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Nous présentons une méthode d'éléments finis espace-temps pour les équations de 

Navier-Stokes incompressibles en 2-D. La formulation est basée sur la méthode de 

Galer kin discontinue en temps avec l'utilisation de l'élément mini espace-temps. 
L'approximation de la pression est linéaire et continue tandis que celle de la vitesse 

est constituée d'une fonction linéaire enrichie d'une bulle. Cet élément est de type 

usimplem et satisfait la condition inf-sup. Une étude théorique est présentée afin 

d'établir l'analogue de cette condition dans le contexte des éléments finis espace- 

temps et vérifier la stabilité de l'élément mini espace-temps sous cette condition. 

Des résultats numériques sont présentés pour attester de la stabilité de la discré- 

tisation et pour illustrer les effets numériques liés à la non satisfaction de cette 

condition de compatibilité. Ce travail étant une étude préliminaire à la simulation 

des écoulements dans les artères, nous avons comparé la formulation stable à la 

méthode stabilisée GLS/ST ( «Galerkin/least-squares jspace-time») pour une série 

de problèmes en 2-D afin d'étudier son comportement pour ce type d'écoulements. 



S.. 

Vlll 

A space-time finite element met hod for the incompressible Navier-S tokes equations 

in a bounded domain in IR2 is presented. The method is based on the time- 

discontinuous Galerkin method with the use of simplex-type rneshes together with 

the requirement that the space-time finite element discretization for the velocity and 
the pressure satisfies the in/-sup stability condition of Brezzi and BabuSka. The fi- 
nite elernent discretisation for the pressure consists of piecewise linear functions, 

while piecewk linear functions enriched with a bubble function are used for the 

velocity. This element is referred to as the space-time mina element. The extension 

of the in/-sup condition to the context of space-time finite element fornulations, the 

stability proof and some numerical results are presented. We also assess the be- 

haviour of the underlying mixed approximation w hen compared with the stabilized 

Galerkin least-squares /space-time (GLSIST) method for some 2-D problems with 

flows physics similar to arterial fiow computations, the intended applications. 
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INTRODUCTION 

L a résolut ion numérique des problèmes d'évolution nécessite en général une semi- 

discrétisation en espace par des méthodes d'éléments finis suivie de l'approxi- 

mation des dérivées temporelles par des schémas classiques aux différences finies. 

Contrairement à cette approche très répandue qui consiste a découpler les variables 

espace et la variable temps, la méthode d'éléments finis espace-temps est fondée 

sur l'emploi d'éléments finis relatifs à l'espace et au temps avec des fonctions de 

base qui dépendent à la fois des variables espace et de la variable temps. Dans cette 

approche, la variable temps est traitée comme une variable espace, engendrant ainsi 

le domaine espace-temps R x (O,T), R étant le domaine spatial et (0,T) un inter- 

valle de temps. Ce domaine est d'une dimension supérieure à celle de l'espace et 
est discrétisé à l'aide d'éléments espace-temps. On distingue deux types d'éléments: 

le type extrudé (comprenant les quadrilatères, prismes, CU bes, hexahèdres etc.) ob- 

tenu par extrusion d'éléments espace dans la direction du temps et le type simplev 

comprenant les triangles, tétraèdres etc. 

L'avantage principal de la discrétisation par éléments finis espace-temps réside dans 

le traitement des problèmes où le domaine est variable. En effet, le déplacement ou 

la déformation est incorporé automatiquement dans le domaine espace-temps et non 

dans la formulation variationnelle comme c'est le cas dans l'approche semi-discrète 

(discrétisation par éléments finis en espace et différences finies en temps). 

Bien que le concept de la discrétisation par éléments finis espace-temps ait été 

introduit par Fried (1969) et Oden (1969)' les premiers tests numériques sont plutôt 

dûs aux travaux de Bonnerot et Jamet (1974,1977) pour le problème de Stefan à une 

et à deux dimensions d'espace. Par la suite, Jamet (1978) a introduit une variante 

de la formulation initiale, dénommée méthode de Galerkin discontinue en temps, qui 

consiste à utiliser des fonctions d'interpolation continues en espace mais discontinues 
en temps. Dans cette approche, le domaine espace-temps est subdivisé en une série 

de tranches uslabsu espace-temps (R x (t, , tn+l)) et le problème discret est résolu 

sur une tranche à la fois en se servant de la solution de la tranche précédente comme 



condition initiale. Cette nouvelle formulation est considérée comme une innovation 

majeure car elle est moins coûteuse que la précédente, mais surtout parce qu'elle 

est A-stable et d'ordre élevé. 

La méthode de Galerkin discontinue en temps a été appliquée avec succès à divers 

probl&mes, notamment, a u  problèmes de type parabolique (voir Bonnerot et Ja- 

met, 1979; Eriksson et al., 1985; Eriksson et Johnson, 1987; Makridakis et Babugka, 

1997), aux problèmes de type hyperbolique (voir Hulbert et Hughes, 1990; John- 

son, 1993; French, 1993; Li et Wiberg, 1998; Wiberg et Li, 1999), aux problèmes 

en acoustique (voir Thompson et Pinsky , l996a, b,c) etc. Cependant, tout comme 

la méthode de Galerkin, elle souffre de la présence d'oscillations parasites dans 

la solution numérique dans le cas où le terme de convection, jumelé à une condi- 

tion limite avec de brusques variations, est prépondérant dans les équations. Pour 

faire disparaître ces oscillations. Varoglu et Finn (1980a, 1982) ont utilisé, pour les 

équations de convection-diffusion, la méthode des caractéristiques pour orienter le 

maillage selon les caractéristiques de l'écoulement. Cet te technique a été par la suite 

généralisée aux équations de Burgers par Varoglu et Finn (1980b); Froncioni et al. 

(1997) et aux équations de Navier-Stokes par Hansbo (l992b). Une approche plus 

répandue consiste plutôt à utiliser les formulations stabilisées. Dans cette optique, 

la méthode SD ~Streamline-Diffusion» a été introduite par Hansbo et Szepessy 

(1990). La formulation est du type Petrov-Galerkin et est obtenue en ajoutant à la 

fonction test un terme de moindres carrés. Par la suite, Tezduyar et Behr (1992a) 

ont dhveloppé la méthode GLS/ST ~Galerkin Least Squares/Space-Time» en ajou- 

tant à la formulation Mnationnelle un résidu provenant de la minimisation d'une 

fonctionnelle par la méthode des moindres carrés. 

Dans le cas particulier des équations de Stokes ou de Navier-Stokes, le choix des 

espaces d'interpolation en vitesse et en pression est soumis à une condition de com- 

patibilité. Cette condition est l'analogue de la condition Ladyzhenskaya-Babuska- 

Brezzi (LBB) (Ladyshenskaya, 1969; BabuSka, 1973; Brezzi, 1974) plus connue sous 
le nom de la condition anf-sup. Cette difficulté a été contournée par l'utilisation 

des formulations stabilisées SD et GLS/ST. En effet, en plus de réduire les oscil- 
lations causées par les écoulements à convection dominante, elles permettent aussi 

d'obtenir des solutions stables sans que les espaces d'interpolation aient à vérifier la 



condition in/-sup. Cependant, la construction d'espaces d'interpolation en vitesse 

et en pression vérifiant cette condition est inexistante dans la littérature. En fait 

la construction de formulations stabilisées constitue la seule approche au regard de 

cette condition de stabilité. 

Cette thèse est consacrée au développement d'une formulation espace-temps stable 

pour la discrétisation des équations de Navier-Stokes incompressibles en 2-D. La for- 

mulation est basée sur la méthode de Galerkin discontinue en temps et sur l'utilisa- 
tion de l'élément (tétraédrique) mini espace-temps. La discrétisation de la pression 

est linéaire tandis que la vitesse est linéaire mais enrichie d'une bulle. A travers 

une étude t héorique (existence et unicité) du problème de Stokes instat ionnaire, 

nous avons établi l'analogue de la condition inf-sup dans le contexte de la discré- 

tisation par éléments finis espace-temps et nous avons montré que l'elérnent mini 

espace-temps est stable sous cette condition. La seconde contribution de cette thèse 

se situe au niveau de l'utilisation d'éléments espace-temps de type simplex (tétra- 
èdres) pour les écoulements bidimensionnels. Bien que peu utilisé, ce type d'élément 

est plus apte à discrétiser les domaines courbes (domaines variables) et conduit à 

des maillages non-structurés qui sont plus aptes à l'adaptivité dans le contexte des 

éléments finis. 

Le premier chapitre de la thèse est consacré au rappel des équations de Navier- 

Stokes, à la revue de quelques méthodes d'éléments finis dans le cadre de l'approche 

semi-discrète et a u  considérations numériques relatives a leur mise en œuvre. 

Au chapitre 2, après avoir présenté le concept de la discrétisation par éléments finis 
espace-temps, nous présentons la méthode de Galerkin discontinue en temps, suivie 

d'une revue des formulations espace-temps connues à ce jour. 

Au chapitre 3, après le rappel de la condition inf-sup dans le cadre du problème de 

Stokes et sa généralisation au contexte de l'espace-temps, nous présentons l'élément 

mina espace-temps ainsi que la preuve de sa stabilité. 

Finalement, le chapitre 4, présente les résultats numériques de la discrétisation des 
équations de Navier-Stokes pour quelques problèmes en 2-D. L'objectif visé est, 

d'abord de confirmer la stabilité de l'élément mini espace-temps et ensuite d'étu- 



dier le comportement et illustrer l'enveloppe d'utilisation de la formulation stable. 

Dans le cadre de la vérification de la stabilité, trois problèmes sont présentés:le pro- 

blème de Poiseuille. le test du *no-flow» et le problème du cylindre. Afin d'étudier 

le comportement de la formulation stable nous l'avons comparée à la formulation 
stabilisée GLS/ST pour une série de problèmes en coordonnées cartésiennes et axi- 

symétriques. La simulation d'écoulements dans les artères étant une application 

potentielle de ce travail, une série de problèmes ont donc été étudiés, chacun faisant 
ressortir les caractéristiques de ce type d'écoulement. Finalement, à titre d'exemple 

d'application sur un domaine variable, nous avons étudié le deuxième problème de 

Stokes. Une conclusion et des recommaodations complètent cette thèse. 



CHAPITRE 1 

FORMULATIONS ÉLÉMENTS FINIS POUR LA RÉSOLUTION DES 
ÉQUATIONS DE NAVIER-STOKES 

Dans ce chapitre, on présente quelques méthodes d'éléments finis pour les équa- 

tions de Navier-Stokes dans le cadre de l'approche semi-discrète:discrétisation par 

éléments finis en espace et discrétisation par différences finies en temps. 

On rappelle d'abord les équations de Navier-Stokes avec les conditions aux limites 

appropriées. La méthode de Galerkin est ensuite présentée brièvement ainsi que les 

schémas classiques de différences finies dans le cadre de la discrétisatioo en espace 

et en temps. Finalement, des considérations numériques relatives à la mise en œuvre 

de ces formulations ainsi que les formuiat ions dites stabilisées sont présentées. 

1.1 Les équations régissant les écoulements incompressibles 

On considère un fluide visqueux incompressible occupant, à l'instant t E (O,T), un 

domaine Rt E BId (d = 2 ou 3) borné non vide et de frontière ï t .  On désigne par x 
la variable espace et par t la variable temps. Les équations régissant l'écoulement 

d'un fluide visqueux incompressible en régime laminaire sont: 

i) l'équation de la conservation de la quantité du mouvement 

al (% +- (u V)u+f)  - V a  = O sur nt, Vt  E (0.T); (1.1) 

ii) l'équation de la conseruution de la masse ou équation de la continuité 

W u  = O sur Rt, v t ~ ( 0 , T ) .  (1-2) 

Les variables dépendantes sont la vitesse u(x,t  ) = (u l ,  ,ud) et la pression p(x,t)  . 
La masse volumique (ou la densité) du fluide est représentée par p (constante pour 



les fluides incompressibles), f(x,t) est une force de volume et a est le tenseur des 

contraintes de Mscosité (ou tenseur de Cauchy). Dans le cas d'un fluide newtonien, 

ce tenseur est défini par: 

où 1 est 

taux de 
le tenseur métrique l ,  p est le coeficient de viscosité et E est le tenseur du 

déformation défini par: 

1 
E (u) = - (VU +  VU)^), 

2 

et l'équation (1.1) devient: 

Les équations (1.2)-(1.3), plus connues sous le nom d'équations de 'lavier-Stokes, 

sont dues à Georges S. Stokes (1819-1903) et à C.L.M.H. Navier (1785-1836). Ces 

équations sont non linéaires de nature mixte (parabolique-hyperbolique). Le terme 

de convection non linéaire (u - V)u contribue au caractère hyperbolique de l'équa- 

tion, alors que le terme visqueux linéaire -PAU est de nature elliptique et $ est 

de nature parabolique. 

1.1.1 Les conditions frontiéres 

Les conditions aux limites de type Dirichlet (essentielles) et/ou de type Neumann 

(naturelles) sont imposées sur la frontière ï t ;  pour ce faire, on considère pour chaque 
composante uit (i = 1 - d) du vecteur vitesse, (r  D ) i  et (rN)i  deux parties complé- 

mentaires de ï t :  

rt = ( r ~ ) i  U ( r ~ ) i ,  ( r D ) i  ( r ~ ) i  = 0, 

1. Pour le systérne de coordonnées cartésiennes, ia matrice de cœfficient de ce tenseur correspond 
B la matrice identité. 



sur lesquelles on impose les conditions aux limites suivantes: 

u.e, = gj sur ( T D ) i  Vt E (O,T), i = l * - - d ;  (1-4) 

~ - n * e ,  = hi sur ( rn) i  tlt E (O,T), i = l * - - d  (1 5)  

où e, est un vecteur de la base canonique lRd, n = (nl, - -  ,nd) est le vecteur normal 

unitaire extérieur A la Frontière ï du domaine R et a est le tenseur des contraintes. 

Pour completer la description du problème, une condition initiale a divergence nulle 
est imposée sur fi0, soit 

u(x,t = 0) = U,,, 

où satisfait l'équation (1.2). Dans la pratique, uo = O ou uo est la solution du 

problème stationnaire. 

1.2 La discrétisation des équations 

Dans l'approche serni-discrète, la discrétisation se fait en deux étapes: une dis- 

crétisation en espace par éléments finis suivie d'une discrétisation en temps par 

différences finies. Cependant, cette Formulation n'est pas bien adaptée si la géomé- 
trie du domaine est variable puisque, à chaque pas de temps, la frontière variable 

passe antre les nœuds du maillage et cela complique la discrétisation au voisinage 

de la frontière. 

1.2.1 Les formulations variationneiles 

Dans cette section, par souci de simplicité, nous allons nous restreindre a un domaine 

fixe, R, avec des conditions de Dirichlet homogènes (u = 0) sur une partie de la 

frontière, le cas non homogène ne posant aucune difficulté supplémentaire puisqu'il 
est possible d'effectuer un relèvement de la condition essentielle. 



Le cadre fonctionnel 

Les notions et les notations utilisées dans ce rappel sont tirées du livre (en prépa- 

ration) de Fortin et Garon (2001). 

Définissons d'abord quelques espaces fonctionnels auxquels nous ferons référence 

par la suite. Soit 

l'espace de 

du produit 

Hilbert des fonctions a valeurs réelles et de carré sommable sur II, muni 

scalaire et de la norme associée: 

(1 39) = / f&. llf Il2 = / f 2dz- 
Q fl 

De même, on définit par: 

L ~ Q )  = {I E L 2 ( ~ )  / 1 jdx = O } ?  

l'espace des fonctions de L2(R) à moyenne nulle. On désigne ensuite par: 

l'espace de Sobolev d'ordre 1 sur R muni du produit scalaire: 

de la norme: 

et de la semi-norme: 
d 

Remarque 1.1. Dans lu dé'nition de HL(R), les dérivées sont prises au sens des 
distributions. 



Enfin, on définit deux sous-espaces de l'espace HL(Q),  de la façon suivante: 

où ulr est la trace de u sur et: 

où rD est une partie de la frontière r du domaine R. 

Pour l'étude des problèmes d'évolution, nous allons maintenant introduire des e s  

paces de fonctions v : t -t u(t), définies sur (O'T), a valeurs dans un espace de 

Banach X. Pour p E R, avec 1 p c oo, on désigne par LP(0,T; .Y) l'espace des 

fonctions v : t + u ( t )  fortement mesurables sur (0,T) pour la mesure dt (i.e. les 

fonctions scalaires t + Ilv(t)llx mesurables pour la mesure dt) et telles que 

D'autre part, lorsque p = m, on désigne par Lm (0,T; X) l'ensemble des fonctions 
v : t + u(t) fortement mesurables sur (0.T) pour la mesure dt et telles que 

Les espaces LP(0,T; .Y) (espace des fonctions LP-intégrables) , Lw (0,T; .Y) (espace 

des fonctions essentiellement bornées) sont des espaces de Banach munis respecti- 

vement des normes I lvl l~~qo.~;~)  et Ilvll L=(o,T;x)- 
2 

Les formes faibles 

Soient, 

V =  (H:,(R))~, Q =  ~ ~ ( 0 )  et H =  { V E V I V . V = O }  



trois espaces de Hilbert. Nous obtenons la formulation variationnelle des équa- 

tions (1.2) et (1.3) en multipliant ces dernières par des fonctions tests prises r e s  

pectivement dans V et Q; on intègre ensuite par parties sur tout le domaine Q en 

tenant compte de la condition de Neumann. L'équation de la conservation de la 

quantité de mouvement (1.3) devient, Vv E V : 

et celle de la continuité devient, Vq Q : 

Le problème variationnel consiste donc a trouver u E V et p E Q satisfaisant 

les formes faibles (1.6) et (1.7). Cette formulation est dite mixte en (u,p). 

l'aide de la méthode de Faedo-Galerkin et sous certaines conditions de régularité 
(b E H, f E L2(0,T: Q)) ,  on montre que ce problème variationnel admet une 

solution unique (u E L2(0,T; H n LOD(O,T: Q)), p E L2(0.T; L2 (52))) (voir Lions. 

1968). 11 est aussi possible de prouver l'existence et l'unicité de la solution par le 
biais de l'approche de semi-discrétisation en temps. On renvoie au livre de Temam 

(1969) pour les détails relatifs à cette preuve dite constructive. 

Plusieurs techniques de discrétisation de problèmes variationnels dans le formalisme 

de la méthode des éléments finis sont possibles. Les plus usuels sont: la méthode des 

moindres carrés, la méthode de Petrov-Galerkin et la méthode de Galerkin. Cepen- 

dant, selon la nature des équations a résoudre, certaines s'avèrent plus appropriées. 

Nous allons présenter la plus populaire, à savoir la méthode de Galerkin. 



1.2.2 La mhthode de Galerkin 

La discrétisation en espace 

Une fois en possession de la Formulation variationnelle des équations de la conser- 

vation de la quantité de mouvement (1.3) et celles de la continuité (1.2), la d i s  

crétisation par éléments finis est immédiate. La solution du champ de vitesse est 

recherchée dans l'espace discret Vh c V et celle de la pression dans l'espace discret 

Qh C Q. Suivant l'approche de Bubnov-Galerkin (méthode de Galerkin), les fonc- 

tions tests sont choisies dans l'espace des solutions discrètes (vh E Vh,  qh E Qh). 
Ainsi, la formulation faible discrète du problème mixte revient a trouver uh E Vh 
et ph E Qh teiles que Vvh E Vh et Vqh E Qh: 

Les espaces V h  et Qh étant de dimension finie, les variables dépendantes u et p 

sont approximées respectivement par uh E V h  et ph E Qh qui sont exprimées dans 

leur base respective. On pose, par exemple, pour la vitesse u: 

où uj (t) est la valeur de la vitesse au je nœud du maillage discrétisant le domaine R. 
Les fonctions d'interpolation sont &, - - -  formant une base de Vh. On obtient 

la formulation variationnelle élémentaire en choisissant comme fonctions tests, les 

éléments de la base des espaces discrets. Le problème (1.8-1.9) se ramène a un 

système d'équations diflérentielles non linéaires de la forme: 



où Ü et P representent respectivement les vecteurs contenant les composantes dis- 

crètes de la vitesse et de la pression. Les matrices M, C, A et B représentent respec- 

tivement la matrice masse, la matrice convection, la matice diffusion et la matrice 

divergence. 

Afin d'obtenir un système totalement discrétisé, nous avons besoin des espaces 

discrets Vh et Qh et d'un schéma pour de discrétisation en temps. Le choix des 

espaces de discrétisations en vitesse et en pression est assez délicat à cause de la 

condition d'incompressibilité discrète (1.9). Nous y reviendrons après avoir présenté 

la discrétisation du terme transitoire. 

La discrbtisation en temps 

Les schémas aux différences utilisés, pour approcher les dérivées temporelles 9, 
sont regroupés en deux catégories: les schémas explicites et implicites. Les sché- 

mas explicites sont en général conditionnellement stables et nécessitent que l'on 

restreigne le pas de temps. Pour cette raison, les schémas implicites sont en général 

retenus. En plus, dans le cadre de la discrétisation des équations de Navier-Stokes, 

ce choix ne rajoute rien à la complexité de la résolution puisque la méthode de 

Galerkin, qui est une formulation implicite, est déjà employée pour la discrétisation 

spat ide. 

Nous présentons ici les schémas aux différences les plus utilisés pour approcher 9. 
Pour ce faire, on considère O = to < t l  < - < t, = T, une partition de (0,T) 
avec At = t, - t,+ On note ut = u(x,t,), la solution approximée au temps t ,  est 

notée uh = $I (x , c , l .  En utilisant successivement une différence amère en t,+l et 

une avant en t,, on obtient les schémas 

mieux connus sous le nom de 8-schémas. Les plus usuels sont: 

- Euler implicite (û = l ) ,  

- Crank-Nicholson (0 = 112). 



Le schéma d'Euler implicite (ordre 1, inconditionnellement stable) étant trop diffu- 
sif, est en général utilisé pour obtenir des solutions stationnaires. Par contre, pour 

les solutions transitoires, on utilise plutôt le schéma de Crank-Nicholson (ordre 2, 

inconditionnellement stable). Étant donné que le schéma de Crank-Nicholson n'est 
pas A-stable, on va dans certains cas lui préférer un schéma du même ordre, Astable 

à 2 pas; à savoir le schéma de Gear (voir Fortin et ai., 1987, 1994, 1997): 

Pour de plus amples détails sur les schémas de discrétisation en temps, on renvoie 
au livre de Gresho et al. (1999). 

1.2.3 Les considérat ions numhriques 

La condition «ifisup» 

Pour assurer l'existence et l'unicité de la solution (uh,ph) du problème discret, le 
choix des espaces d'interpolation Vh et Qh ne peut être fait de façon indépendante. 
Les espaces d'interpolation en vitesse et en pression doivent nécessairement véri- 

fier la condition de Ladyzhenskaya-BabuSka-Brezzi (LBB) (Ladyshenskaya, 1969; 

BabuSka, 1973; Brezzi, 1974) plus connue sous le nom de condition uinf-sup~. Il 

s'agit donc de construire des espaces d'interpolation compatibles. Cette question 

fondamentale a fait l'objet d'une littérature très abondante. On consultera, pour 

la théorie générale, le livre de Brezzi et Fortin (1991). Les éléments les plus ré- 

pandus satisfaisants cette condition sont l'élément mina de Arnold-Brezzi-Fortin 
(PT - Pl) (voir Arnold et al., 1984)' l'élément de Taylor-Hood (Pz - Pl) et 1'é1& 

ment de Crouzeix-Raviart (P: - Pi discontinue) (voir Crouzeix et Raviart, 1973). 

Dans le cas de la discrétisation des équations de Navier-Stokes incompressibles, en 
plus du problème du choix des espaces d'interpolation en vitesse et en pression, la 

méthode de Galerkin devient instable pour les écoulements à convection dominante. 

Pour réduire ces oscillations numériques, Christie et ai. (1976) ont repris et adapté 
au contexte des éléments finis l'idée dT c<upwindingn (décentrage en amont) des 



méthodes de différences finies. On parle alors de techniques de stabilisation. 

Les méthodes de stabilisation 

Les techniques de stabilisation consistent à ajouter à la formulation variationnelle de 

Galerkin des termes de stabilisation dépendants du maillage, sans toutefois affecter 

la consistance de la formulation. De ce fait, elles sont des méthodes résiduelles qui 

sont des méthodes de type Petrov-Galerkin. La méthode de Petrov-Galerkin est une 

variante de la méthode de Galerkin, qui consiste à utiliser des fonctions tests diffé- 
rentes des fonctions d'interpolation pour réaliser le décentrage. Des améliorations 

de la méthode de Christie et al. (1976), ont conduit aux méthodes suivantes: 

- la méthode wstreamline Upwind/Petrov-Galerkin* (SUPG) (Brooks et Hu- 
ghes, 1982) ou encore u Streamline Diffusion* (SD), 

- la méthode uGalerkin/Least-Square» (GLS) (Hughes et al., 1989), 

- la méthode uDouglasWang-Franca-Frey» (DWFF) (Douglas et Wang, 1989; 

Franca et al., 1992). 

La méthode SUPG a été initialement introduite pour les équations de convection- 

diffusion et ensuite généralisée, avec succès, a w  équations de Stokes et de Navier- 
Stokes (voir Brooks et Hughes, 1982; Hughes, 1987). Elle permet de stabiliser la 

méthode de Galerkin en ajoutant à la fonction test de celle-ci un terme de moindres 

carrés. 

La méthode GLS, quant à elle, consiste à ajouter à la formulation résiduelle de 

Galerkin un résidu provenant de la minimisation d'une fonctionnelle par la méthode 

des moindres carrés. Elle est plus générale que la méthode SUPG puisqu'elle permet 

l'utilisation d'interpolants de degré plus élevé et correspond à la méthode SUPG, 

lorsque des interpolants linéaires sont utilisés. Cette méthode est présentée par 

Hughes et Franca (1987); Franca et Hughes (1988); Hughes et al. (1989), pour 

l'équation de convection-diffusion et de Stokes et par Behr et al. (1993); Franca 

et al. (1993); Franca et Madureira (1993) pour les équations de Navier-Stokes. 



La méthode de DWFF est une variante de la méthode GLS qui a l'avantage d'être 

moins sensible aux paramètres de stabilisation. Elle a été présentée par Douglas et 

Wang (1989)' Franca et al. (1992)) et Franca et Frey (1992). 

Dans le cas particulier des problèmes de convection-diffusion scalaire (1-D), les 

méthodes de stabilisation reviennent à ajouter de la diffusion dans la direction 

de l'écoulement. La quantité de cette diffusion est contrôlée par un paramètre de 

stabilisation qui doit être choisi de façon appropriée afin d'obtenir une solution 

stable. Piusieurs algorithmes basés sur des arguments heuristiques, ou numériques 

se sont avérées t rés efficaces pour certaines applications. Cependant, l'absence de 

théorie générale conduisant a la construction du paramètre optimal est considérée 

comme un inconvenient majeur par les utilisateurs de ce type de méthode. 

Dans un développement parallèle, une approche de stabilisation sans paramètre, 
dite non conventionnelle, à été considérée. Elle consiste à enrichir l'espace des fonc- 

t ions d'interpolation par une fonction bulle qui, une fois éliminée par condensation 

statique, conduit dans certains cas à une formulation stabilisée de type Petrov- 

Galerkin. En effet, Brezzi et al. (1992), Baiocchi et al. (1993) et Brezzi et al. 

(1997) ont montré, dans le cas particulier des équations de convection-diffusion et 
de Stokes, que l'utilisation de la fonction bulle était équivalente à la méthode SUPG 

ou CLS; cet effet de stabilisation a été aussi mentionné dans le cas des équations 

de Navier-S tokes par Russo (1996). 

Les récents développements dans le contexte de la stabilisation sont tournés vers 

l'optimisation du processus de stabilisation, à savoir la construction de solutions 

non seulement stables, mais précises. Cela conduit à la méthode dite ~Residual- 

Free-Bubbles* (RFB). Cette méthode est une variante de la stabilisation à i'aide de 

La fonction bulle. La fonction bulle utilisée dans cette approche, n'est plus la bulle 

classique mais plutôt une bulle qui est la solution d'un problème local. Cela permet 

d'optimiser le processus de stabilisation comme l'ont mentionné Brezzi et al. (1998) 

et Brezzi et Russo (1998). Pour de plus amples détails sur l'état actuel du progrès 
des techniques de stabilisation, on renvoie à la référence ( Franca. 1998). 

Par ailleurs, dans le cas particulier des équations de Navier-Stokes (formulation 
mixte), les méthodes de stabilisation permettent, en plus de stabiliser la solution 



sans que les espaces discrets aient à vérifier la condition inf-sup. Cela permet de 
choisir les mêmes interpolants en vitesse et en pression comme les combinaisons 

(Pl - Pl) , (P2 - Pz) et (QI - QI) (voir Hughes et al., 1986; Tezduyar et al., 1992; 
Drow et Hughes, 19%). Cet te propriété est particulièrement intéressante dans le 
cas des éléments tridimensionnels, ainsi que dans le contexte des éléments finis 

espace-temps, pour des considérations relatives au coût de stokage et de calcul. 

Après le choix d'éléments finis appropriés et I'approximat ion du terme transitoire 

(%) par une méthode adaptée de discrétisation en temps, le système d'équations 

non linéaires qui découle du système (1.1 1) est résolu à l'aide de techniques comme 
la méthode de Newton ou la méthode de Picard. 



CH-4PITRE 2 

LES FORMULATIONS ESPd4CE-TEMPS 

Dans ce chapitre, on présente les formulations espace-temps. On commence par 

présenter, le concept de l'approche de discrétisation par éléments finis espace-temps. 

La méthode de Galerkin discontinue en temps est ensuite présentée et on conclut 

avec une revue des formulations stabilisées. 

2.1 La présentation du concept 

Dans l'approche éléments finis espace-temps, l'espace et le temps sont discrétisés de 

façon simultanée par des éléments finis relatifs à l'espace et au temps, et les variables 

dépendantes sont approchées i l'aide de fonctions d'interpolation dépendant à la 

fois du temps et de l'espace. La variable temps est considérée comme une variable 

espace, engendrant ainsi un domaine espace-temps R x (O,T), R étant le domaine 

spatial et (0,T) un intervalle de temps. Pour la construction du maillage discrétisant 

le domaine espace-temps, on distingue deux types d'éléments finis: le type extrudé 

(comprenant les quadrilatères, prismes, CU bes, hexahèdres etc.) obtenu par extrusion 

d'éléments espace dans la direction du temps (voir figure 2 4 a ) )  et le type simplex 

comprenant les triangles, tétraèdres etc. (voir figure 2.1 (b)). Le type extnidé conduit 

B un maillage espace-temps structuré où chaque élément est le produit cartésien d'un 

élément spatial et d'un intervalle de temps. Par contraste, le type simplex conduit 

à un maillage espace-temps non-struct uré. 

A l'origine, les variables dépendantes étaient approximées à l'aide de fonctions d'in- 

terpolation continues par rapport aux variables d'espace et à la variable temps. Dans 

le cas particulier des problèmes a deux ou trois dimensions d'espace qui nécessitent 

un maillage espace-temps relativement fin (dans la direction du temps), la discréti- 

sation des équations par cette approche (fonction continue en temps) conduit a un 
problème de taille excessive. Ceci pose des contraintes au niveau du coût de stockage 



et du calcul, rendant ainsi cette approche moins attrayante et moins compétitive 

comparativement aux formulations semi-discrètes. 

(a) Type extrudé (b) Type simplex 

Figure 2.1 Éléments géometriques espace- temps 

L'introduction de fonctions d'interpolation continues en espace mais discontinues 

en temps a donne naissance à la méthode de Galerkin discontinue en temps qui 

est considérée comme une innovation majeure dans le contexte des éléments finis 

espace-temps. En effet, les fonctions étant discontinues en temps, cela permet la 

subdivision du domaine espace-temps en série de tranches ( d a b s ~ )  espace-temps 

Sn = Q x (t,,t,+& O 5 n N - 1. Les équations sont ensuite résolues sur les 
tranches espace-temps de façon séquentielle (tranche après tranche), la solution de 
la tranche courante servant de condition initiale pour la tranche suivante. 

Mous allons maintenant présenter la méthode de Galerkin discontinue en temps qui 

constitue le fondement des diverses formulations espace-temps connues à ce jour. 



2.2 La methode de Galerkin discontinue 

La méthode de Galerkin discontinue a été initialement développée pour les équa- 

tions hyperboliques du premier ordre par Reed et Hill (1973). Elle a ensuite été 

analysée et justifiée mathématiquement par Lesaint et Raviart (1974). Par la suite, 

elle a été appliquée, avec succès à de nombreux problèmes, notamment aux équa- 

tions de type parabolique par Jamet (1978) et par Bonnerot et Jamet (1979) aux 

équations hyperboliques du deuxième ordre par Hulbert et Hughes (1990); Johnson 

(1993); French (1993); Li et Wiberg (1998) et Wiberg et Li (1999), et aux fluides 

viscoélastiques par Fortin et Fortin (1989). La méthode de Galerkin discontinue est, 

en général, une méthode d'éléments finis A-stable d'ordre élevé. En effet, appliquée 

a u  équations différentielles ordinaires avec des approximations polynômiales de 

degré k (Lesaint et Raviart, 1974; Delfour et al., 1981; Johnson, 1988)' elle conduit 

à une méthode -4-stable d'ordre 2k + 1. 

La méthode de Galerkin discontinue en temps découle de l'application de la mé- 

thode de Galerkin aux équations de type parabolique par Jamet (1978). Elle a 

ensuite été étudiée dans le cadre des équations de type parabolique par Bonnerot 

et Jamet (1979) et par Eriksson et al. (1985) qui ont montré qu'elle était .&stable 

et d'ordre 2k + 1, avec des approximations polynômiales de degré k et tout récem- 

ment par Makridakis et BabuSka (1997) dans le cadre d'une analyse de stabilité des 

équations de la chaleur. Elle a aussi été généralisée aux équations hyperboliques 

du deuxième ordre par Hulbert et Hughes (1990) puis par Johnson (1993) qui a 

prouve qu'elle est aussi -4-stable. d'ordre 2 en espace et d'ordre 3 en temps dans 

la norme L2, avec des fonctions d'interpolation bilinéaires en espace et en temps. 

Par contraste, l'utilisation de fonctions continues en temps conduit plutôt à des 

méthodes conditionnellement stables (voir Bajer, 1986, 1987). 

De plus, la méthode de Galerkin discontinue en temps possède divers avantages 

inexistants dans l'approche semi-discrète. Les fonctions étant discontinues en temps, 

donc d'une tranche à l'autre, cela permet, par le biais d'estimateurs d'erreur a 

posteriori, de développer des stratégies adaptatives afin de contrôler soit le pas 

de temps (l'épaisseur de la tranche) et/ou adapter le maillage de chaque tranche 

(voir Eriksson et Johnson, 1987, 1991; Johnson, 1988; Eriksson, 1988; Hughes et 



Hulbert, 1988; Froncioni et ai., 1997; Li et Wiberg, 1998; Wiberg et Li, 1999) 
conduisant ainsi à des maillages différents sur chaque tranche espace-temps. En plus, 
elle conduit à des solutions de qualité avec des pas de temps relativement grands 

eu égard au fait qu'elle est en général (problèmes paraboliques, hyperboliques) une 
méthode A-stable d'ordre élevé. Finalement, les problèmes de surfaces libres, ou de 

domaines en mouvement, sont traités de façon naturelle. En effet, le déplacement 

ou la déformation du domaine ou d'une partie du domaine est incorporé dans la 

construction de la tranche espace-temps ainsi que dans le maillage le discrétisant 

(voir Tezduyar et Behr, 1992a,b; Mittal, 1992; Masud et T.J.R.Hughes, 1997; Behr 
et Tezduyar, 1999; Mittal et Kumar, 1999). 

2.2.1 La formulation variationnelle 

Afin de présenter la formulation espace-temps pour les équations 1.2-1.3, nous allons 

considérer O < ti  < O - -  < tN = T, une partition de l'intenalle (0,T) en sous 
i n t e d l e s  In = (t,,t,+J de longueur At = tn+[ - t,. Soient 12, = Rt, et r, = rt,, 
on définit la tranche espace-temps à l'étape n par Sn, le domaine délimité par Rn, 
Rn+[ et En (voir figure 2.2), où En est la surface décrite par la frontière l', quand t 
parcourt l'intervalle 1,. On désigne par X h  et CNn deux parties complémentaires 

de En: 

dont l'une peut étre vide et l'autre coïncider avec Zn. On introduit ensuite, pour 

Figure 2.2 Tranche espace-temps 



chaque tranche Sn, les espaces fonctionnels V n  = (HkDn (Sn))2 pour la vitesse et 

Qn = L2(Sn) pour la pression. La discrétisation des équations de Navier-Stokes par 

la méthode de Galerkin discontinue en temps suit celle de la méthode de Galerkin. 

On approxime (u , p )  par des fonctions (uh , p h )  E (Vc x Qt), où Vc et Qt sont 

respectivement des sous espaces de Vn et Qn de dimension finie qui seront définis 

plus loin. 

Les fonctions d'interpolation en vitesse étant discontinues à chaque t , ,  pour n = 
0,1, - - - ,N - 1 (voir figure 2.3), la dérivée par rapport au temps est considérée au 
sens des distributions et par l'identité de Dini, on obtient pour chaque tranche: 

avec U; = uh ( t n  f E ) .  

- 

tn-t tn tn+ ï t 

Figure 2.3 Illustration de la discontinuité en temps 

La formulation espace-temps se présente comme suit: étant donné u"_ trouver uh E 

V," et ph E Q; telles que Vvh E Vh et Vqh E Qt: 



Les cinq premiers termes découlent de la formulation faible espace-temps des équa- 

tions de la conservation de la quantité de mouvement et de la continuité 
méthode de Galerkin évaluée sur la tranche espace-temps. Les données sont 

portées d'une tranche à l'autre via une projection L2 par le terme de saut: 

Ce terme garantit la conservation de la masse d'une étape de temps à la suivante. 

Cependant, selon Priestley (1994), dans le cas où les maillages à l'interface des 

tranches sont différents, le calcul exact de l'intégrale devient coûteux et nécessite des 
algorithmes d'interpolation qui conduisent à des pertes de masse. Ce phénomène est 

plus prononcé dans les régions a fort gradient. Pour éviter cet inconvénient, Hansbo 

(2000) a suggéré deux techniques qui, tout en évitant le calcul exact de l'intégrale, 

permettent soit par des techniques de projections locales simplifiées (Hansbo, 1994) 

de conserver la masse. soit de rétablir la masse par des techniques de post- traitement 

(voir Sasaki, 1976). Bien que ces techniques soient efficaces, Hansbo (1994) suggère 

de raffiner le maillage à l'interface seulement si cela est absolument nécessaire. 

Par ailleurs, il faut noter que le fait que les maillages soient différents à l'interface 

des tranches est le résultat d'une stratégie adaptative basée sur des éléments finis 

espace-temps de type extrudé. Cependant, avec les éléments de type simplex, le 

raffinement intervient seulement sur le haut de la tranche garantissant ainsi des 

maillages identiques à l'interface (voir figure 2.4). 

Tout comme la méthode de Galerkin, le choix de la combinaison des espaces de 

discrétisation V," et Qi est aussi sujet à une condition de compatibilité. Cette 

condition est la généralisation de la condition inf-sup dans le contexte de l'espace- 

temps et sera presentée au chapitre 3. 11 s'agit donc de constmire des espaces de 

discrétisation compatibles (pour satisfaire à la condition inf-sup ) ou d'utiliser des 

formulations stabilisées (pour contourner la condition inf-sup). Bien que la théorie 

générale concernant la construction d'éléments stables soit largement connue et ait 
conduit à de nombreux éléments stables dans le cas des équations de Stokes et de 
Navier-S tokes stationnaires, la construction d'éléments stables est inexistante dans 

le contexte des éiéments finis espace-temps. En fait, la constructioo de formulations 



- - 

a) Extrudé b) Simplex 

Figure 2.4 Maillages espace-temps 

stabilisées constitue l'unique approche au regard de la condition in/-sup. 

La construction d'éléments finis espace-temps stables est l'un des axes de cette thèse 

et sera présentée au chapitre suivant. Mais auparavant, nous présentons une revue 

des formuiat ions espace- temps stabilisées. 

2.3 Les méthodes stabilisées 

Tout comme la méthode de Galerkin en espace, la méthode de Galerkin discontinue 

en temps n'est pas appropriée pour résoudre les écoulements à convection domi- 
nante. Cet état de fait va justifier la construction de formulations stabilisées de 

type Petrov-Galerkin basées sur des techniques de stabilisation en espace. Une autre 

approche propre à l'espace-temps consiste à utiliser une formulation lagrangienne 

dans le but d'obtenir la stabilité. On utilise la formulation de Galerkin discontinue 

sauf que le maillage est orienté, avec les éiéments espace-temps alignés selon les 

caract érist iques. 

On note deux courants importants: à savoir la méthode ~Streamline-Diffusion* 

(SD) et la méthode ~Galerkin Least Squares/Space-Tirne» (GLSIST) qui découlent 
respectivement des méthodes SUPG et GIS. Ces techniques de stabilisation en 
espace-temps vont ensuite être combinées avec la méthode des caractéristiques pour 



donner la met hode dite «Characteristic Streamline Diffusion» (CSD) . Avant de 

présenter ces trois principales méthodes, il serait intéressant de mentionner deux 

méthodes qui, bien que peu utiiisées, conduisent à des formulations stabilisées. La 
première, se veut une généralisation de la méthode de Lesaint-Raviart (Lesa.int et 

Raviart, 1974) a l'espace-temps; elle est caractérisée par l'utilisation de fonctions 

d'interpolation discontinues en espace et discontinues en temps (voir Johnson et 

Saranen, 1986). La seconde dénommée ~Space-Time coupled Least-Squares Finite 
Element Formulation», est une méthode de type moindres carrés (least-Squares) en 

espace-temps (voir Nguyen et Reynen, 1984; Bell et Surana, 1994, 1996). 

2.3.1 La formulation SD 

Cette méthode est basée sur un maillage espace-temps, avec les fonctions d'inter- 
polation continues en espace et discontinue en temps. Xous allons présenter deux 

formulations basées sur la méthode de SD dans le cadre des équations de Navier- 

Stokes; pour plus de détails voir Johnson et Saranen (1986) et Hansbo et Szepessy 

(1990) . 

La première formulation est due à Johnson et Saranen (1986). Elle se présente 

comme une méthode de type Petrov-Galerkin avec, comme fonction test: 

Les fonctions, u h , v h  E Vh, qh E Qh, où Vz  et QB sont respectivement les espaces 
d'interpolation en vitesse et en pression et 6 est un paramètre de stabilisation . La 

particularité de cette approche réside dans le fait que les fonctions d'interpolation 
en vitesse sont des fonctions polynômiales à divergence nulle, ce qui implique que 

l'équation de continuité est résolue de façon exacte. Cependant cette approche est 

coûteuse compte tenu du fait qu'elle nécessite des éléments finis d'Hermite. 

La seconde approche, présentée par Hansbo et Szepessy (1990)' est beaucoup plus 
standard, en ce sens que la condition de divergence nulle est imposke faiblement. 
Elle se présente comme suit: étant donné ul, trouver uh E Vt et ph E QR telles que 



Cette formulation est une méthode de type Petrov-Galerkin, avec comme fonction 

test: 

pour la vitesse et: 

Qh = qh + J2V * vh 

pour la pression. Les paramètres de stabilisation 61, 62 et 63 sont définis comme suit: 

avec les constantes positives CI 2: 1, C2 z 1 et C3 » 1 indépendantes de h et de p. 

Le paramètre 63 sert à imposer la condition de Neumann qui selon l'auteur serait 

imposée trop faiblement. Pour plus de détails sur ces paramètres voir Hansbo et 

Szepessy (1990). 

2.3.2 Formulation GLS/ST 

La formulation que nous allons présenter a été initialement proposée par Tez- 
duyar et Behr (1992a,b) sous le nom de ~Deforming-Spatial-Domain/ Space-Tirne» 
(DSDIST), pour résoudre les équations de Navier-Stokes incompressibles sur des 
domaines variables. La formulation espace-temps se présente comme suit; étant 



Figure 2.5 Maillage et élément espace-temps 

donné ul, trouver uh E et ph E QE telles que Vvh E Vc et Qqh E Qi: 

où Sn représente un élément du maillage espace-temps (voir figure 2.5). Dans 

cette formulation, les cinq premiers termes constituent la formulation de Galerkin 
discontinue en temps, les deux suivants sont des termes de stabilisation de type 

moindres carrés provenant respectivement de l'équation de la conservation de la 

quantité de mouvement (1.1) et celle de la continuité (1.2) . On obtient ainsi une 



formulation stabilisée de type GLS d'où la dénomination wGLS/ST». Le premier 

terme de stabilisation sert à éliminer les oscillations provenant du choix d'une com- 

binaison d'espaces de discrétisation inapropriée. Le second sert plutôt à éliminer 
les oscillations provenant des problèmes à convection-dominante (à haut nombre de 

Reynolds). Les paramètres de stabilisation T,, et rmt sont définis comme suit: 

et 

avec 

oii Re est le nombre de Reynolds défini par: 

enfin, h, est la taille élémentaire et est définie comme la longueur du plus grand c6té 

de l'élément (S:). Pour plus de détails sur l'origine de ces termes de stabilisation 

voir (Mittal, 1992) et (Behr, 1992). 

Cette formulation a été appliquée par divers auteurs, notamment Thompson et 

Pinsky (1996a,c,b) pour des problèmes en acoustique, Shakib et Hughes (1991); 

Behr (1992); Mittal (1992); Behr et Tezduyar (1994); Johnson (1995) et Masud 
et T.J.R.Hughes (1997), pour les équations de Navier-Stokes et d'Euler sur des 

domaines variables. 

2.3.3 La méthode CSD 

Cette technique est propre aux problèmes d'évolution et a été introduite par Va- 
roglu et Finn (1980a,b) pour les problèmes de convection-diffusion et l'équation de 

Burger en dimension 1. Elle consiste à aligner les éléments du maillage le long des 



caractéristiques de l'écoulement et correspond à la méthode des caractéristiques 

dans le cas d'un problème hyperbolique pur. 

Pour présenter cette technique, nous allons considérer le problème de convection- 

diffusion suivant: 

au 
-+C.VU-EAU = f at dans R Vt E (O,T), 

u = O  sur aR Vt E (OTT), 
u(x,O) = uO(x)  dans R. 

où c = (cl,cz) est la vitesse de convection et E est un cœfficient de diffusion. 

La discrétisation du problème (2.6) par la méthode de Galerkin discoritinue en 

temps revient à trouver u E Vn tel que: 

Pour définir V,, l'espace des fonctions d'interpolation et le maillage de la tranche 

Sn, on va appliquer la technique de passage à l'élément de référence. cette fin, on 
considère, pour chaque n, Kn = { l i }  une triangulation de R et l'élément de référence 

espace-temps {n x (t,,t,+t)}. 

Soit Fn l'application qui permet de passer de l'élément de référence espace-temps à 

l'élément déformé. On pose 

ou cn est une approximation de la vitesse au temps t, (voir figure 2.6). 

De l'équation (2.8), on obtient: 

au aû -= -  
dt dr 

+ cn Vu, 



Figure 2.6 Transformation d'un élément espace-temps 

où û(C,r) = u(x,t). Par ailleurs, on a: 

avec le jacobien de la transformation défini par: 

dont on déduit, finalement: 

On pose V. = {v  : v(x. t )  = û(&r),Û E V,,(x,t) = Fn(C,r)), avec Vn un espace d T a p  

proximation défini sur l'élément de référence. Cette formulation espace-temps peut 

être considérée comme une formulation u Arbitrary Lagrangian-Euleriam (ALE) 
(voir Hughes et al., 1981)' en ce sens qu'elle combine à la fois les descriptions eulé- 

rienne et lagrangienne. En effet, si cn = c (le maillage se déplace à la même vitesse 
que u), la représentation est totalement lagrangienne; par contre, si cn = O (les 

endroits où le maillage est fixe), la représentation est eulérienne. Le fait d'orienter 

les éléments dans la direction des caractéristiques permet d'annuler la convection, 

si cn = c, où de réduire son effet s'ils sont alignés approximativement dans la di- 
rection des caractéristiques. Cette idée va être adaptée a la formulation SD par 

Johnson (1991) et Hansbo (1992a) pour les équations de convection-diffusion, et 



par Hansbo (1992b, 1993, 1995) pour les équations de Navier-Stokes et, dans un 

développement parallèle, par Pironneau et al. (1 992) ii la formulation G LS/ ST pour 

donner la méthode dite ucharacteristic streamline diffusion» (CSD). Les formula- 

tions espace-temps sont exactement les formulations SD ou GLS/ST sauf que les 

espaces d'interpolation en vitesse et en pression sont définis par rapport aux élé- 

ments déformés (voir figure 2.7). On a : 

où est une vitesse nodale pré-définie. 

Avant de conclure cette revue des formulations dites stabilisées, il est important 

de préciser que les formulations que nous avons présentées sont basées sur des dis- 

crétisations qui possèdent les mêmes interpolants en vitesse et en pression. Les 

interpolants sont, selon le cas, bilinéaires en temps et en espace (Pl(x) x Pl(t)) ou 

linéaires en espace et constants en temps ( P l ( x )  x Po(t)). Ces espaces de discrétisa- 

tion reposent sur des éléments de type extrudé (maillage structuré) et conduisent à 

des solutions stables en dépit du fait qu'elles ne vérifient pas la condition ~inf-sup». 

Les fonctions d'interpolation linéaires en espace et en temps (P l (x , t ) )  basées sur 

les éléments de type simplex ont été mentionnées par certains auteurs (Varoglu et 

Finn, 1982; Bajer, 1986, 1987; Hughes et Hulbert, 1988; Hulben et Hughes, 1990; 

Behr et Tezduyar, 1994) mais demeurent très peu utilisées. Leur utilisation pour 

les problèmes bidimensionnels constitue 17un des axes de ce travail. 



Figure 2.7 Maillage espace-temps aligné 



CHAPITRE 3 

L'ÉLEMENT MIN1 ESP-&CE-TEMPS 

Dans ce chapitre, nous présentons l'élément mini espace-temps ainsi que la preuve 

de sa stabilité. Mais auparavant, nous allons rappeler la condition inf-sup dans le 

contexte du problème de Stokes stationnaire et ensuite la généraliser au contexte 

des formulations éléments finis espace-temps. 

3.1 La condition inf-sup 

Selon Johnson et al. (1984). les propriétés mathématiques de la méthode de Galerkin 

discontinue en temps, pour les problèmes d'évolution sont semblables à celles de 

la méthode de Galerkin pour les problèmes stationnaires. Ainsi. tout comme la 

méthode de Galerkin, le choix des espaces de discrétisation (vitesse et pression) 

est soumis à une condition de compatibilité. Le respect de cette condition permet, 

d'abord d'éviter l'effet bloquant (glocking effect,) qui est caractérisé par le fait 

que l'ensemble des solutions a divergence nulle se réduit à la solution nulle, et 

ensuite d'éviter le problème des modes de pressions artificielles (uspurious pressure 

modes,) ou des pressions en damier (scherkerboard pressure») qui se manifeste par 

la présence de pressions parasites qui polluent la solution numérique. 

3.1.1 LeproblémedeStokes 

Soit R un domaine borné de R2 et soit I' sa frontière. On considère le problème de 

Stokes stationnaire et homogène. Il s'agit de trouver le champ de vecteur vitesse 



et le champ de pression 

telles que pour la donnée d'une force volumique f ,  les équations suivantes soient 
vérifiées: 

-V (~PE(U)) + Vp = f dans R; 
V u = O dans fl; 
U = O  sur II. 

Ce problème découle des équations de Navier-Stokes stationnaires en négligeant le 

terme non linéaire (u * V)u. 

Afin de discrétiser ces équations par la méthode des éléments finis, on commence 

par donner la formulation variationnelle associée à ce problème. Considérons à cet 

effet, les espaces fonctionnels suivants: V = (H,'(R))*, Q = Li(R)  et Vdi,,, l'espace 

des fonctions de V à divergence nulle. Ainsi, la forme faible mixte du problème (3.1) 
est: 

Trouver (u,p) E V x Q tel que : 
a(u,v) + b(v,p) = (f,v), Vv 'v V; 

b(u,q) = O, Qq € Q 

Le problème (3.2) étant écrit sous forme mixte, l'existence et l'unicité de La solution 

(u,p) sont alors assurés par le théorème 3.1 du à Brezzi (1974). 

Thhréme 3.1. La solution de (3.2) eziste et est unique si: 

i)  la forme bilinéaire a ( .  , .) est continue sur V x V: 



22) la forme bilanéaire a( .  , .) est elliptique sur Vdiu: 

iàà) la fonne bàlinéaire b(. , .) satisfait la condition in/-sup: 

34 > O tel que inf sup Ib(vd I L P. 
q E 4  VEV llvllvllqll~ 

Esquisse de la d6monst ration: 

La continuité de la forme bilinéaire a(.  , .) découle de l'application de l'inégalité de 

Cauchy-Schwarz tandis que l'ellipticité sur l'espace Vd, découle de l'application des 

inégalités de Korn et de Poincaré. La condition inf-sup de la forme b(. .) découle 

quant à elle du fait que l'opérateur divergence est un isomorphisme de V&, dans 

LO(R) (voir Temarn, 1969; Girault et Raviart, 1979). I 

Soit Th, une triangdation de fi. L'indice h caractérise la taille du maillage et 

est destiné a tendre vers O. Soient Vh et Qh des sous espaces de dimension finie 

approximant respectivement V et Q. On considère ensuite le sous espace de Vhl 

hiWh = (vh E Vh 1 (V --vh,qh) = O, Vqh E Q h ) .  La discrétisation par éléments finis 
(méthode de Galerkin) du problème (3.2) conduit au problème mixte approché 
(discret) suivant: 

obtenu en remplaçant respectivement u, v, p et q par uh, vh, ph et qh. Sous les hy- 

pothèses d'existence et d'unicité de la solution (u,p) du problème continue (voir 

théorème 3.1) , l'existence, l'unicité et la convergence de la solution discrète (uh,ph) 

sont assurés par le théorème 3.2 (voir Brezzi et Fortin, 1991): 

Théoréme 3.2. Le problème (3.3) admet une solution unique (uh1ph) E Vh x Qh 

sous les hypothèses suivantes: 

1. Certains auteurs disent que a(. , .) est coercive- 



i )  il existe une constante positive a telle que 

a ( ~ h t ~ h )  1 ~ [ I ~ h l l t ,  v ~ h  E Vdiuh; 

iz) il existe une constante positive B indépendante de h telle que 

De plus on a la 

inf sup Ib(vh tqh) 1 1 P.  
9hEQh v ~ E V D  llvhllvllqhll~ 

majoration d'erreur 

I 

avec C une constante positive qui dépend de a et 0. 

La condit ion inf-sup discrète (3.5) définit la compatibilité entre les espaces Vh 
et Qht  qui ne peuvent pas être choisis indépendamment l'un de l'autre. Elle est 

aussi connu sous le nom de condition de Brezzi-BabuSka ou encore c~adit ion LBB 
( Ladyzhenskaya-Babu~ka-Brezzi) . 

Dans le but de généraliser cet te condition au contexte de l'espace-temps, nous allons 

considérer le problème de Stokes instationnaire. Ainsi, pour tout T > O, il s'agit de 

trouver une fonction vectorielle 

et une fonction scalaire 
p : Rx]O,T[+ R 

telles que pour la donnée d'une condition initiale Q et d'une force volumique f, les 



équations suivantes soient vérifiées: 

( 2 - V (2pr(u)) + Op = f dans Rx]OTT[; 

V u = O dans R x]O,T[; 

u(x,t = 0) = uo sur Q; 
u = O sur l? x]O,T[. 

La discrétisation du problème (3.6) par éléments finis espace-temps découle de la 

méthode de Galerkin discontinue en temps (voir chapitre 2). Le domaine espace- 

temps R x [OTT] est subdivisé en une série de tranches espace-temps Sn = R x 

[t,,t,+l]T O 5 n 5 N - 1. On considère ensuite 5 une discrétisation de la tranche 
espace-temps Sn (Ici, le pararnèt re h caractérise la taille du maillage espace- temps 

destinée à tendre vers O) et on introduit M h  et Xh des sous espaces de dimension fi- 

nie approximant respectivement les espaces = L2(t,,tn+ l; V) et X = ~ ~ ( t , , t , + ~ ;  Q) 

munis respectivement des normes II - I I M  et II - Ilx Ainsi, pour la donnée de la condi- 

tion initiale u l  (solution au temps t ,  de la tranche précedente), la discrétisation 

du problème (3.6) sur la tranche Sn revient à la formulation variationnelle discrète 
suivante: 

oil 

Le problème (3.7) étant écrit sous forme m~ute, l'existence et l'unicité de la solution 

(uh,ph) sont assurés par le théorème 3.2. Pour sa part, la condition (3.4) revient a 



montrer l'ellipticité de la forme bilinéaire a(. , .) sur l'espace 

comme Le démontre le Lemme suivant. 

Lemme 3.1. Lu forme bilinéaire E(.  , .) est ellitiyue sur Vh. 

Preuve: 
Soit u E M .  de l'égalité 

on obtient en intégrant sur [t,,t.+,] 

D'autre part, les inégalités de Korn de Poincaré (voir Temarn, 1969) induisent 

De l'égalité (3.10) et de I'inégalité (3.11), on en déduit que 

Ainsi la forme Z(. , .) est elliptique sur M et en particulier sur Vh c M .  

Remarque 3.1. Pour tout u E M ,  le résultat (3.8) est encore vrai si on considère 
un domaine variable Rt. En effet, pour tout u E L2(0,T; (HL(Rt))2) et s o w  l'hg- 



pothèse que la variation de surface induite par la déformation infinitésimale de la 

frontière ïc de Rt est négligeable par rapport à la surface de Oc, on a: 

oii n représente la composante nonnale de la vitesse de la déformation de la 

forntière rt de nt. Ainsi, dans le cas où u E M (trace nulle au bord), l'intégrale 

au bord est nulle et on obtient l'égalité (3.8). 

La condition inf-sup (3.5) revient dans le contexte de l'espace-temps à trouver une 

constante positive p indépendante de h telle que 

inf sup l h q h )  1 2 P o  
qhEX* vnEMn IIvhllhf llqhllx 

Cette condition est l'analogue espace-temps de la condition de Brezzi-Babugka et 

définit la compatibilité entre les espaces M h  et Xh. Cette condition sera vérifiée à 

la section suivante dans le cas de l'élément mini espace-temps. 

Remarque 3.2. Dans Le contezte espace-temps, le problème devient en fait un pro- 

blème 3-0. Cependant, il faut noter que la diférence fondamentale entre la condi- 

tion inf-sup en 3 0  et celle en 2-0 t temps est que l'opémteur divergence est défini 

seulement par rapport aux variables spatiales. En effet, on a 

3.1.2 L9Bl&ment mini espace-temps (2-D + temps) 

Proposée initialement par Arnold, Brezzi et Fortin (1984)' l'idée d'enrichir l'es- 

pace des vitesses par une fonction bulle, permet dans certains cas de construire 

des éléments stables. Cette idée est aussi valable en espace-temps et a motivé la 

construction d'éléments de cette famiiie. Nous présentons maintenant l'élément mini 



espacôtemps (2-D + temps) qui est l'élément le plus simple et le moins coûteux de 
cette famille. 

Soit xi un maillage de tétraèdres discrétisant la tranche espace-temps Sn. Pour 

chaque tétraèdre K, on considère les 4 tétraèdres internes K*, i = 1,2,3,4 obtenus, 

en reliant les 4 sommets au barycentre et on pose 

Afin de décrire l'élément mini espacôtemps, on pose pour les vitesses, 

c'est-à-dire l'ensemble des fonctions continues et définies pax la somme d'une fonc- 

tion continue linéaire et d'une fonction bulle. La bulle standard est remplacée par 

une fonction nulle sur la frontière de l'élément K et linéaire par morceau sur les 4 

tétraèdres internes à l'élément. La bulle est en fait considérée comme 4 sousfonctions 

linéaires. Pour la pression, on pose. 

c'est-à-dire l'ensemble des fonctions linéaires et continues sur K. Il en découle que 
les nœuds d'interpolation sont, pour les vitesses, les 4 sommets et le barycentre du 

tétraèdre et, pour la pression, les 4 sommets seulement. On obtient ainsi 10 degrés 

de liberté en vitesse (2 par nœud) et 4 en pression (voir figure 3.1), contrairement 

à l'élément mini standard 3D qui possède 15 degrés de liberté en vitesse (3 par 

nœud). 

Remarque 3.3. On construit de façon similaire en trois dimensions d'espace, l'élé- 

ment mani espace-temps 3-0 + temps, en appliquant la même technique ouz hyper- 

tétraèdres. 



Vit esse Pression 

Figure 3.1 Position des degrés de liberté pour l'élément mini 2-D t temps 

3.2 Vérification de la condition inf-sup 

Les techniques standards de preuve de la condition (LBB) sont basées sur le lemme 3.2 
dénommé critère de Fortin (voir Brezzi et Fortin, 1991). 

Lemme 3.2. La condition inf-sup (3.5) est équivalente à I'exàstence d'un opérateur 

d'interpolation: 

Ilnhullv 5 cllullv, c > 0 indépendante de h, 

où la n o m e  V représente la norme sur 1 'espace V .  

En générai, l'opérateur I Ih  sera une composition des deux opérateurs ill E L(V,Vh) 
et IIz E C(V,Vh) vérifiants: 



où les constantes cl et y sont indépendantes de h et on pose: 

Cette définition de l'opérateur ilh a été initialement proposée par Fortin (1984). 

L'un des problèmes dans la construction de l'opérateur iI l  (le premier à agir sur u) 
est dû au manque de régularité des fonctions de Ht(R) (les fonctions ne sont pas 

a priori continues). Ainsi IIl ne pourra pas être un opérateur d'interpolation. Pour 

pallier à cet inconvénient, on aura recours à l'opérateur de Clément (1975). Cet 

opérateur est construit par «réguiarisat ion locale» et consiste en une projection 

sur un macro-élément (wpatch*) suivie d'une interpolation standard. Cet opérateur 

a été initialement construit sur des maillages de triangles par Clément (1975) et 

généralisé, dans un premier temps, aux maillages de quadrilatères par Fortin (1984) 

et ensuite aux maillages de cd-simplex~ (triangles, tétraèdres, hyper-tétraèdres, 

etc.) par Bernardi (1989). Pour les plus récents développements concernant cet 

opérateur, on renvoie aux travaux de Bemardi et Girault (1998). 

Dans le cas des éléments a pression continue, l'opérateur IIl est celui de Clément 

pour lequel: 

L'opérateur i12, quant à lui, est construit sur chaque élément K de façon à ce que 

la condition (3.17) soit vérifiée et tel que: 

On peut ainsi reformuler le critère de Fortin qui, à l'aide des remarques précédentes, 

devient le lemme suivant. 

Lemme 3.3. Soit Vh d é h i  de telle sorte qu'il eziste un opérateur d'interpolation 

par régularisation Locale au sens de Clément IIl : V -t Vh qui satisfait (3.19). Si 

on construit un opérateur II2 : V + Vh, vérifiant (3.17) et (3.20) alors l'opérateur 

rih vérifie Le lemme 3.2 et la condition inf-sup est ainsi satisfaite. 



Nous référons le lecteur au livre de Brezzi et Fortin (1991) pour la démonstration 

des lemmes (3.2) et (3.3). 

Munis de ces résultats préliminaires, nous sommes maintenant en mesure de pré- 

senter la contribution mathématique originale de cette thèse qui se résume en la 

proposition suivante. 

Proposition 3.1. L 'élément mini espace-temps satisfait la condition in f-sup (3.12). 

Preuve: 

La preuve est basée sur la construction des opérateurs nl et il2 du lemme (3.3). 

i) Construction de l'opérateur iIl 
L'opérateur IIl est celui de Clément. Pour les maillages de tétraèdres cet op& 

rateur existe et on trouve dans Bernardi (1989) les détails de sa construction 

dans le cas général des maillages de ud-simplex~ (tétraèdres, hyper- tétraèdres, 

etc.). Ainsi, en appliquant le lemme (3.3), nous avons seulement besoin de 

construire l'opérateur i12 vérifiant (3.17) et (3.20) pour que la preuve soit 

complète. 

ii) Construction de l'opérateur LI2 
Pour chaque élément K E 7h, on considère bK E Bl(K), une fonction linéaire 

par morceaux sur les 4 tétraèdres internes à l'élément K; elle vaut 1 au bary- 

centre et O sur la frontière de l'élément. 

L'opérateur II2 est défini par 

où a E IR2 est donné par 

Ainsi, pour l'élément mini espace-temps (vh E (Pl ( K ) ) 2  $ (BI (K))2)l on a 



construit l'opérateur II2 de façon a satisfaire 

Pax ailleurs, puisque i12vlK E (Bi(K))2, on montre par la technique de p a s  

sage à l'élément de référence (Dupont et Scott, 1980)' l'inégalité inverse 

et l'inégalité (3.20) suit immédiatement. Dans l'inégalité inverse ci-dessus, le 

paramètre hK caractérise la taille de l'élément tétrahédrique espace-temps. 

Pour compléter la preuve, il faut montrer que l'équation (3.17) est vérifiée. 

Les pressions étant continues d'un élément à l'autre (Qh c Co(S,,)), on obtient 

en intégrant par parties: 

où les opérateurs gradient et divergence sont définis par rapport aux variables 

d'espace seulement. Sous la condition de régularité, v E L1(t,,t,+l; (H1(R))2), 

le théorème de Fubini garanti l'existence de l'intégrale précédente et on a: 

Par ailleurs, la pression étant linéaire sur chaque élément, son gradient est 

donc constant et en vertu de (3.21), il vient que: 

la condition 3.17 est ainsi satisfaite et la preuve est complète. 

Remarque 3.4. Bien que l'opérateur gradient soit seulement défini par rapport 



aux vafiables d'espace, il est nécessaire et auman t  que les approximations soient 

linéaires en espace-temps (u(x,t) E PL(x,t)) et non pas seulement linéaire en espace 

afin d'obtenir un gradient le pression constant par élément (Vqh E (Po(K))2). Les 
éléments d r u d é s  bilinéaires et trilinéaires ne pourront donc pas être stabilisés à 

1 'aide de cette technique. 

Remarque 3.5. Pour I 'élément mini espace-temps, 1 'opérateur i lh  du critère de 

Fortin eziste et est une composition des opérateurs iil (opérateur de Clément) et i12 
(solution de l'équation (3.21)) selon la relation (3.18). En effet, pour v E ( H ; ~  ( s ~ ) ) ~ ,  
IIhv est défini par les valeurs de l'opérateur de Clément aux sommets ( s m i )  du 

maillage i. e. 

nhv (sa') = iI v ( s m ' )  . 

Pour sa part, la valeur de IIhv au centre des éléments est choisie telle que: 

Remarque 3.6. La preuve ci-dessus, s'étend aisément à l'élément mzni espace- 

temps en dimension 3 (3-0 - temps). L 'opérateur & est encore celui de Clément 

et on trouve dans Bernardi (1989) les détails relatifs à sa construction sur des 

hyper-tétraèdres. L 'opérateur II2, quant à lui, est constmit sur des hypet-tétraèdres 
comme la solution d'un problème similaire à (3.21). 



CHAPITRE 4 

LES SIMULATIONS NUMÉRIQUES 

Ce chapitre présente les résultats de simulations numériques de la discrétisation 

des équations de Navier-Stokes pour quelques problèmes en dimension 2. Dans un 

premier temps, nous allons résoudre une série de problèmes afin d'illustrer les effets 

liés à la violation de la condition inf-sup et vérifier la stabilité de l'élément mini 

espace-temps sous cette condition. Ensuite, nous allons étudier le comportement et 
illuster l'enveloppe d'utilisation de la formulation stable obtenue avec l'élément mini 

espace-temps; pour ce faire, nous allons la comparer a la méthode uGLS/ST* (2.5) 
pour une série de problèmes en coordonnées cartésiennes et axisymétriques. Finale- 

ment, nous allons présenter des résultats numériques dans le cadre d'un écoulement 
dans un domaine en mouvement. 

En préambule aux simulations numériques, on présente les outils numériques uti- 

lisées pour la construction de maillages espace-temps, la résolution des problèmes 

discrets et le post-traitement des solutions. 

4.1 Les outils numériques 

4.1.1 Le maillage espace-temps 

Afin de discrétiser les tranches espace-temps (voir figure 2.2)' nous avons retenu 

les éléments géométriques de type simplex en 2D + temps, à savoir les tétraèdres. 

Ce choix a d'abord été motivé, par l'élément mini espace-temps; ensuite, par le 
fait que les tétraèdres sont plus aptes a mailler des domaines courbes (les domaines 

variables) et halement, parce que l ' u t h t i o n  d'éléments de type simplex conduit a 
des maillages non structurés et permet, en plus, d'éviter l'interpolation à l'interface 

de deux tranches lors du calcul du terme de saut (2.2). 



Par ailleurs, bien que ce type d'élément soit peu utilisé, la nature non-structurée des 

maillages obtenus, permet de développer des stratégies adaptatives espace-temps. 

Ces stratégies vont permettre de rafnner le maillage en espace-temps (Hughes et 

Hulbert, 1988; Hulbert et Hughes, 1990; Froncioni et al., 1997) contrairement aux 

éléments de type extrudé qui permettent de raffiner le maillage en espace et en 

temps (épaisseur de la tranche) de façon découplée (Eriksson, 1988; Eriksson et 

Johnson, 1991; Li et Wiberg, 1998; Wiberg et Li, 1999). 

Le maillage espace-temps initial est construit a partir d'un maillage du domaine 

R au temps t,. Pour illustrer la méthode utilisée, on considère, par exemple Th, 
le maillage de triangles discrétisant le domaine R au temps t, (voir figure 4.1 (a)). 

Le maillage de triangles est extrudé (orthogonalement) dans la direction du temps 

en un maillage de prismes de hauteur At = tn+l - t,. Selon le cas, ces prismes 

sont déformés pour tenir compte du déplacement du domaine au temps t,,+l. Les 
prismes sont ensuite subdivisés en 3 tétraèdres, J n  d'obtenir un maillage conforme 

de tétraèdres (figure 4.l(b)), et cela sans ajout de nœuds supplémentaires dans la 

tranche espace- temps. 

(a) Th, maillage initiai de triangles (b) Maillage final de tétraèdres 

Figure 4.1 Génération du maillage espace- temps 

L'extrusion de triangle en prisme est immédiate. par contre la subdivision du 

maillage de prismes en tétraèdres est un peu délicate. On commence par diviser 

les 3 faces quadrilatérales de chaque prisme en 2 triangles, puis on subdivise chaque 



prisme en 3 tétraèdres à partir des faces triangulaires. Chaque face quadrilatérale 
peut être divisée en 2 triangles de deux manières différentes. Parmi les huit confi- 

gurations, seulement six (voir figure 4.2) peuvent être décomposées directement en 

3 tétraèdres. Afin d'éviter les deux configurations (voir figure 4.3), caractérisées 
par le fait que les 3 diagonales divisant les 3 faces quadrilatérales en triangles ne 

possèdent aucun sommet en commun, nous avons retenu la méthode de Dompierre 
et al. (1999) pour la division des faces quadrilatérales en 2 triangles. 

Cette méthode est directe (non-itérative) et est basée sur l'utilisation d'identifica- 

teurs associés aux sommets du maillage. En général, cet identificateur est le numéro 

global du sommet. Après avoir ordonné les sommets (du plus petit au plus gand), 
selon la numerotation globale, la méthode se résume en la règle suivante: 

Une face quadrilatémle est divisée en 2 triangle3 par la diagonale issue du plus petit 

sommet de la face. 

Cette méthode est appliquée localement (élément à élément) et ne nécessite pas 
d'information sur le voisinage de chaque élément. 

Le maillage espace-temps étant construit a paxtir du maillage en espace, l'emphase 

a été mise sur la construction du maillage de triangles discrétisant le domaine espace 

0 au temps t,. Les maillages en dimension 2 ont été construits à l'aide du logiciel 

ADX (Trépanier et Yang, 1993). 

4.1.2 Les algorithmes de r4solution 

Afin d'aider à identifier les caractéristiques physiques des écoulements et éviter les 
problèmes que pourraient engendrer des géométries de petites dimensions (erreur 

de troncature, convergence lente), les équations de Navier-Stokes sont adimensiona- 

Mes de fason classique, en remplaçant la densité p 

dynamique p par 1/Re. Le nombre de Reynolds Re 
d'inertie aux forces de viscosité et est défini par: 

(constante) par 1 et la vlscosàté 

représente le rapport des forces 



Figure 4.2 Les 6 configurations décomposables en 3 tétraèdres sans ajout de nœud. 

Figure 1.3 Les 2 configurations décomposables en 3 tétraèdres avec l'ajout d'un 
nœud. 



où Li, est une vitesse caractéristique de l'écoulement étudié (par exemple la vi- 

tesse du mouvement d'un corps ou la vitesse moyenne dans une section déterminée 

du canal, etc.), v = p l p  est Ia viscosité cinématique du fluide et L est une lon- 

gueur caractéristique (par exemple le diamètre ou la longueur d'un corps, la largeur 

intérieure d'un canal, etc.). 

Tout au long de ce travail, nous avons utilisé essentiellement deux éléments tétra- 

édriques espace-temps. Le premier est l'élément appelé Pl - Pl et est illustré par 

la figure 4.4. Pour cette combinaison, on approche les composantes de la vitesse et 

la pression par des fonctions linéaires et continues. Les nœuds de calcul (vitesse et 

pression) sont situés aux 4 sommets. On obtient ainsi, pour chaque élément 8 degrés 

de liberté en vitesse et 4 en pression. Cet élément ne vérifie pas la condition inf-sup, 

mais conduit a des solutions stables en utilisant les formulations stabilisées (2.4) 

et (2.5). Le second est l'élément mini espace-temps ( 2 0  + temps) (voir figure 3.1). 

Les fonctions de base associées aux nœuds internes ont un support qui se limite 

L un élément. Les degrés de liberté correspondants ne sont liés à aucun autre de- 

gré liberté que ceux de l'élément. Pour cette raison et pour économiser de l'espace 

mémoire, nous avons éliminé par condensation statique les degrés de liberté de la 

bulle au niveau élémentaire avant l'assemblage. On se ramène ainsi à la résolution 

du problème discret comme dans le cas de l'élément Pl - Pl. 

Vitesse Pression 

Figure 4.4 Position des degrés de liberté pour l'élément Pl - Pl 

Pour les éléments utilisés (mini espace-temps et f i  - Pl) la discrétisation des for- 

mulations espace-temps conduit à un sytème global non linéaire, mixte en (u,p). 

Ce système est résolu de façon couplée à l'aide d'une méthode de quasi-Newton. 



Les matrices jacobiennes sont évaluées numériquement. Les systèmes linéaires sont 
résolus par la méthode de décomposition LU en correction. On cherche à annuler 

itérativement le résidu du système matriciel non-linéaire qui résulte des équations 

de Navier-Stokes discrétisées en vitesse- pression. 

A l'aide de ces outils numériques, les problèmes discrets sont résolus de façon sé- 

quent ielle (tranche après tranche) en partant d'une condition init ide  identiquement 

nulie ( ui = 0). 

4.1.3 Post-traitement des solutions 

Les variables dépendantes des équations de Navier-S tokes discrétisées sont la vitesse 

uh et la pression ph. Ces quantités sont obtenues pour chaque temps t,, directement 
de la résolution par éléments finis. Pour fins d'analyse, les dérivées spatiales du 

a?&&& champ de vitesse (&, a+ et E), la vorticité et la fonction de courant doivent 

être déduites de la solution numérique uh. Les dérivées du champ de vitesse sont 

evaluées localement aux nœuds de chaque élément du maillage à l'aide des fonctions 

d'interpolation et de la solution calculée. Cependant, étant donné que les fonctions 
d'interpolation pour les éléments utilisés sont linéaires et continues par élément, 

les dérivées sont alors constantes et discontinues par élément; ce qui représente 

une approximation assez pauvre de ces quantités. Pour pallier à cette insuffisance, 

nous avons retenu une approche basée sur la technique de projection locale par 

moindres carrés de Labbe et Garon (1995), inspirée des travaux de Zienkiewicz et 

Zhu (1992a,b). Contrairement à la projection globale (Zienkiewicz et Zhu, 1987), la 
méthode est locale et ne requiert pas la construction et la résolution d'un système de 

même taille que celui de la solution uh. Cette approche rend les dérivées continues 

en projetant, les dérivées de la solution numétique sur une base polynômiale P 
du même degré que les fonctions d'interpolation de la solution numérique. Ainsi, 

cette nouvelle représentation des dérivées devrait mieux approcher les dérivées de 
la solution. Les détails de cette méthode sont présentés a l'annexe -4. 



Afin de vérifier la stabilité de l'élément mini espace-temps, nous avons considéré les 

trois tests suivants: le problème de Poiseuille, le test wno-flow» et le problème du 

cylindre. Les deux premiers tests sont des écoulements assez simples et conduisent 

à des solutions stationnaires. Le dernier, conduit plutôt à une solution transitoire 
(périodique) et au développement de l'allée de Von Karman. Bien que ces problèmes 

soient relativement simples, ils nous ont permis d'illustrer les effets numériques liés 

à la condition inf-sup. 

4.2.1 Le problème de Poiseuille 

Figure 4.5 Domaine de calcul pour le problème de Poiseuille 

Description du probléme et procedures de calcul 

Il s'agit de l'écoulement d'un fluide dans un canal avec un profil de vitesse parabo- 
lique imposée en entrée. Ce problème est simple et possède une solution analytique. 

En effet, si H est la hauteur du canal, la solution analytique des équations de 
Navier-Stokes est 

-42 
u = ($(H - y ) , ~ )  , et p = - H2 

+ constante. 

Le champ de vitesse est parabolique pour la première composante (l'autre compo- 

sante est nulle) et la pression est linéaire. Afin d'illustrer les effets numériques liés 
à la violation de la condition in/-sup, nous avons considéré trois éléments pour le 

problème de Poiseuille. hi savoir l'élément Pl - Po (voir figure 4.6(a)), l'élément 

QI - Po (voir figure 4.6(b)) et l'élément mini espace-temps (2-D A temps). 



L'élément Pl - Po est caractérisé par un champ de vitesse linéaire (Pl (x ' t ) )  et un 

interpolant en pression constant par élément. Pour l'élément QI - Po, on approche 
les composantes de la vitesse par des fonctions bilinéaires (Pl (x) x Pl (t)) tandis 

que la pression est constante par élément. Pour ces deux éléments, les nœuds de 

calcul sont situés aux sommets pour la vitesse et au barycentre pour la pression. On 

obtient ainsi 8 degrés de liberté en vitesse et 1 en pression pour chaque tétraèdre 

et 12 degrés de liberté en vitesse et 1 en pression pour chaque prisme. 

Figure 4.6 Position des degrés de libertés 

Une façon intuitive de déterminer si une discrétisation est stable ou non est de 

calculer son mtio de contrainte Cr sur un maillage donné. Ce nombre est défini par 

et représente le rapport du nombre des contraintes indépendantes sur celui des 

inconnues en vitesse. La valeur de ce nombre n'est pas très significative sauf si elle 

est plus grande que 1. Dans ce cas, le nombre des contraintes dépasse celui des 

variables et l'ensemble des solutions à divergence nulle se réduit à la seule solution 

nulle. C'est ce qu'on appelle l'effet bloquant (dockhg effect~). Pour le maillage 

illustré à la figure 4.7, les ratios de contraintes pour les trois éléments sont donnés 

par le tableau 4.1 et montrent que l'effet bloquant se produit pour l'élément Pl -Po 
(tétraèdre). 

Les tests réalisés avec l'élément Pl - Po, donnent des solutions satisfaisantes pour 

le champ de vitesse (voir figure 4.8) mais un champ de pression instable (voir 



Figure 4.7 Maillage (400 éléments) 

Tableau 4.1 

Ratio Condit ion 
Élément de contrainte inf-sup 

non 

non 

400- 1 PT - Pl (mini) oui 

figure 4.9). La solution en pression est polluée par la présence de pressions parasites. 

En ce qui concerne l'élément mini espace-temps. les figures 4.10 et 4.11 montrent 

des résultats satisfaisants tant pour la vitesse que pour la pression et illustrent bien 

que l'élément mini espace-temps passe le test de Poiseuille. 

Par ailleurs, bien que le pression soit stable. une analyse plus détaillée des solu- 

tions montre que la pression n'est pas exacte (linéaire) et cela en dépit du fait que 

l'interpolant en pression soit linéaire. Ce problème a déjà été mentionné par Fortin 

et Fortin (1985) et illustre le fait que les espaces de discrétisation en vitesse et en 
pression sont dépendants l'un de l'autre. En effet? les fonctions d'interpolation en 

vitesse étant linéaires, le champ de vitesse (analytique) quadratique ne peut pas être 

représenté de façon exacte. Dans le cas present, l'erreur d'interpolation en vitesse 

dégrade la précision en pression. 



va w . c  W.I o r  

Figure 4.8 Vecteurs vitesse. élément QI - Po 

P - 
.a. r - am - 

Figure 4.9 Isovaleurs de la pression. élément QI - Po 

Figure 4.10 Vecteurs vitesse. élément mini 
V U  

C - a@ a 3  d 

Figure 4.11 Isovaleurs de la pression. élément mini 



4.2.2 Le test «no-00- 

La description du probkme 

Le problème du u No-flow» a été initialement présenté par Gresho et al. (1984). 

On impose des conditions essentielles homogènes (u = (0,O)) sur toute la frontière 

et le terme source (force volumique) f = (O,g), g # O de telle sorte que la solution 
anai yt ique soit 

u = (0,O) et p = gy + constante. 

Le champ de vitesse est nul et la pression est linéaire. L'élément mini espace-temps 

étant linéaire en vitesse et en pression, on devrait être en mesure d'obtenir la s* 

lution analytique du *no-8ow~ contrairement au cas du problème de Poiseuille. 

Figure 4.12 Domaine de calcul et maillage pour Le problème du «no-flowu 

Les figures 4.12 à 4.15, montrent que l'élément mini espace-temps passe le test du 

uno-8ow» en donnant la solution exacte en vitesse et en pression sur un maillage 

grossier. En effet, les contours de la vitesse sont au voisinage du zero machine et la 

pression est linéaire. 



Figure 4.11 Isovaleurs de la vitesse o 

Figure 4.15 Isovaleurs de la pression 



4.2.3 Le problème du cylindre 

Il s'agit de l'écoulement d'un fluide autour d'un cylindre pour un nombre de Rey- 

nolds de Re = 100. Ce problème est caractérisé par un écoulement instationnaire 

(périodique) et le développement d'un détachement tourbillonnaire à l'arrière du 
cylindre, mieux connue sous le nom d'allée de Von Karman. Ce problème a été étu- 

die par divers auteurs, numériquement (Brooks et Hughes, 1982; Behr et al., 1991; 

Tezduyar et al., 1992; Engelman et Jarninia, 1990; Behr et al., 1995) et expérimen- 

talement (Trittoo, 1959; Boissson et al., 1983). Il est aussi considéré comme un 

test de référence (wbenchmark~) pour évaluer la performance (le caractère diffusif) 

des méthodes numériques pour la résolut ion des équations de Navier-S t O kes inst a- 

tionnaires. En effet, selon les expériences numériques réalisées par Buf'fat (1991), il 

s'avère que les algorithmes de discrétisation en temps trop diffusifs (par exemple 

les schémas d'ordre 1) ne sont pas en mesure de prédire correctement l'évolution 

temporelle de la solution. Ce cas test nous a permis d'évaluer la stabilité de notre 

élément, mais aussi de mesurer son caractère diffusif. 

Description du probléme et procédures de calcul 

Figure 4.16 Domaine de calcul et conditions aux limites pour le problème du 
cylindre 

La plupart des travaux antérieurs ont porté sur la position des frontières latérales 

(en haut et en bas) (Behr et al., l995), sur la position de la sortie et sur le type 

de conditions aux limites à imposer en sortie (Behr et al., 1991). Pour cette étude, 

nous avons considéré les caractéristiques et les conditions du problème proposé 



par Gresho et Sani dans le cadre du minisymposium sur les conditions aux limites 

en sortie de type frontière libre qui s'est tenu à l'Université Stanford en juillet 
1991 (*Open Boundary Condition Minisymposium 1991~). Pour ce problème, une 

solution de référence a été calculée par Engelman et Jaminia (1990) pour des fins 
de comparaison. 

La figure 4.16 présente le domaine de calcul et les conditions aux limites. Le do- 

maine de calcul est assez grand soit 16 x 33.2 unités de longueur adimensionnelle et 

le cylindre est de diamètre unitaire. Le fluide adhère à la paroi du cylindre. Un écou- 
lement uniforme (u = 1,v = 0) est imposé à l'entrée et sur les frontières supérieure 

et inférieure du domaine. A la sortie, la condition de traction nulle est imposée 

faiblement. Le nombre de Reynolds est défini par Re = DU/u où D est le diamètre 

du cylindre, U est la vitesse uniforme en entrée et u est la viscosité. Le maillage 

est construit en tenant compte de la solution du probléme. Il est suffisamment raf- 
finé dans le sillage du cylindre, afin de capturer la formation des tourbillons. La 
simulation transitoire a été démarrée à partir d'une solution nulle et les solutions 

transitoires consécutives ont été calculées avec un pas de temps fixe de At = 0.1 et 

1200 solutions consécutives ont été calculées. 

Analyse des resultats 

La figure 4.17 présente l'évolution temporelle des composantes (vert icale et hori- 

zontale) de la vitesse et la pression aux points (4'0) et (20,O). On observe, qu'après 

une période transitoire instable, l'écoulement pour t 2 70 atteint un état périodique 

permanent. On note aussi que la fréquence et l'amplitude de ces oscillations sont 

constantes et se comparent assez bien avec la solution de référence (Engelman et 

Jaminia, 1990). 

Il a été convenu (voir Engelman et Jarninia, 1990) de présenter la solution au temps 

t,.., dit temps de référence, correspondant à l'instant où la composante verticale de 

la vitesse passe d'une valeur négative à une valeur positive à la position x = O et 

y = 4. Les figures 4.18 à 4.23 présentent le tracé des isovaleurs au temps t,,f, pour 

la vitesse u, la vitesse v, la pression, le vecteur vitesse, la fonction courant et la 



(a) Vitesse horizontale 

(c) Vitesse verticale 

4 1 .  

4 1 1  . 
aï. 

(e) Pression 

(b) Vitesse horizontale (90-120) 

(d) Vitesse verticaie (90-130) 

(f) Pression (90-120) 

Figure 4.17 Évolution temporelle 



vorticité. Ces résultats montrent la présence de tourbillons en arrière du cylindre. 

Ces tourbillons constituent une formation dénommée ailée de Von Karman. 

La qualité des résultats déduits de la simulation des allées de Von Karman derrière 

un cylindre au nombre de Reynolds de Re = 100, nous a permis de confirmer la sta- 

bilité de l'élément mini espace-temps et d'illustrer le caractère non-diffusif de cette 

discrétisation. Une comparaison plus quantitative sera présentée à la section sui- 

vante afin d'analyser le comportement et d'évaluer la précision de notre formulation 

dans le cadre d'écoulements transitoires périodiques. 

4.2.4 Notes et bibliographie 

travers cette investigation numérique nous avons montré dans l'exemple de l'écou- 
lement de Poiseuille, les effets numériques liés à la non satisfaction de la condition 

inf-sup (pressions parasites et effet bloquant) et confirmé le fait que les espaces de 

discrétisation en vitesse et en pression sont interdépendants dans le cadre de la dis- 

crétisation par la méthode de Galerkin discontinue en temps. Le test du *no-flown et 

le problème du cylindre nous ont permis respectivement de prouver l'exactitude et 

la capacité de notre formulation à simuler des écoulements transitoires périodiques. 

La présente vérification de la stabilité de l'élement mini espace-temps a déjà été 

présentée dans les articles suivants: (N'dri et al., 2000b) et (N'dri et al., 2000a). 



Figure 4.18 Isovaleurs de la vitesse u 

l 

Figure 4.19 Isovaleurs de la vitesse u 
- - - - - - . - - - - - - - - - - - - - -  

1 .  

Figure 4.20 Vecteurs vitesse 



Figure 4.21 Isovaleurs de la pression 

Figure 4.22 isovaieurs de la fonction de courant 11, 

Figure 4.23 Isovaleurs de la vorticité w 



4.3 Validations 

Nous nous proposons dans la présente section de comparer la formulation stable 
(méthode de Galerkin discontinue en temps avec l'élément mini espace-temps) à 

la formulation stabilisée GLS/ST (avec l'élément Pl - P l )  qui est la méthode de 

référence dans la cadre de la discrétisation par éléments finis espace-temps. Plusieurs 

cas tests dans les systèmes de coordonnées cartésiennes et axisymétriques ont été 

étudiés cette fin. Ces tests nous ont permis d'analyser le comportement, mais 

également d'illustrer l'enveloppe d'utilisation de la formulation stable. 

La simulation des écoulements dans les artères est l'une des applications potentielles 

de ce travail. Ce domaine couvre les écoulements internes et externes qui peuvent 

être aussi bien stationnaires qu'instationnaires (périodiques). Ce sont en général 

des écoulements & faible nombre de Reynolds (compris entre 1 et 1200) qui incor- 

porent des phénomènes de transport de masse et des interactions fluide-structure 

(domaines variables). En plus, en cas d'obturation d'une artère résultant d'artérb 
sclérose (pathologie), l'écoulement est complexe et est caractérisé par la présence 

de plusieurs zones de recircuiation. Pour de plus amples détails sur la dynamique 

des biofluides, on renvoie au livre de Comolet (1984). 

Trois probMmes ont donc été étudiés, chacun faisant ressortir les caractéristiques 

des écoulements mentionnes ci-dessus. L'étude de l'écoulement autour d'un obs- 

tacle (rectangulaire) & Re = 145, nous permettra de valider notre formulation dans 

le cadre d'écoulements stationnaires avec recirculation. L'étude du probléme de la 

marche inversée à Re = 800 va, pour sa part, nous permettre de vérifier l'état de 

l'écoulement à long terme et d'étudier le comportement asymptotique de notre for- 
mulation. Finalement, l'étude du problème du cylindre à Re = 100, nous permettra 

d'analyser le comportement de notre formulation dans le cadre d'un écoulement 

transitoire périodique. 



4.3.1 Ecouiement laminaire autour d'un obstacle 

Les problèmes d'écoulements autour d'un obstacle font l'objet de plusieurs applica- 

tions. Des exemples de tels écoulements se retrouvent dans des problèmes d'échan- 

geurs de chaleur, d'écoulement du vent autour de maisons, écoulements dans les 

artéres en présence de plaques, etc. Parmi cette classe d%coulements, le problème 

de l'écoulement autour d'un obstacle rectangulaire entre deux plaques est considéré 

dans cette étude. Le domaine de calcul est composé d'un canal avec un rétrécis 

sement soudain (marche) suivi d'un canal avec une expansion soudaine (marche 

inversbe). Ce cas test a été choisi pour les raisons suivantes: d'abord, il existe des 

donnks expérimentales pour ce problème; ensuite, la géométrie est simple et l'écou- 

lement est caractérisé par la présence de plusieurs zones de recirculation; et finale- 

ment, à travers les expériences numériques réalisées par Carvalho et al. (1987)' il 

s'avère que ce problème est un test plus contraignant que le problème standard de 

la marche inversée. En effet, contrairement au problème de la marche inveroée, les 
erreurs numériques provenant de l'avant de l'obstacle peuvent influencer de façon 

très significative la prédiction de l'écoulement dans tout le domaine. 

Description du probléme et procbdures de calcul 

Le domaine de calcul est constitué d'un canal en travers duquel se trouve un obs- 
tacle de hauteur S et de largeur 1. titre comparatif, les dimensions du domaine 

correspondent à celles utilisées par Carvalho et al. (1987) et sont illustrées à la 

figure 4.24. Le fluide rentre dans le canal avec un profil de vitesse parabolique 

adhèfe aux parois solides (condition de non-glissement) et une condition de traction 

nulle est imposée faiblement en sortie. Le nombre de Reynolds est basé sur la vitesse 

moyenne à l'entrée ((O = $u-) et la hauteur S de l'obstacle, et vaut Re = 145. Le 

maillage utilisé est raffiné autour de l'obstacle a h  de capturer les caractéristiques 

de base de l'écoulement. Les simulations ont été initialisées à l'aide d'une solution 

nulle en utilisant le maillage illustré a la figure 4.25. Des solutions transitoires ont 



Figure 4.24 Canal plan avec obstacle 

été calculées avec un pas de temps fixe, At = 0.5 jusqu'à ce que l'état stationnaire 

soit atteint. 

Dans ce test, on cherche à prédire les caractéristiques de l'écoulement (zones de re- 

circulations) et la composante horizontale de la vitesse à diffbrentes stations en aval 

de l'obstacle. Les solutions numériques sont comparées aux données expérimentales 

fournies par Carvalho et al. (1987). 

Figure 4.25 Maillage: 6769 éléments 

Analyse des resultats 

Les lignes de courant sont présentées aux figures 4.26(a) et 4.26(b). On observe la 

présence de deux zones de recirculation le long des parois solides (en haut et en bas). 



(b) GLS/ST 

Figure 4.26 Lignes de courant 

En outre, à la figure 4.27 où. pour différentes stations t / S ,  la distribution de la 

vitesse est comparee aux rksultats expérimentaux. nous constatons que les deux 

methodes conduisent à des résultats similaires. Il n'y a pratiquement aucune dif- 

férence notable au niveau de la précision des solutions calculées. En plus. nous 

constatons que ces solutions sont en accord avec les données expérimentales. 



(a) x/S=O 

T 

(c) x/S=3*4 

(b) x/S=2.4 

(d) x/S=4.4 

Figure 4.27 Coupe de la composante horizontale de la vitesse 



(e) x/S=6 

(g) x/S=18 

v 

(f) x /S=l l  

(h) x/S=24 

Figure 4.27 Coupe de la composante horizontale de la vitesse (suite) 



4.3.2 Le probléme de la marche invers& 

Ce problème classique a été traité expérimentalement et numériquement par plu- 

sieurs auteurs. On cite p m i  eux, Armaly et al. (1983); Gresho et al. (1993); Fortin 

et al. (1997). Il s'agit d'un écoulement laminaire dans un canal avec une expansion 

soudaine. La géométrie est simple et l'écoulement est caractérisé par la présence de 

plusieurs zones de recirculation. Ce problème est aussi connu pour les vives contro- 

verses qu'il a provoquées lors du minisymposium sur les conditions aux limites en 

sortie qui s'est tenu à l'université Stanford en juillet 1991. Contrairement a l'opinion 

générale soutenue à ce minisymposium, Kaiktsis, Karniadakis et S.Orszag (1991) 

ont affirmé que l'écoulement au nombre de Reynolds Re = 800 est instable. Ici, nous 

nous joignons à Gresho, Gartling, Torczynski. Cliffe, Winters, Garrantt, Spense et 

Goodrich (1993) et Fortin et al. (1997) pour infirmer ce résultat. 

Dans le but de vérifier la stabilité de la solution stationnaire, nous avons étudié le 

comportement à long terme de l'écoulement. Pour ce faire, la solution à Re = 800 a 

été calculée en régime transitoire à l'aide des 2 formulations espace-temps. En plus 

de cet te analyse transitoire, la précision des solutions stationnaires asymptotiques 

a été évaluée en comparant celles-ci à la solution du problème stationnaire calculée 

par Gartling (1990). 

Description du probléme et procedures de calcul 

Figure 4 

- - 

* - - 

.28 Domaine de calcul pour le problème marche 

Le domaine de calcul décrit a la figure 4.28 est constitué à la fois des canaux en 

amont et en aval de la marche. Le canal en aval a une hauteur unitaire H tandis 
que la marche et le canal en amont ont pour hauteur H / 2 .  La longueur du canal 



en aval vaut L = 30H et l'entrée du canal est située à une distance de 6H de la 

marche. Le fluide rentre par le canal en amont avec une vitesse parabolique 

1 
u(y) = (24 y (0.5 - y),O) pour O 5 y 5 - 2'  

adhère aux parois solides et aucune traction n'est imposée en sortie. Le nombre 

de Reynolds est basé sur la vitesse moyenne (u = fuma) à l'entrée, la hauteur 

H et vaut Re = 800. Le maillage utilisé en aval de la marche est semblable à 

celui utilisé par Gartling (1990). Nous avons une distribution uniforme le long du 

canai pour O 5 x 20 (2 x 21 x 350 éléments) suivie d'un dérafnnement graduel 

(selon une loi de concentration sinusoïdale) dans la direction de l'écoulement pour 

20 5 x 5 30. Les simulations ont été démarrées d'une solution identiquement nulle 

et des solutions transitoires consécutives ont été calculées avec un pas de temps fixe 

At = 0.5. Ces simulations ont été réalisées jusqu'au temps adimensionnel t = 500. 

Analyse des resultats 

Les figures 4.29 et 4.30 donnent un aperçu de I'évolution de l'état de l'écoulement. 

partir des lignes de courant, on observe que l'écoulement aprés la marche se dé- 

veloppe avec la formation d'une série de tourbillons le long des parois solides (en 

haut et en bas). Deux tourbillons principaux sont accompagnés de différents tour- 

billons de moindres intensités. .$ mesure que la simulation transitoire progresse, les 

petits tourbillons se dissipent et les deux tourbillons principaux atteignent un état 

d'équilibre à t = 500. La compréhension des détails et du mécanisme d'apparition 

et de disparition des tourbillons, ou encore de la dynamique de cet écoulement est 

en soit un problème fort intéressant. Cependant, nous allons nous contenter, dans 

cette étude, de vérifier l'état de l'écoulement à long terme. 

Les figures 4.31 et 4.32 présentent l'évolution temporelle de la composante horizon- 

tale de la vitesse a differents points situés le long des stations x/ H = 6 et x / H  = 12. 

Ces figures montrent que l'écoulement se confond à la solution stationnaire après 

une courte période transitoire. Ces résultats révèlent aussi que les deux méthodes 

ont le même comportement transitoire pour la composante horizontale de la vitesse. 



(a) t=iO 

(b) t=20 

(d) t= 125 

(e)  t=500 

Figure 4.29 Lignes de courant à différents instants (élément mini espace-temps) 



(a) t=10 

(b) t=20 

(d) t=125 

(e) t=500 

Figure 4.30 Lignes de courant à différents instants (GLS/ST) 



Ajoutons aussi que Gresho et ai. (1993); Fortin et al. (1997) ont observé le même 

comportement en se servant de schémas aux différences pour la discrétisation en 

temps. La comparaison avec la solution de référence de Gresho et al. (1993) (voir 
figure 4.33), illustre d'abord la concordance des résultats et montre ensuite que la 

formulation stable est légèrement plus précise que la méthode stabilisée GLSIST. 

Cette étude transitoire par les formulations espace-temps (stable et stabilisée) du 

problème de la marche inversée, suggère que l'écoulement à Re = 800 tend asymp 
totiquement vers une solution stationnaire stable. 

Finalement, en plus de cette étude transitoire, nous avons evalué la précision des s e  

lutions stationnaires (asymptotiques). La comparaison avec la solution de référence 

du problème stationnaire calculée par Gartling (1990) est illustrée aux figures 4.34 

et 4.35. On y compare les distributions de la vitesse (composantes verticale et hori- 

zontale), de la pression et de la vorticité aux stations x = 7 (fi y r e  4.34) et z = 15 

(figure 4.35). Pour des fins d'analyse, il faut noter que la solution de référence de 
Gartling (1990) a été calculée à l'aide de l'élément Qz - Pl en se servant d'un 

maillage plus 6n que celui utilisé dans cette étude. 11 faut noter aussi que l'élément 

Qz -Pi satisfait la condition inf-sup, est d'ordre 2 en espace et est considéré comme 

l'un des meilleurs pour le calcul bidimensionnel. Cette comparaison montre que les 

solutions calculées se comparent dans l'ensemble assez bien à la solution de réfé- 

rence. Cependant, la précision des solutions obtenues (composante verticale de la 
vitesse et pression) pourrait être améliorée en utilisant un maillage plus fin. Cette 

comparaison révèle aussi que les solutions calculées sont dans l'ensemble assez si- 

milaires sauf pour la pression (voir figure 4.35(b)) et la composante verticale de la 

vitesse (voir figure 4.34(d)) qui semblent être légèrement mieux approchées par la 

formulation stable. La différence entre les niveaux de pression obtenus est certaine- 

ment causé par les paramètres de stabilisation et le traitement de la condition aux 

Limites (traction nulle) imposée en sortie. 



(a) X/H = 6 (b) X/H = 12 

Figure 4.31 Évolution de la composante horizontale de la vitesse (élément mini 
espace- temps) 

fa) X/H =6 (b) X/H = 12 

Figure 4.32 Évolution de la composante horizontale de la vitesse (méthode 
GLS/ST) 
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(a) Y/H = -0.4, X/H = 6 

(c) Y/H = 0.3, X/H = 6 

(e) Y/H = O, X/H = 12 

(b) Y/H = 0.0, X/H = 6 
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(d) Y/H = 0.3, X/H = 12 

Figure 4.33 Évolutions temporelle de la composante horizontale de la vitesse (com- 
paraison) 



(a) Vitesse horizontale 

(c) Vorticité 

(b) Pression 

(d) Vitesse verticale 

Figure 4.34 Coupes de diverses composantes a x = 7 
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(a) Vitesse horizontale (b) Pression 

(d) Vitesse veticale 

Figure 4.35 Coupes de diverses composantes à x = 15 



4.3.3 Écoulement derrière un cylindre, Re = 100 

Ce problème a déjà été défini a la section 4.2 dans le cadre de la vérification de la 

stabilité de l'élément mini espace-temps. Nous étudions ici le comportement tran- 

sitoire des deux formulations espace-temps ainsi que la précision des solutions pé- 

riodiques calculées. A l'aide des deux formulations espace-temps, nous avons résolu 

le probléme du cylindre pour Re = 100 en se servant des conditions initiales sui- 

vantes: une solution initiale identiquement nulle; un pas de temps fixe de At = 0.1; 

et le maillage utilisé précédemment (voir section 4.2). Les points témoins à l'aide 

desquels nous allons analyser le comportement transitoire de l'écoulement sont rec 

pectivement (4,O) et (20,O) (voir figure 4.16). 

L'évolution temporelle (pour les deux méthodes) de la composante verticale de la 

vitesse aux points témoins est présentée à la figure 4.36. .A partir de ces résultats, 

nous pouvons faire les constatations suivantes: d'abord. pour les deux méthodes. 

l'écoulement atteint l'état périodique après une période instationnaire; ensuite, en 

partant des mêmes conditions initiales (maillage, pas de temps et solution initiale), 

les deux méthodes n'ont pas le même comportement transitoire. Les amplitudes des 

oscillations sont plus fortes dans la période instationnaire et l'état périodique est 

atteint plus vite avec la méthode GLS/ST. Il en résulte des solutions périodiques qui 

ne sont pas en phase. Finalement, bien que les deux solutions ne soient pas en phase, 

l'amplitude et la fréquence des oscillations sont très similaires (voir figures 4.36(b) 

et 4.36(d)). Ajoutons qu'une étude de rafnnement du pas de temps, nous suggère 

fortement que le déphasage des solutions périodiques provient du comportement 

dans la période instationnaire et est propre à chacune des formulations espace- 

temps. En effet, une analyse de convergence en fonction du pas de temps, réalisée 

en examinant l'évolution temporelle de la composante verticale de la vitesse au point 

(4,O) pour At = 0.2,0,1 et 0.05, nous a permis de montrer que les deux méthodes 

convergent chacune vers une solution périodique (voir figure 4.37). En plus, bien 

que la fréquence et la période de ces oscillations soient très similaires, ces solutions 

périodiques ne sont pas en phase (voir figure 4.38). 

D'autre part, les figures 4.39 et 4.40 illustrent (pour les deux méthodes) le tracé 

aux temps de référence des isovaleurs de la fonction courant, de la pression et 



(a) Point (4,O) t = O à t = 90 (b) Point (40) t = 70 à t = 90 

(c) Point (20,O) t = O A t = 90 (d) Point (20.0) t = 70 B t = 90 

Figure 4.36 Évolution de la composante verticale de la vitesse pour At = 0.1, pour 
le problème du cylindre à Re = 100 



(a) Eiement mini espace-temps, (pour t = O (b) Ekment mini espace-temps. (pour t = 70 
a t  =90) à t = 90) 

(c) Mbthode GLS /ST, (pour t = O à t = 90) (d) Mcthode GLS/ST, (pour t = O à t90) 

Figure 4.37 Évolution de la composante verticale de la vitesse au point (4,O) pour 
At = 0.2,0.1,0.05 



(a) At = 0.2, pour t = O A t = 90 

( c )  At = 0.1, pour t = O à t = 90 

iLL 

(b) At = 0.2, pour t = 70 B t = 90 

(d) At = 0.1, pour t = O  B t = 90 

(e) At = 0.05, pour t = O  à t = 90 ( f )  At = 0.05, pour t = 70 à t = 90 

Figure 4.38 Évolution de la composante verticale de la vitesse au point (4,O) 



(a) Lignes de courant 

(b) Pression 

(c) Vorticité 

Figure 4.39 élément mini espace-temps 



(a) Lignes de courant 

(b) Pression 

(c) Vorticité 

Figure 4.40 Méthode GLS/ST 



de la vorticité. Étant donné le déphasage entre les 2 solutions périodiques, nous 
avons associé à chaque solution un temps de référence. Il s'agit de l'instant où la 

composante verticale de la vitesse pour la position x = 4 et y = O passe d'une 

valeur négative à une valeur positive au dernier cycle calculé. L'analyse de ces 
figures, montre qu'il n'y a aucune différence notable entre les deux solutions à cet 

état de l'écoulement. En plus, la présence d'allées de Von Karman montre aussi que 

l'état périodique permanent est bel et bien atteint. 

Finalement, afin d'évaluer la précision des solutions calculées, nous les avons corn- 
paré à la solution de référence de Engelman et Jaminia (1990). Cette comparaison 

s'effectue au niveau des coupes à z = 4 de certaines quantités aux temps de réfé- 

rence (voir figure 4.41). On constate que les prédictions numériques se comparent 

assez bien à la solution de référence. On observe aucune différence significative au 

niveau des solutions obtenues sauf pour la pression qui semble mieux approchée 
avec la formulation stable (élément mini espace- temps). 



(a) Composante horizontale de la vitesse 
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(b) Composante verticale de la vitesse 

(c) Pression (d) Vorticitk 

Figure 4.41 Coupes de diverses composantes à z = 4 



4.3.4 Modèle axisymét rique 

Les simulations précédentes ont été réalisées dans le système de coordonnées car- 

tésiennes. L'extension au cas axisymétrique a pour principal intérêt la simulation 

des écoulements dans les artères mais également, les nombreuses applications que 

l'on rencontre en pratique. Ce sont par exemple, le développement d'un écoulement 

dans une conduite circulaire, l'écoulement dans un canal avec une contraction ou 
une expansion soudaine, l'écoulement dans un diffuseur et les jets. 

Les équations de Navier-Stokes, la méthode de Galerkin discontinue en temps et la 

formulation stabilisée GLS/ST dans le cas axisymétrique sont présentées à l'annexe 

B. .A titre de vérification et de validation du modèle axisymétrique, nous corn- 

mencerons par la simulation d'un jet analytique et ensuite nous allons considérer 

la simulation d'un écoulement dans un canal avec une contraction soudaine a un 
nombre de Reynolds de Re = 196. Pour ce problème, nos prédictions numériques 

seront comparées aux données expérimentales. 

Jet libre analytique 

Figure 4.42 Domaine de calcul 

Ce cas test correspond à une simulation d'un jet Libre axisymétrique. Les expressions 

pour la vitesse et la pression proviennent d'une anaiyse de Schlichting (1979). On 



impose un terme source (force volumique) f ,  tel que la solution analytique soit 

où >) = ~ p d c  4 x ~ ~ z * ~ -  - 7.277 x IO-', eo = 0.0161Jf et v (G 8 x est la viscosité. 
Le domaine de calcul dans le repère axisymétrique est illustré à la figure 4.42 et 

a comme dimension 0.2 5 x 5 1 et O 5 r 1. Les conditions aux frontières sont 

des conditions de type Dirchlet partout sauf sur l'axe de symétrie ( r  = O) où l'on 
impose une traction axiale nulle (u = libre) et sur la frontière du haut (r = 1) où 

une traction radiale nulle est imposée (v= libre) afin d'obtenir un niveau de pression 
moyen 

Basé sur la vitesse axiale maximale, la hauteur du domaine de calcul et la viscosité, 

le nombre de Reynolds vaut 8 x 104. Les simulations ont été démarrées à partir 

d'une solution identiquement nulle en utilisant le maillage illustré a la figure 4.43. 

Par la suite, plusieurs solutions transitoires consécutives ont été calculées avec un 

pas de temps fixe At = 0.1 jusqu7à l'atteinte de l'état stationnaire. 

Figure 4.43 Maillage 3690 éléments 

Les figures 4.44 et 4.45 représentent les isovaleurs du champ de vitesse, de la vitesse 



axiale et de la vitesse radiale. En plus, une comparaison directe avec la solution 
analytique (voir figures 4.46 et 4-17), montre que les deux solutions sont similaires 
et très précises. 

(b) Vitesse radiale 

Figure 4-44 L'élément mini espace-temps 
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(a) Vitesse axiale 

(b) Vitesse Radiale 

Figure 4.45 La méthode GLS/ST 



(a) x = O S  
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(b) x=0.75 

Figure 4.46 Coupes de la vitesse axiale 
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Figure 4.47 Coupes de la vitesse radiale 
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dans un canal avec contraction soudaine 

Figure 4.48 Géometrie 

On considère I'écoulement dans un canal avec une contraction soudaine dont les 

caractéristiques et les dimensions sont données à la figure 4.48. Un profil de vitesse 

parabolique 

1 1 
u(r)  = (8(r + 0.5)(0.5 - r),O) pour - - 5 r 5 - 

2 2 

est imposé en entrée. Le fluide adhère aux parois solides et une condition de traction 

nulle est imposée faiblement en sortie. Le nombre de Reynolds est basé sur la vitesse 
axiale moyenne (Ü = y) à l'entrée, le diamètre D, et est égal à 196. Pour sa 

part, le domaine de calcul ne comprend que la moitié supérieure (O r ': i) du 
domaine physique, compte tenu de la symétrie axiale du problème. Les simulations 

ont éte initialisées à l'aide d'une solution nulle en utilisant le maillage illustré à la 

figure 4.49. Des solutions consécutives ont été calculées avec un pas de temps fixe 

de 4 t  = 0.1, jusqu'à ce que l'état stationnaire soit atteint. 

Dans ce test, on cherche a prédire les profils de la vitesse axiale a différentes stations 

de part et d'autre de la contraction. Les résultats numériques sont comparées aux 

données expérimantales fournies par Durst et Loy (1985). 

Les figure 4.5O(a) et 4-50 (b) illustrent les caractéristiques de la solution station- 

naire pour Re = 196. Dans la figure 4.51, on compare nos prédictions aux résultats 

expérimentaux. Les deux méthodes donnent des résultats très similaires et la com- 

paraison est bonne à toutes les stations. Ce test confirme la précision et la capacité 



de notre fonnulation à bien reproduire des écoulements laminaires en coordonnées 

cylindriques axisymmé t riques. 

4.3.5 Notes et bibliographie 

Dans cette étude comparative, nous nous sommes restreint aux applications avec des 

domaines âues. Ce choix a été motivé par le fait que les deux méthodes utilisent 

la même procédure pour traiter les domaines variables. Dans cette procédure, le 

deplacement ou la déformation du domaine est incorporé dans la construction de la 

tranche espace-temps. Ainsi, la résolution de problèmes sur les domaines variables 

n'est pas significative pour cette comparaison. 

La présente comparaison entre les formulations stable et stabilisée a déjà fait l'objet 

d'un article (N'dri et al., 2001b) et a été présentée en congrès scientifique ( N'dri 

et al. (2000~) (dans le cas cartésien) et N'dri et al. (2001a) (dans le cas axisymé- 

trique)). 



Figure 4.19 Y aillage: 4949 éléments 

(a) Élément mini espace-temps 

(b) Méthode GLS/ST 

Figure 4.50 Champ de vitesse 



(a) x/D =-1.047 (b) x/D =-0.209 

(d) x /D =0.052 
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(e) x/D =O.105 

Figure 4.51 Coupes de la vitesse axiale pour différentes valeurs de z / D .  



4.4 Domaines variables 

La discrétisation des équations de Navier-Stokes sur des domaines variables par 

la formulation stable (méthode de Galerkin discontinue en temps avec l'élément 

mini espace-temps), s'inscrit dans le cadre général des formulations espace-temps. 

Selon cette approche, le déplacement ou la déformation du domaine est incopore 
automatiquement dans la construction de la tranche espace-temps ainsi que dans 

le maillage le discrétisant. Cette procédure est directe et immédiate dans le cas 

où la déformation temporelle du domaine est connue a priori. Cependant, pour 

les applications plus complexes (par exemple, les problèmes de surfaces libres et les 

problèmes d'interaction £luidesstructures), où la vitesse de déformation ou de dépla- 

cement du domaine dépend de celle de l'écoulement, on utilise la méthode DSD/ST 
~Deforming-Spatial-Domain/SpacpTime» (voir Shakib et Hughes, 1991; Tezduyar 
et Behr, 1992a,b; Behr, 1992; Mittal, 1992; Behr et Tezduyar, 1994; Johnson, 1995; 

Masud et T.J.R.Hughes, 1997) et la méthode CSD r Characteristic-Streamline - 
Diffusion » (voir Johnson, 1991; Hansbo, 1992b; Pironneau et ai., 1992; Hansbo, 

1993, 1995). Ces deux techniques possèdent des similarités avec la méthode ALE 
w Arbitrary Euleurian-Lagrangianw utilisée dans l'approche semi-discrète (discréti- 

sation par éléments finis en espace et différences finies en temps) mais sont relati- 

vement plus simples à implémenter (voir Tezduyar et Behr, 1992b). 

A titre d'exemple d'application dans un domaine variable, nous avons considéré 

le deuxième problème de Stokes (Ryhming, 1985). Pour ce problème, la vitesse de 
dkplacement du domaine est connue et les équations de Navier-Stokes possèdent 

une solution analytique. 

4.4.1 Deuxième problème de Stokes 

Il s'agit du problème d'une plaque infinie effectuant un mouvement oscillatoire dans 

son propre plan (voir figure 4.52). .i cause de la viscosité du fluide, des oscillations 
longitudinales sont engendrées dans le fluide au dessus de la plaque. La solution 



analytique des équations de Navier-Stokes est : 

u = (u(y,t),O), p = constante. 

La vitesse horizontale est fonction de la variable d'espace y et du temps, et est 

donnée par 

U < Y . ~ >  = umexp [- (g)li2 y + i (wt - (5) Il2)] , 

où U, est l'amplitude maximale de la vitesse de la plaque et w est la fréquence 

angulaire des oscillations. Ainsi, le fluide effectue un mouvement oscillatoire avec 

une amplitude qui diminue avec la distance y à la plaque. la distance caractéris- 
tique 6 = (%)-1/2, l'amplitude maximale est amortie à l /e  de sa valeur à la plaque 

même. Le nombre de Reynolds, basé sur le déplacement longitudinal (L = %) 
qu'effectue la plaque, est défini par Re = LI,L/u et satisfait le rapport suivant: 

Ce qui indique que l'effet de la viscosité est limité à une couche d'épaisseur relative 

inversement proportionnelle à la racine carrée du nombre de Reyuolds. 

L 

Figure 4.52 Plaque oscillante Figure 4.53 Domaine de calcul et condi- 
tions aux bords 



Les caractéristiques du domaine de calcul et les conditions aux limites sont données 

à la figure 4.53. Le domaine effectue un déplacement longitudinale et les conditions 

aux limites sont fonction du temps. 

Les simulations ont été réalisées avec une fréquence angulaire w = 27r, une amplitude 

de vitesse à la plaque de LI, = 1 et un nombre de Reynolds basé sur le déplacement 

longitudinal L = Il*, soit Re = 10. La simulation transitoire a été démarrée avec 

une solution nulle et les 3 premiers cycles ont été calculés avec un pas de temps fixe 

At = 0.01. 

Analyse des rbsultats 

Afin de comparer la solution calculée avec la solution analytique, le profil de la vi- 

tesse horizontale a été tracé à chaque quart de cycle des oscillations. Les figures 4.54 

et 4.55 présentent ces profils pour le premier et le deuxième cycle. Le troisième et 

le deuxième sont identiques. 

On observe que la solution numérique correspond très bien à la solution analytique 

sauf pour le premier quart du premier cycle. Le retard qui n'apparait plus pour les 

cycles suivants provient de l'effet de démarrage de la solution transitoire. En effet la 

solution initiale est nulle alors que la simulation débute avec une vitesse non nulle, 

U, à la plaque. 
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Figure 4.54 Premier cycle 

Figure 4.55 Deuxième cycle 



CONCLUSION 

Une formulation éléments finis espace-temps stable pour la discrétisation des équa- 

tions de Navier-Stokes en 2-D a été présentée. La formulation est basée sur la 

méthode de Galerkin discontinue et repose sur l'élément mini espace-temps. La dis- 

crétisation de la pression est linéaire tandis que la vitesse est linéaire mais enrichie 

d'une bulle (4 fonctions linéaires). Cette discrétisation est stable, il n'est donc pas 

nécessaire d'ajouter explicitement des termes de stabilisation afin d'obtenir une 

solution exempte d'instabilités. 

travers une étude théorique (existence et unicité) du problème de Stokes insta- 
tionnaire, nous avons établi l'analogue de la condition inf-sup dans le contexte de 

la discrétisation par éléments finis espace-temps. Par la suite, nous avons vérifié 

la stabilité de l'élément mina espace-temps sous cette condition en se servant du 

critére de Fortin. Dans l'exemple du problème de Poiseuille, nous avons illustré les 

effets numériques liés à la non satisfaction de la condition inf-sup (pressions para- 

sites et effet bloquant) confirmant ainsi la dépendance réciproque entre les espaces 

d'approximation en vitesse et en pression dans le cadre de la discrétisation par la 

méthode de Gaierkin discontinue en temps. Pour sa part, le test du wno-flow», nous 
a permis de prouver l'exactitude de la discrétisation. 

Cet travail étant une étude préliminaire à la simulation d'écoulements artériels, 

nous avons abordé différents problèmes aiin d'étudier le comportement de la for- 

mulation stable pour ce type d'écoulement. L'étude de l'écoulement autour d'un 

obstacle rectangulaire au nombre de Reynolds Re = 145 et du problème de la 

marche inversée à un nombre de Reynolds Re = 800, nous a permis de valider 
notre formulation dans le cadre d'écoulements stationnaires avec recirculation et 

d'illustrer son comportement asymptotique. L'étude du problème du cylindre à un 

nombre de Reynolds Re = 100, nous a permis de montrer le caractère non difisif de 

notre discrétisation et sa capacité à reproduire correctement l'évolution temporelle 

d'une solution transitoire périodique. Finalement, la simulation d'un jet andytique 

à un nombre de Reynolds Re = 8.104 et l'étude d'un écoulement dans un canal 



avec une contraction soudaine au nombre de Reynolds Re = 196, nous ont permis 

de vérifier le modèle axisymétrique de notre formulation et d'illustrer ses possibiü- 

tés dans ce système de coordonnées. Pour les problèmes abordés, la validation des 

résultats numériques avec les données expérimentales ou les solutions de référence 

(&enchmark») était bonne dans l'ensemble. Une comparaison a aussi été effectée 

entre la formuiation stable et la méthode stabilisée GLS/ST. Avec l'élimination des 

degrés de liberté associés à la bulle de l'élément mini espace-temps, les systèmes 

d'équations résultant de la discrétisation des équations par les d e w  méthodes ont 

le même nombre d'inconnues globales. En plus, pour les probl6mes considérés, les 
deux méthodes conduisent à des solutions très similaires. 

Suite à ce travail, quelques recommandations peuvent être formulées. D'abord, il 

est clair que l'approche de discrétisation par éléments finis espace-temps, conduit 
à la résolution de systèmes d'équations linéaires algébriques de grande taille. Pour 

les travaux ultérieurs, on aurait tout avantage à utiliser des méthodes itératives. 

Pour la discrétisation dans le temps, un pas de temps fixe a été utilisé. Pour mieux 
suivre l'évolution de la solution en diminuant les coûts de calcul et la durée des si- 

mulations transitoires, Li et Wiberg (1998) ont développé un mécanisme de contrôle 

automatique du pas de temps dans le cas des problèmes hyperboliques du deuxième 

ordre. Le terme de saut a l'interface 

est utilisé comme estimateur d'erreur o postenon et permet via un opérateur de 

transition de déterminer un nouveau pas de temps. Les tests que nous avons réalisés 

pour les équations de Naviers-Stokes ont montré, d'une part, que l'estimateur d'er- 

reur était excellent, et que cette procédure était capable de contrôler le pas de temps 

et de maintenir l'erreur de discrétisation en temps en deçà de l'erreur prescrite. 

L'élément mini espace-temps étant linéaire en espace-temps, il serait pertinent de 

développer une stratégie adaptative en espace-temps, afin d'améliorer la précision 

des approximations. Deux approches sont disponibles selon que l'espace et le temps 

sont découplés ou non. Dans l'approche découplée, deux stratégies adaptatives sont 
développées respectivement en espace et en temps afin de contrôler le pas de temps 



et rdner/dérafnner le maillage en espace. Cette approche repose sur des maillages 

espace-temps obtenus par extension du maillage espace dans la direction du temps 

(type extrudé) et constitue l'essentiel des méthodes adaptatives espace-temps. On 

peut consulter à cet effet les travaux de Eriksson et Johnson (1987, 1991); Johnson 

(1988) et Eriksson (1988) pour les problèmes paraboliques et ceux de Li et Wiberg 

(1998); Wiberg et Li (1999) en dynamiques des structures. Pour sa part, I'approche 

couplée est basée sur un estimateur d'erreur espace-temps et repose sur des éléments 

finis espace-temps de type usimplex*. Elle a été proposée par Hulbert et Hughes 

(1990), mais la première mise en œuvre est le résultat de Froncioni et al. (1997) pour 

le problème de Burger en 1-D. Il serait intéressant de généraliser cette approche aux 

équations de Navier-S tokes en 2-D afin de tirer avantage de la nature non-structurée 

des maillages de type wsimplex». 

Nous avons déjà débuté l'extension au 3-D avec la construction de l'élément mina 

espace-temps (3D + temps) en appliquant la même technique aux hypertétraèdres 

(N'dri et al., 2000a). Mais tout reste à faire au niveau des simulations numériques. 
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ANNEXE A 

PROJECTION LOCALE 

Cette méthode rend les dérivées continues en projetant, les dérivées de la solution 

numérique sur une base polynômiale P du même ordre que les fonctions d'interpe 

lation de la solution numérique. 

Pour chaque sommet du maillage, on regroupe les éléments connectés à un sommet 

en une cellule upatcb ,  tel qu'illustré a la ligure A.1. La nouvelle représentation de 

la dérivée au nœud central de la cellule est obtenue en projetant la dérivée de la so- 

lution numérique sur la base polynômiale P. Cette base est constituée des fonctions 
d'interpolation de la solution définies sur l'élément de référence. Par exemple, dans 

le cas d'une solution linéaire en dimension 2, la base polynomiale possède m = 3 

termes et s'écrit P = [l,x,y]. Afin de définir la nouvelle représentation ("&")) 
de la dérivée, on pose P = [pi(x,y), - - - ,p,(x, y)] et on obtient la dérivée (d'une 

composante de la vitesse) résultant de la projection sous la forme: 

Les cœfficients a, = [azIT - - - Ta,]T sont obtenus pour chaque cellule en minimisant 

la fonctionnelle discrète de moindres carrés, 

où, nbge = n b A  * k représente, le nombre de points d'échantionnage obtenu en 

prenant k points d'échantillonnage par élément pour une cellule de n b d  éléments. 

En posant, 



on montre que le vecteur a, est solution du système matriciel: 

=la, = b,, 

est la matrice du système de membre de droite 

La matrice A est indépendante des composantes du gradient. On a donc un système 
matriciel à membres de droite multiples a résoudre. On tire avantage de ce fait en 

calculant et décomposant la matrice -4 une seule fois. 

Triangles linéaires 

Figure A.1 

Triangles quadratiques 

Exemple de cellules 

La qualité de la projection obtenue dépend essentiellemnent de la position et du 

nombre de points d'échantillonage par élément. Le choix de points dits optimaux, 

superconvergents et ultraconvergents conduit à de meilleures approximations. On 
renvoie aux travaux de Zienkiewicz et Zhu (1992a,b) pour les détails sur cette 

propriété de superconvergence et sur la localisation et le nombre de ces points 

d'échantiilonnage. D'autre part, pour que le système linéaire (A.2) possède une 

solution, il faut que le nombre de points d'échantillonnage soit supérieur ou égal 

au nombre de ternes dans la base polynomiale P (nbpe 2 m). Cette condition 

n'est pas satisfaite sur les cellules a peu d'éléments (1 ou 2 éIéments) lorsqu'on 



choisit les points d'échantillonnage dits optimaux. Pour satisfaire cette condition 

sur le rang de la matrice .4 et cela indépendamment du nombre d'éléments par 

cellule, Labbé et Garon (1995) ont suggéré l'utilisation de points de quadrature 

de Gauss en nombre égal au nombre de termes daas la base polynômide P, afin 

que le rang de la matrice d soit égal au nombre d'inconnues. En contrepartie, cela 

entraîne la perte de la propriété de superconvergence de l'opérateur de projection 

local discret telle que reportée par Zienkiewicz et Zhu (1992a,b). Finalement, La 
matrice A étant mal conditionnée (Labbé et Garon, 1995), le sytème linéaire (A.2) 
est résolu par la méthode de décomposition LU avec pivotage, afin de réduire les 

effets de l'arithmétique flottante. 

Par ailleurs, comme un élément peut faire partie de plusieurs cellules, certains nœuds 

ont une contribution venant de plusieurs polynômes. Dans ce cas, la valeur de la 

dérivée projetée sera la moyenne des contributions de chaque polynôme. 

Pour un écoulement bidimensionnel, l'intensité de la vorticité V x u s'exprime par 

et est évaluée à partir des dérivées spatiales projetées- 



ANNEXE B 

MODÈLE AXISYMÉTRIQUE 

B. 1 Opérateurs différentiels 

Dans le cas axisyrnétrique, on utilise le système de coordonnks (x, r,B) où x est 
dans la direction axiale, r est dans la direction radiale et û est dans la direction 
tangentielle. 

Soient s un scalaire, v un vecteur et T un tenseur: 

On a alors les opérateurs différentielles suivants: 



B.2 equations de Navier-Stokes 

Soient u le vecteur vitesse, p la pression et E le tenseur du taux de déformation. Les 
composantes du vecteur vitesse associées aux directions axiale, radiale et tangen- 
tielle sont respectivement u, v et w . Dans cette recherche, on considère seulement le 
cas sans tourbillon, c'est-à-dire qu'on suppose que m = O et que 6 = O. On obtient 
ainsi, 



(B. 11) 

L'équation de la conservation de la quantité de mouvement devient: 

- dans la direction axiale: 

- dans la direction radiale: 



et celle de la continuité devient: 

B.3 MBthode de Galerkin discontinue en temps 

- mouvement axial: 

- mouvement radial: 

& & d u  ddv 6v 
dRdt 

Sn 

- continuité 

où d o  = rdrdx et d ï  = rdrds. 



- mouvement axial (termes supplémentaires) 

- mouvement radial (termes supplémentaires) 

- continuité (termes supplémentaires) 

Les paramètres de stabilisation T- et rmt sont définis au chapitre 2. 




