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RESUME

Depuis une vingtaine d’années, les systémes a base de réseaux de neurones connaissent
un regain de popularité. On les utilise notamment dans la plupart des systémes de
reconnaissance vocale et de reconnaissance de formes. En effet, les réseaux de neurones
ont la faculté de retrouver rapidement les données qu’ils ont enregistrées. Cette propriété
semble intéressante pour développer des « Content Addressable Memories » ou CAM 2
base de réseaux de neurones. Les CAM sont des mémoires particulieres dans lesquelles
la donnée détermine I’endroit ou elle est stockée. Il existe sur le marché des CAM trés
performantes, mais elles sont également trés dispendieuses en raison des méthodes
d’implantation utilisées. Pour cette raison, les CAM sont utilisées seulement dans les
systtmes ou la vitesse de récupération des enregistrements est critique. Ainsi, la
recherche effectuée a pour objectif d’étudier des modeles de CAM neuronales et

d’évaluer qualitativement leur intérét en terme de cofits et de performances.

Toutefois, pour obtenir des CAM neuronales fiables, certaines caractéristiques des
réseaux de neurones doivent étre maitrisées. En particulier, la capacité des réseaux de
neurones a inférer une réponse en présence d’une entrée inconnue, si elle est
avantageuse dans de nombreuses applications, est problématique pour le développement
de CAM neuronales. En effet, cette propriété a pour conséquence une incapacité du
réseau de neurones a différencier les informations connues des informations inconnues.
Dans ce contexte, le développement d’une CAM neuronale nécessite une modification

des modeles existants.

La recherche consiste donc, dans un premier temps, a proposer et a valider des mod¢les
de CAM neuronales. Pour valider un modele, il faut vérifier que la CAM neuronale ne

commette aucune erreur ni avec les vecteurs enregistrés (erreur de type I) ni avec les
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vecteurs non enregistrés (erreur de type II). Pour les modeles validés, on procede a une
deuxiéme étape qui doit déterminer les ressources mémoires et le nombre d’opérations
nécessaires. Cette deuxieéme étape permettra de donner une estimation qualitative du
colit et des performances des CAM neuronales étudiées. Bien que plusieurs modéles de
réseaux de neurones soient envisageables pour développer une CAM neuronale, la
recherche se limitera 4 I’étude du modele des « Correlation Matrix Memories » ou CMM

qui est un modele de mémoire distribuée a base de réseaux de neurones.

On peut a priori utiliser les CMM soit comme une CAM neuronale a part enticre, soit
pour effectuer un prétraitement dans la CAM neuronale. Néanmoins, les simulations
effectuées montrent que les CMM ne peuvent étre utilisées seules pour effectuer un
traitement sans erreur : si ’orthogonalisation des vecteurs garantit I’absence d’erreurs de
type I, elle ne peut assurer 1’absence d’erreurs de type II. Toutefois, les CMM permettent
un prétraitement efficace : avec des vecteurs de 128 bits, le prétraitement réduit de plus
de 99% le nombre de tests a effectuer. De plus, compte tenu des propriétés des CMM, ce
prétraitement doit &tre encore plus efficace avec des vecteurs d’entrée de plus grande

taille.

D’autre part, dans le modele des CMM, il faut, idéalement, que les vecteurs d’entrées
enregistrés soient orthogonaux si l'on veut pouvoir retrouver les informations
enregistrées. Ainsi, deux approches sont étudi€es: la premiére utilise une
orthogonalisation classique des vecteurs d’entrées, la deuxieme projette les vecteurs a
enregistrer dans un espace de grande dimension en utilisant un processus partiellement
aléatoire. On constate que les modéles utilisant une orthogonalisation exacte des
vecteurs d’entrée sont trés exigeants en ressources et présentent un intérét limit€ en
terme de cofit et de performances. En revanche les modeles utilisant la projection des
vecteurs d’entrée dans un espace de grande dimension sont peu exigeants en ressources
mémoire et en ressources de calculs. Les données récupérées indiquent que, pour des

entrées de 128 bits, les CAM neuronales peuvent présélectionner un vecteur parmi 112.
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Ce prétraitement nécessite seulement 69 bits de mémoire et 140 opérations logiques par

vecteur enregistré.

D’autre part, les CAM neuronales a base de CMM permettent de travailler avec des
vecteurs d’entrée de trés grande taille: cette caractéristique est particuliérement
intéressante car le traitement des vecteurs de grande taille est trés cofiteux dans les CAM
« traditionnelles ». Ainsi, comme les CAM neuronales peuvent traiter les vecteurs de
grande taille efficacement, elles semblent particulicrement adaptées au filtrage de
paquets TCP/IP dans les systemes coupe-feu (Firewall). En effet, ces systémes utilisent

des régles d’au moins 128 bits de long,
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ABSTRACT

During the past twenty years, neural networks based systems have been regaining
popularity. Such systems are widely used for voice and pattern recognition applications,
since they are able to retrieve quickly the data they have previously stored. This property
is of big interest to develop neural based “Content Addressable Memories” (CAMs).
CAMs are special memories for which the data determines the memory location where it
will be stored. CAMs available in the marketpiace are very efficient but also very
expensive due to their architecture. Thus, CAMs are only used in applications that
demand very fast data retrieval. In this context, this research aims at finding valid neural

CAM models and at giving a first evaluation of their interest as to cost and performance.

Even though neural based methods are an efficient way of processing data; it is difficult
to get reliable neural based CAMs and some neural networks specific features must first
be controlled. The control of neural networks inference capabilities that prevent systems
to differentiate known data from unknown data is the main problem that needs to be
solved. In such a situation, existing neural networks models must be modified to fit their

use in a neural CAM.

The research consists first in proposing and validating neural CAM models. For a model
to be validated, the neural CAM has to make no mistake whether it is with vectors
previously recorded (error of type I) or with unknown vectors (error of type II). For each
validated model, memory and processing requirements are computed, which enables to
get a first estimation of cost and performance for these systems. Even if several neural
models could be studied, the research focuses on the “Correlation Matrix Memory”

(CMM) model, which is a neural-based distributed-memory model.
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CMMs can be used either as a stand-alone neural CAM or as a pre-processor in the
neural CAM. Nevertheless, the simulations show that using a CMM alone to design a
neural CAM is not reliable: the orthogonalization process insures there will not be any
error of type I, it cannot, however, prevent from having errors of type II. Nevertheless,
CMMs can achieve a very efficient pre-processing: with 128-bits input vectors, CMMs’
pre-processing reduces the amount of tests to be done by over 99%. Moreover, this pre-

processing task should be all the more efficient, as the input size increases.

Besides in the CMM model, recorded input vectors should be ideally orthogonal for a
correct retrieval of the stored data. Consequently, two approaches have been studied: the
first one considers a traditional orthogonalization of input vectors and the second one, a
projection of the input vectors into a high-dimension space through a partially random
transformation. On the one hand, models using a traditional orthogonalization of the
input vectors are very demanding and do not meet the expected goals as to cost and
performance. On the other hand, methods using the projection of the input vectors into a
high-dimension space have very interesting features for both memory and processing
requirements. The simulations show that a CMM can pre-select one vector out of 112.
This pre-processing task requires only 69 bits and 140 logical operations per recorded

vector.

Moreover, whereas “traditional” CAMs are very costly with big input sizes, neural
CAMs are all the more efficient as the input size increases. As neural CAMs are
efficient with big input sizes, they are well fit for applications such as TCP/IP packet

filtering in the firewalls that requires rules of at least 128 bits.
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CHAPITRE 1
INTRODUCTION

Le développement des réseaux de neurones artificiels a été inspiré par le fonctionnement
du cerveau humain, sorte d’« ordinateur » au fonctionnement trés complexe, trés non-
linéaire et fortement paraliéle [HAY98]. Depuis I'invention des réseaux de Hopfield
[HOPS82] et de ’algorithme de rétro propagation de I’erreur [RUMS86], les systémes a
base de réseaux de neurones connaissent un regain de popularité. Aujourd’hui de
nombreux systémes de traitement de la voix ou de traitement de I’image font appel aux
réseaux de neurones [FREOQ1], [DELO99]. En effet, les réseaux de neurones ont la
capacité de retrouver rapidement une donnée grace a un processus de lecture fortement
parallele. En outre, ils ont la capacité d’interpréter les données qu’ils connaissent pour
inférer des réponses lorsqu’on leur présente des entrées inconnues. Le but de la
recherche est d’utiliser des réseaux de neurones pour développer certains modéles de

memoires.

Plus précisément, on cherche a implanter des réseaux de neurones dans des mémoires
destinées aux bases de données pour lesquelles on s’efforce de minimiser le temps de
recherche. Il existe actuellement des mémoires dédides a cette tdche: ce sont les
mémoires adressables par leur contenu [DELG99], [DIT00], plus connues sous leur
dénomination anglaise de « Content Addressable Memories » ou CAM. Toutefois, les
CAM actuelles ne sont utilisées que si le temps de recherche est critique car leur prix est
trés élevé, comme dans les routeurs & haut débit [MCA93], [LIUOL]: pour de
nombreuses applications, une approche logicielle est privilégiée. Ainsi, dans le cadre
d’un projet industriel, nous avons choisi d’explorer la possibilité d’utiliser des réseaux

de neurones pour concevoir des CAM.



1.1 INTERET DES « CONTENT ADDRESSABLE MEMORIES »

Les CAM bénéficient actuellement d’une trés grande popularité avec Parrivée des
connexions internet & haut débit. En effet pour pouvoir gérer des débits de 1 voire
plusieurs gigabits par seconde, il est nécessaire de traiter les connexions avec des
routeurs capables de traiter des débits de plusieurs gigabits par seconde : dans ce cas il
est nécessaire d’accéder aux données des tables de routages avec la plus grande vitesse
possible. Ainsi les routeurs haut de gamme utilisent le plus souvent des CAM pour

enregistrer les tables de routage.

Dans le domaine de la sécurité informatique, on retrouve un probléme assez similaire
pour les systémes coupe-feu ou « firewalls » (Annexe I). Le réle principal de ces
systémes est de sécuriser le réseau interne en contrélant les connexions qu’il établit avec
Pinternet. Si la tdche premiere du « firewall » est de protéger le réseau interne, on
cherche a effectuer le contréle des connexions sans trop diminuer le débit entre les 2
réseaux. La tdche premicre dun systéme pare-feu est le filtrage de paquets IP
(Annexe II) : le « firewall » doit vérifier que tous les paquets respectent les régles de
filtrage établies. Dans ce domaine, les CAM ne sont pas utilisées en raison de leur prix
trop élevé : si les CAM simples ne requiérent que peu de ressources matérielles, les

CAM disponibles sur le marché sont d’une telle complexité que leur prix est élevé.

1.1.1 Vers une définition des CAM

Les CAM ont pour particularité d’étre les mémoires les plus performantes pour toutes
les tAches d’appariement entre une entrée et une sortie. Ainsi, on peut définir une CAM

de la maniére suivante :

«With conventional indexing schemes the data content is used with a hash or index to produce the
address location of the data. The address has no real or direct relationship with the information
contained in the data. With CAM, the data describes its own storage location. This also means all



like data will always be found close together in the physical data structure. There is a direct
relationship between the information in the data and its location in the physical data store.»
[OPE99]

La différence entre les CAM et les autres mémoires se situe au niveau de la méthode
d’enregistrement. Dans la plupart des mémoires, telles les RAM, I’adresse mémoire n’a
pas de véritable relation avec son contenu. Les CAM, au contraire, établissent un lien
entre I'adresse et la donnée : une CAM est une mémoire pour laquelle la donnée
détermine [’adresse d’enregistrement. C’est grice a cette stratégie de stockage que les

CAM sont des systémes trés performants.
1.1.2 Une popularité grandissante...

Actuellement, les CAM sont utilisées pour les routeurs qui doivent gérer de gros débits
(10 Gbits/s voire plus). Avec le développement de D'internet et I’augmentation des
besoins en bande passante, les CAM connaissent une trés grande popularité. Ainsi, les
recherches effectuées dans ce domaine ainsi que ['augmentation de la demande ont
permis une baisse du prix de ces mémoires. Certains, tel John Boyd, chef de projet chez
Music Semiconductors Inc', évoquent leur utilisation prochaine dans de plus en plus de

domaines :

«CAM can be used for anything that requires some sort of search or translation. Although CAM
could be used in other applications, it excels in data internetworking [...] Although the basic
memory architecture of CAM has not changed in the last decade, devices have become faster,
bigger, and more sophisticated. Conversely, improvements in design and production have
allowed manufacturers to reduce the cost to the consumer to make it more attractive. These
factors have made CAM increasingly popular in today's layer 2, layer 3, and layer 4 networking
applications. CAM will allow designers to meet the demands of bigger, faster, and more
sophisticated switching and routing products.»

http://www.eedesign.com/design/cam/cam.html

! Music Semiconductors Inc. est un fabricant de CAM



1.1.3 Moais une démocratisation difficile

L’optimisme de John Boyd n’est toutefois pas partagé par tous. Ainsi Linley Gwennap,
consultant en analyse et stratégie pour les technologies réseautiques analyse le marché

des CAM de la maniére suivante dans EE Times :

« The reason that CAMs have yet to fulfill their promise is that, down inside, no one really likes
them. CAMs are power-hungry and expensive. In some designs, the CAMs cost more than the
NPU. » [GWEO02]

On peut ajouter a cela que pour le cas particulier des reégles d’un systéme coupe-feu,
I’emploi des CAM serait trés coliteux car ces régles ont typiquement une longueur d’au

moins 128 bits.

1.2 UNE MUTATION DES BESOINS

Les CAM ont deux caractéristiques principales qui sont sa largeur, représentant la taille
d’entrée et sa profondeur, nombre d’enregistrements que peut stocker la CAM : cette
notion est comparable a la capacité mémoire d'une RAM a la différence que dans une

CAM, on ne peut pas organiser 1’espace mémoire comme on le désire.

1.2.1 D’un besoin de CAM peu larges mais profondes...

Le role du routeur est d’acheminer un paquet IP vers la bonne destination : le routeur va
donc déterminer vers ou doit étre acheminé le paquet IP en fonction de I’adresse IP de
destination. Le routeur doit connaitre un grand nombre de régles de routages et la CAM
utilisée doit ainsi avoir une grande profondeur mais n’a pas besoin d’une largeur tres

grande.



1.2.2  Vers un besoin de CAM larges et profondes

Cependant, si on désire utiliser des CAM dans des systémes coupe-feu, on a besoin
autant d’une grande largeur, afin de pouvoir mémoriser une regle entiére, que d’une
grande profondeur.

De plus, ’arrivée progressive de la norme IPv6, congue afin de faciliter la gestion des
paquets IP et I’attribution d’adresses 1P, va accentuer les besoins en CAM larges :

e La taille des adresses IP va passer de 32 & 128 bits augmentant ainsi
considérablement la largeur de CAM nécessaire au routage des paquets. Ceci
aura aussi une tres grosse influence sur la taille des régles dans les systémes
pare-feu.

e La taille des numéros de port pourrait passer de 16 & 32 bits dans le protocole

TCPv6, ce qui augmenterait encore la taille des régles de « firewall ».

Ainsi cette nouvelle norme implique des contraintes difficiles & respecter en terme de
largeur de CAM aussi bien pour le routage que pour 'implantation de régles dans un
systéme coupe-feu. Le passage a la version 6 du protocole IP va donc avoir une grande
incidence sur 1’industrie des CAM dont la largeur minimale devra passer de 64 bits a
240 voire 300 bits. Et si les fabricants de CAM annoncent de nouvelles CAM capables
de supporter de telles largeurs, cela devrait impliquer une augmentation importante de
leur prix. Il serait donc intéressant d’étudier de nouvelles facons de concevoir des CAM.

Ainsi, nous nous proposons d’explorer une nouvelle approche.
) p

1.3 POSSIBILITE DE DEVELOPPER DES CAM NEURONALES

1.3.1 Moetivation d’une telle étude

Il semble possible de développer des méthodes alternatives & base de réseaux de

neurones. En effet, par opposition a ces CAM que l'on peut appeler CAM



« traditionnelles », il existe d’autres modéles de CAM : ce sont les CAM neuronales,
c'est-a-dire utilisant des réseaux de neurones. Néanmoins, les CAM neuronales
existantes sont incapables de différencier les vecteurs qu’elles ont appris, des vecteurs

qui leur sont inconnus.
1.3.2  Objectifs visés

Les travaux réalis€s ont pour but de déterminer la faisabilité de CAM neuronales dans le
but de réaliser un appariement exact. Une fois cette faisabilité établie, le but recherché
est d’estimer les potentialités d’une telle architecture en donnant des données

quantitatives pour évaluer son colt et ses performances.
1.4 LES KXTAPES DE LA RECHERCHE

Ainsi la recherche comporte plusieurs étapes qui permettent de déterminer par
raffinements successifs des modeles réalisant les objectifs fixés. La premiére étape
consiste a identifier les problémes inhérents aux réseaux de neurones. Parmi tous les
modéles de réseaux de neurones existants, les réseaux de neurones adaptés au probiéme
de recherche de regles ont été identifiés. Par la suite un de ces modéle a été étudié : il

s’agit du modéle des matrices de corrélation ou « Correlation Memory Matrices » ou

CMM.
1.4.1 Les CAM neuronales : une voie de recherche pertinente ?

L’idée d’utiliser des réseaux de neurones dans le cas d’un appariement exact comporte a
priori un aVantage et un inconvénient principaux. L’avantage des réseaux de neurones
est leur maniére de stocker les données qui permet de retrouver rapidement la sortie
correspondant & une entrée enregistrée. Mais les réseaux de neurones ont aussi

I’inconvénient de ne pas pouvoir différencier le « connuy» de '« inconnu» car ils



cherchent toujours a donner la meilleure sortie possible ou la sortie la plus plausible
lorsqu’on leur présente une entrée. Compte tenu de ces deux propriétés, est-il possible de

trouver des architectures a base de réseaux de neurones pour un appariement exact ?
1.4.2 Les réseaux de neurones existants : une base sur laquelle s’appuyer ?

Comme il a ét¢ mentionné auparavant, il est possible de relier une entrée a
I’emplacement mémoire ou elle a été enregistrée gridce a des modeéles neuronaux.
Toutefois, il n’est pas facile d’adapter ce genre de modéles pour créer des CAM et deux
stratégies sont envisageables :

e La premifre consiste a utiliser des réseaux de neurones pour déterminer
directement si un vecteur a été enregistré. Dans ce cas, le réseau de neurones
s’identifie a4 la CAM neuronale et la tiche a effectuer équivaut a tester le vecteur
d’entrée avec tous les vecteurs enregistrés.

e La deuxieme consiste & utiliser les réseaux de neurones pour effectuer un
prétraitement dans lequel on sélectionne un sous-ensemble de vecteurs
enregistrés. Ce prétraitement doit garantir que ce sous-ensemble contienne

toujours le vecteur d’entrée s’il est I’'un des vecteurs enregistrés.
1.4.3 A la recherche de modéles valides

Pour chacun des modéles étudiés, il faut effectuer une validation. Cette validation doit
garantir que le systéme ne commet aucune erreur. Fondamentalement, il existe deux
types d’erreurs :
e Les erreurs survenant avec des vecteurs enregistrés qui sont des erreurs de non
détection des vecteurs enregistrés. On appellera ces erreurs, erreurs de type 1.
e Les erreurs survenant avec des vecteurs non enregistrés ou erreurs de fausse

détection. On appellera ces erreurs, erreurs de type 1.



L’identification des erreurs détectées permet d’apporter des modifications pertinentes au
modéle étudié. On modifie donc le modéle jusqu’a obtention d’un modele valide ou

jusqu’a ce que ’on constate .que le modele €tudié ne peut étre validé.

Lorsque les modéles valides sont identifiés, il faut évaluer pour chacun le cofit et les
performances. Pour cela, on détermine les ressources mémoire et le nombre d’opérations
logiques nécessaires pour implanter la CAM. Toutefois, la discussion sur le cofit et les
performances des modéles de mémoire développés ne peut étre que qualitative car elles

sont fortement dépendantes du choix d’implantation.



CHAPITRE 2

INTERET DE DEVELOPPER UNE CAM NEURONALE

2.1 INTRODUCTION

Actuellement, les seules CAM existantes sur le marché sont les CAM « traditionnelles »
a base de logique pure. Ces CAM sont trés dispendieuses : en raison de toutes les
fonctionnalités qu’elles offrent, leur conception devient trés complexe. De plus, il est
intéressant, d’un point de vue théorique, d’étudier les possibilités qu’offrent les réseaux
de neurones pour concevoir de tels systémes : une approche neuronale peut permettre
d’offrir une alternative aux CAM « traditionnelles ». Pour cela, il faut tout d’abord
identifier les fonctions fondamentales d’une CAM, c'est-a-dire les fonctions
indépendamment de I’architecture envisagée. Ensuite, une étude des CAM
« traditionnelles » sera faite afin de mieux comprendre leur principe de fonctionnement.
A partir de cette base de connaissance, il sera possible de réfléchir aux possibilités
d’implanter une CAM utilisant des réseaux de neurones. Enfin, une discussion sera faite
sur les objectifs que ’architecture proposée doit réaliser pour offrir une alternative qui

soit a la fois performante et économique.
2.2 LES FONCTIONS FONDAMENTALES DE LA CAM

Bien que les CAM « traditionnelles » et les CAM neuronales ne soient pas congues avec
une méme approche, elles possédent des fonctions communes. En effet, comme leur role

est identique, les deux architectures doivent remplir les mémes fonctions générales

(Figure 2.1) :
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e La premicre fonction a remplir est une fonction de prétraitement qui consiste a
déterminer ce que l'on cherche a apparier. Cette fonction est assez différente
dans le cas des CAM traditionnelles et dans celui des CAM neuronales. Dans une
CAM « traditionnelle », le prétraitement consiste a isoler la partie & apparier sur
tous les enregistrements alors que dans une CAM neuronale, le prétraitement doit
isoler les enregistrements sur lesquels doit se faire I’appariement.

e La seconde fonction est la fonction d’appariement plus connue sous le terme
anglais de « matching » qui permet de comparer ’entrée aux enregistrements

pour déterminer si le vecteur présenté en entrée est présent dans la mémoire.

Content Addressable Memory

Vecteur Prétraitement |-

Détection des
Appariement > vecteurs

d’entrée

enregistrés

Données

enregistrées

Figure 2.1 : Fonctions fondamentales d’une CAM

2.3 Lis CAM « TRADITIONNELLES »

Les CAM commercialisées actuellement sont des systémes trés complexes en raison des
fonctionnalités qu’elles doivent offrir. Dans ces systémes le traitement des données est

totalement paralléle et ainsi, chaque cellule de mémoire doit posséder sa propre fonction
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de prétraitement et d’appariement. Dans les CAM « traditionnelles », chaque cellule de
mémoire correspond 4 un enregistrement et peut fournir un signal indiquant s’il y a
appariement entre la donnée en entrée et la donnée qu’elle a stockée. On distingue les
CAM binaires des CAM ternaires : les CAM binaires ne peuvent enregistrer que des
vecteurs binaires alors que les CAM ternaires acceptent 3 états ‘0°, ‘1’ et «don’t carey,
couramment noté ‘x’. En effet, comme ces mémoires sont trés utilisées pour le routage,
I’état ‘x’ permet de déterminer des régles de routage pour des sous-ensembles
d’adresses. Le but de cette section étant de comprendre le principe de fonctionnement

d’une CAM, seul sera décrit le fonctionnement d’une CAM binaire élémentaire.

2.3.1 Fonction de prétraitement

Dans le cas des CAM « traditionnelles », ce sont les mots enregistrés dans la CAM qui
sont prétraités : le prétraitement consiste a sélectionner par masquage la partie des
données enregistrées a comparer avec le vecteur d’entrée. Cette opération est trés simple

et trés rapide mais doit se faire au niveau de chacune des cellules de mémoire.

2.3.2 Fonction d’appariement

Dans le cas d’une adresse binaire, on peut trés facilement comprendre le principe de
fonctionnement grice a de simples portes logiques “ET” (Figure 2.2). Toutefois, les
cellules mémoires des CAM sont, dans la réalité, beaucoup plus complexes. Mais
I’approche permet de donner une estimation du nombre de porte logiques nécessaires
pour concevoir une CAM. Si la CAM peut enregistrer n vecteurs de s bits, il faut (n-1)*s
portes “ET”. Si on suppose qu’il y a statistiquement autant de ‘0’ que de ‘1’ dans les

vecteurs a enregistrer, on a (n-1)*s/2 portes “NON”.
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B .
] Signal de
V,ectel}r —_— détection
dentrée | —
—

Décodeur du mot
"01011001"

Figure 2.2 : Détecteur d’adresse 8 bits

Bien que les principes élémentaires de fonctionnement des CAM « traditionnelles »
semblent trés simples, !’architecture globale est colteuse (Tableau 2.1) car de
nombreuses fonctionnalités supplémentaires doivent étre implantées, telle la possibilité

d’utiliser la CAM comme une RAM.

2.4 LES CAM NEURONALES

A partir du constat fait sur ’architecture des CAM « traditionnelles », on va chercher a
créer des CAM neuronales qui puissent réaliser un contréle pour un ensemble
d’enregistrement afin d’économiser des ressources. Parmi les modeles neuronaux
existants, il y a plusieurs architectures considérées comme étant des CAM : dans son
livre « Introduction to Natural Computation », Ballard [BAL99] distingue les
Correlation Matrix Memories (CMM), les Sparse Distributed Memories (SDM) et les
mémoires de Hopfield. Contrairement aux CAM «traditionnelles», les CAM neuronales
ont pour base une approche connexionniste et cherchent & imiter le comportement des
neurones biologiques qui ont la faculté de retrouver rapidement les données qu’ils ont
enregistrées. En effet c’est grace a cette rapidité a retrouver des données que les étres
vivants sont des systémes tres performants pour des tiches telles la reconnaissance de

visage ou la reconnaissance des sons.
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Dans I’approche neuronale proposée, le réseau de neurones se chargera du prétraitement

et un circuit constitué de logique pure se chargera de I’appariement.
2.4.1 La fonction de prétraitement

Contrairement & une CAM « traditionnelle », le prétraitement dans un réseau de
neurones est réalisé pour un ensemble d’enregistrements. Le réseau de neurones effectue
un pré traitement afin de réduire considérablement la taille de ’espace de recherche : le
réseau de neurone permet de déterminer un ensemble d’adresses possibles et doit assurer
en outre que, si la donnée a été enregistrée, elle I’a été a "une des adresses sélectionnées.
La difficulté de cette approche est de réussir a garantir que le systeme se comporte
comme désiré dans tous ses états possibles, avec toutes les entrées possibles. Dans le cas
d’une entrée de 4 bits, il y a 696 états possibles pour le systeme (Annexe III) et 16
vecteurs d’entrée possibles: il y a donc 696*16=11136 tests a effectuer. Si pour une
entrée de 4 bits, un test exhaustif du systéme est possible, il est impossible pour une
entrée de 8 bits : pour un tel systéme, il y a 1,354*10" états possibles et 256 vecteurs
d’entrée possibles. Par conséquent, il faudrait effectuer 1,354%10"%256=2,796*10"
tests, pour réaliser une vérification exhaustive du systéme, soit des millions de milliards

de tests.

2.4.2 La fonction d’appariement

La fonction d’appariement va permettre de s’assurer de [’existence ou non d’une donnée
en mémoire. Cette fonction est réalisée sans utiliser de réseaux de neurones mais avec de
la logique pure. Suivant la méthode utilisée, I’appariement ne se fait pas de la méme
facon. Il peut se faire sur un ou plusieurs candidats sélectionnés par le réseau de

neuroncs.



2.5 UN COMPROMIS COUT-PERFORMANCE

2.5.1 Les principaux fabricants de CAM « traditionnelles »

14

Les fabricants de CAM sont assez nombreux : on distingue les fabricants spécialisés

dans la fabrication de CAM et les fabricants de FPGA qui vendent des propriétés

intellectuelles (IP) qui se présentent sous forme de code source qui permet d’implanter

une fonction sur un FPGA. Les principaux fabricants de CAM sont Cypress, IDT,

Kawasaki, Mosaid et Sibercore.

Tableau 2.1 : Les principaux fabricants de CAM

136 16 66
Cypress CYNSE70064A 12024270
272 8 33
IDT 75K62100 72 128 100 400 a 560
144 64 100
Kawasaki KCAMOSA NC
288 32 50
144 128 100
Mosaid DC18288 NC
288 64 100
144 16 100
Sibercore SCT 2000 NC
288 8 100

On peut noter que la plupart des FPGA tels les Virtex de Xilinx et APEX II d’Altera

fournissent des IP permettant d’implanter des CAM. Toutefois, le prix de tels systémes

se chiffre en milliers de dollars.
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2.5.2 Un coiit élevé

Les CAM ne sont pas utilisées dans tous les domaines ou elles pourraient apporter une
nette amélioration des performances. La raison principale de ce désintérét est leur cott
¢levé : la plupart du temps, leur intégration n’est pas rentable. Comme il est mentionné
dans le Tableau 2.1, le prix unitaire de tels systemes se chiffre en centaines de dollars en
raison des fonctions additionnelles qu’elles doivent remplir tel le fonctionnement en tant
que RAM. On ne va les intégrer que dans les systémes ou la vitesse de traitement est un
facteur critique. La parallélisation totale évoquée dans la section 2.3 a pour conséquence
que leur taille physique et leur colit sont directement proportionnels a leur largeur et a

leur profondeur [MCA93].

2.5.3 Des contraintes de plus en plus exigeantes

Vue la taille des regles des systémes pare-feu qui est actuellement d’au moins 128 bits,
Putilisation d’une CAM dans ce domaine est déja peu intéressante. De plus, avec la
venue de la norme IPv6, I'utilisation d’'une CAM semble peu envisageable. Ainsi, pour
pouvoir intégrer des CAM dans des systémes pare-feu matériels, il faut en diminuer les
colits, quitte & perdre un peu en matiére de performances. L’objectif vis¢ dans cette
recherche est de trouver un modéle de mémoire alternative moins cofiteux mais

performant. On peut représenter cet objectif dans un plan cotGt-performance (Figure 2.3).
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Vitesse d’exécution

A
CAM

neuronale

B

Colt matériel

Figure 2.3 : Le compromis cofit-performance recherché

2.6 CONCLUSION

Dans ce chapitre, on a proposé une définition des fonctions essentielles d’une CAM. On
constate que les CAM ont une fonction de prétraitement qui prépare les données pour la
phase d’appariement. La phase d’appariement est une étape trés rapide. On constate que,
dans les CAM « traditionnelles », des fonctionnalités secondaires inutiles doivent étre
mises en place, ce qui rend complexe la réalisation des cellules de mémoire. Comme on
peut le constater sur le Tableau 2.1, la conséquence de cette complexité est un prix de
vente trés élevé. Ainsi, les modéles de CAM neuronales envisagés doivent optimiser

P'utilisation des ressources pour le stockage et le traitement des données enregistrées.
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CHAPITRE 3

RESEAUX DE NEURONES FONDAMENTAUX UTILISES

3.1 INTRODUCTION

Il existe de nombreux modeles de réseaux de neurones et il faut réussir a sélectionner
parmi eux ceux qui peuvent permettre de bonnes performances. Comme il a été vu
précédemment (section 2.4), il existe plusieurs modéles de CAM neuronales. Parmi ces
modéles, deux sont particuliérement intéressants car ils ont déja été implantés & un
niveau matériel : ce sont les modéles des SDM (Annexe IV) et des CMM. Bien qu’une
adaptation du modele des SDM, a I'instar du modéle de CMM développé, offre de
bonnes perspectives en terme de cofit et de performances, seule une étude sur les CMM

a été menée a terme, faute de temps.

Afin de progresser dans le choix d’un modéle, une étude des spécificités des réseaux de
neurones a ¢t¢ mence. Une telle étude permet de mettre en lumicre les difficultés &
affronter pour adapter un modele neuronal a un probléme de détection de régles. Par
I’intermédiaire du modeéle des k «nearest neighbors» ou k-NN, on illustrera les
caractéristiques des réseaux de neurones utiles a la détection de régles. Enfin, on

donnera une description du modeéle utilisé par la suite : le modele des CMM.

3.2 SPECIFICITE D’UNE APPROCHE NEURONALE

La caractéristique principale des réseaux de neurones est leur faculté d’apprentissage.

Dans le contexte de la détection de régles, I’approche neuronale va permettre de traiter
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un ensemble de régles, ce qui n’est pas le cas dans ’approche traditionnelle ot I’on

traite les regles indépendamment les unes des autres.

3.2.1 Principe de fonctionnement d’un réseau de neurones

32.1.1 Le modéle de McCulloch-Pitts

Dans un des modéles les plus couramment utilisés, le modele de McCulloch-Pitts
[MCC43], un neurone est modélisé par N entrées —les synapses-, un seuil d’activation,
un sommateur, une fonction d’activation et une -sortie. Les entrées sont pondérées par
des poids synaptiques ajustables : c’est grice a cette possibilité de modifier ses poids

synaptiques qu’un neurone a la faculté d’apprendre.

( Xy Seuil b

Sortie
¢ — y

Vecteur | X2
d'entrée< !

Fonction
d’activation

XN

Figure 3.1: Le modéle de neurone de McCulloch-Pitts

Dans le modéle présenté sur la Figure 3.1, on a les relations :

N
S oox +b 3.1)
i=1

<
fi

N

yzgp(v)zgo( a)l.xl.+bJ (3.2)
1

i
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La fonction d’activation est la plupart du temps une fonction « Heavyside », une
sigmoide ou une tangente hyperbolique. La sigmoide est une fonction mathématique qui

a pour équation :

@(v) =i A€ R (3.3)

L’allure de la tangente hyperbolique est identique a celle de la sigmoide mais elle varie

entre -1 et 1.
3.2.1.2 Des neurones en réseau

A partir de cette unité de base, on peut construire des réseaux de neurones® capables
d’accomplir des tdches complexes. De maniére générale, les réseaux de neurones ont la
capacité d’interpoler des fonctions méme dans de grandes dimensions ou de classer des
échantillons inconnus grace aux connaissances qu’ils ont acquises: on parle de
généralisation. Cependant, il est nécessaire d’entrainer un réseau de neurones —période
d’apprentissage- avant qu’il se comporte de la mani¢re souhaitée. Cet apprentissage
consiste en une correction des poids synaptiques pendant la période d’entrainement.
Dans la plupart des cas, cette correction se fait a ’aide d’une fonction de cott qu’il faut
déterminer puis minimiser en modifiant les poids synaptiques. Le colit est
principalement fonction de ’erreur qui est, pour un signal d’entrée donné, la différence

entre la réponse désirée et la réponse réelle du réseau.
3.2.2 Le probléme di a Pinférence

Pour effectuer une détection de régle, les approches connexionnistes existantes ne
semblent pas totalement adaptées : I’objectif visé dans les CMM [AUS88], [AUS89] est
la reconnaissance de forme, le systéme doit &étre capable de faire de I'inférence, c'est-a-

dire de tolérer une certaine différence entre la forme qui lui est présentée et la forme

? Un réseau peut comporter des milliers de neurones
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qu’il a mémorisée. Dans son livre « Sparse Distributed Memory »[KAN88], Kanerva
présente les SDM comme un systéme performant pour résoudre le probléme du meilleur
représentant. Or ici, on cherche a ne détecter que les données effectivement enregistrées.
Cette tache est difficile a implanter avec des réseaux de neurones et pour y parvenir, il

est nécessaire d’adapter les modeles existants.
3.2.3 Adaptation a la détection de régles

11 existe deux problémes lorsque 1’on songe a réaliser un réseau de neurones permettant
une identification formelle des données présentées :

e L’inférence qui est un inconvénient dans le cas de la détection des régles. Les
réseaux de neurones sont congus pour €tre tolérants au bruit ou pour étre
capables d’inférer une réponse : il faut donc les transformer, si possible, en
systtme ne commettant aucune erreur. Pour s’assurer que les réseaux de
neurones envisagés aient cette capacité, une étape de validation est requise.

e La taille de I’espace des entrées est immense et pose probleme pour la validation.
En effet, ’objectif est de manipuler des vecteurs de grande dimension : 128 bits
voire méme davantage. Or si nous calculons le nombre de vecteurs de 128 bits
possibles, on en dénombre 2'2%=3 4*10°® . il est donc impossible d’effectuer une

validation exhaustive dans un tel espace.

La premiére partie de la recherche consiste a tester des architectures avec des vecteurs de
taille modeste (jusqu’a 16 bits) afin de pouvoir procéder & des tests exhaustifs : les tests
mettent en évidence la présence d’erreurs.

Dans la deuxiéme partie, les réseaux de neurones ont été utilisés pour un prétraitement
de données enregistrées dans une RAM : le réseau de neurones permet de déterminer a
quelles adresses dans la RAM il est possible de trouver le vecteur présenté en entrée. Ce

travail a été suggéré par le modéle développé par Zhou [ZHO99] qui applique
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Palgorithme k-NN (section 3.3.1) dans un sous-espace sélectionné grace & une CMM

comme il est détaillé dans la section 4.5.1.

3.3 LE MODELE DES K-NN

Le modele des k plus proches voisins ou « k-Nearest Neighbours » (k-NN) permet de
classifier des données. En fonction des données apprises, le systéme décide a quelle
classe appartient un vecteur d’entrée inconnu. Dans ce modéle, on étudie la distribution

des classes au niveau local pour déterminer la classe du vecteur inconnu,

3.3.1 L’algorithme k-NN

Si 'on interpréete 'ensemble des entrées possibles comme un espace E, un vecteur
d’entrée X a une certaine classe d’appartenance. Dans le cas d’une tdche de
classification avec l’algorithme k-NN, un enregistrement consiste en un couple (v,

C(v))ou C(V) note la classe d’appartenance de v .

3 connus d’un

Le principe de I’algorithme k-NN est d’identifier les k plus proches voisins
point inconnu. L’algorithme attribue & ce point la classe trouvée en majorité parmi ces k

plus proches voisins.

La Figure 3.2 présente ’exemple d’un algorithme 7-NN : ici, la classe de v peut étre 4,
B ou C. Chaque cercle représente un vecteur de I’espace des entrées. Les cercles blancs
représentent les vecteurs enregistrés et la lettre la classe a laquelle ils appartiennent. Le
cercle gris est le point dont on cherche a déterminer la classe d’appartenance. Cette
classe d’appartenance étant a priori inconnue, on la note X. Avec I’algorithme k-NN, on
trouve que la classe inconnue X est la classe B car 4 des 7 plus proches voisins

appartiennent a la classe B.

3 Relativement & une métrique définie préalablement qui peut étre une distance de Hamming, une distance
euclidienne ou une autre
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@ Classe correspondant
au point enregistré

@ Classe a déterminer

7 plus proches

@ ——5 Fléche montrant les
@ voisins

Figure 3.2 : Illustration de Palgorithme k-NN

3.3.2 Relation du contenu de la mémoire au vecteur d’entrée

On peut considérer, dans le modéle k-NN, que I’emplacement de stockage d’un élément
est lié & son contenu : en effet, les vecteurs non enregistrés sont, d’une certaine maniére
stockés en mémoire par la connaissance de ses N plus proches voisins enregistrés. La
sortie fournie par le systeéme est donc dépendante de la place du vecteur d’entrée dans
I’espace E. C’est pour cette raison que des vecteurs d’entrée proches ont une forte
probabilité de donner des vecteurs de sortie proches, ce qui est, par exemple, totalement

faux dans le cas d’une RAM.

3.3.3 L’interprétation des données

Le principal inconvénient de I’algorithme k-NN pour un probléme tel que la détection de
régles est qu’il interpréte les données pour donner la sortie la plus cohérente possible

relativement aux vecteurs connus : le systéme se trouve incapable de différencier les
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informations inconnues des informations connues. De plus, cet algorithme demande un
gros temps de traitement puisqu’il doit calculer la distance entre le vecteur d’entrée et

chacun des vecteurs enregistres.

3.4 LE MODELE DES CMM

Les CMM constituent un modéle de mémoires distribuées dans lequel les processus
d’apprentissage et de récupération des enregistrements sont rapides. De plus, sous
certaines conditions, ce modele permet de retrouver exactement les données
enregistrées. C’est ce modele neuronal qui est utilisé¢ dans tous les modeles de CAM
neuronales €tudiés par la suite. Pour comprendre quelles contraintes doivent étre
respectées, il est utile de connaitre la théorie des CMM. Les coefficients de la matrice de
corrélation peuvent étre des réels, des entiers voire méme de simples bits. Cette section
est fortement inspirée du livre « Neural Networks: a Comprehensive Foundation» de

Simon Haykin [HAY98].

3.4.1 Construction des CMM

La CMM peut se construire de maniére itérative ou par un produit matriciel. Bien qu’elle
ne soit pas la méthode utilisée, la méthode itérative permet de mieux comprendre le
processus d’enregistrement et sera présentée en premier. Cette description permettra de
comprendre aisément la construction par produit matriciel. Ensuite seront décrits le
processus de récupération de I’information et les contraintes a respecter pour récupérer

de maniére exacte les données enregistrées.

3.4.1.1 Construction de la CMM par méthode itérative

Le nom de « matrice de corrélation » a pour origine la maniére avec laquelle est

construite cette matrice. Si ’on désire obtenir le vecteur y de sortie lorsque I’entrée
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recoit le vecteur ¥, la CMM enregistre cette information en établissant une corrélation

entre X ety .
Supposons que Pon cherche & stocker n vecteurs {3,3,,...,5,} aux adresses

correspondantes {X,,%,,...,%,}, alors la matrice de corrélation M vaut :
' = T
M = Z P X (3.4)
k=1

On constate ainsi que cette matrice est la superposition du produit externe de chacun des

couples ()?k ,)7,{) et que ’ordre d’enregistrement des différentes données n’influence pas

la valeur des coefficients de la matrice. On peut également voir que les CMM sont des
mémoires distribuées : 1’enregistrement de chaque donnée est réparti sur toute la

matrice.
3.4.1.2 Construction de la CMM par produit matriciel

L’expression matricielle pour la construction de la CMM est, en fait, un « batch » de la

méthode itérative. Soient les matrices X et Y telles que:

X =[%.%,,....%,] (3.5

Y =[50 3] (3.6)
On peut alors exprimer M comme un produit matriciel :

M=YX" (3.7)

Pour retrouver les sorties correctement a la lecture, il est important de normaliser les

vecteurs d’entrée X,

3.4.2 Récupération des enregistrements dans la CMM

Le processus de lecture dans une CMM est simple, il consiste en un simple produit

matriciel. Ainsi, la sortie y correspondant a un vecteur d’entrée X sera :
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y=Mx (3.8)

Sous certaines conditions, il est possible de retrouver un vecteur y,préalablement
enregistré si I’on présente le vecteur XJui correspondant en entrée. Si on développe

I’équation 3.4 pour le vecteur X, on obtient

5}_/' = j}i)-c.iTi:j
i=l
n r
=37 (x,. xj) (3.9)
i=]
n e\
= Z;(xi X, ) i
On peut commuter le terme (Bc‘,,rfc j) qui est un produit scalaire.
Ensuite, on peut écrire :
Y, =(x ’cj)yj—kZ(f,.TJ?j)}i (3.10)
i’;j
Si on a normalisé les vecteurs a I’enregistrement, on a les relations suivantes
%% =[5 =1 (3.11)
J7 i ’
XX, =cos(%,,%,) (3.12)
Ainsi, I’équation (3.10) devient :
(3.13)

ﬁj =¥, +Zn:°05(”~#f)yi
i=l

i#j

3.4.3 Représentation neuronale d’une CMM

Une CMM peut étre représentée en tant que réseau de neurones (Figure 3.3) : les poids

synaptiques sont ajustés avec Aw@, =x;y, pour chaque échantillon appris. La
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représentation neuronale d’une CMM montre comment la mémoire est distribuée sur

chacun des neurones.

Vecteur de sortie y

codé sur output_size

Vecteur d’entrée x: regl
codée sur input_size bits Vi
- 1

bits

Poids synaptiques :

¢ Wi i1 input_size)

Xinput_s

Figure 3.3 : Représentation neuronale d’une CMM

3.4.4 Minimisation de la corrélation croisée

Comme le montre I’équation (3.13), on est assuré de retrouver y, si les vecteurs

d’entrée sont orthonormaux deux a deux. Toutefois, y, sera proche de p, si

n
Zcos(ic',,ic‘j)yi .<_“37 f“m‘ Par la suite, ce cas de figure sera évoqué sous le nom de
i=1

i#) »

pseudo orthogonalité.
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Ainsi, deux approches seront étudiées :
e [’orthogonalisation des vecteurs d’entrée
e La transformation des vecteurs d’entrée en vecteurs « sparse » et distribués

uniformément sur [’espace, caractéristiques qui assurent une pseudo

orthogonalité.
3.5 CONCLUSION

Les réseaux de neurones, en raison de leurs propriétés spécifiques, offrent a la fois des
avantages et des inconvénients dans la perspective de leur utilisation pour des systémes
de détection de regles. Leur capacité & inférer une réponse en présence de vecteurs
d’entrée inconnus, qui est un avantage dans leurs utilisations habituelles, est dans ce cas
un inconvénient majeur. En revanche, les méthodes de stockage de I’information
employées dans les réseaux de neurones permettent de relier fortement les données a
leur lieu de stockage. De plus, des modéles de mémoire tel celui des CMM permet de
stocker I’information des vecteurs enregistrés de maniere globale: ainsi I’étape de
prétraitement est globale au lieu d’étre spécifique & chaque cellule d’enregistrement

comme dans les CAM « traditionnelles ».
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CHAPITRE 4

ADAPTATION DES MODELES DE CMM EXISTANTS

4.1 INTRODUCTION

Dans le cadre de cette recherche, cing modeles utilisant des CMM ont été explorés. Le
chapitre présente les différentes simulations effectuées et détermine les configurations
valides et fournit un certain nombre de caractéristiques qui permettent de donner une
estimation de cofit et de performances de ces différents modeles. Les trois premiers
mod¢les utilisent un procédé d’orthogonalisation exact, les deux derniers, un procédé de

projection des vecteurs dans un espace de grande dimension.

L’étude des différents modéles suit la démarche adoptée pour aboutir a des systemes
rapides et peu exigeants en ressources. Cette démarche a consisté en des raffinements
successifs du modele d’origine. En utilisant les informations fournies par les modéles
étudiés antérieurement, on a pu dégager des contraintes supplémentaires a respecter et

ainsi adapter le modéle a ces contraintes.

Les simulations décrites dans ce chapitre sont constituées de deux phases : la premiere
consiste en une validation du modéle proposé, la seconde a pour but de fournir les
informations nécessaires au dimensionnement de la CMM. Ce dimensionnement permet
de déterminer les ressources mémoires nécessaires pour stocker les coefficients de la
CMM et le nombre d’opérations requises pour effectuer une lecture dans la CMM. 11
faut noter qu’aucune estimation du cofit de mise en mémoire des données nest faite car

on cherche a obtenir un systéme trés rapide en lecture seulement. La mise en mémoire
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des données n’a pas de contraintes de rapidité et ne nécessite que des ressources

logicielles (calcul des coefficients de la CMM).
4.2 ORTHOGONALISATION DES VECTEURS COMPLEMENTES

Comme i1l a été vu dans la section 3.4.2, si les vecteurs enregistrés dans la CMM sont
orthogonaux deux a deux, on est assuré de retrouver une réponse exacte pour les
vecteurs enregistrés. La premiere idée est donc d’orthogonaliser la famille de vecteurs a

enregistrer.
4.2.1 Le principe de la décomposition QR
42.1.1 Procédé de Gram-Schmidt et méthode QR

Le procédé d’orthogonalisation de Gram-Schmidt permet de transformer une famille de

vecteurs linéairement indépendants en une famille orthonormale de vecteurs.

Soit {é[}ie[} g une famille libre de vecteurs, alors la famllle{ } définie par

e[l.d]
récurrence suivante est orthonormale :
- &
1
£, =
1 -
“el ”

€ ek+l )

<ek+1 2 l>

Vke[l,d-1] &, =

Crey —

\

Avec <)?, )7) notant le produit scalaire de X par y.
Le procédé de Gram-Schmidt montre que tout vecteur €, peut &tre exprimé en fonction

des vecteurs {,...,&,}.
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Notons, dans le procédé de Gram-Schmidt, #» la dimension des vecteurs ¢, et &,. Notons

M la matrice nxd telle que M =(g,,...,¢,) et Q la matrice orthonormale 0 =(&,,...,&,).
Compte tenu de la remarque précédente, il existe une matrice triangulaire supérieure R
de taille dxd telle que M =QR . C’est cette décomposition de M en un produit d’une

matrice orthonormale Q et d’une matrice triangulaire supérieure R par le procédé de

Gram-Schmidt que ’on nomme décomposition QR.

La décomposition QR utilisée dans les simulations est une fonction standard fournie par
le logiciel Matlab. Une description précise de I’algorithme utilisé pour obtenir la
décomposition QR se trouve dans le livre « Numerical Recipes in C » [PRE93].

4.2.1.2 Application a I’orthogonalisation des régles

Dans le cas de regles, on désigne la transposée de la matrice des entrées X (section 3.4.1)
par IN et la transposée de la matrice des sorties ¥ par OUT. Il est nécessaire d’utiliser la

transposée afin de pouvoir utiliser correctement la décomposition QR.

En effet, soient {IN,OUT} un ensemble de régles telles que :

Regle, Sortie,
Régle Sortie
IN=| 2 e our=| T
Régle, Sortie,

Une régle est codée sur input_size bits et une sortie sur output_size bits. Il faut noter que
les régles sont décrites par des vecteurs lignes : il faudra donc transposer IN et OUT pour
utiliser la théorie sur les CMM.

Comme nous [’avons vu dans la section 3.4.4, pour retrouver une sortie absolument non
bruitée avec une CMM, il faut que la matrice des entrées & enregistrer soit

orthonormale : on va pour cela utiliser la décomposition QR décrite précédemment.
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On va donc chercher a enregistrer Q et non IN, soit O=IN.R" dans la CMM. Or, pour
pouvoir obtenir une matrice R inversible®, on doit transformer IN et OUT légérement. En
effet, il est nécessaire que la matrice IV soit carrée et qu’elle soit constituée de vecteurs
libres : il s’agit donc de compléter I’ensemble des régles avec une famille linéairement

indépendante de pseudo-régles dont aucune n’est une combinaison linéaire des régles

existantes.
[ Regle, ] [ Sortie,
Régle, -1 Sortie,
IN'= et OUT ' = =-emmmmmemenee
Régle,,, = Pseudo Regle Sortie nulle
i Regle;, . 4. = Pseudo Regle | | Sortie nulle |

Il faut remarquer qu’il est nécessaire de pouvoir définir la i*™ régle en fonction du ™
vecteur ligne de Q et de la matrice R. En effet, si la création de la CMM se fait en
connaissant tous les vecteurs a enregistrer, le processus de récupération se fait pour un
vecteur seulement : ce vecteur, une fois transformé doit correspondre a un des vecteurs
effectivement enregistré dans la CMM. Si I’on ne tient pas compte de ce probléme, on

risque d’obtenir dans @ des combinaisons linéaires des vecteurs enregistreés.

Notons respectivement in'y, g; et r; les coefficients situés & i*™ ligne et j°™ colonne de

IN’, O, R. Le produit matriciel donne :

input _size
Vi, j e[l input _size]in', = Z Gy 4.1)
k=1

Si les régles sont décrites par des vecteurs colonne de IN’, chaque régle de IN’ dépend

de tous les coefficients de Q. En revanche, si les régles sont décrites par des vecteurs

* Si on a une matrice carrée constituée de vecteurs libres, on obtiendra une matrice R inversible [PRE93]
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lignes de IN’, la i*™ régle est globalement fonction du i™ vecteur ligne de Q et de R : le

'™ vecteur ligne de Q est donc équivalent 4 la i*™ régle. La Figure 4.1 illustre ce

processus.
Vecteur S,
colonne 1
Vecteur —
colonne j
Régle 1
Matrice IN’ Matrice Q
Valeur 1 Valeur j
Regle i Regle i

Figure 4.1 : Correspondance entre la matrice IN’ et la matrice Q

Dans la théorie des CMM décrite dans la section 3.4, on utilise des vecteurs colonne soit
X=0".
En aménageant ’expression de I’équation a notre probléme, nous obtenons ;

M=0UT".Q0=0UT".IN".R"’ (4.2)

Pour retrouver le vecteur, on effectuera pour un vecteur colonne x en entrée :
Y=MG RY =M@R"Yi=M'F% (4.3)
avec

M'=MR" (4.4)
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On constate qu’une fois M’ calculée, il suffit de tester un vecteur sans le transformer car

le changement de base est compris dans le calcul de M”.

42.1.3 Latransformation des entrées utilisées

Lorsqu’on crée les régles, il est fréquent que les vecteurs correspondants constituent une
famille liée. Dans ce cas, le rang de la matrice R sera dégénéré et R sera, par conséquent,
non inversible. Pour éviter ce probléme, il est nécessaire de transformer les vecteurs
d’entrée en une famille de vecteurs linéairement indépendants. Si le processus

d’orthogonalisation se fait avec des nombres réels, les entrées du systéme sont binaires.

Ainsi, la premiére approche envisagée consiste a transformer le vecteur d’entrée binaire

X en concaténant I’entrée d’origine avec son complément X (Figure 4.2). Cette
transformation est envisagée car elle permet de créer une famille de vecteurs

linéairement indépendants.

y
Copie du
] vecteur
d’entrée
Vecteur a
> orthogonaliser
Complémentaire du

, .
Vecteur vecteur d’entrée

d’entrée

binaire )

Figure 4.2 : Transformation d’un vecteur par adjonction du complémentaire
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Si, par exemple, on enregistre les vecteurs A=(1,0,0,0) et B=(0,0,1,0). On obtient, aprés
transformation, les vecteurs A’=(1,0,0,0,0,1,1,1) et B’=(0,0,1,0,1,1,0,1). Si l'on
considere le vecteur (1,0,10) qui est une combinaison linéaire de A et de B, on constate
que le vecteur transformé correspondant, (1,0,1,0,0,1,0,1) n’est pas une combinaison

linéaire de A’ et B’.

Cette transformation est adoptée car, si elle double la taille des vecteurs, elle est trés
facile a implanter tant au niveau logiciel que matériel car fait appel & des transformations
¢lémentaires. C’est a partir de ces vecteurs transformés que 1’on procéde 2

I’orthogonalisation.

4.2.2 Processus de validation

Les simulations ont pour objectif de déterminer si le modele décrit ci-dessus est valide.
Pour cela, on va comparer la réponse donnée par la CMM avec la réponse qu’elle est
supposée donner: la méthode de comparaison employée est détaillée dans la
section 4.2.2.2. En outre, on analysera les erreurs notamment en différenciant celles de

type I de celles de type II.

4.2.2.1 Les vecteurs enregistrés dans la CMM

Les vecteurs d’entrée de la CMM sont les vecteurs transformés par adjonction du
complémentaire, les vecteurs de sortie sont pris identiques aux entrées, ce sont donc
aussi les vecteurs transformés : on parle de CMM auto associative.

4.2.2.2 Principe de la méthode de validation

Afin de vérifier que la réponse du modéle simulé est correcte, un systéme non neuronal

détermine la réponse attendue. On fera référence a ce systtme par le terme de
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« vérificateur ». Pour déterminer si lJa CAM neuronale donne une réponse correcte, il

suffit de comparer sa sortie & celle donnée par le systéme vérificateur (Figure 4.3).

Vecteur
d’entrée

a tester

CAM neuronale

Comparaison des

sorties

Systeme vérificateur

Figure 4.3 : La méthode de vérification des vecteurs de sortie

Ainsi, ce dispositif permet de déterminer si la CAM neuronale commet ou non des
erreurs. Ces erreurs peuvent étre de différentes natures et il faut collecter le maximum

d’informations pouvant servir a comprendre les causes d’erreur.

Les différents types d’erreurs. Pour pouvoir plus facilement interpréter les causes
d’erreurs, il est important de distinguer plusieurs types d’erreurs : on peut différencier
les erreurs produites avec des vecteurs enregistrés (erreurs de type I) des erreurs
produites avec des vecteurs non enregistrés (erreurs de type II). Une différenciation plus
précise peut étre réalisée en classant les erreurs selon la distance de Hamming a

Penregistrement le plus proche. Cette classification permet d’identifier si les erreurs se
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produisent avec des vecteurs enregistrés et permet en plus d’évaluer 'influence de la

distance de Hamming sur ’erreur.

La notion de tolérance. Etant donné le choix de la sortie, ’appariement se réduit a
comparer la sortie obtenue a ’entrée présentée au systeme. Compte tenu des erreurs

d’arrondi, on tolére une différence &’ entre I’entrée présentée ¥ et la sortie obtenue 7 et
on considere qu’il y a appariement si

|2-5], <o (4.5)
Clest-a-dire si chacune des composantes du vecteur différence X-y est inférieure a &

(Figure 4.4). Le 3 est fixé a posteriori afin que tous les vecteurs enregistrés soient

détectés correctement.

UG PR

d’entrée

Vecteur de

Transformation

des entrées

Comparaison

Détection des vecteurs

enregistrés

Figure 4.4 : Modéle employé avec la méthode de complémentation des entrées

> Ce & sera parfois désigné par le terme « tolérance »
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4223 Paramétres de la simulation

Le probléme de la validation : validation exhaustive ou non exhaustive. Pour valider un
modele, il faut tester le comportement du systéme dans un certain nombre de
configurations types. Dans le cadre des simulations effectuées, il existe deux alternatives
pour valider les architectures. La premiére est la validation exhaustive qui consiste &
tester toutes les entrées possibles avec tous les enregistrements possibles: en cas de
succes avec cette méthode, on est assuré que le systéme répondra correctement dans tous
les cas de figure possibles. Malheureusement, méme pour des tailles de vecteurs d’entrée
modestes, une validation exhaustive est irréalisable (Annexe III). Dans le cas d’espaces
trop grands, il est seulement possible de réaliser une validation partielle qui donnera une
estimation de la fiabilité du systeme mais ne pourra pas garantir le bon comportement du

systéme pour tous les cas de figure possibles.

Choix d’une validation exhaustive. I a ¢té choisi de procéder & une validation
exhaustive avec de petits vecteurs d’entrée afin de pouvoir étudier plus facilement les
erreurs éventuellement commises par le systéme : la simulation présentée a été effectuée
avec des vecteurs d’entrée de 4 bits : tous les enregistrements possibles ont été testés
pour chacun des états possibles de la CMM —on peut enregistrer entre un et quatre

vecteurs- soit 40256 tests (Annexe III).
4.2.3 Résultats : le probléme des combinaisons linéaires

Si le systéme se comporte parfaitement en présence des entrées enregistrées, il commet
des erreurs avec des entrées non enregistrées et la fréquence de ces erreurs est d’autant
plus élevée que le nombre de vecteurs enregistrés est grand (Tableau 4.1). Une étude des
cas d’erreurs nous montre que celles-ci sont systématiquement causées par des

combinaisons linéaires d’entrées enregistrées (Tableau 4.2). En outre, lorsque ces erreurs
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se produisent, la différence entre I’entrée présentée et la sortie non arrondie est de

Pordre de 107!, ce qui est une différence difficilement détectable.

Tableau 4.1 : Pourcentage d’erreurs en fonction du nombre d’enregistrements

1 - 16 o0 |
2 120 0.05
3 560 435
7 1820 185

Dans les exemples du Tableau 4.2, les combinaisons linéaires sont faciles a déterminer
pour les 4 premiers cas. Dans le cas n°5, les combinaisons linéaires sont un petit peu
plus difficiles & trouver eton a :

(0,1,0,0) = (1,1,0,0)-(1,0,0,0)

(0,0,1,0) = (1,0,0,0)+(0,1,1,0)-(1,1,0,0)

(1,0,1,0) = 2*(1,0,0,0)+(0,1,1,0)-(1,1,0,0)

(1,1,1,0) = (1,0,0,0)+(0,1,1,0)
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Tableau 4.2 : Exemple d’erreurs détectées avec des vecteurs de 4 bits
complémentés

4.2.4 Une mise en évidence du probleme de Ia corrélation croisée

Il faut retenir de cette série de simulations sur les CMM que si ’orthogonalisation des
vecteurs d’entrée enregistrés permet de retrouver les sorties qui leur correspondent, le
résultat obtenu avec les vecteurs non enregistrés n’est pas prévisible et n’est pas toujours
celul désiré : la CMM tente de construire la réponse que devrait donner le systeme et
parvient & trouver la réponse que devrait donner le systéme dans ce cas particulier, en
donnant en sortie le vecteur d’entrée et son complémentaire pour certains vecteurs
inconnus. Ce probléme est connu sous le nom de corrélation croisée, ce que Cooper
appelle la logique animale [COO73]. Etant donné que ’on cherche un syst¢tme ne
commettant aucune erreur, on ne peut accepter ce modéle pour retrouver des régles

enregistrées.

Constatant ’inadaptation de ce modéle a notre probléme, une autre méthode a été
explorée pour laquelle, on cherche & coder de maniére différente les différents bits d’un

vecteur.
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4.3 ORTHOGONALISATION PAR RECODAGE CARACTERISTIQUE DE LA

COMPOSANTE

Ainsi, dans ce deuxiéme modele, si on utilise encore la décomposition QR (section
4.2.1), on modifie la méthode de transformation des vecteurs d’entrée. Dans le modéle
utilisant ’adjonction du complémentaire (section4.2), le systtme commet,
accidentellement, des erreurs de type II (section 4.2.3) : par construction de la CMM,
chaque bit d’un vecteur d’entrée enregistré influence tous les bits obtenus en sortie. Pour
pallier aux erreurs du modele utilisant l’adj'onction du complémentaire, on a
intuitivement cherché a recoder les vecteurs d’entrée afin de caractériser les bits tant par

leur valeur (‘0’ ou ‘1”) que par la composante qu’ils représentent.
4.3.1 Principe du recodage

Modification du modéle. La transformation employée est un recodage des entrées qui
permet de coder de maniére unique chaque ‘1’ du vecteur d’origine® : en fait, le ‘1” est
codé linéairement en fonction de I’emplacement du bit dans le vecteur. Si cette
transformation n’est pas la seule possible, ¢’est I'une des premiéres transformations qui
a été envisagée et qui permet d’obtenir un modele valide. Le ‘0’ est, lui, toujours codé
par la valeur 1: on peut considérer qu’une valeur de 0 marque une absence
d’information, ce qui n’est pas représentatif de I’information qu’apportent effectivement
les ‘0’ du vecteur d’entrée. De plus, la transformation utilisée a I’avantage de garder la

méme taille de vecteur d’entrée et donc de faire des économies au niveau de la taille de

la CMM.

8 1l serait envisageable de coder tous les zéros différemment, mais cela ne semble pas nécessaire
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Notons {l;,}l la base canonique de I’espace des entrées {0,1}'1 et soit
ielln

n
- 7 n . N . . - ,
x= E x.b, €{0,1}" un vecteur d’entrée du systéme. Le vecteur binaire ¥ est transformé
k=1

en un vecteur & coefficients entiers X' de la maniére suivante :
1= (1+kx)b, (4.6)
k=1
Il faut noter que la capacité maximale de la CMM est alors, pour une entrée de n bits,

itme

n-1. En effet, il faudrait que le n™™ vecteur compléte la base de I’espace, ce qui ne peut

étre le cas pour toutes les entrées possibles.

X3 X1, 1
X2 2% 1

; : N _
Xn NXq 1

Vecteur d’entrée Vecteur Vecteur Vecteur a

binaire de d’entrée constant orthogonaliser

taille n

Figure 4.5 : Transformation d’un vecteur par recodage caractéristique de la
composante

La suppression des cas de combinaisons linéaires. Supposons que 1’on ait enregistré les
vecteurs (1,0,0,0) et (0,1,0,0), cas qui a provoqué une erreur dans la simulation
précédente (Tableau 4.2) lorsque le vecteur (1,1,0,0) a été présenté. Les vecteurs, une
fois transformés, vont valoir respectivement (2,1,1,1) et (1,3,1,1). Le vecteur (1,1,0,0)
devient (2,3,1,1). Apres transformation, ce vecteur n’est plus une combinaison linéaire

des 2 vecteurs précédents.
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43.2 Méthode de validation et de détermination des ressources mémoires

nécessaires

La premiere partie de cette section décrit la méthode utilisée pour valider le modele
utilisant un recodage caractéristique de la composante. La deuxiéme partie montre
I'influence de la précision des coefficients sur les ressources mémoires a allouer aux
coefficients de la CMM et explique la relation entre la tolérance 8 (section 4.2.2.2) et les

ressources mémoires nécessaires.

43.2.1 Lesvecteurs enregistrés dans la CMM

Le schéma de fonctionnement de la CAM neuronale est identique a celui adopté dans la
section 4.2.2. La sortie enregistrée est identique & ’entrée: OUT=IN et la phase
d’appariement compare également I’entrée et la sortie en acceptant une certaine

tolérance & entre la réponse obtenue et I’ entrée.

4322 Les tests effectués

Des tests exhaustifs ont été effectués avec des vecteurs d’entrée de 4 bits. Ensuite, 10
essais ont été effectués pour chacune des tailles de vecteurs d’entrée 8§, 16, 32, 64 et 128
bits. Dans ces cas de figure, il est impossible de procéder a une validation exhaustive
(Annexe III). Ainsi, seule une validation partielle a été effectuée : pour une taille
d’entrée de n bits, on a effectué une simulation avec 1 vecteur enregistré, 2 vecteurs
enregistrés,... jusqu’a (n-1) vecteurs enregistrés. Les vecteurs utilisés dans la phase de
validation étaient :

e Tous les vecteurs enregistrés

e Tous les vecteurs situés a une distance de Hamming de 1 d’un des vecteurs

enregistrés soit les plus susceptibles de provoquer des erreurs.
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432.3 Coltdes coefficients de la CMM

Le colt en ressources mémoire & allover a la CMM est fortement dépendant de la
précision nécessaire afin de ne pas commettre d’erreurs. I faut, en fait, réussir a trouver
la tolérance & (section 4.2.2.2) optimale qui permette de ne pas commettre d’erreurs
d’une part et de minimiser les ressources mémoires & allouer aux coefficients de la
CMM d’autre part. En effet, plus la précision nécessaire est petite, plus le besoin en

ressources mémoire a allouer aux coefficients de la CMM est bas.

Supposons que la CMM soit constituée de coefficients & virgule fixe. Soit ¢ la valeur
maximale parmi les coefficients de la CMM et d le nombre de décimales des

coefficients, alors le nombre de bits nécessaires pour coder ¢ est nb_bits défini par :

nb_bits = [mgz (c*10¢ )] (4.7)

ou fo‘l note la fonction de plafonnage qui arrondit a ’entier supérieur. On constate que

la taille mémoire a allouer & chaque coefficient est fonction de la valeur maximale
trouvée parmi les coefficients de la CMM d’une part et de la précision des coefficients

d’autre part.
4.3.3 Un systéme sans erreurs apparentes

Afin que les ressources mémoires a allouer a la CMM soient les moins grandes
possibles, il faut chercher la plus grande tolérance qui ne provoque pas d’erreurs. On
peut noter que la tolérance maximale est & = 0,5, ce qui équivaut a arrondir les sorties

obtenues.

Essai exhaustif a 4 bits. Des tests exhaustifs ont été réalisés avec 4 bits en entrée : toutes
les entrées possibles ont été testées avec tous les enregistrements possibles. Aucune

erreur n’a été détectée avec une tolérance & = 0,1 sur la sortie obtenue. Contrairement au
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cas des entrées complémentées, ['utilisation du recodage -caractéristique des

composantes permet de ne plus avoir d’erreurs pour des vecteurs de 4 bits.

Essai a 8 bits. 1’ensemble des vecteurs enregistrés contient de 1 & 7 éléments. Ensuite la
validation se fait en testant les 256 vecteurs d’entrée possibles. Pour des vecteurs
d’entrée de 8 bits, on constate que des erreurs se produisent avec une tolérance de
d=0,1. Toutefois, ces erreurs ne sont présentes que pour des vecteurs situés & une
distance de un des vecteurs enregistrés. Le probléme n’existe plus avec une tolérance
3 =0,01. De maniere plus générale, la fréquence d’erreur semble fonction de la distance
de Hamming minimale entre le vecteur d’entrée et les différents vecteurs enregistrés :
plus un vecteur est proche d’un vecteur enregistré, plus il semble susceptible de générer
une erreur. Cette série d’essais montre qu’il est nécessaire d’avoir une tolérance § = 0,01
pour ne pas commettre d’erreurs. La contrainte sur la tolérance suggére ainsi 2 séries de
simulations :

e La premiére consiste a étudier 'influence de la distance de Hamming du plus

proche enregistrement sur la fréquence d’erreur.

e I aseconde consiste 4 étudier la tolérance en fonction de la taille de ’entrée.

Influence de la distance de Hamming sur la fréquence d’erreurs. Afin de pouvoir
apprécier influence de la distance de Hamming sur la fréquence des erreurs, une série
de simulations a été effectuée avec une trés grande tolérance (Figure 4.6) : le vecteur de
sortie est transformé par un simple arrondi de ses coefficients, c'est-a-dire 6 =0,5. Le
choix de cette trés grande tolérance a pour but d’accentuer le nombre d’erreurs et de
mieux observer l'influence de la distance de Hamming. Des simulations avec des
vecteurs d’entrée de 8, 10 et 12 bits ont été réalisées. Pour chaque expérience, 100
simulations par nombre d’enregistrements possibles ont été effectuées. Par exemple,
pour une taille d’entrée de 8 bits, 100 essais ont été effectués avec 1 vecteur enregistré,
100 avec 2 vecteurs enregistrés jusqu’a 100 essais avec 7 vecteurs enregistrés. La

validation a été exhaustive : tous les vecteurs possibles ont été testés au cours de la
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validation pour chacun des tests. Les résultats obtenus mettent en évidence l'influence
de la distance de Hamming au plus proche vecteur enregistré sur la fréquence d’erreur.
Ainsi les erreurs les plus probables sont celles produites pour des vecteurs situés a une
distance de Hamming de 1 du plus proche des vecteurs enregistrés. On constate que le
systtme ne commet aucune erreur de type I (ce qui correspond a une distance de
Hamming de zéro). Ceci s’explique grice aux propriétés des CMM (section 3.4.4) qui
garantissent de retrouver les bons vecteurs de sortie pour un ensemble de vecteurs

d’entrée orthogonaux.
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Figure 4.6 : Fréquence d’erreur en fonctions de la distance au plus proche

enregistrement. a) Taille d’entrée de 8 bits. b) Taille d’entrée de 10 bits. c) Taille

d’entrée de 12 bits.
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Simulations en grande dimension. Dans toutes les simulations effectuées, on pouvait ne
commettre aucune erreur & condition que la précision des calculs soit assez grande. On
constate que le réglage de la tolérance est critique et il semble d’autant plus difficile de
I’ajuster que la taille des vecteurs est grande. Toutefois le probleme principal de la
validation en grande dimension est que 1’on ne peut pas vraiment garantir le bon

fonctionnement du systéme.
4.3.4 Un systéme impossible 4 valider exhaustivement

Comme il a été mentionné précédemment, méme si le systéme semble ne commettre
aucune erreur, il n’est possible de garantir la réponse du systtme que dans le cas des
vecteurs enregistrés. On peut vérifier les vecteurs situés a une distance de 1 au sens de
Hamming, ce qui constitue déja un grand nombre d’essais : si la taille de 1’entrée est de
128 bits et que 127 vecteurs sont enregistrés, il peut y avoir jusqu’a 127*128 = 16256

vecteurs a tester. Mais il devient trés difficile de tester tous les vecteurs situés a une

. . . (128 128!
distance de Hamming de 2: il y a 127* 5 =127% ————=1032 256 vecteurs

21128 -2)!
de ce genre. Il est donc impossible de garantir le bon comportement du systéme pour de
grandes dimensions, méme si un systéme qui ne commet aucune erreur pour tous les

vecteurs distants de 1 des vecteurs enregistrés a une tres faible probabilité de commettre

des erreurs dans d’autres cas.

4.4 ORTHOGONALISATION D’UNE CMM POINTANT DANS UNE RAM

Les problémes de validation en grande dimension rencontrés a la section 4.3.4 suggerent
la recherche d’une méthode de wvalidation qui permette de certifier le bon
fonctionnement du systéme dans tous les cas de figure. Or la méthode de validation

dépend directement de D’architecture envisagée. Une nouvelle architecture a donc €été



48

développée : si I’on consideére I’architecture précédente, on constate que ’appariement
se fait entre le vecteur d’entrée et la réponse inférée par le systéme. Etant donné la
complexité de la transformation des entrées et les caractéristiques de non linéarité des
réseaux de neurones, il est impossible d’analyser le comportement du systéme pour tous
les cas de figure possibles. Si dans cette simulation, le modeéle utilisé pour la CMM est le
méme que celui décrit dans la section 4.3, la construction de la CMM est différente
puisque la sortie fournit une adresse qui correspond & un erﬁplacement mémoire dans
une RAM. Cette architecture permet de certifier le bon fonctionnement du systéme a

posteriori (section 4.4.1.1).
4.4.1 Fonctionnement de Parchitecture
4.4.1.1 Principe de détection des régles

L’architecture est modifiée de telle sorte que la CMM exécute seulement le
prétraitement qui fournit ’adresse possible d’enregistrement de la donnée.
L’appariement, qui se situe au niveau de la RAM, consiste & comparer le vecteur

d’entrée non transformé et le vecteur de la RAM sélectionné par la CMM (Figure 4.7).

Cette modification permet d’avoir une étape de validation beaucoup plus simple ou il
suffit de vérifier que le vecteur d’entrée non transformé est égal au vecteur de la RAM
pointé par la CMM. En effet, lorsqu’un vecteur non enregistré est présenté & I’entrée, la
CMM donne : soit une adresse invalide et dans ce cas, on sait directement que le vecteur
n’a pas ét¢ enregistré ; soit une adresse valide de la RAM et la détection du non
appariement se fait au moment de la comparaison. Bien qu’on ne puisse pas tester le
systeme dans tous ces états possibles (Annexe III), le processus de validation envisagé

permet de certifier, a posteriori, que le systéme fonctionnera correctement.
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Cette nouvelle architecture entraine une légére perte de performance car elle nécessite un
traitement supplémentaire des données au niveau de la RAM. Toutefois, elle permet une
validation treés rapide du systéme puisqu’il suffit de vérifier que la CMM donne Ia

réponse souhaitée pour les vecteurs enregistrés.

Vecteurs

présentés

en entrée

Transformation CMM Adresse d’un RAM
des entrées vecteur de la

RAM

Comparaison

Détection des vecteurs

enregistrés

Figure 4.7 : Modé¢le d’une CMM peintant dans une RAM

4412 Construction du systtme CMM/RAM

Le processus de construction se fait en modifiant les coefficients de la CMM d’une part

et en écrivant dans la RAM d’autre part.

La premiére étape consiste a créer un ensemble d’adresses binaires OUT correspondant
aux adresses d’enregistrement dans la RAM. Les adresses OUT sont soit des adresses

réelles de la RAM, soit des adresses virtuelles qui correspondent aux adresses
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d’enregistrement dans la RAM par I'intermédiaire d’une table de conversion ou LUT".
Dans les simulations effectuées, on utilise des adresses virtuelles de 1 a size_in-1 codées
en binaire ou size_in est le nombre de bits de I’entrée. La taille de vecteur de sortie

size_out nécessaire est donc :
size_out = [—log2 (size_z'n—l)-| (4.8)

ou la fonction (o—‘ note la fonction de plafonnage qui arrondit & P’entier supérieur.

Lorsqu’on enregistre un vecteur X, la CMM associe ce vecteur & la prochaine adresse
libre et enregistre X a ’emplacement correspondant dans la RAM, ainsi que les données
qui lui sont attachées. L’enregistrement de X permet d’effectuer I’appariement et les
données supplémentaires permettent de déterminer les actions & réaliser en cas
d’appariement. Dans le cas des régles d’un « firewall », une action peut étre d’accepter

ou de refuser un paquet.
4.4.1.3 Récupération des informations enregistrées

Pour déterminer si un vecteur X a été enregistré ou non, le systéme procede en 2 étapes :

e La CMM permet de localiser la seule adresse ol peut se situer ’enregistrement
correspondant au vecteur X .

e La comparaison du vecteur d’entrée avec le vecteur situ¢ a I’adresse pointée dans

la RAM permet de déterminer si le vecteur d’entrée a effectivement été

enregistré. En cas d’appariement on récupére alors les informations reliées au

vecteur détecté.

"Acronyme de la dénomination anglaise : « Look Up Table »
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4.4.2 Protocole de validation et d’évaluation du modeéele

Le protocole de validation et d’évaluation du modele consiste, dans un premier temps, a
vérifier que le systéme fonctionne correctement. On enregistre un certain nombre
d’informations supplémentaires pour pouvoir, dans un deuxiéme temps, évaluer la
robustesse du systéme et les ressources matérielles nécessaires. Pour cela on cherche a
connaitre les ressources mémoires nécessaires pour stocker la CMM. Ces ressources
sont fonction de la taille de la CMM et du nombre de bits nécessaires a coder chacun des
coefficients de la CMM. Le nombre d’opérations a effectuer, quant & lui, dépend

uniquement de la taille de la CMM.

Les coefficients de la CMM. Afin de pouvoir estimer correctement la taille a allouer a
chaque coefficient de la CMM, les coefficients obtenus apres orthogonalisation sont
arrondis au dixiéme : comme cette précision est suffisante, il est inutile de garder des

décimales supplémentaires pour les coefficients de la CMM (section 4.3.2.3).

Cas d'un test. Sur un test, on choisit le nombre d’enregistrements a stocker dans la
CMM et le nombre de vecteurs de validation. Le nombre d’enregistrements est compris
entre 1 et input_size-1. La phase de validation consiste & tester la réponse du systeme
avec les vecteurs enregistrés : comme il a été indiqué dans la section 4.4.1, si le systéme
donne des réponses correctes pour les vecteurs enregistrés, alors le systéme est valide.
Les informations enregistrées sont :

e Le nombre d’erreurs commises qui doit étre égal & zéro. Dans le cas contraire, le

systéme n’est pas valide.
e Lagrandeur A= HJ? - J”/]]w qui est la différence maximale observée sur ’ensemble

des composantes du vecteur différence pour les vecteurs enregistrés : elle permet

de connaitre erreur maximale commise en raison de ’arrondissement des

coefficients de la CMM.
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e Le plus grand coefficient en valeur absolue de la CMM : il permet de déterminer
quelle taille doit &tre allouée a chacun des coefficients de la CMM.
Il est & noter que pour chaque test, une CMM est créée, celle-ci étant dépendante des

vecteurs enregistres.

Description d’une simulation. Une simulation est constituée de plusieurs séries de tests.
Une série de test consiste en input_size-1 tests : le premier avec un enregistrement, le
2™ avec 2 enregistrements, ..., le i*™ avec i enregistrements... Les vecteurs enregistrés
sont pris aléatoirement mais tous différents les uns des autres. Les résultats enregistrés
sont déduits des résultats enregistrés pour chacun des tests. Pour chacune des 3 données
enregistrées, la simulation garde le pire cas. Ceci permet d’extraire des caractéristiques
indépendantes des vecteurs enregistrés dans la CMM. Ainsi, pour une simulation, les
informations suivantes sont enregistrées :

e La somme du nombre d’erreurs commises sur ’ensemble de la simulation : si
cette somme est non nulle, une erreur au moins a été détectée dans un des tests
effectués et le modéle n’est alors pas valide.

o Le A® maximal observé sur I’ensemble de la simulation: ce A est la pire
différence observée sur ’ensemble des simulations. Il doit étre inférieur a 0,5
pour quaucune erreur d’arrondi ne soit commise et le plus petit possible pour
assurer la meilleure robustesse.

e Le plus grand coefficient en valeur absolue sur I’ensemble de toutes les CMM
observées : cette donnée permet de déterminer quelle taille doit €tre attribuée a
chacun des coefficients de la CMM, indépendamment des vecteurs enregistrés
dans la CMM.

Dans une simulation, on effectue des séries de test pour des tailles d’entrée allant de 4 a
128 bits par sauts de 4 bits. Afin d’avoir les résultats les plus significatifs, il faut faire le

plus grand nombre possible de simulations.

¥ Ce A est celui décrit dans la description d’un test
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4.4.3 Un modéle valide

Les résultats obtenus (Tableau 4.3) ont porté sur un ensemble de 547 simulations’, ils
permettent de vérifier que le systéme ne commet aucune erreur, d’évaluer la précision de
la CMM et de dimensionner les coefficients de la CMM. Du nombre de bits 4 allouer &
chaque coefficient size_coeff, on déduit le nombre de bits nécessaires par vecteur
enregistrés nbits_enr. En utilisant les notations de la section 4.4.1.2 et en désignant par
nvect_max le nombre maximal de vecteurs stockables dans la CMM, on obtient :

size _in*size out*size _coeff

nbits _enr = (4.9)

nvect max

size_in* 1‘1og2 (size_in —1)1 *size _coeff

nbits _enr = (4.10)

size _in—1
C’est en utilisant [’équation (4.10) que l'on calcule le « Nombre de bits par

enregistrement ».

’ Dans un souci pratique, le paramétre d’arrét du programme qui effectuait les simulations était un
paramétre temporel et non un nombre de simulations a effectuer. Ainsi le nombre de simulations n’est pas
un nombre « rond ».



Tableau 4.3 : Synthése des résultats de simulation avec le modéle

d’orthogonalisation d’une CMM pointant dans une RAM

4 2 0.072 1483 U 29
3 3 0,082 74368 17 58
12 4 0,098 12560 17 74
16 4 0,106 329792 19 81
20 5 0,108 51490,1 19 100
24 5 0,123 69389 20 104
28 5 0,118 1829540 25 130
32 5 0,122 75650.3 20 103
36 6 0,125 112343,9 21 130
40 6 0,133 1702381 21 129
44 6 0,127 3323630 25 154
48 6 0,120 1831107 25 153
52 6 0,126 911164 24 147
56 6 0,138 114513 21 128
60 6 0,132 411352,5 22 134
64 6 0,135 24265440 28 171
63 7 0,128 1023463 24 171
72 7 0,135 5183384 23 163
76 7 0,130 1681783 25 177
80 7 0,139 17084755 28 199
84 7 0,129 1427060 24 170
88 7 0,141 6106495 26 184
92 7 0,135 2964863 25 177
96 7 0,137 2626187 25 177
100 7 0,138 10078600 27 191
104 7 0,152 3309644 25 177
108 7 0,138 37389290 29 205
112 7 0,138 4245330 26 184
116 7 0,142 1833605 25 177
120 7 0,144 426880000 32 226
124 7 0,139 4842343 26 184

4.43.1 Un systéme sans erreur

54

Sur ’ensemble des simulations effectuées, aucune erreur n’a été commise. Ceci permet

de s’assurer que I’arrondissement des coefficients de la CMM au dixiéme est suffisant

pour ne commettre aucune erreur. Pour mieux apprécier la fiabilité du systeme, il faut

toutefois étudier la précision de la sortie obtenue.
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4.4.3.2 Précision de la réponse donnée par la CMM

La sortie désirée étant binaire, I’impératif est d’obtenir une différence inférieure a 0,5
pour chacune des valeurs de sortie. La précision obtenue est donc relativement bonne
puisque la distance'® maximale observée entre la réponse désirée et la réponse obtenue
est inférieure a 0,16 (Figure 4.8). Ainsi ’arrondissement au dixiéme des coefficients de

la CMM permet d’obtenir des résultats concluants avec une bonne marge de sécurité.
4.43.3 Dimensionnement des coefficients

Les simulations effectuées permettent d’évaluer la taille nécessaire a allouer & chacun
des coefficients de la CMM. Avec les simulations, la taille maximale nécessaire trouvée
est 32 bits pour une taille d’entrée de 120 bits (Figure 4.9) : il faut réserver en mémoire

226 bits par vecteurs enregistré soit presque deux fois la taille initiale du vecteur.

De plus, il faut étre conscient que les simulations permettent de déterminer une taille
minimale pour les coefficients mais n’assurent pas que cette taille sera suffisante dans
tous les cas de figures. Le probléme reste de savoir si les simulations effectuées

englobent les pires cas ou non.
4.4.3.4 Nombre de bits par enregistrement

Pour toutes les tailles de vecteur d’entrée, le nombre de bvits nécessaires pour un
enregistrement est largement supérieur au nombre de bits des vecteurs d’entrée :
e Pour des tailles d’entrée inféricures a 50 bits, il faut au moins 3 fois plus de bits
en mémoire que n’en compte le vecteur a stocker.
e Pour des tailles de vecteurs d’entrée de plus de 50 bits, il faut allouer en mémoire

entre 2 et 3 fois la taille d’un vecteur pour le stocker dans la CMM.

10 En utilisant la norme infinie



56

Ces résultats montrent que la méthode d’enregistrement nécessite de grosses ressources

mémoires.

4.4.3.5 Ressources de calcul nécessaires

Au niveau de la CMM, les calculs a effectuer sont des additions et des multiplications.
En notant respectivement nb_add et nb_mult le nombre d’additions et le nombre de
multiplications a effectuer dans la CMM, size in et size_out les dimensions de la CMM,
ona:
nb _add = (size _in—1)*size _out (4.11)
nb _mult = size _in*size _out (4.12)
On présente les résultats obtenus en fonction de la taille des vecteurs d’entrée dans le

Tableau 4.4,

On constate que le nombre d’opérations a effectuer est toujours inférieur a 1000
opérations dans les simulations effectuées. Toutefois, ces opérations sont faites avec des
nombres codés sur 11 & 32 bits (Tableau 4.3). Les ressources matérielles a mettre en

ceuvre sont done trés élevées.



Tableau 4.4 : Nombre d’opérations nécessaires avec une CMM pointant dans une

Nombre de
: iti - mﬁitiﬁliéaﬁdnéf

4 2 6 8

8 3 21 24
12 4 44 48
16 4 60 64
20 5 95 100
24 5 115 120
28 5 135 140
32 5 155 160
36 6 210 216
40 6 234 240
44 6 258 264
48 6 282 288
52 6 306 312
56 6 330 336
60 6 354 360
64 6 378 384
68 7 469 476
72 7 497 504
76 7 525 532
80 7 553 560
84 7 581 588
88 7 609 616
92 7 637 644
96 7 665 672
100 7 693 700
104 7 721 728
108 7 749 756
112 7 777 784
116 7 805 812
120 7 833 840
124 7 861 868
128 7 889 896
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Figure 4.8 : Précision du calcul de la sortie pour des vecteurs enregistrés
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Figure 4.9 : Dimensionnement des coefficients de la CMM

4.4.4 Un systéme exigeant en ressources

4.4.4.1 Les incertitudes du modéle

Le probléme majeur rencontré est la difficulté de dimensionner les coefficients de la
CMM. En effet, les simulations effectuées fournissent une condition nécessaire (c'est-a-
dire une taille minimale) quant & la taille des coefficients alors qu’il faudrait connaitre
une condition suffisante, c'est-a-dire une taille maximale pour les coefficients. Ces
renseignements permettent néanmoins de donner une estimation des ressources

mémoires nécessaires pour implanter ce modeéle.
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44472 Lesressources minimales nécessaires

Si ce modéle est valide, il est trés exigeant tant en matiére de ressources mémoire qu’en
maticre de temps de calcul : il est nécessaire d’avoir des coefficients de matrice codés
sur 32 bits, ce qui signifie aussi qu’il faut un espace mémoire 32 fois plus grand que
I’espace mémoire nécessaire pour enregistrer les régles dans une RAM : en réalité, ce
modele exploite mal les propriétés spécifiques aux réseaux de neurones car il ne permet
pas de synthétiser les données stockées. De plus, il est impossible d’assurer que les
coefficients sont dimensionnés correctement. L’objectif est de trouver un systéme
beaucoup moins exigeant en ressource qui exploite plus efficacement les propriétés des

réseaux de neurones.

4.5 RANDOMISATION DES ENTREES SUR UNE CMM BINAIRE A SEUIL

UNIQUE

La différence majeure entre les CMM binaires et les CMM étudiées précédemment se
situe au niveau des coefficients de la matrice : dans les modéles précédents, les CMM
étaient constituées avec des coef ficients a valeurs réelles. Dans les CMM binaires,
chaque coefficient est constitué d’un seul bit, ce qui réduit ’espace mémoire nécessaire

et la complexité du traitement.

La recherche par dichotomie. Dans la suite de la section, on mentionne une méthode de
recherche appelée dichotomie : ¢’est une méthode optimisée de recherche d’un élément
dans un ensemble ordonné. La dichotomie est une méthode itérative permettant de
restreindre de moitié ’espace de recherche & chaque étape. Cette méthode nécessite que
les N vecteurs & enregistrer soient stockés par ordre croissant dans la mémoire.
L enregistrement M situé au (N/2)*™ emplacement est comparé 4 I'entrée E :

e Cas ol E<M : E, s’il a été enregistré, est I’'un des N/2 premiers enregistrements.

e Casou E>M : E, s’il a été enregistré, est I’'un des N/2 derniers enregistrements.
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e SiE=M, alors E a été retrouvé.
On applique ce procédé sur le sous-ensemble sélectionné jusqu’a aboutir au vecteur
recherché ou jusqu’a ce que le sous-ensemble inspecté ne comporte qu’un seul élément.
Gréce a une complexité en o(loga(N)), la dichotomie permet de savoir rapidement si un

vecteur a ét€ enregistré ou non.

Des réseaux de neurones pour restreindre l’espace de recherche. 1’idée développée
consiste a utiliser les réseaux de neurones pour effectuer un prétraitement et. ainsi
restreindre I’espace de recherche : supposons que 1’on ait enregistré 2'°=1024 vecteurs,
il faut effectuer 10 itérations en procédant par dichotomie. Si I’on dispose d’un systéme
permettant de sélectionner un sous-ensemble de candidats possibles, disons par exemple
2°=8 vecteurs, il y aura 3 itérations a faire une fois le sous-ensemble trouvé, ce qui
signifie qu’un prétraitement durant moins de temps que 7 itérations permettra
d’améliorer les performances. Une telle idée a été¢ développée car elle exploite la

capacité que peuvent avoir les CMM a interpoler les réponses a donner.

Généralisation du modéle de prétraitement par une CMM. Grace & ces considérations,
on peut généraliser le mode¢le décrit dans la section 4.4 : dans ce modele la CMM ne
pointe pas vers un élément mais vers un ensemble d’éléments (Figure 4.10) dont Ie
nombre constitue un des paramétres du systéme. Chaque ensemble d’éléments doit étre

ordonné.
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Sous-ensemble des enregistrements a

tester lors de ’appariement ou boite
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Figure 4.10 : Modéle généralisé du prétraitement par une CAM neuronale

4.5.1 Adaptation du classificateur k-NN utilisant une CMM binaire (Zhou)

4.5.1.1 Motivation du choix d’architecture

Le modéle développé par Zhou [ZHO99], permet d’utiliser une CMM & poids binaires, il
est par conséquent trés économique en ressources matérielles et logicielles. Dans le
modéle développé par Zhou, I’objectif est de classifier des vecteurs connus ou inconnus
et de donner la meilleure réponse possible en fonction des informations déja
enregistrées : le systéme doit donc interpréter ce qu’il a appris. Dans le cas de la
détection des régles, aucune interprétation ne peut étre faite : la réponse doit respecter

strictement les informations enregistrées et doit pouvoir différencier ce qui est connu de
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ce qui est inconnu. 11 est donc nécessaire de modifier I’architecture de Zhou pour créer

un systéme de détection de régles.
4.5.1.2 Principe de fonctionnement

Description du systéme. D’un point de vue général, le modeéle de Zhou comporte deux
étapes :
o Un prétraitement réalis¢ avec une CMM binaire qui permet de sélectionner un
sous-espace de recherche.
e Une détermination de la classe d’appartenance en appliquant I’algorithme k-NN
(section 3.3.1) au sous-ensemble sélectionné.
On peut déja remarquer la grande similitude entre ces 2 étapes de traitement et les

fonctions fondamentales de la CAM établies dans la section 2.2.

La création du systéme. La création du classificateur se décompose en 3 étapes :
e Regroupement des données enregistrées en sous-ensembles appelés boites
o Création de la CMM ¢établissant le lien entre chaque vecteur et son sous-
ensemble

e Ecriture des vecteurs a enregistrer dans les boites
La récupération des données. Pour retrouver les données enregistrées ou pour les
interpréter, le systéme va sélectionner une boite puis appliquer I’algorithme k-NN dans
le sous-ensemble.

4.5.1.3 Les étapes du traitement

Le regroupement en sous-ensembles. Cette étape débute en triant les vecteurs d’entrée a

enregistrer en ordre croissant. Puis les boites sont créées par un algorithme
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d’uniformisation pour que chaque boite'' contienne a peu prés le méme nombre
d’éléments. A chaque boite est attribué un identifiant, ce qui permettra ensuite de tester
le bon sous-ensemble. Il est recommandé d’avoir plus de k éléments par boite afin que

I’application de ’algorithme k-NN soit utile.

Création de la CMM binaire. En plus des impératifs propres aux CMM, une CMM
binaire doit €tre construite avec des vecteurs « sparses », c'est-d-dire dont la plupart des
composantes sont nulles. Pour parvenir & cela, Zhou utilise un algorithme de pseudo-

orthogonalisation. La plupart du temps, la méthode utilisée est la méthode du N-tuple
[BLES9]. Soit l}: I’ensemble des regles binaires a enregistrer et s, les classes leur
correspondant. Les classes §, sont codées binairement afin de permettre la construction

de la CMM. A partir de ces vecteurs, la CMM est construite comme telle :
M= >/‘§il;,7' (4.13)
1=
Le produit utilisé est un “ET” logique et I'opérateur « vV » note un “OU” logique entre

tous les produits externes 55 . Cette construction de la CMM explique pourquoi il est

nécessaire de travailler avec des vecteurs « sparses » car, dans le cas contraire, on

risquerait d’obtenir une matrice M remplie de ‘1°.

Processus de lecture dans une CMM binaire. Le processus de lecture est similaire a
celui observé dans toute CMM :

vV =Mb (4.14)
Il faut noter que, dans le processus de lecture, I’addition n’est pas un “OU” logique mais
bien une addition arithmétique. La multiplication utilisée est, quant & elle, toujours un
“ET” logique. Une fois v calculé, on procéde a son seuillage pour obtenir un vecteur

binaire. Ce seuillage peut étre identique ou différent pour chacune des composantes de

"'Dans le cas de Zhou, il est fréquent que les vecteurs & enregistrer se répétent



65

v : les deux cas de figures seront étudiés par la suite. Le vecteur binaire résultant

détermine le sous-ensemble sur lequel on doit appliquer I’algorithme k-NN.

On peut mentionner que si la taille des vecteurs d’entrée est trés grande, le calcul du
vecteur de sortie peut se faire en plusieurs étapes : ceci revient en fait & diviser la CMM
en blocs et & effectuer un produit matriciel par blocs. L’intérét de cette possibilité est de

permettre un réglage du rapport traitement en série/traitement en parallele.

Ecriture des vecteurs a enregistrer dans les boites. Les vecteurs a enregistrer et la classe
a laquelle ils appartiennent sont stockés dans un des emplacements de la boite qu’on leur

a attribuée.

Initerprétation des informations enregistrées. Pour utiliser les informations enregistrées,
on présente un vecteur connu ou inconnu a 'entrée du systeme. La CMM indique a
quelle boite appartient le vecteur présenté. Dans le sous-ensemble sélectionné,
Palgorithme k-NN est appliqué pour déterminer a quelle classe il appartient. Cette
méthode utilisant un prétraitement par une CMM permet d’obtenir une accélération d’un
facteur 4 en logiciel et jusqu’a un facteur 12 en matériel par rapport & un algorithme

k-NN classique implanté respectivement en logiciel et en matériel [ZHO99].

Adaptablité du modéle de Zhou. D’apres les résultats obtenus avec le modéele de Zhou,
on peut s’attendre €¢galement & une nette amélioration des performances en utilisant un
schéma de fonctionnement du méme type pour notre CAM neuronale. Mais le modéle de
Zhou n’est pas intégralement retranscriptible au probleme des régles d’un systéme
coupe-feu : le traitement par k-NN n’est pas du tout adapté a ce genre de probléme car il
faut retrouver la régle exacte et non la régle la plus similaire. En effet, deux régles
différant d’un seul bit peuvent avoir des significations trés différentes. Ainsi il faut
modifier I’étape correspondant & Papplication de I’algorithme k-NN par un appariement

consistant en une recherche par dichotomie dans le sous-ensemble sélectionné.
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4.5.1.4 La transformation des entrées

Afin que le systéme fonctionne, il doit répondre & plusieurs impératifs :
e Les vecteurs d’entrées a apprendre doivent étre orthogonaux ou pseudo-
orthogonaux (section 3.4.2)
e Les vecteurs d’entrée doivent étre normalisés : au sens de Hamming, cela signifie
qu’ils doivent tous comporter le méme nombre de ‘1°.
e [l faut que les vecteurs en entrée de la CMM soient « sparses » (section 4.5.1.3)
En réalité, il suffit de transformer les vecteurs d’entrée en des vecteurs « sparses » et
situés suffisamment loin les uns des autres, car cela permet de retrouver correctement les

vecteurs enregistres.

Transformation A. La premicre transformation envisagée multiplie la taille des vecteurs
-par 2. Elle est tirée de [AUS98] et a été inspirée par la méthode du N-tuple [BLES9].
Dans cette transformation, le vecteur est divisé en petits vecteurs de 2 bits. Chacun des
petits vecteurs va subir la transformation décrite dans le Tableau 4.5. Une fois

transformés, ces petits vecteurs sont concaténés pour former le vecteur transformeé.

Par exemple, le vecteur (1,0,0,0) va étre divisé en (1,0) et (0,0). Chacun des petits
vecteurs va étre transformé, ce qui donne :

e (1,0)=>(0,0,1,0)

o (0,0)=>(1,0,0,0)

Le vecteur finalement obtenu est donc (0,0,1,0,1,0,0,0).

On remarque que la proportion de ‘1’ est % dans tous les cas et que la transformation

réalisée normalise ainsi les vecteurs.
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Tableau 4.5 : Transformation A

00 | 1000 |
01 0100
10 0010
11 0001

Transformation B. Les régles d’un systéme coupe-feu disposent de parties récurrentes
telles les adresses IP de destination (Annexe II). Avec de tels vecteurs, le seuil peut étre
impossible a ajuster si deux reégles sont trés proches au sens de Hamming mais que leurs
sorties respectives sont trés éloignées ’'une de ’autre. En effet, les CMM utilisent des
hypothéses de régularité : ainsi, deux entrées proches devraient donner deux sorties
proches. Pour pallier & cet inconvénient, un processus de randomisation a été développé :
il consiste a donner deux possibilités de codage pour chaque groupe de 2 bits (Tableau
4.6), on fera référence a cette transformation par le nom’de transformation B. Pour
chaque groupe de 2 bits, une des deux possibilités de codage est prise de maniére
aléatoire. Ainsi, un vecteur de 128 bits contient 64 groupes de 2 bits et peut ainsi étre
codé de 2°* maniéres différentes. Les vecteurs transformés servent de vecteurs d’entrée 4
la CMM. 1l faut noter que cette transformation multiplie la taille des vecteurs par 4.
Cependant, cette augmentation de la taille est beaucoup moins pénalisante que dans la
méthode d’orthogonalisation car les coefficients de la CMM sont des nombres binaires

et non des entiers ou des réels.
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Tableau 4.6 : Tansformation B

10000000

01000000
00100000
00010000
00001000
00000100
00000010

01

10

11

00000001

Transformation C. Pour la lecture, la transformation des vecteurs est un peu différente
de celle employée pour construire la CMM : il faut étre certain de la réponse obtenue.
On utilise donc les codes du Tableau 4.7 : on assure ainsi d’activer tous les bits désirés ;
toutefois, ces codes activent également des bits non désirés : le réglage du seuil est par

conséquent un peu plus difficile & réaliser.

Tableau 4.7 : Tansformation C

S R

00 111000000

01 100110000

10 100001100

11 100000011
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Vérification du fonctionnement de 1’algorithme de randomisation. Les essais effectués
avec des vecteurs aléatoires (Figure 4.11a) ou des vecteurs proches au sens de Hamming
(Figure 4.11b) montrent la distribution des distances de Hamming entre les vecteurs
transformés. Les vecteurs dits « proches au sens de Hamming » sont générés grace au
procédé suivant : on prend un vecteur aléatoire, puis on crée tous les vecteurs qui ont un
bit de différence avec lui. Par conséquent, si on considere I’ensemble des vecteurs
obtenus, ils sont tous distants de 1 ou de 2 les uns des autres. La distribution gaussienne
des distances de Hamming étant caractéristique d’une répartition uniforme des vecteurs
sur ’espace, on constate que la transformation B répartit uniformément les vecteurs.
Dans les deux cas, les distributions des distances aprés transformation sont des
gaussiennes pour lesquelles les distances moyennes entre vecteurs sont respectivement
de 112 et de 64 bits: on peut ainsi considérer que les vecteurs obtenus aprés
transformation sont suffisamment éloignés les uns des autres pour pouvoir étre traités

correctement dans la CMM.
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4.5.1.5 Lacréation de la CMM

Dans cette section on note {X,} les d vecteurs d’entrée & enregistrer et {3,} ~ les

iefl,d] ie[l,d]

sorties leur correspondant au niveau de la CMM. Tous ces vecteurs sont des vecteurs

binaires.

La transformation des vecteurs d’entrée. Les vecteurs d’entrée {)?,}IE“ . sont

transformés en vecteurs {)“c'i}ie[1 g P la transformation B. Ceci permet de créer la

CMM a partir de vecteurs « sparses » : la taille des vecteurs est donc multipliée par 4.
Pour des vecteurs d’entrée de 128 bits de long, les vecteurs en entrée de la CMM

compteront 512 bits.

Le choix des vecteurs de sortie. Comme il a été mentionné précédemment
(section 4.5.1.3), les vecteurs de sortie sont des vecteurs binaires. Chaque sous-ensemble
doit correspondre & une sortie unique : on peut, a priori, envisager toutes les sorties
possibles. Cependant, en fixant un seuil unique, la sortie est contrainte a étre un vecteur
ne contenant qu’un seul ‘1” : en effet, si le vecteur de sortie contient plusieurs ‘1°, il est

parfois impossible de régler le seuil. Les vecteurs de sortie sont donc les vecteurs

binaires {j},}ien . bour lesquels chaque vecteur 3, comporte un ‘1> sur sa i

composante seulement.
4.5.1.6 La création des boites

Aprés avoir généré la CMM, on crée les boites et on enregistre dans chacune d’entre
elles les €léments qu’on lui a attribués. Dans chacune de ces boites, les éléments doivent
étre ordonnés afin de pouvoir procéder & une recherche par dichotomie lors de la phase

d’appariement.
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4.5.2 Recherche de la capacité maximale de la CMM

Le protocole de simulation est trés similaire a celui adopté dans la section 4.4.2. La seule
différence se situe au niveau des informations enregistrées lors de la simulation. Afin de
trouver la capacité maximale de la CMM, les tailles de boites pour lesquelles le seuillage
est possible sont enregistrées. En effet, il n’est pas toujours possible de régler
correctement le seuil étant donné le mode d’écriture utilisé (section 4.4.1.2). Si trop de
vecteurs sont enregistrés, il y a un risque de superposition et, a partir d’un certain point,
il sera impossible d’extraire 1’information spécifique a une entrée. Le cas limite est en

fait une CMM ou tous les coefficients valent ‘1°.
4.5.2.1 Procédé d’ajustement automatique du seuil

Méthode d’ajustement. Dans cette simulation, les vecteurs transformés par le processus
de randomisation sont enregistrés dans la CMM binaire ( section 4.5.1.3). Ensuite, on

régle le seuil en adoptant les étapes suivantes :

¢ On transforme les vecteurs d’entiée {k’i}ien o Par la transformation C en vecteurs

{55 'i}ie[l,d] :

e Ces vecteurs sont passés dans la CMM pour obtenir les vecteurs a valeurs entiéres

L
ie[l,d]

e Les vecteurs {K} sont ensuite seuillés pour obtenir les vecteurs binaires

iefl,d]
{j}l} )
ie[l,d]

e Ces vecteurs binaires sont comparés aux vecteurs souhaités { 37,.}[&“ "

e Le réglage du seuil se fait ensuite par essai erreur (Figure 4.12) jusqu’a ce que

’on ait ﬁ, =y, pour tout 7.
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e Si jamais tous les seuils ont été testés, la recherche s’interrompt et le systéme

signale qu’aucun seuil ne convient.

Modification du seuil. La modification du seuil pourrait se faire par simple
incrémentation en initialisant le seuil a 1. Mais cette méthode est relativement lente, sa
complexité est en o(n), si on note # la taille des vecteurs d’entrée. Afin d’accélérer le

réglage du seuil, on utilise un algorithme de complexité oZog,(n)).

Sachant que les vecteurs d’entrée sont soumis a la transformation B lors de la création de
la CMM, le nombre maximal de ‘1° obtenus en sortie est #/4. Le seuil est ainsi initialisé

n
a la puissance de 2 directement supérieure a —2—4—= A soit S, =2/ea"®1  Ensuite, la

modification du seuil sera fonction des vecteurs différence {},—)7[} . Si la
iefl,d]

modification du seuil 4 I’itération suivante est supérieure ou égale a 1'%
e (Cas /. Si toutes les composantes de tous les vecteurs différence sont nulles, alors
ﬁ,. =y, pour tout i € [1,d]. Le seuil utilisé convient et I’ajustement s’interrompt.
e (as 2. Si I’'une des composantes de n’importe lequel de ces vecteurs différence
est 1, un des fzi au moins comporte un ‘1’ au lieu d’un ‘0’ : le seuil est trop bas et

il faut le rehausser au pas suivant.
e (Cas 3. Si aucune des composantes de tous ces vecteurs différence est 1 mais que

I’'une des composantes de n’importe lequel de ces vecteurs différence est -1, un
des ):/,. au moins comporte un ‘0’ au lieu d’un ‘1’ : le seuil est trop haut et il faut

le baisser au pas suivant.

12 Si elle est inférieure 4 un, il faut arréter la recherche car tous les seuils possibles ont été testés



On peut donc définir la modification du seuil par récurrence :

S = zrlogz(nls)]
0

as, =%
2
Pourtoutk >0

o Si on se trouve dans le cas 1
Le seuil est correct
e Sion se trouve dans le cas 2
S, =S, +AS, etAS,, = LA&SJ‘—

e Si on se trouve dans le cas 3

Sy =S8, —AS, etAS, = é_j’i
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Figure 4.12 : Processus d’ajustement du seuil

Plusieurs essais pour trouver un seuil. L ajustement du seuil est parfois impossible car
les vecteurs utilisés pour créer la CMM sont trop proches les un des autres. Toutefois,
comme la transformation B est partiellement al€atoire, renouveler le processus décrit sur

la Figure 4.12 permet d’obtenir des vecteurs d’entrée de la CMM différents d’un essai a
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’autre. Faire un grand nombre de tentatives augmente les chances d’obtenir un ensemble

vecteurs {f 'i }ie[l,d]

assez distants les uns des autres pour permettre 1’ajustement du seuil.
Dans les simulations présentées, le systéme peut effectuer jusqu’a 200 essais pour

trouver une CMM permettant de régler le seuil correctement.
4.5.2.2 Informations enregistrées en vue du dimensionnement de la CMM

Objectif des simulations. Les simulations ont pour but de déterminer, indépendamment
du nombre d’enregistrements, la taille de boite optimale. Pour cela, les simulations vont
fournir, en fonction de la taille des boites, le nombre de vecteurs qui peuvent étre
enregistrés. Ceci permettra de déterminer la capacité maximale du systéme en fonction

de la taille de bottes utilisée.

Choix des échantillons de test. Dans toutes les simulations, la taille des vecteurs d’entrée

est de 128 bits. Les vecteurs d’entrée enregistrés sont pris aléatoirement.

Description d’un test. Un test consiste a choisir un nombre d’enregistrements et a tester
pour quelles tailles de boites le systéme réussit & trouver un seuil de fonctionnement.
Pour limiter le temps de calcul, les tailles de boites testées sont les puissances de 2
inférieures au nombre d’enregistrements. Un tel choix de tailles des boites est adopté
compte tenu de la méthode d’appariement utilisée dans laquelle la recherche est

effectuée par dichotomie.

Description d’une simulation. Les simulations permettent d’effectuer des tests pour un
nombre d’enregistrements allant de 8 & 256 par pas de 8. De nombreuses simulations
sont réalisées pour chaque nombre d’enregistrements afin d’obtenir des résultats

significatifs.
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Informations enregistrées. Dans cette simulation, on veut connaitre le nombre maximal
d’éléments que peut enregistrer le systéme pour une taille de boite donnée. Ainsi, pour
chaque taille de boite testée, on enregistre le nombre maximal d’enregistrements
possibles, c'est-a-dire le nombre maximal d’enregistrements pour lequel on réussit &

régler les seuils dans toutes les simulations.
4.5.3 Un systéme validé

4.53.1 Synthése des résultats

Les résultats présentés (Tableau 4.8) ont été obtenus avec 40 simulations. Le nombre de
bits par enregistrement est le nombre de bits de la CMM divisé par le nombre de
vecteurs enregistrés. Les vecteurs d’entrée de la CMM ont 4*128=512 bits de long en

raison de la transformation B et la largeur de la CMM est égale au nombre de boftes.

Tableau 4.8 : Synthése des résultats obtenus avec le modéle de randomisation
avec CMM a seuil unique

1 256 256 512
2 256 128 256
4 256 64 128
8 48 6 64
16 24 2 43

On constate que 1’on peut enregistrer un grand nombre d’échantillons avec des tailles de
boites inférieures ou égales & 4. Pour les boites de tailles 8§ ou 16, on divise
respectivement par 6 et par 2 la taille de I’espace a explorer. Dans les deux derniers cas,
Pefficacité du prétraitement n’est pas assez bonne pour obtenir une amélioration

significative des performances par rapport & une simple dichotomie. D’autre part, on
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pourrait s’attendre a avoir un nombre de bits par enregistrement égal & 32 avec des
boites de 16 éléments, ce qui n’est pas le cas. En fait, la « régularité » dans la diminution
du nombre de bits par enregistrement lorsque la taille des boites augmente est seulement
accidentelle. Et dans le cas des boites de 16 éléments, le nombre de bits par
enregistrement est supérieur aux 32 bits attendus car il n’est pas possible de remplir

entiérement toutes les boites.

Pour les tailles de boite inférieures a 4, on constate que le colit en nombre de bits par
enregistrement est supérieur ou €gal au coflit occasionné par un simple enregistrement

dans une RAM, il présente donc un intérét limité en terme de cofit.
4.5.3.2 Nombre d’opérations a effectuer

Les résultats présentés ci-dessus permettent de calculer le nombre d’opérations
nécessaires a calculer le vecteur de sortie de la CMM (Tableau 4.9). Le calcul du
nombre d’additions et d’opérations “ET” sont respectivement identiques au caicul du
nombre d’additions et de multiplications décrits dans la section 4.4.3.5. Les additions
utilis€es sont en fait des incrémentations et ne nécessitent pas de ressources matérielles

¢levées. La taille des vecteurs en entrée de la CMM est égale & 512 bits.

Tableau 4.9 : Nombre d’opérations dans une CMM binaire a seuil unique

1 256 130816 131072
2 128 65408 65536
4 64 32704 32768
8 6 3066 3072
16 2 1022 1024
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On constate qu’il y a avantage & avoir des boites de 4 éléments afin de diminuer le
nombre d’opérations a effectuer tout en restreignant efficacement ’espace de recherche.
Toutefois les opérations a effectuer ici, contrairement aux opérations effectuées dans les
modéles d’orthogonalisation, sont des opérations trés simples ~opérations logiques et

incrémentation d’un compteur- qui ne nécessitent que peu de ressources de calcul.
4.5.4 Un modéle perfectible

Les limites rencontrées par ce modele, en terme de capacité mémoire et de ressources
nécessaires, est caus¢ par 2 paramétres : la méthode de seuillage du vecteur de sortie de

la CMM et le choix de la sortie & enregistrer.
4.54.1 Le choix du seuil

Le probléme de la méthode & seuil unique est qu’elle exige un réglage trés précis, qui
n’est pas toujours réalisable. En effet, si les ‘1’ sont, normalement, distribués
uniformément dans la CMM, il n’est pas évident que la somme maximale soit identique
pour chacun des bits de la sortie. Toutefois, les résultats montrent qu’il est possible de
stocker les informations relatives aux vecteurs enregistrés avec un colit inférieur au colit
de stockage dans une RAM pour des tailles de boites d’au moins 8 enregistrements. 11
faut néanmoins améliorer le modéle : le travail réalisé avec une taille de boite égale a 8
est une réduction d’un facteur 6 de I'espace de recherche. Si on tient compte du cofit
occasionné par le prétraitement de la CMM en terme de temps de calcul, on constate
qu’on ne peut pas améliorer significativement la vitesse de recherche comparativement a

une recherche par dichotomie.
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4.54.2 Le choix de la sortie a enregistrer

Comme il a été vu dans la section 4.5.1.5, Ia taille de la sortie est égale au nombre
d’enregistrements : le seuil ne peut étre réglé s’il v a plus d’un ‘1’ dans le vecteur de
sortie. Or cette contrainte oblige I’utilisation de vecteurs de sortie de grande taille. Ainsi,
un réglage du seuil indépendant pour chacun des bits de la sortie doit permettre
d’assouplir cette contrainte. Ainsi, il est possible d’utiliser des vecteurs de sortie plus

petits et de disposer ainsi d’une architecture plus économique.

4.6 RANDOMISATION DES ENTREES SUR UNE CMM BINAIRE MULTISEUIL

Le modele de randomisation des entrées sur une CMM binaire multiseuil est quasiment
identique au modeéle a seuil unique. La seule différence se situe au niveau de
Iajustement du seuil. En effet, dans le modéle multiseuil, le seuillage se fait
indépendamment pour chacun des bits du vecteur de sortie de la CMM : on a donc un
vecteur de seuils a calculer. L’objectif des simulations réalisées en utilisant une stratégie
multiseuil est de quantifier les avantages et les inconvénients qu’apporte cette approche

comparativement a une approche a seuil unique.

4.6.1 Modifications & apporter au modéle a seuil unique

4.6.1.1 Motivation d’une approche multiseuil

Avec un seuil pour chacun des bits de sortie, on peut accéder & un réglage beaucoup plus
fin du systéme. En effet, la contrainte pour les vecteurs de sortie est beaucoup moins
forte que pour les vecteurs d’entrée puisque le caractére « sparse » recherché pour les
vecteurs d’entrée a pour origine le besoin d’avoir des vecteurs d’entrée quasiment
orthogonaux. On peut remarquer que cette solution est obligatoirement plus performante

que la méthode utilisant un seuil unique qui est un cas particulief de réglage multiseuil.
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Les simulations doivent permettre de déterminer s’il est avantageux de mettre en ceuvre
un te] seuillage.

4.6.1.2 Des sorties codées sur moins de bits

On peut choisir les vecteurs de sortie comme on veut & condition que 1’on puisse régler
les seuils par la suite. En raison de la méthode de création de la CMM binaire qui
superpose les enregistrements, ’ajustement des seuils est d’autant plus facile que le
nombre de ‘1’ dans les vecteurs de sortie est petit. Si les vecteurs de sortie comptent
beaucoup de ‘1°, la CMM va avoir rapidement la majorité de ses coefficients a ‘1°, ce
qui signifie qu’il y aura un grand recouvrement des informations stockées et, qu’a la

limite, il sera impossible de retrouver les informations enregistrées.

Cependant pour une taille de vecteurs de sortie donnée, le nombre de boites adressables
grandit si on augmente le nombre de ‘1’ autorisés dans le vecteur binaire de sortie. 1l
faut donc rechercher le nombre optimal de ‘1’ autorisés dans le vecteur de sortie qui
permette de régler les seuils de la CMM dans tous les cas de figure. Dans I’approche
multiseuil étudiée, on peut utiliser des vecteurs de sortie possédant une ou deux
composantes fixées & ‘1’. On réduit ainsi la taille des vecteurs de sortie et, par

conséquent, la taille de la CMM.

Soit nb_boites le nombre de boites et k£ le nombre de bits de la sortie, on cherche a
exprimer k en fonction de nb_boites.

Si ’on dispose de k bits de sortie, alors le nombre de boites maximal nb_boitesya
adressables avec un ou deux ‘1’ dans le vecteur de sortie est :

1y (2 -
nb_boites_, =\ |+| |=k+ Kk =)
- C\k) \k 2

(4.15)

eyl
2 2
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Le k idéal pour adresser nb_boites,,, boites est celui qui résout 1’équation du second
degré (4.15).
k étant un nombre entier, on obtient finalement :

. [ J8nb_boites,,, +1 —1}

2

(4.16)

Ainsi, le nombre de boites adressables en fonction du nombre de bits de sortie se

comporte comme une fonction « racine carrée » (Figure 4.13), sa complexité est o(\/—ﬁ ) .

Le Tableau 4.10 montre qu’il est économique d’adresser un grand nombre de boites avec

ce modele.



Tableau 4.10 : Nombre de boltes adressables suivant la taille du vecteur de sortie

de la CMM
i 1
2 2a3
3 436
4 7al0
5 11 ats
6 16a21
7 22428
8 29236
9 37 a45
10 46 455
11 56 a66
12 67a78
13 79 a 91
14 922105
15 1062 120
16 121 a 136
17 1374153
18 1542171
19 172 al190
20 1914210
21 21124231
22 2324253

23 254 a plus de 256

83
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Nombre de bits de sortie

i i L [ i R i i
1 33 65 97 129 161 193 225

Nombre de boites

Figure 4.13 : Evolution du nombre de boites adressables suivant la taille du
vecteur de sortie de la CMM

4.6.2 Méthode de recherche de la capacité maximale du systeme

L’objectif des simulations est de déterminer, pour chacune des tailles de boites testées, le
nombre maximal de vecteurs que le systéme peut enregistrer. Disposant de ces données,
on peut calculer le nombre de bits nécessaires pour stocker un vecteur et le nombre

d’opérations a effectuer.
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4.6.2.1 Principe d’ajustement des seuils

Dans ce modéle, le processus d’ajustement du seuil décrit dans la section 4.5.2.1 est
appliqué indépendamment pour chacun des bits du vecteur de sortie de la CMM. On
considére que le systéme a réussi a régler les seuils si tous les vecteurs d’entrée
enregistrés donnent un vecteur de sortie exact. Le processus d’ajustement est un peu plus
complexe que celui adopté dans le modéle a seuil unique et nécessite, par conséquent, un

temps de calcul un peu plus long.

4.6.2.2 Méthode de validation

La méthode de validation employée est en tout point identique a celle décrite dans la
section 4.5.2. Grace a elle, on pourra déterminer quelles tailles de boites sont utilisables

et comparer ces résultats a ceux obtenus avec le mode¢le utilisant un seuil unique.
4.6.3 Une amélioration du modéle a seuil unique
Les résultats obtenus donnent sur le nombre d’enregistrements possibles en fonction de

la taille des boites. Pour chaque taille de boite, 71" simulations ont été réalisées. Les

résultats obtenus sont présentés dans le Tableau 4.11.

" Dans un souci pratique, le paramétre d’arrét du programme qui effectuait les simulations était un
paramétre temporel et non un nombre de simulations & effectuer. Ainsi le nombre de simulations n’est pas
un nombre « rond ».
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Tableau 4.11 : Synthése des résultats obtenus dans les simulations du modéle de
randomisation des entrées avec une CMM 2 réglage multiseuil

1 112 112 15 69
2 64 32 8 64
4 32 8 4 64
8 32 4 3 48
16 32 2 2 32

On constate que ’on peut enregistrer d’autant plus de vecteurs que la taille des boites est
petite. Ce résultat est intéressant dans la mesure ol les configurations utilisant de petites
tailles de boites permettent le prétraitement le plus efficace. Ici, une taille de boite de 1
permet une réduction de ’espace de recherche d’un facteur 112 alors, qu’a 1’opposé, une

taille de boite de 16 ne permet de réduire ’espace de recherche que de moitié.

D’autre part, on constate que les vecteurs de sortie utilisés permettent de réduire
énormément le nombre de bits nécessaires au stockage d’un vecteur par rapport a une

approche utilisant un seuil unique.

4.6.4 La recherche d’un compromis coiit-performance

Les résultats obtenus montrent que le compromis colt-performance a réaliser est
fortement dépendant de la taille des boites : en effet, la taille des boites influence a la
fois la taille de la CMM et le nombre d’opérations & effectuer dans la phase

d’appariement.
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4.6.4.1 L’influence de la taille des boites

Les résultats des simulations montrent que le nombre d’enregistrements pour lesquels la
CMM peut étre correctement configurée est trés dépendant de la taille et du nombre des
boites :

e En effet dans le cas extréme d’une boite regroupant tous les enregistrements, un
seul bit de sortie est nécessaire et un seuil a z€ro permettra la configuration de la
CMM. Dans ce cas non étudié, le prétraitement est inutile puisqu’il ne restreint
aucunement I’espace de recherche.

e Dans le cas extréme ot chaque boite ne contient qu’un élément, on peut adresser
112 boites. Cette méthode est la plus performante puisqu’une seule comparaison
est nécessaire dans la phase d’appariement.

¢ Dans les cas intermédiaires, il existe un compromis a faire entre la taille de boites
et le nombre de boites, ce qui influencera, par la suite, le colt et les performances

du systéme.

4.6.4.2 Le colit en ressources

Le cofit en ressource de la CMM se fait a partir du calcul du nombre de bits nécessaires
en sortie (Tableau 4.10) et de la capacité maximale d’enregistrement (Tableau 4.11).
Ceci permet de déterminer le nombre de bits nécessaires par enregistrement et le nombre
d’opérations binaires a effectuer en fonction de la taille des boites. Les additions
mentionnées ci-dessous sont toujours des incréments et sont, par conséquent, peu

coliteuses en ressources matérielles.

Taille de boite de 1. Quand la taille des boites est 1, le nombre maximal
d’enregistrements possibles est 112, ce qui nécessite 15 bits en sortie : la CMM a une
taille de 512x15 bits. Le colit en mémoire est donc de 69 bits par enregistrement et le

nombre d’opérations est :
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e 7680 opérations “ET” soit 68,6 par enregistrement
e 7665 additions soit 68,4 par enregistrement

e 15 comparaisons entiéres

e 1 comparaison dans la phase d’appariement

Il faudrait 9 architectures de ce type pour traiter 1000 enregistrements.

Taille de boite de 2. Quand la taille des boites est 2, le nombre maximal
d’enregistrements possibles est 64, ce qui nécessite 8 bits en sortie : la CMM a une taille
de 512x8 bits. Le colit en mémoire est donc de 64 bits par enregistrement et le nombre
d’opérations est :

e 4096 opérations “ET” soit 64,0 par enregistrement

e 4088 additions soit 63,9 par enregistrement

e § comparaisons entieres

e 2 comparaisons dans la phase d’appariement

Il faudrait 13 architectures de ce type pour traiter 1000 enregistrements.

Taille de boite de 4. Quand la taille des boites est 4, le nombre maximal
d’enregistrements possibles est 32, ce qui nécessite 4 bits en sortie : la CMM a une taille
de 512x4 bits. Le coflit en mémoire est donc de 64 bits par enregistrement et le nombre
d’opérations est :

e 2048 opérations “ET” soit 64,0 par enregistrement

e 2044 additions soit 63,9 par enregistrement

e 4 comparaisons entieres

e 3 comparaisons dans la phase d’appariement

1l faudrait 32 architectures de ce type pour traiter 1000 enregistrements.

Taille de boite de 8. Quand la taille des boites est 8, le nombre maximal

d’enregistrements possibles est 32, ce qui nécessite 3 bits en sortie : la CMM a une taille
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de 512x3 bits. Le coflit en mémoire est donc de 48 bits par enregistrement et le nombre
d’opérations est :

e 1536 opérations “ET” soit 48 par enregistrement

e 1533 additions soit 47,9 par enregistrement

e 3 comparaisons entiéres

e 4 comparaisons dans la phase d’appariement

Il faudrait 32 architectures de ce type pour traiter 1000 enregistrements.

Taille de boite de 16. Quand la taille des boites est 16, le nombre maximal
d’enregistrements possibles est 32, ce qui nécessite 2 bits en sortie : la CMM a une taille
de 512x2 bits. Le colt en mémoire est donc de 32 bits par enregistrement et le nombre
d’opérations est :

e 1024 opérations “ET” soit 32 par enregistrement

e 1022 additions soit 31,9 par enregistrement

e 2 comparaisons entiéres

e 5 comparaisons dans la phase d’appariement

1l faudrait 32 architectures de ce type pour traiter 1000 enregistrements.

Le Tableau 4.12 donne le nombre d’additions et d’opérations “ET” nécessaires en

fonction de la taille des bofites.

Tableau 4.12 : Nombre d’opérations dans une CMM binaire multiseuil
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Si le colit semble diminuer lorsqu’on augmente la taille des boites, le travail réalisé,
comparé¢ au méme travail réalisé avec une simple dichotomie est de moins en moins
avantageux. Dans le cas d’une taille de boites de 1, on réduit d’un facteur 112 P’espace
de recherche. Ainsi le travail effectué équivaut a 7 itérations d’une dichotomie
(section 4.5). Dans le cas d’une taille de boites de 16, on réalise une catégorisation en 2
classes, ce qui équivaut a une seule itération dans une dichotomie classique. Il est donc

préférable d’utiliser de petites tailles de boites.
4.7 CONCLUSION

Parmi les modéles étudiés, le plus avantageux est celui utilisant une CMM binaire

multiseuil. On explique par la suite comment régler les parametres de ce systéme.
4.7.1 Les avantages des petites tailles de boites

Il est avantageux, contrairement a ce qu’il pourrait sembler au premier abord, de
travailler avec de petites tailles de boites : en effet; les petites tailles de boite permettent
une division de I’espace en un grand nombre de sous-espaces méme si le cofit
occasionné est un peu plus élevé que pour de grandes tailles de boites. Les petites tailles
de boites sont avantageuses car elle permettent de réaliser un travail de présélection
beaucoup plus important. Pour déterminer quelle taille de boites est la plus avantageuse,
il serait possible de créer un indice qui prendrait en compte le quotient du nombre
d’opérations sur le nombre de dichotomies nécessaires pour effectuer le méme travail
mais un tel indice serait aussi fortement dépendant d’autres critéres tel le choix

d’implantation.
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4.7.2 La taille des boites dépend du compromis colit-performance recherché

La détermination de la taille des boites va se faire, non seulement en fonction des
résultats obtenus précédemment (section 4.7.1), mais aussi du degré de parallélisation
envisagé. En effet, les CMM binaires permettent autant une implantation fortement
parallele si I’on dispose des ressources matérielles adéquates, qu’une implantation
favorisant un traitement en série, si les ressource matérielles sont faibles. Ainsi, les
contraintes matérielles et logicielles doivent permettre de trouver une configuration

optimale en terme de colit et de performance suivant le choix d’architecture.
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CHAPITRE 5

SYNTHESE DES RESULTATS

5.1 INTRODUCTION

L’étude des différentes architectures envisagées a pour objectif de dégager les points
forts d’'une CAM neuronale. Ces points forts permettront de déterminer pour quelles
applications de telles architectures sont avantageuses. Les résultats obtenus dans les
simulations permettent d’évaluer quel est le meilleur modéle parmi les cing modeles
testés. Les informations relatives a la taille des CMM et aux ressources de calculs dont
elles ont besoin permettent de donner les premiers éléments de comparaison entre une

CAM neuronale et une CAM « traditionnelle ».

5.2 ETUDE COMPAREE DES MODELES ETUDIES

Dans cette section, on présente en paralléle les résultats obtenus avec les différents
modeles afin de pouvoir comparer leurs caractéristiques. On rappelle d’abord quels
modeles ont été validés puis on présente les résultats de dimensionnement des CMM
pour les modéles valides. Ce dimensionnement permet de déterminer les ressources
mémoire et les ressources matérielles nécessaires. Enfin, on explique les raisons pour

lesquelles le modele de CMM binaire multiseuil semble étre le meilleur.
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5.2.1 Synthése des résultats de validation
La premiere phase de chaque simulation consistait & valider les architectures envisagées.

Les résultats des tests de validation donnés dans les sections 4.2.3, 4.3.3,4.4.3, 4.5.3 et

4.6.3 sont résumés dans le Tableau 5.1.

Tableau 5.1 : Synthése des résultats de validation

[ Vaiide: | Apparcmment valide | Non valide -

X

»

" une CMM binaire multiseuil,

Le modéle d’orthogonalisation des vecteurs complémentés est non valide car il commet
des erreurs en présence de certaines combinaisons linéaires des vecteurs enregistrés
(section 4.2.3). Ce modele a permis, néanmoins, de mettre en évidence le probléme de

corrélation croisée (section 4.2.4).

Le modele d’orthogonalisation par recodage caractéristique de la composante semble
valide (section 4.3.3) mais on ne peut garantir son fonctionnement (section 4.3.4) en
grande dimension. Ce modéle nous a conduit & développer une nouvelle architecture

permettant de garantir le bon fonctionnement du systéme.



94

Les trois autres modéles étudiés se sont avérés valides. Pour ces modéles, on a quantifié

la taille de la CMM, les ressources mémoire et les ressources de calculs nécessaires.

5.2.2 Synthése des résultats dimensionnement des CMM

Les résultats présentés dans cette section sont tous obtenus avec des vecteurs d’entrée de
128 bits de long : ceci permet de comparer les modéles plus facilement. Le Tableau 5.2
présente les résultats observés pour les simulations valides. Les résultats obtenus avec
I’orthogonalisation d’une CMM pointant dans une RAM sont détaillés dans le Tableau
4.3 et le Tableau 4.4, ceux obtenus avec le modeéle de randomisation des entrées sur une
CMM binaire a seuil unique se trouvent dans le Tableau 4.8 et le Tableau 4.9, ceux
obtenus avec le modele de randomisation des entrées sur une CMM binaire multiseuil
sont présentés dans le Tableau 4.11 et le Tableau 4.12. Afin de simplifier les notations,
on appellera :

o Modele I, le modele d’ orthogonalisation d'une CMM pointant dans une RAM.

e Modéle II, le modeéle de randomisation des entrées sur CMM binaire a seuil

unique

e Modéle III, le modéle de randomisation des entrées sur CMM binaire multiseuil

Le facteur de restriction est le facteur de réduction de I’espace de recherche que permet

d’obtenir le prétraitement par la CMM.



Tableau 5.2 : Synthése des ressources nécessaires pour les différents modéles
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valides
896
176 Nombres & virgule | Nombres & virgule 127
fixe de 25 bits fixe de 25 bits
"':'j"“! LT 32512 32768
Mogiélg I : 256 Opérations Opérations "ET" 256
e d’incrémentation logiques
7665 7680
69 Opérations Opérations "ET" 112
d'incrémentation logiques

On constate que le modele I est le plus économique pour le stockage des vecteurs.
C’est le seul des trois modeles qui permet de stocker un vecteur de 128 bits dans un

espace mémoire inférieur a 128 bits.

Il faut noter ensuite que le nombre d’opérations n’a pas la méme signification pour le
modeéle I et pour les deux autres modeéles. Dans le modeéle I, les opérations sont faites
avec des nombres a virgule fixe : une implantation matérielle de ce modele nécessite des
additionneurs et des multiplicateurs relativement complexes comparés aux opérations a
effectuer dans les modéles II et III. Dans ces deux modeles, les opérations se font au
niveau des bits : la multiplication est remplacée par un simple “ET” logique et I’addition
est une simple opération d’incrémentation. Si I’on compare le modele II et le modéle III,

on constate que le modele III nécessite quatre fois moins d’opérations.

Le modéle II est celui qui permet de restreindre le plus efficacement le domaine de
recherche. Il est deux fois plus efficace que les modeles 1 et III dont les performances

sont comparables dans ce domaine.
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5.2.3 Les CMM binaires multiseuil, le meilleur des modéles étudiés

Les résultats comparés montrent que pour une taille de vecteurs d’entrée de 128 bits, le
modele III est le moins exigeant aussi bien en terme de ressources mémoires que de
ressources de calcul. Toutefois, il n’est pas aussi performant que le modele II pour
restreindre 1’espace de recherche et il faut deux entités du modéle III pour réaliser la
méme tache de sélection que le modéle II. Toutefois, si I’on considére les ressources
nécessaires pour implanter le modele III, on constate qu’il est moins cofiteux de faire
fonctionner deux entités du modele III en paralléle qu’une seule entité du modele I1.
Ainsi, parmi les modeles étudiés le modele Il des CMM binaires multiseuil est celui
qui, pour un niveau de performance identique, est le plus économique. Dans ce cas de

figure, le traitement des vecteurs en lecture se fait ainsi :

512 entiers
128 bits 512 bits de 7 bits 15 bits
/ Passage dans la / /
+> Transformation C - - Seuillage -
/ CMM / 7/

Figure 5.1 : Etapes de la lecture dans une CMM binaire multiseuil a 128 bits
d’entrée

Afin de connaitre le nombre de portes logiques nécessaires a cette architecture, il faut
concevoir chacun de ces blocs : il faut, pour cela, envisager une implantation matérielle

du systéme.

5.3 ELEMENTS DE COMPARAISON DES CAM « TRADITIONNELLES » ET

DES CAM NEURONALES

Les travaux réalisés permettent de comparer les CAM « traditionnelles » et les CAM

neuronales étudiées au niveau de leur fonctionnement. Les résultats obtenus donnent les
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premiers €léments de comparaison en terme de performance et de colit entre ces deux

architectures.

5.3.1 Comparaison des performances

La vitesse de traitement. S’il est indéniable que les CAM « traditionnelles » sont
difficilement égalables en terme de vitesse de traitement, les CAM neuronales par
randomisation des vecteurs d’entrée promettent de bonnes performances grice a un
prétraitement peu cofiteux en ressources mémoire et grace & une phase d’appariement

trés courte (sections 4.6.4.1 et 4.6.4.2).

La taille des vecteurs d’entrées. Les CAM « traditionnelles » sont mal adaptées aux
grandes tailles de vecteurs d’entrée. Au contraire, augmentation de la taille des
vecteurs est avantageuse dans les CAM neuronales utilisant des CMM binaires car une
CMM possédant des vecteurs d’entrée plus grands offre un plus grand choix de seuils.
Ainsi la CAM neuronale semble tout particuliérement adaptée au traitement des grands

vecteurs d’entrée (section 4.7.2).

53.2 Comparaison des coiits

Cout de la mémoire de stockage. Le coiit de la mémoire de stockage dans une CAM
« traditionnelle » est directement relié au nombre de cellules mémoires dont dispose la
CAM. Dans la CAM neuronale, la mémoire de stockage est une RAM, un type de

mémoire trés bon marché (section 4.6.1).

Ressources nécessaires. Si I’on calcule le nombre de portes logiques nécessaires pour
concevoir une CAM ¢élémentaire, on a, d’apres la section 2.3.2, pourn =112 et s =128 :
o 112*128=14336 porte “ET”
e 112%128/2 =7168 porte “NON”
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Ces valeurs sont du méme ordre que les résultats obtenus avec des CMM binaires
multiseuil (Tableau 4.12). Toutefois, pour pouvoir faire une comparaison précise, il
faudrait disposer de résultats quantitatifs afin de connaitre les ressources matérielles

nécessaires pour Iintégralité du traitement (Figure 5.1).

Le partage enire iraitement en série et traitement en paralléle des vecteurs de grande
dimension dans une CAM neuronale. Dans une CAM neuronale, il est possible de
choisir le degré de parallélisation des calculs : pour chaque bit de la sortie, il faut
calculer une somme qui peut &tre calculée en plusieurs fois (section 4.5.1.3). Si ’on
dispose de beaucoup de ressources matérielles, on peut effectuer le produit matriciel en
une fois. Si I’on dispose de moins de ressources matérielles, on peut procéder a un calcul
de la sortie de la CMM en plusieurs étapes. Cette capacité & choisir le partage entre
traitement en série et traitement en paralléle rend la CAM neuronale beaucoup plus

flexible que la CAM « traditionnelle » en terme de possibilités d’implantation.

5.4 CONCLUSION

L’étude des différentes implantations envisageables et la comparaison du modéele de
CAM neuronales utilisant la randomisation des vecteurs avec les CAM
« traditionnelles » montrent que les CAM neuronales offrent un grand choix
d’implantations et qu’elles sont particulierement adaptées aux vecteurs d’entrée de

grande taille.

5.4.1 Un grand éventail de configurations

Avec les CAM neuronales, on peut accéder & différents niveaux de colits et différents
niveaux de performance suivant le niveau de parallélisation adopté et le choix
d’implantation. Ainsi, en modifiant la Figure 2.3, on peut estimer que les CAM

neuronales peuvent se situer sur une zone du plan coflit-performance intermédiaire entre
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les RAM et les CAM « traditionnelles » (Figure 5.2). Il serait utile de déterminer une
fonction de cofit analytique pour pouvoir déterminer une configuration optimale dans le

plan vitesse d’exécution-colit matériel.

Vitesse d’exécution
F-

) CAM
Cas idéal

CAM

neuronale

[

Cofit matériel

Figure 5.2 : Estimation de la localisation des CAM neuronales dans un plan
cott-performance

Les simulations effectuées suggérent que les CAM neuronales peuvent étre utilisées
dans des applications pour lesquelles on recherche une bonne vitesse de traitement sans

vouloir investir dans une CAM « traditionnelle » dont le colit est trop élevé.

5.4.2 Un modéle adapté a de grands vecteurs d’entrée

L’autre avantage des CAM neuronales est qu’elles permettent de traiter des vecteurs
d’entrée de grande taille avec un colt matériel moins important qu’une CAM
« traditionnelle », en particulier avec une implantation logicielle ou une implantation
mixte. En effet, de telles approches permettent d’effectuer le calcul de la sortie de la

CMM en plusieurs fois. Théoriquement, on peut accéder a n’importe quelle taille de
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vecteurs d’entrée en utilisant ce procédé : ceci revient en fait a calculer la sortie de la

CMM en effectuant un produit matriciel par blocs.

5.4.3 Les paramétres non étudiées dans le modeéle

Les travaux, s’ils ont permis de fournir des résultats quantitatifs pourraient étre
agrémentés de travaux supplémentaires. Ainsi, il serait particuliérement intéressant de
tester les aspects suivants du modéle de CAM neuronales utilisant la randomisation des

vecteurs.

Réduire la taille des entrées. Dans la méthode de randomisation des entrées, tous les bits
du vecteur d’entrée sont randomisés : il doit étre possible de ne randomiser qu’une partie
de ces bits afin de réduire la taille du vecteur d’entrée de la CMM et d’ainsi améliorer le

colit d’implantation.

Développer un algorithme non aléatoire. A partir des transformations B et C
(section 4.5.1.4) on peut chercher a développer un algorithme maximisant [’espacement
entre les vecteurs d’entrée a enregistrer dans la CMM. Néanmoins, il est possible qu’un

tel algorithme soit difficile & mettre en ceuvre.

Travailler avec de plus grands vecteurs. L’étude des CAM pour des vecteurs d’entrée
plus grands permettrait d’avoir davantage de données quantitatives sur les CMM
binaires : la limite que nous avions, était le temps de calcul nécessaire sous MATLAB
pour les simulations. Une programmation du méme modéle en C ou en C++ permettrait
de travailler avec des tailles de vecteurs trés grandes. Si on s’en référe a la théorie, une
augmentation de la taille des vecteurs d’entrée doit impliquer une plus grande capacité
de stockage. Une telle étude est intéressante essentiellement en ce qui concerne la
capacité de stockage et le colit du pré traitement par la CMM. Néanmoins, une taille de

128 bits est actuellement suffisante pour des regles de systémes coupe-feu.
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Si toutes les simulations possibles n’ont pas été réalisées, la méthodologie décrite dans
Jes sections 4.5 et 4.6 permet de réaliser aisément des tests pour de grandes tailles de

vecteurs d’entrée.
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CHAPITRE 6
CONCLUSION

Notre recherche sur les CAM neuronales a base de CMM permet de déterminer, parmi
les cinq modéles étudiés, quelles sont les architectures valides. Pour les modéles validés,
I’étude des ressources nécessaires a servi a estimer quantitativement les ressources
mémoires et les ressources de calcul requises. Les résultats de nos travaux permettent
d’affirmer la possibilité d’utiliser des réseaux de neurones dans un modéle de CAM. Ces
résultats encouragent a étudier les différentes implantations possibles de ces modeéles de

mémoire.

6.1 CONTRIBUTIONS APPORTEES

Les simulations réalisées ont permis de déterminer le rdle que doit avoir un réseau de
neurones dans une CAM neuronale et elles ont fourni, en outre, les informations
permettant d’estimer ’intérét des CAM neuronales du point de vue de la vitesse de

traitement et du cofit.

6.1.1 Inadaptation des CMM auto associatives

6.1.1.1 Difficultés d’implantation : le probléme des combinaisons linéaires et des

vecteurs proches au sens de Hamming

Si la littérature concernant les CMM présente systématiquement la possibilité de
retrouver des enregistrements orthogonaux, elle n’étudie pas le comportement du

systéme en présence de vecteurs non enregistrés. Dans nos travaux, nous avons fait
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P’étude du comportement des CMM aussi bien pour des vecteurs enregistrés que pour

des vecteurs non enregistrés,

D’apres les résultats obtenus, il semble impossible d’utiliser les CMM comme des
mémoires de stockage a part entiére. En effet, un tel choix d’architecture pose plusieurs
problémes, nous avons découvert que :

e Des erreurs peuvent se produire comme cela a été le cas avec le premier modele
étudié. On a détecté des erreurs pour certains vecteurs qui avaient la particularité
d’étre systématiquement des combinaisons linéaires des vecteurs enregistrés : un
tel comportement était difficilement prévisible a priori.

e Il est difficile de dimensionner les coefficients de la CMM : le deuxiéme modele
ne présente pas d’erreurs détectables mais il est trés sensible a la distance de
Hamming au plus proche enregistrement et la précision des coefficients de la
CMM doit étre d’autant plus grande que la taille des vecteurs d’entrée est grande.
Ces résultats impliquent un besoin en ressources élevé si 'on veut traiter des

vecteurs de grande taille.

6.1.1.2 Impossibilité de valider exhaustivement un tel systéme

Comme le comportement des CMM en présence des tous les vecteurs possibles n’a pas
été étudiée, il en est de méme pour la validation du comportement d’une CMM dans tous

les cas de figures possibles.

Nous avons constaté 1'impossibilité de valider un sytéme tel une CMM auto associative.
La validation du systéme pour une taille de vecteurs d’entrée donnée ne donne aucun
renseignement sur la validité du modéle pour des tailles de vecteurs d’entrée plus
grandes. De plus, la seule maniére de certifier le bon fonctionnement d’un réseau de
neurones serait de tester toutes les entrées possibles pour tous les états possibles du

systeme.
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Nous avons établi, étant donné I’immensité de ’espace des entrées d’une part et de
Pespace des états possibles d’autre part, qu’une telle validation est irréalisable et ce,
méme pour des vecteurs d’entrée de taille trés modeste : il est, par exemple, tout & fait
impossible de valider un tel systéme de maniére exhaustive avec des vecteurs d’entrée

de 8 bits pour lesquels il faudrait effectuer plus d’un million de milliards de tests.

6.1.2 L’utilisation des réseaux de neurones pointant dans une RAM : une

solution au probléme de validation

Pour répondre au probléme de validation dans les CAM neuronales, nous avons créé une
architecture utilisant des réseaux de neurones afin de restreindre trés significativement
’espace de recherche pour rélaiser une détection exacte des vecteurs. Utilisés ainsi, les

réseaux de neurones permettent de réduire de plus de 99% le nombre de tests a effectuer.

6.1.3 Inadaptation de la méthode d’orthogonalisation exacte des entrées

Le modele des CMM donne toute la base théorique permettant leur construction mais ne
donne aucune information quand aux ressources nécessaires, notamment en ce qui
concerne l’espace mémoire & allouer a chacun des coeffcients de la CMM. Notre
recherche a permis de quantifier ces ressources. Ces résultats nous ont permis de

conclure au colt élevé d’une telle architecture.

6.1.3.1 Des performances peu intéressantes

Pour le modéle d’orthogonalisation exacte des entrées, la taille des coefficients de la
CMM a été évaluée a 32 bits pour une taille de vecteurs d’entrée de 120 bits. Comme le
prétraitement par la CMM consiste en une multiplication matricielle avec des nombres

de 32 bits, le temps nécessaire pour effectuer cette multiplication ne permet pas
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d’obtenir de bonnes performances méme si I’on dispose d’importantes ressources de

calcul.

6.1.3.2 Un coiit d’implantation élevé

En plus d’empécher le systéme d’étre performant, ’utilisation de coefficients de grande
taille contraint & implanter des fonctions d’addition et de multiplication pour des
nombres de 32bits. Vu qu’il faut effectuer des centaines d’additions et de
multiplications pour calculer la sortie de la CMM, il est préférable de disposer d’un
grand nombre d’additionneurs et de multiplieurs: si I’on désire un traitement rapide des
données. Un tel choix d’implantation occasionne un colit matériel élevé et ne permet

donc pas d’atteindre les objectifs fixés.

Avec un modele utilisant I’orthogonalisation exacte des vecteurs d’entrée, on ne peut pas
effectuer un prétraitement efficace : nous avons donc développé un autre modéle de

CAM neuronale beaucoup moins exigeant en ressources de calcul.

6.1.4 Le modéle utilisant la randomisation des entrées : un modéle performant

et peu cotliteux

Pour le modéle utilisant randomisation, que nous avons cré¢ -parmi les transformations
des entrées, seule la transformation A a été trouvée dans la littérature-, nous avons

quantifié les ressources mémoires et les ressources de calculs nécessaires.

Le modele utilisant la randomisation des entrées a 1’avantage d’utiliser une CMM
binaire : ceci permet de bénéficier d’un prétraitement a la fois rapide et peu cofiteux. Les
simulations ont permis de valider ce modéle pour des vecteurs d’entrée de 128 bits. En

outre, d’un point de vue théorique, I’augmentation de la taille des vecteurs d’entrée doit



106

favoriser le réglage des seuils sur les sorties de la CMM : ce modéle parait donc adapté a

des vecteurs d’entrée de grande taille.

Le principal avantage des CMM binaires est d’utiliser le “ET” logique comme
multiplication en lecture, les additions consistent en de simples incrémentations. Ainst le
traitement des vecteurs peut étre effectué trés rapidement et le colit engendré par la
CMM binaire est peu important du fait de la simplicité des fonctions a réaliser pour
calculer le vecteur de sortie. Le modéle utilisant la randomisation des entrées bénéficie
de nombreuses qualités qui devraient permettre de créer une CAM neuronale rapide pour
un cofit matériel relativement bas. Il est cependant nécessaire de tester différentes

implantations de ce modéle pour confirmer ses bonnes performances.

6.2 VOIES A EXPLORER

L’étude effectuée sur les CAM neuronales & base de CMM montre que ces mémoires
peuvent s’avérer trés performantes. Ainsi, leur étude suggére des recherches dans de
nouvelles directions :

e Il est possible de réaliser une étude des différentes implantations envisageables.

e ]l semble possible de développer, a partir du modéle de CAM neuronale utilisant
la randomisation, une CAM neuronale ternaire.

e Il serait intéressant d’étudier le modele des SDM développé par Kanerva. C’est
un autre modéle de CAM neuronale qui posséde des propriétés proches de
Palgorithme k-NN mais dont I'architecture permet de déterminer en quelques
cycles les plus proches voisins d’un vecteur présenté en entrée. A I’instar des

CMM, on doit pouvoir utiliser les SDM dans une CAM neuronale.
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6.2.1 Différents supports d’implantation envisageables

Si les modeéles de randomisation ont été validés, il reste & étudier leur implantation pour
déterminer, de maniére quantitative, le colit en ressources matérielles et les
performances des CAM neuronales. On peut envisager trois possibilités: une
implantation logicielle, une implantation matérielle ou une implantation mixte. Les
résultats obtenus par Zhou [ZHO99] montrent que le développement de tels systémes

doit permettre une grande accélération du traitement.

6.2.1.1 Implantation logicielle

Tout d’abord une implantation logicielle en C ou en C++ peut s’avérer trés efficace. En
tirant parti des jeux d’instructions spécialisés, tels MMX, SSE ou SSE2 dans le cas des
Pentium d’Intel, il est possible d’accélérer grandement la vitesse de calcul du vecteur de
sortie de la CMM. En effet, ces jeux d’instructions offrent de bonnes optimisations pour
les calculs matriciels. De plus, une telle approche ne nécessite aucune boucle
conditionnelle durant le traitement par la CMM et seulement une ou deux boucles
conditionnelles dans la phase d’appariement. Ce nombre restreint de branchements
conditionnels permet un traitement plus efficace des données car ainsi, le processeur sait

exactement les instructions qu’il doit appliquer.

De plus, une telle approche permettrait de traiter des régles de grande taille en
séquencant les vecteurs d’entrée et en procédant a des produits matriciels par blocs au
niveau de la CMM.

6.2.1.2 Implantation matérielle

Une implantation sur circuit intégré ou FPGA est envisageable et ceci permettrait une

bonne parallélisation du traitement. Toutefois, le cofit d’une implantation sur un FPGA
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est plus élevé que celui des CAM « traditionnelles » et il existe déja des IP permettant
d’implanter des CAM « traditionnelles ». On peut néanmoins utiliser un FPGA comme
plate-forme de tests pour déterminer les performances d’une CAM neuronale implantée

matériellement.
6.2.1.3 Implantation mixte

S1 on consideére les deux approches précédentes, on réalise qu’une implantation mixte
peut permetire de bénéficier d’une trés bonne accélération matérielle tout en gardant une
bonne flexibilité et un cofit peu élevé. On pourrait, par exemple, utiliser un DSP pour
accélérer le prétraitement par la CAM, une LUT pour transcrire les adresses de sorties de
la CMM en adresses dans la RAM. De plus, la programmation des DSP permet de
travailler avec de grandes tailles de vecteurs d’entrée en séquencant le traitement des

vecteurs d’entrée.
6.2.2 Les CAM neuronales ternaires : une extension possible du modéle

Afin de faciliter la définition des régles de routage ou les regles d’un systéme coupe-feu,
le développement de CAM ternaires serait pertinent. On pourrait utiliser les codes
développés précédemment et les étendre au cas « don’t care » (DC) qui permet de tester
des ensembles de vecteurs. L’implantation d’un tel systéme nécessiterait une

transformation des entrées plus complexe en raison de la présence de I’état DC.
6.2.3 Un autre mod¢le neuronal a étudier : les SDM de Kanerva

Le modele des « Sparse Distributed Memories » de Kanerva est un modéle de mémoire
distribué destiné, a 'origine, & évaluer le meilleur représentant possible d’un vecteur
inconnu. Ce modele, qui a I’avantage d’étre facilement implantable en matériel, posseéde

de grandes ressemblances avec les CMM binaires. Notamment, la principale hypothése
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de travail porte sur les vecteurs d’entrée : elle stipule que ces vecteurs doivent étre
« sparses » et de grande dimension. En raison des similitudes entre les SDM et les
CMM, il serait intéressant d’étudier les possibilités d’intégrer des SDM dans une CAM

neuronale,

Cette recherche propose des solutions alternatives aux CAM « traditionnelles ». Ce type
de solution peut intéresser les fabricants de CAM : eux-mémes investissent dans la

recherche des modeles plus économiques que les CAM « traditionnelles » :

«[...] CAMs traditionally have been greedy consumers of board space and power. Process shrinks
have mitigated the problems, but it's still conceivable that OEMs might want lower-power
alternatives [...] Even some CAM vendors are dabbling in new algorithms.»

Craig Matsumoto, EE Times, mai 2002

De maniére plus générale, le développement de méthodes performantes de recherches de
données est utile partout ol existent des bases de données et le développement
d’alternatives aux CAM «traditionnelles » telles les CAM neuronales, plus
économiques, va dans le sens d’une démocratisation de ce type trés performant de

meémoires.
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ANNEXE I : PRINCIPE DE FONCTIONNEMENT D’UN

FIREWALL

1.1 INTRODUCTION

Un systéme de protection tel qu’il en existe dans des réseaux de grande taille est & la fois
trés complexe et trés difficile & maintenir. Cette annexe expose toutes les connaissances
essentielles a la compréhension des systémes coupe-feu ou « firewalls ». Le document
présente tout d’abord les attaques auxquelles un réseau doit faire face, ce qui permet de
comprendre quelles en sont les parties vulnérables. Sachant cela, il faut se doter des
moyens de protection adéquats qui vont permettre de prévenir d’éventuelles attagues
dirigées contre le réseau. Il s’agit ensuite d’organiser tous ces €léments de protection en
un systéme de protection a part entiére : ce qui constitue normalement le « firewall », est
en fait une partie du systéme de sécurité méme si on désigne souvent par « firewall »
I’ensemble du systéme de sécurité. La derniére étape dans la conception du systéme de
sécurité est la configuration dont le but est de protéger le réseau interne en pénalisant le
moins possible les utilisateurs. Cette annexe est fortement inspirée des livres « Firewall

for Dummies » [KOMO1] et « Building Internet Firewalls, 2™ edition [ZWI00].
1.2 LES ATTAQUES POSSIBLES

Les attaques contre un réseau peuvent étre aussi bien internes qu’externes. Dans les 2
cas, les attaques ou menaces sont multiples. Le but du « firewall » est de minimiser les

risques d’agression, voire de les éliminer.
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1.2.1 Les menaces

Les différentes menaces peuvent étre classées en quelques catégories dont voici une

bréve description :

Les mots de passe facile a deviner : par exemple, pour des mots de passe de

petite taille, une recherche exhaustive peut suffire.

L’intrusion qui consiste & pénétrer dans le réseau interne a partir du réseau
externe. Ce type d’attaques peut se faire par une des méthodes suivantes :

o Les «portes arriére » (back door) : ce sont souvent des facilités laissées
par le programmeur du logiciel pour développer son programme. Il arrive
néanmoins que les programmeurs laissent volontairement ou
involontairement des failles dans les systemes qu’ils programment. De
telles failles permettent, par exemple, 1’exportation de programmes tels
NetBus ou BackOrifice sur une des machines du réseau attaqué : ces
programmes permettent de contrdler un ordinateur & distance sans étre
repérés.

o Virus, « Worm » et Cheval de Troie : un virus est un programme qui va
se répandre de fichier en fichier, un « worm » va, lui, se diffuser de
machine en machine alors qu’un cheval de Troie va installer un
programme dans la machine cible tout en ayant la forme d’un programme

anodin (comme par exemple une carte d’anniversaire électronique).

Le « Denial of Service » (DoS) qui consiste a rendre un service indisponible
(exemple : I'attaque du serveur DNS pour connaitre les adresses des différentes
machines du réseau interne et donc accéder a la structure globale du réseau, le

« flooding »)
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e Le « Distributed Denial » of Service (DDoS) qui est un avatar du DoS dans
lequel on prend le contréle de nombreuses machines pour ensuite coordonner une

attaque contre un serveur cible (exemple de 'attaque du serveur de Yahoo)

e « Man in the middle attack » : le principe de cette technique est d’intercepter une
connexion légitime et ensuite soit d’écouter la communication
(« eavesdropping ») ou de se faire passer pour [interlocuteur Iégitime

(« impersonation »).

e Les attaques internes : ce sont souvent les attaques les plus difficiles a éviter

Clignt

Le client croit Hacker  Le serveur croit
parler au serveur parier au client

Serveur

Firewall

Figure 1.1 :L’attaque par « Impersonation »

Ha?(er
Le hacker

intrercepte la
communication

Firewall

Figure 1.2 : L’attaque par « Eavesdropping »
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1.2.2 Que faut-il protéger ?

Dans un réseau, bon nombre de choses doivent étre protégées :
e Les données confidenticlles que les pirates vont essayer de récupérer

e Les données des clients comme les numéros de Cartes Bleues lors d’achats en
ligne

e Les ressources matérielles que certains pirates vont essayer d’exploiter par
exemple pour procéder a du DDoS (section [.2.1). De maniére plus
générale,l’utilisation des machines a distance qui est souvent employée par les

pirates pour masquer leur piste.

1.2.3 Les types de protection

Pour se prémunir des attaques, il existe plusieurs types de protection qui sont décrits

dans cette partie.

1.2.3.1 Filtrage de paquets

Le filtrage de paquets consiste en des vérifications dans ’en-téte des paquets
(Annexe II). 11 doivent étre modifiés par les routeurs et les « firewalls » (au minimum, il
taut décrémenter le TTL et recalculer le « checksum »). Le filtrage peut étre « stateless »
ou « stateful ». Un filtrage « stateful » va vérifier la cohérence d’une connexion en plus
de vérifier la validité des paquets. En fait, le filtrage « stateful » permet de prévoir une
partie des informations qui seront contenues dans les paquets a venir. Par exemple, lors
d’une requéte d’information HTTP, il faut ouvrir un port dont le numéro est supérieur a

1023 et qui est encore inutilisé. Dans un filtrage « stateless », on est obligé d’autoriser
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tous les ports supérieurs a 1023 alors qu'un filtrage « stateful » permettra de n’ouvrir

que les ports nécessaires. Le filtrage peut vérifier tous les renseignements suivants :
e [’IP source
e L’IP destination
e Le protocole (TCP, UDP, etc...)

e Le numéro de port pour un protocole TCP ou UDP : on parle ici du port de

destination

¢ Le type de message ICMP (Internet Control Message Protocol) : certains type de
message ICMP sont dangereux tel ICMP Redirect qui peut permettre du

« eavesdropping »
e Les flags de fragmentation si les paquets IP sont recoupés en paquets plus petits.

e Les options IP qui sont souvent dangereuses

Le « IP spoofing » (utilisation d’une fausse adresse source) est un des dangers courants :
une des vérifications que peut faire le « firewall » est de vérifier la validité des adresses
sources au niveau des interfaces (une adresse interne lue au niveau de I'interface externe

est probablement une attaque).

[.2.3.2 Le NAT ing

Le « NAT’ing » permet de cacher la structure du réseau interne a toute personne
extérieure au réseau local en exhibant des adresses externes différentes des adresses
internes (le plus souvent, une seule adresse externe est disponible vu de P’extérieur). Les
versions modernes du « NAT ing » permettent a la fois la translation d’adresse et la
translation de port (NAPT). Si le « NAT ing » permet de masquer la structure du réseau,

il comporte plusieurs inconvénients :
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Il est difficile d’identifier le « hacker » sans passer par I’étude du fichier journal

ou « logfile » qui est le fichier qui enregistre toutes les données du trafic passant

a travers le « firewall ».

Pour certains protocoles, I’IP source se trouve & plusieurs endroits. Il faut
effectuer les modifications a tous les endroits nécessaires sans quoi le paquet ne

pourra étre acheminé correctement.

Un pirate peut tenter d’utiliser un port qui a été ouvert tant que le « mapping » du
NAT entre le réseau externe et le réseau interne existe : il est donc préférable de

fermer les ports une fois la connexion fermée.

Il n’est pas possible de faire le « NAT’ing » si I’adresse source est présente dans

la partie encryptée du message.

1.2.3.3 Le service mandataire (proxy)

Contrairement au filtrage de paquets, le service mandataire permet d’inspecter I'intérieur

méme des paquets, c’est-a-dire la partie de données de I’application. De plus, le service

mandataire va reconstruire un paquet autorisé au lieu de simplement le rediriger. Ainsi,

il y a 2 connexions séparées dans un « proxy » : une connexion interne et une connexion

externe. Le « proxy » a les caractéristiques suivantes :

Inspection compléte du paquet

Compréhension du protocole d’application

Création d’un fichier de « log » trés complet

Non utilisation d’une véritable connexion interne/externe

Aucun routage entre les interfaces réseaux (les paquets sont reconstruits)
Possibilité d’inspecter des paquets a connexions multiples

Possibilité de rechercher les informations dans le cache
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On peut ainsi étendre la notion de régle abordée dans le filtrage de paquets :

Examiner le contenu des données HTTP : par exemple interdire les vidéos
Interdire certains noms de fichiers

Vérifier I’intégrité des données comme, par exemple, détecter et interdire les

fichiers contenant des virus
Interdire les paquets contenant certains mots-clés.

Inspection des e-mails sur le protocole SMTP : interdire par exemple certains

messages attachés, certaines adresses de destination

FTP get/put, SNMP get/set : par exemple pour autoriser la lecture mais interdire

I’écriture

De plus, indépendamment du firewall, il est possible de bloquer un nom de site ou une

adresse 1P, de changer de police suivant le moment de la journée, d’appliquer des regles

a un utilisateur ou a un groupe, gérer les quotas du FTP.

1.2.3.4 Surveiller et tracer les connexions (Monitoring and logging)

Le « firewall » garde une trace des différentes connexions sous forme d’un fichier. En

plus de faire respecter des régles, plusieurs raisons encouragent & garder une trace

« écrite » des connexions :

Donner des renseignements sur les performances et ’utilisation du « firewall »
Détecter les éventuelles intrusions (section 1.2.1)
Découvrir les méthodes d’attaques des pirates

Avoir une preuve légale des intrusions
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1.2.3.5 Détection d’intrusion

Gréce au « monitoring », il est possible de détecter des tentatives d’intrusion. En outre,
cette opération n’interrompt pas le trafic. Le principe de la détection est d’identifier des
« patterns » ou les étapes caractéristiques d’attaques dans le trafic. Typiquement, un tel

systéme connait une liste de signatures caractéristiques des tentatives d’intrusion telles :
e Le transfert de zone DNS
e Le scan d’adresse : pour savoir quelles adresses donnent une réponse
e Le scan de port : pour savoir quels ports sont ouverts

e Envoi de paquets corrompus

La réponse apportée a de telles tentatives pourra étre :
e Enregistrer le probléme
e Déclencher une alarme
e Modifier la configuration du « firewall » (qui peut étre automatique)

e Jancer une contre-attaque

Les 2 dernieres options comportent de nombreux risques et sont par conséquent peu

recommandables.

1.3 STRUCTURE D’UN FIREWALL

Il existe plusieurs architectures communes de « firewalls ». Les plus rudimentaires ne
possédent qu’un seul point de protection, les plus évoluées en possédent deux voire

plusieurs.
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1.3.1 Dual-Homed firewall

Ce type de « firewall » est constitué d’une interface externe reliée a ’internet et d’une
interface interne reliée au réseau local. Cette architecture est simple & configurer et
permet le « NAT’ing » mais elle ne comporte qu’un point de protection, ce qui implique

que si le « firewall » est mis a défaut, tout le réseau est accessible a un « hacker ».

Ei
Firewall

Figure 1.3 : Exemple d’un “Dual Homed Firewall”

1.3.2 L’hoéte caché ou screened host

On peut également envisager I'utilisation d’un héte caché qui est dédié a un service
particulier. On peut choisir ou non d’attribuer une sécurité accrue a cet hote : si cet hote
bénéficie d’une protection particulie¢rement élevée, on [’appelle un bastion (« bastion
host »). Dans le cas de certaines connexions sécurisées (tel L2TPY, il est nécessaire de
contourner le « NAT ing » et donc d’utiliser un héte caché. La plupart du temps, si I’on
dispose d’un réseau d’entreprise, il est nécessaire de posséder un serveur DNS. Pour des
raisons de sécurité, il est préférable que seul le serveur DNS soit autoris€ a envoyer des

requétes DNS vers 'internet. Ce serveur DNS, comme de nombreux serveurs, est

" L2TP est un protocole de tunneling qui utilise [Psec
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souvent situé dans une partie spéciale du réseau appelée zone démilitarisée ou
«DeMilitarized Zone » (DMZ).

£

ap
Firewail

Figure 1.4 : Screened Host

1.3.3 La zone démilitarisée (DMZ)

Le nom de zone démilitarisée vient du domaine militaire : en effet, il existe de
nombreuses analogies entre une DMZ militaire et la DMZ d’un réseau informatique. Il
faut bien étre conscient que cette zone est un zone pacifiée et non pacifique : cela se
traduit par des mesures de protection strictes en son sein. Les particularités de la DMZ

d’un réseau, a I’instar d’une DMZ militaire, sont :
e Tout le trafic qui rentre et qui sort de la DMZ est inspecté

e Les ressources de la DMZ sont trés fréquemment inspectées pour s’assurer que la

sécurité n’est pas compromise

e La DMZ sert de frontiere, de zone tampon pour protéger le réseau interne

Parmi les configurations utilisant une DMZ, on peut citer les « Three Pronged

Firewalls » et les « Multiple Firewall DMZ ».
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1.3.3.1 Three Pronged Firewall

| Screened Host

TR
“=<Réseay intefne

Firewall
Serveur central

Serveur A Serveur B Serveur C

Figure 1.5 : Three Pronged DMZ

Un tel « firewall » comporte 3 interfaces : un reliée au réseau interne, une relie a
I’internet et une dernicre reliée a la DMZ. Une telle configuration permet de sécuriser les
serveurs dédiés du c6té de la DMZ et d’avoir le réseau local du coté de l'interface
interne. L avantage de cette configuration est qu’elle centralise les interfaces sur une
seule machine ce qui facilite la mise en place et la maintenance du « firewall » tant au
niveau logiciel qu’au niveau matériel. En contrepartie, la sécurité est moins grande que
dans une configuration & « firewalls » multiples car si le « hacker » parvient a contrdler
le serveur central, il peut accéder aussi bien aux machines situées dans la DMZ qu’aux
machines du réseau local. De plus la charge de travail demandée (connexions
internet/intranet, connexions internet/DMZ, connexions DMZ/intranet) peut vite créer

un goulot d’étranglement au niveau du serveur central.
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1.3.3.2 Multiple Firewall DMZ

i

Seveur A Serveur 8 Serveur C

Figure 1.6 : Multiple Firewall DMZ

La particularité de cette architecture est qu’elle fournit 2 ou plusieurs points de
protection. Dans la cas d’une architecture & 2 «firewalls», le fait de distribuer
I'inspection des paquets sur les 2 « firewalls » accroit grandement la sécurité. Toutefois,

cette architecture comporte également plusieurs inconvénients :
e Le colt d’une telle architecture est élevé

e Il est nécessaire au responsable de la sécurité d’avoir trés bonne connaissance

des « firewalls »

e Le systéme de protection est plus long & administrer car il comporte 2 « listings »

de filtrage

e Il est nécessaire de disposer d’utiliser plusieurs outils pour assurer un bon

fonctionnement du systéme

La complexité du systeme devient encore plus grande si plus de 2 « firewalls » sont
déployés. Dans une telle configuration, la meilleure stratégie d’administration est

. souvent de développer les connexions de ’interne vers ’externe, c'est-a-dire de traiter
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tout d’abord les connexions entre réseau interne et DMZ puis de se concentrer sur la

connexion entre la DMZ et internet.

1.3.3.3 Configuration hybride

Il est parfois nécessaire d’avoir a la fois une DMZ a adresses publiques et une DMZ a
adresses privées, il est alors envisageable d’utiliser une architecture a 3 « firewalls »,
comportant une DMZ a adresses publiques et une DMZ & adresses privées. Il est & noter
que I’on peut multiplier le nombre de « firewalls » a traverser, ce qui devrait résulter en
une sécurité accrue. Toutefois, la complexification du systéme peut desservir son
efficacité car il devient alors trés difficile & administrer. De plus, il y a dans ce cas plus
de regles a tester et il s’ensuit généralement une perte de débit. Ainsi, il est indispensable
de simplifier le plus possible le syst¢me et donc trouver le meilleur compromis
sécurité/simplicité aussi bien pour ne pas trop pénaliser le débit que pour diminuer les
colits du systéme. Par exemple, pour le tunneling, le logiciel Firewall-1 de CheckPoint
utilise le « firewall » lui-méme comme terminal, ce qui permet une trés grande
simplification du systéme. Les méthodes de protection étant connues, il faut ensuite les

regrouper en un systéme de protection complet et efficace.

1.4 CONCEVOIR SON PROPRE FIREWALL

La premiére €tape dans la conception d’un « firewall » est de déterminer ce qui est
autorisé et ce qui n’est pas autorisé. Dans un deuxiéme temps, il faut se donner les
moyens de faire respecter les régles édictées en décrivant la politique de sécurité. 1l faut

ensuite définir les régles du « firewall » protocole par protocole.
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1.4.1 Etablir une police d’utilisation

Afin de mettre en place une police d’utilisation du réseau qui corresponde aux attentes

de Pentreprise, il est utile de se poser les questions suivantes :

e Questions sur ce qui est autorisé :

O

(0]

O

Quels services doivent étre disponibles ? (quels programmes et quels

protocoles peuvent utiliser les employés ?)

Qui peut accéder a internet ?

Quelles données peuvent étre téléchargées a partir d’internet ?
A qui appartiennent les données ?

Quelle est la taille maximale autorisée pour les e-mails ?

e Questions sur ce qui n’est pas autorisé :

O

O

Quels types d’e-mails ou de fichiers attachés ne sont pas autorisés

Définir quelles actions peuvent &tre mises en ceuvre sur internet (par
exemple, certaines compagnies refusent que leurs employés expriment

des opinions qui ternissent leur image de marque...)
Quels types de fichiers ne sont pas accessibles
Quels contenus web ne sont pas accessibles

Quelles connexions internet ne sont pas autorisées (exemple : tentative de

connexion a un fournisseur d’acces internet & partir du réseau interne)

Quels protocoles, quelles applications ne sont pas autorisés

Il est aussi nécessaire de décider quelles sanctions appliquer en cas de non respect de la

police d’utilisation du réseau.

. 1.4.2 Mettre en place la politique de sécurité
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Afin d’établir une politique de sécurité efficace, les conseils suivant sont utiles a suivre :

e Faire de la mise en place de la politique de sécurité un travail d’équipe afin

d’aboutir & un consensus quant a ’utilisation du réseau

e Identifier les ressources nécessitant une protection tant au niveau logiciel que

matériel, tant au niveau des programmes que des données.

e Déterminer les probabilités correspondant aux différents risques encourus

e Créer un plan de réduction des risques pour chacune des menaces

e Déterminer les taches des serveurs situés dans la DMZ du point de vue de la
sécurité.

e Développer les scénarios a appliquer en cas de découverte de bréches dans le

systéme de protection (notamment quelles mesures prendre tant que la bréche

n’est pas colmatée).

Une fois la politique de sécurité définie, il ne reste qu’a générer les régles

correspondantes du systéme de protection.

1.4.3 Etablir les régles

Les régles a établir sont plus ou moins simples & implémenter. A partir de 2 exemples, il

est possible d’apprécier la méthodologie a employer.
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1.4.3.1 Regles pour un protocole simple

Serveut Web  Serveur F NNTP
176.16,1.200 176.16.41.201 176.161.202 176,161,203

Serveur ;!e erminal Serveur CITRIX Réseau interne

176.16.1.0/24

Serveur DNS
176161204 176161205 176.16.1.206

Figure .7 : Exemple pour les protocoles simples

Services courants. Avec un tel réseau, les services tels ’accés au serveur web (port 80 et
443), au serveur DNS (port 53) se font via un port connu : toute requéte sur ce port et
appelant un service valide sera donc transférée sur le serveur correspondant. Pour ce qui
est du FTP, 2 ports sont utilisés au niveau du serveur : le port 21 qui est le port de
contrdle par lequel les commandes FTP sont transmises et le port de données qui est
habituellement le port 20. Il existe cependant un mode FTP passif dans lequel le client et
le serveur FTP négocient le port de données du serveur : ¢’est un mode considéré
dangereux car il permet un moins bon contrdle des connexions. Le port de données du

client sera, quant a lui, un port aléatoire de numéro supérieur a 1023.

Il est a noter qu’en FTP, la transmission du mot de passe est non cryptée ce qui peut

constituer un grand danger pour la sécurité.

Thin Client Solutions. 11 est parfois utile d’utiliser des solutions dans lesquelles le client

ne dispose pas d’une grande capacité de calcul. Dans ce cas, ¢’est le serveur qui dispose
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de la puissance de calcul: on peut utiliser pour cela soit un serveur Citrix, soit les

services du terminal windows.

Serveur de news. Le serveur de News NNTP (ports 119 et 563) permet de lire les
messages d’un newsgroup, etc. Le serveur de news est organisé un peu comme un

serveur DNS en classant les groupes suivant leur domaine de discussion.

Telnet. Telnet (port 23) permet d’administrer un serveur a distance mais il est dangereux
de I'utiliser car I’authentification n’est pas cryptée et il suffit d’intercepter la connexion

pour connaitre le mot de passe du client.

1.4.3.2 Régles pour des protocoles avancés

Seeu ail Serverdeunnel Serveur
176.1641.210 176.16,1.211 176.1641.212

KDC2 Serveur Windows Réseau inferne
176.16.1.213  176.16.1.214  176.16.1.215 176.16.4.0/24

Figure 1.8 : Exemple pour les protocoles avancés

Protocoles de courrier électronique. 1l existe plusieurs protocoles pour le courrier

électronique :
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POP3 (port 110): c’est un protocole encore beaucoup utilisé mais qui a pour

défaut d’accepter les courrier entrant et le courrier sortant.

IMAP4 (port 143): ce protocole permet d’accéder a sa messagerie sur un

serveur. Il dispose de plusieurs dossiers en plus de la boite de réception
SMTP (port 25) : ce protocole permet ’envoi d’e-mails

LDAP (port 389) : permet de trouver I’adresse e-mail d’une personne & partir

d’un alias

HTTP (port 80) : la consultation se fait en utilisant le serveur web qui lui-méme

envoie de requétes & un serveur POP3.

Il faut noter qu’il existe des versions sécurisées de tous ces protocoles :

Kerberos : nom anglais du chien mythologique Cerbére, le serveur Kerberos
permet la restriction d’accés aux données aux seules personnes autorisées. Ce
serveur permet le contrdle d’accés aux données aussi bien aux clients internes

qu’aux clients connectés via internet.

RADIUS : ce serveur permet des connexions par ligne téléphonique. Pour plus

de détails, on peut consulter le livre « Firewalls for Dummies ».
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ANNEXE II : DESCRIPTION DES EN-TETES DE PAQUETS IP
ETTCP

Les protocoles IP (Internet Protocol) et TCP (Transport Control Protocol) sont deux
protocoles couramment utilisés pour le transport de données a travers I’internet. Cette
annexe présente une description de ces 2 protocoles tres largement inspirée de « TCP/IP

Pratique » [VIAOQ2].

I1.1 EN-TETE D’UN PAQUET IP

Le protocole IP a pour objectif de faciliter le transport des données de ’envoyeur au
destinataire. L’en-téte d’un paquet IP (Figure IL.1) contient un certain nombre
d’informations qui doivent permettre le bon acheminement du paquet. L’en-téte IP

contient les informations suivantes :
e Version : précise la version du format de l'en-téte.

e JHL (Internet Header Length) ou longueur de l'en-téte IP en mots de 32 bits avec

une valeur minimale de 5 (sans options) et une valeur maximale de 15.

e Type de service : Ce champ contient des informations essentiellement destinées

aux équipements d'interconnexion.

e Longueur totale : codée sur 16 bits, représente la longueur totale du datagramme

mesurée en octets incluant I'en-téte IP et les données a transporter.

e Identificateur : Codé sur deux octets, ce champ constitue une identification
utilisée pour reconstituer les différents fragments d'un méme message . Tous les

datagrammes du message porteront le méme numéro d'identification.
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e Flags : Ce champ occupe 3 bits et gére la fragmentation des paquets. Les valeurs

de ces trois bits peuvent étre :
o 000 dernier fragment, ou seul fragment
o 001 autorise la fragmentation, ce n'est pas le dernier fragment.
o 010 la fragmentation n'est pas autorisée.
e Offset du fragment : indique la position fragment, comptée en unités de 8 octets

par rapport au début des données du datagramme initial. Si le datagramme est

complet ou si c'est le premier fragment, ce champ est 4 0.

e TTL : indique la durée de vie maximale du datagramme au travers du réseau. A
chaque traversée de passerelle, ce champ est décrémenté. Arrivé a 0, le

datagramme est supprimé.
e Protocole : identifie le protocole de la couche supérieure

e Checksum d’en-téte : fait le checksum sur I’en-téte IP uniquement

4 8 12 16 20 24 28 32
Version] [HL | Type de service Longueur du paquet )
[dentificateur Flags Cffset du fragment
TTL Protocole Checksum d'en-téte
> En-téte IP
Adresse IP source
Adresse [P destination
Options / remplissage (padding)

Zones de données

Figure IL.1 : Datagramme d’un en-téte de paquet IP
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I11.2 EN-TETE D’UN PAQUET TCP

Le protocole TCP a pour objectif de vérifier I’intégrité des données transmises. L en-téte
d’un paquet TCP (Figure I1.2) contient un certain nombre d’informations qui doivent

permettre d’assurer que toutes les données transmises ont bien été regues.

Port source Port destination

Numéro de séquence

Numéro d'acquittement

Ul APIR|S| F
dc?rﬁf:;s Réservé R|C|SiS|Y|1 Taille de la fenéftre
G! KIHIT|N| N
Checksum Pointeur urgent

Options/remplissage

Données

Figure IL.2 : Datagramme d’un en-téte de paquet TCP

L’en-téte TCP contient les informations suivantes :
e Port source : numéro du port de la source (de 0 a 65535).
e Port destination : numéro de port du destinataire (de 0 a4 65535).

e Numéro de séquence : le numéro du premier octet de données par rapport au
début de la transmission (sauf si SYN est marqué). Si SYN est marqué, le
numéro de séquence est le numéro de séquence initial (ISN) et le premier octet &

pour numéro ISN+1.



136

Numéro d’acquittement : si ACK est marqué ce champ contient le numéro de
séquence du prochain octet que le récepteur s'attend 4 recevoir. Une fois la

connexion établie, ce champ est toujours renseigné.

Offset de données : la taille de l'en-téte TCP en nombre de mots de 32 bits. Il
indique 1& ot commencent les données. L'en-téte TCP, a une taille correspondant

a un nombre entier de mots de 32 bits.
Réservé : réservés pour usage futur. Doivent étre a 0.
Bits de contr6le :

o URG: Pointeur de données urgentes significatif

o ACK: Accusé de réception significatif

o PSH: Fonction Push

o RST: Réinitialisation de la connexion

o SYN: Synchronisation des numéros de séquence

o FIN: Fin de transmission
Taille de la fenétre : le nombre d'octets & partir de la position marquée dans
l'accusé de réception que le récepteur est capable de recevoir.
Checksum : voir la littérature pour connaitre la méthode de calcul du checksum
Pointeur de données urgentes : communique la position d'une donnée urgente en
donnant son décalage par rapport au numéro de séquence. Le pointeur doit

pointer sur l'octet suivant la donnée urgente. Ce champ n'est interprété que

lorsque URG est marqué.

Options : variable Les champs d'option peuvent occuper un espace de taille
variable 4 la fin de l'en-téte TCP. Ils formeront toujours un multiple de 8 bits.
Toutes les options sont prises en compte par le Checksum. Un parametre d'option
commence toujours sur un nouvel octet. If est défini deux formats types pour les

options:
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o Cas 1: Option mono-octet.

o Cas 2: Octet de type d'option, octet de longueur d'option, octets de
valeurs d'option. La longueur d'option prend en compte l'octet de type,
l'octet de longueur lui-méme et tous les octets de valeur et est exprimée
en octets. Notez que la liste d'option peut étre plus courte que ce que
I'offset de données pourrait le faire supposer. Un octet de remplissage
(padding) devra étre dans ce cas rajouté apres le code de fin d'options.

Cet octet est nécessairement a 0. TCP doit implémenter toutes les options.
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ANNEXE III : DENOMBREMENT DES ENREGISTREMENTS

POSSIBLES DANS UNE CMM

Le nombre d’états possibles” d’une mémoire pouvant enregistrer jusqu’a n mots de & bits

n (k) . (24
est Z( . J: ZT(_('—)Z)—)T En effet la mémoire peut contenir 1, 2, ....n-1 ou n mots. Et
=1 \_ 1 i=l Lo — 1!

k

_ J fagons de choisir i vecteurs différents

comme il existe 2° mots possibles, il y a (
i

dans ’ensemble des vecteurs de £ bits.

Dans le cas de la CMM étudiées, on peut enregistrer jusqu’a (k-1) vecteurs : il y a donc

i=l

a) e () o e
Z( . Jz Z————— états possibles de la mémoire. La Figure III.1de I’évolution du
i = z!(2" —z)!

nombre de possibilités en fonction de la taille des vecteurs d’entrée montre que le
nombre d’enregistrement devient vite considérable : la validation du modele ne peut se
faire que sur une petite partie des échantillons possibles. Les calculs sous MATLAB
donnent pour valeur ‘Inf pour une taille de vecteurs d’entrée supérieure a 34 bits, le
graphe s’arréte & cet endroit. On constate que pour une taille d’entrée de 8 bits, il existe
plus d’un million de milliards d’états possibles, ce qui empéche, pour cette taille déja,

toute étude exhaustive du comportement du systéme en fonction de son état.

" On suppose qu’un état est défini entierement par les vecteurs qui sont enregistrés et que, par conséquent,
'ordre d’enregistrement des vecteurs n’intervient pas.
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1E+204

1E+280 -

1E+252

1E+224
1E+210 -

1E+196
1E+182
1E+168
1E+154
1E+140
1E+126

1E+98

Nombre de possibilités (échelle log)

1E+70

1E+56 -
1E+42 -

1E+28
1E+14
1

1E+112 -

1E+84 - -

13

Nombre de bits en entrée

17

Figure I1L.1 :

Evolution du nombre d’états possibles en fonction de la taille de

Pentrée




Tableau I11.1 : Nombre d’enregistrements possibles suivant la taille de Pentrée

2

3

4

5 41448

6 8303632
7 5,699E+09
8 1,354E+13
9 1,126E+17
10 3,323E+21
11 3,517E+26
12 1,349E+32
13 1,894E+38
14 9,805E+44
15 1,883E+52
16 1,349E+60
17 3,624E+68
18 3,664E+77
19 1,399E+87
20 2,024E+97
21 1,113E+108
22 2,331E+119
23 1,864E+131
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Tableau I11.1 : Nombre d’enregistrements possibles suivant la taille de entrée

(suite)

ossibles

24 5,702E+143
25 6,688E+156
26 3,012E+170
27 5217E+184
28 3,481E+199
29 8,958E+214
30 8,903E+230
31 3,422E+247
32 5,090E+264
33 2,934E+282
34 6,561E+300
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ANNEXE IV : LES SPARSE DISTRIBUTED MEMORIES

IV.1 INTRODUCTION

Le modéle des « Sparse Distributed Memories » ou SDM a été développé par Pentti
Kanerva [KANS8]. Les SDM, a ’instar des CMM, constituent un modele de mémoire
distribuée a base de réseaux de neurones. Dans le modele des SDM, on suppose que
I’espace des entrées est de trés grande dimension, c'est-a-dire de I’ordre de 100 bits au
minimum. Cette annexe présente une courte description des processus de création des
CMM et la méthode de récupération des données. La description des SDM faite dans

cette annexe est fortement inspirée du livre de Kanerva.

1V.2 CREATION DE LA SDM

Soit E={0,1}", I’'espace des vecteur d’entrée de la SDM. Le processus de création de la
SDM nécessite la sélection de points de E appelés « hard locations ». Ces « hard
locations » constituent les lieux d’enregistrement des données. Chaque « hard location »

possede une zone de mémoire constituée d’un mot binaire.

1V.2.1 Les « hard locations »

Dans le modéle proposé par Kanerva, les « hard locations » sont situées en certains

points de ’espace des données. Elles sont caractérisée par une zone d’influence définie
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avec une distance de Hamming™ : Ces « hard locations » peuvent étre représentée
comme des neurones (Figure IV.1) et ont I’avantage d’étre facilement implémentables

sur un support matériel.

Poids synaptiques

Adresse de la X
correspondants a la

........ xﬂard location »

« hard location »

r=4

01111010 Le seuil
Ql_l 1_;1/00,1_: 1 esta -1
:
11001011 D¢ “_‘I >

01111101

\
\
~_1
/
/

-1

/

}/ n=8
Vecteurs situés dans la k=4
zone d’influence de la Vecteur
« hard location » d’entrée

a) Représentation de la « hard location » dans £ b) Représentation neuronale de la « hard location »

Figure IV.1 : Représentations d’une « hard location »

Notons wy, les poids synaptiques de la ¢ « hard location », alors on a :
e w;= 1 sile bit a mémoriser est 1

e w;=-1 sile bit a mémoriser est 0

i La distance de Hamming entre 2 vecteurs est le nombre de bits dont ils different
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La sortie v non seuillée du neurone est déterminée par :

v=">w, (IV.1)
J=1

Cette sortie est ensuite seuillée : le seuil est fonction de la zone d’influence de la « hard
location ». Si on veut que la « hard location » traite tous les vecteurs qui lui sont distants
d’au plus £ bits, alors le seuil est réglé a (n-24-1). Lorsqu’un vecteur d’entrée se trouve a
k ou moins de k bits d’une « hard location », on dit qu’il active cette « hard location ».
La taille de la zone d’influence, déterminée par k, est identique pour chaque « hard
location ». On note ¥} le mot binaire attaché a la i™ « hard location ». On suppose que

tous les ¥, ont une taille de n,, bits. On note W le ™ bit de la i™ « hard location ».

Comme le modéle des SDM s’appuie sur des considérations probabilistes, Kanerva
p
place les « hard locations » sur I’espace des données de maniére aléatoire et avec une

distribution uniforme.
IV.2.2 L’écriture dans les « hard locations »

Dans la phase d’enregistrement, on stocke les données D relatives au vecteur d’entrée
dans chacune des « hard locations » qu’il active. On suppose que ces données ont la
méme taille que les /7. Notons D, le /™ bit de D, le processus d’écriture dans la « hard

location consiste en 1’opération suivante :

Vielln W,=W,+D, (Iv.2)

y J
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La Figure IV.2 illustre ce processus d’enregistrement :

. « hard
« hard ]ocatlons»t 7 locations » ol la
) donnée est
Zone d’influence

enregistrée
d'une « hard g

location »

’ Donnée a
enregistrer

Figure IV.2 : Illustration de la phase d’enregistrement dans une mémoire de

Kanerva

IV.3 RECUPERATION DES DONNEES DE LA SDM

Le processus de récupération des données stockées dans la SDM se fait en 2 étapes : la
premiére consiste a sélectionner les « hard locations » & lire, la seconde consiste a

utiliser I’information qu’elles contiennent pour déterminer le vecteur de sortie.

IV.3.1 La sélection des « hard locations » lues

La sélection des « hard locations » a lire est le processus inverse de celui observé dans la
phase d’enregistrement : les « hard locations » sélectionnées sont celles situées a £ ou
moins de & bits de la donnée présentée en entrée (Figure 1V.3). Le nombre des « hard

locations » sélectionnées, noté d, n’est pas connu a priori. Toutefois, dans un espace de



‘ 146

grande dimension, le nombre de « hard locations » sélectionnée est quasiment constant

en raison de la distribution uniforme des « hard locations » dans I’espace des entrées.

ﬂ «hard locations»

« hard locations»Y\ sélectionnées

pour la lecture

i Donnée présentée

Zone © en entrée

sélectionnant les
«hard locations»
a lire

Figure 1V.3 : Illustration de la phase de lecture dans une mémoire de Kanerva

On sélectionne ainsi un sous-ensemble de « hard locations » qui stockent les mots notés

{W 'i }ie[l,d] :
1V.3.2 Le traitement des données sélectionnées

Le traitement des données sélectionnée s’effectue en 2 étapes : la premicre étape du
traitement consiste a additionner vectoriellement les W’;, la seconde étape consiste a

seuiller' cette somme pour obtenir un vecteur binaire en sortie.

Y Le seuil est fixé a zéro
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Notons S le vecteur de sortie et S; sa /™ composante. On a alors

S, =0si (Zd:WJ

=

(g

=]

Ve[l d] (IV.3)

IV.4 CONCLUSION

Le modele développé par Kanerva a pour objectif de trouver le meilleur représentant
correspondant & un vecteur d’entrée et possede en plus des caractéristiques permettant
d’envisager une implémentation matérielle. Il semble donc parfaitement utilisable pour
développer des CAM neuronales. En outre, Kanerva décrit toute la théorie du modeéle
permettant un bon dimensionnement du systéme dans son livre « Sparse Distributed
Memory » [KANS8S8]. Le modele des SDM, a D’instar des CMM binaires, nécessite
’utilisation de vecteurs d’entrée de grande dimension « sparses ». Si I’on veut intégrer
des SDM dans une CAM neuronale, il faut les utiliser pour effectuer un prétraitement

des vecteurs d’entrée.



