it all the way to 8,192. Surprisingly enough, a batch size of 512 is
found to perform best. This is likely due to that fact that, as explained in chapter 2, increasing
the batch-size results in sharper minimum. This is not the only reason, as increasing the
batch size increased the standard deviation on the statistics of the produced jet from the
validation set. This is mostly true of the next-token formalism, as the direct-token formalism
shows little response to batch-size changes. Confirming observation on the low variance from
chapter 3, it indeed seems that, small batch sizes are still able to accurately approximate
the best direction for generalization. Conceptually, since one loss dictates one direction in
the parameter space, bigger batches would conceptually produce a loss more align to an
Eulerian framework, with smaller batches might be more fitted from a Lagrangian study.
The clustering of batches based on normalized position did not work very well. This is most
likely due to the fact that, for each batch, the loss point to a direction that makes sense
for one radial position, together those directions do not seem to align toward generalization.
This is similar to training a model through the loss of many expert models, which does not
seem to work in our case.

On the model architecture design, concerning the normalization, the choice is between the
most famous types, namely no normalization, Batch Normalization (BN), and Layer Nor-
malization (LN). Surprisingly, LN performs better than the other two. This indicates that
the handling of each sample independently is beneficial, which could mean that the model
could perform better in a Lagrangian framework than in an Eulerian one. Additionally, LN is
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famous for its use in Transformers, which is encouraging news for the future implementation
of transformers for turbulence. Continuing with the optimizer, with little surprise, Adam is
seen to perform best. Adam is renowned for good performances in a lot of applications, and
turbulence doesn’t seem to be an exception. Most of the work done on the application of ML
to turbulence also use Adam [82, 84, 87]. Surprisingly, adding dropout did not help. This is
most likely due to the still limited size of the model, that is not large enough to allow the
sacrifice of some of its perceptrons. Regarding the activation function, the GELU activa-
tion generally outperforms the more traditional ReLU and the newer Swish functions. This
superior performance is likely due to its smooth nonlinearity, which preserves the beneficial
gradient propagation characteristics of ReLU while providing a smoother gradient.

Back towards hyperparameters defining the training phase, concerning the loss functions,
varying which order were included and in which proportions did not manage to outperform the
simplest regression loss. This is of no surprise when looking at the loss landscapes of different
orders in the loss function, as imaged in figure 4.3 on the following page. The presented
direction, represented in the x- and y- axis on the figure, denote, as explained in chapter 2,
the two eigenvectors of the Hessian with the largest associated eigenvalues. It is observed that
high order statistics reflect sharper discontinuous minima and induce high gradients. When
computing the gradients in these loss landscapes, the one relative to the third-order also
showcase a big plateau as images in figure 4.4 on page 48. Figure 4.3 on the following page
shows that, even though the low-loss regions of the different structural losses do not generally
overlap, the minimum of the regression loss lies within all of them and is therefore more
restrictive. This suggests that the model is able to encode the underlying physics directly
from the data, despite the absence of explicit physical constraints. This is encouraging,
as regression-based training is significantly faster and avoids the risk of converging toward
unphysical solutions that satisfy the equations but not the data. Furthermore, since most
contemporary AI research relies on regression objectives, a classical regression loss ensures
that existing and future generic AI methods can be readily applied to our problem.

Finally, Regarding the representation of next-token and direct-token, next-token is subject
to more noise and is prone to diverging far from the centerline. Direct-token does not present
those problems, and seems as such to grasp better the structure of the whole jet. However,
it presents difficulties in the prediction of second-order statistics. Another interesting aspect
is that, when varying the length of the trajectories, direct-token prediction seems to perform
increasingly better as the trajectories become longer, while next-token prediction sees its
performances in a steady decline. Another determining parameter is inference time, for
which the direct-token formalism is around 20 times faster.
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Figure 4.3 Loss landscapes regarding the regression losses (a), and the physically informed
losses of first- (b), second- (c), and third-order (d) Eulerian statistics; the x- and y-axis
represent two directions in the parameter space chosen as the two eigenvectors of the Hessian
with the largest associated eigenvalues
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Figure 4.4 Loss landscapes regarding the physically informed losses of third-order Eulerian
statistics; the x- and y-axis represent two directions in the parameter space chosen as the
two eigenvectors of the Hessian with the largest associated eigenvalues; the color correspond
to the measure of the gradients
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4.2 Best model

The final metrics, using the Mean absolute percentage error (MAPE) and Pearson correlation
coefficient (r2), of the next-token model are presented in table 4.2 relative to the regression
loss, table 4.3 on the following page for U0, r1/2, and the second-order Eulerian statistics, and
table 4.4 on the next page for the third-order Eulerian statistics. The MAPE is a measure of
the average relative error between predictions and reference values, expressed as a percentage.
It quantifies, on average, how far the predictions deviate from the true values, and is therefore
aimed to reach 0%. On the other hand, r2 is a measure of the proportion of variance in the
reference data that is explained by the predictions. It evaluates how well the model captures
the overall variability of the target, and is therefore aimed to reach 1.

When comparing the outputted trajectories from the ones typically trained on in table 4.2,
the model manages to capture well the positions but struggles with velocity predictions. This
is not a very good image of the performance on trajectory drawing as the model is here limited
by its deterministic structure. A better representation is here through a visualization of the
outputted trajectories, compared to the trajectories of the dataset, as presented in figure 4.5
on page 51, showing a good visual description of the jet, be it in average velocities or through
the comportment of the trajectories. The jet produced by the model is a bit thinner due to
the limits in positions encoded into its structure through the output activation functions.

Table 4.2 Mean absolute percentage error (MAPE) and Pearson correlation coefficient (r2)
on the prediction of the model compared to the aimed output data from the validation set
for the best performing model using the next-token trajectory drawing formalism

Measure MAPE (in %) r2

r 1.6 0.993
θ 0.8 0.873
z 0.1 0.998
ur 60.5 0.459
uθ 65.1 0.439
uz 18.0 0.867

Both table 4.3 on the following page and table 4.4 on the next page are better understood
by looking directly as the self-similar curves of the Eulerian statistics. Those are images in
figure 4.6 on page 52, figure 4.7 on page 52, and figure 4.8 on page 53 for the next-token
formalism, and in figure 4.9 on page 54, figure 4.10 on page 54, and figure 4.11 on page 55
for the direct-token formalism, here presented for models trained on length 20 trajectories
of tracers. It appears that the model is capable of respecting the order of magnitude, dis-
tribution (here shown through the standard deviation for different axial coordinates,) and
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Table 4.3 Mean absolute percentage error (MAPE) and Pearson correlation coefficient (r2)
on the prediction from the validation set of U0, r1/2, and the second-order Eulerian statistics
of the best performing model using the next-token trajectory drawing formalism

Measure MAPE (in %) r2

U0 4.8 0.974
r1/2 9.2 0.937
u′

zu
′
z 9.0 0.976

u′
ru

′
r 12.2 0.990

u′
θu

′
θ 14.4 0.991

u′
zu

′
r 15.5 0.918

Table 4.4 Mean absolute percentage error (MAPE) and Pearson correlation coefficient (r2)
on the prediction from the validation set of the third-order Eulerian statistics of the best
performing model using the next-token trajectory drawing formalism

Measure MAPE (in %) r2

u′
zu

′
zu

′
z 63.6 0.312

u′
ru

′
ru

′
r 28.1 0.807

u′
zu

′
ru

′
r 16.2 0.903

u′
zu

′
θu

′
θ 50.2 0.554

u′
ru

′
θu

′
θ 25.0 0.811

u′
zu

′
zu

′
r 53.0 0.582

evolution of the self-similar curves. Although more noise is observed, this is especially true
for the model using a next-token formalism for trajectory construction. Indeed, using the
direct-token formalism, the model has difficulty predicting second-order statistics.

The model still exhibits significant noise in its predictions, and although the results are en-
couraging, higher accuracy is clearly desirable. These limitations are primarily attributed to
the restricted size of both the dataset and the model. A broader and more diverse dataset
would likely further improve performance. In this context, collecting large quantities of
high-quality three-dimensional experimental data in particle-laden axisymmetric jets is par-
ticularly valuable. Using PDA for such measurements is especially promising: it provides
non-intrusive, point-wise measurements of individual particles down to the micrometer scale,
resolving both velocity components and particle sizes. Its high temporal resolution makes
it well suited for training data-hungry ML models, and its applicability to a wide range of
complex flows, such as multiphase and dense sprays, combustion and flames, or supersonic
regimes, makes it ideal for building a diverse database. However, performing high-quality
PDA measurements requires precise laser alignment through the positioning of heavy equip-
ments, and current techniques remain limited. This motivates the development of a new
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Figure 4.5 Some trajectories from the dataset on the left, and from the model’s outputs to
the validation set on the right; the common color bar represents the axial velocity along the
trajectories

alignment method, presented in appendix A.
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Figure 4.6 Low order statistics of outputted jet from the validation set of the best model,
with a next-token formalism; in red are the statistics from the dataset, while in black are the
ones from the model’s output to the validation set

Figure 4.7 Second-order statistics of outputted jet from the validation set of the best model,
with a next-token formalism; in red are the statistics from the dataset, while in black are the
ones from the model’s output to the validation set
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Figure 4.8 Third-order statistics of outputted jet from the validation set of the best model,
with a next-token formalism; in red are the statistics from the dataset, while in black are the
ones from the model’s output to the validation set
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Figure 4.9 Low order statistics of outputted jet from the validation set of the best model,
with a direct-token formalism; in red are the statistics from the dataset, while in black are
the ones from the model’s output to the validation set

Figure 4.10 Second-order statistics of outputted jet from the validation set of the best model,
with a direct-token formalism; n red are the statistics from the dataset, while in black are
the ones from the model’s output to the validation set
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Figure 4.11 Third-order statistics of outputted jet from the validation set of the best model,
with a direct-token formalism, in red are the statistics from the dataset, while in black are
the ones from the model’s output to the validation set
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CHAPTER 5 CONCLUSION

ML represent an interesting tool for turbulence modeling, and has shown promising results as
a helper or as an independent addition technique to experimental studies and CFD. For now,
its progress is prominently limited by the availability of high-quality data. Another major
limitation lies in its ability to represent complex flows, of which particle-laden axisymmetric
jets are a prime example.

5.1 Summary of Works

The developed ML model for the particle-laden axisymmetric jet study demonstrate that a
purely data-driven approach, without any physically induced constraint in the loss function,
performs better. This is mainly attributed to the geometry of the loss landscape, which is
easier to optimize over the parameter space with a simple regression loss, even in complex
flows, only treating points one by one. This implies that ML models are able to develop
complex characterization of the flow, up to high order statistics, from only optimizing over
individual particle’s positions and velocities in a very complex flow. This observation remains
true when switching to inertial particles, providing credibility for the development of a strong
AI model for the study of turbulence as a whole. On an application point of view, within a
Lagrangian framework, the classical next-token prediction scheme achieves the best perfor-
mance overall. However, the direct-token approach remains of particular interest, as it is less
sensitive to hyperparameter choices and, unlike the next-token approach, its performance
improves as the trajectory length increases.

5.2 Limitations

The ML model remains relatively small in size, trained on a limited dataset from a singular
experimental campaign, and based on a simple ANN architecture. In addition, the model is
purely deterministic. All this is reflected by the end performances that could use of some
improvements. As such, the results should be interpreted with caution, taking it mainly
as a proof of concept, giving suggestion for the structure of ML models for the study of
axisymmetric jets. In addition, the presented exploration of the hyperparameter space is
structured and systematic, it thus remains possible that unconventional hyperparameter
combinations yield better results than the presented final model.
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5.3 Future Research

Increasing the complexity and diversity of the dataset, together with the use of more ad-
vanced ML algorithms, constitutes the next logical step for the ML model. This would
enable a deeper exploration of the potential of ML for the study of axisymmetric jets. As
discussed in chapter 2, scaling up the model size (and the corresponding dataset) is the most
straightforward direction, aiming to observe emergent abilities similar to those reported for
LLMs [56] and hinted at in recent large-model studies of turbulence [13]. In this regards,
the use of PDA is of high interest, as it present a measurement technique allowing for the
production of large quantity of data. In addition, the resilient nature of PDA to complex
flows make it ideal for the creation of a diverse datasets. With broader applications, a
tighter integration of key flow parameters, such as the Reynolds and Stokes numbers, could
be implemented. Shifting from tracers to inertial particles through the Stokes number could
be straightforward, due to the fact that the Eulerian statistics can be computed with iner-
tial particles, thus allowing the implementation of the same formalism as the one presented
for tracers. Smart conditioning mechanisms, including AdaIn, FiLM, hypernetworks, condi-
tional BN/LN, gating, or cross-attention, constitute promising methods to explore. Taking
inspiration from LLMs fine-tuning techniques, such as the general encoder that is BERT or
Reinforcement Learning from Human Feedback (RLHF) fine-tuning, could also be of interest,
enabling the development of a generic model that encodes turbulence in its entirety while
remaining adaptable to specific applications through targeted fine-tuning.

In the Lagrangian framework, particular attention should be given to recurrent models such
as LSTMs, which remain particularly relevant. Another promising architecture, still not ex-
tensively explored in the context of turbulence, are Transformers. Transformers could enable
spatial attention mechanisms that adapt to key flow parameters such as the Reynolds num-
ber, boundary conditions, and spatial position. More broadly, the study of GANs, Variational
AutoEncoders (VAEs), diffusion models, and normalizing flows remains of great interest, as
these architectures have shown encouraging performance in various generative modeling tasks
in the context of turbulent flows. Using diffusion models represent a great method to capture
the stochastic nature of axisymmetric jets, but training many simpler models, such as many
ANNs, could present a first step into stochasticity, as a sort of an ensemble model.

The future of PINNs appears to be approaching a standstill, but its use in expert prob-
lems with small available datasets is still of interest. To better exploit the small datasets and
compact models typically used in PINNs, exploring more computationally expensive Hessian-
based optimization methods, such as the Newton method instead of standard SGD, could
be worthwhile. Going deeper into the optimization mechanisms of ML, one could also con-
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sider developing an adapted Adam optimizer with memory components dedicated to different
orders of the loss, thus possibly containing the impact of high gradients observed in phys-
ical informed loss landscapes. Additionally, techniques such as flowing gradients (where a
constant is added to the gradients to aid convergence in plateau regions), or functional trans-
formations of the loss itself through simple functions could help improve the exploration of the
complex loss landscapes of physically informed loss functions. Keeping a physically directed
formalism, RL remain of considerable interest. Although introducing physics directly into
the loss function has not proven to be a viable long-term strategy for applying ML to fluid
mechanics, alternative ways of embedding physical knowledge into the model should be in-
vestigated. For instance, drawing inspiration from the step-by-step denoising processes used
in diffusion models, a multiscale-oriented framework could be developed. Such a model could
incorporate techniques inspired by speech recognition, treating different frequencies in their
own way (be it spatial or temporal scales). Along similar lines, exploring ensemble-based ap-
proaches could represent another promising direction, be it on positions or velocities. These
could operate analogously to CFD simulations, with smaller specialized models at subgrid
scales functioning cooperatively.
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APPENDIX A 3D PDA METHODOLOGY

To address the scarcity of good quality data for the training of ML agents, the formalism for
the creation of a 3D PDA datasets are herein introduced. PDA measurement methods are
first introduced in section A.1, presenting the need for precise laser alignment to measure
the three components of the velocity, and the limits of the present methods to do so. In
this regards, a new method for three-components PDA laser alignment is introduced in
section A.2. The formalism for the realisation of an experimental dataset in a particle-laden
axisymmetrical jet is then introduced in section A.3.

A.1 Working principle of Phase Doppler Anemometry

Phase Doppler Anemometry (PDA) and Laser Doppler Anemometry (LDA), also referred to
as Laser Doppler Velocimetry (LDV), both exploit the Doppler effect to measure the velocity
of particles traversing a defined measurement volume, with PDA additionally enabling par-
ticle size determination. LDA was first introduced in 1964 [91], and much of its theoretical
foundation has since been developed [33,92–97].

As represented in figure A.1 on the following page, in a typical one component LDA setup,
a laser of wavelength λ is split into two parallel beams and focused by a lens to enable
their intersection at a given angle ∆α. The laser beams are produced in what is called a
transmitter. The intersection defines a measurement volume, where interference produces
a system of static fringes with spacing df . The measurement volume takes the form of an
ellipsoid roughly 1 mm long and 0.1 mm thick in the other directions. A particle traversing
this region scatters light modulated at a Doppler frequency shift fD, from which the velocity
component lying in the beams plane and perpendicular to the bisector of the two beams can
be determined:

U = dffD = λ

2 sin(∆α/2)fD. (A.1)

The fringe spacing df , thus, provides information about the distance traveled by the particle,
and the Doppler frequency fD provides a measure of time. In order to measure null and
negative velocities, a Bragg cell with a frequency fB shifts the frequency of one beam to
c
λ

+ fB, where c is the speed of light. This produces an effective wavelength c
c/λ+fB

and
causes the fringe pattern to oscillate at fB, effectively moving at a constant velocity and
leading to:
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U = df (fD − fB). (A.2)

Figure A.1 Basic setup of a 1D LDA system, using one transmitter outputting two intersecting
lasers

Nowadays, in most cases, the transmitter used for LDA measurements also acts as the re-
ceptor, by convention, the angle between the transmitter and its receptor is then 180°. This
setup is referred to as backward scattering, and is characterized by a much smaller amount
of light scattered. When using more than one transmitter, it is possible to cross the trans-
mitters and their integrated receptors to benefit from higher scattered light intensity. This
is called cross-coupled mode or off-axis detection and can greatly increase the performance
of the system [98–100]. Using a separate receptor is also an option to achieve this. In the
case where the receptor is placed opposite to the transmitter, this is referred to as forward
scatter. Note that a slit or pinhole is often added in front of the receiving optic, reducing the
size of the measurement volume for more control [92]. The amount of light received is what
limits the diameter of the smallest particles that can be detected, as it must exceed the noise
threshold. Conversely, the upper limit on measurable particle velocity is determined by the
particle residence time in the measurement volume (if the Doppler burst is too short, the
processor cannot resolve the frequency accurately) [100]. The upper limit on seeding density
is mainly dictated by the requirement that each Doppler burst must originate from a single
particle.

For PDA, to retrieve the particle size, multiple detectors positioned at slightly different
scattering angles are used. Since fD is a function of the velocity of the particle, it is unique
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for one particle, each of the detectors thus observes the intensity:

Ii = Ai cos(2πfDt+ ϕi). (A.3)

Here, the effect of the Bragg cell is not taken into consideration for simplicity. The quantity
of interest is the phase difference ∆ϕ = ϕ1−ϕ2 which originates from a difference in scattering
angle leading to a difference in the optical path. Thus, ∆ϕ actually measures a difference
in optical path length. This path length difference is proportional to the particle diameter,
with a proportionality factor determined by the scattering angle and the refractive index
of the particle. The refractive index dependence implies that PDA cannot function reliably
for more than one particle type in a flow. Since measured phases are wrapped modulo 2π,
the phase–size relation becomes ambiguous once the true phase exceeds a single 2π cycle.
By adding a third detector, a second independent phase difference is obtained. Because
the wrapping occurs at different particle sizes for each detector pair, the ambiguity can be
resolved, allowing reliable size measurements over a larger range.

When dealing with see-through particles, the refracted light is no longer the only scattered
light as internal refractions come into play. To perform good measurements, it is necessary
for one single mode to dominate, choosing the angle between the transmitter and the receptor
knowingly. This can be characterized by the Debye series. The angle between the transmitter
and receptor also influences the quality of the measure of the velocity, be it for dominance
between different scattering modes, or even for the intensity of a single mode.

An interesting aspect of Doppler technique is that their capacity to register very small par-
ticles can allow them to function even without seeding the flow, using instead the natural
pollutants present in it [33].

For three-component PDA or LDA measurements, as imaged in figure A.2 on the next page,
two transmitters are required. A single transmitter provides two orthogonal laser-beam
pairs and thus resolves only two components of the velocity field. Unlike what is shown on
figure A.2 on the following page, the transmitters do not have to be set up as to directly
measure the three orthogonal velocity components as those can be retrieved with the use
of a rotation matrix. This is prone to induced error [92, 100]. The integration of a second
transmitter enables measurement of the third component, but introduces the critical challenge
of aligning their respective measurement volumes. This alignment is delicate yet essential,
particularly when small-scale properties or the viscous dissipation rate are of interest [93,98,
99,101–104].

The most apparent reason for laser alignment is to ensure all transmitters measure the velocity
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Figure A.2 Basic setup of a 3D LDA system, using one transmitter outputting two pairs of
intersecting lasers to resolve two velocity components, and a second transmitter with one
pair of intersecting lasers to resolve the thrid velocity component

components of a single particle. In three component LDA and PDA systems, coincidence is
determined by matching data points whose arrival times within the measurement volumes
agree to within a prescribed tolerance ∆t. This small coincidence window time has to be
large enough to allow for the coincidence of slow particles but small enough for it to remain a
pure spatial coincidence, and not a spatial and temporal one [104]. This coincidence method
implies the existence of particles that happen to randomly satisfy the coincidence arrival time
difference criteria, leading to signals from different particles being incorrectly associated, later
referred to as "virtual particles" [104–106]. Those are always present and are especially of
great concern in highly seeded flows [105].

Traditional alignment approaches often rely on some type of physical target placed at the
intended measurement location as a point of reference. Common examples include a small
pinhole (monitoring transmitted intensity) [100, 102, 107], a steel-bearing ball (aiming at re-
flecting the incident laser back onto itself) [92, 102], a hot-wire probe (seeking maximum
light intensity) [98,108], or a simple objective lens (trying to produce concentric interference
patterns) [98]. The addition of a light detector can also be included to provide a more quanti-
tative measure [98]. It has also been noted that alignment can be achieved by monitoring the
recorded data, either through coincidence data rates [104] or by analyzing the transmitter
signal with an oscilloscope [99]. Some rare cases make use of the visual feedback from a
theodolite, which is basically a microscope on a base allowing precise positioning, often used
to measure angles, to assess alignment quality [109].
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A.2 Three-components PDA alignment formalism

As explained in section A.1, the present alignment techniques could benefit greatly from
added precision and ease of use. To address these challenges and expedite the alignment
process, a purely optical calibration technique based on image analysis that uses conventional
cameras is herein described. The method eliminates reliance on physical targets such as
pinholes or scatterers, offering a robust, low-cost, and non-intrusive alternative. It also
provides direct visualization of the relative positions of the measurement volumes with respect
to their optimal overlap, enabling both precise alignment and quantitative assessment of
overlap quality. The idea is to visualize, in the cameras’ reference, how the lasers should be
positioned for perfect alignment, allowing to set the transmitters through the visual feedback
of the cameras.

The first step of alignment is to fix both transmitters on their support (often a traverse), as
close as possible to their theoretical positions for alignment. Given the size of the measure-
ment volumes, final adjustments are required. As the laser pairs within a transmitter are
already nearly perfectly self-aligned [93], it is only necessary to adjust a pair of lasers of one
transmitter with a pair of lasers of the other transmitter.

Let us refer to the reference frame of transmitter n as Bn, with axes and rotations as depicted
in figure A.3 on the next page, with n ∈ (1, 2) designating transmitter 1 or 2. Nominally,
since we are working in 3D space, aligning two transmitters involves twelve parameters (six
degrees of freedom per transmitter). However, because the task reduces to ensuring that the
center of one measurement volume coincides with the other’s at a single point in 3D space,
only three independent parameters remain relevant, namely p1, p2, and p3, chosen within
(xn, yn, zn, ϕn, ψn, θn)n∈(1,2). These parameters define the reduced configuration space that
governs the alignment. To set them, the relative position of the measurement volumes is
determined through the analysis of pictures from conventional cameras. A single camera po-
sition provides 2D information, as such, two camera positions are required for the adjustment
of the three parameters.

We assume that êz1 = êz2 . Indeed, each transmitter measures along êzn and êyn and we
want êy2 to be in the (êx1 , êy1)-plane for three component measurements. Ideally, to decouple
the parameters setting, the two camera positions are chosen such that one lies within the
common (êxn , êyn)-plane, while the other is oriented along a direction normal to it, the reason
for that is explained in subsection A.2.2. The first position can be used to set p1, defined to
be z1, θ1, z2, or θ2. In the second camera position, p2, p3 can be chosen among xn, yn, or ψn,
adjusting on either transmitters, provided p2 and p3 are not fully correlated.
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Figure A.3 Notations for the frame of reference of the transmitters

The goal is then to identify, on the camera images, the estimated position of the 3D point
where the laser beams from both transmitters intersect that would ensure the best overlap
of their measurement volumes (herein referred to as "target point" ξ). Using the camera as a
reference frame, it is then possible to adjust p1 or p2 and p3. This is done by first retrieving the
parametric equation of each beam in a given picture, as explained in subsection A.2.1. Using
the provided equations, it is possible to compute the projected target points in each camera
position, which are then used to adjust the parameters p1, p2, and p3. This is straightforward
with ideal camera placement. Nonetheless, even from an arbitrary position, it is still possible
to do so given the camera and transmitters positions, and under the assumption that p1 is
already set. This option is detailed in subsection A.2.2. To bypass the necessity to measure
camera and transmitters positions, a way to retrieve them from a single image is devised in
subsection A.2.3, still under the same assumption that p1 has already been configured.

Having the relative position of the measurement volumes, it is then possible to precisely
measure the alignment accuracy. This is explained in subsection A.2.4. The presented method
is tried out in subsection A.2.5, observing its implementation and alignment performances.

A.2.1 Parametric beam line

Finding the equation of the line representing each laser beam is done by linear regression
after two stages of pre-processing: finding the points which make up the centerline of the
beams and then applying a clustering method by laser beams to the set of points.

Locating centerline points of laser beams

We assume the centerline is located at the position of maximum intensity. The true definition
of intensity is not used, indeed, the power of the laser beams from both transmitters is not
identical and it is preferable to have these values normalized. With this in mind, we make
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use of the fact that one of our transmitters produces red lasers and the other green lasers to
extract the red and green channels separately as a makeshift separation of the beams from
each transmitter. A lower threshold is applied on each of the normalized channels to remove
some of the noise. They are then combined and the combination is renormalized, which
defines our intensity.

To aid in determining an accurate centerline, a heavy Gaussian filter is applied on each row.
This is particularly important because individual particle streaks can occasionally shift the
apparent maximum intensity away from the actual center. Centerline pixels may also be
saturated, with many reaching the maximum intensity, which makes direct identification of
the center more difficult. After applying the filter, the find_peaks function from the library
scipy.signal is used to find the centers.

At this stage, further correction of the identified centers is required. To do so, clusters are
created using DBSCAN clustering, those that are not elongated enough, too isolated and/or
not big enough are removed.

The Gaussian filter, find_peaks function, clustering, and filtering are performed again column-
wise. The found center points of both row-wise and column-wise pass are appended. Indeed,
finding the peaks of an almost horizontal beam by scanning the rows is not precise, the same
applies to a vertical beam with a column scan. Doing both allow for good precision, whatever
the orientation.

Clustering maximum intensity peaks by laser beams

Simple mainstream methods of clustering are not effective for this application wherein all the
laser beams cross one another. Therefore, a tailored clustering method is herein developed.

The idea is to attach points to clusters if they fall close enough to their linear regression. To
do so, a fixed number of clusters are created and the center points of each top-to-bottom rows
are scanned. The first point is added to a random cluster and, while the cluster is still small
(less than 100 points), points are then continuously added to the closest cluster if they are
within a certain distance (less than 100 pixels away). If a new center point is not sufficiently
close to any existing cluster, a new cluster is formed. When a cluster has enough points, its
linear regression curve is tracked. The repartition of the points is thus not done based on
the distance to the cluster but instead on the distance to this newly formed regression line.
This allows clusters to survive and carry on at the intersection of two beams.

A threshold is imposed on the coefficient of determination R2. If the criterion is not satisfied,
the points farthest from the regression line are discarded, and the regression is recomputed
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iteratively until the condition on R2 is met. The final linear regressions are taken for the
equations of each laser beam.

A.2.2 Target position

Through their parametric equations, it is then possible, for each laser beam pair, to retrieve
the center of the measurement volume f (herein termed "focus point") as well as the bisectors
and the perpendicular bisector passing through the focus point.

The goal is to estimate the adjustments required for the parameters p1 or p2 and p3 to achieve
perfect alignment. These adjustments are given by the three projected distances between the
focus points fn and the target point ξ along three predetermined directions. In the special
case where both points defining these distances lie within a single plane captured by the
camera, the distances can be measured directly. This is explained first. For an arbitrary
camera position, the relevant distances are seen as projected into the image of the camera,
and the angles are distorted. The method to account for the latter situation is explained in
a second part. The measurement of the quantities is not the true end-goal, what matters is
to show the targeted alignment on the camera’s image through the target point, in order to
allow for visual alignment of the parameters using the cameras’ live feedback.

With ideal camera placement

An ideal camera placement is such that the images taken by both cameras individually fully
characterize the parameter they aim to set, with no cross-coupling between the parameters.
This is images in figure A.4 on the following page, with a camera in the common (êxn , êyn)-
plane and one placed to observe the (êx0 , êy0)-plane.

As presented in figure A.5 on the next page, the images taken from the common (êxn , êyn)-
plane, allow direct measurement of p1. However, from this plane, the laser beams from both
transmitters appear on top of each other. To account for this, two images are taken using
the interval timer shooting mode, deliberately blocking the lasers from transmitter 1 for the
first one, and the lasers from transmitter 2 for the second one. The information taken from
both images are then combined to estimate the relative positions. In this configuration, the
target point is the focus point of the transmitter that is not moved. As such, the relevant
distance is simply the distance between the focus points in the common êzn direction. Given
that êz1 = êz2 , the two bisectors should appear parallel, the distance between them being
equal to the measured relevant distance. As such, the knowledge of the positions of the focus
points is not required.
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Figure A.4 Setup of the lasers and cameras with a 90° angle between the two transmitters,
with the cameras placed for independent parameter setting

Figure A.5 Visual feedback from the camera taken from the common (êxn , êyn)-plane; the
goal for the alignment through the setting of p1 is here to overlap the bisectors of the lasers
from both transmitters

For p2 and p3, the ideal image plane is the (êx2 , êy2)-plane, which projects the same as the
(êx1 , êy1)-plane and the (êx0 , êy0)-plane. In a picture from a camera placed to observe those
planes, the target point should be close to one of the intersections of the bisectors and/or the
perpendicular bisectors of both pairs, see figure A.6 on the following page. When p2 and/or
p3 correspond to translations, their adjustment results in a displacement of the focus points
along the bisector or perpendicular bisector. Similarly, if p2 and/or p3 are rotations, due
to the small-angle approximation, the perpendicular bisectors approximate the movement
of the focus point for small adjustments. Indeed, the perpendicular bisectors are effectively
the tangent of the circle drawing the positions of the focus points when the transmitter is
rotated, as imaged in figure A.6 on the next page.

The relevant distances for p2 and p3 are then the distances between the focus points and the
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Figure A.6 Estimated position of the target point ξ for different p2 and p3. f refers to focus
points and ξ refers to target points; if (p2, p3)=(xn, yn), ξ = fm, if (p2, p3)=(xn, ym), ξ = ξn,
if (p2, p3)=(xn, xm), ξ = ξ4, and if (p2, p3)=(yn, ym), ξ = ξ3 with (n, m) either (1, 2) or (2,
1). This is equivalent when replacing the y-coordinates by ψ, or the x-coordinates by θ, due
to the small-angle approximation

target point, as projected in the relevant projected coordinate system of the transmitter.

For an arbitrary camera position

The position of the camera in order to set p1 is not very restrictive, it is thus still assumed
to be correctly positioned. It is here the second camera placement that is freed. Having the
second camera arbitrarily positioned has two main drawbacks. First of all, as seen by the
camera, p1 is no longer decoupled from p2 and p3. In addition, the perpendicular bisector
will most likely not appear perpendicular to the bisector. Given the position of the camera
and of the transmitters, both are resolved by assuming that p1 is already perfectly set. This
implies that the focus and target points are located, and therefore evolve, within a single
2D hyperplane. The method to do so is herein explained. Concerning the images from the
second camera placement, in order to retrieve the correct target points, it is necessary to
characterize the image in three-dimensions in order to compute the observed perpendiculars
and reconstruct the equivalent of image A.6. This is here presented in the case where the
placement of the cameras and the transmitters are known.

Before all, a formalism is devised, with the hypothesis that p1 is already set. The coordinate
systems of transmitters n Bn = (êxn , êyn , êzn) is considered as a rotation of a main coordinate
system B0 = (êx0 , êy0 , êz0) by an angle αn around êz0 such that êx0 is horizontal. To get to
the coordinate system of the camera B′ = (êx′ , êy′ , êz′), B0 is rotated by an angle β around
êy0 to create the intermediate B̃ = (êx̃, êỹ, êz̃) which is then rotated by an angle γ around êx̃.
This is imaged in figure A.7 on the next page. The _′ notation is used to denote the values
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measured from the image, which do not directly correspond to the real values due to the
fact that images are projected into a 2D plane. This notation is extended to the measured
quantities in the image plane as a reminder that they need to be lifted back to 3D in order
to retrieve the real values, as explained in subsection A.2.3.

Figure A.7 Coordinate systems rotations and Euler angles

The angles depicted in figure A.7 are positive by convention. The rotation matrixRn(αn, β, γ),
defined as Rn = [R(αn, β, γ)]B′→Bn = [R(γ)]B′→B̃[R(β)]B̃→B0

[R(αn)]B0→Bn , is thus expressed,
with cosine being abbreviated to c and sine to s, as:


xn

yn

zn

 = Rn


x′

y′

z′

 (A.4)

with Rn =


cαncβ −sαncγ − cαnsβsγ −sαnsγ + cαnsβcγ

sαncβ cαncγ − sαnsβsγ cαnsγ + sαnsβcγ

−sβ −cβsγ cβcγ

 . (A.5)

As such, the 90-degree angle between êxn and êyn , which is the 90-degree angle between the
bisector and the perpendicular bisector, will appear to the camera, as projected in the (êx′ ,
êy′)-plane, as an angle θ′

⊥ with:

θ′
⊥ = arccos

(
projXY (R⊤

n êxn) · projXY (R⊤
n êyn)

∥projXY (R⊤
n êxn)∥ ∥projXY (R⊤

n êyn)∥

)
, (A.6)

where projXY (v⃗) = [vx, vy]⊤.
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This gives us the following values of θ′
⊥ as a function of β and γ for two dummy values of

αn (see figure A.8). This graph provides an indication of the precision of target position.
Indeed, looking at figure A.6 on page 81, it is not hard to imagine that, depending on the
setup and parameter choices, some values of θ′

⊥ will result in big differences in the target
position prediction from small error on the estimation of θ′

⊥.

Figure A.8 Angle θ′
⊥ for different values of β and γ at α1 = 21.8◦ and α2 = 56.3◦

Using the computed value of θ′
⊥ for each transmitter, figure A.6 on page 81 can be adapted

with an angle θ′
⊥ between the bisectors and their relative perpendicular bisectors. From

there, retrieving the position of the projected target point is the same as explained at the
beginning of the present section. It is thus again possible to visually adjust the position of the
transmitters through p2 and p3 from the live feedback of the camera. The adjustment is thus
again performed in two step, with first adjusting p1 using a good first camera placement, and
then, through the hypothesis that p1 is perfectly set, adjusting p2 and p3. The only unknowns
left to do so are the positions of the transmitters and of the camera. A method to retrieve
them from the camera images is now presented.

A.2.3 Retrieve camera and transmitters position from 2D images

Although αn, β and γ can be measured through the use of a gyroscope, doing so is not strictly
necessary since additional unused data is available from the images. From the laser beam
parameterization, one can compute the perceived beam half-angles 1

2∆α′
n in the camera frame.

The beam half-angle 1
2∆αn is defined as half the angle between the beams of a laser pair in

transmitter n. Furthermore, the camera’s orientation being determined solely by β and γ,
without roll around êz′ , the angle α′

n, which is defined as the angle between the bisector and
êx′ , can also be measured. In this way, α′

n and ∆α′
n corresponds to the camera’s perception

of αn and ∆αn, respectively. There are thus four known (α′
1, α′

2, ∆α′
2, and ∆α′

2) for four
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unknown (α1, α2, β, and γ), requiring four equations relating the unknown to the known,
to which we also add the known ∆αn along with the definition of Rn (see equation (A.5)).
The beam angle ∆αn is a constant given by the manufacturer, it can be computed from the
transmitter’s beam spacing d and focal length f as ∆αn = 2 arctan ( d

2f
).

Through the assumption that p1 is set, the bisectors, perpendicular bisectors, focus points,
and target point all rest in the same (êxn , êyn)-plane. Setting zn = 0 enables the transition
from two to three dimensions, yielding:

z′ = −x′Rn31 + y′Rn32

Rn33

, (A.7)

with Rnij
the component on the ith row and jth column of Rn. Considering equation (A.7)

together with equation (A.5), we note that z′ does not depend on αn. With equation (A.7),
the vector direction d⃗n of the bisectors from transmitter n, as expressed in B′, is:

[d⃗n]B′ =


cosα′

n

− sinα′
n

− cos α′
nRn31 −sin α′

nRn32
Rn33

 , (A.8)

where [d⃗n]B′ is no longer a unit vector. The negation of sine terms in the formulation is
due to the convention in the orientation for αn depicted in figure A.7 on page 82. Similarly,
the vector direction l⃗n of one laser of transmitter n, selecting the one with α′

n + 1
2∆α′

n by
conversion, as expressed in B′, is:

[⃗ln]B′ =


cos (α′

n + 1
2∆α′

n)
− sin (α′

n + 1
2∆α′

n)
− cos (α′

n+ 1
2 ∆α′

n)Rn31 −sin (α′
n+ 1

2 ∆α′
n)Rn32

Rn33

 . (A.9)

Returning to B0, using the fact that Rn(αn = 0, β, γ) = [R(β, γ)]B′→B0 , which we denote as
R0, αn is then defined as the signed angle from the bisector vector [d⃗n]B0 = R0[d⃗n]B′ to the
x-axis êx0 in the trigonometric direction (see figure A.7 on page 82). To do so, the atan2
function is used. This requires the vector yielded by a +π/2 rotation of the x0-axis around
êz0 , which is êy0 by definition, giving:

αn = − atan2(ê⊤
y0(R0[d⃗n]B′), ê⊤

x0(R0[d⃗n]B′). (A.10)

The negative sign reflects the convention that αn is measured from the bisector vector to the
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x0-axis in the trigonometric direction (see figure A.7 on page 82).

∆αn is defined as twice the positive angle from the bisector vector ([d⃗n]B0 = R0[d⃗n]B′) to a
laser beam ([⃗ln]B0 = R0 [⃗ln]B′). Since the sign is not important, the cosine function is used:

cos (1
2∆αn) = (R0[d⃗n]B′)⊤(R0 [⃗ln]B′)

∥R0[d⃗n]B′∥∥R0 [⃗ln]B′∥
. (A.11)

Given that Rn and R0 are pure rotations, this leads to R0R
⊤
0 = I and ∥R0v∥ = ∥v∥:

cos (1
2∆αn) = [d⃗n]⊤B′ [⃗ln]B′

∥[d⃗n]B′∥∥[⃗ln]B′∥
. (A.12)

With equations (A.12), (A.8), (A.9), and (A.5), it follows that ∆αn is independent of αn.
This allows us to retrieve β and γ from equations (A.12). The remaining task is then to use
the equations of αn to explicitly retrieve α1 and α2.

Developing equations (A.12) with a = tan β
cos γ

, b = tan γ, and f(αn) = a cosαn − b sinαn, it is
first possible to specify that:

−cosα′
nRn31 − sinα′

nRn32

Rn33

= cosα′
n sin β − sinα′

n cos β sin γ
cos β cos γ = f(α′

n), (A.13)

and similarly, by replacing α′
n with α′

n + 1
2∆α′

n. Consequently, we obtain:

∥[d⃗n]B′∥ =
√

1 + f(α′
n)2, (A.14)

∥[⃗ln]B′∥ =
√

1 + f(α′
n + 1

2∆α′
n)2, (A.15)

to compute the denominator of equation (A.12). Regarding the nominator, we use the fact
that cos a cos b+ sin a sin b = cos a− b and find that:

[d⃗n]⊤B′ [⃗ln]B′ = cosα′
n cos (α′

n + 1
2∆α′

n) + sinα′
n sin (α′

n + 1
2∆α′

n) + f(α′
n)f(α′

n + 1
2∆α′

n)

(A.16)

= cos (1
2∆α′

n) + f(α′
n)f(α′

n + 1
2∆α′

n). (A.17)
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In turn, equation (A.12) becomes:

cos (1
2∆αn) =

cos (1
2∆α′

n) + f(α′
n)f(α′

n + 1
2∆α′

n)√
1 + f(α′

n)2
√

1 + f(α′
n + 1

2∆α′
n)2

. (A.18)

It is now possible to numerically retrieve a and b from two (α′
n, ∆α′

n) pairs, knowing ∆αn.
From there, it follows that γ = arctan (b) and β = arctan (a cos(γ)). Furthermore, using
equation (A.10), it is possible to retrieve both α1 and α2. Although this method is theoreti-
cally precise to machine precision, it can be sensitive to error in the measurement of α′

n and
∆α′

n as depicted in figure A.9. As such, using the output values of αn, β, and γ outside of
the code should be done with caution. For the use case of the method, this is damped by
the relatively low sensitivity of ξ to θ′

⊥, as can be seen in figure A.6 on page 81.

Figure A.9 Percentage errors on the computation of α1, α2, β, and γ from an error on α′
1, as

depicted in (a) or on ∆α′
1, as depicted in (b); the computation are here for 1

2∆α′
n = 5.711◦,

α1 = 21.8◦, α2 = 56.3◦, β = 60◦, and γ = 40◦

In order to better understand the impacts of camera placement, the same can be done going
into B′, starting from Bn. With again d̂n the vector direction of the bisectors from transmitter
n and l̂n the vector direction of one laser of transmitter n, picking the one with +1

2∆αn by
conversion, but this time as expressed in Bn:

[d̂n]Bn = êxn , (A.19)

[l̂n]Bn =


cos (1

2∆αn)
− sin (1

2∆αn)
0

 , (A.20)

where [d̂n]Bn and [l̂n]Bn now denote real unit vectors. Going into the camera coordinate frame
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B′, ∆α′
n is defined as twice the positive angle from the perceived bisector vector projected in

the (êx′ , êy′)-plane (projXY (R⊤
n [d̂n]Bn)) to a perceived laser beam projected in the (êx′ , êy′)-

plane (projXY (R⊤
n [l̂n]Bn)). Since the sign is not important, the cosine function is used:

cos 1
2∆α′

n = projXY (R⊤
n [d̂n]Bn)⊤ projXY (R⊤

n [l̂n]Bn)
∥projXY (R⊤

n [d̂n]Bn)∥∥projXY (R⊤
n [l̂n]Bn)∥

. (A.21)

Equation (A.21) is used to construct figure A.10. By replacing 1
2∆αn by |α2 − α1|, equa-

tion (A.21) yields |α′
2 −α′

1| which allows to retrieve the distance between the two closest laser
beams |α′

2 − α′
1| − (1

2∆α′
1 + 1

2∆α′
2). This is presented in figure A.11 on the following page.

figure A.10 and figure A.11 on the following page can be used, together with figure A.8 on
page 83, as another guide for choosing the position of the camera. Indeed, the farther each
beam appears from one another from the cameras, the better the code will run.

Figure A.10 1
2∆α′

n for different β and γ angles of a transmitter at a 21.8◦ angle to the
horizontal for (a), and at a 56.8◦ angle to the horizontal for (b). In both cases, 1

2∆αn = 5.711◦

To sum it up, using the first good camera position, p1 is first set using the live visual
feedback of the camera to overlay the bisectors of each transmitters. Once it is set, from a
picture from a arbitrarily placed camera, using the angles of the observed laser beams, we
retrieve the positions of the camera and of both transmitters. This allows us to compute
the observed perpendicular bisectors and determine the position at which the focus points of
each transmitters should meet for perfect alignment (the target point) as seen by the camera.
Using it as a goal, p2 and p3 are adjusted using the live visual feedback of the camera. With
this, all the necessary tools to perform the alignment were presented.

On a practical note, the assumption of having an already adjusted p1 is a straightforward
one, as a camera can be placed almost anywhere in the common (êxn , êyn)-plane to do so.
By changing the pairing of the parameters, the constraint falls to having one of the cameras
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Figure A.11 The distance between the beams from both transmitters |α′
1−α′

2|−(1
2∆α′

1+ 1
2∆α′

2)
in (a) and the minimum distance between the beams of one transmitter min(∆α′

1 + ∆α′
2)

in (b) for different β and γ angles of two transmitters at a 21.8◦ and 56.8◦ angle to the
horizontal; for both transmitters, 1

2∆αn = 5.711◦; the doted lines represent the positions
where the angular distance between the beams equals the biggest angular distance between
the beam and bisector of a transmitter

positioned in either one of the three principal orthogonal planes of the coordinate system
of either transmitter. This assumption allows us to keep the two-step adjustment, yet even
without it, the method can easily be adapted for a setup with two arbitrarily camera positions,
either by keeping the now false assumption, and aiming for an iterative setup, or by adapting
the theory to having simultaneously two images from two camera positions in order to retrieve
the real 3D coordinates.

A metric is now developed to check the quality of such an alignment.

A.2.4 Metric of alignment accuracy

Often, comparing the coincidence data rate Drco to the smaller data rate Drmin
is used as a

laser alignment metric. This is based on a Monte Carlo method to approximate the overlap
coefficient Ceff ≈ Drco

Drmin
, defined as the ratio of the effective overlap volume to the smallest

measurement volume between the two transmitters. In figure A.12 on the following page,
Ceff corresponds to the volumetric ratio of yellow region to the red and yellow regions. It
does so by treating each particle as a random event in a 3D space. In LDA/LDV and PDA
systems, coincidence is determined by matching data points whose arrival times within the
measurement volumes agree to within a prescribed tolerance ∆t. This small coincidence
window time has to be large enough to allow for the coincidence of slow particles but small
enough for it to remain a pure spatial coincidence, and not a spatial and temporal one [104].

There are drawbacks to this approach. First of all, it does not consider the theoretical
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Figure A.12 Overlap in yellow of two ellipsoids at an angle; the bigger ellipsoid is in green
and the smaller one is in red; in the specific shown case, the green ellipsoid is of axes (1.231,
0.1231, 0.1224) mm3, and the red one is of axes (0.9745, 0.09745, 0.09696) mm3, the distance
between the ellipsoid centers is of 0.02 mm in all directions, and the angle between both is
of 35 degrees

maximum overlap coefficient Ctheo, defined with perfect alignment, which varies significantly
with the chosen angle between the transmitters. This would correspond to the volumetric
ratio of yellow region to the red and yellow regions if the ellipsoid centers where coincident
in figure A.12. Not including Ctheo does not make for a fair comparison between studies,
as pictured in figure A.13 on the following page, where Ctheo is plotted as a function of the
angle between the transmitters. Secondly, a slit or pinhole is often added in front of the
receiving optic, reducing the size of the measurement volume for more control [92]. This
implies that the data-rate is not an image of the full measurement volume, underestimating
Drmin

, and thus overestimating Ceff . Thirdly, the coincidence method implies the existence
of particles that happen to randomly satisfy the coincidence arrival time difference criteria,
leading to signals from different particles being incorrectly associated, later referred to as
"virtual particles" [104–106]. Those are always present and are especially of great concern in
highly seeded flows [105]. They induce an overestimation of Drco , leading to an overestimation
of Ceff .

The last three downsides are relative to the Monte Carlo method. First of all, it requires
that one of the transmitters picks up all the data points captured by the other transmitter.
This is often not the case, especially when dealing with highly seeded flows, where during
measurements, the validation of bursts (inputs) are often not of 100%. Secondly, LDA/LDV
and PDA measure particles through their trajectories in the measurement volume, not as
individual particles in a 3D space. If the particles have a preferential direction, the Monte
Carlo method behind the data rate comparison now approaches a surface ratio instead of a
volumetric ratio, with surfaces defined as the projection of the volume along the preferential
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Figure A.13 Theoretical overlap coefficient Ctheo of two ellipsoids of axes (1.231, 0.1231,
0.1224) and (0.9745, 0.09745, 0.09696) mm3 plotted against the angle between them

direction. This is imaged in figure A.14 on page 94, showing the difference δCeff between a
Ceff calculated on the shadow images along a preferential direction êzn and the real volumetric
Ceff . Finally, a gain is often applied to the detection signal, this effectively removes particles
that only pass through a few fringes [105, 110]. Conceptually, this is like trimming the
measurement volumes where it is thinner, the Monte Carlo method thus measures the relation
of those trimmed volumes instead of the real measurement volume, with dependence on the
chosen gain. Additionally, using a Monte Carlo method requires a statistically uniform spatial
seeding. Since it is already required for PDA and LDA/LDV measurements [3, 94, 95], this
is not considered as an additional constraint.

The proposed metric Λ is the ratio of the effective overlap coefficient Ceff to the maximum
theoretical one Ctheo: Λ = Ceff

Ctheo
. Ctheo is numerically approximated, considering the measure-

ment volumes of both transmitters as ellipsoids of axes axn = rw

sin(∆αn/2) , ayn = rw

cos(∆αn/2) , and
azn = rw with rw the laser beam radius and ∆αn the angle between the laser pairs [92]. The
laser beam radius is often given by the manufacturer, and can be computed with 2rw = 4

π
λf

dwL

given λ is the wavelength of the laser, f is the focal length, and dwL is the beam diame-
ter [92]. Another relation to estimate rw is through 2rw = N0λb

2 tan(∆αn/2) , using N0 the number
of interference fringes [92]. Two approaches are presented for determining Ceff : one relying
on data rate comparison and the other on geometrical analysis.

For the first method, it is assumed that all the particles registered by the transmitter with the
lower data rate are also recorded by the other transmitter. It uses Ceff ≈ Drco −Drrand

Drmin
with

Drco the measured data rate, Drrand
the data rate of virtual particles, and Drmin

the minimum
data rate of both transmitters. Drrand

can be estimated with the expected data rate of two
Poisson processes as Drrand

≈ Drmin
(1 − exp (−2∆tDrmax)) with Drmax the maximum data

rate of both transmitters. The issue of preferential direction of this method due to the usage
of trajectories instead of random 3D points for a Monte Carlo estimation cannot be taken
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into account. Indeed, neither the preferential direction nor the miss-alignment direction are
known. An image of the possible induced difference is provided in figure A.14 on page 94 in the
case of a preferential êzn direction. This first method requires that, when data acquisition
is performed with off-axis detection, no slit or pinhole is placed in front of the receiving
optic during the measurement of the estimated overlap of the measurement volumes. This
precaution prevents underestimating the effective measurement volume, as computed using a
Monte Carlo estimation on Drmin

, which would result in an overestimation of Ceff . Off-axis
detection refers to the spatial separation of the transmitters and their respective receivers,
achieved either through a cross-coupled configuration or by using a separate receptor. This
is often preferred as it enables the collection of higher intensity scattered light [98]. In the
case of PDA, off-axis detection is very common since the use of a separate receiver is often
required in commercially available systems.

The second method uses the distance between the measurement volumes as retrieved through
the code. With ∆fx2 , ∆fy2 , and ∆fz2 the distance between the focus point of transmitter
1 and transmitter 2, as seen in B2. With a camera positioned in the (êx2 , êy2)-plane, it is
possible to retrieve the distance ∆fz2 along êz2 . With a second camera at an angle, given
that ∆fz2 is small, ∆fx2 and ∆fy2 can be estimated using equations (A.7) and (A.13), and
the fact that rotation matrices do not change distances. It follows that:

∆fx2

∆fy2

 = projXY

R2


∆f ′

x2

∆f ′
y2

−∆f ′
x2 R231 +∆f ′

y2 R232
R233


 . (A.22)

With this, it is now possible to numerically compute Ceff geometrically, as presented in
figure A.15 on page 95.

This concludes the construction of the alignment metric, evaluated through a Monte Carlo
method using either the data rate comparisons of both transmitters while performing mea-
surements, or the relative positions of the focus points from the image processing of our
alignment method.

A.2.5 Application of the method and conclusion

The alignment is performed on a setup with an angle of 35 degrees between the two laser
transmitters. This setup provides a maximum Ctheo = 29.1%. The setup uses PDA with a
highly seeded flow of oil particles on the order of 1 µm, leading to low burst (input) validation
as imaged in appendix B, the metric is as such estimated using the geometric method. The
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distance between the focus points is measured to be less than the standard deviation, which
is itself computed to be less than 0.01 mm when projected into B0. This value is computed
by comparing the prediction position of the target point for different images taken of the
same setup. The value of 0.01 mm is therefore used for the distance in all directions. An
achieved Ceff ≈ 28.5%, superposition of the measurement volumes is thus measured, giving
Λ ≈ 98% of the best possible superposition. The final calibrated image is given in figure A.16
on page 96.

Additionally, the metric is estimated for the study of Simeonides et al. [102] by data-rate
comparison. In it, the maximum coincidence volume, with an angle of 23 degrees between
the two laser transmitters, is Ctheo = 40.9%. A coincidental data rate of Drco = 60 (up to
Drco = 70) samples per second was achieved. The recorded data rates of the transmitters were
Drmin

= 400 and Drmax = 800 samples per second and a coincidence window of ∆t = 10µs
was used, giving Drrand

≈ 6.3 virtual particles per second. In total, this gives Ceff ≈ 15.9%
and Λ ≈ 39%. The assumption that all particles detected by the transmitter operating at
the lower data rate are also recorded by the other transmitter is reasonable, given that both
data rates are significantly lower than those typically achievable with LDA/LDV systems. A
point made by Simeonides et al. (page 512.6) [102].

All in all, to address the limitations inherent to three-component Doppler anemometry tech-
niques, a new optical method for 3D Phase Doppler Anemometry (PDA) and 3D Laser
Doppler Anemometry/Velocimetry (LDA/LDV) alignment has been developed. The ap-
proach relies solely on a conventional camera with a 150 mm lens to determine the orien-
tation of the laser beams, their focus point, the overlap of measurement volumes, and the
optimal transmitter positions. A dedicated algorithm extracts parametric beam equations
from camera images and enables a two-step alignment procedure: ensuring coplanarity of the
transmitters before performing fine alignment. The camera, transmitters, and measurement
volumes positions can then be reconstructed, allowing quantitative assessment of the current
overlap and the optimal configuration. Furthermore, a new overlap metric is introduced,
based either on measurement data rates or on estimates from the alignment algorithm. The
results demonstrate that precise calibration of two transmitters for three component mea-
surements with LDA/LDV or PDA can be achieved without physical targets such as pinholes
or steel bearing balls. This method provides a robust, low-cost, and non-intrusive alterna-
tive to traditional approaches, while also enabling a more accurate evaluation of alignment
quality.

Even though the alignment method is promising it still relies on some assumptions that
can be limiting, primarily those related to camera placement constraints and the two-step
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adjustment procedure. The achievable accuracy ultimately depends on how precisely the
transmitters’ orientation and position parameters can be set, as is reflected by the standard
deviation of the predicted setting positions of 0.01 mm.

The devised alignment method and the presented techniques can be extended to the broader
case of two unknown camera positions, either through an iterative setting, or a full 3D
characterization of the laser beams through the use of two cameras at the same time. Together
with the addition of motors to the transmitter’s support, this could pave the way for the
development of an even faster and more versatile technique, with an alignment that could
be performed and readjusted on the go, allowing for more accurate measurements in a wider
set of applications.

Using the presented allignement method, and with the data scarcity for the training of ML
agents, the formalism for a 3D PDA experimental campaign is now presented.
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Figure A.14 Differences in Ceff between the shadow image in the êzn direction and the
real volumetric estimation, done for two ellipsoids of axis (1.231, 0.1231, 0.1224) mm3, and
(0.9745, 0.09745, 0.09696) mm3, plotted against the angle and translation along êx2 , êy2 ,
and êz2 corresponding here to the second ellipsoid referential for figures (a), (b), and (c)
respectfully
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Figure A.15 Contours of Ceff of two ellipsoids of axes (1.231, 0.1231, 0.1224) and (0.9745,
0.09745, 0.09696) mm3 plotted against the angle and translation along êx2 , êy2 , and êz2

corresponding here to the second ellipsoid referential for figures (a), (b), and (c) respectfully
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Figure A.16 Laser calibration results from camera 2, showing a zoomed view on the mea-
surement volumes with, in red and green, the center of the measurement volumes of both
transmitters as estimated for 9 pictures, and shown on the last picture
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A.3 Experimental data

Herein, the formalism for a 3D PDA campaign from a horizontally oriented axisymmetric jet
from a 7.14 mm nozzle is presented, presenting both the pressurized system for the creation
of the axisymmetrical jet, and the optic system for the measures using 3D PDA. This would
allow for the construction of an sizable dataset for the training of new ML agents for the
study of axisymmetric jets.

A.3.1 Pressurized system

A jet of air seeded with tracers is first generated. It uses one air inlet connected to a 1.6 bars
pressurized circuit. The input flow is first divided into two parallel pipes, one of which passes
through an atomizer, before being combined into one pipe again and passed into a pipe whose
exit acts as our nozzle (see figure A.17). Since the flow inside the later pipe is turbulent,
the length of the pipe is chosen according to the Solidkin and Ginebski’s formula (A.24).
If it were laminar, the Schiller’s formula (A.23) could be used. In both formulas, D is the
diameter of the pipe and L is the length after which the axial speed is different by around
1% to the axial speed of the completely stabilized flow [111].

Figure A.17 Pneumatic system with only tracers

L

D
= 0.029Re (A.23)

L

D
= 7.88 logRe− 4.35 (A.24)

We use the ATM 221 Aerosol Generator from Topas with Di-Ethyl-Hexyl-Sebacic (DEHS)
as the working fluid [112]. The theoretical size distribution of the produced particles is as
shown in figure A.18 on the following page.

To introduce particles into the jet, a fluidized bed is added in parallel. Its flow is regulated
by a valve controlled numerically (see figure A.19 on the next page). This setup allows to fix
the flow rate in both the atomizer and the fluidized bed, allowing to vary the concentration
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Figure A.18 Size distribution of Topas’ 221 ATM Aerosol Generator working with DEHS as
provided by the manufacturer/Topas

of particles and tracers. A numerically controlled valve in the third pipe provides a control
of the jet’s nozzle speed. For more details on the fluidized bed see appendix C.

Figure A.19 Full pneumatic system

A.3.2 Optic system

Two "FlowExplorer" transmitters (one for PDA measurement and one for LDA measurements)
and one PDA receptor "HiDense" from Dantec are used for the measurements. The laser
beams produced are of wavelengths 532 nm, 561 nm, 660 nm, and 786 nm. The measurement
volumes from the first transmitter are modeled by ellipsoids of axes 1.231 × 0.1231 × 0.1224
mm3. For the second transmitter, the axes are 0.9745 × 0.09745 × 0.09696 mm3. The brag
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cells have a frequency shift of 80 mHz. They are all mounted on a traverse "ISEL Lightweight
Traverse".

The three components are placed on the traverse so that the angle between the two trans-
mitters is 90 degrees and the angle between the PDA receptor and its corresponding PDA
transmitter is 125 degrees (as depicted in figure A.20).

An angle of 90 degrees between the transmitters is used to bypass the errors associated
with the realignment of non-orthogonal velocity components. In addition, we choose not
to consider statistics involving both the radial and azimuthal velocity components. This
thus makes the coincidence of both transmitter beams unnecessary, allowing for higher data
acquisition rates. This choice does not significantly affect the determination of the overlap
between measurement volumes, as this is performed purely optically, as explained in the
previous subsection. Consequently, the optimal coincidence of the measurement volumes is
relatively low, at 17.2% of the smallest measurement volume.

The angle of 125 degrees is chosen to maximize the difference in intensity between the reflected
light and the rest, which is equivalent to minimizing the difference between the Lorenz-Mie
curve and the reflective mode (see appendix B). At the chosen position, the reflected mode
is dominant.

Figure A.20 3D PDA optical setup

Each transmitter has two pairs of lasers in perpendicular planes, allowing to measure ve-
locities in 2D. In order to get the 3D measurements, both transmitters are aligned for their
measurement volumes to be overlapped. The challenges that arise from this are explained
in section 2. This is done manually using a separate camera, using the techniques from
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section A.2 to two sets of 9 images taken with Nikon D5300 and Nikon D750 cameras (both
close to 6000x4000 pixels resolution) using the interval timer shooting mode. Using 9 images
allows to quantify and improve the precision of the alignment method. Both cameras used a
Sigma 150 mm f/2.8 APO Macro DG HSM lens set at 1:1 magnitude. The resulting images
are taken with an F-stop of f/9, an ISO-400, and an exposure time of 1/250 seconds. The
estimated focus and target point positions taken from the 9 images are compared and aver-
aged, making for a more precise estimation. The power of the lasers are adjusted to be close
to one another. The calibration is done interactively because both transmitters are never
exactly coplanar and the parameters p1, p2, and p3 can be slightly dependent of one another.
The setups are shown in figure A.21 on the next page.

The first 9 images are taken with camera 1, placed opposite the transmitters, in the (êx0 , êy0)-
plane on figure A.21 on the following page. This view allows us to adjust transmitter 2 along
p1 = θ2. Because only the bisectors are needed at this stage (see subsection A.2.2), the exact
positions of the focal points are not required. Thus, the initial alignment of the lasers can be
performed without the code, using only live visual feedback from a zoomed view of camera 1.
The code is employed in the final stages of the calibration in order to estimate the alignment
accuracy.

The second set of 9 images are taken with camera 2, placed in the (êx, êy)-plane rotated by
35 degrees around êz, in accordance with figures A.8 on page 83, A.10 on page 87, and A.11
on page 88. Using the code, it is then possible to make adjustments along (p2, p3) = (x2, y2).

Dantec’s transmitter support allows adjustments in xn, θn, and ψn, a custom support is used
in this study. The latter allows fine adjustments in xn, yn, zn, θn, and ψn.

The flow is seeded with both tracer and inertial particles. However, as explained in annex A,
PDA relies on the refractive index of the particles to determine their size, and therefore cannot
accurately measure the sizes of two different particle types simultaneously. Since the exact
size of the tracers is of little importance (given that they are already classified as tracers),
the refractive index is set for the inertial particles. The resulting biased size measurements
of the tracers are still recorded, but only used to identify them as tracer particles.
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Figure A.21 Setup of the lasers and cameras with a 90° angle between the two transmitters,
using p1 = θ2, p2 = x2, and p3 = y2
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APPENDIX B MIE SCATTERING

For Phase Doppler Anemometry (PDA) measurements, the receptor is set on one of three
scattering modes: reflection, refraction, or second-order refraction [92]. In order to choose
the angle between the receptor and its transmitter, Mie-scattering formalism, as rewritten in
the Debye series, can be used [113].

In this part, the intensity of the reflected, refracted, and second order refracted light on the
particles of interest subjected to a laser (as modeled by a sun light source) is studied. To
do so, the software MiePlot v4621 is used, imputing the characteristics of our particles as
depicted in table B.1.

Table B.1 Characteristics of the particles used

Material Diameter Density Refractive Index Geometry
Di-Ethyl-Hexyl-Sebacic 1 µm 0.912 g/cm3 1.45 spherical

Borosilicate glass 10 µm 1.1 g/cm3 1.52 coated spheres
Polymide 12 20 µm 1.03 g/cm3 1.5 round
Polymide 12 50 µm 1.03 g/cm3 1.5 round

By their geometry, it is reasonable to consider Hollow Glass Micro-sphere (HGM) as coated
spheres [114]. It is possible to retrieve the diameter of the core by approximating the mass of
the particles m to the mass of its shell. This approximation is reasonable since the density of
the gas inside the HGM is negligible compared to the density of borosilicate glass ρb. Thus
leading to equation (B.1), with Vshell the volume of the shell, router the radius of the particle,
and rcore the radius of the gas core. Plugging that into the equation for the density of the
HGM ρhgm gives equation (B.2) which simplifies into equation (B.3).

m ≈ Vshellρb =
(4

3πr
3
outer − 4

3πr
3
core

)
ρb = 4

3πr
3
outer

(
1 −

(
rcore

router

)3
)
ρb (B.1)

ρhgm = m
4
3πr

3
outer

=
(

1 −
(
rcore

router

)3
)
ρb (B.2)

rcore = router

(
1 − ρhgm

ρb

)1/3

(B.3)

It is thus possible to use a modification of the Debye series to retrieve their light scattering
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profiles [115, 116]. The rays are classified in terms of (N, A, B) triplets, with N the number
of internal reflections, A the number of chords in the coating, and B the number of chords in
the core, as depicted in figure B.1. The reflected light is from (0, 0, 0), the refracted light is
from (0, 2, 1), and the second order refracted light is from both (1, 2, 0), if it reflects in the
coating only, and from (1, 2, 2), if it reflects in the core. Note that the cases where the rays
miss the core are included in other terms and cannot be easily extracted. For example, the
case (0, 1, 0) could be considered as refracted light but is included in the N=1 terms [115].
We assume that the impact of those rays is negligible in the angular zones of interest.

Figure B.1 Some ray paths and their associated identification triplet (N, A, B) with N the
number of internal reflections, A the number of chords in the coating, and B the number of
chords in the core; figure from http://www.philiplaven.com/p8k1.html

In order to better grasp the quality of an angle for a mode of scattering (reflection, refraction
or second order refraction), the dominance ratio, as expression by equation (B.4) where Ik is
the intensity of a scattering mode k and Ik is the intensity of every other modes combined, is
used. It is a slight modification of the more mainstream definition depicted in equation (B.5)
[92]. Our version is written to compare one specific mode to the others, separating the two
more clearly, allowing to better highlights ambiguous regions.

Dr = Ik

Ik + Ik

(B.4)
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Dr = Ik

IMie

(B.5)

An angle of 125◦ is chosen. In terms of intensity, the following graphs are obtained (see
figure B.2). Looking instead at the more meaningful dominance ratio, figure B.3 on the next
page, is drawn.

Figure B.2 Intensities of the reflected (in red), refracted (in green), and second order refracted
(in blue) light from a 532 nm sun on the particles as defined in table B.1 on page 102, the
black doted line is at the chosen angle of 125 degrees

Note that in table B.1 on page 102, mean diameters are given. The distributions are in fact
quite broad as shown in table B.2 on page 106.

Consequently, the dominance ratios are much noisier, as imaged in figure B.4 on page 106.
Another view is shown in figure B.5 on page 107 and figure B.6 on page 108, fixing this time
the angle at 125° and making the diameters vary in the range of table B.2 on page 106. This
noise can be of use, which is the case for the HGM. Indeed, a high noise means that a slight
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Figure B.3 Dominance ratio of the reflected (in red), refracted (in green), and second order
refracted (in blue) light from a 532 nm sun on the particles as defined in table B.1 on page 102,
the black doted line is at the chosen angle of 125 degrees

variation in particle size will change the dominance ratio, making a zone with high noise still
workable.
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Table B.2 Size distribution of the particles used

Material Mean diameter Diameter range (in µm)
Di-Ethyl-Hexyl-Sebacic 1 µm 0.1 - 1.5

Borosilicate glass 10 µm 2 - 20
Polymide 12 20 µm 5 - 35
Polymide 12 50 µm 30 - 70

Figure B.4 Dominance ratio of reflected (left), refracted (middle), and 2nd order refracted
(right) light of the used particles for the size distributions defined in table B.2, the two doted
black lines represent a region where reflection could be a good choice, the doted red line
represents the chosen angle
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Figure B.5 Intensities of the reflected (in red), refracted (in green), and second order refracted
(in blue) light from a 532 nm sun on the particles as defined in table B.1 on page 102 as a
function of the diameter for a 125◦ angle
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Figure B.6 Dominance ratio of the reflected (in red), refracted (in green), and second order
refracted (in blue) light from a 532 nm sun on the particles as defined in table B.1 on page 102
as a function of the diameter for a 125◦ angle
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APPENDIX C FLUIDIZED BED

The fluidized bed used is homemade. It has two modes of operation. The first mode depicted
in figure C.1 pumps air in a particle deposit with the use of a rotating injector. This creates
a suspension of particles from which the output is drawn. The second mode adds another
injection of air through a fine porous plate from the bottom of the deposit of particles, as
depicted in figure C.2.

Figure C.1 Fluidized bed functioning mode 1

Figure C.2 Fluidized bed functioning mode 2
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