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RESUME

Ce mémoire présente I'automatisation, par le biais d’'un algorithme génétique,
du processus de construction de bases de connaissances pour les systémes d’aide a la
décision utilisant la logique floue. L’objectif principal de ce travail est de démontrer
que par ['utilisation d’un algorithme génétique, il est possible de générer de facon
automatique une base de connaissances sans avoir besoin des services d’un expert,

qui doit, généralement, étudier le comportement du fichier de données pour créer

son propre modele.

Le premier chapitre de ce mémoire est une synthése qui passe en revue, de maniére
générale, le travail fait dans les chapitres 2, 3 et 4 et présente de fagon sommaire la
méthode d’optimisation utilisée ainsi que le logiciel de logique floue utilisé comme

support d’application a cette méthode.

Le deuxiéeme chapitre consiste en un article dans lequel nous trouvons une revue
des principes de base des logiciels d’aide a la décision utilisant la logique floue.
L'algorithme génétique, qui est la méthode d’optimisation utilisée pour effectuer la
génération automatique des bases de connaissances a partir de données numériques,
y est présenté. Les différentes opérations d’évolution effectuées par l'algorithme
génétique, la description des différents critéeres de performance, la structure de

I'algorithme génétique, ainsi que la personnalisation de celui-ci par rapport au



vi
probléeme étudié sont présentées. Une explication de la paramétrisation utilisée

ainsi que des restrictions que nous nous sommes imposés sont mises en évidence,

chose faite dans le but de simplifier le codage.

L’algorithme génétique utilisé dans ce travail évalue chaque nouvelle base de con-
naissances par rapport a deux critéres de performance soit la précision de la base
de connaissances quant 2 la reproduction des donnés numeériques et la simplicité

de celle-ci, qui, est exprimée par le plus petit nombre possible de régles floues.

Dans cette partie, les résultats de plusieurs essais faits sur des données représentant
des surfaces théoriques ainsi que sur des données expérimentales sont présentés et
discutés. Il est a noter que tous les exemples pris en considération sont des systémes
a deux entrées et une sortie ce qui les placent dans la catégorie des systemes MISO—

multiple input singie output—.

Le troisieme chapitre traite de I'influence des parametres utilisés dans le processus
d’évolution de l'algorithme génétique durant la construction des bases de connais-
sances. Une revue de ces critéres ainsi qu’une classification dans deux catégories
principales sont faites, soit: les critéres d’optimisation et les critéres de sélection. A
cet effet, des essais sont effectués sur une base de données représentant une surface

théorique pour mettre en évidence 'influence de ces critéres sur la solution (base



de connaissances) finale.

Une application de I’algorithme génétique sur un probléme de suivi d’usures des
outils est le sujet du quatriéme et dernier chapitre. Il s’agit toujours d’un systéme
MISO, mais cette fois avec trois entrées et une sortie. Les résultats obtenus sont
comparés avec ceux produits par un réseau neuronique, ainsi que ceux obtenus par
le biais d’'une construction manuelle de la base de connaissances réalisée par un

expert en la matiére.

De par les résultats obtenus lors des différentes applications, il ressort que I'une des
limitations principales, est la discrétisation des parameétres qui limite la finesse des
résultats obtenus. Une discrétisation plus fine permettrait sans doute de trouver
des bases de connaissances plus simples et plus précises, mais cela serait fait au
détriment du temps d’exécution, car I’espace de recherche (champs des solutions

possibles) augmenterait considérablement.

L’algorithme génétique permet de trouver des solutions assez satisfaisantes sans
avoir a explorer tout l'espace de recherche ce qui est un avantage certain et un

attrait majeur de cette méthode.
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ABSTRACT

This work presents a genetic-based method for the automatic generation of
fuzzy knowledge bases used in decision support systems. The main objective in
this research is to demonstrate, by the mean of a genetic algorithm, the possibility
of generating automatically fuzzy knowledge bases without having to rely on an

expert.

The first chapter of this these is a synthesis that present a general overview of the
research work done in the chapters 2, 3 and 4, it also presents the optimization
method developed through this work along with the fuzzy-logic software used as

an application.

The second chapter is a paper containing a brief review of basic principles of
fuzzy decision support systems. The genetic algorithm—which is the optimi-
zation method used to generate automatically the knowledge bases from numerical
data—is presented. The different operations made by the genetic algorithm are
described along with the different fitness values, the structure of the algorithm
and it’s customization operations—developed for the sake of the problem under
consideration—. An explanation of the parameterization and the restrictions taken

into consideration are exposed (the restrictions are made for the sake of coding sim-
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plicity).

The genetic algorithm used in this work evaluates each knowledge base along two
fitness values, namely: the approximation accuracy—or alternatively the approx-
imation error—; and the level of complexity—the simplest knowledge bases are
those with the fewest number of fuzzy rules—of a knowledge base. The results of
several tests made on numerical data that represent different theoretical surfaces
are presented and discussed. It is noted that all the examples are two inputs one

output, which class them into the MISO category—multiple input single output—.

The third chapter studies the influence of the criteria used in the evolution process
of the knowledge bases. A review of those criteria is made along with their clas-
sification in two main categories, namely the optimization and selection criteria.
Different tests are made with numerical data coming from a theoretical surface in
order to enhance the influence of these criteria on the final solution (knowledge

base).

An application to a tool monitoring problem is the subject of the fourth and last
chapter. It is a MISO system, but this time with three inputs and one output.
A comparison is made of the automatically generated knowledge bases with those

obtained from a neural network and a manual construction of a knowledge base by



an expert.

From the different results of the different applications, an important conclusion
can be resorted. which is that the discretization of the parameters represents an
important draw-back of this method. A refined discretization can obviously lead
to more precise and more simple knowledge bases, but the counterpart is an im-

portant increase of the research space (the field of possible solutions).

The genetic algorithm allows certainly to find satisfactory solutions without having
to explore the entire field of possible solutions, which is a major and very attractive

feature of this method.



TABLE DES MATIERES

REMERCIEMENTS . . . . . . . . it e e e et e e e e iv
RESUME . . . . . . . . e v
ABSTRACT . . .. . . .ttt e e e e viii
TABLE DES MATIERES . . . . ... .. ... ... ... xi
LISTE DES FIGURES . . . . . . .. . ... it XV
LISTE DES NOTATIONS ET DES SYMBOLES .. ... ... ... xviii
LISTE DES TABLEAUX . . . ... . .. .. ... xxi
INTRODUCTION . . . . . . o e e e e e e e e e e e e e e 1
CHAPITRE 1 SYNTHESE DU MEMOIRE . . . ... ........ 8
1.1 Synthése duchapitre2 . . . . .. . . ... . ... ... ... 8
1.2 Synthése du chapitre 3 . . . . . . . .. ... Lo 10
1.3 Synthése du chapitre4 . . . ... ... ... ... e e 13
1.4 Notions générales sur la méthode utilisée (AG) . . . . .. .. .. .. 15

1.5 Préparation de la base de connaissances pour le SAD “Fuzzy-Flou” 18

1.6 Codage: . . . . . . . . i i i e e e e e e 21



xii

CHAPITRE 2 FUZZY DECISION SUPPORT SYSTEM KNOW-

2.2

2.3

2.4

2.5

2.6

LEDGE BASE GENERATION USING A GENETIC

ALGORITHM . . . . .. ... ... ... ....... 23
Introduction . . . . . . . . . ... 24
Problem Definition . . . . . . .. ... ... .00 00000 25
2.2.1 Fuzzy Decision Support Systems . . . . . . ... ... .... 25
2.2.2 FDSS Learning Paradigm . . .. ... ... ... ...... 28
Genetic-Based Learning Process . . . . . .. ... ... ... .... 30
2.3.1 Encoding/Decoding Scheme . . . .. ... .. ... ..... 31
2.3.2 Reproduction . . . . . .. .. ..o 35
233 Mutation . . . ... .o Lo 37
234 Evaluation . . . . . . . ... L Lo Lo 38
2.3.5 Naturalselection . . . . ... ... ... ... .. ... . 39
Numerical Validation . . . . . . . . . . ... .. ... ... ..... 39
2.4.1 Example 4.1: Horizontal planes . . . . . . .. . .. ... .. 41
2.4.2 Example 4.2: Threeplanes . . . . . . .. . ... ... .... 43
2.4.3 Example 4.3: Curved surface . . . . . ... ... .. ... .. 45
2.4.4 Example 4.4: Concave surface . . . . . ... .. ... .... 46
Experimental Data . . . . . . . . ... ... ... ... ... ... 48
Conclusion . . . . . . . . . . . e 53



CHAPITRE 3 INFLUENCE DES PARAMETRES D’OPTIMISATION

ET DE SELECTION. . .. ............... 61

3.1 Définition du probléeme . . . . . . . . . ..o 0oL L. 61
3.2 Syvstéme d’aidealadécision . . . . . .. . . . ... L. 62
3.3 Parametresde'AG . . .. ... .. ... ... ... ... 62
3.4 Parametres de sélection et d’optimisation . . . . . . .. . ... ... 64
3.4.1 Influence des parameétres d’optimisation. . . . . . . . . . .. 65
3.4.1.1 Parametres de reproduction . . . . ... ... ... 65

3.4.1.2 Parametres d’évaluation . . . . . . ... ... ... 67

3.4.2 Influence du parametres de sélection w, . . . . . . ... ... 68

3.5 Conclusion . . . . . .. . . . . ... e 69

CHAPITRE 4 TOOL WEAR MONITORING USING GENETICALLY-

GENERATED FUZZY KNOWLEDGE BASES .. 70

4.1 Introduction . . . . .. . . . ... . .. e 71
4.2 Monitoring Systems . . . . . . ... . . ..o oo 72
421 Neural Network . . . . . . . . .. ... ... ... ...... 72
4.2.2 Fuzzy LogicSystem . . . . . . . . .. ... ... ... 74
4.2.3 Genetic Algorithm . . . . . . . ... .. L0000, 77
4.2.3.1 Encoding/Decoding Scheme . . . . ... ... ... 79

4.2.3.2 Reproduction . . . . . . .. .. ... ... 82



4.2.3.3 Natural Selection . . . . . . . ... ... ..., 85

4.3 Knowledge Base Learning and Results . . . . . . ... ... .... 86
4.3.1 Neural Network . . . . . . .. .. ... ... ... 90

4.3.2 Manually-Constructed Fuzzy Knowledge Base . . . . . . .. 91

4.3.3 Genetically-Constructed Fuzzy Knowledge Base . . . . . .. 95

4.4 Comparison and remarks . . . . . .. . ... ... 97
4.5 Conclusion . . . . . . . . . . . e e e e e e e e 100
CONCLUSION . . . . . . ottt e e e e e e e e e e e e 105

REFERENCES . . © . o o o e e e e e s s 109



Figure 1

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 2.1

Figure 2.2

Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

LISTE DES FIGURES

Termes et concepts en logique floue . . . . . . ... ... .. 3
Croisement de deux individus. . . . . . . . . ... ... ... 16
Opération de mutation. . . . . . . . .. . .. . ... 17
Vue d’ensemble du fonctionnement de 'AG . . . . . . . . .. 18
Interface graphique du SAD Fuzzy-Flou . . ... ... . . 20
Fonction d’appartenance du SAD Fuzzy-Flou ... ... .. 21
The learning paradigm of FDSS Fuzzy-Flou . ... ... .. 29

The GA learning process of an FDSS Fuzzy-Flou knowledge

base . . . . . . ... o 30
Fuzzy sets on a premise and a conclusion . . . . . . . .. .. 32
Simple crossover of the genotypes of two parents . . . . . . . 36
Theoretical surface 4.1a (horizontal plan) . . . . . . . . . .. s 41
Theoretical surface 4.1b (horizontal plan) . . . . . . . . . .. 42

Computed fuzzy sets of theoretical example 4.1a (horizontal

Computed fuzzy sets of approximated example 4.1b (hori-

zontalplan) . . . .. . . ... Lo 44
Theoretical surface 4.2 (three planes) . . . . ... ... ... 45
Approximated surface 4.2 (three planes) . . ... .. .. .. 46



Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18
Figure 2.19

Figure 2.20

Figure 2.21

Figure 2.22

Figure 2.23

Figure 4.1

Figure 4.2

Figure 4.3

Theoretical fuzzy sets of example 4.2 (three planes) . . . . . 47
Computed fuzzy sets of example 4.2 (three planes) . .. .. 48
Theoretical surface 4.3 (curved surface) . . . . . .. ... .. 49
Approximated surface 4.3 (curved surface) . . . .. ... .. 50
Computed fuzzy sets of example 4.3 (curved surface) . . .. 31
Theoretical surface 4.4 (concave surface) . . . ... ... .. 52
Approximated surface 4.4 (concave surface) . ... ... .. 53
Computed fuzzy sets of example 4.4 (concave surface) . . . . 54
Taylor surface of predicted cutting forces . . . . .. ... .. 55
FDSS Fuzzy-Flou approximated surface of predicted cutting

forces . . . . . L Lo 56
Taylor vs GA-FDSS predicted cutting force for 5 mm depth

ofcut . . . .. 57
Taylor vs GA-FDSS predicted cutting force for a 0.4 mm/rev

feedrate . . . . . . ... Lo 58
Computed fuzzy sets of the experimental data of cutting

forces estimation . . . . .. ... .. ... ... 59
Neural Network with three layers . . . . . . . ... ... .. 73
The learning paradigm of FDSS Fuzzy-Flou . ... ... .. 77

The GA learning process of and FDSS Fuzzy-Flou knowledge



Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13

Figure 4.14

Fuzzy sets on a premise and a conclusion . . . . . . . . ...
Simple crossover of the genotypes of two parents . . . . . . .
Mutation of a genotype . . . . . . . ... ... ...
Cutting force components vs Tool wear (set of data W5)

Cutting force components vs Tool wear (set of data W7)

Sets of cutting parameters . . . . . ... . ... ... ....
Screen printout of the manually constructed knowledge base
Knowledge base obtained from Run1 . . . .. ... ... ..
Knowledge base obtained from Run4 . . . . . . . ... ...
Tool wear vs time for training values

.............

Tool wear vs time for testing values . . . . . . . . . ... ..

xvii

80

83

84

87

38

89

92



xviii

LISTE DES NOTATIONS ET DES SYMBOLES

AG : Algorithme génétique.

COG : Centre de gravité CENTER OF GRAVITY.

CRI : Regle de composition d’inférence COMPOSITIONAL RULE OF INFERENCE.
FDSS : Systéme flou d’aide a la décision Fuzzy DECISION SUPPORT SYSTEM.
G : Génotype.

GA : Algorithme génétique GENETIC ALGORITHM.

HM : Méthode des hauteurs HEIGHT METHOD.

K : Nombre maximum de regles floues.

KB : Base de connaissances KNOWLEDGE BASE.

MISO : Entrées multiples sortie simple MULTIPLE INPUT SINGLE OUTPUT.
MOM : Moyenne des maximums MEAN OF MAXIMA.

N : Nombre de prémisses ou nombre d’entrées.

P : Taille de la population.

R : Agrégation des regles floues.

RMS : Racine de la moyenne carrée ROOT-MEAN-SQUARE.



SAD : Systéme d’aide a la décision.

also : Connection de phase SENTENCE CONNECTIVE.

y 24

P2 -

D3 :

Pa:

tli

t2:

t32

: Nombre de bits.

: Bit activé = 1 / désactivé = 0.

: Génotype d’un individu.

: Nombre de sous-ensembles flous.

: Phénotype d’un individu.

Probabilité de croisement simple SIMPLE CROSS-OVER.

Probabilité de déplacement de sous-ensembles flous.

Probabilité de réduction du nombre de regles floues.

Probabililté de mutation.

Probabilité de croisement simple SIMPLE CROSS-OVER.

Probabilité relative de déplacement de sous-ensembles flous.

Probabilité relative de reduction du nombre de régles floues.

€rms - Erreur rms.

LC:

(o

Espace d’apprentissage.

: Indice de performance d’approximation.



®- - Indice de performance du niveau de complexité.

¢ : Indice de performance pondéré.
w : Pondération.

w, : Critére d’optimisation.

w, : Critére de selection.

A : Opérateur minimum.

V : Opérateur maximum.

o : Opérateur d’'inférence composée.
* : Opérateur produit.

Y. : Opérateur somme.

() : Opérateur norme-t de (-).



Tableau 2.1

Tableau 2.2

Tableau 2.3

Tableau 3.1

Tableau 3.2

Tableau 3.3

Tableau 4.1

Tableau 4.2

Tableau 4.3

LISTE DES TABLEAUX

Cutting force vs feed rate for a 3 mm depth of cut . . . . . .
Cutting force vs feed rate for a 3 mm depth of cut . . . . . .
Cutting force vs depth for a 0.4 mm/rev feed rate . . . . . .
Influence des parameétres de reproduction . . . . . . .. . ..
Influence des parameétres d’évaluation . . . . . ... .. . ..
Influence des parameétres de sélection . . . . . ... .. ...
Approximation errors of the Neural Network method

Arms Of the three Al methods . . . . . . ... ... .....

Arms and A, errors for training and testing sets of data



INTRODUCTION

Ce mémoire est rédigé par articles, de ce fait deux des trois chapitres qu’il contient
(chapitre 2 et chapitre 4), sont les versions originales des textes soumis a des jour-
naux scientifiques. Afin de permettre au lecteur de mieux comprendre les différents
concepts et le vocabulaire utilisés dans ce travail, I'introduction contient une ex-
plication des concepts de bases de la logique floue et des algorithmes génétiques,
qui sont les deux principaux sujets de ce mémoire. Il est & noter que les chapitres
2 et 4 incluent une bibliographie propre a ces articles qui utilise une numérotation

différente de la bibliographie présentée a la fin de ce mémoire.

Plusieurs probléemes de fabrication exigent souvent une expertise qui n’est pas facile
a modéliser. Par exemple, les décisions sont trés souvent prises dans un environ-
nement ou les contraintes et les conséquences ne sont pas toujours précisément
connues. Pour gérer quantitativement I'imprécision, on peut généralement utiliser
les concepts et techniques de la théorie des probabilités et les outils provenant de

la théorie des décisions.

Pour le moment nous sommes incapable de fabriquer des machines qui puissent
rivaliser avec ’homme pour I’exécution des taches, telles que la connaissance des

langues, la traduction des langues, la compréhension de l'intention, de I’abstraction,



de la généralisation, la prise de décision dans l'incertain, etc.

Dans une large mesure, notre capacité a fabriquer de telles machines s’explique par
la différence fondamentale qui existe entre l'intelligence humaine, d’'une part, et
I'intelligence de la machine, d’autre part. Cette différence provient de I'aptitude
du cerveau humain i penser et a raisonner en termes imprécis, “flou”. Par flou, on
comprend les types d’imprécision associés avec la théorie des sous-ensembles flous.
Les sous-ensembles flous sont des groupes d’objets qui peuvent étre caractérisés

par des adjectifs comme : grand, petit, important, approximatif, etc.

Dans la vie courante, la majorité des sous-ensembles n’a pas de limite précise. On
utilise les notions comme: Jean est petit, une belle femme, les petites voitures. Ces

énoncés fournissent de I'information malgré leurs imprécisions.

Associer le mot flou avec le mot logique est choquant. La logique au sens propre
du mot, est une conception des mécanismes de la pensée qui ne devrait jamais étre
floue, toujours rigoureuse et formelle. En approfondissant les mécanismes de la
pensée, les mathématiciens se sont apercus qu’il n’y a pas en réalité, une logique
unique mais autant de logiques que I’on veut, tout dépend de ’axiomatique choisie.
La logique booléenne est donc la logique associée a la théorie booléenne des ensem-

bles; par contre, la logique floue est associée de la méme maniére a la théorie des



sous-ensembles flous [1].

La figure 1 montre des sous-ensembles flous ainsi que les termes et les concepts les

plus usuels.

Concept : Domaine auquel appartiennent les différents faits.

petite /_

réalité linguistique

A moyenn
—_ —— domaine de certitude
1
K‘grande
/ -
145 165 185 taille [cm]
<+——  domaine de possibilité .| /
concept |
<+ universde discours

Figure 1 Termes et concepts en logique floue

ex. : la taille.

Réalité linguistique : Expression linguistique d’un fait.

ex. : pour le concept de la taille, on a des réalité linguistiques : petite, moyenne
et grande.

Evaluation : évaluation faite par l'observation et le jugement d’un cas particulier.



ex. : on regarde une personne et on évalue sa taille a environ 170 cm.

Domaine de discours : champ de définition d’un concept.

ex. : la taille, dans notre exemple, est définie pour une personne d’'age adulte, de
sexe masculin, vivant en Amérique du nord.

Possibilité d’appartenance : c’est le niveau [0,1] de 'adhésion a un concept ou
a ’évaluation dans le domaine de discours.

Fonction d’appartenance : un sous-ensemble flou A d'un ensemble U, appelé

référentiel ou univers de discours.

La logique floue, par sa spécificité, donne une réponse plus flexible aux données
d’entrées. Les réponses ne sont plus réguliéres et continues. Elles sont trés bien ap-
propriées pour le controle des systémes de positionnement ainsi que pour développer
des systemes d’aide a la décision dans des conditions incertaines, comme le logiciel
Fuzzy-Flou développé i I’Ecole Polytechnique de Montréal et I'Université de Tech-

nologie de Silésie a Gliwice (Pologne).

En fabrication, on peut citer I’exemple d’une machine a électro-érosion développée
par Mitsubishi et dont le contréle de I’avance est assuré par controleur “flou” et
le contréle de la force de coupe par un “contrdleur neuro-flou” [2] et de choix de

condition de coupe [3].

Récemment, les applications sont devenues de plus en plus nombreuses comme la



prédiction de maintenance préventive [4] et I’allocation des tolérances [5]. Ceci
est di au fait que la logique floue permet un contréle la ou il n’existe pas de
modeles mathématiques du systéme a contrdler ou lorsque ceux qui existent sont
trop compliqués, trop complexes ou ne s’appliquent que dans des circonstances tres

spécifiques.

Néanmoins, les systémes d’aide a la décision utilisant la logique floue présentent
un handicap certain, qui est le besoin d’un expert pour compiler les connaissances
et construire de fagon manuelle la base de connaissances (une base de connaissance
comprend des sous-ensembles flous et des régles liant ces derniers). A cet effet
beaucoup de travaux ont été faits dans un effort d’automatisation de ce processus
afin de rendre le besoin d’un spécialiste moins déterminant. Ces travaux se sont,
en premier lieu, concentrés sur la génération automatique des regles floues tout
en admettant une répartition de sous-ensembles flous précise, et cela en utilisant
des méthodes purement numériques [6], ou bien des algorithmes génétiques (AG)
[7 — 11]. D’autres travaux ont été faits dans le cadre de la génération automatique

des sous-ensembles flous (leurs répartitions) en utilisant des AGs {12, 13].

Un algorithme génétique est une méthode d’optimisation qui évalue une fonction
objectif & un nombre fini de points. Cette méthode est basée sur I’analogie avec le
mécanisme de génétique naturelle et imite 'approche Darwinienne de la sélection

naturelle [14]. En général, un AG est caractérisé par
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1. un codage de chaque solution possible, sous forme d’une chaine de bits, (appe-

lée chromosome);
2. un indice de performance permettant d’évaluer la qualité de chaque solution;

3. un ensemble initial de solutions, appelé population initiale, généralement con-

struit aléatoirement ou en se basant sur des connaissances a priors;

4. un ensemble d’opérateurs de croisement, mutation et sélection naturelle, afin

de permettre I'évolution de la population de génération en génération.

Les AGs utilisent une amélioration itérative des solutions a chaque génération pour
converger de fagon stochastique vers un optimum global. Ceci est fait au moyen

de trois opérations: croisement, mutation et sélection naturelle.

Le but principal de la recherche présentée dans ce mémoire est de montrer que
I'utilisation d’un algorithme génétique pour ’automatisation compléte du proces-
sus de construction des bases de connaissances peut mener a des résultats trés

satisfaisants. Plus spécifiquement, les objectifs sont de :

® contribuer a 'avancement des algorithmes génétiques dans le champs des
systemes d’aide a la décision utilisant la logique floue par I'étude des questions
de codage, opérateurs de reproduction et évaluation des différentes bases de

connaissances;
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e produire un logiciel de construction automatique qui permette de réduire au

minimum la dépendance par rapport a un expert;

e élargir le champs d’utilisation des systemes d’aide a la décision utilisant la

logique floue.

Le chapitre 1 est une synthése qui passe en revue le travail fait dans ce mémoire.
Le chapitre 2, présente le travail fait dans le cadre d’un article soumis au journal
“International Journal of Approximate Reasonning” [15], dans lequel on trouve
une explication de I’AG utilisé et plusieurs exemples d’application. Le chapitre 3
présente l'influence, des parametres utilisés dans I'AG, sur la solution finale (bases
de connaissances résultantes). Une application sur un probléme de controle d’usure
d’outils, ainsi qu’'une comparaison avec d’autres méthodes d’intelligences artifi-
cielles sont présentées dans le chapitre 4. Un travail fait dans le cadre d’un article
soumis au journal “Engineering Applications of Artificial Intelligence” [17]. Finale-
ment, une conclusion générale et une discution des perspectives de travaux futurs

est faite et elle est suivie d’une bibliographie générale du mémoire.



CHAPITRE 1

SYNTHESE DU MEMOIRE

Comme ce mémoire est présenté “par articles”, ce premier chapitre contient une
synthése générale, en francais, de tout le mémoire, ainsi qu’une présentation des
notions générales nécessaires a la compréhension des chapitres qui suivent. Les
chapitres 2 et 4 contiennent chacun un article soumis a un journal scientifique. Le
chapitre 3 effectue le lien entre les chapitres 2 et 4 et contient également un article

présenté a une conférence.

1.1 Synthése du chapitre 2

Le chapitre 2 contient I'article intitulé “Fuzzy Decision Support System Know-
ledge Base Generation using a Genetic Algorithm” [15] soumis & “International
Journal of Approrimate Reasonning”. Ce chapitre présente une méthode utili-
sant un algorithme génétique (AG) permettant la construction et I'optimisation
de bases de connaissances floues pour des systémes d’aide a la décision (SAD).
La génération des bases de connaissances se fait donc de facon compléetement au-
tomatique, c’est-a-dire sans avoir recours a un expert, et cela seulement a partir
de données numériques. Le SAD utilisé est le “FDSS Fuzzy-Flou”, un logiciel

développé a I’Ecole Polytechnique de Montréal et & I’Université de Technologie de



Silésie a Gliwice (Pologne) utilisant la logique floue.

Chaque base de connaissances construite est composée de deux prémisses d’entrée et
d’une conclusion. Elle contient aussi les informations sur le nombre et la répartition
des sous-ensembles flous sur chaque entrée et sur la conclusion (sortie), ainsi que les
régles floues qui relient les sous-ensembles floues entre eux. Ces bases de connais-
sances sont composées d’un nombre minimal de sous-ensembles et de regles flous,
il s’agit la d’'une approche minimaliste de la méthode, qui construit des bases de
connaissances selon deux critéres de performance complétement contradictoire, a
savoir minimiser les erreurs tout en maintenant le nombre de régles et d’ensemble
flous le plus bas possible. Atteindre cet objectif permet 'obtention de bases de
connaissances complétes et simples ce qui facilite un raffinement a prior: par un

expert.

Pour valider la méthode d’automatisation développée, différents essais sur des sur-
faces théoriques—dont le niveau de difficulté quant a la prédiction de la base de
connaissances est graduelement augmenté tout au long du chapitre 2—ont été faits,
ainsi qu’une application sur une base expérimentale de données de taille réduite,
permettant de prédire les efforts de coupe en tournage, suivie d’'une comparaison
des résultats obtenus par AG avec ceux obtenus par une méthode mathématique

généralement utilisée en usinage (surface de Taylor).
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La structure du chapitre 2 peut étre résumée par les points suivants:
e une introduction contenant une revue bibliographique;
e une présentation de la méthode développée basée sur un AG;
e une présentation du systéme d’aide a la décision “Fuzzy-Flou”;

e les essais de validation de la méthode sur des surfaces théoriques et un en-

semble de données expérimentales;
e une conclusion et une interprétation des résultats obtenus.
Tout les problemes traités dans le chapitre 2 sont 4 deux entrées et une sortie, ce
qui les classe dans le type MISO MULTIPLE INPUT SINGLE OUTPUT.
1.2 Synthése du chapitre 3

Comme on I’a déja mentionné, le chapitre 3 joue le role de lien entre les chapitres
2 et 4. Ce chapitre est en partie basé sur un travail publié dans le compte rendu de
conférence International Conference on Advanced manufacturing Technology [16].
Il s’agit d'une analyse de l'influence des parameétres utilisés lors de I’évolution de

I’AG, ces parameétres peuvent étre subdivisés en deux groupes distincts :
1. parametres (ou critéres) de sélection;

2. parametres (ou critéres) d’optimisation.
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Les parametres de sélection permettent de choisir une base de connaissances parmi
toutes celles proposées dans la population finale. Il est possible de choisir la
base de connaissances selon plusieurs critéres, c’est-a-dire: une faible erreur, un
nombre minimal de régles floues ou une pondération des deux. Les parametres
d’optimisation sont eux utilisés par le mécanisme de reproduction. Ils constituent
les probabilités d’application des différents types de mécanisme de reproduction,

ainsi que la pondération entre les critéres d’évaluations.

L’étude est appliquée a la surface modele présentée & la figure 2.13. Il est impor-
tant de préciser que dans ce chapitre le processus d’évolution de ’AG n’est pas
complete, il est arrété a4 un nombre de générations relativement bas. Ceci, permet
de mieux apprécier les différences existant entre les individus d’une méme popula-
tion et de comprendre l'influence des probabilités appliquées aux différents types

de mécanismes de reproduction, qui sont comme suit:

e p, : probabilité de croisement simple SIMPLE CROSS-OVER;
® p, : probabilité de déplacement de sous-ensembles flous;

e p; : probabilité de réduction du nombre de régles floues;

® p, : probabilité de mutation.

® w, : critére d’optimisation;

® w, : critere de sélection.
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La raison du choix de I'arrét du processus d’évolution de I'AG a des populations
plus ou moins jeunes, est dii au fait que si 1’évolution était poussée assez loin, il en
résulterait des solutions trop similaires, d’'un point de vue performance, et donc des
résultats difficiles a interpréter dans le sens qu’il serait presque impossible de com-
prendre l'influence de chacune des probabilités, listées ci-dessus, sur le processus
d’optimisation des bases de connaissances. Des solutions moins avancées permet-
tent d’apprécier le role des critéres d’optimisation et de sélection, car elle montrent
de fagon plus claire la tendance de 1'évolution des bases de connaissances. Une
analyse des différents résultats obtenus pour les différentes pondérations est faite.
Ce qui a permit de mieux souligner le role de chaque parameétre et 'étendue de son
influence sur la solution finale. Aussi, ce chapitre permet de donner une meilleure
idée sur les ordres de grandeurs—valeurs standards—d’utilisation des parameétres
d’optimisation et de sélection dans le processus d’évolution de 'AG. Le chapitre 3
permet donc de bien assimiler 'influence des pondérations utilisées dans I’AG et
de ce fait facilite la compréhension d’une partie du travail présentée au chapitre 4.

La structure de ce chapitre peut étre résumée comme suit:

e le chapitre débute par la définition du probléme que pose la pondération des
différents criteres d’évolution de I’AG, une bréve présentation de ces derniers

est faite;

e les différents essais ainsi que les résultats obtenus y sont relatés et les compi-
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lations de ces résultats regroupées dans des tableaux;

e la derniére partie est une interprétation globale des résultats sous forme de

conclusion.

Le modele traité dans le chapitre 3 est a trois entrées et une sortie, ce qui le classe

dans le type MISO.

1.3 Synthése du chapitre 4

Le chapitre 4 contient un article intitulé “Tool Condition Monitoring Using
Genetically-generated Fuzzy Knowledge Bases” [17] soumis a ”Engineering Applica-
tions of Artificial Intelligence”, qui présente 'application de méthodes d’intelligences
artificielles (IA) sur un probléme de suivi de I'usure des outils. La premiére méthode
utilisée dans le chapitre 4 est un réseau neuronique conventionnel. Celle-ci est
utilisée comme base de comparaison des performances des systémes d’aide a la
décision utilisant la logique floue. Ces systémes fonctionnent via des bases de con-
naissances qui sont, généralement, construites manuellement (deuxiéme méthode).
Néanmoins, un algorithme génétique (AG) peut étre utilisé pour automatiser cette

construction et remplace le travail de ’expert (troisiéme méthode).

Concernant la partie génération automatique des bases de connaissances, plusieurs
exécutions sont faites, utilisant différents critéres d’évolution de I’AG, critéres

présentés est développés au chapitre 3. Les trois méthodes sont appliquées sur
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deux ensembles de données expérimentales afin de prédire 'usure des outils en
tournage. Le premier ensemble, appelé “W5” est utilisé pour la construction des
bases de connaissances (phase d’apprentissage) . Le deuxiéme ensemble, appelé
“WT", est utilisé pour vérifier les performances de la base de connaissances, et ceci
est fait en appliquant les solutions proposées par les différents systémes intelligents
sur I’ensemble “W7” et en analysant les états d’erreurs des résultats obtenus. La
différence majeure entre les trois méthodes réside bien évidement dans l'aspect
d’automatisation car dans la deuxiéme méthode, qui est manuelle, c’est un expert
qui doit analyser |’ensemble de données “W5” et qui doit donc décider du contenu

de la base de connaissances. Le chapitre 4 est structuré comme suit :

e une introduction mettant ’emphase sur I'importance du probléme de contréle

de l'usure d’outils et contenant une revue de la littérature;

e une présentation du systéme a réseaux de neurones et du systéme d’aide a la

décision “Fuzzy-flou”;

e une explication de la méthode d’automatisation utilisée—la méme que celle

du chapitre 2-——basée sur un AG;

e les résultats de 'application des trois méthodes d’intelligence artificielle dans

le domaine de la prédiction et du suivi de I'usure des outils;

e une interprétation globale des résultats suivie d’une conclusion finale.
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Tout les problémes traités dans le chapitre 4 sont a trois entrées et une sortie, ce

qui les classe dans le type MISO.

1.4 Notions générales sur la méthode utilisée (AG)

Chaque base de connaissances construite est composée de deux ou trois prémisses
d’entrées et d’une conclusion. Elle contient aussi les informations sur le nombre et
la répartition des sous-ensembles flous sur chaque entrée et sur la conclusion, ainsi

que les regles floues qui relient les sous-ensembles flous entre eux.

La méthode utilisée est, comme citée ci-dessus, basée sur un AG. Les AGs utilisent
une amélioration itérative des individus a chaque génération pour converger de
facon stochastique vers un optimum global. Ceci est fait au moyen de trois opérations,
la reproduction, la mutation et la sélection naturelle, qui peuvent étre définies

comme suit:

Reproduction: L’évolution de la population a chaque génération est obtenue
par la reproduction des meilleurs individus, basés sur leur habilité a survivre a
la sélection naturelle. La reproduction est généralement faite par croisement du
chromosome de deux parents, afin d’obtenir le chromosome de deux enfants. L'une

des techniques de croisement suit le mécanisme suivant:

® les parents sont sélectionnés en se basant sur leur indice de performance, les

meilleurs sont favorisés ;



16

Parents Chromosome Chromosome Enfant
Pere |101011510 —9{7101011?11| Gargon
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Figure 1.1 Croisement de deux individus.

o Je chromosome des parents est subdivisé en deux parties a un site de croise-

ment choisi aléatoirement;

e le chromosome des enfants est formé par la combinaison croisée des deux

parties du chromosome des parents.

La figure 1.1 illustre ce mécanisme.

Mutation: La mutation est l'inversion aléatoire d'un bit dans le chromosome d’un
individu lors de la reproduction. La mutation permet de considérer des solutions
complétement différentes, et ainsi potentiellement trouver de meilleures solutions.

La figure 1.2 montre la mutation d’un gene.

Sélection naturelle: La sélection naturelle est appliquée de facon a conserver
les individus les plus prometteurs basés sur leurs indices de performance. Par sim-

plicité, la taille de la population est conservée constante.

Une approche minimaliste est également suivie dans le processus d’automatisation

afin que la base de connaissances satisfasse au mieux, deux critéres d’optimisation
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Site de mutation
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Figure 1.2 Opération de mutation.

contradictoires; a savoir approximer le mieux possible les données numériques
d’entrée/sorties—Iles solutions les plus proches de |’'optimum (environ 75%)—tout
en utilisant un nombre minimal de régles floues—les solutions ayant le plus petit

nombre de régles (environ 25%)—.

La premiere génération commence avec 100 individus (chaque individu représente
une base de connaissances) crées aléatoirement, puis 100 individus supplémentaires
sont crées par reproduction. Afin de conserver la taille de la population constante,
la sélection naturelle est appliquée sur les 200 individus en les ordonnant selon
chacun des deux critéres d’évaluation. Ainsi les 50 premiers de chacun des deux
criteres (50+50=100) sont conservés tout en évitant la duplication. La figure 1.3
montre une vue d’ensemble du fonctionnement de I’'algorithme. Il est & noter qu’une
personnalisation du processus de reproduction de I’AG est aussi faite dans cet ar-
ticle. En plus du mécanisme de croisement simple présenté ci-dessus, deux autres

mécanismes viennent s’ajouter, a savoir: le déplacement des sous-ensembles flous et
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Figure 1.3 Vue d’ensemble du fonctionnement de I’AG

la réduction de regles floues. Ces deux opérations sont appliqués avec une certaine

probabilité prédéterminée.

1.5 Préparation de la base de connaissances pour le SAD “Fuzzy-Flou”

Habituellement, les bases de connaissances sont construites manuellement par
un expert. Conséquemment le temps de création et la qualité de la base de con-

naissances dépendent de 'habileté de ’expert. Celui-ci suit les étapes suivantes:
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1. Définir les prémisses: il y a autant de prémisses que de variables d’entrées.
2. Définir les conclusions: il y a autant de conclusions que de variables de sorties.
3. Définir le nombre d’ensembles flous: dans chacune des prémisses d’entrées.
4. Définir le nombre d’ensembles flous: dans chacune des conclusions.

5. Définir la répartition des ensembles flous : leurs positions sur les prémisses
puis sur les conclusions, ainsi que leurs formes en se basant sur les connais-

sances disponibles.

6. Définir les régles floues: qui représentent la relation entre les différents en-

sembles flous sur les différentes prémisses et conclusions.

Chaque individu contient le codage des sous-ensembles flous des prémisses X et
Y, ainsi que la conclusion U. Dans notre cas, nous utilisons un maximum de 7
sous-ensembles flous pour chacune des prémisses (le chiffre 7 étant le nombre de
sous-ensembles le plus communément utilisé en contrdle) et 8 sous-ensembles flous
pour les conclusion. L’ensemble des régles ainsi que le nombre et la répartition des
sous-ensembles flous sont optimisés par I’AG, afin de reproduire de fagon optimale
la surface demandée, tout en réduisant le nombre de regles. Une regle floue, pour
un systeme a deux entrées et une sortie, s’exprime sous la forme suivante:

Regle 1

Si la valeur sur la prémisse X est de X ;
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Figure 1.4 Interface graphique du SAD Fuzzy-Flou

et la valeur sur la prémisse Y est de Y ;

alors la conclusion U est de U;.

C’est ce que qui est communément appelé les régles "si-alors”.

La figure 1.4 montre l'interface graphique du SAD avec une répartition max-

imale des sous-ensembles flous—systéme & deux entrées et une sortie—sur les

prémisses X et Y et sur la conclusion U (colonne de droite).

La colonne de

gauche montre les prémisses X et Y, la conclusion U et 'ensemble des régles

floues. Le SAD Fuzzy-Flou permet l'utilisation de fonctions d’appartenance de




21

formes trapézoidales, comme le montre la fig.1.5. Néanmoins pour des raisons de
simplicité de codage, nous considérons la forme triangulaire non symétrique pour les
fonctions d’appartenance des deux prémisses d’entrées et triangulaire symétrique
pour les fonctions d’appartenance de la conclusion. Comme montré a la fig.1.5, les
valeurs modales m1 et m2 représentent le sommet du triangle (m1=m2), la valeur
modale am représente la distance entre le sommet actuel et celui qui le précede,
alors que la valeur modale bm est la distance entre le sommet actuel et celui qui

lui succéde, hm est la hauteur du triangle (fixée a 1).

Add MF for premise 1 premisse x

Figure 1.5 Fonction d’appartenance du SAD Fuzzy-Flou

1.6 Codage:

La nature possede sa propre méthode pour coder les phénotypes en chromosome,
donc chaque probléme d’optimisation doit aussi définir sa méthode de codage des
parametres en une chaine de bits. Le nombre de bits alloués a chaque parametre

détermine sa résolution maximale. Dans ce mémoire, la position des sous-ensembles
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flous et les régles floues sont codées comme suit:

Sous-ensembles flous: comme cité ci-dessus, nous utilisons des fonctious d’appar-
tenance de forme triangulaire, dont la position du sommet est codée par 4 bits. Le
sommet d’un triangle (fonction d’appartenance) est donc le début du prochain et
ainsi de suite. Le choix d’une résolution de 16 (4 bits — 2* = 16) peut étre changé,

mais au prix de 'augmentation du temps d’exécution de ’algorithme.

Reégles floues: 4 bits sont alloués a chaque régle floue, le premier bit représente
I’activation (si 1) ou la désactivation (si 0) de la régle, les trois autres bits qui restent

constituent un pointeur vers le numéro d’un sous-ensemble flou sur la conclusion.
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CHAPITRE 2

FUZZY DECISION SUPPORT SYSTEM KNOWLEDGE BASE

GENERATION USING A GENETIC ALGORITHM

Soumis a International Journal of Approximate Reasonning.
Journal affilié a I'organisation NAFIPS.
North American Fuzzy Information Processing Society.

Edition Elsevier Science. [15]

Abstract

This paper presents a genetic algorithm (GA) that automatically constructs the
knowledge base used by fuzzy decision support systems (FDSS). The GA produces
an optimal approximation of a set of sampled data from a very small amount of
input information. The main interest of this method is that it can be used to au-
tomatically generate (without the help of an expert) a fuzzy knowledge base—i.e.,
the fuzzy sets for premises, conclusions and the fuzzy rules—. This knowledge
base is composed of the minimum number of fuzzy sets and rules. This minimalist
approach produces fuzzy knowledge bases that are still manageable a posteriori by
a human expert for fine tuning. The GA is validated through several examples of

known behaviors and, finally, applied to experimental data.
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Keywords: Fuzzy decision support system, knowledge base, learning, genetic algo-

rithm.

2.1 Introduction

Nowadays fuzzy logic is increasingly used in decision-aided systems because it
offers several advantages over other traditional decision-making techniques. The
fuzzy decision support systems (FDSS) can easily deal with incomplete or/and
imprecise knowledge applied to either linear or nonlinear problems. These sys-
tems have successfully been applied to many different problems such as: predictive
maintenance [1], tool conditions monitoring [2], job dispatching [3] and tolerance
allocation [4]. Unfortunately, all these cases require an expert in order to manu-
ally construct, from his own expertise, the fuzzy knowledge databases. Obviously,
this learning process is lengthy. Moreover, the quality of the resulting knowledge
base depends greatly on the objectivity and the teaching capacity of the expert.
Consequently, many research works have been conducted toward the automatic
generation of fuzzy knowledge bases. These works have first focused on different
aspects of the automatic generation of fuzzy rules with either numerical methods
[5] or genetic algorithms (GA) [6, 7, 8, 9, 10]. Although the number of rules
increases exponentially with the number of fuzzy sets, GAs appear to be the most
promising learning tool. Conversely, other works have focused on different aspects

of the automatic generation of fuzzy sets with GAs [11, 12]. Membership functions
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have been studied in terms of shape and probability, the quantity of fuzzy sets
is user-defined, and hence, is not part of the learning process. An evolutionary
paradigm of both fuzzy sets and rules using a genetic algorithm is proposed in [13].
The authors studied the membership probability on fuzzy sets and rules without
including other fuzzy knowledge in the learning process. Clearly, there is a need
for an automatic generation of fuzzy knowledge bases, which includes in the learn-
ing process: the quantity of fuzzy sets and rules; the repartition of the fuzzy sets
on premises and conclusions; and the rules themselves. In this paper, we propose
a genetic-based learning process of fuzzy knowledge bases to be used in a FDSS.
Our method includes all the abovementioned knowledge aspects in the learning pro-
cess. Here, we use Fuzzy-Flou, an FDSS software developed at Ecole Polytechnique

(Canada) and the Technical University of Silesia in Gliwice (Poland).

2.2 Problem Definition

First, let us present the FDSSs used in this research and the learning paradigm

associated with fuzzy knowledge bases.

2.2.1 Fuzzy Decision Support Systems

A rule-based approach to the decision making using fuzzy logic techniques may
consider imprecise vague language as a set of rules linking a finite number of conclu-

sions. The knowledge base of such systems consists of two components: a linguistic
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terms base and a fuzzy rules base [14]. The former is divided into two parts: the
fuzzy premises (or inputs) and the fuzzy conclusions (or outputs). In general, both
can contain more than one premise and one conclusion. However, we limit ourself
in this paper to systems of N multiple inputs and one single output (MISQO). More-
over, for the sake of simplicity, we consider only non-symmetric triangular fuzzy
sets on the premises and sharp-symmetric triangular fuzzy sets on the conclusion.
The representation of such imprecise knowledge by means of fuzzy linguistic terms
makes it possible to carry out quantitative processing in the course of inference
that is used for handling uncertain (imprecise) knowledge. This is often called
approximate reasoning [13]. Such knowledge can be collected and delivered by a
human expert (e.g. decision-maker, designer, process planer, machine operator).
This knowledge, expressed by (k = 1,2, - --, K) finite heuristic fuzzy rules of the

type MISO, may be written in the form:

R% 150 tif z, is XF and 5 is X5 and --- and zy is X% then yis Y*, (2.1)

where {XF}¥, denote values of linguistic variables {z;}/, (conditions) defined in
the following umiverse of discourse {X;}{,; and Y* stands for the value of the

independent linguistic variable y (conclusion) in the universe of discourse Y. The



global relation aggregating all rules from &£ =1 to K is given as

R = alsof_, (Rjy;s0)- (2.2)

where the sentence connective also denotes any t- or s-norm (e.g., min (A) or maz
(V) operators) or averages. For a given set of fuzzy inputs { X!}V (or observations),

the fuzzy output Y’ (or conclusion) may be expressed symbolically as:

Y, - (JY{’ .'Yé, Y X;v) (o} R, (2.3)

where o denotes a compositional rule of inference (CRI), e.g., the sup-A or sup-prod

(sup-+). Alternatively, the CRI of eq. (4.6) is easily computed as

Y'=Xyo---0(X;0(X]oR)). (2.4)

In FDSS Fuzzy-flou, there are four variants of CRI: the sentence connective also
can be either V or sum (3 ); the compositional operator is the supremum (sup) of
either A or %, denoted supA and sup+; while the sentence connective and and the
fuzzy relation are always identical to the second part of the latter. For the sake of

brevity, all four variants of CRI—i.e.: V-supA-A-A; V-supk-x-x; Y -supA-A-A; and



28

3_-sup*-*-x—are expressed as

vf:l
Y= sup *t( *t("Y['vy"'7-‘YérX{) Y *t(‘Ylka‘Yga"’7‘Y1I:f’ Yk))7

K
= {z: € Xi}L,

(2:5)
where *,(-) denotes the t-norm of (-) defined as either A or *. These variants of CRI
mechanisms allow us to obtain different conclusions represented as the membership
function Y. In FDSS Fuzzy-Flou, there are three defuzzification methods: the
center of gravity (COG); the mean of maxima (MOM); and the height method
(HM). All the results presented in this paper are obtained with the 3 -sup#--

* CRI and COG as defuzzification. Although these use only two premises, our

method is general and can be used with up to N premises.

2.2.2 FDSS Learning Paradigm

In general, FDSS requires a knowledge base in order to support the decision-
making process of end-users. As shown in fig. 4.2, this knowledge base can be
createdea manually by an human expert or automatically learned from a set of
sampled data. This paper is concerned about the automatic learning process of
FDSS knowledge base. Although contradictory, the overall objective is to find a
knowledge base: 1) of minimum size; 2) that best approximates the set of sam-

pled data. The first objective is aimed at producing small knowledge bases, i.e.,
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knowledge bases that are still manageable by either a human expert or a com-
puter. The second objective is aimed at accurately reproducing the set of learned
data, while interpolating or extrapolating fair conclusions in other situations. The
former allows for a posteriori tuning of the knowledge base by a human expert,
while the latter allows for the learning of a very large set of sampled data and/or
the handling of very complex decision-making problems. This minimalist approach
is implemented through an automatic reduction of fuzzy rules and sets on the
premises and on the conclusion, whenever the approximation error is not penalized
too much by this reduction. Figure 4.2 presents our genetic-based FDSS knowledge

base learning process.

=
Expert Learning Process
l ] l ‘
e ntior ettt ' l e e e e e e e - - .
1 !
| )
| I
. | FDSS I :
: [} :
LT ‘Fuzziﬁcati'on #! Inference Engine [ Defuzzification —-

Figure 2.1 The learning paradigm of FDSS Fuzzy-Flou
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2.3 Genetic-Based Learning Process

GAs are powerful stochastic optimization techniques that are based on the
analogy of the mechanics of biological genetics and imitate the Darwinian survival-
of-the-fittest approach [16]. As shown in fig. 4.3, each individual of a population
is a potential FDSS Fuzzy-Flou knowledge base. The method uses iterative im-
provement of individuals at each generation to converge toward multiple optima
simultaneously. This evolutionary process operates directly on the genotype—i.e.,
the coded physical characteristics into bit string—of individuals rather than on

its phenotype—i.e., the physical characteristics themselves—. It is noteworthy that

Population of Knowledge Bases

1Y

i

GA — » 5
l——‘ Reprpdu__ctipn Natural  Selection
! |
Mutation Evaluation |< Data
[ A4
_____________ .{-_______.._-__,' ] - - - - — -
Y

FDSS | .

* Fuzzification: [+ Inference Engine- | Defuzzification:

- —m = m—-—-

Y

Figure 2.2 The GA learning process of an FDSS Fuzzy-Flou knowledge base

the coding of several parameters into bit strings is crucial in GA. When the number
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of unknown parameters increases, GA exhibits only a polynomial increase in the
size of the search space, while the other optimization techniques show an exponen-
tial increase. Figure 4.3 presents the encoding/decoding scheme as well as the four
basic operations, i.e.: reproduction, mutation, evaluation and natural selection, of

the developped GA learning sofware [17].

2.3.1 Encoding/Decoding Scheme

The genotype of an individual p member of a population of size P is defined as

G = { Ggetsv Gfules }3 (2'6)

where G?,,, and G? ., are respectively the genotypes of the fuzzy sets and rules.
For the sake of brevity, the indice p is omitted in the following equations. However,
it must be clear that all the following genotypes apply to any individual p.
Fuzzy sets:

The genotype of the fuzzy sets must contain all the information on the position of

the fuzzy sets on the premises and the conclusion, i.e.:

Gsets = {GX11 Gng M GXN, GY}, (2‘7)
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where G, is the genotype of the n, fuzzy sets on v, i.e.,

G, = {10..1.01 11..0.10 .- -01...11}, Vv € {Xl, Xo,---, X, Y}. (2.8)
' ' gy"

As shown in fig. 4.4, the fuzzy sets are made of sharp symmetric triangles on the
conclusion—to have an equal weighting—and non-symmetric triangles on premises—
to allow overlapping, and hence, a reasoning process—. The phenotype p expresses

b premise p A TN\ conclusion AN
. ] . .

Figure 2.3 Fuzzy sets on a premise and a conclusion

the location of the summit of a triangle on the premise or the conclusion field v.
For each premise, there are always two half-triangles located at pT*" and p[***, and

hence it is not necessary to encode their positions in G, (also not counted in n,).

The number of the bit, denoted b,, allocated to each basic genotype g, is chosen
in such a way as to obtain a desired resolution r, on the positioning of the fuzzy
sets along p, between p™™ and p™**. The encoding of the basic phenotype p}, into

its corresponding genotype g: is given as

g =f(P,), Vi=1,.,n, and Vve {X, X -, Xn Y} (2.9)
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where the encoding scheme f(-) is defined as

i pi _pmin X i .
f(p;) _U—TU_’ g:; € {07 1’ Tty 2b., - 1}7 p:)nln S p:: S P:;nn, (2'10)

with the resolution r, on the phenotype p, computed as

ptr}na:z: _ p:)nin
Ty = Tl—_. (2-11)

The decoding of the basic genotype g into its corresponding phenotype p; is given

as

p:; = f-l(gti))v Vi = 1,..,ny, and Vv € {Xl'IXZ""’XN’ Y}’ (2'12)

where the decoding scheme f~!(-) is defined as

fHgl) = rogl + pn. (2.13)

While the number of premises N and the limits p™" and p™?* are parameters
determined by the problem to be solved using the FDSS Fuzzy-Flou, the maximum
number of fuzzy sets n, and the number of bits of resolution on the positioning
of these fuzzy sets are important parameters for the learning process because it

determines the size of the fuzzy-sets-search space. Since the number bits of g: is
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b,, the function size(-) is thus defined as size(g,) = b,. Consequently, the number

of bits of G, and G, are given as

size(G,) = nyby, (2.14)

size(Gsers) = size(Gy) + TV, size(Gx,) = nyby + Zf‘;l nybx,. (2.15)

Fuzzy rules:

The genotype of fuzzy rules must contain information about all the possible combi-
nations of connecting a fuzzy set of the conclusion to a fuzzy set of each premises.
The maximum number of rules, K, is given as the total number of combinations,
ie.,

K = (TL,\'l +2)(TI.X2 + 2) - --(TZXN -+ 2), (216)

where the +2 is required because of the presence of the two half triangles, located
at p’ff“ and p%?*, that are not counted in ny,. Without lost of generality, we can

assign fuzzy sets p" to indice 0 and p'¢’*to indice ny, +1 such that we have:

0 min nx;+l __ _maz

p/Yi = pxl ) pxt = px' N 'i = 1, seey nx'.. (2-17)

The fuzzy rules are coded in an ordered list of combination of the premises, each

having an enable/disable bit, denoted e, together with a conclusion fuzzy set num-
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ber, i.e.,:
Grutes = {€10...01€11...10---€01...11}. (2.18)
90 g1 gK -1
For a specific combination of fuzzy set premises { f1, f2,-- -, fw} with f; € {0,1,...,nx,+

1}, the indice & of g; can be computed as r; by the recursive equation

r; = fj + (Tl,\’j + l)T‘j.H, i=1 .. (N —1), r~=fn- (219)

The number of bits b, allocated to each g, must have sufficient space to refer to

ny conclusion fuzzy sets, plus one enable/disable bit, i.e.,

2=l > . (2.20)

Although it is not the minimum size, the fuzzy rules coding of eq.(4.19) is chosen

because of its simplicity and constant genotype size, i.e.,

size(Grytes) = Kb,. (2.21)

2.3.2 Reproduction

The evolution of the population is achieved by reproduction of the best indi-
viduals based on their ability to survive natural selection. This reproduction is

performed by any of the three following operators based on a different initiating
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probability.
Simple Crossover:
In general, the reproduction is mainly done by simple crossover (with a probability

t,) of the genotype of two parents to produce the genotype of two children. The

Parents Genotype Genotype Children
] 1
Father 10101 110~ | 101011:11| Boy
I '
Crossover site —=> >%
i ! I
Mother |100111' 11— 100111:10| Girl
{ ' J | - !
Old generation New generation

Figure 2.4 Simple crossover of the genotypes of two parents

simplest way to implement this operation is as follows: the parents are selected
based on their ability; the genotype of the parents is split in two parts at a randomly
selected crossover site; the genotype of the children is formed by recombining one

part of the genotype of each of their parents, as shown in fig. 4.5.

Fuzzy-Sets Displacement:

The displacement of the fuzzy sets is performed (with a probability ¢;) by randomly
selecting a fuzzy set on a premise. The selected fuzzy set is then moved by one step
of resolution toward the left or right, with an equal probability. This reproduction

operator has the virtue of trying different fuzzy set repartitions, while decreasing
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the number of fuzzy sets by superimposing two or more fuzzy sets.

Fuzzy-Rules Reduction:
The reduction of the number of fuzzy rules is performed, with a probability ¢3 given
by

t3 = (1 —t1)(1 —t2). (2.22)

One of the K fuzzy rules is randomly selected, and the bit e is set to disable.
Obviously, this reproduction operator does not always give rise to a reduction in
the number of fuzzy rules, but gradually it works in that direction. At the same

time, when a fuzzy set is disabled the fuzzy set number is assigned to zero.

2.3.3 Mutation

Mutation is a random inversion of a bit in the genotype of a new member of the
population. Mutation makes it possible to try a completely different solution. The
probability of mutation 4 should be kept very small in order to let the population
improve itself mainly by reproduction. This way of seeking completely different
solutions allows the algorithm to jump out of a local optima, and potentially fall

into more promising regions.
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2.3.4 Evaluation

The capacity of each individual to survive natural selection is evaluated through
two objective functions. The first objective function evaluates the capacity of a
knowledge base to approximate the set of sampled data. This fitness value, denoted
@1, is defined as

b= 5= e — . (2.23)

The root-mean-square error, €gars, between the FDSS Fuzzy-Flou decision Y; and

the conclusion values y; of the sampled data is computed as

€ERMS = \/Z =1 (Y — v , (2.24)

where n is the number of points in the sampled data. The second objective function
evaluates the complexity of a knowledge base through its number of active fuzzy
rules. This fitness value, denoted ¢, is defined as

K —n,
K

@2 = (2.25)
where K is the maximum number of fuzzy rules and n, is the number of active

rules of the knowledge base under evaluation. In order to chose between these two

contradictory objectives, we use the following weighted sum of the two objective
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functions, i.e.:

¢ = wey + (1 — w)¢go, (2.26)

where w is usually set to around 75%.

2.3.5 Natural selection

Natural selection is performed on the population by keeping the most promising
individuals based on their fitness value. This is equivalent to using solutions that
are closest to the optimum. For convenience, we keep the size of the population
constant. In this paper, the first generation starts with 100 knowledge base and
100 additional are generated by reproduction and mutation. These brand new
knowledge bases are then evaluated. The natural selection is applied on the 200
knowledge bases by ranking them based on ¢ and ¢,. We keep the first 50 non

identical knowledge bases of the two lists.

2.4 Numerical Validation

The learning performances of this GA are now investigated using several ex-
amples of known behaviors for which it is easy to manually produce a knowledge
base. All these examples have N = 2 input premises, namely X, and X5, and
one output conclusion Y. The known behaviors are chosen as 3D surfaces of type:

y = f(x1,z7), where the nodes are the learning set of sampled data. Moreover, a
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maximum of 7 fuzzy sets is used on each premise (nx, =ny, = (7 —2) = 5) and
a maximum of 8 fuzzy sets on the conclusion (ny = 8). Therefore, the maximum
number of fuzzy rules is given by eq.(4.17) as K = 7 x 7 = 49. Furthermore,
each input premise is discretized into 16 different fuzzy set positions, and hence,
requires by, = by, = 4 bits. Using eq.(4.20) with ny = 8, b, = 4 bits are required
for each item of the ordered list of fuzzy rules. Finally, the size of the genotype of

the learning problem of this FDSS is

SiZC(G) = Size(Gsets)'*'Size(Grules)

= Kb +nyby +nyx, bx, + nx,bx, = 268, (2.27)

which means that the size of the learning space L is given by

size(L) = 252¢(C) = 2268 — 4 7 x 10%°. (2.28)

Under the assumption that the evaluation of one knowledge base by a Pentium
II-350 MHz requires about 1 msec, the total computing time to evaluate all the
knowledge bases of £ will require 1.5 x 107° years, which is totally unacceptable!
It is thus clear that we need a learning process that requires the evaluation of a
very small percentage of £, while proposing near optimal knowledge bases. This is

what we will obtain using GAs.
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2.4.1 Example 4.1: Horizontal planes

The two theoretical surfaces 4.1 are horizontal planes at two different heights,

i.e.,
a) y="7.75 0<;, <L10
with , 1<y<10, (2.29)
b) y =7.33 2< 19 €12

where Y = 7.75 is right on one of the discrete locations of Y, while Y = 7.33 is off

of these. As shown in the fig. 2.5, 2.6, 2.7 and 2.8, the learning process proposed a

g
S
é;"‘—'/——f 7
7.751 el

Y ——
7.5 / -
7.254 h !

g

74 5 X,

4
x,, 8 8 1o

Figure 2.5 Theoretical surface 4.1a (horizontal plan)

knowledge base that allows an exact approximation of eq.(2.29) with a minimum

of 2 of fuzzy sets on each premise. As expected on the conclusion, one fuzzy set at
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Y = 7.75 is proposed in the first case and 2 fuzzy setsat ¥ = 7.1875and Y = 7.75

in the second case.

8 10

Figure 2.6 Theoretical surface 4.1b (horizontal plan)

Moreover, the learning process has automatically reduced the number of fuzzy
rules from a maximum of 49 to the a minimum of 4. In the first case, all 4 rules
point to the same conclusion fuzzy set Y = 7.75, while in the second case, 3 rules
point to Y = 7.1875 and only one to Y = 7.75, since the output value of Y = 7.33

is closer to Y = 7.1875 than Y = 7.75.
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Figure 2.7 Computed fuzzy sets of theoretical example 4.1a (horizontal plan)

2.4.2 Example 4.2: Three planes

The theoretical surface 4.2 is made of three plans, i.e.,

)
T : 0<z;< 10 10<z;, <20

y=14 10 10<z, <30 Wwith o<z, <40
| 22-20 : 30< 7, <40 0<y<20

(2.30)

As shown in fig. 2.9 and 2.10, the learning process proposed a knowledge base

that allows an approximation of eq.(2.30) with a 2% error using a minimum of 2

and 4 fuzzy sets on the premises X; and X,, respectively, and 3 fuzzy sets on the

conclusion. As shown in fig. 2.11 and 2.12, the repartition of the computed fuzzy
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Figure 2.8 Computed fuzzy sets of approximated example 4.1b (horizontal plan)

sets is almost identical to the theoretical one manually proposed by an expert.

The only difference comes from the discretization error on the locations of the fuzzy
sets on the conclusion, which does not allow, in this case, an exact approximation
of the theoretical surface 4.2. As expected, the number of computed fuzzy rules is
automatically reduced from 49 to 3, thus corroborating the 5 fuzzy rules manually

proposed by the expert.
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16 "
18 o
Figure 2.9 Theoretical surface 4.2 (three planes)

Xu

2.4.3 Example 4.3: Curved surface

The theoretical surface 4.3 is defined as

025 < Iy S 5.0
T2+ 05 ith , 0<y<?20. (2.31)

Iy

As shown in fig. 2.13 and 2.14, the learning process proposed a knowledge base
that allow an approximation of eq.(2.31) with a 2% error using 6 and 2 fuzzy sets

on the premises X, and X5, respectively, and 5 fuzzy sets on the conclusion, as
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10 1o

X, 18 20

Figure 2.10 Approximated surface 4.2 (three planes)

shown in fig. 2.15. The number of computed fuzzy rules is automatically reduced

from 49 to 10.

2.4.4 Example 4.4: Concave surface

The theoretical surface 4.4 is defined as

_ 2 2 . -1.5 S ] S 1.5
y = exp(z] + z3) with , 1<y<600. (2.32)

—2<; <2

As shown in fig. 2.16 and 2.17, the learning process proposed a knowledge base
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Figure 2.11 Theoretical fuzzy sets of example 4.2 (three planes)

(fig. 2.18) that allows an approximation of eq.(2.31) with a 3% error using 7 and
4 fuzzy sets on the premises X; and X,, respectively, and 6 fuzzy sets on the
conclusion. The number of computed fuzzy rules is automatically reduced from 49
to 22.

Apparently the fuzzy sets are distributed, on the conclusion field, proportionally
to the vertical density of nodes on the theoretical surface. Although we have a fully
symmetric theoretical surface with respect to z; and z,, the distribution of the fuzzy
sets on these two premises are slightly different. This difference could be explained
by the fact that the learning process does not provide an optimal knowledge base,

but rather only near optimal knowledge bases.
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Figure 2.12 Computed fuzzy sets of example 4.2 (three planes)

2.5 Experimental Data

In this section, we use the learning process on a rather incomplete set of experi-
mental data used to predict the cutting force F' based on a measure of the feed rate
f and the cutting depth d during bar-turning operations. The measurements were
taken on a 5kW lathe equipped with a bi-directional dynanometer, a high speed
steel cutting tool, a cutting speed of 32 m/min. The machined part was XC48 with
Rm = 80 daN/mm? [18]. The bar-turning cutting forces were measured under two

experimental conditions: a constant feed rate with a variable cutting depth (Table
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Figure 2.13 Theoretical surface 4.3 (curved surface)

4.1); and a constant cutting depth with a variable feed rate (Table 2.3).

For the sake of comparison, the standard Taylor equation is used here to predict

Tableau 2.1 Cutting force vs feed rate for a 5 mm depth of cut

Test # 1 2 3 4 5 6
flmm/rev] {005 01 0.2 03 04 0.5
FIN] 1000 1600 2800 3600 4300 4950

Tableau 2.2 Cutting force vs feed rate for a 5 mm depth of cut

the cutting forces as commonly done in the metal cutting industry, i.e.,

F = Cf*d? with C = 1589, a = 0.7, 8 =0.994, (2.33)

where C, a and B are computed as nonlinear least-square estimates of eq.(2.33)
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Figure 2.14 Approximated surface 4.3 (curved surface)

Tableau 2.3 Cutting force vs depth for a 0.4 mm/rev feed rate

Test # 7 8 9 10 11 12
d{mm)] 1 2 3 4 5 6
F[N] 800 1900 2400 3400 3900 4750

from the experimental data of Tables 1 and 2. Figure 2.19 shows the Taylor surface
and fig. 2.20 shows the corresponding FDSS Fuzzy-Flou approximated surface of
the experimental data.

Using the knowledge base produced by our learning process, the Taylor surface
is approximated by the FDSS Fuzzy-Flou with an error of 3%. This result is
acceptable considering the 4 bit resolution on the position of the fuzzy sets on the
conclusion field. However, there are still inconsistencies in the experimental data
(see test 5 and 11), which explains the impossibility of having zero approximation

error.
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Figure 2.15 Computed fuzzy sets of example 4.3 (curved surface)

Figure 2.21 and 2.22 compare the experimental data with the results obtained
by the Taylor equation and the GA-FDSS with the knowledge base automatically
computed by our GA.

Apparently the results obtained with GA-FDSS are closer to the experimental
data than those obtained with the theoretical Taylor equation.

As shown in fig. 2.23, only two fuzzy sets are generated on each premise and
three on the conclusion field. Here again, the number of fuzzy rules is automatically
reduced from 49 to 4.

Even with a very small amount of data our learning process allows the automatic

construction of a knowledge base which enables FDSS Fuzzy-Flou to approximate
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Figure 2.16 Theoretical surface 4.4 (concave surface)

the experimental data with a very low error level of together with the smallest
possible number of fuzzy sets and rules. This provides a method to cover the full
range of possible inputs without having to perform a large number of expensive
experiments. Moreover, the GA automatically discards superfluous fuzzy sets and
rules, and hence, provides a simple knowledge base that can be manually handled

by an expert for fine tuning.
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Figure 2.17 Approximated surface 4.4 (concave surface)

2.6 Conclusion

The need of an expert to construct a knowledge base for each given problem
is the most important drawback of decision-aided systems. However, we have
presented, in this paper, a genetic algorithm that can automatically construct a
knowledge base. Besides the reduction of subjectivity related to the manually
construction of a knowledge base, this GA has the virtue simultaneously reducing
the approximation error, while eliminating superfluous fuzzy sets and rules. In all
examples, our GA automatically computed a very good knowledge base in only a

few minutes for a search space of size 10%°, on a Pentium I1-350 MHz.
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Figure 2.18 Computed fuzzy sets of example 4.4 (concave surface)
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CHAPITRE 3

INFLUENCE DES PARAMETRES D’OPTIMISATION ET DE

SELECTION.

Le travail de recherche présenté dans ce chapitre a été publié dans le compte
rendu de la conférence “International Conference on Advanced manufacturing Tech-

nology’, Jahor Bahru, Malaisie, Aoiit 2000. [16].

3.1 Deéfinition du probléeme

Dans ce chapitre, il est question de l'influence des parametres de sélection et
d’optimisation sur la génération automatique d’une base de connaissance par algo-

rithme génétique (AG).

Le but est d’étudier les poids entre les différents critéres et de ce fait, montrer les

différentes évolutions résultantes.

L’AG est appliqué sur des données numériques et génere une base de connaissances
qui les reproduit avec une erreur d’approximation minimale tout en utilisant le plus

petit nombre possible de régles floues.
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3.2 Systeme d’aide a la décision

Le systeme d’aide a la décision utilisé, est le SAD (FDSS) Fuzzy-Flou, dont
les détails sont cités au chapitre 1. Il est & noter que les parametres utilisés sont

comme suit :
® 3 x (somme poduit) comme moteur d’inférence;

® COG (centre de gravité) comme méthode de defuzzification.

3.3 Parameétres de 'AG

Comme cité au chapitre 1, ’AG fait évoluer la population de bases de con-
naissances, en utilisant la reproduction, la mutation, I’évaluation et la sélection
naturelle. Ceci dit, ces derniers mécanismes sont régis par des pondérations qui
sont citées et expliquées ci-dessous :

Reproduction

La reproduction est divisé en trois mécanismes principaux:

® Croisement simple
Il s’agit 13, du principal mécanisme de reproduction, il est régit par la proba-
bilité p;.

@ Déplacement des sous-ensembles flous

Cette partie du mécanisme est gouverné par la probabilité p,.
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e Réduction de régle floue
La réduction de régle floue est appliquée avec une probabilité p; qui est

calculée par ’équation :

ps = 1 — (p1 + p2) (3.1)

Ce parameétre est généralement maintenu 4 un niveau assez faible.

Mutation
La mutation est aussi appliquée avec un pourcentage de probabilité p, tres faible,

généralement maintenu autour de 5% pour tout nos essais.

Evaluation

La capacité de chaque individu de survivre a la sélection naturelle est, comme déja
cité au chapitre 1, faite selon deux fonctions objectif. La premiére fonction objectif,
évalue la capacité d’une base de connaissances a approximer les données utilisées.
Cet indice de performance, dénoté ¢,, est calculé avec la méthode des moindres

carrés.

La deuxiéme fonction objectif, évalue la complexité d'une base de connaissances
a travers son nombre de régles floues, les bases de connaissances les plus simples
sont celles avec le plus petit nombre de régles floues, cet indice de performance est

dénoté ¢,.

La combinaison de ces deux critéres contradictoires est faite par le biais de la
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pondération suivante :
¢ = w, ¢ + (1 _wo) b2, (3’2)

ou le critére d’optimisation w, est le poids associé a ¢;.

Sélection naturelle

A la fin de I’évolution, le meilleur individu est selectionné dans la population finale

utilisant un nouvel indice de performance dénoté ¢ donné comme suit :

® = ws 1 + (1—-w) 2, (3.3)

ou le critére de selection w, représente le poids associé a ¢;.

3.4 Parameétres de sélection et d’optimisation

Une distinction peut étre faite, entre les critéres de sélection et d’optimisation.
Les premiers sont ceux utilisés par le processus d’optimisation pour converger vers
la population de bases de connaissances finale (p1, p2, p3s, P+ €t w,), alors que
les derniers sont ceux utilisés pour choisir une base de connaissances parmi la

population finale (wy).

Dans cette étude, I’AG est appliqué sur des données numeériques représentant la

surface théorique de la figure 2.13, donnée par l’équation 2.31 (voir chapitre 1).
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Chaque noeud de la surface représentant une donnée.

Pour cette partie, la complexité maximale de la base de connaissances a été fixée

comme suit :

e 7 sous-ensembles flous sur chacune des prémisses d’entrées (X et Y);

e 8 sous-ensembles flous sur la conclusion;

e 49 (7 x 7 =49) régles floues.
Le nombre de 7 sous-ensembles flous a été choisi car c’est le nombre le plus co-
munément utilisé en controle.

3.4.1 Influence des parametres d’optimisation

Dans cette section, deux parties différentes sont prise en compte. La premiere
concerne les paramétres de reproduction (ex. pi, P2, p3 et py) et la deuxieme

concerne le critere d’évaluation (w,).

3.4.1.1 Parametres de reproduction

La valeur de w, est fixé i 0.8, la mutation est établie a p, = 0.05 et la sélection
des meilleurs individus est faite avec un w; = 0.8. L’optimisation est faite avec les

valeurs suivantes : p; = 0.7;p, = 0.21, 0.27 et p; = 0.9;p, = 0.07, 0.09.

A la fin de ’évolution, la moyenne des charactéristiques des cinq meilleurs individus
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est prise en compte. Les résultats obtenus sont présentés au tableau 3.1.

Sachant que “# régles” représente le nombre de régles floues encore actives dans

Tableau 3.1 Influence des parameétres de reproduction

S | & [#regles' | 6 | 6 | # regles'
p1 = 0.7 et pp = 0.27 pr = 09 et po = 0.07
0.8599 | 0.8285 | 8.4 0.9077 | 0.7510 | 12.2
pp = 0.7 et pp = 0.21 o= 09 et p, = 0.09
0.8576 ] 0.7837 | 10.6 | 0.9135] 0.7673 | 114
1: Le nombre de régles floues est la moyenne des cinq meilleurs individus

la base de connaissances. Il apparait que la croissance de ¢; est proportionnelle a
’augmentation de p;, pour p;=0.9 on atteint une valeur d’approximation de 91%
des données numériques. Néanmoins, ceci est fait au détriment de la simplicité de

la base de connaissances, car le nombre de régles floues augmente simultanément.

Augmenter la valeur de p, méne a la diminution du nombre de régles floues actives
(8 et 10 regles floues pour p,=0.27, 0.21). La contre-partie est une perte de précision
quant i I’approximation des données numériques (environ 80%). Il est aussi bien
apparant que p, joue un réle plus important que p; quant a la réduction du nombre

de regles floues. La cause peut étre expliquée comme suit :

® p; est généralement appliqué avec un faible pourcentage, car ’augmentation
abusive de ce parameétre méne a une divergence ou a une trés lente con-
vergence de I’AG, a cause de I'importante présence d’individus de qualité

inférieure;
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® p, gére le déplacement latéral des sous-ensembles flous, et de ce fait leur
superposition, ce qui a pour effet de réduire le nombre de régles floues, et

conséquemment, augmente la valeur de ¢o;

® le mécanisme géré par p;—la désactivation aléatoire de régles floues-peut ne

produire aucun effet si la régle était déja inactive.

3.4.1.2 Parametres d’évaluation

Dans cette partie, 'optimisation est faite en changeant la valeur de w,, tous les
autres parametres étant fixés. Les valeurs utilisées lors des différentes exécutions
sont, p; = 0.8,p, = 0.16 et p; = 0.05. A la fin de I’évolution, les cinq meilleurs
individus sont sélectionés en utilisant le parametre de sélection w, égal a w,. Le
tableau 3.2 montre la moyenne des caractéristiques des cinq meilleurs individus.

Il est assez évident que la croissance de la valeur de w, produit des individus avec

Tableau 3.2 Influence des parametres d’évaluation

o1 | @2 | # regles
we = 0.25 et wy = 0.25
0.6813]0.9388| 3
w, = 0.50 et w; = 0.50
0.9060 ] 0.8571 ] 7
W = 0.75 et wy = 0.75
0.9265 | 0.8286T 8.4
W, = 1.00 et ws; = 1.00
0.9496 [ 0.7469 f 124

une meilleure approximation des données numériques, mais avec de plus en plus
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de régles floues actives. La précision varie de 0.68 a 0.95, alors que le nombre de

regles floues augmente de 3 a 12.

3.4.2 Influence du parameétres de sélection w;

Tous les paramétres d’optimisation sont fixées. La variation se fait seulement
sur w;. Les valeurs utilisées sont w, = 0.8, py = 0.8, p, = 0.16 et p; = 0.05.

Les exécutions sont faites avec trois différentes valeurs de wy; = 0, 0.5 et 1.

Comme dans les cas précédents, les valeurs moyennes des charactéristiques des cinq

meilleurs individus sont présentées dans le tableau 3.3.

Tableau 3.3 Influence des paramétres de sélection

&1 | & | # regles
ws = 0.0
0.0174 | 0.8000 ] 9.8
wg = 0.50
09225 0.7950 | 10
ws = 1.00
0.9478l0.7306 I 13.2

Le parameétre de sélection w, est utilisé pour sélectionner un certain individu
dans la population finale. Comme on peut facilement le voir sur le tableau 3.3,
ws = O produit 'individu avec le plus petit nombre de régles floues actives (=
9), mais aussi la plus mauvaise approximation (=~ 92%) des données numériques.

ws = 1.00 produit I'individu avec la meilleure approximation (= 95%) de données
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numériques, mais avec le plus grand nombre de regles floues (= 13).

3.5 Conclusion

La base de connaissances utilisée par un systéeme d’aide a la décision peut
étre construite automatiquement par algorithme génétique a partir de données
numeériques. Le but est donc de trouver une base de connaissances qui peut
satisfaire au mieux deux objectifs contradictoires, & savoir: minimiser I’erreur
d’approximation tout en essayant de garder le nombre de régles floues actives le
plus bas possible. De la, ressort toute I'importance de la pondération sur les in-
dices de performance. Un poids de 100% met toute ’emphase sur la précision de la
base de connaissances, alors qu’un poids de 0% met I’emphase sur la réduction du
nombre de régles floues. Les poids d’optimisation et de sélection sont généralement

pris égaux sans, par contre, que cela ne soit une régle absolue.

La reproduction est principalement gérée par le mécanisme de croisement (70-
100%), le reste étant exécuté presque entierement par le mécanisme de déplacement
des sous-ensembles flous, alors que la mutation est quant 4 elle maintenue a un bas

niveau d’environ 3%.
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CHAPITRE 4

TOOL WEAR MONITORING USING

GENETICALLY-GENERATED FUZZY KNOWLEDGE BASES

Soumis & Engineering Applications of Artificial Intelligence.
Journal affilié A 'organisation [IFAC (International Federation of Automatic Control).

Edition Elsevier Science. [17]

Abstract

In this paper, two fuzzy logic systems are compared with a neural network sys-
tem for application of tool wear monitoring. Although the three artificial intelligent
systems are equivalently accurate for tool wear estimation, they greatly differ from
their learning point of view. The manual construction of a fuzzy knowledge base
from a set of experimental data is time consuming, while requiring a human ex-
pert. Alternatively, the fuzzy knowledge base can be automatically constructed by
a genetic algorithm from the same set of experimental data in a shorter period of
time than the one required to train the neural network, and this, without requir-

ing any human expertise. The fuzzy logic system with a genetically-constructed
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knowledge base is thus recommended for factory floor implementation of tool wear

monitoring.

Keywords: Artificial intelligence, Fuzzy decision support system, knowledge base,

tool condition monitoring, genetic algorithm, neural network.

4.1 Introduction

Since tool wear has a direct effect on the quality of machined parts, on-line
wear monitoring is one of the most important challenges in manufacturing. The tool
wear influences a variety of machining phenomena, and thus, number of monitoring
systems use, e.g., the increase of the cutting force or other related quantities, as a
mean for tool wear estimation [1, 2, 3. Systems developed in laboratories are often
multi-sensor systems embodying artificial intelligent (AI) methods in order to make
more reliable estimation of the state of the tool, and consequently, of the machined
parts themselves [1, 4, 5]. Usually, a set of experimental tests involving different
cutting conditions, e.g., different feed rate and depth of cut, is repeatedly performed
on a typical part. During the machining, the cutting and feed forces are recorded,
while the tool wear is manually measured after each test. These experimental data
are then cast into a knowledge base (KB) through a learning process. Finally, this
KB is used by an Al method to predict the tool wear. Among these methods, fuzzy

logic (FL) systems, neural networks (NN) and neuro-fuzzy (NF') systems are the
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most frequently chosen AI methods, for this type of application [5, 6, 7, 8]. The
aim of this paper is to compare performances of two FL-based monitoring systems
relative to those of a NN-based system, for application to tool wear estimation.
The first FL system, called FL-MA, uses a KB manually constructed by a human
expert from a set of experimental data, while the second FL system, called FL-GA,
uses a KB automatically constructed by a genetic algorithm (GA) from the same
set of experimental data.

Below, each of these three AI methods are briefly presented with emphasis on
the GA used to automatically-construct the KB, since the later is a relatively new
method [9]. The experimental conditions of tool wear estimation are then described
together with the learning and operating conditions. Finally, performances and

required resources are then compared and discussed.

4.2 Monitoring Systems

Since the tool wear monitoring requires multiple input information to predict
the tool wear, this type system can be cast into the class of multi-inputs and single

output (MISO) systems.

4.2.1 Neural Network

Multi-layer NN are one of the most well-known types of Al systems. In this

paper, a NN of three layers is considered for tool wear monitoring. As shown in



73

X X X: X,
ol 2 i T
t - ]
Wi WEA e I e Win
T M o "ot
ST VILD e W1a e Walm W3] W32 e Wojn T Namad - Yima
Te . e ol SR o
.—“'/——'— s 0 e "-}" e e o .“i/__ -
Oz_i - w«0" I Tolm
i:_: 1 W32 e \;3.!.“
wip .,
Neural . EJJ .
Network e
o
N v

Figure 4.1 Neural Network with three layers

Fig. 4.1, layer 1, also called the input layer, contains n neurons, one corresponding
to each input z;, layer 2, also called the hidden layer, contains m neurons, while

layer 3 contains only one neuron, since it is a MISO system. The output signal of

the neurons of layer 1 is readily computed as

o =wTi, t=1,..,n, (4.1)

where w; ; and z; are, respectively, the weight and input signal of neuron ¢ of layer

1. The input signal of each neuron j of layer 2 is computed as a weighted sum of
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the output signal of the neurons of layer 1, i.e.,

n
Sz, = Z We 50, J=1,...,m, (4.2)
i=0

where w,;; is the weight corresponding to the output signal o;; and 0,9 =1 —
bias. The output signal of each neuron j of layer 2 is computed with the sigmoid

activation function as

1

Tiewm: J=hom (4.3)

02,(82,;) =

Finally, the input and output signals of the single neuron of layer 3 are computed

similarly.

4.2.2 Fuzzy Logic System

A rule-based approach to decision making using FL techniques may consider
imprecise vague language as a set of rules linking a finite number of conclusions.
The knowledge base of such systems consists of two components: a linguistic terms
base and a fuzzy rules base [10]. The former is divided into two parts: the fuzzy
premises (or inputs) and the fuzzy conclusions (or outputs). For the sake of sim-
plicity, we consider only non-symmetric triangular fuzzy sets on the n inputs (called

in this context premises) and sharp-symmetric triangular fuzzy sets on the single
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conclusion. The representation of such imprecise knowledge by means of fuzzy lin-
guistic terms makes it possible to carry out quantitative processing in the course of
inference that is used for handling uncertain (imprecise) knowledge. This is often
called approximate reasoning [10]. Such knowledge can be collected and delivered
by a human expert (e.g. decision-maker, designer, process planer, machine opera-
tor). This knowledge, expressed by (k =1,2,.--, K) finite heuristic fuzzy rules of

the type MISO, may be written in the form:

Rt oo 1 if 71 is X¥ and z5 is X§ and --- and z, is Xf then yis Y*,  (4.4)

where {X¥}2_, denote values of linguistic variables {z;}®, (conditions) defined in
the following universe of discourse {X;}™ ,; and Y* stands for the value of the
independent linguistic variable y (conclusion) in the universe of discourse Y. The

global relation aggregating all rules from & =1 to K is given as

R = alsoi_ (Rf1s0); (4.5)

where the sentence connective also denotes any t- or s-norm (e.g., min (A) or maz

(V) operators) or averages. For a given set of fuzzy inputs { X]}} (or observations),



the fuzzy output Y’ (or conclusion) may be expressed symbolically as:

Y= (X1, X3,-~,X,)oR, (4.6)

where o denotes a compositional rule of inference (CRI), e.g., the sup-A or sup-prod

(also denoted sup-*). Alternatively, the CRI of eq.(4.6) is easily computed as

Y'=X,0---0(X;0(X[oR)). (4.7)

Usually, there are four variants of CRI: the sentence connective also can be either
V or sum (3); the compositional operator is the supremum (sup) of either A or x,
denoted supA and sup=*; while the sentence connective and and the fuzzy relation
are always identical to the second part of the latter. For the sake of brevity, all four
variants of CRI—i.e.: V-supA-A-A; V-supx-*-x; 3 -supA-A-A; and > -sup*-*-x—are

expressed as

Y'= Sup *t( *t (Xr’u"'v évX{) y ¥t (fo,Xg,“-,;Y:,Yk)),

it
{xi € Xi }n

i=1

(4.8)
where *,(-) denotes the t-norm of (-) defined as either A or *. These variants of CRI
mechanisms allow us to obtain different conclusions represented as the membership

function Y’. Additionally, there are usually three defuzzification methods: the
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center of gravity(COG); the mean of maxima (MOM); and the height method
(HM). All the results presented in this paper are obtained with the 3--sup*-*-+ CRI
and COG as defuzzification. The fuzzy KB must be either manually constructed
by a human expert or automatically constructed by a genetic algorithm as it is

explained below.

4.2.3 Genetic Algorithm

GAs are powerful stochastic optimization techniques that are based on the
analogy of the mechanics of biological genetics and imitate the Darwinian survival-
of-the-fittest approach [11]. As shown in Fig. 4.2, each individual of a population

is a potential KB. The method uses iterative improvement of individuals at each

Expert

FDSS

]
]
]
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! " . . s - .
—Y+o{" Fuzzification |-={ Inference Engine [—| Defuzzification [——*

Figure 4.2 The learning paradigm of FDSS Fuzzy-Flou

generation to converge toward multiple optima simultaneously. This evolutionary

process operates directly on the genotype—i.e., the coded physical characteristics
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into bit string—of individuals rather than on the phenotype—i.e., the physical char-
acteristics themselves—. It is noteworthy that the coding of several parameters into
bit strings is crucial in GA. When the number of unknown parameters increases,
GA exhibits only a polynomial increase in the size of the search space, while the
other optimization techniques show an exponential increase. Figure 4.3 presents
the encoding/decoding scheme as well as the four basic operations, i.e.: reproduc-
tion, mutation, evaluation and natural selection, of the developped GA learning

sofware [12].

Population of Knowledge Bases
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Figure 4.3 The GA learning process of and FDSS Fuzzy-Flou knowledge base
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4.2.3.1 Encoding/Decoding Scheme

The genotype of an individual p member of a population of size P is defined as
GF = { Ggetsr Gfules }7 (49)

where G%,;, and G? ., are respectively the genotypes of the fuzzy sets and rules.
For the sake of brevity, the indice p is omitted in the following equations. However,
it must be clear that all the following genotypes apply to any individual p.
Fuzzy sets:

The genotype of the fuzzy sets must contain all the information on the position of

the fuzzy sets on the premises and the conclusion, i.e.:
Gsets = {Gavl [ GA’z’ STty Gx,., GY}, (4'10)

where G, is the genotype of the n, fuzzy sets on v, i.e.,

G, = {10..1.01 11..2.10 ---01...11}, Vv e {X1, Xo,---, X5, Y} (4.11)
9 9z i

As shown in Fig. 4.4, the fuzzy sets are made of sharp symmetric triangles on the
conclusion—to have an equal weighting—and non-symmetric triangles on premises—

to allow overlapping, and hence, a reasoning process—.
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Figure 4.4 Fuzzy sets on a premise and a conclusion

The phenotype p! expresses the location of the summit of a triangle on the
premise or the conclusion field v. For each premise, there are always two half-
triangles located at p™" and p™*, and hence it is not necessary to encode their
positions in G, (also not counted in n,).

The number of bits, denoted b,, allocated to each basic genotype g, is chosen
in such a way as to obtain a desired resolution r, on the positioning of the fuzzy
sets along p, between p™™ and p™**. The encoding of the basic phenotype p’ into

v

its corresponding genotype g is given as
g =fP), Vi=1,..,n, and Vo€ {X,Xs,- -, XY} (4.12)

where the encoding scheme f(-) is defined as

i pi - pmin i X i
fp) = =———, 9,€{0,1,- -, 2% — 1}, p*" < pi < PP, (4.13)

7
v
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with the resolution r, on the phenotype p, computed as

pma:r _ pmin
Ty = - v 56 — f . (4'14)

The decoding of the basic genotype g’ into its corresponding phenotype p} is given

as

p.=f""g), Vi=1,..,n, and Vve€ {X,Xs- -, XY} (4.15)

where the decoding scheme f~!(-) is defined as

UG = rug! + pm. (4.16)

Fuzzy rules:

The genotype of fuzzy rules must contain information about all the possible combi-
nations of connecting a fuzzy set of the conclusion to a fuzzy set of each premises.
The maximum number of rules, K, is given as the total number of combinations,
i.e.,

K =(nx, +2)(nx, +2)---(nx, +2), (4.17)

where the +2 is required because of the presence of the two half triangles, located

at pR™ and pR?*, that are not counted in ny,. Without lost of generality, we can
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assign fuzzy sets p’,';f" to indice 0 and p}?“to indice nx; + 1 such that we have:

B =P, T =R, = Ln (1.18)

The fuzzy rules are encoded into an ordered list of combination of premises, each

having an enable/disable bit, denoted e, together with a conclusion fuzzy set num-

ber, i.e.:
Grutes = {€10...01€11...10 ~- ~01...11}. (4.19)
90 g1 gK-1

The number of bits b, allocated to each g; must have sufficient space to refer to

ny conclusion fuzzy sets plus one enable/disable bit, i.e.,

2br=1) > py. (4.20)

4.2.3.2 Reproduction

The evolution of the population is achieved by reproduction of the best in-
dividuals based on their ability to survive natural selection. This reproduction is

performed by one of the following three operators based on an initiating probability.

Simple Crossover:

In general, the reproduction is mainly performed (with a probability p,) by simple
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crossover of the genotype of two parents to produce the genotype of two children.
The simplest way to implement this operation is as follows: the parents are se-
lected based on their ability; the genotype of the parents is split in two parts at a
randomly selected crossover site; the genotype of the children is formed by recom-

bining one part of the genotype of each of their parents, as shown in Fig. 4.5.

Parents Genotype Genotype Children
1 !
Father 10101 1110~ 101011:11| Boy
| I "
Crossover site—>>
| : '
Mother |100111'L1F— 10011110 Girl
L ' ] L |
Old generation New generation

Figure 4.5 Simple crossover of the genotypes of two parents

Fuzzy-Sets Displacement:

The displacement of the fuzzy sets is performed (with a probability p,) by randomly
selecting a fuzzy set on a premise. The fuzzy set is then moved by one step of
resolution toward the left or right, with an equal probability. This operator has
the virtue of trying different fuzzy set repartitions, while decreasing the number of

fuzzy sets by superimposing two or more fuzzy sets.
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Fuzzy-Rules Reduction:
The reduction of the number of fuzzy rules is performed (with remaining probability
p3) computed as

p3=1—p1 —p2. (4.21)

One of the K fuzzy rules is randomly selected, and the activation bit e is disable.
Obviously, this operator does not always give rise to a reduction in the number of

fuzzy rules, but rather gradually works toward that direction.

Mutation:
Mutation is a random inversion of a bit in the genotype of a new member of the

population as shown in Fig. 4.6. Mutation makes it possible to try completely dif-

\1« Mutation site
1 0 1 011 1 O

Mutated gene

1 010 0 11 O

Figure 4.6 Mutation of a genotype

ferent solutions. The probability of mutation ps should be kept very small in order

to let the population improve itself mainly with the other types of reproduction
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operators. This way of seeking completely different solutions allows the algorithm

to jump out of a local optimum, and potentially fall into more promising regions.

4.2.3.3 Natural Selection

The capacity of each KB to survive natural selection is measured by two objec-
tive functions. The first objective function, denoted ¢;, evaluates the capacity of

a KB to approximate the set of experimental data, i.e.:

0 —e€ )
b= LT o e g (422

where J is defined as the range on the conclusion Y and egars the root-mean-
square error between the FL conclusion Y; and the desired conclusion y;, for the NV

experimental data, i.e.,

N
N Y — )2
ERMs=\/ I—I(N v:) . (4.23)

The second objective function, denoted ¢, evaluates the complexity of a KB

through its number of active fuzzy rules, i.e.,

K —-n,

K H (4’24)

P2 =

where K is recalled to be the maximum number of fuzzy rules and n, the ac-

tual number of active fuzzy rules. In order to deal with these two contradictory
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objectives, a weighted sum of the two former is used, i.e.,

¢ =w, d1 + (1 — wo)a, (4.25)

where the weight w, is usually set around 75%. The influence of w,, p;, p2 and p;
are extensively discussed in [13]. Natural selection is performed on the population
by keeping the most promising KB along a single fitness value. This is equivalent
to using solutions that are closest to the optimum. In this work, the size of the
population is kept constant to 100 KB. At each generation, the reproduction pro-
duces 100 brand new KB that are evaluated and ranked. The natural selection
applies on the resulting 200 KB by keeping the 50 best non-identical KB along ¢

and ¢, for a total of 100 KB.

4.3 Knowledge Base Learning and Results

In this paper, the tool wear, denoted V B, is estimated from only n = 3 input
information, i.e.: the feed rate, denoted f; the feed force, denoted Fy; and the
cutting force, denoted F.. This choice of input variables is based on the following
two observations (see Fig. 4.7 and 4.8). Force F} is independent of f, but rather
depends on VB and the depth of cut, denoted d. Moreover, F, depends on d
and f, while being only weakly dependent on V' B. This gives one the interesting

opportunity to use f and the measurement of F. to determine d, and using the
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Figure 4.7 Cutting force components vs Tool wear (set of data W5)

measurement Fy to estimate V B without requiring d as input variable. Two sets
of experimental tests are repeatedly performed until a tool failure occurred. Test
W5 is intented to be use for KB learning, while test W7 is used to verify the
performances of the different monitoring systems. In order to simulate factory floor
conditions, a typical part is machined on a conventional lathe under six different
cutting conditions, such as shown in Fig. 4.9. The cutting speed of each operation
is selected to ensure approximately the same share in tool wear. Tool wear is

manually measured after carrying out each cycle, and the V B of each single cut
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Figure 4.8 Cutting force components vs Tool wear (set of data W7)

is linearly interpolated. For each cut, f and F. were measured using a Kistler
9263 dynanometer during 5 second intervals while the cut was executed. Since the
inserts used in the experiments had soft, cobalt-enriched layer of substrate under
the coating, the tool life had a tendency to end suddenly after this coating wore
through. In test W3, ten cycles were performed, until a sudden rise of the flank
wear V' B occurred, reaching approximately 0.5 mm. In test W7, failure of the
coating resulted in chipping of the cutting edge at the end of the 9-th cycle, where

flank wear was about 0.35 mm. The results of tests W5 and W7 are shown in
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Figure 4.9 Sets of cutting parameters

Fig. 4.7 and 4.8. The approximation error of the monitoring systems are measured

using the root-mean-square error

N — 2
Arms = \IZ (VBm —VB.)* (4.26)
=1 N
and the maximum error
Aper = maz(V B, — VB,), (4.27)

where VB,, and V' B, are, respectively, the measured and estimated V' B, and N
is the the number of patterns in the experimental test (i.e., N = 71 for W5; and

N = 66 for W7).
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4.3.1 Neural Network

The training of the NN is made up to 200 000 iterations with the results of
test W5, while using from m = 2 to 10 cells in the hidden layer. As shown in
Table 4.1, the approximation errors are almost identicals for network with 3 or
more hidden cells. Therefore, m = 5 cells is arbitrarily chosen for the hidden

layer. For the two sets of experimental data, the approximation errors are both

Tableau 4.1 Approximation errors of the Neural Network method

W5 (training) W7 (testing)
# of hidden cells | Training time [min] | average error [mm]| | average error [mm]
2 7.33 0.0158 0.0370
3 10.43 0.0160 0.0367
4 12.92 0.0140 0.0362
5 15.37 0.0149 0.0363
6 18.03 0.0149 0.0362
7 20.78 0.0150 0.0362
8 23.17 0.0149 0.0362
9 25.72 0.0145 0.0361
10 28.83 0.0144 0.0362

acceptable. Of course, the A,z and A5 for test W7 are larger than those of the
learning test W5. Moreover, the A,,,; is extremely large. This error occurred only
once, i.e., for the last cutting force measurement just after chipping of the cutting
edge. The chipping did not cause an increase of V B but resulted in an increase
in the Fy. Since both values are high for VB and the chipped edge mean tool
failure, the output of the network should not be considered erroneous. Without

the last results, the Aoz and A,ms would be 0.081 mm and 0.029 mm, respectively.
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Obviously, the learning time depends on the computer used. On a Pentium II-350
MHz, the learning time is about 15 min for 5 hidden cells and 29 min for 10 hidden
cells. Since the network needs retraining from time to time, this long delay can be
considered as an important limitation to the use of this type of monitoring system
on the factory floor. Apparently, the weights become approximately constants after
100 000 iterations. This means that the NN is not sensitive to over-training, i.e.,
it did not fit too closely the learning set of experimental data, which can lead to a
loss of generalization ability. For factory floor practice, small changes should not
be shown to the operator, since they are too complex to deal with. Despite the
useless of this longer learning, the number of iteration has been kept to 200 000 to

ensure conservative results.

4.3.2 Manually-Constructed Fuzzy Knowledge Base

A certain level of experience and expertise is required in order to develop the
fuzzy knowledge base (FKB) from the set of experimental data, since some con-
ditions may be uncertain and incomplete, and hence, must be estimated. The
quality of the FKB depends on the quality of the data and the skills of the expert.
The usual approach is to choose the number and location of the fuzzy membership
functions on each premises and the conclusion, and finally, to determine the fuzzy
rules. If the membership functions are wisely-chosen, only a small number of fuzzy

rules are usually needed.
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Apparently from Fig. 4.7 and 4.8, the relationship between F; and VB is
roughly linear, and thus, only two fuzzy sets are necessary on this premise. The
same approximately linear relationship can be observed between F. and V' B, and
between F; and V' B, and hence, only two fuzzy sets are necessary for those two

premises, as shown on the right of Fig. 4.10.
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Figure 4.10 Screen printout of the manually constructed knowledge base
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It is noteworthy that the extreme values of the two fuzzy sets on premise f are
0.1 and 0.5 mm/rev. A range wider then the one used by the experiments (i.e.

0.17 and 0.47 mm/rev). This widening of the feed rate range ensures a proper
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working of the monitoring system in cases when shop floor feed rate values exceed
the experimental range.

There are a maximum of eight possible fuzzy rules with two fuzzy sets on three
premises (i.e. 23 = 8). From Fig. 4.7 of test W35, the first fuzzy rule can be
directly established as: If f is 0.1 mm/rev and F, is 600 kN and Fy is 300 kN
then VB is 0.1 mm; and shown in the left side of the Fig. 4.10. In such a rule,
the fuzziness is expressed by the membership function. The strongest conclusion
arise at the maximum degree of memberships of each premises (i.e., 0.1, 600 and
300, respectively). The conclusion value diminishes as the observations move away
from their maximum degree of memberships. Problems occur when the expert try
to define a second fuzzy rule, because there is no experimental measure of V B,
for f = 0.1 mm/rev, F. = 600 kN and F; = 1600 kN. However, it is possible to
extrapolate the actual measurements up to an F, = 600 kN. In this case, we obtain
an approximate value of VB = 0.9 mm. Obviously, this value of VB does not
have any physical meaning. It only serves to complete the integrity of the FKB.
As shown for the fuzzy rules 3 and 7 of Fig. 4.10, the V' B can even be negative
for this purpose. Once all the fuzzy rules are defined, the expert can performed a
tuning of the location of the fuzzy sets on the premises together with a revision of
the fuzzy rules themselves in the aim of reducing the approximation errors. The
complexity of this tuning process depends on the number of fuzzy sets and rules.

For a simple FKB, only minor adjustment should be necessary. In our case here,
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the location of the conclusion fuzzy set of the fuzzy rule 2 has been moved from
VB =09 mm to VB = 0.88 mm.

Figure 4.10 shows a screen printout of the software Fuzzy-Flou developed at
Ecole Polytechnique de Montréal and the Warsaw University of technology with the
manually-tuned FKB. On the left side, the fuzzy rules in numerical and linguistic
forms are presented. While on the right side, the fuzzy sets are shown on the three
premises. One can see an example of VB estimation, for the following inputs:
f =0.24 mm/rev, F, = 750 kN and Fy = 270 kN, a crisp value (center of gravity
of conclusions VB = 0.1 mm and 0.24 mm) of estimated VB is 0.118 mm.

The performance results of the FL-MA system are presented in Table 4.2. As

Tableau 4.2 A,,,s of the three AI methods

W5 (training) | W7 (testing)
Al method Arms (mm) Arms (mm)

neural network 0.015 0.029
FL-MA 0.024 0.034
FL-GA 0.02 0.037

in the previous case, a large value of A, results from chipping of the cutting
edge, and therefore, the answer of the FL-MA should not be considered erroneous.
Without this last result A,,,; is 0.056 mm and A, is 0.034 mm. Unlike the NN,
which is a kind of black-boz, the FKB presented above is transparent and under-
standable. Nevertheless, the manual construction of the FKB requires knowledges

and experiences, which can seldom be expected from a machine tool operator.
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Therefore, FL in its pure form is not recommended for small batch production, but
rather for mass production, where some operations are carried out repeatedly over

an extended period of time, at least several months.

4.3.3 Genetically-Constructed Fuzzy Knowledge Base

Alternatively, a genetic algorithm can be used to automatically generate the
FKB, from the same set of experimental data (test W3). As previously explained,
the GA uses a set of probabilities (i.e., p;, p2, p3, p4) in order to control the occur-
rences of the different reproduction operators. Obviously, a different set of values
drive the GA toward an FKB with different behaviors. Moreover, the weight w,
between the two contradictory objectives ¢; (approximation error) and ¢, (number
of fuzzy rules) produces FKBs with completely different behaviors.

In general, a different value of weight can be used at each iteration of the
learning process (called w,) than the weight used at the end of the learning process
to select the final FKB (called w;). Four FKB has been automatically constructed

from test W5 with the following parameters:
e Run1l: w,=0.8, p; = 0.85, p, =0.13;
e Run2: w,=0.8, ;py = 1.00, p, = 0.00;
e Run3: w, =1.0, p =0.85, p, =0.13;

Run 4 : w, = 1.0, p; = 1.00, p, = 0.00;
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It is noteworthy that a w, = 1.0 puts all the emphasis on the approximation
accuracy, while an w, = 0.0% puts the emphasis on a reduction of the number of

fuzzy rules. The other parameters are fixed as follow:
e py = 0.05;
e wy = 1.00.

The operation must define the maximal limits of complexity of the desired FKB.

These limits are chosen for this problem as:
e a maximum of 7 fuzzy sets on each premise;
e a maximum of 8 fuzzy sets on the conclusion.

As a result, the maximum number of fuzzy rules is given as: 7 x 7 x 7 = 343, while
the maximum of 7 fuzzy sets per premises is the most frequently chosen limits for
the type of problems. As shown in Table 4.3, A, ., and A,..- are both acceptable,

for the two experiments (W5 and W7). The A, is slightly high because of the last

Tableau 4.3 A,,,; and A4, errors for training and testing sets of data

Runl | Run 2 | Run 3 | Run4

Number of fuzzy rules 20 4 28 38
W5 (training) Arps (mm) | 0.041 | 0.040 | 0.050 | 0.020
Apmez (mm) | 0.110 [ 0.110 | 0.170 | 0.070
W7 (testing) Arms (mm) | 0.040 | 0.050 | 0.064 | 0.037
Apaz (mm) | 0.090 | 0.140 | 0.170 | 0.100

‘ measurement of V B, a fact that was also noticed with the other systems. The time
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of the exccution is around 14 minutes for each run (on Pentium II-350 Mhz), which
makes the method very attractive for factory floor use. The best approximation
accuracies are obtained with the Run 4, where both A,,.; and A,,,. are relatively
low. However, the FKB requires 38 fuzzy rules. Conversely, Run 2 provides an
FKB with only 4 fuzzy rules with of course a higher approximation error. It is
noteworthy that 38 fuzzy rules is still a manageable number of fuzzy rules by a
human expert. It is recalled that this number of fuzzy rules has been reduced by

the GA from the maximum of 343 fuzzy rules.

4.4 Comparison and remarks

All the three AI methods used to estimate tool wear give satisfactory results.
There is a slight difference in the approximation errors, depending on the set of
control data used (W5 and W7) . The testing set (W3) is approximated with a

lower level of error, which was predictable, since it is the set used for the training.

However, an interesting point can be resorted from the automatically constructed
FKB (see Table 4.3). Even if the Run 4 gives the best approximation error, since
the A, ., is the lowest for the W7, the difference between the A, of W5 and
W7 increases with the complexity of the FKB. Run 1 and 2 being the simplest,
providing less fuzzy rules, 3 and 4 the more complex (see Table 4.3). This can be

explained by a too close approximation of the training set, which is essentially the
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case in Run 4, that leads to generate a specific FKB, rather than a model that can

be used for other sets of data.

Figure 4.11 and 4.12 shows respectively the knowledge bases corresponding to Run

1 and Run 4.
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Figure 4.11 Knowledge base obtained from Run 1

If a fuzzy knowledge base has to be selected from the four runs, Run 4 can
be an evident and easy choice since it provides the lowest A,,,. However, it is
more interesting to use the results of Run 1 instead of the others, since it offers a
better balance between simplicity and accuracy of the FKB. We can, also, notice

it’s stability regarding to the A, since it stays at the same value for W5 and W7.
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Figure 4.12 Knowledge base obtained from Run 4

Run 2, which gives the simplest FKB, is not reliable, since it uses a small number
of fuzzy rules, leaving an important part of the input domain uncovered by fuzzy
rules (lack of information), even if it provides good results for both sets of data (W5
and W7). Such a small amount of fuzzy rules remains a risky choice. As shown
in Figs. 4.13 and 4.14, all three monitoring systems give similar and acceptable

results for the prediction of tool wear, from a measure of the three premises.
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Figure 4.13 Tool wear vs time for training values

4.5 Conclusion

The three monitoring systems are equivalently accurate. Important differences
remain in their internal structures which are irrelevant for the operator. However,
a major difference in their usage is a critical factor. The construction of an FKB
necessitates skills and expertise. The operator has to analyze the dependence of F,
on VB, which means that the results of preliminary experiments have to be pre-
sented to the operator in a convenient and understandable form. This makes FL
systems, rather difficult, for practical implementation in it’s manual form. How-
ever, this problem is solved by using a GA to automatically construct the FKB.

The operator has no longer to analyze the experimental data. He only needs to
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Figure 4.14 Tool wear vs time for testing values

setup the maximum level of complexity he wants to consider. This can even be
pre-seted in order to avoid such interaction if desired. The learning time of the
FL-GA method is very convenient, since among the three methods FL-GA is the
shortest one, making it particularly attractive for shop floor uses. Moreover, one
can specify the maximum level of complexity (as the maximum number of fuzzy
rules) together with how much emphasis the GA must place on the increase of
approximation accuracy relative to the reduction of the complexity level. Finally,
the FKBs are transparent and understandable KBs relative to the black-boz, where

the NN stores the KBs.
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CONCLUSION

Dans le travail de recherche présenté dans ce mémoire, nous nous sommes
intéressés au probléme d’automatisation du processus de construction de bases
de connaissances pour les systémes d’aide a la décision utilisant la logique floue.
Le logiciel utilisé est le FDSS Fuzzy-Flou développé a I’Ecole Polytechnique de

Montréal et I'Université de Technologie de Silésie a Gliwice (Pologne).

Cette automatisation a été faite par le biais d’un algorithme génétique qui, a partir
d’une base de données numériques quelconques, crée une base de connaissances

complete.

De par les résultats obtenus, les AGs semblent bien adaptés a ce genre de problé-
matique, puisqu'ils permettent de proposer des solutions (bases de connaissances)
simplement A partir de données numériques, ce qui diminue considérablement le

role accordé a ’expert dans le domaine des systémes d’aide a la décision.

L’AG construit des bases de connaissances au mieux de deux critéres contradic-
toires, a savoir: minimiser I’erreur et le nombre de régles floues—dans un soucis de
simplicité, une base de connaissances plus simple est plus facilement gérable par

un opérateur—.

L’espace de recherche de solutions est généralement trés vaste. Prenons I'exemple
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cité au chapitre 2, un systéme a deux prémisses, une conclusion et une complexité
maximale de 7 sous-ensembles flous sur chacune des prémisses, 8 sous-ensembles
flous sur la conclusion, et donc 49 (7 x 7 = 49) régles floues, chaque prémisse
d’entrée et de sortie étant discrétisée en 16 positions différentes, ce qui requiert un
chiffre de 4 bits, et chaque regle floue est codée par un chiffre de 4 bits. Ceci génére
le nombre impressionnant de 2((7=2+(7-2)+8+49)x4 — 47 x 108 solutions possi-
bles et si I’on considére que I'évaluation d’'une base de connaissance prends 1 msec,
alors il faudrait 1.5 x 107° années pour tout évaluer ce qui est bien évidemment
impossible. Néanmoins I’AG évalue qu’une infime partie de cet espace et arrive

tout de méme a proposer des solutions acceptables.

Notre automatisation a cependant certaines limites. Par exemple, la méthode ne
prend pas en considération le choix des parameétres d’optimisation et de sélection
qui sont traités au chapitre 3. Actuellement, ces valeurs sont choisies de fagon
manuelle par l'opérateur et dépendent bien évidemment des donnrés numériques
utilisées, ainsi que de la base de connaissances désirée, c’est-a-dire un choix adéquat
entre simplicité (nombre de régles floues moindre) et précision (faible niveau
d’erreur). Une automatisation du choix de ces parameétres pourrait étre faite en
ayant recours a plusieurs évolutions incomplétes préliminaires a I'AG. Les résultats
obtenus seront utilisés pour procéder a I’évolution et a la recherche de solutions. Il

est aussi possible de choisir des valeurs moyennes que nous avons obtenus par des
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essais préliminaires.

La discrétisation choisie est aussi une limitation certaine de I’AG. Il est évident
qu’augmenter cette derniére permettrait une répartition des sous-ensembles flous
bien plus précise, mais conséquemment l'espace de recherche augmente considéra-
blement. C’est donc un compromis qu’il faut essayer de trouver entre les deux.
Afin de résoudre, du moins en partie, ce probléeme nous pouvons passer du codage
binaire au codage en nombres réels avec des bornes limites, le probleme que pose
cette option est le passage d’un espace de solution fini & un espace infini, en plus de
’écart fait par rapport au modele naturel de la génétique qui impose des génotypes

de longueur finie.

Le mécanisme de reproduction utilisé dans notre AG est une composition entre un
croisement simple et deux systémes particuliers cités aux chapitres 1 et 2. Pour
minimiser la perte d’information, les connaissances sur la structure méme du codage
des parametres devraient étre utilisées. Par exemple: changer le site de croisement
en fonction de la position de certains parametres dans le génotype; ou bien, choisir
plusieurs sites de croisement différents et faire des changements sur ces chromo-
somes. La méme chose pourrait étre faite pour le mécanisme de mutation qui reste

tout de méme appliqué a un trés faible pourcentage pour les raisons déja men-
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tionnées.

Méme si la méthode mise en place n’a pas de limite théorique. Il est évident
que le codage lui, pose des problémes de limitation par la puissance de la ma-
chine utilisée. Actuellement I’AG est construit pour des systémes a deux ou trois
prémisses et une conclusion seulement. L’augmentation du nombre de prémisses
accroit automatiquement le nombre de régles floues. Ce qui pourrait étre fait c’est
de limiter le nombre maximum de régles, et de ce fait, nous n’assisterions pas
a une explosion combinatoire. Ce maximum permettrait d’augmenter le nombre
de prémisses et méme de raffiner la discrétisation sans pour autant trop accroitre

I’espace de recherche.

Il faudrait envisager aussi d’intégrer un module d’étude des bases de données que
nous traitons de fagon a pouvoir éliminer les points parasites (e.g. erreurs de
mesure, erreurs de saisie, etc.) et aussi uniformiser les données qui gravitent autour
d’une méme valeur et les remplacer, par exemple, par une moyenne, cela éviterait de
sommer ces écarts multiples surtout lorsqu’il s’agit de bases de données de volume
important, ce qui peut étre souvent le cas dans certaines applications de contrdle,

comme par exemple le contréle de la température des fours.
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