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RESUME

La scoliose se caractérise par une courbure anormale de la colonne vertébrale, pouvant avoir
un impact significatif sur la posture, la mobilité et la qualité de vie des patients. Pour les cas
les plus séveres, une intervention chirurgicale corrective devient nécessaire afin de réaligner
la colonne vertébrale et de prévenir 'aggravation de la déformation, en stabilisant ou en
fusionnant les vertebres atteintes. Cette intervention s’effectue généralement en deux étapes
clés. D’abord, la pose de vis pédiculaires pour ancrer les vertebres ; ensuite, le réalignement
progressif de la colonne pour corriger la déformation. Bien que les procédures chirurgicales
assistées par ordinateur aient considérablement amélioré la précision et 1'efficacité de la pose
des vis pédiculaires, la deuxieme étape, a savoir le réalignement de la colonne, repose encore
largement sur ’expertise du chirurgien et son appréciation visuelle, et bénéficie de beaucoup
moins de soutien technologique. De plus, la majorité des systemes de navigation actuels
s’appuie sur I'imagerie radiographique peropératoire, exposant ainsi les patients et le per-
sonnel médical aux rayonnements ionisants, ce qui souleve des préoccupations en matiere de

sécurité et d'usage a long terme.

Cette these propose une nouvelle approche d’assistance peropératoire sans recours aux ray-
onnements, basée sur I'utilisation de nuages de points 3D acquis de maniére non-irradiante
par un senseur a lumiere structurée. Nous présentons un pipeline de segmentation fondé sur
I’apprentissage profond, capable d’identifier en temps réel les structures vertébrales appar-
entes a partir des données 3D. Comparé aux méthodes existantes, notre approche basée sur
le modele Point Transformer V3, présente de meilleurs performances sur la tache de segmen-
tation des vertebres, évaluée a partir de la base de données public SpineDepth. Pour pallier
a la limitation des déplacements vertébraux dans ce jeu de données et pour améliorer la
généralisation du modele a différents contextes, nous avons développé trois bases de données
semi-synthétiques additionnelles, intégrant une stratégie d’augmentation colorimétrique sim-
ulant diverses variations anatomiques et conditions d’imagerie rencontrées en chirurgie de la
scoliose. Nous avons démontré que 'utilisation additionnelle de ces données semi-synthétiques
pour l'entrainement du modele permet, du moins qualitativement, une meilleure segmenta-

tion des vertebres dans des acquisitions intra-opératoires réelles.

Ce travail établit un lien entre les recherches antérieures en modélisation anatomique préopéra-
toire et les futurs systémes d’évaluation du réalignement en temps réel, représentant une
avancée notable vers une chirurgie de la scoliose assistée par 'image sans rayonnement ion-

isant et permettant un suivi en continu de ’alignement vertébral.
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ABSTRACT

Scoliosis is characterized by an abnormal 3D curvature of the spine that can significantly affect
a patient’s posture, mobility, and quality of life. In severe cases, corrective surgery becomes
necessary to realign the spinal column and prevent further progression of the curvature by
stabilizing or fusing the affected vertebrae. This procedure is typically carried out in two
critical stages: first, the placement of pedicle screws to anchor the vertebrae; second, the
spinal realignment to gradually correct the deformity. Although computer-assisted surgical
technologies have greatly improved the accuracy and efficiency of pedicle screw placement,
the second phase, spinal realignment, remains largely dependent on the surgeon’s expertise
and visual judgment, and receives far less technological support. Furthermore, most existing
navigation systems rely on intraoperative radiographic imaging, which exposes both patients

and medical staff to ionizing radiation, raising concerns about safety and long-term use.

This thesis proposes a novel, radiation-free approach to intraoperative guidance using 3D
point clouds acquired using a structured-light sensor. We present a deep learning-based
segmentation framework capable of identifying exposed vertebral structures in real time, di-
rectly from 3D point clouds. At the core of our framework is the Point Transformer V3, which
demonstrated superior performance on vertebrae segmentation over prior methods when eval-
uated on the public SpineDepth dataset. Because this dataset is limited in terms of vertebral
displacement and, at the same time, to improve domain generalization, we developed three
additional semi-synthetic datasets with a color-based augmentation strategy that simulates
a range of anatomical and imaging variations encountered in scoliosis surgery. Incorporating
these semi-synthetic datasets into model training noticeably improves vertebra segmentation

in real intraoperative acquisitions.

This work builds a bridge between earlier research in preoperative anatomical modeling and
future systems for real-time continous spinal alignment assessment, representing a critical

step toward comprehensive, intelligent, and radiation-free image-guided scoliosis surgery.
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CHAPTER 1 INTRODUCTION

Scoliosis, characterized by an abnormal 3D curvature of the spine, can significantly impact a
patient’s posture, mobility, and overall quality of life. In severe cases, surgery often becomes
the only effective solution to stop the progression of spinal curvature and restore proper
alignment. The surgical procedure is typically carried out in two critical stages: the first
involves the placement of pedicle screws to anchor the vertebrae, and the second is the spinal

realignment itself, where the curved spine is gradually corrected and stabilized.

Over the past decade, modern surgical technologies have greatly enhanced precision in the
surgical environment. Computer-assisted navigation systems now routinely support pedicle
screws placement, offering real-time visual guidance to improve both safety and accuracy.
However, this technological support is largely confined to the first phase of the surgery. Once
the screws are placed, the critical task of spinal correction is still primarily through the
surgeon’s expertise, visual assessment, and tactile feedback. Despite its clinical importance,
this second phase, spinal realignment, remains one of the least supported steps in scoliosis

surgery by current computer-assisted systems.

The research presented in this thesis emerges from an effort to bridge this gap. It is part of
a broader, long-term vision to develop an automatic, intelligent, radiation-free system that
assists throughout the entire surgical workflow, not only during pedicle screws placement,
but also during spinal correction. At the heart of this vision is the use of 3D point clouds
acquired intraoperatively using structured-light technologies, such as the 7D Surgical System.
These imaging platforms offer real-time anatomical views without radiation, opening new

possibilities for intraoperative guidance.

This research project builds on earlier efforts within our research team, which focused on the
acquisition of the preoperative spine shape. More precisely, the work of Antonin Tranchon
proposed a method for segmenting vertebrae from MRI scans to create 3D anatomical mod-
els with detailed posterior arches (see Figure 1.1(a)). It also presented a proof-of-concept
for the registration of the preoperative spine model to a structured-light scan of the spine
model that simulated the surgical condition, notably without other surrounding tissues (see
Figure 1.1(b)). This registration aimed to assess the spinal alignment during the simulated
procedure [2]. The current project presented in this thesis takes the next step by taking ac-
tual intraoperative data and automatically segmenting the vertebrae in the point cloud (see
Figure 1.2). The ultimate goal is to create a closed-loop system that continuously monitors

spine geometry during the surgery, without radiation, to evaluate the spinal alignment and



provide feedback to the surgeon in real time.
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Figure 1.1 Overview of the previous work by Antonin Tranchon [2]. (a) Vertebrae segmenta-
tion from MRI scans to generate 3D anatomical models with detailed posterior arches. (b)
Registration of the preoperative model to a structured-light scan simulating intraoperative
conditions, without surrounding tissues. Adapted from Tranchon et al. (2024)

Real Intraoperative

3D Point Cloud Vertebrae Segmentation in Real Surgical Scene y

Figure 1.2 Overview of our work: automatic segmentation of vertebrae from intraoperative
3D point clouds.

The structure of this thesis reflects the layered progression of this research:

Chapter 2 introduces the foundational knowledge required to understand this work and pro-
vides an overview of the literature related to surgical assistance for scoliosis and the use of

3D data in intraoperative conditions.

Chapter 3 identifies the key limitations in current systems, outlines the motivation behind

this study, and defines the central research objectives.



Chapter 4 details the approach taken to address these objectives, beginning with the selection
of a deep learning model capable of capturing geometric structures for segmentation. It
also describes datasets acquisition, processing pipelines, and the training strategy used to
generalize the model across different domains, particularly given the limited accessibility of

intraoperative data.

Chapter 5 presents the results of our experiments and qualitative evaluations, demonstrating
how the proposed approach performs under real intraoperative conditions. The appendix
further explores how segmentation outcomes can support future applications such as spinal
alignment tracking via registration, along with other complementary experiments that high-

light current limitations.

Finally, Chapter 6 synthesizes the findings, revisits the research contributions, and proposes

future directions for clinical translation and intraoperative data collection.



CHAPTER 2 LITERATURE REVIEW

This chapter provides a structured review of the scientific literature and foundational concepts
related to this research. Section 2.1 introduces Adolescent Idiopathic Scoliosis (AIS), the
clinical condition underpinning this study’s motivation. Section 2.2 reviews current surgical
interventions for scoliosis, emphasizing the integration of image-guided surgical (IGS) systems
in clinical workflows. Section 2.3 examines the fundamentals of three-dimensional (3D) data,
including its representations, acquisition methods, and relevance in medical imaging. Section
2.4 explores segmentation methodologies, contrasting traditional 2D-based techniques with
recent advances in 3D point cloud segmentation. Finally, Section 2.5 outlines the development
of semi-synthetic surgical scenes, discussing their utility in augmenting training datasets and

supporting the development of robust deep learning models.

2.1 Adolescent Idiopathic Scoliosis (AIS)

Scoliosis is characterized by an abnormal 3D curvature of the spine. It can develop at any age,
but adolescent idiopathic scoliosis (AIS) is the most common type, affecting approximately
2% to 4% of adolescents. Although scoliosis occurs equally in males and females, females are
up to ten times more likely to experience curve progression. In most cases, it is idiopathic,

meaning that the underlying cause remains unknown.

Diagnosis and Clinical Evaluation

AIS is commonly diagnosed during adolescence through physical examinations and imaging.
The curvature can develop in any region of the spine and is diagnosed through physical ex-
amination and imaging. A primary clinical screening tool is the Adam’s forward bend test,
where the patient bends forward at the waist while the clinician observes for rib cage asym-
metry or a visible rib hump, indicating spinal rotation. Confirmation is achieved through
standing full-spine X-rays, where a curvature in the frontal plane, measured by the Cobb
angle, greater than 10° confirms a diagnosis of scoliosis (see Figure 2.1). In specific cases in-
volving rapid progression, neurological symptoms, or early onset, magnetic resonance imaging
(MRI) is performed to rule out associated neurological abnormalities such as tethered cord,
syringomyelia, or spinal tumors [9]. When a scoliosis is confirmed, regular clinical follow-up

every 6- to 12-months is recommended, with X-rays acquisition, to monitor the progression.



Cobb angle
42

Figure 2.1 Visualization of spinal curvatures with varying Cobb angles on standing antero-
posterior (AP) radiographs. Adapted from Sun et al. (2022) [3].

Treatment and Surgical Indications

Management strategies for AIS depend on its severity quantified by the Cobb angle, the loca-
tion of the curvature (apical vertebra), and progression of the spinal curvature. Nonsurgical
methods, such as bracing, may be effective in milder cases but can fail in up to 42.5% of
patients [10]. Surgical intervention is recommended when the Cobb angle exceeds 45° — 50°

due to the following concerns:

o Curves over 50° typically tend to progress even after skeletal maturity.

e Severe curvatures may compromise pulmonary function and result in respiratory com-

plications.

o Progressive deformities become increasingly challenging to correct surgically.

The primary goal of AIS surgical treatment is to realign the spine in all planes and to
maintain this correction. Modern surgical instrumentation, such as pedicle screws and rods,
has significantly improved correction outcomes. Following successful fusion, patients often

return to normal activities, including sports [11].

2.2 Scoliosis Surgery

This section reviews surgical approaches for AIS, introduces image-guided systems in spine

surgery, and highlights their clinical benefits.



2.2.1 Surgical Procedures for AIS

Our research primarily investigates the surgical management of severe scoliosis, with a par-
ticular focus on AIS. Common surgical interventions include posterior spinal fusion (PSF),
anterior spinal fusion (ASF), or a combination of both. Among these, PSF remains the most
widely accepted technique for preventing curve progression following skeletal maturity [12].
This procedure involves a midline posterior approach to expose key spinal structures, includ-

ing laminae, spinous processes, transverse processes, and facet joints.

In spinal fusion surgery, the curved vertebrae are joined together so they heal into a single,
solid bone. This stops growth in the affected segment of the spine and prevents the curvature
from worsening. To promote fusion, surgeons use a material called a bone graft. Small pieces
of bone are placed between the vertebrae being fused, and over time, these pieces grow
together, much like the healing process of a broken bone. To keep the spine properly aligned
while the fusion occurs, metal rods are usually implanted. These rods are secured to the
spine using screws, hooks, or wires. The number of instrumented vertebral levels depend on

the curvature.

The surgical intervention includes two main steps: 1) pedicle screws insertion and 2) spinal

realignement by various maneuvers such as rod derotation and direct vertebral rotation.

To verify the adequacy of deformity correction and implant positioning, intraoperative imag-
ing is routinely employed before finalizing the procedure. Surgeons typically utilize 2D radio-
graphs to obtain real-time anteroposterior (AP) and lateral views of the spine, enabling im-
mediate assessment of rod contouring, pedicle screw trajectory, and overall spinal alignment.
Moreover, radiographs play a critical role throughout the perioperative process, not only
during surgery, but also for preoperative planning and postoperative follow-up, where they
help detect hardware complications and monitor fusion progress [13]. Following confirmation
of proper alignment and hardware positioning, additional procedures such as facetectomies
and osteotomies may be performed to further enhance spinal flexibility and correction. Once

optimal alignment is achieved, bone graft materials are placed to facilitate spinal fusion.

Although PSF is highly effective in achieving substantial deformity correction and long-
term stability [14], it remains an invasive procedure associated with considerable blood loss,
soft tissue disruption, and postoperative morbidity. Conventional pedicle screw placement
relies heavily on anatomical landmarks, tactile feedback, and fluoroscopic imaging. However,
these free-hand methods carry a notable risk of inaccuracies, with pedicle screw misplacement
reported in up to 10% of cases and 1 in 300 patients may require revision surgery [15]. The risk

is particularly elevated in patients with smaller stature or severely deformed vertebrae, where



narrowed pedicle anatomy increases the likelihood of neurovascular or visceral injury [16].

Given these challenges, the need for enhanced precision has driven the development of
advanced guidance technologies. Intraoperative 3D imaging and navigation systems have
emerged as effective solutions to improve the accuracy and safety of screw placement. These
systems enhance visualization and intraoperative decision-making, resulting in fewer place-

ment errors and improved surgical outcomes across spinal regions [17].

In the following section, we will explore the principles and integration of image-guided navi-

gation systems in modern spine surgery.

2.2.2 Image-Guided Surgery Systems (IGSS)

Image-guided surgery (IGS), also known as computer-assisted navigation (CAN), refers to a
set of intraoperative navigation techniques that use preoperative imaging data to guide sur-
gical procedures. IGS systems are computerized platforms that integrate imaging modalities,
such as CT, MRI, or 3D fluoroscopy, to provide real-time, three-dimensional visualization
of anatomical structures and surgical tools. By offering accurate spatial information during
procedures, particularly helpful when the anatomy of interest is unexposed, IGS significantly
enhances surgical precision, minimizes intraoperative complications, and contributes to better

clinical outcomes [18].

IGSS in Spine Surgery

In spine surgery, where critical neurovascular structures lie within millimeters of surgical
landmarks, precision is paramount. Traditional methods, based on a surgeon’s anatomical
knowledge, tactile feedback, and fluoroscopy guidance, have served for decades but show limi-
tations, especially in cases with severe deformities or atypical anatomy [19]. These techniques
are also associated with increased radiation exposure and longer operative times, particularly
in minimally invasive or multilevel procedures [11,20]. As image-guided systems become more
widely adopted in routine spine surgery, it is essential to understand their technological evo-
lution and current applications. A clear understanding of this evolution not only informs the
effective adoption of current systems but also enables surgeons to anticipate limitations, op-
timize workflows, and align procedural protocols with emerging biomedical technologies [21].
The following subsection provides an overview of how IGSS have progressed, tracing its

progression from early guidance tools to today’s advanced navigation platforms.



Evolution of IGSS

The progression of IGSS in spine surgery has followed a clear trajectory: each generation
sought to resolve the shortcomings of its predecessor, yet often introducing new limitations.
Understanding this technological evolution not only clarifies the current landscape but also

highlights the need for innovation in surgical navigation.

The earliest image guidance relied on plain radiographs in the late 19th century, offering basic
anatomical reference but limited by their static, two-dimensional nature and lack of depth
perception. The advent of 2D fluoroscopy in the mid-20th century provided real-time intra-
operative imaging, improving decision-making and screw placement accuracy. However, its
single-plane visualization required frequent repositioning of the C-arm and exposed patients

and surgical staff to cumulative radiation.

To improve spatial resolution, 3D imaging systems such as cone-beam CT and intraopera-
tive 3D fluoroscopy (e.g., Medtronic O-arm, Ziehm 3D C-arm) were introduced [22]. These
enabled volumetric visualization and improved anatomical assessment. Yet, their adoption
brought new challenges: complex setup workflows, reliance on non-sterile radiology staff, in-
creased operative time, and the continued use of ionizing radiation. The physical size of these

systems also limits maneuverability in the operating room (OR) and surgeon autonomy.

Concerns over radiation exposure, particularly for pediatric patients undergoing repeated
imaging, led to the development of non-radiative technologies. These included electromag-
netic (EM) tracking, optical topographic imaging (OTI), and surface mapping based on
external landmarks [23,24]. Although these approaches reduced radiation, they introduced
their own limitations. EM tracking was prone to metal interference, while optical systems
suffered from line-of-sight issues. Non-sterile camera placement outside the operative field

further disrupted workflow by requiring indirect adjustments via OR staff.

Radiation remains a long-term concern. Studies report a fivefold increase in cancer incidence
among patients with adolescent idiopathic scoliosis (AIS) over 25 years [25,26]. Orthopedic

residents, too, receive nearly double the radiation exposure of the general population [27].

In sum, while IGSS have transformed spinal surgery by increasing safety and accuracy, legacy
systems have introduced significant challenges, including extended setup and surgical time,
dependence on non-sterile staff, bulky equipment in the operating room, and ongoing radi-
ation exposure. The convergence of these issues, radiation risk, workflow inefficiency, and
reduced surgeon autonomy, paved the way for a new generation of image-guided systems. One
such innovation is the 7D Surgical Machine-vision Image-Guided Surgery (MvIGS) system,

which represents a paradigm shift in spinal and cranial navigation.



The 7D Machine-vision Image Guided Surgery (MvIGS) system leverages non-ionizing struc-
tured light and advanced machine vision algorithms to acquire high-resolution 3D surface
scans of the surgically exposed spine [4,11,28]. Its proprietary FLASH registration algo-
rithm aligns these intraoperative scans to a preoperative CT-derived spine model, enabling

radiation-free anatomical navigation during spinal procedures (see Figure 2.2).

The registration process traditionally begins with the manual identification of three anatom-
ical landmarks on each vertebra in the preoperative scan. During surgery, corresponding
points are manually selected on the intraoperative surface scan. The 7D software computes
an initial transformation matrix using these paired landmarks and subsequently refines it us-
ing its FLASH algorithm. Once complete, the overlaid preoperative model enables real-time

surgical navigation without the use of intraoperative X-ray or CT.

Recent system enhancements have focused on improving registration efficiency and anatom-
ical adaptability. These upgrades aim to facilitate automatic or semi-automatic registration
of multiple vertebral levels from a single structured-light scan, addressing one of the primary
challenges in spinal surgery, discrepancies between spinal geometry in the preoperative CT
(typically acquired in a supine position) and the actual alignment during surgery (performed
in a prone position). By allowing each vertebra to be independently registered, the system
is designed to accommodate spinal flexibility and intraoperative correction maneuvers more

effectively.

Despite these technical advancements, several limitations remain. First, the system still
relies on a semi-manual workflow for registration initialization. Surgeons must manually click
corresponding anatomical landmarks in both the preoperative and intraoperative datasets,
which introduces variability and depends heavily on user expertise. This manual step can be
particularly challenging in cases where anatomical landmarks are partially obscured or only

limited portions of the vertebrae are exposed.

Second, although recent improvements enhance intraoperative tracking and reduce reliance
on intraoperative imaging, they do not consistently eliminate the need for fluoroscopy. In
complex spinal deformity cases, especially those involving significant anatomical variability
or flexible spines, surgeons may lack sufficient confidence in the automatic surface-based
registration and revert to C-arm fluoroscopy for confirmation. Observations from clinical
practice indicate that fluoroscopic imaging is often used alongside the 7D system to ensure
registration accuracy, particularly when navigating deeper structures or verifying alignment

post-correction.

These remaining challenges suggest that while the 7D MvIGS platform provides a fast,

radiation-free alternative to traditional image guidance systems, its current capabilities may
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not yet fully replace fluoroscopic feedback in all surgical scenarios. Furthermore, the re-
liance on semi-manual landmark selection limits automation and may affect reproducibility,

particularly in procedures requiring high precision across multiple spinal levels.
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Figure 2.2 Registration workflow in 7D Surgical’s Flash Registration system. (a) The process
begins with a 3D rendering of the preoperative CT scan, where the target anatomy is defined
by the yellow highlighted region. (b) A machine-vision camera captures a high-resolution 3D
surface scan of the exposed anatomy using structured light. (c¢) The intraoperatively digitized
surface of the spine is shown. The red Play-Doh simulates soft tissue to approximate surgical
conditions. The 7D system aligns the captured surface scan with the preoperative model
through its proprietary registration algorithm, enabling radiation-free navigation. Adapted
from Faraji et al. (2020) [4]

2.3 3D Data in IGSS

Three-dimensional (3D) data forms the backbone of modern image-guided surgery systems
(IGSS), supporting accurate spatial modeling, real-time navigation, and postoperative anal-
ysis. Unlike two-dimensional (2D) data, which provides only planar information, 3D data
encodes geometry in terms of width, height, and depth, allowing for a comprehensive volu-

metric understanding of anatomical structures.

3D Data Representation

3D data can be represented in various formats, each tailored to specific use cases:

 Point clouds: unordered collections of spatial (x, y, z) coordinates representing surface

geometry

o Surface meshes: interconnected vertices forming polygonal surfaces
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« Voxels: 3D pixels capturing volumetric intensity (as in CT or MRI)

o Surfels: surface elements combining geometry, normals, and optional color

Among these, point clouds are especially valuable for surgical applications due to their com-
pactness, direct representation of surface anatomy, and computational efficiency. They are
ideally suited for registration, navigation, and tracking tasks, where fast and accurate surface

alignment is crucial [29].

Beyond the operating room, 3D point clouds have become a foundational data type across
fields such as computer vision, robotics, machine learning, and geographic information sys-
tems [30]. In medical imaging, point clouds derived from structured light, stereo vision, or
volumetric imaging enable clinicians to visualize patient-specific anatomy in high spatial de-
tail. This capability enhances diagnosis precision, supports surgical planning, and improves

intraoperative guidance.
Point cloud data has also been widely adopted for medical training and simulation in recent
years. By reconstructing realistic 3D models of human anatomy, surgeons can rehearse
procedures, while students can explore complex anatomical relationships in an interactive,
virtual environment [31].

3D Data Acquisition

The generation of 3D anatomical data in IGSS typically relies on one or more of the following

techniques:

» Volumetric imaging (e.g., CT or MRI): provides dense voxel grids of internal anatomy.
o Stereo vision: estimates depth from images captured by spatially separated cameras.
e Photogrammetry: reconstructs 3D structure from multiple 2D views.

 Laser scanning (LiDAR): uses light pulses to measure distances via time-of-flight.

e Structured light scanning: projects a known pattern onto a surface and analyzes defor-

mation to infer depth.

A prominent example of structured light scanning in a surgical context is the 7D Surgical
Machine-vision Image-Guided Surgery (MvIGS) system. This platform combines structured
infrared light projection with stereo vision cameras to generate dense, high-resolution point

clouds of the exposed anatomy in real time [32]. The resulting surface scan is automatically
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registered to the preoperative CT using the FLASH registration method, streamlining the

workflow without requiring intraoperative X-ray or manual landmark-based alignment [4,33].

In addition to large console-based systems, hand-held structured light scanners have been
investigated as portable, low-cost alternatives. For instance, Chan et al. [34] demonstrated
the feasibility of using a hand-held structured light scanner to acquire intraoperative surface
data for tissue classification. Such compact devices offer greater flexibility in constrained
surgical environments and represent a promising direction for mobile 3D acquisition and

navigation support.

2.4 Segmentation Techniques

Segmentation plays a central role in computer-assisted interventions, enabling the identifi-
cation of anatomical structures or surgical instruments for real-time guidance, registration,
and visualization. While traditionally developed for radiological imaging, segmentation ap-
proaches differ considerably depending on the imaging modality, intraoperative constraints,
and clinical objectives. In this section, we differentiate between preoperative medical image
segmentation and intraoperative surgical scene segmentation, with a focus on the evolution

from 2D RGB-D techniques to native 3D point cloud segmentation.

2.4.1 Medical Image Segmentation

Medical image segmentation is primarily used in preoperative planning, targeting imaging
modalities such as CT and MRI. Over time, techniques have progressed from rule-based
methods to deep learning approaches, particularly convolutional neural networks (CNNs),
which are now widely adopted to segment organs, spine, and tumors in 2D slices or 3D
volumes [35-37]. These models perform well in preoperative settings where data can be
processed offline and at high resolution. For instance, Tranchon et al. proposed a vertebra
segmentation pipeline for adolescent idiopathic scoliosis (AIS) using whole-slice MRI and hy-
brid refinement. Their method accurately delineates spinal anatomy, especially the posterior
vertebral arch, which is crucial for surgical planning. However, these solutions are not readily
transferable to intraoperative environments due to constraints on imaging modalities and the

need for real-time performance [2].

2.4.2 Surgical Scene Semantic Segmentation

Intraoperative segmentation presents unique challenges compared to preoperative imaging.

The surgical field is dynamic, partially occluded, and often illuminated under non-standard
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lighting conditions. Furthermore, intraoperative systems demand real-time performance to

support tasks like instrument tracking and anatomy registration.

RGB-D Based Approaches

The rise of RGB-D sensors and surgical microscopes has led to a flow of CNN-based segmen-
tation methods to process either RGB or RGB-D images [1,38,39]. RGB-D data combines
standard 2D images with a corresponding depth channel, offering enhanced spatial cues.
However, this format remains fundamentally 2.5D, lacking true volumetric understanding.
Most segmentation models for RGB-D rely on 2D convolutional architectures like U-Net,

which process depth as an auxiliary channel rather than as a fully spatial structure.

Recent studies illustrate the potential of RGB-D segmentation: Tanzi et al. proposed a real-
time deep learning framework for semantic segmentation of intraoperative images to enhance
3D augmented reality (AR) overlays. Their model processes RGB endoscopic streams to
segment tissue in real time for surgical navigation [38]. Similarly, Scheikl et al. developed
a deep learning approach for semantic segmentation of organs and tissues in laparoscopic
images, aiming to highlight critical anatomical areas during surgery and support AR-based
manual navigation and planning [39]. More recently, Liebmann et al. presented a marker-less
surgical navigation system for spine procedures, combining RGB-based segmentation with

continuous pose tracking to enable automatic registration with preoperative data [1].

While effective, most RGB-D methods treat depth as a secondary input to 2D CNNs. This
2.5D approach lacks volumetric consistency, and reprojecting 3D information into 2D planes
can introduce errors, especially in anatomically complex regions like the spine. The reliance

on planar representations limits their ability to fully model surface continuity and geometric
detail.

Point Cloud Segmentation in Orthopedic Surgery

To address the limitations of 2.5D techniques, we shift focus to native 3D point cloud segmen-
tation. Point clouds are an unprojected representation of 3D space, directly capturing surface
geometry and preserving spatial continuity, qualities critical for high-fidelity segmentation in

image-guided surgery.

One promising technology for real-time point cloud acquisition is structured light scanning
(SLS). For example, the 7D Surgical Machine-vision Image-Guided Surgery (MvIGS) system
uses SLS combined with stereo vision cameras to reconstruct dense, radiation-free 3D point

clouds of the exposed surgical field. These data provide a geometrically accurate, high-
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resolution model of the patient’s anatomy suitable for both segmentation and registration [4].

Further supporting this approach, Chan et al. demonstrated the potential of machine learning
to classify tissues such as bone, cartilage, and ligament directly from structured light scans.
Their pipeline extracted spatial and textural features from 3D surfaces and used Random
Forests, SVMs, and simple feedforward neural networks to achieve classification accuracies
of 80-90%. Importantly, their results suggest that incorporating spatial geometry improves
performance, highlighting the untapped potential of native 3D data for intraoperative seg-

mentation [34].

Despite its promise, direct point cloud segmentation in surgical scenes remains underexplored.
Many previous methods voxelize or project the data into 2D to maintain compatibility with

conventional CNNs, sacrificing spatial precision in the process.

2.5 Deep Learning on 3D Point Clouds

As outlined in the previous section, conventional 2D and RGB-D segmentation techniques
struggle to accurately capture complex surgical scenes where fine surface detail and spatial
continuity are crucial. Unlike images, which are represented as structured grids, point clouds
are unordered and sparse, lacking an explicit neighborhood structure. These properties
make them incompatible with conventional convolutional neural networks (CNNs) designed
for image-based tasks. Early attempts to bridge this gap involved voxelizing point clouds or
projecting them into multiple 2D views; however, these transformations often led to quan-
tization errors and loss of geometric fidelity issues, which are problematic in the surgical

domain, where precision is key.

2.5.1 PointNet and PointNet+-+

To overcome these challenges, the field has shifted toward direct learning from raw 3D point
clouds using specialized architectures that maintain permutation invariance, geometric con-
tinuity, and spatial flexibility. This transition marked a significant breakthrough with the
introduction of PointNet [5], the first deep neural network designed to operate directly on
unordered point sets. PointNet processes individual points independently with shared MLPs,
then aggregates global context via symmetric functions (e.g., max pooling), effectively cap-
turing both local and global features. This architecture preserved the raw spatial properties
of 3D data, setting a new baseline for tasks such as shape classification and part segmentation

(see Figure 2.3).

However, PointNet’s lack of local neighborhood aggregation limited its ability to capture spa-
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tial relationships, which are essential for dense semantic segmentation. To address this, Point-
Net++ [6] extended the architecture by introducing hierarchical feature learning through lo-
cal grouping and sampling. This allowed the model to capture multiscale geometric features
while retaining PointNet’s strengths in permutation invariance and efficiency. PointNet—++
remains a cornerstone in 3D deep learning, widely adopted in medical applications such as

dental modeling, organ segmentation, and orthopedic planning.

Despite these improvements, PointNet+-+ still faces key limitations when applied to more
complex and high-resolution data. Its reliance on fixed-radius or k-nearest-neighbor (k-NN)
queries for local grouping can lead to inconsistent performance across varying point densi-
ties and different scales. Additionally, the use of max pooling within local regions discards
potentially informative contextual features, reducing the model’s ability to learn about fine
structure. Most notably, PointNet+- is unable to model long-range dependencies, which are
crucial for capturing relationships across spatially distant and functionally connected regions

(see Figure 2.4).
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2.5.2 Point Transformer V3: Self-Attention for Geometric Reasoning

Point Transformer V3 (PTV3) [7] represents a major advancement in deep learning for 3D
data by directly addressing the shortcomings of earlier point-based models [5,6]. Instead of
relying on static neighborhood definitions and hand-crafted aggregation functions, it intro-
duces a dynamic, learnable self-attention mechanism designed to capture complex geometric

relationships within point clouds better.

The architecture begins with point cloud serialization, which transforms the unstructured
point cloud data into a structured sequence using space-filling curves such as Z-order or

Hilbert curves. This conversion enables efficient and scalable learning by imposing a spatial

2382

order on the data (see Figure 2.5).

{a) Z-order (b) Hilbert

{c) Trans Z-order

Figure 2.5 Point Cloud Serialization: Illustration of the process that transforms unstructured
point clouds into structured sequences using space-filling curves (e.g., Z-order or Hilbert
curve), enabling efficient processing and learning. [7]
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Once serialized, the points are divided into patches through a patch grouping strategy. This
grouping supports localized attention operations by allowing each patch to capture fine-

grained geometric features within its spatial neighborhood (see Figure 2.6).
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Figure 2.6 Patch Grouping: Visualization of the grouping strategy where serialized point
cloud sequences are divided into patches. Points within each patch are aggregated for local-
ized attention computation. [7]

To enrich the model’s understanding of global context and reduce overfitting to rigid spatial
patterns, Point Transformer V3 introduces a range of patch interaction strategies. These
include shift-dilation, shift-patch, shift-order, and shuffle-order techniques. By dynamically
adjusting how patches interact and share information, the model learns to integrate both

local geometry and non-local semantic cues (see Figure 2.7).
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(a) Standard

Figure 2.7 Patch Interaction Strategies: Comparison of various patch interaction methods,
including shift-dilation, shift-patch, shift-order, and shuffle-order, which facilitate feature
fusion across patches to capture both local and global context. [7]

At the core of the network are the Point Transformer Blocks, which implement a query-
key-value attention framework. Unlike traditional methods that aggregate features solely by
proximity, Point Transformer V3 incorporates relative positional encoding into its attention
weights. This design allows the model to factor in not only feature similarity but also spatial
distance and directionality, critical for capturing anatomical continuity and structural context

in complex 3D forms.

The model’s overall architecture adopts a hierarchical encoder-decoder format (see Fig-
ure 2.8). Self-attention layers are used in both the down-sampling and up-sampling stages,
replacing traditional pooling operations. This attention-based design helps preserve spatial
coherence and contextual detail across multiple scales, which is especially valuable in tasks
involving complex geometries or partially occluded objects, for example, segmenting furniture

or structural elements in cluttered indoor environments.

Beyond its architectural innovations, Point Transformer V3 demonstrates strong scalability

and generalization capabilities. Its ability to handle large-scale point clouds with high accu-
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racy has been validated in diverse applications, including indoor scene reconstruction, object
detection in robotics, and outdoor LiDAR segmentation for autonomous driving. These re-
sults highlight the model’s robustness under varying spatial resolutions and its effectiveness

even when training data is limited or partially labeled.

Recently, its potential has extended into the medical domain. In a study focused on dig-
ital dentistry, researchers applied a Point Transformer V3-inspired architecture to detect
anatomical landmarks on intraoral 3D scans [40]. Despite challenges such as small dataset
sizes and high anatomical variability, their method effectively learned meaningful geometric
and anatomical features from raw point cloud data. Their results from the 3DTeethLand
Grand Challenge at MICCAI 2024 demonstrate that Point Transformer V3 can be adapted
for fine-grained localization tasks in clinical settings, underscoring its versatility and growing

relevance in medical image analysis.
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Figure 2.8 Overall Architecture of Point Transformer V3: Schematic diagram of the hierar-
chical encoder-decoder structure of PTv3, illustrating the integration of self-attention layers
within down-sampling (feature abstraction) and up-sampling (feature propagation) stages. [7]

2.6 Intraoperative Data

Deep learning models typically require extensive annotated datasets. However, collecting
such data during real surgeries remains challenging due to ethical, logistical, and technical
constraints. In spine surgery, particularly posterior approaches, obtaining clear exposure
of vertebral structures is limited, and key anatomical landmarks such as the spinous and
transverse processes are often only partially visible. These limitations complicate the creation
of reliable ground truth labels and hinder the scalability of model training based solely on

clinical data.

A notable attempt to address this gap is the publicly available SpineDepth dataset [8]. It
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was designed to support the development of deep learning algorithms for spinal shape recon-
struction and intraoperative navigation. The dataset includes over 299,000 RGB-D frames
captured during simulated pedicle screw placement procedures performed on ten cadaveric
lumbar spine specimens. However, it is important to note that these specimens do not repre-
sent scoliosis cases. Data collection was conducted in a controlled surgical setting using two
synchronized depth cameras. Each frame is paired with high-resolution vertebral meshes and

pose information from an optical tracking system.

While valuable, this setup is challenging to replicate (see Figure 2.9). It relies on attaching
optical markers to each vertebra and requires seamless calibration and integration between
the tracking system and dual RGB-D cameras—conditions that are difficult to achieve outside
of a specialized lab environment, particularly when using an artificial spine model such as a

sawbone phantom.
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Figure 2.9 Experimental setup used in the SpineDepth dataset. Adapted from liebmann et
al. (2021) [8].
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While SpineDepth offers valuable intraoperative-like data with dense 3D annotations, it also
comes with important limitations. First, because the specimens are cadaveric, they lack
physiological movement and natural tissue compliance, which reduces realism compared to
live surgical conditions. Second, due to tissue preservation processes, the color and texture of
the vertebrae differ substantially from those observed during actual surgeries. This results in
limited color contrast between vertebrae and background tissues, as confirmed by RGB dis-
tribution analyses. Consequently, models trained on SpineDepth may struggle to generalize

to real surgical environments where tissue appearance is more complex and variable.

These challenges have motivated the integration of semi-synthetic or simulation-based data
into model development pipelines. Synthetic data offers a controlled and scalable alternative
that can replicate the spatial and visual complexity of surgical environments while enabling
precise ground truth annotation. Prior work supports the feasibility of synthetic datasets for
surgical Al tasks. For instance, Yoon et al. introduced a virtual surgery simulation frame-
work to train segmentation networks on synthetic RGB images, effectively compensating for
the lack of annotated intraoperative data [41]. Other studies, such as VisionBlender [42],
have demonstrated the utility of Blender-generated scenes in creating labeled datasets for
robotic and laparoscopic surgery. More recently, Pérez et al. introduced TLSynth [43], a
Blender-based add-on that simulates terrestrial laser scanner (TLS) point clouds with real-
istic scanning noise and density, underscoring the practical value of synthetic point clouds
in computer vision research. These precedents validate the use of simulation-based tools for

generating annotated 3D datasets in domains with limited real-world data availability.
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CHAPTER 3 RATIONALS AND OBJECTIVES

In the previous chapter, we reviewed key concepts related to Adolescent Idiopathic Scoliosis
(AIS), focusing on the clinical workflow of posterior spinal fusion (PSF), a standard surgical
intervention. This multi-stage procedure typically involves the fixation of pedicle screws,
followed by deformity correction using contoured rods, and concludes with postoperative

radiographic assessment to evaluate alignment and surgical outcomes.

Although PSF is an established and effective approach for severe AIS correction, it remains
a complex and high-risk procedure. The surgery’s success hinges on precise intraoperative
decision-making, particularly during deformity correction, where suboptimal realignment can
result in persistent deformity or necessitate revision surgery. Image-guided surgery systems
(IGSS) have been introduced to enhance surgical precision, relying primarily on intraopera-
tive imaging registered to preoperative scans. However, our synthesis of current literature and
clinical practice reveals several critical limitations in existing IGSS strategies, particularly

for real-time spine tracking:

o While many systems assist in pedicle screw placement, few offer dynamic, quantitative
feedback on vertebral alignment during correction maneuvers. This limits the surgeon’s

ability to assess and adjust alignment in real time.

o Intraoperative fluoroscopy and CT scans are frequently used to update anatomical
context, but they expose patients and surgical teams to significant levels of radiation.
This restricts the frequency of updates and is particularly problematic in pediatric

cases.

o Most current segmentation and registration methods rely on RGB-D inputs, which are
limited in resolution and depth accuracy. However, new-generation surgical cameras,
such as those from 7D Surgical, offer dense and accurate point clouds as direct out-
put. These radiation-free devices are already being used in many operating rooms,
including at CHU Sainte-Justine. Yet, current deep learning approaches do not take
full advantage of this raw data, missing an opportunity for higher-resolution, real-time

anatomical segmentation.

o Robust deep learning models, especially those designed for 3D segmentation, require
large volumes of annotated intraoperative data. Such datasets are difficult to obtain

due to ethical, logistical, and annotation challenges. In our case, only a small number
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of usable real surgical recordings were available, and none had complete landmark

annotations.

For this work, we made three hypotheses:

o The advanced attention mechanisms of the Point Transformer V3 architecture would
outperform prior approaches in 3D point cloud segmentation of vertebrae, particularly

when compared to previous studies that utilized RGB-D data [1].

o The SpineDepth dataset alone is insufficient to capture the anatomical and visual vari-
ability required for robust generalization to diverse intraoperative scenarios, especially

concerning scoliosis cases.

e Supplementing real data with carefully designed semi-synthetic datasets, when com-
bined with appropriate augmentation strategies, can significantly improve segmentation

performance on real intraoperative data.

These challenges motivate the development of a novel, data-driven solution to improve in-
traoperative guidance for spinal deformity correction. While previous work in our team [2]
has focused on vertebra segmentation in pre-operative MRI scans and provided a proof of
concept for the registration from pre-operative to synthetic intraoperative data, this master’s
project aims at an automatic vertebrae segmentation from intraoperative structure light scan.
Our proposed research introduces a workflow that leverages radiation-free 3D point clouds,
state-of-the-art deep learning architectures, and a semi-synthetic data generation pipeline.

Our specific objectives are:

o To identify and evaluate deep learning models capable of semantically segmenting crit-
ical vertebra landmarks, particularly the spinous and transverse processes, from raw

3D point clouds acquired intraoperatively.

o To address the limited availability of annotated intraoperative data, a Blender-based

semi-synthetic data pipeline was developed.

o To train and evaluate the segmentation model across multiple data domains, including
real cadaveric point clouds, semi-synthetic simulations, and phantom-based acquisi-
tions, to assess its generalization capability. By systematically combining and testing
different datasets, we investigate how synthetic data improves model robustness under

varying anatomical presentations and sensor conditions.
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Together, these objectives contribute to a robust framework for non-irradiating, anatomi-
cally informed surgical assistance. By leveraging cutting-edge 3D sensing technologies al-
ready present in the operating room and augmenting them with synthetic data grounded
in clinical realism, our approach aims to deliver accurate, reproducible spinal measurements
without added imaging or radiation exposure. This, in turn, supports faster, more informed
intraoperative decisions, improves preoperative planning, and facilitates clearer communica-
tion between surgeons and patients, ultimately enhancing the accessibility of real-time spine

alignment tracking.
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CHAPTER 4 METHODOLOGY

This chapter details the methodology developed to achieve the three main research objectives.
Our workflow is divided into three key stages. First, we investigate the performance of a deep
learning model for semantic segmentation using raw 3D point cloud data. This includes pre-
processing and annotation of an open-source dataset and training a transformer-based model
for vertebrae landmarks segmentation. Second, we develop a semi-synthetic data generation
pipeline to simulate intraoperative spinal exposures, including data collection using both
physical models and Blender-based scene generation, and training experiments combining
multiple data sources. Finally, we evaluate the trained model on real intraoperative data
acquired from clinical scoliosis surgeries to assess the feasibility of deploying the method in

a surgical context. Each stage is described in the sections that follow.

4.1 Semantic Segmentation on Public Dataset: SpineDepth

4.1.1 Dataset Overview

As an initial benchmark, we evaluated our model on the publicly available SpineDepth
dataset [8]. This dataset was collected during simulated pedicle screw placement proce-
dures performed on ten cadaveric lumbar spine (L1-L5) specimens in a controlled surgical
environment. It contains over 299,000 RGB-D frames captured from multiple viewpoints
using two synchronized depth cameras. Each frame includes accurately registered 3D ver-
tebral meshes and corresponding pose data, obtained via a high-precision optical tracking
system. The dataset is designed for the development and validation of deep learning methods

targeting spinal shape reconstruction and intraoperative navigation.

4.1.2 Point Cloud Extraction and Annotation

To convert RGB-D data into 3D representations suitable for deep learning, we used the
Stereolabs ZED Python API to extract point clouds from each frame, preserving both spatial
coordinates and color information. To reduce computational complexity and focus on the
relevant anatomy, we defined a bounding box centered on each vertebra to isolate the region
of interest (ROT), namely, the spine specimen in each frame. This step effectively filtered out
background points and preserved only those within the surgical field. Ground truth labels
were generated by aligning the vertebral mesh models to each frame using the provided

ground truth transformation matrices (see Figure 4.1).
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To determine whether each point in the cloud lies inside or outside the vertebral surfaces,
we applied a Signed Distance Field (SDF)-based annotation method. The SDF computes
the shortest distance from any point p € R? to the surface of a 3D object, with the sign

indicating spatial relationship to the surface:

— min — , ifpe Minsi e

minqeaM ||p - qHJ if Pc Moutsido

where M denotes the surface boundary of the vertebral mesh M, and || - || is the Euclidean
distance. A negative SDF value indicates the point lies inside the mesh, zero means it is on

the surface, and a positive value denotes it is outside.

Points were labeled based on this signed distance: if the SDF value of a point was less than
or equal to a predefined threshold (e.g., 0 mm), it was considered part of the corresponding
vertebra and assigned its anatomical class (1-5); otherwise, it was labeled as background
(class 0). This method provides a precise and geometry-aware way to annotate complex

anatomical structures in point clouds (see Figure 4.1).

Given the scale of the dataset (over 299,000 frames), annotation was parallelized across
multiple CPU cores to improve efficiency. Additionally, substantial disk storage was required

to accommodate the large number of annotated point clouds, which were stored as NumPy

arrays for rapid loading during training.

SDF ! =

Points Inside Mesh  *

Real Scene * - Vertebrae Location Labeled Pomt Cloud

Verebrae Mesh

Figure 4.1 Overview of SpineDepth dataset preparation
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4.1.3 Model Architecture and Training Strategy

We trained a Point Transformer V3 model [7], a state-of-the-art model designed for point
cloud segmentation tasks. This architecture was adapted to classify vertebral landmarks
in intraoperative 3D point clouds (see Figure 4.2). Specifically, the model was trained to
identify exposed spinous and transverse processes within each frame. To enable per-point
classification, we appended a final convolution layer followed by a softmax activation to the
decoder output. Depending on the segmentation task, two model variants were trained: one
for binary classification (vertebra vs. background) and another for multi-class segmentation,

distinguishing five vertebral levels and one background.

Paint Cloud
Embeddir
Shuffle Orders

Labsebed Tnput Prediction

Figure 4.2 Modified Model Architecture.

Data Sampling and Class Imbalance Handling

In each frame, vertebrae points constitute approximately 20% of the point cloud, while
background (non-vertebrae) points account for the remaining 80%. To respect this natural
class distribution and manage memory constraints, we applied stratified downsampling to

select 10,000 points per frame while preserving the original label ratio (see Figure 4.3).

To further address class imbalance during training, we employed a weighted focal loss. The
focal loss down-weights well-classified examples and focuses training on hard, misclassified
samples. The loss for a predicted logit § € R and target label y € {0,1,...,C — 1}, with

per-class weights a., is defined as:

Liocal(y, §) = —ay (1 — p,)7 log(py) (4.2)

where: p, = softmax(7), is the predicted probability for the correct class, 7 is the focusing
parameter, set to v = 5.0 in our experiments, since the dataset is highly imbalanced, «, is

the weight for class y, computed based on class frequency.

The class weights o, were derived from the training set label distribution before sampling.

Specifically, we first calculated the normalized frequency f. for each class ¢, and then defined
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the weight as:

e = <m;<cm)1/3 (4.3)

This formulation assigns higher weights to minority classes (e.g., vertebrae) and lower weights
to majority classes (e.g., background), in a smoothed manner using a cube root to avoid

excessive weighting. These weights are then applied dynamically in the loss computation for

each sample, according to its class label.

Color Distribution Analysis and Augmentation

The texture and spatial characteristics of cadaveric anatomy differ from live surgical condi-
tions. Due to tissue shrinkage and discoloration in fresh-frozen cadaveric specimens, both the
color and geometry of the captured data can deviate significantly from real intraoperative
scenes, making segmentation more challenging. An RGB color distribution analysis showed

minimal separability between vertebrae and background classes (see Figure 4.4).

To improve model generalization, we applied color augmentation to vertebrae points during
training. Specifically, in 50% of training batches, the RGB values of vertebrae points were
randomly shifted toward a reference distribution resembling real lumbar surgical anatomy.
The transformation strength was randomized for each point by interpolating between the
original color and the target tone. This augmentation was applied only during training;
meanwhile, all point clouds were normalized to ensure consistent input scale during both

training and testing.
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Down Sampling

200k — 10k
Ratio 8:2

Original Adjusted

Figure 4.3 Visualization of the downsampling process, reducing the point cloud from approx-
imately 200,000 points to 10,000 points. An 80/20 ratio was applied to preserve the original

distribution between background and vertebrae points.
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Figure 4.4 Visualization of color augmentation. The original RGB space distribution (left) is
transformed to an adjusted version (right), where the two clusters, background and vertebrae,

are more distinctly separated.
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4.1.4 Cross-Validation and Evaluation

A leave-one-out cross-validation scheme was employed to ensure robust evaluation across
the eight specimens in the SpineDepth dataset. Performance was measured using the Dice
Similarity Coefficient (DSC), consistent with the metrics and evaluation protocol used in
prior studies [1]. Our results were directly compared against RGB-D-based segmentation
methods reported in the literature [1], allowing for a fair assessment of the benefits of using
raw 3D point clouds as model input. A comparative analysis of segmentation accuracy is

presented in Table 5.1.

4.2 Semantic Segmentation on Semi-Synthetic Dataset

The SpineDepth dataset, while valuable, consists of cadaver lumbar specimens that were
rigidly fixated in a test setup with minimal to no physiological motion. As such, it does
not reflect the dynamic anatomical variations observed in scoliosis cases, particularly in the
thoracic region (see Section B). Furthermore, due to the limited availability of annotated in-
traoperative 3D point cloud data, we constructed a semi-synthetic dataset generation pipeline
that integrates virtual simulations and physical acquisitions. This approach enables the cre-
ation of diverse and anatomically realistic point clouds, tailored to mimic the appearance and
spatial characteristics of radiation-free 7D surgical outputs [11]. In this section, we describe

the construction of three datasets used for model training and cross-dataset validation.

4.2.1 Semi-Synthetic Data Generation
Dataset A: Blender-Simulated Surgical Scenes Using Real Scoliosis Cases

This dataset was created using stereo-radiographic 3D reconstruction of real scoliosis pa-
tients’ spine models and procedural scene generation in Blender to simulate realistic surgical
exposures. The source data originates from a previous study [2], which obtained ethical ap-
proval from CHU Sainte-Justine to collect pre- and post-operative 3D spine models from 49
Adolescent Idiopathic Scoliosis (AIS) patients. These 3D models (4.5 a) were reconstructed
from biplanar radiographs (posterior and lateral views). A trained physician manually an-
notated key anatomical landmarks on each vertebra (T1-T12, L1-L5), and the landmark

coordinates were provided as labeled points in JSON format.

Using the STL spine models and landmark annotations, we generated virtual surgical scenes
in Blender. The labeled landmarks were used to define procedural surfaces that partially

cover the vertebrae, simulating varying levels of surgical exposure (4.5 b). Geometry node



31

operations were applied to distribute points over these defined surfaces, producing synthetic
point clouds that mimic the visual field during posterior spinal fusion (4.5 ¢). Each scene

was exported as a PLY file containing 3D spatial coordinates and surface normals.

To enhance visual realism, RGB color values were assigned to each point based on intensity
distributions observed in real surgical point clouds from the CHU Sainte-Justine dataset.
This step ensures that the synthetic point clouds not only capture anatomical geometry but

also exhibit color characteristics that closely match real intraoperative imaging conditions.

Post-processing was conducted in Python (VSCode) to refine the raw Blender-exported point
clouds. First, a signed distance field (SDF) was computed between the mesh surfaces of the
vertebrae and the point cloud to identify and remove points that unrealistically intersected
the vertebrae. Next, surface normals were used to determine the visibility of points from
a posterior viewpoint, retaining only those that lie above the simulated soft tissue surfaces
and are visible from the typical surgeon’s field of view. The filtered point cloud was then
annotated using the same SDF-based labeling strategy as in Section 4.1, assigning binary
labels: vertebra (label=1) and background (label=0).

The complete pipeline for Dataset A is shown in Figure 4.5. The final point clouds are
anatomically consistent and photorealistic, providing a robust testbed for assessing the im-

pact of synthetic-only augmentation on model performance.
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Figure 4.5 Dataset A: Blender-simulated surgical scene using real scoliosis cases. (a) 3D spine
model reconstructed from biplanar X-ray of an adolescent idiopathic scoliosis (AIS) patient.
(b) Procedural surface creation guided by vertebral landmarks (see e). (c) Geometry node
operations applied to distribute surface points. (d) Assigning realistic color mapping based
on intensity statistics derived from real surgical data (see f) using VS Code. (e) Annotated
vertebral landmarks. (f) Color example of Vertebrae and surrounding tissues in intraoperative
scene.

Dataset D: Physical Phantom Data Acquired with the 7D Surgical System

This dataset was acquired using a commercially available artificial spine phantom! and the
7D Surgical System. This system allows radiation-free acquisition of intraoperative point
clouds and offers tools for real-time anatomical registration. The goal of this dataset was
to simulate realistic spinal deformity correction scenarios using a physical phantom and to
evaluate the performance of the segmentation model on point-cloud data acquired from the

same device used in actual clinical surgeries.

The workflow began with preoperative CT imaging of the artificial spine. Using the 7D
software interface, we manually selected three anatomical landmarks, one spinal process and
two transverse processes, on each vertebra from T1 to T12 in the CT volume. These points,
along with vertebral level labels, served as reference anchors to establish vertebral-specific

coordinate frames.

To simulate intraoperative conditions, spinal curvature was manually introduced by adjusting
the alignment of the phantom, and metallic components were added to emulate the presence

of surgical instruments. The FLASH feature of the 7D system was then used to capture

1ht‘cps ://wuw.sawbones.com/full-spine-solid-foam-vertebral-column-sacrum-1323.html
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high-resolution, radiation-free 3D surface scans of the phantom’s posterior anatomy under
various deformity states (see Figure 4.7). Each FLASH capture was followed by manual
re-registration of the vertebrae: the same three anatomical landmarks were selected on the
captured point cloud for each vertebra, approximately matching their counterparts from the

CT reference.

To validate the accuracy of the transformation, a tracked probe was used to point to known
anatomical locations on the phantom, confirming the overlay alignment on the 7D system in-
terface. After verifying registration, further curvatures were introduced, and the process was
repeated, allowing the generation of 48 point clouds across a range of spinal deformities. This
iterative acquisition strategy ensured anatomical variability and realism while maintaining

tight control over registration accuracy.

All transformation matrices and point cloud captures were logged by the 7D system and later
exported with timestamps. The post-processing pipeline consisted of two main steps. First,
the preoperative CT DICOM volumes were manually segmented into individual vertebrae
(T1-T12), as shown in Figure 4.6. Due to slight anatomical differences between the CT model
and the physical phantom, minor manual adjustments were necessary to accurately align the
segmentations. Second, the recorded transformation matrices were applied to each vertebra
mesh and used in conjunction with signed distance field (SDF) calculations to annotate each
point in the 7D-captured clouds. Points inside the vertebral meshes were labeled as class 1

(vertebra), and all others as class 0 (background), as illustrated in Figure 4.8.

This dataset closely mirrors the point clouds captured intraoperatively by the 7D Surgical
System and provides high-fidelity, radiation-free annotations. It plays a critical role in vali-

dating the segmentation model’s ability to generalize across domains and surgical scenarios.
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Figure 4.6 Dataset D: Manual segmentation of preoperative CT scans from the spine phantom
in 7D Surgical System. Each vertebra (T1-T12) was segmented individually for accurate
vertebral level alignment with the captured 3D point clouds.

Figure 4.7 Dataset D: C'T Registration vertebral models to 7D Surgical captured point clouds.
Anatomical landmarks were matched to compute rigid transformations for each vertebra.
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Figure 4.8 Dataset D: Illustration of the annotated point clouds captured from 7D Surgical
using signed distance field (SDF) to assign vertebra (label = 1) and background (label = 0).

Dataset P: RGB-D Capture of Phantom Spine for Blender-based Simulation

The third dataset was developed using the same artificial spine phantom as in Dataset D but
acquired using a consumer-grade RGB-D camera (Intel RealSense), which uses stereoscopic
depth sensing technology. This setup was designed to evaluate the feasibility of low-cost
sensors for generating semi-synthetic training data, particularly in environments where access

to surgical-grade devices is limited.

To simulate varying anatomical conditions, the phantom spine was manually adjusted to
represent six distinct spinal curvatures, ranging from neutral alignment to severe deformity.
For each configuration, two black markers were manually painted on the laminae of each
vertebra to serve as reference points for surface reconstruction in Blender. These markers
were automatically detected via blob detection in the RGB images. Their corresponding 3D

positions were computed using the RealSense camera’s intrinsic parameters and stored in
JSON format.

From a fixed posterior viewpoint, 20 RGB-D images were captured per curvature configura-
tion. Each frame was reprojected into 3D space to generate raw point clouds using depth
and RGB data. These captured point clouds were fused with anatomical surfaces generated
in Blender using the marker locations as procedural guides, following the same approach
described in Dataset A. The resulting hybrid scenes, composed of real sensor input and

synthetic geometry, were exported as PLY files for further processing.

To determine visibility and assign labels, a ray-casting algorithm was applied to the merged
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point clouds. Since the Blender-generated vertices did not contain color information, RGB
values served as a proxy for semantic labeling: points with RGB values were assumed to
correspond to vertebral surfaces and were labeled as vertebra (label = 1), while points without

RGB values were treated as synthetic background and labeled as non-vertebra (label = 0).

This hybrid approach enabled cost-effective annotation by combining sensor-acquired depth
data with procedurally generated meshes. It offers a practical and accessible alternative for

generating annotated datasets without the need for specialized surgical navigation systems.

The overall data pipeline is illustrated in Figure 4.9.

Figure 4.9 Dataset P: RGB-D-based acquisition and hybrid simulation of the spine phantom.
(a) Raw point cloud captured using the Intel RealSense camera. (b) Imported point cloud and
landmarks visualized in Blender. (c) Procedural surface generation based on black anatomical
markers shown in (a). (d) Ray-casting is used to determine visibility and assign vertebra vs.
background labels. (e) Colorization based on statistical color profiles used in Dataset A for
visual realism.

Table 4.1 Summary of datasets used in this study.

Spine Deformity Acquisition Soft Vertebrae
Dataset Source Scoliosis Sensor Tissue Levels
S Cadayveric None RealSense Cadaveric L1-L5
A 3D Model Real Case Simulated Blender T1-T12
Simulated
D Phantom Simulated 7D Surgical P.h ysically T1-T12
Simulated
P Phantom Simulated RealSense Blender T1-T12

Simulated
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4.2.2 Training Strategy and Data Augmentation

Building on findings from Section 4.1.3, we trained Point Transformer V3 on each semi-
synthetic dataset independently to evaluate their standalone and complementary utility for
semantic segmentation of vertebrae in intraoperative-like 3D point clouds. Each dataset
required tailored augmentation strategies to mitigate overfitting and promote generalization

across different anatomical and visual domains.

Dataset A: Blender-Simulated Surgical Scenes Using Real Scoliosis Cases

Data were split by patient ID (82% train, 16% validate, 2% test) to ensure subject-independent
evaluation. Given that RGB values were procedurally generated to simulate surgical textures,
we applied color augmentation to prevent the model from over-relying on synthetic appear-

ance cues and to promote geometry-focused learning.

We implemented three augmentation modes applied randomly during training:

o Generated mode: RGB values mimic distributions from real surgical point clouds
(as in Section 4.2.1).

« Same mode: All points are assigned a uniform color (ignoring RGB), removing color

cues.

« Swapped mode: RGB values for vertebra and non-vertebra classes are reversed to

confuse color-based learning intentionally.

All point clouds were normalized before being put into the model.

Dataset D: Physical Phantom Acquisitions with 7D Surgical System

We performed a split with stratification (75% train, 19% validate, 6% test) by deformity
configuration and fixed random seed for reproducibility. Since this dataset closely resembles
actual intraoperative point clouds, including soft tissue, metallic instruments, and realistic
surface textures, we retained the original RGB values without applying color augmentation.

Standard normalization was applied to all inputs.

Dataset P: RGB-D Capture of Phantom Spine for Blender-based Simulation

This dataset involved leave-one-out cross-validation (LOOCV) across six distinct curvature

conditions. We used the same color augmentation scheme as for Dataset A to examine
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how variations in color representation affect model performance across sensor domains. The
objective was to evaluate the feasibility of RGB-D driven semi-synthetic datasets in promoting

robust learning.

All datasets used a consistent input normalization pipeline to ensure uniform data scaling

before model ingestion.

4.2.3 Cross-Dataset Training and Evaluation

To assess the generalization capability of our segmentation model across diverse anatomical
and visual domains, we conducted systematic cross-dataset training and evaluation using

combinations of the semi-synthetic datasets and the real SpineDepth dataset (see Table 4.1).

We explored 15 combinations:

Individual: S, A, D, P

Pairwise: e.g., SA, SD, AD

Triplets: e.g., SAD, SDP, ADP

Full combination: SADP

For each dataset combination, we applied dataset-specific pre-processing and augmenta-
tion strategies. SpineDepth dataset followed the class-balanced sampling and augmentation
pipeline described in Section 4.1.3. Datasets A and P incorporated the color augmenta-
tion modes outlined in Section 4.2.2 to promote robustness against artificial texture bias.
Dataset D, which captures high-fidelity intraoperative appearances, was used without any

augmentation to preserve its realistic visual properties.

All models were trained with Point Transformer V3 using the same hyperparameters and
normalization pipeline. For evaluation, each trained model was tested independently on all
datasets using the Dice Similarity Coefficient (DSC) as the primary metric. Moreover, to
interpret the results beyond simple mean DSC, two evaluation metrics were introduced (see

Evaluation Metrics).

To identify the most generalizable training configurations, DSC scores were averaged across
test sets. The top three combinations were selected for fine-tuning, where augmentation
parameters and class weights were further adjusted to maximize performance across unseen

domains.

This cross-dataset training strategy enabled us to quantify the contribution of each dataset

to overall model robustness, to identify synergistic effects that arise from combining datasets,
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and to better understand the transferability of learned features across both synthetic and

real surgical domains.

Evaluation Metrics

1) Unseen-Drop To quantify how well the model generalizes to a dataset that was not

included during training, the unseen-drop metric was defined:

Unseen Drop = DSCgeen — DSClunseen (4.4)

Here, DSCqeen is the average DSC of the domains used during training, and DSC,seen is the
performance on the held-out test domain. This metric captures the generalization gap and
provides a direct measure of performance degradation when evaluating on entirely unseen
data.

The use of a held-out domain for testing aligns with standard practices in domain general-
ization research, where generalization to out-of-distribution data is assessed through perfor-
mance drop. Similar metrics have been adopted in prior works such as [44], where domain

shifts are quantified through changes in predictive accuracy across unseen environments.

It is important to note that the unseen-drop metric is only applicable to training configu-
rations that exclude at least one dataset. For the fully inclusive combination (SADP), where
all four datasets are used for training, no domain remains unseen, and this metric cannot be

computed.

2) Inter-Domain Standard Deviation To evaluate the consistency of the model’s per-

formance across datasets, the standard deviation of DSC values was computed:

1Y —
Inter-Domain STD = \l N > (DSC; — DSC)? (4.5)
i=1
where N = 4 represents the number of test domains and DSC is the mean DSC across all
domains. A lower standard deviation indicates that the model performs uniformly across
datasets, suggesting stable generalization. Conversely, a high value reflects performance

variance and possible overfitting to specific domains.

This type of variance-based evaluation is commonly used in domain generalization and fair-
ness literature to assess robustness and consistency across multiple environments. For exam-

ple, [45] uses cross-domain standard deviation as a key metric to evaluate domain general-
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ization algorithms under the DomainBed benchmark.

4.3 Model Evaluation on Intraoperative Surgical Data

Given the ultimate objective of supporting real-time intraoperative assistance, our best-
performing models were evaluated on two intraoperative point clouds captured by 7D Surgical
at CHU Sainte-Justine. These acquisitions were performed toward the end of the procedures,
after pedicle screw insertion but before the final radiographic imaging, providing a realistic

yet radiation-free screenshot of the surgical field.

Building on the findings from Section 4.2.3, the best dataset combinations were selected and
the model was retrained using the data augmentation strategies described in Section 4.2.2
and the class-balanced focal loss settings from Section 4.1.3 to enhance generalization and

robustness in clinical settings.

To ensure compatibility with the model’s input constraints, the same stratified downsampling
procedure was conducted during training (see Section 4.1.3) to reduce the number of points

per frame to 10,000 while preserving the original class distribution.

Due to the absence of ground truth labels in intraoperative data, this evaluation is purely
qualitative. The side-by-side visualizations of the raw intraoperative scans were provided and
the corresponding model predictions in Section 5.3, offering visual insight into the model’s

ability to localize vertebral structures in real surgical conditions.

This evaluation was designed to test the feasibility of applying transformer-based point cloud
segmentation models in the operating room and highlights the promise of geometry-driven,

real-time anatomical guidance in spinal procedures.
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CHAPTER 5 RESULTS AND DISCUSSION

This chapter presents the experimental results, visualizations, and critical analysis of the
segmentation framework described in Chapter 4. First, the training outcomes of the Point
Transformer V3 model on the publicly available SpineDepth dataset are reported, including
comparisons with prior work [1] and the extension from binary (vertebra vs. background)
segmentation to six-class vertebral level segmentation. The development and evaluation of
three semi-synthetic datasets are then detailed, supported by both qualitative visualizations
and quantitative metrics. To assess domain generalization, cross-dataset experiments are
conducted using data from cadaveric specimens (Section 4.1), real scoliosis cases with simu-
lated tissue, and artificial spine models acquired with identical and different sensors, followed
by manual correction (Section 4.2). Finally, the best-performing model is evaluated on a
small, manually segmented intraoperative dataset (Section 4.3) to investigate its feasibility

in real-world surgical settings.

5.1 Model’s Training Results on Public Dataset: SpineDepth

The SpineDepth dataset [8], developed in the earlier work, consists of pose-annotated RGB-D
recordings from mock spinal procedures conducted on ten human cadaveric specimens. For
the purposes of this study, two specimens were excluded to maintain consistency and data
quality. Specimen 1 was excluded due to limited anatomical exposure, which resulted in
incomplete visualization of vertebral structures. Specimen 10 was excluded due to signifi-
cant anatomical variation, specifically, a much smaller vertebral size compared to the other
specimens, making it an outlier in both shape and scale. These same two specimens were
also excluded in the original segmentation benchmark study [1], leaving eight specimens (see

5.1) for training and evaluation.

To ensure a fair comparison with prior work [1], the same experimental setup was adopted:

« Evaluation protocol: Leave-One-Out Cross-Validation (LOOCV) across eight folds,

holding out one specimen per fold for testing.

« Evaluation metric: Dice Similarity Coefficient (DSC), with model performance re-

ported using the median DSC across folds.

The segmentation results for both the original binary setting (vertebra vs. background) were

evaluated, as illustrated in Figure 5.2 for one specimen, and our extended six-class version,
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which differentiates between individual lumbar vertebral levels (L1-L5), shown in Figure 5.3.
Table 5.1 summarizes the quantitative comparison, including the baseline from the previous

RGB-D approach and our results with Point Transformer V3.

Specimen 4

Specimen & Specimen 7 Specimen 8 Specimen 9

Figure 5.1 Visualization of the eight specimens used for training and evaluation.
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Segmentation Result of 2 Classes
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Figure 5.2 Qualitative results of Point Transformer V3 on the SpineDepth dataset (two-class
segmentation: vertebra vs. background, DSC = 0.87). Each row shows a different frame
from the same specimen. Column 1: ground truth; Column 2: model prediction.
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Segmentation Result of 6 Classes
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Figure 5.3 Qualitative results of Point Transformer V3 on the SpineDepth dataset (six-class
segmentation: L1-L5 vertebrae 4+ background, DSC = 0.74). Each row shows a different
frame from the same specimen. Column 1: ground truth; Column 2: model prediction.

The baseline state-of-the-art method achieved a median DSC of 0.740 in the binary (2-class)
setting, while the proposed Point Transformer V3 framework improved this to 0.845 (Table
5.1). The highest DSC obtained by the baseline was 0.760 for specimen 5, whereas our
approach achieved the highest score of 0.870 for specimen 3. Although the six-class (multi-
class) setting yielded a lower median DSC compared to the binary task, its accuracy remained
comparable to the binary classifier from the baseline method, despite the increased difficulty

of distinguishing between individual vertebral levels.

A non-parametric Wilcoxon signed-rank test [46] comparing the median DSC values for the

binary segmentation results showed that the improvement achieved by the proposed method
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was statistically significant (p = 0.00781). This confirms that the observed performance
gains are unlikely to be due to chance, reinforcing the effectiveness of our approach over the

existing state-of-the-art.

Table 5.1 Dice Similarity Coefficient (DSC) for semantic segmentation on the SpineDepth
dataset, computed over the segmented lumbar spine region. In the baseline RGB-D ap-
proach [1], a U-Net-based model was trained using binary segmentation masks to isolate the
lumbar anatomy from full RGB-D frames. In contrast, our Point Transformer V3 model was
trained directly on pre-extracted regions of interest (ROIs) around the lumbar vertebrae.
Results are shown for both binary (2-class) and multi-class (6-class) segmentation, with sta-
tistical comparison to the baseline method.

RGB-D Point Cloud Point Cloud

Dataset Specimen  U-Net Based [1] PTv3 PTv3
(2 classes) (2 classes) (6 classes)

2 0.67 0.82 0.68

3 0.74 0.87 0.75

4 0.75 0.84 0.68

. 5 0.76 0.85 0.71
SpineDepth 6 0.74 0.86 0.68
7 0.74 0.84 0.72

8 0.74 0.85 0.71

9 0.67 0.83 0.72

Median
DSC 0.74 0.845 0.72

5.2 Results of Cross-Dataset Training and Evaluation

As outlined in Section 4.2, three semi-synthetic datasets were generated, each introducing
variability in anatomy, acquisition modality, and scene realism, to support robust model
training. These datasets include procedurally simulated data, RGB-D sensor captures, and
radiation-free point clouds from the 7D Surgical System, collectively designed to reflect di-

verse intraoperative conditions.

Building on this foundation, a series of cross-dataset training experiments were conducted (see
Section 4.2.3) to evaluate the generalizability of our semantic segmentation model. Specifi-
cally, the Point Transformer V3 model was trained on various combinations of four datasets
(see Table 4.1). Each combination was evaluated on all four datasets independently, and the

Dice Similarity Coefficient (DSC) was computed for each target domain. To further analyze
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performance beyond mean DSC, two additional evaluation metrics were introduced (see Sec-
tion 4.2.3). Our goal was to examine how well the model trained on one or more datasets

can generalize to unseen domains, as well as to evaluate consistency across domains.

5.2.1 Cross-Dataset Training Results

The table below summarizes the DSC results for each dataset when the model is trained
on specific dataset combinations. The mean DSC was also reported, the unseen-drop (when

applicable), and the inter-domain standard deviation (see Evaluation Metrics):

Table 5.2 Dice Similarity Coefficient (DSC) performance of models trained on different
dataset combinations. Each column reports the DSC evaluated on the corresponding test
domain. Mean DSC is the average DSC across all test domains. Unseen Drop quanti-
fies the performance degradation on the domain excluded from training, computed as the
difference between the average DSC on seen domains and the average DSC on the held-out
domain (see Eq. 4.4). STD DSC measures the standard deviation across the four test do-
mains, reflecting consistency of model performance (see Eq. 4.5). Note: Unseen Drop is not
applicable for combinations using all four datasets (SADP), as no domain is excluded.

Train S A D P Mean STD Unseen

Combo (25) (16) (9) (20) DSC 1 DSC | | Drop |
S (175) 0.551 0.464 0.690 0.204 0.477 0.177 0.098
A (80) 0.172 0.986 0.217 0.664 0.510 0.336 0.635
D (48) 0.075 0.117 0.959 0.263 0.353 0.356 0.807
P (100) 0.146 0.933 0.217 0.985 0.571 0.390 0.553
SA 0.739 0.918 0.667 0.125 0.612 0.296 0.433
SD 0.488 0.527 0.958 0.299 0.568 0.244 0.310
SP 0.720 0.330 0.648 0.890 0.647 0.203 0.316
AD 0.146 0.983 0.957 0.732 0.704 0.674 0.531
AP 0.154 0.986 0.216 0.988 0.586 0.402 0.802
DP 0.126 0.793 0.962 0.979 0.715 0.348 0.511
SAD 0.443 0.952 0.925 0.421 0.685 0.253 0.352
SAP 0.473 0.959 0.645 0.977 0.763 0.213 0.158
SDP 0.529 0.597 0.929 0.975 0.757 0.197 0.214
ADP 0.144 0.984 0.962 0.989 0.770 0.361 0.830
SADP 0.684 0.928 0.911 0.927 0.862 0.103 N/A

5.2.2 Observations and Discussion

Several key insights can be drawn from the results (see Table 5.2):

o Training on all four datasets (SADP) resulted in the highest mean DSC (0.862) and
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the lowest inter-domain standard deviation (0.103), demonstrating the effectiveness of
aggregating diverse data sources. These results highlight the value of integrating di-
verse data sources, capturing variability in anatomy, imaging modality, and acquisition

conditions, to build generalizable models.

Training on individual datasets is insufficient for broad generalization. Models trained
on individual datasets showed significant domain-specific biases. For example, the
model trained only on Dataset S achieved a passable DSC on Dataset D (0.690) but
performed poorly on Dataset P (0.204), showing limited transferability across domains.
This suggests that single-domain training limits transferability to different clinical en-

vironments or data distributions.

Although both Dataset A and Dataset P are synthetic with manually assigned colors,
they differ in realism and structure. Models trained on Dataset P generalize well
to both synthetic domains (P: 0.985, A: 0.933), likely due to its consistent signal,
whereas models trained on Dataset A perform moderately on P (0.664). Combining
both datasets (AP) boosts within-domain performance (A: 0.986, P: 0.988) but shows
limited generalization to other datasets like S (0.154) and D (0.216), highlighting the

persistent gap between synthetic and real data.

Unseen-Drop values capture the cost of missing domain knowledge. When one dataset
was excluded during training, the performance on that unseen domain typically dropped
significantly. For example, leaving out Dataset S (ADP combination) caused the largest
unseen-drop of 0.830, suggesting that Dataset S contains critical features or patterns
not captured by the other datasets. This reinforces the importance of including repre-

sentative samples from each domain when aiming for robust generalization.

Inter-domain standard deviation provides complementary information to mean DSC,
since mean DSC alone does not capture inconsistency across test domains. For instance,
the AD model achieved a relatively high mean DSC (0.704), but with a high inter-
domain STD (0.674), indicating that its good performance is unevenly distributed and
possibly over-fitting to specific domains. In contrast, the SP model had a moderate
mean DSC (0.647) with a lower STD (0.203), reflecting more consistent, though not

optimal, performance across domains.

These examples support the following intuition:

— High mean DSC + low STD DSC — strong generalization across domains

— High mean DSC + high STD DSC — domain-specific overfitting
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— Low mean DSC + low STD DSC — consistently poor performance

— Low mean DSC + high STD DSC — unstable and domain-dependent performance

o Among the three-dataset combinations, ADP (mean DSC = 0.770), SAP (0.763), and
SDP (0.757) performed relatively well. However, they still showed a noticeable perfor-
mance gap (up to 0.1 DSC) compared to SADP, indicating that partial combinations
improve generalization but do not fully match full training; comprehensive domain

coverage is still critical for optimal performance.

These results demonstrate the importance of dataset diversity for robust generalization in
3D point cloud segmentation. They further highlight that mean accuracy, unseen-drop,
and inter-domain standard deviation should be jointly considered to diagnose generalization

strength and cross-domain reliability.

5.3 Generalization to Actual Intraoperative Data

As described in Section 4.3, the final stage of the evaluation focused on testing the model’s
applicability in real surgical settings. To this end, our best-performing model was evaluated
on two intraoperative 7D system’s point clouds captured during spinal procedures at CHU

Sainte-Justine, providing realistic, radiation-free screenshots of the surgical field.

Building on the cross-dataset experiments in Section 5.2, the selected model was trained
using the combined SADP dataset, which integrates both real and semi-synthetic data to
promote robustness across domains. However, initial qualitative testing revealed that models
trained without data augmentation, whether using only the SpineDepth dataset or the full
SADP configuration, struggled to generalize to intraoperative point clouds. As illustrated
in Figure 5.4, these models exhibited poor segmentation accuracy, underscoring a significant

domain gap between training and real surgical data.



49

® Non-Vertebrae
L] Vertebrae

2 Classes

Model trained on 8 Model trained on SADP
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Figure 5.4 Qualitative segmentation results on real intraoperative point clouds. Models
trained on the SpineDepth dataset and the SADP configuration without any data augmen-
tation fail to generalize, highlighting a strong domain gap.

To mitigate this issue, a targeted color augmentation pipeline was developed (see Sec-
tion 4.2.2) designed to reduce the model’s reliance on color-based cues and encourage learning
of geometry-based features. This was especially important for datasets such as Dataset A
(Blender-simulated scoliosis cases) and Dataset P (RGB-D acquisition of the phantom spine),

where color distributions are either synthetic or sensor-dependent.

Prior to applying these augmentations, a comparative color analysis was performed between
the cadaveric SpineDepth dataset and a representative intraoperative case (Figure 5.5). The
results showed substantial differences in the color profiles of vertebral points across domains,
whereas non-vertebral (background) points exhibited more consistent distributions. This val-
idated the need for augmentation strategies to increase color robustness and domain trans-

ferability.

To further evaluate the effectiveness of these augmentations, an additional semi-synthetic
experiment was conducted, detailed in Appendix D. In this experiment, the realistic intraop-
erative color distributions were applied to a synthetic rendering of the SpineDepth specimen
S3. The comparison between models trained on SpineDepth alone and the full SADP con-

figuration revealed that color-aware generalization is significantly improved when diverse
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domains are included during training.

RGB Color Distribution

Green

Figure 5.5 Color distribution analysis across domains. Top row: non-vertebra (background)
color clusters. Middle row: vertebrae color clusters. Bottom row: visualization in RGB
space. The color disparity between synthetic and intraoperative vertebrae supports the need
for augmentation.

During training, one of the following augmentation modes was randomly applied to each

training sample:

e Generated mode: RGB values were sampled from distributions observed in real

intraoperative scenes to simulate realistic color textures.

o Same mode: Uniform RGB values were applied to all points in a scene, effectively

removing texture information and emphasizing geometry.

o« Swapped mode: RGB values for vertebra and non-vertebra points were reversed,

disrupting appearance priors to challenge the model’s robustness.
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The augmentation strategy was tuned by varying the probabilities of each mode to find a
balance between disrupting color priors and retaining anatomical cues. All training data
were preprocessed using the same stratified downsampling and spatial normalization pipeline

described in Chapter 4 to ensure consistency.

The final model, trained on the full SADP dataset with the optimized augmentation pipeline,
was qualitatively evaluated on intraoperative data. As manual segmentation, the gold stan-
dard, is unavailable for intraoperative data, formal quantitative validation is precluded. Nev-
ertheless, visual inspection reveals that the proposed method produces segmentations with
superior anatomical fidelity and better alignment with expected anatomical structures when
compared to the baseline. As shown in Figure 5.6, the model successfully localized exposed
vertebral anatomy, demonstrating its capacity to generalize to real surgical environments and
reinforcing its potential for clinical integration.

Non-Vertebrae

°
2 Classes ®  Vertcbrac

. Model trained on § o Model trained on SADP
Real Intra-Operative Data o = Prediction (With Augmentation)

Figure 5.6 Qualitative segmentation results on real intraoperative point clouds. The model
was trained on the SADP configuration with targeted data augmentation, improving gener-
alization to real surgical scenes.
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CHAPTER 6 CONCLUSION

6.1 Summary of Works

This work introduces a novel deep learning framework for real-time semantic segmentation
of intraoperative 3D point clouds, enabling the identification of vertebral structures during
scoliosis surgery. Our primary objective was to provide surgeons with accurate, radiation-free
anatomical insights to support spinal alignment correction. To achieve this, we processed and
annotated the public SpineDepth dataset. Additionally, we developed three semi-synthetic
datasets to simulate a wide variety of spinal deformities and introduce different sensor char-

acteristics, thereby getting closer to realistic surgical environments.

We selected the Point Transformer V3 architecture for this task based on our first hypothesis:
that its advanced attention mechanisms would outperform prior approaches in point cloud
segmentation. This was validated by a 14.19% improvement in results on the SpineDepth
dataset compared to previous work, which utilized RGB-D data [1]. A non-parametric
Wilcoxon signed-rank test on the binary segmentation results confirmed that this improve-
ment was statistically significant (p = 0.00781), reinforcing the robustness of the performance

gain and supporting the choice of PTv3 as the backbone of our framework.

Our second hypothesis stated that the SpineDepth dataset alone, while valuable, is insuf-
ficient to capture the anatomical and visual variability needed for robust generalization to
intraoperative scenarios, especially for scoliosis. We confirmed this by observing limited

transferability of models trained solely on this dataset.

To address this limitation, we proposed our third hypothesis: that supplementing real data
with carefully designed semi-synthetic datasets, when combined with appropriate augmen-
tation strategies, can improve segmentation performance on real intraoperative data. We
supported this through cross-domain training experiments and qualitative evaluations on
intraoperative point clouds, where our model demonstrated improved generalization and lo-

calization accuracy.

To our knowledge, this is the first study to apply deep learning-based segmentation directly
to non-radiation intraoperative point cloud data acquired using a state-of-the-art surgical
navigation system. Our key contributions include: 1) a complete pipeline for point cloud
annotation and preprocessing, 2) a framework for generating diverse semi-synthetic training
data, and 3) domain-aware augmentation strategies to bridge the gap between synthetic and

real clinical data.
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This research represents a significant step toward intelligent intraoperative assistance, pro-
viding a safer, radiation-free solution capable of continuously tracking and visualizing spinal
curvature in real time. By delivering precise, ongoing feedback throughout the procedure,
the system empowers surgeons with actionable insights to guide decision-making and enhance

surgical outcomes.

6.2 Limitations

Despite the promising results, several limitations must be acknowledged. The current work
lacks true intraoperative ground truth annotations, and evaluation on real surgical data
was therefore limited to qualitative comparisons based on visual inspection. The cadaveric
data used in the SpineDepth dataset, although valuable, does not reflect the complex and
variable conditions encountered during live surgeries. These specimens were immobile, lacked
soft tissue dynamics and scoliosis deformity, exhibited tissue discoloration, and were sourced

exclusively from the lumbar spine region.

Similarly, the semi-synthetic datasets, while designed to mimic real intraoperative conditions,
remain approximations. Factors such as bleeding, occlusion from instruments, lighting vari-
ability, and soft tissue deformation are not fully represented. The diversity of captured data
is also limited. In actual surgeries, patient-specific anatomy, curvature severity, device usage,
and exposure depth vary widely, and these variations play a critical role in model generaliza-
tion. Further studies with broader and more realistic datasets are required to evaluate the

performance in the operating room.

6.3 Recommendation for Future Work

Looking ahead, this research lays the groundwork for expanding real-time intraoperative as-
sistance tools in spine surgery. A key direction for future work involves the development of
a standardized intraoperative data collection protocol that includes annotated ground truth.
Leveraging the capabilities of the 7D Surgical System, FLASH captures can be acquired
at clinically meaningful time points during scoliosis procedures. By manually identifying
anatomical landmarks and aligning them with preoperative CT scans, transformation matri-

ces for each vertebra can be computed to enable accurate anatomical registration.

Our preliminary work with Dataset D confirms the feasibility of extracting both point clouds
and transformation data from the 7D system for training and evaluation purposes. Continued
intraoperative data collection using this pipeline will enrich the diversity and realism of

training samples, ultimately enabling more robust and clinically relevant. Real surgical data
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will also enable the inclusion of additional texture features, such as shininess and reflection,

beyond standard RGB color information.

Beyond dataset expansion, another promising avenue for future research is the integration
of segmentation results with real-time registration techniques to support dynamic intraop-
erative tracking. This would allow continuous assessment of spinal alignment throughout
the procedure, offering surgeons immediate and radiation-free feedback. In Appendix A, we
demonstrated how a subset of the model’s predicted vertebral points can support success-
ful registration from preoperative 3D CT to a predicted intraoperative point cloud. This
alignment process also serves as a proxy to assess intraoperative spinal curvature. We're also
actively collecting more intraoperative data at CHU Sainte Justine. The research protocol
for this data collection includes perioperative radiographs taken at the end of surgery after
spinal correction. These radiographs will serve as the ground truth for spinal alignment,

allowing us to compare and validate the results of our complete registration pipeline.

Lastly, future efforts should focus on integrating this pipeline with commercial image-guided
navigation systems and conducting prospective validation studies in real surgical settings.
Such validation is critical to establishing the clinical utility, safety, and reliability of our
approach. Building on the methods and findings presented in this thesis, there is strong
potential to advance the development of intelligent, radiation-free surgical navigation tools

that support safer and more precise scoliosis correction.
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APPENDIX A PREOPERATIVE CT REGISTRATION TO MODEL
PREDICTIONS

To evaluate whether the model’s segmented vertebrae points are sufficient for downstream
tasks such as spinal alignment assessment, we investigated their utility for registering preop-
erative 3D CT scans. Specifically, we examined the minimum number of predicted vertebral
points required to achieve accurate registration of the preoperative CT to the intraopera-
tive scene. To identify this minimal subset, we applied a region growing algorithm starting
from high-confidence predictions located on the spinous and transverse processes, anatomical
landmarks known for their prominence and stability, gradually expanding the region until

registration accuracy converged.

The registration pipeline was composed of two main stages: a coarse global alignment followed

by local refinement.

1. Global Alignment via FPFH and Arun’s Method. We first computed local geo-
metric features using the Fast Point Feature Histograms (FPFH) [47]. FPFH characterizes

the neighborhood of a point p based on pairwise angular relationships with its neighbors:

1

FPFH(P) = 1)

> SPFH(p,q)
4eN (p)

where A (p) denotes the set of neighboring points around p, and SPFH(p, ¢) captures angular

features such as differences in normals and point positions.

We then established correspondences between the up-sampled-predicted points and the CT
mesh vertices using nearest-neighbor matching in FPFH feature space. From these correspon-
dences, an initial rigid transformation Ty, = [R|t] was computed using Arun’s method [48].

Given two sets of corresponding points {x;} and {y;}, the method minimizes:

min} [|ly: — (Rx; +t)]”

(2
The optimal rotation R is found via Singular Value Decomposition (SVD) of the centered
covariance matrix, and the translation t aligns the centroids.

2. Local Refinement via Iterative Closest Point (ICP). To further refine the align-

ment, we applied the ICP algorithm, which iteratively minimizes the Euclidean distance



61

between closest point pairs:

1 . . 2 . — .
Iﬁl{lzl: lly: — (Rx; +t)||*, where y; = NN(x;)
Here, NN(x;) denotes the closest point on the target mesh for each source point. ICP refines R
and t until convergence, using the previously computed transformation from Arun’s method
as initialization.
This approach allows us to evaluate not only the geometric accuracy of the model’s seg-

mentation but also its applicability in clinical workflows requiring rigid registration between

preoperative and intraoperative data for assessment of the spinal alignment (see Figure A.1).
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Pre-Operative CT (L1-L35)

Figure A.1 Overview of the registration pipeline aligning preoperative CT vertebrae to the
model’s predicted segmentation.
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APPENDIX B SPINEDEPTH: VERTEBRAL DISPLACEMENT

To better understand the temporal characteristics of the SpineDepth dataset, we analyzed the
displacement of the vertebral centroids (L1-L5) over time. For each frame in a representative
recording (frame rate: 15 fps, total frames: 285), we computed the centroid of each vertebra

and tracked its position across the sequence in 3D space.

Figure B.1 illustrates the locations of vertebral centroids from frame 0 to frame 285 in three
orthogonal planes (XY, YZ, XZ) and in full 3D space. The visualization clearly demonstrates
that vertebral movement is minimal, reflecting the static nature of cadaveric specimens used
in SpineDepth. This limited displacement emphasizes the lack of natural physiological mo-

tion, making the dataset less representative of real intraoperative scenarios involving scoliosis.
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4 Frame 60, 135, 210, 285

Figure B.1 Displacement of vertebral centroids (L1-L5) across 285 frames (15 fps) in the XY,
YZ, XZ planes and 3D (XYZ) space. The minimal movement illustrates the static nature of
the cadaveric setup in SpineDepth.
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APPENDIX C SPINEDEPTH DATASET REDUCTION ANALYSIS

Given the low frame-to-frame variability observed in SpineDepth, we conducted additional
experiments to assess the feasibility of reducing the training set size without compromising

performance.

For 2-class segmentation (vertebra vs. background), we reduced the training dataset from
the original 9,421 frames to just 175 frames, selecting 25 representative frames per specimen.
The model was retrained using the same architecture and hyperparameters. For 6-class
segmentation (individual vertebrae L1-L5 + background), we found that using 300 frames
per specimen was sufficient to reach performance levels comparable to training on the full

dataset.

As evaluated by the Dice Similarity Coefficient (DSC), the performance degradation in both
scenarios was minimal (see Table C.1). These results suggest a high degree of temporal re-
dundancy in SpineDepth, allowing for a substantial reduction in data volume during training

without meaningful loss in segmentation quality.

Table C.1 Dice Similarity Coefficient (DSC) for Specimen 3 under different training set sizes
using Point Transformer V3.

Training Set 2-Class 6-Class
Size DSC DSC
All (9,421 frames) 0.876 0.752
(25 frames) x 7 0.872 0.603

(500 frames) x 7 — 0.750
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APPENDIX D SEMI-SYNTHETIC EXPERIMENT ON SPINEDEPTH
DATASET

As described in Section 5.3, we conducted an additional experiment using the SpineDepth
dataset to assess how synthetic exposure and intraoperative color information affect model
performance. Specifically, we applied the same semi-synthetic generation method used for
Dataset A to one SpineDepth specimen (S3), introducing realistic surgical scene context (see
Figure D.1). We then assigned colors based on real intraoperative RGB distributions, as

analyzed in Figure 5.5.

The semi-synthetic S3 sample was evaluated using two models: one trained solely on the
SpineDepth dataset, and another trained on the full combination of datasets (SADP). As
shown in Figure D.1, the model trained exclusively on SpineDepth failed to generalize well to
the synthetic-intraoperative setting with realistic color assignment. In contrast, the SADP-
trained model performed significantly better, demonstrating improved adaptability to varia-

tions in visual appearance and scene context.
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Figure D.1 Semi-synthetic experiment on SpineDepth specimen S3. (a) Blender rendering
pipeline used to simulate the surgical environment. (b) Color assignment using intraoperative
RGB statistics. Bottom row: predictions from two models, trained on SpineDepth only (left)
and trained on the full SADP combination (right). The SADP model demonstrates greater
robustness to color and context shifts.
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