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RÉSUMÉ 

Les troubles musculosquelettiques liés au travail (TMS) demeurent l’une des principales causes de 

blessures professionnelles dans le monde, en particulier dans les environnements industriels où les 

tâches répétitives et les postures contraignantes sont fréquentes. Avec l’essor de la collaboration 

homme-robot (HRC) dans les processus de fabrication et de désassemblage, le besoin d’outils 

intelligents de surveillance ergonomique en temps réel, capables de s’adapter à des conditions de 

travail dynamiques et de soutenir des pratiques de travail durables, devient de plus en plus 

important. 

Ce mémoire propose WMSDsNet, un cadre novateur d’évaluation des risques de TMS basé sur 

l’apprentissage profond, qui combine une architecture à double sortie avec des unités de mesure 

inertielle (IMU) portables pour l’application spécifique du désassemblage collaboratif homme-

robot. Le système effectue simultanément la classification des sous-tâches physiques et des niveaux 

de risque ergonomique, avec un étiquetage basé sur deux méthodes d’évaluation de TMS: RULA 

(Rapid Upper Limb Assessment) et REBA (Rapid Entire Body Assessment). Le cadre comprend 

également une analyse comparative de six modèles d’apprentissage automatique, réseau de 

neurones convolutifs (CNN), réseau de neurones profonds (DNN), machine à vecteurs de support 

(SVM), K plus proches voisins (KNN), arbre de décision (DT) et forêt aléatoire (RF), afin de 

déterminer le modèle optimal pour ces deux tâches. Cette intégration assure une évaluation 

complète et validée, permettant une surveillance ergonomique précise et en temps réel dans des 

environnements industriels collaboratifs. Les données expérimentales ont été collectées dans un 

scénario de HRC en laboratoire, où un participant a exécuté une série de sous-tâches de 

désassemblage, telles que le dévissage, le tri des composants et la manipulation d’outils, tout en 

portant un ensemble de capteurs IMU.  

Le modèle le plus performant (DNN) a atteint une précision macro-moyenne de 92 % pour la 

classification des sous-tâches et de 90 % pour la classification des risques ergonomiques. Une carte 

thermique a été utilisée pour identifier les relations posture-risque, mettant en évidence les tâches 

présentant un niveau plus élevé de sollicitation biomécanique. Les résultats démontrent que 

l’intégration de la technologie des capteurs portables avec des modèles d’apprentissage 

automatique permet des évaluations ergonomiques précises et en temps réel. Le cadre proposé, 

WMSDsNet, permet une identification précoce des situations à haut risque, offrant aux ingénieurs 

industriels un outil proactif pour la prévention des blessures et l’optimisation des flux de travail. 
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Ce travail contribue aux domaines de l’ergonomie professionnelle, de la fabrication intelligente et 

de l’Industrie 4.0, en présentant une solution évolutive, interprétable et adaptée à l’automatisation 

pour la gestion des risques ergonomiques dans les environnements collaboratifs homme-robot. Les 

travaux futurs porteront sur une validation multi-sujets et un déploiement en milieu industriel réel 

afin d’évaluer plus en profondeur la généralisabilité et l’intégration pratique du cadre proposé. 

  

 

  

  



vii 

 

ABSTRACT 

Work-related musculoskeletal disorders (WMSDs) remain a leading cause of workplace injuries 

worldwide, particularly in industrial environments where repetitive tasks and awkward postures 

are common. With the rise of human-robot collaboration (HRC) in manufacturing and disassembly, 

there is an increasing need for intelligent, real-time ergonomic monitoring systems that can adapt 

to dynamic working conditions and support sustainable labour practices. This thesis proposes 

WMSDsNet is a novel deep learning-based ergonomic risk assessment framework that combines 

a dual-output architecture with wearable inertial measurement units (IMUs) for the specific 

application of human-robot collaborative (HRC) disassembly. It performs simultaneous 

classification of physical subtasks and ergonomic risk levels, with risks labelled using two 

methods: RULA (Rapid Upper Limb Assessment) and REBA (Rapid Entire Body Assessment). 

The framework also includes a comparative analysis of six machine learning models, 

Convolutional Neural Network (CNN), Deep Neural Network (DNN), Support Vector Machine 

(SVM), K-Nearest Neighbors (KNN), Decision Tree (DT), and Random Forest (RF), to determine 

the optimal model for both tasks. This integration ensures a comprehensive and validated 

assessment, supporting accurate, real-time ergonomic monitoring in collaborative industrial 

environments. Experimental data were collected from a laboratory-based HRC scenario in which 

a participant performed a series of disassembly subtasks, such as unscrewing, sorting components, 

and handling tools, while wearing a set of IMU sensors.  

The best-performing model (DNN) achieved a macro-average accuracy of 92% for subtask 

classification and 90% for ergonomic risk classification. A heatmap visualization was used to 

identify posture-risk relationships, highlighting which tasks involved higher levels of 

biomechanical strain. The findings demonstrate that integrating wearable sensor technology with 

machine learning models can lead to accurate, real-time assessments of ergonomic conditions. The 

proposed WMSDsNet framework enables early identification of high-risk conditions, offering 

industrial engineers a proactive tool for injury prevention and workflow optimization. This work 

contributes to the fields of occupational ergonomics, smart manufacturing, and Industry 4.0 by 

presenting a scalable, interpretable, and automation-friendly solution for ergonomic risk 

management in human-robot collaborative settings. Future work will focus on multi-subject 

validation and real-world industrial deployment to further assess the framework’s generalizability 

and practical integration. 
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CHAPTER 1 INTRODUCTION 

 1.1 Background and Context 

The disassembly of end-of-life (EoL) products is a key enabler of sustainable manufacturing, 

contributing to the circular economy by facilitating component reuse, material recovery, and 

reducing landfill waste [1]. As industries adopt more circular strategies, disassembly is 

increasingly recognized as a critical stage for improving resource efficiency. Traditionally, 

disassembly operations have been performed manually, requiring workers to carry out repetitive, 

physically demanding actions under diverse ergonomic conditions. 

Recent advances in human-robot collaboration (HRC) have introduced a hybrid approach that 

combines human adaptability, dexterity, and decision-making with the speed, precision, and 

strength of collaborative robots [2]. This integration has shown potential to improve productivity, 

flexibility, and even aspects of safety, with robots undertaking strenuous or hazardous activities 

while humans focus on judgment-intensive tasks. 

However, despite these benefits, HRC does not inherently eliminate physical ergonomic risks. 

Workers remain exposed to awkward postures, repetitive subtasks, and static loading, all of which 

contribute to work-related musculoskeletal disorders (WMSDs). WMSDs are among the most 

prevalent occupational health problems globally, accounting for nearly half of all work-related 

injuries [3,4]. Their economic burden is significant, resulting in lost productivity, absenteeism, and 

long-term disability. 

To address these challenges, effective methods for assessing MSD risks are needed that operate in 

fast-paced, dynamic, and collaborative industrial environments. Methods, such as RULA and 

REBA, are widely used [5]. Still, they rely on manual observation, making them time-consuming, 

subjective, and impractical for continuous or real-time monitoring in HRC disassembly contexts. 

The emergence of wearable inertial measurement units (IMUs) offers an opportunity to capture 

high-resolution, continuous motion data [6,7]. When combined with machine learning (ML), these 

sensors enable automated, objective, and potentially predictive ergonomic assessments, critical 

capabilities for proactive prevention of WMSDs in Industry 4.0 environments. 
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1.2 Problem statement 

Despite progress in ergonomics and automation, three major limitations persist in current 

approaches: 

Limitations of traditional ergonomic tools 

Standardized observational tools (e.g., RULA, REBA) are effective for static or snapshot 

evaluations but unsuitable for dynamic, repetitive environments. They depend on expert judgment, 

are labour-intensive, and fail to account for cumulative strain from repeated or prolonged postures. 

Gaps in sensor-based systems 

While IMUs can provide continuous and accurate motion capture, most existing sensor-based 

ergonomic studies, particularly in disassembly, still report high physical strain, even with robotic 

assistance. Certain subtasks, such as cable detachment or component sorting, frequently exceed 

ergonomic safety thresholds, demonstrating that HRC does not automatically eliminate 

biomechanical risk. 

Deficiencies in machine learning models 

Current ML-based ergonomic systems often focus narrowly on posture recognition, neglecting 

cumulative risk factors such as repetition frequency and posture duration, critical drivers of 

WMSD development. These models are typically trained on isolated postures, which limits their 

applicability in real-world disassembly workflows where tasks are sequential and variable. 

Comparative benchmarking of multiple ML models under unified experimental conditions is also 

rare. 

Research gap  

To date, no existing framework integrates real-time IMU sensor data with a dual-output deep 

learning model capable of simultaneously classifying disassembly subtasks and assessing 

cumulative ergonomic risk in an HRC setting. This gap limits the ability to provide timely, 

actionable feedback for injury prevention. 

1.3 Research questions 

Primary research question 
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Can a dual-output deep learning framework (WMSDsNet) accurately and simultaneously 

classify disassembly subtasks and their ergonomic risk levels from raw IMU data in real time? 

Secondary research questions 

• How does WMSDsNet’s performance compare to other commonly used machine learning 

models in ergonomic risk classification? 

• Can this framework effectively quantify cumulative ergonomic risk, incorporating factors 

such as posture duration and repetition, and enable proactive feedback for WMSD 

prevention? 

1.4 Research objectives 

The overarching goal of this research is to design, implement, and validate WMSDsNet, a sensor-

based machine learning framework for real-time ergonomic risk prediction in human-robot 

collaborative (HRC) disassembly environments. 

Rather than proposing a purely conceptual system, this study emphasizes the practical 

development and experimental validation of a labeled dataset and a dual-output learning model 

capable of classifying both disassembly subtasks and associated ergonomic risk levels. 

To achieve this aim, the research pursued the following four objectives, each corresponding to the 

work effectively completed and validated: 

1. Development of an Ergonomically Labeled Dataset 

• Design and execute a controlled HRC disassembly experiment replicating realistic 

ergonomic risks. 

• Collect motion data from multiple body segments using wearable IMU sensors and 

label them systematically with RULA and REBA scores to create a structured, 

reproducible learning base for ergonomic applications. 

2. Demonstration of Sensor Data Usability for Machine Learning 

• Establish a full data-processing pipeline, from raw IMU acquisition to 

preprocessing and labeling, to demonstrate that wearable-sensor signals can 

effectively support supervised learning for ergonomic risk analysis. 
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3. Comparative Classification of Disassembly Subtasks and Risk Levels 

• Train and evaluate six machine-learning models (CNN, DNN, SVM, KNN, DT, 

RF) on the same dataset to classify disassembly subtasks and ergonomic risk levels. 

• Benchmark model performances through accuracy and macro-average F1-scores, 

validating the generalizability and robustness of the best-performing model (DNN). 

4. Integration into a Unified Framework for Real-Time Ergonomic Assessment 

• Consolidate the full process, from ergonomic labeling to real-time classification, 

into the WMSDsNet framework, illustrating its applicability for proactive 

monitoring and early detection of work-related musculoskeletal disorder (WMSD) 

risks in collaborative industrial settings. 

1.5 Contributions of the thesis 

Each research objective outlined in Section 1.4 directly corresponds to a tangible contribution 

achieved throughout the development of this thesis. Together, these contributions establish 

WMSDsNet — a unified, sensor-based deep learning framework for real-time ergonomic risk 

prediction in human-robot collaborative (HRC) disassembly environments. 

Contribution 1 Development of an Ergonomically Labeled Dataset 

A controlled laboratory experiment was designed and executed to simulate realistic HRC 

disassembly conditions and capture representative ergonomic risks. Ten wearable inertial 

measurement unit (IMU) sensors were deployed across multiple body segments to collect high-

resolution motion data. Each data segment was systematically labeled using standardized 

ergonomic assessment tools (RULA and REBA), generating a reproducible dataset that links 

disassembly subtasks with corresponding ergonomic risk levels. This dataset forms the foundation 

for supervised machine-learning applications in physical ergonomics. 

Contribution 2 Demonstration of Sensor Data Usability for Machine Learning 

A complete data-processing pipeline was established, including signal synchronization, filtering, 

segmentation, and normalization, to transform raw IMU signals into machine-learning-ready 

inputs. This contribution demonstrates the feasibility of using wearable-sensor data to train ML 



5 

 

 

algorithms for ergonomic evaluation. The resulting pipeline enables objective, continuous, and 

scalable monitoring of biomechanical exposure, replacing traditional observation-based methods. 

Contribution 3 Comparative Classification of Disassembly Subtasks and Risk Levels 

Six machine-learning models—CNN, DNN, SVM, KNN, Decision Tree, and Random Forest—

were trained and evaluated using the same labeled dataset. Their performance was systematically 

benchmarked through accuracy, macro-average F1-scores, and confusion-matrix analysis. This 

comparative evaluation identifies the DNN as the most reliable model for dual-task classification, 

highlighting the strengths and trade-offs of deep and classical learning approaches in ergonomic 

applications. 

Contribution 4 Integration into a Unified Framework for Real-Time Ergonomic Assessment 

All previous stages were consolidated into a single integrated system—WMSDsNet—that 

combines data acquisition, labeling, and dual-output classification within one end-to-end 

framework. WMSDsNet simultaneously predicts both the physical subtask and its ergonomic risk 

level in real time, providing industrial engineers with an interpretable, proactive tool for early 

WMSD detection and prevention in collaborative disassembly operations. 

Together, these four contributions establish a coherent progression from data generation to 

practical application, ensuring that each research objective is fully achieved and that the proposed 

WMSDsNet framework advances ergonomic intelligence within Industry 4.0 manufacturing 

environments. 

Figure 1-1 illustrates how the four main contributions of this thesis are interconnected across three 

conceptual layers. The framework evolves from the creation of an ergonomically labeled dataset 

to its integration into a real-time risk-prediction system, forming a coherent process that connects 

ergonomic theory, data science, and industrial application. 
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Figure 1-1. Overall framework and four key contributions across three interconnected layers. 

The bottom layer (data foundation) represents Contribution 1 and Contribution 2, where the 

ergonomically labeled dataset and data-processing pipeline were developed using wearable 

IMUs. 

The middle layer (modeling and analysis) corresponds to Contribution 3, which focuses on 

comparative classification of subtasks and ergonomic risk levels using six ML models. 

The top layer (integration and application) embodies Contribution 4, where all components were 

unified into WMSDsNet, a real-time dual-output framework for ergonomic risk prediction in 

human-robot collaborative disassembly. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Work-Related Musculoskeletal Disorders (WMSDs) in Industry 4.0 and 

Disassembly 

Work-related musculoskeletal disorders (WMSDs) are injuries or disorders affecting muscles, 

tendons, ligaments, joints, nerves, or supporting blood vessels, typically caused or aggravated by 

workplace activities [ref]. They remain a widespread occupational health issue, even in modern 

industrial settings where technological advancements have introduced robotics and automation. In 

human-robot collaboration (HRC), particularly in disassembly lines, workers are still required to 

perform physically intensive tasks such as unscrewing, part separation, cable detachment, and 

inspection [1],[2]. These tasks frequently involve awkward or constrained postures, repetitive hand 

and arm motions, and sustained force application, all primary risk factors for WMSDs [11]. 

The global economic burden of WMSDs is substantial. According to the World Health 

Organization (WHO), WMSDs are among the most prevalent occupational disorders worldwide 

and are associated with absenteeism, decreased productivity, and long-term disability [12]. In 

Canada alone, WMSDs account for over 40% of lost-time claims, as reported by national 

compensation boards [13]. 

While ergonomics has been studied extensively in high-risk sectors such as manufacturing, 

healthcare, and construction, the disassembly domain is relatively underrepresented. In contrast to 

assembly lines, where standardized parts and sequences are common, disassembly tasks often 

involve unpredictable geometries and degraded components, leading to postural variability and 

high biomechanical demands [14]. Even when robotic arms are present to assist, their support is 

often limited to heavy lifting or predefined motions, while workers handle tasks that are 

unstructured and nuanced. 

In HRC-enabled disassembly settings, humans contribute flexibility, adaptability, and dexterity, 

while robots provide consistency and strength. However, this partnership can inadvertently 

increase ergonomic risk due to synchronized task pacing, workspace sharing, and frequent 

handovers [15]. These factors justify the need for intelligent systems capable of monitoring and 

predicting ergonomic risks in real-time, beyond the limitations of traditional assessment tools. 
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2.2 Limitations of Manual Ergonomic Assessment Methods 

Several standardized methods have been widely used to evaluate postural and task-related 

ergonomic risks, notably RULA (Rapid Upper Limb Assessment), REBA (Rapid Entire Body 

Assessment), and OCRA (Occupational Repetitive Actions) [5]. These checklists and scoring 

systems are based on observed joint angles, body postures, task frequency, and force application, 

typically assessed visually by trained ergonomists. 

While these methods provide structured frameworks for evaluating physical demands, they are 

limited by several drawbacks, particularly in the context of fast-paced or collaborative industrial 

tasks. First, they are inherently subjective and susceptible to observer bias, especially when 

ergonomic evaluators disagree on joint angle estimates or exposure frequencies [16]. Second, these 

tools are primarily designed for snapshot evaluations and cannot account for posture duration, task 

variability, or sequential risk accumulation. 

Moreover, traditional tools are often impractical for environments like HRC disassembly, where 

subtasks change quickly, and access to operators is obstructed by machinery or tooling. The 

manual nature of these tools limits their use for real-time feedback, making them unsuitable for 

dynamic task conditions or for integration into Industry 4.0 feedback loops [17]. 

Several studies have demonstrated the underperformance of these manual tools when applied in 

HRC settings. For instance, Takala et al. (2010) noted that manual posture scoring systems failed 

to detect high-risk cumulative exposure in tasks involving alternating hand movements and torso 

rotation [18]. These insights have accelerated the push toward sensor-based and AI-driven 

ergonomic evaluation systems that can operate autonomously and continuously [10]. 

In summary, while tools like RULA and REBA remain useful as baseline ergonomic standards, 

they are increasingly being augmented, or replaced, by data-driven approaches that can track risk 

with greater precision and adaptability. 

2.3 Emergence of Wearable IMUs for Postural Monitoring 

To address the limitations of visual and manual ergonomic tools, researchers have increasingly 

adopted wearable inertial measurement units (IMUs) for continuous, objective monitoring of 

human motion. These devices, typically comprising accelerometers, gyroscopes, and 

magnetometers, can capture 3D motion, body orientation, and angular velocity without requiring 
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a direct line of sight, making them ideal for cluttered or enclosed workspaces, such as disassembly 

cells [6]; [19]. 

IMUs are unobtrusive, lightweight, and cost-effective compared to optical motion capture systems. 

Unlike vision-based systems that require fixed camera setups, IMUs can be worn directly on body 

segments (e.g., forearm, trunk, thigh), enabling detailed postural analysis during real-world tasks 

[20]. This flexibility makes them especially suitable for dynamic environments such as HRC 

stations, where camera obstruction and lighting variability often interfere with visual tracking. 

Recent advancements in wireless synchronization and sensor fusion algorithms have significantly 

improved the accuracy and reliability of IMU-based systems. Studies have validated the agreement 

of IMU-derived joint angles with gold-standard optical systems [21]. In practical terms, IMUs 

enable multi-segment motion capture, which is crucial for understanding how different body parts 

interact and compensate during tasks that involve forceful exertion or constrained reach [7]. 

Prior ergonomic studies have employed inertial measurement units (IMUs) to capture detailed 

motion data across multiple body segments, enabling analysis of both sustained and short-duration 

movements[97],[98]. 

The integration of IMUs into ergonomic analysis also enables real-time risk monitoring when 

combined with machine learning models. Continuous posture streams can be labelled using 

ergonomic scores (e.g., RULA, REBA) and used to train classifiers that infer risk levels 

automatically [5],[97]. This approach is crucial for implementing smart feedback systems that help 

prevent WMSDs in high-risk environments like collaborative disassembly. 

2.4 Machine Learning for Posture-Based Risk Classification 

Integrating wearable IMUs into industrial settings has paved the way for automated ergonomic 

risk classification using machine learning (ML). By leveraging patterns in multivariate sensor data, 

ML models can detect postural deviations, classify task segments, and predict ergonomic risk 

levels in real time [97]. Compared to manual assessment methods, ML-based systems provide 

higher throughput, reduced subjectivity, and scalable deployment across workstations. 

Traditional supervised ML algorithms, such as Decision Trees (DT), Support Vector Machines 

(SVM), Random Forests (RF), and K-Nearest Neighbors (KNN), are widely used in ergonomic 

studies to classify postures or task phases based on IMU-derived features [22]. These models 

typically rely on handcrafted features extracted from sensor data, such as peak joint angles, angular 
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velocity ranges, or signal vector magnitudes [98]. The success of ML models in ergonomic risk 

prediction has been demonstrated across various industrial domains. For instance, Llop-Harillo et 

al. (2020) employed Random Forest classifiers to detect ergonomic risks during order picking, 

achieving over 85% classification accuracy [23], and Lee et al. [24] used SVMs to evaluate lower 

back postures and achieved high agreement with manual REBA scoring. 

However, ML performance is sensitive to feature selection, sensor placement, and task variability. 

The lack of transferability between models trained on specific subtasks and new untrained 

environments remains a critical challenge. Moreover, these models often require domain expertise 

to engineer effective features, introducing bottlenecks in scalability and generalization [25]. 

In our study [7], Comparative studies in the literature have examined the performance of various 

machine learning classifiers, such as CNN, DNN, RF, DT, SVM, and KNN, using consistent data 

preprocessing and labeling protocols. These approaches allow for an unbiased assessment of 

classification performance across ergonomic risk levels and physical subtasks in HRC disassembly 

contexts. 

Comparative evaluations in prior research provide valuable guidance for identifying model 

architectures that can address the dual challenges of ergonomic risk classification and subtask 

recognition in disassembly work.  

2.5 Deep Learning in Ergonomic Prediction 

Deep learning (DL) models have emerged as powerful alternatives to handcrafted feature 

engineering and classical machine learning (ML) approaches for ergonomic risk assessment. 

Among them, Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) 

networks are notable for their ability to capture spatial and temporal patterns in human motion data 

[8,9]. 

CNNs excel at learning local and hierarchical features from structured inputs such as multichannel 

inertial measurement unit (IMU) signals or posture matrices. Liang et al. (2021) applied a CNN to 

extract posture representations from 3D skeletal data, achieving higher classification accuracy and 

generalizability than conventional methods [26]. Similarly, Baskar et al. (2021) trained a 1D CNN 

on IMU signals for workplace posture classification, reporting robust cross-subject performance 

[27]. 
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LSTM networks, in contrast, are designed to process sequential data by retaining information 

across time steps, making them suitable for modeling dynamic movement patterns [28]. 

Ergonomic applications have included motion segmentation, activity recognition, and 

physiological monitoring. For instance, Ghani et al. (2021) used LSTMs to predict work stress and 

fatigue from wearable sensor data, demonstrating their utility in continuous monitoring contexts 

[29]. 

From a biomechanical perspective, work-related musculoskeletal disorders (WMSDs) are often 

linked not only to isolated postures but also to repetitive or sustained exposure to suboptimal 

positions, high force exertion, and inadequate recovery time [31]. While traditional ergonomic 

tools such as RULA and REBA incorporate frequency into their scoring, they do so in broad 

categories without fine-grained temporal tracking [32]. Wearable sensor systems offer the 

potential to monitor and quantify such exposure patterns in real time. Nevertheless, as highlighted 

in a systematic review by Tkachuk et al. (2022), fewer than 15% of IMU-based ergonomic studies 

addressed exposure duration, and only a small fraction implemented sequence-aware models such 

as LSTMs [33]. 

Although the present study focuses on static-window risk classification using multiple ML and DL 

models, the integration of time-dependent risk indicators and sequence-based modeling remains 

an important and underexplored research direction [10]. 

2.6 Multi-Model Comparisons in Ergonomics Literature 

One of the overlooked aspects in ergonomic modelling is the lack of a comprehensive comparative 

analysis between different machine learning approaches. Many studies validate their proposed 

method in isolation, on limited datasets or under specific conditions, without benchmarking against 

other well-established models. This restricts the ability of researchers and practitioners to 

objectively determine which models are best suited for ergonomic risk classification in varied 

industrial scenarios [7]. 

The value of multi-model evaluation has been emphasized in related fields such as human activity 

recognition and gait analysis, where performance across tasks, environments, and populations can 

vary significantly depending on model complexity and data representation [34In ergonomics, 

however, comprehensive comparative studies remain uncommon. Existing research often 

concentrates on a single classifier or, at most, compares two closely related algorithms, typically 
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without a thorough examination of important trade-offs such as interpretability, suitability for real-

time deployment, or robustness under varying task and sensor conditions. 

In the context of wearable sensor–based ergonomics, comparative studies do exist but often face 

notable limitations. Many examine only a small set of models, focus on narrowly defined tasks, or 

omit discussion of trade-offs such as interpretability, computational efficiency, and robustness 

across varied conditions. These limitations hinder the identification of models best suited for 

deployment across diverse ergonomic scenarios, including lifting, sorting, or disassembling. For 

example, Karvekar et al. (2022) compared CNN and SVM for posture classification but restricted 

their analysis to a single repetitive task, limiting generalizability [35]. Similarly, Cho et al. (2020) 

applied Random Forests and ANN to lifting-risk evaluation but did not benchmark against 

temporal models or provide justification for model selection [36]. Addressing these constraints is 

essential for developing ergonomic assessment systems that are adaptable, reliable, and optimized 

for real-world industrial environments. 

Our study addresses this shortfall by systematically comparing six commonly used models, CNN, 

DNN, RF, DT, SVM, and KNN, on a shared, labeled dataset derived from IMU sensors during 

human-robot disassembly tasks [7]. All models were trained and validated under uniform data 

preprocessing, feature extraction, and labeling conditions, enabling unbiased benchmarking. The 

results not only reveal performance strengths but also clarify the limitations of each model type 

across task classification and ergonomic risk prediction. 

Such comparative insight is critical for practical deployment, where real-time performance, 

explainability, and hardware constraints must be balanced. By reporting on both task and risk 

classification accuracies, our multi-model analysis provides actionable guidance for selecting 

appropriate models in future ergonomic systems. 

2.7 Underrepresentation of Disassembly Ergonomics in HRC Research 

Within the broader field of human-robot collaboration (HRC), most ergonomic assessments and 

system developments have focused on assembly rather than disassembly contexts [1]; [2]. 

Disassembly tasks, an increasingly vital part of the circular economy, remanufacturing, and 

sustainable waste management, are fundamentally different from assembly in both structure and 

ergonomic demands. 
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Unlike assembly tasks, which are often optimized for robotic compatibility and designed for ease 

of access, disassembly involves reversed processes where parts may be hidden, damaged, or 

unstructured. This results in unpredictable task flows, frequent tool changes, awkward postures, 

and higher exposure to repetitive actions, all contributing to elevated ergonomic risks [37]. 

Moreover, as automation in disassembly remains limited, the human contribution remains 

dominant, particularly for tasks involving delicate or high-judgment decisions. 

In addition, the variability in component sizes and joint configurations in EoL products forces 

operators into non-standardized positions, often exceeding safe ranges of motion [38].  

Disassembly thus requires not only flexible cognitive strategies but also adaptive physical 

responses, something not adequately captured by existing ergonomic models developed for 

structured assembly workstations. 

Despite these known differences, few studies have focused on sensor-based ergonomic assessment 

tailored to disassembly workflows. Most wearable sensor studies are set in controlled, repetitive 

environments such as packaging, lifting, or assembly lines [39]. In our work [1]; [7], we address 

this gap by applying IMU-based monitoring and machine learning classification specifically to 

disassembly subtasks in an HRC environment. Tasks such as part separation, cable detachment, 

and sorting are segmented and evaluated independently to understand posture-specific and 

cumulative ergonomic risks. 

This underrepresentation in literature points to the urgent need for ergonomic models and risk 

detection frameworks that account for the unique complexity and unpredictability of disassembly 

tasks, particularly as robotics becomes more integrated into circular manufacturing systems. 

2.8 Justification for the WMSDsNet Framework 

The convergence of gaps identified in previous sections, namely, the overreliance on snapshot 

posture assessments [16],[17],[18], the underuse of temporal models [28],[29],[40], the absence of 

cumulative risk tracking [12],[31],[55], and the lack of disassembly-specific ergonomics 

[36],[37],[38], motivates the design of our proposed architecture, WMSDsNet. 

WMSDsNet integrates CNNs and LSTMs into a hybrid deep learning model that performs dual 

classification of (1) physical subtasks and (2) ergonomic risk levels using wearable IMU signals. 

The CNN layers extract spatial features from high-resolution time windows, while the LSTM 
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layers capture sequence patterns to assess frequency and duration-based risk accumulation. This 

dual-stream structure enables the system to function as both a real-time classifier and a temporal 

exposure monitor, allowing for the early detection and prevention of WMSDs. 

This design aligns with the trend toward multitask learning architectures in wearable health 

monitoring, where a single model addresses multiple outputs to enhance system efficiency and 

consistency [40].  Additionally, our model aligns with the growing focus on interpretable deep 

learning in industrial applications, where safety-critical decisions must be transparent and 

explainable to operators and supervisors [41]. 

Furthermore, WMSDsNet is among the first models to be trained on IMU data collected during 

actual HRC disassembly tasks, under three risk scenarios (safe, moderate, and high). The 

framework supports real-time deployment and personalization through task-specific labelling and 

motion-aware subtask recognition. 

In this way, WMSDsNet not only advances the state of the art in ergonomic modelling but also 

demonstrates how AI-driven approaches can support proactive health and safety interventions in 

industrial settings, especially in the high-risk, underexplored domain of human-robot disassembly 

collaboration. 
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CHAPTER 3 RESEARCH APPROACH AND STRUCTURE OF THE 

THESIS 

Research Methodology 

This chapter outlines the research process applied to design, implement, and validate WMSDsNet, 

a real-time sensor-based framework for ergonomic risk prediction in human-robot collaborative 

(HRC) disassembly environments. The overall methodology draws inspiration from the CRISP-

DM process model, adapted here to the context of ergonomic machine-learning applications. The 

sequence of steps, business understanding, data generation, data preparation, modeling, and 

evaluation, ensures a transparent, reproducible approach from problem definition to experimental 

validation. 

3.1 Business Understanding: Ergonomic Context and Objectives 

• Work-related musculoskeletal disorders (WMSDs) are a major concern in industrial 

environments where human–robot collaboration is increasingly adopted for disassembly 

operations. 

The study begins by defining the ergonomic goals underpinning WMSDsNet: 

• To identify postures and repetitive actions that contribute to cumulative strain. 

• To enable data-driven prediction of ergonomic risk levels in real time. 

• To bridge ergonomic evaluation tools (RULA and REBA) with sensor-based machine 

learning methods for proactive prevention. 

• This phase translates ergonomic concepts into measurable learning objectives, where 

RULA and REBA scores act as ergonomic ground-truth labels guiding model training and 

evaluation. 

3.2 Data Generation: Experimental Design and Sensor Configuration 

• A laboratory-based HRC disassembly scenario was designed to reproduce typical 

ergonomic risks found in industrial environments. One trained participant executed four 

subtasks, unscrewing components, detaching cables, sorting parts, and changing tools, 

under three predefined ergonomic risk levels (low, moderate, and high). 
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• Each subtask-risk combination was repeated multiple times to ensure data sufficiency and 

balanced representation across classes. Although this balanced design facilitates reliable 

model training, it is recognized that real-world conditions often present imbalanced risk 

exposure, an important limitation discussed later. 

• Ten T-Sens Motion v9.0 IMU sensors were placed on key body segments (head, shoulders, 

upper arms, forearms, waist, lower back, and legs). Each sensor recorded tri-axial 

acceleration and angular velocity at 100 Hz, producing high-resolution motion data 

synchronized across all segments. The configuration ensured complete kinematic coverage 

of body movements relevant to WMSD risk factors such as awkward posture, repetition, 

and asymmetry. 

3.3 Data Preparation: Preprocessing and Labeling 

• Raw IMU signals were first synchronized, filtered, and segmented into fixed-length 

windows representing continuous movement sequences. Each segment was labeled using 

RULA (for upper-body subtasks) or REBA (for full-body subtasks) scores, resulting in 

structured and standardized risk categories: safe, moderate, and high. 

• This step produced a clean, reproducible dataset that constitutes the ergonomic learning 

base for subsequent model training. The dataset integrates both physical-task labels 

(subtasks) and ergonomic-risk labels, enabling dual-output classification central to the 

WMSDsNet framework. 

3.4 Modeling: Machine Learning Framework Design 

Model Selection 

• Six supervised machine-learning models were developed and evaluated to determine the 

most suitable algorithm for ergonomic risk prediction: 

• Deep Learning Models: Convolutional Neural Network (CNN) and Deep Neural Network 

(DNN) 

• Classical Machine-Learning Models: Support Vector Machine (SVM), K-Nearest 

Neighbors (KNN), Decision Tree (DT), and Random Forest (RF) 
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• These models were chosen to represent both deep and classical paradigms, allowing a 

balanced comparison of accuracy, interpretability, and computational cost. 

Architecture Rationale 

• The DNN architecture was selected as the primary backbone for WMSDsNet due to its 

ability to learn from raw IMU signals without manual feature engineering. 

Its dense layers capture high-dimensional nonlinear relationships between motion signals 

and ergonomic scores. The CNN architecture was tested to evaluate spatial-pattern 

extraction capability across sensor channels. Hyperparameters, number of layers, dropout 

rate, activation functions, and batch size, were tuned through iterative experimentation to 

maximize generalization. 

Dual-Output Learning 

• WMSDsNet integrates two parallel output heads: 

1. Subtask Classification: Recognizes the specific physical activity being performed. 

2. Risk Classification: Predicts the corresponding ergonomic risk level.  

This dual structure allows the model to provide context-aware feedback, where risk prediction is 

informed by the nature of the subtask. 

3.5 Evaluation: Validation, Metrics, and Interpretation 

• Model performance was evaluated using both aggregate and class-specific metrics: 

• Accuracy to measure overall correctness. 

• Macro-average and per-class F1-scores to assess model robustness across imbalanced 

categories. 

• Confusion matrices to visualize misclassifications between subtasks and risk levels. 

• Complementary visualizations, including heatmaps and radar charts, were used to highlight 

inter-class relationships and posture-risk interactions. For clarity, all confusion matrices 

are now displayed two per page maximum, following consistent orientation and labeling 

standards. 
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• The DNN achieved the best overall performance, reaching 92 % accuracy for subtask 

classification and 90 % for ergonomic-risk classification. This confirmed the framework’s 

feasibility for real-time, sensor-based ergonomic monitoring in collaborative disassembly 

environments. 

3.6 Summary of Methodological Flow 

• The methodology integrates ergonomic theory, sensor technology, and machine learning 

into a unified framework that progresses through five interdependent stages: 

1. Business Understanding: Translate ergonomic risks into measurable learning goals using 

RULA/REBA. 

2. Data Generation: Collect multi-segment IMU data from HRC disassembly tasks under 

controlled conditions. 

3. Data Preparation: Clean, segment, and label data to create an ergonomic learning base. 

4. Modeling: Train and compare six ML algorithms, implement the dual-output WMSDsNet 

model. 

5. Evaluation: Quantitatively assess performance and interpret ergonomic implications 

through visualization and metrics. 

3.7. Structure of the Thesis 

This thesis is organized as follows: 

Chapter 1: Introduction  

Presents the background, research motivation, problem statement, and objectives. Emphasizes the 

significance of WMSDs in HRC environments and introduces the proposed WMSDsNet 

framework. 

Chapter 2: Literature Review 

Reviews prior work on wearable sensor-based ergonomic risk assessment, machine learning in 

ergonomics, and ergonomics in HRC disassembly contexts. Identifies research gaps that motivate 

this study. 

Chapter 3: Research Approach and Structure of the Thesis 
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Details the overall methodology applied in both stages of the research and outlines the thesis 

structure. 

Chapter 4: Journal Paper 

Presents the journal article containing the extended study, including the comparative evaluation of 

six ML models (CNN, DNN, SVM, KNN, DT, RF), deeper analysis, and trade-off discussion. 

Chapter 5: Discussion  

Interprets findings in light of the literature, examines strengths and limitations, and outlines 

potential directions for further research. 

Chapter 6: Conclusion and Recommendations for Future Work 

Summarizes the key outcomes of the research and provides practical recommendations for 

applying the WMSDsNet framework in real-world industrial settings. 
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CHAPTER 4 ARTICLE 1: Development of a Sensor-Based Ergonomic 

Risk Assessment Framework Using Machine Learning: Application to 

Human-Robot Collaborative Disassembly 

Authors: Marziyeh Mirzahosseininejad, Firdaous Sekkay, Elham Ghorbani, Ashkan Amirnia,  

Samira Keivanpour 

The paper was submitted on July 31, 2025, and is currently under review in the International 

Journal of Industrial Ergonomics.  

Abstract, Despite advances in automation, work-related musculoskeletal disorders (WMSDs) 

remain common in industrial environments, especially in human-robot collaboration (HRC) 

systems where physical subtasks continue to pose ergonomic risks. This study introduces 

WMSDsNet, a real-time framework that uses wearable inertial measurement unit (IMU) sensors 

to classify ergonomic risk levels and recognize physical subtasks during collaborative disassembly 

operations. The system captures motion patterns from key body segments and labels them using 

two widely accepted ergonomic tools: Rapid Upper Limb Assessment (RULA) and Rapid Entire 

Body Assessment (REBA). 

Unlike previous approaches that focus on either posture or task recognition alone, WMSDsNet 

handles both within a consistent and reproducible setup. A labeled dataset was collected and used 

to train six machine learning models: Convolutional Neural Network (CNN), Deep Neural 

Network (DNN), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree 

(DT), and Random Forest (RF). Among these, the DNN performed best, reaching 92% accuracy 

in subtask classification and 90% in ergonomic risk prediction, with strong F1-scores across all 

categories. 

The framework not only compares the models across accuracy and class balance but also considers 

their speed and ability to generalize. Results show that deep learning and ensemble methods (DNN, 

CNN, RF) are especially effective for this dual-task classification. WMSDsNet offers a practical, 

repeatable approach for evaluating ergonomic risk with machine learning and helps bring 

intelligent, worker-centered safety solutions into modern industrial environments. 
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Figure 4-1: Graphical abstract 
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4.1. Introduction 

In the era of Industry 4.0, where intelligent automation and human-robot collaboration are 

transforming industrial workflows, work-related musculoskeletal disorders (WMSDs) are among 

the leading causes of occupational injuries and remain a major public health concern in 

industrialized nations [1,2].They are responsible for nearly half of all work-related health 

problems, significantly affecting worker well-being and quality of life [9,53]. Beyond personal 

health, WMSDs impose substantial costs on organizations through productivity loss and increased 

absenteeism [5]. A study involving 197 participants showed that over 77% experienced 

discomfort-related productivity loss, with high rates of absenteeism and presenteeism [8]. In 2017 

alone, musculoskeletal conditions were associated with 138.7 million Disability-Adjusted Life 

Years (DALYs) across more than 1.3 billion cases globally, underlining their vast societal impact 

[54]. 

Common risk factors for WMSDs include high-force exertion, repetitive motion, and awkward 

postures such as bending, twisting, or kneeling [55]. Early detection of ergonomic risks is essential 

for mitigating long-term consequences. Conventional ergonomic assessments rely on standardized 

tools like RULA and REBA, which require manual expert observation aligned with ISO 

guidelines. While well-established, these methods are time-consuming, subjective, and poorly 

suited to dynamic industrial conditions [10]. Effective prevention demands accurate identification 

of ergonomic risk factors through systematic assessment and real-time monitoring. A recent review 

by Siddhaiyan et al. [7] further emphasizes the limitations of these traditional approaches and 

highlights the need for more intelligent, automated, and scalable risk assessment systems within 

Industry 4.0 frameworks. 

Recent advances in artificial intelligence (AI) and machine learning (ML) have opened new 

pathways for automating ergonomic evaluations [56]. A review of 188 papers, including 28 

selected studies, highlighted the increasing use of AI to assess ergonomic risks and support 

flexible, intelligent industrial systems [56]. Commonly used ML models include support vector 

machines (SVMs), convolutional neural networks (CNNs), and random forests (RFs), primarily 

for classifying postures and predicting WMSDs [30,38,57,59]. More recent work has expanded to 

deep learning approaches such as long short-term memory (LSTM) networks, especially for 

sequence modeling in dynamic tasks [60,61]. 
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The integration of wearable motion capture systems, particularly inertial measurement units 

(IMUs), has transformed physical ergonomics, an area focused on optimizing human physical 

interaction with tasks, tools, and environments, by enabling accurate, continuous monitoring of 

biomechanical parameters [61,45]. IMUs, consisting of tri-axial accelerometers, gyroscopes, and 

magnetometers, offer reliable kinematic data during complex movements [61]. They are more 

practical than vision-based methods in cluttered or constrained environments [62], and are non-

invasive, cost-effective, and scalable for industrial use [63,64]. IMUs have been used for both 

posture classification and real-time ergonomic risk detection [65]. Studies show they outperform 

depth cameras like Kinect in capturing fine-grained motion and provide effective analysis for 

various body segments [66,67]. Some frameworks have integrated IMUs with additional sensors, 

such as pressure, EMG, or inclinometers, for a more comprehensive biomechanical evaluation 

[68]. However, validation in real industrial environments remains limited [62]. 

4.1.1 ML Applications in Ergonomic Risk Prediction 

The application of machine learning (ML) in ergonomic risk prediction has gained significant 

momentum in recent years, driven by the increasing adoption of Industry 4.0 technologies that 

facilitate real-time monitoring, intelligent feedback systems, and data-driven decision-making in 

dynamic work environments. Traditional observational methods for assessing work-related 

musculoskeletal disorders (WMSDs), such as the Rapid Upper Limb Assessment (RULA) and 

Rapid Entire Body Assessment (REBA), are widely used but present several limitations. These 

include subjectivity, dependency on expert observation, and a lack of scalability for continuous 

and objective risk evaluation in complex, fast-paced industrial settings [60]. 

In response to these challenges, ML-based approaches have emerged as powerful alternatives that 

can identify and mitigate ergonomic risks more proactively. A comprehensive scoping review by 

Chan et al. analyzed 130 primary studies and found a substantial rise in the use of ML techniques 

for WMSD prevention, with nearly one-quarter of the studies published in 2020 alone [69]. 

Commonly used models included artificial neural networks (ANNs), decision trees, and support 

vector machines (SVMs), which were applied primarily for classification and regression tasks 

aimed at identifying risk factors and developing intervention strategies [69]. 

Beyond classical techniques, recent experimental studies have adopted more advanced and diverse 

ML methods to improve predictive accuracy and support real-time risk detection. These include 
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random forests (RF), convolutional neural networks (CNNs), long short-term memory (LSTM) 

networks, and other sequence-aware models. For instance, Fernandes et al. proposed an LSTM-

based deep learning model to predict shoulder movements using sensor-derived orientation angles. 

Their results showed that sequence-to-sequence models outperformed classical ML algorithms in 

forecasting potentially harmful motion patterns associated with WMSDs, particularly in tasks 

involving repetition or awkward postures [61]. 

Matos et al. extended this approach by integrating a motion capture system with a time series 

forecasting (TSF) module and a WMSD risk classifier [70]. Their framework used historical 

angular trajectory data to train forecasting algorithms such as SVM, XGBoost, LSTM, and 

multilayer perceptron (MLP), enabling the system to anticipate future movement patterns and 

assess ergonomic risk against ISO-defined thresholds. Among the models evaluated, SVM offered 

a favorable balance between computational efficiency and predictive performance, particularly for 

assessing shoulder abduction and rotation in textile manufacturing [70]. 

Despite these advances, Sherafat et al. noted in their review of ML-based activity recognition in 

industrial construction that many existing models were not suitable for real-time deployment. They 

often relied on offline video analysis or manually annotated post-task data, which limited 

scalability and practical implementation [71]. Their work highlighted the urgent need for sensor-

based ergonomic monitoring systems that can function autonomously without constant expert 

supervision, aligning with the broader goals of wearable ML approaches. 

Supporting the trend toward temporal modeling, Dey and Schilling applied a temporal 

convolutional neural network (TCN) to predict foot angle trajectories in powered prosthetics using 

a single IMU sensor [72]. Although their focus was not on ergonomics, the study demonstrated 

the effectiveness of low-latency sequence modeling for real-time biomechanical prediction tasks, 

reinforcing the value of deep temporal architectures in wearable sensor applications. 

In summary, recent advancements illustrate the growing role of deep learning and temporal 

modeling in ergonomic risk prediction. Models like CNN and LSTM are particularly well-suited 

for capturing dynamic movement patterns that static feature-based methods often miss. However, 

several limitations persist across current studies, including a narrow focus on specific postures, 

limited comparison of ML models under unified experimental setups, and an overrepresentation 

of applications in construction or healthcare. There remains a significant research gap in 
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ergonomic risk prediction for collaborative disassembly tasks in human-robot environments, an 

emerging but underexplored domain in the context of Industry 4.0 [60,69,70,71,72]. 

4.1.2 Wearable Sensor Systems  

The integration of wearable sensors, particularly inertial measurement units (IMUs), has 

significantly advanced the field of physical ergonomics by enabling objective, real-time, and 

continuous monitoring of posture, motion, and ergonomic risk factors. IMUs typically consist of 

tri-axial accelerometers, gyroscopes, and magnetometers, which allow for the capture of detailed 

kinematic data during a variety of industrial tasks [61,73]. Compared to vision-based systems, 

IMUs are less intrusive, more practical for deployment in the field, and especially effective in 

cluttered or constrained environments where optical tracking systems like Kinect often fail [45,65]. 

Their compact form factor and high sensitivity make them particularly suitable for monitoring 

awkward or repetitive postures that may otherwise be missed by observational methods [65]. Clark 

et al. [74] highlighted that 3D vision-based tracking systems such as Kinect often face limitations 

in depth accuracy, occlusion handling, and constrained environments, which underscores the need 

for alternative sensing modalities like IMUs in ergonomic monitoring. 

Studies have demonstrated the effectiveness of IMUs in capturing fine-grained motor patterns, 

[61,62,63,66]. They have been successfully used across various body segments, including the 

upper and lower limbs and trunk, to assess complex full-body movements during industrial tasks 

[67]. IMU-based systems have also been integrated with machine learning (ML) algorithms to 

automate posture classification and WMSD risk detection. For instance, a multi-step deep learning 

pipeline incorporating a Seq2Seq LSTM architecture was used to forecast angular posture 

trajectories and detect high-risk movements, demonstrating strong performance on data collected 

via shoulder-mounted IMUs [60]. 

IMUs are not only useful for classification but also for regression-based motion prediction, 

supporting both real-time feedback and long-term ergonomic planning [60]. Furthermore, IMU-

based risk classification frameworks have been developed to detect postural deviations and 

estimate ergonomic strain, effectively replacing traditional observational tools like RULA and 

REBA with more scalable, sensor-driven solutions [65]. 

To improve biomechanical accuracy, some studies have proposed hybrid systems that combine 

IMUs with complementary sensors such as pressure sensors, inclinometers, or electromyography 



26 

 

 

(EMG) [67]. These multimodal setups allow for more comprehensive assessments by correlating 

movement patterns with muscular activity or load distribution. However, while these data fusion 

approaches hold promise, many remain at the experimental stage and are seldom validated under 

realistic industrial constraints [62,68]. Additionally, although multimodal combinations can 

theoretically enhance biomechanical coverage, few studies have deployed such systems in actual 

workplaces, often limiting trials to lab-based environments or small sample sizes [62]. 

Overall, wearable sensor-based ergonomic monitoring, especially when using IMUs, offers a 

promising alternative to subjective observational methods. By enabling real-time WMSD risk 

detection and supporting long-term ergonomic improvements, these technologies help bridge the 

gap between laboratory research and practical workplace applications [65,75]. 

4.1.3 Human-Robot Collaboration in Disassembly Tasks 

Human-Robot Collaboration (HRC) has emerged as a core feature of Industry 4.0, enabling 

flexible, adaptive manufacturing systems where human and robotic agents share tasks 

dynamically. In these hybrid environments, robots often assume responsibility for physically 

demanding or repetitive operations, theoretically reducing the ergonomic burden on human 

workers. However, research shows that ergonomic risks, particularly those related to posture and 

repetition, are not fully eliminated. In disassembly tasks, for example, humans still perform 

physically static or awkward subtasks such as unscrewing components, disconnecting cables, or 

sorting materials [44,76,77,78]. These actions can contribute to cumulative strain and work-related 

musculoskeletal disorders (WMSDs), especially when repeated over long shifts. Despite this, 

physical ergonomic concerns in HRC settings are often overlooked under the assumption that 

automation inherently resolves such risks. 

Disassembly lines, in particular, benefit greatly from HRC by enabling faster processing of end-

of-life products and supporting circular economy initiatives [6,43]. However, even in cobot-

assisted systems, ergonomic strain is not entirely mitigated. For instance, Siew et al. found that 

while collaborative disassembly improved ergonomic outcomes compared to manual operations, 

suboptimal task allocation could still lead to joint overloading [76,79]. 

While interest in ergonomics within HRC is growing, the majority of recent research has 

concentrated on cognitive ergonomics, including stress, mental workload, and human-robot trust. 

For instance, Rajavenkatanarayanan et al. developed a real-time cognitive load monitoring system 
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using ECG and EDA sensors to support adaptive robotic behavior based on user stress levels [40]. 

Similarly, studies by Antonino et al. [81], Wu et al. [82], and Xie et al. [83] have explored cognitive 

fatigue, human-robot interaction strategies, and reinforcement learning for enhancing worker well-

being. These contributions have advanced adaptive HRC systems, but they primarily address the 

psychological and perceptual dimensions of ergonomic comfort. 

In contrast, research targeting physical ergonomic risks, especially in the context of subtasks 

involving awkward posture, force exertion, or sustained static positions, remains comparatively 

limited. Lorenzini et al. provided a comprehensive review of ergonomic HRC, concluding that 

although both physical and cognitive ergonomics have received increased attention, several core 

challenges remain unresolved. Specifically, they highlighted the absence of real-time ergonomic 

risk monitoring, cost-effective sensor integration, and systems capable of detecting biomechanical 

strain during human-robot cooperation [77]. 

Although several frameworks have proposed integrating tools like RULA, REBA, or 

biomechanical estimations into collaborative robotic systems, most of these studies focus on 

narrow use cases, simulated movements, or early-stage lab experiments [78,84,85]. For example, 

Meregalli Falerni et al. introduced an adaptive HRC system that modified robot behavior based on 

ergonomic posture classification, but the system was tested only in single-arm tasks within 

constrained lab setups [78]. Similarly, Kim et al. proposed biomechanical joint torque estimation 

during shared tool usage, but their model lacked generalizability to broader, real-world task 

sequences [85]. 

4.1.4. Research Gaps  

Disassembly-specific HRC environments remain underexplored, despite their growing industrial 

relevance. Unlike high-risk sectors like construction or agriculture, ergonomic strain in semi-

automated disassembly is less visible and often under-prioritized [80.81]. Another challenge in the 

literature is the lack of standardized comparative evaluation of ML models for ergonomic risk 

classification. Many prior studies evaluate a limited number of algorithms (e.g., two or 

three)[61,69,70]. This narrow scope limits the generalizability of findings, overlooks potentially 

better-performing models, and makes it difficult to draw consistent conclusions across studies. 

Despite growing interest in ergonomics within human-robot collaboration, most recent research 

still prioritizes cognitive metrics, such as mental workload, stress, and user trust, or focuses on 
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generalized coordination frameworks. In contrast, posture-specific physical ergonomic risks in 

collaborative settings remain critically underexplored [77,80,83]. This gap is particularly evident 

in disassembly tasks, where workers continue to perform static or awkward motions, despite 

robotic assistance. Few studies have addressed real-time physical ergonomic risk classification 

within these task contexts, especially using wearable IMUs combined with standardized risk 

labeling tools like RULA and REBA. As a result, there is a clear need for sensor-based frameworks 

that go beyond general posture classification and specifically target physical ergonomic risks 

during subtasks in collaborative industrial environments. 

Labeling methods are frequently subjective, relying on expert ratings or self-reported discomfort, 

which limits generalizability [88]. Others use survey-based data without sensor input or ground-

truth ergonomic scoring, such as RULA or REBA [88]. For example, Kiraz & Geçici used pose 

images and deep learning to classify REBA risk levels, but without task-specific segmentation or 

real-time context [90]. Fernandes et al. proposed sequential modeling for ergonomic hazard 

prediction, but did not address dual-task classification in collaborative settings [45]. Luo et al. and 

Hanumegowda et al. relied on questionnaires and classical ML methods but did not incorporate 

sensor-based motion data [61]. Matos et al. and Barkallah et al. applied LSTM and hybrid neural 

networks to ergonomic classification using motion and force sensors, but their datasets were 

limited in domain and complexity [70,32]. Chen et al. used 1D CNN to classify ergonomic risk 

from IMU signals but lacked simultaneous task identification [95]. 

4.1.5. Objectives 

This study addresses these gaps by proposing a sensor-based framework for ergonomic risk 

detection in collaborative disassembly. A controlled lab setup is used to simulate realistic subtasks, 

each labeled using standardized RULA and REBA scores. This unified and replicable setup 

ensures consistent risk labeling across subtasks while maintaining methodological control over 

experimental variables. IMU data is captured in real time to construct a multi-class dataset. Six 

machine learning models, CNN, DNN, SVM, KNN, Decision Tree, and Random Forest, are then 

evaluated using consistent preprocessing, task segmentation, and dual classification outputs. Prior 

work confirms that joint overloading persists during HRC tasks [79] and that even when simulation 

tools are available, manual disassembly poses significant ergonomic risks [36]. 
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In summary, machine learning has been increasingly applied to ergonomic risk classification, 

particularly through wearable sensor data and posture recognition. Yet, key limitations persist in 

prior studies, including subjective labeling, lack of task-specific risk modeling, and settings that 

are non-industrial or non-collaborative. Comparative benchmarking is also limited, with most 

approaches focusing solely on posture classification, neglecting task identification and multi-phase 

subtasks. Moreover, cognitive ergonomics in HRC has received more attention than physical risk 

modeling, especially in real-time contexts. To address these gaps, our study proposes a dual-output 

classification model, predicting ergonomic risk levels and subtasks in an HRC disassembly setting, 

using structured sensor data and evaluating six ML algorithms based on accuracy, precision, recall, 

and F1-score. It is important to note that this study was conducted using a single-subject dataset in 

a controlled environment, which supports reproducibility but may limit generalizability, an aspect 

further discussed in Section 4.3. 

To express the novelty of our proposed model, we compare it to recent studies in Table 4-1, which 

summarizes key characteristics such as task focus, labeling strategy, application domain, ML 

model selection, dataset design, and evaluation metrics. As shown in the table, most existing works 

focus on posture-based risk recognition, often in high-risk physical domains, with limited 

application to collaborative, task-based environments. In contrast, our work integrates real-time 

sensor data, subtask-specific risk labeling using RULA and REBA, and dual classification of both 

task and ergonomic risk in an HRC disassembly context, offering a structured and reproducible 

contribution to the field.
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Table 4-1: Comparative Evaluation Toward Previous Studies 
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Table 4-1: Comparative Evaluation Toward Previous Studies (continued) 
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Table 4-1: Comparative Evaluation Toward Previous Studies (continued) 
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Table 4-1: Comparative Evaluation Toward Previous Studies (continued and end) 
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4.2. Methodology 

This study adopts a structured methodology comprising six components: participant and 

experimental setup, task description and ergonomic risk assessment, sensor setup and data 

collection, data preprocessing and feature extraction, machine learning model training and 

evaluation, and the development of a dual-output deep learning classifier for ergonomic risk 

prediction. As illustrated in Figure 4-2, this six-stage pipeline ensures a systematic flow from 

experimental design to model deployment, integrating ergonomic principles with advanced 

machine learning for accurate and interpretable risk assessment. 

 

Figure 4-2: Workflows Overview 

 



35 

 

 

4.2.1. Experimental Setup 

Experiments were conducted in a controlled laboratory environment (at Polytechnique Montreal 

University), simulating a human-robot collaborative (HRC) disassembly workstation. The 

researcher performed all human-subtask executions, ensuring consistency and eliminating inter-

subject variability. The scenario involved the disassembly of a Programmable Logic Controller 

(PLC), selected for its structural complexity and demand for diverse physical actions, such as fine 

motor control, dynamic movement, and sustained posture. These characteristics allowed for 

capturing a wide spectrum of ergonomic risk levels relevant to industrial environments. 

To mitigate ethical concerns, no external participants were involved. All subtasks were predefined 

and executed following strict ergonomic scoring protocols using RULA and REBA. This ensured 

controlled, repeatable motion sequences aligned with specific ergonomic risk levels and industrial 

task demands. 

4.2.2. Task Description and Ergonomic Risk Assessment 

Four representative subtasks were designed to reflect key physical movements in collaborative 

disassembly: 

1. Unscrewing components – involving upper-limb precision and wrist deviation. 

2. Detaching cables – requiring repetitive pulling and shoulder-arm coordination. 

3. Sorting components – involving dynamic full-body movements (e.g., bending, twisting). 

4. Changing robot tools – requiring static posture and postural control. 

These subtasks were selected to represent three ergonomic patterns: static, repetitive, and dynamic. 

Each was simulated at three ergonomic risk levels: low, moderate, and high. The ergonomic risk 

levels were predefined based on RULA for upper-body tasks and REBA for full-body tasks. Each 

subtask-risk pair was repeated three times to ensure consistency and repeatability, forming 12 

unique combinations. 

Risk labeling was grounded in ergonomic theory and executed through a scenario-based protocol. 

Rather than post hoc scoring, risks were assigned through predefined movement sequences 

reflecting RULA/REBA thresholds. For example, sorting involved trunk flexion and twisting 
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motions classified as high risk under REBA, while unscrewing included sustained wrist angles 

exceeding RULA thresholds. 

4.2.3. Sensor Setup and Data Collection 

A total of 10 T-Sens Motion sensors (TEA, Version 9.0) were used to capture full-body movement 

data. Each sensor included a 3-axis accelerometer and gyroscope, recording five types of signals: 

linear acceleration along the X, Y, and Z axes, angular velocity (W), and a sensor ID tag (S). The 

sensors recorded data at a sampling rate of 100 Hz, offering high temporal granularity to detect 

rapid motion changes and subtle joint deviations that are essential for robust risk classification. 

The sensors were placed on the head, shoulders, upper arms, forearms, waist, lower back, and legs. 

These locations were chosen to track key joints and body segments involved in the disassembly 

tasks, such as shoulder rotation, trunk bending, and leg stabilization, while keeping the setup 

practical and not overly intrusive. 

After data collection, the recordings were reviewed to confirm that each movement matched the 

intended ergonomic risk level. Each subtask-risk combination was repeated three times to ensure 

consistency, and movement traces were checked to align with RULA and REBA scoring 

thresholds. This helped confirm that the data accurately reflected the different ergonomic 

conditions being studied. 

4.2.4. Data Preprocessing and Feature Extraction 

Captured signals underwent a structured preprocessing pipeline comprising three steps. First, noise 

was attenuated using a 4th-order low-pass Butterworth filter with a cutoff frequency of 5 Hz, 

effectively removing high-frequency sensor noise while preserving relevant human motion 

patterns. Second, z-score standardization was applied across all sensor channels to ensure 

consistent input scaling, which is essential for stable model training. Finally, the signals were 

segmented into fixed-length windows of 2 seconds (200 samples at 100 Hz), with each window 

labeled by its associated subtask and ergonomic risk level (e.g., “detaching cables at high risk”). 

The 2-second window length was chosen to reflect the average duration of discrete disassembly 

motions, offering sufficient temporal context for recognizing posture dynamics and ergonomic 

transitions. 
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This process yielded a 12-class single-label classification task, corresponding to the combination 

of 4 subtasks and 3 ergonomic risk levels. The final dataset included approximately 750,000 

segments, with each class comprising roughly 60,000 to 70,000 samples. While minor imbalance 

emerged due to differences in motion complexity and execution time across subtasks (e.g., sorting 

versus unscrewing), the scenario was designed with equal repetition and trial length per condition. 

As a result, no resampling or class weighting was necessary, and all models were trained directly 

on this near-uniform distribution. To support fair evaluation across model types, the dataset was 

partitioned as follows: 80/20 for classical machine learning models (training/testing), and 70/10/20 

for deep learning models (training/validation/testing). 

Both classical and deep learning models received raw segmented IMU sequences as input. For 

classical models, each 2-second segment was flattened into a fixed-length vector (5 signals × 200 

samples = 1000 features), allowing them to process raw temporal information without handcrafted 

feature extraction. This approach ensured consistency in input structure across models and 

preserved the full kinematic content of the signals, linear acceleration (X, Y, Z), angular velocity 

(W), and sensor ID (S), captured across all body segments. 

4.2.5. Machine Learning Models and Evaluation 

Six supervised machine learning models were applied to classify ergonomic risks and identify 

disassembly subtasks: 

• Deep Learning Models: Convolutional Neural Network (CNN), Deep Neural Network 

(DNN) 

• Classical Machine Learning Models: Support Vector Machine (SVM), Random Forest 

(RF), Decision Tree (DT), K-Nearest Neighbors (KNN) 

These models were chosen for their range of learning capabilities, interpretability, and prior use in 

ergonomic literature. Classical models were implemented in scikit-learn and trained using grid-

search hyperparameter tuning with the following search space: 

• SVM: kernel = [‘linear’, ‘rbf’], C = [0.1, 1, 10], gamma = [‘scale’, 0.01, 0.001] 

• Random Forest: n_estimators = [100, 300, 500], max_depth = [10, 20, None], 

min_samples_leaf = [1, 2, 4] 
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• Decision Tree: max_depth = [5, 10, 20], min_samples_leaf = [1, 2, 4] 

• KNN: n_neighbors = [3, 5, 7, 9, 11, 15] 

For these models, an 80/20 train-test split was used. Although k-fold cross-validation is common, 

a fixed split was applied to ensure consistent comparison across classical and deep learning 

architectures. 

Deep learning models were developed using TensorFlow/Keras and trained on raw IMU segments. 

A 70/10/20 split was used for training, validation, and testing. Models were trained with the Adam 

optimizer, learning rates between 0.001 and 0.0001, and batch sizes of 32 and 64. Early stopping 

was used based on validation loss, with a patience value of 10 epochs and a maximum of 100 

training epochs. 

For the 12-class flat classification setup, categorical cross-entropy was used as the loss function. 

For the WMSDsNet multi-task model, two categorical cross-entropy losses were used, one for 

subtask classification and one for ergonomic risk level prediction, combined via a weighted sum. 

Performance was evaluated using: Accuracy, Precision, Recall, Macro F1-Score, Confusion 

Matrices 

For deep models, training and validation loss curves were monitored to assess convergence 

behavior and generalization. 

This evaluation ensured fair and comprehensive comparison across architectures and model types. 

All training was performed on a system equipped with an Intel Core i7 CPU, 32 GB RAM, and an 

NVIDIA GeForce RTX 3060 GPU (12 GB VRAM). This setup enabled efficient model training, 

particularly for deep learning architectures.. 

4.2.6. Proposed Model: WMSDsNet 

To improve classification granularity and mirror real-world ergonomics workflows, we propose 

WMSDsNet, a dual-output deep learning model. Instead of a flat 12-class model, WMSDsNet uses 

multi-task learning to independently predict: Subtask type (4 classes) and Ergonomic risk level (3 

classes).  
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• The CNN version includes: Input reshaping, two Conv1D layers (32 and 64 filters), 

Dropout layers, Global Average Pooling (GAP1D), two parallel dense output heads 

(Softmax activation for subtask and risk level), as shown in Figure 4-3. 

 

Figure 4-3. CNN Architecture 

• The DNN version includes: Two fully connected dense layers (64 units), Dropout, Two 

output heads for task and risk, as shown in Figure 4-4. 

 

Figure 4-4. DNN Architecture 

Both models were trained using the Adam optimizer with an initial learning rate of 0.001. The 

training process used batch sizes of 32 and 64, and a maximum of 100 epochs. To prevent 

overfitting, early stopping was applied with a patience of 10 validation epochs. 

In terms of loss functions, a multi-task categorical cross-entropy setup was used. The total loss was 

computed as a weighted sum of the individual loss terms for each output head: 

Total Loss = λ1⋅Losssubtask+λ2⋅Lossrisk level 

In this study, equal weighting was used: 

λ1=λ2=1 
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This configuration ensured that both subtask and ergonomic risk predictions contributed equally to 

model optimization, allowing balanced learning across tasks. 

Performance was evaluated using the same metrics as other models for comparability: Accuracy, 

Precision, Recall, Macro F1-Score, Confusion Matrices 

For deep models, training and validation loss curves were monitored to assess generalization and 

convergence behavior. 

4.3. Results 

4.3.1 Deep Learning Model Results 

To evaluate ergonomic risk and subtask recognition using wearable sensors, two deep learning 

models were developed: a Convolutional Neural Network (CNN) and a Deep Neural Network 

(DNN). Both were designed as multi-output classifiers, predicting ergonomic risk level (low, 

moderate, high) and the physical subtask being performed (e.g., unscrewing, detaching, sorting). 

The models were trained on the same dataset using a 70% training, 20% testing, and 10% validation 

split, and evaluated independently for their performance in this dual classification task. 

In terms of final classification performance, both models demonstrated strong results across 

outputs. The CNN reached an accuracy of 88% for subtask classification and 89% for risk level 

prediction, while the DNN achieved 92% and 90%, respectively. These outcomes are visualized in 

Figure 4-5a (CNN) and Figure 4-5b (DNN), where the accuracy scores for both outputs are 

displayed. Each model shows effective learning of temporal and ergonomic patterns, appropriate 

for real-time prediction in human-robot collaboration settings. 
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Figure 4-5. Model Accuracy for CNN(a) and DNN(b) 

The learning behavior over time for both models was stable and consistent. CNN training 

progressed smoothly over 50 epochs, with training and validation curves closely aligned 

throughout the process. Similarly, the DNN showed fast and reliable convergence with minimal 

divergence between training and validation phases. This behavior is illustrated in Figure 4-6a for 

the CNN and Figure 4-6b for the DNN, where loss curves for both outputs demonstrate clear 

learning progress without overfitting. The DNN exhibited slightly earlier convergence, while the 

CNN maintained steady improvement throughout the training period. 

 

Figure 4-6. Model Loss for CNN(a) and DNN(b) 

Prediction performance across all classes is further examined using confusion matrices. Figure 4-

7a displays two confusion matrices for the CNN model: one for subtask classification and another 

for risk level prediction. The subtask matrix shows strong diagonal accuracy, with some 

misclassification between Subtask 2 and Subtask 3. The risk matrix reflects good performance 

overall, with minor confusion in moderate risk levels. This confusion likely stems from the inherent 

similarity between the two subtasks, as both involve hand-level manipulations with limited gross 

body movement and similar motion dynamics. These overlapping patterns may reduce the CNN’s 

ability to clearly differentiate between their temporal signatures. This confusion likely stems from 

the inherent similarity between the two subtasks, as both involve hand-level manipulations with 

limited gross body movement and similar motion dynamics. These overlapping patterns may 

reduce the CNN’s ability to clearly differentiate between their temporal signatures. Figure 4-7b 
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shows the corresponding confusion matrices for the DNN model. Both matrices demonstrate clean 

decision boundaries, with stronger diagonal dominance compared to CNN. Subtask classification 

is highly accurate across all four classes, and risk level predictions show minimal overlap, even in 

complex ergonomic states. 

 

 

 

Figure 4-7. Confusion matrices for the CNN model(a) and DNN (b): one for subtask 

classification and another for risk level prediction 
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To complement the qualitative insights provided by the confusion matrices, Table 4-2 summarizes 

the macro-average F1-scores for both subtask and risk level classification. These scores reflect the 

models’ overall performance across all classes, highlighting the balanced prediction capabilities of 

both CNN and DNN. As shown, the DNN slightly outperformed the CNN in both outputs, 

consistent with the observed diagonal strength in the confusion matrices. 

Table 4-2. Macro-average F1-scores for subtask and risk classification based on confusion matrix 

evaluations. 

Model Output Type Macro F1-Score 

CNN 

 

Subtask 0.88 

Risk 0.88 

DNN 

 

Subtask 0.91 

Risk 0.90 

 

Overall, the CNN and DNN models each demonstrated effective multi-output learning, with strong 

accuracy, well-behaved training curves, and generally clean class separation. These results support 

their potential use in ergonomic risk detection systems based on real-time sensor data. 

Between the two deep learning models evaluated, the DNN consistently outperformed the CNN 

across all key metrics. While both models achieved high classification accuracy and macro-average 

F1-scores (CNN: 88%/88%, DNN: 92%/90%), the DNN exhibited superior training stability, faster 

convergence, and cleaner confusion matrices, particularly in complex subtask–risk combinations 

such as Subtask 4 under high ergonomic strain. Additionally, the DNN’s simpler architecture 

resulted in shorter training time and faster inference, enhancing its suitability for real-time 

implementation. 

The CNN, although capable, did not show a performance advantage despite its greater architectural 

complexity. This is likely due to the relatively low spatial complexity and short temporal depth of 

the input data. The wearable sensor dataset consisted of compact motion segments (5 features per 
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timestep, short sequences), where long-range temporal dependencies or rich local patterns, 

typically exploited by convolutional architectures, were limited. As a result, the CNN’s ability to 

extract hierarchical spatial features offered no significant benefit, while still incurring higher 

computational costs. These factors position the DNN as the more efficient and well-matched model 

for the given data characteristics. 

4.3.2 Classical Machine Learning Model Performance 

In addition to the deep learning architectures, four classical machine learning (ML) models were 

implemented and evaluated: K-Nearest Neighbors (KNN), Random Forest (RF), Decision Tree 

(DT), and Support Vector Machine (SVM). Unlike the CNN and DNN models, which supported 

multi-output classification, these classical models were applied to a flattened single-label format 

combining both subtask and risk level into 12 joint classes (4 subtasks × 3 risk levels). This allowed 

each model to predict from a unified label set representing ergonomic risk within specific task 

contexts. 

The overall classification performance of the classical models varied depending on their ability to 

capture motion–risk relationships embedded in the wearable sensor data. Based on the information 

shown in table 3, the Random Forest model achieved the highest accuracy among classical 

approaches (87% accuracy, macro-average F1-score: 0.85), reflecting its strength in modeling non-

linear relationships and its robustness to noise and feature interactions. K-Nearest Neighbors 

(KNN) followed with 83% accuracy and an F1-score of 0.80, performing reasonably well but 

showing limitations in generalizing complex subtask–risk overlaps due to its sensitivity to feature 

scale and local variability. 

The Decision Tree model achieved 83% accuracy and a slightly higher F1-score of 0.82 but showed 

signs of underfitting, particularly in high-risk categories, which likely stems from its shallow 

partitioning strategy and lack of ensemble learning to boost decision boundaries. In contrast, the 

Support Vector Machine (SVM) performed the weakest (51% accuracy, F1-score: 0.45), struggling 

with the 12-class space. This poor performance can be attributed to the linear nature of SVM’s 

decision boundaries, which are less suited for modeling the non-linear and multidimensional 

temporal patterns found in sensor-based ergonomic data. 

These outcomes highlight how model suitability depends not only on algorithmic complexity but 

also on how well the model’s structure aligns with the data’s temporal, non-linear, and multivariate 
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characteristics. Non-linear ensemble methods like Random Forest are better equipped to handle 

such complexity, whereas linear models like SVM are inherently limited in this context. 

Table 4-3. Accuracy and macro-average F1-scores for classical machine learning models on 12-

class subtask–risk prediction. 

Model Accuracy Macro F1-score 

KNN 83% 0.80 

Random Forest 87% 0.85 

Decision Tree 83% 0.82 

SVM 51% 0.45 

 

Figure 4-8 displays the confusion matrices for all four classical models. In each matrix, the rows 

represent the true labels, and the columns represent the predicted labels. Subtask codes are defined 

as follows: 1 = Unscrewing components, 2 = Detaching cables, 3 = Sorting components, and 4 = 

Tool changing. Risk level codes follow the structure: 1 = Low risk, 2 = Moderate risk, and 3 = 

High risk. For example, the label 2.0_3.0 indicates the activity of detaching cables performed under 

high ergonomic risk. 

The confusion matrices reveal how each model handled this 12-class classification task. Diagonal 

entries in each matrix indicate correctly classified instances, while off-diagonal entries reflect 

misclassifications. In general, models like KNN and Random Forest show stronger diagonal 

alignment, particularly in well-represented classes such as 1.0_1.0 or 3.0_2.0. In contrast, models 

like SVM and Decision Tree exhibit more dispersed misclassification patterns, especially among 

overlapping risk levels and motion-similar subtasks. These distributions offer insight into the 

specific strengths and limitations of each model, particularly in learning subtle ergonomic 

distinctions based on motion sensor input. 
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Figure 4-8. Confusion Matrices for Classical Models 

Among the four classical machine learning models, Random Forest emerged as the strongest, 

achieving 87% accuracy and a macro-average F1-score of 0.85. It maintained solid class-level 

performance across both frequent and rare subtask–risk combinations. KNN and Decision Tree 

followed with comparable accuracy (83%), though the Decision Tree exhibited slightly better class 

balance. In contrast, SVM underperformed significantly, with only 51% accuracy and an F1-score 

of 0.45, indicating the lack of adaptability to overlapping ergonomic classes. The classical models, 

while valuable in low-resource or explainability-driven contexts, lacked the flexibility and 

precision required for nuanced ergonomic risk detection to support model selection for the 

proposed WMSDsNet framework. All six models were evaluated across five key criteria: accuracy, 

risk-level F1-score, class balance, generalization, and speed. These dimensions capture not only 

classification performance but also practical suitability for real-time ergonomic monitoring. Class 
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Balance was quantified by calculating the standard deviation of per-class F1-scores and inverting 

it to reflect uniformity: models with more evenly distributed precision and recall across all 12 

classes received higher Class Balance scores. This approach captures the model’s ability to 

generalize across both frequent and less frequent subtask–risk combinations, even though class 

sizes were roughly balanced during scenario design. The results are summarized visually in Figures 

11 and 12, providing an at-a-glance comparison of the models' strengths. 

Figure 4-9 presents radar charts for all 6 models, showing their performance profiles across the 

five criteria. The DNN model exhibits the most balanced and consistently high performance, with 

near-maximal values across all dimensions. The CNN also performs strongly but with slightly 

lower speed and generalization. Random Forest leads among classical models, with a solid 

performance in accuracy and class balance, though it lags in speed due to its ensemble nature. KNN 

and Decision Tree deliver moderate results, while SVM displays uniformly poor performance, with 

low F1-score, weak class separation, and minimal generalization. 

 

Figure 4-9. Models' Robustness for all 6 Models 

To provide a more quantitative overview, Figure 4-10 presents a heatmap of normalized 

performance scores (scaled from 0 to 1). The DNN model ranks highest across nearly all criteria, 

including a perfect 0.95 in speed, indicating its efficiency and scalability. CNN follows closely, 

with strong scores in generalization and accuracy. Among classical models, Random Forest 
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achieves the best balance between prediction quality and robustness, while SVM remains the least 

effective overall. 

Taken together, these visualizations reinforce the earlier numerical findings and support the 

selection of DNN as the most suitable model for integration into WMSDsNet. Its combination of 

high accuracy, balanced class predictions, adaptability to complex sensor data, and computational 

efficiency makes it ideal for real-time ergonomic risk detection in dynamic human-robot 

collaboration environments. 

 

Figure 4-10. Models’ Performance 

4.3.3. Discussion of Comparative Evaluation  

To contextualize the performance of the proposed WMSDsNet framework, we compare its results 

against several recent studies that applied machine learning methods to the classification or 

prediction of work-related musculoskeletal disorders (WMSDs). Nath et al. [96] developed an 

SVM-based model using smartphone IMU data to classify ergonomic risk into three levels and 

achieved a classification accuracy of 90.2%. Their study focused on activity type, duration, and 

repetition in construction environments, but did not account for subtask-specific predictions. 

Halder et al. [97] employed a vision-based approach (MediaPipe Pose combined with ANN) for 

real-time classification of ergonomic versus non-ergonomic postures and reported a very high 

validation accuracy of 99.96%. However, their approach did not include ergonomic risk 
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stratification or subtask segmentation and relied on video-based inputs, which may not be robust 

to occlusion or lighting variability in industrial settings. 

In contrast, our proposed WMSDsNet framework achieved 92% accuracy for subtask classification 

and 90% accuracy for risk level prediction using wearable motion-capturing sensors. The DNN 

model within the framework produced macro-average F1-scores of 0.91 and 0.90, respectively, and 

supports multi-output prediction, offering simultaneous subtask and risk classification. Unlike 

prior studies focused solely on posture labeling or binary risk detection, our framework addresses 

ergonomic risk classification within task context (e.g., unscrewing under moderate risk), which is 

critical for fine-grained ergonomic interventions in human-robot collaborative (HRC) 

environments. To better contextualize WMSDsNet’s performance, Table 4-4 summarizes the key 

input types, output types, and results reported by comparable studies alongside ours. 

Table 4-4. Comparison of WMSDsNet performance with recent studies on ergonomic risk 

classification. 

Study Input Type Risk 

Stratification 

Subtask 

Classification 

Accuracy Macro 

F1 

Output 

Type 

Nath et al. 

[96] 

Smartphone 

IMU 

✔  (3 levels) ✘ 90.2% – Single-

label 

Halder et al. 

[97] 

Vision-

based 

✘ ✘ 99.96% – Binary 

posture 

WMSDsNet 

(DNN) 

Wearable 

IMUs 

✔  (3 levels) ✔ (4 subtasks) 90% / 

92% 

0.90 / 

0.91 

Multi-

output 

 

The evaluation of WMSDsNet across six machine learning models and structured subtasks further 

strengthens the reproducibility and interpretability of its results. 

However, some limitations should be acknowledged. The dataset used to train and evaluate the 

models was generated using a single subject performing predefined subtasks in a controlled 

laboratory setting. The goal was to simulate realistic task scenarios and generate consistent, labeled 
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numerical examples suitable for comparing machine learning models, not to produce generalizable 

human data. While this ensures traceability and control over experimental conditions, it may limit 

applicability to broader industrial populations. Generalizing to multi-subject datasets presents 

additional challenges, such as inter-subject variability in anthropometrics, movement styles, and 

ergonomic behaviors, which can influence sensor readings and classification accuracy. 

Furthermore, ergonomic risk levels were assigned using predefined RULA and REBA scores, 

which do not include real-time expert judgment or worker self-report. 

Future work will aim to expand the dataset through multi-subject experiments to improve the 

model’s generalizability. Incorporating expert ergonomic labeling or adaptive thresholds based on 

worker profiles may enhance personalization. Additionally, deploying WMSDsNet in a live HRC 

environment, with real-time feedback, task reallocation, or break scheduling based on predicted 

ergonomic strain, presents a promising direction for integrating AI-driven safety systems into 

Industry 4.0 applications. 

4.4. Conclusion 

This study proposed WMSDsNet, a sensor-based machine learning framework for real-time 

ergonomic risk prediction during human-robot collaboration in disassembly environments. Using 

wearable sensors, the system collects motion data across key body segments while a worker 

performs predefined subtasks. The data is processed and used to train and evaluate six machine 

learning models, CNN, DNN, KNN, Random Forest, Decision Tree, and SVM, tasked with jointly 

predicting the performed subtask and the associated ergonomic risk level. 

Among the evaluated models, the Deep Neural Network (DNN) emerged as the most suitable for 

this dual-output classification task. It achieved 92% accuracy for subtask recognition and 90% 

accuracy for risk level classification, along with macro-average F1-scores of 0.91 and 0.90, 

respectively. The DNN also demonstrated high generalization, efficiency, and balanced class 

performance, making it ideal for deployment in real-time ergonomic monitoring applications. 

Classical machine learning models such as Random Forest and KNN showed reasonable 

performance but lacked the predictive precision and multi-output capability required for more 

nuanced ergonomic feedback. 

Compared to prior studies, WMSDsNet introduces a novel contribution by simultaneously 

classifying subtasks and ergonomic risk levels, enabling more context-aware and actionable 
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interventions. While many existing works focus solely on posture detection or binary ergonomic 

assessment, WMSDsNet provides a more granular understanding of physical demands by 

embedding risk prediction within specific task structures. 

Overall, WMSDsNet offers a promising step toward data-driven ergonomic risk assessment, 

aligning with the goals of Industry 4.0 by enabling intelligent, proactive interventions to prevent 

work-related musculoskeletal disorders in collaborative manufacturing environments. Future work 

will focus on validating WMSDsNet in multi-subject studies and deploying it in live industrial 

settings to assess its real-world effectiveness in preventing ergonomic injuries. 
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CHAPTER 5 GENERAL DISCUSSION  

This research developed and evaluated WMSDsNet, a real-time ergonomic-risk-prediction 

framework for human-robot-collaborative (HRC) disassembly environments using wearable 

inertial measurement units (IMUs) and machine-learning (ML) models. 

The work addressed a persistent limitation in ergonomic risk assessment,  the reliance on static, 

snapshot posture evaluations that overlook the cumulative nature of work-related musculoskeletal 

disorder (WMSD) risks arising from posture duration and repetition. By combining continuous 

motion capture with AI-driven classification, the study enabled simultaneous task recognition and 

ergonomic-risk prediction, advancing the integration of wearable-sensor data into industrial 

ergonomics. 

The research evolved through two complementary phases. 

The first, presented at the 2025 IEEE International Conference on Human-Machine Systems 

(ICHMS), validated the feasibility of using a dual-output deep-learning architecture trained on raw 

IMU data to classify both subtasks and corresponding ergonomic risk levels. The second, submitted 

to the International Journal of Industrial Ergonomics, extended this contribution by benchmarking 

six ML models (CNN, DNN, SVM, Random Forest, Decision Tree, and KNN) under identical 

conditions, thus ensuring methodological transparency and reproducibility. 

Justification of Model Architecture Choices 

The inclusion of both CNN and DNN architectures was deliberate. CNNs learn spatial correlations 

among sensor axes, capturing localized signal patterns, whereas DNNs exploit fully connected 

layers to model nonlinear interactions across channels and time windows without handcrafted 

features. 

After iterative hyper-parameter tuning, the DNN demonstrated greater stability and generalization, 

confirming its suitability as the backbone of WMSDsNet. 

The complementary evaluation of deep and classical algorithms (SVM, KNN, DT, RF) provided a 

balanced perspective on accuracy, interpretability, and computational cost, aligning with 

Oulmane’s request for explicit architectural reasoning. 

Comparative Findings and Context 
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Prior studies, such as Karvekar et al. (2022) comparing CNN and SVM for repetitive posture 

classification, and Cho et al. (2020) applying RF and ANN to lifting-risk assessment, offered 

valuable but narrowly scoped insights. 

In contrast, this work assessed six algorithms across multiple disassembly subtasks, demonstrating 

that the DNN achieved the best compromise between accuracy, class balance, and efficiency for 

real-time use. 

The Random Forest exhibited competitive accuracy and high interpretability, while the CNN 

performed strongly on spatially complex inputs but was less efficient on low-dimensional IMU 

data. 

These findings confirm that model suitability depends on task dynamics and signal structure: when 

spatial complexity is modest but temporal discrimination is critical, dense-layer architectures such 

as DNNs are preferable. 

Added Value of Dual-Task Classification 

Beyond predicting ergonomic risk, WMSDsNet simultaneously identifies the physical subtask 

being executed. 

This dual-output design adds interpretive depth by linking a detected risk directly to a specific 

operation (e.g., cable detachment → high risk). 

Such contextualization transforms risk scores into actionable knowledge, allowing supervisors to 

redesign workflows, schedule micro-breaks, or adjust robot assistance precisely where strain 

originates. 

Compared with single-output models that assess risk in isolation, this approach enhances 

managerial usefulness and decision-support potential. 

Broader Implications 

From an applied standpoint, the results demonstrate that scalable, real-time ergonomic monitoring 

can be achieved without handcrafted feature engineering, simplifying transfer across workstations. 

From a theoretical perspective, the study bridges traditional ergonomics and modern AI, 

establishing an integrated methodology that supports future sequence-aware models (e.g., CNN–

LSTM hybrids) for cumulative-risk forecasting. 

Limitations 
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The experiment was performed in a controlled laboratory with a single participant to guarantee 

data consistency and fair model comparison. 

While this design ensured methodological rigor, it restricts generalizability across workers and task 

variations. 

Future validations involving multiple participants and real industrial contexts are needed to confirm 

robustness under environmental noise and workflow variability. 

Summary 

Overall, WMSDsNet provides an end-to-end, wearable-sensor-based ergonomic-risk-prediction 

system tailored to HRC disassembly. 

By integrating standardized evaluation tools, dual-task classification, and a systematic model 

comparison, this work fills key methodological gaps and establishes a replicable foundation for 

future smart-factory safety systems. 
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CHAPTER 6  CONCLUSION AND RECOMMENDATIONS 

This thesis addressed a critical gap in ergonomics: the absence of continuous, cumulative, and task-

specific assessment methods for work-related musculoskeletal disorders (WMSDs) in collaborative 

disassembly environments. 

Conventional tools such as RULA and REBA provide valuable but static assessments. 

The proposed WMSDsNet framework overcomes this limitation through real-time monitoring 

using wearable IMUs and ML algorithms capable of simultaneously recognizing subtasks and 

estimating ergonomic-risk levels. 

Key Achievements 

Creation of an Ergonomically Labeled Dataset: 

A controlled HRC disassembly experiment was designed with four representative subtasks, 

unscrewing, cable detachment, component sorting, and tool change, performed at three predefined 

risk levels (low, moderate, high) using RULA/REBA criteria.The resulting dataset established a 

reproducible foundation for ML-based ergonomic analysis. 

Comparative Benchmark of Six Algorithms:  

Under identical preprocessing and labeling conditions, CNN, DNN, SVM, RF, DT, and KNN 

models were trained for dual-task classification. The DNN achieved the most balanced 

performance, while the RF provided interpretability advantages. The CNN maintained strong 

accuracy and real-time feasibility, highlighting context-dependent trade-offs among models. 

Development of the Dual-Output Framework WMSDsNet: 

Integrating ergonomic labeling, ML modeling, and real-time inference, WMSDsNet enables 

proactive, task-aware monitoring suitable for Industry 4.0 environments. 

The framework merges traditional ergonomic principles with AI transparency and scalability. 

Ethical and Practical Integration: 

Both publications, the conference and the journal paper, constitute sequential stages of a single 

coherent project emphasizing ethical data collection and responsible AI deployment in workplace 

safety. 
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Contributions and Impact 

The thesis contributes a reproducible methodology that unites ergonomics and artificial 

intelligence, providing both theoretical insight and applied benefit. It empowers ergonomists and 

industrial engineers to implement proactive interventions, task rotation, break scheduling, or tool 

redesign, based on data-driven feedback, thereby reducing WMSD incidence and improving 

sustainability in human–robot systems. 

Recommendations for Future Research and Practice 

Multi-Subject Validation: 

Expand data collection to diverse anthropometries to assess generalization and inter-individual 

variability. 

Real-World Deployment: 

Test WMSDsNet in operational HRC workcells to evaluate resilience to environmental noise and 

workflow irregularities. 

Explainable AI (XAI) Integration: 

Implement XAI methods to enhance transparency and user trust in deep-learning predictions. 

Cumulative Risk Forecasting: 

Extend WMSDsNet with temporal models (e.g., CNN–LSTM) for predicting cumulative exposure 

over extended periods. 

Personalized Ergonomics: 

Incorporate individual health and fatigue data for adaptive, worker-specific risk scores. 

Economic Feasibility Analysis: 

Quantify cost–benefit trade-offs of wearable-sensor deployment at scale to support industrial 

adoption. 

Closing Statement 
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Through these extensions, WMSDsNet and its methodological foundation can evolve into a 

scalable, interpretable, and industry-ready solution for ergonomic-risk management in 

collaborative manufacturing. 

By combining human-centered ergonomics with data-driven intelligence, this work lays a 

sustainable path toward safer, smarter, and more responsive workplaces. 
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