
Titre:
Title:

Conception d'une architecture multi-agents supportant des agents
mobiles intelligents

Auteur:
Author:

Sylvain Goutet

Date: 2001

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Goutet, S. (2001). Conception d'une architecture multi-agents supportant des
agents mobiles intelligents [Master's thesis, École Polytechnique de Montréal].
PolyPublie. https://publications.polymtl.ca/6960/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/6960/

Directeurs de
recherche:

Advisors:
Samuel Pierre, & Roch Glitho

Programme:
Program:

Génie électrique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/6960/
https://publications.polymtl.ca/6960/

CONCJPTION D'UNE ARCHlTECTURE MULTI-AGENTS

SUPPORTANT DES AGENTS MOBILES INTELLIGENTS

SYLVAIN GOUTET

DEPARTEMENT DE GÉNIE ÉLECTRIQUE ET DE GÉNIE INFORNATIQUE

ÉCOLE POLYTECHNIQUE DE MoNTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L'OBTENTION

DU DIPLÔME DE MA~RIsE ÈS SCIENCES APPLIQUÉES

(GÉNIE ÉLECTRIQUE)

AVRIL 2001

@ Sylvain Goutet, 2001

Acquisibions and Acquisitions et
Bi i raphic Services senrices ûibiiiraphiques

The author has granteci a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or seIl
copies of this thesis in microform,
papa or electronic formats.

nie author retains owmership of the
copyright in this thesis. Neither the
thesis nor substantial extracts f?om it
may be prmted or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exc1usive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la fome de microfiche/film, &
reproduction sur papier ou sur format
électronque.

L'auteur conserve la propriété du
droit d'auîeur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent etre imprimés
ou autrement reproduits sans son
autorisation.

UNIVERSITÉ DE M O ~ A L

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé:

CONCEPTION D'UNE ARCHITECTURE MULTI-AGENTS

SUPPORTANT DES AGENTS MOBiLES INTELLIGENTS

présenté par : GOUTET Svlvain

en vue de l'obtention du diplôme de : Maîtrise ès sciences appliauées

a été dûment accepté par le jury d'examen composé de:

M. ROY Robert, Ph. D., Président

M. PIERRE Samuel, Ph. D., membre et directeur de recherche

M. G m O Roch, M. Sc., membre et codirecteur de recherche

M. QUINTERO Aleiandro, Ph. D., membre

Remerciements

Je désire remercier mon directeur de recherche, le professeur Samuel Pierre, et

mon CO-directeur, Roch Glitho, pour leur patience, leurs conseils et leurs commentaires.

Je désire ensuite remercier tous les membres du Laboratoire de Recherche en

Réseautique et Informatique Mobile 0, pour leur aide et leurs critiques.

Je désire également remercier ma famille et mes amis pour leurs encouragements

et leur soutien.

Depuis quelques années, on assiste - et participe - à l'accroissement spectaculaire

des réseaux, et d'htemet en particulier, tant en quantité de données présentées et

échangées, qu'en nombre d'utilisateurs ou en étendue géographique. Cette expansion

s'est appuyée sur la technologie client/serveur qui a, jusqu'à présent, réussi à s'adapter

et à transporter et traiter un volume de données toujours plus grand. Cependant, ce

système a aussi montré des faiblesses : sa grande «centralisation » conduit à un

problème d'évolutivité, de manque de personnalisation et d'un manque de prise en

compte de la topologie du monde réel et «virtuel». Ce dernier problème n'est toutefois

pas imputable uniquement à la technologie clientherveur, mais aux choix faits à la

création d'htemet. C'est pourquoi on fonde beaucoup d'espoir sur les nouvelles

technologies, qui sortent à peine des laboratoires, d'agents et d'agents mobiles. Malgré

des défauts certains et le manque d'applications où ils marquent une réelle différence

avec les technologies existantes, ces systèmes montrent des potentialités intéressantes

pour la flexibilité et la réduction de la charge des réseaux, en particulier des grands

réseaux.

Une des particularités, mais aussi un des handicaps des agents mobiles est de

devoir transporter à chaque trajet tout le code nécessaire à I'accomplissement de leur

tâche, alors que les autres applications ne déplacent que les données. Une approche à ce

problème est donnée par un système de cache, comme celui implanté dans le système

Grasshopper. Malheureusement, ce que le système gagne en performance est perdu en

souplesse. En particulier, le remplacement ou la mise à jour d'agents devient

problématique.

Dans ce mémoire, nous proposons une architecture multi-agents qui résout ce

probième en séparant l'agent mobile des différents s e ~ c e s qu'il va utiliser - interfaces

avec les différents systèmes, algorithmes de calcul ou de recherche d'information - et

qui sont r6aiisés par des agents «passifs» pouvant être dgalement mobiles. Notre

architecture propose des mécanismes pour permettre la recherche de seMces et la

communication entre agents qui impliquent un agent dtegistraire>>. Le rôle de cet agent

est de procurer à un agent mobile arrivant s u . le serveur le service dont il a besoin. Si

aucun agent local ne procure ce service, il va chercher le plus proche possible pour le

copier ou le charger, ce qui nécessite une idée de voisinage géographique dans le réseau.

Cette notion de voisinage est étendue à l'ensemble du réseau sous forme de zone. Nous

proposons des algorithmes qui permettent à un agent mobile de tirer profit de ces

connaissances sur son environnement pour optimiser ses déplacements.

Des mesures de performance ont permis de prouver la validité de la conception de

l'architecture. Nous nous sommes focalisés sur l'apport effectif de l'utilisation de

connaissances sur le réseau et d'algoriihmes de routage plus complexes au regard de

l'augmentation de la taille de l'agent qu'ils entraînent. Nous avons constaté que, du fait

de I'utiiisation du cache de Grasshopper et de la machine Java. le déplacement d'un

agent utilisant 1' un ou l'autre des algorithmes est équivalent. Considérant maintenant le

nombre de déplacements de l'agent nécessaires pour trouver le bon correspondant avec

chaque algori thme, tous mettent à profit le mécanisme d'apprentissage par rétroaction

pour réduire leurs déplacements. Les deux algorithmes utilisant en plus des

connaissances sur la topologie du réseau montrent un réel avantage. Cependant, les

mesures n'ont pas réussi à mettre en évidence une supériorité de l'algorithme le plus

complexe par rapport au moins complexe parmi ces deux algorithmes. Même si la

comparaison avec une implémentation clientlserveur optimale reste au désavantage des

agents mobiles, l'architecture multi-agents proposée représente un moyen simple et

efficace de pallier les déficiences d'une implémentation client/serveur inadaptée.

vii

Abstract

For the last few years, networks, particulatly Internet have increased incredibly, in

the amount of data exchanged, number of users, and geographical extension. This

expansion was based on the client/server technology which. until now. managed to

adapt, carry and treat this ever increasing amount of data This system showed

weaknesses : it is centdized, poorly scalable and personalized, and does not take into

account the topology of the real or virtual world. This 1 s t problem does not corne h m

the client/server technology itself but from the choices made when Intemet was created.

That is the reason why many efforts are put on the new technologies, still in laboratones,

of agents and mobile agents. In spite of many weaknesses and the lack of killer

applications, these systems show interesting capabilities considering flexibility and

reduction of network load, specially in large networks.

Mobile agents are based on and, at the same time, handicapped by the fact that

they must carry their whole code they need to accomplish their task, where as other

applications only send data on the network. One approach of this problem, implemented

in the Grasshopper system, is caching. Unforninately. the system looses some

adaptability because a cached agent cannot be replaced by another version of the same

agent. In this paper, we propose a multi-agent architecture which solves this problem by

splitting the mobile agent in several services. small agents that will cooperate to

accomplish the task- The proposed architecture offers mechanisms of search and

communication, implemented in the "Registraire" agent. This agent has to give mobile

agents the services they need when amiving on a new machine. If no local agent offers a

service, the "RegistraireTT will load the agent from the nearest possible machine. This

implies an idea of neighborhood, which is applied to the whole network as "zone~'~. We

dso propose routing algori thms that use this knowledge.

Performance mesures validated the conception of the architecture. We focused

on the utility of more complex algorithms that need to cany more data but can be more

efficient. We found that al1 algonthms could benefit from feedback learning algorithms.

and that the dgorithms using data on the topology of the network were more efficient,

Nevertheless, the measures we made could not show an advantage o f the more complex

over a less complex of the latest algorithms. Even if an optimized clientlsemer

implementation remains the best in terms of performance, the multi-agent architecture

we propose represents an efficient way to cope with a bad or inefficient clientlserver

implementation.

Table des Matières

... Remerciements iv

............................... Résumé v
..

Abstract ...

Table des Matières ... ix
-*

Liste des tableaux ..
...

Liste des figures -11

Liste des sigles et abréviations ... xv

Chapitre 1 Introduction 1

... 1.1 Définitions et concepts de base 1

1.2 Éléments de la problématique .. 2

1.3 Objectifs de recherche 3

................................ 1.4 Plan du mémoire 4

Chapitre II Systèmes d'agents mobiles .. 5

.. 2.1 Caractérisation des agents mobiles 5

2.1.1 Agents ... 5

2.1.2 Mobilité 6

2.1.3 Caractéristiques des agents mobiles ... 7

2.2 Architecture des systèmes d'agents mobiles .. 7

.. 2.2.1 Architecture Java ..., 8

2.2.2 Architecture multi-langages 8

2.2.3 Avantages et désavantages des agents mobiles 10

...-..... 2.3 Recherche d'informations .. 13

2.3.1 Techniques de recherche d'information automatisées 13

.. 2.3 -2 Modèle espace-vectoriel 15

.................................... 2.3.3 Algorithme d' apprentissage par rétroaction 16

2.4 Applications des systèmes d'agents mobiles 19

2.4.1 Rechercheetfiltraged'infomations 1 9

2.4.2 Commerce électronique .. 19

2.4.3 Agents mobiles en télécommunications .. 20

2.5 Quelques systèmes existants 21

........ 2.6 Performances des SAM et perspectives 23

Chapitre iII Architecture muiti-agents de recherche d'information 29

3.1 Canctérisation de l'architecture 2 9

.. 3.1.1 Catégories d'agents 3 0

3.1.2 Vers des serveurs actifs .. 3 6

3.1.3 Traitement des connaissances ... 39

3.2 Application numéro pilote .. 43

.. 3.2.1 Principe 4 3

3.2.2 Choix de conception
3 .2.3 Modifications apportées à l'application initiale 45

3.3 Application chercheur d'images sur Internet 47

3.3.1 Interface avec les bases d'images,... 47

3.4 Algorithmes de recherche d'information utilisés 51

3.4.1 Choixgénéraux .. 5 2

.. 3.4.2 Adaptations 52

Chapitre IV implémentation et résultats .. 54

4.1 Choix d'implémentation 5 4

4.1.1 Classes génériques 55

4.1 -2 Interfaces 5 6

4.1.3 Agents .. 58

4.1.4 Environnement d'implémentation et de test 62

4.2 Évaluation de performance ... 63

.......... ... 4.2.1 Mesures de transport ., 63

4.2.2 Scenarios de recherche d'information 67

.. Chapitre V Conclusion 76

5.1 Synthèse des travaux et contributions principales 76

5.2 Limitations et recherches futures 78

Bibliographie - . . . --. .-.-.-..---.. . . - . 8 0

xii

Liste des tableaux

4.1 Mesures de l'effet du cache et de la région Grasshopper 64

4.2 Comparaison du coût de transport entre différentes versions 65

...
X l l l

Liste des figures

Figure 2.1

Figure 2.2

Figure 2.3

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figwe 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.1 O

Figure 4.1 1

.. Architecture d'un SAM Java 9

...................................... Architecture rnulti-langage (D'Agents) 9

......................... Réduction de la charge d'un réseau par les SAM 11

... Agents actifs et passifs 31

Algonthme de reche~he d'un agent 33

... Communication entre agents 35

............................. Relations entre les éléments de i'architecture 36

... Déploiement d'applications 37

Architecture pour la réduction de la charge du réseau 38

.................................. Représentation du réseau 40

Exemple de messages KQML ... 42

Choix de conception de l'interface téléphonie-agents 46

... Exemple de page HTML 48

... Exemple de code IFIUL 49

Algorithme de parcours d'une page HTML 49

... Fichier de méta-information 50

in terfaces des classes Address et Lien 55

................ Structure du registraire 59

Structure de l'agent mobile HuntGroup 60

... Structure du KnowAgent 61

Algorithmes de parcours de I'itinéraire 66

Scénario de mesure .. 68

Évolution du nombre de déplacements de l'agent "simple" 69

Évolution du nombre de déplacements de l'agent "local" 69

Évolution du nombre de déplacements de l'agent "complique" 70

Comparaison en moyenne du nombre de dkplacements 70

Moyenne du nombre de déplacements pour 1 zone 72

.................. Figure 4.12 Moyenne du nombre de &placements pour 5 zones 72

................... Figure 4.13 Évolution du nombre de déplacements "régionaux" 73

Figure 4.14 Nombre de déplacements au retour ... 74

Liste des sigles et abréviations

APD

CNRC

CTI

HTML

IA

m
IUG

KIF

K Q n
LAN

MASIF

MVJ

OMG

ORB

RI

SAM

SIP

SPIN

TCP

UDP

WONDEL

X M L

Appel de Procédure à Distance

Conseil National de la Recherche du Canada

Cornputer Telephony Integration

HyperText Markup Language

Intelligence Artificielle

Institute for Information Technology

Interface Utilisateur Graphique

Knowledge Interchange Format

Knowledge Query and Manipulating Language

Large Area Network

Mobile Agent System Interoperability Facility

Machine Virtuelle Java

Object Management Group

Object Request Broker

Recherche d'Information

Système d'Agents Mobiles

Session Initiation Protocoi

Searnless Personal Information Networking

Transmission Control Protocol

User Datagram Protocol

Web ONtology Description Language

eXtended Markup Language

Chapitre 1

Introduction

Depuis quelques années, on assiste - et participe - à l'accroissement spectaculaire

des réseaux, et d'hternet en particulier, tant en quantitd de données présentées et

échangées, qu'en nombre d'utilisateurs ou en étendue géographique. Cette expansion

s'est appuyée sur la technologie client/serveur qui a. jusqu'à présent, réussi à s'adapter.

à transporter et traiter un volume de données toujours plus grand. Cependant, ce système

a aussi montré des faiblesses : sa grande u centralisation » conduit à un problème

d'évolutivité, de manque de personnalisation et d'un manque de prise en compte de la

topologie du monde réel et «virtuel». Ce dernier problème n'est toutefois pas imputable

uniquement à la technologie ctient/seweur, mais aux choix faits à la création d'htemet.

C'est pourquoi on fonde beaucoup d'espoir sur des nouvelles technologies, qui sortent à

peine des laboratoires, d'agents et d'agents mobiles. Malgré des défauts certains et le

manque d'applications où ils marquent une réelle différence avec les technologies

existantes, ces systèmes montrent des potentialités intéressantes pour la flexibilité et la

réduction de la charge des réseaux, en particulier des grands réseaux.

1.1 Définitions et concepts de base

Un agent est communément défini comme une aide logicielle qui remplace

l'utilisateur dans une tâche routinière et pénible, comme organiser 1' horaire d'une

réunion ou le tri du courrier électronique ou qui cherche et trie des informations

correspondant aux intérêts de l'utilisateur (Gray, 1995; Hafher, 1995; Rogers, 1995). h s

agents se distinguent particulièrement des autres logiciels par leur autonomie vis-&-vis

de l'utilisateur. Alors qu'une application classique requiert de la part d'un utilisateur des

paramètres précis pour chaque type de situation qu'elle doit rencontrer, l'agent se doit de

les CC deviner » ou de les extrapoler du comportement de l'utilisateur tout en étant à

même de faire face à des situations imprévues, dans une certaine mesure. Cela suppose

une grande part d'intelligence, et, de fait, le concept d'agent est très lié à celui de

l'intelligence artificielle.

Les agents mobiles sont des agents possédant en outre la capacité de se déplacer

entre deux ou plusieurs nœuds d'un réseau. Bien que leur nom les rapproche des agents

fixes, le concept d'agent mobile prend réelIement sa source dans celui de processus et de

code mobile. Celui-ci cherchait à rendre mobiles des processus de façon à c e que ceux-ci

puissent interrompre leur exécution à tout moment pour se transférer sur une autre

machine qui. par exemple, dispose de plus de mémoire que la première. Cette capacité

demandait habituellement à être soutenue par de complexes systèmes d'exploitation, ce

q u i a contribué à son échec.

Le concept de code mobile consiste à définir un code tel que les programmes

compilés dans ce code puissent être portés et exécutés sur n'importe quelle machine (et

même des machines telles qu'une cuisinière ou une chaîne hi-fi, pourvu qu'elles soient

dotées du matériel nécessaire). Le code mobile est généralement soutenu par une

machine virtuelle qui va traduire et exécuter localement ses instructions. Il a trouvé une

grande popularité avec Java, mais il existe également d'autres langages, teIs Telescript,

Python ou Scheme.

1.2 Éléments de la problématique

Les agents mobiles, comme on peut le voir à leur nom et à leur définition, se

posent comme héritiers de deux technologies : les agents fixes et le code mobile. Les

agents fixes doivent beaucoup à l'intelligence artificielle. Une grande part de la

recherche actuelle sur les agents se concentre sur les systèmes multi-agents, dans

lesquels plusieurs agents coopèrent au moyen d e messages et d'un langage commun afin

de résoudre une même tâche. Ces recherches visent à obtenir ainsi une forme

d'intelligence distribuée. Le code mobile doit son succès à celui des

télécommunications, en particulier dTInternet. Ces deux domaines sont habituellement

bien séparés. Les agents mobiles (ou leurs concepteurs) veulent ainsi pouvoir réunir le

meilleur des deux concepts, mais se retrouvent souvent avec les défauts des deux : la

lourdeur de l'intelligence artificielle et les limitations des communications. LES

applications d'agents mobiles présentées par l'industrie, plus pragmatique, sont souvent

des applications simples, évitant la complexité et les incertitudes liées à l'intelligence

artificielle. L'approche des laboratoires est plus théorique. Ceux-ci présentent des

applications plus complexes et intelligentes, mais trop souvent incomplètement réalisées

ou présentant des résultats non convaincants.

Plusieurs recherches (Gannoun, 2000; Ernako-Lenou, 2000; Abu-Hakima, 1998;

site Jorstad; Brewington, 1999; Bic, 1999) ont essayé de rapprocher ces deux concepts,

mais peu donnent des résultats vraiment convaincants, tout en soutenant la technologie

agent-mobile. La raison en est qu'il y a peu d'applications « standard » pour les agents

mobiles et peu de mesures fiables. De plus, les caractéristiques qui avantagent les agents

mobiles - souplesse, personnalisation - sont mal représentées par ces mesures. Dans le

cadre de ce mémoire, nous allons chercher à voir dans quelle mesure il est possible, avec

les technologies actuelles, de réconcilier les deux.

1.3 Objectifs de recherche

La recherche a pour but d'évaluer les performances et caractéristiques

d'applications utilisant les technologies d'agents mobiles et d'intelligence artificielle.

L'objectif principal de ce mémoire est de proposer une architecture qui intègre, de

manière efficace, les concepts d'agents mobiles et d'agents intelligents. De manière plus

spécifique, ce travail de recherche vise à :

- identifier les différentes catégories d'application dans lesquelles l'utilisation

d'agents mobiles dotés d'une plus grande intelligence présente des potentialites

intéressantes ;

- développer deux applications panni celles précédemment identifiées qui utilisent des

techniques d'IA ;

- concevoir une architecture capable de supporter le déploiement de telles

applications;

- évaluer les avantages et les inconvénients de l'architecture proposée en regard de

I'intelligence ajoutée aux agents et des méthodes conventionnelles.

1.4 Plan du mémoire

Le mémoire comprend cinq chapitres. Le chapitre II fait le point sur les

technologies d'agents mobiles et de recherche d'information; il analyse également

quelques résultats obtenus lors de précédentes expériences. Le chapitre Ill décrira

I'architecture développée, les deux applications retenues ainsi que les algorithmes

utilisés. Le chapitre IV présentera et analysera les résultats d'implémentation et de mise

en oeuvre. En guise de conclusion, le chapitre V présentera une synthèse des travaux et

esquissera des directions de recherche futures.

Chapitre 11

Systèmes d'agents mobiles

Les systèmes d'agents appliqués en réseautique. de la gestion de réseau ou de flux

à la recherche d'informations, ont gagné beaucoup d'intérêt avec l'adoption &Intemet,

depuis les cinq dernières années. ils offrent de grandes perspectives de recherche. Même

s'il reste encore à prouver leur supériorité par rapport à l'architecture client/serveur

toujours performante, ils auront un grand avenir dès que les problèmes qui iimitent leurs

capacités auront trouvé une solution acceptable. Ce chapitre se concentre sur les

systèmes d'agents mobiles, leur caractérisation, leur architecture, leurs avantages et

désavantages. Elle abordera également les agents de recherche d'information et les

algorithmes qu'ils utilisent car ils sont repris dans les applications développées.

2.1 Caractérisation des agents mobiles

Les agents mobiles sont au carrefour de deux concepts plus anciens : les agents et

la mobilité. Dans cette section, nous définissons ces deux concepts de base qui

déterminent les caractéristiques des agents mobiles.

2.1.1 Agents
Le concept d'agent vient du domaine de l'intelligence artificielle (IA), à la fin des

années 70. Un de leurs ancêtres étaient les « actors », introduits par Car1 Hewitt (1977).

Le concept d'agent lui-même est assez flou et a conduit à de multiples définitions. Un

agent est communément défini comme une aide logicielle qui remplace I'utilïsateur dans

une tâche routinière et pénible (Gray, 1995), comme organiser l'horaire de réunions ou

le hi du courrier (électronique), ou qui cherche et trie des informations comspondant

aux intérêts de l'utilisateur (Hafner, 1995; Rogers, 1995). Cette définition a fait de

"agent" un mot passe-partout dans les milieux académiques et commerciaux. Des

applications sont souvent dites construites sur des agents dans le seuI but d'attirer

l'attention ou d'augmenter les ventes. Cependant, ce terme est aussi utilisé à bon escient

dans le domaine de l'intelligence artificielle, avec des définitions variées mais

concordantes (Noriega, 1997).

En IA, un agent peut être vu comme un système, matériel ou logiciel, qui a une

certaine autonomie sur son comportement, interagit avec des humains ou d'autres

agents, perçoit et réagit à son environnement et a un comportement orienté vers un but.

La notion d'agent fait donc référence à une personne qui agit dans un certain but et un

certain contexte.

D'un point de vue légal, un agent est une personne qui agit selon un principe dans

un but précis et sous délégation limitée d'autorité et de responsabilité. Wooldnge (1999)

propose deux acceptions du concept d'agent. Une notion faible, dans laquelle un agent

est caractérisé par trois propriétés: autonomie, sociabilité, réactivité, et mise en situation.

Et une notion forte dans laquelle une délégation est faite à un système qui a un

comportement réfléchi, voire émotionnel.

L'idée d'agent n'est donc pas nouvelle, mais a été limitée par les progrès en

intelligence artificielle. Le développement d'hternet et l'explosion des informations

qu'il contient a donné un nouvel essor à la recherche dans ce domaine.

2.1.2 Mobilité
Les systèmes d'agents mobiles héritent des techniques de migration de processus,

qui visent à transférer un processus entre deux ordinateurs, un processus étant une

abstraction contenant le code d'un programme, mais aussi ses données et son état

d'exécution (Emako-Lenou, 2000). Ces techniques étaient habituellement implémentées

au Nveau du système d'exploitation. Leur principale difficulté était de transférer I'etat

d'un processus interne au système, ainsi que ses ressources (fichiers, cirivers, ...). C'est

pourquoi la migration de processus a d'abord 6té implémentée à l'aide de "canaux" par

lesquels le processus communique avec son environnement (Powell et al., 1998).

Les systèmes basés sur des appels au noyau ont suivi (Douglis et ai., 1998). Ces

systèmes étaient des réussites de recherche, mais n'ont pas connu le succès commercial

qu'ils méritent ii cause du refus de la communauté des utilisateurs de partager leu .

ordinateur, et de leur complexité impliquant toujours le système d'exploitation. L'idée

de migration de processus a donc failli principalement en raison du fait qu'elle requerrait

un système d'exploitation complexe et exclusif. Toutefois, elle a introduit les notions de

code mobile et de mobilité,

2.13 Caractéristiques des agents mobiles
Bien qu'un agent mobile soit défini comme une classe d'agent ayant comme

caractéristique seconde la mobilité, il est pIus approprié de le considérer comme

I*aboutissement des abstractions mobiles, telles le code, les objets, ou les processus. De

fait, les agents mobiles sont étudiés principalement par des laboratoires davantage liés au

domaine des télécommunications qu'à celui de l'intelligence artificielle. Ils s'appuient

peu sur des concepts d'L4, même si les recherches les plus récentes se concentrent sur

ces aspects. Ils sont plutôt bâtis sur les notions de langages interprétés qui supportent le

code mobile, 1' indépendance par rapport aux systèmes d'exploitation et la mobilité objet.

2.2 Architecture des systèmes d'agents mobiles

Trois approches ont été utilisées pour la conception d'un système d'agents mobiles

(SAM) (Kamouch et al., 1998). L'une consiste à utiliser un langage propriétaire dont

les caractéristiques répondent aux exigences des SAM. compaqm a exploré cette voie

avec le projet Obliq (Noriega, 1997). Une autre approche consiste 3 implémenter le

SAM comme une extension d'un système d'exploitation (TACOMA, Hafier. 1995). Ces

deux approches n'ont pas eu beaucoup de succès.

La dernière (et principale) approche consiste A construire le SAM comme une

application particulière pouvant s'exdcuter sur n'importe quel système d'exploitation.

Ce système est en fait composd de deux parties: l'une fixe et installée sur les serveurs -
la plate-forme - et les agents eux-mêmes. La plupart des systèmes ayant choisi cette

approche (Aglet, Concordia, Mole, Odyssey et Voyager, entre autres) se composent d'un

ensemble de classes ajoutées à la Machine Virtuelle Java (MVJ). Les autres utilisent

d'autres langages, souvent plus anciens que Java (D'Agent, Ara) (Gray. 1995). La

plupart de ces derniers, devant l'énorme popularité de Java, ont intégré un interpréteur

Java. D'autres ont même été entièrement reconstruits en Java, comme

Telescript/Odyssey. Ces systèmes sont tous basés sut une architecture client/serveur et

utilisent l'approche du "bac à sable" pour la sécurité de l'hôte. Nous considérons

maintenant ces deux dernières architectures.

2.2.1 Architecture Java

Un SAM est construit sur la machine virtuelle Java (Lindholm et al., l m) , qui

procure l'indépendance par rapport au système d'exploitation et une grande partie du

support de communication et de réseau- Il assure également la sécurité de l'hôte avec le

mécanisme du "bac à sable". La plupart des systemes, comme Aglet, Concordia, ou

Voyager utilisent la MVJ d'origine procurée par chaque navigateur Internet ou produit

Java. D'autres, comme Sumatra, la modifient pour ajouter des fonctionnalités qui font

défaut à la MVJ, comme la conscience du réseau (site ewatch), tout en gardant

l'interface standard Java qui lui donne tout son intérêt. Les systèmes "classiques"

essaient d'utiliser des classes Java ou des agents particuliers p o u assurer ces fonctions.

Cette architecture peut être représentée de façon générale par la Figure 2.1, les ellipses

représentant des classes Java.

2.2.2 Architecture multi-langages
Les systèmes utilisant cette architecture essaient de surmonter les limitations de la

machine virtuelle Java. Leur cœur est un "noyau" ou b'serveui' implkmentant les

fonctions indépendantes du langage, comme le transport des agents, l'allocation des

ressources, la sécwité, ou le séquençage des «threads». Les agents sont exécutés par

I'interpréteur approprié à leur langage. L'avantage de cette approche est de supporter

plusieurs langages de programmation, mais leur compIexit6 et leur lenteur s'accroissent

avec le nombre de langages supportés. La Figure 2.2 illustre cette architecture.

Agents a
Classes Standard Java

Serveur - Machine Virtuelle Java

Figure 2.1 Arcbitechire d'un SAM Java

Agents
Communication

TCL JAVA SCHEME
L

Serveur

Figure 2.2 Architecture muiti-luigages (D'Agents)

2.2.3 Avantages et désavantages des ageats mobiles

Selon Gray (1995), le récent intérêt pour les agents mobiles est alimenté par

l'inadéquation croissante du modèle client/serveur traditionnel avec les applications

réparties. En effet, dans une architecture clientlserveur, le serveur procure un ensemble

fixe d'opérations. Toutes les autres doivent être exécutées par le client. Si l'opération

procurée par le serveur ne correspond pas exactement aux besoins du client, soit celui-ci

doit effectuer plusieurs appels au serveur pour une seule opération, soit un programmeur

doit l'ajouter sur le serveur. La première option ajoute des données intermédiaires sur le

réseau, ce qui représente une perte de bande passante. La seconde option devient

ingérable pour un grand nombre de clients. Les agents mobiles évitent ce gâchis de

bande passante et permettent une exécution efficace, même quand le serveur ne procure

pas d'opérations spécialisées, en migrant sur le serveur pour y effectuer tout calcul voulu

avant de retourner le résultat final au client. Les agents qui font plus de travail évitent

des messages intermédiaires et conservent plus de bande passante, ce qui les rend plus

avantageux dans les réseaux à faible bande passante.

Cependant, si la taille du code de l'agent est trop grosse par rapport à la quantité

de données accédées, cela peut affecter le gain de bande passante. Cela rend nécessaire

un bon équilibre entre les capacités d'un agent et la complexité de la tâche qu'il a à

accomplir.

Selon Lange (1998), les agents réduisent la charge du réseau. Les systèmes répartis

reposent souvent sur des protocoles de communication qui impliquent de multipies

interactions pour l'accomplissement d'une certaine tâche. C'est encore plus vrai quand il

y a des mesures de sécurité. Les agents mobiles permettent d'encapsuler une

conversation et de la rendre sur une destination hôte où les interactions vont se faire

localement. Les agents mobiles sont aussi utiles pour réduire le flot de données brut sur

le réseau. Quand un grand volume de données est stocké sur des serveurs distants, la

manipulation de ces données devrait être faite localement, plutôt qu'en les transférant

sur le réseau. Le principe est simple : amener Ie calcul aux données, plutôt que les

données au calcul. La Figure 2.3 montre comment les agents mobiles peuvent réduire la

charge du réseau-

Multiples requêtes

Approche Service APD

et résultats
Hôte A .

Agent
! b I

Agent + résultats
4

Figure 2.3 Réduction de la charge d'un réseau par les SAM

Les avantages et désavantages des agents mobiles peuvent être résumés comme

suit :

Avantages attendus
- Extension des capacités de traitement en surmontant les limitations d'un petit

ordinateur, comme un qaimtop». Il suffit d'envoyer un agent exécuter une tâche sur

un serveur ayant de plus grandes capacités de calcul, de mémoire et de

communication.

- Personnalisation : il est plus facile à un utilisateur de personnaliser son agent qu'un

programme résidant sur un serveur distant.

- Survivabilité : alors qu'un programme classique est lit5 à une machine, un agent

mobile peut se déplacer pour éviter une ernur matérielle ou logicielle, ou tout

simplement un arrêt de la machine.

- Représentation d'un utilisateur déconnecté : un agent peut continuer à parcourir le

web, même sans interaction avec l'utilisateur, grâce à son autonomie.

- Réduction de la charge du réseau : en se rapprochant des données sur lesquelles il

veut travailler, un agent mobile peut permettre de diminuer le nombre de messages

de communication, e t par là même, la charge du réseau.

- Indépendance par rapport au système d'exploitation.

- Facilité de développement: le concept d'agent devrait (à terme) permettre de

développer des applications mobiles plus facilement en masquant à l'utilisateur tes

problèmes liés au transport dans les réseaux, et même certains choix d'optimisation

faisables par l'agent, ainsi qu'une analogie avec le monde réel. Un agent mobile et

intelligent pourrait être vu comme un utilisateur humain habituel.

Désavantages
- Manque d'applications où les agents mobiles apportent un avantage certain.

- Sécurité : c'est une difficulté majeure pour le développement de systèmes d'agents

mobiles, comme système fonctionnant en environnement ouvert (i.e. htemet) et

non-fiable (réseaux mobiles).

- Manque d'infrastructure et de standards : les agents ont besoin du support fixe d'une

«plate-forme B. Or, aucun standard n'est réellement appliqué et leur conception

varie encore beaucoup d'un syst5me iî l'autre. De même, les difficultés non résolues

empêchent la formation d'une infrastructure suffisamment éprouvée pour permettre

le développement d'applications économiquement intéressantes.

En bref, même s'il existe un standard pour les systèmes multi-agents (MASIF,

Miljicic, 1998). la technologie est trop peu mature dans beaucoup de domaines, dont

celui de la sécurité, pour faire réellement sortir les agents des laboratoires.

2.3 Recherche d'informations

La recherche d'informations (RI') au sens large est sans doute le domaine

d'application le plus fertile des agents. La raison en est qu'avec l'explosion du nombre

de données disponibles sur les réseaux, les humains sont dépassés par la tâche de classer

ces documents et de les retrouver suffisamment rapidement. On estime également que

les moteurs de recherche fonctionnant sur des techniques de RI classiques n'arrivent

qu'à archiver 15% du contenu d'lnternet (Moussawi, 2000). On se trouve donc devant

un problème où les techniques classiques sont dépassées et seuls des logiciels

suffisamment autonomes et intelligents comme les agents peuvent donner des résultats

dignes d'intérêt. Nous allons maintenant présenter les algori thmes de recherche

d'information classiques ainsi que la technique d'apprentissage par retour d'information

(feedback).

23.1 Techniques de recherche d'information automatisées

Les techniques de recherche d'information automatisées consistent à trouver, à

partir d'une requête décrivant l'information cherchée, non pas cette information. mais un

document la contenant. Le concept le plus important en recherche d'information est

celui de correspondance. Un document correspond à une requête s'il contient

l'information représentée par la requête. Cela pose le problème de représentation d'une

information il plusieurs niveaux. La requête, telle que formulée en mots par l'utilisateur,

ne représente pas exactement sa pensée; de plus, le système va souvent travailler sur une

représentation interne de cette requête, ce qui introduit une nouvelle source d'erreur.

La première fonction de recherche automatique consistait à chercher le texte de la

requête dans celui du document, ou un texte approchant. On en déterminait une distance,

non nulle si le texte ne se retrouvait pas exactement dans le document. Devant la

complexité de cette m6thode et ses mauvais résultats (en terme de correspondance), se

sont développées des méthodes de recherche par mots, permettant de plus l'indexation

des documents pour un retrait plus rapide des réponses.

On peut classer les moteurs de recherche actuels en quatre logiques de recherche

(Moussawi, 2000) :
- Recherche eéoera~hiaue : ils permettent de chercher des sites par localisation

géographique. Des exemples de cette classe sont: www.excite.com/traveI et

www.urec.cnrs.fr/mnuaire .
- Recherche thématique : Dans ce type de recherche, les documents sont classks selon

une structure d'arbre, par thèmes et sous-thèmes. Citons parmi les principaux :

www.vahoo.com, magellan.excite.com, www.einet.net, www.nomade.fr .
- Recherche Dar index : c'est la principale catégorie de moteurs de recherche en raison

de leur flexibilité. Les documents sont indexés, en général selon les mots qu'ils

contiennent. La recherche peut ainsi se faire selon n'importe quels mots, sans se

soucier s'ils ont été utilisés pour la classification des documents ou non.

- Recherche Dar méta-index : ces moteurs se contentent de reformuler la requête de

l*utilisateur pour chacun des moteurs de recherche qu'ils connaissent et de classer

ensui te les résultats : www .rnetacrawler.com, www.corxrnic.com,

www.vrofusion.com, www.askieeves.com.

Seules les techniques de recherche par index vont nous intéresser ici, en raison de

leur plus grande flexibilité. On peut noter qu'aucune des catkgories ci-dessus ne résout

des problèmes tels que la véracité ou la pertinence de l'information trouvée. Pour

remédier à certaines des limitations des moteurs de recherche, certaines expériences

utilisent une structure multi-agent dans le cadre d'une « bibliothèque virtuelle m.

La plupart des stratkgies de recherche d'information utilisent une fonction de

correspondance qui mesure une distance entre un document et une requête ou un profil.

Il existe de nombreuses distances, une des plus simples ttant

où D désigne l'ensemble des mots clé indexant le document et

représentant la requête. Elle calcule en fait le rapport des mots communs

documents au nombre total de mots.

Q, celui

des deux

Une des techniques les plus simples, mais aussi la plus utilisée dans les moteurs de

recherche, est la recherche booléenne : un document est dit correspondre à une requête

quand les mots de la requête se retrouvent dans le document. Elle est dite (< booléenne »

car les mots de la requête peuvent être groupés en expressions logiques booléennes (avec

AND, OR, ...). Bien que ce soit une des techniques les plus simples, diverses méthodes

sont utilisées pour la rendre plus efficace, comme les techniques d'expansion de requête,

qui consistent à modifier la requête initiale. souvent en lui ajoutant des mots

qnonymes». Son avantage est d'être rapide. Son défaut principal est de donner la

même importance à chaque mot et à chaque document retrouvé (le document recherché

peut aussi bien être classé 5' ou 49' sur 50 documents retrouvés).

23.2 Modèle espace-vectoriel
Pour pallier ce problème, Salton (1975) a introduit le modèle espace-vectoriel,

basé sur la pondération des mots en fonction de leur importance dans un document ou

une requête. Ce modèle est peu utilisé actuellement car ses performances sont fortement

liées à la topologie de l'espace d é lors de l'indexation. Néanmoins. l'ar~ivée de

systèmes de recherche évolués basés sur les agents remet ce modèle au devant de la

scène.

Dans le modèle espace-vectoriel, le schdma figuratif de base est le vecteur (Salton

et McGill, 1983). Ainsi. dans cette représentation, les documents et les requêtes sont

considérés comme un ensemble de vecteurs dans un espace à n dimensions, n étant le

nombre de mots utilisés dans l'indexation. Chaque document est repdsentt5 par un

vecteur constitué des poids de chacun de ces mots dans la représentation du document.

Ce poids peut aussi bien être un entier (ex : nombre d'occurrences du mot dans le

document) qu'un nombre réel. La comspondance entre la requête et un document est

alors calculée comme l'inverse d'une distance entre les vecteurs de représentation

respectifs dans cet espace de dimension n. Il existe plusieurs métriques possibles.

Mathématiquement, toute fonction satisfaisant les trois propriétés de positivité, symétrie,

et inégalité triangulaire, est une distance. k s métriques euclidiennes sont encore très

populaires et utilisées en RI par Myaeng et Korfhage (1990), entre autres.

Une autre fonction populaire en RI est la corrélation cosinus. En supposant que le

document et la requête sont représentés sous forme vectorielle, soit Q = (qi, qz, . . , qJ et

D = (dl, d2, ,. ., dJ où qi et di sont les poids associés à chaque mot clé i. La corrélation

cosinus est simplement :

Soit, dans un espace euclidien,

où 8 est l'angle entre les vecteurs Q et D.

233 Algori thme d'apprentissage par rétroaction
Un utilisateur confronté à un système de recherche d'information automatique va

sans doute vouloir utiliser une stratégie d'essais et de corrections plutôt qu'exprimer sa

requête en une seule fois. Le genre d'informations dont ii peut avoir besoin pour

refonnuler sa requête est:

(1) la fféquence d'occurrence de ses termes de recherche dans la base de

documents ;

(2) le nombre de documents susceptibles de correspondre 3 sa requête ;

(3) des alternatives aux termes utilisés ;

(4) des citations susceptibles d'être trouvées ; et

(5) les termes utilisés dans les citations (4).

Un utilisateur peut alors préciser, élargir ou recentrer sa requête suivant les

informations fournies par le système. C'est donc une forme manuelle de rétroaction.

Souvent, une ou plusieurs de ces informations ne sont pas disponibles. Nous considérons

maintenant une approche mathématique pour que le système puisse modifier

automatiquement la requête. Le mot rétroaction est utilisé pour décrire le mécanisme par

lequel un système peut améliorer ses performances en considérant son passé. Cette

notion est bien établie en automatique et en RI et a été popularisée par Norbert Wiener

dans son livre <Cybemetics» (1948).

Considérons une stratégie de recherche utilisant une fonction de correspondance M

et des vecteurs t-dimensionnels pour les représentations de la requête Q et du document

D. On suppose ici que l'ensemble des documents est connu. Le but est de retrouver les

documents voulus A sans les documents indésirables A*. Malheureusement, la

correspondance est une notion propre à l'interprétation de l*utilisateur et celle-ci peut

différer de la description qu'il en donne au système. Dans le cas où M est la fonction de

corrélation cosinus, la procédure de décision avec un seuil T (qui décide de montrer un

document ou non), M(Q,D) - T > O, correspond à une fonction de discriminant linéaire

utilisée pour séparer deux ensembles A et A' dans R[t]. Nilsson (1965) a expliqué

comment ces fonctions peuvent être entraînées en modifiant les poids qi. Supposons que

A et A' soient connus, alors la formulation correcte de la requête Qo est celle pour

laquelle

M(Qo,D) > T quand D E A et

M(Qo,D) S T quand D E A'.

Un théorème (Nilsson, 1965) assure que, pour tout Q et Qo. il existe une procddure

itérative faisant converger Q vers Qo. appelée la procédure de correction par incrément

fixe. Elle s'énonce ainsi:

Qi=Qi-i +CD si M(Qi_,, D) -TSO si D EA

Qi=Qi-i-cDsiM(Qi,l ,D)-T>OsiD~ A'

et aucun changement ne se produit si le diagnostic est comct. c est l'incrément de

correction, de valeur arbitraire et habituellement égale à 1. En pratique, il peut être

nécessaire de répéter l'opération un grand nombre de fois avant convergence.

La situation est moins simple en RI car les ensembles A et A' ne sont pas connus à

l'avance, mais on peut demander à l'utilisateur de décider lesquels sont désirés parmi les

documents trouvés. Le système peut alors modifier Q automatiquement Dans sa thèse.

Rocchio (1966) a défini la requête optimale comme celle qui maximise:

Si M est la fonction cosinus, il est facile de montrer que est maximisé par :

où c est une constante proportionnelle arbitraire. Si les sommes ne portent que sur les

documents trouvés à l'itération i, on obtient une requête optimale pour ceux-ci. mais elle

peut ne pas l'être pour les documents non encore retournés. On ajoute alors ce vecteur à

la précédente formulation de la requête pour obtenir:

où w et wz sont des coefficients de pondération.

Salton (1975) a en fait utilisé une version légèrement modifiée. En résumé, ces

ajustements consistent à donner plus de poids dans la description de la requête aux mots

qui décrivent les documents voulus et moins aux autres. Les essais ont démontré que

cette technique peut être très efficace, mais oblige l'utilisateur il juger un certain nombre

de documents à chaque requête. Les systèmes multi-agents cherchent à éviter ce d6faut

en faisant pmager la tâche entre un grand nombre d'utilisateurs humains ou agents

logiciels collaborant.

2.4 Applications des systèmes d'agents mobiles

Les domaines d'application des SAM sont à peu près les mêmes que ceux où les

agents statiques sont actuellement appliqués : recherche et filtrage d'informations,

commerce électronique et télécommunications.

2.4.1 Recherche et filtrage d'informations

C'est le plus grand champ d'application et d'expérimentation des agents. Même si

les systèmes décrits ici utilisent des agents statiques, ils pourraient être avantageusement

remplacés ou secondés par des SAM. Les premiers systèmes commerciaux utilisant des

agents étaient des agents "moniteurs". C'étaient des programmes qui alertaient

l'utilisateur quand une information intéressante apparaît. e-Watch, ZDNet (qui a cessé

récemment ce projet) et Excite (Sites Intemet) procurent ce service pour les nouvelles et

les informations.

Alexa (Site Alexa) est une barre d'outils d'aide gratuite à la navigation. Elle

procure des informations statistiques et des liens sur chaque site visité. Elle aide

également au magasinage en ligne en vérifiant l'identité d'un site de commerce à partir

des contacts donnés sur la page.

Les agents, et spécialement les agents mobiles, sont adaptés pour agir comme des

"bots", des logiciels qui naviguent continuellement sur la toile pour trouver de nouvelles

informations. Cette technologie, qui utilise des techniques de data-mining, est déjà bien

étudiée et possède ses standards.

2.4.2 Commerce électronique
Les agents, fixes ou mobiles, peuvent être utilisés pour le commerce électronique

de plusieurs façons. Ils peuvent donner aux utilisateurs un accès personnalisé aux

informations données en ligne. Fnctionless (Site Fnctionless) est un système d'agents

statiques intelligents, développé au Mï î . il permet aux utilisateurs de comparer

plusieurs produits et conditions de ventes, en magasinant en ligne. L'utilisateur peut

sélectionner un profil qui correspond à ses habitudes d'achat, choisir un produit et

préciser ses caractkistiques. Ils peuvent aussi être utilisés pour des ventes aux enchères,

comme AuctionBot, développé à l'Université de Michigan. Il existe beaucoup d'autres

sites d'enchères utilisant des agents statiques (ebay, onsale, auctionet).

Parmi les systèmes d'agents mobiles, on peut remarquer Nomad (2000), utilisé

dans un site d'enchères, eAuctionHouse, à l'université de Washington. Tabican (site

Aglets, détails en Japonais) est un marché virtuel pour des billets d'avions et des tours

(air + hôtel) où des milliers d'agents mobiles de clients et vendeurs peuvent se

rencontrer et trouver le meilleur prix pour le client et le vendeur à la fois, sans leur faire

perdre de temps.

2.43 Agents mobiles en télécommunications
La fonctionnalité de mobilité prend toute son importance dans le domaine des

télécommunications. Les agents mobiles peuvent y être utilisés pour couvrir toutes les

couches des protocoles de communication, de la maintenance de réseau, jusqu'aw

applications mobiles, suivant l'usager dans ses déplacements.

Dans le système SPIN (Abu-Hakirna et al., 1998)' un "Personal Communicator

~ ~ e n t ~ " (PCA) est un agent mobile chargé de délivrer un message au destinataire, quel

que soit son appareil - téléavertisseur, téléphone, ordinateur, portable ou téléphone sans

fil. Le PCA d'un utilisateur doit pouvoir recevoir les messages et les conduire sans

interruption dans des réseaux hétérogènes à I'utilisateur. Par exemple, si le seul moyen

de délivrer un message urgent à un utilisateur est un téléphone sans fil, l'agent personnel

doit convertir le message textuel en message vocal.

NetChaser (di Stefano et C. Santoro, 2000) est un ensemble d'assistants personnels

dkveloppé à l'université de Catania, en utilisant leur propre système d'agents mobiles.

La mobilité permet à ces agents de suivre l'utilisateur même quand il change de

machine.

Le domaine de l'administration de réseau est &galement l'objet de nombreuses

recherches. Comme l'équipe d'lBM (site Recherche-IBM), beaucoup pensent que le

futur des réseaux réside dans une plus grande intelligence, pour plus d'adaptabilité et de

mobilité, et que cette évolution passe par les agents mobiles.

L'administration de réseau est par nature asynchrone et répartie. De plus, il est

souvent important d'avoir une vue locale du système pour pouvoir déterminer les causes

et conséquences d'un problème. L'administrateur doit alon se déplacer vers des

machines lointaines qui nécessitent des taches de maintenance ou de mise ii jour.

L'installation et la maintenance des logiciels deviennent difficile avec l'augmentation du

nombre de machines. Les agents mobiles sont ici adéquats pour voyager dans le réseau

et effectuer des tâches périodiques.

2.5 Queiques systèmes existants

Bien que de nombreuses applications basées sur les agents aient été développées,

peu ont passé le stade expérimental et encore moins celui de la commercialisation. On

peut trouver une liste plus complète de SAM à (site liste). Nous allons citer ici

seulement les plus importantes en tests, publications et applications.

Les Aglets d'IBM (site Aglets) ont été le premier système commercial développé

en Java à IBM Tokyo Research Laboratory. Concordia (site Concordia) est un système

commercial développé en Java par Mitsubishi Electric l'TA. Mole (site Mole), développé

à l'université de Stuttgart, implémente le schéma de migration faible, où sont

transportées seulement les infornations des données, car la migration forte (hansport de

tout l'état système de l'agent) était trop coûteuse. Quant à Sumatra (site Sumatra), il a

été développé pour mesurer la performance des agents en gestion de réseaux. il utilise

une appiication, Komodo. qui gère le temps de réponse du dseau. L'application de test

est Adaptalk, un logiciel de discussion sur Intemet qui se positionne automatiquement à

l'endroit optimal sur le réseau.

Voyager (site ObjectSpace) est un "Object Request Broker" (ORB) en Java

supportant les agents mobiles. Malgré ses possibilités avancées de communication, ce

n'est pas un système conçu spécifiquement autour des agents mobiles.

Agent-Tc1 (site D'Agents) est l'un des premiers systèmes d'agents mobiles

(première publication en 1995), initialement écrit en Tcl, un langage portable conçu au

Damnouth College. Il a été depuis réécrit pour Supporter divers langages - Tc1, Java et

Scheme - et renommé D'Agents.

Grasshopper est un système d'agents mobiles en pleine expansion développé à

I'IKV, en Allemagne. Il présente des fonctionnalités intéressantes comme une interface

graphique élaborée. Il est conçu entièrenîent en Java.

Une difficulté dans le développement de SAM est le manque d'environnements de

test "mondiaux", où les agents peuvent traverser de grandes distances sur des réseaux de

caractéristiques et capacités diverses. L'Université de Dartmouth et plusieurs autres

institutions (site ActComrn) se sont réunies pour construire un tel environnement.

Chaque institution fournit une machine 386/486/Pentium tournant sous Linux, avec un

compte pour chacune des autres institutions participantes. Chacun peut alors installer

son système pour des tests et analyses de performance. Les participants à ce projet sont :

Dartmouth, avec D'Agents, Berkeley et l'université de Genève avec Messengers,

Aachen University of technology et CNRI avec KnowBots. Malheureusement, ce projet

a été abandonné (voir page Dartmouth-réseau).

Le "Institute for Information Technology" du Conseil national de la

recherche du Canada (CNRC) utilise un environnement réel (Emako-Lenou, 2000; Abu-

Hakirna et al., 1998) pour deux applications complémentaires de "searnless personal

information networking" SPI^). Nous ne d6cnvons ici que la premiére!: seamless

messaging (SM); l'autre est un gestionnaire de réseau intelligent. Le réseau comprend un

LAN de plus de 30 terminaux, une passerelle SS7. un serveur "Cornputer Telephony

Integration" (Cïï), un accès au LAN sans fil, une station de base sans fil, une passerelle

ATM et de nombreux télt5phones et portables. Une plate-forme Cil permet aux

utilisateurs de recevoir des appels avec les informations correspondantes sur leur

terminal. Des "Diagnostic ~ ~ e n t - (DA) sont déployés sur chaque nœud du réseau

pour gérer chacun un type de matériel,

2.6 Peflormances des SAM et perspectives

"Messengers" (site Messenger) est un système développé à I'UNversite de

California à Irvine. II se compose de "messengers", des agents mobiles voyageant sur un

réseau virtuel pouvant se superposer à un réseau réel. Rs peuvent suivre un programme.

selon un "temps virtuel", et contenir du code natif.

Les Messengers ont été évalués sur un réseau de stations SunSPARC ELC's (16

MI3 mémoire chaque) connectées par un réseau Ethemet à 10 Mbps. L'interpréteur est

un unique processus Unix, avec deux «threads» concurrents (un pour les envois, l'autre

pour les réceptions) pour la communication avec les autres sur le réseau. Les tests

montrent que les opérations arithmétiques sur les scripts Messengers ajoutent un surcoût

d'un certain ordre de magnitude par rapport au code natif. L'appel de fonction dans

Messengers est 100 fois plus coûteuse qu'un appel de fonction C. La création d'un

messenger demande environ trois fois plus de temps que de créer un idhreab I w p (h w

Weight Process), mais moins qu'un processus Unix. Finalement, les changements de

contexte sont comparables pour chaque système,

Ceci montre que l'interprétation des scripts Messengers peut augmenter

considérablement le coût. Cependant, ce coût ne se retrouve pas nécessairement dans les

applications. La raison en est que les messengers peuvent contenir également du code

natif C. De plus, la communication est la source la plus courante de surcoût dans les

applications réparties, et l'utilisation des messengers réduit ce coût.

Les résultats montrent que les <<threads» lwp et les wssengers sont tous deux plus

rapides que l'exécution séquentielle au dela d'une certaine granularit6 (1000 - 10000

opérations). Le surcoût des messengers devient même ndgligeable comparé il l'exécution

amulti-thead» conventionnelle.

D'autres évaluations sont reprises dans (Bic et al., 1999), où un calcul (d'une

image de la fractale de Mandelbrott) est exécuté comparativement avec les agents

Messengers, un système réparti fonctionnant par passage de messages, et un programme

C fixe. Le résultat montre un avantage des Messengers et du système réparti sur le

programme C. La comparaison entre les deux premiers dépend de la granularité du

calcul (le nombre de points calculés par chaque unité de calcul), et aucun des systèmes

ne montre une réelle supériorité.

Selon David Kotz et Robert S. Gray (1999)' de Dartmouth, les systèmes d'agents

mobiles épargnent des d6lais dus au réseau et de la bande passante, au détriment de la

charge de calcul sur les serveurs, car les agents sont souvent écrits dans des langages

interprétés relativement lents. Ainsi, en l'absence de déconnexion réseau, les agents

mobiles (surtout ceux qui doivent effectuer seulement quelques opérations par serveur)

prennent souvent plus de temps que des implémentations traditionnelles pour accomplir

une certaine tâche, car le gain en temps sur le traf~c réseau est alors insuffisant pour

compenser la lenteur d'exécution et de migration.

Heureusement, des progrès significatifs ont été faits dans le domaine de la

compilation à l'exécution (surtout pour Java), l'isolation des fautes, et d'autres

techniques (Muller et al., 1997), ce qui permet au code mobile de s'exécuter presque

aussi vite que du code compilé. De plus, des groupes de recherche travaillent activement

à réduire le coût de migration. Réunis, ces efforts devraient conduire à des systèmes

dans lesquels l'utilisation d'agents mobiles n'impliquerait qu'une faible charge

supplémentaire au serveur par rapport à un service fourni comme une procédure.

Par ailleurs, le projet ActComrn (site ActCornm) - transportable agents for wireless

cornmunications - a donné lieu à plusieurs évaluations. Dans (Brewington et al., 1999).

on décrit un système de recherche d'information utilisant SMART et des agents mobiles.

Les requêtes sont envoyées d'un laptop à 200 MHz à un serveur Sun via une connexion

Ethemet à 10 Mbps. Les agents utilisent la nouvelle version anulti-threa6~ de D'Agents,

sans encryption. Les résultats montrent que la migration implique un coût

supplémentaire par rapport à la communication inter-agent (deux agents fixes

communicant) et encore plus qu'un APD. Les chercheurs identifient deux raisons

principales à ces mauvaises perfomances : TCL est lent car trop de code doit encore ê t ~

exécuté par l'interpréteur avant de recevoir un nouvel agent; et l'utilisation de TCP, plus

lent qu'UDP pour la communication et l'envoi des agents. Mais les agents surpassent

APD quand le nombre de requêtes augmente, sauf si les documents doivent être

retournés à l'utilisateur par le réseau pour vérification.

Les résultats peuvent ne pas sembler très concluants, mais il faut considérer aussi

que même avec un lien de 10 Mbps (rapide) et un interpréteur Tc1 lent, le SAM surpasse

la solution clienilserveur dans plusieurs cas, en particulier quand les opérations de

recherche sont fournies par le serveur sous forme d'une librairie. Dans tous les cas,

l'utilisation d'agents mobiles sauve de la bande passante réseau.

Jorstad (site Jorstad) donne un exemple classique de comparaison entre un système

classique client/serveur et un SAM. Le scénario (liaison à faible de'bit, serveurs de bases

de données distants) est très avantageux pour l'agent, qui surpasse l'autre système en

charge de réseau et en rapidité.

Domain Name exchange (DIVX) (Gannoun, 2000; site DNX) est un système

développé à l'université de Genève. Son but est de fournir un SAM qui aiderait à gérer

la demande croissante pour les noms de domaine, qui ont désormais valeur commerciale.

Ce système utilise à la fois des agents fixes et mobiles, sur la plate-forme JavaSeal,

développée dans la même université. Cette plate-forme peut supporter plus de 1,100

agents concurrents, ayant chacun un «thread» d'exécution actif. Au delà, des créations

supplémentaires sont très lentes du fait de la quantité importante de basculement

générée. La communication inter-agents ralentit également. Ils prévoient d'améliorer les

performances de la plate-forme en y incluant de nouvelles fonctionnalités comme le

stockage d'agents inactifs.

La performance en ternes de rapidité et de bande passante utilisée n'est pas le seul

avantage des SAM et n'est pas toujours le facteur déterminant du succès. Todd

Papaioannou et John Edwards, de 1' universi té Loughborough, U . , proposent différentes

mesures de performance dans (site Loughborough). Les deux systèmes décrits sont

construits pour supporter les ventes d'une entreprise de fabrication répartie, en utilisant

le "Aglets Software Development Kit" d'IBM. Les bases de l'implémentation

proviennent de données collectées dans l'étude d'un cas réel. Les deux systèmes sont

évalués en utilisant la méthodologie &oaVQuestion/Metric» (but/question/métrique).

Deux nouvelles mesures d'alignement sémantique et de capacité de changement sont

présentées et utilisées pour l'évaluation des systèmes. Ceux-ci sont évalués à partir d'un

ensemble de scénarios générés lors de l'étude de cas. Ensuite sont examinées les

implications de 1 'utilisation de code mobile, comparativement à une technologie répartie

traditionnelle. Ce travail met en évidence que les systèmes d'agents mobiles et d'objets

mobiles ont des propriétés inhérentes qui peuvent être utilisées pour la construction de

systèmes répartis adaptables. L'autonomie des agents mobiles donne encore plus de

support.

On peut considérer que les tests choisis sont suffisamment récents (1998, 99) pour

refléter les performances actuelles des systèmes d'agents mobiles. Les évaluations

décrites sont similaires, dans le fait qu'elles sont relativement simples, impliquant un

faible nombre de nœuds de réseau et des conditions de tests favorables aux SAM. En

résumé, les résultats obtenus indiquent que les SAM utilisent moins de bande passante

réseau (Gray, 1999; Brewington et al., 1999; Gannoun et al., 2000; site Jorstad), mais ils

arrivent encore difficilement au niveau des systèmes traditionnels pour la rapidité

d'exécution (Brewington et al., 1999) (les scénarios de test avantagent souvent les

agents), et encore moins pour la charge de calcul des serveurs (Gray, 1999). LRs S A M

conviennent donc aux applications où I'optimisation de la charge du réseau est plus

importante que la rapidité, comme c'est le cas de la plupart des applications en

environnement sans-fi1,

On peut se demander, au vu de ces résultats, si des applications de SAM vont être

commercialisées dans un proche avenir ou s'ils vont perdre la considération (et les fonds

de recherche) des entreprises, comme 1'IA dans les années 80. Mais les agents mobiles

ont l'avantage de permettre à la fois le développement rapide d'applications et la

réutilisation des travaux faits en IA au cours des 20 dernières années. La mobilité leur

confère également d'autres avantages, comme la facilité de personnalisation,

l'adaptabilité ou l'interopérabili té.

Certaines recherches essaient de mettre ces qualités en avant en évaluant des

paramètres autres que la seule performance (site Loughborough), comme la sûreté ou

l'adaptabilité, montrant ainsi les vrais avantages des SAM sur les systèmes traditionnels.

De plus, certains articles montrent que la technologie agent a suffisamment évolué pour

permettre la gestion d'un réseau (Abu-Hakima, 1998), et le développement

d'environnements de test réalistes (Abu-Hakima, 1998; Site Dartmouth-réseau) nous

laisse présager de plus en plus d'évaiuations et de comparaisons dans un futur proche.

Les systèmes d'agents mobiles permettent le développement rapide d'applications

qui utilisent beaucoup la mobilité et peu d'algorithmes complexes d'intelligence

artificielle. Ces systèmes montrent de bonnes performances sur des réseaux fermés et

sûrs, mais ils ont encore besoin de plus d'autonomie et d'intelligence pour aborder des

réseaux plus changeants et risqués. Or, au vu de leurs caractéristiques, les systèmes

d'agents mobiles sont faits pour ces derniers réseaux. Il y a donc là une contradiction

flagrante entre les capacités actuelles des agents mobiles et ce pour quoi ils sont prévus

et adaptés. C'est pourquoi il est important d'aborder des problèmes tels que le

"travelling agent" (Brewington, 1999), ou reroutage (Jorstad).

L'intégration dans les agents mobiles d'algorithmes complexes d' lA augmente la

taille de leur code et les rend moins efficaces pour des tâches simples, mais cela leur

permet d'effectuer des tâches plus complexes dans des environnements plus changeants

et hasardeux. L'important est de ne pas surestimer les agents mobiles et de garder un

bon équilibre entre la difficult6 de la tâche à accomplir et la quantité d'IA inclue, lors du

développement d'un système (Woolridge, 1999).

Les tests et évaluations décrites ici ont pu montrer la supérioritd d'un système

client/servew ou d'un SAM, suivant la situation. En fait, les SAM semblent surpasser

les solutions classiques pour la charge du réseau ou même la vitesse d'exécution, mais

les vrais tests vont A peine commencer, avec les environnements réalistes comme SPIN

(Abu-Hakirna, 1998) ou (Dartmouth-réseau), et des applications plus complexes.

Les agents mobiles sont l'aboutissement de l'évolution des concepts de mobilité,

mais ils sont aussi « 99% computing, 1% AI » (Woolridge., 1999)' et ce 1% doit prendre

de plus en plus d'importance pour pouvoir exploiter toutes les possibilités que l'on peut

attendre des agents mobiles.

Chapitre III

Architecture multi-agents de recherche d'information

On peut classer les applications utilisant des agents mobiles en trois grandes

catégories : une où l'agent est très spécialisé et va effectuer une tâche simple sur un ou

plusieurs serveurs; une autre où l'agent effectue une tâche complexe sur une longue

durée et se déplace peu; dans la dernière, l'agent doit effectuer une tâche complexe sur

un certain nombre de serveurs. Cette dernière catégorie comprend la plupart des

applications de commerce électronique et de recherche d'information. La rapidité

d'exécution et la taille du code sont alors des facteurs cruciaux pour I'agent, alors qu'il

doit également pouvoir effectuer des tâches complexes et, pour cela, avoir accès au code

d'algorithmes pouvant être complexe et requérant souvent un grand volume de données.

Or, ces algorithmes et ces données gagneraient à être partagés avec d'autres applications

ou être fournis par le serveur lui-même, pour être accédés localement. Il est égaiement

inutile que l'agent transporte du code déjà présent ou effectuant une opération déjà

fournie par le serveur. Ce chapitre traite de la conception d'une architecture multi-agents

résolvant ce problème et destinée en particulier aux applications de recherche

d'information, mais pouvant être étendue à d'autres types d'applications.

3.1 Caractérisation de l'architecture

Considérant les limitations d'une application basée sur un agent mobile seul

(transport de tout le code à chaque ddplacement), nous proposons de scinder l'agent

unique en plusieurs agents intdgrés dans une architecture rnulti-agents, la plupart d'entre

eux toujours mobiles. Nous allons ici décrù.e cette architecture, en commençant par

définir ses objectifs et spécifications.

b s qualités les plus fréquemment attribuées aux agents mobiles sont de diminuer

la charge d'un réseau et d'avoir une eonscience~ du réseau, c'est-%-dire de sa topologie

et de sa configuration. Bien que souvent prises pour acquises, ces caractéristiques sont

en fait rarement implantées dans les systèmes d'agents mobiles acniels. De plus,

l'approche classique cherche au contraire à masquer au maximum les caractéristiques

physiques du réseau aux applications par des couches successives de protocoles. Nous

allons donc chercher à construire notre architecture de façon à minimiser la charge du

réseau. En particulier, l'un des grands défauts de l'approche clientlserveur et des réseaux

classiques en général est de ne procurer aucun moyen de localisation géographique et

d'encourager du gaspillage de bande passante en traitant de la même façon une liaison

locale et une liaison intercontinentale pouvant comporter un grand nombre de « hops s.

Ces dernières sont souvent surchargées aux heures de pointe et peuvent entrdner des

délais importants dans l'acheminement des paquets. Cela tend à changer, en particulier

dans le domaine fortement concurrentiel WAP de la téléphonie cellulaire, mais

beaucoup reste à faire. Nous allons donc mettre l'accent sur les aspects de localité et de

réutilisation du code.

3.11 Catégories d'agents
Comme Esmahi (1999), on va distinguer essentiellement deux types d'agents, les

agents passifs ou réactifs, et les agents actifs. Pour résumer, les premiers ne vont agir

qu'en réponse à un message de leur environnement (utilisateur, système ou autre agent)

alors que les seconds vont agir de leur propre initiative. Ils peuvent déclencher une

action à la suite d'un événement interne, même sans message extérieur. Généralement,

les agents actifs vont être les acteurs principaux et vont utiliser les agents passifs pour

accomplir la tâche qui leur a été confiée. Toutefois, contrairement à des objets. les

agents passifs sont permanents et conservent un état interne qui conditionne leur réponse

aux messages qu'ils reçoivent. Par conséquent, leur réponse à deux messages identiques

peut varier selon le passé de l'agent. C'est ce qui distingue la programmation orientée

agent, introduite par Shoharn (1993). de la programmation orientée objet. LPs agents

peuvent très bien passer d'un 6tat passif à un état actif ou inversement Zi tout moment, à

la réception d'un message particulier ou à un moment donnt5 Un agent actif devient

passif lorsqu'il se met à la disposition des agents actifs en attente du prochain événement

(qui peut être interne à l'agent). Par exemple, un agent d'analyse financière peut partager

ses fonctions d'analyse avec d'autres agents pendant qu'il attend des données, comme le

montre la Figure 3.1.

L'agent mobile actif arrive sur le serveur de données bowsiiires.

II demande au serveur de lui donner le prochain passage d'une action

au-dessus d'un certain seuil et devient passif en attendant la réponse.

D'autres agents peuvent hi demander d'analyser le cours d'une autre

action pendant ce temps.

Le serveur lui fournit les renseignements attendus et l'agent redevient

actif pour continuer sa tâche (par exemple trouver comment rejoindre son

propriétaire le plus rapidement possible).

Figure 3.1 Agents actifs et passifs

Un agent multi-threacb peut être en même temps actif et passif. Dans notre cas,

les agents actifs sont mobiles et, pour rester suffisamment légers, ne peuvent pas

emporter une grande quantité de connaissances sur les autres agents. Un des objectifs de

l'architecture décrite ici est donc de procurer à ces agents un moyen simple de trouver

un agent capable de fournir le service dont ils ont besoin. Tout d'abord, comment

désigner un «seMceu? Nous avons choisi les interfaces comme la caractéristique d'un

agent représentant une fonction ou un ensemble de fonctions qu'un agent est capable de

réaliser pour d'autres, ceci pour plusieurs raisons. La caractéristique choisie doit être

aussi représentative que possible de la fonction de l'agent et doit être indépendante

d'autres paramètres. Il doit être possible et aisé de chercher un agent selon cette

caractéristique. Enfin, un agent doit pouvoir regrouper plusieurs fonctionnaIités.

Grasshopper, sous lequel nous avons développé les applications, présentait plusieurs

possibilités de recherche, selon le nom, la description, ou la classe de l'agent.

Cependant, ces caractéristiques sont soit uniques, comme le nom ou la classe, soit trop

vagues et changeantes, comme la description. Or, il est naturel, en Java ou tout autre

langage orienté objet, de penser à une interface pour représenter un ensemble de

fonctions qu'un objet contient. La connaissance de cette interface est même nécessaire

pour pouvoir communiquer avec un autre agent. Plutôt que d'imposer une interface

standard unique, nous avons préféré choisir l'interface comme représentative d'un

service offert par un agent. La fonction de recherche correspondante, inexistante sous

Grasshopper, est donc réalisée par notre architecture (Figure 3.2) au niveau du

registraire, agent particulier décrit dans le paragraphe suivant.

Le registraire est un agent particulier de notre architecture (le seul), car il

concentre les fonctions qui nous sont nécessaires mais qui ne sont pas assurées par la

plate-forme. Nous avons vu que l'une de ces fonctions est la recherche d'autres agents.

Pour cela, le registraire va conserver une liste des agents présents sur la plate-forme avec

leurs interfaces. k s agents passifs vont. à leur amvée sur la machine, s'inscrire auprès

du registraire pour chaque interface qu'ils désirent présenter. Ils se désinscrivent lors de

leur départ ou de leur suppression. Le registraire peut être informé par la plate-forme de

l'arrivée ou du départ d'un agent, mais c'est aux agents eux-mêmes de décider selon

quelles interfaces ils désirent pouvoir être recherchks. Le processus d'inscription ne peut

donc pas être complètement automatisé et ignoré au niveau du code des agents.

1 Un agent actif arrive sur la machine A et demande un agent. 1

I I Le regkiraire A interroge le I
I regisîraire voisin B. 1

H Le registraire B copie l'agent

sur A. I
Le registraire A interroge la

région Grasshopper.

Le registraire C copie L'agent existe
l'agent sur A. 4

mobile l'agent passif founiissant

le service

- -

1 L'agent mobile charge le service lui-

même ou s'en va. I
Figure 3.2 Algorithme de recherche d'un agent

Si le registraire ne trouve pas un agent dans sa propre base, il interroge les

registraires «voisins» en vue de tirer profit de la localité gour réduire la charge du réseau

(nous verrons ensuite comment est transcrite cette idée). puis l'ensemble de la région de

sécurité à laquelle il appartient. En cas de succès, il copie I'agent trouvé sur Ia machine

locale et lui transmet la requête de l'agent mobile. Ainsi, on n'utilise qu'en dernier

recours les liaisons et les machines « distantes », c'est à dire n'appartenant pas au même

sous-réseau. On économise donc des ressources réseau. On peut noter qu'un avantage de

ce choix est aussi de libérer I'agent mobile du code préparant et effectuant la recherche,

ainsi que du code de traitement d'erreurs associé qui peut représenter une part

importante de la taille d'un agent. De plus, ce code variant selon le système d'agents

mobiles utilisés, on acquiert une plus grande indépendance au système utilisé lors du

développement de l'agent. La Figure 3 -3 illustre le déroulement d'une communication

entre un agent mobile actif et un agent passif par un exemple tiré des applications

développées.

En vue de minimiser la charge totale du réseau et de rendre les applications plus

performantes, il nous faut introduire un élément de « localisation » dans le système.

Plusieurs approches sont possibles. Grasshopper procure d6jà une certaine

wégionalisation» implicite de l'espace avec les <uégions». Celles-ci réunissent les

agences de même caractéristiques de sécurité et de propriété, ce qui indique une certaine

proximité géographique. Elles procurent également des fonctions de recherche d'agents.

Cela n'étant pas suffisant (un réseau d'entreprise internationale pourrait s'étendre sur

plusieurs pays avec la même politique de sécurité), le registraire sera donc chargé de

conserver et de procurer aux autres agents des indications topologiques sur le réseau, en

particulier, les agences et les agents ccproches». Cette notion de proximité peut très bien

varier d'un registraire à l'autre. Elle reflète la politique du propriétaire du système en

matière d'utilisation du réseau. Des «voisinages» plus grands impliquent en effet une

plus grande utilisation du réseau local et pourraient être préférés par un administrateur

ayant des liaisons haut-de'bit sous-utilisées.

enregistrement de l'agent

passif

l'agent actif arrive et
demande au registraire un
agent coopérant-

1 II interroge l'agent passif.

l'agent passif le renvoie
vers d'autres machines
(forward), et lui demande
du feedback (me).
L'agent mobile poursuit
alors son parcours.

L'agent mobile revient
pour indiquer ses résultats.

I Et rentre chez lui.

Figure 3 3 Communication entre agents

Le registraire étant en contact permanent avec l'agence, il est également bien place

pour jouer un rôle de «gendarme» en complément des fonctionnalités de sécurité

procurées par le système. il peut surveiller les allées et venues des agents, afin, par

exemple, d'éviter les agents indésirables ou les profiteurs qui vont chercher à utiliser les

ressources du système sans rien lui apporter, comme on va le voir dans le paragraphe

suivant. La Figure 3.4 résume les relations entre les différents éléments du système.

Agents mobiles

Agent Agents passifs
me utilisateur de services

utilisateur

v

I Système d'agents mobiles I
Figure 3.4 Relations entre les éléments de l'architecture

3.1.2 Vers des serveurs actifs
On a vu que le but du concept d'agent mobile est d'amener le calcul aux données

plutôt que les données au calcul (Lange, 1998). Ceci est habituellement réalisé en

encapsulant tout le code voulu dans un agent mobile qui va voyager sur chaque serveur

et accéder aux interfaces qu'ils offrent, idéalement des interfaces de bas niveau, mais

souvent des interfaces de haut niveau, destinées à des utilisateurs humains. L'agent doit

être rechargé en entier à chaque modification. Il faut noter que Grasshopper garde

chaque agent en mémoire cache pour une réutilisation ultérieure, mais qu'il est alors très

difficile, voire impossible, de charger une version différente d'un agent qui se trouve

déjà en mémoire. L'agent mobile doit souvent surmonter l'inadéquation qui existe entre

l'interface offerte par le serveur et ses propres besoins, ce qui entraîne un surcroît de

code à transporter à chaque fois. L'architecture proposée ici permet la réutilisation de ce

code en I'encapsulant dans un agent séparé qui va être ajoute ii l'interface du serveur.

Celui-ci va donc gagner dynamiquement de nouveaux services et une nouvelle interface

qui s'ajoutent à ce qui existait initialement selon la Figure 3.5. La Figure 3.6 montre

comment l'architecture proposée réduit la charge du réseau.

Machine A Machine B

I 1) L'application (agent mobile et services) est
développée sur la machine A- I

-
Machine A Machine B

I 3) Les services ne se trouvant pas sur B sont
copiés à partir de A. 1

Machine A Machine B

2) L'agent mobile se déplace sur B et
demande au registraire local les services.

Machine A Machine B

4) L'agent rentre une fois sa tâche terminée et
les services sont prêts à être réutilisés sur B.

Figure 3.5 Déploiement d'applications

Interface du interface du Interface du
serveur A serveur B serveur C - - u

Architecture à un seul agent I

Interface du
serveur A u

Architecture mu1 ti-agents proposée

Migration de l'agent mobile

r Migration asur demudo. d'un agent passif

Figure 3.6 Architecture pour la réduction de la charge du réseau

Par la réutilisation du code, on épargne de la bande passante, de même que l'on

simplifie la charge de l'administrateur. La mise à jour des services va se faire

automatiquement, et celui-ci peut se concentrer sur d'autres problèmes comme le

contenu ou la sécwité.

Néanmoins, cela implique que le système est capable de gérer efficacement

jusqu'à plusieurs milliers d'agents et de protéger l'hôte des agents malveillants ou

gourmands cherchant à profiter des ressources de la machine sans rien apporter, Par

exemple, le but d'un serveur d'images ou d'informations est de permettre à un

maximum de personnes d'y accéder (au moyen de leurs agents). Il faut donc éviter qu'un

seul agent parcoure la base de données du serveur pendant des heures, voire des jours, en

utilisant de la mémoire et du temps de calcul au détriment des autres usagers. Il faut

aussi supprimer les services qui ne sont pas ou plus utilisés et garder les autres. Pour

cela, le registraire est bien ptacé, comme extension de la plate-forme. Grasshopper

(comme la plupart des systèmes d'agents mobiles) permet de connaître tous les agents

qui anivent, sont ou partent d'une agence, qu'ils s'inscrivent ou non auprès du

registraire. Le registraire peut conserver ces informations en vue de calculer une

fonction de coût qui va représenter le coût d'un agent pour le système. Cette fonction

serait de la forme :

A/Futil+B*Duril+Ptaille

où A, B et C sont des paramètres de normalisation positifs. Futil, la fréquence

d'utilisation de l'agent, Dutil, la durée écoulée depuis sa demière utilisation, et taille, la

taille de la mémoire qu'il occupe (code + données). On dira qu'un agent est utilisé

lorsqu'il est contacté par un autre agent (par l'intermédiaire du registraire).

Les problèmes de sécurité ne seront pas abordes en detail dans ce memoire. On a

VU que, généralement, le cœur du système est protegt? par le mécanisme de bac à sable

de l'interpréteur de code mobile (par exemple, la machine Java). Le mécanisme exposé

plus haut. ou un mécanisme similaire, peut le protbger d'une utilisation abusive de ses

ressources. Enfin, il est possible (c'est inclus dans Grasshopper) de n'accepter que des

agents signés par une autorité ou un groupe défini d'utilisateurs en qui l'on a confiance

adresse 1

adresse2

adresse3

adresse4

adresse5

adresse6

Figure 3.7 Représentation du réseau

représentation

Un autre aspect est la représentation du contenu du réseau. Une ressource - place,

agent, fichier, base de données - va être représentée par une <<adresse». Celle-ci va

structure réelle

contenir l'adresse de la machine, ainsi que celle de l'agence où doit se rendre l'agent et

le nom de la ressource (avec chemin complet pour un fichier), indiquant égaiement sa

nature. Cette adresse devra être accompagnée de renseignements destinés à guider

l'agent dans sa recherche d'une ressource utile pour sa tâche. Afin d'alléger l'agent,

celui-ci ne doit transporter que le minimum d'informations, les autres étant conservt5es

dans d'autres agents. Ceci a l'avantage de permettre, en outre, à chaque agent de

conserver ces informations dans des formats qui peuvent être très différents, mais la

communication entre les agents s'en trouve compliquée.

L'utilisation de KQML (Knowledge Query and Manipulating Language) (site

KSE) peut fournir un standard appdciable pour la communication entre les agents même

s'il nécessite un gestionnaire de communication adapte dans chaque agent. Ce n'est pas

ii proprement parler un langage de représentation de connaissances comme KIF

(développé par la même organisation ARPA). mais un langage de manipulation de

messages, destiné à permettre la communication entre agents. KQML est un langage

plutôt qu'un protocole, dans la mesure où il est moins précis et founiit seulement une

base de communication. II n'aborde pas non plus l'aspect de la sémantique et des

ontologies. il s'occupe des problèmes plus concrets suivants : savoir avec qui parler,

comment le trouver, comment commencer et prolonger un échange. Les primitives du

langage sont appelées "performatives". Concept relié à l'acte de langage, celles-ci

définissent les actions que les agents peuvent tenter dans leur communication avec

d'autres.

KQML est décomposé en trois couches :

- la couche contenu est l'information contenue dans le message codé dans le

langage du programme, quel qu'il soit ;

la couche communication code des attributs de bas niveau de la

communication, comme les adresses de l'envoyeur et du destinataire, et un

identificateur de communication ;

la couche message sert à coder le message en termes d'interactions entre

agents et forme ie cœur de KQML.

La première fonction de cette couche est d'identifier le protocole à utiliser pour

délivrer le message et spécifier une "action de langage", ou "perfomative", que

l'envoyeur attache au contenu, telles que «ask-if», ask-aboutu, ask-one», ask-dl»,

<aeply>, «sorry>>, «tell», icachieve~, «cancel», «untell», «unachieve», adverthen,

«subscribe», ciregister>,, muegister», «forw&, dxoadcasb, <mute». Cette couche

peut contenir également d'autres caractéristiques du message. comme l'ontologie.

L'ensemble de ces caractéristiques permet l'analyse et la délivrance des messages, même

lorsque leur contenu n'est pas accessible ou compréhensible. La syntaxe est basée sur

une liste entre parenthèses et révèle l'origine Lisp de la première implémentation.

Comme elle est très simple, on peut facilement la modifier si nécessaire. La figure 3.8

donne un exemple de message KQML d'un agent joe à un agent stock-semer pour

connaître le prix d'une action IBM.

(ask-one

: sender joe

: content (PRICE IBM ?price)

: receiver stock-server

: reply-with ibm-stock

: language LPROLOG

: ontology NYSE-TICKS)

reponse à ce message

(tell

: sender stoc k-server

: content (PRICE IBM 14)

: receiver joe

: in-reply-to ibm-stock

: language LPROLOG

: ontology NYSE-TICKS)

Couche KQML

communication

contenu

cornmurucation

message

communication
-

contenu

communication

message

Figure 3.8 Exemple de messages KQML

KQML introduit, pour faciliter la communication entre les agents, des facilitateurs

et des médiateurs. Un facilitateur est un agent qui s'occupe plus particulièrement d'offrir

des services de communication aux autres agents. Dans notre cas, le Registraire est un

facili tateur.

Toutefois, le principe de notre architecture est que l'agent ne garde que l'essentiel

lors de ses déplacements. ï k minimum pour un agent mobile est d'avoir un itinéraire

avec des pnontbs accordées à chaque adresse. Ce minimum peut être complété par des

informations spécifiques à une application, comme les résultats ou les paramètres d'une

recherche. Pour obtenir un itinéraire et attribuer une priorité à chaque adresse, l'agent

doit s'adresser aux agents possédant des connaissances sur le contenu du réseau. Plutôt

que de leur demander directement ces connaissances, ce qui suppose l'existence d'un

langage de description et d'ontologies communes, l'agent mobile va leur demander un

itinéraire qui correspond à son but. L'agent mobile peut exprimer son but dans de

nombreux langages de description de connaissances, mais peut aussi se con tenter

d'exprimer ses demandes sous forme d'une requête textuelle comme celle qu'un humain

entrerait dans un moteur de recherche ou celle qu'il a fournie à l'agent. Ceci nous

entraîne à considérer des techniques de recherche d'information comme celles

présentées à la fin de ce chapitre.

3.2 Application numéro pilote

Le but de cette application est d'aider l'utilisateur à trouver un comspondant pour

obtenir des renseignements par téléphone en parcourant une liste de correspondants

possibles. Dans cette section, nous en présentons le principe, les choix de conception.

ainsi que les modifications apportées à l'application initiale.

3.2.1 Principe
Plutôt que d'avoir à composer une série de numéros jusqu'à trouver le bon,

l'utilisateur compose un numéro pilote unique (ou un lien Internet a pilote P) et fournit à

l'agent les informations voulues. L'agent va alors chercher lui-même le correspondant

susceptible de prendre l'appel et, éventuellement, de fournir les renseignements désirés.

C'est une version agent des serveurs vocaux des grandes entreprises et administrations,

avec plusieurs améliorations. Notamment, l'utilisateur n'a pas à rester en ligne pendant

la recherche. Une fois I'agent envoyé, il peut revenir son occupation initiale en

attendant les résultats de la recherche. Il n'est pas obligé de prendre la communication

immédiatement. De plus, ce service off= une interface beaucoup plus personnalisée et

conviviale.

L'application se composait, initialement. d'un unique agent mobile transportant les

informations de l'utilisateur et une liste de comspondants possibles. L'agent voyage sur

les machines de chaque utilisateur listé jusqu'à trouver la bonne personne. Une des

améliorations apportées à l'application initiale est de rendre la liste des correspondants

dynamique. Ainsi, l'agent peut être renvoyé vers d'autres correspondants en cours de

route, même si ceux-ci n'étaient pas prévus dans la liste initiale, car non connus de

l'utilisateur. Cette première modification fait passer les possibilités de l'application dans

l'univers des agents mobiles et ouvre la voie à d'autres modifications exposées plus loin.

3.2.2 Choix de conception
Après un premier prototype développé sur Voyager par Bertrand Emako-Lenou

(2000), nous sommes passés à Grasshopper qui offrait des possibilités intéressantes pour

la conception et le déploiement d'agents mobiles et était également plus fiable.

Un choix important quant à la conception de cette application portait sur

l'interface téléphonie - agent. Le domaine considéré est ici celui de la téléphonie sur

Internet où l'on fait transiter un appel téléphonique par un réseau IP. Plusieurs

protocoles sont à l'essai pour concilier IP et temps réel. Les deux principaux sont H323

et SIP. Pour Glitho (2000), ces protocoles n'atteignent pas les objectifs espérés -
supporter une large palette de services et de fournisseurs, création, gestion et

personnalisation rapide et simple des services, indépendance au réseau, colIaboration

avec les services déjà; existants. Pour compenser ces faiblesses, Parlay (site Parlay) a été

introduit comme une couche supplémentaire au-dessus de ces protocoles pour offrir une

interface simple et standard aux fournisseurs de services. C'est une technologie orientée

client/serveur. On a donc le choix de relier les agents mobiles uniquement à SIP (l'agent

pourrait int6grer un client SIP), Parlay ou aux deux. La Figure 3.9 résume les

différentes possibilités d'implémentation.

Devant la plus grande cornplexit6 de SIP et la mauvaise programmation des agents

client SIP existants, Parlay s'est imposé. Une interface Pariay générique a déjà étt5 &rite

par K. Sylla (Demchers, 2000) en Java et liée au protocole SIP. Elle ne peut cependant

pas être mobile, même en partie, Parlay étant destiné à être implanté sur des serveurs, et

non des palm-top. L'interface est donc réalisée par un agent statique. Sa propriété

d'agent lui permet d'étre lié au système d'agents mobiles, ici Grasshopper, et d'être

facilement contacté par d'autres agents. même à distance. Étant sur un serveur Parlay, il

peut communiquer facilement avec les protocoles de téléphonie. Cet agent implémente

une interface spécifique appelée ZServeur qui va le caractdriser dans l'architecture

décrite pr6cédemrnent.

323 Modifications apportées à l'application initiale
Dans la première version, I'agent parcourait un ensemble de places déterminé.

L'ajout d'une liste dynamique de destinations ouvre la voie à d'autres apports. La

section précédente décrit le choix de l'interface avec les fonctions de téléphonie. Nous

allons ici plus nous attarder sur le coté recherche d'information. En effet, le but de

I'agent est de trouver un correspondant t6léphonique' soit un certain type d'information

représentée par une adresse IP (dans le cas de téléphonie IP), une réponse booléenne -
réponddréponds pas - et éventuellement d'autres informations extensibles à loisir.

LE répertoire des services de téléphonie actuel, qui nous aide tant bien que mal à

trouver ce que nous cherchons, comprend répondeurs, annuaires, serveurs vocaux,

messageries, ... Il est normal de songer à adapter ces outils à la téléphonie IP et à notre

application en particulier, d'autant que c'est particulièrement simple, I'agent transportant

une description du but de l'appel sous une forme textuelle, plus condensée et

compréhensible par les machines que la voix. Chacun de ces outils ou services peut être

implémenté sous la forme d'un agent qui va communiquer avec I'agent mobile à travers

une interface simple décrite avec l'architecture. Le rôle de I'agent mobile va alors se

réduire & parcourir une liste dynamique d'adresses. chaque adresse comspondant il un

agent humain ou virtuel.

Le but de l'application est lui-même élargi à I'initialisation de tout appel. Elle peut

par exemple chercher un utilisateur utilisant plusieurs appareils, chercher une personne

occupant une certaine fonction dans une entreprise ou une administration, ou pouvant

fournir certaines informations.

-- - -

à partir de la machine de l'utilisateur 1

--

Par un appel S I .

Uniquement par SIP I

I Via Parlay I

I Par une application par~ay I

Figure 3.9 C Choix de conception de t'interface téléphonie-agents

I I

Initiation de l'agent Initiation de l'appel

3.3 Application chercheur d'images sur Internet

Cette application cherche sur un réseau des images correspondant à la requête de

l'utilisateur - «clip art», cartes de vœux. Dans la version développée, les images et leurs

descriptions sont obtenues via des pages HTML. L'agent voyage sur chaque serveur

hekrgeant une base d'images et lit les pages HTML offertes par le serveur comme

interface avec la base. L'agent retourne ensuite à son point de départ avec les images

correspondant à la requête de l'utilisateur. Plus précisément, l'agent parcourt sa liste de

destinations, en commençant par une liste initiale de sites connus. Quand il arrive à un

site contenant une base d'images, il parcourt les pages HTML qu'on lui a indiquées en

cherchant les renseignements selon la méthode décrite plus loin. Il note ensuite les

résultats de cette recherche selon les critères fournis par l'utilisateur. Il revient dès qu'il

a suffisamment de résultats ou qu'il a fini son parcours.

33.1 Interface avec les bases d'images

Une base de données avec une interface JDBC aurait été la bienvenue pour le

développement de notre prototype, mais rares sont les sites offrant un accès direct h leur

base de données sur Internet, pour des raisons de sécurité. Comme on voulait concevoir

une application réaliste, voire immédiatement utilisable, on a choisi comme interface la

plus représentée sur Internet : les pages H'IBE, éventuellement dynamiques. Notre

agent devait être capable d'extraire les informations nécessaires - adresses des images et

leur description - des pages HTML de la faqon la plus simple et la plus générale

possible. Pour réaliser cela, on s'est inspirés du langage WONDEL développé h

l'université d'Ottawa par Ouahid et K m o u c h (1999). Ce langage sert à décrire le

contenu de fichiers HTML. de façon à en extraire l'information souhaitée.

Dans la version développée à Ottawa, WONDEL sert à stocker la méta-

information (l'information sur l'information) dans des fichiers XML qui forment une

structure d'arbre. IRs fichiers « feuille >> relient les infonnations aux documents en

indiquant où elles se trouvent dans le document en terme de &ructure» (ce sera pdcisé

plus loin). Les fichiers « nœud D relient ces informations entre elles. Ce langage a été

développé pour être utilisé par un agent parcourant un site important en vue d'indexer

l'information qui s'y trouve dans une base de données. II utilise la similitude de structure

qui existe entre différents fichiers d'un même site pour réduire considérablement le

volume d'information initiale (où trouver l'information) nécessaire à l'agent. En effet,

ces fichiers étant souvent écrits par un petit nombre de personnes et de logiciels, ils

tendent à être construits selon une structure commune. Par exemple. pour une liste des

employés d'un département, on peut avoir une page telle celle schématisée à la Figure

Nom du département

Directeur :

nom 1 renseignements photo n
Adjoint -
nom2 renseignements 1 photo 1
Employés

nom3 renseignements1 1
photo

nom4 renseignements 0

Figure 3.10 Exemple de page HTML

49

Si le site n'est pas trop mal fait, cette structure peut se retrouver au niveau du code

HTML, comme indiqué à la Figure 3.1 1.

(HTML>

S . .

<body>

di l x o m du départementh l>

. S .

&2>fonctiondh2>

cli>nom 1 renseignementsumg source=[adresse de la photo]><ni>

-.*

Figure 3.11 Exemple de code HTML

On pourrait décrire le parcours de cette structure par un agent en pseudo-code

par la Figure 3.12.

Chercher ch 1 > et créer les résultats

Contenu de c h l>=nom du département

Pour chaque di2>

Contenu de di2>=fonction

Pour chaque di>

Con tenu=nom renseignements

Trouver un tag cimg>

Valeur de l'attribut src=photo

Enregistrement des valeurs courantes

Figure 3.12 Algorithme de parcours d'une page HTML

Ces informations pourraient être codées tel quel dans une structure XML, mais la

présence de boucles imbriquées complique I'aigorithrne de parcours et risque

d'introduire des redondances. La simplification adoptée par Ouahid et Karmouch (1999)

est de ne faire que la boucle la plus cc petite », ici sur les tags 4>. Les autres

renseignements seront recherchés à partir de là dans la structure d'arbre du document

Leur fichier WONDEL suit la structure de l'enregistrement final (un tuple

composé de plusieurs champs). Cette structure est décrite plus en détail dans (Ouahid et

Karmouch, 1999).

Dans le but de simplifier les algorithmes et d'accélérer le parcours des pages, au

risque de perdre certains renseignements de moindre utilité, nous avons adopté une

structure plus proche du pseudo-code en reproduisant » dans le fichier de description

la structure qui contient les renseignements dans la page et où se trouvent les

renseignements voulus au sein de cette structure. Pour le fichier de l'exemple, on aurait

le fichier de la Figure 3.13.

Figure 3.13 Fichier de méta-information

Dans cette figure, h2 indique le départ de la boucle : pour chaque di>, I'agent

enregistre les valeurs trouvées à chaque fois qu'il arrive à parcourir toute la structure. On

voit qu'on perd une partie de l'information, mais qui n'est pas importante pour la

recherche. Ce fichier pourra alors être utilisé pour toutes les pages construites sur le

même modèle. Ceci est particulièrement intéressant pour fouiller des sites contenant des

pages générées dynamiquement à partir de bases de données. Il suffit d'écrire un tel

fichier pour chercher l'information dans toutes les pages du site ayant la même structure

(une infinité pour des pages générées dynamiquement).

3.4 Algorithmes de recherche d'information utilisés

Les deux applications considérées dans la section précédente étant des

applications de recherche d'information (RI). eues gagneraient à être dotées d'une plus

grande intelligence et de capacités d'apprentissage, Malheureusement, ajouter ces

algorithmes directement dans les agents augmenterait considérablement leur taille et

réduirait leurs performances de façon prohibitive. Pour remédier à cela, nous proposons

d'appliquer aux agents mobiles des aigorithmes d'apprentissage par « feedback >> en

espérant des pertes de performances minimes.

Nous essaierons d'appliquer et d'évaluer cette technique de feedback sur la

requête, mais surtout sur la description des documents eux-mêmes. Cela est rendu

possible et même nécessaire par le fait que, dans le cas de notre application, l'indexation

des documents n'est pas réalisée au niveau du serveur, mais est créée par l'application

elle-même en dehors des bases de données. Si une indexation existe au niveau du

serveur, elle peut toutefois servir de point de départ appréciable.

Dans l'architecture multi-agent développée, les connaissances et les algorithmes

de RI sont regroupés dans une classe d'agent : le &owAgent», qui va interagir avec

I'agent mobile. Les algorithmes utilisés vont refléter les caractéristiques dynamiques et

changeantes de l'environnement où l'application est censée être d6ployde.

3.4.1 Choix généraux
Nous avons choisi le modèle espace-vectoriel comme modèle de représentation de

l'information pour sa plus grande souplesse d'utilisation. Car, il est plus adapté à des

requêtes en langage naturel, et surtout pour l'apprentissage. En effet, le mécanisme de

feedbac k permet l'apprentissage, par un renforcement progressif des mots réellement

significatifs de chaque document, de façon simple et éprouvée (Nilsson, 1965).

3.4.2 Adaptations
Une différence importante par rapport une situation classique de RI est que l'on

ne connaît pas les documents a prion et qu'on ne peut pas non plus les indexer par les

moyens classiques (images ou personnes). On ne se trouve pas non plus dans une

situation de filtrage d'information car l'information ne vient pas utoute seule» à nous. II

faut un moyen d'y accéder. Il faut donc réaliser un index, malgré les problèmes que nous

venons de voir. Cet index va être d a l i d en partie au niveau des serveurs par les

annuaires en ligne ou un mécanisme de recherche classique, et au niveau des clients par

le KnowAgenf, par feedback et apprentissage. Ce sont ces derniers qui vont nous

intéresser maintenant.

Cet agent n'a comme point de départ que quelques adresses indiquées par l'usager.

Il ne va pouvoir apprendre que par feedback, n'ayant aucune autre information sur le

reste du &eau. Il va enregistrer l'itinéraire final de l'agent mobile pour ajouter les

adresses où l'agent a été renvoyé, avec des poids initiaux nuls. On va renforcer les mots

de la requête dans la représentation d'une adresse réponse et les rabaisser pour une

adresse où l'agent n'a pas eu de réponse.

Avec les notations de la section 2.4.3 (Q est le vecteur requête, Di le vecteur

document à la i-ème itération, T le seuil de décision et A l'ensemble des bonnes

réponses) :

D i = D i - l + ~ Q s iM@i-1 .Q) -TIOS~DEA

D i = D i - l - ~ Q s ~ M (D ~ , ~ , Q) - T > O S ~ D E A'

On va ainsi réaliser, par renforcements successifs, un index de départ

correspondant aux besoins de 1' usager.

L'indexation est habituellement réalisée en plusieurs étapes. La plus importante est

certainement la mise en paramètres. Dans le modèle espace-vectoriel, il s'agit de

calculer le poids associé à chaque mot. La fonnule couramment adoptée est celle du @tif

(term frequency inverse document frequency), à savoir la fréquence du terme dans le

document divisée par la fréquence du terme dans l'ensemble des documents. On a ainsi

une représentation de l'importance du mot dans le document en réduisant l'importance

des termes les plus courants. Cela suppose de connaître l'ensemble des documents. Or,

nous n'avons accès qu'à f$ qui sera donc retenu pour l'indexation des documents

textuels (dont les requêtes).

Beaucoup utilisent aussi les techniques de «stop List» et de «lemrnatisation»

(Altavista, Yahoo). La première consiste à retirer au début du mécanisme d'indexation

les mots trop courants tels que les articles. La deuxième consiste à ramener toutes les

formes grammaticales d'un même mot à un radical (lemme). Pour des raisons de

simplification, nous n'emploierons aucune de ces deux techniques. Certains moteurs de

recherche (AliWeb, HotBot, OpenText) choisissent d'ailleurs de garder tous les mots.

Cette élimination peut aussi être faite après indexation (chose bien utile dans notre cas :

l'indexation se fait au fur et à mesure) en tronquant le dictionnaire utilisé pour ne garder

que les mots les plus significatifs, i. e. ceux qui distinguent les documents les uns par

rapport aux autres. Comme I'indexation est réalisée par feedback dans notre cas, ceci

devrait permettre de ne retenir que les mots réellement significatifs : ceux que

l'utilisateur utilise effectivement.

Chapitre IV

Implémentation et résultats

Afin de valider les concepts présentés dans le chapitre 3, nous avons implémenté

les deux applications qui y sont décrites en utilisant l'architecture présentée, puis nous

avons réalisé des mesures de performance. Un des premiers choix d'implémentation est

celui de la plate-forme. Après le développement d'applications simplifiées sous

Voyager, nous avons travaillé sous Grasshopper. Les mesures ont été finalement

réalisées sous Grass hopper. Comme 1' intérêt de 1' architecture présentée en terme de

réduction de la charge réseau découle directement de sa conception, nos mesures vont

s'orienter vers l'évaluation des différents algorithmes de routage et de recherche

d'information décrits dans le chapitre 3. L'agent actif peut être considéré dans les deux

cas comme un agent de recherche d'information. Nous allons comparer les performances

de trois versions de cet agent. La première parcourt son itinéraire dans l'ordre d'arrivée.

La seconde regroupe ses arrêts par régions géographiques. La troisième va, en plus,

noter chacune des régions par ordre d'intérêt de minimiser ses déplacements

inutiles. Chacune des fonctionnalités ajoutées augmente la taille de l'agent mais laisse

espérer une meilleure optimisation des déplacements. Dans ce chapitre, nous traiterons

des choix d'implémentation faits, des mesures réalisées et de leur interprétation.

4.1 Choix d'implémentation

L'architecture présentée au chapitre 3 a été implémentée en grande partie. En

particulier, la communication KQML entre les agents n'a pas été implémentée, mais la

structure choisie, par in terfaces, peut être facilement adaptée aux messages KQML.

Chaque fonction de l'interface serait alors représentée par une commande textuelle

suivie des arguments appropriés. Dans ce qui suit, nous présentons la liste et la structure

des agents composant le sous-ensemble de l'architecture que nous avons implémenté.

De nouveaux agents peuvent y être ajoutés sans modification majeure.

4.1.1 Classes génériques
Nous regroupons sous le terne de «classe gén&ique» les classes qui servent à

chacune des applications et qui par conséquent ne sont spécifiques à aucun agent ou

choix d'algorithme autres que ceux retenus lors de la conception de l'architecture. Ce

sont essentiellement : la classe Address qui peut repérer une ressource réseau, et la classe

Lien qui peut ajouter à cette adresse une priorité et des informations sur sa position dans

le parcours de l'agent. La Figure 4.1 décrit ces deux classes. À celles-ci s'ajoute la

classe Job qui permet de représenter une dâche» d'un agent par une chaîne de caractères

décrivant la tâche et l'identifiant d'un agent. Elle est particulièrement utile pour les

agents passifs qui peuvent recevoir des requêtes de plusieurs agents simultanément. mais

elle peut être également utilisée par les agents actifs, notamment dans un but

d'ordonnancement des tâches. Cette classe peut être considérée comme une

représentation interne simple d'une communication par messages KQML, car elle

contiendrait alors l'expéditeur du message et le message lui-même.

--

! ~ d d ress

boolean estDans(Address lieu)

Grass hopperAddress getAddress ()

String toString()

String getName0

String getProtocol()

String getHost0

int getPortO

String getPlaceO

String getAgency0 1 String getFile0 I

Lien

Address getAddress0

void forwardedBy(Address f)

int compareTo(0bject 1)

double getPriority0

void setPriority(doub1e x)

boolean visitedo

void justvisitedo

Figure 4.1 Interfaces des classes Address et Lien

Une caractéristique de la classe Address est de pouvoir être construite à partir d'un

grand éventail d'objets Java représentant autant de concepts. d'où un grand nombre de

constructeurs (non représentés sur la figure). On retrouve également dans la description

des classes Grasshopper, iarasshopperAddress» qui note une adresse sous Grasshopper

dans le format hôte/agence/place, ou iddentifiem qui sert à identifier un objet de façon

unique dans le système Grasshopper.

4.1.2 Interfaces
Une particularité de l'architecture que nous avons proposée est que l'on ne va pas

chercher un agent à partir d'une description ou d'un nom, mais à partir de l'interface

qu'il présente. Ceci est motivé par le fait qu'il faut connaître l'interface d'un agent pour

pouvoir créer un qroxyn de communication vers celui-ci dans Grasshopper. Une autre

raison, plus conceptuelle, est qu'un agent actif arrivant à une nouvelle agence ne va pas

y chercher un agent particulier, sauf exception, mais un agent capable d'effectuer une

certaine tâche correspondant à une interface particulière. Les intedaces les plus

importantes sont : Megistraire, Caoperant et LAgentChercheur.

IRegistraire est l'interface offerte par les Registraires. Elle doit permettre l'ajout et

le retrait de services, ainsi que la mise en communication d'un agent mobile avec un

agent procurant le service qu'il recherche. Elle comprend les fonctions suivantes :

- void subscn'be(ldent~jb- agent, String style) qui ajoute un service "style" procuré

par I'agent "agent". L'opération inverse est réalisée par la fonction void

unsubscnbe(ldentij?er agent, String style).

- boulean question(ldentzper chercheur. String destinataire, Siring description) est

la fonction de messagerie par excellence, qui envoie un message i<description»

d'un agent ccchercheun, B un service destinataire». On parle ici d'un service et

non d'un agent en particulier. C'est au registraire de trouver I'agent procurant ce

service.

- Identifier get(String destinataire) permet à un agent d'avoir l'identifiant d'un

agent procurant un service «destinataire» sans avoir à envoyer explicitement de

messages.

- boolean ger(String destinataire, GrasshopperAddress lieu) : ici on demande le

service sur une autre machine «lieu». L'agent procurant le service (s'il existe) va

donc se déplacer ou se copier sur la machine lieu, ou encore procurer un q r o x p

de communication et rendre le service à distance s'il ne peut pas se déplacer ou

que la politique du réseau l'interdit.

L'interface générale des agents passifs est Cooperant. Elle doit permettre la

communication ainsi que la recherche et la manipulation de l'agent par le regisû-aire.

Cette interface intègre les fonctions suivantes :

- void question(Ident1jier chercheur, String description) est la fonction de

recherche et de communication. Les résultats et messages ultérieurs sont

ensuite communiqués directement à I'agent ahercheun, qui les a demandés.

- boolean go(GrusshopperAddress lieu) est la fonction appelée pour demander à

un agent de se déplacer sur une autre machine (ici «lieu»), pour y apporter un

service ou dans le cas d'un arrêt de la machine sur laquelle il réside.

- Agentinfo getInfo() : donne tes informations Grasshopper de l'agent, en

particulier son identifiant qui permettra de le joindre par la suite.

De nombreuses autres interfaces peuvent étendre Cooperant, comme IUserGUZ'

l'interface de l'interface graphique de l'utilisateur, qui présente peu d'intérêt théorique.

C'est l'interface qui permet la communication entre les fenêtres graphiques et l'agent

utilisateur.

UgentChercheur est I'interface du HuntGroup (I'agent mobile). Elle est ici plus

adaptée aux agents de recherche d'information et surtout à l'agent mobile de

l'application HuntGroup développée. Elle peut être facilement modifiée ou héritée pour

d'autres applications. Elle contient les fonctions suivantes :

- void fonuard(Address [] stops, boolean notifi) et void fonvard(lien[l stops,

boolean notrfu) servent à renvoyer l'agent vers de nouvelles adresses. Le

paramètre booléen "notiY7 sen à indiquer à l'agent mobile que l'on désire être

informé des résultats de sa recherche en vue de compléter et mettre à jour ses

informations. En pratique, l'agent revient, une fois sa tâche accomplie, montrer

son parcours.

void wakeUp() réveille l'agent qui attend un événement ou un résultat.

String getCnllDescriplion() donne la description de la recherche donnée à

1 'agent.

void setResponse(boolean x. boolean notifu) sert à donner une réponse à

l'agent. Le paramètre ''notiy a le même sens que dans les fonctions fonuard.

De nombreuses autres interfaces peuvent être ajoutées pour chaque nouveau

service. II suffit pour cela de rendre disponible une implémentation de ce service qui

sera ensuite copiée sur les autres serveurs sur demande (voir 3.1.1 pour l'algorithme de

recherche de services). Un problème se pose lorsque deux applications veulent utiliser le

même nom d'interface pour deux services différents (ou deux versions ciifferentes d'un

même service). À ce moment, l'application amivant en deuxième sur un serveur se verra

proposer un agent implémentant la première interface, alors qu'elle espérait la première.

Grasshopper risque de générer une erreur "d' intemaiisation" pendant le déplacement

même de l'agent, en voyant deux versions différentes d'une même interfaceklasse. Ce

problème ne peut être résolu pour l'instant que par une gestion des interfaces des

services au niveau du réseau entier.

4.13 Agents
L,e rôle principal du registraire est d'enregistrer les agents offrant un service

spécifique sur la même agence et d'offrir une fonction de recherche de ces agents. Si

l'agent cherché ne se trouve pas sur la machine, le registraire peut le chercher et le

copier sur des machines avoisines» connues, ce qui nécessite une certaine connaissance

géographique du réseau; il peut être également configuré diffbremment selon la politique

du réseau local. Le registraire offre l'in terface IRegistraire. C'est un agent stationnaire,

59

même s'il pourrait être copié sur une machine similaire à la première. La Figure 4.2

montre la structure de l'implémentation du registraire.

Regi s traire

connus 1
Inscrit

1 implémentation de l'interface ... 1 Identifier agent;

String style; // l'interface

Figure 4.2 Structure du registraire

Le diUIAgenb fait interface avec l'utilisateur. Il sert idéalement à fournir une

interface unique et personnalisée à plusieurs applications. Il implémente l'interface

«NserGUI» et est stationnaire du fait de son caractère graphique et personnel. Il faut

noter que les classes graphiques (Frarne, ...) sont souvent difficiles à transporter, sans

compter les Limitations dues aux machines mêmes (<<Persona1 Java», destiné aux petites

machines comme des palmtops, ne supporte pas la librairie a w i n p) .

LR HUntGroup est l'agent mobile et actif qui est au centre des applications

développées. Il implémente l'interface IAgentChercheur. Il transporte l'itinéraire et les

résultats (comprenant les solutions et sa «connaissance» du réseau). Il assure les

fonctions de mobilité dans les applications développées, laissant les fonctions plus

spécialisées aux agents passifs et ne transportant que le minimum nécessaire il

l'exécution de l'application. La Figure 4.3 montre la structure de l'agent HunzGroup.

HuntGroup

AgentItinerary aller, retour,
resultat;
int state;
boolean response;
String description;
transient boolean aNotifierr
transient IUserGUI gui;
transient IRegistraire registraire;

J

implémentation de 1' interface ...

void addItinerary(...) { ...)
int getSize0 { ...)
int nbAgencies0
Address showlocation(int i)
Lien getcouranto
Address getNext0
int getPosition0

LinkedLi st t h e ~ ~ e n c i e s ;
LinkedList thehat ions;
Address lieuCowant ;
Lien courant;
int position=O;

Figure 4.3 Structure de l'agent mobile HuntGroup

On peut remarquer que certaines variables du HuntGroup sont marquées

atransientn car elles ne sont pas transportées. Elles servent en effet à accéder au GUI et

au registraire local. Ceux-ci changeant à chaque déplacement, il est inutile, voire

dangereux de les transporter. On a également choisi de doter I'agent de plusieurs

itinéraires. Ceci est dû au fait que, dans Agentltinerary, les destinations sont classées

non par ordre duonologique» mais par ordre de priorité en fonction d'une certaine

tâche. Si l'agent doit accomplir successivement plusieurs tâches, il lui faut donc un sous-

itinkraire pour chacune de ces tâches, contenant les destinations qui l'intéresseraient

pour cette tâche l à il va donc conserver plusieurs itineraires qu'il va parcourir

successivement. On retrouve dans Agentltinerary des fonctions de parcours d'itindraire

dont le corps va varier en fonction de la version développée. Les deux listes

thehcations et theAgencies conservent respectivement les adresses des destinations de

l'agent et des zones de proximité géographique que l'on a définies la section 3.1.3.

Le dernier agent important de notre architecture, KnowAgenf, conserve les

connaissances. Il est semi-stationnaire (il se déplace uniquement sur commande, et de

préférence par copie) et implémente l'interface Cooperunf. C'est donc un agent passif.

Son rôle est de conserver des connaissances et de procurer aux agents mobiles celles

dont ils ont besoin. À cet effet, nous allons utiliser les techniques de recherche

d'informations décrites précédemment. Cette tâche va être dévolue à la classe

KnowManager, la classe KnowAgent s'occupant de la gestion des communications et

des tâches. Nous allons utiliser une classe Vecteur qui va représenter un vecteur de

nombre (doubles) pouvant être grand mais contenant beaucoup de valeurs nulles, comme

c'est Ie cas en recherche d'information. Ces valeurs vont être conservt5es dans une table

de hachage (Has hTable). La Figure 4.4 représente l'organisation de cet agent. - 1 KnowManager
KnowAgent I void ajouter(Address);

void travaille(); 1 1 void augmmter(Address);
void feedback(Stnng d a , (1 void diminuer(Address);
AgentItinemy iti);
void question(1dentifier

chercheur, String description);

List requete(String desc);

void Save();

KnowManager man;

Iregistraire reg;

LinkedList jobs; r Vector mots;

Vector urls;

Vector matrice;

double facteur;

String quoi;

Vecteur
int longueur();
Vecteur ajouter (Vecteur autre);
void ajouter (int cle, double poids);
double rnult (Vecteur autre);
Vecteur mult (double facteur);

HashMap vecteur;

Figure 4.4 Structure du KnowAgent

De nombreux agents peuvent être ajoutés pour assurer les services nécessaires aux

applications. ils vont être génératement des agents passifs semi-stationnaires,

implémentant l'interface Cooperant ou une interface héritée de celle-ci. Nous avons

implémenté par exemple un agent Répondeur, qui doit répondre aux agents à la place

d'un utilisateur humain, et un agent Chercheur dont Ie but est de chercher des

informations dans des fichiers HTML (voir 3.3.1).

4.1.4 Eavironnement d'implémentation et de test

Après le développement de versions simplifiées des applications sous Voyager,

d'ObjectSpace, nous avons utilisé Grasshopper comme plate-forme d'agents mobiles

pour faire l'implémentation de notre protocole d'enregistrement d'itinéraire. Nous avons

opté pour cette plate-forme car elle est utilisée par la firme Encsson qui est associée à ce

travail de recherche. Elle a été développée par la société allemande IKV, la première

version a été disponible en août 1998. Ii est à noter que l'utilisation de Grasshopper est

gratuite pour des fins de recherche. Le langage de développement de la plate-forme est

Ie Java, particulièrement en raison de sa portabilité. Grasshopper est conforme au

standard de I'OMG (Object Management Group) sur les agents mobiles, Le. le standard

MASIF (Mobile Agent System Interoperability Facilîty). Ce dernier a été conçu pour

assurer 1' interopérabilité entre les différentes plates-formes d'agents mobiles.

Grasshopper est un environnement d'agents répartis (Distnbuted Agent Environment ou

DAE). il est composé de régions, de places, d'agences et de deux types d'agents,

stationnaires et mobiles.

Pour mesurer la taille des données transportées sur le réseau, nous avons utilid 3

machines Windows NT 4.0 Workstation munies d'un processeur Intel Pentium II 400.

Le réseau utilisé est un réseau local de type Ethemet 100 Mbps. Les mesures de

longueur de trajets ont été réaiisées à l'aide de classes Java simulant le déplacement de

l'agent dans un réseau, ceci afin d'automatiser les mesures sans avoir à utiliser un

environnement de test réparti.

4.2 Évaluation de pefiormance

Comme indiqué précédemment dans ce mémoire, les mesures de performance vont

porter essentiellement sur la charge du réseau, car c'est la variable que l'on cherche à

optimiser par cette architecture. On peut noter que le temps d'exécution reste inférieur à

la seconde, ce qui est tout à fait acceptable pour des applications dans lesquelles le

temps de réponse des humains reste le facteur limitant. Nous d o n s d'abord voir les

variations induites par les différents choix d'implémentation, puis par les algorithmes de

recherche d'information- Nous allons ensui te réunir les deux à travers différents

scénarios.

4.2.1 Mesures de transport
Cette première série de mesures vise à comparer différentes versions de

l'application <&iuntGroup» en terme de taille de code déplacé par trajet. Tout d'abord, il

s'agit d'isoler les paramètres propres au système d'agents mobiles utilisé (ici,

Grasshopper). Lorsque l'on utilise des régions Grasshopper pour repérer les agences et

les agents ou appliquer une politique de sécurité commune, les agences doivent

s'inscrire auprès de la région lors de leur connexion au réseau, ce qui peut être assez

fréquent dans le cas de machines mobiles (téléphones sans fil, palmtops, ...). Cependant,

elles ne sont pas nécessaires au fonctionnement du système. On a ainsi mesuré le coût de

l'inscription d'une agence à la région, soit 14 Ko dans le sens agence vers région et 24

Ko dans l'autre sens : 38 Ko au total. Nous verrons qu'en comparaison des coûts de

déplacement d'un agent, c'est une valeur assez grande, modérée toutefois par la moins

grande «mobilité» des agences (fréquence d'ajout/suppression d'agences).

Une autre caractéristique de Grasshopper est le cache. Les classes et les agents

chargés dans une agence sont gardés en mémoire cache pour une réutilisation ultérieure,

ce qui pose des problèmes de mise 2 jour mais permet d'économiser de la bande

passante en ne chargeant que les données de l'agent. On va le constater dans la

différence entre les mesures du premier chargement et les suivantes.

Nous ailons main tenant considérer différentes versions de l'application

<&IuntGroup». La version de base ne comporte qu'un seul agent comprenant et

transportant le GUI et toutes les adresses des correspondants possibles. La taille de

l'ensemble des classes est 16.4 Ko. Le Tableau 4.1 résume ces mesures.

Tableau 4.1 Mesures de l'effet du cache et de la région Grasshopper

l l Sens 1 Aller (Koctets) 1 Aller - Retour I

1 sans la région : (ler envoi) (1->2 1 - 1 24 1

ler envoi avec ta région

Ces mesures montrent un gain moyen d'un facteur 2 du au cache de Grasshopper,

mais aussi lors de la non utilisation de régions. il est donc intéressant de ne pas utiliser

les régions, d'autant que dans l'architecture développée, les registraires prennent les

mêmes fonctions (recherche d'agents, sécurité). Les mesures suivantes ont été faites sans

utiliser les régions Grasshopper.

1 ->2

Une version améliorée de cet agent consiste à séparer l'interface graphique de

l'agent, mais cela n'entraîne pas de diffdrence notable pow le coût de transport de

I'agent, car les classes graphiques sont présentes sur chaque machine Java et ne

contenaient que très peu de données. Une troisième version ajoute l'intelligence (les

algorithmes de RI) directement dans I'agent. Cela porte la taille des classes B 33.3 Ko,

sans compter le grand nombre de connaissances a transporter à chaque déplacement de

26.5

l'agent, ce qui rend cette option particulièrement inintéressante et justifie le

36

développement et l'utilisation d'une architecture multi-agents pour garder à la fois

l'intelligence et des performances correctes, telles celles présentées dans le Tableau 4.2.

Les versions de l'application utilisées à partir de maintenant sont basées sur

l'architecture développée et présentée dans ce mémoire. La différence entre les

différentes versions porte sur l'utilisation des connaissances réseau à l'intérieur de la

classe AgentItinemry. La première version c<simple» va parcourir les destinations dans

l'ordre de priorité. La version «locale» va chercher à parcourir en priorité les

destinations se trouvant dans la zone courante. La version <complexe» va attribuer une

priorité à chaque zone connue pour savoir où se rendre ensuite. Chacune de ces versions

est plus complexe que la précédente- Elle doit donc être plus «lourde» à transporter.

Cependant, on attend de cette complexité une réduction du nombre de voyages

nécessaires, et donc une réduction de la charge totale du réseau. La Figure 4.5 illustre les

différences entre les deux derniers algorithmes.

Tableau 4.2 Comparaison du coût de transport entre différentes versions

I Sens 1 Aller (Koctets) 1 Aller - Retour

1 ler envoi de <docal» 18 I 19 l

L

ler envoi de « simple »

On remarque dans le Tableau 4.2 qu'il n'y a pas de grande différence entre les

diffhntes versions, tant au niveau du premier envoi que des suivants. D'autres mesures,

non exposées ici, ont confirmé ces résultats. De plus, l'utilisation du cache, tant au

1 ->2 18 19

niveau de Grasshopper que de la machine Java (chargement de l'objet Class), permet de

limiter d'éventuelles différences en gardant le code des algorithmes. On peut se

demander si la taille de l'agent va beaucoup varier en cours de route, alors qu'il collecte

des connaissances et des résultats. Pour vérifier cela, nous avons mesuré la charge d'un

trajet (aller) de l'agent avec un plus grand nombre de destinations initiales. Nous

n'avons dors mesuré aucune différence notable avec un itinéraire de 20 adfesses sur 2

zones, au lieu de 3 adresses sur 2 zones, e t une majoration de 2 Koctets pour un

itinéraire de 20 adresses et 20 zones. Considérant que c'est un cas extrême compte tenu

de l'application développée et du fait que l'on espère trouver la bonne réponse dans les

premières adresses, on peut négliger les variations de la taille de l'agent en cours

d' itinéraire.

« locale »

de l'itinéraire se trouvant
1 dans h zone e locale u 1

On se déplace à On se déplace B la
prochaine adresse
non visitée dans

(i * itinéraire

complexe »

- - - - - pp - -

On attribue une priorité à chaque zone en
fonction des priorités des agences inclues

On se deplace à la
prochaine adresse
non visitée dans la
zone courante

On se déplace à la
première adresse

non visitée de cette
zone

Figure 4.5 Algorithmes de parcours de l'itinéraire

I1 faut néanmoins considérer la taiUe des résultats pour une application chargée de

trouver, par exemple, des images, comme l'application de chercheur d'images

développe'e. Dans ce cas, on ne peut plus négliger la taille des images par rapport à la

taille de l'agent (10-20 Koctets). Une possibilité est que l'agent ne rapporte dors que des

pointeurs vers les images et que celles-ci soient chargées au retour de l'agent sur la

machine de l'utilisateur, ou la machine à laquelle il est connecté si la dernière liaison a

une grande latence (cas des liaisons sans fil). On n'a alors qu'8 ajouter la taille des

images pour le dernier tmjet ou plus, suivant la configuration du réseau et de

l'application (cas où les images doivent traverser plusieurs sous-réseaux avant de

parvenir à la machine de l'utilisateur.

4.2.2 Scenarios de recherche d'information
Nous allons comparer les trois algorithmes en simulant leurs déplacements et

l'apprentissage sur un scénario regroupant quelques entreprises, administrations et

fournisseurs d'accès dans trois villes, par exemple Montréal, Ottawa et Québec. La

Figure 4.6 en est une illustration.

Nous avons mesuré le nombre de déplacements des agents pour chaque version

pour une succession de requêtes donnée. Nous distinguons les déplacements «locaux», à

l'intérieur d'un même sous réseau, des déplacements aégionawt». Les Figures 4.7 2

4.11 montrent l'évolution du nombre de déplacements pour les trois versions de

l'algorithme de parcours d'itinéraire développées : «simple», <<locale» et <complexe».

Figure 4.6 Scénario de mesure

numéro de requëte

Figure 4.7 Évolution du nombre de déplacements de l'agent dmplew

numéro de requ6te

Figure 4.8 Evo~ution du nombre de déplacements de l'agent & c a ï m

numero de requête

Figure 4.9 Évolution d u nombre de déplacements de l'agent ucompüquo

- complique - local --- simple 1

Figure 4.10 CornparPison en moyenne du nombre de déplacements

On constate que les performances de la version «simple» sont les moins bonnes. et

celles de la version «compliquée» légèrement moins bonnes que celles de la version

«locale». Pour les trois versions, on observe une diminution du nombre de déplacements

avec le temps, du fait de l'apprentissage. En effet, les agents donnent des

renseignements par feedback aux KnowAgents qui peuvent ensuite les envoyer plus

rapidement au bon destinataire. La différence entre la version simple et les autres peut

s'expliquer par le fait que les correspondants cherchés sont souvent dans le voisinage de

la machine de l'utilisateur ou d'une machine répondant à une requête proche. Les deux

dernières versions tirent parti de ce fait, dors que la version n simple D est perdue des

qu'elle ne trouve pas exactement ce qu'elle cherche du premier coup. Cette différence

devrait progressivement s'atténuer avec le nombre de requêtes, mais on voit ici que ce

processus est très lent pour la version «simple». Les performances de la version

complexe sont un peu décevantes. compte tenu de sa plus grande «complexité». La

raison en est que le scénario considéré est très simple, et que la version locale trouve

facilement ce qu'elle cherche. Les algorithmes plus compliqués ne sont alors pas

nécessaires et sont même gênants car plus sensibles à la taille des zones (dans notre cas),

alors que la version locale va directement à la machine la plus cotée, qui est

généralement la bonne. Il n'a pas non plus besoin de chercher plusieurs résultats, ce qui

aurait pu inciter à cibler une zone, plus qu'une seule machine. Ii peut alors être

intéressant de faire varier la taille du réseau de test et le nombre de machines dans les

mesures. Les Figures 4.1 1 et 4.12 donnent l'évolution et la comparaison de la moyenne

du nombre de déplacements pour une zone et pour 5 zones.

On voit que, plus le nombre de zones augmente, plus la différence entre la version

«simple» et les autres s'accroît, et moins il y a de différence entre la version «local» et la

version complexe». Ceci corrobore l'analyse des premiers résultats. On peut remarquer

de plus que la version «complexe)> surpasse la version «locale» à la fin de la phase

d'apprentissage, au moment où il commence à y avoir plus de connaissances. mais pas

suffisamment pour que les algorithmes fonctionnent de façon «optimale». Cela

recommande la version complexe » pour les environnements réels et dynamiques.

numdro de requête

- complique - local --- simple 1
Figure 4.11 Moyenne du nombre de déplacements pour 1 zone

- complique - local - - - simple 1

Figure 4.12 Moyenne du nombre de déplacements pour 5 zones

On peut noter que 4 est la valeur inférieure limite pour ces mesures. Cela suppose

que l'agent se rend du terminal de l'usager à l'agent de recherche d'information puis

directement à la bonne destination, et prend le chemin inverse pour revenir afin de

donner son « feedback » au KnowAgent. L'évolution du nombre de déplacements

« régionaux » est donnée par la Figure 4.13.

numéro de requête

1- complique - local - - - simple 1

Figure 4.13 Évolution du nombre de déplacements r régionaux r

Comme pour le nombre total de déplacements, le nombre de déplacements

<aégionaux» diminue avec l'apprentissage, particulièrement pour les deux demières

versions, car l'information voulue est ramenée au niveau local. Celles-ci présentent des

performances équivalentes. avec toutefois une légère supérioritc5 de la version

<complexe» pendant la phase d'apprentissage qui s'inverse par la suite, pou les mêmes

raisons que le nombre total de déplacements. Dans ces mesures, on se limite également à

un seul niveau de zones, alors qu'on pourrait tirer parti de plusieurs pour que les agents

fassent une différence entre les déplacements entre villes et entre sous-réseaux.

Une autre constatation faite à la suite de ces mesures est que l'architecture

développée rapproche l'information de l'usager. Plus précisément, les agents rapportent

l'information voulue au KnowAgent de leu. zone, grâce au mécanisme de afeedbacb-

Ce fait est appuy6 par la mesure du nombre de déplacements effectués lors du retour de

I'agent présenté à la Figure 4.9. En effet, l'agent mobile. une fois l'interlocuteur trouvé.

s'arrête sur chaque KnowAgent contact6 pour lui présenter ses résultats en vue

d'apprentissage. Le nombre de déplacements effectués lors du retour de l'agent

correspond donc au nombre de KnowAgent contactés tors du trajet aller plus un. On

constate que, une fois la phase d'apprentissage passée, l'agent ne contacte souvent qu'un

seul KnowAgent, celui de sa zone, par lequel il commence tout trajet. L'information a

donc été rapprochée de l'utilisateur, ce qui est un plus dans l'utilisation des ressources

réseau. Cela est possible dans ce scénario du fait de la petite taille du réseau considéré.

Chaque KnowAgent peut contenir les infornations de tout le réseau. Ce ne serait pas

possible avec un réseau plus grand. La connaissance se répartirait alors entre les

différents KnowAgent, d'où 1' intérêt théorique d'une recherche par zones.

- complique - local --- simpk 1

Figute 4.14 Nombre de déplacements au retour

On peut également chercher à mesurer d'autres aspects de l'architecture à travers

un scénario plus complexe. Alors que les connexions sont considérées statiques dans le

premier scénario et que les coûts dus aux chargements des services sont négligés, il

serait plus réaliste, surtout dans le domaine des téiécomrnunications sans fil où la durée

des connexions est plus réduite, de les considérer dynamiques. On reprendrait alors le

même scénario que précédemment, mais en considérant que les utilisateurs et les

serveurs se connectent et se déconnectent régulièrement. Une application revenant sur

ces serveurs les obligerait donc à recharger les services dont elle a besoin. Cela ferait

intervenir les mécanismes d'adaptation de l'architecture et de migration des services qui

sont ignorés » dans le premier scénario. Toutefois, ces coûts concernent surtout les

serveurs, et non les terminaux usagers qui n'en contiennent que quelques-uns. Nous

avons donc décidé, pour des raisons de restriction de temps, de ne pas implémenter un

tel scénario.

On peut constater que, d'après ces mesures, on a effectivement gagné en

intelligence et en utilisation des ressources réseau grâce à l'architecture multi-agents

développée et à l'utilisation d'algorithmes de routage tirant profit de connaissances sur

la topologie du réseau, par rapport à l'implémentation initiale. Une implémentation

client serveur est toutefois, pour cette application, moins coûteuse (l'établissement d'une

communication par SIP ne prend que 500 octets environ), mais cette implémentation est

moins personnalisable et moins souple. Elle est aussi moins évolutive, car tous auraient à

passer par un serveur central basé dans une seule viile, ce qui augmente le nombre de

connections et de données cdgionales». Une implémentation client/serveur distri buée

serait la plus performante, mais reste moins personnalisable et moins souple qu'une

implémentation agent mobile.

Chapitre V

Conclusion

La technologie agent mobile est apparue en 1995 comme une extension du code

mobile et de la migration de processus. Elle doit, de par sa conception, réduire la

quantité de données transmises travers un réseau pour une même tâche effectuée à

distance par rapport à la technologie clientfserveur dans certaines circonstances.

Cependant, les mesures de comparaison de performances entre la technologie agent

mobile et la technologie clientAserveur effectuées par le passé ne sont pas convaincantes.

Souvent, on peut déplorer un scénario par trop favorable à l'agent ou une

implémentation du serveur déficiente, voire inexistante. il faut dire aussi que l'agent

mobile souffre souvent de devoir transporter tout le code dont il a besoin ou ne bénéficie

pas, sur les serveurs, d'une interface adaptée. L'architecture multi-agents présentée dans

ce mémoire vise à résoudre ce problème en fournissant aux agents mobiles un moyen

d'obtenir les services et l'interface dont ils ont besoin sur chaque machine. Elle aborde

aussi le problème de la représentation et du partage des connaissances des agents sur

leur environnement. Les mesures réalisées montrent que cette architecture atteint ses

buts. Même si la comparaison avec une architecture client/serveur peut paraître

défavorable, il faut penser que la technologie agent mobile ne vise pas à se comparer à la

technologie client/serveur en terme de performances pures, mais à éviter ses défauts

comme le manque d'évolutivité ou de souplesse.

5.1 Synthèse des travaux et contributions principales

Nous avons défini et implémenté une architecture mu1 ti-agents mobiles de

recherche d'information au travers de deux applications, le dIuntGroup», un service

avancé de téléphonie de recherche de correspondant, et un agent chercheur d'images sur

Intemet.

Cette architecture vise en premier lieu à mettre en relation un agent mobile

amivant sur une machine avec les agents se trouvant sur cette même machine capables

de lui fournir les services dont il a besoin. Elle fait correspondre un service avec une

interface Java particulière correspondant à ce senice. Ainsi, les agents pourront ensuite

utiliser cette interface pour établir un aproxy, de communication. Cela permet d'avoir

un cadre précis faisant le lien entre les classes Java d'un agent et l'ensemble des

fonctions constituant un service. Pour pouvoir mettre les agents en relations de la façon

la plus souple possible, nous avons implémenté notre propre fonction de recherche de

services dans un agent particulier de notre architecture, le Registraire. Celui-ci est en

quelque sorte le prolongement de la plate-forme d'agents mobiles. Le système d'agents

mobiles utilisé, Grasshopper, offre déjà des fonctions de recherche d'agents sur

différents critères qui restent utilisables, mais aucune n'était suffisamment souple, ni ne

permettait à un seul agent d'offrir plusieurs interfaces. De plus, le registraire se charge

de chercher un service sur les machines voisines et dans tout le réseau, puis de le charger

s'il ne se trouve pas localement. Ceci nous amène au concept de serveur dynamique dans

lequel les services et l'interface présentés par un serveur peuvent changer

dynamiquement selon 1 a demande des applications l'utilisant et tes règles et limitations

du serveur. La demande des applications est représentée par le chargement de services

par le registraire sur demande des agents. Les règles et limitations du serveur peuvent

être traduites au niveau du registraire, du système d'agents mobiles, des deux, ou par un

autre agent. Plus le serveur offre une interface initiale de bas niveau, plus les possibilitks

de modification et d'optimisation en fonction de chaque service utilisateur sont grandes.

Un autre aspect abordé est celui de ia représentation des connaissances sur

l'environnement des agents, en particulier la topologie du réseau et les autres agents.

L'idée de voisinage du registraire est traduite en zones à l'échelle du réseau entier et

d'une relation d'inclusion. Cela permet aux agents d'avoir une notion de proximité »

entre deux machines et d'en tenir compte au niveau des algorithmes de routage. LRs

autres connaissances sont traitdes dans notre implémentation par des algorithmes de

recherche d'information vectoriels et de afeedbacb,

Des mesures de performance ont permis de prouver la validité de la conception

de I'archi tecture- Nous nous sommes focalisés sur l'apport effectif de l'utilisation de

connaissances sur le réseau et d'algorithmes de routage plus complexes au regard de

l'augmentation de la taille de l'agent qu'ils entraînent. Nous avons constaté que, du fait

de l'utilisation du cache de Grasshopper et de la machine Java, le déplacement d'un

agent utilisant l'un ou l'autre des algorithmes est équivalent. Considérant maintenant le

nombre de déphcements de l'agent nécessaires pour trouver le bon correspondant avec

chaque algorithme, tous mettent à profit le mécanisme d'apprentissage par rétroaction

pour réduire leurs déplacements. Les deux algorithmes utilisant en plus des

connaissances sur la topologie du réseau montrent un réel avantage. Cependant, les

mesures n'ont pas réussi à mettre en évidence une supériorité de l'algorithme le plus

complexe par rapport au moins complexe parmi ces deux algorithmes.

5.2 Limitations et recherches futures

L'architecture décrite dans ce mémoire a été plus particulièrement étudiée et

implémentée pour les applications de recherche d'information. Elle peut nécessiter de

légères modifications pour être utilisée par toute sorte d'applications, notamment au

niveau des interfaces. L'implémentation de communications KQML peut résoudre ce

problème en apportant plus de souplesse. Une partie de l'architecture, notamment les

fonctions d'administration de serveur, restent également à implémenter. Les aspects de

sécurité ont été également très peu abordés. L'architecture et les algorithmes exposés

n'ont pas été testés en condition réelle. On a vu que cela pouvait limiter les capacités

d'apprentissage et donc les performances des algorithmes de routage et de recherche

d'information. L'architecture même n'a pas été extensivement testée, notamment en ce

qui concerne les mécanismes de recherche et de chargement des services, ou encore

l'administration de serveur et le support de nombreux agents.

Les recherches futures devraient s'orienter vers l'implantation de mécanismes de

communications par messages KQML, qui devraient donner beaucoup plus de souplesse

à l'architecture développée. Les aspects de sécurité sont également nombreux, que ce

soit au niveau de la protection des données sensibles ou de l'élimination de services et

d'agents malveillants ou défectueux. De plus, même si l'architecture proposde permet de

réduire considérablement la charge du réseau par rapport à une application agent mobile

classique. ses performances restent faibles en comparaison avec une application

client/serveur du fait de la taille importante des données transportées. Une voie

intéressante pour résoudre ce problème est celle suivie par D. B. Lange (site Lange), un

des pères des systèmes agents mobiles, qui développe des agents mobiles en XML. Le

fait de mettre les données en format texte plutôt que sous forme de classes Java

sériaiisées pourrait diminuer leur taiile et les rendre directement utilisables par des

agents utilisant des classes ou un langage différent, mais nécessite de surcharger les

fonctions de sérialisation et désérialisation au niveau de l'agent, mais aussi de la plate-

forme.

Toutefois, 1 'architecture proposée ici offre une possibilité intéressante

d'intégration de systèmes d'agents intelligents et mobiles. De plus, les mesures

effectuées montrent l'intérêt des algorithmes de recherche d'information et de routage

utilisés.

Bibliographie

S. Abu-Hakiina, R- Liscano and R. impey, " A common Mdti-agent Testbed for Diverse

Seamless Persona1 Information Networking Applications", IEEE Communications,

Speciul Issue on Mobile Agents and Telecommunications, vol. 36, no. 7, 1998, pp. 68-74

Y. Aridor and D. B. Lange, "Agent Design Patterns: Elements of Agent Applications Design",

Proc. Of the Second international Conference on Autonomous Agents (Agents '98). Mai

1998, pp. 108-15.

Y. Aridor and M. Oshima, "Infrastructure for Mobile Agents: Requirements and Design", Roc.

of 2* international Workshop on Mobile Agents (MA '98). Spnnger Verlag, Berlin,

Septembre 1998, pp. 3849.

J. Baumam, F. Kohl, K-Rothermel and M-Strasser, "Mole - Concepts of a Mobile Agent

System", Mobiliry Processes, Computer, and Agents, ACM Press, Addison-Wesley,

Reading , 1998, pp. 46 1-492.

L. F. Bic, M. B. DiIlencourt, J. M. Cahill, M. Fukuda, ""Messages versus Messengers in

Distributed P r o g r d n g " , Journal of Parallel and Distributed Computing, vol. 57, no.

2, 1999, pp. 188-21 1.

B. Brewington, robert Gray, K. Moizutni, D. Kotz, G. Cybenko, D. Rus, «Mobile Agents in

distributed information retrieval », Matthias Klusch, (ed.), Intelligent Information

Agents, chapter 15, Springer-Verlag, Berlin, 1999.

S. Derochers, R. Glitho, K. Sylla, "Experimenting with PARLAY in a SIP Environment: Early

Results " IPTS 2000, Sept 11 2000, Atlanta, GA, USA-

F. Douglis and J. Ousterhout, "Transparent Process Migration: Design Alternatives and the

Sprite hplementation", Mobility Processes, Computer and Agents, ACM Press,

Addison Wesley, Reading, 1998, pp. 57 - 86.

B. Emako-Lenou, « Agent-based Technologies: Concepts and Applications", Mémoire de

-trise, département de genie électrique et genie informatique, École Polytechnique de

Montréal, février 2000.

L. Gannoun, J. Francioli, S. Chachkov. F. Schutz, J. G. Hulaas, and J. H m , ''Domain Name

exchange : A Mobile-Agent-Base Shared registry System", IEEE Internet Computing,

mars/avril2000, pp. 59-64.

R-S- Gray, "PhD Thesis Proposal : Transportable Agents", Dept. of computer science, University

of Dartmouth, mai 1995.

R. S. Gray, D. Kotz, G. Cybenko, D. Rus. « D'Agents: Security in a multiple-ianguage, mobile-

agent system », Giovanni Vigna, editor, Mobile Agents und Securiry, Lecture Notes in

Cornputer Science, Springer-Verlag, Berlin, 1998.

K. Hafner, "Have your agent cal1 my agent", Newsweek, 75(9), Février 1995.

C. G. Harrison, D. M. Chess, A. Kershenbaum, "Research Report : Mobile Agents: Are tliey a

good idea?", 28 mars 1995.

C. Hewitt, « Viewing ControI Structures as Patterns of passing messages », Journal of Artifidal

Intelligence, 8, June 1977, pp 323-364.

G. Kajoth. D. B. Lange, and M. Oshima, "A SecWty Mode1 for Aglets", IEEE Internet

Cornpuring, vol. 1, no. 4,luly/August 1997. pp. 68-77.

A- Karmouch and V. A. Pham, "'Mobile SofhHare Agents: an Overview", IEEE

Cunununications, Special Issue on Mobile Agents and Telecommunications, vol. 36, no.

7, 1998, pp. 26-37.

D. B. Lange, « Mobile Objects and Mobile Agents: The Future of Distributed Computing >B.

Proceedings of The European Conference on Object-Oriented Programming '98,

Brussels, 1998, pp. 1-12.

htt~://www.acrn.org/-danny

D. Lange and M. Oshima,"Programming and Deploying Java Mobile Agents with Aglets", The

Aglet book, Addison-Wesley, Reading.

T. Lindholm, F- Yellin, « The Java Virtual Machine Specification », Addison-Wesley, Reading.

1996.

D.S. Miljicic and al., "MASIF, The OMG Mobile Agent System Interoperability Facility",

Proceedings of the Second international Workshop on Mobile Agents, septembre 1998,

pp. 50-67.

W. Moussawi, «Modélisation d'un agent de recherche intelligente d'information sur Internet»,

mémoire de maîtrise, Dpt de génie électrique et génie informatique. École

Polytechnique de Montréal, novembre 2000.

G. Muller, B. Moura, F. Bellard, and C. Consel. Harissa, "A flexible and efficient Java

environment mixing bytecode and compiled code", Proceedings of Third USENLX

Conference on Object-Oriented Technologies and Systems (COOTS 97), 1997, pp. 1-20.

S. Myaeng, R. R. Korfhage, ,,Integration of user profiles : models and experiments in

information retrieval". Infomtion processing and management, vol. 26, ISSN 0306-

4573, avril 1990, pp. 719-738

N.J. Nilsson, "Learning Machines - Foundations of Trainable Pattern ClassifLing Systems",

McGraw-HiIl, NewYork, 1965.

P. Noriega Blanco Vigil, "Agent Mediated Auctions: The Fishmarket Metaphof', PhD, 1997.

H. Ouahid, A- Karmouch, "*An XML-Based Web Mining Agent", in Proceedings of MATA '99,

pp. 393-404.

M. Powell, B. Miller, "Process Migration in DEMOS/MP'*, in Mobility Processes, Computer

and Agents, ACM Press, Addison Wesley, Reading, 1998, pp. 29-38.

M. Ranganathan, A. Acharya, S. Sharma et I. Saltz, "Network-aware Mobile Programs", in

Mobiliry Processes, Computer, and Agents, ACM Press, Addison-Wesley, Reading,

1998, pp. 46 1492.

J.J. Rocchio, "Document retrieval systems - Opthkation and evaluation", Ph-D. Thesis,

Harvard University, Report ISR-IO to National Science Foudation, Harvard

Computation Laboratory (1966).

A, Rogers, "1s there a case for viruses?', Newsweek, 75(9), Febmary 27, 1995.

G. Salton, A. Wong, S. Yang, 4 Vector Space Mode1 for Automatic Indexinp.

Communications of ACM, vol. 18, no. 1 1, 1975, pp. 613-620.

G. Salton, M. McGill, "Introduction to modern information retrieval", Compurer Science Series,

McGraw Hill Book Company, new-York, ISBN (3-07-054484-0, AACR2, 1983.

T. Sandholm, Q. Huai, "Nomad : Mobile Agent System for an Intemet-Based Auction House",

IEEE Internet Computing, Mars/Avril2000, pp. 74-79.

Y. Shoham, "An o v e ~ e w of agent-oriented programming9*, J. M. Bradshaw editor, Software

Agents, MIT press, 1997, pp 271-290.

A. di Stefano, C. Santoro, WetChaser : Agent Support for Personal Mobility", IEEE Intemet

Computing, Mars/Avril2000, pp. 74-79.

N. Wiener, "Cybemetics or Control and Communication in the Animal and Machine", MIT

Press, Cambridge, 1948.

MJ. Wooiridge, N. R. Jennings, "Sofnkrare Engineering with Agents : Pitfalis and Ratfaiis",

IEEE Internet Computing, May-June 1999, p. 20-27.

"Mobile Agents in the Context of Cornpetition and Cooperation (MAC3), a workshop at

Autonomous Agents '99". May 1 1999, Seattle, Washington, USA

htîdmobili tv.lboro.ac.uk/MAC3/

Sites Intemet

ActComm

Aglets

Alexa

auc tion

Auctionet

Cetus-links

Concordia

D'Agents

http://www.cetus-links.ord00 - mobile agents-html

DNX http://cui.uniee.chlDNX

Ebay h tm://www.ebav.com/aw

Ewatch htt~://www.ewatch.com/

excite htt~://'iive.excite.com/

Fric tionless httv://www. frictio&ss.com

JavaSpace

Jorstad

KSE

Lange

Lange-raisons

Linda

liste :

Loughborough

Messengers

Mole

Objectspace

Onsale

Parlay

h~://iava~sun.cod~roducts/iavasoaces/

httv://agent.cs-dartmouththedu/workshov/l 997/slides/jorstad/

htt~://www.c~.umbc,edulkse/

htt~://www.acm.org/-dannv

h~://www.cs.darmouth.edu/-dfW~a~ts/kotz:future~#lan~e:reasons

htto://www .cs.vale.edullind~inda.html

http://mIe-in format ik.uni-stutt~art.de/d~review/~review. html

htm:/Auckvsuc.l boro.ac~uWDucs/'mdex. h t (page inaccessible)

htt~://ww w.ics.uci.edu/-bic/messen~ers/

http://rnole-informatik-uni-stuttgart.de

httv://www.obiects~ace.com/

htt~://www,onsale.com

www.~arlav.org

Recherche-IBMhttp://www.research. i bmcom/rnassive/

Sumatra http://www -cs.umd.edu/-acha

Tacoma http://www. tacoma.cs.uit.nd

Zdnet htm://www .zdnet-corn/zdi/~vie w/oview.cgi

