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RESUME

Nous présentons une méthode d'éléments finis espace-temps pour les équations de
Navier-Stokes incompressibles en 2-D. La formulation est basée sur la méthode de
Galerkin discontinue en temps avec l'utilisation de |'élément mini espace-temps.
L’approximation de la pression est linéaire et continue tandis que celle de la vitesse
est constituée d'une fonction linéaire enrichie d'une bulle. Cet élément est de type
«simplex» et satisfait la condition inf-sup. Une étude théorique est présentée afin
d’établir 'analogue de cette condition dans le contexte des éléments finis espace-
temps et vérifier la stabilité de 'élément mini espace-temps sous cette condition.
Des résultats numériques sont présentés pour attester de la stabilité de la discré-
tisation et pour illustrer les effets numériques liés a la non satisfaction de cette
condition de compatibilité. Ce travail étant une étude préliminaire a la simulation
des écoulements dans les artéres, nous avons comparé la formulation stable a la
méthode stabilisée GLS/ST («Galerkin/least-squares/space-time») pour une série
de problémes en 2-D afin d’étudier son comportement pour ce type d’écoulements.
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ABSTRACT

A space-time finite element method for the incompressible Navier-Stokes equations
in a bounded domain in IR? is presented. The method is based on the time-
discontinuous Galerkin method with the use of simplex-type meshes together with
the requirement that the space-time finite element discretization for the velocity and
the pressure satisfies the inf-sup stability condition of Brezzi and Babuska. The fi-
nite element discretisation for the pressure consists of piecewise linear functions,
while piecewise linear functions enriched with a bubble function are used for the
velocity. This element is referred to as the space-time mini element. The extension
of the inf-sup condition to the context of space-time finite element fornulations, the
stability proof and some numerical results are presented. We also assess the be-
haviour of the underlying mixed approximation when compared with the stabilized
Galerkin least-squares ,/space-time (GLS/ST) method for some 2-D problems with
flows physics similar to arterial flow computations, the intended applications.
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INTRODUCTION

a résolution numérique des problémes d’évolution nécessite en général une semi-

discrétisation en espace par des méthodes d’éléments finis suivie de I’approxi-
mation des dérivées temporelles par des schémas classiques aux différences finies.
Contrairement a cette approche trés répandue qui consiste a découpler les variables
espace et la variable temps, la méthode d’éléments finis espace-temps est fondée
sur I'emploi d'éléments finis relatifs 4 I’espace et au temps avec des fonctions de
base qui dépendent a la fois des variables espace et de la variable temps. Dans cette
approche, la variable temps est traitée comme une variable espace, engendrant ainsi
le domaine espace-temps Q x (0,T), 2 étant le domaine spatial et (0,T) un inter-
valle de temps. Ce domaine est d’une dimension supérieure a celle de |'espace et
est discrétisé a l’aide d’éléments espace-temps. On distingue deux types d’éléments:
le type extrudé (comprenant les quadrilatéres, prismes, cubes, hexahédres etc.) ob-
tenu par extrusion d’éléments espace dans la direction du temps et le type simplex
comprenant les triangles, tétraédres etc.

L’avantage principal de la discrétisation par éléments finis espace-temps réside dans
le traitement des problémes ou le domaine est variable. En effet, le déplacement ou
la déformation est incorporé automatiquement dans le domaine espace-temps et non
dans la formulation variationnelle comme c’est le cas dans I’approche semi-discréte
(discrétisation par éléments finis en espace et différences finies en temps).

Bien que le concept de la discrétisation par éléments finis espace-temps ait été
introduit par Fried (1969) et Oden (1969), les premiers tests numériques sont plutot
diis aux travaux de Bonnerot et Jamet (1974, 1977) pour le probléme de Stefan a une
et 4 deux dimensions d’espace. Par la suite, Jamet (1978) a introduit une variante
de la formulation initiale, dénommée méthode de Galerkin discontinue en temps, qui
consiste a utiliser des fonctions d'interpolation continues en espace mais discontinues
en temps. Dans cette approche, le domaine espace-temps est subdivisé en une série
de tranches «slabs» espace-temps (2 x (,,t,+1)) et le probléme discret est résolu
sur une tranche a la fois en se servant de la solution de la tranche précédente comme



condition initiale. Cette nouvelle formulation est considérée comme une innovation
majeure car elle est moins colteuse que la précédente, mais surtout parce qu’elle
est A-stable et d’ordre élevé.

La méthode de Galerkin discontinue en temps a été appliquée avec succés a divers
problémes, notamment, aux problémes de type parabolique (voir Bonnerot et Ja-
met, 1979; Eriksson et al., 1985; Eriksson et Johnson, 1987; Makridakis et Babuzka,
1997), aux problémes de type hyperbolique (voir Hulbert et Hughes, 1990; John-
son, 1993; French, 1993; Li et Wiberg, 1998; Wiberg et Li, 1999), aux probiémes
en acoustique (voir Thompson et Pinsky, 1996a,b,c) etc. Cependant, tout comme
la méthode de Galerkin, elle souffre de la présence d’oscillations parasites dans
la solution numeérique dans le cas ou le terme de convection, jumelé & une condi-
tion limite avec de brusques variations, est prépondérant dans les équations. Pour
faire disparaitre ces oscillations, Varoglu et Finn (1980a, 1982) ont utilisé, pour les
équations de convection-diffusion, la méthode des caractéristiques pour orienter le
maillage selon les caractéristiques de I’écoulement. Cette technique a été par la suite
généralisée aux équations de Burgers par Varogiu et Finn (1980b); Froncioni et al.
(1997) et aux équations de Navier-Stokes par Hansbo (1992b). Une approche plus
répandue consiste plutdt a utiliser les formulations stabilisées. Dans cette optique,
la méthode SD «Streamline-Diffusion» a été introduite par Hansbo et Szepessy
(1990). La formulation est du type Petrov-Galerkin et est obtenue en ajoutant a la
fonction test un terme de moindres carrés. Par la suite, Tezduyar et Behr (1992a)
ont développé la méthode GLS/ST «Galerkin Least Squares/Space-Time» en ajou-
tant a la formulation variationnelle un résidu provenant de la minimisation d'une
fonctionnelle par la méthode des moindres carrés.

Dans le cas particulier des équations de Stokes ou de Navier-Stokes, le choix des
espaces d’interpolation en vitesse et en pression est soumis & une condition de com-
patibilité. Cette condition est 'analogue de la condition Ladyzhenskaya-Babuska-
Brezzi (LBB) (Ladyshenskaya, 1969; Babuska, 1973; Brezzi, 1974) plus connue sous
le nom de la condition inf-sup. Cette difficulté a été contournée par l'utilisation
des formulations stabilisées SD et GLS/ST. En effet, en plus de réduire les oscil-
lations causées par les écoulements a convection dominante, elles permettent aussi
d’obtenir des solutions stables sans que les espaces d’interpolation aient a vérifier la



condition inf-sup. Cependant, la construction d’espaces d’interpolation en vitesse
et en pression vérifiant cette condition est inexistante dans la littérature. En fait
la construction de formulations stabilisées constitue la seule approche au regard de
cette condition de stabilité.

Cette thése est consacrée au développement d’une formulation espace-temps stable
pour la discrétisation des équations de Navier-Stokes incompressibles en 2-D. La for-
mulation est basée sur la méthode de Galerkin discontinue en temps et sur I'utilisa-
tion de I'élément (tétraédrique) mini espace-temps. La discrétisation de la pression
est linéaire tandis que la vitesse est linéaire mais enrichie d'une bulle. A travers
une étude théorique (existence et unicité) du probléme de Stokes instationnaire,
nous avons établi 'analogue de la condition inf-sup dans le contexte de la discré-
tisation par éléments finis espace-temps et nous avons montré que l'elément min:
espace-temps est stable sous cette condition. La seconde contribution de cette thése
se situe au niveau de l'utilisation d’éléments espace-temps de type simplex (tétra-
édres) pour les écoulements bidimensionnels. Bien que peu utilisé, ce type d'élément
est plus apte a discrétiser les domaines courbes (domaines variables) et conduit a
des maillages non-structurés qui sont plus aptes a I'adaptivité dans le contexte des
éléments finis.

Le premier chapitre de la thése est consacré au rappel des équations de Navier-
Stokes, a la revue de quelques méthodes d’éléments finis dans le cadre de 'approche
semi-discréte et aux considérations numériques relatives a leur mise en ceuvre.

Au chapitre 2, aprés avoir présenté le concept de la discrétisation par éléments finis
espace-temps, nous présentons la méthode de Galerkin discontinue en temps, suivie
d’'une revue des formulations espace-temps connues a ce jour.

Au chapitre 3, aprés le rappel de la condition inf-sup dans le cadre du probléme de
Stokes et sa généralisation au contexte de |'espace-temps, nous présentons I'élément
mini espace-temps ainsi que la preuve de sa stabilité.

Finalement, le chapitre 4, présente les résultats numériques de la discrétisation des
équations de Navier-Stokes pour quelques probiémes en 2-D. L’objectif visé est,
d’abord de confirmer la stabilité de I'élément min: espace-temps et ensuite d’étu-



dier le comportement et illustrer I’enveloppe d’utilisation de la formulation stable.
Dans le cadre de la vérification de la stabilité, trois problémes sont présentés:le pro-
biéme de Poiseuille, le test du «no-flow» et le probléme du cylindre. Afin d'étudier
le comportement de la formulation stable nous l’avons comparée a la formulation
stabilisée GLS/ST pour une série de problémes en coordonnées cartésiennes et axi-
symétriques. La simulation d’écoulements dans les artéres étant une application
potentielle de ce travail, une série de problémes ont donc été étudiés, chacun faisant
ressortir les caractéristiques de ce type d’écoulement. Finalement, a titre d’exemple
d’application sur un domaine variable, nous avons étudié le deuxiéme probléme de
Stokes. Une conclusion et des recommandations complétent cette thése.



CHAPITRE 1

FORMULATIONS ELEMENTS FINIS POUR LA RESOLUTION DES
EQUATIONS DE NAVIER-STOKES

Dans ce chapitre, on présente quelques méthodes d’éléments finis pour les équa-
tions de Navier-Stokes dans le cadre de I'approche semi-discréte:discrétisation par
éléments finis en espace et discrétisation par différences finies en temps.

On rappelle d'abord les équations de Navier-Stokes avec les conditions aux limites
appropriées. La méthode de Galerkin est ensuite présentée briévement ainsi que les
schémas classiques de différences finies dans le cadre de la discrétisation en espace
et en temps. Finalement, des considérations numériques relatives a la mise en ceuvre
de ces formulations ainsi que les formuliations dites stabilisées sont présentées.

1.1 Les équations régissant les écoulements incompressibles

On considére un fluide visqueux incompressible occupant, a l'instant ¢t € (0,T), un
domaine ; € R? (d = 2 ou 3) borné non vide et de frontiére [',. On désigne par x
la variable espace et par t la variable temps. Les équations régissant |'écoulement
d'un fluide visqueux incompressible en régime laminaire sont:

i) I'équation de la conservation de la quantité du mouvement

p(%‘-{»(u-V)u-i-f)-V-a = 0 sur Q, Vte(0,T); (1.1}

ii) I'équation de la conservation de la masse ou équation de la continuité
V-u = 0 sur Q, Vte(0T). (1.2)

Les variables dépendantes sont la vitesse u(x,t) = (uy,--- ,uq) et la pression p(x,t).

La masse volumique (ou la densité) du fluide est représentée par p (constante pour



les fluides incompressibles), f(x,t) est une force de volume et o est le tenseur des
contraintes de viscosité (ou tenseur de Cauchy). Dans le cas d’un fluide newtonien,
ce tenseur est défini par:

a(uvp) = —PI'*'?#E(U)»

ol I est le tenseur métrique®, u est le coefficient de viscosité et € est le tenseur du
tauz de déformation défini par:

(Vu+(Vu)"),

o] —

€(u) =
et I’équation (1.1) devient:

p(%l + (u- V)u+t‘) -V -(2ue(u))+Vp = 0 sur Q; vte(0T). (1.3)

Les équations (1.2)-(1.3), plus connues sous le nom d’équations de Navier-Stokes,
sont dues & Georges S. Stokes (1819-1903) et & C.L.M.H. Navier (1785-1836). Ces
équations sont non linéaires de nature mixte (parabolique-hyperbolique). Le terme
de convection non linéaire (u - V)u contribue au caractére hyperbolique de I'équa-
tion, alors que le terme visqueux linéaire —uAu est de nature elliptique et ?lel est
de nature parabolique.

1.1.1 Les conditions frontiéres

Les conditions aux limites de type Dirichlet (essentielles) et/ou de type Neumann
(naturelles) sont imposées sur la frontiére I',; pour ce faire, on considére pour chaque
composante u;, (i = 1---d) du vecteur vitesse, (['p); et (I'x); deux parties complé-
mentaires de I';:

F:=(p)iU(Cn)iy (Tp)in(Cw)i=0,

1. Pour le systéme de coordonnées cartésiennes, la matrice de ccefficient de ce tenseur correspond
A la matrice identité.




sur lesquelles on impose les conditions aux limites suivantes:

u-¢g = ¢g; sur ([p) vte(OT), i=1---4d; (1.4)
g-n-e = h.,' sur (FN),‘ Yt € (O,T), t=1---d (1.5)
ol e; est un vecteur de la base canonique R% n= (ny,- -+ ,nq) est le vecteur normal

unitaire extérieur i la frontiére [’ du domaine Q et & est le tenseur des contraintes.

Pour completer la description du probléme, une condition initiale a divergence nulle
est imposée sur {1, soit

u(x,t = 0) = uy,

ol uy satisfait I’équation (1.2). Dans la pratique, ug = 0 ou ug est la solution du
probléme stationnaire.

1.2 La discrétisation des équations

Dans |’approche semi-discréte, la discrétisation se fait en deux étapes: une dis-
crétisation en espace par éléments finis suivie d’une discrétisation en temps par
différences finies. Cependant, cette formulation n’est pas bien adaptée si la géomé-
trie du domaine est variable puisque, a chaque pas de temps, la frontiére variable
passe entre les nceuds du maillage et cela complique la discrétisation au voisinage
de la frontiére.

1.2.1 Les formulations variationnelles

Dans cette section, par souci de simplicité, nous allons nous restreindre & un domaine
fixe, 2, avec des conditions de Dirichlet homogénes (u = 0) sur une partie de la
frontiére, le cas non homogéne ne posant aucune difficulté supplémentaire puisqu'il
est possible d’effectuer un relévement de la condition essentielle.



Le cadre fonctionnel

Les notions et les notations utilisées dans ce rappel sont tirées du livre (en prépa-
ration) de Fortin et Garon (2001).

Définissons d’abord quelques espaces fonctionnels auxquels nous ferons référence

[ﬂfzd:r<oo}

I'espace de Hilbert des fonctions a valeurs réelles et de carré sommable sur €2, muni

par la suite. Soit
Lz(Q)={f:Q—>IR

du produit scalaire et de la norme associée:

(fg) = fn fodz. |IfI?= /Q fdz.

De méme, on définit par:

@) = {f e I¥(Q)

fnfdx=0},

I'espace des fonctions de L?(€2) a4 moyenne nulle. On désigne ensuite par:

HY(Q) = { u € L¥(Q)

%eL?(Q),lsigd},

i

I'espace de Sobolev d’ordre 1 sur {2 muni du produit scalaire:
(wvha = (u,v)+ (Vu,Vu)

de la norme:
2

Ou

Br,-

Y

d
lul}o = llullfa+
=1

et de la semi-norme: .

luf? =)

=1

Gu
a.'l.'i

Remarque 1.1. Dans la définition de H'(Q), les dérivées sont prises au sens des
distributions.



Enfin, on définit deux sous-espaces de I'espace H'(f2), de la fagon suivante:
Hy(Q) ={u | ue H'(Q),ulr =0}
ou u|r est la trace de u sur [ et:
(@) = {u] ue H'(Q),ulr, =0}
ou ['p est une partie de la frontiére [’ du domaine 2.

Pour 'étude des problémes d’évolution, nous allons maintenant introduire des es-
paces de fonctions v : t — v(t), définies sur (0,7), a valeurs dans un espace de
Banach X. Pour p € R, avec 1 < p < oo, on désigne par LP(0,T; X) I'espace des
fonctions v : ¢ = v(t) fortement mesurables sur (0,7) pour la mesure dt (i.e. les
fonctions scalaires ¢ — ||v(t)||x mesurables pour la mesure dt) et telles que

T l/p
lvllrorix) = ( / IIv(t)II’;’:dt) < .
Q

D’autre part, lorsque p = oc, on désigne par L*(0,T; X) 'ensemble des fonctions
v :t — v(t) fortement mesurables sur (0.7) pour la mesure dt et telles que

1|l Lowgo.1:x) < 00

Les espaces LP(0,T; X) (espace des fonctions LP-intégrables), L=(0,T’; X) (espace
des fonctions essentiellement bornées) sont des espaces de Banach munis respecti-
vement des normes ||v[izro.1:x) €t [|v]|L=o.x)-?

Les formes faibles

Soient,
V= (H}D(Q))z, Q=L*QeteH={veV|V.-v=0}

2. |lvll L =(0,7;x) est la borne supérieure essentielle de |[u(t}{|x
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trois espaces de Hilbert. Nous obtenons la formulation variationnelle des équa-
tions (1.2) et (1.3) en multipliant ces derniéres par des fonctions tests prises res-
pectivement dans V et Q; on intégre ensuite par parties sur tout le domaine {2 en
tenant compte de la condition de Neumann. L'équation de la conservation de la
quantité de mouvement (1.3) devient, Vv € V:

/p(a—u+u-Vu+f)-de+f2ue(v):e(u)dQ
o Ot )

_/pV-de— h-vdl =0, (1.6)
1] WY
et celle de la continuité devient, Vg € Q:

LqudQ:O. (1.7)

Le probléme variationnel consiste donc a trouver u € V et p € Q satisfaisant
les formes faibles (1.6) et (1.7). Cette formulation est dite mixte en (u,p). A
'aide de la méthode de Faedo-Galerkin et sous certaines conditions de régularité
(ug € H,f € L?0,T:Q)), on montre que ce probléme variationnel admet une
solution unique (u € L%(0,T;H N L=(0,T:Q)),p € L*(0.T;L*))) (voir Lions,
1968). Il est aussi possible de prouver l'existence et I'unicité de la solution par le
biais de I'approche de semi-discrétisation en temps. On renvoie au livre de Temam

(1969) pour les détails relatifs a cette preuve dite constructive.

Plusieurs techniques de discrétisation de problémes variationnels dans le formalisme
de la méthode des éléments finis sont possibles. Les plus usuels sont: la méthode des
moindres carrés, la méthode de Petrov-Galerkin et la méthode de Galerkin. Cepen-
dant, selon la nature des équations a résoudre, certaines s’avérent plus appropriées.
Nous allons présenter la plus populaire, a savoir la méthode de Galerkin.
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1.2.2 La méthode de Galerkin
La discrétisation en espace

Une fois en possession de la formulation variationnelle des équations de la conser-
vation de la quantité de mouvement (1.3) et celles de la continuité (1.2), la dis-
crétisation par éléments finis est immédiate. La solution du champ de vitesse est
recherchée dans 'espace discret V, C V et celle de la pression dans I'espace discret
Q1 C Q. Suivant I'approche de Bubnov-Galerkin (méthode de Galerkin), les fonc-
tions tests sont choisies dans 'espace des solutions discrétes (v, € Vi, qn € Qa).
Ainsi, la formulation faible discréte du probléme mixte revient a trouver u, € V,
et p, € Qy telles que Vv, € Vet Vg, € Qp:

[ oG+ un - Tun+ £)-vad+ [ 2ue(va) : elun) 40
Q 0

ot
—fphV-vth— h-VhdF =0, (18)
t] Y
[qhv-u,.dQ-—-O. (1.9)
Q

Les espaces V), et Q, étant de dimension finie, les variables dépendantes u et p
sont approximées respectivement par u, € Vj et p, € Q, qui sont exprimées dans
leur base respective. On pose, par exemple, pour la vitesse u:

un(x,t) = D _ u;(t)8;(x), (1.10)
=1

ou u;(t) est la valeur de la vitesse au j° nceud du maillage discrétisant le domaine Q2.
Les fonctions d’interpolation sont ¢, - -~ ,¢n, formant une base de V. On obtient
la formulation variationnelle élémentaire en choisissant comme fonctions tests, les
éléments de la base des espaces discrets. Le probléme (1.8-1.9) se raméne a un
systéme d’équations différentielles non linéaires de la forme:

-

MU + CU)- G + uA-U + BT.P
B-U

91

(1.11)

=
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ou Uet P représentent respectivement les vecteurs contenant les composantes dis-
crétes de la vitesse et de la pression. Les matrices M, C, A et B représentent respec-
tivement la matrice masse, la matrice convection, la matice diffusion et la matrice
divergence.

Afin d’obtenir un systéme totalement discrétisé, nous avons besoin des espaces
discrets V,, et Qy et d'un schéma pour de discrétisation en temps. Le choix des
espaces de discrétisations en vitesse et en pression est assez délicat a cause de la
condition d'incompressibilité discréte (1.9). Nous y reviendrons aprés avoir présenté
la discrétisation du terme transitoire.

La discrétisation en temps

Les schémas aux différences utilisés, pour approcher les dérivées temporeiles ‘%"},
sont regroupés en deux catégories: les schémas explicites et implicites. Les sché-
mas explicites sont en général conditionnellement stables et nécessitent que l'on
restreigne le pas de temps. Pour cette raison, les schémas implicites sont en général
retenus. En plus, dans le cadre de la discrétisation des équations de Navier-Stokes,
ce choix ne rajoute rien 4 la complexité de la résolution puisque la méthode de
Galerkin, qui est une formulation implicite, est déja employée pour la discrétisation
spatiale.

Nous présentons ici les schémas aux différences les plus utilisés pour approcher %‘}.
Pour ce faire, on considére 0 = ¢ty < ¢, < --- < t, = T, une partition de (0,T)
avec At = t, — tp_;. On note up = u(x,t,), la solution approximée au temps ¢, est
notée u; = %‘ka,tn)- En utilisant successivement une différence arriére en t,4; et
une avant en ¢,, on obtient les schémas

n+l n

ip*! + (1 - )i} = At

mieux connus sous le nom de #-schémas. Les plus usuels sont:

Euler implicite (8 = 1),
-~ Crank-Nicholson (8 = 1/2).
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Le schéma d’Euler implicite (ordre 1, inconditionnellement stable) étant trop diffu-
sif, est en général utilisé pour obtenir des solutions stationnaires. Par contre, pour
les solutions transitoires, on utilise plutot le schéma de Crank-Nicholson (ordre 2,
inconditionnellement stable). Etant donné que le schéma de Crank-Nicholson n’est
pas A-stable, on va dans certains cas lui préférer un schéma du méme ordre, A-stable
a 2 pas; a savoir le schéma de Gear (voir Fortin et al., 1987, 1994, 1997):

o Sup —dup' +up?
= 2At

Pour de plus amples détails sur les schémas de discrétisation en temps, on renvoie
au livre de Gresho et al. (1999).

1.2.3 Les considérations numériques
La condition «inf-sup»

Pour assurer I'existence et l'unicité de la solution (up,ps) du probléme discret, le
choix des espaces d’interpolation V, et Q, ne peut étre fait de fagon indépendante.
Les espaces d’interpolation en vitesse et en pression doivent nécessairement véri-
fier la condition de Ladyzhenskaya-Babuska-Brezzi (LBB) (Ladyshenskaya, 1969;
Babuska, 1973; Brezzi, 1974) plus connue sous le nom de condition «inf-sup». Il
s’agit donc de construire des espaces d'interpolation compatibles. Cette question
fondamentale a fait ’'objet d'une littérature trés abondante. On consultera, pour
la théorie générale, le livre de Brezzi et Fortin (1991). Les éléments les plus ré-
pandus satisfaisants cette condition sont ’élément mini de Arnold-Brezzi-Fortin
(P = P,) (voir Arnold et al., 1984), I'élément de Taylor-Hood (P, — P,) et l'élé-
ment de Crouzeix-Raviart (P;” — P, discontinue) (voir Crouzeix et Raviart, 1973).

Dans le cas de la discrétisation des équations de Navier-Stokes incompressibles, en
plus du probléme du choix des espaces d’interpolation en vitesse et en pression, la
méthode de Galerkin devient instable pour les écoulements a convection dominante.
Pour réduire ces oscillations numériques, Christie et al. (1976) ont repris et adapté
au contexte des éléments finis I'idée d’ «upwinding» (décentrage en amont) des
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méthodes de différences finies. On parle alors de techniques de stabilisation.

Les méthodes de stabilisation

Les techniques de stabilisation consistent & ajouter a la formulation variationnelle de
Galerkin des termes de stabilisation dépendants du maillage, sans toutefois affecter
la consistance de la formulation. De ce fait, elles sont des méthodes résiduelles qui
sont des méthodes de type Petrov-Galerkin. La méthode de Petrov-Galerkin est une
variante de la méthode de Galerkin, qui consiste a utiliser des fonctions tests diffé-
rentes des fonctions d’interpolation pour réaliser le décentrage. Des améliorations
de la méthode de Christie et al. (1976), ont conduit aux méthodes suivantes:

- la méthode «Streamline Upwind/Petrov-Galerkin» (SUPG) (Brooks et Hu-
ghes, 1982) ou encore « Streamline Diffusion» (SD),

- la méthode «Galerkin/Least-Square» (GLS) (Hughes et al., 1989),

- la méthode «Douglas-Wang-Franca-Frey» (DWFF') (Douglas et Wang, 1989;
Franca et al., 1992).

.....

diffusion et ensuite généralisée, avec succés, aux équations de Stokes et de Navier-
Stokes (voir Brooks et Hughes, 1982; Hughes, 1987). Elie permet de stabiliser la
méthode de Galerkin en ajoutant a la fonction test de celle-ci un terme de moindres
carreés.

La méthode GLS, quant a elle, consiste a ajouter a la formulation résiduelle de
Galerkin un résidu provenant de la minimisation d’une fonctionnelle par la méthode
des moindres carrés. Elle est plus générale que la méthode SUPG puisqu’elle permet
I'utilisation d’interpolants de degré plus élevé et correspond a la méthode SUPG,
lorsque des interpolants linéaires sont utilisés. Cette méthode est présentée par
Hughes et Franca (1987); Franca et Hughes (1988); Hughes et al. (1989), pour
'équation de convection-diffusion et de Stokes et par Behr et al. (1993); Franca
et al. (1993); Franca et Madureira (1993) pour les équations de Navier-Stokes.
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La méthode de DWFF est une variante de la méthode GLS qui a |'avantage d’étre
moins sensible aux paramétres de stabilisation. Elle a été présentée par Douglas et
Wang (1989), Franca et al. (1992)) et Franca et Frey (1992).

Dans le cas particulier des problémes de convection-diffusion scalaire (1-D), les
méthodes de stabilisation reviennent a ajouter de la diffusion dans la direction
de ’écoulement. La quantité de cette diffusion est contrélée par un parameétre de
stabilisation qui doit étre choisi de facon appropriée afin d’obtenir une solution
stable. Plusieurs algorithmes basés sur des arguments heuristiques, ou numériques
se sont avérées trés efficaces pour certaines applications. Cependant, 1'absence de
théorie générale conduisant a la construction du paramétre optimal est considérée
comme un inconvenient majeur par les utilisateurs de ce type de méthode.

Dans un développement paralléle, une approche de stabilisation sans paramétre,
dite non conventionnelle, a été considérée. Elle consiste a enrichir I'espace des fonc-
tions d’interpolation par une fonction bulle qui, une fois éliminée par condensation
statique, conduit dans certains cas & une formulation stabilisée de type Petrov-
Galerkin. En effet, Brezzi et al. (1992), Baiocchi et al. (1993) et Brezzi et al.
(1997) ont montré, dans le cas particulier des équations de convection-diffusion et
de Stokes, que l'utilisation de la fonction bulle était équivalente a la méthode SUPG
ou GLS; cet effet de stabilisation a été aussi mentionné dans le cas des équations
de Navier-Stokes par Russo (1996).

Les récents développements dans le contexte de la stabilisation sont tournés vers
'optimisation du processus de stabilisation, & savoir la construction de solutions
non seulement stables, mais précises. Cela conduit a la méthode dite «Residual-
Free-Bubbles» (RFB). Cette méthode est une variante de la stabilisation a i'aide de
la fonction bulle. La fonction bulle utilisée dans cette approche, n’est plus la bulle
classique mais plutot une bulle qui est la solution d’un probléme local. Cela permet
d’optimiser le processus de stabilisation comme |'ont mentionné Brezzi et al. (1998)
et Brezzi et Russo (1998). Pour de plus amples détails sur 1'état actuel du progrés
des techniques de stabilisation, on renvoie a la référence (Franca, 1998).

Par ailleurs, dans le cas particulier des équations de Navier-Stokes (formulation
mixte), les méthodes de stabilisation permettent, en plus de stabiliser la solution



16

sans que les espaces discrets aient a vérifier la condition inf-sup. Cela permet de
choisir les mémes interpolants en vitesse et en pression comme les combinaisons
(P, — P), (P, P) et (Q — @) (voir Hughes et al., 1986; Tezduyar et al., 1992;
Droux et Hughes, 1994). Cette propriété est particuliérement intéressante dans le
cas des éléments tridimensionnels, ainsi que dans le contexte des éléments finis
espace-temps, pour des considérations relatives au cout de stokage et de calcul.

Apreés le choix d’éléments finis appropriés et 1'approximation du terme transitoire
(8—;}) par une méthode adaptée de discrétisation en temps, le systéme d’équations
non linéaires qui découle du systéme (1.11) est résolu a I'aide de techniques comme
la méthode de Newton ou la méthode de Picard.
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CHAPITRE 2

LES FORMULATIONS ESPACE-TEMPS

Dans ce chapitre, on présente les formulations espace-temps. On commence par
présenter, le concept de I’approche de discrétisation par éléments finis espace-temps.
La méthode de Galerkin discontinue en temps est ensuite présentée et on conclut
avec une revue des formulations stabilisées.

2.1 La présentation du concept

Dans I'approche éléments finis espace-temps, I'espace et le temps sont discrétisés de
fagon simultanée par des éléments finis relatifs a I’espace et au temps, et les variables
dépendantes sont approchées a l'aide de fonctions d’interpolation dépendant a la
fois du temps et de I'espace. La variable temps est considérée comme une variable
espace, engendrant ainsi un domaine espace-temps Q2 x (0,T), Q étant le domaine
spatial et (0,7) un intervalle de temps. Pour la construction du maillage discrétisant
le domaine espace-temps, on distingue deux types d’éléments finis: le type extrudé
(comprenant les quadrilatéres, prismes, cubes, hexahédres etc.) obtenu par extrusion
d’éléments espace dans la direction du temps (voir figure 2.1(a)) et le type simplex
comprenant les triangles, tétraédres etc. (voir figure 2.1(b)). Le type extrudé conduit
a un maillage espace-temps structuré oi chaque élément est le produit cartésien d’'un
élément spatial et d'un intervalle de temps. Par contraste, le type simplex conduit
4 un maillage espace-temps non-structuré.

A I'origine, les variables dépendantes étaient approximées a I’aide de fonctions d'in-
terpolation continues par rapport aux variables d’espace et a la variable temps. Dans
le cas particulier des problémes & deux ou trois dimensions d’espace qui nécessitent
un maillage espace-temps relativement fin (dans la direction du temps), la discréti-
sation des équations par cette approche (fonction continue en temps) conduit & un
probléme de taille excessive. Ceci pose des contraintes au niveau du coiit de stockage
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et du calcul, rendant ainsi cette approche moins attrayante et moins compétitive
comparativement aux formulations semi-discrétes.

(a) Type extrudé (b} Type simplex

Figure 2.1 Eléments géometriques espace-temps

L'introduction de fonctions d’interpolation continues en espace mais discontinues
en temps a donné naissance a la méthode de Galerkin discontinue en temps qui
est considérée comme une innovation majeure dans le contexte des éléments finis
espace-temps. En effet, les fonctions étant discontinues en temps, cela permet la
subdivision du domaine espace-temps en série de tranches («slabs») espace-temps
Sn = QX (ta,tne1),0 < n < N - 1. Les équations sont ensuite résolues sur les
tranches espace-temps de fagon séquentielle (tranche aprés tranche), la solution de
la tranche courante servant de condition initiale pour la tranche suivante.

Nous allons maintenant présenter la méthode de Galerkin discontinue en temps qui
constitue le fondement des diverses formulations espace-temps connues a ce jour.
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2.2 La méthode de Galerkin discontinue

La méthode de Galerkin discontinue a été initialement développée pour les équa-
tions hyperboliques du premier ordre par Reed et Hill (1973). Elle a ensuite été
analysée et justifiée mathématiquement par Lesaint et Raviart (1974). Par la suite,
elle a été appliquée, avec succés & de nombreux problémes, notamment aux équa-
tions de type parabolique par Jamet (1978) et par Bonnerot et Jamet (1979) aux
équations hyperboliques du deuxiéme ordre par Hulbert et Hughes (1990); Johnson
(1993); French (1993); Li et Wiberg (1998) et Wiberg et Li (1999), et aux fluides
viscoélastiques par Fortin et Fortin (1989). La méthode de Galerkin discontinue est,
en général, une méthode d’éléments finis .i-stable d'ordre élevé. En effet, appliquée
aux équations différentielles ordinaires avec des approximations polyndémiales de
degré k (Lesaint et Raviart, 1974; Delfour et al., 1981; Johnson, 1988), elle conduit
a une méthode A-stable d’ordre 2k + 1.

La méthode de Galerkin discontinue en temps découle de I'application de la mé-
thode de Galerkin aux équations de type parabolique par Jamet (1978). Elle a
ensuite été étudiée dans le cadre des équations de type parabolique par Bonnerot
et Jamet (1979) et par Eriksson et al. (1985) qui ont montré qu’elle était A-stable
et d'ordre 2k + 1, avec des approximations polynomiales de degré & et tout récem-
ment par Makridakis et Babuska (1997) dans le cadre d'une analyse de stabilité des
équations de la chaleur. Elle a aussi été généralisée aux équations hyperboliques
du deuxiéme ordre par Hulbert et Hughes (1990) puis par Johnson (1993) qui a
prouvé qu'elle est aussi .A-stable, d’ordre 2 en espace et d’ordre 3 en temps dans
la norme L2, avec des fonctions d'interpolation bilinéaires en espace et en temps.
Par contraste, l'utilisation de fonctions continues en temps conduit plutot a des
méthodes conditionnellement stables (voir Bajer, 1986, 1987).

De plus, la méthode de Galerkin discontinue en temps posséde divers avantages
inexistants dans I'approche semi-discréte. Les fonctions étant discontinues en temps,
donc d'une tranche a l'autre, cela permet, par le biais d’estimateurs d’erreur a
posteriori, de développer des stratégies adaptatives afin de controdler soit le pas
de temps (I’épaisseur de la tranche) et/ou adapter le maillage de chaque tranche
(voir Eriksson et Johnson, 1987, 1991; Johnson, 1988; Eriksson, 1988; Hughes et
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Hulbert, 1988; Froncioni et al., 1997; Li et Wiberg, 1998; Wiberg et Li, 1999)
conduisant ainsi & des maillages différents sur chaque tranche espace-temps. En plus,
elle conduit a des solutions de qualité avec des pas de temps relativement grands
eu égard au fait qu’elle est en général (problémes paraboliques, hyperboliques) une
méthode A-stable d’ordre élevé. Finalement, les problémes de surfaces libres, ou de
domaines en mouvement, sont traités de facon naturelle. En effet, le déplacement
ou la déformation du domaine ou d’une partie du domaine est incorporé dans la
construction de la tranche espace-temps ainsi que dans le maillage le discrétisant
(voir Tezduyar et Behr, 1992a,b; Mittal, 1992; Masud et T.J.R.Hughes, 1997; Behr
et Tezduyar, 1999; Mittal et Kumar, 1999).

2.2.1 La formulation variationnelle

Afin de présenter la formulation espace-temps pour les équations 1.2-1.3, nous allons
considérer 0 < ¢, < --- < ty = T, une partition de l'intervalle (0,T) en sous
intervalles I, = (tp,tn41) de longueur At =t — t,. Soient Q, =Q, et [, =T,
on définit la tranche espace-temps a ’étape n par S,, le domaine délimité par §2,,,
Qn4+1 et Xy, (voir figure 2.2), ou I, est la surface décrite par la frontiére ', quand ¢
parcourt l'intervalle I,,. On désigne par £y, et £y, deux parties complémentaires

de ¥,.:

La=XpnUEyn, ZpaN an = m7

dont 'une peut étre vide et 'autre coincider avec ¥,. On introduit ensuite, pour

t

tn+1t Z Qg+l
|2 S |2

f iy

r

Figure 2.2 Tranche espace-temps
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chaque tranche S,, les espaces fonctionnels V" = (Hg_ (S,))? pour la vitesse et
Q" = L?*(S,) pour la pression. La discrétisation des équations de Navier-Stokes par
la méthode de Galerkin discontinue en temps suit celle de la méthode de Galerkin.
On approxime (u,p) par des fonctions (us,ps) € (V' x Q), ou V! et Qf sont
respectivement des sous espaces de V'™ et Q" de dimension finie qui seront définis
plus loin.

Les fonctions d'interpolation en vitesse étant discontinues a chaque t,, pour n =
0,1,--~ ,N — 1 (voir figure 2.3), la dérivée par rapport au temps est considérée au
sens des distributions et par l'identité de Dini, on obtient pour chaque tranche:

< Teu,p >=/ a—uqbdﬂdt +[ #(u} —ul)dQ, V¢ € D(S,),
Be s, Ot

n

avec U} = lime_q ui(tn £ €).

ti-t  tn th+i t

Figure 2.3 Illustration de la discontinuité en temps

La formulation espace-temps se présente comme suit: étant donné u”, trouver u; €
Vit et pn € Q} telles que Vv, € V! et Vg, € QF:

/ p(§;—t£+uh-Vuh+f) -vthdt+2u/ e(up) : €(vy)dQdt
n Sn
- / phV-vthdt—/ h-vhdI’+/ @V - up dQ dt

n an n

+ / p(u” —u")-v?dQ = 0. (2.1)
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Les cinq premiers termes découlent de la formulation faible espace-temps des équa-
tions de la conservation de la quantité de mouvement et de la continuité par la
méthode de Galerkin évaluée sur la tranche espace-temps. Les données sont trans-
portées d'une tranche a I'autre via une projection L? par le terme de saut:

/ p(ul —ul)-vidQ. (2.2)
Nn

Ce terme garantit la conservation de la masse d'une étape de temps a la suivante.
Cependant, selon Priestley (1994), dans le cas ou les maillages a l'interface des
tranches sont différents, le calcul exact de l'intégrale devient coiteux et nécessite des
algorithmes d’interpolation qui conduisent a des pertes de masse. Ce phénoméne est
plus prononcé dans les régions a fort gradient. Pour éviter cet inconvénient, Hansbo
(2000) a suggéré deux techniques qui, tout en évitant le calcul exact de 'intégrale,
permettent soit par des techniques de projections locales simplifiées (Hansbo, 1994)
de conserver la masse. soit de rétablir la masse par des techniques de post-traitement
(voir Sasaki, 1976). Bien que ces techniques soient efficaces, Hansbo (1994) suggére
de raffiner le maillage & |'interface seulement si cela est absolument nécessaire.

Par ailleurs, il faut noter que le fait que les maillages soient différents a I'interface
des tranches est le résultat d’une stratégie adaptative basée sur des éléments finis
espace-temps de type extrudé. Cependant, avec les éléments de type simplex, le
raffinement intervient seulement sur le haut de la tranche garantissant ainsi des
maillages identiques a l'interface (voir figure 2.4).

Tout comme la méthode de Galerkin, le choix de la combinaison des espaces de
discrétisation V;* et QQ} est aussi sujet & une condition de compatibilité. Cette
condition est la généralisation de la condition inf-sup dans le contexte de 'espace-
temps et sera presentée au chapitre 3. Il s’agit donc de construire des espaces de
discrétisation compatibles (pour satisfaire a la condition inf-sup) ou d’utiliser des
formulations stabilisées (pour contourner la condition inf-sup). Bien que la théorie
générale concernant la construction d’éléments stables soit largement connue et ait
conduit & de nombreux éléments stables dans le cas des équations de Stokes et de
Navier-Stokes stationnaires, la construction d’éléments stables est inexistante dans
le contexte des éléments finis espace-temps. En fait, la construction de formulations
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ST :
M

a) Extrudé b) Simplex
Figure 2.4 Maillages espace-temps

stabilisées constitue l'unique approche au regard de la condition inf-sup.
que app 2 P

La construction d’éléments finis espace-temps stables est I'un des axes de cette thése
et sera présentée au chapitre suivant. Mais auparavant, nous présentons une revue
des formulations espace-temps stabilisées.

2.3 Les méthodes stabilisées

Tout comme la méthode de Galerkin en espace, la méthode de Galerkin discontinue
en temps n'est pas appropriée pour résoudre les écoulements a convection domi-
nante. Cet état de fait va justifier la construction de formulations stabilisées de
type Petrov-Galerkin basées sur des techniques de stabilisation en espace. Une autre
approche propre 3 l'espace-temps consiste a utiliser une formulation lagrangienne
dans le but d’obtenir la stabilité. On utilise la formulation de Galerkin discontinue

sauf que le maillage est orienté, avec les éléments espace-temps alignés selon les
caractéristiques.

On note deux courants importants: a savoir la méthode «Streamline-Diffusion»
(SD) et la méthode «Galerkin Least Squares/Space-Time» (GLS/ST) qui découlent
respectivement des méthodes SUPG et GLS. Ces techniques de stabilisation en
espace-temps vont ensuite étre combinées avec la méthode des caractéristiques pour
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donner la méthode dite «Characteristic Streamline Diffusion» (CSD). Avant de
présenter ces trois principales méthodes, il serait intéressant de mentionner deux
méthodes qui, bien que peu utilisées, conduisent a des formulations stabilisées. La
premiére, se veut une généralisation de la méthode de Lesaint-Raviart (Lesaint et
Raviart, 1974) a |'espace-temps; elle est caractérisée par I'utilisation de fonctions
d’interpolation discontinues en espace et discontinues en temps (voir Johnson et
Saranen, 1986). La seconde dénommeée «Space-Time coupled Least-Squares Finite
Element Formulation», est une méthode de type moindres carrés (least-Squares) en
espace-temps (voir Nguyen et Reynen, 1984; Bell et Surana, 1994, 1996).

2.3.1 La formulation SD

Cette méthode est basée sur un maillage espace-temps, avec les fonctions d'inter-
polation continues en espace et discontinue en temps. Nous allons présenter deux
formulations basées sur la méthode de SD dans le cadre des équations de Navier-
Stokes; pour plus de détails voir Johnson et Saranen (1986) et Hansbo et Szepessy
(1990) .

La premiére formulation est due a Johnson et Saranen (1986). Elle se présente
comme une méthode de type Petrov-Galerkin avec, comme fonction test:

dup

V;=Vf,+(5( 5

Fup-Vvy + vq,,). (2.3)
Les fonctions, u,,vy € V', gn € QF, ot V;* et Q} sont respectivement les espaces
d’interpolation en vitesse et en pression et 4 est un parameétre de stabilisation . La
particularité de cette approche réside dans le fait que les fonctions d’interpolation
en vitesse sont des fonctions polynomiales a divergence nulle, ce qui implique que
I'équation de continuité est résolue de fagon exacte. Cependant cette approche est
couteuse compte tenu du fait qu’elle nécessite des éléments finis d’Hermite.

La seconde approche, présentée par Hansbo et Szepessy (1990), est beaucoup plus
standard, en ce sens que la condition de divergence nulle est imposée faiblement.
Elle se présente comme suit: étant donné u”, trouver u, € V" et p, € Q}, telles que
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Vv, € V! et Vg, € Q}:

/ p (%ﬁ +uy - Vuh) - v dQdt +/ (2ue(ug) : e(vy) — PV - vy) dQdt
n Sa
+ / th-uthdt+/ p(u} —ul)-vidQ
Sn Qn
+ / 4 (p (aﬂ +up - V“h) + Vph) . (% +uy-Vvy + Vq,,) dQdt
Sn ot at
+ / 302(V - uy) (V - v;) dQdt
Sn

+ / 53[(2ue(up) — ppl) - n — h] - [(2ue(un) ~ gul) - n]dTdt

Nn

/ f- (v,.-*-&l (%+uh'Vvh+th)) det+/ h-v,dldt (24)
n Nn
Cette formulation est une méthode de type Petrov-Galerkin, avec comme fonction

test:
du,

ﬁ:vh-i'-d‘l(at +uh-Vvh+th),

pour la vitesse et:

Gh = qn + 0,V - vy
pour la pression. Les paramétres de stabilisation d;, d; et 43 sont définis comme suit:

Cih

0 = ————,
T+ (ul)

8, = Crh et &3 = Cs,
avec les constantes positives C), = 1,C; = 1 et C; > 1 indépendantes de h et de u.
Le paramétre d; sert a imposer la condition de Neumann qui selon 'auteur serait

imposée trop faiblement. Pour plus de détails sur ces paramétres voir Hansbo et
Szepessy (1990).

2.3.2 Formulation GLS/ST

La formulation que nous allons présenter a été initialement proposée par Tez-
duyar et Behr (1992a,b) sous le nom de «Deforming-Spatial-Domain/ Space-Time»
(DSD/ST), pour résoudre les équations de Navier-Stokes incompressibles sur des
domaines variables. La formulation espace-temps se présente comme suit; étant
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L] 2
Sa=QxI,
L |

Figure 2.5 Maillage et élément espace-temps

donné u™, trouver u, € V;* et py € Q} telles que Vv, € V;* et Vg, € QF:

/ p (a& +up - Vu, + f) - v dQdt + / (2ue(vn) : e(up) — paV - vy ) dQdt
n Sn

at
+ / h-v,,d[‘dt-i—/ th-u,,det+/ p(u} —u?).v3dQ
"el‘vn Tmom avhn "
+ g/ . [p (Wﬂuuh-v\m) -V-a(q;.,vh)]

. [P (a—;—ﬁ +up- Vu, + f) -V -O(Ph,!lh)] dQdt

Tei

+ > / TeontV - Up PV - v;, dQdt = 0 (2.5)
e=l L1

ou St représente un élément du maillage espace-temps (voir figure 2.5). Dans
cette formulation, les cinq premiers termes constituent la formulation de Galerkin
discontinue en temps, les deux suivants sont des termes de stabilisation de type
moindres carrés provenant respectivement de l'équation de la conservation de la
quantité de mouvement (1.1) et celle de la continuité (1.2) . On obtient ainsi une
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formulation stabilisée de type GLS d’ou la dénomination «GLS/ST». Le premier
terme de stabilisation sert 4 éliminer les oscillations provenant du choix d’une com-
binaison d’espaces de discrétisation inapropriée. Le second sert plutot a éliminer
les oscillations provenant des problémes a convection-dominante (a4 haut nombre de
Reynolds). Les paramétres de stabilisation Tpem €t Teone SOnt définis comme suit:

. L) —l/2
_ 2V, (2l (4,,)2
Tmm‘[(&) +( he ) "\m

et

avec
L (B) siRe<3;
T 11 siRe>3

ou Re est le nombre de Reynolds défini par:

_ [lunll e

he w

enfin, k. est la taille élémentaire et est définie comme la longueur du plus grand cdté
de I’éléement (S2). Pour plus de détails sur l'origine de ces termes de stabilisation
voir (Mittal, 1992) et (Behr, 1992).

Cette formulation a été appliquée par divers auteurs, notamment Thompson et
Pinsky (1996a.c,b) pour des problémes en acoustique, Shakib et Hughes (1991);
Behr (1992); Mittal (1992); Behr et Tezduyar (1994); Johnson (1995) etMasud
et T.J.R.Hughes (1997), pour les équations de Navier-Stokes et d’Euler sur des
domaines variables.

2.3.3 La méthode CSD

Cette technique est propre aux problémes d’évolution et a été introduite par Va-
roglu et Finn (1980a,b) pour les problémes de convection-diffusion et I'équation de
Burger en dimension 1. Elle consiste a aligner les éléments du maillage le long des
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caractéristiques de l'écoulement et correspond a la méthode des caractéristiques
dans le cas d'un probléme hyperbolique pur.

Pour présenter cette technique, nous allons considérer le probléme de convection-
diffusion suivant:

% +cC- VYu—eAu = f dans Q Vte (O,T),
w = 0  sur 4Q vte(07), (2.6)
u(x,0) = ug(x) dans £,

o ¢ = (c),c2) est la vitesse de convection et ¢ est un ccefficient de diffusion.

La discrétisation du probléme (2.6) par la méthode de Galerkin discontinue en
temps revient a trouver u € V;, tel que:

f(%;i-t-c-Vu)dedt-f-/. eVu - VodQdt

+ / W —u" )" dQ = [ fodQdt VuveV,. (2.7)
1] Sn

n

Pour définir V;, I'espace des fonctions d’interpolation et le maillage de la tranche
S,., on va appliquer la technique de passage a I’élément de référence. A cette fin, on
considére, pour chaque n, K, = {x} une triangulation de {2 et 'élément de référence
espace-temps {Kk X (tn,tn+1)}-

Soit F}, 'application qui permet de passer de ’élément de référence espace-temps a
I’élément déformé. On pose

(x,t) = Fa(§,7) = (§ + (T — ta)c"(§).7), (2.8)
ou c” est une approximation de la vitesse au temps ¢, (voir figure 2.6).

De I’équation (2.8), on obtient:
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' (Ilvl"lrt) = Fn(511£217.)
: 7N A

62 I
& I

Figure 2.6 Transformation d’un élément espace-temps

ou u(€,7) = u(x,t). Par ailleurs, on a:

9 9z) 9z2 a

— € —_ 13 3 oz —_

Ve=| 3 |=|em m | | o [TV
a2 3 96 dz3

avec le jacobien de la transformation défini par:

act dc?
J = ]."l"(‘l'—t,,‘;)'?—g.lL (T—tn)a—e“;n
c A

(r=tn)zg 1+(7- t,,)—‘:l(.,&l

dont on déduit, finalement:

%tu_ +c-Vu= gu—T +(c—c") - J7' Vil
On pose V, = {v : v(x,t) = #(,7),0 € Vp,(x,t) = Fo(€,7)}, avec V,, un espace d'ap-
proximation défini sur I'élément de référence. Cette formulation espace-temps peut
étre considérée comme une formulation «Arbitrary Lagrangian-Eulerian» (ALE)
(voir Hughes et al., 1981), en ce sens qu’elle combine 2 ia fois les descriptions eulé-
rienne et lagrangienne. En effet, si ¢® = ¢ (le maillage se déplace a la méme vitesse
que u), la représentation est totalement lagrangienne; par contre, si ¢® = 0 (les
endroits ol le maillage est fixe), la représentation est eulérienne. Le fait d’orienter
les éléments dans la direction des caractéristiques permet d’annuler la convection,
si ¢" = c, ou de réduire son effet s'ils sont alignés approximativement dans la di-
rection des caractéristiques. Cette idée va étre adaptée a la formulation SD par
Johnson (1991) et Hansbo (1992a) pour les équations de convection-diffusion, et



30

par Hansbo (1992b, 1993, 1995) pour les équations de Navier-Stokes et, dans un
développement paralléle, par Pironneau et al. (1992) 4 la formulation GLS/ST pour
donner la méthode dite «characteristic streamline diffusion» (CSD). Les formula-
tions espace-temps sont exactement les formulations SD ou GLS/ST sauf que les
espaces d'interpolation en vitesse et en pression sont définis par rapport aux élé-
ments déformés (voir figure 2.7). On a:

Vo= {v:vixt)=v(€t), d€Vy (xt)=Fa(&2)},

Qn={q:q(xt) = 4(&t), d€Qn (xt)=F.(E1)},
avec:

(x,t) = Fa(§;t) = (§ + (¢ = ta)uz(§).2),

ol u;, est une vitesse nodale pré-définie.

Avant de conclure cette revue des formulations dites stabilisées, il est important
de préciser que les formulations que nous avons présentées sont basées sur des dis-
crétisations qui possédent les mémes interpolants en vitesse et en pression. Les
interpolants sont, selon le cas, bilinéaires en temps et en espace (P(x) x P;(t)) ou
linéaires en espace et constants en temps (P;(x) x Py(t)). Ces espaces de discrétisa-
tion reposent sur des éléments de type extrudé (maillage structuré) et conduisent a
des solutions stables en dépit du fait qu’elles ne vérifient pas la condition «inf-sup».
Les fonctions d'interpolation linéaires en espace et en temps (P,(x,t)) basées sur
les éléments de type simplex ont été mentionnées par certains auteurs {Varoglu et
Finn, 1982; Bajer, 1986, 1987; Hughes et Hulbert, 1988; Hulbert et Hughes, 1990;
Behr et Tezduyar, 1994) mais demeurent trés peu utilisées. Leur utilisation pour
les problémes bidimensionnels constitue 1'un des axes de ce travail.
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CHAPITRE 3

L’ELEMENT MINI ESPACE-TEMPS

Dans ce chapitre, nous présentons !'élément mini espace-temps ainsi que la preuve
de sa stabilité. Mais auparavant, nous allons rappeler la condition inf-sup dans le
contexte du probléme de Stokes stationnaire et ensuite la généraliser au contexte
des formulations éléments finis espace-temps.

3.1 La condition inf-sup

Selon Johnson et al. (1984), les propriétés mathématiques de la méthode de Galerkin
discontinue en temps, pour les problémes d'évolution sont semblables a celles de
la méthode de Galerkin pour les problémes stationnaires. Ainsi, tout comme la
méthode de Galerkin, le choix des espaces de discrétisation (vitesse et pression)
est soumis & une condition de compatibilité. Le respect de cette condition permet,
d’abord d’éviter l'effet bloquant («locking effect») qui est caractérisé par le fait
que l'ensemble des solutions a divergence nulle se réduit a la solution nulle, et
ensuite d’éviter le probléme des modes de pressions artificielles («spurious pressure
modes») ou des pressions en damier ( «cherkerboard pressure») qui se manifeste par
la présence de pressions parasites qui polluent la solution numérique.

3.1.1 Le probléme de Stokes

Soit  un domaine borné de IR? et soit I sa frontiére. On considére le probléme de
Stokes stationnaire et homogéne. Il s’agit de trouver le champ de vecteur vitesse

u: Q- R?
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et le champ de pression
p:Q2—->R

telles que pour la donnée d’une force volumique f, les équations suivantes soient
vérifiées:

-V ~(2ue(u)) + Vp=f dans
V:u=0 dans (3.1)
u=0surl.

Ce probléme découle des équations de Navier-Stokes stationnaires en négligeant le
terme non linéaire (u - V)u.

Afin de discrétiser ces équations par la méthode des éléments finis, on commence
par donner la formulation variationnelle associée a ce probléme. Considérons a cet
effet, les espaces fonctionnels suivants: V = (H}())?,Q = L3() et Vg, l'espace
des fonctions de V' a divergence nulle. Ainsi, la forme faible mixte du probléme (3.1)
est:

Trouver (u,p) € V x Q tel que :
a(u,v) +b(v,p) =(f,v), ¥YveV, (3.2)
b(ug) =0, VgeQ

ol

a(u,v) = 2uLe(u) :g(v)d

et
b(u,q) = —/ qV - udf.
0

Le probléme (3.2) étant écrit sous forme mixte, ’existence et 'unicité de la solution
(u,p) sont alors assurés par le théoréme 3.1 di a Brezzi (1974).

Théoréme 3.1. La solution de (3.2) eriste et est unique si:
i) la forme bilinéaire a(.,.) est continue sur V" x V:

dc > 0 tel que [a(u,v}| < c||ullv|[v]lv.Vu,v € V;
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ii) la forme bilinéaire a(.,.) est elliptique' sur Vyy:
3a > 0 tel que a(u,u) > aljul|},vYu € Vyy;
ii) la forme bilinéaire b(.,.) satisfait la condition inf-sup:

. |6(v.g)|
36> 0 tel que 05 vivlalle >

Esquisse de la démonstration:

La continuité de la forme bilinéaire a(.,.) découle de I'application de l'inégalité de
Cauchy-Schwarz tandis que !’ellipticité sur 'espace Vg, découle de I’application des
inégalités de Korn et de Poincaré. La condition inf-sup de la forme b(.,.) découle
quant 4 elle du fait que l'opérateur divergence est un isomorphisme de Vi, dans
L3(2) (voir Temam, 1969; Girault et Raviart, 1979). ]

Soit T}, une triangulation de Q. L'indice h caractérise la taille du maillage et
est destiné a tendre vers 0. Soient V}, et @, des sous espaces de dimension finie
approximant respectivement V' et Q. On considére ensuite le sous espace de V4,
Vi, = {Vh € Vi| (V ~va,qn) =0, Vgu € Qn}. La discrétisation par éléments finis
(méthode de Galerkin) du probléme (3.2) conduit au probléme mixte approché
(discret) suivant:

Trouver (u,,pn) € Vi x Qp tel que :
a(up,va) + b(vh,pr) = (£,vn), Vvi € Vj; (3.3)
b(“ha‘lh) = Ov V‘Ih € Qh

obtenu en remplacant respectivement u, v,p et g par U, Vi, ps et gy. Sous les hy-
pothéses d’existence et d’unicité de la solution (u,p) du probléme continue (voir
théoréme 3.1), l'existence, |'unicité et la convergence de la solution discréte (u,ps)
sont assurés par le théoréme 3.2 (voir Brezzi et Fortin, 1991):

Théoréme 3.2. Le probléme (3.3) admet une solution unique (un,pr) € Vi x Qn
sous les hypothéses suivantes:

1. Certains auteurs disent que a(.,.) est coercive.



35

i) il eriste une constante positive a telle que
a(un,up) > allusfly, Yu, € Vi, ; (3.4)

it) il existe une constante positive 3 indépendante de h telle que

b(vy,
inf sup _b(vagn)l > (3.3)
w€@n vyevi [IVallvilanlle
De plus on a la majoration d’erreur
u-wlv+ip- < Cq inf |ju—wvi|lv + inf -
I = wnll + I~ palle < C{ inf, hu = vllv + g, I~ pal
avec C une constante positive qui dépend de o et 3. )

La condition inf-sup discréte (3.5) définit la compatibilité entre les espaces Vj
et Qn, qui ne peuvent pas étre choisis indépendamment l'un de I'autre. Elle est
aussi connu sous le nom de condition de Brezzi-Babuska ou encore condition LBB
(Ladyzhenskaya-Babuska-Brezzi).

Dans le but de généraliser cette condition au contexte de l'espace-temps, nous allons
considérer le probléme de Stokes instationnaire. Ainsi, pour tout T > 0, il s’agit de
trouver une fonction vectorielle

u: 2x]0,T[— R?

et une fonction scalaire
p:2x|0,T[-» R

telles que pour la donnée d’une condition initiale ug et d’une force volumique f, les
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équations suivantes soient vérifiées:

,
%‘ -V -(2ue(u)) +Vp=f dans Ox]0,T;

! V-u=0 dans Qx]0,T[; (3.6)
u(x,t =0) =ug sur
| u=0sur [x]0,T].

La discrétisation du probléme (3.6) par éléments finis espace-temps découle de la
méthode de Galerkin discontinue en temps (voir chapitre 2). Le domaine espace-
temps © x [0,7] est subdivisé en une série de tranches espace-temps S, = Q x
[tastas1], 0 < n < N — 1. On considére ensuite T une discrétisation de la tranche
espace-temps S, (Ici, le paramétre h caractérise la taille du maillage espace-temps
destinée a tendre vers 0) et on introduit M, et X}, des sous espaces de dimension fi-
nie approximant respectivement les espaces M = L2(tp,tns1; V) et X = L3t tne1; Q)
munis respectivement des normes

| -|lae €t || ]|~ Ainsi, pour la donnée de la condi-
tion initiale u® (solution au temps t, de la tranche précedente), la discrétisation
du probléme (3.6) sur la tranche S, revient a la formulation variationnelle discréte

suivante:
Trouver (up,pn) € Mp x X, tel que :
a(un,va) + b(va,pn) = ((f.va)), Yva € My; (3.7)
blun,gn) =0, Vg€ X,
ol
a(up,vy) = %‘%wh det+2u/ e(va) :e(uh)det-{»/u’i-v’; dQ,
Sn n )
() = [ £-vadQde + / u® - v" dQ
Sa Q
et
E(uh,q) = —/ qV - u,dQ2dt.

n

Le probléme (3.7) étant écrit sous forme mixte, |'existence et I'unicité de la solution
(uh,pn) sont assurés par le théoréme 3.2. Pour sa part, la condition (3.4) revient a
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montrer |'ellipticité de la forme bilinéaire (., .) sur I’espace
Vi = {Vh € Ml b(va.gn) = 0,Vqy € Xh}

comme le démontre le lemme suivant.

Lemme 3.1. La forme bilinéaire a(.,.) est ellitique sur V.

Preuve:
Soit u € M, de I'égalité

d .2 du
—_ =92
dt“u” 2| & -udQ, (3.8)

on obtient en intégrant sur [tn,tni]
tntl l tnsl d
f ( [ 2 udd)dt = ¢ [ & lulpas (3.9)
tn
1 n

= Sluree - Sz (3.10)

D’autre part, les inégalités de Korn de Poincaré (voir Temam, 1969) induisent
/e(u) :g(u)dQ > |luli?. (3.11)

Q

De I'égalité (3.10) et de I'inégalité (3.11), on en déduit que

a(u,u) = i %—l:-udﬂdt+2uj e(u) : e(u)det+/u+-u1dQ
1 tn+l
= S0t = )+ 2 [ et - ew)dedae + u?

1 bl
= SR+ 1) + 2 [ () etu) - e(uydeat
tn

tntl
> 2 [ lulldt = 2ululd,
ta
Ainsi la forme af. , .) est elliptique sur M et en particulier sur V, C M. a

Remarque 3.1. Pour tout u € M, le résultat (3.8) est encore vrai si on considére
un domaine variable Q,. En effet, pour tout u € L*(0,T;(H'(Q,))?) et sous I’hy-
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pothése que la variation de surface induite par la déformation infinitésimale de la
frontiére T, de S, est négligeable par rapport 4 la surface de Q,, on a:

d, Ou

— =2 —- -udQ2-2 2uy-ndll, Vt €)0,T,

dt"u” /m 5 U [r,u u;-n €]0,T[
ot Uy - N représente la composante normale de la vitesse de la déformation de la
forntiére 'y de Q,. Ainsi, dans le cas ot u € M (trace nulle au bord), 'intégrale
au bord est nulle et on obtient l’égalité (3.8).

La condition inf-sup (3.5) revient dans le contexte de 'espace-temps a trouver une
constante positive 3 indépendante de h telle que

~

inf sup —omanl o (3.12)

W€ voem, [IVallmllgnllx ~
Cette condition est |'analogue espace-temps de la condition de Brezzi-Babuska et
définit la compatibilité entre les espaces M, et X),. Cette condition sera vérifiée a
la section suivante dans le cas de I'élément mini espace-temps.

Remarque 3.2. Dans le contezte espace-temps, le probléme devient en fait un pro-
bléeme 3-D. Cependant, il faut noter que la différence fondamentale entre la condi-
tion inf-sup en 3D et celle en 2-D + temps est que l’opérateur divergence est défini
seulement par rapport auz variables spatiales. En effet, on a

ou Ov

(V‘“)2—0+temps=a_z+a

. u o ou
Vuh-o=5 +a o

3.1.2 L’élément mini espace-temps (2-D + temps)

Proposée initialement par Arnold, Brezzi et Fortin (1984), 'idée d’enrichir !'es-
pace des vitesses par une fonction bulle, permet dans certains cas de construire
des éléments stables. Cette idée est aussi valable en espace-temps et a motivé la
construction d’éléments de cette familie. Nous présentons maintenant I’élément mini
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espace-temps (2-D + temps) qui est I’élément le plus simple et le moins coiteux de
cette famille.

Soit T, un maillage de tétraédres discrétisant la tranche espace-temps S,. Pour
chaque tétraédre K, on considére les 4 tétraédres internes K;,: = 1,2,3,4 obtenus,
en reliant les 4 sommets au barycentre et on pose

B\(K) = {be Hén(Sn)lbIK‘ € P(K)NHy(K),K € Th,i =1234}.
Afin de décrire I’élément mini espace-temps, on pose pour les vitesses,
Mu = {va €(C%Sn)) lunlk € (PUK))’, YK € Th} @ (Bi(K)),

c’est-a-dire |'ensemble des fonctions continues et définies par la somme d’une fonc-
tion continue linéaire et d’une fonction bulle. La bulle standard est remplacée par
une fonction nulle sur la frontiére de I'élément K et linéaire par morceau sur les 4
tétraédres internes a I'élément. La bulle est en fait considérée comme 4 sousfonctions
linéaires. Pour la pression, on pose,

Xy = {an € (C°(Sh)) lanlk € PI(K) VK € Th},

c’est-a-dire ’ensemble des fonctions linéaires et continues sur K. Il en découle que
les nceuds d’interpolation sont, pour les vitesses, les 4 sommets et le barycentre du
tétraédre et, pour la pression, les 4 sommets seulement. On obtient ainsi 10 degrés
de liberté en vitesse (2 par nceud) et 4 en pression (voir figure 3.1), contrairement
a l'élément mini standard 3D qui posséde 15 degrés de liberté en vitesse (3 par
nceud).

Remarque 3.3. On construit de fagon similaire en trois dimensions d’espace, ’élé-

ment mini espace-temps 3-D + temps, en appliquent la méme technique auz hyper-
tétraedres.
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e L

Vitesse Pression

Figure 3.1 Position des degrés de liberté pour 1'élément mini 2-D + temps
3.2 Vérification de la condition inf-sup

Les techniques standards de preuve de la condition (LBB) sont basées sur le lemme 3.2
dénommé critére de Fortin (voir Brezzi et Fortin, 1991).

Lemme 3.2. La condition inf-sup (3.5) est équivalente a l'eristence d'un opérateur
d’interpolation:

y:V — Vi

u — Ipu

vérifiant:
[ 7= Tawdnda =0, van e Qu, (3.19)
Q
IMau|lv < cllully, ¢ > 0 indépendante de h, (3.14)

ot la norme V représente la norme sur l’espace V.

En général, I'opérateur [I, sera une composition des deux opérateurs I1; € L(V,V})
et [I; € £(V,V},) vérifiants:

IMully < allvlly, YoeV; (3.15)

IMe(f - Mvlly < ellvllv, Yo eV: (3.16)

/ V.- (v-Mv)gpdQ = 0, VveV,Vg, €Qh, (3.17)
Q
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ou les constantes c, et c; sont indépendantes de h et on pose:
[Mhu = Myu + Mo (u — Mu). (3.18)

Cette définition de 1'opérateur II, a été initialement proposée par Fortin (1984).
L’un des problémes dans la construction de I'opérateur II; (le premier a agir sur u)
est dit au manque de régularité des fonctions de H'(Q2) (les fonctions ne sont pas
a priori continues). Ainsi [I; ne pourra pas étre un opérateur d'interpolation. Pour
pallier & cet inconvénient, on aura recours a l'opérateur de Clément (1975). Cet
opérateur est construit par «régularisation locale» et consiste en une projection
sur un macro-élément («patch» ) suivie d'une interpolation standard. Cet opérateur
a été initialement construit sur des maillages de triangles par Clément (1975) et
généralisé, dans un premier temps, aux maillages de quadrilatéres par Fortin (1984)
et ensuite aux maillages de «d-simplex» (triangles, tétraédres, hyper-tétraédres,
etc.) par Bernardi (1989). Pour les plus récents développements concernant cet
opérateur, on renvoie aux travaux de Bernardi et Girault (1998).

Dans le cas des éléments a pression continue, l'opérateur II; est celui de Clément
pour lequel:

Yy - Mtk < cllvfia, m=01, YveH(Q) (3.19)
K

L’opérateur [I,, quant a lui, est construit sur chaque élément K de fagon a ce que
la condition (3.17) soit vérifiée et tel que:

IMevllik < ethgvllox + [vlk)- (3.20)

On peut ainsi reformuler le critére de Fortin qui, a I'aide des remarques précédentes,
devient le lemme suivant.

Lemme 3.3. Soit V), défini de telle sorte qu’il existe un opérateur d’interpolation
par régularisation locale au sens de Clément [1, : V' — V, qui satisfait (3.19). St
on construit un opérateur [l : V' — V},, vérifiant (3.17) et (3.20) alors l'opérateur
[1, vérifie le lemme 3.2 et la condition inf-sup est ainsi satisfaite.
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Nous référons le lecteur au livre de Brezzi et Fortin (1991) pour la démonstration
des lemmes (3.2) et (3.3).

Munis de ces résultats préliminaires, nous sommes maintenant en mesure de pré-
senter la contribution mathématique originale de cette thése qui se résume en la
proposition suivante.

Proposition 3.1. L’élément mini espace-temps satisfait la condition inf-sup (3.12).

Preuve:
La preuve est basée sur la construction des opérateurs 1, et [l du lemme (3.3).

i) Construction de |'opérateur II;
L'opérateur II; est celui de Clément. Pour les maillages de tétraédres cet opé-
rateur existe et on trouve dans Bernardi (1989) les détails de sa construction
dans le cas général des maillages de «d-simplex» (tétraédres, hyper-tétraédres,
etc.). Ainsi, en appliquant le lemme (3.3), nous avons seulement besoin de
construire 'opérateur [I, vérifiant (3.17) et (3.20) pour que la preuve soit
compléte.

ii) Construction de |'opérateur [I,
Pour chaque élément K € Ty, on considére by € By (K), une fonction linéaire
par morceaux sur les 4 tétraédres internes a 'élément K; elle vaut 1 au bary-
centre et 0 sur la frontiére de I'élément.
L’opérateur [I, est défini par

M: M —(Bi(K))?

v —abg

ot a € IR? est donné par

a= [[KVdet] [./I;bxdﬂdt]-I.

Ainsi, pour I'élément mini espace-temps (v, € (P,(K))* & (By(K))?), on a
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construit 'opérateur I, de facon a satisfaire

Mavik € (Bi(K))*:

/ (MMav — v)dQdt =0, VK € T,. (3.21)
K

Par ailleurs, puisque [Iov|x € (By(K))?, on montre par la technique de pas-
sage a |'élément de référence (Dupont et Scott, 1980), I'inégalité inverse

IMav|lix < chi'lIVilo.x. VYV EV,

et I'inégalité (3.20) suit immédiatement. Dans l'inégalité inverse ci-dessus, le
paramétre hg caractérise la taille de 1'élément tétrahédrique espace-temps.

Pour compléter la preuve, il faut montrer que 1'équation (3.17) est vérifiée.
Les pressions étant continues d'un élément a I’autre (Q, C C%S,)), on obtient
en intégrant par parties:

V-(l'[w—-v)q,,dﬂdt:/ (/v.(ngv-v)qhdn)dt
In JS

=-—/ /(Hgv—v)-thdet,
I, Ja

ou les opérateurs gradient et divergence sont définis par rapport aux variables
d’espace seulement. Sous la condition de régularité, v € L!(tn,tni1; (HHQ))?),
le théoréme de Fubini garanti |’existence de l'intégrale précédente et on a:

Sn

/ /(Hgv—v)-thdet=/ (Mlav = v) - Vg, dQ dt.
InJa

Par ailleurs, la pression étant linéaire sur chaque élément, son gradient est
donc constant et en vertu de (3.21), il vient que:

(l'Igv—v)-thdet=Z/(Ilgv—v)-thdet=0,
% VK

Sn

la condition 3.17 est ainsi satisfaite et la preuve est compléte. a

Remarque 3.4. Bien que l'opérateur gradient soit seulement défini par rapport
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auz variables d’espace, il est nécessaire et suffisant que les approrimations soient
linéaires en espace-temps (u(x,t) € P (x,t)) et non pas seulement linéaire en espace
afin d'obtenir un gradient le pression constant par élément (Vq, € (Py(K))?). Les
éléments extrudés bilinéaires et trilinéaires ne pourront donc pas étre stabilisés d
l'aide de cette technique.

Remarque 3.5. Pour ['élément mini espace-temps, l'opérateur [1, du critére de
Fortin eziste et est une composition des opérateurs I1, (opérateur de Clément) et Il,
(solution de I'équation (3.21)) selon la relation (3.18). En effet, pourv € (HE_(Sq))?,

[I,v est défini par les valeurs de l'opérateur de Clément aur sommets (som') du
maillage i.e.

Myv(som') = [ v(som').

Pour sa part, la valeur de [I,v au centre des éléments est choisie telle que:

/Hvdﬂdt:/ Hgdedt=/dedt, VK € T.
K K K

Remarque 3.6. La preuve ci-dessus, s'étend aisément a l’élément mini espace-
temps en dimension 3 (3-D + temps). L'opérateur I1, est encore celui de Clément
et on trouve dans Bernardi (1989) les détails relatifs @ sa construction sur des
hyper-tétraédres. L’'opérateur I1;, quant a lui, est construit sur des hyper-tétraédres
comme la solution d'un probléeme similaire ¢ (3.21).
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CHAPITRE 4

LES SIMULATIONS NUMERIQUES

Ce chapitre présente les résultats de simulations numériques de la discrétisation
des équations de Navier-Stokes pour quelques problémes en dimension 2. Dans un
premier temps, nous allons résoudre une série de problémes afin d’illustrer les effets
liés & la violation de la condition inf-sup et vérifier la stabilité de 1'élément mini
espace-temps sous cette condition. Ensuite, nous allons étudier le comportement et
illuster I'enveloppe d’utilisation de la formulation stable obtenue avec I'élément mini
espace-temps; pour ce faire, nous allons la comparer a la méthode «GLS/ST» (2.5)
pour une série de problémes en coordonnées cartésiennes et axisymétriques. Finale-
ment, nous allons présenter des résultats numériques dans le cadre d’un écoulement
dans un domaine en mouvement.

En préambule aux simulations numériques, on présente les outils numériques uti-
lisées pour la construction de maillages espace-temps, la résolution des problémes
discrets et le post-traitement des solutions.

4.1 Les outils numériques

4.1.1 Le maillage espace-temps

Afin de discrétiser les tranches espace-temps (voir figure 2.2), nous avons retenu
les éléments géométriques de type simplex en 2D + temps, a savoir les tétraédres.
Ce choix a d’abord été motivé, par I'élément mini espace-temps; ensuite, par le
fait que les tétraédres sont plus aptes a mailler des domaines courbes (les domaines
variables) et finalement, parce que I'utilisation d’éléments de type simplex conduit a
des maillages non structurés et permet, en plus, d’éviter l'interpolation a l’'interface
de deux tranches lors du calcul du terme de saut (2.2).
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Par ailleurs, bien que ce type d’élément soit peu utilisé, la nature non-structurée des
maillages obtenus, permet de développer des stratégies adaptatives espace-temps.
Ces stratégies vont permettre de raffiner le maillage en espace-temps (Hughes et
Hulbert, 1988; Hulbert et Hughes, 1990; Froncioni et al., 1997) contrairement aux
éléments de type extrudé qui permettent de raffiner le maillage en espace et en
temps (épaisseur de la tranche) de fagon découplée (Eriksson, 1988; Eriksson et
Johnson, 1991; Li et Wiberg, 1998; Wiberg et Li, 1999).

Le maillage espace-temps initial est construit & partir d'un maillage du domaine
Q au temps t,. Pour illustrer la méthode utilisée, on considére, par exemple T,
le maillage de triangles discrétisant le domaine Q au temps t, (voir figure 4.1(a)).
Le maillage de triangles est extrudé (orthogonalement) dans la direction du temps
en un maillage de prismes de hauteur At = t,,; — t,. Selon le cas, ces prismes
sont déformés pour tenir compte du déplacement du domaine au temps t,.;. Les
prismes sont ensuite subdivisés en 3 tétraédres, afin d’obtenir un maillage conforme
de tétraédres (figure 4.1(b)), et cela sans ajout de nceuds supplémentaires dans la
tranche espace-temps.

(a) T, maillage initial de triangles (b) Maillage final de tétraédres
Figure 4.1 Génération du maillage espace-temps
L’extrusion de triangle en prisme est immédiate, par contre la subdivision du

maillage de prismes en tétraédres est un peu délicate. On commence par diviser
les 3 faces quadrilatérales de chaque prisme en 2 triangles, puis on subdivise chaque
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prisme en J tétraédres a partir des faces triangulaires. Chaque face quadrilatérale
peut étre divisée en 2 triangles de deux maniéres différentes. Parmi les huit confi-
gurations, seulement six (voir figure 4.2) peuvent étre décomposées directement en
3 tétraédres. Afin d’éviter les deux configurations (voir figure 4.3), caractérisées
par le fait que les 3 diagonales divisant les 3 faces quadrilatérales en triangles ne
possédent aucun sommet en commun, nous avons retenu la méthode de Dompierre
et al. (1999) pour la division des faces quadrilatérales en 2 triangles.

Cette méthode est directe (non-itérative) et est basée sur l'utilisation d'identifica-
teurs associés aux sommets du maillage. En général, cet identificateur est le numéro
global du sommet. Aprés avoir ordonné les sommets (du plus petit au plus grand),
selon la numeérotation globale, la méthode se résume en la régle suivante:

Une face quadrilatérale est divisée en 2 triangles par la diagonale issue du plus petit
sommet de la face.

Cette méthode est appliquée localement (élément a élément) et ne nécessite pas
d’information sur le voisinage de chaque élément.

Le maillage espace-temps étant construit a partir du maillage en espace, I'emphase
a été mise sur la construction du maillage de triangles discrétisant le domaine espace
2 au temps t,. Les maillages en dimension 2 ont été construits a ’aide du logiciel
ADX (Trépanier et Yang, 1993).

4.1.2 Les algorithmes de résolution

Afin d’aider a identifier les caractéristiques physiques des écoulements et éviter les
problémes que pourraient engendrer des géométries de petites dimensions (erreur
de troncature, convergence lente), les équations de Navier-Stokes sont adimensiona-
lisées de fagon classique, en remplacant la densité p (constante) par 1 et la viscosité
dynamique u par 1/Re. Le nombre de Reynolds Re représente le rapport des forces
d’inertie aux forces de viscosité et est défini par:

UxL

Re = .
v
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Figure 4.2 Les 6 configurations décomposables en 3 tétraédres sans ajout de nceud.

Figure 4.3 Les 2 configurations décomposables en 3 tétraédres avec 1'ajout d'un
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ou Uy est une vitesse caractéristique de 1’écoulement étudié (par exemple la vi-
tesse du mouvement d’un corps ou la vitesse moyenne dans une section déterminée
du canal, etc.), v = p/p est la viscosité cinématique du fluide et L est une lon-
gueur caractéristique (par exemple le diamétre ou la longueur d’un corps, la largeur
intérieure d’un canal, etc.).

Tout au long de ce travail, nous avons utilisé essentiellement deux éléments tétra-
édriques espace-temps. Le premier est |’élément appelé P, — P, et est illustré par
la figure 4.4. Pour cette combinaison, on approche les composantes de la vitesse et
la pression par des fonctions linéaires et continues. Les nceuds de calcul (vitesse et
pression) sont situés aux 4 sommets. On obtient ainsi, pour chaque élément 8 degrés
de liberté en vitesse et 4 en pression. Cet élément ne vérifie pas la condition inf-sup,
mais conduit & des solutions stables en utilisant les formulations stabilisées (2.4)
et (2.5). Le second est |'élément mini espace-temps (2D + temps) (voir figure 3.1).
Les fonctions de base associées aux nceuds internes ont un support qui se limite
A un élément. Les degrés de liberté correspondants ne sont liés & aucun autre de-
gré liberté que ceux de I'élément. Pour cette raison et pour économiser de |'espace
mémoire, nous avons éliminé par condensation statique les degrés de liberté de la
bulle au niveau élémentaire avant I’assemblage. On se raméne ainsi a la résolution
du probléme discret comme dans le cas de I'élément P, — P,.

Vitesse Pression

Figure 4.4 Position des degrés de liberté pour I'élément P, — P,

Pour les éléments utilisés (mini espace-temps et P, — P;) la discrétisation des for-
mulations espace-temps conduit & un sytéme global non linéaire, mixte en (u,p).
Ce systéme est résolu de fagcon couplée a l'aide d'une méthode de quasi-Newton.
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Les matrices jacobiennes sont évaluées numériquement. Les systémes linéaires sont
résolus par la méthode de décomposition LU en correction. On cherche & annuler
itérativement le résidu du systéme matriciel non-linéaire qui résulte des équations
de Navier-Stokes discrétisées en vitesse-pression.

A l'aide de ces outils numériques, les problémes discrets sont résolus de fagon sé-
quentielle (tranche aprés tranche) en partant d’une condition initiale identiquement
nulle ( uy =0).

4.1.3 Post-traitement des solutions

Les variables dépendantes des équations de Navier-Stokes discrétisées sont la vitesse
u,, et la pression p,. Ces quantités sont obtenues pour chaque temps t,, directement
de la résolution par éléments finis. Pour fins d’analyse, les dérivées spatiales du

(2, gy—‘-‘-, o et 22), la vorticité et la fonction de courant doivent

champ de vitesse
étre déduites de la solution numérique uy. Les dérivées du champ de vitesse sont
evaluées localement aux nceuds de chaque élément du maillage a I’aide des fonctions
d’interpolation et de la solution calculée. Cependant, étant donné que les fonctions
d'interpolation pour les éléments utilisés sont linéaires et continues par élément,
les dérivées sont alors constantes et discontinues par élément; ce qui représente
une approximation assez pauvre de ces quantités. Pour pallier a cette insuffisance,
nous avons retenu une approche basée sur la technique de projection locale par
moindres carrés de Labbé et Garon (1995}, inspirée des travaux de Zienkiewicz et
Zhu (1992a,b). Contrairement a la projection globale (Zienkiewicz et Zhu, 1987), la
méthode est locale et ne requiert pas la construction et la résolution d’un systéme de
méme taille que celui de la solution u,. Cette approche rend les dérivées continues
en projetant, les dérivées de la solution numérique sur une base polynémiale P
du méme degré que les fonctions d’interpolation de la solution numérique. Ainsi,
cette nouvelle représentation des dérivées devrait mieux approcher les dérivées de
la solution. Les détails de cette méthode sont présentés a I'annexe A.
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4.2 Vérifications

Afin de vérifier la stabilité de ’élément mini espace-temps, nous avons considéré les
trois tests suivants: le probléme de Poiseuille, le test «no-fiow» et le probléme du
cylindre. Les deux premiers tests sont des écoulements assez simples et conduisent
a des solutions stationnaires. Le dernier, conduit plutét a une solution transitoire
(périodique) et au développement de I'allée de Von Karman. Bien que ces problémes
soient relativement simples, ils nous ont permis d’illustrer les effets numériques liés
a la condition inf-sup.

4.2.1 Le probléme de Poiseuille

Figure 4.5 Domaine de calcul pour le probléme de Poiseuille

Description du probléme et procédures de calcul

Il s’agit de I’écoulement d’un fluide dans un canal avec un profil de vitesse parabo-
lique imposée en entrée. Ce probléme est simple et posséde une solution analytique.
En effet, si H est la hauteur du canal, la solution analytique des équations de
Navier-Stokes est

u= (%(H - y),O) ,etp= :f:"i{ + constante.
Le champ de vitesse est parabolique pour la premiére composante (I'autre compo-
sante est nulle) et la pression est linéaire. Afin d’illustrer les effets numériques liés
a la violation de la condition inf-sup, nous avons considéré trois éléments pour le
probléme de Poiseuille. A savoir 'élément P, — Py (voir figure 4.6(a)), I'élément
Q, — P, (voir figure 4.6(b)) et I'élément mini espace-temps (2-D + temps).
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L'élément P, — P, est caractérisé par un champ de vitesse linéaire (P, (x,t)) et un
interpolant en pression constant par élément. Pour 'élément @, — Py, on approche
les composantes de la vitesse par des fonctions bilinéaires (P (x) x Py(t)) tandis
que la pression est constante par élément. Pour ces deux éléments, les nceuds de
calcul sont situés aux sommets pour la vitesse et au barycentre pour la pression. On
obtient ainsi 8 degrés de liberté en vitesse et 1 en pression pour chaque tétraédre
et 12 degrés de liberté en vitesse et 1 en pression pour chaque prisme.

Vitesie Prescn Viese Presson

(a) A -F by —-FR

Figure 4.6 Position des degrés de libertés

Une fagon intuitive de déterminer si une discrétisation est stable ou non est de
calculer son ratio de contrainte C, sur un maillage donné. Ce nombre est défini par

C, = (dimQy — 1)/dimV},

et représente le rapport du nombre des contraintes indépendantes sur celui des
inconnues en vitesse. La valeur de ce nombre n’est pas trés significative sauf si elle
est plus grande que 1. Dans ce cas, le nombre des contraintes dépasse celui des
variables et 'ensemble des solutions 4 divergence nulle se réduit a la seule solution
nulle. C’est ce qu'on appelle {’effet bloquant («locking effect»). Pour le maillage
illustré a la figure 4.7, les ratios de contraintes pour les trois éléments sont donnés

par le tableau 4.1 et montrent que l'effet bloquant se produit pour I'élément P, — P,
(tétraédre).

Les tests réalisés avec 'élément P, — F;, donnent des solutions satisfaisantes pour
le champ de vitesse (voir figure 4.8) mais un champ de pression instable (voir
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Figure 4.7 Maillage (400 éléments)

Tableau 4.1
Ratio Condition
Elément de contrainte  inf-sup
12001
P -F E8 non
400—-1
-h T non
P — P, (mini) TSI oui

figure 4.9). La solution en pression est polluée par la présence de pressions parasites.
En ce qui concerne 1'élément mini espace-temps. les figures 4.10 et 4.11 montrent
des résultats satisfaisants tant pour la vitesse que pour la pression et illustrent bien
que I’élément mini espace-temps passe le test de Poiseuille.

Par ailleurs, bien que la pression soit stable. une analyse plus détaillée des solu-
tions montre que la pression n’est pas exacte (linéaire) et cela en dépit du fait que
l'interpolant en pression soit linéaire. Ce probléme a déja été mentionné par Fortin
et Fortin (1985) et illustre le fait que les espaces de discrétisation en vitesse et en
pression sont dépendants I'un de l'autre. En effet, les fonctions d’interpolation en
vitesse étant linéaires, le champ de vitesse (analytique) quadratique ne peut pas étre
représenté de fagon exacte. Dans le cas present, I'erreur d’interpolation en vitesse
dégrade la précision en pression.
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4.2.2 Le test «no-flow»
La description du probléme

Le probléme du « No-flow» a été initialement présenté par Gresho et al. (1984).
On impose des conditions essentielles homogénes (u = (0,0)) sur toute la frontiére
et le terme source (force volumique) f = (0,9), g # 0 de telle sorte que la solution
analytique soit

u = (0,0) et p = gy + constante.

Le champ de vitesse est nul et la pression est linéaire. L’élément mini espace-temps
étant linéaire en vitesse et en pression, on devrait étre en mesure d’obtenir la so-
lution analytique du «no-flow» contrairement au cas du probléme de Poiseuille.

Figure 4.12 Domaine de calcul et maillage pour le probléme du «no-flow»

Les figures 4.12 4 4.15, montrent que I'élément mini espace-temps passe le test du
«no-flow» en donnant la solution exacte en vitesse et en pression sur un maillage
grossier. En effet, les contours de la vitesse sont au voisinage du zero machine et la
pression est linéaire.
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4.2.3 Le probléme du cylindre

Il s’agit de ’écoulement d'un fluide autour d’un cylindre pour un nombre de Rey-
nolds de Re = 100. Ce probléme est caractérisé par un écoulement instationnaire
(périodique) et le développement d’un détachement tourbillonnaire a I'arriére du
cylindre, mieux connue sous le nom d’allée de Von Karman. Ce probléme a été étu-
dié par divers auteurs, numériquement (Brooks et Hughes, 1982; Behr et al., 1991;
Tezduyar et al., 1992; Engelman et Jaminia, 1990; Behr et al., 1995) et expérimen-
talement (Tritton, 1959; Boissson et al., 1983). Il est aussi considéré comme un
test de référence («benchmark») pour évaluer la performance (le caractére diffusif)
des méthodes numeériques pour la résolution des équations de Navier-Stokes insta-
tionnaires. En effet, selon les expériences numériques réalisées par Buffat (1991), il
s’avére que les algorithmes de discrétisation en temps trop diffusifs (par exemple
les schémas d’ordre 1) ne sont pas en mesure de prédire correctement 'évolution
temporelle de la solution. Ce cas test nous a permis d’évaluer la stabilité de notre
élément, mais aussi de mesurer son caractére diffusif.

Description du probléme et procédures de calcul

(-8,8) u=1 v=0 (25.2,8)
u=1
v=0 O Jpo-ndy=0
u=20
v=20
('83'8) u=1 v=0 (252,-8)

Figure 4.16 Domaine de calcul et conditions aux limites pour le probléme du
cylindre

La plupart des travaux antérieurs ont porté sur la position des frontiéres latérales
(en haut et en bas) (Behr et al., 1995), sur la position de la sortie et sur le type
de conditions aux limites & imposer en sortie (Behr et al., 1991). Pour cette étude,
nous avons considéré les caractéristiques et les conditions du probléme proposé
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par Gresho et Sani dans le cadre du minisymposium sur les conditions aux limites
en sortie de type frontiére libre qui s'est tenu & 1'Université Stanford en juillet
1991 («Open Boundary Condition Minisymposium 1991»). Pour ce probléme, une
solution de référence a été calculée par Engelman et Jaminia (1990) pour des fins
de comparaison.

La figure 4.16 présente le domaine de calcul et les conditions aux limites. Le do-
maine de calcul est assez grand soit 16 x 33.2 unités de longueur adimensionnelle et
le cylindre est de diamétre unitaire. Le fluide adhére a la paroi du cylindre. Un écou-
lement uniforme (u = 1,u = 0) est imposé & |'entrée et sur les frontiéres supérieure
et inférieure du domaine. A la sortie, la condition de traction nulle est imposée
faiblement. Le nombre de Reynolds est défini par Re = DU/v ou D est le diamétre
du cylindre, U est la vitesse uniforme en entrée et v est la viscosité. Le maillage
est construit en tenant compte de la solution du probléme. Il est suffisamment raf-
finé dans le sillage du cylindre, afin de capturer la formation des tourbillons. La
simulation transitoire a été démarrée a partir d’'une solution nulle et les solutions
transitoires consécutives ont été calculées avec un pas de temps fixe de At =0.1 et
1200 solutions consécutives ont été calculées.

Analyse des résultats

La figure 4.17 présente |'évolution temporelle des composantes (verticale et hori-
zontale) de la vitesse et la pression aux points (4,0) et (20,0). On observe, qu’aprés
une période transitoire instable, I'écoulement pour ¢ > 70 atteint un état périodique
permanent. On note aussi que la fréquence et I’amplitude de ces oscillations sont
constantes et se comparent assez bien avec la solution de référence (Engelman et
Jaminia, 1990).

Il a été convenu (voir Engelman et Jaminia, 1990) de présenter la solution au temps
tres. dit temps de référence, correspondant a I'instant oii la composante verticale de
la vitesse passe d'une valeur négative & une valeur positive a la position z = 0 et
y = 4. Les figures 4.18 a4 4.23 présentent le tracé des isovaleurs au temps t,.y, pour
la vitesse u, la vitesse v, la pression, le vecteur vitesse, la fonction courant et la
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vorticité. Ces résultats montrent la présence de tourbillons en arriére du cylindre.
Ces tourbillons constituent une formation dénommeée allée de Von Karman.

La qualité des résultats déduits de la simulation des allées de Von Karman derriére
un cylindre au nombre de Reynolds de Re = 100, nous a permis de confirmer la sta-
bilité de I'élément mini espace-temps et d'illustrer le caractére non-diffusif de cette
discrétisation. Une comparaison plus quantitative sera présentée a la section sui-
vante afin d’analyser le comportement et d’évaluer la précision de notre formulation
dans le cadre d’écoulements transitoires périodiques.

4.2.4 Notes et bibliographie

A travers cette investigation numérique nous avons montré dans I’exemple de 1'écou-
lement de Poiseuille, les effets numériques liés a la non satisfaction de la condition
inf-sup (pressions parasites et effet bloquant) et confirmé le fait que les espaces de
discrétisation en vitesse et en pression sont interdépendants dans le cadre de la dis-
crétisation par la méthode de Galerkin discontinue en temps. Le test du «no-flow» et
le probléme du cylindre nous ont permis respectivement de prouver I’exactitude et
la capacité de notre formulation a simuler des écoulements transitoires périodiques.

La présente vérification de la stabilité de |'élement mini espace-temps a déja été
présentée dans les articles suivants: (N'dri et al., 2000b) et (N’dri et al., 2000a).
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Figure 4.21 Isovaleurs de la pression
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4.3 Validations

Nous nous proposons dans la présente section de comparer la formulation stable
(méthode de Galerkin discontinue en temps avec l’élément mini espace-temps) a
la formulation stabilisée GLS/ST (avec I'élément P, — P;) qui est la méthode de
référence dans la cadre de la discrétisation par éléments finis espace-temps. Plusieurs
cas tests dans les systémes de coordonnées cartésiennes et axisymétriques ont été
étudiés A cette fin. Ces tests nous ont permis d’analyser le comportement, mais
également d'illustrer I’enveloppe d’utilisation de la formulation stable.

La simulation des écoulements dans les artéres est I'une des applications potentielles
de ce travail. Ce domaine couvre les écoulements internes et externes qui peuvent
étre aussi bien stationnaires qu’instationnaires (périodiques). Ce sont en général
des écoulements a faible nombre de Reynolds (compris entre 1 et 1200) qui incor-
porent des phénomeénes de transport de masse et des interactions fluide-structure
(domaines variables). En plus, en cas d'obturation d'une artére résultant d’artério-
sclérose (pathologie), I’écoulement est complexe et est caractérisé par la présence
de plusieurs zones de recirculation. Pour de plus amples détails sur la dynamique
des biofluides, on renvoie au livre de Comolet (1984).

Trois problémes ont donc été étudiés, chacun faisant ressortir les caractéristiques
des écoulements mentionnés ci-dessus. L'étude de I’écoulement autour d’un obs-
tacle (rectangulaire) & Re = 145, nous permettra de valider notre formulation dans
le cadre d’écoulements stationnaires avec recirculation. L’étude du probléme de la
marche inversée & Re = 800 va, pour sa part, nous permettre de vérifier 1'état de
I'écoulement a long terme et d’étudier le comportement asymptotique de notre for-
mulation. Finalement, I’étude du probléme du cylindre & Re = 100, nous permettra
d’analyser le comportement de notre formulation dans le cadre d'un écoulement
transitoire périodique.
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4.3.1 Ecoulement laminaire autour d’un obstacle

Les problémes d’écoulements autour d'un obstacle font I'objet de plusieurs applica-
tions. Des exemples de tels écoulements se retrouvent dans des problémes d’'échan-
geurs de chaleur, d’écoulement du vent autour de maisons, écoulements dans les
artéres en présence de plaques, etc. Parmi cette classe d’écoulements, le probléme
de ’écoulement autour d'un obstacle rectangulaire entre deux plaques est considéré
dans cette étude. Le domaine de calcul est composé d'un canal avec un rétrécis-
sement soudain (marche) suivi d'un canal avec une expansion soudaine (marche
inversée). Ce cas test a été choisi pour les raisons suivantes: d'abord, il existe des
données expérimentales pour ce probléme; ensuite, la géométrie est simple et 1'écou-
lement est caractérisé par la présence de plusieurs zones de recirculation; et finale-
ment, a travers les expériences numériques réalisées par Carvalho et al. (1987), il
s’avére que ce probléme est un test plus contraignant que le probléme standard de
la marche inversée. En effet, contrairement au probléme de la marche inversée, les
erreurs numériques provenant de l’avant de I'obstacle peuvent influencer de fagon
trés significative la prédiction de 1'écoulement dans tout le domaine.

Description du probléme et procédures de calcul

Le domaine de calcul est constitué d’un canal en travers duquel se trouve un obs-
tacle de hauteur S et de largeur [. A titre comparatif, les dimensions du domaine
correspondent a celles utilisées par Carvalho et al. (1987) et sont illustrées a la
figure 4.24. Le fluide rentre dans le canal avec un profil de vitesse parabolique

u(y) = (g y(2- y),O) pour 0 <y < 2,
adhére aux parois solides (condition de non-glissement) et une condition de traction
nulle est imposée faiblement en sortie. Le nombre de Reynolds est basé sur la vitesse
moyenne a l'entrée (U = %um) et la hauteur S de I'obstacle, et vaut Re = 145. Le
maillage utilisé est raffiné autour de I’obstacle afin de capturer les caractéristiques
de base de I'écoulement. Les simulations ont été initialisées a 1'aide d'une solution
nulle en utilisant le maillage illustré a la figure 4.25. Des solutions transitoires ont
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Figure 4.24 Canal plan avec obstacle

été calculées avec un pas de temps fixe, At = 0.5 jusqu’a ce que I'état stationnaire
soit atteint.

Dans ce test, on cherche a prédire les caractéristiques de I’écoulement (zones de re-
circulations) et la composante horizontale de la vitesse a différentes stations en aval
de I'obstacle. Les solutions numériques sont comparées aux données expérimentales
fournies par Carvalho et al. (1987).

Figure 4.25 Maillage: 6769 éléments

Analyse des résultats

Les lignes de courant sont présentées aux figures 4.26(a) et 4.26(b). On observe la
présence de deux zones de recirculation le long des parois solides (en haut et en bas).
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(b) GLS/ST

Figure 4.26 Lignes de courant

En outre, 4 la figure 4.27 ou, pour différentes stations z/S, la distribution de la
vitesse est comparée aux résultats expérimentaux, nous constatons que les deux
méthodes conduisent a des résultats similaires. [l n’y a pratiquement aucune dif-
férence notable au niveau de la précision des solutions calculées. En plus, nous
constatons que ces solutions sont en accord avec les données expérimentales.



67

L] (1} 1 ik} 2 e oS ' . 2
v r

(c) x/S=3.4 (d) x/S=4.4

Figure 4.27 Coupe de la composante horizontale de la vitesse
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(e) x/S=6 (f) x/S=11

L] (1) \l 'y 2 ] as Al s 2
v v

(g) x/S=18 (h) x/S=24

Figure 4.27 Coupe de la composante horizontale de la vitesse (suite)
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4.3.2 Le probléme de la marche inversée

Ce probléme classique a été traité expérimentalement et numériquement par plu-
sieurs auteurs. On cite parmi eux, Armaly et al. (1983); Gresho et al. (1993); Fortin
et al. (1997). Il s’agit d’un écoulement laminaire dans un canal avec une expansion
soudaine. La géomeétrie est simple et I’écoulement est caractérisé par la présence de
plusieurs zones de recirculation. Ce probléme est aussi connu pour les vives contro-
verses qu'il a provoquées lors du minisymposium sur les conditions aux limites en
sortie qui s’est tenu a I'université Stanford en juillet 1991. Contrairement a l’opinion
générale soutenue i ce minisymposium, Kaiktsis, Karniadakis et S.Orszag (1991)
ont affirmé que I'écoulement au nombre de Reynolds Re = 800 est instable. Ici, nous
nous joignons & Gresho, Gartling, Torczynski, Cliffe, Winters, Garrantt, Spense et
Goodrich (1993) et Fortin et al. (1997) pour infirmer ce résultat.

Dans le but de vérifier la stabilité de la solution stationnaire, nous avons étudié le
comportement a long terme de I’écoulement. Pour ce faire, la solution & Re = 800 a
été calculée en régime transitoire & ’aide des 2 formulations espace-temps. En plus
de cette analyse transitoire, la précision des solutions stationnaires asymptotiques
a été évaluée en comparant celles-ci a la solution du probléme stationnaire calculée
par Gartling (1990).

Description du probléme et procédures de calcul

H2 S

Figure 4.28 Domaine de calcul pour le probléme de la marche

L =aund

Le domaine de calcul décrit a la figure 4.28 est constitué a la fois des canaux en
amont et en aval de la marche. Le canal en aval a une hauteur unitaire H tandis
que la marche et le canal en amont ont pour hauteur H/2. La longueur du canal
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en aval vaut L = 30H et ’entrée du canal est située a une distance de 6/ de la
marche. Le fluide rentre par le canal en amont avec une vitesse parabolique

1
u(y) = (24y(0.5—-y),0) pour0<y< 3

adhére aux parois solides et aucune traction n’est imposée en sortie. Le nombre
de Reynolds est basé sur la vitesse moyenne (U = §u,,m) a l'entrée, la hauteur
H et vaut Re = 800. Le maillage utilisé en aval de la marche est semblable a
celui utilisé par Gartling (1990). Nous avons une distribution uniforme le long du
canal pour 0 < z < 20 (2 x 21 x 350 éléments) suivie d’un déraffinement graduel
(selon une loi de concentration sinusoidale) dans la direction de I’écoulement pour
20 < z < 30. Les simulations ont été démarrées d’une solution identiquement nulle
et des solutions transitoires consécutives ont été calculées avec un pas de temps fixe
At = 0.5. Ces simulations ont été réalisées jusqu'au temps adimensionnel ¢t = 500.

Analyse des résultats

Les figures 4.29 et 4.30 donnent un apercu de I'évolution de I'état de I’écoulement.
A partir des lignes de courant, on observe que ’écoulement aprés la marche se dé-
veloppe avec la formation d’une série de tourbillons le long des parois solides (en
haut et en bas). Deux tourbillons principaux sont accompagnés de différents tour-
billons de moindres intensités. A mesure que la simulation transitoire progresse, les
petits tourbillons se dissipent et les deux tourbillons principaux atteignent un état
d’équilibre a £ = 500. La compréhension des détails et du mécanisme d’apparition
et de disparition des tourbillons, ou encore de la dynamique de cet écoulement est
en soit un probléme fort intéressant. Cependant, nous allons nous contenter, dans
cette étude, de vérifier I'état de I’écoulement a long terme.

Les figures 4.31 et 4.32 présentent 1'évolution temporelle de la composante horizon-
tale de la vitesse a differents points situés le long des stations z/H =6 et /H = 12.
Ces figures montrent que ['écoulement se confond a la solution stationnaire aprés
une courte période transitoire. Ces résuitats révélent aussi que les deux méthodes
ont le méme comportement transitoire pour la composante horizontale de la vitesse.



71

w

R R i vttt T ey e

SRR

(d) t=125

—— .
s PR A T A Y T T Ty T - T - - T

(e) t=500

Figure 4.29 Lignes de courant a différents instants (élément mini espace-temps)



72

(a) t=10

(c) t=30

-~

(d) t=125

(e) t=500

Figure 4.30 Lignes de courant 3 différents instants (GLS/ST)
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Ajoutons aussi que Gresho et al. (1993); Fortin et al. (1997) ont observé le méme
comportement en se servant de schémas aux différences pour la discrétisation en
temps. La comparaison avec la solution de référence de Gresho et al. (1993) (voir
figure 4.33), illustre d’abord la concordance des résultats et montre ensuite que la
formulation stable est légérement plus précise que la méthode stabilisée GLS/ST.

Cette étude transitoire par les formulations espace-temps (stable et stabilisée) du
probléme de la marche inversée, suggére que I’écoulement & Re = 800 tend asymp-
totiquement vers une solution stationnaire stable.

Finalement, en plus de cette étude transitoire, nous avons evalué la précision des so-
lutions stationnaires (asymptotiques). La comparaison avec la solution de référence
du probléme stationnaire calculée par Gartling (1990) est illustrée aux figures 4.34
et 4.35. On y compare les distributions de la vitesse (composantes verticale et hori-
zontale), de la pression et de la vorticité aux stations z = 7 (figure 4.34) et z = 15
(figure 4.35). Pour des fins d'analyse, il faut noter que la solution de référence de
Gartling (1990) a été calculée a 1’'aide de I'élément Q, — P, en se servant d'un
maillage plus fin que celui utilisé dans cette étude. Il faut noter aussi que I'élément
Q2 — P, satisfait la condition inf-sup, est d’ordre 2 en espace et est considéré comme
P'un des meilleurs pour le calcul bidimensionnel. Cette comparaison montre que les
solutions calculées se comparent dans |'ensemble assez bien a la solution de réfé-
rence. Cependant, la précision des solutions obtenues (composante verticale de la
vitesse et pression) pourrait étre améliorée en utilisant un maillage plus fin. Cette
comparaison révéle aussi que les solutions calculées sont dans |’ensemble assez si-
milaires sauf pour la pression (voir figure 4.35(b)) et la composante verticale de la
vitesse (voir figure 4.34(d)) qui semblent étre légérement mieux approchées par la
formulation stable. La différence entre les niveaux de pression obtenus est certaine-
ment causé par les paramétres de stabilisation et le traitement de la condition aux
limites (traction nulle) imposée en sortie.
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Figure 4.31 Evolution de la composante horizontale de la vitesse (élément mini
espace-temps)
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Figure 4.32 Evolution de la composante horizontale de la vitesse (méthode
GLS/ST)
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Figure 4.33 Evolutions temporelle de la composante horizontale de la vitesse (com-
paraison)



as

(1]

azp

az

it

Qs Qa2 L] [+ as

(a) Vitesse horizontale

(c) Vorticité

76

qas p . - .
. -
o
ooty b
o
Qs a2 ¢ a2 Qe

(d) Vitesse verticale

Figure 4.34 Coupes de diverses composantes 3 = 7



77

as T a2 —
aer - gu;.-..-r........r..-...'."-:..,
arp
QMBYF . 2 - o s e e s s e e s e e s s e e~
(L)
a8 Qa4
[T 3 ez b
a3 p 4
02e b
o2p
a b 4
L] e
a8 a2 Q a2 [T} Qs a3 L 02 LY}
v ’
(a) Vitesse horizontale {b) Pression
aax
008 P
cooz ¢
Q0018
oot p
008 P
9
o
Q00" p
QoS b
L) ame
Qa8 a2 9 a2 dae qae a2 ] e2 LI}
¥ L]
(c) Vorticité (d) Vitesse veticale

Figure 4.35 Coupes de diverses composantes & z = 15



78
4.3.3 Ecoulement derriére un cylindre, Re = 100

Ce probléme a déja été défini a la section 4.2 dans le cadre de la vérification de la
stabilité de 1’élément mini espace-temps. Nous étudions ici le comportement tran-
sitoire des deux formulations espace-temps ainsi que la précision des solutions pé-
riodiques calculées. A I'aide des deux formulations espace-temps, nous avons résolu
le probléme du cylindre pour Re = 100 en se servant des conditions initiales sui-
vantes: une solution initiale identiquement nulle; un pas de temps fixe de At = 0.1;
et le maillage utilisé précédemment (voir section 4.2). Les points témoins a I'aide
desquels nous allons analyser le comportement transitoire de I'écoulement sont res-
pectivement (4,0) et (20,0) (voir figure 4.16).

L'évolution temporelle (pour les deux méthodes) de la composante verticale de la
vitesse aux points témoins est présentée a la figure 4.36. A partir de ces résultats,
nous pouvons faire les constatations suivantes: d’abord, pour les deux méthodes,
Pécoulement atteint I'état périodique aprés une période instationnaire; ensuite, en
partant des mémes conditions initiales (maillage, pas de temps et solution initiale}),
les deux méthodes n'ont pas le méme comportement transitoire. Les amplitudes des
oscillations sont plus fortes dans la période instationnaire et l'état périodique est
atteint plus vite avec la méthode GLS/ST. Il en résulte des solutions périodiques qui
ne sont pas en phase. Finalement, bien que les deux solutions ne soient pas en phase,
I'amplitude et la fréquence des oscillations sont trés similaires (voir figures 4.36(b)
et 4.36(d)). Ajoutons qu'une étude de raffinement du pas de temps, nous suggére
fortement que le déphasage des solutions périodiques provient du comportement
dans la période instationnaire et est propre i chacune des formulations espace-
temps. En effet, une analyse de convergence en fonction du pas de temps, réalisée
en examinant 1'évolution temporelle de la composante verticale de la vitesse au point
(4,0) pour At = 0.2,0,1 et 0.05, nous a permis de montrer que les deux méthodes
convergent chacune vers une solution périodique (voir figure 4.37). En plus, bien
que la fréquence et la période de ces oscillations soient trés similaires, ces solutions
périodiques ne sont pas en phase (voir figure 4.38).

D’autre part, les figures 4.39 et 4.40 illustrent (pour les deux méthodes) le tracé
aux temps de référence des isovaleurs de la fonction courant, de la pression et
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(b) Pression
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Figure 4.39 éiément mini espace-temps
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(a) Lignes de courant

(b) Pression

(c) Vorticité

Figure 4.40 Méthode GLS/ST
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de la vorticité. Etant donné le déphasage entre les 2 solutions périodiques, nous
avons associé a chaque solution un temps de référence. Il s’agit de I'instant ou la
composante verticale de la vitesse pour la position £ = 4 et y = 0 passe d’une
valeur négative & une valeur positive au dernier cycle calculé. L’'analyse de ces
figures, montre qu'il n'y a aucune différence notable entre les deux solutions a cet
état de I'écoulement. En plus, la présence d'allées de Von Karman montre aussi que
I'état périodique permanent est bel et bien atteint.

Finalement, afin d’évaluer la précision des solutions calculées, nous les avons com-
paré a la solution de référence de Engelman et Jaminia (1990). Cette comparaison
s’effectue au niveau des coupes & z = 4 de certaines quantités aux temps de réfé-
rence (voir figure 4.41). On constate que les prédictions numériques se comparent
assez bien a la solution de référence. On observe aucune différence significative au
niveau des solutions obtenues sauf pour la pression qui semble mieux approchée
avec la formulation stable (élément mini espace-temps).
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Figure 4.41 Coupes de diverses composantes 3 z = 4
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4.3.4 Modéle axisymétrique

Les simulations précédentes ont été réalisées dans le systéme de coordonnées car-
tésiennes. L’extension au cas axisymétrique a pour principal intérét la simulation
des écoulements dans les artéres mais également, les nombreuses applications que
I'on rencontre en pratique. Ce sont par exemple, le développement d’un écoulement
dans une conduite circulaire, ’écoulement dans un canal avec une contraction ou
une expansion soudaine, I'écoulement dans un diffuseur et les jets.

Les équations de Navier-Stokes, la méthode de Galerkin discontinue en temps et la
formulation stabilisée GLS/ST dans le cas axisymétrique sont présentées i I'annexe
B. A titre de vérification et de validation du modéle axisymétrique, nous com-
mencerons par la simulation d'un jet analytique et ensuite nous allons considérer
la simulation d’'un écoulement dans un canal avec une contraction soudaine a un
nombre de Reynolds de Re = 196. Pour ce probiéme, nos prédictions numériques
seront comparées aux données expérimentales.

Jet libre analytique

i

z (02,0

Figure 4.42 Domaine de calcul

Ce cas test correspond a une simulation d’un jet libre axisymétrique. Les expressions
pour la vitesse et la pression proviennent d’une analyse de Schlichting (1979). On
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impose un terme source (force volumique) f, tel que la solution analytique soit

v = 3¢ 1 )
87 €0z (1 + 1n?)?’
o = L /3Ve -5

WVrzasine

oin= %\/glfg, c=T7277Tx1074, ¢ = 0.0161\/cet v (= 8x 10™*) est la viscosité.
Le domaine de calcul dans le repére axisymétrique est illustré a la figure 4.42 et
a comme dimension 0.2 < z < 1l et 0 < r < 1. Les conditions aux frontiéres sont
des conditions de type Dirchlet partout sauf sur I'axe de symétrie (r = 0) ou l'on
impose une traction axiale nulle (u = libre) et sur la frontiére du haut (r = 1) ou
une traction radiale nulle est imposée (v= libre) afin d'obtenir un niveau de pression
moyen

ov
D= 2U-|r=|.

or
Basé sur la vitesse axiale maximale, la hauteur du domaine de calcul et la viscosité,
le nombre de Reynolds vaut 8 x 10*. Les simulations ont été démarrées a partir
d’une solution identiquement nulile en utilisant le maillage illustré a la figure 4.43.
Par la suite, plusieurs solutions transitoires consécutives ont été calculées avec un
pas de temps fixe At = 0.1 jusqu’a l'atteinte de I’état stationnaire.

Figure 4.43 Maillage 3690 éléments

Les figures 4.44 et 4.45 représentent les isovaleurs du champ de vitesse, de la vitesse
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axiale et de la vitesse radiale. En plus, une comparaison directe avec la solution
analytique (voir figures 4.46 et 4.47), montre que les deux solutions sont similaires
et trés précises.

AL

(a) Vitesse axiale

~

‘I !E paiah

(b) Vitesse radiale

Figure 4.44 L’élément mini espace-temps
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Figure 4.45 La méthode GLS/ST

89



90

LY}

as Laadd

s

o

ez

ats

°
e
~

(a) x =0.5

[} ]

il

s

aap

s

ar

aas

H

ase (13 (L] t

{b) x=0.75

e

H

T

P

at

aos

a L.} Qaas (L] (.U}

(c) x=0.90

Figure 4.46 Coupes de la vitesse axiale



91

Qs

(a) x=0.5

f

Q004
aon b
oa

aas p*
aom b
aom

Qo0

|axs

(b) x=0.75

(c) x=0.90

Figure 4.47 Coupes de la vitesse radiale



92

Ecoulement axisymétrique dans un canal avec contraction soudaine

L, Ly

D i d

D =0.0191m d=0.0102m
Ly =0.026m L, =0.020m

Figure 4.48 Géometrie

On considére I’écoulement dans un canal avec une contraction soudaine dont les
caractéristiques et les dimensions sont données a la figure 4.48. Un profil de vitesse
parabolique

u(r) = (8(r+0.5)(0.5—-r),0) pour —=<r<

N o—
N -

est imposé en entrée. Le fluide adhére aux parois solides et une condition de traction
nulle est imposée faiblement en sortie. Le nombre de Reynolds est basé sur la vitesse
axiale moyenne (U = “maz) 3 l'entrée, le diamétre D, et est égal & 196. Pour sa
part, le domaine de calcul ne comprend que la moitié supérieure (0 < r < %) du
domaine physique, compte tenu de la symétrie axiale du probléme. Les simulations
ont éte initialisées a I’aide d’une solution nulle en utilisant le maillage illustré a la
figure 4.49. Des solutions consécutives ont été calculées avec un pas de temps fixe
de At = 0.1, jusqu’a ce que |’état stationnaire soit atteint.

Dans ce test, on cherche a prédire les profils de la vitesse axiale a différentes stations
de part et d’autre de la contraction. Les résultats numériques sont comparées aux
données expérimantales fournies par Durst et Loy (1985).

Les figure 4.50(a) et 4.50(b) illustrent les caractéristiques de la solution station-
naire pour Re = 196. Dans la figure 4.51, on compare nos prédictions aux résultats
expérimentaux. Les deux méthodes donnent des résultats trés similaires et la com-
paraison est bonne a toutes les stations. Ce test confirme la précision et la capacité
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de notre formulation a bien reproduire des écoulements laminaires en coordonnées
cylindriques axisymmeétriques.

4.3.5 Notes et bibliographie

Dans cette étude comparative, nous nous sommes restreint aux applications avec des
domaines fixes. Ce choix a été motivé par le fait que les deux méthodes utilisent
la méme procédure pour traiter les domaines variables. Dans cette procédure, le
déplacement ou la déformation du domaine est incorporé dans la construction de la
tranche espace-temps. Ainsi, la résolution de problémes sur les domaines variables
n'est pas significative pour cette comparaison.

La présente comparaison entre les formulations stable et stabilisée a déja fait 1'objet
d'un article (N'dri et al., 2001b) et a été présentée en congrés scientifique ( N'dri
et al. (2000c) (dans le cas cartésien) et N'dri et al. (2001a) (dans le cas axisymé-
trique)).
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(a) Elément mini espace-temps

Méthode GLS/ST

(b)

Figure 4.50 Champ de vitesse
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4.4 Domaines variables

La discrétisation des équations de Navier-Stokes sur des domaines variables par
la formulation stable (méthode de Galerkin discontinue en temps avec 1'élément
mini espace-temps), s'inscrit dans le cadre général des formulations espace-temps.
Selon cette approche, le déplacement ou la déformation du domaine est incoporé
automatiquement dans la construction de la tranche espace-temps ainsi que dans
le maillage le discrétisant. Cette procédure est directe et immédiate dans le cas
ou la déformation temporelle du domaine est connue a priori. Cependant, pour
les applications plus complexes (par exemple, les problémes de surfaces libres et les
problémes d’interaction fluides-structures), ot la vitesse de déformation ou de dépla-
cement du domaine dépend de celle de I’écoulement, on utilise la méthode DSD/ST
«Deforming-Spatial-Domain/Space-Time» (voir Shakib et Hughes, 1991; Tezduyar
et Behr, 1992a,b; Behr, 1992; Mittal, 1992; Behr et Tezduyar, 1994; Johnson, 1995;
Masud et T.J.R.Hughes, 1997) et la méthode CSD « Characteristic-Streamline -
Diffusion » (voir Johnson, 1991; Hansbo, 1992b; Pironneau et ai., 1992; Hansbo,
1993, 1995). Ces deux techniques possédent des similarités avec la méthode ALE
« Arbitrary Euleurian-Lagrangian» utilisée dans ’approche semi-discréte (discréti-
sation par éléments finis en espace et différences finies en temps) mais sont relati-
vement plus simples a4 implémenter (voir Tezduyar et Behr, 1992b).

A titre d’exemple d’application dans un domaine variable, nous avons considéré
le deuxiéme probléme de Stokes (Ryhming, 1985). Pour ce probiéme, la vitesse de
déplacement du domaine est connue et les équations de Navier-Stokes possédent
une solution analytique.

4.4.1 Deuxiéme probléme de Stokes

Il s’agit du probléme d’une plaque infinie effectuant un mouvement oscillatoire dans
son propre plan (voir figure 4.52). A cause de la viscosité du fluide, des oscillations
longitudinales sont engendrées dans le fluide au dessus de la plaque. La solution
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analytique des équations de Navier-Stokes est :
u = (u(y,t),0), p = constante.

La vitesse horizontale est fonction de la variable d’espace y et du temps, et est
donnée par

u(y,t) = Ugezp [— (%)1/2 y+i (wt - (-;—V) l/2)] ,

ou Uy est I'amplitude maximale de la vitesse de la plaque et w est la fréquence
angulaire des oscillations. Ainsi, le fluide effectue un mouvement oscillatoire avec
une amplitude qui diminue avec la distance y a la plaque. A la distance caractéris-
tique § = (?5)“/ 2, 'amplitude maximale est amortie 4 1/e de sa valeur a la plaque
méme. Le nombre de Reynolds, basé sur le déplacement longitudinal (L = ¥=)
qu’effectue la plaque, est défini par Re = U, L/v et satisfait le rapport suivant:

]
— = Re™ /2,

L
Ce qui indique que |'effet de la viscosité est limité & une couche d'épaisseur relative
inversement proportionnelle a la racine carrée du nombre de Reynolds.

u=20
v=_0
Yy
v=_0 v=20
o u = Uy cos(wt)
L v=0
Figure 4.52 Plaque oscillante Figure 4.53 Domaine de calcul et condi-

tions aux bords
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Les caractéristiques du domaine de calcul et les conditions aux limites sont données
a la figure 4.53. Le domaine effectue un déplacement longitudinale et les conditions
aux limites sont fonction du temps.

Les simulations ont été réalisées avec une fréquence angulaire w = 27, une amplitude
de vitesse a la plaque de Uy, = 1 et un nombre de Reynolds basé sur le déplacement
longitudinal L = 1/, soit Re = 10. La simulation transitoire a été démarrée avec
une solution nulle et les 3 premiers cycles ont été calculés avec un pas de temps fixe
At =0.01.

Analyse des résultats

Afin de comparer la solution calculée avec la solution analytique, le profil de la vi-
tesse horizontale a été tracé a chaque quart de cycle des oscillations. Les figures 4.54
et 4.55 présentent ces profils pour le premier et le deuxiéme cycle. Le troisiéme et
le deuxiéme sont identiques.

On observe que la solution numérique correspond trés bien a la solution analytique
sauf pour le premier quart du premier cycle. Le retard qui n’apparait plus pour les
cycles suivants provient de I'effet de démarrage de la solution transitoire. En effet la
solution initiale est nulle alors que la simulation débute avec une vitesse non nulle,
U a la plaque.
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CONCLUSION

Une formulation éléments finis espace-temps stable pour la discrétisation des équa-
tions de Navier-Stokes en 2-D a été présentée. La formulation est basée sur la
méthode de Galerkin discontinue et repose sur |'élément mini espace-temps. La dis-
crétisation de la pression est linéaire tandis que la vitesse est linéaire mais enrichie
d’une bulle (4 fonctions linéaires). Cette discrétisation est stable, il n'est donc pas
nécessaire d'ajouter explicitement des termes de stabilisation afin d’obtenir une
solution exempte d’instabilités.

A travers une étude théorique (existence et unicité) du probléme de Stokes insta-
tionnaire, nous avons établi I’analogue de la condition inf-sup dans le contexte de
la discrétisation par éléments finis espace-temps. Par la suite, nous avons vérifié
la stabilité de 1'élément mini espace-temps sous cette condition en se servant du
critére de Fortin. Dans |'exemple du probléme de Poiseuille, nous avons illustré les
effets numériques liés a la non satisfaction de la condition inf-sup (pressions para-
sites et effet bloquant) confirmant ainsi la dépendance réciproque entre les espaces
d’approximation en vitesse et en pression dans le cadre de la discrétisation par la
méthode de Galerkin discontinue en temps. Pour sa part, le test du «no-flow», nous
a permis de prouver l'exactitude de la discrétisation.

Cet travail étant une étude préliminaire a la simulation d’écoulements artériels,
nous avons abordé différents problémes afin d’étudier le comportement de la for-
mulation stable pour ce type d’écoulement. L’étude de I’écoulement autour d’'un
obstacle rectangulaire au nombre de Reynolds Re = 145 et du probléme de la
marche inversée 3 un nombre de Reynolds Re = 800, nous a permis de valider
notre formulation dans le cadre d'écoulements stationnaires avec recirculation et
d’illustrer son comportement asymptotique. L’étude du probléme du cylindre & un
nombre de Reynolds Re = 100, nous a permis de montrer le caractére non diffusif de
notre discrétisation et sa capacité a reproduire correctement 1'évolution temporelle
d’une solution transitoire périodique. Finalement, la simulation d’un jet analytique
i un nombre de Reynolds Re = 8.10% et ’étude d’un écoulement dans un canal
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avec une contraction soudaine au nombre de Reynolds Re = 196, nous ont permis
de vérifier le modéle axisymétrique de notre formulation et d’illustrer ses possibili-
tés dans ce systéme de coordonnées. Pour les problémes abordés, la validation des
résultats numériques avec les données expérimentales ou les solutions de référence
(«benchmark») était bonne dans l'ensemble. Une comparaison a aussi été effectée
entre la formulation stable et la méthode stabilisée GLS/ST. Avec |'élimination des
degrés de liberté associés a la bulle de I’élément mini espace-temps, les systémes
d'équations résultant de la discrétisation des équations par les deux méthodes ont
le méme nombre d'inconnues globales. En plus, pour les problémes considérés, les
deux méthodes conduisent & des solutions trés similaires.

Suite a ce travail, quelques recommandations peuvent étre formulées. D'abord, il
est clair que ’approche de discrétisation par éléments finis espace-temps, conduit
a la résolution de systémes d’équations linéaires algébriques de grande taille. Pour
les travaux ultérieurs, on aurait tout avantage a utiliser des méthodes itératives.

Pour la discrétisation dans le temps, un pas de temps fixe a été utilisé. Pour mieux
suivre I'évolution de la solution en diminuant les coits de calcul et la durée des si-
mulations transitoires, Li et Wiberg (1998) ont dévéloppé un mécanisme de contréle
automatique du pas de temps dans le cas des problémes hyperboliques du deuxiéme
ordre. Le terme de saut a !'interface

leall? = /S (W — ut)?de,

est utilisé comme estimateur d’erreur a posteriori et permet via un opérateur de
transition de déterminer un nouveau pas de temps. Les tests que nous avons réalisés
pour les équations de Naviers-Stokes ont montré, d’une part, que l’estimateur d’er-
reur était excellent, et que cette procédure était capable de controler le pas de temps
et de maintenir ’erreur de discrétisation en temps en dega de |’erreur prescrite.

L’élément mini espace-temps étant linéaire en espace-temps, il serait pertinent de
développer une stratégie adaptative en espace-temps, afin d’améliorer la précision
des approximations. Deux approches sont disponibles selon que I’espace et le temps
sont découplés ou non. Dans ’approche découplée, deux stratégies adaptatives sont
développées respectivement en espace et en temps afin de contréler le pas de temps
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et raffiner/déraffiner le maillage en espace. Cette approche repose sur des maillages
espace-temps obtenus par extension du maillage espace dans la direction du temps
(type extrudé) et constitue |'essentiel des méthodes adaptatives espace-temps. On
peut consulter a cet effet les travaux de Eriksson et Johnson (1987, 1991); Johnson
(1988) et Eriksson (1988) pour les problémes paraboliques et ceux de Li et Wiberg
(1998); Wiberg et Li (1999) en dynamiques des structures. Pour sa part, I'approche
couplée est basée sur un estimateur d’erreur espace-temps et repose sur des éléments
finis espace-temps de type «simplex». Elle a été proposée par Hulbert et Hughes
(1990), mais la premiére mise en ceuvre est le résultat de Froncioni et al. (1997) pour
le probléme de Burger en 1-D. Il serait intéressant de généraliser cette approche aux
équations de Navier-Stokes en 2-D afin de tirer avantage de la nature non-structurée
des maillages de type «simplex».

Nous avons déja débuté ’extension au 3-D avec la construction de I’élément mini
espace-temps (3D + temps) en appliquant la méme technique aux hypertétraédres
(Ndri et al., 2000a). Mais tout reste a faire au niveau des simulations numériques.
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ANNEXE A

PROJECTION LOCALE

Cette méthode rend les dérivées continues en projetant, les dérivées de la solution
numeérique sur une base polynéomiale P du méme ordre que les fonctions d’interpo-
lation de la solution numérique.

Pour chaque sommet du maillage, on regroupe les éléments connectés a un sommet
en une cellule «patch», tel qu’illustré a la figure A.1. La nouvelle représentation de
la dérivée au noeud central de la cellule est obtenue en projetant la dérivée de la so-
lution numeérique sur la base polynémiale P. Cette base est constituée des fonctions
d’interpolation de la solution définies sur I'élément de référence. Par exemple, dans
le cas d’une solution linéaire en dimension 2, la base polynémiale posséde m = 3
termes et s’écrit P = [1,z,y]. Afin de définir la nouvelle représentation (%ﬂl)
de la dérivée, on pose P = [p(z,y), --- .pm(Z,y)] et on obtient la dérivée (d'une
composante de la vitesse) résultant de la projection sous la forme:

Ou; (
h Z Dj (z,y) Qz;

Les ceefficients a, = [az1, - -- ,am]T sont obtenus pour chaque cellule en minimisant
la fonctionnelle discréte de moindres carrés,

2

Fun(Z:,y:i)
Fl(azt, * 0zm) =2Zj Pinl o] Zp,(x,,ydaz, N ES)

ou, nb_pe = nb_el * k représente, le nombre de points d’échantionnage obtenu en
prenant k points d’échantillonnage par élément pour une cellule de nb_el éléments.

En posant,
oF

aazJ

:0 (j:l,...,m)’
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on montre que le vecteur a, est solution du systéme matriciel:

Aa; =b,, (A.2)
ol
nb_pe
A= Z P (i, 4:)P(zi,4:)
=0

est la matrice du systéme de membre de droite

nb_pe
Oun(zi,yi
b.=)_ PT(zi,yi)—i(ng)-
i=0

La matrice A est indépendante des composantes du gradient. On a donc un systéme
matriciel & membres de droite multiples 4 résoudre. On tire avantage de ce fait en
calculant et décomposant la matrice A une seule fois.

Triangles linéaires Triangles quadratiques

Figure A.1 Exemple de cellules

La qualité de la projection obtenue dépend essentiellemnent de la position et du
nombre de points d’échantillonage par élément. Le choix de points dits optimaux,
superconvergents et ultraconvergents conduit & de meilleures approximations. On
renvoie aux travaux de Zienkiewicz et Zhu (1992a,b) pour les détails sur cette
propriété de superconvergence et sur la localisation et le nombre de ces points
d’échantillonnage. D’autre part, pour que le systéme linéaire (A.2) posséde une
solution, il faut que le nombre de points d’échantillonnage soit supérieur ou égal
au nombre de termes dans la base polynémiale P (nb_pe > m). Cette condition
n’est pas satisfaite sur les cellules & peu d’éléments (1 ou 2 éléments) lorsqu’on



119

choisit les points d’échantillonnage dits optimaux. Pour satisfaire cette condition
sur le rang de la matrice 4 et cela indépendamment du nombre d'éléments par
cellule, Labbé et Garon (1995) ont suggéré 'utilisation de points de quadrature
de Gauss en nombre égal au nombre de termes dans la base polynémiale P, afin
que le rang de la matrice A soit égal au nombre d'inconnues. En contrepartie, cela
entraine la perte de la propriété de superconvergence de |'opérateur de projection
local discret telle que reportée par Zienkiewicz et Zhu (1992a,b). Finalement, La
matrice A étant mal conditionnée (Labbé et Garon, 1995), le sytéme linéaire (A.2)
est résolu par la méthode de décomposition LU avec pivotage, afin de réduire les
effets de 'arithmétique flottante.

Par ailleurs, comme un élément peut faire partie de plusieurs cellules, certains nceuds
ont une contribution venant de plusieurs polynomes. Dans ce cas, la valeur de la
dérivée projetée sera la moyenne des contributions de chaque polynéme.

Pour un écoulement bidimensionnel, l'intensité de la vorticité V x u s'exprime par

ov Ou

or Oy

et est évaluée a partir des dérivées spatiales projetées.
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ANNEXE B

MODELE AXISYMETRIQUE

B.1 Opérateurs différentiels

Dans le cas axisymétrique, on utilise le systéme de coordonnées (z,r,0) oi z est
dans la direction axiale, r est dans la direction radiale et 6 est dans la direction
tangentielle.

Soient s un scalaire, v un vecteur et T un tenseur:

v=| v, (B.1)

T= Tz T T (B2)

Tor Tor Tye

Us=| & (B.3)
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v, 10 1 Oy
v = =2 4 ——(rv, -— B4
Vv 6:r+r6r(w)+r69 (B4)
duz dup dug
dz 3z
Vv=| 2% %o %, (B.5)
18v L3ve _ur 13vp . v
r 60 r 36 r r 99 r
%+$%(7Tr1) = ézra%;
V-To| G lf(T.+ i B5)

B.2 Equations de Navier-Stokes

Soient u le vecteur vitesse, p la pression et ¢ le tenseur du taux de déformation. Les
composantes du vecteur vitesse associées aux directions axiale, radiale et tangen-
tielle sont respectivement u, v et w . Dans cette recherche, on considére seulement le
cas sans tourbillon, c’est-a-dire qu'on suppose que w = 0 et que % = 0. On obtient
ainsi,

du
az

et
o

4
=
0
$I
$@
o

(B.7)

o
o
e
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udt + o2
(u-Viju=| u3f+ v%- (B.8)
0
£ [0g)+ 1 (2 + 2]
V-Queu) = | Z [0 (B +3)] + 15 [2rud] (B.9)
0
)
az
Vp=| 2 (B.10)
0
du 19
Vou= 5; + ;E(rv) (B.11)

L’équation de la conservation de la quantité de mouvement devient:

- dans la direction axiale:

(3u+u6u+vau f)—2 @+£ir(@+ﬁ) +@—0
P\t "%z TV 7)) T8z [Pz Trar |TM\or T Bz ar

- dans la direction radiale:

i ] v 9 du v 19 v ap_
p(3t+u8 —fy) [ (§+3—x)]+ a’_[21";1&_]—%2;12 a'_—0
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et celle de la continuité devient:

ou Ov v

et —4+-=0

dr oOr r

B.3 Maéthode de Galerkin discontinue en temps

- mouvement axial:

/ p (a_u + u@ + v% - f,) duddt — pa&_u dQdt

o oz oz
Ou ddu Ou Ov) ddu
+ /;‘np [25;_6?+ (51_-":'3—1) ?] dQdt

- / hz - dudl’ +/ p(ul —u)-oul dQ =0.
Znn n

- mouvement radial:

dv v v v v
/"p(§+u5;+v(,—)r——fy)évdﬂdt—/np(gi—?) dQdt
du dv)\ ddv ov ddv v
+ Lﬂ“[(§+5§)-3—;+25r—_6-r_+256v] dQdt
—/ h,,-évd[’+/ p(vh — o) - dv}dQ =0.
ENn

QU

— continuité

du Ov v
[M (a—r+§+;)5pdﬂ—0.

ou dQQ = rdrdz et dI' = rdrds.
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B.4 Méthode GLS/ST

- mouvement axial (termes supplémentaires)

! ou ou ou 0 Ou
Z/ Tm:"{p(a+ub-;+v-a—r——fz)+?——-[2#§]
e=l n
7 du Ov dbu du ou
- ;5[’“(5’“@)””(5&7“3} ar)"f"“
+ Z/ (—+—+ )rm,g dQdt

- mouvement radial (termes supplémentaires)
i/n";’m (3_v+u?_v_+vgv__f a_p_ﬂ (6_u+§_v_)
/. p "\t " 5z " "or ara“araz
1 0 vl v 66v

ol v v v
+ Z/ <—+—+ )mt(g r)det
- continuité (termes supplémentaires)

= du ou du gp 0 Ju
;/ ( (—+Ua—+var f1)+$——[2p5;

16 ou Oov ddp
T rer [’ﬂ(a*a)})"ﬂ"dt

. Trmom v v v dp 0O du Oov
F L[ E=0Gm s e w k(5]

L [2r@] -zuri) %P 4t

o 1“or

Les paramétres de stabilisation Tom €t 7eon: sont définis au chapitre 2.





