POLYPUBLIE e |

PO'YtGChnique Montréal D'INGENIERIE

Titre:
Title:

Auteur:
Author:

Date:
Type:

Référence:
Citation:

POLYTECHNIQUE

A [
UNIVERSITE o3

Conception d'une architecture multi-agents supportant des agents
mobiles intelligents

Sylvain Goutet
2001

Mémoire ou these / Dissertation or Thesis

Goutet, S. (2001). Conception d'une architecture multi-agents supportant des
agents mobiles intelligents [Master's thesis, Ecole Polytechnique de Montréall.
PolyPublie. https://publications.polymtl.ca/6960/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . S
PolyPublie URL: https://publications.polymtl.ca/6960/

Directeurs de
recherche: Samuel Pierre, & Roch Glitho

Programme

Advisors:

| Génie électrique
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/6960/
https://publications.polymtl.ca/6960/

UNIVERSITE DE MONTREAL

CONCEPTION D’'UNE ARCHITECTURE MULTI-AGENTS
SUPPORTANT DES AGENTS MOBILES INTELLIGENTS

SYLVAIN GOUTET
DEPARTEMENT DE GENIE ELECTRIQUE ET DE GENIE INFORMATIQUE
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L'OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE ELECTRIQUE)

AVRIL 2001

© Sylvain Goutet, 2001

i+l

National Library Bibliothéque nationale
of Canada du Canada
uisitions isitions et
aclhtfloglaphcaggrvms m?ces b?gliggraphiques
395 Wellington Street 385, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your e Votre réldrence
Our fie Notre réédrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. Ia forme de microfiche/film, de

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-65577-6

Canada

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé:

CONCEPTION D’UNE ARCHITECTURE MULTI-AGENTS
SUPPORTANT DES AGENTS MOBILES INTELLIGENTS

présenté par : GOUTET Sylvain
en vue de l'obtention du diplome de : Maitrise és sciences appliquées

a été diiment accepté par le jury d'examen composé de:

M. ROY Robert, Ph. D., Président

M. PIERRE Samuel, Ph. D., membre et directeur de recherche
M. GLITHO Roch, M. Sc., membre et codirecteur de recherche
M. QUINTERO Alejandro, Ph. D., membre

Remerciements

Je désire remercier mon directeur de recherche, le professeur Samuel Pierre, et
mon co-directeur, Roch Glitho, pour leur patience, leurs conseils et leurs commentaires.

Je désire ensuite remercier tous les membres du Laboratoire de Recherche en
Réseautique et Informatique Mobile (LARIM), pour leur aide et leurs critiques.

Je désire également remercier ma famille et mes amis pour leurs encouragements

et leur soutien.

Résumé

Depuis quelques années, on assiste — et participe - a I’accroissement spectaculaire
des réseaux, et d’Internet en particulier, tant en quantité de données présentées et
échangées, qu’en nombre d’utilisateurs ou en étendue géographique. Cette expansion
s’est appuyée sur la technologie client/serveur qui a, jusqu’a présent, réussi a s’adapter
et A transporter et traiter un volume de données toujours plus grand. Cependant, ce
systéme a aussi montré des faiblesses: sa grande «centralisation » conduit a un
probléme d’évolutivité, de manque de personnalisation et d’un manque de prise en
compte de la topologie du monde réel et «virtuel». Ce dernier probléme n’est toutefois
pas imputable uniquement a la technologie client/serveur, mais aux choix faits a la
création d’Internet. C’est pourquoi on fonde beaucoup d’espoir sur les nouvelles
technologies, qui sortent a peine des laboratoires, d’agents et d’agents mobiles. Malgré
des défauts certains et le manque d’applications ou ils marquent une réelle différence
avec les technologies existantes, ces systémes montrent des potentialités intéressantes
pour la flexibilité et la réduction de la charge des réseaux, en particulier des grands
réseaux.

Une des particularités, mais aussi un des handicaps des agents mobiles est de
devoir transporter a chaque trajet tout le code nécessaire a I’accomplissement de leur
tache, alors que les autres applications ne déplacent que les données. Une approche a ce
probléme est donnée par un systéme de cache, comme celui implanté dans le systéme
Grasshopper. Malheureusement, ce que le systéme gagne en performance est perdu en
souplesse. En particulier, le remplacement ou la mise a jour d’agents devient
problématique.

Dans ce mémoire, nous proposons une architecture multi-agents qui résout ce
probiéme en séparant I’agent mobile des différents services qu’il va utiliser — interfaces
avec les différents systémes, algorithmes de calcul ou de recherche d’information - et
qui sont réalisés par des agents «passifs» pouvant étre également mobiles. Notre

architecture propose des mécanismes pour permettre la recherche de services et la

communication entre agents qui impliquent un agent «Registraire». Le role de cet agent
est de procurer 4 un agent mobile arrivant sur le serveur le service dont il a besoin. Si
aucun agent local ne procure ce service, il va chercher le plus proche possible pour le
copier ou le charger, ce qui nécessite une idée de voisinage géographique dans le réseau.
Cette notion de voisinage est étendue a I’ensemble du réseau sous forme de zone. Nous
proposons des algorithmes qui permettent 3 un agent mobile de tirer profit de ces
connaissances sur son environnement pour optimiser ses déplacements.

Des mesures de performance ont permis de prouver la validité de la conception de
I’architecture. Nous nous sommes focalisés sur I’apport effectif de I'utilisation de
connaissances sur le réseau et d’algorithmes de routage plus complexes au regard de
I’augmentation de la taille de I’agent qu’ils entrainent. Nous avons constaté que, du fait
de I'utilisation du cache de Grasshopper et de la machine Java, le déplacement d’un
agent utilisant I’un ou I’autre des algorithmes est équivalent. Considérant maintenant le
nombre de déplacements de 1’agent nécessaires pour trouver le bon correspondant avec
chaque algorithme, tous mettent & profit le mécanisme d’apprentissage par rétroaction
pour réduire leurs déplacements. Les deux algorithmes utilisant en plus des
connaissances sur la topologie du réseau montrent un réel avantage. Cependant, les
mesures n’ont pas réussi 3 mettre en évidence une supériorité de 1’algorithme le plus
complexe par rapport au moins complexe parmi ces deux algorithmes. Méme si la
comparaison avec une implémentation client/serveur optimale reste au désavantage des
agents mobiles, I’architecture multi-agents proposée représente un moyen simple et

efficace de pallier les déficiences d’une implémentation client/serveur inadaptée.

vii
Abstract

For the last few years, networks, particularly Internet have increased incredibly, in
the amount of data exchanged, number of users, and geographical extension. This
expansion was based on the client/server technology which, until now, managed to
adapt, carry and treat this ever increasing amount of data. This system showed
weaknesses : it is centralized, poorly scalable and personalized, and does not take into
account the topology of the real or virtual world. This last problem does not come from
the client/server technology itself but from the choices made when Internet was created.
That is the reason why many efforts are put on the new technologies, still in laboratories,
of agents and mobile agents. In spite of many weaknesses and the lack of killer
applications, these systems show interesting capabilities considering flexibility and
reduction of network load, specially in large networks.

Mobile agents are based on and, at the same time, handicapped by the fact that
they must carry their whole code they need to accomplish their task, where as other
applications only send data on the network. One approach of this problem, implemented
in the Grasshopper system, is caching. Unfortunately, the system looses some
adaptability because a cached agent cannot be replaced by another version of the same
agent. In this paper, we propose a multi-agent architecture which solves this problem by
splitting the mobile agent in several services, small agents that will cooperate to
accomplish the task. The proposed architecture offers mechanisms of search and
communication, implemented in the “Registraire” agent. This agent has to give mobile
agents the services they need when arriving on a new machine. If no local agent offers a
service, the “Registraire” will load the agent from the nearest possible machine. This
implies an idea of neighborhood, which is applied to the whole network as “zones”. We
also propose routing algorithms that use this knowledge.

Performance measures validated the conception of the architecture. We focused
on the utility of more complex algorithms that need to carry more data but can be more
efficient. We found that all algorithms could benefit from feedback learning algorithms,

and that the algorithms using data on the topology of the network were more efficient.
Nevertheless, the measures we made could not show an advantage of the more complex
over a less complex of the latest algorithms. Even if an optimized client/server
implementation remains the best in terms of performance, the multi-agent architecture
we propose represents an efficient way to cope with a bad or inefficient client/server

implementation.

ix

Table des Matiéres
REMETICIEMENLSooeeeeeceeecciiriiicieirirraeeeetesasereresseessessnsesssesieassetnesesssasssssesnsnarmssesnens iv
RESUIMGooeeeeeeeereirecnnreecessnteetiacceearaeeeeesesntossseessersss s snssnnmsaaes s e sessnnssasasnsnesssancons v
ADSIIACKeoeeeeeieeeerceccnccemeecennt e tes e s e e nansnseseseasss e ssssnssassmnmstasssesassnsssesesessessonnes vii
Table des MAtIETEScceveneeiiiriiiiiiicierieieenrscecsssrereenneressannnensansesnsssmmmseraasamsesnansesssssns 1X
LiSte des tableauXcccoeeeeereceetemrriaiiieeeeieeeeeecccneeeseessnsaeeriasssssnasnrsssssranasassansasanas xii
Liste des fIGUIESconeeimmreee ettt e Xiii
Liste des sigles et abréViationsccouiiviercimmerecctenmeecesee et esesaeeas XV
Chapitre I INtrodUuCHiONcoeiimviciiiirrrreerrrerertressenratecessrrsesseeseseetssenerssnasssssssses 1
1.1 Définitions et concepts de DASEcccoveeeeeeciiiiiimmimriireiiinreeereeeeneeee s cenanes 1
1.2 FEléments de 12 ProblémMatiQue..............ccceerveuemcceerscrcosereseuecscssersscesesssessa 2
1.3 Objectifs de recherchecouivommeremeeececeecreesrseenee 3
1.4 Plan du MEMOITE.....ccconmiieceeeeeiceeteecreeccssssrsrsnsnnene s nae e s s e nssassssasanans 4
Chapitre IT Systémes d’agents MObIIEScoomiimeemeieeee e 5
2.1 Caractérisation des agents MObIles.......ccooovveriiermemmmimmmmieeeeecceeeeeeees 5
211 AGENLS ..ottt eeecn et st e n e e e st a e e e e n e a e s seseees 5
212 MODIE. . e e et e ne e 6
2.1.3 Caractéristiques des agents MODIIESeevemiieiiiiiiiciniiiiircienee 7
2.2 Architecture des systemes d’agents mMODbIlEscocoereernocnenniiiiiniinnneee 7
2.2.1 ArchiteCture JAvaeeiceoreeeercieniieecrieiisissennertesrnesieneesseeeenaeeeennens 8
2.2.2 Architecture multi-langages............coormeerrmeeermenieeec e cecereecenaenee 8
2.2.3 Avantages et désavantages des agents mobiles ...t 10
2.3 Recherche d'infOrmations.............cecceiceceerieiocieimvmeniueererieiieesenesessaeeencesnas 13
2.3.1 Techniques de recherche d’information automatisées..................... 13
2.3.2 Modeéle espace-vectorielccooureimmiiiriinereeeeee e eeeaeeaenes .15
2.3.3 Algorithme d’apprentissage par FétroaCtioncccccveerueereececnnces 16
2.4 Applications des systémes d’agents mobiles........ccceevvevimneeeiicnennnnenn. 19

2.4.1 Recherche et filtrage d’infOrmMationsc.ceeeeeeoominiiinnccniennncrieeeens 19

24.2 Commerce €leCtroniqUEc..coeeieeiemreeerececmeercneerneresneeeessacnesneens 19
243 Agents mobiles en té€lécommunicationscocueeeereenceeeeeenecenen. 20

2.5 Quelques SyStemes eXISIANLS.....coooreeeimrmuuirerecreercameererennecnrerreneesnnernsaees 21
2.6 Performances des SAM et PerspecCtives...........ooeereerrmmeeersnecennenreenens 23
Chapitre III Architecture muiti-agents de recherche d’information....................... 29
3.1 Caractérisation de I’architecturec.ccocoevveirneieercnmeneicirere e 29
3.1.1 Catégories d’agents.........cocoouiecvecrraiesicieeenencnccenaeneessseessanesnsnsenenns 30
3.1.2 Vers des Serveurs actifsccccccccuemiocereremeenneccirenninreeeeneesieeees 36
3.1.3 Traitement des CONNAISSANCESccoereerercrenmcrerrrenccseeecemerrnnemsmeenessnnnnns 39

3.2 Application numMEro Piloteoooeeerriicecicaniirceceiicereeneeeseeeennerenens 43
3.2.1 PrNCIPE ..ottt ccccereeese s e e e s e s m e nnes 43
3.2.2 ChoiX d€ CONCEPUONcccecceercirecremriricrreeeeeereerreerisseneassnnesrnsasaansns 44
3.2.3 Modifications apportées a I’application initialecccccceeeenniee. 45

3.3 Application chercheur d’images sur Internet.........c..ccomereeiconnncnnnnnn. 47
3.3.1 Interface avec les bases d’iMAEESccouevrereeeniiiriiniiniinrnninnninenens 47

3.4 Algorithmes de recherche d’information utiliséscccceeeeinnnnnn.e. 51
34.1 CROIX ENETAUX ...ooooieeenneceeeeccneectrereeecerenrnesenessseseresssnsssnnnsssssnnsns 52
342 AdAPLationsccooeoneeieiceeicreeeeecretce et eeecere s e sane 52
Chapitre IV Implémentation et résultatsccoommeniciiiiiiiiiiiieiecee e 54
4.1 Choix d'implémentationccccoeeiiiniiiiiiiiiieerree e cneneenes 54
4.1.1 Classes ZENEMQUESccceeeeemmirrmerecrerierieeeresneressseessesssnesrnnensnsrsrens 55
4.1.2 INEEIfacCeS......oo oo eeeeeeeteseeeneeese e cear e s e e ns s s senes 56
.13 ABCNLS oot ecncast e s te s e s e s e sb s n e s e s an e nsssaes 58
4.14 Environnement d’'implémentation et de test........c.ccccoveeerrnnnnneenns 62

4.2 Evaluation de PErfOrMAanCecceeeuereeeeererseseacseressesecssesessssesssssnssssessens 63
4.2.1 Mesures de tranSPOrt...........ccoueeeemmremirnereeresesieseenssenssseesssesseesaesases 63
42.2 Scenarios de recherche d’informationc.ccooeiimeeninnnnncne. 67
Chapitre V. CONCIUSIONccociemreeneereenrrenssiersesttessneenentessssere s sereesssnnesressnsessasses 76

5.1 Synthése des travaux et contributions principales............cccceremeermreunenecen. 76

5.2 Limitations et recCherches fUlUIES oo eeooemeceeieeeecreeeecereecmeenecseaaces 78
Bibliographie..........ccooiece e s cecsensanenes cerereorrresnrronsseras veeeens 80

Xii

Liste des tableaux

4.1 Mesures de I’effet du cache et de 1a région Grasshopper 64
4.2 Comparaison du cofit de transport entre différentes versions 65

Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11

xiii

Liste des figures
Architecture dun SAM Java ..., 9
Architecture multi-langage (D'AENtS) -.....cocoovierriinniinrrnnincnanen 9
Réduction de la charge d'un réseau par les SAM 11
Agents actifs et passifs ..o 31
Algorithme de recherche d'un agent ...l 33
Communication entre agentscoceeerinurerinneeeenseerernseeenens 35
Relations entre les éléments de l'architecturecoooiiin 36
Déploiement d'applicationsc.ooeiiiiiiiiiiiiiiiiiiiiine 37
Architecture pour la réduction de la charge du réseau 38
Représentation du réseauocooiiiiiiiiiiiiiieiiiiieaans 40
Exemple de messages KQML 42
Choix de conception de l'interface téléphonie-agents 46
Exemple de page HTML ...t 48
Exemple de code HTML 49
Algorithme de parcours d'une page HTMLccccoevviniininnne. 49
Fichier de méta-informationcciiiiiiiiiiiiiiiiiiiiiinnnnn... 50
Interfaces des classes Address et Lienc.cccoovvviiiiinnin, .55
Structure du registraireccoecieeimmeriiiiiiiiiiiiiiiiiiieeiieeiaeanns 59
Structure de l'agent mobile HuntGroupccoovnvnnneenennn... 60
Structure du KnowAgentcccoeeveeneriiiiiiiriiiirieiiirereeeeinnnns 61
Algorithmes de parcours de l'itinéraireccooeeiiiiiiiiiaiioie 66
Scénario de MESUIEc.cooiiniiiniiiiiiiiiiiiiieieriereeaaneiecnenenes 68
Evolution du nombre de déplacements de I'agent "simple” 69
Evolution du nombre de déplacements de I'agent "local” 69
Evolution du nombre de déplacements de I'agent "complique” 70
Comparaison en moyenne du nombre de déplacements 70
Moyenne du nombre de déplacements pour 1 zone 72

Figure 4.12 Moyenne du nombre de déplacements pour 5 zonmes

Figure 4.13 Evolution du nombre de déplacements "régionaux”

Figure 4.14 Nombre de déplacements au retour

...

IUG

KQML

MASIF
MVIJ
OMG
ORB

SAM
SIP
SPIN
TCP

WONDEL

Liste des sigles et abréviations

Appel de Procédure a Distance

Conseil National de la Recherche du Canada
Computer Telephony Integration

HyperText Markup Language

Intelligence Artificielle

Institute for Information Technology
Interface Utilisateur Graphique

Knowledge Interchange Format

Knowledge Query and Manipulating Language
Large Area Network

Mobile Agent System Interoperability Facility
Machine Virtuelle Java

Object Management Group

Object Request Broker

Recherche d'Information

Systéeme d'Agents Mobiles

Session Initiation Protocol

Seamless Personal Information Networking
Transmission Control Protocol

User Datagram Protocol

Web ONtology Description Language
eXtended Markup Language

Xv

Chapitre I
Introduction

Depuis quelques années, on assiste — et participe - & I’accroissement spectaculaire
des réseaux, et d’Internet en particulier, tant en quantité de données présentées et
échangées, qu’en nombre d’utilisateurs ou en étendue géographique. Cette expansion
s’est appuyée sur la technologie client/serveur qui a, jusqu’a présent, réussi a s’adapter,
a transporter et traiter un volume de données toujours plus grand. Cependant, ce systéme
a aussi montré des faiblesses: sa grande « centralisation » conduit & un probléme
d’évolutivité, de manque de personnalisation et d’un manque de prise en compte de la
topologie du monde réel et «virtuel». Ce dernier probléme n’est toutefois pas imputable
uniquement a la technologie client/serveur, mais aux choix faits a la création d’Internet.
C’est pourquoi on fonde beaucoup d’espoir sur des nouvelles technologies, qui sortent a
peine des laboratoires, d’agents et d’agents mobiles. Malgré des défauts certains et le
manque d’applications ol ils marquent une réelle différence avec les technologies
existantes, ces systémes montrent des potentialités intéressantes pour la flexibilité et la

réduction de la charge des réseaux, en particulier des grands réseaux.

1.1 Définitions et concepts de base

Un agent est communément défini comme une aide logicielle qui remplace
I'utilisateur dans une tiche routiniére et pénible, comme organiser I’horaire d’une
réunion ou le tri du courrier électronique ou qui cherche et trie des informations
correspondant aux intéréts de I’ utilisateur (Gray, 1995; Hafner, 1995; Rogers, 1995). Les
agents se distinguent particulicrement des autres logiciels par leur autonomie vis-a-vis
de Iutilisateur. Alors qu’une application classique requiert de la part d’un utilisateur des
paramétres précis pour chaque type de situation qu’elle doit rencontrer, I’agent se doit de

les «deviner » ou de les extrapoler du comportement de I’utilisateur tout en étant a

méme de faire face a des situations imprévues, dans une certaine mesure. Cela suppose
une grande part d’intelligence, et, de fait, le concept d’agent est trés li€ a celui de
I’intelligence artificielle.

Les agents mobiles sont des agents possédant en outre la capacité de se déplacer
entre deux ou plusieurs nceuds d’un réseau. Bien que leur nom les rapproche des agents
fixes, le concept d’agent mobile prend réellement sa source dans celui de processus et de
code mobile. Celui-ci cherchait a rendre mobiles des processus de fagon a ce que ceux-ci
puissent interrompre leur exécution a tout moment pour se transférer sur une autre
machine qui, par exemple, dispose de plus de mémoire que la premiére. Cette capacité
demandait habituellement a étre soutenue par de complexes systémes d’exploitation, ce
qui a contribué a son échec.

Le concept de code mobile consiste a définir un code tel que les programmes
compilés dans ce code puissent €tre portés et exécutés sur n’importe quelle machine (et
méme des machines telles qu’une cuisiniére ou une chaine hi-fi, pourvu qu’elles soient
dotées du matériel nécessaire). Le code mobile est généralement soutenu par une
machine virtuelle qui va traduire et exécuter localement ses instructions. Il a trouvé une

grande popularité avec Java, mais il existe également d’autres langages, tels Telescript,

Python ou Scheme.

1.2 Eléments de la problématique

Les agents mobiles, comme on peut le voir a leur nom et a leur définition, se
posent comme héritiers de deux technologies : les agents fixes et le code mobile. Les
agents fixes doivent beaucoup a l'intelligence artificielle. Une grande part de la
recherche actuelle sur les agents se concentre sur les systémes multi-agents, dans
lesquels plusieurs agents coopérent au moyen de messages et d’un langage commun afin
de résoudre une méme tiche. Ces recherches visent a obtenir ainsi une forme
d’intelligence distribuée. Le code mobile doit son succés a celui des

télécommunications, en particulier d’Internet. Ces deux domaines sont habituellement

bien séparés. Les agents mobiles (ou leurs concepteurs) veulent ainsi pouvoir réunir le
meilleur des deux concepts, mais se retrouvent souvent avec les défauts des deux : la
lourdeur de Il’intelligence artificielle et les limitations des communications. Les
applications d’agents mobiles présentées par I'industrie, plus pragmatique, sont souvent
des applications simples, évitant la complexité et les incertitudes liées a I'intelligence
artificielle. L’approche des laboratoires est plus théorique. Ceux-ci présentent des
applications plus complexes et intelligentes, mais trop souvent incomplétement réalisées
ou présentant des résultats non convaincants.

Plusieurs recherches (Gannoun, 2000; Emako-Lenou, 2000; Abu-Hakima, 1998;
site Jorstad; Brewington, 1999; Bic, 1999) ont essayé de rapprocher ces deux concepts,
mais peu donnent des résultats vraiment convaincants, tout en soutenant la technologie
agent-mobile. La raison en est qu’il y a peu d’applications « standard » pour les agents
mobiles et peu de mesures fiables. De plus, les caractéristiques qui avantagent les agents
mobiles — souplesse, personnalisation — sont mal représentées par ces mesures. Dans le
cadre de ce mémoire, nous allons chercher a voir dans quelle mesure il est possible, avec

les technologies actuelles, de réconcilier les deux.

1.3 Objectifs de recherche
La recherche a pour but d’évaluer les performances et caractéristiques
d’applications utilisant les technologies d’agents mobiles et d’intelligence artificielle.

L’objectif principal de ce mémoire est de proposer une architecture qui intégre, de

maniére efficace, les concepts d’agents mobiles et d’agents intelligents. De maniére plus

spécifique, ce travail de recherche vise a :

- identifier les différentes catégories d’application dans lesquelles !’utilisation
d’agents mobiles dotés d’une plus grande intelligence présente des potentialités
intéressantes ;

- développer deux applications parmi celles précédemment identifiées qui utilisent des

techniques d’1A ;

- concevoir une architecture capable de supporter le déploiement de telles
applications;
- évaluer les avantages et les inconvénients de I’architecture proposée en regard de

I'intelligence ajoutée aux agents et des méthodes conventionnelles.

1.4 Plan du mémoire

Le mémoire comprend cinq chapitres. Le chapitre II fait le point sur les
technologies d’agents mobiles et de recherche d’information; il analyse également
quelques résultats obtenus lors de précédentes expériences. Le chapitre II décrira
I’architecture développée, les deux applications retenues ainsi que les algorithmes
utilisés. Le chapitre IV présentera et analysera les résultats d’implémentation et de mise
en oeuvre. En guise de conclusion, le chapitre V présentera une synthése des travaux et

esquissera des directions de recherche futures.

Chapitre 11

Systémes d’agents mobiles

Les systémes d’agents appliqués en réseautique, de la gestion de réseau ou de flux
a la recherche d’informations, ont gagné beaucoup d’intérét avec I’adoption d’Internet,
depuis les cinq derniéres années. Ils offrent de grandes perspectives de recherche. Méme
s’il reste encore a prouver leur supériorité par rapport a I’architecture client/serveur
toujours performante, ils auront un grand avenir dés que les problémes qui limitent leurs
capacités auront trouvé une solution acceptable. Ce chapitre se concentre sur les
systétmes d’agents mobiles, leur caractérisation, leur architecture, leurs avantages et
désavantages. Elle abordera également les agents de recherche d’information et les

algorithmes qu’ils utilisent car ils sont repris dans les applications développées.

2.1 Caractérisation des agents mobiles
Les agents mobiles sont au carrefour de deux concepts plus anciens : les agents et
la mobilité. Dans cette section, nous définissons ces deux concepts de base qui

déterminent les caractéristiques des agents mobiles.

2.1.1 Agents
Le concept d’agent vient du domaine de I'intelligence artificielle (IA), a la fin des

années 70. Un de leurs ancétres étaient les « actors », introduits par Carl Hewitt (1977).
Le concept d’agent lui-méme est assez flou et a conduit a2 de multiples définitions. Un
agent est communément défini comme une aide logicielle qui remplace I’ utilisateur dans
une tiche routiniére et pénible (Gray, 1995), comme organiser 1’horaire de réunions ou
le tri du courrier (électronique), ou qui cherche et trie des informations correspondant
aux intéréts de Putilisateur (Hafner, 1995; Rogers, 1995). Cette définition a fait de

“agent” un mot passe-partout dans les milieux académiques et commerciaux. Des

applications sont souvent dites construites sur des agents dans le seul but d’attirer
Pattention ou d’augmenter les ventes. Cependant, ce terme est aussi utilisé A bon escient
dans le domaine de Pintelligence artificielle, avec des définitions variées mais
concordantes (Noriega, 1997).

En IA, un agent peut €tre vu comme un systéme, matériel ou logiciel, qui a une
certaine autonomie sur son comportement, interagit avec des humains ou d’autres
agents, percoit et réagit a son environnement et a un comportement orienté vers un but.
La notion d’agent fait donc référence a une personne qui agit dans un certain but et un
certain contexte.

D’un point de vue Iégal, un agent est une personne qui agit selon un principe dans
un but précis et sous délégation limit€e d’autorité et de responsabilité. Wooldrige (1999)
propose deux acceptions du concept d’agent. Une notion faible, dans laquelle un agent
est caractérisé par trois propri€tés: autonomie, sociabilité, réactivité, et mise en situation.
Et une notion forte dans laquelle une délégation est faite 2 un systtme qui a un
comportement réfléchi, voire émotionnel.

L’idée d’agent n’est donc pas nouvelle, mais a été limitée par les progrés en
intelligence artificielle. Le développement d’Internet et I’explosion des informations

qu’il contient a donné un nouvel essor a la recherche dans ce domaine.

2.1.2 Mobilité
Les systémes d’agents mobiles héritent des techniques de migration de processus,

qui visent i transférer un processus entre deux ordinateurs, un processus étant une
abstraction contenant le code d’un programme, mais aussi ses données et son état
d’exécution (Emako-Lenou, 2000). Ces techniques étaient habituellement implémentées
au niveau du systéme d’exploitation. Leur principale difficulté était de transférer I’état
d’un processus interne au systéme, ainsi que ses ressources (fichiers, drivers, ...). C’est
pourquoi la migration de processus a d’abord été implémentée a 1’aide de ‘“‘canaux” par

lesquels le processus communique avec son environnement (Powell et al., 1998).

Les systémes basés sur des appels au noyau ont suivi (Douglis et al., 1998). Ces
systémes étaient des réussites de recherche, mais n’ont pas connu le succés commercial
qu’ils méritent a cause du refus de la communauté des utilisateurs de partager leur
ordinateur, et de leur complexité impliquant toujours le systéme d’exploitation. L’idée
de migration de processus a donc failli principalement en raison du fait qu’elle requerrait
un systéme d’exploitation complexe et exclusif. Toutefois, elle a introduit les notions de

code mobile et de mobilité.

2.1.3 Caractéristiques des agents mobiles
Bien qu’un agent mobile soit défini comme une classe d’agent ayant comme

caractéristique seconde la mobilité, il est plus approprié de le considérer comme
I’aboutissement des abstractions mobiles, telles le code, les objets, ou les processus. De
fait, les agents mobiles sont étudiés principalement par des laboratoires davantage liés au
domaine des télécommunications qu’a celui de I'intelligence artificielle. Ils s’appuient
peu sur des concepts d’IA, méme si les recherches les plus récentes se concentrent sur
ces aspects. IIs sont plutot batis sur les notions de langages interprétés qui supportent le

code mobile, I'indépendance par rapport aux systémes d’exploitation et la mobilité objet.

2.2 Architecture des systémes d’agents mobiles

Trois approches ont été utilisées pour la conception d’un systéme d’agents mobiles
(SAM) (Karmouch et al., 1998). L’une consiste 2 utiliser un langage propriétaire dont
les caractéristiques répondent aux exigences des SAM. Coml:oaq"'M a exploré cette voie
avec le projet Obliq (Noriega, 1997). Une autre approche consiste 2 implémenter le
SAM comme une extension d’un systéme d’exploitation (TACOMA, Hafner, 1995). Ces
deux approches n’ont pas eu beaucoup de succes.

La demiére (et principale) approche consiste a construire le SAM comme une
application particuliére pouvant s’exécuter sur n’importe quel systéme d’exploitation.
Ce systéme est en fait composé de deux parties: 1’une fixe et installée sur les serveurs —

la plate-forme - et les agents eux-mémes. La plupart des systémes ayant choisi cette

approche (Aglet, Concordia, Mole, Odyssey et Voyager, entre autres) se composent d’un
ensemble de classes ajoutées a la Machine Virtuelle Java (MV]). Les autres utilisent
d’autres langages, souvent plus anciens que Java (D’Agent, Ara) (Gray, 1995). La
plupart de ces demiers, devant I’énorme popularité de Java, ont intégré un interpréteur
Java. D’autres ont méme été entiérement reconstruits en Java, comme
Telescript/Odyssey. Ces systémes sont tous basés sur une architecture client/serveur et

utilisent I’approche du “bac a sable” pour la sécurité de I’hdte. Nous considérons

maintenant ces deux demniéres architectures.

2.2.1 Architecture Java
Un SAM est construit sur la machine virtuelle Java (Lindholm et al., 1996), qui

procure I’indépendance par rapport au syst¢tme d’exploitation et une grande partie du
support de communication et de réseau. Il assure également la sécurité de 1’hote avec le
mécanisme du “bac a sable”. La plupart des systémes, comme Aglet, Concordia, ou
Voyager utilisent la MVJ d’origine procurée par chaque navigateur Intemet ou produit
Java. D’autres, comme Sumatra, la modifient pour ajouter des fonctionnalités qui font
défaut a la MVJ, comme la conscience du réseau (site ewatch), tout en gardant
I'interface standard Java qui lui donne tout son intérét. Les syst¢tmes ‘“classiques”
essaient d’utiliser des classes Java ou des agents particuliers pour assurer ces fonctions.
Cette architecture peut étre représentée de fagon générale par la Figure 2.1, les ellipses

représentant des classes Java.

2.2.2 Architecture multi-langages
Les systémes utilisant cette architecture essaient de surmonter les limitations de la

machine virtuelle Java. Leur cceur est un “noyau” ou “serveur’ implémentant les
fonctions indépendantes du langage, comme le transport des agents, I’allocation des
ressources, la sécurité, ou le séquencgage des «threads». Les agents sont exécutés par
I’interpréteur approprié a leur langage. L’avantage de cette approche est de supporter
plusieurs langages de programmation, mais leur complexité et leur lenteur s’accroissent

avec le nombre de langages supportés. La Figure 2.2 illustre cette architecture.

O

Classes Standard Java

Serveur — Machine Virtuelle Java

Figure 2.1 Architecture d’'un SAM Java

Agents
Docking @
TCL JAVA SCHEME
Serveur
TCP/IP E-mail

Figure 2.2 Architecture muiti-langages (D’Agents)

10

2.2.3 Avantages et désavantages des agents mobiles
Selon Gray (1995), le récent intérét pour les agents mobiles est alimenté par

I’inadéquation croissante du modéle client/serveur traditionnel avec les applications
réparties. En effet, dans une architecture client/serveur, le serveur procure un ensemble
fixe d’opérations. Toutes les autres doivent étre exécutées par le client. Si I’opération
procurée par le serveur ne correspond pas exactement aux besoins du client, soit celui-ci
doit effectuer plusieurs appels au serveur pour une seule opération, soit un programmeur
doit I’ajouter sur le serveur. La premiére option ajoute des données intermédiaires sur le
réseau, ce qui représente une perte de bande passante. La seconde option devient
ingérable pour un grand nombre de clients. Les agents mobiles évitent ce gachis de
bande passante et permettent une exécution efficace, méme quand le serveur ne procure
pas d’opérations spécialisées, en migrant sur le serveur pour y effectuer tout calcul voulu
avant de retourner le résultat final au client. Les agents qui font plus de travail évitent
des messages intermédiaires et conservent plus de bande passante, ce qui les rend plus
avantageux dans les réseaux a faible bande passante.

Cependant, si la taille du code de 1’agent est trop grosse par rapport a la quantité
de données accédées, cela peut affecter le gain de bande passante. Cela rend nécessaire
un bon équilibre entre les capacités d’un agent et la complexité de la tiche qu’il a a
accomplir.

Selon Lange (1998), les agents réduisent la charge du réseau. Les systémes répartis
reposent souvent sur des protocoles de communication qui impliquent de multiples
interactions pour I’accomplissement d’une certaine tiche. C’est encore plus vrai quand il
y a des mesures de sécurité. Les agents mobiles permettent d’encapsuler une
conversation et de la rendre sur une destination hote ou les interactions vont se faire
localement. Les agents mobiles sont aussi utiles pour réduire le flot de données brut sur
le réseau. Quand un grand volume de données est stocké sur des serveurs distants, la
manipulation de ces données devrait étre faite localement, plutét qu’en les transférant

sur le réseau. Le principe est simple : amener le calcul aux données, plutét que les

11

données au calcul. La Figure 2.3 montre comment les agents mobiles peuvent réduire la

charge du réseau.

Multiples requétes

et résultats > -
Approche Service APD Hote A [q Hote B
L
< P
¢
Agent Données
\
Approche Agent Mobile . Agent + résultats

Figure 2.3 Réduction de la charge d’un réseau par les SAM

Les avantages et désavantages des agents mobiles peuvent étre résumés comme
suit :
Avantages attendus
- Extension des capacités de traitement en surmontant les limitations d’un petit
ordinateur, comme un «palmtop». Il suffit d’envoyer un agent exécuter une tache sur
un serveur ayant de plus grandes capacités de calcul, de mémoire et de

communication.

- Personnalisation : il est plus facile a un utilisateur de personnaliser son agent qu’un

programme résidant sur un serveur distant.

- Survivabilité : alors qu'un programme classique est li€é a une machine, un agent
mobile peut se déplacer pour éviter une erreur matérielle ou logicielle, ou tout

simplement un arrét de la machine.

12

- Représentation d’un utilisateur déconnecté : un agent peut continuer a parcourir le

web, méme sans interaction avec |’utilisateur, grace a son autonomie.

- Réduction de la charge du réseau : en se rapprochant des données sur lesquelles il
veut travailler, un agent mobile peut permettre de diminuer le nombre de messages

de communication, et par la méme, la charge du réseau.
- Indépendance par rapport au systéme d’exploitation.

- Facilit¢ de développement: le concept d’agent devrait (a2 terme) permettre de
développer des applications mobiles plus facilement en masquant a I’utilisateur les
problémes liés au transport dans les réseaux, et méme certains choix d’optimisation
faisables par 1’agent, ainsi qu’une analogie avec le monde réel. Un agent mobile et

intelligent pourrait étre vu comme un utilisateur humain habituel.

Désavantages

- Manque d’applications ou les agents mobiles apportent un avantage certain.

- Sécurité : c’est une difficulté majeure pour le développement de systémes d’agents
mobiles, comme systéme fonctionnant en environnement ouvert (i.e. Internet) et

non-fiable (réseaux mobiles).

- Manque d’infrastructure et de standards : les agents ont besoin du support fixe d’une
« plate-forme ». Or, aucun standard n’est réellement appliqué et leur conception
varie encore beaucoup d’un systéme a I’autre. De méme, les difficultés non résolues
empéchent la formation d’une infrastructure suffisamment éprouvée pour permettre

le développement d’ applications économiquement intéressantes.

13

En bref, méme s’il existe un standard pour les systémes multi-agents (MASIF,
Miljicic, 1998), la technologie est trop peu mature dans beaucoup de domaines, dont

celui de la sécurité, pour faire réellement sortir les agents des laboratoires.

2.3 Recherche d’informations

La recherche d’informations (RI) au sens large est sans doute le domaine
d’application le plus fertile des agents. La raison en est qu’avec I’explosion du nombre
de données disponibles sur les réseaux, les humains sont dépassés par la tiche de classer
ces documents et de les retrouver suffisamment rapidement. On estime également que
les moteurs de recherche fonctionnant sur des techniques de RI classiques n’arrivent
qu’a archiver 15% du contenu d’Internet (Moussawi, 2000). On se trouve donc devant
un probléme ou les techniques classiques sont dépassées et seuls des logiciels
suffisamment autonomes et intelligents comme les agents peuvent donner des résultats
dignes d’intérét. Nous allons maintenant présenter les algorithmes de recherche
d’information classiques ainsi que la technique d’apprentissage par retour d’information

(feedback).

2.3.1 Techniques de recherche d’information automatisées
Les techniques de recherche d’information automatisées consistent a trouver, a

partir d’une requéte décrivant I’information cherchée, non pas cette information, mais un
document la contenant. Le concept le plus important en recherche d’information est
celui de cormrespondance. Un document correspond a une requéte s’il contient
I’information représentée par la requéte. Cela pose le probléme de représentation d’une
information a plusieurs niveaux. La requéte, telle que formulée en mots par I’ utilisateur,
ne représente pas exactement sa pensée; de plus, le systéme va souvent travailler sur une
représentation interne de cette requéte, ce qui introduit une nouvelle source d’erreur.

La premiére fonction de recherche automatique consistait 3 chercher le texte de la
requéte dans celui du document, ou un texte approchant. On en déterminait une distance,

non nulle si le texte ne se retrouvait pas exactement dans le document. Devant la

14

complexité de cette méthode et ses mauvais résultats (en terme de correspondance), se
sont développées des méthodes de recherche par mots, permettant de plus I’indexation
des documents pour un retrait plus rapide des réponses.

On peut classer les moteurs de recherche actuels en quatre logiques de recherche
(Moussawi, 2000) :
- Recherche géographique : ils permettent de chercher des sites par localisation

géographique. Des exemples de cette classe sont: www.excite.com/travel et

www_urec.cnrs.fr/annuaire .

- Recherche thématique : Dans ce type de recherche, les documents sont classés selon
une structure d’arbre, par thémes et sous-thémes. Citons parmi les principaux :

www.yahoo.com, magellan.excite.com, www.einet.net, www.nomade.fr .

- Recherche par index : c’est la principale catégorie de moteurs de recherche en raison
de leur flexibilité. Les documents sont indexés, en général selon les mots qu’ils
contiennent. La recherche peut ainsi se faire selon n’importe quels mots, sans se
soucier s’ils ont €t€ utilisés pour la classification des documents ou non.

- Recherche par méta-index : ces moteurs se contentent de reformuler la requéte de
I'utilisateur pour chacun des moteurs de recherche qu’ils connaissent et de classer

ensuite les résultats : www.metacrawler.com, wWww.copernic.com,

www.profusion.com, www.askjeeves.com.

Seules les techniques de recherche par index vont nous intéresser ici, en raison de
leur plus grande flexibilité. On peut noter qu’aucune des catégories ci-dessus ne résout
des problémes tels que la véracité ou la pertinence de I'information trouvée. Pour
remédier a certaines des limitations des moteurs de recherche, certaines expériences
utilisent une structure multi-agent dans le cadre d’une « bibliothéque virtuelle ».

La plupart des stratégies de recherche d’information utilisent une fonction de
correspondance qui mesure une distance entre un document et une requéte ou un profil.

Il existe de nombreuses distances, une des plus simples étant

15

[Dn |
M = 2DD+ QQ

ou D désigne I’ensemble des mots clé indexant le document et Q, celui
représentant la requéte. Elle calcule en fait le rapport des mots communs des deux
documents au nombre total de mots.

Une des techniques les plus simples, mais aussi la plus utilisée dans les moteurs de
recherche, est la recherche booléenne : un document est dit correspondre 4 une requéte
quand les mots de la requéte se retrouvent dans le document. Elle est dite « booléenne »
car les mots de la requéte peuvent étre groupés en expressions logiques booléennes (avec
AND, OR, ...). Bien que ce soit une des techniques les plus simples, diverses méthodes
sont utilisées pour la rendre plus efficace, comme les techniques d’expansion de requéte,
qui consistent 2 modifier la requéte initiale, souvent en lui ajoutant des mots
«synonymes». Son avantage est d’étre rapide. Son défaut principal est de donner la
méme importance a chaque mot et a chaque document retrouvé (le document recherché

peut aussi bien étre classé 5° ou 49° sur 50 documents retrouvés).

23.2 Modéle espace-vectoriel
Pour pallier ce probléme, Salton (1975) a introduit le modéle espace-vectoriel,

basé sur la pondération des mots en fonction de leur importance dans un document ou
une requéte. Ce modele est peu utilisé actuellement car ses performances sont fortement
liées a la topologie de I'espace créé lors de I’indexation. Néanmoins, 1’arrivée de
systtmes de recherche évolués basés sur les agents remet ce modéle au devant de la
scene.

Dans le modeéle espace-vectoriel, le schéma figuratif de base est le vecteur (Salton
et McGill, 1983). Ainsi, dans cette représentation, les documents et les requétes sont
considérés comme un ensemble de vecteurs dans un espace 2 n dimensions, n étant le
nombre de mots utilisés dans I’'indexation. Chaque document est représenté par un
vecteur constitué des poids de chacun de ces mots dans la représentation du document.
Ce poids peut aussi bien étre un entier (ex : nombre d’occurrences du mot dans le

document) qu’un nombre réel. La correspondance entre la requéte et un document est

16

alors calculée comme l’inverse d’une distance entre les vecteurs de représentation
respectifs dans cet espace de dimension n. Il existe plusieurs métriques possibles.
Mathématiquement, toute fonction satisfaisant les trois propriétés de positivité, symétrie,
et inégalité triangulaire, est une distance. Les métriques euclidiennes sont encore trés
populaires et utilisées en RI par Myaeng et Korfhage (1990), entre autres.

Une autre fonction populaire en RI est la corrélation cosinus. En supposant que le
document et la requéte sont représentés sous forme vectorielle, soit Q =(q;,q2, . ., q) et
D = (d;, dy, . . ., d) ot q; et d; sont les poids associ€s a chaque mot cl€ i. La corrélation
cosinus est simpiement :

3ad,

i=1

(36)y

r=

Soit, dans un espace euclidien,

= gI'D —cos(B)

ol 0 est I’angle entre les vecteurs Q et D.

2.3.3 Algorithme d’apprentissage par rétroaction
Un utilisateur confronté a un systéme de recherche d’information automatique va

sans doute vouloir utiliser une stratégie d’essais et de corrections plutot qu’exprimer sa
requéte en une seule fois. Le genre d’informations dont il peut avoir besoin pour

reformuler sa requéte est:

(1) la fréquence d’occurrence de ses termes de recherche dans la base de
documents ;

2) le nombre de documents susceptibles de correspondre a sa requéte ;

3) des alternatives aux termes utilisés ;

@) des citations susceptibles d’étre trouvées ; et

(5) les termes utilisés dans les citations (4).

17

Un utilisateur peut alors préciser, élargir ou recentrer sa requéte suivant les
informations fournies par le syst¢éme. C’est donc une forme manuelle de rétroaction.
Souvent, une ou plusieurs de ces informations ne sont pas disponibles. Nous considérons
maintenant une approche mathématique pour que le systtme puisse modifier
automatiquement la requéte. Le mot rétroaction est utilisé pour décrire le mécanisme par
lequel un systéme peut améliorer ses performances en considérant son passé. Cette
notion est bien établie en automatique et en RI et a été popularisée par Norbert Wiener
dans son livre «Cybernetics» (1948).

Considérons une stratégie de recherche utilisant une fonction de correspondance M
et des vecteurs t-dimensionnels pour les représentations de la requéte Q et du document
D. On suppose ici que I’ensemble des documents est connu. Le but est de retrouver les
documents voulus A sans les documents indésirables A’. Malheureusement, la
correspondance est une notion propre a l'interprétation de I’utilisateur et celle-ci peut
différer de la description qu’il en donne au systéme. Dans le cas oit M est la fonction de
corrélation cosinus, la procédure de décision avec un seuil T (qui décide de montrer un
document ou non), M(Q.D) - T > 0, correspond 2 une fonction de discriminant linéaire
utilisée pour séparer deux ensembles A et A’ dans R[t]. Nilsson (1965) a expliqué
comment ces fonctions peuvent étre entrainées en modifiant les poids g;. Supposons que
A et A’ soient connus, alors la formulation correcte de la requéte Qo est celle pour
laquelle

M(Qo,.D)>Tquand D € A et
M(Qo.D)<TquandD € A’.

Un théoréme (Nilsson, 1965) assure que, pour tout Q et Qq, il existe une procédure
itérative faisant converger Q vers Qq, appelée la procédure de correction par incrément
fixe. Elle s’énonce ainsi:

Qi=Qi. 1 +cDsiM(Q;,,,D)-T<0siDeA
Qi=Qia-cDsiM(Q;.,,D)-T>0siDe A’

18

et aucun changement ne se produit si le diagnostic est correct. ¢ est I’incrément de
correction, de valeur arbitraire et habituellement égale a 1. En pratique, il peut étre
nécessaire de répéter I’ opération un grand nombre de fois avant convergence.

La situation est moins simple en Rl car les ensembles A et A’ ne sont pas connus a
I’avance, mais on peut demander a I’utilisateur de décider lesquels sont désirés parmi les
documents trouvés. Le systéme peut alors modifier Q automatiquement. Dans sa thése,

Rocchio (1966) a défini la requéte optimale comme celle qui maximise:
&=L % M(0,D)- L ¥ M(Q,D

Si M est la fonction cosinus, il est facile de montrer que & est maximisé par :

D 1 D
0, =¢| a1 2181 ~ Tl
o= €| Ta] 2101~ Ta] I
ol ¢ est une constante proportionnelle arbitraire. Si les sommes ne portent que sur les
documents trouvés a I'itération i, on obtient une requéte optimale pour ceux-ci, mais elle

peut ne pas I'étre pour les documents non encore retournés. On ajoute alors ce vecteur a

la précédente formulation de la requéte pour obtenir:

= —1 Q. - D
QM lei+w3 IAnDiI DE;D‘“-I—)" lZf\ D‘I De%l_).m

ol w et w3 sont des coefficients de pondération.

Salton (1975) a en fait utilisé une version légérement modifiée. En résumé, ces
ajustements consistent a donner plus de poids dans la description de la requéte aux mots
qui décrivent les documents voulus et moins aux autres. Les essais ont démontré que
cette technique peut Etre tres efficace, mais oblige I’utilisateur a juger un certain nombre
de documents a chaque requéte. Les systémes muiti-agents cherchent 3 éviter ce défaut
en faisant partager la tiche entre un grand nombre d’utilisateurs humains ou agents

logiciels collaborant.

19

24 Applications des systémes d’agents mobiles

Les domaines d’application des SAM sont a peu prés les mémes que ceux ou les
agents statiques sont actuellement appliqués : recherche et filtrage d’informations,

commerce électronique et t€lécommunications.

24.1 Recherche et filtrage d’informations
C’est le plus grand champ d’application et d’expérimentation des agents. Méme si

les systémes décrits ici utilisent des agents statiques, ils pourraient étre avantageusement
remplacés ou secondés par des SAM. Les premiers systémes commerciaux utilisant des
agents étaient des agents “moniteurs”. C’étaient des programmes qui alertaient
I’utilisateur quand une information intéressante apparait. e-Watch, ZDNet (qui a cessé
récemment ce projet) et Excite (Sites Internet) procurent ce service pour les nouvelles et
les informations.

Alexa (Site Alexa) est une barre d’outils d’aide gratuite a la navigation. Elle
procure des informations statistiques et des liens sur chaque site visité. Elle aide
également au magasinage en ligne en vérifiant I’identité d’un site de commerce a partir
des contacts donnés sur la page.

Les agents, et spécialement les agents mobiles, sont adaptés pour agir comme des
“bots”, des logiciels qui naviguent continuellement sur la toile pour trouver de nouvelles
informations. Cette technologie, qui utilise des techniques de data-mining, est déja bien

étudiée et posséde ses standards.

24.2 Commerce électronique
Les agents, fixes ou mobiles, peuvent €tre utilisés pour le commerce électronique

de plusieurs fagons. Ils peuvent donner aux utilisateurs un accés personnalisé aux
informations données en ligne. Frictionless (Site Frictionless) est un systéme d’agents
statiques intelligents, développé au MIT. 11 permet aux utilisateurs de comparer
plusieurs produits et conditions de ventes, en magasinant en ligne. L’utilisateur peut
sélectionner un profil qui correspond a ses habitudes d’achat, choisir un produit et

préciser ses caractéristiques. IlIs peuvent aussi €tre utilisés pour des ventes aux enchéres,

20

comme AuctionBot, développé a I’Université de Michigan. Il existe beaucoup d’autres
sites d’enchéres utilisant des agents statiques (ebay, onsale, auctionet).

Parmi les systémes d’agents mobiles, on peut remarquer Nomad (2000), utilisé
dans un site d’enchéres, eAuctionHouse, a I'Université de Washington. Tabican (site
Aglets, détails en Japonais) est un marché virtuel pour des billets d’avions et des tours
(air + hotel) oi des milliers d’agents mobiles de clients et vendeurs peuvent se
rencontrer et trouver le meilleur prix pour le client et le vendeur a la fois, sans leur faire

perdre de temps.

2.4.3 Agents mobiles en télécommunications
La fonctionnalité de mobilité prend toute son importance dans le domaine des

télécommunications. Les agents mobiles peuvent y étre utilisés pour couvrir toutes les
couches des protocoles de communication, de la maintenance de réseau, jusqu’aux
applications mobiles, suivant |’'usager dans ses déplacements.

Dans le systéme SPIN (Abu-Hakima et al, 1998), un “Personal Communicator
Agent " (PCA) est un agent mobile chargé de délivrer un message au destinataire, quel
que soit son appareil — téléavertisseur, téléphone, ordinateur, portable ou téléphone sans
fil. Le PCA d’un utilisateur doit pouvoir recevoir les messages et les conduire sans
interruption dans des réseaux hétérogénes a I’utilisateur. Par exemple, si le seul moyen
de délivrer un message urgent a un utilisateur est un téléphone sans fil, I’agent personnel
doit convertir le message textuel en message vocal.

NetChaser (di Stefano et C. Santoro, 2000) est un ensemble d’assistants personnels
développé a I'université de Catania, en utilisant leur propre systéme d’agents mobiles.
La mobilité permet a ces agents de suivre !'utilisateur méme quand il change de
machine.

Le domaine de 1’administration de réseau est également I’objet de nombreuses

recherches. Comme 1’'équipe d’IBM (site Recherche-IBM), beaucoup pensent que le

21

futur des réseaux réside dans une plus grande intelligence, pour plus d’adaptabilité et de
mobilité, et que cette évolution passe par les agents mobiles.

L’administration de réseau est par nature asynchrone et répartie. De plus, il est
souvent important d’avoir une vue locale du syst€éme pour pouvoir déterminer les causes
et conséquences d’un probléme. L’administrateur doit alors se déplacer vers des
machines lointaines qui nécessitent des tiches de maintenance ou de mise a jour.
L’instatlation et la maintenance des logiciels deviennent difficile avec I’augmentation du
nombre de machines. Les agents mobiles sont ici adéquats pour voyager dans le réseau

et effectuer des taches périodiques.

25 Quelques systémes existants

Bien que de nombreuses applications basées sur les agents aient été développées,
peu ont passé le stade expérimental et encore moins celui de la commercialisation. On
peut trouver une liste plus compiéte de SAM a (site liste). Nous allons citer ici
seulement les plus importantes en tests, publications et applications.

Les Aglets d’IBM (site Aglets) ont été le premier systéme commercial développé
en Java a IBM Tokyo Research Laboratory. Concordia (site Concordia) est un systéme
commercial développé en Java par Mitsubishi Electric ITA. Mole (site Mole), développé
a luniversité de Stuttgart, implémente le schéma de migration faible, ou sont
transportées seulement les informations des données, car la migration forte (transport de
tout I’état systéme de 1’agent) était trop coiiteuse. Quant & Sumatra (site Sumatra), il a
été développé pour mesurer la performance des agents en gestion de réseaux. Il utilise
une application, Komodo, qui gére le temps de réponse du réseau. L’application de test
est Adaptalk, un logiciel de discussion sur Internet qui se positionne automatiquement a

I’endroit optimal sur le réseau.

Voyager (site ObjectSpace) est un “Object Request Broker” (ORB) en Java
supportant les agents mobiles. Malgré ses possibilités avancées de communication, ce
n’est pas un systéme congu spécifiquement autour des agents mobiles.

Agent-Tcl (site D’Agents) est I’un des premiers systémes d’agents mobiles
(premiére publication en 1995), initialement écrit en Tcl, un langage portable congu au
Dartmouth College. 11 a été depuis réécrit pour supporter divers langages - Tcl, Java et
Scheme — et renommé D’Agents.

Grasshopper est un systétme d’agents mobiles en pleine expansion développé a
I'IKV, en Allemagne. Il présente des fonctionnalités intéressantes comme une interface
graphique €laborée. Il est congu entiérement en Java.

Une difficulté dans le développement de SAM est le manque d’environnements de
test “mondiaux”, ol les agents peuvent traverser de grandes distances sur des réseaux de
caractéristiques et capacités diverses. L’Université de Dartmouth et plusieurs autres
institutions (site ActComm) se sont réunies pour construire un tel environnement.
Chaque institution fournit une machine 386/486/Pentium tournant sous Linux, avec un
compte pour chacune des autres institutions participantes. Chacun peut alors installer
son systéme pour des tests et analyses de performance. Les participants a ce projet sont :
Dartmouth, avec D’Agents, Berkeley et I'Université de Genéve avec Messengers,
Aachen University of technology et CNRI avec KnowBots. Malheureusement, ce projet
a été abandonné (voir page Dartmouth-réseau).

Le “Institute for Information Technology” (IT) du Conseil national de la
recherche du Canada (CNRC) utilise un environnement réel (Emako-Lenou, 2000; Abu-
Hakima et al., 1998) pour deux applications complémentaires de ‘“‘seamless personal
information networking” (SPIN™). Nous ne décrivons ici que la premiére: seamless
messaging (SM); I’ autre est un gestionnaire de réseau intelligent. Le réseau comprend un
LAN de plus de 30 terminaux, une passerelle SS7, un serveur “Computer Telephony
Integration’ (CTI), un accés au LAN sans fil, une station de base sans fil, une passerelle
ATM et de nombreux téléphones et portables. Une plate-forme CTI permet aux

utilisateurs de recevoir des appels avec les informations correspondantes sur leur

23

terminal. Des “Diagnostic Agent™ (DA) sont déployés sur chaque nceud du réseau

pour gérer chacun un type de matériel.

2.6 Performances des SAM et perspectives

“Messengers” (site Messenger) est un systéme développé a I’'Université de
California a Irvine. Il se compose de “messengers”, des agents mobiles voyageant sur un
réseau virtuel pouvant se superposer a un réseau réel. IlIs peuvent suivre un programme,
selon un “temps virtuel”, et contenir du code natif.

Les Messengers ont été évalués sur un réseau de stations SunSPARC ELC's (16
MB mémoire chaque) connectées par un réseau Ethemet a2 10 Mbps. L’interpréteur est
un unique processus Unix, avec deux «threads» concurrents (un pour les envois, I’autre
pour les réceptions) pour la communication avec les autres sur le réseau. Les tests
montrent que les opérations arithmétiques sur les scripts Messengers ajoutent un surcoiit
d’un certain ordre de magnitude par rapport au code natif. L’appel de fonction dans
Messengers est 100 fois plus coiiteuse qu’un appel de fonction C. La création d’un
messenger demande environ trois fois plus de temps que de créer un «thread» Iwp (Low
Weight Process), mais moins qu’un processus Unix. Finalement, les changements de
contexte sont comparables pour chaque systéme.

Ceci montre que I'interprétation des scripts Messengers peut augmenter
considérablement le coiit. Cependant, ce coiit ne se retrouve pas nécessairement dans les
applications. La raison en est que les messengers peuvent contenir également du code
natif C. De plus, la communication est la source la plus courante de surcoit dans les
applications réparties, et I’ utilisation des messengers réduit ce coiit.

Les résultats montrent que les «threads» lwp et les messengers sont tous deux plus
rapides que I’exécution séquentielle au dela d’une certaine granularité (1000 — 10000
opérations). Le surcoiit des messengers devient méme négligeable comparé a I’exécution

«multi-thread» conventionnelle.

24

D’autres évaluations sont reprises dans (Bic et al., 1999), ou un calcul (d’une
image de la fractale de Mandelbrott) est exécuté comparativement avec les agents
Messengers, un systéme réparti fonctionnant par passage de messages, et un programme
C fixe. Le résultat montre un avantage des Messengers et du systéme réparti sur le
programme C. La comparaison entre les deux premiers dépend de la granularité du
calcul (le nombre de points calculés par chaque unité de calcul), et aucun des systémes
ne montre une réelle supériorité.

Selon David Kotz et Robert S. Gray (1999), de Dartmouth, les systémes d’agents
mobiles épargnent des délais dus au réseau et de la bande passante, au détriment de la
charge de calcul sur les serveurs, car les agents sont souvent écrits dans des langages
interprétés relativement lents. Ainsi, en I’absence de déconnexion réseau, les agents
mobiles (surtout ceux qui doivent effectuer seulement quelques opérations par serveur)
prennent souvent plus de temps que des implémentations traditionnelles pour accomplir
une certaine tiche, car le gain en temps sur le trafic réseau est alors insuffisant pour
compenser la lenteur d’exécution et de migration.

Heureusement, des progreés significatifs ont été faits dans le domaine de la
compilation a I'exécution (surtout pour Java), l'isolation des fautes, et d’autres
techniques (Muller et al., 1997), ce qui permet au code mobile de s'exécuter presque
aussi vite que du code compilé. De plus, des groupes de recherche travaillent activement
a4 réduire le colit de migration. Réunis, ces efforts devraient conduire a des systémes
dans lesquels I’utilisation d’agents mobiles n’impliquerait qu'une faible charge
supplémentaire au serveur par rapport a un service fourni comme une procédure.

Par ailleurs, le projet ActComm (site ActComm) - transportable agents for wireless
communications — a donné€ lieu a plusieurs évaluations. Dans (Brewington et al., 1999),
on décrit un systéme de recherche d’information utilisant SMART et des agents mobiles.
Les requétes sont envoyées d’un laptop a 200 MHz a un serveur Sun via une connexion
Ethernet a 10 Mbps. Les agents utilisent la nouvelle version «multi-thread» de D'Agents,
sans encryption. Les résultats montrent que la migration implique un coit

supplémentaire par rapport a la communication inter-agent (deux agents fixes

25

communicant) et encore plus qu’un APD. Les chercheurs identifient deux raisons
principales a ces mauvaises performances : TCL est lent car trop de code doit encore étre
exécuté par I'interpréteur avant de recevoir un nouvel agent; et I’utilisation de TCP, plus
lent qu’UDP pour la communication et I’envoi des agents. Mais les agents surpassent
APD quand le nombre de requétes augmente, sauf si les documents doivent étre
retournés a I’ utilisateur par le réseau pour vérification.

Les résultats peuvent ne pas sembler trés concluants, mais il faut considérer aussi
que méme avec un lien de 10 Mbps (rapide) et un interpréteur Tcl lent, le SAM surpasse
la solution client/serveur dans plusieurs cas, en particulier quand les opérations de
recherche sont fournies par le serveur sous forme d’une librairie. Dans tous les cas,
I'utilisation d’agents mobiles sauve de la bande passante réseau.

Jorstad (site Jorstad) donne un exemple classique de comparaison entre un systéme
classique client/serveur et un SAM. Le scénario (liaison a faible débit, serveurs de bases
de données distants) est trés avantageux pour I’agent, qui surpasse I’autre systéme en
charge de réseau et en rapidité.

Domain Name eXchange (DNX) (Gannoun, 2000; site DNX) est un systéme
développé a I'université de Genéve. Son but est de fournir un SAM qui aiderait & gérer
la demande croissante pour les noms de domaine, qui ont désormais valeur commerciale.
Ce systeme utilise a la fois des agents fixes et mobiles, sur la plate-forme JavaSeal,
développée dans la méme université. Cette plate-forme peut supporter plus de 1,100
agents concurrents, ayant chacun un «thread» d’exécution actif. Au dela, des créations
supplémentaires sont trés lentes du fait de la quantité importante de basculement
générée. La communication inter-agents ralentit également. [Is prévoient d’améliorer les
performances de la plate-forme en y incluant de nouvelles fonctionnalités comme le
stockage d’agents inactifs.

La performance en termes de rapidité et de bande passante utilisée n’est pas le seul
avantage des SAM et n’est pas toujours le facteur déterminant du succés. Todd
Papaioannou et John Edwards, de I’université Loughborough, UK, proposent différentes

mesures de performance dans (site Loughborough). Les deux systémes décrits sont

26

construits pour supporter les ventes d’une entreprise de fabrication répartie, en utilisant
le “Aglets Software Development Kit” d’IBM. Les bases de I'implémentation
proviennent de données collectées dans I’étude d’un cas réel. Les deux systémes sont
évalués en utilisant la méthodologie «Goal/Question/Metric» (but/question/métrique).
Deux nouvelles mesures d’alignement sémantique et de capacité de changement sont
présentées et utilisées pour I’évaluation des systémes. Ceux-ci sont évalués a partir d’un
ensemble de scénarios générés lors de I’étude de cas. Ensuite sont examinées les
implications de I’utilisation de code mobile, comparativement a une technologie répartie
traditionnelle. Ce travail met en évidence que les systemes d’agents mobiles et d’objets
mobiles ont des proprié€tés inhérentes qui peuvent Etre utilisées pour la construction de
systémes répartis adaptables. L’autonomie des agents mobiles donne encore plus de
support.

On peut considérer que les tests choisis sont suffisamment récents (1998, 99) pour
refléter les performances actuelles des systéemes d’agents mobiles. Les évaluations
décrites sont similaires, dans le fait qu’elles sont relativement simples, impliquant un
faible nombre de nceuds de réseau et des conditions de tests favorables aux SAM. En
résumé, les résultats obtenus indiquent que les SAM utilisent moins de bande passante
réseau (Gray, 1999; Brewington et al., 1999; Gannoun et al., 2000; site Jorstad), mais ils
amrivent encore difficilement au niveau des systémes traditionnels pour la rapidité
d’exécution (Brewington et al., 1999) (les scénarios de test avantagent souvent les
agents), et encore moins pour la charge de calcul des serveurs (Gray, 1999). Les SAM
conviennent donc aux applications ou I’optimisation de la charge du réseau est plus
importante que la rapidité, comme c'est le cas de la plupart des applications en
environnement sans-fil.

On peut se demander, au vu de ces résultats, si des applications de SAM vont étre
commercialisées dans un proche avenir ou s’ils vont perdre la considération (et les fonds
de recherche) des entreprises, comme I'[A dans les années 80. Mais les agents mobiles
ont I’avantage de permettre a la fois le développement rapide d’applications et la

réutilisation des travaux faits en [A au cours des 20 demiéres années. L.a mobilité leur

27

confére également d’autres avantages, comme la facilit¢ de personnalisation,
I’adaptabilité ou I’interopérabilité.

Certaines recherches essaient de mettre ces qualités en avant en évaluant des
paramétres autres que la seule performance (site Loughborough), comme la sireté ou
I’adaptabilité, montrant ainsi les vrais avantages des SAM sur les systémes traditionnels.
De plus, certains articles montrent que la technologie agent a suffisamment évolué pour
permettre la gestion d’un réseau (Abu-Hakima, 1998), et le développement
d’environnements de test réalistes (Abu-Hakima, 1998; Site Dartmouth-réseau) nous
laisse présager de plus en plus d’évaluations et de comparaisons dans un futur proche.

Les systémes d’agents mobiles permettent le développement rapide d’applications
qui utilisent beaucoup la mobilité et peu d’algorithmes complexes d’intelligence
artificielle. Ces systémes montrent de bonnes performances sur des réseaux fermés et
sirs, mais ils ont encore besoin de plus d’autonomie et d’intelligence pour aborder des
réseaux plus changeants et risqués. Or, au vu de leurs caractéristiques, les systémes
d’agents mobiles sont faits pour ces derniers réseaux. Il y a donc la une contradiction
flagrante entre les capacités actuelles des agents mobiles et ce pour quoi ils sont prévus
et adaptés. C’est pourquoi il est important d’aborder des problémes tels que le
“travelling agent” (Brewington, 1999), ou reroutage (Jorstad).

L’intégration dans les agents mobiles d’algorithmes complexes d’IA augmente la
taille de leur code et les rend moins efficaces pour des tiches simples, mais cela leur
permet d’effectuer des taches plus complexes dans des environnements plus changeants
et hasardeux. L’important est de ne pas surestimer les agents mobiles et de garder un
bon équilibre entre la difficulté de la tache a accomplir et la quantité d’IA inclue, lors du
développement d’un systéme (Woolridge, 1999).

Les tests et évaluations décrites ici ont pu montrer la supériorité d’un systéme
client/serveur ou d’un SAM, suivant la situation. En fait, les SAM semblent surpasser
les solutions classiques pour la charge du réseau ou méme la vitesse d’exécution, mais
les vrais tests vont a peine commencer, avec les environnements réalistes comme SPIN

(Abu-Hakima, 1998) ou (Dartmouth-réseau), et des applications plus complexes.

28

Les agents mobiles sont I’aboutissement de I’évolution des concepts de mobilité,
mais ils sont aussi « 99% computing, 1% Al » (Woolridge., 1999), et ce 1% doit prendre
de plus en plus d’importance pour pouvoir exploiter toutes les possibilités que I’on peut

attendre des agents mobiles.

29

Chapitre III

Architecture multi-agents de recherche d’information

On peut classer les applications utilisant des agents mobiles en trois grandes
catégories : une ol l’agent est trés spécialisé et va effectuer une tiche simple sur un ou
plusieurs serveurs; une autre ol I’agent effectue une tiche complexe sur une longue
durée et se déplace peu; dans la derniére, I’agent doit effectuer une tiche complexe sur
un certain nombre de serveurs. Cette derniére catégorie comprend la plupart des
applications de commerce €lectronique et de recherche d’information. La rapidité
d’exécution et la taille du code sont alors des facteurs cruciaux pour I’agent, alors qu’il
doit également pouvoir effectuer des tiches complexes et, pour cela, avoir accés au code
d’algorithmes pouvant étre complexe et requérant souvent un grand volume de données.
Or, ces algorithmes et ces données gagneraient a étre partagés avec d’autres applications
ou €tre fournis par le serveur lui-méme, pour étre accédés localement. 11 est également
inutile que I’agent transporte du code déja présent ou effectuant une opération déja
fournie par le serveur. Ce chapitre traite de la conception d’une architecture multi-agents
résolvant ce probléme et destinée en particulier aux applications de recherche

d’information, mais pouvant étre étendue a d’autres types d’applications.

3.1 Caractérisation de I’architecture

Considérant les limitations d’une application basée sur un agent mobile seul
(transport de tout le code a chaque déplacement), nous proposons de scinder 1’agent
unique en plusieurs agents intégrés dans une architecture multi-agents, la plupart d’entre
eux toujours mobiles. Nous allons ici décrire cette architecture, en commengant par
définir ses objectifs et spécifications.

Les qualités les plus fréquemment attribuées aux agents mobiles sont de diminuer
la charge d’un réseau et d’avoir une «conscience» du réseau, c’est-a-dire de sa topologie

et de sa configuration. Bien que souvent prises pour acquises, ces caractéristiques sont

30

en fait rarement implantées dans les systémes d’agents mobiles actuels. De plus,
I’approche classique cherche au contraire 2 masquer au maximum les caractéristiques
physiques du réseau aux applications par des couches successives de protocoles. Nous
allons donc chercher a construire notre architecture de fagon a minimiser la charge du
réseau. En particulier, I’un des grands défauts de 1’approche client/serveur et des réseaux
classiques en général est de ne procurer aucun moyen de localisation géographique et
d’encourager du gaspillage de bande passante en traitant de la méme fagon une liaison
locale et une liaison intercontinentale pouvant comporter un grand nombre de « hops ».
Ces demiéres sont souvent surchargées aux heures de pointe et peuvent entrainer des
délais importants dans 1'acheminement des paquets. Cela tend a changer, en particulier
dans le domaine fortement concurrentiel WAP de la téléphonie cellulaire, mais
beaucoup reste a faire. Nous allons donc mettre I’accent sur les aspects de localité et de

réutilisation du code.

3.1.1 Catégories d’agents
Comme Esmahi (1999), on va distinguer essentiellement deux types d’agents, les

agents passifs ou réactifs, et les agents actifs. Pour résumer, les premiers ne vont agir
qu’en réponse a un message de leur environnement (utilisateur, systéme ou autre agent)
alors que les seconds vont agir de leur propre initiative. Ils peuvent déclencher une
action a la suite d’'un événement interne, méme sans message extérieur. Généralement,
les agents actifs vont étre les acteurs principaux et vont utiliser les agents passifs pour
accomplir la tiche qui leur a été confiée. Toutefois, contrairement a des objets, les
agents passifs sont permanents et conservent un état interne qui conditionne leur réponse
aux messages qu’ils regoivent. Par conséquent, leur réponse a deux messages identiques
peut varier selon le passé de I’agent. C’est ce qui distingue la programmation orientée
agent, introduite par Shoham (1993), de la programmation orientée objet. Les agents
peuvent trés bien passer d’un état passif a un état actif ou inversement a tout moment, a
la réception d’un message particulier ou 4 un moment donné. Un agent actif devient

passif lorsqu’il se met a la disposition des agents actifs en attente du prochain événement

31

(qui peut étre interne a I’agent). Par exemple, un agent d’analyse financiére peut partager
ses fonctions d’analyse avec d’autres agents pendant qu’il attend des données, comme le

montre la Figure 3.1.

O .

L’agent mobile actif arrive sur le serveur de données boursiéres.

LN 4
e

Il demande au serveur de lui donner le prochain passage d’une action

au-dessus d’un certain seuil et devient passif en attendant la réponse.

L]
e

{]

D’autres agents peuvent lui demander d’'analyser le cours d’une autre

action pendant ce temps.

L 4
”

L 1

Le serveur lui fournit les renseignements attendus et 1’agent redevient
actif pour continuer sa tiche (par exemple trouver comment rejoindre son

propriétaire le plus rapidement possible).

Figure 3.1 Agents actifs et passifs

Un agent «multi-thread» peut étre en méme temps actif et passif. Dans notre cas,
les agents actifs sont mobiles et, pour rester suffisamment légers, ne peuvent pas
emporter une grande quantité de connaissances sur les autres agents. Un des objectifs de
I’architecture décrite ici est donc de procurer i ces agents un moyen simple de trouver
un agent capable de fournir le service dont ils ont besoin. Tout d’abord, comment

désigner un «service»? Nous avons choisi les interfaces comme la caractéristique d’un

32

agent représentant une fonction ou un ensemble de fonctions qu’un agent est capable de
réaliser pour d’autres, ceci pour plusieurs raisons. La caractéristique choisie doit étre
aussi représentative que possible de la fonction de I'agent et doit étre indépendante
d’autres paramétres. Il doit étre possible et ais€ de chercher un agent selon cette
caractéristique. Enfin, un agent doit pouvoir regrouper plusieurs fonctionnalités.
Grasshopper, sous lequel nous avons développé les applications, présentait plusieurs
possibilités de recherche, selon le nom, la description, ou la classe de I’agent.
Cependant, ces caractéristiques sont soit uniques, comme le nom ou la classe, soit trop
vagues et changeantes, comme la description. Or, il est naturel, en Java ou tout autre
langage orienté objet, de penser & une interface pour représenter un ensemble de
fonctions qu’un objet contient. La connaissance de cette interface est méme nécessaire
pour pouvoir communiquer avec un autre agent. Plutot que d’imposer une interface
standard unique, nous avons préféré choisir I'interface comme représentative d’un
service offert par un agent. La fonction de recherche correspondante, inexistante sous
Grasshopper, est donc réalisée par notre architecture (Figure 3.2) au niveau du
registraire, agent particulier décrit dans le paragraphe suivant.

Le registraire est un agent particulier de notre architecture (le seul), car il
concentre les fonctions qui nous sont nécessaires mais qui ne sont pas assurées par la
plate-forme. Nous avons vu que I’une de ces fonctions est la recherche d’autres agents.
Pour cela, le registraire va conserver une liste des agents présents sur la plate-forme avec
leurs interfaces. Les agents passifs vont, a leur arrivée sur la machine, s’inscrire auprés
du registraire pour chaque interface qu’ils désirent présenter. Ils se désinscrivent lors de
leur départ ou de leur suppression. Le registraire peut étre informé par la plate-forme de
I’arrivée ou du départ d’un agent, mais c’est aux agents eux-mémes de décider selon
quelles interfaces ils désirent pouvoir étre recherchés. Le processus d’inscription ne peut

donc pas étre complétement automatisé et ignoré au niveau du code des agents.

Un agent actif arrive sur la machine A et demande un agent.

L’agent existe
sur A?

Le registraire A interroge le
registraire voisin B.

v

Le registraire B copie I’agent

sur A,

Le registraire C copie
I’agent sur A.

v

Le registraire indique a I’agent

mobile I’agent passif fournissant

le service

v

L’agent existe
sur la machine
B?

|

Le registraire A interroge la

région Grasshopper.

L’agent existe
dans la région?

33

L"agent mobile charge le service lui-

méme ou s’en va.

Figure 3.2 Algorithme de recherche d’un agent

Si le registraire ne trouve pas un agent dans sa propre base, il interroge les

registraires «voisins» en vue de tirer profit de la localité pour réduire la charge du réseau

(nous verrons ensuite comment est transcrite cette idée), puis I’ensemble de la région de

34

sécurité a laquelle il appartient. En cas de succes, il copie I’agent trouvé sur la machine
locale et lui transmet la requéte de 1’agent mobile. Ainsi, on n’utilise qu’en demier
recours les liaisons et les machines « distantes », c’est a dire n’appartenant pas au méme
sous-réseau. On économise donc des ressources réseau. On peut noter qu’un avantage de
ce choix est aussi de libérer I’agent mobile du code préparant et effectuant la recherche,
ainsi que du code de traitement d’erreurs associ€é qui peut représenter une part
importante de la taille d’un agent. De plus, ce code variant selon le systéme d’agents
mobiles utilis€s, on acquiert une plus grande indépendance au systéme utilisé lors du
développement de ’agent. La Figure 3.3 illustre le déroulement d’une communication
entre un agent mobile actif et un agent passif par un exemple tiré des applications
développées.

En vue de minimiser la charge totale du réseau et de rendre les applications plus
performantes, il nous faut introduire un élément de « localisation » dans le systéme.
Plusieurs approches sont possibles. Grasshopper procure déja une certaine
«régionalisation» implicite de I’espace avec les «égions». Celles—ci réunissent les
agences de méme caractéristiques de sécurité et de propriété, ce qui indique une certaine
proximité géographique. Elles procurent également des fonctions de recherche d’agents.
Cela n’étant pas suffisant (un réseau d’entreprise internationale pourrait s’étendre sur
plusieurs pays avec la méme politique de sécurité), le registraire sera donc chargé de
conserver et de procurer aux autres agents des indications topologiques sur le réseau, en
particulier, les agences et les agents «proches». Cette notion de proximité peut trés bien
varier d’un registraire a I’autre. Elle refléte la politique du propriétaire du systéme en
matiére d’utilisation du réseau. Des «voisinages» plus grands impliquent en effet une
plus grande utilisation du réseau local et pourraient étre préférés par un administrateur

ayant des liaisons haut-débit sous-utilisées.

35

Agent actif Registraire Agent passif
‘
; Subscribe(«Cooperant») .
1
)
f Subscribe(«[Feedback») -
]
)
i Get(«Cooperant») L
< >
Question(description)
Pt
<
Forward(..., true)
4
>
Wakeup()
" J
H
[}
1
]
1 N
Get(«IFeedback»)
> >
Feedback()
—~ al }
v

v

événements |

enregistrement de I'agent

passif

I’agent actif arrive et
demande au registraire un

agent coopérant.

1l interroge 1'agent passif.

Fagent passif le renvoie
vers d’autres machines
(forward), et lui demande
du feedback (true).
L’agent mobile poursuit
alors son parcours.

L’agent mobile revient
pour indiquer ses résultats.

Et rentre chez lui.

Figure 3.3 Communication entre agents

Le registraire étant en contact permanent avec |’agence, il est également bien placé

pour jouer un rile de «gendarme» en complément des fonctionnalités de sécurité

procurées par le systeme. Il peut surveiller les allées et venues des agents, afin, par

exemple, d’éviter les agents indésirables ou les profiteurs qui vont chercher i utiliser les

ressources du systéme sans rien lui apporter, comme on va le voir dans le paragraphe

suivant. La Figure 3.4 résume les relations entre les différents éléments du systéme.

36

Agents mobiles
g actifs
—P> Agents passifs
UG utilisateur de services
utilisateur

Systéme d’agents mobiles

Figure 3.4 Relations entre les éléments de ’architecture

3.1.2 Vers des serveurs actifs
On a vu que le but du concept d’agent mobile est d’amener le calcul aux données

plutét que les données au calcul (Lange, 1998). Ceci est habituellement réalisé en
encapsulant tout le code voulu dans un agent mobile qui va voyager sur chaque serveur
et accéder aux interfaces qu’ils offrent, idéalement des interfaces de bas niveau, mais
souvent des interfaces de haut niveau, destinées a des utilisateurs humains. L’agent doit
étre rechargé en entier a chaque modification. Il faut noter que Grasshopper garde
chaque agent en mémoire cache pour une réutilisation ultérieure, mais qu’il est alors trés
difficile, voire impossible, de charger une version différente d’un agent qui se trouve
déja en mémoire. L’agent mobile doit souvent surmonter I’'inadéquation qui existe entre
I'interface offerte par le serveur et ses propres besoins, ce qui entraine un surcroit de
code 2 transporter a chaque fois. L’architecture proposée ici permet la réutilisation de ce
code en I’encapsulant dans un agent séparé qui va étre ajouté i 1’interface du serveur.
Celui-ci va donc gagner dynamiquement de nouveaux services et une nouvelle interface
qui s’ajoutent A ce qui existait initialement selon la Figure 3.5. La Figure 3.6 montre

comment I’ architecture proposée réduit la charge du réseau.

0

Machine A

Machine B

»Q

Machine B

O O

Machine A

37

1) L’application (agent mobile et services) est
développée sur la machine A.

2) L’agent mobile se déplace sur B et
demande au registraire local les services.

000 ,0

Machine B

Machine A

O O%- oNe)

Machine A Machine B

3) Les services ne se trouvant pas sur B sont
copiés a partir de A

4) L’agent rentre une fois sa tiche terminée et
les services sont préts 2 étre réutilisés sur B.

Figure 3.5 Déploiement d’applications

O

Interface du Interface du Interface du
serveur A serveur B serveur C
Architecture a un seul agent
d
Interface du Interface du Interface du
serveur B
serveur A serveur C

Architecture multi-agents proposée

Migration de I’agent mobile

Migration «sur demande» d’un agent passif

Service

o Agent Mobile | ——®
>

Communication

Figure 3.6 Architecture pour la réduction de la charge du réseau

38

Par la réutilisation du code, on épargne de la bande passante, de méme que ’on
simplifie la charge de 1’administrateur. La mise & jour des services va se faire
automatiquement, et celui-ci peut se concentrer sur d’autres problémes comme le
contenu ou la sécurité.

Néanmoins, cela implique que le systéme est capable de gérer efficacement
jusqu’a plusieurs milliers d’agents et de protéger I'hGte des agents malveillants ou
gourmands cherchant a profiter des ressources de la machine sans rien apporter. Par
exemple, le but d’un serveur d’images ou d’informations est de permettre 3 un
maximum de personnes d’y accéder (au moyen de leurs agents). 11 faut donc éviter qu’un
seul agent parcoure la base de données du serveur pendant des heures, voire des jours, en
utilisant de la mémoire et du temps de calcul au détriment des autres usagers. 11 faut
aussi supprimer les services qui ne sont pas ou plus utilisés et garder les autres. Pour
cela, le registraire est bien placé, comme extension de la plate-forme. Grasshopper
(comme la plupart des systémes d’agents mobiles) permet de connaitre tous les agents
qui arrivent, sont ou partent d’'une agence, qu’ils s’inscrivent ou non auprés du
registraire. Le registraire peut conserver ces informations en vue de calculer une
fonction de colit qui va représenter le coit d’un agent pour le syst¢eme. Cette fonction
serait de la forme :

A/Futil+B*Dutil+C*1aille
ou A, B et C sont des paramétres de normalisation positifs, Futil, la fréquence
d’utilisation de I’agent, Dutil, la durée écoulée depuis sa derniére utilisation, et taille, la
taille de la mémoire qu’il occupe (code + données). On dira qu’un agent est utilisé
lorsqu’il est contacté par un autre agent (par I’intermédiaire du registraire).

Les problémes de sécurité ne seront pas abordés en détail dans ce mémoire. On a
vu que, généralement, le cceur du systéme est protégé par le mécanisme de bac a sable
de I'interpréteur de code mobile (par exemple, la machine Java). Le mécanisme exposé
plus haut, ou un mécanisme similaire, peut le protéger d’une utilisation abusive de ses
ressources. Enfin, il est possible (c’est inclus dans Grasshopper) de n’accepter que des

agents signés par une autorité ou un groupe défini d’utilisateurs en qui I’on a confiance

39

(Allée, 2001). Toutefois, cette derniére technique peut entrainer un surcoiit certain di a
Putilisation des mécanismes de cryptage.

Il est & noter que cette architecture n’a pas pour but de couvrir la communication et
la coordination entre plusieurs agents actifs, mais peut étre facilement étendue par des

fonctions d’espaces de tuples comme JavaSpace ou Linda (sites JavaSpace et Linda).

3.1.3 Traitement des connaissances
Nous avons vu de quelle maniére 1’acquisition et I’utilisation de connaissances

peut aider a améliorer les performances d’une application agent mobile. Nous allons
proposer dans cette section une fagon de coder et de conserver ces connaissances. Nous
allons considérer deux sortes de connaissances : la connaissance de la topologie du
réseau, et la connaissance de son contenu (agents, places et données).

Le réseau est représenté par un ensemble de places (d’agences) groupées en zones.
Ces zones doivent étre plus fines et indépendantes des régions de sécurité ou de
recherche pour représenter une relation de proximité entre les agences. Globalement, on
se raméne a un ensemble d’adresses, agences et zones, réunies par une relation «est
dans» qui représente I’appartenance d’une agence a une zone ou l’inclusion d’une zone
dans une autre. Une agence peut trés bien appartenir a deux zones sans que cela ait
d’incidence sur les algorithmes présentés par la suite. On obtient donc un graphe sur
lequel on pourra appliquer des techniques heuristiques de recherche plus simples que
pour un graphe représentant I’ensemble des liaisons physiques du réseau. De plus, il
s’accommode trés bien de I'inconnu, les agences dont on ne sait rien peuvent étre
regroupées dans une zone spéciale «autre» et ce graphe peut étre étendu au cours du
parcours a 1’aide de la relation «est dans». La connaissance compléte du réseau n’est

absolument pas nécessaire a un agent. La Figure 3.7 illustre la structure d’un tel graphe.

" zone3 adressel
zZone
< adresse2 < adresse3 \ / adresse2
zone4 T
adresse3
@) adresse4
zone2 adresse4
adresseS adressel
autres \ adresse5
adresse6 adresse6
représentation structure réelle

Figure 3.7 Représentation du réseau

Un autre aspect est la représentation du contenu du réseau. Une ressource — place,
agent, fichier, base de données - va étre représentée par une «adresse». Celleci va
contenir |’adresse de 1a machine, ainsi que celle de I’agence ou doit se rendre 1’agent et
le nom de la ressource (avec chemin complet pour un fichier), indiquant également sa
nature. Cette adresse devra €tre accompagnée de renseignements destinés a guider
I’agent dans sa recherche d’une ressource utile pour sa tache. Afin d’alléger I’agent,
celui-ci ne doit transporter que le minimum d’informations, les autres étant conservées
dans d’autres agents. Ceci a 'avantage de permettre, en outre, 2 chaque agent de
conserver ces informations dans des formats qui peuvent étre trés différents, mais la
communication entre les agents s’en trouve compliquée.

L'’utilisation de KQML (Knowledge Query and Manipulating Language) (site
KSE) peut fournir un standard appréciable pour la communication entre les agents méme
s’il nécessite un gestionnaire de communication adapté dans chaque agent. Ce n’est pas
a proprement parler un langage de représentation de connaissances comme KIF

(développé par la méme organisation ARPA), mais un langage de manipulation de

41

messages, destiné a permettre la communication entre agents. KQML est un langage
plutét qu’un protocole, dans la mesure ot il est moins précis et fournit seulement une
base de communication. I n’aborde pas non plus I'aspect de la sémantique et des
ontologies. II s’occupe des problémes plus concrets suivants : savoir avec qui parler,
comment le trouver, comment commencer et prolonger un échange. Les primitives du
langage sont appelées "performatives”. Concept reli€ a l'acte de langage, celles-ci
définissent les actions que les agents peuvent tenter dans leur communication avec
d'autres.

KQML est décomposé en trois couches :

- la couche contenu est I'information contenue dans le message codé dans le
langage du programme, quel qu'il soit ;

- la couche communication code des attributs de bas niveau de la
communication, comme les adresses de I'envoyeur et du destinataire, et un
identificateur de communication ;

- la couche message sert a coder le message en termes d'interactions entre
agents et forme le cceur de KQML.

La premicre fonction de cette couche est d'identifier le protocole a utiliser pour
délivrer le message et spécifier une "action de langage”, ou "performative", que
l'envoyeur attache au contenu, telles que «ask-if», «ask-about», «ask-one», «ask-all»,
«eply», «sorry», «ell», «achieve», «cancel», «untell», «unachieve», «advertise»,
«subscribe», «register», «unregister», «forward», «broadcast», «route». Cette couche
peut contenir également d'autres caractéristiques du message, comme l'ontologie.
L'ensemble de ces caractéristiques permet l'analyse et la délivrance des messages, méme
lorsque leur contenu n'est pas accessible ou compréhensible. La syntaxe est basée sur
une liste entre parenthéses et révéle l'origine Lisp de la premiére implémentation.
Comme elle est trés simple, on peut facilement la modifier si nécessaire. La figure 3.8
donne un exemple de message KQML d'un agent joe a un agent stock-server pour

connaitre le prix d'une action IBM.

42

(ask-one Couche KQML
: sender joe communication
: content (PRICE IBM ?price) contenu
: receiver stock-server communication
: reply-with ibm-stock message
: language LPROLOG
: ontology NYSE-TICKS)
reponse a ce message communication
(tell
: sender stock-server
: content (PRICE IBM 14) contenu
: receiver joe communication
: in-reply-to ibm-stock message
: language LPROLOG
: ontology NYSE-TICKS)

Figure 3.8 Exemple de messages KQML

KQML introduit, pour faciliter la communication entre les agents, des facilitateurs
et des médiateurs. Un facilitateur est un agent qui s'occupe plus particulierement d'offrir
des services de communication aux autres agents. Dans notre cas, le Registraire est un
facilitateur.

Toutefois, le principe de notre architecture est que 1’agent ne garde que I’essentiel
lors de ses déplacements. Le minimum pour un agent mobile est d’avoir un itinéraire
avec des priorités accordées a chaque adresse. Ce minimum peut étre complété par des
informations spécifiques a une application, comme les résultats ou les paramétres d’une

recherche. Pour obtenir un itinéraire et attribuer une priorité a chaque adresse, 1’agent

43

doit s’adresser aux agents possédant des connaissances sur le contenu du réseau. Plutdt
que de leur demander directement ces connaissances, ce qui suppose I’existence d’un
langage de description et d’ontologies communes, 1I’agent mobile va leur demander un
itinéraire qui correspond a son but. L’agent mobile peut exprimer son but dans de
nombreux langages de description de connaissances, mais peut aussi se contenter
d’exprimer ses demandes sous forme d’une requéte textuelle comme celle qu’un humain
entrerait dans un moteur de recherche ou ceile qu’il a fournie a I’agent. Ceci nous
entraine a considérer des techniques de recherche d’information comme celles

présentées a la fin de ce chapitre.

3.2 Application numéro pilote

Le but de cette application est d’aider I’ utilisateur a trouver un correspondant pour
obtenir des renseignements par téléphone en parcourant une liste de correspondants
possibles. Dans cette section, nous en présentons le principe, les choix de conception,

ainsi que les modifications apportées a I’application initiale.

3.2.1 Principe
Plutdt que d’avoir a composer une série de numéros jusqu’'a trouver le bon,

I’utilisateur compose un numeéro pilote unique (ou un lien Internet « pilote ») et fournit 2
I’agent les informations voulues. L’agent va alors chercher lui-méme le correspondant
susceptible de prendre I’appel et, éventuellement, de fournir les renseignements désirés.
C’est une version agent des serveurs vocaux des grandes entreprises et administrations,
avec plusieurs améliorations. Notamment, I’utilisateur n’a pas a rester en ligne pendant
la recherche. Une fois I’agent envoyé, il peut revenir 3 son occupation initiale en
attendant les résultats de la recherche. 11 n’est pas obligé de prendre la communication
immédiatement. De plus, ce service offre une interface beaucoup plus personnalisée et
conviviale.

L’application se composait, initialement, d’un unique agent mobile transportant les

informations de I’utilisateur et une liste de correspondants possibles. L’agent voyage sur

les machines de chaque utilisateur listé jusqu’a trouver la bonne personne. Une des
améliorations apportées a I’application initiale est de rendre la liste des correspondants
dynamique. Ainsi, I’agent peut étre renvoyé vers d’autres correspondants en cours de
route, méme si ceux-ci n’étaient pas prévus dans la liste initiale, car non connus de
I’ utilisateur. Cette premic¢re modification fait passer les possibilités de I’application dans

I’'univers des agents mobiles et ouvre la voie a d’autres modifications exposées plus loin.

3.2.2 Choix de conception
Aprés un premier prototype développé sur Voyager par Bertrand Emako-Lenou

(2000), nous sommes passés a Grasshopper qui offrait des possibilités intéressantes pour
la conception et le déploiement d’agents mobiles et €tait également plus fiable.

Un choix important quant a la conception de cette application portait sur
I'interface téléphonie - agent. Le domaine considéré est ici celui de la téléphonie sur
Intenet ou l’on fait transiter un appel téléphonique par un réseau IP. Plusieurs
protocoles sont a ’essai pour concilier IP et temps réel. Les deux principaux sont H323
et SIP. Pour Glitho (2000), ces protocoles n’atteignent pas les objectifs espérés —
supporter une large palette de services et de fournisseurs, création, gestion et
personnalisation rapide et simple des services, indépendance au réseau, collaboration
avec les services déja existants. Pour compenser ces faiblesses, Parlay (site Parlay) a été
introduit comme une couche supplémentaire au-dessus de ces protocoles pour offrir une
interface simple et standard aux fournisseurs de services. C’est une technologie orientée
client/serveur. On a donc le choix de relier les agents mobiles uniquement a SIP (I’agent
pourrait intégrer un client SIP), & Parlay ou aux deux. La Figure 3.9 résume les
différentes possibilités d’'implémentation.

Devant la plus grande complexité de SIP et la mauvaise programmation des agents
client SIP existants, Parlay s’est imposé. Une interface Parlay générique a déja été écrite
par K. Sylla (Derochers, 2000) en Java et liée au protocole SIP. Elle ne peut cependant
pas étre mobile, méme en partie, Parlay étant destiné a étre implanté sur des serveurs, et

non des palm-top. L’interface est donc réalis€ée par un agent statique. Sa propriété

45

d’agent lui permet d’étre li€é au systeme d’agents mobiles, ici Grasshopper, et d’étre
facilement contacté par d’autres agents, méme a distance. Etant sur un serveur Parlay, il
peut communiquer facilement avec les protocoles de téléphonie. Cet agent implémente

une interface spécifique appelée IServeur qui va le caractériser dans I’architecture

décrite précédemment.

3.2.3 Modifications apportées a I’application initiale
Dans la premiére version, 1’agent parcourait un ensemble de places déterminé.

L’ajout d’une liste dynamique de destinations ouvre la voie a4 d’autres apports. La
section précédente décrit le choix de I’interface avec les fonctions de téléphonie. Nous
allons ici plus nous attarder sur le coté recherche d’information. En effet, le but de
I’agent est de trouver un correspondant téléphonique, soit un certain type d’information
représentée par une adresse IP (dans le cas de téléphonie IP), une réponse booléenne —
réponds/réponds pas — et éventuellement d’autres informations extensibles a loisir.

Le répertoire des services de téléphonie actuel, qui nous aide tant bien que mal a
trouver ce que nous cherchons, comprend répondeurs, annuaires, serveurs vocaux,
messageries, ... I1 est normal de songer a adapter ces outils a la téléphonie IP et a notre
application en particulier, d’autant que c’est particuliérement simple, I’agent transportant
une description du but de I’appel sous une forme textuelle, plus condensée et
compréhensible par les machines que la voix. Chacun de ces outils ou services peut étre
implémenté sous la forme d’un agent qui va communiquer avec I’agent mobile a travers
une interface simple décrite avec I’architecture. Le role de ’agent mobile va alors se
réduire a parcourir une liste dynamique d’adresses, chaque adresse correspondant a un
agent humain ou virtuel.

Le but de I’application est lui-méme é€largi a I'initialisation de tout appel. Elle peut
par exemple chercher un utilisateur utilisant plusieurs appareils, chercher une personne
occupant une certaine fonction dans une entreprise ou une administration, ou pouvant

fournir certaines informations.

> Client1
m Cliena
Parlay ‘
User Client3
. Agent Clientn

a partir de la machine de I’ utilisateur

Clientl

Client2

Clientn

Parlay

g A

5

Par un appel SIP

User

Uniquement par SIP

I Clientl
Client2 I

Clientl

Parlas

Via Parlay
Par une application Parlay
Initiation de 1’agent Initiation de I’appel

Figure 3.9 Choix de conception de I’interface téléphonie-agents

47

3.3 Application chercheur d’images sur Internet

Cette application cherche sur un réseau des images correspondant a la requéte de
I’utilisateur — «clip art», cartes de veceux. Dans la version développée, les images et leurs
descriptions sont obtenues via des pages HTML. L’agent voyage sur chaque serveur
hébergeant une base d’images et lit les pages HITML offertes par le serveur comme
interface avec la base. L’agent retourne ensuite & son point de départ avec les images
correspondant a la requéte de I'utilisateur. Plus précisément, 1’agent parcourt sa liste de
destinations, en commengant par une liste initiale de sites connus. Quand il arrive a un
site contenant une base d’images, il parcourt les pages HTML qu’on lui a indiquées en
cherchant les renseignements selon la méthode décrite plus loin. Il note ensuite les
résultats de cette recherche selon les critéres fournis par I’ utilisateur. Il revient dés qu’il

a suffisamment de résultats ou qu’il a fini son parcours.

3.3.1 Interface avec les bases d’images
Une base de données avec une interface JDBC aurait été la bienvenue pour le

développement de notre prototype, mais rares sont les sites offrant un accés direct a leur
base de données sur Intemet, pour des raisons de sécurité. Comme on voulait concevoir
une application réaliste, voire immédiatement utilisable, on a choisi comme interface la
plus représentée sur Internet: les pages HITML, éventuellement dynamiques. Notre
agent devait étre capable d’extraire les informations nécessaires — adresses des images et
leur description — des pages HTML de la fagon la plus simple et la plus générale
possible. Pour réaliser cela, on s’est inspirés du langage WONDEL développé a
I’Université d’Ottawa par Ouahid et Karmouch (1999). Ce langage sert a décrire le
contenu de fichiers HTML de fagon i en extraire I’information souhaitée.

Dans la version développée i Ottawa, WONDEL sert a stocker la méta-
information (P’information sur I’'information) dans des fichiers XML qui forment une
structure d’arbre. Les fichiers «feuille » relient les informations aux documents en
indiquant ou elles se trouvent dans le document en terme de «structure» (ce sera précisé

plus loin). Les fichiers « nceud » relient ces informations entre elles. Ce langage a été

48

développé pour étre utilisé par un agent parcourant un site important en vue d’indexer
I’'information qui s’y trouve dans une base de données. Il utilise la similitude de structure
qui existe entre différents fichiers d’un méme site pour réduire considérablement le
volume d’information initiale (ou trouver I'information) nécessaire a 1’agent. En effet,
ces fichiers étant souvent écrits par un petit nombre de personnes et de logiciels, ils
tendent a étre construits selon une structure commune. Par exemple, pour une liste des
employés d’un département, on peut avoir une page telle celle schématisée a la Figure
3.10.

Nom du département

Directeur :

noml renseignements | photo

Adjoint

nom2 renseignements | photo

Employés photo
nom3 renseignements

photo
nom4 renseignements

Figure 3.10 Exemple de page HTML

49

Si le site n’est pas trop mal fait, cette structure peut se retrouver au niveau du code

HTML, comme indiqué a la Figure 3.11.

<HTML>

<body>
<hl>nom du département</h1>

<h2>fonction</h2>
nom1 renseignements

Figure 3.11 Exemple de code HTML

On pourrait décrire le parcours de cette structure par un agent en pseudo-code

par la Figure 3.12.

Chercher <hl> et créer les résultats
Contenu de <hl>=nom du département
Pour chaque <h2>
Contenu de <h2>=fonction
Pour chaque «li>
Contenu=nom renseignements
Trouver un tag
Valeur de I’attribut src=photo
Enregistrement des valeurs courantes

Figure 3.12 Algorithme de parcours d’une page HTML

50

Ces informations pourraient étre codées tel quel dans une structure XML, mais la
présence de boucles imbriquées complique [’algorithme de parcours et risque
d’introduire des redondances. La simplification adoptée par Ouahid et Karmouch (1999)
est de ne faire que la boucle la plus «petite », ici sur les tags . Les autres
renseignements seront recherchés a partir de 1a dans la structure d’arbre du document
HTML. Leur fichier WONDEL suit la structure de I’enregistrement final (un tuple
composé de plusieurs champs). Cette structure est décrite plus en détail dans (Ouahid et
Karmouch, 1999).

Dans le but de simplifier les algorithmes et d’accélérer le parcours des pages, au
risque de perdre certains renseignements de moindre utilit€, nous avons adopté une
structure plus proche du pseudo-code en « reproduisant » dans le fichier de description
la structure qui contient les renseignements dans la page et ol se trouvent les
renseignements voulus au sein de cette structure. Pour le fichier de I’exemple, on aurait

le fichier de la Figure 3.13.

<h2>

<texte nom>
</texte>

<attributs>
<src photo>
</src>
</attributs>

</h2>

Figure 3.13 Fichier de méta-information

51

Dans cette figure, h2 indique le départ de la boucle : pour chaque , I’agent
enregistre les valeurs trouvées & chaque fois qu’il arrive a parcourir toute la structure. On
voit qu’on perd une partie de I’information, mais qui n’est pas importante pour la
recherche. Ce fichier pourra alors étre utilisé pour toutes les pages construites sur le
méme modéle. Ceci est particuliérement intéressant pour fouiller des sites contenant des
pages générées dynamiquement i partir de bases de données. 1l suffit d’écrire un tel
fichier pour chercher I’information dans toutes les pages du site ayant la méme structure

(une infinité pour des pages générées dynamiquement).

3.4 Algorithmes de recherche d’information utilisés

Les deux applications considérées dans la section précédente éEtant des
applications de recherche d’information (RI), elles gagneraient a étre dotées d’une plus
grande intelligence et de capacités d’apprentissage. Malheureusement, ajouter ces
algorithmes directement dans les agents augmenterait considérablement leur taille et
réduirait leurs performances de fagon prohibitive. Pour remédier a cela, nous proposons
d’appliquer aux agents mobiles des algorithmes d’apprentissage par « feedback » en
espérant des pertes de performances minimes.

Nous essaierons d’appliquer et d’évaluer cette technique de feedback sur la
requéte, mais surtout sur la description des documents eux-mémes. Cela est rendu
possible et méme nécessaire par le fait que, dans le cas de notre application, I’indexation
des documents n’est pas réalisée au niveau du serveur, mais est créée par I’application
elle-méme en dehors des bases de données. Si une indexation existe au niveau du
serveur, elle peut toutefois servir de point de départ appréciable.

Dans I’architecture multi-agent développée, les connaissances et les algorithmes
de RI sont regroupés dans une classe d’agent : le <KKnowAgent», qui va interagir avec
I’agent mobile. Les algorithmes utilisés vont refléter les caractéristiques dynamiques et

changeantes de I’environnement o I’ application est censée étre déployée.

52

3.4.1 Choix généraux
Nous avons choisi le modéle espace-vectoriel comme modéle de représentation de

I’'information pour sa plus grande souplesse d’utilisation. Car, il est plus adapté a des
requétes en langage naturel, et surtout pour 1’apprentissage. En effet, le mécanisme de
feedback permet I’apprentissage, par un renforcement progressif des mots réellement

significatifs de chaque document, de fagon simple et éprouvée (Nilsson, 1965).

34.2 Adaptations
Une différence importante par rapport a une situation classique de RI est que I’on

ne connait pas les documents a priori et qu’on ne peut pas non plus les indexer par les
moyens classiques (images ou personnes). On ne se trouve pas non plus dans une
situation de filtrage d'information car l'information ne vient pas «toute seule» a nous. Il
faut un moyen d’y accéder. Il faut donc réaliser un index, malgré les problémes que nous
venons de voir. Cet index va étre réalisé en partie au niveau des serveurs par les
annuaires en ligne ou un mécanisme de recherche classique, et au niveau des clients par
le KnowAgent, par feedback et apprentissage. Ce sont ces derniers qui vont nous
intéresser maintenant.

Cet agent n’a comme point de départ que quelques adresses indiquées par I’usager.
Il ne va pouvoir apprendre que par feedback, n’ayant aucune autre information sur le
reste du réseau. Il va enregistrer I'itinéraire final de I’agent mobile pour ajouter les
adresses ou I’agent a été renvoyé, avec des poids initiaux nuls. On va renforcer les mots
de la requéte dans la représentation d’une adresse réponse et les rabaisser pour une
adresse ol I’agent n’a pas eu de réponse.

Avec les notations de la section 2.4.3 (Q est le vecteur requéte, D; le vecteur
document a la i-¢me itération, T le seuil de décision et A I’ensemble des bonnes
réponses) :

Di=Di,1+cQ siMDi), Q) -T<0siDeA

Di"—'Di-l-CQ si M(Di_l, Q)-T>OSiD€ A’

53

On va ainsi réaliser, par renforcements successifs, un index de départ
correspondant aux besoins de I’usager.

L’indexation est habituellement réalisée en plusieurs étapes. La plus importante est
certainement la mise en parameétres. Dans le modéle espace-vectoriel, il s’agit de
calculer le poids associé a chaque mot. La formule couramment adoptée est celle du tfidf
(term frequency inverse document frequency), a savoir la fréquence du terme dans le
document divisée par la fréquence du terme dans I’ensemble des documents. On a ainsi
une représentation de I’'importance du mot dans le document en réduisant I’'importance
des termes les plus courants. Cela suppose de connaitre I’ensemble des documents. Or,
nous n’avons accés qu’a If, qui sera donc retenu pour l'indexation des documents
textuels (dont les requétes).

Beaucoup utilisent aussi les techniques de «stop list» et de «lemmatisation»
(Altavista, Yahoo). La premi¢re consiste a retirer au début du mécanisme d’indexation
les mots trop courants tels que les articles. La deuxiéme consiste a ramener toutes les
formes grammaticales d’un méme mot a un radical (lemme). Pour des raisons de
simplification, nous n’emploierons aucune de ces deux techniques. Certains moteurs de
recherche (AliWeb, HotBot, OpenText) choisissent d’ailleurs de garder tous les mots.
Cette élimination peut aussi étre faite aprés indexation (chose bien utile dans notre cas :
I’'indexation se fait au fur et & mesure) en tronquant le dictionnaire utilisé pour ne garder
que les mots les plus significatifs, i. e. ceux qui distinguent les documents les uns par
rapport aux autres. Comme l'indexation est réalisée par feedback dans notre cas, ceci
devrait permettre de ne retenir que les mots réellement significatifs : ceux que

I’utilisateur utilise effectivement.

54

Chapitre IV
Implémentation et résultats

Afin de valider les concepts présentés dans le chapitre 3, nous avons implémenté
les deux applications qui y sont décrites en utilisant I’architecture présentée, puis nous
avons réalisé des mesures de performance. Un des premiers choix d’implémentation est
celui de la plate-forme. Aprés le développement d’applications simplifiées sous
Voyager, nous avons travaillé sous Grasshopper. Les mesures ont été finalement
réalisées sous Grasshopper. Comme !’intérét de I’architecture présentée en terme de
réduction de la charge réseau découle directement de sa conception, nos mesures vont
s’orienter vers I’évaluation des différents algorithmes de routage et de recherche
d’information décrits dans le chapitre 3. L’agent actif peut étre considéré dans les deux
cas comme un agent de recherche d’information. Nous allons comparer les performances
de trois versions de cet agent. La premiére parcourt son itinéraire dans I’ordre d’arrivée.
La seconde regroupe ses arréts par régions géographiques. La troisiéme va, en plus,
noter chacune des régions par ordre d’intérét afin de minimiser ses déplacements
inutiles. Chacune des fonctionnalités ajoutées augmente la taille de I’agent mais laisse
espérer une meilleure optimisation des déplacements. Dans ce chapitre, nous traiterons

des choix d’implémentation faits, des mesures réalisées et de leur interprétation.

4.1 Choix d’implémentation

L’architecture présentée au chapitre 3 a été implémentée en grande partie. En
particulier, la communication KQML entre les agents n’a pas été implémentée, mais la
structure choisie, par interfaces, peut étre facilement adaptée aux messages KQML.
Chaque fonction de I’interface serait alors représentée par une commande textuelle
suivie des arguments appropriés. Dans ce qui suit, nous présentons la liste et la structure
des agents composant le sous-ensemble de 1’architecture que nous avons implémenté.

De nouveaux agents peuvent y étre ajoutés sans modification majeure.

55

4.1.1 Classes génériques
Nous regroupons sous le terme de «classe générique» les classes qui servent a

chacune des applications et qui par conséquent ne sont spécifiques i aucun agent ou
choix d’algorithme autres que ceux retenus lors de la conception de I’architecture. Ce
sont essentiellement : la classe Address qui peut repérer une ressource réseau, et la classe
Lien qui peut ajouter a cette adresse une priorité et des informations sur sa position dans
le parcours de I'agent. La Figure 4.1 décrit ces deux classes. A celles-ci s’ajoute la
classe Job qui permet de représenter une «tiche» d’un agent par une chaine de caractéres
décrivant la tiche et I'identifiant d’un agent. Elle est particuli¢rement utile pour les
agents passifs qui peuvent recevoir des requétes de plusieurs agents simultanément, mais
elie peut étre également utilisée par les agents actifs, notamment dans un but
d’ordonnancement des tiches. Cette classe peut étre considérée comme une
représentation interne simple d’une communication par messages KQML, car elle

contiendrait alors I’expéditeur du message et le message lui-méme.

Lien

Address Address getAddress()
boolean estDans(Address lieu)
GrasshopperAddress getAddress() void forwardedBy(Address f)
String toString()
String getName() int compareTo(Object 1)
String getProtocol()
String getHost() double getPriority()
int getPort() void setPriority(double x)
String getPlace()
String getAgency() boolean visited()
String getFileQ void justVisitedQ

Figure 4.1 Interfaces des classes Address et Lien

56

Une caractéristique de la classe Address est de pouvoir €tre construite a partir d’un
grand éventail d’objets Java représentant autant de concepts, d’oi un grand nombre de
constructeurs (non représentés sur la figure). On retrouve également dans la description
des classes Grasshopper, «GrasshopperAddress» qui note une adresse sous Grasshopper
dans le format héte/agence/place, ou «Identifier» qui sert a identifier un objet de fagon

unique dans le systéme Grasshopper.

4.1.2 Interfaces
Une particularité de I’architecture que nous avons proposée est que 1’'on ne va pas

chercher un agent a partir d’une description ou d’un nom, mais a partir de I’interface
qu’il présente. Ceci est motivé par le fait qu’il faut connaitre I’interface d’un agent pour
pouvoir créer un «proxy» de communication vers celui-ci dans Grasshopper. Une autre
raison, plus conceptuelle, est qu’un agent actif arrivant a une nouvelle agence ne va pas
y chercher un agent particulier, sauf exception, mais un agent capable d’effectuer une
certaine tache correspondant a une interface particuliére. Les interfaces les plus
importantes sont : IRegistraire, Cooperant et IAgentChercheur.

IRegistraire est I'interface offerte par les Registraires. Elle doit permettre I’ajout et
le retrait de services, ainsi que la mise en communication d’un agent mobile avec un
agent procurant le service qu’il recherche. Elle comprend les fonctions suivantes :

- void subscribe(ldentifier agent, String style) qui ajoute un service “style” procuré
par I’agent ‘“agent”. L’opération inverse est réalisée par la fonction void
unsubscribe(ldentifier agent, String style).

- boolean question(Identifier chercheur, String destinataire, String description) est
la fonction de messagerie par excellence, qui envoie un message «description»
d’un agent «chercheur» a un service «destinataire». On parle ici d’un service et
non d’un agent en particulier. C’est au registraire de trouver I’agent procurant ce

service.

57

- Ildentifier get(String destinataire) permet a un agent d’avoir I'identifiant d’un
agent procurant un service «destinataire» sans avoir a envoyer explicitement de
messages.

- boolean get(String destinataire, GrasshopperAddress lieu) : ici on demande le
service sur une autre machine «lieu». L.’agent procurant le service (s’il existe) va
donc se déplacer ou se copier sur la machine lieu, ou encore procurer un «proxy»
de communication et rendre le service a distance s’il ne peut pas se déplacer ou
que la politique du réseau I’interdit.

L’interface générale des agents passifs est Cooperant. Elle doit permettre la
communication ainsi que la recherche et la manipulation de I’agent par le registraire.
Cette interface intégre les fonctions suivantes :

- void question(ldentifier chercheur, String description)est la fonction de
recherche et de communication. Les résultats et messages ultérieurs sont
ensuite communiqués directement a I’agent «chercheur» qui les a demandés.

- boolean go(GrasshopperAddress lieu) est la fonction appelée pour demander a
un agent de se déplacer sur une autre machine (ici «lieu»), pour y apporter un
service ou dans le cas d’un arrét de la machine sur laquelle il réside.

- Agentinfo getinfo(): donne les informations Grasshopper de I’agent, en
particulier son identifiant qui permettra de le joindre par la suite.

De nombreuses autres interfaces peuvent étendre Cooperant, comme IUserGUI,
I’interface de I’interface graphique de I'utilisateur, qui présente peu d’intérét théorique.
C’est I'interface qui permet la communication entre les fenétres graphiques et ’agent
utilisateur.

IAgentChercheur est I'interface du HuntGroup (I’agent mobile). Elle est ici plus
adaptée aux agents de recherche d’information et surtout 2 1’agent mobile de
I’application HuntGroup développée. Elle peut étre facilement modifiée ou héritée pour
d’autres applications. Elle contient les fonctions suivantes :

- void forward(Address [] stops, boolean notify) et void forward(Lien[] stops,

-~

boolean notify) servent a renvoyer |’agent vers de nouvelles adresses. Le

58

paramétre booléen “notify” sert a indiquer a I’agent mobile que I’on désire étre
informé des résultats de sa recherche en vue de compléter et mettre a jour ses
informations. En pratique, I’agent revient, une fois sa tiche accomplie, montrer
son parcours.

- void wakeUp() réveille I’agent qui attend un événement ou un résultat.

(-4

- String getCallDescription() donne la description de la recherche donnée
I’agent.
- void setResponse(boolean x, boolean notify) sert a donner une réponse

I’agent. Le paramétre “notify” a le méme sens que dans les fonctions forward.

-\

De nombreuses autres interfaces peuvent €tre ajoutées pour chaque nouveau
service. Il suffit pour cela de rendre disponible une implémentation de ce service qui
sera ensuite copiée sur les autres serveurs sur demande (voir 3.1.1 pour I’algorithme de
recherche de services). Un probléme se pose lorsque deux applications veulent utiliser le
méme nom d’interface pour deux services différents (ou deux versions différentes d’un
méme service). A ce moment, I’application arrivant en deuxiéme sur un serveur se verra
proposer un agent implémentant la premiére interface, alors qu’elle espérait la premiére.
Grasshopper risque de générer une erreur “d’internalisation” pendant le déplacement
méme de I’agent, en voyant deux versions différentes d’'une méme interface/classe. Ce
probléme ne peut étre résolu pour I'instant que par une gestion des interfaces des

services au niveau du réseau entier.

4.1.3 Agents
Le role principal du registraire est d’enregistrer les agents offrant un service

spécifique sur la méme agence et d’offrir une fonction de recherche de ces agents. Si
I’agent cherché ne se trouve pas sur la machine, le registraire peut le chercher et le
copier sur des machines «voisines» connues, ce qui nécessite une certaine connaissance
géographique du réseau,; il peut étre également configuré différemment selon la politique

du réseau local. Le registraire offre I’interface IRegistraire. C’est un agent stationnaire,

59

méme s’il pourrait étre copié sur une machine similaire a la premiére. La Figure 4.2

montre la structure de I’implémentation du registraire.

MobileAgent IRegistraire

I |
A&

Registraire

connus Inscrit

implémentation de |’interface ... Identifier agent;

String style; // I'interface

Figure 4.2 Structure du registraire

Le «GUIAgent» fait interface avec I'utilisateur. Il sert idéalement a fournir une
interface unique et personnalisée a plusieurs applications. II implémente I’interface
«IUserGUI» et est stationnaire du fait de son caractére graphique et personnel. II faut
noter que les classes graphiques (Frame, ...) sont souvent difficiles a transporter, sans
compter les limitations dues aux machines mémes («Personal Java», destiné aux petites
machines comme des palmtops, ne supporte pas la librairie «swing»).

Le HuntGroup est 1’agent mobile et actif qui est au centre des applications
développées. 1 implémente I'interface IAgentChercheur. 1l transporte 1’itinéraire et les
résultats (comprenant les solutions et sa «connaissance» du réseau). I1 assure les
fonctions de mobilité dans les applications développées, laissant les fonctions plus
spécialisées aux agents passifs et ne transportant que le minimum nécessaire a

I’exécution de I’application. La Figure 4.3 montre la structure de I’agent HuntGroup.

MobileAgent IRegistraire
I I Agentitinerary
PY void addlItinerary(...) { ... }
HuntGroup int getSize({ ... }

- 1 | int nbAgencies()
Agentltinerary aller, retour, Address showLocation(int i)
.resultat,- Lien getCourant()
int state; . Address getNext()
boolean response; int getPosition()

String description;

transient boolean aNotifier; LinkedList theAgencies;

transient [UserGUI gui; LinkedList theLocations;

transient [Registraire registraire; Address lieuCourant;
—— - - Lien courant;
implémentation de I’interface ... int position=0;

Figure 4.3 Structure de I’agent mobile HuntGroup

On peut remarquer que certaines variables du HuntGroup sont marquées
«transient» car elles ne sont pas transportées. Elles servent en effet a accéder au GUI et
au registraire local. Ceux-ci changeant a chaque déplacement, il est inutile, voire
dangereux de les transporter. On a également choisi de doter I’agent de plusieurs
itinéraires. Ceci est dii au fait que, dans Agentltinerary, les destinations sont classées
non par ordre «chronologique» mais par ordre de priorité en fonction d’une certaine
tache. Si I’agent doit accomplir successivement plusieurs tiches, il lui faut donc un sous-
itinéraire pour chacune de ces tiches, contenant les destinations qui I’'intéresseraient
pour cette tiche 1. I va donc conserver plusieurs itinéraires qu’il va parcourir
successivement. On retrouve dans Agentltinerary des fonctions de parcours d’itinéraire
dont le corps va varier en fonction de la version développée. Les deux listes
theLocations el theAgencies conservent respectivement les adresses des destinations de
I’agent et des zones de proximité géographique que I’on a définies 2 la section 3.1.3.

Le demier agent important de notre architecture, KnowAgent, conserve les

connaissances. Il est semi-stationnaire (il se déplace uniquement sur commande, et de

61

préférence par copie) et implémente 1’interface Cooperant. C’est donc un agent passif.
Son réle est de conserver des connaissances et de procurer aux agents mobiles celles
dont ils ont besoin. A cet effet, nous allons utiliser les techniques de recherche
d’informations décrites précédemment. Cette tiche va é&tre dévolue a la classe
KnowManager, la classe KnowAgent s’occupant de la gestion des communications et
des tiches. Nous allons utiliser une classe Vecreur qui va représenter un vecteur de
nombre (doubles) pouvant étre grand mais contenant beaucoup de valeurs nulles, comme
c’est le cas en recherche d’information. Ces valeurs vont étre conservées dans une table

de hachage (HashTable). La Figure 4.4 représente I’organisation de cet agent.

MobileAgent Cooperant [Feedback
* KnowManager
KnowAgent void ajouter(Address);
void travaille(); void augmenter(Address);
void feedback(String desc, void diminuer(Address);
Agentltinerary iti); . .
List te(String desc);
void question(Identifier ist requete(String desc)
i o void save();
chercheur, String description);
Vector mots;
KnowManager man;
Vector urls;

Iregistraire reg;
LinkedList jobs;

Vector matrice;

double facteur;

Job Vecteur

Identifier agent; int longueur();

. . Vecteur ajouter (Vecteur autre);
String quoi; void ajouter (int cle, double poids);
double mult (Vecteur autre);
Vecteur mult (double facteur);

HashMap vecteur;

Figure 4.4 Structure du KnowAgent

62

De nombreux agents peuvent étre ajoutés pour assurer les services nécessaires aux
applications. IIs vont étre généralement des agents passifs semi-stationnaires,
implémentant I’interface Cooperant ou une interface héritée de celle-ci. Nous avons
implémenté par exemple un agent Répondeur, qui doit répondre aux agents a la place
d’un utilisateur humain, et un agent Chercheur dont le but est de chercher des

informations dans des fichiers HTML (voir 3.3.1).

4.1.4 Environnement d’implémentation et de test
Apres le développement de versions simplifi€ées des applications sous Voyager,

d’ObjectSpace, nous avons utilisé Grasshopper comme plate-forme d’agents mobiles
pour faire I’implémentation de notre protocole d’enregistrement d’itinéraire. Nous avons
opté pour cette plate-forme car elle est utilisée par la firme Ericsson qui est associée a ce
travail de recherche. Elle a été développée par la société allemande IKV, la premiére
version a €té disponible en aolt 1998. 1l est & noter que I'utilisation de Grasshopper est
gratuite pour des fins de recherche. Le langage de développement de la plate-forme est
le Java, particuliérement en raison de sa portabilité. Grasshopper est conforme au
standard de I’OMG (Object Management Group) sur les agents mobiles, i.e. le standard
MASIF (Mobile Agent System Interoperability Facility). Ce demnier a été congu pour
assurer l’interopérabilité entre les différentes plates-formes d’agents mobiles.
Grasshopper est un environnement d’agents répartis (Distributed Agent Environment ou
DAE). 11 est composé de régions, de places, d’agences et de deux types d’agents,
stationnaires et mobiles.

Pour mesurer la taille des données transportées sur le réseau, nous avons utilisé 3
machines Windows NT 4.0 Workstation munies d’un processeur Intel Pentium II 400.
Le réseau utilisé est un réseau local de type Ethemet 100 Mbps. Les mesures de
longueur de trajets ont été réalisées a I’aide de classes Java simulant le déplacement de
I’agent dans un réseau, ceci afin d’automatiser les mesures sans avoir a utiliser un

environnement de test réparti.

63

4.2 Evaluation de performance

Comme indiqué précédemment dans ce mémoire, les mesures de performance vont
porter essentiellement sur la charge du réseau, car c’est la variable que 1I’on cherche a
optimiser par cette architecture. On peut noter que le temps d’exécution reste inférieur a
la seconde, ce qui est tout a fait acceptable pour des applications dans lesquelles le
temps de réponse des humains reste le facteur limitant. Nous allons d’abord voir les
variations induites par les différents choix d’implémentation, puis par les algorithmes de

recherche d’information. Nous allons ensuite réunir les deux a travers différents

scénarios.

4.2.1 Mesures de transport
Cette premiere série de mesures vise a comparer différentes versions de

I’application «<HuntGroup» en terme de taille de code déplacé par trajet. Tout d’abord, il
s’agit d’isoler les paramétres propres au systéme d’agents mobiles utilisé (ici,
Grasshopper). Lorsque I’'on utilise des régions Grasshopper pour repérer les agences et
les agents ou appliquer une politique de sécurit¢ commune, les agences doivent
s’inscrire auprés de la région lors de leur connexion au réseau, ce qui peut étre assez
fréquent dans le cas de machines mobiles (téléphones sans fil, palmtops, ...). Cependant,
elles ne sont pas nécessaires au fonctionnement du systéme. On a ainsi mesuré le coiit de
I'inscription d'une agence a la région, soit 14 Ko dans le sens agence vers région et 24
Ko dans I’autre sens : 38 Ko au total. Nous verrons qu’en comparaison des coiits de
déplacement d’un agent, c’est une valeur assez grande, modérée toutefois par la moins
grande «mobilité» des agences (fréquence d’ajout/suppression d’agences).

Une autre caractéristique de Grasshopper est le cache. Les classes et les agents
chargés dans une agence sont gardés en mémoire cache pour une réutilisation ultérieure,
ce qui pose des problémes de mise a jour mais permet d’économiser de la bande
passante en ne chargeant que les données de I’agent. On va le constater dans la

différence entre les mesures du premier chargement et les suivantes.

Nous allons maintenant considérer différentes versions de 1’application
«HuntGroup». La version de base ne comporte qu’un seul agent comprenant et
transportant le GUI et toutes les adresses des correspondants possibles. La taille de

I’ensemble des classes est 16.4 Ko. Le Tableau 4.1 résume ces mesures.

Tableau 4.1 Mesures de ’effet du cache et de la région Grasshopper
Sens Aller (Koctets) Aller - Retour

ler envoi avec la région 1->2 26.5 36

Stk
2eme envoi

Ces mesures montrent un gain moyen d’un facteur 2 du au cache de Grasshopper,
mais aussi lors de la non utilisation de régions. Il est donc intéressant de ne pas utiliser
les régions, d’autant que dans I’architecture développée, les registraires prennent les
mémes fonctions (recherche d’agents, sécurité). Les mesures suivantes ont été faites sans
utiliser les régions Grasshopper.

Une version améliorée de cet agent consiste a séparer I'interface graphique de
I’agent, mais cela n’entraine pas de différence notable pour le coiut de transport de
I’agent, car les classes graphiques sont présentes sur chaque machine Java et ne
contenaient que trés peu de données. Une troisi¢me version ajoute I'intelligence (les
algorithmes de RI) directement dans I’agent. Cela porte la taille des classes a 33.3 Ko,
sans compter le grand nombre de connaissances a transporter 4 chaque déplacement de

I’agent, ce qui rend cette option particuliérement inintéressante et justifie le

65

développement et I'utilisation d’une architecture multi-agents pour garder a la fois
I’intelligence et des performances correctes, telles celles présentées dans le Tableau 4.2.
Les versions de I’application utilisées a partir de maintenant sont basées sur
I’architecture développée et présentée dans ce mémoire. La différence entre les
différentes versions porte sur I'utilisation des connaissances réseau 2 I’intérieur de la
classe Agentltinerary. La premiére version «simple» va parcourir les destinations dans
’ordre de priorité. La version «locale» va chercher a parcourir en priorité les
destinations se trouvant dans la zone courante. La version «complexe» va attribuer une
priorité a chaque zone connue pour savoir ou se rendre ensuite. Chacune de ces versions
est plus complexe que la précédente. Elle doit donc étre plus «lourde» a transporter.
Cependant, on attend de cette complexité une réduction du nombre de voyages
nécessaires, et donc une réduction de la charge totale du réseau. La Figure 4.5 illustre les

différences entre les deux demniers algorithmes.

Tableau 4.2 Comparaison du coiit de transport entre différentes versions
Sens Aller (Koctets) Aller - Retour

ler envoi de « simple » 1->2 18 19

On remarque dans le Tableau 4.2 qu’il n’y a pas de grande différence entre les
différentes versions, tant au niveau du premier envoi que des suivants. D’autres mesures,

non exposées ici, ont confirmé ces résultats. De plus, I'utilisation du cache, tant au

niveau de Grasshopper que de la machine Java (chargement de I'objet Class), permet de
limiter d’éventuelles différences en gardant le code des algorithmes. On peut se
demander si la taille de 1’agent va beaucoup varier en cours de route, alors qu’il collecte
des connaissances et des résultats. Pour vérifier cela, nous avons mesuré la charge d’un
trajet (aller) de I’agent avec un plus grand nombre de destinations initiales. Nous
n’avons alors mesuré aucune différence notable avec un itinéraire de 20 adresses sur 2
zones, au lieu de 3 adresses sur 2 zones, et une majoration de 2 Koctets pour un
itin€raire de 20 adresses et 20 zones. Considérant que c’est un cas extréme compte tenu
de I’application développée et du fait que I’on espére trouver la bonne réponse dans les
premiéres adresses, on peut négliger les variations de la taille de I’agent en cours

d’itinéraire.

« complexe »

O

On attribue une priorité a chaque zone en
fonction des priorités des agences inclues

« locale »

®

On cherche une destination
de I’itinéraire se trouvant

dans la zone « locale »

a premiére zone a une priorité de
x fois plus grande que la zone
courante?

1

On se déplace a On se déplace i la
cette adresse prochaine adresse On se déplace i la On se déplace 2 la
non _\r}sntée. dans prochaine adresse premiére adresse
I'itinéraire non visitée dans la non visitée de cette
zone courante zone

Figure 4.5 Algorithmes de parcours de Pitinéraire

67

Il faut néanmoins considérer la taille des résultats pour une application chargée de
trouver, par exemple, des images, comme I’application de chercheur d’images
développée. Dans ce cas, on ne peut plus négliger la taille des images par rapport a la
taille de I’agent (10-20 Koctets). Une possibilité est que 1’agent ne rapporte alors que des
pointeurs vers les images et que celles-ci soient chargées au retour de 1’agent sur la
machine de I’utilisateur, ou la machine a laquelle il est connecté€ si la derniére liaison a
une grande latence (cas des liaisons sans fil). On n’a alors qu’a ajouter la taille des
images pour le dernier trajet ou plus, suivant la configuration du réseau et de
I’application (cas ou les images doivent traverser plusieurs sous-réseaux avant de

parvenir & la machine de I’utilisateur.

4.2,2 Scenarios de recherche d’information
Nous allons comparer les trois algorithmes en simulant leurs déplacements et

I’apprentissage sur un scénario regroupant quelques entreprises, administrations et
fournisseurs d’accés dans trois villes, par exemple Montréal, Ottawa et Québec. La
Figure 4.6 en est une illustration.

Nous avons mesuré le nombre de déplacements des agents pour chaque version
pour une succession de requétes donnée. Nous distinguons les déplacements «locaux», a
l'intérieur d’'un méme sous réseau, des déplacements «régionaux». Les Figures 4.7 2
4.11 montrent I’évolution du nombre de déplacements pour les trois versions de

I'algorithme de parcours d’itinéraire développées : «simple», «locale» et «complexe».

Figure 4.6 Scénario de mesure

68

69

8 8 ® @
sjuswede|dep op suqu

numéro de req

9 8 9 & ¢ e
sjuawedv|dep ap aiqu

numéro de requéte

Figure 4.8 Evolution du nombre de déplacements de I’agent «local»

nbre de déplacements

T 2583 9585 8r2s85858-2z858c:%8s8

T e -

numéro de requéte

Figure 4.9 Evolution du nombre de déplacements de I’agent «complique»

nbre de déplacements (moyenne)

T2 258583 ¥Ss 88 RSB 5c58z-2L8sRE Y
numéro de requéte
| === complique local — — — simple |

Figure 4.10 Comparaison en moyenne du nombre de déplacements

70

71

On constate que les performances de la version «simple» sont les moins bonnes, et
celles de la version «compliquée» légérement moins bonnes que celles de la version
«locale». Pour les trois versions, on observe une diminution du nombre de déplacements
avec le temps, du fait de [’apprentissage. En effet, les agents donnent des
renseignements par « feedback » aux KnowAgents qui peuvent ensuite les envoyer plus
rapidement au bon destinataire. La différence entre la version simple et les autres peut
s’expliquer par le fait que les correspondants cherchés sont souvent dans le voisinage de
la machine de I’utilisateur ou d’une machine répondant a une requéte proche. Les deux
demicres versions tirent parti de ce fait, alors que la version « simple » est perdue des
qu’elle ne trouve pas exactement ce qu’elle cherche du premier coup. Cette différence
devrait progressivement s’atténuer avec le nombre de requétes, mais on voit ici que ce
processus est trés lent pour la version «simple». Les performances de la version
complexe sont un peu décevantes, compte tenu de sa plus grande «complexité». La
raison en est que le scénario considéré est trés simple, et que la version locale trouve
facilement ce qu’elle cherche. Les algorithmes plus compliqués ne sont alors pas
nécessaires et sont méme génants car plus sensibles a la taille des zones (dans notre cas),
alors que la version locale va directement a la machine la plus cotée, qui est
généralement la bonne. Il n’a pas non plus besoin de chercher plusieurs résultats, ce qui
aurait pu inciter & cibler une zone, plus qu’une seule machine. Il peut alors étre
intéressant de faire varier la taille du réseau de test et le nombre de machines dans les
mesures. Les Figures 4.11 et 4.12 donnent I’évolution et la comparaison de la moyenne
du nombre de déplacements pour une zone et pour 5 zones.

On voit que, plus le nombre de zones augmente, plus la différence entre la version
«simple» et les autres s’accroit, et moins il y a de différence entre la version «local» et la
version «complexe». Ceci corrobore I’analyse des premiers résultats. On peut remarquer
de plus que la version «complexe» surpasse la version «locale» a la fin de la phase
d’apprentissage, au moment ou il commence a y avoir plus de connaissances, mais pas
suffisamment pour que les algorithmes fonctionnent de fagon «optimale». Cela

recommande la version « complexe » pour les environnements réels et dynamiques.

nbre de déplacements

nbre de déplacements (moyenne)

72

16
|) 1 I
") T n " t
i n ,'n T "]
' i 11 4 L
12 " LA 1 rsvy LI] "
10
MY Wy 1 A i /
s \my 1A S +
W\ 'V U ' ! I
6 X ' !]
\ Y \ \ \
4 |] Ld | 4
L) i |
2 L
1]
-, e~ @ -2 e 2528525835835 2% 25 2s
numéro de requéte
L complique local = — — simpleJ
Figure 4.11 Moyenne du nombre de déplacements pour 1 zone
as

T2 HABRIBEIARNBAILE2RENISTIRIS2RB38BSE 3

e e e e e e e e = e =

numéro de requéte

complique local = — — simple |

Figure 4.12 Moyenne du nombre de déplacements pour S zones

73

On peut noter que 4 est la valeur inférieure limite pour ces mesures. Cela suppose
que I’agent se rend du terminal de I'usager a I’agent de recherche d’information puis
directement 3 la bonne destination, et prend le chemin inverse pour revenir afin de
donner son «feedback » au KnowAgent. L’évolution du nombre de déplacements

« régionaux » est donnée par la Figure 4.13.

8
57
s
L8,
g ! N H
e s !,\ ,'\\ !“T A . /J\‘ ,U\
€ i A \ n
g . ’\‘ Y4 V\.Jl"/u: WA [!
o [} M
2 Vi \/ ™ d
a 3 \7 ¢
R) /
°
.gz
g,

c v
°—»we:aaasa:ezss:ssz:;sssagg§g§§§§§§§§§
numéro de requéte
|- complique local — — — simple |

Figure 4.13 Evolution du nombre de déplacements « régionaux »

Comme pour le nombre total de déplacements, le nombre de déplacements
«régionaux» diminue avec I’apprentissage, particuliérement pour les deux demniéres
versions, car I'information voulue est ramenée au niveau local. Celles-ci présentent des
performances équivalentes, avec toutefois une légére supériorité de la version
«complexe» pendant la phase d’apprentissage qui s’inverse par la suite, pour les mémes
raisons que le nombre total de déplacements. Dans ces mesures, on se limite également a
un seul niveau de zones, alors qu’on pourrait tirer parti de plusieurs pour que les agents

fassent une différence entre les déplacements entre villes et entre sous-réseaux.

74

~

Une autre constatation faite a la suite de ces mesures est que 1’architecture
développée rapproche l’'information de I’'usager. Plus précisément, les agents rapportent
I’'information voulue au KnowAgent de leur zone, grice au mécanisme de «feedback».
Ce fait est appuyé par la mesure du nombre de déplacements effectués lors du retour de
I’agent présenté a la Figure 4.9. En effet, 1’agent mobile, une fois I’interlocuteur trouvé,
s’arréte sur chaque KnowAgent contacté pour lui présenter ses résultats en vue
d’apprentissage. Le nombre de déplacements effectués lors du retour de I’agent
correspond donc au nombre de KnowAgent contactés lors du trajet aller plus un. On
constate que, une fois la phase d’apprentissage passée, I’agent ne contacte souvent qu’un
seul KnowAgent, celui de sa zone, par lequel il commence tout trajet. L’information a
donc été rapprochée de I'utilisateur, ce qui est un plus dans I’utilisation des ressources
réseau. Cela est possible dans ce scénario du fait de la petite taille du réseau considéré.
Chaque KnowAgent peut contenir les informations de tout le réseau. Ce ne serait pas
possible avec un réseau plus grand. La connaissance se répartirait alors entre les

différents KnowAgent, d’ou I’intérét théorique d’une recherche par zones.

NEAY

nbre de déplacements de retour

10

s BFrRSs5Bs8s8-258:58¢%¢8
nbre de requétes

21
26
n
%
“
4

1"

I-—-complique local — — — simple]

Figure 4.14 Nombre de déplacements au retour

75

On peut également chercher a mesurer d’autres aspects de I’architecture a travers
un scénario plus complexe. Alors que les connexions sont considérées statiques dans le
premier scénario et que les coiits dus aux chargements des services sont négligés, il
serait plus réaliste, surtout dans le domaine des télécommunications sans fil ou la durée
des connexions est plus réduite, de les considérer dynamiques. On reprendrait alors le
méme scénario que précédemment, mais en considérant que les utilisateurs et les
serveurs se connectent et se déconnectent réguliérement. Une application revenant sur
ces serveurs les obligerait donc a recharger les services dont elle a besoin. Cela ferait
intervenir les mécanismes d’adaptation de I’architecture et de migration des services qui
sont «ignorés » dans le premier scénario. Toutefois, ces coiits concernent surtout les
serveurs, et non les terminaux usagers qui n’en contiennent que quelques-uns. Nous
avons donc décidé, pour des raisons de restriction de temps, de ne pas implémenter un
tel scénario.

On peut constater que, d’aprés ces mesures, on a effectivement gagné en
intelligence et en utilisation des ressources réseau griace a |’architecture multi-agents
développée et a I'utilisation d’algorithmes de routage tirant profit de connaissances sur
la topologie du réseau, par rapport a I'implémentation initiale. Une implémentation
client serveur est toutefois, pour cette application, moins colteuse (I’établissement d’une
communication par SIP ne prend que 500 octets environ), mais cette implémentation est
moins personnalisable et moins souple. Elle est aussi moins évolutive, car tous auraient a
passer par un serveur central basé dans une seule ville, ce qui augmente le nombre de
connections et de données «xégionales». Une implémentation client/serveur distribuée
serait la plus performante, mais reste moins personnalisable et moins souple qu’une

implémentation agent mobile.

76

Chapitre V

Conclusion

La technologie agent mobile est apparue en 1995 comme une extension du code
mobile et de la migration de processus. Elle doit, de par sa conception, réduire la
quantité de données transmises a travers un réseau pour une méme tiche effectuée a
distance par rapport a la technologie client/serveur dans certaines circonstances.
Cependant, les mesures de comparaison de performances entre la technologie agent
mobile et la technologie client/serveur effectuées par le passé ne sont pas convaincantes.
Souvent, on peut déplorer un scénario par trop favorable a I'agent ou une
implémentation du serveur déficiente, voire inexistante. 11 faut dire aussi que I’agent
mobile souffre souvent de devoir transporter tout le code dont il a besoin ou ne bénéficie
pas, sur les serveurs, d’une interface adaptée. L’architecture multi-agents présentée dans
ce mémoire vise a résoudre ce probléme en fournissant aux agents mobiles un moyen
d’obtenir les services et I'interface dont ils ont besoin sur chaque machine. Elle aborde
aussi le probléme de la représentation et du partage des connaissances des agents sur
leur environnement. Les mesures réalisées montrent que cette architecture atteint ses
buts. Méme si la comparaison avec une architecture client/serveur peut paraitre
défavorable, il faut penser que la technologie agent mobile ne vise pas a se comparer a la
technologie client/serveur en terme de performances pures, mais a éviter ses défauts

comme le manque d’évolutivité ou de souplesse.

5.1 Synthése des travaux et contributions principales
Nous avons défini et implémenté une architecture multi-agents mobiles de
recherche d’information au travers de deux applications, le «HuntGroup», un service

avancé de téléphonie de recherche de correspondant, et un agent chercheur d’images sur

Internet.

77

Cette architecture vise en premier lieu a mettre en relation un agent mobile
arrivant sur une machine avec les agents se trouvant sur cette méme machine capables
de lui fournir les services dont il a besoin. Elle fait correspondre un service avec une
interface Java particuliére correspondant a ce service. Ainsi, les agents pourront ensuite
utiliser cette interface pour établir un «proxy» de communication. Cela permet d’avoir
un cadre précis faisant le lien entre les classes Java d’un agent et I’ensemble des
fonctions constituant un service. Pour pouvoir mettre les agents en relations de la fagon
la plus souple possible, nous avons implémenté notre propre fonction de recherche de
services dans un agent particulier de notre architecture, le Registraire. Celui-ci est en
quelque sorte le prolongement de la plate-forme d’agents mobiles. Le systéme d’agents
mobiles utilis€é, Grasshopper, offre déja des fonctions de recherche d’agents sur
différents critéres qui restent utilisables, mais aucune n’était suffisamment souple, ni ne
permettait a un seul agent d’offrir plusieurs interfaces. De plus, le registraire se charge
de chercher un service sur les machines voisines et dans tout le réseau, puis de le charger
s’il ne se trouve pas localement. Ceci nous améne au concept de serveur dynamique dans
lequel les services et I'interface présentés par un serveur peuvent changer
dynamiquement selon la demande des applications I’utilisant et les régles et limitations
du serveur. La demande des applications est représentée par le chargement de services
par le registraire sur demande des agents. Les régles et limitations du serveur peuvent
étre traduites au niveau du registraire, du systéme d’agents mobiles, des deux, ou par un
autre agent. Plus le serveur offre une interface initiale de bas niveau, plus les possibilités
de modification et d’optimisation en fonction de chaque service utilisateur sont grandes.

Un autre aspect abordé est celui de la représentation des connaissances sur
I’environnement des agents, en particulier la topologie du réseau et les autres agents.
L’idée de voisinage du registraire est traduite en zones a I’échelle du réseau entier et
d’une relation d’inclusion. Cela permet aux agents d’avoir une notion de « proximité »
entre deux machines et d’en tenir compte au niveau des algorithmes de routage. Les
autres connaissances sont traitées dans notre implémentation par des algorithmes de

recherche d’information vectoriels et de «feedback».

78

Des mesures de performance ont permis de prouver la validité de la conception
de P’architecture. Nous nous sommes focalisés sur I’apport effectif de I'utilisation de
connaissances sur le réseau et d’algorithmes de routage plus complexes au regard de
I’augmentation de la taille de I’agent qu’ils entrainent. Nous avons constaté que, du fait
de I'utilisation du cache de Grasshopper et de la machine Java, le déplacement d’un
agent utilisant I’'un ou I’autre des algorithmes est équivalent. Considérant maintenant le
nombre de déplacements de 1’agent nécessaires pour trouver le bon correspondant avec
chaque algorithme, tous mettent a profit le mécanisme d’apprentissage par rétroaction
pour réduire leurs déplacements. Les deux algorithmes utilisant en plus des
connaissances sur la topologie du réseau montrent un réel avantage. Cependant, les
mesures n’ont pas réussi a mettre en évidence une supériorité de I’algorithme le plus

complexe par rapport au moins complexe parmi ces deux algorithmes.

5.2 Limitations et recherches futures

L’architecture décrite dans ce mémoire a été plus particuli¢rement étudiée et
implémentée pour les applications de recherche d’information. Elle peut nécessiter de
lIégéres modifications pour étre utilisée par toute sorte d’applications, notamment au
niveau des interfaces. L'implémentation de communications KQML peut résoudre ce
probléme en apportant plus de souplesse. Une partie de I’architecture, notamment les
fonctions d’administration de serveur, restent également a implémenter. Les aspects de
sécurité ont été également trés peu abordés. L’architecture et les algorithmes exposés
n’ont pas €té testés en condition réelle. On a vu que cela pouvait limiter les capacités
d’apprentissage et donc les performances des algorithmes de routage et de recherche
d’information. L’architecture méme n’a pas été extensivement testée, notamment en ce
qui concerne les mécanismes de recherche et de chargement des services, ou encore
I’administration de serveur et le support de nombreux agents.

Les recherches futures devraient s’orienter vers I'implantation de mécanismes de

communications par messages KQML, qui devraient donner beaucoup plus de souplesse

79

a P’architecture développée. Les aspects de sécurité sont également nombreux, que ce
soit au niveau de la protection des données sensibles ou de I’élimination de services et
d’agents malveillants ou défectueux. De plus, méme si I’architecture proposée permet de
réduire considérablement la charge du réseau par rapport a une application agent mobile
classique, ses performances restent faibles en comparaison avec une application
client/serveur du fait de la taille importante des données transportées. Une voie
intéressante pour résoudre ce probiéme est celle suivie par D. B. Lange (site Lange), un
des péres des systémes agents mobiles, qui développe des agents mobiles en XML. Le
fait de mettre les données en format texte plutét que sous forme de classes Java
sérialisées pourrait diminuer leur taille et les rendre directement utilisables par des
agents utilisant des classes ou un langage différent, mais nécessite de surcharger les
fonctions de sérialisation et désénialisation au niveau de 1’agent, mais aussi de la plate-
forme.

Toutefois, I’architecture proposée ici offre une possibilité intéressante
d’intégration de systémes d’agents intelligents et mobiles. De plus, les mesures
effectuées montrent I’intérét des algorithmes de recherche d’information et de routage

utilisés.

80

Bibliographie

S. Abu-Hakima, R. Liscano and R. Impey, “A common Multi-agent Testbed for Diverse
Seamless Personal Information Networking Applications”, JEEE Communications,

Special Issue on Mobile Agents and Telecommunications, vol. 36, no. 7, 1998, pp. 68-74

Y. Aridor and D. B. Lange, "Agent Design Patterns: Elements of Agent Applications Design”,
Proc. Of the Second International Conference on Autonomous Agents (Agents '98), Mai

1998, pp. 108-15.

Y. Aridor and M. Oshima, "Infrastructure for Mobile Agents: Requirements and Design”, Proc.
of 2* International Workshop on Mobile Agents (MA '98), Springer Verlag, Berlin,
Septembre 1998, pp. 38-49.

J. Baumann, F. Kohi, K.Rothermel and M.Strasser, “Mole — Concepts of a Mobile Agent
System”, Mobility Processes, Computer, and Agents, ACM Press, Addison-Wesley,
Reading , 1998, pp. 461-492.

L. F. Bic, M. B. Dillencourt, J. M. Cahill, M. Fukuda, “Messages versus Messengers in
Distributed Programming”, Journal of Parallel and Distributed Computing, vol. 57, no.
2, 1999, pp. 188-211.

B. Brewington, robert Gray, K. Moizumi, D. Kotz, G. Cybenko, D. Rus, « Mobile Agents in
distributed information retrieval », Matthias Klusch, (ed.), Intelligent Information

Agents, chapter 15, Springer-Verlag, Berlin, 1999.

S. Derochers, R. Glitho, K. Sylla, "Experimenting with PARLAY in a SIP Environment: Early
Results " IPTS 2000, Sept 11 2000, Atlanta, GA, USA.

F. Douglis and J. Ousterhout, “Transparent Process Migration: Design Alternatives and the
Sprite Implementation™, Mobility Processes, Computer and Agents, ACM Press,
Addison Wesley, Reading, 1998, pp. 57 — 86.

81

B. Emako-Lenou, « Agent-based Technologies: Concepts and Applications”, Mémoire de
maitrise, département de genie électrique et genie informatique, Ecole Polytechnique de
Montréal, février 2000.

L. Gannoun, J. Francioli, S. Chachkov, F. Schutz, J. G. Hulaas, and J. Harms, “Domain Name
eXchange : A Mobile-Agent-Base Shared registry System”, IEEE Internet Computing,
mars/avril 2000, pp. 59-64.

R.S. Gray, “PhD Thesis Proposal : Transportable Agents™, Dept. of computer science, University
of Dartmouth, mai 1995.

http://www.cs.dartmouth.edw/reports/abstracts/TR95-26 1/

R. S. Gray, D. Kotz, G. Cybenko, D. Rus. « D'Agents: Security in a multiple-language, mobile-
agent system », Giovanni Vigna, editor, Mobile Agents and Security, Lecture Notes in

Computer Science, Springer-Verlag, Berlin, 1998.
K. Hafner, “Have your agent call my agent”, Newsweek, 75(9), Février 1995.

C. G. Harrison, D. M. Chess, A. Kershenbaum, “Research Report : Mobile Agents: Are they a
good idea?”, 28 mars 1995.

C. Hewitt, « Viewing Control Structures as Pattems of passing messages », Journal of Artificial
Intelligence, 8, June 1977, pp 323-364.

G. Karjoth, D. B. Lange, and M. Oshima, "A Security Model for Aglets", IEEE Internet
Computing, vol. 1, no. 4, July/August 1997, pp. 68-77.

A. Karmouch and V. A. Pham, “Mobile Software Agents: an Overview”, I[EEE
Communications, Special Issue on Mobile Agents and Telecommunications, vol. 36, no.
7, 1998, pp. 26-37.

D. B. Lange, « Mobile Objects and Mobile Agents: The Future of Distributed Computing »,
Proceedings of The European Conference on Object-Oriented Programming 98,
Brussels, 1998, pp. 1-12.

http://www.acm.org/~danny

D. Lange and M. Oshima,"Programming and Deploying Java Mobile Agents with Aglets”, The
Aglet book, Addison-Wesley, Reading.

T. Lindholm, F. Yellin, « The Java Virtual Machine Specification », Addison-Wesley, Reading,
1996.

D.S. Miljicic and al., “MASIF, The OMG Mobile Agent System Interoperability Facility”,
Proceedings of the Second International Workshop on Mobile Agents, septembre 1998,
pp. 50-67.

W. Moussawi, «Modélisation d’un agent de recherche intelligente d’information sur Internet»,
mémoire de maitrise, Dpt. de génie électrique et génie informatique, Ecole

Polytechnique de Montréal, novembre 2000.

G. Muller, B. Moura, F. Bellard, and C. Consel. Harissa, “A flexible and efficient Java
environment mixing bytecode and compiled code”, Proceedings of Third USENIX
Conference on Object-Oriented Technologies and Systems (COOTS '97), 1997, pp. 1-20.

S. Myaeng, R. R. Korfhage, ,Integration of user profiles : models and experiments in
information retrieval”. Information processing and management, vol. 26, ISSN 0306-

4573, avril 1990, pp. 719-738

N.J. Nilsson, “Leaming Machines - Foundations of Trainable Pattern Classifying Systems”,
McGraw-Hill, NewYork, 1965.

P. Noriega Blanco Vigil, “Agent Mediated Auctions: The Fishmarket Metaphor”, PhD, 1997.

83

H. Ouahid, A. Karmouch, “An XML-Based Web Mining Agent”, in Proceedings of MATA'99,
pp- 393-404.

M. Powell, B. Miller, “Process Migration in DEMOS/MP”, in Mobility Processes, Computer
and Agents, ACM Press, Addison Wesley, Reading, 1998, pp. 29-38.

M. Ranganathan, A. Acharya, S. Sharma et J. Saltz, “Network-aware Mobile Programs”, in
Mobility Processes, Computer, and Agents, ACM Press, Addison-Wesley, Reading,
1998, pp. 461-492.

J.J. Rocchio, “Document retrieval systems - Optimization and evaluation”, Ph.D. Thesis,

Harvard University, Report ISR-10 to National Science Foundation, Harvard
Computation Laboratory (1966).

A. Rogers, “Is there a case for viruses?”, Newsweek, 75(9), February 27, 1995.

G. Salton, A. Wong, S. Yang, «A Vector Space Model for Automatic Indexing».
Communications of ACM, vol. 18, no. 11, 1975, pp. 613-620.

G. Salton, M. McGill, “Introduction to modern information retrieval”, Computer Science Series,
McGraw Hill Book Company, new-York, ISBN 0-07-054484-0, AACR2, 1983.

T. Sandholm, Q. Huai, “Nomad : Mobile Agent System for an Internet-Based Auction House”,
IEEE Internet Computing, Mars/Avril 2000, pp. 74-79.

Y. Shoham, “An overview of agent-oriented programming”, J. M. Bradshaw editor, Software
Agents, MIT press, 1997, pp 271-290.

A. di Stefano, C. Santoro, “NetChaser : Agent Support for Personal Mobility”, /EEE Internet
Computing, Mars/Avril 2000, pp. 74-79.

N. Wiener, “Cybemetics or Control and Communication in the Animal and Machine”, MIT
Press, Cambridge, 1948.

M.J. Woolridge, N. R. Jennings, “Software Engineering with Agents : Pitfalls and Pratfalls”,
IEEE Internet Computing, May-June 1999, p. 20-27.

“Mobile Agents in the Context of Competition and Cooperation (MAC3), a workshop at
Autonomous Agents '99”, May 1 1999, Seattle, Washington, USA

http://mobility.lboro.ac.uk/MAC3/

Sites Internet

ActComm http://actcomm.thayer.dartmouth.edw/
Aglets http://www.trl.ibm.co.jp/aglets/
Alexa http://www.alexa.com

auction http://auction.eecs.umich.edu

Auctionet http://www.auctionet.com
Cetus-links http://www.cetus-links.org/oo_mobile agents.html

Concordia http://www.meitca.comVHSL/Projects/Concordia/
D’ Agents http://agent.cs.dartmouth.edu/

Dartmouth-réseau http://agent.cs.dartmouth.edu/network/index. htmi

DNX http://cui.unige.ch/DNX

Ebay http://www.ebay.com/aw
Ewatch http://www.ewatch.com/
excite http://live.excite.com/

’ Frictionless http://www frictionless.com

JavaSpace http://java.sun.com/products/javaspaces/

Jorstad http://agent.cs.dartmouth.edw/workshop/1997/slides/jorstad/

KSE http://www.cs.umbc.edu/kse/

Lange http://www.acm.org/~danny

Lange-raisons http://www.cs.dartmouth.edw/~dfk/papers/kotz:future2/#lange:reasons
Linda http://www.cs.yale.edu/I inda/linda.html

liste : http://mole.informatik.uni-stuttgart. de/mal/preview/preview.html

Loughborough http://tuckyspc.lboro.ac.uk/Docs/index.html (page inaccessible)

Messengers http://www.ics.uci.edu/~bic/messengers/

Mole http://mole.informatik.uni-stuttgart.de
Objectspace http://www.objectspace.comV/

Onsale http://www.onsale.com

Parlay www.parlay.org
Recherche-IBMhttp://www.research.ibm.comymassive/
Sumatra http://www.cs.umd.edu/~acha

Tacoma http://www.tacoma.cs.uit.no/

Zdnet http://www.zdnet.com/zdi/pview/pview.cgi

85

