POLYPUBLIE e |

PO'YtGChnique Montréal D'INGENIERIE

Titre:
Title:

Auteur:
Author:

Date:
Type:

Référence:
Citation:

POLYTECHNIQUE

A [
UNIVERSITE o

Affectation de cellules a des commutateurs par programmation par
contraintes

Grace Amoussou

2001
Mémoire ou these / Dissertation or Thesis

Amoussou, G. (2001). Affectation de cellules a des commutateurs par
programmation par contraintes [Mémoire de maitrise, Ecole Polytechnique de
Montréal]. PolyPublie. https://publications.polymtl.ca/6970/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . S
PolyPublie URL: https://publications.polymtl.ca/6970/

Directeurs de
recherche: Samuel Pierre, & Gilles Pesant

Programme:

Advisors:

Program: Non spécifié

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/6970/
https://publications.polymtl.ca/6970/

UNIVERSITE DE MONTREAL

AFFECTATION DE CELLULES A DES COMMUTATEURS PAR
PROGRAMMATION PAR CONTRAINTES

GRACE AMOUSSOU
DEPARTEMENT DE GENIE ELECTRIQUE ET DE GENIE INFORMATIQUE
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE ELECTRIQUE)

Avril 2001

© Griace Amoussou, 2001

I*l yfaﬂonal Library Bibli daue nationale

Your Si9 Votre réédrence

Our Sl@ Notre rélérence

L’auteur a accordé une licence non
exclusive permettant i la
Bibliothéque nationale du Canada de

du Cana
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell

copies of this thesis in microform,
paper or ¢lectronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-65567-9

Canadi

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé:

AFFECTATION DE CELLULES A DES COMMUTATEURS
PAR LA PROGRAMMATION PAR CONTRAINTES

présenté par: Grice Amoussou
en vue de I’obtention du diplome de: Maitrise és sciences appliquées

a été diment accepté par le jury d’examen constitué de:

M. CONAN Jean, Ph.D., Président

M. PIERRE Samuel, Ph.D., membre et directeur de recherche
M. PESANT Gilles, Ph. D., membre et codirecteur de recherche
M. SORIANO Patrick, Ph.D., membre

a mon pére ...

REMERCIEMENTS

Plusieurs personnes m’ont apporté leur soutien pour la réalisation de ces travaux
de recherche.

De fagon particuliére, j’aimerais remercier mon directeur de recherche M. Samuel
Pierre sans qui je n’aurai pas eu cette opportunité. C’est 1’occasion pour moi de lui
exprimer ma reconnaissance pour le choix du sujet, son aide financiére, sa patience
mais surtout pour les nombreux conseils qui m’ont soutenu et guidé au cours de cette
recherche.

Je remercie également M. Gilles Pesant, mon codirecteur, pour son aide financi¢re
et pour avoir partagé avec moi sa connaissance du sujet.

Je remercie Joél, mon frére qui m’a permis de réaliser mes études universitaires,
mes parents, fréres et sceurs pour leur soutien moral durant toutes ces années d’études.

Enfin, je remercie tous mes collégues du LARIM (Laboratoire de recherche en
Réseautique et Informatique Mobile) et du CRT (Centre de Recherche sur les
Transports) pour leurs contributions variées au contenu de ce mémoire et en particulier

pour I’ambiance de travail chaleureuse.

RESUME

Les réseaux de communications personnelles (RCP) offrent divers types de
services comme les données, la voix, la vidéo, le courrier électronique sur un méme
support non filaire. La gestion de la mobilité des usagers a I'intérieur de tels réseaux
entraine plusieurs problémes jusque 13 inexistants dans les réseaux commutés publics.
Dans la résolution de certains de ces problémes, qui se trouvent étre de nature NP-
difficiles, on a souvent recours a des méthodes et techniques utilisées en optimisation
combinatoire.

Ce mémoire porte sur I’adaptation des techniques de la programmation par
contraintes pour la résolution d’un probléme bien connu dans les RCP et qui est celui de
I’affectation de cellules 3 des commutateurs. I1 s’agit en fait de déterminer une
affectation des différentes cellules du réseau a des commutateurs (dont les localisations
sont fixes et connues), qui minimiserait une fonction de coits composée des coiits de
reléve entre toutes les cellules d’une part, et des coiits de liaison entre cellules et
commutateurs d’autre part. De plus, toute solution réalisable devrait respecter la limite
de capacité de chaque commutateur. Le nombre d’affectations a considérer peut
entrainer une explosion combinatoire.

La programmation par contraintes permet de simplifier la résolution de problémes
combinatoires complexes. L'idée de base consiste & concevoir des techniques de filtrage
efficaces pour réduire l'espace de recherche. Ainsi, dans notre adaptation, nous avons
défini une modélisation des inconnues du probléme sous forme de contraintes qui réduit
considérablement I'espace de recherche. L’algorithme utilise la technique du
“Contraindre et Générer” pour imposer le respect des contraintes; par la suite, la
méthode de “limitation et exploration” (Branch & Bound) est appliquée pour trouver la
meilleure solution.

Comme contributions majeures de ce mémoire, nous avons pu définir une
contrainte sur la borne inférieure du coiit de reléve qui permet d’éliminer de la recherche

plusieurs solutions non réalisables. La mise au point d’un ensemble de stratégies de

sélection des variables, spécifiques a ce probleme d’affectation, nous a permis de diriger
de maniére dynamique la recherche et d’aboutir a de bons résultats.

Dans le but d’évaluer la performance de I’algorithme par rapport aux autres
heuristiques adaptées a ce méme type de probléme, nous avons effectué une série de
tests. Malgré sa simplicité, notre adaptation fournit des solutions exactes aux réseaux de
taille moyenne et donne des solutions qui se comparent avantageusement aux autres
méthodes pour des réseaux de grande taille.

Les résultats obtenus montrent que la définition d’une contrainte sur la borne
inférieure du cofiit de reléve permet de réduire de mani¢re considérable le domaine des
valeurs prises par les variables de modélisation. De plus, les stratégies de choix de
variables dans 1’algorithme de “Branch & Bcund”, varient suivant les types de
probléme; elles sont plus efficaces lorsqu’elles sont dynamiques et tiennent compte des
informations disponibles a chaque étape de la recherche. Enfin, méme si le temps de
calcul peut parfois étre onéreux pour certaines tailles de réseaux, les solutions obtenues
pour les problémes de taille moyenne sont optimales et peuvent servir comme critére
pour une évaluation de la distance des autres heuristiques par rapport a la meilleure

solution.

ABSTRACT

Personal Communication Services (PCS) networks offer a lot of services like
transmission of voice, video and e-commerce over wireless support. The fact that users
inside those networks are free to move causes a lot of challenges to the providers of
those kinds of services. Most of the methods used to solve those problems are from
operations research.

Our thesis discusses a very important problem of cell assignment to switches in
cellular mobile networks. It can be summarized as a search for an optimal assignment of
cells to switches in order to minimize the total cost composed of the handoff cost
between cells and the linking cost between cells and switches. We propose here an
algorithm based on constraint programming for this problem. The choice of this method
is motivated by its active use of constraints in the search for solutions, which in tumm
leads to the reduction of the search space and of the complexity of the problem. The
COP (Constraint Optimization Problem) used here is based on “Branch & Bound”
techniques.

The principal contributions of this thesis are:

e A Constraint Programming (CP) modeling of the problem of assigning cells
to switches;

e The definition of a lower bound on the total handoff cost between cells;

e The development of a new daemon and search strategies. Daemons help to
handle dynamically the relations between the constrained variables, as the
strategies direct the search. The result is an efficient way of finding the best
solutions.

In order to evaluate the efficiency of our method, we compared it with other
heuristics that have been adapted to the same problem. Results indicated that our
algorithm leads to optimal solutions for medium - sized networks and can deliver a

. satisfactory solution for large - scale networks.

TABLE DES MATIERES
DEDICACE......ccoceremsrereramsnncces veevesesseanasess ceeesmsessensrensasrerestnsnsaenenasnensanas v
REMERCIEMENTS cesenemenssesssnenesanssssarsnse cemcsessnneeneanans '/
RESUME..................... eteruesesssseentrenensrassenes st sanesaseneatr e aasaas sar e e e e s s nans vi
ABSTRACT.. . renssessssenensasnsensennesness ceeneneec VIl
TABLE DES MATIERES.......ccccorcsesesssemsasssssasssssassssasnasenss reeeesessesesesanaans IX
LISTE DES FIGURES.......... veeeeeresnenenesnsnenens rereesenesessnensessrnes p (1]
LISTE DES TABLEAUXcccceeereeene eeetstasssasssesssrenssesaesnesnsaensannsaeasaessntaneanes Xiv
LISTE DES SIGLES ET ABREVIATIONS............ccccceeee. veensmemenessmsnsassnensnsnnen XV
CHAPITRE 1 INTRODUCTION.. sevesetseseserseseesnesnenseseseressssssenensasasansnasenss 1
1.1 Définitions et concepts de base 1
1.2 Eléments de la problématique 2
1.3 Objectifs de recherche et principales contributions escomptées 4
1.4 Plan du mémoire S
CHAPITRE 2 AFFECTATION DE CELLULES A DES COMMUTATEURS 6
2.1 Architecture et caractéristiques des RCP 6

2.1.]1 ATCHItECHUTE dES RICP ... e creeeeeeeiiereenteertuttieessseccrossssssnsssssssssassassnsssnesssessssnssssssssassess 6

2.1.2 Caractéristiques des RCP...........ooo o reereeeieceerreemeeeneeseeseseeemcmanersasasscsessssessss 7
2.2 Formulation du probléme d’affectation de cellules 10
2.2.1 Modélisation suivant la domiciliation simple...........cccccccoeevrniirinnnnnrnnnnnnen. eveeeeeens 10
2.3 Caractérisation du probléme d’affectation 14
2.3.1 Probléme de tranSPOTT.............ooiiiicriceteereerseeee e oneresessessesssnsmssnssasssnsansesnsnses 15
2.3.2 Probléme de partitionnement de graphes............ccccooiniimoinniiciriirincnrenisrensnnees 16

2.4 Méthodes classiques de résolution du probléme d’affectation de cellules.......... 17

2.4.1 Application de la méthode de Merchant et Sengupta.............cccovvvmmreriininnnncennnens 17
2.5 Autres heuristiques de recherche 20
2.5.1 Heuristique de recherche taboue (RT)ccoovmomieireremmrenrrrerneeccmrernnnciscescsnsesseees 20
2.5.2 Heuristique basée sur I’algorithme génétique.............cccccovvreiirccennnernrnnccnnereeennes 23
2.5.3 Heuristique du recuit SIMULE............cccoiimmrerieiiiecereecrcrrensrceneseeenemsmesssisssesssssnsssans 25
2.5.4 Heuristique basée Sur 1€s Srappesccooveeiiecreceeccsicitennnesosesreneeereeecne s eneevnsees 26

CHAPITRE 3 APERCU DE LA PROGRAMMATION PAR CONTRAINTES ...28

3.1 Evolution et concepts de base de la programmation par contraintescce.... 28

3.1.1 EVOIUtON QU JANGAGEomeeeeeeeeenereeterersenesesesenesesessesessesenessenssssasasssesensenees 29
3.1.2 Concepts de base...........uuueoeinuieirmrirncteeeeereee e e s s e e s 29
3.2 Domaine fini et résolution de problémes combinatoires 33
3.2.1 Probléme de satisfaction de contraintes (CSP).............cormrieerecrcecrieeenrerisrescsesnenes 33
3.2.3 Heuristiques d’énUMETatioN..........coeeeeemieeiciiinmireccecencreersssessessesssensnssnissnsnssesnssanes 41
3.2.4 Résolution de problémes d’optimisation combinatoireccccceveerirnineererenennens 42

3.3 Applications de la PC a quelques problémes de recherche opérationnelle........45
3.3.1 Coloriage de Braphe...........eeceoieiinicteeicccccrreneeereesessesessssansninsessssssesennes 46

3.3.2 Affectation de fréquences dans un réseau cellulaire................cccooovirinnnnncccnrrccerienes 46

3.3.3 Probléme d’ordonnancement de tAChesccccemreeromriieriiiieremmmieereeeeeeceeeeeeee, 48
3.3.4 Probléme du commis voyageur avec fenétre de temps.........ccooevvemrecccnnericicennennnans 49
CHAPITRE 4 IMPLEMENTATION, MISE EN OEUVRE ET RESULTATS.....53
4.1 Adaptation de la PC a la résolution du probléme S3
4.2 Modélisation du probléme SS
4.3 Représentation des contraintes du probléme S8
4.4 Choix des variables et des valeurs 65
4.5 Détails d’implémentation 67
4.5.1 Acquisition de dONNEES............c..coveiirrmiiimirieeececeee e e st 67
4.5.2 Détails des différentes classes UtIISEESuevvrruuvivrreeiriiicireneeeeeeeeeeeeeeee 68
4.6 Mise en ceuvre 69
4.7 Analyse des résultats 74
4.7.1 Plan d’expériences et environnement d’exécution des tests......ccceereeemminiiccnncn. 75
4.7.2 Effet du nombre de cellules sur le nombre de retour-arri€recccocveeeeennnnene. 76
4.8 Comparaison avec une estimation de la borne inférieure 85
4.8.1 Présentation de la méthode d’estimation d’une borne inférieure 85
4.8.2 Rapport entre la borne inféricure et les solutions trouvees..........coeceeeeeeceervencnnnnc. 87
CHAPITRE 5§ CONCLUSION.......ccccccermemrerennniccctunnnenees sreseensonssansansanannes S 90
5.1 Synthése des travaux 90
5.2 Limitations des travaux 92

5.3 Indication de recherches futures 93

BIBLIOGRAPHIE..............oocieeeceeeerencnnsscansmnesssssntsnesssssssecenanssessnssssassssssasesasns

LISTE DES FIGURES

Figure 2. 1 Architecture d’un réseau cellulaire 8
Figure 2. 2 Reléve dans un réseau cellulaire 9
Figure 3. 1 Algorithme d’élimination de Gauss-Jordan 32
Figure 3. 2 Arbre de recherche avec retour-arriére 34
Figure 3. 3 Algorithme du retour-arriére 35
Figure 3. 4 Algorithme de cohérence de neuds 36
Figure 3. § Algorithme de cohérence d’arcs 38
Figure 3. 6 Algorithme de la contrainte alldifferent (version incrémentielle) 40
Figure 4. 1 Vérification du volume d’appels pour chaque commutateur: Exemple
d’illustration du LA (Looking Ahead) 60
Figure 4. 2 Algorithme de la classe CapCoherence() 61
Figure 4. 3 Algorithme de la classe IlicBornelnfReleve () 62
Figure 4. 4 Algorithme du démon SwitchtoCellDemon 64
Figure 4. 5 Algorithme du démon CelltoSwitchDemon 64
Figure 4. 6 Diagramme des principales classes de contraintes 69
Figure 4. 7 Solution initiale de I’affectation 73
Figure 4. 8 Solution finale obtenue 74
Figure 4. 9 Variation des variables et des contraintes en fonction du nombre de
cellules (m=3) 77
Figure 4. 10 Etude comparée pour les réseaux de taille variable 86

Figure 4. 11 Etude comparée pour les réseaux ayant un nombre variable de

cellules (nombre de commutateurs fixe) 86

LISTE DES TABLEAUX
Tableau 4. 1 Coiit de ciblage entre cellules et commutateurs 71
Tableau 4. 2 Coiit de reléve entre cellules n
Tableau 4. 3 Volumes d’appels des cellules et capacités des commutateurs 72
Tableau 4. 4 Calcul du regret sur le coiit de liaison pour les cellules 72
Tableau 4. S Rapport entre le nombre de cellules et le temps d’exécution 77

Tableau 4. 6 Rapport entre le nombre de cellules et le temps d‘exécution (moyenne
sur un ensemble de problémes avec m=3) 78
Tableau 4. 7 Effet de la contrainte IlcAliNulllntersection sur le nombre de retour -
arriere et le temps d’exécution 79
Tableau 4. 8 Effet de la contrainte IlcBornelnfReleve() sur le temps d’exécution 80
Tableau 4. 9 Pourcentage d’amélioration de la PC par rapport a AG, RT, SA et HB
(nombre variable de commutateurs) 81
Tableau 4. 10 Pourcentage d’amélioration par rapport a AG, RT, SA et HB pour
un nombre fixe de commutateurs 82
Tableau 4. 11 Moyenne d’amélioration PC et RT (pour un nombre fixe de
commutateurs) 83
Tableau 4. 12 Comparaison des temps d’exécution entre PC et RT (pour un
nombre fixe de commutateurs) 83
Tableau 4. 13 Comparaison des temps d’exécution entre PC et RT (nombre
variable de commutateurs) 84
Tableau 4. 14 Comparaison pour m =3 de PC par rapport a RT et i la borne
inférieure (BI) 88
Tableau 4. 15 Comparaison de PC par rapport a RT et a la borne inférieure (BI)

(pour un nombre variable de commutateurs) 88

AG
BB
BI
BSC
BST

16(0)
CSP
MsSC

RC
RCP
RT

LISTE DES SIGLES ET ABREVIATIONS

Algorithme Génétique

Branch &Bound

Borne Inférieure

Base Station Controller

Base Station Transceiver
Constraint Logic Programming
Constraint Optimisation Problem
Constraint Satisfaction Problem
Mobile Switching Center
Programmation par Contraintes
Personal Communication Services
Recuit Simulé

Réseaux de communications personnelles

Recherche Taboue

CHAPITRE 1
INTRODUCTION

Nous assistons ces derniers temps a une prolifération des services offerts par les
systtmes de communications personnelles. Les transferts de données, d’image, et de
vidéo sont autant de services accessibles aux utilisateurs de ces types de réseaux dont le
nombre ne cesse de croitre. Il va sans dire que tous ces changements entraineront, si ce
n'est déja le cas, une restructuration dans la conception et dans la gestion des futurs
réseaux de communications mobiles. Parmi les problémes répertoriés et qui demeurent
incontournables pour I'administration efficace de ces futurs réseaux se trouve celui de
I’affectation des cellules a des commutateurs, qui fait ’objet de ce mémoire. Dans ce
chapitre, nous allons définir dans un premier temps les concepts fondamentaux utilisés
dans les réseaux de communications personnelles afin de préciser notre problématique
de recherche. Nous exposerons par la suite nos objectifs de recherche et les principales

contributions escomptées et enfin nous esquisserons le plan du mémoire.

1.1 Définitions et concepts de base

Les services de communications personnelles sont offerts sur des réseaux de
communications personnelles (RCP). Le territoire couvert ou la zone de couverture que
peuvent desservir de tels réseaux est généralement découpée en de petites surfaces
géographiquement limitées et communément appelées cellules. Celles-ci sont souvent
représentées par des hexagones dont le rayon varie de quelques centaines de métres a
quelques kilométres au maximum. A I’intérieur de chacune de ces cellules se trouve un
sous-systéme radio constituant une station de base ou BST (Base Station Transceiver)
qui s’occupe des transmissions radio sur la cellule. Intégrés a la station de base, des
canaux de signalisation vont permettre a I’abonn€ de communiquer avec la BST et vice
versa. Les stations de base sont a leur tour reliées a des contrileurs de station de base ou
BSC (Base Station Controller). C’est ce sous-systéme qui sert donc d’interface radio
entre chaque terminal mobile et le réseau lui-méme. Le sous-systéme réseau est 4 son

tour constitué de commutateurs ou MSC (Mobile Switching Center) installés a

I’intérieur de quelques-unes des cellules choisies de maniére stratégique. Le role d’un
commutateur est d’assurer I’interconnexion des différentes cellules du réseau mobile
entre elles et aussi avec les autres réseaux de télécommunications.

Les terminaux mobiles sont en général utilisés en déplacement. Pour éviter des
interférences, deux cellules contigués n'utilisent pas les mémes canaux radio. La
transmission doit donc changer de canal chaque fois que le mobile passe d’une cellule a
une autre. Ce processus de transfert automatique de la communication d’une station de
base a une autre est appelé reléve (handover ou handoff). Concrétement, le systéme
cellulaire contrdle en permanence la puissance du signal entre le mobile et la station de
base dans laquelle il se situe. Dés que la puissance tombe sous un niveau donné, le
systéme attribue automatiquement une nouvelle cellule au mobile. Ce transfert de
cellules peut entrainer un changement de commutateur, auquel cas des opérations de
mise a jour sont réalisées et on parle de reléve complexe, sinon on a une reléve simple ne

faisant intervenir qu’un méme et unique commutateur.

1.2 Eléments de la problématique

Dans un RCP, les usagers peuvent étre en déplacement a I’intérieur d’une surface
géographique donnée. La liaison avec le réseau est assurée par interface radio, c’est-a-
dire que chaque cellule est munie d’une antenne qui lui permet de communiquer avec les
usagers sur différentes fréquences. La communication avec chaque usager est prise en
charge par I'une des cellules les plus proches, choisie en tenant compte du niveau du
signal recu. Généralement, on définit un seuil au-deld duquel on considére que la
puissance regue est assez importante pour €tre prise en compte par une cellule. Les
informations échangées par les usagers sont a leur tour gérées par le commutateur qui
dessert cette cellule. Celle-ci est donc desservie par un seul commutateur a la fois.
Lorsque différentes cellules (situées a proximité) regoivent toutes des niveaux du signal
supérieur au seuil, seule celle ayant le niveau le plus élevé assurera la prise en charge de
I'usager. De ce fait, la communication sera relayée par le commutateur auquel ladite

cellule est affectée. Plusieurs cas peuvent se présenter lors du déplacement du mobile

d’une cellule A, reliée a un commutateur X, vers une autre cellule B ayant un plus fort

niveau du signal:
1) Les cellules A et B sont contrlées par un méme commutateur, dans ce
cas la reléve est simple et ne nécessite pas des opérations de mise a jour de la
base de données de I'usager. Seul le commutateur X intervient dans cette
opération.
2) Lacellule B est contrdlée par un commutateur Y différent de X. Dans ce
cas, plusieurs informations sont échangées entre les deux commutateurs pour
mettre a jour la base de données du réseau (localisation de I’usager, type
d’appels, etc.). De plus, il peut arriver que certaines opérations, comme la
facturation, continuent d’étre effectuées par le commutateur X. On aura ainsi
une connexion de I’usager au commutateur ¥, puis au commutateur X et enfin
au réseau. On parle de reléeve complexe dont le colit est trés é€levé

comparativement a une reléve simple.

La reléve complexe constitue une opération sollicitant beaucoup de ressources de
la part du réseau et dont il convient de réduire autant que possible le coit. De ce fait, il
serait souhaitable d’établir une fréquence des reléves entre les différentes cellules, afin
de pouvoir regrouper celles échangeant le plus, sous le contréle d’'un méme
commutateur. Ces différentes considérations sont a la base du probléme d’affectation de
cellules a des commutateurs qui peut étre énoncé de la maniére suivante:
Etant donné un ensemble de cellules et de commutateurs de capacités (Erlang) finies,
trouver une affectation des cellules a ces commutateurs qui minimiserait le coit total
constitué du coiit de liaison entre cellules et commutateurs d’une part, et du coiit de
reléve entre les cellules d’autre part. La résolution de ce probléme doit donc prendre en
compte les facteurs suivants: la topologie du réseau, la capacité des commutateurs et le
volume des appels échangés par unité de temps dans chacune des cellules.
Plusieurs méthodes, pour la plupart heuristiques, ont été proposées pour sa
. résolution. Merchant et Sengupta (1994) ont résolu le probléme suivant deux schémas

d’affectation. Le premier schéma impose I'unicité de 1’affectation dans la configuration
du réseau: c’est la domiciliation simple. Le second schéma considére
qu’indépendamment du trafic, une affectation efficace 2 un moment de la journée peut
I’étre moins a un autre moment. On doit alors réaliser une domiciliation double, ¢’est-a-
dire permettre qu’une cellule puisse étre affectée a deux commutateurs différents
auxquels elle sera reliée suivant les moments de la journée. Dans I'un ou I’autre cas, le

probléme a résoudre demeure trés complexe et nécessite une approche heuristique.

1.3 Objectifs de recherche et principales contributions escomptées

Notre objectif dans ce mémoire est d’appliquer les méthodes de la programmation
par contraintes (PC) a ce probléme. Pour ce faire, nous introduirons une nouvelle
modélisation du probléme. Celle-ci utilise les variables, ainsi que les contraintes qu’elles
doivent satisfaire, de maniére active, pour aboutir a une bonne réduction de I’espace de
recherche. Nous essayerons par la suite d’appliquer plusieurs jeux de démons pouvant
permettre de mieux propager les contraintes du probléme sur les différentes variables
utilisées. De plus, diverses stratégies de recherche seront exploitées pour réduire le
temps de calcul, surtout pour des problémes de grande taille. L’utilisation de ces
stratégies permettra de se rendre compte trés tét des échecs et de limiter la zone de
recherche a des parties de 1’arbre pouvant déboucher sur de bonnes solutions.

Les principales contributions escomptées sont les suivantes:

1. La modélisation sous forme PC du probléme d’affectation de cellules a
des commutateurs, l’utilisation des variables ensemblistes parmi les
variables de contraintes, la définition de différents démons pour établir
des liens dynamiques entre les différentes variables, a travers leurs
différents domaines, la définition d’une borne inférieure du coiit de
releve;

2. La détermination d’une solution exacte en des temps de calcul

raisonnables pour les réseaux de taille moyenne ;

3. La définition de nouvelles stratégies de recherche pour optimiser le temps
de calcul.
11 en résultera un outil de résolution de ce probléme basé sur la programmation
par contraintes. Le choix de cette méthode est justifié par sa simplicité et son utilisation
efficace des contraintes dans la résolution des problémes du méme type et reconnus

comme NP-difficiles.

1.4 Plan du mémoire

Le mémoire est divisé en cinq chapitres. Aprés ce premier chapitre d’introduction,
le chapitre 2 présente une formulation sous forme de programmation en nombres entiers
du probléme d’affectation, ainsi qu’une revue des méthodes qui lui ont été appliquées.
Le chapitre 3 décrit la méthode de programmation par contraintes que nous nous
proposons d’appliquer dans ce mémoire. Le chapitre 4 expose les détails
d’implémentation, de mise en ceuvre de la méthode et une analyse des résultats. Enfin, le
chapitre 5 présente une synthése des travaux mettant en évidence les principaux résultats

obtenus et leurs limitations ainsi qu’une indication des recherches futures.

CHAPITRE 2
AFFECTATION DE CELLULES A DES COMMUTATEURS

L’affectation des cellules a des commutateurs dans les réseaux de communications
personnelles (RCP) peut étre considérée comme un probléme de gestion de ressources
qui se pose dans la phase de conception de ces réseaux. Nous allons, dans ce chapitre,
présenter de maniére succincte ce probléme. Nous commencerons par une analyse de
I’architecture et des caractéristiques des réseaux cellulaires. Par la suite, nous
présenterons une formulation mathématique du probléme d’affectation, ce qui nous
aménera a examiner quelques travaux effectués en recherche opérationnelle qui traitent
de certains de ces aspects. Enfin, nous passerons en revue certaines méthodes proposées

pour la résolution de ce probléme.

2.1 Architecture et caractéristiques des RCP

Les résecaux mobiles de troisiéme génération, souvent désignés par réseaux de
communications personnelles et les réseaux cellulaires de deuxiéme génération
possédent une architecture trés proche 'une de I’autre. Cependant, contrairement aux
systémes de deuxiéme génération, les syst¢émes de troisiéme génération fournissent des
services de types variés et ayant des débits différents. Dans cette section, nous allons
présenter I'architecture de ces réseaux ainsi que les différentes caractéristiques
techniques que l'on doit prendre en compte pour affecter des cellules a des

commutateurs dans ce contexte.

2.1.1 Architecture des RCP

Les RCP désignent I’ensemble de tous les systémes de télécommunications
offrant des services de communication tels la voix, les données numériques, le
multimédia sur des supports de transmission non filaires et & des usagers mobiles.

Chaque abonné d’un tel systéme est identifié au travers d’une carte 2 mémoire, la carte

SIM (Module d’Identification de I'’Abonné) qui lui permet de se connecter au réseau pour
bénéficier des services auxquels il est abonné et ce, quelle que soit sa localisation.
L’architecture des RCP est basée essentiellement sur celle des réseaux cellulaires.
On retrouve une décomposition de toute la superficie a desservir en petites zones
géographiques souvent modélisées par des formes hexagonales et contigu€s assurant une
couverture compléte de la zone. Ces zones sont communément appelées cellules. A
I’intérieur de chacune de ces derniéres se trouve une station émettrice de base (BST :
Base Station Transceiver) qui sert d’interface radio entre chaque mobile et le réseau
d’une part, et entre le réseau et les abonnés d’autre part. La BST constitue avec le
contrdleur de station de base (BSC : Base Station Controller) le sous-systéme radio dont
la principale fonction est de prendre en charge la transmission et la signalisation entre
les différents utilisateurs d’une cellule. Le sous-systéme réseau est a son tour constitué
des différents centres de commutation du service mobile (MSC : Mobile Switching
Center) et son role est d’assurer I’interconnexion des différentes stations de base non
seulement entre elles mais aussi avec les autres types de réseaux comme le réseau
public. De par leur fonction, les nceuds de commutation que sont les MSC représentent
des points centraux et sont placés a I’intérieur de certaines cellules, choisies de manicre
stratégique. Chaque commutateur gére un certain nombre de stations de base et dispose
d’une capacité maximale fixée. Celle-ci est souvent exprimée en termes de volume
d’appels, que regoit le commutateur des différentes cellules qui lui sont affectées. Ces
MSC sont par la suite reliés entre eux, comme !’illustre la Figure 2.1. On introduit
parfois la notion de charge partagée (balancing loading) qui consiste a répartir le trafic

entre les commutateurs.

2.1.2 Caractéristiques des RCP

Lorsqu’un utilisateur est a I’intérieur du réseau, son terminal est raccordé a une des
stations de base (ou cellules) en fonction de la puissance du signal qu’il regoit. Dans son
déplacement, si cette puissance tombe au-dessous d’un certain seuil, certaines

opérations sont mises en ceuvre pour la relayer par une nouvelle cellule.

BSC
MSCo[¢—P ‘— 3
Utilisateurs BSCAe¢—P | Utilisateurs
du réseau du réseau
e PSTN {
cellulaire fixe
BSCI¢—P
MSC1[¢—> I
BSC

Figure 2. 1 Architecture d’un réseau cellulaire

Le processus qui permet d’initier et d’effectuer un changement de cellule, avec les
mises 2 jour que cela nécessite constitue la reléve (handoff ou handover). Etant donné la
nature des signaux transmis sur les réseaux, la reléve doit s’effectuer de manicre
transparente a I’unité mobile. On distingue généralement deux types de reléve: la reléve
complexe et la releve simple. La reléve est dite complexe dans le cas ou elle
s’accompagne d’un changement de MSC, c’est-a-dire que la nouvelle cellule est
controlée par un commutateur autre que la cellule quittée. Dans ce cas, plusieurs
opérations de mise a jour sont effectuées et celles-ci demandent une forte consommation
des ressources du réseau. Par contre, lorsque les deux cellules sont reliées 3 un méme
commutateur, aucune mise a jour n’est réalisée et on parle de reléve simple. La Figure
2.2 illustre la reléve a I'intérieur d’un réseau cellulaire. Si 1’usager passe de la cellule C;
a la cellule C3, seul le commutateur MSC, est concemé et aucune mise a jour n’a
besoin d’étre faite: c’est donc une reléve simple. Les informations de signalisation et de

facturation continuent alors d’étre gérées par une méme entité. Mais, pour un

déplacement du mobile de la cellule C; vers la cellule Cy, les deux entités du réseau que
sont les commutateurs MSC; et MSC, entrent en dialogue pour mettre a jour leur
base de données a travers les enregistreurs de localisation. C’est un cas de reléve
complexe. Il peut arriver que le MSC; transmette toutes les informations au MSC; qui
se charge alors d’assurer le relais. Mais, dans certaines situations par exemple ol le
commutateur MSC; est chargé de la facturation, il demeurera en contact avec le mobile a

travers le commutateur MSC; et ce, jusqu’a la fermeture de la connexion.

Figure 2. 2 Reléve dans un réseau cellulaire

Chaque opération de reléve nécessite des ressources du réseau: mise a jour des
données de localisation dans les bases de données, utilisation de protocoles de
communications entre MSC, etc. On doit trouver des mécanismes pour réduire au mieux

les colits qu’elle entraine. Un des moyens consiste & optimiser I’affectation de cellules

10

aux commutateurs. Dans ce cas, on peut tenir compte des fréquences d’appel ou patron
d’appel entre les différentes cellules du réseau. Deux cellules échangeant des quantités
considérables d’informations seront affectées 3 un méme commutateur pour minimiser
le coiit de reléve. De plus, on peut considérer aussi une domiciliation simple ou double
des cellules (Merchant et Sengupta, 1995). On parle de domiciliation simple lorsqu’une
cellule ne peut étre reliée qu’a un seul commutateur. La domiciliation est double quand
on peut connecter une cellule a au plus deux commutateurs et ce, suivant les moments de
la journ€e. Les deux commutateurs auxquels la cellule est reliée sont alors actifs de
maniére alternative en fonction des périodes de la journée (un patron pour la matinée et
un autre pour le soir). Ces différents concepts caractérisent les réseaux mobiles et
interviennent dans le probléme d’affectation de cellules 2 des commutateurs dans les

RCP.

2.2 Formulation du probléme d’affectation de cellules

Le probléme d’affectation de cellules 2 des commutateurs peut étre modélisé
suivant plusieurs approches. Merchant et Sengupta (1994, 1995) I’ont formulé comme
un probléme de programmation en nombres entiers: minimiser une fonction de codt,
suivant un schéma d’affectation tout en respectant les contraintes sur la capacité de
chaque commutateur. Samadi et Wong (1992) se sont plutdt intéressés a la minimisation
du nombre de mises a jour des données de localisation. Dans ce qui suit, nous
présenterons le premier modéle (basé sur le codt) réalisé suivant deux

schémas d’affectation: simple et double.

2.2.1 Modélisation suivant la domiciliation simple

On suppose que le réseau dispose de n cellules et de m commutateurs dont les
emplacements sont connus. A chaque commutateur doit étre affecté un ensemble de
cellules suivant le volume des appels qu’il peut gérer. Pour chaque paire de cellules i et j

(i#J), on définit les coiits suivants:

H;j; — Cout par unité de temps d’une reléve simple entre les cellules i et j;

11

H’;; — Coiit par unité de temps d’une reléve complexe entre les cellules i et j;
Cix — Coiit d’amortissement provenant du ciablage entre la cellule 1 et son
commutateur k.

Soient A; le volume d’appels par unité de temps requ parlacellule i (1<i<n)et

M, lacapacité du commutateurk (1< &k <m).

L’objectif est de trouver une affectation des cellules aux commutateurs qui
minimise la somme totale des coiits de liaison et de reléve et respecte la contrainte de
capacité limitée de chaque MSC. Pour décrire le probleme, on introduit les nxm

variables binaires suivantes:

X = 1 silacelluleest reliée au commutateur k
* 0 sinon

On s’intéresse alors a exprimer le probléme a I’aide de ces variables de maniére a
satisfaire les contraintes qui y sont posées. Tout d’abord, au niveau des cellules, chacune
d’elles doit étre assignée a un et un seul commutateur. Cette condition peut étre

représentée par la relation:

EX =1 pour i=1,...,n 2.1

k=1 ik
D’autre part, si Ci désigne le coiit d’amortissement de la liaison entre la cellule i et le
commutateur k, on peut exprimer le coiit total de liaison entre toutes les cellules et les
commutateurs auxquels elles sont reliées par la relation:
[m
2 2.CuX, 2.2)
i=l k=l
Pour représenter le coit total induit par les opérations de reléves simples et complexes,

on introduit de plus les variables complémentaires suivantes:

Z_ =X_X_ pourij=1,.,netk=1,..,m 2.3)

12

Ces variables permettent en effet de formuler mathématiquement le fait que deux

cellules i et j soient affectées a un méme commutateur k par la propri€té suivante:

_J1 siiet jsontconnectées au commutatew k 2.4)
#% |0 sinon ’
Soit maintenant :
1;},:2‘:2% pouri, j=1,...neti=j @.5)

Y; prend la valeur 1 si les cellules i et j sont connectées a un méme commutateur et est
égale a O si elles sont reli€es a des commutateurs différents.

Le coiit des reléves simples et complexes par unité de temps s’exprime par :

fm=ﬁﬁ‘_},¥j pourla reléve simple (2.6)
= =

fhc=221{ij.(l-Yij) pour la reléve complexe 2.7
1=l =l

La fonction objective globale composée de chacun des cofits prédéfinis s’écrit donc:

=3%c x, + 2,5_}”,”, +;§Hij.(l-‘{ij) 2.8)

i=l k=1 i=1

Il s’agit alors de minimiser la fonction f sous les contraintes suivantes:
n
Y X, =1pour i=1,..,n
i=l

X,=0o0ulpour i=1,...,net k=1,...m

ijk =Xik~X,1 pouri,j=1,..,netk=1,...m

Y, = ZZij.k pouri, j=1,...,neti# j
=1
De plus, on a la contrainte imposée par la capacité de chaque commutateur et suivant
laquelle le volume total d’appels engendré par toutes les cellules li€ées au commutateur k

ne doit pas dépasser la capacité maximum de ce commutateur. Celle-ci se traduit par:

gﬂ.'){ﬁ SM,‘ pour k=12,...m

13

2.9

Pour simplifier la fonction f de la relation (2.8), on peut négliger le coiit des reléves

simples devant celui des reléves complexes qui utilisent plus de ressources. De ce fait, si

on pose:
h=H -H =H
i 7 A

qui représente le coiit réduit par unité de temps d’une reléve complexe entre les cellules i

et j de sorte que f peut s’écrire:
f=2 C X +2 2 H..Y..+22(h..+f1,_)(l—)’,.)
=1 k=1 ik =1 j=1.j#i v i=l j=1 v v v

qui est équivalent a:

f= ggcﬁxﬁ"'_ 2 1+, 2 b (YD

i=l j=l.j#i i=1 Flpi

Du fait que la sommation :

Y H

=l jelgei U

est une constante, le probléme initial peut s’écrire sous la forme suivante :

Minimiser

f=22tha+£ 2-H‘-'j L

=t k=1 i=1 j=1, j=i

sous les contraintes:

(2. 10)

14

X = 1 silacelluleest reli€e au commutateur k
* 0 sinon

me =1 pour i=1,..,n

zijk=xikxjk pour i, j=1,...,netk=1,...,m

Y; =Y Z, pouri,j=1,..,neti# j

k=1

Y =

{l siiet jsont reliées au méme commutateur
i

0 sinon

Xﬂ.'_x& < Mt pour k=12,...m

i=l

Pour ramener le probléme a un probléme de programmation en nombres entiers,
Merchant et Sengupta ont proposé de remplacer la contrainte non linéaire (2.3) par un

ensemble de contraintes équivalentes:

IA

Z,<X,
Z,

IA

ik
Z,;

v

Jjk

X,
X, +X,-1
0.

v

2.3 Caractérisation du probléme d’affectation

Tel que formulé précédemment, le probléme d’affectation de cellules aux
commutateurs peut étre ramené a plusieurs types de probléme largement étudiés en
recherche opérationnelle tels le probléme de transport ou de localisation de
concentrateurs (Skorin-Kapov et al., 1994; Klincewicz, 1988; O’Kelly, 1987) et celui de
partitionnement de graphes (Keminghan, 1970; Sanchis, 1989). Leur résolution par une

méthode énumérative conduit généralement a une croissance exponentielle du temps

15

d’exécution. En conséquence, on recherche une solution plutt proche de 1I’optimum, en
développant des heuristiques ou méta-heuristiques de résolution pour ces types de
problémes reconnus NP-difficiles. Dans ce qui suit, nous présenterons quelques-uns de

ces problémes ainsi que leurs caractéristiques par rapport au probléme d’affectation.

2.3.1 Probléme de transport

Dans un probléme de transport, on dispose de deux ensembles disjoints. En
particulier pour le probléme de localisation de concentrateurs, on dispose de n nceuds
dont les emplacements sont connus. Chacun de ces nceuds peut échanger du trafic avec
les autres nceuds du réseau. Le but est de localiser parmi les n nceuds, p concentrateurs
et de leur affecter les n-p nceuds restants, sous des contraintes lies a la capacité des
différents concentrateurs. Le probléme d’affectation est donc un cas particulier de celui
de transport. Dans les deux cas, on dispose de deux ensembles disjoints et on essaie
d’établir une correspondance entre les éléments de ces ensembles. Ainsi, dans le
probléme d’affectation, les p neeuds concentrateurs peuvent étre représentés comme des
commutateurs et les n-p restants comme des cellules. Etant donné que 1’emplacement
des commutateurs est connu, on cherchera alors a résoudre uniquement la partie
affectation. Notons toutefois qu’il existe quelques différences entre les deux problémes:

e Le probléme de localisation de concentrateurs est un probléme mixte dans ce
sens qu’il peut faire intervenir des valeurs fractionnaires d’un nceud i a un autre
j. Cela veut dire qu’un méme flot peut étre partagé sur deux liaisons,
contrairement au probléme d’affectation de cellules qui est complétement
entier.

e Dans le probléme de localisation, on a des concentrateurs dont la localisation
n’est pas encore fixée. Il s’agit alors dans bien des cas de déterminer d’abord un
choix pour la localisation et ensuite de faire I’affectation des nceuds restants.
Par contre, dans le probléme d’affectation, les emplacements des commutateurs

sont déja fixés et connus et I’on ne résout que le probléme d’affectation qui

16

n’en reste pas moins complexe. Ainsi, il n’y a pas de cofiit li€ a la localisation
des commutateurs.

e On a une contrainte supplémentaire dans le probleme d’affectation de cellules a
des commutateurs qui est fonction de la capacité de ces derniers et qui
n’apparait pas clairement dans le probléme de localisation de concentrateurs.
Celle-ci exprime que chaque commutateur peut supporter un nombre limité de
volumes d’appels par unité de temps provenant de I’ensemble des cellules dont

il a la charge.

2.3.2 Probléme de partitionnement de graphes

Le partitionnement de graphes est un probléme souvent présent lors du partage
des ressources dans le domaine des technologies de I’'information. Il peut survenir dans
la construction des réseaux de télécommunications ou en calcul paralléle o I’on doit
répartir différentes tiches entre plusieurs processeurs.

Soit G un graphe, le probléme de partitionnement de graphe consiste a diviser
I’ensemble N des nceuds du graphe en des sous-ensembles de cardinalité inférieure a un
nombre maximal donné, de maniére & minimiser la somme totale des coupes. Une coupe
représentant tous les arcs du graphe ayant leurs extrémités dans des sous-ensembles
différents. Un réseau peut étre représenté sous la forme d’un graphe ou les nceuds
représentent les terminaux du réseau et les arcs les liaisons entre ces différents
terminaux. Pour interconnecter les différents nceuds du réseau, on réalise un
partitionnement de ses nceuds en sous-graphes reliés par un nombre minimum de
liaisons mais assez robustes pour éviter des congestions. Le probléme d’affectation de
cellules a des commutateurs peut étre aussi pergu comme un probléme de
partitionnement (Merchant et Sengupta, 1994). Dans ce cas, chaque cellule { avec un

volume d’appels A donné est représenté par un neeud primaire et un certain nombre de
naeuds secondaires (généralement K.A-1). K étant un facteur multiplicatif qui permet de

transformer les volumes d’appels fractionnaires en nombres entiers. Les nceuds

secondaires et primaire sont reliés par des arcs de coiits trés €levés afin de toujours

17

assurer leur appartenance a une méme cellule. Un arc (i,j) a comme coiit la somme des
colits de transfert entre les cellules i et j. Les coits de liaison sont eux proportionnels aux
distances. Pour chaque paire de cellules, I’arc (i,j) est reporté entre les nceuds primaires
des cellules i et j respectivement. Chaque commutateur k est a son tour représenté par un
nceud et demeure associé 3 un sous-ensemble de taille donnée. Pour intégrer le coit de
liaison entre cellules et commutateurs, on ajoute un arc de coiit entre le nceud primaire
de la cellule i et le nceud représentant le commutateur k. De cette maniére, les méthodes
de résolution du probléme de partitionnement de graphes peuvent s’appliquer au
probiéme d’affectation de cellules.

Ainsi donc, le probléme d’affectation de cellules & des commutateurs s’apparente a
des probléemes NP-difficiles. En particulier, il intégre une fonction de coit et des
contraintes d’affectation et peut étre class€é comme un probléeme d’affectation pour
lequel il n’existe que des heuristiques de résolution permettant de trouver des solutions

assez proches de I’optimum.

2.4 Méthodes classiques de résolution du probléme d’affectation de cellules

Nous exposerons dans ce qui suit les différentes méthodes de résolution du
probléme d’affectation de cellules. Ces techniques sont assez récentes et permettent
d’obtenir de bons résultats. Néanmoins, elles contiennent aussi des limitations que nous

développerons tout au cours de ce paragraphe.

2.4.1 Application de la méthode de Merchant et Sengupta

Pour la résolution du probléme d’affectation de cellules a des commutateurs,
Merchant et Sengupta (1994, 1995) sont les premiers i avoir présenté une méthode qui
lui est adaptée. Dans cette heuristique, pour la domiciliation simple, les cellules sont
ordonnées en nombre décroissant de leur volume d’appels. Pour chaque cellule j =1, ...,
n, on doit maintenir I’affectation au commutateur qui minimise le cofit total des cellules
déja affectées selon I’algorithme suivant:

Etape 0: Trouver une affectation initiale ;

18

Mettre les cellules en nombre décroissant du volume d’appels. Au
départ, I’ affectation est vide ;

Pourchaquej=1,2,...,n;

Etendre les affectations précédemment retenues en leur ajoutant toutes
les affectations possibles de la cellule j a tous les différents
commutateurs. Retirer toutes les affectations qui ne remplissent pas la
condition sur la capacité ;

S’il ne reste aucune affectation, alors fin du programme, I’algorithme a
échoué ;

S’il en reste b ou moins, les retenir toutes ;

Sinon retenir les meilleures b solutions suivant le meilleur coiit total
obtenu en affectant les j premiéres cellules ;

Retourner la meilleure des b affectations trouvées.

Le paramétre b est fixé dés le début et doit étre assez grand pour permettre d’arriver a

une bonne solution initiale. On introduit des mouvements dans le but de raffiner la

solution initiale trouvée. Les étapes sont les suivantes:

Etape I: Effacer les marques de toutes les cellules précédemment marquées.

Etape

2: Trouver un meilleur mouvement faisable: c’est-a-dire trouver le

commutateur & auquel affecter la cellule i qui diminuerait le coit total
d’une plus grande valeur ;
S’il n’y a pas d’affectation réduisant le coiit, choisir celle qui

augmente le moins le codt.

Etape 3: Affecter la cellule i au commutateur &, marquer la cellule i et noter le

Etape
Etape
Etape

schéma d’affectation courant.

4 : S’il reste des cellules non marquées, retourner i 1’Etape2.
5: Choisir le schéma d’affectation ayant la plus petite fonction objective.

6: Si la solution obtenue est inférieure a celle du schéma courant,

alors la nouvelle solution devient la solution courante et on retourne

a I’Etapel ;

19

Sinon, on arréte.

Pour la domiciliation double, les mémes auteurs Merchant et Sengupta (1995) ont

aussi proposé un algorithme de résolution. Ils considérent le probléme de domiciliation

double comme une superposition de deux problémes de domiciliation simple. On

recherche donc la solution a un premier probléme de domiciliation simple correspondant

a un des patrons de la journée. La solution finale obtenue est considérée comme solution

initiale au second probléme de domiciliation simple, c’est-a-dire le deuxiéme patron.

Toutefois, on ne doit pas prendre en compte le coiit de liaison d’une cellule lorsque

celle-ci se retrouve étre affectée au méme commutateur que dans le premier patron. On

itére ainsi d’un patron a I’autre jusqu’a I’obtention d’une solution qui ne peut plus étre

améliorée. Celle-ci correspondant a la solution au probléme de domiciliation double. Les

étapes de I’algorithme pour la domiciliation double sont:

Etape 0:

Etape I

Etape 2:

Etape 3:

Etape 4:

Former deux problémes d’affectation avec domiciliation simple
correspondant aux différents patrons de la journée.

Résoudre les deux problémes ainsi définis suivant I’algorithme de
domiciliation simple ;

Soient Q le probléme dont la solution A est la plus petite des deux
solutions ainsi obtenues et Q’ le second probléme.

Si Q; désigne un probléme d’affectation avec domiciliation simple
identique 3 Q’ et d’un coiit de liaison nul pour toute affectation de la
cellule i 2 un méme commutateur k, que dans la solution A. Résoudre Q;
et soit A’ sa solution.

Méme supposition pour Q avec un probléme identique Q- ol le coiit de
liaison est nul pour toute cellule i affectée a un méme commutateur k
que dans A’. Résoudre Q: et mettre a jour la solution A qui devient
solution de Q-.

Répéter les étapes 2 et 3 jusqu’a ce que les résultats des affectations ne
donnent plus une amélioration de la fonction objectif. Les solutions

fournies par A et A’ forment la solution de la domiciliation double.

20

2.5 Autres heuristiques de recherche

L’heuristique de Merchant et Sengupta appliquée au probléme avec domiciliation
simple se compare bien a la méthode de programmation en nombres entiers pour les
problémes de petite taille. Mais elle dépend essentiellement de la solution initiale et
utilise des mécanismes assez complexes pour échapper au piége du minimum local.
D’autres heuristiques ont été développées pour le probléme d’affectation. Nous
passerons en revue les plus récents travaux effectués dans ce contexte et dont

I’application au probléme d’affectation fournit de bonnes solutions.

2.5.1 Heuristique de recherche taboue (RT)
La méthode de recherche taboue constitue une amélioration de I’algorithme de

descente qui permet d’éviter le piege du minimum local. Elle fut introduite en
optimisation combinatoire par indépendamment Glover (1986) et Hansen (1986) pour la
résolution de problémes difficiles. C’est une méthode qui part d’une solution initiale
supposée locale et sur laquelle différents mouvements sont effectués pour arriver a une
meilleure solution. Ainsi, pour y arriver, I’algorithme accepte de temps en temps des
solutions qui n’améliorent pas toujours la solution courante. Le retour vers des solutions
déja visitées est interdit en conservant une liste taboue T de longueur k£ comportant les k
derniéres solutions visitées jusque la. Le choix de la prochaine solution est alors effectué
sur un ensemble des solutions voisines ne comportant aucun des €léments de cette liste.
Lorsque le nombre £ est atteint, chaque nouvelle solution qui devient taboue remplace la
plus ancienne dans la liste. L’exploration de I’espace de recherche peut étre représentée
par un graphe G = (X, A), ol X désigne I’ensemble des solutions et A I’ensemble des
arcs (x, m(x)), m(x) étant la solution obtenue en appliquant le mouvement m a x. Le
graphe ainsi obtenu est symétrique car, pour chaque arc (x, m(x)), il existe un arc (m(x),
x) obtenu en appliquant le mouvement inverse m” 2 m. La recherche taboue part donc

d’une solution initiale xp qui est un nceud du graphe G, et cherchera dans G un chemin

21

X0, X1, --., X OU x; = m(x.;) avec i = 1, ..., l. Les arcs (x; x;.;) du chemin sont choisis en
résolvant le probléme d’optimisation:
fixiv1) = min fix;)

Adaptation de la méthode de RT au probléme d’affectation de cellules
Pour cette adaptation, Houéto et Pierre (1999) partent d’une solution initiale

obtenue a partir de la plus petite distance euclidienne sur le coiit de liaison. Une
composante de mémoire a court terme permet d’explorer le voisinage de cette solution
tout en évitant les cycles. L’espace de recherche est choisi libre des contraintes de
capacité sur les commutateurs mais respecte la contrainte d’affectation unique des
cellules. Chaque nouvelle solution obtenue est évaluée suivant deux critéres. Le premier
est li€ au coit calculé a partir de la fonction objectif, le deuxieme prend en compte une
sanction introduite pour le non respect de la contrainte de capacité. On essaie alors de
choisir a chaque étape 1a meilleure solution suivant ces deux critéres. Trois structures de
mémoires permettent d’éviter des cycles autour d’un optimum local et de raffiner la

recherche.

Mémoire a court terme

La mémoire a court terme permet d’améliorer la solution courante a partir des
deux critéres de coiit et de sanction associés a chaque solution. On définit le voisinage
N(S) d’une solution S comme étant I’ensemble de toutes les solutions accessibles de S
par I’application d’un mouvement m(a, b) a S.

m(a, b) = réaffectation de la cellule a au commutateur b
Le choix d’une solution parmi I’ensemble des solutions voisines est effectué a 1’aide de

la fonction de gain G,(a, b) et qui est définie comme suit:

G (aby iﬁf"«#"ﬁ)‘wo‘cab,'i:&"a”'m)-".-ﬁ‘.w sib=h, . 11)
M

sinon

b, désigne le commutateur de la cellule a dans la solution S, c’est-a-dire avant

I’application du mouvement m(a, b) ;

M un nombre arbitrairement élevé.

On peut exprimer M comme étant le gain obtenu en affectant la cellule @ au
commutateur b au lieu de b. A chaque itération, vu qu’on veut minimiser le cofit total
des affectations, on choisira le mouvement ayant le gain minimum. Le gain sera pris
égal a une valeur arbitrairement grande lorsqu’on aboutit 4 une méme affectation. Le
colit de la nouvelle solution est obtenu par la sommation suivante:

fiS) = fiS) + Gs(a, b) 2.12)

Si aucune des solutions n’engendre une amélioration du coiit, alors on choisit la
solution dégradant le moins la solution courante. Une liste taboue d’une certaine taille
permet de garder le mouvement inverse m(a, b’) ot b’ désigne le commutateur auquel la
cellule a était affectée avant le mouvement m(a, b). Aprés un nombre k., d’itérations,
ayant abouti a des solutions consécutives non faisables, on introduit progressivement
une pénalité sur la capacité, traduite par un multiplicateur qui est incrémenté jusqu’a une
valeur maximum. Ce mécanisme de rappel se trouve désactivé dés que I’on tombe sur
une solution réalisable. Lorsqu’un mouvement tabou conduit &2 une solution dont

I’évaluation est meilleure que la solution courante, alors on annule son critére tabou.

Mémoire a moyen terme:

Cette structure de mémoire permet de revenir a des régions prometteuses pour y
intensifier la recherche localement. Elle compléte donc la structure précédemment
décrite en ce sens qu’elle permet de ramener la recherche a des zones omises ou peu
exploitées par la mémoire a court terme. Si on suppose que les bonnes solutions sont
proches I'une de 1’autre dans le probléme d’affectation de cellules, trouver les régions
prometteuses peut se faire en conservant une liste FIFO des derniéres meilleures
solutions accompagnées de leurs valeurs de gains. Une fois qu’on a déterminé les

régions prometteuses, on applique les mécanismes d’intensification dont le role est de

diriger la recherche vers de bonnes solutions jusque la non visitées. Les deux
mouvements d’intensification utilisés sont:
i} (a, c): permutation des cellules a et ¢ selon les plus faibles gains ;
i(a, b): déplacement de la cellule a vers le commutateur b en vue de rétablir les
contraintes de capacité.
C’est donc un mouvement qui est appliqué uniquement aux solutions non faisables et qui

permet de réduire la pénalité.

Mémoire a long terme

C’est une structure qui permet de diversifier les différentes zones a explorer. Pour
la réaliser, on met a jour un tableau dont les éléments sont le nombre de fois que chaque
couple (n, m) (avec n représentant les cellules et m les commutateurs) apparait dans les
solutions visitées. La diversification consiste ainsi a effectuer la recherche a partir de
nouvelles solutions initiales. A ces derniéres sont appliqués des mécanismes de mémoire
a court et moyen terme. La composante de mémoire a long terme permet alors une
diversification de I’exploration du domaine en choisissant un nouveau point de départ
contrastant le plus possible avec les solutions déja visitées. Ceci permet d’explorer de

maniére plus efficace tout le domaine de recherche.

2.5.2 Heuristique basée sur ’algorithme génétique

Le principe de base de cet algorithme est fondé sur la théorie de la reproduction de
Darwin. Holland (1975) et ses étudiants sont les premiers a I’introduire en intelligence
artificielle. On crée une population initiale composée de différents chromosomes. Les
éléments de cette population sont par la suite altérés a 1’aide d’opérateurs génétiques
pour permettre une diversité au niveau des nouveaux chromosomes. On passe alors a
une évaluation de cette population. Une adaptation des algorithmes génétiques, réalisée
par Hedible et Pierre (2000) se caractérise par quatre paramétres: le codage des données

du probléme, I’espace de recherche, la fonction d’évaluation des chromosomes parents

24

et le hasard dans I’évolution des chromosomes de génération en génération. De manicre
succincte, les étapes d’un algorithme génétique sont les suivantes:

Etape I: Générer une population initiale de taille n représentant le nombre de
chromosomes. Sélectionner au hasard les génes qui composent le
chromosome pour former une premiére génération.

Etape 2: Evaluer chaque chromosome par sa fonction objectif.

Etape 3: Générer de nouvelles populations et appliquer divers opérateurs

génétiques pour aboutir a de meilleurs chromosomes.

Adaptation de la méthode a l'affectation des cellules

On considére une représentation non binaire des chromosomes. Les chromosomes
sont normalement constitués de génes. Dans le cas du probléme d’affectation, les génes
représentent les différents commutateurs auxquels sont associées les cellules. On a donc
un chromosome de longueur maximum égale au nombre de cellules présent dans le
réseau. Chaque cellule (géne) peut prendre une seule valeur correspondant au
commutateur auquel elle est affectée.

La population initiale est composée de différents chromosomes. Le premier est
obtenu de fagon déterministe en affectant chaque cellule au commutateur le plus proche.
Ensuite, pour assurer la diversité au sein de la population, on crée les autres éléments ou
chromosomes de maniére alé€atoire en se basant sur la stratégie de la population sans
doubles. Evidemment la taille de cette population ne doit pas dépasser m", ol m est le
nombre de commutateurs et n le nombre de cellules. Des opérateurs de croisement et de
mutation sont par la suite appliqués aux différents éléments de cette population.

L’opérateur de croisement utilis€é est effectué en un lieu. Comme son nom
I’indique, un croisement référe a2 un changement d’un géne des chromosomes de la
population. Deux chromosomes-parents, choisis de maniére aléatoire dans la population,
sont crois€s pour foumnir deux chromosomes-enfants. Les chromosomes-parents
constituent les éléments de la nouvelle population. Les nouveaux chromosomes-enfants

sont insérés dans cette population si et seulement si la probabilité de croisement est

respectée. Si ce n’est pas le cas, alors on inverse les chromosomes-parents avant de les
insérer (on applique ainsi un opérateur d’inversion). L’opérateur de mutation, quant a
lui, permet de se rassurer que 1’on n’a pas ignoré certains génes lors de la génération des
populations. La taille de la population finale ainsi obtenue devient égale au double de la
populatior initiale.

Une fois que I’on a obtenu une nouvelle population, celle-ci est évaluée suivant la
fonction objective. Cette fonction associe a chaque chromosome une valeur indiquant le
coiit de la configuration qu’il représente. Ceci permet de classer les chromosomes de
cette population en ordre croissant, qui seront par la suite évalués par rapport a la
contrainte sur la capacité des commutateurs. Une fois ces deux évaluations faites, on
procéde a la détermination du meilleur chromosome, c’est-a-dire la meilleure série
d’affectation. Toutefois, cette méthode de sélection peut n’explorer qu’une partie de
I’espace de recherche, vu qu’elle ne retient que les meilleurs éléments d’une population.
Pour cette raison, les auteurs de cette adaptation ont proposé la méthode de roulette de
casino pour la formulation d’une nouvelle population. Le nombre de générations a

analyser, quant a lui, dépend d’un nombre de cycle qui est prédéfini.

2.5.3 Heuristique du recuit simulé

C’est aussi une heuristique d’optimisation qui utilise les perturbations pour
échapper au piége du minimum local en acceptant de temps a autre des solutions qui
détériorent la fonction objectif. A chaque étape de I’algorithme, la solution courante est
comparée avec d’autres solutions de son voisinage, obtenues a 1’aide de petites
perturbations. Si la nouvelle solution améliore la fonction objectif, alors elle devient
solution courante et on explore son voisinage. Dans le cas contraire, si on trouve une
solution qui détériore la solution courante, alors elle peut étre acceptée, avec une forte
probabilité au début. Celle-ci va décroitre au fur et 3 mesure qu’on évolue dans la
recherche. Le fait de considérer des solutions dont I'évaluation est inférieure 2 la
solution courante permet de ne pas s’enfermer trés t6t dans un minimum local. D’un

autre coté, en diminuant progressivement la probabilit¢ d’accepter une solution qui

26

n’améliore pas la fonction objectif courante, on est siir d’atteindre (ou de ne pas laisser
de coté) la bonne solution, une fois que 1’on se trouve dans son voisinage. L’adaptation
de cette heuristique au probléme d’affectation nécessite une bonne définition des
parameétres tels que la détermination d’une bonne solution initiale ainsi que son
voisinage, la définition d’une solution réalisable et la détermination des différents
paramétres du recuit, tels que la probabilité de transition, le critére d’amét, etc. Ces
différents paramétres intrinséques a I’utilisation de la méthode du recuit simulé sont

aléatoires et peuvent donc s’avérer trés laborieux en termes de temps de calcul.

2.5.4 Heuristique basée sur les grappes
L’idée de base est de regrouper les différentes cellules en grappes (cluster) au
centre desquels se trouvent des commutateurs. On suppose a cet effet que le nombre de
grappes est égal au nombre de commutateurs. L’ajout des cellules aux grappes se fait
suivant le meilleur des coiits de liaison et de reléve, tout en vérifiant la contrainte sur la
capacité des commutateurs. Les étapes de I’algorithme proposées par Saha et al. (2000)
sont les suivantes:
Etape 0: Affectation initiale
Soit Setx I’ensemble des cellules affectées au commutateur & de capacité
M;;
Soit c; la cellule ol se trouve le commutateur & ;

Poser Setko = {cj} et Mko =M - Aj .

Etape [(1 >0):
1.1) Identifier toutes les cellules adjacentes 2 Set,' et les placer dans I’ordre
décroissant de A =coliit de reléve + coiit liaison ;
Choisir la cellule ayant la plus grande valeur de A et I’affecter a k ;
S’il en existe plus d’une, choisir celle ayant le plus de reléves avec la
cellule hébergeant le commutateur. Répéter I’opération pour tous les

commutateurs du réseau.

27

1.2) Si une cellule est adjacente a plus d’'un commutateur, alors choisir
I’affectation qui donne le plus petit coiit de cablage entre cjet k ;
Si la capacité du commutateur est déja atteinte, alors choisir le second
commutateur le plus proche sinon laisser la cellule de coté.

1.3) Pour chacune des affectations de ¢; 2 un commutateur, réduire la capacité
de ce commutateur du volume d’appels de cette cellule.:

Etape Finale: Si toutes les cellules ont été affectées alors I’algorithme a trouvé la

solution ;

Sinon, c’est un échec.

La plupart des méthodes mentionnées dans ce chapitre utilisent des mécanismes
complexes pour aboutir 2 une bonne solution, considérée comme la meilleure. Certaines
d’entre elles, comme I’algorithme génétique, sont basées sur des mécanismes fondés sur
Ie hasard. D’autres comme la recherche taboue se servent de mécanismes trés complexes
pour contrdler la recherche. Elles n’exploitent donc pas suffisamment la structure des
contraintes, inhérente a ce genre de probléme. La programmation par contraintes qui fait
I’objet du prochain chapitre offre des mécanismes plus naturels et adaptés au probléme

d’affectation.

28

CHAPITRE 3
APERCU DE LA PROGRAMMATION PAR CONTRAINTES

La programmation par contraintes (PC) se définit comme I’étude des syst€mes de
calcul basés sur des contraintes. Elle est complémentaire d’autres techniques dérivées
des algorithmes d’unification de la programmation logique et des techniques de
résolution de la recherche opérationnelle. Ces derniéres années, les méthodes
développées selon ce paradigme ont été exploitées dans de nombreux logiciels pour la
résolution de problémes complexes relevant pour la plupart de [1’optimisation
combinatoire. Dans ce chapitre, nous exposerons bri¢vement les fondements de la
programmation par contraintes ainsi que les propriétés mathématiques qui en sont a la
base. Nous aborderons par la suite la description des différentes étapes et mécanismes de
son fonctionnement dans la résolution des problémes. Enfin, nous illustrerons son

fonctionnement a travers quelques-unes de ses réalisations actuelles.

3.1 Evolution et concepts de base de la programmation par contraintes
L’introduction de la programmation par contraintes comme technique de
résolution remonte aux années soixante avec le systéme Skechpad développé par
Sutherland (1963) considéré de nos jours comme étant 'un des pionniers dans ce
domaine. Par la suite, ces méthodes ont servi de point de départ pour développer
plusieurs langages de programmation basés sur les contraintes et qui se sont montrés
d’une certaine efficacité pour la maitrise de problémes complexes comme celui de
planification de tiches, de transport, d’allocation de ressources, etc. C’est actuellement
un domaine de recherche d’un grand intérét. Dans ce qui suit, nous présenterons une
bréve évolution de la programmation par contraintes et les différents concepts essentiels

a sa compréhension.

29

3.1.1 Evolution du langage

La programmation par contraintes est une discipline qui combine deux paradigmes
déclaratifs: la résolution des contraintes et la programmation logique. Le premier
systéeme Skechpad est un éditeur graphique basé sur les contraintes. Celles-ci sont
utilisées pour modéliser les relations entre les différents objets en utilisant des
techniques de relaxation et de propagation de degré de liberté. Un peu plus tard ont vu le
jour plusieurs autres langages parmi lesquels Thinglab de Bormning (1981). Celui-ci
utilise une interface graphique pour exprimer les contraintes servant a modéliser les
comportements du systeme. Toutefois, les premiers environnements de programmation
par contraintes n’apparurent réellement qu’aprés 1985. En effet, trois études ayant pour
support la programmation logique furent menées parallélement dans différents centres
de recherche. ECLIPSE est développé a Munich par une équipe du Centre Européen de
Recherche en Informatique Industrielle, CLP(R) est étudi€ par un groupe de chercheurs
dirigé par Watson tandis que PROLOG Il est développé a Marseille par Colmerauer et
son équipe (1987). L’activité de programmation dans ces trois systémes passe par un
mariage des contraintes avec les propriétés déclaratives de la programmation logique.
Ainsi, le programmeur spécifie quoi faire et non comment le faire. La programmation
logique par contraintes (CLP) utilise donc les concepts de la programmation logique
dans lesquels la notion d’algorithme d’unification est généralisée par celle de

satisfaction de contraintes.

3.1.2 Concepts de base

Comme son nom 1’indique, la programmation par contraintes est une technique qui
est basée sur les contraintes et les algorithmes de recherche de solution satisfaisant ces
contraintes. Dans ce contexte, les trois concepts de base essentiels a sa manipulation

demeurent: les contraintes, les domaines de contraintes et la satisfaction de contraintes.

30

Contrainte
C’est un concept relationnel. En effet, une contrainte permet d’exprimer des

relations entre plusieurs variables x;, xo, ..., x, d’un probléme. Ces derni€res prennent
leurs valeurs dans des ensembles D;, D, ..., D,. De maniére formelle, on définit une
contrainte comme étant une clause bdtie a partir de variables et de symboles définis dans
une signature notée .

Une signature comprend un ensemble de fonctions et de prédicats dont chacun est
d’une certaine arité. L’arité permet de spécifier le nombre d’arguments de chaque
expression.

Une contrainte primitive est une clause construite a partir de variables, de
fonctions et de prédicats d’une signature Z. Les contraintes complexes sont une
conjonction de contraintes primitives. Par exemple:

Une contrainte définie avec des variables réelles prenant leurs valeurs
dans R peut avoir comme fonctions +, *, -, et /. Les prédicats peuvent étre

=, <, < >, = L’ensemble des fonctions et des prédicats forme la signature.

—

Domaine de contraintes
Le domaine de contraintes (D, L) est constitué d’une structure D (le domaine de
discours) et d’une classe de Z-formules L (les contraintes que I’on peut exprimer).
Comme exemple de domaines de contraintes, on peut citer :
® Les contraintes booléennes, qui permettent d’exprimer des relations entre des
variables booléennes prenant des valeurs Vrai (représentée par 1) ou Faux
(représentée par 0) et utilisant des opérations logiques comme la conjonction, la
disjonction, I’implication. Elles sont souvent utilisées dans la modélisation des
circuits logiques.
® Les contraintes sur les arbres, qui sont utilisées pour modéliser des structures de
données utilisées en programmation, comme les listes et les arbres.
® Les contraintes sur domaine fini, pour lesquelles les valeurs prises par les

variables appartiennent 2 un ensemble fini.

31

Le domaine constitue une notion importante en PC, puisqu’il détermine souvent

I’algorithme de satisfaction de contraintes.

Satisfaction de contraintes

C’est la caractérisation des instanciations des variables pour lesquelles les
contraintes décrites dans le probléme sont satisfaites. I1 s’agit de savoir si le probléme
défini dans son domaine admet une solution. Généralement, vu que ’on ne peut
développer des méthodes de satisfaction de contrainte universelles, les algorithmes de
recherche de solution sont particuliers & chaque domaine de contraintes.

L’une des méthodes utilisées pour tester la satisfaction des contraintes est de
procéder par une énumération de toutes les valeurs du domaine. Ceci conduit souvent a
un temps de calcul trés long et n’exploite pas les contraintes définies dans la
modélisation du probléme. Ainsi, une deuxiéme méthode consiste a réécrire toutes les
formules de contraintes de maniére plus simple, jusqu’a I’obtention d’une expression de
forme vraie. L’algorithme utilisé est semblable a celui de Gauss Jordan illustré par
Mariott et Stuckey (1998) et dont les étapes sont décrites a la Figure 3.1.

A chaque étape, cet algorithme met a jour deux ensembles C et S, constitués des
équations non résolues et des équations résolues respectivement. C’est un algorithme
complet (c’est a dire qu’il retoume vrai ou faux a la satisfiabilité) et applicable aux
contraintes linéaires sur les réels. Pour I’étendre a plusieurs autres domaines, des
méthodes comme la propagation locale sont aussi utilisées, par exemple dans les
algorithmes de satisfiabilité sur les contraintes arithmétiques et booléennes.

La plupart des problémes étudi€s en programmation par contraintes sont modélisés
par des variables prenant leurs valeurs dans des intervalles bornés. Plusieurs algorithmes
ont donc été développés par des équipes de chercheurs, pour la résolution de ces types
de problémes. Parmi les méthodes les plus couramment utilisées se trouvent les
techniques de cohérence de nceuds et d’arcs, développées en intelligence artificielle, les
techniques de cohérence sur les bornes introduites par la programmation par contraintes

et certaines méthodes de la programmation en nombres entiers. Il convient de signaler

32

que les algorithmes développés sont généralement incomplets (la satisfiabilité de
I’ensemble des contraintes n’est que partiellement testée). Ces algorithmes permettent
néanmoins de restreindre I'espace de recherche en propageant efficacement les

contraintes a chaque étape de la résolution.

Données : S est une conjonction d’équations;
C, Co sont des conjonctions d’équations;
c est une équation de C;
r est un nombre réel;
€ est une expression arithmétique linéaire;
X une variable n’appartenant pas a e.
Initialisation: S := vrai
Tant que C non vide faire
C=cnA(
C:=Cg
Si ¢ peut étre exprimé sans variables alors
Si c peut étre évalué a0 =rour # 0 alors
S := faux
Fin Si
Sinon

Mettre ¢ sous la forme x = e

Remplacer x par e dans toutes les équations de Cet S

S =S Alkx=e)

Fin Si
Fin tant que

Figure 3. 1 Algorithme d’élimination de Gauss-Jordan

33

3.2 Domaine fini et résolution de problémes combinatoires

La PC utilise la satisfaction de contraintes dans la recherche de solution. A chaque
étape, elle essaie de vérifier si les contraintes sont satisfaites et procéde par une
élimination des valeurs incohérentes du domaine des variables. Le domaine fini est
surtout utilisé pour modéliser les problémes nécessitant un choix, comme ceux de
transport, de planification et d’allocation de ressources, qui sont d’une grande
importance dans I’industrie. Dans cette section, nous examinerons essentiellement les
principes de base de satisfaction des contraintes dans les structures 2 domaine fini.
Principalement, nous aborderons les techniques de “retour arriére”, de cohérence
généralisée de nceuds et d’arcs que nous illustrerons a travers certains exemples. Nous

parlerons également des heuristiques de choix qui ont comme but de guider la recherche.

3.2.1 Probléme de satisfaction de contraintes (CSP)

La satisfaction des contraintes sur un domaine fini désignée en Intelligence
Atrtificielle par CSP (Constraint Satisfaction Problem) définit une contrainte C =c¢ A (x;
, D(x1)) A ... A (xn, D(xy)) ot V = [x;, X3, ..., X/, €st un ensemble de n variables,
chacune prenant sa valeur dans un domaine D = {D(x;), D(xz), ..., D(x,)} et ¢ désigne un
ensemble de contraintes. Une solution d’un CSP est une affectation d’une valeur, tirée
du domaine D, a chacune des variables de V de telle sorte que toutes les contraintes ¢
soient simultanément vérifiées. En général, les algorithmes de résolution d’un CSP
permettent juste de restreindre 1’espace de recherche. IlIs peuvent étre décrits comme des
principes de tests locaux a chaque contrainte et sont basés sur la notion de domaine

réduit.

Algorithme de Retour arriére (Backtracking)

Résoudre un probléme CSP fait partie de la classe des problémes NP-difficiles,
pour lesquels il est improbable de trouver des algorithmes polynomiaux de résolution.
Le retour arriére est un algorithme complet de résolution de probléme CSP dont le

temps d’exécution est exponentiel. L’exploration du domaine est réalisée comme suit:

on part avec un choix de variable x; de V; on examine par la suite les valeurs de D;; si on
trouve une valeur qui ne satisfait pas la contrainte, on I’élimine du domaine, et on
remonte a I’étape précédente pour un autre choix (Marriott et Stuckey, 1998). Si toutes
les contraintes sont respectées, alors le probléme est satisfiable. Ces étapes sont
montrées a la Figure 3.3. La Figure 3.2, quant a elle, illustre son application sur un
exemple avec 3 variables. La taille de I’arbre de recherche obtenu dépend du choix de la
variable x; 2 instancier a chaque étape de [’algorithme. Certaines heuristiques de
recherche sont combinées a I’algorithme pour optimiser la recherche. Néanmoins, c’est
un algorithme qui demeure trés coiiteux en temps de calcul. Les algorithmes qui suivent
sont incomplets dans ce sens qu’ils ne peuvent donner dans certains cas une solution

exacte, mais ils s’exécutent dans des temps polynomiaux.

X<YAY<Z
X=l‘//// X=2
l1<YAY<Z 2<YAY<Z
Faux 1<2A2<Z Faux Faux
/: \Z=2
Faux Faux

Figure 3. 2 Arbre de recherche avec retour-arriére

35

Exemple de retour-arriére
Soit 4 résoudre un probléme de satisfaction de contraintes défini de la maniére

suivante: (X < ¥) A (Y < Z) ou X, Y, Z sont définis dans le domaine D = {1, 2}.

L’exécution du retour arriére de la Figure 3.3 aboutit a une non satisfaction du CSP.

Initialisation Satisfaction := faux
Pour chaque variable x; € V faire
Tant que D(x;) est non vide
Remplacer xj=e € D(x;)
Si C est satisfaisable alors
Satisfaction := vrai
Sinon
Satisfaction := faux
Retourner a I’étape précédente
Retirer une autre valeur de D(x;)
Fin Si
Fin tant que

Fin Pour

Figure 3. 3 Algorithme du retour-arriére

Techniques de cohérence de neeud et d’arc
Ces deux termes proviennent de la représentation des systémes binaires par des

graphes, dont les nceuds sont considérés comme des variables, et les arcs comme des
contraintes du systéme. La notion de cohérence indique que la propagation est effectuée
sur chacune des variables jusqu’a aboutir 2 une cohérence des €léments de leurs

domaines par rapport aux contraintes du probléme.

36

Technique de cohérence de neeuds
Les contraintes sont unaires:
vars (c) = {x}

Une contrainte primitive ¢ est cohérente de nceuds sur un domaine D(x) si, pour
tout élément d € D(x), x => d est une solution de c. Si on considére un ensemble
d’équations de contraintes primitives, cette équivalence doit étre vérifiée pour chacune
d’elles et la satisfiabilité est testée pour toutes les valeurs du domaine D(x). La Figure

3.4 illustre les étapes de 1’algorithme.

Cohérence neeuds (C, D)
Soit
C=CiACIA...ACq
Pour chaque contrainte primitive ¢; faire
Si vars(c) = 1 alors
{x} := vars(c)
D(x) := {d € D(x) | (x = d) est solution de c}
Fin Si
Fin Pour
Retourner D

Figure 3. 4 Algorithme de cohérence de nceuds

Technique de cohérence d’arcs
Les contraintes sont binaires:
vars (¢) = {x, y}
La cohérence d’arcs (Figure 3.5) assure la satisfiabilité du systéme formé des

projections des contraintes basiques sur chacune des variables x. On vérifie alors si, pour

37

chaque valeur du domaine D(x) de x, il existe une valeur du domaine D(y) de y pour
laquelle la contrainte est satisfaite. On élimine des domaines de x et y les valeurs qui
rendent la contrainte (x, y) fausse. L’opération est effectuée pour toutes les valeurs de x
et y jusqu’a I’obtention d’un domaine réduit cohérent avec les contraintes. A chaque
changement du domaine de x, on doit tester de nouveau tous les arcs (z, x) avec z
différent de y. Cette procédure ne garantit pas la satisfiabilité du systéme au complet et
nécessite de ce fait une énumération des valeurs du domaine. Plusieurs autres variantes
améliorées de cet algorithme ont été développées. Par exemple, la version AC-3 utilise
une procédure de propagation moins aveugle, qui évite de réviser les arcs, c’est-a-dire
les contraintes non concernées par un changement du domaine de la variable x. Une
autre version trés utilisée est AC-4 qui procéde de la méme maniére que AC-3, mais
maintient un support de liste contenant toutes les paires <variable, valeur>. Plutot que
d’examiner toutes les valeurs du domaine, la révision est appliquée uniquement aux

valeurs de cette liste.

Technique de cohérence de bornes
Elle permet d’exprimer des contraintes comportant plus de deux variables. C’est le

cas généralisé de la cohérence de nceeuds et d’arcs. Pour I’illustrer, considérons le
probléme du sac suivant: un voyageur désire optimiser la valeur d’objets a amener avec
lui en voyage. Parmi les objets qu’il doit emporter se trouvent: une bouteille de whisky
de quantité 4 unités, une bouteille de parfum de quantité 2 unités et un carton de
cigarettes de quantité 2 unités. Les profits tirés de chaque objet amené sont
respectivement de 15, 10 et 7 dollars pour le whisky, le parfum et les cigarettes. Son sac
ayant une capacité finie de 9 unités, le voyageur veut déterminer quels objets prendre
pour réaliser un profit de plus de 30 dollars.

Dans ce probléme, on représente chaque objet 2 amener par des variables. Elles
prennent leurs valeurs possibles dans le domaine D = {0, ..., 9/ qui indique le nombre
d’unités que le sac du voyageur peut contenir. Donc, si W représente la variable de

whisky, P le parfum et C la cigarette, on pose:

38

we{0,...,9},Pe {0,...,9},Ce {0, ..., 9}).
On veut alors satisfaire les contraintes suivantes:
1. 4W + 3P +2C < 9; désigne la contrainte sur la capacité

2. 15W + 10P + 2C = 30; désigne la contrainte sur le profit.

Soient
W un nouveau domaine
C:=c| AcC2 A ...ACyun ensemble de contraintes primitives
d;, dy des valeurs du domaine D
Faire
W =D
Pour chaque contrainte c; faire
Si |vars(c;)| = 2 alors
Poser {x, y} := vars(c;)
D(x):={ dx € D(x) | pour dy € D(y), (x — dx et y —d,) est solution de c; }
D(y):={ dy € D(y) | pour dx € D(x), (x — dx et y —d,) est solution de ¢; }
Fin Si
Fin Pour
Tant que W =D
Retourner D
Fin

Figure 3. 5 Algorithme de cohérence d’arcs

L’application de la cohérence de bornes se fait en deux étapes :
e On effectue une évaluation des bornes de chaque variable intervenant dans les

contraintes 1) et 2) du probléme.

39

P<9/3-4/3W -2/3C= Minp=9/3-4/3 Maxw) —2/3 (Maxc)
et Max ;, = 9/3 - 4/3 (Minw) — 2/3 (Minc)
Les mémes raisonnements sont aussi appliqués sur les autres variables pour trouver une
formule représentant leurs bornes supérieure et inférieure.

e On calcule les nouvelles bormes des différentes variables a4 partir de leurs
domaines et des évaluations précédentes. Chaque valeur ne satisfaisant pas ces
équations est retirée du domaine. On peut aboutir ainsi a des domaines réduits de
la forme :

P={0,..3):;W=/{0,...2})C={0,..., 4}

Il est a noter que la vérification de la cohérence dans un arbre de recherche se fait
suivant divers mécanismes. Les plus connus sont les formes d’énumération implicite qui
vérifient la cohérence uniquement entre les valeurs déja assignées, le “forward
checking™ qui fait le controle de cohérence sur les valeurs fixées et celles qui ne le sont
pas encore, et enfin le “Looking Ahead” qui est une forme non restreinte de cohérence
permettant de vérifier la cohérence entre les valeurs non encore instanciées.

L’utilisation combinée de ces différentes techniques de propagation permet
d’obtenir un algorithme complet. Comme exemple, on peut effectuer, dans un méme
algorithme, la cohérence sur les bornes avant le retour-arriére (backtracking) et aprés
que les valeurs soient affectées aux variables. Dans ce cas ci, la propagation est réalisée
par I'intermédiaire du domaine des variables. Les algorithmes utilisant ce principe sont
considérés comme des algorithmes généralisés. Un exemple de contrainte réalisée
suivant ce mécanisme est le alldifferent qui permet d’exprimer la contrainte globale de
non-égalité sur plusieurs variables. Son algorithme est basé sur la recherche d’un
couplage couvrant un ensemble de variables X, dans un graphe biparti G(X, ¥, E), o0 Y
est ’ensemble des domaines de X et E I’ensemble des paires <variable, valeur>. Une
contrainte alldifferent est satisfiable, si et seulement si, il existe un couplage maximum
dans le graphe G correspondant. Par définition, un couplage est un ensemble d’arétes ne

partageant aucun sommet. Le couplage est dit maximum quand toutes les variables

40

constituent des sommets couverts par le couplage. Lorsque !’on retrouve une aréte
faisant partie de tous les couplages maximums, on parle d’aréte vitale. L’algorithme
général, implémenté dans plusieurs langages, comporte les étapes suivantes:
1. Trouver tous les couplages maximums du graphe G,
2. Identifier toutes les arétes n’appartenant i aucun couplage maximum, c’est-a-dire
ne faisant pas partie d’un chemin alterné ou d’un cycle alterné;
3. Eliminer des domaines Y, toutes les valeurs correspondantes a ces couplages.

Une autre version, dite incrémentielle et présentée a la Figure 3.6, reconsidére la
contrainte alldifferent, suite 4 une réduction de certains domaines. Notons que
I’application des principes de propagation sur des contraintes globales permet
d’effectuer une bonne coupure de domaine. De plus, ils permettent de calculer le
domaine réduit par énumération et en un temps constant. Le choix des variables a
instancier ainsi que la sélection des valeurs 2 leur attribuer utilisent des heuristiques qui

permettent de guider la recherche et de réduire la complexité de la solution.

Soit le couplage maximum courant
Reconsidérer la contrainte alldifferent suite i la réduction de certains domaines.
Eliminer les arétes correspondantes

Si I’aréte est vide, alors

Retourner faux

Sinon Compléter le couplage courant

Si il n’existe plus de couplage maximum, alors

Retourner faux

Sinon Filtrer les arétes ne faisant partie d’aucun couplage maximum

Fin

Figure 3. 6 Algorithme de la contrainte alldifferent (version incrémentielle)

41

3.2.2 Optimisation par séparation-évaluation

Les problémes d’optimisation sont des problémes pour lesquels on désire trouver
des solutions a un but qui minimisent une fonction de coiit. La procédure d’optimisation
par “séparation-évaluation” (branch & bound) s’intégre bien au modéle de résolution de
la PC et peut étre facilement implémentée par un solveur. Le principe de la méthode est
de calculer une solution s, parmi I’ensemble des solutions réalisables possibles T du
probléme et de continuer la recherche en ajoutant une contrainte supplémentaire t < s
(t€) sur toute nouvelle solution. Lorsque la recherche se termine en échec, le dernier
coiit total calculé donne le coiit optimal (global) du probléme. La poursuite de la
recherche s’effectue en faisant un retour-arriére tout en conservant la structure de I’arbre
de dérivation courant ou par itération en développant un nouvel arbre de recherche
tenant compte de la contrainte supplémentaire sur la borne supérieure du coiit. Tel que
décrit, le “branch & bound” est une méthode dont I’efficacité dépend essentiellement de
la premiére solution trouvée. Elle est tout indiquée dans la résolution par la PC de

problémes combinatoires tels les problémes d’affectation, de planification, etc.

3.2.3 Heuristigues d’énumération

Les algorithmes de propagation permettent de réduire I’espace de recherche sur
lequel des techniques d’énumération sont appliquées en vue de trouver une solution ou
la meilleure solution pour un probléme d’optimisation combinatoire. Ces différents
algorithmes n’étant pas complets, les heuristiques d’énumération combinées avec leurs
utilisations permettent de guider les choix, ce qui restreint I’espace de recherche a
explorer (sans perdre la complétude du solveur). Ainsi, il existe deux grandes classes
d’heuristiques qui sont exploitées. La premi¢re permet d’effectuer la sélection des
variables a instancier en premier et est communément désignée par heuristique de choix
de variables. La deuxiéme, quant a elle, permet de déterminer I’ordre dans lequel les

valeurs d’instanciation d’une variable doivent étre essayées.

“échec d’abord”

Heuristique d’énumération de variable

Le principe est de commencer la recherche par les parties du probléme qui sont les
plus difficiles, c’est-a-dire celles possédant le moins d’alternatives. Cette stratégie
permet de se rendre compte, dés la racine de I’arbre de recherche, des choix n’ayant pas
de solutions et donc aboutissant aux €checs. Son application, trés variée, dépend surtout
des modeéles de probléme. Par exemple, on peut vouloir commencer par les variables
possédant les plus petits domaines ou encore raisonner suivant un impératif
d’optimisation de coiit en choisissant les variables possédant le moindre regret, c’est-a-
dire celles possédant la plus grande valeur de différence de cott entre les deux plus bas
colits. La qualité de mesure de cette heuristique est justifiée expérimentalement et sa

mise en ceuvre est fonction du type d’application pour laquelle elle est utilisée.

Heuristique d’énumération de valeur “meilleur d’abord” (“best-first”)

L’ordre de choix de valeurs n’affecte pas la topologie de I’arbre de recherche, mais
intervient plus dans I’ordre d’exploration des différentes branches du probléme. Pour
cette raison, le choix des valeurs apparait moins important dans la résolution des
problémes d’optimisation. Il peut toutefois €tre d’une certaine efficacité lorsqu’il s’agit
de trouver une solution réalisable a un probléme. Les méthodes les plus couramment
utilisées sont basées sur le choix des valeurs maximum ou des valeurs les plus utilisées.
11 peut s’effectuer aussi par une segmentation de tout le domaine. Le choix des valeurs
est alors effectué dans chacun des sous-ensembles.

L’heuristique “meilleur d’abord”, trés utilisée dans la recherche d’un optimum,

part du principe de sélection des valeurs minimisant le terme de coft.

3.2.4 Résolution de problémes d’optimisation combinatoire

Les caractéristiques de la PC décrites offrent des avantages tels la rapidité de la
programmation, la souplesse de la mise au point et moins de risques de révision de la
stratégie de résolution en cas de modification de I’énoncé. La plupart des problémes
d’optimisation combinatoire peuvent étre exprimés sous forme de CSP. D¢s lors, les

langages développés en programmation par contraintes pour les problémes sur domaine

43

fini peuvent étre d’une certaine efficacité dans la recherche de solution de tels
problémes.

Les différentes étapes pour la résolution d’un CSP sont: la définition d’un
ensemble de variables modélisant le probléme, le choix d’une représentation des
contraintes a 1’aide de celles prédéfinies dans le langage utilisé et le choix des
différentes stratégies de contrdle pour guider la recherche de solution dans I’espace

réduit.

Définition des variables de contraintes

Elle consiste 4 exprimer les variables de modélisation du probléme, et partant leurs
domaines respectifs. Dans certains cas, ce choix peut influencer I’algorithme de
résolution dans le langage choisi. Ceci s’explique par le fait que les inconnues du
probléme en PC, sont représentées en termes de variables. Résoudre le probléme
consiste alors A poser des contraintes sur ces variables et a déterminer les valeurs de
leurs domaines qui les respectent. Débuter la recherche avec un nombre réduit de
variables, donne plus de chances de réaliser la propagation des contraintes sur un espace
de taille réduite. Ainsi, a cette étape de I’algorithme, plusieurs modéles sont essayés
pour en retenir ceux qui aboutissent a une réduction de la taille du probléme, tout en
conservant I’intégrité de son formalisme.

Par exemple, pour le probléme des N-reines qui consiste a placer n reines sur un
échiquier n>n sans qu’elles soient en prise c’est a dire placées ni sur une méme ligne, ni
sur une méme colonne, ni sur une méme diagonale, on peut modéliser chaque reine par
une variable de domaine [/, ..., n] qui indique dans chaque colonne sur quelle ligne
placer la reine. Ceci peut étre noté: Domaine ([X1, Xz, ..., Xal, [1,n]), od X; sont les
variables.

La réduction des variables se fait en évitant certaines formes de modélisation de
variables jusque 1a exploitées pour la modélisation en recherche opérationnelle. Par

exemple, pour les problémes d’affectation de ressources, on remplace les variables

binaires Xj; (I, 0) exprimant que i est affectée a j, par des variables S définies comme
suit: §; =J.

Il est aussi parfois plus efficace de considérer plusieurs jeux de variables qui
correspondent a différentes vues du probléme, et que 1’on relie entre eux par les
contraintes. Dans ce cas, il peut y avoir un coiit 2 payer pour la gestion des relations
entre les contraintes sur les différents modéles. Mais ce demier coiit peut étre
contrebalancé par de meilleures coupures effectuées dans chacun des modéles et par la

détermination anticipée des échecs.

Définition des contraintes

Apres la représentation des variables du probléme, on procéde a I'implémentation
des contraintes sur ces variables. Généralement, on utilise les contraintes déja définies
dans le langage. Leur implémentation soigneuse permet de réduire le plus possible les
domaines des variables. Le schéma de propagation d’une contrainte est le suivant:

e Réveil de la contrainte suite 2 une modification du domaine de I'une des
variables;

e Simplification de la contrainte;

e Réduction des domaines des variables;

¢ Réveil des autres contraintes;

e Itération des processus de réveil et de réduction des domaines jusqu’a
I’obtention de domaines stables.

Les contraintes globales, par exemple, exploitent efficacement ces procédures et
permettent de réaliser des coupures du domaine 2 travers les différents algorithmes de
propagation, coupures qui ne sont pas faisables avec les disjonctions de contraintes
basiques. Comme exemple de contrainte globale, on a:

element(l, [V}, V>, ..., V], X) qui exprime que pour I=i, on doit avoir X= V.

I et X sont des variables du domaine, alors que V; est une constante.

45

Recherche de solution
La recherche de solution est ici utilisée pour définir les étapes principales de la
résolution du probléme dans le langage choisi. Elle sert a relier les différentes variables
aux algorithmes de sélection précédentes. Généralement, on a le choix entre les deux
types suivants:
1. Générer puis Tester, qui procéde par une utilisation passive des contraintes en
évaluant d’abord les variables avant de vérifier si elles respectent les contraintes.
C’est une méthode trés peu utilisée car elle ne permet pas au développeur de se
rendre compte assez tot des échecs et elle peut s’avérer trés dispendieuse en
termes de temps d’exécution.
2. Contraindre puis Générer, qui se sert des contraintes définies pour réduire le
domaine avant de procéder a I’évaluation. Elle procéde donc par une utilisation
active des contraintes, ce qui optimise la recherche par des coupures efficaces

dans I’arbre de recherche.

Dans les problémes courants, il s’agit non pas de trouver une solution mais une
meilleure solution. C’est le probléme d’optimisation de contraintes (COP — Constraint
Optimisation Problem). Un COP est constitué d’un CSP et d’une fonction objectif f. Le
but est alors de trouver une solution qui satisfait les contraintes et maximise (ou
minimise) la fonction objectif. Pour cela, on ajoute une variable supplémentaire définie
sur domaine fini et qui représente le colit. Tout comme en recherche opérationnelle,
I’heuristique de “Séparation et Evaluation” (Branch & Bound), adaptée aux nombres

entiers, est utilisée dans la recherche de solution.

3.3 Applications de la PC a quclques problémes de recherche opérationnelle
Les langages de PC ont été appliqués a la résolution efficace de nombreux

problémes de recherche opérationnelle grace a I'utilisation active des relations entre les

contraintes. Mentionnons entre autres les problémes de coloriage de graphe,

d’ordonnancement de tiches, de commis voyageur avec fenétre de temps, etc. Nous

présenterons dans cette section ces différentes applications.

3.3.1 Coloriage de graphe

Un probléme de coloriage de graphe consiste a déterminer le nombre minimum de
couleurs requises pour colorier un graphe de telle sorte que deux nceuds adjacents soient
d’'une couleur différente. Ce probléme posséde un grand intérét en recherche
opérationnelle en général pour de nombreux problémes de conception et d’emploi de
temps, et en particulier en télécommunications par exemple, pour I’allocation de
fréquences dans les réseaux mobiles dans le but d’éviter les interférences entre deux

cellules voisines. Fages, 1996 propose la modélisation suivante:

Modélisation et propagation des contraintes
A chaque nceud k du graphe, on associe une variable représentant la couleur et qui

est définie sur un domaine /1, ..., n]. n est le nombre de couleurs disponibles pour
colorier les nceuds du graphe.
Domaine([N,, N, ..., N¢J, [1,n])
La contrainte d’inégalité est utilisée pour exprimer que deux nceuds i et j adjacents
ont des couleurs différentes.
N; # N si i adjacent a j
La recherche de solutions est basée sur I’appel d’une fonction qui utilise le

“contraindre puis générer”.

3.3.2 Affectation de fréquences dans un réseau cellulaire

Le probléme de coloriage de graphes est a la base de la résolution par ILOG
Solver3.1, du probléme d’affectation de fréquences dans les réseaux cellulaires. En effet,
dans les réseaux cellulaires, chaque cellule communique avec ces usagers sur des
fréquences pré-allouées. Etant donné la bande de fréquence limitée disponible, on utilise

une réutilisation des fréquences a I’intérieur des différentes cellules. Cette réutilisation

47

est rendue possible seulement dans le cas ol il n’y aurait pas d’interférences entre les
fréquences. Autrement dit, on exige que la distance entre les fréquences soit supérieure a
une certaine valeur, au-dessus de laquelle I'utilisation d’une méme fréquence par deux
usagers, a I’'intérieur de deux cellules, est rendue possible. Comme informations, le
fournisseur dispose du nombre de cellules (Cel, ..., Cel,) présentes dans le réseau, du
nombre de fréquences qui lui est alloué pour assurer son trafic et de la distance D entre
les différentes cellules du réseau. Il s’agit alors de trouver I’affectation optimale qui
minimise le nombre de fréquences en service tout en maximisant le trafic dans le réseau.
On cherche ainsi 2 utiliser peu de fréquences pour desservir un grand nombre de cellules
sans interférences, ce qui explique le parallélisme avec le probléme de coloriage de
graphes ot on veut colorier différents neeuds avec peu de couleurs sans que deux nceuds

voisins aient la méme couleur.

Modélisation
1. Chaque émetteur est modélisé par une variable entiére appartenant a un ensemble
de n éléments représentant le nombre de fréquences disponible.
2. La contrainte sur la distance est exprimée de maniére déterministe par la
contrainte prédéfinie IlcAbs(Cel;—Cel;)~ D (ici le fait d’utiliser une contrainte
symbolique au lieu de deux contraintes disjonctives (Cel;—Cel;) > D et (Cel—

Cel;) > D réduit la complexité du probléme).

Sélections de variables et de valeurs
1. On commence par les variables ayant le plus petit domaine. Il est plus urgent
de satisfaire dans un premier temps les émetteurs ayant moins de fréquences
disponibles pour acheminer leur message et ensuite de s’occuper de ceux dont
le domaine est plus large.
2. Comme choix de valeurs, on commence par les fréquences qui sont les plus
utilisées. Ceci implique une mise en mémoire de chaque fréquence, chaque fois

qu’une variable se trouve €tre bornée suite au réveil d’une contrainte.

3.3.3 Probléme d’ordonnancement de tiches
Le probléme d’ordonnancement de tiches est aussi désigné par «probléme de
planification». Dans ce probléme, on dispose d’'un ensemble T de tiches et d’un
ensemble R de ressources. On désire assigner les différentes tiches, qui sont d’une durée
déterminée, a chaque ressource. Il y a un certain nombre de tiches qui doivent étre
exécutées avant d’autres. Le but est d’organiser I'ordre d’exécution des tiches sur
chacune des ressources de maniére a2 minimiser le temps d’exécution, sous les
contraintes suivantes:
e Deux différentes tiches ne peuvent étre exécutées en méme temps sur une méme
ressource (cas des ressources disjonctives);
e Plusieurs tiches peuvent étre destinées a une méme ressource, si la condition
précédente est vérifiée;
e Le début de la tiche X; appartient a un intervalle fixé. On veut ainsi débuter une
tiche dans un intervalle de temps précis.
Une méthode de résolution de ce probléme consiste a ordonner chaque paire de
taches partageant la méme ressource, a propager les contraintes et a revenir en arriére
lorsqu’un choix meéne i une incohérence. La méthode présentée par Marriott. et Stuckey,

1998 est la suivante.

Modélisation

Les taches sont représentées par des couples

(X, di)
ou les variables X; définissent le début de la tiche i et d; sa durée. Les variables X; sont
définies dans un intervalle /I, b] avec b désignant une borne supérieure représentant
I’instant limite auquel la tache i doit étre débutée.
Le systéme de contraintes sera constitué:
e De contraintes disjonctives qui sont des inégalités linéaires de type:
Xi+di< Xj

exprimant le partage d’une méme ressource par deux taches différentes ;

49

e des contraintes de précédence entre tiches qui s’expriment de la fagon
suivante:
Si i précéde j, alors
Prédécesseur ([X;d:], [X;. d;j]) signifie que X; 2 X; +d;.
e de la fonction objectif qui consiste 2 minimiser le temps total d’exécution
des différentes tiches suivant les contraintes établies ci-dessus.
Minimiser(X;, X, ..., X,, coiit)

Résolution du probléme
Une procédure utilisée pour le choix de I’ordre d’exécution des différentes taches

sur chacune des ressources consiste a fixer une valeur d’ordre permettant I’instanciation.
L’algorithme de Séparation et Evaluation est utilisé pour déterminer le coiit optimal sur

un ensemble de paires de taches satisfaisant les contraintes de ressources.

3.3.4 Probléme du commis voyageur avec fenétre de temps
Le probléeme se présente comme suit (Pesant et al., 1996): Un voyageur doit

effectuer une tournée dans différentes villes selon les contraintes suivantes:

1) Chaque ville doit étre visitée une seule fois dans une plage horaire
donnée;

2) Le voyageur dispose d’un intervalle de temps bien déterminé pour faire
sa tournée qui doit se terminer au point de départ;

3) Le voyageur peut arriver dans une ville avant le temps d’arrivée prévus, a
condition qu’il fasse un délai d’attente proportionnel au temps de départ
prévu vers la prochaine ville;

4) On désire minimiser le temps total indispensable pour effectuer la tournée

compléte des villes.

50

Modélisation
On considére les différentes villes V = (1, 2, ..., n, n+l} avec | et n+l
représentant la méme ville départ, destination. Si on définit S; comme une variable

successeur dans le probléme. On veut :

Minimiser ZCiSi
i

sous les contraintes suivantes :

1) S;#S;, exprime que deux villes ne peuvent avoir le méme successeur;

2) S; # i, exprime qu'une variable ne peut avoir elle-méme comme
successeur;

3) Sie {2, ...n+l};
Si B et a représentent le début et la fin d’un chemin d’une ville i, on
impose les contraintes suivantes:

4) Si=j = Sq # Bi, qui exclut la présence d’une méme ville dans différentes
chaines;

5) a;<T;<b;, oua;et b; dénotent les temps limite d’arrivée et de départ pour
chaque ville i, et T; indique la variable temps de départ;

6) Si=j=T+t; <T;j ou;représente la durée du parcours.

Les contraintes 5) et 6) définissent la fenétre de temps pour I’arrivée dans chaque
ville. Ces différentes contraintes sont propagées en PC pour réduire le domaine des
variables. Ces contraintes participent a la réduction du domaine. La contrainte 3) sert &
initialiser le domaine des variables S;. La contrainte 2) permet d’éliminer les valeurs i du
domaine des S; trés t6t pendant la recherche. La contrainte /) est un exemple d’utilisation
du “forward-checking” (FC), algorithme de propagation qui retire du domaine de la
variable S; la valeur de S; lorsque celle-ci est instanciée. Cette procédure est valable pour
I’une ou I’autre des variables S; ou S;. La contrainte 4) élimine la présence de cycles dans
la solution. Enfin, les contraintes 6) et 7) permettent respectivement d’initialiser les

variables T; et de restreindre leur domaine pendant la recherche. La complexité de la

51

solution est réduite par I’ajout de contraintes redondantes sur la fenétre de temps et
I’élimination de tours. Ainsi, si ¢*,, représente le chemin le plus court entre a et b, la

contrainte:
T 400 ST 417 <T,)

est remplacée par:
(7;+t*u>7;)v(7'j+t*jk>7;)=>sl_¢ J» iz jizk et jzk

Choix de variables et de valeurs
Le choix des variables est fait de maniére dynamique. Suivant le principe “échec
d’abord” qui commence par les variables ayant le domaine le plus petit. Au cas ou il
existerait une multitude de choix, au lieu de choisir la variable appartenant a plusieurs
contraintes, on procéde par élimination en retenant les variables qui peuvent aboutir a la
plus petite réduction du domaine parmi ces paires. Cette nouvelle stratégie est réalisée
de 1a maniére suivante:
I. Soit s le plus petit domaine obtenu en considérant toutes les variables S;
Former I’ensemble 8 ={ S;,i=1, ..., n : |domain(§S)) | =s }
2. Si s=l1, alors choisir arbitrairement une variable dans ¢ ;
3. Sinon:
Pour chaque €élément e appartenant a I'union des éléments du domaine des
variables de @, calculer le nombre d’occurrences ¢ de e dans les domaines des
variables de .

Choisir la variable qui maximise la fonction f (v)= Zﬁ invy et

Le choix des valeurs est effectué suivant la plus petite durée séparant une ville de son

successeur.

Dans ce chapitre, nous avons étudi€¢ les fondements de la propagation par
contraintes. Plus spécialement, nous avons défini les principes de résolution des

contraintes sur domaine fini, a travers leurs applications sur des exemples d’optimisation

52

combinatoire. Dans le chapitre suivant, nous aborderons I’adaptation de la PC au

probléme d’affectation de cellules a des commutateurs.

53

CHAPITRE 4
IMPLEMENTATION, MISE EN OEUVRE ET RESULTATS

Le probléeme d’affectation de cellules a2 des commutateurs est un probléme NP-
difficile, faisant intervenir des variables qui prennent leurs valeurs dans un domaine fini.
De ce fait, on peut le formuler sous forme de probléme d’optimisation de contraintes sur
domaine fini. La démarche a suivre consiste alors 4 exprimer les inconnues du probleme
a ’aide des variables de contraintes, sur lesquelles différentes régles de calcul peuvent
étre appliquées en vue de réduire de maniére efficace leur domaine. On adopte par la
suite certaines stratégies de recherche propres au probléme, qui permettront d’aboutir a
une bonne solution en des temps de calcul relativement acceptables. Dans ce chapitre,
aprés une description des différentes étapes de notre adaptation, nous illustrerons le
fonctionnement de celle-ci a travers une mise en ceuvre sur un exemple précis. Enfin,
nous présenterons les résultats obtenus et leur performance par rapport a d’autres

heuristiques.

4.1 Adaptation de la PC a la résolution du probléme

Le probléme d’affectation de cellules 3 des commutateurs pouvant étre formulé
sous forme de COP (FD), sa résolution est basée sur les différentes procédures de
satisfaction des contraintes propres i ce domaine. Les trois grandes étapes a considérer
dans l'algorithme sont: la modélisation du probléme par le choix des variables,
I’utilisation d’algorithmes de filtrage favorisant une bonne propagation des contraintes
du probléme sur toutes les variables et enfin la recherche efficace des solutions a travers
le développement d’un ensemble de stratégies de choix de variables et de valeurs sur les
domaines réduits. Notre algorithme utilise la méthode du “Contraindre et Générer’”.
Suivant cette approche, les contraintes sont d’abord appliquées sur les variables de
modélisation, pour éliminer certaines valeurs et en fixer d’autres si possible. Les

solutions sont par la suite générées par énumération.

54

Par opposition a2 la méthode “Générer et Contraindre”, qui fixe les valeurs aux
variables avant de vérifier les contraintes, 1’algorithme de programmation utilisé
(“Contraindre et Générer”) peut éviter que I’on considére, lors de la recherche, certaines
valeurs n’aboutissant pas a des solutions faisables, ce qui permet de réduire le nombre
d’échecs possibles pendant I’énumération. La méthode de “sé€paration et évaluation
(Branch & Bound)” est utilisée pour trouver la meilleure solution. La complexité de
I’algorithme au pire cas va dépendre principalement du nombre de variables modélisant
le probléme. Pour cette raison, contrairement a la formulation mathématique proposée
par Merchant et Sengupta, 1995, et introduite au Chapitre 2, le probiéme est modélisé
avec moins de variables, mais dont les valeurs possibles appartiennent a des domaines
plus larges. Chaque cellule est ainsi représentée par une variable entiére dont le domaine
est déterminé par le nombre de commutateurs disponibles dans le réseau. A chacune de
ces cellules sont associées deux variables de coiit: le coiit de cablage, qui dépend de la
cellule et du commutateur auquel celle-ci est affectée, et le coiit de reléve qui, lui,
dépend des cellules n’appartenant pas au méme commutateur. Une fois le probléme
modélisé, les contraintes sont appliquées et propagées sur les variables choisies.

En PC, chaque type de contraintes posséde son algorithme spécifique pour se
propager. Les différents algorithmes de propagation interagissent a leur tour par
I'intermédiaire du domaine des variables. Dans notre cas, nous avons deux contraintes
dures a respecter. Selon la premiére contrainte d’unicité de 1’affectation, imposée par la
domiciliation simple, chaque cellule est affectée & un et un seul commutateur. Cette
contrainte est respectée a coup sir, car chaque variable entiére représentant la cellule ne
peut prendre qu’une seule valeur a la fois dans son domaine. La seconde contrainte
concerne la capacité de chaque commutateur, qui est fixée et exprimée en volume
d’appels par unité de temps. Une maniére simple et efficace d’exprimer cette contrainte
est de considérer chaque commutateur comme une variable ensembliste, c’est-a-dire a
laquelle plusieurs valeurs peuvent étre attribuées, et d’imposer que le volume total des
appels provenant des cellules qui lui seront affectées ne dépasse pas la capacité dont il

dispose. D’ou la définition dans notre adaptation d’une autre variable ensembliste,

55

représentant chaque commutateur et dont le domaine des valeurs comporte I’ensemble
des cellules qui lui sont affectées. Pour exprimer la contrainte sur la capacité, nous avons
défini un objet permettant de déterminer et d’ajuster la capacité résiduelle d’un
commutateur lorsqu’une nouvelle cellule lui est ajoutée. Si la capacité maximum est
atteinte, on ne peut plus affecter de cellules a ce commutateur ou alors on revient a la
valeur précédant I’ajustement de la capacité résiduelle suivant le principe du retour-
arriére, et d’autres cellules dont les volumes d’appels sont transférables par le
commutateur sont essayées. Dans le cas ol toutes les contraintes sont satisfaites et
chacune des variables est fixée, on calcule le coiit total. La valeur de cette premiére
solution trouvée est considérée comme une borne supérieure. On ajoute une contrainte
supplémentaire sur la borne supérieure du coiit de toutes nouvelles solutions. Dans la
résolution de problémes d’optimisation combinatoire, le coiit de I’algorithme peut étre
prohibitif et dépend fortement du coiit de la premiére solution trouvée. De ce fait, a
chaque niveau de I’arbre, certains mécanismes de choix de variables et de valeurs sont
utilisés afin de permettre de commencer la recherche par une exploration des parties du
probléme ayant plus de chances d’aboutir. L’un des différents avantages de la
propagation par contraintes est la flexibilité d’essayer rapidement différentes stratégies
de recherche sans avoir 2 modifier l'algorithme en profondeur. En se basant sur les
statistiques du probléme, on a adopté la stratégie du moindre regret sur le coiit de liaison.
Celle-ci est basée sur une différence entre les deux plus petites valeurs de coiit de
cablage possibles. L’ordre de sélection des cellules a examiner est alors fonction de la

plus grande différence de coiit obtenu apres évaluation.
4.2 Modélisation du probleme

Nous avons utilisé plusieurs jeux de variables dans la modélisation du probléme. A

chacune des cellules du réseau est associ€e une variable entiére:

Switch ; € {0, ..., m-1} pouri =0, 1, ..., n-1 4.1

56

La relation (4.1) permet d’initialiser le domaine des valeurs aux m commutateurs,
pour chaque cellule. Si on considére une représentation en arbre du probléme, ou la
racine désigne le point de départ de la recherche, et chacune des branches une
alternative, résoudre le probléme d’affectation consiste alors a fixer la valeur de chaque
variable Switchi: , tout en respectant la contrainte sur la capacité.

Un commutateur j donné est a son tour représenté par une variable ensembliste
Cells, c {0,1, ...,n-1} pour j= 01,..,m-1 4.2)

L’utilisation de plusieurs variables dans un méme algorithme peut entrainer une
redondance dans le modéle. Généralement, le prix a payer est la gestion des liens entre
les différentes variables. Toutefois, en plus de permettre une propagation plus en
profondeur des contraintes dans les différents modéles, la redondance dans la
représentation est souhaitable pour combiner les avantages respectifs de facilité
d’expression des variables Switchsi et Cellsj. D’un autre coté, la contrainte sur la
capacité est exprimée de maniére plus efficace sur les variables ensemblistes, qui se
trouve étre propagée sur un ensemble de cellules(réduction de la complexité).

En désignant par cCost[i, Switchi], une variable de coiit exprimant la valeur de la
liaison entre la cellule i et le commutateur auquel elle est affectée, et par ACost[i], une
autre variable représentant le coiit de reléve pour une cellule, on peut formuler le

probléme comme suit:

Minimiser Z(cCost[i, Switchi] + hCost[i]), i=0, 1, ..., n-1 4.3)
sous la contrainte suivante:
Yasm 4.9
ieCells 4 y

La relation (4.3) tend & minimiser le coiit total de ciblage et de reléve pour toutes
les cellules du réseau. La demiére relation (4.4) exprime la contrainte sur la capacité qui
est ici réalisée 2 I’aide de I'utilisation des variables ensemblistes Cellsj et d’une nouvelle

classe de contraintes CapCoherence() que nous définirons par la suite.

57

Dans le langage utilisé qui est ILOG Solver v4.4, les variables sont exprimées de la

maniére suivante:

1. IicIntVarArray Switchs(n-1, 0, m-1), pour les variables enti¢res représentant
les n-1 cellules. Leur domaine est compris entre 0 et m-1 ;

2. IicIntSetVarArray Cells(m-1, 0, n-1), utilisée pour générer les commutateurs.
Une variable ensembliste est caractérisée par deux sous ensembles: celui des
valeurs possibles, c’est-a-dire un sous-ensemble de toutes les cellules pouvant
étre affectées au commutateur qu’elle symbolise, et un sous-ensemble des
valeurs requises, qui indique, 2 un moment donné de la recherche, toutes les
cellules déja affectées a ce commutateur. Entre ces trois ensembles se trouve la
relation:

EnsRequis < Cells — EnsPossibles

A sa création, EnsRequis=d et EnsPossibles = {0....,n-1}. L’objectif est alors de

trouver pour chaque commutateur le sous-ensemble des éléments requis ;

3. IicIntVarArray Ccost(), est un tableau de variables, utilisé pour
I’optimisation et qui en pratique permet de fixer le coiit de ciblage, aprés
chaque affectation de la cellule 2 un commutateur ;

4. IlcIntVarArray hCost(), exprime aussi un tableau de variables servant a
I’optimisation et dont le role est de trouver un meilleur coiit de reléve entre les
cellules affectées a des commutateurs différents;

5. IlcRevInt CapRes, c’est la capacité résiduelle de chaque variable ensembliste
Cellsj. Quand une cellule est ajoutée a une de ces variables, on s’en sert pour
déterminer le volume d’appels restant, et sélectionner par conséquent les
cellules qui peuvent encore lui étre affectée. C’est une variable réversible qui
gére de maniére implicite le retour-arriére en cas de violation de la contrainte

sur la capacité.

58

4.3 Représentation des contraintes du probléme

La contrainte sur I’affectation unique étant déja respectée de par les variables
modélisant le probléme, nous avons défini deux nouvelles classes de contraintes:
CapCoherence() et BornelnfReleve(). La premiére exprimant la contrainte sur la
capacité de chaque commutateur est propagée a chaque changement du domaine des
variables Cells; représentant les commutateurs. Soient PossibleSet et RequiredSet, deux
ensembles d’éléments possibles et requis d’'un commutateur j. Soient DeltaPossibleSet
I’ensemble des éléments retirés de PossibleSet a une étape donnée de la recherche, et
DeltaRequiredSet, I’ensemble des éléments ajoutés a RequiredSet. Lorsque la contrainte
CapCoherence() est appliquée au tableau de variables ensemblistes Cellsj, s'il y a
modification du domaine d’un de ces éléments, la contrainte est appelée pour retrouver
I’élément du tableau, c’est-a-dire la variable dont I'un des domaines a été changgé.
L’index de cette variable ainsi que le volume total des appels de toutes les nouvelles
cellules ajoutées, c’est-a-dire celles appartenant & son DeltaRequiredset, sont utilisés
pour calculer la capacité résiduelle de ce commutateur. Si la valeur trouvée est négative,
alors la capacité totale du commutateur est dépassée, ce qui entraine un échec dans la
recherche de solution. Toutes les nouvelles cellules ajoutées sont retirées et on retourne
a la demniére valeur calculée de la capacité résiduelle. On procéde donc a une mise en
mémoire de la valeur de CapRes, a chaque étape de la recherche. Cette opération est
prise en charge dynamiquement par la bibliothéque de ILOG Solver 4.4, licRev qui
utilise le retour-arriére pour revenir sur des valeurs précédentes et continuer la recherche
dans une autre direction. Si au contraire la valeur de CapRes est positive c’est-a-dire si
Ia capacité résiduelle du commutateur est respectée pour toutes les nouvelles cellules
ajoutées, alors on parcourt toutes les cellules pour retirer de I’ensemble PcssibleSet, les
cellules qui ne sont pas encore fixées mais dont le volume d’appels ferait déborder la
capacité du commutateur. La valeur de CapRes est par la suite mise a jour.

Pour chaque nouvelle classe de contraintes utilisée, 1’algorithme comporte les trois

€tapes suivantes:

59

Etape 1: Réveil de la contrainte
Décide du moment d’appel de la vérification de la contrainte. Plusieurs
possibilités sont offertes suivant la nature du probléme. On peut le faire
sur un changement de domaine, un changement des bornes de ce domaine
ou enfin lorsqu’on fixe la valeur de cette variable. Pour notre cas, nous
avons choisi d’effectuer le réveil de la contrainte aprés chaque
modification du domaine de la variable Cells;. Nous sommes en effet
intéressés a obtenir des solutions réalisables a chaque nceud, et il parait
moins restrictif de vérifier la contrainte de capacit¢é de chaque
commutateur, chaque fois que des cellules sont ajoutées ou retirées de
son domaine.
Etape 2: Propagation de la contrainte
On définit la maniére dont la contrainte est propagée sur les variables
concemnées. Ce processus permet d’éliminer des commutateurs certaines
valeurs violant la contrainte de capacité.
Erape 3: Vérification de la contrainte
Facultative, c’est une valeur booléenne permettant d’exprimer si la
contrainte est violée.
Une fois définie, cette nouvelle classe de contraintes a la Figure 4.2 est ajoutée de
la maniére suivante:
m.add(CapCoherence(Cells, Capacity)), Capacity est un tableau contenant la
capacité des différents commutateurs. La valeur de CapRes est initialisée a celle de la
capacité et est décrémentée du volume d’appels 4 aprés chaque affectation. Un pseudo-
code de I’algorithme de vérification de la condition d’ajout de chaque nouvelle cellule
un commutateur est présenté a la Figure 4.1.
La seconde classe de contraintes BornelnfReleve() Figure 4.3 est utilisée pour
rendre la recherche plus efficace. Elle n’est donc pas une contrainte intrinséque au
probléme. Son réveil s’effectue sur un changement du domaine de la variable Switchi

Au premier appel, on parcourt tous les commutateurs auxquels la cellule ¢ peut encore

60

étre affectée. Pour chacun de ces commutateurs, on trouve parmi toutes les cellules du
réseau, celles ne pouvant plus lui étre affectées et on calcule la somme du coiit de releve
entre la cellule i et ces cellules. La bomne inférieure du cofiit de reléve pour la cellule i est
alors égale a la valeur la plus petite, obtenue sur tous les commutateurs possibles pour la
cellule i. Cette procédure est par la suite répétée dans la propagation de la contrainte,
aprés chaque modification du domaine. Défini de cette maniére, I'algorithme utilise
donc d’une maniére active toutes les informations disponibles a toutes les étapes pour
mettre a jour de fagon dynamique la borne inférieure sur la variable de coit de reléve.
Les deux nouvelles classes de contrainte ainsi définies, héritent toutes de la librairie

llcConstraintl .

Soit k un commutateur;

Soit CapRes sa capacité résiduelle;

Pour tous les éléments possibles i de k, Faire
Si (i ¢ EnsRequis(k)) & (CapRes(k) - 4; < 0), alors
Retirer i de I’ensemble Possible de k;
Fin Si

Fin Pour

Figure 4. 1 Vérification du volume d’appels pour chaque commutateur: Exemple
d’illustration du LA (Looking Ahead)

Choisir la varisble Cells dont
le domaine est modifié

l

CapRes=M(Mest la
capacité maximum de Cells)

Y

[Pour toutes les cellules ajoutées; calculer
la somme de leur volume d'appels
CelSomme;,

[Mettre & jour la capacité résiduelle;
Terap = CapRes - CelSomme;

Retirées les cellules
Temp =0 ajout&e;
Oui
Ajouter les cellules &
Tensemble des requis.
 J

Pour toutes les autres cellules possibles,
Vérifier si leur volume d'appels peut étre
ajouté au commutateur;

Sinon, les retirer de son ensemble des

possibles

L

CapRes = Temp

Sortee

Figure 4. 2 Algorithme de la classe CapCoherence()

Sortie

61

Soient:

H() - le coiit total de reléve pour la cellule i:

H(i)min — le minimum de coiit de reléve pour toutes les affectations
possibles;

Switchi — le commutateur auquel la cellule i est reliée;

Cellsj — I’ensemble des cellules affectées au commutateur j

Pour chaque cellule i dont le domaine est modifié,
Faire H(i)min = Max;
Pour chaque commutateur j, €lément du domaine de Switchi,
Faire uneSom =0,
Pour chaque cellule i’ du réseau,
Si i’ ¢ EnsPossible (Cellsj), alors
uneSom = uneSom + CoutdeReleve [i][i’] (On ajoute a2 H(i) le
coiit de reléve entre les cellules 1 et i’);
Fin Si
Fin Pour
Si uneSom < H(i)min, alors
H(i)min = uneSom;
Fin Si;
Fin Pour;
Mettre le minimum de H(i) 2 H(i)min

Fin Pour;

Figure 4. 3 Algorithme de la classe IlcBorneInfReleve ()

62

63

L’utilisation d’une variable ensembliste Cells pour représenter des cellules
affectées a un commutateur permet d’exploiter une contrainte globale définie dans la
librairie d’ILOG Solver v4.4: llcNulllntersection(). Cette contrainte est trés efficace lors
de la propagation étant donné qu’elle I’effectue sur plusieurs variables suivant différents
algorithmes de filtrage. De maniére globale, llcNulllntersection() est une contrainte qui
permet d’assurer ’unicité de I’affectation en comparant les domaines de toutes les
variables Cellsj. Pour ce faire, dés qu’une cellule est fixée a une valeur donnée, celle-ci
est supprimée du domaine possible de tous les autres commutateurs. Cette opération peut
paraitre longue, mais elle demeure trés pratique dans la propagation de la contrainte sur
plus d’une variable.

La méthode de PC utilisée manipule deux variables principales a la fois: Cells et
Switch. L’interaction, c’est-a-dire la propagation des contraintes sur une de ces variables
est prise en compte par la seconde variable a travers différents jeux de démons. On peut
définir un démon comme étant un ensemble d’opérations a effectuer sur une ou plusieurs
variables du probléme, suite 2 un changement de domaine, un changement des bornes de
ce domaine ou alors une fixation de la valeur de ces variables, généralement causés par
la propagation de 1’une des contraintes. Le premier démon utilisé, SwitchtoCellDemon,
est appelé sur un changement de domaine. Il permet de parcourir le domaine Delta de la
variable Switchi. Le domaine Delta d’une variable entiére est constitué des valeurs
enlevées du domaine des valeurs possibles de cette variable et ne pouvant plus lui étre
attribuées. Aprés chaque retrait, on élimine du domaine des valeurs possibles du
commutateur indiqué, la cellule i correspondante. En pratique, ceci veut dire que
lorsqu’on décide pour une raison donnée qu’une cellule ne peut étre reliée a un des
commutateurs du réseau, alors on retire cette cellule de I’ensemble des cellules possibles
de ce commutateur. Si par contre la variabie est bornée, c’est-a-dire qu’on lui trouve une
valeur satisfaisant les contraintes, alors on l’ajoute a I’ensemble des requis de ce
commutateur. SwitchtoCellDemon sert donc a passer des variables entiéres aux variables
ensemblistes. Le second démon CellstoSwitchDemon est lui aussi appelé sur un

changement du domaine de la variable ensembliste Cells. Pour toutes les valeurs

64

ajoutées a 1’ensemble Requis d’un commutateur, on fixe la valeur de la variable ajoutée

(la cellule ajoutée) a ce commutateur.

Soit Swirchi une variable;
Si changement du domaine de Switchi, Alors
Pour toute valeur retirée du domaine de Switchi, Faire
Trouver le commutateur correspondant a cette valeur,
Retirer du domaine possible de ce commutateur la cellule i,
Fin Pour,
Si Switchi est fixée, Faire
Ajouter la cellule i au domaine des requis du commutateur Switchi
Fin Si
Fin Si

Figure 4. 4 Algorithme du démon SwitchtoCellDemon

Soit Cells;j une variable ensembliste,

Tant que modification du domaine de Cells; Faire
Pour toutes les valeurs ajoutées au domaine DeltaRequis Faire
Fixer la valeur de toutes les cellules ajoutées au commutateur j
Fin Pour
Pour toutes les valeurs enlevées du domaine DeltaPossible Faire
Retirer du domaine de ces cellules le commutateur j
Fin Pour

Fin Tant que

Figure 4.5 Algorithme du démon CelltoSwitchDemon

65

Si au contraire, c’est I’ensemble des valeurs Possibles qui est modifié, cela veut
dire qu’on a diminué les valeurs possibles que peuvent prendre le commutateur et on
procéde directement a I’élimination de ce commutateur de I’ensemble des valeurs
possibles de la variable Switchi. Les algorithmes de propagation des deux démons sont
montrés sur les figures 4.4 et 4.5.

Une fois les contraintes testées et certaines valeurs retirées du dornaine, on
procéde a I’énumération. Les stratégies de choix de valeurs et de variables dans
I’algorithme de recherche deviennent alors trés importantes. Si on considére une
représentation en arbre de toutes les solutions potentielles, ces stratégies permettent de
contrdler I’ordre suivant lequel on examine les différentes branches de cet arbre. Ceci a
pour but de diriger la recherche vers des branches de I’arbre plus susceptibles de donner
de meilleures solutions, et d’éliminer trés t6t celles ne pouvant conduire a de meilleurs
résultats. Généralement, on développe des stratégies de choix qui ne sont pas statiques et

qui prennent en compte les données du probléme et ce, a chaque étape de la recherche.

4.4 Choix des variables et des valeurs

Dans ce type de modélisation, les contraintes contribuent de maniére efficace a la
réduction de I'espace de recherche. Cependant, afin d’améliorer la performance de
I’algorithme de “Branch & Bound” utilisé, la stratégie de choix des variables et des
valeurs doit étre examinée et peut s’avérer efficace suivant le type de probléme. En effet,
les contraintes sont propagées sur I’ensemble des variables de contraintes qui modélisent
le probléme. Afin d’étendre les effets de chaque propagation le plus loin possible, les
variables sont choisies successivement et leurs valeurs fixées. Lorsqu’une solution est
trouvée, elle sert de borne supérieure a toute nouvelle solution. Suivant le choix des
variables, on peut aboutir 4 un processus non réalisable qui sera suivi d’un retour-arri¢re
pour essayer d’autres valeurs ou d’autres variables lorsque le domaine de celle-ci ne
contient plus de valeurs satisfaisant les contraintes. Le choix des variables a fixer peut
donc permettre de réduire I’espace de recherche surtout dans la résolution de problémes

combinatoires ou I’on désire non une seule solution réalisable mais la meilleure solution

66

réalisable possible. Généralement, on peut utiliser deux procédures de choix des
variables: une sélection dynamique ou une sélection statique. Dans le probléme
d’affectation de cellules, comme dans tout probléme d’optimisation, il apparait plus
raisonnable de commencer par les variables les plus contraintes, c’est-a-dire celles ayant
le plus petit domaine et apparaissant dans plusieurs contraintes. Par exemple pour
plusieurs cellules, on commencera par celles qui ne peuvent étre affectées qu’a un
nombre réduit de commutateurs. Trouver une affectation a ces cellules en premier lieu
peut amener a se rendre compte trés vite des échecs et réduire les temps d’exécution.
C’est ce qu’on appelle communément le principe de I’échec d’abord (first-fail principle).
Cependant, la stratégie a adopter dépend du probléme que I’on résout bien que suivant le
méme principe du plus petit domaine. Dans notre cas, nous avons choisi le moindre
regret sur le cofit de cablage. Cette stratégie consiste 3 commencer par les variables
ayant la plus grande valeur de différence entre le premier plus petit coit et le second
plus petit coilit de cidblage. De maniére concréte soit a affecter la cellule i au
commutateur ayant le plus petit colt de cablage parmi tous les commutateurs auxquels
la cellule i peut étre affectée. Soit P le prix a payer en affectant la méme cellule i & un
autre commutateur ayant le second plus petit coilit de cablage. On commencera par les
cellules pour lesquelles P est le plus grand car elles représentent les variables pour
lesquelles on aura le plus grand regret, en les affectant 2 un commutateur plutét qu’a un
autre.

Cette maniére de procéder donne des résultats trés performants lorsque les cellules
ne sont pas situées a égale distance des différents commutateurs auxquels elles peuvent
étre affectées, et aussi parce que la fonction objective dépend surtout du coiit de cablage
pour un nombre élevé de cellules, ce qui est généralement le cas.

Une fois la variable choisie, on doit essayer différentes valeurs de son domaine a
lui attribuer. L’ordre de sélection des valeurs ne permet pas de réduire I’espace, mais
permet de guider la recherche vers des solutions avec des coits réduits. Pour ce faire, la

stratégie adoptée est basée sur la plus petite distance de cofiit de cablage entre cellules et

67

commutateurs. Chaque fois que la cellule est choisie, on commence par la relier au
commutateur le plus proche dans le réseau.

Ainsi donc, si pour le choix des variables on commence par celles ayant plus de
chance d’échouer lors de I’optimisation du probléme, pour le choix des valeurs, on est

plutt intéressé a attribuer de bonnes valeurs, pouvant conduire a un coiit proche de

I’optimum.

4.5 Détails d’implémentation
Dans cette section, nous présentons les détails de I’algorithme général de notre
adaptation. Nous montrons d’abord comment les données sont acquises et nous donnons

un résumé des différentes classes implantées et une description des algorithmes discutés

dans la section précédente.

4.5.1 Acquisition de données

Pour résoudre le probléme d’affectation, certaines données doivent étre fournies au
programme. Ces entrées sont lues, prises en compte par le programme qui vérifie s’il
existe une solution réalisable, a partir de laquelle la meilleure solution sera trouvée.
Certaines de ces données, comme les nombres de cellules et de commutateurs ainsi que
leurs capacités respectives sont lues directement dans la fonction principale. Les autres
informations sont sauvegardées dans différents fichiers, qui sont par la suite lus a partir
du programme. Les fichiers sont les suivants:

1. Le fichier appelé « fichier de coiit de cablage ». C’est une matrice nxm, ol
chaque ligne i donne les colts de cablage de la cellule i avec les m
commutateurs du réseau.

2. Le deuxiéme fichier, appel€ « fichier de coiit de reléve », est une matrice nxn

qui pour chaque cellule i donne le taux de reléve avec les autres cellules du

réseau.

68

3. Le troisiéme fichier, qui est le fichier de volumes d’appels, fournit les
données sur le trafic, c’est-a-dire le nombre d’appels effectués par chacune

des cellules du réseau par unité de temps.

4.5.2 Détails des différentes classes utilisées
Les principales étapes du programme sont:

1. Lire tous les fichiers et données du probléme et initialiser les différentes

variables ;

Poster toutes les contraintes utilisées dans |’ algorithme ;

Quand il y a changement du domaine, appliquer le démon
correspondant ;

Si la valeur d’une cellule est fixée, calculer le cout de liaison associée ;

5. Générer les variables Swirchi suivant les différentes stratégies de
recherche définies. Dans notre adaptation, la fonction Generate(...),
fixe d’abord un coiit de reléve pour chacune des cellules, qui est par la
suite mis a jour tout au long de la recherche a l'aide d’un démon
FixHandoffCost, que nous avons nous méme définis. Les variables sont
par la suite choisies suivant le moindre regret sur le coit de liaison.
Différentes valeurs sont par la suite attribuées a ces variables suivant le
plus petit coiit de cablage. Ces étapes sont répétées tant que toutes les
variables ne sont pas fixées.

6. La fonction qui minimise le cotit total est réalisée par I’appel a
setObjMin(sum). Elle met en mémoire la derniére valeur de la variable
de coiit trouvée, ajoute une nouvelle contrainte sur la borne supérieure
du codt total 4 chaque itération. Cette procédure est exécutée tant qu’il
existe encore des solutions au probléme. Lorsqu’il n’y en a plus, le

solveur retient la demiére solution trouvée et fournit le résultat.

69

Les expériences ont €té réalisées avec ILOG Solver v4.4, qui est un langage orienté
objet avec une bibliothéque de classes pour les contraintes sur domaine fini. Le

diagramme des principales classes de contraintes utilisées est présenté a la Figure 4.6.

licConstraintl

CapCoherencel BorneinfRelevel
"
ivés: licintSetVarArray Cells;
ticIntSetVarArray Cells; licintVarArray Switch,
ticRev CapaRes; handoffCost ;
licint index; licint cindex;
{llcBool PremierAppei;

Membres pyblics
CapCaherencel(); Membres publics
CapCoherence(licManager, BornelnfRelevel();
Cells, capacity); BorneinfRelevel(m, Cells,
void post(); Switch, handoffCost,
void propagate(); coutReleve);

void post();
void propagate();

Figure 4. 6 Diagramme des principales classes de contraintes

4.6 Mise en cuvre

Pour illustrer les différentes étapes de notre adaptation de la programmation par
contraintes a ce probléme d’affectation, nous avons pris un exemple de fichier
comportant quatorze cellules et trois commutateurs. Les données nécessaires ont été

générées par un programme Matlab et prises de Houéto et Pierre (2000). Les cas tests

70

bY

générés supposent que le coGt de liaison d’une cellule 3 un commutateur est
proportionnel a la distance qui les sépare, avec un coefficient de proportionnalité égal a
I'unité. Le taux d’appel ¥ d’une cellule i est déterminé suivant une loi gamma de
moyenne et de variance égales a I’unité. Les temps de séjour des appels a I'intérieur des
cellules sont distribués selon une loi exponentielle de paramétre 1. Le taux de reléve
entre les cellules est évalué en tenant compte des cellules avoisinantes. Si par exemple
une cellule posséde k voisins, ’'intervalle [0,1] est divisé en k+1] sous-intervalles en
choisissant k nombres aléatoires distribués uniformément entre 0 et 1. Pour un appel qui
prend fin a I’intérieur d’une cellule j donnée, on peut avoir deux issues: soit I’appel est
transféré a la ™ cellule voisine (i =1, ..., k) avec une probabilité de reléve r; égale 2 la
longueur du ™ intervalle, soit I’appel est coupé avec une probabilité égale a la longueur
du k+I°™ intervalle. Les cellules sont alors considérées comme des files d’attente
M/M/1 formant un réseau de Jackson. Les taux d’arrivées a; dans les cellules a
I’équilibre sont obtenus en résolvant le systéme:
- air;= viaveci=1,...n
On choisit comme volume d’appel A; d’une cellule i, la longueur moyenne de sa file
d’attente. Le taux de reléve h;; est définit par:
ij = Ai. Tjj
La capacité des commutateurs est déterminée comme suit :
Capacité = (1+K/100)/m 3; A;
ou K est choisi uniformément entre 10 et 50, ce qui permet d’obtenir une capacité de
commutateur supérieure de 10 a2 50% au volume d’appel des cellules et m représente le
nombre de commutateurs. Les tableaux 4.1, 4.2 et 4.3 donnent respectivement les coiits
de cablage entre cellules et commutateurs, de reléve entre les différentes cellules et les

volumes d’appels de chacune des cellules et enfin les capacités des commutateurs.

71

Tableau 4. 1 Coiit de ciblage entre cellules et commutateurs

e =
RN Lol B L
- [en
H2%0
o
o Jn
=15 e |~
-
S la ja Ja
o)
Ao jo I
e
o —
o I% |~ |
- o
o v
~ = = 1e
ot N
\
o = @ |-
o
I
i |~ o0 I
—
g
¢ = Jon I
—
o
n = I lon
ot
Vs
N = = IO
o
(22 !
L B Kol
o o o o
R
ofjolo
Q O O

Tableau 4. 2 Coiit de reléve entre cellules

ale o o o @t o0 o0 @ 9 o ©

N Jo © o o on © 0 0 ©F o«

- lo - © ©c o a0 o " @ ~°

—

elo + o ©c o0 ™Mo S e N o e

o
ale © ~ ©c oo o ¢ © e ew°
=

wlo © = ©c oo oo ¥ 0 0 o 0o

~ [& n ©c ©o o0 o0 = ™M©OC O C

o [t ¢ © © Vo 0o 0o oo o a v
oy

wlo ee MmO vV O OO O o © I

< |® © © © M OO0 o000 o OO0

n v © © W o o0 ~0 0 0 o

N oo = © © © ©own g~ 0o oo

- o © ~ ©O O ¢ N O O ¢ ~ O O

7]

]

= © —~ N ™

21 = Ao T N O >~ 0N = LD

Q

72

Tableau 4. 3 Volumes d’appels des cellules et capacités des commutateurs

ICelluIe |012345I6 N EIEE
IVol.appelsll.O 1.0[1.0f1.0f1.0[1.0 |1.o 1.0 [1.0 |1.o 1.0 1.0 J1.0 |10

I Cap.comm I 71817 I I I I

L’algorithme essaie d’abord de trouver une solution réalisable en utilisant les
principes de !'adaptation. Le Tableau 4.2 est utilis¢ pour sélectionner la premiére
variable, suivant le principe du moindre regret. Par exemple, pour la cellule zéro, le
commutateur zéro fournit le plus petit coiit de cablage égal a 0. Si on décide plut6t
d’affecter cette cellule au commutateur deux ou un qui est le second commutateur ayant
le deuxiéme plus bas coit de liaison (€gal a 2) dans le tableau, alors on induit une
augmentation de codt qui est égale a 2. Ce calcul est effectué pour toutes les autres
cellules du réseau. Les résultats obtenus sont inscrits au Tableau 4.4. Suivant ces
valeurs, les variables de cellules a choisir sont celles ayant le plus grand regret c’est-a-
dire les cellules 0, 9, 12. Etant donné que le regret se trouve étre le méme pour toutes ces

cellules, alors la sélection se fera suivant I’ordre d’entrée de ces variables.

Tableau 4. 4 Calcul du regret sur le coiit de liaison pour les cellules

ICellulesO 112131415161 718 09]10]11]12 13|
IRegret 2 [0.73] 0 |0.73]1.65(0.73] 0 [0.73]|0.73] 2 | 0 |0.73| 2 0.73|

Ainsi donc, la premiére variable a ajouter est celle correspondant a la cellule 0,
premier élément du tableau Switch;. Le choix de la valeur est basée sur la plus petite
distance. Toujours suivant le tableau de cofiit de ciblage, le commutateur zéro est le
premier commutateur auquel la cellule O est affectée. Les contraintes sont appliquées sur

toutes les variables. La contrainte d’unicité entrainera le retrait de la cellule 0 du

73

domaine des valeurs possibles de toutes les variables Cells;, avec j # 0. La cellule 0 est
alors ajoutée a ’ensemble des requis du commutateur 0, et la valeur de Switchy fixée a
0. On continue cette procédure jusqu’a ce que la capacité d’'un des commutateurs soit
atteint. Dans ce cas, on retire la demniére valeur de cellule affectée pour laquelle on
sé€lectionne le prochain commutateur de plus petit coiit. Lorsque toutes les contraintes
sont enfin respectées et une affectation trouvée pour toutes les cellules du probléme,

alors la premiére solution est trouvée. Son coiit est de 120 unités (Figure 4.7).

1 Commutateur 0

Commutateur 1

Figure 4. 7 Solution initiale de I’affectation

Le schéma d’affectation obtenu respecte la contrainte sur la capacit€¢ mais
n’intégre aucun critére d’optimisation. A partir de celleci, on essaie de trouver des
solutions meilleures en ajoutant une contrainte nouvelle sur la borne supérieure du coiit
total de toutes prochaines solutions suivant 1’algorithme de “Séparation et Evaluation”.
D’autres solutions sont alors examinées en attribuant différentes valeurs aux variables
générées, suivant les critéres de recherche établis.

L’interaction entre la variable de coiit et les autres variables permet de propager la

contrainte sur les variables de modélisation, a tous les niveaux de la recherche. La

74

solution finale obtenue (Figure 4.8) a un coiit de 75.92 unités. Dans cette affectation,
aucune cellule n’est affectée au commutateur 2.

La solution obtenue respecte toutes les contraintes du probléme et est trouvée en
un temps de calcul raisonnable, pour ce type de réseau. Dans la prochaine section, nous
allons effectuer une série de tests pour vérifier la performance de notre adaptation et

aussi tester son efficacité par rapport aux autres heuristiques.

/] Commutateur 0
E__—] Commutateur 1

Figure 4.8 Solution finale obtenue

Cellsp={0,4,5,6, 11,12, 13};
CCIISI = {1, 2, 37 7: 8! 9’ 10};
Cells; = (};

4.7 Analyse des résultats

Dans le but de mesurer la performance de 1’algorithme proposé par rapport a la
qualité de ces résultats, nous 1’avons soumis a une série de tests. Différents cas ont été
considérés avec des nombres variables de cellules et/ou de commutateurs. Dans ce qui

suit, nous présenterons d’abord les résultats obtenus 2 partir de la mise en ceuvre de

75

notre adaptation de I’algorithme de “branch & bound” (Séparation et Evaluation
progressive) au probléme d’affectation de cellules a des commutateurs. Nous en
déduirons ainsi les relations entre la taille, le temps d’exécution, le nombre de
“backtracking” (retours-arriére) et les contraintes du probléme. Enfin nous ferons une
comparaison de nos résultats avec ceux trouvés par d’autres approches heuristiques

telles la recherche taboue, I’ algorithme génétique et le recuit simulé.

4.7.1 Plan d’expériences et environnement d’exécution des tests

Les fichiers utilisés pour effectuer les différents tests ont été€ pris de la littérature
(Houéto et Pierre, 2000). Dans un premier temps, nous avons réalisé une série de tests
avec un nombre fixe de commutateurs et un nombre variable de cellules. L’objectif est
non seulement d’étudier le lien entre le nombre de variables et le temps d’exécution,
mais aussi d’essayer différentes stratégies de recherche pour en dégager celles qui
débouchent rapidement sur de meilleurs résultats, en particulier pour les problémes
ayant une solution exacte. Pour cela, nous avons testé 20 réseaux différents pour chaque
type de probléme, dont le nombre de cellules varie entre 15 et 100, pour un nombre de
commutateurs variant entre 2 et 4. Dans un second temps, pour dégager le comportement
global de notre algorithme par rapport aux autres méthodes, nous avons réalisé différents
tests sur des réseaux de petite, moyenne et grande taille. Pour les réseaux de petite taille,
le nombre de cellules varie de 15 a 30 cellules, alors que le nombre de commutateurs est
égal a 2 ou 3. Pour les réseaux de taille moyenne, le nombre de cellules varie de 50 a
100, pour un nombre de commutateurs compris entre 4 et 5, enfin pour les réseaux de
grande taille, le nombre de cellules varie entre 150 et 200, pour un nombre de
commutateurs variant entre 6 et 7. Toutes les expériences ont été réalisées sur une
machine UltraSparc10. Compte tenu du fait que le temps d’exécution peut étre élevé
pour certains types de réseau, nous avons fixé une limite d’une journée d’exécution pour

chaque type de probléme.

76

4.7.2 Effet du nombre de cellules sur le nombre de retour-arriére

Nous avons voulu établir le rapport entre le nombre de cellules, le nombre de
contraintes et le temps d’exécution. Pour effectuer cette analyse nous avons utilisé les
mémes stratégies de recherche développées a la section 4.4, c’est-a-dire celles qui sont
basées sur les critéres suivants:

e Choix des variables par le moindre regret sur le coiit de cablage;
e Choix de valeurs suivant le plus petit coiit de cablage entre cellules et
commutateurs.

Suivant les résultats obtenus et qui sont présentés au Tableau 4.5, le nombre des
variables de contraintes croit avec le nombre des cellules du réseau. La Figure 4.9
montre que cette croissance suit une courbe linéaire pour un nombre fixe de
commutateurs. Cette remarque demeure valable pour le nombre de contraintes
examinées dans les différents problémes analysés, et ce pour un nombre fixe de
commutateurs. En ce qui concerne le nombre de backtracking, les problémes analysés ne
permettent pas de déduire un comportement global de leur variation en fonction du
nombre de cellules et de commutateurs dans le réseau. On a donc procédé a une analyse
sur une moyenne des différents fichiers pour chaque type de probléme. Les résultats
obtenus sont présentés au Tableau 4.6. Celui-ci confirme le fait que I’augmentation du
nombre de contraintes dans notre cas, n’entraine pas systématiquement une
augmentation du nombre de backtracking. Cette conclusion était prévisible puisque
I'utilisation des contraintes non intrinséques au probléme, la modélisation par deux
variables combinées avec les différentes stratégies de recherche permet d’effectuer de
grandes coupures dans ’arbre. La coupure ainsi réalisée €vite I’énumération avec des
valeurs non optimistes qui généralement dégradent la qualité de la solution. Une analyse
plus approfondie des coiits de ciblage et de reléve révéle toutefois que si la valeur de
moindre regret, utilisée comme stratégie de recherche pour effectuer le choix des
variables, est la méme pour plusieurs cellules, alors on rencontre plus d’échecs avant
d’aboutir 3 la solution finale. Par conséquent, ce choix serait inadéquat pour de tels

réseaux. Enfin, pour tous les types de problémes résolus, le temps d’exécution ne varie

77

pas en fonction de la taille du réseau. En effet, il est plutot fonction du nombre de

backtracking effectué, qui lui non plus n’est pas fonction de la topologie du réseau pour

les raisons que nous venons d’énumérer.

Tableau 4. 5 Rapport entre le nombre de cellules et le temps d’exécution

#cellules | #comm | #var | #contraintes | #d’échecs | Tps CPU(s)
15 3] 70 22 0 0.08
20 31 9 27 420 0.66
30 31 130 37 155 0.44
40 31 170 47 440 1.26
50 3] 210 57 1701 4.59
60 31 250 67 170 2.16

p=
—e—nombre de variables —a— nombre de contraintes

250

50

300 -

200 »

150 8

100 IS

™
nombre de celiules

Figure 4.9 Variation des variables et des contraintes en fonction du nombre

de cellules (m=3)

78

Tableau 4. 6 Rapport entre le nombre de cellules et le temps d‘exécution
(moyenne sur un ensemble de problémes avec m=3)

#icellules | #comm | #var | #contraintes | #d’échecs | TpsCPU(s)
15 31 70 22 400 0.25
20 31 90 27 572 1.37
30 3 130 37 8 0.33
40 3| 170 47 228 0.69
50 31 210 57 4570 14.02
60 31 250 67 60745 249.12

4.6.3 Effet des contraintes sur la recherche de solution
Deux classes principales de contraintes ont été utilisées: IlcAllNulllntersection() et

licBornelnfReleve().

Contrainte licAllNulllntersection()

La classe IlcAllNulllntersection() est une contrainte globale qui permet
d’exprimer la contrainte d’unicité de chaque affectation de cellules 2 des commutateurs,
représentés dans notre adaptation par des ensembles. L’application de cette contrainte
nécessite deux parameétres qui sont le tableau des ensembles sur lesquels elle s’applique
et la méthode de filtrage. Dans ILOG Solver v4.4, il existe trois types d’algorithme de
filtrage. Nous avons IicLow, IicBasic, IlcExtended. Le premier effectue le filtrage en
comparant les ensembles du tableau deux a deux. Les deux autres propagent sur tous les
commutateurs et s’avérent plus efficaces en terme de nombre de variables sur lesquels
ils sont propagés. Ills sont donc d’une plus grande complexité par rapport au premier
algorithme de filtrage, vu le nombre d’opérations a effectuer. Afin d’examiner le gain
obtenu au niveau du temps d’exécution et partant du nombre d’échecs obtenu avec

I’utilisation de différents niveaux de filtrage, nous avons effectué plusieurs tests prenant

79

en compte ces différents algorithmes. Les résultats sont représentés au Tableau 4.7. On
remarque ainsi qu’en général, quel que soit le type de filtrage utilisé, on aboutit toujours
au méme résultat. Le nombre d’échecs rencontrés dans chacun des différents cas est
aussi le méme. Cette demiére remarque indiquerait alors que les problémes résolus ne
sont pas trés sensibles au type de filtrage permettant d’imposer la contrainte d’unicité de
I’affectation sur les variables ensemblistes Cells. Ceci est du au fait que la contrainte
d’unicité est trivialement respectée par les variables Switchi, considérées comme
deuxiéme variable de modélisation dans notre adaptation. L’utilisation de la contrainte

llcAllNullIntersection n’est donc pas nécessaire pour la résolution du probléme.

Tableau 4. 7 Effet de 1a contrainte IicAlINulllntersection sur le nombre de
retour-arriére et le temps d’exécution

#icellules { #comm IIcLow IicBasic | licExtended
#échecs/Tps(s) | #échecs/Tps | #échecs/Tps

15 3 0/0.07 0/0.09 0/0.08

20 3 420/0.66 420/0.68 420/0.68

30 3 155/0.42 155/0.44 155/0.44

40 3 440/1.26 440/1.24 440/1.26

50 3 1701/4.52] 1701/4.52} 1701/4.59

60 3 170/2.16 170/2.14 170/2.16

Contrainte IllcBornelnfReleve()

La définition d’une bome inférieure sur le coiit total de reléve a induit une grande
performance au niveau de la qualité des résultats obtenus. Comme le confirme les
résultats du Tableau 4.8, pour un méme réseau, le nombre d’échecs rencontrés avant
d’aboutir a la solution finale est plus élevé sans cette contrainte. Par exemple, pour un

réseau de 40 cellules et de 3 commutateurs, I’exécution effectue 440 échecs, en un temps

80

d’environ 1 seconde 26 avec I’ajout de la contrainte sur la borne inférieure, alors qu’il
effectue prés de 3239 échecs en 8 secondes 57 sans I’utilisation de cette contrainte. Pour
certaines tailles de réseau, comme celut de 50 cellules et de 3 commutateurs,
Palgorithme n’aboutit pas a une solution dans les délais indiqués. La contrainte
llcBornelnfReleve, réveillée a chaque modification du domaine des commutateurs et
propagée de maniére dynamique sur les variables fixées ou non par la méthode du LA
(Looking Ahead) permet de réaliser de grandes coupures et détermine en partie

I’efficacité de la méthode.

Tableau 4. 8 Effet de la contrainte IlcBorneIlnfReleve() sur le temps

d’exécution

#cellules | #comm | Borne Inf Sans Bornelnf | Solution
#échecs/Tps(s) | #échecs/Tps(s) | optimale

15 3 0/0.07 0/0.04 109

20 3 420/0.66 5957/6.75 195

30 3 155/0.42 352/0.81 366

40 3 440/1.26 3239/8.57 461

50 3 1701/4.52 27? 588

60 3 170/2.16 170/2.52 714

4.6.4 Comparaison avec d’autres méthodes heuristiques

Le probléme d’affectation de cellules 3 des commutateurs a €té résolu avec

diverses méthodes heuristiques qui sont: les algorithmes génétiques (AG), la recherche
taboue (RT) et le recuit simulé€ (SA). Nous avons donc confronté les solutions obtenues
par notre adaptation avec celles des autres heuristiques afin d’en dégager son efficacité
Si nous sommes certains d’aboutir 2 des solutions optimales pour certains types de

réseaux (jusqu’a 100 cellules), pour les grandes tailles de problémes, la comparaison des

81

résultats avec les autres méthodes pourrait nous permettre de déterminer la robustesse de
1’adaptation de la PC a ce probléeme d’affectation de cellules a des commutateurs. Nous
nous sommes intéressés donc dans un premier temps a une étude comparative avec les
algorithmes génétiques, la recherche taboue et le recuit simulé, qui sont les plus récentes
méthodes appliquées a ce probléme. Les tests ont €té effectués sur différents réseaux
soit avec un nombre variable de cellules et de commutateurs ou avec un nombre variable
de cellules et un nombre fixe de commutateurs. Les résultats présentés aux tableaux 4.9
et 4.10 font état d’une performance supérieure de notre adaptation par rapport aux quatre
autres heuristiques pour des réseaux avec un nombre fixe de commutateurs, vu que les
solutions trouvées par 1’algorithme représentent I’optimum. Toutefois, il est a remarquer
que certaines méthodes comme SA et AG donnent des solutions meilleures, ce qui
indiquerait probablement une réexamination des sources de leurs résultats afin de
vérifier si la contrainte sur la capacité des commutateurs est respectée. Dans notre cas,

toutes les solutions trouvées ont €té testées et respectent cette contrainte.

Tableau 4.9 Pourcentage d’amélioration de la PC par rapport a AG, RT, SA et
HB (nombre variable de commutateurs)

#cell|#comm |PC |AG |RT |SA |HB |%PC-AG|%PC-RT|%PC-SA|%PC-HB
15 2] 118] 114 118] 123] 174 -3.50 0.00 4.06 32.18
30 3| 382§ 394] 382 4051 610. 3.04 0.00 5.67 59.85
50 4] 560] 697] 580] 851} 609 19.65 3.44 33.80 8.04
100 5]11389]12265]11394]11999}§2078 38.67 0.35 30.51 33.15
150 612423]|4980]2462|4271}3594 51.34 1.58 43.26 32.58

200 71278313721]2768]7801§4619 25.20 -0.50 64.32 39.74

82

Tableau 4. 10 Pourcentage d’amélioration par rapport a AG, RT, SA et HB
pour un nombre fixe de commutateurs

ftcellules | #comm | PC | AG |RT | SA |HB | %PC-AG| %PC-RT | %PC-SA | #PC-HB
15 3|124|133]1124| 139|166 6.70 0.00 10.79 33.93
20 31195|2381211|189|274 18.06 7.58 -3.10 40.72
30 313643951364 369|487 7.80 0.00 1.35 33.95
40 3|420|424|420]611|579 0.90 0.00 31.26 37.96
50 3|588|600|588]748]813 2.00 0.00 21.39 27.67
60 3|712|917|713| 832|990 22.33 0.10 14.44 39.08

Ensuite, nous avons procédé a une comparaison de notre adaptation avec
I’heuristique proposée par Beaubrun, Pierre.et Conan (1999) désignée par heuristique
HB dans la littérature, ce, pour un nombre fixe et variable de commutateurs. Les tests
ont été également appliqués sur les mémes séries de données qu’auparavant. Les
résultats comparatifs avec la méthode HB sont aussi présentés aux tableaux 4.9 et 4.10.
Une comparaison entre les méthodes développées dans la littérature et les bomes
inférieures que nous avons trouvées, montre que les meilleurs résultats obtenus jusque la
sont ceux fournis par la méthode de recherche taboue. Ceci s’explique par le fait que la
RT utilise plusieurs types de mouvements, ce qui lui permet de mieux diriger la
recherche et d’éviter le piége du minimum local. Le Tableau 4.11 donne une
comparaison des solutions de la recherche taboue avec notre adaptation de la
programmation par contraintes sur un ensemble de réseaux de taille fixe. Une
comparaison entre les temps d’exécution est a I’avantage de la recherche taboue dont le
critére d’arrét est basé sur le nombre de mouvements aprés lequel aucune amélioration

n’est obtenue. Les valeurs obtenues sont présentées aux tableaux 4.12 et 4.13.

83

Tableau 4. 11 Moyenne d’amélioration PC et RT (pour un nombre fixe de

commutateurs)
#cellules | #comm | Sol. PC| Sol.RT | %PC-RT
15 3] 118.33] 122.80 3.60
20 3] 178.4]186.30 4.20
30 3] 335.4]336.50 0.30
40 31 452.9]452.90 0
50 3] 634.2]635.11 0.10
60 3 820 821 0.08

Tableau 4. 12 Comparaison des temps d’exécution entre PC et RT (pour un
nombre fixe de commutateurs)

Temps d’exécution
#cellules | #comm (sec)
PC RT

15 3 0.08 0.02
20 3 10.95 0.03
30 3 30.58 0.06
40 3 0.21 0.09
50 3 24.00 0.10
60 3 0.66 0.07

Toujours dans le but d’évaluer les résultats obtenus avec notre adaptation de la

programmation par contraintes par rapport a ceux de la recherche taboue, nous avons

84

effectué une série de tests sur un nombre de commutateurs (n = 2) et un nombre variable

de cellules (m = 20 a 100). L’ optimum a été trouvé pour tous les fichiers testés.

Tableau 4. 13 Comparaison des temps d’exécution entre PC et RT (nombre
variable de commutateurs)

Temps d’exécution
#cellules | #comm (sec)
PC RT

15 2 0.04} 0.02

30 3 0.53}] 0.07

50 4 246.00] 0.10

100 5 2615.00f 0.40

150 6 3.811] 0.80

200 7 6.88] 0.97

A partir des tableaux 4.9 a 4.13 ainsi obtenus se dégage ce qui suit:
1. La méthode de PC ici développée fournit des solutions objectives optimales
pour des fichiers de tests dont la taille varie entre 15 et 100 cellules pour un
nombre de commutateurs égal 2 2 ou a 3. En particulier, il est a noter que la

solution est obtenue en des temps de calcul qui sont raisonnables.

2. Pour les réseaux de plus grande taille, les résultats que nous obtenons se
trouvent aussi trés satisfaisants et se comparent avantageusement aux
différentes heuristiques déja appliquées a ce probléme, 2 part la recherche
taboue. En effet, les figures 4.11 et 4.12 montrent une amélioration supérieure
aux résultats fournis par les algorithmes génétiques (AG), le recuit simulé
(SA) et I’heuristique HB.

85

3. Pour la comparaison des temps d’exécution avec I’heuristique de la recherche
taboue, notre méthode semble plus coiiteuse. Mais le gain obtenu est assez
bon pour justifier cette perte de performance. En effet les solutions que fournit
I’adaptation de la PC se trouvent souvent proches ou parfois meilleures que

celles de la RT, bien que ne représentant pas la solution optimale.

4. Enfin, notons que les solutions proches de celles fournies par la RT (lorsque
celles-ci se trouvent €tre meilleures) pour les réseaux de grande taille sont
trouvées en quelques minutes. Mais vu qu’elles ne représentent pas
I’optimum, nous ne pouvons dégager le temps exact de calcul pour atteindre
I’optimum global, les temps d’exécution ayant été fixés a un jour pour ces

différents problemes.

4.8 Comparaison avec une estimation de la borne inférieure

Dans la méthode de retour-arriere (branch & bound) utilisée pour notre
adaptation, nous avons effectué une recherche dans tout I’espace disponible. De ce fait,
toutes les solutions possibles sont explorées par I’algorithme qui, lorsqu’il se termine
indique que la solution trouvée est I’optimum. Afin d’évaluer la qualité de nos solutions
et aussi de dégager la distance par rapport 4 un optimum global pour les fichiers de
grande taille dont la solution exacte n’a pu étre trouvée, nous allons procéder a une

comparaison avec une estimation de la bomne inférieure.

4.8.1 Présentation de la méthode d’estimation d’une borne inférieure

Le probléme 2 résoudre consiste essentiellement 2 trouver une affectation dont la
valeur objective minimiserait le coiit total de ciblage et de reléve, tout en respectant la
contrainte sur la capacité des commutateurs. Lorsque I’on reliche la contrainte sur la
capacité des commutateurs, une premiére borne inférieure peut s’écrire sous la forme:

LBl = Z mkin(c,}) @.1)

=l

86

série1: Pc avec AG série2: PC avec RT, série3:PC avec SA,
série4: PC avec HB

- 80

gm 60 —

a 1{ B Sériet
ta 40 W Série2
5- E: 20 O Série3
3 g 0 O Séried4

Taille des réseaux

Figure 4. 10 Etude comparée pour les réseaux de taille variable

(nombre de commutateurs variant)

série1: PC avec AG, série2: PC avec RT, série3: PC avec SA, série4:PC avec

HB

60
E.;‘: 40 BSériet
3 .“_’.n 20 WSérie2
el OSérie3
22 ;
S= 0 Dséried
=5
EE N
* [~

Taille des réseaux

Figure 4. 11 Ftude comparée pour les réseaux ayant un nombre variable
de cellules (nombre de commutateurs fixe)

87

Malheureusement, cette borne ne tient pas compte des reléves entre cellules et
commutateurs et suppose que toutes les cellules peuvent étre affectées a un méme
commutateur. En ne considérant pas ce cas extréme, c’est-a-dire en supposant que toutes
les cellules ne peuvent étre affectées 3 un méme commutateur, Houéto et Pierre, 1999
ont établi que I’on devrait aboutir a au moins une bipartition (p,q) de I’ensemble des n
cellules du réseau. Dans ce cas, le nombre total de reléves a considérer est égal 4 2pq et
on peut trouver le nombre minimal de reléves en résolvant le probléme suivant :

min 2pq
Sujeta: p+q=n,p21,q=1 “4.2)
Vu que la solution de ce probléme a pour bipartitions (1,n-1) et (n-1,1), une bome
inférieure pour le nombre de reléves est 2(n-1). Si on suppose que la matrice de coiit de
reléve est représentée par H, et que I’on désigne par H sa transposée, soit hr la matrice
triangulaire supérieure de (H+H 7). Une bomne inférieure tenant compte des colits de
reléves devrait considérer au moins n-1 reléve de hr. Ainsi, ils ont pu trouver une

nouvelle bore inférieure:

LB2 = imjn(c‘& +S 31, (e} (p.0) 4.3)

p=l g=p+1
ol N_ désigne I’ensemble des n-I premiers minima de la matrice triangulaire hr, In_
désigne la fonction indicatrice de I’ensemble N _. avec Iy {x}= 1 si x € N_ et O sinon.
Enfin hi(p,q) désigne I’élément a la ligne p et a la colonne g de la matrice triangulaire
hr. Pour finir, notons que LBl < LB2 et donc LB2 est a priori une meilleure borne

inférieure que LBI.

4.8.2 Rapport entre la borne inférieure et les solutions trouvées

Avec [P’architecture des réseaux de communications personnelles, une cellule
posséde au plus six voisines. De ce fait, lorsque le nombre de cellules augmente, la
matrice H comporte plusieurs éléments nuls. Cela entraine que les n-/ premiers minima

de la matrice triangulaire hr sont nuls et la bome inférieure LB2 est approximativement

88

égale a LBI. Le Tableau 4.14 montre I’écart entre les valeurs objectives de la RT et la
bome inférieure LB2 d’une part, et le pourcentage d’amélioration de notre adaptation par
rapport a la RT pour les réseaux de moyenne taille pour lesquels nous avons pu
déterminer une solution exacte. On remarque quand méme un écart entre les valeurs qui
s’explique par le fait que la borne inférieure LB2 ne tient pas compte de la valeur des
colits de reléve qui sont considérables pour ces types de fichiers. Les solutions obtenues
pour les fichiers de plus grande taille sont présentées au Tableau 4.15. La PC est donc
une méthode de résolution simple mais trés robuste qui donne des résultats proches de
I'optimum dans [P’ensemble. Cette simplicité est possible au prix d’une bonne

connaissance du probléme a résoudre, afin d’en exploiter au maximum les relations

entre les contraintes.

Tableau 4. 14 Comparaison pour m =3 de PC par rapport a RT et a la borne

inférieure (BI)
#cellules 15| 20] 30§ 40] 50] 60
Distance(%)| 10 7 4 4 3 2
RT et BI
Distance(%)|3.60]4.20}0.30}0.00]0.10]0.08
PC et RT

Tableau 4. 15 Comparaison de PC par rapport a RT et a la borne inférieure
(BI) (pour un nombre variable de commutateurs)

Cel ~comm |15~2]30~3|50~4}100~5]150~6|200~7
Distance(%)] 10 9 9 9 9 8
RT et BI
Distance(%)| 0.00| 0.00{ 3.44f 0.35] 1.58] -0.50
PC et RT

89

La méthode de PC donne ainsi des solutions exactes pour des tailles de réseaux
allant jusqu’a 100 cellules. Sur d’autres, dont on n’a pas pu atteindre I’optimum, les
solutions se comparent avantageusement a celles trouvées par la méthode de recherche
tabou, qui fournit des colits moindres par rapport a toutes les autres heuristiques

adaptées au probléme d’affectation.

90

CHAPITRE 5
CONCLUSION

5.1 Synthése des travaux

Dans ce mémoire, nous avons développé et mis en ceuvre une adaptation de la
programmation par contraintes au probléme d’affectation de cellules a des commutateurs
dans les réseaux de communications personnelles. Ce probléme qui consiste
essentiellement 4 minimiser une fonction de coiit composée des coiit de liaisons et de
reléves, tout en respectant des contraintes de capacit€s des commutateurs. Considérer
toutes les combinaisons possibles pour en dégager la meilleure conduit trés vite a une
explosion combinatoire et ne peut étre effectué en un temps polynomial. Ainsi pour un
nombre de cellules supérieur a 15, les méthodes heuristiques jusque la développées ne
fournissent pas de solutions exactes a ce probiéme.

Avec les récentes techniques développées en programmation par contraintes, il est
possible d’utiliser de maniére active les contraintes du probléme pour guider la
recherche et restreindre le domaine des valeurs prises par les variables de modélisation.
De ce fait, en exploitant les techniques de résolution développées en recherche
opérationnelle, il est possible de guider la recherche et d’espérer aboutir 2 de bonnes
solutions en un temps raisonnable

L’algorithme utilisé est basé sur les techniques de résolution sur domaine fini.
Aprés plusieurs expérimentations, nous avons opté pour I’utilisation de deux variables
dans la modélisation du probléme. En effet, les différentes contraintes imposées par le
probléme a résoudre sont propagées plus ou moins en profondeur suivant la variable sur
laquelle elles sont appliquées. Le fait de modéliser le probléme avec deux jeux de
variables permet d’exploiter la performance de propagation de chacune de ces variables.
L’interaction entre les variables de modélisation est 2 son tour réalisé grice a
I'utilisation d’une série de démons que nous avons définis et qui gérent de maniére

dynamique les relations entre les variables. La recherche des bonnes solutions est

91

réalisée avec par le biais des stratégies qui permettent de choisir efficacement a chaque
itération les meilleures variables ainsi que les valeurs a leur assigner parmi tout
I’ensemble possible. La performance de I’algorithme a été améliorée grice a la
détermination d’une bome inférieure sur le cofit des reléves dont I’insertion comme
contrainte dans 1’algorithme a permis d’aboutir trés rapidement a une bonne solution
initiale réalisable. Cette nouvelle classe de contraintes ajoute beaucoup de robustesse i
la méthode puisqu’elle est propagée dynamiquement sur toutes les variables a chaque
changement de leur domaine.

De maniére générale, les solutions que nous avons obtenues sont satisfaisantes.
Pour des problémes de taille réaliste allant jusqu’a 100 cellules, nous avons pu
déterminer des bomes inférieures en quelques minutes. En vue de dégager les meilleurs
paramétres a utiliser, nous avons testé notre adaptation avec différents paramétres de la
programmation par contraintes. Entre autres, nous avons testé 1’influence des différentes
stratégies de recherche, du type d’algorithme de filtrage et de 1’ajout de la contrainte sur
la bore inférieure du coiit de reléve sur la nature des solutions obtenues. Ainsi, un choix
Jjudicieux de ces parameétres a permis de retenir ceux offrant les meilleures.

Nous avons aussi effectué une comparaison de notre algorithme avec plusieurs
autres algorithmes adaptés a ce probléme. De cette comparaison, il résulte que la
méthode proposée est la premiére a pouvoir fournir des solutions optimales pour des
réseaux d’une certaine taille (entre 15 et 100 cellules pou 2 ou 3 commutateurs). Les
heuristiques de recuit simulé, d’algorithme génétique fournissent des résultats qui sont
en général trés loin de I’optimum global trouvé pour ces réseaux. Quant a la recherche
taboue, elle fournit des résultats trés proches des valeurs de la PC. Etant donné que le
temps d’exécution de I’algorithme devient considérable lorsque le nombre de cellules et
de commutateurs croit, nous avons alors procédé a une analyse de nos résultats avec
ceux de la RT, en fixant un temps d’arrét d’environ une journée pour les grands réseaux.
Ici aussi, les résultats obtenus sont satisfaisants et, dans certains cas, meilleurs que la

RT bien que ne représentant pas I'optimum. Notons enfin la performance de notre

92

adaptation de la PC, qui branche trés t6t sur de bonnes solutions lorsque la taille du

réseau augmente.

5.2 Limitations des travaux

En dépit des résultats satisfaisants fournis par notre algorithme, il est important de
remarquer que les solutions obtenues dépendent fortement des paramétres du probléme a
résoudre.

En effet le choix de la stratégie de recherche effectué dans cette adaptation est basé
sur des valeurs de coiits de liaison et des reléves. Ces demiers varient fortement en
fonction des données utilisées. Bien que les tests aient été effectués sur un grand nombre
de fichiers, il est difficile de dire que pour n’importe quel type de fichiers nous
aboutirons aux mémes améliorations. Si on considére que dans certains types de réseaux,
I’on désire principalement minimiser les coiits de reléves, les critéres exploités dans
cette adaptation ne fourniront pas nécessairement des solutions aussi optimistes. De plus
nous avons utilisé un critére d’arrét qui est basé sur le temps d’exécution, pour de
grands réseaux. La méthode ne garantit donc pas I’obtention d’une solution exacte pour
ceux-ci. Il serait ici intéressant de développer une adaptation dont le but premier serait
de trouver la meilleure solution et non une solution optimale.

Notre algorithme n’utilise pas de maniére efficace la redondance des contraintes
exploitée en PC pour la réduction de I’espace de recherche. I1 aurait été peut-€tre plus
efficace d’examiner toutes les contraintes du probléme pour en propager celles dont
I’expression sous une autre forme peut entrainer une propagation plus en profondeur.

Notre algorithme exploite efficacement deux variables dans la modélisation, ce qui
parfois augmente le nombre de variables et le temps d’exécution. Une approche
possible serait peut €tre de considérer I’utilisation d’une seule variable, en particulier
celle représentant les commutateurs et d’analyser le comportement de cette
modélisation par rapport a notre adaptation.

Enfin, la PC n’utilise aucun critére pour contrdler la recherche a part les stratégies

de recherche dont nous avions fait mention. Une fois les contraintes propagées, on

93

procéde par énumération pour trouver la meilleure solution. Cette procédure n’utilise

donc pas des mécanismes de contrdle dans le processus d’énumération.

5.3 Indication de recherches futures

Le probléme d’affectation de cellules a des commutateurs pose encore plusieurs
défis. La méthode de programmation par contraintes étant relativement récente,
plusieurs pistes sont encore a explorer dans I’adaptation de cette méthode a la résolution
dudit probléme. Les futurs travaux de recherche pourraient par exemple élaborer de
nouvelles stratégies dynamiques de recherche basées sur les deux composantes de coit.
On pourrait par exemple élaborer une stratégie de recherche qui permettrait d’essayer les
valeurs de colt de reléves lorsque les cellules se trouvent étre a égale distance des
commutateurs.

Il serait aussi intéressant de trouver si possible d’autres formes de modélisations
plus efficaces du probléme. Ceci devrait tenir compte de I’ajout de nouvelles contraintes
redondantes au probléme.

D’un autre c6té, il serait souhaitable de tenir compte de la variation du volume
d’appels a I'intérieur d’une cellule et d’inclure cette formulation dans la résolution du
probléme.

Et enfin, on pourrait essayer de résoudre le probléme de domiciliation double avec
I’approche de la programmation par contraintes. Ce dernier fait intervenir une nouvelle
contrainte sur la borne inférieure, qui se trouve étre différente de celle que nous avons
définie dans ce mémoire compte tenu du fait que chaque cellule peut étre affectée a deux
commutateurs suivant les moments de la journée. Le probléme a résoudre devient alors

plus contraint et serait mieux résolu avec les méthodes de la PC.

94

BIBLIOGRAPHIE

BEAUBRUN R, PIERRE S. et CONAN J.,, An efficient method for optimizing the
Assignment of Cells to MSCs in PCS Networks. Proceedings 11" Int. Conf. on Wireless
Comm. Wireless 99, Vol.1, July 1999, Calgary (AB), pp. 259-265.

BENHAMOU F. et COLMERAUER A., Constraint logic programming: Selected
Research. MIT Press, 1993.

BORNING A, The programming language aspects of ThingLab, a constraint oriented
simulation laboratory. ACM Transactions on programming languages and systems, 3(4):
252-387, October 1981.

COHEN 1I., Constraints logic programming languages. Communications of the ACM,
33(7): 52-68, July 1990.

COLMARAUER A., an introduction to PROLOG-3. Communications of the ACM,
33(7): 69-90, July 1990.

COLMARAUER A., opening the PROLOG-3 universe. BYTE Magazine,12(9), August
1987.

COLMARAUER A., PROLOG 2. Reference manual and theoretical model, technical
report. Groupe Intelligence Artificielle, université Aix- Marseille, October 1982.

FAGES F., Programmation logique par contraintes. Editions ellipses, 1996.

GLOVER F., Tabu search —part 1, ORSA Journal on Computing, vol.l, No. 3, 1986,

pp-190-206.

95

HEDIBLE C., PIERRE S., Algorithme génétique pour I’affectation de cellules a des
commutateurs, mémoire de maitrise, Dpt. de génie électrique et génie informatique,
Ecole Polytechnique de Montréal, Novembre 2000.

HOLLAND J. H., Adaptation in Natural and Artificial System, The University of
Michigan Press, Ann Arbor, Michigan 1975.

HOLLAND J. H., Genetic Algorithms and the optimal allocation of trials, SIAM Journal
of Computing, Vol. 2, No. 2, 1973, pp. 88-105.

HOUETO F., PIERRE S., Affectation de cellules a des commutateurs dans les réseaux
cellulaires mobiles, article soumis aux Annales des Télécommunications, 2000.

JAFFAR J., LASSEZ J.-L., Constraint logic programming. In Proceedings of the 14"
ACM Symposium on principles of Programming Languages, ppl11-119, Munich,
Germany, January 1987. ACM Press.

JAFFAR J., MAHER M., Constraint logic programming: A survey. Journal of Logic
Programming, 19€20:503-582, 1994.

KLINCEWICZ J. G., Heuristics for the p-hub location problem, European Journal of
Operation Research, vol.53, 1991, pp.25-37.

MARRIOTT K. et STUCKEY P., Programming with Constraints: an Introduction, MIT
Press, 1998.

MERCHANT A., SENGUPTA B., Assignment of Cells to Switches in PCS Networks,
IEEE/ACM Transactions on Networking, vol.3, No.5,1995, pp.521-526.

MERCHANT A., SENGUPTA B., Multiway graph partitioning with applications to

PCS Networks, IEEE Infocom’'94, vol.2, 1994, pp.593-600.

96

PESANT G., An optimal algorithm for the traveling salesman problem with time
windows using constraint logic programming, Publication CRT (Centre de Recherche
sur les Transports, Montréal), 1996, No 1030.

SAHA D., MUKHERJEE A. et BHATTACHARYA P. S., a simple heuristics for
assignment of cells to switches in a PCS Networks, Wireless Personal Communications,
vol12, 2000.

SAMADI B. et WONG W. S., Optimization Techniques for Location Area Partitioning,
8" ITC Specialist Sem. UPC, Geneva, 1992.

SKORIN-KAPOV 1J., Tabu search applied to the quadratic assignment problem, ORSA
Journal on Computing, vol. 2, No. 1, 1989, pp 33-45.

SUTHERLAND 1., Sketchpad, a man-machine graphical communication system. In
proceedings of the Spring Joint Computer Conference, pp 329-346. IFIPS, 1963.

VAN HENTENRYCK P., DEVILLE Y. et MICHEL L., Numerica. A modeling

language for global optimization. MIT Press, 1997.

