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Lzs reseaux de communications personnelles (RCP) offrent divers types de 

services comme les donnees, la voix, la vid60, le coumer dlectmnique sur un meme 

support non filaire. La gestion de la mobilite des usagers B lTint&ieur de tels kseaux 

enaaine plusieurs problbmes jusque 1P inexistants dans les reseaux commut6s publics. 

Dans la &solution de certains de ces probEmes, qui se trouvent &re de nature NP- 

diffdes, on a souvent recours B des mdthodes et techniques utilis6es en optimisation 

combinatoire. 

Ce memoire porte sur l'adaptation des techniques de la programmation par 

contraintes pour la risolution d'un probli3me bien connu dans les RCP et qui est celui de 

l'affectation de cellules 5 des commutateurs. Il s'agit en fait de ddterrniner une 

affectation des differentes cellules du dseau B des commutateurs (dont les localisations 

sont fixes et connues), qui minimiserait une fonction de coiits compos6e des coiits de 

reEve entre toutes l a  cellules d'une part, et des coiits de liaison entre cellules et 

commutateurs d'autre part. De plus, toute solution r6alisable devrait respecter la limite 

de capacitd de chaque cornrnutateur. Le nombre d'affectations B considerer peut 

entrainer une explosion combinatoire. 

La programmation par convaintes permet de simplifier la dsolution de probl5mes 

combinatoires complexes. L'idke de base consiste concevoir des techniques de filtrage 

efficaces pour rdduire l'espace de recherche. Ainsi, dans notre adaptation. nous avons 

defini une mod6lisation des inconnues du probl8me saus forme de contraintes qui dduit 

considdrablement l'espace de recherche. L'algorithme utilise la technique du 

"Contraindre et GCneref' pour imposer le respect des contraintes; par la suite, la 

mkthode de "limitation et exploration" (Branch & Bound) est appliqube pour trouver la 

meilleure solution. 

Cornme contributions majeures de ce mdmoire, nous avons pu definir une 

contrainte sur la borne inf6rieure du coiit de relbve qui pennet d'eliminer de la recherche 

plusieurs solutions non dalisables. La mise au point d'un ensemble de stratdgies de 



selection des variables, spdcifiques B ce probl8me d'affectation, nous a pennis de diriger 

de manibre dynamique la recherche et d'aboutir B de bons dsultats. 

Dans le but d'evaluer la performance de l'algorithme par rapport aux autres 

heuristiques adaptees B ce meme type de probleme, nous avons effectur5 une d i e  de 

tests. M a l e  sa simplicite, notre adaptation fournit des solutions exactes a m  dseaux de 

taille moyenne et donne des solutions qui se cornparent avantageusement aux autres 

mdthodes pour des r&eaux de grande taille. 

Les ksultats obtenus montrent que la definition d'une contrainte sur la borne 

infenewe du coat de reEve permet de rdduire de maniiire consid6rable le domaine des 

valeurs prises par les variables de mod6lisation. De plus, les stratigies de choix de 

variables dans l'algorithme de "Branch & Bcund", varient suivant les types de 

probl8me; elles sont plus efficaces lorsqu'elles sont dynamiques et tiennent compte des 

informations disponibles B chaque &ape de la recherche. Enfin, meme si le temps de 

calcul peut parfois Ctre ondreux pour certaines tailles de dseaux, les solutions obtenues 

pour les problimes de taille moyenne sont optimales et peuvent senir  comme critGre 

pour une evaluation de la distance des autres heuristiques par rapport 5 la meilleure 

solution. 



ABSTRACT 

Personal Communication Services (PCS) networks offer a lot of services like 

transmission of voice, video and e-commerce over wireless support. The fact that users 

inside those networks are free to move causes a lot of challenges to the providers of 

those kinds of services. Most of the methods used to solve those problems are from 

operations research. 

Our thesis discusses a very important problem of cell assignment to switches in 

cellular mobile networks. It can be summarized as a search for an optimal assignment of 

cells to switches in order to minimize the total cost composed of the handoff cost 

between cells and the linking cost between cells and switches. We propose here an 

algorithm based on constraint programming for this problem. The choice of this method 

is motivated by its active use of constraints in the search for solutions, which in turn 

leads to the reduction of the search space and of the complexity of the problem. The 

COP (Constraint Optimization Problem) used here is based on "Branch & Bound" 

techniques. 

The principal contributions of this thesis are: 

A Constraint Programming (CP) modeling of the problem of assigning cells 

to switches; 

The definition of a lower bound on the total handoff cost between cells; 

The development of a new daemon and search strategies. Daemons help to 

handle dynamically the relations between the constrained variables, as the 

strategies direct the search. The result is an efficient way of finding the best 

solutions. 

In order to evaluate the efficiency of our method, we compared it with other 

heuristics that have been adapted to the same problem. Results indicated that our 

algorithm leads to optimal solutions for medium - sized networks and can deliver a 

satisfactory solution for large - scale networks. 
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CHAPITRE 1 
INTRODUCTION 

Nous assistons ces derniers temps & une prolifdration des services offerts par les 

systi5mes de communications personnelles. Les transferts de donnees, d'image, et de 

video sont autant de services accessibles aux utilisateurs de ces types de +seam dont le 

nombre ne cesse de croltre. II va sans dire que tous ces changements entdneront, si ce 

n'est d6ji le cas, une restructuration dans la conception et dans la gestion des futurs 

dseaux de communications mobiles. Parmi les problimes r6pertoriCs et qui demeurent 

incontoumables pour I'administration efficace de ces futurs dseawr se trouve celui de 

I'afTectation des cellules B des comrnutateurs, qui fait l'objet de ce memoire. Dans ce 

chapitre, nous allons dkfinir dans un premier temps les concepts fondamentaux utilisds 

dam les kseaux de communications personnelles de prkiser notre probl6matique 

de recherche. Nous exposerons par la suite nos objectifs de recherche et les principales 

contributions escomptees et enfin nous esquisserons le plan du memoire. 

1.1 DBfinitions et concepts de base 

Les services de communications personnelles sont offerts sur des r&seaux de 

communications personnelles (RCP). Le temtoire couvert ou la zone de couverture que 

peuvent desservir de tels reseaun est gc5n6ralement d6cou@e en de petites surfaces 

geographiquement limitees et cornrnunCment appelees cellzdes. Celles-ci sont souvent 

repdsentdes par des hexagones dont le rayon varie de quelques centaines de m&es B 

quelques kilom5tres au maximum. A lTint6rieur de chacune de ces cellules se trouve un 

sous-systdme radio constituant une station de base ou BST (Base Station Transceiver) 

qui s'occupe des transmissions radio sur la cellule. Intdgrds 2 la station de base, des 

canawr de signalisation vont permettre & l'abonn6 de communiquer avec la BST et vice 

versa. Les stations de base sont ii leur tour relides B des contr6leurs de station de base ou 

BSC (Base Station Controller). C'est ce sous-systeme qui sert donc d'inte@ace radio 

entre chaque tenninal mobile et le rdseau hi-meme. Le sous-systGme dseau est B son 

tour constitub de comrnutateurs ou MSC (Mobile Switching Center) installds B 



I'int6rieur de quelques-unes des cellules choisies de maniike strategique. Le r6le d'un 

cornrnutateur est d'assurer l'interconnexion des differentes cellules du kseau  mobile 

entre elles et aussi avec les autres reseaux de t~lCcommunications. 

Les tenninaux mobiles sont en g h i r a l  utilises en ddplacement. Pour eviter des 

interferences, deux cellules contigues n'utilisent pas les msmes canaux radio. L a  

transmission doit donc changer de canal chaque fois que le mobile passe d'une cellule i 

une autre. Ce processus de transfea automatique de la communication d'une station de 

base B une autre est appelk reEve (handover ou handam. Condtement,  le systsme 

cellulaire contr6le en permanence la puissance du signal entre le mobile et la station de 

base dam laquelle il se situe. Dbs que la puissance tombe sous un niveau donne. le 

syst2me attribue automatiquement une nouvelle cellule au mobile. Ce transfert de 

cellules peut entrainer un changement de cornmutateur, auquel cas des op&ations de 

mise ii jour sont n5alisCes et on parle de relhe complexe, sinon on a une r e l h e  simple ne 

faisant intervenir qu'un m2me et unique comrnutateur. 

1.2 f i~ments  de la problCmatique 

Dans un RCP, les usagers peuvent etre en deplacement I'interieur d'une surface 

geographique donnee. La liaison avec le r6seau est assuke par interface radio. c'est-a- 

dire que chaque cellule est munie d'une antenne qui lui permet de communiquer avec les 

usagers sur diffdrentes frkquences. La communication avec chaque usager est prise en 

charge par I'une des cellules les plus proches, choisie en tenant compte du niveau du 

signal regu. Gin6ralement. on ddfinit un seuil au-dela duquel on consid&e que la 

puissance reque est assez importante pour &re prise en cornpte par une cellule. Les 

informations echangdes par les usagers sont B leur tour g M e s  par le commutateur qui 

dessert cette cellule. Celle-ci est donc desservie par un seul cornmutatew B la fois. 

Lorsque diffbrentes cellules (situees B proximite) rqoivent toutes des niveaux du signal 

supc5rieur au seuil, seule celle ayant le niveau le  plus 6levC assurera la prise en  charge de 

l'usager. De ce fait, la communication sera relay& par le cornmutateur auquel ladite 

cetlule est affecte'e. Plusieurs cas peuvent se prdsenter lors du &placement du mobile 



d'une cellule A, reliie i un commutateur X, vers une autre cellule B ayant un plus fort 

niveau du signal: 

1) Les cellules A et B sont contr6lies par un meme commutateur, dans ce 

cas la relkve est simple et ne nkcessite pas des opt5rations de rnise B jour de la 

base de donnies de I'usager. Seul le commutateur X intervient dans cette 

op6ration. 

2) La cellule B est contr6lee par un commutateur Y diffkrent de X. Dam ce 

cas, plusieurs informations sont ichangies entre les deux commutatews pour 

mettre 3 jour la base de donnees du kseau (localisation de l'usager, type 

d'appels, etc.). De plus, il peut arriver que certaines op&ations, comme la 

facturation, continuent d'etre effectubes par le commutateur X. On aura ainsi 

une connexion de I'usager au commutateur Y, puis au commutateur X et enfin 

au dseau. On parle de relbve complexe dont le coat est t& Clev6 

cornparativement & une reliive simple. 

La reEve complexe consti tue une oHration sollici tan t beaucoup de ressources de 

la part du reseau et dont il convient de reduire autant que possible le coiit. De ce fait, il 

serait souhaitable dT6tablir une frkquence des relives entre les differentes cellules, afin 

de pouvoir regrouper celles Cchangeant le plus. sous le contrdle d'un meme 

commutateur. Ces diffkrentes considhtions sont B la base du problime &affectation de 

cellules B des commutateurs qui peut dtre inonce de la maniire suivante: 

~ t a n t  donnd un ensemble de cellules et de commutateurs de capacites (Edang) finies, 

trouver une affectation des cellules i ces comrnutateurs qui minimiserait le coat total 

constitu6 du coat de liaison entre cellules et commutateurs d'une part. et du coat de 

relhve entre les cellules d'autre part. La n?solution de ce probli3me doit donc prendre en 

compte les facteurs suivants: la topologie du dseau, la capacite des commutatews et le 

volume des appels &changes par unit6 de temps dam chacune des cellules. 

Plusiews mdthodes, pour la plupart heuristiques, ont dtt5 proposdes pow sa 

dsolution. Merchant et Sengupta (1994) ont r6solu le problbme suivant deux schdmas 



d'affectation. Le premier schema impose I'unicitk de I 'affectation dans la configuration 

du kseau: c'est la domiciliation simple. Le second schema consid8re 

qu'independamment du trafic, une affectation efficace ii un moment de la journee peut 

l'etre moins un autre moment. On doit alors realiser une domiciliation double, c'est-5- 

dire perrnettre qu'une cellule puisse etre affectee B deux commutateurs diff6rents 

auxquels elle sera relik suivant les moments de la joumke. Dans I'un ou I'autre cas, le 

probl2me B dsoudre demeure tri% complexe et nkcessite une approche heuristique. 

1.3 Objectifs de recherche et principales contributions escomptk 

Notre objectif dam ce memoire est d'appliquer les mtthodes de la programmation 

par contraintes (PC) B ce problGme. Pour ce faire, nous introduirons une nouvelle 

modt5lisation du problime. Celle-ci utilise les variables, ainsi que les contraintes qu'elles 

doivent satisfaire, de maniike active, pour aboutir ii une bonne Sduction de  I'espace de 

recherche. Nous essayerons par la suite d'appliquer plusieurs jeux de demons pouvant 

permettre de rnieux propager les contraintes du problbme sur les differentes variables 

uti lis6es. De plus, di verses stratdgies de recherche seron t exploi tdes pour reduire le 

temps de calcul, surtout pour des problbmes de grande taille. L'utilisation de ces 

strategies permettra de se rendre compte trbs t6t des Cchecs et de limiter la zone de 

recherche B des parties de I'arbre pouvant dekucher sur de bonnes solutions. 

Les principales contributions escomptees sont Ies suivantes: 

La mod6lisation sous forme PC du problCrne d'affectation de cellules B 

des commutateurs, I'utilisation des variables ensemblistes parmi les 

variables de contraintes, la definition de diffe'rents demons pow etablir 

des liens dynarniques entre les diffkrentes variables, ii travers leurs 

diffhnts domaines, la dbfinition d'une borne inferieure du co6t de 

releve; 

La deterinination d'une solution exacte en des temps de calcul 

raisonnables pour les dseaux de taille moyenne ; 



3. La d6finition de nouvelles strategies de recherche pour optimiser le temps 

de  calcul. 

n en dsultera un outil de &solution de ce problgme bas6 sur la programmation 

par contraintes. Le choix de cette mCthode est justiM par sa simplicit6 et son utilisation 

efficace des contraintes dans la r&olution des probl6mes du m6me type et reconnus 

c o m e  NP-difficiles. 

1.4 Plan du &moire 

Le m6moire est divig en cinq chapitres. Apss  ce premier chapitre d'introduction, 

le chapitre 2 presente une formulation sous forme de programmation en nombres entiers 

du problbme d'affectation, ainsi qu'une revue des methodes qui lui ont kt6 appliquies. 

Le chapitre 3 dBcrit la m6thode de programmation par contraintes que nous nous 

proposons d'appliquer dans ce m6moire. Le chapitre 4 expose les details 

d'impldmentation. de mise en ceuvre de la mCthode et une analyse des resultats. Enfin, le 

chapitre 5 pksente une synthese des travaux mettant en evidence les principaux risultats 

obtenus et leurs limitations ainsi qu'une indication des recherches futures. 



CHAPITRE 2 
AFFECTATION DE CELLULES A DES COMMUTATEURS 

L'affectation des cellules ii des commutateurs dans Ies kseaux de communications 

personnelles (RCP) peut Ctre consideree comme un probl5me de gestion de ressoumes 

qui se pose dans la phase de conception de ces r6seaux. Nous allons, dans ce chapitre, 

pdsenter de maniike succincte ce probkme. Nous commencerons par une analyse de 

l'architecture et des caract&istiques des dseaux cellulaires. Par la suite, nous 

pn5senterons une formulation mathdmatique du probl5me d'aff'ectation, ce qui nous 

arnhera 2 examiner quelques travaux effectuks en recherche opt5rationnelle qui traitent 

de certains de ces aspects. Enfin, nous passerons en revue certaines mdthodes proposees 

pour la dsolution de ce probl6me. 

1 1  Architecture et caract~istiques des RCP 

Les rdseaux mobiles de troisi2me generation, souvent design& par r6seawc de 

communications personnelles et les eseaux cellulaires de deuxieme generation 

possiident une architecture trSs proche I'une de I'autre. Cependant, contrairement aux 

syst8mes de deuxii5me gen&ation, les syst5mes de troisitme generation fournissent des 

services de types varib et ayant des debits diffdrents. Dans cette section, nous allons 

pdsenter I'architecture de ces dseaux ainsi que les diffkrentes caractkristiques 

techniques que I'on doit prendre en compte pour affecter des cellules ii des 

commutateurs dans ce contexte. 

2.1.1 Architecture des RCP 

Les RCP dtsignent I'ensemble de tous les syst8mes de t~l&ommunications 

offrant des services de communication tels la voix, les donndes numkriques, le 

multimedia sur des supports de transmission non filaires et 2 des usagers mobiles. 

Chaque abonne d'un tel syst2me est identifit au travers d'une carte 1 mbmoire, la carte 



SIM (Module d'ldentification de 1 'Abonne) qui lui permet de se connecter au rdseau pour 

Mnkficier des services auxquels il est abonnd et ce. quelle que soit sa localisation. 

L'architecture des RCP est b&e essentiellement sur celle des rdseaux ceilulaires. 

On retrouve une d&omposition de toute la superficie B desservir en petites zones 

g5ographiques souvent modkIis6es par des fonnes hexagonales et contigues assufant une 

couverture compli5te de la zone. Ces zones sont cornmunement appeldes cellules. A 

l'interieur de chacune de ces dernii5res se trouve une station Cmettrice de base (BST : 

Base Station Transceiver) qui sert d'intevace radio entre chaque mobile et le rdseau 

d'une part, et entre le dseau et les abonn6s d'autre part. La BST constitue avec le 

contr6leur de station de base (BSC : Base Station Controller) le sous-systkme radio dont 

la principale fonction est de prendre en charge la transmission et la signalisation entre 

les differents utilisateurs d'une cellule. Le sous-systPme riseau est 2 son tour constitui 

des differents centres de commutation du service mobile (MSC : Mobile Switching 

Center) et son r6le est d'assurer l'interconnexion des differentes stations de base non 

seulement entre elles mais aussi avec les autres types de kseaux cornme le rCseau 

public. De par leur fonction, les ncleuds de commutation que sont les MSC repdsentent 

des points centraux et sont placQ 2 l'interieur de certaines cellules, choisies de manii5re 

stratkgique. Chaque commutatew g2re un certain nombre de stations de base et dispose 

d' une capacitd maximale fixde. Celle-ci est souvent exprimde en termes de volume 

d'appels, que resoit le commutatew des diffdrentes cellules qui lui sont affectees. Ces 

MSC sont par la suite relies entre eux, cornme l'illustre la Figure 2.1. On introduit 

parfois la notion de charge partagge (balancing loading) qui consiste 2 rgpartir le trafic 

entre les cornmutateurs. 

2 m l m 2  CaractMstiques des RCP 

Lorsqu'un utilisateur est ii 17int&ieur du dseau, son terminal est raccord6 une des 

stations de base (ou cellules) en fonction de la puissance du signal qu'il q o i t .  Dans son 

deplacement, si cette puissance tombe audessous d'un certain seuil, certaines 

op6rations sont mises en aeuvre pour la relayer par une nouvelle cellule. 
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Figure 2.1 Architecture d'un riiseau cellulaire 

Le processus qui permet d'initier et d'effectuer un changement de cellule, avec les 

mises B jour que cela nkcessite constitue la rel2ve (handoff ou handover). ~ t a n t  donne la 

nature des signaux transmis sur les rkseaux, la relkve doit s'effectuer de manicre 

transparente P l'unit6 mobile. On distingue gt5n6ralement deux types de reEve: la relcve 

complexe et la relbve simple. La reDve est dite complexe dans le cas ofi elle 

s'accompagne d'un changement de MSC, c'est-Mire que la nouvelle cellule est 

contr616e par un commutateur autre que la cellule quittde. Dans ce cas, plusieurs 

opkrations de mise B jour sont effectudes et celles-ci demandent une forte consommation 

des ressources du dseau. Par contre, lorsque les deux cellules sont reliCs ii un m6me 

commutateur, aucune mise 2 jour n'est dalisde et on pale de relhe simple. La Figure 

2.2 illustre la relbve P l'intdrieur d'un dseau cellulaire. Si l'usager passe de la cellule CI 

ii la cellule C3, seul le commutateur MSC2 est concern6 et aucune mise jour n'a 

besoin d'btre faite: c'est donc une releve simple. Les informations de signalisation et de 

facturation continuent alors d'8tre gMes par une meme entitk. Mais, pour un 



ddplacement du mobile de la cellule Cl vers la cellule Co, les deux entit& du dseau que 

sont les commutateurs MSCj et MSC2 entrent en dialogue pour mettre 5 jour leur 

base de donnies B travers les enregistreurs de localisation. C'est un cas de reEve 

complexe. Il peut arriver que le MSC2 transmette toutes les infomations au MSC3 qui 

se charge alors d'assurer le relais. Mais, dam certaines situations par exemple oh le 

commutateur MSC2 est charge de la facturation, il demeurera en contact avec le mobile B 

travers le commutateur MSC3 et ce, jusqu'B la fermeture de la connexion. 

Figure 2.2 Relave dam un dseau cellulaire 

Chaque ophtion de reliive nicessite des ressources du dseau: mise it jour des 

don& de localisation dam les bases de donnties, utilisation de protocoles de 

communications entre MSC, etc. On doit trouver des mdcanismes pour rdduire au rnieux 

les coats qu'elle enaaine. Un des moyens consiste il optimiser ITafTectation de cellules 



aux comrnutateurs. Dans ce cas, on peut tenir compte des fdquences d'appel ou patron 

d'appel entre les diffdrentes cellules du kseau. Deux cellules ichangeant des quantitds 

consid&ables d'informations seront affectees B un meme commutateur pour minimiser 

le cofit de reEve. De plus, on peut considkrer aussi une domiciliation simple ou doubIe 

des cellules (Merchant et Sengupta, 1995). On parle de domiciliation simple lorsqu'une 

cellule ne peut Btre relide qu*& un seul commutateur. La domiciliation est double quand 

on peut connecter une cellule au plus dew cornmutatem et ce, suivant les moments de 

la journb. Les deux commutateurs auxquels la cellule est reli6e sont alors actifs de 

manike alternative en fonction des #nodes de la joumke (un patron pour la matinb et 

un autre pour le soir). Ces diffbrents concepts caractbrisent Ies gseaux mobiles et 

interviennent dam le probEme d'affectation de cellules 5 des cornmutatem clans les 

RCP. 

2.2 Formulation du probli.me d'affkctation de cellules 

L probkme d'affectation de cellules 3 des comrnutateurs peut Stre modilisi 

suivant plusieurs approches. Merchant et Sengupta (1994. 1995) l'ont formulk comme 

un probli5me de programmation en nombres entiers: minimiser une fonction de coat, 

suivant un schema d'affectation tout en respectant les contraintes sur la capacitC de 

chaque commutateur. Sarnadi et Wong (1992) se sont plutBt intkressks 2 la minimisation 

du nombre de mises 3 jour des donndes de localisation. Dans ce qui suit, nous 

pdsenterons le premier rnodde (bas6 sur le coiit) r6alid suivant deux 

schimas d'affectation: simple et double. 

2.2.1 Mod6lisation suivant la domiciliation simple 

On suppose que le r6seau dispose de n cellules et de m commutateurs dont les 

emplacements sont connus. A chaque commutateur doit $txe affect6 un ensemble de 

cellules suivant le volume des appels qu'il peut gerer. Pour chaque paire de cellules i et j 

( i f  j ), on ddfinit les coBts suivants: 

Hij - CoQ par unite de temps d'une reEve simple entre les cellules i et j; 



H'ij - CoClt par unite de temps d'une relbve complexe entre les cellules i et j; 

Cn - CoQt d'amortissement provenant du ciiblage entre la cellule i e t  son 

cornrnutateur k. 

Soient Ai le volume d'appels par unit6 de temps r e p  par la cellule i (1 I i 5 n )  et 

M, la capacitt du comrnutateur k (1 I k 5 rn ). 

L'objectif est de trouver une affectation des cellules aux commutateurs qui 

minirnise la somme totale des coOts de liaison et de releve et respecte la contrainte de 

capacite limitee de chaque MSC. Pour dkcrire le probliime, on introduit les n x m  

variables binaires suivantes: 

X 
1 si la cellule est relike au commutateur k 

= {O  sinon 

On s ' inthsse alors Zi exprimer ie problbme B i'aide de ces variables de manitre 1 

satisfaire les contraintes qui y sont poskes. Tout d'abord. au niveau des cellules, chacune 

d'elles doit Stre assignee Zi un et un seul cornrnutateur. Cette condition peut etre 

repr6sentde par la relation: 

D'autre part. si Cit dksigne le coat d'amortissement de la iiaison entre la cellule i et le 

commutateur k, on peut exprimer le coirt total de liaison entre toutes les cellules et les 

cornmutateurs auxquels elles sont reliies par la relation: 

Pour repm5senter le cofit total induit par les o p h t i o n s  de relBves simples et complexes. 

on introdui t de plus les variables compl6mentaires suivantes: 



Ces variables permettent en effet de formuler mathematiquement le fait que deux 

cellules i et j soient affectkes & un meme cornmutateur k par la propriCt6 suivante: 

1 si i et j sont connectCes au comrnutateo k 
?,k = { o sinon 

(2- 4) 

Soi t maintenant : 

Yi,- prend la valeur 1 si les cellules i et j sont connectkes P un m6me commutateur et est 

6gde Zt 0 si elles sont refides B des cornrnutateurs diffkrents. 

Le coiit des relsves simples et complexes par unit6 de temps s'exprime par : 

f,=vF,~- p u r  la reltve simple 
id j=i 

rl rl 

H-,(l-Y.) pour la rekve complexe 
rl 'I 

La fonction objective globale composde de chacun des coiits predefinis s'Ccrit donc: 

11 s'agit alors de minimiser la fonction f sous les contraintes suivantes: 
n ZX, = I  pour i = I ,  ..., n 

i=l 

X, =O ou 1 pour i =l ,  ..., net k = l ,  ..., m 

m 

Y, =ZZ, pouri, j=l .  ...,n e t i t  j 
k=l 

De plus, on a la contrainte imps& par la capacite de chaque commutateur et suivant 

laquelle le volume total d'appels engendrd par toutes les cellules 1iBes au commutateur k 

ne doit pas ddpasser la capacit6 maximum de ce commutateur. Celle-ci se traduit par: 



Pour simplifier la fonction f de la relation (2.8), on peut negliger le coQt des relkves 

simples devant celui des relbves complexes qui utilisent plus de ressources. De ce fait, si 

on pose: 

h, = Hg-Hii=% 

qui repdsente le coct dduit par unit6 de temps d'une relbve complexe entre les cellules i 

et j de sorte que f peut s'ecrire: 

qui est dquivalent 9: 

Du fait que la soinmation : 

est une constante, re problZme initial peut s'kcrire sous la forme suivante : 

Minimiser 

sous les contraintes: 



si la cellule est reliee au commutateur k 
sinon 

pour i= l ,  ..., n 

z,=x,xjk pour i, j=1. .... net  k = I  ..... m 
m 

q, =ZZ, pouri, j=1, ..., n e t +  j 
k=l 

1 si i et j sont relides au m h e  commutateur 
0 sinon 

Pour ramener le problihne Zt un problcme de programmation en nombres entiers, 

Merchant et Sengupta ont propose de remplacer la contrainte non linhire (2.3) par un 

ensemble de contraintes dquivalentes: 

2.3 CaractMsation du probkne d'affectation 

Tel que formu16 pn5cddemrnent. le probltime d'affectation de cellules aux 

commutateurs peut ttre ramen6 plusieurs types de p r o b l h e  largement 6tudiCs en 

recherche optkationnelle tels le problime de transport ou de localisation de  

concentrateurs (Skorin-Kapov et a1 ., 1994; Klincewicz. 1988; 0' Kelly, 1987) et celui de 

parti tionnement de graphes (Keminghan. 1970; Sanchis. 1989). Leur r6solu tion par une 

m6thode 6num6rative conduit gkn6ralement B une croissance exponentielle du temps 



d'exe'cution. En consequence, on recherche une solution plut6t proche de I'optimum, en 

d6veloppant des heuristiques ou mita-heuristiques de n5solution pour ces types de 

problemes reconnus NP-diffkiles. Dam ce qui suit. nous pn5senterons quelques-uns de 

ces problbmes ainsi que leurs caractt5ristiques par rapport au problbme d'afkctation. 

23.1 Problime de transport 

Dans un probl6me de transport, on dispose de deux ensembles disjoints. En 

particulier pour le problbme de localisation de concentrateurs, on dispose de n neuds 

dont les emplacements sont connus. Chacun de ces nauds peut &hanger du traf~c avec 

les autres nczuds du kseau. Le but est de  localiser parmi les n naeuds, p concentrateurs 

et de leur affecter les n-p naeuds restants. sous des contraintes l i 6 s  B la capacite des 

cliffdents concentrateurs. Le probBme d'affectation est donc un cas particulier de celui 

de uanspon. Dans les deux cas, on dispose de deux ensembles disjoints et on essaie 

d'btablir une correspondance entre les elements de  ces ensembles. Ainsi, dam le 

problbme d'affectation, les p m u d s  concentrateurs peuvent etre repr6sent6s comrne des 

commutateurs et les n-p restants comrne des cellules. ~ t a n t  donne que I'emplacement 

des commutateurs est connu, on cherchera docs ii rdsoudre uniquement la partie 

affectation. Notons toutefois qu'il existe quelques differences entre les deux problbmes: 

Le probkme de localisation de concentrateurs est un probl6me mixte dam ce 

sens qu'il peut faire intervenir des valeurs fractionnaires d'un naeud i B un autre 

j. Cela veut dire qu'un meme flot peut &re partage sur deux liaisons, 

contrairement au probl2me d'affectation de cellules qui est compliitement 

entier. 

Dans le probl&me de  localisation, on a des concentrateurs dont la localisation 

n'est pas encore fix&. I1 s'agit alors dam bien des cas de ddterminer d'abord un 

choix pour la localisation et ensuite de faire I'affectation des noeuds restants. 

Par contre, dans le probltime d'affectation, les emplacements des commutateurs 

sont d6j8 fix& et connus et I'on ne &out que le probliime d'affectation qui 



d e n  reste pas moins complexe. Ainsi, il n'y a pas de cofit lit B la localisation 

des comrnutateurs. 

On a une contrainte suppltmentaire dam le probleme d'affectation de cellules A 

des commutateurs qui est fonction de la capacitti de ces derniers et qui 

n'apparait pas clairement dam le probleme de localisation de concentrateurs. 

Celleci exprime que chaque commutateur peut supporter un nombre limit6 de 

volumes d'appels par unit6 de temps provenant de l'ensemble des cellules dont 

il a la charge. 

23.2 Probliime de partitionnement de graphes 

Le partitionnement de graphes est un problbme souvent @sent lors du partage 

des ressources dans le domaine des technologies de l'infonnation. I1 peut survenir dans 

la construction des kseaux de t&communications ou en calcul parallele oir l'on doit 

dpartir diffkrentes tiches entre plusieurs processeurs. 

Soit G un graphe, le probl6me de partitionnement de graphe consiste h diviser 

I'ensemble N des muds du graphe en des sousensembles de cardinalit6 infdrieure B un 

nombre maximal donne, de maniere ii minimiser la s o m e  totale des coupes. Une coupe 

repksentant tous les arcs du graphe ayant leurs extrhit6s dam des sous-ensembles 

diffbrents. Un kseau peut &e reprdsentt sous la forme d'un graphe oCi les muds 

repksentent les terrninaux du kseau et les arcs les liaisons entre ces differents 

tenninaux. Pour interconnecter les diffkrents nauds du dseau, on Salise un 

partitionnement de ses muds en sous-graphes relies par un nombre minimum de 

liaisons mais assez robustes pour dviter des congestions. Le probleme &affectation de 

cellules B des comrnutateurs peut Btre aussi pequ comme un probl2me de 

partitionnement (Merchant et Sengupta, 1994). Dans ce cas, chaque cellule i avec un 

volume d'appels A,. donne est repdsentb par un nceud primaire et un certain nombrt de 

neuds secondaires (g4n4ralernent KA.-I ). K &ant un facteur multiplicatif qui permet de 

transformer les volumes d'appels fractionnaires en nombres entiers. Les nauds 

secondaires et primaire sont relies par des arcs de coQts t r h  &lev& afin de toujours 



assurer leur appartenance 2 une meme cellule. Un arc (i,j) a cornrne collt la s o m e  des 

coQts de transfert entre les cellules i et j. Les cofits de liaison sont eux proportionnels aux 

distances. Pour chaque paire de cellules, I ' m  (i,j) est report6 entre les ncpuds primaires 

des cellules i et j respectivement. Chaque commutateur k est h son tour repGsent6 par un 

ncleud et demeure associe 3 un sous-ensemble de taile donnee. Pour intkgrer le coat de 

liaison entre cellules et commutateurs, on ajoute un arc de coot entre le naud primaire 

de la cellule i et le naud repksentant le commutateur k. De cette manibre, les mdthodes 

de rt5solution du probleme de partitionnement de graphes peuvent s'appliquer au 

problZme d'affectation de cellules. 

Ainsi donc, le probkme d'affectation de cellules h des commutateurs s'apparente h 

des problbmes NP-difficiles. En particulier, il integre une fonction de coot et des 

contraintes d'affectation et peut &re classk comme un problbme d'affectation pour 

lequel il n'existe que des heuristiques de rt5solution permettan t de trouver des solutions 

assez proches de l'optimum. 

2.4 Mkthodes classiques de rihlution du probhne d'affectation de cellules 

Nous exposerons dans ce qui suit les differentes rndthodes de r6solution du 

problbme d'affectation de cellules. Ces techniques sont assez recentes et permettent 

d'obtenir de bons rksultats. Nthmoins, elles contiennent aussi des limitations que nous 

d6velopperons tout au cours de ce paragraphe. 

2.4.1 Application de la methode de Merchant et Sengupta 

Pour la dsolution du probleme d'affectation de cellules B des commutateurs, 

Merchant et Sengupta (1994, 1995) sont les premiers avoir pn5sent6 une methode qui 

lui est adaptee. Dans cette heuristique, pour la domiciliation simple, les cellules sont 

ordonnees en nombre dt5missant de leur volume d'appels. Pour chaque cellule j = I .  . . ., 
n, on doit maintenir I'affectation au commutateur qui minimise le coQt total des cellules 

ddj8 affectees selon l'algori thme suivant : 

&'tape 0: Trouver une affectation initiale ; 



Mettre les cellules en nombre de'croissant du volume d'appels. Au 

depart, l'affectation est vide ; 

Pourchaque j = 1,2, ..., n ; 
~tencire les affectations pkckdemment retenues en leur ajoutant toutes 

les affectations possibles de Ia cellule j & tous les diffkrents 

cornrnutateurs. Retirer toutes les affectations qui ne rernplissent pas la 

condition sur la capacitk ; 

S'il n e  reste aucune affectation, alors fin du programme, i'algorithme a 

echoud ; 

S'il en reste b ou moins, les retenir toutes ; 

Sinon retenir les meilleures b solutions suivant le meilleur co8t total 

obtenu en aectant les j premiires cellules ; 

Retourner Ia meilleure des b affectations trouvkes. 

Le paramitre b est fix6 d&s le ddbut et doit &tre assez grand pour permettre d'arriver & 

une bonne solution initiale. On introduit des mouvements dans le but de raffiner la 

solution initiale trouvke- Les &apes sont les suivantes: 

&tape I: Effacer les marques de toutes les cellules pr6cbdemrnent marquees. 

~ t a ~ e  2: Trouver un meilleur mouvement faisable: c'est-bdire trouver le 

cornrnutateur k auquel af5ecter la cellule i qui diminuerait le coDt total 

d'une plus grande valeur ; 

S'il n'y a pas d'affectation reduisant le coDt, choisir celle qui 

augmente le moins le cof t. 

&tape 3: Affecter la cellule i au comrnutateur k, marquer la cellule i et noter le 

schema d'affectation courant. 

&ape 4 : S'il reste des cellules non marquks, retourner 1 1'8tape2. 

Erape 5: Choisir le schkma d9af%ectation ayant la plus petite fonction objective. 

&ape 6: Si la solution obtenue est infbrieure & celle du schema courant, 

alors la nouvelle solution devient la solution courante et on retourne 

a 1'~tapel ; 



Sinon, on d t e .  

Pour la dorniciliation double, les memes auteurs Merchant et  Sengupta (1995) ont 

aussi propose un algorithme de n5solution. lls consid6rent le probleme de domiciliation 

double comme une superposition de deux problimes de domiciliation simple. On 

recherche donc la solution B un premier prob12me de domiciliation simple correspondant 

ii un des patrons de la journbe. La solution finale obtenue est conside're'e comme solution 

initiale au second problbme de domiciliation simple, c'est-&-dire le deuxi5me patron. 

Toutefois, on ne doit pas prendre en compte le coQt de liaison d'une cellule lorsque 

celle-ci se retrouve &re affectke au meme commutateur que dans le premier patron. On 

itere ainsi d'un patron 5 l'autre jusqu'l I'obtention d'une solution qui ne peut plus &re 

nmBliorie. Celle-ci correspondant ii la solution au problime de  dorniciliation double. Les 

itapes de I'algorithme pour la domiciliation double sont: 

Etape 0: Former deux problemes &affectation avec domiciliation simple 

correspondant aux di ffdren ts patrons de la journde. 

Etape I :  Rksoudre les deux problbmes ainsi definis suivant I'algorithme de 

domiciliation simple ; 

Soient Q le problime dont la solution A est la plus petite des deux 

solutions ainsi obtenues et Q' le second probleme. 

&tape 2: Si Ql ddsigne un probleme d'affectation avec dorniciliation simple 

identique B Q ' et d'un coQt de liaison nu1 pour toute affectation de la 

celluie i B un meme commutateur k, que dam la solution A. Rdsoudre QI 

et soit A ' sa solution. 

&tape 3: Meme supposition pour Q avec un p r o b l h e  identique Q 05 le coot de 

liaison est nu1 pour toute cellule i affectee B un mGme commutateur k 

que dam A'. R6soudre Q et mettre h jour la solution A qui devient 

solution de Q2. 

Etape 4: Rdpdter les Btapes 2 et 3 jusqu'a ce que Ies ksultats des affectations ne 

donnent plus une am6lioration de la fonction objectif. Les solutions 

foumies par A et A ' foment la solution de la domiciliation double. 



2 5  Autres heuristiques de recherche 

L'heuristique de Merchant et Sengupta appliqube au problime avec domiciliation 

simple se compare bien h la m6thode de programmation en nombres entiers pour les 

problkmes de petite taille. Mais elle ddpend essentiellement de la solution initiale et 

utilise des mbcanisrnes assez complexes pour ichapper au piige du minimum local. 

D'autres heuristiques ont 6tt5 dkvelopp6es pour le probDme d'affectation. Nous 

passerons en revue les plus ricents travaux effectuds dans ce contexte et dont 

l'application au problbme d'affkctation fournit de bonnes solutions. 

25.1 Heuristique de recherche taboue (RT) 

La me'thode de recherche taboue constitue une melioration de I'dgorithme de 

descente qui permet d'bviter le pikge du minimum local. Elle fut introduite en 

optimisation combinatoirc par independammen t Glover (1986) et Hansen ( 1986) pour la 

dsolution de probkmes dificiles. C'est une r n h o d e  qui part d'une solution initiale 

supposde locale et sur laquelle diffkrents mouvements sont effect& pour arriver P une 

meilleure solution. Ainsi, pour y arriver, l'algorithme accepte de temps en temps des 

solutions qui n'amdiorent pas toujours la solution courante. Le retour vers des solutions 

d6j8 visitdes est interdit en conservant une liste taboue T de longueur k comportant les k 

dem2res solutions visit& jusque 18. LE choix de la prochaine solution est alors effectu6 

sur un ensemble des solutions voisines ne comportant aucun des Cle'ments de cette liste. 

Lorsque le nombre k est atteint, chaque nouvelle solution qui devient taboue remplace la 

plus ancienne dam la liste. L'exploration de  I'espace de recherche peut etre repdsentee 

par un graphe G = (X, A), oil X dksigne l'ensemble des solutions et A l'ensemble des 

arcs (x, m(x)), m(x) btant la solution obtenue en appliquant le mouvernent m P x. Le 

graphe ainsi obtenu est symdtrique car, pour chaque arc (x, m(x)), il existe un arc (m(x), 

x) obtenu en appliquant le mouvement inverse m" ii m. La recherche taboue part donc 

d'une solution initiale xo qui est un nceud du graphe G, et cherchera dam G un chernin 



xg, XI, ..., XI oh Xi = m(xi,I) avec i = I, ..., I .  IAS arcs (xi, xi-1) du chemin sont choisis en 

dsolvant le problcme d'optimisation: 

flxi+I) = minxxi) 

A&vtation de la mkthode de RT au ~roblzme d'aff'ectation de cellules 

Pour cette adaptation, Houeto et Pierre (1999) partent d'une solution initiale 

obtenue h partir de la plus petite distance euclidienne sur le coat de liaison. Une 

composante de m6moire i court terme permet d'explorer le voisinage de cette solution 

tout en dvitant les cycles. L'espace de recherche est choisi libre des contraintes de 

capacitk sur les commutateurs mais respecte la contrainte &affectation unique des 

cellules. Chaque nouvelle solution obtenue est 6valude suivant dew crit8res. Le premier 

est lie au coat calculd B partir de la fonction objectif, le deuxibme prend en compte une 

sanction introduite pour le non respect de la contrainte de capacite. On essaie alors de 

choisir 5 chaque &ape la meilleure solution suivant ces deux crit2res. Trois structures de 

m6moires permettent d'eviter des cycles autour d'un optimum local et de mffiner la 

recherche- 

Mkrnoire a court tenne 

La memoire h court terme permet d'am6liorer la solution cowante B partir des 

deux crit&res de coQt et de sanction associts B chaque solution. On dkfinit le voisinage 

N(S) d'une solution S comme Ctant l'ensemble de toutes les solutions accessibles de S 

par l'application d'un mouvement m(a, b) ii S. 

m(a, b) = kaffectation de la cellule a au commutatew b 

Le choix d'une solution parmi l'ensemble des solutions voisines est effectu6 5 I'aide de 

la fonction de gain G,(a, b) et qui est d6finie cornme suit: 



b, designe le comrnutateur de la cellule a dam la solution S, c'est-&-dire avant 

l'application du mouvement m(a, b) ; 

M un nombre arbitrairement 6lev6. 

On peut exprimer M comme &ant le gain obtenu en affectant la cellule a au 

commutateur bo au lieu de 6. A chaque iteration, vu qu'on veut minimiser le coiit total 

des affectations, on choisira le mouvement ayant le gain minimum. Le gain sera pris 

dgal B une vdeur arbitrairement grande lorsqu'on aboutit 1 une mEme affectation. Le 

coGt de la nouvelle solution est obtenu par la sommation suivante: 

AS') = AS) + Gda b) (2.12) 

Si aucune des solutions n'engendre une amklioration du coCit, alors on choisit la 

solution degradant le w i n s  la solution counnte. Une liste taboue d'une certaine taille 

permet de garder le mouvement inverse m(a, b') ofi 6' disigne le commutateur auquel la 

cellule a etait affectee avant le mouvement m(a, 6). Aprh un nombre kmr d'it6rations, 

ayant abouti i des solutions consicutives non faisables, on introduit progressivement 

une @nalite su r  la capacite, traduite par un multiplicateur qui est incrt5menti jusqu'g une 

valeur maximum. Ce mkanisme de rappel se trouve disactivi d2s que I'on tombe sur 

une solution rdialisable. Lorsqu'un mouvement t a b u  conduit 5 une solution dont 

I'ivaluation est meilleure que la solution courante, alors on annule son cridre tabou. 

Mimoire a moyen tenne: 

Cette structure de memoire permet de revenir des dgions prometteuses pour y 

intensifier la recherche localement. Elle complete donc la structure pkkdemment 

de'crite en ce sens qu'elle permet de  rarnener la recherche & des zones omises ou peu 

exploitdes par la mdmoire 1 court terme. Si on suppose que les bonnes solutions sont 

proches l'une de l'autre dans le probleme d'affixtation de cellules, trouver les dgions 

prometteuses peut se faire en conservant une liste FIFO des dernibres meilleures 

solutions accompagnks de leurs valeurs de gains. Une fois qu'on a ddterminC les 

dgions prometteuses, on applique les m&anismes d'intensification dont le r6le est de 



diriger la recherche vers de bonnes solutions jusque 1% non visitees. Les deux 

mouvements d'intensification utilids sont: 

i l  (a, c): permutation des cellules a et c selon les plus faibles gains ; 

iz(a7 b): deplacement de la cellule a vers le commutateur b en w e  de ktablir les 

contraintes de capacitd. 

C'est donc un mouvement qui est applique uniquement aux solutions non faisables et qui 

permet de reduire la Nnalitb. 

Mimoire a long terme 

C'est une structure qui permet de diversifier les differentes zones B explorer. Pour 

la daliser, on met B jour un tableau dont les el6ments sont le nombre de fois que chaque 

couple (n, m) ( avec n repdsentant les cellules et rn les comrnutateurs) apparait dans les 

solutions visitees. La diversification consiste ainsi 2 effectuer la recherche B park de 

nouvelles solutions initiales. A ces demieres sont appliqubs des mecanismes de memoire 

2 court et moyen terme. La composante de mdmoire 5 long terme permet alors une 

diversification de l'exploration du domaine en choisissant un nouveau point de depart 

contrastant le plus possible avec les solutions dejB visitbes. Ceci pennet d'explorer de 

mani6re plus eff~cace tout le domaine de recherche. 

2.53 Heuristique bask sur I'algorithme ggnetique 

Le principe de base de cet algorithme est fond6 sur la theorie de la reproduction de 

Darwin. Holland (1975) et ses etudiants sont les premiers ii l'introduire en intelligence 

artificielle. On c d e  une population initiale composke de diffbrents chromosomes. Les 

elements de cette population sont par la suite alt6n5s h ide  d'op6rateurs g6nCtiques 

pour pemxttre une diversite au niveau des nouveaux chromosomes. On passe alors 1 

une evaluation de cette population. Une adaptation des algorithmes g6nktiques, dali& 

par Hedible et Pierre (2000) se caractdrise par quatre parambtres: le codage des donnbs 

du probl&me, l'espace de recherche, la fonction d'evaluation des chromosomes parents 



et le hasard dam 1'~volution des cluomosomes de gindration en gendration- De maniere 

succincte, les itapes d'un algorithme gdnt tique sont les suivantes: 

Etape I :  Generer une population initiale de taille n repdsentant le nombre de 

chromosomes. Silectionner au hasard les g h e s  qui composent le 

chromosome pour former une premiere gkniration. 

Etape 2:   valuer chaque chromosome par sa fonction objectif. 

&tape 3: Gdnirer de nouvelles populations et appliquer divers ophteurs  

ginetiques pour aboutir 5 de meilleurs chromosomes~ 

Ada~tation tie la rngthode ci l'affectation des cellules 

On considsre une repre'sentation non binaire des chromosomes. Les chromosomes 

sont normdement constituis de ghes.  Dans le cas du probleme d'affectation, les g h e s  

repdsentent Ies differents commutateurs auxquels sont associies les cellules. On a donc 

un chromosome de longueur maximum igale au nombre de cellules present dans le 

dseau. Chaque cellule ( g h e )  peut prendre une seule valeur comespondant au 

commutateur auquel elle est affectie. 

La population initiale est composee de diffkrents chromosomes. Le premier est 

obtenu de fagon deterministe en affectant chaque cellule au cornmutateur le plus proche. 

Ensuite, pour assurer la diversite au sein de la population, on cr6e les autres bl6ments ou 

chromosomes de mani6re aalatoire en se  basant sur la stratigie de la population sans 

doubles. ~vidernment la taille de cette population ne doit pas depasser rnn, oh m est le 

nombre de cornmutateurs et n le nombre de  cellules. Des opdrateurs de croisement et de 

mutation sont par la suite appliques aux diffdrents elements de cette population. 

L'ophteur d e  croisement utilist5 est effectu6 en un lieu. C o m e  son nom 

l'indique, un croisement dfere B un changement d'un g h e  des chromosomes de la 

population. D e n  chromosomes-parents, choisis de mani8re aliatoire dans la population, 

sont croises pow foumir deux chromosomes-enfants. Les chromosomes-parents 

constituent les ildments de la nouvelle population. LRs nouveaux chromosomes-enfants 

sont insids dans cette population si et seulement si la probabilite de  croisement est 



respectee. Si ce n'est pas le cas. aiors on inverse les chromosomes-parents avant de les 

inskrer (on applique ainsi un opkiteur d'inversion). L'op6rateur de mutation, quant B 

h i ,  permet de se rassurer que l'on n'a pas ignor6 certains genes lors de la generation des 

populations. La taille de la population finale ainsi obtenue devient tgale au double de la 

populatiorr initiale. 

Une fois que I'on a obtenu une nouvelle population, celleci est Bvaluee suivant la 

fonction objective. Cette fonction associe B chaque chromosome une valeur indiquant le 

coat de la configuration qu'il repksente. Ceci permet de classer les chromosomes de 

cette population en ordre croissant, qui seront par la suite bvalut5s par rapport 3 la 

contrainte sur la capacitk des commutateurs. Une fois ces deux tvaluations faites, on 

proc5de B la dktermination du meilleur chromosome, c'est-&dire la meilleure s ine  

d'affectation. Toutefois, cette mkithode de selection peut n'explorer qu'une partie de 

I'espace de recherche, vu qu'elle ne retient que les meilleurs elements d'une population. 

Pour cette raison, les auteurs de cette adaptation ont propost5 la methode de roulette de 

casino pour la formulation d'une nouvelle population. Le nombre de gdnerations B 

anal yser, quant B h i ,  depend d'un nombre de cycle qui est pkdtfini. 

2.5.3 Heuristique du recuit sirnu16 

C'est aussi une heuristique d'optimisation qui utilise Ies permrbations pour 

echapper au pBge du minimum local en acceptant de temps b autre des solutions qui 

d6t6riorent la fonction objectif. A chaque itape de l'algorithme, la solution courante est 

c o m p d  avec d'autres solutions de son voisinage, obtenues a I'aide de  petites 

perturbations. Si la nouvelle solution ameliore la fonction objectif, alors elle devient 

solution courante et on explore son voisinage. Dans le cas contraire, si on trouve une 

solution qui det6riore la solution courante, alors elle peut ttre accept&, avec une forte 

probabilite au d&ut. Celle-ci va d h o i t r e  au fur et 5 mesure qu'on Cvolue dam la 

recherche. Le fait de considerer des solutions dont lT6valuation est infdrieure 5 la 

solution couante permet de ne pas s'enfenner t&s t6t dam un minimum local. D'un 

autre cot& en diminuant progressivement la probabilitk d'accepter une solution qui 



n'ameliore pas la fonction objectif courante, on est s 5  d'atteindre (ou de ne pas laisser 

de cot6) la bonne solution, une fois que l'on se trouve dans son voisinage. L'adaptation 

de cette heuristique au probl5me d'affectation ndcessite une bonne ddfinition des 

param5tres tels que la determination d'une bonne solution initiale ainsi que son 

voisinage, la definition d'une solution rt5alisabIe et la determination des differents 

parametres du recuit, tels que la probabilite de transition, le criOre d'&t, etc. Ces 

diffkents param&res intrinseques B I'utilisation de la mdthode du recuit simule sont 

al6atoires et peuvent donc s'avCrer t&s laborieux en termes de temps de calcul. 

25.4 Heuristique bas& sur les grappes 

L'idCe de base est de regrouper les differentes ceilules en grappes (cluster) au 

centre desquels se trouvent des commutateurs. On suppose B cet effet que le nombre de 

grappes est 15ga.l au nombre de cornmutateun. L'ajout des cellules aux grappes se fait 

suivant 1e meilleur des cofits de liaison et de rekve, tout en vdrifiant la contrainte sur la 

capacit6 des commutateurs. Les Ctapes de I'algorithme proposdes par Saha et al. (2000) 

sont les suivantes: 

Etape 0: Affectation initiale 

Soit Setk l'ensemble des cellules affectees au commutateur k de capacitC 

Mk ; 

Soit Cj la cellule oh se trouve le commutateur k ; 

Poser set: = {cj} et M: = Mk - A,. 

E w e  I ( I  >o): 

1.1) Identifier toutes les cellules adjacentes it set: et les placer dans l'ordre 

ddcroissant de A = coot de reEve + coQt liaison ; 

Choisir la cellule ayant la plus grande valeur de A et I'affecter i3 k ; 

S'il en existe plus d'une, choisir celle ayant le plus de reDves avec la 

cellule hdbergeant le comrnutateur. Rep6ter l'op6ration pour tous les 

commutateurs du r6seau. 



1.2) Si une cellule est adjacente B plus d'un commutateur, alors choisir 

l'affectation qui donne le plus petit cofit de c3blage entre cj et k ; 

Si la capacite du commutateur est dejh atteinte, alors choisir le second 

commutateur le plus proche sinon laisser la cellule de c6t6. 

1.3) Pour chacune des affectations de q B un commutateur, reduire la capacite 

de ce commutateur du volume d'appels de cette cellule.: 

Etape Fimze: Si toutes les c eh l e s  ont W affectdes alors l'algorithme a trouve la 

solution ; 

Sinon, c'est un dchec. 

La plupart des methodes mentionndes dans ce chapitre utilisent des mecanismes 

complexes pour aboutir B une bonne solution. considkrke comme la meilleure. Certaines 

d'entre elles, c o m e  l'algorithme gendtique, sont basdes sur des mecanismes fond& sur 

le hasard. D'autres c o m e  la recherche taboue se servent de mdcanismes &s complexes 

pour contrder la recherche. Elles n'exploitent donc pas suffisamment la structure des 

contraintes, inhCrente B ce genre de probltme. La programmation par contraintes qui fait 

l'objet du prochain chapitre offre des mkcanismes plus naturels et adapt& au probkme 

d'affec tation. 



CHAPITRE3 
APERCU DE LA PROGRAMMATION PAR CONTRAINTES 

La programmation p a .  contraintes (PC) se definit comrne 1'6tude des sysdmes de 

calcul bas& sur des contraintes. Elle est complementaire d'autres techniques d&ivCes 

des algorithrnes d'unification de la programmation logique et des techniques de 

rtsolution de la recherche op6rationnelle. Ces demi&es annees, les mkthodes 

d6velopph selon ce paradigme ont kt6 exploitdes dans de nombreux logiciels pour la 

n5solution de problemes complexes relevant pour la plupart de I'optimisation 

combinatoire. Dam ce chapitre, nous exposerons brievement les fondements de la 

programmation par convaintes ainsi que les propri6t6s math6matiques qui en sont h la 

base. Nous aborderons par la suite la description des differentes ktapes et mhmismes de 

son fonctionnement dans la rt5soIution des probDmes. Enfin, nous illustrerons son 

fonctionnement ii travers quelques-unes de ses n5alisations actuelles. 

3.1 Evolution et concepts de base de la programmation par contraintes 

L' introduction de la programmation par contraintes comme technique de 

risolution remonte aux annCes soixante avec Ie systcme Skechpad ddvelop* par 

Sutherland (1963) considkrd de nos jours c o m e  &ant l'un des pionniers dans ce 

domaine. Par la suite, ces mCthodes ont semi de point de depart pour developper 

plusieurs langages de programmation bases sur les contraintes et qui se sont montn5s 

d'une certaine eff~cacitd pour la maitrise de  probl5mes complexes cornme celui de 

planification de tbhes,  de transport, d'allocation de  ressources, etc. C'est actuellement 

un domaine de recherche d'un grand intedt. Dans ce qui suit, nous pn5senterons une 

bdve 6volution de la programmation par contraintes et les diffkrents concepts essentiels 

ii sa comp&ension. 



3.1.1 bvo~ution du Iangage 

La prograrnmation par con traintes est une discipline qui combine deux paradigmes 

dtclaratifs: la dsolution des contraintes et la programmation logique. Le premier 

syst2me Skechpad est un iditeur graphique bas6 sur les contraintes. Celles-ci sont 

utilisies pour mod6liser les relations entre les different5 objets en utilisant des 

techniques de relaxation et de propagation de degk de liberte. Un peu plus tard ont vu le 

jour plusieurs autres langages parmi lesquels Thinglab de Boming (198 1). Celuici 

utilise une interface graphique pour exprimer les contraintes servant B modCIiser les 

comportements du systkme. Toutefois, les premiers environnements de prograrnmation 

par contraintes n'apparurent hllement qu'apss 1985. En effet, trois t tudes ayant pour 

support la programmation logique furent men& parallklement dans diffgrents centres 

de recherche. ECUPSE est ddvelopp6 2 Munich par une equip du Centre Euro@en de 

Recherche en Informatique Industrielle, CLP(!%) est QudiC par un groupe de chercheurs 

ding6 par Watson tandis que PROLOG III est dCvelopp6 B Marseille par Colmerauer et 

son iquipe (1987). L'activitb de prograrnmation dam ces trois syst5mes passe par un 

mariage des contraintes avec les propriCtis diclaratives de la programmation Iogique. 

Ainsi, le programmeur spkifie quoi faire et non comment le faire. La programmation 

logique par contraintes (CLP) utilise donc les concepts de la prograrnmation logique 

dans lesquels la notion d'algorithme d'unification est gdnCralisie par celle de 

satisfaction de contraintes. 

3.1.2 Concepts de base 

Comme son nom l'indique, la prograrnmation par contraintes est une technique qui 

est b d e  sur les contraintes et les algorithmes de recherche de solution satisfaisant ces 

contraintes. Dam ce contexte, les trois concepts de base essentiels 3 sa manipulation 

demewent: les contraintes, les domaines de contraintes et la satisfaction de contraintes. 



Contrain te 

C'est un concept relationnel. En effet. une contrainte pennet d'exprimer des 

relations entre plusieurs variables xl, x2, ..., x. d'un probl5me. Ces derni8res prennent 

lews valeurs dans des ensembles Dl, D2, .... D,. De mani5re formelle, on dkfinit une 

contrainte comrne &ant une clause bfitie 2 partir de variables et de symboles definis dans 

une signature notee C. 

Une signature comprend un ensemble de fonctions et de prt5dicats dont chacun est 

d'une certaine atit& L'aritk permet de sp&ifier le nombre &arguments de chaque 

expression. 

Une contrainte primitive est une clause construite b partir de variables, de 

fonctions et de pddicats d'une signature 2. Les contraintes complexes sont une 

conjonction de contraintes primitives. Par exemple: 

Une contrainte dtflnie avec des variables rielles prenant leurs valeurs 

dans % peut avoir comme fonctions +, *, -, et /. Les pr&dicats peuvent i r e  

=, <, S >, 2 L'ensemble des fonctions et des pr&dicats fonne la signature. 

Domaine de contraintes 

Le domaine de contraintes (D, L) est constitub d'une structure D (le domaine de 

discours) et d'une classe de C-fonnules L (les contraintes que l'on peut exprimer). 

Cornme exemple de domaines de contraintes, on peut citer : 

Les contrainres bool&ennes, qui permettent d'exprimer des relations entre des 

variables booldennes prenant des valeurs Vrai (repdsenttk par 1) ou Faux 

(reprtsentee par 0)  et utilisant des op6rations Iogiques comme la conjonction, la 

disjonction, l'implication. EUes sont souvent utilisdes dans la moddlisation des 

circuits iogiques. 

Les contraintes sur les arbres, qui sont utilisdes pour moddliser des structures de 

d o n n h  utilistks en programmation, comme les listes et les arbres. 

Les contraintes sur domaine m i ,  pour lesquelles les valeurs prises par les 

variables appaxtiennent h un ensemble fini. 



Le domaine constitue une notion importante en PC, puisqu'il ditennine souvent 

l'algori thme de satisfaction de contraintes. 

Satisfachchon de contraintes 

C'est la caract6risation des instanciations des variables pour lesquelles les 

contraintes decrites dans le probl2me sont satisfaites. ll s'agit de savoir si le probl2me 

dbfini dans son domaine admet une solution. Gheralernent, vu que l'on ne peut 

dbvelopper des mithodes de satisfaction de contrainte universelles. les algorithmes de 

recherche de solution sont particuliers B chaque domaine de contraintes. 

L'une des mdthodes utiliskes pour tester la satisfaction des contraintes est de 

proceder par une bnumeration de toutes les valeurs du domaine. Ceci conduit souvent B 

un temps de calcul tr& long et n'exploite pas les contraintes ddfinies dans la 

moddlisation du probl5me. Ainsi, une deuxiime m6thode consiste P r~&rire toutes les 

formules de contraintes de mani5re plus simple, jusqu'g I'obtention d'une expression de 

forme waie. L'algorithme utilisi est semblable B celui de Gauss Jordan illuse par 

Mariott et Stuckey (1998) et dont les &apes sont ddcrites ii la Figure 3.1. 

A chaque ttape, cet algorithme met B jour deux ensembles C et S, constituks des 

6quations non n5solues et des equations resolues respectivement. C'est un algorithme 

complet (c'est ii dire qu'il retourne vrai ou faux i la satisfiabiliti) et applicable aux 

contraintes lineaires sur les dels. Pour I'itendre ii plusieurs autres domaines, des 

m&odes cornrne la propagation locale sont aussi utiliskes, par exemple dam les 

algorithmes de satisfiabilitk sur les contraintes arithmetiques et booliennes. 

La plupart des problbmes dtudies en programmation par contraintes sont moddlis6s 

par des variables prenant leurs valeurs dam des intervalles born&. Plusieurs algorithmes 

ont donc Ct6 de5velopp6s par des dquipes de chercheurs, pour la r6solution de ces types 

de problbmes. Panni les mkthodes les plus couramment utilis&s se trouvent les 

techniques de cohdrence de noeuds et d'arcs, dbvelopp6es en intelligence artificielle, les 

techniques de cohirence sur les bomes introduites par la programmation par contraintes 

et certaines methodes de la programmation en nombres entiers. Il convient de signaler 



que les algorithmes d6velopp6s sont g6nCralement incomplets (la satisfiabilite de 

l'ensemble des contraintes n'est que partiellement testde). Ces algorithmes permettent 

n6anmoins de restreindre I'espace de recherche en propageant efficacement les 

contraintes B chaque Ctape de la rt5solution. 

Dom6es : S est une conjonction d'equations; 

C, Co sont des conjonctions d'dquations; 

c est une equation de C; 

r est un nombre kel; 

e est une expression arithmt5tique lineaire; 

x une variable n'appartenant pas B e. 

Initialisation: S := vrai 

Taut que C non vide faire 

C : = C A C ~  

c := co 
Si c peut 2tre exprim6 sans variables alors 

Si c peut Etre Cvalud B 0 = r oii r # 0 alors 

S := faux 

Fin Si 

Sinon 

Mettre c sous la forme x = e 

Remplacer x par e dam toutes les equations de C et S 

S := (S A (X =e)) 

Fin Si 

Fin tant que 

Figure 3.1 Algorithm d'4limination de Gauss-Jordan 



3.2 Domaine fini et rhlution de problbnes combinstoires 

La PC utilise la satisfaction de contraintes dans la recherche de solution. A chaque 

Ctape, elle essaie de verifier si les contraintes sont satisfaites et procede par une 

Climination des valeurs incohdrentes du domaine des variables. Le domaine fini est 

surtout utilid pour modt5liser les probkmes ndcessitant un choix, comme ceux de 

transport, de planification et d'allocation de ressources, qui sont d'une grande 

importance dam I'industrie. Dans cette section. nous examinerons essentiellement les 

principes de base de satisfaction des contraintes dans les structures B domaine fini. 

Principalement, nous aborderons les techniques de "retour arriere", de cohdrence 

gCniralisCe de naeuds et d'arcs que nous illustrerons P travers certains exemples. Nous 

parlerons Cgalement des heuristiques de choix qui ont comme but de guider la recherche. 

3.2.1 Probleme de satisfaction de contraintes (CSP) 

La satisfaction des contraintes sur un domaine fini designee en Intelligence 

Artificielle par CSP (Constraint Satisfaction Problem) definit une contrainte C = c A (XI 

, D ( x ~ ) )  A ... A (xn , D(xn)) ori V = {x,, xz, ..., x,]. est un ensemble de n variables, 

chacune prenant sa valeur dam un domaine D = fD(xr). D(x2). ..., D(xn)) et c designe un 

ensemble de contraintes. Une solution d'un CSP est une affectation d'une valew, tire'e 

du domaine D, B chacune des variables de V de telle sorte que toutes les contraintes c 

soient simultant5ment verifiees. En general, les algorithmes de r6solution d'un CSP 

pennettent juste de restreindre I'espace de recherche. Us peuvent Etre ddcrits comme des 

principes de tests locaux 2 chaque contrainte et sont bas& sur la notion de domaine 

kdui t. 

Alnorithme de Retour arns2re (Backrrackinnl 

Rdsoudre un probkme CSP fait partie de la classe des problimes NP-difficiles, 

pour lesquels il est improbable de trouver des algorithmes polynomiawc de r6solution. 

Le retour h i r e  est un algorithme complet de ksolution de problime CSP dont le 

temps d'extkution est exponentiel. L'exploration du domaine est dalisc5e comme suit: 



on part avec un choix de variable xi de V; on examine par la suite les valeurs de  Di; si on 

trouve une vdeur qui ne satisfait pas la contrainte, on I'ilimine du domaine, et on 

remonte l'etape prkbdente pour un autre choix (Marriott et Stuckey, 1998). Si toutes 

les contraintes sont respectees, alors le problbme est satisfiable. Ces &tapes sont 

montries B la Figure 3.3. La Figure 3.2, quant B elle, illustre son application sur un 

exemple avec 3 variables. La taille de I'arbre de recherche obtenu depend du choix de la 

variable xi instancier 5 chaque &ape de l'algorithme. Certaines heuristiques de 

recherche sont combinies B I'algorithme pour optimiser la recherche. N6anmoins. c'est 

un algorithme qui demeure tr& cofiteux en temps de  calcul. Les algorithmes qui suivent 

sont incomplets dam ce sens qu'ils ne peuvent donner dam certains cas une solution 

exacte, mais ils s'exkcutent dans des temps polynomiaux. 

Faux Faux 

Figure 3.2 Arbre de recherche avec retour-arriin 



Exern~le de retour-am-2re 

Soit ;S dsoudre un problbme de satisfaction de contraintes defini de la rnaniere 

suivante : (X < Y) A (Y < 2) oc X, Y, Z sont ddfinis dam le domaine D = 11, 2) .  

L'ex6cution du retour arrihe de la Figure 3.3 aboutit 5 une non satisfaction du CSP. 

Initialisation Satisfaction := faux 

Pour chaque variable Xi E V faire 

Tant que D(x~ ) est non vide 

Remplacer Xi = e E D(xi ) 

Si C est satisfaisable alors 

Satisfaction := vrai 

Sinon 

Satisfaction := faux 

Retourner il Mape prtkddente 

Retirer une autre valeur de D(xi ) 

Fin Si 

Fin tant que 

Fin Pour 

Figure 3.3 Algorithme du retour-arrilre 

Techniaues de cohgrence de nmud et d'arc 

Ces deux termes proviennent de la repdsentation des systemes binaires par des 

graphes, dont les nmuds sont consid6ds comme des variables. et les arcs cornme des 

contraintes du syst5me. La notion de coherence indique que la propagation est effectuke 

sur chacune des variables jusqu'5 aboutir P une cohdrence des Cltments de leurs 

domaines par rapport aux contraintes du probl2me. 



Technique tie cohgrence de nmudr 

Les contraintes sont unaires: 

vars (c) = (x)  

Une contrainte primitive c est coherente de naeuds sur un domaine D(x) si, pour 

tout 6Ement d E D(x), x * d est une solution de c. Si on considike un ensemble 

d'dquations de contraintes primitives, cette dquivalence doit etre drifite pour chacune 

d'elles et la satisfiabilid est test6e pour toutes les valeurs du domaine D(x). La Figure 

3.4 illustre les dtapes de I'algorithme. 

Cohgrence nmuds (C, D) 

Soit 

C :=c, A C2 A ..-A C 

Pour chaque contrainte primitive Ci faire 

Si vars(c) = 1 alors 

{x  ) := vars(c) 

D(x) := {d E D(x) ( (x + d) est solution de c} 

Fin Si 

Fin Pour 

Retourner D 

Figure 3.4 Algorithme de coh6rence de noeuds 

Technique de cohdrence d'arcs 

Les contraintes sont binaires: 

v= (c) = {x, y) 

La coherence d'arcs (Figure 3.5) assure la satisfiabilit6 du systi5me form6 des 

projections des contraintes basiques sur chacune des variables x. On verifie alors si, pour 



chaque valeur du domaine D(x) de x, il existe une valeur du domaine D(y) de y pour 

laquelle la contrainte est satisfaite. On elimine des dornaines de x et y les valeurs qui 

rendent la contrainte (x, y) fausse. L'opdration est effectuke pour toutes 1es valeurs de x 

et y jusqu'l l'obtention d'un domaine dduit coherent avec les contraintes. A chaque 

changernent du domaine de  x, on doit tester de nouveau tous les arcs (2, x) avec z 
different de y. Cette procedure ne garantit pas la satisfiabilite du syst8me au complet et 

nkessite de ce fait une 6numt5ration des valeurs du domaine. Plusieurs autres variantes 

m6l iokes  de cet algorithme ont W dt5veloppkes. Par exemple, la version AC-3 utilise 

une procedure de propagation moins aveugle, qui dvite de dviser les arcs, c'est-Mire 

les contraintes non c o n c e m h  par un changement du domaine de la variable x. Une 

autre version t r h  utilisde est AC-4 qui proctde de la mEme mani2re que AC-3, mais 

maintient un support de liste contenant toutes les paires <variable, valeurx Plut6t que 

d'examiner toutes les valeurs du dornaine, la &vision est appliquie uniquement aux 

valews de cette liste. 

Techniuue de coherence de bornes 

Elle permet d'exprimer des contraintes comportant plus de deux variables. C'est le 

cas generalis6 de la coht5rence de m u d s  et d'arcs. Pour l'illustrer, considdrons le 

probl2me du sac suivant: un voyageur dkire optimiser la valeur d'objets 5 amener avec 

lui en voyage. Panni les objets qu'il doit emporter se trouvent: une bouteille de whisky 

de quantit6 4 unit&, une bouteille de parfum de quantitk 2 unites et un carton de 

cigarettes de quantitC 2 unites. Les profits ti& de chaque objet amend sont 

respectivement de 15, 10 et 7 dollars pour le whisky, le parfum et les cigarettes. Son sac 

ayant une capacit6 finie de 9 unites, le voyageur veut ddterminer quels objets prendre 

pour daliser un profit de plus de 30 dollars. 

Dam ce problbme, on represene chaque objet B amener par des variables. Elles 

prennent leurs valeurs possibles dans le domaine D = {O, ..., 9) qui indique le nombre 

d'unites que le sac du voyageur peut contenir. Donc, si W repdsente la variable de 

whisky, P le parfum et C la cigarette, on pose: 



WE (0, ..., 91, PE (0, .,., 91, C E (0, ..., 9). 

On veut dors satisfaire les contraintes suivantes: 

1. 4W + 3P + 2C I 9; de'signe la contrainte sur la capacite 

2. 15W + 10P + 2C > 30; ddsigne la contrainte sur le profit. 

Soient 

W un nouveau domaine 

C := cr A cz A ..-A c, un ensemble de  contraintes primitives 

dx7 d, des valeurs du domaine D 

Faire 

w :=D 

Pour chaque contrainte c; faire 

Si Ivar~(ci)l= 2 alors 

Poser {x, y) := VXS(C~) 

D(x):={ dx E D(x) ( pour dy E D(y). (X + dx et y +d,) est solution de Ci ) 

D(y):={ d, E D(y) I pour dx E D(x), (x + d, et y +d,) est solution de ci ) 

Fin Si 

Fin Pour 

Tant que W = D 

Re tourner D 

Fin 

Figure 3.5 Algorithme de cohkrence d'arcs 

L'application de la coherence de bornes se fait en d e w  &apes : 

On effectue une dvaluation des bmes de chaque variable intervenant dam les 

contraintes 1) et 2) du problbme. 



P 5 913 - 413 W - Z 3  C Minp = 913 - 4/3 (Maxw ) - 2l3 (Maxc) 

et Max , = 913 - 413 (Minw) - 2/3 (Mint) 

Les mtmes raisonnements sont aussi applique's sur les autres variables pour trouver une 

formule repdsentant leurs bomes supdrieure et infirieure. 

On calcule les nouvelles bornes des differentes variables ii partir de leurs 

domaines et des Bvaluations pkcedentes. Chaque valeur ne satisfaisant pas ces 

equations est reti& du domaine. On peut aboutir ainsi ii des domaines dduits de 

la forrne : 

P = {O, ..., 3); W = {O* ..., 21; C = f0, ..., 4). 

I1 est 2 noter que la vkrification de la coherence dans un arbre de recherche se hit  

suivant divers micanismes. Les plus connus sont les formes d'inumiration implicite qui 

vdrifient la coherence uniquement entre les valeurs dejjl assignees, le "forward 

checking" qui fait le contr6le de coherence sur les valeurs fixees et celles qui ne le sont 

pas encore, et enfin le 'Zooking Ahead" qui est une forme non restreinte de coh6rence 

pennettant de vkrifier la coherence entre les valeurs non encore instanciees. 

L'utilisation combinde de ces diffirentes techniques de propagation permet 

d'obtenir un algorithme complet. Comme exemple, on peut effectuer, dans un meme 

algorithme, la cohirence sur les bornes avant le retour-arri&re (backtracking) et apds 

que les valeurs soient affect& aux variables. Dans ce cas ci, la propagation est dalis6e 

par I'intennidiaire du domaine des variables. Les algorithmes utilisant ce principe sont 

considh5s comme des algori thmes g6niralis6s. Un exemple de contrainte r6alistk 

suivant ce mkcanisme est le alldiferennt qui pennet d'exprimer la contrainte giobale de 

nonkgalitd sur plusieurs variables. Son algorithme est bad sur la recherche d'un 

couplage couvrant un ensemble de variables X, dam un graphe biparti G(X, Y. E), oil Y 

est l'ensemble des domaines de X et E l'ensemble des paires <variable, valeur>. Une 

contrainte alldifferent est satisfiable, si et seulement si, il existe un couplage maximum 

dam le graphe G correspondant. Par definition. un couplage est un ensemble d 'd tes  ne 

partageant aucun sommet. Le couplage est dit maximum quand toutes les variables 



constituent des sommets couverts par le couplage. Lorsque I'on retrouve une e t e  

faisant partie de tous les couplages maximums, on parle d ' d t e  vitale. L'algorithme 

gt5nbral. irnpEmentt5 dans plusieurs langages, comporte les dtapes suivantes: 

1. Trouver tous les couplages maximums du graphe G; 

2. Identifier toutes les d t e s  n'appartenant 1 aucun couplage maximum, c'est-&-dire 

ne faisant pas partie d'un chemin altem6 ou d'un cycle altem6; 

3. &iminer des domaines Y, toutes les valeurs correspondantes P ces couplages. 

Une autre version, dite indmentielle et pksentee B la Figure 3.6, reconsidhe la 

contrainte alldiflerent, suite 5 une reduction de certains domaines. Notons que 

l'application des principes de propagation sur des contraintes globales permet 

d'effectuer une bonne coupure de dornaine. De plus, ils permettent de calculer le 

domaine dduit par enum6ration et en un temps constant. Le choix des variables 5 

instancier ainsi que la selection des valeurs B leur attribuer utilisent des heuristiques qui 

permettent de guider la recherche et de  rdduire la complexit6 de  la solution. 

Soit le couplage maximum courant 

Reconsidihr la contrainte alldifferent suite la reduction de certains dornaines. 

61iminer les d t e s  correspondantes 

Si I'arete est vide, alors 

Retoumer faux 

Sinon Compliter le couplage courant 

Si il n'existe plus de couplage maximum, alors 

Retourner faux 

Sinon Filtrer les aretes ne faisant partie d'aucun couplage maximum 

Fin 

Figure 3.6 Algorithme de la contrainte alldifiment (version incr6rnentielle) 



3.2.2 Optimisation par s6paration4valuation 

Les problCmes d'optimisation sont des probltmes pour lesquels on desire trouver 

des solutions 5 un but qui minimisent une fonction de cott. La procedure d'optimisation 

par "st5paration-&valuationw (branch & bound) sTint2gre bien au modde de nisolution de 

la PC et peut E t r e  facilement implbmentee par un solveur. Le principe de la mhthode est 

de calculer une solution s, parmi l'ensemble des solutions rhiisables possibles T du 

probliime et de continuer la recherche en ajoutant une contrainte supplementaire t < s 

(ET)  sur toute nouvelle solution. Lorsque la recherche se termine en Ohec, le demier 

cott total calcult5 donne le coiit optimal (global) du probleme. La poursuite de la 

recherche s'effectue en faisant un retour-arritre tout en conservant la structure de I'arbre 

de dbrivation courant ou par itdration en developpant un nouvel arbre de recherche 

tenant compte de la contrainte supplkmentaire sur la borne sup6rieure du cott. Tel que 

decrit, le "branch & bound" est une mdthode dont l'eficacitt5 depend essentiellement de 

la premibre solution trouvee. Elle est tout indiquke dam la r&olution par la PC de 

probltmes combinatoires tels les probliimes d'affectation, de planification, etc. 

3.2.3 Heuristiques d'6num6ration 

Les algorithmes de propagation permettent de reduire l'espace de recherche sur 

lequel des techniques dtenum6ration sont appliqukes en vue de trouver une solution ou 

la rneilleure solution pour un problbme d'optirnisation combinatoire. Ces differents 

algorithmes n'etant pas complets, les heuristiques d'inum6ration combinkes avec leurs 

utilisations permettent de guider les choix, ce qui restreint l'espace de recherche b 

explorer (sans perdre la complBtude du solveur). Ainsi, il existe deux grandes classes 

d'heuristiques qui sont exploi tdes. La premibre permet d'effectuer la selection &s 

variables 1 instancier en premier et est communt5ment designee par heuristique de choix 

de variables. La deuxieme, quant B elle, permet de dkteminer I'ordre dam lequel les 

valeurs d'instanciation d'une variable doivent etre essaykes. 

Heuristiuue d'eirum&ation de variable "tfchec d'abord" ( "first -fail") 



Le principe est de commencer la recherche p a .  les parties du probleme qui sont les 

plus difficiles, c'est-&dire celles posskdant le moins d'alternatives. Cette strat6gie 

permet de se rendre compte, d2s la racine de I 'arbre de recherche, des choix n'ayant pas 

de solutions et donc aboutissant aux Cchecs. Son application, tr5s vari&e, depend surtout 

des mod&les de probDme. Par exemple, on peut vouloir commencer par les variables 

possddant les plus petits domaines ou encore raisonner suivant un impdratif 

d'optirnisation de coat en choisissant les variables possidant le moindre regret, c'est-B 

dire celles possedant la plus grande valeur de difference de coOt entre les deux plus bas 

coots. La qualit6 de mesure de cette heuristiquc: est justifit% ex#rimentalement et sa 

mise en aeuvre est fonction du type &application pour laquelle elle est utilisee. 

Heuristiaue d'&num&ation de valeur "rneilleur d'abord" {"best-first"1 

L'ordre de choix de valeurs n'decte pas la topdogie de l'arbre de recherche, mais 

intervient plus dans l'ordre &exploration des differentes branches du probleme. Pour 

cette raison, le choix des valeurs appmnt moins important dam la resolution des 

probkmes d'optimisation. JJ peut toutefois Btre d'une certaine efficacitd lorsqu'il s'agit 

de trouver une solution kalisable B un probltme. Les mithodes les plus couramment 

utilisees sont basees sur le choix des valeurs maximum ou des valeurs les plus utilisees. 

Il peut s'effectuer aussi par une segmentation de tout le domaine. Le choix des valeurs 

est alors effectu6 dam chacun des sous-ensembles. 

L'heuristique "meiNeur d 'abord ". tres utilisie dans la recherche d' un optimum, 

part du principe de selection des valeurs minimisant le tenne de coGt. 

3-24 Rblution de probliimes d'optimisation combinatoire 

Les caract6ristiques de la PC dkrites offrent des avantages tels la rapidid de la 

programmation, la souplesse de la mise au point et moins de risques de &vision de la 

strategic de dsolution en cas de modification de 1'6nonc6. La plupart des problemes 

d'optimisation combinatoire peuvent Ctre exprimds sous forme de CSP. W s  lors, les 

langages d6veloppds en progmmmation par contraintes pour les probl5mes sur domaine 



fini peuvent etre d'une certaine efficacite dam la recherche de solution de tels 

probl2mes. 

Les differentes &apes pour la dsolution d'un CSP sont: la definition d'un 

ensemble de variables moddlisant le probleme, le choix d'une representation des 

contraintes ii l'aide de celles pddkfinies dans le langage utilise et le choix des 

diffdrentes strategies de contr6le pour guider la recherche de solution dans I'espace 

kdui t . 

Difinition des variables de contraintes 

Elle consiste 3 exprimer les variables de mod6lisation du probEme, et partant leurs 

domaines respectifs. Dans certains cas, ce choix peut influencer I'algorithme de 

rCsolution dans le langage choisi. Ceci s'explique par le fait que les inconnues du 

problkme en PC, sont representees en termes de variables. Rksoudre le problbme 

consiste alors & poser des contraintes sur ces variables et B determiner les valeurs de 

leurs domaines qui les respectent. Debuter la recherche avec un nombre reduit de 

variables, donne plus de chances de r6aliser la propagation des contraintes sur un espace 

de taille kduite. Ainsi, ii cette &ape de I'algorithme, plusieurs moddes sont essay& 

pour en retenir ceux qui aboutissent B une reduction de la taille du problCme, tout en 

conservant l'intkgritk de son formalisme. 

Par exemple. pour le problbme des N-reines qui consiste P placer n reines sur un 

bhiquier n m  sans qu'elles soient en prise c'est ;i dire placees ni sur une meme ligne, ni 

sur une meme colonne, ni sur une mtme diagonale, on peut modCliset chaque reine par 

une variable de domaine [I, ..., nl qui indique dam chaque colonne sur quelle ligne 

placer la reine. Ceci peut etre not& Domaine ([XI.X& .... Xn], [I.n]), oh Xi sont les 

variables. 

La dduction des variables se fait en &itant certaines formes de modClisation de 

variables jusque 1% exploi tdes pour la modelisation en recherche ophttionnelle. Par 

exemple, pour les problhes d' affectation de ressources, on remplace les variables 



binaires Xu (I, 0) exprimant que i est affectee B j, par des variables S definies comme 

suit: Si = j. 

Xl est aussi parfois plus efficace de considdrer plusiews jeux de variables qui 

correspondent B differentes vues du problGme, et que I'on relie entre eux par les 

contraintes. Dans ce cas, il peut y avoir un coQt payer pour la gestion des relations 

entre les contraintes sur les diffdrents mddes.  Mais ce dernier coft peut Gtre 

contrebalanc6 par de meilleures coupwes effectukes dam chacun des modeles et par la 

determination anticip6e des tchecs. 

Difinirion des contraintes 

Apr5s la repre'sentation des variables du problCme, on proc2cie 5 I'implementation 

des contraintes sur ces variables. Gindralement, on utilise les contraintes dejii difinies 

dans le Iangage. LRur implimentation soigneuse permet de rdduire le plus possible les 

domaines des variables. Le schema de propagation d'une contrainte est le suivant: 

Reveil de la contrainte suite 5 une modification du domaine de lTune des 

variables; 

Simplification de la contrainte; 

Rdduction des domaines des variables; 

Reveil des autres contraintes; 

Iteration des processus de reveil et de dduction des domaines jusqu'ii 

I'obtention de domaines stables. 

Les contraintes globales, par exemple, exploitent efficacement ces procedures et 

permettent de r6aliser des coupurcs du domaine ii travers les difTdrents algorithrnes de 

propagation, coupures qui ne sont pas faisables avec les disjonctions de contraintes 

basiques. Comme exemple de contrainte globale, on a: 

element(l, [VI. V2, . .., VJ, X) qui expnine que pour I=i, on doit avoirX= l(-. 

I et X sont des variables du domaine, alors que VI. est une constante. 



Recherche de solution 

La recherche de solution est ici utilisee pour d6finir les 6tapes principales de la 

&solution du probltme dans le langage choisi. Elle sert relier les differentes variables 

aux algorithmes de selection pnkddentes. G&ndralernent, on a le choix entre les deux 

types suivants: 

I. G&n&er puis Tester, qui procede par une utilisation passive des contraintes en 

Cvaluant d'abord Ies variables avant de verifier si elles respectent les contraintes. 

C'est une mdthode tr& peu utilisbe car elle ne permet pas au d6veloppeu.r de se 

rendre cornpte assez tat des khecs et elle peut s'avCrer trh dispendieuse en 

termes de temps d'exdcution. 

2. Contraindre puis  Gindrer, qui se sert des contraintes definies pour niduire le 

domaine avant de proce'der 5 1'6vaIuation. Elle proctde donc par une utilisation 

active des contraintes, ce qui optimise la recherche par des coupures efficaces 

dam l'arbre de recherche, 

Dans les probltmes courants, il s'agit non pas de trouver une solution mais une 

meilleure solution. C'est le problhe d'optimisation de contraintes (COP - Constraint 

Optimisation Problem). Un COP est constime d'un CSP et d'une fonction objectif$ Le 

but est alors de trouver une solution qui satisfait les contraintes et maximise (ou 

minimise) la fonction objectif. Pour cela, on ajoute une variable supplementaire dkfinie 

sur domaine fini et qui reprksente le cofit. Tout c o m e  en recherche o#rationnelle. 

I'heuristique de 'Wparation et Eva~uation'' (Branch & Bound), adaptie aux nombres 

entiers, est utilisde dans la recherche de solution. 

3.3 Applications de la PC P quclques pmbDmes de recherche op6rationnelle 

Les langages de PC ont 6t6 appliques la dsolution efficace de nombreux 

probDmes de recherche ophtionnelle M c e  A l'utilisation active des relations entre les 

contraintes. Mentionnons entre autres les problimes de coloriage de graphe, 



d'ordonnancement de tiches, de commis voyageur avec fenttre de temps, etc. Nous 

pdsenterons dam cette section ces diffdrentes applications. 

3.3.1 Coloriage de graphe 

Un probl*me de coloriage de graphe consiste ih determiner le nombre minimum de 

couleurs requises pour colorier un graphe de telle sorte que deux n ~ u d s  adjacents soient 

d'une couleur diff6rente. Ce probl6me posdde un grand int6fit en recherche 

op&ationnelle en gen6ral pour de nombreux probkmes de  conception et d'emploi de 

temps, et en particulier en t~l6communications par exemple, pour l'allocation de 

fkquences dam les dseaux mobiles dans le but d'eviter les interf'rences entre deux 

cellules voisines. Fages, 1996 propose la mod6lisation suivante: 

Modt?lisation et propa~ation des contraintes 

A chaque nceud k du graphe, on associe une variable repksentant la couleur et qui 

est dkfinie sur un domaine [ I ,  ..., n]. n est le nombre de  couleurs disponibles pour 

colorier les naeuds du graphe. 

Domaine([N,, N2, ..., Nk], [I,n j )  

La contrainte d'inbgalite est utilisde pour exprimer que deux nc~uds i et j adjacents 

ont des couleurs diffdrentes. 

Ni #4 si i adjacent ti j 

La recherche de solutions est bask sur l'appel d'une fonction qui utilise le 

"contraindre puis ggne'rer". 

3.3.2 Affectation de fmuences dam un h u  cellulaire 

Le probBme de  coloriage de graphes est ii la base de la dsolution par I U K ;  

Solver3. I ,  du problbme d'affectation de Mquences dans les dseaux cellulaires. En effet. 

dans les r6seaux cellulaires, chaque cellule communique avec ces usagers sur des 

fdquences pn5-allou6es. ~ t a n t  donne la bande de Mquence limitde disponible, on utilise 

une rhtilisation des fdquences B l'intdrieur des diffdrentes cellules. Cette r6utilisation 



est rendue possible seulement dam le cas oh il n'y aurait pas d'interfhnces entre les 

Mquences. Autrement dit, on exige que la distance entre les frequences soit supkieure B 

une certaine valeur, au-dessus de laquelle I'utilisation d'une meme fdquence par deux 

usagers, P I'int6rieur de deux cellules. est rendue possible. Comme informations, le 

fournisseur dispose du nombre de cellules (Ceb. ..., Cel,,) pdsentes dam le kseau, du 

nombre de fkquences qui lui est alloud pour assurer son trafic et de la distance D entre 

les diffdrentes cellules du rbseau. Il s'agit alors de trouver l'affectation optimale qui 

rninimise le nombre de frMuences en service tout en maximisant le trafiic dam le dseau. 

On cherche ainsi 3 utiliser peu de friquences pour desservir un grand nombre de cellules 

sans interf6rences. ce qui explique le paralltlisme avec le prob15me de coloriage de 

graphes oh on veut colorier diffdrents ncpuds avec peu de couleurs sans que d e w  naeuds 

voisins aient la mtme couleur. 

Mod&lisation 

1. Chaque dmetteur est mod6lisd par une variable entibre appartenant B un ensemble 

de n dldments repn5sentant le nombre de fdquences disponible. 

2. La contrainte sur la distance est exprim6e de mani&re ddeterrniniste par la 

contrainte prddefinie ZZcAbs(CelrCe12)+ D (ici le fait d'utiliser une contrainte 

symbolique au lieu de deux contraintes disjonctives (Cell-Ce12) + D et (Ceb  

Cell) > D dduit la complexit5 du probkme). 

Silections de variables et de valeurs 

1. On commence par les variables ayant le plus petit domaine. Il est plus urgent 

de satisfaire dam un premier temps les dmetteurs ayant moins de fdquences 

disponibles pour acheminer leur message et ensuite de  s'occuper de ceux dont 

le domaine est plus large. 

2. Comrne choix de vdeurs, on commence par les f&quences qui sont les plus 

utilisdes. Ceci implique une rnise en m6moire de chaque Mquence, chaque fois 

qu'une variable se trouve Stre bornbe suite au &veil d'une contrainte. 



3.3.3 Problhe d'ordonnancernent de tiiches 

Le probleme d'ordonnancement de tkhes est aussi ddsignd par uproblame de 

planification~. Dans ce problbme, on dispose d'un ensemble T de tiiches et d'un 

ensemble R de ressources. On dksire assigner les differentes tsches. qui sont d'une d h e  

ddterminde, B chaque ressource. II y a un certain nombre de tiches qui doivent Ctre 

executees avant d'autres. Le but est d'organiser I'ordre d'exkution des tkhes sur 

chacune des ressources de maniere B minimiser le temps d'ex&ution, sous les 

contraintes suivantes: 

Deux differentes tiches ne peuvent Ctre extcutees en meme temps sur une meme 

ressource (cas des ressources disjonctives); 

Plusieurs tbhes peuvent etre destinkes B une &me ressource, si la condition 

prdcddente est verifik; 

L+e debut de la tiiche Xi appartient 2 un intervalle fix& On veut ainsi de%uter une 

tiche dam un intervalle de temps pkcis. 

Une m6thode de dsolution de ce problhe consiste & ordonner chaque paire de 

tiiches partageant la meme ressource, B propager les contraintes et B revenir en aniere 

lorsqu'un choix mkne une incohkrence. La mtthode pesentee par Marriott. et Stuckey, 

1998 est la suivante. 

Modiiisation 

Les tiiches sont repdsentees par des couples 

(XL di) 

oh les variables Xi ddfinissent le daut  de la tiiche i et di sa d d e .  Les variables Xi sont 

definies dam un intervalle [I, b] avec b designant une borne sup&ieure representant 

l'instant limite auquel la tiiche i doit etre debutee. 

Le systeme de contraintes sera constitue: 

De contraintes disjonctives qui sont des inegalites lineaires de type: 

Xi + di I Xj 

exprimant le partage d'une m6me ressource par deux tiches differentes ; 



des contraintes de prc5cCdence entre tiiches qui s'expriment de la fason 

suivante: 

Si i pkc5de j, alors 

Prkd4cesseur ([Xi.dJ, [Xj. 41) signifie que Xj 2 Xi +di ; 

de la fonction objectif qui consiste i minimiser le temps total d'exicution 

des differentes t3ches suivant les contraintes ktablies ci-dessus. 

Minimiserf XI, X2, . . ., X, coat) 

Une proc6dure utilide pour le choix de l'ordre d'exdcution des diffkrentes tiiches 

sur chacune des ressources consiste B fixer une valeur d'ordre pennettant I'instanciation. 

L'algorithme de S4parution et   valuation est utilisd pour ddterminer le coOt optimal sur 

un ensemble de paires de tzches satisfaisant les contraintes de ressources. 

3=3=4 Probl&ne du commis voyageur avec f e d  tre de temps 

Le problbme se pdsente comme suit (Pesant et al., 1996): Un voyageur doit 

effectuer une toumee dans differentes villes selon les contraintes suivantes: 

Chaque ville doit etre visitee une seule fois dans une plage horaire 

donnde; 

Le voyageur dispose d'un intervalle de temps bien dktermind pour faire 

sa tournde qui doit se tenniner au point de depart; 

Le voyageur peut arriver dans une ville avant le temps d'arrivde pdvus, B 

condition qu'il fasse un dklai d'attente proportionnel au temps de d6part 

pdvu vers la prochaine ville; 

On ddsire minimiser le temps total indispensable pour effectuer la tournee 

complite des vilIes. 



Mode'lisation 

On considike les diffdrentes villes V = / I ,  2, ..., n, n + l j  avec 1 et n+l 

repdsentant la mtme ville depart, destination. Si on dkfinit Si comme une variable 

successeur dans le probleme. On veut : 

Minimiser ZC~S~ 
I 

sous les contraintes suivantes : 

Si # Sj, exprime que deux villes ne peuvent avoir le mCme successeur; 

Si # i, exprime qu'une variable ne peut avoir elle-meme comme 

successeur; 

Si E (2, ..., n+l ); 

Si f l  et a repr6sentent le debut et la fin d'un chemin d'une ville i, on 

impose les contraintes suivantes: 

Si = j Saj # pi, qui exclut la pesence d'une meme ville dam diffdrentes 

chafnes; 

ai I Ti I bi, OB ai et bi dknotent les temps lirnite d'anivee et de dkpart pour 

chaque ville i, et Ti indique la variable temps de  depart; 

Si = j * Ti + tij I Tj, OG zu represente la durke d~ parcours. 

Les contraintes 5) et 6) dkfinissent la fen6 tre de temps pour lYaniv6e dans chaque 

ville. Ces diffdrentes contraintes sont propagdes en PC pour reduire le domaine des 

variables. Ces contraintes participent P la eduction du domaine. La contrainte 3) sert ii 

initiaiiser le domaine des variables Si. La contrainte 2) permet d'6liminer les valeurs i du 

domaine des Si t&s t6t pendant la recherche. La contrainte 1)  est un exemple d'utilisation 

du "forward-checking" (FC), algorithme de propagation qui retire du domaine de la 

variable Si la valeur de Sj lorsque celleci est instancik. Cette procCdure est valable pour 

I'une ou I'autre des variables Si ou SF La contrainte 4) 6limine la pdsence de cycles dans 

la solution. Enfin, les contraintes 6) et  7) permettent respectivement d'initialiser les 

variables et de restr~indre leur domaine pendant la recherche. La complexid de la 



solution est kduite par I'ajout de contraintes redondantes sur la fenetre de temps et 

l'klirnination de tours. Ainsi, si t*ab repksente le chemin le plus court entre a et b, la 

contminte: 

(~+t \4"(7,+t*jk4,  

est remplacie par, 

( T , + ~ * , ~ ~ ) V ( ~ + ~ * , ~ + ~ T , F S ~ # J .  i#jj#k et jtk 

Choix de varfables et de valeurs 

Le choix des variables est fait de mani5re dynarnique. Suivant le principe "echec 

d'abord" qui commence par les variables ayant le domaine le plus petit. Au cas oh il 

existerait une multitude de choix, au lieu de choisir la variable appartenant i plusieurs 

contraintes, on proci5de par klirnination en retenant les variabies qui peuvent aboutir B la 

plus petite dduction du domaine panni ces paires. Cette nouvelle stratkgie est rhliske 

de la maniere suivante: 

1. Soit s le plus petit domaine obtenu en consid&mt toutes les variables Si- 

Former l'ensemble 19 = { Si, i = 1, ..., n : I domain(SJ I = s } 

2. Si s=l, alors choisir arbitrairement une variable dam 8 ; 

3. Sinon: 

Pour chaque element e appartenant B l'union des elements du domaine des 

variables de 19 , calculer le nombre d'occurrences e' de e d a m  les domaines des 

variables de 6. 

Choisir la variable qui maximise la fonction f (v)= xEmcv, e# 

Le choix des valeurs est effectu6 suivant la plus petite d d e  sdparant une ville de son 

successeuf. 

Dam ce chapitre, nous avons etudii ies fondements d e  la propagation par 

contraintes. Plus sptkialement, nous avons defini les principes de r6solution des 

contraintes sur domaine fini, B travers lews applications sur des exemples d'optimisation 



combinatoire. Dans le chapitre suivant. nous aborderons l'adaptation de la PC au 

probkrne &affectation de cellules 5 des commutateurs. 



CFIAPITRE 4 
IMPL&MENTATION, MISE EN OEUVRE ET RI%ULTATS 

Le problbme d'affectation de cellules B des commutateurs est un problbme NP- 

difficile, faisant intervenir des variables qui prennent leurs valeurs dans un domaine fini. 

D e  ce fait, on peut le formuler sous forme de probEme d'optimisation de contraintes sur 

domaine fini. La d6marche B suivre consiste alors B exprimer Ies inconnues du probkme 

2 I' aide des variables de contraintes, sur lesquelles diff&entes r2gles de calcul peuvent 

Btre appliquees en vue de kduire de manitre efficace leur domaine. On adopte par la 

suite certaines strategies de recherche propres au problhrne, qui permettront d'aboutir 5 

une bonne solution en des temps de calcul relativement acceptables. Dam ce chapitre, 

apr& une description des differentes Ctapes de notre adaptation, nous illustrerons le 

fonctionnement de celleci B travers une mise en aeuvre sur un exemple prdcis. Enfin, 

nous pdsenterons les resultats obtenus et leur performance par rapport i d'autres 

heuristiques. 

4.1 Adaptation de la PC P la rhlution du problGme 

Le problcme d'affectation de cellules ii des cornmutateurs pouvant Etre formule 

sous forme de COP (FD), sa &solution est bade sur les differentes procedures de 

satisfaction des contraintes propres ii ce domaine. Les trois grandes ttapes ii considhr 

dans l'algorithme sont: la mod6lisation du problbme par le choix des variables. 

I'utilisation d'algorithmes de filtrage favorisant une bonne propagation des contraintes 

du problbme sur toutes les variables et enfin la recherche efficace des solutions B travers 

le ddveloppement d'un ensemble de strategies de choix de variables et de valeurs sur les 

domaines kduits. Notre algorithme utilise la m6thode du "Contraindre et Gendrer". 

Suivant cette approche, les contraintes sont d'abord appliquks sur les variables de 

moddisation, pour 6liminer celtaines valeurs et en fixer d'autres si possible. Les 

solutions sont par la suite g6nbdes par enumdration. 



Par opposition 2 la methode "G6n&er et Contraindre", qui fixe les valeurs aux 

variables avant de verifier les contraintes, l'algorithme de programmation utilis6 

("Conuaindre et Gentrer") peut Cviter que I'on consid& lors de la recherche, certaines 

valeurs n'aboutissant pas B des solutions faisables, ce qui pennet de dduire le nombre 

d'ichecs possibles pendant l76numdration. La mtthode de "s6paration et Cvaluation 

(Branch & Bound)" est utiliske pour trouver la meilleure solution. La complexit6 de 

I'algorithrne au pire cas va dtpendre principalernent du nombre de variables modt5lisant 

le problbme. Pour cette raison, contrairement Zi la formulation mathe'matique propose'e 

par Merchant et Sengupta, 1995, et introduite au Chapitre 2, le probleme est mod&s6 

avec moins de variables, mais dont les valem possibles appartiennent il des domaines 

plus larges. Chaque cellule est ainsi repesentke par une variable entiere dont le domaine 

est determint par le nombre de cornmutatem disponibles dans le kseau. A chacune de 

ces cellules sont assocites deux variables de coiit: le coat de csblage, qui depend de la 

cellule et du commutateur auquel celie-ci est affecte'e, et 1e coiit de relive qui, lui, 

dkpend des cellules n'appartenant pas au meme commutateur. Une fois le problbme 

modtli st, les contrain tes sont applique'es et propagees sur les variables choisies. 

En PC, chaque type de contraintes possede son algorithme sptkifique pour se 

propager. Les diffe'rents algorithmes de propagation interagissent 2 leur tour par 

I'intermddiaire du domaine des variables. Dam notre cas, nous avons deux contraintes 

dures B respecter. Selon la premihre contrainte d'unicitk de I'affectation, imposee par la 

domiciliation simple. chaque cellule est affecte'e i un et un seul commutateur. Cette 

contrainte est respect& A coup s h ,  car chaque variable enti&re repdsentant la cellule ne 

peut prendre qu'une seule valeur B la fois dam son domaine. La seconde contrainte 

concerne la capacitd de chaque commutateur, qui est fixte et exprimde en volume 

d'appels par unit6 de temps. Une manibre simple et ef'ficace d'exprimer cette conaainte 

est de considhr  chaque commutateur comme une variable ensembliste, c'est-&-dire B 

laquelle plusieurs valeurs peuvent Btre attribuks, et d'imposer que le volume total des 

appels provenant des cellules qui lui seront affecttks ne depasse pas la capacit6 dont il 

dispose. D'oii la definition dam notre adaptation d'une autre variable ensembliste, 



reprksentant chaque commutateur et dont le domaine des valeurs comporte I'ensemble 

des cellules qui lui sont affectees. Pour exprimer la contrainte sur la capacid, nous avons 

defini un objet pennettant de ddterminer et d'ajuster la capacite ksiduelle d'un 

commutateur lorsqu'une nouvelle cellule lui est ajoutee. Si la capacitk maximum est 

atteinte, on ne peut plus affecter de cellules P ce commutateur ou alors on revient B la 

valeur pkctidant I'ajustement de la capacitt5 r&iduelle suivant le principe du retour- 

am&re, et d'autres cellules dont les volumes d'appels sont transfkrables par le 

commutateur sont essayees. Dans le cas oh toutes les contraintes sont satisfaites et 

chacune des variables est fixee, on calcule le coat total. La valeur de cette premi8re 

solution trouvte est considdde comme une borne sup&ieure. On ajoute une contrainte 

supplkmentaire sur la borne supkieure du coct de toutes nouvelles solutions. Dam la 

rCsolution de problemes d'optimisation combinatoire, le coDt de l'algorithme peut &re 

prohibitif et depend fortement du coat de la premiere solution trouvee. De ce fait, ;l 

chaque niveau de I'arbre, certains m6canismes de choix de variables et de valeurs sont 

utilises de permettre de commencer la recherche par une exploration des parties du 

probleme ayant plus de chances d'aboutir. L'un des differents avantages de la 

propagation par contraintes est la flexibilitt d'essayer rapidement diffbrentes strategies 

de recherche sans avoir 5 modifier I'algorithme en profondeur. En se basant sur les 

statistiques du probleme, on a adopt6 la stratkgie du moindre regret sur le coiit de liaison. 

Celle-ci est bastie sur une diffhnce entre les deux plus petites valeurs de coOt de 

csblage possibles. L'ordre de sklection des cellules 5 examiner est alors fonction de la 

plus grande difference de coat obtenu apds Cvaluation. 

4.2 Modilisation du probEme 

Nous avons utilid plusieurs jeux de variables dans la mod6Iisation du probl8me. A 
chacune des cellules du dseau est associde une variable entikre: 

Switch i E /O, ..., nt - I )  pour i =O, I ,  ..., n-2 



La relation (4.1) pennet d'initialiser le domaine des vaieurs aux m commutateurs, 

pour chaque cellule. Si on considh une repdsentation en arbre du problbme, oG la 

racine designe le point de depart de la recherche, et chacune des branches une 

alternative, rt5soudre le probl&me d'affectation consiste alors B fixer la valeur de chaque 

variable Switchi. tout en respectant la contrainte sur la capacid. 

Un commutateur j donne est B son tour repksentk par une variable ensembliste 

Cells c {0,1, ..., n-Il pour j = 0,1, ..., m-I (4- 2) 

L'utilisation de plusieurs variables dam un mEme algorithme peut entrainer une 

redondance dans le modkle. Genedement, le prix ;i payer est la gestion des liens entre 

les diffdrentes variables. Toutefois, en plus de pernettre une propagation plus en 

profondeur des contraintes dans les differents mod&les, la redondance dam la 

reprbsentation est souhaitable pour combiner les avantages respectifs de facilitC 

d'expression des variables Switchsi et Cellsj. D'un autre cote, la contrainte sur la 

capacitk est exprimee de mani8re plus efficace sur les variables ensemblistes, qui se 

trouve Btre propagde sur un ensemble de cellules( reduction de la complexitE). 

En designant par cCost[i, Switch], une variable de coQt exprimant la valeur de la 

liaison entre la cellule i et le commutateur auquel elle est affectke, et par hCost[i], une 

autre variable repdsentant le coiit de relkve pour une cellule, on peut formuler le 

probltme comme suit: 

Minimiser ~(c~ost[i.Switchi]+ hCost[i]), i= 0818 ..., n-1 

sous la contrainte suivante: 

La relation (4.3) tend B minimiser le coGt total de cilblage et de reEve pour toutes 

les cellules du dseau. La demiere relation (4.4) exprime la contrainte sur la capacitk qui 

est ici r6alisCe B I'aide de I'utilisation des variables ensemblistes Cellsj et d'une nouvelle 

classe de contraintes CapCoherence( ) que nous ddfinirons par la suite. 



Dans le langage utilist qui est [LOG Solver v4.4, les variables sont exprimkes de la 

manisre suivante: 

1. IIcIntVarArray Switchs(n-1, 0, m-1)' pour les variables entisres repkentant 

les n-1 cellules. Leur domaine est compris entre 0 et m-I ; 

2. IlcIntSetVarArray Cells(m-1, 0, n-1), utiliste pour gknkrer les commutateurs. 

Une variable ensembliste est caract6riske par deux sous ensembles: celui des 

valeurs possibles, c'est-Mire un sous-ensemble de toutes les cellules pouvant 

Btre  affect6es au commutateur qu'elle spbolise, et un sousensemble des 

valeurs requises, qui indique, 5 un moment donne de la recherche, toutes les 

cellules dt5jja affectkes B ce commutateur. Entre ces trois ensembles se trouve la 

relation: 

EnsRequis c Cells c EnsPossibles 

A sa dation, EnsRequis=+ et EnsPossibla = (0 ...., n-1). L'objectif est alors de 

trouver pour chaque comrnutateur le sous-ensemble des t5Mments requis ; 

3. IlcIntVarArray CcostO, est un tableau de variables, utilisd pour 

l'optimisation et qui en pratique permet de fixer le coGt de c%bIage, aprbs 

chaque affectation de la cellule B un commutateur ; 

4. IIcIntVarArray hCost( ), exprime aussi un tableau de variables servant B 

I'optimisation et dont le r6le est de trouver un meilleur coOt de relbve entre les 

cellules affectkes 5 des commutateurs diffkrents; 

5. IlcRevht CapRes, c'est la capacitd dsiduelle de chaque variable ensembliste 

Cellsj. Quand une cellule est ajoutde 5 une de ces variables, on s'en sert pour 

determiner le volume d'appels restant, et sdlectionner par consequent les 

cellules qui peuvent encore lui Ctre affect6e. C'est une variable dveaible qui 

@re de mani5re implicite le retour-arri2re en cas de violation de la contrainte 

sur la capacite. 



4.3 Reprisontation des contraintes du problGme 

La contrainte sur l'affectation unique &ant d6j2 respectie de par les variables 

modaisant le probEme, nous avons dkfini dew nouvelles classes de contraintes: 

CapCoherence( ) et BorneIn$Releve( ). La premitre exprimant la contrainte sur la 

capacitb de chaque commutateur est propagee 5 chaque changement du domaine des 

variables Cells, repr6sentant les comrnutateurs. Soien t PossibleSet et RequiredSet. dew 

ensembles d'blbments possibles et requis d'un commutateur j. Soient DeltaPossibleSet 

l'ensemble des bldments reMs de PossibleSet 2 une &ape donnke de la recherche, et 

DeltaRequiredSet, l'ensemble des Cltments ajou tCs I RequiredSet . Lonque la convainte 

CapCoherence( ) est appliquke au tableau de variables ensemblistes Cells,, s'il y a 

modification du domaine d'un de ces ddments, la contrainte est appelie pour retrouver 

l'e'I6ment du tableau, c'est-Mire la variable dont I'un des domaines a Cte change. 

L'index de cette variable ainsi que le volume total des appels de toutes les nouvelles 

cellules ajoutkes, c'est-A-dire celles appartenant B son DeltuRequiredset. sont utilisQ 

pour calculer la capacitb dsiduelle de ce commutateur. Si la valeur trouvke est negative, 

alors la capacitd totale du commutateur est depassk. ce qui entrafne un Cchec dam la 

recherche de solution. Toutes les nouvelles cellules ajoutkes sont retirees et on retourne 

B la dernike valeur calculee de la capacite dsiduelle. On proctde donc 5 une mise en 

mkmoire de la valeur de CapRes, 5 chaque etape de la recherche. Cette opdration est 

prise en charge dynamiquement par la bibliothcque de LOG Solver 4.4, IlcRev qui 

utilise le retour-arri5re pour revenir sur des valeurs pkckdentes et continuer la recherche 

dam une autre direction. Si au contraire la valeur de CapRes est positive c'est-I-dire si 

la capacite r6siduelle du commutateur est respectee pour toutes les nouvelles cellules 

ajoutks, alors on parcourt toutes les cellules pour retirer de l'ensemble PcssibleSet, les 

cellules qui ne sont pas encore fix&s mais dont le volume d'appels ferait deborder la 

capacit6 du commutateur. La vaieur de CapRes est par la suite mise 2 jour. 

Pour chaque nouvelle classe de contraintes utilisee, l'algorithme comporte les trois 

etapes suivantes: 



&tape I :  Riveil de la contrainte 

mcide du moment d'appel de la verification de la contrainte. Plusieurs 

possibilit6s sont offertes suivant la nature du probleme. On peut le faire 

sur un changement de domaine, un changement des bornes de ce domaine 

ou enfin lorsqu'on fixe la valeur de cette variable. Pour notre cas, nous 

avons choisi d'effectuer le kveil de la contrainte aprks chaque 

modification du domaine de la variable Cellsj. Nous sommes en effet 

int6ressCs B obtenir des solutions n5alisables 2 chaque naeud, et il parait 

moins restrictif de verifier la contrainte de capacitd de chaque 

cornmutateur, chaque fois que des cellules sont ajoutees ou retirees de 

son domaine. 

Etape 2: Propagation de la contrainte 

On difinit la man&-e dont la contrainte est propagee sur les variables 

concemdes. Ce processus permet d'diminer des commutateurs certaines 

valeurs violant la contrainte de capacitk. 

~ r a p e  3: Virification de la contrainte 

Facultative, c'est une valeur boolienne pennettant d'exprimer si la 

contrainte est violde. 

Une fois ddfinie, cette nouvelle classe de contraintes & la Figure 4.2 est ajoute'e de 

la m a n i h  suivante: 

m.add(CapCoherence(CeIls, Capacity)), Capacity est un tableau contenant la 

capacite des diffdrents commutateurs. La vaieur de CapRes est initialide & celle de la 

capacitt? et est ddcdment6e du volume d'appels A apds chaque affectation. Un pseudo- 

code de l'algorithrne de vt5rification de la condition d'ajout de chaque nouvelle cellule & 

un commutateur est prCsent6 B la Figure 4.1. 

La seconde classe de contraintes BomeInfReieve( ) Figure 4.3 est utilisde pow 

rendre la recherche plus efficace. Elle n'est donc pas une contrainte intrinskque au 

pmb18me. Son reveil s'effectue sur un changement du domaine de la variable Switchi 

Au premier appel, on parcourt tous les commutateurs auxquels la cellule i p u t  encore 



6tre affectde. Pour chacun de ces comrnutateurs, on trouve parmi toutes les cellules du 

dseau, celles ne pouvant plus lui &re affectdes et on calcule la sornme du cotit de reEve 

entre la cellule i et ces cellules. La borne infetieure du coiit de re18ve pour la cellule i est 

alors 6gale B la valeur la plus petite, obtenue sur tous les commutateurs possibles pour la 

cellule i. Cette procedure est par la suite kp6tde clans la propagation de la contrainte. 

ap*s chaque modification du domaine. Defini de cette mani8re. l'algorithme utilise 

donc d'une manibre active toutes les informations disponibles B toutes les dtapes pour 

mettre & jour de f a~on  dynamique la borne infkrieure sur la variable de coiit de rel5ve. 

Les d e w  nouvelles classes de contrainte ainsi ddfinies, hdritent toutes de la librairie 

Soit k un commutateur, 

Soit CapRes sa capacitd dsiduelle; 

Pour tous les tl6ments possibles i de k, Faire 

Si (i c EnsRequisQ) & (CapRes(k) - A i < 0). alors 

Retirer i de I'ensemble Possible de k; 

Fin Si 

Fin Pour 

Figure 4.1 V4rification du volume d'appels pour chaqw commutateur: Exempk 
d'illustration du LA (Looking Ahead) 



I CapRes = Tunp I 

Figure 4.2 Algorithme de la dasse CapCoherence< 



Soient : 

H(i) - le coQt total de rekve pour la cellule i; 

H(i)min - le minimum de coOt de releve pour toutes les affectations 

possibles; 

Switch - le commutateur auquel la cellule i est reliie; 

Cellsj - I'ensernble des cellules affectkes au commutatew j 

Pour chaque cellule i dont le domaine est modifii, 

Faire H(i)min = Max; 

Pour chaque commutateur j, 616rnent du domaine de S witchi, 

Faire uneSom = 0; 

Pour chaque cellule i' du dseau, 

Si i' 4 Enspossible (Cellsj), alors 

uneSom = uneSom + CoutdeReleve [i][iV] (On ajoute & H(i) le 

coOt de re1Gve entre les cellules i et i'); 

Fin Si 

Fin Pour 

Si uneSom c H(i)min, alors 

H(i)min = uneSom; 

Fin Si; 

Fin Pour; 

Mettre le minimum de H(i) ii H(i)min 

Fin Pour; 

Figure 4.3 Algorithrne de la dasse IlcBomeIn$Releve () 



L' utilisati on d' une variable ensernbliste Cells pour repdsenter des celldes 

affectees B un commutateur permet &exploiter une contrainte globale ddfinie dans Ia 

librairie d'K0G Solver v4.4: ZZcNuUIntersection( ). Cette contrainte est trks efficace lors 

de la propagation ttant donne qu'elle l'efiectue sur plusieurs variables suivant differens 

algori t hmes de filtrage. De mani&re globale, IlcNulllntersechbn( ) est une con trainte qui 

pennet d'assurer l'unicite de I'afTectation en cornparant les domaines de toutes les 

variables Cellsj. Pour ce faire, des qu'une cellule est fixee ii une valeur donnde, celle-ci 

est supprimke du domaine possible de tous les autres commutateurs. Cette opdration peut 

paraltre longue, mais elle demewe tr8s pratique dans la propagation de la contrainte sur 

plus d'une variable. 

La mtthode de PC utilisie manipule deux variables principales i la fois: Cells et 

Switch. L'interaction, c'est-&dire la propagation des contraintes sur une de ces variables 

est prise en compte par la seconde variable i travers diffe'rents jeux de demons. On peut 

definir un demon comme 6tant un ensemble d'opdrations B effectuer sur une ou plusieurs 

variables du probl*me, suite B un changement de domaine, un changement des bornes de 

ce dornaine ou alors une fixation de la valeur de ces variables, ge'nkralement cause's par 

la propagation de I' une des contraintes. Le premier demon utilisd, SwitchtoCellDemon, 

est appele sur un changement de domaine. Il permet de parcourir le domaine Delta de la 

variable Switch. Le domaine Delta d'une variable enti5re est constitue des valeurs 

enlevees du domaine des valeurs possibles de cette variable et ne pouvant plus lui &re 

attribuees. Apres chaque retrait, on &mine du domaine des valews possibles du 

commutateur indiquk, la cellule i correspondante. En pratique, ceci veut dire que 

Iorsqu'on de'cide pour une raison donnbe qu'une cellule ne peut &re relike un des 

commutateurs du kseau, alors on retire cette cellule de l'ensemble des cellules possibles 

de ce commutateur. Si par contre la variable est bomge, c'est-&-dire qu'on lui trouve une 

valeur satisfaisant les contraintes, alors on l'ajoute 2 l'ensemble des requis de ce 

commutateur. SwitchtoCellDemon SeR donc ii passer des variables enti8res awc variables 

ensemblistes. Le second demon CellsfoSwitchDemon est lui aussi appel6 sur un 

changernent du domaine de la variable ensembliste Cells. Pour toutes les valeurs 
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ajoutees 2 I'ensemble Requis d'un commutateur, on fixe la valeur de  la variable ajoutke 

(la cellule ajoutee) B ce commutateur. 

Soit Switchi une variable; 

Si changement du domaine de Switchi, Alors 

Pour toute valeur retire'e d u  domaine de Switchi, Faire 

Trouver le commutateur correspondant h cette valeur, 

Retirer du domaine possible de  ce commutateur la cellule i, 

Fin Pour, 

Si Switchi est fixe'e, Faire 

Ajouter la cellule i au domaine des requis du commutateur Swirchi 

Fin Si 

Fin Si 

Figure 4.4 Algorithme du diimon SwitchtoCellDemon 

I Soit Cdkj une variable ensembliste, 

Tant que modification du domaine de Cellsj Faire 

Pour toutes les valeurs ajoutkes au domaine DeltaRequis Faire 

Fixer la valeur de toutes les cellules ajoute'es au commutateur j 

Fin Pour 

Pour toutes les valeurs enleve'es du domaine DeltaPossible Faire 

Retirer du domaine de ces cellules le commutateur j 

Fin Pour 

Fin Tant que 

Figure 4.5 Algorithme du dtmon CelltoSwitchDemon 



Si au contraire, c'est I'ensemble des valeurs Possibles qui est modifi6, cela veut 

dire qu'on a diminu6 les valeurs possibles que peuvent prendre le commutateur et on 

procede directement B I'Clirnination de ce commutateur de I'ensemble des valeurs 

possibles de la variable Swirchi. Les algorithmes de propagation des deux demons sont 

montr6s sur les figures 4.4 et 4.5. 

Une fois les contraintes testees et certaines valeurs retirees du domaine, on 

proc6de 5 1'6numdration. Les strattgies de choix de valeurs et de variables dans 

l'algorithme de recherche deviennent alors trtis importantes. Si on consid6re une 

repksentation en arbre de toutes les solutions potentielles. ces strategies pennettent de 

contdler l'ordre suivant lequel on examine les differentes branches de cet arbre. Ceci a 

pour but de diriger la recherche vers des branches de I'arbre plus susceptibles de donner 

de meilleures solutions, et d'eliminer tr& t6t celles ne pouvant conduire 2 de meilleurs 

n5sultats. Generalement, on ddveloppe des strategies de choix qui ne sont pas statiques et 

qui prennent en compte les donnks du probDme et ce. chaque &ape de la recherche. 

4.4 Choix des variables et des valeurs 

Dans ce type de mod6lisation, les contraintes contribuent de maniere efficace B la 

reduction de I'espace de recherche. Cependant, afin d'ameliorer la performance de 

l'algorithme de "Branch & Bound" utilis6. la strategic de choix des variables et des 

valeurs doit btre examinee et peut s'avdrer efficace suivant le type de problime. En effet, 

les contraintes sont propagees sur I'ensemble des variables de contraintes qui modklisent 

le problbme. Afin dT6tendre les effets de chaque propagation le plus loin possible, les 

variables sont choisies successivement et leurs valeurs fixtes. Lorsqu'une solution est 

trouvk, elle sert de borne supdrieure ii toute nouvelle solution. Suivant le choix des 

variables, on peut aboutir h un processus non dalisable qui sera suivi d'un retour-anibre 

pour essayer d'autres valeurs ou d'autres variables lorsque le domaine de celle-ci ne 

contient plus de valeurs satisfaisant les contraintes. Le choix des variables 2 fixer peut 

donc pennettre de dduire I'espace de recherche surtout dans la &solution de probli3mes 

combinatoires oir I'on desire non une seule solution r6alisable mais la meilleure solution 



dalisable possible. G&Wement, on peut utiliser deux procedures de choix des 

variables: une dlection dynamique ou une st5lection statique. Dans le probkme 

d'affectation de cellules, cornme dam tout problhme d'optirnisation, il apparait plus 

raisonnable de commencer par les variables les plus contraintes, c'est-&-dire celles ayant 

le plus petit domaine et apparaissant dans plusieurs contraintes. Par exemple pour 

plusieurs cellules, on commencera par celles qui ne peuvent etre affectees qu'h un 

nombre dduit de commutateurs. Trouver une affectation 5 ces cellules en premier lieu 

peut amener B se rendre compte t&s vite des echecs et kduire les temps dTex6cution. 

C'est ce qu'on appelle communt5ment le principe de 1'9hec d'abord ( fi rst-fai 1 principle). 

Cependant, la stratkgie P adopter depend du problbme que I'on &out bien que suivant le 

meme principe du plus petit domaine. Dans notre cas, nous avons choisi le moindre 

regret sur le coiit de clblage. Cette stratdgie consiste B commencer par les variables 

ayant la plus grande valeur de difference entre le premier plus petit coiit et le second 

plus petit coat de ciiblage. De manitre concr2te soit affecter la cellule i au 

commutateur ayant Ie plus petit coOt de cPblage parmi tous les commutateurs auxquels 

la cellule i p u t  Ctre affectbe. Soit P le prix P payer en affectant la mcme cellule i h un 

autre commutateur ayant le second plus petit coat de cablage. On commencera par les 

cellules pour lesquelles P est le plus grand car elles representent les variables pour 

lesquelles on aura le plus grand regret, en les affectant B un commutateur plutBt qu'a un 

autre. 

Cette mani5re de proc6der donne des ksultats tr8s performants lorsque les cellules 

ne sont pas situdes P kgale distance des differents commutateurs auxquels elles peuvent 

etre affoctees, et aussi parce que ia fonction objective dbpend surtout du coiit de ciiblage 

pour un nombre blev6 de cellules, ce qui est g6nhlement le cas. 

Une fois la variable choisie, on doit essayer diffbrentes valeurs de son domaine 2 

lui attribuer. L'ordre de selection des valeurs ne permet pas de kduire l'espace, mais 

pennet de guider la recherche vers des solutions avec des cofits kdui ts. Pour ce faire, la 

stratdgie adoptde est bas& sur la plus petite distance de coOt de ciiblage entre cellules et 



commutateurs. Chaque fois que la cellule est choisie, on commence par la relier au 

commutateur le plus proche dans le dseau. 

Ainsi donc, si pour le choix des variables on commence par celles ayant plus de 

chance d'Cchouer lors de I'optimisation du problime, pour le choix des valeurs, on est 

plut6t interessi B attribuer de bonnes valeurs, pouvant conduire B un coCit proche de 

I'optimum. 

4.5 Diialls d9imp16mentation 

Dans cette section, nous pdsentons les details de l'algorithme gdndral de notre 

adaptation. Nous montrons d'abord comment les donnees sont acquises et nous donnons 

un dsumt  des differentes classes implantdes et une description des algorithmes discut6s 

dam la section prtkedente. 

4.5.1 Acquisition de donnb 

Pour dsoudre le problirne d'affixtation, certaines donndes doivent &re fournies au 

programme. Ces entdes sont lues, prises en compte par le programme qui vkrifie s'il 

existe une solution kalisable, B partir de laquelle la meillewe solution sera trouvke. 

Certaines de ces donndes, cornrne les nombres de cellules et de cornmutateurs ainsi que 

leurs capacites respectives sont lues directement dans la fonction principale. Les autres 

informations sont sauvegardkes dam differents fichiers, qui sont par la suite lus B partir 

du programme. Les fichiers sont les suivants: 

1. Le fichier appel6 tc fichier de coiit de ciiblage n. C'est une matrice nxm,  oB 

chaque ligne i donne les coCits de ciblage de la cellzde i avec les m 

commutateurs du dseau. 

2. Le deuxi2me fichier, appelt? a fichier de coft de r e lhe  .. est une matrice nxn 

qui pour chaque cellule i donne le taux de reEve avec les autres cellules du 

rt?seau. 



3. Le troisiime fichier, qui est le fichier de volumes d'appels, fournit les 

donndes sur le trafic, c'est-&-dire le nombre d'appels effectuds par chacune 

des cellules du dseau par unit6 de temps. 

4.5.2 Wtails des diffkrentes classes utilisk 

Les principales Btapes du programme sont: 

Lire tous les fichien et donnees du probl2me et initialiser les diffdrentes 

variables ; 

Poster toutes les contraintes utilisees dans l'algorithme ; 

Quand il y a changement du domaine, appliquer le demon 

correspondant ; 

Si la valeur d'une cellule est fixke, calculer le coQt de liaison associde ; 

Gkne'rer les variables Switchi suivant les differentes stratdgies de 

recherche definies. Dans notre adaptation, la fonction Generate( ... ), 

fixe d'abord un coCit de relive pour chacune des cellules, qui est par la 

suite m i s  jour tout au long de la recherche B l'aide d'un demon 

FixHundoflCost, que nous avons nous meme definis. Les variables sont 

par la suite choisies suivant le moindre regret sur le coCit de liaison. 

DifiBrentes valeurs sont par la suite attribuees & ces variables suivant le 

plus petit coQt de ciiblage. Ces dtapes sont kp&tees tant que toutes les 

variables ne sont pas fixdes. 

La fonction qui minimise le coat total est r&lisb par l'appel & 

setObjMin(sum). Elle met en mkmoire la derniBre valeur de la variable 

de coat trouvde, ajoute une nouvelle contrainte sur la borne sup&ieure 

du coiit total i chaque itchtion. Cette prockdure est executee tant qu'il 

existe encore des solutions au problbme. Lorsqu'il n'y en a plus, le 

solveur retient la derniiire solution trouvee et fournit le dsultat. 



Les exp6riences ont BtB n5alisdes avec [LOG Solver v4.4, qui est un langage orient6 

objet avec une biblioth2que de classes pour les contraintes sur domaine fini. Le 

diagramrne des principales classes de contraintes utilisdes est @sent6 ii Ia Figure 4.6. 

Membres ~ r i v 6 ~ :  
IlclntSetVarArray Cells; 
IlcRev CapaRes; 
llclnt index; 

Membres ~ u b l i c ~  
CapCoherencel( ); 
CapCoherence( IlcManager, 
Cells, capacity); 
void post( ); 
void propagate( ); 

Bornelnf Relevel 
Membres ~ r i v 6 ~  
IlclntSetVarArray Cells; 
IlclntVarArray Switch, 
handoffcost ; 
llclnt cindex; 
IlcBool PremierAppeI; 

hlernbres ~ub l ics  
BornelnfRetevel( ); 
BornelnfRelevel( m. Cells. 
Switch. handoffcost, 
coutReleve ); 
void post( ); 
void propagale( ); 

Figure 4.6 Diagramme des principales classes de contraintes 

4.6 Mise en ceuvre 

Pour illustrer les diffdrentes Ctapes de notre adaptation de la programmation par 

contraintes & ce problbme d'affectation, nous avons pris un exemple de fichier 

comportant quatorze cellules et trois comrnutatews. Les donnks ndcessaires ont 6t6 

g6nddes par un programme Matlab et prises de Houdto et Piem (2000). Les cas tests 



g6nCds supposent que le coot de liaison d'une cellule & un cornrnutateur est 

proportionnel B la distance qui les separe, avec un coefficient de proportionnalit6 igal B 

I'unite. Le taux d'appel y;- d'une cellule i est determine suivant une loi gamma de 

moyenne et de variance Cgales B I'unit6. Les temps de sejour des appels ii l'int6rieur des 

cellules sont distribu~s selon une loi exponentielle de param6tre 1. Le taux de relbve 

entre les cellules est 6valu6 en tenant compte des cellules avoisinantes. Si par exemple 

une cellule poss2de k voisins, I'intervalle [0,1] est divisC en k+I sous-intervalles en 

choisissant k nombres albatoires distribuc5s uniformc5ment entre 0 et I. Pour un appel qui 

prend fin A l'intdrieur d'une cellule j donde, on peut avoir deux issues: soit I'appel est 

transf6n5 2 la ~mcellule voisine (i  = I ,  .... k) avec une probabilite de reDve r~ Cgale a la 

longueur du tm intervalle, soit l'appel est coup6 avec une probabilite Cgale B la longueur 

du k + ~ * ~  intervalle. Les cellules sont alors consid6rdes c o m e  des files d'attente 

M/M/I formant un reseau de Jackson. Les taux d'arrivees ai dans les cellules Z i  

l'iquilibre sont obtenus en rksolvant le systeme: 

tXi-Z;.qrg= yi avec i = I. .... n 
On choisit comme volume d'appel hi d'une cellule i, la longueur moyenne de sa file 

d'attente. Le taux de r e b e  hij est ddfinit par. 

hij = hi. rij 

La capacitk des commutateurs est dkterminde comrne suit : 

Capacite' = (I +K/1oO)/m Zi Ai 

oP K est choisi uniformement entre 10 et 50, ce qui permet d'obtenir une capacite de 

commutateur su@rieure de 10 B 50% au volume d'appel des cellules et m repdsente le 

nombre de commutateurs. Les tableaux 4.1'4.2 et 4.3 donnent respectivement les cofits 

de cgblage entre cellules et commutateurs, de relBve entre les differentes cellules et les 

volumes d'appels de chacune des cellules et enfin les capacids des commutateurs. 



Tableau 4.1 Cof t de csblage entre cellules et commutateurs 

Tableau 4.2 CoQt de reliive entre cellules 

Cellules 

0  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3  

3 8 3 I 8 1 5 7 0 0 0  0  0  0  0  

0 1 0 0 0 4 2 0 0  4 1 0  0  

1 0 6 0 0 0 5 1 0 1  0  0  0 0  

0 6 0  6 0 0 0  7 0 0  0  0 0  

0 0 6  0 1 3 0 0 0 0  0  0  0  0 

0 0 0 1 3  0 6 0 0 0  0  0 0 11 

4 0 0  0 6 0 0 0 0  0  9 2 4  

2 5 0  0  0 0 0 0 1 1  3 0 0  0  

0 1 0 7  0 0 0 0 0 4  0  0  0  0  

0 1 0 0 0 0 1 1 4 0 0 0  0 0  

4 0 0  0 0 0 3 0  0 0  5 0  0  

1 0 0 0 0 9 0 0 0  5 0  7  0  

0 0 0 0 0 2 0 0 0 0  7 0 6 

0 0 0  0 1 1 4 0 0  0  0  0  2 0  



Tableau 4.3 Volumes d'appels des cellules et capacitiis des commutateurs 

L'algorithme essie d'abord de trouver une solution dalisable en utilisant les 

principes de l'adaptation. Le Tableau 4.2 est utilisf pour sflectionner la premiere 

variable, suivant le principe du moindre regret. Par exemple, pour la cellule z h ,  le 

commutateur zPro fournit le plus petit cofit de cfblage dgal 5 0. Si on dicide plut6t 

d'affecter cette cellule au commutateur deux ou un qui est le second commutateur ayant 

le deuxihe plus bas coOt de liaison @gal B 2) dans le tableau, alors on induit une 

augmentation de cofit qui est igale 2 2. Ce calcul est effectue pour toutes les autres 

cellules du reseau. Les resultats obtenus sont inscrits au Tableau 4.4. Suivant ces 

valeurs, les variables de cellules il choisir sont celles ayant le plus grand regret c'est-2- 

dire ies cellules 0,9, 12. ~ t a n t  donnf que le regret se trouve etre le meme pour toutes ces 

celhles, alors la sdlection se fera suivant l'ordre d'entrie de ces variables. 

Tableau 4.4 CaIcul du regret sur le coiit de liaison pour les cellules 

Ainsi donc, la premiere variable B ajouter est celle correspondant P la cellule 0, 

premier 6ldment du tableau Switchi. IR choix de la valeur est bade sur la plus petite 

distance. Toujours suivant le tableau de coQt de ciiblage, le cornrnutateur ziro est le 

premier commutateur auquel la cellule 0 est affectie. Les contraintes sont appliqudes sur 

toutes les variables. La contrainte d'unicite entrainera le retrait de la cellule 0 du 

Cellules 

Regret 

12 

2 

13 

0.73 

0 

2 

11 

0.73 

1 

0.73 

7 2 

0 

8 

0.730.73 

3 

0.73 

9 

2 

10 

0 

4 

1.65 

5 

0.73 

6 

0 



domaine des valeurs possibles de toutes les variables Cells,, avec j # 0. La cellule 0 est 

alors ajoutde 5 i'ensemble des requis du cornmutateur 0, et la valeur de Switch0 fixke P 

0. On continue cette prockdure jusqu'g ce que la capacite d'un des commutateurs soit 

atteint. Dans ce cas, on retire la d e r n i h  valeur de cellule affectie pour laquelle on 

silectionne le prochain commutateur de plus petit coQt. Lorsque toutes les contraintes 

sont enfin respectkes et une affectation trouvde pour toutes les cellules du probkme, 

alors la premiere solution est trouvke. Son coot est de 120 unites (Figure 4.7). 

Cornrnutateur 0 

Cornrnutateur 1 

Figure 4.7 Solution initiale de l'affectation 

Le schdma d'affectation obtenu respecte la contrainte sur la capacitd mais 

n7int2gre aucun critere d'optimisation. A partir de celle-ci, on essaie de trouver des 

solutions meilleures en ajoutant une contrainte nouvelle sur la borne sup6rieure du coQt 

total de toutes prochaines solutions suivant l'algorithme de "SCparation et   valuation". 
D'autres solutions sont alors examinees en attribuant differentes valeurs aux variables 

gdnCrc?es, suivant les crit&es de recherche etablis. 

L'interaction entre la variable de coQt et les autres variables permet de propager la 

contrainte sur les variables de rnod6lisation, A tous les niveaux de la recherche. La 



solution finale obtenue (Figure 4.8) a un cofit de 75.92 unites. Dans cette affectation, 

aucune celiule n'est affectee au commutateur 2- 

La solution obtenue respecte toutes les contraintes du probleme et est trouvee en 

un temps de calcul raisonnable, pour ce type de kseau. Dam la prochaine section, nous 

dons effectuet une sdie de tests pour verifier la performance de notre adaptation et 

aussi tester son efficacid par rapport aux autres heuristiques. 

Comrnutateur o 

I ( Commutateur 1 

Figure 4.8 Solution finale obtenue 

4.7 Analyse des r6dtats  

Dans le but de mesurer la perfo~nance de l'algorithme props6 par rappolt h la 

.qualit& de ces dsultats, nous l'avons soumis 2 une s&ie de tests. Diffdrents cas ont bt6 

consid~r6s avec des nombres variables de cellules et/ou de cornrnutateurs. Dans ce qui 

suit, nous pdsenterons d'abord les dsultats obtenus il partir de la mise en m u m  de 



notre adaptation de l'algorithme de "branch & bound' (Separation et  valuation 
progressive) au problcme d'affectation de cellules B des commutateurs. Nous en 

ddduirons ainsi les relations entre la taille, le temps d'exe'cution, le nombre de 

"backtracking" (retours-arri8re) et les contraintes du problime. Enfin nous ferons une 

cornparaison de nos dsultats avec ceux trouvds par d'autres approches heuristiques 

telles la recherche taboue, I'algorithme gendtique et le recuit simule. 

4.7.1 Plan d9e@riences et environnement d9ex6cution des tests 

Les fichiers utilisds pour effectuer les diffdrents tests ont Ett5 pris de la litterature 

(Hou6to et Pieme, 2000). Dans un premier temps, nous avons r6alisd une skrie de tests 

avec un nombre fixe de commutateurs et un nombre variable de cellules. L'objectif est 

non seulement d'Ctudier le lien entre le nombre de variables et le temps d'exdcution, 

mais aussi d'essayer diffdrentes stratdgies de recherche pour en de'gager celles qui 

dkbouchent rapidement sur de rneilleurs dsultats, en particulier pour les problemes 

ayant une solution exacte. Pow cela, nous avons test6 20 dseaux differents pour chaque 

type de problcme, dont le nombre de cellules varie entre 15 et 100, pour un nombre de 

commutateurs variant entre 2 et 4. Dam un second temps, pour degager le comportement 

global de notre algorithme par rapport aux autres mkthodes, nous avons r6alisk differents 

tests s w  des dseaux de petite, moyenne et grande taille. Pour les reseaux de petite taille, 

le nombre de cellules varie de 15 h 30 cellules, alors que le nombre de commutateurs est 

6gal B 2 ou 3. Pour les n%eaux de taille moyenne, le nombre de cellules varie de 50 h 

100, pour un nombre de cornmutateurs compris entre 4 et 5, enfin pour les rkseaw de 

grande taille, le nombre de cellules varie entre 150 et 200, pour un nombre de 

commutateurs variant entre 6 et 7. Toutes les expriences ont 616 dalides sur une 

machine UltraSparclO. Compte tenu du fait que le temps d'exkution peut &re Clevt 

pour certains types de rdseau, nous avons fix6 une lirnite d'une journee d'execution pour 

chaque type de probEme. 



4.7.2 Effet du nombre de cellules sur le nombre de retour-amhe 

Nous avons voulu Ctablir le rapport entre le nombre de cellules, le nombre de 

contraintes et le temps d'exe'cution. Pour effectuer cette analyse nous avons utilise' les 

mernes strategies de recherche d&eIop@es A la section 4.4, c'est-%dire celles qui sont 

basCes sur les crit5res suivants: 

Choix des variables par le moindre regret sur le coQt de ciiblage; 

Choix de valeurs suivant le plus petit coat de cPblage entre celiules et 

cornrnutateurs. 

Suivant les dsultats obtenus et qui sont present& au Tableau 4.5, le nombre des 

variables de contraintes croit avec le nombre des cellules du reseau. La Figure 4.9 

montre que cette croissance suit une courbe linkire pour un nombre fixe de 

comrnutateurs. Cette remarque demeure valable pour le nombre de contraintes 

examinees dans les diffdrents problkmes analyds, et ce pour un nombre fixe de 

commutateurs. En ce qui conceme le nombre de backtracking, les problkmes analyst% ne 

permettent pas de deduire un comportement global de leur variation en fonction du 

nombre de cellules et de comrnutateurs dans Ie re'seau. On a donc proce'dd B une analyse 

sur une moyenne des differents fichiers pour chaque type de problime. Les resultats 

obtenus sont prdsentds au Tableau 4.6. Celui-ci confirme le fait que l'augmentation du 

nombre de contraintes dans notre cas, n'entrahe pas systematiquement une 

augmentation du nombre de backtracking. Cette conclusion itai t pkvisible puisque 

I'utilisation des contraintes non intrinseques au probleme, la modelisation par deux 

variables combinees avec les diffCrentes strategies de recherche permet d'effectuer de 

grandes coupures dam l'arbre. La coupure ainsi dalis6e Cvite 1'6numCration avec des 

valeurs non optimistes qui gdndralement ddgradent la qualit6 de la solution. Une analyse 

plus approfondie des coots de cablage et de relbve d d l e  toutefois que si la valeur de 

moindre regret, utilisde comme stratbgie de recherche pour effectuer le choix des 

variables, est la mSme pour plusieurs cellules, alors on rencontre plus d'echecs avant 

d'aboutir B la solution finale. Par consequent, ce choix serait inaddquat pour de tels 

dseaux. Enfin, pour tous les types de problkmes dsolus, le temps d'ex6cution ne varie 



pas en fonction de la taille du kseau. En effet, il est plut6t fonction du nombre de 

backtracking effect& qui lui non plus n'est pas fonction de la topologie du dseau pour 

les raisons que nous venons d'inumirer. 

Tableau 4.5 Rapport entre Ie nombre de celluIes et le temps d9ex&ution 

I #cellules 1 #comm ( #var ( #contraintes (#d't5ckcs ( Tps CPU(s) 1 

I I +nombre de ~r iables --c- nombre d8 contraintes 

Figure 4.9 Variation des variables et des contraintes en fonction du nombre 
de cellules (m=3) 



Tableau 4.6 Rapport entre le nombre de cellules et le temps d6ex&ution 
(moyenne sur un ensemble de probl5mes avec m=3) 

4.6.3 Effet des contraintes sur la recherche de solution 

Deux classes principales de contraintes ont Ctd utilisies: ncAllNullIntersection( ) et  

ilcBorneZnfReZeve( ). 

Contrainte IlcAllNulZIntersection( 1 

La classe ZlcA llNullIntersection( ) est une contrainte globale qui perrnet 

d'exprimer la contrainte d'unicite de chaque affectation de cellules 2 des commutateurs, 

repdsenttis dam notre adaptation par des ensembles. L'application de cette contrainte 

necessite deux paradt res  qui sont le tableau des ensembles sur lesquels elle s'applique 

et la mithode de filtrage. Dans ILOG Solver v4.4, il existe trois types d'algorithme de 

filtrage. Nous avons IlcLow, IlcBasic, IlcExtended. Le premier effectue le filtrage en 

cornparant les ensembles du tableau deux B dew. Les deux autres propagent sur tous les 

comutateurs et s 'avhmt plus efficaces en tenne de nombre de variables sw lesquels 

ils sont propage's. as sont donc d'une plus grande complexit6 par rapport au premier 

algorithme de filtrage, vu le nombre d'op6rations A effectuer. Afin d'examiner le gain 

obtenu au niveau du temps d'exicution et partant du nombre d'khecs obtenu avec 

1' utilisation de differen ts niveaux de filtrage, nous avons effectut plusieurs tests prenant 



en compte ces differents algorithmes. Les dsultats sont represent& au Tableau 4.7. On 

remarque ainsi qu'en gedral, quel que soit le type de filtrage utilise, on aboutit toujours 

au meme rt5sultat. Le nombre dt&hecs rencontds dans chacun des differents cas est 

aussi le meme. Cette dernBre remarque indiquerait don que les problbmes ksolus ne 

sont pas uPs sensibles au type de filtrage pernettant d'imposer la contrainte d'unicite de 

I'affectation sur les variables ensemblistes Cells. Ceci est du au fait que la contrainte 

d'unicitk est trivialement respectde par les variables Switchi. consid&5es comme 

deuxitme variable de modt%sation dans notre adaptation. L'utilisation de la contrainte 

IlcAllNulllntersection n'est donc pas nkessaire pour la dsolution du probl8me. 

Tableau 4.7 Effet de la contrainte IlcAI~ullIntersection sur le nombre de 
retour-arrihe et le temps d'exkution 

#cellules #comrn n c ~ o w  IlcBasic IlcEx tended 

#6checdTps(s) #t5checs/fps #&hecsmps 

15 3 0/0.07 010.09 0/0.08 

Contrainte ZZcBonzelnfReleve( 1 

La ddfinition d'une borne inferieure sur le coOt total de relsve a induit une grande 

performance au niveau de la qualit6 des dsultats obtenus. Comme le confirme les 

nkultats du Tableau 4.8, pour un mCme dseau, le nombre d'dchecs rencontds avant 

d'aboutir ii la solution finale est plus &lev6 sans cette contrainte. Par exemple. pour un 

r6seau de 40 cellules et de 3 comrnutateurs, 1'exCcution effectue 440 echecs, en un temps 



d'environ 1 seconde 26 avec l'ajout de la contrainte sur la borne infdrieure, alors qu'il 

effectue pr&s de 3239 bhecs en 8 secondes 57 sans l'utilisation de cette contrainte. Pour 

certaines tailles de reseau, c o m e  celui de 50 cellules et de 3 commutateurs. 

I'algorithme n'aboutit pas 1 une solution dans les delais indiques. La contrainte 

IZcBorneInteleve, n5veilIke 5 chaque modification du domaine des commutateurs et 

propagee de mani&e dynamique sur les variables fixees ou non par la mCthode du LA 

(Looking Ahead) perrnet de r6aliser de grandes coupures et determine en partie 

Tableau 4.8 Effet de la contrainte IlcBomeInfReleveO sur le temps 
d'exiicution 

#cell ules 

15 

20 

- -  --- 

Borne Inf 

#dc hecdT'ps(s) 

Sans BorneInf 

#&checflps(s) 

Solution 

opti male 

109 

195 

366 

46 1 - 
588 - 
714 

4.6.4 Cornparaison avec d'auhs m6thodes heuristiques 

Le probl5me &affectation de cellules h des commutateurs a ett5 dsolu avec 

diverses m6thodes heuristiques qui sont: les algorithmes gendtiques (AG), la recherche 

taboue (RT) et le recuit simul6 (SA). Nous avons donc confront6 les solutions obtenues 

par notre adaptation avec celles des autres heuristiques af~n d'en ddgager son efficacitd 

Si nous sommes certains d'aboutir ii des solutions optimales pour certains types de 

rCseaux (jusqu'ii 100 cellules), pour les grandes tailles de probl2mes. la cornparaison des 



ksultats avec les autres mt5thodes pourrait nous pernettre de determiner la robustesse de 

I'adaptation de la PC 5 ce problime d'affectation de cellules 5 des commutateurs. Nous 

nous somrnes in thss& donc dam un premier temps 2 une etude comparative avec les 

algorithmes g6nktiques, la recherche taboue et le recuit simuli, qui sont les plus dcentes 

m6thodes appliquges B ce probl5me. Les tests ont kt6 effectuks sur differents Gseaux 

soit avec un nombre variable de celhles et de commutateurs ou avec un nombre variable 

de cellules et un nombre fure de commutateurs. Les rt5sultats prt5sentt5s aux tableaux 4.9 

et 4.10 font itat d'une performance supkrieure de notre adaptation par rapport aux quatre 

autres heuristiques pour des dseaux avec un nombre fixe de commutateurs, vu que les 

solutions trouvt5es par l'algorithme repksentent l'optimum. Toutefois, il est B remarquer 

que certaines mdthodes comme SA et AG donnent des solutions meilleures, ce qui 

indiquerait probablement une kexamination des sources de leurs resultats afm de 

verifier si la contrainte sur la capacitk des commutateurs est respectde. Dans notre cas, 

toutes les solutions trouv6es ont 6t i  testdes et respectent cette contrainte. 

Tableau 4.9 Pourcentage d'am6lioration de h PC par rapport h AG, RT, SA et 
HB (nombre variable de commutateurs) 



Tableau 4.10 Pourcentage d'am6lioration par rapport h AG, RT, SA et HB 
pour un nombre fixe de commutateurs 

Ensuite, nous avons procede B une comparaison de notre adaptation avec 

l'heuristique propos6e par Beaubrun, Pierre-et Conan (1999) dksignke par heuristique 

HB dam la litteratwe, ce, pour un nombre fixe et variable de commutateurs. Les tests 

ont i t6  igalement appliquts sw les memes series de donndes qu'auparavant. Les 

dsultats comparatifs avec la mtthode HB sont aussi pdent6s  aux tableaux 4.9 et 4.10. 

Une comparaison entre les m6thodes d6velopMes dans la litte'rature et les bornes 

inferieures que nous avons trouvks, montre que les meilleurs rdsultats obtenus jusque I i  

sont ceux fownis par la methode de recherche taboue. Ceci s'explique par le fait que la 

RT utilise plusieurs types de mouvements, ce qui lui perrnet de mieux diriger la 

recherche et d'tviter le piege du minimum local. Le Tableau 4.11 donne une 

comparaison des solutions de la recherche taboue avec notre adaptation de la 

programmation par contraintes sur un ensemble de kseaux de taille fixe. Une 

comparaison entre les temps d'execution est B l'avantage de la recherche taboue dont le 

crit&e d ' d t  est bas6 sur le nombre de mouvernents ap& lequel aucune amelioration 

n'est obtenue. Les valeus obtenues sont pdsent6es aux tableaux 4.12 et 4.13. 



Tableau 4.11 Moyenne d'dliorati 
commu 

~n PC et RT (pour un nombre fae de 
hteurs) 

Tableau 4.12 Cornparaison des temps d'ex6cution entre PC et RT (pour un 
nombre fue de commutateurs) 

Temps d' execution 

(sed 

Toujours dans le but d'bvaluer les n5sultats obtenus avec notre adaptation de la 

programmation par concraintes par rapport ceux de la recherche taboue, nous avons 



effectue une sene de tests sur un nornbre de comrnutateurs (n = 2) et un nombre variable 

de cellules (m = 20 5 100). L'optimum a ete trouv6 pour tous les fichiers testes. 

Tableau 4.13 Cornparaison des temps d'exCcution entre PC et RT (nombre 
variable de commutateurs) 

A partir des tableaux 4.9 B 4.13 ajnsi obtenus se dkgage ce qui suit: 

1. La m6thode de PC ici d&elop@e foumit des solutions objectives optimales 

pour des fichiers de tests dont la taille varie entre 15 et 100 cellules pour un 

nombre de commutateurs tgal B 2 ou A 3. En particulier, il est I noter que la 

solution est obtenue en des temps de calcul qui sont raisonnables. 

2. Pour les dseaux de plus grande taille, les dsultats que nous obtenons se 

trouvent aussi e s  satisfaisants et se cornparent avantageusement aux 

differentes heuristiques ddjA appliquees I ce probli?me, A part la recherche 

taboue. En effet, les figures 4.1 1 et  4.12 montrent une m6lioration sup6rieure 

aux rdsultats fournis par les algorithmes gedtiques (AG), Ie recuit sirnu16 

(SA) et l'heuristique HB. 



3. Pour la cornparaison des temps d'exdcution avec I'heuristique de la recherche 

taboue, notre m6thode semble plus coQteuse. Mais le gain obtenu est assez 

bon pour justifier cette perte de performance. En effet les solutions que fournit 

I'adaptation de la PC se trouvent souvent proches ou parfois rneilleures que 

celles de la RT, bien que ne repdsentant pas la solution optimale. 

4. Enfin, notons que les solutions proches de celles fournies pa .  la RT (lorsque 

celles-ci se trouvent etre meilleures) pour Ies &seam de grande tailie sont 

trouvt5es en quelques minutes. Mais vu qu'elles ne repdsentent pas 

I'optimum, nous ne pouvons d6gager le temps exact de calcul pour atteindre 

l'optimum global, les temps d'exdcution ayant kt6 fixis B un jour pour ces 

differen ts problernes. 

4.8 Cornparaison avec une estimation de la borne inf6rieure 

Dans la m6thode de retour-arriere (branch & bound) utilisde pour notre 

adaptation, nous avons effectue une recherche dans tout I'espace disponible. De ce fait, 

toutes les solutions possibles sont explodes par l'algorithme qui, lorsqu'il se termine 

indique que la solution trouvde est l'optimum. Afin d'6valuer la qualit6 de nos solutions 

et aussi de degager la distance par rapport i un optimum global pour les fichiers de 

grande taille dont la solution exacte n'a pu etre trouvde, nous allons procdder B une 

cornparaison avec une estimation de la borne inf6rieu.e. 

4.8.1 Prhntation de la m6thode d'estimation d9une borne inf6rieure 

Le problbme l dsoudre consiste essentiellement ih trouver une aectation dont la 

valeu. objective minimiserait le coot total de ciiblage et de rekve, tout en respectant la 

contrainte sur la capacit6 des commutateurs. Lorsque I'on relache la contrainte sur la 

capacit6 des commutateurs, une premi8re borne infdrieure peut s'krire sous la forrne: 



seriel : PC avec AG s6rie2: PC avec RT, serie3:PC avec SA, 
s6rie4: PC avec HB 

Taille des reseaux 

Figure 4.10 etude c o m p d e  pour les r6seaux de taille variable 

(nombre de commutateurs variant) 

seriel: PC avec AG, serie2: PC avec RT, serie3: PC avec SA, serie4:PC avec 
H8 

Figure 4.11 Etude comparee pour les r6seaux ayant un nombre variable 
de cellules (nombre de commutateurs fixe) 



Malheureusement, cette borne ne tient pas compte des rel2ves entre cellules et 

commutateurs et suppose que toutes les cellules peuvent Ctre affectees 5 un meme 

comrnutateur. En ne considimt pas ce cas exeme,  c'est-&-dire en supposant que toutes 

les cellules ne peuvent &re affectees & un meme comrnutateur, Houito et Pierre, 1999 

ont ktabli que l'on devrait aboutir B au moins une bipartition (p,q) de I'ensemble des n 

cellules du dseau. Dam ce cas, te nombre total de rel2ves & considbrer est kgal B 2pq et 

on peut trouver le nombre minimal de rel2ves en dsolvant le probltme suivant : 

min 2pq 

Sujet 5: p + q = n, pL 1, q 2  1 (4.2) 

Vu que la solution de ce probDme a pour bipartitions (1.n-I) et (n- l . l ) ,  une borne 

inferieure pour le nombre de relbves est 2(n-I). Si on suppose que la matrice de coot de 

reltve est representbe par H, et que l'on ddsigne par ~ ' s a  transposde, soit hT la matrice 

triangulaire sup6rieure de (H+H '). Une borne infkrieure tenant compte des coiits de 

relgves devrait considdrer au moins n-1 releve de hF Ainsi, ils ont pu trouvet une 

nouvel le borne inferieure: 

n-l n 

=2 = e,n(ca ,+ 2 XI,- {,(~,,,l..,,,,, 

oh N- designe I'ensemble des n-1 premiers minima de la matrice triangulaire hT, I N _  

designe la fonction indicatrice de I'ensemble N_. avec I K x ) =  I si x E N_ et 0 sinon. 

Enfin hr(p,q) disigne I'tlbment P la ligne p et h la colonne q de la matrice triangulaire 

hT. Pour finir, notons que LBI I LB2 et donc LB2 est a priori une meilieure bome 

inferieure que LB I .  

4.8.2 Rapport entre la borne inf6rkure et les solutions t r w v b  

Avec I'architecture des &seam de communications personnelles, une cellule 

possede au plus six voisines. De ce fait, lorsque le nombre de cellules augmente, la 

matrice H comporte plusieurs 6iCments nuls. Cela entdne que les n-I premiers minima 

de la matrice triangulaire hr sont nuls et la bome inferieure LB2 est approximativement 



&gale ii L B I .  Le Tableau 4.14 montre I'icart entre les vdeurs objectives de Ia RT et la 

borne id6rieure LB2 d'une part, et Ie pourcentage d'amdioration de notre adaptation par 

rapport ii Ia RT pour les re'seaux de moyenne taille pour lesquels nous avons pu 

determiner une solution exacte. On remarque qumd meme un Ccart entre les valeurs qui 

s'explique par le fait que la borne inferieure LBZ ne tient pas compte de la valeur des 

cofits de rel5ve qui sont consid6rables pour ces types de fichiers. Les solutions obtenues 

pour les fichiers de plus grande taille sont presentees au Tableau 4.15. La PC est donc 

une m&hode de rtisolution simple mais tr6s robuste qui donne des rt5sultats proches de 

I'optimum dans I'ensemble. Cette simplici3 est possible au prix d'une bonne 

connaissance du probliime 2 r&oudre, afin d'en exploiter au maximum les relations 

entre les contraintes. 

Tableau 4.14 Comparaison pour m =3 de PC par rapport i RT et i la borne 

Tableau 4.15 Comparaison de PC par rapport i RT et i la bome inf& 
(BI) (pour un nombre variable de commutateurs) 



La m6thode de PC donne ainsi des solutions exactes pour des tailles de n5seaux 

allant jusqu'a 100 cellules. Sur d'autres, dont on n'a pas pu atteindre l'optimum, les 

solutions se cornparent avantageusement P celles trouvees par la mkthode de recherche 

tabou, qui foumit des coats moindres par rapport B toutes les autres heuristiques 

adapt6es au problbme #affectation. 



CHAPITRE5 
CONCLUSION 

5.1 Synthikw des travaux 

Dans ce mtmoire, nous avons d6veloppt5 et mis en euvre une adaptation de la 

programmation par contraintes au problhme &affectation de cellules B des commutateurs 

dam les rkseaux de communications personnelles. Ce probkme qui consiste 

essentiellement & minimiser une fonction de coot composke des coClt de liaisons et de 

releves, tout en respectant des contraintes de capacitks des commutateurs. Considkrer 

toutes les combinaisons possibles pour en degager la meilleure conduit tr6s vite 5 une 

explosion combinatoire et ne p u t  Ctre effectui en un temps polynomial. Ainsi pour un 

nombre de cellules sup6rieur 15, les mkthodes heuristiques jusque 18 d&eloppdes ne 

fournissent pas de solutions exactes 5 ce probl5me. 

Avec les dcentes techniques dCvelopges en programmation par contraintes, il est 

possible d'utiliser de manike active les contraintes du problsme pour guider la 

recherche et restreindre le domaine des valeurs prises par les variables de modklisation. 

De ce fait, en exploitant les techniques de r6solution d&elop@es en recherche 

ophtionnelle, il est possible de guider la recherche et d'espdrer aboutir B de bonnes 

solutions en un temps raisonnable 

L'algorithme utilisC est bas6 sur les techniques de n5solution sur domaine fini. 

Ap+s plusieurs exp6rimentations, nous avons opt6 pour l'utilisation de deux variables 

dans la mod6lisation du problbme. En effet, les diffdrentes contraintes impostks par le 

probli5me B &soudm sont propagdes plus ou moins en profondeur suivant la variable sur 

laquelle elles sont appliqu6es. Le fait de mod6liser le problbme avec deux jeux de 

variables permet d'exploiter la performance de propagation de chacune de ces variables. 

L'interaction entre les variables de moddlisation est B son tour n5alisi &ice ii 

I'utilisation d'une strie de ddmons que nous avons ddfinis et qui gkent de m a n i b  

dynamique les rplations entre les variables. La recherche des bonnes solutions est 



dalisde avec par le biais des strategies qui permettent de choisir efficacement 5 chaque 

iteration les meilleures variables ainsi que les valeurs B lew assigner panni tout 

l'ensemble possible. La performance de l'algorithme a i t6 amelior6e &ice & la 

ddtermination d'une borne infe'riewe sur le coat des relGves dont l'insertion cornrne 

contrainte dam l'algorithme a permis d'aboutir &s rapidement h une bonne solution 

initiale kalisable. Cette nouvelle classe de contraintes ajoute beaucoup de  robustesse B 

la methode puisqu'elle est propagee dynamiquement sur toutes les variables h chaque 

changement de leur domaine. 

De manigre gen&ale, les solutions que nous avons obtenues sont satisfaisantes. 

Pour des problPmes de taille realiste allant jusqu'i LOO cellules, nous avons pu 

determiner des bomes inferieures en quelques minutes. En vue de degager les meilleurs 

paramitres 2 utiliser, nous avons test6 notre adaptation avec differents paramitres de la 

programmation par contraintes. Entre autres, nous avons test6 I'influence des diffkrentes 

strategies de recherche, du type d'algorithme de filtrage et de l'ajout de la contrainte sur 

la borne inf&iewe du coiit de reEve sur la nature des solutions obtenues. Ainsi, un choix 

judicieux de ces param&es a permis de retenir ceux offrant les meilleures. 

Nous avons aussi effect& une cornparaison de notre algorithme avec plusieurs 

autres algorithmes adapt& B ce probl5me. De cette cornparaison, il resulte que la 

mkthode proposke est la premiGre pouvoir fournir des solutions optimales pour des 

r&eaux d'une certaine taille (entre 15 et  100 cellules pou 2 ou 3 comrnutateurs). Les 

heuristiques de  recuit simul6, d'algorithme gknetique foumissent des risultats qui sont 

en g6n6ral triis loin de l'optimum global trouve pour ces rdseaux. Quant P la recherche 

taboue, elle fournit des dsultats t&s proches des valeurs de la PC. &ant donne que le 

temps dTex&ution de l'algorithme devient consid6rable lorsque le nombre de cellules et 

de comrnutateurs croit, nous avons alors pmcedd 5 une analyse de nos dsultats avec 

ceux de la RT, en fixant un temps d ' d t  d'environ une joumee pow les grands dseaux. 

Ici aussi, les esultats obtenus sont satisfaisants et, dans certains cas, meilleurs que la 

RT bien que ne repdsentant pas I'optimum. Notons enfin la pefiomance de notm 



adaptation de la PC. qui branche tr2s tat sur de bonnes solutions lorsque la taille du 

dseau augmente. 

5.2 Limitations des travaux 

En depit des r6sultats satisfaisants foumis par notre algorithme, il est important de 

remarquer que les solutions obtenues dipendent fortement des pararnbtres du probkme h 

dsoudre. 

En effet le choix de la stratkgie de recherche effect& dans cette adaptation est base 

sur des valeurs de coOts de liaison et des rel5ves. Ces derniers varient fortement en 

fonction des donnees utilisees. Bien que les tests aient 6t6 effechks sur un grand nombre 

de fichiers, il est difficile de dire que pour n'importe quel type de fichiers nous 

aboutirons aun mCmes arnCliorations. Si on consid6re que dans certains types de kseaux, 

I'on desire principalement minimiser les coQts de relbves, les critbres exploit& dans 

cette adaptation ne foumiront pas nkcessairement des solutions aussi optimistes. De plus 

nous avons utilis6 un critbre d ' d t  qui est bas6 sur le temps d'execution, pour de 

grands reseaux. La mkthode ne garantit donc pas I'obtention d' une solution exacte pour 

ceuxci. Il serait ici intkressant de developper une adaptation dont le but premier serait 

de trouver la meilleure solution et non une solution optimale. 

Notre algorithme n'utilise pas de m a n i h  efficace la redondance des contraintes 

exploitde en PC pour la reduction de I'espace de recherche. XI aurait kt6 peut2tre plus 

efficace d'exarniner toutes les contraintes du problbme pour en propager celles dont 

I'expression sous une autre forrne peut entrainer une propagation plus en profondew. 

Notre algorithme exploite efficacement deux variables dans la md6lisation, ce qui 

parfois augmente le nombre de variables et le temps d'exdcution. Une appmche 

possible serait peut Ctre de considerer I'utilisation d'une seule variable, en particulier 

celle repdsentant les commutateurs et d'analyser le comportement de cette 

md6lisation par rapport B notre adaptation. 

Enfin, la PC n'utilise aucun c r i t h  pour contr6ler la recherche ii part les strategies 

de recherche dont nous avions fait mention. Une fois les contraintes propagdes, on 



prociide par 6num6ration pour trouver la meilleure solution. Cette procedure n'utilise 

donc pas des mkanismes de convale dam le processus d'6numkation. 

5.3 Indication de recherches futures 

Le probleme d'affectation de celIules B des commutateurs pose encore plusieurs 

defis. La m6thode de programmation par contraintes ktant relativement Aente,  

plusieurs pistes sont encore I! explorer dans I'adaptation de cette methode B la dsolution 

dudit problbme. Les futurs travaux de recherche pourraient par exemple elaborer de 

nouvelles strategies dynamiques de recherche basees sur les deux composantes de coiit. 

On pourrait par exemple Blaborer une strategic de recherche qui permettrait d'essayer les 

valeurs de coot de releves lorsque les cellules se trouvent ttre 2 6gale distance des 

commutateurs. 

Il serait aussi inttressant de trouver si possible d'autres fomes de modBlisations 

plus efficaces du probkme. Ceci devrait tenir compte de I'ajout de nouvelles contraintes 

redondantes au probltme. 

D'un autre cat&, il serait souhaitable de tenir compte de la variation du volume 

d'appels 5 I'interieur d'une cellule et d'inclure cette formulation dam la resolution du 

probl&me. 

Et enfin, on pourrait essayer de dsoudre le probl5me de domiciliation double avec 

I'approche de la programmation par contraintes. Ce dernier fait intervenir une nouvelle 

contrainte sur la borne inferieure, qui se trouve &re diffkrente de celle que nous avons 

dkfinie dans ce memoire compte tenu du fait que chaque cellule p u t  2tn2 affectke B deux 

commutateurs suivant les moments de la joumee. Le problbme ii ksoudre devient alors 

plus contraint et serait mieux dsolu avec les methodes de la PC. 



BEAUBRUN R., PIERRE S. et CONAN I., An efficient method for optimizing the 

Assignment of Cells to MSCs in PCS Networks. Proceedings 11" Int. Con$ on Wireless 

Comm. Wireless 99. Vol. I ,  July 1999, Calgary (AB), pp. 259-265. 

BENHAMOU F. et COLMERAUER A., Constraint logic programming: Selected 

Research. MlT Press, 1993. 

BORNING A-, The programming language aspects of ThingLab, a constraint oriented 

simulation laboratory. ACM Transactions on programming languages and systems, 3(4): 

252-387, October 198 1. 

COHEN J., Constraints logic programming languages. Communications of the ACM. 

33(7): 52-68, July 1990. 

COLMARAUER A., an introduction to PROLOG-3. Communications of the ACM. 

33(7): 69-90, July 1990. 

COLMARAUER A., opening the PROLOG-3 universe. BYTE Magazine. l2(9), August 

1987. 

COIMARAUER A., PROLOG 2. Reference manual and theoretical model, technical 

report. Groupe Intelligence Artifiielle, universire' Air- Marseille, October 1982. 

FAGES F., Programmation logique par contraintes. I!?ditions ellipses, 1996. 

GLOVER F., Tabu search -part 1, ORSA Journal on Computing, vol.1, No.  3, 1986, 

pp. 190-206. 



HEDIBLE C., PIERRE S., Algorithme g6dtique pour ITaffectation de cellules 2 des 

comrnutateurs, memoire de maitrise, Dpr. de gknie Plect rique et g h i e  infonnatique. 

~ c o l e  Palytechnique de Montrgal, Novembre 2000. 

HOLLAND J. HeT Adaptation in Natural and Artificial System, The University of 

Michigan Press, Ann Arbor, Michigan 1975. 

HOLLAM) J. H., Genetic Algorithms and the optimal allocation of trials, SLAM Journal 

of Computing, Vol. 2, No. 2, 1973, pp. 88-105. 

HOUETO F., PIERRE S., Affectation de cellules 2 des commutateurs dam les kseaux 

cellulaires mobiles, article sournis a u  Annales des Te'lkornmunications, 2000. 

JAFFAR J., LASSEZ J.-L., Constraint logic programming. In Proceedings of the 14" 

ACM Symposium on principles of Programming Languages, pp 1 1 1- 1 19, Munich, 

Germany, January 1987. ACM Press. 

JAFFAR J., MAHER M., Constraint logic programming: A survey. Journal of Logic 

Programming, 19620: 503-582, 1994. 

KLINCEWICZ J. G., Heuristics for the phub location problem, European Journal of 

Operation Research, vo1.53, 199 1 ,  pp.25-37. 

MARRIOTI' K. et STUCKEY P., Programming with Constraints: an Zntroduction, MIT 

Press, 1998. 

MERCHANT A., SENGUPTA B., Assignment of Cells to Switches in PCS Networks, 

IEEUACM Transactions on Networking, vo1.3, NOS, 1995, pp.52 1-526. 

MERCHANT A., SENGUPTA B., Multiway graph partitioning with applications to 

PCS Networks, ZEEE Znfocom'94, vo1.2, 1994, pp.593-600. 



PESANT G., An optimal algorithm for the traveling salesman problem with time 

windows using constraint logic programming, Publication CRT (Centre de Recherche 

sur les Transports, Montr&al), 1996, No 1030. 

SAHA D., MUKHEWEE A. et BHATTACHARYA P. S., a simple heuristics for 

assignment of cells to switches in a PCS Networks, Wireless Personal Communications, 

v0112,2OOo. 

SAMADI B. et WONG W. S., Optimization Techniques for Location Area Partitioning, 

gh ZTC Specialist Sern. UPC, Geneva, 1992. 

SKORIN-KAPOV J., Tabu search applied to the quadratic assignment problem, ORSA 

Journal on Computing, vo1.2, No. 1, 1989, pp 3345.  

SUTHERLAND I., Sketchpad, a man-rnachine graphical communication system. In 

proceedings of the Spring Joint Computer Conference, pp 329-346. IF[PS, 1963. 

VAN HENTENRYCK P., D E W  Y. et MICHEL L., Numerics. A modeling 

language for global optimization. M f f  Press. 1997. 




