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RESUME

Les troubles musculosquelettiques liés au travail (TMS) demeurent I’une des principales causes de
blessures professionnelles dans le monde, en particulier dans les environnements industriels ou les
taches répétitives et les postures contraignantes sont fréquentes. Avec 1’essor de la collaboration
homme-robot (HRC) dans les processus de fabrication et de désassemblage, le besoin d’outils
intelligents de surveillance ergonomique en temps réel, capables de s’adapter a des conditions de
travail dynamiques et de soutenir des pratiques de travail durables, devient de plus en plus
important.

Ce mémoire propose WMSDsNet, un cadre novateur d’évaluation des risques de TMS basé sur
I’apprentissage profond, qui combine une architecture a double sortie avec des unités de mesure
inertielle (IMU) portables pour 1’application spécifique du désassemblage collaboratif homme-
robot. Le systéme effectue simultanément la classification des sous-taches physiques et des niveaux
de risque ergonomique, avec un étiquetage basé sur deux méthodes d’évaluation de TMS: RULA
(Rapid Upper Limb Assessment) et REBA (Rapid Entire Body Assessment). Le cadre comprend
également une analyse comparative de six modeles d’apprentissage automatique, réseau de
neurones convolutifs (CNN), réseau de neurones profonds (DNN), machine a vecteurs de support
(SVM), K plus proches voisins (KNN), arbre de décision (DT) et forét aléatoire (RF), afin de
déterminer le modele optimal pour ces deux tdches. Cette intégration assure une évaluation
compléte et validée, permettant une surveillance ergonomique précise et en temps réel dans des
environnements industriels collaboratifs. Les données expérimentales ont été collectées dans un
scénario de HRC en laboratoire, ou un participant a exécuté¢ une série de sous-tiches de
désassemblage, telles que le dévissage, le tri des composants et la manipulation d’outils, tout en

portant un ensemble de capteurs IMU.

Le modele le plus performant (DNN) a atteint une précision macro-moyenne de 92 % pour la
classification des sous-taches et de 90 % pour la classification des risques ergonomiques. Une carte
thermique a été utilisée pour identifier les relations posture-risque, mettant en évidence les taches
présentant un niveau plus élevé de sollicitation biomécanique. Les résultats démontrent que
I’intégration de la technologie des capteurs portables avec des modeles d’apprentissage
automatique permet des évaluations ergonomiques précises et en temps réel. Le cadre proposé,
WMSDsNet, permet une identification précoce des situations a haut risque, offrant aux ingénieurs

industriels un outil proactif pour la prévention des blessures et I’optimisation des flux de travail.
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Ce travail contribue aux domaines de 1’ergonomie professionnelle, de la fabrication intelligente et
de I’Industrie 4.0, en présentant une solution évolutive, interprétable et adaptée a 1’automatisation
pour la gestion des risques ergonomiques dans les environnements collaboratifs homme-robot. Les
travaux futurs porteront sur une validation multi-sujets et un déploiement en milieu industriel réel

afin d’évaluer plus en profondeur la généralisabilité et I’intégration pratique du cadre proposé.
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ABSTRACT

Work-related musculoskeletal disorders (WMSDs) remain a leading cause of workplace injuries
worldwide, particularly in industrial environments where repetitive tasks and awkward postures
are common. With the rise of human-robot collaboration (HRC) in manufacturing and disassembly,
there is an increasing need for intelligent, real-time ergonomic monitoring systems that can adapt
to dynamic working conditions and support sustainable labour practices. This thesis proposes
WMSDsNet is a novel deep learning-based ergonomic risk assessment framework that combines
a dual-output architecture with wearable inertial measurement units (IMUs) for the specific
application of human-robot collaborative (HRC) disassembly. It performs simultaneous
classification of physical subtasks and ergonomic risk levels, with risks labelled using two
methods: RULA (Rapid Upper Limb Assessment) and REBA (Rapid Entire Body Assessment).
The framework also includes a comparative analysis of six machine learning models,
Convolutional Neural Network (CNN), Deep Neural Network (DNN), Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), Decision Tree (DT), and Random Forest (RF), to determine
the optimal model for both tasks. This integration ensures a comprehensive and validated
assessment, supporting accurate, real-time ergonomic monitoring in collaborative industrial
environments. Experimental data were collected from a laboratory-based HRC scenario in which
a participant performed a series of disassembly subtasks, such as unscrewing, sorting components,

and handling tools, while wearing a set of IMU sensors.

The best-performing model (DNN) achieved a macro-average accuracy of 92% for subtask
classification and 90% for ergonomic risk classification. A heatmap visualization was used to
identify posture-risk relationships, highlighting which tasks involved higher levels of
biomechanical strain. The findings demonstrate that integrating wearable sensor technology with
machine learning models can lead to accurate, real-time assessments of ergonomic conditions. The
proposed WMSDsNet framework enables early identification of high-risk conditions, offering
industrial engineers a proactive tool for injury prevention and workflow optimization. This work
contributes to the fields of occupational ergonomics, smart manufacturing, and Industry 4.0 by
presenting a scalable, interpretable, and automation-friendly solution for ergonomic risk
management in human-robot collaborative settings. Future work will focus on multi-subject
validation and real-world industrial deployment to further assess the framework’s generalizability

and practical integration.
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CHAPTER 1 INTRODUCTION

1.1 Background and Context

The disassembly of end-of-life (EoL) products is a key enabler of sustainable manufacturing,
contributing to the circular economy by facilitating component reuse, material recovery, and
reducing landfill waste [1]. As industries adopt more circular strategies, disassembly is
increasingly recognized as a critical stage for improving resource efficiency. Traditionally,
disassembly operations have been performed manually, requiring workers to carry out repetitive,

physically demanding actions under diverse ergonomic conditions.

Recent advances in human-robot collaboration (HRC) have introduced a hybrid approach that
combines human adaptability, dexterity, and decision-making with the speed, precision, and
strength of collaborative robots [2]. This integration has shown potential to improve productivity,
flexibility, and even aspects of safety, with robots undertaking strenuous or hazardous activities

while humans focus on judgment-intensive tasks.

However, despite these benefits, HRC does not inherently eliminate physical ergonomic risks.
Workers remain exposed to awkward postures, repetitive subtasks, and static loading, all of which
contribute to work-related musculoskeletal disorders (WMSDs). WMSDs are among the most
prevalent occupational health problems globally, accounting for nearly half of all work-related
injuries [3,4]. Their economic burden is significant, resulting in lost productivity, absenteeism, and

long-term disability.

To address these challenges, effective methods for assessing MSD risks are needed that operate in
fast-paced, dynamic, and collaborative industrial environments. Methods, such as RULA and
REBA, are widely used [5]. Still, they rely on manual observation, making them time-consuming,

subjective, and impractical for continuous or real-time monitoring in HRC disassembly contexts.

The emergence of wearable inertial measurement units (IMUs) offers an opportunity to capture
high-resolution, continuous motion data [6,7]. When combined with machine learning (ML), these
sensors enable automated, objective, and potentially predictive ergonomic assessments, critical

capabilities for proactive prevention of WMSDs in Industry 4.0 environments.



1.2 Problem statement

Despite progress in ergonomics and automation, three major limitations persist in current

approaches:
Limitations of traditional ergonomic tools

Standardized observational tools (e.g., RULA, REBA) are effective for static or snapshot
evaluations but unsuitable for dynamic, repetitive environments. They depend on expert judgment,

are labour-intensive, and fail to account for cumulative strain from repeated or prolonged postures.
Gaps in sensor-based systems

While IMUs can provide continuous and accurate motion capture, most existing sensor-based
ergonomic studies, particularly in disassembly, still report high physical strain, even with robotic
assistance. Certain subtasks, such as cable detachment or component sorting, frequently exceed
ergonomic safety thresholds, demonstrating that HRC does not automatically eliminate

biomechanical risk.
Deficiencies in machine learning models

Current ML-based ergonomic systems often focus narrowly on posture recognition, neglecting
cumulative risk factors such as repetition frequency and posture duration, critical drivers of
WMSD development. These models are typically trained on isolated postures, which limits their
applicability in real-world disassembly workflows where tasks are sequential and variable.
Comparative benchmarking of multiple ML models under unified experimental conditions is also

rare.
Research gap

To date, no existing framework integrates real-time IMU sensor data with a dual-output deep
learning model capable of simultaneously classifying disassembly subtasks and assessing
cumulative ergonomic risk in an HRC setting. This gap limits the ability to provide timely,

actionable feedback for injury prevention.
1.3 Research questions

Primary research question



Can a dual-output deep learning framework (WMSDsNet) accurately and simultaneously

classify disassembly subtasks and their ergonomic risk levels from raw IMU data in real time?
Secondary research questions

e How does WMSDsNet’s performance compare to other commonly used machine learning
models in ergonomic risk classification?

e (Can this framework effectively quantify cumulative ergonomic risk, incorporating factors
such as posture duration and repetition, and enable proactive feedback for WMSD

prevention?
1.4 Research objectives

The overarching goal of this research is to design, implement, and validate WMSDsNet, a sensor-
based machine learning framework for real-time ergonomic risk prediction in human-robot

collaborative (HRC) disassembly environments.

Rather than proposing a purely conceptual system, this study emphasizes the practical
development and experimental validation of a labeled dataset and a dual-output learning model

capable of classifying both disassembly subtasks and associated ergonomic risk levels.

To achieve this aim, the research pursued the following four objectives, each corresponding to the

work effectively completed and validated:

1. Development of an Ergonomically Labeled Dataset

e Design and execute a controlled HRC disassembly experiment replicating realistic

ergonomic risks.

e Collect motion data from multiple body segments using wearable IMU sensors and
label them systematically with RULA and REBA scores to create a structured,

reproducible learning base for ergonomic applications.
2. Demonstration of Sensor Data Usability for Machine Learning

e KEstablish a full data-processing pipeline, from raw IMU acquisition to
preprocessing and labeling, to demonstrate that wearable-sensor signals can

effectively support supervised learning for ergonomic risk analysis.



3. Comparative Classification of Disassembly Subtasks and Risk Levels

e Train and evaluate six machine-learning models (CNN, DNN, SVM, KNN, DT,

RF) on the same dataset to classify disassembly subtasks and ergonomic risk levels.

e Benchmark model performances through accuracy and macro-average F1-scores,

validating the generalizability and robustness of the best-performing model (DNN).
4. Integration into a Unified Framework for Real-Time Ergonomic Assessment

e Consolidate the full process, from ergonomic labeling to real-time classification,
into the WMSDsNet framework, illustrating its applicability for proactive
monitoring and early detection of work-related musculoskeletal disorder (WMSD)

risks in collaborative industrial settings.
1.5 Contributions of the thesis

Each research objective outlined in Section 1.4 directly corresponds to a tangible contribution
achieved throughout the development of this thesis. Together, these contributions establish
WMSDsNet — a unified, sensor-based deep learning framework for real-time ergonomic risk

prediction in human-robot collaborative (HRC) disassembly environments.
Contribution 1 Development of an Ergonomically Labeled Dataset

A controlled laboratory experiment was designed and executed to simulate realistic HRC
disassembly conditions and capture representative ergonomic risks. Ten wearable inertial
measurement unit (IMU) sensors were deployed across multiple body segments to collect high-
resolution motion data. Each data segment was systematically labeled using standardized
ergonomic assessment tools (RULA and REBA), generating a reproducible dataset that links
disassembly subtasks with corresponding ergonomic risk levels. This dataset forms the foundation

for supervised machine-learning applications in physical ergonomics.
Contribution 2 Demonstration of Sensor Data Usability for Machine Learning

A complete data-processing pipeline was established, including signal synchronization, filtering,
segmentation, and normalization, to transform raw IMU signals into machine-learning-ready

inputs. This contribution demonstrates the feasibility of using wearable-sensor data to train ML



algorithms for ergonomic evaluation. The resulting pipeline enables objective, continuous, and

scalable monitoring of biomechanical exposure, replacing traditional observation-based methods.
Contribution 3 Comparative Classification of Disassembly Subtasks and Risk Levels

Six machine-learning models—CNN, DNN, SVM, KNN, Decision Tree, and Random Forest—
were trained and evaluated using the same labeled dataset. Their performance was systematically
benchmarked through accuracy, macro-average Fl-scores, and confusion-matrix analysis. This
comparative evaluation identifies the DNN as the most reliable model for dual-task classification,
highlighting the strengths and trade-offs of deep and classical learning approaches in ergonomic

applications.
Contribution 4 Integration into a Unified Framework for Real-Time Ergonomic Assessment

All previous stages were consolidated into a single integrated system—WMSDsNet—that
combines data acquisition, labeling, and dual-output classification within one end-to-end
framework. WMSDsNet simultaneously predicts both the physical subtask and its ergonomic risk
level in real time, providing industrial engineers with an interpretable, proactive tool for early

WMSD detection and prevention in collaborative disassembly operations.

Together, these four contributions establish a coherent progression from data generation to
practical application, ensuring that each research objective is fully achieved and that the proposed
WMSDsNet framework advances ergonomic intelligence within Industry 4.0 manufacturing

environments.

Figure 1-1 illustrates how the four main contributions of this thesis are interconnected across three
conceptual layers. The framework evolves from the creation of an ergonomically labeled dataset
to its integration into a real-time risk-prediction system, forming a coherent process that connects

ergonomic theory, data science, and industrial application.
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Figure 1-1. Overall framework and four key contributions across three interconnected layers.
The bottom layer (data foundation) represents Contribution 1 and Contribution 2, where the
ergonomically labeled dataset and data-processing pipeline were developed using wearable

IMUs.
The middle layer (modeling and analysis) corresponds to Contribution 3, which focuses on
comparative classification of subtasks and ergonomic risk levels using six ML models.
The top layer (integration and application) embodies Contribution 4, where all components were
unified into WMSDsNet, a real-time dual-output framework for ergonomic risk prediction in

human-robot collaborative disassembly.



CHAPTER 2 LITERATURE REVIEW
2.1 Work-Related Musculoskeletal Disorders (WMSDs) in Industry 4.0 and

Disassembly

Work-related musculoskeletal disorders (WMSDs) are injuries or disorders affecting muscles,
tendons, ligaments, joints, nerves, or supporting blood vessels, typically caused or aggravated by
workplace activities [ref]. They remain a widespread occupational health issue, even in modern
industrial settings where technological advancements have introduced robotics and automation. In
human-robot collaboration (HRC), particularly in disassembly lines, workers are still required to
perform physically intensive tasks such as unscrewing, part separation, cable detachment, and
inspection [1],[2]. These tasks frequently involve awkward or constrained postures, repetitive hand

and arm motions, and sustained force application, all primary risk factors for WMSDs [11].

The global economic burden of WMSDs is substantial. According to the World Health
Organization (WHO), WMSDs are among the most prevalent occupational disorders worldwide
and are associated with absenteeism, decreased productivity, and long-term disability [12]. In
Canada alone, WMSDs account for over 40% of lost-time claims, as reported by national

compensation boards [13].

While ergonomics has been studied extensively in high-risk sectors such as manufacturing,
healthcare, and construction, the disassembly domain is relatively underrepresented. In contrast to
assembly lines, where standardized parts and sequences are common, disassembly tasks often
involve unpredictable geometries and degraded components, leading to postural variability and
high biomechanical demands [14]. Even when robotic arms are present to assist, their support is
often limited to heavy lifting or predefined motions, while workers handle tasks that are

unstructured and nuanced.

In HRC-enabled disassembly settings, humans contribute flexibility, adaptability, and dexterity,
while robots provide consistency and strength. However, this partnership can inadvertently
increase ergonomic risk due to synchronized task pacing, workspace sharing, and frequent
handovers [15]. These factors justify the need for intelligent systems capable of monitoring and

predicting ergonomic risks in real-time, beyond the limitations of traditional assessment tools.



2.2 Limitations of Manual Ergonomic Assessment Methods

Several standardized methods have been widely used to evaluate postural and task-related
ergonomic risks, notably RULA (Rapid Upper Limb Assessment), REBA (Rapid Entire Body
Assessment), and OCRA (Occupational Repetitive Actions) [5]. These checklists and scoring
systems are based on observed joint angles, body postures, task frequency, and force application,

typically assessed visually by trained ergonomists.

While these methods provide structured frameworks for evaluating physical demands, they are
limited by several drawbacks, particularly in the context of fast-paced or collaborative industrial
tasks. First, they are inherently subjective and susceptible to observer bias, especially when
ergonomic evaluators disagree on joint angle estimates or exposure frequencies [16]. Second, these
tools are primarily designed for snapshot evaluations and cannot account for posture duration, task

variability, or sequential risk accumulation.

Moreover, traditional tools are often impractical for environments like HRC disassembly, where
subtasks change quickly, and access to operators is obstructed by machinery or tooling. The
manual nature of these tools limits their use for real-time feedback, making them unsuitable for

dynamic task conditions or for integration into Industry 4.0 feedback loops [17].

Several studies have demonstrated the underperformance of these manual tools when applied in
HRC settings. For instance, Takala et al. (2010) noted that manual posture scoring systems failed
to detect high-risk cumulative exposure in tasks involving alternating hand movements and torso
rotation [18]. These insights have accelerated the push toward sensor-based and Al-driven

ergonomic evaluation systems that can operate autonomously and continuously [10].

In summary, while tools like RULA and REBA remain useful as baseline ergonomic standards,
they are increasingly being augmented, or replaced, by data-driven approaches that can track risk

with greater precision and adaptability.
2.3 Emergence of Wearable IMUs for Postural Monitoring

To address the limitations of visual and manual ergonomic tools, researchers have increasingly
adopted wearable inertial measurement units (IMUs) for continuous, objective monitoring of
human motion. These devices, typically comprising accelerometers, gyroscopes, and

magnetometers, can capture 3D motion, body orientation, and angular velocity without requiring



a direct line of sight, making them ideal for cluttered or enclosed workspaces, such as disassembly

cells [6]; [19].

IMUs are unobtrusive, lightweight, and cost-effective compared to optical motion capture systems.
Unlike vision-based systems that require fixed camera setups, IMUs can be worn directly on body
segments (e.g., forearm, trunk, thigh), enabling detailed postural analysis during real-world tasks
[20]. This flexibility makes them especially suitable for dynamic environments such as HRC

stations, where camera obstruction and lighting variability often interfere with visual tracking.

Recent advancements in wireless synchronization and sensor fusion algorithms have significantly
improved the accuracy and reliability of IMU-based systems. Studies have validated the agreement
of IMU-derived joint angles with gold-standard optical systems [21]. In practical terms, IMUs
enable multi-segment motion capture, which is crucial for understanding how different body parts

interact and compensate during tasks that involve forceful exertion or constrained reach [7].

Prior ergonomic studies have employed inertial measurement units (IMUs) to capture detailed
motion data across multiple body segments, enabling analysis of both sustained and short-duration
movements[97],[98].

The integration of IMUs into ergonomic analysis also enables real-time risk monitoring when
combined with machine learning models. Continuous posture streams can be labelled using
ergonomic scores (e.g., RULA, REBA) and used to train classifiers that infer risk levels
automatically [5],[97]. This approach is crucial for implementing smart feedback systems that help

prevent WMSDs in high-risk environments like collaborative disassembly.
2.4 Machine Learning for Posture-Based Risk Classification

Integrating wearable IMUs into industrial settings has paved the way for automated ergonomic
risk classification using machine learning (ML). By leveraging patterns in multivariate sensor data,
ML models can detect postural deviations, classify task segments, and predict ergonomic risk
levels in real time [97]. Compared to manual assessment methods, ML-based systems provide
higher throughput, reduced subjectivity, and scalable deployment across workstations.
Traditional supervised ML algorithms, such as Decision Trees (DT), Support Vector Machines
(SVM), Random Forests (RF), and K-Nearest Neighbors (KNN), are widely used in ergonomic
studies to classify postures or task phases based on IMU-derived features [22]. These models

typically rely on handcrafted features extracted from sensor data, such as peak joint angles, angular
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velocity ranges, or signal vector magnitudes [98]. The success of ML models in ergonomic risk
prediction has been demonstrated across various industrial domains. For instance, Llop-Harillo et
al. (2020) employed Random Forest classifiers to detect ergonomic risks during order picking,
achieving over 85% classification accuracy [23], and Lee et al. [24] used SVMs to evaluate lower

back postures and achieved high agreement with manual REBA scoring.

However, ML performance is sensitive to feature selection, sensor placement, and task variability.
The lack of transferability between models trained on specific subtasks and new untrained
environments remains a critical challenge. Moreover, these models often require domain expertise
to engineer effective features, introducing bottlenecks in scalability and generalization [25].
In our study [7], Comparative studies in the literature have examined the performance of various
machine learning classifiers, such as CNN, DNN, RF, DT, SVM, and KNN, using consistent data
preprocessing and labeling protocols. These approaches allow for an unbiased assessment of
classification performance across ergonomic risk levels and physical subtasks in HRC disassembly

contexts.

Comparative evaluations in prior research provide valuable guidance for identifying model
architectures that can address the dual challenges of ergonomic risk classification and subtask

recognition in disassembly work.
2.5 Deep Learning in Ergonomic Prediction

Deep learning (DL) models have emerged as powerful alternatives to handcrafted feature
engineering and classical machine learning (ML) approaches for ergonomic risk assessment.
Among them, Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM)
networks are notable for their ability to capture spatial and temporal patterns in human motion data

[8.,9].

CNNs excel at learning local and hierarchical features from structured inputs such as multichannel
inertial measurement unit (IMU) signals or posture matrices. Liang et al. (2021) applied a CNN to
extract posture representations from 3D skeletal data, achieving higher classification accuracy and
generalizability than conventional methods [26]. Similarly, Baskar et al. (2021) trained a 1D CNN
on IMU signals for workplace posture classification, reporting robust cross-subject performance

[27].



11

LSTM networks, in contrast, are designed to process sequential data by retaining information
across time steps, making them suitable for modeling dynamic movement patterns [28].
Ergonomic applications have included motion segmentation, activity recognition, and
physiological monitoring. For instance, Ghani et al. (2021) used LSTMs to predict work stress and
fatigue from wearable sensor data, demonstrating their utility in continuous monitoring contexts

[29].

From a biomechanical perspective, work-related musculoskeletal disorders (WMSDs) are often
linked not only to isolated postures but also to repetitive or sustained exposure to suboptimal
positions, high force exertion, and inadequate recovery time [31]. While traditional ergonomic
tools such as RULA and REBA incorporate frequency into their scoring, they do so in broad
categories without fine-grained temporal tracking [32]. Wearable sensor systems offer the
potential to monitor and quantify such exposure patterns in real time. Nevertheless, as highlighted
in a systematic review by Tkachuk et al. (2022), fewer than 15% of IMU-based ergonomic studies
addressed exposure duration, and only a small fraction implemented sequence-aware models such

as LSTMs [33].

Although the present study focuses on static-window risk classification using multiple ML and DL
models, the integration of time-dependent risk indicators and sequence-based modeling remains

an important and underexplored research direction [10].
2.6 Multi-Model Comparisons in Ergonomics Literature

One of the overlooked aspects in ergonomic modelling is the lack of a comprehensive comparative
analysis between different machine learning approaches. Many studies validate their proposed
method in isolation, on limited datasets or under specific conditions, without benchmarking against
other well-established models. This restricts the ability of researchers and practitioners to
objectively determine which models are best suited for ergonomic risk classification in varied

industrial scenarios [7].

The value of multi-model evaluation has been emphasized in related fields such as human activity
recognition and gait analysis, where performance across tasks, environments, and populations can
vary significantly depending on model complexity and data representation [34In ergonomics,
however, comprehensive comparative studies remain uncommon. Existing research often

concentrates on a single classifier or, at most, compares two closely related algorithms, typically
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without a thorough examination of important trade-offs such as interpretability, suitability for real-

time deployment, or robustness under varying task and sensor conditions.

In the context of wearable sensor—based ergonomics, comparative studies do exist but often face
notable limitations. Many examine only a small set of models, focus on narrowly defined tasks, or
omit discussion of trade-offs such as interpretability, computational efficiency, and robustness
across varied conditions. These limitations hinder the identification of models best suited for
deployment across diverse ergonomic scenarios, including lifting, sorting, or disassembling. For
example, Karvekar et al. (2022) compared CNN and SVM for posture classification but restricted
their analysis to a single repetitive task, limiting generalizability [35]. Similarly, Cho et al. (2020)
applied Random Forests and ANN to lifting-risk evaluation but did not benchmark against
temporal models or provide justification for model selection [36]. Addressing these constraints is
essential for developing ergonomic assessment systems that are adaptable, reliable, and optimized

for real-world industrial environments.

Our study addresses this shortfall by systematically comparing six commonly used models, CNN,
DNN, RF, DT, SVM, and KNN, on a shared, labeled dataset derived from IMU sensors during
human-robot disassembly tasks [7]. All models were trained and validated under uniform data
preprocessing, feature extraction, and labeling conditions, enabling unbiased benchmarking. The
results not only reveal performance strengths but also clarify the limitations of each model type

across task classification and ergonomic risk prediction.

Such comparative insight is critical for practical deployment, where real-time performance,
explainability, and hardware constraints must be balanced. By reporting on both task and risk
classification accuracies, our multi-model analysis provides actionable guidance for selecting

appropriate models in future ergonomic systems.
2.7 Underrepresentation of Disassembly Ergonomics in HRC Research

Within the broader field of human-robot collaboration (HRC), most ergonomic assessments and
system developments have focused on assembly rather than disassembly contexts [1]; [2].
Disassembly tasks, an increasingly vital part of the circular economy, remanufacturing, and
sustainable waste management, are fundamentally different from assembly in both structure and

ergonomic demands.
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Unlike assembly tasks, which are often optimized for robotic compatibility and designed for ease
of access, disassembly involves reversed processes where parts may be hidden, damaged, or
unstructured. This results in unpredictable task flows, frequent tool changes, awkward postures,
and higher exposure to repetitive actions, all contributing to elevated ergonomic risks [37].
Moreover, as automation in disassembly remains limited, the human contribution remains

dominant, particularly for tasks involving delicate or high-judgment decisions.

In addition, the variability in component sizes and joint configurations in EoL products forces
operators into non-standardized positions, often exceeding safe ranges of motion [38].
Disassembly thus requires not only flexible cognitive strategies but also adaptive physical
responses, something not adequately captured by existing ergonomic models developed for

structured assembly workstations.

Despite these known differences, few studies have focused on sensor-based ergonomic assessment
tailored to disassembly workflows. Most wearable sensor studies are set in controlled, repetitive
environments such as packaging, lifting, or assembly lines [39]. In our work [1]; [7], we address
this gap by applying IMU-based monitoring and machine learning classification specifically to
disassembly subtasks in an HRC environment. Tasks such as part separation, cable detachment,
and sorting are segmented and evaluated independently to understand posture-specific and

cumulative ergonomic risks.

This underrepresentation in literature points to the urgent need for ergonomic models and risk
detection frameworks that account for the unique complexity and unpredictability of disassembly

tasks, particularly as robotics becomes more integrated into circular manufacturing systems.
2.8 Justification for the WMSDsNet Framework

The convergence of gaps identified in previous sections, namely, the overreliance on snapshot
posture assessments [16],[17],[ 18], the underuse of temporal models [28],[29],[40], the absence of
cumulative risk tracking [12],[31],[55], and the lack of disassembly-specific ergonomics

[36],[37],[38], motivates the design of our proposed architecture, WMSDsNet.

WMSDsNet integrates CNNs and LSTMs into a hybrid deep learning model that performs dual
classification of (1) physical subtasks and (2) ergonomic risk levels using wearable IMU signals.

The CNN layers extract spatial features from high-resolution time windows, while the LSTM
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layers capture sequence patterns to assess frequency and duration-based risk accumulation. This
dual-stream structure enables the system to function as both a real-time classifier and a temporal

exposure monitor, allowing for the early detection and prevention of WMSDs.

This design aligns with the trend toward multitask learning architectures in wearable health
monitoring, where a single model addresses multiple outputs to enhance system efficiency and
consistency [40]. Additionally, our model aligns with the growing focus on interpretable deep
learning in industrial applications, where safety-critical decisions must be transparent and

explainable to operators and supervisors [41].

Furthermore, WMSDsNet is among the first models to be trained on IMU data collected during
actual HRC disassembly tasks, under three risk scenarios (safe, moderate, and high). The
framework supports real-time deployment and personalization through task-specific labelling and

motion-aware subtask recognition.

In this way, WMSDsNet not only advances the state of the art in ergonomic modelling but also
demonstrates how Al-driven approaches can support proactive health and safety interventions in
industrial settings, especially in the high-risk, underexplored domain of human-robot disassembly

collaboration.
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CHAPTER 3 RESEARCH APPROACH AND STRUCTURE OF THE

THESIS

Research Methodology

This chapter outlines the research process applied to design, implement, and validate WMSDsNet,

a real-time sensor-based framework for ergonomic risk prediction in human-robot collaborative

(HRC) disassembly environments. The overall methodology draws inspiration from the CRISP-

DM process model, adapted here to the context of ergonomic machine-learning applications. The

sequence of steps, business understanding, data generation, data preparation, modeling, and

evaluation, ensures a transparent, reproducible approach from problem definition to experimental

validation.

3.1 Business Understanding: Ergonomic Context and Objectives

Work-related musculoskeletal disorders (WMSDs) are a major concern in industrial
environments where human—robot collaboration is increasingly adopted for disassembly
operations.

The study begins by defining the ergonomic goals underpinning WMSDsNet:
To identify postures and repetitive actions that contribute to cumulative strain.
To enable data-driven prediction of ergonomic risk levels in real time.

To bridge ergonomic evaluation tools (RULA and REBA) with sensor-based machine

learning methods for proactive prevention.

This phase translates ergonomic concepts into measurable learning objectives, where
RULA and REBA scores act as ergonomic ground-truth labels guiding model training and

evaluation.

3.2 Data Generation: Experimental Design and Sensor Configuration

A laboratory-based HRC disassembly scenario was designed to reproduce typical
ergonomic risks found in industrial environments. One trained participant executed four
subtasks, unscrewing components, detaching cables, sorting parts, and changing tools,

under three predefined ergonomic risk levels (low, moderate, and high).
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Each subtask-risk combination was repeated multiple times to ensure data sufficiency and
balanced representation across classes. Although this balanced design facilitates reliable
model training, it is recognized that real-world conditions often present imbalanced risk

exposure, an important limitation discussed later.

Ten T-Sens Motion v9.0 IMU sensors were placed on key body segments (head, shoulders,
upper arms, forearms, waist, lower back, and legs). Each sensor recorded tri-axial
acceleration and angular velocity at 100 Hz, producing high-resolution motion data
synchronized across all segments. The configuration ensured complete kinematic coverage
of body movements relevant to WMSD risk factors such as awkward posture, repetition,

and asymmetry.

3.3 Data Preparation: Preprocessing and Labeling

Raw IMU signals were first synchronized, filtered, and segmented into fixed-length
windows representing continuous movement sequences. Each segment was labeled using
RULA (for upper-body subtasks) or REBA (for full-body subtasks) scores, resulting in

structured and standardized risk categories: safe, moderate, and high.

This step produced a clean, reproducible dataset that constitutes the ergonomic learning
base for subsequent model training. The dataset integrates both physical-task labels
(subtasks) and ergonomic-risk labels, enabling dual-output classification central to the

WMSDsNet framework.

3.4 Modeling: Machine Learning Framework Design

Model Selection

Six supervised machine-learning models were developed and evaluated to determine the

most suitable algorithm for ergonomic risk prediction:

Deep Learning Models: Convolutional Neural Network (CNN) and Deep Neural Network
(DNN)

Classical Machine-Learning Models: Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), Decision Tree (DT), and Random Forest (RF)
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These models were chosen to represent both deep and classical paradigms, allowing a

balanced comparison of accuracy, interpretability, and computational cost.

Architecture Rationale

The DNN architecture was selected as the primary backbone for WMSDsNet due to its
ability to learn from raw IMU signals without manual feature engineering.
Its dense layers capture high-dimensional nonlinear relationships between motion signals
and ergonomic scores. The CNN architecture was tested to evaluate spatial-pattern
extraction capability across sensor channels. Hyperparameters, number of layers, dropout
rate, activation functions, and batch size, were tuned through iterative experimentation to

maximize generalization.

Dual-Output Learning

1.

WMSDsNet integrates two parallel output heads:

Subtask Classification: Recognizes the specific physical activity being performed.

2. Risk Classification: Predicts the corresponding ergonomic risk level.

This dual structure allows the model to provide context-aware feedback, where risk prediction is

informed by the nature of the subtask.

3.5 Evaluation: Validation, Metrics, and Interpretation

Model performance was evaluated using both aggregate and class-specific metrics:
Accuracy to measure overall correctness.

Macro-average and per-class Fl-scores to assess model robustness across imbalanced

categories.
Confusion matrices to visualize misclassifications between subtasks and risk levels.

Complementary visualizations, including heatmaps and radar charts, were used to highlight
inter-class relationships and posture-risk interactions. For clarity, all confusion matrices
are now displayed two per page maximum, following consistent orientation and labeling

standards.
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e The DNN achieved the best overall performance, reaching 92 % accuracy for subtask
classification and 90 % for ergonomic-risk classification. This confirmed the framework’s
feasibility for real-time, sensor-based ergonomic monitoring in collaborative disassembly

environments.
3.6 Summary of Methodological Flow

e The methodology integrates ergonomic theory, sensor technology, and machine learning

into a unified framework that progresses through five interdependent stages:

1. Business Understanding: Translate ergonomic risks into measurable learning goals using

RULA/REBA.

2. Data Generation: Collect multi-segment IMU data from HRC disassembly tasks under

controlled conditions.
3. Data Preparation: Clean, segment, and label data to create an ergonomic learning base.

4. Modeling: Train and compare six ML algorithms, implement the dual-output WMSDsNet

model.

5. Evaluation: Quantitatively assess performance and interpret ergonomic implications

through visualization and metrics.
3.7. Structure of the Thesis
This thesis is organized as follows:
Chapter 1: Introduction

Presents the background, research motivation, problem statement, and objectives. Emphasizes the
significance of WMSDs in HRC environments and introduces the proposed WMSDsNet

framework.
Chapter 2: Literature Review

Reviews prior work on wearable sensor-based ergonomic risk assessment, machine learning in
ergonomics, and ergonomics in HRC disassembly contexts. Identifies research gaps that motivate

this study.

Chapter 3: Research Approach and Structure of the Thesis
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Details the overall methodology applied in both stages of the research and outlines the thesis

structure.
Chapter 4: Journal Paper

Presents the journal article containing the extended study, including the comparative evaluation of

six ML models (CNN, DNN, SVM, KNN, DT, RF), deeper analysis, and trade-off discussion.
Chapter 5: Discussion

Interprets findings in light of the literature, examines strengths and limitations, and outlines

potential directions for further research.
Chapter 6: Conclusion and Recommendations for Future Work

Summarizes the key outcomes of the research and provides practical recommendations for

applying the WMSDsNet framework in real-world industrial settings.
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CHAPTER 4 ARTICLE 1: Development of a Sensor-Based Ergonomic
Risk Assessment Framework Using Machine Learning: Application to

Human-Robot Collaborative Disassembly

Authors: Marziyeh Mirzahosseininejad, Firdaous Sekkay, Elham Ghorbani, Ashkan Amirnia,
Samira Keivanpour

The paper was submitted on July 31, 2025, and is currently under review in the International

Journal of Industrial Ergonomics.

Abstract, Despite advances in automation, work-related musculoskeletal disorders (WMSDs)
remain common in industrial environments, especially in human-robot collaboration (HRC)
systems where physical subtasks continue to pose ergonomic risks. This study introduces
WMSDsNet, a real-time framework that uses wearable inertial measurement unit (IMU) sensors
to classify ergonomic risk levels and recognize physical subtasks during collaborative disassembly
operations. The system captures motion patterns from key body segments and labels them using
two widely accepted ergonomic tools: Rapid Upper Limb Assessment (RULA) and Rapid Entire
Body Assessment (REBA).

Unlike previous approaches that focus on either posture or task recognition alone, WMSDsNet
handles both within a consistent and reproducible setup. A labeled dataset was collected and used
to train six machine learning models: Convolutional Neural Network (CNN), Deep Neural
Network (DNN), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree
(DT), and Random Forest (RF). Among these, the DNN performed best, reaching 92% accuracy
in subtask classification and 90% in ergonomic risk prediction, with strong F1-scores across all

categories.

The framework not only compares the models across accuracy and class balance but also considers
their speed and ability to generalize. Results show that deep learning and ensemble methods (DNN,
CNN, RF) are especially effective for this dual-task classification. WMSDsNet offers a practical,
repeatable approach for evaluating ergonomic risk with machine learning and helps bring

intelligent, worker-centered safety solutions into modern industrial environments.
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4.1. Introduction

In the era of Industry 4.0, where intelligent automation and human-robot collaboration are
transforming industrial workflows, work-related musculoskeletal disorders (WMSDs) are among
the leading causes of occupational injuries and remain a major public health concern in
industrialized nations [1,2].They are responsible for nearly half of all work-related health
problems, significantly affecting worker well-being and quality of life [9,53]. Beyond personal
health, WMSDs impose substantial costs on organizations through productivity loss and increased
absenteeism [5]. A study involving 197 participants showed that over 77% experienced
discomfort-related productivity loss, with high rates of absenteeism and presenteeism [8]. In 2017
alone, musculoskeletal conditions were associated with 138.7 million Disability-Adjusted Life
Years (DALYSs) across more than 1.3 billion cases globally, underlining their vast societal impact

[54].

Common risk factors for WMSDs include high-force exertion, repetitive motion, and awkward
postures such as bending, twisting, or kneeling [55]. Early detection of ergonomic risks is essential
for mitigating long-term consequences. Conventional ergonomic assessments rely on standardized
tools like RULA and REBA, which require manual expert observation aligned with ISO
guidelines. While well-established, these methods are time-consuming, subjective, and poorly
suited to dynamic industrial conditions [10]. Effective prevention demands accurate identification
of ergonomic risk factors through systematic assessment and real-time monitoring. A recent review
by Siddhaiyan et al. [7] further emphasizes the limitations of these traditional approaches and
highlights the need for more intelligent, automated, and scalable risk assessment systems within

Industry 4.0 frameworks.

Recent advances in artificial intelligence (AI) and machine learning (ML) have opened new
pathways for automating ergonomic evaluations [56]. A review of 188 papers, including 28
selected studies, highlighted the increasing use of Al to assess ergonomic risks and support
flexible, intelligent industrial systems [56]. Commonly used ML models include support vector
machines (SVMs), convolutional neural networks (CNNs), and random forests (RFs), primarily
for classifying postures and predicting WMSDs [30,38,57,59]. More recent work has expanded to
deep learning approaches such as long short-term memory (LSTM) networks, especially for

sequence modeling in dynamic tasks [60,61].
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The integration of wearable motion capture systems, particularly inertial measurement units
(IMUs), has transformed physical ergonomics, an area focused on optimizing human physical
interaction with tasks, tools, and environments, by enabling accurate, continuous monitoring of
biomechanical parameters [61,45]. IMUs, consisting of tri-axial accelerometers, gyroscopes, and
magnetometers, offer reliable kinematic data during complex movements [61]. They are more
practical than vision-based methods in cluttered or constrained environments [62], and are non-
invasive, cost-effective, and scalable for industrial use [63,64]. IMUs have been used for both
posture classification and real-time ergonomic risk detection [65]. Studies show they outperform
depth cameras like Kinect in capturing fine-grained motion and provide effective analysis for
various body segments [66,67]. Some frameworks have integrated IMUs with additional sensors,
such as pressure, EMG, or inclinometers, for a more comprehensive biomechanical evaluation

[68]. However, validation in real industrial environments remains limited [62].
4.1.1 ML Applications in Ergonomic Risk Prediction

The application of machine learning (ML) in ergonomic risk prediction has gained significant
momentum in recent years, driven by the increasing adoption of Industry 4.0 technologies that
facilitate real-time monitoring, intelligent feedback systems, and data-driven decision-making in
dynamic work environments. Traditional observational methods for assessing work-related
musculoskeletal disorders (WMSDs), such as the Rapid Upper Limb Assessment (RULA) and
Rapid Entire Body Assessment (REBA), are widely used but present several limitations. These
include subjectivity, dependency on expert observation, and a lack of scalability for continuous

and objective risk evaluation in complex, fast-paced industrial settings [60].

In response to these challenges, ML-based approaches have emerged as powerful alternatives that
can identify and mitigate ergonomic risks more proactively. A comprehensive scoping review by
Chan et al. analyzed 130 primary studies and found a substantial rise in the use of ML techniques
for WMSD prevention, with nearly one-quarter of the studies published in 2020 alone [69].
Commonly used models included artificial neural networks (ANNSs), decision trees, and support
vector machines (SVMs), which were applied primarily for classification and regression tasks

aimed at identifying risk factors and developing intervention strategies [69].

Beyond classical techniques, recent experimental studies have adopted more advanced and diverse

ML methods to improve predictive accuracy and support real-time risk detection. These include
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random forests (RF), convolutional neural networks (CNNs), long short-term memory (LSTM)
networks, and other sequence-aware models. For instance, Fernandes et al. proposed an LSTM-
based deep learning model to predict shoulder movements using sensor-derived orientation angles.
Their results showed that sequence-to-sequence models outperformed classical ML algorithms in
forecasting potentially harmful motion patterns associated with WMSDs, particularly in tasks

involving repetition or awkward postures [61].

Matos et al. extended this approach by integrating a motion capture system with a time series
forecasting (TSF) module and a WMSD risk classifier [70]. Their framework used historical
angular trajectory data to train forecasting algorithms such as SVM, XGBoost, LSTM, and
multilayer perceptron (MLP), enabling the system to anticipate future movement patterns and
assess ergonomic risk against ISO-defined thresholds. Among the models evaluated, SVM offered
a favorable balance between computational efficiency and predictive performance, particularly for

assessing shoulder abduction and rotation in textile manufacturing [70].

Despite these advances, Sherafat et al. noted in their review of ML-based activity recognition in
industrial construction that many existing models were not suitable for real-time deployment. They
often relied on offline video analysis or manually annotated post-task data, which limited
scalability and practical implementation [71]. Their work highlighted the urgent need for sensor-
based ergonomic monitoring systems that can function autonomously without constant expert

supervision, aligning with the broader goals of wearable ML approaches.

Supporting the trend toward temporal modeling, Dey and Schilling applied a temporal
convolutional neural network (TCN) to predict foot angle trajectories in powered prosthetics using
a single IMU sensor [72]. Although their focus was not on ergonomics, the study demonstrated
the effectiveness of low-latency sequence modeling for real-time biomechanical prediction tasks,

reinforcing the value of deep temporal architectures in wearable sensor applications.

In summary, recent advancements illustrate the growing role of deep learning and temporal
modeling in ergonomic risk prediction. Models like CNN and LSTM are particularly well-suited
for capturing dynamic movement patterns that static feature-based methods often miss. However,
several limitations persist across current studies, including a narrow focus on specific postures,
limited comparison of ML models under unified experimental setups, and an overrepresentation

of applications in construction or healthcare. There remains a significant research gap in
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ergonomic risk prediction for collaborative disassembly tasks in human-robot environments, an

emerging but underexplored domain in the context of Industry 4.0 [60,69,70,71,72].
4.1.2 Wearable Sensor Systems

The integration of wearable sensors, particularly inertial measurement units (IMUs), has
significantly advanced the field of physical ergonomics by enabling objective, real-time, and
continuous monitoring of posture, motion, and ergonomic risk factors. IMUs typically consist of
tri-axial accelerometers, gyroscopes, and magnetometers, which allow for the capture of detailed
kinematic data during a variety of industrial tasks [61,73]. Compared to vision-based systems,
IMUs are less intrusive, more practical for deployment in the field, and especially effective in
cluttered or constrained environments where optical tracking systems like Kinect often fail [45,65].
Their compact form factor and high sensitivity make them particularly suitable for monitoring
awkward or repetitive postures that may otherwise be missed by observational methods [65]. Clark
et al. [74] highlighted that 3D vision-based tracking systems such as Kinect often face limitations
in depth accuracy, occlusion handling, and constrained environments, which underscores the need

for alternative sensing modalities like IMUs in ergonomic monitoring.

Studies have demonstrated the effectiveness of IMUs in capturing fine-grained motor patterns,
[61,62,63,66]. They have been successfully used across various body segments, including the
upper and lower limbs and trunk, to assess complex full-body movements during industrial tasks
[67]. IMU-based systems have also been integrated with machine learning (ML) algorithms to
automate posture classification and WMSD risk detection. For instance, a multi-step deep learning
pipeline incorporating a Seq2Seq LSTM architecture was used to forecast angular posture
trajectories and detect high-risk movements, demonstrating strong performance on data collected

via shoulder-mounted IMUs [60].

IMUs are not only useful for classification but also for regression-based motion prediction,
supporting both real-time feedback and long-term ergonomic planning [60]. Furthermore, IMU-
based risk classification frameworks have been developed to detect postural deviations and
estimate ergonomic strain, effectively replacing traditional observational tools like RULA and

REBA with more scalable, sensor-driven solutions [65].

To improve biomechanical accuracy, some studies have proposed hybrid systems that combine

IMUs with complementary sensors such as pressure sensors, inclinometers, or electromyography
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(EMG) [67]. These multimodal setups allow for more comprehensive assessments by correlating
movement patterns with muscular activity or load distribution. However, while these data fusion
approaches hold promise, many remain at the experimental stage and are seldom validated under
realistic industrial constraints [62,68]. Additionally, although multimodal combinations can
theoretically enhance biomechanical coverage, few studies have deployed such systems in actual

workplaces, often limiting trials to lab-based environments or small sample sizes [62].

Overall, wearable sensor-based ergonomic monitoring, especially when using IMUs, offers a
promising alternative to subjective observational methods. By enabling real-time WMSD risk
detection and supporting long-term ergonomic improvements, these technologies help bridge the

gap between laboratory research and practical workplace applications [65,75].
4.1.3 Human-Robot Collaboration in Disassembly Tasks

Human-Robot Collaboration (HRC) has emerged as a core feature of Industry 4.0, enabling
flexible, adaptive manufacturing systems where human and robotic agents share tasks
dynamically. In these hybrid environments, robots often assume responsibility for physically
demanding or repetitive operations, theoretically reducing the ergonomic burden on human
workers. However, research shows that ergonomic risks, particularly those related to posture and
repetition, are not fully eliminated. In disassembly tasks, for example, humans still perform
physically static or awkward subtasks such as unscrewing components, disconnecting cables, or
sorting materials [44,76,77,78]. These actions can contribute to cumulative strain and work-related
musculoskeletal disorders (WMSDs), especially when repeated over long shifts. Despite this,
physical ergonomic concerns in HRC settings are often overlooked under the assumption that

automation inherently resolves such risks.

Disassembly lines, in particular, benefit greatly from HRC by enabling faster processing of end-
of-life products and supporting circular economy initiatives [6,43]. However, even in cobot-
assisted systems, ergonomic strain is not entirely mitigated. For instance, Siew et al. found that
while collaborative disassembly improved ergonomic outcomes compared to manual operations,

suboptimal task allocation could still lead to joint overloading [76,79].

While interest in ergonomics within HRC is growing, the majority of recent research has
concentrated on cognitive ergonomics, including stress, mental workload, and human-robot trust.

For instance, Rajavenkatanarayanan et al. developed a real-time cognitive load monitoring system
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using ECG and EDA sensors to support adaptive robotic behavior based on user stress levels [40].
Similarly, studies by Antonino et al. [81], Wu et al. [82], and Xie et al. [83] have explored cognitive
fatigue, human-robot interaction strategies, and reinforcement learning for enhancing worker well-
being. These contributions have advanced adaptive HRC systems, but they primarily address the

psychological and perceptual dimensions of ergonomic comfort.

In contrast, research targeting physical ergonomic risks, especially in the context of subtasks
involving awkward posture, force exertion, or sustained static positions, remains comparatively
limited. Lorenzini et al. provided a comprehensive review of ergonomic HRC, concluding that
although both physical and cognitive ergonomics have received increased attention, several core
challenges remain unresolved. Specifically, they highlighted the absence of real-time ergonomic
risk monitoring, cost-effective sensor integration, and systems capable of detecting biomechanical

strain during human-robot cooperation [77].

Although several frameworks have proposed integrating tools like RULA, REBA, or
biomechanical estimations into collaborative robotic systems, most of these studies focus on
narrow use cases, simulated movements, or early-stage lab experiments [78,84,85]. For example,
Meregalli Falerni et al. introduced an adaptive HRC system that modified robot behavior based on
ergonomic posture classification, but the system was tested only in single-arm tasks within
constrained lab setups [78]. Similarly, Kim et al. proposed biomechanical joint torque estimation
during shared tool usage, but their model lacked generalizability to broader, real-world task

sequences [85].
4.1.4. Research Gaps

Disassembly-specific HRC environments remain underexplored, despite their growing industrial
relevance. Unlike high-risk sectors like construction or agriculture, ergonomic strain in semi-
automated disassembly is less visible and often under-prioritized [80.81]. Another challenge in the
literature is the lack of standardized comparative evaluation of ML models for ergonomic risk
classification. Many prior studies evaluate a limited number of algorithms (e.g., two or
three)[61,69,70]. This narrow scope limits the generalizability of findings, overlooks potentially

better-performing models, and makes it difficult to draw consistent conclusions across studies.

Despite growing interest in ergonomics within human-robot collaboration, most recent research

still prioritizes cognitive metrics, such as mental workload, stress, and user trust, or focuses on
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generalized coordination frameworks. In contrast, posture-specific physical ergonomic risks in
collaborative settings remain critically underexplored [77,80,83]. This gap is particularly evident
in disassembly tasks, where workers continue to perform static or awkward motions, despite
robotic assistance. Few studies have addressed real-time physical ergonomic risk classification
within these task contexts, especially using wearable IMUs combined with standardized risk
labeling tools like RULA and REBA. As a result, there is a clear need for sensor-based frameworks
that go beyond general posture classification and specifically target physical ergonomic risks

during subtasks in collaborative industrial environments.

Labeling methods are frequently subjective, relying on expert ratings or self-reported discomfort,
which limits generalizability [88]. Others use survey-based data without sensor input or ground-
truth ergonomic scoring, such as RULA or REBA [88]. For example, Kiraz & Gegici used pose
images and deep learning to classify REBA risk levels, but without task-specific segmentation or
real-time context [90]. Fernandes et al. proposed sequential modeling for ergonomic hazard
prediction, but did not address dual-task classification in collaborative settings [45]. Luo et al. and
Hanumegowda et al. relied on questionnaires and classical ML methods but did not incorporate
sensor-based motion data [61]. Matos et al. and Barkallah et al. applied LSTM and hybrid neural
networks to ergonomic classification using motion and force sensors, but their datasets were
limited in domain and complexity [70,32]. Chen et al. used 1D CNN to classify ergonomic risk

from IMU signals but lacked simultaneous task identification [95].
4.1.5. Objectives

This study addresses these gaps by proposing a sensor-based framework for ergonomic risk
detection in collaborative disassembly. A controlled lab setup is used to simulate realistic subtasks,
each labeled using standardized RULA and REBA scores. This unified and replicable setup
ensures consistent risk labeling across subtasks while maintaining methodological control over
experimental variables. IMU data is captured in real time to construct a multi-class dataset. Six
machine learning models, CNN, DNN, SVM, KNN, Decision Tree, and Random Forest, are then
evaluated using consistent preprocessing, task segmentation, and dual classification outputs. Prior
work confirms that joint overloading persists during HRC tasks [79] and that even when simulation

tools are available, manual disassembly poses significant ergonomic risks [36].
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In summary, machine learning has been increasingly applied to ergonomic risk classification,
particularly through wearable sensor data and posture recognition. Yet, key limitations persist in
prior studies, including subjective labeling, lack of task-specific risk modeling, and settings that
are non-industrial or non-collaborative. Comparative benchmarking is also limited, with most
approaches focusing solely on posture classification, neglecting task identification and multi-phase
subtasks. Moreover, cognitive ergonomics in HRC has received more attention than physical risk
modeling, especially in real-time contexts. To address these gaps, our study proposes a dual-output
classification model, predicting ergonomic risk levels and subtasks in an HRC disassembly setting,
using structured sensor data and evaluating six ML algorithms based on accuracy, precision, recall,
and F1-score. It is important to note that this study was conducted using a single-subject dataset in
a controlled environment, which supports reproducibility but may limit generalizability, an aspect

further discussed in Section 4.3.

To express the novelty of our proposed model, we compare it to recent studies in Table 4-1, which
summarizes key characteristics such as task focus, labeling strategy, application domain, ML
model selection, dataset design, and evaluation metrics. As shown in the table, most existing works
focus on posture-based risk recognition, often in high-risk physical domains, with limited
application to collaborative, task-based environments. In contrast, our work integrates real-time
sensor data, subtask-specific risk labeling using RULA and REBA, and dual classification of both
task and ergonomic risk in an HRC disassembly context, offering a structured and reproducible

contribution to the field.
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Table 4-1: Comparative Evaluation Toward Previous Studies (continued)
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Table 4-1: Comparative Evaluation Toward Previous Studies (continued and end)
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4.2. Methodology

This study adopts a structured methodology comprising six components: participant and
experimental setup, task description and ergonomic risk assessment, sensor setup and data
collection, data preprocessing and feature extraction, machine learning model training and
evaluation, and the development of a dual-output deep learning classifier for ergonomic risk
prediction. As illustrated in Figure 4-2, this six-stage pipeline ensures a systematic flow from
experimental design to model deployment, integrating ergonomic principles with advanced

machine learning for accurate and interpretable risk assessment.
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Figure 4-2: Workflows Overview



35

4.2.1. Experimental Setup

Experiments were conducted in a controlled laboratory environment (at Polytechnique Montreal
University), simulating a human-robot collaborative (HRC) disassembly workstation. The
researcher performed all human-subtask executions, ensuring consistency and eliminating inter-
subject variability. The scenario involved the disassembly of a Programmable Logic Controller
(PLC), selected for its structural complexity and demand for diverse physical actions, such as fine
motor control, dynamic movement, and sustained posture. These characteristics allowed for

capturing a wide spectrum of ergonomic risk levels relevant to industrial environments.

To mitigate ethical concerns, no external participants were involved. All subtasks were predefined
and executed following strict ergonomic scoring protocols using RULA and REBA. This ensured
controlled, repeatable motion sequences aligned with specific ergonomic risk levels and industrial

task demands.
4.2.2. Task Description and Ergonomic Risk Assessment

Four representative subtasks were designed to reflect key physical movements in collaborative

disassembly:

1. Unscrewing components — involving upper-limb precision and wrist deviation.

2. Detaching cables — requiring repetitive pulling and shoulder-arm coordination.

3. Sorting components — involving dynamic full-body movements (e.g., bending, twisting).
4. Changing robot tools — requiring static posture and postural control.

These subtasks were selected to represent three ergonomic patterns: static, repetitive, and dynamic.
Each was simulated at three ergonomic risk levels: low, moderate, and high. The ergonomic risk
levels were predefined based on RULA for upper-body tasks and REBA for full-body tasks. Each
subtask-risk pair was repeated three times to ensure consistency and repeatability, forming 12

unique combinations.

Risk labeling was grounded in ergonomic theory and executed through a scenario-based protocol.
Rather than post hoc scoring, risks were assigned through predefined movement sequences

reflecting RULA/REBA thresholds. For example, sorting involved trunk flexion and twisting
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motions classified as high risk under REBA, while unscrewing included sustained wrist angles

exceeding RULA thresholds.
4.2.3. Sensor Setup and Data Collection

A total of 10 T-Sens Motion sensors (TEA, Version 9.0) were used to capture full-body movement
data. Each sensor included a 3-axis accelerometer and gyroscope, recording five types of signals:
linear acceleration along the X, Y, and Z axes, angular velocity (W), and a sensor ID tag (S). The
sensors recorded data at a sampling rate of 100 Hz, offering high temporal granularity to detect

rapid motion changes and subtle joint deviations that are essential for robust risk classification.

The sensors were placed on the head, shoulders, upper arms, forearms, waist, lower back, and legs.
These locations were chosen to track key joints and body segments involved in the disassembly
tasks, such as shoulder rotation, trunk bending, and leg stabilization, while keeping the setup

practical and not overly intrusive.

After data collection, the recordings were reviewed to confirm that each movement matched the
intended ergonomic risk level. Each subtask-risk combination was repeated three times to ensure
consistency, and movement traces were checked to align with RULA and REBA scoring
thresholds. This helped confirm that the data accurately reflected the different ergonomic

conditions being studied.
4.2.4. Data Preprocessing and Feature Extraction

Captured signals underwent a structured preprocessing pipeline comprising three steps. First, noise
was attenuated using a 4th-order low-pass Butterworth filter with a cutoff frequency of 5 Hz,
effectively removing high-frequency sensor noise while preserving relevant human motion
patterns. Second, z-score standardization was applied across all sensor channels to ensure
consistent input scaling, which is essential for stable model training. Finally, the signals were
segmented into fixed-length windows of 2 seconds (200 samples at 100 Hz), with each window
labeled by its associated subtask and ergonomic risk level (e.g., “detaching cables at high risk™).
The 2-second window length was chosen to reflect the average duration of discrete disassembly
motions, offering sufficient temporal context for recognizing posture dynamics and ergonomic

transitions.
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This process yielded a 12-class single-label classification task, corresponding to the combination
of 4 subtasks and 3 ergonomic risk levels. The final dataset included approximately 750,000
segments, with each class comprising roughly 60,000 to 70,000 samples. While minor imbalance
emerged due to differences in motion complexity and execution time across subtasks (e.g., sorting
versus unscrewing), the scenario was designed with equal repetition and trial length per condition.
As a result, no resampling or class weighting was necessary, and all models were trained directly
on this near-uniform distribution. To support fair evaluation across model types, the dataset was
partitioned as follows: 80/20 for classical machine learning models (training/testing), and 70/10/20

for deep learning models (training/validation/testing).

Both classical and deep learning models received raw segmented IMU sequences as input. For
classical models, each 2-second segment was flattened into a fixed-length vector (5 signals x 200
samples = 1000 features), allowing them to process raw temporal information without handcrafted
feature extraction. This approach ensured consistency in input structure across models and
preserved the full kinematic content of the signals, linear acceleration (X, Y, Z), angular velocity

(W), and sensor ID (S), captured across all body segments.
4.2.5. Machine Learning Models and Evaluation

Six supervised machine learning models were applied to classify ergonomic risks and identify

disassembly subtasks:
e Deep Learning Models: Convolutional Neural Network (CNN), Deep Neural Network
(DNN)

e Classical Machine Learning Models: Support Vector Machine (SVM), Random Forest
(RF), Decision Tree (DT), K-Nearest Neighbors (KNN)

These models were chosen for their range of learning capabilities, interpretability, and prior use in
ergonomic literature. Classical models were implemented in scikit-learn and trained using grid-

search hyperparameter tuning with the following search space:
e SVM: kernel = [‘linear’, ‘tbf’], C =[0.1, 1, 10], gamma = [‘scale’, 0.01, 0.001]

e Random Forest: n_estimators = [100, 300, 500], max depth = [10, 20, None],

min_samples_leaf =1, 2, 4]
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e Decision Tree: max_depth =[5, 10, 20], min_samples_leaf =[1, 2, 4]
e KNN: n neighbors=3,5,7,9, 11, 15]

For these models, an 80/20 train-test split was used. Although k-fold cross-validation is common,
a fixed split was applied to ensure consistent comparison across classical and deep learning

architectures.

Deep learning models were developed using TensorFlow/Keras and trained on raw IMU segments.
A 70/10/20 split was used for training, validation, and testing. Models were trained with the Adam
optimizer, learning rates between 0.001 and 0.0001, and batch sizes of 32 and 64. Early stopping
was used based on validation loss, with a patience value of 10 epochs and a maximum of 100

training epochs.

For the 12-class flat classification setup, categorical cross-entropy was used as the loss function.
For the WMSDsNet multi-task model, two categorical cross-entropy losses were used, one for

subtask classification and one for ergonomic risk level prediction, combined via a weighted sum.

Performance was evaluated using: Accuracy, Precision, Recall, Macro F1-Score, Confusion

Matrices

For deep models, training and validation loss curves were monitored to assess convergence

behavior and generalization.

This evaluation ensured fair and comprehensive comparison across architectures and model types.
All training was performed on a system equipped with an Intel Core 17 CPU, 32 GB RAM, and an
NVIDIA GeForce RTX 3060 GPU (12 GB VRAM). This setup enabled efficient model training,

particularly for deep learning architectures..
4.2.6. Proposed Model: WMSDsNet

To improve classification granularity and mirror real-world ergonomics workflows, we propose
WMSDsNet, a dual-output deep learning model. Instead of a flat 12-class model, WMSDsNet uses
multi-task learning to independently predict: Subtask type (4 classes) and Ergonomic risk level (3

classes).
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e The CNN version includes: Input reshaping, two ConvlD layers (32 and 64 filters),
Dropout layers, Global Average Pooling (GAP1D), two parallel dense output heads

(Softmax activation for subtask and risk level), as shown in Figure 4-3.

Input Convolutional Layers Classification Output

subtask_output

Dense

GlobalAver...ePooling1D
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Figure 4-3. CNN Architecture
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e The DNN version includes: Two fully connected dense layers (64 units), Dropout, Two

output heads for task and risk, as shown in Figure 4-4.
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Figure 4-4. DNN Architecture

Both models were trained using the Adam optimizer with an initial learning rate of 0.001. The
training process used batch sizes of 32 and 64, and a maximum of 100 epochs. To prevent

overfitting, early stopping was applied with a patience of 10 validation epochs.

In terms of loss functions, a multi-task categorical cross-entropy setup was used. The total loss was

computed as a weighted sum of the individual loss terms for each output head:
Total Loss = )\,1 'LOSSsubtask-%—}\.z'LOSSrisk level
In this study, equal weighting was used:

A=A=1



40

This configuration ensured that both subtask and ergonomic risk predictions contributed equally to

model optimization, allowing balanced learning across tasks.

Performance was evaluated using the same metrics as other models for comparability: Accuracy,

Precision, Recall, Macro F1-Score, Confusion Matrices

For deep models, training and validation loss curves were monitored to assess generalization and

convergence behavior.

4.3. Results
4.3.1 Deep Learning Model Results

To evaluate ergonomic risk and subtask recognition using wearable sensors, two deep learning
models were developed: a Convolutional Neural Network (CNN) and a Deep Neural Network
(DNN). Both were designed as multi-output classifiers, predicting ergonomic risk level (low,
moderate, high) and the physical subtask being performed (e.g., unscrewing, detaching, sorting).
The models were trained on the same dataset using a 70% training, 20% testing, and 10% validation

split, and evaluated independently for their performance in this dual classification task.

In terms of final classification performance, both models demonstrated strong results across
outputs. The CNN reached an accuracy of 88% for subtask classification and 89% for risk level
prediction, while the DNN achieved 92% and 90%, respectively. These outcomes are visualized in
Figure 4-5a (CNN) and Figure 4-5b (DNN), where the accuracy scores for both outputs are
displayed. Each model shows effective learning of temporal and ergonomic patterns, appropriate

for real-time prediction in human-robot collaboration settings.
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Figure 4-5. Model Accuracy for CNN(a) and DNN(b)

The learning behavior over time for both models was stable and consistent. CNN training
progressed smoothly over 50 epochs, with training and validation curves closely aligned
throughout the process. Similarly, the DNN showed fast and reliable convergence with minimal
divergence between training and validation phases. This behavior is illustrated in Figure 4-6a for
the CNN and Figure 4-6b for the DNN, where loss curves for both outputs demonstrate clear
learning progress without overfitting. The DNN exhibited slightly earlier convergence, while the

CNN maintained steady improvement throughout the training period.
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Figure 4-6. Model Loss for CNN(a) and DNN(b)

Prediction performance across all classes is further examined using confusion matrices. Figure 4-
7a displays two confusion matrices for the CNN model: one for subtask classification and another
for risk level prediction. The subtask matrix shows strong diagonal accuracy, with some
misclassification between Subtask 2 and Subtask 3. The risk matrix reflects good performance
overall, with minor confusion in moderate risk levels. This confusion likely stems from the inherent
similarity between the two subtasks, as both involve hand-level manipulations with limited gross
body movement and similar motion dynamics. These overlapping patterns may reduce the CNN’s
ability to clearly differentiate between their temporal signatures. This confusion likely stems from
the inherent similarity between the two subtasks, as both involve hand-level manipulations with
limited gross body movement and similar motion dynamics. These overlapping patterns may

reduce the CNN’s ability to clearly differentiate between their temporal signatures. Figure 4-7b



42

shows the corresponding confusion matrices for the DNN model. Both matrices demonstrate clean
decision boundaries, with stronger diagonal dominance compared to CNN. Subtask classification

is highly accurate across all four classes, and risk level predictions show minimal overlap, even in

complex ergonomic states.
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Figure 4-7. Confusion matrices for the CNN model(a) and DNN (b): one for subtask

classification and another for risk level prediction
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To complement the qualitative insights provided by the confusion matrices, Table 4-2 summarizes
the macro-average F1-scores for both subtask and risk level classification. These scores reflect the
models’ overall performance across all classes, highlighting the balanced prediction capabilities of
both CNN and DNN. As shown, the DNN slightly outperformed the CNN in both outputs,

consistent with the observed diagonal strength in the confusion matrices.

Table 4-2. Macro-average F1-scores for subtask and risk classification based on confusion matrix

evaluations.
Model Output Type Macro F1-Score
Subtask 0.88
CNN
Risk 0.88
Subtask 0.91
DNN
Risk 0.90

Overall, the CNN and DNN models each demonstrated effective multi-output learning, with strong
accuracy, well-behaved training curves, and generally clean class separation. These results support

their potential use in ergonomic risk detection systems based on real-time sensor data.

Between the two deep learning models evaluated, the DNN consistently outperformed the CNN
across all key metrics. While both models achieved high classification accuracy and macro-average
F1-scores (CNN: 88%/88%, DNN: 92%/90%), the DNN exhibited superior training stability, faster
convergence, and cleaner confusion matrices, particularly in complex subtask-risk combinations
such as Subtask 4 under high ergonomic strain. Additionally, the DNN’s simpler architecture
resulted in shorter training time and faster inference, enhancing its suitability for real-time

implementation.

The CNN, although capable, did not show a performance advantage despite its greater architectural
complexity. This is likely due to the relatively low spatial complexity and short temporal depth of

the input data. The wearable sensor dataset consisted of compact motion segments (5 features per
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timestep, short sequences), where long-range temporal dependencies or rich local patterns,
typically exploited by convolutional architectures, were limited. As a result, the CNN’s ability to
extract hierarchical spatial features offered no significant benefit, while still incurring higher
computational costs. These factors position the DNN as the more efficient and well-matched model

for the given data characteristics.
4.3.2 Classical Machine Learning Model Performance

In addition to the deep learning architectures, four classical machine learning (ML) models were
implemented and evaluated: K-Nearest Neighbors (KNN), Random Forest (RF), Decision Tree
(DT), and Support Vector Machine (SVM). Unlike the CNN and DNN models, which supported
multi-output classification, these classical models were applied to a flattened single-label format
combining both subtask and risk level into 12 joint classes (4 subtasks X 3 risk levels). This allowed
each model to predict from a unified label set representing ergonomic risk within specific task

contexts.

The overall classification performance of the classical models varied depending on their ability to
capture motion—risk relationships embedded in the wearable sensor data. Based on the information
shown in table 3, the Random Forest model achieved the highest accuracy among classical
approaches (87% accuracy, macro-average F1-score: 0.85), reflecting its strength in modeling non-
linear relationships and its robustness to noise and feature interactions. K-Nearest Neighbors
(KNN) followed with 83% accuracy and an Fl-score of 0.80, performing reasonably well but
showing limitations in generalizing complex subtask—risk overlaps due to its sensitivity to feature

scale and local variability.

The Decision Tree model achieved 83% accuracy and a slightly higher F1-score of 0.82 but showed
signs of underfitting, particularly in high-risk categories, which likely stems from its shallow
partitioning strategy and lack of ensemble learning to boost decision boundaries. In contrast, the
Support Vector Machine (SVM) performed the weakest (51% accuracy, F1-score: 0.45), struggling
with the 12-class space. This poor performance can be attributed to the linear nature of SVM’s
decision boundaries, which are less suited for modeling the non-linear and multidimensional

temporal patterns found in sensor-based ergonomic data.

These outcomes highlight how model suitability depends not only on algorithmic complexity but

also on how well the model’s structure aligns with the data’s temporal, non-linear, and multivariate
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characteristics. Non-linear ensemble methods like Random Forest are better equipped to handle

such complexity, whereas linear models like SVM are inherently limited in this context.

Table 4-3. Accuracy and macro-average F1-scores for classical machine learning models on 12-

class subtask-risk prediction.

Model Accuracy Macro F1-score
KNN 83% 0.80
Random Forest 87% 0.85
Decision Tree 83% 0.82
SVM 51% 0.45

Figure 4-8 displays the confusion matrices for all four classical models. In each matrix, the rows
represent the true labels, and the columns represent the predicted labels. Subtask codes are defined
as follows: 1 = Unscrewing components, 2 = Detaching cables, 3 = Sorting components, and 4 =
Tool changing. Risk level codes follow the structure: 1 = Low risk, 2 = Moderate risk, and 3 =
High risk. For example, the label 2.0 3.0 indicates the activity of detaching cables performed under

high ergonomic risk.

The confusion matrices reveal how each model handled this 12-class classification task. Diagonal
entries in each matrix indicate correctly classified instances, while off-diagonal entries reflect
misclassifications. In general, models like KNN and Random Forest show stronger diagonal
alignment, particularly in well-represented classes such as 1.0 1.0 or 3.0 2.0. In contrast, models
like SVM and Decision Tree exhibit more dispersed misclassification patterns, especially among
overlapping risk levels and motion-similar subtasks. These distributions offer insight into the
specific strengths and limitations of each model, particularly in learning subtle ergonomic

distinctions based on motion sensor input.
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Among the four classical machine learning models, Random Forest emerged as the strongest,

achieving 87% accuracy and a macro-average Fl-score of 0.85. It maintained solid class-level

performance across both frequent and rare subtask-risk combinations. KNN and Decision Tree

followed with comparable accuracy (83%), though the Decision Tree exhibited slightly better class

balance. In contrast, SVM underperformed significantly, with only 51% accuracy and an F1-score

of 0.45, indicating the lack of adaptability to overlapping ergonomic classes. The classical models,

while valuable in low-resource or explainability-driven contexts, lacked the flexibility and

precision required for nuanced ergonomic risk detection to support model selection for the

proposed WMSDsNet framework. All six models were evaluated across five key criteria: accuracy,

risk-level Fl-score, class balance, generalization, and speed. These dimensions capture not only

classification performance but also practical suitability for real-time ergonomic monitoring. Class
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Balance was quantified by calculating the standard deviation of per-class F1-scores and inverting
it to reflect uniformity: models with more evenly distributed precision and recall across all 12
classes received higher Class Balance scores. This approach captures the model’s ability to
generalize across both frequent and less frequent subtask—risk combinations, even though class
sizes were roughly balanced during scenario design. The results are summarized visually in Figures

11 and 12, providing an at-a-glance comparison of the models' strengths.

Figure 4-9 presents radar charts for all 6 models, showing their performance profiles across the
five criteria. The DNN model exhibits the most balanced and consistently high performance, with
near-maximal values across all dimensions. The CNN also performs strongly but with slightly
lower speed and generalization. Random Forest leads among classical models, with a solid
performance in accuracy and class balance, though it lags in speed due to its ensemble nature. KNN
and Decision Tree deliver moderate results, while SVM displays uniformly poor performance, with

low F1-score, weak class separation, and minimal generalization.
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Figure 4-9. Models' Robustness for all 6 Models

To provide a more quantitative overview, Figure 4-10 presents a heatmap of normalized
performance scores (scaled from 0 to 1). The DNN model ranks highest across nearly all criteria,
including a perfect 0.95 in speed, indicating its efficiency and scalability. CNN follows closely,

with strong scores in generalization and accuracy. Among classical models, Random Forest
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achieves the best balance between prediction quality and robustness, while SVM remains the least

effective overall.

Taken together, these visualizations reinforce the earlier numerical findings and support the
selection of DNN as the most suitable model for integration into WMSDsNet. Its combination of
high accuracy, balanced class predictions, adaptability to complex sensor data, and computational

efficiency makes it ideal for real-time ergonomic risk detection in dynamic human-robot

collaboration environments.
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4.3.3. Discussion of Comparative Evaluation

To contextualize the performance of the proposed WMSDsNet framework, we compare its results
against several recent studies that applied machine learning methods to the classification or
prediction of work-related musculoskeletal disorders (WMSDs). Nath et al. [96] developed an
SVM-based model using smartphone IMU data to classify ergonomic risk into three levels and
achieved a classification accuracy of 90.2%. Their study focused on activity type, duration, and
repetition in construction environments, but did not account for subtask-specific predictions.
Halder et al. [97] employed a vision-based approach (MediaPipe Pose combined with ANN) for
real-time classification of ergonomic versus non-ergonomic postures and reported a very high

validation accuracy of 99.96%. However, their approach did not include ergonomic risk
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stratification or subtask segmentation and relied on video-based inputs, which may not be robust

to occlusion or lighting variability in industrial settings.

In contrast, our proposed WMSDsNet framework achieved 92% accuracy for subtask classification
and 90% accuracy for risk level prediction using wearable motion-capturing sensors. The DNN
model within the framework produced macro-average F1-scores of 0.91 and 0.90, respectively, and
supports multi-output prediction, offering simultaneous subtask and risk classification. Unlike
prior studies focused solely on posture labeling or binary risk detection, our framework addresses
ergonomic risk classification within task context (e.g., unscrewing under moderate risk), which is
critical for fine-grained ergonomic interventions in human-robot collaborative (HRC)
environments. To better contextualize WMSDsNet’s performance, Table 4-4 summarizes the key

input types, output types, and results reported by comparable studies alongside ours.

Table 4-4. Comparison of WMSDsNet performance with recent studies on ergonomic risk

classification.

Study Input Type | Risk Subtask Accuracy | Macro | Output

Stratification | Classification F1 Type
Nath et al. | Smartphone | v (3 levels) X 90.2% - Single-
[96] MU label
Halder et al. | Vision- X X 99.96% — Binary
[97] based posture
WMSDsNet | Wearable v (3 levels) v (4 subtasks) 90% /10.90 /| Multi-
(DNN) IMUs 92% 0.91 output

The evaluation of WMSDsNet across six machine learning models and structured subtasks further

strengthens the reproducibility and interpretability of its results.

However, some limitations should be acknowledged. The dataset used to train and evaluate the
models was generated using a single subject performing predefined subtasks in a controlled

laboratory setting. The goal was to simulate realistic task scenarios and generate consistent, labeled



50

numerical examples suitable for comparing machine learning models, not to produce generalizable
human data. While this ensures traceability and control over experimental conditions, it may limit
applicability to broader industrial populations. Generalizing to multi-subject datasets presents
additional challenges, such as inter-subject variability in anthropometrics, movement styles, and
ergonomic behaviors, which can influence sensor readings and classification accuracy.
Furthermore, ergonomic risk levels were assigned using predefined RULA and REBA scores,

which do not include real-time expert judgment or worker self-report.

Future work will aim to expand the dataset through multi-subject experiments to improve the
model’s generalizability. Incorporating expert ergonomic labeling or adaptive thresholds based on
worker profiles may enhance personalization. Additionally, deploying WMSDsNet in a live HRC
environment, with real-time feedback, task reallocation, or break scheduling based on predicted
ergonomic strain, presents a promising direction for integrating Al-driven safety systems into

Industry 4.0 applications.
4.4. Conclusion

This study proposed WMSDsNet, a sensor-based machine learning framework for real-time
ergonomic risk prediction during human-robot collaboration in disassembly environments. Using
wearable sensors, the system collects motion data across key body segments while a worker
performs predefined subtasks. The data is processed and used to train and evaluate six machine
learning models, CNN, DNN, KNN, Random Forest, Decision Tree, and SVM, tasked with jointly

predicting the performed subtask and the associated ergonomic risk level.

Among the evaluated models, the Deep Neural Network (DNN) emerged as the most suitable for
this dual-output classification task. It achieved 92% accuracy for subtask recognition and 90%
accuracy for risk level classification, along with macro-average Fl-scores of 0.91 and 0.90,
respectively. The DNN also demonstrated high generalization, efficiency, and balanced class
performance, making it ideal for deployment in real-time ergonomic monitoring applications.
Classical machine learning models such as Random Forest and KNN showed reasonable
performance but lacked the predictive precision and multi-output capability required for more

nuanced ergonomic feedback.

Compared to prior studies, WMSDsNet introduces a novel contribution by simultaneously

classifying subtasks and ergonomic risk levels, enabling more context-aware and actionable
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interventions. While many existing works focus solely on posture detection or binary ergonomic
assessment, WMSDsNet provides a more granular understanding of physical demands by

embedding risk prediction within specific task structures.

Overall, WMSDsNet offers a promising step toward data-driven ergonomic risk assessment,
aligning with the goals of Industry 4.0 by enabling intelligent, proactive interventions to prevent
work-related musculoskeletal disorders in collaborative manufacturing environments. Future work
will focus on validating WMSDsNet in multi-subject studies and deploying it in live industrial

settings to assess its real-world effectiveness in preventing ergonomic injuries.
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CHAPTER 5 GENERAL DISCUSSION

This research developed and evaluated WMSDsNet, a real-time ergonomic-risk-prediction
framework for human-robot-collaborative (HRC) disassembly environments using wearable

inertial measurement units (IMUs) and machine-learning (ML) models.

The work addressed a persistent limitation in ergonomic risk assessment, the reliance on static,
snapshot posture evaluations that overlook the cumulative nature of work-related musculoskeletal
disorder (WMSD) risks arising from posture duration and repetition. By combining continuous
motion capture with Al-driven classification, the study enabled simultaneous task recognition and
ergonomic-risk prediction, advancing the integration of wearable-sensor data into industrial

ergonomics.
The research evolved through two complementary phases.

The first, presented at the 2025 IEEE International Conference on Human-Machine Systems
(ICHMS), validated the feasibility of using a dual-output deep-learning architecture trained on raw
IMU data to classify both subtasks and corresponding ergonomic risk levels. The second, submitted
to the International Journal of Industrial Ergonomics, extended this contribution by benchmarking
six ML models (CNN, DNN, SVM, Random Forest, Decision Tree, and KNN) under identical

conditions, thus ensuring methodological transparency and reproducibility.
Justification of Model Architecture Choices

The inclusion of both CNN and DNN architectures was deliberate. CNNs learn spatial correlations
among sensor axes, capturing localized signal patterns, whereas DNNs exploit fully connected
layers to model nonlinear interactions across channels and time windows without handcrafted

features.

After iterative hyper-parameter tuning, the DNN demonstrated greater stability and generalization,

confirming its suitability as the backbone of WMSDsNet.

The complementary evaluation of deep and classical algorithms (SVM, KNN, DT, RF) provided a
balanced perspective on accuracy, interpretability, and computational cost, aligning with

Oulmane’s request for explicit architectural reasoning.

Comparative Findings and Context
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Prior studies, such as Karvekar et al. (2022) comparing CNN and SVM for repetitive posture
classification, and Cho et al. (2020) applying RF and ANN to lifting-risk assessment, offered

valuable but narrowly scoped insights.

In contrast, this work assessed six algorithms across multiple disassembly subtasks, demonstrating
that the DNN achieved the best compromise between accuracy, class balance, and efficiency for
real-time use.
The Random Forest exhibited competitive accuracy and high interpretability, while the CNN
performed strongly on spatially complex inputs but was less efficient on low-dimensional IMU
data.

These findings confirm that model suitability depends on task dynamics and signal structure: when
spatial complexity is modest but temporal discrimination is critical, dense-layer architectures such

as DNNs are preferable.
Added Value of Dual-Task Classification

Beyond predicting ergonomic risk, WMSDsNet simultaneously identifies the physical subtask
being executed.
This dual-output design adds interpretive depth by linking a detected risk directly to a specific

operation (e.g., cable detachment — high risk).

Such contextualization transforms risk scores into actionable knowledge, allowing supervisors to
redesign workflows, schedule micro-breaks, or adjust robot assistance precisely where strain
originates.

Compared with single-output models that assess risk in isolation, this approach enhances

managerial usefulness and decision-support potential.
Broader Implications

From an applied standpoint, the results demonstrate that scalable, real-time ergonomic monitoring
can be achieved without handcrafted feature engineering, simplifying transfer across workstations.
From a theoretical perspective, the study bridges traditional ergonomics and modern Al,
establishing an integrated methodology that supports future sequence-aware models (e.g., CNN—
LSTM hybrids) for cumulative-risk forecasting.

Limitations
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The experiment was performed in a controlled laboratory with a single participant to guarantee

data consistency and fair model comparison.

While this design ensured methodological rigor, it restricts generalizability across workers and task
variations.
Future validations involving multiple participants and real industrial contexts are needed to confirm

robustness under environmental noise and workflow variability.
Summary

Overall, WMSDsNet provides an end-to-end, wearable-sensor-based ergonomic-risk-prediction

system tailored to HRC disassembly.

By integrating standardized evaluation tools, dual-task classification, and a systematic model
comparison, this work fills key methodological gaps and establishes a replicable foundation for

future smart-factory safety systems.
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CHAPTER 6 CONCLUSION AND RECOMMENDATIONS

This thesis addressed a critical gap in ergonomics: the absence of continuous, cumulative, and task-
specific assessment methods for work-related musculoskeletal disorders (WMSDs) in collaborative

disassembly environments.
Conventional tools such as RULA and REBA provide valuable but static assessments.

The proposed WMSDsNet framework overcomes this limitation through real-time monitoring
using wearable IMUs and ML algorithms capable of simultaneously recognizing subtasks and

estimating ergonomic-risk levels.
Key Achievements

Creation of an Ergonomically Labeled Dataset:

A controlled HRC disassembly experiment was designed with four representative subtasks,
unscrewing, cable detachment, component sorting, and tool change, performed at three predefined
risk levels (low, moderate, high) using RULA/REBA criteria.The resulting dataset established a

reproducible foundation for ML-based ergonomic analysis.
Comparative Benchmark of Six Algorithms:

Under identical preprocessing and labeling conditions, CNN, DNN, SVM, RF, DT, and KNN
models were trained for dual-task classification. The DNN achieved the most balanced
performance, while the RF provided interpretability advantages. The CNN maintained strong

accuracy and real-time feasibility, highlighting context-dependent trade-offs among models.
Development of the Dual-Output Framework WMSDsNet:

Integrating ergonomic labeling, ML modeling, and real-time inference, WMSDsNet enables

proactive, task-aware monitoring suitable for Industry 4.0 environments.
The framework merges traditional ergonomic principles with Al transparency and scalability.
Ethical and Practical Integration:

Both publications, the conference and the journal paper, constitute sequential stages of a single
coherent project emphasizing ethical data collection and responsible Al deployment in workplace

safety.
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Contributions and Impact

The thesis contributes a reproducible methodology that unites ergonomics and artificial
intelligence, providing both theoretical insight and applied benefit. It empowers ergonomists and
industrial engineers to implement proactive interventions, task rotation, break scheduling, or tool
redesign, based on data-driven feedback, thereby reducing WMSD incidence and improving

sustainability in human-robot systems.
Recommendations for Future Research and Practice

Multi-Subject Validation:

Expand data collection to diverse anthropometries to assess generalization and inter-individual

variability.
Real-World Deployment:

Test WMSDsNet in operational HRC workeells to evaluate resilience to environmental noise and

workflow irregularities.

Explainable AI (XAI) Integration:

Implement XAI methods to enhance transparency and user trust in deep-learning predictions.
Cumulative Risk Forecasting:

Extend WMSDsNet with temporal models (e.g., CNN-LSTM) for predicting cumulative exposure

over extended periods.

Personalized Ergonomics:

Incorporate individual health and fatigue data for adaptive, worker-specific risk scores.
Economic Feasibility Analysis:

Quantify cost-benefit trade-offs of wearable-sensor deployment at scale to support industrial

adoption.

Closing Statement
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Through these extensions, WMSDsNet and its methodological foundation can evolve into a
scalable, interpretable, and industry-ready solution for ergonomic-risk management in

collaborative manufacturing.

By combining human-centered ergonomics with data-driven intelligence, this work lays a

sustainable path toward safer, smarter, and more responsive workplaces.
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Abstract—Disassembly tasks are

dainabl T

increasingly vital for
ing and the circular ecomomy, as they
facilitate component recovery and waste reduction. While human-
robot collaboration (HRC) is often promoted for reducing physical
e ic challenges « pared to tasks performed entirely by
humans, studies have largely overlooked the unique ergonomic
issues inherent to HRC. These environments can still present
challenges that, if neglected, can contribute to work-related
musculoskeletal disorders (WMSDs). This study introduces
WMSDsNet, a dualhead deep-learning framework that
t t: erg ic  risk t by simultaneously
classifying subtasks and predicting ergonomic risks, offering real-
time, cumulative risk evaluation using wearable sensor data.
Unlike traditional methods, which rely on subjective and time-
intensive manual observations, or previous works that primarily
focus on posture-based risk assessments to recognize awkward
postures for immediate alerts or feedback, WMSDsNet detects
changes in posture over a specific period of time. Based on this
information, the frequency and duration of awkward postures can
be analyzed to understand their cumulative effects on ergonomic
risks. We analyzed the task of di bling a Progr bl
Logic Controller (PLC) and selected specific subtasks to be
performed by human operators in collaboration with the robot,
including unscrewing components, detaching cables, sorting
components, and changing the cobot’ s tools. Data was collected in
numerical form using wearable sensors, enabling the framework
to evaluate risk levels and predict ergonomic risks with over 90%
accuracy in task classification and risk assessment. By providing
real-tlime ergonomic assessments, this framework supports
proactive interventions, offering a significant advancement in
ergonomic evaluation for indusirial HRC environments.
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I.  INTRODUCTION
Disassembly of end-of-life (EoL) products plays a critical
role in advancing the circular economy by enabling the recovery
and reuse of valuable components in remanufacturing. This
process reduces reliance on raw materials, minimizes waste, and
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supports sustainable manufacturing practices [1]. With the
global rise in electronic waste (e-waste), disassembly has
become an increasingly essential phase in remanufacturing,
facilitating the recovery of reusable components [2], [3].

Human-robot collaboration (HRC) environments are
increasingly utilized in disassembly tasks to address the
complexity and variability of operations. Robots effectively
handle repetitive and structured tasks, reducing the physical
workload on human operators by automating labor-intensive
processes. At the same time, humans bring adaptability and
decision-making capabilities, which are essential for managing
unstructured or variable tasks, making HRC a promising
appreach for balancing efficiency and flexability [4], [5].

Despite these advantages, HRC environments are not
without their challenges. While collaborative robots (cobots)
can mitigate some physical demands, they may also introduce
new ergonomic risks if not carefully optimized. For example,
Chen etal. [6] observed that participants in e-waste disassembly
tasks experienced increased ergonomic workloads due to poorly
distributed responsibilities between humans and robots.
Similarly, Lee et al. observed inefficiencies in task allocation
between humans and robots, leading to suboptimal collaboration
and increased physical demands on workers [7]. These findings
underscore that certain aspects of HRC environments—such as

Task allocation, repetitive actions, and static postures—can
inadvertently contribute to work-related musculoskeletal
disorders (WMSDs) over time if overlooked

By selecting HRC environments for this study, we aim to
address these ergonomic challenges directly. While HRC
systems hold great potential for improving efficiency and
reducing physical strain, it is crucial to develop tools and
frameworks that proactively identify and mitigate ergonomic
risks. This research focuses on leveraging wearable sensors and
machine learning to automate the ergonomic assessment
process, ensuring that the benefits of HRC are fully realized
without compromising worker safety.

Work-related musculoskeletal disorders (WMSDs) are
among the most significant concems in ergonomics, accounting



for nearly half of all work-related illnesses globally [8].
Detecting WMSD risks early is critical to mitigating their long-
term effects. Factors such as repetitive motions, awkward
postures, frequency of actions, duration of a task, etc. contribute
to WMSDs, particularly in physically demanding environments.
Effective ergonomic risk assessment is critical to identifying and
mitigating these risks, thereby safeguarding worker health and
maintaining productivity.

Traditional ergonomic assessment methods rely heavily on
observational techniques and manual application of tools such
as RULA (Rapid Upper Linb Assessment) and REBA (Rapid
Entire Body Assessment). While these methods are widely

accepted, they are time-intensive, prone to observer bias, and
unsuitable for capturing the dynamic and variable nature of HRC
environments[9].

Wearable motion capture systems offer a promising
alternative for ergonomic assessments, providing higher
precision and accuracy in kinematic measurements compared to
visual observations or video analysis. These systems can capture

data such as acceleration, angular velocity, and the magnetic
field, allowing for detailed analysis of motion. Additionally,
wearable sensors are cost-effective for analyzing large datasets,
making them practical for industrial applications [10]. However,
current applications of wearable sensors primarily focus on just
recognizing posture for immediate correction and providing
real-time feedback. [11], [12], often neglecting other essential
factors such as posture frequency, duration, and cumulative
strain over time.

To address these limitations, this study integrates wearable
sensors with a machine learning (ML) framework to automate
ergonomic risk assessment in HRC environments. Machine
learning, a key branch of artificial intelligence, leverages
algorithms to optimize performance based on training data and
prior experience [13]. ML has shown great potential for
preventing WMSDs through real-time analysis and prediction
[14]. However, current ML applications in ergonomics
predominantly focus on posture-based assessments [15], [16],
often using a one-size-fits-all approach that fails to account for
task variability and different scenarios [17].

Our research aims to bridge these gaps by simulating various
work subtasks under diverse conditions, such as task frequency,
duration, and whether tasks are static or dynamic.

This research introduces WMSDsNet, a deep neural network
model designed to automate ergonomic risk assessment in HRC
environments. WMSDsNet addresses key limitations in
traditional and MIL.-based ergonomic assessments by:

1) Simulating Diverse Work Scenarios: The model

classifies subtasks performed in HRC disassembly, including
unscrewing components, detaching cables, sorting items, and
changing tools.

2) Incorporating Tailored Ergonomic Tools: To ensure

comprehensive  ergonomic risk  assessment in  HRC
environments, we integrate three well-established tools: RUL A
(Rapid Upper Limb Assessment), REBA (Rapid Entire Body

Assessment), and OCRA (Occupational Repetitive Actions
Index). Each tool addresses specific ergonomic challenges:
RULA evaluates upper limb and static postures, REBA assesses
whole-body movements and transitions, and OCRA focuses on
repetitive tasks and cumulative strain. In HRC disassembly
tasks, which often involve a mix of dynamic, static, and
repetitive actions, using all three tools is essential. For example,
RULA 15 ideal for tasks like unscrewing or detaching cables,
REBA suits whole-body actions like sorting, and OCRA
addresses repetitive subtasks that can lead to long-term strain.

3)  DPredicting Cumulative Risks: WMSDsNet considers

long-term exposure factors, such as the frequency and duration
of repetitive tasks, to predict cumulative ergonomic risks in real
time.

By automating these processes, WMSDsNet enhances the
accuracy and scalability of ergonomic assessments, providing
actionable insights to improve worker safety and system
efficiency.

The primary objectives of this study are:
1) To demonstrate the potential of integrating wearable

sensors and machine leamning for real-time ergonomic risk
assessment in HRC environments.

2) To evaluate the performance of WMSDsNet in

classifying subtasks and predicting ergonomic risks in
controlled disassembly scenarios.

3) To contribute to sustainable manufacturing practices

by improving worker safety and productivity through advanced
ergonomic assessment tools.

By addressing these challenges, this research aims to bridge
critical gaps in ergonomic risk prediction and contribute to the
broader goals of workplace safety and industrial sustainability.

Although several studies have used machine learning for
ergonomic risk assessment, many focus primarily on posture
recognition and lack cumulative analysis of task duration and
frequency. Moreover, current models rarely combine
standardized ergonomic tools like RULA, REBA, and OCRA
into a unified, real-time system. This study addresses these gaps
by proposing WMSDsNet, a model capable of classifying
subtasks and predicting ergonomic risks through wearable
sensor data.

II. METHODOLOGY

A. The overview of the process

Fig. 1 illustrates a schematic representation of our work. We
utilized 10 wearable sensors to collect motion data

during disassembly tasks in a human-robot collaborative
environment. The data was preprocessed and structured into
CSV files, enabling seamless integration into a deep learning
framework. Our WMSDsNet model, consisting of mnput,
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backbone, and output layers, was trained to classify subtasks and
predict WMSD risks, providing comprehensive ergonomic
insights for HRC environments.

B. Disassembly Task and PLC Setup

experiment involved the disassembly of a Programmable
Logic Controller (PLC) in a controlled human-robot
collaborative (HRC) environment. The PLC was chosen due to
its complexity, which includes a variety of disassembly subtasks
requiring dynamic, static, and repetitive actions. The human
operator and the cobot interacted to perform four key subtasks:

Fig 1. Overview of the data processing workflow
= -

Data Acquisition: Motion data was
collected wusing 10 wearable
sensors strategically placed on
the participant's body.
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C. Wearable Sensor System and Placement

The motion data for ergonomic analysis was collected using
10 wearable sensors strategically placed on the operator’s body,
targeting key joints and segments:

1) Sensors Placement: Sensors were mounted on the

head, shoulders, arms, waist, torso, and legs to monitor motion
along the X, Y, Z axes, as well as angular rotation (W-axis). This
configuration ensured comprehensive tracking of joint and limb
movements during each subtask.

(&

Pythen Q—‘% The trained model
%—w;@ was then saved
N
( 12

Data Input and Prediction: i)
The time-series data for each subtaskis |1
fed into the trained model. i

k ,.Z

e Unscrewing components that were out of the cobot’s
reach, requiring fine motor skills and upper limb
precision.

e  Detaching cables, a task demanding coordination and
repetitive motion.

e Sorting components, which involved dynamic
transitions and whole-body movements.

e Changing cobot’s tools, which required static postures
for short periods.

To evaluate the ergonomic risks associated with each subtask,
we used ergonomics tools. The risks were assessed using three
well-established ergonomic assessment tools: RULA, REBA,
and OCRA.

For each subtask, the risks were categorized into three levels
based on our predesigned evaluation:

e LowRisk
e Moderate Risk
e High Risk

This classification was used to simulate various workplace
scenarios and train the model to accurately predict both posture
and WMSD risk levels. By incorporating ecrgonomic
assessments and standardized tools, our approach ensures that
the risk analysis is grounded in reliable, domain-specific
methodologies.

e  Rationale for Placement: The placement was informed
by the operator's anthropometric characteristics (e.g.,
height, weight, and limb proportions) to ensure
accurate and consistent data collection. For example:
Sensors on the shoulders captured upper limb
movements during unscrewing tasks. Sensors on the
torso and legs recorded whole-body dynamics during
sorting tasks. Customized placement based on
anthropometry minimized data noise and improved
reliability, particularly for tasks requiring fine motor
skills or repetitive actions.

D. WMSDsNet model

In Figure 2, the , WMSDsNet architecture is shown, for that
we employed a deep neural network (DNN) framework
consisting of three main components: the input layer, the
backbone, and the output heads.

1)  Input Layer: The input layer included five neurons,

corresponding to the five types of data collected by the
wearable sensors:

. X, Y, Z: Represent the axes of motion.



Fig 2. Bchematic representation of the WhSDsIet

hn = N < X

e W: Represents the rotation in 3D space.
e S:Indicates the sensor identifier.

This configuration ensured that the input layer aligned
perfectly with the features of the dataset, and we achieved
optimal results by using exactly five neurons, reflecting the five
data types.

1) Backbone:

The backbone was composed of multiple dense layers
interspersed with dropout layers:

e Dense Lavers: These lavers were responsible for
learning complex patterns in the data.

2) Dropout Layers: Added between each pair of dense
layers, dropout lay ers were used to mitigate overfitting
by randomly deactivating neurons during training,
IMproving the model's generalizability.
The backbone included 4 dense layers with 128, 64, 32,
and 16 neurons respectively, each followed by a
dropout layer with a dropout rate of 0.4 to reduce
overfitting. The Adam optimizer was used with a
learning rate of 0.001, and the batch size was set to 64.
These hyperparameters were tuned via grid search
using validation accuracy as the selection metric.

Output Heads: The network featured two distinct
output heads:

e Head 1: Responsible for predicting the four subtasks
(unscrewing, detaching cables, sorting components,
and changing tools), with four neurons representing
each subtask.

e Head 2: Responsible for classifying ergonomic risks
into three levels (low, moderate, and high), with three
neurons to predict each risk level.
This dual-head design enabled the model to
simultanecusly classify subtasks and predict associated
ergonomic risks, ensuring efficiency and accuracy in
real-time applications.
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This architecture was optimized to process detailed motion
data and provide reliable predictions for both subtasks and
ergonomic risks, making it a robust tool for ergonomic
assessments in HRC environments.

During the training process, the Adam optimizer was
employed to adjust the model's weights. The Rel.U activation
function was applied across all layers of the network, while the
Softmax activation function was specifically used in the
classification head for multi-class output. The WMSDsNet was
implemented using TensorFlow version 2.2.0 and Keras version
2.3.1, with Python version 3.9 serving as the programming
environment. All numerical experiments were conducted on
Google Colab, leveraging a Tesla T4 GPU with 15 GB of RAM,
ensuring efficient computation and training performance.

We had a total of 207,850 data points at a sampling
frequency of 64 Hz. The dataset was divided into three subsets:
training (80%), testing (15%), and wvalidation (15%). The
validation dataset was used during the training process to
evaluate the network's performance after each epoch, ensuring
that the model does not overfit. By monitoring the validation
accuracy and loss, we ensured that the model generalized well.

E. Placement of Wearable Sernsors

As shown in fig 3 We utilized 10 wearable sensors
strategically placed on wvarious parts of the human body to
capture motion data. The placement of the sensors was
determined based on the subject’s anthropometric features—
including height, weight, and sex—to ensure comprehensive
coverage of joint and limb movements during the task.

1) Sensor Distribution:

Sensors were positioned on key points of the body, such as the
head, shoulders, arms, torso, and legs to monitor motion along
the X, Y, Z axes, as well as angular rotation (W-axis). This
configuration ensured comprehensive tracking of joint and limb
movements during each subtask.

The placement was informed by the operator's
anthropometric characteristics (e.g., height, weight, and limb
proportions) to ensure accurate and consistent data collection.
For example:

. Sensors on the shoulders captured upper limb
movemnents during unscrewing tasks.

. Sensors on the torso and legs recorded whole-body
dynamics during sorting tasks.

L RESULTS

The accuracy graph presented in the fig. 4 shows that our
model's accuracy exceeded 909 after 100 epochs, indicating
strong predictive performance. The loss graph presented in fig,
5 illustrates a steady decrease, confirming effective training,

Metrics for both Head 1 (subtask classification) and Head 2
(risk classification) are closely aligned, demonstrating that the
madel is well-trained and not overfitted.

For Explanation of Prediction Test and Sensor Data We gathered
data over 50 seconds to evaluate the model' prediction
performance analyze sensor motion data and then calculate
frequency and duration.



Fig 3. Flacement of'Wearable Sensors
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activity.

30-50 seconds: Subtask 3 (sorting components) w as performed.
3040 seconds: Risk level was high.

40-50 seconds: Risk level decreased to low.
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The ground truth for subtasks and risk levels was labeled by
pre designed risk situations using the most suitable ergonomic
assessment tools (RUL A, REBA, or OCRA)

Fig. & shows the model's predictions during this 50-second
period, with green and black lines representing subtask and risk
predictions, respectively, which closely align with the
predesigned risks-labeled ground truth.

b}  Sensor data:

Fig. 7 illustrates the motion data from a waist sensor,
capturing movement across four axes (3£, Y, Z, and Whduring
the subtasks This setup highlights the model's accuracy and
the richness of the sensor data in detecting and predicting
subtasks and their associated risks.

The results demonstrate a clear relationship between the
motion data captured by the waist sensor and the predicted
ergonomic risk levels:

¢ High Risk: Characterized by large fluctuations and
variability in the Z (vertical) and W (angular rotation)
azes, indicating dynamic and repetitive actions that
involve awkward postures or significant movements.

¢ Low Risk: Identified during pericds of stable and
minimal motion across all axes, reflecting light or no
physical activity.

e Idle: Periods with near-zero readings confirm no
activity, corresponding to a neutral ergonomic state.

¢ By analyzing the frequency (number of peaks, defined
as angular velocity spikes exceeding 200 degfsec) and
duration (total time spent in elevated motion above this
threshold), we identified subtasks contributing most to
ergonomic risks. These insights validate the model's
ability to link sensor motion data to real-time risk level
predictions, enabling precise ergonomic assessments
for subtasks performed in human-rebot collaboration
ENVIrONMents.

oI, DISCUTION

The results address limitations in traditicnal ergenomic
assessment methods by automating analysis using sensor data
and predesigned-labeled ground truth. The combination of
RULA,

Fig & test of WhASD s et’s predicions
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REBA, and OCRA tools provides a comprehensive approach to
assessing both static and dynamic tasks.

However, the controlled laboratory setting may not fully
replicate the complexities of real-world environments, limiting
generalizability. The model’s reliance on predefined subtasks
and risk levels may also reduce adaptability for unstructured
tasks. This study also has limitations in dataset diversity, as it
currently involves a single participant. While sufficient for
proof-of-concept, the results may not generalize across
different body types, skill levels, or ergonomic profiles. Future
validation with multiple subjects is necessary to improve
robustness. Future work should focus on validating the system
in diverse inclustrial settings and integrating real-time feedback
with adaptive learning algorithms to enhance flexibility,
scalability, and applicability across dynamic HRC
environments.

IV. CONCLUSION

This stucly demonstrates the effectiveness of the WMSDsNet
deep neural network in predicting ergonomic risks and
classifying tasks within human-robot collaborative (HRC)
disassembly environments. By integrating data from 10
strategically placed wearable sensors, the model captured
critical factors such as posture, task frequency, and duration,
achieving high predictive accuracy exceeding 90%. This
highlights WMSDsNet's potential as a reliable and precise tool
for assessing work-related musculoskeletal disorders (WMSDs)
and enhancing ergonomic evaluations.

We plan to release a version of WMSDsNet’s architecture
and training scripts as open-source in future extensions of this
work, enabling broader adoption and collaboration.
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